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Introduction

Our aim in writing these materials is to provide mathematicians with an
accessible introduction to some ideas from mathematics education research.
We could not do justice to the entire field in a document of this length, and
we have not tried to do so. Rather, we focus on three ideas that we use
to structure our thinking, as university mathematics lecturers, about what
students need to learn in order to succeed in undergraduate mathematics.
Specifically, we concentrate on what they need to learn in order to make
sense of their early encounters with abstract definitions and proofs. In brief,
the main points of the chapters are:

1. Definitions: Students are often unaware of the status of formal defini-
tions within mathematical theory and attempt to learn about concepts
informally instead ;

2. Mathematical objects: Many mathematical constructs can be under-
stood as processes but need to be understood as objects in order for
higher level reasoning to make sense;

3. Two reasoning strategies: We can distinguish two sensible ways of
approaching a proof-related task; each demands a range of skills and
some individuals may have preferences for one or the other.

Each of these ideas provides us with a lens through which to view our
students’ thinking and, rather than having to consider 200 students with,
potentially, 200 different ways of thinking, we can consider two or three
broad categories of ways they might respond to the mathematics they en-
counter.

Our discussion of each of these issues is based on research involving
close observations of students’ learning of undergraduate mathematics. We
include a number of quotations from students to illustrate their thinking;
the majority of these are relatively successful students from high ranking
institutions. We have found it illuminating to ask students to think aloud,
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INTRODUCTION 2

without interruption, as they work on mathematical tasks. This often un-
covers fragility in the knowledge of even the strongest students.

This document is very much about theories of learning mathematics, as
opposed to general theories of learning or generic advice on “good practice”
in teaching. We believe that this is important because the mathematical
content is central to a lecturer’s work in constructing lectures, notes, prob-
lem sheets etc., and because understanding students’ likely interpretations
of this content is therefore directly relevant to this day-to-day design work.
We find these ideas helpful in planning our own teaching and in responding
to students’ individual questions, because they allow us to think systemat-
ically about underlying difficulties that manifest themselves in a variety of
misunderstandings and errors. This systematic thought does not, of course,
mean that there is a unique “best way to teach”, but many teaching strate-
gies can be thought of in terms of how they address the issues raised, and
throughout the three chapters we provide specific illustrations of things that
we and others have tried in our classes and research.

In presenting these ideas we hope to show that students face genuine
challenges in learning to think like mathematicians and that some of the
difficulties they face are inherent in making the transition to undergraduate
mathematics, and are not attributable solely to lack of effort or preparation.
We also hope to convey our belief that these difficulties are not insurmount-
able, and that having more insight into students’ thinking is interesting for
its own sake, and can make the work of teaching easier and more enjoyable.



Chapter 1

Definitions

1.1 Introduction

Here are two tasks for you to try:

1. Define “chair”. That is, give a set of properties so that:

a) everything which is a chair has those properties;

b) everything which has those properties is a chair;

c) everything you might deduce from that set of properties holds
for all chairs.

2. Without giving the formal definition, describe the notion of a basis of
a vector space.

Task 1 is hard, if not impossible. Dictionaries give definitions of concepts
such as chair, but these are concise descriptions designed to capture pre-
existing concepts; they do not, and are not designed to, satisfy constraints
(a), (b) and (c). Indeed, most of us have probably never looked at a dic-
tionary definition of “chair”, but our experience with chairs means that we
have no problem recognising and using them in everyday life (Vinner, 1976;
Vinner, 1991; Edwards & Ward, 2004).

Task 2, on the other hand, is relatively easy. It may be somewhat
unsatisfying to give an informal description of a concept such as basis,
because we know that in doing so we are glossing over technical subtleties.
But most of us do such things regularly in our teaching and in talking to
colleagues. When introducing the concept in a lecture, we probably provide
a formal definition and also try to give students a sense of the concept by
saying something like “as small a set of vectors as possible, from which you
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CHAPTER 1. DEFINITIONS 4

can make all the others in the space”. Indeed, we move easily between
informal statements that describe a concept and a formal definition that,
unlike a dictionary definition, prescribes what is (and is not) an instance
of that concept. We recognise, however, that there is a huge functional
difference between the two types of statement, and that formal definitions
serve to structure the world of mathematics precisely because they do satisfy
constraints (a), (b) and (c).

Many new university students, however, are not aware of this difference.
As a consequence, they often do not pay close attention to formal definitions
and do not use these in their reasoning about abstract concepts, instead
relying on concept images built up from their experience.

1.2 Concept Image and Concept Definition

Tall & Vinner (1981) used the terms concept image and concept definition
to highlight the difference between the type of reasoning that is expected
in advanced mathematics and the type that students often engage in. They
used “concept definition” for what we might ordinarily think of as a math-
ematical definition, with an allowance that a student may not understand
or remember this correctly, and “concept image” to describe much broader
knowledge and experience with the concept:

We shall regard the concept definition to be a form of words
used to specify that concept. It may be learnt by an individual
in a rote fashion or more meaningfully learnt and related to a
greater or lesser degree to the concept as a whole. It may also
be a personal reconstruction by the student of a definition.

We shall use the term concept image to describe the total cog-
nitive structure that is associated with the concept, which in-
cludes all the mental pictures and associated properties and pro-
cesses. It is built up over the years through experiences of all
kinds, changing as the individual meets new stimuli and ma-
tures. (Tall & Vinner, 1981, p.152)

The key point is that a mathematician would expect reasoning to involve
the concept definition, either alone or in conjunction with the concept im-
age, as illustrated in Figure 1.1 below. As Vinner puts it, “when a problem
is posed to you in a technical context, you are not supposed to formulate
your solution before consulting the concept definition” (Vinner, 1991, p.72).
However, students often respond as though they had consulted only their
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Concept Definition Concept Image

Output

Input

Concept Definition Concept Image

Output

Input

Figure 1.1: Reasoning using the concept definition

concept image, as in Figure 1.2. This does not automatically lead to in-
correct answers, especially in relatively routine situations. But it does lead
to incorrect answers in situations for which the student’s concept image is
less representative. We will give some examples of this phenomenon in the
following sections.

Concept Definition Concept Image

Output

Input

Figure 1.2: Reasoning using the concept image alone
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1.2.1 Pre-existing concept images: functions and

tangents

We can clearly see students using concept images rather than concept def-
initions when asking them to make judgements about whether something
is or is not an instance of a concept. Errors (relative to the formal theory)
are especially likely when students have a lot of experience with a concept
but relatively little experience with its definition. For example, students
encounter functions repeatedly in school mathematics with little, if any,
concentration on a definition. When they come to university, they will of-
ten encounter a mathematical definition, with the (unwritten) expectation
that this will now take precedence in making judgements and in drawing
conclusions about functions. For many, however, it doesn’t.

Vinner & Dreyfus (1989), for instance, asked students to judge whether
or not certain graphs represented functions and whether functions existed
with various properties, and to respond to the question “What is a function,
in your opinion?” (Figure 1.3). Among those responding were 271 first year
students on formal mathematics courses and 36 secondary school mathe-
matics teachers, all of whom had been introduced to a formal definition.

Does there exist a function whose graph is:
1. 2. 3.

4. Does there exist a function which assigns to every number different from 0 its square and
to 0 it assigns 1?
5. Does there exist a function all of whose values are equal to each other?
6. Does there exist a function whose values for integral numbers are non-integral and whose
values for non-integral numbers are integral?
7. What is a function, in your opinion?

Figure 1.3: Vinner & Dreyfus’s questions about functions

Table 1.4 shows that considerable proportions of both groups gave incor-
rect answers, especially to the question asking about a function which whose
values are non-integral for integral numbers and vice versa. In response to
the question asking respondents “What is a function, in your opinion?”,
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Question Students Teachers
1 74 97
2 86 97
3 72 94
4 60 75
5 67 67
6 17 33

Figure 1.4: Percentages of students and teachers getting each question correct

significant numbers gave descriptions like “a dependence between two vari-
ables” or “an equation connecting two factors”. Just over half did give a
definition which had the characteristics of the standard Dirichlet-Bourbaki
definition, but just under half of these did not appear to use the definition
in making their judgements. Overall, this means that there was little use
of the mathematical definition when making these judgments.

These results might be accounted for by considering features that are
likely to form part of a student’s concept image for function at this stage
in their mathematical education. The majority of the functions they meet
in earlier mathematics are at least continuous, if not smooth, and can be
represented by a single formula. If students rely on a concept image built
up from such earlier experience, rather than a more recently encountered
formal definition, it is not surprising that their judgements in less “typical”
cases are often incorrect.

P

Figure 1.5: Students were asked to indicate tangents at point P

A similar phenomenon can be found in many other areas. Vinner (1991)
also investigated students’ understanding of the concept of tangent in a
similar way. Students, who had attended courses giving definitions of a
tangent in terms of limits of secants or as a line with a common point to
the function graph with slope equal to the derivative at that point, were
asked to consider Figure 1.5, and to choose between:
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1. Through P it is possible to draw exactly one tangent to the curve
(draw it).

2. Through P it is possible to draw more than one tangent (specify how
many, one, two, three, infinitely many. Draw all of them in the case
their number is finite and some of them in the case that it is infinite).

3. It is impossible to draw through P a tangent to the curve (Vinner,
1991, p.76).

The right

answer
Two
tangents

Infinitely
many tangents

a ‘balance’
tangent

no

drawing

Figure 1.6: Tangent responses

Only 8% gave a reasonable drawing and the answer which would be
considered correct from the limits of secants definition. The two-solutions
or infinitely-many-solutions were each more frequent (as in Figure 1.6), with
the remainder giving no response. With the definition in terms of derivative,
the “no drawing” response may indicate students with a mathematically
valid interpretation. However, the interesting issue is the 50% of students
who gave the other responses. Again, this may be accounted for in terms of
a concept image built upon students’ earlier experience. In the case of the
tangent concept, this is likely to have included lots of examples of tangents
to circles, which don’t “pass through” the graph, and/or tangents which
are seen to somehow “balance” the graph locally.

1.2.2 Spontaneous conceptions based on everyday

language: limits

We have seen that a pre-existing concept image can lead students to asso-
ciate inappropriate features with a general concept, and can interfere with
learning to use new formal definitions. A similar effect can occur when the
words we use for our concepts are taken (for sensible reasons) from everyday
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language. Such use can lead to spontaneous conceptions (Cornu, 1991) or
näıve conceptualizations (Davis & Vinner, 1986) that are at odds with the
mathematical meanings. For example, initial encounters with the concept
of limit are littered with words which bring with them a range of different
associations, many of which may be quite inappropriate. A lecturer might
take all of the following to mean the same thing (a convenient shorthand
which, in each case, is expected to evoke the same precise formulation of
the definition of convergence of sequences):

• The limit of (an) as n tends to infinity is a.

• (an) tends to a as n tends to infinity.

• (an) converges to a.

• (an) approaches a.

Robert (1982) noted, however, that the language used can evoke subtly
different images. Some formulations, like converge, suggest a dynamism
or movement, whereas others, like the limit. . . is seem static. Words like
approaches suggest that the sequence cannot “go beyond” a limit, nor can
it “reach” it. Monaghan (1991) explicitly explored the ambiguity of this
language by asking A-level mathematics students (amongst other things)
what is true of the sequence 0.9, 0.99, 0.999, . . .

• it tends to 0.9̇

• it tends to 1

• it approaches 0.9̇

• it approaches 1

• it converges to 0.9̇

• it converges to 1

• its limit is 0.9̇

• its limit is 1

Leaving aside the issue of whether they recognise that 0.9̇ = 1, the
students gave quite different responses to the different forms of language.
74% said the sequence tended to 1, but only 36% affirmed that the limit was
1. Monaghan suggested the problem may stem from the imagery associated
with the language: limit (as in a “speed limit”) is something one should not
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exceed, or a boundary, while tends to suggests a trend towards something.
A number of authors have provided illuminating quotes from students that
give an indication of the range of interpretations of these terms:

“A limit is a boundary beyond which the sequence cannot go.
But it has some important differences. A speed limit, like one
on the highway, defines only a point beyond which you are not
supposed to go. But the limit of a sequence is never reached by
that sequence.” (Davis & Vinner, 1986, p.296)

“sn → s means sn gets close to s as n gets large, but does not
actually reach s until infinity.” (Tall & Vinner, 1981, p.159)

“I don’t really see how numbers can converge. Converge means
light from a thing coming in. It’s two separate parts. You’d have
to have two sequences coming in on each other. I don’t think
you can have one sequence converging.” (Monaghan, 1991, p.23)

1.2.3 Opposites and extensions: increasing and

continuous

In the above illustrations, we have seen that students often use their con-
cept images, rather than appropriate concept definitions, to make judge-
ments about concepts. Some aspects of these concept images may come
from previous experience with the mathematical concepts, and some from
everyday use of mathematical terminology. In the latter case, the situa-
tion can be even worse than in the example given above, since in some
cases language-based spontaneous conceptions can lead to strong intuitions
against the consequences of the concept definition.

A good example of this effect is provided by “opposites”. In every-
day language use, something cannot be both increasing and decreasing.
Something cannot be both open and closed. Some formal mathematical
definitions, however, allow these everyday “impossibilities”. This leads to
all sorts of classification errors relative to formal theories. In our experi-
ence, faced with a request to give an example of a sequence that is both
increasing and decreasing, as few as 20% of students are able to do so cor-
rectly, even with the definitions in front of them. The majority either state
that this is impossible, or give an “alternating” sequence like 1, 0, 1, 0, . . ..
This is hardly surprising if we suppose that instead of consulting the defi-
nitions, the students are simply using a sensible everyday interpretation of
“increasing and decreasing”. Indeed, while students do not have a problem
classifying 1, 2, 3, . . . as an increasing sequence, few are initially willing to
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accept 1, 1, 1, . . . as such. This also is hardly surprising – it certainly seems
unlikely that, without explicit encouragement, someone would include a
constant sequence in their set of examples of increasing sequences. How-
ever, this is a serious point: students are often quite upset to realise that
this is apparently what the formal definition dictates (Tall & Vinner, 1981).

Such conflicts between a concept image and concept definition can also
occur when a definition which was historically formulated to capture famil-
iar cases is then applied to a broader class of examples. For instance, the
definition of continuity allows that the function

f(x) =

{

x x ∈ Q

0 x /∈ Q

is continuous at exactly one point. Even worse, any real-valued function
defined solely on the integers is continuous. Again, this conflicts with what
one may think of as an entirely reasonable concept image of continuity, and
when “strange examples” are introduced, the tension between a concept
image and the extension of a formal definition can lead students to expe-
rience confusion and distress. For some students, resolving this confusion
can be valuable in leading to a better understanding of the role of formal
definitions; for others, however, it may remain unresolved.

1.2.4 Developing images for new concepts: group

theory

Many of the examples we’ve given so far seem to suggest that the key prob-
lem arises when a concept definition is introduced long after a concept image
is constructed, either because the concept has been encountered earlier, as
with function and tangent, or because the language used is so evocative of
imagery, as with increasing and limit. One might imagine, then, that these
problems would not occur in situations where the language, the definition
and the initial encounters with examples and images occur together in the
teaching process.

However, Edwards & Ward (2004) addressed this issue explicitly. Group
theory does, of course, have its own problems of spontaneous conceptions:
the terms “set” and “group” have similar meanings outside mathematics,
and students may for a time treat the idea of group as though it did just
mean set without considering any extra structure (Dubinsky et al., 1994).
However, Edwards and Ward found, to their surprise, that students brought
all manner of inappropriate imagery to situations they had expected to be
so abstract as to warrant no approach other than a definitional one. They
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give an example of a student who was asked to calculate cosets. She was
provided with the definition, but rather than use this, she struggled for
twenty minutes to remember what she had done previously. They also
found that for others, working with the coset product brought to mind
imagery based on earlier experiences with multiplication such as the dis-
tributive property of multiplying two binomials (“first-outer-inner-last”),
or set operations such as taking the union.

1.2.5 Complicated definitions: convergence

Before we conclude this section, we discuss one more point about learning to
work with definitions. In all of the above sections, we have discussed ways
in which a concept image, pre-existing or built up from new experience, may
pull students towards an interpretation of a concept that is incorrect relative
to the corresponding formal definition. Here we note that there is often
a simultaneous push effect causing students to actively avoid consulting
definitions: definitions are often complicated!

A feeling for this can be generated by considering the following state-
ments:

For every tire in the library, there is a car in the parking lot
such that if the tire fits the car, then the car is red.

Amongst all the fish flying around the gymnasium, there is one
for which there is, in every Computer Science class, a Physics
major who knows how much the fish weighs. (Dubinsky et al.,
1988)

One may, however, note that these each contain alternating universal
and existential quantifiers and are thus similar in logical structure to the
definitions of sequence convergence or function continuity in real analysis.
Successful mathematicians are able to think about those definitions with
very little effort, because they have worked with them a lot and developed
an understanding of them that is closely related to their images, appropriate
examples etc. For students meeting them for the first time, however, there
is a lot of work to do to get to that point, and there may be little incentive
to put in this work when an existing concept image gives one the feeling
that the concept is already well understood.

Some mathematicians may think these are pointless manufactured ex-
amples, with no relevance; we contend, however, that students may think
exactly the same of similarly complicated mathematical definitions.
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1.3 Responses: Addressing these issues

In the preceding sections we considered the following phenomena related to
students’ use of concept definitions:

• Pre-existing concept images might override or interfere with the use
of the definition, even when the latter is known;

• Spontaneous conceptions might occur in situations in which everyday
words are used in a technical context;

• Consequences of definitions might conflict directly with sensible con-
cept images built from either previous experience or spontaneous con-
ceptions;

• Even in situations in which a definition is introduced before any ex-
perience with the concept, students might still more or less ignore it
and base their learning primarily on examples;

• Definitions themselves may be complicated and considerably harder
to work with than familiar concept images.

In addressing all of these, we believe that there are two major prob-
lems to be considered. The primary one, which we address here, is that
students are not aware that definitions have a special status in advanced
mathematics, so that when they encounter them they do not use them as
they should. That is, they often make judgements on the basis of compar-
isons with concept images and treat mathematical definitions as, at best,
dictionary-style descriptions or, at worst, irrelevant. The second problem,
which we will address more fully in Chapter 3, is that the concept image
and definition may fail to coincide significantly: clearly many mathemati-
cians rely on their images to make judgements in thinking mathematically,
but they do so with sophisticated images which they can rely on to closely
match the definition.

The first problem – of simply not using definitions mathematically –
seems like it should have a simple solution, but of course it doesn’t. First,
as Davis and Vinner point out, existing conceptions don’t go away when
we learn something new, and “the presentation by a student of an old
(and incorrect) idea cannot be taken as evidence that the student does
not know the correct idea. In many cases the student knows both, but
has retrieved the old idea” (Davis & Vinner, 1986, p.284). Nor does the
presentation of a correct definition indicate that a student will necessarily
use this appropriately in any given situation. As Vinner notes, one of
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the things that might happen when a student learns a definition is that
this is memorised but remains essentially separate from the rest of the
concept image, so that (in the context of learning about general co-ordinate
systems), “the moment the student is asked to define a co-ordinate system
he will repeat his or her teacher’s definition, but in all other situations he or
she will think of a co-ordinate system as a configuration of two perpendicular
axes” (Vinner, 1991, p.70).

Moreover, we do not want students to abandon their concept images,
or to avoid having any spontaneous conceptions. Some of the world’s best
mathematicians emphasise the importance of intuition, examples, mental
models etc. in mathematical thinking (e.g. Poincaré, 1913; Thurston, 1994).
What we want is for our students to learn to evoke the definitions when
appropriate. Given that this has rarely if ever been systematically required
before, it will probably take them some time to acquire the discipline to do
it.

Learning is a complex process, and learning to relate new definitions to
existing concept images is necessarily going to be far from straightforward.
As Davis and Vinner put it,

Even if words and ideas from outside of mathematics could
be excluded from a student’s concept image, and if one could
work entirely within mathematics, it would still be necessary
for each student to build mental representations gradually. One
cannot put anything as complex as limit into a single idea
that can appear instantaneously in complete and mature form.
(Davis & Vinner, 1986, p.300)

So learning to use definitions appropriately is not likely to be something
that a student can master overnight, no matter how good our teaching.
Nonetheless, for us, awareness of this underlying problem has a large impact
on how we think about our own teaching. There are many small-scale, day-
to-day activities that we engage in to address it, the principal ones of which
are outlined below.

1. Explaining the problem. The most obvious thing we do is to tell stu-
dents about the issue – that is, explain carefully and repeatedly that
when mathematicians give a definition, they really mean it; that def-
initions have a special status in advanced mathematics and that this
is different from the status of dictionary definitions in everyday life
(Edwards & Ward (2004) suggested using Vinner’s 1991 diagrams as
part of this discussion). In giving such explanations we try to get
across the three basic points of a definition: everything which has
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the properties of the definition is an instance of the concept, every-
thing which is an instance of the concept has the defining properties,
and that this is useful because everything deduced from the definition
applies to all instances of the concept.

2. Acknowledging counterintuitive aspects. We take particular care to
highlight instances in which the formal definition may include or ex-
clude elements (or even whole sub-classes) in a way that might seem
counterintuitive relative to a concept image. We thus repeatedly em-
phasise that the use of a word in everyday speech may depend on the
context and that in mathematics, definitions give words very precise
meanings. When doing so, however, we take care to acknowledge that
some uses of terms might seem strange at first, and that it is perfectly
fine to feel a bit uncomfortable about this. We stress this because we
do not want our students to begin thinking that mathematics is simply
a formal game in which there are no sensible meanings.

3. Highlighting use of definitions in context. We tend to emphasise the
use of definitions in proofs, in order for students to be able to see the
way that definitions enable us to deduce new properties which apply
to every instance of the concept. For instance, when a proof aims to
show that a definition is satisfied, this may be obvious to someone
who already has a mathematical notion of definition, but it could
be valuable to students to point out exactly where the statements
of definitions appear within proofs, and how the statement of the
definition often dictates the structure of the proof.

4. Testing knowledge of definitions. We sometimes use regular tests of
definitions as part of assessment. This can be contentious because
we do not want to encourage rote memorisation, and obviously we
would be delighted if students developed a full understanding of the
meanings of definitions as they went along. However, this is unlikely
and in the meantime students need to be able to recognise definitions
when they are used and to write them down accurately at will. If they
are not able to reproduce or even recognise a given definition, they will
have failed at the first hurdle; it may be useful to contemplate what
a set of analysis lecture notes must look like if one has not managed
this. Of course, regular tests also send the message that we think that
definitions are important.

5. Paying attention to the examples used. If every function a student
sees is continuous, they are likely to incorporate continuity as part of
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their concept image of function. If every sequence they see is mono-
tonic, they are likely to think primarily of monotonic sequences when
reasoning about sequences in general. For this reason, we try to be
careful with the examples we give and the sketches that we draw, to
highlight variation and to avoid routinely incorporating non-essential
properties. This is not always easy as certain key or favourite exam-
ples will tend to come up again and again. In some cases there is a
good reason for this, but in these cases we try to be aware that we are
probably inducing an inappropriate concept image in at least some of
our students.

Each of these five things can be incorporated routinely into standard
lectures. Most lecturers probably do them to some extent anyway, although
perhaps not very systematically. We now do them a lot, and have long since
stopped worrying that students would find this patronising. It is important
to remember that when they arrive at university, students genuinely do not
know that show that every convergent sequence is bounded means show that
a general sequence that satisfies the definition of convergent also satisfies the
definition of bounded (Alcock & Simpson, 2002). They are usually grateful
for the help in recognising structure at this level.

As well as these day-to-day activities and emphases, there are also larger
scale things that can be tried in order to help students to develop a math-
ematical view of definitions. Some of these are quite drastic; both mathe-
maticians and mathematics educators have experimented with reconfiguring
entire courses so that they adopt a “guided rediscovery” approach in which
students begin by experimenting with particular structures and gradually,
with the help of a teacher, refine their ideas into formal definitions, theorems
and proofs (e.g. Yackel et al., 2000; Zandieh et al., 2008).

The aim of such an approach is to give students access to more authentic
mathematical experience. In particular, it can allow students to experience
a negotiation between examples and definitions in which definitions might
change to better capture the boundaries suggested by examples (like that
described in historical context by Lakatos, 1976). Undergraduate mathe-
matics students are not normally party to this process, so an approach like
this should, in theory, make the definitions chosen seem more meaningful
and less arbitrary. Even in small-class situations in which this is viable,
however, it may not provide a complete solution; Davis & Vinner (1986)
report a case in which a small class of high-achieving high school students
attended a specialist course based on this principle, which was considered
successful in its learning goals at the time but which did not lead to reten-
tion of the formal definitions over a break (of course, this does not detract
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from the fact that the students may well have learned a great deal about
mathematical reasoning by being involved).

Another approach, which lends itself better to smaller-scale implemen-
tation within a standard lecture course, is to increase the number and range
of examples considered. Many presentations in textbooks introduce a def-
inition and give only one or two examples, perhaps with a non-example.
The assumption seems to be that students will somehow get a sense of the
whole concept by seeing these examples as generic and/or by recognising
the significance of the non-example in highlighting the concept’s boundaries.
Hopefully the above discussion has convinced you that for many students,
this is unlikely to result in a concept image that is fully compatible with
the range of variation permitted by the definition. Our own teaching now
tends to include more tasks that address a range of examples, with a de-
liberate attempt to convey a sense of the range of variation that is possible
within a concept. In this we very much follow Watson & Mason (2005), who
have written extensively on the development of conceptual understanding
through the use of tasks which require students to give examples. Illustra-
tions of this are given in Chapter 3.

We have also tried example classification tasks, in two different formats.
In introducing the definitions of open, closed and limit points for sets, we
set a task in which students had to work in groups to decide which of a list
of subsets of the reals satisfied each definition. It took the students much
longer than expected to work out how to apply these quantified statements
to the sets in question; as ever such an experience was both somewhat
alarming and illuminating. In the second format, we tried asking students
to make their own classifications before introducing definitions. This, obvi-
ously, does not work for terms like open and closed sets that have no obvious
meaning, but it is easily applied for concepts like increasing. Taking this
approach allows for the possibility for uncertainty and disagreement, for
which the definition can be introduced as a resolution: an answer to a
problem rather than an arbitrary starting point for a new topic.

The use of such example-based tasks brings us back to the subtleties
we described earlier, however. On the one hand we might try to help stu-
dents develop their concept image to a point at which it is compatible with
the formal definition and is unlikely to lead them astray in their reasoning.
On the other hand, we want them to understand that they should be fo-
cussing less on their concept image and learning to work in a disciplined
way with formal definitions. As ever, individual teachers will take different
approaches to addressing this dilemma, but by recognising the underlying
problem we can better understand our students’ behaviour, and at least
take steps to address it.



Chapter 2

Mathematical objects

2.1 Introduction

Consider the expression 3 + 2. This piece of symbolism can be thought
of as having a dual nature. It represents both a process (adding the two
numbers) and the result of that process (the sum) (Gray & Tall, 1994).
Mathematics is replete with similar cases in which a concept can be thought
of as an object or a process depending upon the context. William Thurston
described his discovery of another elementary case like this:

I remember as a child, in fifth grade, coming to the amazing (to
me) realization that the answer to 134 divided by 29 is 134

29 (and
so forth). What a tremendous labor-saving device! To me, “134
divided by 29” meant a certain tedious chore, while 134

29 was an
object with no implicit work. I went excitedly to my father to
explain my major discovery. He told me that of course this is
so, a

b
and a divided by b are just synonyms. To him it was just

a small variation in notation. (Thurston, 1990)

Gray & Tall (1994) list many more examples, among them:

• The symbol +4 stands for both the process of “add 4”’ or shift four
units along the number line, and the concept of the positive number
+4.

• The function notation f(x) = x2 − 3 simultaneously tells both how
to calculate the value of the function for a particular value of x and
encapsulates the complete concept of the function for a general value
of x.

18
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• The notation limx→a f(x) represents both the process of tending to
a limit and the concept of the value of the limit, as do limn→∞ sn,
limn→∞

∑n
k=1 ak. (Gray & Tall, 1994, p.120)

They argue that the ability to interpret ambiguous symbols in this flex-
ible way is at the root of successful mathematical thinking. This is power-
fully illustrated by considering what elementary arithmetic looks like if you
interpret numbers only as instructions to perform the process of counting.
If 3 is an instruction to count to 3, and 5 is an instruction to count to 5, this
leads to the quite complicated “super-process” for 3 + 5 of counting to 3,
counting to 5 and then putting all these items together and counting them
all. Indeed, this “count-all” strategy is well-recognised in literature on early
arithmetic. More sophisticated strategies are “count-on”, “count-on from
larger”, and students might eventually learn some sums as “known facts”
and be able to use these to generate more “derived facts” (Secada, Fuson
and Hall, 1983). This sequence is a caricature of any particular individual’s
development of early arithmetic (for example, many children will pick up
some “known facts” before learning to count-on), and not all students will
move along this sequence at the same pace. Gray and Tall found that:

We see that the [age] 10+ below–average group, sometimes
known as slow learners in the UK, appear to possess the same
profile as the 8+ above–average group, but they do not use these
facts in the same way. The above average 8+ derive most facts
that they do not know; the below average 10+ children derive no
facts [for certain problems] ... Instead they count. We suggest
that the phrase “slow learners” is therefore a misnomer. The
less able do not simply learn the same techniques more slowly.
They develop different techniques. (Gray & Tall, 1994, p.129)

If a student is primarily counting instead of co-ordinating facts, imagine how
difficult it must be to perform calculations like 13 + 15, 3× 5, 15 − 13 etc.
This might seem far removed from university level, but in fact similar effects
appear throughout mathematics, including (as we will see) with concepts
such as function and coset. Students may experience a sensation of not
understanding the mathematics because, where we see a simple object that
has to be manipulated in some way, they might see a long process that it
just too big and messy to think about as a whole.



CHAPTER 2. MATHEMATICAL OBJECTS 20

2.2 Process-object theories

Process-object theories, as they are often called, have been used to account
for a wide range of student difficulties, and in this section we consider how
they apply to various specific mathematical concepts including functions,
cosets and series. The first of these topics receives longer treatment as we
use it to introduce more fully some ideas and terminology from the math-
ematics education literature about this issue. The remaining topics each
highlight some particular issue in thinking about mathematical constructs
as objects. Finally, as in Chapter 1, we offer some comments about how we
and others as teachers are influenced by conceptualising students’ difficul-
ties in this way.

2.2.1 Moving from a process to an object

conception: functions

As mathematicians, we can think of a function as a process that takes some
input and gives an output. We can also think of a function as an object
that can itself be an input to a higher level process, like differentiation,
or speak of general functions f and g and make meaning of expressions
like f + g without considering any particular functions. We can do this
because we have been thinking about functions for a long time, but our
initial experience may have been quite different. Early experience with
functions (occurring at the age of around 11 [Key Stage 3] in the UK)
may have required simply evaluating an expression for various values of
the argument. If students are able to do this but are unable to do very
much else, they are said by Dubinsky and his colleagues to have an action
conception of function (Asiala et al., 1996; Cottrill et al., 1996). This action
conception is the first stage of the APOS theory, in which conceptions are
described as passing through phases of Action, Process, Object and Schema.

These authors described the way in which the individual gradually in-
creases their control over such an action until they can think of it as a pro-
cess where they can describe, or reflect on, all the steps in the action with-
out necessarily performing them (Cottrill et al., 1996; Dubinsky & Harel,
1992). In the case of function, an individual would be said to have a pro-
cess conception if they can imagine reversing the process to obtain inverse
functions, or linking two or more processes to compose functions. Dubinsky
(1991) also argued that this level of conceptualization is necessary for fully
making sense of graphing or whether a function is surjective or injective.

Finally, further experience and reflection lead via encapsulation to an
object conception. This encapsulation is achieved when the individual be-
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comes aware of the totality of the process, realises that transformations
can act on it, and is able to construct such transformations (Cottrill et al.,
1996). An object conception of function is necessary in order to make full
sense of higher level operations that take functions as inputs and return
them as outputs. Differentiation and integration are classic examples here:
each takes functions as inputs and returns them as outputs. If one is not able
to think of functions as objects, this is likely to make little sense (though,
of course, one may still be able to learn routines of symbol manipulation).

Three issues can further complicate the situation.
First, in many mathematical situations there is a requirement to com-

bine processes and objects at multiple levels, for which it helps to be able to
keep track of “what kind of thing” everything is. For instance, as a process,
the expression

d

dx
(4x2 + 3)

∣

∣

∣

∣

x=2

requires differentiating a function (here inputs and outputs are both func-
tions) and then evaluating the result at a certain point (inputs and outputs
are both numbers). As an object, therefore, the expression d

dx
(4x2 + 3)

∣

∣

x=2
“is” a number. A mathematically sophisticated person would have no prob-
lem asserting this. However, the expression certainly doesn’t look like a
number, so a relatively inexperienced student might only be able to as-
sert that it is one after going through a long process of evaluation. Again,
this makes it clear how powerful an object conception is. To complicate
matters, sometimes when we write numbers in function contexts, we are
actually treating them as functions. When we apply the sum rule to differ-
entiate f + 1 we are really treating the “1” as a constant function rather
than a number. This doesn’t seem to be particularly problematic in this
case, but we have certainly seen students become confused by the idea that
we can apply the sum rule for limits to the sequence (an + 1), because “1
is not a sequence”. It is particularly useful to be able to keep track of the
object in situations in which two expressions are notationally very similar:
∫ 1

0 (4x2+3) dx is a number, but
∫

(4x2+3) dx is a family of functions. Again
this is a possible source of student confusion. Most students, at some point,
have probably treated all of these expressions as instructions to perform se-
quences of algebraic actions, and for a time it may seem entirely mysterious
that as answers one sometimes gets numbers and sometimes gets functions.

Second, we have primarily been discussing functions that take numbers
as inputs, but in many cases students have to deal with functions that
operate on other kinds of object. These underlying objects may themselves
not be well encapsulated. Consider, for example, trigonometric functions
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like sin(x). In one sense, these take angles as inputs and return numbers
which are calculated from ratios. Both may be thought of as numbers, of
course, but we speculate that for many students, the process of drawing a
right-angled triangle with the appropriate angle, measuring selected sides
and finding their ratio may be less amenable to encapsulation than a process
like “double the number and add 2”. Students who have not managed this
encapsulation will struggle to make any meaningful sense of the idea of
differentiating sin(x). Our notational conventions add to the ambiguity
by making it hard to distinguish the number x3 + 4 (for a given x) and
the function x3 + 4 (standing for “cube and add 4”), in contrast to the
distinction between the function sin and the value sin(x) or the function f
and the value f(x).

Third, in advanced mathematics we often talk about functions without
invoking specific functions at all. We write sentences about f and g and
everyone is supposed to be able to imagine that these represent general
functions, possibly from some restricted set as specified by particular prop-
erties. As discussed in Chapter 1, it may be that the range of examples of
which a student has experience is considerably impoverished compared with
our own, and that faced with such sentences some students don’t think of
illustrative examples at all (Dahlberg & Housman, 1997). We will discuss
some implications of this point for constructing and understanding proofs
in Chapter 3.

2.2.2 A quicker process-object development: cosets

In the case of function, students have somewhere in the region of seven years
for development from an action through a process to an object conception
before they begin to use the concept at university. This is significant be-
cause, as Sfard (1991) points out, a great deal of time might be necessary
to move from an action conception to an object conception; further, she ar-
gues, one may need to see higher level actions on putative objects in order
to begin to see those things as objects.

For many other concepts at the university level, a similar development
is necessary, but a much shorter time period is available. In this section we
consider one of these, the concept of coset.

Students are typically introduced to the notion of a coset in a first course
on group theory. Their first experience with the concept is likely to involve
calculating specific cosets in the context of specific groups. They thus have
the opportunity to perform transformations involving specific elements, and
we might expect that they will initially treat these transformations as ex-
ternally directed actions in Dubinsky’s sense. We hope, however, that they
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will quite rapidly interiorise the process of finding cosets and be able to
imagine doing so without having to actually do all the calculations. This is
probably not unreasonable given that the students have progressed to this
level, even though we probably give fewer examples than students have been
accustomed to in school, both in our own presentations and in the problems
we assign for them to do. So far, this is similar to the development of the
function concept.

However, there is far less time for students to reach an object conception
for coset. Where students have years to learn to treat functions as objects,
in the case of the coset concept, they may well have less than a week. It
may be that the coset concept is introduced with illustrative calculations,
and only a couple of lectures later cosets are being treated as objects that
can be counted, compared, multiplied together and that may themselves
be members of groups. Students might be required, for instance, to work
with H = {0, 4, 8, 12, 16} as a subgroup of the (Z20, +), and to interpret the
symbol 2 + H as an object in order to use it in calculations like (1 + H) +
(2 + H). A mathematician would have no problem with this, and would be
able to move flexibly between thinking of the “answer” as the unified object
3+H or (if required) as the process of adding 3 (mod 20) to each element of
H . For a student, however, the symbol 2+H might signify only the process
of calculating. As such, the expression (1 + H) + (2 + H) might seem to
involve a long co-ordination of processes rather than a simple addition of
objects (Dubinsky et al., 1994). Other notations, such as [g1][g2] = [g1g2]
may make it easier to treat cosets in calculations as objects by obscuring
the underlying processes. However, while this notational sleight of hand
may allow students to progress, it does not necessarily mean they have
connected the processes to the objects.

The three issues we outlined in the preceding section on functions can
further complicate things in the case of cosets, too.

First, again one is frequently in a situation in which different types of
processes and objects are involved, and it may be important to keep track
of what kind of thing everything is. For instance, one might want students
to consider the group D3 (the symmetries of an equilateral triangle), H as
the subgroup formed by the rotations and r1 as one of the reflections, and
to ask whether r1H = Hr1. This could involve the following:

• a triangle as a basic object;

• symmetries which can be thought of as processes (“turn it over” etc.)
but need to be thought of as objects that can be elements of sets and
that can be combined;
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• the group D3 as a special kind of set of these symmetries, which has
internal structure provided by the process of composition that acts
on the symmetries;

• the subgroup H as a subset of this set, which also has internal struc-
ture provided by the same process of composition that acts on the
symmetries;

• the cosets r1H and Hr1, which can be thought of as processes but
need to be compared as objects that are equal or not.

The question is about whether two cosets are equal, but there are a num-
ber of different processes and objects that must be combined and compared
in order to answer this.

A second issue is that the group elements themselves may not be well
encapsulated. Numbers are very familiar so that at least calculating cosets
in groups of integers involves operations on familiar objects. Other ob-
jects, such as permutations or symmetries, are probably not familiar and
may themselves be unencapsulated processes for many students; we are
asking them to treat a transformation as an object, rather than thinking
about the thing that is being transformed as the object. It isn’t hard to
see that considerable mental discipline might be required to do this, since
“the transposition of 1 and 2” is less “objecty” than 1 and 2, and “rotate
through 120◦” is certainly less “objecty” than a cardboard cut-out triangle.
Of course, the whole point of abstract algebra is that we can identify com-
monalities across ostensibly very different types of structure. But it may
be difficult for a student to appreciate this if it means trying to compare
things that feel like objects in one area with things that feel like actions or
processes in another.

Third, once again mathematics at this level involves lots of general the-
orems about relationships between classes of mathematical objects. For
instance, the sentence

The map φg : H −→ gH defined by φg(h) = gh is a bijection

is about the map and treats it as a noun. For a student “a map” might
not be the kind of thing that could be described using a noun, so that the
sentence seems more likely to be “about” group elements in some vague
and confusing way. It might also be illuminating to think about how much
sense a student could possibly make of this if they think of gH only as a
process.



CHAPTER 2. MATHEMATICAL OBJECTS 25

2.2.3 Keeping track of the objects: series

convergence

In the cases of functions and cosets we have emphasised the point that
mathematical situations can involve numerous different types of processes
and objects. In this section we offer a more detailed illustration of the
potential difficulty of keeping track of “what kind of thing” each object is
in such a situation. For this we use the example of the concept of radius
of convergence of a power series and the process of finding a radius of
convergence using the ratio test. In our experience, lecturers tend to think
that using the ratio test is a straightforward process, but students find the
whole business very confusing. One reason for this may be the number and
nature of the processes and objects involved.

Consider the apparently straightforward question: Find the radius of
convergence of the power series

∑

∞

n=0
nxn

2n+1 .
A power series such as this can be thought of as a function of x, which

for each number x gives a series (so there are infinitely many series under
consideration). Each series may add up to a number (that’s two numbers
so far) or it may not. For this type of question, we do not actually care
what this second number is, just whether there is one or not. Instead, we
care about the set of all numbers x for which the series does add up to
some number. This set is also, apparently, an interval which is centred at
0 and so will be specified by a third number, often called R, the radius
of convergence (which, if you are just working with real numbers, doesn’t
seem related to circles). We use the ratio test to find this number R. We
do this by taking general consecutive terms of the series, each of which is
represented by an expression in x and n (n represents a fourth number).
We find the quotient of these expressions and treat this as another single
expression (that’s two expressions in x and n so far). We then temporarily
ignore the fact that x is a variable, and treat this second expression as a
sequence indexed by n. We find the limit of the sequence, which will be a
third expression, though just in x and not n (which may well nonetheless be
unexpected, because limits have usually been numbers). We then go back
to treating x as a variable, to ask for which values of x the modulus of this
expression is less than 1. This answer to this will be the set of numbers we
described above, of the form {x : |x| < R}. This number R is the answer
to the original question.

Superficially, using the ratio test to find a radius of convergence is a
simple algebraic procedure. Thinking of it in the above terms, however,
makes it clear just how many different objects of different types are involved.
Our description involved, at least:
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• one function;

• infinitely many series;

• four numbers, of which

– one we don’t care about;

– two are general and represented by letters;

– one is the one we’re actually trying to find;

• one set of numbers;

• three expressions in x (one of the general numbers), of which

– two also involve n (the other general number);

– one is treated as a sequence;

– one is the limit of that sequence;

Understanding this complicated construction may be further confounded
by the fact that a student may see a series as an unencapsulated process
of adding more and more terms. Such a student may be unable to think
about any individual series as actually equal to a number, let alone to
imagine iterating across infinitely many different series and asking for each
one whether it is equal to a number or not. Even a student who can
competently perform the required manipulations might lose track of what
they are actually accomplishing, and be very unclear about what they have
found or achieved by the time they get to the end of the process (try finding
a student who can reliably apply the ratio test in radius of convergence
problems and asking them what the number at the end tells us).

Note that nothing in our description even begins to address why the
ratio test works!

2.2.4 What kind of object might have that property?

The above discussions hopefully make it clear that where a mathematician
might look at a piece of notation and see an object that, if appropriate, can
be de-encapsulated into a process, a student might see just the process or
even individual actions that compose that process. Hence, where a mathe-
matician might experience a simple, neat and tidy network of relationships
among two or three concepts, a student might experience a complicated
mass of long-winded processes that are somehow related to each other in
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ways that are difficult to pin down. This underlying confusion can manifest
itself in a number of ways.

First, students who can carry out some process are often unable to
articulate what it is that this process achieves or why what they have found
by the end of it is a reasonable answer to the question. This phenomenon is
invisible in written responses, but when teaching small groups of students
it can be very illuminating to ask them to try to explain how the process
and outcome are related. In one of our recent tutorials, students had been
asked to find bases of the kernel and image of φ, where φ : R5 −→ R4 is
given by

φ
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x1 − x2 − x3

x1 + 3x4 − x5

x2 − x3 + 2x4 + x5

−x3 − x4 + x5









Most of the small group had attempted this and (aided by a similar
example in their notes) had made some progress. However, some of their
answers made no sense, containing vectors with the wrong number of com-
ponents, or being given as something other than vectors altogether – num-
bers, commonly, in some sort of confusion with the dimension of the kernel.
When asked “What kind of thing is the kernel of phi?” they were largely
unable to respond, though through more specific questions about the pos-
sibilities (“Is it a number?”, “Is it a vector?”, “Is it just one vector or more
than one?”) we were able to converge on the sensible answer “It’s a set of
vectors” and additionally specify bounds on how many vectors a basis for it
might contain. But it was clear that the students had never thought about
their answers in these terms before.

Similar difficulties appear in the case of relations. In our experience,
many students will be able to do some manipulations with inequalities and
state something like “it is transitive” but be totally unable to say what
“it” is. This is hardly surprising: even from our standpoint as people who
can discipline ourselves to think of a relation as an object that have certain
properties or not, “less than or equal to” still seems like a pretty bizarre
thing to treat as a ‘thing’.

Second, when students do manage to talk about mathematics in terms
of its objects, they may attach properties to the wrong kinds of objects.
Alcock (2008) quoted a mathematician lamenting this phenomenon:

I’d like to call it. . . an “error of category”. One of my favorite
example of this, . . . when I’d asked “prove that the intersection
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N

Figure 2.1: Convergent/non-convergent sequence

of two compact sets is compact”. . . [the response was]“Let A
and B be compact sets. . . then every point in A is compact, and
every point in B is compact, and therefore. . . .” Okay. So, and
those kinds of mistakes, particularly among the weaker students,
are pretty common. I mean, [. . . ] they don’t even understand
the nature of the objects they’re dealing with.

Similar instances of “category errors” that we have come across in re-
search and teaching include:

• thinking that in the set of vectors
{(

1
0

)

,

(

0
1

)

,

(

1
1

)}

,

the first two are linearly independent and the third is linearly depen-
dent;

• thinking that in a sequence with a graph like that in Figure 2.1, the
terms beyond N do converge but the earlier terms don’t;

• Thinking that the set {4, {−3, 2,−1/7}, {{17, 5}}} has six elements
rather than three (Dubinsky, 1991).

Some of this confusion may be about discipline in using new language,
but it is probably not a coincidence that all of these cases seem to involve
attaching the property word to objects that are more familiar to the student
than those “one level up” where the word really should be attached: here
convergent is applied to the numbers in the sequence, not to the sequence
of numbers, linearly independent is applied to vectors not to sets of vectors,
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and membership is applied to familiar base objects (numbers), not sets of
objects.

Third, sometimes properties that have originally applied to a particular
object are detached and applied to a new situation in which some other
object has this property but the original one doesn’t. This may not be
clear to students. Working with the same tutorial group as above, we saw
an instance of this in which the students had been asked to show that R2,
with scalar multiplication defined as usual, but addition defined by

(u1, u2) + (v1, v2) = (u1 + v1 + 2, u2 + v2 + 2),

was not a real vector space. The students were just getting to grips with
the definition of vector space, and were excited to think that they had
solved the problem by noticing that adding (0, 0) to a vector (u1, u2) did
not leave the vector unchanged, so that the additive identity requirement
was not satisfied. At this point, Lara found herself reluctantly having to
say, “Ah, well, zero is not the zero. . . ,” and was not surprised that the
students seemed horrified by the degree to which the mathematical ground
was apparently moving under their feet.

2.3 Responses: Addressing these issues

In the preceding sections we considered the following phenomena related
to whether or not a student can think of a mathematical construct as an
object:

• Higher level processes may not make much sense unless one can think
of lower level constructs as objects;

• University-level syllabuses might demand very quick encapsulations
of processes into objects;

• Mathematical situations often involve a variety of processes and ob-
jects at different levels, and keeping track of what kind of thing ev-
erything is can be difficult;

• Students sometimes seem to attach properties to objects at the wrong
level.

Once again, recognising that the “objects problem” is an issue that
students face helps us to make sense of their difficulties, and to have a
better sense of how the world of mathematics might look through their
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eyes. As with the concept image/concept definition distinction, we find this
conceptualization of particular help because the phenomenon is so pervasive
– a great many of the major recognised sticking points for students can be
identified as ones in which it is necessary to encapsulate a process and treat
the result as an object. This helps us to see one major class of problems
rather than hundreds of separate difficulties. Of course, as in the previous
chapter, seeing things in this way does not provide us with a way to avoid
the difficulties or with an instant solution: we cannot “give” a student an
object conception. But it does mean that we can begin to think about
types of explanation and tasks that might help students to improve their
understanding. We again consider both small-scale and large-scale possible
responses.

First, on a day-to-day scale, we again find that there are several things
we do in lectures that address this issue directly:

1. Pointing out what the objects are. We tend to make a point of high-
lighting the situations in which constructs are treated as objects, say-
ing things like “Now we are thinking of these sets (etc.) as objects in
their own right”, “We treat this symmetry as an object that can be a
member of a set” and so on. This can even be done systematically, by
taking a mathematical question that is about several different kinds
of object, such as “let φ : H → gH be defined by φ(h) = gh, prove
that |H| = |gH|”, and identifying them all: “φ is a map, g is a group
element, H is a subgroup of G, gH is a coset” etc. [1]

2. Asking “what kind of thing is. . . ?” questions. We also find ourselves
regularly asking students to make this identification, particularly in
abstract topics such as abstract and linear algebra. The archetype of
this is “What kind of thing is the kernel of phi?” It is often difficult for
students to answer these questions, as they have often never thought
about mathematics in this way before. But they do seem to get the
hang of it relatively quickly.

3. Asking whether sentences make sense. When encountering new math-
ematical objects, we find it useful to spend some time looking at what
one can do with them and whether their appearance in mathematical-
looking expressions make sense. For a simple example, if A and B are
sets of natural numbers and m and n are natural numbers, which of
the following might make sense:

[1]We are indebted to Jean Flower for this suggestion.
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(a) A ∩ n (b) n + m (c) n + A (d) A + B
(e) {n} ∪ A (f) n × m (g) A × B (h) n × |A|
(i) −− n (j) −− A (k) Ac (l) nc

In some of these, like (a), there is no accessible and sensible way in
which they might make sense; in others, like (b), (c) and (d), one could
make sense of this but only if the symbol “+” has subtly different
meanings. This kind of activity may again encourage students to
attend very carefully to what kind of object something is and what
kind of processes can act upon that object.

4. Attending to the development of underlying concepts. We try to notice
cases in which students may not have a good enough sense of old
concepts to make sense of new material. For instance, students often
do not seem to have the experience of taking a power series and adding
together the first few terms for different values of x. Having them do
this can give at least some the sense that different things happen for
different values of x and that this is therefore worth investigating.
This is not unproblematic, of course, because we do not wish to give
students the idea that adding together a few terms is enough, but feel
that, on balance, they might benefit.

On a larger scale, researchers have designed teaching sequences around
a breakdown of constructions that a student would need to make in order
to understand a topic area. Dubinsky and his colleagues referred to this
breakdown as a genetic decomposition, which is described by Asiala et al.
(1996) as “a structured set of mental constructs which might describe
how the concept can develop in the mind of an individual”. They have
developed instructional sequences for mathematical induction (Dubinsky,
1987; Dubinsky, 1989), quantification (Dubinsky et al., 1988), and func-
tion (Dubinsky & Harel, 1992; Breidenbach et al., 1992). These instruc-
tional sequences often involve both computer programming in the language
ISETL which uses very mathematical-like constructs (including the ability
to define functions which can then be passed, as objects, to be acted on by
other functions) and social interaction among students, which they cite as
promoting reflection.

This approach relies on the belief that the developmental sequence fol-
lowed by individuals is a process-object sequence. Both Dubinsky (1991)
and Sfard (1991) treated it as such, and there are good reasons to think of
it this way. Certainly this is consistent with much of our teaching sequences
as well as with much historical development.
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Clearly, however, this is not a complete description of cognitive devel-
opment (Slavitt, 1997). Sfard (1991) herself suggested that certain types
of representation, particularly graphical, facilitate an object conception of
function, and Slavitt described a property-oriented view in which functions
come to be conceived as objects possessing local and global properties such
as intercepts, symmetry and asymptotes. Also, the mathematical sentences
and expressions students encounter have objects and processes indicated by
their grammatical or syntactic status. We would contend that, if students
can get used to manipulating them within grammatically (and mathemat-
ically) correct rules, they may simply come to see things which appear as
nouns as objects. Thus it may be that students can to some extent bypass
the “objects” problem by letting the symbols do the work, in the sense
Weyl (1940) described. This in itself raises issues of how students attend to
symbols and words, and these will be further addressed in the next chapter.



Chapter 3

Two reasoning strategies

3.1 Introduction

In the previous two chapters, we discussed difficulties students face with
learning advanced mathematics. In these cases, students need to develop
certain ways of thinking: they must get used to working mathematically
with definitions in making classifications and as the basis for deductions;
they must think about certain constructs as objects if they are to make full
sense of more complicated or abstract structures. In these respects there
is, crudely, a right way of thinking to aim for.

This chapter is different; it suggests that there are two equally viable
and sensible approaches to thinking about mathematical statements and
proofs, and that while we probably all use both approaches to some extent,
some of us tend to favour one over the other. Hence in this chapter we make
a distinction within mathematical practice, but not one which is a blunt
right/wrong or better/worse distinction between novice and more expert
mathematical thinkers.

In this chapter we focus particularly on proof construction, but note that
when we talk of “proof” we think of this as including many related, but
different activities, such as: constructing a proof, reading a proof for cor-
rectness, reading a proof for understanding, producing a counter-example,
determining truth/falsity of a statement. Much of what we discuss below
applies to these activities too.

33
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3.2 Two strategies

We introduce this distinction by contrasting the responses of two undergrad-
uate students to a task presented in a research interview. The two students,
Brad and Carla, were both successful students enrolled in a “transition to
proof” course at a respected US institution (Alcock & Weber, 2008). You
may like to read the task first and pay attention to your own thinking as
you first respond to it.

Definitions

A function f : R −→ R is said to be increasing if for all
x, y ∈ R, (x > y implies f(x) > f(y)).

A function f : R −→ R is said to have a global maximum at

a real number c if for all x ∈ R such that x '= c, f(x) < f(c).

Task

Suppose f is an increasing function. Prove that there is no real
number c that is a global maximum for f .

We describe Brad’s approach and then Carla’s.
Brad commented that he was trying to understand the question and

then stated,

B: And I’m going to take an example to make sure I’m doing it right.

He wrote the following on his paper, along with a small sketch graph of
f(x) = x:

f(x) = x x = 2 f(2) = 2 y = 3 f(3) = 3

He wondered, “can f of c be repeated?” and sketched a sine curve with
two local maxima marked, before rejecting this idea. He then talked quietly
to himself for a moment before suggesting an overall proof tactic.

B: I think we can do this by contradiction. Assume that . . . assume
that um . . . if f is an increasing function then c . . . then there is
. . . a c? For which there is a max. And then prove that that can’t
happen. And then, so that’ll prove it.

He began to work on this idea, but found it difficult to make progress.
After he had struggled for some time and reconsidered his graph, he ap-
peared ready to give up, but he gave the following explanation when en-
couraged by the interviewer to talk through his thinking.
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B: I’m thinking that in the definition of increasing, there’s never going
to be one number that’s the greatest. There is always going to be
like, a number greater than x. Because it’s, because it’s increasing.
So there’s always going to be some number greater than the last.
So if x is greater than - that’s what I assumed here. x is greater
than y, then there’s going to be some x + 1, that is going to be
greater than y + 1, so that f(x + 1) is going to be greater than
f(y + 1). [. . . ]. So then, there can’t be some number, you know
that . . . if it’s increasing there can’t be some number that’s greater
than all of them. Or, some f(c).

Carla’s strategy was different. She read the question and then immedi-
ately began writing, saying,

C: So . . . I’m thinking the way to prove this is using contradiction.
So, I would start out by assuming there exists a c for which f(x) is
less than f(c), when x is not equal to c. Okay. Pause. So now I’m
trying to use the definition of increasing function to prove that this
cannot be. Um . . . so there exists a real number for which f(x) is
less than f(c) for all x, and there’s . . . f is an increasing function.
For all x, y in R, x greater than y implies f(x) greater than f(y).
Mm. . . . pause I guess what I’m trying to show is if x is in reals,
and they are infinite . . . for all x . . . there will be some function
f(c) greater than f(x). Long pause So there exists an element
in R greater than c. Um . . . for x . . . because f is an increasing
function, f(x) will be greater than f(c). Um . . . a contradiction.
So that there is no c for which f(c) is greater than f(x) for all x
[1].

She thus constructed a correct proof. When asked about her initial
strategy (to attempt proof by contradiction), Carla answered,

C: Because, in class, whenever we have some statement which says
“there is. . . no such number,” or “there exists no such number,”
then we assume there is, such number. And then we go on to prove
that that would cause a contradiction, thus, it doesn’t exist. So it
was just, something . . . automatically ingrained, when I see those
couple of words, I think contradiction.

[1]Carla’s speech was slower and more hesitant than it might appear here, but minor
hesitations are omitted to facilitate reading of her argument
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Unlike Brad, Carla clearly stated later that she was not referring to
graphs or other representations of examples while working on this task.

I: Did you have any sort of picture in your head for this one?

C: No, no . . . not really. I mean I know what a global maximum is
from calculus . . . . I mean I’ve done these sort of things so many
times. But I didn’t imagine any, any sort of function. Something
that would have a maximum. [. . . ] Really . . . I guess I did it very
systematically and theoretically, because I just stepped this is the
rule, and do it through.

We suggest that these two proof attempts can be understood as illustrations
of different overall strategies for proving, as below.

When attempting to prove a mathematical statement, one sensible ap-
proach is to begin as Brad did, by considering examples of the objects to
which the statement refers in order to ascertain whether the statement is
true for these examples. If it does seem to be true, one might then attempt
to prove it by looking for reasons why it appears to be true, perhaps by
asking what relevant properties these examples all have, or perhaps by ask-
ing oneself what it would take for the statement to be false and why this
is impossible. Having obtained an insight, one might then translate this
into an argument framed in terms of appropriate definitions or previous
theorems. We call this a semantic approach to proving.

An alternative sensible approach is to begin as Carla did, by writing
down the definitions of the various concepts contained in the statement
and using the form of the statement and/or these definitions to decide on
a likely effective overall structure for the proof. One might then proceed
by “unpacking” the definitions, introducing known theorems involving the
relevant concepts and making logical deductions based upon any of this
material, and identifying new “subgoals” in relation to finding a path of
logical connections between the assumptions and the desired conclusion.
This might involve general techniques such as proof by contradiction, as well
as local techniques such as splitting up an expression and using the triangle
inequality. We call this a syntactic approach to proving (Weber & Alcock,
2004). It is important to realise that describing an approach to proving as
“syntactic” does not mean that it is necessarily “meaningless”: one way
in which people make sense of mathematical statements is through the
network of links they have between symbols in a system – indeed we might
argue that “semantic” and “syntactic” are just two ways of understanding
“meaning” (Goldin & Kaput, 1996).
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The contrast between these approaches is clear in the illustrations pro-
vided by Brad and Carla above, but of course an expert’s proof attempt
for a more complicated conjecture is likely to combine the two (this does
not mean that all experts take the same approach; we consider the implica-
tions of this as we continue). In the next two sections we discuss in detail
what it takes to use each successfully; while the above descriptions of the
strategies make them sound straightforward, of course their effective appli-
cation is not. In doing so we also highlight many ways in which a student
might have difficulties with proof when they take a given approach. In each
case we begin by discussing the strategy in relation to proof construction,
though our discussion applies similarly to other proof-related activities such
as understanding a proof, deciding whether a statement is true or false, and
refuting a statement.

3.3 Using a semantic strategy

In order to successfully apply a semantic strategy to prove a given state-
ment, one needs to:

1. Recognise that this strategy is applicable;

2. Have access to a suitable example space;

3. Be able to translate insight gained by considering examples into a
general, formal proof.

3.3.1 Recognising that a semantic strategy is

applicable

In order to use a semantic strategy one must first recognise that this is
possible, i.e. that a statement is about some mathematical object(s) that
can be represented in some way and that thinking about examples of such
objects may help one generate a proof. This might seem like a strange thing
to say, but in fact a student may not think of it that way at all, for one (or
both) of these reasons:

• They might read a mathematical statement primarily for cues as to
which of a range of procedures to perform.

• They might not perceive the statement as being about objects for
which they could think of examples (perhaps because of the level of
abstraction, as in Chapter 2).



CHAPTER 3. TWO REASONING STRATEGIES 38

Illustrations of the former are provided by excepts from research in-
terviews with students taking an analysis course at a high ranking UK
institution. Yvonne and Zoë were trying to answer the question: for which
values of x does the series Σ∞

n=1
(−x)n

n
converge (Alcock & Simpson, 2005).

They seemed to be trying to recall procedures that they had seen in lectures
and ascertain (or just guess) which might be applicable.

Y: When . . . does the series converge?

Pause.

Z: In other words, what is the value of . . . of x or n - what is the value
of n when . . . is that what it means?

Y: I think so. I wouldn’t like to commit myself, but . . . ! Right . . .

Pause.

Y: Because you’ve got that . . . if that’s . . . oh, hang on.

Z: It’s not one of these erm, thingies, is it?

Y: Whaties?

Z: Like one of those theorems that we’ve been doing. You know we
did, you did, “it looks approximately like . . . ”

Y: Oh, yes. Oh, what on earth did we do? I don’t know.

Z: You know the, un and vn. [This notation was used for the limit
comparison test in the students’ course.]

Y: Yes. Oh, it might be . . .

Z: I don’t know. Shall we try?

Y: Okay. Got to write something!

Z: You must end up with like, blank pieces of paper!

Y: Okay. Now which one’s which?

Z: un is that. And vn is . . . isn’t it?

Y: Yes.

Z: I don’t know I was thinking that was . . .
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Y: I think that’s right isn’t it? I think it’s 1 over n. I think. Let’s
say that, okay? It’s better than anything else. And then is it, un

over vn?

Z: The vn . . . I don’t know. Do we make it . . . is that really helping?

Asked about what they were writing at this point, Zoë commented that
they were stuck and Yvonne recalled that she could “do it with the notes”.
When later asked, they seemed flummoxed by the question of what it means
for a series to converge.

We saw a different case in a recent tutorial, in which first year students
expressed a wish to discuss the following question from a linear algebra
problem sheet:

Let S be a basis for a vector space V and W be a subspace of
V . Must there be a subset of S that is a basis of W ? If so, give
a proof; if not, give a counterexample.

Many sophisticated mathematicians might take a semantic approach
to this, thinking of examples of vector spaces, subspaces and bases and
perhaps manipulating them to seek or construct a counterexample. Indeed,
the phrasing of the question (“if not, give a counterexample”) could be seen
as suggesting this approach. In the tutorial, however, the students had no
idea how to begin. When then asked merely to give an example of a vector
space, none of the seven appeared able to answer, despite much experience
with various examples like R3 and with calculations in these spaces.

In this case, these students seemed to have both problems. First, they
seemed to be expecting questions that required calculations using particular
vectors, but were comparatively unaccustomed to questions about general
concepts and found nothing to operate on in the question. Second, even
when prompted, they had great difficulty in thinking about a vector space
and a basis and a subspace as unified objects about whose relationships a
question like this could be asked. The idea of considering examples seemed
sensible to them when it was suggested, but they were not readily able to
give examples of objects at this level of abstraction.

3.3.2 Access to a suitable example space

Of course, being able to evoke an example may not be sufficient. One could
imagine, in the vector spaces task, that a person may be led astray by
limited knowledge. If only “canonical” examples come to mind, one may
think of V = R3 with its standard basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and a
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subspace W = R2 with basis {(1, 0, 0), (0, 1, 0)} and conclude that a subset
of the basis does indeed form a basis for the subspace (perhaps trying to
construct some argument based on restricting the basis for the space to only
those vectors from the subspace). This conclusion is simply wrong because
it does not necessarily hold for other bases or subspaces, but it may make
sense to someone who is able to think of vector spaces as objects but whose
associated concept image is based on limited experience in which canonical
examples have dominated.

One way to characterise what is needed here is to say that in order
to use a semantic strategy effectively one needs to have access to a suffi-
ciently well developed collection of examples or example space (in the sense
of Watson & Mason, 2005) for the concept under consideration. An indi-
vidual’s accessible example space for a concept may sensibly be thought of
as part of their concept image. Without a well-developed example space,
one is more likely to conclude something is generally true when it holds
only for a subset of the objects in question, or to construct an argument
that implicitly relies on properties other than those contained in the defi-
nition. Illustrations of this phenomenon can be seen in the following stu-
dent attempts to argue that every convergent sequence is bounded (see also
Alcock & Simpson, 2002, Alcock & Simpson, 2004).

Wendy based her justification on sketches, saying:

W: It’s convergent [she draws a monotonic, increasing convergent se-
quence]. . . yes, so if it’s convergent, it’s always . . . or . . . say it could
be the other way round. It could be going down this way [draws
a monotonic decreasing convergent sequence]. It converges, so it’s
always above that limit.

Wendy’s argument would have been a reasonable beginning for a seman-
tic proof attempt if all convergent sequences were monotonic. Of course
they are not, but it is not hard to imagine that many of those Wendy had
encountered might have been.

Cary, in a separate interview, did better, drawing a diagram like that in
Figure 3.1 and varying the examples he considered in a deliberate attempt
to identify properties that could be used to give a justification.

C: I’ve drawn . . . er . . . convergent sequences, such that . . . . I don’t
know, we have er, curves er . . . approaching a limit but never quite
reaching it, from above and below, and oscillating either side. I
think that’s pretty much what I’ve done. I was trying to think
if there was a sequence which converges yet is unbounded both
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Figure 3.1: Cary’s diagram

sides. But there isn’t one. Because that would be . . . because then
it wouldn’t converge.

C: If it converges, that has to be . . . well I don’t suppose you can say
bounded. It doesn’t have to be monotonic . . .

C: Yes I’m trying to think if there’s like . . . if you can say the first
term is, like, the highest or lowest bound, but it’s not. Because
then you could just make a sequence that happens to go, to do a
loop up, or something like that.

Cary’s reasoning feels more mathematically mature because he showed
better awareness of the range of possible variation among convergent se-
quences; more so because he deliberately considered such variation and
tried to find an argument based on properties that hold for all convergent
sequences. Of course, such effort is still not good enough to construct a
formal proof if it does not eventually make use of standard definitions or
known results.

3.3.3 Translating into a general, formal proof

A well-developed example space is not necessarily sufficient to make a se-
mantic approach successful, because it may remain difficult to translate the
understanding or insight gained by exploring examples into an appropriate
formal proof. An obvious instance of this was presented in the introduc-
tion to this chapter. Most people agree that Brad seemed to understand
why a strictly increasing real function cannot have a global maximum, but
despite some effort he failed to translate this into a proof. It is as though
he couldn’t make the notation do what he wanted it to do, even though he
understood what Raman calls the “key idea” (Raman, 2003).
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Figure 3.2: Bounded and convergent

In order to successfully produce a proof using a semantic approach,
one needs to translate an example-based argument, which may be based
on the relationships between any properties noticed while exploring one’s
example space, into deductions that relate formal definitions to one another.
This brings us back to the importance of being able to accurately recall
definitions (and suitable theorems) as well as co-ordinate their manipulation
in a way which reflects the insights obtained from exploring the example
space. This will obviously be a challenge for undergraduate students who
have not understood the importance of definitions in advanced mathematics
(as in Chapter 1), but it may also be inherently difficult because examples
do not necessarily have a linear structure, while proofs do.

For instance, the image in Figure 3.2 might be drawn in order to support
an argument that an increasing, bounded sequence must converge. How-
ever, it could just as easily be thought of as showing that an increasing,
convergent sequence must be bounded. Getting from such an image to a
formal argument depends upon being able to impose a linear structure upon
one’s thoughts about the image. This might well involve subtle properties
(such as completeness, in the above case) that are far from obvious in the
image, and it certainly involves having a good grasp of what can vary. For
instance, the image does not show that a bounded, convergent sequence
must be increasing.

Incidentally, this issue of imposing linear structure does not just apply to
examples in the form of graphical images. The Cayley table for the group D3

has each element appearing once in each row, for instance, but articulating
a reason for this depends upon being able to construct an argument based
on the group axioms, which is far from immediately obvious. At a simpler
level, the numbers 17, 19 and 23 are all both prime and odd, but there is
nothing in their usual representation that indicates which of these properties
implies the other or how general such a relationship is.

In general, there is considerable evidence that students often do not have
a very useful conception of what it means to give a mathematical proof, and
that they often try to base arguments on more or less sophisticated versions
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of example-based empirical reasoning similar to that seen above (Balacheff,
1987; Bell, 1976; Chazan, 1993; Galbraith, 1981; Harel & Sowder, 1998).
There is also some evidence that this strategy becomes less prevalent as
students proceed through a degree, with more recognition of the status of
definition-based arguments (Segal, 2000). However, it remains difficult for
students to construct or critically evaluate such formal arguments, some
reasons for which are discussed in the next section.

3.4 Using a syntactic strategy

In order to successfully apply a syntactic strategy to prove a given state-
ment, one needs to:

1. Recognise that this strategy is applicable;

2. Recognise structure at an appropriate level;

3. Use logical language correctly and make valid deductions;

4. Structure an argument appropriately.

Again, we discuss each of these in turn.

3.4.1 Recognising that a syntactic strategy is

applicable

As we saw with the semantic strategy, particular contexts (for particular
people) may make it difficult to recognise even that a particular strategy
is worth exploring. In the semantic case, examples may not be readily ac-
cessible. In the syntactic case, more or less the opposite problem occurs: a
statement may involve such familiar ideas that the student is either uncon-
vinced that any proof is needed or unable to see how one could be given.
This occurs particularly when:

• The requirement is to prove something which has been known and
accepted for a long time;

• The requirement is to prove something which seems trivially true.

A classic instance of the first case is that in which students are asked to
work with the axioms of the real numbers to prove, for instance, that −1 <
0 or that 1 is the unique multiplicative identity. Such things have been
“known” to undergraduates for many years and have been accorded the
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same status as similar statements that now function as axioms; it requires
a new type of discipline to recognise such imposed distinctions between what
is now taken as axiomatic and what must be proved. A classic example of
the second case is provided by the intermediate value theorem. A glance
at a diagram convinces most students that this theorem is “obviously”
true (from a semantic viewpoint), but it has a long and complicated proof
involving the completeness axiom. In general, support may be needed to
help students recognise that in addition to establishing truth, we are also
interesting in systematising our results (Bell, 1976). We discuss this further
in the Responses section.

3.4.2 Recognising structure at an appropriate level

The second issue also parallels one in the section on semantic reasoning.
There we observed that students may be reading mathematical statements
primarily in the expectation of finding “cues” to perform a certain pro-
cedure. In working syntactically this search for cues is also problematic,
largely because it is essential at this stage to carefully read the statement
under consideration in order to be clear about what is being asked. At least
some of our students appear to expect to take a mathematical sentence with
words and symbols in it, pretty much ignore the words, write down the sym-
bols, then perform a standard sequence of manipulations on the symbols in
order to arrive at some standard form of conclusion. This does involve mak-
ing use of the regularities in syntactic structure of mathematical statements
and manipulations, but it is not what we mean by syntactic reasoning here
as it operates at nothing like a high enough level. Our meaning of syntactic
reasoning involves dealing with whole statements, proofs and even chains
of proofs at a structural level, not just snippets of definitions. Indeed, it
may be that a student fails to accord sufficient importance to a minor no-
tational difference that has large implications for meaning, as is the case in
this quote from a mathematician (Alcock, 2008):

For instance yesterday one student was complaining because in
proving . . . in proving that the sum of an even integer and an odd
integer is odd, she had begun by saying “let x and y be integers,
assume x is even and y is odd”, then she wrote “x equal 2a, and y
equal 2a + 1”. Then eventually of course she ended up with x + y
equal an even number, which is two times something, plus 1. And
I marked the proof wrong. And then she was asking “why is it
wrong?” I said “because your proof, it follows from what you said
in your proof, that if x is an arbitrary even integer and y is an
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arbitrary odd integer then y = x + 1”. And then she said, “but
I thought that what I had to do was end up with x + y equal to
two times something plus 1, and I did”.

A more subtle illustration of what might go wrong if one does not attend
to structure at the appropriate level is provided by the case of Xavier,
who was working with Wendy on the convergent implies bounded problem
discussed earlier. Xavier was more focused on representations related to
the appropriate definitions, but at the level of detail of the notation. This
can be seen in his comment,

X: Isn’t it something to do with that . . .an minus l, don’t you re-
member?

Xavier then went on to attempt to construct an argument. One can see
that he remembered only snippets of the definition, that he was prone to
mis-statements in his speech (in this excerpt below he said “e” when he
meant “epsilon” and confused his “l” for a digit “1”) and that his use of
the logical language was imprecise.

X: Er, the term in the sequence, an, minus the limit . . . the modulus
of that is less than epsilon where epsilon . . . is . . . any real number
. . . and n is beyond any big N in the sequence. So then all the
terms beyond large N . And then if you get rid of the modulus
sign, you can write that a minus epsilon is less than a to the n
minus one, is less than epsilon, and that can be rearranged so that
a to the n is less than e plus one, but it’s also greater than one
minus epsilon . . .

More importantly, after the above excerpt, Xavier concluded,

X: So therefore a to the n is bounded above and below, and therefore
this is the definition for the convergent sequence. So it converges.

In making this conclusion it is clear that he had lost track of what it
was he was trying to prove and had not made precise links between the rel-
evant definitions (see also Alcock & Simpson, 2005). It appears that he was
taking something of a syntactic approach, but focussed on the recollection
of short strings of symbols, rather than whole statements, or the structure
of arguments.



CHAPTER 3. TWO REASONING STRATEGIES 46

3.4.3 Language and deductions

Of course, it is not the case that there are no cues in mathematical state-
ments as to ways to proceed, but they occur at a higher structural level than
students may be used to and it is necessary to correctly interpret logical
language in order to identify and use them.

A first point, as discussed in Chapter 1, is that of definitions. If a student
doesn’t know that show that every convergent sequence is bounded means
show that a general sequence that satisfies the definition of convergence also
satisfies the definition of boundedness, then they will have little chance of
working successfully with the syntactic strategy. A second issue is that,
just as the use of concept-words in mathematics sometimes differs from
that in everyday language, so does the use of the logical terminology in
which sentences are phrased. Two commonly cited and very important
instances of this are if . . . then statements and “∀∃” and “∃∀” statements.
In everyday language, context plays a large role in determining the intended
meaning of statements including the word “if”. For instance, a child told,
“If you are good, you will get some sweets” can reasonably conclude that if
they are not good they will not get sweets, and that if they get some sweets,
they must have been good. In other words, they can interpret the statement
as an if and only if statement. In addition, Dubinsky & Yiparaki (2000)
found that most students in their study could not distinguish between “∀∃”
and ‘‘∃∀” statements in mathematics and, indeed, tended to discuss the
concepts involved in a general way, rather than look at the truth value of
the particular statement. A further instance is the use of the word “so”, as
described by a mathematician in Alcock (2008):

. . . students who would say, “we want to prove this, so that” - it
was never clear to me whether they meant “so we can conclude
that”, or “so we need to verify that”. And there were a lot of proofs
which would be correct, if I could only infer that they meant “so
we need to verify . . . so we need to verify . . . so we need to verify
. . . and then this last one is clearly true so everything stacks up.”

In all of these cases, mathematicians use this terminology in a way that
is less ambiguous than its use in everyday language. In general, however,
mathematical statements are not given in fully formal terms and there can
be a good deal of interpretation to do in order to determine the logical
structure of a statement. Selden & Selden (1995) examined students’ logical
interpretations of relatively standard statements from calculus. They found
that students often did not give correct “unpackings”, for example, when
reading a statement like:
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A function f is increasing on an interval I means that for any
numbers x1 and x2 in I, if x1 < x2 then f(x1) < f(x2),

students might unpack this, beginning with

(∃f ∈ F )((f is increasing) . . .

apparently seeing the statement being about a single function rather than
about all functions.

Such incorrect interpretations of mathematical language can lead
to incorrect application of theorems. An instance of this reported by
Hazzan & Leron (1996), in which students misused Lagrange’s theorem
to conclude that Z3 is a subgroup of Z6 because 3 divides 6. As Hazzan
pointed out,

By giving this answer, students not only confuse Lagrange’s
theorem with its converse (If k|o(G), then there exists in G a
subgroup of order k – which is not a true statement), but actually
use an incorrect version of the converse statement (If o(H)|o(G)
then H is a subgroup of G). (Hazzan, 1999, p.78)

We are aware that to a mathematician it may well seem that this kind of
logical reasoning ought to be straightforward, but research in the psychol-
ogy of reasoning shows that this is not the case, even in simple situations
(Johnson-Laird & Byrne, 1991; Evans, 2007). To those who are inclined to
think that we should not be teaching advanced mathematics to those who
cannot get this kind of reasoning right, we offer a cautionary note: stud-
ies by Inglis & Simpson (2004) suggest that while mathematics students
and mathematicians perform better than general “intelligent” populations
at well-known and apparently straightforward logical reasoning tasks, they
are far from perfect at them, despite the assumptions by many in mathe-
matics and mathematics education that they should be (e.g. Devlin, 2000).
Perhaps mathematicians learn to make correct logical deductions not by
thinking about logic in the abstract, but by making deductions in context,
learning the language routines of the field and/or by combining syntactic
and semantic work. However this skill is developed, to use a syntactic strat-
egy successfully, means that one needs to be able to get from one statement
to another in a way which fits the accepted “grammar” of mathematics.

3.4.4 Structuring an argument

Unfortunately, being able to interpret statements correctly and make cor-
rect deductions can still be insufficient, since it does not necessarily tell us
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which deductions to make. Linguistic cues can help overcome this problem,
providing an element of the structure the syntactic strategy relies on. For
instance, the global structure of the statement to be proved might indicate
a potentially appropriate overall strategy:

• If . . . then indicates that one might begin by writing down the defini-
tions relevant to the premises and try to derive the conclusion from
these, or by assuming the premises and the negation of the conclusion
and aiming for a contradiction.

• For all can act as a cue to begin, “Let x be a . . . . From the definition,
x is . . . ”.

• There exists can act as a cue to construct an example with a property
or to try showing that the object’s non-existence leads to a contradic-
tion (starting with “Suppose every x in . . . was not . . . ”).

• And needs to act as a cue for combining definitions. It is sometimes
implicit (as in “prove that an increasing, bounded sequence is conver-
gent”).

Indeed, the cues in the statement may go well beyond giving a start-
ing point. Selden & Selden (1995) suggested that, in many cases, there are
whole proof frameworks which can be derived from the statement for those
taking a syntactic approach and which give the structure of the proof (of-
ten independent of the mathematical context). They gave the example of
proving the theorem:

For every semigroup S and every group G, if S is compact and
G is a subgroup of S, then there is a group H such that H is
a subgroup of S, G is a subgroup of H , and H is maximal and
closed.

The proof framework for this, they suggested, is:

Proof: Let S be a semigroup and let G be a group. Suppose
S is compact and G is a subgroup of S. . Let H be

. Then H is a subgroup of S because . Also G is a
subgroup of H because . H is closed because and
H is maximal because .

which one could arguably arrive at with no understanding of ‘group’, ‘com-
pact’ etc.
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Some students, like Carla in the introduction, clearly pick up at least
some of these cues. Others, however, may not: where a mathematician
might look at this framework and think “Well, of course the proof must
go something like that,” a student might be unable to identify appropriate
cues or may use them inappropriately because of incorrect interpretations
of the logical language as above.

Moreover, having an overall structure like this is very helpful, but it
still may not be easy to fill in the gaps. Topic-specific strategic knowledge
may also be necessary. Weber (2001) used this term to highlight differences
in performance between undergraduates and more experienced mathemati-
cians in proving elementary but non-trivial propositions in group theory. He
found that the undergraduates often knew all the information that would
be necessary to construct a proof, but failed to do so because unlike those
with more experience, they did not readily recognise situations in which
(for instance) a particular isomorphism theorem would be useful.

Finally, there are other cues which may support a successful syntactic
approach and not all of these are strictly mathematical. Many students
notice that we normally ask them to prove things from just the right set
of properties and they can become confused when we ask questions which
include irrelevant properties (e.g. “prove that every odd prime is the sum
of two consecutive integers”). Such social conventions can be very useful for
undergraduate success, but coming to rely upon them can be the undoing
of later independent graduate work (Duffin & Simpson, 2005).

3.5 Responses: Addressing these issues

In this section we discuss two ways in which our teaching is influenced by
thinking in terms of the distinction between semantic and syntactic reason-
ing. First, as in the Responses sections at the end of the other two chapters,
we describe how the distinction frames our thinking about teaching strate-
gies at the small and large scales. In doing so we discuss semantic and
syntactic reasoning separately for clarity. However, we believe that it is
important for students to become fluent in using both strategies, because:

• Semantic reasoning can give quick and “intuitive” insight, but is prone
to errors of overgeneralisation and does not lead directly to written
proofs;

• Syntactic reasoning does lead to written proofs based on accepted in-
formation, but does not necessarily include a mechanism for choosing
which inferences to make.
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Indeed, it may be that a key to success at this level is to be able to move
fluently between the two strategies depending upon the goal and demands
of the mathematical situation.

We develop this point in the second part of our discussion, which focuses
on the way in which thinking in these terms has improved our sensitivity
as teachers. We briefly discuss research which indicates that at least some
individuals (from undergraduates to successful mathematicians) tend to
preferentially use one or the other strategy. As teachers this awareness
has helped us become more alert to cases in which a student is pursuing a
strategy that we think is somewhat unproductive under the circumstances,
but that may be mathematically legitimate (at least, perhaps, in some
stronger form), and to help them move on from where they are rather than
dismissing their work. We find this to be especially useful in cases in which
the students’ tendency is different from our own, and we conclude this
chapter by noting that the most important thing might be to help students
recognise the strengths and weaknesses of the strategies and make sensible
choices about when to use which.

3.5.1 Developing skills associated with semantic

reasoning

In the sections above we noted that to use a semantic strategy successfully
one needs to:

1. Recognise that this strategy is applicable;

2. Have access to a suitable example space;

3. Be able to translate insight gained by thinking about examples into
a general, formal proof.

A first thing to recognise, then, is that many students probably do
not spontaneously think about examples when faced with a new definition
and/or statement, so that if we want them to develop this habit we will
have to do something about it. A second is that even if they do think of
examples, the range of these might not be very broad. These points are
obviously related to Chapter 1 discussion about concept images, in which
we noted that exposure to a wider range of examples may therefore be
appropriate. Here we expand this point by discussing particular tasks that
might be used to structure such experience.

In an interview, one mathematician talked about the tasks he used to
encourage students to think in a similar way.
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So, what I’ve been trying to do is to have these exercises where
the whole purpose of the exercise is just for them to process a
mathematical definition. . . . So, it just sort of asks them ques-
tions about the definition. Not deep questions at all. . . . I have
one where I just define what a partition of a set means. I define
it formally, so it has these two conditions, a collection of subsets,
such that the empty set is not one of the subsets, for every ele-
ment of the underlying set there is a subset that contains it, for
any two sets in the partition the intersection is empty. Which
is pretty abstract, when you look at something like that. And
then I just ask okay, construct three examples of a partition on
the set {1,2,3,4,5}. And then, okay, construct an example of
a collection of sets on {1,2,3,4,5} which satisfies the first two
properties but not the third. The first and the third properties
but not the second, the second and the third properties but not
the first.

Watson and Mason have discussed similar ideas very systematically,
giving a variety of ways in which we might encourage the appropriate de-
velopment of example spaces. They include various tasks designed to push
students towards generalising beyond the first examples they think of, such
as:

• Write down a function that is continuous at one point;

• Write down another;

• Write down one that has a different kind of discontinuity
at a point;

• What other kinds of discontinuity can you make?

(Watson & Mason, 2005, p.17)

Mason has also discussed very structured example generation tasks in
undergraduate level material:

• Write down a function specified on [0, 1];

• Write down a function which is also continuous on [0, 1];

• Write down a function which is also differentiable on [0, 1];

• Write down a function which also has its extremal values
at the ends of the interval;
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• Write down a function which also has a local maximum in
the interior of the interval;

• Write down a function which also has a local minimum in
the interior of the interval.

Now go back and make sure that, at each stage, the exam-
ple you provided is not also an example at the following stage.
For example, your first function cannot be continuous on [0, 1].
(Mason, 2002, p.14)

Tasks of this nature are designed to help students to go beyond “stan-
dard” examples and to recognise what Watson and Mason call boundary
examples and dimensions of possible variation. These goals have signif-
icance for the third of our points about what is necessary for successful
use of a semantic strategy, because making translations between what is
noticed when referring to examples and a general argument requires what
Mason & Pimm (1984) called seeing the general in the particular. Being
able to do this depends on being able to see what might vary without chang-
ing one or more key properties of the example. One of Mason and Pimm’s
main points is that where a lecturer looks at a single example and sees
it as representative of a whole class of examples to which some argument
applies, a student may look at a single example and see precisely that: a
single example.

The issue of seeing an example as generic has been taken up by various
authors, and it has been suggested that an argument based on a generic ex-
ample can be more convincing for students than a general one. Tall (1979),
for instance, discussed a situation in which students considered many differ-
ent arguments about irrationality of square roots. He found that the most
favoured argument was one which involved looking at a generic example of
a rational (5/8) and what happens to the prime factorisation of numerator
and denominator (the doubling of factors) when the rational is squared.
Rowland (2001) cited similar experience of improved understanding of the
proof that every prime number has a primitive root when this was pre-
sented in a generic version using the number 19 (he also gave a discussion
of many other generic proofs). Of course, such arguments are not the same
as general proofs, and Rowland noted that students may understand such
an argument but still have difficulty in working with notation appropriately
to give a general proof. However, we have also had some success with tasks
that ask questions leading to an argument about a particular example (seen
as generic) and then ask for a general version of the argument.
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It is undoubtedly useful in abstract mathematics to be able to build an
example space that accurately represents the extension of a concept defini-
tion, and to treat examples from this space as generic when constructing
and understanding arguments. However, in concluding this section we note
again that there are competing values at work, since we also want our stu-
dents to think beyond examples and learn to develop general arguments
based on formal definitions. They must, therefore, develop some skills as-
sociated with syntactic reasoning.

3.5.2 Developing skills associated with syntactic

reasoning

In the sections above we noted that to use a syntactic strategy successfully
one needs to:

1. Recognise that this strategy is applicable;

2. Recognise structure at an appropriate level;

3. Use logical language correctly and make valid deductions;

4. Structure an argument appropriately.

Addressing the first two of these is obviously also related to the dis-
cussion about definitions in Chapter 1. Students need to learn that our
arguments are based on definitions (and axioms), so they must learn to
invoke these appropriately and to recognise where these are used in proofs.
As we discussed, it can be hard to recognise such definitions and struc-
tures, especially in situations in which one is dealing with very familiar
concepts. One thing we do to address this is to make distinctions within
proving activity, acknowledging that we sometimes prove “obvious” results
and explaining this in terms of what Bell (1976) called the systematisa-
tion function of proof as well as its role in verification and in illumination.
Weber (2002) made a similar distinction, identifying a proof that justifies
the use of a definition as one in which the conclusion is regarded as obvious
and it is the assumptions that are in question, and a proof that illustrates a
technique in which the purpose is not to prove a given statement so much
as to demonstrate how to prove statements of that type.

A different kind of intervention designed to address the same problem
was suggested by Selwyn (1980), and involves temporarily obscuring the
familiarity of the rational number system, introducing this system as “Noit-
carf numbers” (pairs of integers (a, b), a '= 0 to disguise b

a
) with associated
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axioms (such as (a, b) * (c, d) = (ac, bc + ad) to disguise addition). We
have found in our classes that when asking students to prove things in this
obscured system (such as that (n, n) acts as an identity in the system), they
have far fewer difficulties in overcoming the “obviousness” which would at-
tend asking students to prove that 1 is the multiplicative identity of Q.

In addressing the second two points, we note that traditionally univer-
sities try to teach the validity of deductions through the teaching of formal
logic, but there is some evidence that this has little effect on making such
deductions (Cheng et al., 1986). Indeed, as Inglis & Simpson (2004) found
there is some evidence that mathematicians may not do their mathematics
by using formal logic either. This does not mean that teaching formal logic
has no intrinsic value, but learning about truth tables may well not have
the desired effect upon students’ ability to correctly interpret and work with
mathematical statement in a content area. Another interesting approach,
recommended by Epp (2003), is to make specific effort to highlight and
contrast situations in mathematics and in everyday language in which valid
interpretations of logical connectives are either the same or distinct.

At the level of particular types of proof, various suggestions have been
made of ways to improve students’ understanding of structure. Leron
(1985), for example, pointed out that contradiction proofs involve working
for the majority of the proof with false statements, and suggested separat-
ing out the “construction” part of such a proof first (e. g. starting from a
set of primes, showing that there is a prime not in that set before work-
ing towards a contradiction of the statement there is a finite number of
primes). Harel (2001) has done considerable work on proof by induction,
especially in designing and researching tasks that lead naturally toward in-
ductive arguments rather than teaching induction as a standard procedure
first. Although the focus is on structure in both of these cases, they involve
at least some degree of consideration of examples and so might be consid-
ered a semantic approach to highlighting this syntactic structure. Weber
(2006), on the other hand, was concerned with the strategic knowledge that
is necessary to construct proofs even if one has a good grasp of logic and
knowledge of the appropriate theorems. He reported a small-scale study in
which students were explicitly taught syntactic strategies for proving theo-
rems in group theory without any emphasis on semantic aspects, and were
able to prove significantly more theorems as a result.

Of course, there are numerous books that aim specifically to teach stu-
dents how to interpret written mathematics and how to reason logically in
a way that is appropriate. Texts by both Exner (1996) and Solow (2005)
explicitly address many of the common problems that we cited in earlier
sections of this chapter. As a final note on this point, we have observed
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that one is unlikely to insult a whole class of first years by saying “This
is the premise, and this is the conclusion, and we are (as always) going to
assume that the premise is true and show that the conclusion follows from
it.” On the contrary, many appreciate this type of comment.

3.5.3 Preferences for different strategies

As we noted above, successful mathematicians use both syntactic and se-
mantic strategies and combine them effectively. Indeed, most probably
refer to both in their teaching (Weber, 2004). However, introspective re-
ports (MacLane, 1993; Halmos, 1985) and, to some degree, larger-scale
surveys indicate that mathematicians recognise different approaches among
their colleagues that are consistent with our descriptions of semantic and
syntactic reasoning. Poincaré, for instance, wrote that

It is impossible to study the works of the great mathematicians,
or even those of the lesser, without noticing and distinguishing
two opposite tendencies, or rather two entirely different kinds of
minds. The one sort are above all occupied with logic; to read
their works, one is tempted to believe they have advanced only
step by step. The other sort are guided by intuition and at the
first stroke make quick but sometimes precarious conquests.
(Poincaré, 1913, p.210)

In giving presentations about student reasoning to mathematicians we
have heard an argument start up in the audience, where one mathematician
effectively says “Mathematics is not about the symbols, it’s about under-
standing the meaning behind the symbols! You can’t possibly be said to
understand if all you can do is perform procedures!”. However, a second
mathematician counters with something like: “No, no, no, the whole point
and power of abstract mathematics is precisely that you can work with the
symbols without having to think about any specific instantiations of the
concepts!”

Of course, these two claims are not actually contradictory, but they
serve to highlight quite different emphases in thinking about mathematics,
and it is not hard to see that they might lead to quite different emphases
in teaching (Alcock, 2008).

For us as teachers, the real significance of this is that if students
have preferences too, then this raises the possibility of clashes between
what a student is looking for when they are trying to learn mathemat-
ics, and what their lecturer thinks they ought to be doing. A small
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amount of research on actual responses to proof questions (rather than
self-reports) indicates that at least some students have quite distinct ten-
dencies to use either a semantic or a syntactic strategy. These include
studies in real analysis (Alcock & Simpson, 2004; Pinto & Tall, 2002), in
group theory (Weber & Alcock, 2004), and in transition to proof courses
(Alcock & Weber, 2008) at the undergraduate level and across postgradu-
ate levels (Duffin & Simpson, 2005). In view of this, in our own lectures we
now work harder at using both types of strategy and at making distinctions
regarding which is good for what. We are also more careful in small-group
or one-to-one tutorials to attend to students’ apparent preferences, and to
avoid making giant, unexplained leaps with our hints and suggestions (if
a student is struggling to work with new symbols via a familiar syntactic
strategy, it may be that an incitement to “look at some examples” sim-
ply piles more work of an even less comfortable kind on top of existing
difficulties).

Of course, although we try to address both strategies, we recognise that
there is an asymmetry in what is required, at least at the undergraduate
level. A student accustomed to working in a syntactic way could, provided
that they recognise the structures at the appropriate level, pass many un-
dergraduate exams with minimal need to engage with a wide range of ex-
amples for every concept they meet. A student accustomed to working in
a semantic way could probably not, however, succeed in producing appro-
priate proofs, no matter how many examples they became conversant with.
This is an interesting point because Semadeni (2007) argued that, in fact,
a well developed concept image or example space (what he called deep in-
tuition) allows one to function as well as someone with a full knowledge of
definitions – or, indeed, better where different definitions are interchange-
able (such as the triangle defined by its vertices, its sides, its area set etc.)
or where syntactic inconsistencies are overlooked (such as whether a zero
x0 of a function f is identified with the point (x0, 0) on a graph).

However, it remains the case that an undergraduate student is expected
to handle rather particular kinds of proofs within pre-set systems of axioms,
definitions and theorems. A certain mastery of the syntax of mathematics
is therefore necessary for success. This does not mean that a student would
have to abandon a semantic strategy, but they must learn to translate their
thinking into appropriate terms. This may not be easy and one final thing
that thinking in these terms has led us to change is our attention to detail in
explaining such translations. Although it has always been the case that we
tend to draw diagrams as well as give formal proofs (especially in analysis),
we now expend considerably more effort in explaining precisely how the
various symbols used in the theorems, definition and proof correspond to
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labels on the diagram, and how we knew where to put those labels. It is not
clear that this has the desired effect for all students, as for every student
who says “oh, I understand it now!” there is another who claims an aversion
to any kind of diagram. However, it is our hope that highlighting this type
of link benefits at least some students with a tendency to favour either
approach by helping them to recognise links with other ways of thinking.
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