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Title 

Classification and Concept Consistency 

 

Abstract 

This paper investigates the extent to which undergraduates consistently use a 

single mechanism as a basis for classifying mathematical objects. We argue that the 

concept image/concept definition distinction focuses on whether students use an accepted 

definition, but does not necessarily capture the more basic notion that there should be a 

fixed basis for classification.  We examine students’ classification of real sequences 

before and after exposure to definitions of ‘increasing’ and ‘decreasing’; we develop an 

abductive ‘plausible explanations’ method to estimate the consistency within the 

participants’ responses and suggest that this provides evidence that many students may 

lack what we call ‘concept consistency’.  
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Introduction 

The idea of classifying mathematical objects into well-defined categories or sets 

is central to mathematics, and has been so at least since Cantor.  It is not always easy to 

implement: as mathematics develops, there are debates about which definitions should be 

adopted; what is, or is not, classified as a ‘function’, a ‘polyhedron’ or a ‘set’ changes as 

the definitions are refined by successive generations of mathematicians (Lakatos, 1976; 

Rüthing, 1984).  Indeed, set theory has encountered problems (such as the ‘set of all 

sets’) that have required ever more intricate foundational elaboration to address 

(Ferreirós, 2007).  However, the idea that there are agreed definitions against which 

membership is judged is not contentious to most practicing mathematicians, and pure 

mathematics as experienced by undergraduate students is usually founded on the so-

called ‘classical model’ in which that a category is specified by a fixed definition. That is, 

category membership is completely determined by a set of necessary and sufficient 

conditions.   

Categories are fundamental to everyday cognition too: the act of classifying 

objects into categories is a natural human process, forming a vital way in which we make 

sense of the world around us (Markman, 1989).  Categories simplify and accelerate 

cognition, allowing us to predict and control regularities in the world and to make 

inferences about properties that are not immediately apparent (Gelman & Coley, 1991; 

Kruschke, 2005).  However, in everyday contexts, the classical model is a poor 

approximation: categories are not usually well-defined.  

This means that habits of everyday cognition need to be modified in order to work 

effectively in mathematics at the undergraduate level.  This paper is about the extent to 
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which the use of the classical model, as described above, is evidenced in students’ 

thinking during the transition to advanced mathematics. 

 

Theoretical background 

The classical model, as well as having a foundational role in mathematics, was the 

commonly held view of general cognition (e.g. Boole, 1854/1951) until research began to 

uncover effects for which it could not account.  Natural thought seems to involve 

categories with radial structures and ill-defined boundaries: people behave as though 

categories can have ‘branches’ that do not share common properties, or as though some 

objects are more or less ‘central’ within a category.  For example, Smith, Shoben and 

Rips (1974) found that people were quicker to classify a robin as a bird than to classify a 

penguin as a bird.  To account for such effects, cognitive models for natural human 

category learning commonly build on prototype theory (Rosch, 1973), in which 

classification involves testing similarity against an abstracted summary of experience 

with category members, or on exemplar theory (Medin & Schaffer, 1978), in which 

classification involves testing against a number of specific stored exemplars.  More 

recent research suggests that natural categorisation may be better modelled with a 

combination of these mechanisms, incorporating selective attention so that some features 

of exemplars are weighted more highly for the purposes of classification in certain 

contexts (see Kruschke, 2005).  All such models, however, aim to account for human 

categorisation in everyday contexts, and not for learning involving categories based on 

the (naïve) formal mathematical idea that an element belongs to a set if and only if it 

satisfies some fixed properties.   
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Lakoff and Nuñez have argued that even the seemingly rigorous foundations of 

mathematics based on sets and formal logic (the ‘formal foundational principle’) are at 

odds with ‘mathematics…viewed as a human conceptual system’ (Lakoff & Nuñez, 

1998, p.93); so much so, they argue, that ‘sets and logic’ and ‘human mathematics’ are 

simply different forms of mathematics that ‘yield different results…each of which is 

perfectly valid in its own sphere’ (ibid, p.86).  This view is challenged by some 

professional mathematicians, who claim that it conflates ‘mathematical facts’ with 

‘human knowledge of mathematical facts’ (Gold, 2001).  Whatever the case, the 

mathematics as it is encountered traditionally in undergraduate courses is presented 

according to the classical model.  Thus we should expect conflict arising from the 

difference between natural forms of classification and those required for the formal 

mathematics encountered by undergraduates. 

In mathematics education, Tall and Vinner highlighted the cause of such conflict 

when they introduced the key notions of concept image and concept definition.  They 

argued that a student might sometimes reason using their concept image, where this term 

means ‘the total cognitive structure that is associated with the concept, which includes all 

the mental pictures and associated properties and processes’ (Tall & Vinner, 1981, 

p.152).  Concept images can be built over years of encounters with mathematical 

concepts in the form of examples, different representations, tasks etc.  Researchers have 

argued that reasoning with reference to concept images alone may be productive in many 

cases, but that a student may misclassify if their concept image is not fully developed or 

not coincident with the extension of the definition (Davis & Vinner, 1986).  Such 

misclassifications and related misinterpretations are prevalent in the cases involving 
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functions and graphs (Vinner, 1991), limits (Davis & Vinner, ibid.), derivatives (Zandieh, 

2000), tangents (Biza, Christou & Zachariades, 2008) etc.  One could argue that 

classifying according to a concept image amounts to using natural classification in a 

mathematical context; concept images might be similar in structure to natural categories 

while mathematical judgements need to be based on (or at least accord with) formal, 

agreed definitions. So judgements based on a concept image can sometimes leads to 

conclusions that conflict with the formal theory. 

In Tall and Vinner’s terms, then, students need to learn to work with concept 

definitions in formal mathematical contexts.  This is not easy.  Some difficulties arise 

from the specifics of definitions encountered: it can be challenging to work with 

statements involving highly compressed mathematical symbols and complex logical 

structures (Dubinsky, Elterman & Gong, 1988), especially if the evocative nature of the 

words they define (‘converges’, ‘tends to’ etc.) makes it easy to fall back on natural 

strategies (Tall & Vinner, 1981; Monaghan, 1991).   

Such difficulties may be exacerbated by messages implicit in textbooks.  Raman 

(2004), for instance, highlighted a range of relationships between the presentation and use 

of definitions in texts related to calculus.  She found that in a precalculus textbook, 

definitions of continuity were presented informally and classifications were based on 

graphical imagery; in a calculus text, formal definitions were given but tasks did not 

require their use, and in an analysis text, formal definitions were both given and regularly 

used.  The first two approaches may not lead naturally to the third, though such 

pedagogical sequences may be unavoidable if we wish to introduce a concept before the 

formal theory is accessible (Barbé et. al., 2005).  However, they may result in a lack of 
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clarity about the role of definitions, which may be further compounded by the 

introduction of different forms of the same definition: Bergé (2008) observed the 

definition of completeness transforming through three distinct (but equivalent) variants as 

students move through three successive courses.  Of course, there may be sound 

pedagogical reasons for using a particular variant of a definition at a certain stage, but it 

might not be clear to the students that such definitions are supposed to be logically 

equivalent and thus determine identical extensions.   

Students’ understanding and use of definitions has been the subject of a 

considerable research literature, including studies on the nature of definitions (e.g. Van 

Dormolen & Zaslavsky, 2003), students’ beliefs about them (Zaslavsky & Shir, 2005), 

and students’ guided collaborative development of definitions in contexts new to them 

(Larsen & Zandieh, 2008; Zandieh & Rasmussen, 2010).  Studies have suggested that 

students who spontaneously generate examples in response to new definitions later 

perform better on tasks involving the defined concepts (Dahlberg & Housman, 1997), and 

there has been much recent discussion of the way in which example generation tasks 

might help students to modify their example spaces so that these more closely coincide 

with the extensions of the defined concepts (Mason, 2002; Watson & Mason, 2005; 

Zazkis, Liljedahl & Chernoff, 2008; Zazkis & Leikin, 2008).  Definitions are also 

discussed in the extensive literature on proof, which focuses on the role of definitions as a 

deductive base in arguments about whole classes of objects.  This (desirable) use of 

definitions is often contrasted with students’ attempts to support general arguments by 

using examples in more or less sophisticated ways (Authors, 2004; Harel & Sowder, 

2007; Healy & Hoyles, 2000).  Inappropriate example-based or concept image-based 
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reasoning has been shown to persist even when the students know the appropriate 

definitions (Vinner, 1991) and even when one would think there was little in their 

previous mathematical experience that would support non-deductive strategies (Edwards 

& Ward, 2004).   

The most basic form of definition use, however, is in classifying objects.  Ross 

and Makin (1999) point out that while ‘classification is rarely your ultimate goal when 

you are faced with an unfamiliar object …[it] is a first step in allowing you to know how 

to deal with the entity’ (p.228).  Such knowledge is possible because, in both natural and 

classical situations, classification and definitions have a two-way relationship.   

In the natural world, you may decide that something is a cat because of a level of 

furriness, four-legged-ness etc., but equally if you are told something is a cat, you can 

make a reasonable guess about its having fur and possessing four legs (as well as much 

other information about what it would like to eat, whether it is safe to stroke, how high it 

can jump etc.).  This, of course, involves some measure of personal judgment and 

uncertainty, as captured in the psychological models of natural category learning.   

In the classical world, however, inference is simpler because it does not involve 

personal judgement or uncertainty; you can always decide that a number is composite by 

finding two proper factors and can always conclude from being told that a number is 

composite that it must have (at least) two such factors.  In this sense, mathematical 

classification and argumentation are simpler in logical structure than their everyday 

equivalents, a fact that mathematicians recognise and sometimes attempt to point out to 

their students (Author, 2010).   
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Of course, this does not mean that mathematical classification and reasoning are 

psychologically simpler, partly because the classical model demands consistency in a way 

that everyday classification does not.  As noted earlier, people treat everyday categories 

as though they have internal structure (with ‘better’ and ‘worse’ examples), sometimes to 

the extent that the cueing context may evoke conflicting judgements about category 

membership: in some contexts the Pope may be classified as a bachelor, in he may be 

classified as not-a-bachelor (Rips, 1989; Machery, 2009).  Classification in natural 

category learning can thus lead to situations which would be impossible in classical 

theory and unacceptable in mathematics.   

We argue that in mathematics, even before we consider whether a student is using 

a definition to make a classification judgement, we should consider whether they possess 

this more fundamental idea of ‘concept consistency’: that is, whether they understand that 

there should be a single mechanism for judging whether a mathematical object is a 

member of a set (whether or not that mechanism is a formal definition).  We claim that 

students’ knowledge of this underlying principle is not usually addressed in mathematics 

education research.  Studies have typically made a distinction between classifications or 

arguments based on accepted definitions and classifications or arguments based on 

concept images or examples.  That approach addresses the issue of whether students 

know the accepted definitions and classify according to these, but not whether they 

behave as though there ought to be consistent classification even in cases in which they 

have not yet learned the standard definition.  

Zandieh and Rasmussen (2010) and Zaslavsky and Shir (2005) have shown that 

college students and high-achieving upper high school students can engage in discussions 
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about desirable properties of definitions and do seem to understand that the goal is to 

decide on a definition that covers all possible cases.  However, in both cases this work 

was conducted in a collaborative learning situation, so it does not speak to the behaviour 

of individuals when asked to classify objects without discussion, nor to the issue of 

whether classification is consistent in the absence of a definition.   

We suggest that the principle of concept consistency would be more clearly 

manifest if students were asked individually to classify objects as they saw fit, prior to an 

encounter with the accepted definition.  In this paper, we take such an approach and 

present evidence that at least some beginning university students behave as though they 

do not possess concept consistency – that is, they do not appear to use a single 

mechanism for making classification judgements.  Specifically, we ask: 

1. How does classification differ before and after exposure to a relevant definition? 

2. To what extent are students’ responses consistent either with a reasonable 

interpretation of these definitions or, more fundamentally, consistent with each 

other? 

Methods 

Participants and Context 

Our study involved 187 students in the first year of study for a mathematics or 

mathematics-related degree at a highly ranked UK university.  The students were all high 

achieving, having attained the highest grade in their pre-university mathematics 

examinations in order to enter their degree course.  The study took place in week four of 

a real analysis course as part of a standard lecture period where the lecturer allotted time 

for the researchers to conduct the task.  The intention was to expose students to a concept 
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which they had not yet formally encountered, but for which they could be expected to 

have spontaneous conceptions associated with everyday language and earlier 

mathematical experience.  In addition, we wanted a concept for which some examples 

could be considered ‘central’ to the categories while others could be considered to be 

‘boundary’ cases, so that natural classification might reasonably lead to a range of 

different responses.  We thus used the key concepts of ‘increasing’ and ‘decreasing’ as 

applied to sequences; while the students already had four weeks experience of formal 

mathematics (including work with sequences and the formal definition of convergence), 

definitions for ‘increasing’ and ‘decreasing’ in the context of sequences had not been 

introduced. These definitions also had the advantage that they are logically very simple, 

each having only one (universal) quantifier and one condition.  

Task 

The task had three phases: a pre-definition classification phase; a definition 

presentation and a post-definition classification phase.  In both the pre-definition and 

post-definition classification phases, the participants were given a sheet with each of the 

sequences shown in Figure 1 listed on it.  Beside each sequence were four boxes marked 

‘I’, ‘D’, ‘B’ and ‘N’, and the participants were asked to tick exactly one of these to 

indicate whether they would classify the sequence as ‘increasing’, ‘decreasing’, ‘both 

increasing and decreasing’ or ‘neither increasing nor decreasing’.  During each 

classification phase, students were able to work through the questions in any order and 

were able to alter choices as they wished.  However, at the end of the pre-definition 

phase, participants were asked to turn to the post-definition page and not turn back.  

There was no evidence that this request was ignored. 
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 INSERT FIGURE 1 ABOUT HERE 

Between the classification phases, the participants were given a short presentation 

in which one of the researchers displayed the formal definitions of ‘increasing’ and 

‘decreasing’ for real sequences using symbolism consistent with that used by the lecturer 

(Figure 2), checked that students were familiar with all of the symbols, and read the 

definitions aloud.  No examples were given, nor was any other support for the 

classification task (such as natural language meanings) given.  The definitions remained 

visible on the main lecture theatre screen while the students completed the post-definition 

classification, in which they were explicitly asked to classify according to these 

definitions. 

 INSERT FIGURE 2 ABOUT HERE 

In the pre-definition phase, students were also given the option to select ‘not 

sure’, but only a minority of students chose this for any sequence.  To allow comparisons 

across phases, this data was discarded along with any spoiled or incomplete scripts, 

leaving 146 complete paired sets of data.  Data was collated to give both cross-participant 

response rates and individualised patterns of responses as analysed below. 

 

Results 

The Effect of Presenting the Definitions 

Table 1 shows the number of participants who classified each sequence in each 

category in the pre-definition phase.  It is clear that, for some sequences, almost every 

student classified in a way that is in keeping with the definition: 

B:1,4,9,16,25,36,49,64,…, C:	  	  
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€ 

−2,−4,−6,−8,−10,… are all central category members in the sense that everyday uses of 

‘increasing’ and ‘decreasing’ coincide naturally with the formal definition.  This is 

somewhat less true for G: 6,6,7,7,8,8,9,9,…, although most still classified it as increasing.  

Sequence D:	  	  

€ 

1,−1,2,−2,3,−3,4,−4,… provoked substantial agreement amongst the 

students, who tended to classify it as ‘both increasing and decreasing’, a response that 

differs from the definition-based classification.  For sequences F: 1,3,2,4,3,5,4,6,… and 

H: 0,1,0,2,0,3,0,4,… there was a split between the classifications ‘both’ and ‘increasing’, 

with only a minority selecting the normatively correct classification ‘neither’. 

 INSERT TABLE 1 ABOUT HERE 

It is important to consider the responses to sequence E: 3,3,3,3,3,3,3,3,….  There 

are two sensible formal mathematical definitions of the concept of ‘increasing’, 

depending on whether each term is required to be strictly greater than its predecessor or 

whether the weaker ‘greater than or equal to’ relationship is used.  Item E would be 

classified as ‘neither’ with the strict interpretation and as ‘both’ with the non-strict 

alternative.  In the pre-definition classification task, every student classified it as 

‘neither’.  This was counted as correct for analysis of the pre-definition responses only, 

because the definitions presented were formal definitions of ‘increasing’ and ‘decreasing’ 

in the non-strict sense.   

In the pre-definition phase, students would have been highly unlikely to make 

classification judgements based on a formal definition, since this had not been presented 

to them.  They clearly made some judgements which matched the extension of the formal 

definition and some which did not.  This data thus fits Davis and Vinner’s (1986) notion 

of concept image-based classification: for sequences that display simple, familiar 
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behaviours, most responses matched the extension of the definitions, and for those that do 

not, responses were considerably more mixed.   

In the post-definition phase, students had access to the formal definitions and we 

might therefore expect their responses to be in line with these.  However, they also still 

had access to whatever decision mechanisms they had previously used, and we can see 

the impact of this in their post-definition responses, as shown in Table 2.  Again, 

sequences B, C, I and J were classified almost perfectly consistently with the definitions.  

For all other sequences it was possible to see clear changes in the patterns of responses 

from the pre-definition to the post-definition phase.  We conducted Fisher Exact Tests for 

each item to examine these changes, and found that for items B, C, I and J there was no 

significant difference between the response patterns (p > 0.999 in each case), but for 

every other item the difference was significant (p < 0.001 in each case).   

INSERT TABLE 2 ABOUT HERE 

Note that the average number of correct classifications (that is, those which matched the 

extension of the formal definition given) increased from 6.65 (σ = 1.19) to 7.82 

(σ = 2.04), which is a significant (t = 6.1077, p < 0.001) and moderate-to-large difference 

(d = 0.70).  The data thus show an improvement in classification relative to the 

definitions after these were presented.  However, it is surprising that the effect is not 

larger.  Given the experience of the students with definitions and the relatively simple 

concept involved in the task, one could have expected a near perfect post-definition 

classification.  In fact, in the next section, we shall see that only 29% of the participants’ 

classifications were fully in line with the given definitions. 
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Pre-Definition Classification Consistency 

Our principal concern in this paper is not the particular classifications made, but 

the inferences we can make about the extent to which students appeared to use a single 

mechanism for judging whether the sequences were increasing/decreasing; that is, the 

extent to which they exhibited concept consistency.  For this purpose, it is clear that some 

items did not discriminate between students, notably those sequences that were classified 

almost perfectly in line with the definitions in the pre-definition phase.  As a result, our 

subsequent analysis omits those sequences and also omits the small number of 

participants who classified any of these apparently straightforward items incorrectly at 

either stage (leaving N = 136).  For the remaining items A, D, E, F, G and H we produced 

a response profile for each participant.  The normatively correct profile is shown in 

Figure 3. 

 INSERT FIGURE 3 ABOUT HERE 

It was not expected that the pre-definition responses would be identical across the 

group.  However, if students possess concept consistency we would expect to see only a 

small number of response profiles, each linked to a possible classification mechanism.  

Instead, across 136 students, we saw 24 different response profiles, none of which was 

the profile consistent with either mathematically acceptable definition (NNBNIN or 

NNNNIN).  Table 3 shows the six most commonly occurring profiles (all 24 are given in 

Appendix A). 

INSERT TABLE 3 ABOUT HERE 

To consider the issue of concept consistency in detail, we developed a method of 

‘plausible explanations’: for each profile, we tried to identify fixed sets of properties or 
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key features (in the sense of Ross and Makin, 1999) which could account for all the 

responses.  The method of ‘plausible explanations’ can be seen as a form of abductive 

reasoning; constructing hypotheses which would account for the responses if the student 

possessed concept consistency (Magnani, 2001).  In cases where no plausible explanation 

could be constructed for the given response, we argue that this constitutes abductive 

evidence that the student did not possess concept consistency.  

One could argue that some students might possess concept consistency – they 

may be trying to use a single mechanism for making their classification judgements – but 

make mistakes in applying the mechanism they have in mind.  While we accept this 

possibility, we think it would be unlikely to have a large impact here because the task 

was a straightforward one involving familiar concepts, the students were all high 

achieving, and the given definitions are logically simpler than most they had already 

encountered on their course.   

Indeed, we would argue that the plausible explanation method may overestimate 

consistency: the existence of a plausible explanation does not guarantee that any given 

student used a single mechanism for making their classification judgements.  Some 

students may have used different mechanisms for different items (i.e. lacked concept 

consistency) but nonetheless given a response profile for which it happens that there is a 

plausible explanation.  In any case, we argue that the method does provide some 

indication of the number of students who did or did not use a consistent classification 

scheme.   

The response profiles for which we could generate a plausible explanation are: 
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BBNBIB: This profile appears to be consistent with a ‘local’ interpretation.  That 

is, if some terms are less than their immediate predecessors and others are 

greater then the sequence is classified as ‘both’, and if all the terms are 

equal then it is classified as ‘neither’. 

NBNIII: There were two plausible explanations for this profile. In one, the 

participant might treat the sequence as two separate sequences and classify 

them separately (so, for instance, F:1,3,2,4,3,5,4,6,… is increasing because 

it is composed of two interleaved increasing sequences).  Alternatively, the 

participant may associate the informal notion of ‘increasing’ with what 

would formally be called ‘unbounded above’. 

NNNIII: This profile appears to be consistent with a ‘holistic’ interpretation, 

seeking trends across the sequence as a whole rather than being influenced 

by local behaviour.  For instance, F:1,3,2,4,3,5,4,6,… could be seen as 

increasing ‘overall’ with small steps backward not treated as an important 

feature.  One could view this as an implicit consideration of the ‘limiting 

bounds’: the sequence of infima and suprema of the sequence of tail 

sequences. 

BBNBNB: This profile is very similar to the modal profile and fits the ‘local’ 

interpretation, except that G: 6,6,7,7,8,8,9,9,… is classified as ‘neither’, 

perhaps because of an interpretation in which between some consecutive 

pairs there is an increase and between others there is not. 

We note that these classification mechanisms are entirely sensible; in the absence of any 

specified criteria, each represents a reasonable interpretation of the meanings of 
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increasing and decreasing in this context, and the way these terms combine. In particular, 

our plausible explanations suggest that students’ concept images might cause them to 

focus locally (on pairs or small finite sets of consecutive terms) or holistically (the 

limiting bounds of a sequence or its long-term behaviour) rather than universally (across 

all pairs of consecutive terms).  Indeed, lecturers teaching this subject might find it useful 

to know that large numbers of students seem to naturally interpret ‘increasing and 

decreasing’ in these local or holistic senses, and that this potential for conflict will need 

to be addressed if their interpretation is to be brought into line with the definitions.   

Here, however, we are interested in the fact that these four categories account for 

only 72% of the responses.  For the other 28% (18 distinct response profiles), we were 

unable to generate a plausible explanation, and we argue that this indicates that these 

students may lack an underlying idea of concept consistency.  To illustrate this 

phenomenon, we consider two such profiles.   

First, consider BBNIII.  One can develop plausible explanations that account for 

parts of this profile: for example, A: 0,1,0,1,0,1,0,1,… and D: 	  	  

€ 

1,−1,2,−2,3,−3,4,−4,… 

might be classified as ‘both’ because they increase and decrease ‘locally’.  F: 

1,3,2,4,3,5,4,6,… and G: 6,6,7,7,8,8,9,9,… might be classified as ‘increasing’ because 

they are increasing ‘holistically’.  However, neither explanation accounts for the whole 

response profile and we thus conclude that these students are unlikely to have judged 

consistently using a single judgement mechanism.   

Similarly, in profile NBNBIB, sequences D: 	  	  

€ 

1,−1,2,−2,3,−3,4,−4,…, F: 

1,3,2,4,3,5,4,6,… and H: 0,1,0,2,0,3,0,4,… can be classified as ‘both’ with the ‘local’ 

interpretation, but this cannot account for the ‘neither’ classification given for A: 
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0,1,0,1,0,1,0,1,….  For both profiles, it appears that the students evoked different parts of 

their concept image or focused on different key features when responding to the different 

sequences; their classifications did not manifest concept consistency. 

Overall, then, this ‘plausible explanation’ method suggests that around a quarter 

of the participants appeared not to classify consistently.  

 

Post-Definition Classification Consistency 

After exposure to the definition, participants had a new basis on which to classify.  

They were specifically instructed to classify according to the given definitions, which 

remained on display throughout the time the students worked on the task.  One might 

therefore expect fewer distinct response profiles, but in fact there were more: 28 in total, 

all of which appear in Appendix B.  Table 4 lists the six most commonly occurring 

response profiles for the post-definition classification task.  

INSERT TABLE 4 ABOUT HERE 

When looking at the pre-definition task, we were concerned with the extent to 

which students responded consistently according to some set of (internally held) criteria.  

The presence of given definitions in this task, however, changes our focus.  For this task, 

if a student possessed concept consistency, we would expect either a response profile 

given by one of the plausible explanations above or, if the student understood that they 

needed to classify with the definition, a normatively correct response profile. 

The profiles in Table 4 show that 40 students gave the normatively correct profile 

NNBNIN, and a further 10 gave one which is consistent with a plausible misreading of 

the definitions – reading the inequalities as strict – giving the NNNNNN profile.  In 
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addition, nine people gave responses that were consistent with one of the profiles 

generated by the plausible explanations method outlined above (BBNBNB or NBNIII).  

The remaining 77 students (57%) gave responses which were neither consistent with the 

definitions, nor with the ‘strict’ misreading, nor with a plausible set of internal criteria.  

In all it appears that the availability of the definitions did not immediately result in 

normatively correct classifications and actually led to a drop in apparent concept 

consistency across the sample.   

 

Discussion 

Our study explored the concepts of ‘increasing’ and ‘decreasing’ in the context of 

real sequences, with the aim of examining how students’ classifications differ in the 

absence and presence of a definition and, in particular, whether these classifications were 

consistent with a single judgement mechanism. 

In the development of the abductive ‘plausible explanations’ method, we believe 

we may also have shed some light on students’ concept images of ‘increasing’ and 

‘decreasing’ when they are used in a new context.  In particular, the results suggest that 

students may focus on local behaviour (on pairs or small finite sets of consecutive terms) 

or on holistic behaviour (the limiting bounds of a sequence or its long-term behaviour) 

rather than on the universal behaviour captured by the formal definition. 

Our main aim, however, was to investigate the issue of concept consistency.  Tall 

and Vinner’s concept image/concept definition distinction, along with the considerable 

body of research based on it, has illuminated one vital aspect of what students need to 

learn in order to make sense of advanced mathematics.  However, we have argued that 
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investigation of this issue has usually focused on whether or not students operate 

according to the accepted definitions and, in so doing, has overlooked the issue of 

whether or not they possess the more fundamental principle of concept consistency.  In 

this paper we have explored this issue by considering students’ responses to pre- and 

post-definition classification tasks.   

We found, first, that exposure to the formal definition did improve classification 

performance, in the sense that more students classified more sequences in accordance 

with the definitions.  However, this improvement was not as drastic as might be expected 

given that the context was familiar and the definitions were simple: in the post-definition 

classification task, only 29% classified in a way which fully matched the extension of the 

given definitions.  

More notably, in both the pre- and post-definition tasks, a large number of 

students did not appear to use a single mechanism for classification at all – that is, their 

responses lacked concept consistency.  While it has previously been observed that 

students evoke different, sometimes contradictory concept images in response to different 

cues or problems (Dahlberg & Housman, 1997), we found the extent to which this 

occurred in this case somewhat surprising: within each phase the classifications were 

completed on the same page, in the space of a few minutes, with all the participant’s 

responses visible at once and with no restriction on going back to change a previous 

answer.   

The fact that the degree of consistency actually dropped from the pre- to the post-

definition task suggests that it may be difficult even for a student who is trying to classify 

consistently to maintain this criterion while also incorporating new information.  Such 
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difficulties might occur in three ways: first, such a student might read the definitions 

insufficiently carefully and thus misapply them throughout or in particular cases; second, 

they might understand the definitions correctly but be swayed by earlier interpretations in 

some or all cases; third, they might not even consider changing an answer that they think 

is obvious (which seems particularly likely in the case of the constant sequence). 

Whatever the relative frequencies of these occurrences, the result raises questions for 

those designing instruction at this level.  It might seem intuitively obvious that students 

should be exposed to a variety of examples in order to improve the correspondence 

between their individual example spaces and the conventional spaces, but our results 

suggest that even in simple cases, instructors should be prepared for a period of confusion 

and errors resulting from conflict between concept image- and concept definition-based 

judgments.  

Clearly, of course, this study has looked at only one concept in one topic area 

during the transition to advanced mathematical thinking.  It may be that some of the 

issues would be different if the students had more (or less) prior experience of related 

concepts, or if the concepts were described using terms that did not have familiar 

everyday meanings.  However, the issue of concept consistency seems important as a 

precursor for learning to work effectively with definitions in advanced mathematics: if a 

student is not aware that classification should be done on a consistent basis, they are less 

likely to attend to the agreed definitions.  It may therefore be that some students would 

benefit from instruction that focused on this principle. 
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Appendices 

Appendix A 

Full list of pre-definition response profiles: 

Response profile Frequency 
B B N B I B 43 
N B N I I I 28 
N N N I I I 7 
B B N B N B 6 
B B N I I I 6 
N B N B I B 6 
N N N N I N 5 
B B N B I I 4 
N B N I I B 4 
N B N I I N 4 
N N N I I N 4 
B B N I I B 3 
N D N I I I 2 
N N N N N N 2 
B B N B D B 1 
B B N I I N 1 
B D N I I B 1 
B D N N N B 1 
B N N I I I 1 
N B N B I I 1 
N B N N I I 1 
N N N B I N 1 
N N N I N N 1 
N N N N I I 1 
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Appendix B 

Full list of post-definition response profiles: 

Response profile Frequency 
N N B N I N 40 
N N N N I N 22 
B B N B I B 13 
B B B B I B 11 
N N N N N N 10 
B B N B N B 8 
B B B B B B 3 
N B N B N B 3 
B N B N I N 2 
N B N B I N 2 
N B N N I N 2 
N B N N N N 2 
N N B I I N 2 
N N I N I N 2 
B B B I I B 1 
B B I B I B 1 
B B N B N N 1 
B B N I I B 1 
B N B N I B 1 
B N N B I B 1 
N B I N I N 1 
N B N B I B 1 
N B N I I I 1 
N N B N B N 1 
N N B N N N 1 
N N I B I N 1 
N N I I I N 1 
N N N I N I 1 
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Tables 

 

Table 1. Pre-definition responses (asterisks indicate normative definition-based 

classifications). 

 

 I D B N 

A: 0,1,0,1,0,1,0,1,… 0 0 74 72* 

B: 1,4,9,16,25,36,49,64,… 146* 0 0 0 

C: 	  	  

€ 

1, 12 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,… 0 145* 1 0 

D: 	  	  

€ 

1,−1,2,−2,3,−3,4,−4,… 0 4 119 23* 

E: 3,3,3,3,3,3,3,3,… 0 0 0* 146* 

F: 1,3,2,4,3,5,4,6,… 65 0 69 12* 

G: 6,6,7,7,8,8,9,9,… 133* 1 0 12 

H: 0,1,0,2,0,3,0,4,… 55 0 72 19* 

I: 	  	  

€ 

1012 ,10 3
4 ,107

8 ,101516 ,1031
32 ,… 140* 4 2 0 

J: 	  	  

€ 

−2,−4,−6,−8,−10,… 1 145* 0 0 
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Table 2: Post-definition responses (asterisks indicate normative definition-based 

classifications). 

 

 I D B N 

A: 0,1,0,1,0,1,0,1,… 0 1 44 101* 

B: 1,4,9,16,25,36,49,64,… 146* 0 0 0 

C: 	  	  

€ 

1, 12 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,… 1 145* 0 0 

D: 	  	  

€ 

1,−1,2,−2,3,−3,4,−4,… 0 1 53 92* 

E: 3,3,3,3,3,3,3,3,… 6 0 69* 71 

F: 1,3,2,4,3,5,4,6,… 7 0 48 91* 

G: 6,6,7,7,8,8,9,9,… 113* 0 5 28 

H: 0,1,0,2,0,3,0,4,… 2 0 47 97* 

I: 	  	  

€ 

1012 ,10 3
4 ,107

8 ,101516 ,1031
32 ,… 141* 3 2 0 

J: 	  	  

€ 

−2,−4,−6,−8,−10,… 0 145* 0 1 
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Table 3: The six most common pre-definition response profiles for items A,D,E,F,G,H. 

 

Response profile Frequency 

B B N B I B 43 

N B N I I I 28 

N N N I I I 7 

B B N B N B 6 

B B N I I I 6 

N B N B I B 6 

 

 

Table 4: The six most frequent post-definition responses for items A,D,E,F,G,H. 

 

Post-definition response profile Frequency 

N N B N I N 40 

N N N N I N 22 

B B N B I B 13 

B B B B I B 11 

N N N N N N 10 

B B N B N B 8 
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Figures 

 

Figure 1. The sequence items for the pre-definition and post-definition task. 

A: 0,1,0,1,0,1,0,1,…  

B: 1,4,9,16,25,36,49,64,… 

C: 	  	  

€ 

1, 12 ,
1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,… 

D: 	  	  

€ 

1,−1,2,−2,3,−3,4,−4,… 

E: 3,3,3,3,3,3,3,3,…  

F: 1,3,2,4,3,5,4,6,…  

G: 6,6,7,7,8,8,9,9,…    

H: 0,1,0,2,0,3,0,4,…  

I: 	  	  

€ 

1012 ,10 3
4 ,107

8 ,101516 ,1031
32 ,… 

J: 	  	  

€ 

−2,−4,−6,−8,−10,… 

 

Figure 2. The formal definitions given in the presentation phase. 

A sequence 
	  	  	  	  

€ 

xn{ }
n=1

∞

 is increasing if and only if 	  	  

€ 

∀n∈N, 	  	  	  	  

€ 

xn+1 ≥ xn. 

A sequence 
	  	  	  	  

€ 

xn{ }
n=1

∞

 is decreasing if and only if 	  	  

€ 

∀n∈N, 	  	  	  	  

€ 

xn+1 ≤ xn . 
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Figure 3. The normatively correct responses for the reduced list of sequences, giving 

response profile NNBNIN (note that this would read NNNNIN if the strict interpretation 

were taken). 

A: 0,1,0,1,0,1,0,1,…  N 

D: 	  	  

€ 

1,−1,2,−2,3,−3,4,−4,… N 

E: 3,3,3,3,3,3,3,3,…  B 

F: 1,3,2,4,3,5,4,6,…  N 

G: 6,6,7,7,8,8,9,9,…    I 

H: 0,1,0,2,0,3,0,4,…  N 

 


