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1.  Introduction 

 
Many of the PPC garments studied in this thesis are heavy, bulky and made 

up of multiple layers and stiff fabric as evident from the previous chapters. 

However it has proved hard to isolate completely the effect of a single 

garment property on the overall increased energy cost when wearing the 

actual PPC. An alternative approach to studying the individual contributors 

to metabolic effects of PPC is by studying them combined. 

 

In this chapter, data on a number of PPC properties will be collected and 

analysed using Pearson’s r and multiple regression, to determine the 

relative importance of these properties on recorded metabolic rate 

increases. This technique has been used to study other complex 

interactions before (Havenith et al. 1995). For this purpose, relevant 

predictive parameters of the clothing tested in Chapter 3 will be determined 

(weight distribution, insulation, bulk, stiffness) and the previously observed 

increases in metabolic rate analysed in relation to these predictors.  

 

Attempts will be made to use simple and non-destructive methods to 

determine the parameters, in order that tests could be repeated by others 

and would be usable in the workplace.   
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2.  Parameters 

 

2.1  Clothing weight 

 

2.1.1  Introduction 

 

The issue of energy expenditure in relation to weight carried has been 

reviewed and studied in Chapter 4. The weights of the protective garments 

and other clothing worn have also been documented in Chapter 3. However 

a more detailed analysis was completed including a comprehensive 

breakdown of how the clothing weight is distributed across the garment, 

given the relevance of weight distribution described in Chapter 4, and this is 

now presented. The details of the methodology used can be found in  

Appendix 4. 

 

2.1.2  Results 

 

The total garment weight is plotted in Figure 2.1 and garment section 

weights given in Table 2.1. There is a range in total garment weight from the 

heaviest, the Grey fire (B) ensemble at 4.65 kg to the ArmyH2O (L) 

ensemble at 1.14 kg, the lightest. The breakdown of the weights across the 

sections of the garments as described in Table 2.1 is shown graphically in 

Figure 2.2.  

 

2.1.3  Discussion 

 

There is a degree of variance in the proportions of weight seen in the 

different sections of the garments, as shown in Figure 2.2. Much of this 

variance can be explained by the design and / or function of the garment. 

The ArmyVEST (L) comprises of a heavy protective body armour 

(accounting for 88.3 % of the total clothing weight), which covers the torso 

only, not the arms. The Welding (G) ensemble is made up of an apron which 

fastens around the waist with velcro straps around the legs, and gaiters 
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worn over the shoes and ankles, up to the knee, hence the greater 

percentage of weight supported around the crotch. The Chainsaw (J) 

garment is designed to prevent injuries to the limbs from the chainsaw 

blade, so the arms and legs of the garment contain an inner protective 

material. Figure 2.2 shows that almost 60 % of the total clothing weight is in 

the legs, this is higher than in any other garment. However the main body of 

the jacket (torso), does not contain any of the protective fibres and is 

therefore very light, at just 24 % of the total clothing weight, much lower than 

all of the other garments. 

Figure 2.1.  Protective garments and their total weight (ChemBio not available). 
 
 
The 2 firefighter ensembles, Grey fire (B) and Gold fire (D), had the highest 

total clothing weight. The percentage of this weight in the lower arms was 

also high compared to the other garments, being 10.5 and 9.2 % 

respectively. This has important implications for the energy cost of working 

in these garments as Study 2 (Chapter 4) showed that weight carried at the 

wrists can be up to 2.7 times more expensive than when it is positionned 

around the body core (torso). The Workwear (insulated) (A) garment had the 

highest percentage of total clothing weight in the lower arms at 14 %. For 

this garment, the total percentage of the clothing weight in the upper body 

was also the highest of all the garments, over 60 %. This finding can be 
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explained by the fact that the insulation in this garment is provided by a 

fleece layer that is zipped into the outer jacket.    

 
Table 2.1.  Total and garment section weights excluding any footwear (ChemBio not 
available). 
 

weight in kg 
total 

weight 
legs 1 legs 2 legs 3

total 
legs 

arms 1
arms 

2 
arms 

3 
total 
arms

CLOTHING   crotch
upper 
legs 

lower 
legs 

  torso 
upper 
arms 

lower 
arms 

  

A Workwear (insulated) 3.671 0.714 0.200 0.420 1.334 1.595 0.228 0.514 2.337
B Grey fire 4.652 1.014 0.460 0.632 2.106 1.706 0.410 0.430 2.546
C Workwear 2.162 0.513 0.242 0.244 0.999 0.919 0.100 0.144 1.163
D Gold fire 3.920 0.706 0.398 0.546 1.650 1.632 0.228 0.410 2.270
E Chemical 1.287 0.249 0.146 0.200 0.595 0.506 0.110 0.076 0.692
F ArmyNBC 1.443 0.255 0.150 0.212 0.617 0.622 0.116 0.088 0.826
G Welding 3.264 0.238 0.360 0.848 1.446 1.422 0.180 0.216 1.818
H Coldsuit black   2.510 0.248 0.290 0.476 1.014 1.136 0.124 0.236 1.496
I Coldsuit green 2.540 0.532 0.364 0.328 1.224 0.848 0.320 0.148 1.316
J Chainsaw 3.310 0.584 0.626 0.740 1.950 0.796 0.260 0.304 1.360
K ChemBio     --- --- --- --- --- --- --- --- --- 
L ArmyVEST 2.946 0.261 0.100 0.130 0.491 2.455  ---  --- 2.455
M ArmyH2O 1.138 0.261 0.100 0.130 0.491 0.487 0.080 0.080 0.647
N Mountain rescue 1.820 0.258 0.134 0.344 0.736 0.852 0.120 0.112 1.084
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Figure 2.2.  Garment section weights as a % of total clothing weight for all protective garments (ChemBio not available).
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2.2  Clothing insulation 

 

2.2.1  Introduction 

 

Clothing impedes the passage of sensible and insensible heat, both 

because of the insulation provided by the fabrics themselves and because 

of the layers of air trapped between the skin and clothing, and between the 

various clothing layers (Kerslake 1972). Insulation requires thickness of 

clothing (Havenith 1999), therefore insulation may be a good parameter to 

define clothing bulkiness. 

 

Intrinsic (or basic) clothing insulation is a property of the clothing itself and 

represents the resistance to heat transfer between the skin and the clothing 

surface. The rate of heat transfer through the clothing is by conduction, 

which depends on surface area (m2), temperature gradient (oC) between the 

skin and clothing surface and the thermal conductivity (W m2 / oC) of the 

clothing. Intrinsic clothing insulation is the reciprocal of clothing conductivity 

with units of m2 oC / W (Parsons 2003).  

 

Gagge el al. (1941) first proposed the Clo unit, to replace the rather physical 

unit of m2 oC / W with something easily visualised and related to clothing 

worn on the human body. One Clo was said to be the thermal insulation 

required to keep a sedentary person comfortable at 21oC and is said to have 

an average value of 0.155 m2 oC / W, representative of the insulation of a 

typical business suit (Parsons 2003). 

 

The thermal insulation of clothing materials can be measured on 

standardised equipment (heated flat plates and cylinders) by placing a 

sample of the material and measuring heat flows or temperature, to 

calculate thermal insulation (Parsons 2003). Dry thermal insulation values 

have been measured for many types of clothing using thermal manikins and 

tables have been created, for example those found in ISO 9920 (ISO 2003). 
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However these tables are not exhaustive, especially in regard of specialist 

garments, such as PPC. 

 

The insulation of a specific clothing ensemble can be determined in several 

ways with a varying degree of accuracy and effort (Lotens and Havenith 

1991). 

a) Measurement while the clothing is worn by subjects. 

This method is laborious and requires sophisticated equipment but 

gives realistic data.  

b) Measurement on a thermal manikin. 

This method has better reproducibility, but requires an expensive 

manikin.  

c) Regression by means of tables of previously determined insulation 

values. 

The tables are based on manikin measurements. 

d) Regression on the physical characteristics of the clothing. 

Best results are obtained with regression on a covered skin area and 

 thickness of the items of clothing. 

e) Calculation of heat and mass transfer when the geometry of the 

clothing is known 

 

The continuing and growing interest in manikins is based on the fact that 

they:  

- represent a realistic and objective method for assessment of clothing 

thermal functions, 

-  comprise a quick, accurate and reproducible method for measurement of 

thermal insulation,  

- are cost effective instruments for comparative measurements and for 

product development;  

- provide input values for thermal modelling and prediction of safe and 

comfortable working conditions (Holmer and Nilsson 1995).  
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The most common tool used to measure the thermal insulation of a garment 

or an ensemble, and the method employed here, is the thermal manikin. 

Thermal manikins are heated to represent the human body and the power 

required to maintain that temperature is used to estimate the heat transfer 

between a person and the environment. 

 

2.2.2  Results 

 

The results of the measurements are given in Table 2.2, the ChemBio suit 

was not available. See Appendix 5 for details of the methodology employed. 

 
Table 2.2. Insulation values for all garments based on 2 separate measurements (1,2). 
In the calculations for the selected zones values, the data from the head, hands and 
feet zones were excluded.  
 
 Units m2 oC / W All zones     Selected zones   
  1 2 ave 1 2 ave 
A Workwear (insulated) 0.287 0.305 0.296 0.424 0.432 0.428 
B Grey fire 0.336 0.331 0.334 0.516 0.493 0.505 
C Workwear 0.265 0.278 0.272 0.364 0.383 0.374 
D Gold fire 0.337 0.350 0.344 0.528 0.542 0.535 
E Chemical  0.215 0.210 0.213 0.264 0.262 0.263 
F ArmyNBC 0.244 0.252 0.248 0.327 0.331 0.329 
G Welding 0.210 0.202 0.206 0.252 0.240 0.246 
H Coldsuit black 0.314 0.313 0.314 0.472 0.470 0.471 
I Coldsuit green 0.369 0.358 0.364 0.658 0.650 0.654 
J Chainsaw  0.276 0.274 0.275 0.389 0.393 0.391 
M Army H20 0.229 0.233 0.231 0.283 0.286 0.285 
N Mountain rescue 0.257 0.253 0.255 0.339 0.336 0.338 
Control tracksuit 0.200 0.198 0.199 0.244 0.241 0.243 
 

2.2.3  Discussion 

 

The garments with the highest insulation values were the two coldstore 

garments (Coldsuit black H and Coldsuit green I) and the two firefighter 

garments (Grey fire B and Gold fire D). These results fit with the nature of 

the working environment in which these garments would be worn and their 

main function to insulate the wearer from extreme cold and heat 

respectively. 
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2.3  Clothing bulk  

 

2.3.1  Introduction 

 
As has already been illustrated and discussed in earlier chapters, PPC can 

increase measurably the metabolic (energy) cost of work, with the added 

weight and restriction of movement caused by the PPC suggested to 

contribute to the increases recorded. The resultant energy cost of wearing 

the PPC is therefore dependent on various aspects of the clothing, such as 

its weight, number of layers and bulk. Some PPC garments, particularly 

those worn in cold environments can be very bulky, which can restrict 

movement especially at the joints. As with the issues of clothing weight and 

friction between layers, clothing bulk has been hypothesised by many 

authors to be a contributor to the increased metabolic cost of protective 

garments but has not been fully studied. The literature on this area has been 

discussed in detail in Chapter 7. 

 

In summary, the bulkiness of clothing, often expressed as the number of 

clothing layers, has been shown to influence energy expenditure. Lotens 

(1982) summarized this into a ‘Rule of thumb’ of a 4 % increase in energy 

cost for each clothing layer, at a marching speed and a 3 % increase per 

layer at a slower pace. But he points out that the actual source of this effect 

is not well understood, with friction between layers and hobbling gait both 

possible explanations. He concludes, “it seems a logical, although yet 

unproven hypothesis that motion restriction does raise energy cost 

considerably” (Lotens 1982). Bulk is a difficult issue to quantify. Lotens 

(1982) also described military tests looking at performance decrement 

wearing different types of clothing but concluded that the bulkiness of the 

clothing could not be analysed separately as it was confounded with motion 

restriction and other impeding effects.  

 

As mentioned in Section 2.2, insulation may be a representative parameter 

of bulkiness (Havenith 1999), but often PPC is made of special materials 
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incorporated for durability and protection. These may be relatively heavy for 

the insulation they provide, therefore it is considered relevant to add other 

parameters to try and define bulkiness, as well as the insulation method and 

results already described. 

 

Clothing bulk was measured using 3 different methods, details of 

methodology are included in Appendix 6. In summary;  

 The fit method considered the bulk by measuring the extra material at 

the three sites by pinching the fabric tight and measuring the excess. 

 The circumference method measured the extra thickness of the garment 

by measuring the circumference of the arm, torso and leg with and 

without clothing. 

 The thickness method measured the depth of the clothing material whilst 

the garment was laid on the floor. 

 

2.3.2  Fit bulk results 

 
The results of the fit bulk measurements for the three sites measured, arm, 

torso, leg and overall are shown in Table 2.3 and Figure 2.3. 

 

Table 2.3. Average values for clothing FIT BULK measured on 12 garments at 3 sites 
(the coverage on the legs for the welding garment was a split apron that was 
fastened around the legs with velcro, therefore as it did not reach around the back of 
the leg it was not possible to estimate the bulk).  
 

protective garments 
arm bulk 

(cm) 
  

torso 
bulk (cm)

  
leg bulk 

(cm) 
  

overall 
bulk (cm) 

  ave SD ave SD ave SD   
A Workwear (insulated) 8.0 2.1 10.1 1.7 10.5 3.5 28.6 
B Grey fire 9.3 1.4 10.4 1.8 9.6 2.6 29.3 
C Workwear 9.8 1.8 8.8 1.5 6.7 2.3 25.2 
D Gold fire 8.5 1.4 13.8 1.9 10.3 2.3 32.6 
E Chemical 8.4 1.6 8.7 2.6 8.1 1.6 25.1 
F ArmyNBC 8.4 2.0 7.4 1.2 7.6 2.7 23.4 
G Welding 6.4 1.6 7.7 1.2 --- --- 14.1 
H Coldsuit black 9.8 2.3 12.1 2.5 9.8 2.6 31.6 
I Coldsuit green 8.8 1.7 9.5 1.7 5.5 3.2 23.8 
J Chainsaw 8.8 1.7 12.3 2.5 6.6 1.4 27.6 
M ArmyH2O 10.2 1.6 10.7 1.6 8.1 1.2 28.9 
N Mountain rescue 9.4 1.3 11.8 1.6 5.4 4.0 26.5 
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Figure 2.3 Bar chart showing values for arm, torso, leg and overall clothing FIT BULK (measured in cms) for 12 protective garments (the coverage 
on the legs for the welding garment was made up a split apron that was fastened around the legs with velcro therefore as it did not reach around 
the back of the leg it was not possible to estimate the bulk). 
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The values for the bulk measurement of the upper arm range from the least 

bulky Welding (G) suit at 6.4 cm to the most bulky ArmyH2O (M) suit at 10.2 

cm with an average arm bulk for the 12 suits of 8.8+1.7 cm. The range of 

values is quite narrow and the bulk of most suits falls between 8 and 10 cm. 

For the torso bulk measurements, the range in values seen is from 7.4 cm 

for the ArmyNBC (F) suit to 13.8 cm for the Gold fire (D) suit with an 

average of 10.3+1.8 cm for the 12 suits. There is a greater range in the 

values for the torso bulk than for the upper arm. In terms of the leg bulk, 

there is a large degree of variability between the protective garments, the 

Workwear (insulated) (A) garment had the highest bulk of 10.5 cm, with the 

lowest recorded in the Mountain rescue (N) suit, 5.4 cm. The Welding (G) 

suit consisted of an apron rather than actual trousers so leg bulk was not 

measured. The average value for the suits is 8.0+2.5 cm but the large 

variability is reflected in the higher standard deviation than at the other sites 

measured. 

 

An overall average clothing bulk has been calculated from the sum of the 

measurements at the arm, torso and leg. The highest overall bulk is seen in 

the Coldsuit black (H) and Gold fire (D) suits with values above 30 cms. 

Then there is a group of 7 suits with a fairly similar average between 25 and 

29 cm. The Coldsuit green (I) and ArmyNBC (F) were both lower at 

approximately 23 cm with a much lower result for the Welding (G) suit due to 

no measurement for the legs. 

 

2.3.3  Circumference bulk results 

 

The results of the circumference bulk measurements for the three sites 

measured, arm, torso, leg and overall are shown in Table 2.4 and Figure 

2.4. The values for arm bulk, range from 9.3cm to 21.5 cm. and fall into two 

distinct subgroups, garments with a high arm bulk of 18 – 21.5 cm and 

garments with a low arm bulk of 9.3 – 12 cm. The garments falling into the 

high bulk group are Coldsuit black (H), Coldsuit green (I), Chainsaw (J), 

Workwear (insulated) (A), Gold fire (D), Grey fire (B) and Workwear (C). 
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With the Mountain rescue (N), Chemical (E), Welding (G), ArmyH2O (M) 

and ArmyNBC (F) garments comprising the low bulk group.  

 

The range in values recorded for the torso bulk is greater than for the arm 

bulk, with the highest values in the Grey fire (B), Gold fire (D) and Workwear 

(C) garments of 27.1, 26.9 and 26.9 cm respectively. The lowest values are 

again seen in the Mountain rescue (N) and ArmyH2O (M) garments, at 8.4 

and 8.8 cm respectively. 

 

The bulk measurements in the leg, range from 1.4 to 16.8 cm. With a leg 

bulk of 1.4 cm, the Welding (G) garment, and at 1.9 cm the Mountain rescue 

(N) garment had the lowest values. The highest values were seen in the two 

coldstore garments, Coldsuit green (I) (14.4 cm) and Coldsuit black (H) 

(16.8 cm) with the Chainsaw (J) and Grey fire (B) garments also in this 

range. The results are lower than those recorded for the arm and torso 

regions of the protective garments. 

 

Table 2.4. Average values for clothing CIRCUMFERENCE BULK measured on 12 
garments at 3 sites.  
 

protective garments 
arm bulk 

(cm) 
  

torso 
bulk (cm)

  
leg bulk 

(cm) 
  

overall 
bulk (cm)

  ave SD ave SD ave SD  
A Workwear (insulated) 18 4.0 24.3 7.2 8.9 4.1 51.2 
B Grey fire 21.4 4.4 27.1 7 15.3 4 63.8 
C Workwear 18.5 4.0 26.9 2.4 7.1 1.9 52.5 
D Gold fire 19.5 3.2 26.9 7 11.9 2.5 58.3 
E Chemical 10.5 3.4 14.8 7.6 5.9 4.7 31.2 
F ArmyNBC 12 12.0 16 7 7.3 3.6 35.3 
G Welding 10.3 4.0 22.2 10.5 1.4 1.1 33.9 
H Coldsuit black 21.5 3.5 23.9 4.8 16.8 3.6 62.2 
I Coldsuit green 20 3.7 23.3 5.7 14.4 3.4 57.7 
J Chainsaw 18.1 4.3 13.3 3.7 15.4 3.7 46.8 
M ArmyH2O 9.6 4.0 8.8 6.8 3.5 2.4 21.9 
N Mountain rescue 9.3 3.6 8.4 3 1.9 1.9 19.6 
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Figure 2.4. Bar chart showing values for arm, torso, leg and overall clothing CIRCUMFERENCE BULK (measured in cms) for 12 protective 
garments. 
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When the results of the arm, torso and leg bulk measurements are summed 

together to give an overall estimate of bulk, the two fire garments and two 

coldstore garments rank the highest at 63.8 cm (Grey fire B), 62.2 cm 

(Coldsuit black H), 58.3 cm (Gold fire D) and 57.7 cm (Coldsuit green I). The 

overall bulk of the Chainsaw (J), Workwear (C) and Workwear (insulated) 

(A) garments are very similar, in the range of 46.8 to 52.5 cm. The lowest 

overall bulk values are seen in the Mountain rescue (N) and ArmyH2O (M) 

garments of 19.6 and 21.9 cm respectively.  

 

2.3.4  Thickness bulk results 

 

The results from the thickness bulk method are given in Table 2.5 and 

Figure 2.5. Photographs and details of the method are given in Appendix 6.  

 

Table 2.5. Average values for clothing THICKNESS BULK measured on 12 garments. 
 

protective garments 
arm bulk 

(cm) 
torso 

bulk (cm)
leg bulk 

(cm) 
overall 

bulk (cm)

A Workwear (insulated) 4.3 5 4.6 13.9 
B Grey fire 5 5 5 15 
C Workwear 1.3 2.6 1.2 5.1 
D Gold fire 2.5 4.6 4.8 11.9 
E Chemical 1.4 1.7 2.4 5.5 
F ArmyNBC 2 2.8 2.4 7.2 
G Welding 3.5 4.8 0.5 8.8 
H Coldsuit black 5.5 5.4 7.6 18.5 
I Coldsuit green 5.5 6.2 5.6 17.3 
J Chainsaw 3.1 4.3 4.4 11.8 
M ArmyH2O 1.8 2 1.2 5 
N Mountain rescue 1.4 3.2 2 6.6 
 
 
Figure 2.5 highlights the overall high bulk of the two Coldsuits (black H, 

green I), which along with the Grey fire (B) suit has consistently high bulk 

across all sites measured. In contrast, the Chemical (E), Workwear (C) and 

ArmyH2O (M) garments had low bulk values, and again these were across 

all sites.  
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Figure 2.5. Bar chart showing values for arm, torso, leg and overall clothing THICKNESS BULK (measured in cms) for 12 protective garments. 
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2.3.5  Comparison of bulk results 

 
Three methods were used to assess clothing bulk, the details of which are 

provided in Appendix 6. Pearson correlations were carried out between all 

methods to assess the relationship between the bulk types, the results are 

given in Table 2.6. 

 

Table 2.6. Results table for Pearson correlations between 3 bulk methods used (fit, 
circumference and thickness). Significant results in bold. 
 

Bulk methods compared  Pearson correlation Sig (2-tailed) 
arm fit v arm circumference  0.224 0.483 
arm fit v arm thickness 0.110 0.734 
arm circumference v arm thickness 0.684 0.014 
torso fit v torso circumference 0.015 0.964 
torso fit v torso thickness 0.277 0.383 
torso circumference v torso thickness 0.595 0.041 
leg fit v leg circumference 0.306 0.360 
leg fit v leg thickness 0.425 0.192 
leg circumference v leg thickness 0.901 0.000 
overall fit v overall circumference 0.389 0.211 
overall fit v overall thickness 0.325 0.302 
overall circumference v overall thickness 0.789 0.002 
 

There were significant (p<0.05) correlations between the circumference and 

thickness methods at all sites. As summarised earlier; 

 The thickness method measured the depth of the clothing material whilst 

the garment was laid on the floor.  

 The circumference method measured the extra thickness of the garment 

by measuring the circumference of the arm, torso and leg with and 

without clothing. 

 The fit method considered the bulk by measuring the extra material at 

the three sites by pinching the fabric tight and measuring the excess. 

 

Therefore the circumference and thickness methods were essentially 

measuring the extra thickness (bulk) of the material when worn and unworn 

respectively. The positive correlations confirm the size of the clothing bulk 

was not considerably altered when worn. In contrast the fit method would 

have been affected by the size of garment and the wearer, and the lack of 
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any significant correlations with the other two methods show that it is 

measuring a different aspect of bulk.  

 

2.3.6  Discussion 

 

The garments measured showed a range in bulk values, across the three 

methods used. In each method measurements were made at the same 

three sites in order to assess the arm, torso and leg bulk. The highest bulk 

values were seen at the torso compared to the other sites. When the overall 

values were calculated for each suit (based on the sum of the 3 sites 

measured) the two firefighters suits (Grey fire B, Gold fire D) and two 

coldstore suits (Coldsuit black H, Coldsuit green I) consistently came out 

with the highest bulk. The insulation for these suits is very important to their 

primary function, protection from the heat and cold respectively. In contrast 

some of the suits with lower overall bulk values included the Chemical (E), 

Workwear (C) and ArmyNBC (F) ensembles. In most instances these 

garments would be worn over the top of other layers as the outer protective 

layer when additional protection was required against chemical splash, 

outdoor weather and a nuclear, biological and chemical threat respectively. 

It is therefore important for their function that the garments do not add too 

much additional bulk to the overall clothing ensemble.  

 

If the bulk of the garment impedes the freedom of movement compared to a 

lightweight tracksuit, used as the control condition in this study, the extra 

effort required to complete the tasks which were all performed at set speeds 

(controlled by speed on the treadmill and timing with a metronome for the 

stepping and obstacle course) would add to the energy cost of the activity. 

As described in the previous research this has been termed a ‘hobbling’ 

effect by many including Teitlebaum and Goldman (1972), Duggan (1988) 

and Patton et al. (1995). 

 

The fit of the garment will also have an influence on bulk, a garment that is 

too large for the wearer is likely to inflate the bulk measurements. As many 
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of the previous studies have highlighted, the area of clothing bulk, possible 

hobbling and motion restriction still needs further attention. 

 

2.4  Clothing stiffness 

 

2.4.1  Introduction 

 

Just as bulk has been suggested to interfere with joint movements, forcing 

the wearer of the protective garment to work harder to complete the same 

movements, the stiffness of such clothing ensembles can have a similar 

effect (Duggan 1988). In describing a hobbling or binding effect of clothing, 

Patton et al. (1995) who studied chemical PPC also assert that stiffness as 

well as bulkiness can interfere with joint movements. Garment stiffness was 

also cited by Meinander et al. (2004) when trying to explain the higher than 

predicted metabolic rate in human subject trials.  

 

Nunneley (1989) stresses the need to understand more fully the interactions 

between physical and physiological factors. In discussing the development 

of computer models that predict human responses to work, clothing and the 

environment, she concludes that the validity of their output is limited in part 

by the need to represent more faithfully the interactions. She cites the 

example of the weight and stiffness of protective outfits increasing the 

metabolic costs of a task. Holmes et al. (1988) also highlight the fact that 

there is still a great deal to learn regarding the relationship between material 

stiffness and physiological behaviour. They indicate that there are 2 

extremes, with stiff material producing a high level of resistance to bending, 

resulting in body and limb movements being impeded, especially at the 

joints. In contrast, materials with a low level of resistance produce a clinging 

sensation but little has been done to examine the threshold levels of 

stiffness between these two extremes and in relation to the activities of the 

wearer. This knowledge would help to prevent the dramatic elevation seen 

in the physical effort required to combat material stiffness, without falling into 
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the area where lack of stiffness is in itself an undesirable form of behaviour 

(Holmes et al. 1988).  

 

A paper by Peirce in 1930 describes how in judging the ‘feel’ or handle of a 

material, use is made of such sensations as stiffness and how it is desirable 

to devise physical tasks that analyse and reflect the sensation felt, to give 

numerical values to the measurement. The paper goes on to detail an 

instrument on which it is possible to measure the angle through which a 

specimen of cloth droops when a definite length is held over an edge, with 

the angle converted into ‘bending length’ by mathematical formulae. The 

method is strictly a measure of the draping quality of a fabric as stiffer 

material will have a longer bending length (Pierce 1930).  

 

Most recently Harrabi et al. (2006) documented two methods under 

development for the characterisation of the flexibility of protective gloves. 

Flexibility is one of the major properties that define how a glove interferes 

with the worker ability to perform tasks and hence its degree of usefulness. 

The ‘free deforming’ technique they use is described, which they adapted 

from the ASTM D 4032 standard, and is based on the use of a probe to 

push a film sample through an orifice drilled in a platform (Harrabi et al. 

2006). 

 

Material testing of fabric stiffness is possible using machines and material 

samples but in choosing a methodology for measuring the garment stiffness 

in this trial it was not feasible to cut up the garments so a method of 

measuring drape was devised, details and photographs are provided in 

Appendix 7. 

 

2.4.2  Results 

 

The results of the stiffness measurements are detailed in Table 2.7 below. 

The values for the 3 sites measured are shown in centimetres and a higher 

number is representative of a stiffer garment. The methodology photos in 
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Appendix 7 illustrate that the point at which the garment touched the floor 

after being draped from a platform was measured, with a stiffer garment 

resulting in a greater value as it reaches the floor further from the platform 

than a less stiff garment. The results are also shown graphically in Figure 

2.6. 

 

Table 2.7. Stiffness measurements taken at 3 sites (arm, torso and leg) and overall 
for 12 protective garments. Results in cms. 
 

protective garments 
arm 

stiffness 
(cm) 

torso 
stiffness 

(cm) 

leg 
stiffness 

(cm) 

overall 
stiffness 

(cm) 

A Workwear (insulated) 27 21 15.5 63.5 
B Grey fire 16 16.5 20.5 53 
C Workwear 12.5 14.5 23 50 
D Gold fire 20 27.5 21 68.5 
E Chemical 22 22 27 71 
F ArmyNBC 15 14 26 55 
G Welding 25 18 15.5 58.5 
H Coldsuit black 33.5 28 48.5 110 
I Coldsuit green 39.5 30.5 49.5 119.5 
J Chainsaw 30 19 20 69 
M ArmyH2O 21.5 33 12 66.5 
N Mountain rescue 21 12 34 67 
 

 

The arm stiffness results show a range in values from 39.5 cm recorded in 

the Coldsuit green (I) ensemble to 12.5 cm in the Workwear (C) ensemble. 

The Coldsuit black (H) also had a high stiffness value for the arm as did the 

Chainsaw (J) and Workwear (insulated) (A) suits. For the torso stiffness, the 

values range from 33 cm for the ArmyH2O (M) combination to 12 cm for the 

Mountain rescue (N) garment. Other stiff garments included the two 

Coldsuits (black H and green I) and the Gold fire (D) ensemble, whilst other 

garments which had very low values for stiffness include the ArmyNBC (F) 

and Workwear (C) suits. The values for leg stiffness range from 49.5 cm and 

48.5 cm for the Coldsuits, green I and black H respectively to 12 cm for the 

ArmyH2O (M) combination. The two coldsuits had much higher values 

(stiffer garments) than the other garments with the next highest being the 

Mountain rescue (N) garment at 34 cm.  
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Figure 2.6. Bar chart showing values for arm, torso, leg and overall stiffness (measured in cms) for 12 protective garments. Stiffer garments 
produce higher values.
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Overall the two Coldsuit (black H and green I) garments had high stiffness 

values at all 3 sites measured and thus overall. The other garments can be 

seen to follow different patterns, for example, the Gold fire (D) and 

ArmyH2O (M) garments had higher stiffness values in the torso than in the 

arms and legs. Of the three measured sites the Chainsaw (J) and Workwear 

(insulated) (A) had higher stiffness in the arms than the torso and legs. 

There were a number of garments where the highest stiffness values were 

recorded in the legs, including the Mountain rescue (N), Workwear (C) and 

ArmyNBC (F) ensembles. The Grey fire (B) and Chemical (E) garments 

were the only two that had fairly similar stiffness values across the sites 

measured, although the legs were still higher for both (Grey fire; 16, 16.5 

and 20.5 cm, Chemical; 22, 22 and 27 cm for the arms, torso and legs 

respectively. 

 

2.4.3  Discussion 

 

The garments studied showed a range of stiffness values across sites 

measured and across the range of garments tested. Each garment will be 

considered in turn, photographs of the garments are provided in Chapter 2. 

The two coldstore garments (Coldsuit black H and Coldsuit green I) had the 

highest overall stiffness values, this may in part be due to the fact that the 

garments are very bulky and insulated making them a lot stiffer. They also 

have a tough outer fabric to prevent wear. The Mountain rescue (N) garment 

was made up of a ski style jacket and trousers, the stiffness values 

measured were much higher in the leg which may partly have been related 

to a full length zip and storm flap down the outside of the leg, designed to 

allow the trousers to be put on / taken off without removing boots. The most 

obvious aspect of the Chainsaw (J) ensemble is the higher stiffness in the 

arm compared to the other sites, due to the design of the jacket, the arm 

contains a mesh of fibres which would prevent the chainsaw blade cutting 

through the sleeve of the jacket. This feature adds both weight and stiffness 

to the arms which is not seen in the body of the jacket. The Workwear 

(insulated) (A) has higher stiffness in the arms and torso as it is the jacket 
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that is insulated and not the legs which consequently have a lower degree of 

stiffness. 

 

The two fire garments (Grey fire B, Gold fire D) have similar stiffness values 

to each other and across the sites measured, apart from the torso of the 

Gold fire (D) jacket. The stiffness values for the Chemical (E) suit were quite 

high in relation to the range of the garments, this can be explained by the 

fact that the suit is made of 100% PVC coated nylon for protection but this is 

not a very flexible material. The key feature of the Workwear (C) garment is 

the trousers which have additional fabric on the knees which goes someway 

to explaining the greater leg stiffness recorded in this garment. The same 

material is used in all parts of the Welding (G) garment although the design 

and construction of the jacket probably explains the higher stiffness 

recorded in the arm. In the ArmyH2O (M) ensemble, a GoreTex waterproof 

jacket is worn with combat trousers. The waterproof fabric is much stiffer 

than the cotton mix trousers (unfortunately the waterproof trousers were 

unavailable for testing), hence the much higher stiffness value recorded for 

the torso and arm compared to the leg. Finally the ArmyNBC (F) ensemble 

which showed quite low stiffness values for the arm and torso compared to 

the leg. Although the same fabric is used throughout the garment, the legs 

have extra pockets, adding material and stiffness to the garment.  
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3. Modelling 

 

3.1 Correlations 

 

3.1.1 Methodology 

 

The first study of this thesis (Chapter 3) produced data on the percentage 

increase in metabolic rate when walking, stepping and completing an 

obstacle course wearing a range of PPC. The present chapter has 

described the results from a number of measurements made of the PPC 

properties (method details included in appendix).  

 

The aim of the modelling is to try and establish the best predictors of the 

increase in metabolic rate seen when wearing PPC. The variables to be 

used are listed here; 

 

Criterion (dependent) variables 

 % increase in met rate overall 
 % increase in met rate walking 
 % increase in met rate stepping 
 % increase in met rate obstacle course 
 

Predictor (independent) variables 

Clothing weight 

 total clothing weight 
 crotch leg weight 
 upper leg weight 
 lower leg weight 
 total leg weight 
 torso body weight 
 upper arm weight 
 lower arm weight 
 total upper body weight 
 
Clothing insulation 

 total insulation 
 garment insulation (excludes hands, feet, head) 
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Clothing stiffness 

 torso stiffness 
 arm stiffness 
 leg stiffness 
 
Clothing bulk 

 torso fit bulk 
 arm fit bulk 
 leg fit bulk 
 torso circumference bulk 
 arm circumference bulk 
 leg circumference bulk 
 torso thickness bulk 
 arm thickness bulk 
 leg thickness bulk 

 

Correlations between the predictor and criterion variables were analysed 

using Pearson’s r. The analysis was made using data on 12 cases 

(protective clothing garments). The ChemBio garment was not available for 

any of the measurements made in the present chapter. The ArmyVEST 

garment data was also excluded from the analysis as there was some 

missing data on bulk and stiffness and the fact that the unusual 

characteristics of the garment (for example, very concentrated weight 

distribution) due to its specialised purpose may have affected the overall 

results of the analysis.  

 

3.1.2 Results 

 

The results of the Pearson’s r correlation are provided in Table 3.1. 

 

Torso circumference bulk, a measure of the extra bulk of material from the 

PPC around the core region (chest, back, stomach), had the strongest 

significant (p<0.001) positive correlation (r=0.828) for the overall % increase 

in metabolic rate. The effect of the torso bulk was evident across all work 

modes as evidenced by the strong significant correlations with % metabolic 

rate increase for the walking (r=0.727, p<0.007), stepping (r=0.764, p<0.04) 

and obstacle course (r=0.620, p<0.031) work modes. 
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Table 3.1. Pearson’s r correlation matrix. Significance (p<0.05) shown with dark 
shading, results narrowly missing significance shown with light shading.  

   
% 

increase 
overall 

% 
increase 
walking

% 
increase 
stepping 

% increase 
obstacle 
course 

total clothing weight Pearson Correlation 0.500 0.437 0.464 0.412 
  Sig. (2-tailed) 0.082 0.135 0.111 0.162 

crotch leg weight Pearson Correlation 0.638 0.540 0.601 0.522 
  Sig. (2-tailed) 0.019 0.057 0.030 0.067 
upper leg weight Pearson Correlation 0.288 0.385 0.195 0.159 
  Sig. (2-tailed) 0.340 0.194 0.523 0.603 
lower leg weight Pearson Correlation 0.282 0.369 0.171 0.192 
  Sig. (2-tailed) 0.351 0.214 0.576 0.530 
total leg weight Pearson Correlation 0.496 0.517 0.405 0.367 
  Sig. (2-tailed) 0.085 0.070 0.170 0.217 
torso body weight Pearson Correlation 0.183 0.071 0.222 0.204 
  Sig. (2-tailed) 0.549 0.818 0.465 0.505 
upper arm weight Pearson Correlation 0.377 0.485 0.349 0.127 
  Sig. (2-tailed) 0.227 0.110 0.266 0.693 
lower arm weight Pearson Correlation 0.655 0.459 0.639 0.587 
  Sig. (2-tailed) 0.021 0.133 0.025 0.045 
total upper body weight Pearson Correlation 0.399 0.281 0.413 0.361 
  Sig. (2-tailed) 0.177 0.353 0.161 0.226 
total insulation Pearson Correlation 0.349 0.241 0.341 0.308 
  Sig. (2-tailed) 0.267 0.450 0.278 0.330 
garment insulation Pearson Correlation 0.303 0.239 0.303 0.229 
  Sig. (2-tailed) 0.338 0.454 0.339 0.475 
torso stiffness Pearson Correlation -0.125 -0.010 -0.023 -0.309 
  Sig. (2-tailed) 0.700 0.976 0.943 0.328 
arm stiffness Pearson Correlation -0.173 -0.082 -0.070 -0.300 
  Sig. (2-tailed) 0.590 0.799 0.828 0.343 
leg stiffness Pearson Correlation -0.200 -0.238 -0.155 -0.122 
  Sig. (2-tailed) 0.532 0.456 0.631 0.706 
torso fit bulk Pearson Correlation -0.192 -0.461 -0.178 0.165 
  Sig. (2-tailed) 0.550 0.131 0.580 0.609 
arm fit bulk Pearson Correlation -0.303 -0.376 -0.242 -0.160 
  Sig. (2-tailed) 0.338 0.228 0.449 0.619 
leg fit bulk Pearson Correlation 0.615 0.487 0.636 0.471 
  Sig. (2-tailed) 0.044 0.129 0.035 0.144 
torso circum bulk Pearson Correlation 0.828 0.727 0.764 0.620 
  Sig. (2-tailed) 0.001 0.007 0.004 0.031 

arm circum bulk Pearson Correlation 0.570 0.456 0.564 0.433 

  Sig. (2-tailed) 0.053 0.136 0.056 0.160 
leg circum bulk Pearson Correlation 0.336 0.322 0.360 0.165 
  Sig. (2-tailed) 0.286 0.308 0.251 0.607 
torso thickness bulk Pearson Correlation 0.306 0.369 0.292 0.120 
  Sig. (2-tailed) 0.333 0.238 0.357 0.710 
arm thickness bulk Pearson Correlation 0.319 0.479 0.364 -0.041 
  Sig. (2-tailed) 0.313 0.115 0.245 0.900 
leg thickness bulk Pearson Correlation 0.311 0.219 0.349 0.224 
  Sig. (2-tailed) 0.325 0.494 0.267 0.483 
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Lower arm weight, a measure of the weight of the garment carried below the 

elbow had the next highest positive correlation (r=0.655, p<0.021) with % 

increase in met rate overall and was also significantly correlated with % 

increase in metabolic rate when stepping (r=0.639, p<0.025) and % 

increase in metabolic rate for the obstacle course (r=0.587, p<0.045).  

 

Two other clothing parameters, crotch leg weight and leg fit bulk, had 

significant correlations with the overall % increase in metabolic rate and that 

recorded during stepping. Crotch leg weight is a measure of the weight of a 

garment carried in the crotch area, see methodology photographs in 

Appendix 4 for more detail. Leg fit bulk, positively correlated with an 

increase in overall working metabolic rate (r=0.615, p<0.044) and stepping 

metabolic rate (r=0.636, p<0.035), is described in section 2.3.2 above.  

 

3.2 Regression 

 

3.2.1 Methodology 

 

A multiple regression was subsequently carried out using the stepwise 

method. A number of preliminary models emerged. However it was decided 

to treat the results with extreme caution as there were a large number of 

predictors compared to the number of cases and as it is generally accepted 

that the ratio of cases to predictor variables should be 10:1, with 5:1 as a 

minimum. The model summaries are included in Table 3.2.  

 

3.2.2 Results 

 

The strongest predictor for the overall percentage increase in metabolic rate 

is torso circumference bulk (Model 1). The equation for the model is 

y = 3.7 + (0.44*TCB)                              

(TCB; torso circumference bulk, R2 adj=0.66, p<0.01) 
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In Model 2, the addition of total insulation increases the explained variance 

(adjusted R2) to 78%. It must be noted that in Model 2, there is a sign 

change in the coefficient for insulation, compared to the sign it had in the 

correlation and the equation for the model is  

y = 11.6 + (0.65*TCB) – (41.6*TI)                             

(TI; total insulation, R2 adj=0.78, p<0.01) 

 

Total insulation was shown to have a positive correlation with % increase in 

metabolic rate in Table 3.1. As the effect of insulation is subtracted from the 

bulk due to its negative coefficient, this indicates that a garment with a high 

torso bulk as a result of high insulation is going to have less of an effect on 

metabolic rate increase than a garment that has a high torso bulk but with a 

lower total insulation. It has been highlighted earlier that insulation requires 

thickness and therefore bulk. But bulk can also come from other 

parameters, such as stiff fabric, which impact on the wearers metabolic rate. 

 

Only 2 predictors are considered due to concerns over the number of cases 

used for the modelling and this is the case for the modelling data as a 

whole. In order to be able to undertake further modelling with greater 

confidence a lot more data points are required as well as a large scale 

validation.   

 

Table 3.2. Results of the stepwise multiple regression for the dependent variable, 
% increase in overall metabolic rate. 

Coefficients(a) 
 

Model   

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) 3.708 2.006  1.848 .098

torso circum 
bulk 

.442 .097 .835 4.551 .001

2 (Constant) 11.616 3.746  3.101 .015
  torso circum 

bulk 
.647 .118 1.222 5.487 .001

total 
insulation 

-41.569 17.709 -.523 -2.347 .047

 
 
a  Dependent Variable: % increase overall 
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Table 3.2. Results of the stepwise multiple regression for the dependent variable, % increase in overall metabolic rate (cont’d). 
 
 
 

Model Summary 
 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

Change Statistics 

R Square 
Change F Change df1 df2 Sig. F Change 

1 .835(a) .697 .663 2.24685 .697 20.713 1 9 .001
2 .906(b) .821 .776 1.83387 .124 5.510 1 8 .047
3 .968(c) .936 .909 1.16903 .116 12.687 1 7 .009
4 .986(d) .972 .953 .84347 .035 7.446 1 6 .034
5 .998(e) .996 .992 .35643 .024 28.600 1 5 .003
6 .999(f) .999 .997 .21824 .003 9.338 1 4 .038
7 1.000(g) 1.000 1.000 .08396 .001 24.028 1 3 .016

a  Predictors: (Constant), torso circum bulk 
b  Predictors: (Constant), torso circum bulk, total insulation 
c  Predictors: (Constant), torso circum bulk, total insulation, arm fit bulk 
d  Predictors: (Constant), torso circum bulk, total insulation, arm fit bulk, lower arm weight 
e  Predictors: (Constant), torso circum bulk, total insulation, arm fit bulk, lower arm weight, torso fit bulk 
f  Predictors: (Constant), torso circum bulk, total insulation, arm fit bulk, lower arm weight, torso fit bulk, torso stiffness 
g  Predictors: (Constant), torso circum bulk, total insulation, arm fit bulk, lower arm weight, torso fit bulk, torso stiffness, leg fit bulk 
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3.3  Discussion 

 

The strongest correlate of an increased metabolic rate when working is the 

bulk of the garment around the torso. The impact of a high level of bulk 

around the torso, is likely to be due to a reduction in movement, which then 

forces the wearer to perform less efficient, exaggerated or extra movements 

to complete the task to the same level, consequently increasing the level of 

energy expenditure.  

 

Lower-arm weight was also a good predictor. Weight supported at the 

extremities, in this case on the arms below the elbow, has to be accelerated 

and decelerated with each movement. The arm swing involved in the 

stepping work mode and arm movements required to move the crates in the 

obstacle course when wearing PPC would therefore significantly increase 

the metabolic rate. The narrow range of movement and lack of arm swing 

required during treadmill walking explain the absence of a significant 

correlation with the metabolic rate % increase during walking.  

 

In the case of the crotch leg weight result, a higher clothing weight in this 

region is going to make movements around the hip harder, especially lifting 

the thigh as required when stepping and at the extreme end of the 

movement ranges, e.g. when crouching and crawling, which would explain 

the significant positive correlations between crotch leg weight and metabolic 

rate increase during stepping and overall. In the range of movement study 

(5) detailed in Chapter 7 participants repeatedly reported problems in the 

crotch area of garments, for example, finding it hard to lift their thigh. These 

two findings confirm the impact of the crotch area and the weight / fit of the 

garment in that area to be especially important both subjectively and 

physiologically.  

 

The fit of the garments around the thigh was assessed by the fit bulk 

method (at the site of measurement the extra garment material was pinched 

and measured). Garments with a higher leg fit bulk, have more ‘spare’ 
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material in the thigh region, which if impeding ease of movement and 

reducing range of joint motion could raise the metabolic cost of work.  

 

Although the statistical analysis suggests that torso bulkiness is the main 

predictor of increased energy costs, the experimental results from the earlier 

chapters point out the marked role of clothing weight on the arms and legs. 

As the statistical conclusion may partly be affected by the fact that the 

model parameters may not be independent (for example, torso bulkiness 

associated with bulkiness in the sleeves and legs of the garment) a degree 

of caution should be used when drawing conclusions. There are also some 

factors which were not considered in the modelling as they were not studied 

in this thesis, such as the role of increased body temperature, which are 

known to affect metabolic rate. As cited in Chapter 1, a rise in body 

temperature of 1oC can raise metabolic rate by 13% (Parsons 2003).  

 

There were some negative correlations also evident in Table 3.1, the 

highest being the correlations of torso and arm fit bulk of –0.461 and –0.376 

respectively with the % increase in metabolic rate when walking. The 

technique for measuring fit bulk, involved measuring the spare material of 

the garment at three sites (see Appendix 6 for details). Tight garments, 

resulting in low values for torso and arm fit bulk, could be assumed to 

impede and restrict movements, which, as has been previously discussed, 

increases the metabolic cost of working. In contrast therefore a garment with 

a higher fit bulk has more spare material which if occurring in the torso and 

arm region seems to provide more give, allowing for a greater ease of 

movement and contributing to a reduced increase in metabolic rate. 

However this spare material does not have the same effect in the legs, as 

an increased leg fit bulk was seen to be a strong correlate of an increased 

metabolic rate, so the spare material seems to be hindering lower limb 

movement especially at the knee and hip joints. There are also weak 

negative correlations between garment stiffness and % increase in 

metabolic rate.  
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In summary, the strongest correlate of an increased metabolic rate when 

working is the bulk of the garment around the torso. Garment bulk around 

the thigh is also associated with an increased metabolic rate. PPC garments 

with a large proportion of weight supported in the lower arm and in the 

crotch also show significant relationships with increased overall metabolic 

rates. 
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