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Abstract

An increasing proportion of new vehicles are being fitted with autonomous emergency
braking systems. It is difficult for consumers to judge the effectiveness of these safety
systems for individual models unless their performance is evaluated through track
testing under controlled conditions. This paper aimed to contribute to the development
of relevant test conditions by describing typical circumstances of pedestrian accidents.
Cluster analysis was applied to two large British databases and both highlighted an
urban scenario in daylight and fine weather where a small pedestrian walks across
the road, especially from the near kerb, in clear view of a driver who is travelling
straight ahead. For each dataset a main test configuration was defined to represent
the conditions of the most common accident scenario along with test variations to
reflect the characteristics of less common accident scenarios. Some of the variations
pertaining to less common accident circumstances or to a minority of casualties in these
scenarios were proposed as optional or supplementary test elements for an outstanding
performance rating. Many considerations are incorporated into the final design and
implementation of an actual testing regime, such as cost and the state of development
of technology; only the representation of accident data lay within the scope of this
paper. It would be desirable to ascertain the wider representativeness of the results
by analysing accident data from other countries in a similar manner.

Keywords: pedestrian, autonomous emergency braking, accident scenario, test
configuration, cluster analysis

1. Introduction

Autonomous emergency braking (AEB), also referred to as advanced or auto-

matic emergency braking and collision-imminent braking, is one of several mod-
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Figure 0: Graphical abstract.
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ern safety systems that are offered as standard or optional equipment on an

increasing proportion of new vehicles in the mass market. It is designed to

avoid accidents or mitigate the severity of impacts by applying the brakes auto-

matically when a collision is imminent, in some cases following a warning to the

driver. There is scope for considerable variation among AEB systems depend-

ing on the number and type of sensors, the decision logic programmed into the

control unit, if and when the driver is alerted, how and when braking is initiated

and other factors. How these elements combine to determine the effectiveness of

a particular system is not easy to anticipate for consumers interested in making

a purchase or for regulators, insurers, researchers and indeed the manufactur-

ers themselves. To address this difficulty, preparations have been underway in

Europe (Aparicio et al., 2013; Hulshof et al., 2013; Zecha et al., 2013) and else-

where (Searson et al., 2014) to introduce track testing to evaluate performance,

compare systems and promote the penetration of this active safety technology

into national vehicle fleets.

As part of these preparations, accident data has been used to evaluate the

potential benefit of active safety technologies for the protection of pedestrians

and other vulnerable road users. One of the first available technologies, the

brake assist system, proved to offer a potential reduction of impact speed and

head injury risk but limited avoidance capability (Badea-Romero et al., 2013).

In the case of pedestrian sensor systems, studies suggest that early detection

is possible in most common scenarios (Huang et al., 2008). In general it is

agreed that the implementation of pedestrian detection and autonomous brak-

ing as part of an integrated active and passive system will have an important

impact for the protection of vulnerable road users (Badea-Romero and Lenard,

2013; Searson et al., 2014) and this will help to tackle the problem of pedes-

trian accidents commonly caused by human error (Habibovic and Davidsson,

2012; Habibovic et al., 2013). Based on this evidence, governments and regu-

lators, manufacturers, insurance companies and consumer rating organisations

are already encouraging the implementation of pedestrian detection and AEB

systems. The assessment of AEB for pedestrian crash avoidance is scheduled to

be phased in by EuroNCAP from 2016 (EuroNCAP, 2013).

The identification of common accident scenarios provides a baseline for the

design of relevant test protocols (Fleury and Brenac, 2001; Lenard et al., 2011).

In addition test procedures have to be defined adequately for implementation

and practicality while reconciling many potentially conflicting requirements. To

mention just a few, a test procedure should be (a) reliable in the sense that
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Table 1: Overview of the national STATS19 accident database and the in-depth On-the-Spot
study.

STATS19 On-the-Spot

Period 2010 2000-–2010
Sample region Great Britain South Notts and Thames Valley
Purpose National statistics Detailed information for casualty

reduction programmes
Source Police reports Research teams (at-scene)
Sample criterion Road user casualty Police attendance (rotating eight

hours)
Accidents 154414 4744

the same vehicle receives the same result when retested at the same or different

site, (b) sensitive in the sense that better or worse performances are reflected

in better or worse results, (c) appropriately difficult so that the results for a

batch of test vehicles are reasonably spread over the range of possible scores

given the cost and state of art of the technology at a certain time, (d) objective,

(e) non-destructive and (f) comprehensible and useful for private and corporate

consumers. To these may be added (g) valid, that the test measures what it

is supposed to measure, effectiveness in avoiding or mitigating the severity of

accidents that occur on the public road network.

A natural way to promote validity is by simulating the circumstances of real

accidents in track testing. The specific aims of this study were to contribute

to the development of AEB test procedures by (a) describing typical scenarios

for pedestrian accidents based on empirical data and (b) illustrating how test

configurations can be related to accident scenarios.

2. Material and methods

Two sources of information about road accidents in Great Britain were used

in this work, the national accident database STATS19 and the in-depth On-the-

Spot (OTS) research study. The main characteristics of these two sources are

summarised in Table 1. STATS19 is compiled by the Department for Transport

each year from police reports (Dep, 2011). OTS was run for the Department

for Transport and the Highways Agency by two research institutes from 2000

to 2010 to collect in-depth information about a representative sample of road

accidents based on approximately 500 at-scene investigations per year in two
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regions (Cuerden et al., 2008). The latest versions of the databases available for

the analysis were STATS19 2010 and OTS from 2000 to mid-2009.

The method used to move from accident data to formulation of accident

scenarios was cluster analysis, specifically the agglomerative or hierarchical as-

cending method (Kaufman and Rousseeuw, 1990). This works by progress-

ively grouping together the most similar records of a dataset. The resulting

clusters have common characteristics and can be construed as accident scenarios

in this context. The foremost merits of this data-mining technique are that mul-

tiple variables are taken into account simultaneously, the procedure and results

are objective and reproducible, the representativeness of the clusters is clearly

defined and the basic principles of the method can be readily understood.

The database fields used in the cluster analyses of STATS19 and OTS were

selected for their relevance to a test procedure for autonomous emergency brak-

ing in consultation with an industry group (Lenard et al., 2011). An AEB

system is engineered to optimise the sensitivity of sensors, field of view, image

processing speed and decision logic against the pre-impact location, speed of

movement, trajectory and physical size of a design set of pedestrians. Detri-

mental ambient light conditions affect perception of the pedestrian (Sullivan

and Flannagan, 2007) and could diminish the functionality of certain types of

sensors. It is relevant whether vehicles are turning or proceeding straight ahead

prior to impact and whether the line of sight from the driver to the pedes-

trian is obscured by intervening vehicles or roadside objects. Information on

the initial speed of the vehicles and the extent to which drivers are able to

brake before impact is relevant to the choice and effectiveness of systems that

warn the driver, reinforce avoidance actions initiated by the driver or operate

fully autonomously. Fields related to these aspects of pedestrian accidents were

sought out in preference to others that might be relevant to the construction of

accident scenarios in other contexts, such as the sex of the driver or the time of

the accident, but would not be reflected in the setup of a physical test.

The primary selection criteria for the inclusion of cases from STATS19 were

• pedestrian injury,

• passenger car associated with pedestrian,

• first point of impact on front surface of vehicle,

• vehicle not parked or reversing.

Cases with unknown information in relevant fields were excluded from the final

analysis.

The primary selection criteria for the inclusion of cases from OTS were
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essentially the same as STATS19 provided that sufficient evidence had been

collected from the at-scene investigation to enable a quantitative reconstruction

of the accident including the speed of the vehicle. Resources allowed for a

detailed review of 175 accidents, assessed beforehand as close to the maximum

number of cases available. Eligible cases were included in the study starting

with the most recent and working back towards the earliest. The fields used in

the OTS cluster analysis were extracted directly from the case files.

Side impacts were filtered from the study to accommodate the current cap-

ability of AEB systems which are designed to detect pedestrians in front of the

vehicle within a range defined as the driving corridor (Broggi et al., 2009). In

addition it has been shown that head injuries incurred by pedestrians in side im-

pacts are mainly caused by impact with the road or ground rather than impact

with the vehicle (Badea-Romero and Lenard, 2013), indicating the limitations

of safety technology for this form of interaction between vehicles and vulnerable

road users.

The measure of injury severity used in the cluster analyses categorised casu-

alties as fatal, serious or slight according roughly to a police assessment of death

within thirty days, admission to hospital as an in-patient, or medical treatment

as an out-patient (Dep, 2011). These were elements of both the national and

in-depth databases. The AAAM abbreviated injury scale (AIS) was coded for

the in-depth OTS database using detailed medical records (Ass, 2008).

An ascending cluster analysis begins by nominating each case as a cluster,

then progressively merges the most similar clusters in an iterative process until

the whole set of cases is encompassed in a single cluster. Neither extreme is

of interest and the decision where to terminate the process depends on the

usefulness of a set of clusters for a particular purpose. In the context of the

design of testing procedures, it was relevant to have a relatively small number of

clusters that covered a relatively large proportion of the population. A guideline

was set for around six clusters to comprise about 75–80% of the whole dataset

and of the killed or seriously injured sub-population. The final number of groups

was chosen with the aid of an inconsistency coefficient (The MathWorks Inc,

2012) that identified steps in the iterative process where there were larger gaps

between the clusters.

The algorithm for computing similarity of clusters required specification at

three levels:

(a) At field level, the algorithm was set to compute a distance (dissimilarity) in

the range 0–1 for any two values of a field with 0 signifying identity and 1
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signifying maximum difference. For nominal fields, the distance between

two values was always 0 or 1, depending on whether the characteristic was

the same or different in two cases. Otherwise the range was set to span

0–1 in equal increments for ordinal parameters and continuously for scale

parameters.

(b) At record level, the distance between two cases was defined as the sum of

the distances between their field values, i.e. the city block or Manhattan

distance.

(c) At cluster level, the distance between two groups of cases was defined as

the average of the distances between each pair of records in the groups,

an application of the average linkage method.

These technical specifications were implemented in MATLAB (R2012b) using

the built-in functions pdist, linkage, cluster and inconsistent. Any software im-

plementing the logic of the algorithm described should derive the same clusters.

The order of cases in the input dataset makes no difference.

Following the partition of the two datasets into clusters, an assessment was

made of how a test could be configured to account for the characteristics of

the largest group in each. After this had been dealt with, the main features

that would need to be varied or introduced to cover smaller accident scenarios

were identified. Although no fixed rule was applied, the aim was not to neglect

characteristics that constituted more than about 10% of a cluster. While the

derivation of the accident clusters from the source datasets was purely a math-

ematical procedure, the construction of test configurations corresponding to the

accident scenarios involved an element of judgement and in this sense could

be done in slightly different ways based on the same accident results. Further

details of the reasoning applied are provided in Section 4.

3. Results

Accident scenarios

The STATS19 database had records on 25,845 pedestrian casualties. There

is provision to nominate the vehicle that struck or otherwise interacted with

each pedestrian. Uninjured pedestrians are not reported and the same vehicle

may be nominated for two or more pedestrians. The filtering of cases for the

cluster analysis was carried out in steps as illustrated in Fig. 1. The majority

of pedestrian casualties (20,892) were associated with passenger cars, including

taxis and private hire cars. The front end of the vehicle was the point of first
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Figure 1: Selection of relevant cases from national accident database STATS19 (2010): pedes-
trians injured in frontal impacts with passenger cars travelling forwards. Distribution of injury
severity shown for pedestrian accidents with full information (top), missing information (upper
left) and side impacts with vehicles moving forwards (mid left).
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impact for 56% (11,760) of pedestrians associated with passenger cars. A small

proportion of these vehicles (105) were parked or reversing, leaving 11,655 cases

that met the principal selection criteria for the target population: pedestrians

injured in frontal impacts with passenger cars travelling forwards.

A brief review of the 6480 side-impact cars excluded from the main STATS19

analysis (4368 left, 2112 right) revealed a higher proportion of stopped vehicles

and a shift downward in the distribution of injury severity compared with frontal

impacts as shown in Fig. 1. The most marked differences in manoeuvre for

vehicles moving forwards were that side-impact vehicles were less often turning

right and more often overtaking a static vehicle or turning left.

Cases with unknown or missing information in one or more of the eight fields

used for the cluster analysis of STATS19 were filtered from the dataset. This

reduced the selection by 2295 records, most of which (1967) arose from uncer-

tainty about the pedestrian’s movement on the road; the pedestrian’s age and

sex (269) and precipitation (219) were also sometimes unknown. The remaining

9360 cases were carried into the cluster analysis. This group had a distribu-

tion of slight, serious and fatal casualties of 76.0%, 22.4% and 1.6% respectively

compared to 79.7%, 17.5% and 2.7% in the excluded cases.

The cut-off point for the cluster analysis of the national STATS19 dataset

was set at a level where the population was partitioned into 22 groups. The char-

acteristics of six clusters that together comprise 86% (8030) of the total (9360)

are detailed in Table 2 in individual columns; for completeness the remaining

sixteen clusters 7–22 are shown in aggregate.

Cluster 1 was the largest STATS19 group across all injury categories, com-

prising 41% of all casualties, 38% of all serious-or-fatal cases and 30% of all

fatalities as detailed in Table 3. These figures were derived as row totals from

Table 2. The concentration of serious and fatal casualties was variable: cluster 6

for example represented only 3% of all cases but contained 15% of all fatalities.

The OTS dataset was derived directly from relevant case files that contained

information in the required fields. No subsequent filtering of cases with missing

or unknown field values was therefore required. The cut-off point for the cluster

analysis of the in-depth OTS dataset was set at a level where the population

was partitioned into fourteen groups. The characteristics of six clusters that

together comprise 79% (139) of the population (175) are detailed in columns in

Table 4.

The three clusters with a higher quotient of serious or fatal pedestrian cas-

ualties (3, 4, 6) tended towards a higher speed distribution as shown in Fig. 2.
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Table 2: Pedestrian accident scenarios (N=9360) for national accident database STATS19
(2010). Corresponding elements of the main test configuration are highlighted in cluster 1
(green) with test variations (orange) and sub-variations (light shading) in the smaller clusters.

Cluster
1 2 3 5 4 6 7–22 Total

Accident severity[O]

Slight 3021 993 717 522 639 175 1044 7111
Serious 801 297 303 218 123 91 265 2098
Fatal 45 3 31 23 5 23 21 151

Speed limit (mph)[O]

10–30 3608 1254 957 698 744 191 1219 8671
40–50 201 34 69 57 20 24 56 461

60–70 58 5 25 8 3 74 55 228

Light conditions[N]

Daylight 3867 1293 0 0 767 0 615 6542

Darkness 0 0 1051 763 0 289 715 2818

Weather[N]

Fine 3401 1293 790 564 677 222 919 7866

Not fine 466 0 261 199 90 67 411 1494

Vehicle manoeuvre[N]

Going ahead 3867 1293 1051 763 0 289 889 8152

Turning 0 0 0 0 767 0 441 1208

Pedestrian age-sex[N]

Child 0–15 yrs 1831 905 192 176 127 15 349 3595
Adult female 1023 192 293 193 343 38 360 2442

Adult male 1013 196 566 394 297 236 621 3323

Pedestrian movement[N]

Cross from L 2593 775 1051 0 483 0 513 5415
Cross from R 1274 518 0 763 249 0 387 3191

Other 0 0 0 0 35 289 430 754

Masked by vehicle[N]

Not masked 3864 0 1051 763 767 289 722 7456

Masked 3 1293 0 0 0 0 608 1904

Total 3867 1293 1051 763 767 289 1330 9360

Field type: nominal (N), ordinal (O), scale (S).
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Table 3: Representativeness of national accident clusters (STATS19) according to injury sever-
ity.

Cluster
1 2 3 4 5 6 7–22 Total %

Fatal 30 2 21 3 15 15 14 100
Serious or fatal 38 13 15 6 11 5 13 100
All severity 41 14 11 8 8 3 14 100

Figure 2: Vehicle travel speed prior to braking for pedestrian accident clusters derived from
in-depth On-the-Spot database. Speed of main test configuration 50 km/h (green line) varied
to 40 km/h for clusters 2 and 5 (orange line).

11



Table 4: Pedestrian accident scenarios (N=175) for in-depth On-the-Spot database. Corres-
ponding elements of the main test configuration are highlighted in cluster 1 (green) with test
variations (orange) and sub-variations (light shading) in the smaller clusters.

Cluster
1 3 4 2 5 6 7–14 Total

Pedestrian severity[O]

Slight or not injured 32 13 10 22 9 0 25 111
Serious 16 8 13 5 2 0 10 54
Fatal 2 4 1 0 0 2 1 10

Light conditions[N]

Daylight 50 0 0 27 11 2 20 110

Darkness 0 25 24 0 0 0 16 65

Weather[N]

Fine 45 25 9 23 9 2 22 135

Not fine 5 0 15 4 2 0 14 40

Vehicle manoeuvre[N]

Going ahead 50 18 24 27 6 2 25 152

Turning 0 7 0 0 5 0 11 23

Pedestrian (age-sex)[O]

Child 0–7 yrs 4 1 0 6 6 1 5 23

Child 8–15 yrs 12 2 1 12 5 0 15 47
Adult female 18 6 9 3 0 0 5 41
Adult male 16 16 14 6 0 1 11 64

Pedestrian movement[N]

Crossing from left 29 25 7 27 0 1 14 103
Crossing from right 17 0 14 0 11 1 21 64
Other 4 0 3 0 0 0 1 8

Pedestrian speed[O]

Walking 50 24 24 0 0 0 15 113

Running 0 1 0 27 11 2 21 62

Line of sight (1 sec)[N]

Not obstructed 45 25 24 20 11 2 25 152

Obstructed 5 0 0 7 0 0 11 23

Vehicle travel speed (km/h)[S], described in Fig. 2

Change of speed to impact (km/h)[S], described in Fig. 3

Total 50 25 24 27 11 2 36 175

Field type: nominal (N), ordinal (O), scale (S).
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Figure 3: Change of speed to impact for pedestrian accident clusters derived from in-depth
On-the-Spot database.

Table 5: Representativeness of in-depth accident clusters (OTS) according to injury severity
expressed as percentage of whole dataset.

Cluster
1 2 3 4 5 6 7–14 Total %

Fatal 20 0 40 10 0 20 10 100
Serious or fatal 28 8 19 22 3 3 17 100
All severity 29 15 14 14 6 1 21 100

The median value of the change of speed from normal driving to impact was zero

for the larger clusters 1–4 as seen in Fig. 3; in these cases there was effectively

no braking. In many cases there was braking (negative speed change) and in

some cases an increase of speed prior to impact—this could occur for example

on accelerating out of a turn.

Cluster 1 was the largest OTS group overall (29%) and contained more

serious-or-fatal cases (28%) than the other clusters (Table 5). The proportion of

fatalities in OTS is stated for completeness but the sample size (10) is too small

to provide a smooth distribution. Further information on the injury severity of

pedestrians in the OTS dataset was available through the maximum AIS severity

(MAIS) presented in Table 6. At least 46% (80) of pedestrian casualties incurred

MAIS 2+ injuries and of these almost half (38) incurred MAIS 3+ injuries.
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Table 6: Maximum injury severity (MAIS) for pedestrians in clusters derived from in-depth
On-the-Spot database.

Cluster
1 3 4 2 5 6 7–14 Total

No injury 1 1 1 1 1 0 1 6
MAIS 1 21 10 6 18 4 0 15 74
MAIS 2 12 7 6 4 3 0 10 42
MAIS 3–6 8 7 8 4 2 2 7 38
Unknown 8 0 3 0 1 0 3 15

Total 50 25 24 27 11 2 36 175

Test configurations

Two sets of test configurations were derived independently from the two sets

of accident scenarios, one based on the national STATS19 dataset and the other

based on the in-depth OTS dataset. In both cases the largest cluster, cluster

1, which for STATS19 comprised over 40% of cases (3867 of 9360) and for OTS

almost 30% of cases (50 of 175), was used to define a baseline test setup and the

smaller clusters in each group were accounted for by varying certain elements of

the main test. Cluster 1 in each dataset also contained the highest number of

serious and fatal casualties (where this could be reliably ascertained), otherwise

a different approach may have been necessary.

For the national database STATS19, the main test configuration, illustrated

in Fig. 4, has a passenger car travelling straight ahead at 30 mph (50 km/h)

that encounters a child-sized pedestrian target (0–15 years) crossing from the left

(near-side) kerb in sight of the driver in daylight and fine weather, corresponding

to the scenario described in Table 2. The first variation of the main test is based

on cluster 2, the second largest accident scenario, where the pedestrian target

is masked from view of the driver. The second variation of the main test is

based on clusters 3 and 5 where darkness replaces daylight and, in an additional

sub-variation, precipitation could be introduced to simulate weather that is not

fine. The third variation of the main test is based on accident cluster 4 where

the vehicle is turning rather than travelling straight ahead. The fourth and final

variation is based on cluster 6, where a male-sized pedestrian target is standing

or moving along the carriageway in darkness; an additional sub-variation of this

test could be to have the vehicle is travelling at a higher speed.

For the in-depth database OTS, the main test configuration, shown in Fig.

5, has a passenger car travelling straight ahead at 50 km/h that encounters a
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Figure 4: Main AEB test configuration (1) from national STATS19 database with four vari-
ations: pedestrian masked (2); darkness with precipitation as sub-variation (3 and 5); vehicle
turning (4); adult male target on road in darkness with higher speed as sub-variation (6).
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Figure 5: Main AEB test configuration (1) from in-depth On-the-Spot database with two
variations: darkness with vehicle turning or precipitation as sub-variations (3 and 4); vehicle
approaching at 40 km/h, small child running target with sight obstruction or vehicle turning
as sub-variations (2 and 5).
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child-sized pedestrian target (8–15 years) walking across from the left (near-

side) kerb in sight of the driver in daylight and fine weather, derived from the

scenario described in Table 4. The first variation of the main test is based on

clusters 3 and 4 where darkness replaces daylight. Two additional sub-variations

of this test are possible, one in which the vehicle is turning and one in which

precipitation is present. The second and final variation of the main test is based

on clusters 2 and 5 where the pedestrian target is reduced in size and increased

in speed to represent a young child (0–7 years) running across the road and the

vehicle speed is reduced to 40 km/h. Two additional sub-variations of this test

are possible, one in which the pedestrian target is obscured from view and one

in which the vehicle is turning.

4. Discussion

There was a strong similarity between the largest accident scenarios in the

STATS19 and OTS databases and the main test configurations based on these.

The similarity of the accident scenarios was not guaranteed to occur because the

formation of groups using cluster analysis is sensitive to the fields used and these

were not identical in the two databases. There was also no overlap of cases in

the accident samples, STATS19 coming from the whole of Great Britain in 2010

and OTS coming from just two sample regions in the period 2000–2009. The

results therefore indirectly support the representativeness of the OTS sample

and the robustness of the method of analysis.

The derivation of accident clusters from the source databases was a repro-

ducible mathematical computation. The choice of fields to include in the source

datasets and the technical specification of the algorithm determine the final res-

ults but are not predicable in advance. No attempt was made to manipulate

these parameters in order to harmonise the results for STATS19 and OTS or

otherwise influence the results.

It was not an analogous mechanical computational procedure to obtain the

test configurations. It was assumed that the model of a baseline test with a

minimal number of variations to account for less common accident conditions

would be more appropriate than specifying a complete new set of test condi-

tions for each individual accident scenario. The size of the clusters, with one

scenario that was considerably larger than the others in both STATS19 and

OTS, happened to be compatible with this approach. Knowing that a testing

body needs to take into account more factors than just the accident data, as
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mentioned above, the main purpose for deriving test configurations was to il-

lustrate a sound method of working with the accident clusters rather than to

produce a set of final recommendations. The priority of the test variations from

purely the accident point of view is expressed by the relative size of the smaller

clusters and distribution of serious and fatal casualties across these scenarios.

The reasoning behind the choice of the test configurations is detailed in the

following paragraphs.

For STATS19, cluster 1 was relatively large, containing 41% of the cases

(3867 of 9360). Most characteristics of a track test were clearly suggested:

speed, light, weather, vehicle manoeuvre and visibility of pedestrian target.

The size of the pedestrian target was less apparent, with a distribution of 0.47,

0.26 and 0.26 for children (1831), women (1023) and men (1013) respectively.

On the basis that a sensing system that detects a target of a given size will

detect larger targets but not necessarily smaller targets, specification of a mid-

sized target (adult female) could fail to provide protection for the children that

constituted 47% of this cluster, therefore a child-sized target was nominated.

The second issue was pedestrian movement, crossing from the left or crossing

from the right. A single test cannot do both but replicating tests from the

right and from the left seemed like a dubious use of resources. The accident

data demonstrated that it is essential for an AEB sensing system to operate

symmetrically. It is suggested that this should be established independently

without doubling up on the number of tests, e.g. by the submission of technical

data from the manufacturer’s in-house development and testing programme.

STATS19 clusters 3 and 5 share the characteristic of darkness as the major

divergence from cluster 1. Two other differences, namely a higher proportion of

larger pedestrians and crossing from the right (cluster 5), were already covered

by the small pedestrian target in the baseline test and the general requirement

for symmetry. Precipitation, i.e. weather ‘not fine’, was present among 25% of

the cases in these clusters (450 of 1814). While this proportion was too large

to be neglected, it was also debatable whether it compelled precipitation as a

test condition. As a compromise, it is suggested that clusters 3 and 5 could

be represented by varying the baseline test to occur in darkness and to award

bonus points or a top rating if the emergency braking system can also cope with

precipitation, a test ‘sub-variation’.

In STATS19, cases of the vehicle turning were concentrated in cluster 4

without other notable deviations from the main test configuration and so formed

a natural third test variation. Finally, cases of the pedestrian standing or mov-
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ing along the carriageway were concentrated in cluster 6 which also featured

darkness, a predominance of adult males and a slight shift towards higher speed

zones. This formed a fourth test variation with the higher speed treated as an

optional sub-variation.

Turning to the accident scenarios based on OTS, cluster 1 was relatively

large, containing 29% of the cases (50 of 175). The selection of most character-

istics for the main test followed the logic applied to STATS19 with the outcome

that pedestrian target size was based on an older child (8–15 years) to cover

92% of cases (46 of 50). The suggested vehicle speed of 50 km/h was close to

the 75th percentile of cluster 1 as marked in Fig. 2 and fit with a preference to

match the test speed to a nominal speed limit or to a current pedestrian impact

test.

OTS clusters 3 and 4 occurred in darkness and this constituted the first

variation of the baseline test conditions. Precipitation and turning vehicles occur

in a minority of cases in these clusters and could be considered as supplementary

sub-variations. The second variation of the main OTS test followed from clusters

2 and 5 which required coverage of a faster moving and smaller pedestrian target

(running child, 0–7 years old). The vehicle travel speed tended to be lower in

these clusters and was nominally set at 40 km/h, between the 50th and 75th

percentiles. Obstructed line of sight and turning vehicles occurred in a minority

of cases and could be considered as supplementary sub-variations.

The change of speed from emergency braking had a median value of zero

for OTS clusters 1–4 as shown in Fig. 3, indicating that many pedestrian im-

pacts occurred before the driver had time to react. Even in cluster 5, a turning

scenario where braking would occur in normal driving, the upper quartile value

was zero. It is very difficult after the event to infer whether a driver reacted

as fast as humanly possible. The automatic intervention of typical AEB sys-

tems aims to improve on the reaction of the driver, even when the collision is

inevitable and the benefit of the system is injury mitigation rather than preven-

tion. The development of advanced detection systems will further improve the

robustness of the target-recognition algorithms and boost reaction time in par-

ticularly challenging scenarios such as small, fast moving targets emerging from

visual obstructions (Broggi et al., 2009). For such extreme scenarios, the test

configurations corresponding to STATS19 cluster 2 (Fig. 4) and OTS cluster 2

(Fig. 5) could be considered to not only rate the avoidance capability but also

to assess the reduction of the collision speed and the modification of the impact

point, elements that indicate the reduction of the severity risk (Badea-Romero
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et al., 2013).

5. Conclusion

Common accident scenarios were successfully generated from two databases

using cluster analysis, an objective and computationally reproducible technique.

The two sets of clusters showed strong commonalities even though computed

from independent sets of accidents. It proved reasonably straightforward to

define AEB test conditions corresponding to the accident scenarios by matching

the largest accident cluster to a main test and introducing variations to the

main test to account for characteristics of the smaller accident clusters. This

approach, which is neither mechanical nor guaranteed to work for any set of

clusters, struck a good balance between minimising the number of proposed tests

and covering the greatest diversity of accident circumstances. It is intended to

ascertain the wider representativeness of the results by analysing accident data

from other countries in a similar way.
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