
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Dot comparison stimuli are not all alike: the effect of different visual controlsDot comparison stimuli are not all alike: the effect of different visual controls
on ANS measurementon ANS measurement

PLEASE CITE THE PUBLISHED VERSION

http://dx.doi.org/10.1016/j.actpsy.2015.09.007

PUBLISHER

© Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:
https://creativecommons.org/licenses/by-nc-nd/4.0/

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Clayton, Sarah, Camilla K. Gilmore, and Matthew Inglis. 2019. “Dot Comparison Stimuli Are Not All Alike: The
Effect of Different Visual Controls on ANS Measurement”. figshare. https://hdl.handle.net/2134/19152.

https://lboro.figshare.com/
http://dx.doi.org/10.1016/j.actpsy.2015.09.007


 1 

 

 

 

 

 

 

Dot comparison stimuli are not all alike:  

The effect of different visual controls on ANS measurement 

 

Sarah Clayton, Camilla Gilmore and Matthew Inglis 

Mathematics Education Centre, Loughborough University, UK 

 

 

Author Note 

Sarah Clayton, s.clayton2@lboro.ac.uk; Camilla Gilmore, C.Gilmore@lboro.ac.uk; 

Matthew Inglis, M.J.Inglis@lboro.ac.uk; Mathematics Education Centre, Loughborough 

University, Loughborough, LE11 3TU, United Kingdom. 

This research was supported by a Royal Society Dorothy Hodgkin Fellowship (C.G.), and 

a Royal Society Worshipful Company of Actuaries Research Fellowship (M.I.). 

Correspondence concerning this paper should be addressed to Sarah Clayton, 

Mathematics Education Centre, Loughborough University, Loughborough, LE11 3TU, United 

Kingdom. Email: s.clayton2@lboro.ac.uk. Telephone: +44 (0)1509 22 8212.  

The full data set and stimuli for this study are available to download 

at http://dx.doi.org/10.6084/m9.figshare.1546747.    



 2 

Abstract 

The most common method of indexing Approximate Number System (ANS) acuity is to use a 

nonsymbolic dot comparison task. Currently there is no standard protocol for creating the dot 

array stimuli and it is unclear whether tasks that control for different visual cues, such as 

cumulative surface area and convex hull size, measure the same cognitive constructs. Here we 

investigated how the accuracy and reliability of magnitude judgements is influenced by visual 

controls through a comparison of performance on dot comparison trials created with two 

standard methods: the Panamath program and Gebuis & Reynvoet’s script. Fifty-one adult 

participants completed blocks of trials employing images constructed using the two protocols 

twice to obtain a measure of immediate test-retest reliability. We found no significant 

correlation between participants’ accuracy scores on trials created with the two protocols, 

suggesting that tasks employing these protocols may measure different cognitive constructs. 

Additionally, there were significant differences in the test-retest reliabilities for trials created 

with each protocol. Finally, strong congruency effects for convex hull size were found for both 

sets of protocol trials, which provides some clarification for conflicting results in the literature.  

Keywords: Dot comparison, Approximate Number System, Nonsymbolic magnitude 

comparison, Visual cues, Congruency effects, Numerical cognition 
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Dot comparison stimuli are not all alike: The effect of different visual controls on ANS 

measurement 

1. Introduction 

The accuracy with which individuals can estimate numerical magnitude information has 

received increasing attention over the past decade. The Approximate Number System (ANS) is 

believed to be a cognitive system that underlies this sense of number (Dehaene, 1997). Many 

researchers have shown that individuals with superior performance on tasks designed to 

measure ANS acuity also demonstrate more advanced mathematical abilities (Halberda, Ly, 

Wilmer, Naiman, & Germine, 2012; Halberda, Mazzocco, & Feigenson, 2008; Libertus, 

Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda, 2012; Mazzocco, Feigenson, & 

Halberda, 2011a; Piazza et al., 2010, Piazza, Pica, Izard, Spelke, & Dehaene, 2013; see Chen & Li, 

2014 for a meta-analysis). This link has generated a great deal of interest from cognitive 

psychologists and education researchers, yet there are also many published studies which have 

failed to demonstrate this correlation (see De Smedt, Noël, Gilmore, & Ansari, 2013, for a 

review). The link between ANS tasks and mathematics and its implications have been widely 

debated, however previous research has given only limited attention to the development of the 

tasks assumed to provide a valid measure of ANS acuity. In this manuscript we explore how 

different protocols used by researchers to create dot comparison task stimuli may influence 

participant judgements and task reliabilities.  

Several different tasks have been developed to measure ANS acuity, ranging from infant 

preferential looking change detection paradigms to more complex nonsymbolic arithmetic 

tasks (Barth, La Mont, Lipton, & Spelke, 2005; Xu & Spelke, 2000). A standard method of 

measuring ANS acuity in both children and adults is a dot comparison task. This task involves 

the brief presentation of two arrays of dots, usually on a computer, and requires the 

participant to select the more numerous array on multiple trials. The dot arrays are presented 
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too briefly to count and so it is thought that individuals use ANS representations to determine 

which array contains the most dots (Dehaene, 1997). Performance can be measured by 

accuracy scores, reaction times or internal Weber fractions (referred to as ‘w’ scores) which 

provide estimates of the acuity of approximate representations (Inglis & Gilmore, 2014; Price, 

Palmer, Battista, & Ansari, 2012). ANS acuities vary between individuals, and those with a 

more precise ANS are thought to generate numerosity representations closer to the actual 

numerosity and consequently perform better on nonsymbolic comparison tasks (Dehaene, 

1997). Performance on ANS tasks is also dependent on the ratio between the two numerosities 

being compared; participants are more likely to make an error when comparing 19 vs. 20 dots 

than when comparing 10 vs 20 dots.  

There is currently no universal procedure for dot comparison tasks and consequently 

different studies have used diverse methods of presentation. The dot array stimuli can either 

be presented simultaneously side-by-side (e.g. Gilmore et al., 2013), sequentially (e.g. Ansari, 

Lyons, van Eimeren, & Xu, 2007) or in an intermixed manner (e.g. Halberda et al., 2008). Dot 

comparison tasks can also vary by the number of trials used, the stimuli presentation times and 

the range of numerosities represented. Finally, and importantly for this study, there is no 

consensus on how the visual characteristics of the dot arrays should be controlled.  

The stimuli in dot comparison tasks are produced with controls for visual properties 

which have the potential to bias responses to numerosity information. The visual 

characteristics of the dot arrays are therefore manipulated so that they are not consistently 

informative of number, i.e. the larger array is not always the more numerous. One common 

method of ensuring this is to control for the cumulative surface area of the dots. This is done by 

creating 50% of the task trials so that the numerically larger set is also larger in cumulative 

surface area, and 50% of the trials so that the numerically larger set is smaller (or sometimes 

equal) in cumculative surface area. This is the default setting on the Panamath software 
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(Halberda et al., 2008), and this type of control has been used in multiple studies of the ANS 

(e.g. Halberda et al., 2008; Halberda & Feigenson, 2008; Halberda et al., 2012; Hellgren, 

Halberda, Forsman, Ådén, & Libertus, 2013; Libertus et al., 2011; Libertus et al., 2012; Libertus, 

Feigenson, & Halberda, 2013a, 2013b; Mazzocco et al. 2011a; Mazzocco, Feigenson, & 

Halberda, 2011b;  Odic, Libertus, Feigenson, & Halberda, 2013; Odic, Hock, & Halberda, 2014). 

In addition to the manipulation of cumulative surface area, Pica, Lemer, Izard and Dehaene 

(2004) also controlled for ‘occupied area’ often referred to as convex hull, or the total 

‘envelope area’ taken up by the dot arrays. This method creates 50% of trials where the larger 

numerosity contained a larger cumulative surface area and a larger convex hull, and 50% of the 

trials where the larger numerosity contained a smaller cumulative surface area and a smaller 

convex hull. Gebuis and Reynvoet (2011), developed this idea further to create a freely 

available online script whereby both cumulative surface area and convex hull are accounted 

for, but where trials could be ‘partially congruent’ in terms of either visual cue and numerosity.  

To elucidate, this method creates the following trials: 25% of stimuli pairs where the more 

numerous array also has a larger cumulative surface area and a larger convex hull than its 

comparison array; 25% of trials where the more numerous array has a smaller cumulative 

surface area and a smaller convex hull; 25% of trials where the more numerous array has a 

larger cumulative surface area but a smaller convex hull; and 25% of trials where the more 

numerous array has a smaller cumulative surface area but a larger convex hull. More recently 

researchers are starting to use this more comprehensive method of visual cue control (Defever, 

Reynvoet, & Gebuis, 2013; Gilmore et al., 2013; Inglis & Gilmore, 2013, 2014; Szűcs, Nobes, 

Devine, Gabriel, & Gebuis, 2013). Some researchers also report the average dot size and the 

density of the dots in the arrays, however these factors are highly correlated with cumulative 

surface area (Gebuis & Reynvoet, 2012), and so there is no substantial benefit to examining 

them as separate variables.  
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It is currently unknown whether the same skills underlie performance on all variants of 

dot comparison tasks. There have been some attempts to disentangle the cognitive demands 

and reliabilities of certain variations of the tasks (Price et al., 2012;  Smets, Gebuis, Defever, & 

Reynvoet, 2014), however these have mainly focussed on the format of the tasks rather than 

the visual characteristics of the stimuli.  Price and colleagues highlighted the lack of 

consistency in stimuli presentation between different tasks and report that the simultaneous 

presentation of the dot array stimuli produces the most robust effects. Sequential and 

intermixed presentation of stimuli may introduce extraneous cognitive demands such as 

increased working memory demands or the requirement to segregate visual information (Price 

et al., 2012). Inglis and Gilmore (2013) showed that differences in stimuli display times can 

influence performance on a dot comparison task. The longer an individual is given to process 

the information, the more precise the resultant ANS representation. This implies that different 

processes may be recruited to complete ANS tasks in which the stimuli are presented very 

briefly, to ANS tasks where the participant is able to view the stimuli until they respond. 

Consequently, it is difficult to meaningfully compare findings from studies that use different 

stimuli presentation times. Recently, Smets et al. (2014) have shown that different versions of 

nonsymbolic comparison tasks completed by the same participants provided significantly 

different ANS acuity estimates. They investigated concurrent performance on three versions of 

a dot comparison task: a standard dot comparison task, a same-different task in which 

participants were required to indicate whether two arrays represented the same or a different 

numerosity, as well as a change detection task in which participants were required to select 

which of two streams of changing arrays alternated between numerosities (e.g. 8-16-8 as 

opposed to 16-16-16). They found that the ANS acuity measures, both accuracy scores and w 

scores, obtained from each of the three tasks were not significantly correlated with each other. 
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Smets et al. (2014) conclude that there is a lack of validity across tasks that are all assumed to 

measure the ANS.  

The finding that numerous different methodological factors can influence dot 

comparison performance is problematic for the development of research into the ANS. Many 

published studies have used diverse methodologies for nonsymbolic comparison tasks which 

render it difficult to build on previous findings. There have been some suggestions that w 

scores can be used to compare performance on dot comparison tasks that use different 

methodological formats (Piazza et al., 2013), but this is unlikely to be the case given Smets et 

al.’s (2014) results. Additionally, Odic et al. (2014) found that the order of trial presentation in 

a dot comparison task significantly affected w scores in a within subjects design. Participants’ 

w scores were superior on tasks that became increasingly more difficult, in comparison to 

tasks that became increasingly easier, despite both manipulations of the study containing 

exactly the same trials overall. Consequently, as also noted by Smets et al. (2014), conclusions 

gained from the comparison of w scores across different experiments may be flawed (e.g. 

Halberda & Feigenson, 2008; Piazza et al., 2010). 

It is possible that variants of the task recruit the ANS to a different degree while also 

relying on varying levels of extraneous domain general processes. In particular it seems likely 

that inhibitory control is an important process involved in completing dot comparison tasks. 

There has been recent support for an inhibition account of performance whereby on certain 

incongruent trials of a dot comparison task, inhibition skills play a significant role (Fuhs & 

McNeil, 2013; Gilmore et al. 2013; Nys and Content 2012; Szűcs et al. 2013). Incongruent trials 

are those in which the more numerous array of the pair has smaller visual characteristics, such 

as cumulative surface area or convex hull. According to the inhibition account, participants 

may initially attempt to engage their ANS to judge which array is more numerous on all dot 

comparison trials, however, visual cues may interfere with this judgement on incongruent 
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trials. For these trials, participants must inhibit the misleading visual cues of the stimuli in 

order to respond based on numerosity, making the task more difficult.  

In direct support of the involvement of inhibition in dot comparison tasks, Cappelletti, 

Didino, Stoianov, and Zorzi (2014) have shown that older adults were particularly impaired on 

incongruent dot comparison trials, and that this impairment was correlated with poor 

inhibitory control as measured by a classic Stroop task (Stroop, 1935). Additionally, recent 

studies have found that the significant relationship between dot comparison performance and 

formal mathematics is moderated or even totally accounted for by inhibitory control skills 

(Fuhs & McNeil, 2013; Gilmore et al., 2013, Szűcs et al. 2013). Put together, it seems likely that 

some dot comparison task trials involve the recruitment of inhibitory controls skills, and it is 

possible that the way in which the visual characteristics of the stimuli are controlled may 

influence performance. 

In line with the inhibition account, some studies have shown that participants perform 

more accurately on congruent trials, where the more numerous array also has larger visual 

characteristics, than incongruent trials, where the less numerous array has larger visual 

characteristics (Barth et al., 2006; Cappelletti et al., 2014; Gilmore et al., 2013; Hurewitz et al., 

2006; Nys & Content, 2012; Szűcs et al., 2013). However, other studies have failed to find this 

effect (Odic et al., 2013, 2014), or find the opposite congruency effect (Gebuis & Van der Smagt, 

2011). It is possible that this is partly due to the diverse methodologies for controlling visual 

cues employed in the tasks. For example, unlike the protocol designed by Gebuis and Reynvoet 

(2011), some methods do not allow researchers to systematically vary the convex hull of the 

dot arrays created. Notably, studies which have not found standard congruency effects did not 

manipulate convex hull size (Gebuis & Van der Smagt, 2011; Odic et al., 2013, 2014).  It is 

therefore important to understand more about when congruency effects occur, and how both 
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convex hull size and cumulative surface area influence task performance in one group of 

participants, across trials created with different visual cue controls. 

This study aimed to investigate the reliability and concurrent validity of dot comparison 

tasks created using different stimuli protocols. We chose to examine the Panamath protocol, 

which has been widely used in ANS research and manipulates cumulative surface area, and the 

Gebuis and Reynvoet (2011) protocol which controls for both cumulative surface area and 

convex hull. We had three main research questions. First, is there a significant correlation 

between participants’ accuracy scores on dot comparison trials created with the Panamath 

protocol and trials created with the Gebuis and Reynvoet protocol? Second, are there 

significant differences in the immediate test-retest reliabilities of each measure? Finally, do the 

convex hull size and the cumulative surface area of the dot stimuli influence accuracy? The 

answers to these questions will help to inform future research about the comparability of 

different protocols used to create stimuli to investigate ANS acuity and may provide 

explanations for conflicting evidence in the existing literature.  

 

2. Method 

2.1 Participants 

Participants were 57 adult students from Loughborough University (24 Male, 33 

Female) with a mean age of 21.34 years (SD= 2.35). Participants were tested individually in a 

quiet room and were given a £3 inconvenience allowance for their time.  

 

2.2 Task 

Participants completed a nonsymbolic dot comparison task on a computer. On each trial 

they were required to select the more numerous of two dot arrays. The two arrays consisted of 

blue or yellow dots on a grey background and were presented simultaneously, side-by-side on 
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a 15” laptop screen. Participants were asked to select which array was more numerous using 

left and right keys marked on the keyboard. There were two types of dot comparison stimuli: 

arrays created using the Gebuis and Reynvoet (2011) protocol, and arrays created using 

Panamath software.  

There were eight practice trials followed by a total of 312 experimental trials, which 

were divided into four blocks. Block one consisted of 96 trials created with the Gebuis & 

Reynvoet (2011) protocol and block two consisted of 60 trials created with the Panamath 

protocol. Both blocks were then repeated so that participants completed each trial twice in 

order to gain a measure of reliability. The order of blocks was counterbalanced so that half the 

participants completed a block one first, and half completed block two first. Trials within the 

blocks were presented in a random order. Each trial began with a fixation point (600ms) 

followed by presentation of the two arrays (600ms) and finally a grey screen with a white ‘?’ 

was presented in the centre until a response was given. The task took approximately 15 

minutes to complete. 

 

2.3 Stimuli 

The Panamath protocol stimuli were downloaded from the Panamath website 

(http://www.panamath.org/9-12CollegeMaterials.zip; also used in Libertus et al., 2012). 

Panamath stimuli can be classified as “correlated” and “anti-correlated” in terms of the 

cumulative surface area of the dots1 and numerosity (Figure 1). Correlated trials included pairs 

of arrays where the more numerous array contained a larger cumulative surface area. Anti-

correlated trials included pairs where the more numerous array contained a smaller 

                                                        
1 For the stimuli used in this study we found a high correlation between cumulative surface 
area and average dot size (r = .95) and density (r =.84), so for the remainder of the paper in our 
analyses we use only cumulative surface area. 
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cumulative surface area. The colours of the dot arrays randomly alternated between blue and 

yellow on the left and right hand side of the screen. 

The Gebuis and Reynvoet (2011) stimuli were generated using a freely available Matlab 

script provided online (http://titiagebuis.eu/Materials.html, Version May 20th 2011). This 

script controlled for cumulative surface area and convex hull, and generated four image types 

per trial (Figure 2). The first (fully congruent) included pairs of arrays where the more 

numerous array had a larger cumulative surface area and a larger convex hull. The second 

(cumulative surface area incongruent, convex hull congruent) included pairs of arrays where 

the more numerous array had a smaller cumulative surface area and larger convex hull. The 

third image type (cumulative surface area congruent, convex hull incongruent) included pairs 

of arrays where the more numerous array had a larger cumulative surface area and a smaller 

convex hull. The fourth image type (fully incongruent) included pairs of arrays where the more 

numerous array had a smaller cumulative surface area and a smaller convex hull. Our intention 

was to create stimuli using the Gebuis and Reynvoet (2011) protocol that exactly matched the 

numerosities of each trial from the Panamath stimuli. However, because of limitations due to 

the different ways in which each protocol controls for visual cues, it was not possible to create 

identical sets of trials. Specifically, the Gebuis and Reynvoet script contains a warning that 

“especially when small numerosities and large number distances are used, it is unavoidable 

that strong relations between number and area subtended or circumference arise” (lines 29-32 

of script). Post hoc analyses revealed that stimuli created with this script, which were designed 

to exactly match Panamath numerosities, were indeed confounded with visual cues. 

Consequently, in order to maximize comparability with existing literature, we used the Gebuis 

and Reynvoet (2011) protocol as close to its default setting as possible, ensuring that visual 

cues were controlled as intended. This involved choosing a slightly larger range of 

numerosities (22-36) within the typical range from the literature (Dietrich, Huber, & Nuerk, 
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2015). We chose to create 96 trials, as this has previously been found to be an appropriate 

number of trials for good reliability (Inglis & Gilmore, 2014). Finally, the yellow dot arrays 

were always presented on the left of the screen, and the blue dot arrays were presented on the 

right hand side. The colours were chosen to match the colours of the stimuli created with the 

Panamath protocol, however we chose not to alternate the side that each colour appeared as 

the Panamath stimuli had an uneven number of trials of each colour per side. Summaries of the 

visual characteristics of the arrays created by each protocol are described in Table 1. 

 

Table 1 

Visual characteristics information for stimuli created with both dot comparison protocols, 

including the range of numerosities represented in the arrays, and the range of the ratios between 

the two arrays in each trial in terms of numerosity, cumulative surface area and convex hull.  

Protocol Numerosity 
Range 

Numerosity 
ratio range 

Cumulative 
surface area 
ratio range 

Convex hull 
ratio range 

Gebuis & Reynvoet (2011) 22-36 0.61- 1.64 0.10- 11.06 0.45- 2.35 

Panamath (Libertus et al., 2012) 10-24 0.50- 2.00 0.34- 1.97 0.56- 1.60 

 

3. Results 

In the sections below we first present an analysis of the characteristics of the dot stimuli 

produced by each of the protocols. Then the relationship between performance on each of the 

protocol conditions and the test-retest reliability of the trials is explored using Pearson 

correlations. Finally, a by-items ANOVA was used to investigate the influence of convex hull 

and cumulative surface area congruency on participants’ judgements. Accuracy scores on the 

dot comparison task were taken as the dependent measure throughout because accuracy has 
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been shown to be a more reliable measure of performance than w scores or numerical ratio 

effects (Inglis & Gilmore, 2014).  

Ten participants were excluded from the analysis because they did not perform 

significantly above chance on one or more blocks of the dot comparison task. This left 47 

participants in the analysis.  

 

3.1 Analysis of stimuli 

We calculated, for each of the stimuli, the convex hull and cumulative surface area for 

the blue and yellow dot arrays. To calculate the convex hull for each array we used the Graham 

Scan algorithm (Graham, 1972). Cumulative surface area was calculated by summing the 

number of coloured pixels in the display. This allowed us to obtain measurements of each trial’s 

visual characteristics using the same method for each protocol.  

This analysis confirmed that the stimuli created using the Panamath protocol did not 

systematically control convex hull size, and therefore convex hull was predictive of numerosity 

on 37 of 60 trials. This is shown in Figure 3a by the larger number of trials in the upper right 

and lower left quadrants of the graph, indicating there were significantly more convex hull 

congruent trials than convex hull incongruent trials within the Panamath protocol trials. 

Consequently, if participants were to complete the task based on convex hull size judgements 

alone (with no numerosity processing), they would score 61.67% accuracy, which would result 

in significantly above chance performance. In contrast, for trials created with the Gebuis and 

Reynvoet protocol, convex hull size was predictive of numerosity on exactly half of the trials 

(48 of 96), as shown in Figure 3b by the equal numbers of convex hull congruent and 

incongruent trials in each quadrant of the graph. Participants would not be able to perform 

above chance on these trials using a strategy purely based on convex hull size. Cumulative 

surface area was controlled appropriately and was predictive of numerosity on exactly half of 
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the trials for the Gebuis and Reynvoet protocol, and 31 out of 60 trials for the Panamath 

protocol. The number of cumulative surface area congruent and incongruent trials fell evenly 

into each quadrant of the graphs shown in Figure 3c and Figure 3d for both protocols. 

 

3.2 Relationship between performance across the two protocols 

A Pearson correlation showed that individuals’ performance on the Gebuis and 

Reynvoet protocol trials was not significantly correlated with performance on the Panamath 

protocol trials, r =.260, p = .078. Although this correlation approached significance, the 

extremely small R2 value (.07) demonstrates that only minimal variance in participant’s 

accuracy on Gebuis and Reynvoet protocol trials can be explained by their variation in 

Panamath scores. This indicates that different processes may underlie performance on dot 

comparison tasks created with different visual controls.  

 

3.3 Test-retest reliability 

All trials were presented twice within the same testing period, separated by a different 

block of trials and a short break. A Pearson correlation showed that performance on the first 

block of trials created using the Gebuis and Reynvoet protocol was significantly correlated with 

performance on the second, repeated block of these trials, r = .569, p < .001.  In comparison, 

there was a lower correlation between performances on the first and second blocks of trials 

created using the Panamath protocol, r = .286, p = .051. There were, however, substantially 

more trials created with the Gebuis and Reynvoet protocol (96 in each block), than trials 

created with the Panamath protocol (60 in each block). To allow for comparability of 

reliabilities across blocks of trials created with these two different methods, we also calculated 

the test-retest reliability of a random subset of 60 Gebuis and Reynvoet protocol trials. We 

repeated this analysis 20 times, each with a different random subset of 60 trials to ensure the 
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results were consistent. Pearson correlations showed that the test-retest reliabilities of 60 

randomly selected Gebuis and Reynvoet trials were lower than with the full set of 96 trials 

(Pearson correlation coefficients ranged between .351 and .602, mean r = .497, SD = 0.07), 

though these scores nevertheless remained higher than the Panamath test-retest reliability (r = 

.286).  

 

3.4 Congruency effects 

Using the convex hull size information obtained with the Graham Scan algorithm 

(Graham, 1972), and the number of coloured pixels in each array, we analysed congruency 

effects with a 2 (convex hull size: congruent, incongruent) × 2 (cumulative surface area size: 

congruent, incongruent) × 2 (protocol: Gebuis & Reynvoet, Panamath) between subjects, by-

items ANOVA, with mean accuracy per trial as the dependent variable. This resulted in a 

significant main effect of convex hull congruency, F(1, 304) = 317.18, p < .001; participants 

were more accurate when performing convex hull congruent trials (M = 0.88, SD = 0.12), than 

convex hull incongruent trials (M = 0.54, SD = 0.18). There were no significant main effects of 

cumulative surface area and protocol (see Table 2 for descriptive statistics).  

Interestingly, the ANOVA resulted in a statistically significant three-way interaction 

between convex hull, cumulative surface area and protocol, F(1, 304) = 9.64, p = .002. We 

explored this interaction with trials from each protocol separately. For the Gebuis and 

Reynvoet trials, there was a significant interaction between convex hull congruency and 

cumulative surface area congruency, F(1, 188) = 12.92, p < .001 (Figure 4) . This interaction 

was driven by higher performance on convex hull incongruent trials when cumulative surface 

area was congruent (M = 0.61, SD = 0.16), in comparison to convex hull and cumulative surface 

area incongruent trials (M = 0.48, SD = 0.19).  In contrast, across convex hull congruent trials, 

the cumulative surface area of the arrays did not influence accuracy scores (cumulative surface 
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area congruent: M = 0.90, SD = 0.07; cumulative surface area incongruent: M = 0.90, SD = 0.05). 

This interaction shows that, for Gebuis and Reynvoet protocol trials, convex hull congruency 

influenced performance to a greater extent that cumulative surface area congruency. 

For the Panamath trials, although we found convex hull congruency main effects that 

paralleled the Gebuis and Reynvoet trials, specifically higher performance on convex hull 

congruent in comparison to convex hull incongruent trials, we found a reverse effect for 

cumulative surface area congruency. Participants were more accurate on cumulative surface 

area incongruent trials (M = 0.79, SD = 0.22) than congruent trials (M = 0.67, SD = 0.29), 

regardless of convex hull congruency status. There was no significant interaction between 

convex hull size and cumulative surface area in these trials (Figure 5). 

 

Table 2 

Mean accuracy on trials created with either the Gebuis and Reynvoet or the Panamath protocol, 

categorised into congruent and incongruent conditions (in terms of convex hull size and 

cumulative surface area). 

Protocol 
Convex hull 

congruent 

Convex hull 

incongruent 

Cumulative 

surface area 

congruent 

Cumulative 

surface area 

incongruent 

 M SD M SD M SD M SD 

Gebuis & Reynvoet  0.90  0.06 0.55  0.18 0.76  0.19 0.69 0.25 

Panamath  0.86  0.17 0.52  0.25 0.68  0.29 0.79 0.22 

Overall 0.88 0.12 0.54 0.18 0.73 0.24 0.73 0.24 
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4. Discussion 

The present study examined in detail how the differences in two methods of controlling 

the non-numerical visual cues in dot comparison stimuli influence task accuracy and reliability. 

An important finding from this study is that dot comparison tasks created with protocols used 

by different research groups do not appear to be measuring the same construct. Participants’ 

performance on stimuli created with the Gebuis and Reynvoet (2011) protocol only explained 

7% of the variance in their performance on Panamath protocol trials, and was not significantly 

correlated. This has serious implications for researchers who wish to compare and contrast 

findings from studies that use different dot comparison task protocols. These tasks appear to 

be measuring different skills. Although the two sets of trials examined included non-identical 

numbers of trials and numerosity ranges, if both sets were providing a valid measure of the 

same underlying construct (i.e. the ANS), we would expect a substantially higher correlation. It 

must be noted that findings from Panamath protocol trials should be interpreted with caution 

due to the extremely low immediate test-retest reliability results (r = .286). Libertus et al. 

(2012) similarly found a low test-retest reliability (r = .22) for the exactly the same stimuli in 

their study when participants were re-tested with an average of 76.39 days between time one 

and time two, rather than immediately.  

Our analysis of congruency effects replicates previous research (Barth et al., 2006; 

Gilmore et al., 2013; Hurewitz et al., 2006; Nys & Content, 2012; Szűcs et al., 2013) in 

demonstrating that performance on both Panamath and Gebuis and Reynvoet stimuli is 

influenced by the congruency status of dot comparison task trials, in particular the convex hull 

size.  Moreover, our analysis demonstrates that accounting for the convex hull size as well as 

cumulative surface area is pivotal to understanding congruency effects. We have shown that 

participants are significantly more likely to respond correctly to a trial where the larger 

numerosity has a larger convex hull and larger cumulative surface area, than to a trial where 
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the smaller numerosity has a larger convex hull and larger cumulative surface area. This 

finding can provide clarification on the conflicting findings regarding congruency effects that 

have been reported in the literature to date; differences are likely due to some researchers 

failing to consider convex hull (e.g. Odic et al., 2013, 2014). The presence of convex hull 

congruency effects in trials created with both protocols provides support for the developing 

hypothesis that participants may recruit different mechanisms, such as inhibitory control 

skills, to complete incongruent trials (Fuhs & McNeil, 2013; Gilmore et al. 2013; Nys and 

Content 2012; Szűcs et al. 2013). Analogous results would not be found if we were to classify 

congruency based on total surface area alone. In fact, for trials created with the Panamath 

protocol, participants performed more accurately on trials where the larger numerosity had a 

smaller cumulative surface area. Interestingly, this result is consistent with previous research 

demonstrating that when convex hull size is kept constant in dot comparison task trials, 

participants perform better on trials that are incongruent in terms of cumulative surface area 

(Gebuis & Reynvoet, 2012). Given that there is much less range in the convex hull sizes of the 

Panamath stimuli, compared to the Gebuis and Reynvoet stimuli, our reverse congruency effect 

is in line with this finding. Our results therefore support Gebuis and Reynvoet’s (2012) 

conclusions that participants do not attend to visual cues independently, but make their 

judgements by integrating multiple visual cues.    

The findings of this study align with recent research demonstrating that methodological 

differences in tasks believed to measure the ANS have a significant impact on performance 

(Inglis & Gilmore, 2013; Price et al., 2012; Smets et al., 2014). The present study adds to the 

literature by demonstrating that the variation of control for visual cues, a factor many 

researchers have previously overlooked, has substantial influence on performance patterns. 

This finding raises issues regarding the underlying cognitive skills that play a role in the 

completion of dot comparison tasks. Researchers who use dot comparison tasks rarely use 
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identical protocols to previous published studies and consequently work that builds on 

assumptions from previous literature may be flawed. If researchers are to continue using dot 

comparison tasks, a standardised protocol must be developed to allow conclusions to be drawn 

across different studies.  

Implications of our findings also apply to the controversial link between the ANS and 

mathematics achievement. As De Smedt et al. (2013) reported, there have been numerous 

conflicting findings when ANS tasks are presented in a nonsymbolic format using dot arrays. It 

is difficult to interpret the mixed evidence of existing correlational results when we are still 

unsure of the processes that contribute to performance on dot comparison tasks. The conflict 

could be explained, at least in part, by the use of different controls for visual cues. 

To conclude, we have demonstrated that there is no correlation between adults’ 

performance on dot comparison trials created by two protocols, which use different visual cue 

controls. Therefore divergent cognitive processes appear to underlie two nonsymbolic 

comparison tasks that have previously been assumed to measure the acuity of the same 

construct: the Approximate Number System. The clarification of the existence of visual cue 

congruency effects supports the hypothesis that the visual characteristics of the stimuli, 

particularly the convex hull of an array, may inform judgements alongside numerosity 

information. For incongruent trials, where the visual cue would be an uninformative distractor 

to the task in hand, individuals may activate inhibitory control mechanisms to account for this 

and focus on numerosity. Future research should therefore recognise that dot comparison 

tasks are not pure measures of ANS acuity and should focus on exploring the potential domain 

general mechanisms that may underlie performance on different versions of this task. 

Additionally, greater attention should be paid to the reliability of the dot comparison task 

measures employed as we have demonstrated that trials created with a widely used protocol 

have unacceptably low immediate test-retest reliability. In order to advance understanding of 
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the ANS it may be necessary to focus future research efforts on continuing to develop 

nonsymbolic tasks which measure ANS acuity without the use of visual cues, such as auditory 

or tactile comparison tasks. 
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Figure 1. An example of a “correlated” (above) and “anti-correlated” (below) trial created with 

the Panamath protocol. Both images represent a 12 vs 16 dot trial. 

1. Correlated trial 

 

2. Anti-correlated trial 
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Figure 2. An example of the four image types created with the Gebuis and Reynvoet script.  All 

images represent a 22 vs. 36 dot trial. 

1. Fully congruent 

 

2. Cumulative surface area incongruent, convex hull congruent 

 

3. Cumulative surface area congruent, convex hull incongruent 

 

4. Fully incongruent 
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Figure 3. Dot comparison trials plotted in terms of the relationships between numerosity ratio 

and visual cue ratio for each protocol. (a) Numerosity ratio and convex hull ratio for Panamath 

trials, (b) numerosity ratio and convex hull ratio for Gebuis and Reynvoet trials, (c) numerosity 

ratio and cumulative surface area ratio for Panamath trials, and (d) numerosity ratio and 

cumulative surface area ratio for Gebuis and Reynvoet trials. The lines that divide the 

quadrants in this figure define the boundary of congruency effects. For each graph, the upper 

right and lower left quadrants include congruent trials; the upper left and lower right 

quadrants include incongruent trials. Axes show a logarithmic scale. 
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Figure 4. Interaction plot of mean accuracy scores on Gebuis and Reynvoet protocol trials 

calculated in terms of convex hull and cumulative surface area congruency.  
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Figure 5. Interaction plot of mean accuracy scores on Panamath protocol trials calculated in 

terms of convex hull and cumulative surface area congruency.  

 


