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ABSTRACT  

 

Cross-modal effects occur when subjective opinions of stimuli from one sense 

(e.g. tactile at steering wheel) are influenced by simultaneous stimuli in another 

sense (auditory).  A steering wheel rig was used to provide specified vibration 

stimuli to the participants’ hands, and a recording of vehicle sound was played 

in accordance with the vibrations.  Participants were subjected to test conditions 

with vibration values between 10 and 20ms-2, and auditory stimuli between 88 

and 98 dB(A) peak.  Participants were neither informed of nor asked about any 

changes in the noise level: thus the purpose of the experiment was withheld 

from them.  The results show that as noise level increased, subjective ratings of 

steering wheel vibration increased.  Therefore, car cabin noise could be used to 

enhance the feel of the vibration at the steering wheel. 

 

 

KEYWORDS Steering wheels, vibration, perception, noise, sound, multi-modal, 

cross-modal. 
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INTRODUCTION 

 

Drivers are exposed to sensory inputs across multiple modalities 

simultaneously.  They are exposed to noise, vibration, visual stimuli and the 

thermal environment of the vehicle interior.  Each of these modalities can be 

considered through several tiers of complexity: for example, the thermal 

environment could be considered in terms of radiant heat, ambient temperature, 

air velocity, humidity, and the effects of these on whole-body or localised 

comfort, sweating patterns, etc. assessed (Parsons, 2005).  Some types of 

sensory inputs are desirable (e.g. warning sounds) whilst others might be 

undesirable (e.g. mechanical shocks induced by road irregularities).   

 

Despite the driving environment comprising stimuli from many modalities 

simultaneously, most laboratory research has only focused on one modality at a 

time.  Whilst this approach is attractive in terms of experimental simplicity and 

might possess external validity for examining those factors that are independent 

(e.g. Hodder and Parsons, 1999), some environmental stressors always occur 

together and therefore it is possible that in some situations a high degree of 

experimental ecological validity will be necessary in order for results to possess 

external validity.  For example, subjective responses to precipitation noise could 

be greatly affected by the effects on vision.   

 

Although driving is primarily a visual task, important sensory information is also 

perceived through the balance organs, tactile and auditory senses (e.g. 
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Haslegrave, 1993; Stanton and Pinto, 2000; El Falou et al., 2003; Giacomin and 

Woo, 2004; Mansfield, 2005; Mansfield and Whiting-Lewis, 2004; Nakashima 

and Maeda, 2004).  If the mechanical link between the driver and road is 

removed by, for example, implementation of ‘drive-by-wire’ technology, then the 

vehicle designer has scope to enhance the “feel” of the car depending on its 

instantaneous condition.  For example, during motorway driving the noise and 

vibration could be almost eliminated whereas under more demanding 

conditions, such as driving on a winding country road, the feel of the road could 

be fed back to the driver and possibly enhanced.  An intermediate option could 

be to capitalise on the cross-modal aspects of sensory perception (e.g. Spence 

et al., 1998, 2001; Cockburn and Brewster, 2005), such that vibration in the car 

cabin could be enhanced using an alternative psychophysical channel, such as 

the auditory system.  A simple example could be devised whereby noises from 

rumble strips could be enhanced electronically (this idea has already been 

investigated by some automobile manufacturers). 

 

As noise and vibration are closely linked, it is usual to experience a combination 

of these senses, rather than any one of them in isolation.  Therefore, vibration 

stimuli will almost always be combined with auditory stimuli.  Although in many 

cases the source of the noise and vibration could be the same (e.g. noise or 

vibration radiating directly from an engine), in other cases the source of the 

noise is excited by the vibration, as is apparent in ‘squeak and rattle’ testing in 

cars (e.g. Beane et al., 1995).  Irrespective of the nature of the source, the 

tactile and auditory signals are simultaneous.   
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The sensations produced by the vibration stimuli that reach the vehicle driver 

can provide important information regarding the state of the vehicle, but can 

also produce annoyance and discomfort (Shayaa et al., 2001; Jang and Kook, 

2004).  Although vehicle design is leading to eliminating noise and vibration 

completely for the sake of comfort, it must be decided if a certain amount of 

noise and vibration is necessary in order to be able to drive safely, and what 

type of noise and vibration this should be.  For example, general background 

noise, created mainly by friction between the tyres and the road, can give an 

indication of how fast the vehicle is moving.  Eliminating the noise may lead to a 

belief that the vehicle is travelling slower than it actually is, and hence lead to 

travelling at generally higher speeds.  Likewise, eliminating vibration may create 

an improvement in feeling, but a journey that is too comfortable may lead to 

driver fatigue and losing concentration. 

 

There have been several studies on the interactions between noise and 

vibration (Sandover, 1970; Harris and Shoenberger, 1970; Sandover and 

Champion, 1984; Paulsen and Kastka, 1995; Howarth and Griffin, 1990; 

Giacomin and Fustes, 2005).  Most previous studies have focused on whole-

body vibration and/or vibration in buildings.  Studies of Howarth and Griffin 

(1990) and of Paulsen and Kastka (1995) both demonstrated the importance of 

considering both noise and vibration when assessing community responses to 

environmental noise.  Giacomin and Fustes (2005) applied similar methods for 

steering wheel noise and vibration, and produced “subjective equivalence” 
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curves for continuous (15 s) and impulsive sounds and vibration stimuli.  The 

psychophysical method used a forced choice protocol and subjective 

equivalence was assumed at the 50th percentile of where sound was considered 

“more unpleasant” than the vibration.   

 

An alternative approach to the issue of multi-modal stimuli is that of cross-modal 

interaction whereby stimuli in one modality affects human response to stimuli in 

another modality.  Such cross-modal interactions have primarily been observed 

between visual and auditory channels.  For example, Wade et al. (2006) 

demonstrated that performance relating to auditory tasks can be affected by 

impairments in vision.  Similarly, Hollier et al. (1999) demonstrated a cross-

modal interaction whereby reduction in the quality of just one of the visual or 

audio streams caused a reduction in the perceived quality of both streams.  

Using fMRI (functional magnetic resonance imaging) scanners, it can be shown 

which areas of the brain are dedicated to processing information received from 

the different physical sensors.  When individuals are exposed to multi-modal 

stimuli (e.g. visuo-tactile and audio-visuo-tactile), brain activity occurs in regions 

which are not stimulated when each individual modality is presented (Macaluso 

and Driver; 2005), thus suggesting that certain areas of the brain are dedicated 

to processing multi-modal stimuli.   

 

It is common for a panel to provide opinion of some aspect of perceived vehicle 

quality through some form of jury testing.  The literature includes practical 

examples of how individuals might prioritise which aspect of the vehicle 
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environment should be prioritised when considering control measures (e.g. 

comparison of noise and vibration from steering wheels: Giacomin and Fustes, 

2005).  However, there is little data on the cross-modal interaction whereby 

driver opinion of one type of environmental stressor could be affected by 

another type of environmental stressor.  This paper reports a study which was 

designed to investigate multi-modal interactions between tactile sensations of 

driving over a bump in a car, and auditory signals that are associated with the 

feel of the bump.  It was hypothesised that a cross-modal interaction would be 

observed whereby the perceived magnitude of vibration at the hands would be 

affected by the noise. 
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Method 

Sixteen subjects participated in the laboratory study that was conducted in the 

Environmental Ergonomics Laboratories of Loughborough University.  All 

participants were students or staff at Loughborough University, aged between 

20 and 24 (mean age 21.75), and had held a driving licence for at least 1 year. 

 

A specially designed steering wheel was used in the study, instrumented with 

strain gauges to measure grip force (see Figure 1).  Signals from an Entran 

EGAS accelerometer mounted at the top of the steering wheel were conditioned 

and acquired to computer via anti-aliasing filters.  The steering wheel vibration 

was generated by a Ling V406 vibrator amplified by a Ling PA100E CE 

amplifier. Sounds were played through a single Mission loudspeaker that was 

placed directly in front of the participant but obscured behind a some thin 

acoustically transparent cloth.  A calibrated Brüel & Kjær 2231 Sound Level 

Meter was placed on a tripod, over the shoulder of the participant, less than 

50cm away from the right ear in order to measure the noise levels yet remain 

unobtrusive.  The system was controlled by a custom written programme written 

in LabVIEW.  

 

Figure 1 about here. 

 

Grip force can affect subjective ratings of vibration and therefore required 

control (Haasnoot and Mansfield, 2004a).  Participants gripped the steering 
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wheel with a force of 20 N.  This force was selected as being the average self-

selected force from a previous study performed in the laboratory using the same 

test rig.  When the 20 N force was correctly applied, the trial was started.  Each 

trial was made up of both noise and vibration stimuli.  The vibration stimuli were 

Gaussian random stimuli with energy band limited to the frequency range of 50 

to 100 Hz.  Stimuli were single-axis rotational.  Each stimulus lasted 1 second 

and had an exponential taper of 0.2 s.  The magnitude of each stimulus was 

either 10, 15, or 20 ms-2 (unweighted r.m.s.) and the stimuli were separated by 

a gap of 1 second.  In addition to the steering wheel vibration, noise was played 

through the loudspeaker.  The noise comprised a recording of background 

noise measured in a small car driving on a smooth road mixed with the noise of 

the same car driving over a bump (Figure 2; Haasnoot and Mansfield, 2002). 

The level of the noise was adjusted such that the peak level was either 88, 93 

or 98 dB(A).  The levels of vibration and noise were monitored throughout the 

experiment. The timing of the noise of the bump corresponded to the 

presentation of the vibration.  The first stimulus was termed the ‘reference’; the 

second stimulus was termed  the ‘test’.  The test protocol is illustrated 

diagrammatically in Figure 3.  Participants were not informed of the presence of 

the loudspeaker in the laboratory but were only instructed to consider the 

vibration (noise was not mentioned in the participant information sheet or 

instructions).   

 

Figure 2 about here 

Figure 3 about here 
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Each participant was exposed to eight different combinations of reference and 

test vibration and noise (Table 1).  The stimuli combinations represented 

increases and decreases in vibration and noise levels that should be 

perceivable by the subjects (Flindell, 1998) and was confirmed through a pilot 

study.  The eight different combinations were applied twice. The total of 16 

conditions was randomised for each participant.  The design of the experiment 

was such that the majority of sounds heard were the same level (of the 32 

sounds used in the trials, 24 peaked at 93 dB(A)).  This design minimised the 

risk of participants guessing the true purpose of the experiment which might 

have led to participants deliberately rating their response to the combination of 

both stimuli, despite the question only relating to the vibration. 

 

Table 1 about here 

 

The participants were asked to complete a health screening questionnaire, give 

written informed consent and were given written instructions about the 

experiment.  The participants were informed that they might leave the 

experiment at any time without reason.  The participants were then asked to sit 

in the rig seat and adjust it as they would when sat in the driver’s position in a 

car.   

 

The psychophysical method used was that of magnitude estimation.  

Participants were asked to assign the reference vibration a value of 100; the 
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test stimuli should then be allocated number according to the relative intensity 

of steering wheel vibration.  For example, if the test vibration intensity was 

thought to be twice that of the reference vibration, it should be allocated the 

value of 200.  The participants were instructed to release the steering wheel 

between each test condition and were given practice stimuli until they were 

familiar with the equipment and clear on what they were required to do.  To 

minimise potential non-linearities in subjective ratings due to the expected 

power relationship between magnitude and subjective intensity, and to enable 

comparison of data from subjects using a different ranges of subjective ratings 

in their responses, data for each subject was normalised.  Normalisation was 

carried out by calculating the mean and standard deviation for each participant’s 

set of results (Roberts, et al., 2005a, 2005b).  Each data point was normalised 

by subtraction of the mean and division by the standard deviation.  Thus, each 

subject’s normalised data had a mean of zero and a standard deviation of unity.  

Loughborough University ethical committee approved the experiment. 
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Results 

 
Effect of vibration magnitude on the subjective rating of steering wheel 

vibration 

 
For the trials where there was no change in the level of noise between the 

reference and test stimuli, the subjective ratings of steering wheel vibration 

intensity increased with vibration magnitude monotonically for most of the 

participants (Figure 4).  Participant ‘f5’ showed a slight reduction in subjective 

rating between the 67% and 150% conditions.  All other participants showed 

similar trends whereby the ratings increased with vibration magnitude.  

Differences between the normalised ratings for the conditions where the noise 

did not change were significant for each combination of vibration magnitude 

(paired samples t-test, p<0.001).   

 

Subjective ratings were similar for male and female subjects.  There were no 

significant differences between the normalised ratings obtained between 

genders for the conditions where the noise did not change between the 

reference and the test stimuli (independent samples t-test, p>0.05).   

 
 
Figure 4 about here 
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Effect of noise level on the subjective rating of steering wheel vibration 

Irrespective of the noise level, subjective ratings of vibration magnitude 

increased as the vibration magnitude increased for most participants (Figure 4).  

The only anomaly occurred for participant ‘f5’ who showed a slight reduction in 

subjective rating between the 67% and 150% conditions for the 88 dB(A) test 

stimuli.  Differences between the ratings of vibration intensity were significant at 

the two magnitudes tested for both the 88 dB(A) and 98 dB(A) noise conditions 

(paired samples t-test, p<0.001).   

 
 
There was a general trend for the added noise to influence the subjective 

ratings of the steering wheel vibration.  For the 67% vibration condition, 

normalised ratings for 12 of the 16 participants were greater for the 93 dB(A) 

condition than for the 88 dB(A) condition; similarly normalised ratings for 12 of 

the 16 participants were greater for the 98 dB(A) condition than for the 93 dB(A) 

condition.  For the 150% vibration condition, normalised ratings for 9 of the 16 

participants were greater for the 93 dB(A) condition than for the 88 dB(A) 

condition; normalised ratings for 12 of the 16 participants were greater for the 

98 dB(A) condition than for the 93 dB(A) condition.  This small but consistent 

trend is clearly observed for mean data (Figure 5). 

 

For some participants, there was a large effect of the noise (e.g.  participant 

‘f1’), whereas others only showed a small effect (e.g. participant ‘m8’ and ‘f8’).  

Two-way ANOVA showed that the main effect of vibration on the subjective 

ratings was significant (F(1, 15) = 158.2, p < 0.001).  Similarly the main effect of 
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noise on the subjective ratings was also significant (F(2, 30) = 5.07, p < 0.05).  

There was no significant interaction between vibration and noise (F(2, 30) = 2.51, 

p = 0.099).  This means that subjective ratings of vibration are affected by 

vibration at each noise level and that ratings of vibration are affected by noise at 

each vibration magnitude. 

 



15 

Discussion 

The increase in subjective rating of vibration intensity with increased vibration 

magnitude was expected and is in agreement with all other studies that have 

been completed in the field (e.g. Haasnoot and Mansfield, 2004b; Morioka, 

2004; Giacomin et al., 2004).  Therefore, the general methodology is validated 

according to the published literature.   

 

The previously published study with the most similarity to the current study in 

terms of stimuli is that of Giacomin and Fustes (2005).  In the part of their study 

which considered transient sounds and vibration, increases in vibration 

magnitude had a non-linear subjective equivalence with sound, using their 

adaptation of a cross-modal matching experimental protocol.  Nevertheless, 

Giacomin and Fustes’ objectives, method and application of results are 

fundamentally different to the approach of this study.  This study was designed 

to augment an established programme of work investigating confounding 

factors for rating of impulsive steering wheel vibration, including the effects of 

grip force, push force, pull force, impulse envelope, impulse duration, impulse 

sound and subject gender (e.g. Haasnoot and Mansfield, 2002, 2003, 2004a, 

2004b).  Thus, the focus of this work was on the cross-modal interaction rather 

than the subjective equivalence between modalities. 

 

In this experiment, participants were only instructed to rate the relative 

magnitudes for the reference vibration and the test vibration and no reference 

was made to sound in any part of the subjects’ instructions.  Any differences 
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between the subjective ratings of vibration for those conditions where the noise 

also changed could therefore be attributed to a cross-modal effect.  The 

changes in the noise were relatively small (the maximum change during each 

trial was +/-5 dB(A)) and therefore any changes in cross modal effects would 

also be expected to be relatively small.  A wider range of noise levels could 

have been used, but this would have run the risk of alerting the participants to 

the true nature of the investigation.  Despite the modest changes in noise level, 

a statistically significant change in subjective rating of the vibration was 

observed.  Although averaged data shows clear and consistent effects, 

individual subject data shows some variability.  The extent of the variability is 

not unusual for this type of psychophysical experiment and highlights the 

inherent variation in sensitivity and subjective responses to vehicle 

environments.   

 

In contrast to the results shown in this study, Gescheider and Niblette (1967) 

showed a masking effect caused by noise on perception of tactile stimuli and 

vice versa.  However, in Gescheider and Niblette’s study, the stimuli were short 

clicks and the greatest masking effects were shown for stimuli that were 

intense.  The results of this experiment covered a small range of values (88 

dB(A) to 98 dB(A), and 10 to 20 ms-2 (r.m.s.)) and were statistically significant in 

their findings.  It might be possible that if the intensity of the noise increased 

further, that, initially, the subjective ratings of vibration would increase 

accordingly; however, beyond a high threshold, a masking effect could occur 

where the noise dominated the attention of the participants (Pashler, 1999).  
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However, such extreme combinations of stimuli are unlikely to occur in road 

vehicles. 

 

One purpose of this study was to investigate the possibility for enhancing tactile 

sensations at the hands using the auditory channel.  The results show that there 

is some scope for tactile enhancement by using sound.  Therefore, if additional 

attention is required for a discrete event, a sound reproduction system in a 

vehicle could be used to artificially increase the sensation.  In some scenarios 

the auditory channel could be used as a warning (e.g. virtual rumble strips).  

However, the modality of such warning signals is not important – the purpose of 

the warning it to alert the driver to some potential danger.  This study relates to 

scenarios where it might be desirable to increase sensation at the hands, 

without the driver consciously perceiving additional sound.  Reinforcing sound 

could be played during some driving events to enhance driver perception, thus 

improving driver performance.  Further research would be required to identify 

which elements of the driving task require such reinforcement and the nature 

that the reinforcement should take. 

 

An additional implication of this study is that improvements in vehicle refinement 

in terms of reducing the noise or steering wheel vibration will not be fully 

appreciated by the driver unless the improvements are also accompanied by 

similar improvements in the other modality.  If steering wheel vibration is 

reduced without a similar noise reduction, the subjective impression of the 
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vibration at the steering wheel will not change as much as if the noise was 

reduced as well. 
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Conclusions 

Participants’ subjective rating of vibration intensity increases as the vibration 

magnitude increases.  Such a trend was observed for all levels of noise that 

accompanied the vibration.  Noise had an effect on perception of vibration 

magnitude experienced at a steering wheel.  An increase of noise increased the 

perception of vibration magnitude, while a decrease of noise decreased the 

perception of vibration.  These results show that changes in one modality affect 

subjective responses to the other modality.  Therefore, any improvements in 

refinement in either noise or vibration should be accompanied by similar 

improvements of the other for the benefits to be fully appreciated by drivers.  

Alternatively, the auditory channel could be used to enhance the feel of the car 

by playing appropriate sounds at appropriate times. 
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CAPTIONS 

TABLE: 

Table 1 Vibration and sound levels used for the reference and test stimuli for 
the eight trials, each of which was repeated but presented in a balanced 
random order. 
 

 

FIGURES: 

Figure 1.  Laboratory set-up as used for the trials showing instrumented 
steering wheel, car seat and sound level meter.  The loudspeaker was situated 
behind the fabric screen, directly behind the steering wheel. 
 

Figure 2.  Segment of audio file used to provide the sound stimulus.  The level 
of the sound was either 88, 93 or 98 dB(A) peak and was selected depending 
on the trial. 
 

Figure 3.  Diagrammatic representation of test protocol.  Simultaneous sounds 
and steering wheel vibrations were presented in trial pairs.  After the ‘reference’ 
stimulus, the sound level and vibration magnitudes would increase or decrease 
to provide the ‘test’ stimulus.  After each trial pair, the subject would give a 
numerical rating of the magnitude of the test vibration in comparison to the 
reference vibration.  No mention was made of the associated sounds during any 
part of the experiment. 
 
Figure 4.  Normalised subjective ratings of vibration magnitude for each of 8 
male and 8 female participants exposed to steering wheel vibration and noise at 
88 dB(A) (○──○), 93 dB(A) (───), and 98 dB(A) (□──□) peak. 
 
Figure 5.  Mean normalised subjective ratings of vibration magnitude for 8 male 
and 8 female participants exposed to steering wheel vibration and noise at 88 
dB(A) (○──○), 93 dB(A) (───), and 98 dB(A) (□──□) peak. 
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TABLES 

Table 1 Vibration and sound levels used for the reference and test stimuli for 
the eight trials, each of which was repeated but presented in a balanced 
random order. 

Trial 
number 

Reference Test Change in Change in 
Vib. (m/s² r.m.s.) Sound (dB(A) pk) Vib. (m/s² r.m.s.) Sound (dB(A) pk) vibration (%) sound (dB(A))

1 10 93 15 88 150% -5 
2 10 93 15 93 150% 0 
3 10 93 15 98 150% 5 
4 10 93 20 93 200% 0 
5 15 88 10 93 67% 5 
6 15 93 10 93 67% 0 
7 15 98 10 93 67% -5 
8 20 93 10 93 50% 0 
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Figure 1.  Laboratory set-up as used for the trials showing instrumented 
steering wheel, car seat and sound level meter.  The loudspeaker was situated 
behind the fabric screen, directly behind the steering wheel. 
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Figure 2.  Segment of audio file used to provide the sound stimulus.  The level 
of the sound was either 88, 93 or 98 dB(A) peak and was selected depending 
on the trial. 
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Figure 3.  Diagrammatic representation of test protocol.  Simultaneous sounds 
and steering wheel vibrations were presented in trial pairs.  After the ‘reference’ 
stimulus, the sound level and vibration magnitudes would increase or decrease 
to provide the ‘test’ stimulus.  After each trial pair, the subject would give a 
numerical rating of the magnitude of the test vibration in comparison to the 
reference vibration.  No mention was made of the associated sounds during any 
part of the experiment.   
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Figure 4.  Normalised subjective ratings of vibration magnitude for each of 8 
male and 8 female participants exposed to steering wheel vibration and noise at 
88 dB(A) (○──○), 93 dB(A) (───), and 98 dB(A) (□──□) peak.  
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Figure 5.  Mean normalised subjective ratings of vibration magnitude for 8 male 
and 8 female participants exposed to steering wheel vibration and noise at 88 
dB(A) (○──○), 93 dB(A) (───), and 98 dB(A) (□──□) peak. 
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