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Highlights	

• Associativity	is	an	arithmetic	concept	that	children	and	adults	struggle	to	apply	

• Inversion	is	a	simpler	concept	that	older	children	and	adults	easily	apply	

• Solving	inversion	problems	(‘a	+	b	–	b’)	increased	subsequent	associativity	use	

• ‘a	+	b	–	b’	inversion,	but	not	‘a	+	b	–	a’	inversion,	increased	associativity	use	

• ‘a	+	b	–	b’	problems	may	direct	attention	or	validate	a	‘right-to-left’	strategy	
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Abstract	

Conceptual	knowledge	of	key	principles	underlying	arithmetic	is	an	important	precursor	to	

understanding	algebra	and	later	success	in	mathematics.	One	such	principle	is	associativity,	which	

allows	individuals	to	solve	problems	in	different	ways	by	decomposing	and	recombining	sub-

expressions	(e.g.	‘a	+	b	–	c’	=	‘b	–	c	+	a’).	More	than	any	other	principle,	children	and	adults	alike	

have	difficulty	understanding	it,	and	educators	have	called	for	this	to	change.	We	report	three	

intervention	studies	that	were	conducted	in	university	classrooms	to	investigate	whether	adults’	use	

of	associativity	could	be	improved.	In	all	three	studies,	it	was	found	that	those	who	first	solved	

inversion	problems	(e.g.	‘a	+	b	–	b’)	were	more	likely	than	controls	to	then	use	associativity	on	‘a	+	b	

–	c’	problems.	We	suggest	that	‘a	+	b	–	b’	inversion	problems	may	either	direct	spatial	attention	to	

the	location	of	‘b	–	c’	on	associativity	problems,	or	implicitly	communicate	the	validity	and	efficiency	

of	a	right-to-left	strategy.	These	findings	may	be	helpful	for	those	designing	brief	activities	that	aim	

to	aid	the	understanding	of	arithmetic	principles	and	algebra.		

	

Keywords:	Associativity;	inversion;	conceptual;	arithmetic;	strategy	
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1.	Introduction	

1.1.	Arithmetic	and	algebra	

The	transition	from	arithmetic	to	algebra	is	difficult	for	many	children	(Stacey	&	MacGregor,	1999).	

However,	it	represents	an	important	milestone	in	mathematics	education,	because	algebra	acts	as	a	

gateway	to	higher-level	mathematical	competencies	(National	Mathematics	Advisory	Panel,	2008),	

and	predicts	educational	and	employment	success	(Ladson-Billings,	1997;	Knuth	et	al.,	2006,	p297).	

Conceptual	knowledge	of	key	principles	underlying	arithmetic	is	thought	to	be	an	important	

precursor	to	understanding	algebra	(e.g.	Booth	&	Koedinger,	2008).	In	particular,	understanding	

equivalence	(Knuth	et	al.,	2005;	Alibali	et	al.,	2007),	commutativity	and	associativity	(Warren,	2003)	

may	help	children	with	the	transition,	however,	many	children	and	adults	struggle	to	understand	

these	principles	(Robinson	&	Dube,	2017;	Robinson	et	al.,	2018).	Here	we	investigate	ways	to	

promote	adults’	use	of	associativity	via	brief	interventions,	in	order	to	shed	light	on	the	reasons	why	

individuals	find	it	difficult.	

Our	research	focused	on	associativity.	This	principle	is	relevant	to	algebra	because	it	permits	sub-

expressions	within	problems	to	be	solved	in	a	different	order	to	that	in	which	they	are	presented,	a	

process	often	required	for	solving	algebra	problems.	Understanding	associativity	could	also	

encourage	individuals	to	use	brackets	appropriately,	that	is,	only	when	they	resolve	the	ambiguity	of	

operation	order.	For	example,	an	individual	who	understands	associativity	would	know	that	the	

order	of	operations	does	not	matter	on	problems	such	as	‘a	+	b	–	c’,	but	that	it	does	on	problems	

such	as	‘a	–	b	–	c’.	Superfluous	use	of	brackets	may	have	negative	consequences	on	later	algebra	

learning	(Gunnarsson	et	al.,	2016)	and	thus	a	good	understanding	of	the	associativity	principle	may	

mitigate	against	their	overuse.	Below	we	discuss	what	associativity	is	and	how	it	has	been	measured,	

followed	by	describing	the	difficulties	many	have	with	the	principle.	
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1.2.	Defining	and	measuring	associativity	

The	associativity	principle	(hereafter	‘associativity’)	states	that	(a	+	b)	+	c	=	a	+	(b	+	c).	This	refers	to	

the	fact	that	because	some	operations	are	related,	problems	can	be	decomposed	and	recombined	in	

different	ways	to	produce	a	correct	answer	(Canobi	et	al.,	1998).	In	the	psychology	literature,	this	

principle	has	been	applied	in	different	situations,	such	as	with	problems	that	contain	only	addition	

(e.g.	‘a	+	b	+	c	=	c	+	b	+	a’),	addition	and	subtraction	(e.g.	‘a	+	b	–	c	=	b	–	c	+	a’),	only	multiplication	

(e.g.	‘a	x	b	x	c	=	b	x	c	x	a’),	or	multiplication	and	division	(e.g.	‘a	x	b	÷	c	=	b	÷	c	x	a’)	(Canobi,	2005;	

Robinson	&	Ninowski,	2003).	Problems	that	contain	opposing	operations	(addition	and	subtraction,	

multiplication	and	division)	are	the	dominant	paradigm	used	to	investigate	associativity,	which	our	

research	adhered	to	by	focusing	specifically	on	addition	and	subtraction.	

For	those	aged	7	years	and	above,	knowledge	of	associativity	has	typically	been	measured	using	

three-term	arithmetic	problems,	e.g.	‘a	+	b	–	c’	(Klein	&	Bisanz,	2000).	If	an	individual	explicitly	

reports	solving	the	problem	by	performing	the	subtraction	before	the	addition,	it	may	be	inferred	

that	they	have	applied	knowledge	of	associativity.	That	is,	they	may	have	used	their	understanding	

of	the	principle	to	select	a	strategy	for	solving	the	problem.	Here,	we	make	explicit	a	distinction	

between	two	strategies	that	may	be	used	on	‘a	+	b	–	c’	problems,	a)	‘left	to	right’,	where	an	

individual	solves	the	problem	by	performing	the	addition	before	the	subtraction,	and	b)	‘right	to	left’	

where	an	individual	solves	the	problem	by	performing	the	subtraction	before	the	addition.	

While	self-reports	can	provide	evidence	for	the	use	of	a	strategy,	they	also	require	conscious	

awareness	and	verbal	skills	to	describe	the	strategy	used	(Crooks	&	Alibali,	2014),	making	a	reliance	

on	self-reports	alone	sub-optimal.	Implicit	techniques,	which	infer	strategy	use	from	solution	

accuracy	and	response	times,	are	therefore	often	used	in	conjunction	with	verbal	reports	(e.g.	

Robinson	&	Ninowski,	2003;	Robinson	et	al.,	2006;	Dubé	&	Robinson,	2010;	Robinson	&	Dubé,	2009,	

2013;	Dubé,	2014;	Robinson	&	Dube,	2017).	For	associativity,	performance	can	be	compared	on	

problems	that	are	‘conducive’	to	the	principle,	with	those	that	are	not	(Edwards,	2013).	Conducive	
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problems	(e.g.	‘16	+	47	–	45’)	encourage	the	use	of	associativity	because	the	subtraction	yields	a	

small	positive	number,	which	makes	the	‘right-to-left’	procedure	less	computationally	demanding.	In	

other	words,	conducive	problems	contain	a	‘shortcut’.	In	contrast,	non-conducive	problems	(e.g.	‘36	

+	27	–	45’)	do	not	contain	shortcuts	and	are	designed	to	encourage	a	left-to-right	procedure.	If	

accuracy	and	response	times	are	better	on	conducive	than	non-conducive	problems,	an	individual	is	

likely	to	have	used	the	shortcut.		

The	inferences	that	can	be	drawn	from	both	verbal	report	and	implicit	performance	measures	

however	are	not	clear-cut,	because	strategy	use	and	knowledge	of	arithmetic	principles	are	not	

perfectly	related	(Crooks	&	Alibali,	2014;	Schneider	&	Stern,	2010).	Use	of	shortcut	strategies	does	

not	necessarily	imply	a	‘deep’	understanding	of	the	principle	(Star,	2005;	Baroody	et	al.,	2007),	i.e.	

an	understanding	that	it	is	associativity	which	justifies	the	shortcut	procedure.	Instead,	shortcut	use	

could	reflect	‘superficial’	understanding,	where	individuals	follow	a	right-to-left	approach	due	to	

previous	experience	or	memorised	procedures:	these	individuals	may	erroneously	solve	any	three-

term	problem	in	a	different	order	(e.g.	‘8	–	4	+	2’	as	8	–	(4	+	2)).	The	reverse	case	is	also	plausible,	

where	individuals	have	a	deep	understanding	of	associativity,	but	fail	to	use	a	shortcut	(see	section	

1.3).	Solutions	to	‘a	+	b	–	c’	problems	do	not	therefore	perfectly	measure	knowledge	of	associativity.	

Rather,	they	capture	an	individual’s	ability	and	willingness	to	apply	their	knowledge,	which	may	be	

superficial	or	deep.	

1.3.	Difficulties	using	associativity	shortcuts	

Associativity	is	often	compared	to	inversion,	the	principle	that	addition	and	subtraction,	and	

multiplication	and	division,	have	an	opposite	relation	(Piaget,	1952;	Bryant	et	al.,	1999;	Baroody,	

2003).	Knowledge	of	inversion	is	often	measured	through	‘a	+	b	–	b’	problems,	where	individuals	

who	understand	the	principle	know	that	the	addition	and	subtraction	cancel	out,	and	that	they	can	

simply	respond	with	‘a’	(Starkey	&	Gelman,	1989;	Bisanz	&	LeFevre,	1990).		
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Compared	to	inversion,	children	dislike	associativity,	and	prefer	to	operate	left-to-right	rather	than	

using	a	shortcut	(Robinson	&	Dubé,	2012;	Robinson	et	al.,	2016).	Indeed,	compared	to	other	

arithmetic	principles,	associativity	shortcuts	are	used	least	(Robinson	&	Dube,	2017;	Robinson	et	al.,	

2018):	only	15	–	25%	of	children	aged	6	–	10	years	use	associativity	shortcuts	(Robinson	&	Dubé,	

2009),	a	rate	that	remains	low	(approximately	30%)	in	early	adolescence	(11	–	13	years)	(Robinson	et	

al.,	2006;	Dubé,	2014).	Even	in	adulthood	(aged	18	years	and	over),	there	is	substantial	room	for	

improvement,	with	use	hovering	at	approximately	50%	(Yarlas	&	Sloutsky,	2000;	Robinson	&	

Ninowski,	2003;	Dubé	&	Robinson,	2010).	Education	practitioners	have	called	for	this	situation	to	

change,	in	order	to	ease	the	transition	to	algebra	(National	Mathematics	Advisory	Panel,	2008).	

However,	to	achieve	this,	we	must	first	understand	why	associativity	shortcuts	are	rarely	used,	a	

topic	that	we	now	address.	

First,	it	should	be	noted	that	there	are	many	factors	that	may	influence	shortcut	use.	These	may	be	

domain-general	factors	that	apply	to	a	range	of	tasks	(Fuchs	et	al.,	2010)	or	domain-specific	factors	

that	apply	only	to	arithmetic.	For	example,	the	domain-general	skills	of	attention,	working	memory	

and	inhibition	are	likely	to	be	required	for	using	shortcuts,	as	they	enable	individuals	to	change	from	

using	familiar	(e.g.	left-to-right)	to	unfamiliar	(e.g.	shortcut)	strategies	(Luchins,	1942;	Lemaire	&	

Lecacheur,	2010;	2011).	Deficiencies	in	any	of	these	domain-general	skills	may	therefore	hinder	

shortcut	use.	From	a	domain-specific	perspective,	some	individuals	may	have	a	poor	understanding	

of	associativity,	or	not	understand	the	principle	at	all.	Even	if	they	do	understand	the	principle,	some	

may	still	choose	to	operate	left-to-right,	because	they	are	proficient	in	calculating	(Newton	et	al.,	

2010),	or	dislike	the	process	of	re-ordering	operations	(Robinson	&	Dubé,	2012).	Such	domain-

specific	factors	may	therefore	also	hinder	shortcut	use.	Herein,	we	focus	on	one	domain-general	and	

one	domain-specific	factor,	spatial	attention	and	poor	understanding	of	associativity	respectively,	

because	they	are	theoretically	relevant	(Siegler	&	Araya,	2005)	and	potentially	malleable	(Rittle-

Johnson	et	al.,	2016).		
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Spatial	attention	(hereafter,	attention)	is	a	domain-general	process,	referring	to	the	prioritised	

processing	of	information	at	a	relevant	location	(Kim	&	Cave,	1995),	for	example,	looking	to	the	left	

or	right	in	response	to	a	sound	being	presented	from	that	direction.	Evidence	for	its	role	in	the	use	

of	associativity	shortcuts	stems	from	both	theory	and	empirical	investigation.	Theoretically,	SCADS*,	

the	Strategy	Change	and	Discovery	Simulation	Model*	(Siegler	&	Araya,	2005)	is	most	relevant.	

SCADS*	is	a	model	that	was	designed	to	predict	when	arithmetic	strategies	are	discovered.	It	was	

primarily	concerned	with	how	domain-general	cognitive	mechanisms	such	as	priming,	forgetting	and	

attention	are	involved	in	strategy	discovery,	and	was	in	part	developed	from	patterns	of	

performance	on	‘a	+	b	–	b’	inversion	problems.	The	model	proposes	that	on	each	trial,	familiar	

strategies	race	against	alternative	strategies,	a	race	that	familiar	strategies	initially	‘win’	because	

they	are	well-rehearsed.	Over	trials,	alternative	strategies	become	familiar	and	gain	strength,	

eventually	leading	to	their	application.	Attention	is	proposed	to	be	the	first	process	required	for	

shortcut	discovery:	an	individual	must	direct	their	attention	to	the	right-hand	side	(‘b	–	b’)	to	

discover	the	shortcut.	Some	have	applied	the	model	to	associativity	(Robinson	&	LeFevre,	2012),	

suggesting	that	the	same	attentional	mechanisms	may	be	required.	

Empirically,	two	studies	provide	preliminary	evidence	for	the	role	of	attention,	one	of	which	was	

correlational	(Watchorn	et	al.,	2014)	and	the	other	experimental	(Dubé	&	Robinson,	2010).	

Watchorn	et	al.,	(2014)	found	that	scores	on	a	‘colour-trails’	task,	a	task	that	partly	measures	

attention	skills,	predicted	inversion	shortcut	use	in	7	–	10	year	olds.	The	second	study	(Dubé	&	

Robinson,	2010)	used	a	priming	paradigm,	a	technique	used	in	psychology	to	activate	the	mental	

representation	of	a	target	before	it	is	presented	(Posner	&	Snyder,	1975).	In	Dubé	&	Robinson's	

study	(2010),	individuals	were	primed	either	to	look	to	the	left	or	to	the	right	of	three-term	

problems	by	presenting	the	left	or	right	subexpression	for	250ms	before	the	whole	problem.	On	

large	inversion	problems	(problems	where	a	left-to-right	procedure	resulted	in	a	large	interim	value),	

reaction	time	was	faster	for	those	in	the	right-prime	condition,	suggesting	that	attention	may	have	

facilitated	shortcut	use.	They	did	not	find	an	effect	on	associativity	problems.	However,	their	
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associativity	problems	were	multiplication-division	problems,	a	form	of	associativity	that	is	known	to	

be	harder	than	addition-subtraction	(Dubé	&	Robinson,	2017).	Knowledge	of	multiplication-division	

associativity	may	simply	be	too	poor	for	attention	manipulations	to	aid	the	identification	and	use	of	

the	shortcut.	However,	because	understanding	of	addition-subtraction	associativity	is	better,	

attentional	manipulations	may	be	sufficient	to	facilitate	shortcut	use.		

From	a	domain-specific	perspective,	inadequate	and	conflicting	knowledge	may	limit	associativity	

shortcut	use.	In	the	worst-case	scenario,	some	individuals	may	not	understand	associativity,	i.e.	they	

may	not	know	that	operations	can	be	performed	in	a	different	order	from	that	in	which	they	are	

presented.	Or,	they	may	understand	the	principle	in	a	simple	context	(e.g.	with	words	or	objects),	

but	not	in	an	abstract	context	with	digits	(Gilmore	&	Bryant,	2006).	Given	that	some	pre-schoolers	

make	correct	judgements	of	associativity	with	concrete	objects	(Klein	&	Bisanz,	2000;	Asghari	&	

Khosroshahi,	2016),	a	complete	absence	of	knowledge	is	unlikely.	It	may	be	more	likely	that	they	do	

not	know	that	the	shortcut	is	valid	and	efficient	on	digit-based	problems.	Alternatively,	some	

individuals	could	have	conflicting	knowledge:	For	example,	the	acronym	BODMAS	(Brackets,	Order,	

Multiplication,	Division,	Addition,	Subtraction)	and	the	equivalents	BIDMAS	and	PEMDAS	are	

typically	introduced	around	the	age	of	11	years	in	the	UK	and	USA	to	help	individuals	remember	

operator	precedence.	However,	the	acronyms	are	often	misinterpreted	(Glidden,	2008;	Zakis	&	

Rouleau,	2017),	with	some	individuals	incorrectly	ascribing	precedence	to	addition	over	subtraction.	

For	‘a	+	b	–	c’	problems,	this	would	hinder	shortcut	use.		

1.4.	Interventions	to	improve	associativity	

With	the	reasons	for	limited	shortcut	use	in	mind,	we	now	address	the	ways	that	it	could	be	

improved.	We	begin	by	discussing	previous	intervention	studies,	followed	by	outlining	the	logic	of	

our	intervention	studies.	We	then	discuss	the	mechanisms	through	which	our	proposed	

interventions	may	encourage	the	use	of	associativity	shortcuts.		
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A	handful	of	interventions	have	attempted	to	improve	the	understanding	of	different	arithmetic	

principles	(e.g.	Rittle-Johnson	&	Star,	2007,	2009),	but	only	two	have	addressed	associativity	

(Robinson	&	Dubé,	2012;	Robinson	&	Dubé,	2013).	These	interventions	focused	on	both	inversion	

and	associativity,	where	children	aged	7	–	10	years	received	explicit	demonstrations	of	the	shortcuts	

and	their	equivalent	left-to-right	strategies.	For	each	principle,	the	children	evaluated	each	strategy	

by	indicating	whether	they	thought	it	was	‘good’	and	then	selected	the	one	they	preferred.	In	both	

studies,	self-reported	use	of	associativity	shortcuts	increased	in	an	immediate	post-test	(by	about	14	

and	22%	for	those	aged	8	and	9	years	respectively).	However,	in	a	test	one	week	later	(Robinson	&	

Dubé,	2012),	shortcut	use	was	no	higher	than	before	the	intervention.	Thus,	even	after	an	explicit	

demonstration,	children	are	still	reluctant	to	use	associativity	shortcuts.	

Separately,	demonstrations	may	carry	a	risk	of	compromising	strategy	flexibility	(Luchins,	1942;	

Silver,	1986;	Star,	2005),	i.e.	the	ability	to	generate	new	strategies	and	to	switch	between	them	on	

different	problems	(Verschaffel	et	al.,	2009).	So,	an	individual	instructed	to	perform	‘38	–	35’	before	

the	addition	on	‘6	+	38	–	35’	may	then	apply	the	same	right-to-left	procedure	on	problems	where	it	

is	less	efficient	(e.g.	‘32	+	38	–	69’),	or	not	valid	(e.g.	‘38	–	5	+	6’).	Interventions	that	teach	arithmetic	

principles	and	the	strategies	they	permit	must	therefore	be	designed	to	encourage	their	use	only	

when	they	are	appropriate	and	efficient,	and	to	switch	to	an	alternative	when	they	are	not.	Methods	

that	do	not	prescribe	strategies	but	instead	increase	awareness	of	those	available	may	be	more	

likely	to	achieve	this	(Alfieri	et	al.,	2011).		

One	potential	solution	arises	when	one	revisits	a	definition	of	conceptual	knowledge	“.	.	.	knowledge	

of	the	core	principles,	and	their	interrelations”	(Schneider	&	Stern,	2010,	p179):	knowledge	of	one	

shortcut	could	therefore	potentially	facilitate	the	use	of	another	shortcut	if	the	principles	from	

which	they	are	derived	are	associated	or	related	in	memory.	To	date,	only	one	study	has	

investigated	this	possibility	(Godau,	2014;	Experiment	2),	where	7	–	8	year	olds	were	either	exposed	

to	inversion	problems	or	‘ten-strategy’	problems.	The	‘ten-strategy’	is	derived	from	commutativity,	
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the	arithmetic	principle	that	permits	operands	to	be	added	in	any	order,	and	the	strategy	itself	

refers	to	problems	such	as	‘4	+	7	+	6’	being	solved	through	an	interim	value	of	10	(e.g.	‘4	+	6	=	10’	

and	then	‘10	+	7	=	17’).	In	a	post-test	the	children	solved	‘addends-compare’	problems,	problems	

that	also	require	knowledge	of	commutativity,	and	the	application	of	that	knowledge	across	

sequential	trials	(e.g.	solving	‘14	+	6	+	8’	quicker	after	solving	‘6	+	8	+	14’).	It	was	found	that	the	ten-

strategy	problems	led	to	better	performance	on	addends-compare	problems,	however,	inversion	

problems	did	not.	The	authors	surmised	that	shortcuts	facilitate	each	other	only	when	they	are	

derived	from	the	same	principle.		

However,	in	the	case	of	associativity,	it	may	be	possible	that	the	shortcuts	derived	from	a	different	

principle	(inversion)	help,	and	there	are	three	reasons	why.	First,	in	Godau's	(2014)	study,	the	low	

level	of	transfer	found	between	inversion	and	commutativity	problems	was	logical,	as	they	are	very	

different	principles.	Commutativity	is	concerned	with	the	order	of	the	same	operation,	while	

inversion	is	concerned	with	the	relation	between	different	operations	(Canobi	et	al.,	2003).	Addition-

subtraction	associativity	however,	is	similar	to	inversion	because	both	refer	to	knowledge	of	

opposing	operations.	This	is	consistent	with	the	finding	that	knowledge	of	commutativity	and	

inversion	are	not	correlated,	while	inversion	and	associativity	are	(Robinson	&	Dube,	2017).	

Inversion	and	associativity	are	more	aligned	and	may	be	associated	in	memory,	making	knowledge	

transfer	between	the	principles	a	possibility.		

Separately,	the	physical	appearance	of	arithmetic	problems,	and	the	way	they	are	perceived	by	

individuals,	have	been	found	to	influence	which	components	of	the	problem	individuals	attend	to	

(e.g.	Landy	&	Goldstone,	2007).	Inversion	and	commutativity	problems	have	lower	perceptual	

similarity	than	inversion	and	associativity	problems	(Robinson	&	Dubé,	2012).	Inversion	(a	+	b	–	b)	

and	associativity	(a	+	b	–	c)	problems	both	contain	two	opposing	relations,	most	often	with	a	

shortcut	on	the	right-hand	side	(‘b	–	b’	or	‘b	–	c’).	The	perceptual	resemblance	could	help	individuals	

notice	the	shortcut	strategy	on	the	associativity	problems.	
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Finally,	and	our	third	reason	for	why	Godau's	(2014)	results	may	not	apply	to	associativity,	relates	to	

the	repertoire	of	strategies	that	individuals	know	to	be	valid	for	solving	a	given	problem.	In	Godau's	

(2014)	study,	the	strategy	required	on	inversion	problems	(to	operate	right-to-left)	was	quite	

different	to	the	strategy	required	on	addends-compare	problems	(to	look	back	at	previous	

problems),	so	it	would	be	unlikely	that	the	former	strategy	would	make	individuals	aware	of	the	

legitimacy	of	the	latter	strategy.	‘a	+	b	–	b’	inversion	problems	and	‘a	+	b	–	c’	associativity	problems,	

however,	can	be	solved	through	the	same	strategy,	of	operating	right-to-left.	Using	a	shortcut	on	‘a	

+	b	–	b’	problems	may	therefore	make	individuals	aware	that	a	right-to-left	strategy	produces	a	

correct	answer	on	‘a	+	b	–	c’	problems.	

Indeed,	it	has	been	suggested	that	when	an	individual	is	presented	with	a	novel	problem,	they	might	

think	of	a	strategy	they	used	on	an	analogous	problem	to	help	them	solve	it.	When	this	strategy	

leads	to	a	correct	result,	it	is	referred	to	as	‘positive	transfer’.	Studies	have	investigated	the	factors	

that	encourage	positive	transfer	between	analogous	problems,	and	one	that	is	particularly	relevant	

to	our	work	is	the	perceptual	features	within	the	problem	(Sloutsky	&	Yarlas,	2000;	Yarlas	&	

Sloutsky,	2000;	Bassok,	1990;	Bassok	&	Novick,	2012).	For	example,	Yarlas	&	Sloutsky	(2000)	

presented	mathematicians	and	novices	with	a	target	problem	such	as	‘6	+	3	+	4	=	3	+	4	+	6’	and	

asked	them	to	judge	which	of	two	subsequent	problems	most	closely	matched	it.	One	of	the	

problems	matched	the	target	based	on	the	arithmetic	principle	of	commutativity	(e.g.	‘7	+	2	+	8	=	8	+	

2	+	7’),	while	the	other	problem	matched	the	target	based	on	perceptual	features	such	as	similar	

numbers	(e.g.	‘6	+	3	+	8	=	3	+	4	+	10’).	One	finding	was	that	novices	more	often	chose	the	problem	

with	similar	perceptual	features,	while	experts	made	judgements	based	on	principles.	In	our	studies,	

participants	were	non-mathematics	students	and	might	therefore	be	deemed	‘relative	novices’.	

When	presented	with	an	associativity	problem,	they	might	therefore	be	susceptible	to	transferring	

solution	procedures	based	on	perceptual	features	in	analogous	problems	(i.e.	‘a	+	b	–	b’	inversion	

problems).	
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1.5.	Possible	mechanisms	for	promoting	associativity	through	inversion	

From	the	aforementioned	literature,	we	propose	that	solving	inversion	problems	may	encourage	the	

use	of	associativity	shortcuts,	and	suggest	three	possible	(not	mutually	exclusive)	mechanisms	

through	which	this	could	operate,	a)	conceptual	knowledge,	b)	spatial	attention,	and	c)	validation	of	

a	strategy.	We	note	that	the	mechanisms	are	likely	to	interact.	For	example,	attention	is	likely	to	be	

required	for	strategy	validation,	and	what	an	individual	attends	to	may	be	modulated	by	their	

conceptual	knowledge	(Gibson,	1969).	For	clarity	and	simplicity	however,	these	mechanisms	are	

now	discussed	separately.	

First,	conceptual	knowledge	of	the	two	principles	may	be	associated	in	memory.	Solving	inversion	

problems	could	therefore	activate	this	association,	facilitating	retrieval	of	the	associativity	principle	

and	subsequent	use	of	the	shortcut.	For	this	mechanism	to	work,	an	individual	must	have	at	least	

some	understanding	of	both	principles,	stored	in	memory.		

Alternatively,	it	could	be	that	the	mechanism	is	purely	attentional.	By	this	we	mean	that	‘a	+	b	–	b’	

problems	could	increase	associativity	shortcut	use	through	a	domain-general	process	that	operates	

without	awareness	and	with	little	conscious	thought.	The	salient	‘b	–	b’	feature	in	inversion	

problems	may	simply	direct	spatial	attention	to	the	right-hand	side,	where	the	shortcut	is	located	on	

associativity	problems.	Specifically,	the	novelty	of	‘a	+	b	–	b’,	and	the	perceptual	salience	of	the	b	–	b	

component	may	encourage	individuals	to	deploy	their	implicit	attention	towards	to	the	right-hand	

side	on	subsequent	problems.	This	mechanism	is	akin	to	directing	attention	in	a	‘bottom-up’	manner	

and	is	domain-general	in	the	sense	that	it	could	be	activated	using	a	wide	variety	of	stimuli,	e.g.	by	

briefly	presenting	an	arrow	or	spot	of	light	toward	the	location	of	the	shortcut.	Individuals	with	

either	a	superficial	or	deep	understanding	could	benefit	via	this	mechanism,	as	attention	merely	

increases	awareness	of	a	strategy	that	they	have	prior	knowledge	of.		

Finally,	it	could	be	that	the	mechanism	is	more	domain-specific	and	that	inversion	implicitly	

communicates	the	legitimacy	of	a	right-to-left	strategy.	While	solving	inversion	problems,	individuals	
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who	would	otherwise	be	unaware	or	uncertain	of	whether	a	right-to-left	procedure	can	be	applied	

become	more	aware,	and	more	certain,	that	it	can.	This	mechanism	is	domain-specific	in	the	sense	

that	activating	it	requires	more	than	a	simple,	general	stimulus	such	as	a	spot	of	light.	Rather,	it	

requires	top-down	manipulation	of	arithmetic	knowledge,	such	as	instructions	that	challenge	the	

social	norms	about	the	ways	in	which	arithmetic	problems	can	be	solved.	Any	perceptual	similarity	

between	the	problems	could	aid	this	mechanism;	according	to	SCADS*	(Siegler	&	Araya,	2005)	

‘dynamic	feature	selection’	is	a	process	by	which	salient	features	in	problems	become	associated	

with	strategy	efficiency	and	allow	that	strategy	to	be	deployed	quickly.	For	inversion	and	

associativity	this	association	is	identical:	The	salient	feature	(‘b	–	b’	or	‘b	–	c’)	is	similar,	and	the	

strategy	(right-to-left)	is	the	same.	Thus,	‘a	+	b	–	b’	problems	may	do	more	than	just	direct	spatial	

attention,	they	may	inform	an	individual	that	a	right-to-left	strategy	can	result	in	a	correct	answer.	

After	solving	‘a	+	b	–	b’	inversion	problems,	an	individual	may	be	more	aware	of	the	validity	of	a	

right-to-left	strategy,	and	deploy	it	within	the	first	few	associativity	problems	presented.	Individuals	

with	poor/conflicting	knowledge	could	benefit	via	this	mechanism,	as	it	validates	a	strategy	that	they	

may	otherwise	not	know.	

1.6.	The	present	research	

We	investigated	whether	the	use	of	associativity	shortcuts	could	be	improved.	More	specifically,	we	

aimed	to	a)	investigate	whether	exposure	to	inversion	shortcuts	could	encourage	subsequent	use	of	

associativity	shortcuts	and	b)	if	inversion	did	increase	the	use	of	associativity	shortcuts,	investigate	

the	possible	mechanisms	through	which	this	occurred.		

2.	Study	1	

In	Study	1,	we	investigated	whether	exposure	to	inversion	problems	would	increase	adults’	self-

reported	use	of	a	shortcut	on	an	associativity	problem.	
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2.1	Method	

All	of	the	studies	were	approved	by	the	University’s	Ethics	Approvals	(Human	Participants)	Sub-

Committee.	Before	the	data	were	collected	the	study	hypotheses,	design,	sample	size,	exclusion	

criteria	and	analysis	plan	were	pre-registered	at	https://aspredicted.org.	The	pre-registration	is	

available	at	https://aspredicted.org/ib8ti.pdf.	

2.1.1	Participants	

109	first-year	Psychology	undergraduates	aged	18	–	30	years	(M	=	19.09,	SD	=	1.54,	88	female,	21	

male)	participated.	This	sample	provides	87.94%	power	to	detect	a	medium-size	effect	in	a	chi-

square	analysis	of	two	conditions.	

2.1.2	Design	

A	between-subjects	design	was	used	whereby	participants	were	allocated	to	one	of	two	conditions:	

inversion	or	two-term	arithmetic	(control	condition).	We	chose	two-term	problems	for	the	control	

condition	because	three-term	problems	would	have	been	substantially	more	difficult	than	inversion	

problems,	despite	being	more	visually	similar.	We	judged	that	two-term	problems	provided	a	good	

comparison,	in	a	first	study,	to	see	whether	there	was	any	evidence	for	any	of	our	proposed	

mechanisms.	

Participants	were	assigned	to	the	conditions	in	a	random	order:	Before	the	study,	a	randomly	

ordered	list	of	the	numbers	1	and	2	(representing	each	of	the	conditions)	was	created.	The	books	

that	contained	the	stimuli	for	the	conditions	were	then	arranged	in	this	order	and	distributed	to	

participants	after	they	were	sat	at	their	desks.	

2.1.3	Materials	and	procedure	

The	stimuli	used	in	Study	1	can	be	found	here	https://figshare.com/s/230ee9491e0b67d9d3f3.	Each	

participant	had	one	A4	book	(https://figshare.com/s/230ee9491e0b67d9d3f3)	that	contained	the	

stimuli.	Within	each	book,	the	stimuli	used	during	different	stages	of	the	study	(the	intervention	
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problems,	the	self-report	questions)	were	separated	into	different	sections.	Participants	did	not	turn	

over	the	page	from	one	section	to	the	next	without	instruction.		

Participants	either	solved	20	inversion	problems	(inversion	condition)	or	20	two-term	arithmetic	

problems	(control	condition).	Problems	were	presented	on	A4	paper,	and	participants	were	asked	to	

mentally	solve	each	problem	and	then	write	down	their	answer,	without	conferring	with	others.	

There	was	no	set	time-limit,	and	the	task	ended	when	all	participants	had	put	down	their	pens,	

which	was	after	approximately	4	minutes	and	30	seconds.	

After	solving	the	inversion	or	two-term	problems,	a	test	question	(33	+	9	–	5)	was	projected	onto	a	

whiteboard	at	the	front	of	the	classroom	for	10	seconds	using	PowerPoint.	For	all	of	the	studies	

reported	here,	the	time	for	the	test	question	was	chosen	based	on	what	we	judged	to	be	sufficient	

for	people	to	solve	it	through	either	a	left-to-right	or	a	shortcut	procedure,	without	it	being	too	long	

such	that	participants	could	perform	and	then	compare	multiple	strategies.	‘33	+	9	–	5’	was	chosen	

as	a	test	question	because	we	judged	it	to	be	not	too	conducive	to	a	shortcut	as	to	produce	a	ceiling	

effect,	and	not	too	non-conducive	to	a	shortcut	as	to	produce	a	floor	effect.	Participants	wrote	down	

their	answer	to	the	problem	and	were	asked	to	write	‘no	answer’	if	they	did	not	solve	it	in	time.	On	a	

separate	page,	they	answered	the	self-report	questions,	and	were	instructed	to	report	the	strategy	

that	they	were	trying	to	use,	even	if	they	did	not	compute	an	answer.	

Intervention	problems		

For	the	inversion	condition,	20	inversion	problems	were	created,	half	in	the	format	‘a	+	b	–	b’	(e.g.	

18	+	7	–	7),	and	half	in	the	format	‘a	+	b	–	a’	(e.g.	7	+	18	–	7).	Problems	were	presented	in	an	

intermixed	order,	and	no	more	than	two	problems	of	the	same	format	were	presented	

consecutively.	Half	of	the	problems	were	large	(all	double-digit	operands),	and	half	were	small	(at	

least	one	single-digit	operand).	None	of	the	operands	contained	the	unit	0	or	contained	the	unit	1,	

and	answers	to	the	problems	were	equally	distributed	among	the	10s,	20s,	30s,	40s	and	50s,	none	of	

which	equalled	0,	a	negative	number	or	a	decade	boundary.		
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For	the	control	condition,	20	two-term	arithmetic	problems	were	created	from	the	‘a’	and	‘b’	terms	

of	the	inversion	problems.	Half	were	addition	and	half	were	subtraction	problems	to	mirror	the	

inversion	problems,	which	contained	both	operations.	They	were	presented	in	an	intermixed	order,	

where	no	more	than	two	problems	of	the	same	type	(addition,	subtraction)	were	presented	

consecutively.		

Self-report	questions	

Participants	answered	two	self-report	questions	in	response	to	the	test	problem,	1.	“How	did	you	

solve	the	problem?”	(open-ended)	and	2.	“When	you	solved	the	problem,	what	was	the	first	

calculation	that	you	did?”	(closed).	The	closed	question	had	three	response	options,	1.	“I	did	the	

addition	33	+	9”,	2.	“I	did	the	subtraction	9	–	5”,	3.	“I	did	the	subtraction	33	–	5”.		

2.2	Results	and	discussion	

First,	we	present	our	pre-registered	analyses,	including	pre-processing,	scoring	method,	descriptive	

statistics,	and	inferential	statistics.	Second,	we	present	our	exploratory	analyses,	which	were	not	

pre-registered.	Finally,	we	interpret	the	results	through	our	three	proposed	mechanisms	(section	

1.5).	We	hypothesised	that	exposure	to	inversion	problems	would	increase	the	frequency	with	which	

associativity	shortcuts	were	identified,	and	the	data	from	Study	1	can	be	found	here	

https://figshare.com/s/4191d061536fab1b936c.	

2.2.1	Pre-registered	analyses	

Three	participants	did	not	attempt	at	least	50%	of	the	inversion	or	two-term	arithmetic	problems	

(and	thus	had	not	completed	the	intervention),	and	one	did	not	answer	either	of	the	self-report	

questions.	In	line	with	our	pre-registration,	these	four	participants	were	therefore	excluded	from	all	

analyses.	In	addition,	one	person	did	not	answer	the	open-ended	question,	and	one	person	gave	an	

ambiguous	response	(“I	did	no	calculation”).	These	two	participants	were	excluded	from	the	analysis	

of	responses	to	this	question	only.	One	person	did	not	answer	the	categorical	question	and	was	

excluded	from	the	analysis	of	responses	to	this	question.	



18	
 

For	the	open-ended	question,	participants	were	classed	as	a	user	of	the	shortcut	if	their	response	

contained	any	indication	that	they	had	performed	the	subtraction	before	the	addition	(e.g.	“I	did	9	–	

5	=	4,	then	4	+	33	=	37”	or	“I	did	the	subtraction	first	and	then	added	the	remainder”).	If	participants	

reported	using	both	procedures	(left-to-right	and	right-to-left),	they	were	classed	as	a	user.	Ten	of	

the	responses	were	scored	by	another	researcher,	and	classifications	were	100%	consistent.	For	the	

closed	question,	all	participants	either	picked	“33	+	9”	or	“9	–	5”,	no	participant	chose	“33	–	5”.	

Those	who	picked	“9	–	5”	were	classed	as	a	user	of	the	shortcut.	

Table	1	summarises	the	results	and	Figure	1	displays	the	result	for	the	open-ended	question.	Self-

reported	use	of	the	associativity	shortcut	was	low	overall,	at	28%	(n	=	29/103)	on	the	open-ended	

question	and	22%	(n	=	23/104)	on	the	closed-question.	There	were	6	people	who	were	categorised	

as	users	of	the	shortcut	on	the	open-ended	question	but	not	on	the	closed-question.	These	were	

people	who	reported	using	both	a	left-to-right	and	a	right-to-left	procedure	on	the	open-ended	

question	and	reported	using	a	left-to-right	procedure	on	the	closed	question.	On	the	closed	question	

they	may	have	therefore	chosen	the	response	that	matched	the	first	(left-to-right)	strategy	they	

used.	
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Table	1.	Number	of	associativity	shortcut	users	and	non-users	in	each	condition	for	the	a)	open-ended	

and	b)	closed	question.	Parentheses	contain	the	percent	of	users	or	non-users	in	each	condition.	

a)	

	 	
Frequency	

Measure	 Condition	 User	 Non-User	 Total	

Open-
ended	

Inversion	 19	(43%)	 25	(57%)	 44	(100%)	
Two-term	arithmetic	 10	(17%)	 49	(83%)	 59	(100%)	

Total	 29	(28%)	 74	(72%)	 103	(100%)	
	

b)	

	 	
Frequency	

Measure	 Condition	 User	 Non-User	 Total	

Closed	
Inversion	 15	(33%)	 31	(67%)	 46	(100%)	

Two-term	arithmetic	 8	(14%)	 50	(86%)	 58	(100%)	
	 Total	 23	(22%)	 81	(78%)	 104	(100%)	

	

Two	chi-square	tests	were	performed,	one	for	each	outcome	measure.	For	the	open-ended	

question,	the	frequencies	of	users	to	non-users	was	significantly	different	between	the	two	

conditions,	X2(1,	N	=	103)	=	8.57,	p	=	0.003,	phi	=	0.29,	with	more	shortcut	users	in	the	inversion	

condition.	This	difference	was	also	significant	for	the	responses	to	the	closed	question,	X2(1,	N	=	104)	

=	5.27,	p	=	0.022,	phi	=	0.23,	with	more	shortcut	users	in	the	inversion	condition.	

2.2.2	Exploratory	analyses		

On	the	test	question,	97	participants	answered	correctly,	3	answered	incorrectly,	and	5	did	not	solve	

it.	

We	performed	exploratory	Bayesian	analyses	to	quantify	the	evidence	for	our	hypothesis.	Bayesian	

2*2	chi-square	tests	were	conducted	in	JASP,	for	which	we	used	the	default,	uninformative	prior	

concentration	of	1	and	manually	checked	for	robustness	(Jamil	et	al.,	2016).	We	used	the	default	

distributions	because	we	knew	of	no	literature	that	could	help	us	establish	a	more	informative	prior.	

For	the	open-ended	question,	the	Bayes	Factor	(BF10)	was	14.73,	which	according	to	Jeffreys	(1961)	
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provides	strong	evidence	in	favour	of	the	alternative	hypothesis	that	there	was	a	difference	between	

the	conditions.	For	the	closed	question,	the	BF10	was	2.65,	which	provides	anecdotal	evidence	in	

support	of	the	alternative	hypothesis.	Both	Bayes	factors	were	deemed	to	be	robust,	as	they	

approached	1	(no	evidence	in	favour	of	either	hypothesis)	only	when	the	prior	changed	markedly	(to	

a	concentration	of	approximately	500).		

We	also	analysed	the	accuracy	scores	on	the	intervention	problems	(inversion,	two-term	arithmetic).	

In	the	inversion	condition,	the	mean	number	of	inversion	problems	solved	correctly	was	19.93	(SD	=	

0.25).	In	the	two-term	condition,	the	mean	number	of	problems	correctly	solved	was	19.31	(SD	=	

0.97).	The	difference	between	the	conditions	was	significant,	t(103)	=	4.29,	p	<	0.001,	d	=	0.84.	

Interim	conclusion	

Solving	a	mixture	of	‘a	+	b	–	b’	inversion	problems	and	‘a	+	b	–	a’	inversion	problems	increased	self-

reported	use	of	the	associativity	shortcut	on	the	problem	‘33	+	9	–	5’,	supporting	our	hypothesis.	We	

propose	three	possible	explanations	of	this	finding.	First,	it	may	be	that	solving	inversion	problems	

activated	knowledge	not	only	of	inversion,	but	also	of	principles	that	are	associated	with	it	in	

memory,	such	as	associativity.	Alternatively,	it	could	be	that	the	perceptual	feature	‘b	–	b’,	present	

in	half	of	the	inversion	problems,	directed	participants’	spatial	attention	to	the	two	right-most	digits	

in	the	problem,	encouraging	identification	of	the	shortcut.	Finally,	a	third	explanation	is	that	‘a	+	b	–	

b’	inversion	problems	communicated	the	legitimacy	of	a	right-to-left	strategy.	As	individuals	solve	‘a	

+	b	–	b’	problems	using	the	shortcut,	they	may	become	aware	that	a	right-to-left	approach	is	a	valid	

way	to	solve	some	three-term	problems.		

In	Study	1,	we	used	the	self-reported	solution	strategy	on	one	associativity	problem	to	infer	whether	

solving	inversion	problems	encouraged	the	subsequent	use	of	associativity	shortcuts.	Although	the	

intervention	did	increase	self-reported	shortcut	use,	we	do	not	know	whether	it	would	have	led	to	

improvements	in	problem-solving	performance.	In	other	words,	we	do	not	know	whether,	and	if	so	

by	how	much,	solving	inversion	problems	improves	the	accuracy	and	speed	with	which	associativity	



21	
 

problems	are	solved.	In	Study	2,	we	aimed	to	replicate	the	finding	of	Study	1	and	extend	it	using	an	

additional,	implicit	measure	of	shortcut	use.		

3.	Study	2	

In	Study	1,	we	relied	on	one	self-report	response	to	infer	strategy	use,	which	has	limitations.	First,	

the	strategy	used	on	any	single	problem	may	depend	more	on	the	characteristics	of	the	problem	

(e.g.	the	number	and	size	of	the	digits)	or	the	temporary	state	of	the	individual	(e.g.	their	attention	

and	concentration),	potentially	making	it	less	reliable	and	valid	than	measuring	strategy	use	across	

multiple	problems.	Second,	some	individuals	reported	using	multiple	strategies	on	the	open-ended	

question,	leading	us	to	impose	the	criterion	of	‘any	indication	of	shortcut	use’	for	categorising	them	

as	a	user.	We	did	this	to	avoid	missing	instances	of	shortcut	use,	but	it	could	be	argued	that	if	the	

shortcut	was	not	the	first	strategy	they	wrote	down,	it	was	not	their	predominant	strategy	and	

therefore	they	might	not	use	it	on	subsequent	problems.	Finally,	self-report	measures	rely	on	an	

awareness	of	the	strategy	used,	and	verbal	skills	to	express	it	(Crooks	&	Alibali,	2014).	This	could	be	

difficult	for	some,	or	lead	to	ambiguous	answers,	e.g.	“I	used	my	head”.		

To	address	this,	in	Study	2,	we	sought	to	replicate	the	effect	of	the	previous	intervention	and	to	

extend	it	by	measuring	the	use	of	associativity	shortcuts	through	both	an	explicit	self-report	

measure	and	through	an	additional,	implicit	problem-solving	measure.	The	problem-solving	measure	

required	individuals	to	solve	as	many	conducive	problems	as	possible,	and	separately,	as	many	non-

conducive	problems	as	possible,	in	a	restricted	timeframe.	This	measure	is	akin	to	those	used	in	

laboratory	experiments,	where	strategy	use	is	inferred	from	accuracy	and	response	times.	For	

example,	in	a	laboratory	experiment,	if	individuals	solve	‘a	+	b	–	b’	inversion	problems	quicker	than	

problems	of	similar	difficulty	without	shortcuts,	use	of	that	shortcut	may	be	inferred.	This	logic	can	

be	extended	to	develop	a	measure	that	is	suitable	for	use	in	classroom	settings	(Godau,	2014):	if	an	

individual	correctly	solves	more	problems	that	contain	shortcuts,	than	problems	that	lack	shortcuts,	

in	a	restricted	timeframe,	shortcut	use	may	be	inferred.		
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3.1	Method	

Before	the	data	were	collected	the	study	hypotheses,	design,	sample	size,	exclusion	criteria	and	

analysis	plan	were	pre-registered	at	https://aspredicted.org.	The	pre-registration	is	available	at	

https://aspredicted.org/cv6dz.pdf.	

3.1.1	Participants	

52	undergraduates	on	an	introduction	to	management-related	statistics	course,	aged	18	–	22	years	

(M	=	19.22,	SD	=	0.92,	24	female,	38	male)	participated.	This	sample	provides	58.06%	power	to	

detect	a	medium-size	effect	in	a	chi-square	analysis	of	two	conditions.	We	knew	the	sample	size	of	

the	classroom	would	be	smaller	in	advance	and	anticipated	power	to	be	lower	than	Study	1.	We	

therefore	made	some	changes	to	the	inversion	stimuli	(section	3.1.3)	to	try	to	increase	the	strength	

of	the	manipulation	and	hence	increase	power.		

3.1.2	Design	

As	per	Study	1,	a	between-subjects	design	was	used	whereby	participants	were	allocated	to	one	of	

two	conditions:	inversion	or	two-term	arithmetic	(control	condition).	Participants	were	assigned	to	

the	conditions	in	a	random	order:	Before	the	study,	a	randomly	ordered	list	of	the	numbers	1	and	2	

(representing	each	of	the	conditions)	was	created.	The	books	that	contained	the	stimuli	for	the	

conditions	were	then	arranged	in	this	order	and	distributed	to	participants	after	they	were	sat	at	

their	desks.	

3.1.3	Materials	and	procedure	

The	stimuli	used	in	Study	2	can	be	found	here	https://figshare.com/s/3b59db4ee96f411cf9e7.	As	per	

Study	1,	each	participant	had	one	A4	book	(https://figshare.com/s/c2b2f174271c7c18e1e6)	that	

contained	the	stimuli.	Within	each	book,	the	stimuli	used	during	different	phases	of	the	study	(the	

intervention	problems,	the	self-report	question,	the	problem-solving	questions)	were	separated	into	

different	sections.	Participants	did	not	turn	over	the	page	from	one	section	to	the	next	until	

instructed.	
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Study	2	consisted	of	3	phases,	depicted	in	Figure	2.	In	the	first	phase,	participants	solved	20	

intervention	problems,	which	were	either	inversion	or	two-term	arithmetic	problems.	Problems	

were	presented	on	A4	paper,	and	participants	were	asked	to	mentally	solve	each	problem	and	then	

write	down	their	answer,	without	conferring	with	others.	There	was	no	set	time-limit,	and	the	task	

ended	when	all	participants	had	put	down	their	pens,	which	was	after	approximately	4	minutes	and	

30	seconds.	

In	the	second	phase,	participants	completed	the	self-report	measure:	a	test	question	(33	+	9	–	5)	was	

projected	onto	a	whiteboard	at	the	front	of	the	classroom	using	PowerPoint	for	10	seconds	and	

participants	were	asked	to	mentally	solve	the	problem,	write	down	their	answer	and	then	complete	

the	open-ended	self-report	question.	

In	the	final	phase,	participants	completed	the	problem-solving	measure.	In	this	task,	they	solved	as	

many	conducive	associativity	problems	as	possible	in	35	seconds	and	then	solved	as	many	non-

conducive	problems	as	possible	in	the	same	timeframe	(35	seconds	was	chosen	to	avoid	ceiling	

effects).	The	order	of	the	problems	within	each	set	was	randomised	for	each	person	but	all	

participants	completed	the	conducive	problems	before	the	non-conducive	problems.	Non-conducive	

problems	were	always	solved	last,	to	avoid	attenuating	any	effect	of	the	intervention:	If	non-

conducive	problems	had	been	solved	first,	they	could	have	reinforced	a	left-to-right	strategy	and	

potentially	negated	any	benefit	from	the	inversion	problems.	If	the	order	had	been	counterbalanced,	

this	effect	would	create	two	groups	whose	performance	on	conducive	problems	would	not	be	

comparable:	one	group	would	have	solved	inversion	problems,	and	the	other,	inversion	problems	

plus	non-conducive	problems,	before	the	conducive	problems	were	presented.	

Intervention	problems	

20	‘a	+	b	–	b’	inversion	problems	were	used.	These	were	the	same	problems	used	in	Study	1,	

however	the	‘a	+	b	–	a’	problems	were	reordered	to	the	format	‘a	+	b	–	b’.	We	thought	‘a	+	b	–	b’	

problems	might	be	a	more	powerful	manipulation	because	they	could	capitalise	on	all	three	of	the	
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potential	conceptual,	attentional	and	validation	mechanisms	(section	1.5).	For	the	control	condition,	

the	two-term	arithmetic	problems	described	in	Study	1	were	used.		

Self-report	question	

Participants	answered	one	self-report	question	in	response	to	the	test	problem,	“How	did	you	solve	

the	problem?”	

Problem-solving	measure	

20	‘a	+	b	–	c’	problems	were	created	that	were	deemed	to	be	conducive	to	an	associativity	shortcut.	

The	characteristics	of	the	conducive	stimuli	were	a)	the	right-hand	side,	‘b	–	c’,	resulted	in	a	small	

positive	integer	(ranging	between	1	and	5),	b)	‘b	–	c’	did	not	involve	a	decade	boundary	cross	or	a	

borrow	operation	from	the	tens	to	the	units,	c)	the	left-hand	side,	‘a	+	b’,	resulted	in	a	multiple-digit	

number	(21	to	113)	whose	calculation	involved	a	decade	boundary	cross	and	a	carry	operation	from	

the	units	to	the	tens.	

For	each	conducive	problem,	a	non-conducive	problem	was	created.	Conducive	and	non-conducive	

problems	were	created	to	be	of	similar	difficulty	assuming	that	they	were	solved	using	a	left-to-right	

procedure.	For	example,	the	counterpart	for	the	conducive	problem	‘23	+	29	–	27’	was	‘16	+	36	–	

27’.	Assuming	a	left-to-right	procedure	on	both	problems,	the	product	of	the	addition	and	the	

subtraction	were	identical,	which	was	intended	to	make	them	similar	in	difficulty.	The	characteristics	

of	the	non-conducive	stimuli	were	a)	the	result	of	the	interim	addition	(a	+	b)	and	the	value	of	the	

subtrahend	(c)	matched	conducive	stimuli,	b)	‘a	+	b’	involved	a	decade	boundary	cross	and	a	carry	

operation,	c)	‘b	–	c’	involved	a	decade	boundary	cross,	d)	the	result	of	‘b	–	c’	ranged	between	+8	and	

+38	and	between	-4	and	-42	and	e)	the	result	of	‘a	–	c’	ranged	between	+11	and	+41	and	between	-2	

and	-39.	

For	each	problem	type	(conducive,	non-conducive),	10	were	large	(consisting	of	three	double-digits)	

and	10	were	small	(containing	one	single-digit	and	two	double-digits).	None	of	the	operands	
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contained	a	unit	with	a	0	or	unit	with	a	1,	and	none	were	identical	(i.e.	ties).	Answers	to	the	

problems	were	equally	distributed	among	the	10s,	20s,	30s,	40s	and	50s,	none	of	which	equalled	0,	a	

negative	number	or	a	decade	boundary;	interim	solutions	(‘a	+	b’	or	‘b	–	c’)	also	did	not	equal	0	or	a	

decade	boundary.	

3.2	Results	and	discussion	

First,	we	present	the	outcome	of	our	pre-registered	analyses	to	the	self-report	question	and	the	

problem-solving	measure.	We	then	report	our	exploratory	analyses,	which	were	not	pre-registered,	

and	then	briefly	discuss	our	findings.	We	hypothesised	that	the	inversion	condition	would	increase	

the	frequency	of	self-reported	use	of	an	associativity	shortcut,	increase	the	number	of	associativity	

problems	correctly	solved,	and	increase	the	number	of	associativity	problems	attempted.	The	data	

from	Study	2	can	be	found	here	https://figshare.com/s/c3c7ad3aece34ff71aa1.	

3.2.1	Pre-registered	analyses	

Self-report	question	

For	the	self-report	question,	participants	were	classed	as	a	user	or	non-user	of	a	shortcut	using	the	

same	criteria	as	Study	1.	One	person	did	not	answer	the	question	and	so	was	excluded	from	the	

analysis	of	this	question	only.	Ten	of	the	responses	were	dual-scored	by	another	researcher	and	

were	100%	consistent.	Table	2	and	Figure	1	display	the	summary	statistics.	

Table	2.	Number	of	users	and	non-users	in	each	condition	of	Study	2.	Parentheses	contain	the	percent	

of	shortcut	users	and	non-users	per	condition.	

	
Frequency	

Condition	 User	 Non-User	 Total	
Inversion	 16	(62%)	 10	(38%)	 26	(100%)	

Two-term	arithmetic	 8	(32%)	 17	(68%)	 25	(100%)	
Total	 24	(47%)	 27	(53%)	 51	(100%)	
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A	chi-square	test	found	that	the	frequencies	of	users	to	non-users	was	significantly	different	

between	the	two	conditions,	X2(1,	N	=	51)	=	4.46,	p	=	0.035,	phi	=	0.30,	with	more	shortcut	users	in	

the	inversion	condition.	

Problem-solving	measure	

For	the	problem-solving	measure,	each	participant’s	performance	was	indexed	by	the	number	of	

problems	solved	correctly,	and	the	total	number	attempted,	for	each	problem	type	(conducive,	non-

conducive).	Table	3	displays	the	summary	statistics.		

Table	3.	The	mean	(SD)	number	of	problems	correctly	solved	and	the	total	attempted	in	the	inversion	

and	two-term	arithmetic	(control)	conditions	

	Condition	
Conducive	
correct	

Conducive	
attempted	

Non-conducive	
correct	

Non-conducive	
attempted	

Inversion	 9.30	(6.20)	 9.85	(5.83)	 2.70	(2.00)	 4.33	(2.53)	
Two-term	arithmetic	 6.92	(6.19)	 7.52	(5.85)	 2.24	(1.56)	 3.04	(1.49)	

Overall	 8.15	(6.25)	 8.73	(5.90)	 2.48	(1.80)	 3.71	(2.17)	
	

Between-subjects	t-tests	were	conducted	to	see	whether	there	was	a	difference	between	the	

inversion	and	two-term	arithmetic	conditions	in	the	number	of	problems	correctly	solved.	There	was	

no	significant	difference	between	the	conditions	for	either	the	conducive,	t(50)	=	1.38,	p	=	0.173,	d	=	

0.38,	or	the	non-conducive	problems,	t(50)	=	0.93,	p	=	0.358,	d	=	0.26.	The	same	analysis	was	

performed	on	the	number	of	problems	attempted.	For	the	conducive	problems,	there	was	no	

significant	difference	between	the	conditions,	t(50)	=	1.44,	p	=	0.157,	d	=	0.40.	For	the	non-

conducive	problems,	Levene’s	test	was	significant	(p	<	0.05)	indicating	that	there	was	unequal	
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variance	between	the	conditions.	A	Mann-Whitney	test	was	therefore	conducted,	which	did	not	find	

a	significant	difference	between	the	conditions,	W	=	443.00,	p	=	0.051,	r	=	0.311.	

To	assess	the	validity	of	the	problem-solving	measure,	between-subjects	t-tests	were	conducted	to	

compare	the	problem-solving	performance	of	those	who	were	categorised	as	users	on	the	self-

report	measure	to	those	who	were	categorised	as	non-users.	Users	solved	significantly	more	

conducive	problems	correctly	(M	=	11.79,	SD	=	5.89)	than	non-users	(M	=	4.96,	SD	=	4.80),	t(49)	=	

4.56,	p	<0.001,	d	=	1.28,	and	attempted	more	conducive	problems	(M	=	12.25,	SD	=	5.46)	than	non-

users	(M	=	5.67,	SD	=	4.55),	t(49)	=	4.70,	p	<0.001,	d	=	1.32.	There	was	no	significant	difference	

between	the	users	and	non-users	in	the	number	of	non-conducive	problems	solved	correctly	(M	=	

2.71,	SD	=	1.94	and	M	=	2.15,	SD	=	1.54,	respectively),	t(49)	=	1.15,	p	=	0.257,	d	=	0.32,	or	in	the	

number	of	non-conducive	problems	attempted	(M	=	3.96,	SD	=	2.33	and	M	=	3.37,	SD	=	1.96,	

respectively),	t(49)	=	0.98,	p	=	0.333,	d	=	0.272.	

Finally,	for	each	participant,	a	difference	score	on	the	problem-solving	measure	was	calculated.	The	

number	of	non-conducive	problems	correctly	solved,	and	the	number	of	non-conducive	problems	

attempted	were	subtracted	from	the	number	of	conducive	problems	correctly	solved	and	

attempted,	respectively.	From	these	scores,	whether	an	individual	has	used	the	shortcut	may	be	

inferred:	If	an	individual	solved	substantially	more	conducive	than	non-conducive	problems,	they	are	

likely	to	have	used	a	more	efficient	strategy	(i.e.	the	shortcut)	on	at	least	some	of	the	conducive	

problems.	Between-subjects	t-tests	found	no	significant	difference	in	the	difference	scores	for	

participants	in	the	inversion	and	control	condition	in	terms	of	either	the	number	of	problems	

                                            
1	An	exploratory	2*2	mixed	ANOVA	with	condition	(inversion,	two-term	arithmetic)	and	problem	
type	(conducive,	non-conducive)	as	the	between-	and	within-subject	factors	respectively	did	not	find	
a	significant	interaction	for	the	number	of	problems	correctly	solved	(p	=	0.251),	and	the	number	
attempted	(p	=	0.499).	
2 An	exploratory	2*2	mixed	ANOVA	with	classification	type	(user,	non-user)	and	problem	type	
(conducive,	non-conducive)	as	the	between-	and	within-subject	factors	respectively	found	a	
significant	interaction	between	the	factors	for	both	the	number	of	problems	correctly	solved	(p	<	
0.001),	and	the	number	attempted	(p	<0.001). 
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correctly	solved,	t(50)	=	1.16,	p	=	0.251,	d	=	0.32,	or	the	number	attempted,	t(50)	=	0.68,	p	=	0.499,	d	

=	0.19.		

3.2.2	Exploratory	analyses	

On	the	test	question,	50	participants	answered	correctly	and	2	answered	incorrectly.	

We	also	analysed	the	accuracy	scores	on	the	intervention	problems	(inversion,	two-term	arithmetic)	

using	the	data	from	all	participants.	In	the	inversion	condition,	the	mean	number	of	problems	solved	

correctly	was	19.74	(SD	=	0.81).	In	the	two-term	condition,	the	mean	number	of	problems	correctly	

solved	was	19.36	(SD	=	0.95).	The	difference	between	the	conditions	was	not	significant,	t(50)	=	1.55,	

p	=	0.126,	d	=	0.43.	

Bayesian	analyses	were	performed	to	quantify	the	evidence	for	our	hypotheses.	A	Bayesian	2*2	chi-

square	test	on	the	frequencies	of	users	to	non-users	in	the	two	conditions	returned	a	BF10	of	2.96,	

which	provided	anecdotal	evidence	in	support	of	the	alternative	hypothesis	and	was	robust	to	

changes	in	the	prior	up	to	a	concentration	of	30.	Bayesian	between-subjects	t-tests	on	the	number	

of	conducive	problems	solved	correctly,	conducive	problems	attempted,	non-conducive	problems	

solved	correctly,	and	non-conducive	problems	attempted	were	conducted.	These	returned	BF10s	of	

0.61,	0.65,	0.40	and	2.05	respectively.	There	was	therefore	no	evidence	for	our	hypothesis	on	the	

problem-solving	measure.		

Interim	conclusion	

Study	2	replicated	the	findings	from	Study	1,	with	a	group	of	participants	who	were	studying	a	

different	course.	As	hypothesised,	solving	inversion	problems	increased	the	frequency	of	self-

reported	use	of	an	associativity	shortcut.	Those	who	self-reported	using	the	shortcut	later	solved	

more	conducive	problems	than	those	who	did	not.	However,	we	did	not	find	that	solving	inversion	

problems	in	the	intervention	stage	significantly	increased	the	number	of	conducive	or	non-

conducive	problems	correctly	solved	or	attempted.		
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From	Studies	1	and	2	we	could	not	determine	which,	if	any,	of	our	three	explanations	were	likely	to	

account	for	the	effect	found	on	the	self-report	measure.	Furthermore,	because	the	control	group	in	

those	studies	always	solved	two-term	arithmetic	problems,	it	could	just	be	that	solving	three-term	

problems	in	general	(regardless	of	the	operations	or	shortcuts	they	contain),	improves	performance	

on	‘a	+	b	–	c’	problems	compared	to	two-term	problems.	Study	3	addressed	these	issues.	Three	

conditions	were	used	where	individuals	either	solved	‘a	+	b	–	b’	inversion	problems,	‘a	+	b	–	a’	

inversion	problems,	or	two-term	arithmetic	problems.	By	including	an	‘a	+	b	–	a’	group	as	well	as	a	

two-term	group,	Study	3	helped	to	answer	whether	three-term	problems	in	general	increased	the	

use	of	the	associativity	shortcut,	and	which	of	our	three	explanations	was	more	likely:	Did	inversion	

problems	encourage	associativity	use	because	of	a	conceptual,	attentional	or	validation	mechanism?	

Both	‘a	+	b	–	b’	and	‘a	+	b	–	a’	problems	can	be	solved	by	using	an	inversion	shortcut.	However,	if	the	

mechanism	was	attentional	or	due	to	validation	of	a	right-to-left	strategy,	only	‘a	+	b	–	b’	inversion	

problems	would	encourage	shortcut	use.		

Study	3	also	aimed	to	improve	the	problem-solving	measure.	Study	2	demonstrated	that	the	method	

was	valid	because	self-reported	shortcut	users	solved	significantly	more	conducive	problems	than	

non-users,	but	not	significantly	more	non-conducive	problems.	However,	those	in	the	inversion	

condition	did	not	solve	more	conducive	problems	than	those	in	the	two-term	condition.	This	was	

unexpected:	according	to	the	self-report	measure,	shortcut	use	was	higher	in	the	inversion	

condition,	which	should	translate	into	more	conducive	problems	being	solved	in	this	condition	than	

the	control	condition.	Our	interpretation	is	that	the	measure	may	have	had	limited	sensitivity,	given	

that	the	overall	number	of	problems	solved	correctly	was	low,	especially	for	the	non-conducive	

problems.	It	may	be	that	35	seconds	for	problem-solving	was	insufficient	to	reveal	a	difference	

between	the	conditions.	In	Study	3	we	therefore	extended	the	time	allowed	to	65	seconds.	

It	should	be	noted	that	Studies	1	and	2	used	the	same	test	problem,	‘33	+	9	–	5’.	Here,	the	difference	

in	accuracy	and	efficiency	between	a	shortcut	and	a	left-to-right	approach	may	be	smaller	than	for	a	
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problem	with	a	larger	subtraction,	e.g.	‘6	+	38	–	35’.	It	could	be	that	inversion	problems	increase	the	

use	of	associativity	shortcuts	only	on	problems	such	as	‘33	+	9	–	5’	because	baseline	associativity	use	

(i.e.	in	the	control	conditions)	is	low,	which	offers	more	room	for	improvement.	A	different	test	

problem	was	therefore	used	in	Study	3	to	assess	the	reliability	of	the	effect	found	in	the	previous	

studies.	

4.	Study	3	

Study	3	had	three	aims.	First,	we	aimed	to	investigate	the	mechanism	through	which	‘a	+	b	–	b’	

inversion	problems	increased	associativity	shortcut	use	(conceptual,	attention,	validation).	Did	‘a	+	b	

–	b’	inversion	problems	increase	associativity	shortcut	use	because	they	a)	had	three	operands,	b)	

shared	conceptual	similarity,	c)	directed	attention	or	d)	communicated	the	validity	of	a	right-to-left	

strategy?	This	was	done	by	creating	three	conditions,	‘a	+	b	–	b’	inversion,	‘a	+	b	–	a’	inversion3	and	

two-term	arithmetic	(control)	and	comparing	participants’	self-reports	and	problem-solving	

performance.	Second,	we	aimed	to	improve	the	sensitivity	of	the	problem-solving	measure	by	

extending	the	time	allowed	on	the	task.	Finally,	we	aimed	to	investigate	whether	the	effect	found	in	

Studies	1	and	2,	where	inversion	problems	increased	associativity	shortcut	use,	generalised	to	a	

different	associativity	problem,	which	we	also	judged	to	be	not	too	conducive,	and	not	too	non-

conducive	to	a	shortcut.		

4.1	Method	

Before	the	data	were	collected	the	study	hypotheses,	design,	sample	size,	exclusion	criteria	and	

analysis	plan	were	pre-registered	at	https://aspredicted.org.	The	pre-registration	is	available	at	

https://aspredicted.org/dv7n4.pdf.	

                                            
3	We	note	that	‘a	+	b	–	a’	are	not	widely	used	as	inversion	problems,	but	they	are	problems	on	which	
the	inversion	shortcut	can	be	used.	



31	
 

4.1.1	Participants	

257	students	aged	18	–	55	years	(M	=	19.67,	SD	=	3.07,	186	female,	70	male,	1	not	provided)	

participated.	This	sample	provides	99.39%	power	to	detect	a	medium-size	effect	in	a	chi-square	

analysis	of	three	conditions.	188	were	first-year	Psychology	students	studying	a	qualitative	research	

methods	module	and	69	were	business	and	economics	students	studying	an	‘International	corporate	

governance	and	firms’	(ICGF)	module.	

4.1.2	Design	

A	between-subjects	design	was	used	whereby	participants	were	allocated	to	one	of	three	

conditions:	‘a	+	b	–	b’	inversion,	‘a	+	b	–	a’	inversion,	or	two-term	arithmetic	(control	condition).	

Students	were	allocated	to	the	conditions	through	blocked	random	assignment:	ten	30-item	lists	of	

the	numbers	1,	2	and	3	were	created,	with	each	list	containing	10	instances	of	each	number.	The	

lists	were	then	shuffled	to	create	a	random	order	(Suresh,	2011).	This	ensured	that	the	number	of	

participants	was	approximately	equal	in	each	condition.	Stimuli	books	were	then	arranged	in	the	

order	dictated	by	the	lists	before	the	study	and	distributed	to	the	students	after	they	were	sat	at	

their	desks.	

4.1.3	Materials	and	procedure	

The	stimuli	used	in	Study	3	can	be	found	here	https://figshare.com/s/6adad496590c6d713fec.	As	in	

Studies	1	and	2,	each	participant	had	one	A4	book	(https://figshare.com/s/7edc99daf2a7588d7d43)	

that	contained	the	stimuli.	Within	each	book,	the	stimuli	used	during	different	phases	of	the	study	

(the	intervention	problems,	the	self-report	question,	the	problem-solving	questions)	were	separated	

into	different	sections.	Participants	did	not	turn	over	the	page	from	one	section	to	the	next	until	

instructed.	

Study	3	consisted	of	the	same	3	phases	as	Study	2,	depicted	in	Figure	2.	In	the	first	phase,	

participants	solved	20	intervention	problems,	which	were	either	‘a	+	b	–	b’	inversion	problems,	‘a	+	b	

–	a’	inversion	problems	or	two-term	arithmetic	problems	(control	condition).	Problems	were	
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presented	on	A4	paper,	and	participants	were	asked	to	mentally	solve	each	problem	and	then	write	

down	their	answer,	without	conferring	with	others.	There	was	no	set	time-limit,	and	the	task	ended	

when	all	participants	had	put	down	their	pens,	which	was	after	approximately	4	minutes	and	30	

seconds.	

In	the	second	phase,	participants	completed	the	self-report	measure:	a	test	question	(6	+	38	–	35)	

was	projected	onto	a	whiteboard	at	the	front	of	the	classroom	using	PowerPoint	for	15	seconds	and	

participants	were	asked	to	mentally	solve	the	problem,	write	down	their	answer	and	then	complete	

the	open-ended	self-report	question.	The	time	limit	was	increased	in	Study	3	because	the	test	

question	was	changed	to	‘6	+	38	–	35’,	which	we	judged	to	be	more	difficult	than	the	test	question	

used	in	Studies	1	and	2	(‘33	+	9	–	5’).	The	extra	5	seconds	allowed	those	using	a	left-to-right	strategy	

to	reach	an	answer.	

In	the	final	phase,	participants	completed	the	problem-solving	measure.	In	this	task,	they	solved	as	

many	conducive	associativity	problems	as	possible	in	65	seconds	and	then	solved	as	many	non-

conducive	problems	as	possible	in	the	same	timeframe.	65	seconds	was	chosen	because	we	judged	

it	to	be	sufficient	for	detecting	a	difference	between	the	conditions,	without	it	being	too	long.	Too	

long	a	timeframe	might	increase	shortcut	use	in	both	conditions,	through	opportunity,	and	

potentially	mask	any	difference	between	them	(Siegler	&	Stern,	1998).	The	order	of	the	problems	

within	each	set	was	randomised	for	each	person	but	all	participants	completed	the	conducive	

problems	before	the	non-conducive	problems.	

Intervention	problems		

The	inversion	problems	were	similar	to	those	in	Studies	1	and	2.	For	the	‘a	+	b	–	b’	inversion	

condition,	20	stimuli	were	created,	10	of	which	had	a	single-digit	for	‘a’	and	a	double-digit	for	‘b’.	5	

of	the	stimuli	had	a	double-digit	for	‘a’	and	a	single-digit	for	‘b’,	while	the	remainder	had	double-

digits	for	both	‘a’	and	‘b’.	Half	of	the	inversion	problems	had	answers	<10,	and	the	other	half	had	

answers	that	were	equally	distributed	among	the	10s,	20s,	30s,	40s	and	50s.	None	of	the	answers	



33	
 

equalled	0,	a	negative	number	or	a	decade	boundary.	Stimuli	for	the	‘a	+	b	–	a’	inversion	condition	

were	made	by	swapping	the	order	of	the	first	and	second	operands	in	the	‘a	+	b	–	b’	problems.	‘a	+	b	

–	b’	inversion	and	‘a	+	b	–	a’	inversion	therefore	only	differed	in	the	location	of	the	shortcut;	in	the	

former	the	shortcut	was	on	the	right-hand	side,	while	in	the	latter	it	was	split	across	the	first	and	

third	digits.	The	problems	were	presented	in	a	different,	randomised	order	for	each	participant.	

For	the	control	condition,	20	two-term	arithmetic	problems	were	created	from	the	inversion	

problems.	10	were	addition	problems	and	10	were	subtraction	problems,	15	of	which	were	small	

(containing	one	single-digit	operand)	and	5	of	which	were	large	(both	operands	were	double-digits).	

Answers	to	the	problems	were	all	multiple-digits	in	the	range	11	–	102.	

Self-report	question	

Participants	answered	one	self-report	question	in	response	to	the	test	problem,	“How	did	you	solve	

the	problem?”	

Problem	solving	measure	

50	‘a	+	b	–	c’	problems	that	were	conducive	to	an	associativity	shortcut	were	created.	The	stimuli	

were	similar,	but	different	to	Study	2	as	more	needed	to	be	created	due	to	the	longer	time	limit	on	

the	problem-solving	task	(65	rather	than	35	seconds),	and	the	definition	of	the	stimuli	in	the	

previous	study	(i.e.	with	one	single	digit)	imposed	a	constraint	on	the	maximum	number	of	

conducive	and	non-conducive	stimuli	pairs	that	could	be	created.	To	create	more	stimuli	for	Study	3,	

the	main	change	was	that	‘a’,	‘b’	and	‘c’	were	all	double	digits.	The	conducive	stimuli	were	defined	

by	four	features,	a)	‘b’	and	‘c’	were	distributed	among	the	10s,	20s,	30s,	40s,	50s	and	60s,	b)	‘b	–	c’	

resulted	in	a	small	positive	integer	(2	to	5)	which	was	never	larger	than	either	of	the	addends	(‘a’	

and	‘b’),	c)	‘b	–	c’	did	not	involve	a	decade	boundary	cross	or	a	borrow	operation	and	d)	‘a	+	b’,	

resulted	in	a	double-digit	number	whose	calculation	involved	a	decade	boundary	cross	and	a	carry	

operation.	
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For	each	conducive	stimulus,	a	non-conducive	stimulus	was	created	that	was	of	similar	difficulty	

assuming	a	left-to-right	procedure.	Non-conducive	stimuli	were	defined	by	five	features,	a)	the	

result	of	the	interim	addition	(a	+	b)	and	the	value	of	the	subtrahend	(c)	matched	conducive	stimuli,	

b)	‘a	+	b’	involved	a	decade	boundary	cross	and	a	carry	operation,	c)	‘b	–	c’	involved	a	decade	

boundary	cross,	d)	the	result	of	‘b	–	c’	ranged	between	-7	to	-52	and	between	+13	to	+51	and	e)	the	

result	of	‘a	–	c’	ranged	between	-6	to	-49	and	between	+11	to	+33.		

4.2	Results	and	discussion	

First,	we	present	the	outcome	of	our	pre-registered	analyses	to	the	self-report	question	and	the	

problem-solving	data.	We	then	report	our	pre-registered	analysis	of	the	data	with	‘inconsistent	

respondents’	removed	(participants	who	self-reported	not	identifying	the	shortcut	but	who	solved	

many	shortcut	problems	on	the	problem-solving	task),	and	analyses	for	differences	between	the	

classes.	Finally,	we	present	our	exploratory	analysis	and	briefly	discuss	our	findings.	We	

hypothesised	that	there	would	be	a	significant	difference	among	the	three	conditions	in	the	

frequency	of	self-reported	use	of	an	associativity	shortcut,	the	number	of	problems	solved	in	the	

time	limit,	and	the	number	of	problems	attempted	in	the	time	limit.	We	also	hypothesised	that	

there	would	be	a	significant	difference	between	the	‘a	+	b	–	b’	inversion	and	‘a	+	b	–	a’	inversion	

conditions	in	the	frequency	of	self-reported	use	of	an	associativity	shortcut,	the	number	of	

associativity	problems	solved	in	the	time	limit,	and	the	number	of	associativity	problems	attempted	

in	the	time	limit.	The	data	from	Study	3	can	be	found	here	

https://figshare.com/s/d5c3fbb77763a9c53778.		

4.2.1	Pre-registered	analyses	

In	line	with	our	pre-registration,	4	participants	were	excluded	from	all	analyses	because	they	had	

participated	in	other	studies	relating	to	the	current	research.	1	participant	was	excluded	because	

they	did	not	attempt	at	least	50%	of	the	intervention	problems.	14	people	were	excluded	from	the	

self-report	measure	only,	because	their	responses	could	not	be	categorised:	5	participants	did	not	
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answer	the	question,	3	people	said	they	‘could	not	remember’,	and	6	people	gave	ambiguous	

responses	(‘I	used	my	head’,	‘I	nodded	off’,	‘I	split	it	into	two	equations’,	‘I	did	quick	maths’,	‘I	used	

my	fingers’,	‘I	did	not	see	the	question’).	

Another	researcher	scored	the	self-report	responses,	the	number	of	problems	correctly	answered,	

and	the	number	of	problems	attempted	by	27	participants	(9	per	condition).	The	classification	of	

participants	as	users	or	non-users	of	the	shortcut	were	100%	consistent	between	the	scorers.	The	

number	of	problems	answered	correctly,	and	number	of	problems	attempted	were	95%	consistent	

between	the	scorers	(103/108	answers	marked).	Two	inconsistencies	were	due	to	the	scorers	

miscalculating	the	sum	of	their	marks,	which	was	resolved	by	recalculating	the	correct	total.	Two	

inconsistencies	were	due	to	the	scorers	accidentally	marking	an	answer	correct/incorrect	when	it	

was	not,	which	was	resolved	by	remarking.	One	inconsistency	was	for	one	participant	who	had	

unclear	handwriting,	and	it	was	decided	to	score	this	as	correct.	

Self-report	question	

For	the	self-report	data,	responses	were	categorised	in	the	same	way	as	in	Studies	1	and	2.	Table	4	

and	Figure	1	display	the	result	of	the	self-report	data.		

Table	4.	Frequencies	of	users	and	non-users	in	each	of	the	conditions	in	Study	3	

	
Frequency	

Condition	 User	 Non-User	 Total	
‘a	+	b	–	b’	inversion	 50	(63%)	 30	(37%)	 80	(100%)	
‘a	+	b	–	a’	inversion	 34	(43%)	 45	(57%)	 79	(100%)	
Two-term	arithmetic		 29	(37%)	 50	(63%)	 79	(100%)	

Total	 113	(47%)	 125	(53%)	 238	
	 	 	 	

A	3*2	chi-square	test	found	that	the	frequencies	of	users	to	non-users	was	significantly	different	

among	the	conditions,	X2	(2,	N	=	238)	=	11.54,	p	<	0.003,	Cramer’s	V	=	0.22.	Subsequent	2*2	chi-

square	tests	found	that	there	were	significantly	more	shortcut	users	in	the	‘a	+	b	–	b’	inversion	than	

the	‘a	+	b	–	a’	inversion	condition,	X2	(1,	N	=	159)	=	6.04,	p	=	0.014,	phi=	0.20,	more	users	in	the	‘a	+	b	
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–	b’	inversion	condition	than	the	two-term	condition,	X2	(1,	N	=	159)	=	10.58,	p	=	0.001,	phi=	0.26,	

but	there	was	no	significant	difference	between	the	‘a	+	b	–	a’	inversion	condition	and	two-term	

condition,	X2	(1,	N	=	158)	=	0.66,	p	=	0.417,	phi=	0.07.		

Bayesian	analyses	indicated	that	for	the	3*2	chi-square,	the	alternative	hypothesis	of	a	difference	

between	the	conditions	in	the	proportion	of	users	and	non-users	was	supported	by	a	BF10	of	10.41	

(strong	evidence),	which	was	robust	to	an	adjusted	prior	concentration	up	to	1000.	For	the	2*2	chi-

square	tests,	the	alternative	hypotheses	of	a	difference	between	the	‘a	+	b	–	b’	inversion	and	‘a	+	b	–	

a’	inversion	conditions,	and	between	the	‘a	+	b	–	b’	inversion	and	two-term	conditions	were	

supported	by	BF10s	of	3.94	(moderate	evidence)	and	38.50	(very	strong	evidence)	respectively.	For	

the	‘a	+	b	–	a’	inversion	and	two-term	condition,	the	BF10	was	0.27,	which	provided	moderate	

evidence	in	favour	of	the	null	hypothesis.	

Problem-solving	measure	

For	the	problem-solving	data,	performance	was	scored	as	per	Study	2,	by	the	number	of	problems	

correctly	solved,	and	the	total	number	attempted.	Table	5	displays	the	result.		

Table	5.	The	mean	(SD)	number	of	problems	correctly	solved	and	the	total	attempted	in	the	‘a	+	b	–	b’	

inversion,	‘a	+	b	–	a’	inversion	and	the	two-term	arithmetic	conditions.		

	
Problems	solved		

	Condition	
Conducive	
correct	

Conducive	
attempted	

Non-conducive	
correct	

Non-conducive	
attempted	

‘a	+	b	–	b’	inversion	 14.28	(9.55)	 14.87	(9.33)	 3.02	(2.30)	 4.02	(2.34)	

‘a	+	b	–	a’	inversion	 12.24	(8.72)	 12.94	(8.62)	 3.38	(3.14)	 4.32	(3.15)	

Two-term	arithmetic	 9.46	(8.69)	 10.16	(8.57)	 3.05	(2.40)	 3.69	(2.32)	

Overall	 12.01	(9.18)	 12.67	(9.02)	 3.15	(2.63)	 4.01	(2.63)	

	

For	the	number	of	problems	correctly	solved,	a	3*2	two-way	mixed	ANOVA	was	performed	with	

condition	(‘a	+	b	–	b’	inversion,	‘a	+	b	–	a’	inversion,	two-term	arithmetic)	and	problem	type	
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(conducive,	non-conducive)	as	between-	and	within-subject	factors	respectively.	There	was	a	main	

effect	of	condition,	F	(2,	249)	=	4.82,	p	=	0.009,	ηp
2	=	0.04,	a	main	effect	of	problem	type,	F	(1,	249)	=	

271.11,	p	<	0.001,	ηp
2	=	0.52,	and	a	significant	interaction	between	problem	type	and	condition,	F	(2,	

249)	=	6.80,	p	=	0.001,	ηp
2	=	0.05.	Subsequent	pairwise	comparisons	(Bonferroni	corrected)	for	the	

main	effect	of	condition	indicated	that	the	difference	between	‘a	+	b	–	b’	inversion	and	the	two-term	

arithmetic	condition	was	significant	(mean	difference	=	2.40,	t	=	3.06	p	=	0.007).	The	difference	

between	‘a	+	b	–	b’	inversion	and	the	‘a	+	b	–	a’	inversion	condition	was	not	significant	(mean	

difference	=	0.84,	t	=	1.08,	p	=	0.844),	and	neither	was	the	difference	between	‘a	+	b	–	a’	inversion	

and	the	two-term	arithmetic	condition	(mean	difference	=	1.56,	t	=	1.98,	p	=	0.146).		

To	interpret	the	interaction	between	condition	and	problem	type	for	the	number	of	problems	

correctly	solved,	simple	main	effects	analyses	were	conducted.	One	way	between-subjects	ANOVAs	

indicated	that	there	was	a	significant	difference	among	the	conditions	on	conducive	problems,	F	(2,	

249)	=	6.08,	p	=	0.003,	ηp
2	=	0.05,	but	not	on	non-conducive	problems,	F	(2,	249)	=	0.48,	p	=	0.619,	

ηp
2	=	0.00.	Subsequent	pairwise	comparisons	(Bonferroni	corrected)	on	the	conducive	problems	

indicated	that	the	difference	between	‘a	+	b	–	b’	inversion	and	the	two-term	arithmetic	condition	

was	significant	(mean	difference	=	4.83,	t	=	3.48,	p	=0.002).	The	difference	between	‘a	+	b	–	b’	

inversion	and	the	‘a	+	b	–	a’	inversion	condition	was	not	significant	(mean	difference	=	2.04,	t	=	1.48,	

p	=	0.423),	and	neither	was	the	difference	between	‘a	+	b	–	a’	inversion	and	the	two-term	arithmetic	

condition	(mean	difference	=	2.78,	t	=	2.00	p	=	0.141).	

Another	3*2	two-way	mixed	ANOVA	was	performed	to	analyse	the	number	of	problems	attempted,	

with	condition	(‘a	+	b	–	b’	inversion,	‘a	+	b	–	a’	inversion,	two-term	arithmetic)	and	problem	type	

(conducive,	non-conducive)	as	between	and	within-	subject	factors	respectively.	The	same	pattern	of	

results	emerged.	There	was	a	main	effect	of	condition,	F	(2,	249)	=	5.41,	p	=	0.005,	ηp
2	=	0.04,	a	main	

effect	of	problem	type,	F	(1,249)	=	278.88,	p	<	0.001,	ηp
2	=	0.53,	and	a	significant	interaction	

between	problem	type	and	condition,	F	(2,	249)	=	5.96,	p	=	0.003,	ηp
2	=	0.05.	Subsequent	pairwise	
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comparisons	(Bonferroni	corrected)	for	the	main	effect	of	condition	indicated	that	the	difference	

between	‘a	+	b	–	b’	inversion	and	two-term	arithmetic	was	significant	(mean	difference	=	2.53,	t	=	

3.23,	p	=	0.004).	The	difference	between	‘a	+	b	–	b’	inversion	and	‘a	+	b	–	a’	inversion	was	not	

significant	(mean	difference	=	0.82,	t	=	1.05,	p	=	0.889),	and	neither	was	the	difference	between	‘a	+	

b	–	a’	inversion	and	two-term	arithmetic	condition	(mean	difference	=	1.71,	t	=	2.18,	p	=	0.091).	

To	interpret	the	interaction,	simple	main	effects	analyses	were	conducted.	There	was	a	significant	

difference	among	the	conditions	on	conducive	problems,	F	(2,	249)	=	6.02,	p	=	0.03,	ηp
2=	0.05,	but	

not	on	non-conducive	problems,	F	(2,	249)	=	1.22,	p	=	0.298,	ηp
2	=	0.01.	Pairwise	comparisons	

(Bonferroni	corrected)	on	the	conducive	problems	indicated	that	there	was	a	significant	difference	

between	the	‘a	+	b	–	b’	inversion	and	the	two-term	arithmetic	condition	(mean	difference	=	4.71,	t	=	

3.45,	p	=	0.002).	There	was	no	significant	difference	between	the	‘a	+	b	–	b’	inversion	and	‘a	+	b	–	a’	

inversion	condition	(mean	difference	=	1.93,	t	=	1.42,	p	=	0.472),	and	no	significant	difference	

between	the	‘a	+	b	–	a’	inversion	and	two-term	arithmetic	condition	(mean	difference	=	2.78,	t	=	

2.03,	p	=	0.129).	

Bayesian	analyses	were	also	conducted	on	the	problem-solving	data.	For	the	number	of	problems	

solved	correctly,	a	Bayesian	3*2	ANOVA	found	that	a	model	which	included	the	interaction	term	had	

a	BF10	that	was	22.18	times	larger	than	a	model	which	just	included	the	main	effects	(strong	

evidence	in	favour	of	the	alternative	hypothesis).	For	the	number	of	problems	attempted,	a	Bayesian	

3*2	ANOVA	had	a	BF10	that	was	9.33	times	larger	(moderate	evidence)	for	a	model	which	included	

the	interaction	term,	compared	to	a	model	which	included	just	the	two	main	effects.	Both	were	

robust	to	changes	within	the	prior	r-scale	fixed	effects	range	0.1	–	1.0	(the	default	used	was	0.5).	

Inconsistent	respondents	

The	problem-solving	data	were	re-analysed	with	‘inconsistent	respondents’	removed	(N	=	28).	

Inconsistent	respondents	were	defined	in	our	pre-registration	as	those	who	self-reported	not	

identifying	the	shortcut,	but	who	then	solved	at	least	12	conducive	problems,	and	at	least	double	
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the	number	of	conducive	than	non-conducive	problems	in	the	problem-solving	phase.	Their	removal	

did	not	change	the	result	of	the	3*2	ANOVAs.	For	the	number	of	problems	correctly	solved,	there	

was	a	main	effect	of	problem	type,	F	(1,221)	=	196.60,	p	<	0.001,	ηp
2	=	0.47,	a	main	effect	of	

condition,	F	(2,	221)	=	5.59,	p	=	0.004,	ηp
2	=	0.05,	and	a	significant	interaction	between	problem	type	

and	condition,	F	(2,	221)	=	6.26,	p	=	0.002,	ηp
2	=	0.05.	For	the	number	of	problems	attempted,	there	

was	a	main	effect	of	problem	type,	F	(1,221)	=	202.10,	p	<	0.001,	ηp
2	=	0.48,	a	main	effect	of	

condition,	F	(2,	221)	=	6.27,	p	=	0.002,	ηp
2	=	0.05,	and	a	significant	interaction	between	problem	type	

and	condition,	F	(2,	221)	=	5.68,	p	=	0.004,	ηp
2	=	0.05.	

Class	type	

The	data	were	also	re-analysed	for	differences	between	the	classes	(ICGF,	Psychology).	For	the	self-

report	data,	a	log-linear	analysis	was	conducted	using	the	three	categorical	variables	of	condition	(‘a	

+	b	–	b’	inversion,	‘a	+	b	–	a’	inversion,	two-term),	classification	type	(user,	non-user)	and	class	type	

(IGCF,	Psychology).	There	was	a	significant	three-way	interaction	among	the	variables,	G2	(7)	=	14.82,	

p	=	0.04.	Subsequent	2*2	Chi-square	tests	identified	that	the	proportion	of	users	to	non-users	was	

significantly	different	across	the	three	conditions	for	the	Psychology	class,	X2	(2,	N	=	177)	=	12.42,	p	<	

0.002,	phi=	0.27,	but	not	for	the	ICGF	class,	X2	(2,	N	=	61)	=	1.56,	p	=	0.458,	phi=	0.16.	For	the	

problem-solving	data,	two	3*2*2	mixed	ANOVAs	were	conducted,	with	condition	(‘a	+	b	–	b’	

inversion,	‘a	+	b	–	a’	inversion,	two-term	arithmetic),	class	type	(ICGF,	Psychology)	and	problem	type	

(conducive,	non-conducive)	as	the	two	between	and	one	within-subjects	factors	respectively.	There	

was	no	significant	3-way	interaction	between	condition,	problem	type,	and	class	type,	F	(2,246)	=	

0.88,	p	=	0.416,	ηp
2	=	0.01,	for	the	number	of	problems	correctly	solved.	There	was	also	no	significant	

3-way	interaction	for	the	total	number	of	problems	attempted,	F	(2,246)	=	0.77,	p	=	0.463,	ηp
2	=	0.01.	

4.2.2	Exploratory	analysis	

We	also	explored	the	accuracy	scores	on	a)	the	test	question,	and	b)	the	intervention	problems.	For	

the	test	question,	212	participants	answered	correctly,	20	answered	incorrectly,	and	20	did	not	
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answer.	Of	those	who	answered	incorrectly,	17	were	users	of	the	shortcut	and	3	were	non-users.	3	

were	in	the	‘a	+	b	–	b’	condition,	4	were	in	the	‘a	+	b	–	a’	condition	and	13	were	in	the	two-term	

arithmetic	condition.		

For	the	intervention	phase,	the	mean	number	of	problems	answered	correctly	in	the	‘a	+	b	–	b’	

inversion	condition	was	19.72	(SD	=	2.18),	in	the	‘a	+	b	–	a’	inversion	condition	was	19.75	(SD	=	0.74)	

and	in	the	two-term	arithmetic	condition	was	18.80	(SD	=	2.04).	A	one-way	between-subjects	

ANOVA	found	a	significant	difference	among	the	conditions,	F	(2,	249)	=	7.81,	p	=	0.001,	ηp
2	=	0.06.	

Subsequent	pairwise	comparisons	(Bonferroni	corrected)	indicated	that	the	difference	between	the	

‘a	+	b	–	b’	inversion	condition	and	the	two-term	arithmetic	condition	was	significantly	different	

(mean	difference	=	0.92,	t	=	3.37,	p	=	0.003),	the	difference	between	the	‘a	+	b	–	a’	and	two-term	

condition	was	significant	(mean	difference	=	0.96,	t	=	3.48,	p	=	0.002),	but	the	difference	between	

the	‘a	+	b	–	b’	inversion	condition	and	‘a	+	b	–	a’	inversion	condition	was	not	significantly	different	

(mean	difference	=	0.32,	t	=	0.12,	p	=	1.000).	Our	findings	are	therefore	unlikely	to	be	explained	by	

differences	in	the	use	of	inversion	between	the	two	inversion	conditions.		

Interim	conclusion	

Study	3	replicated	the	findings	from	Studies	1	and	2,	where	inversion	problems	increased	the	self-

reported	use	of	associativity	shortcuts.	As	hypothesised,	solving	inversion	problems	increased	the	

frequency	of	self-reported	use	of	an	associativity	shortcut.	A	difference	among	the	conditions	was	

also	found	on	the	problem-solving	measure,	where	solving	inversion	problems	increased	the	number	

of	conducive	associativity	problems	solved	in	a	restricted	timeframe,	but	not	the	number	of	non-

conducive	problems.	Study	3	extended	the	findings	of	Studies	1	and	2,	by	showing	that	‘a	+	b	–	b’	

inversion	problems,	but	not	‘a	+	b	–	a’	inversion	problems,	increased	self-reported	shortcut	use.	

However,	contrary	to	our	hypotheses,	there	was	no	significant	difference	between	‘a	+	b	–	b’	

inversion	and	‘a	+	b	–	a’	inversion	on	the	problem-solving	measure.	

5.	General	discussion	
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Across	three	pre-registered	intervention	studies	it	was	found	that	solving	20	inversion	problems	

increased	the	subsequent	use	of	associativity	shortcuts.	In	Study	1,	self-reported	use	of	associativity	

was	higher	for	those	who	had	solved	inversion	problems	than	those	who	had	solved	two-term	

arithmetic	problems.	This	finding	was	replicated	in	Study	2,	which	also	introduced	a	problem-solving	

task	to	measure	implicit	shortcut	use.	In	Study	3,	those	who	had	solved	‘a	+	b	–	b’	inversion	

problems,	but	not	those	who	had	solved	‘a	+	b	–	a’	inversion	problems,	had	higher	use	of	

associativity	on	both	the	self-report	and	problem-solving	measure	than	those	who	had	solved	two-

term	arithmetic	problems.	To	our	knowledge,	these	are	the	first	studies	to	show	improvements	in	

adults’	use	of	the	associativity	shortcut	following	a	classroom	intervention.	

Previous	studies	have	found	that	compared	to	other	principles	such	as	inversion	and	commutativity	

(Kilpatrick	et	al.,	2002),	associativity	is	used	less	often	to	solve	arithmetic	problems	(Robinson	&	

Dube,	2017).	Our	data	are	broadly	consistent	with	the	existing	literature,	which	found	that	adults	

self-reported	using	addition-subtraction	associativity	shortcuts	on	40	–	66%	of	trials	(Robinson	&	

Ninowski,	2003;	Robinson	&	Beatch,	2016).	In	our	studies,	shortcut	use	was	between	17	–	63%	on	

the	first	problem	that	was	presented,	depending	on	the	condition	participants	were	in	(e.g.	

inversion,	two-term	arithmetic)	and	the	problem	that	was	presented	(‘33	+	9	–	5’	or	‘6	+	38	–	35’).		

Our	results	help	researchers	to	understand	why	associativity	shortcut	use	is	low,	even	in	well-

educated	adult	samples	(section	5.1).	Developing	this	understanding	is	important	if	we	are	to	build	

effective	methods	for	teaching	the	principle	and	the	strategies	it	permits.	Given	that	associativity	

enables	the	development	of	more	advanced	mathematical	competencies	and	helps	to	bridge	the	

gap	from	arithmetic	to	algebra	(Booth	&	Koedinger,	2008),	knowledge	of	the	principle,	and	the	

ability	to	apply	that	knowledge	to	arithmetic	problems,	is	an	important	goal	for	education.	Education	

practitioners	have	therefore	called	for	greater	research	effort	into	improving	the	use	of	arithmetic	

principles	(National	Mathematics	Advisory	Panel,	2008).	Our	studies	contributed	to	that	goal	by	

investigating	whether	the	use	of	associativity	shortcuts	could	be	improved,	and	if	so,	through	what	
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mechanisms	this	improvement	may	occur.	We	now	discuss	the	theoretical	and	practical	significance	

of	the	results	in	further	detail.	

5.1	Theoretical	contribution	

Our	findings	make	two	important	theoretical	contributions.	First,	they	indicate	a	possible	mechanism	

through	which	inversion	and	associativity	are	linked,	which	in	turn	might	help	to	reveal	why	

associativity	shortcut	use	is	low.	Second,	they	help	to	extend	existing	theories	and	models	of	

strategy	discovery	and	use.	We	discuss	these	contributions	in	turn,	followed	by	the	practical	

implications	of	our	work.	We	note	that	these	mechanisms	may	not	be	entirely	independent	(Gibson,	

1969)	and	that	our	intervention	might	operate	through	an	interaction	among	them.	For	clarity,	we	

discuss	each	mechanism	separately	below.	

5.1.1	A	conceptual	mechanism?	

Recent	cross-sectional	studies	have	found	that	knowledge	of	some	arithmetic	principles	are	not	

related,	such	as	commutativity	and	inversion	(Robinson	&	Dube,	2017).	This	is	backed	by	

experimental	work	which	found	that	inversion	shortcuts	did	not	encourage	the	use	of	commutativity	

shortcuts	(Godau,	2014),	leading	to	a	suggestion	that	shortcut-to-shortcut	transfer	does	not	occur	if	

those	shortcuts	are	derived	from	different	principles.	Here,	we	show	that	this	is	not	always	the	case.	

Solving	‘a	+	b	–	b’	inversion	problems	consistently	increased	the	use	of	associativity	shortcuts,	in	

keeping	with	the	positive	correlation	between	inversion	and	associativity	shortcut	use	(Robinson	&	

Dube,	2017).	Shortcut-to-shortcut	transfer	can	therefore	occur	between	different	principles	if	they	

are	closely	related.	

However,	our	studies	suggest	that	the	mechanism	through	which	this	occurred	is	unlikely	to	be	

purely	conceptual	(section	1.5),	that	is,	through	activation	of	an	association	between	knowledge	of	

inversion	and	associativity,	or	simply	because	both	inversion	and	associativity	stimuli	have	three	

terms.	In	Study	3,	‘a	+	b	–	a’	inversion	problems	did	not	increase	associativity	shortcut	use,	only	‘a	+	

b	–	b’	inversion	problems	did.	If	the	mechanism	had	been	purely	conceptual	or	because	the	stimuli	
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both	had	three	terms,	‘a	+	b	–	a’	inversion	problems	would	have	activated	associativity	knowledge	

and	increased	shortcut	use:	The	fact	that	we	found	no	evidence	of	this	suggests	that	it	is	not	simply	

the	understanding	of	the	underlying	principles	that	aids	performance.	Rather,	there	is	something	

specific	to	the	‘a	+	b	–	b’	inversion	problems	that	enables	them	to	drive	the	effect.	

5.1.2	An	attentional	mechanism?	

Another	explanation	of	the	results	could	be	that	‘a	+	b	–	b’	problems	(but	not	‘a	+	b	–	a’	problems)	

directed	spatial	attention	to	the	location	of	the	shortcut	in	associativity	problems.	The	perceptual	

salience	of	‘b	–	b’	in	inversion	problems	may	direct	attention	in	a	domain-general,	bottom-up	

manner,	akin	to	the	way	any	cue,	such	as	an	arrow	or	spot	of	light,	can	direct	attention	to	different	

locations	(Posner	et	al.,	1980;	Tipples,	2002).	Two	previous	studies	have	investigated	the	role	of	

attention	in	shortcut	use,	and	provide	some	indication	that	this	may	be	the	case.	Watchorn	et	al.	

(2014)	reported	a	positive	correlation	between	performance	on	a	‘colour-trails’	task	and	inversion	

shortcut	use.	However,	as	the	colour-trails	task	measures	a	mixture	of	domain-general	skills,	

including	inhibition	and	switching,	it	may	have	been	these,	not	attention,	that	were	important	for	

using	the	shortcut.	Second,	Dubé	&	Robinson	(2010)	found	that	those	who	were	primed	toward	the	

right-hand	side	solved	inversion	problems	quicker	than	those	who	were	primed	to	the	left.	However,	

this	effect	was	only	found	on	inversion	problems,	not	associativity	problems.	Attention	may	

therefore	be	sufficient	for	encouraging	inversion,	but	not	associativity.		

5.1.3	A	strategy	validation	mechanism?	

Another	potential	explanation	for	our	findings	is	that	‘a	+	b	–	b’	inversion	problems	implicitly	

communicated	the	legitimacy	of	a	right-to-left	strategy.	In	Study	3,	‘a	+	b	–	b’	problems	led	to	a	

consistent	advantage	over	two-term	arithmetic	problems	on	both	associativity	outcome	measures,	

and	an	advantage	over	‘a	+	b	–	a’	problems	on	one	of	the	outcome	measures.	We	argue	that	for	‘a	+	

b	–	b’	inversion	problems,	most	adults	know	that	a	right-to-left	strategy	is	valid	(Robinson	&	
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Ninowski,	2003).	Solving	them	may	therefore	reinforce	the	validity	of	a	right-to-left	strategy	in	

general,	which	leads	to	an	increase	in	right-to-left	strategy	use	on	associativity	problems.		

This	mechanism	is	likely	to	be	aided	by	the	similar	features	between	the	problem	types.	On	inversion	

problems,	an	association	is	built	between	the	right-to-left	strategy	and	the	perceptual	feature	‘b	–	

b’.	On	associativity	problems,	the	association	is	similar,	between	a	right-to-left	strategy	and	the	

perceptual	feature	‘b	–	c’.	Prior	activation	of	the	association	by	the	inversion	problems	could	

therefore	allow	the	strategy	to	be	deployed	quickly	on	associativity	problems	(i.e.	the	first	

associativity	problem	presented).		

Our	data	do	not	allow	us	to	differentiate	between	the	attention	and	validation	mechanisms,	and	it	is	

likely	that	both	play	a	role	in	the	use	of	the	associativity	shortcut.	These	mechanisms	may	explain	

the	relatively	low	use	of	associativity	shortcuts	found	in	previous	studies	(e.g.	Robinson	&	Ninowski,	

2003;	Robinson	&	Beatch,	2016;	Robinson	&	Dube,	2017).	Individuals	may	have	paid	insufficient	

attention	to	the	location	of	the	shortcut,	or	may	have	been	unaware	that	a	right-to-left	approach	

was	a	valid	strategy	for	solving	the	problems.	We	suggest	that	future	research	should	investigate	the	

relative	explanatory	power	of	both	potential	mechanisms	(section	5.3).	

5.1.4	Existing	models	of	strategy	discovery	

The	validation	mechanism	is	broadly	consistent	with	existing	cognitive	models	in	the	strategy	

literature	(Siegler	&	Shipley,	1995;	Shrager	&	Siegler,	1998).	For	example,	in	SCADS*	(Siegler	&	Araya,	

2005),	priming	and	dynamic	feature	detection	are	two	processes	involved	in	the	discovery	of	

inversion	shortcuts.	Priming	refers	to	the	finding	that	successful	solution	strategies	used	on	previous	

trials	encourage	the	use	of	that	strategy	on	subsequent	trials,	while	feature	detection	refers	to	a	

monitoring	system	that,	over	a	series	of	trials,	extracts	the	features	that	are	relevant	for	solving	

problems	(e.g.	for	inversion	problems,	the	numbers	that	are	identical).	Feature	extraction	and	their	

association	with	valid	strategies	(priming)	are	key	aspects	of	our	explanation.	Thus,	while	some	have	
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commented	that	SCADS*	may	be	applied	to	associativity	problems	(Lefevre	&	Robinson,	2010;	

Robinson	&	LeFevre,	2012),	our	studies	provide	the	first	indication	that,	to	some	extent,	it	can.		

However,	our	explanation	goes	beyond	these	mechanisms.	Implicit	in	SCADS*	is	that	the	feature	and	

strategy	on	one	problem	need	to	be	identical	to	the	feature	and	strategy	on	another	problem,	for	

that	strategy	to	be	selected.	Indeed,	according	to	Siegler	(1998,	2005),	solving	inversion	problems	

could	be	harmful	for	strategy	selection	on	associativity	problems	(2005,	p.26).	For	example,	with	

children,	solving	inversion	problems	could	cause	them	to	overgeneralise	the	strategy,	e.g.	after	

solving	many	‘a	+	b	–	b’	inversion	problems,	an	individual	may	erroneously	apply	the	exact	same	

strategy	to	the	problem	‘18	+	7	–	5’	and	respond	‘18’.	However,	that	was	not	the	case	in	the	current	

studies,	no	participant	in	the	inversion	conditions	gave	‘a’	as	their	answer	to	the	associativity	

problem.	Our	results	show,	for	the	first	time,	that	‘a	+	b	–	b’	inversion	problems	can	increase	the	use	

of	a	shortcut	on	‘a	+	b	–	c’	problems,	and	thus	that	the	features	and	strategy	on	one	problem	need	

only	be	similar	to	the	features	and	strategy	in	a	different	problem,	to	encourage	strategy	selection.		

5.2	Practical	implications	

Our	studies	were	not	designed	to	uncover	how	associativity	should	be	taught,	and	the	findings	

should	not	be	taken	as	such.	Many	factors	are	likely	to	contribute	to	associativity	shortcut	use	

(section	1.3)	and	solving	inversion	problems	is	not	a	remedy	for	all	these	issues.	Furthermore,	we	

cannot	guarantee	that	our	studies	encouraged	a	deep	understanding	of	associativity	(Star,	2005),	as	

strategies	do	not	necessarily	imply	knowledge	of	the	principle	(Baroody	et	al.,	2009;	Siegler,	1988;	

Torbeyns	et	al.,	2016;	Hansen	et	al.,	2015).	Some	individuals	may	have	obtained	superficial	

knowledge,	undertaking	a	right-to-left	approach	without	understanding	the	principle	of	associativity	

that	justifies	the	procedure.	This	could	lead	them	to	erroneously	solve	any	problem	with	multiple	

terms	in	a	different	order	(e.g.	‘8	–	4	+	2’	as	8	–	(4	+	2)).	The	findings	should	not,	therefore,	be	

applied	without	further	investigation.	



46	
 

Nevertheless,	the	findings	are	important	because	they	uncover	underlying	mechanisms	that	could	be	

used	to	fuel	further	research	into	the	design	of	interventions	for	improving	the	understanding	of	

arithmetic	principles	and	performance	on	algebra	problems.	Here,	we	found	that	a	quick	activity,	

administered	to	a	whole	classroom	at	once,	improved	the	use	of	associativity	shortcuts.	Future	

studies	could	therefore	investigate	whether	these	simple,	efficient	tasks	can	encourage	a	long-

lasting,	‘deep’	understanding	of	associativity.		

5.3	Future	research	

Our	data	do	not	allow	us	to	differentiate	between	the	attention	and	validation	mechanisms,	and	it	is	

plausible	that	both	interact	to	play	a	role	in	the	use	of	the	associativity	shortcut.	For	example,	for	‘a	

+	b	–	b’	problems	to	validate	a	right-to-left	strategy	it	is	likely	that	they	must	also,	at	least	initially,	

direct	spatial	attention	to	the	right-hand	side	of	the	problem.	Future	research	could	try	to	

disentangle	the	contribution	of	these	two	mechanisms,	and	we	suggest	two	possible	ways	in	which	

this	could	be	done.	First,	studies	that	directly	manipulate	spatial	attention	to	different	components	

of	the	problem	could	be	conducted.	One	previous	study	(Dubé	&	Robinson,	2010)	used	a	priming	

technique	to	achieve	this	manipulation,	which	did	improve	performance	on	inversion	shortcut	

problems.	However,	due	to	the	nature	of	the	stimuli	(Dubé	&	Robinson,	2010	were	concerned	with	

multiplication-division),	the	role	of	attention	in	addition-subtraction	associativity	problems	is	

unknown.	A	second	approach	to	disentangle	the	validation	and	attention	mechanisms	would	be	to	

include	a	control	condition	where	the	problems	direct	attention	to	the	right,	but	do	not	validate	a	

right-to-left	strategy.	For	example,	‘a	+	b	+	b’	problems	such	as	3	+	47	+	47	may	direct	individuals’	

attention	to	the	right-hand	side	because	the	two	right-most	digits	are	identical.	However,	3	+	47	+	47	

is	unlikely	to	validate	a	right-to-left	strategy,	as	adding	3	to	47	is	easier	than	adding	47	to	47.	Future	

research	could	explore	this	possibility:	if	solving	both	‘a	+	b	+	b’	and	‘a	+	b	–	b’	problems	increase	the	

use	of	associativity	shortcuts	on	subsequent	problems,	then	this	is	likely	to	be	due	to	increased	

attention	directed	to	the	location	of	the	shortcut.	However,	if	‘a	+	b	+	b’	problems	do	not	increase	

subsequent	associativity	shortcut	identification	as	much	as	‘a	+	b	–	b’	problems,	then	it	is	more	likely	
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that	the	effect	is	driven	through	strategy	validation,	because	only	‘a	+	b	–	b’	problems	promote	a	

right-to-left	solution	approach.		

We	also	do	not	know	whether	our	findings	generalise	to	other	forms	of	associativity	shortcuts,	or	

whether	they	are	limited	to	shortcuts	on	the	right-hand	side	of	‘a	+	b	–	c’	problems.	For	example,	it	

would	be	interesting	to	know	whether	‘a	+	b	–	b’	problems	could	increase	shortcut	use	on	‘a	+	b	+	c’	

problems	such	as	48	+	7	+	3,	‘a	+	b	–	c’	problems	such	as	‘38	+	6	–	35’,	and	multiplication-division	

problems	such	as	‘7	х	6	÷	2’.	These	problems	all	contain	shortcuts	that	are	derived	from	the	

associativity	principle.	In	theory,	if	‘a	+	b	–	b’	inversion	problems	operate	through	a	conceptual	

mechanism,	shortcut	use	should	increase	on	all	three	problems.	However,	the	problems	differ	in	the	

operations	they	contain	and	the	location	of	the	shortcut;	different	outcomes	for	each	problem	might	

therefore	be	expected	and	add	further	weight	to	our	claim	that	our	findings	are	better	explained	

through	a	non-conceptual	mechanism.		

Lastly,	our	studies	also	do	not	tell	us	whether	or	how	long-lived	the	effect	of	the	intervention	may	

be,	or	the	depth	of	knowledge	that	may	be	encouraged.	Future	research	should	therefore	include	

delayed	post-tests	and	tasks	that	require	participants	to	provide	explanations	and	justifications,	to	

investigate	the	extent	to	which	inversion	problems	foster	knowledge	and	use	of	the	associativity	

principle.	

6.	Conclusion	

Improving	knowledge	of	associativity	may	ease	the	transition	from	arithmetic	to	algebra.	In	three	

studies,	we	found	that	the	use	of	associativity	shortcuts	could	be	improved	by	solving	problems	that	

contained	inversion	shortcuts	beforehand.	Our	findings	suggest	that	this	effect	is	unlikely	to	be	

driven	through	a	link	between	the	concepts	stored	in	memory.	Rather,	it	is	more	likely	that	inversion	

problems	direct	spatial	attention	to	the	location	of	the	shortcut,	or	implicitly	communicate	the	

validity	of	a	right-to-left	strategy,	or	both.	Further	work	investigating	which	of	these	two	

mechanisms	is	more	likely,	and	the	depth	and	longevity	of	knowledge	that	the	interventions	
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delivered,	is	warranted	before	the	findings	can	be	used	to	help	counter	the	difficulties	that	many	

have	with	the	associativity	principle.		
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Figures	
 

 

Figure	1:	The	number	of	participants	who	self-reported	using	an	associativity	shortcut	in	an	open-

ended	question	for	each	of	the	conditions	in	Study	1	(upper),	2	(middle)	and	3	(lower)	

	

Figure	2:	Overview	of	the	procedure	used	in	Study	2	
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