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Abstract

Systems of quasilinear partial differential equations of the first order, known as hydrody-

namic type systems, are one of the most important classes of nonlinear partial differential

equations in the modern theory of integrable systems. They naturally arise in continuum

mechanics and in a wide range of applications, both in pure and applied mathematics.

Deep connections between the mathematical theory of hydrodynamic type systems

with differential geometry, firstly revealed by Riemann in the nineteenth century, have

been thoroughly investigated in the eighties by Dubrovin and Novikov. They introduced

and studied a class of Poisson structures generated by a flat pseudo-Riemannian metric,

called first-order Poisson brackets of hydrodynamic type. Subsequently, these structures

have been generalised in a whole variety of different ways: degenerate, non-homogene-

ous, higher order, multi-dimensional, and non-local.

The first part of this thesis is devoted to the classification of such structures in two di-

mensions, both non-degenerate and degenerate. Complete lists of such structures are pro-

vided for a small number of components, as well as partial results in the multi-component

non-degenerate case.

In the second part of the thesis we deal with deformations of Poisson structures of

hydrodynamic type. The deformation theory of Poisson structures is of great interest in

the theory of integrable systems, and also plays a key role in the theory of Frobenius

manifolds. In particular, we investigate deformations of two classes of structures of hy-

drodynamic type: degenerate one-dimensional Poisson brackets and non-semisimple bi-

Hamiltonian structures associated with Balinskiı̌-Novikov algebras. Complete classifica-

tion of second-order deformations are presented for two-component structures.
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Introduction

Hamiltonian formalism plays fundamental role in the field of integrable systems. One of

the principal tools, considered the most natural basis for constructing a Hamiltonian for-

malism of finite- and infinite-dimensional dynamical systems, is represented by Poisson

brackets. The theory of finite-dimensional Poisson brackets as a part of differential ge-

ometry was developed by a number of geometers beginning with Darboux and Lie (turn

of the twentieth century). The approach to the infinite-dimensional case, which began

as a natural consequence of this theory, has taken hold in the mathematics community

since the early seventies. In particular, the theory of Poisson brackets for a special class

of systems, namely the systems of hydrodynamic type (first-order quasi-linear systems of

PDEs), introduced in 1983 by Dubrovin and Novikov [32], has been an area of intensive

research in recent decades.

Systems of hydrodynamic type appear in a wide range of applications, namely hy-

drodynamics, chemical kinetics, fluid mechanics, gas dynamics, general relativity, the

Whitham averaging method, the theory of Frobenius manifolds and so on (see the review

papers [34, 96] for further details and references). These systems are given by equations

of first-order

uit = viαj (u)
∂uj

∂xα
, u = u(x1, . . . , xd, t), i = 1, . . . , n, α = 1, . . . , d, (1)

where the standard summation rule over repeated indices is assumed. The field variables

u = (u1, . . . , un) are usually the density of momentum, energy, mass, or others. In the

one-dimensional situation (d = 1), a Poisson bracket on a space of fields u1(x), . . . , un(x)

is called a bracket of hydrodynamic type, or a Dubrovin-Novikov bracket, if it has the form

{ui(x), uj(y)} = gij(u(x))δ′(x− y) + bijk (u(x))ukxδ(x− y). (2)

1
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Therefore, for any pair of functionals F =
∫
ψ(u, ux, uxx, . . .) dx, G =

∫
φ(u, ux, uxx . . .) dx

we have

{F,G} =

∫
δF

δui(x)
P ij

δG

δuj(x)
dx, P ij = gij(u(x))

d

dx
+ bijk (u(x))ukx, (3)

where the first-order differential operator P ij is called a Hamiltonian operator or a Poisson

bivector of hydrodynamic type. Without any loss of generality, the term Poisson structure

(of hydrodynamic type) can refer both to the Poisson bracket (of hydrodynamic type) and

the Hamiltonian operator.

Remark. Note that when we consider Poisson structures (and not the systems associated

with them), without any loss of generality we omit writing the dependence of local coor-

dinates u on the independent variable t.

As already noted by Riemann in the case of hydrodynamic type systems (1), the theory

of Poisson brackets of hydrodynamic type is a tensorial theory. Indeed, the class of Pois-

son brackets (2) is invariant under invertible smooth changes of the field variables of the

form ui → vi, where ui = ui(v): the coefficients gij(u) are transformed like components

of a tensor of type (0, 2), while assuming that the matrix gij(u) is non-degenerate, the

quantities Γijk(u), defined by bijk (u) = −gis(u)Γjsk(u), are transformed like the Christoffel

symbols of a differential-geometric connection.

Poisson brackets of hydrodynamic type for which det(gij(u)) 6= 0 are called non-

degenerate, and clearly, the non-degeneracy condition is invariant under local changes of

the field variables. Dubrovin and Novikov proved that, in the non-degenerate case, ex-

pression (2) defines a Poisson bracket if and only if the tensor gij(u) is symmetric (that is,

it specifies a pseudo-Riemannian metric with upper indices) and the connection Γijk(u) is

compatible with the metric gij(u) (with lower indices) and has no torsion, and the cur-

vature tensor vanishes. In other words, the metric gij(u) must be flat and Γijk(u) is the

associated Levi-Civita connection. This immediately establishes Darboux’s theorem for

such structures: in the flat coordinates of the metric gij(u), the bracket (2) (or, equiva-

lently, the Hamiltonian operator P ij defined in (3)) takes constant coefficient form.

Since the pioneering work of Dubrovin and Novikov, several authors have investi-

gated generalisations of the theory of Poisson brackets of hydrodynamic type:

• Ferapontov and Mokhov [78] (see also [41, 73, 77]) found a non-local generalisa-
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tion of these structures: they are defined by arbitrary pseudo-Riemannian metrics

of constant Riemannian curvature (zero Riemannian curvature leads to Dubrovin-

Novikov brackets) and play a very important role in the theory of systems of hydro-

dynamic type, for instance, in the theory of the Whitham equations.

• The study of non-homogeneous Poisson structures of hydrodynamic type, which have

applications in the theories of Heisenberg magnets, the Korteweg-de Vries equation,

N-wave equations, and other non-homogeneous systems of hydrodynamic type,

leads to the theory of Killing-Poisson bivectors on manifolds of constant Rieman-

nian curvature, constructed in [77].

• The problem of classification of general local homogeneous Poisson structures, pro-

posed by Dubrovin and Novikov in [35], is far from being completely solved: only

homogeneous Poisson structures of zero-order (Darboux), first-order (Dubrovin and

Novikov [32]), and second-order (Potëmin [85, 84], Doyle [24]) are completely clas-

sified, while partial results are available for third-order structures (Potëmin [85,

83], Doyle [24], Baladin and Potëmin [6], Ferapontov, Pavlov and Vitolo [51, 52]).

Third-order homogeneous Poisson structures arise in the theory of Monge-Ampere

equations (Ferapontov and Mokhov [47]) and equations of associativity in two-

dimensional topological field theory (Ferapontov, Galvão, Mokhov and Nutku [42]).

• In the Hamiltonian theory of multi-dimensional systems of hydrodynamic type (1),

local multi-dimensional Poisson structures cannot be reduced in general to constant

coefficients form. The obstruction can be expressed in terms of tensorial relations

[35, 74] and the classification of such structures, proposed again by Dubrovin and

Novikov in [35], reduces to the classification of algebras of certain type [35, 74].

This problem was firstly addressed in [74] resulting in a complete description of

one- and two-component structures. In the author’s joint work with Ferapontov

and Lorenzoni [46], the two-dimensional case is discussed. Adopting a differential-

geometric point of view, the classification up to four components is obtained, as well

as a complete classification for any number of components in a special case (details

will be given in Chapter 2). Important examples of hydrodynamic type systems in

two spatial dimensions occur in gas dynamics, shallow water theory, combustion

theory, general relativity, nonlinear elasticity and magneto-fluid dynamics [66].
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• Equations of gas dynamics are Hamiltonian with respect to Poisson brackets of hy-

drodynamic type with degenerate metrics. Some results about degenerate Poisson

brackets were announced for the first time by Grinberg in 1985, in a short commu-

nication [56], and later investigated by Bogoyavlenskij [9, 10]. In the author’s recent

works [87], a complete classification of one- and two-dimensional degenerate struc-

tures is obtained up to the three-component case. Unfortunately, a fully geometric

interpretation of this class of structures is not yet clear.

Another interesting problem in the modern theory of integrable systems is the classi-

fication of systems of the form

uit = F i(u,ux,uxx, . . . ,u(m), . . . ), i = 1, . . . , n. (4)

Clearly, hydrodynamic type systems are a special subclass of equations of this kind, where

the functions F i depend arbitrarily on the local field u = (u1, . . . , un) and linearly on the

first derivatives ux = (u1
x, . . . , u

n
x). Among integrable systems of such form, the most in-

teresting are bi-Hamiltonian systems introduced for the first time by Magri in [65]. The

importance of this class is due to the fact that the bi-Hamiltonian structure captures all

integrability properties. A system is called bi-Hamiltonian if it can be written as a Hamil-

tonian system with respect to two compatible Poisson brackets, where compatible means

that each linear combination of the two Poisson brackets, defining the bi-Hamiltonian

structure, is still a Poisson bracket [65]. Compatible Poisson brackets of hydrodynamic

type arise in the theory of Frobenius manifolds [25], and are strictly related to the theory

of compatible and almost compatible metrics introduced by Mokhov [70, 71]. Dubrovin

proved that the compatibility of two Poisson structures of hydrodynamic type is equiva-

lent to the fact that the correspondent flat metrics form a flat pencil (precise definition will

be given in Chapter 1). Therefore, the theory of bi-Hamiltonian structures of hydrody-

namic type has a strongly geometric nature. Since the bi-Hamiltonian structure encodes

all the characteristics of an integrable system, Dubrovin and Zhang [38] proposed to study

integrable perturbations of systems of the form (4), by studying perturbations (deforma-

tions) of their associated bi-Hamiltonian structure, and classifying them modulo Miura

transformations. For instance, the famous Korteweg-de Vries equation,

ut = uux + ε2uxxx, (5)
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can be seen as a deformation of the less renowned, but equally important, Hopf equa-

tion ut = uux. The KdV equation (5) is Hamiltonian with respect to two different Pois-

son structures: the Gardner-Zakharov-Faddeev bracket [53, 100], given by {u(x), u(y)} =

δ′(x− y), and the Magri bracket [65],

{u(x), u(y)} = uδ′(x− y) +
1

2
uxδ(x− y)− ε2δ′′′(x− y), (6)

which are compatible. Therefore, the KdV equation is also an example of a bi-Hamiltonian

equation. Note that the bracket (6) is not a first-order Poisson bracket of hydrodynamic

type since it contains the term δ′′′(x− y). However, it can be interpreted as a deformation

of the dispersionless limit (corresponding to the case ε → 0), which clearly is a Poisson

bracket of Dubrovin-Novikov type.

The study of deformations of non-degenerate bi-Hamiltonian structures of hydrody-

namic type was originally motivated by questions arising in the theory of Frobenius man-

ifolds, Gromov-Witten invariants and topological field theory [36, 37, 25, 26, 38, 55]. In

this setting, the deformations satisfy some additional constraints (τ -structure, Virasoro

constraints) and the undeformed structure is related to a Frobenius manifold [25] (see [27,

28, 57, 67] for further details on the theory of Frobenius manifolds). In the Dubrovin and

Zhang approach [38], the pencil of metrics [25, 40], defining the dispersionless limit of

the bi-Hamiltonian structure, is assumed to be semisimple, meaning that there exists a

special set of coordinates such that both metrics of the pencil take diagonal form. In the

scalar case, a complete classification of such deformations has been obtained, see Loren-

zoni [64], Liu and Zhang [63, 60], Arsie and Lorenzoni [2], Carlet, Posthuma and Shadrin

[16, 18]. The semisimple case has been thoroughly investigated by many authors (Barakat

[8], Dubrovin, Liu and Zhang [31], Dubrovin and Zhang [38], Liu and Zhang [62], Carlet,

Posthuma and Shadrin [17]), leading to a wide understanding and a complete classifica-

tion of such structures. Only recently, in the author’s joint work with Della Vedova and

Lorenzoni [22], the non-semisimple case has been discussed for the first time.

On the other hand, deformations of a single non-degenerate Dubrovin-Novikov bra-

cket are completely understood: Getzler [54] and independently Degiovanni, Sciacca and

Magri [21] proved that any such deformation is trivial, that is, can be obtained via Miura

transformation. This is not the case for deformations of degenerate structures, as re-

cently shown in the author’s paper [87]: these deformations depend on arbitrary func-
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tions, which cannot be eliminated by Miura transformations. A similar behaviour (non-

triviality) has recently been observed also in the case of deformations of multi-dimensio-

nal structures of hydrodynamic type [19, 15].

Remark. In the whole thesis, unless otherwise specified, according to the Einstein nota-

tion, the summation over repeating upper and lower indices is assumed.

Organisation of the thesis and summary of the main results

As we have seen, the study of Poisson brackets of hydrodynamic type and their generali-

sations has been an area of intensive research over the last three decades. Although some

branches have been fully understood, this theory still offers interesting aspects to be in-

vestigated. In this thesis we are mainly interested in the classification of two-dimensional

Hamiltonian operators, both degenerate and non-degenerate, as well as the deformation

theory for two classes of structures, never discussed before: one-dimensional degenerate

Dubrovin-Novikov brackets and non-semisimple bi-Hamiltonian structures of hydrody-

namic type.

A general overview concerning the theory of Poisson brackets for finite- and infinite-

dimensional systems, and in particular the theory developed in the framework of hy-

drodynamic type systems, is given in Chapter 1. The aim of this introductory chapter

is two-fold. On one hand, we introduce the basics needed for a better understanding of

the thesis: Poisson structures and their deformations, Poisson-Lichnerowicz cohomology,

multi-dimensional Hamiltonian operators. On the other hand, we recall the main results

obtained in these areas mainly due to Dubrovin, Novikov and Mokhov. Other more spe-

cific results will be presented in the appropriate chapters.

The new results presented in Chapters 2, 3, 4 and 5, are published in the author’s joint

works with Ferapontov and Lorenzoni [46], Della Vedova and Lorenzoni [22], and in the

author’s own works [87, 86]. Let us summarise the main results obtained, chapter by

chapter.

We point out that, due to the technical nature of some cumbersome computations,

proofs of some theorems in Chapters 3, 4 and 5 are omitted. Detailed proofs can be found

in the original papers or on the arXiv version.
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Chapter 2: Classification of non-degenerate Hamiltonian operators in 2D

Any non-degenerate 2D Hamiltonian operator,

P ij = gij(u)
d

dx
+ bijk (u)ukx + g̃ij(u)

d

dy
+ b̃ijk (u)uky , (7)

is defined by a pair of contravariant metrics g and g̃. It was demonstrated by Dubrovin

and Novikov [35] that in the flat coordinates of the first metric g, the second one, that is g̃,

must be linear. Mokhov [70] showed that these two metrics must be almost-compatible,

that is the Nijenhuis torsion of L = g̃g−1 must be identically zero. Moreover, in [76,

74] he gives general relations for the coefficients of the Hamiltonian operator of the form

(7), which follow from the Jacobi identity. Our first result establishes a link between 2D

Hamiltonian operators (7) and the theory of Killing tensors:

Theorem. Let g and g̃ be two flat metrics. Formula (7) defines a Hamiltonian operator if and only

if the following conditions are satisfied:

1. Linearity of g̃ij in the flat coordinates of g. Invariantly, this means∇2g̃ = 0 where∇ denotes

covariant differentiation in the Levi-Civita connection of g.

2. The vanishing of the Nijenhuis torsion of the affinor Lij = g̃ilglj .

3. The Killing condition for the bivector g̃: ∇ig̃kj +∇kg̃ij +∇j g̃ik = 0.

Furthermore, the flatness of g and the above three conditions imply the flatness of g̃.

Thus, the classification of Hamiltonian operators of the form (7) is reduced to the clas-

sification of linear Killing bivectors with zero Nijenhuis torsion in flat pseudo-Euclidean

spaces. Using the fact that any Killing bivector in flat space is the sum of symmetrised

tensor products of Killing vectors, we obtain a complete classification of 2D Hamiltonian

operators with n ≤ 4 components.

The Killing condition also plays a key role in the proof of the splitting property for

Hamiltonian operators, which can be seen as an analogue of the splitting lemma for

affinors with zero Nijenhuis torsion proved by Bolsinov and Matveev [11] in the con-

text of projectively equivalent metrics. First of all we recall their result. Let M be an

n-dimensional manifold, and let L be an affinor on M with zero Nijenhuis torsion. Sup-

pose that there exists a frame (not necessarily holonomic) in which L takes block diagonal
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form,

L =

A 0

0 B

 , (8)

where Spec(A) ∩ Spec(B) = ∅. Then there exists a coordinate system (u,v) = (u1, . . . , um,

vm+1, . . . , vn) such thatA depends on u andB depends on v only, that is, L is a direct sum

of two affinors (both with vanishing Nijenhuis torsion). Adding the Killing condition, we

show how to extend this splitting structure to the metrics, namely we prove that, in the

same coordinate system, the two metrics g and g̃ also assume block diagonal forms,

g =

g1(u) 0

0 g2(v)

 , g̃ =

g̃1(u) 0

0 g̃2(v)

 .

This suggests the definition of reducible operators: given an m-component operator P1

with the dependent variables u1, . . . , um, and an (n−m)-component operator P2 with the

dependent variables vm+1, . . . , vn, their direct sum is the n-component operator P defined

by the formula

P =

 P1 0

0 P2

 ,

on the combined set of variables (u1, . . . , um, vm+1, . . . , vn). The corresponding metrics g,

g̃ will be direct sums of the metrics defining P1 and P2. Operators of this type will be

called reducible. Thus, our second result can be formulated as follows:

The Splitting Lemma. Let P be a Hamiltonian operator such that the corresponding affinor

L = g̃g−1 can be represented in the block-diagonal form (8) in some (non-holonomic) frame, and

let Spec(A) ∩ Spec(B) = ∅. Then P decouples into a direct sum of two Hamiltonian operators,

with the corresponding affinors A and B.

Thus, any Hamiltonian operator (7) can be represented as a direct sum of irreducible

operators Pα (each generated by a pair of flat metrics gα, g̃α, defined on a manifold of

dimension nα) such that the corresponding affinor Lα = g̃αg
−1
α either has a unique real

eigenvalue of multiplicity nα, or a pair of complex conjugate eigenvalues of the same

multiplicity (in the last case nα must be even).

As a consequence of the splitting lemma we will prove that, if the affinor L is diag-

onal, then the Hamiltonian operator can be brought to constant coefficient form. This
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generalises the analogous result of [69] obtained under the additional assumption of the

simplicity of the spectrum of L. In what follows, we will be interested in Hamiltonian

operators which are not reducible, and not transformable to constant coefficient form.

Our approach to the classification of Hamiltonian operators in 2D is based on the

Killing property, and allows us to obtain a full classification up to four components. In

the three-component case, the main result is as follows.

Theorem. Any irreducible non-constant three-component Hamiltonian operator in 2D can be

brought (by a change of the dependent variables ui) to the form ±P where P can have one of the

two following canonical forms (in both cases the affinor L is a single 3× 3 Jordan block):

1. Jordan block with constant eigenvalue

P =


0 0 1

0 1 0

1 0 0

 d

dx
+


−2u2 u3 λ

u3 λ 0

λ 0 0

 d

dy
+


−u2

y 2u3
y 0

−u3
y 0 0

0 0 0

 ,

2. Jordan block with non-constant eigenvalue

P =


0 0 1

0 1 0

1 0 0

 d

dx
+


−2u1 −1

2u
2 u3

−1
2u

2 u3 0

u3 0 0

 d

dy
+


−u1

y
1
2u

2
y 2u3

y

−u2
y

1
2u

3
y 0

−u3
y 0 0

 .

In the four-component situation calculations become more complicated, and we get sev-

eral canonical forms labelled by Segre types of the affinor L.

Although our approach works for any number of components n, for n > 4 compu-

tations become rather cumbersome. The main difficulty is when the affinor L consists of

several Jordan blocks with the same eigenvalue. In the case of a single n× n Jordan block

we obtain the following result:

Theorem. Let P be a Hamiltonian operator (7) such that the affinor L = g̃g−1 is a single n × n

Jordan block with non-constant eigenvalue. Then there exists a coordinate system in which g and
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g̃ can be reduced to the following canonical forms:

g = ±


1

. .
.

1

 , g̃ = ±


µ(n;0) if n 6≡ 1 mod 3,

µ(n;0) + κ1µ
(n;n−1

3
) if n ≡ 1 mod 3, n 6= 4,

µ(4;0) + κ1µ
(4;1) + µ0 if n = 4.

Here κ1 is an arbitrary constant, the symmetric bivector µ(n;k) is defined as

µ(n;k)ij = [3(i+ j)− 2(n+ 2− k)]ui+j−1+k,

and µ0 is the constant symmetric matrix µij0 = δi,4−j + λδi,5−j , λ = const.

An analogous statement can be proved for the constant eigenvalue case. This result,

combined with the splitting lemma, provides a complete classification of 2D operators of

Dubrovin-Novikov type in the case of a direct sum of Jordan blocks with distinct eigen-

values. We also show that the case of a single n × n Jordan block with non-constant

eigenvalue gives rise to the trivial non-semisimple Frobenius manifold whose underlying

Frobenius algebra corresponds to the cohomology ring of CPn−1.

Finally, we extend our approach to Hamiltonian operators in dimensions higher than

two. This leads to a complete description of three-component operators which are essen-

tially three-dimensional, and cannot be transformed to constant coefficients:

Theorem. Any non-degenerate three-component Hamiltonian operator in 3D, which is not trans-

formable to constant coefficients, can be brought by a local change of the dependent variables ui to

P ij = gij
d

dx
+ g̃ij

d

dy
+ (c1g

ij + c2g̃
ij + hij0 )

d

dz
+ b̃ijk (uky + c2u

k
z),

where c1, c2 are constants, b̃ijk are the contravariant Christoffel symbols of g̃, and the contravariant

metrics g, g̃, h0 assume one of the two following canonical forms

• form 1:

g =


0 0 1

0 1 0

1 0 0

 , g̃ =


−2u1 −1

2u
2 u3

−1
2u

2 u3 0

u3 0 0

 , h0 =


ν 0 0

0 0 0

0 0 0

 ,

where ν = const;
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• form 2:

g =


0 1 0

1 0 0

0 0 1

 , g̃ =


−2u1 u2 0

u2 0 0

0 0 λ

 , h0 =


0 µ 0

µ 0 0

0 0 ν

 ,

where λ, µ, ν are constants.

Chapter 3: Degenerate Dubrovin-Novikov structures and integrable systems

In this chapter, we give a complete list of two- and three-component Poisson structures

of hydrodynamic type with degenerate metrics in 1D and 2D. For instance, in the two-

component case, any one-dimensional structure can be brought by a local change of coor-

dinates to one of the following canonical forms,

P =

∂x 0

0 0

 , P =

∂x −u2x
u1

u2x
u1

0

 , (9)

where ∂x = d
dx .

Degenerate two-dimensional structures of hydrodynamic type, defined through a pair

of metrics g and g̃, are classified according to the rank of the pencil g − λg̃. In the two-

dimensional case, rank 0 structures are trivial while for rank 1 we obtain

P =

∂x + u2∂y + 1
2u

2
y −ε

u2x+u2u2y
u1

ε
u2x+u2u2y

u1
0

 ,

where ε can be either 0 or 1.

Furthermore, we discuss the integrability by the method of hydrodynamic reduc-

tions for Hamiltonian systems arising from degenerate two-dimensional three-component

structures. Our analysis leads to the following statment.

Theorem. The method of hydrodynamic reductions imposes additional differential constraints

under which Hamiltonian equations arising from three-component two-dimensional Hamiltonian

operators reduce to known classes of systems considered before:
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• rank-zero structures lead to trivial systems

u1
t = u2

t = u3
t = 0,

• rank-one structures lead to one dimensional systems of the form

u1
t + f(u1)u1

x = 0, u2
t = u3

t = 0,

• rank-two structures lead either to one dimensional systems of the form

u1
t + (hu2)x = 0, u2

t + (hu1)x = 0, u3
t = 0,

or two-component non-degenerate Hamiltonian systems

u1
t + (hu1)x = 0, u2

t + (hu2)y = 0,

u1
t + (hu2)x = 0, u2

t + (hu1)x + (hu2)y = 0,

u1
t +(2u1hu1 +u2hu2−h)x+(u1hu2)y = 0, u2

t +(u2hu1)x+(2u2hu2 +u1hu1−h)y = 0,

plus the trivial equation u3
t = 0, or to the systems

u1
t + (hu2)x + (hu3)y = 0, u2

t + (hu1)x = 0, u3
t + (hu1)y = 0.

Chapter 4: Deformations of degenerate Dubrovin-Novikov structures

Given a Poisson structure P defined on a manifold M , a deformation of order k of P is a

formal series

P ε = P + εP1 + ε2P2 + . . .

satisfying the condition [P ε, P ε] = O(εk+1) for any value of the parameter ε, where [·, ·]

is the Schouten-Nijenhuis bracket. Deformation theory for non-degenerate Poisson struc-

tures of hydrodynamic type in 1D is completely understood (under the assumption of

homogeneity, further details will be given later). It has been proved that any such defor-

mation is trivial, that is P ε can be reduced to P by the action of the Miura group. In this

chapter we show that in the two-component case, first- and second-order deformations of
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degenerate structures are not trivial, that is, they cannot be eliminated by Miura transfor-

mations, and we prove that they depend on a certain number of arbitrary functions of the

variable u2.

Theorem. Up to Miura-type transformations, the following holds:

• first-order deformations of (9)1 depend on 2 functions of u2, and second-order deformations

on 6 functions of u2;

• first-order deformations of (9)2 depend on 1 function of u2, and second-order deformations

on 2 functions of u2.

In the three-component case, we provide some examples of non-trivial first-order de-

formations (as we will see, in this case second-order deformations involve too many un-

known functions, and computations become very hard), focusing on the Poisson struc-

tures given by

P =


0 u3

x 0

−u3
x 0 0

0 0 0

 , P =


∂x 0 0

0 0 0

0 0 0

 , P =


∂x 0 0

0 ∂x 0

0 0 0

 .

In particular, our results imply that the first homogeneous component of the second

Poisson-Lichnerowicz cohomology group for all the structures we have considered, does

not vanish. This implies that the second cohomology group for such degenerate structures

is not trivial, contrary to what happens in the non-degenerate case [54, 21] .

Chapter 5: Deformations of non-semisimple bi-Hamiltonian structures of hy-

drodynamic type

The last chapter is devoted to the study of deformations of non-semisimple two-compo-

nent bi-Hamiltonian structures related to two-dimensional Balinskiı̌-Novikov algebras [7]

and the associated invariant bilinear forms. The undeformed structures can be reduced to

the form

P ij2 − λP
ij
1 = gij

d

dx
+ bijk u

k
x − ληij

d

dx

where gij = (bijk + bjik )uk and the coefficients bijk and ηij are constant. We focus on the

following cases:
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Type P ij2 P ij1

(T3)

 0 −u1∂x

−u1∂x − u1
x 0

  0 η12∂x

η12∂x η22∂x


(N5)

 0 u1∂x + u1
x

u1∂x 2(u1 + u2)∂x + u2
x + u1

x

  0 η12∂x

η12∂x η22∂x


(N3, N4, N6)

 0 (1 + κ)u1∂x + u1
x

(1 + κ)u1∂x + κu1
x 2u2∂x + u2

x

  0 η12∂x

η12∂x η22∂x


According to Bai-Meng’s list [4], N3 corresponds to κ = 1, while N4 to κ = 0.

We show that in most cases the second-order deformations are parametrised by two

functions of a single variable, while in two exceptional cases the second-order deforma-

tions are parametrised by four functions.

Theorem. Second-order deformations can be reduced by Miura transformations to the form

Πλ = P2 − λP1 + ε2LieXP2 +O(ε3)

where

• in the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, X = P1 δH − P2δK with

H[u] =

∫ ∑
i,j

(
hiju

i
x log ujx

)
dx, K[u] =

∫ ∑
i,j

(
kiju

i
x log ujx

)
dx,

and the functions hij and kij are uniquely determined in terms of two arbitrary functions

F1, F2 depending only on the eigenvalue of the tensor L = gη−1;

• in the cases N4 and N6 with κ = −2, X depends on four functions F1, F2, F3, F4 of eigen-

value of the tensor L = gη−1.

In particular, in the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, second-order deforma-

tions are quasi-trivial, that is, they can be reduced to the dispersionless limit by a quasi-

Miura transformation.

It turns out that in the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, one function

is invariant with respect to the subgroup of Miura transformations preserving the dis-

persionless limit, and another function is related to a one-parameter family of truncated
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structures. In the two exceptional cases N4 and N6 with κ = −2, two functions are invari-

ants, and two are related to a two-parameter family of truncated structures.

We finally provide an example corresponding to the lift of deformations of the bi-

Hamiltonian structure associated with the KdV equation. This example suggests that

deformations of non-semisimple pencils corresponding to the lifted invariant parameters

are unobstructed.
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Poisson geometry and Dubrovin-Novikov

brackets

In this chapter we summarise some of the main notions we need from the general theory

of Poisson brackets for finite- and infinite-dimensional systems. The overview of finite-

dimensional Poisson structures can be found in several text books on classical mechanics,

for instance [1, 80], while to describe the Poisson structures on loop spaces we follow [33,

38]. Furthermore, we also recall the main aspects of Dubrovin-Zhang approach to the

deformation theory of bi-Hamiltonian structures of hydrodynamic type [38] (following

the detailed overview given in [2]), the notion of Poisson-Lichnerowicz cohomology [59],

as well as the known results in the framework of multi-dimensional Dubrovin-Novikov

brackets [35, 74, 69].

1.1 Poisson brackets on finite-dimensional manifolds

Let M be a (smooth) finite-dimensional manifold, n = dimM , and let x1, . . . , xn be a

system of local coordinates on M .

Definition 1.1. A Poisson bracket is a bilinear operation { , } : C∞(M)× C∞(M)→ C∞(M)

which satisfies, for all f, g, h ∈ C∞(M):

(i) skew-symmetry: {f, g} = −{g, f};

(ii) Leibniz identity: {fg, h} = f{g, h}+ g{f, h};

(iii) Jacobi identity: {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

A symplectic structure on M is a non-degenerate closed 2-form Ω = ωαβdx
α ∧ dxβ .

Non-degenerate means that the skew-symmetric matrix ωαβ is non-singular for all points

x ∈ M , that is detωαβ(x) 6= 0. Thus, since skew-symmetric matrix in odd dimensions is

16
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necessarily singular, a symplectic structure is defined only if the dimension of M is even.

The following general statement holds.

Darboux’s theorem (Symplectic form). Let Ω be a closed non-degenerate differential 2-form

in a neighbourhood of a point x in the space R2n. Then in some neighbourhood of x one can

choose a coordinate system (p1, . . . , pn, q
1, . . . , qn) such that the 2-form has the standard form

Ω =
∑n

i=1 dpi ∧ dqi.

Let P denote the inverse matrix of ω, that is Pαβωβγ = δαγ . We will see that the matrix Pαβ

determines everything important for the theory of Hamiltonian systems. Given Pαβ , we

can define a natural operation on the functions f, g ∈ C∞(M), that is

{f, g} = Pαβ
∂f

∂xα
∂g

∂xβ
. (1.1)

It is easy to check that (1.1) satisfies bilinearity, skew-symmetry and Leibniz rule, while

the Jacobi identity is non-obvious. In local coordinates we have that

{xα, xβ} = Pαβ, {{xα, xβ}, xγ} =
∂Pαβ

∂xk
∂xγ

∂xp
P kp =

∂Pαβ

∂xk
P kγ ,

so the Jacobi identity is given by

∂Pαβ

∂xk
P kγ +

∂P γα

∂xk
P kβ +

∂P βγ

∂xk
P kα = 0, ∀ α, β, γ. (1.2)

Definition 1.2. A skew-symmetric C∞(M)-tensor field Pαβ satisfying (1.2) is called Poisson

structure on M .

In the scientific literature, the tensor field P is also called a Poisson bivector or, equivalently,

a Hamiltonian operator.

Definition 1.3. A manifold M endowed with a Poisson structure is called a Poisson manifold.

Remark. If Pαβ is non-singular and ωαβ denotes the inverse matrix, (1.2) is also equivalent

to
∂ωαβ
∂xk

+
∂ωγα
∂xk

+
∂ωβγ
∂xk

= 0, ∀ α, β, γ,

that is

d

∑
α<β

ωαβdx
α ∧ dxβ

 = 0,
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i.e. the closedness of the 2-form ωαβdx
α ∧ dxβ .

If we restrict our attention to the domain where the rank of the Poisson structure is

constant (in particular, on the open subset where it achieves its maximum) the geometric

picture underlying the symplectic foliation simplifies considerably. In fact, we can intro-

duce local coordinates which make the foliation of particularly simple canonical form.

This is the content of Darboux’s theorem.

Darboux’s theorem (Poisson form). Let M be an n-dimensional Poisson manifold of constant

rank 2m ≤ n everywhere. At each x0 ∈ M there exist canonical local coordinates (p, q, z) =

(p1, . . . , pm, q1, . . . , qm, z1, . . . , zl), 2m + l = n, in terms of which the Poisson bracket takes the

form

{f, g} =
m∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂g

∂pi
∂f

∂qi

)
.

The leaves of the symplectic foliation intersect the coordinate chart in the slices {z1 = c1, . . . , z
l =

cl} determined by the distinguished coordinates z.

A Poisson bracket defines an anti-homomorphism between the space of the smooth

functions C∞(M) and the space of vector fields on M by

H 7→ XH := { · , H}, [XH1 , XH2 ] = −X{H1,H2}.

The objectXH is called a Hamiltonian vector field, and the corresponding dynamical system

d

dt
xα = {xα, H}, α = 1, . . . , n, (1.3)

is called a Hamiltonian system with the Hamiltonian H(u). Clearly, (1.3) is a symmetry of the

Poisson bracket, namely, LieXH{ , } = 0.

Definition 1.4. A function f ∈ C∞(M) is called a Casimir for the given Poisson bracket if it

belongs to the kernel of the Poisson bracket, i.e. if for any function g ∈ C∞(M) we have {f, g} = 0.

A function f which is a Casimir for the given Poisson bracket is automatically an integral

of the Hamiltonian system (1.3)



1.1 Poisson brackets on finite-dimensional manifolds 19

1.1.1 Poisson-Lichnerowicz cohomology

The notion of Poisson cohomology of a Poisson manifold (M, { , }) was introduced for the

first time by Lichnerowicz [59]. It can be described introducing the Schouten-Nijenhuis

bracket [88, 79]. Let us denote the space of multivectors onM by Λ∗ (the space of k-vectors

is then denoted by Λk). The Schouten-Nijenhuis bracket is a bilinear extension of the Lie-

derivative of vector fields to the space of multivectors, given by the map [ , ] : Λk × Λl →

Λk+l−1, uniquely determined by the following properties:

• supersymmetry: [b, a] = (−1)k+l[a, b], a ∈ Λk, b ∈ Λl;

• graded Leibniz: [c, a ∧ b] = [c, a] ∧ b+ (−1)lk+ka ∧ [c, b], a ∈ Λk, c ∈ Λl;

• [f, g] = 0 for f, g ∈ Λ0, [v, f ] = vi ∂f
∂xi

for v ∈ Λ1, f ∈ Λ0 and for v1, v2 ∈ Λ1, [v1, v2] is

the usual commutator of vector fields.

In particular, for a vector field v and a multivector a we have [v, a] = Lieva. For a pair

of bivectors h = (hij) and f = (f ij), their Schouten-Nijenhuis brackets is given by the

following trivector

[h, f ]ijk =
∂hij

∂xs
fsk +

∂f ij

∂xs
hsk +

∂hki

∂xs
fsj +

∂fki

∂xs
hsj +

∂hjk

∂xs
fsi +

∂f jk

∂xs
hsi.

Let us point out that the Jacobi condition (1.2) is equivalent to [P, P ]ijk = 0.

The Schouten-Nijenhuis bracket satisfies the so called graded Jacobi identity [79]

(−1)km[[a, b], c] + (−1)ml[[c, a], b] + (−1)lk[[b, c], a] = 0, a ∈ Λk, b ∈ Λl, c ∈ Λm.

It follows that, for a Poisson bivector P , the map d : Λk → Λk+1, such that for Q ∈ Λk we

have dQ = [P,Q], is a differential, that is d2 = 0.

Definition 1.5. The cohomology of the complex (Λ∗, d) is called Poisson-Lichnerowicz cohomol-

ogy of (M, { , }).

Usually, it is denoted by H∗(M, { , }) = ⊕k≥0H
k(M, { , }), or just by HP ∗, where P is the

Poisson bivector related to the Poisson bracket { , }. In particular:

• H0(M, { , }) corresponds to the ring of Casimirs of the Poisson bracket;
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• H1(M, { , }) is the quotient of the Lie algebra of infinitesimal symmetries over the

subalgebra of Hamiltonian vector fields;

• H2(M, { , }) coincides with the space of infinitesimal deformations of the Poisson

bracket modulo those that can be obtained by infinitesimal changes of coordinates.

1.2 Local Poisson structures on loop spaces

In this section we want to describe an appropriate class of Poisson brackets on the loop

space of a (smooth) n-dimensional manifoldM , that is the space L(M) of all smooth maps

S1 → M . Here L(M) is treated formally in the spirit of formal variational calculus (see

[23, 20]) and it is defined in terms of the ring of functions on it. Let U ⊂ M be a chart on

M with the coordinates u1(x), . . . un(x). We denote by A = A(U) the ring of differential

polynomials in the independent variables ui(s), i = 1, . . . , n, s = 1, 2, . . .,

f(x,u,ux, . . . ) =
∑

i1,s1,...,im,sm

fi1,s1;...;im,sm(x,u)ui1(s1) . . . u
im
(sm),

where u = (u1, . . . , un), u(s) = (u1
(s), . . . , u

n
(s)) with ui(s) = ds

dxsu
i(x). We also require that

the coefficients fi1,s1;...;im,sm(x,u) of these differential polynomials are smooth functions

on S1×M . Denote byA0 = A/R the space of differential polynomials modulo constants,

and A1 = A0 dx. Then we have a well-defined map d : A0 → A1 such that

f 7→ df :=

∂f
∂x

+
∑
i,s

∂f

∂ui(s)
ui(s+1)

 dx.

The quotient space Λ = A1/dA0 is called the space of local functionals on L(M), whose

elements are expressed as integrals over S1 of a representative differential polynomial,

namely

Λ 3 λ =

∫
S1

f(x,u,ux, . . . ,u(m)) dx.

Since we are considering suitable boundary conditions, two elements λ1 and λ2 in Λ are

specified by a differential polynomial up to a total derivative.

In order to study Poisson bivectors on the loop space, we need to introduce the notion

of local multivectors (k-vectors).
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Definition 1.6. A local k-vector α on the loop space L(M) is a formal infinite sum of the form

α =
∑ 1

k!
∂s1x1 . . . ∂

sk
xk
Ai1,...,ik

∂

∂ui1(s1)(x1)
∧ · · · ∧ ∂

∂uik(sk)(xk)
,

with coefficients

Ai1,...,ik =
∑

p2,...,pk≥0

Bi1,...,ik
p2,...,pk

(u(x1),ux(x1), . . . )δ(p2)(x1 − x2) . . . , δ(pk)(x1 − xk),

where Bi1,...,ik
p2,...,pk(u(x1),ux(x1), . . . ) ∈ A (the ring of differential polynomials) and the coefficients

Ai1,...,ik , called the components of the k-vector α, satisfy the skew-symmetry condition with respect

to simultaneous exchange (ir, xr) with (is, xs).

δ-functions, as well as their derivatives and products, are defined by the formulae

∫
f(y)δ(x− y) dy = f(x),

∫
f(y)δ(m)(x− y) dy =

dmf(x)

dxm
,

∫
f(x1, . . . , xk)δ

(m2)(x1 − x2) . . . δ(mk)(x1 − xk) dx2 . . . dxk

= ∂m2
x2 . . . ∂mkxf f(x1, . . . , xk)|x1=x2=...=xk .

We denote the space of local k-vectors as Λkloc. For example, for k = 0, the subspace

Λ0
loc ⊂ Λ∗loc is identified with the space of local functionals of the form

F =

∫
S1

f(u(x),ux(x), . . . ) dx, f(u(x),ux(x), . . . ) ∈ A0. (1.4)

In the case where k = 1, the subspace Λ1
loc represents the space of local vector fields on

L(M), and its generic element is expressed by the following formula

ξ =

n∑
i=1

∑
s≥0

∂sxX
i(u(x),ux(x), . . . )

∂

∂ui(s)
. (1.5)

The components Xi in (1.5) do not depend explicitly on the variable x and for this reason

they are called translationally invariant evolutionary vector fields.

Let us consider the space of local bivectors (k = 2). A generic element P ∈ Λ2
loc has the
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form

P =
1

2

∑
∂rx∂

s
yA

ij ∂

∂ui(r)(x)
∧ ∂

∂uj(s)(y)
, (1.6)

where

Aij = Aij(x− y;u(x),ux(x), . . . ) =
∑
t≥0

Aijt (u(x),ux(x), . . . )δ(t)(x− y).

In order to characterise which local bivector P ∈ Λ2
loc corresponds to a Poisson bivector

we need to introduce a criterion for the Jacobi identity. We have seen that in the finite-

dimensional case the Jacobi identity can be written in terms of the Schouten-Nijenhuis

bracket (see Section 1.1). An infinite-dimensional version of this bracket can be defined

on the space of local multivectors with its natural gradation Λ∗loc = Λ0
loc⊕Λ1

loc⊕Λ2
loc⊕ . . . ,

through a bilinear operation

[ , ] : Λrloc × Λsloc → Λr+s−1
loc , r, s ≥ 0.

Let us describe how the Schouten-Nijenhuis bracket operates on certain pairs of local

multi-vectors:

• For any F,G ∈ Λ0
loc we have [F,G] = 0 identically.

• If ξ is a local vector (1.5) and F is a local functional (1.4), then

[ξ, F ] =

∫
S1

∑
t≥0

n∑
i=1

(∂txX
i)
∂f

∂ui(t)
dx =

∫
S1

n∑
i=1

Xi δF

δui(x)
dx,

where
δF

δui(x)
=
∑
t≥0

(−1)t∂tx

(
∂f

∂ui(t)

)

is the variational derivative of the local functional F . Observe that [ξ, F ] is indeed

an element of Λ0
loc.

• The Schouten-Nijenhuis bracket of two local vector fields ξ, η of the form (1.5), with

components Xi, Y i respectively, is again a vector field µ given by

µ = [ξ, η] =
∑
s,i,j,t

∂sx

(
Xj

(t)

∂Y i

∂uj(t)
− Y j

(t)

∂Xi

∂uj(t)

)
∂

∂ui(s)
.
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• The Schouten-Nijenhuis bracket of a local bivector P of the form (1.6) and a local

functional F gives rise to a local vector field whose components are

[P, F ]i =
∑
j,k

Aijk ∂
k
x

δF

δuj(x)
.

• Analogously the Schouten-Nijenhuis bracket of a local bivector P (1.6) and a local

vector field ξ (1.5) is again a local bivector whose components are given by

[P, ξ]ij =
∑
k,s

(
∂sxX

k(u(x), ...)
∂Aij

∂uk(s)(x)
− ∂X

i(u(x), ...)

∂uk(s)(x)
∂sxA

kj− ∂X
j(u(y), ...)

∂uk(s)(y)
∂syA

ik

)
.

(1.7)

We refer to formula (1.7) as Lie derivative of a translationally invariant bivector P

along a translationally invariant vector field ξ, that is, (LieξP )ij = [P, ξ]ij .

• If P and Q are two translationally invariant bivectors with the components Aij(x−

y;u(x),u(y);ux(x),ux(y), . . . ) and Bij(x − y;u(x),u(y);ux(x),ux(y); . . . ), that we

denote respectively by Aijx,y and Bij
x,y, then the Schouten-Nijenhuis bracket [P,Q] is

a translation invariant trivector with the components

[P,Q]ijkx,y,z =

∂Aijx,y

∂ul(s)(x)
∂sxB

lk
x,z +

∂Bij
x,y

∂ul(s)(x)
∂sxA

lk
x,z +

∂Aijx,y

∂ul(s)(y)
∂syB

lk
y,z +

∂Bij
x,y

∂ul(s)(y)
∂syA

lk
y,z

+
∂Akiz,x

∂ul(s)(z)
∂szB

lj
z,y +

∂Bki
z,x

∂ul(s)(z)
∂szA

lj
z,y +

∂Akiz,x

∂ul(s)(x)
∂sxB

lj
x,y +

∂Bki
z,x

∂ul(s)(x)
∂sxA

lj
x,y

+
∂Ajky,z

∂ul(s)(y)
∂syB

li
y,x +

∂Bjk
y,z

∂ul(s)(y)
∂syA

li
y,x +

∂Ajky,z

∂ul(s)(z)
∂szB

li
z,x +

∂Bjk
y,z

∂ul(s)(z)
∂szA

li
z,x.

As in the finite-dimensional case, the Schouten-Nijenhuis bracket satisfies the following

properties for every a ∈ Λkloc, b ∈ Λlloc, c ∈ Λmloc:

• supersymmetry: [a, b] = (−1)kl[b, a];

• graded Jacobi: (−1)km[[a, b], c] + (−1)ml[[c, a], b] + (−1)lk[[b, c], a] = 0.

We can now introduce the notion of local Poisson structure.

Definition 1.7. A local bivector P ∈ Λ2
loc of the form (1.6) is called a local Poisson structure on

L(M) if [P, P ] = 0.
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1.2.1 Deformations of local Poisson structures

A local Poisson structure P ∈ Λ2
loc gives rise to a Poisson bracket on the space of local

functionals by the formula

{F,G} =

∫
S1

∑
k≥0

δF

δui(x)
Aijk (u,ux, . . . )∂

k
x

δG

δuj(x)
dx, (1.8)

which, using a special choice of local functionals, namely, F =
∫
ui(w)δ(w − x) dw, G =∫

uj(w)δ(w − y) dw, leads to the usual representation of a Poisson structure:

{ui(x), uj(y)} =
∑
k≥0

Aijk (u(x),ux(x), . . . )δ(k)(x− y).

It has been observed that the rescaling of the independent variable ψε : x 7→ xε induces a

natural gradation on the space Λkloc. Now we describe how the various ingredients rescale

under ψε. First of all we define (ψεu
i)(x) = ui(εx), which immediately implies

d(ψεu
i)(x)

dxs
= εsui(s)(x),

∂

∂ui(s)(εx)
=

1

εs
∂

∂ui(s)(x)
.

Concerning the scaling of δ distribution and its derivatives, let us consider

∫
f(x)δ(s)(εx) dx =

∫
f
(z
ε

)
δ(s)(z)

dz

ε
= (−1)s

∫
dsf

(
z
ε

)
dzs

δ(z)
dz

ε
=

= (−1)sf(s)(0)
1

εs+1
=

∫
f(x)δ(s)(x)

1

εs+1
dx,

from which we get

δ(s)(εx) = δ(s)(x)
1

εs+1
, δ(s)(x) = εs+1(ψε(δ

(s)))(x).

With this information, one can show that the rescaling ψε induces a decomposition on Λkloc

into monomials of different degrees.

For simplicity, we focus on the cases of Λ1
loc and Λ2

loc. As seen above, any local vector

field ξ has the form (1.5). Since the changes of ∂sx and ∂
∂ui

(s)

induced by the rescaling ψε

are reciprocal to each other, the splitting of the vector field ξ into homogeneous monomi-

als depends only on its components Xi. In general, the components Xi split under the



1.2 Local Poisson structures on loop spaces 25

rescaling into homogeneous monomials as follows:

Xi = ai(u) + ε
n∑
j=1

bij(u)ujx + ε2

 n∑
j=1

eij(u)ujxx +
n∑

j,l=1

hijl(u)ujxu
l
x

+ . . . ,

and this gives rise to an analogous decomposition as

Λ1
loc =

∞⊕
k=0

Λ1
k,loc,

where Λ1
k,loc ⊆ Λ1

loc is the space of local vector fields ξ whose components Xi are ho-

mogeneous differential polynomials of degree k. Following the same procedure, let us

consider the space of local bivectors Λ2
loc. A local bivector P with components Aij is given

by (1.6). Again, since the terms ∂rx∂sy and ∂
∂ui

(r)
(x)
∧ ∂

∂uj
(s)

(y)
have reciprocal scaling factors,

the decomposition of the local bivector P into homogeneous monomials under the action

of ψε is completely controlled by the way in which its components Aij decompose. Thus,

rewriting Aij as ∑
t≥0

∑
l≥0

(Aijt )lδ
(t)(x− y),

where (Aijt )l is the homogeneous component of degree l of the differential polynomial

Aijt , and applying ψε, we obtain

∑
t≥0

∑
l≥0

(Aijt )lε
l+t+1δ(t)(x− y).

Setting k = l + t+ 1, it reads

∞∑
k=1

εk
k−1∑
t=0

(Aijt )k−1−tδ
(t)(x− y). (1.9)

In this way the componentsAij of the bivector P decompose in homogeneous terms [Aij ]k

of the form

[Aij ]k =
k−1∑
t=0

(Aijt )k−1−tδ
(t)(x− y).



1.2 Local Poisson structures on loop spaces 26

As above, we have an induced decomposition of Λ2
loc as

Λ2
loc =

⊕
k≥1

Λ2
k,loc,

where P ∈ Λ2
k,loc if its components Aij are of the form (1.9). We can now define the notion

of a deformation of a Poisson bivector P ∈ Λ2
k,loc.

Definition 1.8. Any Poisson structure of the form

(P +Q) ∈ Λ2
loc, (1.10)

where Q =
∑

s≥1Qs and Qs ∈ Λ2
s+k,loc is called a deformation of P ∈ Λ2

k,loc.

Finally, under the rescaling ψε, the deformation (1.10) transforms into ε2(P +
∑

s≥1 ε
sQs),

so (1.10) can be rewritten as

P +
∑
s≥1

εsQs.

In the general case, it turns out that the space of j-multivectors Λjloc can be decomposed

into terms which are homogeneous under rescaling, that is Λjloc = ⊕kΛjk,loc, where any

element P ∈ Λjk,loc is transformed to εkP under rescaling.

1.2.2 Poisson-Lichnerowicz cohomology on loop spaces

Let P ∈ Λ2
2,loc be a Poisson bivector (the choice of the space Λ2

2,loc will be clear in the next

section) and let dP be a map defined as follows

dP : Λjloc → Λj+1
loc , dP (a) = [P, a].

Clearly, dP maps Λjk,loc to Λj+1
k+2,loc. Moreover, using the graded Jacobi identity satisfied by

the Schouten-Nijenhuis bracket, and the fact that P is a Poisson structure, one can easily

prove that dP is a differential, namely d2
P = 0 identically. This property allows us to define

the analogues of the cohomology groups, defined in the finite-dimensional framework by

Lichnerowicz (see Section 1.1.1), through

Hj(L(M), P ) =
Ker{dP : Λjloc → Λj+1

loc }
Im{dP : Λj−1

loc → Λjloc}
.
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Remembering that dP preserves the natural decomposition of the space of j-multivec-

tors Λj into components homogeneous under rescaling, each cohomology group inherits

a natural decomposition into homogeneous parts. Thus, we can introduce

Hj
k(L(M), P ) =

Ker{dP : Λjk,loc → Λj+1
k+2,loc}

Im{dP : Λj−1
k−2,loc → Λjk,loc}

,

where a class [α] ∈ Hj
k(L(M), P ) if any of its representative can be chosen in Λjk,loc. This

leads to the following decomposition Hj(L(M), P ) = ⊕kHj
k(L(M), P ), which is typical

of the infinite dimensional situation. Indeed, there is no analogous correspondence in the

finite dimensional case.

1.2.3 Dubrovin-Novikov brackets

We have seen that a local Poisson structure P ∈ Λ2
loc of the form (1.6) gives rise to a Poisson

bracket on the space of local functionals by formula (1.8). Without any loss of generality,

we can identify the Poisson structure P by its components,

{ui(x), uj(y)} = P ij =
N∑
k=0

Aijk (u(x),ux(x), . . . )δ(k)(x− y), (1.11)

for a certain number N ∈ N.

Remark. The bivector P ij can be represented as

Aij
(
u(x),ux(x), . . . ;

d

dx

)
δ(x− y),

where the differential operators Aij are given by

Aij
(
u(x),ux(x), . . . ;

d

dx

)
=
∑
s

Aijs
ds

dxs
.

For multivectors of higher rank the language of differential operator was used by Olver

[81]. In what follows, we will denote by P the Poisson structure (equivalently, Poisson

bivector or Hamiltonian operator) written in terms of differential operators.

It is natural to require that the Poisson structure is independent on the choice of local

coordinates on M . Thus, the coefficients Aijk have to transform in an suitable way when
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we apply a change of coordinates v = v(u). The transformation law of these coefficients

is determined by the Leibniz identity

{vp(x), vq(y)} =
∂vp

∂ui
(x)

∂vq

∂uj
(y){ui(x), vj(y)},

together with the following identities for the derivatives of δ-function

f(y)δ(k)(x− y) =
k∑
l=0

(
k

l

)
f (l)(x)δ(k−l)(x− y).

Let us assign degrees to the derivatives putting

deg
dsui

dxs
= s, s = 1, 2, . . . ,

and deg f(u) = 0 if the function f is independent of the derivatives.

Definition 1.9. A Poisson structure (1.11) is graded homogeneous of the degree D if the coeffi-

cients are graded homogeneous polynomials in the derivatives of the degrees degAijk = D − k, for

k = 0, 1, . . . , N .

Clearly, the order N of (1.11) cannot be greater than the degree D. Using the transforma-

tion property described before one can easily prove that the degree D does not depend on

the choice of local coordinates u1, . . . , un.

For instance, the graded homogeneous Poisson structure of degree 0 has the form

{ui(x), uj(y)} = hij(u(x))δ(x− y),

where hij(u) is a usual (i.e. finite-dimensional) Poisson structure on the manifold M .

The main example, which will be the starting point of our analysis, is the graded ho-

mogeneous Poisson structure of degree 1, namely

{ui(x), uj(y)} = gij(u(x))δ′(x− y) + bijk (u(x))ukxδ(x− y), (1.12)

where gij(u) and bijk (u) are some functions on M depending on the choice of local coor-

dinates. In other words, for arbitrary functionals F [u] and G[u] a Poisson bracket of the
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form

{F,G} =

∫
S1

δF

δui(x)

(
gij(u(x))

d

dx
+ bijk (u(x))ukx

)
δG

δuj(x)
dx, (1.13)

is defined. Thus, the differential operator P is given by

P ij(u) = gij(u(x))
d

dx
+ bijk (u(x))ukx. (1.14)

This class of Poisson brackets is invariant under transformations of the field variables vi =

vi(u1, . . . , un). More precisely, the coefficients gij and bijk transform as object of differential

geometry, according to the rules

g̃ml(v) =
∂vl

∂ui
∂vm

∂uj
gij(u),

b̃mls (v) =
∂vl

∂ui
∂2vm

∂uj∂uk
∂uk

∂vs
gij(u) +

∂vl

∂ui
∂uk

∂vs
∂vm

∂uj
bijk (u).

Poisson structures of the form (1.12) (or, equivalently, (1.13)) were introduced and

studied by Dubrovin and Novikov [32, 35, 34], and they are called Poisson brackets of

hydrodynamic type, or Dubrovin-Novikov brackets. If det(gij) 6= 0, we say that the Pois-

son bracket is non-degenerate. Dubrovin and Novikov provided a complete description of

non-degenerate Poisson brackets in terms of Riemannian geometry.

Theorem 1.1 (Dubrovin-Novikov, [32]). Let gij be non-degenerate. Formula (1.12) defines a

Poisson brackets if and only if the tensor gij is symmetric, i.e it specifies a pseudo-Riemannian

metric (with upper indices), and the connection Γijk = −gjsbsik is compatible with the metric gij

and has zero curvature and torsion.

As a direct consequence, doing a change of the dependent variables ui(x) 7→ wα(u(x)),

we can rewrite the Poisson structure (1.12) in the following constant form

{wα(x1), wβ(x2)} = ηαβδ′(x1 − x2),

(
or, equivalently, Pαβ = ηαβ

d

dx

)
,

where the constant coefficients ηαβ are the entries of the matrix of the metric in the flat

coordinates t.

Remark. If P ∈ Λ2
loc is a bivector of hydrodynamic type, that is of the form (1.12), then

P ∈ Λ2
2,loc. Furthermore, any element of Λ2

2,loc is indeed a bivector of hydrodynamic type.
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1.2.4 Deformations of Dubrovin-Novikov brackets

In the framework of the theory of Frobenius manifolds [27, 36, 38], Dubrovin conjectured

the triviality of homogeneous formal deformations of structures (1.14). The problem for-

mulated by Dubrovin can be stated as follows. Let us consider a Poisson manifold M

endowed with a Poisson structure of hydrodynamic type (bivector) P0 which satisfies the

Jacobi condition written in terms of the Schouten bracket on the algebra of multivector

fields on M , that is [P0, P0] = 0.

Definition 1.10. A deformation of order k of a Poisson bivector P0 is a formal series

P ε = P0 + εP1 + ε2P2 + . . .

in the space of bivector fields on M satisfying the condition [P ε, P ε] = O(εk+1) for any value of

the parameter ε.

In particular, if [P ε, P ε] = 0, we say that P ε is a deformation of P0. A deformation (of

order k) is trivial if there exists a Miura transformation φε : M →M ,

φε =

∞∑
m=0

εmφm,

which pulls back P ε to P0, that is P ε = φε∗P0. Therefore, the allowed deformations P ε are

formal series of the form

Pk =

k+1∑
s=0

As(u,ux, . . . ,uk+1)
dk+1−s

dxk+1−s ,

where the entries of the n×n matrices As are homogenous polynomials of degree s in the

x-derivative, namely deg(As) = s.

Problem. Does there exists a Miura transformation that brings the homogeneous deformation P ε

to P0?

This problem can be reformulated in cohomological terms. Indeed, as we have seen in

Section 1.2.2, triviality of deformations is equivalent to the vanishing of the second coho-

mology group in the Poisson-Lichnerowicz cohomology. Getzler [54] and independently

Degiovanni, Sciacca and Magri [21] solved Dubrovin’s conjecture proving that this coho-

mology group is trivial (in particular, Getzler proved that all positive integer cohomology
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groups are trivial, that is, Hk(L(M), Q) = 0 for Q ∈ Λ2
2,loc and k = 1, 2, . . . ). This result

immediately implies that any deformation of ω of the form

P ε = Q+

∞∑
k=1

εkPk, Pk ∈ Λ2
k+2,loc,

can be obtained from Q by performing a Miura transformation, namely a change of de-

pendent variables u1, . . . , un of the form

ũi = F i0(u) +
∑
k

εkF ik(u,ux,uxx, . . . ), (1.15)

where F ik are differential polynomials in the derivatives of ui of degree k and det ∂F0
∂u 6= 0.

Indeed, the Poisson condition [P ε, P ε] = 0, implies that P1 is a cocycle of ω and therefore

a coboundary

P1 = LieX1Q,

for a suitable vector field X1. This means that, performing a transformation of the form

(1.15) generated by the vector field −X1, we can eliminate the term in ε, obtaining a local

Poisson bivector of the form

P̃ ε = Q+
∞∑
k=2

εkP̃k.

Analogously, there exists a vector field X2 such that P̃2 = LieX2Q and the transformation

(1.15) generated by −X2 allows us to eliminate P̃2. Following this procedure, step by

step, we can reduce P ε to Q. Finally, the reducing transformation of the form (1.15) is

the composition of the infinite sequence of transformations (1.15) generated by the vector

fields −X1,−X2,−X3 and so on.

1.3 Multi-dimensional Dubrovin-Novikov brackets

The multi-dimensional analogue of the Drubrovin-Novikov brackets (1.12) has the form

{ui(x), uj(y)} = gijα(u(x))δα(x− y) + bijαk (u(x))ukαδ(x− y), (1.16)

where u = (u1, . . . , un) are local coordinates on a smooth n-dimensional manifold M ,

x = (x1, . . . , xN ) and x = (y1, . . . , yN ) are independent variables, δα(x − y) = ∂δ(x−y)
∂xα ,
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ukα = ∂uk

∂xα , α = 1, . . . , N . The differential operator P associated with (1.16) is defined by

P ij(u) = gijα(u)
d

dxα
+ bijαk (u)ukα. (1.17)

The operator (1.17) is called non-degenerate if det gijα 6= 0 for any α. However, since under

unimodular changes of the spatial variable xα = cαβ x̃
β , cαβ = const, det(cαβ) = 1, for fixed

i, j, k, the objects gijα and bijαk transform like vectors, that is

gijα = cαβ g̃
ijβ, bijαk = cαβ b̃

ijβ
k , (1.18)

it is sufficient to assume that gijα is non-degenerate for one α, or similarly, that there exists

a linear combination of gijα such that det(λαg
ijα) 6= 0, λα ∈ R.

As in the one-dimensional case, the form of the Poisson bracket (1.16) is invariant un-

der local transformations of coordinates, v = v(u). In particular, for each α the coefficients

gijα transform as components of a contravariant tensor of rank 2, and the coefficients bijαk

are transformed as components of the contravariant Levi-Civita connection.

Although the bilinearity property and Leibniz identity are fulfilled, the condition of

skew-symmetry and the Jacobi identity for a Poisson bracket (1.16) impose very severe

restrictions on the coefficients gijα(u) and bijαk (u).

Theorem 1.2 ([76]). A bracket of the form (1.16) is a Poisson bracket, (or, equivalently, an operator

of the form (1.17) is a Hamiltonian operator) i.e. it is skew-symmetric and satisfies the Jacobi

identity, if and only if the following relations for the coefficients of the operator are fulfilled:

gijα = gjiα, (1.19)

∂gijα

∂uk
= bijαk + bjiαk , (1.20)∑

(α,β)

(
gsiαbjrβs − gsjβbirαs

)
= 0, (1.21)

∑
(i,j,r)

(
gsiαbjrβs − gsjβbirαs

)
= 0, (1.22)

∑
(α,β)

[
gsiα

(
∂bjrβs
∂uq

− ∂bjrβq
∂us

)
+ bijαs bsrβq − birαs bsjβq

]
= 0, (1.23)
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gsiβ
∂bjrαq
∂us

− bijβs bsrαq − birβs bjsαq = gsjα
∂birβq
∂us

− bjiαs bsrβq − bisβq bjrαs , (1.24)

∂

∂uk

[
gsiα

(
∂bjrβs
∂uq

− ∂bjrβq
∂us

)
+ bijαs bsrβq − birαs bsjβq

]
+
∑

(i,j,r)

[
bsiβq

(
∂bjrαk
∂us

− ∂bjrαs
∂uk

)]

+
∂

∂uq

[
gsiβ

(
∂bjrαs
∂uk

−
∂bjrαk
∂us

)
+ bijβs bsrαk − birβs bsjαk

]
+
∑

(i,j,r)

[
bsiαk

(
∂bjrβq
∂us

− ∂bjrβs
∂uq

)]
= 0.

(1.25)

The signs
∑

(α,β) and
∑

(i,j,k) mean cyclic summation in the indicated indices. Note that

in one-dimensional case these conditions reduce to Grinberg’s conditions [56]. These re-

lations imply the following important property.

Lemma 1.3 ([35, 69]). Every multi-dimensional Poisson bracket of the form (1.16) is always the

sum of one-dimensional Poisson brackets with respect to each of the independent variables xα.

In other words, every summand on the right-hand side of the formula (1.17), namely

gijα(u)
d

dxα
+ bijαk (u)ukα,

defines a one-dimensional Hamiltonian operator with respect to xα.

1.3.1 Non-degenerate multi-dimensional brackets

Multi-dimensional Poisson brackets of hydrodynamic type, introduced by Dubrovin and

Novikov in [35], have been thoroughly investigated by Mokhov [74, 76, 69] in the non-

degenerate case. Under this assumption, in virtue of Dubrovin-Novikov theorem (see

Theorem 1.1), Lemma 1.3 implies that all tensors gijα must be flat contravariant met-

rics, and each affine connection Γiαjk = −gαjmbmiαk must be compatible with the respective

metric gijα, and has zero torsion and zero Riemann curvature, i.e. Γiαjk is the Levi-Civita

connection [35]. Hence, each non-degenerate multi-dimensional Poisson brackets of the

form (1.16) is uniquely determined by the flat metrics gijα, which must satisfy further

restrictions. Thus, the classification problem of non-degenerate multi-dimensional Pois-

son brackets of hydrodynamic type, proposed by Dubrovin and Novikov in [35], can be

reduced to a classification of admissible set of flat metrics gijα.

The main difference with respect to the one-dimensional case is that, although all the
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metrics gijα must be flat, they can no longer be reduced to a constant coefficient form si-

multaneously: an obstruction is given by the tensors T iαβjk (u) = Γiβjk(u)−Γiαjk(u). Dubrovin

and Novikov proved that the vanishing of the obstruction tensors is a necessary and suf-

ficient condition for the existence of coordinates where the bracket (1.16) takes constant

coefficient forms [35]. Under the assumption of non-degeneracy, Theorem 1.2 can be re-

formulated in term of the obstruction tensor.

Theorem 1.4 (Mokhov [74]). Flat non-degenerate metrics gijα(u) define a multi-dimensional

Hamiltonian operator of the form (1.17) if and only if the following relations are fulfilled:

T ijkαβ(u) = T kjiαβ(u), (1.26)

∑
(i,j,k)

T ijkαβ(u) = 0, (1.27)

T ijsαβ(u)T rαβst (u) = T irsαβ(u)T jαβst (u), (1.28)

∇αr T ijkαβ(u) = 0, (1.29)

where T iαβjk (u) = Γiβjk(u) − Γiαjk(u), T ijkαβ(u) = gksβ(u)girα(u)T jαβrs (u), the sign
∑

(i,j,k)

means summation over all cyclic permutations of indices (i, j, k), ∇αr is the covariant derivative

given by the connection Γiαjk(u), and Γiαjk(u) is the Levi-Civita connection generated by the metric

gijα(u).

These tensorial conditions imply another important property of non-degenerate multi-

dimensional brackets, as stated in the following theorem.

Theorem 1.5 ([35, 74]). A non-degenerate multi-dimensional Hamiltonian operator (1.17) for

n=1 can be reduced to constant form, and for n ≥ 2 can be reduced to a linear form, that is the

metrics gijα(u) assume the form gijα(u) = cijαk uk + gijα0 , where cijαk = bijαk + bjiαk , bijαk and gijα0

are constants.

In particular, since all the metrics are flat, we can always choose a system of coordinates

where one metric, say gijα with α fixed, is reduced to constant coefficient form, and all the

remaining metrics, gijβ with β 6= α, are linear. Such coordinates are called flat coordinates

for the metric gijα.

This is a first step towards a geometric interpretation of the tensorial conditions (1.26)–

(1.29). The second step is related to the theory of compatible metrics constructed by Mokhov
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in [70].

Definition 1.11. Two Riemannian or pseudo-Riemannian contravariant metrics gij1(u) and

gij2(u) are called compatible if for any linear combination of these metrics

gij(u) = λ1g
ij1(u) + λ2g

ij2(u),

where λ1 and λ2 are arbitrary constants such that det(gij(u)) 6≡ 0, the coefficients of the corre-

sponding Levi-Civita connections and the components of the corresponding tensors of Riemannian

curvature are related by the same linear formula:

bijk (u) = λ1b
ij1
k (u) + λ2b

ij2
k (u), (1.30)

Rijkl(u) = λ1R
ij1
kl (u) + λ2R

ij2
kl (u). (1.31)

We shall also say in this case that the metrics gij1(u) and gij2(u) form a pencil of metrics.

If for any linear combination of metrics only (1.30) is fulfilled, then the metrics are called

almost compatible. Almost-compatibility is also equivalent to the vanishing of the Nijenhuis

tensor of the affinor (that is, (1, 1)-tensor) Lij(u) = gik2(u)g1
kj(u), where gik1(u)g1

kj(u) = δij ,

which is defined by

N i
jk(u) = Lsj(u)

∂Lik(u)

∂us
− Lsk(u)

∂Lij(u)

∂us
− Lis(u)

∂Lsk(u)

∂uj
+ Lis(u)

∂Lsj(u)

∂uk
, (1.32)

see [71, 40] for further details.

Concerning Mokhov’s conditions, by straightforward computations one can easily

see that condition (1.26) is equivalent to the almost-compatibility of each pair of metrics

(gijα, gijβ), while adding (1.28) we get the compatibility.

Theorem 1.6 ([75]). All metrics gijα(u), 1 ≤ α ≤ N, defining a multi-dimensional Poisson

bracket of the form (1.16) are mutually compatible.

A pair of compatible flat metric defines a flat pencil of metrics. We emphasize that

this notion plays an important role in the theory of Frobenius manifolds introduced by

Dubrovin [29, 27], and in the theory of compatible Dubrovin-Novikov brackets. Accord-

ing to Magri [65], two Poisson brackets are called compatible if each their linear combi-

nation is a Poisson bracket. In the framework of hydrodynamic Poisson brackets, two
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non-degenerate Dubrovin-Novikov brackets are compatible if and only if the correspon-

dent flat metrics form a flat pencil [27, 25]. Therefore, Theorem 1.6 says that all one-

dimensional Dubrovin-Novikov brackets forming a multi-dimensional Poisson brackets

of hydrodynamic type are also mutually compatible. This means that the study of non-

degenerate multi-dimensional Poisson brackets of hydrodynamic type corresponds to the

study of a subclass of compatible one-dimensional Dubrovin-Novikov brackets, identified

by the additional conditions (1.27) and (1.29).



2

Classification of non-degenerate

Hamiltonian operators in 2D

In this chapter, based on the author’s joint work with E.V. Ferapontov and P. Lorenzoni

[46], we address the classification of non-degenerate Hamiltonian operators of Dubrovin-

Novikov type in two dimensions. As we mentioned in Section 1.3.1, such operators are

generated by two flat metrics, that we now denote with g, g̃, which can be assumed non-

degenerate without any loss of generality. In this notation, the operator (1.17) takes the

form

P ij = gij(u)
d

dx
+ bijk (u)ukx + g̃ij(u)

d

dy
+ b̃ijk (u)uky , (2.1)

with bijk = −gisΓjsk and b̃ijk = −g̃isΓ̃jsk, where Γ and Γ̃ are the Levi-Civita connections of g

and g̃, the obstruction tensor is given by T ijk = Γ̃ijk − Γijk, and Theorem 1.4 reads

Theorem 2.1. Let g and g̃ be two flat metrics. Formula (2.1) defines a Hamiltonian operator if

and only if the obstruction tensor satisfies the relations

T ijk = T kji, (2.2)∑
(i,j,k)

T ijk = 0, (2.3)

T ijsT rst = T irsT jst, (2.4)

∇T ijk = 0, (2.5)

∇̃T ijk = 0. (2.6)

Here T ijk = girg̃ksT jrs and∇, ∇̃ are covariant derivatives given by the Levi-Civita connections of

the metrics g, g̃.

As we have seen in Section 1.3.1, these conditions imply that, in the flat coordinates of

37
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g, the second metric g̃ becomes linear, so that the classification of such operators reduces to

the classification of algebras of certain type [35, 74]. This problem was addressed in [74],

resulting in a complete description of one- and two-component operators of the form (2.1).

Here we adopt a differential-geometric point of view, starting from the vanishing of the

Nijenhuis torsion of the affinor Lij = g̃ikgkj .

In the case when L has simple spectrum, (Hamiltonian operators of this type are

known as non-singular or semisimple), the results of [69] imply the existence of coor-

dinates where the Hamiltonian operator P takes constant coefficient form. It turns out

that all interesting (non-constant) examples correspond to the case when L has non-trivial

Jordan block structure. The simplest known example of this kind is provided by the two-

component Mokhov’s Hamiltonian operator

P =

0 1

1 0

 d

dx
+

−2u1 u2

u2 0

 d

dy
+

−u1
y 2u2

y

−u2
y 0

 , (2.7)

which is related to the Lie algebra of vector fields on the plane [35, 74]. It is generated by

the flat contravariant metrics

g =

0 1

1 0

 , g̃ =

−2u1 u2

u2 0

 .

One can easily see that, for generic values of u1, u2, the corresponding affinor L = g̃g−1 is

a single 2× 2 Jordan block.

2.1 Linear Killing tensors with zero Nijenhuis torsion

In this section we rewrite Mokhov’s conditions (2.2)–(2.6) in a form which is more suitable

for our purposes, making link with the theory of Killing tensors.

Theorem 2.2. Let g and g̃ be two flat metrics which define the Hamiltonian operator (2.1). The

Mokhov conditions (2.2)–(2.6) are equivalent to the following:

1. Linearity of the bivector g̃ij in flat coordinates of g. Invariantly, this means ∇2g̃ = 0 where

∇ denotes covariant differentiation in the Levi-Civita connection of g.

2. The vanishing of the Nijenhuis torsion of the affinor Lij = g̃ilglj .
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3. The Killing condition for the bivector g̃:

∇ig̃kj +∇kg̃ij +∇j g̃ik = 0. (2.8)

Moreover, the flatness of g and the above three conditions imply the flatness of the second metric g̃.

Proof:

(a). Condition (2.2) is equivalent to the vanishing of the Nijenuis torsion of L.

This was proved by Mokhov [71, 72], here we briefly recall the proof. Let b̃ijk = −g̃isΓ̃jsk be

contravariant Christoffel symbols of the second metric,

b̃ijk = −g̃isΓ̃jsk = −1

2
g̃isg̃jt(∂sg̃tk + ∂kg̃st − ∂tg̃sk).

By definition they satisfy the conditions

∂kg̃
ij = b̃ijk + b̃jik ,

g̃ilb̃jkl = g̃jlb̃ikl .

Written in flat coordinates of g, the condition (2.2) reads

gilb̃jkl = gjlb̃ikl .

This means that the contravariant Christoffel symbols of the pencil gλ = g̃ − λg are equal

to the pencil of the Christoffel symbols of g̃ and g. Thus, the metrics g̃ and g are almost

compatible, and this is known to be equivalent to the vanishing of the Nijenhuis torsion

[70].

(b). Condition (2.3) is equivalent to the Killing property.

Using (2.2) we can rewrite (2.3) as

∑
(i,j,k)

[T ijk + T kji] = 0.

In flat coordinates of g we have

∑
(i,j,k)

[T ijk + T kji] =
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= g̃ksgirΓ̃jrs + g̃isgkrΓ̃jrs + g̃isgjrΓ̃krs + g̃jsgirΓ̃krs + g̃jsgkrΓ̃irs + g̃ksgjrΓ̃irs

= −[gir b̃kjr + gkr b̃ijr + gjr b̃ikrs + gir b̃jks + gkr b̃jis + gjr b̃kir ]

= −[gir∂rg̃
kj + gkr∂rg̃

ij + gjr∂rg̃
ik]

= −[∂ig̃kj + ∂kg̃ij + ∂j g̃ik] = 0.

In invariant notation, this gives the Killing condition,

∇ig̃kj +∇kg̃ij +∇j g̃ik = 0,

here ∇ is the Levi-Civita connection of g.

(c). Condition (2.5) is equivalent to the linearity of g̃ in flat coordinates of g.

In flat coordinates of g, (2.5) implies

∂r(T
ijk + T ikj) = ∂r[g

it(b̃kjt + b̃jkt )] = ∂r∂
ig̃jk = 0.

This means that g̃ is linear. Conversely, assuming that g̃ is linear in flat coordinates of g,

and using (2.2) and (2.3), we obtain (2.5):

0 = ∂r(T
ijk + T ikj) = ∂r(T

ijk + T jki) = −∂rT kij .

(d). Conditions (2.4) and (2.5) are equivalent to the flatness of g̃.

Condition (2.5) means that, in flat coordinates of g, the contravariant Christoffel symbols

b̃ijk are constant. This follows from the identity

−∂rT kij = ∂r(g
kmb̃ijm) = gkm∂r b̃

ij
m = 0.

Similarly, condition (2.6) means that, in flat coordinates of g̃, the contravariant Christoffel

symbols bijk are constant. Written in flat coordinates of g, the condition (2.4) reads

g̃sqgipΓ̃jpqΓ̃
r
st = g̃sqgipΓ̃rpqΓ̃

j
st,

or

gip(b̃sjp Γ̃rst − b̃srp Γ̃jst) = 0,
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that is

b̃sjp Γ̃rst − b̃srp Γ̃jst = 0,

which is equivalent to

b̃sjp b̃
ir
s − b̃srp b̃ijs = 0.

Due to (2.5), the vanishing of the curvature of ∇̃, written in flat coordinates of g, reads

gis
(
∂sb̃

jr
p − ∂pb̃jrs

)
− b̃ijs b̃srp + b̃irs b̃

sj
p = −b̃ijs b̃srp + b̃irs b̃

sj
p = 0.

(e). Condition (2.6) can be dropped.

Recall that, in flat coordinates of g, we have T lkj = −glmb̃kjm and T ijk = Γ̃ijk = Γ̃ikj = T ikj

(by the symmetry of ∇̃). Thus,

∇̃rT ijk = ∇̃r(−gimb̃kjm ) = −(∇̃rgimb̃kjm + gim∇̃r b̃kjm )

= −b̃kjm (∂rg
im + Γ̃irlg

lm + Γ̃mrlg
li)− gim(∂r b̃

kj
m + Γ̃krlb̃

lj
m + Γ̃jrlb̃

kl
m − Γ̃lrmb̃

kj
l )

= −b̃kjm Γ̃irlg
lm −�����

b̃kjm Γ̃mrlg
li − gimΓ̃krlb̃

lj
m − gimΓ̃jrlb̃

kl
m +������

gimΓ̃lrmb̃
kj
l

= −(Γ̃irlg
lmb̃kjm + Γ̃krlg

imb̃ljm + Γ̃jrlg
imb̃klm)

= −(T irlT
lkj + T krlT

ilj + T jrlT
ikl).

Using conditions (2.2), (2.3) and (2.4), this term vanishes. Indeed, by (2.2) it reads

∇̃rT ijk = −(T irlT
jkl + T krlT

ilj + T jrlT
ikl).

Using (2.4) for the underlined terms we obtain

∇̃rT ijk = −T krl(T jil + T ilj + T ijl),

and, by (2.3)

∇̃rT ijk = −T krl(−T lji + T ijl).

The last term vanishes by (2.2).

(f). The flatness of g̃ follows from the flatness of g, linearity of g̃, the Killing condition, and the

vanishing of the Nijenhuis torsion.
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Since b̃ijk are constant in flat coordinates of g (see step (c)), from the condition ∂kg̃
ij =

b̃ijk + b̃jik , it follows immediately

g̃ij = (b̃ijl + b̃jil )ul + gij0 . (2.9)

Thus in flat coordinates of g the condition g̃ilb̃jkl = g̃jlb̃ikl implies

(b̃ilm + b̃lim)b̃jkl = (b̃jlm + b̃ljm)b̃ikl . (2.10)

Moreover, the Killing condition

gis(b̃kjs + b̃jks ) + gks(b̃ijs + b̃jis ) + gjs(b̃iks + b̃kis ) = 0,

can be rewritten, using (2.2) for the underlined terms, as

0 = gksb̃ijs + gjsb̃iks + gksb̃ijs + gjsb̃kis + gjs(b̃iks + b̃kis )

= 2gksb̃ijs + 2gjsb̃iks + 2gjsb̃kis

= 2(gksb̃ijs + gjs(b̃iks + b̃kis )),

that is

b̃ijs g
sk + (b̃kis + b̃iks )gsj = 0. (2.11)

Taking into account the above condition (2.11), the equation (2.10) becomes

gmr(g
slb̃irl b̃

jk
s − gjsb̃lrs b̃ikl ) = 0.

Using (2.2) for the underlined terms, we finally get

gmrg
js(b̃lks b̃

ir
l − b̃lrs b̃ikl ) = 0.

In what follows we will need an alternative form of the Killing condition (2.8), namely

gis∂sg̃
kj + gks∂sg̃

ij + gjs∂sg̃
ik − g̃is∂sgkj − g̃ks∂sgij − g̃js∂sgik = 0. (2.12)
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This can be easily obtained: computing the covariant derivative of g̃ij we get

gks∇sg̃ij = gks(∂sg̃
ij + Γismg̃

mj + Γjsmg̃
im)

= gks∂sg̃
ij − bkimg̃mj − bkjm g̃im. (2.13)

Using ∂sgij = bijs + bjis and substituting (2.13) into the Killing condition (2.8), one arrives

at (2.12).

2.2 The splitting lemma

The Killing condition plays a key role in the proof of the splitting property for Hamilto-

nian operators. First of all, let us give a definition.

Definition 2.1. Given an m-component operator P1 with the dependent variables u1, . . . , um,

and an (n − m)-component operator P2 with the dependent variables vm+1, . . . , vn, their direct

sum is the n-component operator P defined by the formula

P =

 P1 0

0 P2

 ,

on the combined set of variables (u1, . . . , um, vm+1, . . . , vn). The corresponding metrics g, g̃ will

be direct sums of the metrics defining P1 and P2. Operators of this type will be called reducible.

The main result of this section can be stated as follows.

Lemma 2.3 (Splitting Lemma for Hamiltonian operators). Let P be a Hamiltonian operator

such that the corresponding affinor L = g̃g−1 can be represented in the block-diagonal form

L =

A 0

0 B

 , (2.14)

in some (non-holonomic) frame, and let Spec(A) ∩ Spec(B) = ∅. Then P decouples into a direct

sum of two Hamiltonian operators, with the corresponding affinors A and B.

Thus, any Hamiltonian operator (2.1) can be represented as a direct sum of irreducible

operators Pα (each generated by a pair of flat metrics gα, g̃α, defined on a manifold of

dimension nα) such that the corresponding affinor Lα = g̃αg
−1
α either has a unique real
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eigenvalue of multiplicity nα, or a pair of complex conjugate eigenvalues of the same

multiplicity (in the last case nα must be even).

Lemma 2.3 can be seen as an analogue of the splitting lemma for affinors with zero Ni-

jenhuis torsion proved by Bolsinov and Matveev [12] in the context of projectively equiv-

alent metrics.

Lemma 2.4 (Splitting Lemma, [12]). Let L be an affinor with zero Nijenhuis torsion on a mani-

foldM , dimM = n. Suppose there exists a (non-holonomic) frame in which L takes block diagonal

form,

L =

A 0

0 B

 ,

where Spec(A) ∩ Spec(B) = ∅. Then there exists a local coordinate system (u1, ..., um, vm+1, ...,

vn) such that

L =

A(u) 0

0 B(v)

 .

Using the Killing condition, one can extend the splitting structure to the metrics. First

of all we recall two well-known facts from linear algebra.

1. In the hypothesis of the above lemma, if g and g̃ are two non-degenerate symmetric

bivectors related by the affinor L, that is g̃ij = Ljkg
ki, then g and g̃ assume the form

g =

σ 0

0 η

 , g̃ =

σ̃ 0

0 η̃

 . (2.15)

2. Let A and B be two square matrices (not necessarily of the same size), such that

Spec(A) ∩ Spec(B) = ∅. Suppose that AC = CB for a certain matrix C. Then C = 0.

For convenience of the reader, let us briefly prove this last statement. Let us bring A to

upper triangular form, that is A = XΛX−1 where

Λ =


λ1 ∗

. . .

0 λm

 ,
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and λi are the eigenvalues of A. Then

XΛX−1C = CB ⇒ ΛX−1C = X−1CB

Let X−1C = C̃. Thus

ΛC̃ = C̃B (2.16)

where Λ is upper triangular and λi ∈ Spec(A). Let C̃1, . . . , C̃m be the rows of C̃. Compar-

ing the m’th rows in (2.16) we get

λmC̃m = C̃mB.

Since λm 6∈ Spec(B), then C̃m ≡ 0. Comparing the (m− 1)’th rows in (2.16) we get (since

C̃m = 0)

λm−1C̃m−1 = C̃m−1B,

so that C̃m−1 ≡ 0. By induction, this implies C̃ ≡ 0, so that C ≡ 0 as X is non-degenerate.

Lemma 2.5. In the hypothesis of Lemma 2.4, let g and g̃ be two non-degenerate symmetric bivec-

tors (2.15) such that g̃ij = Ljkg
ki. If the Killing condition (2.8) holds, then σ, σ̃ must depend only

on u = (u1, . . . , um), and η, η̃ must depend only on v = (vm+1, . . . , vn).

Proof:

By Lemma 2.4, A = A(u) is an m × m matrix, and B = B(v) is an (n − m) × (n − m)

matrix. Let I = {1, . . . ,m} and J = {m+ 1, . . . , n}. We know that if i ∈ I and j ∈ J , then

gij = 0. Then, for i ∈ I and j, k ∈ J , the condition (2.12) leads to

gis∂sg̃
kj − g̃is∂sgkj = 0,

in particular,

σis∂sη̃
kj − σ̃is∂sηkj = 0.

By hypothesis g is non-degenerate, thus σ is non-degenerate, then multiplying by the

inverse matrix σli we obtain

∂l(B
k
pη

pj)−Asl ∂sηkj = 0,
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as σ̃siσil = Asl . Since l ∈ I and the elements of B depend on v only, our relation becomes

Bk
p∂lη

pj −Asl ∂sηkj = 0.

Fixing j, let Cki = ∂iη
kj . Thus, we get Bk

pC
p
l = CksA

s
l , that is BC = CA. As Spec(A) ∩

Spec(B) = ∅, we can conclude that C ≡ 0. Thus

∂iη
jk = 0, ∀ i ∈ I, ∀ j, k ∈ J.

If we now take i ∈ J and j, k ∈ I , following the same method we get

∂iσ
jk = 0, ∀ i ∈ J, ∀ j, k ∈ I.

This establishes Lemma 2.3 (Splitting Lemma for Hamiltonian operators). It allows us

to focus on affinors with one single eigenvalue, otherwise we can split them and consider

each block separately.

As a simple application of Lemma 2.3 we can establish Darboux’s theorem for Hamil-

tonian operators whose affinor L is diagonal (has no non-trivial Jordan blocks: note that

we allow coinciding eigenvalues). It is based on the following result:

Proposition 2.6. Let L be a diagonal affinor, g be a flat contravariant metric, and g̃ = Lg.

Suppose that the Nijenhuis torsion of L vanishes, and the Killing condition holds. Then there

exists a coordinate system where L and g take constant coefficient form.

Proof:

Since the Nijenhuis torsion of L vanishes, using Lemma 2.4 we can bring L to block diag-

onal form,

L =


L1

L2

. . .

Lk

 .
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Here each Li is a scalar operator with the same eigenvalue,

Li =


λi

. . .

λi

 ,

λi 6= λj for i 6= j, and λi depends on coordinates of its own block only. By Lemma 2.5, we

have

g =


gλ1

. . .

gλk

 , g̃ =


λ1gλ1

. . .

λkgλk

 ,

where gλi depends on coordinates of its own block only. Thus we can consider each block

separately. For instance, suppose L1 is an m ×m scalar operator with the eigenvalue λ1.

Let us set λ = λ1 and h = gλ1 . We know that λ and h depend on u1, . . . , um only, and no

other block depends on these coordinates. Condition (2.12) leads to

hkjhis∂sλ+ hjihks∂sλ+ hikhjs∂sλ = 0.

Since h is non-degenerate, contracting with hqihpj we get

δkp∂qλ+ hpqh
ks∂sλ+ δkq ∂pλ = 0.

Setting q = k and summing over k we obtain

∂pλ+ hpkh
ks∂sλ+m∂pλ = 0 ⇒ (m+ 2)∂pλ = 0.

Thus λ must be constant, as m > 0. Since g is flat, we can find a change of coordinates

which brings h to constant form. As L1 is a constant scalar operator, it retains its form in

any coordinate system. Similarly λi and gλi can be reduced to constant form.

This leads to the following

Theorem 2.7. Consider a non-degenerate Hamiltonian operator (2.1) such that the affinor Lij =

g̃ikgkj has (pointwise) diagonal Jordan normal form. Then this operator can be reduced to constant

coefficient form by a local change of coordinates.

This extends the analogous result of Mokhov [69] obtained under the additional as-
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sumption of simplicity of the spectrum of L.

Suppose that g has Euclidean signature (or, more generally, there exists a non-degene-

rate Euclidean combination of the form λg + µg̃). Then the affinor L can be brought to

diagonal form. By Theorem 2.7 we have

Corollary 2.8. If one of the contravariant metrics which define a 2D Hamiltonian operator is

Euclidean, then the operator can be reduced to constant coefficient form.

This shows that the most interesting case is when each representative of the pencil λg+µg̃

is essentially pseudo-Euclidean, and the affinor L has non-trivial Jordan block structure.

2.3 Classification results

In this section we classify Hamiltonian operators of type (2.1) with the number of compo-

nents n ≤ 4. This will be done up to arbitrary transformations of the dependent variables

ui. Our approach is based on the following two fundamental facts:

1. Any Killing bivector in flat space is the sum of symmetrized tensor products of

Killing vectors (see, e.g. [94, 95, 68]);

2. A pair of symmetric bivectors can be brought to the Segre normal form [89] (see, e.g.

[58] for a modern description).

We recall that (see Theorem 1.5) the first metric g can always be reduced to constant form,

and the second one must be linear, that is

g̃ = cijk u
k + gij0 , (2.17)

here g and g0 are constant symmetric matrices, and cijk are constant coefficients. Taking

‘generic’ values uk0 of the variables uk and applying the shift of variables,

uk → uk0 + vk,

we obtain the transformed metric,

g̃ = cijk v
k + g̃ij0 . (2.18)
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The genericity of uk0 allows us to assume that the Segre type of the pair (g, g̃) is the same

as that of (g, g̃0). Recall that the Segre type of a pair of symmetric forms can be read off

the Jordan normal form of the corresponding affinor L, see below. Bringing g and g̃0 to

the Segre normal form leads to a considerable simplification of calculations. Furthermore,

the splitting lemma allows us to consider irreducible cases only, where the affinor L either

has one real eigenvalue, or two complex conjugate eigenvalues.

The theory of normal forms of pairs of symmetric bilinear forms is based on the fol-

lowing result, see e.g. [58]:

Theorem 2.9. Suppose L is a g-selfadjoint operator on a real vector space V . There exist a canon-

ical basis e1, . . . , en ∈ V in which L and g can be simultaneously reduced to the following block

diagonal canonical forms:

Lcan =


L1

L2

. . .

Ls

 , gcan =


g1

g2

. . .

gs

 ,

where

gj = ±


1

1

. .
.

1

 ,

and

Lj =



λj 1

λj
. . .

. . . 1

λj


,

in the case of real eigenvalues λj ∈ R (real Jordan block), or
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Lj =



a b

−b a

1 0

0 1

a b

−b a
. . .

. . .

a b

−b a

1 0

0 1

a b

−b a



,

in the case of complex conjugate eigenvalues λj1,2 = a ± ib (complex Jordan block). It is assumed

that for each j the blocks gj and Lj are of the same size.

Remark. Let us briefly comment on what we mean by Segre type. Suppose n = 4 and let

us consider the affinor L = g̃g−1. In the case of two complex conjugate eigenvalues ν + iλ

and ν − iλ, the canonical form of L reads


ν −λ 1 0

λ ν 0 1

0 0 ν −λ

0 0 λ ν

 .

In the case of a single real eigenvalue we have the following four canonical forms:


λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ

 ,


λ 1 0 0

0 λ 1 0

0 0 λ 0

0 0 0 λ

 ,


λ 1 0 0

0 λ 0 0

0 0 λ 1

0 0 0 λ

 ,


λ 1 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

 .

Segre type [4] Segre type [(3,1)] Segre type [(2,2)] Segre type [(2,1,1)]

Segre type indicates the number and sizes of Jordan blocks with the same eigenvalue λ.
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2.3.1 One-component case

It was shown in [32, 74] that any one-component operator can be reduced to constant

coefficient form, P = λ∂x + µ∂y, here λ and µ are arbitrary constants.

2.3.2 Two-component case

The two-component situation is also understood completely [35, 74]: we have only one

non-constant Hamiltonian operator (2.7), the corresponding affinor L is a single Jordan

block with non-constant eigenvalue:

P =

0 1

1 0

 d

dx
+

−2u1 u2

u2 0

 d

dy
+

−u1
y 2u2

y

−u2
y 0

 .

Let us give an alternative proof of this result based on the Killing condition. First we

reduce g to flat coordinates,

g =

0 1

1 0

 ,

recall that, by Corollary 2.8, g must be Lorentzian. Since g̃ is a Killing tensor of g, it is a

quadratic expression in the isometries u1∂1−u2∂2, ∂1, ∂2. Since g̃ is linear, the first isometry

can only enter linearly, so that

g̃ = (u1∂1 − u2∂2)(α∂1 + β∂2) + γ∂2
1 + 2δ∂1∂2 + ε∂2

2 ,

here α, β, γ, δ, ε are arbitrary constants. The vanishing of the Nijenhuis torsion of the cor-

responding affinor L gives

(αu1 + γ)β = 0, (βu2 − ε)α = 0.

Without any loss of generality one can take β = 0. In this case α must be nonzero, other-

wise g̃ will have constant coefficients. Then ε = 0, and modulo translations of u1, u2 we

arrive at the required expression (2.7).

2.3.3 Three-component case

Our main result can be summarised as follows.
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Theorem 2.10. Any irreducible non-constant three-component Hamiltonian operator in 2D can

be brought (by a change of the dependent variables ui) to the form ±P where P can have one of the

two following canonical forms (in both cases the affinor L is a single 3× 3 Jordan block):

1. Jordan block with constant eigenvalue

P =


0 0 1

0 1 0

1 0 0

 d

dx
+


−2u2 u3 λ

u3 λ 0

λ 0 0

 d

dy
+


−u2

y 2u3
y 0

−u3
y 0 0

0 0 0

 ,

2. Jordan block with non-constant eigenvalue

P =


0 0 1

0 1 0

1 0 0

 d

dx
+


−2u1 −1

2u
2 u3

−1
2u

2 u3 0

u3 0 0

 d

dy
+


−u1

y
1
2u

2
y 2u3

y

−u2
y

1
2u

3
y 0

−u3
y 0 0

 .

Proof:

Since the complex conjugate case cannot occur (it requires an even number of compo-

nents), we only need to consider the cases where the affinor L has one triple eigenvalue,

and has Segre type [3] or [(2, 1)]. Since the case [(2, 1)] gives no non-constant irreducible

examples, we will concentrate on Segre type [3]. Then there exists a coordinate system

where g and g̃0 take the form

gij =


0 0 1

0 1 0

1 0 0

 , g̃ij0 =


0 1 λ

1 λ 0

λ 0 0

 .

The general solution of Mokhov’s conditions is given by the two-parameter family g̃ =

κ1g̃1 + κ2g̃2 + g̃0, where κi are arbitrary constants, and the bivectors g̃i are as follows:

g̃1 =


−2u1 −1

2u
2 u3

−1
2u

2 u3 0

u3 0 0

 , g̃2 =


−2u2 u3 0

u3 0 0

0 0 0

 .

In the non-constant eigenvalue case, κ1 6= 0, using the following transformations which
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preserve both g and g̃0,

u1 → 1

κ1
u1 +

2κ2

κ2
1

u2 − 2κ2
2

κ3
1

u3 − 2κ2

κ3
1

,

u2 → u2 − 2κ2

κ1
u3 +

2κ1 − 2

κ1
,

u3 → κ1u
3,

we can reduce the above family to g̃ = g̃1+g̃0 (that is, we can set κ1 = 1, κ2 = 0). After that

we can eliminate g̃0 by appropriate translations of u2 and u3, arriving at the final answer

g̃ = g̃1. Similarly, in the constant eigenvalue case, κ1 = 0, we can set κ2 = 1, and use an

appropriate translations of u3 to arrive at the normal form above. In detail, if κ2 > 0, the

transformation given by

u1 → αu1, u2 → u2, u3 → α−1u3 + α− 1, α = κ
− 1

2
2 ,

preserves g and g̃ and implies g̃ = g̃1 + g̃0. Using a shift of u3, we finally get the normal

form above. If κ2 < 0, it is sufficient to choose α = (−κ2)−
1
2 in the above transformation,

and then applying a shift of u3 we get the same result.

2.3.4 Four-component case

The four-component situation is more complicated since we have more Segre types. In

this section we present the results of classification of four-component Hamiltonian oper-

ators of the form (2.1) with one real eigenvalue, as well as with two complex conjugate

eigenvalues (the latter turn out to be complexifications of the 2 × 2 operator (2.7)). We

will only give canonical forms for the contravariant metrics g, g̃: the symbols b̃ijk of the

second metric can be computed directly. We skip the details of calculations: these follow

the procedure outlined at the beginning of Section 2.3, and are essentially the same as in

the proof of Theorem 2.10.

Segre type [(2,1,1)]

One can show that this case leads to constant coefficient operators.
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Segre type [(2,2)]

By Theorem 2.9, we have to consider two different cases.

Case 1: There exists a coordinate system where g and g̃0 take the form

gij =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , g̃ij0 =


1 λ 0 0

λ 0 0 0

0 0 1 λ

0 0 λ 0

 .

The general solution of Mokhov’s conditions is given by g̃ =
∑4

i=1 κig̃i + g̃0, where κi are

arbitrary constants, and the bivectors g̃i are as follows:

g̃1 =


u1 −1

2u
2 1

2u
3 0

−1
2u

2 0 0 0

1
2u

3 0 0 −1
2u

2

0 0 −1
2u

2 0

 , g̃2 =


u4 0 −1

2u
2 0

0 0 0 0

−1
2u

2 0 0 0

0 0 0 0

 ,

g̃3 =


0 1

2u
4 −1

2u
1 0

1
2u

4 0 0 0

−1
2u

1 0 −u3 1
2u

4

0 0 1
2u

4 0

 , g̃4 =


0 0 1

2u
4 0

0 0 0 0

1
2u

4 0 −u2 0

0 0 0 0

 .

The eigenvalue of the corresponding affinor L is 1
2(κ3u

4 − κ1u
2) + λ. Using symmetries

which preserve g and g̃0 one can set the coefficients κ3 and κ4 equal to zero, arriving at

the normal form

g̃ = κ1g̃1 + κ2g̃2 + g̃0.

Case 2: There exists a coordinate system where g and g̃0 take the form

gij =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 , g̃ij0 =


1 λ 0 0

λ 0 0 0

0 0 −1 −λ

0 0 −λ 0

 .

The eigenvalue of the corresponding affinor L is 1
2(κ3u

4−κ1u
2) +λ. The general solution
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of Mokhov’s conditions is given by g̃ =
∑4

i=1 κig̃i + g̃0, where κi are arbitrary constants,

and the bivectors g̃i are as follows:

g̃1 =


u1 −1

2u
2 1

2u
3 0

−1
2u

2 0 0 0

1
2u

3 0 0 1
2u

2

0 0 1
2u

2 0

 , g̃2 =


u4 0 1

2u
2 0

0 0 0 0

1
2u

2 0 0 0

0 0 0 0

 ,

g̃3 =


0 1

2u
4 1

2u
1 0

1
2u

4 0 0 0

1
2u

1 0 u3 −1
2u

4

0 0 −1
2u

4 0

 , g̃4 =


0 0 1

2u
4 0

0 0 0 0

1
2u

4 0 u2 0

0 0 0 0

 .

Using symmetries which preserve g and g̃0 one can reduce the above four-parameter fam-

ily to one of the following normal forms:

g̃ = g̃0 +



κ1g̃1 + κ2g̃4

κ1g̃2 + κ2g̃3

g̃2 ± g̃4

g̃1 ± g̃3 + κ1g̃4

κ1, κ2 = const.

Segre type [(3,1)]

Here we also have two different cases.

Case 1: There exists a coordinate system where g and g̃0 take the form

gij =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 , g̃ij0 =


0 1 λ 0

1 λ 0 0

λ 0 0 0

0 0 0 λ

 .

The general solution of Mokhov’s conditions is given by g̃ =
∑4

i=1 κig̃i + g̃0, where κi are
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arbitrary constants, and the bivectors g̃i are as follows:

g̃1 =


2u1 1

2u
2 −u3 1

2u
4

1
2u

2 −u3 0 0

−u3 0 0 0

1
2u

4 0 0 −u3

 , g̃2 =


u2 −1

2u
3 0 0

−1
2u

3 0 0 0

0 0 0 0

0 0 0 0

 ,

g̃3 =


u4 0 0 −1

2u
3

0 0 0 0

0 0 0 0

−1
2u

3 0 0 0

 , g̃4 =


0 1

2u
4 0 −1

2u
2

1
2u

4 0 0 0

0 0 0 0

−1
2u

2 0 0 0

 .

The eigenvalue of the corresponding affinor L is λ − κ1u
3. Using symmetries which pre-

serve g and g̃0 one can bring the above four-parameter family to one of the following

canonical forms:

g̃ = g̃0 +


κ1g̃2 + κ2g̃3

κ1g̃3 + κ2g̃4

κ1g̃1 + κ2g̃2 + κ3g̃4

κ1, κ2, κ3 = const.

Case 2: There exists a coordinate system where g and g̃0 take the form

gij =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 −1

 , g̃ij0 =


0 1 λ 0

1 λ 0 0

λ 0 0 0

0 0 0 −λ

 .

The general solution of Mokhov’s conditions is given by g̃ =
∑4

i=1 κig̃i + g̃0, where κi are

arbitrary constants, and the bivectors g̃i are as follows:

g̃1 =


2u1 1

2u
2 −u3 1

2u
4

1
2u

2 −u3 0 0

−u3 0 0 0

1
2u

4 0 0 u3

 , g̃2 =


u2 −1

2u
3 0 0

−1
2u

3 0 0 0

0 0 0 0

0 0 0 0

 ,
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g̃3 =


u4 0 0 1

2u
3

0 0 0 0

0 0 0 0

1
2u

3 0 0 0

 , g̃4 =


0 1

2u
4 0 1

2u
2

1
2u

4 0 0 0

0 0 0 0

1
2u

2 0 0 0

 .

The eigenvalue of the corresponding affinor L is λ − κ1u
3. Using symmetries which pre-

serve g and g̃0 one can bring the above four-parameter family to one of the following

normal forms:

g̃ = g̃0 +


κ1g̃2 + κ2g̃3

κ1g̃3 + κ2g̃4

κ1g̃1 + κ2g̃2 + κ3g̃4

κ1, κ2, κ3 = const.

Segre type [4]

This is the case where the corresponding affinor L is a single Jordan block (see Section 2.4

for the general theory). There exists a coordinate system where g and g̃0 take the form

gij =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , g̃ij0 =


0 0 1 λ

0 1 λ 0

1 λ 0 0

λ 0 0 0

 .

It turns out that the general solution of Mokhov’s conditions is g̃ =
∑3

i=1 κig̃
i + g̃0 where

κi are arbitrary constants, and the bivectors g̃i are as follows:

g̃1 =


−u1 −1

2u
2 0 1

2u
4

−1
2u

2 0 1
2u

4 0

0 1
2u

4 0 0

1
2u

4 0 0 0

 , g̃2 =


2u2 1

2u
3 −u4 0

1
2u

3 −u4 0 0

−u4 0 0 0

0 0 0 0

 ,

g̃3 =


u3 −1

2u
4 0 0

−1
2u

4 0 0 0

0 0 0 0

0 0 0 0

 .
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Here the eigenvalue of the affinor L is 1
2κ1u

4 +λ. Using symmetries which preserve g and

g̃0 one can bring the above three-parameter family to one of the following normal forms:

in the non-constant eigenvalue case

g̃ = g̃0 + g̃1 + κ1g̃2, κ1 = const,

while in the constant eigenvalue case

g̃ = g̃0 +

 g̃2

k1g̃3

κ1 = const.

Complex conjugate case

In the case of two pairs of complex conjugate eigenvalues ν + iλ and ν − iλ, there exists a

coordinate system such that

gij =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , g̃ij0 =


0 1 −λ ν

1 0 ν λ

−λ ν 0 0

ν λ 0 0

 .

The general solution of Mokhov’s conditions is g̃ = κ1g̃1 +κ2g̃2 + g̃0 where κi are arbitrary

constants, and the bivectors g̃i are as follows:

g̃1 =


2u2 −2u1 −u4 u3

−2u1 −2u2 u3 u4

−u4 u3 0 0

u3 u4 0 0

 , g̃2 =


2u1 2u2 −u3 −u4

2u2 −2u1 −u4 u3

−u3 −u4 0 0

−u4 u3 0 0

 .

Using symmetries which preserve the form of g one can eliminate g̃0, and bring g̃ to the

normal form

g̃ij =


2u2 −2u1 −u4 u3

−2u1 −2u2 u3 u4

−u4 u3 0 0

u3 u4 0 0

 .
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The eigenvalues of the corresponding affinor L are u3 ± iu4. Note that this case is a com-

plexification of the two-component operator (2.7), which can be achieved via the following

recipe (see [11] for more details): each complex entry a+ ib of gC and g̃C is replaced by the

2× 2 block −b a

a b

 ,

where gC and g̃C are the complexified bivectors of the operator (2.7):

gC =

0 1

1 0

 , g̃C =

−2z1 z2

z2 0

 ,

z1 = u1 + iu2, z2 = u3 + iu4.

2.4 The single Jordan block case

Let us begin with examples of n-component Hamiltonian operators of the single Jordan

block type. The Hamiltonian property of these examples will be proved later in this sec-

tion.

Example 1. One of the most important examples was discovered by Mokhov [74]. Here

the first n× n contravariant metric is constant and anti-diagonal,

g =


1

. .
.

1

 ,

while the second contravariant metric g̃ is defined as follows:

g̃ij = (bijk + bjik )uk,

 bijk = 0 if k 6= i+ j − 1,

biji+j−1 = 3j − n− 2 otherwise.

One can verify that the Jordan normal form for the corresponding affinor L is a single

Jordan block with non-constant eigenvalue (for any n 6= 4: in the exceptional case n = 4

the affinor L is the sum of two 2×2 Jordan blocks). We will refer to this case as the Mokhov

operator. The affinor L is given by Lij = [3(i− j) + n− 1]un+i−j . The equivalent form for g̃
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is

g̃ij = [3(i+ j)− 2(n+ 2)]ui+j−1,

for i + j − 1 ≤ n, and 0 otherwise (in what follows, we use the following convention: if

α > n then uα ≡ 0). For n = 2, 3, 4 the explicit form of g̃ is as follows:

g̃ =

−2u1 u2

u2 0

 , g̃ =


−4u1 −u2 2u3

−u2 2u3 0

2u3 0 0

 , g̃ =


−6u1 −3u2 0 3u3

−3u2 0 3u3 0

0 3u3 0 0

3u3 0 0 0

 .

Example 2. Another n-component example has g the same as in Example 1, while the

second contravariant metric is given by

g̃ij = (bijk + bjik )uk + λgij ,

 bijk = 0 if k 6= i+ j,

biji+j = 3j − n− 1 otherwise,

with λ = const. One can verify that this pair of contravariant metrics defines a Hamilto-

nian operator for any n ≥ 3 (the case n = 2 is trivial since all bijk vanish). The correspond-

ing affinor L is a single Jordan block with constant eigenvalue λ. For instance, for n = 3, 4

the second contravariant metric reads

g̃ =


−2u2 u3 λ

u3 λ 0

λ 0 0

 , g̃ =


−4u2 −u3 2u4 λ

−u3 2u4 λ 0

2u4 λ 0 0

λ 0 0 0

 .

The aim of this section is to give a complete description of the case where the affinor

L is a single Jordan block. We will see that the Mokhov example plays fundamental role

in this picture. To formulate our main result, let us introduce symmetric bivectors µ(n;k)

as follows:

µ(n;k)ij = [3(i+ j)− 2(n+ 2− k)]ui+j−1+k. (2.19)

In particular, µ(n;0) coincides with the second contravariant metric g̃ of the Mokhov oper-

ator from Example 1. Note also that µ(n;k) = 0 for k > n − 2. Let us present the explicit
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form for some µ(n;k):

µ(3;1) =


−2u2 u3 0

u3 0 0

0 0 0

, µ(4;1) =


−4u2 −u3 2u4 0

−u3 2u4 0 0

2u4 0 0 0

0 0 0 0

, µ
(4;2) =


−2u3 u4 0 0

u4 0 0 0

0 0 0 0

0 0 0 0

 .

We will show that in the case when the affinor L is a single Jordan block, the general

solution of Mokhov’s conditions reads

g̃ = g̃0 +
n−2∑
m=0

ξmµ
(n;m), (2.20)

where ξm are arbitrary constants, and

g = ±


1

1

. .
.

1

 , g̃0 = ±



1 λ

. .
.
λ

1 . .
.

λ


.

Here the eigenvalue of L equals ξ0(n − 1)un + λ. In the non-constant eigenvalue case,

ξ0 6= 0, we have the following result:

Theorem 2.11. Let P be a Hamiltonian operator (2.1) such that the affinor L = g̃g−1 is a single

n× n Jordan block with non-constant eigenvalue. Then there exists a coordinate system in which

g and g̃ can be reduced to the following canonical forms:

g = ±


1

. .
.

1

 , g̃ = ±


µ(n;0) if n 6≡ 1 mod 3,

µ(n;0) + κµ(n;n−1
3

) if n ≡ 1 mod 3, n 6= 4,

µ(4;0) + κµ(4;1) + g̃0 if n = 4.

Here κ is an arbitrary constant.

In the constant eigenvalue case, ξ0 = 0, we have several canonical forms depending

on how many coefficients among ξi are equal to zero:

Theorem 2.12 (Constant eigenvalue case). Suppose ξi = 0 for i = 0, . . . , α − 1. Then the
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family (2.20) can be reduced to

g̃ = µ(n;α) + κµ(n;α+m) + g̃0, m =
n− 1 + 2α

3
,

if m ∈ N, otherwise to

g̃ = µ(n;α) + g̃0.

2.4.1 Proof of Theorem 2.11

The idea of the proof is as follows: first, we find the general solution of Mokhov’s equa-

tions. It turns out (Proposition 2.14) that this solution depends on n − 1 parameters plus

the constant λ appearing in g̃0. Using orthogonal transformations, we then reduce this

family of solutions to various normal forms (Lemma 2.16 and Proposition 2.17). We work

in coordinates where g and g̃0 take canonical form

g = ±


1

1

. .
.

1

 , g̃0 = ±



1 λ

. .
.
λ

1 . .
.

λ


.

For definiteness, we consider the + sign. In what follows we will need the following

result:

Proposition 2.13. The Killing vectors of g are the following 1
2n(n− 1) vector fields:

X(α,β) = uα∂β − un+1−β∂n+1−α, Xγ = ∂γ ,

here α+ β < n+ 1, and ∂α = ∂
∂uα .

The affinor L and the metric g̃ are given by

Lij = cijku
k + g̃il0 glj ,

g̃ij = Lilg
lj = cin+1−j,ku

k + g̃ij0 .

These have to satisfy a set of constraints (note that the vanishing of the Nijenhuis torsion,

N (L) = 0, gives two types of relations: linear and quadratic in cijk):
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• Linear part of the condition N (L) = 0 reads

ckj,i−1 − cki,j−1 + ck+1
ij − ck+1

ji = 0; (2.21)

• Quadratic part of the condition N (L) = 0 reads

csilc
m
js − csjlcmis + cmsl c

s
ij − cmsl csji = 0;

• Symmetry of g̃ gives

cn+1−i
jk = cn+1−j

ik ; (2.22)

• The Killing condition gives

cn+1−i
jk + cn+1−k

ij + cn+1−j
ki = 0. (2.23)

Remarkably, the linear system (2.21)-(2.23) can be solved explicitly:

Proposition 2.14. The general solution of the linear system (2.21)-(2.23) is given by (2.20),

g̃ = g̃0 +
n−2∑
m=0

ξmµ
(n;m),

where ξm are arbitrary constants. The eigenvalue of the corresponding affinor L is ξ0(n−1)un+λ.

Proof:

The key observation allowing one to prove Proposition 2.14 by induction is as follows.

Suppose cnji = 0. In this case it is easy to see that ck1i and ckj1 must also vanish, indeed,

from (2.22) we have

cn+1−j
1k = cnjk,

and from (2.23) and (2.22) we obtain

cn+1−j
1k + cn+1−k

1j + cn+1−j
k1 = 0.

Then the remaining equations for ckij , with i, j = 2, ..., n and k = 1, ..., n− 1, coincide with

the system one obtains in the (n− 1)-component case with c̃kij = cki−1,j−1, allowing one to
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use inductive assumption.

Our strategy will be the following: first we show that the above equations imply cnji =

0, ck1i = 0 and ckj1 = 0 apart from cnnn = c, c1
1n = c and c1

n1 = −2c. We already know a

solution with c 6= 0, which comes from Mokhov’s example. The generic solution can be

written as a linear combination of Mokhov’s solution and a solution of the system with

cnji = ck1i = ckj1 = 0 (in which case we can use inductive assumption as outlined above).

From (2.22) and (2.21) we have (for j 6= 1)

ck1,j−1 = cnn+1−k,j−1 = cnj,n−k.

Using this identity we can write (2.21) as

cnj,n−k − ck+1
1j + ck+1

j1 = 0.

Similarly, from (2.23) we obtain

cnj,n−k + ck+1
j1 + ck+1

1j = 0.

Combining these two conditions we get ci1j = 0, for any i 6= 1, j 6= 1. Writing out (2.23)

with j = k = 1 we get

cn+1−i
11 + cn1i + cni1 = 2cn+1−i

11 + cn1i = 0,

which implies ck11 = 0. Summarizing, we have

ci1j = 0, ∀i 6= 1,

which, for symmetry reasons, implies

cnjk = 0, ∀j 6= n,

and

cij1 = 0, ∀i 6= 1, j 6= n.

Our next remark is that c1
1j = 0 for j = 1, ..., n − 2. This follows from (2.21) evaluated at



2.4 The single Jordan block case 65

k = i = 1,

c1
1,j−1 − c2

1j + c2
j1 = 0.

This readily implies cnn,k = 0 and c1
k,1 = 0 for k = 1, . . . , n − 2, as well as ckn,1 = 0 for

k = 3, . . . , n. It is also easy to see that the three non-vanishing coefficients cnnn, c1
1n, c

1
n1 are

related by

cnnn = c1
1n, c1

n1 = −2c1
1n.

We still need to prove that c1
1,n−1 = 0. Due to the above computations the first column of

the affinor L has the form (ν, 0, . . . , 0)t where ν = c1
1,n−1u

n−1 + c1
1,nu

n + λ is the (unique)

eigenvalue of L. Similarly, the last row of L is given by (0, . . . , 0, ν). Let us denote by

(e(1), . . . , e(n)) the canonical frame of the pair (L, g). Thus,

Like
k
(p) = νei(p) + ei(p−1). (2.24)

It follows from the vanishing of the Nijenhuis torsion ofL that e(i)(ν) = 0 for i = 1, . . . , n−

1, where e(i)(ν) denotes the Lie derivative of ν in direction e(i), see [11]. Due to the form

of the affinor we have (set i = n in (2.24)):

en(p) = 0, p = 1, . . . , n− 1.

This means that e(1), . . . , e(n−1) do not contain ∂
∂un , and thus ν must depend on un only, so

that c1
1,n−1 = 0.

This proves that the general solution is given by (2.20). A direct computation shows

that (2.20) also satisfies the quadratic conditions coming from N (L) = 0.

Thus, the general solution depends on n − 1 parameters plus λ (see (2.20)). At this

point one might wonder whether this number can be reduced. The answer is yes, the list

of normal forms is presented below. In order to proceed, we need the following statement.

Lemma 2.15. The n−2 vector fieldsX(k) =
∑n−k

i=1 (n−k+1−2i)ui+k∂i,where k = 1, . . . , n−2,

satisfy the relations

1. LieX(k)
g = 0 (thus, they are isometries of g),

2. LieX(k)
µ(n;α) = p[n,k,α]µ

(n;α+k),
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3. LiemX(k)
µ(n;α) =

(∏m−1
s=0 (p[n,k,α] − 2ks)

)
µ(n;α+mk),

where the coefficients p[n,k,α] are defined as p[n,k,α] = 3k + 1− n− 2α.

Proof:

The condition 1 follows immediately by the proposition 2.13, since X(k) are linear combi-

nations of the vector fields X(α,β).

A straightforward computation shows that

LieX(k)
µ(n;α) = (3k + 1− n− 2α) (3(i+ j)− 2(n+ 2− α− k))ui+j+α−1+k.

Thus condition 2 holds, which is equivalent to condition 3 for m = 1. By induction, let us

assume that it is true for m, thus

Liem+1
X(k)

µ(n;α) = LieX(k)

(
LiemX(k)

µ(n;α)
)

= LieX(k)

(
m−1∏
s=0

(p[n,k,α] − 2ks)µ(n;α+mk)

)
=

=

(
m−1∏
s=0

(p[n,k,α] − 2ks)

)
LieX(k)

µ(n;α+mk).

Since µ(n;α+mk)ij = [3(i+ j)− 2(n+ 2− α−mk)]ui+j−1+α+mk, it is easy to see that its Lie

derivative reads (3k + 1− n− 2α− 2km)µ(n;α+(m+1)k), that is,

Liem+1
X(k)

µ(n;α) =

(
m−1∏
s=0

(p[n,k,α] − 2ks)

)
(3k + 1− n− 2α− 2km)µ(n;α+(m+1)k),

=

(
m∏
s=0

(p[n,k,α] − 2ks)

)
µ(n;α+(m+1)k).

Then, 2 is fulfilled.

Consider now the general solution (2.20). Note that in the non-constant eigenvalue

case, ξ0 6= 0, one can eliminate the constant term g̃0 by a translation of variables ui. Let S0

be the resulting n− 1 parameter family of solutions,

S0 =
n−2∑
i=0

ξiµ
(n;i), (2.25)
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and let L[k] be the Lie series

L[k] = exp(tkLieX(k)
) =

∑
s≥0

tsk
s!

LiesX(k)
,

where X(k) are as in Lemma 2.15. We point out that, when applied to µ(n;k) for n fixed,

L[k] consists of a finite number of terms: recall that µ(n;i) = 0 for i > n− 2.

Lemma 2.16. If ξ0 6= 0, then it can be set equal to one.

Proof:

Let us consider the scaling transformation

vi = γ
n+1
2
−iui,

where γ 6= 0 is an arbitrary constant. It is easy to see that this preserves the form of g.

Indeed, we have

g = δi,n+1−j∂ui∂uj = δi,n+1−jγn+1−i−j∂vi∂vj = δi,n+1−jγ0∂vi∂vj = δi,n+1−j∂vi∂vj ,

where ∂ui = ∂
∂ui

and ∂vi = ∂
∂vi

. Taking a metric of the form (2.19) and applying the above

transformation, we get

µ(n;k)ij(u)∂ui∂uj = [3(i+ j)− 2(n+ 2− k)]γi+j−1+k−n+1
2 vi+j−1+kγn+1−i−j∂vi∂vj

= [3(i+ j)− 2(n+ 2− k)]vi+j−1+kγ
n−1
2

+k∂vi∂vj

= γ
n−1
2

+kµ(n;k)ij(v)∂vi∂vj .

Thus, setting γ = ξ
− 2
n−1

0 , we can reduce the coefficient of µ(n;0) to 1.

To finish the proof of Theorem 2.11 we need the following

Proposition 2.17. Suppose ξ0 6= 0. Then

1. if n 6≡ 1mod 3, there exists an orthogonal transformation which brings the (n−1)-parameter

solution S0 to µ(n;0);

2. if n ≡ 1mod 3, n 6= 4, there exists an orthogonal transformation which brings S0 to the

one-parameter family µ(n;0) + κµ(n;n−1
3

),
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where κ is an arbitrary constant.

Proof:

By Lemma 2.16 we can consider the family S0 in the form

S0 = µ(n;0) +

n−2∑
i=1

κiµ
(n;i),

where κi are arbitrary constant coefficients. Suppose n 6≡ 1mod 3, then the coefficients

p[k,n,0] defined in Lemma 2.15 do not vanish. Let us apply L[1] to S0 and look at the

coefficient of µ(n;1):

L[1]S0 = S0 + t1LieX(1)
S0 +

t21
2

Lie2
X(1)

S0 + . . .+
tn−2
1

(n− 2)!
Lien−2

X(1)
S0

= µ(n;0) +
(
κ1 + t1p[n,1,0]

)
µ(n;1) + . . .

We can always choose t1 such that the coefficient of µ(n;1) is zero. Let us call S1 the result-

ing (n− 2)-parameter family:

S1 = L[1]S0|t1=− κ1
p[n,1,0]

= µ(n;0) +
n−2∑
i=2

κ̃iµ
(n;i).

Applying L[2] and looking at the coefficient of µ(n;2) we obtain

L[2]S1 = µ(n;0) +
(
κ̃2 + t2p[n,2,0]

)
µ(n;2) + . . .

Again, we can choose t2 such that the coefficient of µ(n;2) vanishes, and so on. Ultimately,

we get

L[n−2]L[n−3] · · ·L[1]S0 = µ(n;0),

as required.

To prove the second part of the proposition, let us set n = 3m+ 1. It is easy to see that

LieX(m)
µ(n;0) = 0, since the coefficient p[n,m,0] vanishes. Note that in this case p[n,k,0] 6= 0

for k 6= m. For fixed m, until k = m − 1 we can apply the same procedure as above,

obtaining

Sm−1 = µ(n;0) +

n−2∑
i=m

κ̃iµ
(n;i).
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At this point, applying LieX(m)
to Sm−1, we cannot eliminate the coefficient of µ(n;m), since

LieX(m)
µ(n;0) = 0. However, applying LieX(m+1)

and looking at the coefficient of µ(n;m+1),

L[m+1]Sm−1 = µ(n;0) + κ̃mµ
(n;m) +

(
κ̃m+1 + tm+1p[n,m+1,0]

)
µ(n;m+1) + . . . ,

we can eliminate it. Following the same method, we arrive at the canonical form

Scan = µ(n;0) + κ̃mµ
(n;m).

The case n = 4 is special. Indeed, the 4× 4 Mokhov metric does not correspond to the

single Jordan block case. In the n = 4 Jordan block case, normal forms are presented in

Section 2.3.4. This concludes the proof of Theorem 2.11. In the constant eigenvalue case,

ξ0 = 0, we cannot eliminate g̃0 by a shift. Finally, Theorem 2.12 can be established by

following the same procedure as above.

2.4.2 Relation to Frobenius manifolds

In this section we demonstrate the relation between Mokhov’s Hamiltonian operator and

the trivial Frobenius manifold associated with the cohomology ring of projective space.

For this purpose let us briefly recall the definition of a Frobenius manifolds [29, 27].

Definition 2.2. A Frobenius manifold (M, g, ◦, e, E) is a manifoldM endowed with a (pseudo)-

Riemannian metric g, a product ◦ on the tangent spaces TuM and a pair of vector fields e and E

such that

• the product ◦ is commutative and associative:

cijk = cikj , cijlc
l
kh = ciklc

l
jh.

• g is flat, invariant with respect to ◦,

gikc
k
jl = gjkc

k
il,
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and the associated Levi-Civita connection∇ is compatible with ◦:

∇lcijk = ∇jcilk. (2.26)

This implies that there exists a function F , called the Frobenius potential, such that, in flat

coordinates for g,

cijk = gilc
l
jk = ∂i∂j∂kF.

• The product ◦ has a unity e which is flat: ∇e = 0.

• The Euler vector field E satisfies:

∇∇E = 0, LieEe = −e, LieE◦ = ◦, LieEg = (2− d)g,

for some constant d. The existence of the Euler vector field is related to the existence of a flat

contravariant metric called the intersection form. In local coordinates it is defined by the

formula

g̃ij = gilcjlkE
k.

If, in the flat coordinates for g, the functions cijk are constant, the Frobenius mani-

fold is called trivial [27]. In this case, the Frobenius potential is a cubic polynomial,

F =
1

6
cijku

iujuk.

It is known that flat pencils of metrics associated with a Frobenius manifold are exact

[25]. Let us recall what is the exactness of a flat pencil of metrics.

Definition 2.3. Let (g, g̃) a be pair of flat contravariant metrics. We say that they define an exact

flat pencil of metrics if there exists a vector fields X such that the conditions

LieX g̃ = g, LieXg = 0

are satisfied.

It is easy to check that the associated Poisson bivectors P and P̃ satisfy the relations

LieX P̃ = P and LieXP = 0. A straightforward computation shows that in the case

of a single Jordan block with non-constant eigenvalue, the flat pencil given by the pair

of flat contravariant metrics (g, µ(n;0)) is exact. Indeed, let us consider the vector field
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X = (n− 1)−1∂un . Clearly, Liexg = 0. Computing the Lie derivative of µ(n;0) we get

(LieXµ
(n;0))ij = Xm∂umµ

(n;0)i,j = (n− 1)−1∂un
(
(3(i+ j)− 2(n+ 2))ui+j−1

)
= (n− 1)−1(3(i+ j)− 2(n+ 2))∂unu

i+j−1 = (n− 1)−1(3(i+ j)− 2(n+ 2))δi,n+1−j

= (n− 1)−1(n− 1)δi,n+1−j = gij .

Remark. In general, using Mokhov’s conditions it is easy to prove that if the pair (g, g̃)

defines a 2D Hamiltonian operator, then in flat coordinates of g, g itself and the homo-

geneous linear part of g̃ define an exact flat pencil of metrics. More precisely, we have

LieXg
ij = g̃ijhom and LieX g̃

ij
hom = 0, where g̃ijhom = (b̃ijl + b̃jil )ul and Xi = −g̃ishomgslu

l.

Moreover, X is constant in flat coordinates of g̃hom (∇̃homX = 0).

Thus, this fact suggest the existence of a relation between Hamiltonian operators and

the theory of Frobenius manifolds. In the case of Mokhov’s Hamiltonian operator, we can

easily define a trivial Frobenius manifold associated with it.

Theorem 2.18. The metric

gij =

 1 if i+ j = n+ 1,

0 otherwise,

the structure constants

cijk = gilcljk =

 1 if l = 2n+ 1− j − k = n+ 1− i that is j + k − i = n,

0 otherwise,

the unity e = ∂
∂un , and the Euler vector field E =

∑n
k=1(3k − 2n − 1)uk ∂

∂uk
define a trivial

Frobenius manifold with d = 3. Moreover, the intersection form,

g̃ij = gilcjlkE
k =

 [3(i+ j)− 2n− 4]ui+j−1 if i+ j − 1 ≤ n,

0 otherwise,

coincides with the second metric of Mokhov’s operator.

Proof:

Commutativity of the product is trivial. Associativity

cijlc
l
km = ciklc

l
jm (2.27)
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is also satisfied since the left hand side of (2.27) is different from 0 if l = i− j = k+m and

the right hand side of (2.27) is different from 0 if l = i − k = j + m. Finally, applying the

Euler vector field to the Frobenius potential we get

n∑
l=1

(3l − 2n− 1)ul
∂F

∂ul
=

n∑
i,j=1

[3i− 2n− 1 + 3j − 2n− 1 + 3(2n+ 1− i− j)− 2n− 1] = 0.

In order to prove that Christoffel symbols b̃ijk coincide with Christoffel symbols of Mokhov

examples we have to prove that

∂kg̃
ij = b̃ijk + b̃jik , (2.28)

g̃jlb̃ikl = g̃ilb̃jkl . (2.29)

Condition (2.28) is trivially satisfied if k 6= i+ j− 1, while for k = i+ j− 1 we have we get

∂kg̃
ij = 3(i+ j) + 2n− 4 = 3j − n− 2 + 3i− n− 2 = b̃ijk + b̃jik .

Moreover,

g̃jlb̃ikl = gj,i+k−1b̃iki+k−1 = [3(i+ j + k − 1)− 2n− 4](3k − n− 2) = gj,i+k−1b̃iki+k−1 = g̃ilb̃jkl .

To conclude this section we compare the Frobenius algebra underlying Mokhov’s ex-

ample with the Frobenius algebra structure on the full cohomology ring of projective

space H∗(CPd). This can be defined with respect to the natural basis e1 = 1, e2 =

ω, . . . , ed+1 = ωd, generated by powers of the standard Kahler form normalized as∫
CPd ω

d = 1. The contravariant components of the metric g and the structure constants

cijk are defined respectively by

gij =

 1 if i+ j = n+ 1,

0 otherwise,
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and ej ∧ ek = cijkei = ej+k−1, that is,

cijk =

 1 if j + k − i = 1,

0 otherwise.

Putting i′ = n+ 1− i we obtain the Frobenius algebra of Mokhov’s example.

2.5 Multi-dimensional Hamiltonian operators

The theory developed by Mokhov holds for a generic N -dimensional Hamiltonian oper-

ator

P ij =
N∑
α=1

(
gijα(u)

d

dxα
+ bijαk (u)ukα

)
, (2.30)

here u = u(x) = (u1(x), . . . , un(x)) are local coordinate on a certain smooth n-dimensio-

nal manifolds M , x = (x1, . . . , xN ) are independent variables and ukα = ∂uk

∂xα . In the non-

degenerate situation, that is when a generic linear combination of gα is non-degenerate

(without any loss of generality we will assume that each gα is non-degenerate: this can

always be achieved by a suitable linear transformation of the independent variables xα),

the Mokhov’s conditions involving the obstruction tensor must be satisfied by each pair

of metrics appearing in the differential operator (see Section 1.3). This implies that each

pair of metrics (gβ, gγ) for β 6= γ must define a 2D Hamiltonian operator. Moreover, we

have seen that all metrics gα must be flat and all the coefficients bijαk define Levi-Civita

connection with respect to the metrics gα corresponding to them (see Lemma 1.3). There-

fore, Mokhov’s theorem for a genericN -dimensional Hamiltonian operator (Theorem 1.4)

can be rewritten as follows.

Theorem 2.19. Suppose gα are flat contravariant metrics. An operator of the form (2.30) defines

a N-dimensional Hamiltonian operator if and only if the following conditions are fulfilled for all

β, γ such that β 6= γ:

1. Linearity of gβ in flat coordinates of gγ .

2. Vanishing of the Nijenhuis torsion of the affinors L(βγ) = gβ(gγ)−1.

3. The Killing condition between each pair of metrics:

∇igkjγ +∇kgijγ +∇jgikγ = 0,
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where∇ corresponds to gβ .

Remark. It is sufficient to require the flatness of only one of the metrics gα. Indeed, let us

suppose that the metric gα is flat. Then, since the pair (gα, gβ) must define a 2D Hamil-

tonian operator for all β, the linearity, Nijenhuis and Killing conditions imply the flatness

of gβ (see Theorem 2.2).

It was demonstrated by Mokhov [69] that there exist no non-constant 3D Hamiltonian

operator with one or two components. Here we show that there exist only two non trivial

three-components 3D Hamiltonian operators.

Theorem 2.20. Every three-components 3D Hamiltonian operator either can be reduced to con-

stant form, or can be reduced to

P =


∂z 0 ∂x

0 ∂x 0

∂x 0 0

+


−2u2∂y − u2

y u3∂y + 2u3
y 0

u3∂y − u3
y 0 0

0 0 0

 , (2.31)

or

P =


0 ∂x 0

∂x 0 0

0 0 ∂x + ∂z

+


−2u1∂y − u1

y u2∂y + 2u2
y 0

u2∂y − u2
y 0 0

0 0 0

 , (2.32)

by a local change of coordinates ui and a linear change of the independent space variables x, y, z.

Proof:

Since we are interested in the non-constant case, we will consider 3D operators as defor-

mation of 2D non-constant operators which have been classified already (Theorem 2.10).

There exist only three such operators, defined by the following pairs of contravariant met-

rics:

g =


0 0 1

0 1 0

1 0 0

 , g̃ =


−2u1 −1

2u
2 u3

−1
2u

2 u3 0

u3 0 0

 , (2.33)

g =


0 0 1

0 1 0

1 0 0

 , g̃ =


−2u2 u3 λ

u3 λ 0

λ 0 0

 , (2.34)
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and (reducible case)

g =


0 1 0

1 0 0

0 0 1

 , g̃ =


−2u1 u2 0

u2 0 0

0 0 λ

 . (2.35)

Fixing one of the above pairs, let us add a third contravariant metric h. Since we are

in the flat coordinates of the first metric g, the bivector h must be linear. Since the pair

(g, h) satisfies the Killing condition, we can represent h as a sum of symmetrized tensor

products of infinitesimal isometries of g. Assuming this, let us consider the above three

cases separately.

Case (2.33): Checking the Killing condition for the pair (g̃, h) we obtain that h must

be a linear combination of g and g̃. This means that our operator is essentially two-

dimensional.

Case (2.34): Checking the Killing condition for the pair (g̃, h) we obtain h = c1g+ c2g̃+h0

where

h0 =


ν 0 0

0 0 0

0 0 0

 .

One can verify that this ansatz for h satisfies all other conditions.

Case (2.35): In this case, it is no longer sufficient to consider the Killing condition alone:

we also need the linearity of h with respect to g̃, that is ∇2h = 0, where ∇ correponds to

g̃. These conditions imply h = c1g + c2g̃ + h0, where

h0 =


0 µ 0

µ 0 0

0 0 ν

 .

One can verify that this ansatz for h satisfy all other conditions.

It remains to note that all constants appearing in the classification can be eliminated

by linear transformations of x, y, z leading to the normal forms (2.31) and (2.32).

If one does not allow linear changes of the independent variables x, y, z, the analogue

of Theorem 2.20 reads as follows

Theorem 2.21. Any non-degenerate three-component Hamiltonian operator in 3D, which is not
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transformable to constant coefficients, can be brought by a transformation of the dependent vari-

ables ui to

P ij = gij
d

dx
+ g̃ij

d

dy
+ (c1g

ij + c2g̃
ij + hij0 )

d

dz
+ b̃ijk (uky + c2u

k
z),

where c1, c2 are constants, b̃ijk are the contravariant Christoffel symbols of g̃, and the contravariant

metrics g, g̃, h0 assume one of the two canonical forms

• form 1:

g =


0 0 1

0 1 0

1 0 0

 , g̃ =


−2u1 −1

2u
2 u3

−1
2u

2 u3 0

u3 0 0

 , h0 =


ν 0 0

0 0 0

0 0 0

 ,

here ν = const;

• form 2:

g =


0 1 0

1 0 0

0 0 1

 , g̃ =


−2u1 u2 0

u2 0 0

0 0 λ

 , h0 =


0 µ 0

µ 0 0

0 0 ν

 ,

here λ, µ, ν are constants.

It follows from the proof of Theorem 2.20 that any non-degenerate three-component

Hamiltonian operator in 4D is essentially 3D, or can be transformed to constant coefficient

form. We point out that there exists non-trivial examples of Hamiltonian operators in any

dimension.

Example 3. The following expression provides the example of a non-constant irreducible

N -component Hamiltonian operator in N dimensions:

P ij = ηij
d

dx1
+ gij

d

dx2
+ bijk u

k
x2 +

N−2∑
m=1

hijm
d

dxm+2
,

where

• η is the constant N ×N anti-diagonal metric ηij = δi,N+1−j ;
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• the metric g in components is gij = µ(N ;N−2) + gij0 , where µ(N ;N−2) is defined by

(2.19), namely

µ(N ;N−2)ij = [3(i+ j)− 8]ui+j+N−3,

and gij0 = δi,N−j + λδi,N+1−j ;

• bijk are the contravariant Christoffel symbols of g, namely

b11
N−1 = −1, b12

N = 2, b21
N = −1,

and all the remaining coefficients equal to 0;

• the N − 2 constant metrics hm are defined by hijm = δimδjm.

For N = 3, this example corresponds to (2.31).

Let us demonstrate that this example is actually a N -dimensional Hamiltonian opera-

tor. We consider the metrics h as a unique metric h̃ defined by N − 2 arbitrary constants

αm, that is h̃ij = αi+2δ
ij , for i = 1, . . . , N − 2. For clearness, let us write the metrics in

matrix form, namely

g =



−2uN−1 uN 0 · · · 0 1 λ

uN 0 · · · 0 1 λ

0 · · · 0 1 λ

... . .
.

. .
.

. .
.

0 1 λ

1 λ

λ


, h̃ =



α3

α4

. . .

αN−1

αN

0

0


.

We already know that the pair (η, g) is a 2D Hamiltonian operator. Since h̃ is constant,

then the pair (η, h̃) also defines a 2D Hamiltonian operator. We want to show that the pair

(h̃, g) also satisfies all Mokhov’s condition. Linearity is obvious. The Killing condition

reads

h̃is∂sg
jk + h̃js∂sg

ki + h̃ks∂sg
ij = 0.

Since g depends on uN−1, uN and h̃ij = 0 for i, j ∈ {N − 1, N}, then the Killing condition

is easily fulfilled. It remains to prove that the Nijenhuis torsion vanishes. We will show
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that L = h̃g−1 is constant, and then its Nijenhuis torsion is zero.

Let us compute g−1. Since g is upper triangular, the inverse is lower triangular, in

particular of the form

g−1 =



∗

. .
. ...

∗ ∗ ∗

. .
.
∗ ∗ ∗

∗ . . . ∗ ∗ ∗


.

It is not difficult to see that in this particular case the coordinates uN−1, uN appear only

in the 2× 2 block identified by the square. Thus, the product of h and g−1 reads

L =



∗ . . . ∗
. . .

...

∗


,

where all the non zero coefficients ∗ are constant. Therefore the Nijenhuis tensor vanishes.

This proves that the triple (η, g, h̃) defines a 3D Hamiltonian operator, depending on the

N−2 parameters αi. Choosing hijm = δimδjmαm+2, up to linear change of the independent

variables x3, . . . , xN , that is xi → xi

αi
, we finally get the starting N − 2 metrics hm. By

construction, the metrics (η, g, h1, . . . , hN−2) define aN -component Hamiltonian operator

in N dimensions.
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Degenerate Dubrovin-Novikov structures

and integrable systems

In the previous chapter we discussed first-order Hamiltonian operators of hydrodynamic

type under the assumption of non-degeneracy. One might wonder what happens if we

remove this requirement. Let us recall that a 2D Hamiltonian operator

P ij = gij(u)
d

dx
+ bijk (u)ukx + g̃ij(u)

d

dy
+ b̃ijk (u)uky , (3.1)

is degenerate if det(g + λg̃) = 0 for all λ ∈ R. The study of such structures is motivated

by the existence of systems of hydrodynamic type which admit a Hamiltonian formula-

tion with a degenerate operator. An example is given by two-dimensional isentropic gas

dynamics equations (see, for instance [44])

ρt + (ρu)x + (ρv)y = 0, ut + uux + vuy +
px
ρ

= 0, vt + uvx + vvy +
py
ρ

= 0, (3.2)

where p = p(ρ) is the equation of state. One can easily see that this system can be written

in Hamiltonian form as ut + Phu = 0, where the operator P is given by

P ij =


0 1 0

1 0 0

0 0 0

 d

dx
+


0 0 1

0 0 0

1 0 0

 d

dy
+


0 0 0

0 0
uy−vx
ρ

0
vx−uy
ρ 0

 , (3.3)

the Hamiltonian density h is h(ρ, u, v) = 1
2ρ(u2 +v2)+k(ρ), and the equation of state p and

the function k are related by pρ = ρkρρ. Clearly, in this case there is no linear combination

g + λg̃ such that det(g + λg̃) 6= 0.

According to Lemma 1.3, in the degenerate situation the x-part and the y-part of the

operator (3.1), which we call respectively P(x) and P(y), must both define one-dimensional

79
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Hamiltonian operators of hydrodynamic type. Unfortunately, since both metrics gij and

g̃ij are degenerate, Dubrovin-Novikov theorem (Theorem 1.1) does not hold. This leads

to two main problems:

1. The symbols bijk and b̃ijk are not uniquely determined by the respective metrics, that

is, they are no longer the contravariant Christoffel symbols of gij and g̃ij .

2. The analogues of Darboux theorem for Hamiltonian operators (which is a straightfor-

ward consequence of Dubrovin-Novikov theorem) does not hold, that is, we cannot

reduce a degenerate one-dimensional first-order Hamiltonian operator of hydrody-

namic type to constant coefficient form.

Therefore, in order to discuss the classification of degenerate Hamiltonian operators in

2D, we firstly need to deal with the one-dimensional case.

In 2+1 dimensions, a quasilinear system is said to be integrable if it can be decoupled

in infinitely many ways into a pair of compatible m-component 1D systems in Riemann

invariants [43]. Ferapontov and Khusnutdinova proved that the requirement of the ex-

istence of sufficiently many m-component reductions provides an effective classification

criterion. The method of hydrodynamic reductions, which is a natural analogue of the

generalised hodograph transform in higher dimensions, leads to finite-dimensional mod-

uli spaces of integrable Hamiltonians.

The purpose of this chapter is two-fold. Starting from the classification of degenerate

brackets in 1D, we want to describe degenerate Hamiltonian operators of hydrodynamic

type in 2D. Our analysis leads to a complete classification of two- and three-component

degenerate structures. Secondly, we study the integrability, by the method of hydrody-

namic reductions, of Hamiltonian systems arising from three-component structures we

classified.

The one-dimensional discussion is based on the author’s paper [87]. The classification

of 2D structures and the analysis of integrability is based on the author’s paper [86].
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3.1 Degenerate one-dimensional Hamiltonian operators

One-dimensional Poisson structures (Hamiltonian operators) of hydrodynamic type, al-

ready mentioned in Section 1.2.3 formula (1.14), namely

P ij(u) = gij(u)
d

dx
+ bijk (u)ukx, (3.4)

with degenerate metric, that is det(gij) = 0, where first studied by Grinberg [56] in

1985, and later investigated by Bogoyavlenskij [9, 10]. The requirement that such struc-

tures satisfy skew-symmetry and Jacobi conditions implies constraints on the differential-

geometric objects gij and bijk .

Theorem 3.1 ([56]). Operator (3.4) defines a Poisson structure if and only if the pair (g, b) satis-

fies the following conditions

gij = gji, (3.5)

∂gij

∂uk
= bijk + bjik , (3.6)

gtkbjit = gtjbkit , (3.7)

bijt b
tk
r − bikt btjr = gti

(
∂bjkr
∂ut
− ∂bjkt
∂ur

)
, (3.8)

∑
(i,j,k)

[(
∂bijt
∂uq
− ∂bijq
∂ut

)
btkr +

(
∂bijt
∂ur
− ∂bijr
∂ut

)
btkq

]
= 0, (3.9)

where
∑

(i,j,k) means cyclic summation over i, j, k.

As mentioned in Section 1.3, this result has been later generalised to the multi-dimensio-

nal case by Mokhov, see Theorem 1.2. To the best of our knowledge, up to now a fully

geometric interpretation of these equations (under the assumption of degeneracy) is not

clear. Moreover, there is no classification of such structures in the literature. Our first aim

is to obtain this classification up to three-component case.

In the non-degenerate situation, there always exists a system of coordinates where the

pair (g, b) assumes constant form. In the degenerate case, this is not true, but a weaker

result holds:

Theorem 3.2 ([56]). Suppose that the bivector (3.4) defines a n-component Hamiltonian operator,

and rank(gij) = m ≤ n. Then gij can be reduced to a constant form.
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Although we can easily classify all possible canonical forms for degenerate constant met-

rics, the symbols bijk are no longer defined through gij . Fixing gij , the coefficients bijk can

be found solving equations (3.5)–(3.9).

In her paper [56], Grinberg gives a description of two- and three-component degener-

ate Hamiltonian operators (one-component case is trivial), without explicitly writing out

the canonical forms. Here, starting from her results, we list all possible canonical forms,

up to arbitrary changes of dependent variables.

Remark. Once the metric is fixed and Grinberg’s conditions are solved, in order to reduce

them to canonical forms we need a change of coordinates which preserves the form of the

metric. Following [56], this class of transformations is called admissible. Unfortunately, in

general, under admissible change of coordinates, the symbols bijk do not transform like

components of a (2, 1)-tensor.

Lemma 3.3 ([87]). Suppose that 0 < rank(gij) = m < n. Among all transformations which

preserve the form of the constant metric gij , those which transform the symbols bijk as components

of a (2, 1)-tensor must be of the form

vr(u1, . . . , un) = cr1u
1 + . . . crmu

m + F r(um+1, . . . , un), r = 1, . . . , n, (3.10)

where cis are constants and crs = 0 for r ∈ {m+ 1, . . . , n}.

Of course, the requirement of admissibility imposes some further restrictions on the coef-

ficients crs.

3.1.1 Two-component case

Fixing the number of components, degenerate metrics can be characterised by their rank.

In particular, for n = 2, we have to investigate metrics with rank(gij) = 0, 1. In two-

component case, we have only two canonical forms.

Theorem 3.4. Any non-trivial degenerate two-component Hamiltonian operator of Dubrovin-

Novikov type in 1D can be brought, by a change of the dependent variables, to one of the following

two canonical forms:

1. Constant form

P =

∂x 0

0 0

 , (3.11)
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2. Non-constant form

P =

∂x −u2x
u1

u2x
u1

0

 . (3.12)

Proof:

If rank(gij) = 0 then the Hamiltonian operator is identically zero [56]. Suppose rank(gij) =

1, thus the metric can be reduced by local changes to constant form. Without any loss of

generality we can assume

gij =

1 0

0 0

 . (3.13)

By a straightforward computation we obtain that all bijk vanish except b12
2 = −b21

2 , which

has to satisfy the condition

∂1b
12
2 = (b12

2 )2.

If b12
2 = 0, all the coefficients bijk vanish and we have the constant solution (3.11). Other-

wise, for b12
2 6= 0 we get

b12
2 =

1

f(u2)− u1

for an arbitrary f(u2). Applying the admissible transformation

v1 = u1 − f(u2), v2 = u2, (3.14)

we can reduce b12
2 to − 1

v1
obtaining (3.12).

Remark. A generic admissible transformation for the metric (3.13) is given by

v1 = u1 + F (u2), v2 = G(u2), (3.15)

and therefore it is of the form (3.10). This implies that the symbols bijk transform as tensors

so that the structures (3.11) and (3.12) cannot be equivalent. Indeed, in the first case the

coefficients bijk vanish, while in (3.12) they are non-zero.

3.1.2 Three-component case

In the three-component case there are three distinct possibilities: rank(gij) = 0, 1, 2.
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Theorem 3.5. Any non-trivial degenerate three-component Hamiltonian operator of Dubrovin-

Novikov type in 1D can be brought, by a change of the dependent variables, to one of the following

canonical forms:

• rank(g) = 0:

P =


0 u3

x 0

−u3
x 0 0

0 0 0

 , (3.16)

• rank(g) = 1:

P =


∂x 0 0

0 0 0

0 0 0

 , P =


∂x u3

x 0

−u3
x 0 0

0 0 0

 , P =


∂x 0 −u3x

u1

0 0 0

u3x
u1

0 0

 ,

P =


∂x −u2x

u1
−u3x
u1

u2x
u1

0 0

u3x
u1

0 0

 ,

(3.17)

• rank(g)=2:

P =


0 ∂x 0

∂x 0 0

0 0 0

 , P =


0 ∂x −u3x

u2

∂x 0 0

u3x
u2

0 0

 , P =


0 ∂x

u3x
u3u1−u2

∂x 0 −u3u3x
u3u1−u2

−u3x
u3u1−u2

u3u3x
u3u1−u2 0

 ,

(3.18)

P =


∂x 0 0

0 ∂x 0

0 0 0

 , P =


∂x 0 0

0 ∂x −u3x
u2

0 u3x
u2

0

 , P =


∂x 0 −u3u3x

u3u1−u2

0 ∂x
u3x

u3u1−u2
u3u3x

u3u1−u2
−u3x

u3u1−u2 0

 .

(3.19)

Furthermore, the canonical forms (3.18) and (3.19) are equivalent under complex transformations.

The proof of this theorem can be obtained by a straightforward computation, and can

be found in the appendix of [87].
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3.2 Degenerate two-dimensional Hamiltonian operators

Classification of degenerate operators of hydrodynamic type (3.1) in 2D can be obtained

solving general Mokhov’s conditions (1.19)–(1.25) directly, but the analysis of these con-

ditions is not straightforward. In order to deal with it, we firstly fix the pair (g, b) given by

the classification of 1D Hamiltonian operators described in the previous section, and then

we find (g̃, b̃) solving (1.19)–(1.25). After that, we look for canonical forms of 2D structures

using transformations which preserve the form of the first structure given by (g, b). As we

will see, in some cases these transformations are not enough to eliminate all the functional

parameters appearing in the 2D structure. Let us firstly introduce a definition.

Definition 3.1. A degenerate Hamiltonian operator of the form (3.1) is called trivial if it is iden-

tically zero, or if it can be reduced to the form

g̃ij = ξgij , b̃ijk = ξbijk , (3.20)

for ξ constant.

Notice that allowing linear changes of the independent variables x, y, an operator satisfy-

ing (3.20) is essentially 1D.

3.2.1 Two-component case

Here we provide a full description of the two-component case.

Theorem 3.6. Any non-trivial degenerate two-component Hamiltonian operator of Dubrovin-

Novikov type in 2D can be brought, by a change of the dependent variables, to the following form

P =

∂x + u2∂y + 1
2u

2
y −ε

u2x+u2u2y
u1

ε
u2x+u2u2y

u1
0

 , (3.21)

where ε can be either 0 or 1.

Proof:

First of all, the case g = g̃ = 0 gives no non-trivial solutions. In the case where the rank of

the pencil gij + λg̃ij is constantly equal to one, there exists a coordinates system (u1, u2)
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where

gij =

1 0

0 0

 , g̃ij =

f 0

0 0

 ,

here f = f(u1, u2) is some function. Let us fix the P(x) structure.

Case (3.11). If bijk are all identically zero, conditions (1.19)–(1.25) imply

f = f(u2), b̃11
2 =

f ′

2
,

and all other b̃ijk equal to zero. If f = ξ is constant, than g̃ = ξg, b̃ = ξb. Otherwise, using a

transformation which preserves P(x), that is of the form (3.15), we can easily reduce f to

v2, obtaining (3.21) with ε = 0.

Case (3.12). Suppose b21
2 = −b12

2 = 1
u1

. Conditions (1.19)–(1.25) imply

f = f(u2), b̃11
2 =

f ′

2
, b̃21

2 = −b̃12
2 =

f

u1
.

If f = ξ is constant, than g̃ = ξg, b̃ = ξb. Otherwise, let us assume f non-constant.

Transformations which preserve P(x) are given by u1 = v1, u2 = F (v2), then we can

always choose F such that f reduces to v2 in the new coordinate system, obtaining (3.21)

with ε = 1.

3.2.2 Three-component case

The analysis of the three-component situation is more complicated. Let us consider sepa-

rately the cases according to the rank of the pencil gλ=g−λg̃. The results can be stated as

follows.

Theorem 3.7. Rank(gλ) = 0. Any non-trivial degenerate three-component Hamiltonian operator

of Dubrovin-Novikov type in 2D can be brought, by a change of the dependent variables, to one of

the following forms:

P =


0 u3

x + u1u3
y 0

−u3
x − u1u3

y 0 0

0 0 0

 , P =


0 u3

x + u3u3
y 0

−u3
x − u3u3

y 0 0

0 0 0

 . (3.22)

In this case, we do not need any linear change of the independent variables x, y.
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Theorem 3.8. Rank(gλ) = 1. Any non-trivial degenerate three-component Hamiltonian operator

of Dubrovin-Novikov type in 2D can be brought, by a change of the dependent variables and linear

change of x and y, to one of the following forms:

P =


∂x + ε

(
u2∂y +

u2y
2

)
0 hu2

y

0 0 0

−hu2
y 0 0

 , P =


∂x + f∂y +

∂2fu2y+∂3fu3y
2 u3

x + hu3
y 0

−u3
x − hu3

y 0 0

0 0 0

 ,

(3.23)

P =


∂x + f∂y +

∂2fu2y+∂3fu3y
2 0 −u3x−hu2y+fu3y

u1

0 0 0

u3x−hu2y+fu3y
u1

0 0

 , (3.24)

P =


∂x + u2∂y +

u2y
2 −u2x+u2u2y

u1
−u3x+u2u3y

u1

u2x+u2u2y
u1

0 0

u3x+u2u3y
u1

0 0

 , (3.25)

where f = f(u2, u3), h = h(u2, u3) are arbitrary functions and ε can be either 0 or 1.

Theorem 3.9. Rank(gλ) = 2. Any non-trivial degenerate three-component Hamiltonian operator

of Dubrovin-Novikov type in 2D can be brought, by a change of the dependent variables and linear

change of x and y, to one of the following forms:

P =


−2u1∂y − u1

y ∂x + u2 ∂y + 2u2
y εu3

y

∂x + u2∂y − u2
y 0 0

−εu3
y 0 0

 , P =


0 ∂x ∂y

∂x 0 0

∂y 0 0

 , (3.26)

P =


p ∂y +

p′u3y
2 ∂x + q ∂y + εu3

y 0

∂x + ∂yq − εu3
y r ∂y +

r′u3y
2 0

0 0 0

 , P =


∂y ∂x −u3x

u2

∂x 0 0

u3x
u2

0 0

 , (3.27)

P =


ε∂y ∂x + u3∂y −

u3x+u3u3y
u2

∂x + ∂yu
3 0 0

u3x+u3u3y
u2

0 0

 , P =


0 ∂x −u3x−u1y

u2

∂x 0 ∂y
u3x−u1y
u2

∂y 0

 , (3.28)
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P =


0 ∂x ∂y −

u3x−u2y
u2

∂x 0 0

∂y +
u3x−u2y
u2

0 0

 , P =


u1∂y +

u1y
2 ∂x − u2

2 ∂y − u
2
y −

u3x
u2

∂x − u2

2 ∂y +
u2y
2 0 0

u3x
u2

0 0

 ,

(3.29)

P =


∂y ∂x − u3∂y

u3x−2u3u3y
u3u1−u2

∂x − ∂yu3 u3∂yu
3 −u3u3x−2(u3)2u3y

u3u1−u2

−u3x−2u3u3y
u3u1−u2

u3u3x−2(u3)2u3y
u3u1−u2 0

 , (3.30)

P =


κ ∂y

1
u3

∂x − κ ∂y +
κu3y
2u3

u3x−2κu3y
u3u1−u2

∂x − κ ∂y −
κu3y
2u3

κu3∂y +
u3y
2 −u3u3x−2κu3u3y

u3u1−u2

−u3x−2κu3y
u3u1−u2

u3u3x−2κu3u3y
u3u1−u2 0

 , (3.31)

where p, q, r are arbitrary functions on u3, κ is constant and ε can be either 0 or 1.

The proofs of these theorems can be found in the appendix of [86]. Let us point out that,

after the change of coordinates u1 = u, u2 = ρ, u3 = v, the operator (3.28)2 corresponds to

the Hamiltonian operator for the 2D equations of gas dynamics (3.3).

3.3 Hamiltonian systems of hydrodynamic type in 2+1 dimen-

sions

In this section we discuss (2+1)-dimensional Hamiltonian systems of hydrodynamic type,

ut +A(u)ux +B(u)uy = 0, (3.32)

which are representable in the form ut + Phu = 0, where h(u) is a Hamiltonian density

and P is a two-dimensional Hamiltonian operator of differential-geometric type (3.1). A

(2+1)-dimensional quasi-linear system is said to be integrable if it can be decoupled in in-

finitely many ways into a pair of compatible m-component one-dimensional systems in

Riemann invariants. This definition of integrability follows from the method of hydrody-

namic reduction introduced by Ferapontov and Khusnutdinova in [43].

3.3.1 The method of hydrodynamic reductions

The method of hydrodynamic reductions is based on the existence of exact solutions of

(2+1)-dimensional system (3.32) of the form u = u(R1, ..., Rm), where the Riemann in-
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variants R = (R1, ..., Rm) solve a pair of commuting diagonal systems

Rit = λi(R)Rix, Riy = µi(R)Rix. (3.33)

Let us point out that we do not impose any constraint on the number of Riemann invari-

ants: m is arbitrary. Therefore, the (2+1)-dimensional system (3.32), is decoupled into a

pair of diagonal (1+1)-dimensional systems given by (3.33). These solutions are known as

nonlinear interactions of m planar simple waves.

It turns out that the commutativity of the flows (3.33) is equivalent to the following

constraints on the characteristic speeds λi, µi [96]:

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
, i 6= j, ∂j =

∂

∂Rj
, (3.34)

(no summation). Imposing these restrictions, the general solution of systems (3.33) is

given by the implicit generalised hodograph formula [96]

vi(R) = x+ λi(R) t+ µi(R) y, i = 1, ...,m. (3.35)

Here the functions vi(R) are characteristic speeds of the general flow commuting with

(3.33), namely, the general solution of the linear system

∂jv
i

vj − vi
=

∂jλ
i

λj − λi
=

∂jµ
i

µj − µi
, i 6= j. (3.36)

By straightforward computation, the substitution of u(R1, ..., Rm) into (3.32), using (3.33),

leads to

(E + λiA+ µiB)∂iu = 0, i = 1, ...,m, (3.37)

where E is the n × n identity matrix. This means that both λi and µi have to satisfy the

dispersion relation

det(E + λiA+ µiB) = 0. (3.38)

The construction of nonlinear interactions of m planar simple waves can be summarised

as follows. First of all, we have to decouple the initial (2+1)-dimensional system (3.32) into

a pair of commuting flows (3.33), by solving the equations (3.34), (3.37) for u(R), λi(R),

µi(R) as functions depending on the Riemann invariants R1, ..., Rm. It is not difficult to



3.3 Hamiltonian systems of hydrodynamic type in 2+1 dimensions 90

see that form ≥ 3 the system given by these equations is overdetermined. Thus, in general

this system does not possess solutions. However, if we are able to construct a particular

reduction of the form (3.33), the second step is quite straightforward: we have to solve

the linear system given by (3.36) for the functions vi(R), and then obtain R1, ..., Rm as

functions of t, x, y from the implicit hodograph formula (3.35).

What can we say about the number ofm-component reductions that a (2+1)-dimensio-

nal system (3.32) may admit? Analysing equations (3.34) and (3.37), one can prove that

this number is parametrised, up to changes of variables of the form Ri → f i(Ri), by m

arbitrary functions of a single variable. Remarkably, this number does not depend on n.

This leads to the following definition.

Definition 3.2 ([43]). A (2+1)-dimensional quasi-linear system is said to be integrable if it pos-

sessesm-component reductions of the form (3.33) parametrised bym arbitrary functions of a single

argument.

Looking at the structure of equations (3.34) and (3.37), one can see that their consistency

conditions involve only triples of indices i 6= j 6= k. Moreover, all these conditions are

completely symmetric in i, j and k, and then it is enough to verify them setting, for in-

stance, i = 1, j = 2, k = 3. This means that the existence of non-trivial three-component

reductions implies the existence of m-component reductions for arbitrary m.

Remark. We require that λi and µi do not satisfy any linear relation, otherwise we would

not have sufficiently many arbitrary functions of a single argument. Indeed, let us sup-

pose that µi = aλi + b. Condition (3.34) reads ∂jaλi + ∂jb = 0, which implies a and b

constant. Thus, solutions of the system (3.33),

Rit = λiRix, Riy = (aλi + b)Rix,

are of the form Ri = Ri(x + by, t + ay). These solutions correspond to travelling wave

reductions, and they clearly do not contain enough arbitrary functions.



3.3 Hamiltonian systems of hydrodynamic type in 2+1 dimensions 91

3.3.2 Generalised two-dimensional gas dynamics equations

The equations of two-dimensional isentropic gas dynamics (3.2) can be written in the

matrix form (3.32) where u = (ρ, u, v)t and

A =


u ρ 0

c2

ρ
u 0

0 0 u

 , B =


v 0 ρ

0 v 0

c2

ρ
0 v

 ,

here c2 = p′(ρ) is the sound speed. As demonstrated in [90], there exist potential flows

describing nonlinear interaction of two sound waves which are locally parametrised by

four arbitrary functions of a single argument.

Furthermore, as we have already mentioned, the system (3.2) admits the Hamiltonian

formulation ut + Phu = 0 where P is given by (3.3) and the Hamiltonian density h is

h(ρ, u, v) = 1
2ρ(u2 +v2)+k(ρ). Let us now assume h = h(ρ, u, v) generic, hence the system

ut + Phu = 0 reads

ρt + (hu)x + (hv)y = 0, ut + (hρ)x +
uy − vx

ρ
hv = 0, vt + (hρ)y +

vx − uy
ρ

hu = 0. (3.39)

Let us consider the Riemann invariants R1, . . . , Rm solving

Rix = λi(R)Rit, Riy = µi(R)Rit, i = 1, . . . ,m.

By straightforward computation, the substitution ρ = ρ(R), u = u(R), v = v(R) into

(3.39) implies

(1 + λihρu + µihρv)∂iu+ hρρλ
i∂iρ = 0, (3.40)

(1 + λihρu + µihρv)∂iv + hρρµ
i∂iρ = 0, (3.41)

(1 + λihρu + µihρv)∂iρ+ (λihuu + µihuv)∂iu+ (λihuv + µihvv)∂iv = 0, (3.42)

here i = 1, . . . ,m, ∂i = ∂
∂Ri

. Note that since µi∂iu = λi∂iv (this easy follows from (3.40)

and (3.41), assuming 1+λihρu+µihρv 6= 0), one has uy = vx. Thus, solutions are necessarily
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potential. Then, setting u = ϕx and v = ϕy, system (3.39) reads

ρt + (hu)x + (hv)y = 0, ϕxt + (hρ)x = 0, ϕyt + (hρ)y = 0. (3.43)

The last two equations give ϕt + hρ = 0, so we finally have the following system

ρt + (hu)x + (hv)y = 0, ϕt + hρ = 0. (3.44)

If we consider the partial Legendre transform

ρ̃ = hρ, ũ = u, ṽ = v, h̃ = h− ρhρ, (3.45)

the derivatives with respect to the new variables are

h̃ρ̃ = −ρ, h̃ũ = hu, h̃ṽ = hv, (3.46)

and we can rewrite system (3.44) in the form

(
h̃ρ̃
)
t
+
(
h̃ũ
)
x

+
(
h̃ṽ
)
y

= 0, ϕt = ρ̃, ϕx = ũ, ϕy = ṽ.

The function h̃ depends only on ϕx, ϕy, ϕt and thus we obtain a three-dimensional Euler-

Lagrange equation (setting h̃ = f )

(fϕx)x +
(
fϕy
)
y

+ (fϕt)t = 0, (3.47)

corresponding to a Lagrangian density of the form f(ϕx, ϕy, ϕt). For example, the La-

grangian density f = u2
x + u2

y − 2eut leads to the Boyer-Finley equation uxx + uyy = eututt

[13].

In [45] Ferapontov, Khusnutdinova and Tsarev derived a system of partial differential

equations for the Lagrangian density f(ϕx, ϕy, ϕt) which are necessary and sufficient for

the integrability of the equation (3.47) by the method of hydrodynamic reductions (see

also [49] for further details). Setting a = ϕx, b = ϕy, c = ϕt, these conditions can be

represented in a remarkable compact form:

Theorem 3.10 ([45]). For a non-degenerate Lagrangian, the Euler-Lagrange equation (3.47) is



3.3 Hamiltonian systems of hydrodynamic type in 2+1 dimensions 93

integrable by the method of hydrodynamic reductions if and only if the density f satisfies the

relation

d4f = d3f
dH

H
+

3

H
det(dM); (3.48)

here d3f and d4f are the symmetric differentials of f . The Hessian H and the 4× 4 matrix M are

defined as follows:

H = det


faa fab fac

fab fbb fbc

fac fbc fcc

 , M =


0 fa fb fc

fa faa fab fac

fb fab fbb fbc

fc fac fbc fcc

 . (3.49)

The differential dM = Mada+Mbdb+Mcdc is a matrix-valued form

dM =


0 faa fab fac

faa faaa faab faac

fab faab fabb fabc

fac faac fabc facc

 da+


0 fab fbb fbc

fab faab fabb fabc

fbb fabb fbbb fbbc

fbc fabc fbbc fbcc

 db

+


0 fac fbc fcc

fac faac fabc facc

fbc fabc fbbc fbcc

fcc facc fbcc fccc

 dc.

Finally, we recall that the equations of gas dynamics possess double waves only, and

are not integrable by the method of hydrodynamic reductions [44]. On the other hand,

the generalised equations (3.39) define a (2+1)-dimensional integrable system when the

Lagrangian density f(ϕx, ϕy, ϕt), obtained from the Hamiltonian density h(ρ, u, v) per-

forming a partial Legendre transform (3.45), satisfies the conditions given by Theorem

3.10.

3.3.3 Three-component Hamiltonian systems with degenerate structure

We have seen that the degenerate Hamiltonian operator (3.28)2 leads to a class of inte-

grable systems related to Lagrangian densities of the form f(ϕx, ϕy, ϕt). Here we are

going to discuss all three-component cases arising from our classification.
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The aim of this section is to apply the method of hydrodynamic reductions to three-

component Hamiltonian systems given by ut +Phu = 0, where P is a Hamiltonian struc-

ture appearing in Theorems 3.7, 3.8 and 3.9. Let us identify the Hamiltonian operators

we obtained with the rank of the pencil gλ. For instance, we call rank-zero structures the

Hamiltonian operators listed in Theorem 3.7.

Theorem 3.11. The method of hydrodynamic reductions imposes additional differential constra-

ints under which equations under study reduce to known classes of systems considered before:

• rank-zero structures lead to trivial systems

u1
t = u2

t = u3
t = 0,

• rank-one structures lead to one dimensional systems of the form

u1
t + f(u1)u1

x = 0, u2
t = u3

t = 0,

• rank-two structures lead either to one dimensional systems to the form

u1
t + (hu2)x = 0, u2

t + (hu1)x = 0, u3
t = 0,

or two-component non-degenerate Hamiltonian systems

u1
t + (hu1)x = 0, u2

t + (hu2)y = 0, (3.50)

u1
t + (hu2)x = 0, u2

t + (hu1)x + (hu2)y = 0, (3.51)

u1
t +(2u1hu1 +u2hu2−h)x+(u1hu2)y = 0, u2

t +(u2hu1)x+(2u2hu2 +u1hu1−h)y = 0,

(3.52)

plus the trivial equation u3
t = 0, or to the systems

u1
t + (hu2)x + (hu3)y = 0, u2

t + (hu1)x = 0, u3
t + (hu1)y = 0. (3.53)

We point out that the integrability of two-component non-degenerate Hamiltonian
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systems (3.50), (3.51) and (3.52), generated respectively by the Hamiltonian operators

P =

∂x 0

0 ∂y

 , P =

 0 ∂x

∂x ∂y

 , P =

2u1 u2

u2 0

 d

dx
+

 0 u1

u1 2u2

 d

dy
+

u1
x u1

y

u2
x u2

y

 ,

is completely understood, see [50] for further details. Furthermore, as we showed above,

system (3.53) reduces to the three-dimensional Euler-Lagrange equations (3.47) after per-

forming a partial Legendre transformation of the form (3.45).

Proof of Theorem 3.11:

First of all, let us remark that if uit = 0, for some i, the method of hydrodynamic

reductions necessarily implies ui = const. Secondly, if one of the equations of the system

is of the form uit + φ(u)uix + ψ(u)uiy = 0, the method of hydrodynamic reductions implies

(λj + φ + ψµj)∂ju
i = 0, which leads to ui = const, since we are imposing that λj and µj

do not satisfy any linear relation. Furthermore, in these cases we can replace ui with a

constant, and then the Hamiltonian will depend on uj for j 6= i.

Using these observations, the proof is straightforward. Rank-zero structures easily

lead to trivial systems. For the rank-one structures we always have u2 and u3 constant,

which leads to an operator of the form

P =


∂x + κ ∂y 0 0

0 0 0

0 0 0

 , κ = const,

which is essentially one-dimensional (up to linear changes of the independent variables x

and y).

The analysis of rank-two structures is a bit more complicated. In the cases (3.26)1 and

(3.29)2, the method of hydrodynamic reductions implies u3 = const. Thus, up to a change

of local coordinates u1, u2, the 3 × 3 degenerate Hamiltonian operator reduces to a direct

sum of the 2×2 two-component non-degenerate Mokhov’s Hamiltonian operator [74, 69]

P =

2u1 u2

u2 0

 d

dx
+

 0 u1

u1 2u2

 d

dy
+

u1
x u1

y

u2
x u2

y

 ,

and the trivial 1× 1 operator P = 0.
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In the cases (3.27)1,2, (3.28)1, (3.30) and (3.31) the method of hydrodynamic reductions

implies again u3 = const. These structures reduce to direct sum of constant 2 × 2 two-

component non-degenerate Hamiltonian operator, and the trivial 1 × 1 operator P = 0.

Constant 2 × 2 non-degenerate Hamiltonian operators are known [50]: if they do not

reduce to one-dimensional operator

P =

 0 ∂x

∂x 0

 ,

(for instance, (3.28)1 for ε = 1), they can be brought to one of the following two forms

P =

∂x 0

0 ∂y

 , P =

 0 ∂x

∂x ∂y

 ,

by a change of local coordinates u1, u2 and a linear change of the independent variables

x, y.

It remains to consider the cases (3.26)2 and (3.29)1. It is not difficult to see that in both

cases we get u2
y = u3

x. Therefore, solutions are necessarily potential. Then, setting u2 = ϕx

and u3 = ϕy, the system leads to (3.43).

Remark. We have seen that most of the Hamiltonian systems, arising from three-compo-

nent degenerate Poisson structures of hydrodynamic type in 2D, present an equation of

the form uit = 0, or uit + φ(u)uix + ψ(u)uiy = 0, which, on application of the method of hy-

drodynamic reductions, leads to ui = const. It is remarkable that only Poisson structures

(3.26)2, (3.28)2, (3.29)1 generate “non-trivial” three-component Hamiltonian systems, and

that, by imposing the method of hydrodynamic reductions, these systems reduce to the

generalisation of the gas dynamics equations, given by (3.53).



4

Deformations of degenerate

Dubrovin-Novikov structures

In this chapter we discuss second-order deformations of two-component Poisson struc-

tures in 1D we have classified in the previous chapter, and investigate which of those

deformations can be obtained by Miura transformations. The Miura group coincides with

the semidirect product of the subgroup of diffeomorphisms (local change of coordinates)

on the manifold M and the subgroup of Miura-type transformations

ui → ui + εAij(u)ujx + ε2
(
Bi
j(u)ujxx +

1

2
Cijk(u)ujxu

k
x

)
+ . . . , (4.1)

see [38] for further details. Following [63], we call the transformations of these two sub-

groups the Miura-type transformations of the first and second kind respectively.

As we will see, the action of the subgroup of diffeomorphisms is not straightforward:

it leads to several branches. Thus, for simplicity, we firstly discuss the action of the sub-

group of Miura-type transformations of the second kind, and only at a later time we anal-

yse the action of local changes of coordinates.

Even though higher-order deformations can be obtained following the same proce-

dure, the computations become much more complicated. Furthermore, we also analyse

some examples of first-order deformations for three-component structures.

In the non-degenerate case any such deformation is trivial, that is, can be obtained

via Miura transformation. In this chapter we demonstrate that in the degenerate case

this class of deformations is non-trivial, and depends on a certain number of arbitrary

functions.

As defined in the introduction, a deformation of order k of a n-component Poisson

97
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bivector P0 is a formal series

P ε = P0 + εP1 + ε2P2 + . . .

satisfying the condition [P ε, P ε] = O(εk+1), where each coefficient Pk has degree k + 1,

and is given by

Pk =
k+1∑
s=0

As(u,ux, . . . ,uk+1)
dk+1−s

dxk+1−s , deg(As) = s.

The form of the operator Pk depends on an increasing number of arbitrary functions of

the coordinates ui, i = 1, . . . , n. Furthermore, these functions must be chosen in such a

way that Pk is skew-symmetric, namely P ∗k = −Pk.

In particular, the first two coefficients, P1 and P2, have the form

P ij1 = Aij(u)
d2

dx2
+
∑
k

Bij
k (u)ukx

d

dx
+
∑
k

Cijk (u)ukxx +
∑
r≤k

Dij
rk(u)urxu

k
x,

P ij2 = Eij(u)
d3

dx3
+
∑
k

F ijk (u)ukx
d2

dx2
+

∑
k

Gijk (u)ukxx +
∑
r≤k

H ij
rk(u)urxu

k
x

 d

dx

+
∑
k

Lijk (u)ukxxx +
∑
k,r

M ij
kr(u)ukxxu

r
x

∑
s≤r≤k

+N ij
srk(u)usxu

r
su
k
x.

This means that the operator P1 is defined by n2(n2+5n+2)
2 functions depending on the

variables u1, . . . , un, while the operator P2 is given by n2(n+2)(n2+10n+3)
6 functions in the

variables u1, . . . , un. Thus, one can see that the number of unknown functions is quite

high already for a low number of components: for n = 2 we have 104 unknowns, while

for n = 3 they are 432. Of course, imposing the skew-symmetry condition, this number

falls.

Remark. In order to simplify the computations, it is convenient to substitute the coeffi-

cients D,H,N with D̃, H̃, Ñ such that

D̃ij
rk = D̃ij

kr =
1

2
Dij
rk if r < k, otherwise D̃ij

kk = Dij
kk,

H̃ ij
rk = H̃ ij

kr =
1

2
H ij
rk if r < k, otherwise H̃ ij

kk = H ij
kk,
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Ñ ij
srk = Ñ ij

ksr = Ñ ij
rks = Ñ ij

skr = Ñ ij
krs = Ñ ij

rsk =
1

6
N ij
srk if s < r < k,

Ñ ij
rrs = Ñ ij

rsr = Ñ ij
srr =

1

3
N ij
rrs if r < s,

Ñ ij
rrs = Ñ ij

rsr = Ñ ij
srr =

1

3
N ij
srr if r > s,

Ñ ij
rrr = N ij

rrr.

In this way, the summations involving these coefficients become

∑
r≤k

Dij
rk(u)urxu

k
x =

∑
r,k

D̃ij
rk(u)urxu

k
x,

∑
r≤k

H ij
rk(u)urxu

k
x =

∑
r,k

H̃ ij
rk(u)urxu

k
x,

∑
s≤r≤k

N ij
srk(u)usxu

r
su
k
x =

∑
s,r,k

Ñ ij
srk(u)usxu

r
xu

k
x.

Lemma 4.1. A first-order deformation is skew-symmetric if and only if the following conditions

hold

Aij = −Aji, (4.2)

Bij
k = −2∂kA

ji +Bji
k , (4.3)

Cijk = −∂kAji +Bji
k − C

ji
k , (4.4)

D̃ij
rk = −∂r∂kAji +

1

2

(
∂rB

ji
k + ∂kB

ji
r

)
− D̃ji

rk. (4.5)

Provided that the above conditions are satisfied, a second-order deformation is skew-symmetric if

and only if the following conditions hold

Eij = Eji, (4.6)

F ijk = 3∂kE
ji − F jik , (4.7)

Gijk = 3∂kE
ji − 2F jik +Gjik , (4.8)

H̃ ij
rk = 3∂r∂kE

ji − ∂rF jik − ∂kF
ji
r + H̃ji

rk, (4.9)

Lijk = ∂kE
ji − F jik +Gjik − L

ji
k , (4.10)

M ij
rk = 3∂r∂kE

ji − 2∂kF
ji
r − ∂rF

ji
k + ∂kG

ji
r + 2H̃ji

rk −M
ji
rk, (4.11)
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Ñ ij
srk = ∂s∂r∂kE

ji − 1
3

(
∂s∂rF

ji
k + ∂r∂kF

ji
s + ∂k∂sF

ji
r

)
+1

3

(
∂sH̃

ji
rk + ∂rH̃

ji
ks + ∂kH̃

ji
sr

)
− Ñ ji

srk.
(4.12)

The proof is a straightforward computation (see [87] for further details). For instance, for

n = 2 the number of unknown functions falls to 42.

4.1 The action of Miura-type transformations of the second kind

Let us start with deformations of order 1. These deformations have to satisfy the Ja-

cobi condition [P0, P1] = 0. We want to eliminate deformations that can be obtained

by an Miura-type transformations of the second kind, that is, those that can be written as

LieXP0, where X is a suitable vector field of degree 1. In the non-degenerate case, it has

been proved that all deformations of order 1 can be written in this way, but we will show

that in the degenerate case this is not true.

Secondly, concerning deformations of order 2, namely

P ε = P0 + εP1 + ε2P2 +O(ε3),

we have to consider the Jacobi condition 2[P0, P2] + [P1, P1] = 0. In our cases, first-order

deformations Pε cannot be reduced to P0. In order to simplify the form of second-order

deformations without changing lower order terms, we have to use Miura-type transfor-

mations of the second kind like

LieY P1 + LieZP0 (4.13)

where Z is an arbitrary vector field of degree 2 and Y is a vector field of degree 1 which

is a symmetry for P0, namely LieY P0 = 0.

To better understand this formula, let us consider the Lie series given by the vector

field εY + ε2Z, we have

LεY+ε2Z(P ε) = P0 + ε(P1 + LieY P0) + ε2
(
P2 + LieY P1 +

1

2
Lie2

Y P0 + LieZP0

)
+O(ε3).

Since LieY P0 is assumed to vanish, we obtain exactly (4.13).
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4.1.1 Deformation results

In two-component case, we have two different Poisson structures with degenerate metric

(Theorem 3.4), one constant and one non-constant, which we call P (1)
0 and P

(2)
0 respec-

tively:

P
(1)
0 =

∂x 0

0 0

 , P
(2)
0 =

∂x −u2x
u1

u2x
u1

0

 .

Theorem 4.2. • All first-order deformations of P (1)
0 can be reduced by Miura-type transforma-

tions of the second kind to P = P
(1)
0 + εP1 +O(ε2) where

P1 =

 0 −pu2
xx − q(u2

x)2

pu2
xx + q(u2

x)2 ru2
x∂x + 1

2(ru2
x)x

 , (4.14)

here p, q, r are arbitrary functions of u2.

• All second-order deformations of P (1)
0 can be reduced by Miura-type transformations of the sec-

ond kind to P = P
(1)
0 + εP1 + ε2P2 + O(ε3), where P1 is given by (4.14) with the constraint

r = 0, and

P2 =

0 0

0 α22

 d3

dx3
+

0 0

0 β22

 d2

dx2
+

0 0

0 γ22

 d

dx
+

 0 η12

−η12 η22

 , (4.15)

with

α22 = e, β22 =
3e′

2
u2
x, γ22 = gu2

xx + h(u2
x)2,

η12 = (2p2u1 − l)u2
xxx + pqu1

x(u2
x)2 + p2u1

xu
2
xx +

(
2u1(pq′ + q2)− n

)
(u2
x)3

+
(
2pu1(3q + p′)−m

)
u2
xu

2
xx,

η2 =
1

2
(gu2

xx + h(u2
x)2)x −

1

4
(e′u2

x)xx,

where p, q, e, g, h, l,m, n are arbitrary functions of u2, and ′ denotes the derivative with respect to

u2. Furthermore, it is always possible to reduce to zero one of the two functions m or n.

Theorem 4.3. • All first-order deformations of P (2)
0 can be reduced by Miura-type transforma-
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tions of the second kind to P = P
(2)
0 + εP1 +O(ε2), where

P1 =

0 0

0 r
(u1)3

u2
x

 d

dx
+

 0 − s
(u1)3

(u2
x)2

s
(u1)3

(u2
x)2 1

2

(
r

(u1)3
u2
x

)
x

 , (4.16)

here r, s are arbitrary functions of u2.

• All second-order deformations of P (2)
0 can be reduced by Miura-type transformations of the sec-

ond kind to P = P
(2)
0 + εP1 + ε2P2 +O(ε3), where P1 is given by (4.16) and

P2 =

0 0

0 α22

 d3

dx3
+

0 0

0 β22

 d2

dx2
+

 0 γ12

γ12 γ22

 d

dx
+

 0 η12

η21 η22

 , (4.17)

with

α22 =
r2

2(u1)4
, β22 =

3rr′

2(u1)4
u2
x −

3r2

(u1)5
u1
x, γ12 =

19sr

6(u1)5

(
u1u2

xx − u1
xu

2
x

)
,

γ22 =
15r2

2(u1)6
(u1
x)2 − 2r2

(u1)5
u1
xx −

1

(u1)5

(
9rr′

2
+ p

)
u1
xu

2
x +

p

(u1)4
u2
xx,

η12 =
5sr

2(u1)4
u2
xxx −

5sr

2(u1)5
u1
xxu

2
x −

32sr

3(u1)5
u1
xu

2
xx +

3sr′ + s′r

(u1)4
u2
xu

2
xx

+
32sr

3(u1)6
(u1
x)2u2

x −
3sr′ + s′r

(u1)5
u1
x(u2

x)2 − 2s2

(u1)5
(u2
x)3,

η21 =
2sr

3(u1)4
u2
xxx −

2sr

3(u1)5
u1
xxu

2
x −

31sr

6(u1)5
u1
xu

2
xx +

13s′r + sr′

6(u1)4
u2
xu

2
xx

+
31sr

6(u1)6
(u1
x)2u2

x −
13s′r + sr′

6(u1)5
u1
x(u2

x)2 +
2s2

(u1)5
(u2
x)3,

η22 =
1

2(u1)5

(
3rr′

2
− 5p

)
u1
xu

2
xx −

15r2

2(u1)7
(u1
x)3 − 1

2(u1)5

(
5rr′

2
+ p

)
u1
xxu

2
x

+
1

2(u1)4

(
p′ − 3

2

(
(r′)2 + rr′′

))
u2
xu

2
xx +

5

2(u1)6

(
3rr′

2
+ p

)
(u1
x)2u2

x

+
1

2(u1)4

(
p− rr′

2

)
u2
xxx −

r2

2(u1)5
u1
xxx −

1

4(u1)4

(
3r′r′′ + rr′′′

)
(u2
x)3

+
5r2

(u1)6
u1
xu

1
xx −

1

2(u1)5

(
3

2

(
p′ − (r′)2 + rr′′

))
u1
x(u2

x)2,

where r, s, p are arbitrary functions of u2 and ′ denote the derivative with respect to u2.

These results can be obtained performing a cumbersome computation. Details of the proof

are given in the author’s paper [87].
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The classification of three-component Poisson structures with degenerate metric is

quite extensive (Theorem 3.5), so we have decided to study only some of them. Espe-

cially, we describe first-order deformations for the following operators:

P
(3)
0 =


0 u3

x 0

−u3
x 0 0

0 0 0

 , P
(4)
0 =


∂x 0 0

0 0 0

0 0 0

 , P
(5)
0 =


∂x 0 0

0 ∂x 0

0 0 0

 .

We refer again to [87] for the proofs of the following results.

Theorem 4.4. All first-order deformations of P (3)
0 can be reduced by Miura-type transformations

of the second kind to P = P
(3)
0 + εP1 +O(ε2), where

P1 =


0 −α21 0

α21 0 0

0 0 0

 d2

dx2
+


β11 β12 β13

β21 β22 β23

β13 β23 0

 d

dx
+


γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 0

 (4.18)

with

α21 = a,

β11 = (2∂2a− b21
2 − ∂2s− ∂2r)u

1
x + b11

2 u
2
x,

β12 = (∂1s− 2∂1a)u1
x + (b21

2 − 2∂2a)u2
x − 2∂3au

3
x,

β13 =
b21
2 + ∂2s+ ∂2r

2
u3
x,

β21 = ∂1su
1
x + b21

2 u
2
x,

β22 = b22
1 u

1
x + ∂1ru

2
x,

β23 = −
(
∂1s+

∂1r

2

)
u3
x,

γ11 =

(
∂2a−

b21
2 − ∂2s− ∂2r

2

)
u1
xx +

(
∂1∂2a−

∂1b
21
2 − ∂1∂2s− ∂1∂2r

2

)
(u1
x)2

+

(
∂2∂3a−

∂3b
21
2 − ∂2∂3s− ∂2∂3r

2

)
u1
xu

3
x +

∂3b
11
2

2
u2
xu

3
x +

b11
2

2
u2
xx

+

(
∂2

2a−
∂2b

21
2 + ∂2

2r + ∂2
2s− ∂1b

11
2

2

)
u1
xu

2
x +

∂2b
11
2

2
(u2
x)2,

γ12 =

(
∂2

2s+ ∂2
2r + 3∂2b

21
2 − ∂1b

11
2

4
− ∂2

2a

2

)
(u2
x)2 + (∂1∂3s− 2∂1∂3a)u1

xu
3
x

+

(
3∂1b

21
2 + 3∂1∂2s

2
+ ∂1∂2r − ∂2

2a

)
u1
xu

2
x +

(
∂3b

21
2 − ∂2∂3a

)
u2
xu

3
x
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+

(
3∂2

1s

2
+
∂2b

22
1 + ∂2

1r

4
− ∂2

1a

)
(u1
x)2 + (b21

2 − ∂2a)u2
xx − ∂3au

3
xx

+(∂1s− ∂1a)u1
xx − ∂2

3a(u3
x)2,

γ13 = (∂2s+ ∂2r)u
3
xx +

∂1b
21
2 − ∂1∂2s

2
u1
xu

3
x +

∂3b
21
2 + ∂2∂3s+ ∂2∂3r

2
(u3
x)2,

γ21 =

(
∂2b

21
2 + ∂1b

11
2 − ∂2

2s− ∂3
2r

4
− ∂2

2a

2

)
(u2
x)2 −

(
∂2b

22
1 + ∂2

1r

4
+
∂2

1s

2

)
(u1
x)2

−
(
∂1b

21
2 + ∂1∂2s

2
+ ∂1∂2r

)
u1
xu

2
x − ∂2∂3au

2
xu

3
x,

γ22 =
b22
1

2
u1
xx +

∂1r

2
u2
xx +

∂3b
22
1

2
u1
xu

3
x +

∂2b
22
1 + ∂2

1r

2
u1
xu

2
x +

∂1∂3r

2
u2
xu

3
x

+
∂1b

22
1

2
(u1
x)2 +

∂1∂2r

2
(u2
x)2,

γ23 =
∂1b

21
2 − ∂1∂2s

2
u2
xu

3
x −

(
∂1∂3s+

∂1∂3r

2

)
(u3
x)2 − (∂1s+ ∂1r)u

3
xx,

γ31 =
b21
2 − ∂2s− ∂2r

2
u3
xx +

(
∂1∂2s+

∂1∂2r

2

)
u1
xu

3
x +

∂2b
21
2 + ∂2

2s+ ∂2
2r

2
u2
xu

3
x,

γ32 =
∂1r

2
u3
xx −

(
∂2

1s+
∂2

1r

2

)
u1
xu

3
x −

∂1b
21
2 + ∂1∂2s+ ∂1∂2r

2
u2
xu

3
x,

where a, r, s, b11
2 , b

21
2 , b

22
1 are arbitrary functions of u1, u2, u3, and ∂k means partial derivative with

respect to uk, for k = 1, 2, 3.

Theorem 4.5. All first-order deformations of P (4)
0 can be reduced by Miura-type transformations

of the second kind to P = P
(4)
0 + εP1 +O(ε2), where

P1 =


0 0 0

0 0 −α32

0 α32 0

 d2

dx2
+


0 0 0

0 β22 β23

0 β32 β33

 d

dx
+


0 −γ21 −γ31

γ21 γ22 γ23

γ31 γ32 γ33

 (4.19)

with

α32 = a, βij = bij2 u
2
x + bij3 u

3
x (i ≥ j), β23 = β32 − 2ax,

γij = cij2 u
2
xx + cij3 u

3
xx + eij22(u2

x)2 + eij23u
2
xu

3
x + eij33(u3

x)2 (i > j),

γ23 = β32
x − axx − γ32, γii =

1

2
βiix ,

where a, brsk , cijk , eijmk (for r ≥ s and k ≥ m and i > j, where i, j = 1, 2, 3 and r, s,m, k = 2, 3)

are arbitrary functions of u2, u3.

Theorem 4.6. All first-order deformations of P (5)
0 can be reduced by Miura-type transformations
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of the second kind to P = P
(5)
0 + εP1 +O(ε2), where

P1 =


0 0 0

0 0 0

0 0 β33

 d

dx
+


0 −γ21 −γ31

γ21 0 −γ32

γ31 γ32 γ33

 (4.20)

with

β33 = bu3
x, γ33 =

1

2

(
bu3
x

)
x
, γij = eij(u3

x)2 + ciju3
xx (i > j),

where b, cij , eij , for i > j, are arbitrary functions of u3. Furthermore, it is always possible to

reduce to zero one of the functions e21 or c21.

4.2 The action of local changes of coordinates

The classification provided in the previous section has been obtained using Miura-type

transformations of the second kind. As we pointed out above, the whole Miura group

contains also local changes of coordinates which preserve the dispersionless limit of our

structures.

4.2.1 Two-component case

Let us consider deformations of the structure P (1)
0 , Theorem 4.2. Local changes of co-

ordinates which preserve the form of the dispersionless term P
(1)
0 (u) are of the form

u1 = v1 +ω1(v2), u2 = ω2(v2). Let us apply this transformation to the bivector P1 given by

(4.14), using the transformation rule P (v) = JP (u)J t, where t means the transpose and

J ij = ∂vi

∂uj
. We have

J =

1 −ω′1
ω′2

0 1
ω′2

 ,

where prime denotes the derivative with respect to v2. Looking at the coefficient of ∂x in

(4.14), it transforms as

0 0

0 r(u2)u2
x

 7→

− (ω′1)2

ω′2
r(ω2)v2

x
ω′1
ω′2
r(ω2)v2

x

ω′1
ω′2
r(ω2)v2

x
1
ω′2
r(ω2)v2

x

 .
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In the general case where r 6= 0, this transformation suggests to set ω′1 = 0, otherwise

we would have a new arbitrary function in the coefficient of ∂x in P1. Without any loss

of generality, at this stage we can consider ω1 = 0. Looking at the whole bivector P 1, by

straightforward computation, we get the following rule for the arbitrary functions r, p, q:

r(u2) 7→ r(ω2)

ω′2
, p(u2) 7→ p(ω2), q(u2) 7→ p(ω2)

ω′′2
ω′2

+ q(ω2)ω′2,

(if r = 0, the action of local changes of coordinates is still the same, namely, the function

ω1 is not involved in the transformation of p and q). Thus, with a suitable choice of ω2,

one can eliminate the function q.

Looking at the deformations of order two (4.15), since r = 0, we still have the freedom

of one arbitrary function due to ω1. Suppose we have used ω2 to simplify p or q. Then, the

coefficient of ∂3
x transforms as

0 0

0 e(u2)

 7→

−(ω′1)2e(v2) ω′1e(v
2)

ω′1e(v
2) e(v2)

 .

Once again, this means that ω′1 = 0, otherwise we would have an extra function. Sum-

marising, up to diffeomorphisms, we are able to simplify at most one arbitrary function

in the first and second deformation of P (1)
0 .

Considering P
(2)
0 , a generic change of coordinates which preserves its form is given

by u1 = v1, u2 = ω(v2). Here, looking at first-order deformations, Theorem 4.3, the two

arbitrary functions r and s appearing in P1 transform as

s(u2) 7→ s(ω2)ω′2, r(u2) 7→ r(ω2)

ω′2
.

Therefore, in this case we can also simplify at most one single function.

4.2.2 Three-component case

Although the analysis of the three-component case can be performed in the same way,

computations become much more complicated. Therefore, it is not always possible to

provide a complete description of the action of local changes of coordinates on the struc-

tures we studied. In this subsection, we are going to describe the action of the group of

diffeomorphisms on second-order deformations of P (5)
0 , since this is the only case where
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we can provide a detailed analysis.

Up to Miura-type transformations of the second kind, a first-order deformation of P (5)
0

reduces to the one described in Theorem 4.6. Diffeomorphisms which preserve the form

of P (5)
0 are

u1 = v1 cosκ+ v2 sinκ+ ϕ1(v3), u2 = v1 sinκ− v2 cosκ+ ϕ1(v3), u3 = ϕ3(v3),

Without any loss of generality, we can set κ = 0. The coefficient of ∂x in (4.20) transforms

as 
0 0 0

0 0 0

0 0 b(u3)

 7→


(ϕ′1)2b(ϕ3)v3x

ϕ′3

ϕ′1ϕ
′
2b(ϕ3)v3x
ϕ′3

−ϕ′1b(ϕ3)v3x
ϕ′3

ϕ′1ϕ
′
2b(ϕ3)v3x
ϕ′3

(ϕ′2)2b(ϕ3)v3x
ϕ′3

−ϕ′2b(ϕ3)v3x
ϕ′3

−ϕ′1b(ϕ3)v3x
ϕ′3

−ϕ′2b(ϕ3)v3x
ϕ′3

b(ϕ3)v3x
ϕ′3

 ,

here ′ denote the derivative with respect to v3. Therefore, when b 6= 0, we have to impose

ϕ′i = 0, for i = 1, 2, otherwise two new functions would appear in the coefficient of ∂x.

Setting ϕi = ξi, where ξi = const, i = 1, 2, the functions appearing in (4.20) transform as

b 7→ b

ϕ′3
, e21 7→ e21(ϕ′3)2 + c21ϕ′′3, c21 7→ c21ϕ′3, e3j 7→ e3j(ϕ′3)2 + c3jϕ′′3

ϕ′3
, c3j 7→ c3j ,

for j = 1, 2 (here eij , cij on the left hans side depend on u3, while on the right hand side

they depend on ϕ3(v3)). Thus, in the most general case, namely b 6= 0, local changes of

coordinates allow to reduce by one the number of arbitrary functions appearing in the

deformation. For instance, we can choose to reduce b to 1. Let us recall that Miura-type

transformations of the second kind allow to reduce to 0 one function among e21 and c21.

Thus, we have the following

Theorem 4.7. Up to Miura transformations, a generic second-order deformation of P (5)
0 depends

on 5 functions of u3.

At this point, one could ask: if b = 0, how does the group of diffeomorphisms act

on the structure? Although this is a reasonable question, a deeper analysis of this case

does not provide any further information about the general form of the deformation we

are studying. However, it is remarkable that under this strong assumption (b = 0), we

still have the freedom of three arbitrary functions ϕ1, ϕ2, ϕ3. Let us discuss this sub-case.

Clearly, the number of arbitrary functions appearing in the deformation is already re-
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duced by one, since b is assumed to be zero. The functions eij , cij transform as

e21 7→ e21(ϕ′3)2 + c21ϕ′′3 −
ϕ′2(e31(ϕ′3)2 + c31ϕ′′3)− ϕ′1(e32(ϕ′3)2 + c32ϕ′′3)

ϕ′3
,

c21 7→ c21ϕ′3 − c31ϕ′2 + c32ϕ′1, e3j 7→ e3j(ϕ′3)2 + c3jϕ′′3
ϕ′3

, c3j 7→ c3j ,

for j = 1, 2. Let us assume for simplicity that all eij , cij are non-zero (otherwise, we should

discuss case by case). Therefore, both e21 and c21 can be brought to 0, using ϕ1, ϕ2. Finally,

the freedom of ϕ3 allows to simplify other functions among e31, e32, c31 and c32.

Corollary 4.8. Let b = 0 in (4.20). Up to Miura transformations, second-order deformations of

P
(5)
0 depend on 3 functions of u3.

Changes of local coordinates which preserve the form of the undeformed Poisson

structure P (3)
0 and P

(4)
0 are quite easy to compute. For P (3)

0 these transformations are

given by

u1 = ϕ1(v1, v2, v3), u2 = ϕ2(v1, v2, v3), u3 = ϕ3(v3),

with the constraint

∂1ϕ1∂2ϕ2 − ∂2ϕ1∂1ϕ2 = ∂3ϕ3, ∂i =
∂

∂vi
,

while for P (4)
0 we have

u1 = v1 + ϕ1(v2, v3), u2 = ϕ2(v2, v3), u3 = ϕ3(v2, v3).

Unfortunately, the action of these transformations on the respective deformed structures

are very cumbersome, and we are not going to describe it.

Summarising, as we have seen, the action of the subgroup of diffeomorphisms leads

to several branches for each case, depending wherever the functional parameters are con-

stant, zero or arbitrary. Furthermore, the number of additional arbitrary functions appear-

ing in these transformations, is always lower than the number of functional parameters

appearing in the deformations. This implies that, in each cases we have studied, we can-

not reduce the deformation to its dispersionless term, and therefore the deformation is

not trivial.



5

Deformations of non-semisimple Poisson

pencils of hydrodynamic type

Two Poisson brackets are called compatible if any their linear combination is still a Poisson

bracket [65]. Therefore, a pair of compatible Poisson structures P1, P2 implicitly defines a

one-parameter family of Poisson structures Πλ = P2 − λP1 (λ ∈ R) called Poisson pencil or

bi-Hamiltonian structure (note that here and in the rest of this chapter P1 and P2 denote

two Poisson structures and they do not necessarily represent first- and second-order de-

formations as in the previous chapter). Poisson pencils of hydrodynamic type and their

deformations play an important role in the modern theory of integrable PDEs. Originally

the study of such structures was motivated by questions arising in the theory of Frobenius

manifolds, Gromov-Witten invariants and topological field theory [25, 38]. In this setting,

deformations satisfy some additional constraints (τ -structure, Virasoro constraints) and

the undeformed pencil is related to a Frobenius manifold [25].

A perturbative approach to the study of these deformations was developed by Dubro-

vin and Zhang in [38]. In their approach, the full pencil

Πij
λ = P ij2 +

∑
k≥1

εk
k+1∑
l=0

Aij2;k,l

dk−l+1

dxk−l+1
− λ

P ij1 +
∑
k≥1

εk
k+1∑
l=0

Aij1;k,l

dk−l+1

dxk−l+1

 , (5.1)

where Aijθ;k,l = Aijθ;k,l(u,ux, . . . ,u(l)) are homogeneous differential polynomials of degree

l, is obtained via a bi-Hamiltonian deformation procedure from the dispersionless limit

ε→ 0:

P ij2 − λP
ij
1 = gij2

d

dx
+ bij2;ku

k
x − λ

(
gij1

d

dx
+ bij1;ku

k
x

)
. (5.2)

The pencil of metrics gλ = g2 − λg1 defining this limit (5.2) is assumed to be semisimple,

meaning that there exists a special set of coordinates, the roots (r1, ..., rn) of the equation

det gλ = 0, such that both metrics of the pencil gλ take diagonal form. It can be shown (see

109
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[40]) that in this canonical coordinates r = (r1, ..., rn) the metric can be represented in the

form gij1 = f i(r)δij , g
ij
2 = rif i(r)δij .

Whereas the semisimple case is fairly well understood, the non-semisimple case is large-

ly open. Besides computational difficulties, the lack of canonical coordinates, or at least of

a normal form theorem for non-semisimple pencils, makes a unified approach to the prob-

lem very hard. For this reason, in the joint work with A. Della Vedova and P. Lorenzoni

[22], we studied the general case focusing on two special subcases where computations

are feasible:

• Deformations of Poisson pencils related to two-dimensional Balinskiı̌-Novikov al-

gebras [7] and the associated invariant bilinear forms.

• Lifts of deformations of semisimple structures.

In order not to stretch the thesis, in this chapter we mainly discuss the results obtained

concerning the first class of structures. The second part, related to the lift of deformations

of semisimple structures, will only be mentioned. Details can be found in [22].

5.1 The semisimple case

The deformation theory of Poisson structures defined on a loop space has been already

introduced in Section 1.2.1. In the case of Dubrovin-Novikov brackets, we have seen that

any such deformation is trivial, that is, can be obtained via Miura transformation (see

Section 1.2.4). In the bi-Hamiltonian setting, we have an analogous definition of k-order

deformation: pencil (5.1) defines a deformation of order k if [Πλ,Πλ] = O(εk+1), where

[·, ·] is the Schouten-Nijenhuis bracket (see Section 1.2). Moreover, two deformations Πλ

and Π̃λ of the same pencil are considered equivalent if they are related by a Miura trans-

formation of the form

ũi = ui +
∑
k≥1

εkF ik(u,ux, . . . ,u(k)), (5.3)

where F ik(u,ux, . . . ,u(k)) are differential polynomials of degree k. This means that two

pencils belonging to the same class are related by

Π̃ij
λ = L∗ik Πkl

λ L
j
l ,
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where

Lik =
∑
s

(−∂x)s
∂ũi

∂uk(s)
, L∗ik =

∑
s

∂ũi

∂uk(s)
∂sx.

Under the assumption of semisemplicity, Dubrovin, Liu and Zhang proved that this

equivalence classes are labelled by n functions ci(ri) called central invariants [61, 31], ob-

tained expanding the roots λi of the equation

det

gij2 − λgij1 +
∑
k≥1

(
Aij2;k,0(u)− λAij1;k,0(u)

)
pk

 = 0, (5.4)

near λi = ri:

λi = ri +

∞∑
k=1

λi2kp
2k, (5.5)

and selecting the coefficient of p2. The central invariants are then defined as [30, 61]:

ci =
1

3

λi2
gii1

=
1

(f i)2

Sii2 − riSii1 +
∑
k 6=i

(Rki2 − riRki1 )2

fk(rk − ri)

 , i = 1, . . . , n,

where f i are the diagonal components of the contravariant metric g1 in canonical coordi-

nates, and

Rijθ (u) = Aijθ;1,2(u), Sijθ (u) = Aijθ;2,3(u), i, j = 1, . . . , n, θ = 1, 2.

They can also be defined by (see [39])

ci = − 1

3f i
Resλ=riTr

[
g−1
λ (Sijλ + (g−1

λ )lkR
li
λR

kj
λ )
]
,

where Sijλ = Sij2 − λS
ij
1 and Rijλ = Rij2 − λR

ij
1 .

In this framework the following facts should be mentioned:

• Each function ci depends only on the corresponding canonical coordinate ri, and it

is invariant with respect to Miura transformations (5.3) [61].

• Two deformations (of the same pencil) belong to the same equivalence class if and

only if they have the same central invariants [31].

• For any choice of the dispersionless limit and of the central invariants the equiv-
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alence classes are not empty. This fact, suggested by some computations (for the

scalar case see [64, 2]), has been proved only recently: by Liu and Zhang in the

scalar case [60] and by Carlet, Posthuma and Shadrin in the general semisimple case

[17]. The proof is based on the vanishing of certain cohomology groups introduced

in [61].

• Given the dispersionless limit ωλ and the central invariants ci(ri), there exists a

Miura transformation (5.3) reducing the pencil to the standard form [61]

Πλ = P2 − λP1 + ε2LieX(c1,..,cn)
P1 + ε4Π4 + ε6Π6 + . . .

= P2 − λP1 + ε2LieY(c1,..,cn)
P2 + ε4Π4 + ε6Π6 + . . . ,

where the polynomial vector fields X(c1,...,cn) and Y(c1,...,cn) can be written as the dif-

ference of two Hamiltonian vector fields

X(c1,...,cn) = P2 δH − P1 δK, Y(c1,...,cn) = P2 δH̃ − P1 δK̃,

with non polynomial Hamiltonian densities:

H[r] =

n∑
i=1

∫
ci(ri)rixlogrix dx, K[r] =

n∑
i=1

∫
rici(ri)rixlogrix dx. (5.6)

H̃[r] =

n∑
i=1

∫
ci(ri)

ri
rixlogrix dx, K̃[r] =

n∑
i=1

∫
ci(ri)rixlogrix dx. (5.7)

• The coefficients Fk(u,ux, . . . ,u(k)) of the Miura transformation (5.3) are assumed to

depend polynomially on the derivatives of ui. Removing this assumption the clas-

sification problem becomes “trivial”: all deformations turn out to be equivalent to

their dispersionless limit. This remarkable property was discovered in [31] and is

called quasi-triviality. For instance, it is easy to check that the canonical quasi-Miura

transformation generated by the Hamiltonian H defined in the formula (5.6) reduces

the pencil Πij
λ to the form P ij2 − λP

ij
1 +O(ε4).
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5.2 Linear Poisson pencils of hydrodynamic type

In this section we introduce Poisson pencils of hydrodynamic type related to Balinskiı̌-

Novikov algebras [7] and the associated invariant bilinear forms [3]. These are Poisson

pencils that can be reduced to the form

P ij2 − λP
ij
1 = gij

d

dx
+ bijk u

k
x − ληij

d

dx
,

where gij depends linearly on the variables (u1, ..., un) and the coefficients bijk and ηij

are constant. Therefore, P ij2 is a linear Hamiltonian operator of hydrodynamic type. As

proved by Balinskiı̌ and Novikov in [7] these operators have the form

P ij = (bijk + bjik )uk
d

dx
+ bijk u

k
x,

where the numbers bijk are the structure constants of an algebra B satisfying the following

properties

a · (b · c) = b · (a · c),

(a · b) · c− a · (b · c) = (a · c) · b− a · (c · b).

We refer to them as Balinskiı̌-Novikov algebras, even if in the literature they are often called

Novikov algebras (following [82]).

First approach to the study of such algebras was made by Zelmanov [101]. In low

dimensions, the problem of classification was addressed by Bai and Meng [4, 5] and re-

cently by Burde and de Graaf [14], resulting in a complete description of one-, two- and

three-dimensional Balinskiı̌-Novikov algebras. Unfortunately, a full classification of these

structures of dimension four and higher is far from being complete.

5.2.1 Invariant bilinear forms and bi-Hamiltonian structures

Given a Balinskiı̌-Novikov algebra B, as observed in [93], any invariant bilinear symmet-

ric form on it gives rise to a bi-Hamiltonian structure in a canonical way. For convenience

of the reader let us briefly recall how they are defined. Let e1, . . . , en be a basis of B, and

let bijk be the corresponding structure constants. A bilinear form η : B × B → F is called
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invariant if and only if

η(ei · ej , ek) = η(ei, ek · ej).

Bai and Meng classified invariant bilinear forms on two- and three-dimensional Balin-

skiı̌-Novikov algebras in [4, 3]. For future reference we recall the two-dimensional classi-

fication in the following table.

Table 5.1: Two-dimensional Balinskiı̌-Novikov algebras and invariant bilinear forms.

Type
Characteristic

matrix ei · ej
Linear Poisson

structure

Invariant

bilinear forms

(T1)

0 0

0 0

 0 0

0 0

 η11 η12

η21 η22


(T2)

e2 0

0 0

 2u2∂x + u2
x 0

0 0

 η11 η12

η12 0


(T3)

 0 0

−e1 0

  0 −u1∂x

−u1∂x − u1
x 0

  0 η12

η12 η22


(N1)

e1 0

0 e2

 2u1∂x + u1
x 0

0 2u2∂x + u2
x

 η11 0

0 η22


(N2)

e1 0

0 0

 2u1∂x + u1
x 0

0 0

 η11 0

0 η22


(N3)

e1 e2

e2 0

 2u1∂x + u1
x 2u2∂x + u2

x

2u2∂x + u2
x 0

 η11 η12

η12 0


(N4)

0 e1

0 e2

  0 u1∂x + u1
x

u1∂x 2u2∂x + u2
x

 η11 η12

η21 η22


(N5)

0 e1

0 e1 + e2

  0 u1∂x + u1
x

u1∂x 2(u1 + u2)∂x + u2
x + u1

x

  0 η12

η12 η22



(N6)

 0 e1

κe1 e2


κ 6= 0, 1

 0 (1 + κ)u1∂x + u1
x

(1 + κ)u1∂x + κu1
x 2u2∂x + u2

x

  0 η12

η12 η22



Remark. Notice that the case N4 with η11 6= 0 is semisimple. For this reason we will

consider only the case η11 = 0. The cases N3 and N4 can be considered as subcases of N6,

if we remove the constraints κ 6= 0, 1. Indeed, for κ = 0 we easily get N4 (with η11 = 0)

while N3 is equivalent to the case κ = 1, up to swapping the local coordinates u1, u2.

According to [4], this distinction is due to different algebraic properties: the cases N3 and

N4 are characterized by the associativity of the algebra, while this is not the case for N6
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with κ 6= 0, 1. However, for our purposes, we do not need to distinguish these cases.

Let us point out that adding the constraint η21 = η12 in T1 and N4, the bilinear invari-

ant forms associated with two-dimensional Balinskiı̌-Novikov algebra become symmetric.

As observed by Strachan and Szablikowski in [93] the associated Hamiltonian operator

ηij∂x is compatible with the linear Hamiltonian operator defining the Balinskiı̌-Novikov

algebra.

Remark. A pair of compatible flat metrics defines a (2+1)-Poisson structure of hydrody-

namic type under some additional conditions. Among the structures coming from two

component Balinskiı̌-Novikov algebras, such additional conditions are satisfied just by

N6 with κ = −2 [35, 74, 69, 46].

5.3 Classification results

In this section we provide a classification of second-order deformations of Poisson pencils

coming from two-dimensional Balinskiı̌-Novikov algebras. We have to distinguish two

cases:

1. The cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, where second-order deformed

structures depend on two functions.

2. The remaining cases N4 (which corresponds to κ = 0) and N6 with κ = −2, namely

g1 =

 0 η12

η12 η22

 , g2 =

 0 ±u1

±u1 2u2

 ,

where second-order deformed structures depend on four functions.

Theorem 5.1. • In the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, second-order deformations

can be reduced by a Miura transformation to the form

Πλ = P2 − λP1 + ε2LieX(F1,F2)
P2 +O(ε3),

with X(F1,F2) = P1 δH − P2δK, where

H[u] =

∫ ∑
i,j

(
hiju

i
x log ujx

)
dx, K[u] =

∫ ∑
i,j

(
kiju

i
x log ujx

)
dx,
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and the functions hij and kij are uniquely determined in terms of two arbitrary functions F1, F2

depending only on the (unique) eigenvalue of the affinor L = g2g
−1
1 . Calling K = (kij) and

H = (hij), we have K = LTH, where LT means the transpose of L, and H is given respectively

for each case by

• T3: h12 = h22 = 0 and

h11 =
e
− η

12u2

η22u1

3η12

(
η22u1F ′2 +

η12u2 + η22u1

u1
F2

)
− F1, h21 = −e

− η
12u2

η22u1

3
F2;

• N5: h12 = h22 = 0 and

h11 =

√
2η12(u1 + u2)− η22u1F ′2

3η12
+

(2η12 − η22)F2

6η12
√

2η12(u1 + u2)− η22u1
+

F1

2η12
,

h21 =
1

3
√

2η12(u1 + u2)− η22u1
F2;

• N3, N6 (κ 6= 0,−1,−2): h12 = h22 = 0 and

h11 =
(2η12u2 − (κ+ 1)η22u1)

κ+1
2 F ′2

3(κ+ 1)2η12
− η22(2η12u2 − (κ+ 1)η22u1)

κ−1
2 F2

6η12

+
F1

η12κ(κ+ 2)
,

h21 =
(2η12u2 − (κ+ 1)η22u1)

k−1
2

3(κ+ 1)
F2;

where Fi = Fi(u
1), i = 1, 2.

• In the case N4, namely

g2 =

 0 η12

η12 η22

 , g1 =

 0 u1

u1 2u2

 ,

second-order deformations can be reduced by a Miura transformation to the form

Πλ = P2 − λP1 + ε2LieXP2 +O(ε3),

where

Xi = Xi
1u

1
xx +Xi

2(u1
x)2 +Xi

3u
1
xu

2
x +Xi

4(u2
x)2 +Xi

5u
2
xx,
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with

X1
1 = 0,

X1
2 = θF1,

X1
3 = ∂1(θF2)

X1
4 = ∂2(θF2),

X1
5 = θF2,

X2
1 = 0,

X2
2 = θF3,

X2
3 = ∂1

(
θ

1
2F4 −

∂1F2

η12

)
,

X2
4 = ∂2

(
θ

1
2F4 −

∂1F2

η12

)
,

X2
5 = θ

1
2F4 −

∂1F2

η12
.

In the above formulae, Fi are 4 arbitrary functions of u1 and θ = (η22u1 − 2η12u2)−1.

• In the case N6 with κ = −2, namely

g1 =

 0 η12

η12 η22

 , g2 =

 0 −u1

−u1 2u2

 ,

second-order deformations can be reduced by a Miura transformation to the form

Πλ = P2 − λP1 + ε2LieXP2 +O(ε3),

where

Xi = Xi
1u

1
xx +Xi

2(u1
x)2 +Xi

3u
1
xu

2
x +Xi

4(u2
x)2 +Xi

5u
2
xx,

with

X1
1 = 0,

X1
2 = 2η22θ

(
θ

3
2F4 −

∂1(θ2F2)

η12

)
+ θF1,

X1
3 = 2η12θ

5
2F4 − ∂1(θ3F2),

X1
4 = −4η12θ4F2,
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X1
5 = θ3F2,

X2
1 = 0,

X2
2 = F3,

X2
3 = ∂1(θ

3
2F4)− ∂2

1(θ2F2)

η12
,

X2
4 = 4∂1(θ3F2) + ∂2(θ

3
2F4),

X2
5 = θ

3
2F4 −

∂1(θ2F2)

η12
.

In the above formulae, Fi are 4 arbitrary functions of u1 and θ = (2η12u2 + η22u1)−1.

Due to its technical nature, and cumbersome computations, we refer to [22] for the

proof of the previous theorem.

Corollary 5.2. In the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, all second-order deformations

are quasi-trivial.

Proof:

By construction, the canonical quasi-Miura transformation generated by H[u] reduces the

pencil to its dispersionless limit up to terms of order O(ε3).

Remark. General Miura transformations have the form

ui → ũi = f i(u) +
∑
k≥1

εkF ik(u,ux, . . . ,u(k)).

where det ∂f
i

∂uj
6= 0. In this thesis we are interested in Miura transformations preserving

the disperionless limit and for this reason we consider the subgroup

ui → ũi = ui +
∑
k≥1

εkF ik(u,ux, . . . ,u(k)).

Indeed, the only diffeomorphism preserving both metrics of the pencil is the identity.
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5.4 Invariants of bi-Hamiltonian structures

As already mentioned in Section 5.1, the central invariants for deformations of semisimple

Poisson pencils of hydrodynamic type (5.1) are related to the roots of the equation

det

gij2 − λgij1 +
∑
k≥1

(
Aij2;k,0(u)− λAij1;k,0(u)

)
pk

 = 0.

Expanding these roots near λi = ri one obtains a series:

λi = ri +

∞∑
k=1

λikp
k, (5.8)

whose coefficients are invariants (up to permutations) with respect to Miura transforma-

tions as shown by Dubrovin, Liu and Zhang in [30]. Due to the skew-symmetry of the

pencil, the sum and product of the roots contain only even powers of p. In the semisim-

ple case, expansions (5.8) contain only even powers of p, while in the non-semisimple

case, odd powers may appear. For instance, in the case of deformations of non semisim-

ple pencils associated with two-dimensional Balinskiı̌-Novikov algebras one obtains the

expansions

λ1 = u1 +

∞∑
k=1

λ1
kp
k, λ2 = u1 +

∞∑
k=1

λ2
kp
k. (5.9)

where, due to skew-symmetry,

λ1
2k+1 + λ2

2k+1 = 0, λ1
2k − λ2

2k = 0. (5.10)

Thus it is natural to divide Poisson pencils associated with Balinskiı̌-Novikov algebras in

two classes: those admitting as invariants λ1
1 = −λ2

1 and λ1
2 = λ2

2 (and eventually higher

order coefficients of the expansions (5.9)) and those admitting as invariants only λ1
2 = λ2

2

(and eventually higher order coefficients of the expansions (5.9)).

5.4.1 The cases T3, N3, N5 and N6 with κ 6= 0,−1,−2.

In the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, the expansions of λi do not contain

the linear term in p, and coefficients of the quadratic terms λ1
2 = λ2

2 are related to the
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functional parameter F2.

Theorem 5.3. Let Pλ = P2−λP1 bi-Hamiltonian structure corresponding to one of the Balinskiı̌-

Novikov algebras T3, N3, N5 and N6 with κ 6= 0,−1,−2 and the associated symmetric bilinear

invariant form η. Let us consider a bi-Hamiltonian structures Πλ of the form (5.1) with leading

term P ijλ . Then the coefficients λ1
2 and λ2

2 of the expansion (5.8) coincide, and are related to the

functional parameter F2 by the formulae:

• T3: λi2 =
u1

η12
e
− η

12u2

η22u1 F2(u1);

• N5: λi2 = − u1F2(u1)

η12
√

2η12(u1 + u2)− η22u1
;

• N3, N6 with κ 6= 0,−1,−2: λi2 = −(κ+ 1)u1(2η12u2 − (κ+ 1)η22u1)
κ−1
2

η12
F2(u1).

Proof:

We are going to prove this statement in the case T3 with η22 6= 0. In this case the disper-

sionless limit is given by

P ij1 =

 0 η12

η12 η22

 d

dx
, P ij2 =

 0 −u1

−u1 0

 d

dx
+

 0 0

−u1
x 0

 .

If we write the pencil in the standard form

Πij
λ = P ijλ +

2∑
k=1

εk
k+1∑
l=0

(
Aij2;k,l(u, . . . ,u(l))− λA

ij
1;k,l(u, . . . ,u(l))

) dk−l+1

dxk−l+1
+O(ε3),

the first two terms of the expansion (5.8) are

λi1 = 0, (5.11)

λi2 =
1

η12

(
S12

2 +
(R12

2 )2

u1
+
η22S11

2

2η12
+
u1S12

1 +R12
1 R

12
2

η12

)
, (5.12)

where

Rijθ (u) = Aijθ;1,2(u), Sijθ (u) = Aijθ;2,3(u), i, j = 1, . . . , n, θ = 1, 2.

We know from general theory that these coefficients are invariant up to permutations. The

condition λ1
2n = λ2

2n implies that they are genuine invariants.
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Using this, the proof is a straightforward computation: substituting the relations

R1 = R2 = S1 =

0 0

0 0

 , S2 =

 0 u1e
− η

12u2

η22u1 F2(u1)

u1e
− η

12u2

η22u1 F2(u1) ∗

 ,

in the formula (5.12) we get the result. Remaining cases can be proved following the same

procedure.

Remark. The invariant λi2 can be also written as

λi2 = −1

2
Resλ=λ̂Tr(g−1

λ Λλ),

where λ̂ is the eigenvalue of the affinor L = g2g
−1
1 and Λijλ = Sijλ + 1

2(g−1
λ )lkR

li
λR

kj
λ .

5.4.2 The cases N4 and N6 with κ = −2

In the remaining cases the expansion of λi contains also the linear term in p, and the

invariants λ1
1 = −λ2

1 and λ1
2 = λ2

2 are related to the functional parameters F2 and F4

respectively.

Theorem 5.4. Let Pλ = P2−λP1 bi-Hamiltonian structure corresponding to one of the Balinskiı̌-

Novikov algebras N4 and N6 with κ = −2 and the associated symmetric bilinear invariant form

η. Let us consider bi-Hamiltonian structures Πλ of the form (5.1) with the leading term P ijλ .

Then, the invariants (λi1)2 and λi2 are related to the functional parameters F2 and F4 through the

formulae:

• N4:

(λi1)2 =
2u1F2

(η12)3
,

λi2 =
∂1(u1F2)

(η12)2
− u1F4

η12
√
−2η12u2 + η22u1

;

• N6, κ = −2:

(λi1)2 =
2u1F2

(η12)3(2η12u2 + η22u1)2
,

λi2 =
u1F4

η12(2η12u2 + η22u1)3/2
− (2η12u2 − η22u1)F2 + u1F ′2

(η12)2(2η12u2 + η22u1)3
.
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Proof:

We outline the proof in the case N4 (corresponding to κ = 0). In this case, the standard

form of the pencil is

Π̃ij
λ = P ijλ + ε2Θij +O(ε3) = P ijλ + ε2

(
Θij

(3)

d3

dx3
+ Θij

(2)

d2

dx2
+ Θij

(1)

d

dx
+ Θij

(0)

)
+O(ε3),

where

P ijλ =

 0 u1

u1 2u2

 d

dx
+

0 u1
x

0 u2
x

− λ
 0 η12

η12 η22

 d

dx
.

and

Θ(3) =

 2u1F2
2η12u2−η22u1

u1F ′2
η12
− u1F4√

−2η12u2+η22u1
+ 2u2F2

2η12u2−η22u1

u1F ′2
η12
− u1F4√

−2η12u2+η22u1
+ 2u2F2

2η12u2−η22u1
4u2F ′2
η12
− 4u2F4√

−2η12u2+η22u1

 .

From the general theory and relations (5.10) we know that (λi1)2 and λi2 are invariants.

Using the invariance, the proof is a straightforward computation. The case N6 with κ =

−2 can be treated in a similar way.

Remark. The function Θ12
(3) can be also written as

Θ12
(3) = −η

12

2
Resλ=λ̂Tr(g−1

λ Λλ),

where λ̂ is the eigenvalue of the affinor L = g2g
−1
1 , and Λijλ = Sijλ + 1

2(g−1
λ )lkR

li
λR

kj
λ .

5.5 Truncated structures

In Theorems 5.3, 5.4 we proved the invariant nature of some functional parameters ap-

pearing in deformations. In this section we prove that the remaining parameters are

related to truncated structures. These are Poisson pencils of the form (5.1) depending

polynomially on the parameter ε (that is, the sum in (5.1) contains finitely many terms).

We show that setting to zero the invariant parameters we obtain deformations that are

Miura equivalent to truncated pencils up to the order three. More precisely we prove that

in the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2 the additional parameter provides a

one-parameter family of truncated structures, while in the cases N4 and N6 with κ = −2
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the two additional parameters provide a two-parameter family of truncated structures.

Theorem 5.5. In the cases T3, N3, N5 and N6 with κ 6= 0,−1,−2, second-order deformations

with F2 = 0 can be reduced by a Miura transformation to the form Πλ = Pλ + ε2Θ + O(ε3),

where

Θ =

0 0

0 2f

 d3

dx3
+

0 0

0 3fx

 d2

dx2
+

0 0

0 fxx

 d

dx
, (5.13)

with f = f(u1). Moreover, the truncated pencil Pλ + ε2Θ is a Poisson pencil.

Proof:

The form (5.13) can be easily obtained from the results of Theorem 5.1 rescaling the func-

tion F1. In particular, we have to set:

• F1(u1) =
f(u1)

u1
, for T3;

• F1(u1) = −η
12f(u1)

u1
, for N5;

• F1(u1) = −η
12κf(u1)

(1 + κ)u1
, for N3, N6 with κ 6= 0,−1,−2.

To prove that Pλ + ε2Θ is a Poisson pencil, we have to show that

1

2
[Θ,Θ]ijk(x, y, z) =

∂Θij(x, y)

∂ul(s)(x)
∂sxΘlk(x, z) +

∂Θki(z, x)

∂ul(s)(z)
∂szΘ

lj(z, y) +
∂Θjk(y, z)

∂ul(s)(y)
∂syΘ

li(y, x) = 0.

Taking into account that Θ11 = Θ12 = Θ21 = 0 and ∂Θ22

∂u2
(s)

= 0, we obtain the result.

Theorem 5.6. In the case N6 with κ = −2, second-order deformations with F2 = F4 = 0 can be

reduced by a Miura transformation to the form Πλ = Pλ + ε2Θ +O(ε3), where

Θ =

0 0

0 2f

 d3

dx3
+

0 0

0 3fx

 d2

dx2
+

0 0

0 fxx + 2g

 d

dx
+

0 0

0 gx

 , (5.14)

with f = f(u1) and g =
(
h(u1)u1

x

)
x

+ h(u1)u1
xx. Moreover, the truncated pencil Pλ + ε2Θ is a

Poisson pencil.

Proof:
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Here we prove only the first part of the theorem. The second part can be obtained as

above by straightforward computation.

By Theorem 5.1 we have

Πλ = P2 − λP1 + ε2LieXP2 +O(ε3),

where components of the vector field X are given by

X1 = θF1(u1
x)2, X2 = F3(u1

x)2,

with θ = (2η12u2 + η22u1)−1. The Miura transformation

ui → exp(−εY )ui, i = 1, 2,

generated by the vector field Y with components

Y 1 = −η12Ru1
xx − η12∂1R(u1

x)2 − η12∂2Ru
1
xu

2
x,

Y 2 = −η22Ru1
xx − η22∂1R(u1

x)2 + (η12∂1R− η22∂2R)u1
xu

2
x + η12∂2R(u2

x)2 + η12Ru2
xx,

where R = u1F1
2η12(2η12u2+η22u1)

, reduces the pencil to the form P2 − λP1 + ε2LieX̃P2 +O(ε3),

where

X̃1 = −θu
1F1u

1
xx

2
−
(
θu1F ′1

2
− θ2(η12u2 + η22u1)F1

)
(u1
x)2 + θ2η12u1F1u

1
xu

2
x,

X̃2 = −θη
22u1F1u

1
xx

2η12
+
θu1F1u

2
xx

2
+

(
θu1F ′1

2
+ θ2(η12u2 + η22u2)F1

)
u1
xu

2
x

−
(
θη22u1F ′1

2η12
+ θ2η22u2F1 − F3

)
(u1
x)2 − θ2η12u1F1(u2

x)2.

To conclude it is easy to check that LieX̃P2 coincides with (5.14), setting F1 = −2η12f
u1

and

F3 = − h
u1

.

Theorem 5.7. In the case N4 with F2 = F4 = 0, second-order deformations can be reduced by a
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Miura transformation to the form Πλ = Pλ + ε2Θ +O(ε3), where

Θ =

0 0

0 q22
3

 d3

dx3
+

 0 q12
2

−q12
2 q22

2

 d2

dx2
+

q11
1 q12

1

q21
1 q22

1

 d

dx
+

q11
0 q12

0

q21
0 q22

0

 , (5.15)

with

q22
3 = 2f,

q12
2 = 4θη12fu1

x,

q22
2 = 3f ′u1

x,

q11
1 = −8(θη12)2f(u1

x)2,

q12
1 = (2θη12f ′ − 2θ2η12η22f + 2θ2h)(u1

x)2,

q21
1 = (−6θη12f ′ − 10θ2η12η22f + 2θ2h)(u1

x)2 + 16(θη12)2fu1
xu

2
x − 8θη12fu1

xx,

q22
1 = (f ′′ + 2θ(η12)−1h′ + 6θ2(η12)−1η22h)(u1

x)2 − 8θ2hu1
xu

2
x + (f ′ + 4θ(η12)−1h)u1

xx,

q11
0 = −

(
4(θη12)2f ′ + 8θ3(η12)2η22f

)
(u1
x)3 + 16(θη12)3f(u1

x)2u2
x − 8(θη12)2fu1

xu
1
xx,

q12
0 = (2θ2h′ + 4θ3η22h)(u1

x)3 − 8θ3η12h(u1
x)2u2

x + 4θ2hu1
xu

1
xx,

q21
0 = (−2θη12f ′′ − 8θ2η12η22f ′ − 12θ3η12(η22)2f)(u1

x)3

+(12(θη12)2f ′ + 40θ3(η12)2η22f)(u1
x)2u2

x + (−8θη12f ′ − 16θ2η12η22f)u1
xu

1
xx

−32(θη12)3fu1
x(u2

x)2 + 8(θη12)2fu1
xu

2
xx + 16(θη12)2fu1

xxu
2
x − 4θη12fu1

xxx,

q22
0 = (θ(η12)−1h′′ + 4θ2(η12)−1η22h′ + 6θ3(η12)−1(η22)2h)(u1

x)3

+(−6θ2h− 20θ3η22h)(u1
x)2u2

x + (4θ(η12)−1h′ + 8θ2(η12)−1η22h)u1
xu

1
xx

+16θ3η12hu1
x(u2

x)2 − 2θ2hu1
xu

2
xx − 4θ2hu1

xxu
2
x + θ(η12)−1hu1

xxx,

where f = f(u1), h = h(u1) and θ = (2η12u2 − η22u1)−1. Moreover, the truncated pencil

Pλ + ε2Θ is a Poisson pencil.

Proof:

By Theorem 5.1 we have Πλ = P2−λP1 + ε2LieXP2 +O(ε3), where the components of the

vector field X are given by

X1 = −θF1(u1
x)2, X2 = −θF3(u1

x)2,
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with θ = (2η12u2 − η22u1)−1. The Miura transformation

ui → exp(−εY )ui, i = 1, 2,

generated by the vector field Y with components

Y 1 = −η12Ru1
xx − η12∂1R(u1

x)2 − η12∂2Ru
1
xu

2
x,

Y 2 = −η22Ru1
xx − η22∂1R(u1

x)2 + (η12∂1R− η22∂2R)u1
xu

2
x + η12∂2R(u2

x)2 + η12Ru2
xx,

where R = − u1F1
2η12(2η12u2−η22u1)

, reduces the pencil to the form

P2 − λP1 + ε2LieX̃P2 +O(ε3),

where

X1 =
θu1F1u

1
xx

2
+

(
θu1F ′1

2
− θ2(η12u2 − η22u2)F1

)
(u1
x)2 − θ2η12u1F1u

1
xu

2
x,

X2 =
θη22u1F1u

1
xx

2η12
− θu1F1u

2
xx

2
−
(
θu1F ′1

2
+ θ2(η12u2 + η22u2)F1

)
u1
xu

2
x

+

(
θη22u1F ′1

2η12
+ θ2η22u2F1 − θF3

)
(u1
x)2 + θ2η12u1F1(u2

x)2.

To conclude the first part of the theorem we observe that LieX̃P2 = Θ (F1 = 2η12f
u1

and

F3 = − h
η12u1

). The second part is a cumbersome computation.

Remark. Truncated Poisson pencils of the form

Πij
λ = P ijλ + ε

2∑
l=0

(Aij2;1,l − λA
ij
1;1,l)

d2−l

dx2−l + ε2
3∑
l=0

(Aij2;2,l − λA
ij
1;2,l)

d3−l

dx3−l , (5.16)

where Pλ is a Poisson pencil of hydrodynamic type associated with a Balinskiı̌-Novikov

algebra, appear in [93]. In this case, the coefficients

Aij2;1,0, A
ij
1;1,0, A

ij
2;2,0, A

ij
1;2,0

are related to second and third order cocycles of the Balinskiı̌-Novikov algebra. In order

to reduce deformations of the form (5.16) to the canonical form Πλ = Pλ + ε2Θ + O(ε3),
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one has to peform a Miura transformation producing (in general) infinitely many terms

in the right hand side of (5.16). For this reason, Strachan-Szablikowski truncated pencils

correspond in our framework to non truncated pencils.

5.6 Example

Let us consider second-order deformations of N3 obtained in Theorem 5.1, and set η22 =

0, η12 = 1, F1(u1) = 0 and F2(u1) = −f(u1)
u1

. The Miura transformation ui → exp(−εY )ui,

i = 1, 2, generated by the vector field Y with components

Y 1 =
f ′

3
u1
xx +

f ′′

3
(u1
x)2, Y 2 = −f

′′

3
u1
xu

2
x −

f ′

3
u2
xx,

reduces the pencil to the form

Π̂λ =

 0 Πλ

Πλ
∑

t v(t)
∂Πλ
∂u(t)

 , (5.17)

where Πλ coincides with

Πλ = 2u1 d

dx
+ u1

x − λ
d

dx
+ ε2

(
2s

d3

dx3
+ 3sx

d2

dx2
+ sxx

d

dx

)
+O(ε3), (5.18)

with s = s(u1). The structure (5.17) is, up to terms of order ε3, the complete lift of deforma-

tions of the dispersionless scalar structure

P = 2u
d

dx
+ ux − λ

d

dx
, (5.19)

here u1 = u. This complete lift can be viewed as an infinite-dimensional analogue of the

complete lift introduced by Yano and Kobayashi [97, 98, 99]. Further details can be found

in [22].

It is well known that the scalar structure (5.19) admits deformations to any order. This

suggests that deformations of non-semisimple pencils corresponding to the invariant pa-

rameter are unobstructed.

Remark. One can prove that the complete lift of a semisimple structure leads to a non-

semisimple pencil [22].



Concluding remarks

Poisson structures of hydrodynamic type and their deformations have been the subject

of extensive research in recent years, and this area is still offering challenging problems.

In this framework, we restricted ourselves to three main topics: classification of two-

dimensional Poisson structures, both degenerate and non-degenerate (for a small number

of components), deformations of degenerate one-dimensional structures, and deforma-

tions of non-semisimple Poisson pencils.

Firstly, using a novel approach to the study of multi-dimensional brackets, based on

Riemannian geometry, we obtained a complete list of two-dimensional non-degenerate

Dubrovin-Novikov structures with three and four components, as well as the classifica-

tion of multi-component non-degenerate structures in the case where the corresponding

affinor consists of Jordan blocks with distinct eigenvalues.

• Our calculations demonstrate that the most challenging case is the one where the

Jordan normal form of the affinor L = g̃g−1 consists of several Jordan blocks with

the same eigenvalue. To complete the classification, one needs to understand the

structure of such operators: due to the splitting lemma, the general Hamiltonian

operator would be representable as their direct sum.

• Given any 2D Poisson structures from our list, it would be interesting to classify

Hamiltonians which generate integrable 2 + 1 dimensional systems of hydrody-

namic type. The existing results suggest that integrable Hamiltonians form finite-

dimensional moduli spaces, and are quite non-trivial even for constant-coefficient

operators, see [43, 48, 50] for the first steps in this direction.

• It would be interesting to develop a deformation theory of 2D Hamiltonian opera-

tors in the spirit of [54, 21, 38], and to investigate triviality of Poisson cohomology

in 2D. Some results in this direction were recently obtained in [19, 15].

128



129

Then, we obtained the classification (up to three components) of degenerate two-dimen-

sional structures, analysing also the integrability by the method of hydrodynamic reduc-

tion for all of the three-component structures we classified.

• Obtaining a complete classification of degenerate structures (at least in four compo-

nents) is still an open problem. The main obstacle is the lack of a full description of

1D degenerate Poisson brackets. Indeed, already for four-component 1D degenerate

structures, the computation of Jacobi conditions is quite complicated [56, 87].

• Any 2D Hamiltonian operator gives rise to a pair of 1D compatible brackets of

Dubrovin-Novikov type, and therefore a bi-Hamiltonian structure. This property

is still true in the case of degenerate structures [76, 69]. Degenerate bi-Hamiltonian

structures of hydrodynamic type were firstly investigated by Strachan [92, 91], re-

vealing a nice relation with the theory of Frobenius manifolds with degenerate met-

ric. It turns out that some of the degenerate bi-Hamiltonian structures arising from

our classification are not of the kind investigated by Strachan. It would be inter-

esting to analyse these structures and to study a possible correspondence with the

theory of Frobenius manifolds.

In the framework of deformation theory for Poisson brackets of hydrodynamic type with

degenerate metric, our main contributions include the proof that in the two-component

case, first- and second-order deformations are not trivial, as well as examples of non-

trivial first-order deformations for some three-component structures.

• Our results suggest the following conjecture.

Conjecture. The k-order deformations of two-component Poisson structures with degener-

ate metric are characterised by functions depending on the single variable u2.

Unfortunately, the number of unknowns in this problem grows rapidly with the

increase of the order of deformations, and computations become more and more

complicated. Thus, it seems necessary to find a different approach in order to prove

the conjecture.

• A deeper analysis of the three-component case would be an important step to bet-

ter understand what happens in a more general context, in order to generalise our

results:
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Conjecture. If a matrix g which defines a n-component Poisson structure of hydrodynamic

type P has rank m < n, deformations of P are characterised by arbitrary functions depend-

ing only on the set of variables (um+1, . . . , un).

Finally, we analysed deformations of two-component non-semisimple Poisson pencils

of hydrodynamic type associated with Balinskiı̌-Novikov algebras. We proved that in

most cases second-order deformations are parametrised by two functions of a single vari-

able: one function is invariant with respect to the subgroup of Miura transformations

preserving the dispersionless limit, and another function is related to a one-parameter

family of truncated structures. In two exceptional cases, second-order deformations are

parametrised by four functions: two are invariants and two are related to a two-parameter

family of truncated structures.

• Our computations provide the first step towards the study of deformations of non-

semisimple Poisson pencils of hydrodynamic type. It would be interesting to inves-

tigate higher order deformations and to increase the number of components. Unfor-

tunately, as in the case of deformations of a single degenerate structure, increasing

the order, or the number of components, leads to very complicated computations.

• The undeformed structures we considered are non-semisimple and therefore they

are related to non-semisimple Frobenius manifolds. Furthermore, as observed in

[22], the lift of a semisimple Frobenius manifold leads to a non-semisimple Frobe-

nius manifold. Since this class of structures has not been deeply studied yet, this

could be a starting point for further investigations.
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