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ABSTRACT 

Clothing provides the body with a protective barrier from environmental factors, 

such as rain, snow, wind and solar radiation. Beside this imperative protective 

function, the interaction between clothing and the human body has implications in 

terms of temperature regulation and comfort. Specifically, wetness at the skin-

clothing interface represents one of the highest sources of discomfort when 

wearing clothing, which could even contribute to reductions in human performance 

and, in extreme environments, impact human health. 

To maximise heat and mass transfer through the clothing barrier, the textile and 

clothing industry constantly works on apparel innovations. Textile test methods 

allow assessments of objective improvements in material performance; however it 

is often unknown whether improvements at material level have an impact on 

human physiological and/or perceptual responses. Therefore, the aim of this 

research was to adopt an integrative paradigm in which textile and clothing 

moisture transfer parameters are instrumentally characterised and, subsequently, 

assessed in human physiological as well as sensorial experiments.  

In this thesis, the current literature review focuses on the interactions occurring 

between the thermal environment, the human body and the clothes worn by the 

person (Chapter 1). The test methods applied to evaluate textile and clothing 

parameters are reviewed and discussed (Chapter 1). This is followed by an outlined 

of the methodological developments adopted in the current research to measure 

human responses when interacting with textiles and clothing, both during rest and 

exercise conditions (Chapter 2). 

In the first laboratory study (Chapter 3), a skin regional experiment (fabrics applied 

on a restricted body area) was conducted to study the role of fabric thickness and 

fibre type on human cutaneous wetness perception, in condition of static fabric 

contact with the skin. In the same study, the approach adopted to characterise 

fabric moisture content, i.e. absolute (same µL of water per area (cm2)) versus 

relative (same µL of water per unit of fabric volume (cm3)) was studied and the 
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implications that fabric total saturation has on skin wetness perception were 

explored. The results showed the role of fabric thickness as major determinant of 

fabric absorption capacity and also wetness perception. In fabrics presenting same 

saturation percentage (same water content per volume) a positive relation between 

fabric thickness and wetness perception was observed and this was independent of 

fibre type. When applying the same relative to volume water content (same 

saturation percentage) thicker fabrics were perceived wetter than the thinner ones. 

Conversely, when applying the same absolute water amount, thicker fabrics were 

perceived dryer compared to thinner fabrics, given that thinner fabrics were more 

saturated. These findings indicate that human wetness perception responses 

between fabrics with different volume/thickness parameters should be interpreted 

in light of their saturation parameters rather than considering the absolute 

moisture content. In the same study, it was observed that the weight of the fabric in 

wet state can also modulate wetness-related perceptual responses. Specifically, 

‘heavier’ fabrics were perceived wetter than ‘lighter’ ones, despite using the same 

fabric and applying the same level of physical moisture. This phenomenon was 

explained in light of the ‘synthetic’ nature of wetness perception, specifically 

through the effect of fabric weight on cutaneous perceived pressure which was 

associated with higher physical wetness in fabrics.  

In a following skin regional experiment (inner forearm), the individual and 

combined role of fabric surface texture (contact points with the skin) and fabric 

thickness on wetness perception as well as stickiness sensation was studied 

(Chapter 4). In contrast to Study 1, in this experiment, fabrics were examined in 

dynamic contact conditions with the skin. It was observed that, when pre-wetted 

(same relative water content, corresponding to 50% of their maximum absorption 

capacity), fabric materials with a smoother surface (higher contact) resulted in 

greater skin wetness perception and stickiness sensation compared to the rougher 

fabric surfaces. Interestingly, the power of wetness perception prediction became 

stronger when including, together with stickiness, fabric thickness, indicating the 

important role of these two parameters when developing next to skin clothing. In 

the same dynamic application, to assess whether texture data can be used as 
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predictors of fabric stickiness sensation, fabric surface texture was quantified using 

the Kawabata Evaluation System. The results showed that the Kawabata Evaluation 

System failed to predict stickiness sensation of wet fabrics commonly assumed to 

be associated with fabric texture, thus a different way to define fabric texture may 

be needed in order to represent this link (stickiness and texture).  

Moving from this first research stage, where the impact of textile properties on 

human perceptual responses was investigated using a mechanistic approach, in the 

second research phase a more applied approach was adopted. The aim was to study 

textile parameters and clothing performance in conditions of exercise-induced 

sweat production as opposed to laboratory-induced wetness conditions.  

Before investigating human sensorial responses in transient exercise conditions, in 

Study 3 (Chapter 5) we addressed potential biases which can occur when sensorial 

scores of temperature, wetness and discomfort are repeatedly reported in transient 

exercise conditions. We pointed out that, when repeatedly reported, previous 

sensorial scores can be set by the participants as reference values and the 

subsequent score may be given based on the previous point of reference, the latter 

phenomenon leading to a bias which we defined as ‘anchoring bias’. Indeed, the 

findings showed that subsequent sensorial scores are prone to anchoring biases and 

that the bias consists in a systematically higher magnitude of sensation expressed, 

as compared to when reported a single time only. As such, the study allowed 

recognition and mitigation of the identified error, in order to improve the 

methodological rigour of the following research involving sensorial data in transient 

exercise conditions. 

Following from Study 2, where the impact of stickiness sensation on wetness 

perception was highlighted, in the fourth laboratory study (Chapter 6) we aimed to 

investigate the combined effect of garment contact area, sweat content and 

moisture saturation percentage, in conditions of exercise-induced sweat 

production. Furthermore, the influence that both stickiness sensation and wetness 

perception have on wear discomfort was studied. The findings showed that fabric 

saturation percentage mainly affected stickiness sensation of wet fabrics, 
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dominating the impact of fabric contact area and absolute sweat content. On the 

contrary, wetness perception was not different between garments. This indicated 

that stickiness sensation and wetness perception are not always strongly related; as 

such they should both be measured and considered individually. Texture and 

stickiness sensation presented the best relation with wear discomfort at baseline 

and during exercise, respectively.   

Due to the impact of fabric moisture saturation percentage on stickiness sensation 

and wear discomfort, identified in Study 1 and Study 2, in Study 5 (Chapter 7) we 

aimed to quantifying temporal and regional sweat absorption in cotton and 

synthetic upper body garments. Sweat production was induced in male athletes 

during 50 minutes of running exercise, performed in a warm environment. 

Considerable variations in sweat absorption were observed over time and between 

garment regions. Based on these data, we provided temporal and spatial sweat 

absorption maps which could guide the process of clothing development, using a 

sweat mapping approach. 

In Study 5 a ‘destructive’ gravimetric method was developed to quantify local 

garment sweat absorption. While this currently is the only methodology that 

permits direct and analytical measurements of garment regional sweat absorption, 

the latter approach is time-consuming and expensive, therefore of limited 

applicability.  As such, in study 6 (Chapter 8), it was assessed whether infrared 

thermography could be used as an indirect method to estimate garment regional 

sweat absorption, right after exercise, in a ‘non-destructive’ fashion. Spatial and 

temporal sweat absorption data, obtained from Study 5, were correlated with 

spatial and temporal temperature data (also obtained from study 5) measured with 

an infrared thermal camera. The data suggested that infrared thermography is a 

good tool to qualitatively predict regional sweat absorption in garments at separate 

individual time points; however temporal and quantitative changes are not 

predicted well, due to a moisture threshold causing a temperature limit above 

which variations in sweat content cannot be discriminated by temperature changes 

any further.  
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In conclusion, the textile parameters identified in this PhD research as major 

determinants of fabric absorption capacity and related perceptions are 

thickness/volume, ‘wet’ weight, moisture saturation percentage, surface area and 

surface texture. These textile factors influence wetness-related sensations and 

perceptions over time, in relation to the over-time changes in human 

thermophysiological responses (such as metabolic rate and sweating) and to the 

environmental conditions the person is exposed to. This clearly shows that in a 

multifactorial system such as the environment-human-clothing one, the strength of 

different cutaneous moisture-related stimuli, triggered by various textiles 

parameters, should be considered. Finally, this indicates that, to obtain a better 

understanding of clothing performance and its impact on human sensations, human 

assessments should be conducted using a holistic approach, i.e. different wetting 

procedure (relative and absolute water amount) and wetness-induced scenarios 

(laboratory- and sweat-induced) involving mechanistic as well as applied research 

approaches (skin regional and whole body studies).   
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CHAPTER 1   
 

Critical review of the literature 

 



  CHAPTER 1 – Critical review of the literature 

 

2 

1.1 Review introduction 

1.1.1 Overview and method 

In the current literature review highlighted are the implications that clothing has on 

human thermoregulatory responses, temperature, moisture and comfort sensations. 

In this regard, included is a critical appraisal of the physical avenues for body heat 

transfer, the human thermoregulatory system, as well as the sensory mechanisms 

underlying cutaneous temperature and moisture sensations. Furthermore, the 

methods used to evaluate textile thermal and moisture properties are summarised 

and discussed. Finally, this review proposes a human-orientated evaluation process 

for the development and assessment of functional clothing.  

The published, peer-reviewed journal papers used in this critical review were 

sourced from online journal search engines including Google Scholar, Web of 

Science, PubMed, Science Direct and Scopus. Journal articles were included based 

on a critical assessment of methodological validity. 
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1.1.2 Introduction to the research topic 

The challenge for every person is to successfully interact with his or her thermal 

environment (Parsons 2014). The thermal environmental determines human 

thermal responses which are aimed to achieve thermal balance. Clothing is an 

essential part of human life which modulates the dynamic interaction between the 

human body and the surrounding thermal environment. Specifically, clothing affects 

heat and mass transfer along with eliciting human sensory responses, including 

haptic, thermal and moisture sensations. The interactions between the various 

components of the environment-human-clothing system substantially impact the 

performance of clothing and determine the thermal and comfort state of an 

individual. 

The multifactorial nature of the environment-human-clothing system explains our 

inability to characterised clothing performance simply using instrumental material 

and clothing test methods. Material tests often involve the application of a single 

environmental condition, which may be insufficient as, for many other applications, 

different temperatures, humidity levels or air flow levels are relevant. Additionally, 

material testing neglects the contribution of personal factors, such as body shapes, 

posture and work intensity, on the end-performance of clothing. This does not 

mean that textile test methods cannot provide useful information with regards to 

fabric and clothing properties. Nonetheless, this suggests that material testing 

represents only a single part of the clothing evaluation process and that final 

conclusions regarding clothing performance require additional evidence that can 

only be provided by human assessments. 
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1.2 The environment- human- clothing system 

The thermal environment is characterised by four basic parameters: air 

temperature, radiant temperature, humidity and air movement. When combined 

with the metabolic heat produced by the individual during physical work and with 

the clothes worn, they provide six fundamental factors traditionally defined by 

Fanger (1970) as the human-thermal environment. Nevertheless, given the critical 

contribution of clothing factors, it seems more appropriate to define this as the 

environment-human-clothing system. The human body responds to the continuous 

changes of this system by regulating body core temperature within a temperature 

range which is compatible with the human life, this being around 37 ºC. This value is 

obtained by achieving a dynamic equilibrium between heat produced and heat loss 

to the environment.  

1.3 The thermal environment  

1.3.1 Heat balance  
The avenues for heat transfer from the body to the environment and vice versa are 

conduction, convection, radiation and evaporation. Conductive heat transfer is 

relevant only for people working in water, in special gas mixtures, handling cold 

products or in supine and sitting position (Havenith 1999). Conductive heat transfer 

can also occur when the body is in contact with wet clothing, based on the amount 

of liquid content and the heat capacity of the wet material to extract heat from the 

skin in contact with it. Nevertheless, it is important to carefully consider this avenue, 

as conductive heat transfer with wet clothing can occur in concomitance with 

evaporative heat transfer both from the wet clothing and skin. Convection is a more 

important pathway and it occurs when the air flows through the skin. If the 

temperature of the air is colder than the skin heat will be transferred from the skin 

to the environment and vice versa if air temperature is warmer. Heat transfer 

through convention, as result of a temperature gradient, is defined natural 

convection. On the other hand, heat transfer through forced convection commonly 

occurs in presence of wind. At the lungs, convective heat transfer occurs when the 
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cool air from the environment is inhaled and heated to the body core temperature. 

By warming and moisturising the inspired air, the body loses an amount of heat 

which can be up to 10% of the total heat production (Havenith 1999). Electro-

magnetic radiation is another pathway for heat transfer. Heat transfer via radiation 

occurs when there is a difference between the body surface temperature and the 

temperature of the surfaces present in the environment. Finally, the human body 

possesses the ability to dissipate a large amount of heat through evaporation of 

sweat (described later in this thesis). The processes of heat production and heat loss 

are conceptually described by the heat balance equation (Parsons 2014): 

𝑀 − 𝑊 = 𝐸 + 𝑅 + 𝐶 + 𝐾 + 𝑆 

Where: 

M metabolic rate;  

W external work 

E evaporation 

R radiation 

C convection 

K conduction 

S heat storage 

1.3.2. Basic parameters 

The thermal environment is characterised by a number of parameters that strongly 

influence the capacity of the body to lose or retain heat. These include air 

temperature, radiant temperature, surface temperature, air velocity and air 

humidity.  

In high air temperatures (Ta), less heat can be lost from the body through 

convection and radiation. If Ta is higher than body skin temperature (Tsk), the body 

will gain heat from the environment and both Tsk and body core temperature (Tcore) 
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will rise. Convective heat loss from the skin is affected by the temperature gradient 

between the skin surface and the surrounding environment and by the presence of 

air movement, which affects the convective heat transfer coefficient (hc, W·m-2·ºC-1). 

The magnitude of air movement (m·s-1) affects both convective and evaporative 

heat loss. High air movement (~ > 0.2 m·s-1) causes the removal of the boundary air 

layer surrounding the skin and convective heat loss increases. Because of the 

dependence of convective heat loss upon the gradient between Tsk and Ta, cooler air 

will increase the rate of convective heat loss whereas warmer air will reduce it or 

even result in heat gain at higher temperatures. In conditions of very high wind 

speed, sweat can be very quickly removed from the skin surface as liquid and before 

heat from the skin can be removed, which is not desirable for an efficient body heat 

loss.  

The driving force for sweat evaporation from the skin surface is the partial water 

vapour pressure gradient between the skin (Psk) and the environment (Pa). When 

moisture concentration at the skin is higher than in the environment, evaporative 

heat loss from the skin surface will occur. On the other hand, as the partial water 

vapour pressure gradient between the skin and the environment decreases, the 

potential amount of evaporation will be reduced. It is important to point out that 

moisture concentration, rather than relative humidity is the determining factor for 

this avenue. In fact, air that has a relative humidity of 100% can contain different 

amounts of moisture, depending on its temperature (Havenith 1999). The higher 

the temperature, the higher the moisture content at equal relative humidity. When 

air temperature is lower than skin temperature, sweat will always be able to 

evaporate from the skin surface, even at 100% relative humidity. In hot-dry 

environment heat loss via evaporation of sweat can account for as much as 85-90% 

during exercise (Armstrong 2000).  

Radiant temperature can be considered as the mean temperature of all the walls 

and objects in the surrounding space where the person is placed. It determines the 

extent to which radiant heat is exchanged between the skin and the environment. 

For people working in sunny outdoor conditions, radiant temperature can easily 
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exceed skin temperature, resulting in radiant heat transfer from the environment to 

the skin (Havenith 2002).  

Finally, the temperature of the surfaces in contact with the body determines 

conductive heat transfer. Beside temperature of the surfaces, other factors 

affecting conductive heat transfer are thermal conductivity and heat capacity 

(Havenith 1999).  

1.4 The human body 

The environment-human-clothing system is a dynamic organisation in which the 

interaction between its numerous factors causes the initiation of human thermal 

responses and impacts the way in which clothing performs. Despite the dynamic 

nature of this system, the only component that can be defined as ‘active’ is the 

human body, in that it can dynamically respond to changes in the thermal 

environment and clothing performance. Conversely, the thermal environment 

(especially outdoor environments) and clothing (apart from effectively working 

‘smart’ clothing) do not actively adjust to assist body thermal balance and comfort. 

Thus, the thermal environment and the clothing can be considered as ‘passive’ 

components of the system.  

Following are described the mechanisms through which the human body can react 

to thermal changes in the system. Additionally, the cutaneous sensory modalities 

through which the human body can gain information regarding the surrounding 

environment will be discussed. Finally, since wetness in the skin-clothing system is 

one of the main factors affecting thermal balance and wear comfort, the topic of 

human body sweating will be examined in details.  

1.4.1 Thermoregulation 

Body heat production is determined by metabolic activity. At rest, metabolic activity 

occurs when the body cells are provided with oxygen and nutrients to maintain 

body’s basic functions, for instance, respiration and heart function. On the other 

hand, during physical work the need of the active muscle cells for oxygen and 

nutrients increases, resulting in a higher metabolic activity. When the muscles burn 
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nutrients and oxygen for mechanical work, part of the energy is released to the 

environment as external work but most of it is liberated in the muscle as heat. The 

ratio between external work and the energy used is the efficiency of the work 

performed. The human body responds to the changes in body metabolic heat 

production and thermal environment (Parsons 2014) through autonomic and 

behavioural thermoregulatory mechanisms. 

Under normal conditions, body temperature is maintained at a certain level by the 

vasomotor responses activated by skin temperature, or by thermal stimuli from the 

surrounding environment (Mekjavic and Eiken 2006) (Fig 1). Vasomotor responses 

include vasodilatation and vasoconstriction. Vasodilatation causes blood flow to be 

radiated from the core to the periphery (skin) and during this process heat is 

transferred via conduction, convection and radiation from the deeper body regions 

to the skin. Vasoconstriction causes reductions in skin blood flow to keep the 

warmer blood near the core and the vital organs. The range of ambient 

temperatures, in which the responses of metabolic heat production and 

evaporative heat loss are absent, and the maintenance of body temperature is 

solely achieved by vasomotor responses, is defined as the thermoneutral zone (TNZ, 

Fig 1) (Mekjavic and Eiken 2006). In humans, the TNZ has been observed to range 

from 33 to 35°C (Savage and Brengelmann 1996). In Figure 1, the dashed lines 

indicate how non-thermal factors may affect the vasomotor responses 

(Romanovsky et al. 2002) and, by doing so, also the magnitude of the TNZ.  
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Figure 1 Schematic representation of the thermoneutral zone (TNZ) from Mekjavic and Eiken (2006). 

 

Once the capacity of the vasomotor response to maintain a stable core temperature 

(Tcore) is exceeded, the appropriate autonomic responses of sweating or shivering 

are activated. The Tcore at which these effectors are initiated is defined as the 

thermoeffector threshold Tcore (Fig 2). The concept of a range (zone) of Tcore, which, 

similar to TNZ, induces neither heat production nor heat loss change can be 

observed (Mekjavic and Eiken 2006). Specifically, this Tcore zone is bounded by the 

thermoeffector threshold temperatures for sweating and shivering, and is defined 

as interthreshold zone (Fig 2). Sweating thermoregulatory responses occur when 

body heat loss increase is required. In details, the sweat glands are stimulated to 

initiate and/or increase sweat production and thus heat loss through evaporation. 

Evaporation of sweat requires energy (heat) which is taken from the skin, causing 

cooling of the skin as well as of the blood close to it. The cooled blood will then flow 

back to the core to lower body Tcore. Evaporation of sweat is the most dominant 

avenue of heat loss during exercise (Kerslake 1972). Sweat rates of up to 1 lhr-1 have 

been reported when exercising in the heat (Brake and Bates 2003). Shivering is a 

mechanism initiated when Tcore is reduced, i.e. in cold conditions. Shivering 

increases metabolic heat production via voluntary or involuntary small and rapid 

muscle contractions. Together with shivering, piloerection is another mechanism to 

reduce body heat loss. This mechanism involves tiny muscle contractions which 
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cause the hair on the body surface to stand at the end. Through piloerection, heat 

loss is reduces as this process maintains a layer of still air between the body and the 

environment, alongside increasing metabolic rate (Parsons 2014).  

 

Figure 2 Schematic representation of the interthreshold zone, or thermoeffector threshold zone from Mekjavic 
and Eiken (2006). 

 

According to the above-described model of body thermoregulation, sweating and 

shivering do not need to be initiated as soon as changes Tcore are sensed. This 

instead would be the case of a set-point regulation model. In the set-point model of 

temperature regulation, deep body temperature (Tcore) is compared with a 

reference temperature (37 ºC), resulting in a temperature error signal, which then 

evokes appropriate thermoeffector responses. Reductions or elevations in deep 

body temperature are detected by the thermoreceptors, located at the periphery 

(skin) and central locations (brain, spinal cord and viscera) in the human body 

(Nakamura, 2011; Schepers & Ringkamp, 2010). The central controller of 

temperature regulation, located in the pre-optic area of the hypothalamus (anterior 

portion of the hypothalamus) (Romanovsky 2007), attempts to minimize the error 

signal, thereby ensuring regulation of deep body temperature at a set-point. A 

control system model may be a simple and convenient analogy to explain how deep 

body temperature is regulated in mammals (Hammel and Pierce 1968). However, it 

is questionable whether such kind of regulation of physiological systems exists in 

reality.  
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In the model developed by Havenith (2001a), it can be observed that, beside 

environmental parameters (heat transfer properties) and heat production levels 

(activity), the relation between thermoregulatory effectors and resulting body 

temperature is also affected by individual parameters of body mass (m), body fat 

layer thickness, body surface area (AD), VO2max and acclimation state (Fig 3). In this 

model, core, skin, and mean body temperatures are used as input for several set-

point defined feedback loops controlling effector responses (skin 

vasoconstriction/dilation, sweat production, shivering). The effector responses 

together with metabolic heat production (basal + work) result in a certain heat loss 

or gain, which then affects the ‘passive’ system (the body), resulting in a new body 

temperature (i.e. the feedback). 

 

Figure 3 Schematic representation of the physiological control system. The model includes, the inputs [climate, 
clothing, activity, mass, fat content, acclimation (Acclim), maximal O2 consumption (V˙ O2max), and body 
surface area (AD)] and the heat exchanges between body core and environment from Havenith (2001a). 

 

The autonomic thermal mechanisms are of vital importance; however, these 

responses are less effective in ensuring thermal balance and human survival when 

the body is exposed to extreme thermal environments. Physiological and 
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biophysical factors, in fact, can limit the functional capacity of the autonomic 

thermoregulatory system (Schlader et al., 2010). For instance, maximal sweating, 

maximal vasoconstriction, as well as vasodilation are limited by physiological (e.g. 

sweat glands density and output, number of capillaries) and biological factors (e.g. 

age) (Kenney and Munce 2003). Additionally, anthropometric parameters play a 

role in limiting the efficiency of the autonomic thermoregulatory system. In fact, 

heat losses are proportional to the surface area available for heat exchange 

(Havenith 2001b). 

To compensate the limitations of the autonomic thermoregulatory system, the 

human body responds to the changing thermal environment through behavioural 

adjustments, for instance donning or taking-off clothing, changing posture, moving 

to the shadow or to a source of heat (Flouris 2011). In this respect, behavioural 

responses represent the most powerful thermoregulatory effectors.  

1.4.2 Thermal sensitivity 

The main driving force that allows the initiation of behavioural as well as autonomic 

thermal responses is the human ability to sense the thermal properties of the 

surrounding environment (Spray 1986) and of one’s own body (Craig, 2003). This 

ability is defined as thermal sensitivity and is given by the presence of 

thermoreceptors, located peripherally (skin) and centrally (brain, spinal cord, 

muscles viscera) within the body. Once the thermoreceptors are elicited by external 

stimuli, their role is to provide the central nervous system with afferent information 

regarding the thermal properties of the environment (Schepers and Ringkamp 

2010). The integration of these thermal afferent feedback will then results in the 

initiation of autonomic thermal response (Kondo et al. 1997; Morris et al. 2014) as 

well as behavioural ones (Schlader et al. 2013) in an attempt to maintain thermal 

balance and comfort (Cabanac et al., 1972; Schlader et al., 2010).  

1.4.3 The skin 

The skin is one of the means through which the human body can obtain information 

regarding the surrounding thermal environment. When considering the clothed 
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human body, the interaction between the skin and the environment is mediated by 

clothing parameters.  

1.4.3.1 Anatomy of the skin 

The skin is the largest organ of the human body. In an adult, the skin covers a 

surface area of 1.6-2 m2 and has a weight of approximately 5 Kg (Myles and Binseel 

2007; Derler and Gerhardt 2011). It is a membrane composed of a superficial 

epithelium defined epidermis and the underlying connective tissues of the dermis 

(Fig 4). Beneath the dermis, the loose connective tissue of the hypodermis (or 

subcutaneous layer) attaches the skin to the deeper structures such as muscles and 

bones (Martini et al. 2013).  

The epidermis consists of stratified squamous epithelium divided into different 

layers. In order from the basement membrane toward the free surface, these layers 

include stratum germinativum, an intermediate stratum (stratum spinosum, 

stratum granulosum and stratum lucidum) and finally the stratum corneum (Martini 

et al. 2013). The stratum germinutivum is the deepest epidermal layer and is 

attached to the basement membrane that separates the epidermis from the dermis. 

The stratum germinativum is dominated by stem cells; in this layer new cells are 

generated and begin to grow. The cells from the basal layer are displaced in the 

intermediate stratum, from spinosum to granulosum and finally to lucidum, and 

during the transfer across layers the cells become specialised to form the outer 

protective layer of the skin. The most superficial layer is represented by the stratum 

corneum, consisting of 15-30 layers of death epithelial cells.  

The dermis (Fig 5) lies beneath the epidermis and consists of the papillary layer, 

characterised by connective tissue which supports the epidermis, and the reticular 

layer consisting of elastic and collagen fibres to provide flexibility and stability at the 

same time and prevent skin injuries (Martini et al. 2013). Epidermal accessory 

organs, such as hair follicles and sweat glands, expand into the dermis (Fig 5). The 

dermis also contains other components such as lymph vessels, blood vessels and 

nerve fibres (Fig 5).  
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Figure 4 The structure of the skin, including epidermis and dermis. Specifically, the section of the epidermis in 
thick skin shows all five epidermal layers. From Martini et al. 2013. 

  

 

Figure 5 Diagrammatic section of the skin, showing the structure of the dermis and the accessory skin structures. 
From Martini et al. 2013. 

 

1.4.4 The skin as sensory organ 

The skin is involved in the reception of sensory information which is then relied 

upon the central nervous system. This sensory function is essential for temperature 

sensation and also regulation. In the skin, in fact, are located receptors for the 

general senses. These sensors are classified according to the nature of the stimulus 
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that excites them. Important receptor groups include thermoreceptors (sensitive to 

temperature), mechanoreceptors (sensitive to physical distortion, stretching or 

twisting resulting from touch, pressure and body position), nociceptors (sensitive to 

pain) and chemoreceptors (sensitive to chemical stimuli).  

1.4.4.1 Thermoreceptors 

Temperature receptors are free nerve endings located on myelinated and 

unmyelinated fibres. Warm and cold receptors differ in number and firing rate. Cold 

receptors are three or four times as numerous as warm receptors. The firing rate 

depends upon the type of myelination of the fibre they are connected to. Cold 

fibres are mainly represented by A delta (Aδ) fibres which have thinly myelinated 

axons that conduct signals between 5-30 ms-1 (Campero et al., 2001). The C 

unmyelinated fibres represent the warmth fibres (McGlone et al., 2014) that 

transport warm signals at a much slower speed, between 0.5 and 0.7 ms-1 (Hensel 

1981). Cold fibres are activated between 15-38 °C and reach the peak between 23-

28 °C. Warm fibres are activated at around 33 °C and reach their peak at 

approximately 42 °C (Bullok et al. 2001). These receptors increase or decrease their 

firing rate based on the direction and magnitude of the change in temperature and 

this ultimately influences the individual thermal sensation (Bullock et al., 2001). 

Therefore, thermal sensation is mediated by Aδ and C afferent fibres which, once 

have transduced and encoded the thermal stimuli, transmit this thermal 

information to the central nervous system (Schepers and Ringkamp 2010).  

The location, density and distribution of thermoreceptors play an important role in 

determining thermal sensation. Cold and warmth thermoreceptors distribution 

varies across the body; this in part explains body regional differences in thermal 

sensitivity. 

The involvement of recently discovered transient receptor potential (TRP) ion 

channels, known as thermoTRP channels, in peripheral thermo-sensitivity and 

therefore thermoregulation, has been studied intensively. The mammalian TRP 

superfamily consists of 30 channels divided into six subfamilies known as the TRPC 

(canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP 
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(polycystin), and TRPA (ankyrin) (Romanovsky 2007). Of these, the heat-activated 

TRPV1-V4, M2, M4, and M5 and the cold-activated TRPM8 and A1 are often 

referred to as the thermoTRP channels. ThermoTRP channels are activated within a 

relatively narrow temperature range, however, the range that they cover 

cumulatively is very wide: from noxious cold to noxious heat (Fig 6) (Romanovsky 

2007). Furthermore, they cover this temperature range in an overlapping fashion, 

and their activities have different sensitivities to temperature. Figure 6 shows the 

dependence of the activity of cold-activated (blue) and heat-activated (red) 

thermoTRP channels on temperature. The thresholds of activation and 

temperatures of maximal activation are based on the activity of the channels in 

heterologous systems.  

 

Figure 6 Schematic representation of the relation between activity of thermo-TRP channels and temperature. 
The figure is adapted from Patapoutian et al.(2003). Information on the TRPM2 is added based on Togashi et al. 
(2006); information on the TRPM4 and M5 is added based on Talavera et al. (2005); the added lines are dashed. 

 

1.4.4.2 Tactile receptors 

Tactile receptors are a specific type of mechanoreceptors which provide sensations 

of touch, pressure and vibration (McGlone and Reilly 2010). These include 

corpuscular and non-corpuscular (free nerve endings) nerve endings. The free nerve 

endings are situated between epidermal cells and their structure is not different 

from that of the free nerve endings providing temperature sensations (Martini et al. 

2013). The root hair plexus is made up of free nerve endings, stimulated by hair 

displacement and also respond to distortion and movement across the body surface. 
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The Merkel’s disks are fine touch and pressure receptors, mainly located in the 

deepest epidermal layer of the hairless skin. The Meissner corpuscles are sensitive 

to fine touch and pressure as well as low-frequency vibrations. They are abundant 

in eyelids, lips, fingertips, nipples and external genitalia. Pacinian corpuscles are 

large receptors sensitive to deep pressure, pulsing and high-frequency vibrations. 

Ruffini corpuscles are sensitive to pressure and distortion of the skin and are 

located in the deepest layer of the dermis.  

1.4.5 Sensation and perception 

The sensory receptors monitor the conditions in the body and in the thermal 

environment. In the sensation process the physical stimulus, together with its 

physical properties are registered through the sensory organ. The sensation then 

arrives to the central nervous system (CNS) in the form of action potential through 

an afferent fibre (sensory, ascending). Most of the processing of this sensory 

information occurs in the sensory pathways in the spinal cord or in the brain. For 

instance, the posterior column pathway sends fine touch, pressure and vibration 

sensations to the cerebral cortex. The sensory cortex presents a miniature map of 

the body surface. This map results distorted in that, the area of the sensory cortex 

dedicated to a particular region is proportional no to its size, but to the number of 

sensory receptors that region contains (Martini et al. 2013). However, in the CNS, 

the sensation is organised, translated and integrated into the process of perception. 

These two main processes are arranged into a circular sequence of events 

(Goldstein 2002), summaries in a diagram in Figure 7. 

In this diagram (Fig 7), the first step is represented by the environmental stimulus, 

which could be anything is in the surrounding environment. The environmental 

stimulus is then detected by the receptor. Following from this, in the nervous 

system, the transduction of the stimulus occurs. In this process, the energy of the 

stimulus is transformed into electrical energy (action potential). The electrical 

energy will activate a series of neurons in the nervous system, in an event defined 

as neural processing (Goldstein 2002). The neural processing occurs through the 

interconnection between various pathways and it is extremely important because it 
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allows the flow of the signals which will then create the perception process. The 

perception is generated when the electrical signals, provided by the stimulus, are 

transformed in the CNS into a conscious sensory experience (Goldstein 2002). For 

instance, one can see a cat but it is not sure whether the cat has been perceived. If 

the cat has been perceived then other actions are required, such as recognition of 

the stimulus (e.g. this is a cat and not a butterfly) and an action can be taken based 

on the perception (e.g. the person can walk closer to the cat to stroke it). 

Recognition (when the stimulus is placed into a category) and action (motor activity) 

represent important outcomes of the perceptual process. An important step in the 

perceptual process placed above the ‘neural processing’ is knowledge. The 

knowledge is any information that the person, perceiving something, brings to the 

situation, such as things previously learned, perceived or happened. This suggests 

that perception can be influenced by past sensory experiences. 

 

Figure 7 Schematic representation of the perception process, from Goldstein (2002). 

 

1.4.6 Sweating 

The evaporation of sweat from the skin surface is considered to be the determining 

pathway for body heat loss when environmental temperatures rise, during exercise 

(Kerslake 1972) or when heat loss is restricted, for instance by clothing (Havenith 

2003). Evaporation of sweat occurs when sufficient heat from the skin causes sweat 

to change from liquid to gas phase. This process requires 2430 joules per gram (J·g-1) 

of water at 30 ºC (Gibson and Charmchi 1997). In addition to visible sweat, 

approximately 20-25 mL of water evaporates through the skin surface and the 
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alveolar surfaces of the lungs as ‘insensible perspiration’ (Kuno 1956). The 

insensible perspiration accounts for nearly one-fifth of the average daily body heat 

loss and its rate remains constant throughout the day (Kuno 1956). 

1.4.6.1 Sweat glands 

It has been estimated that there are approximately 2-5 million sweat glands over 

the body (Kuno 1956; Szabo 1962). These include three types of sweat glands: 

apocrine, eccrine and apoeccrine. Apocrine sweat glands are always associated with 

air follicles. These glands are related to psychological stimuli, produce a smaller 

amount of sweat than the eccrine glands and the produced sweat is viscous and 

responsible for the odour (Sato et al. 1989). Apocrine sweat glands are mainly 

located in restricted body regions of forehead, axilla, palmar, plantar and pubic 

regions.  Eccrine sweat glands are related to the thermoregulatory function and are 

distributed over the general skin surface (Kuno 1956; Sato et al. 1989). The greatest 

number of eccrine glands can be found on the forehead, followed by the trunk and 

the smallest number is present in the body extremities (Kuno 1956). Apoeccrine 

glands are a hybrid between apocrine and eccrine glands. This kind of gland only 

develops during puberty and is located only in the adult axilla. Apoeccrine glands 

produce about ten times more sweat than the eccrine ones. 

Values for regional sweat glands density (glands·cm-2) have been gained from 

cadaver studies (Szabo 1962). Specifically, the greatest densities were observed on 

the soles, forehead and cheeks (320 ± 60) and the lowest values were on the back, 

buttocks, lower legs, upper arms and thighs. 

1.4.6.2 Gross sweat loss and regional sweat rate 

Extensive work has been conducted by Smith and colleagues to quantify the total 

amount of sweat produced (gross sweat loss) during continuous running at a low 

and high intensity in male and female athletes and untrained males (Smith and 

Havenith 2011; Smith and Havenith 2012). Additionally, this research has provided 

quantitative data on body regional sweat rate, measured for the first time 

simultaneously in large body areas (Havenith et al. 2008; Smith and Havenith 2011; 

Smith and Havenith 2012).  
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Higher gross sweat loss (GSL) was identified in male compared to female athletes 

and also untrained males. These differences were mainly due to the selection of the 

same relative workload (percentage of VO2max) across the three groups. In this 

condition, due to their higher aerobic fitness level, male athletes worked at higher 

absolute workload compared to the other two groups. Neverthelss no significant 

differences in GSL where observed between male and female athletes at lower 

work intensity (55% of VO2max). In line with this, when normalising work rate for 

body surface area (W·m-2) no differences in work rate were observed between male 

and females athletes, indicating that at low exercise intensity the males were 

working harder because of their larger size. At higher exercise intensity (75% of 

VO2max) female athletes showed greater sweat rise per unit increase in work rate 

(sweat sensitivity), indicating a decrease in sweating efficiency in females compared 

to males, as work intensity increases. Male athletes also presented higher body 

regional sweat rate data compared to female athletes and untrained males, for the 

same relative workload.  

In these studies, despite large variations, consistent patters of body regional sweat 

rate were observed between participants and across the three groups (Smith and 

Havenith 2011; Smith and Havenith 2012). Specifically, the highest sweat rates (g·m-

2·h-1) were observed in the body regions of the lower posterior torso and forehead 

(Fig 8). On the other hand, the lowest sweat rates were observed on the fingers, 

thumbs and palms (Fig 8). A medial to later decrease in sweat rate was evident on 

the torso and a proximal to distal increase in sweat rate was observed on the arms. 

On the head regions, a medial to latera increase in sweat rate was present, however, 

these differences were not significant, possibly due to the small sample size and to 

the large inter-individual variation in sweat rates. Finally, in most body regions 

sweat rate increased with the increase in exercise intensity, with exception of the 

feet.  

These data made available fundamental knowledge on sweat rate patterns across 

the human body that, in part, might support the process of clothing development. 

However, crucial information regarding the amount of secreted body sweat that is 

absorbed and retained by the worn garments and on how this distributes across 
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different garment regions is still unknown. Additionally, a close cooperation is 

needed between different experties, i.e. human physiology, textile engineers and 

clothing designers in order to determine how the human sweat maps can be 

translated into garments with efficient moisture absorption and transport features. 

 

Figure 8 Regional median sweat rates of male and female athletes from Smith and Havenith (2011, 2012). 

 

1.4.7 Skin wettedness and sweating efficiency 

Evaporation of sweat from the skin surface represents a crucial thermoregulatory 

function as it provides the cooling necessary to match body metabolic heat 

production with heat loss (Gagge and Gonzalez 2011). Sweat evaporation involves 

two phases: total evaporation and partial evaporation phase (Tam et al. 1976). In 
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conditions of low metabolic heat production, e.g. during the initial stages of the 

physical exercise activity, sweat production is low and complete evaporation occurs, 

this maintaining the skin relatively dry. With the increase of metabolic heat 

production, sweat evaporation rate cannot keep up with sweat production rate and 

only partial evaporation will occur. In this phase, the evaporation rate is mainly 

determined by the maximum evaporative capacity (Emax). According to the heat 

balance equation, to maintain thermal balance the required evaporation rate (Ereq) 

should be sufficient to keep body heat storage (S) near to zero, according to 

(Shapiro et al. 1982): 

𝐸𝑟𝑒𝑞 = 𝑀 ± 𝑊 ± 𝑅𝐸𝑆 ± 𝐷𝑅𝑌 − 𝑆  

Where 

M metabolic heat production 

W mechanical work 

RES respiratory heat exchange 

DRY sensible heat loss by radiation and convection 

S heat storage caused by the rising core temperature 

It is important to note that this thermal equilibrium depends on the efficiency of the 

secreted sweat to cool down the skin (Gonzalez et al. 2009). As such, when looking 

at sweat evaporation it is important to consider sweating efficiency (the ratio of 

evaporated sweat to total sweat production) as well as skin wettedness (ω). Skin 

wettedness, as a physiological variable associated with sensible and insensible 

perspiration, was firstly introduced by Gagge (1937). It represents a dimensionless 

ration between the surface area of the skin covered by sweat that evaporates (Ae) 

and the total skin surface area of a person (Ad). It is expressed as a decimal fraction, 

ranging from 0.06, which is the minimal skin wetness value consequent to 

insensible perspiration, to 1, which represents a fully wet skin (Nishi and Gagge 

1977). This ratio is derived from the calculation of the rate of evaporation from the 

skin, according to (Candas 1987): 
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𝐸𝑠𝑘 = ℎ𝑒 ∙
𝐴𝑒

𝐴𝐷
∙ (𝑃𝑠𝑘 − 𝑃𝑎) 

Where; 

Esk evaporative heat loss from the skin 

he evaporative heat transfer coefficient (W·m-2· kPa-1)  

Psk saturated water vapour pressure at mean skin temperature (kPa) 

Pa partial pressure of water vapour in air (kPa) 

If Tsk remains constant, two factors will affect Esk such as air velocity, which will 

cause modification of the heat transfer coefficient (he) and ambient water vapour 

pressure (Pa), which will affect the water vapour gradient between the skin surface 

and the surrounding air (Candas et al. 1979). In a hot and dry environment, the 

evaporative heat capacity (Emax) will far exceed the required evaporative cooling 

(Ereq), thus, the percentage of wetted skin will be low (Gagge 1937). Nevertheless, 

the required evaporative rate (Ereq) may not be attainable in a hot and humid 

environment, where, due to an increase in partial water vapour pressure in the 

environment, the maximum rate of evaporation (Emax) is low. In these conditions, 

the control of body temperature becomes difficult, leading to an increase in the skin 

wettednes. When sweat production surpasses Emax, the entire skin surface will be 

covered by sweat, equating to a skin wittedness of 100% (ω = 1) When the skin 

surface becomes fully wetted, the further increase in partial water vapour pressure 

on the skin can cause the evaporative cooling to further drop below the required 

evaporative cooling, resulting in body heat storage. Skin wettedness can be 

calculated as the ratio between the actual (Esk) and maximal (Emax) rates of 

evaporation according to (Candas 1987): 

𝜔 =
𝐸𝑠𝑘

𝐸𝑚𝑎𝑥
 

The concept of sweating efficiency can be discussed when considering skin 

wettedness in a hot humid environment. When evaporative heat loss from the skin 

is restricted, due to a diminished gradient in water vapour pressure between the 
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skin and the environment (Psk – Pa) or when wearing protective clothing, higher 

sweat rate is required to achieve a high level of skin wettedness. When the skin 

surface becomes saturated with sweat, part of this sweat will be absorbed by the 

garment (if the clothed human body is considered), part will be ‘wasted’ through 

drippage (Gagge 1937; Winslow 1939; Candas et al. 1979; Candas 1987). The sweat 

that drips across the skin does not contribute to body cooling (Kerslake 1972; 

Candas et al. 1979). Specifically, it was found that when full skin wettedness is 

achieved, at least 40% of the secreted sweat drips off the skin without evaporating 

(Kerslake 1972). Therefore, in this scenario, an elevation in sweat rate will not 

produce an equivalent increase in evaporative cooling. As such, Emax is 

predominantly determined by the environment rather than the quantity of sweat 

produced and sweat rates equating to an Ereq in excess of Emax will lead to an 

inefficient wasteful loss of fluid. This inefficiency in sweat production is commonly 

recognised as a failure of the thermoregulatory system.  

1.4.8 Evaporative cooling in relation to clothing 

The traditional method to determine the rate of evaporative heat loss in human is 

to define the mass change of the clothed body per unit of time, corrected for the 

rates of respiratory moisture loss and metabolic mass loss (Havenith et al. 2007b). 

This mass change rate is then multiplied by the latent heat of evaporation (~ 2430 

J·g-1) to calculate the rate of energy lost by evaporation. In clothed conditions, the 

produced body sweat has to travel across the clothing barrier through various 

transport processes. Vapour sweat may be absorbed by the textile fibres and then 

desorbed; it may condensate on the outer clothing side, if it is colder than the skin, 

and then may evaporate again. In the clothing microclimate, vapour sweat may also 

be ventilated directly through clothing openings or, depending on the air 

permeability of the fabric, it may diffuse through the clothing layer to the 

environment (Farnworth 1986; Lotens and Havenith 1995; Fukazawa et al. 2003; 

Fan 2005; Fan and Cheng 2005). As such, evaporative heat loss is traditionally 

calculated from the mass change of the human-clothing system, due to the 

assumption that only the moisture vapour that leaves the clothing ensemble 

contributes to body cooling. However, it was demonstrated that when body 
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evaporative heat loss is calculated from the weight change of the clothed person 

(clothing with low air permeability) substantial errors cay be made (Havenith et al. 

2007b). In particular, it has been observed that the errors can lead to 

overestimations (+ 22 W) or underestimation (- 58 W) of evaporative heat loss in 

the heat and in the cold, respectively. With regards to the mechanisms behind 

these errors, it was shown that when wearing clothing, the latent heat of 

evaporation of moisture from the skin is not completely taken from the body, the 

latter leading to an evaporative efficiency that is < 1. Additionally, when ambient 

temperature is lower than skin temperature, this effect will be compensated by the 

so-called ‘heat pipe effect’ (Havenith et al. 2007b). Through this effect, latent heat 

is transferred from the skin to clothing without losing moisture (weight) from the 

clothing. As results of this effect, the apparent evaporative cooling efficiency is 

pushed towards unity first, and at cooler temperatures and for clothes with low 

permeability, it is pushed even above unity. Knowing these effects it is crucial when 

estimating heat loss from a clothed person, in order to prevent errors that may put 

at risks people performing physical exercise. 

In the previous paragraph we indicated that when the skin surface becomes 

saturated with sweat, part of this sweat will be ‘wasted’ through drippage but, if the 

person is clothed, another part will migrate from the skin into the garment. The 

sweat absorbed by the clothing can still contribute to the evaporative cooling of the 

body. However, when the sweat is in the garment the heat necessary for 

evaporation is taken from the body but another part may be taken from the 

environment. This may cause a drop in the evaporative cooling efficiency, i.e. less 

cooling is provided to the body per gram of evaporated sweat (i.e. the effective 

latent heat of evaporation is reduced, Fig 9). This phenomenon was firstly described 

by Burton and Edholm (1955) who pointed out that when moisture evaporates from 

the skin, it condenses in the clothing and then re-evaporates from the clothing. In 

this scenario, the evaporative heat drawn from the body will vary according to the 

distance from the skin to the point of condensation. In line with this, Havenith et al. 

(2013) demonstrated that the cooling efficiency of evaporation is affected by the 

location of moisture evaporation in terms of its distance from the skin. Specifically, 
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in this study using a thermal manikin, which allowed direct measurement of 

evaporative heat loss as well as direct measurement of the mass loss rate due to 

evaporation, the heat loss from the body, per gram of moisture evaporated (the 

effective latent heat of evaporation), was calculated. For evaporation from the skin, 

this value is close to the theoretical value (2430 J·g-1), however, it starts to drop 

when more clothes are worn, e.g. by 11% when underwear and an impermeable 

coverall is worn (Fig 9). When evaporation occurs from the base-layer, the 

reduction is of 28%, wearing an impermeable outwear. When evaporation takes 

place in the outermost layer only, the reduction is > 62% (no under clothing) and 

increases towards 80% when wearing more layers underneath (Fig 9).  

 

Figure 9 Evaporative cooling efficiency (ηapp) and effective latent heat of cooling (λeff) measured in undressed 
state of for permeable clothing, for different evaporation loci (Havenith et al. 2013).   

 

Similarly, recently it has been indicated that when tight fitting clothes with high 

wicking properties, (fast sweat transfer from the skin to the garment) are used, the 

evaporative cooling may also be reduced (Wang et al. 2014). Using a torso manikin, 

the study of Wang et al (2014) quantified the real evaporative cooling efficiency in 

different absorption scenarios of a one-layer tight-fitting garment. The experiment 

comprised three conditions to mimic different absorption phases. In one condition 

all the moisture was added to the skin of the torso manikin, in another condition, 50% 



  CHAPTER 1 – Critical review of the literature 

 

27 

of the moisture was on the skin and 50% in the garment and finally in the third 

condition all the moisture was added to the clothing. In line with previous findings 

(Havenith et al. 2013), it was indicated that the real evaporative cooling efficiency 

linearly decreases with the increasing amount of total produced sweat evaporated 

away from the skin. Additionally, it was shown that for the same absorption phase, 

fabric thickness plays an important role in maintaining cooling efficiency. 

Particularly, fabric thickness between 0.5 and 0.8 mm is recommended to maintain 

adequate evaporative cooling efficiency (Wang et al. 2014). 

Therefore, in conditions where only a small fraction of produced sweat can 

evaporate (i.e. high humidity in the environment or the use of personal protective 

clothing) it would be best if evaporation could occur directly from the skin. 

Nevertheless, when both the skin and clothing are wet and a large amount of 

ventilation takes place, having the extra evaporation from the fabric, besides that 

from the skin, may be beneficial. Finally, fabrics with an optimum thickness, able to 

accommodate a sufficient amount sweat to prevent sweat drippage (considered as 

waste) but still able to maintain high sweating efficiency (no too thick), should be 

selected. 

1.4.9 Skin wetness perception 

Skin wettdness as thermophysiological parameters has great importance in terms of  

sweating efficiency and human thermal balance. Beside this, Gagge also 

acknowledged the role of skin wettdness in the context of thermal comfort (1937). 

The level of skin wettdness, in fact, was demonstrated to be positively correlated 

with thermal discomfort. It has been identified that a state of thermal comfort can 

be achieved when skin wettdness remains below 0.3, this recognised as the thermal 

comfort limit (Gagge 1937). This important link between physical skin wettdness 

and thermal comfort exists thanks to the human ability to perceive skin wetness, 

this despite the lack of cutaneous moisture receptors (Clark and Edholm 1985). The 

lack of hygro-receptor in the human skin has led a number of researchers to 

investigate the cutaneous sensory mechanisms underpinning skin wetness 

perception. This extensive research has also been accentuated by the high impact 
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that skin wetness perception plays on the onset of discomfort when wearing 

clothing (Hollies et al., 1979; Plante et al., 1995a). 

Bentley (1900) was one of the first researchers that hypothesised the involvement 

of thermal sensation in the perception of wetness. In his ‘synthetic’ experiment, he 

asked a group of participants to dip their index finger, covered by a sheath, into 

water at warm and cold temperatures. Results indicated that, although no direct 

contact with the water occurred, participants reported a perception of wetness, 

which was greater in the cold water condition. This suggested for the first time the 

‘synthetic’ nature of wetness perception, evoked by thermal stimulations. 

Sensations of wetness on the skin can occur through two types of thermal 

stimulations, one associated to the thermal conductivity of the water and the 

second one elicited by the cooling provided by the evaporation of the water. The 

thermal conductivity of the water is higher than that of the air. Thus, when the skin 

is wet heat is conducted away from the skin faster, compared to when it is dry. Thus, 

water causes a cooling sensation despite having the same temperature as the skin 

or the air (Bergmann Tiest et al. 2012b). In 1944 Hock et al. observed that wet 

fabrics produced a chilling effect and that this effect was higher in fabric with good 

contact with the skin. Subsequently, in 2005 Li indicated that the perception of a 

wet fabric is related to the transient heat and moisture transfer between the fabric 

and the skin. This was also supported by Kaplan and Okur (2009) who observed that 

wet clothes in contact with the skin causes cooling sensations and changes in skin 

temperature. The effect of heat extraction from the skin, as modulator of wetness 

perceptions, was also observed by Bergmann Tiest et al. (2012). In this study, they 

used fabric materials with high thermal conductivity, able to extract higher amount 

of heat from the skin. These materials, apart from being perceived cooler, were also 

perceived as wetter, compared to standard fabrics (lower thermal conductivity), 

despite presenting same water content. Later on, to show the contribution of 

cooling sensation to the perception of skin wetness, Filingeri et al. (2013) 

demonstrated that the application of cold-dry stimuli (using a thermal probe), 

which provided a cooling rate of 1.4 to 4.1°C, could evoke a clear perception of 

wetness, even in absence of water.  
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Evaporation of sweat also extracts heat from the skin, cooling it down and resulting 

in wetness sensations (Bergmann Tiest et al. 2012). The difference between the 

effect of thermal conductivity and evaporation consists in the fact that evaporative 

cooling is sensed from a thin layer of moisture on the skin, whereas an increase in 

conductive cooling (thermal conductivity) is associated with a larger volume of 

liquid. Ackerley et al. (2012) observed that when applying different amounts of 

water to fabrics, the amount of residual moisture left on the skin was different. The 

water evaporated at slightly different rates and wetness perception changed 

accordingly to the amount of water left on the skin, this confirming the link 

between moisture evaporation, cooling sensation and wetness perception. 

Nevertheless, in the context of cutaneous wetness perception, the role of 

evaporative cooling, induced by sweating in exercise has not received as much 

attention as conductive cooling (application of a cold/wet stimulus on the skin).  

Tactile cues are also involved in the perception of wetness. Specifically, the 

mechanical pressure of the liquid on the skin can contribute to the perception of 

wetness. This can take place when the body is immersed in a liquid or when water 

drops on the skin. Additionally, when manipulating a wet fabric or when wearing 

wet clothing, other tactile-related sensations, i.e. stickiness sensations, can arise 

from the mechanical interactions between the wet material and the skin (Bergmann 

Tiest et al. 2012). In fact, in wet state fabrics tend to cling to the skin, increasing the 

attractive force at the fabric-skin interface, this resulting in sensations of stickiness 

which contribute to the perception of wetness (Connor et al., 1990). Furthermore, 

the presence of water in a textile material in contact with the skin increases skin 

friction (Zimmerer et al., 1986). Gwosdow et al. (1986) observed that the presence 

of moisture increases the friction force required to pull a fabric across the skin, this 

being positively correlated with the level of subjective moisture discomfort 

experienced. In support, Kenins (1994) found that water on the skin has an effect on 

friction which is larger than the effect of fabric’s surface properties (e.g. hairiness 

and smoothness), fabric weight and yarn diameter.  
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1.4.9.1 Model of skin wetness perception 

Based on the scientific evidence provided in the last decade and in line with more 

recent studies (Filingeri et al. 2013; Filingeri et al. 2014b; Filingeri et al. 2014a; 

Filingeri et al. 2015; Filingeri and Havenith 2015) the mechanisms underpinning skin 

wetness perception in humans have been summarised in a model (Filingeri and 

Havenith 2015). This model (Fig 10) comprises biophysical (thermal and tactile 

inputs induced by the presence of moisture on the skin), neurophysiological (central 

integration of afferents inputs thermoreceptors and mechanoreceptors) and 

psychophysiological mechanisms (i.e. perceptual inference operated by cortical and 

sub-cortical somatosensory and association areas) which allow humidity and 

wetness detection in humans. In this model, the skin contact with moisture (1) 

generates thermal and tactile inputs which are peripherally detected by specific 

nervous structures sensitive to thermal and mechanical stimuli, such as 

thermoreceptors (2) and mechanoreceptors (3), respectively. The wet inputs evoke 

cutaneous thermal (4) and tactile sensations (5) which are then integrated in the 

central nervous system (6). Repeated exposures to these stimuli (past sensory 

experience) (7) contribute to generating a neural representation of a typical wet 

stimulus via learning mechanisms. At this point, only if the learnt combination of 

stimuli (i.e. coldness and stickiness and/or pressure sensation) occurs, wetness will 

be perceived (8).  

 

Figure 10 Schematic representation of the model of skin wetness perception in humans. 
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1.4.9.2 Threshold studies 

In 1990 Sweeney & Branson attempted to answer two basic questions related to 

the perception of skin wetness. The first question was ‘at what level of intensity is a 

wet stimulus perceived by a human?’ Following from this, the second one was ‘how 

much this intensity needs to change before an individual can detect a difference in 

the perception of the wet stimulus?’ (Sweeney and Branson 1990a). Using a 

cotton/polyester blend textile of 25 cm2, applied on the upper back, it was found 

that 0.024 mL·25cm-2 (0.00096 mL·cm-2) was the minimum amount of water 

necessary to evoke a sensation of wetness. With regards to the second question, 

0.034 mL·25cm-2 (0.0013 mL·cm-2) was the minimum amount of stimulus change 

required to produce a difference in the perception of wetness.  

In a following experiment, Sweeney & Branson (1990b) studied the relationship 

between wet stimuli and wetness sensations. By using a psychophysics scale, 

thirteen participants scored a range of different water amounts added to a 25 cm2 

of cotton/polyester blend fabric, applied on their upper back. It was found that 

wetness sensation increased as the amount of moisture in the fabric was also 

increased, showing for the first time the link between the amount of physical 

wetness and the perception of wetness. Nevertheless, textile factors, such as fibre 

content, surface texture, surface area, thickness, structure, as well as clothing 

factors, for instance, design and fit, could modulate and have an impact on wetness 

perception. Therefore, future studies should include the contribution that clothing 

and textile factors have on the perception of skin wetness. 

1.5  Clothing 

Clothing ensures modesty, reflects the status of the wearer, represents people’s 

culture, and is used as trends in fashion. More importantly for people’s health and 

survival, clothing provides the human body with protection from environmental 

factors. Clothing manufactures are constantly engaged in a development process 

which is able to meet the sports/ work activity demand as well as the requirements 

for thermoregulation during physical exercise. This requires a clothing development 
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and evaluation process typically articulated in a series of steps involving textile and 

clothing testing, including instrumental and often human assessments.  

The next paragraphs provide a critical and comprehensive examination of thermal 

and moisture properties of clothing. The origination and application of the research 

methodology as well as the test methods developed to assess textiles and clothing 

properties is reported and discussed.   

1.5.1 Clothing comfort 

An important approach used to evaluate clothing performance and individual’s 

satisfaction is to consider the comfort aspect (Hatch, 1993). A widely accepted 

definition of comfort refers to ‘a neutral state in which an individual experience no 

pain or discomfort’ (Hatch 1993). Within the comfort concept, Slater (1985) 

identified three sub-categories and reported that comfort involves the balance of 

physiological, psychological and physical aspects of the person and the environment. 

The three main sub-categories of comfort are: psychological, sensorial/tactile and 

physiological (Slater, 1985).  

Psychological comfort relates to the comfort state of the individual in relation to its 

role, value and social being (Kamalha et al., 2013). Environmental factors, such as 

occasion, geographic location, climatic condition, socio-cultural setting, norms and 

historical importance, are part of the psychological comfort aspect.  

Sensorial/tactile comfort refers to the various sensations experienced by the wearer 

when clothing is in contact with the skin (Kaplan & Okur 2009). The term ‘fabric 

hand’ or ‘haptic’ is commonly used when assessing sensorial properties of textiles, 

such as smoothness, roughness, prickliness, stickiness, scratchiness, softness and 

stiffness (Kamalha et al. 2013). When touching a textile, changes in temperature are 

also sensed and perceived such as warmth, coolness, breathability, hotness and 

chilliness (Bishop 1996). Sensations related to the presence of moisture in fabrics 

represent other ‘hand’ perceptions and these include clamminess, dampness, 

wetness, stickiness and clingy sensation. Finally, fabric hand includes pressure 

sensations, such as snugness, looseness, lightweight, heaviness, softness and 

stiffness. 
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Thermophysiological comfort and thermal comfort are both commonly used to 

describe clothing comfort with reference to human thermal and moisture 

sensations. Thermal comfort is expressed by the British Standard BS EN ISO 

7730:2005, as ‘the condition of the mind which expresses satisfaction with the 

thermal environment’.  

In summary, comfort is a complex and multifactorial concept, involving both 

thermal and non-thermal factors and can be related to a wide range of conditions, 

i.e. exercise, resting and extreme ones (Fourt and Hollies 1970). Sensations of 

discomfort can affect human productivity, physical performance as well as cognitive 

task performance (DenHartog and Koerhuis 2017) and satisfaction. As such, 

particular attention should be given to the sensorial and thermal aspects of comfort 

when developing clothing for work, sport and protection applications.  

1.5.2 Thermal comfort 

When wearing clothing a microclimate is created between the skin and the garment. 

The perception of humidity as well as temperature, which characterise this 

microclimate, affects human thermal comfort. Gagge et al. (1937) investigated the 

sensory comfort and thermal sensation of unclothed individuals when resting, 

under steady-state and transient conditions, ranging between 12 °C and 48 °C. 

These perceptual responses were then related with the corresponding physiological 

responses. It was indicated that, when exposed to warm environments, thermal 

comfort and neutral temperature sensations ranged between 28-30 °C 

(environmental temperature). Discomfort was perceived when exposure to cold 

environments caused reductions in skin temperature and exposure to the heat 

caused sweating. Interestingly, it was found that thermal discomfort was an 

important stimulus for behavioural thermoregulatory adjustments. Later on, Gagge 

et al. (1969) conducted a study investigating the relations between thermal comfort 

and physiological responses during exercise at various ambient temperatures. It was 

indicated that after 30-40 min of steady exercise, temperature sensation ranged 

from cool to hot and it was mainly affected by sensory mechanisms occurring at 

skin level, such as skin and ambient temperature. On the other hand, thermal 
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discomfort was affected by thermoregulatory mechanisms, such as skin sweating 

and skin conductance. In line with this, it was indicated that temperature sensations 

are mainly derived from the cutaneous thermoreceptors, whereas thermal 

discomfort is a general thermal state resulting from the integration of afferent 

signals from cutaneous and internal thermoreceptors (Hensel 1981). For this reason, 

the measurement of thermal sensation and thermal discomfort is normally 

distinguished.  

In 1970, Fanger developed a mathematical model to identify the neutral thermal 

comfort zone of men, using a combination of different clothing and activity levels 

(Fanger 1970). In the model, mean skin temperature and sweating were used as 

physical parameters to predict comfort. Subsequently, based on Fanger’s work, the 

American Society for Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) 

developed indices of thermal sensation to predict comfort under different 

combinations of clothing insulation, metabolic rate, air temperature and wet-bulb 

temperature (Gagge et al. 1986). In 1985 Fanger in the standard  ISO 7730:2005 

introduced a definition of thermal comfort, indicated as ‘the condition of the mind 

that expresses satisfaction with the thermal environment’. On the other hand, 

dissatisfactions, caused by warm or cold sensations, can be expressed by the PMV 

and PPD indices. The PMV index is the Predicted Mean Vote, used to estimate 

thermal sensation of the whole body, using a seven-point scale, ranging from cold 

to hot. The PPD index refers to the Predicted Percentage of Dissatisfaction.  The ISO 

standard recommends a PMV within the range of -0.5 to +0.5, implying a PPD lower 

than 10%. When the PMV is zero, the optimal operative temperature is achieved, 

this being function of activity level and clothing. The operative temperature defines 

the uniform temperature of an enclosure in which an occupant would exchange the 

same amount of heat by radiation and convection as in the actual non-uniform 

environment. In Figure 11 illustrated is the optimal operative temperature that can 

satisfy most people wearing given clothing and at a specific activity level.  



  CHAPTER 1 – Critical review of the literature 

 

35 

 

Figure 11 The optimal operative temperature (corresponding to Predicted Mean Vote (PMV) = 0) as a function 
of activity and clothing. The shaded areas inform about the comfort range + At around the optimal inside 
temperature, which corresponds to -0.5<PMV<+0.5 from Fanger (1986). 

 

Later on in 1986, Gagge proposed another PMV vote, defined as PMV*, by replacing 

the operative temperature from Fanger’s comfort equation with a Standard 

Effective Temperature (SET). SET is an index temperature describing the dry bulb 

temperature of the standard environment at 50% relative humidity that causes 

same heat exchange for the same thermal stress, skin wettdness and mean skin 

temperature. In this way, the new PMV* is able to respond to thermal stress in 

relation to heat load and heat strain by changing humidity of the thermal 

environment and water vapour permeability of clothing.  

1.5.3 Heat and moisture transfer 

In the previous sections, the mechanisms involved in the perception of thermal 

comfort have been presented. These perceptions are formulated based on physical 

stimuli triggering cutaneous and internal thermoreceptors. These stimuli are 

generated by external factors, especially by clothing, mostly in contact with the 

body. Clothing stimulations include heat transfer (convection and radiation), 
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moisture transfer (diffusion, absorption, wicking and evaporation) and mechanical 

interactions (pressure and friction). 

The coupled process of heat and moisture transfer in fabrics is important to 

understand thermal comfort and balance while wearing clothing. In the process 

illustrated in Figure 12, the fabric is an element packed with fibres, characterised by 

area, thickness and porosity. The fabric is exposed to a temperature and moisture 

gradient, therefore water vapour diffuses through the interspace of the fabric and is 

absorbed and desorbed by the fibres. 

 

Figure 12 Coupled heat and moisture transfer in fabric. 

 

Based on ‘how easily’ moisture is absorbed, fibres are classified into two groups: 

hydrophilic fibres, which can absorb water or moisture in an ‘easy’ way, and 

hydrophobic fibres, which absorb moisture ‘less easily’. Additionally, under the 

same humidity condition, the amount of moisture absorbed by different fibres from 

the atmosphere depends on their regain. Moisture regain is the ability of a dry fibre 

to absorb moisture from the atmosphere under a set condition of humidity and can 

be determined as follow: 

𝑅𝑒𝑔𝑎𝑖𝑛 (%) =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑠𝑠 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛−𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 ·100 

In the next paragraphs heat and moisture properties of clothing are discussed.  
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1.5.4 Thermal resistance 

The clothing barrier is formed by the textile material, the air enclosed in the 

material and the still air layer that is bound to its outer surface. 

When considering a fabric, without including the still layer of air next to it (outside 

environment), the thermal resistance to the heat transmission from the skin to a 

textile material (and vice versa) is defined as intrinsic (or basic) thermal resistance 

or insulation. The standard BS EN ISO 11092:2014 defines thermal resistance (Rct) as 

the temperature difference between two faces of material divided by the resultant 

heat flux per unit area in the direction of the gradient; it is expressed in square 

metres kelvin per watt (m2·K·W-1) or square metres per degree Celsius per watt 

(m2·°C·W-1). Heat transfer through textile materials consists mainly of conduction 

and radiation (Havenith 1999). For most clothing materials the volume of air 

enclosed is far greater than the volume of the fibres. Therefore, the insulation 

mainly depends on the thickness of the material (that is the enclosed air layer) and 

less on the fibre type (Havenith, 1999) (Fig 13). The fibres mainly affect the amount 

of radiative heat transfer, as they reflect, absorb and re-emit radiation. Thermal 

insulation also decreases with the increase in fabric density (Ozkan and Meric 2014). 

Fabric density is obtained by dividing the weight of the fabric by its thickness. In fact, 

the thermal resistance of the air is higher than that of the fibre. As the fabric 

density becomes lower, the air gap between the textile fibres increases and the 

resistance to the heat transfer (thermal resistance) increases.  
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Figure 13 Relation between clothing material insulation and the material thickness (Havenith and Wammes in 
Lotens 1993). 

 

When not only the textile materials are considered, but also the actual insulation of 

the material in a garment or when clothing consists of more layers, the dry thermal 

resistance provided by a textile fabric plus the surrounding air layer becomes 

important and is defined as total thermal resistance or insulation. In 1941, the Clo 

unit was for the first time proposed by Gagge et al. (1941). One Clo is defined as the 

intrinsic thermal insulation of a typical business suit required to keep a sedentary 

person comfortable at 21°C and it has an average value of 0.155 m2·°C·W-1. In this 

case, the m2 term in this unit refers to the surface area of the body. 

Garment fit is another factor to take into account when considering clothing 

insulation. When clothing fits tightly, the air gap between the inner clothing surface 

and the body skin is smaller and less air is included than when it fits loosely. In 

support, it has been shown that tight-fitting garments can reduce thermal insulation, 

whereas loose-fitting garments are more prone to wind and walking movement-

induced reduction in insulation (Havenith et al. 2007; Ho et al. 2011). Air movement 

(e.g. in presence of wind) also greatly affects clothing insulation. This, in fact, can 

disturb the still air layer on the outer clothing side but also the air layers in the 

clothing ensemble, by entering through clothing openings or, based on the air 

permeability of the outer clothing layer, by penetration of the clothing fabric. 

Another important parameter which can affect clothing insulation is the garment 
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movement. The garment can be moved by both wind and wearer movements. The 

wind can compress the garment against the skin, reducing the thickness and causing 

air movement into the garment. Similarly, movements of the wearer can pump air 

between different clothing layers or force its exchange with the environment. In 

general, motion has an effect on enclosed and surrounding air layers, whereas wind 

mainly affects the surrounding air layer and the air layer under the outer garment 

(Havenith, 1999). An empirical relationship has been derived that quantitatively 

describe the effect of wind, human movement and outer layer air permeability on 

clothing thermal resistance (Havenith & Nilsson, 2004). 

1.5.5 Evaporative resistance 

When exercising or exposed to hot conditions, sweat is produced and evaporation 

occurs in order to lose heat. The fabric resistance to this vapour sweat transfer is 

the evaporative resistance or water-vapour resistance. The latter together with the 

thermal insulation provides the total effect of clothing on heat (dry and evaporative) 

transfer. The standard BS EN ISO 11092:2014 defines basic (without the surrounding 

air layer) water-vapour resistance (Ret) as the water-vapour pressure between the 

two faces of a material divided by the resultant evaporative heat flux (this may 

consist of both diffusive and convective components) per unit area in the direction 

of the gradient; it is expressed in square metres Pascal per watt (m2·Pa·W-1). The 

partial vapour pressure at the skin (hot plate) is assumed to be the saturated 

vapour pressure at the skin temperature, whereas the partial vapour pressure in the 

air is related to the relative humidity. 

As for thermal insulation, the thickness of the clothing material (normal permeable), 

mostly determines clothing vapour resistance (Havenith 2002; Havenith 1999, Fig 

14). Since the volume of the fibres is usually lower compared to the enclosed air 

volume, the resistance to the diffusion of water vapour through the garment is 

mainly determined by the thickness of the enclosed still air layer. However, with 

thin materials, the fibre component has a major role because their different weave 

characteristics can affect the diffusion properties more than in a thick material 

(Havenith 1999). On the other hand, the use of coatings, membranes or the 
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application of others treatments to the fabrics will have a major effect on water-

vapour resistance and its relationship with fabric thickness is then lost.  

 

Figure 14 Relation between clothing material vapour resistance and the material thickness (Lotens 1993). 

 

1.5.6 Liquid moisture transfer 

On its way to the outer environment, liquid sweat is absorbed from the skin in the 

garment (Fan 2005). When the textile fibres come in contact with liquid water the 

water molecules wet the surface of the fabric, before being transported into and 

then through the inter-fibres pores. At this stage, the solid interface of the fibres, 

characterized by air, is replaced by a liquid interface (sweat) in a process called 

wetting (Kissa 1996). When the fibres and the capillary spaces (between the fibres) 

are wetted with a liquid, a capillary flow starts to occur. The ability to sustain this 

capillary flow is defined as wickability. Therefore, when a porous material, such as a 

textile, is placed in contact with a liquid, after wetting, a spontaneous uptake of 

liquid occurs, in a process called wicking. Wicking is the ability of a fabric to 

transport liquid sweat. The uptake of liquid is defined as ‘spontaneous’ because the 

movement of liquid takes place against zero or negative liquid-head pressure 

gradient (Miller and Tyomkin 1984). The spontaneous water uptake in the plane of 

the fabric is always called wicking and is referred to as ‘in-plane wicking’ or 

‘horizontal wicking’, whereas the liquid movement perpendicular to the plane of 
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the fabrics it is termed ‘transplanar uptake’ (Miller and Tyomkin 1984), ‘transplanar 

flow’, ‘demand wettability’ or ‘transplanar wicking’ (Rossi et al., 2011).  

When the first synthetic fabrics became available in the market, Fourt et al. (1951) 

compared the water absorption and drying properties of synthetic fibres with 

conventional natural fibres, i.e. wool and cotton. It was observed that regardless of 

fibre content, all fabrics picked-up water and the time they took to dry was 

proportional to the amount of water they initially picked-up. In support, forty-five 

years later, Crow and Osczevski (1998) found that the amount of water picked up by 

fabrics, different in fibre content, was correlated to their thickness (r = 0.92). 

Additionally, a strong positive correlation (r = 0.98) was observed between the 

amount of water initially present in these fabrics and the time for them to dry; the 

correlation was independent of fibre type. Finally, it was indicated that fabrics with 

open-structure picked up less water, due to their lower capillary volume.  

The common notion that natural fibres absorb more water than synthetic ones, 

could be explained in light of their higher regain, i.e. they can absorb more moisture 

vapour than synthetic fibres. Nevertheless, Crow and Osczevski (1998) found no 

correlation between fibre regain and the amount of liquid absorbed by the fabrics, 

both natural and synthetic. In this regard, Yoo and Barker (2004) indicated that the 

difference between hydrophilic (in this case natural) and hydrophobic (in this case 

synthetic) fabrics is in the rate of water absorption, but the total amount of liquid 

absorbed does not change in relation to the fibre type.  

Later on, Jeon et al. (2011a) compared the absorption behaviour of four fabrics with 

different fibre content and moisture behaviour: cotton, polyester, high-

performance polyester (micro-channel cross section, to improve wicking) and high-

performance polyester/polypropylene blend (double-sided fabric with propylene 

skin-side and polyester outside). The results indicated that cotton absorbed water 

faster than the other fabrics at the moment of the initial contact with the liquid; 

however, the total absorption capacity was the lowest. By contrast, the 

polyester/polypropylene fabric showed the slowest initial absorption rate, but the 

largest total absorption capacity. Finally, the total absorption capacity of the 
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polyester and high-performance polyester fabrics was in between that of cotton 

and polyester/polypropylene materials. In the experiment, the absorption 

behaviour of the fabrics was tested by using a demand wettability test, in which 

generally the total absorption capacity is related to the fabric density (the weight 

per volume of material including voids, g·cm-3). In fact, the cotton fabric had the 

highest apparent density, followed by polyester, high-performance polyester and 

polyester/polypropylene. Therefore, in this particular condition, given that fabric 

thickness was almost the same (0.60 ± 0.03 mm) between the four materials, the 

absorbency capacity was closely related to fabric weight. Furthermore, the initial 

absorption rate was highly affected by absorbency time (time taken for a drop of 

water, delivered onto the fabric, to be completely absorbed), the latter determined 

by the hydrophilicity and surface properties of the fabrics (Yoo and Barker 2004).   

In summary, material-based studies have demonstrated that the amount of water 

absorbed is mainly dependent on fabric thickness and, in the case of open-structure 

fabrics, on the capillary volume, fabric density and also weight. This suggests that 

structural and construction properties play a more important role than fibre type in 

fabrics in steady-state of absorption. However, in transient conditions fabric 

hydrophilicity and the impact that this has on absorption rate and related drying 

time might play a more important role. 

1.5.7 Air permeability & ventilation 

The produced sweat can also be ventilated directly from the clothing microclimate 

through the fabric material (air permeability; breathability) or clothing openings, 

gaps and vents (clothing ventilation). At material level, air permeability is defined, 

as the velocity of an air flow passing perpendicularly through a test specimen under 

a specific condition of the test area, pressure drop and time (BS EN ISO 9137: 1995). 

When using highly air permeable and/or highly ventilated garments, evaporative 

heat loss will be higher than expected and thermal insulation will be lower than 

expected. Ventilation rate together with clothing thermal insulation are two 

important parameters affecting heat and moisture transport properties (Havenith 

et al. 1990), thus affecting thermal and moisture comfort. Ventilation features are 
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often suggested as a possible solution to the problem of changing activity intensity 

(and thus metabolic heat production), which requires a reduction in clothing 

thermal insulation to maintain thermal balance and comfort (Morrissey & Rossi 

2013). A number of studies have been carried out to investigate the impact of wind 

and garment apertures on clothing thermal insulation and ventilation rate. Havenith 

et al. (1990; 2007) found that wind significantly impacts clothing ventilation rate 

and  later on, Havenith & Nilsson (2004) corrected the thermal insulation model 

according to the effect of wind and walking. 

1.5.8 Drying property 

The process of vapour and liquid moisture exchange between the textile fibres and 

the surrounding environment is described by the drying behaviour of fabrics. The 

process involves three distinct stages (Lyons and Vollers 1971). In the first stage, a 

wet fabric adjusts its temperature and the moisture starts to flow towards its 

surrounding environment. The second stage is a ‘constant drying rate’ period, in 

which the drying rate remains constant as the rates of heat transfer and 

vaporisation reach equilibrium. At this stage, liquid moisture moves within the 

fabric to maintain saturation at the fabric surface. In a third stage, a ‘declined drying 

state’ occurs. Specifically, the flow of moisture to the fabric surface becomes 

insufficient to maintain saturation and the plane of evaporation moves into the 

fabric. At this point, the fibres begin to desorb moisture until equilibrium between 

the fabric and the surrounding environment is achieved. Figure 15 illustrates the 

drying behaviour of wool and polyester fabrics, at 25 °C and 25 % rH (Li et al. 1995). 

The difference between the two fabrics is that the constant rate period by 

evaporation is prolonged for the polyester as its saturation and moisture content is 

below 1 %, whilst the declined drying rate phase is prolonged in the wool material, 

since wool presents much higher water saturation (up to 36 %). 
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Figure 15 Changes in water content of wet fabrics during drying at 25ºC. From Li et al. 1995. 

 

In addition, in Figure 16 fabric temperature during the drying process is illustrated. 

When the water content of fabrics is above their saturation regain, the temperature 

of the two fabrics is the same and below ambient temperature, since the dominant 

process occurring is the evaporation of free water. As water content in both fabrics 

starts to approach the corresponding equilibrium regains, the temperature of the 

fabrics starts to rise until all the excess moisture has evaporated and equilibrium is 

achieved with the surrounding environment. It can be observed that compared to 

the polyester fabric the wool fabric shows a longer transition period from wet to dry. 

This reflects the greater moisture sorption capacity of wool and its influence 

between the fabric and the environment. 

 

Figure 16 Relation between fabric temperature and excess moisture of wool and polyester fabrics at 25ºC and 
25% rh. From Li et al. 1995. 
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1.5.9 Clothing evaluation  

The seminal work conducted by Ralph Goldman, to assess clothing properties and 

its end-performance, includes a multilevel evaluation approach (from Cena and 

Clark 1981). At the first level, objective test methods are conducted to assess fabric 

thermal and moisture properties. These instrumental tests are quick, precise and 

logistically simple to perform. At a second level, full garments are evaluated using 

thermal manikins, which provide more realistic data as compared to material tests. 

At level three, clothing is tested using human participants in either controlled 

laboratory conditions or real-life conditions (field studies). With each incremental 

level of testing, the yield of scientific information and reproducibility decreases and 

the cost and number of potential confounding variables increases. In fact, at level 

three, the evaluation becomes more logistically complex, and drawing conclusion 

on clothing behaviours, based on fundamental principles, becomes more difficult, 

due to the multifactorial interaction between environment, human and clothing 

factors. Nevertheless, only via level three it is possible to obtain information 

regarding clothing functionality, in relation to human physiological and sensorial 

responses, as well as consumer’s preference in targeted-use conditions.  

1.5.10 Level 1 – Material Testing  

1.5.10.1 Dry and evaporative heat transfer 

The Sweating Guarded Hotplate 

The international standard ISO 11092 provides guidelines to measure thermal and 

water-vapour resistance under steady-state conditions, using the sweating guarded-

hotplate. 

The apparatus consists of three main components: the measuring unit, with 

temperature and water supply control (Fig 17), the thermal guard with temperature 

control (Fig 18) and the test enclosure. The measuring unit presents a metal plate 

fixed to a conductive metal block (14) containing an electrical heating element (6). 

For the measurement of water-vapour resistance, the metal plate (1) must be 

porous. Water is fed to the porous plate (1) from a dosing device (motor-driven 
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burette; 5) by channels machined into the face of the heating element block. Before 

entering the measuring unit, water is preheated to the temperature of the 

measuring unit. This is achieved by passing the water through tubes in the thermal 

guard before it enters the measuring unit. The temperature controller (3) and the 

temperature sensor of the measuring unit (2) maintain the temperature of the 

measuring unit constant and the heating power is measured by means of a suitable 

device (4).  

The thermal guard (8) is made of a material with high thermal conductivity, typically 

metal, and contains electrical heating elements. Its aim is to prevent heat leakage 

from the sides and bottom of the measuring unit by removing the temperature 

gradient between the measuring unit and its sides as well as base. It surrounds the 

measuring unit and is located within an opening in a measurable table (11). To form 

moisture guard the thermal guard is fitted with a porous plate and water-dosing 

system similar to that of the measuring unit.  

 

 

Figure 17-Measuring unit with temperature and water supply control. 1 metal plate; 2 temperature sensor; 3 

temperature controller; 4 heating-power measuring device; 5 water-dosing service; 6 metal block with heating 

element. From BS EN ISO 11092:2014. 
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Figure 18-Thermal guard with temperature controller. 7 measuring unit (according to Fig 1); 8 thermal guard; 9 

temperature controller (according to fig 1); 10 temperature sensor (according to fig 1); 11 measuring table. 

From ISO 11092. 

 

The measuring unit and the thermal guard are built into a test enclosure, in which 

the ambient temperature and humidity are controlled.  

The principle of this test for the determination of thermal resistance (Rct) is to 

measure the heat flux through the test specimen after reaching steady-state 

conditions. Rct of a material is determined by subtracting the thermal resistance of 

the boundary air layer above the surface of the test apparatus from that of the test 

specimen plus the boundary layer, both measured at the same conditions. The 

temperature of the measuring unit (Tm) is typically set at 35 °C and the air 

temperature (Ta) at 20° C with 65% RH and air speed at 1 m·s-1. Rct is calculated as 

follow: 

R𝑐𝑡 =  
(𝑇𝑚−𝑇𝑎)

𝐻 − 𝛥𝐻𝑐
−  R𝑐𝑡0 

Were, H is the heating power supplied to the measuring unit in watts; Rct0 is the 

resistance of the boundary layer layer measured with a bare plate (in square metres 

kelvin per watt); and ΔHc is a correction term.  

The bare plate resistance (Rct0) is determined as: 

R𝑐𝑡0 =  
(𝑇𝑚−𝑇𝑎) · 𝐴

𝐻 − 𝛥𝐻𝑐
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Where, A is the area of the measuring unit in square metres. 

For the determination of the bare plate resistance the temperature of the 

measuring unit (Tm) is maintained at 35°C and the air temperature Ta at 20 °C with 

65% RH and air speed at 1 m·s-1. 

For the determination of water-vapour resistance (Ret), the electrically heated 

porous plate is covered by a water-vapour permeable but liquid impermeable 

membrane. The water fed to the heated plate evaporates and passes through the 

membrane as vapour and no liquid water contacts the specimen. With the test 

specimen put on the membrane, the heat flux necessary to maintain a constant 

temperature at the plate is a measure of the rate of water evaporation, and from 

this, the water-vapour resistance of the test specimen is determined. The 

temperature of both measuring unit (Tm) and the air (Ta) is set to 35 °C (no gradient,  

therefore no dry heat loss) with 40% RH, corresponding to a water-vapour partial 

pressure difference of 2,250 pa. The water-vapour pressure pm, directly at the 

surface of the measuring unit, can be assumed equal to the saturation vapour 

pressure at the temperature of this surface, i.e. 5,620 Pa. Air speed is set to 1 m·s-1. 

This isothermal condition is to prevent water-vapour condensation within the test 

specimen and also to prevent dry heat loss, due to the presence of a thermal 

gradient. Ret is calculated as follow:  

R𝑒𝑡 =  
(𝑝𝑚−𝑝𝑎)

𝐻 − 𝛥𝐻𝑒
− R𝑒𝑡0 

Were, pm is the saturation water-vapour partial pressure, in pascal, at the surface of 

the measuring unit at temperature Tm; pa is the water-vapour partial pressure, in 

pascal, of the air in the test enclosure at temperature Ta; H is the heating power 

supplied to the measuring unit is watts; Ret0 is the apparatus constant (square 

metres pascal per watt); ΔHe is a correction term for heating power. 

Ret0 is determined as follow: 

R𝑒𝑡0 =  
(𝑝𝑚−𝑝𝑎) · 𝐴

𝐻 − 𝛥𝐻𝑒
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Were, A is the area of the measuring unit in square metres. 

The temperature of both measuring unit (Tm) and the air (Ta) is set to 35 °C with 40% 

RH and air speed at 1 m·s-1 

The sweating hot plate measurements can be also conducted in accordance with 

the ASTM F1868. The difference between ISO 11092 and ASTW F1868 is the 

environmental conditions used; otherwise, the test is performed in the same way. 

Specifically, in ASTM F1868, for the termination of Rct the temperature of the plate 

is maintained at 35 °C, air temperature is set at 25 °C, with 65% RH and air speed at 

1 m·s-1.  

1.5.10.2 Water vapour transfer methods 

Desiccant Inverted Cup Test 

The standard BS EN ISO 15496:2004 provides a detailed description of the Desiccant 

Inverted Cup Test, applied to measure water vapour permeability (WVP) of fabrics 

(Fig 19). In this test, the specimen is placed, together with a waterproof but highly 

water-vapour permeable hydrophobic membrane, on a ring holder and then put 

into a water bath so that the membrane is in contact with the water and is left in 

there for 15 min. A frame, consisting of two plates, separated by spacers, supports 

the specimen holders in the water. A cup containing saturated potassium acetate 

solution, creating a relative humidity of about 23% at the specimen’s upper face 

and covered with a second piece of the same membrane, is weighed and then 

inverted above the specimen in the ring holder, so that the membrane is in contact 

with the specimen. At this point a net transfer of water vapour through the 

specimen from the water side to the cup will start to occur. After 15 min the cup is 

taken off and re-weighted. At the same time, the same test without the fabric 

specimen is conducted to determine the water vapour permeability of two 

membranes and the apparatus water vapour permeability. At this point, water 

vapour permeability of the specimen is calculated, correcting for the influence of 

the two membranes. 

Water vapour permeability is measured according to the following equations: 
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Δm= m15-m0 

Were, Δm is the change is mass (g) of the measuring cup during the period Δt (h); m0 

is the mass of the cup before the start of the test; m15 is the mass of the cup after 

15 min.  

At this point the water vapour permeability of the apparatus WVPapp (g/m2· Pa · h) 

is measured according to: 

𝑊𝑉𝑃𝑎𝑝𝑝 =
𝛥𝑚𝑎𝑝𝑝

𝑎 ∗  𝛥𝑝  ∗  𝛥𝑡
 

Were, Δmapp is the change in mass (g) of the measuring cup during the period Δt (h); 

a is the area op the measuring cup; Δp is the partial vapour pressure difference 

across the specimen; Δt is the measuring time. 

Finally, water vapour permeability of the test specimen can be measured according 

to: 

𝑊𝑉𝑃 = (
𝑎∗ 𝛥𝑝  ∗ 𝛥𝑡

𝛥𝑚
−

1

𝑊𝑉𝑃𝑎𝑝𝑝
)-1 

 

 

Figure 19-Schematic test arrangement for the desiccant cup method. 1 measuring cup; 2 membranes; 3 textile 

specimen; 4 water bath; 5 water vapour; 6 saturated potassium acetate solution; 7 temperature sensor for 

ambient temperature; 8 specimen holder; 9 rubber ring; 10 temperature sensor. From BS EN ISO 15496:2004. 
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Upright Cup Test  

Water vapour transmission of materials can be also measured according to ASTM 

E96 1999, using the Upright Cup Method. In this test, a shallow cup is filled with 100 

mL of distilled water and a circular textile sample is put on top of the cup, covered 

with a gasket and clamping into its position (Fig 20). The cup assembly is placed in 

an environmental chamber where air temperature is set to 23 °C, RH to 50% and air 

velocity maintained at 2.8 m·s-1. The cup assembly is weighed periodically 

throughout one day and water vapour transmission rate (WVT, g·m-2·day-1) is 

calculated according to: 

𝑊𝑉𝑇 =
𝐺 ∗  24

𝑡 ∗  𝐴
 

Were, G is the mass change of the sample (g); t is the time during which G occurs (h); 

A is the area of the tested sample (m2). 

 

Figure 20-Upright cup assembly. From ASTM E96 1999 
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Inverted Cup Test 

Another method to measure water vapour transmission rate of fabrics is the 

Inverted Cup Method (Fig 21), according to ASTM E96 1999. This test is very similar 

to the Upright Cup test and same environmental conditions are applied (air 

temperature 23° C, RH 50% and air velocity 2.8 m·s-1). As the name of the test 

suggests, the cup is positioned in an inverted position on the upper deck, the fabric 

sample is positioned over the mouth of the cup and to prevent the water in the cup 

from wetting the specimen, a hydrophobic membrane is sealed over the mouth of 

the cup (positioned between the fabric sample and the cup). Differently from the 

upright test, in the inverted test water is ‘in contact’ with the fabric, even if a 

membrane physically separates the liquid water from the specimen. The cup 

assembly is weighed periodically throughout one day and the calculation of water 

vapour transmission rate (WVT, g·m-2·day-1) is the same as that for the upright cup 

test.  

 

Figure 21-Inverted cup assembly. From ASTM E96 1999 
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1.5.10.3 Liquid water transfer 

In this paragraph, various objective test methods to evaluate liquid moisture 

absorption and transfer properties of fabrics are reviewed. According to the 

technology adopted, these methods are classified in gravimetric/volumetric, 

observational, optical, electrical and temperature-based (Fig 22). The related 

properties measured are water absorption, vertical and horizontal wicking, 

absorption capacity and moisture content. 

 

Figure 22 Diagram representing the measurement methods to measure fabric moisture absorption and 
transport properties.  

 

1.5.10.4 Gravimetric/volumetric methods 

Gravimetric/volumetric methods include various tests to directly measure liquid 

water retention and transport properties of fabrics. The principle consists of 

measuring the fabric before in dry state and after in wet state and, based on weight 

changes, moisture content/transfer can be calculated. 

Vertical wicking 

In the vertical wicking test, a fabric strip is suspended vertically with one end into a 

beaker of water and the other end is fixed to the clamp of a tensometer. The 

tensometer records the height reached by the wicked water and is related to time. 

By using a microbalance and a data acquisition computer, change in mass of the 

fabric (which increases as the liquid wicks into the sample) is recorded versus time 

(Hsieh et al. 1992; Ghali et al. 1994; Hong and Kim 2007). This method is easy and 
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simple to perform, however, one of the main limitations is that the water 

evaporation from the fabric, during the wicking and measurement process can 

affect the end results. In this regard, a solution could be to test the fabric in a 

volumetric flask or in a controlled sealed environment (Ghali et al. 1994; Hong and 

Kim 2007). In order to allow measurement of the amount of liquid absorbed at 

different height level within the fabric, Ghali et al. (1994), developed an advanced 

version of the test. In this test, the fabric strip is marked at regular intervals. The 

fabric is then suspended with one end dipping in a water reservoir. At the end of 

the test, the specimen is cut across the marked lines and each cut piece is weighted. 

The degree of saturation of each piece is then calculated. In order to minimize 

water evaporation during the measurement of fabric vertical wicking, Hong & Kim 

(2007) developed a similar test where the strip of fabric is clamped, under 

controlled pressure, between two transparent acrylic plates with the end of the 

fabric (1 mm) immersed into a liquid. In this setting, the mass of the water absorbed 

is recorded against time. The limitation of this method is that the water may wick 

through the space between the fabric and the acrylic plate, which might 

overestimate the wicking ability of the fabric itself.  

Horizontal wicking 

In the horizontal wicking test, a fabric is placed flat on a porous plate while water is 

supplied from beneath (Fig 23). Water can be supplied to the porous plate with a 

tube connected to a capillary tube containing a meniscus (Harnett and Mehta 1984). 

By recording at progressive time intervals the position of the meniscus along the 

horizontal capillary tube, the water uptake of the fabric (which depends on its 

wicking ability) is measured (as the fabric absorbs water the meniscus moves 

towards the test fabric). In this volumetric analysis method, the absorption rate of 

the fabric is calculated by knowing the diameter of the capillary tube and the 

distance covered by the meniscus. However, this test presents some limitations. 

First of all, for highly absorptive fabrics, the observation of the meniscus position in 

the capillary tube may not yield a sufficiently sensitive measurement, as the great 

absorption property might result in a fast reduction of the meniscus length. 

Additionally, the resistance to the water flow, offered by the capillary tube 
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remaining filled with water, decreases during the test, as water is absorbed by the 

tested fabric. In this regard, the unstable resistance of the flow can affect the 

accuracy of the test. In a similar experimental setup absorption capacity and/or rate 

can be measured, using the gravimetric absorption testing system (GATS) (Yoo and 

Barker 2004; Tang et al. 2014b). In this test, the plate can contain a small hole or 

can consist of a porous plate. To improve repeatability of the test, water is supplied 

at a constant rate, e.g. 10 mL·h-1 (Tang et al. 2014b). To simultaneously, measure 

horizontal wicking using an optical method, a camera can be positioned at the top 

of the setup, to capture the image of the wetted sample and from the pixel of the 

wetted area the water spreading area can be calculated (Tang et al. 2014b).  

In order to ensure good even contact between the fabric and the plate, in these 

experimental setups an external load is applied to the fabrics. However, while it is 

important to ensure good fabric-to-plate contact, the external load can result in 

high pressure and compress the fabric, which does not occur in real wear conditions.  

 

 

Figure 23 Schematic drawing of horizontal wicking test. From Tang et al., 2014. 

 

Absorption capacity 

In this test, a fabric is put into a tank of water and it is kept in there for 5 min in 

order to allow it to sink completely into the water. After that, the fabric is taken out 

with tweezers and hung vertically onto a rod until there is no water dripping within 
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a 30-seconds interval (Tang et al. 2014a). The water gain in the fabric is measured, 

from dry and wet weight, and expressed as mass of water gain per unit area of 

fabric (g·cm-2). 

1.5.10.5 Observational methods 

Observation-based methods are commonly applied to measure fabric absorbency as 

well as wicking properties.  

Absorbency and Saturation 

Currently there are two observational-based standard tests to measure fabric 

absorbency: AATCC 79-2014 and BS EN ISO 4554:1970. The main purpose of these 

tests is to simulate sweat spreading across the fabric when it comes in contact with 

the skin. Specifically, in both tests, a drop of water is delivered at a fixed distance 

onto the fabric. The time taken for the reflection of the liquid surface to disappear 

is taken as a measure of the absorbency of the fabric. The shorter the time, the 

higher is fabric absorbency. For fabrics with a very high absorbency, i.e. when the 

deionised water takes less than two seconds to disappear, a 50 % sucrose solution 

should be used (BS EN ISO 4554 1970). Measurements of the wetted fabric area can 

be conducted by placing a graph paper beneath the fabric and manually tracing 

with a pen the area of water spread (Sampath et al. 2011b). In order to gather more 

information regarding wicking properties of fabrics, when a certain amount of liquid 

is delivered to the fabric, fabric moisture saturation can also be measured (De Boer 

1980; Sampath et al. 2011a). Moisture saturation of the fabric is an important 

parameter to take into account when studying clothing comfort and it can be 

calculated by considering the mass of the liquid absorbed as the percentage of the 

dry weight of a certain fabric area. By applying a similar set-up it is also possible to 

measure fabric saturation, by continuously adding water to the fabric at a certain 

rate, until the fabric cannot absorb any more water (Sampath et al. 2011b).  

The observational-based tests above reported typically applied to measure 

absorbency and fabric saturation, are simple to conduct, do not require expensive 

equipment and are quick to perform. However, the observational nature of the test 

can reduce its accuracy. For instance, the determination of the end-point of the test 
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is prone to subjective individual variations. Additionally, for fabrics with very high 

absorbency, it becomes difficult for the investigator to make fast measurements. 

Furthermore, the use of sucrose solution for fabrics with high absorbency has some 

critical implications. For instance, the presence of sugar can change the viscosity 

and the surface tension of the liquid, this ultimately affecting water kinetics, which 

is relevant for wear comfort related-assessments. Therefore, when fabric 

absorbency is quite high, a different testing methodology should be applied rather 

than just replacing the liquid used for the test.  

Vertical wicking 

There are various test methods that apply an observation principle to measure 

fabric vertical wicking. The procedure involves suspending a strip of fabric with its 

lower end immersed into a water reservoir. The height of the water reached in the 

fabric is then measured after a fixed time. Alternatively, it is possible to focus on the 

time taken for the liquid to reach a specific distance within the fabric. This could 

allow a rough estimation of the time-dependency of the wicking property of the 

tested fabric. This testing set-up, used to measure vertical wicking is currently 

adopted by two standard test method: BS 3424 Testing coated fabrics – Part 18: 

Method 21A Methods for Determination of Resistance to Wicking (1986) and DIN 

53924 Determination of the Rate of Absorption of Water by Textile Materials 

(Deutsches Institut für Normung eV DIN 53924 1997). The method BS 3424 Testing 

coated fabrics, is indeed intended for testing coated fabrics, which have a very 

low/slow wicking behaviour. For this reason, the standard recommends long test 

duration of 24 hours. On the other hand, the standard DIN 53924 mainly targets 

fabrics with rapid wicking ability, therefore a much shorter time (5 minutes) is 

recommended.  

The vertical wicking tests that adopt the observational-based method are easier to 

perform than the gravimetric ones. In fact, the observation-based tests do not even 

require the use of specific equipment, such as balances. One of the limitations that 

the vertical wicking tests have, both gravimetric and observational ones, is that the 

water uptake in a vertically suspended fabric shows a gradient distribution pattern. 

The latter consists of a saturated zone near the water-fabric interface followed by a 
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distribution zone; therefore water spreading across the material is non-uniform. For 

observation-based tests, the latter makes difficult to measure the wetted area, 

since for some fabrics, such as thick or composite materials, the front of the liquid 

spread, in the area where the liquid diffuses, might not be easy to detect. This 

becomes even more complicated for dark coloured fabrics. The issue could be 

solved by adding dye to the water, however, in some cases water can migrate faster 

than the dye, leaving the problem unsolved and also affecting the measurements. 

Another problem is related to the fact that only wicking at the surface of the fabric 

can be measured, while information regarding wicking speed at the intra-fibre and 

inter-fibre space is unknown. Therefore, that means that the liquid detected at the 

front of the fabric is not always related to the volume of the liquid wetting the 

whole material. This issue becomes more critical for fabrics with different face and 

back side, for thicker fabrics and fabrics made of multiple plies. Finally, the direction 

of the water spreading does not simulate wear conditions since water transport in 

clothing is generally transplanar to the fabric plane. 

Horizontal wicking 

The standard AATCC 198 horizontal wicking of textiles (American Association of 

Textile Chemists and Colorists AATCC Test Method 198 2013) adopts the 

observational method to assess the ability of horizontally aligned fabrics to 

transport liquid along and through them. The standard prescribes to mark in the 

middle of the fabric sample a circle of 100 mm and to deliver a 1 mL of liquid from a 

burette or electronic pipette, from a height of 10 mm, onto the centre of the 

marked circle. The test is completed when the liquid reaches the borders of the 

marked circle and the duration to achieve this is recorded. The distance reached by 

the liquid, along the lengthwise and widthwise directions of the fabric is then 

measured and the spread area per unit time is calculated as a measure of horizontal 

wicking ability of the fabric.  

As the observational vertical wicking tests, the observational horizontal wicking 

tests are simple to perform and do not require the use of specific equipment. 

However, the test is not suitable for dark coloured fabrics, and can only be 
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performed on fabrics that can hold the full amount of added liquid without pooling 

the water on the surface or dripping. 

Sink test 

In the sink test a fabric sample is put onto the surface of a liquid contained in a 

water tank. The time for the fabric to sink completely into the liquid is then 

measured and is used as measure of fabric hydrophilicity. The shorter the sinking 

time, the higher the hydrophilicity (ISO 9073-6, 2000, Test method for non-wovens ). 

1.5.10.6 Optical method 

Contact angle 

The contact angle test adopts an optical method to determine the wettability of 

fabrics. In this test the angle exhibited by a liquid drop rested on a solid surface is 

considered (Tang et al. 2014). This angle is obtained by tracing the tangent of the 

liquid-vapour interface and solid-liquid interface (Fig 24-a). The image is captured 

by a goniometer (Fig 24-b) which is equipped with a three-axis stage with fine and 

coarse adjustment, a modular levelling stage, a micrometre-driven syringe and a 

video microscope. The volume of water applied is strictly controlled. Using the 

video microscope the images of the drop are recorded and, by using a special 

algorithm in the software, the drop boundary can be defined. The larger the contact 

angle the lower the hydrophilicity of the materials tested. A contact angle lower 

than 90° shows that there is an affinity between the liquid and the solid material, 

whereas when the angle exceeds 90° there is a repulsion between liquid and solid 

phase. The duration of the test is short and it can be applied to slow and not–

absorbent fabrics. However there are some difficulties with high-absorbency fabrics, 

because the immediate absorption of water into the fabrics results in a rapid 

change of the contact angle. Contact angle measurement assumes the presence of a 

smooth textile surface, which is not always the case. In fact, it was demonstrated 

that different fabric geometry and roughness of the surface may yield different 

‘apparent’ wetting contact angles even though the fibre content was identical 

(Patnaik et al. 2006). Additionally, the velocity of the water injection, as well as the 
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tangent line determination is difficult to standardise and the repeatability and 

reliability of the results rely on the consistency of the operator.  

 

Figure 24 (a) Tangential lines at the borders of the water drop. (b) Contact Angle Goniometer/Tensiometer 

(rame-hart  Model 260). From Tang et al. 2014. 

 

Vertical wicking 

Using an image-analysis technique it is possible to detect the increase in fabric 

wicking over time (Zhuang et al. 2002). As in a typical vertical wicking test, the fabric 

sample is suspended with its lower end contacting the liquid contained in a tank. 

Opposite the fabric sample is placed a camera which can capture water spreading at 

regular intervals. This is achieved by installing the camera on a shaft connected to a 

step motor to automatically track the location of the liquid. The greatest advantage 

of this optical wicking test, as compared to the gravimetric and observational ones, 

is that the manual and subjective operation in the process is minimised, the latter 

improving the test consistency. Nevertheless, although in this specific set-up the 

time-dependency of the wicking behaviour can be measured, the previously 

mentioned fundamental limitations characterising vertical wicking testing remain.   

Horizontal wicking 

The optical method can also be used to measure the spreading area of liquid in a 

textile placed horizontally on a flat plane. In this experimental set-up developed by 

Kissa (1996), a drop of water is injected onto a fabric sample, using a hypodermic 

needle. A timer is positioned close to the sample, and fabric spreading area, as well 

as the reading on the timer, is recorded at regular intervals, using an instant-picture 

camera, held in a fixed position. In order to reduce variations, the injection of the 
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water should not be performed manually, as in the case of this test. This limitation 

can be solved using a flow-rate controller or a control injection speed. To improve 

the accuracy of the measurements a digital camera together with a video camera 

should be used instead (Tang et al. 2014b). Another drawback is that the test is not 

suitable for fabrics with poor absorbency since the injected water will drop off the 

poor-absorbing material immediately.  

The Absorbency Testing System 

The Absorbency Testing System (ATS-600; Sherwook instrument, Inc.) is an optical 

device developed to measure absorption properties of various materials, including 

paper and non-woven. The apparatus can measure absorption rate, absorption 

capacity and horizontal wicking. The device presents a platform where the fabric 

sample is placed horizontally. The platform is made of monofilament mesh to 

enable the measurement of intrinsic absorption properties of the material. Water is 

supplied from underneath. The device also presents an optical sensor and a 

motorised syringe used to maintain a constant fluid level at a pre-set differential 

head-pressure during the test. The optical device tracks water content in the water 

reservoir adopting a volumetric approach. Absorption properties are measure based 

on time and fluid displaced from the water reservoir. 

Change in colour depth 

Using an optical approach, the amount of water absorbed by a fabric can be 

estimated by measuring the differences in the depth of the fabric colour between 

dry and wet state (Lee et al. 2001), using a spectrophotomer (ColorEye 3000, ICS-

Texicon Co., USA). The principle of this approach is that the colour of a fabric in wet 

state appears darker than in dry state. A study investigated the relation between 

moisture content and colour depth of fabrics, wetted between 10% and 90% of 

their maximum absorption capacity (Lee et al. 2001). A linear relationship was 

observed between absorption weight and the reflective characteristics (lightness 

and colour difference) of the studied fabrics. Nevertheless, although this test can be 

suitable for dark-coloured fabrics, the degree of colour change can be affected by 

fibre content, yarn type and fabric construction, even when the same water content 

is applied.  
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1.5.10.7 Electrical methods 

When water comes in contact with a textile material, the electrical properties of the 

material change. These changes can be used to indirectly measure moisture 

absorption and distribution in fabrics. The electric method allows measurements of 

moisture absorption and transport properties in fabrics where other methods are 

unsuccessful. For instance, the electrical approach is excellent for dark-coloured 

fabrics, where the observational-based wicking and absorption test fail.  

Automated wettability tester 

The electrical method can be applied to measure fabric absorbency. The 

experimental set up is similar to an absorbency test that adopts the observational-

based method (De Boer 1980; Sampath et al. 2011a). However, in this test, the 

fabric presents four electrodes and the time that the water takes to spread and 

reach the sensors is recorded automatically (Tang et al. 2014b). Since the end-point 

of the test is determined automatically, rather than manually, the reliability of the 

test is improved.  

Moisture Management Tester 

Dynamic liquid moisture management properties of textile materials can be 

characterised using the Moisture Management Tester (MMT) (Hu 2005), according 

to AATCC Test Method 195-2011. The principle of the test is to measure changes in 

the electrical resistance of the two textile sides after being wetted. The electrical 

resistance of a dry textile is usually very large, however, when moisture is 

transported in a fabric its electrical resistance will drop. Changes in resistance 

depend on the water composition and amount of water; by fixing the water 

composition the measured changes in fabric resistance will be related to the fabric 

water content (Li et al. 2002). With regards to the test procedure, a 9 x 9 cm 

specimen is held flat between an upper and lower sensor at a certain pressure (Fig 

25). Both the upper and lower sensors consist of a couple of proximate copper rings 

(Fig 25). Synthetic sweat (AATCC 15-2013)  is pumped for 60 seconds into a 

simulated ‘sweat gland’ (Fig 25) and from this point, it is introduced onto the top 

fabric surface (fabric skin side, in contact with the upper sensor). The system is 

connected to a computer that dynamically records the resistance change between 
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each couple of proximate metal rings at the top and lower sensors. After contacting 

the top fabric surface, the solution will transfer in three dimensions, it will: 1) 

spread outward on the top surface, 2) move from the top towards the bottom 

surface, 3) spread outward on the bottom surface. The resistance between each 

couple of metal rings will decrease because the solution can conduct electricity 

when it contacts the area surrounded by the two proximate metal rings.  

Water contents versus time of both fabric top (skin) and bottom (outer) surfaces 

are recorded and from these, a number set of indices are derived in order to 

determine fabric moisture management properties. The indices are: 

 Wetting time top (WTt) and bottom (WTb) is the time in seconds (s) required 

to wet a fabric after the test is started (time required to contact the first 

inner ring).  

 Maximum absorption rate is the maximum rate at which liquid is absorbed (% 

of water per second; %·s-1) for the top (MARt) and bottom (MARb) textile 

surface, during the initial change of fabric water content during the test 

(after the contact with the firs ring). 

 Maximum wetted radius is defined as the maximum wetted ring radius (mm) 

of the wetted circular area measured at the top (MWRt) and bottom (MWRb) 

fabric surface.   

 Spreading speed (mm·s-1) is the speed of water spreading horizontally across 

the top (SSt) and bottom (SSb) surface from the centre of the fabric where 

the solution is dropped to both MWRt and MWRb, respectively.  

 Cumulative one-way transport capacity (OWTC) is the difference in the 

cumulative moisture content between the top and bottom surface, divided 

by the total testing time (120 seconds). It indicates the movement of water 

from the skin to the outer side of the fabric. A negative OWTC indicates that 

liquid cannot diffuse easily from the next-to-skin fabric surface to the outer 

surface.  

Overall moisture management capacity (OMMC) is an index indicating the overall 

ability of the fabric to manage moisture and it includes three parameters: maximum 

absorption rate of the bottom fabric surface (MARb), one-way liquid transport 
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ability (OWTC), and moisture drying speed of the bottom surface, which is assumed 

to be represented by the maximum spreading speed (MWRb). For the calculation of 

OMMC, OWTC has the major contribution (Hu 2005). The higher the value of 

OMMC and the better will be the overall moisture management ability of the fabric.   

In comparison to the absorption time of the drop test, specified by AATCC Test 

Method 79, the MMT is more reliable and can also be used for dark-coloured fabrics 

or for fabrics in which liquid spreads quickly, since the wetting time is recorded by 

the electric sensors rather than by observation. However, in this test water is 

supplied from the top to the fabric and gravitation may pull the droplet down 

adding to any effects from a purely capillary-action driven system. Additionally, only 

a limited amount of liquid can be applied to the fabrics, which does not simulate the 

amount of liquid present on the skin during profuse sweating conditions. Finally, the 

pin used to apply the voltage presents difficulties in testing conductive materials, 

coated, laminated or complex fabric constructions. Finally, in the case of long-pile 

fabrics, there may be problems because the pile yarns do not contact the pin 

properly.  

 

Figure 25-Sketch of the Moisture Management Sensors. From Hu et al., 2005. 

 

1.5.10.8 Temperature-based methods 

Temperature-based methods use temperature changes to detect the presence of 

water in a fabric. The principle is that in a wet fabric, liquid evaporation and 

increased thermal conductivity will cause decreases in fabric temperature.  
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Horizontal wicking  

The application of thermocouples at different locations and set distances in a fabric 

allows measurements of in-plane wicking property of fabrics (Zhu and Takatera 

2014). In this set-up, water is dropped from the top onto the centre of a fabric. As 

water spread increases, temperature changes across the fabric occur, which can be 

detected by the thermocouples. Temperature changes at the various locations 

(where the thermocouples are placed) are recorded versus time, allowing 

estimations of in-plane wicking. To obtain good measurements, both lengthwise 

and widthwise directions within the fabric should be considered. The method allows 

measurements of wicking behaviours in dark-coloured fabrics. However, apart from 

spreading time/rate, it does not allow to make estimations with regards to the 

amount of water absorbed, unless a gravimetric test is integrated.  

1.5.10.9 General consideration 

Liquid absorption and transfer properties of fabrics are measured and evaluated to 

ensure human thermal balance and thermal comfort in a wide range of conditions. 

Benefits and limitations regarding their application are summarised below.  

 The gravimetric technique is simple to perform, allows recording of the 

time-dependency of the property measured in real time. The method does 

not fail to measure moisture properties of fabrics with irregular spreading 

behaviour, it is low cost and no specific devices are required, a part from the 

use of a balance and a timer. On the other hand, the gravimetric method 

does not provide information regarding the space-dependence of moisture 

distribution within the textile sample.   

 The main advantages of the observation-based technique are that the tests 

are no expensive and the use of sophisticated apparatus is not required. 

However, the method is highly prone to subjective errors and variations. 

Because of this, measurements of materials with high absorbency do not 

lead to repeatable results.  

 Similar to the gravimetric method, the optical method allows recording the 

time-dependency of the property measured in real time. Additionally, 

because manual operation is reduced, the testing accuracy is improved. 
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However, inconsistencies regarding the light properties of the environment 

in which the test is performed can affect the end results. The tests are not 

suitable for dark-coloured fabrics and for materials presenting different 

structures within the same fabric. The uneven spreading of the water makes 

difficult liquid detection in the fabric, i.e. the exact location where liquid 

spreading stops. Finally, the spreading area detected at the fabric surface 

does not necessary related to the volume of the water absorbed.  

 The electrical method allows indirect measures of water spreading in fabrics 

where detection of moisture is difficult if performed with other methods, 

such as dark-coloured fabrics and fabrics with very high absorbency. 

Nevertheless, the method is not suitable for conductive materials. The use 

of sodium chloride as wetting solution can oxidise the electronic parts of the 

apparatus used, which can cause frequent damage of the device (expensive), 

as well as reduce the accuracy of the test. Finally, the results may vary in 

relation to the texture of the fabric, since it can affect the contact between 

the fabric and the sensors.  

 Using a temperature-based method it is possible to record the time-

dependency of the property measured in real time. The method is applicable 

to fabrics with irregular spreading properties. It is versatile, in that it is not 

affected by the physical appearance of the material tested. The manual 

manipulation is reduced; this improving the testing accuracy. Nevertheless, 

fabric roughness can affect the contact between the temperature sensor 

and the fabric, this affecting the test results. To improve testing accuracy, 

the climatic environmental conditions should be highly controlled. 

In general, when performing a material test to measure liquid moisture absorption 

and transport, it is necessary to improve testing sensitivity, reproducibility and 

accuracy. More attention should be paid to the experimental set-up, in order to 

assess whether it simulates the conditions in which heat and mass transfer occur, 

i.e. in the clothed body under exercise-induced sweat production conditions. Finally, 

the data generated by the objective test methods should be validated by specific 

human tests.  
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1.5.11 Level 2 – Manikin testing 

When textile materials are assembled into clothing, the measurement of thermal 

insulation and water-vapour resistance is performed with the use of thermal 

manikins. The first manikin was constructed by the US Army in the early 1940s 

(Goldman 1974). ‘Charlie 1’ was the first thermal manikin in the world to perform 

walking action and over the years manikins have been improved.  

Thermal manikins can be classified into three categories: (1) static, (2) dynamic, (3) 

dynamic and sweating. Thermal insulation and evaporative resistance of clothing 

can be measured by calculating the amount of energy that needs to be transferred 

to manikin’s body in order to maintain his ‘skin temperature’ constant at given 

values. The procedure of clothing measurement by means of thermal manikin is 

standardized in the international standard BS EN ISO 15831:2004 and in ASTM 

F2370.  

Thermal manikins are relatively rare and this makes their use more expensive, 

compared to textile instrumental evaluations, but, on the plus side, they lead to 

more practical results. Firstly, given that the garment is fitted to a human-body 

shape, it is possible to look at the impact that anatomical factors and air gap play on 

thermal and evaporative resistance of clothing. The set-up also allows 

measurements of thermal properties of a multilayer clothing system, taking into 

consideration, skin-to clothing air gap as well as the air gap between clothing layers. 

With a dynamic manikin (and/or using fans) it is possible to take into account the 

effect that air movement, due to body motion, has on thermal insulation and 

evaporative resistance. Additionally, as in cold environments and for protective 

purposes different fabrics and reinforcements layers are used in the clothing system, 

results from manikins provide information to optimise materials and clothing design, 

in order to maximise thermal balance and comfort when wearing the full ensemble. 

For these reasons, measurements of dry and evaporative heat loss obtained from 

manikins can give a better representation of body heat loss, compared to material 

tests. 
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1.5.12 Level 3 – Human testing 

Due to the complex interaction between environmental, human (physiological and 

perceptual factors) and clothing factors, clothing performance cannot be 

comprehensively described by material and manikin tests only (You et al., 2002). For 

this reason, human evaluations are often conducted, with the purpose to 

investigate the effect of clothing properties and performance on human responses, 

as well as to validate material tests.  

1.5.12.1 Scales of measurement 

The direct study of human sensations and perceptions often requires the use of 

subjective rating scales. There are two main dimensions that comprise all sensations 

produced by the fabric-skin contact. One dimension is qualitative (descriptive) and 

relates to the sensory attribute that is perceived e.g. wetness, roughness or 

stiffness. The other dimension is quantitative and relates to the magnitude of the 

perceived sensation, e.g. very wet, slightly wet, damp and dry (Cardello et al., 2003). 

Psychophysical scaling is an example of the second dimension, where participants 

are asked to give a number based on the characteristics of the investigated object 

(Li 2001). There are 4 types of scales: nominal (categorization), ordinal (ranking), 

interval (perception, attitude measures) and ratio (most objective measurement 

results).  

Nominal 

Nominal scales are used for labelling variables, without using any quantitative 

values. Some examples are reported in Figure 26. These scales do not have any 

numerical significance. A sub-type of nominal scale presenting only two categories 

(e.g. male/female) is defined dichotomous.  
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Figure 26 Examples of nominal scales. 

 

Ordinal scales 

When using ordinal scales the assessor is asked to rank or compare the fabrics in 

order. With ordinal scales, in fact, the order of the values is important and 

significant; however, the difference between values is unknown. Ordinal scales are 

typically measures of non-numeric concepts, such as sensation or satisfaction. Likert 

Scales are examples of ordinal scales (Fig 27). The number of categories is usually 

between 7 and 9, but could be larger. However, when using fewer categories a loss 

in the discrimination sensitivity could occur as in the scale introduced by Hollies et 

al. (1979), which only presented 4 categories (4 = partially, 3 = mildly, 2 =definitely 

and 1 = totally). Another important aspect to consider is the appropriate selection 

of the descriptor in relation to the corresponding numerical value. For instance, in 

the example reported in Figure 25, it is not clear what the difference between 

‘definitely’ or ‘totally’ is. Ordinal scales can be used in paired comparison tests, 

where two fabrics are given to the assessor at the same time and he/she is required 

to select one according to the required criteria. Schneider et al. (1996) used the 

paired comparison test to investigate the coolness sensation of fabrics made from 

different materials and found that it was effective in differentiating between fabrics 

with different moisture absorption behaviours. In this way, participants can easily 

compare two items at a time without the need of memorising what has been rated 

previously. However, the paired comparison method requires a large number of 
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tests and is time-consuming. Furthermore, it cannot provide an estimate of the 

magnitude of the perceived difference between samples. 

 

Figure 27 Example of Likert scale (ordinal scale) introduced by Hollie et al 1979.  

 

Interval scales 

Interval scales are numerical scales in which the order, as well as the exact 

difference between values, is known. The classic example of an interval scale is 

Celsius temperature or time, since the difference between each value is the same 

and increments are known, consistent and measurable. Interval scales have been 

frequently used for psychophysical measurements. For instance, the studies of 

Plante et al. (1995b), and Kaplan and Okur (2009) were based on the use of interval 

scales to assess the magnitude of perceived wetness. In this case, the assessors 

were asked to score their sensation (wetness) along the numerical value continuum 

by choosing one of several descriptive categories. This method appears simple, 

versatile and easy for the participants to use. However, as mentioned, interval 

scales imply that the points on the numbered category represent equal intervals, 

which is not the case when measuring sensations or perceptions, such as wetness or 

discomfort, for instance. Another problem is that the participants tend not to use 

the end-most categories, which can reduce the sensitivity of the measurements.  

There are two main kinds of interval rating scales: comparative versus no 

comparative; this distinction is made based on whether references fabrics are given 

or not. Plante et al. (1995) for instance adopted a comparative interval rating scales 

in which dry and very damp fabrics (corresponding to the two extremes) were 
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provided as extreme references. Interval rating scales can be further classified in 

balance versus unbalance and forced versus unforced. In a balance scale, an equal 

number of favourable and unfavourable categories are provided and vice versa for 

the unbalanced scales. In the balance scale, the middle is generally a neutral point 

and should be used if the assessors feel neutral about a sample. For this reason it is 

also important to consider the use of forced or unforced scales. In cases in which it 

is assumed that some assessors may have a lack of knowledge on the matter to be 

rated, unforced scales should be used, otherwise assessors may often mark the 

midpoint of the scale (neutral) implying that they have no comments to make; in 

fact leaving the freedom to give such a response may influence the accuracy of the 

test.  

1.5.12.2 Sensory test method - Psychophysical approach 

Psychophysics was introduced by Fechner and it refers to the mathematical 

relationship between the physical properties of a stimulus (matter) and the 

sensations evoked (brain process) (Laming 1995).  

Threshold experiments 

The main concepts of the psychophysics approach are the absolute and the 

difference threshold. The absolute threshold, or limen from the Latin, (AL), is the 

minimum value of physical stimulus necessary to evoke a sensation (Sweeney and 

Branson 1990a). The difference threshold, or limen, (DL) is the minimum amount of 

stimulus required to produce just a noticeable difference (JND) in the sensation. 

There are three psychophysical methods for determining AL and DL: the method of 

limits, the method of adjustment and the method of constant stimuli (Sweeney and 

Branson 1990a). All three methods ask the participant to simply respond ‘yes’ or 

‘no’, ‘greater’ or ‘less’ to the sensations evoked by different stimuli. Among these, 

the method of constant stimuli has a higher degree of accuracy, because the stimuli 

are presented in random order which eliminates constant errors (Jeon et al. 2011). 

In 1834 Weber proposed that the difference threshold (DL) of a stimulus (Δϕ) is a 

constant fraction of the stimulus intensity (ϕ). This is known as Weber law and it 

has been confirmed for a wide range of stimulus intensities and sensory modalities. 

It is expressed as: 
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𝛥𝜙

𝜙
= 𝐾 

K is the Weber’ fraction, which is almost constant; it indicates the human power to 

detect signals and to discriminate sensations. For examples, it has been indicated 

that Weber’s fraction of touch (heaviness) is 0.02 (arbitrary unit); this means that a 

2% change in the heaviness of a particular matter is enough to detect a change.  

Sweeney and Branson (1990a) applied the method of constant stimuli to study 

wetness perception of fabrics. In the study of Jeon et al. (2011), it was 

demonstrated that the psychophysical method can successfully enable the 

evaluation of moisture perception of novel functional fabrics where psychological 

scaling methods have failed. Fechner investigated the relationship between the 

physical strength of a stimulus and its strength as perceived by humans. Assuming 

that the Weber’s fraction was valid, he proposed that the total change in sensation 

between two intensities could be indirectly quantified by counting the number of 

JNDs (Tang et al., 2014). His work was based on the belief that when a JND is added 

to the stimulus, the psychological sensation increases by a constant size (Jeon et al. 

2011). However, nowadays this is not considered an accurate approach, as 

psychological and physical measures have units of varying sizes (Jeon et al. 2011). 

Therefore, the JND is a concept describing the difference in sensation given by two 

stimuli separated by the DL, rather than as a magnitude of a sensation.  

Non-threshold experiments 

Magnitude estimation is a non-threshold technique. The assessor is first presented 

with a sample and the magnitude of the sensation of the first sample is either 

assigned by the investigator or by the assessor. The assessor is then asked to assign 

a randomly chosen number of the subsequent samples which is proportional to the 

first sample (Kingdom and Prins 2012). For magnitude estimation approaches, 

ordinal scales, interval scales or visual analogue scales (VAS) are used.  

When using a VAS, participants are asked to score the intensity of a given stimulus 

by marking a point on a horizontal line. The length of these scales (line) varies 

between 10 and 15 cm with anchor points at the two extremes. The marks made by 
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the participants on the scale are then converted into numbers by measuring their 

position on the scale. Ackerley et al. (2012), for example, used a VAS to measure the 

magnitude of perceived wetness in fabrics. 

1.5.12.3 Skin regional studies  

Human skin regional studies involve investigations of fabrics on restricted body 

areas. These investigations typically adopt a mechanistic research approach, 

focusing on one or a limited number of textile properties and are normally 

performed under resting conditions. 

A number of skin regional studies have been conducted to investigate sensations 

and perceptions of wet textile materials. Within these studies, differences related 

to the method used can be observed. Li et al. (1992a) studied wetness perception of 

wool and polyester materials. Participants were asked to score wetness sensation 

using a scale ranging from ‘definitely dry’ to ‘very damp’. The fabrics were assessed 

on the inner forearm and, to prevent any visual influence, participants were blinded. 

The fabrics were applied in static contact with the skin and the materials were 

presented in five different wet conditions, according to 0 %, 2%, 4%, 10% and 15% 

excess of the conditioned weight. Using a similar experimental methodology, Plante 

et al (1995a) compared wetness perception between fabrics with different fibre 

composition (wool, wool/polyester blend and polyester). In this case, a 5-point 

wetness scale, ranging from ‘dry’ to ‘very damp’, was used. Furthermore, before the 

scoring test, reference fabrics, corresponding to the two extreme sensations 

reported on the scales, were presented to the participants. Sukigara and Niwa 

(1997) applied a paired comparison method to study wetness sensation of fabrics. 

The study comprised two different application conditions. In one condition, pre-

wetted fabrics were applied in static contact with the skin on the upper back. In 

another condition, dry fabrics were applied in both static and dynamic contact on 

the wet skin of the inner forearm. Sadikoglu (2005) measured wetness perception 

of six fabrics, containing different amounts of superabsorbent fibres and different 

amount of water were added: 2%, 4%, 6%, 8%, 10%, 15%, 20% and 30% of the 

conditioned weight. A five-point scale was used (1 definitely dry; 2 barely dry; 3 

slightly damp; 4 moderately damp; 5 very damp). The fabrics were applied in static 
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contact with the skin on the inner forearm. A similar approach, but a different scale 

was used by Yokura and Sikigara (2010). The wetness perception scale presented 5 

points with ‘1 very dry’, ‘2 slightly dry’, ‘3 neutral’, ‘4 slightly wet’, ‘5 very wet’.  

Although these skin regional studies apply the same scaling method to assess fabric 

wetness perception, the scales present different descriptors and level of resolution. 

Some of these studies included participants of both sexes, other studies only male 

participants. Furthermore, the experiments were performed in different 

environmental conditions ranging from 20°C to 35°C and relative humidity from 25% 

to 75%. The amount of water added to the fabrics varied across studies, as well as 

the type of contact, i.e. active versus passive. As such, making comparisons 

between results obtained from different studies seems complex.  

One of the main aims of skin regional studies is to explain moisture perceptual 

responses in relation to results obtained from material tests (moisture transfer and 

absorption). Jeon et al. (2011a) studied wetness perception of four different fabrics 

(100 cm2) made of cotton, polyester, high-performance polyester (micro-channel 

cross section, to improve wicking) and high-performance polyester/polypropylene 

blend (double-sided fabric with propylene skin-side and polyester outside). Ten 

female participants evaluated two levels of fabric wetness: 0.5 and 1.5 mL. The wet 

fabrics were applied statically on the inner forearm. Within the same fabric, no 

differences were perceived between the two water amounts added. However, at 

same water content, the polyester and high-performance polyester fabrics were 

perceived wetter than the cotton and polyester/blend fabrics. Although these 

differences were not statistically significant, the authors speculated around the 

reasons behind the differences. A first observation was made with regards to the 

fact that the fabrics were treated with the same absolute amount of water and had 

the same volume (cm3). Nevertheless, despite this, fabric density was different and 

this was considered as potential cause for the reported differences in wetness 

perception. Additionally, another contributor could have been the magnitude of 

contact between the fabric and the skin. Plain and smooth structures, as the 

polyester and the high-performance polyester, could have had higher number of 

contact points with the skin, causing skin clinging when wet and evoking greater 
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stickiness sensation, this associated to higher wetness perception (despite same 

water content).  

In another study, Niederman & Rossi (2012) assessed thermal sensation, wetness 

perception and comfort of three different fabrics: polyester, cotton and blend 

(modacrylic, polypropylene, polyamide). The fabrics were wetted with 2 mL·240 cm-

2 of water (0.008 mL·cm-2) and afterwards, different amounts of water were allowed 

to evaporate to achieve, for each fabric, five different drying state: t0% (completely 

wet), t5%, t50%, t95% and t100% (completely dry). The time taken for each fabric to 

reach each drying state was calculated based on an infrared temperature-based 

method developed by the authors. The fabrics were then applied on the inner 

forearm of 12 participants. In both blend and polyester fabrics (both hydrophobic), 

no differences in thermal sensation (all rated as cold/wet) were observed between 

the first four drying states (t0%, t5%, t50%, t95%). In these fabrics, only the drying 

state t100% was perceived warmer/dryer. On the other hand, the cotton fabric 

showed an earlier step change in sensation, which was explained by the author in 

light of the slower drying and hygroscopic properties of the textile. 

In the past, it was common to compare the effect of fabric hygroscopicity and 

hydrophilicity of natural and synthetic fibres (Yoo and Barker 2004; Liya Zhou et al. 

2007; Qing Chen et al. 2010). However, nowadays more attention has been given to 

newly high-performance synthetic fabrics. These fabrics claim unique characteristics 

that distinguish them from conventional ones. In fact, these materials are non-

hygroscopic but have good wicking properties. The latter should result in excellent 

moisture management properties, especially during heavy sweating, compared to 

conventional fabrics made from natural fibres. In this regard, Jeon et al. (2011a), 

investigated the difference threshold (the minimum amount of stimulus change 

required to produce a difference in the perception of wetness) of four experimental 

fabrics: cotton, polyester, high-performance polyester, polyester/polypropylene 

blend. It was found that, in simulated low sweat condition (standard stimulus 0.5 

mL of water per 100 cm-2, 0.005 mL·cm-2). The cotton fabric presented the highest 

different threshold (0.27 ml of water per 100 cm-2), whereas high-performance 

polyester had the lowest (0.19 ml of per 100 cm-2). The authors reported that due 
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to the initial faster absorption rate, in the cotton material water diffused through 

the specimen quickly and evenly, this potentially explaining why the participants 

hardly perceived the increment of water in this fabric. Conversely, the participants 

readily detected water content changes in the high-performance polyester material. 

According to the authors, due to the lower absorption rate, it is possible that the 

water added to the high-performance polyester did not readily diffuse through the 

fabric and it was held as free liquid at the surface; this likely causing the lower 

difference threshold. The provided explanations can be considered valid since in 

this experiment water was added to the inner side of the fabric with a pipette and, 

after this, the fabric was immediately applied to the skin. Therefore, using this 

approach, fabrics were not in steady-state of absorption. For high sweat conditions 

(1.5 mL of water per 100 cm-2, 0.015 mL·cm-2) the high-performance polyester 

showed the highest difference threshold (0.54 mL·100 cm-2) whereas the high-

performance polyester/polypropylene blend showed the lowest (0.356 mL·100 cm-

2), whereas the cotton was between the two (0.476 mL·100 cm-2). In line with this, 

the high-performance polyester fabric presented the fastest wicking rate (faster 

transport of water from one side to the other side of the fabric), which made 

difficult the perception of the water increment in the fabric. Based on these results, 

the authors concluded that, due to the fastest initial absorption and the highest 

different threshold, the cotton material would be more comfortable in the initial 

stage of sweating and/or in light sweat conditions. Conversely, at higher sweat level, 

the high performance polyester fabric, would feel drier than the other fabrics, due 

to the fastest wicking rate and largest different threshold in moisture perception.  

Recently, Tang et al (2014a) conducted a skin regional study to characterise 

moisture absorption and transport properties of 20 types of woven fabrics, 

comprising different fibre composition, yarn type and fabric construction. The 

results from material testing were then compared with wetness sensation 

responses from human testing. Liquid moisture transfer was assessed by measuring 

absorption rate applying a gravimetric horizontal wicking test and the vertical 

wicking test according to AATC-79 Absorbency of Textile. Fabric absorbency was 

assessed with the GATS test. Moisture management properties were measured with 
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the MMT, and absorption capacity was determined with a gravimetric sink test, 

according to Tang et al (2014a). To assess wetness perception of the fabrics, 

participants of both sexes were asked to slide and swipe their index forefinger 

around the pre-wetted portion of the sample. Wetness was scored using a 5 points 

scale, ranging from dry to very wet. The fabrics were wetted with the same absolute 

water amount of 0.1 mL. Fabric structure had a significant impact on wetness 

perception, with plain structures being perceived wetter than the others (2/2 twill, 

1/5 twill, 2/2 rib, 4/4 rib). In this regard, the authors suggested that the plain 

structure has more intersection points along the yarn and higher yarn tortuosity (i.e. 

more ups and downs along the yarn), resulting in smaller inter-yarn voids for water 

absorption. Furthermore, a plain structure tends to be thinner with lower porosity 

among the five structures, which results in lower absorption capacity and less inter-

yarn wicking. On the other hand, no significant effect of yarn on wetness perception 

was observed. Fabrics with an absorption time longer than 60 seconds (AATC-79 

Absorbency of Textiles), presented the highest wetness perception. A strong liner 

positive relation was observed between the horizontal wicking area and wetness 

perception. This relation was mainly driven by fabric thickness, given that horizontal 

spreading area and wetness perception linearly increased with the increase in fabric 

thickness. The authors suggested that, due to the lower thickness, the larger 

horizontal wicking area allowed faster evaporation and skin cooling when in contact 

with the participants’ finger. The higher skin cooling, in turn, affected wetness 

sensation. However, this can be true in an exercise condition, where sweat has 

enough time to evaporate and provide a skin cooling sensation. Conversely, in this 

study, the skin interacted with the wetted fabric only for 30 seconds and the fabrics 

were pre-wetted with water at room temperature, therefore, in this condition, it 

seems unlikely that liquid evaporation provided any perceivable cooling. 

Nevertheless, what seems more reasonable to point out is the fact that, due to 

differences in thickness, fabrics presented different volume, therefore different 

capacities to accommodate the added water. Given that the same absolute water 

content was added, the fabrics with lower thickness and volume presented higher 

relative water content and were more saturated than the thicker ones, the latter 

leading to differences in wetness sensation. A strong significant relation was 
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observed between wetness perception and absorption capacity of fabrics. Although 

a strong predictive power was identified, the relation between wetness sensation 

and absorption capacity was not linear. Absorption capacity was expressed in g·m-2, 

and given the observed impact of fabric thickness (and volume) on wetness 

perception and horizontal wicking, perhaps a better prediction model could be 

obtained if absorption capacity is expressed as g·m-3. No relations were observed 

between wetness perception and the GATS test, the MMT results and vertical 

wicking measurements. The latter could have been due to incongruences between 

the experimental setups characterising the used material testing and the human 

testing.  

1.5.12.4 Whole body studies  

Human testing also includes experiments focusing on the impact that a whole 

garment has on a large body area, i.e. upper or lower body, as well as the whole 

body. These studies are here defined as whole body studies. These kinds of 

experiments usually adopt a more applied research approach. Whole body studies 

allow investigations of the combined effect of textiles and clothing factors on 

human responses in a wide range of climatic conditions. These investigations are 

typically performed under exercise conditions; therefore the impact of physical 

exercise and personal factors is also taken into account.  

In a whole body experiment, Holmer (1985) compared the heat exchange and 

thermal insulation of two clothing ensembles, one made of wool, and the other of 

nylon. Participants wore the two ensembles during exercise for 60 min, followed by 

60 min of recovery. It was found that the wool garment absorbed more sweat than 

the nylon garment (245 g versus 198 g). However, it was unclear whether the higher 

amount of sweat absorbed by the wool garment was due to the hygroscopicity of 

the fibre itself or to other fabric factors, such as thickness and volume. In fact, it is 

likely that the wool garment may have had a slightly higher thickness that the nylon 

fabric, therefore higher volume to collect more moisture. In support, Bakkevig and 

Nielsen (1994) found that a wool underwear absorbed more sweat (39 g) than a 

polypropylene underwear (10g); however, the wool garment was 1.95 mm thick and 

the polypropylene 1.41 mm, suggesting fabric thickness as contributing factor. The 
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main outcome of these studies was the role of fabric hygroscopicity as a major 

factor in reducing moisture build-up in the microclimate during the transient state 

(Hong et al., 1992; Yasuda et al., 1994). Nevertheless, it was not investigated 

whether the reduced wetness and humidity, due to fabric hygroscopicity, 

corresponded to changes in physiological and/or perceptual human responses, i.e. 

sweating and sensation of wetness, respectively.  

Later on many researchers investigated the impact of clothing fibre type on 

physiological responses, such as body core and skin temperature as well as clothing 

microclimate (Behmann 1971; Holmer and Elnas 1981; Li et al. 1992a; Li 2005). Early 

work with synthetic clothing has either shown no difference or an increased core 

temperature when wearing clothes made of synthetic fibres compared with cotton 

fibres (Ha et al. 1995b; Ha et al. 1999). Other studies observed no differences in 

thermoregulatory responses between different fibre contents and fabric 

construction (Gavin et al. 2001; Laing et al. 2008; Sperlich et al. 2013). On the other 

hand, several recent studies have shown a significant reduction in skin temperature 

with either a blend of synthetics (Roberts et al. 2007) or natural fibres (i.e., cotton 

and soybean) compared with cotton fibres (Dai et al. 2008). Controversial results 

between studies can be due to differences in the research methodology applied. 

The available studies adopt different environmental conditions, exercise protocol as 

well as participants’ sexes and fitness levels. The latter, besides leading to 

controversial results between studies, also makes unreasonable the comparison of 

results between different investigations. In this regard, Table 1 reports a number of 

experiments that have studied differences between garments made of synthetic 

and cotton materials (Ha et al. 1995a; Ha et al. 1995b; Ha et al. 1996; Kwon et al. 

1998; Gavin et al. 2001; Youngmin Jun et al. 2009; Brazaitis et al. 2010; De Sousa et 

al. 2014). From the table, large differences in the research methodology and 

conditions adopted can be observed.  
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Table 1 Selection of the research methodologies adopted by studies comparing natural and synthetic garments in whole body experiments. 
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Another aspect to consider when conducting whole body studies is the selection of 

the experimental garments. In this regard, there are two scenarios to take into 

account. First of all, if the purpose is to assess and compare garment functionality 

and to select the best performing one, from both physiological and perceptual 

viewpoints, matching fabrics for parameters which should be controlled is not 

relevant. On the other hand, if the aim of the study is to investigate the role of a 

specific property, e.g. fabric fibre content, it is of critical importance to match the 

garments for factors which might show misleading results, e.g. air permeability, 

thickness, garment fit. In this regard, a recent whole body study investigated the 

impact of fabric construction and fibre type on thermoregulatory and sensorial 

responses as well as clothing microclimate (Davis et al. 2017). The study compared 

three garments presenting different fibre contents such as 100% cotton, 50% 

cotton/50% soybean and 100% polyester. Eight male participants were recruited for 

the study which consisted of three running trials at 60% of the VO2max (~11 Km·h-1), 

at 32 °C and 35% relative humidity. In addition to differences in fibre content, the 

garments presented different fabric density and weight. Furthermore, the polyester 

material was claimed to facilitate ventilation, nevertheless air permeability values 

were not provided. No differences were found in physiological responses of core 

and skin temperature and heart rate between the three garments. Perceptual 

responses of skin wetness and thermal sensation were not different between the 

garments. The only parameter which was found to be affected was microclimate 

temperature at the chest, which was significantly different (~1 °C) in the polyester 

compared to the cotton garment, but it was not different compared to the blend 

fabric. Nevertheless, the lower microclimate temperature did not correspond to 

lower temperature sensation. The lower microclimate temperature was used by the 

authors to show that fibre type has an impact on microclimate temperature, this 

potentially leading to an improved sport performance. However given that 

unmatched fabrics were used, it is not straightforward to conclude whether the 

difference in local microclimate was caused by the fibre type per se, or by structure, 

weight or even by the claimed higher ventilation in the polyester garment. 

Additionally, since the lower microclimate temperature at the chest did not impact 
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skin temperature or thermal sensation, it seems unreasonable to hypothesise a 

potential impact on exercise performance, which was speculated by the authors. 

In whole-body experiments, a number of researchers have also looked at the 

sensorial responses occurring while wearing clothing, such as thermal, wetness and 

stickiness sensation as well as comfort. Wong and Li (2004) examined the 

relationship between human physiological (skin temperature and humidity) and 

sensorial (thermal and moisture sensations) responses in male and female 

participants wearing a tightly fitting garment during exercise. Participants were 

required to run on the treadmill for 20 min in an environmental chamber 

maintained at 29 °C and 65% relative humidity. Skin temperature was measured at 

the chest, abdomen, inner thigh, outer thigh, upper back and lower back. 

Participants were asked to report local thermal sensation and wetness perception 

as well as overall clothing comfort, for the same body areas. A strong linear 

relationship (average r2 = 0.96) was found between humidity and moisture 

sensation at all the studied body areas, however, the linear relationship between 

temperature and thermal sensation was relatively weaker (average r2 = 0.71). 

Clothing comfort was best described by thermal sensation at the outer thigh and 

humidity at the inner thigh (r 2 =0.76). This suggested that clothing comfort can be 

predicted on the basis of human physiological and psychological responses in 

relation to temperature/thermal sensation and humidity/moisture perception.  

Later on Li (2005), in a whole body trial, assessed thermal and moisture sensation of 

wet jumpers made of wool and acrylic. The fabrics presented same weight, 

thickness and structure and were both made hydrophobic using a chemical 

treatment. The experiment was conducted in an environmental chamber 

maintained at 20 °C and 80% relative humidity. The wetness of the garments was 

achieved by simulating rain in the chamber. Twelve male participants performed 20 

min of walking exercise on the treadmill. The presence of rain considerably 

decreased warmth sensation which started to recover as soon as the rain stopped. 

Interestingly, the drop in perception of warmth was greater in the acrylic compared 

to the wool jumper. Similarly, the perception of moisture increased very quickly 

during rain and continued to rise slowly after the rain has stopped. The dampness 
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sensation was stronger when wearing acrylic compared to the wool jumper. The 

study demonstrated that hygroscopic fibres can reduce and delay the resulting 

thermal and moisture discomfort sensations induced by humidity rise and 

temperature drop at the clothing outer surface.  

1.5.12.5 Considerations 

In skin regional studies, the effect of garment design, garment fit and seams is not 

considered. The pumping effect resulting from the body and air movement is 

neglected. Finally, the impact of the air gap and contact area between the body and 

the garment is not considered. Nevertheless, results from skin regional studies can 

provide fundamental knowledge regarding the principles governing heat and mass 

transfer in clothing and their impact on human sensorial responses. On the other 

hand, in whole body studies, it is difficult to isolate the effect of textile parameters 

from the effect of clothing and personal factors. Nevertheless, results from whole 

body studies can have an immediate impact on real use conditions.  

Overall, while the mechanisms underpinning wetness perception at skin level have 

been largely investigated, fewer studies have examined how textile and clothing 

factors modulate cutaneous sensations arising from the presence of wetness and 

humidity. Furthermore, due to the significant impact of tactile cues on wetness 

perception, skin regional studies should also examine dynamic fabric-to-skin contact 

conditions. Additionally, most of the available skin regional studies have 

investigated skin wetness perception using pre-wetted fabrics as stimuli. When 

fabrics are pre-wetted with water at room temperature, skin cooling sensations 

mainly occur from the increased thermal conductivity of the fabric in contact with 

the skin. Nevertheless, not many studies have investigated skin wetness perception 

in exercise conditions, where skin cooling sensations arising from sweat evaporation 

can also play a role. With regard to transient conditions, moisture in fabrics is a 

critical factor affecting comfort, in particular after exercise, when the reduction in 

metabolic heat production and the higher thermal conductivity of wet clothing can 

cause post-exercise chill drop. In light of this, moisture sensation in textile materials 

should be investigated during physical activity as well as during active and/or 

passive recovery periods. Finally, although the critical impact of skin and clothing 
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wetness on human comfort, performance and health has been well established, the 

spatial and temporal development of clothing wetness (sweat-induced) has not 

been investigated. Specifically, it is unknown how much of the sweat produced 

during exercise is absorbed by the garment, how this distributes across different 

garment zones and what level of moisture saturation is reached. 
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1.6  Summary of the literature review 

From this literature review it was concluded that:  

 The environment-human-clothing system is a complex organisation 

characterised by the interaction of its various factors. The interaction of 

these numerous factors causes the initiation of human thermal responses 

and impacts the way in which clothing performs.  

 

 Clothing is an essential source of protection for the human body, however 

providing a physical barrier between the skin and the environment it can 

impair body heat loss, affecting body thermal balance and causing thermal 

as well as sensorial discomfort.  

 

 The presence of wetness at the skin-clothing interface represents one of the 

highest sources of discomfort and, in extreme conditions, can also have 

serious implications in terms of health and survival.  

 

 A number of studies have been conducted to understand the complex 

sensory modalities underlying wetness perception at skin level. With regards 

to clothing, extensive research has been undertaken to study the textile 

parameters involved in the process of moisture transfer and absorption. 

Nevertheless, the link between fabric properties and human responses 

related to fabric wetness is poorly understood.  

 

 Material test methods, conducted with specific apparatus, are commonly 

applied to evaluate objective improvements in fabric heat and mass transfer 

properties. However, the impact of textile innovations on human 

thermophysiological and sensorial responses is unclear and sometimes 

inconclusive.  
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 Maps of sweat rate patterns across the human body have been made 

available. However, crucial information regarding the amount of secreted 

body sweat that is absorbed and retained by the worn garments and on how 

this distributes across different garment regions is still unknown. 

 

  A close cooperation is needed between physiologists, sport scientists, 

textile engeneers and clothing designers in order to translate human 

physiological and sensorial outcomes into garments with efficient thermal 

and moisture features. 

1.7  Research aims 

Based on the limitations outlined in this literature review, the aims of this thesis will 

be:  

1. To identify and examine the textile parameters that modulate cutaneous 

sensations and perceptions related to skin and clothing wetness as well as 

related sensations of discomfort.  

2. To characterise sweat absorption, distribution and the corresponding 

moisture saturation percentage in an upper body garment, in conditions of 

exercise-induced sweat production.  

3. To develop a comprehensive research methodology to study the impact that 

textile moisture parameters have on human responses (sensorial and 

physiological), individually as well as in combination with clothing factors. 

1.8  Rationale 

The goal of the sportswear company adidas is to maximise athletes sport 

performance and provide the consumers with the best imaginable apparel product. 

This can be achieved by improving clothing functionality through its impact on the 

main aspects of wear comfort and human performance. As such, this thesis 

proposes a human-based paradigm as rationale for clothing evaluation and 

development.  
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2.1 Introduction 

This chapter provides an overview of the methodology developed and applied to 

answer the research questions highlighted in Chapter 1 and throughout this PhD. 

The current research is articulated in two stages. In the first research stage, the 

impact of textile properties on human sensorial and perceptual responses was 

investigated adopting a mechanistic approach (Study 1 and Study 2). In fact, the 

impact of specific textile parameters on human responses was isolated from the 

effect of clothing factors, such as fit and design, as well as personal factors and 

exercise.  

Before moving to the second research stage, In Study 3 we addressed potential 

biases (anchoring biases) that could occur when sensorial scores are repeatedly 

reported by participants in transient exercise conditions. This study allowed 

recognition and mitigation of the bias, which was relevant for the interpretation of 

future perceptual scores obtained in transient exercise conditions, and to improve 

scientific rigour. The data collection of this study was conducted in the adidas 

headquarter, adidas FUTURE Sport Science Team, in Herzogenaurach, Germany.  

In the second research stage, a more applied approach was adopted in order to 

investigate the combined impact of personal, textile and clothing factors on human 

responses in conditions of exercise-induced sweat production (Study 4 and Study 5). 

In these studies, a warm environmental condition (27 ºC, 50% Rh) was targeted and 

a single layer clothing ensemble was used, including a short-sleeved upper garment, 

shorts, and short socks. The investigations mainly focused on human outcomes 

resulting from the interactions with the upper garment, as well as the upper 

garment performance.  

Study 6 consisted of a methodological investigation, mainly involving regression 

analyses between garment regional sweat absorption (g·m-2) and temperature (ºC). 

We hypothesised that garment regions with greater sweat content will result in 

higher temperature drop from environmental temperature. Based on this principle, 

the end goal was to assess whether infrared thermography could be used as an 

indirect method to estimate garment regional moisture content, in a non-
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destructive and cost-effective way, as compared to the gravimetric method applied 

in Study 5. 

2.2 Ethical Clearance 

The laboratory studies reported in this thesis were all approved by Loughborough 

University Ethics Committee. The procedure to obtain Ethical approval involved the 

completion of a Risk assessment, experimental protocols and study’s written 

information sheet. For all the experimental studies the following generic 

experimental protocols were adopted: 

 G10/P10: Regional sensitivity to a cold and warm stimulus over the body 

surface. 

 G03/P13: Thermoregulatory effect of warming in air. 

Following reading the information sheet that described the purpose of the study, all 

participants gave written informed consent for participation in the study and 

completed a health screening questionnaire (Appendix A, B and C). All studies were 

conducted in accordance with the World Medical Associations Declaration of 

Helsinki for medical research using human participants (WMA, 2008). 

2.4 Participants recruitment 

For all the experimental studies, participants of Western European origin were 

recruited and the age range was set between 18-33 years. This was to reduce any 

systematic error due to ethnicity and age-related differences in thermoregulatory 

responses, skin properties, and thermal as well as tactile sensitivity. Other inclusion 

criteria for participation were: 

 No history of neuromuscular and cardiovascular disease and sensory-related 

disorders. 

 No history of muscle-skeletal injury in the previous 12 months to the study. 

For Study 1 and Study 2, participants of both sexes were recruited from the 

Loughborough University student cohort. In these two experiments participants did 

not perform any physical exercise, however, since the studies involved the use of 



  CHAPTER 2 – Experimental methodology 
 

90 

functional fabrics, recreationally active (at least 4-6 hours per week) participants 

were recruited. 

For Study 3 and Study 4, young male recreationally active participants (strength and 

conditioning as well as aerobic exercises at least 4 times per week) were recruited 

from the participants’ database used at adidas FUTURE Sport Science Team (Study 3) 

and from the Loughborough University student cohort (Study 4). 

For Study 5, long distance male runners, with a maximum oxygen uptake (VO2max) > 

55 mL·kg-1·min-1 were recruited from the Loughborough University student cohort.  

2.5 Regional skin studies 

Study 1 and Study 2 were performed in a thermoneutral environment maintained at 

~25 °C, relative humidity ~50% and air velocity < 0.05 m/s. In these two studies, the 

experimental fabrics used were pre-wetted by the investigator and applied to a 

single pre-defined body area (upper back in Study 1 and inner forearm in Study 2). 

With regards to the wetting procedure developed, approximately 2 hours before 

the experiment, each fabric was positioned onto a plastic film and water was added 

by using a micropipette (SciQuip LTD, Newtown, UK) (Fig 1). When the water was in 

equilibrium with the fabric, each fabric was placed into a plastic bag which was 

securely sealed to prevent water evaporation. A detailed description of this 

procedure is in the ‘Method’ section of Study 1 (Chapter 3) and Study 2 (Chapter 4). 

 

Figure 1 Fabric wetting procedure. 
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2.6 Whole-body, exercise studies 

Three experimental studies were performed under exercise-induced sweat 

production conditions (Study 3, Study 4 and Study 5). Short sleeved upper garments, 

presenting a same regular fit were used in the whole body studies (Fig 2). However, 

the garments differed in fibre composition, thickness, air permeability and knit 

structure across the three studies. Material specifications of the garments are 

reported in the ‘Method’ section of Study 3 (Chapter 5), Study 4 (Chapter 6) and 

Study 5 (Chapter 7). 

 

Figure 2 Front and back picture of the experimental garments used in Study 5. 
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The type of activity selected was running exercise and the intensity, as well as 

duration, varied across the three studies. In both Study 3 and Study 4, participants 

were asked to self-select, in a pre-test, a fixed speed they could run comfortably for 

1 hour. In study 3 the duration was of 50 minutes in total, whereas in Study 4 

participants run for a total of 30 min. In Study 4, a shorter running duration was 

selected for reasons related to the applicability of the results as well as for safety 

reasons. Specifically, a duration of 30 minutes was selected to simulate the type of 

running activity typically performed in an indoor environment e.g. at the gym. 

Another reason contributing to the selection of a shorter exercise duration was 

linked to the applied air flow which, for methodological reasons (described in Study 

4), was set to negligible levels (0.2 m·s-1). In fact, in absence of substantial air flow, 

pilot testing showed a fast rise in Tcore  to values set as ‘unsafe’ in the Ethical 

clearance (absolute values above 39 ºC). As such, shorter exercise duration was 

preferred.  

In Study 5 participants ran for 50 min at the same individually fixed speed, 

corresponding to 70% of VO2max (maximum oxygen uptake). This exercise intensity 

was selected to obtain results which could be related to previous studies (Smith and 

Havenith 2011; Smith and Havenith 2012). The experiments in study 5 were 

conducted in a small wind tunnel (1.5 m·s-1 wind speed) located in a climate-

controlled chamber maintained at 27 ºC and 50% relative humidity (Fig 3). 

 

Figure 3 Participant running on the treadmill located into the wind tunnel which was placed in the 
environmental chamber. 
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2.6.2 Garment local sweat absorption 

In Study 5, analyses of T-Shirt local sweat absorption (ABSlocal) were conducted in 22 

T-Shirt regions, 12 for the front and 10 for the back. The relevant sweat absorption 

T-Shirt zones were selected based on temperature patterns highlighted in infrared 

pictures (conducted in pilot testing), obtained once the T-shirt was taken off the 

body. At the end of each run duration, analyses of local sweat absorption were 

conducted by cutting up the pre-marked T-Shirt regions and weighing the individual 

sections before and after drying. Details regarding the determination of garment 

regions and local sweat absorption measurements are reported in the ‘Method’ 

section of Study 5 (Chapter 7). 

2.6.2 Infrared imaging procedure 

The upper garments presented 21 regions of interest (ROI) in total. A procedure 

similar to that developed by Fournet (2013) was adopted to obtained quantitative 

temperature data of the ROI and to provide average thermal patterns (temperature 

distribution across the garment), visually accessible with a colour scale.  

2.6.2.1 Infrared thermal camera 

A FLIR T620 (FLIR Systems Inc. Wilsonville, USA) infrared camera was used. 

Specifications are reported in Study 6, Chapter 8. 

2.6.2.2 Image acquisition 

A standardised procedure was developed for the acquisition of the infrared images. 

The procedure is described in Study 6 (Chapter 8). For the image acquisition, the 

garment was fitted to a custom-made T-Shirt-like shape stand (Fig 4). The stand was 

made of wood and treated with hydrophobic finish to prevent water transfer from 

the T-shirt to the stand. 
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Figure 4 Custom-made T-Shirt-like shape stand, used for the image acquisition of the experimental garment in 
Study 5. 

 

2.6.2.3 Image pre-processing 

The following five parameters were required for the image pre-processing: 

 Object emissivity (ɛ) 

 Relative humidity (rh) 

 Ambient temperature (Ta) 

 Object distance (Dobj) 

 Reflected ambient temperature (Trefl) 

Fixed values were used for object emissivity (ɛ = 0.98) and object distance was 

consistently kept at 2 m perpendicular from the camera. Relative humidity and Ta 

were adjusted in the camera’s settings, according to the value recorded in the 

climatic chamber. Image pre-processing was performed using the software FLIR 

Tools (version 2.0.11333.1001, 2001, ©FLIR Systems), where the different 

parameters are implemented for each thermogram. The software was also used to 

estimate reflected ambient temperature (Trefl) on the thermogram. Using the 

software FLIR ThermaCam Researcher Pro 2.8 (FLIR Systems Ltd., West Malling, 

Kent, UK), the fully adjusted thermogram was saved as Matlab file (.mat) for the 

image processing. 
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2.6.2.4 Image processing 

The development of the image processing procedure was performed using the 

software MATLAB 7.8.0 (MATLAB R2013a, The MathWorks Inc., Natick, USA). 

Matlab scripts modified from those developed by Fournet (2013) were used for the 

analysis. The steps involved in the image processing are reported below.  

Before processing the images, the matrix values of each thermogram were 

corrected from Kelvin into degrees Celsius.  At this point, the imaging processing 

was initiated. The first process, called image registration, involved the selection of 

control points (CP) on a reference image. A manual selection of CP was conducted 

digitally on the pre-processed thermogram, with standard landmarks around the T-

Shirt contour. The locations of all the different T-Shirt landmarks are presented in 

Figure 5. The cpselect function, in the MATLAB image analysis toolbox, allowed the 

selection of CP on individual thermograms next to the reference thermogram (Fig 5). 

In addition to the manually select CP, additional landmarks were computed using 

spatial geometry (coordinates of the intersections between straight lines joining 2 

CP) in order to define the 22 ROI and allow segmentation of the T-Shirt (Fig 6). 

Regional temperature data were then automatically computed (regionprops 

function) from each of the 21 ROI, i.e. average temperature, median temperature, 

minimal temperature, maximal temperature and standard deviation.  
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Figure 5 Image registration performed in Matlab. The process involves the manual selection of control points 
(CP) on the individual thermogram (left), according to the pre-selected CP (blue dots) on the reference 
thermogram (right).  

 

 

Figure 6 Segmentation of each thermogram into the 22 region of interest (ROI). The ROI were identified in each 
individual thermogram using, in addition to the t control points (CP, blue dots) additional landmarks (orange 
dots). 
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The second phase of the image processing procedure was the image transformation 

(translation and morphing). To account for differences in T-Shirt size and position 

(although it was standardised as much as possible using the T-Shirt stand), all 

thermograms were morphed (i.e. adapted) onto the reference T-Shirt shape. 

Morphing was performed based on the CP coordinates of the input thermogram 

and the reference thermogram via a landmark-based algorithm operating a 2rd 

order polynomial transformation. The algorithm was launched from the cp2tform 

and imtransform function embedded in the MATLAB image analysis toolbox. The 

morphing process was repeated for each thermogram separately after selection of 

CP so that the temperature spatial information was translated into the standard T-

Shirt shape. The individual morphed thermograms were then averaged to obtain a 

final T-Shirt map for each time point of temperature distribution. Figure 7 

summarises the different stages of the image processing procedure. 
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Figure 7 Image processing sequence using MATLAB. Image registration involves the manual selection of CP (control points). Each individual thermogram is then morphed and 
translated to the reference thermogram. The individual thermograms are then averaged for for the creation of a final T-Shirt map of temperature distribution.
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2.7 Body temperature measurements 

In Study 1 and Study 2 local skin temperature during the contact with each fabric 

was measured with two fine wire (0.025 mm diameter, time constant of 0.003 sec.) 

type T thermocouples (RS Components, Northants, UK). The thermocouple 

temperatures were monitored and recorded every second throughout the 

application of the stimulus via a Grant Squirrel SQ2010 data logger (Grant 

Instrument Ltd., Cambridge, UK). 

Local skin temperature was calculated from the mean of the two measured spots. 

Local skin temperature drop (Local Tsk Drop), resulting from the application of each 

wet fabric sample on the skin, was calculated according to: 

Local Tsk Drop = PRE Local Tsk – POST Local Tsk 

Where: 

PRE Local Tsk is the local skin temperature before the application of the wet 

fabric (baseline) in °C. 

POST Local Tsk is the resultant local skin temperature recorded at second 15 

during the application period in °C. 

In Study 3 skin temperature of 5 body sites (check, abdomen, upper arm, lower 

back and back lower thigh) was measured throughout the experimental trial, with 

iButtons wireless temperature loggers (Maxim, San Jose, USA). From these five 

body sites, mean skin temperature, sampled every minute, was estimated according 

to the work of Houdas and Ring (1982):  

𝑀𝑒𝑎𝑛 𝑇𝑠𝑘𝑖𝑛 = (𝑐ℎ𝑒𝑒𝑘 ∗ 0.07) + (𝑎𝑏𝑑𝑜𝑚𝑒𝑛 ∗ 0.175) + (𝑢𝑝𝑝𝑒𝑟 𝑎𝑟𝑚 ∗ 0.19)

+ (𝑙𝑜𝑤𝑒𝑟 𝑏𝑎𝑐𝑘 ∗ 0.175) + (𝑏𝑎𝑐𝑘 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑖𝑔ℎ ∗ 0.39) 

In Study 4 and Study 5 rectal temperature was measured to monitor changes in 

body core temperature. Participants were asked to self-insert a rectal probe (Grant 

Instrument Ltd, Cambridge, UK) 10 cm beyond the anal sphincter. Rectal 

temperature was recorded via a portable data logger (Grant Instrument Ltd, 

Cambridge, UK) connected to the thermistor’s probe.  
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Before testing, the thermocouples, iButtons and rectal probe were calibrated by 

placing the measuring junction of each thermocouple in a circulating water bath 

whose temperature was monitored with a certified mercury thermometer.  

2.8 Perceptual responses 

The direct study of human sensations and perceptions in relation to clothing 

involved the use of psychophysical scales. The guidelines provided by the 

International Standard, Ergonomics of the thermal environment - Assessment of the 

influence of the thermal environment using subjective judgement scales (ISO 

10551:1995) were followed to construct the scales used to measure human 

sensorial parameters. Psychophysical scales have been widely used in clothing 

science (Hollies et al. 1979; Plante et al. 1995; Schneider et al. 1996; Kaplan and 

Okur 2009; Jeon et al. 2011; Niedermann and Rossi 2012; Tang et al. 2014). 

Generally, visual analogue scales (VAS) are considered preferable when high level of 

resolution in the measurement of a particular sensation is needed. However, pilot 

testing for this PhD research highlighted that the use of VAS made the scoring 

process difficult for the participants when a large number of stimuli is scored. This 

was mainly due to lack of numbers and/or descriptors between the two anchor 

points at the extremes of the VAS (example in Fig 8A). In fact, the qualitative 

attributes between the anchor points, could be used as references by the 

participants during the scoring process. On the contrary, Likert scales have the 

benefit of presenting descriptors, although these types of scales are usually 

characterised by no more than 9 descriptors (example in Fig 8B), resulting in a 

significantly lower resolution compared to the VAS.  

In the first research stage (Study 1 and Study 2) of this PhD, a large number of 

fabrics were examined and in the second research stage, sensorial scores of 

garments were repeatedly reported, at set intervals over time, therefore in both 

research approaches a high level of resolution was required. As such, based on this 

evidence and extensive pilot testing for this PhD research a new type of 

psychophysical scale was developed. The new scale can be defined as a hybrid scale 

since it presents features of both VAS and Likert scales. Similar to a VAS, the scale 
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has a large resolution, however, rather than having only two descriptors, at the 

anchor points, it presents intermediate numbers and some descriptors linked to the 

numbers (Fig 9A, 9B), this being a characteristic of Likert scales. The criteria for the 

development of the scale’s resolution and descriptors were applied based on results 

from pilot testing. For instance, each descriptor was divided into different points to 

allow a gradual change from one to another descriptor and also to give to the 

participants the option to discriminate between small changes within the same 

descriptor. Using this type of ordinal scale, participants are asked to verbally self-

report the score of a specific attribute or sensation, e.g. wetness, along the 

numerical value continuum. This type of scale was used to develop the scales used 

to measure wetness perception, thermal sensation, thermal comfort, stickiness 

sensation, texture sensation, pleasantness sensation and wear discomfort scale, 

measured in this PhD research (Fig 9A, 9B). The same wetness perception scale was 

used for all the experimental studies reported in this thesis. The same stickiness 

sensation scale was used in Study 2, Study 3 and Study 4. The same texture 

sensation scale was used in Study 2 and Study 4. Pleasantness scale was used only 

in Study 2. The dis(comfort) scale was used in Study 1 to measure thermal comfort 

and in Study 3 and Study 4 to measure wear dis(comfort). Two modified versions of 

thermal sensation scale were used in Study 3 (Fig 10A) and Study 4 (Fig 10B), 

respectively. The scale was modified in both studies to increase the resolution on 

the positive side of the scale, linked to ‘warmth’ descriptors.  
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Figure 8 Example of a VAS (visual analogue scale) (A) and of a Likert scale (B).  
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Figure 9A Wetness perception, thermal sensation and dis(comfort) scales, developed using the new developed type of psychological scale.  
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Figure 9B Stickiness sensation, texture sensation and pleasantness sensation scales, developed using the new developed type of psychological scale.  
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Figure 10 Modified thermal sensation scales used in Study 3 (A) and Study 4 (B). 
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CHAPTER 3   

Laboratory study 1 

 

Human wetness perception in relation to textile water absorption 

parameters under static skin contact 
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Raccuglia M, Hodder S, Havenith G, (2016) Human wetness perception in 

relation to textile water absorption parameters under static skin contact. 

Textile Research Journal. 
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CHAPTER SUMMARY 

In this study, we showed, in static skin contact conditions, the role of fabric thickness as a 

major determinant of fabric absorption capacity, independently of fibre type. Nevertheless, 

the impact on absorption was not investigated. Furthermore, in fabrics wetted according to 

their absorption capacity (same amount of moisture per volume) the perception of wetness 

was positively related to fabric thickness. Even in this case, the relation between fabric 

thickness and wetness perception was independent of fibre type.  In fact, when matching for 

thickness parameters, wetness perception was not different between cotton and polyester 

materials, neither between different polyester blends. As such, in conditions where fabrics 

are in static contact with the skin, fabric thickness was indicated as a major factor predicting 

absorption capacity and also wetness perception. Furthermore, in these conditions 

sensations of discomfort increased with the increase in fabric wetness perception. The 

second aim of this study was to study different approaches to characterise fabric moisture 

content, i.e. absolute (same µL of water per area (cm2)) versus relative (same µL of water per 

unit of fabric volume (cm3)). In fabrics presenting same saturation percentage (same water 

content per volume) a positive relation between fabric thickness and wetness perception 

was observed and it was independent of fibre type. When applying the same relative to 

volume water content (same saturation percentage) thicker fabrics were perceived wetter 

than the thinner ones. Conversely, when applying the same absolute water amount, thicker 

fabrics were perceived dryer compared to thinner fabrics, given that thinner fabrics were 

more saturated. These findings indicated that human wetness perception responses 

between fabrics with different volume/thickness parameters should be interpreted in light of 

their saturation parameters rather than considering the absolute moisture content. 
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3.1 Introduction  

The haptic perception of wetness while wearing clothing represents one of the most 

critical factors contributing to thermal and sensorial discomfort during wear (Li 

2001, 2005; Fukazawa and Havenith 2009). It has been acknowledged that, despite 

the ability to perceive wetness, the human skin is not provided with specific hygro-

receptors (Clark and Edholm 1985). Therefore, the study of human wetness 

sensation has attracted many researchers from multiple disciplines (Bentley, 1990; 

Fukazawa and Havenith 2009; Ackerley et al. 2012; Bergmann Tiest et al. 2012; 

Filingeri and Havenith 2015). Regarding the modality in which humans perceive 

moisture and humidity, recently it has been proposed that the perception of 

wetness is based on a multimodal integration of thermal and mechanical inputs 

occurring at the skin, when it is wet (Filingeri et al. 2014a; Filingeri and Havenith 

2015).  

With regards to textile materials, which often come in contact with the human body, 

the level of wetness is not an intrinsic property of the material in itself, such as 

texture or temperature, but is defined by the combined effect of the amount of 

liquid present in the fabric (e.g. sweat rate, rain) and on the ability of the fabric to 

absorb moisture, i.e. hygroscopicity. The majority of the studies available that have 

investigated the mechanisms underlying the ability to perceive wetness have often 

neglected the contribution of fabric properties and our knowledge on how these 

modulate wetness perception is still limited. On the other hand, the study of how 

textile parameters affect moisture absorption has received great attention within 

the context of wear comfort, over the past years. Fourt et al. (1951) compared 

water absorption and drying properties of synthetic fabrics with conventional wool 

and cotton. They found that, regardless of fibre type, all fabrics absorb water and 

drying time is proportional to the amount of water initially absorbed, rather than 

related to fibre type. In support, Crow and Osczevski (1998) found that the amount 

of water absorbed by fabrics with different fibre type was correlated to the fabric 

thickness (r = 0.92) and a strong correlation was also observed between the amount 

of water absorbed and the drying time (r = 0.98); the correlation was independent 

of fibre type (Crow and Osczevski, 1998). Furthermore, Yoo and Barker (2004) 
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indicated that the total amount of liquid absorbed does not change in relation to 

the fibre type and the difference between fabrics with different hydroscopicity is in 

the rate of water absorption, rather than the total amount of water absorbed.  

In wear trials, where sweat absorption occurs from the skin, Holmér (1985) 

observed that a clothing ensemble made of wool absorbed more sweat than a nylon 

one: 245 g versus 198 g, respectively. This variation could be linked to differences in 

sweat production between the two clothing ensembles, rather than to the fibre 

hygroscopicity. In fact, in Holmér’s study, although fabric thermal resistance and 

clothing insulation was very similar (and probably fabric thickness, although it was 

not specified) between the wool and nylon clothing system, participants presented 

higher sweat production in the wool condition compared to the cotton condition 

(759 g versus 702 g), during running. 

In the past the majority of the researchers have mainly focused on comparing 

natural and synthetic fibre, and less on how other fabric factors affect water 

absorption properties and the related wetness perception. In a human sensorial 

trial, where fabric water content was manipulated, a wool and a polyester fabric, 

applied on the inner forearm, resulted in different wetness perception, despite the 

application of the same relative moisture levels of 0, 2, 4, 10 and 15% (excess of 

fabric conditioned weight). In particular the wool was perceived dryer than the 

polyester fabric at each moisture level (Li et al. 1992b). In a human sensorial trial 

also Plant et al. (1995) studied the effect of fibre type on wetness perception by 

adding 4 relative levels of water (2, 4, 8 and 16% of the fabric conditioned weight, in 

equilibrium regain) and found that wool and cotton fibres are perceived 

significantly dryer than polyester. Focusing on other fabric properties, Tang et al. 

(2014) found that thinner fabrics are perceived significantly wetter than thicker 

fabrics, explaining the observed relation with fabric thickness. In this experiment, 

given that the same absolute amount of water was added to the experimental 

fabrics, thinner fabrics presented higher relative water amount to textile volume-

ratios, compared to the thicker samples. The latter could have been the reason for 

thinner fabrics being perceived wetter. Hence, due to these thickness-related 

differences in fabric total water content and wetness perception, Tang’s et al. (2014) 
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results may not be applicable if a water amount relative to fabric volume (same 

μl.mm-3 rather than μl.mm-2) is applied. 

Against the aforementioned research background, both thickness differences and 

the modality in which fabric moisture content is manipulated should be taken in 

into account when studying fabric moisture properties and the related wetness 

perception. In the current study, in order to correct for volume-related differences 

in wetness perception that could occur during the application of the same absolute 

(μl.mm-2) water content, fabrics wetness perception was studied under the same 

relative to volume water content (i.e. μl of water per mm3 of fabric) and compared 

with the application of the same absolute water content (i.e. μl of water per mm2 of 

fabric). Additionally, the contribution of thermo- and mechano-sensitivity on the 

ability to discriminate various degrees of wetness in different fabrics was studied 

through analysis of local skin temperature changes and the impact of various fabric 

weights.  Finally, to minimise the role of physical surface characteristics on the 

perception of wetness, fabrics were assessed under static contact with the skin. The 

aim of this study was threefold: 1) to examine the role of thickness and fibre type 

on fabric absorption capacity and wetness perception; 2) to investigate the 

contribution of fabric mechanical and thermal inputs on wetness perception; 3) to 

compare wetness perception outcomes between two different wet states, i.e. same 

absolute (μl.mm-2) versus same relative (μl.mm-3) water content.  
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3.2 Method 

3.2.1 Specimen 

Twenty-four knitted fabric samples (100 x 100 mm) selected for different structure, 

thickness and fibre type were included in this experiment. Details and specifications 

of the testing samples are summarized in table 1. 

Table 1 Details and specifications of the experimental fabrics. Data are reported as mean ± standard deviation. 
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3.2.2 Wetting procedure 

Fabrics were wetted 30 min before each experimental trial, in accordance to the 

balanced order of application during the human sensorial assessment. Each fabric 

was positioned onto a plastic film and water was added by using a micropipette 

(SciQuip LTD, Newtown, UK) positioned at a fixed distance of 10 cm perpendicular 

to each sample and pointing at its centre. When the water was in equilibrium with 

the fabric, (specifically, when the water spread out uniformly across the sample; 

this took approximately 1 minute) each fabric was placed into a plastic bag which 

was securely sealed to prevent water evaporation. No water dripped from the 

samples inside the plastic bags during the storage period. The fabric wetting 

procedure was the same for all the conditions (100REL, 50REL and ABS) and only 

differed in the amount of added water. During the application period on the skin, 

each fabric was covered with a PVC film on the outer side to prevent evaporation of 

water.  

Fabrics were tested at same relative (to volume) water content (REL; μl.mm-3) and 

at same absolute water content (ABS; μl.mm-2). Within the REL condition two 

different amounts of water were applied to simulate heavy and moderate sweating 

conditions: 100% of fabric absorption capacity (100REL) and 50% of fabric 

absorption capacity (50REL), respectively. The relative water content for the 100REL 

condition was calculated according to: 

100REL (µ𝑙. 𝑚𝑚−3) 

= 100% 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (µ𝑙)/𝑓𝑎𝑏𝑟𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒(𝑚𝑚3) 

The relative water content for the 50REL condition was calculated according to: 

50 REL (µ𝑙. 𝑚𝑚−3)

= (100% 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (µ𝑙) ∗ 0.5)/𝑓𝑎𝑏𝑟𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒(𝑚𝑚3) 

Water absorption capacity (100%) was determined according to the ‘water 

absorption capacity test’ described by Tang et al. (2014a). For the test a fabric 

sample (100 x 100 mm) was put into a tank of water and 5 minutes was allowed for 

it to sink completely into water. Following from this, the fabric was taken out by 
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tweezers and hung onto a rod vertically until there was no water dripping within a 

30 seconds interval. The water gain was calculated according to: 

𝑊𝑎𝑡𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 (µ𝑙) = [𝑤𝑒𝑡𝐹 (𝑔) − 𝑑𝑟𝑦𝐹 (𝑔)] ∗ 1000 
µ𝑙

𝑔
  

Where, 

wetF, is the weight of the saturated fabric (g); 

dryF, is the weight of the dry fabric (g).  

The range of fabric water absorption capacity was 2500-33500 μl (Table 1). The 

average amount of water per unit volume of fabrics (μl.mm-3) for both 100REL and 

50REL was 0.8 ± 0.08 μl.mm-3 (Table 1) and 0.4 μl.mm-3, respectively.  

For the ABS condition a total amount of water of 2400 µl was added to all of the 

experimental fabrics, corresponding to 0.24 μl.mm-2 and translated into water 

content per volume to the range of 0.06-0.8 μl.mm-3. 

Additionally, to test whether other fabric properties, i.e. thermal conductivity or 

regain, could affect fabric wetness perception under the three wet states, the fabric 

samples were also tested under dry state (DRY). In the DRY condition 7 wet stimuli 

(F1, F3, F4, F8, F14, F18, F19) were included to prevent misleading responses due to 

the repeated presentation of the same (dry) stimulus (i.e. habituation to the 

stimulus). 

3.2.3 Weight differences correction 

In order to eliminate the contribution of fabric weight pressing on the skin on the 

perception of wetness, in the 50REL condition a subset of 7 fabrics (F1, F3, F4, F8, 

F14, F18, F19), wetted according to their 50% absorption capacity, were all brought 

to the same wet weight (50RELWcorr; same weight, different absolute water content). 

In order to correct for weight differences, the heaviest wet fabric (F8) of 18 g was 

chosen as reference and the remaining 6 fabrics were adjusted to this weight (18 g), 

by adding extra weight (layers of dry fabrics) on top (outside) of the experimental 

wet fabric, according to: 
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𝑒𝑥𝑡𝑟𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 = 18𝑔 − 𝑤𝑒𝑡 𝑓𝑎𝑏𝑟𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡. 

The extra layers of dry fabrics were separated from the experimental wet fabric via 

means of a PVC film, to prevent water transfer from the wet fabric to the dry layers. 

The 50RELWcorr fabrics were also compared with the corresponding 50REL fabrics 

tested in standard condition (same absolute water content, different weight) 

(50RELnoWcorr). 

Below summarised the five experimental conditions: 

100REL= 100% fabric absorption capacity (0.6-0.9 μl.mm-3). 

50REL= 50% fabric absorption capacity (0.3-0.45 μl.mm-3). 

50RELWcorr = fabrics wetted according to their 50% absorption capacity, presenting 

different absolute water content but same total wet weight (18 g). 

ABS= same total absolute water content (2400 μl.mm-2);  

DRY= equilibrium regain (no water added). 

3.2.4 Fibre type 

To study the effect of fibre type on wetness perception, 11 fabrics, matched for 

thickness, were grouped in three main clusters: 

 Group 1 (0.60 mm): F11, F15, F20, F22, F24.  

 Group 2 (2.10-2.80 mm): F4, F7. 

 Group 3 (3.50-4 mm): F8, F9. 

3.2.5 Participants 

Twelve young (23.4 yrs. ± 2.4, 72.4 ± 6.4 Kg, 174.57 ± 6.9 cm ), active (at least 4-6 

hours per week) and with no history of sensory related disorders, male (7) and 

female (5) participants of Western European origin, volunteered to participate in 

this study. The test procedure and instruments were explained to each participant 

verbally and through a written information form. Following from this, participants 

gave written informed consent for participation. Participants were not informed 
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regarding the aim of the study, experimental conditions (100REL, 50REL, 50RELWcorr; 

ABS; DRY), magnitude of the stimulus (amount of water applied) and type of fabric. 

The protocol and procedures involved were approved by Loughborough University 

Ethics Committee. The study was conducted within the confines of the World 

Medical Association Declaration of Helsinki for medical research using human 

participants. 

3.2.6 Study overview 

Fabrics were assessed in four separated trials which differed in the amount of water 

applied: 100REL; 50REL; ABS; DRY. Fabrics were assessed by using a quantitative 

sensory test, which consisted of placing, in a balanced order, 24 fabrics with 

different wetness levels on the upper back of each participant. Participants 

reported their local wetness perception, thermal sensation and thermal comfort on 

interval scales (see Measurements section). Prior to the first experimental trial, 

participants were familiarised with the experimental protocol, procedures and 

instruments used in the present study. The first experimental trial was conducted 

immediately after the familiarization session. The trials were completed in a 

counter balanced order and all experiments were performed in a climate controlled 

room, maintained at air temperature 25 °C, relative humidity 50% and air velocity < 

0.05 m/s.  

3.2.7 Experimental protocol 

In the four experimental trials, participants entered the controlled climatic room 

and lied prone on a bench wearing underwear only. A square of 100 x 100 mm was 

marked on the upper back of each participant, with the superior margin of the 

square in line with the inferior margin of the seventh cervical juncture, to identify 

the fabrics’ area of application. Before being marked, the body area was cleaned 

with an alcohol pad, to ensure the skin was clean and free from grease. Participants 

were then instrumented with skin measurement systems (see Measurements 

section) and rested for 20 min to allow time for skin temperature, thermal 

sensation and thermal comfort to stabilise. After the stabilisation period the 

investigator applied two reference fabrics on the participants’ upper back, each 
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corresponding to one of the two extreme points on the wetness perception scale: 0 

(extremely dry) and 30 (extremely wet). The score of each reference fabric was 

reported by the investigator which also informed the participant that the wetness 

intensity of the subsequent fabrics would not exceed the range of these two 

references. Following from this, each experimental fabric was applied on the 

participants’ upper back for a period of 20 seconds. To prevent evaporation of 

water from the fabric and related cooling during the 20 seconds stimulation period, 

each experimental fabric, in all conditions, was covered by a PVC film. Participants 

were alerted by the investigator before the application of each fabric. At the end of 

the 20 seconds stimulation period, participants were encouraged to verbally report 

their wetness perception, thermal sensation and thermal comfort for the stimulated 

area, using the three interval scales. The scored fabric was then removed from the 

upper back and a dry cloth was placed onto the tested body area to avoid any chilly 

sensation, consequent to the evaporation of any remaining water on the skin. The 

tested body area was then gently wiped with the cloth and dried by blowing warm 

air; this took approximately 1 min and allowed temperature and hydration state of 

the skin to return to baseline before the application of the following experimental 

fabric. Additionally, since the continuous application of wet stimuli may decreases 

one’s sensitivity, 1 min of rest, before the subsequent fabric application also 

allowed the recovery of the sensory system. The same protocol was repeated for 

each of the 24 fabrics and each trial took approximately 2 hours. Participants were 

instructed to ask for a rest whenever they felt uncomfortable. 

3.2.8 Measurements 

3.2.8.1 Skin temperature 

Local skin temperature, before and after the contact with the fabrics, was measured 

by using a single spot infrared thermometer (FLUKE 566, Fluke Corporation, USA) 

with a temperature range of -40 to 800 °C and an intrinsic accuracy of ± 1 °C. During 

the testing the infrared thermometer was calibrated against a matte black plate 

whose temperature was monitored with a thermistor (Grant Instrument, 

Cambridge, UK) ensuring an increased accuracy of ± 0.2 °C. 
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Local skin temperature during the contact with each fabric was measured by using 

three fine wire Type T thermocouples (RS Components, Northants, UK) (with a 

response time to temperature changes lower than 0.1 second), applied on the 

tested body area (upper back) between the skin and the fabric. The thermocouples 

temperatures were monitored and recorded via a Grant Squirrel SQ2010 data 

logger (Grant Instrument Ltd., Cambridge, UK). Local skin temperature was 

calculated from the mean of the three measured spots. Before testing the 

thermocouples were calibrated by placing the measuring junction of each 

thermocouple in a circulating water bath whose temperature was monitored with a 

calibrated mercury thermometer.  

Mean skin temperature was estimated from five sites, cheek, abdomen, upper arm, 

lower back, and back lower thigh, with iButtons wireless temperature loggers 

(Maxim, San Jose, USA), according to the work of Houndas and Ring (1982).  

𝑀𝑒𝑎𝑛 𝑆𝑘𝑖𝑛 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

= (𝑐ℎ𝑒𝑒𝑘 0.07) + (𝑎𝑏𝑑𝑜𝑚𝑒𝑛 0.175) + (𝑢𝑝𝑝𝑒𝑟 𝑎𝑟𝑚 0.19)

+ (𝑙𝑜𝑤𝑒𝑟 𝑏𝑎𝑐𝑘 0.175) + (𝑏𝑎𝑐𝑘 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑖𝑔ℎ 0.39) 

3.2.8.2 Wetness perception 

Based on a literature survey and extensive piloting a new ordinal wetness 

perception scale was developed for this study. Generally, visual analogue scales 

(VAS) are considered preferable when high resolution in the measurement of a 

particular sensation is needed. However, pilot testing for this study highlighted that 

the use of VAS made the scoring process difficult for the participants when a large 

number of stimuli (in our case 24) needed to be scored. In fact, the lack of numbers 

or descriptors between the two anchor points at the extremes of the VAS results in 

the absence of references that could be used by the participant to relate a score to 

the previous given scores, the latter facilitating the judgement of the next stimulus 

an so on. On the contrary, Likert scales have the benefit of presenting descriptors, 

although these types of scales are usually characterised by no more than 9 

descriptors, resulting in a significantly lower resolution compared to the VAS. In the 

current study, due to the large number of wet stimuli (24 different wet samples) a 



   CHAPTER 3 – Laboratory study 1 

    

118 

high level of resolution was needed. This was achieved through the design of a 30 

points scale. The scale ranges from 0 to 30 (Fig 1: A) and each point corresponds to 

a specific number. Points 0, 5, 10, 15, 20, 25 and 30 are linked to descriptors to 

guide the assessors during the scoring process. The criteria for the development of 

the scale were applied based on the results from extensive pilot testing. For 

instance, a number of 7 wetness descriptors was chosen based on the relatively 

large range of physical wetness that was added to the experimental fabrics (ABS, 50 % 

saturated and 100% saturated). Additionally, each descriptor was divided into 5 

different points to allow a gradual change from one to another descriptor and also 

to give to the participants the possibility to discriminate between small changes 

within the same descriptor. 

3.2.8.3 Thermal sensation 

For the same reasons presented above, a new ordinal thermal sensation scale was 

developed (Fig 1: B). The thermal sensation scale is a bipolar unbalanced scale 

presenting a central neutral point (0 = neutral), with 10 positive numbers (from 1 to 

10) above and 15 negative numbers (from -1 to -15) below. Point 5 and 10  are 

linked to the thermal descriptors slightly warm and warm, respectively, whereas the 

negative numbers -5, -10 and -15 are linked to slightly cool, cool and very cool, 

respectively.  

3.2.8.4 Thermal comfort 

To assess fabrics’ thermal comfort, a coarser scale was chosen, given that pilot 

studies for this experiment showed that the static interaction between the fabrics 

and skin does not greatly affect thermal comfort. Thermal comfort scale is a 7 point 

interval scale ranging from 1 to 7 with descriptors at point 1, 3, 5, 7 (Fig 1: C).  
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Figure 1A Wetness Perception scale; 1B Thermal sensation scale; 1C Thermal Comfort scale. 

 

3.3 Statistics 

In this study the independent variables were: fabric fibre type, fabric thickness, 

fabric absorption capacity, fabric water content and therefore fabric wet weight. 

Dependent variables were: local skin temperature drop, wetness perception, 

thermal sensation and thermal comfort.  

Data were tested for normality of distribution with Shapiro-Wilk test and Normal Q-

Q plot.  

Kendall Coefficient of Concordance test (Kendall´s W) was conducted to assess the 

degree of agreement between participants (inter-judges reliability) in ranking the 

various experimental fabric samples.  Kendall´s W ranges are (Fleiss et al. 2003):  

 < 0.40, poor; 

 0.40-0.59, fair; 

 0.60-0.74, good; 

 > 0.74, excellent. 

Regression analyses were performed to study relationships between and within 

dependent and independent variables. Regression analyses were conducted by 

using data from group means.  
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To assess the effect of fabric fibre type on wetness perception a Friedman test was 

conducted for fabric group 1 (5 levels of comparison) and a Wilcoxon Signed Rank 

test was conducted for fabric group 2 (2 levels of comparison) and group 3 (2 levels 

of comparison). In group 1, when significant effects were identified, post hoc 

analysis was conducted by Wilcoxon Sign Tank test.    

A Friedman test was also conducted to test whether there were differences in 

wetness perception responses within the 50RELWcorr fabrics (fabrics corrected for 

weight differences). When significant effects were identified, post hoc analysis was 

conducted by Wilcoxon Sign Tank test. A Wilcoxon Signed Rank test was conducted 

to assess whether wetness perception of each fabric was significantly different 

between 50RELWcorr and 50RELnoWcorr condition.  

Finally, rank analysis was performed to compare wetness perception outcomes 

between the two wet conditions: 50REL and ABS condition. F1, F11, F15, F20, F22, 

F24 presented the same total water amount of 2400 µl in both 50REL and ABS, 

therefore these fabrics were not used for the above mentioned comparison. 

In all analyses p < 0.05 was used to establish significant differences. Data are 

reported as means ± standard deviation (SD). Data were analysed by using the 

software IBM SPSS Statistics (version 22) (IBM, USA). 
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3.4 Results 

3.4.1 Between-participants consistency 

In order to eliminate individual discrepancy, the agreement in the ranking of the 

wetness intensity of the experimental fabrics was examined. Kendall´s W for the 

between participants effect was 0.762 at p < 0.01, meaning that the agreement 

between the 12 participants was higher than it would be by coincidence and 

indicating excellent agreement between participants (Fleiss, 1981). 

3.4.2 Dry condition 

In one of the four experimental trials fabrics were tested under dry state (DRY), to 

ensure that there were no differences in fabrics wetness perception, due to other 

fabric properties, i.e. thermal conductivity and regain. In DRY condition fabrics were 

all perceived below 5 (dry) and were not significantly different (p > 0.5). 

3.4.3 Fabric thickness and fibre type 

Analysis of the relationship between fabric absorption capacity and fabric thickness 

indicated that fabric thickness accounted for the 98 % (r2 = 0.98) of the variability in 

fabric absorption capacity, despite differences in fibre content (Fig 2: A).  

Fabrics typically used for sport T-shirts, in the thickness range of 0.30-1.00 mm, 

were considered separately also. Similarly in this fabric group a strong linear 

relationship between fabric thickness and fabric absorption capacity (r2 = 0.84) was 

found (Fig 2: B). 

When matched for thickness differences, different fibre types did not result in 

significantly different wetness perception outcomes (group 1 p = 0.22; group 2 p = 

0.47; group 3 p = 0.32) (Fig 3). In group 1 (0.60 mm) only F15 was significantly 

different (p = 0.006) from F11, F20, F22, F24 (Fig 3). 
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Figure 2A Relationship between fabric absorption capacity and fabric thickness for the 100 x 100 mm fabric 

samples. 2B Relationship between fabric absorption capacity and fabric thickness for the fabric group 

characterised by a thickness range between 0.3 mm and 1.00 mm. 
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Figure 3 Effect of fibre type on wetness perception responses for the three groups of fabrics, grouped according 

to their thickness. There were no significant (NS) differences (p > 0.05) in wetness perception between F4 and 

F7 (group 2; thickness range between 2.10 mm and 2.80 mm), between F8 and F9 (group 3; thickness range 

between 3.50 mm and 4.00 mm), and between F11, F20, F22 and F24 (group 1; thickness of 0.60 mm). * In 

group 1, F15 resulted in a significantly lower wetness perception (p < 0.05) compared to F11, F20, F22 and F24. 

 

3.4.4 Mechanical and thermal inputs on fabric wetness 

perception 

Wetness perception at both 100REL and 50REL was plotted against the total 

amount of water presented in the fabrics (Fig 4). Results indicated that wetness 

perception showed a strong positive relationship (non-linear, second order 

polynomial) with fabric total water content in both 100REL (r2 = 0.82, p < 0.001) and 

50REL (r2 = 0.87, p<0.001). In 100REL the regression curve shows a plateau above 

15000 μl, suggesting a limit above which participants cannot perceive differences in 

fabrics water content.  
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Figure 4 Relationship between fabric total water content and wetness perception in both relative experimental 

conditions: 100% of fabric water absorption capacity (100REL) and 50% of fabric absorption capacity (50REL). 

Due to the high correlation of thickness to absorption capacity, water content per volume of fabric was similar 

for all fabrics within each condition. 

 

When looking at the effect of fabric weight on wetness perception the 

50RELnoWcorr fabrics (Fig 5; grey bars; same relative water content, different 

absolute water content, different weight) showed the same results as in fig 4, i.e. 

higher wetness perception scores in fabrics with higher total water content and 

therefore weight (p < 0.05). In the 50REL condition where the skin pressure for all 

fabrics was the same (50RELWcorr), achieved by correcting the weight of the fabrics 

to the same value as F8 (Fig 5; black bars; same relative water content, different 

absolute water content, same weight), different wetness perception scores were 

still observed (p < 0.05), i.e. higher wetness in fabric presenting higher water 

content, despite same skin pressure. However, when each 50RELnoWcorr (lighter) 

fabric was compared with the corresponding 50RELWcorr (heavier), both presenting 

same absolute and relative water content, the 50RELWcorr fabric was perceived 

always as wetter (p < 0.001) than the 50RELnoWcorr , i.e. at same absolute and 

relative water content (same fabric volume) wetness perception was increased by 

increasing the pressure on the skin (i.e. in heavier fabrics).  
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As expected, F8 was not significantly different between the two conditions (p = 

0.432), given that it was chosen as reference (same skin pressure, as well as 

absolute and relative water content in both 50RELnoWcorr and 50RELWcorr). 

In 50RELnoWcorr the magnitude of increase in wetness perception was related (non-

linear relationship, second order polynomial, r2 = 0.8, p < 0.001) to the amount of 

added weight (skin pressure increase) (Fig 6). 

 

Figure 5 Fabric sorted from those containing the highest to those containing the lowest total water amount and 

therefore from the heaviest to the lightest fabric (F8-F18). 

# Significant differences (p < 0.05) in wetness perception responses between fabrics tested in standard 

condition (grey bars; 50RELnoWcorr).    

† Significant differences (p < 0.05) in wetness perception responses between fabrics tested under same skin 

pressure (black bars; 50RELWcorr).  

* Significant difference in wetness perception responses between the two skin pressure conditions 50RELWcorr 

(higher skin pressure) and 50RELnoWcorr (lower skin pressure). 

No significant (NS) difference in wetness perception scores between 50RELnoWcorr and 50RELWcorr in F8 (p = 

0.43).  
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Figure 6 † Relationship between Δ Wetness perception (magnitude of increase from 50RELnoWcorr condition) 

and the Δ Skin pressure increase (achieved by placing additional weight on each experimental fabrics in the 

50RELWcorr condition). 

  

A non-linear (second order polynomial) relationship was found between decrease in 

local skin temperature (in response to the application of the wet fabrics) and fabric 

total water content in both 100REL (r2 = 0.74, p < 0.001) and 50REL (r2 = 0.65, p < 

0.001) (Fig 7). The contribution of the thermal component on the perception of 

wetness was also indicated by the strong negative linear relationship between 

thermal sensation and wetness perception, in both 100REL (r2 = 0.80; p < 0.01) and 

50REL (r2 = 0.94; p < 0.01) (cooler = wetter) (Fig 8: A). 

 

Figure 7 Relationship between fabrics total water content and decrease in local skin temperature, for both 

relative experimental conditions: 100% of fabric absorption capacity (100REL) and 50% of fabric absorption 

capacity (50REL).  
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Finally, a strong positive linear relationship was found between fabric wetness 

perception and thermal discomfort, in both 100REL (r2 = 0.86; p < 0.01) and 50REL 

(r2 = 0.87; p < 0.01) (Fig 8: B). 

 

Figure 8A Relationship between wetness perception and thermal sensation, for both relative experimental 

conditions: 100% of fabric absorption capacity (100REL) and 50% of fabric absorption capacity (50REL). 8B 

Relationship between wetness perception and thermal discomfort, for both relative experimental conditions: 

100% of fabric absorption capacity (100REL) and 50% of fabric absorption capacity (50REL). 
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3.4.5.5 REL versus ABS water content 

Wetness perception scores for both 50REL and ABS fabrics were converted into rank 

scores, on a scale from 1 (driest) to 18 (wettest) (Fig 9). The rank analysis indicated 

that in 50REL thinner fabrics (and thus having the lowest total amount of water and 

being the lightest) were ranked as driest, whereas in ABS thinner fabrics were 

ranked as wettest. The latter indicates that the two conditions lead to two opposite 

outcomes for the same fabric, in terms of wetness perception. 

 

Figure 9 Rank order of wetness perception (0 = driest; 18 = wettest) for 18 fabrics in in both 50REL (similar 

μl.mm
-3

) and ABS (same μl.mm
-2

). On the x axis fabrics are sorted according to their rank (from driest to wettest) 

in 50REL.  

 

 

 

 

 

 

 

 

 

 



   CHAPTER 3 – Laboratory study 1 

    

129 

3.5 Discussion 

The present study demonstrated that fabric thickness is the major factor 

determining fabric absorption capacity, regardless of fibre type.  Despite the 

absence of cutaneous hygro-receptors in the skin (Clark and Edholm 1985), 

participants were able to perceive different degrees of wetness. With regards to the 

contribution of textile factors on wetness perception, the results indicated that 

both fabric weight and cooling power provided mechanical and thermal cues. Both 

mechanical and thermal stimuli were determined by the total fabric water content 

(μl) and thus indirectly by fabric thickness which should be taken into account when 

studying fabric wetness perception. Finally, the use of two different approaches to 

manipulate fabric water content, i.e. relative to volume versus absolute per surface 

area, lead to contrary wetness perception outcomes for the same fabric. 

3.5.1 Fabric wetness perception: thermal and mechanical 

contribution 

In the REL condition, although fabrics were wetted with the same relative water 

amount (100% and 50% of fabric absorption capacity), participants were still able to 

discriminate between the different absolute water contents. According to Filingeri 

et al. (2013; 2014b) wetness is primarily perceived from thermal inputs occurring at 

the skin, with colder stimuli giving an illusory sensation of skin wetness and with 

pressure having a modulating effect. In the current study higher total water content 

provided higher skin cooling, which was sensed as greater changes in local skin 

temperature by the cutaneous thermoreceptors (Campero et al. 2001) and 

subsequently as higher wetness. Accordingly, Li (2005), in studying wetness 

perception of hydrophobic sweaters worn during walking under simulated rain, 

found that higher dampness scores were correlated with lower skin temperature. In 

the current study, the contribution of thermal inputs on the perception of wetness 

was indicated not only by the strong relationship between wetness perception and 

drop in local skin temperature, but also between wetness sensation and thermal 

sensation. The strong link between wetness perception and thermal sensation was 

also highlighted by Niedermann and Rossi (2012) who found that some fabric 
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samples, previously wetted, were still perceived wet after a certain period of time, 

despite weight measurements indicating that no moisture was present. In their 

study the temperature of these samples was still below room temperature, due to 

the earlier heat transfer through evaporation, and this lower temperature could 

have suggested to the participants that the fabrics were still wet.  It would be 

interesting to study whether by controlling for heat transfer-differences, related to 

different water contents, humans would still be able to discriminate between 

different degrees of wetness.  

In the current study skin cooling mainly occurred through contact, given that water 

evaporation was prevented. In such a condition, cooling sensation increased with 

the increase in fabric thickness. However, it has been indicated that the real 

evaporative cooling is reduced when the distance between the skin and the locus of 

sweat evaporation (i.e. clothing) increases (i.e. less cooling is provided to the body 

per gram of evaporated sweat/moisture) (Havenith et al. 2013). Following on from 

this principle, Wang et al., (2014) indicated a linear reduction in real evaporative 

cooling with the increase of the garment thickness. Therefore, it is likely that at a 

specific saturation level and under condition of allowed sweat evaporation, thicker 

fabrics would result in lower cooling sensation and wetness sensation, because 

sweat would evaporate further away from the skin, providing less cooling power 

per unit of evaporated sweat to the skin.  

In the current study results suggest that the wet weight of the fabric (mechanical 

stimulus) acting as load on the skin and sensed by the cutaneous mechanoreceptors 

(Tsunozaki and Bautista 2009), was  also used by the participants as cue to perceive 

fabric wetness. When testing each of the 7 selected fabrics at two different skin 

pressures, i.e. 50RELnoWcorr (lower skin pressure) and 50RELWcorr (higher skin 

pressure), in the 50RELWcorr  the resultant higher contact pressure on the skin 

resulted in higher wetness perception, despite each fabric presenting the same 

absolute (μl.mm-2) and same relative (50REL; μl.mm-3) water content in both 

conditions (Fig 5). The latter is likely due to the higher fabric-skin contact in the 

higher skin pressure condition, which increased the magnitude of stimulation of 

both cutaneous thermo- and mechanoreceptors. The higher stimulation resulted in 
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an ‘illusory’ wetter perception which suggested higher water content in heavier 

fabrics. The latter highlights the contribution of mechano-sensitivity in perceiving 

various fabric moisture contents, which is in line with the neurophysiological model 

of skin wetness sensitivity proposed by Filingeri et al. (2014). In practice, this would 

translate into the use of lightweight garments, given that greater weight on the skin 

elicits wetter feelings. 

3.5.2 Fabric thickness and fibre type 

The results indicated that fabric thickness/volume is the major determinant of 

fabric absorption capacity (Fig 2: A and B). Given the strong correlation between 

human’s wetness perception responses and fabric water content (mainly 

determined by fabric thickness), fabric thickness can be considered a critical factor 

to take into account when studying fabric wetness perception In the present study, 

under static contact with the skin, we did not observe an effect of fabric physical 

surface characteristics and fabric structure, though under dynamic contact this may 

be different. The latter will be addressed in a future investigation. 

The strong correlation between fabric water content and thickness suggests that 

fibre type does not play a major role for this. In support, Yoo and Barker (2004) 

showed that fabric fibre type only affects water absorption rate but not the total 

amount of liquid absorbed in equilibrium. Absorption rate might play a critical role 

during the initial phase of sweat production, with hydrophilic fabrics taking 

moisture away from the skin quicker than hydrophobic ones, therefore resulting in 

dryer sensations during this initial timeframe. However, when sweat production 

increases and both the skin and the fabric become wet, the absorption rate is likely 

not to affect wetness perception and comfort responses. In support, our results 

showed that fabrics (wetted at 50% of their absorption capacity), with different 

fibre types but matched for thickness (therefore total water content) did not show 

differences in wetness perception scores (Fig 3). The latter suggests that fibre type 

in itself is not a determining factor for both fabric liquid absorption capacity and 

related wetness perception. 
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3.5.3 Same relative versus same absolute water content 

The comparison between two different approaches to manipulate fabric water 

content, i.e. same relative to fabric volume (µL.mm-3) versus same absolute to 

surface area (µL.mm-2), showed two opposite wetness perception responses for the 

same fabric, due to thickness/volume-related differences (Fig 9).  

The application of the same relative water content resulted in thinner fabrics being 

perceived dryer than the thicker ones. In fact, by applying the same relative water 

content, fabrics contained different total water amounts according to their volume, 

therefore thinner fabrics contained less water than the thicker in absolute terms.  

On the other hand, when applying the same absolute water amount, thicker fabrics 

were scored as dryer compared to thinner fabrics, given that thinner fabrics 

contained higher relative amounts of water to volume-ratio compared to the 

thicker fabrics, despite the same absolute water content (i.e. in thicker fabrics the 

same amount of water was spread over a larger volume).  

These results indicate that the approach used to manipulate fabrics wet state 

should be carefully chosen with respect to the conditions to be represented. For 

instance, in a study assessing wetness perception of fabrics, unmatched for 

thickness, Tang et al. (2014) manipulated fabric wet state using an absolute water 

amount of 2400 µL per 14400 mm2 (0.17μl.mm-2). Under this wet state, thicker 

fabrics were perceived significantly drier than thinner fabrics (consistent with our 

results in ABS). Additionally, wetness perception responses were negatively 

correlated with fabric absorption capacity. Thus, in deciding which fabric is better 

(thin versus thick) for wetness perception one needs to consider the scenario of use. 

Results from the use of an absolute water amount may be representative of those 

exercise conditions that result in relatively low or mild sweat production, such as 

the initial phase of the work activity or relatively short-duration exercise 

performance. In these conditions the thinner material is likely to reach its saturation 

earlier than the thicker material, presenting higher relative to volume water content 

and higher wetness perception compared to the thinker one. Furthermore, in this 

scenario, according to the results from Tang et al. (2014) and our results in ABS, 
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wetness perception negatively correlates with fabric absorption capacity. However, 

under higher sweat production conditions, e.g. when exercising in the heat or 

performing a prolonged exercise activity, the thicker material will also reach its 

saturation. In this scenario, despite the greater removal of sweat from the skin 

compared to the thinner material, the thicker fabric will present higher total water 

content, resulting in higher skin pressure and cooling capacity, both causing higher 

perception of wetness. Additionally, under this condition the correlation between 

fabric wetness perception and fabric absorption capacity will be positive, as we 

showed in the 100REL condition (Fig 4), rather than negative, as Tang et a. (2014) 

and we showed in the ABS condition. Finally, the use of a relative to volume water 

content may better represent post-exercise wetness perception responses, which 

are related to differences in fabrics drying time, mainly due to variations in fabric 

total water content (Crow and Osczevski 1998).  

The application of the same absolute water content has led other researchers to 

interpret variations in fabrics wetness perception only in the light of fibre type-

related differences. Niedermann and Rossi (2012), in studying the contribution of 

thermal cues on the ability to perceive different moisture contents, also applied the 

same absolute water content 2000 µL to three fabrics with a surface area of 2600 

mm2 (0.77μl.mm-2), different thickness and fibre type i.e. cotton (1.13 mm), 

polyester (0.89 mm) and synthetic blend (0.77 mm).  At 5% and 95% dried state the 

cotton fabric was perceived significantly warmer and dryer than the polyester and 

synthetic blend fabric. In the study this variation in wetness perception was linked 

by the authors to fibre type-related differences between fabrics (Niedermann and 

Rossi 2012) rather than to volume-related differences. However, based on the 

present data, the latter explanation (different amount of water (μl) per volume 

(mm3) seems more likely, given that the cotton fabric presented the highest 

thickness and therefore had a lower relative to volume water content. 

Acknowledging the critical role of fabric thickness, it would be ideal to study 

wetness perception using fabrics matched for thickness characteristics. However, 

this is not always possible, especially in an industrial setting where comparisons of 

wetness perception responses of fabrics with different characteristics, thickness 
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included, are conducted to identify the least uncomfortable material. In this 

situation, to prevent the introduction of biased conclusions related to differences in 

fabric thickness, we suggest that fabric wetness perception should be studied at 

both same relative to volume water content and absolute water content. The use of 

both approaches will allow the interpretation of the results with regard to the 

product application, i.e. low-mild sweat production or high sweat production 

activity. In addition, by taking into account the role of thickness on fabric water 

absorption and wetness perception, the application of relative water content to 

fabrics unmatched for thickness characteristics may potentially demonstrate the 

role (major, minor or interactive) of other factors, such fabric structure, surface 

geometrical features and fibre type. 

Similarly, biased conclusions could be drawn when referring to threshold detection 

and different threshold of wetness perception in absolute terms. For instance, 

Sweeney and Branson (1990a) indicated that the absolute threshold of moisture 

detection is 0.024 ml. However, in this study always the same cotton/polyester 

blend fabric of 2580 mm2 was used to detect the threshold of 0.024 ml of water, 

therefore this only applies to fabrics with a specific thickness range (not specified in 

their study). For instance, participants would probably not be able to detect the 

same amount of water of 0.024 ml in a thicker material, or conversely would 

perceive a smaller amount of water in a thinner fabric, given that the fabric would 

contain lower or higher relative to volume water content, respectively. On the other 

hand, Jeon at al. (2011) indicated that when applying a total water amount of 500 μl 

to a cotton and a high performance polyester fabric, both having a surface area of 

10000 mm2 (0.05 μl.mm-2) the different threshold (the minimum amount of water 

change required to elicit a difference in wetness perception from 500 μl) is 252 μl of 

water for cotton and 193 μl for high performance polyester. However, even in this 

case, the latter may not apply to wider fabric thickness/volume range. 
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3.6  Conclusion 

In conclusion, the present study confirmed the role of fabric thickness/volume as 

the major determinant of fabric water absorption capacity. In particular, fabric 

absorption capacity increases when fabric thickness is also increased, with no effect 

of fibre type, although fabric absorption rate was not investigated. Given the strong 

positive correlation between fabric absorption capacity and wetness perception, in 

the static condition used, fabric thickness thus represents an important parameter 

to take into account when looking at wetness perception of fabrics saturated, 

partially saturated or presenting the same absolute water content. Under static 

fabric-skin contact participants can perceive various degrees of fabric wetness by 

integrating fabric thermal (cooling provided) and mechanical (load on the skin) 

inputs sensed at the skin by thermo- and mechanoreceptors, respectively. Fabric 

thermal properties under wet state seem to be the main cues contributing to the 

perception of moisture content. Specifically, with the increase in fabric water 

content the cooling power, related to the heat capacity of the liquid in the textile, 

also increases, resulting in higher local skin cooling and wetness perception. The 

contribution of fabric mechanical input was indicated by greater wetness 

perception in heavier fabrics, due to the resultant higher load/pressure on the skin 

which increases the magnitude of stimulation of both thermo- and 

mechanoreceptors. In practice, factors like wet weight of the fabric and resultant 

local skin temperature drop should be taken into account when designing a 

garment with reduced wetness perception and related discomfort features. 

To prevent the introduction of biased conclusions, due to thickness/volume-related 

differences in fabric wetness perception, we suggest that the methodology used to 

manipulate water content of fabrics with different thickness/volume, should be 

carefully considered in relation to the product end-use. In particular, the use of a 

relative to volume water content (µL.mm-3) is recommended when evaluating fabric 

absorption property and related wetness perception of fabrics meant to be used for 

activity that induce high sweat production. In this context a saturated thick material 

would contain higher total water content (due to its higher volume) with higher 

wetness perception compared to the thin ones. Conversely, the application of an 
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absolute water amount better represent fabric wetness perception outcomes 

occurring under activities characterised by low or medium sweat production, in 

which the thin material will reach saturation earlier than the thick ones (due to its 

smaller volume), with concomitant higher wetness perception. These approaches 

may be particularly useful for researchers investigating wetness perception and 

discomfort-related responses between fabrics unmatched for thickness and volume 

characteristics with regard to the specific exercise activity to be performed. 
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CHAPTER SUMMARY 

Moving forward from a study looking at the contribution of fabric thickness on wetness 

perception, in this study we assessed the role of fabric surface properties, in conditions of 

dynamic fabric-to-skin contact. It was observed that fabric materials with a smoother surface 

resulted in greater skin wetness perception compared to the rougher fabric surfaces. We 

proposed that, when moving across the skin, the wet smoother materials caused higher 

cutaneous displacement compared to the rougher ones. The higher skin displacement likely 

resulted from a higher adhesiveness between the wet fabric and skin, which in turn was 

caused by the creation of a greater number of contact points offered by the smoother fabric 

surface. In turn, the magnitude of skin displacement was detected by the cutaneous tactile 

receptors as stickiness or clinginess sensation and associated with the presence of a wet 

material on the skin. In the same study, we quantified fabric surface texture using the 

Kawabata Evaluation System to assess whether texture data can be used as predictors of 

fabric stickiness sensation and wetness perception. The results showed that the Kawabata 

evaluation system failed to predict stickiness sensation of wet fabrics commonly assumed to 

be associated with fabric texture. Thus, it was concluded that a different way to define fabric 

texture may be needed in order to represent this link (stickiness and texture). Although we 

did not find a relationship between fabric texture properties (measured with the Kawabata 

Evaluation System) and wetness perception/stickiness sensation, we could not ignore the 

strong positive relationship between stickiness sensation and wetness perception. 

Interestingly, the predicting power of wetness perception became stronger when including, 

together with stickiness, fabric thickness. This indicated that, in dynamic contact conditions, 

both stickiness sensation (theoretically fabric texture properties) and fabric thickness are 

important factors to consider when selecting fabrics for the development of next to skin 

clothing with improved moisture management properties. In fact, these two factors 

modulate cutaneous sensations of fabric wetness, which might ultimately contribute to the 

reduction in wear discomfort and overall discomfort. 
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4.1  Introduction 

Whenever we increase our activity level and body heat content, sweat production 

causes moisture to build-up on the skin. The human ability to perceive skin wetness 

causes tactile and thermal discomfort (Fukazawa and Havenith 2009), this driving 

behavioural thermoregulatory responses (Schlader et al. 2010) aimed at 

maintaining homeostasis, ensuring health and survival (Parsons 2014). In absence of 

visual or auditory cues, skin wetness is perceived via learning processes (Bentley 

1900) and through the central integration of thermal and mechanical stimuli 

occurring at the skin  (Bergmann Tiest et al. 2012; Filingeri and Havenith 2015).  

A large body of research has been focusing on the complex multisensory modality 

of wetness perception using fabrics (Sweeney and Branson 1990a; Sweeney and 

Branson 1990b; Jeon et al. 2011; Niedermann and Rossi 2012). For instance, Li 

(2005), in wear trials, and recently Raccuglia et al. (2016), in local body sensorial 

trials, highlighted the contribution of cold sensation to the perception of fabric 

moisture. Specifically, in both studies greater wetness perception was observed in 

response to greater reduction in skin temperature, which in return was affected by 

fabric water content. By studying the contribution of each single sensory modality 

(thermo- and mechano- sensation), Bergman Tiest et al. (2012) concluded that 

when interacting statically with a wet fabric the only cue available to perceive 

wetness is the thermal one. Conversely, it has been recently shown that some 

mechanical cues (fabric pressure on the skin) also affect perceived wetness in static 

contact (upper back) (Raccuglia et al. 2016). In fact, in heavier fabrics the higher 

resultant skin pressure causes higher wetness perception responses, compared to 

lighter fabrics, despite having the same water content (Raccuglia et al. 2016). On 

the other hand, under dynamic contact (fabric manipulation) the mechanical cue, 

i.e. stickiness, can improve a person’s ability to discriminate various wetness 

intensities (Bergmann Tiest et al. 2012b). 

The neurophysiological basis of wetness perception has been well documented in 

the classical work conducted by Bentley (1900), and has seen a revival in the last 

decade (Bergmann Tiest et al. 2012; Filingeri and Havenith 2015). However, in order 
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to improve moisture sensation and thermal comfort of clothing it would be of great 

value to identify the textile parameters that trigger cutaneous thermal and 

mechanical inputs underpinning wetness perception. In addition, as single textile 

properties have often been  defined using a whole range of physical tests, it would 

be of practical value to know which of these test parameters has the best predictive 

power for wetness perception. Only recently, the role of fabric thickness as factor 

determining wetness perception in saturated or in part saturated fabrics, under 

static skin contact has been demonstrated (Raccuglia et al. 2016). Nevertheless, 

under dynamic contact other fabric parameters might also play a role. In dynamic 

conditions the presence of moisture increases fabric to skin friction (Gwosdow et al. 

1986; Kenins 1994; Sivamani et al. 2003), sensed as higher stickiness and used as 

cue to perceive wetness.  

The mechanical and surface properties of fabrics have been studied in the context 

of end-users choice and satisfaction, leading to a series of investigations looking at 

the relation between objective and subjective assessments (Alimaa et al. 2000; 

Cardello et al. 2003a; Sular and Okur 2007). On the other hand, in the current study 

fabric texture properties will be evaluated to assess whether these influence the 

tactile cues underlying skin wetness perception. In this scenario, we hypothesised 

that, due to a greater number of contact points with the skin, fabrics with smoother 

surface texture will cause higher skin friction and/or displacement and will be 

perceived as wetter than fabrics with rougher surface texture. Following from a 

study focusing on the static interaction between the skin and fabrics, in the current 

experiment we 1) sought to identify the role of textile factors, such as surface 

texture and thickness as well as non-textile factors, i.e. local skin temperature 

changes and stickiness sensation on wetness perception under dynamic skin contact. 

Additionally, (2) we aimed to observe changes in fabric pleasantness and texture 

sensation between dry and wet state.  
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4.2  Method 

4.2.1 Participants 

Sixteen young (yrs. 22.4 ± 2.5) male (8) and female (8) participants, of Western 

European and North American origins, with no history of sensory related disorders 

and active at least 4-6 hours per week, volunteered to participate in this study. The 

test procedure and instruments were explained to each participant verbally and 

through a written information form. Following from this, participants gave written 

informed consent for participation. Due to the nature of the study, participants 

were not informed on the detailed aim of the study, experimental conditions, 

magnitude of the stimuli (amount of water applied) or type of fabric. The protocol 

and procedures involved were approved by Loughborough University Ethics 

Committee. The study was conducted within the confines of the World Medical 

Association Declaration of Helsinki for medical research using human participants. 

4.2.2 Specimen 

Eight knitted fabrics (120 x 100 mm) selected for different structure, fibre type, 

surface texture properties, thickness, and treatments were included in this 

experiment (Table 1).  

The fabrics were grouped in 3 main clusters according to their thickness 

characteristics (Table 1): low (0.56-0.60 mm; L), medium (0.90-1.00 mm; M) and 

high (2.10 mm; H). The results of this study will primarily be applied for the design 

of base-layers sportswear, usually presenting low thickness characteristics, 

therefore four fabric samples were included in L and only two fabric samples were 

included in both M and H. 

Within each thickness group the fabrics presented different surface texture (ST), 

measured as surface roughness (SMD) by the Kawabata Evaluation System 

(Kawabata 1980) (KES; higher ST corresponds to higher roughness) (Table 1). During 

the subjective assessments the face side of the experimental samples was tested 

only in wale direction; therefore the KES measurements were also performed in this 

direction and used for the estimation of ST.  
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The fabrics were coded according to thickness group (L = low thickness; M = 

medium thickness, H = high thickness), fibre type (CO = cotton; PM = polyester 

multi-channeled fibre cross-section; P = polyester) and ST (approximated surface 

texture, determined by rounding up to a whole number). For instance, MP2 stands 

for Medium thickness group, Polyester and ST of ~ 2. Table 1 reports specifications 

of the experimental fabric samples. 

Table 1 Specifications of the experimental fabrics grouped according to low (L), medium (M) and high (H) 

thickness and presenting different surface texture (ST) measured as surface roughness (SMD) by the Kawabata 

Evaluation System. Water content was defined as equal water per volume of textile. The criterion for water 

content manipulation is reported in the ‘Conditions’ section. 

 

LCO4: low thickness, cotton, approx. ST of 4; LPM6: low thickness, polyester with multi-channeled fiber cross-

section, approx. ST of 6; LP3: low thickness, polyester, approx. ST of 3; LP6: low thickness, polyester, approx. ST 

of 6; MP2: medium thickness, polyester, approx. ST of 2; MP3: medium thickness, polyester, approx. ST of 3; 

HP4: high thickness, polyester, approx. ST of 4; HP15: high thickness, polyester, approx. ST of 15. 
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4.2.3 Experimental set-up 

The experimental set up consisted of: a fabric sample, an adjustable chair where 

each participant was positioned and a fabric motion rig (Fig 1). 

4.2.3.1 Fabric sample 

To prevent water spreading across a fabric area larger than 120 x 100 mm, each 

long side of the experimental fabrics (120 x 100 mm) was fitted to a non-wicking 

material (200 x 120 mm). The two non-wicking materials together with the fabric, in 

between, formed the fabric sample. 

4.2.3.2 Fabric motion rig 

Each fabric sample (Fig 1) was placed in a custom-made linear motion rig. The 

sample was connected to a motor drive on one side and to a counterweight on the 

other side. The fabric sample could run over two rollers, creating a horizontal area 

of stimulation. Under this area, the right forearm of each participant was placed 

onto a height adjustable arm rest, such that the fabric touched the ventral forearm. 

The latter’s setting was adjustable vertically to ensure equal pressure/ contact area 

in different size arms.  

The ventral forearm was selected as body region of interest for practical reasons. In 

fact this body site allowed easy applications of the fabrics in relation to the design 

of the motion rig, yet maintaining the comfort status of the participants during the 

trial. Additionally, it has been indicated that the ventral forearm presents the same 

sensitivity to cold as the upper back (Parsons 2014), therefore the results can be 

compared with the existing literature (Sweeney and Branson 1990a; Raccuglia et al. 

2016a). 

A dividing wall was mounted onto the fabric motion rig, approximately half way 

between the forearm and the arm of each participant. With this setting the 

participants could not see the experimental textile samples before, during and after 

the application process; therefore any visual influence on the perceptual responses 

was prevented. 
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Each fabric sample was pulled bi-directionally across the skin at a velocity of 0.02 

m.s-1. Two fixed levels of pressure were applied: 127 Pa (LOW-P) and 236 Pa (HI-P). 

The order of this two pressure conditions was counterbalanced (the method to 

measure fabric-to-skin pressure is reported in the Conditions section). The range of 

travel of each fabric was of 5 cm per stroke, with a total of 8 strokes per fabric, 4 

toward the medial forearm and 4 toward the lateral forearm. 

 

Figure 1 Schematic representation of the Fabric Motion Rig and experimental set up.  

 

4.2.3.3 Adjusting chair and participants position 

A chair was positioned at a standard distance from the fabric motion rig. After each 

participant settled on the chair, the investigator adjusted the position of the 

participant’s right forearm on the armrest. The posterior margin of the olecranon 

was placed in line with the posterior edge of the armrest, the dorsal side of the 

forearm was located in contact with the armrest and the ventral side was left 

exposed, to allow the application of the samples. Because of individual forearm 

shape and size differences, to ensure standard level of contact between the sample 

and the ventral forearm, each forearm was maintained at a distance of 2 cm above 

the rollers of the motion rig. Additionally, the height of the chair was adjusted to 
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achieve standard position of the forearm in respect to the arm (90º angle), which 

varied based on the individual height of the participants.  

4.2.4 Conditions 

The fabric samples were tested in wet (WET) and dry (DRY) state. In WET, the 

samples were all treated with an amount of water corresponding to 50% of their 

total absorption capacity, according to the wetting procedure described in Raccuglia 

et al. (2016). This amount was shown to deliver the same quantity of water per unit 

of volume of the different fabrics. 

Water absorption capacity was determined according to the ‘water absorption 

capacity test’ described by (Tang et al. 2014a). For the test a fabric sample (100 x 

100 mm) was put into a tank of water and 5 min was allowed for it to sink 

completely into water. Following from this, the fabric was taken out by tweezers 

and hung onto a rod vertically until there was no water dripping within a 30 seconds 

interval. The water gain was calculated according to: 

𝑊𝑎𝑡𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 (µ𝐿) = [𝑤𝑒𝑡𝐹 (𝑔) − 𝑑𝑟𝑦𝐹 (𝑔)] ∗ 1000 
µ𝐿

𝑔
  

Where, 

wetF, is the weight of the saturated fabric (g); 

dryF, is the weight of the dry fabric (g).  

The fabrics were wetted 30 min before the experimental trial, in accordance to the 

order (balanced) of application during the human sensorial assessment. Each fabric 

was positioned onto a plastic film and water was added by using a micropipette 

(SciQuip LTD, Newtown, UK) positioned at a fixed distance of 10 cm perpendicular 

to each sample and pointing at its centre. When the water was in equilibrium with 

the fabric, (specifically, when the water spread out uniformly across the sample; 

this took approximately 1 minute) each fabric was placed into a plastic bag which 

was securely sealed to prevent water evaporation. No water dripped from the 

samples inside the plastic bags during the storage period. Given that within each 

group the experimental samples had same thickness and same volume, the fabrics 
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also presented the same relative to volume water content (μL·mm-3) and same, or 

almost the same, absolute water content (μL·mm-2) (Raccuglia et al. 2016) (Table 1).  

The fabrics were also tested in the DRY condition to observe changes in texture and 

pleasantness sensation between WET and DRY. In the DRY condition no water was 

added to the fabric samples, which were in equilibrium regain with the environment 

(25 °C ambient temperature and 40% relative humidity). In DRY the pressure 

applied was of 127 Pa (same as LOW-P condition, see below). 

To confirm the role of resultant fabric to skin pressure on wetness perception, as 

observed under static contact (Raccuglia et al. 2016), within the WET condition each 

fabric sample was tested at two pressure levels: low pressure of 127 Pa (LOW-P) 

and high pressure of 236 Pa (HIGH-P). The two pressure conditions were achieved 

using two different counterweights (200 g and 300 g), attached at one end of each 

experimental sample, and mounted on the fabric motion operator rig (Fig 1). 

Extensive pilot testing were conducted to define the two resultant skin pressures. 

Results indicated that a pressure of 127 Pa represented the lowest possible 

pressure applicable in order to ensure enough tension in each WET fabric sample 

during the pulling process across the skin and to avoid sticking. The HIGH-P of 236 

Pa was chosen with the aim of achieving perceivable differences from the LOW-P 

condition without applying excessive mechanical stimulation. Given the significantly 

higher weight of the two counterweights compared to the individual wet weight of 

each fabric sample (4.05-12.00 g), the effect of fabric weight on resultant skin 

pressure was negligible. To measure the pressure resulting from the application of 

each fabric sample plus attached clamp and counterweight, a calibrated electronic 

weighing scale (PSK 360-3, Kern, UK), with a maximum load of 360 g and a precision 

of 0.001 g, was used. A cylinder with a forearm-like shape, made of hard foam, was 

placed on the measuring scale and each fabric, at both LOW-P and HIGH-P, was 

positioned on top of it. The two weight readings (g) were recorded and from these 

the two corresponding applied pressures (Pa), assuming a surface contact area of 

10 x 10 cm, were calculated according to: 

Pressure applied (Pa) = Weight reading (kg) * 9.81 m.s-2 / contact area (m2).  
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4.2.5 Study overview 

Fabrics were assessed in one single experimental trial including 3 different 

conditions: DRY; WET LOW-P; WET HIGH-P. Replicates of the 8 experimental fabric 

samples were tested under the 3 different experimental conditions, therefore a 

total of 24 fabric samples were tested during the experimental trial. New fresh 

fabric samples were used for each participant. The fabrics were assessed using a 

quantitative sensory test, which consisted of placing, in counter balanced order, the 

24 samples on the right ventral forearm of each participant. Participants reported 

their local texture sensation, wetness perception, stickiness sensation and 

pleasantness sensation on ordinal scales (see Measurements section). Prior to the 

experimental trial, participants were familiarised (~15 min) with the experimental 

protocol, procedures and instruments used in the present study. The experimental 

trial was conducted immediately after the familiarisation session. The experiment 

was performed in a climate controlled room, maintained at air temperature at 25.8 

± 0.2 °C, relative humidity 39 ± 0.7 %  and air velocity < 0.05 m/s to ensure thermo-

neutrality of the participants throughout the trial.  

4.2.6 Experimental protocol 

In the experimental trial participants entered the controlled climatic room and were 

positioned comfortably on the adjustable chair wearing standard T-shirt and shorts. 

Participants positioned their forearm on the armrest of the motion operator. A 

reference fabric sample (120 x 100 mm) was placed on the skin, with the long sides 

of the sample perpendicular to the longitudinal axis of the forearm and two lines 

next to these two sides were drawn on the forearm to identify the fabrics’ area of 

application. The centre of the sample was positioned 2/3 above the distal margin of 

the carpus, the length of the ventral forearm was ~ 27 cm and it was measured 

from the distal margin of the carpus to the coronoid fossa. Participants were then 

instrumented with two thin skin temperature sensors (see Measurements section), 

in the skin area in contact with the fabric, and with temperature sensors across the 

body to measure body skin temperature. After this, participants rested for 20 min 

to allow time for skin temperature to stabilise. After the stabilisation period the 

investigator applied on the participants ventral forearm six reference fabrics, two 
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for each ordinal scale, each corresponding to one of the two extreme points of 

texture, wetness and stickiness scale. The reference samples were chosen after 

extensive pilot studies. Specifically, a dry wool (very rough) and a dry silk (very 

smooth) materials were selected as references for texture sensation. Two samples 

of the same polyester fabric were used as ‘extremely dry’ (no water added) and as 

‘extremely wet’ (50 % of the total saturation) references. For stickiness, a wet silk 

fabric (extremely sticky) and a cotton fabric (not-sticky), both presenting same 

thickness and water content, were chosen as references. The score of each 

reference fabric was reported by the investigator who also informed the 

participants that the intensity of the subsequent fabrics would not exceed the range 

of the two references for each scale. Following from this, each experimental fabric 

was applied on the participants’ ventral forearm, moving for a period of 20 seconds. 

Participants were alerted by the investigator before the application of each fabric. 

At the end of the 20 seconds, participants were encouraged to verbally report their 

texture sensation, wetness perception, stickiness sensation and pleasantness for 

the stimulated body area, using the four ordinal scales. After 15 seconds of 

application, local skin temperature was recorded. After 20 seconds the fabric 

sample was removed and a dry cloth was placed onto the tested body area to avoid 

any chilly sensation, consequent to the evaporation of any remaining water on the 

skin. The tested skin area was then gently wiped with the cloth and dried by 

blowing warm air; this took approximately 2 min and allowed temperature and 

hydration state of the skin to return to baseline before the application of the 

following experimental fabric. Additionally, since the repeated application of 

dynamic wet stimuli can decrease thermal and tactile sensitivity, 2 min of rest, 

before the subsequent fabric application, allowed the recovery of the sensory 

system. The same protocol was repeated for each of the 24 fabrics. Each 

experiment (stabilisation, familiarisation and experimental trial) took approximately 

2 hours and participants were instructed to ask for a rest whenever they felt 

uncomfortable. 
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4.2.7 Measurements 

4.2.7.1 Surface texture 

To characterise the surface texture of the experimental fabrics surface roughness 

(SMD) was measured using the Kawabata Evaluation System (KES). For the 

measurement a sensor contacts the surface of the fabric under a constant normal 

force. The sensor consists of a metallic rod connected, in its freed end, to a thin 

wire with a U shape. Surface roughness is calculated from electrical signal 

generated by the vertical displacement of the sensor contacting the fabric surface. 

4.2.7.2 Skin temperature 

Local skin temperature during the contact with each fabric was measured with two 

fine wire (0.025 mm diameter, time constant of 0.003 sec.) type T thermocouples 

(RS Components, Northants, UK). The thermocouple temperatures were monitored 

and recorded every second throughout the application of the stimulus via a Grant 

Squirrel SQ2010 data logger (Grant Instrument Ltd., Cambridge, UK). Local skin 

temperature was calculated from the mean of the two measured spots. Local skin 

temperature drop (Local Tsk Drop), resulting from the application of each wet fabric 

sample on the skin, was calculated according to: 

Local Tsk Drop = PRE Local Tsk – POST Local Tsk 

Where: 

PRE Local Tsk is the local skin temperature before the application of the wet 

fabric (baseline) in °C. 

POST Local Tsk is the resultant local skin temperature recorded at second 15 

during the application period in °C. 

Before testing, the thermocouples were calibrated by placing the measuring 

junction of each thermocouple in a circulating water bath whose temperature was 

monitored with a certified mercury thermometer.  
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To ensure thermo-neutrality, skin temperature of 5 body sites (check, abdomen, 

upper arm, lower back and back lower thigh) was measured throughout the 

experimental trial, with iButtons wireless temperature loggers (Maxim, San Jose, 

USA). From these five body sites, mean skin temperature, sampled every minute, 

was estimated according to the work of Houdas and Ring (1982). 

4.2.7.3 Texture sensation 

To assess perception of fabric texture, i.e. roughness and smoothness, an ordinal 

bipolar, balanced scale was developed (Fig 2: A). To prevent forced choice, the scale 

had a neutral (0) point in the middle, corresponding to ‘Neither rough nor smooth’. 

From zero to 9 (progressive increase in texture), the scale presented different levels 

of roughness, whereas from 0 to -9 (progressive reduction in texture) different 

magnitude of smoothness were displayed. During the scoring process participants 

were instructed to first associate the texture of the sample with one of the two 

attributes, i.e. rough (positive side) or smooth (negative side) and then to report the 

magnitude of the specific attribute chosen. 

4.2.7.4 Wetness perception 

A 30 points unipolar ordinal scale (Fig 2: B) was adopted to assess fabric wetness 

perception. The scale ranged from 0 to 30, presenting descriptors at point 0, 5, 10, 

15, 20, 25 and 30 (Raccuglia et al. 2016). 

4.2.7.5 Stickiness sensation 

Sensations of fabric stickiness were assessed using a unipolar ordinal scale, ranging 

from 0 (Not-sticky) to 12 (Extremely sticky) and intermediate descriptors at point 3, 

6 and 9 (Fig 2: C).  

4.2.7.6 Pleasantness sensation 

A bipolar, balanced ordinal scale was developed to assess pleasantness sensation of 

the tested fabric samples (Fig 2: D). Same as the texture sensation scale, this scale 

presents an unforced choice at the middle point 0 (Neither pleasant nor unpleasant). 

Point -2, -4 and -6 were linked to the descriptors indicating progressive reduction in 
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pleasantness, whereas points 2, 4 and 6 were linked to descriptors indicating 

progressive increase in pleasantness. 

 

Figure 2A texture sensation scale; 2B wetness perception scale; 2C stickiness sensation scale; 2D pleasantness 

sensation scale. 
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4.3 Statistics 

The independent variables were: fabric thickness, fabric surface texture, skin 

pressure (HIGH-P versus LOW-P), wet state (DRY versus WET). Dependent variables 

were: Local Tsk Drop, mean Tsk, texture sensation, wetness perception, stickiness 

sensation and pleasantness.  

Data were tested for normality of distribution and homogeneity of variance with 

Shapiro-Wilk and Levene’s tests, respectively.  

One way repeated measures ANOVA tests were conducted to assess whether mean 

Tsk was significantly different over time (T0-T55) and whether there were 

differences in local Tsk Drop (normalised data from baseline) between fabric 

samples tested under WET. 

Texture, wetness, stickiness and pleasantness sensation data were measured 

through means of ordinal scales and also violated the assumption of normality of 

distribution, therefore for the statistical analysis non-parametric tests were 

conducted.  

The main effect of fabric surface texture on wetness perception (WET) was tested 

by Wilcoxon Signed Rank test for M and H (2 levels of comparisons; MP2 and 

MP3for M, HP4 and HP15 H) and by Friedman analysis of variance test for LOW (4 

levels of comparisons; LCO4, LPM6, LP3, LP6. Friedman test was also conducted to 

test the main effect of fabric surface texture on texture sensation. Where significant 

effect was found post hoc analysis was conducted by Wilcoxon Signed Rank Test. 

Wilcoxon Signed Rank tests were conducted to test the main effect of resultant 

fabric to skin pressure on wetness perception (2 levels of comparison for each fabric, 

i.e. LOW-P versus HIGH-P) and the main effect of wet state on texture sensation and 

pleasantness sensation (2 levels of comparison for each fabric, i.e. DRY versus WET) 

Regression analyses were performed to observe the relations within and between 

objective (i.e. Local Tsk Drop, fabric total water content, fabric thickness, surface 

texture) and subjective (i.e. wetness perception, stickiness sensation, texture 
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sensation) variables, using data from group means. To choose the most suitable 

regression model, linear and second order polynomial analyses were performed for 

each subject. Individual r2 values for linear and second order polynomial models 

were statistically compared using paired t-test. The regression model that explained 

the highest variance was then chosen for the analysis of group mean data.  

In all analyses p < 0.05 was used to establish significant differences. Parametric data 

are reported as means ± standard deviation (SD). Data were analysed using the 

software IBM SPSS Statistics (version 22) (IBM, USA). 
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4.4 Results 

4.4.1 Low pressure condition (LOW-P) 

4.4.1.1 Wetness perception  

In L (0.56-0.60 mm thickness) sample LPM6 was perceived significantly dryer (p < 

0.01) than the other three samples (LCO4, LP3, LP6), whereas none of these three 

samples (LCO4, LP3, LP6) significantly differed from each other (p > 0.05) (Fig 3, 

panel B). 

In M (0.9-1.00 mm thickness) MP2 was perceived significantly wetter (p = 0.008) 

than MP3 (Fig 3, panel B).  

No significantly different wetness perception responses were found in H (2.1 mm 

thickness) between HP4 and HP15 (p = 0.459), (Fig 3, panel B).  

 

Figure 3 Panel A: average local Tsk (skin temperature) Drop from baseline (normalised data) in response to the 

dynamic application of each WET fabric sample in each thickness group: low (L), medium (M) and high (H). Panel 

B: * Significant differences (p < 0.05) in wetness perception responses between fabrics within L or M.  

 

4.4.1.2 Mean and local skin temperature 

Mean skin temperature (sampled every minute), averaged over time, was 33.9 ± 

0.02 °C and did not significantly change (p < 0.05) throughout the trial. 
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Baseline local Tsk was 32.3 ± 0.2 °C and was not significantly different (p < 0.05) 

between each pre-application or condition (DRY, WET LOW-P, WET-HIGH-P). 

Local Tsk Drop (data normalised from baseline), in response to the application of the 

wet fabrics, was not significantly different within each thickness group: p = 0.85 in L 

(0.56-0.60 mm thickness), p = 0.89 in M (0.9-1.0 mm thickness) and p = 0.90 in H 

(Fig 3, panel A).  

A positive relation was observed between wetness perception and Local Tsk Drop    

(r2 = 0.48, p = 0.008) (Fig 4). 

 

Figure 4 Relationship between wetness perception and local Tsk (skin temperature) drop in WET, LOW-P (low 

pressure) condition. Fabrics grouped according to L (low), M (medium) and high (H) thickness. 

 

4.4.1.3 Relation between wetness perception and stickiness 

A linear positive relation (r2 = 0.64, p = 0.007) was observed between fabric wetness 

perception and stickiness sensation (Fig 5). Nevertheless, no relation was found 

between stickiness sensation and sample water content (r2 = 0.009, p = 0.82).  
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Figure 5 Relationship between wetness perception and stickiness sensation of the experimental fabrics tested in 

WET LOW-P (low pressure) condition. Fabrics grouped according to L (low), M (medium) and high (H) thickness. 

 

4.4.1.4 Relation of stickiness sensation and wetness perception with 

texture sensation and surface texture (ST)  

In WET no relationship was observed between stickiness sensation and texture 

sensation (r2 = 0.087, p = 0.48) nor between stickiness sensation and surface texture 

(r2 = 0.11, p = 0.42).  

Wetness perception was not related to texture sensation (r2 = 0.003, p = 0.96), 

neither to surface texture (r2 = 0.001, p = 0.89). 

4.4.1.5 Relation between wetness perception and fabric thickness  

No significant relation was observed between wetness perception and fabric 

thickness (r2 = 0.29, p = 0.166) (Fig 6). The lack of relation was mainly caused by 

fabric MP2 and LPM6, perceived as the driest and the wettest materials, 

respectively. In these two fabrics (LPM6 and MP2) the lowest and the highest 

wetness perception responses were not driven by their thickness or water content 

(μL·mm-3), but rather to their resultant stickiness sensation (MP2 most sticky, LPM6 

least sticky; Fig 5). 
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Figure 6 Relation between fabric wetness perception and fabric thickness in LOW-P (low pressure) condition. 

Fabrics grouped according to L (low), M (medium) and high (H) thickness. 

 

4.4.1.6 Texture sensation and surface texture (ST) 

In DRY a linear positive relation was observed between fabric texture sensation and 

surface texture (ST) (r2 = 0.79, p < 0.005) (Fig 7a). The linear model was highly 

dominated by the roughest fabric HP15. When excluding this sample (HP15) from 

the model the relation appears less clear and only approaches significance (r2 = 0.55, 

p = 0.06). 

In WET the relation between texture sensation and surface texture (ST) was less 

clear compared to DRY and only approached significance (r2 = 0.48, p = 0.06) (Fig 7b).  
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Figure 7A Relationship between fabric texture sensation (in DRY) and surface roughness (ST), 7B relationship 

between fabric texture sensation assessed (in WET) and surface roughness (ST). Fabrics grouped according to L 

(low), M (medium) and high (H) thickness.  

 

4.4.1.7 Wetness perception predictors 

In order to define factors affecting fabric wetness perception under dynamic 

contact, stepwise regression analysis was conducted. For this analysis textile factors, 

such as fabric thickness and surface texture as well as non-textile factors such as 

Local Tsk Drop and stickiness sensation, were imputed as independent variables and 

wetness perception as dependent variable.  

Fabric surface texture and/or texture sensation did not appear as relevant 

predictors. Wetness perception was described by stickiness sensation and Local Tsk 

Drop as the predicting variables (Table 2; MODEL 1), giving an explained variance of 

89 %:  

𝑊𝑒𝑡𝑛𝑒𝑠𝑠 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 = 4.338 + 𝑆𝑡𝑖𝑐𝑘𝑖𝑛𝑒𝑠𝑠 ∗ 1.059 + 𝑇𝑠𝑘 𝑑𝑟𝑜𝑝 ∗ 5.583 



  CHAPTER 4 – Laboratory study 2 

   

159 

Fabric stickiness sensation was the main predictor with a relatively larger Beta value 

at 0.64 (p = 0.008), while local Tsk drop was found to make a significant additional 

contribution to the predictive model (β = 0.53, p = 0.017).  

Thickness alone did not predict wetness perception (Fig 6), mainly because of the 

latter’s interaction with stickiness sensation. However, when replacing ‘Tsk drop’ 

with ‘thickness’ and including ‘stickiness sensation’ a similar prediction model of the 

one above is obtained (r2 = 0.86, p = 0.003) (Table 2, Model 2; Fig 8). 

 

 

Figure 8 Representation of the prediction model of wetness perception (fabric stickiness sensation and fabric 

thickness as main predictors). Fabrics grouped according to L (low), M (medium) and high (H) thickness.  

 

Table 2 Stepwise multiple regression analysis of wetness perception under LOW-P (low fabric to skin resultant 

pressure) condition. 
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4.4.2 High pressure condition (HIGH-P) 

4.4.2.1 Wetness perception scores 

Perception data from the high pressure condition (HIGH-P) were typically higher but 

showed similar patterns to those obtained in the low pressure condition (LOW-P).  

In L (low thickness group) LPM6 was again significantly dryer compared to the other 

three fabrics (p < 0.001), LCO4, LP3 and LP6, whereas these three latter were not 

significantly different from each other (p > 0.05). In M (medium thickness group) 

MP2 was perceived significantly wetter than MP3 (p < 0.05) whereas in H (high 

thickness group) HP4 and HP15 were not significantly different (p > 0.5).  

A linear relation was observed between WP and stickiness sensation (r2 = 0.79, p < 

0.05) whereas no correlation was observed between WP and thickness.  

LOW-P and HIGH-P scores were compared to assess the role of resultant fabric to 

skin pressure on wetness perception. In HIGH-P samples were perceived 

significantly wetter (p < 0.05) compared to the LOW-P condition, apart from LPM6 

and MP2 in which the differences were not significant (p = 0.318, p = 0.975, 

respectively) (Fig 9).  

 

Figure 9 * Significant differences (p < 0.05) in fabric wetness perception between LOW-P (low pressure; grey 

bars) and HIGH-P (high pressure; black bars). 
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4.4.3 Texture and pleasantness sensation 

Fabric pleasantness showed a significant relationship (second order polynomial fit) 

with texture sensation in both DRY (r2 = 0.93, p < 0.001) and WET (r2 = 0.89, p < 

0.001), (Fig 10). Pleasantness was also significantly related (second order 

polynomial fit) with ST in DRY (r2 = 0.75, p < 0.005) and WET (r2 = 0.39, p < 0.05), 

although in WET the model presented a less predictive power. 

Pleasantness sensation was significantly reduced in WET (p < 0.05) compared to 

DRY, apart from LPM6 and HP15 which did not present significant differences 

between the two conditions (p = 0.53, p = 0.14, respectively) . 

Texture sensation increased in WET compared to DRY, however the increase was 

significant only in sample LP3 (p = 0.05), LP6 (p = 0.001) and MP3 (p = 0.03).  

 

Figure 10 Relationship (second order polynomial fit) between fabric texture sensation and pleasantness 
sensation in DRY (diamonds symbols; solid curve) and WET (triangles symbols; dots curve) condition. Fabrics 
tested under LOW-P (low pressure) condition.   
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4.5  Discussion 

The aim of the current study was to identify the textile properties triggering 

cutaneous tactile and thermal inputs underpinning wetness perception in dynamic 

skin contact. In order to correct for volume/thickness differences in fabric water 

content, the same relative to volume water amount (μL·mm-3) was applied, the 

latter corresponding to the 50% of the fabric’s total saturation. 

We hypothesised that, due to a greater number of contact points with the skin, 

fabrics with smoother surface texture will cause higher skin friction and/or 

displacement, sensed as higher stickiness and associated with greater wetness 

perception. Conversely to our research hypothesis, stickiness sensation and 

wetness perception did not show any correlation with the fabric texture property 

determined by the KES system and/or with texture sensation, and when conducting 

multiple regression analyses the latter were not identified as relevant predictors. 

Nevertheless, wetness perception was related with fabric stickiness sensation, 

therefore we could not totally reject our research hypothesis. In fact, we speculate 

that the lack of correlation was not due to a fundamental issue, but rather to a 

methodological issue, i.e. the Kawabata Evaluation system may not be an 

appropriate test method to predict stickiness sensation of wet fabrics.  

With regards to wetness perception, the earlier observed relation to fabric 

thickness and skin cooling in static tests (triggering thermal responses; Raccuglia et 

al. 2016) was not observed here. However, when including stickiness sensation and 

therefore, correcting for the tactile responses, fabric thickness was shown to be a 

valid predictor and significantly contributed to the total variance (86 %) in fabric 

wetness perception under dynamic skin contact too. Similarly, when selecting local 

skin temperature drop (thermal cue) together with stickiness sensation (tactile cue) 

as independent variables, an even better model of fabric wetness perception is 

obtained (explaining 89 % of the total variance), indicating that the fabric thickness 

acts through its relation with the level of skin cooling based on the higher absolute 

water content of the thicker fabrics. In line with our previous work on static contact 

(Raccuglia et al. 2016a), also in dynamic contact under conditions of higher fabric-
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to-skin pressure (triggering mechanical stimuli), greater wetness perception 

responses were observed. The latter suggests that fabric weight can have an effect 

on wetness perception.  

Finally, comparisons of texture sensation between wet and dry states indicated that 

under wet conditions fabrics felt more texturized compared to dry, causing 

reductions in pleasantness sensation. 

4.5.1 Wetness perception and surface texture 

Due to the critical impact of tactile sensitivity on wetness perception we 

hypothesised that fabric texture properties and/or sensation could affect wetness 

perception through changes in skin tactile responses, such as stickiness sensation. 

In particular, we expected the wet smoother surfaces to cause higher stickiness 

sensation; the latter likely due to the higher number of contact points between the 

skin and the fabric, also causing higher skin displacement compared to the rougher 

surfaces.  

Two of the eight experimental fabrics (LPM6 and MP2) presented different wetness 

perception responses compared to those fabrics presenting same water content 

(Fig 3). However, these differences could not be attributed to the measured fabric 

texture propertiy, per se. For instance, in the low thickness group (L), LPM6 was 

perceived significantly dryer than LCO4, LP3 and LP6, and although LPM6 was 

rougher than LCO4 and LP3 it was not rougher than LP6 (Table 1). Additionally, 

LCO4, LP3 and LP6 presented the same wetness perception scores (Fig 3), despite 

differences in surface texture. Similarly, in the high thickness group (H), despite the 

surface texture of samples HP4 and HP15 was considerably different, 3.65 versus 

15.3 respectively, no significant differences in wetness perception were observed 

(Fig 3). On the contrary in M (medium thickness group) wetness perception was 

significantly different between sample MP2 and MP3 (Fig 3) even though the 

difference in surface texture was quite small (1.9 versus 2.7, respectively).  

The above-mentioned observations are validated by the lack of correlations 

between stickiness sensation and surface texture as well as between wetness 

sensation and surface texture, indicating that changes in stickiness sensation and 
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related wetness cannot be attributed to the surface texture parameter (i.e. surface 

roughness), measured with the Kawabata Evaluation System. It could be argued 

that the ST of the samples was not different enough to show its influence on 

stickiness sensation (between 2.6 and 6.4, except for HP15 in which it was 15.3). 

However, despite these small differences in ST the participants could sense 

significant differences in texture across the fabrics, suggesting that that the 

Kawabata Evaluation System is not sensitive enough or as sensitive as humans.  

The significant differences observed within the same thickness group, i.e. between 

fabrics presenting same absolute (μL·mm-2) and relative water content (μL·mm-3), 

suggest that certain surface and texture properties might still affect the mechanical 

interaction between the skin and the fabric under wet conditions. However, in 

order to asses this, other measures different from KES, or more suitable means able 

to characterise fabric surface properties are needed.  

In L (low thickness group), LPM6 performed as the best fabric in terms of wetness 

perception, being perceived as drier than LCO4, LP3 and LP6. Fabric LPM6 is a 

polyester material in which the fibre cross-section consists of a series of closely 

spaced channels (either tetra- or hexa-channels) increasing the total surface area 

and facilitating the capillary action. As such, the theory is that moisture is wicked 

along the fibre surface and spread across a wider fabric surface area, enhancing 

evaporation. Hence, in LPM6 the faster evaporation rate should have resulted in a 

higher local skin temperature drop from baseline, however this was not the case 

(Fig 3, panel A). Therefore, it is possible that the fuzzy structure of LPM6 reduced 

the skin adhesiveness during the application process, causing lower stickiness 

sensation (Fig 5) and wetness perception. On the other hand, differences in fibre 

type between LCO4 (cotton) and LP6 or LP3 (polyester), did not determine changes 

in surface texture such as to affect stickiness sensation and related wetness 

perception. Similarly, the substantial difference in surface texture between LP3 and 

LP6, as well as between HP4 and HP15 did not influence stickiness sensation or 

wetness perception. These two pairs of fabrics had different knit structure, but the 

yarn type was identical. The latter suggests that changing the knit structure might 

not affect the mechanical interaction between the skin and the fabric; however the 
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effect of yarn shape was not investigated. Finally, MP2 was perceived significantly 

wetter and stickier than MP3. Even in this case these differences could not be 

attributed to the texture parameters measured by the Kawabata Evaluation System, 

given that the difference in surface texture was minimal (1.9 in MP2 versus 2.7 in 

MP3). Nevertheless, it is likely that the silicon treatment applied to MP2 caused 

higher adhesiveness with the skin under wet conditions, resulting in higher 

stickiness sensation and wetness perception. 

4.5.2 The role of tactile-sensitivity on fabric wetness perception 

Unlike fabric surface texture, stickiness sensation was related to wetness 

perception. When the fabric and/or the skin is wet the higher adhesiveness (Nacht 

et al. 1981) increases the frictional force between the two surfaces (Nacht et al. 

1981; Kenins 1994). In normal wear conditions the higher adhesiveness occurs in 

response to the increase in the size of the cells of the stratum corneum, when it is 

wet, which result in a higher number of contact points between the fabric and the 

skin (Gwosdow et al. 1986). This higher frictional force may cause greater skin 

displacement, sensed by the cutaneous mechanoreceptors as higher stickiness and 

perceived as greater wetness. Skin stickiness sensation was not related to fabric 

water content, likely because the experimental fabrics were tested under the same 

saturation level (50%). Additionally, given that the same pressure condition was 

applied, the individual weight of the fabric, pressing on the skin, did influence 

stickiness sensation. Based on this, the skin mechanical stimulation when in contact 

with a wet material might be affected by various factors and it seems not as straight 

forward to identify a single parameters triggering stickiness sensation.  

The contribution of tactile-sensitivity to wetness perception is corroborated by the 

significantly different responses between high and low pressure conditions, also 

observed under static conditions (Raccuglia et al. 2016a). In fact, almost all of the 

experimental fabrics were perceived significantly wetter under higher compared to 

lower pressure conditions. Conversely, Filingeri et al. (2014b) observed a diminished 

wetness perception when increasing the contact pressure of the wet stimulus 

applied to the skin. In Filingeri’s et al. study (2013) a significantly higher contact 
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pressure was applied compared to the current study, (10000 Pa versus 260 Pa) 

suggesting that there might be a U-shape relationship between wetness perception 

and contact pressure. However, a contact pressure of 260 Pa seems more realistic 

for the current applications; therefore reducing the fabric-to-skin pressure is 

recommended for the design of clothing with reduced wetness perception.   

The significant relation between wetness perception and stickiness sensation as 

well as the role of fabric-to-skin pressure, indicate that wetness perception can be 

manipulated by changing the tactile stimulation of the skin. In practice, using fabrics 

with reduced stickiness sensation features, together with the use of lightweight 

materials can help the clothing industry in designing garments with reduced 

moisture discomfort. 

4.5.3 The role of thermo-sensitivity on fabric wetness perception 

In line with the earlier results obtained in static applications (Raccuglia et al. 2016a), 

a significant relation was observed between wetness perception and local skin 

temperature drop. With the increase in fabric water content, the drop in local skin 

temperature also increases, the latter sensed as higher cooling and associated with 

greater wetness perception. Fabric water content is mainly influenced by fabric 

thickness (Raccuglia et al. 2016a). Because of the important relation between these 

two parameters, fabric thickness has been indicated as a critical factor affecting 

wetness perception under static fabric-to-skin contact (Raccuglia et al. 2016a).  

In the current dynamic condition no significant relations were observed between 

wetness perception and fabric thickness. However, when examining the model, it is 

evident that the lack of relation was mainly caused by two fabrics: LPM6 and MP2. 

These two fabrics did not fit in the regression line, because of their significantly 

higher and lower stickiness sensation, respectively. The latter suggests that under 

dynamic skin contact fabric thickness can predict fabric wetness perception only 

when considered in combination with stickiness sensation. This was shown by the 

multiple regression analysis which indicated stickiness sensation and fabric 

thickness as valid predictor of wetness perception (r2 = 0.86).  
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Because of the correlation between local skin temperature drop an thickness/water 

content (Fig 4) a similar prediction model is obtained when replacing the variable 

‘thickness’ with ‘local skin temperature drop’. Indeed, when using local skin 

temperature drop, instead of thickness, together with stickiness sensation as 

variables, a stronger prediction model is obtained (r2 = 0.89). This means that local 

skin temperature drop is as better predictor than fabric thickness in dynamic 

conditions, pointing towards the temperature drop being the mechanism of action, 

and fabric thickness showing an effect due to its correlation with this, based on 

water content for evaporative cooling.  

4.5.4 Pleasantness and texture sensation of dry and wet fabrics 

Pleasantness and comfort are criteria commonly used by the users when selecting 

fabrics and clothing. Pleasantness was significantly reduced when fabric texture 

sensation increased (Fig 10). The significant relation between texture sensation and 

pleasantness indicates that fabric texture is an important parameter to consider in 

terms of clothing acceptability, in addition to wetness perception and thermal 

comfort. Interestingly, under wet state fabric texture sensation significantly 

increased compared to dry and resulted in a concomitant reduction in fabric 

pleasantness sensation. In line with this, Gwosdow et al. (1986b) indicated that 

fabrics feel more textured as skin wetness rose above 20%. Therefore, judgements 

of fabric texture and associated pleasantness can change in relation to the 

hydration state of the skin and/or fabric moisture content. As such, evaluations of 

fabric/clothing texture and related acceptability should be conducted under both 

dry and wet conditions.  

Due to practical reasons and to prevent the effect of personal, environmental and 

clothing factors on the outcomes, in this study we studied comfort-related 

properties of fabrics only at the ventral forearm. We speculate that the current 

results could show a similar trend at different body regions; however it is unknown 

to what extent the outcomes will be different across the body. For instance, 

according to the mechanisms underlying skin wetness perception, body regional 

differences would likely depend on human sensorial factors, such as thermal and 
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tactile sensitivity, as well as anatomical factors, i.e. hair distribution and differences 

between glabrous/non-glabrous skin. In terms of an overall garment, clothing 

factors, such as the air gap between the skin and the fabric as well as clothing fit 

(both influencing the level of fabric-to-skin contact) represent additional variables 

that would influence wetness perception responses across the body. Hence, future 

researches are necessary to understand how these initial results relate to an overall 

garment. 

4.6 Conclusion 

We studied textile and non-textile factors contributing to wetness perception of 

fabric treated with the same relative water content (μl·mm-3) and in dynamic skin 

contact conditions. 

Local skin temperature drop/fabric thickness and stickiness sensation can predict 

wetness perception of fabrics in dynamic contact with the skin, whereas fabric 

surface texture measured by the Kawabata Evaluation System had no impact at all. 

The latter indicates that the Kawabata Evaluation system fails to predict stickiness 

sensation of wet fabrics, commonly assumed to be associated with fabric texture. 

Thus a different way to define fabric texture may be needed in order to represent 

this link (stickiness and texture). 

Sensations of pleasantness are highly influenced by ST (surface texture measured by 

KES) and even more by the sensation of fabric texture (i.e. roughness and 

smoothness): as ST and the roughness of the fabric sensed on the skin increase, 

pleasantness sensation diminishes. Additionally, in wet conditions fabrics are 

sensed more texturized this resulting in a concomitant reduction in pleasantness 

sensation. Therefore, assessment of fabric pleasantness and acceptability in relation 

to fabric texture properties are recommended under both dry and wet conditions.   

By identifying the textile and clothing parameters influencing skin wetness 

perception and related discomfort, this study provides fundamental knowledge for 

the design of clothing with reduced moisture discomfort features. Nevertheless, 
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future researches are necessary to understand how this initial result related to an 

overall garment. 
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CHAPTER SUMMARY 

In this study we addressed potential biases which can occur when sensorial scores of 

temperature, wetness and discomfort are repeatedly reported, in transient exercise 

conditions. We pointed out that, when repeatedly reported, previous sensorial scores can be 

set by the participants as reference values and the subsequent score may be given based on 

the previous point of reference, the latter phenomenon leading to a bias which we defined 

as ‘anchoring bias’. Indeed, the findings shown that subsequent sensorial scores are prone to 

anchoring biases and that the bias consisted in a systematically higher magnitude of 

sensation as compared to when reported a single time only. As such the study allowed 

recognition and mitigation of the identified bias which can improve the methodological 

rigour of research studies involving assessments of sensorial data in transient conditions. 
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5.1 Introduction 

The direct study of human sensations and perceptions often requires the use of 

psychophysical scales. Psychophysical scales have been widely used to evaluate 

perceived exertion in physical exercise (Borg 1982), the thermal environment and 

thermal comfort (Backer 1948; Gagge et al. 1967; Auliciems 1981;Yang and Zhang 

2008; de Dear 2011; Schweiker et al. 2017). In the context of clothing research and 

development, psychophysical scales have been largely used to assess thermal, 

moisture, haptic and comfort sensations while wearing clothing during rest and 

exercise conditions (Gagge et al. 1967; Fanger 1970; Hollies et al. 1979; Fanger 1986; 

Plante et al. 1995; Schneider et al. 1996; Fukazawa and Havenith 2009; Kaplan and 

Okur 2009; Jeon et al. 2011; Tang et al. 2014a; Raccuglia et al. 2016a; Raccuglia et al. 

2017b). When using psychophysical scaling participants are asked to estimate the 

magnitude of a specific sensation by giving a number typically linked to a qualitative 

descriptor, i.e. slightly, very, or extremely (Li 2001; Cardello et al. 2003b). The 

International Standard, Ergonomics of the thermal environment - Assessment of the 

influence of the thermal environment using subjective judgement scales (ISO 

10551:1995) contains a helpful guide on how to construct the scales used to 

measure human sensorial parameters, such as thermal sensation, thermal 

preference and thermal comfort. Whilst standardised guidelines (ISO 10551:1995) 

and important results (Gagge et al. 1967; Fanger 1970; McIntyre 1978; de Dear et al. 

1997) have been provided for evaluations conducted in steady-state workplace 

conditions, they do not provide enough information regarding their repeated use 

over time, i.e. transient conditions, when sensations are repeatedly scored, at set 

intervals, over a certain period of time.  

When sensorial scores are repeatedly reported in transient exercise conditions, the 

investigators need to decide between allowing participants to see their previous 

score (e.g. when scoring on sliders that remain static between scores) or preventing 

the use of their previous score for the following sensorial assessment (i.e. slider 

back to neutral point, or new fresh scale). In fact, in transient conditions, previous 

scores could be used by the participants as reference values. In this scenario, the 

subsequent score may be reported based on the previous point of reference, 
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making the entire evaluation process relative to the past experienced sensation. 

The latter phenomenon can lead to a bias here defined as ‘anchoring bias’. 

Anchoring biases can often result from the tendency of the participants to anchor 

the previously reported number (magnitude of sensation) rather than using the 

numbers in combination with the linked qualitative attribute of the sensation 

experienced. Furthermore, ‘anchoring biases’ are the consequence of individual 

preconceptions. For instance, participants could make the assumption that the 

magnitude of a specific sensation linearly increases with the increase of exercise 

duration, i.e. ‘if 5 minutes ago my thermal sensation was ‘5’, now that I have run for 

5 minutes longer my thermal sensation must be higher (e.g ‘6’). In both scenarios 

where numbers (magnitude of sensation) are used as reference points, participants 

can lose the connection which the qualitative attribute of the experience sensation, 

this affecting the outcome of the research conducted. Therefore, to ensure 

scientific rigour when conducting studies involving consecutive sensorial 

assessments, it is important that the sensorial scores are not simply biased 

responses from the previous given score. To the knowledge of the author, it has not 

been demonstrated before whether, and to which extent, repeated sensorial 

assessments are prone to anchoring bias. As such, the aim of the current study was 

to assess whether there are systematic differences in sensorial scores reported at 

the same time point during 50 minute of running exercise, in different experimental 

conditions, but following a different assessment procedure i.e. subsequent scores 

(every 5 minutes) and single score at one time-point, independent of previous 

scores.  

Specifically, since clothing strongly determines the thermal as well as comfort state 

of an individual (Havenith 1999; Havenith 2002; Raccuglia et al. 2016a; Raccuglia et 

al. 2017b), in this investigation we included assessments of thermal sensation, 

wetness perception, stickiness sensation and wear discomfort in relation to clothing. 

The current findings can be of high relevance when interpreting time courses of 

sensorial parameters, the onset of specific sensations, or when validating 

thermophysiological models. 
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5.2 Method 

5.2.1 Participants 

Ten young (26.9 ±3.4 yrs), healthy, recreationally active (strength and conditioning 

as well as aerobic exercises at least 4 times per week), male participants took part 

in this study. Their mean and standard deviation, body mass and height was, 73.5.0 

± 10.1 kg and 181.1 ± 8.1 cm, respectively. Participants were of Western European 

origin, to reduce any systematic error due to ethnicity-related differences in 

thermoregulatory responses, skin properties, and thermal as well as tactile 

sensitivity. 

The experimental procedures were fully explained to the participants verbally and 

in writing, before obtaining written informed consent and completing a health 

screening questionnaire. All the experimental procedures involved were approved 

by the Loughborough University Ethical Committee. The study was conducted 

within the confines of the World Medical Association Declaration of Helsinki for 

medical research involving human participants.  

5.2.2 Garment 

The experimental garment included a short sleeved, regular fitted, 100% polyester 

T-shirt. A fresh  pre-washed (ISO 6330:2012)T-Shirt was used for each participant 

and for each running trial. The T-Shirt specifications are presented in Table 1. 

Table 1 Specifications of the experimental T-Shirt. 

 

Rct = dry thermal resistance; Ref = water vapour resistance, Air perm = air permeability, Absorption = total 
absorption capacity. Dry thermal resistance and water vapour resistance were measured according to BS EN ISO 
11092:2014, air permeability was measured according to BS EN ISO 9137; total absorption capacity was 
measured according to the absorption capacity test adopted by Raccuglia et al.( 2016), modified from Tang et al. 
(2014). 
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5.2.3 Trials 

Participants performed one pre-test and three experimental trials on different days, 

separated by a minimum of 24 hours of rest. The pre-test involved anthropometric 

measurements of height, body mass (Mettler Toledo Kcc150, Mettler Toledo, 

Leicester, UK), and body dimensions to ensure adequate garment size used for the 

experimental trials. During the pre-test participants also performed a 20-min 

running test on a treadmill (h/p/cosmos mercury 4.0, h/p/cosmos Sport & Medical 

GmbH, Nussdorf-Traunstein, Germany). During this time the participants were 

asked to select the speed they could comfortably run for 1 hour. The selected speed 

(10.1 ± 1.0 km·h-1) was then recorded and used for the following experimental trials.  

Each experimental trial involved running on the treadmill at the fixed pre-selected 

speed for 50 min. In the first and the second experimental trial participants were 

asked to report, at specific time points, one single score of thermal sensation (TS), 

wetness perception (WP), stickiness sensation (SS) and wear discomfort (WD). By 

asking to report each sensation only at one single time point, it was attempted to 

prevent potential anchoring biases, therefore, the first and second experimental 

trial were defined as NO-ANCH1 and NO-ANCH2, respectively (Table 2). NOANCH1 

and NOANCH2 only differed in the time point when the participants were asked to 

report the single subjective score of each investigated sensation (Table 2). In the 

third trial, participants were asked to score the same sensations at 5 min intervals, 

and due to potential anchoring biases, given by the repeated scores, this trial was 

defined as ANCH (Table 2). 
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Table 2 Schematic representation of the three experimental conditions 

 

NO-ANCH1 and NO- ANCH2 stand for no anchor effect trial 1 and no anchor effect trial 2, respectively. ANCH 
stands for ANCHOR EFFECT trial. TS = Thermal Sensation; WD = wear discomfort; SS = stickiness sensation; WP = 
wetness perception. In NO-ANCH1 and NO-ANCH2 participants were asked to report the score of TS, WD, SS and 
WP only once at a set time point, as reported in the table. In ANCH participants were asked to report the score 
of TS, WD, SS and WP at 5-min intervals.  

 

5.2.4 Experimental protocol 

In each trial (NO-ANCH1, NOANCH2 and ANCH) the same garment was worn. 

However, to blind the participant regarding the real aim of the study, they were told 

that they would wear, in the three separated experimental trials, garments treated 

with three different moisture transfer enhancing finishes and that the purpose of 

the investigation was to determine the best performing one. The sequence of the 

two NO-ANCH trials was counterbalanced, however, to prevent any between-

condition anchoring bias the ANCH trial was always performed as last trial. During 

the pre-test participants were familiarised with the psychophysical scales used in 

the following experimental trials (Fig 1). During the experimental trials, each scale 

was displayed to the participants only when a specific score was required, in order 

to minimise memorisation of the previous score. 

Participants were instructed to refrain from strenuous exercise, abstain from 

caffeine and alcohol consumption 24 hours before testing, and to keep a record of 

their food intake and replicate it the day before each visit. In order to maintain 

euhydration, they were also advised to consume 20 mL·kg-1 body weight of water 

during the two hours prior to testing. On arrival to the laboratory participants were 

instrumented with iButtons wireless temperature loggers (Maxim, San Jose, USA). 

From these five body sites, mean skin temperature (Tsk), sampled every minute, was 

estimated according to the work of Houdas and Ring (1982):  
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𝑀𝑒𝑎𝑛 𝑇𝑠𝑘𝑖𝑛 = (𝑐ℎ𝑒𝑒𝑘 ∗ 0.07) + (𝑎𝑏𝑑𝑜𝑚𝑒𝑛 ∗ 0.175) + (𝑢𝑝𝑝𝑒𝑟 𝑎𝑟𝑚 ∗ 0.19)

+ (𝑙𝑜𝑤𝑒𝑟 𝑏𝑎𝑐𝑘 ∗ 0.175) + (𝑏𝑎𝑐𝑘 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑖𝑔ℎ ∗ 0.39) 

Participants also wore a wrist-based heart rate (HR) monitor (Polar A360, Polar 

Electro Oy, Professorintie 5, Kempele, Finland) and HR was recorded before and 

during the running trials at 1-min intervals. A wrist-based monitor, rather than a 

chest-based strap, was used since a chest strap would have interfered with sweat 

transfer from the skin to the T-shirt. Following from this, semi-nude (including 

underwear, iButtons, and HR monitor) body mass was recorded. Subsequently, 

participants were provided with standard running shorts and socks, worn with their 

personal running shoes, and were asked to use the same personal gear for the 

entire duration of the experiment. This period of preparation lasted approximately 

20-min and allowed time for the stabilisation of HR and Tsk. Participants then moved 

to the climatic chamber, rested standing still on the treadmill and after 10-min 

baseline HR was recorded. They then donned the upper garment and the running 

trial started. In order to prevent dehydration, the participants were allowed to drink 

water ad libitum during the experiment, and liquid consumption was recorded. At 

the end of the run participants took off the worn T-shirt and hand it over to the 

experimenter for measurements of post-exercise garment mass. The amount of 

sweat absorbed by the upper garment (SWEATABS) at the end of the running 

exercise was calculated as  

SWEATABS (g·m-2) = [(wwet  - wdry ]/SA 

Where; 

wwet garment wet weight (g) 

wdry garment dry weight (g) 

SA garment surface area (m2) 

Participants took off shorts, socks and shoes, towelled their skin (this took ~ 2-min) 

and post-exercise semi-nude body mass was recorded. Sweat production was 

calculated based on the weight change of each participant (gross sweat loss, GSL), 
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corrected for liquid intake, and reported in grams per body surface area (g·m-2), 

according to: 

GSL (g·m-2) = [wb1 - (wb2 - liquid)]/SA 

Where; 

wb1 body mass at the start of the experiment (g) 

The experiment was conducted in a climatic chamber maintained at 27.3 ± 0.2 ºC, 

49.9 ± 5.6 % relative humidity and wind speed corresponding to 75 % of the 

individual running speed (9.5 ± 6.2 m·s-1).  

5.2.5 Perceptual measurements 

Wetness perception, stickiness sensation (SS), thermal sensation (TS), and wear 

discomfort (WD) were scored by the participants using psychophysical scales (Fig 1). 

Wetness perception was scored using a unipolar scale ranging from 0 (extremely 

dry) to 30 (extremely wet) (Raccuglia et al. 2016a; Raccuglia et al. 2017b). Stickiness 

sensation was scored using a 12-points unipolar scale (0 not -sticky, 12 extremely 

sticky) (Raccuglia et al. 2017b). Thermal sensation was scored using a bipolar scale 

ranging from -10 Cool to 15 Hot (Raccuglia et al. 2016a). Finally, the increase in 

wear discomfort was scored using a unipolar scale, ranging from 1 comfortable to 7 

very uncomfortable (Fig 1). 
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Figure 1 Perceptual scales. Participants scored each perceptual parameter by reporting verbally the selected 
number; each score was then recorded by the investigator.  
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5.3 Statistics 

The dependent variables were: HR, Tsk, GSL (physiological) SWEATABS, wetness 

perception, stickiness sensation, thermal sensation, and wear discomfort 

(sensorial).Data were tested for normality of distribution and homogeneity of 

variance with Shapiro-Wilk and Levene’s tests, respectively. One-way repeated 

measures ANOVA tests were performed to assess differences in HR, Tsk, GSL and 

SWEATABS between the trials (NO-ANCH1, NO-ANCH2 and ANCH). Non-parametric 

Wilcoxon Signed Rank test were conducted to assess differences in wetness 

perception, stickiness sensation and wear comfort between the trials (NO-ANCH1, 

NO-ANCH2 and ANCH) at the selected time points (Table2). In all analyses p < 0.05 

was used to establish significant differences. Data are reported as mean ± standard 

deviation. Statistical analysis was performed using the software IBM SPSS Statistics 

version 23 (IBM, Chicago, USA). 

5.4 Results 

5.4.1 Physiological measurements 

There were no significant differences in the amount of total sweat produced (GSL) 

(p = 0.54), hear rate (HR) (p = 0.48) and amount of sweat absorbed by the garment 

(SWEATABS) (p = 0.76) between the three experimental trials (NO-ANCH1, NO-

ANCH2, ANCH) (Table 3). Mean Tsk, measured at 1-min interval and sampled over 5-

min intervals during the whole duration of the run (Fig 2), was not significantly 

different between the three trials (NO-ANCH1, NO-ANCH2 and ANCH) at any time 

point (p > 0.05). Therefore, the three trials provided same thermal load and 

thermoregulatory responses for each participant which resulted in same level of 

garment physical wetness. Based on this, it can be inferred that potential systematic 

differences in sensorial scores can only be due to the methodology in which the 

participants were asked to report the sensorial scores, i.e. at 5-min intervals (ANCH) 

or at one single time point (ANCH1 and ANCH2). 
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Table 3 Physiological responses across the three experimental trials. 

 

NO-ANCH21 and NO- ANCH2 stand for no past anchoring effect trial 1 and no anchor effect trial 2, respectively. 

ANCH stands for past anchoring effect trial. GSL = gross sweat loss; SWEATABS = amount of sweat absorbed by 

the upper garment at the end of the running exercise; HR = heart rate at the end of the run (at 50-min). Data 

are presented as mean ± standard deviation.  

 

 

Figure 2 Time course of mean skin temperature (Tsk) recorded at 1-min interval and sampled every 5-min in the 
NO-ANCH 1 and NO-ANCH2 trials (no past anchoring effect) as well as in the ANCH (past anchoring effect) trial. 

 

5.4.2 Sensorial scores 

For clarity, the duration of the running trials is divided in two parts. The first part of 

the run ranges from 5 min to 25 min, the second one from 25 min to 50 min. The 

results show that the scores reported at 5-min intervals in ANCH were always higher 

than the single time-point scores obtained from NO-ANCH1 and NO-ANCH2 (Figure 

3, Table 4).  
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Figure 3 Reported perceptual scores of Stickiness Sensation, Thermal Sensation, Wetness Perception and Wear 
Discomfort. The solid line represents the perceptual scores reported at 5-min intervals in the ANCH trial, and 
the grey area indicates the corresponding standard deviation. The black and white circles represent means of 
the single time point sensorial scores reported in NO-ANCH1 and NO-ANCH 2 trial, respectively. *significant 
differences (p < 0.05) between NO-ANCH1 and ANCH as well as between NO-ANCH2 and ANCH at specific time 
points. 

 

In the first part of the running trial (5 min to 25 min), only sensorial scores of 

thermal sensation were significantly higher (p = 0.017, z = -2.43) in ANCH, compared 

to NO-ANCH1 (Fig 2, Table 4), whereas scores of stickiness sensation, wetness 

perception and wear discomfort did not reach significance (p = 0.77, z = -0.33 

stickiness; p = 0.06, z = -1.89 wetness; p = 0.2, z = -1.34 discomfort). In the second 

part of the running trial (25 min to 50 min), all the investigated sensations (wetness 

perception, thermal sensation, stickiness sensation and wear discomfort) were 

significantly higher (p < 0.05) in the ANCH trial compared to the NO-ANCH1 and NO-

ANCH2 (p = 0.02, z = -2.36 thermal; p = 0.03, z = -2.13 stickiness; p = 0.01, z = 2.49 

wetness; p = 0.02, z = 2.33 discomfort) (Fig 3, Table 4).  
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Table 4 Sensorial scores in ANCH, NO-ANCH1 and NOANCH2, at the selected time points (Table 2) 

 

NO-ANCH 1 and NO-ANCH2 trials = no anchoring effect, trial 1 and trial 2, respectively. ANCH = anchoring effect 
trial. * Significant differences (p < 0.05) between ANCH and NO-ANCH1 and between ANCH and NO-ANCH2. 

 

5.5 Discussion 

The focus of this study was to assess whether, and to which extent, ‘anchoring 

biases’ occur when the magnitude of specific sensations is repeatedly reported in 

exercise. Our main finding was that scores of thermal, stickiness, wetness and 

discomfort sensation are significantly higher when subsequently reported at set 

intervals (every 5 min), as compared to single time-point scores. These findings 

show that subsequent sensorial scores are prone to anchoring biases, and that the 

bias consists in a systematically higher estimated magnitude of a particular 

sensation as compared to when reported a single time only.   

Psychophysical scaling and past anchoring bias 

Psychophysical scaling gathers direct information regarding the subjective 

experience that a person has in a specific environment. Sensorial data obtained 

from psychophysical scales can be considered as self-reported data. The common 

assumptions made with self-reported sensorial data is that the data represent an 

accurate, unbiased reflection of what is being measured (Dodd-McCue and Tartaglia 

2010). However, the validity of subjective data (obtained using psychophysical 
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scales) is often questioned (ISO 10551:1995). Particularly, self-reported data can 

introduce biases, mainly originated from the subjective nature of the human 

participants. Biases can affect the quality of the measurement, causing inaccuracy 

or lack of precision of the research. Participants can be inaccurate or cause biased 

responses for numerous reasons (Aaker et al. 2004). For instance, participants may 

want to be consistent in their responses, rather than focusing on the question asked. 

In other cases, participants might be concerned on how their responses can affect 

the opinion that others (investigator) can have of them (Mick 1996). In the 

literature, several biases related to self-reported data are examined (Krosnick 1999; 

Polit and Beck 2004; Dodd-McCue and Tartaglia 2010). However, there are not 

information available regarding potential biases occurring when sensorial data are 

repeatedly reported over time in exercise; the latter being the focus of the current 

study. Specifically, here we considered over-time assessments of temperature, 

stickiness, wetness and discomfort, in relation to clothing during exercise. We 

hypothesised that, when sensorial data are repeatedly reported over time, the 

previous provided score might serve as reference for determining the subsequent 

response. This phenomenon might sound similar to the so-called ‘halo effect’ (Polit 

and Beck 2004), in which the individual assessment of a certain object triggers the 

pattern of the following response. However, in the current study we hypothesised 

that the previous reported data is set by the participants as reference to 

intentionally report a subsequent response different from the one previously 

provided. This could be simply based on the assumption that over time the 

magnitude of a certain sensation must change, as exercise time/intensity increases. 

To test this hypothesis, in the current investigation sensations of temperature, 

wetness, stickiness and wear discomfort were measured at set single time-points, 

over 50-min of running exercise, and compared to the response provided (in a 

separated trial) at the same time point, but as part of subsequent measurements, 

i.e. every 5 minutes. In line with our hypothesis, repeated measurements 

significantly differed from single time-point measurements. Specifically, 

systematically higher scores were identified when provided multiple times as 

compared to the single-time scores (Fig 3). Differences in sensorial responses 

between ANCH and NO-ANCH condition were manly affected by the scoring 
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procedure adopted (i.e. repeated versus single time scores). In fact, physiological 

parameters of mean skin temperature, heart rate and gross sweat loss, were not 

significantly different between the experimental trials. Core temperature, usually 

measured rectally or via an oesophageal probes, was not measured to avoid 

potential discomfort which could interfere with the sensorial responses of 

temperature, wetness, stickiness and wear discomfort.  

According to these findings, here we propose that when reported in a repeated 

evaluation process (at set intervals, over time, in exercise), the previous score is set 

as reference to intentionally provide a greater subsequent score. This can be 

affected by the tendency of the participants to anchor to previous numbers rather 

than using the qualitative attribute as reference. In fact, when using numbers rather 

than the attributes, participants can lose the link with the actual magnitude of the 

sensation experience. Furthermore, anchoring biases can occur as result of a biased 

individual’s preconception that the progression of exercise time/intensity is 

accompanied by concomitant increases of the magnitude of a specific sensation, 

even if a greater sensation is not necessarily perceived. In cognitive psychology, this 

phenomenon can be recognised as schema. Schemas are stored in long-term 

memory and include knowledge about events and consequence of events (scripts) 

(Eysenck and Keane 2010). Schemas allow us to form expectations, as in this case, 

as exercise progresses participants expect to have higher body temperature and 

sweating responses, which can influence the magnitude of the related sensation 

reported.  

Anchoring biases represent limiting factors in studies aiming to identify critical 

threshold values, i.e. onset of fatigue or discomfort, and associated sensations of 

temperature and wetness. However, this kind of bias might not represent an issue if 

the aim of the research is to simply discriminate between two or more items (i.e. 

garments). In fact, in this type of research, it is important to assess the 

discriminatory power between items but the magnitude of the score per se is not 

relevant. However, anchoring biases can lead to a ‘ceiling effect’. In exercise, this 

can occur when the score becomes progressively higher over time, to the point 

where the maximum value on the scales is prematurely reached before the end of 
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the evaluation process, i.e. when assessing perceived exertion (Borg 1982) induced 

by different exercise protocols/stimulations. As such, once the highest value of a 

particular scale is achieved, discriminations between items cannot be made. On the 

contrary, based on the current findings, in other settings having a previous score 

value as reference can help to make more accurate judgments, meaning that the 

tendency to anchor to the previous score not always lead to a bias. This can occur 

when participants have to make estimations regarding the magnitude of absolute, 

continuous values, i.e. estimations of time progression, for instance.  

 

Recognition and mitigation 

Self-reported data are one of the most effective and appropriate way to gather 

information regarding the magnitude of specific sensations (Dodd-McCue and 

Tartaglia 2010), in our case, temperature, wetness, tactile and discomfort, while 

wearing clothing during exercise. When conducting research involving sensorial 

subjective data, it is common to pay attention to sample size, research design and 

statistical analysis, to improve methodological rigour. An additional factor needs to 

be considered by the researcher and this is the recognition of the potential bias, 

which is intrinsic of sensorial self-reported data. In fact, while it seems unrealistic to 

completely prevent and avoid biases, it is possible to address some of them before 

and during the data collection, to obtain a more precise interpretation of the study 

results. Particularly, in this study after recognition of the anchoring bias, the 

magnitude of the bias was quantified (Fig 3, Table 4).  

Mitigation of the bias is the second step which should be considered by the 

researcher.  It is crucial to identify the factors that can make the subjective 

sensorial response prone to bias. In the current study, to mitigate the past 

anchoring bias, specific strategies were adopted. For instance, while in some 

research set-ups it is common to show to the participants the scales during the 

entire duration of the experimental trial, in this study each scale was displayed only 

when a specific sensorial score was required. As such, memorisation and 

habituation to the scales, which could contribute to anchoring biases, were 

prevented. Anecdotally, in the trial requiring repeated sensorial scores, some 
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participants asked the investigator, to remind them their previously reported score, 

before giving the next one. This event clearly demonstrates that participants tend to 

‘anchor’ to the previous score and to set it as reference for the following one. 

Therefore, an additional strategy adopted to mitigate the bias was to negate 

reminders of the previous score and encourage the participant to focus and keep 

the connection with the sensation experience at that specific time point, using 

numbers as well as qualitative sensory attributes. Finally, another strategy which 

could further mitigate anchoring biases consists of reducing the frequency in which 

sensorial scores are asked to be reported. A longer interval between two 

consecutive scores could attenuated memorisation, and in this way participants 

become less prone to relate the following score to the previous given one.  

5.6 Conclusion 

The aim of the current study was to investigate the use of psychophysical scales in 

transient conditions, when the magnitude of a sensation is repeatedly scored, at set 

intervals, over a certain period of exercise time. Repeated sensorial scores were 

compared with single time point score, assessed in the same exercise and 

environmental conditions. This investigation demonstrated that repeated scores of 

thermal sensation, wetness perception, stickiness sensation and wear discomfort, in 

relation to clothing, during exercise, are significantly higher than single time point 

scores. This confirms our hypothesis that when repeatedly reported in transient 

exercise conditions, sensorial scores are prone to anchoring biases. In particular, 

due to the tendency to anchor to the previous number, rather than the sensorial 

descriptor, and to a bias preconception that sensations are linearly related to 

exercise progression, participants tend to intentionally give a score which is 

systematically higher than a score given in the same situation but a single time only. 

Although in the current study the sensation investigated where related to clothing, 

we speculate that same past anchoring biases can occur when assessing other 

subjects, e.g. thermal environment, vision, noises, fatigue or exercise. While 

complete abolishment of anchoring biases seems unrealistic, we recognised and 

quantified the bias which is important for the interpretation of future study’s 
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results. Finally, we provided strategies to mitigate the bias, in order to improve the 

rigour of research involving sensorial self-reported data. 
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The effect of garment contact area, absolute sweat content and sweat 

saturation percentage on moisture-related sensations                                  

during physical exercise  
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CHAPTER SUMMARY 

In Study 2, the individual impact of fabric contact area on wetness and stickiness sensation 

has been studied in a skin regional experiment at rest. Results demonstrated that lower 

fabric contact area causes diminished moisture-related sensations, i.e. wetness and 

stickiness. Following on from this, the current study investigated the combined effect of 

fabric contact area, fabric absolute sweat content and fabric moisture saturation percentage 

on wetness and stickiness sensations, during exercise at 27ºC and 50% relative humidity. 

Moreover, factors causing wear (dis)comfort during exercise were identified. Reductions in 

fabric contact area caused higher fabric moisture saturation percentage. Higher fabric 

saturation percentage induced greater stickiness sensation, despite lower fabric contact area 

and absolute sweat content (typically associated with lower stickiness). Wetness perception 

did not change between fabrics with different saturation percentages, contact areas and 

sweat contents. Texture and stickiness sensation explained 30% (at baseline) and ~50% 

(during exercise) of the variance in wear discomfort, respectively. In conclusion, fabric 

saturation percentage mainly affects stickiness sensation of wet fabrics, overruling the 

impact of fabric contact area and absolute sweat content. In a warm environment, the 

cooling sensations arising from sweat evaporation seems not to be sufficient to perceive 

differences in wetness between fabrics, thus stickiness seems a more impactful parameter. 

No overall model of wear discomfort across all data could be developed, likely due to the 

complex interactions between the relevant parameters and the time-dependency of the 

relationships. Therefore, models for different time points were produced, with texture and 

stickiness sensations being the best predictors of wear discomfort at baseline and during 

exercise, respectively. This suggests that the factors determining clothing (dis)comfort are 

dynamics and alter importance during exercise activity. 

 

 

 

 

 

 

 

 

 

 

 



   CHAPTER 6 – Laboratory study 4 

    

191 

6.1 Introduction 

Comfort is often considered in relation to a single factor causing discomfort, be it 

environmental, physical, physiological or perceptual (Slater 1986; Kaplan and Okur 

2009; Kamalha et al. 2013; Parsons 2014). However, in a real life situation it is rare 

that only one single factor entirely influences how comfortable an individual feels. 

Clothing, for instance, constantly interacting with the human body, is responsible 

for wear discomfort. The clothing system can be considered as a combination of 

various interacting components that ultimately affect overall clothing functionality 

and wear comfort sensation. The clothing components can be grouped into two 

main clusters. The first one is represented by textile factors including the basic 

yarns and fibres used to knit or weave the fabric, the fabric itself, characterised by 

different physical parameters (thickness, mass, yarn count, stich density), structures, 

surfaces and geometries as well as finishes and treatments. The second group 

includes clothing factors, such as clothing design, fit and openings. Moreover, 

environmental and individual (including anatomical, physiological, and sensorial) 

factors interact with the clothing system (Hollies et al. 1979) leading to a highly 

complex environment- human- clothing system. One of the factors considered as 

the most crucial in causing wear discomfort during physical activity is the presence 

of wetness at the skin-clothing interface (Fukazawa and Havenith 2009; Gerrett et al. 

2013). The multisensory modality of skin wetness perception contributes to the 

complexity in studying discomfort during wear. Due to the absence of defined 

cutaneous sensors (Clark and Edholm 1985) skin wetness is perceived in the central 

nervous system through the integration of other cutaneous stimulations (Bentley 

1900; Niedermann and Rossi 2012; Filingeri et al. 2014a).  For instance, if the 

garment that we are wearing becomes wet, a chill or cold feeling will be sensed 

directly on the skin, due to the cooling effect of evaporation of the liquid and/or the 

increased thermal conductivity of the fabric. At the same time, the clingy or sticky 

sensation detected by the cutaneous tactile receptors, occurring when the wet 

material moves intermittently against and across the skin, is combined with the cold 

sensations in the brain. At this point, the brain, being already familiar with these 

types of feeling (cold and clingy), recognises the presence of a wet material on the 
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skin (Bentley 1900; Filingeri and Havenith 2015; Bergmann Tiest 2015) resulting in a 

perception of wetness. 

Clothing innovations and advances usually involve the use of textile performance 

enhancing technologies, validated by standard material test methods conducted 

with specially developed apparatus. Although these methods allow assessments of 

objective improvements in material performance, it is often unknown whether 

these relate to perceivable improvements in wear comfort in real use. The end goal 

of the clothing industry is to reduce wear discomfort during exercise. Therefore, the 

adoption of an integrative paradigm where the assessment of textile and clothing 

parameters (instrumentally measured) is undertaken using human physiological as 

well as perceptual responses would be of great value. In this regard, recently, in a 

series of studies in which fabrics were applied to a limited skin area (skin regional 

studies), the individual and combined role of fabric thickness (static skin contact) 

and surface texture (dynamic skin contact) on skin wetness perception was 

investigated (Raccuglia et al. 2016a; Raccuglia et al. 2016b; Raccuglia et al. 2017a; 

Raccuglia et al. 2017b). In the static skin application condition, the role of fabric 

thickness as major determinant of fabric absorption capacity and wetness 

perception was demonstrated (Raccuglia et al. 2016a; Raccuglia et al. 2016b). 

Specifically, when applying the same relative to volume water content (mL·mm-3; 

same saturation percentage) thicker fabrics were perceived wetter than the thinner 

ones. Conversely, when adding the same absolute water amount (mL·mm-2), thicker 

fabrics were perceived dryer compared to thinner fabrics, given that thinner fabrics 

were more saturated. The individuals could perceive various degrees of fabric 

wetness by integrating fabric thermal (cooling provided) and mechanical (load on 

the skin) inputs sensed at the skin by thermo- and mechanoreceptors, respectively. 

Specifically, with the increase in fabric water content the cooling power also 

increases, resulting in higher local skin cooling (reduction in skin temperature) and 

wetness perception. The contribution of fabric tactile input was indicated by greater 

wetness perception in heavier fabrics at equal water content, due to the resultant 

higher load/pressure which increases the magnitude of stimulation of both thermo- 

and mechanoreceptors. Finally, as expected (Fukazawa and Havenith 2009; Gerrett 
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et al. 2013), sensations of discomfort were strongly correlated to fabric wetness 

perception, showing the importance of this parameter in overall comfort sensation 

In a dynamic skin contact investigation (Raccuglia et al. 2017b; Raccuglia et al. 

2017a), i.e. when the fabrics move across the skin, the role of fabric surface 

properties on wetness perception was studied. It was observed that wet fabric 

materials with a smoother surface resulted in greater skin wetness perception 

compared to the wet rougher fabric surfaces. In fact, when moving across the skin, 

the wet smoother materials may cause higher cutaneous displacement compared to 

the rougher ones. The higher skin displacement likely resulted from a higher 

adhesiveness between the wet fabric and skin, which in turn was caused by the 

creation of a greater number of contact points offered by the smoother fabric 

surface. The magnitude of skin displacement was detected by the cutaneous tactile 

receptors as higher or lower stickiness or clinginess sensation and, subsequently 

associated with different degrees of fabric wetness. Interestingly, the power of 

wetness perception prediction became substantially stronger when including, both 

stickiness sensation and fabric thickness as predictors.  

Due to the critical impact that stickiness sensation was shown to have on wetness 

perception in the skin regional study (dynamic contact), the aim of the current study 

was to investigate the influence of both stickiness sensation and wetness 

perception on wear discomfort, in a whole-body study. In the current study 

garment wetness was induced by physical exercise (sweating), rather than by 

manipulating the fabric moisture content by adding water to it, as done in earlier 

experiments (Raccuglia et al. 2016a; Raccuglia et al. 2017b). The latter difference 

between whole body (exercise) and the skin regional studies adds an extra different 

type of thermal sensory cue, which can contribute to the ability to perceive 

different degrees of fabric wetness. In fact, in the current whole body investigation, 

the contribution of the cooling effect arising from the evaporation of sweat, 

induced by physical exercise, was examined. In contrast, in the earlier studies (skin 

regional study), water evaporation from the fabrics, during the application to the 

skin, was prevented by covering the fabrics with a thin PVC layer. Therefore, in the 



   CHAPTER 6 – Laboratory study 4 

    

194 

skin regional studies, the role of cooling sensations mainly arouse from the 

increased thermal conductivity of the wetted fabrics. 

To solely study the role of fabric stickiness and wetness perception on wear 

discomfort during physical exercise, three experimental garments were selected 

and matched for their physical parameters. To induce substantial differences in 

stickiness and wetness sensations, the fabric surface area in contact with the skin 

between the three garments, was manipulated.  It was hypothesised that higher 

garment surface area in contact with the skin will result in greater stickiness 

sensation and wetness perception and that these latter two will impact wear 

discomfort. However, manipulations of fabric contact surface area could also affect 

the surface area available for sweat absorption between the three garments, this 

leading to differences in garments absolute sweat content and moisture saturation. 

Therefore, the current study examined the combined role fabric contact area with 

the skin, fabric sweat content and moisture saturation percentage on stickiness 

sensation and wetness perception.  
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6.2 Method 

6.2.1 Participants 

Eight young (21.4 ± 2.3 yrs.) males recreationally active (strength and conditioning 

as well as aerobic exercises at least 4 times per week) and of Western European 

origin participants, were recruited from the Loughborough University student 

cohort. Their mean body mass, height and body fat was, 81.0 ± 10.1 kg, 181.1 ± 8.1 

cm and 15 ± 3.7%, respectively.  

The experimental procedures where fully explained to the participants verbally and 

in writing, before obtaining informed written consent and completing a health 

screening questionnaire. All the experimental procedures involved were approved 

by the Loughborough University Ethical Committee. The study was conducted 

within the confines of the World Medical Association Declaration of Helsinki for 

medical research involving human participants.  

6.2.2 Garments 

The experimental garments included three short sleeved 100% polyester T-shirts 

with identical design and fit (loose). Three fabrics were selected to produce the 

three experimental garments. The fabrics were matched for thickness, mass, denier 

count, fibre content, and finish (hydrophilic finish) (Table 1). The main difference 

between the three fabrics was in the percentage of surface area in contact with the 

skin (contact surface area; Contact-SA; Table 1). The latter was achieved by knitting 

the three fabrics using different mesh structures, each of these characterised by 

holes of different diameters (Fig 1): high (HIGH), medium (MEDIUM) and low (LOW) 

Contact-SA. Consequently, these differences in Contact-SA led to differences in 

surface area available for sweat absorption. 

Garment Contact-SA was calculated using a high resolution picture of each fabric 

with a white background (‘holes’ area). The creation of high contrast between the 

fabric and the white background allowed measurements of the ‘holes area’ in unit 

of pixels, using Adobe Photoshop Software (2017).  The Contact-SA was calculated 

as percentage of the full area of the fabric (in the picture) by subtracting the total 
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area. The Contact-SA expressed as percentage of the ‘holes area’ was 92.7%, 87.5% 

and 66.3%, for HIGH, MEDIUM and LOW, respectively.  

Due to differences in Contact-SA, the total capacity to absorb liquid moisture 

(absorption capacity; ABS in g·m-2) was different across the three fabrics (Table1) 

and therefore garments.  

 

Figure 1 High resolution photographs of HIGH (high Contact-SA), MEDIUM (medium Contact-SA) and LOW (low 
Contact-SA) fabrics. 

 

Table 1 Experimental fabrics/ garment specifications. 

 

HIGH = high contact surface area, MEDIUM = medium contact surface are, LOW = low contact surface area. 100 

% pes = 100% polyester; Contact-SA = contact surface area calculated with Photoshop Software (2017) 

subtracting the ‘holes area’ from the total surface are; ABS = moisture absorption capacity.  

 

6.2.3 Experimental protocol 

Pre-test. Participants were required to attend the Environmental Ergonomics 

Research Centre for a pre-test, involving anthropometric measurements of height, 

body mass (Mettler Toledo Kcc150, Mettler Toledo, Leicester, UK), percentage of 

body fat (Tanita Corporation, Tokyo, Japan) and body dimensions for the 
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anthropometric assessments of the adequate garment size used for the 

experimental trials.  

During the pre-test participants also performed a 20-min running test on a treadmill 

(h/p/cosmos mercury 4.0, h/p/cosmos Sport & Medical GmbH, Nussdorf-Traunstein, 

Germany). During this time the participants were asked to select the speed they 

could comfortably run for 1 hour. The selected speed (10.2 ± 0.9 km·h-1) was then 

recorded and used for the following experimental trials. 

Experimental trials. Participants performed 3 running trials on different days, 

separated by a minimum of 24 hours of rest. In each trial one of the three 

experimental garments (HIGH, MEDIUM and LOW) was worn. The testing sequence 

was counterbalanced to minimise any order effect and each participant performed 

the trials at the same time of the day to minimise circadian variation. Participants 

ran at the pre-set fixed speed for 30-min. This running duration was selected to 

replicate the type of activity typically performed in an indoor environment e.g. at 

the gym. Participants were instructed to refrain from strenuous exercise, abstain 

from caffeine and alcohol consumption 24 hours before testing, and to keep a 

record of their food intake and replicate it the day before each visit. In order to 

maintain euhydration, they were also advised to consume 20 mL·kg-1 body weight 

of water during the two hours prior to testing.  On arrival to the laboratory 

participants were asked to void their bladders and self-insert a rectal probe, to 

monitor changes in body core temperature. The rectal probe (Grant Instrument Ltd, 

Cambridge, UK) was inserted 10 cm beyond the anal sphincter and rectal 

temperature was measured throughout each experimental trial at 1-min intervals 

and recorded via a portable data logger (Grant Instrument Ltd, Cambridge, UK) 

connected to the thermistor’s probe. Participants also wore a wrist-based heart rate 

(HR) monitor (Polar A360, Polar Electro Oy, Professorintie 5, Kempele, Finland) and  

HR was recorded before (BASELINE) and during the running trials at 1-min intervals. 

A wrist-based monitor, rather than a chest-based strap, was used since a chest strap 

would have interfered with sweat transfer from the skin to the T-shirt. Following 

from this, semi-nude (including underwear, rectal probe and HR monitor) body 

mass was recorded. Subsequently, participants were provided with standard 
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running shorts and socks, worn with their personal running shoes, and were asked 

to use the same personal gears for the entire duration of the experiment. This 

period of preparation lasted approximately 15-min and allowed time for the 

stabilisation of HR and Tcore. Participants moved to the climatic chamber, rested 

standing still on the treadmill and after 10-min baseline HR was recorded. They then 

donned the experimental garment and the running trial started. In order to prevent 

dehydration, the participants were allowed to drink water ad libitum during the 

experiment, and liquid consumption was recorded. At the end of the run 

participants took off the worn T-shirt and hand it over to the experimenter for 

measurements of post-exercise garment mass. The participants took off shorts, 

socks and shoes, towelled their skin (this took ~ 2-min) and post-exercise semi-nude 

body mass was recorded.  

Sweat production was calculated based on the weight change of each participant 

(gross sweat loss, GSL), corrected for liquid intake, and reported in grams per body 

surface area (g·m-2), according to: 

GSL (g·m-2) = [wb1 - (wb2 - liquid)]/SA 

Where; 

wb1 body mass at the start of the experiment (g) 

The experiment was conducted in a climatic chamber maintained at 27.4 ± 0.3 ºC, 

49.4 ± 3.4 % relative humidity. Apart from having different contact areas, the three 

garments presented different ventilation potentials, as results of the three different 

mesh structures. Thus, to cancel-out the effect that the presence of relatively high 

air flow could have had on sweat evaporation and perceptual responses (i.e. 

wetness perception, thermal sensation and wear discomfort), environment air flow 

was set to negligible levels ( 0.2 m·s-1).  

6.2.4 Perceptual measurements 

During each experimental trial wetness perception, stickiness sensation, thermal 

sensation, texture sensation and wear discomfort were scored by the participants at 

5-min intervals using interval scales (Fig 2). Wetness perception was scored using an 
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ordinal unipolar scale ranging from 0 (extremely dry) to 30 (extremely wet) 

(Raccuglia et al. 2016a; Raccuglia et al. 2017b). Stickiness sensation was scored 

using a 12-points ordinal unipolar scale (0 not -sticky, 12 extremely sticky) 

(Raccuglia et al. 2017b). Thermal sensation was scored using an ordinal bipolar scale 

ranging from -10 Cool to 20 Hot, modified from (Raccuglia et al. 2016a).  

In the dynamic skin regional study (Raccuglia et al. 2017b), it was observed an 

increase in texture sensation when the fabric became wet (i.e. the fabric is 

perceived rougher than when dry). Interestingly this increase in texture sensation 

was associated with reductions in pleasantness sensation. Hence, in the current 

experiment fabric texture sensations were recorded to assess whether these had an 

impact also on wear discomfort. Fabric texture sensation was scored with an ordinal 

bipolar scale (from -9 very smooth to 9 very rough) according to Raccuglia et al. 

(2017b). 

Finally, the increase in wear discomfort was scored using an ordinal unipolar scale, 

ranging from 1 comfortable to 7 very uncomfortable (Fig 2). 
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Figure 2 Perceptual scales (Raccuglia et al. 2016a; Raccuglia et al. 2017b). Participants scored each perceptual 
parameter by reporting verbally the selected number; each score was then recorded by the investigator.  
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6.3  Statistics 

The independent variables were: HR and Tcore (physiological) and wetness 

perception, stickiness sensation, thermal sensation, texture sensation and wear 

discomfort (sensorial). 

Data were tested for normality of distribution and homogeneity of variance with 

Shapiro-Wilk and Levene’s tests, respectively.  

One-way repeated measures ANOVA tests were performed to assess differences in 

HR, Tcore, GSL and SWEATABS between the garments (HIGH, MEDIUM and LOW). 

When statistical differences were observed post hoc tests with Bonferroni 

correction for multiple comparisons were conducted.  

Wetness perception, stickiness sensation, texture sensation and wear comfort data 

were measured through means of ordinal scales and also violated the assumption of 

normality of distribution, therefore for the statistical analysis non-parametric tests 

were conducted.  

Friedman tests were conducted to assess the effect of garment contact area (HIGH, 

MEDIUM and LOW) and therefore absolute sweat absorption (g·m-2) as well as 

saturation (% of absorption capacity) on wetness perception, stickiness sensation, 

texture sensation and wear comfort at each of the run time points (BASELINE, 5 

MIN, 10 MIN, 15 MIN, 20 MIN, 25 MIN, 30 MIN). When statistical differences were 

observed Wilcoxon Signed Rank tests were conducted.  

To assess the impact of wetness perception, stickiness sensation, thermal sensation 

and texture sensation (independent variables) on wear discomfort (dependent 

variable), stepwise regression analyses were performed.  

In all analyses p < 0.05 was used to establish significant differences. Data are 

reported as mean ± standard deviation. Statistical analysis was performed using the 

software IBM SPSS Statistics version 23 (IBM, Chicago, USA). 
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6.4 Results 

6.4.1 Sweat produced 

The amount of total sweat produced (GSL) at the end of the each run condition was 

not affected by the type of garment worn, therefore no significant (p > 0.05) 

differences were observed in GSL between HIGH, MEDIUM and LOW (Fig 3).  

 

Figure 3 Gross sweat loss (GSL) data between the three experimental garments (HIGH; MEDIUM; LOW). No 

significant differences in GSL were observed between the three garments.  

 

6.4.2 Heart rate and core temperature 

HR and Tcore were recorded every 1-min intervals and the average data of 5-min for 

HR are reported (Fig 4A). There were no significant differences (p > 0.05) in HR (Fig 

4A) or Tcore (Fig 4B) between HIGH, MEDIUM and LOW.  
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Figure 4 Time course (Baseline - 30 MIN) of heart rate (HR; 4A) and core temperature (Tcore; 4B). No significant 
differences In HR or Tcore were observed between the 3 garments (HIGH, MEDIUM and LOW).  

 

6.4.3 Sweat absorbed 

Garment type had a significant effect (p = 0.04) on sweat absorption (Fig 5A). 

Specifically, LOW showed a significantly lower (p = 0.02) absolute sweat content 

(SWEATABS) compared to HIGH, whereas no significant differences where observed 

between LOW and MEDIUM (p = 0.09), neither between HIGH and MEDIUM (p = 

0.54).  

LOW was significantly more saturated (p = 0.01) then HIGH (34% and 21%, 

respectively). However, garment saturation in MEDIUM (25%) was not significantly 

different from HIGH (p = 0.4) or LOW (p = 0.08) (Fig 5B).  Despite the lack of 

significance, between MEDIUM and LOW a trend was visible for difference in sweat 

absorption and saturation to develop (p < 0.1). 

Given that garment sweat absorption (SWEATABS) and garment saturation in 

MEDIUM were not significantly different from HIGH and LOW, MEDIUM was not 

taken into account for the following analyses.   
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Figure 5A Absolute amount of sweat (SWEATABS) absorbed by the three garments (HIGH, MEDIUM and LOW). 
Significantly (* p = 0.02) low SWEATABS in LOW compared to HIGH. 5B Percentage of sweat saturation in each 
garment (HIGH, MEDIUM and LOW). Significantly (* p = 0.01) high sweat saturation in LOW compared to HIGH. 

 

6.4.4 Wetness perception and stickiness sensation 

Wetness perception (Fig 6A) was not different (p > 0.05) between HIGH and LOW at 

any of the analysed time points (BASELINE-30 MIN). On the other hand, stickiness 

sensation (Fig 6B) was significantly different (p < 0.05) between the two garments at 

each time point, apart from BASELINE and 5 MIN (p > 0.05). Specifically, stickiness 

sensation was greater in the garment with lower Contact-SA (LOW), which was also 

more saturated (Fig 5B).  

6.4.5 Thermal sensation, texture sensation and wear discomfort 

There were no significant (p > 0.05) differences in thermal sensation (Fig 6C) 

between HIGH and LOW. On the other hand, significant differences (p < 0.05) in 

texture sensation (Fig 6D) were observed between HIGH and LOW at each analysed 

time point (BASELINE - 30 MIN). Specifically, texture sensation was higher in LOW 

compared to HIGH (LOW was sensed as more texturized and rougher).  

Wear discomfort was significantly higher in LOW compared to HIGH (p < 0.05) at all 

the analysed time points (Fig 6E).   
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Figure 6 (A) Wetness perception, (B) Stickiness sensation, (C) Thermal sensation, (D) Texture sensation and (E) 
Wear comfort over time (BASELINE-30 MIN) of the two experimental garments (HIGH and LOW). * indicates 
significant differences (p < 0.005) between the two garments.  

 

6.4.6 Factors causing discomfort 

Stepwise regression analyses were conducted to identify the factor/s influencing 

wear discomfort at BASELINE and at 10-, 20- and 30-MIN of exercise activity. For 

this analysis data from HIGH, MEDIUM and LOW conditions were included. Wetness 

perception, stickiness sensation, thermal sensation and texture sensation were 

selected as independent variables and wear discomfort as dependent variable. The 
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analysis was conducted separately for BASELINE, 10 MIN, 20 MIN and 30 MIN to 

cancel out a potential time-effect on the prediction models.  

Texture sensation was selected as the best predictor of wear discomfort at 

BASELINE (Fig 7A) (r2 = 0.30, p = 0.019). Liner positive relationships were observed 

between wear discomfort and texture sensation also at 10 MIN (Fig 7B) (r2 = 0.33, p 

= 0.019), 20 MIN (Fig 7C) (r2 = 0.28, p = 0.019) and 30 MIN (Fig 7D) (r2 = 0.22, p = 

0.018). However, the power of wear discomfort prediction at 10 MIN (Fig 8B), 20 

MIN (Fig 8C) and 30 MIN (Fig 8D), was stronger when selecting stickiness sensation 

as predictor. Specifically, stickiness sensation explained 36% (r2 = 0.36, p = 0.02), 56% 

(r2 = 0.56, p = 0.001) and 59 % (r2 = 0.59, p = 0.001) of the variance in wear 

discomfort at 10 MIN, 20 MIN and 30 MIN of running, respectively. Nevertheless, 

stickiness sensation did not affected wear discomfort at BASELINE (Fig 8A) (r2 = 0.04 

p = 0.34). 

A regression analysis for wear discomfort, including all data points did not produce 

a predictive model. A potential reason for this could be a time effect, i.e. certain 

parameters are relevant for wear (dis)comfort at specific time points. For this 

reason, analysis at different experimental stages was performed, and the critical 

contribution of texture sensation and stickiness at different stages was observed. 

  

 

Figure 7 Prediction models of wear discomfort at BASELINE (7A), 10 MIN (7B), 20 MIN (7C) and 30 MIN (7D), 
using texture sensation as predictor. To predict wear discomfort stepwise linear regression analyses were 
performed separately for each selected time point.  
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Figure 8 Prediction models of wear discomfort at BASELINE (8A), 10 MIN (8B), 20 MIN (8C) and 30 MIN (8D), 
using stickiness sensation as predictor. To predict wear discomfort stepwise linear regression analyses were 
performed separately for each selected time point.  

 

6.5 Discussion 

In this study we used an integrative approach where moisture-handling properties 

of textile materials were assessed through changes in wear comfort during exercise. 

In particular, the potential impact of garment surface area in contact with the skin 

on wetness perception and stickiness sensation was investigated. Manipulations of 

fabric contact area caused differences in the fabric area available for sweat 

absorption. Consequently, these changes lead to differences in garment sweat 

content and saturation (percentage of total absorption capacity), the latter affecting 

perceptual responses.  Additionally, the influence of wetness perception, stickiness 

sensation, thermal sensation and texture sensation on wear discomfort during 

physical exercise was explored. While in a research-based environment it is 

common to conduct human wear testing, this experiment clearly demonstrated the 

value for the clothing manufactures to also use a paradigm in which clothing 

development involves an additional human-focused evaluation process, rather than 

ending at the material evaluation level.   

6.5.1 Sweat produced and sweat absorbed 

The performed running exercises led to the same sweat production between the 

three experimental conditions (HIGH, MEDIUM and LOW garment) however, 

different sweat contents were achieved between the garments. Specifically, the 

LOW contact surface area garment, showed the lowest sweat content (34 g) but, 

due to the lowest contact surface area available for sweat absorption, it was also 

the most saturated (34%). The latter was followed by MEDIUM and HIGH contact 
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surface area garments, which due to the higher contact surface area, presented 

greater absolute sweat content (47 g and 45 g respectively) while being less 

saturated (27% and 21 %, respectively).  

As expected, the differences observed in garment sweat content and saturation did 

not affect the physiological responses of core temperature and heart rate. 

6.5.2 Thermal sensation 

Variations in thermal sensation between the garments, which could have occurred 

as result of different sweat content and ventilation potentials, were successfully 

controlled. In fact, thermal sensation was not different between the three garments, 

likely due to the deliberately low air flow in the environment.  

6.5.3 The role of fabric contact area 

In a study where pre-wetted fabrics were applied in dynamic contact with the inner 

forearm, it was observed that sensations of stickiness of wet fabrics can be 

exacerbated when using fabrics with smoother surface texture (Raccuglia et al. 

2017b). Specifically, when moving across the skin, the wet smoother fabric surfaces 

would have created higher level of contact with the skin, resulting in higher skin 

displacement and associated with higher stickiness. According to this, in the current 

study it was hypothesised that the level of fabric surface area in contact with the 

skin would have had an impact on stickiness sensation and consequently wetness 

perception, with more contact area increasing stickiness sensation and wetness 

perception. However, in the current experiment, the opposite was observed, with 

low fabric contact area inducing higher stickiness sensation. Specifically, when 

reducing the amount of fabric area in contact with the skin, less fabric area for 

sweat absorption was available.  Indeed, higher moisture saturation percentage was 

observed in fabric with lower fabric contact area, this subsequently leading to a 

greater stickiness sensation. Therefore, while fabric surface texture can affect 

stickiness sensation and related discomfort through changes in fabric contact area 

with the skin (Raccuglia et al. 2017b), it is also important to consider the 

consequences of the contact area for moisture absorption and saturation as well. In 

fact, fabric moisture saturation may be the real cause for the current findings and 
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may have ‘overruled’ the impact of contact area. Similar to other multifactorial 

systems (Lloyd et al. 2016), the current findings suggest that in a human-clothing 

system the integration and also the strength of different cutaneous stimuli, 

triggered by various textiles parameters, should be considered. 

6.5.4 Stickiness sensation and wetness perception 

The differences in saturation and sweat content between the LOW and HIGH 

garments, achieved through manipulations of fabric contact area (and therefore 

fabric area available for absorption), resulted in significant differences in stickiness 

sensation. Specifically, stickiness sensation was higher in the LOW T-Shirt, despite 

presenting a lower absolute sweat content, compared to the HIGH one. The finding 

might appear controversial when looking at the absolute data (sweat absorption in 

grams), however when considering sweat content as percentage of the absorption 

capacity of the garment (maximum amount of liquid moisture that can be absorbed 

by the garment), it can be observed that the LOW garment (lower contact surface 

area and lower absorption capacity) was more saturated than HIGH (higher contact 

surface area and higher absorption capacity), this resulting in greater stickiness 

sensation. The current findings are in line with recent observations (Raccuglia et al. 

2016a), which led to conclude that fabric saturation, rather than the absolute 

moisture content, is a better parameter to consider when studying moisture 

properties of fabrics (even if unmatched for thickness or volume).  

Despite the significant differences in sweat content, saturation percentage and also 

stickiness sensation, wetness perception was almost identical between the two 

garments. The latter was unexpected, since recently a strong positive relationship 

between stickiness sensation and wetness perception was observed in a skin 

regional study (Raccuglia et al. 2017b). Wetness and humidity can be perceived on 

the skin through the combinations of cold sensations (i.e. sweat evaporation and/or 

contact with a liquid colder than then skin) and tactile sensations (i.e. stickiness or 

clinginess) (Bergmann Tiest et al. 2012b; Filingeri et al. 2014a). In the skin regional 

studies, fabric moisture content was manipulated by adding water at room 

temperature to the fabric, this substantially increasing the thermal conductivity of 
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the fabric and acting as cold cue for wetness perception. On the other hand, it 

seems that during exercise in warm ambient temperature, sweat evaporation did 

not provide enough cooling, typically considered one of the thermal cues involved 

in the perception of skin wetness (Niedermann and Rossi 2012). Therefore, the 

current results indicate that when performing physical exercise in warm 

environments, differences in garment stickiness sensation do not necessarily affect 

wetness perception. Consequently, in a mild or hot environment, when cold sensory 

cues are restricted, stickiness sensation seems a more impactful parameter to 

consider when determining moisture-related differences between garments. 

6.5.5 Wear discomfort 

The other aim of the current study was to identify the factor/s influencing 

discomfort during wear. Whilst no overall model for discomfort across all data could 

be developed (suggesting complex interactions between the relevant parameters 

and the time-course development of the relationships), models for different time 

points were produced. The results showed that at baseline, when the individuals 

just donned the garment, wear discomfort is in part affected by sensations of fabric 

texture. Specifically, the LOW garment (low contact surface area) was perceived 

significantly rougher than the HIGH garment (high contact surface area). In fact, the 

lower contact surface area, given by the presence of larger holes in the LOW fabric, 

might have led to a fabric with a high number of edges, causing noticeable 

sensation of roughness. The latter is illustrated in figure 6D, which also suggests 

that this effect diminishes over time, mostly likely due to the effect of moisture 

absorbed in different fabrics. The influence of texture sensation on wear discomfort, 

during the initial interactions of the garment with the skin, explains why garment 

texture may be a parameter partially affecting the buying decision process of a 

specific clothing product. 

With the start of the physical exercise, another factor appears to contribute to the 

increase in wear discomfort. In fact at 10-min, 20-min and 30-min of running 

exercise, stickiness sensation was selected as the main parameter affecting wear 

discomfort.  
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Texture sensation explained 30% of the variance in wear discomfort at baseline 

whereas during exercise stickiness sensation (at 10-min, 20-min and 30-min) 

explained approximately 50% of the variance in wear discomfort. As such, although 

the current study successfully identified factors that can contribute to wear 

discomfort at rest and during exercise, a substantial amount of variance in 

discomfort (~ 50%) still needs to be explained. The achieved predictive power, 

however, seems reasonable, given the complexity of the environment-human-

clothing system in which the sensation of wear comfort results from the interaction 

of a number of different factors. For this reason, future investigations should 

address the role that other parameters could play on wear discomfort, to achieve 

more accurate estimations of wear comfort and to improve clothing performance. 

6.6 Conclusions 

The current findings indicated that when the reduction in fabric contact area 

percentage causes a decrease in the area available for sweat absorption i.e. in a 

mesh material, a fabric with higher sweat saturation percentage is obtained. Higher 

sweat saturation percentage will then cause greater stickiness sensations, despite 

lower contact area (typically associated with lower stickiness). This suggests that, 

when studying moisture-related responses in humans, it is important to consider 

the interaction of different textile parameters, as in this case the combined effect of 

fabric contact area and moisture saturation percentage.   

Factors influencing perception of wear discomfort can change over time and in 

relation to the over-time changes in human thermophysiological responses, such as 

metabolic rate and sweating. These changes will in turn affect moisture and haptics 

responses in humans, leading to a highly complex model of wetness perception in 

relation to textile materials. Specifically, during exercise in warm conditions, the 

achieved changes in garment sweat content and saturation resulted in significant 

differences in stickiness sensation. Nevertheless, these differences did not impact 

wetness perception responses in the warm environmental condition examined. In 

fact, in a warm environment (no air movement) and during exercise, the cold 

sensations, arising from sweat evaporation, may not be sufficient to allow 
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discriminations between the two moisture levels in the garments. On the other 

hand, differences in stickiness between the two garments were clearly sensed. This 

indicates that stickiness sensation might represent a more impactful parameter to 

consider. Consequently, stickiness sensation was indicated as parameter in part (~ 

50%) affecting wear discomfort during physical exercise, whereas wetness 

perception itself did not significantly contribute to the variation in wear discomfort 

in the tested conditions. Additionally, during the first contact with the skin, when 

the garment is still dry, the sensation of fabric texture was indicated as the main 

parameter contributing to wear (dis)comfort.  

The clothing industry tends to end the development process at the material tests 

level, due to cost and/or time-related reasons. In line with a research-focused 

approach, this study highlighted, in human wear testing, the subjective sensations 

which are sources of wear discomfort during physical exercise. Therefore, in order 

to assess the impact of textile innovations on wear (dis)comfort, the process of 

clothing development should include a human evaluation level, rather than ending 

at the material testing level. This could lead to paradigm shift in clothing 

development, resulting in a human-orientated design process.  

Future studies should account for additional critical factors contributing to wear 

discomfort during exercise and take into account other environmental conditions 

(i.e. outdoor cold conditions), in order to advance predictions of wear discomfort 

and the development of sportswear as well as protective clothing. 

When considering the multifactorial nature of wear comfort, complementary data 

also examining the factors influencing it at the moment of the purchase (shop 

setting) and post-exercise, are necessary. This will potentially lead to a holistic 

model of wear comfort in an environment-human-clothing system. 
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CHAPTER SUMMARY 

Building on previous work on mapping sweat production across the body, this study aimed 

to obtain detailed spatial and temporal maps showing how this sweat migrates into a single 

clothing layer (T-Shirt) during physical exercise. Eight male participants performed running 

exercise in warm environment. Garment sweat absorption was mapped over a total running 

time of 50-min, in 10 separated running trials of different duration (5 min increments). After 

running, the garment was dissected into 22 different parts and local sweat absorption 

(ABSlocal) was quantified by weighing each garment part before and after drying. From ABSlocal, 

garment total sweat absorption (ABStotal) was estimated. Clear patterns of sweat absorption 

reduction from superior-to-inferior and from medial-to-lateral T-Shirt zones were observed, 

with the mid back medial and the low front hem showing the highest, respectively. 

Quantitative data on garment total and regional sweat absorption were obtained and 

considerable variation between different garment zones was identified. These data can 

support the development of sport and personal protective clothing with the end goal to 

prevent workers heat-related injuries as well as maximise human performance and 

productivity. 
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7.1 Introduction 

Humans wear clothing as means of embellishment, status and modesty. More 

importantly for human health and survival, clothing provides the body with a 

protective physical barrier from environmental factors, such as rain, snow, wind and 

solar radiation. Beside this imperative protective function, the interaction between 

clothing and the human body has implications in terms of biophysics of heat 

transfer, temperature regulation and comfort (Havenith 1999; Morrissey and Rossi 

2013b; Jay and Brotherhood 2016). When exposed to hot environments, sweat 

evaporation occurs to maintain body thermal balance, representing the greatest 

avenue for body heat loss in exercise (Candas et al. 1979). However, the clothing 

barrier impairs evaporative heat loss from the body, this in part causing less 

efficient sweat evaporation (Candas et al. 1979; Shapiro et al. 1982; Havenith et al. 

2007b; Havenith et al. 2013). Once body heat production or the evaporative 

resistance of clothing increases to the point where sweat evaporation cannot keep 

up with sweat rate, the skin becomes saturated with sweat and the garment worn 

will also get wet. In the cold and/or when metabolic heat production is reduced 

right after physical exercise, skin and clothing wetness cause a fast decrease in body 

temperatures (Li 2005). In this scenario, both skin and clothing wetness can lead to 

thermal discomfort, cold sensations and, in extreme conditions, to hypothermia.  

Apart from its impact on body heat loss, the presence of wetness also exacerbates 

the tactile interaction between the skin and the fabric, sensed by the wearer as 

stickiness (Filingeri et al. 2015; Raccuglia et al. 2017b). Hence, wetness represents 

one of the most important sources of discomfort when wearing clothing, (Hong et al. 

1988; Raccuglia et al. 2016a) which could even contribute to decrements in human 

performance and productivity (Parsons 2014; DenHartog and Koerhuis 2017). 

Extensive research has been conducted to discover strategies able to maximise heat 

and mass transfer through the clothing barrier, yet maintaining its protective 

function (Lomax 2007; Fukazawa and Havenith 2009; Sarkar et al. 2009; Havenith et 

al. 2011; Ke et al. 2013; Sun et al. 2015; Lin et al. 2015; Wang et al. 2017). To 

characterise fabric moisture absorption and transport properties, several apparatus 
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and test methods have been developed (Harnett and Mehta 1984; Hong et al. 1988; 

Ghali et al. 1994; McCullough et al. 2003; Huang and Qian 2007; Jianhua Huang and 

Xiaoming Qian 2008), however the relevance of these tests has not been supported 

by real life data from humans during exercise. Previous studies have provided data 

of regional sweating rates in humans during rest and exercise (Cotter et al. 1995; 

Taylor et al. 2006; Machado-Moreira et al. 2008a; Machado-Moreira et al. 2008b; 

Machado-Moreira et al. 2008c; Smith and Havenith 2011; Smith and Havenith 2012). 

These data made available fundamental knowledge on sweat rate patterns across 

the human body that might support the process of sportswear and protective 

clothing development. Nevertheless, it is unknown how the complex body shapes, 

draping of clothing, air gap and contact area (Psikuta et al. 2012; Frackiewicz-

Kaczmarek et al. 2015) between the garment and the body impact sweat absorption 

values and patterns in clothing. In fact, wicking properties of clothing are not only 

determined by the amount of sweat produced at specific body locations, but can 

also be affected by the thickness of the air gap and the contact area between the 

garment and the human body (Psikuta et al. 2012; Frackiewicz-Kaczmarek et al. 

2015). These parameters can be easily defined for a tight-fitting clothing item, as 

the sweat transfer between skin and such a garment would be expected to be 

similar to the body sweat pattern, given that these patterns were produced using 

absorbent material directly in contact with the skin (Havenith et al. 2008; Smith and 

Havenith 2011; Smith and Havenith 2012). Therefore, the aim of the current study 

was to provide detailed maps of sweat accumulation across a regular-fitting upper 

body garment, induced in male athletes during running exercise. The use of a 

regular-fitted garment, as most commonly used fit, allows determining the impact 

of clothing and personal factors on garment sweat absorption and migration.  

Realistic sweat absorption data can support the development of garments with 

efficient moisture management features, e.g. with spatial variation of textile types. 

In terms of real-world impact, improvements in clothing moisture management can 

lead to improvements in heat loss efficiency as well as reductions in discomfort. A 

sensation of lower discomfort can boost people’s willingness to be physically active, 

thereby having a beneficial effect on health and well-being, along with improving 
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performance and productivity of athletes and workers (Parsons 2014; DenHartog 

and Koerhuis 2017). Finally, the current findings can advance the existing 

knowledge on thermophysiological modelling.  

7.2 Method 

7.2.1 Participants 

Eight male, long distance, runners were recruited from the Loughborough 

University student cohort (Table 1). The mean (± standard deviation) age was 23.3 ± 

4.7 years and they were all of Western European origin. Their body mass, height 

and body fat was 70.0 ± 9.9 Kg, 177.3 ± 5.3 cm and 9.6 ± 4.5%, respectively. They 

were all training six times per week and the mean aerobic fitness level, measured as 

maximum oxygen uptake (VO2max), was 62.0 ± 3.0· mL·kg-1min-1. Immediately after 

the completion of the current study, four of the eight participants (P2, P3, P4, and 

P6), repeated the 10 experimental trials wearing a synthetic garment (sub-study). 

With regards to these four participants, the mean age was 20.3 ± 2.9 years. Their 

body mass, height and body fat was 66.8 ± 12.3 Kg, 175.6 ± 7.0 cm and 8.6 ± 3.7 %, 

respectively. Their VO2max and running speed was 62.1 ± 3.7 mL·kg-
1·min-1 and 12.3 ± 

0.6 km·h-1.  

The experimental procedures where fully explained to the participants verbally and 

through written information form, before obtaining written informed consent and 

completing a health screening questionnaire. All the experimental procedures 

involved were approved by the Loughborough University Ethical Committee. The 

study was conducted within the confines of the World Medical Association 

Declaration of Helsinki for medical research involving human participants.  
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Table 1 Participants’ characteristics. 

 

BSA = body surface area in m
-2

. STDEV = standard deviation. 

 

7.2.2 Pre-test 

Participants were required to attend the laboratory for a pre-test, involving 

anthropometric measurements of height, body mass (Mettler Toledo Kcc150, 

Mettler Toledo, Leicester, UK), percentage of body fat (Tanita Corporation, Tokyo, 

Japan) and body dimensions. 

During the pre-test participants also performed a sub-maximal fitness test to 

estimate their aerobic fitness level, expressed as maximal oxygen uptake (VO2max). 

The sub-maximal fitness test was performed according to the American College of 

Sport Medicine guidelines for exercise testing and prescription (Thompson et al. 

2010). The sub-maximal fitness test was conducted at an ambient temperature of 

20 ºC and 50 % relative humidity. The test comprises a series of running stages on a 
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treadmill (h/p/cosmos mercury 4.0 h/p/cosmos sport & medical gmbh, Nussdorf-

Traunstein, Germany). A system for the measurement of oxygen consumption (VO2), 

including heart rate (HR) (COSMED Quark CPET Series, COSMED, Srl, Italy) was used. 

During the test the exercise intensity was progressively increased by changing the 

running speed by 2 km·h-1 every 4-min. The treadmill incline was not altered and 

maintained at 1% for the entire duration of the test. Each stage lasted 4-min to 

ensure a steady-state HR response. The end point of the test was determined when 

participants reached 85% of the individual age-predicted maximal HR (220 - age) (no 

more than 5 stages were performed). As long as work intensity is increased 

adequately (equal speed increment and duration of each stage) a linear relation can 

be observed between HR and VO2 measured at the end of each running stage, and 

based on this relation, VO2max was estimated from the age-predicted maximal HR. A 

similar linear relation can be observed between running speed and VO2 at each 

running stage, and this was used to establish the corresponding speed for the 

testing (70% VO2max). 
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7.2.3 Experimental conditions 

Sweat absorption across the T-Shirt was mapped at 5-min intervals over a total 

running time of 50-min. As a ‘destructive’ gravimetric method was adopted to 

quantify regional sweat absorption, each participant performed 10 different 

running trials on a treadmill, characterised by different durations: 5 MIN, 10 MIN, 

15 MIN, 20 MIN, 25 MIN, 30 MIN, 35 MIN, 40 MIN, 45 MIN and 50 MIN. In fact, 

immediately after each running trial, the T-Shirt was dissected into different parts 

(Fig 1) and each part was analysed to determine the time-course and distribution of 

sweat absorption over the duration of each run duration. In all the trials, the 

participants ran at the same individually fixed speed, corresponding to 70% of 

VO2max; the mean running speed was 12.1 ± 0.7 km·h-1. The experiment was 

conducted in a small wind tunnel located in a climate-controlled chamber 

maintained at 27.2 ± 0.2 ºC, 49.7 ± 3.2% RH and 1.5 m·s-1 wind speed. These specific 

environmental parameters were  applied in order to allow direct comparisons with 

previous studies investigating body regional sweat rate patterns (Smith and 

Havenith 2011; Smith and Havenith 2012) . 

7.2.4 .T-Shirt specifications 

A fresh pre-washed (ISO 6330:2012), regular-fitted, short sleeved, T-Shirt was used 

for each of the 10 run durations. Sweat absorption and distribution was mapped in 

a 100% cotton garment, which, due to the higher hygroscopicity and greater 

capacity to retain liquid moisture, would represent the most challenging scenario 

for textile and clothing developers. The synthetic garment (100% polyester), 

included in the sub-study, was characterised by different thermal, evaporative and 

wicking properties from the cotton garment. The aim of this sub-investigation was 

to demonstrate that the properties of the fabric can affect sweat absorption values, 

rather than simply highlight differences between a natural and a synthetic garment. 

The synthetic garment was produced using the same fit pattern of the cotton 

garment. Material specifications of the cotton and synthetic garments are in Table 2. 
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Table 2 Specifications of the experimental garments 

 

Rct = dry thermal resistance; Ref = water vapour resistance, Air perm = air permeability, Absorption = total absorption capacity. Dry 

thermal resistance and water vapour resistance were measured according to BS EN ISO 11092:2014, air permeability was 

measured according to BS EN ISO 9237:1995; total absorption capacity was measured according to the absorption capacity test 

adopted by Raccuglia et al.( 2016), modified from Tang et al. (2014). 

To better describe the fit design of the garment, here defined as ‘regular’, anterior 

and posterior picture of a participant wearing an experimental garment are 

provided in Figure 1.  

In order to ensure same regular fit between participants presenting different body 

dimensions, three different T-Shirt sizes were included (Small, Medium and Large). 

The waist circumference of the participants was measured horizontally a level of 

the waist (where the smallest abdominal circumference occurs), while the person 

stands erect with the arms held slightly away from the side of the body. Three 

ranges of waist circumference were identified, small (68-73 cm), medium (74-79 cm) 

and large (80-85 cm). The circumference of each garment size, measured at the 

waist circumference of the participants, was taken. The latter was 90 cm for the 

Small size, 100 cm the Medium size, and 110 cm for the Large size, used for small 

(68-73 cm), medium (74-79 cm) and large (80-85 cm) waist circumference range, 

respectively.  
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Figure 1 Anterior and posterior picture of a participant wearing an experimental garment, here defined as 
regular-fitted.  

 

Analyses of T-Shirt local sweat absorption (ABSlocal) were conducted in 22 regions of 

the T-Shirt, 12 for the front and 10 for the back, respectively (Fig 2). The relevant 

sweat absorption zones within the T-Shirt were selected based on temperature 

patterns highlighted in infrared pictures (conducted in pilot testing), taken once the 

T-shirt was taken off (Fig 3). At the end of each run duration, analyses of local sweat 

absorption were conducted by cutting up the marked T-Shirt regions and weighing 

the individual sections before and after drying.  
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Figure 2 Schematic representation of the experimental T-Shirt marked into the 22 regions of interest for the 
analyses of local sweat accumulation. Front and back of the T-Shirt were mapped into 12 and 10 zones, 
respectively.  

 

 

Figure 3 Infrared pictures of front and back of the T-Shirt taken to identify variations in sweat retentions 
between various T-Shirt regions. 
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7.2.5 Experimental protocol 

Participants performed the 10 running trials on different days, separated by at least 

24 hours of rest. The testing sequence was counterbalanced to prevent any order 

effect. Each participant performed the trials at the same time of the day to 

minimise circadian variation. Participants were instructed to refrain from strenuous 

exercise, abstain from caffeine and alcohol consumption 24 hours before testing, 

and to keep a record of their food intake and replicate it the day before each visit. 

In order to maintain euhydration, they were also advised to consume 20 mL·Kg-1 

body weight of water during the two hours prior to testing.  On arrival to the 

laboratory participants were asked to void their bladders, self-insert a rectal probe, 

for the measurement of core body temperature, and wear a wrist-based HR 

monitor. Following from this, semi-nude (including underwear, rectal probe and HR 

monitor) body mass was recorded. Subsequently, participants were provided with 

standard running shorts and socks, wore their personal running shoes. Participants 

were asked to use the same personal running gears for the entire duration of the 

experiment. This period of preparation lasted approximately 15-min and allowed 

time for the stabilisation of HR and Tcore. Participants moved to the climate-

controlled room, rested standing still on the treadmill and after 10-min baseline HR 

was recorded. They then worn the experimental T-Shirt and the running trial started. 

In order to prevent dehydration, the participants were allowed to drink water ad 

libitum during the experiment, and liquid consumption was recorded. At the end of 

the run participants took the worn T-Shirt off which was given to the experimenter 

for measurements of local sweat absorption. The participants took shorts, sock and 

shoes, towelled their skin (this took ~ 2-min) and post-exercise semi-nude body 

mass was recorded immediately.  

7.2.6 Measurements 

7.2.6.1 Physiological measurements 

Heart rate was recorded before (baseline, BL) and during the running trials at 1-min 

intervals with a wrist-based heart rate monitor (Polar A360, Polar Electro Oy, 

Professorintie 5, Kempele, Finland). A wrist-based monitor, rather than a chest-



   CHAPTER 7 – Laboratory study 5 

    

225 

based monitor, was used since a chest strap would have interfered with sweat 

transfer from the skin to the T-Shirt. To monitor changes in Tcore, rectal temperature 

was recorded via a rectal thermistor (Grant Instrument Ltd, Cambridge, UK), 

inserted 10 cm beyond the anal sphincter. Rectal temperature was measured 

throughout each experimental trial at 1-min intervals and recorded via a portable 

data logger (Grant Instrument Ltd, Cambridge, UK) connected to the thermistor’s 

probe. Sweat production was calculated based on the weight change of each 

participant (gross sweat loss, GSL), corrected for liquid intake, and reported in 

grams per body surface area (g·m-2), according to: 

GSL (g·m-2) = [wb1 - (wb2 - liquid)]/SA 

Where; 

wb1 body mass at the start of the experiment (g) 

wb2 body mass at the end of the experiment (g) 

liquid total water consumption (g) 

SA body surface area (m2) 

7.2.6.2 Total and local T-Shirt sweat content 

Extensive pilot testing was conducted in order to define the exact locations and the 

number of zones to map within the T-Shirt. Two participants conducted a full set of 

pilot trials and at the end of each pilot test infrared picture of the T-Shirt were 

taken to identify variations in sweat absorption between regions and over time. The 

infrared pictures permitted to visually detect, based on colour differences, T-Shirt 

regions characterised by diverse temperatures. It was assumed that variations in 

temperature across the T-Shirt corresponded to variations in sweat content, and 

based on this principle, the T-Shirt was mapped in 22 different zones: 12 for the 

front and 10 for the back (Fig 2). To the knowledge of the authors, currently there 

are no standardised methods able to directly and accurately measure liquid 

moisture content in specific clothing sections, without dissecting the garment. A 

gravimetric method, based on weight changes (difference between wet and dry 
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garment weight) is typically adopted to estimate sweat absorption in a full garment. 

However, since each individual section of the T-Shirt to be measured could not be 

weighed prior testing, it was decided to adopt a ‘destructive’ gravimetric method, in 

which each T-Shirt region was cut up immediately following sweat collection, and 

based on weight changes local sweat content was estimated. Twelve hours before 

being worn, the T-Shirt was marked with a permanent pen into the 22 sections and 

left in a climate-controlled room (20 ºC, 60% relative humidity). Immediately after 

being taken off, the T-Shirt was fitted to a T-Shirt-shape wooden stand and divided 

into front and back panel, to prevent sweat transfer from the front to the back and 

vice versa. Front and back of the T-Shirt were separately laid flat on a table and 

each pre-marked section was cut up. The order of cutting was balanced to prevent 

any order-related error. It took a maximum of 7-min to cut up the full T-Shirt, as it 

was assessed in a pilot test that after 7 min, the weight of the full T-Shirt starts to 

change due to drying. Immediately after being cut, the specific T-Shirt regions were 

placed in individually labelled airtight bags, to prevent sweat evaporation. The 

weight of each wet T-Shirt section inserted into the corresponding bag was 

recorded using a calibrated electronic weighing scale (PSK 360-3, Kern,UK), with a 

maximum load of 360 g and a precision of 0.001 g. After being cut, the sections 

were then taken off the bag and placed in a chamber at 30 ºC and 7 % relative 

humidity for 12 hours, to allow the material to dry. The dried sections where then 

re-weighted without the bags to establish the dry weight. Local sweat absorption 

(ABSlocal) was calculated from the weight change and the surface area of each 

section according to:  

ABSlocal (g·m-2) = [(wwet  – bag) – wdry ]/SA 

Where; 

wwet  section wet weight, including bag (g) 

wdry  section dry weight (g) 

bag mass of the airtight bag  (g) 

SA section surface area (m2) 
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To calculate the SA of each T-Shirt section, 5 control samples of the T-Shirt’s fabric 

were produced and the dry weight per unit area (g·m-2) was calculated from size 

and weight of each control sample according to: 

ASW (g·m-2) = (wc  /ac)· 10000 

Where; 

ASW Area specific weight 

wc  weight of control material (g) 

ac area of control material (cm2) 

The area weight of the control samples was stable, showing only 1.3 % 

coefficient of variation. The mean value of the calculated weight per unit area of the 

5 control samples was used in the calculation of each T-Shirt section SA in g·m-2 

according to: 

SA = wd / ASW 

Where; 

wd  dry weight of material (g) 

Since weight measurements of the wet full T-Shirt after the sweat collection period 

could have caused sweat transfer through contact between T-Shirts regions, ABStotal 

was calculated from the sum of ABSlocal, according to: 

ABStotal = (∑ ABSlocal) 

Where; 

ABSlocal  sweat accumulated in a specific T-Shirt region (g) 
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7.3 Statistical analysis 

Differences in HR and Tcore recorded at same time points in different run durations 

were assessed with paired t-test (2 comparisons) and one-way repeated measures 

ANOVA (more than 2 comparisons). HR and Tcore data were averaged across same 

time points, and one single mean value per time point is reported and displayed in 

the figures.  

One-way repeated measures ANOVA tests were performed to assess differences in 

and HR, Tcore, GSL and ABStotal between run durations. When statistical differences 

were observed post hoc tests with Bonferroni correction for multiple comparisons 

were conducted. As the progressive development of GSL and ABStotal was measured 

in different trials, the data were combined and reported over time.  

Local sweat absorption data (ABSlocal) were firstly analysed to assess differences in 

corresponding right-left zones (shoulders, sleeves front, sleeves back, chest lateral, 

abdomen lateral, lateral mid-back, lateral lower-back). Paired t-tests were 

performed for all the right-left zones with Bonferroni correction for multiple 

comparisons. To assess differences between local sweat absorption data, one-way 

repeated measures ANOVA tests were conducted. The large number of 

comparisons between zones can cause inflation of the type I error; nevertheless the 

application of Bonferroni correction to adjust for multiple comparisons can inflate 

the type II error. Therefore, it was decided to report both corrected an uncorrected 

p values, keeping in mind the exploratory nature of the research, yet recognising 

the conservative nature of Bonferroni correction (Smith and Havenith 2012) 

(Supplemental digital content).  

Descriptive statistics reporting, min and max values, median, mean and standard 

deviation in ABSlocal for each region was conducted. Linear regression analyses were 

performed to observe relations between variables, in particular between ABStotal 

and GSL. In all analyses, p < 0.05 was used to establish significant differences. Data 

are reported as mean (standard deviation (SD)). Statistical analysis was performed 

using the software IBM SPSS Statistics version 23 (IBM, Chicago, USA). 
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7.4 Results 

There were no evident differences between the cotton and synthetic conditions in 

physiological data of Tcore, HR and GSL, obtained from the four participants taking 

part in both conditions. The following results refer to physiological data achieved in 

the experiment involving the use of the cotton garment.  

7.4.1 Heart rate and core temperature  

Heart rate (HR) and core temperature (Tcore) were measured at 1-min intervals 

throughout each running trial. Both HR and Tcore were not significantly different (p > 

0.05) at same time points and between trials, therefore data were averaged across 

the 10 run durations. HR and Tcore both increased significantly during exercise (p < 

0.001). Baseline HR was 69 ± 15 bpm and increased up to 163 ± 17 bpm at the end 

of the 50 MIN run duration, while Tcore rose from 37.0 ± 0.17 ºC , at baseline, to 38.6 

± 0.28 ºC at the end of the 50 MIN (Fig 4).  

 

 

Figure 4 Mean core temperature (Tcore; circle symbols) and mean heart rate (HR; square symbols) data for 8 
male athletes. Data were averaged over the 10 run durations (from 5 MIN to 50 MIN). Tcore and HR values were 
sampled at 1-min intervals. The average over 5 min is presented for HR measurements. Data are presented as 
mean (SD).  
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7.4.2 Gross sweat loss 

Substantial variation in the amount of whole body produced sweat, measured as 

gross sweat loss (GSL), was observed between individuals (Fig 5-A). GSL, was 

corrected for the individual body surface area (g·m-2). Cumulative GSL linearly 

increased as function of run duration: at 5 MIN run it was 48 ± 13 g·m-2 and the 

highest value was 586 ± 85 g·m-2 observed at 50 MIN (Fig 5-A). The mean rate of GSL 

increase was 11.0 ± 0.4 g·m-2·min-1.  

The ANOVA test showed significant differences (p < 0.001) in GSL between run 

durations; however when the Bonferroni correction for multiple comparison was 

applied, the differences were not significant (p > 0.05) between 30 MIN and 35 MIN 

neither between 35 MIN and 40 MIN. 

 

Figure 5 Gross sweat loss (GSL) data (Panel A) and T-Shirt total sweat absorption (ABStotal) data (Panel B). The 
mean (SD) values for 8 male athletes are presented. GSL and ABStotal data for each time point were obtained 
from 10 different run durations. GSL was significantly different between the 10 run durations. ABStotal was 
significantly different between the run durations but the differences were not significant (ns) between 35 MIN - 
40 MIN and 40 MIN - 45 MIN - 50MIN.  

 

7.4.3 Total and local T-Shirt sweat absorption 

Both total T-Shirt sweat absorption (ABStotal) and ABSlocal data between run 

durations were corrected for fabric surface area and reported as g·m-2. 

Considerable variation in ABStotal was observed between individuals (Fig 5-B). 

ABStotal was greatly influenced by the large variation in GSL, indicated by a linear 

positive relation between ABStotal and GSL (r2 = 0.74, p < 0.001). ABStotal increased 

with the increase in run duration. The highest mean ABStotal value was                             
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126 ± 57 g·m-2 observed in the 50 MIN run and the mean rate of increase was 3.5 ± 

0.8 g·m-2·min-1. At the end of the 50 MIN run the T-Shirt was 41% saturated, 

calculated as percentage of total T-Shirt absorption capacity (305.5 g). This also 

means that, after 50 MIN run, 9.3% of the whole body produced sweat was 

collected and retained by the T-Shirt (this when using absolute mean values of GSL 

and ABStotal, 1083 g and 101 g, respectively).  

The ANOVA test showed significant differences (p < 0.001) in ABStotal between run 

durations; however the differences were not significant (p > 0.05) between 35 MIN 

and 40 MIN neither between 40 MIN, 45MIN and 50 MIN.  

Right and left corresponding T-Shirt regions (shoulders, front sleeves, back sleeves, 

lateral chest, later abdomen, lateral mid-back, lateral lower-back) did not show 

significant differences (p > 0.05) in ABSlocal and thus left-right data were grouped for 

all analyses. For practical reasons, descriptive statistics for all the regions are 

reported only for 10 MIN, 20 MIN 30 MIN, 40 MIN and 50 MIN run durations (Table 

2).  

Mean ABSlocal data for front and back of the T-Shirt, from 5 MIN to 50 MIN, are 

presented in Fig 6. Additionally, comparisons between T-Shirt regions within each 

run condition were conducted, (Extended data set). 

Local T-Shirt saturation was also calculated as percentage of the total absorption 

capacity of the material (g·m-2). At the end of the 50 MIN, medial mid-back and 

medial lower-back were the most saturated T-Shirt parts: 56% and 51%, 

respectively. These were followed by upper back, collar and chest medial (40-45%), 

and next to these, lateral mid-back, lateral chest and lateral abdomen reached 

between 30 and 39% of the saturation. Shoulders, sleeves front and back and lateral 

lower-back were 20-29% saturated and the lowest saturation level was shown by 

front and back low ends together with lateral abdomen (7-12 %).  

A clear large variation in ABSlocal between participants was evident from the 

minimum and maximum value and standard deviation data within each region 

(Table 3). For most of the regions mean and median values were very close, 
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indicating normal distributions. When large differences occur, usually the mean is 

higher than the median, normally due to a one or two ‘high sweaters’ in the 

group(Havenith et al. 2008; Smith and Havenith 2011; Smith and Havenith 2012).  

The coefficient of variation (CV %) in ABSlocal between participants was calculated, to 

compare the variation in ABSlocal between T-Shirt regions. To achieve an overall 

identification of the regions with ‘higher’ and ‘lower’ variation, CV data for each 

region of interest were averaged over run durations. Differences in CV were 

observed, with hem at the back showing the highest value (99 %) and the upper 

back the lowest (44%). The variation was higher in the inferior T-Shirt regions 

compared to the superior ones and in the peripheral parts as compared to the 

central regions. When using ABSlocal values normalised for whole individual body 

sweat production (ABSlocal / GSL), the CV in ABSlocal appears to be lower (~ 6%) for all 

the T-Shirt regions compared to the CV values obtained when using absolute data. 

Nevertheless, the pattern of ABSlocal variation across T-Shirt regions is similar 

between absolute and normalised data.  

7.4.4 Sub-study: synthetic garment 

Baseline HR was 66 ± 12 bpm and increased up to 163 ± 17 bpm at the end of the 50 MIN 

run duration, while Tcore rose from 37.0 ± 0.13 ºC , at baseline, to 38.6 ± 0.46 ºC at the end 

of the 50 MIN. ABStotal in the synthetic garment increased with the increase in run duration. 

The highest mean ABStotal value was 51.4 ± 27.5 g·m-2 observed in the 50 MIN run. At the 

end of the 50 MIN run the T-Shirt was 17.5% saturated. Mean ABSlocal data for front and 

back of the T-Shirt, from 5 MIN to 50 MIN, are presented in Figure 7. Descriptive statistics 

for all the regions are reported only for 10 MIN, 20 MIN 30 MIN, 40 MIN and 50 MIN run 

durations is reported in Table 4.  

 

 

 

 

 



   CHAPTER 7 – Laboratory study 5 

    

233 

Table 3 Descriptive statistics of sweat absorption data for all the T-Shirt regions of interest.  

 

T-Shirt local sweat absorption data of 8 male athletes are reported for 10 MIN, 20 MIN 30 MIN, 40 MIN and 50 MIN run durations. Minimum (MIN) and maximum (MAX) values, along with median, mean and standard deviation (SD), are reported for each region of 

interest. 

Table 4 Descriptive statistics of sweat absorption data for all the T-Shirt (synthetic) regions of interest.  

 

T-Shirt local sweat absorption data of 4 male athletes are reported for 10 MIN, 20 MIN 30 MIN, 40 MIN and 50 MIN run durations.  Minimum (MIN) and maximum (MAX) values, along with median, mean and standard deviation (SD), are reported for each region of 

interest.
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Figure 6 Mean T-Shirt (cotton) local sweat absorption data for 8 male athletes. Local sweat absorption was 
measured at 5-min intervals from 5 min to 50 min of running exercise, for front and back T-Shirt zones. Data 
were obtained from 10 different run durations.  
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Figure 7 Mean T-Shirt (synthetic) local sweat absorption data for 4 male athletes. Local sweat absorption was 
measured at 5-min intervals from 5 min to 50 min of running exercise, for front and back T-Shirt zones. Data 
were obtained from 10 different run durations. 
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7.5 Discussion 

The present investigation aimed to study the migration of sweat from the skin to 

clothing, specifically in cotton and synthetic upper body garments, over 50 minutes 

of running exercise performed by male athletes. Based on the obtained values, a 

series of maps of sweat absorption in such garments were created.  The study 

provided quantitative data on total as well as regional sweat absorption in the 

studied garments and clearly demonstrated considerable variation between 

different garment zones.  

A large part of the individual variation in the total amount of sweat absorbed by the 

T-Shirt was due to the large individual variation in whole body sweat production. In 

fact, although in the current study it was not possible to simultaneously measure 

the amount of sweat solely produced in the body parts covered by the T-Shirts, 

using individual GSL as covariant resulted in a 6% lower variance between 

individuals. T-Shirt absorption increases significantly with exercise duration, but 

starts to plateau after 35 minutes, although this was not accompanied by maximal 

T-Shirt moisture saturation. In fact, after 50 minutes of running exercise, the cotton 

and synthetic garments reached, on average, only 41% and 18% of the total 

absorption capacity, respectively.  The highest local moisture saturation was 

achieved in the mid-medial back and it was around 56% and 35 % in the cotton and 

synthetic garment, respectively.  

From the early stages of the running activity (after 15 minutes) a clear pattern in 

local sweat accumulation was observed. The maps in Figure 6 and 7 highlight a 

decrease in sweat content from medial to lateral and from the top to the bottom, 

both for front and back of the T-Shirt. These patterns were maintained throughout 

the rest of the running exercise (35-50 minutes).  

The inter-regional differences in T-Shirt sweat accumulation can be explained by the 

interactions of physiological, anatomical and clothing factors. When wearing a T-

Shirt with a regular fit, the top parts, covering chest as well as upper and mid back, 

are directly in contact with the body, due to the absence of an air gap. 

Consequently, these upper T-Shirt parts will be directly and constantly in contact 
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with the skin, this facilitating sweat absorption. In addition to this, regional sweat 

rate distribution, in male runners (Smith and Havenith 2012), shows a consistent 

pattern of sweat rate reduction from high to low body regions, with the posterior 

torso, especially at the spine, having the highest values. Therefore the combination 

of clothing factors, i.e. high fabric-to skin contact and physiological factors, i.e. high 

sweat rate, explains the highest sweat accumulation in the top-posterior and top-

anterior regions of the T-Shirt. Specifically, the medial-upper portion of the T-Shirt, 

in contact with mid-back, upper back and medial chest, showed the highest sweat 

accumulation.  

On the other hand, the bottom parts of a T-Shirt (presenting a regular fit) typically 

hang loose in those regions covering lower back and abdomen, due to specific body 

shapes (i.e. lumbar curvature) and draping behaviour of clothing. This is likely to 

result in a relatively large air gap between the T-Shirt and the body (Psikuta et al. 

2012; Frackiewicz-Kaczmarek et al. 2015), causing a less direct and only intermittent 

T-Shirt-to-skin contact, mainly occurring from air and body movement. This will 

hamper garment sweat absorption, despite a physiologically high sweat rate at the 

lower back (Smith and Havenith 2012). In line with this, it can be observed, from the 

current T-Shirt sweat maps that in the bottom posterior parts of the T-Shirts sweat 

accumulation is substantially lower or appears later compared to the top ones, in 

both cotton and synthetic garments. In particular, the lower-posterior portion of 

the T-Shirt, covering the lower back, starts to show a substantially high sweat 

content, only after 35 min minutes. Therefore, it can be speculated that most of the 

sweat accumulated in the low-posterior part of the T-Shirt is the result of sweat 

migration from the top to the bottom T-Shirt regions, whereas in these inferior 

zones the high local sweat rate (Smith and Havenith 2011; Smith and Havenith 2012) 

plays a minor role. The same principle applies for the bottom-anterior parts of the 

T-Shirt, covering the abdomen. In fact, the latter regions present a small contact 

area with the skin and some of these are mostly in contact with the shorts. 

Additionally, lower abdominal regions present a substantially lower sweat rate, 

compared to the back (Smith and Havenith 2011; Smith and Havenith 2012). This 

may explain the significantly lower sweat content in the T-Shirt regions covering the 
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abdomen, in particular the lateral abdomen and the lower hem of the T-shirt at the 

front, but also at the back. Finally, the low sweat accumulation, being dependent 

mostly on sweat migration from the superior T-Shirt parts, may also contribute to 

the larger variations in sweat content in the inferior compared to the superior T-

Shirt zones.  

In line with regional sweat rate data in males (Smith and Havenith 2011), T-Shirt 

sweat accumulation values tend to be higher at the posterior compared to the 

anterior part of the T-Shirt. Overall, local sweat absorption patterns reflect body 

regional sweat rate as determined by Smith et al. (2011; 2012), although, as 

expected, values are substantially lower in absolute terms. Body sweat maps were 

produced with the aim of quantifying regional differences in sweat rate across the 

body. In these studies, a highly absorbent material was placed directly in contact 

with the skin, for a 5 min period, to allow collection of local body sweat and the 

absorbed material was covered by an impermeable film to prevent sweat 

evaporation during the collection period. In the current study, the sweat produced 

in the upper body could evaporate or be ventilated directly from the skin but also 

from the T-Shirt. Moreover, to simulate real life conditions, sweat from the head, 

forehead, and face was allowed to drip on the garment. As such, the combination of 

these factors is represented in the data, reflecting realistic wear conditions 

occurring during exercise.  

With regards to thermal, evaporative and moisture properties of textile materials, it 

can be confirmed that these substantially impact the absolute amount of total as 

well as local sweat absorbed in the garment. In fact, as expected, sweat absorption 

data were substantially lower in the synthetic garment as compared to the cotton 

garment; nevertheless, the patterns of sweat distribution appeared to be very 

similar (Fig 6 and Fig 7). These findings nicely demonstrate that differences in textile 

properties can determine the absolute amount of sweat absorbed and distributed 

across the garment, thereby affecting post-exercise body cooling provided, this 

being approximately 255 W and 104 W in the cotton and synthetic garment, 

respectively (assuming a post exercise-time of 20 minutes and when sweat 

evaporation occurs from the skin (Havenith et al. 2013). On the other hand, 
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garment fit mainly affects the patterns of sweat absorption distribution in clothing, 

through its effect on fabric-to-skin contact and air gap thickness. Together with 

textile properties, environmental factors, such as relative humidity, temperature 

and air flow, could also influence absolute sweat absorption data.  

7.6 Conclusions 

This study provided data on sweat accumulation in cotton and synthetic garments 

occurring during exercise performed by male runners. A clear pattern of sweat 

absorption reduction from the top to the bottom and from the centre to the sides 

of the T-shirt was observed in both cotton and synthetic garments. The study 

reaches conclusions of interest to an interdisciplinary readership. The current 

results represent useful guidelines for clothing developers when designing products 

with efficient moisture management features. Given that the sides of the T-Shirt 

contain a significantly lower amount of sweat compared to the central parts, 

innovative fibre and textile structures should be placed to direct sweat migration 

from the centre towards the less saturated side regions. The latter would improve 

sweat management and evaporation, ultimately reducing thermal and sensorial 

discomfort during exercise as well as heat strain. Thus, the use of the current sweat 

absorption data is recommended to clothing developers and textile engineers for 

the development of materials and clothing that can fulfil real life user’s 

requirements. These data can also be applied as reference values for test methods 

and apparatus that measure fabric and clothing moisture-related properties. 

Knowing how much sweat ends up in the garment, at a specific garment region and 

at a set running time, can help to realistically measure critical parameters like drying 

rate/time, thus allowing predictions of comfort-related and thermophysiological 

responses or in extreme scenarios, estimations of survival time. Finally, the large 

variation in total and local sweat absorption data is a clear sign that clothing 

customization is required in order to suit individual body sweat responses. In fact, 

the design of a single T-Shirt, based on mean sweat absorption data may not 

accommodate the needs of athletes or consumers with extremely low or high 

sweating responses. A step forward will involve women athletes to create maps of 

sweat absorption in a bra-T-Shirt clothing system. 
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CHAPTER SUMMARY 

In Study 5 a ‘destructive’ gravimetric method was developed to quantify local garment sweat 

absorption. While this currently is the only methodology that permits direct and analytical 

measurements of garment regional sweat absorption, the latter approach is time-consuming 

and expensive, therefore of limited applicability.  As such, in this study, we wanted to assess 

whether infrared thermography could be used as an indirect method to estimate garment 

regional sweat absorption, right after exercise, in a ‘non-destructive’ fashion. Spatial and 

temporal sweat absorption data, obtained from Study 5, were correlated with spatial and 

temporal temperature data (also obtained from study 5) measured with an infrared thermal 

camera. The data suggest that infrared thermography is a good tool to predict regional 

sweat absorption in garments at separate individual time points; however temporal changes 

are not predicted well, due to a moisture threshold causing a temperature limit above which 

variations in sweat content cannot be discriminated by temperature changes.  
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8.1 Introduction 

Temperature and moisture management in clothing is a main focus of the clothing 

industry with regards to garment performance optimisation and wear discomfort 

reduction. Liquid moisture content and transfer properties of fabrics can be 

assessed with a range of material test methods. In these tests, physical wetness of 

fabrics is induced by the investigator and/or specific apparatus, by adding water or 

special solutions. Moisture properties of fabrics are then measured via the 

application of different technologies, e.g. gravimetric, observation, optical, 

electrical and temperature-based methods (Tang et al. 2014b). Although these tests 

are quick, easy and relatively cost-effective, they do not fully simulate the 

conditions in which liquid moisture absorption and transfer occur, such as in the 

clothed human body during physical work. In real life use, immediately after 

physical exercise, a gravimetric method, based on weight changes (difference 

between wet and dry garment weight) is typically adopted to estimate sweat 

absorption in a full garment (Baker et al. 2017). Nevertheless, to the knowledge of 

the authors, there are no standardised test methods able to directly measure liquid 

moisture content in specific clothing sections, without dissecting the garment. In 

our previous study (Study 5), a ‘destructive’ gravimetric method was developed to 

quantify garment regional sweat absorption. In this test, each T-Shirt region was cut 

into sections immediately following sweat collection and based on weight changes 

local sweat content of each section of the garment was then estimated. While this 

currently is the only methodology that permits direct and analytical measurements 

of garment regional sweat absorption, the latter approach is time-consuming and 

expensive, therefore of limited applicability.  

In the building industry infrared thermography (IRT) is used as diagnostic tool to 

detect the presence of damp in the cavity of walls and floors or the deterioration of 

historic structures due to moisture infiltration (Balaras and Argiriou 2002; Avdelidis 

et al. 2003). IRT involves the use of an infrared camera which can detect thermal 

radiation and produce colour images, termed as thermograms (Ring and Ammer 

2000). A thermogram contains temperature data and one of the main advantages is 

that it allows us to visualise temperature differences across the object captured, 
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using colour differences that are related to a colour-temperature scale. Taking a cue 

from the building industry, given that textiles also cool when water (sweat) is 

present, we wanted to assess whether IRT could be applied to detect liquid 

moisture content in clothing and, more importantly, quantify spatial variation in this 

liquid content across the garment.  

The improved sensitivity of infrared cameras (approximately 0.05 ºC) allows 

detections of small temperature differences across objects examined, which is of 

crucial importance when adopting a temperature mapping approach (Fournet et al. 

2013; Gerrett et al. 2015). The method is non-invasive, non-destructive and does 

not requires contact with the object examined (Formenti et al. 2016). The 

acquisition of the infrared images is quick and easy to perform, however various 

protocols, guidelines and checklist must be followed (IACT 2002; ISO 9886:2004; 

Ammer 2008; Mercer and Ring 2009; Moreira et al. 2017) in order to prevent bias 

and obtain good quality data. For instance, attention should be paid to the position 

of the camera, distance of the camera from the object captured, operating and 

object temperature ranges as well as additional sources of calibration (mainly due 

to the absolute low accuracy, ± 2 ºC).  

As a result of the numerous advantages, IRT has been used for a number of 

different applications (Moreira et al. 2017), including sport-related  injuries 

prevention and treatment (Hadžić et al. 2015), activation of brown adipose tissue in 

the body (Robinson et al. 2016), assessments of cryotherapy protocols (Costello et 

al. 2012; Selfe et al. 2014; Silva et al. 2017) and measurements of skin temperature 

following aerobic and resistance exercise (Ferreira et al. 2008; Priego Quesada et al. 

2015). Furthermore, IRT has been applied as tool to gain original insight regarding 

skin temperature patterns across the body in exercise and during cold (Fournet et al. 

2013) and hot (Gerrett et al. 2015) exposure. This information can find application 

in clothing development using a bodymapping approach, e.g. with spatial variations 

in textile type. Despite the wide range of applications, it has not been reported 

whether IRT can be applied to quantify sweat retention in clothing, following 

physical exercise. When the garment is on the body, its temperature is the result of 

dry heat loss to the environment, evaporative heat loss from the wet areas and heat 
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input from the skin. However, when taken off the body, garment areas presenting 

higher sweat content would be affected by higher local (evaporative) cooling, 

resulting in higher temperature drop (from dry), therefore a relationship between 

local sweat/water content and local temperature drop was expected. As such, in 

this study spatial and temporal sweat absorption data (obtained from our previous 

study) were correlated with spatial and temporal temperature data, measured 

using infrared thermography. Taking into account the influence of body skin 

temperature on local garment temperature, which could affect the hypothesised 

relationship between local sweat content and temperature, in the current study 

infrared image acquisition was performed after removal of the T-Shirt from the 

body.   

Acknowledging the lack of time- and cost-effective test methods, the ultimate goal 

of this study was to assess whether IRT could be used as an indirect method to 

estimate garment regional sweat content in a quick and ‘non-destructive’ fashion. 

Furthermore, the fast image acquisition could allow assessments of garment sweat 

content immediately after physical exercising, minimising the risk for moisture 

migration and moisture evaporation from the garment, which is the main drawback 

of some lengthy tests (Tang et al. 2014b).  

8.2 Method 

The infrared images of the garments were collected in parallel with the data 

collection conducted for our previous study (Study 5). Therefore, participants, 

exercise protocol and conditions were the same as those in ref. The latter are 

described below. 

8.2.1 Participants 

Eight male, long distance runners were recruited from the Loughborough University 

student cohort. Participants’ characteristics (mean and standard deviation) are 

reported in Table 1. 
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Table 1 Participants’ characteristics.  

 

BSA = body surface area. VO2max = maximum oxygen uptake. STDEV = standard deviation 

 

8.2.2 Experimental conditions 

Sweat absorption and temperature across the T-Shirt were mapped over a total 

running time of 50-min. As a ‘destructive’ gravimetric method was adopted to 

quantify regional sweat absorption, each participant performed 10 running trials on 

a treadmill, characterised by different durations: 5 MIN, 10 MIN, 15 MIN, 20 MIN, 

25 MIN, 30 MIN, 35 MIN, 40 MIN, 45 MIN and 50 MIN. Immediately after each 

partial running trial, the T-Shirt was dissected into 22 different regions of interest 

(ROI), presented in Figure 1. Using a gravimetric approach (wet weight – dry weight) 

the time-course and distribution of sweat absorption of each garment was defined 

(ref). 21 ROI were examined to extrapolate regional temperature data from each 

thermogram (the collar was excluded for practical reasons). After removal from the 

body, two infrared images of the T-Shirt, one for the front and one for the back, 

were taken for each participant, at the end of each running trial. Therefore, for each 

person, with 10 trials and 2 pictures per trial, 20 thermograms were taken; 160 in 

total. A procedure similar to that developed by Fournet (2013) was adopted to 

obtained quantitative temperature data of the ROI and to provide average thermal 

patterns (temperature distribution across the garment), visually accessible with a 

colour scale. The experiment was conducted in a climate-controlled chamber 

maintained at 27.2 ± 0.2 ºC, 49.7 ± 3.2% relative humidity and 1.5 m·s-1 wind speed. 
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Figure 1 Schematic representation of the experimental T-Shirt marked into the 21 regions of interest for the 

analyses of local sweat accumulation. Front and back of the T-Shirt were mapped into 11 and 10 zones, 

respectively. 

 

8.2.3 Experimental garment 

A short sleeved, 100% cotton T-Shirt was used for each of the 10 run durations. The 

T-Shirt presented a regular fit and a surface area of approximately 0.8 m2. 

Specifications of the experimental garment are reported in Table 2. 

Table 2 Specifications of the experimental garments 

 

Rct = dry thermal resistance; Ref = water vapour resistance, Air perm = air permeability, Absorption = total 
absorption capacity. Dry thermal resistance and water vapour resistance were measured according to BS EN ISO 
11092:2014, air permeability was measured according to BS EN ISO 9237:1995; total absorption capacity was 
measured according to the absorption capacity test adopted by Raccuglia et al.( 2016), modified from Tang et al. 
(2014). 

 

8.2.4 Infrared thermal camera 

A FLIR T620 (FLIR Systems Inc. Wilsonville, USA) infrared camera was used. The 

camera has an operating temperature range between  -15 and +50 ºC, and an object 

temperature range between -40 and +150 ºC, which encompasses the temperature 

range we aimed to examine (20 – 30 ºC). The camera has a 640 x 480 pixel infrared 
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resolution and the spectral range is 7.5 – 14 µm. The accuracy of the camera is of ± 

2ºC, which is low compared to the accuracy of other commonly used contact 

methods (± 0.5 – ± 0.1) (Fournet 2013). For this reason, a black body calibrator was 

included in the procedure to overcome this limitation. Despite the poor accuracy, 

the camera presents a very high thermal sensitivity of ± 0.04 ºC. The high thermal 

sensitivity allowed detection of very small spatial and temporal changes in the 

temperature of the garment, which is crucial in a temperature mapping approach.  

As apparent temperature differences in thermograms can arise from potential 

curvatures when the obliquity is larger than 45º (Watmough et al. 1970), it is 

important to point out that, the quality of the measurement was not affected by 

geometry-related issues, due to the flat shape of the garment. 

8.2.5 Image acquisition 

A standardised procedure was developed for the acquisition of the infrared images. 

At the end of each running trial, the wet garment was removed from the body and 

fitted to a custom-made T-Shirt-like shape wooden stand (Fig 2), which was treated 

with a hydrophobic finish to prevent water transfer from the T-shirt to the stand. 

Image acquisition occurred always 3 minutes after taking the T-Shirt off the body to 

allow the textile to cool. The stand was positioned at a fixed location and the 

camera was fitted to a tripod, at a distance of 2 meters perpendicular to the T-Shirt 

stand. The black body calibrator was included in the background of each 

thermogram (Fig 2) so that potential measurement errors could be reduced. 
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Figure 2 Digital and Infrared pictures of identical views for front and back of the T-Shirt, including black body 
calibrator positioned on a stool behind the T-Shirt stand. 

 

8.2.5 Image processing 

Image processing was performed with three main goals (Fournet 2013). The 

procedure allowed: (1) standardising the analysis of the numerous thermograms; (2) 

segmentation of each thermogram in the 21 ROI as well as extrapolating the 

important spatial temperature data of each ROI; (3) creating average thermograms 

of the T-Shirt at each time point (trials, from 5 to 50 min run duration).   

The development of the image processing procedure was performed using the 

software MATLAB 7.8.0 (MATLAB R2013a, The MathWorks Inc., Natick, USA). 

Matlab scripts modified from those developed by Fournet (2013) were used for the 

analysis. The image processing involved: morphing, averaging and creation of 

average maps for each trial (time point). Specifically, to account for differences in T-

Shirt size and position (although it was standardised as much as possible with the T-

Shirt stand), all thermograms were morphed (i.e. adapted) onto a reference T-Shirt 

shape. Following from this, the individual morphed thermograms were averaged to 

obtain a final single T-Shirt map of temperature distribution, for each running 
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duration. Figure 3 summarises the different stages of the image processing 

procedure. Furthermore, after being morphed each thermogram was segmented 

into the 21 ROI, according to Fig 1 and regional temperature data (TempLocal) were 

computed to calculated average, median, minimal and maximal temperature, 

standard deviation. 

 

Figure 3 Image processing sequence using MATLAB. Each individual thermogram is morphed to the reference 
thermogram. The individual thermograms are then averaged for for the creation of a final T-Shirt map of 
temperature distribution. 

 

Due to the evaporative cooling provided by the presence of liquid sweat, we 

hypothesised that garment regions with greater sweat content will result in lower 

temperature as compared to the temperature of the T-Shirt in dry state. As in dry 

state the temperature of the T-Shirt by definition equals ambient temperature, the 

temperature of each garment region was considered as temperature drop from 

ambient temperature (Temp-DropLocal), according to: 

TempDropLocal (ºC) = Tambient -TempLocal    

Where 

TempLocal = garment local absolute temperature in ºC 

Tambient = temperature of the ambient air in ºC 
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8.3 Statistics 

Regression analyses were performed to study the relation between garment local 

sweat absorption (ABSLocal) and temperature data (Temp-DropLocal). The regression 

analyses were performed using different data sub-sets. One regression model 

included participants’ individual data for each ROI at all running durations (8 

participants * 21 ROIs * 10 running durations). Another model included participants’ 

average data of the ROIs at all running durations (21 averaged ROIs * 10 running 

durations). Temporal models, including participants’ average  data of the ROIs,  

were provided separately for four selected individual running durations (15 min, 25 

min, 35 min and 50 min) (21 averaged ROIs * 1 running duration).  

ABSLocal was plotted versus Temp-DropLocal at each running duration (5-50 min) for 

single selected ROI (chest medial, back upper, shoulder, back mid lateral, shoulder, 

abdomen medial, low end back) (10 running durations * 1 averaged ROI) and 

descriptive statistics were performed.  

The assumption of normality of distribution of the residuals was checked with 

histograms and Normal P-P plots. The assumption of homoscedasticity of the 

residuals was checked using scatter plots of the studentised residuals against 

unstandardized predicted values. When these assumptions were violated data 

transformations were conducted.   

To characterise the strength of the relations, coefficient of determination (r2) as 

well as standard errors of the estimate (SEE) were calculated. Data were analysed 

using the software IBM SPSS Statistics (version 22) (IBM, USA). 

8.4 Results 

Temperature and sweat maps of front and back side of the garments are illustrated 

in Figure 4A and 4B.  
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Figure 4A Average (8 participants) maps of temperature (left) and sweat (right) distribution across the front side of the garments, over 50 min of running exercise. Data for each 
time point were obtained from 10 different running trials.  
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Figure 4B Average (8 participants) maps of temperature (left) and sweat (right) distribution across the back side of the garments, over 50 min of running exercise. Data for each 
time point were obtained from 10 different running trials. 
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8.4.1 Regression models 

ABSLocal ranged from 0 to 293 g·m-2 and TempDropLocal ranged from 0 (no drop) to 

4.3 ºC.  

Whilst an exponential function was found to best describe the data (Fig 5A), the 

assumptions of normality of distribution and homoscedasticity of the residuals were 

violated, hence data transformation was required. 

 

Figure 5A Exponential relationship between local sweat absorption (ABSLocal) and local temperature drop 
(TempDropLocal). The model includes participants’ individual data for each ROI at each running duration (8 
participants * 21 ROIs * 10 running durations). 5B Plots of Studentized residuals against unstandardized 
predicted values, after data transformation. 

 

Data transformation included an exponential transformation of Temp-DropLocal 

(eTempDropLocal) and a logarithmic transformation of eTempDropLocal (10Log (eTempDropLocal)) 

and ABSLocal (10LogABSLocal). After performing data transformation, the residuals 

displayed a normal distribution and homoscedasticity (Fig 5B). The predictive power 

of the regression model was statistically significant (p < 0.001) but the coefficient of 

determination was relatively low (R2 = 0.52) (Table 3, overall individual model).  

The assumptions of normality of distribution and homoscedasticity of the residuals 

were also violated in the overall average model (21 ROIs averaged over participants 

* 10 running durations). As such, the same transformations were applied to the two 

variables, considered as 10Log(eTempDropLocal) and 10LogABSLocal. The overall average 

model presented higher coefficient of determination (R2 = 0.75), compared to the 

individual model and also reached statistical significance (p < 0.001) (Table 3, overall 
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average). The predictive equations of the individual and average overall models are 

reported in Table 4. 

Table 3 Summary of the overall (individual and average) and temporal model and variables included.  

 

SEE = standard error of estimate. 

 

Table 4 Predictive equations of overall individual and average model as well as temporal models describing the 
statistical relation local sweat absorption (local temperature drop. 

 

 

Exponential curves were found to best fit the relation between ABSLocal and 

TempDropLocal, at each selected running duration, i.e. 15 min, 25 min, 35 min and 50 

min (Fig 6), with curves shifting up and left with advancing time. The temporal 

models were statistically significant (p < 0.001) and their predictive power (R2 ≥ 0.75) 
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was higher than the overall models (Table 3). The predictive equations of the 

temporal models are reported in Table 4. 

 

Figure 6 Exponential relationships between local sweat absorption (ABSLocal) and local temperature drop 
(TempDropLocal) at selected time points (15 Min, 25 Min, 35 Min and 50 Min). Each model includes participants’ 
average data for each ROI at a single time point (21 averaged ROIs * 1 time point). The coefficient of 
determination (R

2
) of each model is reported in Table 3.   

 

8.4.2 Sweat absorption and temperature in single ROI 

In each selected ROI (10 running duration * 1 averaged ROI), the highest value of 

Temp-DropLocal occurred before ABSLocal could reach its highest value (point 

highilighted in red in Fig 7). Specifically, the highest TempDropLocal was 2.79 ± 0.53 

ºC for chest medial, 3.24 ± 0.35 ºC  for back upper, 2.78 ± 0.70 ºC for back mid 

lateral, 2.47 ± 0.67  for shoulders, 1.89 ± 0.69 for abdomen medial, 2.08 ± 0.85 ºC 

for low end back. Highest Temp-DropLocal corresponded to the following ABSLocal 

values, 49.1 ± 40.1 g·m-2 for chest medial, 74.8 ± 27.2 g·m-2 for back upper, 55.13 ± 

30.23 g·m-2 for back mid lateral, 47.9 ± 29.2 g·m-2 shoulder, 33.3 ± 21.5 g·m-2 for 

abdomen medial, 49.2 ± 31.1 g·m-2 for low end back.  
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Figure 7 Local sweat absorption (ABSLocal) plotted versus local temperature drop (TempDropLocal) at each during 
duration (5-50 min) for selected regions of interest (ROI), i.e. chest medial, back upper, back mid latera, 
shoulder, abdomen medial, low end back. The red point indicates the highest TempDropLocal and related ABSLocal 

value. 

 

8.5 Discussion 

The main focus of this investigation was to determine whether infrared 

thermography can be used to quantify moisture in garments, by developing a 

relation between the amount of moisture absorbed and the temperature drop of 

wet textile areas. Whilst IRT has been adopted to provide maps of temperature 

distribution across the human body (Fournet et al. 2013), so far IRT has not been 

used as tool to predict spatial and temporal sweat retention in clothing, after 

physical exercise.  The data suggest that IRT is a good tool to qualitatively predict 

regional sweat absorption in garments at separate individual time points; however 

temporal changes are not predicted well, likely due to a moisture threshold causing 

a temperature limit above which variations in sweat content cannot be 

discriminated by further temperature changes.  
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8.5.1 Overall models  

We assumed that garment zones characterised by higher sweat retention would be 

affected by higher evaporative cooling, resulting in higher local temperature drops 

from their dry state. This was the rationale for attempting to use temperature data 

to estimate sweat content in clothing. In order to ensure a direct link between 

garment regional sweat retention and temperature, infrared pictures of the 

garment were performed after taking the garment off the body. In fact, pilot testing 

for this study showed that acquisition of the picture while the garment was still on 

the body gives a combined value of garment and body skin temperature. As such, 

when the purpose is to assess garment regional sweat content using infrared 

temperature data, it is important to remove the garment from the body and fit it to 

a garment-like shape stand. The stand also allows separation of the front from the 

back T-Shirt’s panel (preventing sweat transfer between front and back regions) as 

well as avoiding infrared transmission from the other side through the garment and 

ensures a standardised T-Shirt position.  

While the overall model including spatial and temporal data of the eight 

participants was highly significant (individual model, Table 3); regional temperature 

drop only statistically explained 52% of the variance in regional sweat content 

(Table 3). This suggests that other factors might have affected the link between 

these two parameters. The exponential shape of the curves describing the relation 

between local sweat absorption and temperature indicates that local temperature 

changes can predict local sweat retention up to a certain moisture saturation value, 

this being around 50 g·m-2 (in a cotton material and in the climatic condition 

adopted). In line with this, Fig 7 illustrates that in the selected ROIs, the highest 

temperature drop (~3ºC) is achieved between 50 and 60 g·m-2and no further drop 

occurs beyond these values. This indicates that there is a moisture threshold 

causing a temperature limit, this possibly due to the attainment of maximum 

evaporative cooling. The data suggest that above this moisture threshold, variations 

in locals sweat content cannot be discriminated by temperature changes measured 

with IRT. In the currently adopted climatic conditions this threshold corresponded 
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to moisture content of approximately 50 g·m-2, this causing a temperature drop 

limited to approximately 3 ºC.  

Another factor to consider when studying the link between regional sweat retention 

and temperature drop in clothing is the uniformity of sweat/temperature 

distribution in each pre-selected garment region. Specifically, the temperature 

maps in figure 4a (front) and 4b (back) show that changes in garment regional 

temperature do not occur uniformly within peripheral and inferior regions (e.g. 

front and back sleeves, mid back later, chest and abdomen lateral and lower ends). 

On the other hand, as the gravimetric method only allows an overall measurement 

of sweat retention in pre-defined regions, the sweat maps suggest a uniform 

distribution of the sweat absorbed in each region (Fig 4a and 4b). This discrepancy 

could have affected the link between sweat retention and temperature change in 

those regions presenting a non-uniform sweat distribution. Finally, the climatic 

condition adopted is another variable that can influence the relation between 

regional sweat retention and temperature drop. For instance, for the same garment 

saturation level, a higher temperature drop is expected in a dryer environment, as 

compared to the current conditions adopted (50% rh). As such, while the studied 

principle remains the same, different regression equations would need to be used if 

different climatic conditions are applied.  

When participants’ average data of each ROI are used, rather than all individual 

data points, a better prediction model, as compared to the individual one, is 

obtained (r2 = 0.75, Table 3). As such, in some research settings, i.e. in studies 

involving within-subjects comparisons of different T-shirts, shorts or trousers 

etcetera, the use of participants’ average data could improve the predictive power 

of regional sweat content.  

8.5.2 Temporal models 

While in the overall individual model regional temperature can only explain 52% of 

the variance in garment local sweat retention, temporal average models, including 

sweat and temperature data for separated exercise durations (Fig 6), present a 

stronger predictive power (r2 = 0.75-88). Nevertheless, Figure 6 shows that with the 
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increase in exercise duration (highlighted in each separated model) and local sweat 

retention, the curve moves up and the slope becomes progressively steeper rather 

than developing towards the right side of the graph (increase in temperature drop). 

As indicated earlier, above a certain value, the increases in sweat retention, which 

occur as exercise time and sweat production progress, are not accompanied by 

concomitant increases in temperature drop. This again clearly shows that there is a 

temperature limit above which increases in sweat retention cannot be 

discriminated by using temperature drop values. Since sweat retention mainly 

changes as function of time, the overall model, including the temporal changes, is 

highly affected by this ‘threshold effect’ and shows a lower predictive power as 

compared to the single temporal models. However, such different temporal models 

at different exercise times would not be stable and would change with any change 

in condition. Thus, these are not practical in their application for quantitative sweat 

absorption determinations. As these temporal models do not allow accurate 

predictions of sweat retention between different exercise duration/intensity, IRT 

cannot be used to reliably quantitatively assess the development of sweat retention 

over time and across garment regions, unless sweat absorption remains very low. 

Nevertheless, the strong coefficient of determination of the temporal models 

indicates that IRT can very well be used to make qualitative inter-regional 

assessment of sweat retention, i.e. to define regions with high or low sweat content.  

8.6 Limitations 

The impact of body skin temperature on garment regional temperature was 

minimised by removing the garment from the body and allowing some time before 

performing the image acquisition. This time needs to be long enough in order to 

remove the effect of skin variations and allow a steady-state garment temperature 

to be developed, but short enough to avoid sweat migration. In a pre-test we 

observed that, in the first 3 minutes immediately after T-Shirt removal, garment 

temperature dropped from 26 ºC to 21.7 ºC, leading to a difference of 

approximately 4 ºC.  Natural wet bulb temperature (as indicator of the maximal 

temperature drop possible) in the climatic condition used was 20.8 ºC, therefore 

approximately 6 ºC difference from ambient temperature (27 ºC). However, 
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although natural wet bulb temperature indicates that the limit for evaporative 

cooling was not achieved within the 3 minutes, the data showed that the highest 

relative change of garment temperature (1 ºC) occurs during the first minute, 

immediately after fitting the garment on the stand. After 2 minutes, this relative 

change accounts for 0.4 ºC and after 2.5 min to 8 min the relative change in 

garment temperature is very small (0.1 ºC). Based on these data, a stabilisation 

period of 3 minutes was chosen, given that a longer stabilisation period between 

garment removal from the body and image acquisition could cause sweat migration 

across proximate regions.  

Furthermore, a non-uniform contact between the T-shirt stand and garment could 

have affected the garment’s temperature. Therefore, for future studies a stand 

which has minimal contact area with the T-Shirt, for instance a wire frame only in 

contact with the inner contour of the T-Shirt, yet allowing separation of the front 

and back garment’s side, is proposed.  

8.7 Conclusions 

In this research infrared thermography was used as a tool to indirectly quantify 

spatial and temporal variations in clothing sweat absorption, immediately after 

physical exercise of different duration/intensity. In order to minimise the impact of 

body skin temperature on garment local temperature, infrared image acquisition 

has to be performed after removal of the garment from the body, and after fitting it 

to a garment-shape stand. It can be concluded that, based on differences in local 

temperature drop (from dry state), IRT allows discrimination of higher and lower 

regional sweat retention, in a ‘non-destructive’ way. Furthermore, IRT can be 

applied to make more precise qualitative assessments with regards to the level of 

sweat (temperature) distribution within a certain region, whereas the gravimetric 

method assumes uniformity of sweat retention in a pre-defined garment region. 

Nevertheless, despite these benefits, this study highlighted a number of limiting 

factors that preclude the use of IRT for quantitative estimations of spatial and 

temporal sweat retention in garments, when evaluations need to be performed 

within a relatively short time after exercise, with the main limitation being a 



    CHAPTER 8 – Laboratory study 6 
 

261 

moisture content threshold above which no further effect on temperature is 

observed. 
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9.1 Introduction 

The main focus of this doctoral research was to identify the main textile and 

clothing parameters modulating the cutaneous sensations and perceptions 

occurring under conditions of skin and clothing wetness. Since the current literature 

review established that material test methods cannot comprehensively describe 

clothing functionality and their impact on human responses, a research 

methodology including both material and human assessments was developed. 

According to this research methodology, the main textile properties affecting 

wetness-related and discomfort sensations in humans were identified. Finally, in 

order to guide the process of clothing development, using a sweat mapping 

approach, temporal and spatial changes in sweat retention were mapped in an 

upper body garment worn by male athletes in exercise.  
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9.2 Textile parameters modulating cutaneous sensations 
and perceptions occurring in conditions of skin and 
clothing wetness 
 

In this research, the textile parameters indicated as major determinants of fabric 

absorption capacity and related perceptions were thickness/volume, ‘wet’ weight, 

moisture saturation percentage, surface area and surface texture.  

9.2.1 Thickness 

In Study 1 (Chapter 3) fabric thickness was shown as a major parameter 

determining moisture retention in textile materials and skin wetness perception. 

Specifically, in static fabric-to skin contact conditions and in fabrics in steady-state 

of absorption (pre-wetted fabrics), higher thickness resulted in higher water 

retention values. These absorption values were obtained using a gravimetric water 

absorption capacity test, where the fabric is fully immersed in water (Tang et al. 

2014a). When wetted with the same moisture saturation percentage (100% and 50% 

of the maximum absorption capacity), fabrics presenting greater thickness, caused 

higher wetness perception responses. As such, fabric thickness was indicated as 

main predictor of wetness perception (Raccuglia et al. 2016a). The investigated 

fabrics presented same surface area (cm2), similar density and capillary volume. 

However, differences in these above-mentioned parameters could impact fabric 

absorption capacity (Jeon et al. 2011) but also the relation between wetness 

perception and fabric thickness found in Study 1 (Raccuglia et al. 2016a). In steady-

state of absorption, fabrics with different fibre compositions, but same thickness, 

did not result in different wetness perception responses (Raccuglia et al. 2016a). 

However, future studies should look at the impact that fibre composition and 

related-hydrophilicity could have on absorption rate and related moisture sensation 

in transient absorption conditions. 
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9.2.2 Fabric ‘wet’ weight 

In Study 1 (Chapter 3) it was observed that the weight of the fabric in wet state can 

also modulate wetness-related perceptual responses (Raccuglia et al. 2016a). 

Specifically, by manipulating the level of fabric-to-skin pressure ‘heavier’ fabrics 

were perceived wetter than ‘lighter’ ones, despite using the same fabric and 

applying the same level of physical moisture. This phenomenon was explained in 

light of the ‘synthetic’ nature of wetness perception and the sensory modalities 

underpinning it, specifically through the effect of fabric weight on cutaneous 

perceived pressure which was associated with higher physical wetness in fabrics.  

9.2.3 Moisture saturation percentage 

Due to the link identified between fabric water content and thickness/volume, 

fabric saturation percentage was indicated as parameter to take into account when 

interpreting moisture-related responses elicited by wet fabrics (Raccuglia et al. 

2016a). When fabrics characterised by different thickness/volume are treated with 

the same moisture saturation percentage (relative to the maximum absorption 

capacity), thinner fabrics are perceived less wet than thicker ones, as thicker fabrics 

present higher absolute water content, causing higher cooling and pressure 

sensations, associated with higher wetness. On the other hand, when fabrics are 

treated with the same absolute water content, thinner fabrics present higher 

amount of water per volume of fabric and therefore higher saturation percentage, 

therefore these fabrics are perceived wetter than thicker fabrics, the latter being 

less saturated (smaller amount of water per unit volume of fabric).  

9.2.4 Total surface area 

In Study 4 (Chapter 6), the significant impact of fabric moisture saturation on 

wetness-related sensorial responses, i.e. wetness and stickiness sensation, was 

studied in exercise-induced sweat production conditions. Stickiness sensations are 

typically elicited by the tactile interaction between the wet fabric and the skin. In 

Study 4, higher garment moisture saturation percentages resulted in greater 

sensations of stickiness (Raccuglia et al. 2017a, 2017b). Differences in saturation 

percentages, caused by sweat absorption, were obtained by manipulating the total 
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area of the fabric in contact with the skin. The lower surface area available for 

sweat absorption, which was achieved by higher perforation levels of the fabric, 

also concentrated the absorbed sweat in a smaller area, which led to higher 

moisture saturation (higher amount of sweat per unit area available). Interestingly, 

the garment with the higher saturation percentage (in relation to surface area, g·m-

2) presented the lowest absolute sweat content value (g) and resulted in higher 

stickiness sensation, although wetness perception being the same between the 

garments. This confirmed the stronger impact of moisture saturation compared to 

absolute moisture level in fabrics. Therefore, fabric thickness and fabric total 

surface area (through its impact on garment moisture saturation) are crucial 

parameters modulating moisture-related sensation resulting from wet fabrics, in 

this case stickiness sensation.  

Since differences in moisture saturation between garments led to differences in 

stickiness sensation but wetness perception was the same, this study demonstrated 

that stickiness and wetness should be considered individually and should not be 

used as interchangeable terms. In fact, although stickiness sensation is strongly 

related to wetness perception (Raccuglia et al 2017b), in some conditions, i.e. when 

cold cues are restricted (sweat induced-sweat production in warm environments) 

tactile sensations (stickiness) do not impact wetness perception responses (Study 4). 

As such, in these conditions, stickiness sensation, rather than wetness perception, is 

a better parameter to consider when studying differences in wear dis(comfort) 

between  garments.  

9.2.5 Surface texture 

In study 2 (Chapter) pre-wetted fabrics were applied in dynamic contact with the 

inner forearm skin (skin regional study). It was observed that sensations of 

stickiness are higher in fabrics with smoother surface texture (Raccuglia et al. 

2017b). The wet smoother fabric surfaces can create higher contact with the skin, 

this resulting in higher skin displacement and friction and sensed as higher 

stickiness. Stickiness sensation was linearly and positively related with wetness 

perception. Interestingly, the power of wetness perception prediction became 
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stronger when including both stickiness sensation and fabric thickness as predictors. 

Even in this case, it should be noted that stickiness sensation drives tactile 

sensations modulating wetness perceptions, however the two parameters 

(stickiness and wetness) should be considered individually.  In this mechanistic 

study, fabric moisture content was manipulated by the investigator to obtain same 

moisture saturation percentage between fabrics (50% of the total absorption 

capacity). However, as observed in exercise-induced sweat production conditions 

(Study 4, Chapter 6), changes in moisture saturation, resulting from different fabric 

surface areas for absorption, can dominate that impact of fabric texture on 

stickiness sensation.  

The latter clearly shows that in a multifactorial system such as the environment-

human-clothing one, the strength of different cutaneous moisture-related stimuli, 

triggered by various textiles parameters, should be considered. Furthermore, this 

indicates that, to obtain a better understanding of clothing performance and its 

impact on human sensations, human assessments should be conducted using a 

holistic approach, i.e. skin regional and whole body studies (mechanistic as well as 

applied method).   

9.2.6 Limitations 

In the first phase of this PhD research, fabrics were pre-wetted and applied on the 

dry skin. When pre-wetting fabrics, the investigator has to decide between adding 

the same relative water amount or the same absolute water amount to the tested 

fabrics. As mentioned, these two different wetting procedures can lead to different 

sensorial and perceptual outcomes, related to fabric thickness and moisture 

distribution (Raccuglia et al. 2016a). In addition to the wetting procedure, the 

investigator has to decide between using fabrics in steady-state of absorption 

(fabrics are pre-wetted and then time is allowed for the water to spread evenly 

across the fabric) or in dynamic absorption conditions (water is added to the fabric 

which are then immediately applied to the skin). In the first laboratory study 

(Chapter 3) the main aim was to identify differences in wetness-related sensations 

and perceptions between the two wetting procedures, i.e. relative versus absolute 
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water content. In this study, fabrics were examined in conditions of steady-state of 

absorption, in order to control for other confounding textile variables. In fact, when 

fabrics are studied in dynamic absorption conditions (not in steady-state) other 

parameters such as fibre type (i.e. natural versus synthetic), treatments (e.g. 

hydrophilic, hydrophobic, fabric drying), or structures (e.g. single jersey, double 

jersey) could impact wetness-related sensorial outcomes. These textile parameters 

indeed can affect dynamic moisture absorption properties, such as absorption rate, 

wicking and drying time, which could then determine wetness-related sensorial 

responses in dynamic moisture absorption conditions. Therefore, future studies 

should examine the role of dynamic moisture absorption parameters, such as 

absorption, rate, wicking and drying time on wetness-related perceptions and wear 

discomfort, in dynamic sweat absorption conditions.  

Another methodological approach which could be used to investigate wetness-

related responses between different fabrics is to characterise fabric moisture 

content using a test which is closer to real life dynamic absorption conditions, as 

compared to the sink test used in this PhD research. More realistic moisture 

saturation values could also be obtained from studies involving human participants 

in exercise conditions. These moisture absorption values could then be applied to 

the tested fabrics to assess the impact on wetness-related sensations and wear 

discomfort, using a more realistic wetting approach.  

9.3 Wetness perception and stickiness sensation in 
clothing 
 

9.3.1 Pre-wetted fabrics – Mechanistic approach 

Despite the absence of cutaneous hygro-receptors (Clark and Edholm 1985), 

humans can perceive different degrees of skin wetness, through the integration of 

thermal and tactile cues. In the case of pre-wetted textile materials (water at 

ambient temperature) contacting the dry skin in static application conditions, 

participants can perceive various degrees of fabric wetness by integrating fabric 

thermal (cooling provided) and mechanical (load on the skin) inputs (Raccuglia et al. 
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2016a). In these conditions, fabric thermal properties under wet state seem to be 

the main cues contributing to the perception of moisture content. Specifically, with 

the increase in fabric water content the cooling power, related to the heat capacity 

of the liquid in the textile, also increases, resulting in higher local skin cooling and 

wetness perception. The contribution of fabric mechanical input was indicated by 

the greater wetness perception in heavier fabrics, due to the resultant higher 

load/pressure on the skin which increases the magnitude of stimulation of both 

thermo- and mechanoreceptors. With regards to clothing application, this indicated 

that when designing a garment with reduced wetness perception and discomfort, 

the factors that should be taken into consideration are the wet weight of the fabric 

and the resultant local skin temperature drop.  

In dynamic contact condition, the mechanical interaction of a wet fabric with the 

dry skin causes skin displacement. This skin displacement is sensed as stickiness, 

and represents an important contributing factor to the perception of wetness in 

fabrics (Raccuglia et al. 2017b). In these conditions stickiness sensations were 

mainly driven by the surface texture of the fabric, with smoother perceived fabrics 

being associated with higher stickiness and wetness, despite same moisture 

saturation percentage. 

9.3.2 Fabric wetness induced by sweat production – Applied 

approach 

In exercise-induced sweat production conditions, the substantial and significant 

differences in sweat content, saturation percentage and also stickiness sensation of 

garments did not impact wetness perception responses which were almost identical 

between the garments (Raccuglia et al. 2017a). The latter might not be in line with 

the results observed in skin regional studies. Nevertheless, it should be noted that 

in the skin regional studies, fabric moisture content was manipulated by adding 

water at room temperature to the fabric, this substantially increasing the thermal 

conductivity of the fabric and acting as a cold cue for wetness perception. On the 

other hand, it seems that during exercise in warm ambient temperature (Study 4, 

Chapter 6), sweat evaporation does not provide enough cooling, typically 
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considered one of the thermal cues involved in the perception of skin wetness. 

Therefore, the current results indicate that when performing physical exercise in 

warm environments, differences in garment stickiness sensation do not necessarily 

affect wetness perception. Consequently, in a mild or hot environment, when cold 

sensory cues are restricted, stickiness sensation seems a more impactful parameter 

to consider when determining moisture-related differences between garments. 

Future studies should investigate these avenues under exercise conditions at colder 

environmental temperature, where the availability of cold cues could have an 

impact on wetness perception.  

9.3.3 Model of wetness-related sensations in the human-clothing 

system  

According to the findings of this PhD research, a model describing the textile factors 

modulating sensation and perception related to skin and clothing wetness has been 

provided (Fig 1). In this model, fabric stimulations are detected on the skin, the 

stimuli (afferent ascending feedback) are then sent to the central nervous system 

where they are processed and arranged into perceptions. The model includes textile 

physical properties (purple), cutaneous sensory-receptors, such as thermo- (blue) 

and tactile-receptors (green) and higher sensory outputs, i.e. thermal sensation 

(blue), stickiness sensation (green), wetness perception (orange) and wear 

discomfort (orange). This model also includes two scenarios in which physical 

wetness can be induced (red), i.e. laboratory-induced wetness (water at room 

temperature added to the fabric in contact with the dry skin; Fig 1A) and sweat-

induced wetness (both the skin and the fabric are wet; Fig 1B) under heat exposure.  

In details, the model (Fig 1A) indicates that fabric thickness, fabric volume and the 

contact surface area available for sweat absorption have an impact on moisture 

saturation percentage, absolute moisture content and wet weight of the fabric. The 

moisture saturation percentage and moisture absolute content stimulate the 

thermo- as well as  tactile receptors, triggering temperature and tactile responses, 

i.e. cold sensations and stickiness sensations. Fabric weight also stimulates the 

tactile receptors, sensitive to the load of the wet fabric pressing on the skin and 
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leading to pressure sensations. Fabric surface texture affects the level of contact 

between the fabric and the skin (contact points), which has an impact on the level 

of fabric-to-skin friction and skin displacement, determining stickiness sensations. 

The integration of thermo- (cold sensations) and tactile stimulations (stickiness and 

pressure sensation) in the central nervous system (CNS) modulate wetness 

perceptions, which will then cause wear discomfort.  Wetness-related sensations 

and perception can also be modulated by other factors, these related to the 

modality in which physical wetness is induced, i.e. sweat-induced or laboratory-

induced, and to the thermal environment, i.e. hot or cold. In conditions of 

laboratory-induced wetness (Fig 1A), water is added to the fabric, which is then 

applied to the dry skin. In this scenario, the high thermal conductivity of the wet 

fabric triggers cold sensations, which modulate wetness perception independently 

(static contact conditions), or in combination with tactile sensations, i.e. pressure 

sensations (static and dynamic contact conditions) and stickiness sensations 

(dynamic contact conditions only). Under heat exposure and in conditions of sweat-

induced wetness (Fig 1B), both the skin and the textile are wet and sweat 

temperature is at skin temperature. In this scenario, conductive cooling is negligible 

and sweat evaporation does not always reduce skin temperature due to a high 

supply of warm blood, thus not affecting cooling sensations. As such, in this 

condition, stickiness sensation is the main outcome that allows discriminations 

between wet garments and affects wear discomfort. Nevertheless, the impact of 

cold sensations in conditions of sweat-induced wetness where cold cues are largely 

available, i.e. cold exposure, requires future investigations.  

These findings indicate that previous models of cutaneous wetness perception 

postulated by Filingeri et al. (2014a) are unable to explain the sensory mechanisms 

underpinning wetness-related sensations and perceptions in relation to textile 

materials and in conditions of sweat-induced wetness. In fact, the current research 

demonstrated that thermo- and tactile cues are triggered not only by the amount of 

physical wetness but also by the textile parameters above reported. Wetness-

related sensations and perceptions are also affected by the modality in which skin 

wetness is induced, i.e. pre-wetted fabrics, or sweat-induced skin and garment 
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wetness. Previous models (Filingeri et al. 2014a) indicate that wetness perceptions 

occur from the central integration of tactile and cold stimulations at skin level. 

When cold stimulations are restricted, tactile (stickiness) sensations represent the 

main cues modulating the perception of wetness (Filingeri et al. 2015). On the 

contrary, the current PhD research demonstrated that changes in stickiness 

sensations do not necessarily affect changes in wetness perceptions. In fact, 

although in some conditions (i.e. in combination with cold cues) stickiness sensation 

is highly related to wetness perception, when cold cues are restricted, stickiness 

sensation is not directly associated to wetness perception and can independently 

influence wear discomfort. As wetness-related sensations can reduce human 

productivity and performance as well as users satisfaction, through their impact on 

wear discomfort, in the current model (Fig 1) wear discomfort was integrated and 

considered as main outcome.  
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Figure 1 Model of wetness-related sensations in the human-clothing system, in (A) laboratory-induced and (B) 
sweat-induced wetness conditions.   
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9.4 Human wear discomfort 
 

Comfort is a criterion commonly used by the users when selecting clothing. 

Sensations of discomfort can also impact human productivity and mental as well as 

physical performance (Parsons 2014; DenHartog and Koerhuis 2017). 

The presence of wetness at the skin clothing interface is recognised as one of the 

main sources of discomfort in wear conditions. It was shown that the perception of 

wetness in fabrics is strongly and positively related to thermal discomfort (Raccuglia 

et al. 2016a). This was mainly due to the increase in the magnitude of cold 

sensation as fabric water content is increased. The impact of clothing wetness on 

thermal discomfort should be carefully taken into account when considering cold 

environmental conditions, or condition in which body temperature suddenly drops, 

i.e. after physical exercise. In these situations, in fact, body contact with a wet 

material can increase the rate of body temperature reduction (after chill drop), 

causing cold sensations and resulting in thermal discomfort.  

Together with comfort, pleasantness is a criterion used when selecting clothing. In 

this research, pleasantness was significantly reduced when fabric texture sensation 

increased, i.e. in rougher fabrics (Raccuglia et al. 2017b). The significant relation 

between texture sensation and pleasantness indicates that fabric texture is an 

important parameter to consider in terms of clothing acceptability, in addition to 

wetness perception and thermal comfort. Interestingly, in a wet state fabric texture 

sensation significantly increased (fabrics perceived less smooth) compared to dry 

state and resulted in a concomitant reduction in fabric pleasantness sensation 

(Raccuglia et al. 2017b). Therefore, judgements of fabric texture and associated 

pleasantness can change in relation to the hydration state of the skin and/or fabric 

moisture content. As such, evaluations of fabric/clothing texture and related 

acceptability should be conducted under both dry and wet conditions.  

The factor/s influencing wear discomfort were defined in exercise-induced sweat 

production conditions (Study 4, Chapter 6). Whilst no overall model for discomfort 

could be developed (suggesting complex interactions between the relevant 
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parameters and the time-course development of the relationships), models for 

different time points were produced. At baseline, when the individuals just wear 

the garment, wear discomfort is in part affected by sensations of fabric texture 

(with smooth fabrics perceived as less uncomfortable). The influence of texture 

sensation on wear discomfort, during the initial interactions of the garment with 

the skin, explains why garment texture may be a parameter partially affecting the 

buying decision process of a specific clothing product. On the other hand, with the 

start of the physical exercise as well as sweating responses, stickiness was identified 

as the main parameter affecting wear discomfort. These findings indicate that 

factors influencing the perception of wear discomfort can change over time and in 

relation to the over-time changes in human thermophysiological responses, such as 

metabolic rate and sweating. 

Although the factors that can contribute to wear discomfort at rest and during 

exercise were identified, a substantial amount of variance (~ 50%) in discomfort is 

still unexplained. For this reason, future investigations should address the role that 

other parameters could play on wear discomfort, to achieve more accurate 

estimations of wear comfort and to improve clothing performance. 

9.5 Maps of sweat distribution in an upper body 
garment 
 

In Study 5 (Chapter 7) spatial and temporal variations in garment sweat content 

were mapped in a cotton and synthetic upper body garment. Sweat absorption in 

both garments increased significantly with exercise duration; however, the rise 

became less pronounced after approximately 35 minutes of running. After 50 

minutes of running exercise, the cotton and synthetic garments reached, on 

average, only 41% and 18% of the total absorption capacity, respectively. A clear 

pattern of sweat absorption reduction from the top to the bottom and from the 

centre to the sides of both garments was observed. The inter-regional differences in 

garment sweat absorption were explained by the interactions of physiological, 

anatomical and clothing factors. The highest local moisture saturation was achieved 

in the mid-medial back and it was around 56% and 35% in the cotton and synthetic 
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garment, respectively. These saturation values were obtained by relating whole and 

local sweat contents to the absorption capacity of the fabric. The latter was 

determined using a gravimetric test in which the fabric is completely immersed in 

water (Tang et al. 2014a; Raccuglia et al. 2016a; Raccuglia et al. 2017b). However, if 

a test set-up that can better simulate real wear conditions is used, lower absorption 

capacity is obtained, this resulting in higher total and regional moisture saturation 

value.   

As expected, sweat absorption data were substantially lower in the synthetic 

garment as compared to the cotton garment; nevertheless, the patterns of sweat 

distribution appeared to be very similar. These findings nicely demonstrate that 

differences in textile properties can determine the absolute amount of sweat 

absorbed and distributed across the garment. On the other hand, garment fit 

mainly affects the patterns of sweat absorption distribution in clothing, through its 

effect on fabric-to-skin contact and air gap thickness. 

Future studies should investigate total garment sweat absorption and regional 

sweat distribution patterns in a multilayer clothing system, including base-layer and 

coverall (cold environmental conditions) and in a bra-T-Shirt clothing system 

including female participants. 

9.6 Overall thesis conclusions 
 

The current research work has identified the textile factors affecting sensations and 

perceptions related to skin and clothing wetness. This work has shown that wetness 

perception is not the only sensorial factor contributing to wear discomfort in 

conditions of skin and clothing wetness. In fact, it was found that stickiness and 

haptic sensations can also affect wear discomfort and clothing acceptability, even 

more than wetness perception, especially when exposed to warm/hot 

environmental conditions. In this regard, a clear distinction between wetness 

perception and stickiness sensation was made and it was recommended to consider 

the two as independent sensations/perceptions.  
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Conclusions regarding the textile factors modulating sensations and perceptions 

related to skin and clothing wetness have mainly been drawn from objective data 

obtained from the gravimetric sink test. This test does not simulate sweating 

conditions as well as other tests, like the GATS test for instance. The gravimetric 

sink test, rather than the GATS test, was performed due to the restricted 

accessibility to the latter test, this representing a limiting factor of the current 

research work. 

Although the GATS is a more realistic test than the gravimetric sink test, it has not 

been validated by moisture absorption and saturation values of clothing when wore 

by humans. Additionally, Studies 1, 2 and 4 showed the crucial impact of garment 

saturation on stickiness sensation, wetness perception and related discomfort. 

Therefore, it was important to gather information regarding sweat-induced 

moisture saturation values of garments during physical activity. Finally, due to 

regional differences in body sweat rate and regional difference in skin-to-clothing 

air gap thickness, it was important to identify garment moisture saturation values at 

different garment locations. This was the rationale behind Study 5. Related to this, 

Study 6 aimed to develop a procedure to enable the evaluations performed in Study 

5 to be less expensive and time-consuming for future investigations. Specifically, 

Study 6 assessed the applicability of Infrared Thermography for estimations of 

garment regional sweat absorption, using changes in temperature of wet garment 

areas from their dry state.  

Apart from studying the specific contribution and effect of the investigated textile 

parameters on human sensory responses, the overall conclusion of this thesis is that 

the factors influencing clothing functionality and perceptions of wear (dis)comfort 

can change over time and in relation to the over-time based changes in human 

thermophysiological responses, such as metabolic rate and sweating. These changes 

will in turn affect both thermal and moisture responses as well as haptic responses 

(i.e. texture sensations) in humans. This indicates that the factors determining 

clothing (dis)comfort are dynamic and alter importance during physical activity. 

Based on these findings, this thesis recommends a process of clothing development 

involving an objective characterisation of the textile properties, followed by skin 
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regional studies, which allow the study of the impact of each single textile property 

on human sensorial responses. Skin regional studies are then followed by human 

wear tests, which take into consideration the combined effect of different textile 

properties as well as their change over time. This human-centred clothing 

development process will lead to a better understanding of the textile and clothing 

factors determining wear discomfort. The current approach can be adopted to 

study other aspects of wear discomfort such as textile factors affecting haptic 

sensations.  

Future studies should account for additional critical factors contributing to wear 

(dis)comfort during exercise and include other environmental conditions (i.e. 

outdoor cold conditions), in order to advance predictions of wear (dis)comfort and 

the development of sportswear as well as protective clothing. When considering the 

multifactorial nature of wear comfort, complementary data also examining the 

factors influencing it at the moment of the purchase (shop setting) and post-

exercise, are necessary. This will potentially lead to a holistic model of wear comfort 

in an environment-human-clothing system.  
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APPENDIX D 

Comparisons between T-Shirt regions at each run conditions. Data from 

Laboratory study 5 

 

Significance levels of comparison of local sweat absorption data after 10 MIN of running 

 

Data uncorrected for multiple comparisons: p ≤ 0.05 *    p ≤ 0.01 **    p ≤ 0.001 *** 

Data corrected (Bonferroni) for multiple comparisons: p ≤ 0.05 †    p ≤ 0.01 ††    p ≤ 0.001 ††† 

 

Significance levels of comparison of local sweat absorption data after 20 MIN of running 

 

Data uncorrected for multiple comparisons: p ≤ 0.05 *    p ≤ 0.01 **    p ≤ 0.001 *** 

Data corrected (Bonferroni) for multiple comparisons: p ≤ 0.05 †    p ≤ 0.01 ††    p ≤ 0.001 ††† 
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Significance levels of comparison of local sweat absorption data after 30 MIN of running 

 

Data uncorrected for multiple comparisons: p ≤ 0.05 *    p ≤ 0.01 **    p ≤ 0.001 *** 

Data corrected (Bonferroni) for multiple comparisons: p ≤ 0.05 †    p ≤ 0.01 ††    p ≤ 0.001 ††† 

 

Significance levels of comparison of local sweat absorption data after 40 MIN of running 

 

Data uncorrected for multiple comparisons: p ≤ 0.05 *    p ≤ 0.01 **    p ≤ 0.001 *** 

Data corrected (Bonferroni) for multiple comparisons: p ≤ 0.05 †    p ≤ 0.01 ††    p ≤ 0.001 ††† 
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Significance levels of comparison of local sweat absorption data after 50 MIN of running 

 

Data uncorrected for multiple comparisons: p ≤ 0.05 *    p ≤ 0.01 **    p ≤ 0.001 *** 

Data corrected (Bonferroni) for multiple comparisons: p ≤ 0.05 †    p ≤ 0.01 ††    p ≤ 0.001 ††† 
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