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Abstract  

Whole-body vibration affects drivers and passengers in vehicles.  These people 

could be performing a variety of tasks that could be directly related to the control of 

the vehicle, or could be something unrelated to the vehicle.  There is potential for 

the exposure to WBV whilst performing a task to adversely affect task performance.  

This paper uses two case studies to illustrate a model of performance and workload 

whilst exposed to vibration.  It is shown that performance whilst completing a 

discrete task (Purdue pegboard) is easily affected by vibration, but a continuous 

task (steering wheel) is unaffected.  However, in both cases, the self-reported 

workload increases with vibration.  A model is presented that shows that where 

there is adaptive capacity of the operator, they are able to compensate for the 

vibration with greater control but at the cost of workload.  However, beyond a 

coping threshold the performance will degrade. 

 

1. Introduction 

Drivers, workers and operators of off-road machinery are required to perform many types of tasks whilst 

exposed to whole-body vibration.  For a driver, their whole task could simply be to safety and quickly 

transport people and/or a carried load from one location to another.  The task would most likely involve 

the use of a steering wheel and pedals to control the speed and direction of the vehicle.  An excavator 

operator has several components to their work.  For part of their work time they could be driving from 

one location to another (sometimes called ‘tracking’); at times when they are excavating they are 

exposed to a different characteristic of vibration and using different controls.  Other workers are 

exposed to vibration but are not in control of it.  For example, someone could be operating equipment 

in the back of a military vehicle whilst a different driver drives the vehicle.  In each of these three 

examples, the task and the interface that the worker has to use are different, but in each case there will 

be some type of vibration disturbance and some required level of workload / performance.   

 

If an individual is required to perform a task in a moving environment they are exposed to forces that will 
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affect their direct motor control, and could also affect their cognition.  The extent of the effects on 

control and cognition depend on the task and the motion to which they are exposed.  As a 

rule-of-thumb, most well-established primary control mechanisms are robust to the environment to 

which they are usually exposed.  For example, a classic steering wheel and accelerator, brake and 

clutch are very for controlling a car.  Mansfield (2012) suggests that this is a form of ‘natural selection’ 

whereby any poorly functioning designs would have naturally died out whilst superior methods evolved 

in the early periods of vehicle innovation.  However, new forms of controls, such as for navigation 

systems or other newer innovations, are more likely to be prone to being adversely affected by vibration 

exposure than primary controls.  Despite there being an element of robustness to control it is possible 

that the workload associated with a task could be affected by exposure to whole-body vibration. 

 

This paper uses two case studies demonstrating the effects of vibration on performance and workload 

and uses the results of these to develop a workload and performance model. 

  

2. Methods 

Two studies were carried out.  Study 1 comprised a discrete manual control task using a purdue 

pegboard.  Study 2 comprised a driving task with continuous manual control.  Both tasks were 

performed whilst subjects were standing. 

 

16 participants were used in case study 1.  These comprised 6 males and 10 females (age: 19-30, 

stature: 1600-1830mm; mass: 63-90kg).  21 participants were used in case study 2.  These 

comprised 10 males and 11 females (age: 20-31, stature: 1540-1835mm; mass: 53-93kg).  

Participants received detailed information regarding the purpose of the studies, experimental protocols 

and possible risks associated with participation. 

 

The experimental conditions consisted of single-axis vibration, in both horizontal directions: fore-and-aft 

(x-axis) and lateral (y-axis), as well as dual-axis horizontal vibration (xy-axes). Vibration was generated 

using a 6 degree-of-freedom multi-axis vibration simulator (MAViS) at the Environmental Ergonomics 

Research Centre, Loughborough University. Participants were required to stand on the simulator 

platform and for safety reasons; a harness was worn at all times while standing on the simulator. During 

the discrete control study, a guard rail was mounted on three sides of the platform at a height of 

1000mm to provide additional safety for the participants. For the continuous control study, the guard rail 

was removed, however additional support was provided by the steering wheel rig that was fitted to the 

platform. 

 

For both studies, the vibration stimuli were band-limited up to a frequency of 4Hz. This frequency band 

was selected as the majority of vibration exposure from field measurements occurred in this range. In 

addition, previous studies reported the greatest influence of horizontal whole-body vibration on 

workload and task performance occurred between 2 – 4Hz and 1 – 3Hz (Lewis and Griffin, 1978 and 

Westberg, 2000, respectively). Vibration magnitudes are described in Table 1. 

 

Two standing postures were selected for both studies, based on the orientation of the feet. The 

anterio-posterior stance required participants to place their dominant foot in-front of the other, while the 

lateral stance required the feet to be placed side-by-side (Figure 1).
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Table 1.  Summary of vibration stimuli used in the discrete and continuous manual control studies. 

Task Variable Condition Vibration Magnitude (ms-² r.m.s., unweighted) 

x-axis y-axis r.s.s. ∑ axes 

Discrete manual 

control 

1 0.5 --- 0.5 

2 1.0 --- 1.0 

3 2.0 --- 2.0 

4 --- 0.5 0.5 

5 --- 1.0 1.0 

6 --- 2.0 2.0 

7 0.5 0.5 0.71 

8 1.0 1.0 1.41 

9 2.0 2.0 2.83 

Control --- --- --- 

Continuous 

manual control 

1 0.75 --- 0.75 

2 1.5 --- 1.5 

3 --- 0.75 0.75 

4 --- 1.5 1.5 

5 0.75 0.75 1.06 

6 1.5 1.5 2.12 

Control --- --- --- 
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Figure 1.  Postures used in the two studies (fore-and-aft stance). 

 

Discrete manual control performance was assessed manually using a timing device (Casio® 

stop-watch, Casio Computer Co. Ltd., Tokyo, Japan) to record the time taken to complete a 

pegboard task. The participants were responsible for starting and stopping the timer at the 

beginning and end of the task, during each of the vibration conditions. The face of the timer was 

positioned so the display screen was not in view and therefore the participants were not provided 

with any feedback concerning the level of performance. Any motion induced interruptions that 

required the participants to physically brace themselves or adjust their stance in order to maintain 

stability were logged by the researcher. 

 

Continuous manual control performance was measured automatically using a specific software 

package dedicated to running the LCT driving simulator. Driving data were recorded at a 

frequency of 100Hz and using the LCT software the following variables were provided: trial 

number, time to task completion, x- and y-coordinates of the actual position of the virtual vehicle. 

The mean deviation (Mdev) between the desired position and the actual position of the virtual 

vehicle was used to evaluate lane keeping performance. 

 

In both studies, participants were required to provide two subjective measures relating to workload 

and task difficulty following the completion of each vibration condition. These ratings were used to 

evaluate the workload experienced by the participants in order to perform the required task. The 

first rating was a magnitude estimation of workload. The following instructions were provided to the 

participants (Stevens, 1975): 

‘You will be presented with a series of vibration stimuli in irregular order. You are required 

to estimate the workload associated with the tasks by assigning numbers to them. The 

first stimulus will be a static condition with no vibration. Call this stimulus 100, and then 
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assign successive numbers in such a way that they reflect your subjective impression. 

There is no limit to the range of numbers that you may use. You may use whole numbers, 

decimals or fractions. Try to make each number match the level of workload as you 

perceive it.’ 

The second subjective workload measure required the participants to assign a verbal descriptor of 

task difficulty, based on the following six-point semantic scale: 

 Not difficult 

 A little difficult 

 Fairly difficult 

 Difficult 

 Very difficult 

 Extremely difficult 

 

Each study was conducted during a single laboratory session, lasting approximately 1h, which 

commenced with the researcher taking anthropometric measures of stature, shoulder width, foot 

length and body mass. In order to reduce variations in stance posture when changing between 

testing conditions, the positioning of the feet for each stance were located with reference points 

marked onto the vibration simulator platform. A safety harness was worn by participants at all 

times when standing on the simulator platform and the immediate area surrounding the vibration 

simulator was cordoned off and free of personnel before testing commenced. 

 

Participants were allowed a familiarization period with no vibration exposure to practice performing 

the required task and become acquainted with providing subjective ratings of workload. The mean 

deviation (Mdev) was calculated after each familiarization trial was completed. Once the Mdev 

reached a consistent level and there were no longer any significant ‘learning effects’ present, the 

experimental conditions could begin. Following the familiarization trials, a ‘reference’ condition was 

performed without vibration exposure. This ‘reference’ condition was assigned a magnitude 

estimation rating of ‘100’ and further subjective ratings were made in comparison to this ‘reference’ 

condition. The testing conditions included random vibration stimuli and additional control 

conditions (no vibration), presented to the participants in a counter-balanced order based on a 

randomised Latin-Square technique in order to minimise ‘order-effects’. 

 

Control conditions were conducted in each stance orientation. During each vibration condition, 

participants were asked to delay performing the task until the vibration simulator had stabilized at 

the required vibration magnitude. Once the task was completed and the vibration simulator had 

settled, the participants were asked to provide subjective ratings of workload using the magnitude 

estimation technique and the semantic scale. The time between each vibration stimuli depended 

on the responsiveness of the participant to provide these subjective ratings. In order to minimise 

the effects of fatigue, the number of stimuli were limited to 20 for the discrete control experiment 

and 14 for the continuous control experiment. The continuous control study had fewer stimuli as 

each stimulus task took longer than in the discrete control task. The short duration of the vibration 

exposures meant that time-dependent effects due to fatigue would have minimal influence on 

performance. For this reason and due to the longer time necessary to complete the driving task for 

the continuous manual control study; the number of vibration stimuli was reduced. 
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3. Results 

3.1 Discrete manual control performance 

During x-axis vibration, the mean time to complete the task (for both stances) increased 

significantly (p < 0.05), with vibration magnitude between the control condition (no vibration) and 

2.0ms-2 r.m.s. At each magnitude, the highest mean times were found to occur in the 

anterio-posterior stance however, this effect was not significant (Figure 2).  

For y-axis vibration, a significant (p < 0.05) increase was found in the mean times to complete the 

task, with increasing vibration magnitude up to 2.0ms-2 r.m.s., for both anterio-posterior and lateral 

stances. The anterio-posterior stance tended to show higher mean times compared to the lateral 

stance however, these postural effects were not significant. At the highest vibration magnitude 

(2.0ms-2 r.m.s.) the mean times to complete the task were significantly (p < 0.05) shorter during 

y-axis vibration compared to x-axis vibration exposure, for both stance orientations.  

With dual-axis (xy-axes) vibration, mean task completion times increased significantly (p < 0.05) 

with an increase in vibration magnitude for both stances. The effect of stance orientation showed 

some variation, with shorter mean times found during the anterio-posterior stance rather than the 

lateral stance at magnitudes 0.7ms-2 r.m.s. and 1.4ms-2 r.m.s.. At vibration magnitude 2.8ms-2 

r.m.s. however, the anterio-posterior stance showed significantly (p < 0.05) longer mean task 

completion times than those obtained in the lateral stance. 

 

3.2 Continuous manual control performance 

For all conditions during the LCT driving simulator task, no significant effects were observed for 

the mean deviations in lane position (Figure 2). The performance of a continuous control task 

therefore was unaffected by increasing vibration magnitudes, nor were there any effects between 

the different directions of motion (x- and y-axis). Stance orientation showed no significant influence 

on continuous manual control performance. Comparing single and dual-axis exposures, the mean 

deviations in lane position were slightly higher during dual-axis vibration exposure than during 

single-axis vibration however, these effects were not significant. 

 

3.3 Discrete manual control workload 

During x-axis vibration exposure, the magnitude estimations of workload increased significantly (p 

< 0.05), with increasing vibration magnitude up to 2.0ms-2 r.m.s., for both anterio-posterior and 

lateral stances (Figure 3). No significant differences were found between the two stances however, 

workload experienced in the anterio-posterior stance was slightly higher than in the lateral stance. 

Exposure to y-axis vibration significantly (p < 0.05) increased magnitude estimations of workload 

with corresponding increases in vibration magnitude. At vibration magnitudes 0.5, 1.0 and 2.0 ms-2 

r.m.s., workload in the anterio-posterior stance was significantly (p < 0.05) higher than in the lateral 

stance. Additionally, at vibration magnitudes 0.5 and 2.0ms-2 r.m.s., magnitude estimations of 

workload obtained during y-axis vibration were significantly (p < 0.05) lower than those obtained 

during x-axis vibration. The lower magnitude estimations indicate that performing the discrete 

pegboard task during y-axis vibration resulted in the participants experiencing less workload than 

during x-axis vibration. 
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Figure 2.  Objective performance measures for i) discrete and ii) continuous manual control in an 

anterio-posterior and a lateral stance, during exposure to horizontal WBV (blue = lateral stance, 

red = anterio-posterior stance) 

 

 

Where: * = significant difference (p < 0.05) between vibration magnitudes for both standing postures.
† = significant difference (p < 0.05) between anterio-posterior and lateral stances.
‡ = significant difference (p < 0.05) between vibration directions (x-axis and y-axis).
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Where: * = significant difference (p < 0.05) between vibration magnitudes for both standing postures  

† = significant difference (p < 0.05) between anterio-posterior and lateral stances  

‡ = significant difference (p < 0.05) between vibration directions (x-axis and y-axis)  

Figure 3 Magnitude estimations of workload for i) discrete and ii) continuous manual control 
in an anterio-posterior and a lateral stance, during exposure to horizontal WBV (black = lateral 
stance, grey = anterio-posterior stance)
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Dual-axis vibration exposure resulted in significant (p < 0.05) increases in magnitude estimations 

of workload with increasing vibration magnitude up to 2.8ms-2 r.s.s. There were no significant 

differences found between the anterio-posterior and lateral stance orientations. 

        
3.4 Continuous manual control workload 

During x-axis vibration exposure, the magnitude estimations of workload increased significantly (p 

< 0.05) with an increase in vibration magnitude up to 1.5ms-2 r.m.s. in both stance orientations 

(Figure 3). No significant differences were found between the two stance orientations. 

For y-axis vibration, magnitude estimations showed significantly (p < 0.05) higher measures of 

workload with increases in vibration magnitude during both stances. Magnitude estimations of 

workload showed no significant influence of stance orientation for all vibration magnitudes used in 

the study. Comparing workload estimations between x-axis and y-axis vibration exposures, slightly 

less workload was experienced during y-axis motion however, these effects of vibration direction 

were not significant. 

Dual-axis vibration showed significantly (p <0.05) higher measures of workload were found with 

increasing vibration magnitudes up to 2.1ms-2 r.s.s., for both stances. No postural effects due to 

stance orientation were found during exposure to dual-axis vibration. 

 

4. Discussion 

The two case studies show that vibration affects the human who is exposed.  For the discrete control 

task, there was an objective performance decrement but for the continual control task there was no 

change in the performance.  This supports the hypothesis that a well-designed control (i.e. a steering 

wheel) is largely immune to the effect of vibration.  However, for the poorly designed task (i.e. the 

purdue pegboard) the vibration adversely affects the human performance shown by the task taking 

longer to complete, the more vibration to which the participant was exposed.   

 

Results of workload showed that there was an increase in task difficulty irrespective of how well the 

subject performed objectively.  This means that even if performance is maintained there could be a 

cost to the human in the system in terms of their workload, and potentially fatigue. 

 

The ability for humans to adapt to additional stressors and maintain performance has been widely 

acknowledged (Hancock and Warm, 1989 and Hockey, 1997). Through the series of case studies, the 

influence of vibration exposure on objective measurements of performance have yielded varying results. 

When performing a discrete manual control task, individuals were unable to maintain performance even 

at relatively low magnitudes of vibration.  No performance degradation was found when performing a 

continuous control task, individuals were therefore able to adapt and maintain performance even with 

increasing vibration magnitudes. A consistent trend throughout all these investigations however, was 

the subjective workload experienced by the individuals when performing these tasks. In all conditions, 

an increase in vibration magnitude corresponded to increased ratings of workload. 

Figure 4 illustrates the relationship between objective performance and subjective workload, using the 

principles outlined in the ‘extended-U’ hypothesis (Hancock and Warm, 1989) and the compensatory  
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Figure 4.  Performance-Workload Model illustrating the relationship between objective task 

performance and subjective workload during exposure to vibration (bold line = performance; double line 

= workload) 

 

control model by Hockey (1997).  In the performance-workload model shown in Figure 4, the four 

‘zones’ of performance and workload have been developed based on the loops described in the 

compensatory control model (Hockey, 1997). The ‘automatic’ zone represents ‘loop A’ where there is no 

additional increase in workload and performance remains constant. Performance levels within this zone 

are limited by the lower set-point based on the characteristics of the system (for example, the physical 

ability of the individual to perform routine corrections and the capabilities of the device to accommodate 

for minor adjustments). As the vibration (stress) increases there is an ‘adaptation’ zone in which 

performance is unaffected however, there is a corresponding increase in the workload experienced by 

the individuals (‘loop B’).  The capacity of the individual to adapt determines the upper set-point and 

limitation on this ‘adaptation’ zone.   

 

A continued increase in vibration would result in performance degradation and a further rise in workload 

(‘compromise’ zone). In this situation the individual could re-evaluate the performance criteria and 

objectives – by lowering the acceptable level of performance, the overall tasks may continue to be 

completed although there will likely be an increase in other performance factors such as accuracy. For 

example, an individual would still be able to type an email on a mobile device however there would 

potentially be an increase in the number of misspelt words. The final zone is the ‘failure’ zone, where 

performance continues to degrade below a minimum acceptable level and tasks can no longer be 

completed. 
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5. Conclusions 

Exposure to whole-body vibration can adversely affect the performance of people performing control 

tasks.  Good design of the task can mitigate for the effects of the vibration.  Even if performance is 

protected by good design, the workload for the subject can still increase with increases in vibration 

magnitude. 
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