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Highlights 

 

1. We assessed the development of nonsymbolic and symbolic magnitude comparison skills  

2. And examined their unique predictive role for future mathematics beyond WM and IQ 

3. Symbolic processing showed larger developmental growth rates than nonsymbolic 

4. Nonsymbolic processing played a small unique predictive role only in kindergarten  

5. Symbolic played a robust unique predictive role – akin to IQ – across the 3 years   
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Abstract  

What developmental roles do nonsymbolic (e.g., dot arrays) and symbolic (i.e., Arabic 

numerals) magnitude comparison skills play in children’s mathematics? In the literature, one 

notices several gaps and contradictory findings. We assessed a large sample in kindergarten, 

grade 1 and 2 on two well-known nonsymbolic and symbolic magnitude comparison measures. 

We also assessed children’s initial IQ and developing Working Memory (WM) capacities. 

Results demonstrated that symbolic and nonsymbolic comparison had different developmental 

trajectories; the first underwent larger developmental improvements. Both skills were important 

longitudinal predictors of children’s future mathematical achievement above and beyond IQ and 

WM. Nonsymbolic comparison was predictive in kindergarten. Symbolic comparison, however, 

was consistently a stronger predictor of future mathematics compared to nonsymbolic, and its 

predictive power at the early stages was even comparable to that of IQ. Furthermore, results 

bring forth methodological implications regarding the role of different types of magnitude 

comparison measures. 

 

Keywords: cognitive development, mathematical cognition, nonsymbolic magnitude 

comparison, symbolic magnitude comparison, approximate number system. 
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1. Introduction 

The question of what underlies the development of mathematical achievement has 

attracted a lot of attention the last decades. The reason is simple: mathematical skills play a 

prominent role in our cognitive development and life success (e.g., Dougherty, 2003; Reyna & 

Brainerd, 2007). Numbers are everywhere and they can take many forms: for example, there is 

the nonsymbolic representation consisting of five dots on a screen and the symbolic 

representation of the number “5” in its Arabic form. What both of these representations have in 

common is the “fiveness” of the numerosities’ magnitude. Extensive focus has been placed on 

the early markers of numerical cognition, particularly on the role that nonsymbolic and symbolic 

magnitude comparison skills play as building blocks of numerical cognition (for reviews see De 

Smedt, Noël, Gilmore, & Ansari, 2013; Feigenson, Libertus, & Halberda, 2013). Findings so far 

have been contradictory, and in the literature one notices three striking gaps: a) There is a 

shortage of longitudinal developmental studies examining whether and how the different 

magnitude processing predictors’ power dynamically changes from one grade to another (De 

Smedt et al., 2013; Noël & Rousselle, 2011). b) Tasks with fundamentally different design 

characteristics and number ranges, have been used interchangeably (Gilmore, Attridge, De 

Smedt, & Inglis, 2014; De Smedt et al., 2013). c) Domain-general capacities such as working 

memory resources and IQ are rarely controlled for (Xenidou-Dervou, De Smedt, Van der Schoot, 

& Van Lieshout, 2013; Xenidou-Dervou, Van Lieshout, & Van der Schoot, 2014). The present 

study strived to fill in these gaps and thereby resolve the existing contradictory findings.   

1.1 Nonsymbolic and Symbolic Magnitude Processing  
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Research has indicated that human and non-human primates may be born with an ability 

to estimate and manipulate abstract quantities in nature. The Approximate Number System 

(ANS; Dehaene, 2011) is thought to be a pre-linguistic cognitive system where magnitudes are 

represented and processed. The ANS enables humans to compare and manipulate nonsymbolic 

numerosities already from infancy onwards (for reviews see Dehaene, 2011; Feigenson et al., 

2013; De Smedt et al., 2013). Of course, as humans we also develop higher-order mathematical 

skills with symbols. So, how does this “innate” ability affect the development of our symbolic 

processing and what predicts the development of mathematical achievement, nonsymbolic, 

symbolic processing or both? These questions have generated intense scientific debate since they 

have important theoretical as well as educational implications (e.g., De Smedt et al., 2013; Noël 

& Rousselle, 2011). Establishing which early cognitive predictors play an important role, when 

and how, in the development of mathematics achievement, can inform educational practice, 

curricula contents and guide early intervention designs (De Smedt et al., 2013). For example, 

should educational practice focus on training children’s nonsymbolic or symbolic skills or 

perhaps place different focus at different ages? 

Some studies suggest that symbolic representations of number directly map onto ones 

readily accessible nonsymbolic representations, i.e., the ANS (e.g., Lipton & Spelke, 2005; 

Piazza & Izard, 2009). In this respect, the ANS is viewed as the cognitive foundation that fosters 

and enhances the development of general mathematics achievement. This has been a compelling 

theory and several studies have demonstrated relations between ANS measures and general 

mathematics achievement (Gilmore, McCarthy, & Spelke, 2010; Inglis, Attridge, Batchelor, & 

Gilmore, 2011; Libertus, Feigenson, & Halberda, 2011; Starr, Libertus, & Brannon, 2013; for a 

review see Feigenson et al., 2013). At the same time, however, many studies have failed to find 
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such relations between the ANS and symbolic processing or mathematics achievement (e.g., 

Bartelet, Vaessen, Blomert, & Ansari, 2014; Holloway & Ansari, 2009; Lyons, Price, Vaessen, 

Blomert, & Ansari, 2014; Sasanguie, Defever, Maertens, & Reynvoet, 2014; Sasanguie, Göbel, 

Moll, Smets, & Reynvoet, 2013). The latter findings seem to suggest that symbolic numbers are 

processed and acquire meaning in a fundamentally different way (e.g., Lyons, Ansari, & Beilock, 

2012). Within this framework, symbolic magnitude processing is viewed as the best predictor of 

mathematical achievement, not the ANS (De Smedt et al., 2013; Lyons et al., 2014). Perhaps the 

predominance of symbolic processing as a predictor of children’s individual differences in 

mathematical achievement, may reflect the fact that children may differ in their ability to access 

the number magnitude of symbols, rather than processing numerosity in itself (Rouselle & Noël, 

2007). Nevertheless, if symbolic processing does not directly map one-to-one onto ones pre-

existing nonsymbolic representations, then we may expect them to demonstrate different 

developmental growth rates (Matejko & Ansari, 2016). As an assumed innate ability, 

nonsymbolic processing is expected to demonstrate less developmental growth compared to 

symbolic processing, given that the latter focuses on children assessing the magnitude of Arabic 

digits, and school mathematics instruction primarily teaches children to use digits to conduct 

basic arithmetic.  

As various contradicting results come forth, the predictive roles of nonsymbolic and 

symbolic magnitude processing across development remain unclear. In a recent review of 

findings concerning the relationship between mathematics achievement and nonsymbolic and 

symbolic magnitude processing, De Smedt et al. (2013) acknowledged two factors that may give 

rise to the patchwork of contradictory results that characterizes the extant literature: a) The age 

of the participants assessed, and b) The measures used to assess magnitude comparison.  
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1.2 Contradictory Findings: Possible Sources  

1.2.1 Age of participants 

In order to identify the role that nonsymbolic and symbolic magnitude skills play, 

longitudinal and developmental studies are clearly necessary. ANS acuity (Halberda & 

Feigenson, 2008) and symbolic magnitude precision have been shown to increase with age 

(Holloway & Ansari, 2009; Sasanguie, De Smedt, Defever, & Reynvoet, 2011). Several 

longitudinal studies have demonstrated ANS acuity before the start of formal school instruction 

to correlate with or be predictive of later mathematics achievement (Gilmore et al., 2010; 

Libertus et al., 2011; Mazzocco, Feigenson, & Halberda, 2011; Starr et al., 2013). Furthermore, 

Inglis et al., (2011) found that ANS acuity correlates with mathematical achievement in 

childhood but not in adulthood.  

These studies, however, did not assess symbolic magnitude processing. With cross-

sectional designs, Lyons et al. (2014) and Sasanguie, Göbel, et al. (2013) assessed various 

nonsymbolic and symbolic measures simultaneously across primary school children and found 

no evidence for nonsymbolic magnitude processing predicting unique variance in children’s 

arithmetic abilities. Instead, only symbolic magnitude processing played a unique role. On the 

basis of these findings, we expected that the ANS, as a readily accessible system, may play a 

unique role primarily in kindergarten, before formal mathematics instruction starts (e.g., Gilmore 

et al., 2010). From grade 1 and onwards, however, the predictive role of symbolic processing 

would take over (Lyons et al., 2014; Sasanguie, Göbel, et al., 2013). Thus, we hypothesized that 

the predictive roles of nonsymbolic and symbolic magnitude comparison skills would 

dynamically change over time. To our knowledge, this is the first study, which – due to its 
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longitudinal design – allowed the examination of whether and how the predictive roles of 

magnitude comparison skills change across grades. 

In contrast to our aforementioned hypothesis, however, Bartelet et al. (2014) 

demonstrated that in kindergarten only symbolic magnitude skills predicted children’s grade 1 

mathematics above and beyond nonsymbolic skills. Notably, though, in this study, children’s 

WM capacities were not controlled for. Also, the measures used in this study differed on several 

aspects from certain other kindergarten studies; for example, the (non)symbolic stimuli were 

presented simultaneoulsy, not sequentially (e.g. Gilmore et al., 2010; Xenidou-Dervou et al., 

2013). In general, one notable difference across the various studies conducted so far is the 

measures used to assess nonsymbolic and symbolic magnitude processing skills.  

1.2.2 Different magnitude comparison measures  

Measures used across the literature can differ both on design characteristics as well as 

numerosity/number ranges but have nevertheless been used interchangeably. Specifically, in one 

well-known magnitude comparison measure, the stimuli to be compared (nonsymbolic or 

symbolic) are presented simultaneously (see for example Figure 1A). This measure usually 

entails small numerosities within the range of 1 up to 9 (e.g., De Smedt, Verschaffel, & 

Ghesquière, 2009; Holloway & Ansari, 2008, 2009; Sasanguie, Göbel, et al., 2013; Sasanguie, 

Van den Bussche, & Reynvoet, 2012). In contrast, another well-known magnitude comparison 

measure comprises large numerosities ranging for example from 6 up to 70. Also, this measure 

entails several sequential steps (see Figure 1B): the child sees a blue (nonsymbolic or symbolic) 

numerosity dropping down on the left side of the screen, this is then covered by an occluder, and 

then a comparison red quantity drops down on the right side of the screen (Barth et al., 2006; 
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Barth, La Mont, Lipton, & Spelke, 2005; De Smedt & Gilmore, 2011; Gilmore, McCarthy, & 

Spelke, 2007; Gilmore et al., 2010; Xenidou-Dervou et al., 2013; 2014). Performance across 

such different measures correlates during childhood (Gilmore et al., 2014) but not in adulthood 

(Gilmore, Attridge, & Inglis, 2011), which might indicate that they have different developmental 

trajectories.  

Taking a look at these two types of measures (Figure 1) one may wonder: until what age 

can accuracy or RT in the symbolic simultaneous-small measure be used to uniquely predict 

individual differences in mathematical achievement above domain-general capacities and the 

sequential-large symbolic magnitude measure? Numbers from 1 up to 9 are learned and 

automatized from early on. We expected to see a ceiling effect in accuracy in the symbolic 

simultaneous-small measure after formal schooling has started and only its RT data to be 

predictive of mathematics achievement. It should be noted that it was not within the scope of the 

present study to examine the difference in the effects of the simultaneous versus sequential 

presentation-format with either a small or large number-range. We merely assessed the children 

on the two commonly used different measures of nonsymbolic and symbolic magnitude 

comparison identified from here forth on the basis of their differential design characteristics, 

namely “simultaneous-small” and “sequential-large”.  

1.2.3 Accounting for domain-general capacities  

Another important impediment across the existing literature is that most studies do not 

control for domain-general capacities, such as WM (De Smedt & Gilmore, 2011; Gilmore et al., 

2011; Gullick, Sprute, & Temple, 2011). It has recently been demonstrated that nonsymbolic and 

symbolic magnitude processing call upon different WM resources (Xenidou-Dervou et al., 2014; 
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Xenidou-Dervou, van der Schoot, & van Lieshout, 2015b). WM is a limited-capacity 

multicomponent cognitive construct, which is responsible for the short-term storage and 

manipulation of information in an online manner when executing cognitive tasks. According to 

Baddeley’s model (Baddeley, 2003, 2012; Repovs & Baddeley, 2006), WM entails the 

Phonological Loop (PL), which retains phonological information, the Visuospatial Sketchpad 

(VSSP), which retains visuospatial information and the Central Executive (CE), which monitors, 

controls and regulates the processes of the other two components and connects them with one’s 

long-term memory. Later, Baddeley added a fourth component to the model: the episodic buffer, 

a multidimensional passive storage system, which allows elements from the other components to 

be combined and integrated with long-term memory (Repovs & Baddeley, 2006). As there is 

little developmental research on this component and the predictors we focused on did not require 

the integration of information in an episodic manner, the episodic buffer was not addressed. 

WM plays a fundamental role in mathematical achievement (DeStefano & LeFevre, 

2004; Friso-van den Bos, van der Ven, Kroesbergen, & van Luit, 2013; Raghubar, Barnes, & 

Hecht, 2010). Recently it has been shown that both nonsymbolic and symbolic magnitude 

processing are related to WM capacity (Gullick et a., 2011; Hornung, Schiltz, Brunner, & 

Martin, 2014; Xenidou-Dervou et al., 2014, 2015b). The role of the different WM components 

and their interactions when conducting a given cognitive task depend upon the characteristics of 

the task and the age of participants (Friso-van den Bos et al., 2013; Rasmussen & Bisanz, 2005; 

Simmons, Willis, & Adams, 2012; Xenidou-Dervou et al., 2015b). For nonsymbolic processing 

it has become evident that WM plays a central role. Specifically, Xenidou-Dervou et al. (2014) 

demonstrated that children’s nonsymbolic processing with sequential steps and large 

numerosities (6-70) necessitates CE resources. On the other hand, nonsymbolic performance in 
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measures that make use of smaller quantities (1-9) appears to correlate with children’s readily 

accessible VSSP (Xenidou-Dervou et al., 2015b). Especially in the case where the nonsymbolic 

quantities are presented simultaneously, research suggests that children may primarily rely on the 

visual characteristics of the stimuli (Gebuis & Reynvoet, 2012; Gilmore et al., 2013). However, 

when numbers or quantities are presented sequentially, i.e., the first numerosity or number is 

hidden and participants must remember it in order to compare it with the next numerosity or 

number, one could argue that more WM load is introduced. Alternatively, one may argue that 

because the numerosity is hidden in the sequential presentation, it forces the participant to extract 

a mental numerical representation of this quantity to compare it with the next one – this way the 

participant may perhaps rely less on the visual features of the dots, constituting it a more 

effective way of tapping into the ANS. With respect to symbolic processing, there is primarily 

correlational literature indicating that WM relates with performance in symbolic measures 

(Gullick et al., 2011; Hornung, Schiltz, Brunner, & Martin, 2014; Xenidou-Dervou et al., 2015b). 

In general, however, the role of WM in symbolic magnitude processing is yet unclear. 

Overall though, it becomes clear that in order to identify the unique role that performance 

on a given magnitude measure plays at a given age, one must control for the effect of WM 

capacities. For the present study we assessed the participants’ performance on a wide range of 

both math-specific as well as domain-general WM tasks assessed at each developmental stage 

(kindergarten, grade 1 and grade 2) in order to control for their effects. Another domain-general 

capacity, which is often not taken into account in the magnitude comparison literature, is that of 

IQ (De Smedt & Gilmore, 2011). It is no surprise that fluid intelligence is a fundamental 

predictor of academic performance in general, including mathematics achievement (e.g., Colom, 

Escorial, Shih, & Privado, 2007; Ritchie, 2015). Given all the recent focus on the predictive 
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power of magnitude comparison skills on mathematical achievement, we examined whether they 

are predictive of future mathematics achievement even after controlling for children’s IQ and if 

yes, whether their predictive power compares with that of IQ.  

1.3 The present study 

We aimed to shed light on the conflicting results of studies that focus on nonsymbolic or 

symbolic magnitude processing as precursors of children’s mathematics achievement in different 

ages. We, therefore, administered the two well-known measures of nonsymbolic and symbolic 

magnitude comparison in a relatively large Dutch-speaking sample in kindergarten, grade 1 and 

grade 2. We also assessed these children’s IQ in kindergarten and their WM skills at each 

developmental stage as domain-general control measures. Lastly, their general mathematical 

achievement was measured at the end of grade 2. In the Netherlands, formal schooling initiates 

in grade 1, not earlier. Therefore, this sample is unique in the sense that it allows us to examine 

the developmental transition from kindergarten to formal schooling. Our aim was to address the 

following two research questions:  

1. Does performance in the two different stimuli formats (nonsymbolic vs. symbolic) and 

in the two different well-known magnitude comparison types of measures (simultaneous-

small vs. sequential-large) develop differently from kindergarten up to grade 2?  

Given that formal mathematics instruction (grade 1 and onwards) focuses on the use of symbols 

and basic arithmetic, we expected that symbolic magnitude processing would demonstrate larger 

developmental growth rates compared to nonsymbolic magnitude processing, i.e., the two 

abilities would have different developmental trajectories (Lyons et al., 2012; Matejko & Ansari, 

2016; Xenidou-Dervou et al., 2015a). Furthermore, given the fundamental differences between 
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the two types of measures outlined earlier (simultaneous-small vs. sequential-large), we 

hypothesized that performance on these measures would also demonstrate different 

developmental trajectories (Gilmore et al., 2014, 2011).  

2. A) Which of the nonsymbolic and symbolic magnitude comparison skills uniquely 

predict future mathematics achievement above and beyond children’s IQ and WM 

capacities at each year (kindergarten, grade 1 and grade 2)? B) Do magnitude comparison 

skills in the subsequent years (after kindergarten) improve the prediction of future 

mathematics achievement? C) Lastly, which nonsymbolic and symbolic magnitude 

comparison skills uniquely predict future mathematics achievement across all years over 

and above domain-general capacities?  

For research questions 2A and 2C, we hypothesized that in kindergarten nonsymbolic 

(Gilmore et al., 2010; Libertus et al., 2011) and symbolic magnitude processing would uniquely 

predict future mathematics achievement (Bartelet et al., 2014). However, with the start of formal 

education (grade 1), symbolic processing would take over (De Smedt et al., 2013; Lyons et al., 

2014; Sasanguie, et al., 2013). For 2B, we expected that the dynamic change of the predictive 

roles of magnitude comparison would improve the prediction of future mathematics 

achievement; in other words, children’s magnitude comparison growth (primarily symbolic) 

across the years would contribute to the prediction of their future mathematics performance.  

 
2. Method 

2.1 Participants 
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 This data is part of a collaborative project known as XXX1, during which 444 children from 

25 schools in the Netherlands were assessed on a number of measures in kindergarten, grade 1 

and grade 2. Written consent was acquired from all children’s legal guardians. Children 

identified as extreme outliers, namely those who scored more than three standard deviations 

above or below the group mean in one or more of the present study’s measures were removed 

from the analyses (40 children). Throughout the three years of assessment, 80 children dropped 

out primarily due to family relocations. At the last measurement wave (see Table 1), the sample 

consisted of 326 children (Mage = 7.99 years, SD= 0.33, 180 boys, 146 girls). All children spoke 

Dutch and 96.6% of them held the Dutch nationality. The sample was acquired from middle- to 

high- SES environments. 33.6 % of the children’s mothers and 26.2% of their fathers had 

received middle-level applied education (in the Dutch Educational system: MBO). 42.9 % of the 

mothers and 46.2 % of the fathers attended higher levels of education (in the Dutch Educational 

system: HBO and higher levels). 

2.2 Procedure 

 All participants were tested individually in quiet settings within their school facilities by 

trained experimenters with the exception of the IQ and the general mathematics test (CITO). The 

IQ test was administered in group settings by the experimenters. The CITO ability scores were 

collected by school staff as part of the usual school tests. The rest of the data of this study 

comprises a set of tasks administered for the collaborative project across three testing sessions of 

approximately 20 mins in kindergarten and across two sessions of 30 min duration in grade 1 and 

grade 2. Between two sessions, there was a minimum of a day and a maximum of two weeks. 

Table 1 depicts the timeline of administration of the materials. All experimenters used the same 

                                                 
1 Information excluded for blind review process 
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elaborate protocol with instructions for testing administration across all measurements. Parts of 

the kindergarten data have been reported in previous studies (XXX2) as well as the end of grade 

2 mathematics achievement data (Cito; XXX). These studies focused on different research 

questions.  

 

2.3 Materials  

 All materials, apart from the general mathematics achievement (Cito) and IQ tests, were 

computerized and presented with E-Prime version 1.2 (Psychological Software Tools, Pittsburgh, 

PA, USA) in HP Probook 6550b laptops. 

2.3.1 Magnitude Comparison Measures 

 2.3.1.1 Simultaneous-Small. We administered a nonsymbolic and symbolic measure 

developed on the basis of the widely used “magnitude comparison” measure (Holloway & 

Ansari, 2009; Sekuler & Mierkiewicz, 1977). These tasks entailed 6 practice and 26 testing trials. 

During testing, no feedback was provided. In each trial, the child saw two numerosities, one on 

the right and one on the left side of the screen (see Figure 1A). Participants were asked to 

identify which numerosity was larger by pressing the left or the right response box situated in 

front of them. In a half of the trials, the larger numerosity was presented on the right side of the 

screen and in the other half, on the left. Children were instructed to respond as correctly and as 

fast as possible. Numerosities in these tasks ranged from 1 up to 9. The testing trials included all 

possible numerical pairs with the absolute distances between the comparison numerosities 

ranging from 1-4 (distance 1: 8 trials; distance 2: 7 trials; distance 3: 6 trials; distance 4: 5 trials).  

                                                 
2 Information excluded for blind review process 
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 The nonsymbolic condition started with an alerting beep sound of 100 ms followed by a 

1500ms warning interval (< >). As depicted in Figure 1A, the dot stimuli were presented in white 

on a black background, left and right from a yellow asterisk (fixation point). The response 

interval lasted until an answer was provided or until a maximum of 5000 ms was reached. To 

prevent the children from counting the dots, the stimuli were only presented for 840 ms. As in 

previous studies, continuous quantity variables, were controlled for with the methodology 

developed by Dehaene, Izard and Piazza (2005). According to this methodology, dot diameter 

was constant in half of the trials whereas in the other half, the size of the total dot surface area 

was constant. Trial order was randomized. For each continuous quantity variable (constant dot 

size and constant area) and for each numerosity, there was a pool of 16 different dot patterns. 

The program chose randomly one of these, so that the individual patterns of the dots were 

randomized as well. Thus, it is assumed that it is unlikely that the responses could be associated 

with specific dot patterns instead of quantity.  

 The symbolic condition was identical to the nonsymbolic, with the key difference that the 

corresponding Arabic numeral now replaced the dot stimuli. In this condition, the fixation point 

was now a dot instead of an asterisk in order to prevent possible confusion with the 

multiplication sign.  

 2.3.1.2 Sequential-Large. A nonsymbolic and a symbolic version of the commonly used 

“approximate comparison” measures were used (Barth et al., 2006; Gilmore, McCarthy, & 

Spelke, 2007; Gilmore, McCarthy, & Spelke, 2010). These measures included 6 practice and 24 

testing trials. Feedback was only provided during practice. The number of practice trials was 

reduced to two in grade 1 and grade 2, as children were already familiar with this measure.  
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 In the nonsymbolic version the children were told that Sarah and Peter receive a set of blue 

and red dots respectively and were asked to respond to the question “Who got more dots? Sarah 

or Peter?”. Within a trial (Figure 1B), the following sequence of events took place: 1) An amount 

of blue dots appeared and dropped on the left side of the screen next to image of the girl, 2) 

These were then covered by a grey box, 3) A set of red dots popped up and dropped on the right 

side of the screen next to the image of the boy. Children were instructed to respond as correctly 

and as fast as possible by pressing the blue or red response box in front of them. Each animated 

event lasted 1300 ms and between each event there was a 1200 ms interval. The fast interchange 

of events prevented counting. The child could respond from the moment the red dots appeared on 

the screen within a maximum of 7000 ms. Between trials, there was a 300 ms interval. 

Numerosities ranged from 6 up to 70. The blue array differed from the comparison red array by 

three ratios: 4:7, 4:6, 4:5 (easy, middle and difficult ratio). There were eight trials for each ratio. 

In half of the trials the blue array was larger, whereas in the other half the red was larger. Trial 

order was randomized. To avoid responses being reliant on the physical features of the dots and 

not quantity per se, dot stimuli followed a commonly used control methodology: Dot size, total 

dot surface area, total dot contour length and density correlated positively with numerosity 

whereas array size negatively in half of the trials, in the other half these relations were reversed 

(see Barth et al., 2006; Gilmore et al., 2010; Xenidou-Dervou et al., 2014). 

 The symbolic version was identical to the nonsymbolic, only now the dot stimuli were 

replaced by the corresponding Arabic numeral. Children were asked to respond to the question 

“Who got more stickers, Sarah or Peter?” by pressing the red or the blue response box in front of 

them (Figure 1B).   
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- Insert Figure 1 – 

 

2.3.2 General Mathematics Achievement. In the Netherlands, children’s progress in primary 

school is monitored with the administration of the CITO tests. We acquired children’s ability 

scores on the CITO Mathematics tests (in Dutch: CITO Rekenen-Wiskunde), which were 

assessed at the end of Grade 2 (June). The CITO math tests consist of many problems that cover 

a wide range of math domains: e.g., numbers and number relations, mental arithmetic (addition, 

subtraction, multiplication and division), complex applications (i.e. mostly more than one 

operation per problem), measurement (e.g. weight, length, time). This series of tests have been 

demonstrated to have good psychometric properties and high reliability (see Janssen, Verhelst, 

Engelen, & Scheltens, 2010).   

2.3.3 Control measures  

 2.3.3.1 IQ. Children’s non-verbal intelligence was assessed at the beginning of kindergarten 

with the Raven’s Colored Progressive Matrices (Raven, Raven, & Court, 1998) in a group-

testing session. This well-known test entails visual patterns with increasing difficulty. In each 

trial, a pattern is presented with a missing piece. The participant’s task is to identify the missing 

piece, which will complete the design, out of six pieces. Children’s raw scores on this test were 

used.  

 2.3.3.2 Working Memory. We used the Dutch version of six tasks adapted from the 

Automated WM assessment battery (AWMA; Alloway, 2007; Alloway, Gathercole, Willis, & 

Adams, 2004;) that are often used to tap children’s capacity on three subcomponents of WM, 

namely the Phonological Loop, the Visuospatial Sketchpad and the Central Executive component 
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(Baddeley, 2012; Friso-van den Bos et al., 2014; Xenidou-Dervou et al., 2013; Passolunghi & 

Lanfranchi, 2012). We were interested in controlling for all aspects of WM capacity; therefore, 

we used both math-specific, i.e., entailing numbers, and not math-specific WM tasks. Moreover, 

we assessed both the ability of only retaining visuospatial or phonological information (VSSP 

and PL, respectively), as well as their interaction with the CE component (Repovs & Baddeley, 

2006). Children’s WM capacities were assessed in kindergarten, Grade 1 and Grade 2.  

 2.3.3.2.1 Visuospatial Sketchpad (VSSP). The VSSP component of WM was assessed with 

the “Cross Matrix”. The Cross Matrix is identical to the well-known Dot Matrix of the AWMA 

battery; only in this version dots were replaced with crosses in order to exclude confounding 

factors with our nonsymbolic tasks that entailed dots. In this task the child saw a 4 x 4 matrix in 

which a cross appeared and disappeared. The child was instructed to remember the location of 

the cross and point to the correct box where the cross had previously appeared. A point was 

awarded for every correct response. After four correctly responded trials, the child was 

automatically advanced to the next level of difficulty, where one extra cross appeared. The task’s 

levels of difficulty ranged from one up to five series. A correct response necessitated recalling 

correctly both the location and the right order in which the crosses appeared on the screen. If the 

child made three errors within one level of difficulty, the task was automatically terminated. The 

outcome measure entailed the total number of correct responses.  

 2.3.3.2.2 Phonological Loop (PL). Children’s PL capacity was assessed with the: “Word 

Recall Forward” and the “Digit Recall Forward” task. In the Word Recall, the child heard a 

series of unrelated, high frequency words, which had to be later recalled correctly and in the right 

order. The Digit Recall task was the same as the word recall task, only now the child had to 
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recall correctly and in the right order digits instead of words. Scoring and task progression rules 

were identical to the VSSP tasks. 

 2.3.3.2.3 Central Executive (CE).  The CE can be fractionated on the basis of the 

information that is being manipulated within ones WM (Repovs & Baddeley, 2006). We, 

therefore, used three tasks to assess the children’s CE capacity: the “Word Recall Backwards” 

(for not math-specific information) and the “Digit Recall Backwards” task (for math-specific 

phonological information) and the Odd One Out (for visuospatial information). The Word Recall 

Backwards and Digit Recall Backwards tasks were similar to the Word Recall Forward and Digit 

Recall Forward tasks; only now the child was required to recall the words in the reversed order. 

The Odd One Out task started with the child seeing three shapes and was asked to point to the 

shape, which differed from the other two. The shapes would then disappear from the screen and 

the child had to point to the location of the previously located odd one out shape. With increasing 

levels of difficulty, the set of presented shapes increased. A response was registered as correct 

when the child pointed out correctly and in the correct order the location of the odd shapes. Task 

progression rules were identical to the Cross Matrix task. 

3. Results 

 Table 2 depicts descriptive statistics on math achievement performance and the control 

measures. Table A1 (Appendix) depicts the correlations between accuracy and RT in the four 

magnitude comparison measures: nonsymbolic and symbolic sequential-large and simultaneous-

small across the three years of measurement (kindergarten, grade 1 and grade 2), and math 

achievement. There was no indication for an accuracy-RT trade-off between these four measures 

and general math achievement. Also, the correlations between the accuracy and RT data in the 
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sequential-large measures did not indicate any accuracy-RT trade-off. There was a small 

indication of such a trade-off amongst the data of the simultaneous-small measures. Most 

correlations in this case were relatively small (the highest one was r = .22). In large samples such 

as the current, however, even small correlations become significant. Taken together, these results 

suggested that accuracy and RT data should be examined separately in the subsequent analyses. 

In Table A1, one notices moderate to large correlations (Cohen, 1992) amongst corresponding 

longitudinal nonsymbolic and symbolic measures in both accuracy and RT.  

- Insert Table 1 - 

- Insert Table 2 – 

 

3.1 Comparing Developmental Trajectories 

 To compare the developmental trajectories of nonsymbolic and symbolic simultaneous-

small and sequential-large magnitude comparison accuracy, we conducted a 3 (Year: 

kindergarten, grade 1, grade 2) x 2 (Measure: simultaneous-small and sequential-large) x 2 

(Stimulus: nonsymbolic and symbolic) repeated measures ANOVA. In the case of violation of 

the assumption of sphericity, degrees of freedom were corrected using Greenhouse-Geisser 

estimates. As expected, we found a significant Year by Task by Stimulus interaction effect, 

F(1.83, 598.48) = 111.05, p < .001, ηp
2

 = .25 (Figure 2A and 2B). Therefore, the two measures 

and the two stimuli formats demonstrated different developmental trajectories. To unravel the 

simple effects, two additional analyses were conducted for each measure (simultaneous-small 

and sequential-large). For the simultaneous-small tasks, results demonstrated only main effects 

of Year, F(1.54, 509.6) =133.38, p < .001, ηp
2

 = .29  and Stimulus, F(1, 330) = 141.28, p < .001, 
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ηp
2

 = .30  (Figure 2A), indicating that performance in the nonsymbolic and the symbolic task 

increased in a similar manner across the grades. Inspecting Figure 2A, though, one notices that 

there was a ceiling effect in this measure. For the sequential-large tasks, results showed 

significant main effects for Year, F(1.96, 643.86) = 447.95, p < .001, ηp
2
 = .58, and Stimulus, 

F(1, 328) = 135.61, p < .001, ηp
2

 = .29, but also an interaction effect, F(1.92, 631.17) = 135.61, p 

< .001, ηp
2

 = .35 (Figure 2B). Thus, as expected, nonsymbolic and symbolic performance in the 

large-sequential task format demonstrated different developmental trajectories. Performance in 

the symbolic condition underwent larger developmental growth than its nonsymbolic 

counterpart.  

 The same analyses were conducted with the four measures’ RT data. Once again, the 3 x 2 x 

2 repeated measures ANOVA showed a significant 3-way interaction: Year by Task by Stimulus, 

F(1.81, 594.59) = 7.86, p = .001, ηp
2
 = .02. For the simultaneous-small task, RT results 

demonstrated significant Year, F(1.59, 526.04) = 309.05, p < .001, ηp
2

 = .48, and Stimulus, F(1, 

330) = 164.95, p < .001, ηp
2

 = .33, main effects but this time also the expected Year by Stimulus 

interaction effect, F(1.63, 539.34) = 81.22, p < .001, ηp
2

 = .20  (Figure 2C). For the sequential-

large, as in the case of the accuracy data, we found significant Year, F(1.78, 583.18) = 270.21, p 

< .001, ηp
2

 = .45, and Stimulus, F(1, 328) = 156.1, p < .001, ηp
2

 = .32, as well as the expected 

Year by Stimulus interaction effect, F(1.83, 600.75) = 17.92, p < .001, ηp
2

 = .05 (Figure 2D). 

Thus, in line with our hypotheses, our findings confirmed that the two measures demonstrate 

different developmental trajectories. Furthermore, as hypothesized, nonsymbolic and symbolic 

magnitude comparison processing in both measures demonstrated different developmental 

trajectories.  

- Insert Figure 2 – 



LONGITUDINAL PREDICTORS OF MATHEMATICS 24 

 

3.2 Predicting Future Mathematics Achievement  

  For the research question 2A, we sought to identify how the unique predictive power of the 

different nonsymbolic and symbolic magnitude processing skills changes across grades when 

predicting distant maths achievement. Therefore, we conducted a series of multiple linear 

regression analyses, one for each year, controlling for age, initial IQ and performance in the PL, 

VSSP and CE WM tasks in the respective year. One regression analysis for each grade was 

conducted by entering all variables in one step.  This was done separately for magnitude 

comparison accuracy and RT data (Table 3). In the case of the accuracy scores, F-tests indicated 

that all models significantly explained variance in grade 2 general math achievement: 

kindergarten, F(12, 298) = 15.12, p < .001, Adj. R2 = 0.35 , grade 1, F(12, 299) = 17.16, p < 

.001, Adj. R2 = 0.38  and grade 2, F(12, 293) = 13.46, p < .001, Adj. R2 = 0.33. In kindergarten 

and grade 1, both nonsymbolic and symbolic sequential-large magnitude processing uniquely 

predicted distant math achievement above and beyond WM skills and IQ (Table 3). We further 

compared the nonsymbolic and symbolic regression coefficients (Neter, Wasserman, & Kutner, 

1985) and found that symbolic sequential-large was a better predictor of math achievement both 

in kindergarten (p = .000) as well as in grade 1 (p = .011) than the nonsymbolic one. In grade 2, 

out of the four magnitude comparison predictors assessed in the beginning of grade 2, only 

symbolic sequential-large performance explained unique variance in math achievement at the 

end of the grade.  

 Also in the case of the RTs, F-tests showed that all models significantly explained variance 

in grade 2 general math achievement: kindergarten, F(12, 298) = 10.89, p < .001, Adj. R2 = 0.28, 
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grade 1, F(12, 299) = 12.95, p < .001, Adj. R2 = 0.34 and grade 2, F(12, 293) = 15.69, p < .001, 

Adj. R2 = 0.37. In this case, only the symbolic magnitude comparison predictors reached 

significance (Table 3). Speed in comparing small number digits in kindergarten, and large 

numerosities in grade 1 and grade 2 uniquely predicted distal math achievement above and 

beyond nonsymbolic magnitude processing speed, WM resources and initial IQ.  

 

- Insert Table 3 – 

- Insert Table 4 – 

  

Inspecting Table 3 one notices that not only does symbolic comparison, as assessed with the 

sequential-large measure, appears to be an important predictor of children’s future mathematics 

in every grade, but also its regression coefficient seems to be comparable to that of initial IQ. So, 

we further compared the regression coefficients of IQ and symbolic sequential-large comparison 

accuracy in each grade. In kindergarten, symbolic comparison was a significantly stronger 

predictor than that of IQ (p = .042). In grade 1, the two predictors were equally important (p= 

.312), and in grade 2 IQ was a stronger predictor than symbolic comparison (p = .010).  

 The previous regression analyses examined how magnitude comparison measures uniquely 

contributed to future mathematical achievement at each grade (kindergarten, grade 1 and grade 

2). However, given the developmental design of our study, we were also interested in examining, 

whether magnitude comparison performance in the subsequent years (grade 1 and 2) improve the 

prediction of future maths achievement over and above the kindergarten predictors (Research 

question 2B). Also, which of the magnitude comparison measures uniquely contributed to 
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children’s future mathematical achievement across all grades, taking into account the fact that 

grade 1 magnitude comparison correlates with kindergarten magnitude comparison etc. (research 

question 2C). In other words, we aimed to control for the shared variance that each nonsymbolic 

or symbolic predictor had with the same predictor in the other years. Therefore, we conducted 

two hierarchical linear regression analyses, one for magnitude comparison accuracy, and one for 

magnitude comparison RT, controlling for age, initial IQ and children’s developing WM abilities 

(Table 5). In these models, in Step 1 we entered age, IQ and children’s WM capacities and in 

each next step we entered their performance in the four magnitude comparison measures in each 

year (Kindergarten: Step 2, Grade 1: Step 3, Grade 2: Step 4). As we had multiple WM variables 

measured in each year, and we were only interested in controlling for WM as a general construct, 

we computed composite scores of performance across the three years in each WM task, i.e., one 

composite score for performance in the Dot Matrix task across kindergarten, grade 1 and grade 2, 

and similarly for the Odd One Out, the Digit Recall Forward, the Digit Recall Backwards, Word 

Recall Forward and Word Recall Backwards task.  

 In the case of the model with the magnitude comparison accuracy data, results showed that 

the model significantly changed with each step [Step 1: F (8, 289) = 20.24, p < .001, Step 2: F 

(4, 285) = 8.28, p < .001, F (4, 281) = 7.09, p < .001], except for Step 4, F (4, 277) = 1.50, p = 

.203. Thus, magnitude comparison accuracy in Grade 2 did not improve the prediction of future 

maths achievement. Table 4 depicts the regression coefficients in the final step (Step 4) showing 

the unique contribution of each predictor across all years. All models explained variance in 

future mathematics achievement: Step 1: F(8, 289) = 20.24, p < .001, Adj. R2 = .34, Step 2: F(12, 

285) = 17.61, p < .001, Adj. R2 = .40, Step 3: F(16, 281) = 16.11, p < .001, Adj. R2 = .45, Step 4: 

F(20, 277) = 13.28, p < .001, Adj. R2 = 0.45. Once again, it was evident (Table 5) that 
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performance in the symbolic sequential-large measure in every grade (kindergarten, grade 1 and 

grade 2) uniquely predicted future mathematical achievement above and beyond domain-general 

capacities and nonsymbolic processing. Its regression coefficient appeared to be comparable to 

IQ, therefore we compared the coefficients of IQ with each symbolic sequential-large predictor 

and found that in all cases they were equally important: kindergarten (p = .060), grade 1 (p = 

.298) and grade 2 (p = .151). This time, only kindergarten nonsymbolic sequential-large 

comparison uniquely predicted future mathematics achievement.  

 With the magnitude comparison RT data, the model significantly changed with each step 

[Step 1: F (8, 289) = 20.24, p < .001, Step 2: F (4, 285) = 2.35, p = .055 (marginally 

significant), F (4, 281) = 3.70, p = .006, Step 4: F (4, 277) = 3.54, p = .008]. So, the addition 

of the RT magnitude predictors of both subsequent years significantly improved the prediction 

model. All models explained variance in future mathematics achievement: Step 1: F(8, 289) = 

20.24, p < .001, Adj. R2 = .34, Step 2: F(12, 285) = 14.53, p < .001, Adj. R2 = .35, Step 3: F(16, 

281) = 12.23, p < .001, Adj. R2 = .38, Step 4: F(20, 277) = 10.85, p < .001, Adj. R2 = .40. The 

two far right columns in Table 5 depict the regression coefficients in the final step of the 

regression (Step 4), showing the unique contribution of each predictor across all years. This time 

only RT in grade 2 symbolic sequential-large magnitude comparison uniquely predicted future 

mathematical achievement and its regression coefficient was significantly larger than that of IQ 

(p = .002)3.   

                                                 
3 We also ran latent growth models with the intercept and slope in each magnitude comparison task (accuracy and RT) data as 
predictors of future mathematics achievement. The main outcomes were similar to the ones reported with the hierarchical 
regression analyses. In essence, latent growth modeling revealed that even though various nonsymbolic and symbolic magnitude 
measures correlated with children’s individual differences at the kindergarten stage (i.e., initial status), when it came to potential 
for developmental change, only individual developmental growth in the symbolic sequential-large magnitude comparison 
measure correlated with children’s future mathematical achievement. For clarity reasons, however, we only report the regression 
analyses results, where it was also possible to control for domain general capacities. 
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- Insert Table 5 – 

4. Discussion 

The present study’s findings shed further light onto the roles that nonsymbolic and 

symbolic magnitude comparison skills play in the transition from kindergarten to formal 

schooling (grade 1 and grade 2) and try to reconcile existing contradictory findings in the 

literature (for reviews see De Smedt et al., 2013; Feigenson et al., 2013). For the first time, a 

single large sample of children was assessed on two different commonly used nonsymbolic and 

symbolic magnitude comparison measures from kindergarten through to grade 2. We also 

assessed the children’s IQ in kindergarten, their developing WM abilities (in kindergarten, grade 

1 and grade 2), and their general mathematical achievement at the end of grade 2. Our results 

showed that: 1) As expected, with formal education, symbolic processing demonstrated larger 

developmental growth across the three grades than nonsymbolic processing. 2) Performance on 

the two different types of measures, widely used so far to assess nonsymbolic or symbolic 

magnitude comparison skills, also followed different developmental trajectories. This indicated 

that measures that differ on the basis of number ranges and design characteristics should not be 

addressed as interchangeable measures within the literature. Comparison measures, such as the 

simultaneous-small one in the present study, which include small numbers that are presented 

simultaneously, are easy for children and demonstrate a ceiling effect early on in development. 

3) The predictive role of nonsymbolic and symbolic comparison skills dynamically changed 

across grades. Both nonsymbolic and symbolic magnitude comparison – as assessed with 

measures that include large numbers and sequential steps – uniquely predicted children’s future 
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mathematical achievement in kindergarten above and beyond IQ and WM abilities. With the start 

of formal mathematics education in school, however, symbolic comparison took over as the sole 

unique magnitude comparison predictor of future mathematics. In general, symbolic magnitude 

comparison was consistently a more robust and consistent predictor of future general 

mathematical achievement than nonsymbolic and its predictive power was mostly similar or even 

stronger to that of IQ.  

4.1. Nonsymbolic versus Symbolic Developmental Rates 

The fact that we share a cognitive ability with other species – the “innate” ability to 

estimate abstract quantities in nature, i.e., the ANS – generates a lot of questions. How does this 

evolutionary ancient ontogenetic and phylogenetic cognitive system relate to our ability as 

humans to use symbols to represent quantities precisely? It has often been assumed that symbolic 

representations directly map one-to-one onto our readily accessible nonsymbolic representations 

(Lipton & Spelke, 2005; Mundy & Gilmore, 2009; Piazza & Izard, 2009). If that were the case 

then one may expect that symbolic and nonsymbolic magnitude processing would demonstrate, 

quantitatively similar developmental growth rates. Our results, however, with two different 

magnitude comparison measures appear to indicate that this may not be the case (see Lyons et 

at., 2012; Matejko & Ansari, 2016). Nonsymbolic and symbolic magnitude comparison 

processing demonstrated different developmental pathways as in the case of nonsymbolic and 

symbolic approximate arithmetic (Xenidou-Dervou, Gilmore, van der Schoot, & van Lieshout, 

2015a). Of course, non-parallel developmental curves do not automatically imply that the two 

abilities are completely disconnected. Perhaps the ANS partially influences symbolic magnitude 

at the early stages of development (Xenidou-Dervou et al., 2013), and this directionality may 

change later on in development (Noël & Rousselle, 2011) or both abilities could start to affect 
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each other reciprocally (Mussolin, Nys, Leybaert, & Content, 2016). Nevertheless, our results 

appear to indicate that symbolic processing is influenced more by formal education and 

experience than nonsymbolic processing. Growth in symbolic magnitude comparison with 

education can be primarily attributed to children’s increasing understanding of the place-value 

system (Nuerk et al., 2004) and increase in mathematical knowledge in general, since the 

relationship between symbolic processing and mathematical achievement can be bidirectional 

(Case et al., 1997; Friso-van den Bos, et al., 2015). An alternative theoretical account for the 

observed larger developmental growth in symbolic comparison compared to nonsymbolic, could 

be that children do actually use the ANS for symbolic processing, but need to learn the Arabic 

numerals better to access it (Rouselle & Noël, 2007).  

4.2. Different Magnitude Measures 

Beyond the stimulus distinction though (nonsymbolic versus symbolic), another 

distinction between magnitude comparison skills is the type of measure used to assess the 

nonsymbolic or the symbolic system. Researchers so far have been using various different types 

of measures interchangeably. However, these measures differ on the basis of multiple design 

characteristics. In this study, we used two of such widely used types of measures, which differed 

both on the basis of numerical range (1 to 9 vs. 6 to 70) as well as the presentation format (i.e., 

numbers presented simultaneously or in sequential steps). We assumed that this distinction might 

be a source of the contradictory findings evidenced in the literature. Indeed, our findings 

revealed that performance in the two different measures, both in the case of nonsymbolic 

processing as well as in symbolic processing, follow different developmental trajectories. 

Specifically, the measures that make use of numbers ranging from 1-9 presented in simultaneous 

steps, quickly reached ceiling effects for accuracy (see Figure 2A). In contrast, larger 
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developmental growth was evident in children’s performance in the sequential-large measures 

(nonsymbolic and symbolic, with numbers ranging from 6 to 70 presented in sequential steps). In 

the literature, the simultaneous-small measures have often been used, and ceiling effects are 

thought to be circumvented with the use of RT data. However, our results showed that accuracy 

and RT data followed different developmental trajectories. The evidently disconnected 

developmental trajectories of the two different types of measures raise concerns as to how the 

nonsymbolic and the symbolic system are currently being assessed. The fact that small numbers 

are processed differently than large numbers should not be forgotten (Feigenson, Dehaene, & 

Spelke, 2004; Nuerk et al., 2004). Also, different number ranges employ different WM resources 

(see Xenidou-Dervou et al., 2014; 2015b) and the role of WM depends on the design 

characteristics of a given cognitive task and the age of the participants (Friso-van den Bos et al., 

2013; Rasmussen & Bisanz, 2005; Simmons, Willis, & Adams, 2012; Xenidou-Dervou et al., 

2015b).  

4.3. Magnitude Comparison Skills as Longitudinal Predictors of Mathematics  

As outlined in the introduction, due to the contradictory findings across the literature the 

unique predictive roles of nonsymbolic and symbolic processing skills have been unclear (for 

reviews see De Smedt et al., 2013; Feigenson et al., 2013): Which ability explains children’s 

individual differences in mathematical achievement at the early stages of development? 

Nonsymbolic, symbolic magnitude processing, or both? To address this question, we first ran 

regression analyses to identify the unique predictive role of the magnitude comparison skills for 

each year (kindergarten, grade 1 and grade 2). With the accuracy data (Table 3), we found that 

in kindergarten and grade 1, both nonsymbolic and symbolic sequential-large magnitude 

comparison played a unique role in predicting distant math achievement (Gilmore et al., 2010; 
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Hornung et al., 2014). They were unique longitudinal predictors above and beyond all WM 

capacities, age and IQ. Symbolic sequential-large magnitude comparison was consistently a 

stronger predictor compared to its nonsymbolic counterpart and noticeably its predictive power 

was even stronger than IQ in kindergarten and similar to IQ in grade 1. In grade 2, symbolic 

sequential-large magnitude comparison was the only magnitude comparison skill that explained 

unique variance in children’s general mathematical achievement longitudinally beyond domain-

general capacities.  

Secondly, we examined which magnitude comparison skill explained individual 

differences in children’s future mathematical achievement across all three years (Table 5), 

controlling this way for test-retest effects. Although in the previous analyses we found several 

magnitude comparison accuracy variables predicting distant mathematics achievement year after 

year, the hierarchical regressions showed whether this meant that the predictive power of the 

model (in terms of explained variance) became stronger with the addition of each subsequent 

year. This was true for the addition of the magnitude comparison predictors of grade 1. This was 

probably the result of the increased importance of the symbolic comparison predictors. The 

inclusion of the predictors of grade 2, however, did not yield a gain in the predictive power of the 

model. Although the separate regression analysis of the last year showed the importance of the 

symbolic comparison predictors in that year, the inclusion of the magnitude comparison 

predictors of the last year apparently did not add new information to the prediction model. This 

suggests that a kind of stabilization of the prediction took place in favor of the grade 1 symbolic 

sequential-large magnitude comparison predictor. This time nonsymbolic sequential-large 

performance explained unique variance only in kindergarten and its predictive power was 

relatively small (see also Schneider et al., 2016). Symbolic sequential-large magnitude 



LONGITUDINAL PREDICTORS OF MATHEMATICS 33 

comparison, however, took over, as expected, as a robust unique predictor of future mathematics 

across all three years (De Smedt et al., 2013) and its predictive strength was similar to that of IQ. 

Although domain-general capacities were only used as control measures in the present study, it 

should be noted that of course, as expected, IQ and different WM abilities – especially the CE 

component – were consistently significant predictors of children’s future mathematical 

achievement (De Smedt, Janssen, et al., 2009; DeStefano & LeFevre, 2004; Geary et al., 2009; 

Geary, Hoard & Nugent, 2012; Raghubar et al., 2010). 

Our regression findings also empirically verified the assumption that RT and accuracy 

data yield different patterns of results (De Smedt et al., 2013). With respect to the speed of 

comparing nonsymbolic or symbolic magnitudes (RT), only the symbolic measures explained 

individual differences in mathematical achievement longitudinally. When regressions were run 

for each year (Table 4), the simultaneous-small symbolic measure appeared to play a unique role 

in kindergarten and the symbolic sequential-large in grades 1 and 2, indicating a developmental 

shift from small to large numbers with the start of formal schooling. In the hierarchical 

regression analysis, where data from all three years were entered step by step, the prediction 

model improved with the addition of each subsequent year (Table 5). In this case, only grade 2 

RT in the symbolic-sequential large magnitude comparison measure uniquely explained 

children’s future mathematical achievement. Its predictive power was even stronger than that of 

IQ.  

The fact that kindergarten nonsymbolic performance predicted future mathematics 

achievement above and beyond all the assessed domain-general capacities and symbolic 

processing, appears to support the assumption that the ANS may play a unique predictive role in 

mathematics achievement at the initial stages of development. Alternatively, research suggests 
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that nonsymbolic effects may in fact be an artefact of the inhibitory demands entailed in 

nonsymbolic comparison tasks (Gilmore, et al., 2013). Although we assessed and controlled for 

children’s central executive WM capacity, which as a cognitive construct is considered to 

incorporate inhibition abilities (Pureza, Jacobsen, Oliveira, & Fonseca, 2011), we did not assess 

children’s inhibition skills per se. Future research should address this limitation and examine 

whether nonsymbolic sequential-large performance can uniquely predict children’s mathematics 

achievement beyond any inhibitory control capacities.  

Nevertheless, our findings clearly support the predominance of symbolic processing and 

its growth as a unique, robust and consistent predictor of children’s future mathematics 

achievement (De Smedt et al., 2013; Lyons et al., 2014). This finding supports the assumption 

that good knowledge of the numerical meaning of symbolic numbers, rather than their 

nonsymbolic representations, is a fundamental precursor of children’s mathematical development 

(De Smedt et al., 2009; Sasanguie et al., 2011). Alternatively, perhaps the predominance of 

symbolic processing could be attributed to children’s individual differences in their ability to 

access the ANS from symbols and not their ability to distinguish numerosities per se (Rouselle & 

Noël, 2007). It should be noted, however, that this assumption was not tested per se in this study 

and it does not fully explain our results since we found nonsymbolic processing to be a 

significant unique predictor too at the kindergarten stage, beyond their symbolic skills (although 

see the aforementioned alternative explanation concerning the role of inhibition). To be able to 

address directly the question of whether children differ on the basis of their ability to access the 

ANS via symbolic processing, future research should examine longitudinally children’s ability to 

map number symbols to nonsymbolic quantities and the other way around using mapping tasks 

(Mundy & Gilmore, 2009).  
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Interestingly, the regression results further revealed how previous contradictory findings 

could be attributed to the type of magnitude measure that is used to assess nonsymbolic or the 

symbolic abilities. As in previous studies, we found no evidence for the nonsymbolic 

simultaneous-small measure uniquely predicting mathematics achievement at any stage with 

either accuracy or RT data (Bartelet et al., 2014; Holloway & Ansari, 2009; Lyons et al., 2014; 

Sasanguie et al., 2011, 2014, 2013). Only the sequential-large nonsymbolic measure played a 

unique predictive role in kindergarten. In the case of the symbolic measures, the simultaneous-

small one was once again a poor predictor compared to its sequential-large counterpart. As 

mentioned earlier, performance in both simultaneous-small measures demonstrated ceiling 

effects early on in development (see Figure 2A) and thus could not explain individual differences 

in children’s mathematical achievement. But RT in these measures did not prove to be better 

predictors either, with the exception only of RT in the symbolic simultaneous-small measure in 

kindergarten. It should be reiterated that the focus of this study was not the sequential vs. 

simultaneous, or small vs. large distinction; future research should experimentally address the 

cognitive mechanisms underlying performance in these different types of measures. 

Nevertheless, our findings indicate that performance in the nonsymbolic and symbolic 

sequential-large measures are better predictors of children’s future mathematical achievement 

than their simultaneous-small counterparts. 

4.4. Concluding Remarks 

The “nonsymbolic versus symbolic” debate is actually similar to the “nature versus 

nurture” debate. Admittedly, the assumption that we have an “innate” ability, the ANS, to 

estimate and manipulate nonsymbolic quantities in nature and that this ability may foster our 

mathematical achievement comprises a very compelling story (Dehaene, 2011; Feigenson et al., 



LONGITUDINAL PREDICTORS OF MATHEMATICS 36 

2004, 2013; Starr et al., 2013). On the other hand, the assumption that nonsymbolic processing 

does not play a predictive role in the early developmental steps of mathematical achievement and 

what is of primary importance is how well children learn to compare symbolic numerals (De 

Smedt et al., 2013, 2009; Lyons et al., 2014; Noël & Rousselle, 2011; Sasanguie et al., 2014), is 

also quite a compelling theoretical account primarily because symbolic skills can potentially be 

easier to enhance by learning and instruction than innate skills. The present study demonstrated 

that the contradictory findings in the literature could be attributed to the developmental stage one 

is examining and the type of measure or data (accuracy or RT) one uses. The ANS, as an 

intuitive, readily accessible, nonverbal cognitive system, may play a unique role in the 

development of general mathematics achievement only until the start of formal schooling. At this 

early developmental stage, it appears to be a unique predictor of children’s future mathematical 

achievement beyond IQ and WM. Symbolic processing, however, appears to have its own 

developmental growth rate, which is affected more by development and education than 

nonsymbolic processing and it is a robust and consistent precursor of children’s future 

mathematics achievement across all three grades (kindergarten, grade 1 and grade 2) above and 

beyond domain-general capacities such as WM abilities and IQ. Contrary to the ANS, symbolic 

processing and growth necessitates the coordination of the multiple meanings of number (Case et 

al., 1997; Griffin, Case, & Siegler, 1994), i.e., knowledge of Arabic digits, their order, their 

phonological representations and place-value knowledge (Lyons & Beilock, 2011, Sasanguie & 

Reynvoet, 2014, Xenidou-Dervou et al., 2015a). Notably, we found that its predictive power was 

comparable and even stronger at times to that of kindergarten IQ. 

These findings bring forth important implications for educational assessment and 

practice. Our results appear to suggest that, besides domain general capacities such as IQ, 
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symbolic magnitude comparison skills could potentially be used as a screening tool for 

identifying children with difficulties in mathematics. Also, future research should further 

examine with experimental studies whether improvement in mathematical achievement is 

achieved after training children’s symbolic magnitude comparison skills (for a review see De 

Smedt et al., 2013). The fact that symbolic processing skills are likely affected by development 

and education and predict children’s future mathematical achievement across all three grades 

(kindergarten up to grade 2), implies that the enhancement of this skill could potentially 

influence their future general mathematical achievement.  



LONGITUDINAL PREDICTORS OF MATHEMATICS 38 

References 

Alloway, T. P. (2007). Automated Working Memory Assessment. London, UK: Pearson 
Assessment. (Translated and reproduced by permission of Pearson Assessment). 

Alloway, T. P., Gathercole, S. E., Willis, C., & Adams, A. (2004). A structural analysis of 
working memory and related cognitive skills in young children. Journal of Experimental 
Child Psychology, 87, 85–106. doi:10.1016/j.jecp.2003.10.002 

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews. 
Neuroscience, 4, 829–39. doi:10.1038/nrn1201 

Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of 
Psychology, 63, 1–29. doi:10.1146/annurev-psych-120710-100422 

Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing 
measures in kindergarten explain unique variability in first-grade arithmetic proficiency? 
Journal of Experimental Child Psychology, 117C, 12–28. doi:10.1016/j.jecp.2013.08.010 

Barth, H., La Mont, K., Lipton, J., Dehaene, S., Kanwisher, N., & Spelke, E. (2006). Non-
symbolic arithmetic in adults and young children. Cognition, 98, 199–222. 
doi:10.1016/j.cognition.2004.09.011 

Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in 
preschool children. Proceedings of the National Academy of Sciences of the United States of 
America, 102, 14116–21. doi:10.1073/pnas.0505512102 

Case, R., Okamoto, Y., Griffin, S., McKeough, A., Bleiker, C., Henderson, B., Stephenson, 
K.M., Siegler, R.S., &  Keating, D.P. (1997). The role of central conceptual structures in the 
development of children's thought. Monographs of the Society for Research in Child 
Development, 61, 1-295. doi: 10.2307/1166077 

Collom, R., Escorial, S., Shih, P. C., & Privado, J. (2007). Fluid intelligence, memory span, and 
temperament difficulties predict academic performance of young adolescents. Personality 
and Individual Differences, 42, 1503-14. doi:10.1016/j.paid.2006.10.023 

De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? 
Numerical magnitude processing in first graders with mathematical difficulties. Journal of 
Experimental Child Psychology, 108, 278–92. doi:10.1016/j.jecp.2010.09.003 

De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). 
Working memory and individual differences in mathematics achievement: a longitudinal 
study from first grade to second grade. Journal of Experimental Child Psychology, 103, 
186–201. doi:10.1016/j.jecp.2009.01.004 

De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-
symbolic numerical magnitude processing relate to individual differences in children’s 
mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience 
and Education, 1–8. doi:10.1016/j.tine.2013.06.001 

De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical 
magnitude comparison for individual differences in mathematics achievement. Journal of 
Experimental Child Psychology, 103, 469–79. doi:10.1016/j.jecp.2009.01.010 



LONGITUDINAL PREDICTORS OF MATHEMATICS 39 

Dehaene, S., Izard, V., & Piazza, M. (2005). Control over non-numerical parameters in 
numerosity experiments. Unpublished manuscript (available on www. unicog. org). 

Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics, Revised and 
Updated Edition. Oxford University Press, USA. Retrieved from 
http://www.amazon.com/The-Number-Sense-Creates-Mathematics/dp/0199753873 

DeStefano, D., & LeFevre, J. (2004). The role of working memory in mental arithmetic. 
European Journal of Cognitive Psychology, 16, 353–386. doi:10.1080/09541440244000328 

Dougherty, C. (2003). Numeracy, literacy and earnings: evidence from the National Longitudinal 
Survey of Youth. Economics of Education Review, 22, 511–521. doi:10.1016/S0272-
7757(03)00040-2 

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive 
Sciences, 8, 307–14. doi:10.1016/j.tics.2004.05.002 

Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links Between the Intuitive Sense of 
Number and Formal Mathematics Ability. Child Development Perspectives, 7, 74–79. 
doi:10.1111/cdep.12019 

Friso-van den Bos, I., Kroesbergen, E. H., & van Luit, J. E. H. (2014). Number sense in 
kindergarten children: Factor structure and working memory predictors. Learning and 
Individual Differences, 33, 23–29. doi:10.1016/j.lindif.2014.05.003 

Friso-van den Bos, I., Kroesbergen, E. H., Van Luit, J. E. H., Xenidou-Dervou, I., Jonkman, L. 
M., Van der Schoot, M., & Van Lieshout, E. C. D. M. (2015). Longitudinal development of 
number line estimation and mathematics performance in primary school children. Journal of 
Experimental Child Psychology, 134, 12–29. doi:10.1016/j.jecp.2015.02.002 

Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). 
Working memory and mathematics in primary school children: A meta-analysis. 
Educational Research Review, 10, 29–44. doi:10.1016/j.edurev.2013.05.003 

Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-
grade predictors of mathematical learning disability: A latent class trajectory analysis. 
Cognitive Development, 24, 411–429. doi:10.1016/j.cogdev.2009.10.001 

Geary, D. C., Hoard, M. K., & Nugent, L. (2012). Independent contributions of the central 
executive, intelligence, and in-class attentive behavior to developmental change in the 
strategies used to solve addition problems. Journal of Experimental Child Psychology, 113, 
49-65. doi: 10.1016/j.jecp.2012.03.003 

Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its 
continuous visual properties. Journal of Experimental Psychology. General, 141, 642–8. 
doi:10.1037/a0026218 

Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M. (2013). 
Individual differences in inhibitory control, not non-verbal number acuity, correlate with 
mathematics achievement. PloS One, 8(6), e67374. doi:10.1371/journal.pone.0067374 

Gilmore, C., Attridge, N., De Smedt, B., & Inglis, M. (2014). Measuring the approximate 
number system in children: Exploring the relationships among different tasks. Learning and 
Individual Differences, 29, 50–58. doi:10.1016/j.lindif.2013.10.004 



LONGITUDINAL PREDICTORS OF MATHEMATICS 40 

Gilmore, C., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. The 
Quarterly Journal of Experimental Psychology, 64, 2099–2109. 

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic arithmetic knowledge 
without instruction. Nature, 447(7144), 589–91. doi:10.1038/nature05850 

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and 
mathematics achievement in the first year of formal schooling. Cognition, 115, 394–406. 
doi:10.1016/j.cognition.2010.02.002 

Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children's arithmetic 
development: it is number knowledge, not the approximate number sense, that counts. 
Psychological Science, 25, 789-98. doi: 10.1177/0956797613516471 

Griffin, S. A., Case, R., & Siegler, R. S. (1994). Rightstart: Providing the central conceptual 
prerequisites for first formal learning of arithmetic to students at risk for school failure. In 
McGilly, K. (Ed.) Classroom Lessons: Integrating Cognitive Theory and Classroom 
Practice, pp. 25-49, Cambridge, MA:MIT Press 

Gullick, M. M., Sprute, L. a., & Temple, E. (2011). Individual differences in working memory, 
nonverbal IQ, and mathematics achievement and brain mechanisms associated with 
symbolic and nonsymbolic number processing. Learning and Individual Differences, 21, 
644–654. doi:10.1016/j.lindif.2010.10.003 

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number 
Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. 
Developmental Psychology, 44, 1457–65. doi:10.1037/a0012682 

Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in children’s 
development of number comparison. Developmental Science, 11, 644–9. 
doi:10.1111/j.1467-7687.2008.00712.x 

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the 
numerical distance effect and individual differences in children’s mathematics achievement. 
Journal of Experimental Child Psychology, 103, 17–29. doi:10.1016/j.jecp.2008.04.001 

Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics 
achievement: the contributions of domain-general cognitive abilities, nonverbal number 
sense, and early number competence. Frontiers in Psychology, 5, 272. 
doi:10.3389/fpsyg.2014.00272 

Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number 
practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131, 92–
107. doi:10.1016/j.cognition.2013.12.007 

Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity 
correlates with symbolic mathematics achievement: but only in children. Psychonomic 
Bulletin & Review, 18, 1222–9. doi:10.3758/s13423-011-0154-1 

Janssen, J., Verhelst, N., Engelen, R., & Scheltens, F. (2010). Wetenschappelijke 
verantwoording van de toetsen LOVS Rekenen-Wiskunde voor groep 3 tot en met 8 
[Scientific justification of the mathematics test for Grade 1 until Grade 6]. Arnhem, 
Netherlands: Cito. 

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate 



LONGITUDINAL PREDICTORS OF MATHEMATICS 41 

number system correlates with school math ability. Developmental Science, 14, 1292–300. 
doi:10.1111/j.1467-7687.2011.01080.x 

Lipton, J. S., & Spelke, E. S. (2005). Preschool children’s mapping of number words to 
nonsymbolic numerosities. Child Development, 76, 978–88. doi:10.1111/j.1467-
8624.2005.00891.x 

Lyons, I. M., Ansari, D., & Beilock, S. L. (2012). Symbolic estrangement: evidence against a 
strong association between numerical symbols and the quantities they represent. Journal of 
Experimental Psychology. General, 141, 635–41. doi:10.1037/a0027248 

Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors 
of arithmetic success in grades 1-6. Developmental Science, 1–13. doi:10.1111/desc.12152 

Matejko, A. A., & Ansari, D. (2016) Trajectories of Symbolic and Nonsymbolic Magnitude 
Processing in the First Year of Formal Schooling. PLoS ONE 11(3): e0149863. 
doi:10.1371/journal.pone.0149863 

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers ’ Precision of the 
Approximate Number System Predicts Later School Mathematics Performance, 6, 1–8. 
doi:10.1371/journal.pone.0023749 

Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic 
representations of number. Journal of Experimental Child Psychology, 103, 490–502. 
doi:10.1016/j.jecp.2009.02.003 

Mussolin, C., Nys, J., Leybaert, J., & Content, A. (2016). How approximate and exact number 
skills are related to each other across development: A review. Developmental Review, 39. 
1-15, doi: 10.1016/j.dr.2014.11.001 

Neter, J., Wasserman, W., & Kutner, M.H. (1985). Applied linear statistical models. Homewood, 
IL: Irwin. 

Noël, M.-P., & Rousselle, L. (2011). Developmental Changes in the Profiles of Dyscalculia: An 
Explanation Based on a Double Exact-and-Approximate Number Representation Model. 
Frontiers in Human Neuroscience, 5(December), 165. doi:10.3389/fnhum.2011.00165 

Nuerk, H-C., Kaufmann, L., Zoppoth, S., & Willmes, K. (2004). On the development of the 
mental number line: More, less, or never holistic with increasing age? Developmental 
Psychology, 40, 1199-1211. doi: 10.1037/0012-1649.40.6.1199 

Passolunghi, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of 
mathematical achievement: A longitudinal study from kindergarten to first grade. British 
Journal of Educational Psychology, 82, 42-63. 

Piazza, M., & Izard, V. (2009). How humans count: numerosity and the parietal cortex. The 
Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 15, 
261–73. doi:10.1177/1073858409333073 

Pureza, J. R., Jacobsen, G. M., Oliveira, R. G., & Fonseca, R. P.  (2011). Relationships between 
executive functions tasks in late adulthood. Psychology & Neuroscience, 4, 369-376. doi: 
10.3922/j.psns.2011.3.010 

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A 
review of developmental, individual difference, and cognitive approaches. Learning and 



LONGITUDINAL PREDICTORS OF MATHEMATICS 42 

Individual Differences, 20, 110–122. doi:10.1016/j.lindif.2009.10.005 

Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. 
Journal of Experimental Child Psychology, 91(2), 137–157. doi:10.1016/j.jecp.2005.01.004 

Repovs, G., & Baddeley,  a. (2006). The multi-component model of working memory: 
explorations in experimental cognitive psychology. Neuroscience, 139, 5–21. 
doi:10.1016/j.neuroscience.2005.12.061. doi:10.1111/j.2044-8279.2011.02039.x 

Reyna, V. F., & Brainerd, C. J. (2007). The importance of mathematics in health and human 
judgment: Numeracy, risk communication, and medical decision making. Learning and 
Individual Differences, 17, 147–159. doi:10.1016/j.lindif.2007.03.010 

Ritchie, S. (2015). Intelligence: All that matters. London: John Murray Learning. 

Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2011). Association between basic 
numerical abilities and mathematics achievement. The British Journal of Developmental 
Psychology, 30, 344–57. doi:10.1111/j.2044-835X.2011.02048.x 

Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number 
system is not predictive for symbolic number processing in kindergarteners. Quarterly 
Journal of Experimental Psychology, 67, 37–41. doi:10.1080/17470218.2013.803581 

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number 
sense, symbolic number processing, or number-space mappings: What underlies 
mathematics achievement? Journal of Experimental Child Psychology, 114, 418–31. 
doi:10.1016/j.jecp.2012.10.012 

Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for Mathematics 
Achievement? Evidence From a Longitudinal Study. Mind, Brain, and Education, 6, 119–
128. doi:10.1111/j.1751-228X.2012.01147.x 

Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. 
(2016). Associations of non-symbolic and symbolic numerical magnitude processing with 
mathematical competence: a meta-analysis. Developmental Science. doi: 
10.1111/desc.12372 

Sekuler, R., & Mierkiewicz, D. (1977). Children’s Judgments of Numerical Inequality. Child 
Development, 48, 630–633. doi:10.2307/1128664 

Simmons, F. R., Willis, C., & Adams, A.-M. (2012). Different components of working memory 
have different relationships with different mathematical skills. Journal of Experimental 
Child Psychology, 111, 139–55. doi:10.1016/j.jecp.2011.08.011 

Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts 
mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 1–6. 
doi:10.1073/pnas.1302751110 

Xenidou-Dervou, I., De Smedt, B., van der Schoot, M., & van Lieshout, E. C. D. M. (2013). 
Individual differences in kindergarten math achievement: The integrative roles of 
approximation skills and working memory. Learning and Individual Differences, 28, 119–
129. doi:10.1016/j.lindif.2013.09.012 

Xenidou-Dervou, I., Gilmore, C., van der Schoot, M., & van Lieshout, E. C. D. M. (2015a). The 
developmental onset of symbolic approximation: beyond nonsymbolic representations, the 



LONGITUDINAL PREDICTORS OF MATHEMATICS 43 

language of numbers matters. Frontiers in Psychology, 6(April), 1–13. 
doi:10.3389/fpsyg.2015.00487 

Xenidou-Dervou, I., van der Schoot, M., & van Lieshout, E. C. D. M. (2015b). Working memory 
and number line representations in single-digit addition: Approximate versus exact, 
nonsymbolic versus symbolic. The Quarterly Journal of Experimental Psychology, 68, 1–
20. doi:10.1080/17470218.2014.977303 

Xenidou-Dervou, I., van Lieshout, E. C. D. M., & van der Schoot, M. (2014). Working memory 
in nonsymbolic approximate arithmetic processing: a dual-task study with preschoolers. 
Cognitive Science, 38, 101–27. doi:10.1111/cogs.12053 

 

 

 

 

 

  



LONGITUDINAL PREDICTORS OF MATHEMATICS 44 

Table 1. 
 
Measurement timeline. 

 Kindergarten  Grade 1  Grade 2 

Task T1 T2  T3 T4  T5 T6 

IQ X        

Dot Matrix, Odd One Out X   X   X  

Word RF, Word RB  X   X   X 

Digit RF, Digit RB  X   X   X 

Small-simultaneous X    X  X  

Large-sequential X   X   X  

General Math Achievement        X 

 

Note. T1, T3, T5 measurement waves took place in the 1st half of the given academic year 
(November-December) and T2, T4, T6 in the 2nd half (May-June). The General Math 
Achievement test (CITO) was administered in June, at the end of grade 2. RF = Recall Forward, 
RB = Recall Backwards. 
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Table 2. 

Means (and SDs) of the Control Measures and the Dependent Variable (Mathematics 

Achievement). 

  Kindergarten Grade 1 Grade 2  

 M (SD) Max M (SD) Max M (SD) Max Th.Max 

IQ 21.24 (5.08) 34    34 36 

Dot Matrix 9.97 (2.73) 16 13.24 (3.00) 20 15.29  (3.03) 24 24 

Odd One Out 8.47 (2.88) 15 11.39 (2.56) 20 13.27  (2.58) 20 24 

Word RF 13.89 (2.48) 22 14.98 (2.65) 28 15.77  (2.48) 21 28 

Word RB 4.96 (1.82) 13 6.14 (2.11) 18 6.81  (2.26) 14 24 

Digit RF 14.02 (2.42) 21 15.83 (2.41) 24 17.04  (2.48) 25 32 

Digit RB 4.54 (1.64) 12 6.20 (2.03) 14 7.11  (2.32) 15 28 

Maths 
Achievement 

    67.06 (14.73) 109 109 

  

Note. RF = Recall Forward, RB = Recall Backwards, Th. Max = theoretical maximum score 
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Table 3.  1 

Accuracy (%) Per Year on the Magnitude Comparison Measures Predicting Maths Achievement at the End of Grade 2, While 2 

Controlling for WM capacities on the Given Year, initial IQ and Age. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

Note. General math achievement at the end of grade 2 was the dependent variable for all models. Significant magnitude comparison predictors in 13 

bold. SeqL = Sequential-Large, SimS = Simultaneous-Small, RF = Recall Forward, RB = Recall Backwards, *** p ≤ .001, ** p ≤ .01, * p ≤ 14 

.05,  † = p < .10 15 

 16 

  
 

Kindergarten   Grade 1   Grade 2 

Predictors B (SE) β   B (SE) β   B (SE) β 
Age -6.32 (2.03) -.15** -1.98 (2.06) -.04 1.30 (2.19) .03 
IQ 0.57 (0.16) .19*** 0.51 (0.16) .17*** 0.76 (0.16) .25*** 
Word RF -0.22 (0.37) -.04 0.38 (0.32) .07 -0.04 (0.38) -.01 
Word RB 1.03 (0.45) .12* 0.31 (0.36) .04 0.76 (0.37) .12* 
Digit RF 1.23 (0.39) .19** 0.38 (0.37) .06 0.85 (0.40) .14* 
Digit RB 1.15 (0.46) .13* 0.33 (0.38) .04 0.68 (0.38) .11+ 
Dot Matrix 0.29 (0.28) .05 0.70 (0.26) .14** 0.34 (0.28) .07 
Odd One Out 0.14 (0.25) .03 0.46 (0.30) .08 0.62 (0.32) .11+  
Nonsymbolic SimS 0.10 (0.06) .10† 0.07 (0.08) .04 0.04 (0.10) .02 
Symbolic SimS 0.02 (0.06) .02 0.07 (0.10) .03 0.09 (0.15) .03 
Nonsymbolic SeqL 0.13 (0.06) .12* 0.13 (0.06) .10* 0.09 (0.06) .08 
Symbolic SeqL 0.23 (0.05) .24***   0.34 (0.05) .33***   0.31 (0.09) .18*** 
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Table 4.  1 

Average RT (ms) Per Year on the Magnitude Comparison Measures Predicting Maths Achievement at the End of Grade 2, While 2 

Controlling for WM capacities on the Given Year, initial IQ and Age. 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

Note. General math achievement at the end of grade 2 was the dependent variable for all models. Significant magnitude comparison predictors in 14 

bold. SeqL = Sequential-Large, SimS = Simultaneous-Small, RF = Recall Forward, RB = Recall Backwards, *** p ≤ .001, ** p ≤ .01, * p ≤ 15 

.05, † = p < .10 16 

  
 

Kindergarten   Grade 1   Grade 2 

Predictors B (SE) β   B (SE) β   B (SE) β 
Age -4.08 (2.14) -.10† -1.73 (2.17) -.04 1.18 (2.14) .03 
IQ 0.72 (0.16) .24*** 0.64 (0.16) .21*** 0.71 (0.15) .23*** 
Word RF -0.08 (0.40) -.01 0.33 (0.34) .06 0.06 (0.36) .01 
Word RB 1.13 (0.48) .14* 0.32 (0.38) .05 0.75 (0.37) .11* 
Digit RF 1.26 (0.42) .20** 0.78 (0.38) .12* 0.85 (0.39) .14* 
Digit RB 1.30 (0.49) .14** 0.74 (0.40) .10+ 0.82 (0.37) .13* 
Dot Matrix 0.44 (0.30) .08 0.74 (0.28) .15** 0.26 (0.28) .05 
Odd One Out 0.11 (0.26) .02 0.61 (0.32) .11† 0.67 (0.31) .12* 
Nonsymbolic SimS 0.00 (0.00) .07 -0.01 (0.00) -.10† 0.00 (0.00) .05 
Symbolic SimS -0.01 (0.00) -.16** -0.00 (0.00) -.06 -0.01 (0.00) -.12†  
Nonsymbolic SeqL -0.00 (0.00) -.05 -0.00 (0.00)  -.06 0.00 (0.00) .01 
Symbolic SeqL 0.00 (0.00) -.01   -0.00 (0.00) -.13*   -0.01 (0.00) -.25*** 
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Table 5.  1 

Results on the Last Step of the Hierarchical Regressions Focusing on How Accuracy (%) and RT 2 

Across All years on the Magnitude Comparison Measures Predict Future Maths Achievement, 3 

while Controlling for Developing WM Capacities, Initial IQ and Age. 4 

 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 

 30 
 31 
 32 
Note. General mathematics achievement at the end of grade 2 was the dependent variable for 33 
both models. Significant magnitude comparison coefficients in bold. Comp = composite score, 34 
RF = Recall Forward, RB = Recall Backwards SeqL = Sequential-Large, SimS = Simultaneous-35 
Small, K = kindergarten, G1 = grade 1, G2 = grade 2. *** p ≤ .001, ** p ≤ .01, * p ≤ .05, † = p < 36 
.10 37 

 38 
 39 

 Magn. Accuracy  Magn. RT 
Predictors B (Std. Error) β  B (Std. Error) β 

Age -4.26 (1.93) -.10*  -2.03(2.00) -.05 
IQ 0.43 (0.15) .14**  0.50 (0.16) .16** 
Dot Matrix comp 0.83 (0.43) .11†  0.85 (0.45) .12†  
Odd One Out comp 0.55 (0.45) .07  0.76 (0.46) .09 
Word RF comp -0.22 (0.52) -.03  -0.08 (0.54)  -.01 
Word RB comp 0.90 (0.56) .09  0.88 (0.60) .09 
Digit RF comp 0.86 (0.54) .12  0.91 (0.56) .13 
Digit RB comp 0.71 (0.58) .07  1.76 (0.61) .18** 
Nonsymbolic SimS K 0.04 (0.06) .04  0.00 (0.00) .10† 
Symbolic SimS K -0.06 (0.06) -.06  -0.00 (0.00) -.09 
Nonsymbolic SeqL K 0.12 (0.06) .10*  0.00 (0.00) -.01 
Symbolic SeqL K 0.13 (0.05) .14**  0.00 (0.00) .00 
Nonsymbolic SimS G1 -0.00 (0.08) -.00  -0.01 (0.00) -.10 
Symbolic SimS G1 0.07 (0.10) .03  0.00 (0.00) .07 
Nonsymbolic SeqL G1 0.03 (0.06) .02  -0.00 (0.00) -.03 
Symbolic SeqL G1 0.26 (0.06) .25***  -0.00 (0.00) -.06 
Nonsymbolic SimS G2 -0.04 (0.10) -.02  0.00 (0.00) .02 
Symbolic SeqL G2 0.03 (0.14) .01  -0.01 (0.00) -.09 
Nonsymbolic SeqL G2 0.03 (0.06) .03  0.00 (0.00) .04 
Symbolic SeqL G2 0.20 (0.09) .11*  -0.01 (0.00) -.20** 
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Figure captions 

Figure 1. A) Example trials from the nonsymbolic and symbolic simultaneous-small magnitude comparison tasks. B) Example trials 

from the nonsymbolic and symbolic sequential-large magnitude comparison tasks. 

Figure 2. Development in nonsymbolic and symbolic simultaneous-small and sequential-large comparison accuracy (A, B) and RT 

respectively (C, D) from kindergarten up to grade 2. Nonsymbolic and symbolic magnitude processing demonstrated different 

developmental trajectories. Also, the two measures (simultaneous-small vs. sequential-large) had different developmental trajectories. 
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Figure 1. 
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Figure 2. 



Appendix 
 

Table A1. Correlations Between Nonsymbolic and Symbolic Sequential-Large and Simultaneous-Small Accuracy (1-12) and RT (13-
24) across the 3 years as well as General Math Achievement at the end of Grade 2. 

 
 

    Math 1 2 3 4 5 6 7 8 9 10 11 

1 NS SeqL Y1 .24***            

2 NS SeqL Y2 .28*** .32***           

3 NS SeqL Y3 .26*** .25*** .41***          

4 S SeqL Y1 .37*** .20*** .24*** .19***         

5 S SeqL Y2 .50*** ns .25*** .19*** .38***        

6 S SeqL Y3 .33*** .17** .19*** .28*** .24*** .32***       

7 NS SimS Y1 .24*** .29*** .27*** .27*** .22*** .28*** .22***      

8 NS SimS Y2 .17** .12* .12* .17** ns .14* .22*** .21***     

9 NS SimS Y3 .12* .13* .14* .14* ns .15** .22*** .18*** .28***    

10 S SimS Y1 .27*** .21*** .13* .26*** .28*** .34*** .31*** .44*** .18*** .22***   

11 S SimS Y2 .16** ns ns ns ns .23*** .13* .16** .30*** .19*** .21***  

12 S SimS Y3 .13* ns .13* .14* ns .12* .20*** .16** .20*** .44*** .14* .25*** 

13 NS SeqL Y1_RT -.11* ns ns ns -.23*** -.18*** -.15** ns ns ns -.14* ns 

14 NS SeqL Y2_RT -.18*** ns ns ns -.17** -.21*** -.18** ns -.14* ns -.14* ns 

15 NS SeqL Y3_RT -.26*** ns -.13* ns -.22*** -.19*** -.12* ns ns ns ns ns 

16 S SeqL Y1_RT ns ns ns ns ns ns ns ns ns ns ns ns 

17 S SeqL Y2_RT -.21*** -.13* ns ns -.30*** -.17** -.17** ns ns ns -.16** ns 

18 S SeqL Y3_RT -.38*** ns -.13* ns -.35*** -.32*** -.19*** -.22*** ns ns -.18** -.11* 

19 NS SimS Y1_RT ns ns ns ns -.15** ns -.17** .18*** ns ns ns ns 

20 NS SimS Y2_RT -.25*** -.12* -.17** ns -.22*** -.16** -.26*** ns .15** ns ns .17** 

21 NS SimS Y3_RT -.20*** ns -.13* -.12* -.14* -.16** -.17** ns ns .20*** ns ns 

22 S SimS Y1_RT -.18*** -.13* ns ns -.24*** -.19*** -.12* ns ns ns .22*** ns 

23 S SimS Y2_RT -.28*** -19*** -.13* -.13* -.26*** -.25*** -.22*** -.16** ns ns -.18*** .13* 

24 S SimS Y3_RT -.31*** -15** -.13* -.17** -.27*** -.29*** -.25*** -.11* ns ns -.12* ns 



 

Table A.1. 
 
Continued… 

 

 

 

 

 

 

 

 

Note. NS = Nonsymbolic, S = Symbolic, SeqL = Sequential-Large, SimS = Simultaneous-Small, Y1 = Kindergarten, Y2 = Grade 1, 

Y3 = Grade 2, ns = nonsignificant.  

*** p ≤ .001, ** p ≤ .01, * p ≤ .05

    12 13 14 15 16 17 18 19 20 21 22 23 

13 NS SeqL Y1_RT ns            

14 NS SeqL Y2_RT ns .28***           

15 NS SeqL Y3_RT ns .15** .44***          

16 S SeqL Y1_RT ns .44*** .21*** .15**         

17 S SeqL Y2_RT ns .26*** .57*** .38*** .24***        

18 S SeqL Y3_RT ns .23*** .46*** .65*** ns .42***       

19 NS SimS Y1_RT ns .23*** ns ns .26*** ns ns      

20 NS SimS Y2_RT .11* ns .14* .25*** ns .15** .27*** .23***     

21 NS SimS Y3_RT .17** .16** .15** .25*** ns .11* .33*** .25*** .41***    

22 S SimS Y1_RT ns .26*** .18*** .16** .23*** .23*** .24*** .45*** .21*** .21***   

23 S SimS Y2_RT ns .23*** .25*** .31*** ns .33*** .40*** .17** .58*** .40*** .30***  

24 S SimS Y3_RT .19*** .28*** .22*** .37*** ns .27*** .49*** .18** .39*** .61*** .27*** .59*** 
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