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Review	of	‘The	Trials	of	Evidence-Based	Education:	The	Promises,	Opportunities	and	
Problems	of	Trials	in	Education’	by	Stephen	Gorard,	Beng	Huat	See	and	Nadia	Siddiqui.	
	
Matthew	Inglis	
Mathematics	Education	Centre,	Loughborough	University	
	
In	the	last	six	years,	UK	education	research	funding	has	been	transformed.	The	Education	
Endowment	Foundation	(EEF),	established	by	the	Sutton	Trust	in	2011	with	£125m	of	
funding,	has	funded	more	than	145	randomised	controlled	trials	(RCTs),	each	costing	an	
average	of	around	£500k	(EEF,	2015).	By	way	of	comparison,	since	2012	the	Economic	and	
Social	Research	Council	has	spent	just	£4.1m	on	open-call	education	research	grants	(ESRC,	
2018).	This	makes	the	EEF	by	far	the	largest	UK	funder	of	education	research,	and	its	focus	
on	RCTs	represents	a	major	change	for	education	research	and	for	mathematics	education	
in	particular:	of	the	263	articles	published	in	the	eight	leading	mathematics	education	
journals	in	2012,	only	eight	reported	studies	with	random	allocation	into	groups	(Alcock,	
Gilmore	&	Inglis,	2013).	Such	a	major	change	calls	for	reflection.	Is	this	new	focus	on	RCTs	a	
positive	development?	

Gorard,	Huat	See	&	Siddiqui's	(2017)	book	offers	just	such	reflection.	Its	authors	
strongly	support	the	increased	use	of	RCTs,	arguing	that	“much	of	the	published	research	on	
education	is	of	such	poor	quality	that	it	might	do	more	harm	than	good”	(p.	4),	that	mostly	it	
“is	of	no	consequence	or	use	for	any	real	life	purpose”	and	therefore	that	it	“can	safely	be	
ignored”	(p.	5).	They	argue	that	most	studies	do	not	involve	randomisation	into	groups	(so	
causality	cannot	be	inferred),	that	too	many	educational	interventions	are	evaluated	by	
reference	to	anecdotes	or	student	satisfaction	surveys,	and	that	many	educational	research	
designs	lack	appropriate	comparison	or	control	groups.	Thus,	they	claim,	more	well-
conducted	RCTs	are	needed	if	we	are	to	draw	genuinely	causal	conclusions	about	‘what	
works’.	

Given	these	comments,	one	might	expect	Gorard	et	al.	to	be	delighted	by	the	recent	
emergence	of	the	EEF.	But	the	authors’	position	is	more	nuanced.	While	they	believe	that	
the	increase	in	RCTs	has	led	to	“considerable	progress”	(p.	18),	they	spend	much	of	the	book	
critiquing	the	methods	commonly	adopted	by	the	EEF’s	RCT	researchers	and	advocating	
their	own	alternatives.	These	alternative	methods	will,	Gorard	et	al.	suggest,	allow	
education	researchers	to	establish	what	works.	I	agree	with	Gorard	et	al.’s	overall	view	
about	the	need	for	better	evidence,	but	see	serious	problems	with	both	their	critique	of	
traditional	RCT	methods	and	their	apparent	philosophical	views	on	the	purpose	of	research.		
These	problems	are	explored	in	the	remainder	of	this	review.	

	
The	RCT	method	
	
Gorard	et	al.’s	criticisms	of	existing	approaches	to	RCTs	come	in	a	chapter	entitled	
“problems,	abuses	and	limitations	in	the	conduct	of	trials”.	This	chapter	commences	with	
observations	about	how	bodies	such	as	the	EEF	allocate	funding,	before	arguing	that	missing	
data	is	a	larger	problem	in	educational	RCTs	than	is	suggested	in	EEF	guidelines.	But	the	
chapter	really	gets	going	when	it	considers	null	hypothesis	significance	tests	(NHSTs),	the	
primary	quantitative	method	used	by	behavioural	scientists	when	analysing	data	from	RCTs	
(as	well	as	other	research	designs).	



Gorard	et	al.	make	two	main	criticisms	of	NHSTs.	First,	they	assert	that	a	fundamental	
assumption	of	all	NHSTs	is	that	study	participants	are	randomly	sampled	from	the	
population	of	interest.	Since	this	is	never	the	case	in	real-world	research	(participants	who	
refuse	consent	are	never	included,	for	instance),	they	conclude	that	“significance	tests	
should	never	be	used”,	and	that	any	p	value	calculated	from	real	data	“does	not	and	cannot	
mean	anything”	(p.	22).	This	is	a	big	claim:	if	the	argument	were	even	partially	correct,	then	
large	sections	of	the	education	and	psychology	literature	would	be	meaningless.	

Gorard	et	al.’s	second	criticism	is	that	researchers	who	use	such	tests	fail	to	
understand	what	a	p	value	is.	They	state	that	p	values	quantify	how	likely	the	observed	data	
(D)	is	given	that	the	null	hypothesis	(H0)	is	true;	in	symbols,	P(D|H0).	But,	they	say,	what	
researchers	“actually	want	is	the	probability	of	the	nil-null	hypothesis	being	true	given	the	
data	observed”.	Since	P(D|H0)	≠	P(H0|D),	they	conclude	that	NHSTs	“just	do	not	work”	(p.	
28),	and	that	their	use	should	be	abandoned.	In	an	extraordinary	passage	that	should	have	
no	place	in	serious	academic	writing,	the	authors	assert	that	“significance	testing	appears	to	
derive	from	a	psychological	flaw	among	its	advocates	and	defenders”	(p.	28).	Strong	words!	
Unfortunately,	Gorard	et	al.’s	analysis	is	extremely	simplistic.	While	there	are	many	well-
formulated	critiques	of	NHSTs,	and	while	alternative	approaches	could	be	more	appropriate	
in	some	circumstances1,	neither	of	Gorard	et	al.’s	criticisms,	at	least	in	the	form	presented	
here,	are	persuasive.		

With	respect	to	the	first	criticism,	Gorard	et	al.	subtly	mischaracterise	p	values.	A	p	
value	quantifies	the	chances	of	observing	the	test	statistic	(or	one	more	extreme)	if	all	
model	assumptions	held.	One	assumption	certainly	is	that	the	null	hypothesis	is	true.	But	
there	are	others.	Some	concern	how	the	data	were	collected	(i.e.	that	there	was	no	optional	
stopping	based	on	data	peeking).		Others—if	a	classical	test	is	used—may	concern	how	the	
sample	was	selected.	A	small	p	value	indicates	a	small	probability	that	the	test	statistic	
would	be	as	extreme	as	the	observed	value	if	every	one	of	these	assumptions	were	correct.	
As	Greenland	et	al.	(2016)	point	out,	a	small	p	value	cannot	tell	us	which	(if	any)	of	the	
model	assumptions	are	incorrect.	For	that	we	need	judgement.	This	means	that	for	Gorard	
et	al.’s	critique	to	be	as	powerful	as	they	suppose,	they	need	to	demonstrate	that	non-
random	sampling,	coupled	with	a	classical	significance	test,	is	likely	to	lead	to	artificially	
small	p	values.		

This	question	can	be	tackled	by	simulating	non-random	samples	and	comparing	the	p	
values	obtained	from	classical	significance	tests	with	those	from	randomisation	tests.	This	is	
because,	contrary	to	the	claim	made	by	Gorard	et	al.,	it	is	not	true	that	all	forms	of	NHST	
assume	random	sampling:	randomisation	tests	explicitly	avoid	this	assumption	(e.g.,	
Edgington	&	Onghena,	2007;	Todman	&	Dugard,	2001).	Conducting	such	a	simulation	is	easy	
to	do	yourself.	(See	https://doi.org/10.6084/m9.figshare.6016247.v1	for	the	code	from	a	
simple	simulation	I	conducted.	It	demonstrates	that,	in	at	least	some	situations,	violating	
the	assumption	of	random	sampling	is	not	a	serious	issue.)	However,	there	is	also	a	large	
literature	on	this	topic.	For	instance,	Edgington	(1966)	argued	that	the	best	way	of	thinking	
about	classical	tests	is	that	they	approximate	randomisation	tests,	stating	that	“the	
closeness	of	the	approximation	under	certain	conditions	has	been	shown	theoretically	
(Silvey,	1954;	Wald	&	Wolfowitz,	1944)	and	by	numerical	examples	(Eden	&	Yates,	1933;	
Fisher,	1935,	Section	21;	Kempthorne,	1952,	p.	152;	Pitman,	1937;	Welch,	1937)”	(p.	487).	

																																																								
1	For	a	balanced	account	of	the	three	main	approaches	to	statistical	inference,	I	recommend	
Dienes’s	(2008)	excellent	book.	



Even	if	Gorard	et	al	were	unpersuaded	by	Edgington’s	claim	that	classical	tests	approximate	
randomisation	tests,	they	could	simply	dispense	with	p	values	calculated	from	classical	tests	
entirely,	and	replace	them	with	those	derived	from	randomisation	tests.		

In	sum,	Gorard	et	al.’s	first	objection	to	NHSTing	is	unconvincing.	But	what	of	the	
second?	They	argue	that	researchers	want	to	know	P(H0|D),	when	NHSTs	provides	only	
P(D|H0).	But	this	argument	is	a	form	of	Lakens’s	(2017)	“statistician’s	fallacy”:	Gorard	et	al.	
claim	to	know	“what	analysts	want”	(p.	25),	but	this	assumes	both	that	all	analysts	want	the	
same	thing	in	all	situations,	and	that	Gorard	et	al.	can	intuit	what	this	is	without	empirical	
investigation.	Speaking	for	myself,	they	are	simply	wrong.	When	I	calculate	a	p	value	I	do	
not	want	to	know	P(H0|D).	I’m	sure	about	this	because	p	values	are	a	frequentist	concept,	
and	within	the	frequentist	approach	P(H0|D)	does	not	exist.	

What	do	I	mean?	Frequentists	define	probabilities	in	terms	of	long-term	frequencies.	
We	say	that	the	probability	of	a	fair	coin	landing	tails	is	0.5	because,	in	the	long	run,	the	
frequency	of	tails	will	be	half	the	total	number	of	coin	tosses.	In	symbols,	the	probability	is	
𝑃 𝑇 = lim

'→)

'*
'
,	where	𝑛, 	is	the	number	of	tails	observed	and	𝑛	is	the	total	number	of	coin	

tosses.	But	this	definition	does	not	apply	in	the	case	of	H0,	which	either	is	a	property	of	the	
mechanism	that	generated	the	data,	or	is	not.	There	is	no	“long	run”	over	which	to	observe	
the	frequency	of	H0,	so	it	is	meaningless	to	talk	about	its	frequentist	probability.	Thus	a	
researcher	who	wants	to	know	P(H0|D)	should	not	be	calculating	a	p	value.	But	this	is	not	
for	the	reason	Gorard	et	al.	give,	it	is	for	the	more	fundamental	reason	that	the	desired	
quantity	does	not	exist	within	the	paradigm	in	which	p	values	sit.		

So	what	do	I	want	to	know	when	calculating	a	p	value?	Like	all	good	Neyman-Pearson	
hypothesis	testers,	I	want	to	control	my	long-term	error	rates	by	adopting	a	fixed	decision	
rule.	I	know	that	if	I	follow	the	rule	“reject	the	null	hypothesis	whenever	p	<	.05”,	then	in	the	
long	run	I	won’t	reject	true	nulls	more	than	5%	of	the	time.	This	tells	me	nothing	about	any	
particular	null,	but	it	does	help	me	(or	a	funder)	have	confidence	in	my	(or	their)	whole	body	
of	work.	The	problem	with	Gorard	et	al.’s	critique	of	NHSTing	is	not	that	it’s	wrong:	it’s	a	
fair,	albeit	incomplete,	critique	of	an	incoherent	version	of	NHSTing.	The	problem	is	that	it	
doesn’t	address	how	NHSTs	works	if	conducted	in	line	with	the	Neyman-Pearson	paradigm.	

But	what	of	researchers	who,	like	Gorard	et	al.,	do	want	to	know	the	‘probability’	of	a	
hypothesis	such	as	H0?	Clearly	NHSTs	aren’t	for	them,	but	what	should	they	do	instead?	
Gorard	et	al.	offer	a	selection	of	recommendations	in	their	fourth	chapter.	They	suggest	that	
sample	sizes	should	no	longer	be	based	on	power	analyses,	that	there	should	be	greater	use	
of	standardised	effect	sizes	(but	see	Simpson,	2017),	and	that	researchers	should	report	a	
figure	they	call	the	‘number	needed	to	disturb’	(NNTD).	I	found	some	of	the	arguments	
offered	in	support	of	these	suggestions	to	be	genuinely	strange.	For	instance,	Gorard	et	al.	
argue	that	power	calculations	(fundamental	to	the	Neyman-Pearson	approach	to	inference)	
are	“internally	contradictory”	(p.	40).	Their	reason	boils	down	to	the	claim	that	it	is	
contradictory	to	calculate	both	P(A|B)	and	P(A|C)	unless	B	and	C	are	identical,	which	is	
palpably	absurd.2	An	equally	questionable	claim	is	the	assertion	that	“effect	sizes	are	
																																																								
2	Gorard	et	al.	write:	“a	power	calculation	starts	by	envisaging	a	non-zero	effect	size	(the	
estimated	effect	of	the	treatment	in	an	RCT).	The	researcher	assumes	this	non-zero	effect	
size	as	the	bedrock	for	the	calculations	that	follow.	The	calculations	themselves	are	also	
predicated	on	a	significant	test,	which	was	shown	in	Chapter	3	to	assume	as	the	basis	for	its	
own	calculation	that	there	is	no	effect	sizes	(the	nil-null	hypothesis).	Put	another	way,	the	p-
values	generated	by	significance	tests	assume	an	ES	of	precisely	zero.	Both	of	these	initial	



theoretically	independent	of	sample	sizes”	(p.	32),	which	would	be	true	only	if	researchers	
did	not	choose	their	sample	size	based	on	the	expected	effect	size	(Simonsohn,	2017).		

Perhaps	the	oddest	recommendation	is	that	researchers	should	focus	on	the	NNTD	
rather	than	reporting	inferential	statistics	such	as	p	values.	The	idea	is	that	the	NNTD	
quantifies	“the	number	of	counterfactual	cases	needed	to	disturb	the	finding”	(p.	45),	where	
counterfactual	cases	are	defined	to	be	new	participants	whose	scores	are	one	standard	
deviation	away	from	the	smaller	group’s	mean.	Quite	apart	from	the	arbitrariness	of	this	
definition	(why	one	standard	deviation?),	the	NNTD	is	vulnerable	to	every	criticism	that	
Gorard	et	al.	level	vociferously	at	NHSTs.	In	particular,	a	NNTD	quantifies	P(H0|D)	no	more	
than	a	p	value	does.	Since	P(H0|D)	is	apparently	what	Gorard	et	al.	want	to	know,	this	seems	
a	fatal	weakness.	I	wondered	why	Gorard	et	al.	didn’t	simply	suggest	that	researchers	adopt	
an	approach	to	statistical	inference	that	does	allow	the	probability	of	a	hypothesis	to	be	
calculated	(albeit	defined	in	a	non-frequentist	paradigm	where	probabilities	are	subjective	
degrees	of	belief).	Researchers	who	really	want	something	like	P(H0|D)	from	their	statistical	
analyses	should	adopt	a	Bayesian	approach	to	probability	and	report	Bayes	factors	or	
Bayesian	credible	intervals,	not	NNTDs.	

	
The	RCT	philosophy	

	
The	second	half	of	Gorard	et	al.’s	book	reports	a	series	of	trials	conducted	by	the	authors,	
and	is	designed	to	illustrate	how	their	methods	might	work.	Some	of	the	trials	focus	on	the	
transition	to	secondary	school,	some	on	early	literacy	and	numeracy,	some	on	teaching	
philosophy	to	children,	and	so	on.	The	disparate	nature	of	these	topics	stands	out.	Gorard	et	
al.	conduct	trials	across	all	educational	domains	and,	from	the	evidence	of	the	reports	in	
these	chapters,	see	little	purpose	in	getting	to	grips	with	the	relevant	literatures.	In	fact	they	
are	explicit	about	this,	explaining	that	they	have	no	interest	in	educational	theory:	
“theoretical	explanations	appear	satisfying	but	are	unnecessary	when	assessing	‘what	
works’”	(p.	101).	

Can	this	be	right?	Are	theoretical	explanations	unnecessary	for	educational	research?	
This	raises	the	question	of	what	research	is	for.	Is	it,	as	Gorard	et	al.	assert,	simply	to	
catalogue	facts	about	what	works?	Or	is	it	to	develop	our	understanding	so	that	we	can	
predict	what	will	work?	These	two	approaches	to	research	–	fact-accumulation	versus	
theory-building	–	were	articulated	by	Mook	(1983)	in	his	classic	defence	of	externally	invalid	
psychology	experiments.	Mook	argued	that	research	is	often	designed	not	to	establish	facts	
about	what	works	here	and	now,	but	to	test	and	refine	theories	which	can	later	be	applied	
to	numerous	real-world	settings.	

Some	go	further	than	Mook,	arguing	that	untheorised	RCTs	like	those	reported	by	
Gorard	et	al.	do	not	even	allow	us	to	establish	‘what	works’.	For	instance,	Cartwright	(2011)	
accepted	that	RCTs	are	ideal	for	establishing	claims	of	the	form	“the	treatment	caused	the	
outcome	in	some	members	of	the	study”,	which	she	referred	to	as	the	‘it-works-
somewhere’	claim.	But,	suggested	Cartwright,	in	almost	all	real-world	situations	this	is	not	
the	claim	we’re	interested	in.	Instead	we	want	to	know	if	it	will	work	for	us.	Cartwright	and	
Hardie	(2012,	p.	80)	gave	a	simple	example	of	how	a	lack	of	theoretical	understanding	can	
lead	to	mistakes.	They	explained	how	a	programme	shown	to	improve	pregnant	women’s	

																																																								
assumptions	cannot	be	true	in	the	same	calculation,	by	definition.	Therefore,	‘power’	does	
not	make	sense.”	(p.	40).	



nutrition	in	Tamil	Nadu	was	transferred	to	Bangladesh.	A	major	component	of	the	
intervention	was	nutritional	counselling	for	the	pregnant	women.	The	programme	was	
effective	in	Tamil	Nadu,	but	a	new	RCT	in	Bangladesh	found	no	effect.	Why?	It	seems	that	in	
Tamil	Nadu	women	are	traditionally	responsible	for	food	shopping,	whereas	in	rural	
Bangladesh	it	is	typically	men	who	go	to	food	markets.	The	programme	could	never	have	
been	successful,	as	the	mechanism	upon	which	it	relied	(pregnant	women	choosing	
healthier	food	when	shopping)	did	not	exist	in	the	new	context.	

How	can	we	move	from	an	it-works-somewhere	claim	to	an	it-will-work-for-us	claim?	
We	need	theoretical	understanding	of	the	causal	mechanism	that	links	intervention	and	
outcome.	This	is	what	allows	us	to	assess	whether	the	necessary	factors	are	present	in	our	
situation,	and	to	anticipate	whether	malign	factors	might	disrupt	that	mechanism.	In	other	
words,	we	need	exactly	the	kind	of	theoretical	understanding	that	Gorard	et	al.	suggest	is	
unnecessary.		Indeed,	when	viewed	through	this	“what	is	the	mechanism?”	lens,	some	
conclusions	drawn	by	Gorard	et	al.	look	like	missed	opportunities.	For	example,	when	
summarising	the	results	of	six	literacy	trials,	Gorard	et	al.	write	“It	is	clear	that	simply	using	
commercial	software	to	teach	literacy	does	not	work,	and	this	should	be	avoided”	(p.	101).	
But	it	is	clearly	unjustified	to	say	that	teachers	should	avoid	using	all	commercial	software	to	
teach	literacy:	the	apparent	failure	of	the	packages	tested	was	surely	related	to	their	
pedagogical	approach	rather	than	to	their	commercial	origins.	Without	understanding	the	
hypothesised	theoretical	mechanism	by	which	the	software	was	designed	to	improve	
literacy,	it	is	hard	to	draw	useful	conclusions	from	such	trials.		

	
Conclusion	

	
In	all,	Gorard	et	al.’s	book	is	interesting	but	flawed.	Its	authors	are	right	to	draw	attention	to	
the	new	reality	of	education	research	and	its	focus	on	RCTs;	and	they	are	right	to	critically	
evaluate	the	progress	made	via	this	new	approach.	But	many	of	their	criticisms	are	simply	
unconvincing.	Gorard	et	al.	advance	the	radical	claim	that	the	majority	of	education	and	
psychology	research	is	both	statistically	and	philosophically	misguided	but,	surprisingly	and	
disappointingly,	they	fail	to	anticipate	and	discuss	some	fairly	obvious	objections	to	their	
arguments.	
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