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Abstract 

In industry, it is common for workers to be exposed to a variety of cold surfaces including 
machinery parts, wa11s and tools that have cooled to ambient conditions or are cooled by 
the production process. Although there is legislation and there are guidelines to protect 
workers and minimise safety risks in environments where there may be hot surfaces (Skin 
Burns; EN 563:1994), this is not the case for environments containing cold surfaces. 

It was hence decided by the European standardisation organisation CEN that a standard 
should exist to outline the risks associated with contact with a cold material in terms of 
skin damages, discomfort and effects on manual dexterity. 

Data was collected for the development of a cold surfaces standard (European Union 
project SMT4- CT97-2149). The standard should provide information on the relationship 
between contact material type, surface temperature and the subsequent risk of pain, 
frostbite and manual dexterity deficits after prolonged exposure. 

Further research, related to this standard was performed and is descnoed in this thesis. It 
was found that the draft standard did not identify the full range and aspects of manual 
dexterity affected by contact cooling. It was determined using data collected for the 
standard, that people would withstand longer durations of contact with materials with low 
contact coefficients such as wood or plastic than they could when in contact with 
materials with higher contact coefficients such as metals, even when the latter were at 
much higher temperatures. It was thought this could have a direct effect on manual 
dexterity after contact with the low contact coefficient materials resulting in different 
aspects of manual dexterity being affected when compared to the effects of contact with a 
high contact coefficient material. 

To study this further, four tests were identified through a literature review and were 
chosen on their ability to discriminate different aspects of manual dexterity, on their 
validity and their reliability. These four tests, A strength test, a tactile sensitivity test, a 
speed test and a nut and bolt test, were then used to determine any manual dexterity 
deficits occurring as a result of contact cooling with materials from both ends of the 
contact coefficient scale. This was important due to the uneven and unique properties of 
contact cooling when compared to cooling by air or water. It was observed that different 
aspects of manual dexterity were affected as a result of contact with materials of differing 
contact coefficients and that strength and speed were affected the most in both fast and 
slow cooling conditions. 

All the experimental work for the standard was based on the dominant hand of 
individuals. As both hands are used in day to day activities it was felt necessary to ensure 
that the standard would indeed protect against the worst case scenario, and that contact 
cooling did not appear to be significantly worse in the non dominant hand when 
compared to the dominant hand. In terms of manual dexterity deficits, strength was the 
only aspect that was significantly decreased in the non dominant hand wen compared to 
the dominant hand. It was found that pain was no worse for the non dominant than the 
dominant hand in the tested population. 

Again to ensure the protection of the majority of the population it was nec~ssary to 
consider factors such as the effect of blood flow. Many common events~.an affect blood 



flow to the hands, including tight clothing, injury through vibration and disorders such as 
Raynauds Phenomenon or body cooling proceeding the contact exposure. As differing 
effects of contact cooling had already been identified as a result of contact with different 
materials, it was decided to investigate the effect of blood flow on contact cooling, similar 
to studies mentioned above, with materials from both ends of the contact coefficient 
scale. It was determined that for the non metals (nylon, wood) blood flow (high versus 
none) had a significant effect on cooling speed but in the condition with metals where 
cooling was faster, there was no significant effect of blood flow on cooling. 

As blood flow was identified as having a significant effect on cooling as a result of 
contact with a cold material, it was decided to investigate if there was in fact any 
difference in blood flow between the dominant and dominant hand. Although there were 
no differences in terms of manual dexterity deficits between the dominant and non 
dominant hand the possibility of differences occurring in cooling speed was not 
investigated. Again this was done to ensure the standard had suitably protected against 
worst case scenarios. It was found that there was no significant difference in resting blood 
flow between the dominant and non dominant hand. 

The ergonomic implications for the findings of this research are: 1) The standard as it 
stands should protect 75% of the population in accordance with its objective, however, 
special attention should be paid to workers with circulatory disorders or who are exposed 
to conditions that affect blood flow. 2) The effects of contact cooling on manual dexterity 
are more pronounced than accounted for in the standard for longer term contact with 
materials with low contact coefficients. For cases of contact with a material with a high 
contact coefficient, on the other hand, skin damage would usually result before manual 
dexterity is severely affected, so the standards safety limit for frostbite is sufficient for 
safety and no separate manual dexterity criterion is required. 

Keywords: manual dexterity, contact cooling, blood flow, hands, cold pain, cold injury 



STATEMENT 

The work presented in this thesis was part funded by the science faculty of Loughborough 

University and part funded by the European Union project SMf4-CT97-2149. The data 

collected for this project by the Author (Chapter 3) was used in part to develop a standard 

for "temperature limits for cold touchable surface" by the European standards committee: 

CEN TC122/WG3. 

The study descn"bed in Chapter 6 represents work conducted jointly by the Author and Ms. 

L. Cobb. The Author was responsible for assisting with the supervision of Ms. L Cobb 

during this, her BSc dissertation work. The Author designed the experiment and re-

analysed the raw data obtained in this study for inclusion in this thesis. 

The study descn"bed in Chapter 7 represents work conducted jointly by the Author and Ms. 

J. Edwards. The author was responsible for the design ofthe experiment and assisting with 

the supervision of Ms. J. Edwards during this, her BSc dissertation work. The Author 

reanalysed the raw data obtained in this study for inclusion in this thesis. 



1 General Introduction 

1.1 Chapter Summary 

This chapter introduces the research issues covered in this thesis. It considers the 

background to the research and issues involved in contact cooling. It also shows the need 

for empirical research to provide better understanding of how people react to such 

environments. 

1.2 Introduction 

Many studies into the physiological responses of humans to the cold have been completed. 

The benefits of this work are obvious as a cold environment can present many hazards 

including excessive heat loss from the body, pain and decreases in manual performance. By 

knowing the responses of man to a cold environment, it is possible to predict the level of 

discomfort and the likely effects of being exposed to such an environment. This will enable 

the effective reduction of the effect of cold on man by providing adequate protection to 

compensate for the cold (i.e. gloves). Alternatively, it will allow the prediction of the point 

(in terms of time andlor temperature) at which the cold will become detrimental to the 

performance of andlor the safety ofthe human. 

There is very little work to date however that deals with the specific problems associated 

with contact cooling. Contact cooling may occur where machinery is operated in cold 

conditions, for example, by the accidental touching of machinery surfaces in cold 

environments, or by the sustained gripping of cold tools (e.g. a hammer or a gun). If the 
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contact is accidenta~ it is likely that the contact will only occur for a very short time 

because behavioural reactions such as removing the hand will break the contact with the 

cold surface. Contact for a short duration with a cold object may result in surface tissue 

cooling, which in turn may lead to tissue freezing. If, however, the contact is as a result of 

handling a tool then the contact can be for much longer periods of time resulting in deeper 

tissue damage, whole hand frostbite and numbness which will effect the manual dexterity 

ofthe person. 

A research group was formed in response to this identified lack of information for contact 

cooling with the aim of completing a guideline document that will form the basis for the 

development of a European Standard. It was thought that this aim could be realised by 

reviewing the work done to date in this area, conducting experiments and forming 

databases from the information gathered in these experiments. It was then intended that 

mathematical modelling could be used to predict the physiological responses of people 

after the point where it would no longer be ethical to use 'real' subjects. 

Five institutes across Europe were involved in this project, they were: Loughborough 

University, England, The National Institute for Working Life, Solna, Sweden, Institute of 

Perception Research, Soesterburg, The Netherlands, The Regional Institute of 

Occupational Health, Oulu, Finland and Louvain Catholic University, Brussels, Belgium. 

This thesis will represent partly work done for this project, but also builds on the original 

project work. It describes a number of investigations on the effects of long term exposure 

(>5 minutes) to cold surfaces and the effects that this has on manual dexterity and 

subjective sensations. 

1.3 International and European Standards Relating to Work in the Cold 

There are several International Standards that deal with working in the cold. These 

standards include ISOIDIS 12894 -Ergonomics of the thermal environment - Medical 

supervision of individuals exposed to extreme hot or cold environments and ISO TRll 079 

Evaluation of cold environments - Determination of required clothing insulation. Neither 

of the above two standards however adequately deal with the specific problems posed by 

contact with cold surfaces. ISOIDIS 12894 states that frostnip leading to frostbite may 
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occur as a result of contact with a cold surface. The standard then gives a description of 

the appearance of frostnip and frostbite, and the first aid treatment that should be given, 

but. doesn't give any information as to the avoidance of such injuries or 'safe' contact 

temperatures and durations. ISO TR 11079 doesn't deal with the issues arising from 

contact with cold surfaces. The British Occupational Hygiene society's (BOHS) Technical 

Guide Number 8 states that special attention should be paid to keeping worker's hands 

warm if they are working in conditions below -16°C for more than twenty minutes at a 

time. It then goes on to state that metal handles and tools should be covered by thermal 

insulating material for work at temperatures below -1°C. The report however doesn't state 

any research or data that would validate this statement. The report however does advise 

that gloves should be worn by people when fine manual dexterity is not required for 

sedentary work where the air temperature is below 6°C, below 4°C for light work 

situations (120 Wm-2
), and at air temperatures below _7° for moderate work (170 Wm-

2
). 

The report also states that anti-contact gloves should be worn to prevent contact frostbite 

when cold surfaces below -7°C are within reach. Again the data or research for the basis of 

these assumptions has not been stated, and it is thought that the following experiment will 

show that this report does not advise adequate protection for the worker. 

The Health and Safety (HSE) information sheet for Workroom Temperatures in Places 

where Food is Handled has no advice for 'safe' contact temperatures. 

There is obviously a real need for information in this area. 

1.4 Conduction, Convection and Radiation between Materials 

For the following studies, the majority of heat transferred is by conduction, from the hand 

to the bars of material, although heat will also be transferred by radiation and convection. 

Heat will always flow from higher temperatures to lower temperatures. This is known as 

heat transfer. The rate of heat flow is dependent upon several factors including the 

conductivity of the material, and always follows the laws ofthermodynamics. 

The first law states that 'the change in the internal energy of a system is equal to the heat 

added to the system minus the work done by the system, that is, there is conservation of 

energy. The amount of heat given up by one system, which is interacting, with another 
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system, is equal to the amount taken up by the second system.' (Parsons 1993). The 

second law of thermodynamics states that heat flows from a hot body to a cooler body, but 

not vice versa. Conduction (the transmission of heat through a substance from a high 

temperature to a low temperature) occurs in one of two ways depending upon the state of 

the material. In gases and most liquids the heat energy is transmitted mainly by collisions 

between atoms and molecules with those possessing lower kinetic energy. In solid and 

liquid metals, heat is primarily transferred by the migration of fast moving electrons, 

followed by a collision between these electrons and ions. 

The conductivity of a material is a measure of the material's ability to conduct heat. All 

objects that have a temperature above OKelvin give off thermal radiation. Heat transfer 

occurs as a result of energy travelling in the form of electromagnetic waves or photons 

from a hot 'body' to a cooler object. Convection is a process by which heat is transferred 

from one part of a fluid or gas to another by the movement of the fluid itself. Natural 

convection occurs as a result of gravity, where the hotter part of the fluid expands and 

becomes less dense. This hotter fluid is then displaced by the colder, denser fluid, which 

then sinks below it. Convection also occurs in air although the effect is usually less 

pronounced (ASHRAE 1993). 

In summary, to determine the reaction of the skin surface when in contact with a cold 

surface, it is important to determine the 'type' of contact. Heat will always flow from the 

warmer finger to the cooler bar surface. However, the rate at which this will occur depend 

upon several factors, including the properties of the two surfaces, the contact time, the 

surface area ofthe skin exposed to the cooler object and how 'perfect' the contact with the 

block is. The latter factor is related to the amount of pressure that the finger is exerting 

onto the block. The greater the pressure, the 'better the fit'. 

1.5 Earlier Studies on Contact Cooling 

1.5.1 Gripping 

Havenith, Heus and van de Linde (1992) studied the cooling rates and resulting comfort 

and pain levels for twelve subjects, touching six different materials (polyurethane foam, 

wood, nylon, rust proof steel, aluminium and a water perfused aluminium tube with an 

infinite heat capacity, at four different temperatures (10 °C, O°C and -10°C). The subjects 
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were asked to grip a cylinder of material applying just enough pressure to lift the cylinder, 

which was suspended by a cable. It is good that the experimenters attempted to control the 

amount of pressure that the subjects applied to the bar, although different pressures could 

have been tested. The subjects were exposed to the bars either after rest or exercise. All 

trials were done with and then without gloves. The cooling curves were analysed as 

Newtonian cooling curves, which appeared to be significantly related to the material's 

contact coefficient, the presence of hand protection, the preceeding exercise and the 

interaction between the contact coefficient and the presence of protective hand-wear. It 

was also found that thermal sensation and pain could be described in terms of local skin 

temperature, ambient temperature and hand protection. The pain and thermal sensations 

reported for the contact area of the hand was the same as those reported for the back of 

the hand for the lower temperatures. It was found that when the subjects reported that 

they were 'slightly painful' a skin temperature of 16°C for the back of the hand and 19°C 

for the palm of the hand was common. The presence of pain and its level appeared to be 

inversely proportional to the cooling speed of the hand and skin freezing occurred at lower 

skin temperatures when touching cold objects than it did when the skin was merely 

exposed to air. This was as a result of supercooling. It was possible for the experimenters 

to produce calculations for the safety limit for hand cooling whilst in contact with a cold 

material. However, Chen (1994), points out, that some subjects suffered from frostnip 

because the temperatures of the subject's hands were average temperatures for the whole 

hand. Contact cooling does not result in a uniform cooling, so some spots were colder 

than others were. For this reason more thermocouples should be used and each individual 

temperature should be considered. 

1.5.2 Touching 

Chen, Nilsson and Holmer (1994) examined the change in finger skin temperature for 

twenty subjects touching aluminium at -7°C, O°C and +7°C, with a pressure ofO.lN, 5.9N 

and 9.8N. Two aluminium blocks were used that had two different masses, 3559g and 

108g. The subjects were asked to place their left hand into a small chamber and touch the 

block in the chamber with the first section of their index finger. It was found that all the 

factors listed above had significant effects on the contact skin temperature with time. The 

study also confirmed that the contact temperature change over time could be successfully 

described using a modified Newtonian model though these authors used a double 
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exponential curve. The results of this study also indicated that metal surfaces in contact 

with bare hands should not be below 4 QC. If surfaces with lower surface temperatures than 

this are present, then users should wear protective gloves. Chen also conducted several 

other experiments of a similar nature to the one detailed above. They all confirmed that 

cooling curves could be analysed as a Modified Newtonian curve with two time constants. 

The first time constant describes the initial sharp decrease in contact temperature upon 

initial contact with the cold surface and the second time constant describes the slower 

decrease in contact temperature that subsequently follows. 

Geng et al.. (2000) investigated the effects of material and contact pressure, and 

Rintamaki (1997) investigated the effects of contact area on contact cooling. Little work 

has been carried out though in an extensive or exhaustive manner to fully identifY effects of 

contact cooling on physiological and psychological responses. Below is a table taken from 

HoImer and Geng (2000), describing the types of contact cooling that may occur and some 

typical actions leading to the contact. 

Table 1.1. Examples of Typical Contact cooling Durations (Holmer and Geng, 2000) 

Contact Examples for contact with cold surface 
Duration 

Intentional Unintentional 

1 second Touching of a metallic surface (-15°C 
I 

or below) and quick removal following 
pain sensation 

3 seconds Activation of a pressing, switching a Touching of a cold surface for extended 
button or removing a small spare part by reaction time (on metal of -15°C and 

the fingertips below) has numbness sensation and 
even may result in cold in,hIry 

10 seconds Prolonged activation of a slight Falling against a cold surface without 
adjustment of a switch, handle, hand- recovery 

wheel, valve or spare part etc. with finger 
touching 

100 seconds Turning of a hand-wheel, handle valve or After slipping and falling accidents on 
crew bolt-nut etc. possibly with finger cold surfaces, victim unable to get up 

touching 

1.6 General Overview of the Thermoregulatory System 

1.6.1 Environmental Parameters Affecting Body Temperature 

Humans are homeotherms, this means that they need to maintain an internal temperature of 

approximately 36.9
Q
C to maintain well being. To do this, internal temperature is 
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maintained through heat balance. This means that the amount of heat produced within the 

body should equal the amount of heat transferred away from the body. The following 

equation represents the heat balance that occurs in the human body. 

(M- W) =E+R+C+ K+ S 

Where 

M = Metabolic rate of the body 

W = Energy used to produce mechanical work 

Heat transfer can occur in the following ways 

E = Evaporation 

R = Radiation 

C = Convection 

K = Conduction 

S = Heat storage of the body 

For heat balance, S = 0 

If S is greater than 0 then heat is stored and body temperature will rise, if S is less than 0 

than heat is lost to the environment and body temperature will decrease. 

1.7 Environmental Parameters 

There are four basic environmental parameters that affect human response to the thermal 

environment. These are air temperature, radiant temperature, humidity and air velocity. Air 

temperature could be defined as the temperature of the air surrounding the body. Heat 

exchange may take place between the body and the surrounding air (e.g. if the air is cooler 

than the body, then heat may pass from the body to the surrounding air although air close 

to the body is generally warmer than the prevalent air temperature). Heat is given off and 

absorbed by all bodies via radiation. In many situations, there is a radiant source, e.g. an 

electric heater in a room, or the sun. In this instance, the radiant temperature may be 

significantly different to the air temperature in that same room. If however, there is no 

radiant source, then the air and radiant temperature will be very similar. As the subject's 

hand will be at a warmer temperature than the air in the freezer, a small amount of heat 

will be exchanged in the following experiments by the net heat flow of heat from a hot 

(hand) body to a cooler environment (the air in the freezer). 
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Air movement over the body can affect body temperature in terms of draughts and 

evaporation of sweat. Differences in air speeds will obviously affect the body temperature 

to a varying degree. Humidity is also an important factor when considering the factors that 

can affect a human's temperature. If sweat is heated by the body and evaporated into a 

vapour, which passes into the air, for example, then heat is lost to the surrounding air 

cooling the human. The sweat is evaporated because of the difference in mass per unit 

volume of moist air between the skin surface and that of the surrounding environment. The 

higher the air temperature, the more water vapour can be held in suspension in the air. As 

the air temperature in the freezer will be very low (the lowest air temperature to be used 

will be -35°C) the air will have a very low partial vapour pressure. 

1.8 Personal Parameters 

In addition to these environmental parameters there are also two personal parameters 

which are metabolic heat production (activity levels) and the amount of clothing worn by 

the person. The amount of heat produced as a by-product of metabolic activity varies as a 

result of activity level. If a human is undertaking hard exercise, then the human will feel a 

lot hotter than if the same human in the same environment is sat down reading a paper. 

Clothing also affects the temperature of the human wearing it, as the more clothing worn 

(in the same environment); the warmer the human will become. Clothing properties should 

also be taken into account. Clothing was standardised for all subjects in the following 

experiments. 

The interaction of these six parameters determines how a subject will respond to a given 

thermal environment. For example, air movement combined with air temperature will 

affect the rate of evaporation and therefore the rate of body cooling. 

1.9 Behavioural Responses 

Behavioural responses can also affect the temperature of a human. The behavioural 

responses to a thermal environment often occur if a person is rapidly heated or cooled. The 

perception of change in the thermal environment may provoke a behavioural response in 

the form ofthe subject removing clothing (in the case of a cold environment turning warm) 

thus exposing a greater area of body to the external environment. Standing next to a heater 

or wrapping arms around the body (in the case of a warm environment turning cold) would 

also be examples of behavioural thermoregulation. If the thermal stimulus is more intense 
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than a warm environment turning cool, then a more severe reaction is sometimes observed. 

This reaction is often not voluntary. An example of this would occur if a person touched a 

very cold material. The natural reaction of this person would probably be to withdraw their 

hand from the painful stimulus as quickly as possible. However, in some situations, 

subjects are also exposed to longer contact exposures, where contact with a cold material 

didn't occur by accident but by design (as in the case ofa person using tools etc.). 

1.10 Physiological Responses 

Physiological responses are involuntary responses caused by a change in internal 

temperature. Examples would include sweating, vasoconstriction, piloerection, 

vasodilation or shivering. 

Temperature sensors are locate in both the skin and the hypothalamus. The skin 

thermoregulators, are actually free nerve endings that can be divided into two types: warm 

or cold. These thermosensors are connected to the hypothalamus by nervous pathways. 

The anterior hypothalamus and preoptic region control heat loss and the posterior 

hypothalamus is involved with vasoconstriction and shivering. 

Sweating aids heat loss by secretion of a liquid onto the skin's surface which is heated by 

the skin and eventually evaporated under the appropriate conditions. In a hot environment 

the evaporation of sweat is the dominant method for maintaining a stable core 

temperature. 

Vasoconstriction and vasodilation are discussed in more depth later, however a brief 

overview shall be given here. During vasodilation, venous blood returns near to the skin's 

surface. This increases the amount of heat at skin level able to be lost to the environment. 

In vasoconstriction the constriction of superficial veins results in cool blood from the skin 

returning along the venae cornitans close to the artery. This means that heat is gained on 

its return to the body core. 

Piloerection occurs when the skin decreases in temperature. and the arrector anterior pili 

muscles contract. This results in the tiny hairs on the skin's surface standing on end and 

trapping a boundary layer of air between the skin and the environment. Whilst this 
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boundary layer or air is effective in insulating animals with more hair, due to the sparse 

nature of hair on the human, this is generally considered to be an ineffective method of 

thermoregulation (Parsons 1993). 

Bligh (1985) described shivering as "simultaneous asynchronous contraction of muscle 

fibres in both the flexor and extensor muscles". If the body temperature starts to fall, then 

the metabolic rate starts to increase initially as a result of increased muscle tone, then as a 

result of shivering. 

1.11 Thermal Comfort and Subjective Scales 

Thermal comfort is defined as 'that condition of mind that expresses satisfaction with the 

thermal environment' (ISO 7730, 1994). The subjective measurements are in the form of 

scales such as the Bedford Comfort Scale (1936) or the ASHRAE sensation scales (1996). 

The ASHRAE scale is more commonly used as it can be easily compared to the Predicted 

Mean Vote (PMV) thermal comfort index (Fanger 1970). Fanger hypothesised that the 

degree of thermal discomfort was a function of thermal load and physical activity. Fanger 

(1970), Nevins et al .. (1966) and McNall et al .. (1968) provided the data on which the 

PMV was based. Fanger's PMV index gives the mean vote of a large number of people at 

known environmental conditions as if they had rated their thermal comfort on the 

ASHRAE scale which is numbered from +3 (hot) to -3 (cold). The PMV can be estimated 

when clothing and activity are established and the six parameters ( described above) are 

measured. The PMV is based on heat balance. Man is in heat balance when the internal 

heat produced is equal to the loss of heat to the environment. The Fanger model is used in 

an international standard to asses moderate thermal environments' ISO 7730 (1994) -

Determination of the PMV and PPD indices and specification of conditions for thermal 

comfort'. 

1.11.1 Thermal Sensation 

Thermal sensation is related to mean skin temperature (Gagge et al. 1967). Havenith 

(1992) found that subjective temperature scores were related to the local skin temperature 

of the hand during contact cooling. Havenith (1995) also found that central body 

temperature had no influence on thermal or pain sensations. 
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The skin acts as the thermal interface of the body with temperature receptors distributed 

over the body. Different areas of the body have different concentrations of temperature 

receptors, the majority of which are in the fingers and toes, with lesser numbers on the 

hands and feet (Clark and Edholm 1985). Enander (1982) showed a correlation between 

the temperature of the hand in air and thermal sensation across several temperatures. She 

also found that the thumb showed the best correlation. It was detennined that a hand skin 

temperature below 20°C resulted in the thermal sensation of cold, with the first sensations 

of cold starting to be experienced around 28°C. 

1.11.2 Pain 

Eide (1965) describes cold pain as being caused by " ... .local vasoconstriction giving rise 

to pain and the pain elicits the pressure reaction and cardio-acceleration mediated by some 

complex central mechanism". Cold pain has been reported as being experienced over a 

range of temperatures. Havenith et al. (1992) determined that the sensation of pain 

(slightly painful) began at temperatures of 12-20°C for the back of the hand and 14-23°C 

for the contact palmar aspect. Enander (1982) detennined that no pain was experienced at 

temperatures in excess of 20°C. Havenith et al. (1992) therefore concluded, that as 

neither pain nor thermal sensations were affected by ambient air temperature, then they 

must be affected by the actual hand temperature independent upon the rate of cooling. 

The methods by which the sensation of pain can be assessed were reviewed by Merksey 

(1973). It was noted that complaints of pain were resultant upon a range of physiological 

factors and that there is much inter individual differences. It was also noted that sex, ethnic 

origin and moods affected pain complaints. 

The following methods for assessing pain can used; threshold of pain complaint, maximum 

tolerance, duration of pain to a fixed stimulant, verbal visual or auditory ratings and 

dosage of drug required to abate pain. 

1.12 Manual Performance in the Cold 

Manual dexterity can be defined as a motor skill that is detennined by a range of motion of 

arm, hand and fingers and the possibility to manipulate with hands and fingers (Havenith et 

al. 1995). 
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Manual dexterity can be divided into five factors that constitute overall dexterity 

(Fleischman and Hempel (1954): 1) finger dexterity (ability to manipulate and co-ordinate 

finger movements when performing tasks requiring fine manipulation), 2) manual dexterity 

(the ability to make skilful arm movements and hand movements without using the 

fingers), 3) wrist finger speed (ability to make rapid wrist flexing and finger movements) 4) 

aiming (ability to perform quickly and accurately a series of movements requiring hand eye 

co-ordination and 5) positioning (less well understood, but is different from aiming and 

involves a movement of the hand from one location/position to another). Factors like 

tactile sensitivity and force capability and sustainability also influence manual dexterity 

however. 

The effects of cold on manual dexterity (i.e. cold is detrimental to manual performance 

unless adequate protection is worn) have been known for many years now. An example 

cited in 'The Impact of Environmental Conditions on Human Performance' illustrates for 

example, that Osbourne and Vernon (1922) showed that at cooler temperatures, the 

likelihood of industrial accident increased significantly. 

There are many different tests to determine the different aspects of losses in manual 

dexterity. These tests include the Purdue Pegboard, O'Connor Dexterity test, The 

Minnesota Rate of Manipulation, The Plate tapping test and the Macworth V test. 

1.13 Structure of the Hand 

The hand consists of twenty-seven bones. These form the carpus, metacarpals and 

phalanges. Figure 1.1. shows the bones of the human hand from the dorsal aspect. 
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Figure 1.1. The bones a/the Human Hand (Dorsal aspect) (Eaton 1997) 

The wrist (carpus) consists of8 carpal bones. These bones are arranged in two rows. Each 

row consists of four bones. The palm of the hand (metacarpus) consists of 5 metacarpal 

bones. Each bone consists of a base, a shaft and a rounded distal head. The head is 

rounded for articulation with the base of each proximal phalanx. There are fourteen 

phalanges that form the skeletal basis of the digits. Each single bone is called a phalanx. 

The muscles that allow the hand, wrist and fingers to move are primarily situated along the 

forearm. These muscles can act on two joints - the elbow and the wrist, or the hand and 

the digits. The muscles primarily have four actions. These are - supination, pronation, 

flexion and extension. 
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Table 1.2. Intrinsic Muscles of the Hand (taken from Concepts of Anatomy and Physiology - Van 
De GrafJ) 

Muscle Action 
Abductorpollicis brevis abducts thejoint of the thumb 

Flexor pollicis brevis flexes the joint of the thumb 
Opponens pollicis opposes joints of thumb 

Abductor pollicis (oblique and transverse heads) adducts joints of thumb 
Lumbricales flexes digit at metacarpophalangeal joints; extends 

digits at interphalangeal joints 
Palmar interossei adducts fingers toward middle finger at 

metacarp()phalangeal joints 
I>orsal intersossei abducts fingers away from middle finger at 

metacarpophalangeal joints 
Abductor digiti minimi abducts joints of digit v 

Flexor digiti minimi flexes joints of digit v 
Opponens digiti minimi Opposes joints of digit v 

1.14 Skin 

The skin is the largest organ of the body. The skin consists of three distinct layers, the 

epidermis, dermis and hypodermis. It is of variable thickness approximately 1-2 mm in 

depth. However some areas of the skin such as the soles of the feet can be up to 6 mm in 

depth. The structure of the skin is dependent upon its function. The skin consists of two 

main layers - these are a) the outer epidermis and b) the dermis. The dermis is much 

thicker than the outer epidermis and consists of two sub-layers. The thinner epidermis 

consists of four or five sub layers depending upon the location of the skin (5 layers are 

present for example on the sole of the foot or the palm of the hand as both of these areas 

are exposed to friction on a regular basis). 

1.14.1 Epidermis 

The main purpose of the epidermis is to provide superficial protection to the underlying 

tissue. It is composed primarily of stratified squamous epithelium. A thin surface layer is 

composed of dead cells. The five layers of the epidermis are stratum corneum, stratum 

lucidum, stratum granulosum, stratum spinosum and stratum basale. The stratum corneum 

is composed primarily of keratinized dead skin cells that are flattened and non-nucleated, 

they are cornified. It provides the cells for regeneration of the epidermis. The stratum 

lucidum is found only in the palms of the hand and the soles of the feet. The stratum 

granulosm is composed of one or more layers of granular cells that contain fibres of 

Keratin and shrivelled nuclei. These granular cells contain lipids, which allow the formation 

of a waterproof barrier. Stratum spinosum lies above the basal layer and is made of several 
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layers of cells that have spine-like projections from them. Protein synthesis occurs here. 

The stratum basale contains pigment and produces melanocytes. The cuboidal cells in this 

layer undergo frequent mitosis. 

1.14.2 Dermis 

The two layers of the dermis are named stratum papilliorosum and stratum reticularosum. 

The stratum papilliorosum accounts for approximately one fifth of the entire dermis and 

forms the upper layers of the dermis which 'touches' the epidermis. The thickness of both 

the epidermal and dermal layer varies on the fingertips. Dermal thickness varies as a result 

of many factors including age, sex and body region (Tur 1997, Vitello-Zuccarello 1994). 

This layer contains the vascular network that facilitates blood flow for thermoregulatory 

purposes. Pain, touch and warmth and cold receptors are also located here. Numerous 

processes called 'papillae' from this layer protrude into the epidermal layer of skin. The 

papillae form the base for friction ridges on the fingers and toes (fingerprints). The fibres in 

the stratum reticularosum are arranged to form a tough flexible network and give the skin 

its strength and elasticity. 

The hypodermis is an attachment layer for the dermis and underlying tissues. The definitive 

boundary for this area can be difficult to identifY due to its irregularity. It consists primarily 

of adipose and connective tissue. 

1.14.3 Calluses 

Calluses are a thickened keratinised layer of the epidermis. The cornified epidermis 

(Stratum corneum) is the thickest part on the finger pad and often on parts of the palm of 

the hand. It is also generally thicker on males than females (Fruhstorfer et al. 2000). It has 

been shown (StollI977) that the thickness of the epidermal layer, as a result of callus build 

up, resulted in significantly thicker fingers in the heavily callused hand of a machine worker 

compared to a desk worker with minimal calluses. It is thought that this callus layer 

increased insulation when exposed to thermal stimuli as the machinery workers reported a 

significant delay in pain when compared to the office workers. 

1.14.4 Sensory Receptors in the Skin 

The skin is innervated with approximately one million afferent nerve fibres. The majority of 

these terminate in the face and extremities; relatively few supply the back. The number of 

thermoreceptors present on the lips, for example, is 15 to 25 per cm2
, compared to less 
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than 1 per cm2 on the trunk:. There are between 3 to 5 cold receptors per cm2 on the finger 

(Schmidt and Thews). There are two main types of sensory endings; these are corpuscular 

and free. Pain receptors are actually free nerve endings. Although nerve endings are 

specialised to respond to tissue damage, the skin receptors will relay impulses that are 

interpreted as pain if they are excessively stimulated. There are several million-pain 

receptors present in the skin and these sensors respond to various tactile, pressure, 

temperature and pain sensations. 

Free nerve endings occur in the superficial dermis and the overlying epidermis. These are 

the receptors for pain, touch, pressure and temperature. Hair follicles have fine nerve 

filaments running parallel to and encapsulating the follicles; each group ofaxons is 

surrounded by Schwann cells, which mediate touch sensation. 

Thermoreceptors are widespread throughout the dermis ofthe skin. Both thermoreceptors 

are approximately 1 mm in diameter. The perception of temperature is on a progressive 

scale (e.g. freezing cold, cold, cool, neutral, warm, hot and burning hot). The perception 

of these sensations are as a result ofa combination of three types of sensory sensors (cold, 

warm and pain). The three sensors are stimulated to a varying degree dependant upon the 

temperature of the object being touched. There are two main types of thermoreceptor. 

These are the organs ofRuffini and the Bulbs ofKraus. The organs ofRuffini are the heat 

receptors and are located deep within the dermis. The organs ofRuffini are elongated oval 

structures most sensitive to temperatures in excess of 25°e. Temperatures above 45°e 

cause impulses through the organs of Ruffini that are perceived as painful, burning 

sensations. 

The bulbs of Kraus are the receptors primarily responsible for the detection of cold 

sensations. There are many more 'cold receptors' than there are 'heat receptors' (between 3 

to 10 times more cold receptors being located across the body). The cold receptors are 

also much closer to the skin surface. The bulbs ofKraus are most sensitive to temperatures 

between 15°e and 34°e (Zotterman et al. 1959). Temperatures below lOoe can cause the 

painful 'freezing' sensation. 

Page 16 



Although is it believed that both cold and warmth receptors reside in the dermis of the 

skin, Morin and Bushnell (1998) have suggested cold receptors are actually located deeper 

than warmth receptors. Further research may be needed in this area. 

1.14.5 Physical Properties of Skin 

Parsons (1993) identified a number of factors that can influence the condition of skin. 

• Age 

• Gender 

• Ethnicity 

• States of vasoconstriction! vasodilation 

• State of thermoregulatory sweating 

• Circadian Rhythm 

Other factors can include occupation, injury and regional differences in epithelial structure 

and thickness. 

Table 1.3. Shows the properties o/Skin on the hand (parsons, 1993). 

Dimension 

Approximate values of physical dimensions 
Mass 

Water content 
Thickness 

Approximate values for thermal properties 
Density(p) 

Specific heat (c) 

Thermal conductivity (k) 
Thermal diffusivity (a=k/pc) 

Thermal penetration 
coefficient [b=(kpcil2] 

Wm-l K"l 

(m2s-l )x10-8 

J m-2 S-ll2 K"l 

Units 

Kg 
% 

mm 

Kgm·3 

JKg·l K"l 

Vasoconstricted 
0.2-0.3 

4.63-6.95 
929-1138 

Values 

4 
70-75 
0.5-5 

860 
5021 

Vasodilated 
0.4-0.9 

9.26-20.83 
1314-1971 

The rate at which heat transfers from the skin to a cold material will affect the skin's 

response. When skin is exposed to a cold environment, a thermal gradient will be apparent 

between the skin and the environment resulting in the skin starting to cool. The higher the 

thermal gradient between the warm hand and co Id environment, the quicker the hand will 

cool down. The gradient of the thermal gradient is dependent upon the difference in 

temperature between the hand and the environment, the bigger the difference the steeper 

the gradient. However, as the hand is made up of several different structures and 

components it is necessary to consider their interaction with each other and the 
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environment as a whole. Table 1.4 is taken from Sekins and Emery (1982) and shows the 

differences in density and specific heat capacity of the structures that make up the hand. 

Parsons (1993) points out with reference to Table 1.3, that because of the dynamic and 

'living' nature of skin, it is only possible to provide approximate 'static' values for its 

properties. This may partly explain the differences in density and specific heat noted 

between the two tables, as Table 1.3 lists the density of skin as equivalent to the density of 

pure fat as described in Table 1.4 and as such is unlikely to give an accurate impression of 

the density of skin on the hand. 

Table 1.4. Thermophysical properties o/the tissues in the hand (Sekins and Emery 1982) 

Tissue Qualification Thermal Specific Density 
Conductivity heat (Kgm~ 
(Wm-l Kl) (JKg-l Kl) 

Skin cold hand 0.335 
normal hand 0.960 3770 1000 

Fat pure fat 0.190 2300 850 
Muscle living muscle 0.642 3750 1050 
Bone cancellous 0.582 1590 1300 

cortical 2.28 1590 1700 
Blood whole blood 0.549 3640 1050 

1.15 Individual Differences 

Terregino et al. (1985) found women to have variable responses to cooling of the hand in 

air over the phases of the menstrual cycle. Women were found to be least tolerant of cold 

during the time of menstruation. Havenith et al. (1992) found that women on average had 

lower hand skin temperatures than men and also have smaller hands with consequently 

smaller contact areas. Havenith found that the slimmest hands had the lowest temperatures 

with the average hand temperature differing by as much as 5°C. Jay et al. (2000) reported 

that size, structure and shape of the hand influences contact cooling. There is also evidence 

(Havenith 1992) that body size and aerobic capacity have an effect ofhurnan responses to 

heat stress. 

Chen (1997) reported that numerous factors affected the overall response of an individual 

to cold exposure, for example, body composition, physiology and emotional state. Enander 

et al. (1980) determined cooling amongst occupationally exposed workers was not severe 
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enough to produce physiological adaptations, although some psychological adaptation was 

indicated. 

Circadian rhythm also influences temperature. Core temperature is at its lowest in the 

morning, increasing throughout the day until decreasing again in the evening. Generally 

speaking, a higher core temperature results in a high mean finger skin temperature during 

the hunting reaction (described later in this chapter). During cold induced vasodilation, 

circadian rhythm effects in the following ways: 1) The hunting reaction is more 

pronounced in the afternoon than in the morning or at night (Kramer and Schulze 1948) 2) 

There is a difference in average maximal finger skin temperature between the summer and 

winter (Kramer and Schulze 1948), Elkington also showed that finger blood flow during 

immersion in cold water was less during the Arctic winter than in the summer. 

Molnar et al. (1973) and Stoll (1977) found that heat exchange at the material skin 

interface is influenced by thermophysical properties of the skin itself and its state and 

nature including factors such as wetness and skin thickness. 

1.16 Cutaneous Sensory System 

The brain receives two types of sensation. These are the superficial sensations, which 

includes pain temperature and crude touch, and the deeper sensations including sense of 

position, sense of movement, vibration, and fine touch (Electronic Handbook of 

Dermatology). Some aspects of superficial and deep sensations have to reach the cortex in 

order to be detected. These include tactile localisation, tactile discrimination, and the 

detection of the temperatures that are neither very hot nor very cold and the sense of 

position and movement. 

1.17 Cutaneous Vascular System 

The circulation of blood through the skin has two major functions: the nutrition of skin 

tissue and the regulation of body temperature via countercurrent heat exchange and 

exchange with the external environment. 

There is a centre in the anterior hypothalamus ofthe brain that controls body temperature. 

When this area is heated, vasodilation of all the skin vessels of the body occurs as does 

sweating. Similarly, cooling this area results in vasoconstriction of skin vessels and the 
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cessation of sweating. The hypo thalamus controls these reactions by sympathetic nerves 

and vasoconstrictor reflex centres in the spinal cord. Sympathetic noradrenergic 

vasoconstrictor fibres supply the vessels of the skin. The system is most prevalent in the 

hands, feet, lips, ears and nose due to the large numbers of arteriovenous anastomoses 

(AV A's) found there. At a normal body temperature, the sympathetic vasoconstrictor 

nerves keeps the A V A's closed, however, when the body become over heated, the 

sympathetic discharge is significantly reduced resulting in the A V A's dilating. This 

increases the blood flow to the skin, increasing heat loss from the body. Although the 

relaxation of the AV A's is the primary reason for vasodilation and therefore enhanced heat 

loss, it is thought, that sweating may also influence vasodilation. Sweating releases 

Kallikrein, which is an enzyme that splits the polypeptide bradykinin from a globulin 

present in the interstitial spaces. Bradykinin is a powerful vasodilator (Electronic textbook 

of Dermatology). 

However, when a person is exposed to an ambient air temperature of approximately 22°C, 

certain areas of a naked man can start to show differences in skin temperature which vary 

from one region to another. At room temperature blood supply can be reduced by 20 -

30% in order to conserve heat to the core. 

Blood flow decreasing 

Ambi ent temperature decreasing 

Figure 1.2. Taken from (Lehmuskallio 2000) illustrates the blood flow responses to conserve 
core temperature with decreasing ambient temperature. 
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1.17.1 Physiological Amputation 

Physiological amputation occurs as a result of a declining internal temperature. It is a 

result of severe vasoconstriction of the blood flow to the extremities in order to conserve 

heat flow to the core (Raman and Roberts, 1989). Vangaard (1990) showed that when 

participants were exposed to an environmental air temperature of 8°C the effect of blood 

flow to the hand was identical to that when compared to a completely occluded hand. 

1.17.2 Counter Current Heat Exchange 

As described previously, when the body starts to cool down, skin arteries will respond by 

regulating the blood flow to the extremities. This is done by the closure of AV A's, which 

control the amount of blood entering the superficial veins. Blood flow to the hands can be 

drastically reduced by vasoconstriction. Blood will then return to the core via deep veins 

located close to the arteries. This mechanism allows counter current heat exchange 

(CCRE) to occur and transfers heat from the efferent arteries to the afferent veins and thus 

prevents it from being lost in the extremities. Bazett et al. (1948) first described CCRE. 

CCHE occurs when two adjacent blood vessels with the opposite direction of blood flow 

(e.g. veins and arteries) exchange heat. 

Warm 
Artery 
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BkladRow 
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/ 

Figure 1.3. Shows the process of heat exchange including the temperature gradient through 
Counter current Heat Exchange 
(Taken from TTUHSC, http:phy025.lubb.ttuhsc.edu/Pressley/Course/Temp-Reg. hlm) 

However, it should be considered that, in the skin, arterial and venous vessels are small, so 

almost no CCHE takes place. Jiji et al. (1984) determined that the arteries that make a 

significant contribution to CCHE are located in the deep tissue (deeper than 4 mm under 
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the skin) and have much larger diameters. It was also determined, that to make any 

significant effect on CCRE the temperature gradient between the two vessels had to be 

large. This difference can be found with the major blood supply vessels located close to the 

core. The temperature gradient between the two vessels can differ by as much as 10°e. 

The blood vessels located closer to the surface can differ by as little as O.l °C to 0.2°C 

which would have little impact on CCRE. 

Raman and Roberts (1989) calculated that CCRE resulted in a maximum of 30 Wheat 

loss at a hand temperature of 25°C and Tikuisis and Ducharme (1990) calculated a 53 % 

efficiency for CCHE in the forearm. 

1.17.3 Blood Supply to the Hands 

Blood is supplied to the hands via two main arteries, the radial and ulnar artery. These two 

arteries bifurcate and form the deep palmar arteries and the superficial palmar arch (Gray 

1980). The finger arteries are supplied primarily from these two arches. Both dorsal and 

palmar arteries run parallel to the phalanges on both sides. The palmar digital arteries are 

the dominant arteries supply most of the blood as the dorsal digital arteries are much 

smaller in comparison (Smith et al. 1991a). Figures 4 and 5 illustrate the blood supply to 

the hands. 
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Palmar View of the Left Hand 

Proper palmar digi tal 

Arteria radialis indicis 

Dorsal digital vein 

Palmar venous pJe"us'-__ 

Superficial vel1ns-- __ ~ 

Radial Artery: superficial 

palmar branch 

Proper palmar 
digital arteries 

Common palmar digital 
arteries 

Superficial palmar arch 

Median vein of forearm 

Dorsal carpal arch 

Reference : Primal Pictures 

Figure 1.4. Illustrates the blood supply to the palmar aspect of the hand 

Dorsal digital 

Dorsal digital 
arteries 

Dorsal metacarpal 
veins 

Fifth dorsal 
metacarpal artery 

Dorsal venous plexus 

Basilic Vein 

Proper palmar digital arteries 

Proper palmar digital veins 

dorsal metacarpal 

Dorsal carpal arch 

Cephalic vein 

Reference : Primal Pictures 

Figure 1.5. Illustrates the blood supply to the dorsal aspect of the hand 
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The blood exits the hands by the superficial and deep veins. The palmar digital veins open 

into superficial arches and the palmar metacarpal veins open into deep arches. The arterial 

and venous network is primarily connected by capillaries. Capillaries take blood from 

arterioles which lead off smaller arteries. In tissues similar to the mesentery of connective 

tissue, the first part of the capillary has a coat of smooth muscle. This is named a 

precapillary sphincter, but the existence ofthese structures is under debate (Currie 1990). 

Wilkins et al. (1939) determined that blood flow to the distal phalanx was greater than 

that of any other phalanx primarily due to the greater number of AV A's present there. 

1.17.4 Cold Induced Vasodilation (CIVD) 

Cold induced vasodilation is "a cyclic vasodilation resulting from the cyclic loss of the 

responsiveness of the vascular smooth muscle to Noradrenalin that occurs with the 

lowering oflocal temperature" (Blatteis 1998). Blood flow therefore temporarily increases 

resulting in an increase in local temperature until vasoconstriction occurs again. The 

increased blood flow and resultant increase in local temperature are caused by a relaxation 

of the smooth muscle cells of the AV A's (Bergersen 1999). 

CIVD occurs as a response to extremity being exposed to a cold environment. Initially 

vasoconstriction occurs to limit heat loss. However, in a severely cold environment after 

about ten minutes, the vessels dilate again allowing blood to pass through to the skin, 

thereby decreasing dexterity losses. Lewis (1930) was the first to describe CIVD. He 

termed the phenomenon of the repeated fluctuations in finger skin temperature 'hunting'. 

There are several phases experienced as a result of cold exposure. Initially, 

vasoconstriction will be experienced, then CIVD as the blood vessels dilate and local skin 

temperature increases. This phase would occur after approximately ten minutes of 

exposure to cold water. Vasoconstriction then occurs again, the Hunting reaction then 

follows as the cycle of vasodilation and vasoconstriction repeat until final vasodilation 

occurs. 

1.18 Cold Acclimatisation 

Cold acclimatisation refers to the ability of the body to adapt physiologically to changes 

that occur slowly in the environment changing from warm to cold. Cold adaptation 

however, would appear to be limited when compared to the ability of the body to adapt to 

heat. The following studies have investigated local cold acclimatisation. 
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Rintamaki et al. (1993) investigated eight subjects not previously acclimatised to the cold 

over 53 days in the Antarctic. The participants conducted fieldwork requiring the use of 

bare hands. It was determined that there appeared to be some adaptation to the cold. This 

was put down to exposure to the outdoor conditions. 

LeBlanc et al. (1960) determined that cold acclimatisation did occur. A group of Gaspe 

fishermen used to cold water immersion of their hands was compared to a control group 

unused to cold water exposure. Higher finger skin temperatures were found amongst the 

fishermen than the control group. NeIms and Soper (1962) also determined that there were 

higher finger skin temperatures and an earlier onset of CIVD when British fish filleters 

were compared to a control group. 

However, studies such as Stein et al. (1949), Horvath et al. (1947) and Miller (1949) 

found no evidence of acclimatisation to cold existing. However, it is possible certainly in 

the case ofBridgman (1991) that cold acclimatisation did not occur due to the frequency, 

duration and severity of exposure. Bridgman investigated cold acclimatisation of divers 

who were sporadically exposed to the cold. Massey (1959) upon observing a group of new 

arrivals to Antarctica and comparing them to a group staying for a consecutive second 

year found an initial difference in finger skin temperatures between the two groups, but 

found that this difference disappeared within six weeks of arrival. However, the people in 

their second consecutive year were found to have a greater tolerance to frostbite induced 

under experimental conditions. 

It would appear the majority of findings suggest an earlier onset of CIVD in response to 

cold acclimatisation (Smith 1961, Purkayastha et al. 1992, LeBlanc et al. 1960 etc). 

However, psychological adaptation to cold sensitivity and cold induced pain has been 

shown to occur. LeBlanc (1960) found· that the Gaspe fishermen complained less about 

cold. Nelms and Soper (1961) found that several members of the control group (non

acclimatised) actually passed out and became stressed whereas the fish filleters did not. 

Enander et al. (1980) also demonstrated that there were significantly lower pain and cold 

sensations reported amongst meat cutters regularly exposed to cold and a control group. 
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LeBlanc and Potvin (1966) suggested the seemingly increased tolerance to cold pain and 

sensitivity was due to the central nervous becoming accustomed to repeated cold 

exposure. 

1.19 Cold Injuries 

Wilson et al. (1976) reported that skin begins to freeze at skin temperatures below -lOoC. 

This however, was thought to be as a result of supercooling of tissue as a result of the low 

ambient temperature. The freezing point of skin has been found to be much higher during 

contact with cold bars. Lewis and Love (1926) measured the freezing point of human skin 

in contact with metal bars and found the freezing point to be approximately -2.2°C, whilst 

Keatinge and Cannon (1960) exposed the finger to brine water and found the freezing 

point to be much higher at approximately -0.6°C. 

When the body becomes cold, vasoconstriction or even physiological amputation may 

occur. This leads to a decreased amount of blood reaching the hand. The hand is able to 

produce a very small amount of heat itself due to the small muscle mass there. Raman and 

Vanhuyse (1975) estimated that the metabolic heat production of the hand under resting 

conditions was approximately 0.25 W. This means that blood flow is very important for 

heat input. The decreased amount of blood to the hands leaves them particularly vulnerable 

to cold injury including frostnip, frostbite and chilblains. 

1.19.1 Frostnip 

Fritz and Perrin (1989) described Frostnip as a reversible injury that occurs as a result of 

an ice crystal formation of the skin's surface. The skin itself does not actually freeze. 

Typically it develops painlessly, although a sudden blanching ofthe skin can be observed. 

1.19.2 Frostbite 

Asahina (1966) describes frostbite as being caused by the freezing of the fluids around the 

cells of the body tissue. During prolonged freezing at a relatively low temperature ice 

crystal begin to form in the extra-cellular electrolytes. This leads to a concentration of 

electrolytes, which in turn leads to osmosis of the remaining water from the cell eventually 

leading to cell death. Fast cooling as a result of exposure to a colder environment leads to 

the tissue freezing more quickly. Ice crystals form immediately both extra and intra

cellularly resulting in immediate cell damage and death (Whittaker 1972). The size of the 
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ice crystals formed is related to the speed of cooling. The faster the cooling the greater the 

size of the single crystals (Holden and Saunders 1973). 

The symptoms of frostbite include an initial redness and swelling. The person experiences 

a diffuse numbness that mayor may not be preceded by a prickling itchy sensation. If the 

frostbite is superficial, then pressing on the skin causes a dent as the underlying tissue is 

hard due to freezing (Fritz and Perrin 1989). 

1.19.3 Trench Foot (Immersion Foot) 

Trench Foot occurs as the result of repeated exposure to a wet, cold environment over a 

period of days or hours at temperatures only slightly above freezing. Damage occurs to the 

capillaries leading to necrosis or gangrene ofthe skin, muscles, nerves and soft tissue. 

1.19.4 Chilblains 

Chilblains are usually small itchy, red swellings on the skin These can become increasingly 

painful, swollen and dry resulting in cracks in the skin which expose the foot to the risk of 

infection. They occur on the toes, particularly the smaller ones, fingers, the face and the 

lobes of the ears. They can also occur on areas of the feet exposed to pressure, for 

instance, on a bunion or where the second toe is squeezed by tight shoes. 

1.20 Conclusions 

1. At present, there is no standard to address the associated problems of contact cooling. 

2. Contact cooling may occur where tools or machinery are operated in cold conditions. 

3. Contact cooling occurs either accidentally or as a result of sustained contact. If the 

contact is sustained then tissue damage and manual dexterity deficits may result. 

4. Sustained contact with a cold surface would occur where tools are handled in cold 

environments for example, a hammer or a gun. 

5. Heat always transfers from higher to lower temperatures. 
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6. The majority of heat transferred during contact cooling, occurring as a result of contact 

with a material with a high contact coefficient, is transferred away from the hand to the 

cold material by conduction. However, when the hand is in contact with a material of a 

low contact coefficient at low temperatures (e.g. - 20°C) the majority of heat would be 

transferred away from the hand by convection although some heat loss through conduction 

would still occur. 

7. A thermal gradient exists between the hand and the cold material. The steeper the 

gradient, the faster heat is transferred away from the hand. 

8. Contact temperature change over time during cold contact has been successfully 

described using a modified Newtonian model with two time constants. 

9. The skin is the largest organ in the body and consists of three layers; the epidermis, 

dermis and hypodermis. 

10. Pain receptors are free nerve endings that respond to tactile pressure, temperature and 

pain sensations. 

11. There is a high concentration of temperature receptors found in the hands and feet 

compared to the rest ofthe body. 

12. There are many individual differences in responses to cold. 

13. Blood is the main source of heat input into the hand. When vasoconstriction occurs as 

a result to cold exposure, blood flow to the hands is drastically reduced and so the hand 

cools quickly. 

14. Physiological amputation occurs as a result of decreased temperatures. It is a result of 

severe vasoconstriction ofthe blood flow to the extremities. 
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15. Manual dexterity can be divided into five areas; finger dexterity, manual dexterity, 

wrist finger speed aiming and positioning. Tactile discrimination and strength capability 

and sustainability also affect manual dexterity. 
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2 Equipment and Methodology 

2.1 Chapter Summary 

This chapter describes the experimental research methods used to investigate the effects of 

contact cooling. It also describes the construction ofthe cool box facilities. The aim of this 

research is to investigate the effect of full hand contact whilst gripping cold materials and 

any subsequent effects on manual dexterity. This will be done for both short term 

(approximately 5 minutes) and long term (approximately 20 - 30 minutes) exposure over a 

range of temperatures (between O°C and -35°C). In order to achieve and maintain these 

temperatures equipment design requirements must be determined prior to experimentation. 

The primary design aim of this equipment was to fulfil the criteria of the EU sponsored 

cold surfaces project (SMT4-CT97-2149), however a further specification of the 

equipment was that it should meet any future requirements of cold surfaces related 

projects in the future. 

2.2 Design Specification 

2.2.1 Cold Chamber 

The cold chamber must be designed in such a way that temperatures of at least -35°C can 

be reached and maintained even with the introduction of a participant's hand into the 

environment. Participants must therefore be able to enter their hand into the environment 

and at the same time see the correct object to grip. This is a necessity not only to ensure 

that the correct measurements are recorded, but also for the safety of the participant, (e.g. 

Page 30 



contact with the metal pulley system at temperatures of -35°C would result in skin damage 

after a very short contact time). 

2.2.2 Temperatures 

The research will require participants to be exposed to materials ranging in temperature 

from O°C to -35°C. These temperatures must be maintained even with the introduction of 

the participant's arm to the environment. 

2.2.3 Materials 

The rate of heat transfer from the participant's hand to the bar is influenced by the thermal 

properties of the material as well as the temperature gradient (First law of 

thennodynamics). Therefore, the materials chosen for testing should represent a wide 

range of potential materials that a worker may be exposed to in the workplace. As the 

dimensions of the object can also affect the rate of heat exchange, it was decided that all 

materials shall be ofthe same shape and dimensions. 

2.2.4 Lifting Force 

As all the materials are required to be of the same dimensions, the materials will have 

different masses, for example, aluminium will have a much lower mass than stainless steel. 

This would result in the participants having to exert differing amounts of pressure and 

effort in order to lift and keep the bar in the required position. It is also important to 

ensure that the bar is not so heavy that the participant is unable to maintain the position of 

the bar in the air for the longer contact durations. The system needs to be able to 

compensate for these weight differences. The participants must also exert the same amount 

of pressure in order to lift and hold the bar in the air regardless of the differing masses of 

the bars. 

2.2.5 Skin Cooling 

For the safety of the participants and to gather accurate data, the skin Isurface of material 

temperature must be measured (contact temperature). The contact temperature will be 

taken rather than just skin or material temperature to increase safety for the participant and 

give a more realistic impression of what is happening at the actual contact site. In 

conditions where the skin is in contact with a solid, thermally conductive object, it is 

technically difficult to measure the actual skin temperature. As in inserting sensors into the 

skin was deemed unacceptable, the contact temperature was measured with 

thennocouples. The contact temperature will give a more accurate reading of what is 
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actually happening at the site of contact, and the combination of the two temperatures will 

mean that the skin temperature is actually higher than the recorded temperature. This will 

increase safety margins for participant withdrawal. The conditions (material * temperature) 

chosen for this research will induce two types of cooling. A fast cooling and a slow 

cooling. It is expected in the fast cooling condition that temperatures will drop rapidly. For 

this reason a temperature sensor with a rapid response time and sampling rate is required. 

The temperature sensor must also be able to operate accurately throughout the anticipated 

temperature range. 

2.2.6 Data Acquisition and Recording 

Due to the risk of skin damage to the participants a method of data acquisition that also 

allows the experimenter to monitor the cooling of the participant in real time is required. It 

is also important that the data be recorded in a format that a compatible with later data 

analysis. 

2.2.7 Subjective Responses 

Sensations most likely to be affected as a result of whole hand contact cooling should be 

determined and suitable scales devised and used. 

2.3 Equipment 

2.3.1 Cold Chamber 

The freezer used is a modified Hotpoint Iced Diamond 87610 measuring 51cm x 55 cm x 

83 .5cm (externally) (see Figure 2.1.). 

Figure 2.1. Thefreezer before modification 
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Two adaptations to the external appearance of the freezer were necessary, this was the 

addition of an area that would allow participants to introduce their hands to the 

environments, and the addition of a window to allow participants to see the correct area to 

grip. The following mock up of the freezer was made so that the freezer would meet the 

requirements of the experiment. Figure 2.2 below shows the freezer with the mock up 

door in place. The purpose of the mock up was to allow several positions and dimensions 

of armhole and window to be assessed so the optimum position of both could be 

determined. 

Figure 2.2. Mock up of Experimental Chamber Door 

For visibility purposes, it was necessary to cut a hole in the door of the freezer to fit a 

window. The window enabled subjects to see what they were touching in the freezer. The 

window is made of Perspex that is approximately 1.1 cm thick. Four pieces of this Perspex 

are glued together to form a see through hollow 'box'. Another larger sheet of Perspex is 

screwed onto the 'box' and then screwed onto the front of the freezer door to minimise any 

air and therefore heat exchange between the inside of the freezer and the outside 

environment. Inside the hollow box is a custom made light, with a reflective shield that 

minimises reflection onto the Perspex and the amount of light that shines directly into the 

subject's eyes. The light operates on a dimmer so that it can fulfil the dual function of 

lighting the interior of the freezer when dimmed, and defrosting the Perspex when the light 

is on full power. When the light is dimmed but still bright enough to illuminate the interior 

of the freezer, sufficient heat is given off to heat the interior of the freezer slightly. For this 
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reason the light was only used for illuminating the interior of the freezer when a subject 

was about to put their hand into it. A small hole in the Perspex box and covering Perspex 

sheet on the exterior of the freezer is present to allow for the wires of the light. Figures 3 

and 4 show the window from outside and inside the freezer. 

Figure 2.3. Outside View a/Window Figure 2.4. Inside View a/Window 

An armhole (approximately 11.5cm in diameter) was cut into the freezer door below the 

window. Initially two access points (right and left) were considered. The dual access point 

was disregarded however as it affected the insulation of the freezer and would have made 

sustaining temperatures at -35°C impossible. Plastic tubing was glued inside this hole. The 

aim of the plastic tubing was to allow the participant to rest their forearm on it 

comfortably without the pressure of a narrow band affecting either comfort or blood flow. 

The tube protrudes slightly at both sides of the freezer door. In order to maximise 

insulation and minimise heat exchange between the internal environment of the freezer and 

the external environment a 'sleeve' part of an industrial rubber glove was glued to the 

outside of the tubing on the exterior side of the freezer door. The end of the rubber sleeve 

was folded over and sewn in place. A length of cord was threaded through this and a 

spring-loaded toggle attached to the end of the sleeve. When a subject is not using the 

freezer the rubber sleeve is folded into the freezer and a polystyrene bung is fitted into the 

hole. 
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Figure 2.5 and Figure 2.6 show the armhole from the inside and outside of the freezer door. 

After trial runs, it was noted that there was a 2°C degree difference in temperature 

between the top and bottom of the freezer. To eliminate this, a fan was fitted to the bottom 

of the interior side of the freezer door. The fan was used to circulate the air within the 

freezer. The fan fitted however was too powerful and resulted in the interior of the freezer 

heating significantly. A smaller computer fan was then fitted. The smaller motor on the fan 

did not cause the interior of the freezer to heat, but did result in a wind-chill on 

participant' s hands, so this feature was only used prior to the introduction of the 

participant' s hand and after it was removed. It was determined this was effective in 

eliminating the 2°C heat difference within the freezer. 

2.3.2 Climate Control 

A thermometer (typePTIOO sensor (platinum resistance thermometer)) is placed in close 

proximity to the bars so that the temperature of the freezer near to the gripping area is 

measured. A hole has been cut into the right hand side of the freezer close to the bottom to 

allow for wires including that of the thermometer to exit the freezer. Gaps between the 

wires and the hole were filled with polystyrene so air exchange between the two 

environments was at a minimum. 

Domestic freezers generally operate at a temperature range of -18°C to -20°C. The freezer 

purchased operated at a temperature of -19°C (±2.0°C). As this was a much higher 

temperature than the research required an alternative method of temperature regulation 

was required. A PID (Proportional Integrative Differential) controller (FUJI Electric) was 

therefore used to regulate the temperature of the freezer as sensed by the PT! 00 sensor 

more accurately than could realistically be expected from a household freezer. A 'normal' 

household freezer may allow the air temperature within the freezer to vary in excess of 2°C 
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before the thermostat reacts to the change in temperature. It is not acceptable for the air 

temperature in the experimental freezer to vary by this much especially before the subject's 

put their arm into the freezer. One reason for this is that the freezer will inevitably heat up 

from the warmth of the subject's arm, and an additional two degree difference in 

temperature would change the environmental conditions significantly, and make the 

conditions more difficult to control and therefore more difficult to replicate for other 

subjects (the PID controller keeps the temperature within by O.8°e either way from the 

specified temperature) internally in the freezer. The PID controller overrides the existing 

thermostat. However the P (proportional) and I (integrative) characteristics were not 

compatible with the freezer's compressor, so an on/off function with a differential of 0.1 °e 

was used. 

2.3.3 Air Conditioning Unit 

Due to the adaptations made to the freezer (armhole and window) after the introduction of 

the PID controller, the minimum temperature that the freezer could reach and maintain 

was approximately -28°C. As an operating range of 0 °e to -35°C was required for the 

research this was insufficient. Two main ways of achieving a lower internal temperature 

were considered feasible. The initial method was to increase the insulation around the 

freezer. This was tried and resulted in the motor used to power the compressor increasing 

in temperature and warming up the environment external to the freezer. This resulted in 

the freezer having to do more work in order to achieve and maintain temperatures which it 

previously had no problems with. The second method involved lowering the external 

temperature of the freezer. To do this, the adapted freezer was placed inside an air 

conditioned unit measuring I22.5cm x 82cm x I24cm. The air conditioned unit allowed 

the freezer to reach lower temperatures by cooling the air that is surrounding the freezer. 

The hole cut into the front of the air conditioning unit (measuring 80cm x 80cm), allows 

the freezer to be placed into and removed from the cool box. The hole is covered by a 

polystyrene sheet, which insulates the inside of the cool box (llOcm x 69cm x 106cm) 

from the higher temperature of the prep room. The temperature within the cool box can 

reach ooe as measured during trials and as indicated by the presence of frost on the freezer 

when the polystyrene sheet is removed. 
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With the air conditioning unit is on and the polystyrene sheet is in place over the opening, 

it was possible for the freezer to reach temperatures of -40°C after approximately three 

and a half hours and a material surface temperature of -38°C could be achieved after five 

hours. Upon removal of the polystyrene sheet covering the opening of the air conditioning 

unit the internal temperature and material temperature could be maintained for a further 

two and a halfhours. Figure 2.7 shows the freezer inside the air conditioning unit. 

Figure 2.7 Freezer inside the air conditioning unit 

2.3.4 Pulley System 

The shelves inside the freezer were removed. A pulley system was incorporated (see 

Figure 2.8). The metal rods in which the pulley is centrally located is made of aluminium 

and it is placed approximately 11.5cm from the top of the freezer and is 21cm long. The 

pulley is 5cm in diameter. The second pulley is located on the outside wall on the left-hand 

side of the freezer. As the bars were the same size but of different masses compensating 

weights were required so that the same effort and pressure was applied to the bar in order 

to lift and hold the bar in the air regardless of material property. The compensating weights 

for the bars are attached here by an S hook, or in the case of the wooden bar, which was 

less than 500g; lead was attached to the bottom of the bar with a nail. The compensating 

weight was hooked onto the pulley system so that it was possible to change weights easily 

and quickly. The bar itself is inside the freezer suspended by plaited cord from the pulley. 

The bar inside the freezer was attached to the cord by a hook so that the bars can be 

changed within the freezer during an experiment. When the bar is not in use, it rests on the 
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bottom of the freezer in the correct position for gripping. Other bars that are not in use at 

the time, but will be needed later in the experimental session were placed on the ledge at 

the back of the freezer. 

Figure 2.8 shows the freezer set up for experimentation. 

Table 2.1 Weights and compensating weights for each material 

Material Mass (in Kg) Compensating Weight 
(in Kg) 

WOOD 0.269 + 0.23 1 
NYLON 0.716 - 0.216 

ALUMINIUM 1.419 - 0.919 
STONE 1.399 - 0.800 

STAINLESS STEEL 3.849 -3.349 

2.4 Materials 

2.4.1 Contact Properties 

This research required a range of contact materials, that would represent a range of 

thermal properties in order to accurately assess cooling speeds and effects as a result of 

full hand contact with materials commonly found in the work place. It was decided for 

contact cooling, that bars of five different materials should be used: wood, nylon, stainless 
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steel, aluminium and stone. All these materials have different thermal properties as defined 

by their contact coefficient: 

Contact Coefficient ~ = (kpc) 112 

Where k = thermal conductivity, p = density and c = specific heat. 

The properties of the materials chosen are given below in Table 2.2. 

Table 2.2. Thermal properties a/test materials (I'ested by VIr, Finland, June 14, 1999) 

Material Density Thermal Specific Thermal Thermal 
(p) Conductivity Heat (mass) Diffusivity Penetration 

(k) (c) (a=kp·Jc·J) coefficient 
Kgm·;j W mol 1("1 J Kg-l 1("1 10-<>mL s ol Jm-2 S-J/2 K·1 

Aluminium 2770 180 900 28 .80 21180 
Steel 7750 14.8 461 4.20 7270 

Nylon 1200 0.34 1484 0.19 780 
Stone 2800 2.07 750 0.99 2084 
Wood 560 0.22 2196 0.18 520 

Factors other than the thermal properties of the material can affect contact cooling 

including, surface cleanliness, material mass, material thickness and surface topography. 

For these reasons, the bars were cut from the materials mentioned above into bars 

approximately 400mm in length and 40mm or 42mm (Stone) in diameter. The five 

materials and air (holding the hand in a gripping position in air of the respective 

temperature) were only tested at temperatures appropriate to their thermal properties in 

terms of risk oftissue damage to the subject. The bars had a hole drilled centrally down the 

length of the bar approximately 20cm long and 8mm in diameter. A thermocouple was 

inserted into this hole to measure the 'core' temperature of the bar. At least two bars of 

each material were used. This was found necessary due to time constraints. Although the 

wooden and nylon bar cooled quickly to the required temperature, 3-4 hours was required 

for the stainless steel and aluminium bars to reach and stabilise at the required 

temperatures after contact. By utilising two bars of the same materials participants could 

complete the experiment on both the dominant and non dominant hand in the same 

experimental session, meaning participants were more likely to complete all experimental 

sessions, or four participants could complete an experimental session in a day where it had 

previously been only two. 
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2.5 Objective Measures 

2.5.1 Temperature Sensors 

To measure the contact temperature (the skin-material interface temperature) 

thermocouples were chosen. The primary reasons for selection of thermocouples as the 

temperature measuring device was because they will measure contact temperature, have a 

fast response time (small time constant), are sufficiently sensitive to small changes in 

temperature and operate in the temperature range expected to be achieved in the 

experiment and allow the constant on line monitoring of thermal changes. 

Initially infra red imaging was considered, but disregarded as it would only measure actual 

temperature of the material or skin but not the contact temperature and temperature 

readings would only be intermittent and therefore not in real time. 

The contact temperature, the temperature of the bars and the temperature of the subject's 

hand were measured using T-Type thermocouples (copper constantan). Two different 

thicknesses of thermocouples were used. The finer thermocouple (0.2mm in diameter) was 

used on the subject's hand because it responds more quickly to the change in temperature 

than the thicker thermocouple. This reduces the chance of the subject suffering cold injury 

and gives a clearer picture as to what happens when with regard to the change in 

temperature of the subject's hand. 

Thermocouples are very delicate and frequently break. If this occurs, then the 

thermocouple is stripped of the covering plastic and the two wires within the thermocouple 

are soldered together. It was originally intended that seven thermocouples should be 

placed on the subject's hand for the touching experiment. Electrical interference between 

the thermocouples occurred however, so all thermocouples were insulated with a clear 

varnish to avoid the interference. The thermocouples are plugged into a terminal box, 

which is directly linked to a Strawberry Tree data shuttle, which in turn is connected to a 

Pc. Interference was also occurring between the channels not used and the channels in use 

in the data shuttle. To eliminate the interference, unused channels were shorted. 

It was necessary to calculate how quickly the thermocouples reacted and to see whether 

the insulation (clear varnish) sprayed onto the thermocouples altered the overall response 
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time. To determine the time constants, the thermocouples were kept at a steady 

temperature (room temperature) and then placed in hot water. When the thermocouple 

registered a steady temperature the thermocouple was removed from the water. This was 

repeated three times for each category of thermocouple. After one time constant, the 

thermocouples have reached 63% of the total temperature difference. Insulated (covered) 

and not insulated (uncovered) thermocouples were tested. It was determined that although 

there was a difference in response time between the insulated and not insulated 

thermocouples, the response time of the thermocouples was still fast enough for this 

difference not to matter (time constant ~ 0.1 s). 

2.5.2 Analogue-digital converter 

The thermocouples are plugged into a terminal box which is directly linked to a 16 bit data 

shuttle (model DS-16-8-TC-AO (Strawberry Tree Inc., Sunnyvale, CA,USA) that 

incorporates a cold junction compensation block (this means that only the change in 

current resulting from the specified temperature is measured rather than arbitrary contact 

points), it allows the sample rate to be set and changed. 

2.5.3 Data Organisation Software 

The software used with this data shuttle is Workbench PC for windows 3.00.15 and was 

run under Microsoft Windows 95 TM. This software allows the user to create a programme 

that is specific to that user and experiment via an icon list or pull down menu. The 

functions used will depend upon the type of data collection and how the user wishes to 

utilise the information. The 'cold' programme written for these experiments uses a sampling 

rate of five Hertz, that is one reading every 0.2 of a second. It was anticipated that this 

rate would give a full picture of any changes that may occur rapidly as a result of contact 

cooling and sufficient to minimise any lag effect that could result in injury to the 

participant whilst not creating excessively large data files. A graphical output was used to 

describe the change in contact temperature over time. The temperature axis was in the 

range of 40°C to -5°C to allow the temperature and risk to a participant to be accurately 

assessed. A second axis was added to describe the change in environmental and bar 

temperature with a more appropriate axis. A 'light' on the workbench programme indicates 

whether the subject is lifting the bar (this is helpful in establishing the exact start time when 

the subject made contact with the block as not only is it displayed on the screen but is 

marked in the data). 
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The data collected is immediately written to the hard drive in ASCII text format where it is 

stored in a temporary file in the Pc. To prevent useless information being recorded 

between runs, an on/off button has been incorporated into the programme to stop and start 

recording at any time. A buzzer is also plugged into the data shuttle as a warning signal for 

low skin temperatures. The programme sets the buzzer off when a set point (0 QC) of a 

specified channel(s) is reached. Labelled digital meters were also present on the right hand 

side of the screen to show exactly what temperatures were being recorded at that time. 

Subjects were told to withdraw their hand if their skin temperature reached O.S°c. To 

remind the experimenters that this time was approaching different colours were used for 

the screen output to indicate different levels of temperatures. Green was used if the 

subject's skin temperature was above SOC, yellow was used to indicate that the subject's 

skin temperature was between 1°C and SOC, and red was used to indicate that the subject's 

skin temperature was approaching O°C. It was also possible to display the cooling curves 

on the screen whilst the experiment was being conducted. A constant red line was also 

produced at O.soC to indicate to both the experimenter and the subject that the hand would 

need to withdrawn very shortly. Two different axes were on the graph the axis on the right 

was for skin temperature, and the axis on the left was for the block and environmental 

temperature. 

2.6 Subjective Sensations 

Subjective sensations were taken prior to exposure to the bar and then reported verbally 

every time the sensations changed by the participants. Prior to exposure, a whole body 

rating of thermal sensation was taken (all subjects started the experiment when they 

attained and stabilised at a sensation of -1 (slightly cool) on the thermal sensation scale 

(Fang er 1970)). After this time, as the experiments were related to whole hand cooling, the 

participant was asked to report any changes in sensation for the hand only. 

2.6.1 Thermal sensation 

The thermal sensation scale is an adaptation of the Bedford scale and the ASHRAE 

(American Society of Heating and Refrigeration and Air-conditioning Engineers) scale. 

The original nine point bi-polar scale was adapted to seven points by omitting the upper 

two points (hot and very hot). It was felt that it was unlikely due to the nature if this 

experiment, that participants would attain sensations of this order. 
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The pain, tingling and numbness scales were based on a four points all ranging from 0 

which indicated no sensation to 4 which indicated whether intolerable pain, whole hand 

numb or whole hand tingling. 

The method by which subjects should report changes in any of their sensations was initially 

deliberated. It was thought that by prompting participants to report changes in sensations 

at set times every minute or so may result in inaccuracy in the times that the sensations 

were felt, in that there could be a time lag of 59 sec from the onset of sensations to the 

actual reporting of This is obviously unacceptable especially in the fast cooling conditions, 

where participants were only cooled for up to five minutes. It was determined that 

participants would report any changes verbally (as they would be unable to write) every 

time a sensation changed. If the participant did not report any change for a prolonged 

period of time (determined by the experimenter) then the experimenter could remind the 

subject to report any changes in sensation. 

The sensation scales are shown in chapter 6. 

2.7 Experimental Space 

An experimental space that had all of the following criteria was designed and built. 

.:. Space for an air conditioning cabinet 

.:. A thermal environment, which could be, controlled within the following range Ta;:::: 

15°C 0 30 QC, v~0.2 ms-I , Rh ~ 40 - 60% . 

• :. Bench space for data acquisition system and PC 

.:. Sufficient space for a minimum oftwo participants and one experimenter 

2.8 Safety 

Due to the materials used and the temperatures and duration that contact would be 

sustained for, it was anticipated that skin temperatures could fall below O°C which could 

result in tissue damage of participants. To prevent this, several safety precautions were put 

in place. 

Participants were asked to withdraw their hand from the cold chamber if: 

.:. A contact temperature ofO.5°C was reached anywhere on the hand 
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.:. Participants were reminded they could withdraw at any time and had to withdraw if 

they reached 4 on the pain scale (intolerable pain) 

.:. Prior to the experiment Participants were also instructed to withdraw from the cold 

chamber if they experienced a sensation similar to an electric shock or severe pins 

and needles, as both these sensations can be indicative of frost nip. 

Extensive pilot studies were conducted at the partner institutes involved the European 

project (National Institute for Working Life, Stockholm, Sweden; Universite Catholique 

de Louvain, Belgium; TNO Human Factors Research Institute, The Netherlands and at 

The Institute for Occupational Health, Finland. The data from these pilot studies, provided 

information on the expected cooling speeds and safe temperatures for a number of the 

materials to be tested at. Based on these pilot studies conditions were established for the 

experiment, which would result in minimal risks of frostnip, as for a normal healthy subject 

cooling speeds were slow enough that participants could withdraw their hand before 

damage was sustained. 

2.9 Ethical Clearance 

Prior to start of experimentation, it was necessary to gain ethical clearance from the 

Loughborough University Ethical Advisory committee. A generic protocol for human 

biological investigation was submitted. This was accepted and cleared by the committee in 

November 1998, research proposal number: G98- ps. 

2.10 Pre visits 

Prior to a participant starting an experiment, they were invited down to the lab to discuss 

the experiment with the experimenter and to familiarise themselves with the set up. After a 

discussion of what the experiment entailed and answering any questions that the 

participant may have, the participant was asked to fill out a health screen questionnaire and 

an informed consent form (see appendix 1). If the participant passed the health screen and 

consented to the experiment, then the participant was asked to grip a nylon bar at -18°C 

for two minutes. This was done so that the experimenter could ensure a normal cooling 

curve resulted. It was done at this temperature, as it was felt the material and condition 

would not induce rapid cooling, or if a subject should have a disorder they were unaware 

of affecting the circulation or cooling of the hands, it would be observed quickly and the 
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participant released from the experiment without any damage. If the cooling curve was 

normal the participants hand was rewarmed and the participant was asked to practice any 

manual dexterity tests that he or she would perform in the experiment. The subject 

continued practising the test until there was a plateau of performance, or until the subject 

became fatigued in which case they would have a drink before continuing to practice. It 

was established through trials, that once the manual dexterity test performance had 

reached a plateau, that there was no decrease in performance over the duration of the 

experiment due to time. Physical measurements of the participants were then taken 

including hand morphology and the size of the area of the hand that would be in contact 

with the bar. 

2.11 Generic Experimental procedure 

Participants were asked to arrive five minutes before the experiment was to begin. Each 

participant was tested at the same time of day on each occasion. All participants were 

asked to wear similar clothing. This consisted of aT-shirt, jeans, socks, shoes and 

appropriate underwear. Participants were also asked to abstain from tobacco products and 

also alcohol for 24 hours prior to the experimental session and otherwise to eat and drink 

as normal. Participants were then asked to sit in the experimental area until they achieved a 

sensation of - 1 on the thermal sensation scale. Once this was achieved, participants were 

asked to rest for a further fifteen minutes. Their sensation votes were then taken every five 

minutes until the start of the experiment. Air conditioning and clothing level was adjusted 

to accommodate the starting thermal sensation vote accordingly. The environmental data 

logger started recording at this point. Whilst the participants sat at rest thermocouples 

were placed on the hand that was being tested in that experiment. Thermocouple location 

and the number of thermocouples depended upon the experiment. The experimenter then 

started the Workbench for Windows programme. The environmental conditions and 

material for that experimental session were then checked to ensure they were at the correct 

temperature, and the bar was removed from the back of the freezer and attached to the 

pulley system. A step was supplied depending upon the participants height, they could 

access the armhole with the minimum of discomfort. For the occlusion experiments 

however, due to the increased risk of fainting, all participants were asked to be seated and 

the seat height was adjusted accordingly. A skin temperature of a minimum of 25°C was 

required at all thermocouple sites prior to entry of the hand into the freezer. Once this was 
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achieved and the participant had remained at PMV -1 for fifteen minutes the data 

acquisition programme was set to write to the PC hard drive, and the participant was 

asked to remove the polystyrene bung in the armhole opening. Participants then gave their 

sensation votes (thermal sensation, pain, numbness and tingling for the hand only and the 

experimenter instructed the participant "3. . .. 2 ..... 1.... go" at which po int the participant 

entered their hand into the freezer and picked up the bar and suspended it in the air. Upon 

the word go, the experimenter started a stopwatch. The participants were again asked to 

give their sensation votes immediately upon contact with the bar. It was desired that all 

participants gripped the bar in the same way. To this end red tape was placed on the bar to 

be used and the participant was asked to grip the bar in such a manner that the 'v' between 

the thumb and first phalanx was directly above the strip of tape placed on the bar for easy 

identification of hand placement. Upon gripping of the bar, participants were asked to 

report any changes in sensation as and when they occurred. 

Figure 2.9 A participant entering their hand into the freezer 
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Figure 2.2.10 shows the correct position for gripping a bar. 

The experimenter constantly monitored the cooling of the participant's hand, and the 

experiment was immediately stopped if any of the criteria given earlier were reached, or: 

.:. The participant wished to withdraw at any time for any reason 

Upon completion of the exposure time (this was dependant upon the experiment and the 

speed of cooling) the participant was asked to withdraw their hand and replace the 

polystyrene bung. The participant' s hand was then monitored until it returned to a 

temperature of 25°C. The participant placing their hand under their armpit speeded this up. 

When a temperature if 25°C was attained participants were asked to repeat their 

sensations, if there was no abnormal sensations recorded, then the participant repeated the 

test with their other hand, or left the laboratory. 

If a manual dexterity test was used in an experiment, participants completed the manual 

dexterity test just prior to entry of their hand into the freezer, with all the thermocouples in 

place. The participants then repeated the manual dexterity experiment at the end of the 

contact period. The manual dexterity tests will be discussed in detail in chapter 4. 

2.12 Arm Blood Flow Occlusion Procedure 

A pressure cuff (105cm) was wrapped round the participants forearm with the widest part 

of the material in contact with the participants skin. The cuff was situated proximal to the 
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condoloids on the dominant arm. Care was taken to avoid any bony prommence 

(condoloids) when attaching the cuff to avoid potential nerve damage. The valve for 

pressure release in the cuff was closed and the cuff was inflated rapidly to 200mmHg. 

After the occlusion period, pressure was released from the pressure cuff slowly by 

opening the pressure release valve. Figure 2.11 shows the occlusion cuff in the correct 

position and ready for inflation 

Figure 2.11 Correct position of the Occlusion Cuff 

2.13 Plethysmography procedure 

The widest part of the participants forearm was measured using a tape measure. An EC4 

Hokanson SGP mercury strain gauge was then selected that was 2 cm shorter than 

circumference of the widest part of the participants forearm. The strain gauge was then 

placed around the participants arm at the widest part and the lead was secured using a 

small piece of '3M Blenderm' tape. The tape was arranged in such a way, that at no point 

was either the tape or the loop of the mercury strain gauge touching any other part. The 

strain gauge was then plugged into the plethysmograph. 

The equipment used to collect and record the data was a 16- bit Strawberry Tree 

DATAshuttle, model DS-16-8-TC-AO, and it was linked to a Pentium II, 300MHz, 32Mb 
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PC with Workbench for Windows software. The customised programme also controlled 

the inflation and deflation of the blood pressure cuff via a solenoid power unit. 

The Participants arm was then placed into a made to measure sling, which supported the 

arm at heart level at the wrist with the palm facing upwards. The arm was straight at this 

point. The participants were then asked to find a comfortable position they felt they would 

be able to hold for five minutes and asked not to talk from that point on. The WorkBench 

programme was then started and five blood flow measurements were taken over a five 

minute period. Only three of these measurements were required, but due to the sensitive 

nature of this equipment typically at least one of the five measurements was affected by 

participants shifting position or moving their hands. The solenoid power unit then inflated 

the blood pressure cuff to a pressure of approximately 50mmHg. This pressure was 

determined as optimal as it prevents venous outflow but allows the inflow of blood 

through the arteries. This results in an increase in the diameter of the arm, which is 

subsequently measured by the strain gauge plethysmograph. For the purpose of calibration 

and to give a baseline reading from which the final blood flow measurement can be 

calculated, a ' spike ' representing 1% increase in blood flow was produced by the 

calibration switch before and after each blood flow measurement. The analysis of the 

volume curve is detailed in chapter 8. 

2.14 Participant Selection 

All participants were volunteers with no history of frostbite, cold related injuries or 

vascular disease. In the case of the occlusion experiment, all participants had to have no 

history of fractures in their dominant arm. Both male and female participants were used for 

the majority of the studies, as this was felt to be more representative of the working 

population. Females however where used were controlled for menstrual effects. Prior to 

the experiment, all participants were given an information sheet. The time and place of 

each experiment was controlled and kept constant. All participants completed a medical 

screening form and an informed consent form. All procedures conducted at the laboratory 

were first cleared by Loughborough University Ethical Committee. 

2.15 Statistical Analysis 

All data was analysed in Systat 9 (SPSS Inc.). 
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3 The Effects of Contact Cooling on Manual 

Dexterity and Cooling of the Hand 

3.1 Chapter Summary 

Two main types of cooling were found to occur as a result of contact cooling (on the 

continuous spectrum of cooling); slow cooling and fast cooling. It was concluded, for 

materials with high contact coefficients, tissue damage would usually result before manual 

dexterity is severely affected. However for materials with lower contact coefficients it js 

possible that severe decreases in dexterity would be experienced before tissue damage. It 

was also felt that the O'Connor dexterity test did not reflect the full range of manual 

dexterity decrements occurring as a result of contact cooling. 

3.2 Background 

At present there is no international standard that addresses the specific safety problems 

associated with contact cooling. Contact cooling, in this sense, occurs when contact with a 

material that is colder than the skin is made. Heat flows away from the warmer skin to the 

cooler material. Contact cooling differs from cooling by air or water, as the hand may not 

be in uniform contact with the material. This may lead to uneven cooling patterns 

throughout the hands and fingers, resulting in very localised cooling (Chen, F. et al.. 

1996.). It is therefore important to determine safe contact times for different materials at 

different temperatures in terms of the risk of tissue damage and the effects on manual 

dexterity. The majority of research investigating the effects of cold on manual dexterity has 



focused on the effect of air and water cooling on extremities, for both whole body and 

local cooling (Provins and Morton 1960, Clark and Cohen 1960). To date very little 

research has been conducted into the effects of contact cooling on performance, although 

it is thought that factors such as the thermal properties and the surface topography of the 

material will affect physiological responses including manual dexterity (Chen et al.. 1994). 

Contact cooling may occur where machinery is operated in cold conditions, for example, 

by accidental touching of machinery surfaces in cold environments, or by the intentional 

sustained gripping of cold tools (e.g. a hammer or a gun). If the contact is as a result of 

handling a tool and therefore for a prolonged period of time, deep tissue damage, whole 

hand frostbite and/or numbness may result (Chen et al. 1994). This will be detrimental to 

manual dexterity. 

3.2.1 Hand Skin Contact with Cold Solid Surfaces 

The contact of skin with a cold solid surface may result in an increased cooling speed of 

the skin when compared to that, that would be found if the skin was exposed to ambient 

air at the same temperature. When the skin is exposed to ambient air, the majority of 

cooling occurs by convection. When a hand is in contact with a cold solid surface of a 

material with a high contact coefficient, the majority of cooling occurs by conduction. 

However, when the hand is in contact with a material with insulating properties (i.e. a 

material with a low contact coefficient) at low temperatures (e.g.-20°C) heat from the 

hand will also be conducted by convection to the surrounding air. The steeper the 

temperature gradient between the material and the skin, the faster heat will be transferred 

from the skin to the material. The more rapid the cooling, the more increased is the risk of 

the initial pain associated with the onset of frostbite being missed before the development 

of frostbite begins and is therefore noticed (Killian and Graf-Baumann 1981). As well as 

the temperature gradient, the speed of cooling and resultant transfer of heat from the skin 

to the cold solid surface depends upon a number of factors : a) Pathak et al. 1987, 

Havenith et al. 1992, Chen et al. 1994 and Rintamaki 1997 agreed that properties of the 

surface of the material that the skin is in contact with affected cooling, b) human hand skin 

and individual differences were also found to affect contact cooling (Hellstom 1965, Burse 

et al. 1979, Haventih et al. 1992, Rintamaki et al. 1997) and finally c) the constitution 

(including factors like pressure) of contact was found to affect contact cooling (Imamura 

et al. 1996, Rintamaki et al. 1997, Chen et al. 1994). 
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3.2.2 Contact Material Properties 

Thermal properties of the material including specific heat capacity and thermal 

conductivity have a direct relationship with the heat exchange that occurs between the 

human skin and the material (Holman 1989). Havenith et al. 1992, Chen et al. 1992, both 

use the thermal penetration coefficient of the material to characterise its properties, and is 

expressed as the following (BSI 1978). 

b=(k·p·c)1/2 ( . J -2 - 1/2K- 1) uruts = m s 

Where: b is the thermal penetration coefficient, k is thermal conductivity (W.m-I.K1
) , p 

is density (Kg·m-3) and c is the specific heat (J ·Kg-1 .K-1o) 

A table of thermal properties of the materials used in the following experiments can be 

found in Chapter 2. 

3.2.3 Hand Skin and Individual differences 

Differences in human skin between individuals was discussed in chapter one. Reasons for 

differences can include callus presence, gender differences and variations in thermal body 

state and blood flow ofthe micro circulation (Holmer 1998). Racial and geographical 

differences have also been found to be a cause of inter-individual variation (Hellstrom 

1965). Within participants, variation occurs within the hand as skin thickness can vary over 

different parts of the hand (Molnar et al. 1973). 

3.2.4 Constitution of Contact 

People are exposed to cold surfaces everyday in industry. Contact with these surfaces may 

be accidental or intentional. These two types of contact will result in different durations of 

contact. The longer the hand is in contact with the material, the longer time there is for 

heat transfer to occur. If the contact is intentional, then it may be as a result of picking up 

a small object e.g. a nail or hammer, or something larger e.g. a box of tools or gripping 

onto a ladder. The range of materials in such an environment, including their size shape 

and texture will affect the speed of cooling, and the type of contact (e.g. full hand or 

finger) that occurs. Effects of pressure have been found to have a significant effect on 

contact cooling (Chen et al. 1994 and Geng et al. 2000). 
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3.2.5 Man ual Dexterity 

Manual Dexterity will be discussed in more depth in Chapter 4, but a brief overview will 

be discussed here. 

Manual dexterity can be affected as a result of effects on several components, including 

reaction time, sensitivity, nerve conduction, grip strength, time to exhaustion and mobility 

(Havenith et al. 1995). These factors are caused by physiological changes including 

nervous blocks, decreases in rate of nerve conduction velocity, changes in power, 

contraction, speed and/or endurance of muscles, and a thickening of the synovial fluid that 

lubricates the joints. There are critical temperatures at which the cold starts affecting each 

of these structures. De Jong et al. (1966) found a linear decrease in nerve conduction 

velocity of 60ms-1
• Below 20 - 24°C there is a stronger decrease in nerve velocity and a 

nervous block occurs at temperatures below 10°e. Reduced skin sensibility is most likely 

due to physiological changes in the receptors whereas reduced mobility is most likely 

attributable to changes in muscles, joints and tendons. The mobility of a joint is affected by 

cooling, as the synovial fluid that lubricates the joint thickens so movement becomes 

slower. This is often referred to as join stiffuess, and when the fluid becomes more viscous 

more muscle power is required to make movements. Joints cool more quickly than the 

muscle core and average skin temperature (Hunter et al. 1952). 

At present much is known about the effects of air and water cooling on the extremities and 

subsequent effects on manual dexterity. However, very little is known about the effects of 

contact cooling and subsequent effects on manual dexterity. The effects of a cold body and 

warm hands have been investigated in the past (Keiss and Lockhart 1971) however due to 

the nature of contact cooling the localisation of cold exposure is likely to be more extreme 

with local 'cold' and 'hot' spots appearing within the hand. It is currently unknown what 

these effects will have on manual dexterity. For this reason, an experiment was devised 

that will investigate the effects of gripping materials with different contact coefficients on 

manual dexterity. This will be compared to the effect of air exposure on dexterity. 

For these reasons this study will compare reduction in manual dexterity due to contact 

cooling while gripping bars of different materials, and cooling by air, and investigate the 

effect of the contact with the material on dexterity. It is thought that the materials that 
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induce fast cooling will have a more significant effect on contact cooling than materials 

inducing a slower rate of cooling, due to the lower skin temperatures that will be reached 

during the fast cooling conditions. 

3.3 Methods 

3.3.1 Participants 

Ten participants (5 men and 5 women) participated in this study. All participants were 

volunteers; aged between 19 and 36 (24.6 + 4.9 years) had no history of any cold related 

injury, vascular disease or cold acclimatisation. All participants signed a consent form prior 

to exposure. 

Table 3.1. Shows the participant details 

Age Weight Height Sex Hand Hand Contact 
(Years) (Kg) (cm) (M/F) Surface volume area 

Area (cm3
) (cro2

) 

(cm2
) 

36 87.7 166.5 F 156.2 299 83 .5 
25 67.3 ]66.5 F 144.8 310 78.7 
22 84.7 188 M 155.2 449 77.94 
29 75 .01 171 F 154.7 337 81.04 
27 72. 1 171 F 139.3 375 80.96 
21 91.05 182.5 M 169.4 347 80.37 
22 59.42 169 F 147.9 378 80.89 
19 81.7 194.5 M 184.4 466 89.7 
24 74.8 179.5 M 167.7 427 72.39 
25 77.1 176.5 M 157.7 376.4 80.6 

3.3.2 Material Properties 

For contact cooling, bars offive different materials were used: wood, nylon, stainless steel, 

aluminium or stone, all with different thermal properties as defined by the contact 

coefficient (see chapter 2). 

Each participant gripped a bar that was approximately 400mm in length and 40mm or 

42mm (stone) in diameter. The bars were weighted from outside the cold-box so that each 

one weighed 500g. This resulted in the same pressure being applied to each bar in order to 

lift it and hold it in the air. The five materials and air as a reference (holding the hand in a 

'gripping' position in air of the respective temperature) were only tested at temperatures 
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appropriate to their thermal properties in terms of risk of tissue damage to the participant 

(Table 3.2). Metals were tested only at the higher temperatures as the risk of tissue 

damage through supercooling was high. Nylon and wood were tested at much lower 

temperatures, as at the higher temperature range, they would have insulative effects and 

any changes in skin temperature observed would have been minimal and eventually leading 

to the skin re-heating. 

Table 3. 2. Environmental Test Conditions of Materials 

Materials 
Wood Nylon Stainless Aluminium Stone Air 

Steel 
Temperature -20°C, -1 aoe, -20°C, - aoe, -soe ooe , -soe -soe , -10°C ooe , -soe , -lOoe , -

-30°C 30°C 20°C, -30°C 

Participants accessed the bar through a hole in the cold-box door. A window was also cut 

into the door so that the participants could see the correct section of the bar to grip. 

Participants were asked to lift the bar from its rest and hold it in the air for a total of thirty 

minutes or until one ofthe withdrawal criteria (a contact temperature of O°C as measured 

by one of the 15 thermocouples on the hand, the sensation of frostnip and/or intolerable 

pain) were experienced by the participant, or if the participant wished to withdraw at any 

time for any reason. A pressure pad under the bar ensured that it was possible to tell that 

the participant was lifting the bar and not merely holding it. The environmental conditions 

of the room where the cold-box was situated were Ta = 21.3°C ± 0.87°C, Rh = 40% 

(estimated). These conditions (together with selected clothing) ensured that the 

participants were at a steady thermal state of slightly cool (PMV=-l) for fifteen minutes 

prior to exposure. 

3.3.3 Manual Dexterity Test 

To test dexterity a modified version of the Q'Connor test was used. This test was selected, 

as it was thought that finger dexterity would be likely to be affected as a result of contact 

cooling. The O'Connor dexterity test required tactile sensitivity of the thumb and index 

finger pads, co-ordination of the hand/arm and joint mobility in the thumbs and index 

finger. The modification ensured that the participant's hand was not out of the cold-box 

for a prolonged period of time. The participant was asked to place three pins in each of the 
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holes in the top row only. The participant filled the holes from right to left if they were 

right handed and from left to right if they were left handed. The participant picked up three 

pins in one attempt. If more or less pins were picked up then the participant could not 

correct the mistake. The three pins should be placed in one hole. The participant was not 

allowed to tap the pins on a desk to straighten them, or to use their other hand. If any pins 

fell when the participant was trying to put them in the hole, they were not allowed to 

collect them and the participant placed the remaining pins in the hole and continued. The 

test is scored by a) the time needed to fill the first row of holes b) the total number of pins 

taken from the container and c) the number of pins placed correctly in the hole. Prior to 

the experimental sessions, the participants performed the modified O'Connor test until 

there was no significant improvement in their scores. 

Each participant sat in a room at a PMV of -1 for 15 minutes. During this time, 

thermocouples were placed on the participants hand (see figure 1 for locations). The 

thermocouples were on the participants hand prior to the initial (control) manual dexterity 

test, so and interference that the positioning of the thermocouples caused was constant 

both pre and post experience and as such can be discounted as a factor in the findings. 

Figure 3. 1. Locations o/the thermocouples on the participant 's hand 

Once instrumented, the participant then performed the modified O'Connor test. The 

participant then put their hand into the cold-box and picked up the bar for 15 minutes. 

Then, the hand was taken out and the O'Connor test performed and the hand replaced in 

the cold-box. The participant then resumed gripping the bar for a further 15 minutes 

whereupon they completed the O'Connor test for a final time (if the participant withdrew 

their hand before the 15 or 30 minute exposure had been completed, they performed the 
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O'Connor test immediately upon withdrawing their hand). Participant measurements of 

pain, thermal sensation, numbness and tingling were recorded throughout the session. 

Only the results for the first 15 minutes of the experiment were analysed due to the high 

rate of early withdrawals in the second period. 

Performance Reduction was calculated with the following equation: 

Performance Reduction = (Time for test after - Time for test before) x 100 

Time for test before 

3.4 Results 

The graphs below shows typical cooling curves that were seen during the exposures. 

Under these conditions, few participants lasted for the duration of thirty minutes . 
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Figure 3.2. Participant 6, Gripping Nylon Figure 3.3. Gripping Stainless Steel at 
at 20 'C -5'C 

Figure 2, shows a typical cooling curve for contact with nylon at -30DC, The participant 

maintained contact with the bar for 350 seconds before withdrawing from the exposure 

through pain. Figure 3.3, shows a typical cooling curve for contact with stainless steel. 

Contact this time only lasted for 50 seconds, but skin temperature reached approximately 

the same temperature as contact with the nylon bar induced after 350s. After 50 seconds 

of exposure to the stainless steel bar, the participant withdrew through intolerable pain. 
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The results are presented in figures 4 - 7. In Figure 3.4, the performance reductions at all 

five air temperatures, where the hand is not in contact with a bar but 'gripping' air, are 

presented in box - plots. In the box plot, the centre vertical line marks the median of the 

sample. The length of each box shows the range within which the central 50% of the 

values fall with the box edges (hinges) at the first and third quartiles. The graph shows that 

performance reductions increase as the temperature decreases as expected. 

For the following three figures, the mean over participants has been taken for each 

condition. Air has been excluded as the following graphs will deal only with materials 

involved in the contact cooling. Figure 3.5, shows the relationship between performance 

reduction and the thermal properties of the bar at each individual environmental condition 

(i.e. the starting bar temperature). The graph shows that the higher the contact coefficient 

is, the lower the resultant performance reduction is opposite to expectations . 
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Figure. 3.4. Perf ormance Reduction at Each Temperature for Every Participant whilst 'Gripping ' 
Air. The centre horizontal line marks the median of the sample ad the length of the box shows 
the range within which the central 50 % of the values fall. The ends of the box (h inges) fa ll at the 
first and third quartiles. The whiskers show the range of values within the inner fences. Values 
between the inner and outer f ences are denoted with an asterisk , these are likely to be outliers. 
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Figure. 3.5. Relationship Between Performance Reduction at or Before 15 Minute Exposure and 
Contact Coefficient of the Material. 

Figure 3.6, shows the relationship between contact material properties and test duration. It 

can be observed that the lower contact coefficients also had the longer exposures to the 

bar and environmental conditions. As stated previously only the first 15 minutes of data 

has been analysed, so the data was capped at 900 seconds. 

Page 59 



800 
700 ........ 

eSOO 
c 
.0 500 
+-" ----, ca 
::; 400 TEMP 
0 

300 +-" • -30 UJ 
Q) 

200 x -20 ..... 
100 • -10 

D -5 
0 vO 
2 3 4 5 

10Log Contact Coefficient 
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Fig. 3.7. Relationship between test duration and performance reduction. 

Figure 3.7, shows the relationship between performance reduction and contact duration. 

The graph shows that as duration of exposure increases, so does performance reduction. 
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3.5 Discussion 

It was expected that as temperature decreased so would performance for the conditions 

where the participants were exposed to air. This was indeed observed in the results as 

shown in Figure 3.4 which showed performance reduction after a maximum of 15 minutes 

exposure to the material. For the gripping tests, it was expected that the contact coefficient 

rather than temperature would be the main factor in determining the reduction in 

performance. Obviously a metal is expected to affect dexterity more than wood for 

example at the same temperature, but it was also expected that, gripping aluminium at O°C 

would have a greater effect on manual dexterity than gripping nylon at -20°C. This was 

not observed however. Though it was expected that the higher the contact coefficient the 

higher the reduction in performance would be, the actual results showed the opposite: the 

higher the contact coefficient the lower the decrease in performance (fig. 5). A 

confounding factor was present however: time. The effect observed was likely due to the 

effect of the duration that the participant held the bar for. For materials with a relatively 

high contact coefficient (e.g. aluminium), the hand was only in contact with the material 

for a very short period of time, as the participants withdrew their hand from the stimulus 

because of the high pain levels experienced, or because the contact temperatures set for 

safety had been attained (Figure 3.6). Conversely, materials with a low contact coefficient 

(e.g. wood) initially cooled the hand quickly but then due to the thermal properties of the 

material began to warm up relatively quickly, possibly even to the point where the material 

became insulating from the thermal environment. This would mean that the participants 

were able to grip the bar for longer periods of time than if the bar had had a higher contact 

coefficient, despite the lower temperatures. 

In the first instance, using the material with the high contact coefficient and the short 

duration of exposure, it is likely that only contact surface cooling was able to occur. In the 

second instance, when contact was made with the material with a lower coefficient, the 

back of the hand was exposed to low temperatures for a longer time. The inside of the 

hand however, initially exposed to a low temperature became relatively insulated within a 

short time frame as the heat was transferred from the hand to the bar. It is likely therefore, 

that with the increased duration compared to contact with the metals, that deeper cooling 

may have taken place. The deeper cooling would have a more profound effect on manual 
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dexterity than the more superficial surface cooling as it is likely in the superficial cooling, 

that only the skin and structures immediately adjacent to the skin would be affected, rather 

than the deeper underlying structures affected as a result of the deeper cooling. It is 

therefore likely, that contact cooling, occurring as a result of contact with a material with a 

low contact coefficient, would have effects on manual dexterity similar to those caused by 

cooling by air. It should be noted however, that this is only the case, if the dorsal aspect of 

the hand was exposed to air and the palmar aspect shielded. This time effect on depth of 

cooling is consistent with observations of Havenith et al. (1992) who found a similar 

effect regarding pain. 

It is believed that the following temperatures are critical for various aspects of manual 

dexterity to be affected (Havenith Heus and Daanen 1995). A muscle temperature of 38°C 

is optimal for work requiring maximal force. 

Table 3.3. Critical Temperatures/or different physiological structures at which manual dexterity 
is significantly reduced. 

Physiological Structure Critical Temperature for loss of manual dexterity 
eC) 

RecepJors IO 
Nerves 20 
Joints 24 

Muscles (task dependant) 28-38 
Skin 15 

Fast cooling; invoked by contact with a material with a high contact coefficient, might 

affect aspects of manual dexterity, such as tactile sensitivity and pain sensations. This 

would be as a result of the Tsk falling below 15°C and thus affecting the skin and receptors 

(see table 3.3). It is unlikely however, that the modified O'Connor test would highlight the 

effects fully, as although it does investigate tactile sensitivity, it primarily investigates 

effects on the tactile perception of the first phalanx of the index finger and thumb, co

ordination of these two digits and the speed of the arm (a gross movement unlikely to be 

affected by contact cooling). These are areas not fully in contact with the bar. It is likely 

that other aspects of manual dexterity are affected as a result of contact cooling, but were 

not sufficiently identified due to the limited scope ofthe O'Connor dexterity test. 
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The O'Connor dexterity test can be completed with very little flexion or extension of the 

fingers and requires little strength. It also requires little accuracy in tactile perception of 

the hand as a whole. The experimenter noted through conversation with the participants, 

that complaints of numbness, tingling and pain were predominantly reported elsewhere 

within the hand and subsequently not reflected in the results of the O'Connor test. It is also 

unlikely, because of the rapid nature of cooling and short duration of exposure occurring 

as a result of contact with metals, that the structures Goints, muscles, nerves etc.) 

responsible for some types of manual dexterity losses would be affected by the rapid 

cooling. This type of cooling is most likely to affect the skin and tissue immediately 

adjacent to it and is unlikely to have affected the majority of these structures. 

It is hypothesised that in cooling of this type (rapid contact cooling resulting from contact 

with a material with a high contact coefficient) that tissue damage would usually result 

before manual dexterity was severely affected. The theory behind this, is that as a result of 

rapid contact cooling, the skin becomes supercooled. This occurs so quickly, that the 

underlying structures do not cool at the same rate and remain relatively warm. This can 

effectively result in skin damage, while the underlying structures remain warm enough to 

perform adequately. 

As regions of pain, numbness and tingling were reported in areas other than those tested 

by the Q'Connor dexterity test, it is probable, that manual dexterity losses experienced as a 

result of slow cooling (contact with non metals at relatively low ambient temperatures), 

were not detected by the O'Connor test. However, this is not to say that manual dexterity 

deficits are not present as a result of contact cooling. The deeper tissue cooling that 

occurs as a result of slow contact cooling (e.g. during contact with wood and nylon at 

relatively low ambient temperatures), may affect aspects of manual dexterity relying on the 

functioning of the underlying structures, but may not be represented in the results. These 

structures include joints, receptors, muscles and nerves and would be more likely to be 

severely affected than the results of the modified O'Connor dexterity test indicated. These 

structures would affect aspects of manual dexterity such as strength, joint mobility and 

speed. These aspects would not have been illustrated by this test, and yet are likely to have 

been affected by contact cooling ofthis nature. 
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As shown in Figure 3.6, the duration of exposure was longer for materials with a lower 

contact coefficient than for those with a higher contact coefficient. This was due to the 

level of early withdrawals by participants after contact with the materials with high contact 

coefficients through intolerable pain. When for each bar temperature the contact duration 

was compared between materials tested at that temperature, it was found consistently that 

the materials with the highest contact coefficients had the shortest durations. This is 

therefore consistent with the above explanation. For this reason the relationship between 

exposure duration and performance was considered (Figure 3.7). It was expected that 

longer durations of exposure would result in a higher decrease in performance. This was 

indeed observed be it only in a weak positive correlation. 

3.6 Conclusion 

For materials with high contact coefficients, tissue damage is likely to result before manual 

dexterity is severely affected. However for materials with lower contact coefficients it is 

possible that severe decreases in dexterity would be experienced before tissue damage. 

The modified O'Connor dexterity test may have given an insufficient picture of the scope 

and scale of manual dexterity deficits experienced as a result of contact cooling. Thus it is 

suggested to expand the test battery of manual dexterity tests in future research to cover 

aspects of manual dexterity including strength, tactile sensitivity of the whole hand, and 

speed offlexion and extension of the fingers. 
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4 Aspects of Manual Dexterity Affected as a 

Result of Contact Cooling 

4.1 Chapter Summary 

Chapter 3 showed that manual dexterity was affected as a result of contact cooling. The 

dexterity test used however only reflected loss in one aspect of manual dexterity. It was 

felt likely other aspects of manual dexterity would be affected. This chapter looks at tests 

that investigate a number of areas of dexterity likely to be affected and based on literature 

identifies the most suitable test. It was determined that the areas of manual dexterity most 

affected as a result of contact cooling were tasks requiring speed and strength. 

4.2 Background 

Chapter 3 highlighted differences observed in manual dexterity as a result offast contact 

cooling (materials ofa high contact coefficient) and slow cooling (materials ofa low 

contact coefficient). To measure the effects on manual dexterity, a modified version of 

the O'Connor dexterity test was used. It was felt through conversation with the 

participants and observation of the coolest parts of the participant's hand, that this test did 

not reflect the full range of manual dexterity deficits that occur during contact cooling. 

For this reason, it was decided to investigate a range of manual dexterity tests that address 

a number of properties of manual dexterity, and find out exactly which aspects of manual 

dexterity are effected as a result of contact cooling. 
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4.2.1 Manual Dexterity 

It is generally accepted that there are several factors responsible for decreases in manual 

dexterity with body cooling. These are considered to be increasing reaction time, reduced 

skin sensibility, muscle function, mobility and motivation. These factors (with the 

exception of motivation) are caused by physiological changes including nervous blocks, 

decreases in rate of nerve conduction velocity, changes in power, contraction, speed 

and/or endurance in muscles and a thickening of the synovial fluid, which lubricates the 

joints. (Heus R et al .. 1995). The O'Connor dexterity test used in chapter 3 only 

investigates a small number of these potential changes over a small section of the hand, 

primarily reduced skin sensibility and to a lesser extent increasing reaction time. 

4.2.2 Why there is a Need for Manual Dexterity Tests to Assess Loss as a Result of 

Contact Cooling 

The previous experiment (Chapter 3) used the O'Connor dexterity test to investigate 

manual dexterity. It became apparent during the testing however; that this particular 

manual dexterity test did not require the skills or utilise areas of the hand most affected by 

contact cooling. Although some changes were noted in terms of time to complete the 

O'Connor dexterity test, it was felt that the results did not reflect the range or severity of 

manual dexterity decrements experienced due to contact cooling. The experimenter 

observed that subjects complained of numbness, pain and tingling elsewhere within the 

hand, which was not reflected in the test and subsequently the results. The sensations of 

pain, numbness and tingling were located in areas other than the first phalanx of the index 

fmger and the thumb, which are the main areas ofthe hand required to complete the 

O'Connor dexterity test. 

The O'Connor dexterity test can be completed with very little flexion or extension of the 

fmgers and requires little strength. It also requires little accuracy in tactile perception of 

the hand as a whole. It primarily relies on tactile perception of the fIrst phalanx of the 

index fInger and ofthe thumb, co-ordination ofthese two digits and the speed of the arm 

(which is a gross movement). It is possible to pick up and release the pins with very little 

flexion or extension of the digits. 

For these reasons it was decided to investigate other manual dexterity tests and to identify 

those that would reflect a more realistic and representative view of the effects of contact 
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cooling on manual dexterity. To do this it was necessary to consider tests used prior to 

this experiment in terms of: conditions in which the tests were used, the aspect of manual 

dexterity the test investigates and the areas of the body/handlarm that are required for 

each test. 

From the experiment detailed in chapter 3 it was observed that strength, tactile sensitivity 

and speed offlexion and extension of the fingers were affected. This was noted through 

conversation with the subjects after the experiment and also through the actions of the 

subjects after the experiment including, trying to grip a pencil or attempting to straighten 

fmgers upon completion of the O'Connor dexterity test. 

Therefore it was decided that the manual dexterity tests chosen for future experiments 

should represent four different components of manual dexterity most likely to be affected 

by contact cooling; strength, speed, tactile perception and a fine finger (motor) test. It was 

felt that the first three areas are representative of skills that could conceivably be required 

in cold conditions. They also represent aspects of manual dexterity that are likely to be 

affected by contact cooling. A fme finger (motor) test is required, that is less passive than 

the O'Connor dexterity. This test should require a combination oftactile perception, speed 

and skill. The combination of these three aspects of manual dexterity will provide a more 

complex test of manual dexterity than testing for a single aspect alone, and therefore 

reflect more fully the effects of contact cooling on manual dexterity. 

4.2.3 Manual Dexterity Tests Reviewed 

A number of investigations have been conducted to quantify the effects of cooling on 

manual dexterity. There are many different aspects of manual dexterity e.g. fine or gross 

manipulation. Giesbrecht et al. (I995) investigated several different aspects of manual 

dexterity including strength, speed, fine finger manipulation and co-ordination. An 

experiment to assess the independent contributions oflocal andlor whole body cooling on 

manual performance and oesophageal and muscle temperatures was undertaken. To look 

at the manual performance aspect of the experiment six manual dexterity tests were used. 

a) Speed offmger flexion and extension (time for five repetitions) 

Page 67 



b) Monitoring the thinnest disk that could be picked up using the thumb and forefinger 

(finger dexterity) 

c) Measurement of isometric hand grip strength 

d) Screwing nuts along a screw (fmger dexterity and tactile perception) 

e) Moving rings from one peg to another and then back again (manual movement) 

t) The depression of two buttons sixty centimetres apart (speed of gross movement) 

Six subjects took part in three conditions; a) cold body with cold ~ b) cold body with 

warm arm and c) warm body with cold arm. Subjects were immersed in a water tank for 

75 minutes. A separate tank was used to warm or cool the arm as necessary. The 

temperature of the water in each tank was independently controlled. The water was either 

at 8°C for the cold conditions or between 29°C and 38°C for the warm conditions. It was 

found that cooling ofthe body and/or the arm caused large reductions in fmger and arm 

performance and that those reductions were primarily due to the effects of local arm and 

hand tissue cooling. 

Tests e) and f) are unsuitable for the following experiment as they utilise areas of the 

body that would not be cooled during contact cooling ofthe hand. Test e) relies on 

movement of the shoulder and therefore is more applicable to experiments involving 

whole body cooling. Test f) is again more related to whole body cooling, as it measures 

spatial awareness and gross arm movement controlled at the shoulder. 

Horvath and Freedman (1947) tried to define the loss of efficiency due to cold exposures 

by exposing 22 men to 25°C air for a period of four days. The men were then transferred 

to an environmental chamber, temperature -29°C for a further eight to fourteen days 

where the men followed a set regime of eating and exercising. Four tests were used 

during this investigation, with two being dexterity tests: 

• Simple Visual Discrimination Reaction Time (measure of speed and precision (two 

stimulus's) 

• Johnson Code Test (measures responses at a cortical level and fmger dexterity as it 

requires the writing 0 f answers) 

• Hand Grip Test (using a hand dynamo meter) 
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• Gear Assembly Test (devised at the laboratory requiring participants to use a hammer 

and open wrench) 

These tests were administered either during long term exposure (up to fourteen days) or 

short-term exposure (up to three hours). It was found that the reaction time to visual 

stimuli did not decrease with low ambient conditions. However, hand strength and finger 

dexterity did decrease with exposure to low ambient conditions even over short durations 

of up to half and hour. The visual discrimination task and the Johnson code task were not 

felt to be suitable for this study, as they are more applicable to whole body cooling. The 

gear assembly task was not used as it was devised at the laboratory and not felt to hold 

any advantage over other more established tests. 

Egerton and Parsons 1985 investigated the effect of different finger combinations of 

gloves on manual dexterity by using four different manual dexterity tests: 

• star maze tracing test (wrist/finger speed) 

• Fingertip block rotation test (fine fmger dexterity) 

• Pegboard test (fine fmger dexterity) 

• Modified Stromberg test (a board test measuring manipulative skill and measuring 

speed and accuracy of arm and hand movement) 

All ofthe above manual dexterity tests were scored in time taken to complete the tasks. A 

subjective view ofthe tasks was also taken. Nine subjects were exposed to 5°C air for 

fifty minutes. The subjects wore glove/mitts that resulted in different combinations of 

digits being held together in order to restrict movement. This was achieved by either 

taping digits together or by the use of cotton Terylene gloves. Each subject held his or her 

gloved hand out in front of a fan, which circulated the air. It was found that the manual 

dexterity tests used provided erratic results, although there was a significant difference in 

performance offinger dexterity with gloves that did not have a finger combination of the 

first two digits when compared to designs that did. It was also concluded, that the 

combination of only the little finger and the ring finger had little effect on manual 

.-/ performance. It was also noted, that the digits were much cooler than the back of the 
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hand. These results would seem to indicate that the index finger and thumb is important 

in fmger dexterity. 

Kiess and Lockhart (1970) tried to determine if the rate of lowering mean weighted skin 

temperature affected manual performance. To achieve this, 24 male subjects were 

exposed to air temperatures of 24°C, 10°C, 7°C and 4°C for periods of either 90 or 15 

minutes. In this time, in order to create a fast and slow cooling conditions, the subject's 

mean weighted skin temperatures were lowered to 21°C, 23°C, 26°C, or 29°C. However, 

the subject's hands were kept warm by the use of a heated box. 

Four dexterity tests were used: 

• Knot tying test (wrist and finger) 

• Purdue Pegboard (finger dexterity and arm movement) 

• Block stringing task (wrist and finger dexterity) 

• two plate tapping (gross hand and arm movement) 

It was determined that the Block Stringing and the Purdue Pegboard tasks were affected 

by low mean weighted skin temperatures, whilst the Two Plate Tapping task and Knot 

Tying task were not. This may be due to the fact that the knot-tying test relies solely on 

wrist and finger dexterity, the temperatures of which were maintained by the use of the 

hand box, so test scores were not adversely affected. In the case of the two Plate Tapping 

tests the movements required were not precise enough to be affected by the lower skin 

temperatures. It was concluded that a slow rate of cooling impairs certain types of manual 

dexterity more than a fast rate, but that this only occurs at low mean weighted skin 

temperatures. 

Keiss and Lockhart (1971) also looked at the effect of auxiliary heating of the hands 

during cold exposure and the subsequent effects on manual dexterity. To achieve this, 20 

subjects performed five manual dexterity tests in an ambient condition (16°C), a cold 

condition (-18°C) and three cold ambient conditions where auxiliary heat was applied to 

the hands (-7°C, -18°C, and -29°C). The tests were completed after 0, 60, 120 and 180 

minutes. The tests used were the: 
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• Purdue Pegboard (finger dexterity) 

• Block Stringing (wrist and fmger dexterity) 

• Minnesota Rate of Manipulation (MRM) (hand and ann dexterity (gross movements) 

• Knot Tying (wrist and finger dexterity) 

• Screw Tightening (hand and arm strength) 

The cold condition (-18°C) without auxiliary heat applied to the hands, resulted in 

significant dexterity losses in all tests. The three conditions that used auxiliary heating of 

the hands resulted in either no dexterity losses or less dexterity losses than might have 

been expected under the ambient conditions, although this depended to some extent on 

the ambient condition, task and duration of exposure. This study did show that local 

cooling of the hand and forearm is the determining factor for manual dexterity in the cold. 

It was concluded that the auxiliary heat packs were effective in decreasing the effect of 

cold on performance. The Purdue pegboard was eliminated from this study, as it was 

considered too similar to the O'Connor dexterity test in that both involve primarily the 

thumb and index finger in a similar range of movement. The MRM was felt to be not 

sensitive enough to the expected manual dexterity losses as it relies on more gross hand 

movements than would be expected to be affected as a result of contact cooling. 

Giesbrecht and Bristow (1992) investigated the effect of whole body cooling on manual 

dexterity. Six subjects were immersed up to their neck in water (8°C) and performed three 

manual dexterity tests: 

• speed offlexion and extension of the fingers 

• hand grip strength 

• peg and ring test 

These tests were performed immediately prior to immersion, every 15 minutes after 

immersion and when the core temperature decreased to 33°C. It was determined that there 

was no immediate affect on manual dexterity after immersion, although performance on 

all tests was affected significantly as the core temperature decreased by O.5°C. This 

decrease in dexterity continued with decreases in core temperature, although the decrease 

in dexterity was slower after the first O.5°C decrease. The flexion and extension of the 

fmgers was affected more than handgrip strength or performance of the peg and ring test. 
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This may be because the flexion and extension test is more reliant on the quick movement 

of cold joints than the other two, as the strength test only required static muscle 

contraction and the peg and ring test required less speed in the movements and a smaller 

range of movement. 

Hammarskjold et al. (1992) investigated the effect of cold on manual performance. To do 

this, ten carpenters were asked to perform three tasks before and after cold exposure. 

Subjects were exposed to an ambient air temperature of 15°C and the dominant hand of 

the subject was cooled using a fan (3ms-l
) and a cold water spray for 60 minutes. The 

three tasks were: 

• Nailing 

• Sawing 

• Screwing 

The subject's tools were kept at O°C to prevent rewarming ofthe subject's hand and after 

each task a cryo pack was placed in the subject's hand and a wet towel was wrapped 

around it for two minutes. The number of movements and time taken to complete each 

task was recorded. The quality of the subject's work was also assessed. It was determined 

that the performance of the tasks was significantly slower in the cold condition than prior 

to cold exposure although the quality ofthe work was not affected. All ofthe above 

mentioned tasks would require strength ofthe forearm and hand. 

4.2.4 Strength 

The following studies will consider the strength aspect of manual dexterity. Clarke et al. 

(1958) investigated whether there is an improvement in muscular performance in water 

temperatures above 34°C and if so, if improvements in muscular performance were 

further increased in water below 18°e. Four males placed their forearm in stirred water at 

2°e, lOoe, 14°C, 18°e, 26°e, 34°C and 42°C. A handgrip dynamo meter was used to 

assess strength and duration of muscular contraction. It was determined that the optimal 

water temperature for maintaining sustained muscle contractions is a water temperature of 

18°e which corresponds to a muscle temperature of25 - 29°C. Temperatures below this 

level decrease the duration of sustained contractions. It was also found that the maximal 
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tension that could be exerted after an immersion period of30 minutes decreases sharply 

with decreasing temperature. 

Tochihara et al. (1990) investigated the changes in physiological reactions and manual 

performance in actual working environments in cold stores. Two groups of subjects were 

used. Group R contained 10 subjects who were exposed to temperatures between -20 and 

-23.2°C daily. Group Chad 8 subjects whom were exposed to temperatures between 12 

and IS.2°C. All the subjects were forklift truck drivers by occupation. The following tests 

were performed before work, at lOam, before lunch, at 3pm and after work. 

• Hand tremor 

• Handgrip strength 

• Pinch strength 

• Counting task 

• Flicker value 

• Blood pressure 

It was found that there were no significant differences between the two groups in terms of 

handgrip strength, pinch strength, counting task, flicker value and peak flow rate. 

However changes in hand tremor and diastolic blood pressure were greater for group R 

than for group C. It was thought that these differences were partly attributable to the 

heavier workload of group R caused by the extreme cold and large temperature gradient 

between the inside and outside of the cold stores. 

4.2.5 Tactile Sensitivity 

The following papers will deal with tactile sensitivity, another aspect of manual dexterity. 

Kok et al. (1984) investigated the relationship between fmger sensitivity and fmger skin 

temperature in cold conditions. A further aim of this study was to determine whether 

there are any differences in tactile sensitivity as a result of sex or ethnic characteristics. 

To complete this study, a modified version of the Macworth V test was used. To perform 

this test, a subject's hand is placed on a plastic block which is either flat or has a recessed 

gap with well defmed edges either 1, 2, 3 or 4 mm apart. The blocks were not visible to 

the subject and the subject is asked to say whether or not he/she can detect a gap. Subjects 

were exposed to air temperatures of6, 12, 18 or 24°C with an air velocity ofO.lm.s-1
• All 
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subjects wore standardised clothing and were trained on the dexterity test during the first 

hour of testing. It was determined that male factory workers regardless of race are 

unlikely to show more than an 8% decrease in tactile discrimination when fmger skin 

temperatures are above 15-16°C. However, female worker's tactile discrimination will 

decrease by at least 10% when their finger skin temperature reaches 18-19°C. It was also 

found that white subjects had significantly higher finger skin temperatures than black 

subjects below air temperatures of 24°C, although above finger skin temperatures of 15-

16°C the black males maintained performance equal to that of the white groups despite 

the lower finger temperatures. Above finger skin temperatures of21 QC, the ability of the 

black group of subjects to detect a gap was equal to or better than that of the white group. 

Mackworth (1952) tried to determine an easy to administer method for assessing 

numbness in the field and to also detennine whether a biological index of numbness could 

assess the effects of two environmental factors that contribute to wind-chill; air 

temperature and wind speed. To do this, 35 male subjects were exposed to temperatures 

between -32°Cto -34°C and -35°C to -37°C. Subjects sat indoors for about an hour prior 

to exposure and wore a thick woollen glove with the index fmger removed. Subjects 

stood in a 'wind tunnel' and were exposed to five different air speeds 0 to 2 mph, 2.1 to 4 

mphs, 4.1 to 6mph, 6.1 to 8 mphs and 8.1 to 10 mphs. After this exposure, subjects were 

asked to perform the Mackworth V test where subjects were asked to indicate whether 

they could detect one or two gaps whilst their fmger was pressed against the tester. It was 

found that all wind speeds produced a numbing effect although faster wind speeds caused 

greater numbness than the slower wind speed. It was also found that the higher wind 

speeds caused a more lasting effect than the slower wind speeds. With regards to 

temperature, it was found that numbness resulted at both air temperatures and that the 

colder air produced more numbness than the relatively warmer air. It was concluded, that 

increasing wind speed from still air had an effect equivalent to decreasing the air 

temperature by 5°C. The three point aesthesiometer is a variation on this method. 

In a continuation of Macworth's work, Mills (1956) conducted a similar experiment to the 

one detailed above but looked at longer durations of exposure. Again, the Macworth V 

test was used to determine the level of numbness resulting from cold exposure. Twenty

five subjects were exposed to six different air temperatures (4,8, 12, 14, -18 and -23°C). 

The subjects all wore standard arctic clothing but prior to the test removed their gloves. It 
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was discovered that the log of the gap distance that could be detected was inversely 

proportional to the skin temperature of the subject (between 0 and 33°C). It was also 

found that after 15 minutes exposure to -18 or -23°C air, the fmger spontaneously 

rewarmed and that tactile sensitivity recovered with the increase in skin temperature. It 

was also noted, that ifthis spontaneous rewarming did not occur, then frostbite usually 

resulted. 

Provins and Morton (1959) investigated the amount of numbness experienced at different 

temperatures and also assessed the tactile sensitivity of the fmger after it reached 

equilibrium with the water temperature. To do this 10 subjects immersed their index 

fmger in water (0.75°C) for forty minutes. Tactile discrimination was then measured 

using a Mackworth V test (with the rulers made of transparent plastic instead of wood) 

during cooling and rewarming of the hand. It was determined that there was a significant 

decrease in tactile discrimination below finger skin temperatures of 8°C. Tactile 

discrimination was then tested on five subjects who immersed their index temperature in 

water at six different temperatures (2, 4, 6, 8, 15 and 30°C) for twenty minutes. After the 

fIrst five minutes, the blood supply to the finger was cut off. It was found that there was 

little decrease in tactile discrimination after a 15 to 20 minute exposure in water 

temperatures of 6°C or higher, however at 4°C there was some impairment and at 2°C all 

subjects experienced complete numbness at the test site. 

Provins and Morton (1958) also conducted an experiment to investigate whether the local 

exposure of hands resulted in results similar to Macworth's when only the hands were 

exposed to the cold environment rather than the whole body. A further aim was to 

determine to what extent the relative performance of two tasks varied before and after 

exposure to cold under different conditions. To do this, 20 subjects exposed their index 

fmger to air at -22°C with a wind speed ofO.02ms-1 until the subject's skin temperature 

reached -5°C. A pressure discrimination test and the Macworth V test were then 

administered in separate sessions. The pressure discrimination test involved the subject 

deflecting a metal piece of apparatus by 25mm. The subject was told whether they had 

correctly managed this or not, and then had to repeat the test again with the correction 

given to them in mind. It was determined that the subject's manual dexterity decreased 

significantly although the subject's body remained warm. It also determined that the 

reproduction of finger pressure is dependant upon cutaneous information and that once 
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this is reduced by numbness, the subjects were significantly less accurate even when told 

the extent of their error than before cold exposure. The experiment also determined that 

while the Mackworth V test was a good test of reduced tactile performance after cold 

exposure, the test gave no indication, when performed at normal skin temperatures, of the 

relative effect that cold exposure would have on the subject's performance. 

4.2.6 Speed 

The following experiment will detail manual dexterity tests used to assess the speed 

aspect of manual dexterity. LeBlanc (1955) aimed to determine whether the arm, hand, 

fmgers or a combination of all three had the largest effect on manual dexterity when 

cooled. To do this, 8 subjects were instructed to place their arm (with the hand excluded), 

their hand or their finger in ice cold water. Subjects were later asked to place their arm in 

ice cold water whilst their hand was kept in water of 33°C. Two fmger dexterity tests 

were then carried out at one minute intervals: 

• Plate tapping 

• Moving the index finger from one point to another around a baffle 

When the hand was cooled, it was found that the performance in the second manual 

dexterity test was comparable to results obtained for the fmger only cooling. However 

when the plate-tapping test was performed, no reduction in performance was observed 

when the finger only was cooled. It was determined through these experiments, that 

fmger dexterity decreased when the arm was cooled and the hand was not. This would 

indicate that increased viscosity of synovial fluid is not the only influencing factor on 

manual dexterity and that the small muscles of the hand may play an important role when 

considering manual dexterity losses due to cold exposure. 

Gaydos and Dusek (1958) considered fme fmger dexterity when assessing the effects of 

localised hand cooling versus total body cooling on manual dexterity. Subject's were 

either exposed to air (7.2°C air speed 8Km-1
) with their hands in a warming box kept 

between 32.2 and 37.8°C. Subjects were asked to complete two manual dexterity test: 

• Block stringing 

• Knottying 
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The subjects completed the tasks a) upon entry to the chamber, b) when fmgertip 

temperature had dropped to between 15 and 18.3°C and c) when the fingertip temperature 

had dropped between 10 and 12.8°C. It was determined that if the hand was not cooled, 

then lowering the mean body temperature had no effect on performance of the dexterity 

tests. However, when the hands were cooled by exposing them to the same ambient 

conditions as the rest ofthe body, performance reductions were dependant upon the 

degree of hand cooling that had taken place. Manual dexterity decreased as fmger skin 

temperature dropped from 23.9° to 15.6°C although these decreases were not significant 

until the finger skin temperatures were between lOoe and 12.8°C. 

4.2.7 Test Selection 

Based on the above information, four tests were chosen to represent four different aspects 

of manual dexterity likely to be affected by contact cooling. The test chosen were done so 

on the basis of whether they were likely to test areas of manual dexterity likely to be 

affected by contact cooling (for this reason test relying on central effects or gross hand 

and arm movements were discounted). The test chosen also had to be well documented as 

being used in the past and also have shown an effect ofloss of dexterity through cold 

exposure. The tests selected also had to represent different aspects of manual dexterity, so 

it was possible to establish exactly which aspects are affected as a result of contact 

cooling. 

The four tests selected were: 

I) A strength test measured by a grip dynamo meter, 

2) A speed test measured in time taken to open and close the hand 

3) A nut and bolt test to measure fme finger accuracy 

4) A three point aesthesiometer to measure tactile sensitivity 

All four tests have been validated by previous work and are established in literature. The 

tests chosen were also considered to be reliable, in that they measured what they were 

designed to. It was felt that strength would be affected due to the number of small 

muscles in the hand and arm that are utilised in a test ofhandlarm strength. The 

thickening of synovial fluid surrounding the joints should also affect performance in this 

task. The screw test should also indicate thickening of synovial fluid and reflect dexterity 
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losses as a result of the numbness. The three point aesthesiometer will indicate any losses 

in tactile sensitivity as a result of contact cooling. The speed test will give an indication of 

detrimental effects to the hand muscles and forearm flexors and extensors and as such is a 

[me motor test. Thickening of synovial fluid will also be a major contributory factor for 

this test. The table below taken from Havenith and Heus (1995) shows at what 

temperature structures are likely to be affected. 

Table 4.1. Critical Temperatures (CC) for Different Physiological Structures at which Manual 
Dexterity Becomes Substantially Reduced (Havenith and Heus 1995) 

Receptors 10 
Nerves 20 
Joints 24 

Muscles (task dependant) 28-38 
Skin 15 
Core ? 

As can be seen, tactile sensitivity would be expected to be affected at temperatures of 

around 15°e. As this is a relatively high temperature it could be expected that both 

cooling conditions would result in skin temperatures at this level. It is expected to be 

particularly appropriate to the fast cooling condition where other manual dexterity tests 

may not be as the skin would be affected by the superficial cooling occurring as a result 

of rapid cooling where deeper structures (muscles may not). The strength test is expected 

to be especially appropriate to the slow cooling condition, as deeper cooling will occur as 

a result of the increased duration of exposure to ambient conditions of -20oe, combined 

with cooling occurring as a result of contact with the nylon bar. A muscle temperature of 

28-38°e could reasonably be expected to be achieved at this temperature. Again, joints 

and receptors are affected at relatively high temperatures 24°e and lOoe respectively. 

These structures will come into play in the speed test. These temperatures could be 

expected to be achieved in both conditions, but as the joints are located at a deeper level 

than the skin it is probable that any effects will be seen more prominently in the slow 

cooling condition. The nut and bolt test should highlight differences in both conditions, as 

numbness experienced as a result of low skin temperatures will make the nuts difficult to 

initially pick up in the fast cooling condition. Whilst skin numbness will also be a factor 

in the slow cooling condition, it is also thought, that thickening of synovial fluid will 
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make it more difficult to screw the nuts onto the bolts and that this will again cause a 

greater effect in the slow cooling condition. 

4.2.8 Cooling Patterns 

Clark and Cohen (1960) investigated manual dexterity as a function of rate of change in 

hand skin temperature. Twenty male subjects were exposed to an ambient condition of 

23°C 50% relative humidity. The subject's hands were enclosed in a separate chamber 

where the rate of cooling was independently controlled. For a fast rate of cooling an air 

temperature of -17°C was used inside the hand chamber, and for a slower rate of hand 

cooling a temperature of-7.7°C was used. A modified knot-tying test was used to monitor 

dexterity (the modification meant that several knots were tied in one piece of string 

instead on one knot being tied in several pieces of string). The dexterity test was 

performed a) when the subjects placed their hands into the hand chamber b) when mean 

hand skin temperature reached 12.8°C,) when mean hand skin temperature reached 7.2°C, 

d) upon entrance of the hands into the rewarming chamber e) when the skin had 

rewarmed to 12.8°C and e) when the hand skin temperature had returned to normal. 

It was found that rate of cooling significantly affected manual dexterity performance, and 

that the rate of rewarming varied according to the cooling speed but this was only 

significant at the later stages of rewarming. It was also found that manual dexterity 

performance increased as the subject's hand skin temperature increased. When the 

subject's hands were cooled slowly and then rewarmed slowly the performance decrease 

was still apparent even after the hand skin temperature had returned to normal, however 

when subjects were cooled rapidly and rewarmed rapidly the performance ofthe subjects 

increased to a level superior to that prior to cooling. It was therefore concluded that rate 

of cooling is also important to consider in addition to skin temperature when considering 

manual performance losses. 

Chapter 3 demonstrated that contact cooling was dependent upon time and duration of 

exposure. It was determined, that there are two types of cooling that result from contact 

with materials of either high or low contact coefficients. Contact with materials with low 

contact coefficients, for example nylon, results in a slow deep cooling, whereas contact 

with a material of a high contact coefficient (e.g. aluminium) results in a faster more 

superficial cooling. It would be therefore reasonable to assume that different aspects of 
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manual dexterity may be affected differently by these two types of cooling. To investigate 

this possibility further, all four selected tests were completed by subjects in both a fast 

cooling (high contact coefficient) and a slow cooling (low contact coefficient) condition. 

4.3 Aims 

The aims of this study are to determine which aspects of manual dexterity are most 

affected by contact cooling by using the four selected tests. A secondary aim is to 

determine whether the aspects of manual dexterity affected as a result offast cooling (as a 

result of contact with a material at a relatively high temperature >-3°C but with a high 

contact coefficient) are similar or different to those affected as a result of slow cooling 

(occurring as a result of contact with a material with a low contact coefficient at a 

relatively low temperature >-20°C). 

4.3.1 Pilot Studies 

During pilot studies problems with the tactile test were assessed. For the tactile test 

participants consistently reported that they perceived the one point (used as a control) to 

be sharper than the two points that are used in graduating steps. This perception resulted 

in the subjects being able to determine with ease whether one point or two was being 

applied to the skin. To compensate for this, only the two points ofthe aesthesiometer 

were used, with the second point being moved out of the way when the control was 

required. The full protocol and picture is described/shown later in this chapter. 

The material and duration that the bar was gripped for, were based on several pilot studies 

and from the results from chapter 3, which indicated that participants could be exposed to 

the material for the periods oftime selected below without withdrawing through 

intolerable pain. The pilot studies also indicated differences in performance pre and post 

exposure. It was important to ensure that the conditions were not so extreme as to induce 

withdrawal through pain, as in order to compare the manual dexterity results effectively, 

all participants needed to be exposed to the bars for the same period of time before 

completing the tests. In the experiment discussed in chapter 3 this was not the case and 

lead to problems with in the interpretation. 
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4.4 Methods 

4.4.1 Procedure 

Upon arrival at the laboratory, participants completed an informed consent form. 

Participants were then instrumented and performed one of the four manual dexterity tests. 

The order of exposure of the dexterity test for participants was randomised using a 10 by 

4 incomplete Latin Square design. The participant then placed his or her dominant hand 

into the freezer and gripped the bar. After the set duration of either five or ten minutes, 

the participants remove their hand from the freezer and performed the manual dexterity 

test again. 

4.4.2 Contact Cooling 

Participants were asked to grip a bar 400mm in length and 40 mm in diameter. Each bar 

was counterweighted from the outside (see chapter 2) so that each bar weighed the 

equivalent of 500g. Thermocouples were used to measure skin temperature and were 

placed at several locations on the participant's hand. (See Figure 4.1) 

Figure 4.1. Shows the placement a/thermocouples on the participant's hand 

The following conditions were used in order to induce the two types of cooling (see Table 

4.2) 
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Table 4.2 shows the Experimental Conditions 

Material Temperature Duration of Grip 
Slow Cooling Nylon -20°C 10 minutes 
Fast Cooling Aluminium -3°C 5 minutes 

4.4.3 Participants 

Five male and five female participants took part in this repeated measures within subject 

study. Table 4.3 shows the participants characteristics 

Table 4.3. Participant Characteristics with mean and standard deviation (SD) 

Subject Sex Age Height Weight Volume Palm Palm Third 
of Hand Length Width Phalanx 

Length 
I M 27 183 88.7 331 10.1 8.4 7.6 
2 F 31 171 77.5 312 10.7 8.3 8.2 
3 F 22 170 73 276 10.1 7.9 7.5 
4 F 21 169 65 301 9.7 7.6 7.6 
5 F 21 162 60.5 290 9.2 8 6.7 
6 M 25 185 80.4 394 11 8.7 8.7 
7 F 23 169 58.3 297 11 8 7.9 
8 M 22 188 84.7 392 11 8.7 8.8 
9 M 25 179.5 74.8 315 10.8 8.2 8.3 
10 M 23 180 80.3 389 10.9 8.8 8.5 

Mean - 24 175.7 74.3 329.7 10.5 8.26 7.98 
SO - 3.1 8.5 10.2 45.2 0.64 0.39 0.65 

4.4.4 Manual Dexterity Tests - Training 

Prior to the experiment, all participants visited the lab and completed all manual dexterity 

tests until a plateau of performance had been established. This was to avoid any learning 

effects in the actual data. 

4.4.5 Grip Strength 

Participants were asked to hold the dynamometer as shown in the picture below (Figure 

4.2). The participants then squeezed the handle of the dynamo meter as hard as they could. 

The reading was taken in kilogramforce, and the test was repeated a total of three times. 

Page 82 

Third 
Phalanx 
Width 

2 
1.9 
1.8 
1.8 
1.7 
2 

1.8 
1.9 
1.8 
2 

1.87 
0.11 



Figure 4.2 shows the correct position for gripping the dynamometer 

4.4.6 Speed Test 

Participants were asked to assume the starting position, which palms closed, then as 

quickly as possible open their hand and close it again as shown in Figure 4.3. This was 

done three times. The time taken to do this was recorded and the test scores in seconds. 

Starting Position First Position End position 

Figure 4.3. Shows the range of movement the participants were asked to complete in order to 

complete 3 repetition of the exercise 
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4.4.7 Nut and Bolt test 

Participants were asked to screw four nuts, which were gathered from a tray underneath 

the test, onto four bolts until the nut wouldn't turn any further, (see Figure 4.4). The time 

taken to do this was recorded. The number of nuts dropped was also noted. The test is 

scored in seconds to complete the test. 

Figure 4.4. Shows a participant completing the nut and bolt test 

4.4.8 Tactile Discrimination Test 

The two points of the aesthesiometer were placed together and touched to one of the four 

selected sites on the subject's hand. The distance between the two points was then 

increased by 1 mm at a time, each time the distance was increased, the subjects were 

asked whether they could detect one point or two. The two-point pressure was 

interspersed at suitable intervals with a single point pressure. When the participant could 

distinguish 2 points of pressure, one point was then used again as a control. If the 

participant correctly determined one point, the distance between the two points was 

decreased until the participant was unable to distinguish two points again. The smallest 

distance between the two points where the participant could detect the presence of two 

points was the final measurement. Participants were asked to report verbally to the 

experimenter whether they could detect 'one point or two ' making contact with their 

hand. This test was administered at four sites on the hand (see Figure 4.5). The test is 

scored in mm. Figure 4.6. Shows the tactile discrimination test. 
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Figure 4.5. Sites where the tactile discrimination task was administered. 

Figure 4.6. Tactile Discrimination Test 

4.4.9 Withdrawal Criteria 

Participants were asked to withdraw their hand from the freezer immediately, if any of the 

five thermocouples registered a temperature ofO.SoC, if the participant experienced the 

sensation of frost nip which was described to them in a pre visit, or if the participant 

experienced intolerable pain. 

Statistical analysis was done in SYSTAT 9. 
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4.5 Results 

4.5.1 Analysis 

For all tests (except the nut and bolt test which was only completed once due to the 

amount of time required to complete it and the subsequent effects on rewarming of the 

hand) three measurements were recorded for each participant both before and after 

exposure. The results from the manual dexterity test prior to exposure to the bar were then 

compared to the results ofthe manual dexterity tests after exposure to the bar. A t-test 

was carried out on the mean from the three trials. 

4.5.2 Slow Contact Cooling 

Table 4.4 below, shows the mean score before and after exposure to the bar, and the 

significance values of all the participants. 

Table 4.4. Shows mean scores and significance values for the mean of all subjects for the long 
term cooling experiment. 

Manual Dexterity Average of All Average of All Mean Percentage P value for t-test 
Test Scores Prior to Scores After Change (%) 

Exposure Exposure 
Speed (s) 1.3±0.06 1.6±0.1 23 0.000 

Strength (Kg) 37.3± 1.3 33 .9± 1.1 9.1 0.003 
Nut and Bolt test 84.5±11.2 103 .5±20.2 22.5 0.016 

(s) 
Tactile (site I) 5.7±2.8 6.6± 1.4 15.8 0.342 

(mm) 
Tactile (site 2) 5.5± 1.5 6.6± 1 20 0.174 

(mm) 
Tactile (site 3) 3.2±0.4 3± 1.2 6.3 0.318 

(mm) 
Tactile (site 4) 8.4±3 9.6±3.7 14.3 0.247 

(mm) 

The time to complete the speed test became significantly longer (p~O.Ol) after exposure 

to the bar and strength decreased significantly after exposure to the bar (p~O.Ol). The nut 

and bolt test was performed significantly slower post exposure than pre exposure 

(p~O.05). There was no significant difference pre or post exposure for the tactile 

discrimination test at any site 
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Tactile Discrimination Before and After Contact Cooling (Site 1) 
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Tactile Dlscrfmlnation Before and After Contact Cooling (Site 4) 
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Figure 4. 6 shows the individual performance of subjects at each site for the tactile discrimination 

test. 

As can be seen from Figure 4.6 subject seven did not complete this test (subject 

withdrawal) and subject 4 didn't complete the tactile discrimination test at site 4. Subject 

4 was unable to determine either pre or post exposure the correct number of contact 

points at site 4. At site 1, the distance of the two points before the subject was able to 

distinguish the correct number was larger for five of the subjects, but decreased for three 

of the participants. At site two the distance increased for 4 participants decreased for four 

participants and remained equal for one. At site three, seven subjects decreased the 

distance required to distinguish two points after exposure, one increased, and one was 

unable to successfully determine the number of points after exposure. At site 4, the 

distance decreased for two subjects post exposure but increased for six. As two subjects 

were missing from this experiment, the degrees of freedom were decreased 

proportionally, possibly indicating that significance may have been found if the full 

contingent of subjects had completed the test at this site. Over all the tactile 

discrimination test was ruled unsuccessful at quantifying manual dexterity deficits as a 

result of contact with materials with low contact coefficients. 
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TIme Taken to Complete the Nut and Bolt Test Before and After Contact Cooling 
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Figure 4.7. Shows the mean performance for subject 's pre and post exposure for the Strength and 

Speed test and the actual scores (both hands combined) for the Nut and Bolt test. 

As can be seen from Figure 4.7 one subject was missing from this condition (subject 

withdrawal). Seven ofthe participant's time to complete the nut and bolt test increased 

after exposure to the bar and two of the subjects decreased slightly. 

Page 89 



Figure. 7 also shows that the time taken to complete the speed test significantly increased 

for nine of the subjects but decreased for one. The overall result was highly significant. 

Strength decreased significantly in eight ofthe nine subjects that completed this test, with 

the increase in strength of subject ten being very slight. These results were found to be 

significant at a very high level. 

4.5.3 Fast Contact Cooling 

Table 4.5. below, shows the mean score before and after exposure to the bar, and the 

significance values of all the participants. 

Table 4.5. show the mean before and after scores with significance values across all subjects for 
fast cooling 

Manual Dexterity Average of All Average of All Mean Percentage P value for t-test 
Test Scores Prior to Scores After Change (%) 

Exposure Exposure 
Speed (s) 1±0.1 1.1±0.1 10 0.000 

Strength (Kg) 42± 1.3 41.2±1.8 1.9 0.044 
Nut and Bolt test 84.9± 12.9 88.5±8.9 5.3 0.735 

(s) 
Tactile (site I) 6.3±2.3 8.4± 1.5 33 0.045 

(mm) 
Tactile (site 2) 7.2±0.9 7±2.02 0 0.888 

(mm) 
Tactile (site 3) 4.5±2.2 5.1±0.9 13.3 0.376 

(mm) 
Tactile (site 4) 13.2±4.5 14.6±5.0 10.6 0.569 

(mm) 

As can be seen from Table 4.4 there was no significant difference in performance of the 

nut and bolt test pre and post exposure (p = 0.745). Performance of the speed test 

decreased significantly after exposure to the bar (p::;0. 01). Strength decreased 

significantly after exposure to the bar (p ::; 0.05). There was no significant difference in 

tactile discrimination at sites two, three or four, however the distance required to 

successfully detect two points in contact with the hands was significantly increased at site 

1 (p::; 0.05). 
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Tactile Disaimination Before ard After Contact Cooling (Site 1) 
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Figure 4.8. Shows the individual performance of subjects at each site for the tactile 

discrimination test. 
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Figure 4.8 shows that the distance taken for seven ofthe subjects to detect the presence of 

two points was larger post contact than pre contact. Two subjects could detect the two 

points post contact at the same distance as pre contact, and one subject decreased post 

contact. At site two the distance required increased for six of the subjects, decreased for 

three of the subjects and remained constant for one. At site 3, five subjects increased in 

distance before perception of the two points, three decreased and two remained constant. 

At site 4, seven subjects increased whilst three decreased. 

Graph to Show Strength Before and After Contact Cooling 
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Figure 4.9. Shows the mean performance for subject's pre and post exposure for the Strength and 

Speed test and the actual scores (both hands combined) for the nut and bolt lest. 
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For the nut and bolt test, six subjects took longer to complete the test post exposure and 3 

subjects completed the test more quickly. Due to the lack of significance found for this 

test it was determined to be unsuitable for demonstrating manual dexterity deficits as a 

result of cooling cause by contact with a material of high contact coefficient. 

Nine of the ten subject's performance became significantly worse post exposure on the 

speed test. 

Strength also significantly decreased post exposure, with six subjects finding their 

strength decreased after contact with the bar and four subjects fmding their strength 

increased. 

4.6 Discussion 

4.6.1 Speed of Cooling 

Kiess and Lockhart (1970) found that a slow rate of cooling impairs certain types of 

manual dexterity more than a fast rate, but that this phenomenon only occurred at low 

mean weighted skin temperatures. Clark and Cohen (1960) also found that the rate of 

cooling significantly affected manual dexterity performance (slow cooling resulted in a 

greater loss of dexterity) and that the rate of rewarming varied according to the cooling 

speed but this was only significant at the later stages of rewarming. They also determined 

that manual dexterity performance increased as the subject's hand skin temperature 

increased. It was therefore concluded that rate of cooling is also important to consider in 

addition to skin temperature when considering manual performance losses. For single 

digit contact cooling Jay and Havenith (2000) observed a higher pain sensation at the 

same skin temperature for slow versus fast cooling, suggesting a deeper cooling at equal 

skin temperatures in slow cooling. These results would suggest that in the full hand 

contact used in the present experiment similar observations should be made. In this 

experiment however, no real differences were found between conditions in the strength 

and speed tests as both were significantly impaired in both conditions. However, there 

was a difference in performance decrements as in both cases manual dexterity was 

affected more severely in the slow cooling than fast cooling condition (see tables 3 and 

4). The nut and bolt test however was only significantly affected with performance being 

significantly worse after contact cooling in the slow cooling condition (p>0.05). The main 
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difference between cooling types for tactile performance was that performance in the fast 

contact cooling condition was significantly decreased (p~O.05) at site 1 but was not in the 

long term experiment. All other sites were unaffected as a result of contact cooling. Both 

Kiess and Lockhart and Clark and Cohen investigated manual dexterity after uniform 

cooling. This was either done in air or water. Contact cooling results in a different cooling 

pattern, with cooling being localised and not uniform. In the present experiment contact 

cooling in both conditions results in a quick rate of cooling relative to cooling by air or 

water in either of the other two experiments, either as a result of a high contact coefficient 

of the two materials or as a result of the initial starting temperature of the low coefficient 

material. So what is termed a quick and slow rate of cooling for the experiments 

involving water and air may not be comparable to quick and slow rates of cooling as 

experienced as a result of contact cooling. 

As all participants were gripping bars to induce contact cooling, the contact cooling 

occurred on the palmar aspect of the hand only. The palmar aspect of the hand has more 

pulp than the back of the hand so many of the structures that affect manual dexterity will 

be located closer to the surface of the dorsal aspect of the hand than the palmar aspect. 

This will again have some bearing on the results when compared to the results from 

previous experiments which induced cooling by air or water, as these experiments would 

have cooled both aspects of the hand simultaneously. 

4.6.2 Speed Test 

Speed was the most affected of all the manual dexterity components in the tests. The use 

ofthe speed test would be most in both fast and slow contact cooling conditions, as in 

each condition all but one subject showed a decrease in performance after exposure. In 

both conditions, the general trend was for a decrease in performance. The speed test 

would be primarily influenced by quick movement of cold joints. This would be affected 

by the thickening of synovial fluid, which occurs at a relatively high temperature. Hunter 

et al. (1952) demonstrated that in the cold, joint temperature decreases more than muscle, 

core and average skin temperature does. Although the tests were conducted over very 

small time periods (Is), the same experimenter was used in all conditions so any errors 

were constant between participants and conditions. The speed test was a good test for 

highlighting manual dexterity deficits as a result of both slow and fast contact cooling, 
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4.6.3 Strength Test 

The strength test, whilst showing statistically significant deficits in both the long term and 

short term contact cooling conditions showed greater consistency across subjects in the 

expected direction (i.e. strength decreasing after performance as a relative percentage 

change) in the long term exposure condition when compared to short term exposure. This 

was expected, as the strength test is primarily influenced by the small muscles of the hand 

and the muscles in the forearm. The foreann muscles are exposed to the ambient 

conditions inside the freezer, so a greater effect would be expected in the long term 

condition, as the temperature was lower and the duration that the forearm was exposed to 

the ambient conditions was greater than for the short term condition. Clarke et al. (1958) 

found that there was a minimal decrease in maximal contraction force at temperatures of 

28° - 39°C but below 28°C there was a strong linear decrease in performance. The 

Strength test is primarily dependent upon the muscle force and the contraction velocity of 

the muscle. For maximal force to be exerted by a muscle as is required by this test, 

muscle temperature needs to be high (optimally about 38°C) (Havenith et al. 1995). This 

strength test proved to be a good indicator of manual dexterity deficits occurring as a 

result of contact cooling and can be used in both fast and slow cooling conditions. 

Although this test also relied on the cooling of some ofthe forearm, participants reported 

feelings of weakness in their fingers as they tried to grip the handle ofthe dynamo meter, 

so this test was considered acceptable as a measure of manual dexterity affected by 

contact cooling. 

4.6.4 Nut and Bolt Test 

The nut and bolt test did not show any significant differences in the short term exposure 

condition but did illustrate significant differences in the long term exposure condition. 

The nut and bolt test would highlight any deficits in terms of skin sensibility and joint 

stiffness. When observing participants complete this test, it was apparent that the most 

difficult part of the test was the picking up of the nuts. Actually screwing the nut onto the 

bolt did not present a problem for subjects. This would seem to indicate that this test was 

in fact primarily affected by numbness of the skin rather than joint mobility. It's also 

likely that receptor sensitivity was affected. There are two main types of receptors. 

Receptors in the motion apparatus provide information relating to the position of the hand 

in relation to the body and environment. Receptors in the skin provide information on the 

structure and texture of handled objects (Havenith et al. (1995)) so it is possible that 
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these receptors affected performance on the nut and bolt test. The most likely explanation 

for this is that the very tip of the thumb and index finger are required to pick up the nuts. 

These are areas of the hand likely to cool the quickest due to being extremities and also 

because of the blood supply to these areas. It is likely that these areas were exposed more 

to the ambient condition than the bar so the decrease in performance in the long term 

cooling condition could again be attributed to the longer duration of exposure in this 

condition and the lower ambient temperature. Due to the fact that it is likely this test then 

measures the effects of ambient air exposure rather than contact cooling, it is concluded 

with hindsight that this test may be inappropriate to measure effects of contact cooling. 

4.6.5 Tactile sensitivity 

This test appeared to be the least effective test at measuring manual dexterity deficits as a 

result of contact cooling, It is likely this was the case as the skin temperature required to 

affect tactile sensitivity are quite low. Mackworth (1953) found a minor impairment in 

tactile sensitivity at skin temperatures below 25°C. Morton & Provins (1960) and Mills 

(1956) found that a nervous block occurred at skin temperatures of approximately 6°C 

and that skin temperatures of between 6-8°C result in sensitivity being decreased rapidly. 

Based on previous experiments, it is unlikely that in either condition skin temperature 

reached this level. 

Several problems were identified with the three point aesthesiometer that may have 

contributed to the lack of difference found pre and post exposure. It was difficult to 

administer the test after each increase or decrease in distance between the two points with 

the same pressure. Sometimes the participant moved their hand or their hand shook. This 

problem was partly alleviated by placing the participants hand onto a firm surface, but if 

the experimenter's hand shook at all it was possible that the point made contact more than 

once with the participants hand. It was also difficult for the experimenter to judge exactly 

how much pressure was being exerted by the points onto the subject's hand. If this test 

were to be replicated a machine to administer the test would eliminate any doubts as to 

the administration of the test. Finally, due to the individual contours of each participants 

hand, it occasionally was difficult to touch the hand with the two points of the 

aesthesiometer at exactly the same time resulting in the participant feeling two distinct 

contact points. 
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Although a significant difference was found at site one in the short term cooling condition 

this was only significant at the p::;O.05 level and due to the lack of significance found at 

any other site, it is likely that this significance was due to factors other than the condition. 

4.7 Conclusions 

It would appear that the aspects of manual dexterity affected by fast contact cooling 

(contact with materials of high coefficients) and slow contact cooling (contact with 

materials with low coefficients) are similar, but the severity of deficit varies. 

The Speed and Strength tests are the most sensitive to the effects of contact cooling as a 

result of contact cooling for both long term exposure to a material with a low contact 

coefficient and short term exposure to a material with a high contact coefficient. 

Aspects of manual dexterity most affected by contact cooling are fme motor tasks and 

strength tasks. This is consistent with changes in synovial fluid, muscles and nerve 

conduction. 
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5 A Comparison of Effects on Manual Dexterity 

Between the Dominant and non Dominant Hand 

as a Result of Contact Cooling 

5.1 Chapter Summary 

In the previous chapter four tests were identified that assessed different aspects of manual 

dexterity. Two of those tests were identified as being particularly sensitive to losses in 

manual dexterity as a result of contact cooling of the dominant hand. In this chapter those 

tests shall be used to determine whether any differences exist between the dominant and 

non dominant hand in terms of manual dexterity as a result of contact cooling. It was 

determined that there is a difference in the strength aspect of manual dexterity with the non 

dominant hand being significantly more affected than the non dominant hand, although this 

difference may be attnoutable to chance. 

5.2 Background 

The European Standard investigating the effects of contact cooling on the human hand 

was based on data from the dominant hand. Subsequent guidelines established were to 
, 

protect both hands. The aim of this study was to determine if there are any differences in 

effects on manual dexterity as a result of contact cooling between the dominant and non 

dominant hand and if there are, to determine how it would affect the standard. 

Page 98 



5.2.1 Differences and Similarities between the dominant and non dominant hand 

Embryological differences occur in the origin of the right and left arms and hands. The left 

arm and hand originate in the neck of the embryo from the same tissue whereas the right 

do not (Guyton 1964). This is leant further credence by the fact that when a person suffers 

from angina, the pain is experienced first in many cases down the left arm. This may 

indicate the persistence of a neural connection that is absent in the right arm. It is therefore 

possible that there may be a difference in the perception of pain between the left and right 

arm at the neural level associated with the receptors and nerve fibres, which is unaffected 

by patterns of dominance in the brain (Murray and Safferstone 1970). 

5.2.2 Pain 

Murrayand Safferstone (1970) investigated the pain responses of 41 females aged 18 -21 

years (these included 36 dextral, 3 sinistral and 2 ambidextral). Participants were asked to 

place their hands up to the wrist in a water bath containing water of either 32°C or 2°C. 

Participants were asked to rate the temperature of the bath from cold to neutral. After two 

minutes, the participants were then asked to remove their hand from the 32°C water bath 

and place it in the 2°C water bath. Participants were then asked to indicate the sensation of 

pain and leave their hand in the water bath until the pain became intolerable. It was 

determined, that the threshold and tolerance values for the right hand were consistently 

higher than those for the left, for both dextral and sinistral participants. However, the fact 

that only 3 sinistral participants were used was noted as a confounding factor. 

Wolff and Jarvik (1964) used ice water with chronic arthritic participants who had a 

median age of 52 years. It was determined that the dominant side was more sensitive to 

pain than the non dominant side. 

In a replication ofMurray and Safferstone's experiment, where the majority of participants 

had been right handed, Murrayand Hagan (1973) repeated this study using lO sinistral and 

10 dextral participants. The procedure was the same as the experiment described 

previously, with the exception that the feet of the participants were also immersed 

separately to the hands. It was determined; that the left hand and foot had a significantly 

lower threshold and tolerance to pain than the right hand and foot, regardless of whether 

the participants were sinistral or dextral. This difference was attributed to the brain being 
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bilaterally asymmetrical regarding certain functions. The left hand side of the brain is 

predominantly concerned with speech productions and perceptions, whereas the right hand 

side of the brain is concerned primarily with perception of language and other non

language sounds (Murray and Safferstone 1970). Based on these observations, it is 

thought that the difference in pain tolerance and onset of pain would also be evident after 

contact cooling of the hand and reflected in the sUbjective sensations. It is also possible 

that there may be differences in tactile sensitivity between the dominant and non dominant 

hand related to the functional asymmetry of the brain. The studies described above, use 

homogenous cooling, rather than asymmetric cooling which occurs as a result of contact 

cooling, so it is not clear whether the findings could be applied to pain sensations 

experienced as a result of contact cooling. 

Wolff, Krasnegor and Farr (1965) found that the left or non preferred hand was more 

sensitive to pain when using electrically induced pain rather than cold induced pain. They 

thought that the difference in pain sensation experienced between the two limbs might lead 

to a decrease in motivation affecting the results of the manual dexterity tests they 

performed. Electrically induced pain occurs in very short exposures, whereas the type of 

pain experienced as a result of contact cooling is over a longer time period, again meaning 

these finding may not be applicable to contact cooling. 

5.2.3 Pressure 

Weinstein and Sersen (1991) in an experiment using 66 sinistral participants found greater 

left-hand sensitivity to pressure. It is possible that the left hand, being the dominant hand in 

the participants used, was more accustomed to detecting pressure through frequency of 

use, although dependant upon d'ay to day use, it could be expected that the dominant hand 

would be less sensitive to pressure as a result of callus build up on the hand used most 

frequently. Callus is a thickened keratin layer of the epidermis, which builds up due to 

more frequent use (Lederman 1976). However, Fennell, Satz and Wise (1967) and 

Carmon, Bilstrom and Benton (1969) found that there was no asymmetry between hands 

for perception of either pressure or sharpness. 

Hellstrom et al. (1970) investigated human peripheral rewarming during exercise in the 

cold. It was determined that on several occasions throughout the experiment, the third 
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finger on both the dominant and non dominant hand rewanned simultaneously regardless 

of the fact that the right hand was covered using a 6mm thick, wind tight insulative nylon 

mitten. Imamura et al. (1998) investigated the rewarming of the dominant and non 

dominant hand after exposure to a steel bar at -10°C. It was determined, that rewarming 

occurred more quickly in the dominant than in the non dominant. No conclusions can be 

drawn from this study however, as only one condition was tested. 

5.2.4 Manual Dexterity 

Manual dexterity is discussed in greater detail in chapter 4. A brief recap shall be given 

here. Manual dexterity is affected by several components, including reaction time, 

sensitivity, nerve conduction, grip strength, time to exhaustion and mobility (Havenith et 

al. 1995). Increasing reaction time is possibly caused by physiological changes in 

receptors, nerves and effectors. De Jong et al. (1966) found a linear decrease in nerve 

conduction velocity of I.Sms- I oCI at a normal mean conduction velocity of 6Oms-I
. Below 

20 - 24°C there is a stronger decrease in nerve velocity and a nervous block occurs at 

temperature below 10°C. Changes in dexterity can also occur through changes in the 

muscle in terms of power, contraction, speed or muscle endurance. The muscle force and 

contraction velocity determines muscle power. The cold can affect muscle power due to 

changes in maximal power, which can be decreased due to a change in the maximum 

contraction velocity and maximum force. A decrease in time to exhaustion is also 

apparent. 

Reduced skin sensibility is most likely due to physiological changes in the receptors 

whereas reduced mobility is most likely attributable to changes in muscles, joints and 

tendons. The mobility of the joint is affected by cooling, as the synovial fluid that 

lubricates the joints thickens so movements become slower. This is often referred to as 

joint stiffuess, and when the fluid becomes viscous it requires more muscle power to make 

movements. Joints can cool more quickly than the muscle core and average skin 

temperature (Hunter et al. 1952). 

In addition to these physiological changes responsible for decreases in manual dexterity, 

reduced motivation as a result of central effects is also a consideration. When manual 

Page 101 



dexterity decreases and work production is also reduced it has been shown to lead to an 

increase in accidents (Osbourne and Vemon 1922). 

5.2.5 Contact Cooling 

Chapter 3. Identified two types of cooling that occur as a result of contact with materials 

with either high or low contact coefficients. The type of cooling that results from contact 

with a material with a low contact coefficient is a slow deep cooling, the other type of 

cooling occurs as a result of contact with a material with a high contact coefficient. This 

type of contact cooling results in a faster more superficial cooling. The two types of 

cooling patterns lead to different aspects of manual dexterity being affected (chapter 4). 

To investigate all aspects of manual dexterity (from gross hand tasks to fine finger tests) 

that might be affected in both the dominant and non dominant hand, the four dexterity tests 

selected and discussed in chapter 4 were used for this experiment. These were a 

dynamo meter, a timed speed test, a nut and bolt test and a tactile discrimination test 

5.3 Aims 

The type of cooling that occurs, as a result of contact cooling is different from cooling that 

may occur in air or water. As tests carried out previously used either a water bath or 

electrically induced pain, it was an aim of this study to see if a difference in onset and 

tolerance of pain between the dominant and non dominant hand are present as a result of 

contact cooling rather than cooling by water or electrically induced pain. To do this, two 

conditions were designed in order to affect a slow contact cooling condition and a fast 

contact cooling condition. These two conditions were used in case a difference was 

apparent between the dominant and non dominant hand in one condition, but not the other. 

One of the aims of the E.U sponsored cold surface project, discussed earlier in this thesis, 

was to asses safety issues in terms of loss of dexterity for gripping manual tools in cold 

environments. All the work in this area has been conducted on the dominant hand of 

participants. The aim of this study was to determine whether there are any differences in 

responses between the dominant and non dominant hand in terms of manual dexterity 

deficits and subjective responses. The rationale behind this is that if responses were 

different for the two hands, then depending upon the differences found, it is possible that 

the standard would need to incorporate these differences in order to effectively protect 

both hands from the effects of contact with cold materials. At present, the standard is 

designed to protect 75 % of the popUlation (i.e. based on 75 percentile data). The standard 
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is based on results for the dominant hand, so are the findings applicable to the non 

dominant hand? 

5.4 Methods 

5.4.1 Procedure 

Upon arrival at the laboratory, participants completed an informed consent form. 

Participants were then instrumented and performed one of the four manual dexterity tests 

to obtain baseline data. The order of exposure of the dexterity test for participants was 

randomised using a 10 by 4 incomplete Latin Square design. The participant then placed 

his or her hand into the freezer and gripped the bar. The order of exposure of the hand was 

determined by a pseudo Latin square. After the set duration of either five or ten minutes, 

the participants removed their hand from the freezer and performed the manual dexterity 

test again. When all sensations of the hand had returned to normal, the participants then 

repeated the experiment using their other hand. Subjective responses of pain, numbness, 

tingling and thermal sensation were monitored throughout the sessions, with the initial 

sensations of the participant being recorded, the sensations at first contact with the bar, 

and then participants were asked to verbally report any changes in their condition as and 

when they occurred. 

5.4.2 Contact Cooling 

Participants were asked to grip a bar 400mm in length and 40 mm in diameter while their 

hands were in the freezer. Each bar was weighted from the outside (see chapter 2) so that 

each bar weighed the equivalent of 500g. Thermocouples were used to measure skin 

temperature and were placed at several locations on the participant's hand. (See table 5.1) 
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Figure 5.1. Shows the placement o/thermocouples on the participant's hand 
Palmar Aspect Dorsal Aspect 

5.4.3 Participants 

Five male and five female participants took part in this repeated measures within subject 

study. All participants were right handed. Table 5.2 shows the participants characteristics 

Table 5.2. Participant Characteristics 

Subject Sex Age Height Weight Volume of Palm Palm Third Third 
Hand Length Width Phalanx Phalanx 

Length Width 
R L R L R L R L R L 

1 M 27 183 88.7 331 329 10.1 10.1 8.4 8.1 7.6 7.8 2 1.9 
2 F 31 171 77.5 312 319 10.7 10.5 8.3 7.8 8.2 7.9 1.9 1.9 
3 F 22 170 73 276 269 10.1 10.1 7.9 7.6 7.5 7.8 1.8 1.7 
4 F 21 169 65 301 291 9.7 9.6 7.6 7.4 7.6 7.5 1.8 1.7 
5 F 21 162 60.5 290 277 9.2 9 8 8 6.7 7.1 1.7 1.7 
6 M 25 185 80.4 394 388 11 10.6 8.7 8.7 8.7 8.6 2 2 
7 F 23 169 58.3 297 293 11 10.7 8 7.9 7.9 8 1.8 1.7 
8 M 22 188 84.7 392 389 11 10.9 8.7 8.7 8.8 8.7 1.9 1.9 
9 M 25 179.5 74.8 315 319 10.8 10.9 8.2 8.1 8.3 8.5 1.8 1.7 
10 M 23 180 80.3 389 384 10.9 10.7 8.8 8.7 8.5 8.4 2 1.9 

Mean 24 175.7 74.3 329 325. 10.5 10.3 8.2 8.1 7.9 8.0 1.8 1.8 
.7 8 1 6 8 3 7 1 

SD 3.13 8.54 10.2 45. 46.2 0.64 0.62 0.3 0.4 0.6 0.5 0.1 0.1 
2 9 7 5 2 1 2 

(R = Right Hand, L = Left Hand) 

5.4.4 Conditions 

The following conditions were used in order to induce the two types of cooling (see table 

5.3) 

, 
, 

I 

Table 5.3 shows the Experimental Conditions 

i 

Material Temperature Duration of Grip 

I 

Fast Cooling Aluminium -3°C 5 minutes 
Slow Cooling Nylon -20°C 10 minutes I 

The material and duration that the material was gripped for were based on the results from 

chapter 3, which indicated that participants could be exposed to the material for these 

periods of time without withdrawing through intolerable pain for the non dominant hand. 

This was important as in order to compare the manual dexterity results effectively, all 
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participants needed to be exposed to the bars for the same period of time before 

completing the tests. 

5.4.5 Manual Dexterity Tests 

Prior to the experiment, all participants visited the lab and completed all manual dexterity 

tests until a plateau of performance had been accomplished. This was to avoid any learning 

effects. The full protocol for each manual dexterity test is discussed in chapter 4. 

The four tests used were a strength test, a tactile discrimination test, a speed test and a nut 

and bolt test. For all four tests, the reasons for selection and methodology were discussed 

in chapter 4. 

5.4.6 Withdrawal Criteria 

Participants were asked to withdraw their hand from the freezer immediately, if any of the 

five thermocouples registered a temperature of O.5°C, if the participant experienced the 

sensation of frost nip which was described to them in a pre visit, or if the participant 

experienced intolerable pain. 

5.5 Results 

5.5.1 Analysis 

For all tests (except the nut and bolt test which was only completed once due to the 

amount of time required to complete it and the subsequent effects on rewarrning of the 

hand) three repeated measurements were recorded for each participant. The results from 

the manual dexterity test prior to exposure to the bar were then compared to the results of 

the manual dexterity tests after exposure to the bar. The results after exposure were 

looked at as a percentage increase or decrease of the results prior to exposure. The 

average percentage was then taken for each participant for each hand. This percentage 

value was then tested for significant difference between the dominant and non dominant 

hand using a t-test across all participants. 

5.5.2 Long Term Cooling - Manual Dexterity Test 

Table 5.4 below shows the mean percentage increase or decrease in performance between 

the dominant and non dominant hand, and the significance values over all participants. 
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Table 5.4. Means, standard deviations and average changes in % as recorded for the manual 
dexterity test for long term (slow) cooling. 

Manual Average Average Score of All Percentage (%) in- or p-value 
Dexterity Score of All Subjects Subjects After Exposure decrease in average for 

Test Before Exposure score after exposure t-test 
Dominant Non Dominant Non Dominant Non 

Dominant Dominant dominant 
speed (s) (time 1.2 ±Q.2 1.5 ±Q.2 1.3 ±Q.2 1.8 ±Q.2 8 20 0.75 

required) 

Strength (Kgl 37.3±8.0 37.9±7.9 34.0±72 342±1O.6 -9 -10 0.046 

Nut and Bolt (s) 81.0 ±25.2 87.4±26.7 93.3 ±19.8 106.9±40.7 15 22 0.72 

Tactile (site I) 5.3 ±2.5 6.3 ±4.5 6.4±5.2 6.3 ±6.l 21 0 0.28 

(cm) 

Tactile (site2) 6.2±1 6.7±3.4 5.1 ±2.6 5.3 ±2.5 -18 -21 1.000 

(cm) 

Tactile (site 3) 3.2±6.9 3.4 ±1.6 2.9±1.6 3.6±2.5 -10 9 .353 

(cm) 

Tactile (site 4) 7.0±6.9 9.1±5.0 8.9±7.2 9.7±7.8 27 7 0.999 

(cm) 

There were no significant differences between the hands in terms of manual dexterity (p > 

0.05), except for strength which was significantly, but marginally more reduced in the non

dominant hand. As can be seen from table 5.4, though tactile responses were sometimes 

very different between hands, these findings however were not significant. Individual 

response variation to the test was great as evidenced by a high standard deviation. 

5.5.3 Long Term Cooling - Subjective Responses 

Wilcoxin sign rank tests were used to investigate the subjective responses. There were no 

significant differences between the pre-contact sensations of the participants across all four 

sensations. There were no significant differences overall in time to the onset of pain 

between the dominant and non dominant hand (p = 0.4). No significant differences were 

found in the pain tolerance of the participants, as all ten participants lasted for the full ten 

minute duration. There were also no significant differences in the highest or end values of 

each sensation vote (pain, numbness thermal and tingling). 

5.5.4 Short Term Cooling - Manual Dexterity Responses 

Table 5.5. Below shows the mean percentage increase or decrease in performance between 

the dominant and non dominant hand, for the short term cooling and the significance 

values of all participants. 
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Table 5.5. Means, standard deviations and average changes in % as recorded for the manual 
dexterity test for short term (fast) cooling. 

Manual Average Average Score of All Percentage (%) in- or p-value 
Dexterity Score of All Subjects Subjects After Exposure decrease in average for 

Test Before Exposure score after exposure t-test 
Dominant Non Dominant Non Dominant Non 

Dominant Dominant dominant 
Speed(s) 0.98±O.2 I.Ol±O.2 1.I0±0.2 I.23±O.2 12 22 0.955 

Strength (Kg) 4 1.1±9. 8 37.9±II.7 4I.1±II.O 36.3±13.1 -2 -4 0.S45 

Nut and Bolt 73.9±28.5 96.7±33.4 85.3 ±32.5 89.2 ±4I.6 15 -S 0.999 

(s) 

Tactile (site 6.9±3.7 5.7±3.2 8.2±3.S 7.9 ±4.1 18.8 38.6 0.866 

I)(em) 

Tactile (site2) 7.4 ±2.3 6.8±4.4 6.8±3.9 6.2±3.2 -S -9 0.421 

(em) 

Tactile (site 4.5 ± 8.1 4.4 ±2.5 4.9±3.3 5.2 ±I.9 9 18 0.740 

3) 

(cm) 

Tactile (site 14.3 ± 8.1 12.5 ±9.5 14.9±5.S 14.2±9.6 4.2 13.6 0.674 

4) 

(cm) 

The results from the manual dexterity tests for short term cooling were analysed in the 

same way as the results from the long term cooling data. For short term cooling, occurring 

as a result of contact with the aluminium bar, none of the tests showed a significant 

difference. 

5.5.5 Short Term Cooling - Subjective Responses 

Wilcoxon tests were used to investigate the subjective responses. There were no 

significant differences between the pre-contact sensations of the participants across all four 

sensations. There were also no significant differences in sensation at the end of the test 

between both hands or between the highest sensations reached for pain, numbness, thermal 

or tingling sensations. No significant difference in the onset of pain was found between the 

dominant and non dominant hand (p = 0.18) and no significant difference in pain tolerance 

was found as all the participants completed the five minute duration of contact. 

5.6 Discussion 

5.6.1 Manual Dexterity Tests 

The population group studied, were primarily people unaccustomed to manual labour. This 

means that they would be unlikely to have any callus build up on their hands. The 

measured quantity of heat transferred through the skin to the material depends upon the 

heat conductivity through the skin, the sensitivity of the thermal sensor and the thermal 
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contact of the material being gripped (Chen 1994). The condition of the skin i.e. actual 

surface roughness and skin thickness (Chen 1997) would influence contact resistance 

(Holman 1989). It is possible, that had a population been studied where calluses were 

present, that there would have been an increase in statistical significance between manual 

dexterity performance using the dominant and non dominant hand whilst gripping cold 

materials due to the extra 'protection' calluses offer. 

The only significant difference found in performance for the manual dexterity tests 

between the dominant and non dominant hand was for the strength test, where strength 

was found to decrease significantly more for the non dominant hand when compared to the 

dominant hand in the slow cooling condition only. Chapter 4 showed that fast cooling did 

have a significant effect on manual dexterity but at a lower level (1.9% mean decrease in 

performance when compared to 9.1 % decrease in the slow cooling condition). It was 

expected, that if a difference would occur it would indeed be in the slow cooling condition, 

as the structures that affected strength were shown not to have been cooled adequately by 

the fast cooling condition in chapter 4. Despite the significant difference, the magnitude of 

the difference is very small, and its relevance may be questioned. If these finding were 

repeated however, then possible implications for the standard would have to be 

considered. 

Armstrong and Oldham (1999) compared the hand strength in both the dominant and non 

dominant hand of both dextral and sinistral participants. No differences in grip strength or 

pinch strength were found between the dominant and non dominant hand in the sinistral 

participants. A small but not significant difference was found in both grip strength and 

pinch strength of the dextral participants, with the dominant hand being stronger. An 

average of three readings were taken for analysis, with the arm becoming weaker with 

each trial as a result of exhaustion. This is in line with the findings ofthis study. 

5.6.2 Subjective Responses 

The majority of studies to date (Murrayand Safferstone 1970, Murray and Hagan 1973) 

have found the right hand to be less sensitive and to have a greater tolerance of pain than 

the left, regardless of hand dominance. Due to the unique physiological conditions induced 

by contact cooling, it may not be possible for the participants to determine any differences 
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in pain sensation. The experiment was specifically designed so that participants would not 

withdraw through intolerable pain, based on results from the original study discussed in 

chapter 3. This was done to ensure that all participants had the same exposure times to the 

bar in the dominant and non dominant hand condition before completion of the manual 

dexterity tests. The rationale for this was that the primary aim of this study was to 

determine if there were any differences in manual dexterity after cold contact exposure 

between the two hands. Subjective sensations were a secondary investigative point to this. 

However, it was considered as a result of previous studies, and from experimental 

experience, that participants would withdraw their non dominant hand from the cold 

chamber prior to the limit set for exposure, as the durations selected were at the edge of 

tolerance for the dominant hand. Therefore, any deficit in tolerance of pain of the non 

dominant hand when compared to the dominant hand should have been apparent. It is 

possible though, that a difference in pain tolerance exists and that it would have become 

apparent if the experiment had been continued until the subject withdrew their hand 

through pain. However, as there was no significant difference in the highest pain sensation 

achieved, or the end sensation achieved, it is likely that this difference, even if significant, 

would have little application in the 'real world' as the majority of people are unlikely to 

work to the tolerance of pain limit. 

Although 'quality' of pain was not officially recorded, anecdotally, nearly all of the 

participants reported a difference in the quality of pain being experienced, with the short 

term cooling resulting in a burning stinging sensation, and the long term cooling resulting 

in an achy pain sensation. The burning and stinging pain experienced after contact with the 

high contact coefficient bars resulted in subjects complaining more even though the level 

of pain experienced was the same. This pain was also reported to last longer than the pain 

induced by slow cooling. The pain experienced as a result of short term cooling resulted in 

reduced motivation when completing the manual dexterity tests, as it actually caused the 

participant more pain to have contact between the manual dexterity tests and the skin on 

the hand. 
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5.7 Conclusions 
For the participant group studied, there are no significant differences in subjective 

responses reported as a result of fast and slow contact cooling between the dominant and 

non dominant hands. 

For the participant group studied there are no significant differences in manual dexterity 

deficits between the dominant and non dominant hand as a result of fast or slow contact 

cooling except for strength in the slow cooling condition. 

The European Standard is sufficient to protect the population at the level it was intended 

to (75%). 
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6 The Effect of High and no Blood Flow on Slow 

Contact Cooling 

6.1 Chapter Summary 

Blood flow is the main source of heat input to the hand. There are many factors that may 

affect blood flow to the hand, including the wearing of tight fitting cuffs, or disorders or 

diseases that affect the circulation. This study investigates whether there is a difference 

between high and no blood flow states on contact cooling. It was found that there was a 

significant difference in end skin temperature, with temperatures being significantly lower 

in the no blood flow condition when compared to the high blood flow condition, when 

participants underwent contact cooling. 

6.2 Background 

As described previously, the intentional sustained gripping of cold surfaces within the 

work place is common, and can affect the human in terms of pain, decreased manual 

dexterity and eventually possible skin damage. Contact cooling, occurs when contact with 

a material that is colder than the skin is made. Heat flows away from the warmer skin to 

the cooler material (1 st law of thermodynamics). The rate of heat flow is detennined by 

factors including the properties of the material and thermal gradient. The amount of heat 

flow is affected by factors such as contact time, surface area of skin exposed and how 

'perfect' the contact with the block is. The latter factor is related to pressure, which is 

known to have an effect on contact cooling (Chen 1997). 
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There are two main reasons why pressure can affect cooling of the hand; a) the greater the 

pressure, the more perfect the fit of the hand to the object and b) when sufficient pressure 

is applied by the hand to an object the increased tissue pressure will cause the blood supply 

to skin capillaries to be affected. When sufficient pressure is applied, the blood supply will 

be cut off. Blood perfusion and the rate of blood flow will greatly influence heat transfer 

(Parsons, 1993). Previous research (SMT4-CT97-2149) has identified safe contact 

temperatures and durations for contact with cold materials. This research is based on data 

from the general population and has not discriminated between different contact pressures 

or reactions of different populations. Whole body cooling will cause physiological 

amputation as discussed in chapter 1. This leads to an increase in blood flow to the skin 

and extremities in particular. As blood flow is expected to have an effect on cooling rate, 

this raises the question as to how big this effect would be for the present application. More 

specifically, whether special worst case scenarios of contact cooling in the work place, 

where employees are affected with disorders which may affect blood flow, such as 

vibration white finger, Raynaud's disease, or even something as simple as tight fitting 

clothing, which may impede normal blood flow, should receive special treatment in 

standards. Therefore this experiment will look at the effect of blood flow on hand cooling 

whilst touching cold objects. 

6.2.1 Blood Flow and Cooling 

The thermal situation of the body influences that of the hand. Humans are homeotherms, 

this means that the human body tries to maintain an internal temperature of 37°C. If the 

human body is exposed to conditions where it is unable to maintain a positive or neutral 

heat balance, then the body starts to cool down. The majority of the heat lost will be 

through the skin, a dynamic system able to alter depending upon the body's thermal 

condition. Vasodilation of the skin's blood vessels increases heat loss and vasoconstriction 

reduces heat loss due to a concomitant rise and respective fall in skin temperature. 

Constriction of superficial veins allows countercurrent heat exchange to occur, so that 

cool blood from the skin returns along the venae comitans close to the artery, thereby 

gaining heat while returning to the core. The extreme superficial vasoconstriction and this 

heat loss reduction mechanism is often referred to as physiological amputation. The hands 

are particularly sensitive to heat loss both anatomically and physiologically. It is therefore 

common to experience the combination of a warm body and cold hands. Whilst it is 
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possible to wear protective clothing for the hands (i.e. gloves) these have been shown to 

reduce manual dexterity and can have safety implications (Enander et al .. , 1979). As 

described in Chapter 1 and 8 blood flow is the main source of heat input to the hand, as 

the hand itself is only able to produce a minimal amount of heat due to the small muscle 

mass (Lotens 1992). Blood flow to the hand is descn"bed in greater detail in chapters 1 and 

8. 

Spealman (1945) showed that at any given temperature, blood flow to the hand was 

increased as the temperature of the body increased. Havenith (1992, 1995) also showed 

that an increased initial core temperature (induced by previous exercise) resulted in a 

higher starting hand temperature, which was sustained throughout the contact cooling. 

Enander (1982) found that a higher initial hand skin temperature was associated with a 

slower rate of cooling. 

6.2.2 Representative Hand Skin Site 

Individual Variation in initial hand skin temperatures is well documented. Chen et al. 

(1996) found that there are individual differences between subjects, from finger to hand 

temperature and also between fingers. The differences between finger skin temperatures 

ranged between 2 - 3
Q
C but could be up to as much as 7.7

Q
C. Enander (1982) found that 

inter individual - variation of initial hand temperatures varied from between 26 - 34 QC. 

Variation within a finger was also discovered, with the proximal and distal phalanx varying 

by as much as 5.3
Q
C (Chen et al. 1996). Research to date has identified the back of the 

hand to have, on average, a lower mean temperature than the contact side, except when 

the palm of the hand is in contact with cold materials with a high contact coefficient. 

Thumb temperature has been reported as the lowest temperature (Havenith et al. 1992) 

while gripping, with the digits being more susceptible to cooling fluctuations (Enander, 

1982). For these reasons it was determined that the hand skin temperature could not be 

represented with a single location measurement, so several measuring sites were used for 

this experiment. 

6.2.3 Safety Considerations 

As discussed earlier, the intention ofthis experiment is to study the effect of blood flow on 

skin contact cooling. To start with, it needs to be established whether any effect is present 

at all. Hence, a comparison between a high blood flow state (vasodilated) and a very low 
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one (vasoconstricted) would be relevant. In previous work on finger skin contact (Jay 

2002) and from the pilot studies, methodological problems in such a comparison became 

apparent. The vasoconstricted state is not easy to define, and starting hand temperatures 

are much lower in the vasoconstricted state than in the vasodilated state, which makes 

analysis very difficult. Havenith (1995) showed that arterial occlusion resulted in the same 

cooling effect when the hand is exposed to cold as vasoconstriction. Hence, it was decided 

to compare a high blood flow condition with an occluded blood flow condition, both 

starting from the same baseline situation. In order to induce occlusion of the hand it was 

decided that an inflatable cuff should be used. Originally, the intention was to occlude the 

hand for up to thirty minutes, so literature relating to safe occlusion times was reviewed. 

Despite numerous publications on the topic of , safe' times for absolute limits oftourniquet 

application, a conclusive time has never been established and times range from 45 minutes 

to four hours with two hours being the most widely accepted figure. The basis for the two

hour limit comes from research by Wilgis (as cited in Operative hand surgery) who showed 

progressive acidosis in venous blood distal to the pressure cuff in direct proportion to 

ischemia time. However, other factors such as damage to underlying tissues as a result of 

application of the tourniquet are also a consideration when determining tourniquet 

application time. The two tissues at greatest risk from resultant damage are nerve and 

muscle, the nerve being more susceptible to direct pressure and the muscle being more 

intolerant of ischemia. However Sapega et al. (cited in operative hand surgery) and 

Solonen and Hjelt reported that the abnormalities in muscle were not apparent until after at 

least two hours of ischemia. Personal correspondence with Mr. John M. Jones (Consultant 

Orthopaedic Hand surgeon ref.: JMJ.clp.) stated that during surgery it was common 

practice for him to keep tourniquets inflated to 250mmHg, on the upper limb for up to one 

and a half hours. He also stated that, under Dr. Robert Schenck at the Rush Presbyterian 

St Luke's Medical Centre in Chicago, he had often observed tourniquets applied during 

digital replantation for up to three hours without any adverse effects. For these reasons it 

was deemed safe to apply a tourniquet inflated to 200mmHg for thirty minutes. 

Based on these considerations, the present experiment will compare the effects of high 

versus no hand blood flow on the cooling response of the hand whilst in contact with both 

nylon and wood bars at -20°C. The choice of material and experimental condition was 

Page 114 



based on experimentation described in chapter 3. The conditions in chapter three and 

results form the pilot study indicated that at -20°C participants should be able to maintain 

contact with the nylon and wood bars for the required duration, without withdrawing 

through pain (unequal withdrawal times leads to difficulties in the analysis). The results 

also indicated that the minimum contact temperatures should not fall below the minimum 

temperature criteria for withdrawal (see chapter 1). 

6.3 Methods 

6.3.1 Pilot Studies 

Although literature has suggested it is safe to occlude the hand for up to two hours, this 

wasn't whilst undergoing contact cooling. Several studies (Swanson et al. 1991) have 

demonstrated that inducing local hypothermia of the tourniquet area prior to tourniquet 

application can decrease the adverse effects of tourniquet ischemia and allow continuous 

tourniquet inflation time to be safely extended past the two-hour barrier. However, no 

studies have specifically investigated the effects of occlusion on contact cooling. For this 

reason four pilot studies were conducted to establish safe times for the hand to be in 

contact with cold materials whilst occluded and to establish conditions that highlight any 

difference present as a result of the occlusion condition. A final aim of the pilot study was 

to determine a suitable method for heating the subjects to induce a high skin blood flow 

without inducing significant differences between the starting temperatures ofthe hand with 

and without occlusion prior to introduction to the freezer within subjects. 

To induce contact cooling over long periods of time (> 5minutes) a female subject was 

exposed to a low contact coefficient bar (nylon) at -lOoC and -20°C. Wood was not 

piloted due to the results in chapter 3 which illustrated that objective and subjective 

responses were unlikely to be significantly worse than those experienced by subjects when 

gripping nylon. The temperatures chosen for the pilot study were deemed to be 

temperatures at which the subjects would be most likely to sustain gripping for up to 

twenty minutes without withdrawing their hand through pain or too low contact 

temperatures. This was based on the results from the project work and prior 

experimentation in chapter 3. 
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6.3.2 Heating Procedure 

In order to raise the level of vasodilation, subjects were heated. They exercised in a warm 

room (approximately 35°C and 30% Rh) dressed in shorts and T-shirt on a bicycle 

ergometer at 70-80 rpm with a 0.5, 1 or 2kg weight (see table 6.1 below), depending upon 

fitness level, in a warm dry environment. This exercise was continued until the subject's 

core temperature was raised by 1.5°C. 

Table 6.1 Shows the work rate of participants in Wm-2 at a cycling rate of70 - 80 rpm 

Cycle ergometer weights 

1 0.5 Kg I 1 Kg L 2Kg 
Wm-2 I 22-30 I 38-44 I 78-88 

It was determined that this was a suitable method for inducing a high blood flow state 

thereby raising the subject's hand skin temperature. By immediately clothing the subject in 

a track suit and removing them into a warm room it was apparent, that there would be no 

significant differences between the starting temperatures of the hand prior to each 

exposure within SUbjects. 

From the pilot studies, it appeared that there was a difference in cooling between the 

occluded and free blood flow conditions, although as this wasn't a primary aim of the pilot 

study and as only one subject was used this data wasn't analysed. It was also determined 

that the effect was less apparent at -lOoC than at -20°C. For this reason -20°C was chosen 

as the experimental temperature for the bar. It was anticipated that the subject should grip 

the bar for a period of twenty minutes to fully illustrate any effects of occlusion on contact 

cooling, however, after ten minutes of occlusion, the subject started to feel faint and 

reported a lot of pain in the occluded hand. The experiment was stopped after 12 minutes, 

due to subject withdrawal The subject then went on to develop a cold within a couple of 

days, so it was felt that the results from this study and resulting faintness, could not be 

attnouted solely to the experimental conditions as the faintness may have been a result of 

the impending cold. The experiment was repeated again with the same condition and 

subject a week after the cold had passed however the subject again withdrew after 12 

minutes because of dizziness. Upon examination on the results, it was determined that a 

visible difference in skin cooling both throughout the curve and end temperature was 
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present after a duration of eight minutes, and at this time, subjective results indicated that 

the subject was not in substantial pain. However, as a result of the subject feeling dizzy 

both times after gripping the nylon bar whilst occluded, it was decided that for the subject's 

safety, all subjects should be sat whilst gripping the bar. A final pilot study was conducted 

using nylon at -20°C for a duration of eight minutes. These conditions provided no adverse 

effects to the subject and demonstrated a difference between the two conditions. The final 

conditions decided upon based on the above experiments were nylon at -20°C and wood 

also at -20°C. 

6.3.3 Participants 

All participants were volunteers with no history of frostbite, cold acclimatisation, hand or 

cold related injury, vascular disease or circulatory problems. All participants were given an 

instruction fonn detailing the experiment and asked to fill out an extensive health 

questionnaire and consent fonn. For this study, four male and four female subjects were 

used (females were controlled for the menstrual cycle phase and were on the contraceptive 

pill). Participants were aged 22.3 ± 1.7yrs, (21-26yrs). A balanced 8 x 4 Latin square 

design was used with female participants being assigned to the rows with paired materials 

to ensure the two conditions for one material were tested over a short period of time 

avoiding any effects of the menstrual cycle. 

6.3.4 Anthropometric measurements 

Upon arrival to the laboratory, participant's height (m), weight (kg), hand volume (cm3
), 

total surface and contact area (mm2), palm width, finger lengths and hand length (mm) 

measurements of the dominant hand were taken. The results of which are shown in the 

table below. All equipment was cahbrated prior to measurements being taken. 
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Table 6.2. Anthropometric Measurements 

Dimension 
Height (m) 

Weight (Kg) 

Hand Length (mm) 
Palm Length (mm) 
Palm Width (mm) 

Digit 1 (mm) 
Digit 2 (mm) 
Digit 3 (mm) 
Digit4 (mm) 
Digit 5 (mm) 

Total Surface Area (mm2
) 

Gripping Surface Area (mm2
) 

6.3.5 Physiological Measurements 

Mean+SD 
175.4 ± 10.1 
70.0 ± 10.1 
0.3 ± 0.1 

170.6 ± 15.8 
92.9 ± 14.2 
91.6 ± 24.0 
63.6± 5.0 
71.1 ±4.0 
77.8± 5.0 
72.3 ± 3.2 
60.4 ± 3.2 

152.1 ± 13.4 
78.5 ± 6.3 

An 8-bit squirrel (Grant) with a 2mm tip aural thermistor was used to measure aural 

temperature. Data was recorded at 30 second intervals. The thermistor was inserted into 

the participant's outer ear canal and taped into position using micropore tape. Cotton wool 

was then placed over the sensor and ear defenders were worn to further insulate the 

thermistor from the external environment ensuring an accurate approximation of brain 

temperature. The aural thermistor was placed into the outer ear canal and insulated at least 

twenty minutes before the experiment began to allow the air in the canal to reach 

equilibrium with the air inside the inner ear canal. Heart rate was measured using a heart 

rate monitor (polar Electro) at I5-second intervals throughout the experiment. Blood 

pressure was measured using an automatic pressure cuff (Speidel & Keller). Under the free 

blood flow condition, blood flow was measured using a strain gauge plethysmograph 

(Hokanson), the methodology of which is detailed in chapter 2. 

6.3.6 Pre Contact 

In order for the experiment to begin, subjects had to display a minimum aural temperature 

of 36°C. To ensure a state of high blood flow prior to contact with the bar, participants 

exercised on the ergomedik bike in a thermal chamber as described in the pilot study. The 

thermal chamber was set at 35°C and 33% humidity. Exercise was stopped when the 

subject's aural temperature increased by I.5°C, if the participants heart rate exceeded the 

maximum rate set for safety «220 -20)- age), or if the subject's aural temperature reached 

38.4°C or if the subject wished to withdraw. The mean exercise time was 22 minutes. The 

amount of tune that it took for the subjects to increase their aural temperature by I.5°C 
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was also noted. Room temperature and humidity were noted at the start of the experiment 

and at five minute intervals after that time. Upon increasing aural temperature by 1.5°C the 

participant was asked to cycle with all weights removed at a rate of 50 rpm for two 

minutes, this ensured there was no sudden cessation of exercise which would increase risk 

of fainting and subsequent muscle soreness. The participant then put on their tracksuit and 

moved from the thermal chamber to the room with the cold chamber - keeping their hands 

in their pockets. Blood pressure and blood flow (in the free blood flow condition) were 

measured at this point. 

6.3.7 Occlusion Procedure 

Blood flow to the hand was occluded using a wrist cuff that was situated proximal to the 

condoloids on the dominant arm. This position was chosen to reduce the risk of nerve or 

muscle damage resulting from compression between the cuff and the condoloids. The cuff 

was inflated rapidly to a pressure of approximately 200mgHg. After the occlusion period 

the pressure was released over a five second period and the subject's hand was checked for 

disco louration. 

6.3.8 Contact Cooling 

Once the blood flow to the arm was occluded, or directly in the non occluded condition, 

the participant entered their hand into the freezer and gripped either a nylon or wooden bar 

at -20°C. All participants completed all four conditions. Prior to inserting their dominant 

hand into the freezer, participants were asked to rate their pain, thermal numbness and 

tingling sensation using 5pt, 7pt, 4pt and 4pt scales (Table 6.1). Participants were then 

asked to rate their sensations every time they changed from that point. The location of pain 

was also noted. 
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Thermal sensation scale Pain sensation scale 

Vote Description Vote Description 

+1 Slightly warm 0 No pain 

0 Neutral 1 Slightly painful 

·1 Slightly cool 2 Painful 

·2 Cold 3 Very painful 

·3 Very cold 4 Intolerable pain 

·4 Very, very cold 

Tingling sensation scale Numbness sensation scale 

Vote Description Vote Description 

0 No tingling 0 No numbness 

1 Slight tingling 1 Slight Numbness 

2 Tingling 2 Numbness 

3 Severe tingling 3 Severe numbness 

Table 6.1 Sensation scales used by the subjects to rate sensations of pain, numbness, tingling and 
thermal sensation. 
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Participants were asked to grip the appropriate bar for a period of eight minutes unless 

they experienced sensations of frostbite or intolerable pain, or the safety contact 

temperature for this experiment was reached at any measurement site. This was set at 3 QC. 

Thermocouples were placed at the following sites on the subject's hand. 

Table 6.3. Sites o/thermocouple placement 

Thermocouple Thermocouple Placement 
Number 

T2 Beneath proximal phalanx (2nd digit) 
T3 Centre of abductor digiti minimi muscle 
T4 On distal Phalanx (thumb) 
T5 Above interphalangeal joint (5th digit) * 

Between tendons of extensor digitorum 
T6 muscle (dorsal side) 
T7 Beneath Proximal Phalanx (5 th digit) 
T8 Middle Phalanx (2nd digit) 
T9 Middle Phalanx (3 rd digit) 

TI0 Middle Phalanx (4th digit) 

*Denotes a non contact site (i.e. exposed to air) 

----EJ 
~ 

~ 

Table 6.2 shows thermocouple placement on the palmar and dorsal aspect o/ the hand. 
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6.4 Results 

6.4.1 Blood Flow 

Blood flow was measured pre and post exercise. The mean pre exercise blood flow was 

found to be 2.9ml blood / 100 ml tissue / minute (± 1.9 ml) . The mean post exercise blood 

flow was found to be 3.4ml blood / 100 ml tissue / minute (± 2.7ml). The overall mean 

increase in blood flow as a result of the exercise condition was found to be 1.5ml / 100 ml 

tissue / minute. AT-test was used to compare the two conditions, and it was found that 

the post exercise blood flow was significantly greater than in the pre exercise condition (p< 

0.01). 

6.4.2 Subjective Sensations 

6.4.3 Pre contact 

Subjective sensations were taken prior to insertion of the hand into the freezer. 

It was determined that after inflation of the cuff, but before insertion of the hand into the 

freezer, 9.4% of the subjects described the thermal sensation of the hand as neutral, 46.9 

% as slightly warm and 43.8% as warm. At this time, no pain was experienced by any of 

the participants, however the sensations of numbness and tingling were experienced by 3.1 

% and 6.3 % respectively. This was reported to be as a result of inflation of the occlusion 

cuff, and could not be avoided. There were no differences in reported pain sensations pre 

contact and when comparing the other sensations, only minimal differences between the 

occluded and free blood flow conditions for the same materials, varying by a maximum of 

one point on the respective scales. 

6.4.4 Contact 

Upon comparison of the occlusion condition with the free blood flow condition, it was 

determined that after the occlusion condition there was a significantly higher incidence of 

pain reported (p<0.05) than in the free blood flow condition. 9.4% of participants reported 

a sensation of slightly painful in the occlusion condition, compared to 3.1% in the free 

blood flow condition. For tingling, or slight tingling, 32.3% of subjects reported tingling 

after the occlusion condition compared to 6.3% after the free blood flow condition, and 

15.6% of participants reported numbness after both the free blood flow and the occlusion 

condition. 
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6.4.5 Post Contact 

Occluded nylon resulted in the most pain being experienced at the end of the experiment 

and the free blood flow conditions resulted in the lowest thermal sensations. There was an 

increase in numbness after the experiment compared to before the experiment. No 

significant differences in subjective sensations were found between either conditions or 

materials. 

The most commonly reported areas of pain were the tips of the digits, specifically the fifth 

digit and the area of the palm between the first and second digit (see diagram below). 

Table 6.3. Shows most commonly reported areas of pain (blue) 

6.4.6 Contact Cooling 

The initial starting temperature 0 fthe bar was -18.9 ± 1. 6 qc. The mean initial temperature 

of the hand including all thermocouples, conditions and subjects was 3S.7°C ± 0.36°C. 

Table 6.4 shows the mean initial and end hand skin temperatures for all subjects. 
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Table 6.4. Mean and SD of hand skin temperature prior to insertion of the hand into the freezer 
and end skin temperatures over all conditions. 

Thermocouple Placement Mean Initial Skin Temperature Mean End Skin Temperature 
Occluded Non Occluded Occluded Non Occluded 

Beneath proximal phalanx (2nd 36.1 ± 1 35.4 ± 0.8 24.2 ± 8.5 26.46 ± 4.1 
digit) 

Centre of abductor digiti 35.6 ± 2.6 35.4 ± 2.1 19.5 ± 9.9 28.9 ± 7.5 
minimi muscle 

On distal Phalanx (thumb) 36.2 ± 0.9 35.5 ± 1.3 16.4 ± 7.2 24.2 ± 5.0 
Above interphalangeal joint (5 th 36.1 ± 0.9 35.9 ± 1.2 15.7 ± 7.5 27.8 ± 5.6 

digit) * 
Between tendons of extensor 36.8 ± 1.0 35.0 ± 1.1 23.7 ± 5.1 26.7 ± 6.1 

digitorum muscle (dorsal side) 
Beneath Proximal Phalanx (5 th 35.7 ± 1.8 35.1 ± 1.6 19.6 ± 7.2 29.0 ± 3.9 

digit) 
Middle Phalanx (2od digit) 35.4 ± 1.8 35.3 ± 1.2 21.8 ± 4.0 27.1 ± 4.2 
Middle Phalanx (3rd digit) 36.0 ± 0.9 35.5 ± 1.2 22.6 ± 4.0 27.2 ± 4.2 
Middle Phalanx (4th digit) 35.6 ± 0.9 35.0 ± 2.4 22.3 ± 3.9 27.8 ± 3.9 

In order to ascertain equal starting conditions for the occluded and free blood flow states, 

the initial skin temperatures prior to contact were compared using a three-factor ANOV A. 

The mean of the five seconds prior to insertion into the freezer was compared for both the 

occluded and free blood flow conditions across both materials. This was applied to each 

thermocouple location from T2 to T lO • The results of this ANOVA are shown in table 6.S 

below. The following model was used and applied to each thermocouple location. 

Initial Hand Temperature = Participant + Condition + Material 

The initial starting temperature of the bar was also compared for the two conditions, and it 

was determined that there was no significant difference in starting temperatures for the 

occluded and free blood flow condition (P=O.768). This data for end hand skin 

temperatures is analysed later using a GLM. 
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Table 6.5 Results of the ANOVAfor initial hand temperature between conditions . 

Thermocouple Variable F ratio (F) Sig. (P) 
Placement 

Beneath proximal Participant 1.003 0.458 
phalanx (2od digit) Condition 2.454 0.133 

Material 0.615 0.442 
Centre of abductor digiti Participant 1.235 0.326 

minimi muscle Condition 1.864 0.186 
Material 0.204 0.656 

On distal Phalanx Participant 3.012 0.024 * 
(thumb) Condition 4.012 0.058 

Material 0.048 0.828 
Above interphalangeal Participant 2.763 0.032 * 

joint (5 th digit) * Condition 0.299 0.590 
Material 0.107 0.746 

Between tendons of Participant 2.508 0.047 * 
extensor digitorum Condition 5.946 0.023 * 
muscle (dorsal side) Material 0.247 0.624 
Beneath Proximal Participant 1.192 0.348 
Phalanx (5 th digit) Condition 0.123 0.729 

Material 0.931 0.345 
Middle Phalanx (2nd Participant 0.851 0.559 

digit) Condition 0.458 0.506 
Material 0.107 0.747 

Middle Phalanx (3 rd Participant 1.906 0. 119 
digit) Condition 1.151 0.296 

Material 1.428 0.245 
Middle Phalanx (4th Participant 1.151 0.375 

digit) Condition 1.079 0.312 
Material 0.018 0.895 

* denotes significance p<0.05 

The results of the ANOVA show that there are no significant differences (p<0.05) across 

all participants for the initial starting temperature of the hand for all conditions except for 

the back of the hand (T6) (p = 0.023). Three of the thermocouple locations indicated a 

significant difference between subjects (P ~ 0.05). 
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The end skin temperatures taken at 480s were compared using a three-factor ANOVA to 

determine whether there was a significant difference between the two conditions. The data 

for the end skin temperature was compared for both the occluded and free blood flow 

condition across both materials. This was applied to each thermocouple location from T2 

to T IO • The results of this ANOVA are shown in table 6.6 below. Interactions were also 

tested for. 

Table 6.6 shows the p values from the ANOVA for end (480 second) hand skin temperature 
between conditions. Significant Values (psfJ.05) are shaded. All p values are corrected using 
Bonferonni. (1'2 = beneath proximal phalanx (2nd digit), T3 = centre of abductor digiti minimi 
muscle, T4 = on distal Phalanx (thumb), above interphalangeal j oint (5th digit) *, T5 = between 
tendons of extensor digitorum muscle (dorsal side), T6 =0 beneath Proximal Phalanx (5th digit) , T7 
= middle Phalanx (2nd digit) , TB =middle Phalanx (3rd digit), T9 = middle Phalanx (4th digit) 

Variable and T2 T3 T4 T5 T6 T7 Ts T9 TIO 
Interaction (P value) (p val ue) (p value) (p value) (p val ue) (p val ue) (p value) (p value) (p value) 

Subject 0.170 0.670 0.024 0.792 0.454 0.793 0.004 0.499 0.013 
Material 0.002 0.210 0.01l 0.676 0.865 0.018 0.001 0.000 0.000 

Condition 0.313 0.580 0.001 0.004 0.174 0.001 0.000 0.002 0.000 
Subject * Material 0.757 0.460 0.039 0.719 0.795 0.939 0.344 0.803 0.260 

Condition * Subject 0.743 0.200 0.143 0.098 0.382 0.529 0.019 0.111 0.017 
Condition * 0.662 0.035 0.590 0.480 0.628 0.356 0.911 0.721 0.830 

Material 

A subject effect was found to be significant at sites T4, 8 and 10. Material was found to have a 

significant effect on thermocouple sites T2, 4, 7, 8, 9 and 10 . Condition was found to be 

significant at sites T4, 5, 7, 8, 9 and 10. Significant interaction between subject and material was 

found at site 4. Subject and condition interaction was found to be significant at sites 8 and 10, 

and condition material interaction was found to be significant at site T3• 

In order to study the development over time, skin temperatures at the moment of first 

contact (so different from pre-contact in table 6.4), 240s and 480s were analysed and 

compared between the occluded and free blood flow condition using a t-test, the results 

are displayed in table 7 below. All the data for material was pooled for this test. The 

results at 480 s are in essence the same as those in table 6.5). Bonferroni was used as a 

correction for multiple comparison, and the following sites (highlighted in yellow) were 
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found to show a significant difference between the two conditions (occluded and free 

blood flow). 

Table 6.7 shows the significance (p values) of any differences in skin temperatures between the 
occluded and free blood flow condition at first contact 240s and 480 seconds. The shaded areas 
denote significance. Significance is accepted at 95% level. These values are corrected using 
Bonferoni. (F2 = beneath proximal phalanx (2nd digit) , T3 = centre of abductor digiti minimi 
muscle, T4 = on distal Phalanx (thumb), above interphalangeal joint (5th digit) *, T5 = between 
tendons of extensor digitorum muscle (dorsal side), T6 =0 beneath Proximal Phalanx (5th digit), T7 
= middle Phalanx (2nd digit), T8 =middle Phalanx (3rd digit) , T9 = middle Phalanx (4th digit) 

Time T2 T3 T4 T5 T6 T7 Tg T9 TIO 
First 0.116 0.169 0.551 0.811 0.075 0.677 0.862 0.126 0.193 

Contact 
240 0.286 0.626 0.561 0.040 0.139 0.012 0.033 0.801 0.002 
480 0.231 0.464 0.001 0.000 0.083 0.000 0.001 0.002 0.000 

Significant differences between the conditions of occluded blood flow and free blood flow 

were found after 240s at thermocouple sites 7 and 10. These differences were still there at 

480s with the addition offour more sites thermocouple 4,5, 8 and 9. 

6.5 Discussion 

All participants completed the duration time of eight minutes. The increase in blood flow 

as a result of the exercise was significant and an increased blood flow state was induced as 

evidenced by the participant's initial starting hand temperatures. As there were no 

significant differences between initial hand contact temperatures, any differences observed 

between the conditions can be attributed to the two conditions, material and blood flow. 



It was expected that in the occluded blood flow condition, end skin temperature would be 

lower than in the free blood flow condition. This was not always the case. In 16 out of 81 

cases, when considering end hand skin temperature either the opposite effect or no effect 

was observed. It was also expected that when participants were gripping the nylon bar, 

their skin temperatures, as measured by the thermocouples, would be significantly lower 

than when the participants were gripping the wooden bar. Again however, out of 81 

cases, 28 cases showed contact temperatures either significantly lower for wood than 

nylon, or no difference at all in skin temperatures between the two conditions. 

The expected effect of the blood flow condition (where skin temperatures were lower in 

the occluded rather than free blood flow condition) could be seen in all cases after 120 

seconds with the exception ofT2 where it could be seen after 300 seconds and T9 where it 

could be seen after 240 seconds. 

It was not expected that the effect of blood flow would be apparent immediately, as whilst 

the blood flow was stopped, the hand wasn' t esaguinated prior to exposure, as this was 

felt to be unrepresentative of situations most likely to occur in the workplace. So the heat 

in the hand from the blood in the hand prior to occlusion remained and didn't immediately 

cool to ambient conditions. This may explain why significance was only found at two sites 

after 240 seconds (table 7) and showed on increasing number of sites to be significant after 

this time. This would indicate that if the experiment continued after the cut off time of 

480s the effect of no blood flow on skin temperatures would have become increasingly 

apparent. 

The effect of material on skin temperature (where lower skin temperatures were 

experienced whilst gripping the nylon bar than when gripping the wooden bar) was 

apparent at all sites except T6 and T5 after 60 seconds. Prior to this time there was either 

no difference in skin temperatures when gripping the nylon bar when compared to gripping 

the wooden bar, or gripping the wooden bar resulted in lower skin temperatures than when 

gripping the nylon bar (see table 6.7). Material was found to have a significant effect on 

skin temperature (with the exceptions ofT 5,6 and 3 as expected with nylon resulting in the 

lowest skin temperatures. Thermocouple 6 was the thermocouple measuring the skin 

temperature on the back of the hand, so it is logical that material did not have any effect of 
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skin cooling, as the skin cooling at this site would predominantly be caused by ambient air 

cooling, rather than cooling resulting from contact with a material. Thermocouples 5 and 3 

were the thermocouples measuring the site above the interphalangeal joint (5th digit) and 

the centre of the abductor digiti minimi muscle respectively. Again, thermocouple 5 was a 

non-contact site so the lack of significance of effect of material found at this site was 

expected. The lack of significant effect of material on skin temperature at thermocouple 3 

can also be explained by its location, as it is probable that this site did not make perfect 

contact with the bar and was at some time during the experiment exposed to air rather than 

the bar. 

Digit five consistently showed the greatest effects of restricted blood flow on cooling. This 

was apparent in the earliest onset of an effect and with the greatest significance levels. This 

was also the area where the subjects reported the most amount of pain. It is hypothesised 

that the effects of no blood flow on cooling times of the hand were most apparent in the 

fifth digit for several reasons. It was expected that the digits would show any effects of 

restricted blood flow on cooling first, as there is minimal blood flow to the digits as 

capillaries rather than the main deep palmar arch supplies them. Blood upon entering the 

hand is initially distributed to the digits first (Nett er FH 1989), so when blood flow is 

stopped these are the areas where differences would become apparent. The digits also have 

very little muscle mass and a relatively large surface area to tissue volume ratio, resulting 

in heat being lost quickly to the surrounding environment. 

Further, the fifth digit generally has a lower heat content than the other digits due to its 

size, and the highest surface to mass ratio. After occlusion, the remaining blood in the 

fingers cools more rapidly in this digit than the others, so the effects of no circulation of 

blood flow are observed more quickly at this site than others. 

Finally, the fifth digit has a smaller phalanx length, which enables a more 'perfect' fit 

around the bar. Chen (1997) described how this was related to pressure and how pressure 

affected cooling speeds. The more perfect fit of the fifth phalanx results in a greater 

proportion of surface area being exposed to the bar, facilitating faster cooling than at the 

other measured sites. It was also considered, that the fifth digit acted as an ' anchor' for the 
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hand on the bar, resulting in more pressure being applied to the bar through this digit 

ensuring a more 'prefect' fit when compared to the other digits. 

Eventually, it would be expected that the same effect e.g. lower temperatures at all sites 

for the condition with no blood flow would be observed when compared to the condition 

with free blood flow. This could be deduced from the results with more and more sites 

showing significant differences the longer the hand was exposed. 

6.6 Conclusion 

In comparison of high versus no hand blood flow, a clear difference in cooling rate of the 

skin was observed for the conditions used. 

The difference started in digit 5 and then spread to the to other contact areas. 

These results imply that in populations where the blood flow to the hand is likely to be 

reduced, or for conditions where 'healthy' people may be expected to experience 

vasoconstriction, special considerations should be made in situations where contact 

cooling is likely to occur, as cooling times are significantly reduced, leading to an 

increased risk of tissue damage. 

The differences observed were for high versus no blood flow. Differences may be less for 

vascular patients compared to normal blood flows. This would be an area for future 

research. 
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7 The Effect of High and no Blood Flow on Fast 

Contact Cooling 

7.1 Chapter Summary 

As discussed in chapter two, one can differentiate between two typical types of cooling 

that occur as a result of contact cooling. The first is a fast superficial cooling induced by 

contact with materials with a high contact coefficient (e.g. metals); the second is a slow 

deeper cooling typically induced by contact with a material with a low contact coefficient 

(plastics and wood, down to -20DC to -30DC). The effects of high and no blood flow to 

the hand on fast contact cooling was investigated in this chapter. It was determined, that 

under fast cooling conditions described here, for up to five minute, there was no significant 

difference in either subjective sensations or end hand skin temperatures. 

7.2 Background 

The literature relevant to the effects of high and low blood flow on contact cooling was 

reviewed and discussed in depth in chapter 6. The following points summarise the most 

salient aspects of this: 

• Blood flow is the main source of heat input to the hand (Lotens 1992) 

• Vasodilation of the skin blood vessels increases heat loss, Vasoconstriction decreases 

heat loss 
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• Havenith et al. (1995) argued that arterial occlusion has the same cooling effect as 

vasoconstriction of the hand as a result of exposure to the cold 

• There are inter individual differences in hand skin temperatures and differences within 

the hand, and from finger to hand and from finger to finger (Enander et al. 1982, 

Chen et al. 1996, Havenith et al. 1992, 1995) 

• An increase in body temperature results in an increase of blood flow to the hands. This 

in turn results in a higher hand skin temperature (Spealman 1945, Havenith 1995) 

Chapter six looked at the effects of high and no blood flow (occlusion) to the hand on 

slow contact cooling (x to y minutes). The following effects were found : 

• In the occlusion condition, end Tsk was significantly lower at the following sites 

Figure 7.1. Sites at which end skin temperature was significantly lower in the occluded blood 
flow condition than in the free blood flow condition in the slow cooling experiment 

- For both conditions, material (wood or nylon) had a significant effect on end Tsk at the 

following sites 
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Figure 7. 2. Sites at which material had a significant effect on end skin temperature 

• There was an increase in the number of measuring sites that had significantly lower Tsk 

in the occluded blood flow condition when compared to the free blood flow condition 

as duration increased. 

• The most commonly reported regions of pain were at the tips of the digits, the fifth 

digit and the 'V' between the thumb and second digit 

• There was a significantly greater incidence of pain reported in the occlusion condition 

when compared to the free blood flow condition and the occlusion conditions resulted 

in the lowest thermal sensations 

Given these results for slow cooling, it is hypothesised that blood flow will also have an 

effect on fast contact cooling, but that the effect will be different from that experienced as 

a result of slow contact cooling. The reason for the difference anticipated is that during 

fast cooling, the cooling found is hypothesised to be at a more superficial level affecting 

the skin and structures immediately adjacent to it. For this reason, it is uncertain how much 

influence of blood low on temperature will be seen, especially over such a relatively short 

duration. For this reason, this chapter shall investigate the effects of no and high blood 

flow on fast contact cooling and compare and contrast the findings of this study with the 

results of the slow cooling condition. This study shall also investigate the effect of 

temperature of the material on contact cooling. 
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7.3 Method 

7.3.1 Pilot Studies 

Four pilot studies were conducted. The aims of the pilot studies were to a) determine a 

suitable time for any differences in the two conditions occluded and not occluded to 

become apparent b) to determine a suitable temperatures to induce fast cooling and c) to 

ensure that the participants could grip the material for the desired duration without risk of 

tissue damage or withdrawal through intolerable pain. The methodology for the pilots was 

the same as that detailed in the methodology section below. Blood flow was occluded in 

pilots 1, 2 and 3 to induce the 'worst case scenario' in terms of duration that the 

participants were able to grip the bar. Pilot 4 was a free blood flow condition to observe 

any differences between the two conditions. 

7.3.2 Conditions for Pilot Study 

Aluminium was determined as a suitable material to induce fast cooling and a duration of 

five minutes was chosen as the total contact duration. These parameters were selected 

based on previous experimental work discussed in chapter 3. Table 7.1 shows the 

conditions used for the pilot studies 

Table 7.1 Pilot Conditions 

Pilot Study Tern perature Condition 
1 5 °C Occluded 
2 O°C Occluded 
3 -3°C Occluded 
4 -3°C Free Blood Flow 

7.4 Results 

7.4.1 Pilot Studies 

Insufficient hand skin cooling occurred in pilot study one, so it was determined that a 

lower Surface material temperature (Tsm) would be required. Pilot study two and pilot 

study 3 identified skin cooling of an appropriate speed during the five minute duration. So 

these were the temperatures chosen for the experiment. Pilot study 4 when compared to 
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the results of pilot study 3 indicated a difference in hand skin temperature between the two 

occlusion conditions. 

7.4.2 Participants 

Eight male Caucasian participants were used for this study (age 21.88 ± 0.35 years, height 

181.75 ± 7.87 cm, weight 87.60 ± 17.59 Kg). All participants were asked to fill in a 

detailed health questionnaire and consent form. All participants had no history of 

peripheral vascular disease, cold injury, cold acclimatisation or fractures to their dominant 

arm. Participants were free to withdraw at any time for any reason. 

7.4.3 Procedure 

Chapter 2 discusses the following procedure in detail. Participants were asked to insert 

their dominant arm into the freezer and grip an aluminium bar for a duration of five 

minutes, The aluminium bar was counterbalanced from the outside of the freezer so it 

weighed 500g. The starting temperature of the bar was the same as the ambient air 

temperature within the freezer. 

Two physical factors were controlled: I sm (O°C or -3°C) and blood flow (occlusion (no 

blood flow) or free blood flow) . The factors were combined as a factorial design and the 

experimental conditions were counterbalanced using a Latin square to eliminate any order 

effects. 

Prior to undertaking the experiment, each participant was exposed to a nylon bar cooled to 

-18°C for five minutes to ascertain normal cooling. Each participant then completed one 

session per day, at the same time of day. Participants exercised as normal, but were asked 

to abstain from any products containing with alcohol or caffeine. Anthropometric 

measurements were taken at this time. 

7.4.4 Pre Exercise 

Participants wore shorts beneath tracksuit bottoms and aT-shirt beneath a Jumper. 

Participants were then instrumented with a polar heart rate monitor and watch. Resting 

blood pressure was also measured at this time. 
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7.4.5 Exercise 

In order to ensure a good blood perfusion of the hand in the non occluded condition, body 

temperature was raised by exercise in both conditions. Upon attaining an aural temperature 

of at least 36°C participants removed their tracksuit bottoms and jumper and immediately 

initiated heat-exercise. Participants were asked to cycle using a cycle ergometer with a 

minimum load of lKg whilst maintaining 70rpm (38.8Wm-2). The exercise room was 

maintained at 37.5°C ± 3.65°C, 20% Rh ± 5.34. Ta and Fe were monitored every 30 s and 

15 seconds respectively. When the aural temperature reached 38°C or if heart rate 

exceeded 220 bpm - 20 - the participant's age, or if the participant no longer wished to 

participate participants ceased exercise and replaced the tracksuit bottoms and jumper. 

7.4.6 Post Exercise 

Participants rested in a warm room (Ta =37.5 °C ± 3.65°C, Rh =20 % ± 5.34) in front of 

the cold chamber, whilst blood pressure was measured and thermocouples were placed on 

the dominant hand. Subjective sensations were taken and then the participant entered their 

hand into the cold chamber and gripped the aluminium bar for five minutes. Participants 

verbally rated their thermal, tingling, numbness and pain sensations as they changed 

throughout the experiment. 

Tsk was measured using copper-constantan T-type thermocouples at five locations (see 

figure 7.3) on the dominant hand. Data was recorded using a data logger. Table 7.2 

describes thermocouple location. 

Figure 7.3. Location a/thermocouples 
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Table 7.2. Location of the five thermocouples 

Thermocouple Placement 
Beneath proximal phalanx 

Centre of abductor digiti minimi muscle 
On distal Phalanx (thumb) 

Between tendons of extensor digitorum muscle (dorsal side) 
Beneath Proximal Phalanx (5 th digit) 

The thermocouple wire was taped to the skin using '3M Blenderm' surgical tape. 

To occlude the hand, a wrist cuff situated proximal to the condoloids on the dominant arm 

was inflated to 200mgHg. The participant was then asked to insert his or her hand into the 

freezer and grip the aluminium bar in the occluded condition. In the free blood flow 

condition, forearm blood flow was measured non-invasively by venous occlusion 

plethysmography (see chapter 2 for full methodology) on three separate occasions: pre 

exercise post exercise and post contact cooling. 

Upon withdrawal of the hand from the cold chamber, participants remained seated for a 

minimum of five minutes and re-warming of the hand was monitored. Upon reaching Tsk of 

26°C participants were de-instrumented and cooling curves analysed. 

7.4.7 Withdrawal Criteria 

• Unwillingness of the participant to continue due to pain or other reasons 

• Contact time exceeding five minutes 
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7.4.8 Participant Data 

Table 7.3 Mean hand morphology of all the partic ipants. 

Dimension Mean ± SD Dimension Mean ± SD 

Surface area (mm2
) 168.81 ± IS .6 4th Digit length (mm) 74.9 ± 4.3 

Contact Area (mm2
) 92.S6 ± 6.93 Sth Digit Length S9.3 ± 3.7 

Volume (cm3
) 0.46 ± 0.09 1 SI Digit Length (mm) 20.S ± 1.1 

Palm Length (mm) 109 ± 5.66 2nd Digit Width (mm) 17.4 ± 1.2 

Hand Breadth (mm) 9l.l ± 6 3rd Digit Width (mm) 17.6 ± 0.9 

Thumb length (mm) S7.1 ± IS.2 4th Digit Width (mm) IS.9 ± 0.8 

Lndex Length (mm) 74.S ± S Sth Digit Width (mm) 14.6 ± 1.1 

Middle Finger Length 81.5 ± 4.S 
(mm) 

7.4.9 Blood Flow 

As described in chapter 2 three of the five curves obtained from the plethysmograph were 

analysed and the mean for each participant in the two free blood flow conditions ( ooe and 

-3°C) was obtained. A t-test was then carried out on the means pre and post exercise. 

Table 7.4 shows the mean blood flow for each participant in the free blood flow condition. 

The t-test did not reveal a significant difference between pre and post exercise periods. 
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Table 7.4 Mean blood flow for each participant in the free blood flow condition 

Participant Pre-exercise Post-exercise 
Mean SD Mean SO 

1 3.940 1.334 - -
1 3.317 0.683 4.150 0.339 
2 4.973 0.583 3.433 0.156 
2 3.367 0.696 4.077 0.490 
3 4.860 1.883 4.487 1.045 
3 2.297 0.522 - -
4 2.193 0.509 - -
4 - - - -
5 - - - -
5 1.532 0.43] 1.683 0.067 
6 2.783 0 .999 4.470 0.777 
6 3.530 0.944 3.223 0.597 
7 2.853 1.567 4.310 2.750 
7 4.957 0.427 - -

8 1.430 0.252 2.570 0.062 

8 1.250 0.252 2.647 0.366 
Mean 3.1 0.8 3.5 0.7 

Contact Cooling 

In order to determine whether starting conditions were equal for both treatments, the mean 

temperatures measured at all of the five measuring sites were analysed between 10 and 15 

seconds prior to insertion of the hand into the freezer. A repeated measures ANOV A 

determined no significant differences between the initial pre- contact hand Tsk within 

subjects. It can therefore be assumed that differences apparent in skin temperature are due 

to the influence of material temperature and occlusion state. Table 7.5 shows the mean and 

SD of the initial pre-contact temperatures and end Tsk for all subjects across all conditions. 
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Table 7.5 Mean and SD a/initial hand Tsk over all conditions pre contact and end Tsk 

Thermocouple Placement Mean Pre-contact Hand Skin Mean End Hand Skin 
Temperature and SD Temperature and SO 

Beneath Proximal Phalanx 37.2 ± 1.6 9.6 ± 2.7 
(Digit 2) 

Beneath Proximal Phalanx 37.0 ± 1.4 24.8 ± 9.4 
(Digit 5) 

On Distal Phalanx (Thumb) 38.2 ± 1.6 14.1 ± 5.3 
Above interphalangeal joint 36.4 ± 1.0 27.3 ± 6.9 

(Digit 5) * 
Between tendons of extensor 36.3 ± 1.8 29.5 ± 4.4 

digitorum muscle (dorsal side) 

* Denotes a non contact site 

Two types of cooling were observed for different parts of the hand within the fast cooling 

condition dependent upon whether it was a contact site or not. Figures 1 and 2 show 

typical cooling curves at a contact site, figures 3 and 4 show typical cooling curves at non 

contact sites. 

Figures 4 and 5 below show the contact Tsk from participant 8. Condition 1 is the free 

blood flow condition and condition 2 shows the occluded blood flow condition. Both 

figures demonstrate the typical cooling patterns observed as a result of rapid contact 

cooling at a contact site, in this case, between the proximal phalanx and the metacarpal 

bone of digit 2. This type of cooling is characterised by a rapid fall in temperature 

followed by a slower decrease in temperature as the effects of Tsm and blood flow affect 

cooling speed. 

Figure 7.4. Shows the contact I sk between the proximal phalanx and metacarpal bone of 

digit 2. When exposed to an aluminium bar with a Tsm of O°e. Figure 7.5 shows the 

contact Tsk between the proximal phalanx and metacarpal bone of digit 2 when exposed to 

an aluminium bar with a I sm of -3°C. 
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Figure 7.4. Shows the contact T sk between the 
phalanx and metacarpal bone 
exposed to an aluminium bar with a T sm 

of Doe 

Condition 1 = free blood flow 
Condition 2 = occluded blood flow 
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Figure 7. 5 shows the contact T sk between the proximal 
the proximal phalanx and metacarpal bone when 
when exposed to an aluminium bar with a Tsm 

of-3° CC 

Condition 1 = free blood flow 
Condition 2 = occluded blood flow 

Large differences between individual cooling curves were observed. No incidents of Cl VD 

were observed however, and all cooling curves followed the same pattern. 

Figures 6 and 7 are examples of the type of cooling pattern that was typically observed at 

the non contact sites of the hand. The results are taken from participant 6 and the site is 

the outside of the middle phalanx of digit 5 (thermocouple 5). As can be seen, the type of 

cooling occurring at the non contact site, is a slower more uniform cooling without the 

initial rapid fall in temperature observed at the contact sites. This type of cooling occurred 

across all participants except when there was little or no decrease in Tsk as a result of 

exposure to the bar and ambient conditions. For both figure 7.6 and Figure 7.7, condition 

one is the free blood flow condition and condition two is the occlusion condition. 
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Figure 7. 6. Shows the contact Tsk between the 
proximal phalanx and metacarpal bone of 
digit 2 when exposed to an aluminium bar 
with a Tsm of O°C 
Condition 1 = free blood flow 
Condition 2 = occluded blood flow 
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Figure 7.7 shows the contact Tsk between 
the proximal phalanx and metacarpal bone of 
digit 2 when exposed to an aluminium bar with a 
aTsm of-3°C 
Condition 1 = free blood flow 
Condition 2 = occluded blood flow 

The two individual Tsm conditions were pooled for analysis as it was not anticipated that 

Tsm would significantly effect the direction of results with regards to the occluded and free 

blood flow conditions. The temperature at each thermocouple was identified and 

compared at 0, 180 and 300 seconds using a paired t-test. A Bonferroni correction was 

then carried out for multiple comparisons (0.05/3 = 0.017). Table 7.6 shows the results of 

the t-test a value of p~ 0.02 will be accepted as significant. 

Table 7.6. Significance Values for differences between the two blood flow conditions. 

T sk Location Significance (p-value) at Signifi cance (p-value) at Significance (p-value) at 
first Contact 180 seconds 300 seconds 

(2) Between proximal 0.32 0.26 0.51 
phalanx and metacarpal 

bone of di it 2 
(3) Base of palm of 0.002 0.003 0.002 
band (below di it 5) 

(4) Distal Phalanx on 0.27 0.32 0.94 
thumb 

(5) Middle Phalanx 0.52 0.65 0.65 
(outside di it 5 

(6) Back of hand 0.15 0.05 0.87 

7.4.10 Subjective Sensations 

Pre contact, initial and end contact subjective sensations were analysed to determine 

whether there were any significant differences between the two blood flow conditions 

(high and no). This was done within participants and within Tsm. A Wilcoxon Signed 
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Ranks test detennined that there were no significant differences between conditions for 

pain, numbness, tingling or thermal sensation (p>O.05). 

Table 7.7. Shows significance values for subjective sensations from the Wilcoxon Signed Ranks 
Test (p values) 

Subjective Temperature Participant 
Sensation f'C) 

1 2 3 4 5 6 7 8 
Pain 0 0.32 1.00 1.00 1.00 0.32 0.32 0.32 1.00 

Thermal 0 1.00 0.32 0.18 0.32 0.16 0.32 0.56 0.41 
Sensation 
Numbness 0 1.00 1.00 1.00 0.32 1.00 0.18 0.32 1.00 
Tingling 0 0.32 0.32 1.00 0.32 0.32 0.16 0.32 1.00 

Pain -3 1.00 0.32 0.32 1.00 1.00 0.32 0.32 1.00 
Thermal -3 0.66 0.32 1.00 0.32 1.00 0.66 0.16 1.00 
Sensation 
Numbness -3 1.00 0.32 0.32 0.32 1.00 0.66 0.32 0.32 
Tingling -3 0.32 0.32 1.00 0.32 0.32 0.66 0.32 0.32 

7.5 Discussion 

The only significant effect of blood flow was found for the contact temperature below the 

fifth digit on the palmar aspect off the hand table 7.6. There was no significant difference 

between the two conditions (occluded and not occluded) at this site prior to insertion of 

the hand into the freezer. However, at the initial contact with the aluminium a significant 

difference between the two conditions was apparent and this difference remained 

'significant throughout the duration of the exposure. This was not expected. 

In the slow cooling condition, there were no significant differences between the two 

conditions at first contact, but more and more sites became significant as the duration of 

exposure increased. It is unlikely that the effect of blood flow would be present this early 

in the exposure, as the hand was not esaguinated prior to exposure. This means that the 

blood left in the hand prior to occlusion would have had to have cooled instantaneously 

upon contact for the difference present between the two conditions to be due to blood 

flow. As it is deemed extremely unlikely that the occlusion could show an effect 

immediately upon contact (none was observed at that time in any of the other experiments 

described in the previous chapter) this finding is likely to be by chance. The question then 
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is whether the significant effects later in time for the same site are also due to chance, 

technical error or are actually real. This cannot be answered directly. A significant 

difference at the observed location (below digits) would fit with the expectations, as this 

part of the hand acts as an anchor to keep the bar suspended in the air. Therefore the 

pressure applied to this section of the hand would be the greatest and the fit more perfect. 

There would be no air pockets, so contact cooling rather than cooling by air definitely 

occurs. This part of the hand is indisputably in contact with the bar. Any differences 

observed, as a result of blood flow would therefore be more apparent here. However, as 

none of the other sites showed any significant effect of occlusion within the studied time 

period and this observed effect has some question marks to it, it must be concluded that an 

effect of occlusion in this fast cooling condition was not indisputably proven. On the other 

hand, despite showing only one significant result, the majority ofTsk were lower during the 

occluded condition than the free blood flow condition. 

It is possible that a factor other than the effect of blood flow had an effect on the cooling 

of the hand and subsequent differences between blood flow conditions. Although most 

factors were controlled for it is possible for example that the introduction ofthe cuff at the 

wrist resulted in the participant introducing their hand into the freezer in a slightly different 

way than in the free blood flow condition where the pressure cuff was not present. This 

could have resulted in the participant gripping the bar using a different position than for 

the non occluded position resulting in significantly different temperatures as a result of 

different contact areas being exposed. However, if this would be the problem, the same 

would have been expected in the previous study. 

As descn'bed in the result section, two types of cooling were observed. Sites in contact 

with the material experienced a rapid initial decrease in temperature followed by slower 

decline in temperature. This was as a result of the high thermal conductivity of the bar and 

subsequent rapid heat loss. The large surface area to mass ratio, in particular of the digits 

resulted in the highest rates of heat loss. This will obviously eventually affect manual 

dexterity. The sites not in contact with the material demonstrated a much slower, more 

uniform, cooling and T sk remained relatively high compared to the T sk of the contact sites. 

Thermocouple 2 (between the proximal phalanx and metacarpal bone of digit 2) and 

thermocouple 4 (distal phalanx of the thumb) registered the lowest contact temperatures. 

This was in agreement with the finding ofHavenith et al. (1992) but in disagreement with 
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the findings of Chen (1996) who determined that the thumb Tsk remained high during 

contact with cold materials. This however is partly explained by the fact that the thumb 

and area of the palm leading to digit five are the areas primarily used to lift and suspend 

the bar, and the only area that can be said to be definitely in contact with the bar. The non 

contact skin temperatures rarely fell below 30°C regardless of blood flow condition. Over 

all, the biggest differences were observed between the contact and non-contact sites. 

After the initial rapid cooling as a result of contact with the bar, cooling did not always 

continue. Tsk sometimes remained stable or even increased in temperature. This was 

expected however, because of the high starting temperatures of the hands. Chen (1997) 

determined that the extent of heat loss was dependent upon the temperature gradient. 

Initially the rapid drop in T sk was due to the large temperature gradient between the hand 

and the bar, but this temperature gradient decreased and even reversed as the hand 

warmed the material (more noticeable in the free blood flow condition) resulting in a 

slower rate of heat transfer. This was also the case with the non contact sites which 

remained warmer; the temperature gradient and the thermal properties of air (insulating) 

resulted in heat being lost much more slowly than at contact sites. 

It was expected that occlusion would result in lower Tsk in all cooling. This occasionally 

wasn't the case however. It is possible, that as the hand was not esaguinated prior to 

occlusion, that this was due to participants altering their grip on the bar, as it became too 

painful for them. This would subsequently result in a change in location of blood as it re

entered the areas it had previously been 'squeezed' out if under the contact area. This 

would subsequently increase the heat input to the hand due to re-entry of blood thereby 

reducing the effect of cooling. The way and amount of applying pressure between the 

fingers and material has been shown to have a strong effect on contact cooling (Chen F 

1992). As it was not possible to measure changes in pressure they may have been subject 

to great variability. 

All participants remained in contact with the material for the full duration of five minutes. 

Keating and Cannon (1960) showed a Tsk of approximately -0.6°C was required for skin 

damage as a result of frost nip or bite. No T sk went below 3 QC during the course of this 

study, and in the main Tsk remained significantly higher, even in the occluded condition. It 

could therefore be concluded that these temperatures and durations do not pose a risk in 

Page 145 



terms of tissue damage. However, it must be remembered that temperatures fell below 

critical levels in terms of effects on manual dexterity. The contact Tsk often fell within the 

range of 13-18°C, which is within the range determined to have detrimental effects on 

manual dexterity (Enander A 1984). Participants also experienced a significant amount of 

pain. Therefore the reduced T sk, especially the lower T sk resulting from occlusion should be 

considered in terms of increased pain and loss of sensation rather than frost nip /bite risks. 

7.5.1 Subjective Sensations 

No significant differences were determined in SUbjective sensations between the two blood 

flow conditions. However, it was apparent that the occlusion condition resulted in greater 

pain, numbness tingling and cold sensation than in the free blood flow condition. It is 

possible that these subjective results are not as reliable as one may have hoped due to the 

pre existing level of pain, numbness and tingling experienced by the participants as a result 

of inflation of the occlusion cuff. Free nerve endings are the principal receptors for pain. 

They are activated by an inadequate supply of blood to an organ. The onset of pain was 

initially rapid then reached a plateau and frequently diminished. This could be explained by 

the strong initial stimulation of the free nerve endings, which upon adapting to the thermal 

environment and occlusion decreases stimulation resulting in a decrease in pain sensation. 

The bulbs of Kraus are located close to the skin's surface and are the receptors for cold 

sensation (Van de Graaff and Fox 1995, Parsons 1993). Numbness and tingling are an 

indication of irritation to the nerves as a result of the nerve experiencing distress, for 

example, as a result of a lack of blood supply. For these reasons it is felt that subjective 

sensations may not have been the best indication of exactly how the participant was feeling 

as a result of the thermal conditions. 

Once again, the most commonly reported area of pain was below the 2nd digit, and the 

fingertips. This was also the case in the slow cooling experiment. 

7.5.2 Blood Flow 

It was determined to investigate the effects of blood flow after exercise in order to induce 

a high blood flow state. The reason that this was done was to observed the maximal effects 

of high blood flow compared to no blood flow. If there were any differences, they should 
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be observed in this condition. It would then later be possible to investigate effects oflower 

blood flow if deemed appropriate. 

Prior to exposure to the bar in the cold chamber, all participants were asked to exercise for 

both conditions. This protocol was used to provoke vasodilation of the peripheral tissues. 

However, there was no measurable increase in blood flow between pre and post exercise. 

As stated earlier this was not expected but the assumption of peripheral vasodilation can 

be maintained due to the elevated T sk and Tcore. It is possible that there was no increase 

observed in peripheral blood flow post exercise for several reasons. But it is important to 

remember that if the assumption of high peripheral blood flow can be maintained and the 

fact that there were no starting differences between Tsk in the two conditions this means 

that all experimental requirements have been met regardless of whether the blood flow was 

raised through exercise or passive heating as this would be the same across all participants 

and for both conditions. 

Possible reasons for lack of significant increase in peripheral blood flow when compared 

pre and post exercise include: 

• Participants were asked to sit at rest in a warm room prior to introduction to the 

exercise room to stabilise their core the temperature. It is probable that participants 

already experienced vasodilation here as a result of the mean skin and core temperature 

increasing as a result of exposure to the warm environment. 

• SDR Clinical technology 2001 and Hokanson (2001) state that blood flow to the hand 

is quite variable and for this reason the hand is usually occluded prior to measuring the 

blood flow in the upper limb. This was not done in this study however, as it was the 

blood flow to the hand that was of primary interest but could explain erroneous results. 

• The venous occlusion cuff was inflated to 50mmHg for all participants despite the 

varying circumferences of the upper arm. It is possible that this inflation should have 

been customised to each participant and related to this dimension. 

• Due to equipment malfunction there was a lot of missing data in this section, which 

reduced the available sample size. Possibly statistical significance may have been there 

had the correct sample size been obtained. 
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7.5.3 Fast and slow Cooling Compared 

In the fast cooling condition of the present experiment, there was a trend to lower T sk in 

the occluded condition when compared to the free blood flow condition. The logical 

question is would this difference have become significant if left over a greater period of 

time? Eventually, it is likely, given enough time that a difference would be observed 

between the occluded and free blood flow condition, as without heat input to the hand the 

hand would eventually cool to the ambient conditions of the cold chamber and bar. 

However, the present results, where no significant difference was determined between the 

two conditions, would indicate that for the duration of this test the cooling of the contact 

side of the hand was so superficial and quick, that it was the skin that acted as a barrier to 

the cold and that blood had little effect. The fact that so many of the sites in the slow 

cooling condition (chapter 6) showed significant differences and that the number of sites 

showing significant difference increased with duration would indicate that in the slower 

cooling condition, cooling is more deep and so relies on blood flow for warmth rather than 

just the insulative effect of the skin. This is partly explained by the thermal properties of 

the material. Aluminium conducts heat very quickly from the skin, too quickly for the hand 

to replenish this heat from the blood to the skin. This would result in very cold skin but the 

underlying tissues remaining relatively warm. Nylon and wood take the heat much more 

slowly from the hand. This leaves time for the outside of the skin to come to equilibrium 

with the underlying tissue and blood. This results in a more uniform cooling than that 

which occurs as a result of taking all the heat from the skin very quickly (fast cooling). 

For the long term exposure condition, differences became apparent after 300s, with more 

sites becoming significant after this time. It is possible, that had the fast cooling condition 

exceeded 300s, that differences would have become apparent in this condition also. 

However, in this condition, people would have released the material after this duration 

because of pain levels experienced. The level of pain experienced at this level would have 

induced a high rate of withdrawals from participants after 300s, so was not practical to 

analyse. 

As stated previously, in the fast cooling condition, the warmest sites were the non contact 

sites. These sites were significantly warmer than the contact sites. However, in the slow 

cooling condition, whilst the contact sites were warmer than the non contact sites, the non 
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contact temperature was much closer to the contact temperatures than in the fast cooling 

condition (due to lower ambient air temperature and a longer duration of exposure).The 

back of the hand (main non contact site) was one of the few sites not to show a significant 

difference between the occluded and non occluded condition in the slow cooling condition. 

Whilst it would be reasonable to assume that the contact sites will reach lower 

temperatures than the sites exposed to air as a result of the thermal properties of the 

materials, a second contributory explanation is possible, which would also explain the lack 

of significance between the two conditions (occluded and free blood flow) in the fast 

cooling condition. 

It is possible that there is a local effect on vasodilation and vasoconstriction. The palmar 

aspect of the hand exposed to the bar is cooling very quickly. As a result of this 

vasoconstriction occurs in an attempt to conserve heat. However, on the dorsal aspect of 

the hand, which is exposed to the ambient air temperature, vasodilation is still occurring as 

this aspect of the hand tries to rid itself of excess heat. 

The fo llowing equation taken from Havenith (1997) shows how this may be possible: 
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Vasoconstriction = {A (36.5 - Tcore) + B (33.7 .:rsk)} *·2.0 (33.7 - Tsk local) 

Part 1 Part 2 

Part 1 shows the central effects of the body on vasoconstriction. Part 2 shows the local 

effects on Vasoconstriction. 

What appears to be happening in the contact cooling is that the body core and mean skin 

(part 1) are warm, so the central signal indicates vasodilation. Part 2 of the equation, the 

local skin effect, then has the strongest effect on vasoconstriction. This effectively results 

in the dorsal aspect of the hand remaining vasodilated whilst exposed to ambient 

conditions as a result of both the high Tcore and elevated peripheral blood flow, whilst the 

palmar aspect of the hand becomes vasoconstricted in response to the contact with the 

material. 

Figure 7.9 shows graphically what happens at each aspect of the hand under each cooling 

condition. Eventually, if there is no intervention the hand will equilibrate and become a 

stable temperature throughout. Certainly in the occlusion condition this will occur and 

eventually the hand will reach the same temperature as the bar and material. 

Page 150 



Fast Cooling Slow Cooling 
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Figure 7. 9. Cooling on the contact and non contact side as a result/ast and slow contact cooling 

Figure 7.9 show what is thought to be happening in the two conditions. In the fast cooling 

condition, it is though that the non contact aspect of the hand (dorsal aspect) starts offhot 

as a result of increased peripheral blood perfusion due to exercise, the contact aspect 

(pahnar aspect) starts to cool immediately upon contact with the material. The dorsal 

aspect (exposed to air) remain relatively warm throughout the duration of exposure (5 

minutes at O°C or -3°C) The contact aspect of the hand quickly cools further to reach 

'very cold'. This is different to what happens with the two aspects of the during slow 

cooling. Again, the dorsal aspect of the hand is hot due to exercise when it is introduced 

into the cold environment, this aspect however, cools to a greater degree than the same 

aspect in the fast cooling condition, as it is exposed to a colder ambient air for a longer 

duration. The palmar aspect of the hand in the slow cooling condition however, does not 

cool to the same degree as the palmar aspect in the fast cooling condition. Instead, it cools 

on initial contact and then due to the insulative properties of the material, either remains at 

that temperature after a short period of time or begins to warm up. Obviously, if blood 

flow is still stopped, this will eventually cool to ambient air temperatures. 

7.6 Conclusions 

• For fast cooling, up to five minutes, the hand blood flow level did not show a clear 

effect on the decay speed of hand temperature for the conditions investigated. 
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• No differences in subjective sensations between the occluded and non occluded 

conditions were observed, though the reliability of the subjective responses during 

occlusion may be doubted. 

• The temperature profiles of contact and non contact areas and their differences 

between slow and fast cooling suggest that vasoconstriction in the conditions used 

may be very local to the ventral side of the hand. 

• No occurrence of Cl VD was observed in these fast cooling conditions. 
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8 Comparison of Blood Flow to the Dominant 

and Non Dominant Hand 

8.1 Chapter Summary 

Blood flow has been shown to have a significant effect on end skin temperature after slow 

contact cooling. For this reason it was decided to investigate whether there are any 

differences in blood flow to the dominant and non dominant hand. It was detennined that 

in the population investigated, there was no difference between resting blood flow values 

in the dominant and non dominant hands. 

8.2 Background 

Chapter 6 showed that blood flow has a significant effect on contact cooling during slow 

cooling. Although this wasn't apparent during fast cooling, it was thought that any 

differences between blood flow in the dominant and non dominant hand should be 

investigated to ensure that the European Standard, which was developed using data from 

the dominant hand, would cover both hands. Due to the effect of blood flow on contact 

cooling during slow cooling, any differences in blood flow between the dominant and non 

dominant hand could have a significant impact on the standard. 

Generally speaking, a difference between the size of the dominant and non-dominant hand 

and forearm can be observed As the dominant hand is generally larger (Jay 2000) it could 

be expected that heat would be lost more quickly from this hand than from the smaller 
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non-dominant hand as a result of contact cooling due to the increased surface area. 

Although the cooling speed of the dominant and non dominant hand have not been 

analysed and compared in this thesis no significant differences were found in thermal 

sensation, numbness tingling or pain sensation (chapter 5) between the two hands, and no 

significant differences in manual dexterity deficits were found. If the heat was lost more 

quickly from the dominant hand than the non dominant hand as a result of increased 

surface area, it could be expected that this would be indicated in effects on manual 

dexterity and subjective sensations. It was thought that apart from the difference in contact 

area this difference in size might mean that there is higher blood flow (and thus higher heat 

input) to the dominant arm and hand to maintain the higher muscle mass (mainly in the 

forearm). It was anticipated that the latter would lead to slower cooling and so less cold 

sensation. In order to study this, an experiment was devised to determine whether or not 

there is a difference in blood flow between the dominant and non dominant hand, the 

hypothesis being that there will be increased blood flow and thus also higher heat input to 

the dominant hand 

8.2.1 Functions of Blood 

Blood has several functions including gas exchange, thermoregulation and transportation 

of waste. It is necessary for the gas exchange that occurs in the lungs and transports the 

oxygen throughout the body. It also circulates nourishment and transports water and waste 

to the kidneys. Blood also aids thermoregulation of the body. Thermoregulation occurs via 

vasoconstriction (reducing heat loss) or vasodilation (increasing heat loss), closing and 

opening perfusion of the skin. In addition it operates using a counter current heat exchange 

system, further enabling an additional reduction in heat loss. It transports heat from the 

core of the body to the skin surface. The amount of heat lost is controlled by the 

autonomic regulation of skin blood flow. 

8.2.2 Blood Flow to the Hand 

The deep palmar arch and superficial palmar arch supply blood to the hands and fingers. 

The proper digital arteries supply blood to digit 5 (little finger), and the four common 

digital arteries lead off from the superficial palmar arch, which receives most of its blood 

from the radial artery. The four common digital arteries also receive a common 

interosseous artery, which bifurcates into the phalangeal arteries, which run alongside the 

digits (see figures 4 and 5 in chapter 1.). 
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8.2.3 Physiology of the Hand in the Cold 

During vasoconstriction, blood flow to the hands can be reduced by as much as 90% when 

compared to that at normal ambient conditions (Gordon 1974). 

In part, the vasoconstrictive responses of the extremities under cold conditions are as a 

result of the way in which arterial blood returns through the venous system. To prevent 

excessive heat loss from the core, counter current blood flow, and thus heat exchange 

occurs between the central arteries and veins (warm arterial blood entering the limb is 

cooled by returning cooler venous blood). This results in a decreased local Tsk and 

conservation of heat maintaining core temperature. To this end, arterio-venous 

anastomoses (AV As), short vessels with muscular walls joining an artery to a vein, richly 

innervated with sympathetic nerve fibres, achieve effective blood flow control. During cold 

exposure, A V A's close as a result of increased sympathetic activity. This reduces blood 

flow and subsequently the heat input to the hand. Remaining blood flow then returns to the 

body core via deep veins in close proximity to the arteries. In summary, heat input to the 

hand is reduced as a result of reduced blood flow and of counter-current heat exchange 

between arteries and veins (Raman and Roberts 1989). Open A V As have the opposite 

effect. The precapillary sphincters together with metarterioles relax and can increase blood 

flow, by up to seven times, resulting in the blood effectively taking a short cut to the 

capillary bed. The heat is thus transferred via convection from the deeper organs to the 

skin, which results in an increased local skin temperature. 

The high surface area per unit mass of the fingers results in effective heat loss as a result of 

blood flow. 

The regulation of blood flow to the extremities at low ambient temperatures is primarily 

determined by the thermal state of the body as a whole. The following equation taken from 

Havenith (1997) shows how this may be described. 

Vasoconstriction = {A (36.5 - Tcore) + B (33.7 -Tsk)} * 2.0 (33.7-Tsklocal) 

Part 1 Part 2 

Part I shows the central effects of the body on vasoconstriction. Part 2 shows the local effects on 

vasoconstriction. 
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However, Chapter 7 indicated that for short term cooling it would appear that Part 2 of 

the equation has the strongest effect on vasoconstriction. This may effectively results in the 

dorsal aspect of the hand remaining vasodilated whilst exposed to ambient conditions as a 

result of both the high Tcore and elevated peripheral blood flow, whilst the palmar aspect 

of the hand becomes vasoconstrlcted in response to the contact with the material. For slow 

cooling however, part one of the equation remains the strongest influence. Rapaport et al. 

(1949) determined that when exposing the hands only to a cold environment that blood 

flow levels and skin temperature remained high because of the overall thermal state of the 

body. However, when the body is cooled, vasoconstriction of the hands is evident. 

Parsons (1993) stated that blood perfusion and the rate of blood flow has a significant 

influence on heat transfer. There are many factors that can affect blood flow, including 

factors specific to the hand. These can include Raynaud's disease, vibration white finger or 

even something as simple as tight clothing at the wrist. Exercise has also been shown to 

directly affect blood flow to the body and in particular the hand. Evidence is prevalent on 

the effect of blood flow on the hand (Havenith 1992, 1995, Enander 1982, Spealman 

1945). 

Blood flow is the main source of heat input to the hand. This is because there is relatively 

little muscle in the hand resulting in it being unable to produce large amounts of heat for 

itself. The amount of heat can be calculated from the following equation taken from 

Havenith (1992): 

Hand blood flow * Heat capacity of blood 6. T * Hand volume 

The metabolic activity of tissue is related to the amount of blood flowing through a unit 

mass of tissue in a unit of time. 

8.3 Methods of Blood Flow Measurement 

There are several reasons why the ability to measure blood flow is important. The 

measurement of blood flow can give an indication of vascular problems, for example deep 

vein thrombosis and heart disease. It can also give an indication of the rate of healing after 

an amputation, or give an indication of skin condition in a patient with severe burns, skin 
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grafts or ulcers. It is also a useful tool when studying thermoregulation. However, there is 

no universally accepted method of measuring the flow of blood, although there are several 

techniques to measure blood flow, which fall into two categories; these are invasive and 

non-invasive techniques. 

8.3.1 Invasive techniques 

There are several techniques used for measuring blood flow that would come under the 

heading of 'invasive techniques'. Intravascular velocity transducers are one method 

commonly used, and are inserted by surgery into the large arteries. The transducers 

measure the rate of blood flow or temperature change. This method of measuring blood 

flow is generally reserved for central body measurements. 

The injection of radioactive indicators (e.g. Xenon) is a second invasive method used for 

determining the rate of blood flow. Xenon is injected into the blood stream, and the rate of 

clearance or distribution through the body is monitored to give an indication of blood flow. 

It was decided that the invasive techniques available were unsuitable for use in this study, 

both because of the level of skill required to administer the method, and in terms of the 

demand placed on the participant. For these reasons it was decided to investigate non

invasive techniques. 

8.3.2 Non-Invasive techniques 

Again, there are several methods available to measure blood flow, which are classed as 

non-invasive. Whilst investigating the extent of autonomic control of blood flow of the 

hands and feet, Rapaport et al. (1949), measured blood flow by monitoring skin 

temperature. This was found to be effective due to their linear relationship. Limitations of 

this method however, are extensive. The linear relationship between blood flow and skin 

temperature only exists up to temperatures of between 32°C and 34°C. It has also been 

determined (Foster et al. 1946; Cooper et al. 1949; Fletcher et al. 1949), that there is a 

significant lag effect between the change in blood flow and skin temperature. A subsequent 

lack of accuracy has been reported. 

Venous occlusion plethysmography involves occluding the venous outflow of blood whilst 

not affecting the rate of arterial inflow by inflating the venous occlusion cuff above the 
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elbow to a pressure of 50- 60mmlHg. It has previously been determined that a pressure of 

50- 60mmlHg is sufficient to close the veins, but not the arteries. As the blood flows into 

the arm, through the arteries, it is unable to escape via the veins. This causes the limb to 

swell. The rate of swelling is a measure of the arterial inflow at that time. The swelling is 

sensed by a mercury in silastic strain gauge. An assumption that blood flow will be equal 

throughout the limb is made, so it is also assumed that the volume flow rate is equal 

throughout the limb volume. This method of measurement allows the results to be 

compared to other results obtained regardless ofa participant's size. This methodology has 

been used extensively in the past. 

Gravimetric plethysmography, measures blood flow by measuring the mass increase in a 

limb as a result of venous occlusion and no arterial occlusion (blood can flow into the arm 

but can not leave resulting in a net gain). Photo plethysmography measures the reflection 

of infrared light from the skin and subcutaneous tissue The equipment for this method 

however is expensive and offers no real advantage over venous occlusion plethysmography 

for this study. 

The use of a laser Doppler technique to measure blood flow is also relatively common. 

Johnson et al. (1984) compared laser Doppler velocimetry with plethysmography and 

found a very high correlation between the two. The main advantage of laser-doppler 

velocimetry over plethysmography would appear to be that the laser Doppler method also 

allows measurements at sites not accessible with plethysmography. It also provides a 

method for continuous measurement. However, the equipment is very expensive and 

should be evaluated in terms of its required application as it can only measure the blood 

flow in arteries and venules within 2mm of the skin surface. In addition laser Doppler 

blood flow measurements are on a relative scale (%) and do not provide absolute blood 

flow values. Therefore it is difficult to compare different locations. 

For this study, it was decided that strain gauge plethysmography was the most suitable 

measurement of blood flow to use. This decision was based on comfort for participants; 

time taken to complete the measurement, validity providing an absolute blood flow value 

and the fact that no specialist training was required to operate the system. 
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8.4 Methods 

8.4.1 Participants 

Ten participants were used for this study, five males and five females. 

Table 8.1. Shows Participant Characteristics 

Subject Sex Ag Height Weight Volume of Palm Palm Third Third 
e Hand Length Width Phalanx Phalanx 

Length Width 
R L R L R L R L R L 

1 M 27 183 88.7 331 329 10.1 10.1 8.4 8.1 7.6 7.8 2 1.9 
2 F 31 171 77.5 312 319 10.7 10.5 8.3 7.8 8.2 7.9 1.9 1.9 
3 F 22 170 73 276 269 10.1 10.1 7.9 7.6 7.5 7.8 1.8 1.7 
4 F 21 169 65 301 291 9.7 9.6 7.6 7.4 7.6 7.5 1.8 1.7 
5 F 21 162 605 290 277 9.2 9 8 8 6.7 7.1 1.7 1.7 
6 M 25 185 80.4 394 388 11 10.6 8.7 8.7 8.7 8.6 2 2 
7 F 23 169 58.3 297 293 11 10.7 8 7.9 7.9 8 1.8 1.7 
8 M 22 188 84.7 392 389 11 10.9 8.7 8.7 8.8 8.7 1.9 1.9 
9 M 25 179.5 74.8 315 319 10.8 10.9 8.2 8.1 8.3 8.5 1.8 1.7 
10 M 23 180 80.3 389 384 10.9 10.7 8.8 8.7 8.5 8.4 2 1.9 

Mean 24 175.7 74.3 330 326 10.5 10.3 8.3 8.1 8 8.0 1.9 1.8 

8.4.2 Design 

A within participants repeated measures design was used. All experiments were conducted 

at the same time of day for each participant, and all participants were asked to eat and 

drink similarly on each day ofthe experimentation, to avoid effects of circadian rhythm, or 

differences in blood flow resulting from eating or exercising. All participants were also 

asked to abstain from alcohol, caffeine drinks and smoking for twenty-four hours prior to 

the experiment. Participants were also screened for any circularatory problems or other 

illnesses/diseases/disorders (e.g. Raynaud's) which might affect peripheral circulation. 

It was expected that the cyclic variations that occur in blood flow over periods of about 

one minute to tens of minutes could be avoided by repeating the measurement over four 

sessions and by balancing (using a Latin Square) the order of exposure of the dominant or 

non dominant hand. Therefore any differences observed between the two limbs would be a 

result of differences that occur naturally between the dominant and non-dominant limbs. 
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8.4.3 Plethysmography 

When venous occlusion plethysmography is used to determine forearm skin blood flow 

normally the hand is fully occluded during the measurement. Generally speaking, blood 

flow to the hand is quite variable as it is controlled by both thermal and mental influences. 

So that it is usually cut off by the application of a second cuff during measurement. 

However, for this study it was decided not to do this, as it was the flow of blood to the 

hand that was of specific interest. It was expected that as the participant was at rest and 

thermally neutral, and because the readings were taken immediately after each other and 

always at the same time of day, the variability between blood flow in the hands due to 

factors such as vasoconstriction or vasodilation would not be apparent. 

The participant entered the room, sat on a stool and rested for five minutes to minimise the 

effect of blood flow that might occur from walking to the lab. The participant was then 

asked to rate hislher thermal sensation. The participant then placed the specified arm into a 

loop of padded rope so that the arm was supported at the wrist and kept at heart level; the 

padding on the rope ensured the participant's comfort and also increased the surface area 

in contact with the participant's arm so that the pressure of the arm was distnbuted over a 

larger area and therefore decreased. The largest diameter of the participant's forearm was 

then measured (cm), and a strain gauge was selected which would stretch about two cm 

when applied. The strain gauge was applied by bringing the loop (of the gauge) around the 

diameter of the limb and then securing it by fitting the loop into a groove in the end piece. 

It was ensured that the loop of the strain gauge was applied so that it was parallel, but not 

touching. The gauge was then secured by placing a piece of tape over the end piece of the 

gauge ensuring that the tape was not in contact with the mercury part of the equipment. A 

rapid cuff inflator was required in order to have a clear starting point in the subsequent 

data The cuff was required to fully inflate in <0.5 seconds to a pressure of 50-70 mmHg. 

A workbench programme had previously been designed with a module to trigger valves on 

a solenoid unit, which ensured that the cuff inflated within the specified time and to the 

specified pressure automatically. During this period of time, the participant was asked to 

refrain from moving and talking, as the test is very sensitive to movement. The data was 

recorded using a workbench for PC programme. Data points were recorded every second. 

Before the inflation of the cuff, a five second warning was displayed on the screen to alert 

the participant and experimenter that venous occlusion was about to occur. At this point, 
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the balance switch was pressed. This returned the tracing to its baseline position (necessary 

as it is not possible to keep the participant completely still between readings). A calibration 

spike equal to 1 % (blood flow) was made immediately before and after the 

inflation/deflation ofthe cuff, as this was required for analysis later on. 

Even though the participants were asked not to move or talk, sometimes they fidgeted 

without realising it, and as the equipment is so sensitive, even moving from a slouch to 

sitting straight will affect the reading. For this reason, the participants were allowed minor 

movements between the test periods to ensure they could stay as still as possible for the 

actual test. This procedure was repeated measuring the blood flow in the remaining arm. 

Five curves, which represented blood flow, were produced. The 'best' three curves from 

these five were then selected. The 'best' curves are indicative ofthe test periods where the 

participant did not move or talk. 

The curves selected were enlarged and printed separately. A straight edge tangent was 

then applied by eye to the curve after the initial inflation period of the cuff. Typically, this 

was the second shallower gradient of the slope on the graph after the sharp gradient 

immediately apparent after the initial inflation. The first part of the curve is as a result of 

the cuff artefact where blood is pushed back down the arm because of the rapid inflation of 

the cuff. Through practise, it was possible to determine the part of the curve to be analysed 

with relative consistency. The slope of the line was then determined by calculating the 

change in volume per unit time, using the 1% cahbration value obtained by the 1 % 

calibration spike previously described. This then gave the % volume change per minute; 

equivalent to cc's of flow per 100 ccs of tissue per minute. A typical resting value would 

be in the region of 1 % to 3%/min. 

8.5 Results 

S.S.1 Heat Input 

Average heat input to the hand from blood flow was estimated for the ten participants 

involved in this study. The calculation below shows the calculation for the right hand of 

each participant. 
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Heat Input = Blood flow * Heat capacity ofblood* T * (Tbloodarterial inflow - Tblood venous outflow) 

Where: 

Hand Blood flow = plethysmograph value (mVlOOmVmin) * hand volume 

Average blood flow = 3.7mVI00ml tissue/minute, Heat capacity of blood = 3.65 J/ml°C, 

Average hand Volume = 330ml, Temperature in = approx. 37°C and Temperature out = 

approx. 17°C 

Heat Input = [3.7 mVlOOmVrnin * 330 ml] * 3.65 J/gOC * [37-17°C] 

Heat Input = 12.2 mVminute * 3.65 J * 20 = 891 JlMinute = 14.8 Watt/Hand 

Using the same calculations, the heat input to the left hand was 14.7 WattlHand. 

8.5.2 Dominant Non Dominant Hand 

It was detennined that there was a skewed distnbution ofthe blood flow. Therefore a non

parametric test was used. Because the data is related, and there are only two samples, it 

was decided that a Wilcoxin signed rank test would be used. The Wilcoxin signed rank test 

showed that there was no significant difference between blood flow in the dominant and 

non-dominant hand. Given the shape of the distnlmtion, perfonning a transformation on 

the data was considered, but as discussed previously, a realistic value for resting blood 

flow would be between I % and 3% (Hokanson Strain Gauge and Photo Plethysmograph 

Manual). 

It was decided that values over 5% should be treated as outliers. These were removed, and 

a second analysis was then performed on the data 

The removal of the outliers meant that the data became normally distnbuted. As the data 

was interval and related, and all the parametric assumptions were satisfied, it was decided 

that a repeated measures ANOV A should be used. As can be seen from the ANOV A 

below, no significant difference in blood flow was observed between the dominant and 

non-dominant hand. 
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The following general linear model was used: 

>model = blood flow = constant + hand + subject + hand* subject 

Source 

HAND 

SUBJECT 

Sum-of-Squares 

10.004 

90248.521 

Analysis of Variance 

df Mean-Square 

HAND*SUBJECT 16316.454 

1 

9 

9 

10.004 

10027.613 

1812.939 

Error 229253.417 220 1042.061 

Least Squares Means 

72~----~----~--~ 

8 651-
.....I 
u.. 
o 
o 
9 58 

H 
-

m 

51~----L-----'~--~ 
1 2 

HAND 

F-ratio 

0.010 

9.623 

1.7400.081 

Figure 8.1. Shows the Least Squares Means of the blood flow in Hand 1 (right hand) and 

Hand 2 (Left Hand)v 
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8.6 Discussion 

The amount of heat input to the hand from these ten subjects was relatively low at 14.8 

wattlhand, when compared to the maximal effect of blood flow to the hand on heat input 

which could be estimated at around 49 wattlhand. This was to be expected however, as 

participants reported a mean thermal sensation of 0 (neutral) prior to the blood flow 

measurement being taken. As a matter offact, actual heat input may have been lower than 

this as counter current heat exchange would reduce the temperature difference between 

arterial and venous blood. 

No significant difference between the amount of blood flow in the dominant arm and non

dominant arm was found. This means that any differences observed between the dominant 

and non dominant hand in terms of cooling speed and pain sensations are likely to be 

attributable to other factors, for example hand size or other anatomical or physiological 

differences. There was however, as expected a significant effect of subject. 

It could be possible that experimental noise had a part to play in the lack of significance 

between the two arms. It could be that the participants did not sit at rest long enough to 

fully eliminate any effects on blood flow from the walk to the lab or the hot weather. 

Objective measurements of skin temperature were not taken, but the participant was asked 

to rate his or her thermal sensation (mean value 0), so it is possible that whilst the 

participant perceived him or her self to be thermally neutral, they were in fact under 

thermal strain. Although a pilot study indicated that a five minute rest period slowed the 

blood flow, it could be that this was not a long enough period. 

The method of analysis for this procedure is, in my opinion open to interpretation. Whilst 

it is stated (Hokanson Strain Gauge and Photo Plethysmograph Manual) that with practise 

consistent results are achievable, it is not possible using this method to always select the 

same part of the curve on each curve for analysis. A computer programme or taking the 

reading after a specified amount of time until a further specified period of time would 

remove the arbitrariness of this procedure. 
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It is also possible that there is a difference in blood flow between the dominant and non 

dominant hand, but that this difference is only apparent during or immediately after 

exercise, when increased blood flow is required to sustain the muscles. 

Given that differences in size between the dominant and non dominant hand have been well 

documented (Jay 2000), it was unexpected that this sample should have no significant 

difference between their dominant and non dominant hand in terms of volume (p = 0.069). 

It is anticipated, that had the dominant hand a significantly larger volume, that there would 

be a significantly increased heat input to the hand. However, it is possible, that this 

increased heat input to the hand would be negated by the increased surface area of the 

dominant hand in contact with the cold material when compared to the non dominant 

hand. The greater surface area exposed would be subject to greater contact cooling. 

Further experimentation may need to be conducted examining the effects of significantly 

different volumes occurring as a result of hand dominance on blood flow. 

8.7 Conclusions 

No significant difference between blood flow to the dominant and non dominant arm as 

measured by forearm venous occlusion plethysmography were observed. 

As hand sizes were not significantly different for the dominant and non dominant hand, 

also no difference in heat input (blood flow * volume) was present between the dominant 

and non dominant hand. 

For people with larger dominant hands, heat input may be larger than for the non dominant 

hand, but it is expected that this is compensated for by the higher contact area. 

Therefore there are no implications for the European Standard in terms of setting different 

limits for each hand at this time. 
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9 Conclusions and Recommendations for Future 

Work 

9.1 Chapter Summary 

This chapter provides a review of the main findings of this thesis. It also proposes several 

areas that may be considered for future research. 

9.2 Background 

The original starting point for this thesis was for the derivation of data for the European 

Research Project SMT4-CT97-2149. Although this was done in the experiment described 

in chapter 3, a different slant was taken on the analysis of results, focusing more on the 

effects of manual dexterity than on time to reach critical temperatures. From this point on, 

the thesis became focused on the effects of contact cooling on manual dexterity and the 

effects of blood flow on contact cooling. 

9.3 Conclusions 

The following conclusions were reached within the constraints of the climates, materials 

and subject groups tested: 

1) When considering manual dexterity deficits as a result of contact cooling, when 

contact with a material with a high contact coefficient is made at temperatures 
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below O°C (fast cooling), tissue damage could result before manual dexterity 

becomes severely affected. 

2) When full hand contact is made with a cold material with a low contact coefficient 

(e.g.-nylon at temperatures below -20°C; slow cooling), severe decreases in 

dexterity will occur before tissue damage is experienced. 

3) When considering the aspects of manual dexterity most affected as a result of 

contact cooling, it was determined, that fine motor tasks and strength tasks were 

most affected. It is thought this is a result of changes in synovial fluid viscosity, 

muscle strength and nerve conduction velocity. 

4) Speed and Strength tests were found to highlight deficits occurring as a result of 

full hand contact cooling, for both the fast and slow contact cooling conditions. 

5) For the participant group studied there are no significant differences in manual 

dexterity decrements between the dominant and non dominant hand as a result of 

fust or slow contact cooling except for strength in the slow cooling condition. 

6) There are no significant differences, in terms of subjective sensations of pain, 

numbness tingling and thermal sensation experienced, as a result of full hand 

contact cooling, between the dominant and non dominant hand for either slow or 

fast cooling. 

7) Therefore, the European Standard, which was derived from data based on the 

dominant hand, is suitable to protect the intended population. 

8) The difference in hand skin temperature as a result of the occlusion of blood flow 

compared to a high blood flow state was first apparent in digit 5 (little finger) and 

then spread to the to other contact areas. 

9) These results imply that in populations where the blood flow to the hand is likely to 

be reduced, and in populations where vasoconstriction is likely to occur (thereby 
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reducing bloodflow) special considerations should be made in situations where 

contact cooling is likely to occur, as cooling times are significantly reduced, leading 

to an increased risk of tissue damage. 

10) The differences observed were for high versus no blood flow. Differences may be 

less for vascular patients compared to normal blood flows. This would be an area 

for future research. 

11)For fast cooling (up to five minutes in duration) the hand blood flow level did not 

show a significant effect on the decay speed of hand temperature for the conditions 

used (stainless steel and aluminium at 0 and -3). It is likely this is because of the 

quick superficial nature of contact cooling that occurs as a result of contact with a 

material of a high contact coefficient at temperature at O°C and below. 

12) No differences in subjective sensations (thermal, numbness, tingling or pain) 

between the occluded and not occluded condition were observed in fast cooling, 

although reliability of subjective sensations during occlusion may be doubted. 

13) The temperature profiles of contact and non contact areas and their differences 

between slow and fast cooling, suggest that vasoconstriction in the conditions 

used, may be very local to the ventral side of the hand. 

14) No occurrence of CIVD was observed in the fast cooling conditions detailed in 

Chapter 7. 

15)No significant difference between the resting blood flow in the dominant and non 

dominant hand as measured by venous occlusion plethysmography was observed. 

16) As hand sizes and skin blood flows were not significantly different for the dominant 

and non dominant hand in the experimental population, there was consequently no 

difference in heat input (blood flow *hand volume) to the dominant and non 

dominant hand. For people with larger dominant hands, heat input may be larger 
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than for the non dominant hand, but it is expected, that this is compensated for by 

the higher contact area. 

9.4 Future Research 

The findings detailed in the previous chapters give rise to further issues, that could be 

investigated. Some of these areas are detailed below and their ergonomic implications 

assessed. 

Blood flow was found to have an effect on slow contact cooling and significantly reduced 

cooling times as a result of occlusion. Further to this, the effect of contact pressure of the 

whole hand in contact with the bar could be investigated. Jay (2000) showed that pressure 

was a factor in the contact cooling time of the index finger pad and speculated that 

reduced cooling times were as a result of the blood being pushed out of the finger pad 

through pressure. The effects of whole hand pressure as a result of holding and lifting a 

material in the air has not been investigated and would be of ergonomic interest, as it has 

the potential to directly affect the safety of manual workers and therefore has implications 

for the standard proposed by research group SMT4-CT97-2149. 

Further the dominant - non dominant hand comparison did not include groups who 

perform heavy manual labour with associated callus formation. This may affect dominant

non dominant hand differences. 

The effects of age were not addressed in these studies. The population investigated on the 

whole was young (eldest participant was 36). In the literature review, the effects of age on 

the skin were discussed. It is felt that more elderly people may be at increased risk of 

contact cooling as a result of skin differences that occur amongst other factors as amongst 

other effects epidermal thickness decreases with age. The effects of race and gender should 

also be investigated as both these have been shown in the past and discussed in the 

literature review as having an effect on thermoregulatory responses. In terms of ergonomic 

interest, society is moving towards an ageing popUlation, in the V.K. Certainly, this will 

result in people working longer as a result of insufficient pension provisions. For these 

reasons it is important to consider the safety of older people as they will be working longer 

and making up an increasing percentage of the working population. 
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In chapter 8, the effects of a larger dominant hand when compared to the non dominant 

hand were briefly discussed. It was surmised that any additional heat input to the dominant 

hand resulting from a larger hand volume would be counterbalanced by the accompanying 

larger contact area. This however has not been investigated. 

Finally, the effects of contact cooling on a hot body, induced by exercise would be 

interesting to investigate and to see what effect this has on the speed of cooling especially 

if the participant was sweating. This would be a likely scenario to occur in industry, as 

typically work in cold stores etc can induce sweating, although regular changes of clothing 

are encouraged, through heavy manual work and a high level of clothing insulation. 
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Appendix 1 



GENERIC HEALTH SCREEN FOR STUDY VOLUNTEERS 

It is important that volunteers participating in research studies are currently in good 
health and have had no significant medical problems in the past. This is to ensure (i) 
their own continuing well-being and (ii) to avoid the possibility of individual health 
issues confounding study outcomes. 

Please complete the questions in this brief questionnaire to confirm fitness to 
participate: 

If YES to any question, please describe briefly in the spaces provided (eg to 
confirm problem was/is short-lived, insignificant or well controlled.) 

1 At present, do you have any health problem'for 
which you are: (please tick as appropriate) 

(a) on medication, prescribed or otherwise Yes No 

(b) attending your general practitioner Yes No 

(c) on a hospital waiting list Yes No 

2 In the past two years, have you had any illness which required you 
to: (please tick as appropriate) 

(a) consult your GP 

(b) attend a hospital outpatient department 

(c) be admitted to hospital 

3 Have you ever had any of the following: 

(a) Convulsions/epilepsy 

(b) Asthma 

(c) Eczema 

(d) Diabetes 

(e) A blood disorder 

(f) Head injury 

(g) Digestive problems 

(h) Heart problems 

(i) Problems with bones or joints 

U) Disturbance of balance / co-ordination 

(k) Numbness in hands or feet 

(I) Disturbance of vision 

(m) Ear / hearing problems 

(n) Thyroid problems 
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Yes 

Yes 

Yes 

No 

No 

No 

(please tick as appropriate) 
Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 
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(0) Kidney or liver problems 

(p) Allergy to nuts 

(q) Migraines 

Yes 

Yes 

Yes 

(please tick as appropriate) 
Optional questions for female participants 

(a) are your periods normal/regular? Yes No 

(b) are you on "the pill"? Yes No 

(c) could you be pregnant? 

(d) are you taking hormone replacement 
therapy (HRT)? 

Yes 

Yes 

Thank you for your co-operationl 

Declaration Of Consent 

No 

No 

I, ..................................................................... hereby volunteer to be an experimental 
participant in a thermal environment experiment during the period of I on 

............................................................................................................ 200 ..... 

My replies to the above questions are correct to the best of my belief and I . 
understand that they will be treated with the strictest confidence by the experimenter. 
The purpose of the experiment has been explained by the experimenter and I 
understand what will be required of me. 

I understand that I may withdraw from the experiment at any time and that I am under 
no obligation to give reasons for withdrawal or attend again for experimentation. I 
also understand that the experimenter is free to withdraw me from experimentation at 
any time. 

I undertake to obey the laboratory regulations and the instructions of the 
experimenter regarding safety, participant only to my right to withdraw as declared 
above. 

Signature of Participant ....................................................... Date .................. . 

Signature of Experimenter ............................................. . Date ................. .. 
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