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Shoe microclimate: An objective characterisation 

and subjective evaluation 
 

Abstract 

Shoe microclimate (temperature and humidity) has been suggested to contribute to 

perceptions of foot thermal comfort. However, limited data is available for perceptual 

responses in relation to shoe microclimate development both over time and within 

different areas of the shoe. This study evaluates perceptions of foot thermal comfort 

for two running shoes different in terms of air permeability in relation to temporal and 

spatial characteristics of shoe microclimate. The temporal characteristics of shoe 

microclimate development were similar for both shoes assessed. However, higher 

temperatures and humidity were observed for the less permeable shoe. Changes to shoe 

microclimate over time and differences between shoes were perceivable by the users. 

This study provides the most detailed assessment of shoe microclimate in relation to 

foot thermal comfort to date, providing relevant information for footwear design and 

evaluation.  
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1 Introduction 

There has always been a demand for footwear which is both functional and 

comfortable. Yet the perception of comfort is complex and multi-factorial based on 

the interaction of factors which affect foot function during activity (Goonetilleke and 

Luximon 2001). These interactions can be linked to mechanical and thermal properties 

of shoes.  

Thermal properties of shoes are typically attributed to the level of insulation and 

vapour resistance provided and the development of the shoe microclimate. Like 

clothing, shoes represent a barrier for heat and vapour transfer between the skin and 

the external environment. Thus when the wearer’s dry and evaporative heat loss 

pathways are limited, heat and moisture may build within the air layers between the 

skin and the footwear (Havenith et al. 1990; Bouskill et al. 2002). Consequently, heat 

loss from the skin to the shoe is reduced as the gradient becomes smaller (Lu et al. 

2013). The development of the shoe microclimate has therefore been suggested to have 

a decisive influence on the users sensations and perceptions of thermal comfort 

(Arezes et al. 2013; Irzmanska et al. 2013; Shimazaki and Murata 2015). The materials 

used within shoes and socks, the air they enclose and the air bound on the outside of 

the material layers are therefore important (Havenith 2002). 

Shoe microclimate development has been investigated in protective and hiking 

footwear but has been restricted to mechanical testing using thermal foot manikins 

(Schols et al. 2004) or assessment of temperature and relative humidity at one or two 

locations within footwear during physical activity. Under constant moderate climate 

conditions (23-25°C, 50% RH) and with exercise, in-shoe temperature and in-shoe 

relative humidity are reported to range between 27-37°C and 67-96% respectively 

(Bertaux et al. 2010; Irzmanska et al. 2013; Irzmańska 2015). Based on these data, foot 

skin temperatures (foot 𝑇𝑠𝑘)  have been reported to exceed 34°C resulting in 

perceptions of thermal discomfort. The combination of physical exercise and high 

temperatures inside footwear has also been shown to add strain to the cardiovascular 

system in the lower extremities, increasing blood flow by 33% from rest (Irzmanska 

et al. 2013). Further consequences of high temperatures and levels of moisture inside 

shoes include tinea pedis, commonly known as athlete’s foot. Primarily associated as 

a common problem for individuals who use public facilities such as saunas and 

swimming pools, tinea pedis also represents a problem for those who participate in 
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physical activity where the feet are enclosed in shoes for extended periods of times i.e. 

marathon runners (Auger et al. 1993). Intermediate levels of moisture have also been 

shown to increase coefficients of friction which have been found to influence the 

probability of blister formation (Sulzberger et al. 1966). Changes to the shoe 

microclimate therefore encourage the growth of microorganisms which can lead to 

odour development and to poor foot health.  

Knowledge regarding the subjective evaluation of shoe microclimate is limited, with 

little published information available. Although subjective perception of foot 𝑇𝑠𝑘 may 

not always coincide with measured foot 𝑇𝑠𝑘 (Barkley et al. 2011), local discomfort has 

been attributed to elevations in temperature rather than elevations in the moisture 

content both within hiking boots (Arezes et al. 2013) and within sock and boot liner 

materials worn within protective footwear (Irzmanska et al. 2013). The influence 

moisture has on foot comfort therefore requires further investigation as it is unknown 

whether changes in temperature and/or humidity help an individual in determining 

perceptions of thermal comfort.  

Despite the impact shoe microclimate has on foot health and foot thermal comfort, to 

our knowledge no quantitative shoe microclimate data is available over time, within 

different areas of the shoe or in relation to perceptual responses specifically for sports 

related footwear. With exercise, metabolic heat generation and sweat rates are high 

and so balancing the amount of heat supplied to or generated by the feet with heat loss 

becomes crucial. Currently, only changes to foot 𝑇𝑠𝑘  during running have been 

reported (Barkley et al. 2011; Shimazaki and Murata 2015; Shimazaki et al. 2015). 

During a 30 minute running bout at 12 km hr-1 temperature elevations from rest of 

8.2°C were observed at the heel and 4.8°C at the neck of the big toe, foot regions 

associated with high contact loads and pressure during running (Shimazaki and Murata 

2015). Increased ventilation within running shoes has also been shown to produce a 

cooling effect, reducing  foot 𝑇𝑠𝑘  elevations, particularly on the arch of the foot 

(Shimazaki et al. 2015). How the development of shoe microclimate influences 

perceptual responses however has not been investigated. As commercial communities 

seek to improve footwear comfort, assessments of shoe microclimate in running 

footwear would therefore be valuable. 
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The aim of this study was threefold: (i) to objectively investigate temporal and spatial 

characteristics of shoe microclimate in running footwear, (ii) to determine whether 

shoe microclimate is affected by the level of shoe permeability and (iii) to determine 

whether changes to shoe microclimate are perceivable. The evaluation of footwear 

thermal properties based upon objective and subjective parameters will provide 

valuable information for footwear evaluation and design.  
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2 Method 

2.1 Participants 

Ten healthy females [age: 24 ± 2.6 years; height: 165.8 ± 6.2 cm; body mass: 61.4 ± 

8.9 kg] volunteered to participate in this study. Test procedures were outlined in a 

written information sheet and were explained to participants before obtaining written 

informed consent. Experimental procedures were approved by Loughborough 

University Ethical Committee.  

2.2 Experimental design 

To achieve the aims of the study a repeated measures design was selected. Participants 

took part in two running trials on separate occasions, wearing running shoes of the 

same model but different in terms of air permeability (OPEN upper construction vs 

CLOSED upper construction). No information was provided to participants regarding 

shoe related differences and participants were not allowed to visually inspect the shoes. 

It is important to note however that some differences may have been noted when 

donning the shoes.  

2.3 Instrumentation and Calculations 

2.3.1 Gross sweat loss and sock sweat absorption 

To determine gross sweat loss (GSL), pre- and post-test semi-nude body mass and 

fluid consumed during each experimental session were recorded using electronic 

scales with a resolution of 0.001 kg (Mettler Toledo kcc150, Mettler Toledo, Leicester, 

UK). GSL is presented in kilograms (kg) and was calculated:  

𝐺𝑆𝐿 (𝑘𝑔) = 𝑤𝑏1 − 𝑤𝑏2 + 𝑓𝑙𝑢𝑖𝑑  

Where; 

𝑤𝑏1 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 (𝑘𝑔) 

𝑤𝑏2 𝑏𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 𝑒𝑛𝑑 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 (𝑘𝑔) 

𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑢𝑖𝑑 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑔) 

Sock mass was recorded pre- and post-test using electronic scales with a resolution of 

0.001 g (FX-500i. A&D Company Ltd, Oxfordshire, UK) to determine sweat 

absorption into the sock.  
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2.3.2 Aural, mean skin temperature and heart rate  

Aural temperature (𝑇𝑎𝑢) was measured from the auditory canal (Braun ThermoScan 7, 

IRT6520, Braun GmbH, Kronberg, Germany) at the beginning/end of each stage of 

the experimental protocol. Changes to core temperature were expected to be minimal 

and not affected by footwear. An infrared aural thermography sensor was therefore 

chosen to reduce unnecessary discomfort to participants.  

Skin temperature was measured at four sites: calf, thigh, chest and upper arm using 

iButton wireless temperature loggers (Maxim, San Jose, USA) attached to the skin by 

3MTM TransporeTM surgical tape (3M United Kingdom PLC). The weighted skin 

temperature (𝑇̅𝑠𝑘) of four sites was calculated using the below equation (Ramanathan 

1964):  

𝑇̅𝑠𝑘  = (0.3 ∗ 𝑇𝑠𝑘  𝑈𝑝𝑝𝑒𝑟 𝑎𝑟𝑚) + (0.3 ∗ 𝑇𝑠𝑘  𝐶ℎ𝑒𝑠𝑡) + (0.2 ∗ 𝑇𝑠𝑘  𝑇ℎ𝑖𝑔ℎ) + (0.2 ∗ 𝑇𝑠𝑘  𝐶𝑎𝑙𝑓) 

Heart rate (HR) was measured during all tests using telemetry (Polar RS400sd,Polar 

Electro Oy,Kempele, Finland). 

2.3.3 Foot skin temperature  

Foot 𝑇𝑠𝑘  was measured at seven sites on the right foot (Figure 1) using T type 

thermocouples (plantar thermocouples, 1/0.508 mm wire, 827-5978; dorsal 

thermocouples, 1/0.315 mm wire, 110-4469, RS Components Ltd, Corby, UK). 

Thermocouples were connected to a data logger (Grant Squirrel SQ2020, Grant 

Instruments Ltd, Cambridge, UK) which logged foot 𝑇𝑠𝑘 every 10 s. Thermocouples 

were calibrated prior to testing by placing the measuring junction of each 

thermocouple in a circulating water bath where temperature was monitored with a 

calibrated thermometer (resolution 0.1°C).  
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Figure 1 Anatomical positioning of thermocouples on the right foot. Site codes: 1-plantar 

ball; 2-plantar arch; 3- plantar heel; 4-base of toe 1; 5- central dorsal; 6-medial dorsal; 7-

lateral dorsal.  

2.3.4 In-shoe temperature and in-shoe relative humidity  

Temperature and relative humidity sensors were attached to seven sites on the right 

foot (Figure 2) to record changes to in-shoe temperature and in-shoe relative humidity 

(SHT31, Sensirion, Switzerland). Sensors were applied to a standardised sock using 

transpore surgical tape. Data was collected wirelessly from a specially developed 

bluetooth data acquisition system (University of Applied Sciences Kaiserslautern, 

Zweibrücken, Germany), secured to the participants ankle, at a sampling rate of 10 s 

and simultaneously displayed and recorded in LabVIEW software (2016, National 

Instruments). The total weight of the data acquisition system and sensors was 112 g. 

 

Figure 2 Positioning of temperature and relative humidity sensors on the right foot. 
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2.3.5 In-shoe absolute humidity 

In-shoe absolute humidity was calculated from in-shoe temperature and in-shoe 

relative humidity using the Antoine equation (Parsons 2014):  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 (𝑔. 𝑚3) =
𝑟ℎ

100
×

𝑒 [16.6536 − 
4030.183

𝑇 +235
]

461.4(𝑇 + 273)
 106 

Where; 

𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑇 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (°𝐶) 

𝑟ℎ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 (%) 

2.3.6 Perceptual scales 

Ordinal scales were used to assess thermal sensation, wetness perception, stickiness 

and thermal comfort (Figure 3). Scales were designed in line with instructions from 

ISO 10551 (2001) with the sensitivity, accuracy, ease of use and descriptors chosen 

for each individual scale carefully considered.  

Scales were used to gain subjective information for the whole body (thermal sensation 

and thermal comfort), whole foot and for four foot regions (thermal sensation, wetness 

perception, stickiness and thermal comfort; Figure 4). Subjective information was 

obtained for the right foot only.  

Participants were instructed on how to use the perceptual scales and were given time 

to practice under the guidance and assistance of the experimenter. During the 

experimental trial, participants were prompted every 5 mins to provide perceptual 

ratings which took between 1-2 mins. 
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Figure 3 (a) thermal sensation scale; (b) wetness perception scale; (c) stickiness scale; 

(d) thermal comfort scale. 

 

Figure 4 Reference sheet used to highlight areas for subjective evaluation. 

2.4 Experimental protocol 

Participants took part in two experimental trials at approximately the same time of day. 

Trials were performed in a climate controlled room maintained at 23°C, 35% relative 

humidity. The two experimental trials differed with regard to the running shoes worn 

(Figure 5). All participants performed one trial wearing a shoe with an OPEN air 

permeable upper construction (adidas Supernova Glide Boost 8 Clima Chill) and one 

trial wearing a shoe with a CLOSED less air permeable upper construction (adidas 

Supernova Glide Boost atr Clima Heat). Heat loss measurements for both shoes were 

performed using a 12 zone sweating thermal foot manikin (THERMETRICS, 
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Measurement Technology Northwest, Seattle, USA) in accordance with ISO 15831 

(2004). Thermal insulation was 0.10 m2.K.W-1 vs 0.11 m2.K.W-1 and the evaporative 

resistance was 16.06 m2.Pa.W-1  vs 25.18 m2.Pa.W-1  for the OPEN and CLOSED shoe 

respectively. Socks were standardised for each trial (adidas performance ankle sock; 

94% cotton, 3% polyamide, 3% elastane, terry jersey). 

Upon arrival, participants changed into running shorts and t-shirt and washed their feet 

with tepid water. Following instrumentation, participants donned test shoes and rested 

in an upright seated position for a 10 min period. Participants then performed 40 min 

running at a constant speed (7.5 km.hr-1). This was followed by a 30 min recovery 

period in an upright seated position.  

 

Figure 5 Running footwear worn during the experimental trials. (a) adidas Supernova 

Glide Boost 8 Clima Chill (OPEN) (b) adidas Supernova Glide Boost atr Clima Heat 

(CLOSED). 

2.5 Analysis  

The mean foot response for each individual variable (foot 𝑇𝑠𝑘, in-shoe temperature and 

in-shoe relative humidity/absolute humidity) was calculated by averaging the data 

recorded from seven foot measurement sites for each participant over time and taken 

forward for statistical analysis.  

To determine changes to foot 𝑇𝑠𝑘 , in-shoe temperature and in-shoe relative 

humidity/absolute humidity for different foot regions (dorsal, toes, heel and sole) data 

recorded from measurement sites which were representative of each region were 

averaged to calculate a mean response for each region. With reference to Figure 1 and 

Figure 2, measurement sites 5,6 and 7 were grouped to determine  mean variable 

responses for the dorsal region. Measurement sites 1 and 2 were grouped for the sole 
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region. Data from site 4 was taken to represent the toe region and data from site 3 was 

taken to represent the heel region.  

2.6 Statistical analysis  

In this study the independent variables were: shoe (OPEN vs CLOSED) and time 

(REST, RUN, RECOVERY). Dependent variables were: GSL, sock sweat absorption, 

HR, 𝑇𝑎𝑢  , 𝑇̅𝑠𝑘 , foot 𝑇𝑠𝑘 , in-shoe temperature, in-shoe relative humidity, in-shoe 

absolute humidity, whole body thermal sensation and whole body thermal comfort and 

thermal sensation (𝑇𝑆) , wetness perception (𝑊𝑃) , stickiness (𝑆𝑇)  and thermal 

comfort (𝑇𝐶) for the whole foot and by foot regions. Data were tested for normality 

of distribution with Shapiro-Wilk test.  

To investigate temporal and spatial characteristics of shoe microclimate and to 

determine whether shoe microclimate is affected by shoe permeability a two way 

repeated measure analysis of variance (ANOVA) was performed with post hoc 

multiple comparisons (Bonferroni correction).  

To investigate subjective perception of shoe microclimate over time and between shoe 

conditions a Friedman test was conducted. When significant effects were observed, 

post hoc analysis was conducted with a Wilcoxon signed rank test.  

Regression analyses were performed to study the relationships between dependent and 

independent variables. These analyses were conducted using data from group means 

over time.   

Statistical analysis was performed using IBM SPSS Statistics 24 (IBM, USA) and 

reported as means ± standard deviation (SD). The level of significance was set at p < 

0.05.  
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3 RESULTS 

3.1 Environmental conditions 

Mean (±SD) environmental conditions for the experimental trials were 23.2 ± 0.2°C 

and 34.6 ± 1.6% RH. 

3.2 Whole body thermal responses 

3.2.1 Aural temperature, mean skin temperature and heart rate 

Whole body thermal responses highlighted no shoe related differences in terms of  𝑇̅𝑠𝑘, 

𝑇𝑎𝑢  or HR. 𝑇̅𝑠𝑘  was similar between shoe conditions throughout the experimental 

protocol (OPEN vs CLOSED: 31.4 ± 0.5°C vs 31.3 ± 0.5°C at REST; 30.9 ± 0.9°C vs 

31.1 ± 2.1°C at the end of RUN; 31.5 ± 0.9°C vs 31.8 ± 1.2°C at the end of 

RECOVERY, all NS). Dynamics of 𝑇̅𝑠𝑘 were similar between shoe conditions.  

There were no shoe-related differences in the dynamics of 𝑇𝑎𝑢  and their absolute 

values (OPEN vs CLOSED: 37.1 ± 0.3°C vs 37.1 ± 0.4°C at REST; 36.9 ± 0.8°C vs 

37.0 ± 0.8°C at the end of RUN; 37.1 ± 0.6°C vs 37.1 ± 0.5°C at the end of 

RECOVERY, all NS). Moreover, there were no differences in HR with a similar 

plateau during RUN at 143 ± 19 bpm for OPEN and 144 ± 20 bpm for CLOSED. 

3.2.2 Gross sweat loss and sock sweat absorption 

GSL was not different between OPEN (0.46 ± 0.10 kg) and CLOSED (0.46 ± 0.19 kg) 

shoe conditions (p = 0.95). No difference in sock sweat absorption was observed 

(OPEN vs CLOSED 1.60 g [min-max 0.60-7.10 g] vs 1.79 g [min-max 0.70-8.00 g], 

p = 0.66).  

3.2.3 Perceptual responses  

The dynamics of perceptual responses were similar between shoe conditions (NS). 

During RUN, whole body thermal sensations increased from neutral to warm, for 

OPEN (from 1.1 ± 1.8 at the end of REST to 11.3 ± 4.6 at the end of RUN, p = 0.01) 

and CLOSED (from 1.5 ± 2.8 at the end of REST to 12.3 ± 3.5 at the end of RUN, p 

= 0.01). Consequently, participants developed moderate thermal discomfort during the 

running period.  

With RECOVERY, whole body thermal sensations returned toward neutral for OPEN 

and CLOSED (from 11.3 ± 4.6 and 12.3 ± 3.5 at the end of RUN to 3.3 ± 2.2 and 4.6 

± at the end of RECOVERY, p < 0.01) resulting in reduced thermal discomfort (OPEN 
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and CLOSED: from end of RUN 3.5 ± 1.8 and 3.9 ± 2.1 to end of RECOVERY 1.2 ± 

0.4 and 1.4 ± 0.7, p < 0.05).  

Despite no shoe related differences in terms of  𝑇̅𝑠𝑘 or 𝑇𝑎𝑢, participants felt warmer 

during the CLOSED shoe condition reaching significance at 45 mins (p = 0.02). There 

were no shoe related differences in whole body thermal comfort.  

3.3 Foot thermal responses  

3.3.1 Mean foot skin temperature and mean in-shoe temperature  

Mean foot 𝑇𝑠𝑘 (Figure 6a) increased with REST for both shoe conditions (p < 0.001). 

At the end of RUN (50 mins), mean foot 𝑇𝑠𝑘 was 0.5°C greater for CLOSED (OPEN 

vs CLOSED: 36.6 ± 0.7°C vs 37.1 ± 0.7°C, p = 0.002). With RECOVERY, mean foot 

𝑇𝑠𝑘  decreased by approximately 2°C regardless of SHOE condition (p < 0.001). 

Overall the difference in foot 𝑇𝑠𝑘between the two shoes reduced and lost significance 

over time.  

In-shoe temperature (Figure 6b) increased with REST for both shoe conditions (p < 

0.001). At the end of RUN, in-shoe temperature was 0.9°C greater for CLOSED 

(OPEN vs CLOSED: 35.2 ± 0.6°C vs 36.1 ± 0.5°C, p < 0.001). At the cessation of 

running (50-55 mins) in-shoe temperature briefly increased in the OPEN shoe but only 

by 0.3°C.   

3.3.2 Mean in-shoe relative humidity and mean in-shoe absolute humidity 

Mean in-shoe relative humidity (Figure 6c) increased with REST for both shoe 

conditions (p < 0.001). At the end of RUN, in-shoe relative humidity was 8.2% greater 

for CLOSED (OPEN vs CLOSED: 75.8 ± 7.9% vs 84.1 ± 5.8%, p < 0.001). With the 

cessation of running (50-55 mins) mean in-shoe relative humidity increased by 7.8% 

for OPEN and 3.8% for CLOSED. Mean in-shoe relative humidity remained high 

during RECOVERY reaching 84.3 ± 8.0% for OPEN and 87.5 ± 6.7% for CLOSED 

at 80 mins (p < 0.05). 

Mean in-shoe absolute humidity (Figure 6d) increased with REST and throughout 

RUN reaching 31.3 ± 3.3 g.m-3 for OPEN and 35.7 ± 2.6 g.m-3 for CLOSED at 50 mins 

(p <0.001). With the cessation of running (50-55 mins), in-shoe absolute humidity 

increased briefly by 3.1 g.m-3 for OPEN and 0.9 g.m-3 for CLOSED. During 

RECOVERY (50-80 mins), in-shoe absolute humidity decreased by 2.4 g.m-3 for 
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CLOSED only (p < 0.001). Given the lower temperature and the lower relative 

humidity in OPEN, the difference in absolute humidity is even stronger than that of 

relative humidity (p < 0.05).
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Figure 6 Mean (a) foot skin temperature, (b) in-shoe temperature, (c) in-shoe relative humidity and (d) in-shoe absolute humidity for two 

shoe conditions during the experimental protocol consisting of rest, run and recovery. ** significant difference from the previous protocol 

phase for both shoe conditions (p < 0.05). * significant difference from previous protocol phase for CLOSED (p < 0.001) † significant difference 

from OPEN (p < 0.05). 
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3.4 Foot perceptual responses  

3.4.1 Mean foot thermal sensation  

With REST, participants 𝑇𝑆  (Figure 7a) were neutral with no change over time. 

During RUN, participants 𝑇𝑆 increased from neutral to warm/hot (p < 0.01). During 

RECOVERY, 𝑇𝑆 decreased to slightly warm (p < 0.01). Mean foot 𝑇𝑆 in CLOSED 

were significantly warmer than in OPEN during most of the running phase (p < 0.05).   

3.4.2 Mean foot wetness and stickiness  

Participants experienced no 𝑊𝑃 (Figure 7b) or 𝑆𝑇 (Figure 7d) at REST. At the end of 

RUN, perceptions of 𝑊𝑃 and 𝑆𝑇 reached a mean of slightly wet and sticky. During 

RECOVERY, 𝑊𝑃 and 𝑆𝑇 decreased towards a mean of barely wet and slightly sticky 

respectively, for both OPEN and CLOSED (p < 0.05). Significant differences in 𝑊𝑃 

between OPEN and CLOSED during RUN were observed at time points 25 min (p = 

0.02), 30 min (p = 0.02) and 35 min (p = 0.01). Significant differences in 𝑆𝑇 between 

OPEN and CLOSED were observed from 20-45 mins and at 80 min (p < 0.05).  

3.4.3 Mean foot thermal comfort  

With REST, participants were comfortable (Figure 7c) with no change over time. 

Participants experienced moderate local discomfort throughout RUN regardless of 

SHOE (p < 0.01). With RECOVERY, 𝑇𝐶 returned towards comfortable (p < 0.01). 

The effect of SHOE on 𝑇𝐶 was significant at time points 30 min (p = 0.04) and 35 min 

(p = 0.03).   
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Figure 7  Mean (a) foot thermal sensation, (b) foot wetness perception, (c) foot stickiness and (d) foot thermal comfort for two shoe conditions 

across all stages of the experimental protocol consisting of rest, run and recovery. **significant difference from the previous protocol phase for both 

shoe conditions (p < 0.01). † significant from OPEN (p < 0.05). 
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3.5 Relation between foot thermal responses 

During RUN, positive relationships were observed between mean in-shoe relative 

humidity and mean in-shoe temperature (OPEN and CLOSED; r2 = 0.97, p < 0.001 

and r2 = 1.00) and between mean in-shoe absolute humidity and mean in-shoe 

temperature (OPEN and CLOSED; r2 = 0.99 and r2 =1.00, p < 0.001).  

With RECOVERY, a positive relationship was observed between in-shoe absolute 

humidity and mean in-shoe temperature (OPEN and CLOSED; r2 = 0.98 and r2 = 1.00, 

p < 0.001). The relationship between in-shoe relative humidity and in-shoe 

temperature however was weak and not significant (OPEN and CLOSED; r2 = 0.22 

and r2 = 0.28). 

3.6 Relation between foot perceptual responses and foot thermal responses 

During RUN, a positive relation was observed between mean foot 𝑇𝑆 and mean foot 

𝑇𝑠𝑘  (OPEN and CLOSED; r2 = 0.95 and r2 = 0.97, p < 0.001) and between mean foot 

𝑇𝑆 and mean in-shoe temperature (OPEN and CLOSED; r2 = 0.94 and r2 = 0.96, p < 

0.001). With RECOVERY, positive relationships were observed between mean foot 

𝑇𝑆 and mean foot 𝑇𝑠𝑘  (OPEN and CLOSED; r2 = 1.00 and r2 = 0.95, p < 0.001) and 

between mean foot 𝑇𝑆 and mean in-shoe temperature (OPEN and CLOSED; r2 = 0.99 

and r2 = 0.96, p < 0.001), although a hysteresis effect was evident after exercise ceased 

(Figure 8).  

 

Figure 8 Relationship between mean foot thermal sensation and (a) mean foot skin 

temperature and (b) mean in-shoe temperature for two shoe conditions during an 

experimental protocol consisting of rest, run and recovery. *indicates a significant 

relationship (p < 0.001). 
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During RUN, positive relationships were observed between mean foot 𝑊𝑃 and mean 

in-shoe relative humidity and mean in-shoe absolute humidity. The relationship was 

tighter however with in-shoe absolute humidity (Figure 9).  

During RECOVERY, no significant relation was observed between mean foot 𝑊𝑃 and 

mean in-shoe relative humidity (OPEN and CLOSED; r2 = 0.31, p = 0.247 and r2 = 

0.15, p = 0.450; Figure 9). However positive relations were observed between mean 

foot 𝑊𝑃 and mean in-shoe absolute humidity (OPEN and CLOSED; r2 = 0.90, p = 

0.004 and r2 = 0.94, p = 0.001). A positive relation was also observed between mean 

foot 𝑊𝑃 and mean foot 𝑇𝑠𝑘 with less of a hysteresis evident (OPEN and CLOSED; r2 

= 0.96 and r2 = 0.95, p < 0.001). 
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Figure 9 Relationship between mean foot wetness perception and (a) mean in-shoe relative humidity, (b) mean in-shoe absolute humidity and 

(c) mean foot skin temperature, for two shoe conditions during an experimental protocol consisting of rest, run and recovery. *indicates a 

significant relationship (p < 0.05). 
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Mean foot 𝑊𝑃 and mean foot 𝑆𝑇 (Figure 10) were strongly linked during RUN and 

RECOVERY.  

 

Figure 10 Relationship between mean foot wetness perception and mean foot 

stickiness for two shoe conditions during an experimental protocol consisting of rest, 

run and recovery. *indicates a significant relationship (p < 0.01). 

 

To define factors affecting mean foot 𝑇𝐶 when all stages of the experimental protocol 

(REST, RUN and RECOVERY) were combined, stepwise regression analysis was 

conducted. For this analysis, mean foot 𝑇𝑠𝑘, mean in-shoe temperature, mean in-shoe 

relative humidity, mean in-shoe absolute humidity and 𝑇̅𝑠𝑘 were input as independent 

variables, and mean foot 𝑇𝐶 as the dependent variable.  

Mean foot 𝑇𝐶 was described by mean foot 𝑇𝑠𝑘 giving an explained variance of 67% 

(Table 1, Model 1). The inclusion of mean in-shoe relative humidity made a valuable 

improvement to the model (r2 = 0.74, p < 0.001) (Table 1, Model 2). Further 

improvements were observed with the additional inclusion of mean in-shoe absolute 

humidity and in-shoe temperature. However, tolerance statistics indicated collinearity 

(<0.1) between independent variables, making that extended model questionable.  

Given that several subjective scores, when merged over shoe types, had a tighter 

relation with in-shoe absolute humidity rather than relative humidity, the same analysis 

was performed forcing in-shoe absolute humidity as second predictor. This, combined 

with mean foot 𝑇𝑠𝑘, explained less of the variance in mean foot 𝑇𝐶 (r2 = 0.70, p < 

0.001), (Table 1, Model 3) than the relative humidity model, mainly due to the high 

co-linearity of the two variables used.  
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Table 1 Stepwise regression analysis for mean foot thermal comfort when all phases of the experimental protocol (rest, run and 

recovery) are combined.  

  Unstandardised 

coefficient 

Standardised 

coefficient 

Collinearity 

statistic 

    

Perceptual Variables Predictor Variable B SD error β Tolerance t Sign. F R2 

MODEL 1 

Thermal Comfort 

(Constant) 

Foot skin temperature 

-5.488 

0.233 

0.992 

0.029 

 

0.816 

 

1.000 

-5.535 

7.990 

<0.001 

<0.001 

63.84 0.67 

MODEL 2 

Thermal Comfort 

(Constant)  

Foot skin temperature  

In-shoe relative humidity 

-7.050 

0.378 

-0.045 

1.039 

0.056 

0.015 

 

1.326 

-0.576 

 

0.218 

0.218 

-6.788 

6.744 

-2.931 

<0.001 

<0.001 

<0.001 

43.79 0.74 

MODEL 3 

Thermal Comfort 

(Constant) 

Foot skin temperature 

In-shoe absolute humidity  

-9.910 

0.432 

-0.083 

2.485 

0.107 

0.043 

 

1.514 

-0.723 

 

0.068 

0.068 

-3.987 

4.034 

-1.926 

<0.001 

<0.001 

0.063 

36.48 0.70 
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3.7 Local thermal responses by foot region  

Local foot thermal responses followed the general trend as shown for the mean foot 

skin temperature, mean in-shoe temperature, mean in-shoe relative humidity and mean 

in-shoe absolute humidity (Figure 6). Thus, only local foot in-shoe temperature and 

local foot in-shoe absolute humidity across foot regions are presented in Figure 11 for 

the OPEN and CLOSED shoe respectively.  

3.7.1 Mean local in-shoe temperature by foot region 

At the end of RUN and RECOVERY highest local in-shoe temperatures were observed 

at the heel and sole regions for both shoe conditions (p < 0.05) (Figure 11a and Figure 

11b). In comparison to local foot 𝑇𝑠𝑘, local in-shoe temperatures were lower at the 

dorsal and toe regions, but similar at the heel and sole regions reflecting low rates of 

heat transfer. 

At the end of RUN, in-shoe temperature was significantly greater for CLOSED 

compared to OPEN at the dorsal, heel and toe regions (p < 0.05). At the end of 

RECOVERY, in-shoe temperature was significantly greater for CLOSED compared 

to OPEN at the toe region (p = 0.05). 

3.7.2 Mean local in-shoe absolute humidity by foot region 

At the end of RUN, highest local in-shoe absolute humidity’s (Figure 11c and Figure 

11d). were observed at the heel and sole regions for both shoe conditions (p < 0.05). 

In-shoe absolute humidity was significantly greater for CLOSED at the dorsal and toe 

regions (p < 0.01). 

Local trends observed for changes in absolute humidity were similar to those of 

relative humidity across foot regions, excluding the recovery period. Local in-shoe 

relative humidity remained high (74-98%) at all foot regions for both shoe conditions. 

However, local in-shoe absolute humidity significantly decreased for OPEN at the heel 

(p = 0.01) but significantly increased at the toes (p = 0.01) (Figure 11c). For CLOSED, 

local in-shoe absolute humidity significantly decreased at the sole (p = 0.05), heel (p 

= 0.03) and toe (p < 0.001) regions (Figure 11d). 
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Figure 11 Mean (a) in-shoe temperature and (b) in-shoe absolute humidity across four foot regions (dorsal, toes, heel and sole) for two shoe 

conditions during the experimental protocol consisting of rest, run and recovery. * indicate significant difference from OPEN at the dorsal region. # 

indicates significant difference from OPEN at the toe region. † indicates significant difference from OPEN at the heel region. Significant differences (p < 

0.05) were also observed between foot regions for each shoe condition with the largest differences observed between the dorsal/toe and plantar regions.  
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3.8 Local perceptual responses by foot region 

3.8.1 Mean local thermal sensation by foot region 

At the end of RUN, local 𝑇𝑆 (Figure 12a) at the toes (hot) was significantly greater 

than local 𝑇𝑆  at the dorsal (warm) (p = 0.03) for OPEN. No other significant 

differences in local 𝑇𝑆  between foot regions were observed. Local  𝑇𝑆  was 

significantly greater at the end of the RUN between OPEN and CLOSED at the dorsal 

(p = 0.03) (Figure 12a and Figure 13a). 

3.8.2 Mean local wetness perception and mean local stickiness by foot region 

Local 𝑊𝑃 and 𝑆𝑇 (Figure 12b/d and Figure 13b/d) were significantly greater at the 

dorsal region at the end of REST compared to all other foot regions (p < 0.05). At the 

end of RUN, local 𝑊𝑃 and 𝑆𝑇 was greater at the toes compared to the dorsal (p < 0.05) 

for OPEN. Local 𝑊𝑃 was greater at the toes compared to the heel (p = 0.04) region 

for both shoe conditions. Despite local in-shoe relative humidity increasing with the 

cessation of running and remaining close to saturation and in-shoe absolute humidity 

remaining close to/higher than local absolute humidity values experienced during the 

final 20 minutes of the running phase, perceptions of local 𝑊𝑃 and 𝑆𝑇 decreased with 

RECOVERY returning towards a mean of barely wet and slightly sticky at all regions 

(p < 0.05).  

3.8.3 Mean local thermal comfort by foot region 

With REST, participants rated all foot regions as being comfortable for both shoe 

conditions. Participants experienced moderate discomfort with RUN for all foot 

regions although higher discomfort was only experienced for the CLOSED shoe 

between the toe and dorsal region (p = 0.03) (Figure 13c). 

At the end of RUN, greater thermal discomfort was experienced for the CLOSED shoe 

compared to OPEN at the toe and heel region (p < 0.05). With RECOVERY, a 

significant decrease in thermal discomfort was observed at the dorsal, toes and sole for 

both shoe conditions (p < 0.05) and at the heel for CLOSED (p = 0.01). 
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Figure 12 Mean (a) thermal sensation (b) wetness perception (c) thermal comfort and (d) stickiness across four foot regions (dorsal, toes, heel and 

sole) for the OPEN shoe condition during the experimental protocol consisting of rest, run and recovery.* indicates significant difference between the 

toe and dorsal region. # indicates significant difference between the toe and heel region.† indicates significant difference between the dorsal and all 

remaining foot regions. 
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Figure 13 Mean (a) thermal sensation (b) wetness perception (c) thermal comfort and (d) stickiness across four foot regions (dorsal, toes, heel and 

sole) for the CLOSED shoe condition during the experimental protocol consisting of rest, run and recovery.* indicates significant difference between 

the toe and dorsal region. # indicates significant difference between the toe and heel region.† indicates significant difference between the dorsal and all 

remaining foot regions. 
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4 Discussion  

The aim of this study was to objectively investigate the temporal and spatial 

characteristics of shoe microclimate in running footwear, to determine whether shoe 

microclimate is affected by shoe permeability and to determine whether changes to 

shoe microclimate are perceivable.  

The outcomes of this study demonstrate that the general temporal characteristics of 

shoe microclimate variables were similar for both shoes assessed. However, a clear 

impact of the shoe permeability on shoe microclimate was observed particularly during 

running. The closed shoe (less air and vapour permeable) resulted in higher 

temperatures and levels of moisture accumulation in comparison to the open shoe. 

During recovery, shoe microclimate readings of the two shoes converged towards 

lower temperature and humidity. This suggests that with the cessation of exercise, 

reduced foot movement causes a reduction in the pumping effect and shoe ventilation 

(Satsumoto et al. 2016). Consequently, heat loss from the shoe is reduced. As the effect 

of ventilation was greater for the open shoe, causing a difference between open and 

closed shoe during run, the cessation of the pumping effect during recovery brings the 

heat production and heat loss balance for both shoes closer together. Regarding 

perceptual responses, clear differences between the shoes were observed during 

running, with more favourable responses for open. With recovery, the convergence of 

shoe microclimate variables also resulted in a convergence of perceptual responses.  

4.1 Temporal characteristics of foot  𝑻𝒔𝒌 and shoe microclimate development  

During the initial 10 min of the experimental protocol, participants were required to 

rest. Temperature and moisture increased slightly but significantly during this period 

for both shoe conditions. With running, foot 𝑇𝑠𝑘 and in-shoe temperature increased 

rapidly and substantially during the first 20 mins before gradually stabilising. The level 

of moisture within the shoe also increased during the first 20 mins before gradually 

stabilising for the remaining 20 mins of the run. Consequently, significant increases in 

temperature and moisture were reported from the start to the end of running period.   

According to Shimazaki and Murata (2015) shoe microclimate variables increase 

based upon ‘(1) expelled heat generated inside the body and (2) heat transfer to/from 

the footwear surface’. With physical activity, metabolic heat generation increases. 

While little metabolic activity is present in the foot itself, the increased body heat load 
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results in changes to vasomotor tone causing increases in foot blood flow as the body 

attempts to balance heat gain with heat loss. Consequently, the increased delivery of 

warm blood to the foot causes elevations in foot  𝑇𝑠𝑘 reducing the body core to skin 

temperature gradient, impacting the temperature profile within footwear (Shimazaki 

and Murata 2015). Although heat loss can be substantially aided through the 

evaporation of sweat, containment of the foot within the shoe negatively impacts 

evaporative heat transfer. Therefore heat input into the foot tends to exceed heat loss 

from the foot causing a progressive increase in foot temperature, foot 𝑇𝑠𝑘 and shoe 

microclimate variables.  

During the recovery period of the experimental protocol, foot 𝑇𝑠𝑘 decreased, likely due 

to reduced blood flow to the foot or a reduction in blood temperature. While heat losses 

would become less with the cessation of movement, heat loss from the shoe was 

nevertheless greater than the reduced heat input to the foot resulting in a reduction of 

in-shoe temperature. With regard to changes to in-shoe relative humidity and in-shoe 

absolute humidity values during the recovery phase of the experimental protocol, an 

inverse effect was observed. In-shoe relative humidity increased during recovery 

compared to no change/ a decrease in absolute humidity. The decrease in absolute 

humidity indicates that moisture losses from the shoe are now greater than the moisture 

generated by the foot. The fact that in-shoe relative humidity increases is therefore 

solely caused by the decreasing temperature lowering the saturated water vapour 

pressure. In-shoe relative humidity therefore increases despite the decreasing water 

content. To our knowledge, no study has presented shoe microclimate in relation to 

changes to absolute humidity.  

4.2 Spatial characteristics of foot  𝑻𝒔𝒌 and shoe microclimate 

The heel and sole foot regions were highlighted as being areas of high temperature and 

high moisture with running thus suggesting low rates of heat and moisture transfer 

from the foot at these regions. Irzmanska et al. (2013) similarly reported a higher in-

shoe temperature at the plantar region (37°C) compared to the dorsal region (36°C) 

following 50-60 minutes of walking in protective footwear. It has been suggested that 

repeated compression loads on these areas during walking and running produces heat 

from the conversion of mechanical energy (Shimazaki and Murata 2015). The 

absorption of contact forces on the plantar foot regions is therefore suggested to result 

in temperature elevations although there is no direct evidence for this. More 
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importantly, although foot sweat rates are greatest from the dorsal surface compared 

to the plantar surface (~70% and ~30% respectively) (Taylor et al. 2006; Smith et al. 

2013), highly insulative materials used within the mid-sole section of the shoe reduce 

dry and evaporative heat loss from the plantar foot surface to the environment leaving 

only heat loss by ventilation. Assuming a similar internal heat input to all foot regions, 

this insulative effect could explain why the heel and sole were areas of high 

temperature and moisture accumulation.   

4.3 Influence of shoe permeability on foot  𝑻𝒔𝒌 and shoe microclimate 

In the current study, shoe microclimate was shown to be significantly affected by shoe 

permeability. This was most evident during the running and recovery stages of the 

experimental protocol as the open shoe consistently had lower temperature and 

moisture values in comparison with the closed shoe. These differences were also more 

pronounced at the toe region where differences in shoe construction were most 

apparent. In running shoes, the microclimate is therefore dependent upon the level of 

permeability provided as earlier described for protective and hiking footwear (Arezes 

et al. 2013; Irzmańska 2015). 

Foot 𝑇𝑠𝑘 is usually higher than ambient and footwear surface temperature resulting in 

heat transfer through convective and radiative pathways. It would be expected that 

during running, convective heat transfer would be high due to increased air flow 

around the shoe in addition to movement of the foot within the shoe causing a pumping 

action forcing air into the environment (Havenith et al. 1990; Satsumoto et al. 2016). 

The mesh upper construction of the open shoe allowed effective convective heat 

transfer during running resulting in lower foot 𝑇𝑠𝑘 and in-shoe temperature elevations. 

Indeed, a relationship has been reported between temperature elevations and 

ventilation suggesting lower temperature elevations with higher ventilation rates 

(Shimazaki et al. 2015). The effect of convective heat transfer is also visible when 

transitioning from running to recovery. With the cessation of running, air flow around 

the foot reduces. Consequently in-shoe temperature slightly increases initially in the 

open shoe indicating a reduction in convective heat transfer from the shoe to the 

environment.  

With increased heat delivery to the foot through vasomotor adjustments, it could also 

be expected that local sweat rates would increase. Although there were no significant 
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differences in sock sweat absorption between shoe conditions, in-shoe relative 

humidity and in-shoe absolute humidity values were greater for the closed shoe. It is 

suggested that increased ventilation can be effective in limiting an increase in skin 

moisture concentration (Ueda et al. 2006; Satsumoto et al. 2016). As a result, the mesh 

upper construction of the open shoe resulted in greater ventilation and therefore a 

reduction in the amount of moisture accumulated within the shoe.  

4.4 Perceptions of shoe microclimate  

Changes to shoe microclimate are suggested to cause strong sensations of discomfort. 

However, relatively few studies have assessed perceptual parameters in footwear 

(Barkley et al. 2011; Arezes et al. 2013; Irzmanska et al. 2013). In the current study, 

higher 𝑇𝑆, 𝑊𝑃, and 𝑆𝑇 were reported for the closed shoe in comparison to the open 

shoe during running and recovery. This is in line with the observed shoe microclimate 

data being greater for the closed shoe. Consequently, the closed shoe was perceived as 

more uncomfortable during running. This has applied importance indicating a need for 

shoes which support heat dissipation and moisture removal during physical activity 

performed in neutral to warm conditions in order to improve perceptions of local 𝑇𝐶.    

It has long been acknowledged that during exposure to warm or hot environments, the 

level of skin wetness drives thermal discomfort (Gagge et al. 1967). However, it is 

unclear as to whether foot discomfort is attributed to elevations in temperature or to 

moisture accumulation within footwear (Arezes et al. 2013; Irzmanska et al. 2013).  

Temperature elevations were well perceived in the current study as strong correlations 

between foot 𝑇𝑠𝑘 and 𝑇𝑆 and in-shoe temperature and 𝑇𝑆 were observed during run 

and recovery. However, the observation of a hysteresis effect during recovery indicates 

that the perception of temperature at the foot, is not solely determined by changes to 

foot  𝑇𝑠𝑘 , in-shoe temperature or in-shoe humidity. The reduction in 𝑇̅𝑠𝑘  during 

recovery in addition to the decrease in foot 𝑇𝑠𝑘 may therefore also influence foot 𝑇𝑆.   

With regard to moisture accumulation and perceptions of wetness, strong relationships 

were observed during run. However, during recovery perceptions of wetness reduced 

from a mean of slightly wet to a mean of barely wet for both shoe conditions, despite 

in-shoe relative and absolute humidity remaining higher/close to values experienced 

during the final 20 minutes of the running phase. Thus indicating a more complex 

interaction of relevant parameters.  
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Skin cooling contributes significantly to the perception of wetness. Filingeri et al. 

(2013) measured drops in forearm skin temperature ranging between 1.4-4.1°C with a 

cooling rate of 0.14-0.41°C/s with the application of cold-dry stimulus to the forearm 

evoking a clear wetness perception. In the current study however, foot 𝑇𝑠𝑘 increased 

during the run, nevertheless resulting in greater perceptions of wetness for both shoe 

conditions. Participants were therefore able to sense skin wetness although they did 

not experience any cold or cooling sensations. This is contrary to previous reports that 

during static application of a warm-wet stimulus (4°C and 8°C above local skin 

temperature) no local wetness was perceived as no skin cooling and thus no cold 

sensations were experienced (Filingeri et al. 2015b). Furthermore, when skin cooling 

was observed during recovery, perceptions of wetness did not increase. It is however 

important to consider that foot  𝑇𝑠𝑘  in the current study ranged between 35-37°C. 

Therefore despite a 2°C decrease in foot 𝑇𝑠𝑘 during recovery, this probably would not 

have activated peripheral cold sensitive thermoreceptors which operate within the 

range of 20-30°C (Guyton 1991; Romanovsky 2006). Indeed, Filingeri et al. (2013)  

was able to elicit this response as the resting skin temperature of the forearm before 

the application of the cold-dry stimulus was ~30°C.  

It is important to consider however that investigations so far have mainly focused on 

very local skin wetness perceptions evoked by static or dynamic applications of 

thermal and pre-wetted stimuli (Filingeri et al. 2013, 2015b; Raccuglia et al. 2017).  

Perceptions of wetness evoked during conditions of sweat-induced skin wetness rather 

than externally applied wetness may be dependent more on mechanosensory inputs 

such as stickiness rather than thermal inputs (Raccuglia et al. 2018), especially where 

the body part is free to move over the textile surface as in the case of the foot-sock 

interaction.   

Bergmann Tiest et al. (2012)  reported that dynamic as opposed to static interactions 

with wet materials, significantly decreased wetness discrimination thresholds. 

Dynamic exploration of wet materials therefore increases an individual’s cutaneous 

sensitivity to wetness. Assessments under conditions of sweat-induced wetness while 

wearing clothing (tight vs loose fitting garment) also indicated that if no skin cooling 

occurs, restricting the repeated adhesion and movement of clothing on wet skin results 

in a reduction in the overall level of wetness perceived (Filingeri et al. 2015a).  
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Due to the complex interactions between the foot, sock and shoe, mechanosensory 

stimuli could be particularly high. This is reflected in the current study as participants 

sensed an increase in stickiness during running with this being integrated as wetness. 

Thus, it could be expected that during recovery, perceptions of wetness decrease 

despite in-shoe relative/absolute humidity remaining high, due to a reduced magnitude 

of stimulation of cutaneous mechanoreceptors generated between the foot, sock and 

shoe. Although participants are often observed moving their feet around in their shoes 

when asked for wetness perceptions during rest/recovery, this may not be sufficient to 

increase cutaneous sensitivity to wetness. The results from this study highlight the 

importance of tactile cues/dynamic exploration in attempting to perceive wetness 

within footwear.    

As to whether foot discomfort is attributed to elevations in temperature or to moisture 

accumulation within footwear, the findings of the present study suggest that when all 

phases of the experimental protocol are considered, 67% of the variance in local 𝑇𝐶can 

be attributed to foot 𝑇𝑠𝑘. However, as discussed, positive relationships were observed 

between shoe microclimate variables and also between shoe microclimate variables 

and perceptual responses. High collinearity between variables therefore suggests that 

it may be difficult to discriminate between temperature and moisture in natural wear 

tests, as opposed to externally applied thermal/pre-wetted stimuli. Changes to local 𝑇𝐶 

must therefore be considered as a function of both temperature and moisture 

accumulation within the shoe.  
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5 Conclusion  

The outcomes of this study have both fundamental and applied importance. On the 

applied side, it has been demonstrated that the temporal characteristics of shoe 

microclimate development were similar for both shoes assessed. Clear differences in 

shoe microclimate were however evident during running due to the differences in shoe 

permeability, but these differences converge once exercise stops. Furthermore the heel 

and sole foot regions were identified as areas of high temperature and high moisture 

accumulation. On the fundamental side, results from this study demonstrate that 

changes to shoe microclimate over time and between shoe conditions are perceivable 

by the wearer.  

The results from this study are important for footwear design as shoe designers and 

manufacturers can work towards developing shoes which better support heat 

dissipation and moisture removal. Shoes which better support heat dissipation and 

moisture removal may reduce the growth of microorganisms and thereby reduce the 

risk of odour development and poor foot health (i.e. tinea pedis and blister formation). 

This could be achieved by increasing moisture loss through changing shoe materials 

or increasing ventilation by making shoes more permeable. Ventilation openings in the 

sole and heel regions could be particularly advantageous.  
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