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Abstract: In this paper we propose an approach to analysing teacher arguments that takes into account field-

dependence–namely, in Toulmin’s sense, the dependence of warrants deployed in an argument on the field of 

activity to which the argument relates. Freeman, to circumvent issues that emerge when we attempt to determine 

the field(s) that an argument relates to, proposed a classification of warrants (a-priori, empirical, institutional and 

evaluative). Our approach to analysing teacher arguments proposes an adaptation of Freeman’s classification that 

distinguishes between: epistemological and pedagogical a-priori warrants; professional and personal empirical 

warrants; epistemological and curricular institutional warrants; and, evaluative warrants. Our proposition 

emerged from analyses conducted in the course of a written-response and interview study that engages secondary 

mathematics teachers with classroom scenarios from the mathematical areas of Analysis and Algebra. The 

scenarios are hypothetical, grounded on seminal learning and teaching issues, and likely to occur in actual 

practice. To illustrate our proposed approach to analysing teacher arguments here we draw on the data we 

collected through the use of one such scenario, the Tangent Task. We demonstrate how teacher arguments, not 

analysed for their mathematical accuracy only, can be reconsidered, arguably more productively, in the light of 

other teacher considerations and priorities: pedagogical, curricular, professional and personal.  
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Research into the complex nature of teacher knowledge and beliefs 

One of the aims of the study we draw on here is to explore teachers’ knowledge and 

beliefs, and how these transform into pedagogical practice. This transformation has been 

described before by concepts such as Chevallard’s (1985) transposition didactique, Lampert’s 

seminal work on teachers’ dilemmas and commitments (e.g. 1985), Shulman’s (1986, 1987) 

pedagogical content knowledge and Hill and Ball’s (2004) mathematical knowledge for 

teaching. Over the years these concepts have evolved–see, for example, the refinements of 

Shulman’s typology by Ball and her colleagues (e.g. Hill & Ball, 2004; Ball, Thames, & 

Phelps, 2008; etc.). Our work relates to some of these refinements and we return to these in the 

concluding parts of the paper.  

Our analyses of teacher knowledge and beliefs are at some distance from certain research 

in this area which is often conducted within a deficit paradigm, namely mainly reporting 

inconsistencies between teachers’ beliefs and their actions, or inadequacies of their 

mathematical knowledge. While much of this research has been contributing careful accounts 

of, for example, the limitations in the teachers’ subject knowledge with regard to mathematical 

reasoning (e.g. Harel & Sowder, 2007; Knuth, 2002), our aim is to tread beyond the 

identification of such limitations. In this sense we have been influenced by perspectives such 

as that of Leatham (2006) whose framework conceptualises teachers’ belief systems as 

“inherently sensible” (p. 91) rather than “inconsistent” (ibid). 

Our aims resonate with those in recent works that have addressed the complex set of 

considerations that teachers seem to take into account when they determine their actions. 

Herbst and colleagues’ (e.g. Herbst & Chazan, 2003; Miyakawa & Herbst, 2007) notion of 

practical rationality of teaching describes the complex set of teachers’ considerations in a way 

that is highly relevant to the perspective of our study.  

As Herbst and Chazan (2003) write, “individual practitioners can build their own 

mathematics teaching against the backdrop of their personal commitments and the demands of 

the institutional contexts where they work” (p. 2). “[S]chool mathematical activity”, they 
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observe, “is shaped by various (institutional, situational, epistemological, temporal, material) 

contexts where it unfolds […] as much as it is shaped by the individual characteristics of the 

agents who facilitate it” (p. 3). Our analyses aim to contribute to the discussion of “how the 

interplay of agency and structure allows (and perhaps produces) very different ‘kinds’ of 

mathematics teaching…” (p. 3). Specifically we focus on what Herbst and Chazan (2003) call 

practical rationality of teaching, “a network of dispositions activated in specific situations” (p. 

13). Dispositions, a term that Herbst and his colleagues adapt from Bourdieu, are categories of 

perception and appreciation “that help a scholar reconstruct the regulatory mechanisms of 

action in context” (p. 12).  

In agreement with Herbst and Chazan’s postulate that “conversations about a specific 

event activate certain dispositions in practitioners” (pp. 12-13), in the study we draw on here 

we invite teachers’ comments on classroom scenarios (Biza, Nardi, & Zachariades, 2007) in 

order to discern the influence of the teachers’ beliefs and knowledge on the didactical contract 

(Brousseau, 1997) they are likely to offer their students–see, for example, our account (Biza, 

Nardi, & Zachariades, 2009) of the multiple didactical contracts on the role of visualisation in 

mathematics and mathematical learning that teachers are likely to offer their students under 

those influences. From their utterances we elicit what we see as the arguments they put 

forward to support or steer away from certain pedagogical actions.  

In this paper we propose a particular approach to analysing teacher arguments, that 

emerged in the course of our data analysis. This approach involves an adaptation of Toulmin’s 

model of argumentation (1958) and Freeman’s (2005a) refinement of parts of the Toulmin 

model. In what follows first we briefly introduce Toulmin’s model and Freeman’s refinement. 

We then describe our adaptation, and how it came to be, and illustrate its employment in a 

sample of our data. Finally we conclude with a brief discussion of how our proposed approach 

fits in with other works in this area. 

Toulmin’s model of argumentation and Freeman’s classification of warrants 

Toulmin’s (1958) model describes the structure and semantic content of an informal argument. 

The model consists of six basic types of statement, each of which plays a particular role in an 

argument. The conclusion (C) is the statement of which the arguer wishes to convince an 

audience. The data (D) are the foundations on which the argument is based; this includes 
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evidence relevant to the claim being made. The warrant (W) justifies the connection between 

data and conclusion; warrants include appealing to a definition, a rule, an example, or an 

analogy. The warrant is supported by the backing (B), which presents further evidence, 

justifications or reasons. The modal qualifier or qualifier (Q) qualifies the conclusion by 

expressing degrees of the arguer’s confidence. Finally, the rebuttal (R) consists of potential 

refutations of the conclusion; rebuttals include exceptions to the conclusion or citing the 

conditions under which the conclusion would not hold. Not all of these six statements are 

always explicit in the presentation of an argument.  

Toulmin’s model has been employed by researchers in mathematics education mainly in 

order to analyse student arguments. These studies  (e.g.: Krummheuer, 1995, 2007; Yackel, 

2001, 2002; Whitenack & Knipping, 2002; Stephan & Rasmussen, 2002; Evens & Houssart, 

2004; Hoyles & Küchemann, 2002; Weber & Alcock, 2005; Pedemonte, 2005, 2007) span 

across educational levels, focus largely on arguments produced collectively and use reduced 

versions of Toulmin’s model (comprised of: conclusion, data, warrant, and backing; or, 

conclusion, data and warrant). Recently researchers (Inglis, Mejia-Ramos, & Simpson, 2007; 

Inglis & Mejia-Ramos, 2008; Giannakoulias, Mastoridis, Potari, & Zachariades, 2010) have 

argued for the importance of employing Toulmin’s full model. Inglis et al. (2007) have also 

elaborated the model by offering a classification of warrants–inductive, structural-intuitive and 

deductive–employed by the participants in their studies.  

With regard to potential variations within warrants and backings Toulmin himself refers 

to field-dependence, namely the dependence of the warrant and the backing deployed in an 

argument on the field of activity to which the argument relates. In different fields, he stresses, 

warrants will be backed in different ways (1958, p. 104). In the examples:  
A whale will be (i.e. is classifiable as) a mammal. 
A Bermudan will be (in the eyes of the law) a Briton. 
A Saudi Arabian will be (found to be) a Muslim. 

the words in parentheses indicate some of these different ways. The first warrant is backed by 

an accepted natural history classification. The second warrant appeals to the law determining 

the nationality of people born in a British colony. The third warrant may rely on statistical 

information regarding the distribution of religious affiliations amongst different nationalities.  
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The notion of field-dependence, while welcomed in principle, has also been met with 

concern by some authors. For example, Freeman (2005a) has found Toulmin’s notion of field-

dependence problematic for several reasons. It is beyond the scope of this paper to delve into a 

discussion of field but we refer the interested reader to Freeman’s work (e.g. 2005a, b). 

However, in a nutshell, the debate there and elsewhere often turns to the concern that the 

notion of field is perhaps too vague as it does not distinguish between “generally recognized 

as authority-conferring” (Freeman, 2005a, p. 333) bodies of knowledge and those that are not. 

Also it does not facilitate our capacity to “assess whether a warrant is properly backed”, 

especially if we accept that warrants in different fields are backed in different ways. Would the 

canons for such assessment be themselves “field-dependent or field-transcendent?” (p. 333), 

Freeman (2005a) wonders. 

To circumvent some of the aforementioned concerns Freeman proposes focusing on 

“grasping different sorts of connections, suggested or discovered in different ways, and backed 

or justified by different sorts of considerations” (p. 342). To this purpose he suggests replacing 

Toulmin’s notion of warrants belonging to fields with warrants classified according to the type 

of intuition, belief or prior understanding that gave rise to them. His proposed classification is 

for four types: a priori, empirical, institutional, and evaluative (p. 342). For brevity we do not 

cite here the elaboration and examples that Freeman poses as test cases for his classification 

scheme (2005a, p. 343-4). We note however that this classification emerged in parallel to his 

claim for necessary, empirical, institutional and evaluative generalizations, developed in detail 

in Chapters 6-9 by Freeman (2005b). 

In Freeman’s (2005a) words:  
This classification preserves Toulmin’s insight on the field dependency of warrants but without 
the problematic notion of field. Different warrants will be justified or backed in different ways, 
and we must look to the type of warrant to determine how this is done properly. But we do not 
classify warrants according to fields. […] If several different types of warrants are used within an 
argument, we need not puzzle over what field is involved. (p. 342) 

Freeman contends that considering warrants in the light of such classification 

circumvents all of the aforementioned concerns with the notion of field distinction and 

dependence – crucially the one regarding the assignment of a warrant to a particular field. This 

analysis, he adds, may on occasion “show that warrants are of mixed type” (p. 343). It is this 
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variation within warrants that our proposed approach to analysing teacher arguments aims to 

elaborate upon. 

A proposed approach to analysing teacher arguments  

In this paper we consider arguments put forward by secondary mathematics teachers in 

the context of their evaluation of students’ written responses to a mathematical problem, and 

of their feedback to these students. Our analysis aims to discern, differentiate and discuss the 

range of influences (epistemological, pedagogical, curricular, professional and personal) on 

the arguments teachers put forward in their scripts and interviews. We focus particularly on 

the warrants of these arguments in the light of Toulmin’s (1958) field-dependence account and 

our own adaptation of Freeman’s (2005a) classification of warrants:  

• an a priori warrant is, for example, the resorting to a mathematical theorem or 

definition (a priori-epistemological); or the resorting to a pedagogical principle (a 

priori-pedagogical);  

• an institutional warrant is, for example, a justification of a pedagogical choice on the 

grounds of it being recommended or required in a textbook (institutional-curricular); 

or on the grounds that it reflects the standard practices of the mathematics 

community (institutional-epistemological);  

• an empirical warrant is, for example, the citation of a frequent occurrence in the 

classroom (according to the arguer’s teaching experiences, empirical-professional) or 

the resorting to personal learning experiences in mathematics (empirical-personal); 

• an evaluative warrant is a justification of a pedagogical choice on the grounds of a 

personally held view, value or belief. 

We explain how this adaptation of Freeman’s classification emerged and provide 

specific examples of these four categories later in the paper. First we outline briefly the 

proposition that this paper aims to put forward in the language of the above theoretical 

foundations. 

Our work is akin to recent efforts by mathematics education researchers to revisit classic 

theoretical constructs from a more socially and institutionally aware perspective (such as 

Bingolbali and Monaghan’s (2008) revisiting of the concept image-concept definition (Tall & 
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Vinner, 1981) construct). This approach has been put robustly forward also by Chevallard's 

Anthropological Theory of Didactics (1985). We aim at an analogous revisiting of a 

theoretical construct, Toulmin’s model, originating in epistemological studies of informal 

argumentation, that has been attracting increasing interest by mathematics educators (see 

examples in the opening parts of the previous section). 

Our point is relatively simple: teachers' acceptance, skepticism or rejection of students’ 

mathematical utterances–as expressed in their evaluation of these utterances and their 

feedback to the students–does not have exclusively mathematical (epistemological) grounding. 

Their grounding is broader and includes a variety of other influences, most notably of a 

pedagogical, curricular, professional and personal nature. When a mathematics teacher, say, 

accepts what appears to be a mathematically dubious utterance by a student, the teacher might 

have dubious mathematical foundations. But s/he might as well have a perspective on the 

student's utterance that takes into account other issues that are not necessarily purely 

mathematical. In previous analyses (e.g. Biza et al., 2009) we saw this occurring time and 

again in the case of teachers’ treatment of students’ attempts at a visually-based argument. In 

what we cite later as illustrative samples from our data we identify and discuss these teacher 

perspectives in the light of the above classification of warrants (a priori, institutional, 

empirical and evaluative) in order to illuminate and elaborate those other issues.  

With our adaptation of Freeman’s classification of warrants we aim to argue that uses of 

Toulmin’s model in mathematics education contexts must acknowledge the broader warrants 

that teachers employ when they determine and justify their actions. This acknowledgement of 

the breadth and scope of these warrants may render necessary the effort to re-define our 

criteria for evaluating teachers’ arguments in a pedagogical context. Excluding a consideration 

of such a context, the use of Toulmin’s model could risk becoming yet another cog in the 

wheel of deficit discourse on teacher knowledge and beliefs. Recent considerations of the 

model (e.g. by Inglis and colleagues) have been in favour of examining the variation of 

warrants. We too are concerned with variations of warrants, albeit in the different context of 

arguments put forward by secondary mathematics teachers. Our refinement aims to be better 

attuned to the needs of studies of the practical rationality of teaching (Herbst & Chazan, 

2003). Our intentions bode well with Krummheuer’s (1995) distinction between substantial 

and analytic argumentation, where the former contrasts with the latter in its inclusion of 
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elements that are not purely logical; and with his statement that substantial argumentation “has 

a right by itself” (p. 236).  

In the following we outline how our adaptation of Freeman’s classification of warrants 

came to be and offer examples of all types of warrants in this adaptation. Before doing so we 

outline briefly the study during the analyses of which our adaptation emerged. 

The study: exploring teacher knowledge and beliefs through situation-specific 
tasks 

As much of the research into the relationship between teachers’ beliefs and pedagogical 

practice (e.g. Thompson, 1992; Leder, Pehkonen, & Törner, 2002) acknowledges, there is 

often an overt discrepancy between theoretically and out-of-context expressed teacher beliefs 

about mathematics and pedagogy and actual practice. Therefore teacher knowledge is likely to 

be better explored in situation-specific contexts (Biza et al, 2007). In this sense our study’s 

aims and rationale resonate with those of several other researchers: Herbst and colleagues’ 

(e.g. Herbst & Chazan, 2003; Miyakawa & Herbst, 2007) eliciting teachers’ practical 

rationality through discussions of video-taped lesson episodes; Kennedy’s (2002) examination 

of teachers’ “reasons for doing particular things at particular moments” (p. 357); Jacobs and 

Morita’s (2002) examination of teachers’ “ideas about what constitutes effective mathematics 

pedagogy” (p. 154) through their commenting on videos of colleagues’ lessons; etc.. 

In this study we engaged mathematics teachers with classroom scenarios which are 

hypothetical–yet grounded on learning and teaching issues that previous research and 

experience have highlighted as seminal–and likely to occur in actual practice. The 

mathematically and pedagogically specific situations that we invite teachers to engage with are 

in the form of tasks (Biza et al., 2007) with the following structure:  

• Solving (and reflecting upon the learning objectives within) a mathematical problem 

• Examining flawed (fictional) student solution(s) 

• Describing, in writing, feedback to the student(s) 

Elsewhere we have elaborated the potential of these tasks both in research and teacher 

education (e.g. Biza et al., 2007), particularly when coupled with post-Task interviews (e.g. 

Biza et al., 2009).   
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Here we draw on one of the Tasks we have used. The Tangent Task–see Appendix 1–

was amongst the questions in a written examination taken by 91 candidates for a Masters in 

Mathematics Education programme in Greece. All were mathematics graduates with teaching 

experience ranging from a few to many years. Most had attended in-service training of about 

eighty hours (we note that in Greece, at the time of writing, there was no teacher education 

programme that teachers are required to attend prior to their appointment).  

On the basis of a first-level analysis of the 91 scripts we selected eleven of the 

participating teachers for interview. Our selection aimed to ensure a reasonable range with 

regard to the following: years of teaching experience, strength of mathematical background 

(on the basis of their mathematics degree classification), and correctness or not of response to 

the mathematical problem in the Task. In selecting interviewees we also considered whether 

there was sufficient substance/complexity/ambivalence of the written response to the Task to 

trigger further investigation in the interview. Their individual interview schedules were 

tailored to the analysis of their written responses. Interviews lasted between twenty and thirty-

five minutes, were audio-recorded and then fully transcribed. 

The mathematical problem within the Tangent Task aims to investigate students’ 

understanding of the tangent line at a point of a function graph and its relationship with the 

derivative of the function at this point, particularly with regard to two issues that previous 

research (e.g. Biza, Christou, & Zachariades, 2008; Castela, 1995) has identified as critical: 

• students often believe that having one common point is a necessary and sufficient 

condition for tangency; and, 

• students often see a tangent as a line that keeps the entire curve in the same semi-plane. 

The aforementioned studies attribute these beliefs partly to students’ earlier experience 

with tangents in the context of the circle, and some conic sections. For example, the tangent at 

a point of a circle has only one common point with the circle and keeps the entire circle in the 

same semi-plane. 

Since the line in the problem is a tangent of the curve at the inflection point A, the 

problem provides an opportunity to investigate the two beliefs about tangency mentioned 

above. Under the influence of the first belief, Student A carries out the first step of a correct 

solution (finding the common point(s) between the line and the curve), accepts the line as 
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tangent to the curve and stops. The student thus misses the second, and crucial, step: 

calculating the derivative at the common point(s) and establishing whether the given line has 

slope equal to the value of the derivative at this/these point(s). Under the influence of both 

beliefs, and grounding the claim on the graphical representation of the situation, Student B 

rejects the line as tangent to the curve. 

With regard to the Greek educational context in which the study was conducted we note 

that: 

• Students encounter the concept of tangent in Year 10 in Euclidean Geometry as the 

circle tangent; in Year 11 in the context of conic sections (Analytical Geometry); and, in 

Year 12 in the context of Analysis (derivative and slope) 

• The official syllabus is taught through the use, across the country, of a Ministry 

distributed textbook. 

• At the end of Year 12 students sit a national examination the results of which determine 

their admission to university. In this examination students are expected to provide proof 

or at least some detailed justification of their answers to the set questions. 

The data presented here are translated from Greek. In order to help the reader see the 

data excerpts from the eleven interviewed teachers in the wider context of the total set of 

participants, we note that of the 91 teachers: 38 had no problem recognizing the line as a 

tangent; 25 stated that the line is not a tangent; 18 offered an ambivalent response which 

tended towards rejection of the line as a tangent; and, 10 gave responses that were too unclear 

or brief to be classified. Information on the graduation year, degree class, professional status, 

teaching experience and type of response to the Task of the eleven teachers is available in 

Table 1, Appendix 2. 

We now offer an account of how our adaptation of Freeman’s classification of warrants 

came to be in the course of the analyses of the teachers’ written responses to the Tangent Task 

and the interview transcripts. 

Emergence of our adaptation of Freeman’s classification of warrants 

The proposition that we put forward in this paper emerged during the analysis of a section of 

the data that concerned the participating teachers’ beliefs and practices about the role of 
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visualization in mathematical learning (e.g. Biza et al., 2009). Specifically in that analysis we 

had focused on a substantial number of participants’ responses who appeared to embrace, 

often fervently, Student B’s visual approach to the problem. The teachers’ grounds for this 

endorsement were that a visual approach reflects deeper understanding of the problem and 

also stays clear of the algebraic approach (which they described as the mechanistic 

reproduction of routines typically used in the classroom). As an indicator of the student’s 

growth in learning they thus valued the former more than the latter. At the same time, as 

mathematicians themselves, they expressed support for the more comprehensive and more 

readily acceptable as mathematical proof–in the mathematics community as well as in the 

Year 12 national examination in Greece–algebraic approach. At the time of conducting that 

analysis the case of Spyros came to embody many of these thoughts: 
…Spyros’s statement is clear: while he cannot accept a graph-based argument as proof, he 
recognises graph-based argumentation as part of the learning trajectory towards the construction 
of proof. He seems to approach visual argumentation from three different and interconnected 
perspectives: the restrictions of the current educational setting, in this case the Year 12 
examination; the epistemological constraints with regard to what makes an argument a proof 
within the mathematical community; and, finally, the pedagogical role of visual argumentation 
as a means towards the construction of formal mathematical knowledge.  

These three perspectives reflect three roles that a mathematics teacher needs to balance: 
educator (responsible for facilitating students’ mathematical learning), mathematician 
(accountable for introducing the normal practices of the mathematical community) and 
professional (responsible for preparing candidates for one of the most important examinations of 
their student career). Spyros’ awareness of these roles, and their delicate interplay, is evidence of 
the multi-layered didactical contract he appears to be able to offer to his students. (Biza et al., 
2009, p. 34) 

So, in the course of that initial analysis, we started to notice that the teachers do not rely 

on logical and mathematical reasons only for the preferences and priorities that they state with 

regard to their pedagogical practices (in those cases, regarding visualisation). They have other, 

mainly pedagogically inclined, reasons–or, in Krummheuer’s (1995) terms, their 

considerations started to appear to us as not merely logical but more broadly rational (p. 229), 

namely also bound by what is best in a certain situation, subject to negotiation etc.. In 

Toulmin’s sense, the warrants for the claims these teachers put forward started to appear to us 

as not exclusively mathematical.  

We examined these warrants more closely through an analysis of the scripts and 

interview transcripts of the eleven interviewed teachers as follows. We scrutinised the data for 
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claims and their respective warrants, we highlighted the relevant data excerpts and we inserted 

warrant-type characterisations (and brief justifications for these characterisations) in the 

margins of the transcript’s (or script’s) text. In a series of team meetings we contrasted and 

compared the above work (produced by each one of us independently). This examination of 

the warrants used in the teachers’ arguments led to our noticing of certain groupings that these 

warrants could be seen as belonging to. The warrant-types we list earlier in the paper emerged 

from this work. In the following we offer illustrative examples of these warrant-types.   

Examples of our adaptation of Freeman’s classification of warrants 

In the examples that follow W stands for Warrant, C stands for Conclusion and italicized text 

indicates the Warrant type: 

• Elias claims that the most appropriate method for determining whether the line in the 

Task is a tangent is the Analysis method, not the Geometry method (“So I don’t think we 

can treat this [here] geometrically.”). He grounds his claim on the statement that the 

Geometry method covers a few cases only, such as the circle, not any function (“In 

Geometry there is a circle, it’s fixed, there is a line, it will either intersect at two, one or 

no points […]”). His train of thought appears to be the following: the Geometry method 

for determining tangency covers the cases of circle and conic sections, and not the 

function in question (W); I therefore propose that we use the Analysis method (C). To 

warrant his claim Elias seems to resort to a part of mathematical theory, that which 

concerns the range of cases covered by the Geometry method. For this reason we labeled 

his warrant as a priori epistemological. 

• Fotis claims that an appropriate response to Student A is to offer the student a 

counterexample. He grounds this claim through highlighting the need to provide 

feedback to the student with “refuting what [the student] writes” and “basically cause 

what we call, more or less, cognitive conflict”. His train of thought appears to be the 

following: in order to refute the student’s claim we need to cause cognitive conflict and 

a counterexample can cause cognitive conflict (W); I therefore propose that we use a 

counterexample (C). At the heart of Fotis’ warrant seems to lie an endorsement of the 
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pedagogical potential of cognitive conflict and of the capacity of a counterexample to 

cause such a conflict. For this reason we labeled his warrant as a priori pedagogical. 

• Spyros claims that in his classroom a visual argument would not be acceptable as a full 

argument. He grounds his claim on the statement “because this is what we 

mathematicians have learned so far, to ask for precision”. His train of thought appears to 

be the following: within the mathematics community, only precise, formal arguments are 

acceptable and a visual argument is not precise (W); I therefore would not accept a 

visual argument as a full argument in my classroom (C). To ground his claim Spyros 

draws on the characteristics of the mathematics community to which he sees himself as 

belonging. For this reason we labeled his warrant as institutional-epistemological, where 

the referenced institution is the mathematics community. 

• Marios claims that he “would accept an argument, regarding continuity, […] based on 

the graph” in his classroom. He grounds this claim through referring to the textbook that 

has “exercises saying that the function is continuous from the graph and it gave a 

graph…”. His train of thought appears to be the following: the textbook has exercises in 

which continuity of a function is established via the presentation of its graph (W); I 

therefore would accept a graph-based argument regarding the continuity of a function in 

my classroom (C). Marios grounds his claim about the acceptability of a graph-based 

argument, at least in the case of continuity, on the textbook’s approach to this matter. 

For this reason we labeled his warrant as institutional-curricular, where the referenced 

institution is the upper secondary mathematics curriculum and its enactment in the Year 

12 textbook. 

• Takis claims that the example of the function f(x)=xsin1/x, and its tangent y=x, is an 

appropriate example in a discussion about tangency in his classroom (“...with this 

example I wish to show them that…”). He grounds his claim on the observation of how 

frequently the students’ perception of a tangent as a line that keeps the curve on the 

same side and has one common point with the curve appears in his lessons (“in school I 

also observe that…”). He believes that the example he has chosen has the capacity to 

change the students’ perception as y=x is tangent to the curve at more than one point, in 

fact at an infinite number of points, and also splits the curve in two. His train of thought 
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appears to be the following: in my lessons I have observed certain student perceptions 

and the example of xsin1/x contradicts these perceptions (W); I therefore propose that I 

deploy the example of xsin1/x (C). Because the basis of Takis’ warrant is empirical–his 

own teaching experience–we labeled his warrant as empirical-professional. 

• Marios claims that, even at this early stage, students need to learn how to distinguish 

cases in which a visual approach is adequate and when it is not: “With a figure you can 

understand continuity, you can understand something else, but differentiation is, I think, 

a rather difficult process, to understand if [a function] is differentiable through a figure. 

We have to check other things too”. He grounds his claim on his own practice as a 

learner of mathematics: “I remember myself as a student I used a lot of figures but I 

didn’t accept everything on the figure”. His train of thought appears to be the following: 

as a student I didn’t rely for all my arguments on the figure (W); I therefore propose that 

the students learn how to distinguish cases in which a visual approach is 

adequate. Because the basis of Marios’ warrant is empirical–his own learning experience 

as a student–we labeled his warrant as empirical-personal. 

• Finally, Christos claims that his approach to discussing tangency through inviting 

students to construct examples themselves is less and less welcome and effective (“I 

used to be able to ask them…”). He grounds his claim on the belief that students now 

have a more passive approach to mathematical learning (“these days students want a 

buttered piece of bread straight into their mouth”). His train of thought appears to be the 

following: I believe that today students have a more passive approach to their 

mathematical learning (W); I am therefore less inclined to engage them with 

construction of their own examples than I used to be (C). Because Christos’ warrant 

appears to be hued by some of his broader beliefs about contemporary students’ study 

habits, we labeled it as evaluative. 

We note that it is not always straightforward to identify a claim and characterise its 

warrant in the teachers’ utterances. Katia, for example, warrants her claim that she “wouldn’t 

mark [Student B’s response] with zero” (C) with “I believe that he knows how to do the 

calculations, that is he is not a student that [deserves such a mark]” (W). It was rather hard to 

discern Katia’s grounding for this decision. Is it grounded on a broad evaluative basis 
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according to which a student who can “do calculations” deserves some acknowledgement, and 

perhaps “marking with zero” is a generally undesirable teacher tactic? Or, is it grounded on a 

pedagogical principle (a priori-pedagogical warrant), according to which ‘doing the 

calculations’ is a skill that precedes the superior ability to reason on the basis of a function’s 

graph? On several occasions the warrants for the teachers’ claims were too implicit, too deeply 

embedded in their statements–and perhaps not always sufficiently probed in the course of the 

interview–to allow our confident characterisation of them. This tacitness is an issue discussed 

more widely in studies of organisational knowledge (e.g. Cook & Brown, 1999), as well as 

with specific reference to mathematics teachers’ knowledge (e.g. Jacobs & Morita, 2002; 

Krummheuer, 1995). We return to this issue in the concluding part of the paper. 

We also note that in the course of our analysis we identified many occasions where a 

teacher’s claim appeared to be grounded on a multiplicity of warrants. To illustrate one such 

occasion we sample from the data of one participant, Elias. To help the reader’s 

comprehension of this particular section of the data we begin with a factual summary of Elias’ 

interview up to that point. We then zoom in on the part of the data that records that occasion. 

A teacher’s many and varied warrants: the case of Elias 

Early in his interview Elias recognises that Student A’s conclusion is correct–the line is a 

tangent–but also stresses that the student’s justification is not complete as, according to the 

norms of mathematical theory, the student should explain why the line y=2 is a tangent. “The 

student’s intuition is correct”, Elias stresses, and some probing into the origins of this intuition 

is necessary. Elias lists the questions he would ask the student for the purpose of such probing. 

Elias adds that the student is by now, at Year 12, familiar with the textbook definitions and 

methods for identifying and checking tangency via the derivative. Therefore an appropriate 

response to the student would be a detailed step by step exposition of how this checking could 

be done. Elias presents this exposition in detail. His exposition seems to aim at shifting the 

student away from a ‘geometric’ view of tangency (according to which one common point 

between a line and a conic section necessarily implies tangency). Given this student’s 

persistent geometric images, and to change the student’s perceptions, Elias suggests 

demonstrating a counterexample, and doing so graphically. “To go with the formula” would 

be of no benefit in this case, he says. Before demonstrating the complete, analytic approach to 
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the student, we must first change his mind, he then adds. Ultimately, though, we must 

conclude with a discussion of the complete Analysis approach, he stresses–see also an excerpt 

from Elias’ interview in the list of warrant-type examples, under a priori-epistemological. 

Asked about his view on whether we can nevertheless ‘treat’ some problems in Analysis in a 

‘geometric’ way, Elias lists proofs, such as the Intermediate Value Theorem and Rolle’s 

Theorem, that are highly dependent on visualisation.  

We now zoom in on a particular section of Elias’ interview which starts with the 

interviewer’s question on whether Elias would accept an argument from a student who claims 

that a function is continuous on the grounds of what the function’s graph looks like. Elias 

claims that we would not, as “we must go via the lemmas, not via the graph”. His argument is 

that a student’s response based on a graph is not acceptable (C), as an acceptable response 

should be based on mathematical theory (W). We see this warrant as a priori-epistemological. 

He then continues that, while the student’s “intuition might be correct”, this intuitive approach 

would not be acceptable “in the way in which we teach mathematics in Years 10-12”. The 

same claim, that a student’s response based on a graph is not acceptable (C), is based now on 

the fact that graphical solutions are not acceptable in the upper secondary school practice (W). 

We see his warrant as institutional-curricular, with the referenced institution being the 

prescribed Year 10-12 mathematics curriculum and pedagogy. Furthermore, Elias continues, 

“neither strictly mathematically” would this intuitive approach be acceptable. Therefore, the 

same claim, that a student’s response based on a graph is not acceptable (C), is now grounded 

on its non-acceptability within the mathematics community (W). We see his warrant as 

institutional-epistemological, with the referenced institution being the wider mathematics 

community and its standards of rigour.  

But then Elias makes a further distinction, this time with regard to his use of 

“mathematically” and the potential acceptability of the graphical solution: “mathematically in 

the sense that you will enjoy [the fact that the student] thought of this intuitively and knows it 

and has engaged...to me internally it would be acceptable” 

Elias claims that the student’s response might be seen as acceptable (C) as this type of 

solution is evidence of the student’s engagement and understanding (W). Elias thus marks a 

distance between the formal conventions of the mathematics community and his own, 

personally-held views on what constitutes an acceptable, personally convincing argument, 
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convincing both mathematically and as evidence of the student’s engagement and cognitive 

growth. With some trepidation we see here an evaluative warrant for the claim that the 

student’s response might be seen as acceptable but we do not have further evidence from 

Elias’ interview to pursue this speculation much further. 

Elias then concludes his response to the question about the acceptability of visual 

arguments with a reaffirmation of his requirement for a complete analytical approach: “I don’t 

think it is…because [if we accept this type of response] we will mix up Geometry and 

Calculus, and it will aaaall become…” [his tone suggesting a muddle]. 

At this point Elias returns to his claim that a student’s response based on a graph is not 

acceptable (C), as this will (con)fuse the analytic with the geometric approach (W). We see his 

warrant as a priori-epistemological as he seems to perceive the canons of rigour within each 

one of these mathematical domains as firmly distinct. 

Despite this clear preference for the analytic approach Elias also acknowledges that 

“visualisation can be of great help” in Analysis, and more generally in mathematical learning: 
In the Year 11 syllabus, where [the students] learn about vectors and analysis of vectors […] that 
the children do not understand this very well, when they make the graph is the first step to 
understand and be persuaded, accept it […]. Because even though it is easy, they do not see it as 
easy. 

Elias claims that visualisation can really help students overcome difficulty in Year 11 

Analytic Geometry (C), as suggested by his experience of teaching topics such as Vector 

Analysis which students begin to grasp when offered a graphical representation (W). We see 

this warrant as empirical-professional as it draws heavily on Elias’ teaching experience. 

Elias then concludes this discussion of his views on the role of visualisation with a more 

general, and critical, exposition on what he sees as typical teaching of this part of the 

curriculum. Due to time pressures, Elias claims, an elaborate introduction to a tangent as a 

limiting position of secants–which he strongly prefers–is not always possible. The procedural, 

algebraic approach to teaching this part of the curriculum, he continues, is restricting. And he 

concludes with listing several cases of tangency that bring “havoc” to students’ minds (e.g. a 

vertical tangent, tangency at cusp points, etc.). 

We posit that the examination of Elias’ data from the above warrant-classification 

perspective allowed us to trace and discuss in some detail several multi-layered aspects of his 

arguments: for example, his distinguishing between what he, the mathematics community and 
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the Greek curricular specifications see as an acceptable response to a mathematical problem; 

or, his distinction between what he considers appropriate mathematically (eventually, the 

analytic approach) and pedagogically (at least to start with, a visually rich approach). 

Overall we posit that this approach to analysing teacher arguments allows us insight into 

the range of considerations and priorities, often at a distance from purely logical or 

mathematical ones, that underlie teachers’ choices. Our analyses, sampled here for the purpose 

of illustrating the potential of our proposed approach, highlighted many occasions in which a 

wealth of mainly a priori, institutional and empirical warrants are put forward by teachers to 

support their choices (of interpretation of students’ responses, of preferred pedagogical 

practice etc.). We conclude with a summary discussion of the potential we see in our proposed 

approach and the ways in which our approach relates to, and elaborates, works in this area. We 

also suggest how we plan to take our current work forward. 

Analysing teacher arguments through an adaptation of Freeman’s classification 
of warrants 

The approach to analysing teacher arguments we propose in this paper has been initiated by an 

urge to explore and discuss the range of influences on teachers’ views and actions, particularly 

those influences of a pedagogical and epistemological nature. Our proposal is for deploying an 

enriched version of one of the components of the Toulmin model, the Warrant. This 

enrichment was inspired by our reading of Freeman’s classification of warrants (a priori, 

empirical, institutional and evaluative) and took the shape we present here through its trial on, 

and substantiation from, our data. Our proposed approach to analysing teacher arguments 

employs an adaptation of Freeman’s classification that distinguishes between: epistemological 

and pedagogical a priori warrants; professional and personal empirical warrants; 

epistemological and curricular institutional warrants; and, evaluative warrants. 

Why, one may ask, use this approach to analyse teacher arguments? Our intention is to 

operationalise to some extent what Toulmin himself saw as crucial in this type of informal 

argumentation: integrate social, cultural, pedagogical, contextual, psychological etc. 

considerations into some of the model’s components (mainly the warrant); and, explore how 

our perspective on these components changes under the influence of these newly introduced 

considerations. So, as evident in the examples from the data we cite here (from Elias’ data as 
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well as those from other participants) this approach allowed us to discern and examine the 

layers of justification behind the teachers’ varied approaches to visualization.  

Our approach steers a path between approaches that focus on individual characteristics 

of teacher knowledge and those that focus on collective characteristics. Through inviting 

teachers’ comments on plausible classroom scenarios, much like Herbst and colleagues 

(Herbst & Chazan, 2003; Miyakawa & Herbst, 2007), we elicit the teachers’ dispositions (for 

example, towards the employment of visualisation in their mathematics lessons) that constitute 

the practical rationality of their teaching. And, through our classification of warrants we 

identify constituting elements of these dispositions, originating both in their individual 

characteristics and experiences as well as the institutional contexts in which they teach. 

Our approach resonates with approaches such as that of Jacobs and Morita (2002), 

whose use of teacher idea units can be seen alongside our use of teacher arguments, and who 

explore both individual (teachers’ “openness to alternative pedagogical methods”, p. 154) and 

more institutionally-inclined (“the extent to which opinions are shared among teachers”, p. 

155) characteristics of teachers’ decision making. Of particular resonance is their analysis of 

coded transcripts of teacher comments: what they record as the teachers’ explanations for the 

preferences, suggestions etc. that the teachers offer during the interviews–see, for example, the 

table in (ibid, p. 161)–could be analysed further in the light of the warrant-classification we 

propose. 

Of course, much like colleagues before us in this area of research, we are aware that, 

however focused, subtle and persistent our questioning in the tasks and interviews is, warrants 

and backings of teachers’ arguments in most cases remain essentially tacit. Characterising 

warrants etc. of teachers’ arguments is a “matter of inference” and some “hypothesising” 

(Jacobs & Morita, 2002, p. 163) on our part. Like other components of Toulmin’s model, 

warrants “cannot, in general, be recognised on the surface of spoken formulations; they must 

be identified by an appropriate analysis of interaction” (Krummheuer, 1995, p. 247). With this 

awareness to the forefront, we now outline how we see our proposed approach fitting with 

some other uses of the model. 

Our proposed approach follows suit from the work of Inglis and colleagues (Inglis et al, 

2007) who also proposed a classification of warrants (though with reference to their analysis 

of purely mathematical arguments) and emphasised the need to deploy the complete version of 
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Toulmin’s model. Our work so far focuses exclusively on the Warrant. In the course of our 

analyses though at least two forward-looking observations emerged, concerning two other 

components of the model, the Backing and the Qualifier.  

With regard to the first, as our analyses of the teachers’ arguments was developing, 

evidence of what Krummheuer (1995, p. 252) describes as “infinite regression” (the warrant 

for a claim being backed by an argument which in turn is warranted by backing … etc.) started 

to surface. For the sake of clarity and simplicity of this first attempt on our part to map the 

interviewed teachers’ arguments, we tried to distil ‘claim grounded on warrant’ cases that 

were as clear-cut as possible. Our current analyses–and extent of our data–are unlikely to 

afford us the possibility of further, subtler warrant-and-backing analyses. An application of 

our task/interview method, that focuses tightly on this type of aim, most likely would. 

With regard to the second, one observation that emerged in the course of our analyses 

was that the strength of conviction with which teachers put forward their arguments is 

certainly germane to the stability and stealth of the ways in which they are processing prior 

experience, policy guidelines, professional development and training. Again, a research design 

that would focus on eliciting from participants more on, for example, their degree of certainty 

about certain arguments, would make the inclusion of considerations regarding the Qualifier 

possible. 

More widely, we envisage our work as relating to seminal investigations of teacher 

knowledge such as those by Shulman (1986, 1987) and Ball and colleagues (e.g. Ball et al., 

2008). Shulman (1987) wrote of his set of seven categories as a “‘blueprint’ for the knowledge 

base of teaching” which “has many cells or categories with only the most rudimentary place-

holders, much like the chemist’s periodic table a century ago” (p. 12). In the years that 

followed, Ball et al. (2008) responded to Shulman’s call for refinement with their further 

searches that now allow researchers “to fill in some of the rudimentary ‘periodic table’ of 

teacher knowledge.” (p. 396). With the help of these refinements–and the additional apparatus 

provided by our classification of warrants that steers a path between individual and collective 

aspects of teacher knowledge–we propose starting to build up the compounds of these 

elements. So our analyses, for example, allow us to examine the varied grounds (empirical-

personal, empirical-professional, institutional-curricular, institutional-epistemological, a 

priori-epistemological, a-priori pedagogical) of teachers’ views and preferred practices. We 
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thus gain more systematic, situation-specific and natural insight into teachers’ pedagogical 

content knowledge–and its variations (e.g. Ball et al., 2008)–and curriculum knowledge 

(Shulman, 1986). We also gain insight into how different sources of teacher knowledge–as, for 

example, listed by Shulman (1987) and, more recently, Kennedy (2002)–shape teachers’ 

arguments. We aim that our accumulation and discussion of such insight furthers 

understanding of the dynamic and complex character of teacher knowledge. 
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Appendix 1: The Tangent Task 
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Appendix 2: Background information about the 11 interviewed participants 

 


