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ABSTRACT 

A number of detection processes are proposed, which are develop­

ments of the VHerbi Algorithm (V.A) detector. These detectors are 

suitable for use in high speed dfgital data transmission systems, in 

which the associated baseband channel introduces severe intersymbol 

interference. 

The aim of the project has been to develop algorithms for detec­

tion processes, which do not require the large amount of computation 

that is sometimes needed by the V.A. These algorithms should ideally 

have performances which'are close to optimum, and should not be 

significantly more complicated to implement than the V.A. 

The proposed detectors are compared to the V. A. detector and 

a conventional non linear equalizer, by means of computer simulation 

tests. The tolerance to additive white Gaussian noise is given for 

each detector, when used with a number of time invariant channels. 

Graphs are gi ven showi ng the vari ation in the performances of the 

detectors, wi th certain sys tern parameters. 

Consideration is given to channels whose response grows slowly 

with time, so that the first few components of their sampled impulse 

res ponses are small. Results are presented whi ch give an i ndi ca tion 

of how small these initiale'lements::'have to be, for them to be 
.• .( -; f ': 

profitably ignored by the,detector. " ' 
. ~ .. 

.. ' . 
. ~ ," 

It was found that sCl'r1e of the de,te'ctors had a tendency to become t ,'- , 

• 
fixed in a "poor" mode' 6f-iiperation, if they were left running for a 

sufficiently long time. In this mode, some of the vectors stored by 

the system are identical, and the effective number of these vectors 

is reduced, thus causing a loss of performance. The occurrence of this 

"poor" mode of operation is analysed, and some modifications to the 

detectors are suggested, to overcome the problem. 
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CHAPTER 1 

1.01 Background 

In recent years the amount of data being sent from one point 

to another, by means of digital signals, has been steadily increa­

sing and this trend seems likely to continue. It is therefore 

desirable to transmit data as quickly as possible, while making 

use of existing facilities, in order to keep equipment cost to a 

minimum. 

An essential part of. most digital data transmission systems 

is the detector [2, 11, 12]. The detector takes the received 

signal, which is usually a distorted version of the signal trans­

mi tted, and tries to recover the transmitted signal in a fairly 

effi ci ent manner. 

Many methods of detection already exist [1-49] but some, al­

though simple to implement, give a poor tolerance to noise or do 

not allow high data transmission rates. 

From Shannon's famous channel capacity theorem [1,7], it is 

theoretically possible to send· information over a transmission 

channel, without errors in deteetion, at the rate 

c = W 1092 (1 + sI. bits/sec (1.01 ) 

where s is the ratio of signal power to average noise power and 

W is the bandwidth of the channel. This formula assumes an ideal 

channel with constant signal attenuation over its bandwidth, and 

that the noise introduced in the channel is additive white Gaussian 

noi se. 
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The majority of data transmission is over standard telephone 

networks which ideally have W = 2700 Hz and typically have the 

signal to noi se ratio s given by 

10 10910 s > 25 db or 

Hence. with an optimum detection process and the condi tions 

described above. the transmission rate attainable over such tele­

phone networks has a theoretical maximum value of at least 

2700 1092 (1 +.10 2
•

5
) " 22.4 X 10 3 bits/sec 

At present. conventional data transmission systems operate at 

rates of up to 4800 bits/sec so there is clearly much scope for 

i mprovemen t. 

1.02 Model of a Data Transmission System 

Figure 1.01 describes a theoretical model of a synchronous 

serial data transmission system. Data is transmitted in the form 

of a sequence {si} of numbers. whi ch are used to modul ate a sequence 

bfunit impulses o(t). The impulses are regularly spaced in time 

- with some interval T seconds between them. so that the sequence 

so' 51' •..• \ can be represented ;n the form 

n 
L s; o(t - ; T) 

;=0 

where o(t - ; T) is a unit impulse at time t = iT.' The transmitted 

signal is assumed to have an even number m of levels. so that each 
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data element si has m possible values. The allowable values for 

each si are ±1, ±3, ±5, ; .. , ±(m - 1) and each of these values 

is equally likely. Furthermore, each data element is assumed to 

be statistically independent of the other data e1errents. 

The transmission path is a linear baseband channel which 

may include a telephone circuit or a high frequency radio link, in 
. 

which case a linear modulator at the transmitter and a linear 

demodu1ator at the receiver must also be included. 

The transmitter filter is used to limit the frequency spec­

trum of the impulses so that almost all of the energy going into 

the transmission path is contained in the available bandwidth. 

It is inefficient to feed the impulses directly to the transmission 

path, as they have a large (ideally infinite) bandwidth. The trans­

mission path would then cause considerable attenuation of the higher 

frequency components of the signal, resulting in an unnecessary 

loss of signal energy. 

The model assumes that the only noise introduced by the system, 

is additive white Gaussian noise, which is introduced between the 

transmission path and the receiver filter. The" other types of 

additive and multiplicative noise which occur in a practical sys­

tem are neglected here. It has been shown that the tolerance of 

a system to additive white Gaussian noise, gives a good guide to 

its tolerance to other forms of additive noise [6]. 

The receiver filter cuts out frequencies outs ide of the band­

width of the channel, so that much of the noise is eliminated. 

This filter is assurred to be such that the sample values of the 

noise function w(t), taken at intervals of T seconds by the sampler, 
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are statistically independent normally distributed random variables, 

with zero mean and fixed variance. This type of filter may include 

a noise whitening network. (See reference 6). 

The combination of transmitter filter, transmission path and 

receiver fi1 ter, forms a linear baseband channel. The impulse res­

ponse y(t) of the channel is assumed to be constant, or to vary 

only slowly with time. If y(t) is not constant, some device for 

estimating the channel'simpu1se response must be included at the 

recei ver. 

An impulse ott) at tlie input of the channel causes an output 

y(t) + w(t), where \~(t) is the noise waveform at the output of the 

receiver filter. The channel is linear so the input 

n 
I i=OSi ott - iT) 

causes an output given by 

n 
r(t) = I i=O Si y(t -iT)+.w(t) (1.02) 

r(t) is sampled at intervals of T seconds, and the sequence produ­

ced is processed by the detector, to give the sequence {sil} which 

is an estimate of the transmitted SE'quence {si}. Note that, due to 

the randomness of w(t), it is not possiti1e to recover the transmitted 

data sequence with certainty. The best that can be done is to ob-

ta i n the es tima te of {si} whi ch has the least probabil ity of error 

or, alternatively, find the estimate whose expected proportion of 

errors is as small as possible. 
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1.03 Detection Processes 

Usually to attain transmission rates as high as 4800 bits per 

second, data elements must be transmitted at such a speed, that the 

response of the .system to one of them has not died away before the 

next one is transmitted. Hence the res ponse of the system at any 

time may depend on several data elements. This overlapping of sig­

nals is known as intersymbol interference. An alternative method 

of achieving a high rate of data transmission, is to increase the 

number of signal levels to a point where each data element con­

tains a large amount of information. This avoids the problem of 

intersymbol interference but usually gives a poorer performance 

than the former method [9]. 

A linear equalizer (described in Section LlD), is among the 

simplest of detection processe-s for signals with intersymbol inter­

ference, and is an approach which is often used commercially 

[6,14-18]. This equalizer can easily be made adaptive to a slowly 

time varying channel [6, 16, 18], and can be placed either before 

. or after the transmi ssi on pa th . It gives the same tol erance to 

noise in either of these locations, but a significant improvement 

can sometimes be obtained by splitting the equalization between the 

two ends of the path [3, 4]. 

For channels giving only pure phase distortion· (see Section 

l.ll), the linear equalizer gives the optimum detection process 

[9, 14]. However, for channels with some amplitude distortion, a 

non linear detection process can give an improved tolerance to 

noi se. 

The nonlinear equalizer, using a feedback transversal equali­

zer and a process of decision directed cancellation, often offers 
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a better performance than the linear equalizer [6, 14, 23, 24]. 

\~hen each signal element is detected by the feedback transversal 

equalizer, its contribution to the next received signal is can­

celled, thus removing intersymbo1 interference. (See Section 

1.12). If a data element is incorrectly detected at some stage, 

the wrong quantity is subtracted in the cance 11 a ti on process, and 

errors in the next few elements detected are more likely than they 

would otherwise be. This effect is known as error extension. 

A further improvement in tolerance to noise may be obtained 

using the system described in Section 1.13, which is a combination 

of the detector just described and a linear equal izer [6, 14, 24]. 

Such a combi na ti on is sometimes referred to as a non 1 i near equal i -

zero This arrangement is still not particularly complicated to 

implement, and can be made to "adapt to a slowly time varying 

channel without great equipment complexity [6]. 

Where the degree of amplitude distortion is high, more sophi­

sticated detection processes are needed, if a good tolerance to 

noise is to be obtained. Among these processes is the one des­

cribed in Section 1.15, in which data is transmltted and received 

in fairly short sequences, with gaps between them [25-27]. These 

gaps are large enough so that there is no intersymbo1 interference 

between the separate data sequences. Now the optimum detected 

sequence for each group may be found, by se1ecti ng the member from 

the set of possible data sequences, which minimises some given func­

ti on. There are no error extension effects with thi s type of pro­

cess, as a complete group of data elements is detected at once. 

The detected sequence for one group, does not then depend on the 

sequences detected for the previous groups. 
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A development of the system described above, which makes use 

of signal cance 11 ati on, can be used for the case of conti nuous 

data transmission. (See Section 1.16) [29-31]. With this system, 

a number N of the first received signal samples, are used to pro­

duce an estimate of the first N data elements. Only the estimate 

for the earliest of the elements is taken as a detected element. 

The contribution of this element is then cancelled from the received 

signal samples (see Section 1.16), and the process is repeated to 

detect another data element. The performance of this detection pro­

cess can approach that of an optimum detector (i .e. one which gives 

the detected sequence which has the least probability of being in' 

error. [6]. 

One system which obtains the optimum tolerance to additive 

white Gaussian noise, is the Viterbi Algorithm (V.A) detector, 

which is described in Chapter 2. The V.A. was originally proposed, 

by Viterbi, for decoding convolutional codes. [34]. Sometime later, 

several authors pointed out that the V.A. could,be used as the basis, 

for a detector in a digital data transmission system with a disper-

sive channel. [35,45,46]. This detector has the disadvantage that, 

where intersymbol interference exists over a large number of symbols, 

the'amount of computation required can be very large. In this case, 

- the system described in Section 1.16 (employing decision directed 

cance 11 a ti on), probably gi ves a more cost effecti ve process, although 

its tolerance to noise is usually poorer than that of the V.A. detec­

tor. 

Several suggestions have been made for modifying the V.A. detec­

tor, or using it in conjunction with another detector. It is hoped 

that, by these means, a system may be found with a reasonable perfor-
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mance and a moderate demand on computation. One proposal was to 

use a linear filter between the transmission path and the V.A. 

detector, so that the combined impul se response of the channel and 

filter is of a fairly short duration. [32, 36]. Unfortunately, the 

filter usually causes a correlation of the noise samples (see Sec- . 

tion 1.10), thus givi ng some loss of system performance. A sugges­

tion made by Forney was to modify the V.A. so tha t, instead of an 

exhaustive search through all possible transmitted sequences, only 

the sequences which seemed most likely should be considered [33]. 

A number of systems described in Chapter 3, are based on this idea 

of Forney's. The systems are also examined in references 47 and 48. 

1.04 Outline of the Thesis 

Chapter 1, so far, has discussed some of the conventional 

detection techniques used in digital communication systems. Some 

of these techni ques are di scussed in more detai 1 in Sections 1.10 

. to 1.16. 

In the model of a data transmission system described in Section 

1.02, the transmission path is a linear baseband channe} which may 

include a telephone circuit or a high frequency radio link. Des­

criptions of these types of transmission paths, and the types of 

random noi se they suffer from, are therefore given in Sections 1.06 

to 1. 09. 

Chapter 2 gives a detailed description of the V.A., and intro­

duces some of the notation that is used in the later chapters. 

Maximum likelihood detection is also defined at this point, and it 

is shown that under certain conditions, the maximum likelihood 
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sequence is the one whi ch has the lowest probabil ity of being in 

error. It is shown in Section 2.04, that the problem of finding 

the maximum likelihood detected data sequence, is equivalent to 

that of finding the shortest path through a given trellis diagram. 

This shortest path problem is well known, as one that can be 

solved efficiently with a technique known as dynamic programming. 

It can then be seen that the V.A. is a dynamic programming algo­

rithm. 

In Section 2.09, some indication is given of the number of 

basic operations required to implement the V.A. It is evident 

from this section, that the number of such operations can be 

very large indeed, for cases where the data elements have to be 

transmitted at high speed, and where the number of signal levels 

is high. 

Chapter 3 begins by considering again, the trellis diagram 

described in Chapter 2. It is pointed out that some of the possi­

ble paths through the trellis, are unlikely to coincide with the 

optimum path, and may therefore be ruled out without fully assessing 

their length. Four detection processes (systenis 1, 2, 3 and 4) are 

then described, which are developments of the V.A. detector. These 

_ processes were designed, with the hope of cutting down considerably 

on the amount of computation required by the V.A, while still off­

eri ng a performance clos e to tha t of a maximum 1 i kel i hood detector . 

. In Section 3.09, the amount of computation needed per detected 

data element, is assessed for Systems 1-4. By means of an example, 

a comparison is then made between the number of basic operations, 

needed for each of these sys terns and the V.A. detector. 
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Section 3.10 gives a number of theorems concerning the 

operation of Systems 1, 2 and 4, when they are used with a 

channel whose sampled impulse response has its first component 

equal to zero. (See Section 2.03 for a definition of the sampled 

impulse response of a channel). 

Chapter 4 deals with the testing of the various detection 

processes, by means of computer simulation. The reasons for tes­

ting the processes in this way are discussed, together with some 

of the advantages and disadvantages of this method. The simula­

tion results are all from situations, where the detectors are 

working in the presence of random noise, so the results of the 

tests are all subject to statistical fluctuation (i .e. if a test 

is repeated with a difference sequence of noise samples, the 

res ult may be changed s 1 i gh tly) . Some measure of the confi dence 

in these results is therefore fairly essential. Section 4.04 of 

the thesis gives a definition of the term, "Confidenae Zimits", 

and gives an estimate of these limits for some of the simulation 

tes ts whi ch follow.: 

Section 4.06 lists the sampled impulse responses of the various 

transmission channels, which were used in the tests. A fuhction, 

'd', of the impul se response is given, which is known to give a 

measure of the degree of amplitude distortion introduced by the 

channels. The modul us and argument of the sampled Fourier Trans­

form is also given, for these sampled impulse responses, so that 

information about both the amplitude and phase distortions for these 

channels, can be derived. 
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Section 4.07 gives the results of simulation tests which 

compare the performances of each of the Systems 1-4, the V.A. 

detector and the conventional non linear equalizer. These results 

cover a fairly wide range of situations, with both a two and a four 

level signal being used, with each of the channels included in the 

tests. These simulation tests give a comparison of the various 

detectors, in terms of the noise power required with them, to give 

an error rate of 0.004 for a given situation. It would be unreason­

able though, to assume that the detection processes with the best 

performances at this error rate, would be superior over a wide 

range of error rates. Hence simulation tests were carried out to 

assess the performance of the systems over one channel, 11ith the 

proporti on 0 f errors occurri ng, varyi ng from 10- 1 to 10- 4 • Thes e 

tests are described in Section 4.08. 

With Systems 1-4, .the two main parameters which affect perfor­

mance and complexity, are the number of vectors stored and the num-

ber of components of these vectors. Sections 4.09 and 4.10 des-

cribe some simulation tests, which show just how the system perfor­

mance varies with these parameters, for two separate transmission 

channe 1 s. The res ults of these tes ts may be used to esti ma te the 

va lues of these parameters, needed to obtai n the best performances 

tha t can be obtai ned with the sys terns ~ 

The final section (4.11) of Chapter 4, is of interest when 

dealing with transmission channels whose sampled impulse response 

has some very small initial components. The simulation results in 

thi s section compare the performances of Systems 1-4 with modifi ed 

versions of these systems, which ignore the first component of the 

channel'ssamp1ed impulse response. These tests give a useful guide, 
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when deciding whether a component of a certain size in the sampled 

impulse response, would be better ignored or taken into account, 

by the detector. 

Chapter 5 is concerned with a phenomenon called merging which, 

when it occurs, can cause a sudden drop in the performances of 

Systems 1 and 2. This phenomenon is one in which several of the 

vectors stored in the detection process, become the same and remain 

locked in this state for long periods. This effectively reduces 

the number of possible data sequences which can be considered by 

the process, and can therefore 1 ead to a loss of system performance. 

Section 5.02 gives a formal definition of the term, "Merged vectors", 

and provi des an upper bound for the probabi 1 ity of two vectors beco­

mi ng merg ed . 

It is shown in Secti on 5.04, tha t Sys terns 1 and 2 can sometimes 

get locked in a state, where the number of distinct vectors stored 

by the processes, is half of the total number of stored vectors . 

. Thi s state is referred to as, "The faiZure mode". In Secti ons 5.05 

- 5.09, the probability of System 1 eventually entering the failure 

mode, is estimated by means of two separate approaches. In the 

first, a theoretical model of the system is set up, whfch will give 

- the probability of the failure mode occurring, if certain transition 

probabilities are known. These probabilities are estimated from the 

results of simulation tests. The second approach arrives at an 

estimate of the probability of System 1 entering the failure mode, 

by simulation testing alone, and without the use of the model. 

The resu1 ts of the two approaches are compared in Section 5.07. 

Section 5.10 discusses two modifications to System 1, which 
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may be used to prevent the detection process from entering the 

failure mode. Evidence of the effectiveness of the first method 

is provided by means of simulation tests, carried out for a parti­

cular situation, in which System 1 suffered very noticeably from 

the effects of merging. The second method is proved generally 

effective at keepi ng the stored vectors disti nct, by means of 

theoretical analysis. 

1.05 Digital and Analogue Signals 

An analogue signal may be defined to be one in which the 

signal waveform may take on an infinite number of possible shapes. 

When information (i .e. data) is transmitted in the form of ana­

logue signals, the detected walleform at the receiver will usually 

be corrupted, to some extent, by noise. Even if the noise is of 

a fairly low intensity, the detected waveform may differ slightly 

from the waveform transmitted. 

The situation may be improved by the use of digital signals, 

(i.e. signal s whose waveform may take on one of·a finite number of 

fairly distinct shapes). [7]. Then for a finite amount of data and 

a system which introduces no noise, there will be a finite set of 

possible received waveforms (or received signals), each one corres­

ponding to some transmitted waveform. With a suitable detector, 

the appropriate transmitted signal can be derived from any member of 

this set of received signals. 

For a practical system which does introduce noise, the received 

message will not be one of those in the set mentioned above. How­

ever, if the noise level is fairly low, the actual received wave­

form will be closely matched (in shape) to a member of this set, 
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and the exact transmitted signal can be derived from this me m-

ber. 

If the data to be transmitted is in analogue form, it can 

be converted to a digital waveform without any loss of i nforma­

tion [7]. From Nyquist's sampling theorem, this conversion to a 

digital waveform may be carried out by sampling the analogue wave­

form at regular intervals (i.e. every T seconds, for some value of 

T). If the sampling interval T is such that 1/(2T) is less than 

the highest frequency contained in the analogue waveform, these 

samples contain all of the relevant information, and the analogue 

signal can be recovered exactly from them [7]. This result allows 

the transmission of speech over a digital system without any infor­

mation loss. If the noise level introduced by a digital data 

system is low, the speech waveform may be recovered at the 

receiver, as exactly as if there was no noise present. 

1.06 Telephone Circuits [9] 

Telephone circuits can generally be divided into two types: 

private lines and switched lines [9]. Switched lines are ones which 

are part of the public telephone network. They are made up from an 

- almost random combination of different links and they generally cause 

more distortion than private lines. 

Most telephone circuits consist of three different types of 

links called: unloaded links, loaded links and carrier links [9]. 

The unloaded links may consist of lengths of wire having an imped­

ance of 600>2 and a 1 ength of about two or three mi 1 es. Bei ng re 1 a­

tively short, the unloaded links have a good frequency response 
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(i .e. their attenuation and delay distortions are moderate). 

The attenuation caused by the unloaded links is proportional to 

the square root of the frequency, over the voice frequency band 

(300 to 3000 Hz), and increases with distance at the rate of about 

2k dB per mile, in the centre of the band. This high increase 

in attenuation with length, prohibits the use of very long un­

loaded audio links. The delay distortion introduced by these 

links is negligible. 

Loaded audio links may be much longer than the unloaded ones, 

with lengths up to about 100 miles. These links may consist of 

a pair of wires ~lith inductances placed at regular intervals. 

(Typically 44 or 88 mH at lengths of 2000 yards). The loaded 

links have the same impedance (60on) as the unloaded ones, and 

have a frequency response simi·lar to that of a low pass filter. 

Their attenuation per mile is less than 1 dB, up to a certain fre­

quency, and then increases rapidly as the frequency rises. Hence· 

the attenuation per mile of the loaded links, is considerably less 

. than that of the unloaded links, at the centre of the voice frequency 

band. The delay distortion is about ten times as great as in the 

unloaded links and may be quite considerable. Loaded links require 

amplifiers at various stages along the lines, if they are to be more 

than a few miles in length. As amplifiers can only operate on a 

signal travelling in one direction, a separate pair of wires must 

then be used for transmission and reception. 

Carrier links may be much longer than loaded audio links, and 

may consist of a coaxial cable or open wire lines, formi ng a wide­

band channel. With these links, the signal frequency band is shif­

ted upwards by a linear process of amplitude modulation. Several 
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signa 1 s are then transmi t ted simultaneously us i ng an arrangement 

of frequency diVision multiplexing, each signal being sent on a 

separate frequency band. The distortion of a voice frequency 

signal transmitted over carrier links, is almost exclusively 

caused by the filters at each end, which are used for the linear 

modulation - demodulation process. The resul ting frequency res­

ponse is effectively that of a high pass filter, with attenuation 

rising rapidly below some cut off frequency (200 to 300 Hz). 

Delay di stortion is consi derabl e a tfrequencies just above this 

cut off frequency, and there is some attenuation at the high end 

of the voice frequency band. 

Microwave satellite and PCM (pulse code modulation) links 

are also used in telephone circuits. These links are made to a 

high standard, and their attenuation and delay distortions are 

small in comparison to the more common types of lines in telephone 

circuits. If a data transmission system functions satisfactorily 

over loaded and unloaded audio links, and the poorer carrier links, 

. it should not have any problems over satellite, microwave and PCM 

links. 

-.~ 

- 1.07 Attenuation and Delay Distortions Over Telephone Circuits [9] 

Figures 1.02 and 1.03 show the ideal attenuation-frequency and 

group delay-frequency characteristics for a telephone circui t. The 

group delay curve is flat over the voice frequency band, i.e. over 

the range 300 to 3000 Hz. The attenuation increases rapidly out­

side of the voi ce frequency band, so the behaviour of the group 

delay curve is not important there. The rapid increase of attenua-
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tion outside of the voice frequency band is desirable, so that 

unwanted signals with energy in frequencies outside of this band, 

may be eliminated to some extent. 

Figures 1.04 and 1.05 show two typical characteristics, for 

telephone circuits containing both audio and carrier links. If a 

ten dB variation in attenuation can be tolerated, the whole of the 

voice frequency band is available for transmission, over the cir­

cuit represented by Figure 1.04. 

Figures 1.06 arid 1.07 show two characteristics of poor tele­

phone ci rcui ts. For the ci rcui t corresponding to Fi gure 1. 06, the 

whole of the voice frequency band is not available, unless varia­

tions in attenuation of more than 20 dB can be tolerated. It 

should be noted that these characteristics vary greatly over 

different telephone circuits .. A ripple is often present in both 

the attenuation and group delay characteristics. 

Clearly, if the group delay-frequency characteristic is not 

flat over the voice frequency band, the received dgnal will be 

dispersed in time, with some frequency components arriving later 

than others. Hence unless the rate of transmission is kept below 

a certain level, the received signal elements corresponding to the 

different data elements, will overlap. Tests have shown that the 

time dispersion produced by telephone 'circuits does not usually 

exceed six milliseconds. 

The attenuation at about 1000 Hz (this is usually the minimum 

level on th e a ttenua ti on-frequency characteri s ti c), may be as much 

as 30 dB for a s\~itched line, but is usually less than 15 dB on a 
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private line. Rising attenuati.on with frequencies above 1000 Hz 

is a common characteristic of telephone circuits. 

1.08 H.F. Radio Links [g] 

High frequency (H.F) radio links work on the same basic prin­

ciple as carrier links, having a number of signals transmitted 

separately on different frequency bands. These frequency bands 

are contained within the range 3 to 30 MHz .. 

Whereas the distortion characteristics of most telephone cir­

cuits are fairly constant, this is not the case with H.F. radio 

links. The H.F. links suffer from an effect known as frequency 

selective fadi ng, which causes a variation of the characteristics 

with time. This fading may occur if the transmitted signal takes 

more than one path from the transmitter to the recei ver. The si g­

nal is then said to suffer from mul tipath propagation. One example 

of thi s phenomenon is the case where the radio waves are reflected 

from the ionosphere and the ground, perhaps several times. The 

waves reaching the receiver via different routes, typically have a 

difference in delay of about one or two milliseconds .. The diffe­

rence in delay, and the actual paths the signals take from the 

transmitter to the recei ver, will of course vary with the hei gh t of 

the ionosphere. Hence the attenuation-frequency and group delay­

frequency characteristic of H.F. radio links, may vary with time. 

As with telephone circuits, the time dispersion of signals 

transmitted over H.F. radio links is usually less than six milli­

seconds. The dispersion with these links is, however, of a more 

harmful nature, as there may be more energy in the latter part of 
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the dispersed signal, than is found with telephone circuits. 

The changes in the distortion characteristics are periodic 

with cycles usually occurring at the rate of four to fifteen per 

minute. This rate at which the characteristics change is, in many 

cases, slow enough so tha t the recei ver equi pment can conti nua lly 

es tima te them and adapt to the changes. The vari a ti on of the 1 eve 1 

in the received signal, due to fading, is typically up to 40 dB. 

In telephone circuits, low cost is usually a priority, but, 

with H.F. radio links, more effort is made to ensure that the equip­

ment is of a high standard. Hence the distortion occurring in the 

transmitted signal is due almost entirely to the transmission path, 

and not to the components of the data transmission system. 

1.09 Random Noise [9] 

The noise appearing in telephone circuits can be divided into 

two categories: additive noise and multiplicative noise. The addi­

tive noise takes the form of a random signal added to the transmitted 

signal, whereas multiplicative noise modulates the signal waveform. 

When the noise is sufficiently intense, the received signal waveform 

_ may be mi s taken for one corres pondi ng to the wrong transmitted si g­

nal and errors may occur in the detection process. If the mai n 

cause of errors is additive noise, the error rate may be reduced by 

increasing the signal level. For the case of multiplicative noise, 

the noise level in the received signal is proportional to the level 

of the transmitted signal, so the error rate cannot be reduced in 

this way. 
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White Gaussian Noise (WGN) is a waveform with a constant two 

sided power spectral density. It has the property that the value 

of its waveform at any time, is a normally distributed random 

variable with zero mean. Two 'samples of the waveform taken at 

any distinct times are also statistically independent. This 

type of noise is not physically realisable, but it can be mod­

elled by a real waveform with a power spectral density function 

which is constant over a wide range of frequencies. 
, 

Additi ve WGN is not a type of noi se tha t occurs wi th great 

intensity over telephone circuits. However tests and theoretical 

considerations have shown that systems which have a good tolerance 

to this type of noise, also have a good tolerance to other forms 

of additive noise [6]. Usually, if one system has a better tol­

erance to this noise than another system, it will also have a 

better tolerance to other additive noise. 

Additive WGN is relatively easy to simulate, is easy to work 

with in practice, and is often the only type of noise used in 

testing data transmission systems. 

Over switched telephone circuits, the majority of noise is 

additive, but multiplicative noi se is more common over-'private 

_ lines. The tests and theoretical analysis in this thesis assume 

that additive WGN is the only type of noi se present in the systems. 

Strictly speaking, systems which perform well under these conditions, 

will not have been shown to be the best for use on private 1 ines. 

Over H.F. radio links, the main source of additive noise is 

atmospheric noise caused by lightening. It can be shown that 

Gaussian noise is a reasonable model for atmospheric noise. As 
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before, tolerance of a system to additive WGN, is a good guide to 

the tolerance to the various types of additive noise present. 

1.10 The Linear Equalizer [6, 14-18] 

The linear equalizer (or linear transversal filter), is 

among the simplest of detection processes for signals with inter­

symbol interference. It consists of a network of delays and multi­

pliers, as shown in Figure 1.08. 

The samples rO' r l , ... , rn are fed to the input of the 

filter at intervals of T seconds, say, and the delays are the 

same length as these intervals. The delays are such that, if they 

receive a sample value r i at their input at time iT, this value 

r i will appear at their output at time (i + 1)T. The mu1 tip1iers 

with coefficients Yi' produce an output equal to Yi multiplied by 

their input. The outputs from the multipliers are added together, 

so that the output of the equalizer at time iT is given by: 

f 
t. = t r. h Yh . 1 L 1 - . 

h=O 
for i=O,·l, ... ,n+f 

where r i ~Ofor i not contained in the set {O, 1, ... , 

_~ (1.03) 

n}. 

The z transform of a sequence of numbers sO' sl' •.. , sn 

is defi ned by 

(1 .04 ) 

Let R(z) and Y(z) be the z transforms of the input sequence {ri } 

and the sequence of multiplier coefficients {Yi}' respectively. 
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FIGURE 1.08 A Linear Equalizer 
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( 1. 05) 

(1.06 ) 

R(z) Y(z) 
-1 -f -1 -n 

= (yO + Yl z + ••• + Yf z )(rO: r l z + ." + rn z ) 

+ •.• 

o ·-1 = z L y. rh + Z 
i+h=O 1 

L Y . rh + Z -2 . Y Y i rh + '" 
i+h=l 1 1+6=2 

where i and h are restricted to being ~ O. 

. f 
R(z) Y(z) = zO L y. 

i =0 1 

f 
r . + z-l L y. 

-1 i =0 1 
r l . 

-1 

f 
•• , + z(-n-f) L y. r

n
+
f

-
1
. 

i=O 1 

2 f 
+ z- L y. r2 . + ••• 

.. 0 1 -1 1= 

(1.07) 

where r
i 
~ 0 for i not contained in the set {O, 1, ... ,n}. 

The output of the equalizer at time iT is given by: 

for i = 0, 1, "" n + f 

(see equa tion 1.03). Hence the z transform of the output of the 
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equalizer is 

f f 
zO \'. r y + z-l \' y r + 

h~O -h h. h~O h l-h ... 
+ z:(n+f) f y 

h=O h 

which is equal to R(z) Y(z) (see equation 1.07). Hence the z 

transform of the output sequence from the equalizer, is equal to 

the product of the transforms, of the input sequence and the se­

quence of multiplier coefficients. The sequence yO' Yl' ... , Yf 

is called the sampled impulse response of the equalizer. 

A similar result with z transforms applies to the case where 

the sequence {Si} is used to modulate impul ses, which are then 

sent over a transmission channel, as in the model described in 

Section 1.02. From equa tion .1.02, the output from the baseband 

channel at time t is given by 

n 
r(t) = I Si y(t - iT)+ w(t) 

. i=O 

where y(t) is the impulse response of the channel and w(t) is a 

function representing random noise. r(t) is sampled at intervals 
.-~. 

of T seconds to give a sequence {ri } of received signal samples, 

- which is fed to the detector. Suppose that the first sample is 

taken a t time 0 so tha t the recei ved sampl es are gi ven by 

n 
r(j T) = 2 s. y(jT - i T) + w( j T) 

. 0 1 1= 
(1.08) 

let p and q be the smallest and largest integers respectively, 

such that y(pT) r 0 and y(qT) F O. let g = q - p and Yi = y[(p+i )T] 

for i = 0, 1, ... , g. Then the vector 
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is called the sampled impulse response of the transmission 

channel. 

Now let 

r k = r [(p + k)T] and 

wk = w [(p + k)T]. 

Then, from equation 1.08, 

n 
r k = I Si Y [( P + k - i) T] + wk i=O 

But y[(p + k - i)T] = 0 for kO- i < 0 or k - i > 9 (this follows 

from the defi ni ti ons of p and q). 

k-g 
rk = L s. y [( p + k - i) T] + wk . k 1 1= 

for k = 0, 1, 2, •••• 

Let the z transforms of the sequences {ri }, {si}' {Yi } and 

{w
i

} be R(z), S(z), Y(z) and W(z) respectively. During the analysis 

of the linear equalizer, it was shown that the z transform of the 

sequence whose i th term is 

,< ' 
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is the product of R(Z) and Y(z). 

Hence the z transform of the sequence whose k th tenn is 

is S(z) Y(z) and, from equation 1.09, 

R(Z) = S(z) Y(z) + W(z) 

Now let the sequence rk, of received signal samples, be fed to 

a linear equalizer whose z transfonn is Y*(z). 'Then the z trans­

fonn of the output of the equalizer 'is given by 

R*(z) = R(z) Y*(z) 

= [S(z) Y(z) + W(z)] Y*(z) 

R*(Z) = S(z) Y(z) Y*(z) + W(z) Y*(z) (1.10) 

It is often possible to choose the multiplier coefficients of the 

equalizer to give a z transfonn Y*(z) such that 

Y*(z) Y(z) ~ z-k (1. 11) 

for some integer k ~O. Then the z transform of the sampled 

impulse response, of the combined channel and equalizer, is 

approximately of the fonn 

(0, 0, ... , 0, 1, O .... , 0). 
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Thus the combination of the channel and equalizer only intro­

duces a del ay in the data sequence {si}' and there is no signal 

di s torti on. 

Then, from equation 1.10, the output of the equalizer has 

z transform 

R*(z) = S(z) z-k + W(z) Y*(z) (1.12) 

Now 1 et 

-1 2 W(z) Y*(z) = Uo + u1 z + u2 z- + •.• (1.13) 

for some set of coefficients uO' u1 ' u2' ..• and let the samples 

at the output of the equa1izer.be rO' ri, r2, ••• , so that 

* * -1 *-2 R*(z) = rO + r 1 z + r 2 z + •.• (1.14) 

·Then from, equations 1.12, 1.13 and 1.14 

* * -1 * -2 -1 -2 -k 
rO + r 1 z + r2 z + ••. = (sO + sl z + s2 z .. _+ •.• )z 

-1 -2 + Uo + u1 z + u2 z + ••• 

·+k 
Hence, equating coefficients of zl , 

(1.15) 
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Now, from equation 1.13, it can be seen that the sequence {ui } 

is formed from the convolution of the sequence {wi }, and the 

sequence {y~} which forms the z transform Y*(z). Hence each 

term ui is a linear combination of the terms from the sequence 

{wi }, which are samples from a white Gaussian waveform with zero 

mean. It therefore follows that each ui must have zero mean. 

Hen ce, from equa ti on l. 15, 

where ui+k is a random variable with zero mean. Each element 

Si is then detected as the possible data element value which is 

closest to r i +k. 

The random variables ui "are formed from a linear combination 

of the independent random variables wi ' so the ui terms will not 

be independent of each other. This fact is of no disadvantage 

if the linear equalizer is used as a detector, in the manner des­

cribed above. The linear equalizer is, however, sometimes used in 

conjunction with other detection processes, as mentioned in Section 

l.03. When this equalizer is used with a V.A. detector, it is 

usually placed between the detector and the transmi ssion path. 

Then the equalizer's coeffi cients are chosen in such a way, that 

the combination of channel and equalizer has a shorter impulse 

response than that of the channel alone, (i .e. the sampled impulse 

res ponse of the combina ti on has fewer componen ts than that of the 

channel). As far as the V.A. detector is concerned, the original 

channel has then been repl aced by one with fewer components in its 

sampled impulse response. In Chapter 2, it is shown that the amount 

of computati on requi red by the V. A., increases rapi dly with the num-
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ber of components of the channel's sampled impulse response. It 

may therefore be seen that the use of a linear filter, with the 

V.A. detector, will allow a reduction in computation. 

The combination of linear filter and V.A. detector, does 

have the drawback that the linear filter usually causes a corre-

lation of the noise samples (i.e. noise samples which are inde­

pendent, at the input to the filter, will give rise to noise 

samples which are not independent at the filter's output). This 

correlation effect may cause some loss in the tolerance to addi tive 

white Gaussian noise, of the detection process. 

It may be shown that a linear fi 1 ter which causes only pure 

phase distortion (see Section 1.11), does not cause a correlation 

of the noise samples [6]. It may not, however, be very beneficial 
. . 

to use this type of filter with the V.A. detector, if it cannot 

effectively shorten the sampled impulse response of the trans­

mission channel, to any great extent. This type of pure phase 

equalizer can be used with advantage though, with some of the 

detection processes described in Chapter 3. 

1.11 Phase Distortion and Amplitude Distortion 

Consider a linear filter with sampled impulse response (yO' 

Yl''''' yg)' The z transform of the sequence yO' Yl' ... , Yg is 

defined by 

-1 
Y(z) = Yo + Yl Z + ••• + y z-g g • 
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The reverse of this z transform is given by 

-1 9 X(z) = Yg + Yg-1 z + ••• + Yo z-

A filter causing pure phase distortion may be defined as one 

whose sampled impu1 se response (Yo' Yl' ... , Yg) is such that 

Y(z) X(z) " z-k 

for some integer k ? 0. Hence, the z transform of the filter 

formed from the filter Y(z) in series with X(z), is z-k. Hence 

the combination of the two filters has a sampled impulse response 

of the form (0, 0, 1, 0, - , 0), and no distortion is caused by 

the combi ned filter .. i.e. apart from the delay introduced by the 

combined channel, 

,X(z) = [Y(z)(l 

Therefore a channel causing pure phase distortfon may be defined 

as one whose z transform Y(z), is such that its reverse X(z), is 

also its inverse (neglecting the delay represented by the term z-k). 

It is not possible, in fact, for the equation 

Y(z) X(z) = z-k 

to hold, for any finite sequence yO' Y1' .•. , y. So, strictly 
. g 

speaking, pure phase distortion is not possible with a filter (or 
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transmission channel) whose sampled impulse response has a 

finite number of components. However. if the number of terms 

is fairly large. it is possible to get close to the case of 

pure phase distortion. 

A filter introducing pure amplitude distortion. may be 

defined as one whose sampled impulse response (yO' Yl' •..• Yg) 

has an odd number of terms. and is symmetric in the sense: 

Y~g-l = Y~g+l 

A typical filter or transmission channel. will introduce 

both amplitude and phase distortion. It is not usually a 

straightforward matter to determine the degree of each of these 

types of distortion. from a given sampled impulse response. 

It is possible to assess the degree of amplitude distortion. 
--~ 

to some extent. as follows. 

Let the sampled impulse response of the channel or filter 

under consideration be (YO' Yl' .... Yg). as before. Let 

for i = O. 1. 

1 
d = 0-

9 

(where y. ~ 0 for i not contained in 
1 

the set {D. 1. . .. , g}) 

... , 9 and let 

g-l 
L Ib·1 . 0 1 1= 

(1.16) 
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Then it may be shown [6] that the magnitude of d gives a measure 

of the degree of amplitude distortion, i.e. a large value of d 

indicates that the amplitude distortion is severe. It will be 

seen in Chapter 4, that the channels with the largest values of 

d, usually give the poorest tolerance to additive white Gaussian 

noi se. 

1.12 The Feedback Transversal Equalizer Using Decision Directed 
Cancellatlon [6, 14, 20-24) 

Consi der a baseband channel with sampl ed impulse response 

(yO' Yl' ... , yg), in the data transmission system described in 

Section 1.02. The sampled received signal will form a sequence 

{r
i

} such that 

(see equation 1.09), where sO' sl' ... , sn is the data sequence 

"and {wi } is a sequence of noise samples. The detector described 

below works reasonably well, if one of the components Yi is large 

in comparison to the others. Suppose 'that y. is such a component, 
J' 

for some integer j such that 0 ~ j ~ g. A training signal of known 

elements si is sent out by the transmitter, before the actual data 

sequence, so that the detector has knowledge of the recent elements 

transmitted. Each data element si is then detected from the received 

signal sample r
i

+j , as follows: 

From equation 1.09, 
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+ Y'+l s. 1 + ... + Y s. +' + w. +' J 1- 9 1 J -g 1 J 

By the time ri+j arrives at the detector, si_1' si_2' ••. , si+j_g 

will have been detected. Hence the expression 

t 1·+J· =Y'+l s. 1 +y. 2 S. 2+ ... +y. s .. J 1- J+ 1- 9 l+J-g 

can be calculated, assuming that s. l' s. 2' ... , s'+' have 
1- 1- 1 J-g 

been detected correctly. Now 1 et 

Then 

. . 

Now, if Yj is much larger than YO' Yl' ... , Yj-l, 

will be small and 

s. . 1 + l+J-

(1.17) 
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s. is then detected as the possible value of a data element which 
1 

is closest to Ri+/Yj' 

If the first channel component Yo is reasonably large, it 

is usually best to take j = 0, so that each data element si is 

detected from r i . Then 

=yls'1+Y2s'2+"'+Y s. 1- 1- g 1-g 

and 

Then Ri depends only on si and not on 5i _l , Si-2' ... ,_Si_g' so 

tha t the con tri b uti on to Ri from all da ta e 1 emen ts 0 ther than si' 

has been removed before si is detected. If Yo is small, this 

arrangement does not perform very well, as the value of Ri will 

then be i nfl uenced more by the noi se componen t wi than by Yo si' 

The expression for t i +j is evaluated by means of a linear trans­

versal fi lter and is subtracted from r i +j , as shown in Figure 1.09. 

The decision mechanism then selects the possible value of a data 

element which is closest to Ri+/Yj and assigns this value to si' 



+ 

FIGURE 1.09 
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1.13 A Combined Decision Feedback and Linear Equalizer 
[6, 14, 20-24] 

Thi s is a detector whi ch makes use of both of the processes 

described in Sections 1.10 and 1.12. Consider the case where the 

feedback transversal equalizer of Section 1.12, is used with j chosen 

such that Yj is the largest component of the sampled impulse response 

(YO' Y1' .•. , yg), of the channel. From equation 1.17, 

si+j_l + ... + Yj-l $i+l + wi +j ) 

Yj 

In this expression for si' the tenns containing Yj+l' Yj+2' .•. , Yg 

are not present, as these have been removed from r i +j , by means of 

the feedback equalizer. si is· then detected as the possible value 

of a data element which lies closest to Ri+/Y j . If the terms 

YO' Yl' ... , Yj-l are significantly large, they will make up a 

sizeable contribution to the right hand side of equation 1.17. 

It will then no longer be true that 

---' 

In this case, the perfonnance of the decision feedback equalizer 

may not be satisfactory. However in many cases it is possible to 

use a linear feed forward transversal filter, to effectively remove 

the terms containing YO' Y1' ... , Yj-l' from the right hand side of 

equation 1.17, i.e. it may be possible to choose the linear filter 

in such a way, that the sampled impulse response of the channel in 

series with the linear filter, is (ayj , aYj+l' ... , ayg) for some 

constant a. [6, 14]. A diagram of a detector using thi s type of 
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linear filter, and a decision feedback equalizer, is given in 

Figure 1.10. With the terms involving YO' Yl ' ... , Yj-l removed, 

equation 1.17 becomes 

and the data sequence {si} may be detected more accurately. 

There is in fact, great freedom of choice in the particular 

combination of linear filter and feedback transversal filter used 

to equalize the channel. It is therefore possible to choose an 

arrangement which maximises the tolerance of the system to addi­

tive white Gaussian noi se [6, 14]. 

Let the z transform of the channel's sampled impulse response 

be gi ven by 

A(z) 

-1 -1 -1 
for some integer p, where ul ,u2 .•. , up are the roots of 

A(z); Let Q -1 Q -1 Q -1 be the roots whi ch sati sfy the "1 '''2 , ... , "q 

condition Ifl.-ll > 1, where 0::: q ~ p. Then it may be shown, that 
. 1 

the combination of equalizers which gives the greatest tolerance to 

additive white Gaussian noise, is the one in which the linear filt:~r 

has the z transform 

- -1 --1 (fl l z - 1) (fl2 z - 1) ... 

(z-'-fl) 
q 

~Ihere 8i is the complex conjugate of fl i . [6, 14]. 
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1.14 Probabil ity of Error for the Combined Linear and Decision 
Feedback Equalizer, when used wlth the Ideal Channel 

Consider the optimum combination of equalizers described in 

Section 1.13, when used in conjunction with the ideal channel. 

(A channel with unity as the only non zero component of its impulse 

response). With this channel, each data element si is detected 

according to the position of the corresponding received sample ri' 

relative to a set of decision thresholds. The detected value of 

si is the data element value which is closest to r i . 

First consider the case of a binary signal, so that the 

possible values of each data element s., are ± 1. From equation' , 1 

1.09, 

(taking yO = 1 and Yi = 0 for i t- 0) where wi is a normally dis­

tributed random variable, with zero mean and variance 0 2 • 

'Suppose that si = 1. Then 

si will be detected as a 1 or -1, according to whether r i is closer 

to 1 or -1, respectively. Hence si will be detected incorrectly 

if W{ -1. Similarly when si = -1, it will be detected incorrectly 

if wi > 1. Let 

Pe = Probability (si is detected incorrectly). 
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Then: 

P~= Prob (si = 1 and wi < -1 or si = -1 and wi > 1) 

= Prob (s. = 1 and w
1
.<-1) + Prob (s. = -1 and w. > 1) 

1 1 1 

as the events si = 1 and si = -1 are mutually exclusive. 

Therefore 

Pe = Prob (si = 1) Prob (wi <-l) + Prob (si = -1) Prob(wi > 1) 

The possible values of si are assumed to be equally likely (see 

Section 1.02) so 

Prob (si = 1) = Prob (si = -1) = ~ 

Hence 

w
i 

is normally distributed with zero mean so, from the symmetry 

of the distribution, 

--. ./ 

Prob (w.< -1) = Prob (w. > 1) 
1 1 

• • . Pe = ~ Prob (wi > 1) + ~ Prob (wi > 1) 

= Prob (\~i > 1). 

If the variance of wi is specified, Prob (wi > 1) can be found from 

tables of the normal probability distribution, and Pe can be 

eva 1 ua ted. 
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Now consider the case of a quaternary signal, so that the 

possible data element values are ±1 and ±3. From equation 1.09, 

si is detected as the data element value which is closest tor
i

• 

For a case when si = 3, si will be detected incorrectly if r i is 

closer to one of the values 1, -1, -3, than it is to 3. Hence si 

wi 11 be detected incorrectly if 

or 

3 + w. < 2 
1 

w. < -1 
1 

Similarly, if si = -3, it will be detected incorrectly if W
i 

> 1. 

Now consider a case where si = 1. Then 

r = 1 i 

and an error will occur if r i is closer to one o"f the values 3, -1, 

-3, than it is to 1. Hence si will be wrongly detected if IWi I > 1. 

_ Similarly, when "si = -1, there will be an error if IWi I > 1. 

Hence, for the quaternary signal, 

= 3 and w. < -1) or (s. = 1 and IW1'I > 1) 
1 1 

or (Si = -1 and IWil > 1) or (si = -3 and wi >l)] 
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~ Prob (s; = 3) Prob (wi<-l) + Prob (s; = 1) Prob (lw;1 > 1) 

+ Prob (s; = -l)Prob (Iw; I> 1) + Prob (s; = -3) Prob (w; >1) 

Prob (I w·1 > 1) = Prob (w. < -1 or w. > 1 ) 
111 

= Prob (W; < -1) + Prob (w; > 1) 

= 2 Prob (w. > 1) 
1 

as the distribution is symmetric about zero. Therefore 

Pe = Prob (s; = 3) Prob (wi > 1) + 2 Prob (si = 1) Prob (wi > 1) 

+ 2 Prob(si = -1) Prob (wi>l) + Prob (si =3) Prob (wi>l) 

The four possible values of a data element are equally likely, and 

occur with probability!. Therefore 

Pe = Prob (wi > 1) 0 + 2 x ! + 2 x ! + !) 

3 = "2" Prob (wi > 1). 

As for the case of a binary· signal, this probability of error, may 

be eva 1 ua ted if the vari ance 0
2 is specifi ed. 
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1.15 A Detection Process which deals with Data Transmitted in 
Di s ti nct Groups 

Consider once again the data transmission system described in 

Section 1.02, but with the modification that the data is sent in a 

number of distinct sequences, of the form sO' sl' .... , sn' The 

corresponding sampled received signal is given by 

for i = 0, 1, ... , n + g, (see Equation 1.09). 

si is defined to be zero for i<O or i = n + 1, n + 2, ... , n + g. 

Thus there is a gap in transmission, of at least g elements, after 

the sequence sO' sl' ... , sn is transmitted. (yO' Y1' .. , Yg) is, 

of course, the sampled impulse response of the channel. 

Now let 

Let Y be the (n+ l) x (n + g+ l) ma tri x gi yen by 

y = YO' Yl' •.. , Yg, 0, 0, .••••• 0 

0, YO' Yl' .. , Yg' 0, 0, .... 0 

.. 

0, 0, ... ••••• Y 9 
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so that the jth· row of Y is 

(0, 0, '" 0, Yo' Y,. .. ,' Yg, 0, 0, ", 0) 

j-l zeros n+l-j zeros 

Then, from equation 1,09, 

R=SY+W 

S is a vector with n+ 1 components, each of which has m possible 

values, The number of possible values of 2. is therefore mn+l , 

Let these values be denoted X. for j = 1, 2, .. ,' mn+ 1, Then 
-J 

it may be shown [6] that the vector X. with greatest probability 
-J 

of bei ng equal to 2., is the one for whi ch 

IR-X.YI 
- -J 

is minimised, (Where IB. - ~j YI is the Euclidean distance between 

the vectors B. and ~j Y), Thi s vector ~j is then s ai d to gi ve the 

optimum estimate of the data sequence sO' s1' ,'", sn' 

.-' 

---, ~ 
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1.16 An Advanced Decision Feedback Equalizer 

From equation 1.09. the received signal sequence is given 

by 

r. = ~ Y s. h + W. 
1 h=O n 1- 1 

for i = O. 1. 2 ...... where (yO' yp .... Yg) is the sampled 

impulse response of the channel. {Si} is. of course. the data 

sequence andwi is a sample from a white Gaussian waveform. si 

is defined to be zero for i < O. 

First consider the detection of sO' The received samples 

rO' r l ..... rg each contain information about So (see equation 

1.09). Hence there is no reason whY only one of them should be 

used in the detection of sO' a,s in the case of the decision feed­

back equalizer described in Section 1.12. With the more sophi­

sticated version o(this detector. any number p + l •. of samples. 

may be used in the detection of each data element. 

Let 

R = (rO' r l • · .. , rp)' 
---' 

S = (sO' 51 • · .. , sp)' 

!'!. = (wO' wl • · .. , wp) 

and let Y be the (p + 1) x (p + 1) upper triangular matrix given 

by 
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y = YO' Yl' ........ , Yg., 0, e. e •••••••• 0 

o , YO' Yl" .......... ., Yg , 0 .......... 0 

0, 0, YO' Yl' •••..••••• Yg' O •••. o 

yo,yl'···········~g 
• 

Then, from equation 1.09, 

R=SY+W (1 .18) 

~ is a vector with p + 1 components, each of which has m possible 
. . p+l va 1 ues. Let these value s be denoted X., for J = 1. 2, ... , m • 

-J 

Then it may be shown [6] that the vector X. which has the highest 
. -J 

probability of being equal to S when R is given, is the one for 

which 

IR - X. Y I - -J 

is a minimum. This quantity may be evaluated for each value of 

j, to give the optimum estimate Xj of~. In this detection process, 

the first component of the optimum ~j is taken as the detected val ue 

of sO' and the other components are discarded. 

From equa tion 1.09, 



51 

r. = ~ Yh s'_h + wi 1 h=O 1 

for i = 0,1,2, ..... , where si = 0 for i<O. 

These equations can be rewritten in the form 

T T 
sp+1) y + 

T r1 '; So Y1 + (sl' s2 ' ... , w1 

r 2 Y2 w2 

Yg 

0 

0 
....... 

rp+1 wp+1 

where T denotes the transpose of a vector. Now redefine the vec­

tors B., ~ and !i as fo 11 ows : 

Let: 
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R = r 1 
T - So Y1 

T 
• ~ = 51 ~ndW = w1 

T 

r 2 Y2 52 w2 
• • • 
Y9 

0 
• 
• 

rp+1 0 sp+1 wp+1 

Then it can be seen. that the above equation can be written in 

the form 

R=SV+W 

and that equation 1.18 holds -for these new vectors B. ~ and g. 

Now denote the mP+1 values of .the new vector S by X •• for 
- -J 

p+1 j=1.2 •.••• m • Then an optimum estima te X .• of S. can be 
-J -

found as before. and the first component of this estimated vec­

tor ~. taken as the detected va1 ue of 51' The process continues 

in thi 5 way until the complete data sequence has been detected. 

When So is detected. the vector B is redefined by' 

R = r1 
T - So Y1 

T 

r 2 Y2 
• 
• 
Y9 

0 
• 

r p+1 0 
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Thi s s ubtracti on of vectors is performed by mea ns of a del ay and 

buffer store, as shown in Figure 1.11. Consi der the stage of the 

detecti on process in whi ch the 

detected. The output from the 

data element Sj is about to be 

de 1 ay at thi s time is s. l' wh i ch J-
is multiplied by the pt1 component vector 

(Yl' y2'····' Yg , 0, •... , 0) 

The resu1 ting vector is then subtracted from 

which is held in a buffer store, so that the new vector R is formed. 

The detector then selects the vector X. such that 
-J 

IR- X . VI -J 

is minimised, and detects Sj from the first component of this 

vector. 

..--



-
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CHAPTER 2 

2.01 Data Transmission without Intersymbo1 Interference 

Consider the model of a data transmission system described 

in Section 1.02, in which the data elements si modulate a series 

of unit impulses o(t). Each si can take on the m values: 

-m + 1, - m + 3, •••.• , m - 1 

for some given even integer m. The transmi~ted signal then takes 

the form 

n 
L s. a (t - iT) 

. 0 1 1 = 

where T is the time interval between successive data elements si' 

The transmission channel is a· linear baseband channel with impulse 

response y(t). Let the duration of y(t) be T*, so that y(t) is 

only non zero for 0 ~ t ~ T*. 

Now consider a case where there is no noise introduced by 

the system, and the interval T between successive data elements 

being transmitted, is greater than T*. Then the response of the 

channel to one data element will have died away before. the next 

element is transmitted, and there will be no intersymbol interfer­

ence (i .e. no overlapping of signals). The channel is linear, so 

an input So aCt) will give rise to an output So y(t). To determine 

the value of so' the detector can compare the output So yet) with 

the m possible outputs sy(t), where 5 may take the values 

-m + 1, -m + 3, ..... , m - 1. 

The value of 5 for which sy(t) = So y(t) is then taken as the 

. detected value of so' 
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Now consider the case where a white Gaussian noise waveform 

is added to the signal, at the end of the transmission path, as 

shown in Figure 1.01. Then, for an input So a(t), the output from 

the channel is given by 

r(t) = So yet) +w(t) (2.01) 

where the value of wet), at any time, is a sample from a normal 

distribution with zero mean. 

Let the maximum value of the impulse response yet) occur 

at t = to' and let Yo = y(to)' Also let 

Then, from equation 2.01, 

In general, the sampled response r i of the received signal at 

time t + iT is given by . 0 

(2.02) 

where wi = w(to + iT) • 

Now, if wi = 0, ri may be compared to s Yo' for s taking the 

values -m + 1, - m + 3, ••.•. , m - 1. Then si may be detected as 

the value of s for w hi ch ' 
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ri = s Yo' 

In general, the noise samples wi are non zero, and are random 

variables. It is then not possible to derive the transmitted 

sequence {si} with certainty, from the received sequence {ri }. 

It is h0l1ever possible to find the sequence {si '}, which has the 

greatest probability of being equal to the transmitted data 

sequence. 

2.02 Maximum Likelihood Detection 

Now consider a more general situation than the one described 

in Section 2.01, in which the transmitted data sequence: 

gives rise to a received sequence: 

where g 2 O. 

, Let 

be the joint probability density function (pdf) of the random 

variab les 

r 0' r l , ... , r n+g 

when 
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are given. 

Assume that the m possible values of each data element si 

are equally likely. Then the maximum likelihood sequence 

when the received sequence {ri } is given, may be defined to be 

the sequence {si} which maximises the function 

A detector which produces the maximum likelihood sequence 

is called a maximum likelihood detector. 

Theorem 2.01 

Assume that the m possibl e values of the data elements si 

are equally likely and statistically independent. Then the maxi­

mum likelihood sequence {si'}, is the estimate of the transmitted 

data sequence, which has the least probability of being in error. 

Proof: 

Let 

r = (ro' r r) l' •.• , n+9 

gl (~' I!.') = Prob (~ =~' given that!. = !.') 

92 (!.') = Probability density function (pdf) of !.' or the joint 

pdf of ro' rl , •.•. , rn+g 
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9 (s ') = Prob (s = s') 3 - - -

Then 

9 (s'/r') 9 (r') = f (r'/s') 9 (s') 1-- 2- -- 3-
(2.03) . 

(see appendix 1). 

The m possible values of the data elements si have been assumed 

to be equally likely and statistically independent, so all 

sequences 

have a probability of (1/m)n+1 of occurring. Therefore equation 

2.03 gives 

9 (s'/r') 9 (r') = f(r'/s') (1/m)n+1. 1--2- --

The only terms which depend on~' are 

g (s'/r') 1 - - and fC!:.' /E.')' 

Hence the maximum likelihood sequence E.', which maximises f(,!:.'/E.') 

for given ,!:.', a1 so maximi:ses gl (~' /,!:.'). But 

g (s '/r') = Prob (s = s' given that r = r'), 
1-- -- --

so the· maximum likelihood sequence E.' also maximises 

Prob. (~=~' given that r = ,!:.'). 



60 

Therefore the maximum likelihood sequence ~', is the one which 

has the greatest probability of being correct. 

End of proof. 

Now return to the problem of Section 2.01. From equation 

2.02, 

r. = s· y + w. , , 0 1 

where wi is N (0, 0
2

) i.e. wi is a normally distributed random 

variable with zero mean and some variance 0 2 • Therefore r
i 

is 

N(s,. y ,02 ) if S. is given. o , 

A random variable X which is N(ll, 0 2 ), has a probability 

density function (pdf) given by 

g(x) 

Hence the pdf of ri' when si is known, is given by 

1 (r. ' - s. Y )2 

f1 (r·'/S.) (-
, , 

o ) = -- exp , , 
offrr 2 0 2 

(2.04 ) 

For this particular problem r i depends only on si;-and not on 

- any of the other data elements. (See equation 2.02). Hence the 

received signal samples r i are independent of each other, and the 

conditional pdf of.!:, when it is given that ~ = ~', is given by 

n 
f(.!:'/~') = iUO f1 (ri'/~') (this is a standard result). 

But each r i depends only on si' and not the 'other data elements. 

. . f (r.'/s') = f1 (r·'/s.') 
1 , - " 
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and 
n 

f (r'/s').= IT f (r.'/s.') 
- - .• 0 1 1 1 

1= 

Now, using equation 2.04 gives 

f (!::' /~' l = ~ _1_ exp [_ 
i =0 0/2TI 

1 (n+l) n 

(ri '. - si' Yol2 1 

202 

_S.'y)2 
= (-----) exp [- 2 

offrr i =0 
·1 0] 

2n f (.!:.'/~') = 2n 
n+l 

[(_1_) ] 
offrr 

1 n 
1: 

20 2 i =0 
(r.' - s.' y)2 
110 

(2.05 ) 

The maximum likelihood sequence {so '} is the one which maximises 
1 

f (.!:.'/~'),and 2n x is an increasing function of x. Hence this 

.sequence {si'} also maximises 2n f (.!:.'/~'). Therefore, from equa­

tion 2.05 the maximum likelihood sequence {si '} is the one for 

whi ch 

n 
I 

i=O 
(r.'-s.'y)2 
110 

-~ 

is minimised. In this particular situation, the maximum likelihood 

estimate can be found by choosing each s.' separately, in such a 
1 

way tha t (r
1
.' - s.' y ) 2 is mi ni mi sed. 

1 0 

Note that the usual definition of the distance between two 

vectors 
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and 

n 
( L 
i =1 

Hence choosing the sequence {si} which minimises 

n 
L 

i=O 
(r.' - s.' y )2 
110 

is equivalent to finding the vector 

which, is closest to 

Also note that 

represents the set of all possible received signal vectors, in 

- the absence of noise. (Let wi = 0 for i = 0,1, ... , n in 

equation 2.02). Hence the maximum likelihood sequence {si}' may 

be found by considering the set of all possible received signal 

vectors, in the absence of noise. Then the vector from this set 

which is closest to the actual received signal vector, is the one 

corresponding to the maximum likelihood sequence {si}. 
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2.03 Data Transmission with·Intersymbol Interference 

Now consider a case where the time T, of the separation 

between transmitted digits, is less than the time T* that it 

takes the channel's impu1 se response to decay to zero. Then the 

output of the channel at any time will depend upon several of the 

transmitted digits, thus giving intersymbo1 interference {i.e. over-

lapping of signals}. 

Let the input to the channel be described by the function 

n 
I Sh /) (t - h T) 

h=O 

as before, so that the data elements si are transmitted at intervals 

of time T. The channel's impulse response is yet} {see Section 

1.02}, so the output at time t is given by 

n 
r{t} = I Sh yet - h T} +w(t} 

h=O . 
{2.06} 

{this is the same as equation 1.02} 

Let p and q be the smallest and largest integers respectively, such 

that 

y(pT} f 0 and 

y(qT} f O. 

Let 

g = q - p 

and Yi = Y [(p + i}T] for i = 0, 1, ... , g. 
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Then 

is called the sampled impulse response of the channel, when sam­

pled at intervals of T seconds (see Figure 2.01). T is the inter­

val between successive data elements being transmitted, so the 

number of components of the sampled impulse response depends on 

the rate of transmission of data. (The number of components also 

depends, of course, on the duration of the impulse response yet)). 

Now let 

r i = r [(p + i)T) and 

wi = w [( p + i) T) 

Then 
i 

~ h=l-g 
sh y. h + W. 1- 1 

where si has some fixed given value for i < 0 or i > n 

(see equation 1.09), 

or 

where 

i 

. zi = h=~-9 sh Yi-h 

(2.07) 

(2.08) 

(2.09) 

Now suppose that a random variable X is normally distributed with 

mean 11 and variance ()"2, i.e. X is N(11, ()"2). Then it is a standard 



y(t) 

y(pT) r 
pT 

( ) 
T 

- J. y(qT) 

t 

FIGURE 2.01 
A channel's impulse response 
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result that X + c is N(Jl +c, cr2
), for any given value c. Let 

the data sequence {s.} be given, so that the sequence {z.} is 
·11 

also given. wi is assumed to be N(O, cr 2
) for some value of cr, 

and 

(see equation (2.08)), .'. r i is N(zi' cr 2
). 

Hence, if {si} is given, r i has a probability density function 

gi ven by 

(2.10) 

and the samples r. are independent random variables. 
1. . 

It is also a standard result that, for a sequence of indepen­

dent random variables {ri }, the joint probability density function 

(pdf) of 

satisfies the equation 

and fi (ri ') is the pdf of r i . 

where IT denotes 

the pt'oduct of the 

n+g+l tenns 
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Now let 

be the joint pdf of 

when the sequence {s.} is given. Then this joint pdf satisfies 
. 1 

the equation 

... , 

when {si} is given. 

n+g 
= 11 

j=O 

Zi is a function of the terms of the sequence {si} so {zi} is 

. given when· {s.} is given. 
1 

Therefore 

n+g 
= 11 

i =0 

n+g 
= 11 f.(r.'/z.) 

i =0 J J J 

as rj depends only on Zj and not on the other terms of the series {zi}' 

(see equation 2.08). Hence from equation 2.10, 



or 

where 

and 

f(!:' /E..) = 
n+g 

IT 
i=O 

r ' = (r' r' r' ) 0' 1 ' ... , n+g 
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• • R-n f(.!:' /E..} = R-n 
1 ntfl+ 1 

[(-) 
affTI 

n+g 
= IT 

i=O 

ntg 
] - L 

i=O 
(2.11 ) 

R-n(x} is an increasing function of x, so JW f(.!:'/E..} is maximised 

when f(.!:' /E..} is maximi s ed. Hence the maximum 1 i ke 1 i hood sequence 

{si'}, is the sequence which minimises 

when {ri } is given, where 

i 
zi = L 

h=i-g 

-_.-' 

(this follows from equation (2.lltand the definition of the maxi­

mum likelihood sequence, given in Section 2.02). 
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n+g 
= L (rk -

k=O 
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n+g 
= ~ 

R=O 

Then g(~) is called the cost function for the sequence 

and the problem of finding the maximum likelihood sequence is equi­

valent to finding the sequence {si} which minimises g(~). 

For the case of an m level signal, each si make take on m 

possible val ues. Then 

can take on mn+l possible values corresponding to the different 

poss ib 1 e combi na ti ons of the sequence 

One method for finding the maximum likelihood sequence is to 

evaluate g(~) for each possible data sequence, and select the 

sequence corresponding to the minimum value of g(~). It will be 

shown in the following section, that the problem of finding the 

maximum likelihood detected sequence, is equivalent to that of 

finding the shortest path through a given trellis diagram. This 

shortest path problem can then be solved by a technique known as 

dynamic programming. A dynamic programming algorithm (the Viterbi 

Algorithm) will then be described, which can produce the maximum 
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likelihood sequence with much less computation, than that which 

would be required to evaluate g(~) for all values of s. 

2.04 The Trellis Diagram 

Define ~ by 

for k = 0, 1, 2, .•. , n+g+1, where sk is defined to be equal to 

-m+1 for k < 0 or k > n. Clearly, for any sequence 

there is only one corresponding sequence 

Let 

; Then the problem of minimising g(~) is transformed to one of fi nding 

the sequence 

which mi nimi ses 
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Each data element si can then take on m different values and ~ 

depends on g of these elements. therefore. Qk can take on mg 

different possible values. Now consider the trellis diagram 

shown in Figure 2.02. In this diagram. each vertical line rep­

resents a vector Qk' and each hori zonta 1 1 ine represents one of 

the mg possible vector values that Qk can take on. The intersec­

tion of a vertical and a horizontal line is called a node. Now 

any sequence of vectors can be represented by a path through 

the tre 11 is. pass i ng through one node for each vector ~. 

From the definition of Qk' and the fact that Si = -m+l for 

i < 0 and i > n. it can be seen that 

.9.0 = (-m+l. -m+l ••.•• -m+l) 

and 

.9.n+g+l = (-m+l. -m+l • ... , -m+ 1). 

. Hence the path through the trellis must start at point A. on the 

diagram. and finish at point B. (Both of these points lie on the 

horizontal line representing the appropriate vector value). 

ExampZe 2.01 

Now consider a channel with sampled impulse response 

being used in conjunction with a binary data signal. so that each 

Si has the possible values ± 1. For this channel. 9 = 2 so 



~ 
(-m+.l,-m+l, .... , -m+l A 

: -m+ 1, -m+ 1, ••• -m+ 1 ) 1\ 
V 
Nodes 

/ 

FIGURE 2.02 

A trellis diagram 

I 
I 
I 
[ 

.!in+g+ 1 
B 
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Suppose that n = 4 so that the transmi tted message is 

with si defined to be equal to -1 

for i < 0 or i > 4. Then 

~ = (-1, -1) and 

.9.7 = (-1, -1) 

2J< can take the values 

(1,1), (1,-1), (-1,1) and (-1,-1) 

for k = 2, 3, 4 and 5 

Let 

for this example. Then 

.9.1 = (-m+1, so) = (-1, -1) 

.9.2=(5
0
,51) =(-1,1) 

. .9.3=(51,52) =(1,-1) 

~ = (52' 53) = (-1, -1) 

.9.s = (53' 54) = (-1, 1) and 

~ = (54' -m+ 1) = ( 1, - 1) . 

_ ...... 



74 

Hence the path through the trellis diagram shown in Figure 2.03, 

exactly represents the transmi tted data sequence {si}' Note that, 

for any given vector 

Q. = (s. 2' s· 1) -1 1- 1-

there are only tI~o possible following vectors 

Q • +1 = (s. l' s l' ) , -1 1-. 

as s. 1 is given, and s. can take on only ~o values in this 
1- 1 

example. Figure 2.04 shows the transitions that are possible from 

any vector ili to a succeedi ng vector ili + l' 

Now return to the general case of an m level signal, and a 

channel whose sampled impulse. response has g+l components, so that 

Then, if ~ is given, Sk-g+1' Sk-g+2' ... , sk_1 will be given, and 

the foll owing vector: 

can take on m values corresponding to. the m possible values of sk'· 

Hence, from any node on the general trellis (Figure 2.02) represen­

ting a vector ilk' there are only m possible following nodes repre­

senting ~+l' 

It was shown in Section 2.03, that the maximum like1 ihood 

detected sequence {si}' is the sequence which minimises the func­

tion 



.9.0 Q1 Q2 Q3 ~ .25 ~ Q7 
(-1,-1) t-A-+"----.;=--~----r---*:----T---T_-___;;; 

(-1, 1) ~--+--~~:----+-~~r---~~---r~~ 

( 1,-1) ~---+----~--~~--~r----+----~--~ 
( 1, 1) L-_-J __ ~ __ -L __ ~ __ ~ __ ~_~ 

(-1, 1) 

\ 

FIGURE 2.03 
,Trellis for example 2.01 

1---4--f-----() (1, -1) 

FIGURE 2.04 

Transitions from one vector to another 



76 

n+g k 
L (r - ) 

k=O k h=k-g 

where si has some given fixed value for i < 0 or i > n. This 

function may also be written as 

where 

k 
= (rk - L 

h=k-g 

Now note that there is only one pair of vectors C~, ~~l) corres­

ponding to the data elements 

Hence 

is a function of ~ and ~+l' and the maximum likelihood sequence 

may be found by minimising the function 

where 

(It is assumed here that the sequence {ri} is" known). 
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Let the distance between tI~o nodes on the trellis diagram, 

representing ~ and ~+l' be defined to be equal to ~2) (~, ~+l)' 
Then any path through the trellis, through the sequence of nodes 

repres en ti ng 

.90, 2.,. .... , .9.n+g+ 1 

has 1 ength 

or 

But it has been shown above that the maximum likelihood sequence 

{si} may be found, by finding ,the sequence of vectors {Qi} which 

minimises 

Hence this maximum likelihood sequence may be found, by finding 

the sequence of vectors {<li}, which minimises the path length 

through the trellis diagram from point A to point B. i.e. the 

problem of maximum likelihood detection has been reduced to a 

shortest path problem. 
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2.05 The Viterbi Algorithm Applied to a Particular Example 

Now consider again, the problem of example 2.01, in which a 

two level signal is used with a channel whose sampled impulse 

response is (ao' al , a2). Let uk (I, J) be the length of the 

shortest path from poi nt A (on Fi gure 2.03) to the node (I, J)k' 

This is the node representing the possible vector'value (I, J) of 

~. Also let the sequence of vectors {Qi}' which gives the 

shortest path to the node (I, J)k be denoted 

{fi (k, I, J)} 

Note that each of the vectors in this sequence is a function of 

k, I and J. 

The Viterbi Algorithm (V.,A) is adynamic programming algo­

rithm, which sets up a relationship between the shortest paths 

to the four ~ nodes, and the shortest paths to the four ~+l 

nodes. This is repeated for all values of k until point B, on 

, the trellis, is reached. 

For this example, 

_ . .-' 

and s.;; -1 for i < 0 or i > 4. Therefore 
1 

ilo = (-1, -1). 

From Fi gure 2.04, it can be seen that there are only two poss ib le 

values for Ql' 
Q1 can be either 

(-1, -1) or ( -1, 1). 
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The sequence of vectors {~l.i}, giving the shortest path from 

poi nt A to the node 

(-1, -1)1 

is {(-1, -1), (-1, -1)} 

(This is, in fact, the only path from point A to this node). 

i . e. 

{Po (1, -1, -1)} = {(-1, -1), (-1, -1)} 
-1 

(2.12) 

Simi 1ar1y 

{Po (1, -1. 1)} = {(-1, -1), (-1, 1)} 
-1 

(2.13) 

The 1 ength of the pa th to the .node 

(-1,-1)1 

is the distance between the nodes 

(-1, -1)0 and (-1, -1)1 

which is denoted 

d~ 2) [( -1, - 1 ), (-1, -1 ) 1 

(see Section 2.04), i.e. 

u1 (-1, -1) = d~2) [(-1, -1), (-1, -1)] (2.14 ) 

Similarly the 1 ength of the shortest path to the node 

(-1,1)1 
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is given by 

u1 (-1,1) = d~2) [(-1, -1), (-1, 1)] (2.15) 

The shortest paths to the four ~ nodes will now be derived. 

From Fi gure 2.04, the node 

(-1,-1)2 

can only be reached from the two nodes 

(-1, -1)1 and (1, -1)1 

However the node 

(1, -1)1 

is not allowable as it cannot be reached from point A of the 

trellis. Hence the sequence of vectors giving the shortest (and 

only) path from point A, tbthe node 

·(-1,-1)2 

is given by 

{~i (2, -1, -1)} = {(-1, -1), (-1, -1), (-1, -1)} (2.16) 

The 1 ength of the shortest path to the node 

(-1, -1)2 
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is equal to the length ·of the shortest path to the preceeding 

node (-1, -1) 1 

+ 

the dis tance between the two nodes. 

Hence 

The 1 ength of the shortest pa th to the node 

( - 1, - 1) 1 is given in eq ua ti on (2.14). 

u
2 

(-1, -1) = u1 (-1, -1) + df) [(-1, '-1), (-1, -1)] (2.17) 

The sho rtes t pa th to the node 

(-1, -1)2' 

and the length of this path, have now been found and are given 

by equations 2.16 and 2.17 re.spectively. The shortest paths to 

the other .9.2 nodes can be found in a similar manner. 

For k > 2, each ~ node can be reached from two ih<-1 nodes. 

The node 

.~ 

can be reached from the nodes 

(-1, I)k-l and (1, I)k-l 

(see Figure 2.04). Hence the shortest path to the node 

. (I, J)k is either: 
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(a) the shortest path to the node 

(-1, I)k_l 

+ the distance between the nodes 

(-1, I)k_l and 

or 

(b) the shortest path to the node 

(1, I}k-l 

+ the distance between the nodes 

(1, I)k_l and. (I,.J)k 

i .e .. 
(2) . 

Uk(I, J) = min [uk_l (K, I) + dk_l [(K, I), (I, J)]] (2.18) 
k= ±l 

Equation 2.18 holds for I = ±l and j = ±l. Let the value of K 

selected here, be Kl . (Kl wi 11, of course, be 'different for diff­

erent values of I and J). Then the sequence {Qi1, giving the shor­

tes t pa th to the node 

is the sequence {Qi} giving the shortest path to the node 

with the additional vector (I, J) 
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; .e. 

{fi (k, I, J)} ={fi (k-l, Kl' I)}, (I, J) (2.19) 

Equations 2.18 and 2.19 form the Viterbi Algorithm (V.A) 

for the problem of example 1, and they can be used recursively to 

find the shortest path, through the trellis, from point A to point 

B. 

2.06 Method for Dealing with Long Transmitted Data ·Sequences 

In Section 2.05 the V.A. was presented in a form which was 

quite suitable for the problem of example 2.01, in which the trans­

mitted data sequence had only five elements. With the V.A. used 

in this way, no data elements are detected until the shortest path 

from point A to point B of the trellis is found. This approach is 

however impracticable, if the data sequence, and hence the trellis 

diagram, is very long. Large amounts of storage would then be 

required, to hold the sequence of vectors {Qi}, giving the shortest 

paths to the various nodes of the trellis. 

One way of overcoming this probl em is to store no more than 

a given number N, of the vectorsi n the sequences {Qi}' giving the 

- shortest paths to each node of the trell is. Hence the sequence of 

vectors representing the shortest path to each ~ node, would con­

sist only of the appropriate values for the vectors 

{~-N+l' ~-N+2' ••. , ~}. 

In general, the trellis has mg nodes (see Section 2.04), so there 

will be m
g s~quences of N vectors Q., to store. 

-1 
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From equation 2.19 it can be seen that the shortest path 

to some given ~ node, is formed by adding a new vector to the 

sequence {Q.} of vectors, which represents the shortest path to 
-1 

one of the ~-l nodes. The sequence for the ~-l node will 

contain N vectors representing 

{~-w ~-Ntl' ... , ~-l}' 

Hence the vector representing ~-N must be deleted in order to 

store the sequence of N vectors for the ~ node. Before the 

vector ~-N is deleted, its earliest component (which represents 

s ) could be taken as the detected value of the data element k-N-g 

sk-Ntg' There will however be m
g ~-N nodes, and therefore many 

vectors representi ng ~-N' which must be deleted from the appro­

priate sequences of vectors. 'Each of the vectors representing 

~-N has an element representing Sk_N_g' which could be used as 

the detected value for the da ta element Sk-N_g' 

Now consider the 9.k node which has a shorter. possible path to 

it, from the poi nt A of the trell is, than any of the other ~ 

nodes. Let 9.k-l be the ~-l node which lies on the optimum path 

from point A to this ~ node. Then a reasonable strategy for 

detecting Sk_N_g' seems to be that of using the earliest component 

of the vector 9.k-N' which lies on the shortest path from A to.Qk_l' 

It has been found· from simulation tests that, for fairly large 

values of N, the shortest paths to each of the ~-l nodes, tend to 

pass through the same 9.k- N node. In this case there should be no 

errors in detection, due to the fact that only N nodes, of each 

path through the trellis, are stored. 
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2.07 A General Version of the Vi terbi Algorithm'with'Dec;sions 
made after a Fi xed Delay 

Consider again the problem of an m level signal being used 

with a channel with sampled impulse response 

This version of the V.A. stores a number of N component vec­

tors denoted 

Each vector Q. (1) has the form 
-J 

where N <! g and each xi represents one of the m possible values of 

the data element si. The algori thm begi ns each cycle of its 

detecti on process with mg such vectors ins tore, and with one 

vector corresponding to each possible combination of the g ele-

ments 

, Xj _g+l ' Xj _g+2' .•• , xj . 

(Thi s is true except for the fi rs t few cycl es, when the al gorithm 

is starting up). As before, the transmitted data sequence is 

denoted 

and si is defined to be equal to -m+l for i < 0 or i > n 
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Ini tially the process starts with one N component vector 

Q_ l (1) which is given by 

Q-l (1) = (-m+l, -m+l, ... , -m+l) 

This vector is then extended to m vectors, each with N+l compo­

nents, by the addition of the component Xo which can take on m 

values. These m vectors are given by 

A quantity called the cost function is now defined for the vector 

To (1, xo)' by the equation 

where ro is the first received signal sample. This equation can be 

written as 

_ ...... 

. where 

and 

[To(1, xo)]g+l is the vector formed from the latest 9+1 

components (i .e. the 9+1 components furthest to the right) of 

To (1, xo)· 
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!.[To(l, x
O

)]g+l is, of course, the scalar product of the 

two vectors. Note that the vector Y is the reverse of the channel 

vector (i .e. the reverse of the vector representing the channel's 

sampled impulse response). 

The next step of the algorithm is to find the vector 

To(l, xo) which has the smallest cost. This is equivalent to 

finding the value Xo which gives the lowest value of Vo(l, xo). 

The earliest element of this selected vector is then taken as 

a detected data element. (The earliest component is, of course, 

the.one furthest to the left). This first detected el'ement will, 

have the value -m+1, as .9.-1 (1) was defined to be the N component 

vector with all components taking the value -m+1. 

To comp1 ete the first cycle of the algorithm, the latest N 

e1 ements of the m vectors T (1, x ), are stored in the array Q (1). 
-E.. 0 -'0 

Them costs vo(l, xo) are stored in the array uo(!)" where I = 1, 2, 

••• , m. 

For the second cycle, the m vectors 9.o(I) are extended to the 

m2 vectors defined by 

-.---

where xl can take on the m'data 'element values. The costs for each 

of these m2 vectors are gi ven by 

where r 1 is the second received signal· sample. As before, the 

earliest element of the vector T1 (I, xl) with small est cost, is 

taken as a detected data element. 
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The latest N elements of the vectors Il(I,xl ) are then 

stored in the array Ql(J), where J = 1, 2, ... , m2
• The corres­

ponding costs vl(I, xl)' are stored in the array ul(J), to complete 

the second cycle of the V.A. 

Hence, after two elements have been detected (after two cycles 

of the algorithm), the number of vectors stored is m2
, where m is 

the number of signal levels. 

The process continues in thi~s way, with.each cycle beginning 

by extendi ng each of the vectors Q. (I) to the m vectors defined by 
. -J 

(2.20) 

The costs for these extended vectors are given by 

where rj+l is the j+2 nd received signal sample. The detected 

element is, as before, the earliest component of the vector Ij+l(I, xj +l ) 

with smallest cost. 

---" 

After the (g+l)st element has been detected, there will be mg+l 

- vectors denoted 19 (I, Xgl. Then in this cycle (and every following 

cycle) of the algorithm, all but m
g 

of these vectors are deleted 

from storage, before defi ni ng the vectors Q (J). The m9 vectors to 
. ~ 

be retai ned for the next cycl e, a re selected by keepi ng the vector 

with lowest cost, for each possible combination of the latest 9 

components of the vectors. Then the latest N components of the 

retained :vectors Ij+l (I, xj +l ) are stored in the array Qj+l(J), 
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and the costs Vj+l (I, xj +l ) for the retained vectors, are stored 

in the array uj+l(J}. (J may take the values 1,2, •..• m
g

). 

Hence each following cycle of the aigori thm will begin with mg 

vectors stored in an array denoted Q.(J), for some integer i. A 
-1 

flowchart for this form of the V.A. is given in Figure 2.05. 

Note that, instead of starting the detection process with 

one vector .~L 1 (1), a full set of m
g 

vectors, representing each 

possible combination of the latest g elements, could be used. 

These vectors woul d be denoted 

In this case the vector .~Ll (I), whose latest g components have 

the value -m+l, should be assigned a cost equal to zero and the 

other vectors ass i gned some very 1 arge cos t. Then all future 

vectors stemmi ng from the ones with large costs, will also have 

large costs, and will eventually be deleted from the system . 

. After 9 cycles of the process, the mg vectors retained by the 

a 19orithm will all have stemmed from the vector .~L 1 (I) with 

zero cost. These mg vectors will then be identical to those for 

the situation where the algorithm is started with just ~one vector 

-.Ll(l). 



Set 
Q( 1) = (-m+l, -m+l, ..... , -m+l) 

\ , 
N components , 

+ 
Set u(l) = 0 and K=O 

'" -\.-
Set 

l( I ,J) = [.Q.(I), J] 
for 

I = 1 , 2, ..... , mK and 
J = -m+ 1 , -m+3, .... . , m-l 

. 

+ 
Input a received signal 

sample r 

, 

Set 

v(I,J) = u(I) + {I . .£:!JI,J)]g+l - r}2 
for 

I = 1, 2, ••••• , m K and 
J = -m+ 1, -m+3, .... . , m-l 

t 
,'- Output the earliest component of 

the vector T( I' ,J') as a detected 
element, where (I' ,J') are the values 

for whi ch v(I,J) is a minimum 

t 
. If K=g, delete vectors so that, for 

each combination of the latest g 
componen ts, only the vector wi th 

sma lles t cos t is retai ned 

t 
Store the last N components of the 

retained vectors T(I ,J), in the array 
Q(.), and their costs v(I ,J), 
- in the array u(.) 

t 
If K <g, set K = K+l 

'V 

FIGURE 2.05 
A flow diagram for 'the Viterbi algorithm 
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2.08 Starting up Procedure for the V;A. 

The data elements si are defined to be equal to -m+l for 

i < O. Thi s means that the transmitter must send out a sequence 

of elements with the value -m+l, before the data sequence 

is transmitted. If the number of components of the vectors Q .(1) 
-J 

is N, then N elements with the value -m+l must be transmitted, 

and Q_ l (1) is defined to be the N component vector 

(-m+l, -m+l, •.•. , -m+l) 

This sequence of elements, which preceeds the data sequence, is 

called a training signal. It has been found that, if no training 

signal is used or the wrong training signal is used, the perfor­

mance of the detection process will be unaffected, apart from an 

initial burst of errors [33]. 

2.09 Number of Operations Required by the Viterbi Algorithm 

Apart from the first few cycles, the algorithm has mg vectors 

Qj(I) in store, at the start of each cycle. (m is the number of 

Signal levels, and g+l is the number of components of the channel's 

sampled impulse response). When a new received signal sample 

rj+l arrives, these mg vectors are extended to the m
g
+l vectors 

denoted lj+l (I, xj +l ). The costs for these extended vectors are 

computed using equation 2.21. 
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Note that, for a situation where the channel characteristics 

are constant, all possible values of the terms Yi Xj should be 

stored before the detection process begins. (Xj represents the 

possible values of the data element Sj)' Then no further multi­

plications are needed to form the scalar product 

in equation 2.21. One multiplication (or squaring operation) is 

carried out for the eval uation of each of the mg+l costs 

Vj+l (I, Xjtl ). Then, for each combination of the latest 9 ele­

ments of the vectors, all but the one vector with lowest cost is 

deleted from storage. There are m vectors Ij+l (I, xj +l ) con­

taining each combination of the latest 9 elements. so to find the 

one wi th small es t cos t requi res m-l comparisons. There are mg 

possible combinations of the latest 9 elements, so (m-l) mg com­

parisons must be made by the algorithm. during each cycle. 

Hence the V.A. must perform mg+l multiplications and (m-l) mg 

comparisons, for each data element detected,(?part from the first 

few). Clearly. if m and 9 are large (typically m = 4 or 16 and 

9 = 8). a vast number of operations must be performed, per detected 

_ element. 

Other operations, such as additions and the moving of numbers 

from one store to another, are also needed during the execution of 

the algorithm. These have not been considered here, but it is hoped 

that the number of mul tipli cations and comparisons requi red. will 

give a good guide to the complexity of the algorithm. 
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2.10 Probability of Error for the·V;A; Detector when used with 
the Ideal Channel 

From the description of the V.A. given in section 2.07, mg 

vectors are stored at the start of each cycle of the algorithm 

(where m is the number of signal 1 evels and g+l is the number 

of components of the channel's sampled impuls:e response). The 

channel whose sampled impulse response has just one non zero 

component, with the value unity, is called the ideal channel. 

It is ideal in the sense that it causes no change in the trans­

mitted data sequence. For the ideal channel, g=O, so the V.A. 

has just one vector in store at the start of each of the algo­

rithm's cycles. 

The first cycle of the algorithm begins with one N component 

vector given by 

Q -1 (1) = (-m+ 1, -m+ 1 , .... , -m+l) 

Thi s vectori s then extended to the m N+ 1 component vectors: 

.!o (1, xo) = (-m+ 1, -m+ 1, ..• , -m+ 1, xo) 

_ The cost for this vector is given by 

for Xo = -m+ 1, -m+3, •••. , m-l, 

where r is the vector whose components are the reverse of the 

channel's sampled impulse respons:e, and ro is the first received 

Signal sample (see sectiori2.07). 



94 

For the case of the ideal channel. g=O and I is the scalar 

with value unity. 

(2.22) 

Only the one of the vectors T (1. xo)' with smallest cost is retained 
. -0 

for the next cycle of the algorithm. Hence only one value of Xo 

will be available for the detection of So at a later stage. The 

retained vector 10(1. xo) is given by the va]ue of Xo for which 

the cost vo(l. xo) is a minimum. Hence. from equation 2.22. So 

is detected as the.data element value which is closest to ro' The 

latest N elements of the vector Ia(l. so'). are then retained for 

use in the next cycle of the algorithm. where so' is the detected 

value of so: Hence the vecto~ .9.0(1) is given by 

~(l) = (-m+l. -m+l ..... -m+l. s ') o 

. and the corresponding cost is given by 

= (s ' - r )2 o 0 
(2.23) 

This N component vector is extended to the m N+l component vectors: 

for xl = -m+l. -m+3 ••..• m-l. 

at the start of the following cycle. The cost for Il (1. xl) is 

given by 
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(see equation 2.21). But Y is the scalar with value unity so, 

using equation 2.23, 

(2.24) 

As before, only one of the vectors Il (1, xi) is retained for us e 

in the next cycle of the algorithm, so there.will be only one 

value of xl available for the detection of sl' The value of xl' 

giving the selected vector Il(l, xl)' is the value for which 

vl (1, xl) is smallest. Hence, from equation 2.24, sl is detected 

as the data element value which is closest to r l . (This is the 

data element value for xl' whi~h mi nimises vl (1, xl) ). 

The detection process continues in this way, so that each 

data element si' is detected as the one of its m possible values 

which is closest to r i . Therefore, with the ideal channel, the 

·V.A. detector produces the same detected data sequence, as does 

the optimum combination of linear and decision feedback equalizers. 

(See sections 1.13 and 1.14). Hence, for this case, the probability 

of any given data element being in error, is the same as that given 

- in section 1.14. 

i.e. 

Pe = Prob. (wi > 1) 

for a binary signal 

and 

Pe= 1.5 Prob. (wi > 1) 

for a quaternary signal. 
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(Wi is, of course, the normally distributed random variable 

representi ng Gaussian noise in the system). 
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CHAPTER 3 

3.01 Shbttcuts Through·the·Trellis ·Diagram 

In Section 2.09, it was shown that the Vi terbi Algori thm 

(V.A) requires a large amount of computation, per detected data 

element, if the sampl ed impulse response of the channel has many 

components, or the number of signal levels is fairly large. The 

number of multiplications plus the number of comparisons, per 

detected data element, is 

(2m - 1) mg 

where m is the number of signal levels and g+l is the number of 

components of the sampled impulse response. From Section 2.03 

it can be seen that g is deterinined by the duration of the impulse 

response, and the time T between successive data elements being 

transmitted. To transmit information at high speed, ·T must be small 

so that many data elements are transmitted per second, or the number 

m of si gna 11 eve 1 s mus t be 1 arge. g increases as T decreases so it 

is clear that 

(2m - 1) mg 

may be very large in cases of high speed data transmission. The 

amount of computation required by the V.A. may then prohibit its use. 

The trellis diagram of Figure 2.02 shows the mg possible values 

for the vector 
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where {si} is the transmitted data sequence. Using the given 

definition of the distance between two nodes of the diagram (see 

Section 2.04), the shortest path from point A to point B, dic­

tates the maximum 1 ike1 ihood sequence {si}. 

Suppose that at some stage of the V.A., the shortest path 

to each of the nodes for some vector Q. have been found, together 
-1 

with th e cos t functi on for each of these nodes. The cos t function 

for each node is the length of the shortest path from point A to 

that node. 1 t therefore seems un1 i ke1y that the Qi nodes wi th 

relatively large costs, will lie on the shortest path from A to 

B. The basic principal of the four algorithms described in this 

chapter, is that of removing all the nodes representing a vector 

Q., from consideration, except for a fixed number k of them, whose 
-1 

costs are fai r1y small. Each Df these k retained vectors are exten-

ded to m new vectors representing Qi+1' thus giving mk vectors. 

Then k of these vectors are selected as before, for use in the 

next cyc1 e of the algorithm .. 

The four algorithms described below, each have different strat­

egies for deciding which k of the mk nodes available, to select 

during each cycle. The basic fom of the a1gori thms is the same 

as that of the V.A., described in Section 2.07. The V.A. holds mg 

vectors Q .(l) in store at the begi nning of each cycle of the a1 go-
-J 

rithm. m and g are fixed by the data transmission system, so there 

is no freedom of choi ce over the number of such vectors used. Wi th 

Systems 1-4, however, the number of vectors may be chosen to give 

the desired compromise between the performance of the detection pro­

cess and its complexity (see Section 3.02) .. System 1, for example, 
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may be used wi th any number k of vectors. from one upwards. 

As with the V.A .• these algorithms may be started off 

with one vector set equal to 

(-m+ 1. -m+ 1. . ...• -m+ 1) • 

or can be started with a full set of k vectors defined in this 

way. In the latter case. one of the vectors should be assigned 

a cost equal to zero. and the other vectors given some very large 

cost (such as 10 6
). 

3.02 Systems 1-4 

These four systems hol d a fi xed number k. of N component 

vectors: 

Qj (1). Qj (2) ••••.•• Qj (k) 

at the start of a cycle. The number of components of the vectors 

represents the delay in detecting an element si' from the time 

information about this element first reaches the receiver. Each 

vector Q. (I) takes the form 
. -J . . 

-.~. 

(3.01 ) 

where each component xi has one of the m possible values of the 

data element si' As for the V.A .• the transmitted data sequence 

is denoted 
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and si is defi ned to be equal to -m+ 1 for i < 0 and i > n. 

From equation 3.01 

where xi has one of the possible values of the data element si' 

But s. = -m+1 for i < O. therefore 
1 

.9.-1 (l) = (-m+1. -m+1 ....... -mt1 r 

for 1= 1.2 ....... k. (i.e. the k stored vectors .9._1(1) are 

ini tially all equal to the same vector). 

The costs for the vectors .9._i{I) are defined by: 

u -1 (1) = 0 for I = 1 

00 for I = 2. 3. .. •.• k. . 

.The first cycle of the algorithm begins by extending the k vectors 

.9.-1 (1) to the N+1 component vectors given by 

for I = 1,2, •.•• , k and Xo taking on the m possible values of a 

data element. Hence 

le (1. xo) = (-mt1. -mt1 ....... -mtl. x
o

) 

for 1 = 1. 2....... k 

and xo= -m+l. -m+3 • ..... ,.rn-l. 
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The costs corresponding to these extended vectors are given by 

where ro is the first received signal sample and Y is the vector 

(Note that r is the reverse of the vector formed from the channel's 

sampled impulse response). The term 

is defined as in Section 2.07. 

Then the vector with smallest cost is found, from the set 

of vectors 10 (I, xo)' and the 'ear1iest element of this vector 

is taken as the detected value of s_N' This detected value will 

be -m+1, as 

.!L1 (1) = (-m+1, -m+1, .; .•. , -m+1) 

for I = 1, 2, ..•. , k. i.e. all of the vectors 10 (I, xo) have 

their earliest element equal to -m+1. 

All but k of the mk extended vectors are deleted from storage, 

according to decision rules which are different for each of the 

four systems. (These decision rules are described below). The 

latest N elements of the remaining k vectors 10 (I, xo) are then 

stored in the array ~(J), for J = 1, 2, .... , k. The corresponding 

costs vo(I, xo) are stored in the array uo(J). This completes the 

first cycle of the algorithms. 



102 

At the start of the j+l st. cycle, k vectors .9.j-l (I) are 

stored, together with their costs Uj_l{I). These k vectors are 

extended to the N+ 1 component vectors .!.j (I, xj ), by the addi ti on 

of the component xj ' whi ch can ta ke on m values. These mk exten­

ded vectors are given by 

T.{I, x.) = [Q. l{I), x.] 
-J J -J- J 

(3.02) 

The corresponding costs are gi ven by 

(3.03) 

where rj is the {j+l)st received signal sample. 

The element Sj_N is detected as the earliest element of the 

vector, from the set T .(I, x.), 'which has smallest cost. Then all 
~ J . 

butk of the extended vectors T.{I, x.) are deleted, and the remai-
. -J J 

ning k vectors are stored in the array .9.j{J) , for J = 1, 2, .... , k. 

(In fact only the la test N el ements are stored). The corre;:;pondi ng 

costsvj{I, xj ), for the k selected vectors, are stored in the array 

uj{J). This completes the j+l st. cycle of the process. The 

algorithm continues in this way until the entire data sequence 

-{s.} has been detected. A flow diagram for Systems 1-4 is given _ 1 

in Figure 3.01. 
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Set N components 
• • 

Q(I) = (-m+l, -m+l, •• • e.o , -m+l) 
for 
I = 1, 2, • •••• , k 

t 
Setu(l) = 0 and u(I) = 106 

for I = 2, 3, ..•.. , k 
, ' I- A , , I-

Set 
I(I, J) = [Q(I), J] 
for 
I = 1, 2, · ..... , k and 

J = -m+l, -m+3, ..... , m-l 

t 
Input a received si gnal sample r 

t 
Set . 

v (I, J) = u(I) + {I. [I(I, .J)]g+l - rF 
for I, 
I = 1, 2, • •••• , k and 
J = -m+l, -m+3, ...... , m-l 

+ 
Output the first component of the vector 
I(I', J') as a detected data element, where 
(I',J') are the values for which v(I, J) has 
its minimum value 

t 
Delete all but k of the mk vectors: 
,!(I, J) 
according to the appropriate decision rule 

J_ 
Store the last N components of the selected 
vectors I(I, J) in the array Q(K), and their 
costs in the array u(K), for K = 1, 2, .... , k 

t B 

FIGURE 3.01 

Block diagram for Systems 1-4 
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3.03 DeciSion Rules 'for 'Systems 1-4 

Each of the systems 1-4 works in a similar manner, except for 

the decision rules which dictate which vectors are to be rejected 

during each cycle. k N component vectors are stored at the start 

of each cycle of the algorithms. These vectors are then extended 

to mk N+l component vectors, by the addition of another component 

with m possible values, to each of them. A data element is then 

detected and a 11 but k of the mk vectors are del eted from storage. 

The rules which decide which k vectors to retain are described 

, below, for each of the systems. 

Algorithms similar to the one employing decision rule 1, 

h~.ve been proposed independently by F.L. Vermeulen, S.A. Fredri csson, 

G.J. Foschini, J. Gordon and N. Montague [40-43]. The decision 

rules for Systems 2, 3 and 4 are due to A.P. Clark. 

3.04 Decision,.Rule 1 (System 1) 

This decision rule is the simplest of the four. With it, System 

1 selects the k vectors with smallest costs from the set of mk 

extended vectors, during each cycle of the algorithm. 

3.05 Decision Rule 2 (System 2) 

For System 2, the number k of vectors stored at the start of 

each cycle of the algorithm, must be a multiple of the number m of 

signal levels. 

let ~ = k/m. 
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Then the number of vectors stored at the start of each cycle is 

m~. These m~ N component vectors are extended to m2~ N+1 compo­

nent vectors, as exp1 ai ned in Secti on 3.02. These extended vectors 

are divided into m groups, with the vectors in each group all having 

the same latest component. Then the ~ vectors with smallest costs 

are retained from each group, giving ~m (or k) stored vectors again. 

This rule ensures that, for each possible value of the latest compo­

nent of the vectors, there will be an equal number of vectors in 

the system, having this latest component. (The latest component 

being the one furthest to the right in the vectors). 

One foreseeable problem with System 1, is that it is possible 

for all of the k vectors selected by decision rule 1, to have the 

same latest component x.. If this is the case, then there is only 
. J 

one possible value available for the detection of s., at a later . J 

stage of the algorithm. The algorithm will then have inadvertently 

made a decision on a data element even though only the first sample 

rj , containing information about this data element, had been received • 

. For cases where the first element of the channel's sampled impulse response 

is small, this first sample will contain only a small amount of 

information about the data element Sj' (See equation 2.07). A 

detection of this type is clearly undesirable. It is not easy to 

- predict the seriousnessof this factor in System 1, without perfor­

ming simulation tests. However, the decision rule for System 2 

overcomes any difficulty, that may arise from this possible disad­

vantage of System 1. 
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3.06 Decision Rule3 (System 3) 

As for System 2, the number k of vectors stored at the start 

of each cycle, must be a multiple of m for System 3. 

Let 

~ = k/m as before. 

The vectors stored at the start of the (j+2)nd cycle are denoted 

by 

for I = 1, 2, ••••• , ~m. Decision rule 3 ensures that these 

vectors contain all possible values of the latest ~ elements: 

except whi le the process is starti ng up. From the expanded set 

of vectors of the form: 

~m vectors must be selected and retained for use in the following 

cycle of the algorithm. Decision rule 3 selects these ~ vectors 

as foflows: 

Some particular value for Xj_~+2 is chosen and, from the set 

of vectors which have this value for Xj_~+2' the one with smallest 

cost is selected. This is repeated for the other m-l possible values 

of Xj_~+2' giving m selected vectors so far. In the same manner, m 

vectors are selected corresponding to the m possible values of 
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giving a total of tm vectors. One restriction on the selection 

procedure is tha t no vector may be selected twi ce. 

tm vectors are selected corresponding to the different 

possible values of the components 

so the stored vectors Qj(I) must have at least t-1 components. 

Hence, if it is decided that some particu1ar,va1ue of N is to be 

used with System 3, then the maximum value for t is N+1. 

m(N+1) is then the maximum number of vectors that may be stored 

at the start of each cycle of the algorithm. 

Note that, when the detection process is starting up, all k 

of the stored vectors are set equa 1 to the N component vector 

(-m+1, -m+1, •.••• , -m+1) 

(see Section 3.02). Until several cycles of the algorithm have 

'been completed, the earlier. components of all of the stored vectors 

will be equal to -m+l. Therefore it will not be possible for a 

set of k vectors, with all possible element values in the latest t 

components, to be selected. Hence decision rule 3 needs to be modi­

fied for the first few cycles of the algorithm. The modified rule 

chooses vectors with a full selection of element values, in as many 

as possible of the latest components. The set of k vectors is then 

completed with an arbitrary selection from the remai ni ng vectors. 
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ExartrpZe 

Consider a case with 

N = 3 

m = 2 and 

k = 6 

i.e. a two level signal with 6 vectors stored at the start of each 

cycle of the algorithm, the vectors each having three components. 

Let the 6 vectors in store, at the start of some cycle of the 

process, be those on the left in Figure 3.02. These six vectors 

are extended to;twe1ve four component vectors, by adding either a 

1 or a -1 to the right hand side of each, as shown. Let the costs 

for the extended vectors be those given in brackets in Figure 3.02. 

2 is defined equal to k/m. so 

2 = 6/2 = 3. 

Hence, decision rule 3 gives a variety of element values in the 

latest 3 components of the vectors (i.e. in the 3 components furthest 

to the right of the selected vectors). Let the components of the 

extended vectors be denoted 1, 2, 3 and 4, as shown, with the vectors 

_denoted 1, 2, •.••• , 12. 

The first step of the decision rule is to select the vector 

with smallest cost, which has component 2 equal to -1. Hence vector 

3 is selected. Then the vector with smallest cost, which has compo­

nent 2 equal to 1 is selected. This is vector 1. These vectors are 

now removed from consideration so that they may not be selected again. 

In a simi 1ar manner, two vectors are selected whi ch have component 3 
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equal to -1 and component 3 equal to 1. The ones with lowest 

costs are vectors 5 and 2. Finally vectors 4 and 7 are selected, 

to give a set of 6 vectors. 

Now consider again the possible difficulty mentioned for 

System 1, that the set of k vectors selected during some cycle, 

may all have the same latest component. System 2 ensures that such 

a set of vectors will not be selected, but it is still possible that 

the selected vectors may have one of their latest elements in common. 

System 3 should offer more protection against this sort of diffi­

culty, as it ensures a variety of element values in the latest J/, 

components of the vectors. 

3.07 Decision Rule 4 (System 4) 

For System 4, the number k of vectors stored at the start of 

each cycle, must be such that 

for some positive integerJ/, (where m is the number of signal levels). 

Rule 4 ensures that these vectors contain all possible combinations 

of values, in their latest J/, components (except while the process 

is starti ng up). Hence, if mt vectors are stored at the start of 

each cycle, the number N of components of these vectors must be 

greater than or equal to J/,. Alternatively, if it is decided that 

a certain value of N is to be used with System 4, the maximum 

value for k is mN. 
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Note that, with its decision rule, System 4 also ensures 

that premature detections will not be made due to the selected 

vectors having any of their latest ~ elements in common. 

During each cycle of the algorithm, k of the mk extended 

vectors must be selected for use in the following cycle. System 

4 is such that these k (or m~) vectors must contain all possible 

combinations of the latest ~ components. Hence, for each of these 

combinations, the vector with lowest cost is selected, giving m~ 

vectors in all. (There are m~ possible combinations of the latest 

~ elements, as each element has m possible values). 

For the first few cycles of the algorithm, it will not be 

possible to select a set of vectors with all possible combinations 

of the la tes t ~ elements. ThE.i s because all of the vectors are 

initially given the same components, i.e. all components are set 

equal to -m+l. Hence, as with System 3, the selection procedure 

must be modified for the first few cycles of the algorithm. For 

the first few cycles, the vector with smallest cost is selected, 

for all combinations of as many as possible of the latest components 

of the vectors. The set of m~ selected vectors is then completed 

by choosing vectors arbitrari ly from those remaining. 

Note that System 4 is identical to the V.A. detector if ~ is 

set equal to g. 

3.08 Starti ng up Procedure 

As with the V.A., the data elements si are defined to be equal 

to -m+l, for i<O and i>n (see Section 2.08). Hence the trans-

mitter must send out a training signal of N elements ~lith the value 

-m+l, before transmitting the data sequence: 
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(N is, of course, the number of components of the vectors Q/I) ). 

It has been found that the V.A. will synchronize itself to 

the correct data sequence, after a few cycl es, even if ani ncorrect 

training signal is used [33]. It seems likely that Systems 1-4 

will also have this property, and, apart from an initial burst of 

errors, will function correctly with a false training sequence. 

There is one particular start up procedure for .systems 1 and 

2, which gives a very poor performance. Suppose that all of the 

k vectors of System 1, are set equal to the same vector, and that' 

their costs also have the same value. In particular, suppose that 

all of the vectors Q-l (I) are set equal to (-m+l, -m+l, ...•. -m+l), 

and all of the cos ts u -1 (I) ar~ set equal to zero. Then the expan­

ded set of vectors is given by 

.!o (I, xo) = (-m+ 1, -m+ 1, ; .... , -m+ 1, xo) 

with costs: 

(see Section 3.02). Therefore the values of the vectors .!o(I, xo)' 

and their costs uo(I, xo) are independent of I. 

Hence the vectors split into m groups, according to the value 

of xo ' with all vectors in a group being identical and all costs 

being identical. Now assume that the m costs for the different 



113 

groups are distinct. (This assumption is supported by simulation 

results). Then, from the set of mk costs for the extended vectors, 

the k smallest costs will come from the same group. Hence decision 

rule 1, will select k vectors from the same group, and the selected 

vectors will be identical, and will all have identical costs. The 

situation with k identical vectors and k identical costs, at the 

start of the first cycle, will be preserved at the start of the 

second cycle. It can be seen, therefore, that each following 

cycle of the process will begi n \~ith k identi.cal vectors, and 

System 1 is effectively functioning with k=l. The ability of the 

detection process to store a reasonable number of possible data 

sequences, has then been lost and the performance of the detector 

may be reduced. 

The recommended starting l!P procedure is given in Section 3.02. 

If this procedure is followed, one vector is given a cost equal to 

zero, and the other vectors are given very large costs. It can 

then be shown that a disti nct set of vectors wi 11 be present in the 

system, after a few cycles. (See the proof of theorem 3.02 in 

Section 3.10). 

The starti ng procedure with all vectors identi cal and hav; ng 

one common cost, is also fairly disastrous for System 2. Suppose 

that System 2 i.s initialized by setting the k vectors Q-l (I) equal 

to 

(-m+ 1, -m+ 1, ..... , -m+ 1 ) 

and setting the k costs equal to zero. The expanded set of vectors 

will then be given by 
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T (I, x ) = (-m+ 1, -m+ 1, ..... , -m+ 1, Xo) 
~. 0 . . 

with costs given by 

(see Section 3.02). As for System 1, the vectors form m groups 

with k identical vectors in each group. The vectors in each group 

also have a common cost. It will be assumed that the costs for 

each group are all different. The decision rule for System 2 will sel­

ect the k/m vectors with smallest cost, for each possible value of 

xo' Hence, k/m vectors will b~ selected from each group. Then, at 

the start of the second cycle of the al gorithm, the k vectors 

~ (I) form m groups of vectors, with the vectors in each group 

being identical, and having a common cost. 

Theorem 3.01 

Suppose that, at the start of some cycle of System 2, the 

vectors stored may be divided into m groups, with the k/m vectors 

in each group being identical. Assume .also that the vectors in 

anyone group have a common cost, but that the costs are different 

from one group to another. (m is, of course, the number of signal 

levels). Then this grouping of vectors and costs, will be maintained 

at the start of the following cycle of the algorithm 
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Let the set of Q,m (or k) vectors. stored at the start of 

some cycle of the algorithm. be 

~l .1 • ~1.2· ..... , v -1 .Q, 
with costs = cl 

~2.1· ~2. 2' . .. . .• ~2.Q, with costs = c2 

..Ym. l' .':in • 2 • .•••..• .':in • Q, with costs = cm • 

Then the j th. vector in the group with cos t Cl.' is denoted v. .. 
-l.J 

The vectors in each group are the same. so 

v .. = v. k -lJ -1 . 
(3.04) 

fori=1.2 •.....• m. j=1.2 ••....• Q, andk=1.2 •.....• L 

These vectors are extended to the m2 Q, vectors (v ..• x). by the 
-lJ 

addition of a new element x which can take on m values. The cost 

for the vector (v ..• x) is gi ven by 
-lJ 

for i = 1. 2. . ••.• m and x = -m+ 1, -m+3, ••.•• m-1. where r is 

the appropriate received signal sample. (See Section 3.02). 

From equation 3.04. it can be seen that this cost is independent of 

j. and for each pair of values (i .x). there are Q, vectors with 

cost D(i .x). Assume that the costs D(i .x) are all different. for 

different values of i and x. (This is supported by simulation 

res ults) . 
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Decision rule 2 selects the ~ vectors with smallest cost. for 

each possible value of the latest component x. Let i(x) be the 

value of i which minimises DU.xl. for a given value of x. Then. 

for given x. the ~ vectors with smallest costs are 

(vi(xl.l· xl. C.':'.i(x),2' xl •.....• (~i(X).~. xl· 

which all have cost equal to D[i(x). x] • . 
Hence. the m~ vectors selected by System 2 are 

(~i(xl.l' xl. (~i(X).2· xl. ·····.(~i(x).~. xl 

for x = -m+l. -m+3 ••..•.• m-l. But. from equation 3.04. 

vi(xl.l = vi (xl.2 = •••• =·vi(xl.~ 

for any value of x. Hence the m~ selected vectors divide into m 

groups. according to their value of x. with the vectors in anyone 

group being all the same. The vectors in any group also have the 

common cost D[i(x). x]. 

End of proof. 

If System 2 is started up with all.of its vectors set equal to 

the same vector. and all having a common cost. they become grouped 

in the form indicated in theorem 3.01. This grouping will then be 

maintained throughout the operation of System 2. except possibly if 

the costs for two groups become equal. Simulation results show that 

this is a rare or impossible event. so System 2 would then be stuck' 

in a mode of operation in which only m of its vectors were distinct. 
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i.e. the number of vectors stored, at the start of each cycle of 

the algorithm, .would be effectively reduced from mt to m. 

The decision rules for System 3 and 4 ensure that a reasonable 

vari ety of vectors are always present in the a 1 gori thm. Therefore 

these systems will never enter a mode of operation, in which the 

number of stored vectors is effectively reduced, as can happen 

with Systems 1 and 2 under certain conditions .. In fact, System 

4·selects vectors in such a way, that all combinations of element 

values are present, in as many of the latest components of the vec-

tors as is possible. This ensures that all of the vectors stored 

by System 4 will be distinct, except for the first few cycles of 

the a 1 gori thm. 

3.09 Number of Operations Required by Systems 1-4 

System 1 

System 1 selects the k vectors with smallest cost, from a group 

of mk vectors, during each cycle of the algorithm. Hence the k small­

est costs must be found, from a group of mk costs. There are many 

methods of varying efficiency, for solving this problem,but a 

fairly simple method will be assumed here. Let the k smallest costs 

be selected as follows: 

First select the smallest cost from the group of mk. This 

requires mk-l comparisons between two numbers. The selected cost 

is then removed from consideration, and the process repeated to find 

the smallest cost from a group of mk-l. This requires mk-2 compari­

sons. In this manner, the k smallest costs may be found with a number 

of comparisons equal to 
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(mk.-l) + (mk:-2) + ..... + (mk- k) 

system 2 

With System 2, the. expanded s et of mk vectors; s cons; dered 

i.n m separate groups of k,each group having a common value for 

the latest component of its vectors. The~ (or k/m) vectors with 

smallest cost must then be selected from each group of k. Hence 

using the procedure described above for System 1, the number of 

comparisons needed for each group is 

(k-l) + (k-2) + ..... + (k - k/m) 

There are m groups, so the total number of comparisons required 

for a cycle of System 2 is 

k2 k k m(- - -= (- + 1)) 
\ m Lm m 

or 
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System 3 

Let ~ = k/m as in Section 3.06. System 3 works by first 

considering the set of mk expanded vectors in m separate groups. 

The groups are divided according to the value of the component 

which is the R.th from the right of the vectors. The vector with 

lowest cost is then selected from each group, and removed from 

consideration fot'. the remainder of the selection process. 

Let the number of vectors in each of these groups be: 

where 

nl + n2 + •..•• + nm = mk (3.05) 

The number of comparisons required to find the vector with smallest 

cost, from a group of ni vectors, is ni - 1. Hence the number of 

comparisons required to select one vector from each of the m groups 

is: 

(n l - 1) + (n2 - 1) + ••••• + (nm - 1) 
\ 

= mk - m 

(using equation 3.05). Then m vectors have been selected, and there 

are still mk - m vectors available for selection. These mk - m 

vectors are now split into m groups, according to the values they 

have for the (R.-l )st element from the right. Note that, although 
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every possible value of thi,s element may be present in the larger 

set of mk vectors, some values may not be available in the remai­

ning set of mk-m vectors. Hence some of the m groups, formed 

according to the value of the component which is (R.-1)st from 

the right, may be empty. However many simulation tests have been 

performed ,with System 3, and this situation was never found to 

arise. It will therefore be assumed, for this section, that each 

of the m groups has at least one vector. 

It has been shown above that, for the selection of the first 

m vectors from a set of mk, mk-m comparisons are required by 

System 3. Similarly, for the selection of the next m vectors from 

a set of mk-m, the number of comparisons required is 

(mk-m) - m 

or m(k-2) 

The remaining mk-2m vectors are then split into m groups, according 

to the values they have for the component which is (R.-2)nd from the 

right, and so on. Then the total number of compari sons requi red 

for the se 1ecti on of the k vectors is ,-' 
m(k-l) + m(k-2) + ••••• + m(k-R.) 

= mkR. - h R. (H 1 ) 

,But R. is defined equal to k/m, so the required number of comparisons 

per cycle of the algorithm is 

k2 
- ! k (~ + 1) , m 

whi ch is the same a s for System 2. 
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System 4 

Let ~ be an integer such that 

m~ = k 

as in Section 3.07. System 4 functions by considering the mk exten­

ded vectors in m~ separate groups, corresponding to the m~ possible 

combinations, of the latest ~ components of the vectors. Each of 

these groups contains m vectors, and the vector with smallest cost 

must be selected from each group. Hence m-l comparisons must be 

made, for each of the m~ (or k) groups 'and the number of comparisons 

required, per cycle of the algorithm, is 

k (m-l). 

From Section 3.02, it can be seen that mk multiplications 

(or squaring operations) must be performed by Systems 1-4, for the 

calculation of the costs during each cycle. 

Now consider a particular situation, in which a two level sig­

nal is transmitted over a channel whose sampled impulse response has 

fifteen components. 

Then m = 2 ----

_ and g = 14. 

Simulation results have shown that a value for k of 16, was sufficient 

for Systems 1-4 to give a performance close to that of the V.A. detec­

tor, for some such channels. Hence k will be taken to be 16, for 

thi s examp le. 

Table 3.01 gives the number of multiplications required per 

cycle, for the V.A. detector and Systems 1-4, for this situation. 
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(The number of operations requi red by the V.A. was derived in 

Section 2.09). It can be seen from the table, that each of the 

Systems 1-4 offers a large saving in the number of basic opera­

tions, over the V.A. detector. System 4 offers the greatest 

savi ng, and the numb er of multi p 1 i ca tions and compari sons requi-

red, is only one hundredth of that required by the V.A. detector. 

Detection Number of multiplications and comparisons 
Processes requi red for each element detected, 

with m = 2,k = 16, and g = 14 

V.A. mg+ 1 + (m':l) mg = 49152 

System 1 mk + mk2 - l k(k+1) = 408 

System 2 ) 
k2-~(~+1) ) mk + = 216 

System 3 ) 2 m 

System 4 mk+ k (m-1) = 48 

TABLE 3.01 

3.10 The Effect of a Zero a s the Fi rst Componen t of the Channel' s 
Samp led Impu I s e Respon se 

Consider the case of a transmission channel whose characteristics 

- vary with time, so that channel vector (or sampled impulse response), 

is not constant. Assume also that the detector stores an estimate of 

the channel's sampled impulse response, which has a fixed number of 

components. Then some device for estimating the channel vector must 

be used in conjunction with the detector. Now, in a situation where 

the duration of the channel's impulse response varies with time, some 

components of the estimated channel vector may be set to zero. 
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Suppos e tha t the sampled impul se res ponse of the channel 

under consideration is 

Define System A to be System 1 with the channel vector estimated 

correctly as 

and let System B be System 1 with the channel vector estimated as 

where yO = o. 

Let System A have k N component vectors stored at the start 

of each cycle. and let System B have mk N+l component vectors 

stored at the start of each cycle. It will now be sh·own that Sys­

tems A and B are equivalent. (This result and similar results for 

Systems 2 and 4 were suggested by A P Clark). 

\ 

Lemma 3.01 -~ 

Let the k vectors of System A. at the start of some cycle of 

the algorithm be denoted Q(I). with a distinct set of costs u(I). 

for 

I = 1. 2 •.....• k. 

Let the signal sample received during this cycle be r. 

Now suppose that the mk vectors of System B. at the start of 

the cycle in which r is received. are of the form 
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(9. (I), J)' 

for 

1= 1,2, .•.•• , k and 

J = -rn+l, -rn+3, •.••. , rn-l. 

(J takes on the rn possible values of a data element). Suppose also 

that the costs for the vectors 

(Q(I), J) 

are i'ndependent of J and equal to 

u(I) + c 

for some constant c. 

Then thi s rela tionship between the vectors and costs of 

Sys terns A and B, wi 11 be ma intai ned at the s tart of the fo 11 owi ng 

cycle of the algorithms. 

Proof 

For System A, the extended set of mk vectors is 

(Q(I), K) --~ 

for 

I = 1, 2, ..... , k and 

K = -rn+l, -m+3, ..... , rn-l. 

The costs for these vectors are given by: 

v(I,K) = u(I) + {yA. [Q(I), K] - r}1 
- - g 
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where 

(see Section 3.02). 

Let the k pairs (I, K) which give the k smallest values of 

v(I, K) be denoted 

• 

for R, = 1, 2, ••••• , k. • 

Then the k vectors selected by System A are 

with costs 

for R, = 1, 2, •••. , k. 

For System B, the extended set of m2k vectors is 

[Q(I), J, L] for 

I = 1, 2, ..... , k 

J = -m+1, -m+3, .... . , m-l and 

L = -m+ 1 , -m+3, ..... , m-l. 

The costs for these vectors are gi ven by 

O(I, J, L) = u(I) + c + (VB. [Q(I), J, L]g+l - r}2 (3.0~) 

where: 

yB = (Yg' Yg-1' •.... , Y1' 0) 

(see Section 3.02). 
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B r. [QCI), J, L]g+l 

is the scalar product of yB and the latest g+l components of 

[QCI), J, L] (i.e. the g+l components furthest to the right). 

But, from the definitions of rA and rB, it is clear that 

Hence, from equation 3.07, 

0(1, J, L) = utI) + c + {rA. [Q(I), J]g - r}2. (3.08) 

Comparing equations 3.06 and 3.08 gives 

0(1, J, L) = c + v(I, J) (3.09) 

Now the k pairs (I, J) which minimise v(l, J) have been denoted 

for 1, = 1, 2, ..... , k 

From equation 3.09, the value of 0(1, J, L) is independent of L. 

Hence the mk values of (I, J, L) giving the smallest values of 

0(1, J, L)are 

for ·t = 1, 2, .... , k and 

L = -m+ 1, -m+3, ..... , m-l. 
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The mk vectors sel ected by System B are therefore: 

Ji, = 1, 2, .... , k and 

L = -m+ 1, -m+3, ..... , m-l. 

From equation 3.09, the corresponding costs for these mk vectors 

are given by 

These are the same as the costs for the vectors 

se 1 ected by Sys tem A, except for the additi ve constant c. Hence 

the relationship between the vectors and costs of Systems A and B, 

will be preserved at the start of the following cycle of the algo-

. ri thm .. 

End of proof. 

Theorem 3.02 

The Systems A and B, defined above, will produce the same 

detected data sequences. 

Proof 

The theorem will be proved with the help of lemma 3.01. 



128 

System A, 1st Cycle: 

System A initially has k stored vectors equal to the N compo-

nent vector 

(-m+ 1, -m+ 1, ..... , -m+ 1) 

One of these vectors is assi gned a zero cost and the others, an 

infinite cos t. The extended s et of mk vectors conta ins m vec­

tors of the form 

(-m+ 1, -m+ 1, ..... , -m+ 1, I 1 ) 

wi th cos ts 

where 

Il = -m+l, -m+3, ...•. , m-l 

(see Section 3.02). The set of expanded vectors also contains m(k-l) 

vectors with infinite costs. r l is the first signal sample received 

by System A. 
. ...... 

The decision rule for System A (decision rule 1) now selects 

the k vectors with smallest cos-ts, from the set of mk vectors. 

Hence the k selected vectors will contain m vectors of the form 

-(-m+ 1, -m+ 1, .•... , -m+ 1, I l ), 

wi th costs 

A 
{y • [-m+ 1, -m+ 1, ..... , -m+ 1, I 1] g - r l F 
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and k-m vectors with costs = '" (assuming that k ;::.m). 

System A, 2nd Cycle 

The set of mk expanded vectors will contain m2 vectors of 

the form 

(-m+l. -m+l ....... -m+l. 11, 12) 

with costs 

(see Section 3.02). where r2 is the second signal sample received 

by System A. 

11 and 12 may each take on the values 

-m+ 1. -m+3. • •.••• m-l. 

The setof expanded vectors will also contain m(k-m) vectors with 

cos ts = "'. 

Hence the k selected vectors (the ones with lowest costs) will 

conta in m2 vectors of the form 

(-m+l. -m+l ....... -m+l. I,. 12) 

with cos ts 

2 
I;' . {lA. 1 1 }2 .l [-m+ • -m+ • ..... -m+ 1. 1 l' 12, ...... 1 J' ] g - r

J
• 

J=l 
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The set of selected vectors will also contain k-m2 vectors with 

infinite costs (assuming that k~m2). 

System A, ith cycle (where i is the smallest integer such that 
i m ;:: k): 

The expanded set of mk vectors will contain mi vectors of 

the form 

(-mtl, -mtl, ..•.. , -mtl, I,. 12 , ..... , 1i ) 

wi th costs 

where each I j may take on the m values 

-mt 1, -mt3, .•.•• , m-l 

and rj is the jth signal sample received by System A.· The expanded 

set of vectors will also contain mk-mi vectors with costs = "'. 

i has been defined to be the smallest integer such that mi ~ k, 

so there are now k vectors with finite costs, present in the set of 

expanded vectors. Hence the k sel ected vectors wi 11 be ,ones with 

finite cos ts. 

Let 

be the values of 

[Il' 12, ....• , 1i ] 

which give the k smallest values for the cost function 
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i 
L {YA. [-m+l, -m+l, ..... , -m+l, I 1, I 2, ..... , IJ']g - r

J
.}2 

j=l 

where .Q, may take on the values 1, 2, ..•.. , k. Then the k se lected 

vectors are the N+l component vectors 

for 

.Q,=1,2, ..... ,k. 

Note that the k selected vectors have been chosen from the set 

of m i vectors 

( -m+ 1, -m+ 1, ..... , -m+ 1, I 1 , I2 , ..... , I i ) 

where each I j may take on the m values: 

-m+l, -m+3, ...•• , m-l. 

Hence the k selected vectors are di s ti nct. (Thi s resul t is needed 

only for the justification of an earlier comment). 

System B, 1st (!'ycZe 

At the start of the first cycle, System B has mk stored vectors 

whi ch are set equal to the N+ 1 component vector 

(-m+l, -m+l, ..... , .-m+l) 

One of these vectors is assigned a zero cost and the others, infinite 

costs (see Section 3.02). 

The estimated channel vectors for Systems A and Bare: 

(Yl'Y2,., ... ,yg) and 

(0, Y1' Y2' ..... , yg) 
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respectively, therefore 

(3.10) 

where yB and 'l are formed by reversing the channel vectors for 

System B and System A respectively. Therefore the recei ved signal 

samples will be the same for Systems A and B, except that System B 

will receive an extra sampl e ro at the beginning. But, from 

equation 2.07, 

where {si} is the sequence of symbols sent out by the transmi tter, 

and {wi } is a sequence of noi se samples. In defining System B, Yo 

was set equal to zero, therefore 

and it can be seen that ro does not contain any information about 

·the data sequence 

Hence the extra signal sample r o' received by System B, does not 

- represent the data sequence, and the received sequences for the 

two systems are effectively the same. 

Following the algorithm for System B (see Section 3.02), the 

set of m2 k expanded vectors will contain m vectors of the form 

( -mt 1 , -mt 1, ..... , -m+ 1, J 1 ) 

in the first cycle. The costs for these m vectors are: 
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{rB.• [-m+l, +1 . +1 J] r }2 -m , ••••• , -m , 1 g+ 1 - 0 

where J1 may take on the m values -m+l, -m+3, •..•• , m-l. The set 

of expanded vectors will also contain m2 k-m vectors with infini te 

cos ts . 

Now 

VB. [-m+ 1, -m+ 1, ••••• , -m+ 1, J1] g+ 1 

is the scalar product of l and the vector fonned from the gyl 

componen ts of 

[-m+l, -m+l, .•.•• , -m+l, J 1J 

which are furthest to the right. Hence applying equation 3.10, 

VB. [-m+ 1, -m+ 1, ••••. , A -m+l, J1Jg+1 = '!... • [-m+l, -m+l, .... , -m+l]g 

Hence the m vectors on the form 

( -m+ 1, -m+ 1, ..... , -m+ 1, J1), 
. . 

in the set of expanded vectors, have costs equal to c, where 

c = {VA• [-m+ 1. -m+ 1 , .. • • .• -m+ 1] - r } 2 
- 9 0 

The mk vectors selected during the first cycle, are the ones with 

smallest costs. Hence this set of vectors will contain m vectors 

of the form 

(-m+ 1. -m+ 1, ..... , -m+ 1, J 1 ) 
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wi th costs equal to c. and mk-m vectors with infinite costs. 

System B, 2nd oye~e 

The expanded set of m2 k vectors will contain m2 vectors of 

the form 

(-m+ 1. -m+ 1. .. .... -m+ 1. Jl J2) 

with cos ts equal to 

(see Section 3.02). The expanded set will also contain m2 k - m2 

vectors with infinite costs. Now. applying equation 3.10. the 

costs for the first m2 vectors may be written as 

A 2 
C + {Y • [-m+l. -m+l ....... -m+l. Jllg - r l} 

The set of mk selected vectors will contain these first m2 vectors. 

plus mk-m2 vectors with infinite costs. 

System B, (i+1Jst eye~e 

The set of m2 k expanded vectors will contain ml+l vectors of 

the fO';111 

( -m+ 1. -m+ 1. ...... -m+ 1. J l' J 2' ...... J i + 1 ) 

where each Jj may take on the m values 

-m+l. -m+3. ..... , m-l. 
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The costs for these mi +l vectors are 

i 
c + l {YA. [-m+ 1. -m+ 1. •••.•• -m+ 1. J l • J2• ..••• JJ'] g - r

J
.} 2 

j=l 

The set of expanded vectors will also contain m2 k - mi+l vectors with 

infinite cos ts. 

i has been' defi ned to be the smallest integer such that m i ~ k. 

so the number mi+l. of vectors with finite costs. is greater than 

or equal to mk. Hence the mk vectors selected by decision rule 1 

will all have finite costs. and will cQme from the set of vectors 

of the form 

( -m+ 1. -m+ 1. ...... -m+ 1. J l' J2• ...... J i + 1 ) 

The values 

for R,. = 1. 2. •..•• k 

have been defi ned to be the values for 

which give the k smallest values for the cost function 

i 
L {YA. [-m+ 1. -m+ 1. •...• -m+ 1. 11, 12, ••••• I J'] g - rJY 

j=l 

(see the analysis of System A, cycle i). 

Hence the mk vectors of the form 

(-m+l. -m+l •.•••.• -m+l. J l .J2 ••••.•• J i +l ) 
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which give the mk smallest values for the cost function 

i 
c + .L {yA. [-m+l, -m+l, ..... , -m+l, J,. J2 , ••... , JJ.lg - r j }2 

J=l 

are th e vectors 

[-m+l, -m+l, ..... , -m+l, 11 (9,), 12(9,), •. ' .. , 1i (9,), Ji+ll 

for 9, = 1, 2, .... , k, 

and J i +l = -m+l, -m+3, ..... , m-l. 

These are the mk vectors selected by System B in the (i+l)st 

cycle. 

Now consider cycle i of System A and cycle i+l of System B. 

These are the cycles in which Systems A and B receive the signal 

sample r i . Let the k vectors selected by System A, in cycle i, 

be denoted 

B( I) 

\ 
for 1=1,2, ..... ,k, 

and 1 et the corres pondi ng cos ts be deno ted u( I) • Then the mk vectors 

retain(d by System B in the (i+l )st cycle are 

[BU), Jl 

for I = 1, 2, ..... , k 

and J = -m+l, -m+3, ..... , m-l. 

The corres pondi ng cos ts for thes e mk vectors are c + u (I) . (They are 

independent of the value of"J). 
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Now, applying lemma 3.01, it can be seen that this relation­

ship between the vectors and costs of Systems A and B, will be 

maintained at the end of the next cycle of the algorithms. Clearly 

lemma 3.01 can be applied again and again, and this relationship 

wi 11 always be maintained. (It has been assumed here that the k 

costs u(I) are always distinct}. 

Of theN+l component vectors ~(I) stored by'System A during 

some cycl e, the componen t furthes t to the 1 eft of the vector with 

smallest cost, is taken as a detected element. Similarly, in the 

corresponding cycle of System B, the eqrliest element of the N+2 

compo'nent vector [B.(I}, J] with smallest cost, is taken as a detec­

ted element. But it can be seen from the above analysis, that the 

vectors B{I} of System A, have the same costs as the vectors 

[R{I}, J] of System B. Therefore both Systems will produce the 

same detectedda ta element. 

cyCles of the algorithms. 

End of proof Of theorem 3.02. 

This is clearly true for all following 

.' • 

From theorem 3.02 it can be seen tha t, if the estimated 

cha nne 1 vec to r 
-~ 

is used with System 1, instead of the channel vector 

then m times as many vectors are needed to produce the same detected 

data sequence. Hence, if the number k of vectors stored by System 1, 

is a multiple of m, then the extra zero effectively reduces k by a 

factor of m. The nunber of components of the vectors is also effec-

tively reduced by one. 
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The effect of an extra zero, at the start of the channel's 

sampled impulse response, will now be examined for System 2. 

Define System C to be System 2 with the estimated channel vector 

and mk N+l component vectors stored at the start of each cycle. 

yO is defined equal to zero, as for System B. 

Lermza 3.02 

As in lemma 3.01, let the k vectors stored by System A at the 

start of some cycle, be Q(I), with a distinct set of costs u(I), 

for 

I=1,2, ..... ,k. 

Let the signal sample received by System A, in this cycle, be r. 

Suppose that the mk vectors stored by System C, in the cycle in 

whi ch r is recei ved, are 

[~(I), J] 

for I = 1, 2, .... , k 

- and J = -m+ 1, -m+3, ..... , m-l. 

Suppose also that the costs for these mk vectors are independent 

of J, and equal to c + u(I) for some constant c. Then this rela­

tionship, between the vectors and costs of Systems A and C, will 

be maintained at the start of the following cycle of the process. 
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Proof 

The proof of this lemma is simi'lar to that for lenma 3.01. 

For sys tem A, the set of mk expanded vectors is 

[!l(I), K] 

for I = 1, 2, ••.•• , k 

and K = -m+ 1, -m+3, •..•. , m-l. 

The costs for these vectors are given by 

v(I, K) = utI) + {rA. [!l(I), Klg - r}2 (3.11) 

where 

yA=(Yg'Yg_l' •.... 'Yl) 

(see Section 3.02). Let the k pairs of values (I, K), which give 

the k sma 11 es t values of v (I, K), be deno ted 

[I(R.), K(R.)l 

for R. = 1, 2, ••.•• , k. 

Then the k vectors selected for System A are 

[!l(T(R.» ,K(R.)l 

for R.= 1,2, •••.•• k. 

For System C, the expanded set of m2 k vectors is 

[!l(I) , J, Ll 

for I = 1. 2, ..... , k. 

J = -m+l, -m+3, ..... , m-l 

and L = -m+l, -m+3, • I ••• , m-l. 
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The costs for these vectors are given by 

0(1, J, L) = c + u(I) + el. [Q(I), JJ g - rP 

(see equati on 3.08). From thi s equa tion and equation 3.11, it·· 

follows that 

0(1, J, L) = c + v(I, J) (3.12 ) 

System C is a System 2 process, so it uses decision rule 2. Hence 

k vectors of the .form 

[Q(I), J, LJ 

must be selected, for each possible value of L, i.e. the k values 

of (I, J), giving the smallest values of the cost function 

0(1, J, L), must be found for each value of L. However, from 

equation 3.12, it can be seen that the value of 0(1, J, L) is inde­

pendent of L. Hence, for any given value of L, the k pairs of 

values (I, J) which minimise 0(1, J, L), are the ones which minimise 

v(I, J). These values have been denoted 

[I(~), K(~)J 
---' 

for ~ = 1, 2, ..... , k. 

Hence, for a given value of L, the k vectors selected by System C 

are 

[Q(I(~)), K(~), LJ 

for ~ = 1, 2, ..... , k. The mk vectors selected by System Care 

[Q(I(~)), K(~), LJ 
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fo r R. = 1, 2, ....• , k 

and L = -m+ 1, -m+3, ..... , m-l. 

The costs for these vectors are independent of L and are equal to 

c + v[I(R.), K(R.)] 

These are the costs for the k vectors 

[Q(I(R.)), K(R.)] 

selected by System A, except for the constant c. Hence the given 

relationship between the vectors and costs of Systems A and C, will 

be maintained at the start of the following cycle. 

End of proof. 

Theorem 3.03 

Systems A and C will produce the same detected data sequence. 

Proof 

Details of the cycles of System A, up to the i th cycle, are 

given in the proof of theorem 3.02, where i is defined to be the 

least integer such thatmi~k. ---' 

System C, 1st cycle 

Initially System C has mk stored vectors, each equal to the 

N+l component vector 

( -m+ I, -m+ 1, ..... , -m+ 1 ) 

One of these vectors is assigned a zero cost and the others, infinite 

costs. (See Section 3.02). It will be seen that System C produces 

the same vectors and costs, in every cycle, as System B. 
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where y = 0, so that yC is the reverse of the estimated channel o -
vector for System C. Then 

and yC is the same as yB. As for System B, the first signal 

sample ro ' received by System C, is independent of the data sequence. 

The expanded set of m2k·vectors will contain m vectors with 

finite cos ts, of the form 

( -m+ 1, -m+ 1, ••.•• , -m+ 1, Jl ) 

where Jl can take on the values 

-m+ 1, -m+3, ••••• , m-l. 

The cos ts for these m vectors are 

(See Section 3.02). The set of expanded vectors will also contain 

m2k-m vectors with infinite costs. 

Using equation 3.13, it can be seen that 

1. C. [-m+ 1, -m+ 1, •.•• , -m+ 1, J 11 g+ 1 = yA. [-m+ 1, -m+ 1, ..•• , -m+ 11 9 

Hence the first m vectors in the set of expanded vectors, have costs 

{YA. [-m+l, -m+l, ..•. , -m+llg - ro}2 = c, say. 
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Now, according to decision rule 2. the k vectors of the fonn 

(-m+1. -m+1 ••••.•• -m+1. J1) 

with smallest costs, must be se1eted for each possible value of 

J1. In the expanded set. there is one vector wi th cost c, and 

k-1 vectors with infinite costs, for each value of J1 . Hence 

the m vectors with cost c must be among those selected. The set 

of mk selected vectors will therefore contai n the m vectors 

(-m+l, -m+l, •.•.. , -m+1, J1) 

for Jl = -m+1, -m+3 ••...• , m-1. 

with costs equal to c. mk-m vectors with infinite costs. will also 

be selected. 

System C. 2nd ayale 

As for System B. the set of m2 k expanded vectors wi 11 contain 

m2 vectors of the form 

(-m+1, -m+l, •.•.. , -m+l. Jp J2) 

with costs 

A . 2 
C + {Y . [-m+l, -m+l, ..•••• -m+1. J1]g - r,} 

The expanded set will also contain m2 k _m2 vectors with infinite 

cos ts. 

For each value of J2 ,· the k vectors of the form 

(-m+l, -m+l, ..•..• -m+1. Jl • J 2) 
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with smallest costs, will be selected by System C, (i.e. by 

decision rule 2). There are m such vectors with finite costs, 

for each of the m values of J2, so all of the vectors with finite 

costs will be selected (assuming that k;:: m). Hence the set of 

mk selected vectors will contain m2 vectors Of the form 

(-m+l, -m+l, ...•. , -m+l, Jl' J2) 

wi th cos ts 

Thts set will also contain mk _m2 vectors with infinite costs. 

System C, (i+l)st ayaZe 

The set of m2 k expanded vectors will contain mi+l vectors of 

the form 

( -m+ 1, -m+ 1, ..... ,-m+ 1, Jl' J2 , ..... , Ji + 1 ) 

with costs equal to 

i 
c + L {YA. [-m+ 1, -m+ 1, .... , -m+ 1, J l' J2 , 

j=l 
.... , 

---
J.] - r.}2 

J g J. 

2k i+l to ·th·f··t t ·111 b· ldd· th - m -m vec rs Wl 1 n 1 m e cos s Wl a so e)nc u e 1 n e 

expanded set. i has been defined to be the smallest integer such 

that mi ~ k, so there are mk or more vectors in the expanded set, 

with finite costs. In fact, for each of the m values of Ji +l , there 

are k or more vectors of the form 

[-m+l, -m+l, ....• , -m+l, Jl' J2, .•..• , J i +1] 
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with finite costs. The k vectors with smallest costs must now be 

selected. for each value of Ji +l • Hence. for each value of Ji +l • 

the k selected vectors are given by the k values of 

which minimise the cost function 

But these values have been denoted 

for R, = 1. 2 ...... k. (See the analysis of System A. cycle i). 

Hence the mk vectors selected by System C. in this cycle are 

. for R, = 1.'2 ...... k, 

and Ji+ 1 = -m+l. -m+3 ....... m-1. 

.-~. 

It can be seen that the vectors and costs stored at the end of 

the (i+l)st cycle. are the same for both System B and System C. 

Hence the argument used in theorem 3.02 also applies for this case 

with System C. except that lemma 3.02 must now be used in place 

of lemma 3.01. Systems A and C therefore produce the same detected 

data sequences. 

End of proof of Theorem 3.0J. 
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Now consider a situation with System 1 using the correct 

estimate 

of the channel's sampled impulse response. Then, from theorem 

3.03, it can be seen that System 2 requi res m times as many stored 

vectors as System 1, to produce the same detected data sequence, 

if it uses the incorrect estimate: 

of the channel vector. 

The simulation tests described in Chapter 4, show that the. 

performances of Systems 1 and 2 are usually about the same, for a 

given number of stored vectors. Hence, where the number k of vec­

tors stored by System 2, is a multiple of m2 , inserting an extra 

zero at the start of the channel vector, effectively reduces the 

number of stored vectors by a factor of m. Note that System C 

was defined to be operating with N+1 components in each vector, 

whereas the vectors of System A had N components. Hence the addi­

tion of the extra zero, also effectively reduces the number of 

these components by one. 

The effect of the extra zero, at the start of the channel vec­

tor, will no\~ be investigated for System 4. Define System D to be 

System 4, with the estimated channel vector 

(Y1' Y2' ..... , yg)' 

and k N component vectors stored at the start of each cycle. 
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Also define System E to be System 4. with the estimated channel 

vector 

and mk N+l component vectors stored at the start of each cycle. 

where yO = O. 

Lemma 3.03 

Consider some cycle of the detection process. in which the 

signal sample r is received by System D. Let the k vectors stored 

at the start of this cycle be denoted Q(I) with a set of distinct 

costs u(I). for I = 1. 2 ....... k. Suppose that the mk vectors 

of System E. at the start of the cycle in which the sample r is 

recei ved. a re 

[Q(I). J] 

·for I-l.2 ....... k. 

and J = -m+ 1. -m+3. ...... m- 1 

Suppose also that the cost for each vector 

[q(I). J] 

is independent of J. and equal to 

c + u(I) 

for some constant c. Then this relationship between the vectors 

and costs of Systems D and E. will be maintained at the start of 

the next cycle of the algorithm. 
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Proof 

System D is a particular case of System 4, so the set of k 

vectors 

g(l), g(2), ..... , g(k) 

contain all possible combinations of the latest ~ components, where 

~ is given by 

Hence these k vectors may be divided into m sets, of the form 

gI(K), where I is the value of the component which is ~th from 

the right. Then each value of K corresponds to a particular combi­

nation of the latest ~-1 components of the vectors. I may take on 

the m values -m+ 1, -m+3, . . . . . , m-1 • 

and K may take the values, 

1, 2, ..... , k/m. 

For System D, the set of mk expanded vectors are of the form 

. ---" 

for K = 1 , 2, ..... , k/m·. 

I = -m+1, -m+3, ..... , m-1 

and L = -m+ 1, -m+3, ..... , m-l. 

The costs for these vectors are given by 

(3.14) 

(see Section 3.02), where uI(K) is the cost for the vector gI(K) and 
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The value of K dictates a particular combination of the latest ~-l 

components of QI(K). Hence the values of K and L dictate a parti­

cular combination of the latest ~ elements of the vector 

I [Q (K), L]. 

According to the decision rule for System D (i .e. decision 

rule 4), the vector [QI(K), L] with smallest cost, must be selected 

for each possible combination of the latest ~ components. Hence, 

for each value of (K, L) one value of 1- must be chosen. Let this 

value of I be denoted I(K, L). Then, for given values of K and L, 

the value of I which minimises the cost function v(l, K, L) is 

l(K, L). Hence the k vectors selected by System Dare 

[QP (K), L] with costs: v[P, K, L] 

for K = 1, 2, ..... , k/m 

. and L = -m+l, -m+3, ..... , m-l 

with p = I(K, L). 

For System E, the set of m2 k expanded vectors is 

for K = 1, 2, ••••• , k/m 

J = -m+ 1, -m+3, ..•.• , m-l 

and L = -m+l, -m+3, •..•• , m-l. 

The cos ts for these vectors are given by 
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(See Secti on 3.02), where 

E r = (Yg' Yg- l , •••.• , Yl' 0). 

Clearly, by definition, 

therefore 

E I 0 I 
Y. [Q(K), J, L]g+l =!. [Q(K),J]g 

Therefore, equation 3.15 becomes 

Hence, from this equation and equation 3.14 

. 0(1, K, J, L) = c + v(1, K, J) (3.16) 

The value of K dictates a particular combination of the latest .~-l 

elements of Q1(K). Hence the values of K, J and L dictate a parti­

cular. combination of the latest 2+1 elements of the vector 

Now, according to the decision rule for System E, the vector with 

smallest cost must be selected, for each possible combination of the 

latest t+l components. Hence, for each value of (K, J, L), the 

value of I which minimises the cost function 0(1, K, J, L), must be 

found. But, from equation 3.16, the value of I which minimises 

0(1, K, J, L) for given values of J, K and L, is the value which 
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minimises v(I, K, J). This value of I has been denoted I(K, J). 

Hence the mk selected vectors for System E are 

for . K = 1, 2, •.... , k/m 

J = -m+ 1, -m+3, .•.•. , m-1 

and L = -m+ 1, -m+3, .•... , m-1 

with P = I(K, J). 

The costs for these vectors are 

c + v [P, K, J] 

where 

v[P, K, J] 

is the cost for the vector 

se 1 ected by System D. Hence the re 1 a ti onshi p between the vectors 

and costs of Systems D and E, that existed at the start of the cycle, 

is maintained at the start of the next cycle of the process. 

End of proof of Zemma J.OJ. 

Theorem J.04 

Systems D and E will produce the same detected da ta sequence. 
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Proof: 

System D, 1st cycZe 

Initially, System D has k stored vectors, each equal to the N 

component vector 

(-m+ 1; -m+ 1, ••••• , -m+ 1 ) 

One of the vectors is assigned a cost of zero and the other vectors 

are given infinite costs. The set of mk expanded vectors contains 

m vectors of the form, 

(-m+ 1, -m+ 1, ••.•• , -m+ 1, 11) 

with costs 

. D 
{Y • [-m+1, -m+1, •••• , -m+l, I11g - r1}2 

where r1 is·the first signal sample received by System D, and 11 may 

take on the m values 

-m+ 1, -m+3, , .••• , m-1 

(see Section 3.02). The set of expanded vectors also contains mk-m 

vectors with infinite costs. System D uses decision rule 4, so the 

vector with lowest cost must be selected, for each possible value 

of I,. The set of k selected vectors is then completed with an 

arbitrary selection from the remaining mk-m vectors. The k selected 

vectors will therefore contain m vectors of the form 

(-m+ 1, -m+ 1, ••... , -m+ 1, 11) 
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wi th costs 

k-m vectors with infinite costs are also contained in the set of 

se 1 ected vectors. 

System D, 2ndayaZe 

The set of mk extended vectors will contain m2 vectors of the 

form 

(-m+ 1. -m+ 1. ...••• -m+ 1. I 1• I 2) 

with costs 

The set of extended vectors will also contain mk-m2 vectors with 

infinite costs. Now. according to decision rule 4. the vector 

·with lowest cost must be selected for each possible combination 

of the latest two components. (For components other than the 

latest two. only one value is available in all of the mk vectors). 

The set of k selected vectors will therefore contain m2 vectors of 

- the form 

(-m+1. -mt1 •...•.• -m+1. I1• I2) 

with costs 

2 
l {yD. [-mt1. -m+1 •.•..• -mt1. I 1• 1

2
., ••••• 1

J
.l g - rJo}2 

j=l -
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This set wi.ll also contain k-m 2 vectors with infinite costs 

(assumi ng that k ~ m2
). 

System D, Uh aycZe 

The set of mk extended vectors will contain m~ vectors of 

the form 

( -m+ 1. -m+ 1. ..•.• -m+ 1. 11, 12 , ..•..• It) 

• 
with costs 

The expanded set will also contain mk - mt vectors with infinite 

costs. ~ has been defined to be the integer such that k = m~. so 

this set of mk vectors contains k vectors with finite costs. The 

vector with smallest cost must now be chosen. for each possible 

combination of the latest t components. Hence all of the vectors 

with fini te costs will be selected. The k selected vectors will 

be of the form 

_.-" 

(-m+l. -m+l ...... -m+l. 11, 12, ...... It) 

with costs 

t 
.L . {.ID. [-m+l. -m+l ...... -m+l. 11, 12, ..... IJ.l g - r

J
.}2 

J=l 
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System E,lst oycle 

Initially, System E has mk stored vectors, each equal to the 

N+l component vector 

(-m+l, -m+l, .•.. , -m+l) 

One of the vectors is as si gned a zero cos t and the others, i nfi nite 

costs. 

The set of m2 k extended vectors wi 11 conta in m vectors of the 

form 

(-m+ 1, -m+ 1, ••.•. , -mt 1, J l ) 

with costs 

where r 0 is the fi rs t si gna 1 sample recei ved by Sys tem E. J l may 

take on the m values 

-mtl, -m+3, ..... , m-l 

E 
and r = (Yg ' Yg-l' ..•.• , Yl'0) 

--~. 

From the defi niti ons of rD and rE, it can be seen tha t 

Hence 

YE. 1 D [-m+l, -mt, ••.. , -m+l, J1Jg+l=r. [-m+l, -m+l, .••• , -m+1J g 

Hence the set of extended vectors contains m vectors of the form 
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( -m+ 1. -m+ 1. .....• -m+ 1. J 1 ) 

wi th cos ts c. where 

(These costs are independent of Jl ). The set of extended vectors 

also contains m2 k-m vectors with infinite costs. 

According to decision rQle 4. the vector with smallest cost 

must be selected. for each of the m possible values of J l . The 

set of selected vectors is then made up by choosing mk-m vectors 

arbit'rarily from those remaining. Hence the set of k selected 

vectors contai ns mk-m vectors with i nfi nite costs and m vectors of 

the form 

(-m+l. -m+l •..•..• -m+l. J l ) 

with costs equal to c. 

-system E, 2nd cycZe 

The set of m2 k extended vectors will contain mk-m 2 vectors with 

i nfi ni te costs. and m2 vectors of the form 

(-m+l. -m+l •.....• -m+l. Jl' J2) 

with cos ts 

The vec;tor with smallest cost must be selected for each possible 

combination of the latest two elements. thus giving m2 selected vec­

tors. The set of selected vectors is then completed with an arbitrary 
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choice from the remaining m2k _m 2 vectors. Hence the set of mk 

selected vectors will contain mk-m 2 vectors with infinite costs, 

and m2 vectors of the form 

(-m+1, -m+1, ., ... , -m+1, J1 , J 2) 

wi th cos ts equal to 

System E, (~+l)st cyaZe 

The set of m2k extended vectors will contain m2k _mH1 vectors 

with infinite costs, and m~+l vectors of the form 

( -m+ 1, -m+ 1, ...•. , -m+ 1, J l' J 2' •.... , J H 1 ) 

with costs equal to 

~ 
c + L {yD. [-m+1, -m+1, ...•. , -m+1, J1 , J2 , ••••• , JJolg - r

J
o}2 .. 

j=l -

~ is defined to be the integer such that k = m~, so there arenow 

mk vectors with finite costs. The vector with smallest cost must 

be selected for each combination of the latest H1 components, so 

the mk selected vectors are of the form 

(-m+ 1, -m+ 1, .. 0 •• ' -m+ 1, J1' J2 , •• 0 • 0' J H 1 ) 

with cos ts equal to 

~ 

c + J {yD. [-m+1, -m+1, .. 0 •• ' -m+1, J1, J 2, •••• , JJolg - r j }2 
J=l 
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Now consider cycle 2 of System D and cycle £+1 of System E. 

Denote the k vectors selected by System D, in cycle 2, by R(I) and 

their costs by u(I), for I = 1, 2, •.... , k. (These k costs are 

assumed to be distinct). Then, from the above analysis it can be 

seen that the mk vectors selected by System E, in its 2+1 st cycle 

are 

[.!i(I), J] with costs 

c + u(I) 

for I = 1, 2, ..... , k 

and J = -m+l, -m+3, •.... , m-l. 

From 1 ennna 3.03, thi s re la ti onshi p between the vectors and 

costs of Systems D and E, will be maintained at the end of the 

following cycle of the process. Clearly the lennna can be applied 

again and again, so this relationship will be maintained during 

all future cycles. 

OfthekN+l component vectors of System D, the one with smallest 

cost gives the detected data element in each cycle. The element 

detected is th e component furthes t to the left, of the vector ~(I) 

with smallest cost. With System E, the component furthest to the left, 

_ of the N+2 component vector (B.(I),J) with smaliest cost, is detected. 

It can be seen from the above analysis, that the costs for the vectors 

~(I) of System D, are the same as the costs for the vectors [~(I), J] 

of System E. Therefore both Systems will produce the same detected 

data element. As the vectors and costs of the two Systems remain 

linked, in the manner indicated above, it is clear that all detected 

elements will be identical for the Systems. 

End of proof of theorem 3.04. 
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From theorem 3.04, it can be seen that, if the estimated 

channe 1 vector 

is used instead of 

then m times as many stored vectors are needed by System 4, if 

the same detected data sequence is to be produced. Hence inserting 

a zero at the start of the channel vector, effectively reduces the 

number of stored vectors by a factor of m, (where m is the number 

of signal levels). The number of components of the stored vectors 

is also effectively reduced, by one. By means of theorems 3.02 

and 3.03, it has been shown that this result also holds for System 

1, and is approximately true for System 2. However no such result 

appears to be available for System 3. The simulation results of 

Chapter 4 show, in fact, that Sys tem 3 is affected much more 

severe 1y than the other sys terns, by the presence of an extra zero 

at the start of the channel vector. 

---~-

3.11 The Effect of an Extra Small Component at the Start of the 
Channel's Sampled Impulse Response 

It has been shown in Section 3.10, that adding a zero at the 

start of the channel vector, effectively reduces the number of 

stored vectors by a factor of m, for Systems 1, 2 and 4. It seems 

reasonable that this result should a1 so hold approximately, if a 

small value is added to the channel vector instead of a zero. 
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This is shown to be the case, at least for some channels, by means 

of the simulation results presented in Chapter 4. 

If the first component of the channel's sampled impulse res­

pons e is very small, it is probably bes t for the detector to ignore 

thi s component compl etely. The estimated sampled impul se response 

woul d th en be 

An alternative method forimprovi ng the performance of the 

detection processes, when yO is small, 'will now be considered. 

Let the z transform of the channel's sampled impulse response be 

Y(z). (The z trai1sform was defined in Section 1.11). Let the 

roots of Y(z) with modulus greater than one be denoted 

and let the roots with modulus less than or equal to one be 

Then 

yez) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1-1 = c(z - ul )(z -u2 ) .•• (z -up )(z -Sl )(z -S2 ) .• (z -Sq 

for some constant c. Note that Y(z) may be written as a power 

series in z-l. The constant term of the power series is the first 

component of the channel's sampled impulse response. Hence 

..... 
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where all of the terms ai have modulus greater than one. Clearly, 

if the channel vector coul d be tra nsformed so tha t the a i terms 

are replaced by their reciprocals, then yO would be increased in 

size. Hence consider the linear filter whose z transform is 

given by 

Y*(z) 

If this filter is placed between the sampled received signal and 

the detector, the sampled impulse response estimated by the receiver 

will have z transform given by 

-1 -1 -1-1 
le (z -132 ) ... (z -Sq ) 

Now the constant term of the power series is 

which may be considerably larger than for the case without the linear 

filter. Hence the linear filter with z transform Y*(z) may be used 

to effectively alter the components of the channel vector, in such 

a way that the first component is increased in size. This may be 

expected to improve the performances of Systems 1-4. 

Note that it may be shown, that the type of 1 inear fil ter des­

cribed above introduces only pure phase distortion in the received 

signal [6,14]. For a case where the channel characteristics vary 

with time, it may be of advantage to use a linear filter of this type, 
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which adapts to the changes in the channel. Then the first component 

of the channel vector, as seen by the detector, will always 

be reasonaUly large. Some simulation results are 

presented in Chapter 4, which demonstrate the improvement in per­

formance offered by such a fil ter. 

3.12 Probability of Error with Systemsl-4i~henUsed with the 
Idea I Channe I 

Each of the Systems 1-4, start off with a number k of N 

component vectors given by 

Q _ 1 (I) = (-m+ 1, -m+ 1, ••••• , -m+ 1 ) 

The corres ponding cos ts are given by 

u -1 (I) = 0 for I = 1 

00 for I = 2, 3, ••••• , k 

. These vectors are extended to the mk N+l component vectors 

= [-m+ 1, -m+ 1, •.•.• , -m+ 1, xo] 

where Xo may take on the va 1 ues 

-m+ 1, -m+3, •.••• , m-l. 

The cos ts for these extended vectors are given by 
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(see Section 3.02), where ro is the first received signal 

samp le, and 'i is th e vector formed by reversing the channel 

vector. Here, the channel vector being considered has just one 

component equal to unity, (this being the definition of the ideal 

channel), so 

Y = 1 and g = 0 

Hence 

Let sd be the data element value which is closest to ro' Then 

the vector, from the set of mk extended vectors, with smallest 

cost is la(l, so') , or 

(-m+ 1, -m+ 1 , ..... , -m+ 1, s ' ) o 

The cost for this vector is (so' - ro)2. 

Now, according to the appropriate deci sion rule (ei ther rule 0" 

2, 3 or 4), k of the extended vectors will be selected and retained 

for use in the following cycle of the algorithm.
o 

All of the deci­

sion rules are designed in such a way, that the vector wi th lowest 

cost will be among those selected. Hence la(l, so' ) will be retained 

-for the coming cycle. 

In the second cycl e, the mk extended vectors wi 11 be of the 

form 

m of these vectors will have stemmed from the N component vector 
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(-m+l. -m+l •..••.• -m+l. sd ) 

with cost equal to (so' - ro)2. The costs for these m vectors 

are given by 

as r is the scalar. 'one'. and g = O .. 

Now let sl' be the data element value which is closest to rr 

Then the vector from the set fIl(I. xl)} with smallest cost is 

given by 

and its cost is given by 

.-.~-

Similarly. in the third cycle of the algorithm. the extended vector 

-with smallest cost is the N+l component vector 

(-m+l. -m+l •.....• -m+l. so'. sl'. s2') 

where s2' is the data element value which is closest to the third 

received sample r2. 
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Now consider the (k+l)st cycle of the process, in which the 

signal sample r k is received. Let the extended vector wi th 

smallest cost be denoted 

( " , ) sk_N ' sk-N+l' •...• , sk 

Then it follows from the above analysis, that si' is the data 

element value which is closest to the received signal sample ri' 

for 

i = k-N, k-N+l, •..•. , k. 

Each of the Systems 1-4 are designed in such a way that the data 

elements {si} are detected as the component furthest to the left, 

of the vector with smallest cost, in each cycle. Hence each data 

element si' is detected as the data element value which is closest 

to the received signal sample r i . Therefore, with the ideal 

channel, Systems 1-4 produce the same detected data sequence as the 

non linear equalizer described in Section 1.13. (See Section 1.14). 

This of course implies. that the probability of error, in the detected 

sequence, is the same as that for the non linear equalizer, and is 

gi ven by 

Pe = Prob (wi > 1) 

for the case of binary signals 

and 

Pe = 1.5 Prob (Wi > 1) 

for quaternary signals. (wi is a normally distributed random variable, 

with zero mean and given variance). It should be noted that these 
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results are independent of the number k, of vectors stored by 

the detecti on processes. 

~---
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CHAPTER 4 

4.01 The·Valueof·Computer Simulation·Testing 

Hhen detection processes such as Systems 1-4 have been 

designed, perhaps the most obvious method for assessing their 

perfomances, would involve constructing a piece of hardware (an 

electronic circuit) which carries out the required operations. 

The detectors could then be used as part of a data transmission 

system, and the number of errors occurri ng may be measured. How­

ever this approach to the evaluation of the detection processes, 

does have some disadvantages. After the various pi eces of hard­

ware have been cons tructed, it may be des i rab 1 e to make some modi­

fications to the processes. ·Extensive and time consuming altera­

tions may then be required, even for apparently small changes in 

the algorithms. The construction of the necessary electronic cir­

cuits itself, may also be a difficult and expensive task. 

Another approach that should be considered, for evaluating the 

detectors, is one of thorough mathematical analysis. It would be 

very useful if an expression for the proporti on of errors expected, 

in the detected data sequence, could be derived for Systems 1-4. 

Such a deri vati on ~lOuld however appear to be a di ffi cult task, due 

-to the number and type of operations required by the algorithms. 

Forney [35] has obtained a bound for the probability of error in 

the detected data sequence, for the Viterbi Algorithm. It may be 

possible to apply a similar analysis to Systems 1-4. 

The performances of the various detection processes were, in 

fact, evaluated by means of computer simulation tests. i.e. a program 



168 

was written for a modern high speed digital computer, which per­

forms the necessary operations on any given sequence of received 

signal samples. This method has the advantage, that the cost of 

the materials required to produce the program is negligible. Also, 

quite fundamental modifications can sometimes be made to the algo­

rithms, by jus t retyping a few instructions. 

The main disadvantage of computer simulation testing, seems to 

be that a very large amount of computing time is required, to obtain 

some types of performance figures. Even on a reasonably fast digital , 

computer such as an ICL 1904A, some hundreds of hours of program run 

time woul d be needed to produce th e data suppl i ed in thi s chapter. 

Many of the longer program runs were carried out on a COC 7600 com­

puter, situated at Manchester University. The shorter runs were on 

the ICL 1904A at Loughborough University. The programming language 

used on the 1904A was 1900 Fortran, whi ch is very similar to Fortran 

IV. Apart from a few statements having to be altered, these programs 

were also suitable for use on the COC 7600. 

One point to bear in mind with computer simulation testing, is 

that most computers can store numbers and perform calculations, to 

a hi gh degree of accuracy. However, if a pi ece of hardware was 

constructed to implement the detection processes, a relatively crude 

-calculation facility would probably be employed, to reduce costs. 

Hence the simulated detection processes, may be expected to perform 

slightly better than those implemented in practice. 
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4.02 Simulation of a Data Transmission System 

The different detection processes were tested for the cases 

of a binary data sign'al (m=2), anda quaternary signal (m=4). The 

model of the data transmission system used, is described in Sec-

tion 1.02. The elements si' of the data sequence, may take on 

the m values 

-m+l, -m+3, ••••• , m-l 

The different possible values of each si are assumed to be statis­

tically independent and equally likely,'so a standard subroutine 

was used to produce the data element values in a random manner. 

Th e NAG (Numeri ca 1 Al gorithms Group) subrouti ne, IG05AAF", was 

used to provide a simulated random number from a uniform (0, 1) 

distribution. This is a distribution wi th a probabili ty density 

function f(x) such that 

f(x) = [1 
, 0 

for O!> X ~ 1 

otherwise 

Let X be a sampl~ from the simulated uniform distribution. Then, 

for a binary signal,so is defined by 

if O!: X< 0.5 

if 0.5!: Xs.l 

For a quaternary signal, 

So = -3 if O!: X< 0.25 

-1 if 0.25 S. X < 0.5 

1 if 0.5s. X< 0.75 

3 if 0.75s. Xs.l 
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A new sample may then be called from the NAG subrouti ne, to define 

each of the 0 ther da ta e 1 emen ts. 

From the data sequence {si}, a received signal sequence> {ri } 

must be generated, such that 

where (YO' Y1' ••.•• , yg) is the sampled impul se response of the 

channel, and {wi } is a sequence of simulated random numbers repre­

senting noise. The samples wi are assumed to be taken from a nor­

mal distribution, with zero mean and some fixed variance a2
• 

Each wi was provided by the standard NAG subroutine G05AEF, in 

which any desired mean, and standard deviation a, may be specified. 

One subrouti ne of the computer programs was devoted to generating 

the sequence> {r;}, of received signal samples. This subroutine then 

represents a transmitter and a baseband channel. The remainder of 

the programs contained the operations necessary for implementing 

the detection processes. 

4.03 Method of Comparison of the Detection Processes 

Consider the model of a data transmission system, given in 

Section 1.02. With this model, errors will occur in the detected 

data sequence, if the average power level of the additive white 

Gaussian noi se is sufficiently high. The proportion of errors 

occurring in the detected sequence, is a random variable whose 

expected value increases with the noise power. Note that it is 

fairly straightforward to determine the proportion of errors 
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occurring in a simulation test, by simply comparing the generated 

data sequence with the detected sequence. 

The cri terion under which the different detection processes 

were compared, was that of their tolerance to additive white 

Gaussian noise. The tolerance to noise is just a measure of the 

noise standard deviation 0, which gives rise to. some given expected 

error rate in the detected data sequence. Many of the tests were 

performed at an error rate of 0.004, i.e. on a long term average, 

there were 4 detected elements in error, out of every 1000. 

Suppose that, with one detection process, a larger noise level 

is required to produce an error rate whose expected value is 

0.004, than with a second detector. Then the former detection 

process is said to have the greatest tolerance to addi tive white 

Gaussian noi se, for the given conditions, and at an error rate of 

0.004. 

As an alternative, the various detectors could have been com­

pared, by means of simulation tests in which the noise level was 

kept constant. One problem 11ith this method is that of choosing 

the values of the noi se vari ance 0 2 • If a fairly small value of 0 

is used, so that the noise level is low, then some of the better 

-detectors may yield little or no errors in the duration of a test. 

Suppose that 0 is chosen to be large enough, so that one of the 

good detection processes gives a reasonable amount of errors, even 

in conditions of mild signal distortion. Then this value of 0 may 

not be suitable for testing the poorer detection processes, under 

harsher conditions, i.e. 0 may be large enough to give an error rate 

of m-l, under these conditions, where m is the number of signal levels. 
m 
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When the error rate is at this level, the noise is completely 

swamping the transmitted signal, and the detector is choosing the 

data element values randomly. (Note that each of the data element 

values is assumed to occur with probabi1ity~, so a random detec­

tion shou1 d gi ve an error rate of m~ 1). The average error rate 

s hou1 d not exceed m~ 1 wi th these detectors, so an increase in 0 

wi 11 no t increase the proporti on of errors. Hence it can be seen 

that, if 0 is sufficiently large, two detection processes which 
, 

nonnally show different perfonnances, will yield the same error 

rate. Then no useful comparison of the detectors can be made, at 

this noise level. It is clear from the above discussion, that a 

suitable value of 0 may not be available, for simulation tests 

involving channels with widely varying degrees of distortion. It 

was therefore decided to perfonn the tests at a fixed error rate. 

The error rate chosen for the simulation tests was 0.004. 

In practice, the majority of data transmission systems operate at 

error rates whi ch are somewhat lower than thi s. I t has however 

. been demonstrated for a particular transmission channel, that the 

relative perfonnances of the detectors tested, remain constant over 

a range of error rates from 10- 1 to 10-4 • (See figures 4.02 to 4.05). 

It is hoped tha t thi s i s generally the case. so that the best of two 

detection processes at an error rate of 0.004, is the one which has 

the best performance over a wide range of error ra tes. 

From Section 4.04, it may be seen that the accuracy of the 

results obtained in the simulation tests, increases with the number 

of errors occurring in the test. For a given accuracy, it may be 

determined that the number n of data elements transmitted during 

the tes t, mus t be large enough to yi e 1 d a gi ven number q of errors. 
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Cl early q = n x error rate 

so if the chosen error rate is low, n must be large to give 

results of a required accuracy. Hence, to perform the simulation 

tests at low error rates, is very demanding on computer time. The 

error rate of 0.004 was selected as one which was reasonably low, 

but which would allow a wide range of results to be obtained, with 

the computing resources available. 

4.04 Confidence Limits 

Consider a simulation test in which n data elements are trans-

mitted. Let the number of errors in the detected data sequence be 

q. Then the error rate is defined to be q/n. The expected value 

e, of the error rate (or the expected error rate), may be defined 

by 

e = lim .9.. 
n->oon 

In a simulation test, n will of course be finite, so the 

proportion of errors occurring in a test, \~ill only give an estimate 

of the expected error rate e. Clearly it is necessary to know, at 

least roughly, how good an estimate of e is being obtained, if one 

is to have any confidence in the results of the simulation tests. 

The data necessary to determine the exact accuracy of this estimate 

of e, has not been obtained for Systems 1-4 or the V.A. This data 

has however been obtained by J 0 Harvey, for the decision feedback 

equalizer described in Section 1.16. As this detection process has 

a performance \~hich approaches that of a maximum likelihood detector, 

the distribution of errors it yields should be roughly the same as 
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that for the V.A. detector. Also, where the performances of 

Systems 1-4 are close to that of the V.A., the distributions of 

errors should be similar for these systems and the decision feed­

back equal i zer of Section 1.16. 

With this decision feedback equalizer, it was found that 

errors usually occurred in bursts. This implies that, if an 

error occurs at some point in the detected data sequence, the 

likelihood of the next few detected elements being in error, is 

relatively high. Hence the errors in the detected sequence are 

not statistically independent. It will be assumed, hOl'iever, that 

any two error bursts are statistically independent, if g+l or more 

data elements are detected correctly between the bursts. (g+l is 

the number of components of the sampled impulse response of the 

channel). Suppose that, at some stage in the detection process, 

the previous g+l data elements detected, are all correct. Then 

the probability of a burst of errors beginning at the detection 

of the following element, is the probability that this element is 

detected incorrectly. Let this probability be denoted p. Also, let 

n be the average number of errors to a burst. Then', during a simula­

tion test in which many data elements are detected, the expected prop-

_ orti on of errors is pn. (i. e. the proporti on of errors is a random 

variabie with mean equal to pn). If the error rate is low, then at 

the detection of most of the elements, the previous g+l data elements 

will have been correctly detected. Hence, at almost any stage of the 

detection process, the probability of an error burst beginning is p. 

Now consider a simulation test in which n data elements are 

detected, where n is large. Assume that the expected error rate is 



175 

low. Then, at the detection of each of approximately n data ele­

ments, there is a probability p of an error burst beginning. The 

process may then be considered as one consisting of approximately 

n statistically independent experiments (or trials), each of which 

has the two· possible outcomes: 

a) an error burst begins 

b) an error burst does not begin. 

Each of these trials is called a Bernou11i Trial. 

Suppose that in a group of n such trials, r successes are 

recorded, where a success is defined to be the outcome (a). 

Let P1 = r/n (4.01 ) 

Then P1 gives an estimate of the probability p, that the outcome 

of a parti cu1 a r event is a success. It may be shown (see Appendi x 

4) that there is a 95% probability, that p is confined to an inter­

val whose lower and upper bounds are approximately 

and 

i .e . Prob. (P1 

Then 

2 Pl 
+-) 

rr 
= 0.95 _ (4.02) 

is called a 95% confidence interval for p. The confidence limits 

on the estimate of pare ±2 Pl/rr. 

The average number of errors occurring in a burst has been 

denoted n, and the number of errors occurring in a simulation test 
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is denoted q. Hence the number of error bursts occurring is 

given by 

r=.9. 
n 

(4.03) 

Hence equation 4.02 gives 

or 

Prob. (Pln - 2 Pln ~ $ pn ~ Pln + 2 Pln~) = 0.95 

(4.04) 

(mul tiplying throughout by n). 

Now let e l be the proportion of errors occurri ng in the simu­

·lation test. Then 

where q is the number of errors occurri ng and n is the number of 

data elements detected, 

Now, from equations 4.01 and 4.03, 

Pl =~ nn 
j (4.05) 

Let e be the expected proportion of errors occurring in the 

simulation test. p is the expected proportion of error bursts, and 

the average number of errors per burst is n. Therefore 

e = Pn. (4.06) 
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Applying equations 4.05 and 4.06 to 4.04 gives 

Prob. (e l - 2 el ~$. e $. e l + 2 e l /%) = 0.95 

Hence the 95% confidence limits for'e are 

h q 

Clearly the confidence limits are inversely proportional to /Ci. 

The noise level chosen for the simulation tests was such that 

the proportion el of errors was approximately equal to 0.004. At 

least 60,000 data elements were detected in each test, so the num­

ber q of errors per test may be taken as 

60000 x 0.004 

or 240. 

Hence the 95% confidence limits for e are given by 

c = ±2 x 0.0041220 or 

c = ±5.164 x 1O-~ Irl . (4.07) 

. 
The results obtained for the decision feedback equalizer 

- described in Section 1.16, indicate that the average number of 

errors per. burst is about 5, for one of the channels tested. 

(Channel E in table 4.01) •. The V.A. detector usually has a slightly 

better performance than this decision feedback equalizer. It there­

fore seems reasonable to assume that n will be no greater than 5, 

for the V.A. detector with channel E. However, some of the channels 

tested introduce a more severe di s torti on of the transmitted si gna 1 
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than does channel E. With all of these factors in mind, an average 

value of 6 for n, seems acceptable for the channels tested, when 

the V.A. detector is employed. The value n = 6 also seems to be 

a good estimate for Systems 1-4, for cases where their performance 

is close to that of the V.A. 

It may be seen from Tables 4.05 and 4.06 that Systems 1-4 

have a close to optimum performance, for the channels tested, when 

the number k of vectors stored at the start of each cycle, is 8 or 

16. The performance of these systems is, however, considerably 

reduced when k is reduced to a value of 4. It has been observed 

that, with this value of k, the error bursts are generally longer 

than they are when k takes the values 8 or 16. It was therefore 

decided to use the value 12, for the average length of an error 

burst, in cases where k = 4. Hence, with an error rate in the 

region of 0.004, the confidence limits on the estimate of the error 

rate are given by 

(±1.789 x 10- 3 for k = 4 
c= ( 

(±1.265 x 10- 3 for k = 8 or 16 

(using equation 4.07). 

(4.08) 

Now consider a simulation test in which a value 0 1 is chosen, 

- for the noise standard deviation, which gives an error rate of e l • 

Let el be close to 0.004 but not actually taking this value. Then, 

if the gradient of the appropriate curve of error rate against sig­

nal to noise ratio is known, the value of 0 corresponding to an 

expected error rate of 0.004, can be calculated as follows: 

Assume that the received signal has uni t average power, when 

there is no noise present in the system. Then the signal to noise 
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ratio (SIN ratio), in the received signal may be defined by 

1 
SIN = 20 10910 (a) db. 

Figure 4.01 gives a sketch of a typical plot of expected error 

rate against SIN ratio. 

Let 0"2 be the value of 0" (to be detennined),which will give 

an average error rate of 0.004. 

Then 

gO.004 " 
0.004 - e 

where gO. 004 is the gradi en t of the' curve a t an error ra te of 0.004, 

and e is the expected value of the error rate corresponding to a 

value 0" = 0"1. (Note that the error rate corresponding to 0"1' which 

actually occurred in the simulation test, has been denoted e
1

). 

Then the requi red va1 ue 0"2 is then given by 

20 10910 (;2) = 0.004 - e + 20 log ( __ 1) 
u 90.004 10 0"1 

(4.09) 

e is not known exactly, but it is known that 

as the 95% confidence limits for e, are 

It is therefore possible to find a 95% confidence interval for the 

value of 



expected error 
rate 

e 

0.004 - - - -' 
I 

I 

I 

;/gradient = gO.004 

SIN ratio = 20 10910 (~) dB 

Sketch of a curve of expected error rate against signal to noise ratio 

FIGURE 4.01 
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The gradient of the curve of error rate against SJN ratio 

will not normally be known~ This curve has, however, been plotted 

for channel E, with System 1 and k = 4 (see Figure 4.02), and 

gO.004 = -0.003 

for this case. If e l is fairly close to 0.004, a small change in 

the value of 90 .004 , should not significiantly affect the value of 

<12 given by equation 4.08. Hence it should be possible to obtain 

a reasonable approximation to 

for most channels, by taking 

gO.004 = -0.003. 

Hence, from equation 4.09 

e - 0.004 1 
0.003 + 20 10910 (0;-) . (4.10) 

It has been sh0l1n that there is a 95% probability that e lies in 

the in terva 1 

(e
1 

- c, e1 + c) 

where c is given by equation 4.08. Hence, from equation 4.10, there 

is a 95% probabil ity that 

20 10910 (;2) 
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lies in the i.nterval whose limits are 

e 1 ± c - 0.004 1 
0.003 + 20 10910 (a-) 

1 

Therefore the 95% confi dence 1 imits for 

20 10910 (_1 ) 
a2 

+ C 
(± 0.6 db for k = 4 

are - 0.003 '" ( 
(± 0.4 db for k = 8 or 16. 

4.05 Method for Choosing the Noise Level in the Simulation Tests 

The purpose of the simulation tests is to find a value a l , 

for the noise standard deviation, such that the resulting error 

rate el is close to 0.004. Then equation 4.10 may be used to 

give an estimate of the value a, which gives an expected error 

rate of 0.004. 

Each simulation test for estimating the tolerance to noise of a 

system, involved the detection of at least 60,000 data elements. 

A. fairly straightforward way of conducting the tests, is to begin 

with an initial guess for a, and run the program for 60,000 data 

elements, with a fixed at this value. This method has the disad-

vantage that, if the guess for a is a poor one, the resulting error 

rate will lie a long way from 0.004. Then the estimate of a2 given 

by equation 4.10, will not be very accurate. 

To overcome the disadvantage mentioned above, the simulation 

tests 11ere split into three sections, each covering 20,000 data 

elements. Then, if the initial guess for a does not give an error 
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rate which is close to 0.004, for the first section of the test, 

it may be adjusted for the next section. Then the results of a 

simulation test consist of three error rates, corresponding to 

three values for the noi se standard deviation (J. A section of 

a cu rve of error ra te agains t (J, may then be drawn, and the value 

of (J corresponding to e = 0.004 can be read off. 

Strictly speaking, the evaluation of the confidence limits 

given in section 4.04, is not applicable if the simulation tests 

are sp1 it into three stages, as descri bed above. It is however 

hoped, that the derived confidence limits will give a reasonable 

estimate of those appropriate to these tests. 

4.06 The Channels Used in the Simulation Tests 

The various detection processes were tested over a range of 

transmission channels with fairly widely varying characteristics, 

so that the systems which are best ·for general use could be selected. 

The sampled impulse responses of the channels are given in Table 

4.01. 

It was pointed out in section 1.11 t.hat the channels which intro­

duce the greatest degree of amplitude distortion, are usually the 

ones w~ich give the poorest tolerance to additive white Gaussian 

noise. The quantity d, defined by equation 1.16, gives a measure 

of the degree of amplitude distortion caused by the channels. Hence 

the value of d should give a guide to the tolerance to noise, which 

results with a channel. Table 4.02 gives the d factor for channels 

A-L. 
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Channel Value of. d 

A 0.50 

B 0.50 

C 0.83 

D 1.50 

E 1.47 

F 1.47 

G 1.17 

H 1.17 

I 2.17 

J 2.83 

K 0.80 

L 2.06 

TABLE 4.02 

The d factor for channels A-L 
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Channels A, C, D, E, G, I and J are all symmetric in the 

sense described in section 1.11, so these channels represent 

pure amplitude distortion in varying degrees. Channels S, F, H, 

/ 

K and L are not symmetric, so they introduce both amplitude, and 

phase distortion. 

If certain assumptions are made about the channels, their 

f.requency characteristics can be determined from their corresponding 

sampled impulse responses, as shO\'in in Appendix 2. Let the modulus 

and argument of a channel's frequency response be denoted A(f) and 

P(f) respectively. Tables 4.03 and 4.04 give a number of equally 

spaced samples, from the graphs of A(f) and P(f), plotted against 

f. From the simulation results given later in this chapter, it 

may be seen that the channels for which the A(f) curves are 

flattest at the peaks, are the ones which give the best tolerance 

to additive white Gaussian noise. 

The sampled impul se responses of each of the channels A to P, 

given in Table 4.01, satisfy the condition that the sum of the 

squares of their components is equal to uni ty. It will nO\'/ be shown 

that, with this condition satisfied and the absence of noise in the 

system, the average energy of a received signal sample r k, is the 

same as that of the data elements sk' 

from equation 1.09, the received signal samples r k are given 

by 

where {\} and {wk} are the da ta and noi se sequences. and 



Channel A( -B) A(~) A(3B) 
T A(-¥) A(~) A (0) A (~) A(¥) A(~B) A(~) A (B) 

A 0.471 0.561 0.797 1.089 1.325 1.415 1.325 1.089 0.797 0.561 0.471 

B 0.472 0.562 0.797 1.089 1.324 1.414 1.324 1.089 0.797 0.562 0.472 

C 0.000 0.156 0.564 1.068 1.476 1.632 1.476 1.068 0.564 0.156 0.000 

D 0.001 0.039 0.088 0.706 1.579 2.001 1.579 0.706 0.088 0.039 0.001 

E 0.099 0.048 0.146 0.728 1.572 1.983 1 .572 0.728 0.146 0.048 0.099 

F 0.097 0.046 0.147 0.729· 1 .573 1.983 1 .573 0.729 0.147 0.046 0.097 

G 0.086 0.000 0.321 0.912 1.547 1.826 1.547 0.912 0.321 0.000 0.086 

H 0.086 0.000 0.322 0.913 1.547 1.826 1 .547 0.913 0.322 0.000 0.086 

I 0.001 0.010 0.058 0.277 1.501 2.311 1.501 0.277 0.058 0.010 0.001 

J 0.000 0.000 0.001 0.000 1.291 2.580 1.291 0.000 0.001 0.000 0.000 

K 0.056 0.147 0.653 1.093 1.444 1.594 1.444 1 .093 0.653 0.147 0.056 

L 0.007 0.012 0.022 0.211 1 .563 2.231 
, 

1 .563 0.211 0.022 0.012 I 0.007 , 

A(f) = IH(f) I where H(f) is the Fourier Transform of the channel's impulse response, and f is the frequency in Hz. 

B = Bandwidth of channel, assumed the same for channels A-L. 

TABLE 4.03 

Sampl es from the amplitude-frequency cha·racteri sti cs for the channe 15 



Channel PC-B) p(4B) -;- PC
3
5
B) PC¥-) PC~) P (0) P (~) P(¥) p(3

5
B) p(4B) 

5 
P (B) 

A 3.142 2.513 1.885 1.257 0.628 0.000 -0.628 -1.257 -1 .885 -2.513 -3.142 

B 0.000 0.396 0.541 0.462 0.257 0.000 -0.257 -0.462 -0.541 -0.396 0.000 

C - 2.513 1 .885 1.257 0.628 0.000 -0.628 -1 .257 -1.885 -2.513 -

D 0.000 1.885 -2.513 2.513 1 .257 0.000 -1 .257 -2.513 2.513 -1 .885 0.000 

E 0.000 -1 .257 -2.513 2.513 1.257 0.000 -1 .257 -2.513 2.513 1 .257 0.000 

F 0.000 0.389 2.296 1.901 1.003 0.000 -1 .003 -1 .901 -2.296 -0.389 0.000 

G 3.142 - -2.513 2.513 1 .257 0.000 -1 .257 -2.513 2.513 - -3.142 

H 0.000 - 2.283 1.609 0.829 0.000 -0.829 -1 .609 -2.283 - 0.000 

I 0.000 1.257 2.513 -2.513 1.885 0.0 -1 .885 2.513 -2.513 -1 .257 0.000 

J - - -1 .885 - 2.513 0.000 -2.513 - 1.885 - -

K 0.000 1.527 1.529 0.980 0.493 0.000 -0.493 -0.980 -1 .529 -1.527 0.000 

L 0.000 0.198 1-3.068 -2.540 1.803 0.000 -1.803 2.540 3.068 -0.198 0.000 , 

P(f) = Argument of H(f). where H(f) is the Fourier Transform of the channel's impulse response, and f is the 
frequency is Hz. 

B = Bandwidth of channel. assumed the same for channels A-L. 

TABLE 4.04 
Samples from the phase-frequency characteristics for the channels 

~ 

co 
co 
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is the sampled impulse response of the channel under consideration. 

In the absence of noise in the system, 

and 

+ 2 I y. y. sk . sk . 
ifj 1 J -1 -J 

(4.11) 

where the second summation is taken over all values of i and j from 

o to g, such that i f j. 

Now 1 et E (xk) denote the average value of a sequence of numbers 

. {Xk}. Then the average energies of the received signal samples r
k

, 

and the data elements sk' are E(rk
2 ) and E(sk2 ) respectively. The 

possible values of the data elements are 

±l, ±3, .•••. , ±(m-l) 

where m is the number of signal levels (see Section 1.02), and these 

values occur with equal probability. Hence the average value E(sk) 

of the data elements is zero. 

From equation 4.11, 

+ 2 L y. y. E(sk . sk .) 
i fj 1 J -1 -J 

But the elements sk are assumed to be statistically independent for 

different values of k (see Section 1.02). Hence 

= 0 for i f j 
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. . 

But E(sk2
) is the same for all values of k, so 

Hence the condition: 

g 
L y.2 = 1 

. 0 1 1= 

ensures that the average energy of the received signal samples, 

is the same as that of the data elements, if there is no noise 

in the system. When this is the case, the channel is said to have 

unit gain. 

It can be seen from Table 4.01, that channels M, N, 0 and P 

have been formed from channels A, D, G and J respectively, by the 

addition of the component yO at the start of the latter sampled 

impulse responses. For channels M to P, the tolerance to noise of 

Systems 1-4 was assessed for varying positive values of yO. The 

results of the appropriate simulation tests are given in Section 

4.11. 

Cnannels B, F and H may be formed from channels A, E and G 

respectively. by placing a pure phase equalizer in series with the 

latter three channels. (This is a linear filter which causes only 

pure phase distortion). The required equalizers are such that the 

roots of the z transforms of the former three channels.which have 

modulus greater than unity. are replaced by their reciprocals to 

form the latter three channels. It may be shown [6.14] that this 
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type of equalizer does not i.ntroduce any amplitude distortion in 

the received signal, and therefore does not have a correlating 

effect on the noise samples. 

The information content of an m level data element is defined 

to be lo92m bits. Now consider a situation where information is 

required to be transmitted over a channel at some given rate. It 

can be seen that each data element of a four level signal, has 

twice the information content of a data element of a binary signal. 

Hence twice as many elements per second must be transmitted with 

the binary signal, as with the quaterna.ry one, if the desired infor­

mation rate is to be achi eved. Now consi der the model of a data 

transmission system being used. (See Section 1.02). Clearly, with 

this model, the impulse response of the channel must be sampled at 

the same rate, as that at which the data elements are transmitted. 

Hence the impulse response must be sampled twice as fast with a 

binary signal, as with a four level signal, and the sampled impul se 

response will have more components for the binary case (assuming 

a fixed information rate). For this reason, most of the channels 

tested with four level signals, were chosen to have fewer components 

in their sampled impulse responses, than those tested with binary 

signals. 

4.07 Comparison of Detection Processes 

For the reasons given in Section 1.09, the various systems 

under cons; deration were compared by means of thei r tolerance to 

additive white Gaussian noise. The value cr of the noise standard 

deviation, which gave an average error rate of 0.004, was found for 
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each combination of detection process and transmission channel, by 

means of simulation tests. 

Let a* be the va 1 ue of the noi se standard devi a ti on, whi ch 

gives an error rate of 0.004 with the detection process under con­

sideration, and the ideal channel, (a channel whose sampled impulse 

response has just one component, equal to unity). Also, let a be 

the noise standard deviation which gives an error rate of 0.004, 

with this detector and some other channel. Then the reduction in 

tolerance to noi se, when thi s channel replaces the ideal channel, 

may be defined by 

R = 10 10910 ( (a;r ) db (4.12) 

From Sections 1.14, 2.10 and 3.12 it can be seen that the 

non linear equalizer, the V.A. detector and Systems 1-4, are all 

equivalent when used with the ideal channel. With this channel, 

the probabi lity of error for the case of a binary signal is given 

by 

Pe = Prob. (wi > 1) 

--
where wi is a normally distributed random variable with zero mean. 

- (Note that this probability of error is independent of the number 

k of vectors stored by Systems 1-4, if the ideal channel is used). 

Prob. (wi>l) 

implies that the standard deviation for w. is 0.3774 (from tables of 
1 

the normal distribution). Hence 

a": = 0.3774 
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for the case. of a two level si.9na1 which can take the values ±l. 

From Sections 1.14,2.10 and 3.12, it can ~e seen that the 

probability of error for the case of a quaternary signal, with 

possible values ±l and ±3, is given by 

Pe = 1.5 Prob. (w i > 1) 

Hence 

a* = 0.3597 

for the case of a four level signal. T.he reduction in tolerance 

to noise, when a given channel replaces the ideal channel, is there-

fore gi ven by 

R = 10 10910 ( 
(0.3774)2 

) for m = 2 
a2 

and 

R = 10 10910 ( 
(0.3597) 2 

) for m = 4. 
a2 

. (see equation 4.12), where a is the noise standard deviation which 

gives an error rate of 0.004, with the given channel. 

The value of R, for the various combinations of transmission 

channels and detection processes tested, is given in tables 4.05 

and 4.06. The first table contains the results for tests with 

channels C, D, E, F, I, J, K and L and a two level signal. Results 

for channels A, B, C, E, F, G, Hand K with a quaternary signal, are 

given in table 4.06. The simulation tests on Systems 3 and 4, the 

V.A. detector and the non linear equalizer were carried out by J D 

Harvey. (The non linear equalizer tested, is the one of optimum 

design described in Section 1.13). 
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L 10.4 10.5 11.1 11 .1 9.6 9.4 8.9 11.0 9.4 9.0 8.9 9.2 8.7 23.9 

FI GURE 4.05 

Decibels reduction in tolerance to additive white Gaussian noise, with binary signals, when the given channel 
replaces one that introduces no distortion or attenuation 
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FIGURE 4.06 

Decibels reduction in tolerance to additive white Gaussian noise, with quaternary signals, when the given 
channel replaces one that introduces no distortion or attenuation. 
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For all simulation tests described in this section, the 

number N of components of the stored vectors, was fixed at eleven. 

With thi s value of N, the data element Si is detected upon the 

arrival of the recei.ved signal sample ri+ll at the detector, so 

that the delay in detection is eleven sampling intervals. 

From Section 3.09, it can be seen that the amount of computa­

tion required per cycle of the V.A., rises rapidly as g increases, 

(where g+l is the number of components in the channel's sampled 

impulse response). For channel K of table 4.01, g=8 and the 

number of multiplications required by the V.A. for each data 

element detected is 49 , if a four level signal is used. Clearly, 

for this case, a very large amount of computing time would be 

required to obtain the simulation result. The entry in table 4.06 

has therefore been omitted, for the V.A. detected used with channel 

K. Also, to keep computing time within reasonable bounds, the simu~ 

lation test for the V.A. with channel L and a binary signal, was 

carried out with the last six components of the sampled impulse res­

ponse ignored. These components are fairly small, so this omission 

should not greatly affect the tolerance of the system, to additive 

white Gauss i an noi se. 

It is clear from tables 4.02, 4.05 and 4.06, that the V.A. 

detectrr offers a considerable improvement in performance over the 

non linear equalizer, for the channels which introduce severe ampli­

tude distortion. These are the channels which have the highest d 

rating in table 4.02, and which give the poorest tolerance to additive 

white Gaussian noise. 
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With k = 16, (i .e. 16 vectors stored at the start of each 

cycl e), Systems 1-4 offer a performance whi ch is quite close to 

that of the V.A. detector. The greatest discrepancy then occurring, 

is between the V.A. and System 4 when used with channel G, and is 

about 2 db. The loss in performance, when Systems 1-4 are used 

with k reduced to 4, is quite noticeable for the channels which 

introduce severe amplitude distortion. System 4 can be seen to 

have a poorer performance than Systems 1-3, for some of the 

channels tested, whether k takes the value 4, 8 or 16. This 

appears to be a penalty that must be paid, for the fact that it 

requi res fewer operations per detected element than Sys terns 1-3, 

(see Section 3.09). For k = 4, the channels which introduce severe 

amplitude distortion, and a four level signal, System 1 seems to 

offer a slightly better performance than the other three systems. 

From the descriptions of Systems 2, 3 and 4, it can be seen 

that each of them will contain the same stored vectors, for a 

case where a four level signal is used, and k = 4. (k is the num­

ber of vectors stored at the start of each cycle). For this case, 

the decision rules for each system will ensure that the vector with 

lowest cost is selected, for each of the four possible values of the 

latest component of the vectors. Systems 2, 3 and 4 will then pro­

duce the same detected data sequences, and the tolerance to noise 

wi" be th e same for the three sys terns. It can however be seen from 

table 4.06, that the tolerance to noise figures do not agree, for 

Systems 2, 3 and 4 with k = 4. This is because the systems have been 

tested with separate simulation trials, and the outcome of each trial 

is subject to statistical fluctuation. For Systems 2, 3 and 4 with 

k = 4 and a quaternary signal, a more accurate tolerance to noise 
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figure may be obtained, by taking the average of the figures 

given for the three systems. 

It is evident from the tables that when the V.A. detector is 

used, channels A, E and G yield the same tolerances to noise as 

channels B, F and H respectively, (\~ithin a reasonable tolerance 

which should be allowed, for statistical fluctuation). But 

channels B, F and H are obtained from channels A, E and G res­

pectively, by the use of a pure phase equalizer (see Section 4.06). 

Hence it woul d appear that there is no advantage to be ga ined by 

using this pure phase equalizer, in conjunction with the V.A. 

detector. This equalizer does, however, offer an improvement in 

tol erance to noise with Systems 1-4, when used with k = 4 or k = 8, 

hence supporting the conclusions of Section 3.11. 

Clearly with k = 16, Systems 1-4 offer a performance which is 

quite close to that of the V.A. detector, for the channels tested. 

(See tables 4.05 and 4.06). The advantage of these systems over 

the V.A. is, of course, the fact that the number of basic operations 

required by them per detected data element, is sometimes much less 

than :he number required by the V.A. The difference in the amount 

of computation required by the V.A. and Systems 1-4, is shown in 

tables 4.07 and 4.08, which are for two and four level signals, 

respectively. The number of basic operations (i .e. multiplications, 

and comparisons between two numbers), may be calculated from the 

expressions given in Sections 2.09 and 3.09. It can be seen from 

the tables, that Systems 1-4 do not offer a significant reduction in 

computation, over the V.A. detector, unless a sampled impulse res­

ponse with a large number of components is being used. (i .e. unless 



Channel g V • A. System 1 System.2. .. System 3 System 4 

k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=8 k=16 

C 2 12 30 108 408 18 60 216 18 60 216 12 24 48 

0 4 48 30 108 408 18 60 216 18 60 216 12 24 48 

E 4 48 30 108 408 18 60 216 18 60 216 12 24 48 

F 4 48 30 108 408 18 60 216 18 60 216 12 24 48 

I 6 .192 30 108 408 18 60 216 18 60 216 12 24 48 

J 8 768 30 108 408 18 60 216 18 60 216 12 24 48 

K 8 768 30 108 408 18 60 216 18 60 216 12 24 48 

L 14 49152 30 108 408 18 60 216 18 60 216 12 24 48 

TABLE 4.07 

Number of multiplications + number of comparisons required for the detection of each data element, with binary signals. 



Channel g V.A. , System 1 . . System. 2. System 3 System 4 

k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=8 k=16 k=4 k=16 

A 2 112 70 252 952 28 84 280 28 84 280 28 112 

B 2 112 70 252 952 28 84 280 28 84 280 28 112 

C 2. 112 70 252 952 28 84 280 28 84 280 28 112 

E 4 1792 70 252 952 28 84 280 28 84 280 28 112 

F 4 1792 70 252 952 28 84 280 28 84 280 28 112 

G 4 1792 70 252 952 28 84 280 28 84 280 28 112 

H 4 1792 70 252 952 28 84 280 28 84 280 28 112 

K 8 458752 70 252 952 28 84 280 28 84 280 28 112 

TABLE 4.08 

Number of multipli cations + number of compari sons requi red for the detecti on of each data element, with quaternary 
signal s. 

N 
o o 
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g is greater than about four). It should be noted that the number 

of operations required by Systems 1-4, is governed by the number 

of stored vectors employed, and not by the value of g. (i .e. the 

numb er of opera tions is i ndependen t of the transmi ssion channel 

being used). 

4.08 Variation of Error Rate with Signal to Noise Ratio 

The simulation tests described in Section 4.07, compare the 

various detection processes, when they .are operating at an error 

rate of 0.004. It is not, however, safe to conclude from these 

tests alone, that the relative performances of the systems, will 

be the same at other error rates. Hence, for channel E and a 

binary data signal, the performances of the various detection 

processes Were examined over a range of error rates. Graphs of 

error rate against signal to noise ratio, were then produced, for 

error ra tes from 10- 1 to 10-4
• 

Note that the sampled impulse response of channel E, given in 

table 4.01, is such that the sum of the squares of its components 

is unity. (This is true for all of the channels given in table 

4.01). This ensures that the average power E(rk
2

) of the received 

signal, is the same as the average transmitted signal power E(sk2
). 

(See Section 4.06). For binary signals, the data elements may take 

the values ±l, so the average power of the transmitted signal is 

uni ty. 

The noise samples wi' at the output of the transmission channel, 

are assumed to be normally distributed random variables with zero 

mean and some vari ance (J2. Hence 
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= var (wi ) 

where E denotes the expected value, and 11 is the expected value 

of wi and is equal to zero. The signal to noise ratio is defined 

by 

R* = 10 10910 (signal pO\~er/noise power) 

Hence, in this case where the signal power is unity, the SIN 

ratio for the received signal, is given by 

R* = 10 10910 (_1 ) 
0 2 

Note that the quantity R, given in table 4.05, is defined by 

R= 10 10910 ( (0.3774)2 ) 
0 2 

Hence Rand R* differ only by the constant additive factor 

10 10910 (0.3774)2 = -8.464 

Figures 4.02 - 4.05 show graphs of error rate against SIN 

ratio, for the various detection processes, with a binary data 

signal and channel E. The graphs were obtained by carrying out 

simulation tests at various SIN ratios (various values of a), and 

noting the resulting error rates e. Hence each simulation test 



t 

Viterbi ~ 
al gorithm 
detector 

203 ' 

, Non linear equalizer 
~ 

~ 4 stored vectors 

vectors 

16 stored vectors 

4 lO-,'t:.----r----.------,---'-'-'r----.----,--'--.,--
9 11 13 15 17 

Signal/noise ratio ->-

1 
10 10910 (-) 

0 2 

FIGURE 4.02 

19 21 

Variation of error rate with signal to noise ratio for System 1 
operating with binary signals over channel E. 

23 



10-2 

Vi terbi 
al gorithm 
detector 

204 

r 4 stored vectors 
~ Non linear equalizer 

'" . 

8 stored vectors 

vectors 

1 1 
10-·+-----~~----_r------~---Lu,,L----_r------._--~--r 

9 15 17 

Signal/noise ratio + 

1 10 1091O (-) 
0 2 

FIGURE 4.03 

19 21 

Variation of error rate with signal to noise ratio for System 2 
operating with binary signals over channel E. 

23 



t 

$ 
'" s-
s­
o 
s­
s­
w 

10-1 

10-
Viterbi / 
a1 gori thm 
detector 

205 

stored vectors 
~ Non linear equalizer 

8 stored vectors 

vectors 

10-~~------.-------r------r----A-'-~----~-----r---i--~ 

9 11 13 15 17 

Signal/noise ratio + 

1 
10 10910 (-) 

(12 

FIGURE 4.04 

19 21 23 

Variation of error rate with signal to noise ratio for System 3 
operating with binary signals over channel E. 



'-
~ 
'­
LI 

10- 2 

9 

Vi te rb i ..-/'I 
algorithm 
detector 

11 13 

206 

"........4 stored vectors 
/Non linear equalizer 

8 stored vectors 

yectors 

15 17 19 

Signal/noise ratio ~ 

1 
10 10910 (-) 

0 2 

FI GURE 4.05 

21 23 

Variation of error rate with signal to noise ratio for System 4 
operating with binary signals over channel E. 



207 

provi ded a pair of coordinates (a,e). A graph was then drawn 

through the resulting pai rs of coordinates, for each of the 

systems. 

The coordinates (a,e), obtained in each simulation test, will 

be subject to statistical fluctuation, as were the results of the 

tests described in Section 4.07. i .e.,if a simulation test was 

repeated many times with the same value of a, different values for 

e would probably occur on each occasion. Each of these values would 

give an estimate of the expected error rate, corresponding to the 

given value of a. The accuracy of these estimates is dependent on 

the number of errors occcurring in each test. (See Section 4.04). 

Clearly, at low error rates, a large number of data elements must 

be detected in each simulation test, if a reasonable number of 

errors are to occur. In practice, data transmission systems 

commonly work at error rates as low as 10- 6 • It would however 

have required a very large amount of computer time, to obtain coor­

dinates for the graphs, at such error rates. Hence the lowest error 

. rate consi dered was 10- 4 • 

Figures 4.02 - 4.05 cover Systems 1-4 respectively, and show 

the performances of the systems for 4, 8 or 16 stored vectors, (i .e. 

for k = 4, 8 or 16). The number N, of components of the vectors, was 

fixed at eleven, as for the tests described in Section 4.07. Curves 

of error rate agai nst SIN ratio, for the V.A. detector and the optimum 

non linear equalizer described in Section 1.13, are also shown on 

fi gures 4.02 - 4.05. Hence the performances of these two detectors 

can readily be compared with the performances of Systems 1-4. 
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It can be seen that the V.A. detector maintains a significant 

advantage over the non linear equalizer, for all error rates con­

sidered, with channel E and a binary signal. A comparison of 

figures 4 .. 02 - 4.05, reveals the relative performances of the 

various detectors, for. error rates from 10-1 to 10- 4
• It can be 

seen from these figures that the relative performances of the 

systems, at an error rate of 0.004, is representative of their 

performances over the full range of error rates. 

Figure 4.05 shows that, when System 4 is used with 16 stored 

vectors (i.e. k = 16), it has the same .perforrmance as the V.A. 

detector, in the given situation. This is because the V.A. detec­

tor requi res 16 stored vectors, for channel E with a binary signal, 

and is equivalent to System 4 for this case. (Compare the descrip­

tions of the two algorithms, given in Chapters 2 and 3). 

When plotting the graphs for figures 4.02 and 4.03, it was 

found that a smooth curve could be fitted quite closely to almost 

all of the points. There were however a few points which were loca-

. ted ata considerable distance from thi s curve. The error rates in 

these cases were much higher than expected, suggesting that the 

detection process had begun to break down in some way. This drop in 

the performances of Systems 1 and 2, was noti ced only in a few of 

the long simulation tests, which were required for the results at 

low error rates. The poi nts on the graphs whi ch were situated a 

long way,from the curve indicated by the vast majority of points, 

were ignored so that a smooth curve could be plotted. Hence the 

gi ven curves for Sys terns 1 and 2, re present thei r performances wh en 

the cases of unusual behaviour have been excluded. This phenomenon in 

which Systems 1 and 2 can lose performance, during the detection of 

long data sequences, is discussed at length in Chapter 5. 
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4.09 Variation in Performance with the Number of Stored Vectors 
used, for Systems 1-4 

Unlike the V.A. detector, Systems 1-4 allow a choice of the 

number k, of vectors stored at the start of each cycle of the 

detection process. It is therefore useful to know how the number 

of vectors used, affects the performances of the systems, and how 

. many vectors are requi red to ensure a close to optimum tol erance 

to noise. The variation in performance of the systems, for k = 4, 

8 and 16, may be assessed from tables 4.05 and 4.06. In addition, 

the performances of Sys tems 2 and 3, with two of the channe ls from, 

table 4.01, were tested for a wider range of values of k. Fi gures 

4.06 and 4.07 show graphs of reduction in tolerance to noise 

agai ns t k, with these two sys tems, for channel L with a bi nary 

signal and channel K with a quaternary signal. (The reduction in 

tolerance to noise is expressed by R, given in equation 4.12, as 

was the case for tables 4.05 and 4.06). 

For the simulation tests described in this section, the number 

·N of components of the vectors stored at the start of each cycle, was 

fixed at eleven. The tests were carried out at an error rate of 

0.004; as for those described in Section 4.07. 

It can be seen from figures 4.06 and 4.07, that the tolerance 

to noise of Systems 2 and 3, increases rapidly as k increases from 

four to eight. For System 3 and the cases tested, there is no sig­

nificant improvement in performance to be had, by increasing k 

beyond eight. System 2, however, requires a greater number of 

stored vectors to achi eve its bes t performance, for the gi ven si tua­

tion. 
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4.10 Vari ati on in Performance wi th Both the Number of Stored 
Vectors, and the Number of Components of the Vectors 

For the simulation tests described in Section 4.09, the number 

N, of components of the vectors stored at the start of each cycl e, 

was fixed at eleven. It was seen that, with System 3 and the 

channels tested, there was little improvement to be obtained by 

increasing the value of k past eight. It may be found, however, 

that greater values of k may offer an increased tolerance to noise, 

if a different value of N is used. 

For a given value of N, the maximum number k .'of vectors stored 

at th"e start of each cycle of System 3, is m(N+l), where m is the 

number of signal levels. (See Section 3.06). It was desired to 

plot graphs of performance against N, for values of N from one 

upward. Hence, if all of the tests were conducted with a fixed 

value of k, this value could be at most four for a binary signal, 

and eight for a four level signal. However, with these values of 

k, Systems 2 and 3 may not reach their best possible performance, 

"no matter how large the value of N used. It was therefore decided 

that, for any given value of N, the simulation tests would be con­

ducted wi th k = m(N+l), thus usi ng the maximum number of stored vec­

tors that is possible with System 3. 

In figures 4.08 and 4.09, graphs are given of performance 

against N, for Systems 2 and 3. The performances of the systems 

are specified in terms of R, defined by equation 4.12, as in Sec­

tions 4.07 and 4.09. (The value of 0 in the expression for R, is 

of course the value which gives an expected error rate of 0.004). 

Figure 4.08 covers the case of a binary signal used with channel L, 

and figure 4,09 is for a quaternary signal used with channel K. 
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(Note that channels Land K were the ones used for the tests des­

cribed in the previous section). 

A comparison of figures 4.06 and 4.08 shows that, for a two 

level signal and channel L, Systems 2 and 3 do not attain their 

best possible performances with N = 11. For example, wi th N = 11, 

the System 2 tolerance to noise figure (i .e. the value of R), does 

not rise above,9.0 db, no matter how far k is increased. However, 

with N = 15 and k = 32, a lower value for R is obtained. With 

channel K and a quaternary signal, it can be seen that a value 

of eleven for N, is large enough to obtain the best performances 

of Systems 2 and 3, for the given situation. Hence it may be 

concluded that there are no fixed minimum values for k and N, 

which will ensure that the best tolerances to noise are offered 

by Systems 2 and 3, for all situations. 

-
4.11 The Effect of Ignoring the Fi rst Component of the Channel's 

Sampled Impulse Response 

It can be seen from Section 3.10 that, if a zero component at 

the start of the channel vector is removed, the effect on the perfor­

mances of Systems 1, 2 and 4 is equivalent to that of increasing k 

- by a factor of m. (m is, of course, the number of signal levels, 

and k is the number of vectors stored at the start of each cycle 

of the process). Simulation tests show that this result also holds 

fai rly v/ell, if a small non zero component is removed from the start 

of the channel's sampled impulse response. If this first component 

of the channel vector is sufficiently small, it will not make a 

significant contribution to the received signal. In this case, it 

may be advantageous if thi s component is ignored by the detector, 
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even though the actual channel vector must remain unaltered. 

Now consider Systems 1-4, when used with a transmission 

channel whose sampled impulse response is 

Define Systems lA-4A to be the same as Systems 1-4, apart from 

the fact that the former four detection processes take the channel 

vector to be 

i.e. with Systems lA-4A, the first channel component is ignored 

in the detection process. 

Simulation tests were carried out on the eight Systems lA-4A 

and 1-4, with channels M, N, 0 and P from table 4.01. The first 

component yO' of these channel vectors, was given various non 

negative values" for these simulati on tests. The tests were 

carried out at an error rate of 0.004 and, as before, the perfor-

·mances of the systems were specified in terms of the quantity R. 

defined by equation 4.12. Throughout these simulation test~, the 

number k of stored vectors was fixed at si xteen. The number N, of 

_ components of the vectors, was eleven. 

Figures 4.10 - 4.13 show graphs of R plotted against yO' for 

Systems 1-4 and lA-4A. The first two figures cover the case of a 

two level signal used with channels Nand P. Figures 4.12 and 

4.13 are for a quaternary signal, used with channels M and 0 res­

pecti ve ly . 

Now consider a case where the first component yO' of the 

channel vector, is equal to zero. Note that channel ~1 is formed 
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from channel A Ci n table 4.01), by the addi ti on of the component 

yD. System 1 A ignores the fi rst component of the channe 1 vector. 

Hence, when used with channel M and yO = 0, System lA is equivalent 

to System 1 used in conjunction with channel A. A similar relation­

ship exists for Systems 2, 3 and 4, as shown in table 4.09(a1. 

From Section 3.10, it can be seen that using channels M-P 

with yO = 0, instead of channels A, D, G and J·respectively, has 

the same effect on performance as would be obtained by reducing k 

by a factor· of m. (The number of components of the vectors also 

being reduced by one). Hence System 1 with k = 16, N = 11 and 

channel M, is equivalent to System lA with k = ~6 , N = 10 and 

channel A. Similar relationships hold for System 2 and 4, and 

for System 1 with channels D, G and J. These are given in table 

4.09(b). 

It can be seen from table 4.09 that when yO = 0, using System 

lA with M, N, 0 or P instead of System 1, has approximately the same 

effect on performance, as that of increasing the number of stored 

·vectors. NO\~ consider the distance between the points, at which 

the System 1 and the System lA curves cross the vertical axes, in 

figures 4.10 - 4.13. At these points on the graph, yO = 0, so this 

distance approximately represents the difference in performance bet-

-ween System lwithk = ~ ,and System 1 vlith k = 16. This, of 

course, also applies for Systems 2 and 4. (From Section 3.10, it 

can be seen that setti ng yO = 0 has the same effect on each of the 

Systems 1,2 and 4). It can however be seen from figures 4.10 - 4.13, 

that this property does not hold for System 3. With yO = 0, the 

improvement in performance offered by System 3A over System 3, can 

be much greater than that obtainable, by increasing the value of k 
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la) 

System Channe 1 ( ) . System. 

lA M 1 

lA N 1 

lA 0 1 

lA P 1 

2A M 2 

2A N 2 

2A 0 2 

2A P 2 

3A M 3 

3A N 3 

3A 0 3 

3A P 3 

4A M 4 

4A N 4 

4A 0 4 

4A P 4 .. 

(b) 

System Channel ( ) System Channel 

1 M 1 A 

1 N 1 D 

1 0 1 G 

1 P 1 J 

2 M k=16 1 A 

2 N N=l1 1 D 

2 0 1 G 

2 P 1 J 

4 M 4 A 

4 N 4 D 

4 0 4 G 

4 P .4 .J. 

TABLE 4.09 

Equivalent arrangements of detection processes and transmission 

channel s. when yo = 0 

Channe 1 

A 

D 

G 

J 

A 

D 

G 

J 

A 

D 

G 

J 

A 

D 

G 

J 

k=16/m 

N=10 
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by a factor of m. Th.is improvement is particularly noticeable 

wi th Channe 1 0 and a quate rnary signal, as can be seen from 

figure 4.13. 

Clearly, if Systems 1-4 are used with a value of k, such that 

a reducti on of k to k/m woul d cause a loss in performance, it is 

sometimes of advantage for the first channel component yo' to be 

ignored. For such values of k, very small first channel components 

should always be ignored, by Systems 1-4. From figures 4.10 -

4.13, it may be assessed to some extent, just how small yO should 

be, for it to be ignored. Consider, fOT example, System 1 with 

k = 16, a four level signal and channel O. The value of yO such 

that Systems 1 and lA yield the same tolerance to noise, is given 

by the point at which the corresponding curves intersect, in 

figure 4.13. The intersection occurs whenyo is about 9% of the 

largest component of the channel vector. Hence, for this case, 

the first channel component is best ignored, if it is less than 9% 

of the peak component. , . 

Consider now any of the Systems 1-4, together with its modified 

version, in which the first channel component yO is ignored. It 

may be seen from figures 4.10 - 4.13, that the improvement in per­

formance offered by the modified system, is greatest when yO is 

-equal to zero. (Only non negative values of yO were considered for 

the tests). As yO increases, the performances of the original and 

modified systems become closer together, until the original system 

offers the best tolerance to noise. It can be seen, therefore, that 

the improvement in performance given by Systems lA-4A, over Systems 

1-4, is bounded above by the improvement given when yO = O. For 

Systems 1, 2 and 4, the improvement given when yO = 0, is approximately 
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that which would be obtained by increasing k by a factor of m. 

(See Section 3.10). Hence. for Systems 1. 2 and 4. the improve­

ment offered by their modified versions. is bounded above by the 

improvement obta i nab 1 e by i ncreasi ng k by a factor of m. Thi s 

bound is applicable for all non negative values of yD. 

One point that really stands out from figures 4.10 - 4.13, 

is that System 3 can suffer to a much greater extent that Systems 

1, 2 and 4. from the effect of an extra zero at the start of the 

channel vector. Figure 4.13 shows that System 3 has a loss in 

tolerance to noise of about 13 db. over Systems 1, 2 and 4, when 

the first channel component is equal to zero. However, a very 

small increase in the value of yo' improves the performance of 

Sys tern 3 by about 4 db. 

It is clear from the above discussion that System 3 can some­

times give a very poor performance, if the first component of the 

channel vector is small. If a situation occurs, where such a 

small component cannot be ignored in the detection process. then 

it woul d appear that Sys tems 1. 2 and 4 are to be preferred to 

System 3 . 

. A comparison of figures 4.10 - 4.13 suggests, thatp}acing an 

_ extra small component at the start of the channel vector, has a more 

seriou5 effect on the detection process with a quaternary signal, 

than it does if a binary signal is used. It seems likely that this 

effect will be even more pronounced, if the number of signal levels 

is increased beyond four. (This can be seen to be the case for 

Systems 1, 2 and 4, from Section 3.10). 



225 

CHAPTER 5 

5.01 The Erratic Performance of Systems 1 and 2 

From the simulation results given in tables 4.05 and 4.06, 

it would appear that Systems 1-4 each offer roughly the same tol­

erance to additi ve whi te Gaussi an noi se. It was found, however, 

that during some of the longer simulation tests described in Sec­

tion 4.08, Systems 1 and 2 occasionally experienced a sudden drop 

in performance, i.e. a sudden and significant increase in the error 

rate. A close examination of the computer print-out for these 

tes ts, reve a 1 ed tha t the reducti on in pe rformance was concurrent 

with some of the stored vectors becoming identical to each other, 

and their costs becoming almost the same. It will be seen from 

the following discussion, that Systems 1 and 2 can become locked 

in a state, in which several identical vectors are always present. 

Clearly, the number of possible data sequences that can be stored, 

is reduced if the detection process enters this state. The detec­

tors are then effectively working with a lower number of stored 

vectors, and thei r performances may be reduced. 

From Section 3.08, it can be seen that System 1 will become 

locked in a state where all of its stored vectors and costs are 

_ identical, if it should enter this state at any time. Similarly, 

System 2 can become locked in a sta;;e where the vectors divide into 

m groups, with the vectors and costs in a group being identical (m is 

the number of signal levels). The following analysis shows that, if 

two of the vectors stored by Systems 1 and 2 become the same, and 

their costs become close together, the performances of the detectors 

can be reduced. This phenomenon in whi ch vectors become the same, 
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and their costs become identical, or close together, is referred 

to as mergi ng. 

In order to simplify the analysis of the merging phenomenon, 

it will be assumed from here onward, that a two level data signal 

is used. Then the possible values of the data elements si are ±l. 

(The merging phenomenon has been examined in reference 49 which 

contains some of the work from this chapter). 

5.02 Probability of Merging 

Definition 

Two vectors are said to be merged together,with separation 

E, if their latest g components are the same, and their costs differ 

by an amount equal to E. (g+l is the number of components of the 

channel vector under consideration). If two vectors are said to 

be merged together, it is assumed that the separation is small. 

Now consider the first cycle of the detection process, in 

whi ch two vectors are present, whi ch are merged with a separati on 

less than some given amount E. 'let these two vectors be defined by 

and 

so that the latest g components are the same for both vectors. As 

before, xi is a possible value of the data element si. xi(I) is the 

possible value of si which is present in the Ith stored vector 

Qj +l (I). The only two vectors at the end of the previous cycle of 
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the process, wh.ich can lead to .9.jtl(I) are 

(Note that a binary signal is assumed throughout this chapter, so 

the possible data element values are ±1. Similarly, the only two 

vectors that can be extended to form .9.jt1 (K) are 

Hence it is clear that two vectors with their latest g-l components 

in common, must be present at the end of· one cycle of the detection 

process, if two merged vectors are to appear duri ng the fo11 owi ng 

cyc1 e. 

A situation will now be considered in which two vectors, with 

their latest g-l elements in common, are present at the end of some 

cycle of the process. The transmitted data signal is assumed to be 

a bi nary one, so these two vectors will be extended to four, in the 

followi ng cycle. (See Section 3.02). It will then be demonstrated 

that there is only a small probabi 1ity, of two of these extended 

vectors bei ng merged together. 

Now define the vectors Q}I) and .9)K) so that 

Q . (I) = [X j - Nt1 (I), ... , Xj - gtl (l), Xj - gt2 ' Xj _gt3 ' ... , Xjl -J 

(5.01 ) 

and 

Q.(K) = [Xj - Nt 1 (K), ... , X
j
_
9t1

(K), Xj _gt2 ' Xj _gt3 ' ... , xjl -J 

(5.02) 
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(Note that these vectors have their latest g-l elements in common). 

Let the costs for the vectors be uj(I) and uj(K) respectively. 

Also let the vectors g)I) and .9)K) , be such that they are not 

merged with a separation ~E,for some given value E. Then, from 

the definition of merged vectors given above, at least one of the 

following conditions must be satisfied: 

(5.03) 

(5.04 ) 

Let Qj (I) and Qj (K) be two vectors whi ch are present, at 

the end of the j+ 1 st. cycle of a System 1 or a System 2 detecti on 

process. Then, in the j+2 nd. cycle, these two vectors wi 11 be 

extended to the four vectors gi ven by 

(5.05) 

and 

(5.06 ) 

for Xj+l = ±l. (See Section 3.02). The costs for these vectors 

are given by 

and 

where J.. is the reverse of the channel vector, and rj+l is the j+2 nd. 

received signal sample. [lj+l (I, Xj+l )]g+l is the vector formed 
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from the latest g+l components of lj+i (I, xj +l ), so it can be 

seen that only these components are used for the evaluation of 

the cost Vj+l (I, xj +l ). Let Wj+l be the noise sample which con­

tri butes to r j+ l' and 1 et 

RJ'+ l = r - W j+ 1 j+ 1 . (5.09) 

Then Rj+l is the value of rj+l' assuming that there is no noise 

in the system. But 

is defined to be the scalar product of the vector 

and the 1 a tes t g+ 1 componen ts of the vector 

. (see Section 3.02). Hence, using equations 5.01 and 5.05, 

-~ 

or 

(5.10) 

where 

a = Yg-l Xj _g+2 + Yg- 2 Xj _g+3 + + Yo Xj+l (5.11) 
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Similarly, 

(5.12) 

Now, substituting equations 5.10 and 5.12 into equations 5.07 and 

5.08 gives 

and 

But rj+l = Rj +l + wJ+l 

(see equation 5.09), therefore 

and 

Subtracting the second equation from the first gives 

Therefore 

+ {Yg [xj_g+l(I) + Xj_g+l(K)] + 2a - 2Rj+l - 2wj +1} 

x Yg' {Xj_g+l(I) - Xj_g+l(K)} (5.13) 
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Fi rst consi der a case where 

Then equation 5.13 reduces to 

From the inequality 5.04, 

and the vectors Ij+1(I, xj +1) and Ij+1(K, xj +1) cannot be merged 

with a separation which is 5. c. 

Now consi der a case where 

Then, from equation 5.13, 

where 

and 

(5.14) 
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Hence 

and th e con di ti. on: 

is satisfied only if 2c2 Wj+l lies in an interval of width 2E i.e. 

Wj+l must lie in an interval of width 

It follows, therefore, that the vectors 

and 

can be merged with a separation ~ E, only if Wj+l lies in some given 

interval of width E/!C2!. 

In the assumed model of a data transmission system (see Section 

l.02), Wj+l is a normally distributed random variable with zero mean, 

and variance denoted 0 2 • Hence the probability density function for 

Wj +l is given by -.-' 

f(x) 1 (_X2) = -- exp 
0l2TI 202 

A rough sketch of f(x), plotted against x, is given in Figure 5.01. 

The probability of Wj+l lying in any interval (a, b) is given by 

Pr (a<wj+l<b) 
b 

= f f(x) dx. 
a 
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Hence 

b 
Pr (a < W j + 1 < b) ~ f f max dx 

a 

5 Cb-a) fmax 

where f
max 

is the maximum value of f{x). 

But 

1 -x z 
f{x) = - exp (:-:-;-) 

O'h"; 20' 

Therefore 

Pr (a < Wj+l < b) 
b-a s-- . 

O'/2ii 
(5.15) 

It has been shown above, that the vectors Ij+l{I, xj +l ) and 

Ij+l{K, xj +l ) can be merged with separation:> E, only if Wj+l lies 

in some given interval of width E/ic2i, 

; .e. 

P:> Prob. (wj +l lies in an interval of width E/ic2i) 

_ where P is the probability that Ij+l{I, xj +l ) and Ij+l{K, xj +l ) are 

merged with a separation ~ c. Now using the inequality 5.15 gives 

(5.16) 

where c
2 

is given by equation 5.14. (Note that this bound for P 

has been derived for a case where Xj_9+l{I) ~ Xj_g+l{K) ). 
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This bound for P \~ill now be applied; to one of the situations 

covered by the simulation tests,described in Chapter 4. A binary 

signal is assumed throughout this chapter, so that the possible 

data element values are ±1. Therefore, assuming that 

equation 5.14 gives 

Consider now, the simu1atjon tests carried out on channel E, at 

an error rate of 0.004, and a two level signal. Then yg = 0.167 

(see Table 4.01) and the appropriate value of cr is 0.18, for 

System 1 wi th k=4. The inequa1i ty 5.16, therefore becomes 

e: P ::;; ------=----
2 x 0.167 x 0.18 x I21f 

or 

p.::;; 6.6e: 

In simulation tests it was found that a noticeable drop in 

performance, with Sys terns 1 and 2, was accompani ed by vectors merged 

with a separation e: of 10- 3 or less. Hence the probability P of the 

vectors lj+1(I, xj +1) and lj+1(K, xj +1) being merged with a separa­

tion small enough to reduce performance·, is ~ 6.6 X 10- 3
• It should 

be noted that the inequality 5.15, gives a tight bound only if a and 

b are close to zero. In general, 

b-a Pr (a < w. 1 < b) « and 
J+ cr/21T 

P « 6.6 x 10- 3 
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Ci .e. P is much less than 6.6 x 10- 3
). 

From the above analysis, it is clear that two vectors of the 

fonn Q/I) and Qj(K), must be present at the end of the j+l st. 

cycle of the process, if merged vectors are to appear in the 

followi ng cycle. If such vectors are present at the end of the 

j+l st. cycle, there is then a small probability of vectors appearing 

in the j+2nd. cycle, which are merged with a significantly small 

separati on. If two merged vectors do appear in the set of ex pan­

ded vectors, in some cycle of the detecti on process, these vectors 

may not be selected by the appropriate decision rule. If they are 

not selected, the following cycle of the process will begin without 

any merged vectors. 

5.03 Non-Merged Vectors Stemmi ng from Merged Vectors 

As before, the System 1 'and System 2 detection processes will 

be considered. Let Qj(I) and Qj(K) 'be two vectors present at the 

end of .the j+l st. cycle, which are merged with some small separation 
./ 

t. ' Then, from the definiti on of merged vectors, Q, (I) and Q. (K) 
-J -J 

- must have their latest g elements in comnon. (See Section 5.02). 

Let 

and 
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Let the costs for these vectors be uj(I) and uj(K) respectively, 

and let 

(5.17) 

In the jt2 nd. cycle of the process, Q}I) and Q)K) are 

extended to the four vectors gi ven by 

(5.18) 

and 

where x j +l may take th.e values ±l. (Assuming, as before, that a 

binary data signal is used). The costs for these four vectors are 

given by 

and 

where Y is the reverse of the channel vector, and rj is the j+l st. 

received signal sample. (See Section 3.02). The four vectors of the 

forms !jtl (I, Xjtl ) and ljtl (K, Xjtl ) may be said to have stemmed 

fromQ}I) andQ)K). ... 

From the definitions of Qj(I) and Qj(K), these two vectors have 

their latest g elements in common. Hence, for a given value of Xj+l' 

the two vectors l jtl(I, xj +l ) and lj+l(K, Xjtl ), have their latest 

gtl elements in common. (See equations5.1B and 5.19) 
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Hence 

as in general !.[~Jg+l is defined to be the scalar product of !, 

and the g+l components of'i, whi ch are furthest to the right. This 

definition applies to any vector 'i with 9+1, or more, components. 

Hence, from equations 5.20 and 5.21, 

as the vectors il.j<I) and .9}K) are defined to be merged with a 

separati on e:. Therefore 

It has been seen above that the vectors Ij+l(I, xj +l ) and Ij+l(K, xj +l ) 

have their latest g elements in common, for a given value of Xj+l' 

. Hence Ij+l(I, -1) and Ij+l(K, -1) are merged with separation E. 

Also, Ij+l(I, 1) and Ij+l(K, 1) are merged with·a separation E. 

(Note that ±l are the allowable values for xj +l ). 

At the end of the j+l st. cycle of the detection process, it was 

assumed that there were two vectors present, which were merged with 

some small separatione:. The above analysis, shows that this situa­

tio'n leads to one, in which two pairs of merged vectors are present 

during the following cycle (assuming a binary data signal). It is 

therefore clear that the number of merged vectors present in Systems 

1 and 2, can increase from one cycle to the next. It is also evident 

that non-merged vectors cannot stem from a pair of merged vectors. 
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5.04 Selection of Merged Vectors 

The recommended starting up procedure, for Systems 1 and 2 

(and Systems 3 and 4) is given in Section 3.08. With this proce­

dure, the initial set of k vectors are such that, one of them has 

zero cost and the others have infinite costs. This ensures that 

a distinct set of vectors wi 11 be present in the process, after a 

few data elements have been detected. (See the proof of theorem 

3.02, Section 3.10). Then, in the following cycles of the detection 

process, there is a small probability that the set of expanded vec­

tors, wi 11 conta in a pa i r . of vectors whi ch are merged with a small 

separati on. In each cycle of the process, the set of expanded 

vectors will number 2k, and half of these vectors will be selected 

according to the appropriate decision rule. (Note that the number 

of signal levels is assumed to be two). 

In any cycle of a System 1 or a System 2 detection process, 

in which the set of expanded vectors' contains a merged pair, this 

pairmay or may not be retained for the following cycle. If the 

"merged pair of vectors is selected, by the appropriate decision 

rule, there will be two merged pairs of vectors available for selec­

tion in the next cycle of the process. (See Section 5 .03). It is 

then possi b 1 e for the number of pai rs of merged vectors to i ricrease 

after each cycle. 

Now assume that the number k, of vectors stored at the start 

of each cycle, is even. Then it is clearly possible for all of the 

vectors stored by Systems 1 and 2, to consist of pairs of merged 

vectors. It will be demonstrated that there is a high probability, 

of this si tuation being preserved from one cycle to the next. 
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Theorem5.D1 

Let the number k, of vectors stored at the beginning of each 

cycle of a System 1 or a System 2 detection process, be even. 

Let the k vectors stored at the end of some cycle of the process, 

consist of pairs of vectors which are merged together wi.th a 

separation::; E, for some small number E. Vectors which are not 

in the same pai r are assumed not to be merged. Let the k vectors 

be denoted .9.
J
' (I), with costs u. (I) for 

. J 

I=1,2, ..... ,k. 

Also let these vectors be such that, any two of them which form a 

merged pair, have their latest M components in common, where 

g ::; M ~ N. 

Note that, by definition, merged vectors must have their latest g 

componen ts, (i. e. the g componen ts furthes t to the ri g ht), in common. 

Let the costs for the extended vectors: 

.. / 

in the following cycle, be denoted vj+l(I, xj +l ) and assume that 

(5.22) 

and 

(5.23 ) 

except when I and J are such that Q .(I) and Q .(J) are merged with 
-J -J 

,a separation::; E. Then the k vectors selected by the decision rule 
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for System 1, will consist of ~k pairs of vectors, with the vectors 

in each pair being merged with a separation ~ E:. This also applies 

to System 2 if k is a multiple of four. 

Furthennore, any two of these selected vectors which form a 

merged pair, will have their latest M+1 components in common (i .e. 

the M+1 components furthest to the right will be the same in both 

vectors) . 

Proof 

a) First consider the vectors selected by System 1. The decision 

rule for System 1 ensures that the k vectors with smallest costs wi 11 

be seleCted from the set of 2k extended vectors, of the form 

Let 11 and 12 be such that the vectors Qj(I 1) andQ}I 2) form 

one of the merged pairs, and the corresponding costs, uj (I
1

) and 

uj (I
2

), are such that 

From Secti on 5.03, it can be seen that 

where vj +1(I, Xj +1) is the cost associated with the vector fQj(I), xj +1]. 

From the inequalities 5.22 and 5.23, it can be seen that 

Vj +1(I 1, xj +1) is the only cost within an amount E:of vj +1(I 2 , xj +1). 
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Similarly v
j
+l (l 2, Xj +l ) is the only cost wi.thin an amount E of 

V
j

+
l 

(l
l

, x
j
+

l
). Hence it is clear that, whi chever of these costs 

is selected first, the other one will be the next to be chosen, by 

the decision rule for System 1. The k costs to be selected wi 11 

be selected in pairs of the form 

where I and J are such that the vectors Q .(l) and Q .(J) are merged 
-J -J 

with a separation::;: E. Hence the vectors selected by decision rule 

one, \~ill be selected in pai rs of the form 

[Q.(J), x.+1J 
-J J 

with the vectors in each pair being merged with"a separation:; E. 

The k selected vectors wi 11 therefore consist of ~k such pairs. 

Q .(l) and Q .(J) are such that the latest M components are common 
-J - -J 

to the two vectors. Hence the latest M+l components will be in 

common, for any of the vectors making up a merged pair of the form 

b) Now assume that k is a multiple of- four, and consider the vec-

tors selected by the decision' rule for System 2. Decision rule 2 

considers the set of 2k vectors 
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as being divided into two separate groups, according to their value 

of xj +l . The ~k vectors with. smallest costs are selected, from 

those which have Xj+l = -1. This is repeated for the vectors having 

Xj+ 1 = 1. As with the proof for System 1, 

are the costs whi ch are closest to each other, if 11 and 12 are 

such that Qj(I l ) and Qj(I2) form one of the merged pairs. Hence 

the two costs 

will either both be selected, or neither of them will be selected. 

The vectors selected for which Xj+l = -1 will therefore be chosen 

in pairs of the form 

where Q.(I) and Q.(J) are merged with a separation s; c. Hence the ~k 
-J' -J 

selected vectors with Xj+l = -1, will consist of !k pairs of vectors, 

with the vectors in each pair being merged with a separation S; E. 

Clearly, the same applies to the selected vectors which have Xj+l = 1. 

As with System 1, the latest M+l components will be in common, for 

any two vectors formi ng a merged pai r such as 

End of proof of theorem 5.01. 
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Corrd~aryto theoremS.D1 

The assumptions given by inequalities 5.22 and 5.23 have been 

found, from simulation tests, to be nearly always vali d if 

E < about 10- 3 • Hence theorem 5.01 may be applied to any situation, 

where the vectors stored by System 1 or System 2 at the end of some 

cycle, consist of pairs of vectors merged with a small separation. 

There is then a high probability that this situation will be main­

tained in the next cycle of the process. It is therefore possible 

that System 1 with k even, and System 2 with k being a multiple of 

four, can become locked in a state where the stored vectors are 

formed into merged pairs. These systems have been observed to 

remain in this state for tens of thousands of cycles, during simu~ 

lation tests. 

Definition 

The fai~ure mode for Systems 1 end ~ with sane given va~ue 

of E. is defined to be a state in which'a~~ of the stored vectors 

are formed into merged pairs. with a separation ~ E. 

The term, "failure mode", is really appropriate only if the 

value of E is small. For small values of E, it has been seen that 

there is only a small probability of the systems escaping from this 

mode, in any particular cycle. The definition only covers a situa­

tion in which a binary data signal is used, and the number of vec­

tors stored at the start of each cycle is even. 

Now consider a situation in which System 1 or System 2 enters 

the failure mode, during some given cycle j. Then the k vectors 

stored at the start of cycle j+l, will form ik pairs of merged vectors. 
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From the defi ni ti on of merged vectors, any two vectors formi ng a 

merged pair at the start of cycle j+1, must have their latest g 

components in common. Also, from theorem 5.01, it can be seen that 

any two vectors formi ng a merged pai rat the s tart of cyc1 e j+2, 

will have at least their latest g+l elements in common. The number 

of elements in common, for two vectors forming a merged pair, must 

increase after each cycle until this number reaches N. The system 

will then be locked in a state in which its stored vectors are 

arranged in pairs, with the two vectors in any pair being identical. 

Then only r.k different data sequences can be stored at the start of 

each detection cycle, and the process is effectively working with k 

reduced to half. The detectors then require more storage, and 

perform more calculations, than required for a given performance. 

Clearly, the failure mode is an undesirable state of operation for 

Systems 1 and 2. 

From the above discussion, it seems advisable that System 1 be 

used with an odd value of k, and System 2 be used with a value which 

. is not a multiple of four. Theorem 5.01 is not then applicable, and 

Systems 1 and 2 should not become locked in the failure mode. 

- 5.05 Probability of System 1 Eventually Entering the Failure Mode, 
Gi ven that a Part; cu] ar Pa i r of Merged Vectors are P rese nt at 
Some Stage 

From Section 5.04, it can be seen that System 1 may eventually 

enter the failure mode, if a merged pair of vectors is formed during 

some cycle of the process. It is. of course, necessary that some 

merged pairs of vectors are selected by the decision rule in each 

cycle, if the failure mode is to occur. 
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Now consider a situation where two merged vectors, gih) 
and g}I2) are formed, with some small separation c, during some 

cycle of a System 1 detection process. Tliis pair is assumed to be 

the only pair of merged vectors present, during the j+l st. cycle. 

It can be seen from Section 5.02, that there is only a small prob­

ability of merged vectors appearing in the following cycle, which 

have not stemmed from Q}Il) and Q}I2)' Thi s probabi lity wi 11 

now be assumed to be negligibly small. In the j+2nd. cycle of the 

detection process, two pairs of merged vectors (separation c) will 

stem from Qj(I l ) and Qj(I 2). (See Section 5.03). Hence the deci­

sion rule for System 1, may select zero, one or two pairs of merged 

vectors in the j+2 nd. cycle. 

A s itua ti on wi 11 now be examined in detail, in whi ch System 1 

is used with a binary signal, and four vectors stored at the start 

of each cycle, (i.e. m=2 and k=4). It will be assumed that two of 

the four vectors stored, at the end of the j+l st. cycle of the pro-

cess, are merged together wi th separation zero. The remaini ng two 

_vectors are assumed not to be merged with each other, or with the 

first pair. The effect of the selection procedure, on the occurrence 

of the failure mode, wi 11 then be assessed. 
---

- The four vectors present at the end of the j+l st. cycle of the 

-process, will be extended to form eight vectors in the j+2nd. cycle. 

From Section 5.03, it can be seen that four of the vectors will be 

formed into two merged pairs, with separation zero. Only four of the 

eight vectors will be selected, and retained for use in the j+3rd. 

cycle. 

From this point onward in the thesis, it will be assumed that 

the k stored vectors of the form Qj(I), for System 1, are denoted in 

such a way that 
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where uj(Ii is the cost associated with the vector .9./Il. 

The four vectors stored at the end of cycle j+l are denoted 

Q.(f), with costs u.(I), for I = 1, 2, 3. 4. In the j+2nd. cycle, 
--J J 

the eight extended vectors are given by 

with costs. 

for 

1=1,2,3,4 and Xj+l=±l. 

The vectors .9.j(11) and .9.}I2) ar.e merged with zero separation, 

so 

and 

will also be merged with zero separation, for Xj+l = ±l. (See Sec-

tion 5.03). Hence 

Four of the eight vectors, of the form lj+l(I, xj +l ), must be 

selected by the decision rule for System 1. The latest N components 

of the selected vectors, then form the vectors 
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which are arranged in ascending order of their costs. It can be 

seen that this set of four vectors may contai n zero, one or two 

pai.rs of vectors, which are merged with separation zero. 

Various modes of operation will now be defined for System 1, 

corresponding to the number of pairs of merged vectors, whi ch are 

present in any given cycle. These modes are: 

Mode R: The recovery mode. In this mode, the system has no 

merged vectors. 

Mode I: In this mode, the vectors g)l) and..9)I+l) are merged 

with zero separation. I may take on the values 1, 2 and 

3, for the situation being considered. 

Mode F: The failure mode., In this. mode, vectors Qj(l), Qj(2) 

and Q/3), Q/4) form two pairs of vectors, which are 

, merged with zero separation. 

Clearly, if the detection process is in mode 1, 2 or 3, at the 

end of some cycle, it may change to any of the modes 1, 2, 3, reco­

very or failure, at the end of the following cycle. From Section 

5.02, it is clear that there is only a small probability, that the 

system will go from a state of no merged vectors, to one with a 

pai r of merged vectors, in any gi ven cycle. Hence, once the process 

reaches the recovery mode, it will tend to remain in this mode. From 

Section 5.04, it can be seen that there is only a small probability 

of System 1 leaving the failure mode, in any cycle. 
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The transitions of the System 1 detection proce.ss, from one 

mode to another, may be described in terms of the trellis diagram 

of Figure 5.02. If the process enters one of the modes: 1, 2, or 

3, in any cycle, it may then wander between these modes in the foll­

owing cycles, until it settles at either mode R or mode F. 

Let PI J be the probabil ity of transi ti on from mode I, in one 

cycle, to mode J in the following cycle. I may represent modes 1, 

2 or 3 and J may represent any of the modes. The probabilities 

PIJ are called transition probabilities. They are assumed to be 

cons tant from one cycle t~ the next. 

Let PI(T) be the probability of the process being in mode I 

at the end of cycle T, where I may take the values 1, 2, 3, and 

T may take the values j, j+l, j+2, 

(j is the first cycle which ends with a pair of merged vectors). 

Let Pr*(T) be the probability of the process arriving at mode I, 

from either mode 1, 2, or 3, at the end of cycle 1. Here, I may 

represent the modes R or F, and T may take on the values 

j, j+ 1, j+2, ..•.• 

The probabil ity of the process arri vi ng at mode Rat the end 

of cycle T, from either mode 1, 2 or 3, is given by 

Pt(T) = Prob. (mode 1 in cycle T-.l ..,. mode R in cycle T) 

+ Prob. (mode 2 in cycle T-l ..,. mode R in cycle T) 

+ Prob. (mode 3 in cycle T-l ..,. mode R in cycle T) 



Failure, mode F 

mode 1 

mode 2 

mode 3 

Cycle j 

+ j+l 

(/ 
~ 
\" 

Recovery, mode R 
\ 

j+2 j+3 

FIGURE 5.02 

Transitions from one mode to another 

N 
on 
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Therefore 

(5.24 ) 

Similarly the probability of the process arriving at mode F at the 

end of cycle T, from either mode 1, 2 or 3, is given by 

(5.25 ) 

The probability of the process being in one of the modes: 

1, 2 or 3, at the end of cycle T, is related to the probabilities 

at the end of cycle T-l, by the equations: 

It should be noted that the purpose of this analysis, is to determine 

the probability of the process eventually entering the failure mode, 

given that it has entered either mode 1, 2 or 3 at some stage. Hence 

the probabilities of the process going from mode R to 1, 2 or 3. or 

of goi ng from mode F to 1. 2 or 3, are riot requi red here. 

The above three equati ons may be written in matri x form to gi ve 

Pl (T) 

P2 (T) 

PiT) 

= 

Pll P21 P31 

P12 P22 P32 

P13 P23 P33 

Pl(T-l) 

P2(T-l) 

P
3

(T-l) 



for T = j+l, j+2, 

Therefore 

. ~(T} = A ~CT-l) 

where. 

~(Tl = P1 CT) 

P2(T) 

P3(T) 

Hence 

~(T) = A2 ~(T~2) 

= A3 ~(T-3) 

= Ai ~(T-i) 
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and 

for i = T-j, T-j+l, T-j+2, .... 

Therefore, putting i=T-j gives 

~(T) = AT-
j ~(j) 

or 

~(T-l) = AT- j
- 1 ~(j) 

for T = j+l, j+2, j+3, ..•. 

• 

A = Pll P21 P31 

P12 P22 P32 

P13 P23 P33 

(5.26 ) 
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I P(T-l} = r AT-l-j f(j) 
T=j+l - T=J+l 

00 .. r . P(T-l) = 
T=J+l -

(5.27) 

(It is assumed here that the infinite series is convergent). 

Now let 

n 
S = l: AT 
n T=O 

so that 

Then 

S = I + A + A2 + ••••• + An. n 

Subtra~ting the second expression from the first gives 

(I-A) S = I _ An+l 
n 

Now assume. that I-A is invertible. Then 
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From the. definition of sn' 

00 

r 
T=O 

. . 
L 

T=O 

r 
T=O 

AT=lims 
n- n 

AT = lim {(I-A)-l - (J-A- 1 } An+l} 
n->oo 

(5.28) 

if it is assumed that An ->- the zero matrix as n->-oo. (This assumption 

will be justified at a later stage in this section). If (I-A) is 

not invertible, the infinite series must be sunmed in some other 

way. 

From equations 5.27 and 5.28 

L P(T-l) = (I-A)-l f(j) 
T=j+l -

(5.29) 

NOVI let PF be the probability of the process eventually reaching 

the fai lure mode (mode F), given that it has entered either mode 1, 

2 or 3, during some cycle j. Then 

P
F 

= Prob. The process reaches mode F from either mode 1, 2 or 3, 

at the end of cycle j+ 1 

or 

The process reaches mode F from ei ther mode 1, 2 or 3, 

at the end of cycle j+2 

or 
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It has been shown that the process is likely to remain in 

mode F for a large number of cycles, once it has entered this mode. 

(See Section 5.04). Now consider the event in ~Ihich the process 

reaches mode F from ei ther mode 1, 2 or 3, at the end of some 

cycle T. Clearly the process will settle in mode F, once it arrives 

there, so these events are disjoint for different values of T, i.e. 

if the process enters mode F from ei ther mode 1, 2 or 3 at the end 

of cycle T, this cannot be repeated at the end of cycle .T+l. Hence 

the above equation for PF becomes 

00 

P = I Prob. (The process reaches mode F from either mode 
F T=j+l 

1, 2 or 3, at the end of cycle T). 

(from the definition of PF*(T)). But, from equation 5.25 

. . 
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00 

But from equation 5.29 

00 

l ~ (T-1) = (I-A)-l ~ (j) 
T=j+1 

00 T 
Convergenoe of l A 

T=O 

(5.31 ) 

(5.32) 

Clearly PF is the probability of a certain event occurring, 

so 

Hence, assuming that P1F' P2F and P3F are non zero, it is clear 

from equa ti on 5.31 that 

00 

L P (T-l) 
T=j -

must be a vector with finite components (as P1F ' P2F ' P3F ' Pl(T), 

P2(T), P3(T) are all probabilities and are ~ 0). Hence from equa­

- tion 5.27 

must be a vector with finite components. This is true whether the 

process is in mode 1, 2 or 3. at the end of cycle j. But 



f(j) = 1 

o 
o 

o 
1 

o 
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or 0 

o 
1 

depending on whether the appropriate mode is 1, 2 or 3, respectively. 

Therefore the three vectors 

00 

AT) 
00 

AT) 
00 

AT) ( L 1 ( Y. 0 and ( L 0 
T=O T=O T=O 

0 1 0 

0 0 1 

must each be finite. The matrix whose columns are formed from these 

three vectors must also be finite, hence 

o 
o 

o 
1 

o 

o 
o 
1 

is a finite matrix, and the components of 

00 

L 
T=O 

mus teach be fi nite. Therefore 

00 

L 
T=O 

is a convergent series and AT ... 0 as T ... 00, as assumed above. 
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An expression for the probability P
F 

of the process eventually 

reaching the failure mode is given above, in equation 5.32. A 

similar expression will now be derived for the probability PR' of 

the process eventually reaching the recovery mode. 

PR may be expressed in tenns of the probabilities PR (T), of 

the process entering mode R from either mode 1, 2 or 3, by the 

equati on: 

PR = L PR (T) 
T=j+1 

(compare with equation 5.30). But, from equation 5.24, 

co 

• P = p L 
•• R 1 R T=j+ 1 

00 

Pl (T-1) + P2R ~ P2(T-1) 
T=J+1 

co 

L 
T=j+1 

co 

P
1

(T-l) 

P2(T-1) 

P
3

(T-1) 

. co 
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But, from equation 5.29 

00 

L P{T-l) = (I-A)-I .I:{j) 
T=j+ 1 -

(assuming that I-A is invertible). Hence 

(5. 33) 

Now suppose that it is given that the process was in mode I 

at the end of cycle j. Then, from the definition of .I:{T) , it is 

clear that 

.I:{j) = fl (I) 

f 2 (I) 

f 3 (I) 

where 

= [1 if I=J 
o otherwise 

let PR/ I be the probability of the process eventually reaching 

the recovery mode, given that it was in mode I at the end of cycle j. 

Then, from equation 5.33, 

PR/I = (P1R' P2R' P3R)(I-A)-1 fl(I) 

f 2{I) 

f 3{I) 
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Also, from equation 5.32 

P F/I = (PlF' P2F' P3F)(I- Af 1
, fl(I) 

f 2{I ) 

f 3(I) 

where P
F/1 

is the probability of the process eventually reaching 

mode F, given that it was in mode I at the end of cycle j. The 

above two equations may be combi ned to gi ve the equation 

PK/1 = (P1K' P2K' P3K)(I- At 1 fl(I) 

f 2(I ) 

f 3(I) (5.34) 

where K may represent the modes Rand F, and I may take the values 

1, 2 or 3. 

5.06 Evaluation of the Transi tion Probabi li ties PIJ-

The transitions of a System 1 detection process, from one mode 

to another, are dictated by several factors. These transitions 

_ depend on the costs associated with the stored vectors, the data 

sequence transmitted and the sequence of noise samples. There 

appears to be no feasible analytical method for evaluating the trans­

ition probabilities, but they may be found approximately using com­

puter simulati ons. 

During the operation of System 1, the appearance of a pair of 

vectors which are merged with a small separation (~ 1O-3say ), is a 
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fairly rare event. This means that a very large amount of simula­

tion testing would be requi red, to obtain a reasonable number of 

cases in which such pairs of vectors were formed. The simulation 

tests were therefore initialized with an artificially contrived 

set of vectors and costs, containing a pair of vectors which were 

merged with separation zero. The following method appears to be a 

reasonable one, for constructing such a set of vectors and costs. 

The detection process is started up in the usual way, as des­

cribed in Section 3.08. Then after a few data elements (say 15 or 

20) have been detected, the values for one of the stored vectors 

and its cost, are changed. These values are replaced by the corres­

ponding values for one of the other vectors, so that two identical 

vectors and costs are present in the system. The simulation test 

is then completed, upon noting which mode the process has entered 

at the end of the following cycle. 

When a number of such simulation tests have been completed, 

the proportion of tests in which the process has moved from one 

-particular mode to another, gives an estimate of the corresponding 

transition probability. The accuracy of this estimate naturally 

increases with the number of simulation tests performed. 

Let the four vectors stored at the end of the j+l st. cycle of 

the process, be denoted Qj(I}, with costs uj (I}. for I = 1, 2,3 and 

4. Now suppose that it is desired to set the detection process in 

mode I, at the end of cycle j. (Mode I being that in which the 

vectors Qj(l) and Qj(I+1} are merged with zero separation}. The 

method described above allows two alternatives for setting the pro-

cess in this mode. 

repl aced by those 

Either the values for 0·(1} and u
J
.(I} can be 

-J 

for 0.(1+1} and u.(1+1}, or the values for OJ.(1+1} 
~ J -
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and u}I+l) can be replaced by those for 2)I} and uj(I}. Let the 

modes of the sys tern for these two cases, be denoted mode lA and 

mode lB. 

For the estimation of the transition probability PIJ' an 

equal number of simulation tests were carried out, with the 

process initialized in mode lA and mode lB. These tests provided 

estimates of the transition probabilities PIA,J and PIB,J' of the 

process moving from mode lA to J and mode IB to J, respectively. 

Th e es ti mate for PI J was then taken to be the ave rage of the es ti­

mates for PIA,J and PIB ,J" 

The s imul ati on tes ts descri bed in thi s section were performed 

on System 1 with a binary data signal. Channel E, 4 stored vec­

tors (at the start of each cycle) and a value of 0.178 for the noise 

standard deviation, were used throughout. Note that 0.178 is the 

value of the noise standard deviation, which would cause an error 

rate of 0.004, if the detection process was working normally without 

any merged vectors. The number N, of components of the vectors, 

at the start of each cycle, was fixed at eleven. 

Table 5.01 gives the estimates obtained for the transition 

. probabilities PIA,J' PIB,J and PIJ for a case where 100 trials 

-were performed for each of the six starting modes (i.e. the six 

modes: lA, lB, 2A, 2B, 3A and 3B) 

Note that the four vectors stored at the start of the j+l st. 

cycle of the process, are denoted 

Q.(l}, Q.(2}, Q.(3} and Q.{4} 
-J -J -J -J 
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I PIA,F PIB,F PIF 
1 0.46 0.80 0.630 

2 0.04 0.18 0.110 

3 0.00 0.01 0.005 

I PIA,l PIB,l PIl 
1 0.16 0.08 0.120 

2 0.06 0.02 0.040 

3 0.00 0.03 0.015 

I PIA,2 PIB,2 PI2 

1 0.14 0.05 0.095 

2 0.06 0.08 0.070 

3 0.00 0.03 0.015 

I PIA,3 PIB,3 PI3 

1 0.10 0.03 0.065 

2 0.63 0.51 0.570 

3 0.24 0.32 0.280 

I PIA,R PIB,R PIR 

1 0.14 0.04 0.090 

2 0.21 0.21 0.210 

3 0.76 0.61 0.685 

Tests performed with channel E, k~4, (J ~ 0.178 and N~ll. 

TABLE 5.01 
Results of simulation tests· for evaluating the transition proba­

. bilities ~IJ' with 100 trials 
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in ascending order of costs. Hence, from the definitions of modes 

lA and IB, given above, it can be seen that the merged pair of 

vectors wi 11 have a hi gher cos tin mode lA than in mode lB. 

Whi cheve r the i niti a 1 mode in the s imu1 a ti on tes ts, the merged 

pair of vectors will be extended to two merged pairs in the foll­

owing cycle of the process (see Section S.03). If a simulation 

test is started from mode lA, it shou1 d usually be the case that 

the costs for the two merged pairs of vectors, are greater than 

those occurring from an initial mode lB. The decision rule is 

therefore more likely to select both pa,irs of merged vectors, for 

the case where the initial mode is lB. (The decision rule selects 

the k vectors with lowest costs). The probability of the process 

moving to the failure mode, should therefore be greater from the 

initial mode IB, than from lA. This is supported by the results 

shown in Table 5.01. 

The results given in Table 5.01, are for a case where 100 trials 

were carried out for each of the initial modes lA, 1B, 2A, 2B, 3A 

and 3B. The result of each trial is, of course, the mode that the 

process has moved into after one cycle. Tables 5.02, 5.03 and 5.04 

give the results of similar simulation tests, I1here the number n 

of tri a ls for each s tarti ng mode, l1as 500, 1901 and 20001 respec­

tively. Then, from the results of each of the tables 5.01-5.04, 

the probabilities of the process eventually reaching the recovery 

and failure modes, l1ere calculated as in Section 5.05. 

The estimated probabilities PK/I' of the process eventually 

reaching mode K given that it had entered mode I, are given in 

Table 5.05. These estimates are given for the four different values 

of n, corresponding to tables 5.01-5.04. (n is, of course, the number 
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I PIA,F PIB,F PIF 
1 0.408 0.826 0.617 

2 0.034 0.160 0.097 

3 0.010 0.010 0.010 

I PIA,l . PIB , 1 PIl 

1 0.194 0.068 0.131 

2 0.038 0.028 0.033 

3 0.000 0.008 0.004 

I PIA ,2 PIB,2 PI2 
1 0.130 0.032 0.081 

2 0.052 0.082 0.067 

3 0.002 0.038 0.020 

I PIA,3 PIB,3 PI3 

1 0.116 0.036 0.076 

2 0.618 0.506 0.562 

3 0.226 0.338 0.282 

I PIA,R PIB,R PIR 
1 0.152 0.038 0.095 

2 0.258 0.224 0.241 

3 0.762 0.606 0.684 

Tests performed with channel E, k=4, 0= 0.178 and N=ll. 

TABLE 5.02 

Results of simulation tests for evaluating the transition proba­
bilities PIJ' with 500 trials. 
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I PIA,F PIB,F PIF 
1 0.396 0.833 0.615 

2 0.028 0.155 0.092 

3 0.006 0.008 0.007 

I PIA,l PIB,l PIl 

1 0.216 0.080 0.148 

2 0.032 0.032 0.032 

3 0.002 0.005 0.004 

I PIA,2 PIB,2 PI2 
1 0.122 0.033 0.077 

2 . 0.055 0.078 0.067 

3 0.011 0.027 0.019 

I PIA,3 PIB,3 PI3 

1 0.129 0.025 0.077 

2 0.620 0.519 0.570 

3 0.229 0.335 0.282 

I PIA,R PIB,R PIR 

1 0.137 0.028 0.083 

2 0.264 0.216 0.240 

3 0.752 0.625 0.689 

Tests performed with channel E, k=4, a = 0.178 and N=11. 

TABLE 5.03 

Results of simulation tests for evaluating the transition proba­
bilities PIJ' with 1901 trials. 
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I PIA.F PIB •F PIF 

1 0.404 0.836 0.620 

2 0.028 0.155 0.092 

3 0.004 0.007 0.005 

I PIA ,l . PIB • 1 PIl 

1 0.213 0.087 0.150 

2 0.028 0.033 0.031 

3 0.002 0.003 0.003 

I PIA.2 PIB.2 PI2 

l. 0.129 0.024 0.076 

2 0.063 0.086 0.074 

3 0.011 0.031 0.021 

I PIA.3 PIB.3 PI3 
1 0.130 0.026 0.078 

2 0.617 0.521 0.569 

'. 3 0.239 0.331 0.285 

I PIA.R P1B,R P1R 
1 0.125 0.027 0.076 

2 0.264 0.205 0.234 

3 0.744 0.628 0.686 

Tests performed with channel E. k=4. cr = 0.178 and N=ll. 

TABLE 5.04 

Results of simulation tests for evaluating the transition proba­
~ilities PIJ' with 20001 trials. 
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n PR/l PR/ 2 PR/3 

100 .0.264 0.834 0.974 

500 0.275 0.857 0.978 

1901 0.265 0.867 0.984 

20001 0.258 0.868 0.986 

I 

n PF/ 1 
. 

PF/ 2 PF/ 3 

100 0.736 0.166 0.026 

500 0.725 0.143 0.022 

1901 0.735 0.134 0.017 

20001 0.743 0.132 0.014 

TABLE 5.05 

The calculated probabilities P1/ K for different numbers n, of 

trials. 
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of trials carried out with each of the six starting modes, to 

obtain the estimates of the transition probabilities PIJ)' 

The estimates of the probabi 1i ties PI/K are, of course, sub­

ject to statistical fluctuation. It is not a straightforward 

matter to obtain confidence limits for these estimates, but the 

accuracy must improve as the number n of trials is increased. If 

n is large enough, so that increasing its value does not signifi-
• 

cant1y change the estimates of PI / K, it seems reasonable that enough 

trials have been carried out to give fairly accurate results. The 

estimates of any particular probability PK/I , for n = 1901 and 

20001; differ by no more than 0.01, in Table 5.05. It might be 

assumed, therefore, that the estimates corresponding to n = 20001, 

. are accurate wi thin a tolerance of ±0.0l. 

Now consider again the results given in Table 5.05. It may 

be seen from these results, that the probabilities of the process 

reaching the modes Rand .F, sum to unity •. irrespective of whether 

the process was initially set in mode 1. 2 or 3. It appears. there­

·fore. that the system can not remain ~lithin the modes 1. 2 and 3 

indefinitely. This is confirmed by the following theoretical analysis. 

From equation 5.26. 

f.(T) = AT - j f.(j) 

or 

= Pl(T-l) 

P2(T-1) 

P
3

(T-1 ) 

., 
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where PIlT) is the probability that the process will be in mode I, 

at the end of cycle T, for 1" = 1, 2, and 3. It was shown in Sec­

tion 5.05, that AT tends to the zero matrix as T-7 oo . Hence 

PI(T) -70 as T+oo, for I = 1,2 and 3, i.e. the probability of 

the process being in any of the modes: 1, 2 and 3 at the end of 

cycle T, tehds to zero as T becomes "large. The process must there­

fore 1 eave the modes 1 , 2 and 3, and even tua 11y settle in mode R 

or mode F. 

For the matrices A, corresponding to the transition probabili­

ties given in tables 5.01-5.04, it was found that the elements of AT 

were effectively zero, for T~ 20. In fact the two sums: 

and 
20 T 
L A 

T=O 

were found to be the same, within a tolerance of 10-6 for the 

e lemen ts of the matri ces. Hence, from equation 5.26, it can be 

seen that f.(T) has all of its components effectively equal to zero, 

for T ~ j + 20. i.e. the probability of the process leaving modes 

1, 2 and 3, withi n twenty cycl es of ente ri ng one of these modes, is 

effectively equal to unity. The process is therefore bound to settle 

_in either mode R or mode F, within about twenty cycles of a merged 

pair of vectors appearing. (Note that this result applies to a 

parti cular si tuation in whi ch the number k of stored vectors was 

equa 1 to four). 
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5.07 The Direct Evaluation of PK/Iby Computer Simulation 

In Section 5.05, a method was given for evaluating the proba­

bility PK/ I , that the System 1 detection process will eventually 

enter mode K, given that it has entered mode I. I may take on the 

values 1, 2 and 3, and K may represent e; ther mode R or mode F. 

This method calculates the probabilities PK/ I , from the probabi­

lities PIJ' of the process moving from mode I to mode J in one 

cycle. The problem with this approach is that of obtaining accurate 

estimates of the transition probabilities PIJ. 

The elements of the matrix A, in equation 5.34, are from the 

set of estimates of the transition probabilities PIJ. It is possible 

that errors in the elements of A, may cause larger errors in the 

elements of (I-A)-l. It can then be seen from equation 5.34, that 

large errors may be present in the estimated values of the proba-

bilities PKlI . 

Another problem with the method of Section 5.05, is that it is 

very complicated for values of k which are much greater than four. 

(k is the number of vectors stored at the start of each cycle). 

For larger values of k, the number of modes of the trellis, of the 

type shown in Figure 5.03, becomes alarmingly large. This method 

_for calculating PK/I' is however useful in that the analysis involved, 

gives some insight into the behaviour of the detection process. 

The probabilities PK/I have also been estimated directly from 

simulation results. As with the tests described in Section 5.06;, 

these latter tests were carried out with the process placed in each 

of the modes lA, lB, 2A, 2B, 3A and 3B. The detection process was 

then continued for as many cycles as were needed, for it to enter 

either mode R or mode F. (i.e. the recovery of the failure mode). 
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Consider a number n of simulation trials in which the process 

is placed in mode lA. The proportions of trials in which the 

modes Rand F eventually occurred. then give estimates of the 

probabi lities PR/lA and PF/ 1A . (i.e. the probabilities of the 

pro cess eventually reachi ng the modes Rand F, gi ven that it was 

placed in mode lA at some stage). The same number n of simulation 

trials, were carried out to provide estimates of PRllB and PF/ 1B , 

and the estimates for PRll and PF/ l were defined by 

PR/lA + PRllB 
, 

PR/l = 2 

and 

PF/ l = 
PF/l A + PF/is 

2 

This procedure was repeated for the probabilities: P
W2

' PR/3' 

PF/ 2 and PF/ 3. 

The results of the simulation tests for estimating the 

probabilities PIV'1 ' are given in Tables 5.06-5.08. These results 

cover situations with different values of k, different noise levels 

and two different channels. (k is, of course, the number of vectors 

stored at the start of each cycle of the detection process). For 

- cases where k is greater than four, the modes of operation of the 

process, are defined in basically the same way as before. Mode R 

is the mode in which there are no merged vectors, and F is the mode 

in which the vectors form into merged pairs with zero separation. 

Mode I is defined to be that in which only the vectors Q .(1) and 
. -J 

Q.{1+l), are merged with zero separation, for I = 1,2,3, .... 
-J . 

(Note that the vector with K th. largest cost is denoted Qj{K), 

for K. = 1, 2, ..... , k). 
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I PF/ 1A PF/ 1B Pm 

1 0.4692 0.9269 0.6981 

k=4 2 0.0731 0.1577 0.1154 

3 0.0038 0.0269 0.0154 

1 0.3692 0.8731 0.6212 

k=6 2 0.0654 0.2308 0.1481 

3 0.0038 0.0154 0.0096. 

1 0.2769 0.8038 0.5404 

k=8 2 0.0539 . 0.1538 0.1039 

3 0.0038 0.0077 0.0058 

1 0.2846 0.8231 0.5539 

k=16 2 0.0423 0.2308 0.1366 

3 0.0 0.0115 0.0058 

TABLE 5.06 

Variation of PF/ 1 with the value k, for System 1, channel E and 

0=0.178. 260 trials. 
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I PF/IA PF/IB PF/I 

1 0.342 0.931 0.637 

<1=0.136 2 0.023 0.104 0.064 

3 0.000 0.000 0.000 

1 0.396 0.873 0.635 

<1=0.178 2 0.065 0.231 0.148 

3 0.004 0.015 0.010 

1 0.454 0.665 0.560 

<1=0.282 2 0.169 0.296 0.233 

3 0.050 0.100 0.075 

TABLE 5.07 

Variation of PF/ 1 with the value of <1, for System 1, channel E, 

and k=6. 260 trials. 
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I PF/ IA PF/IB PF/ I 

1 0.742 0.919 0.831 

k=4 2 0.081 0.239 0.160 

3 0.000 0.004 0.002 

1 0.481 0.835 0.658 

k=6 2 0.073 0.289 0.181 

3 0.004 0.015 O.OlD 

1 0.458 0.781 0.619 

k=8 2 0.039 0.269 0.154 

3 0.008 0.015 0.012 

1 0.373 0.765 0.569 

k=16 2 0.042 0.323 0.183 

3 0.000 0.012 0.006 

TABLE 5.08 

Variation of PF/I with the value of k, for System 1, channel J 

and (J = 0.0762. 260 trials. 
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It was shown i.n Section 5.06. that the System 1 detection 

process with k=4 is very likely to enter either the recovery or 

failure mode. given that it has entered mode 1. 2 or 3at some 

stage. The same analysis can be applied to any case where k is 

even. therefore 

for I = 1. 2 and 3. i.e. the probabilities of the process going 

from mode I to the recovery mode. and the failure mode. should 

sum to unity. (This is supported by simulation results). Hence 

only the probabilities of the process entering mode F. are given 

in tables 5.06-5.09. 

Table 5.06 shows how the probabilities PF/ I • vary with the 

value of k. for System 1. channel E and a value of 0.178 for the 

noise standard deviation a. (This is the value of a which will 

gi ve an error rate of 0.004 under the gi ven conditi ons. when there 

are no merged vectors present in the system). The number N of com­

ponents of the stored vectors was fixed at eleven. as was the case 

for all simulation tests described in this section. Each probability 

PF II was calculated as explained above. with 260 simulation trials 

carried out for the estimation of each of the probabilities PF/IA 

and PF/ 1B. (i.e. n = 260). 

It can be seen from Table 5.06. that the probabilities: PF/ l • 

PF/ 2 and PF/ 3• do not change dramatically with the value of k. for 

the situation tested. These probabili ties do. however. decrease 

slightly as k is increased from 4 to 16. It is also evident from 

this table. that the probabilities PF!I' decrease rapidly as I in­

creases from 1 to 3. for any of the values of k. 
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Table 5.07 demonstrates the way in which the probabilities: 

PF/1 , PF/2 and P
F/3

, vary with the noise level in the system. 

The corresponding simulation tests were carried out on System 1, 

with channel E and a value of 6, for k. As before, N was fixed 

at eleven, and 260 simulation trials were carried out, for the 

estimate of each of the probabilities PF!IA and PF/IB . The three 

values of the noise standard deviation cr, used in these tests were 

0.136,0.178 and 0.282. These cr values are ones which would cause 

error rates of 10- 4 , 0.004 and 10- 1 respectively under the given 

conditions, if there were no merged vectors present in the system. 

It can be seen from Table 5.07, that the probability PF/l 

does not vary greatly with the value of cr. The probabilities PF/2 

and PF/3 do, however, increase quite noticeably as cr increases. 

Table 5.08 shows the results of simulation tests on System 1, 

with channel J and cr = 0.0762. This is the value of cr which would 

cause an error rate of 0.004, under the given conditions, if there 

were. no merged vectors present in the system. These simulation 

tests were the same as those corresponding to Table 5.06, except 

where stated. From Tables 5.06 and 5.08, it can be seen that varia-

tions in the value of k have a similar affect on the probabili ties 

P F/I' for both channel E and channe 1 J. 

It has been observed from simulation results that, if a vector 

Q.(I} has a large cost in relation to the other stored vectors, then 
-J 

the vectors sterrnning from Q-/I} will have large costs. The decision 

rule for System 1 is such, that the k vectors with smallest cost 

are selected from a set of mk vectors, during each cycle of the pro­

cess. Hence it can be seen that vectors s terrnni ng from such a vector 

Q.(I}, are likely to be deleted from the system. 
-J 
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Now consi der System 1 \~hen operating with an even number k. 

of vectors stored at the start of each cycle. Suppose that the 

process enters mode I in the j+1 st. cycle. so that the vectors 

Qj(I) and Qj(I+1) are merged with some small separation. i.e. 

the vectors with I th. smallest cost and 1+1 st. smallest cost. 

are merged in cycle j+1. (I may have any value in the range 1. 2 • 

...... k-1). If I is fairly large. the costs for these two merged 

vectors will be among the greatest costs present in the j+1 st. 

cycle of the process. Then. from the above discussion, it can be 

seen that the vectors stemming from these merged vectors, are likely 

to be deleted. thus allowing the process to enter the recovery mode. 

Hence it should be expected that the probability PF/ I • of the pro­

cess eventually reaching the failure mode given that it has entered 

mo de I. mus t decrease as I increases. Thi s is subs tanti ated for 

I = 1, 2 and 3. by the results given in Tables 5.06-5.08. 

It can be seen from Tables 5.06-5.08. that the decrease in 

PF/ I as I increases. is fai r1y rapi d apart from the case with 

·channe1 E and a = 0.282. In all of the other cases tested. the 

value of 0 was chosen such that it would give an error rate of 

0.004 or less. if there were no merged vectors present in the system. 

These results suggest that the probabilities PF/ I are very small 

for I> 3. when the detection process is working at error rates of 

0.004 or less. (Note that PF/ I is only defined for I ~ 3 if k=4). 

In Sections 5.05 and 5.07. two methods were given for eva1ua-

ting the probabilities: PF/ 1 • PF/ 2 and PF/ 3 . Table 5.05 gives the 

results of the former method. for channel E with k=4 and a = 0.178. 

Results for the latter method may be found in Table 5.06. but the 

confidence limits for these results are not really close enough to 
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allow a comparison of the two methods. (See Section 5.08 for a 

derivation of the confidence limits, for the method described in 

Section 5.07). The simulation tests corresponding to Table 5.06, 

were therefore repeated with n=lO~. i .e. 10~ trials were carried 

out to provide estimates of each of the probabilities PF/ 1A and 

PF/ 1B • The results of these tests are given in Table 5.09. 

A comparison of Tables 5.05 and 5.09, shows that the two methods of 

calculating the probabilities PF/l' are in reasonable agreement. 

(The results for n = 20001 should be used, from Table 5.05, as these 

have the closest confidence limits). 

5.08 Confidence Limits for the Estimates of PKII 

Consider a series of n independent trials, each of which has 

only two outcomes: success and fai lure. LEit p be the probability 

of failure, so that the probability of success is l-p. 

Let p* be the proportion of failures in the n trials. Then, if 

np and n(l-p) are reasonably large (greater than 5 say), it may be 

shown that the distribution of the random variable p*, is approxi­

mately N (p, P(~-p)). 

i.e. the distribution is approximately normal, with !rean p and 

variance = p(l-p)/n. [50] 

It may also be shOlm that, for any normally distributed random 

variable with mean ~ and variance 0- 2
, there is a 95% probability 

that 

x - 1. 96 0- ~ ~ ~ x + 1. 96 IT 

for any sample x, taken from the distribution [50]. Applying this 
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I PF/l A PF/ 1B PF/lC 

1 0.511 0.905 0.708 

2 0.058 0.200 0.129 

3 0.002 0.009 0.006 

TABLE 5.09 

Values of the probabilities PF/ 1 for System 1, channel E. k=4 

and (J ,; 0.178. 104 trials. 
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result to the situation described above, gives 

If the number n of trials is fairly large, p will be quite close 

to p* and 

p(l-p) ~ p* (l-p*) 

Prob.(p* - 1.96/p*(~-p*) ~ p ~ p* + 1.96/p*(~-p*)) ~ 0.95 

(5.35) 

Hence, if p* is used as an estimate of p, the 95% confidence limits 

for the estimate are approximately 

! p*(l-P*) ± 1.96 . 
n 

For the simulation tests corresponding to Tables 5.06-5.08, 

the number n of trials carried out for the estimation of each of the 

probabilities PF/ IA and PF/IB,was 260. Each trial was independent 

of the others,and had two possible outcomes. The process could either 

- enter the recovery mode, or the fai lure mode. Let p* denote the 

estimate of the probability of the process entering the failure mode, 

in some such group of 260 tri a 1 s. Then, from equa ti on 5.35, the 95% 

confi dence 1 imits for p* are 

I p*(l-p*) 
± 1.96 260 
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p* can, however, only be assumed to be normally distributed 

if np* and n(l-p*) are reasonably large (~5 say). Hence, taking 

n= 260,the above analysis is valid if p* is ~0.02. 

It may readily be shown by differentiation, that p*(l-p*) 

takes its maximum value when p* =~. Therefore 

~ 0.061 

Hence 'the 95% confidence limits for the values of PF/ IA and PF/ IB , 

in Tables 5.06-5.08, are no more than ±0.061. (This only applies 

when the probabilities are~0.02). 

For the simulation tests corresponding to Table 5.09, n=104. 

Hence, from equation 5.35, the 95% confidence limits for these 

values of PF/ IA and PF/ 1B , are 

But 

±1.96!P*(1-P*) 
104 

1.96 !p*(l-P*) ~ 
1Q4 

1.96 

~ 0.01 

.h(l ~U 
104 

Therefore the confidence limits on PF/ 1A and PF/ 1B , are closer than 

± 0.01. 

In Tables 5.06-5.09, the estimates of the probabilities PF/ 1 , 

have been obtained by taking the average of the estimates for PF/ 1A 
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and PF /IB' Hence the confidence limIts for the estimates of PF /I 

should be closer than those derived for PF/ IA and PF/IB' 

5.09 Probability of System 1 <Eventually Reaching the Failure Mode, 
GlVen the Appearance of a Merged Pai r of Vectors 

From the results given in Section 5.07, it is clear that the 

probabi lIti es PF /1' decrease fa; rly rap; dly as I increases from 

1 to 3. These results suggest that 
< 

for 1= 3,4,5, .•..• , k-l, for cases where the rate of errors is 0.004, 

or less. (i.e. where the noise level is such that the error rate 

is ~ 0.004). k is, of course, the number of vectors stored at the 

start of each cycle of the detection process. It will now be assumed 

that the probabilities PF/I are negligibly small, for I ~ 4, where 

they are defi ned for such values of I. 

Now let PI be the probability that System 1 has entered mode I, 

given that it has entered either mode 1, 2 or 3. Also let PF be 

the probability of the process eventually entering the failure mode, 

given that it has entered one of these three modes at some stage. 

- Then 

PF = Prob. (the process had entered mode 1 and it eventually 

enters mode F 

or 

the process had entered mode 2 and it eventually 

enters mode F 

or 

the process had entered mode 3 and it eventually 

enters mode F). 
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(Note that the probability of System 1 moving from mode I to the 

failure mode, has been assumed to be negligible for I 2: 4). Hence 

it may be seen that 

P = 
F 

3 

L Prob. (the process had entered mode I and it 
I=l 

eventually enters mode F) 

3 

=. L Prob. (the process had entered mode I) 
I=l 

xProb.(the process eventually enters mode F, given 

that it had entered mode I) 

(5.36 ) 

It has been shown in Section 5.02, that the occurrence of a 

pair of vectors which are merged with a small separation, is a 

fairly rare event. Hence it is clear that some very long simulation 

tests may be required, to estimate the probabilities PI' In the 

absence of the necessary simulation results, certain values will 

now be assumed for Pl' P2 and P3' so that the above expression may 

be evaluated. , 
PI is defined to be the probability that the process has 

-entered mode I, given that it has entered either mode 1, 2 or 3. 

i.e. given that System 1 is in one of these three modes, but the 

particular mode entered is not kno~m. (I may take the values 1, 2 

and 3). It will now be assumed that PI is independent of I, and of 

the number k of vectors stored at the start of each cycle of the pro­

cess. It then follows that 
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Then, from equation 5.36, 

I t can be seen from the s imul ati on resul ts gi ven in Secti on 

5.07, that the probabilities P
F
/ 1 do not vary greatly with the 

value of k. Hence, under the assumptions made above, it can be 

seen that PF does not vary, to a 1 arge extent, with the value of k. 

i.e. the probability of System 1 eventually entering the failure 

mode, given that it has entered ei ther mode 1, 2 or 3, at some 

stage. does not vary greatly with the value of k. 

In Section 5.07 simulation tests are described in which System 

1 was placed in either mode 1, 2 or 3 at some stage, and allowed to 

conti nue until it settl ed in mode R or mode F. Wi th the tests for 

whi ch k=4, it was found that the process always entered either mode 

R or mode F, within twenty cycles of the initial merging. However 

with k=16, many instances were observed in which the process required 

several thousand cycles to settle in one of these two modes. Hence, 

in cases where the detection process is used with fairly short data 

sequences, it is more likely to enter the failure mode if a small 

value of k is used. 

This concludes the analysis of the merging phenomenon, on Sys­

tem 1, but some methods will now be discussed for preventing the 

occurrence of merged vectors. 
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5.10 Prevention of Merging 

From Section 5.04, it may be seen that the presence of two 

vectors in System 1, which are merged with a small separation, 

.may lead to the process entering the failure mode. i.e. the pro­

cess may enter a mode of operation, in which the stored vectors 

form into merged pairs with some small separation. It is, however, 

possible to modify System 1 in such a way that vectors merged with 

a small separation, cannot be formed. This can be achieved by 

preventi ng the costs associ ated with the vectors, from becoming 

too close together. 

The decision rule for System 1 is such that, in each cycle, 

the k vectors with smallest costs are selected from a set of mk 

vectors. (See Section 3.04). Now consider an implementation of 

decision rule 1, such that the selected vectors are ordered. 

according to the size of their costs. (This was the implementation 

used for the simu1 ati on tests). Let the costs for the k se 1ected 

vectors be denoted cl' c2, ..... , ck 

where 

for i=1,2, .•... ,k-1.· 

Consider the following sequence of operations performed on these 

costs, for some given parameter et: 

If IC2 - c11 <Cl, set c2 = c2 + et (i.e. replace the value of c2 

by c
2 

+ et). 

If IC3 - c21 < et, set c3 = c3 + et (where c2 is the cost which 

has possibly been updated in the previous step). 
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In each step where a cost ci +l is being compared with ci ' the value 

of ci considered is the possible updated value, from the previous 

step. 

Definition 

Sys tem 1 B is defi ne d to be the ve rs i on of Sys tem 1, wh i ch 

has the modification described above. 

By means of this modification to the detection process, it is 

ensured that each cost is separated by an amount greater than or 

equal to Cl, from the other costs. Hence no pair of vectors may be 

present in the system, which are merged with a separation less than 

Cl. This modification does, of course, distort the costs for the 

stored vectors. It is hoped though, that a small val ue of Cl will 

prevent the system from entering the failure mode, while keeping 

this distortion of costs to a low level. It should be noted that 

System lB is identical to System 1, if Cl= O. 

Table 5.10 shows a section of computer,output, from a simula­

tion te:s t on System 1, in whi ch the fa i1 ure mode occurred. The 

detection process was being tested with a two level signal, channel 

E, ~ = 0.0763 and k=4 (where 0 is the noise standard deviation, and 

k is the number of vectors stored at the start of each cycle of the 

process). This simulation test is the one in which the most dramatic 

drop in pe rformance was observed, for Sys tem 1. 
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Number Number Proporti on of 
of cycles of errors errors x 10" 

. 150000 28 1.87 
2000 28 1.84 
4000 28 1.82 
6000 28 1. 79 
8000 28 1. 77 

160000 28 1.75 
2000 28 1. 73 
4000 28 1.71 
6000 28 1.69 
8000 41 2.44 

170000 43 2.53 
2000 65 3.78 
4000 109 6.26 
6000 109 6.19 

. 8000 188 10.56 
180000 236 13.11 

2000 261 14.34 
4000 305 16.58 
6000 316 16.99 
8000 350 18.62 

190000 350 18.42 
2000 383 19.95 
4000 387 19.95 
6000 417 21.28 
8000 432 21.82 

Block of Number of errors 
2000 cycles in the block 

22,000 - 24,000 7 

28,000 - 32,000 2 

58,000 - 60,000 13 

100,000 - 102,000 2 

120,000 - 122,000 2 

146,000 - 148,000 2 

TABLE 5.10 

Computer output for System 1, channel E, k=4, N=ll and a = 0.0763. 
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Number Number Proporti on of 
of cycles of errors errors x 10 4 

150000 28 1.87 

2000 28 1.84 

4000 28 1.82 

6000 28 l.79 

8000 28 1 .77 . 

160000 28 1. 75 

2000 28 1. 73 

4000 28 1.71 

6000 28 1.69 

8000 41 2.44 

170000 43 2.53 

2000 65 3.78 

4000 109 6.26 

6000 109 6.19 

8000 188 10.56 

180000 236 13.11 
2000 261 14.34 

4000 305 16.58 

6000 305 16.40 

8000 305 16.22 

190000 305 16.05 

2000 305 15.89 

4000 305 15.72 

6000 305 15.56 
, 

8000 305 15.40 

TABLE 5.11 

Computer print-out for System 1B (a = 0.0001), channel E, k=4, 

N=l1 andcr = 0.0763. 
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Number Number Proporti on of 
of cycles of errors. errors· x 10~ 

150000 29 1.93 
2000 29 1.91 
4000 29 1.88 
6000 29 1.86 
8000 29 1.84 

160000 29 1.81 
2000 29 1.79 
4000 29 1.77 
6000 29 1.75 
8000 . 42 2.50 

170000 42 2.47 
2000 44 2.56 
4000 44 2.53 
6000 44 2.50 
8000 45 2.53 

180000 45 2.50 
2000 45 2.47. 
4000 45 2.45 
6000 45 2.42 
8000 45 2.39 

190000 45 2.37 
2000 45 2.34 
4000 45 2.32 -
6000 45 2.30 
8000 45 2.27 

TABLE 5.12 

Computer print-out for System 1B (a = 0.001), channel E, k=4, 
N=11 and 0 = 0.0763 
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Number Number Proporti on of 
of cycles of errors errors x 10~ 

150000 20 1.33 
2000 20 1.32 
4000 20 1.30 
6000 20 1.28 
8000 20 1.27 

160000 20 1.25 
2000 20 1.23 
4000 20 1.22 
6000 20 1.20 
BODO 20 1.19 

170000 20 1.18 
2000 20 1.16 
4000 20 1.15 
6000 20 1.14 
8000 22 1.24 

180000 22 1.22 
2000 22 1.21 
4000 22 1.20 
6000 22 1.18 
BOOO 22 1.17 

190000 22 1.16 
2000 22 1.15 
4000 22 1.13 

./ 

6000 22 1.12 
BODO 22 1.11 

TABLE 5.13 

Computer print-out for System lB (a = 0.01). channel E. k=4. N=ll 

and 0= 0.0763 
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Number Number Proporti on of 
: of cycles ... of errors errors x 10 4 

150000 217 14.47 

2000 226 14.87 

4000 234 15; 19 

6000 243 15.58 

8000 243 15.38 

160000 243 15.19 

2000 243 15.00 

4000 253 15.43 

6000 254 15.30 

8000 269 16.01 

170000 269 15.82 

2000 269 15.64 

4000 275 15.80 

6000 289 16.42 

8000 297 16.69 .,. 

180000 304 16.89 

2000 306 16.81 . 

4000 306 16.63 

6000 329 17.69 

8000 331 17.60 

190000 341 17.95 
2000 343 17.86 
4000 343 17.68 

, 

6000 353 18.01 

8000 353 17.83 

TABLE 5.14 

Computer print-out for System lB (Cl. = 0.025). channel E. k=4. 

N=ll and 0 =0.0763 
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Number Number Proporti on of 
of cycles. .•.. of errors .. errors x .104 

150000 20867 1391. 13 

2000 21164 1392.37 

4000 21488 1395.32 

6000 21727 . 1392.76 

8000 22034 1394.56 

160000 22284 1392.75 

2000 22489 1388.21 

4000 22811 1390.91 

6000 23118 1392.65 

8000 23430 1394.64 

170000 23678 1392.82 

2000 23940 1391.86 

4000 24290 1395.98 

6000 24585 1396.88 

8000 24834 1395.17 

180000 25137 1396.50 

2000 25394 1395.27 

4000 25645 1393.75 

6000 25976 1396.56 

8000 26224 1394.89 

190000 26461 1392.68 

2000 26741 1392.76 

4000 26973 1390.36 

6000 27258 1390.71 

8000 27579 1392.88 

TABLE 5.15 

Computer print-out for System lB (a = 0.1) channel E, k=4, N=ll 

and cr = 0.0763 
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The computer output given in Table 5.10, shows the number of 

errors which had occurred to date, in the detected data sequence, 

at different stages of the test. It can be seen that, during the 

detection of the first 166,000 elements, only twenty-eight errors 

occurred. The distribution of the errors in this part of the simu­

lation test, is also given in the table. It is clear from Table 

5.10, that the detection process had deteriorated considerably 

after the first 166,000 cycles. (i .e. after the first 166,000 

data elements had been detected). The number of errors occurring 

in the following 32,000 elements, was 404. 

The four vectors stored by the detection process at the start 

of each cycle, were printed out at intervals of 50,000 cycles. It 

was found that these vectors were distinct after 50,000, 100,000 

and 150,000 cycles. However, after 200,000 cycles (after the point 

at which the error rate had increased dramatically), these four 

vectors were found to be formed into two pairs of vectors, which 

were merged with a separation of 2.3 x 10-5 , i.e. the detection pro­

cess had entered the failure mode, with separation c = 2.3 X 10- 5 • 

These results suggest that the occurrence of the failure mode, was 

th e reason for the sudden drop in the performance of the process. 

Table 5.11 shows a section of the results from a simulation 

test on System lB, in which the data and noise sequences used, were 

i denti cal to those for the test performed on System 1. The two 

simulation tests were the same in every respect, apart from the modi­

fication which converts System 1 to System lB. The value of a. used 

for the test on System lB, was 0.0001. It is clear from the descrip­

tion of System lB, that the system is equivalent to System 1, if a. 

is set equal to zero. It was hoped, therefore, that with a small 
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value of et, the two systems would behave in a very similar manner, 

apart from situations where System 1 suffered from merging. 

The simulation test with SystemlB (and et = 0.0001), revealed 

that it did produce the same error distribution as System 1, up 

to the point where System lIs performance was suddenly reduced. 

i.e. up to and including the 166,000th. cycle of the process. 

A comparison of Tables 5.10 and 5,11 shows that the distribution of 

errors, for the two systems, was also identical up to the 184,000th. 

cycle. At this stage, however, the performance of System lB retur-

ned to that which would normally be expected for System 1. System 1 

conti nued with a poor performance until the end of the simulation 

test, at the 250,000 th. cycle. The four vectors stored by System 

lB, at the end of the 200,000 cycle, were found to be distinct 

whereas the vectors of System 1 forrred two merged pairs. It appears 

therefore, that the two systems suffered from the merging phenomenon 

duri ng cycl es 166,000 to 184,000. System 1 B (with et '" 0 .0001) then 

seems to have escaped from the failure mode, while System 1 continued 

in this mode at least until the 250,000 th. cycle. 

Further simUlation tests were carried out on System lB, which 

were identical to the one described above, apart from the fact that 

different values of Cl were used. Sections of the results for these 

tests "re given in Tables 5.12-5.15. With et =0.001 (Table 5.12), 
, 

it can be seen that System 1B had one more error in its detected 

data sequence, up to the 166,000 th. cycle. However, in the detection 

of the following elements, System lB showed no noticeable drop in 

performance, whereas the error rate suddenly increased with System 1. 
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Tables 5.13-5.15 show the results of the tests on System lB, 

for et = 0.01, 0.025 and 0.1 respectively. It can be seen from 

these results, that et = 0.01 gives the lowest over all error rate, 

over the fi ve values of et which were used in the tes t. The per­

formance of System lB becomes very poor if et is increased to 0.1. 

Clearly, for the situation examined in which System 1 had 

entered the failure mode, System lB can offer an improved perfor-

mance. It appears to be possible to find a value of et, for 

System lB, whi ch makes the system immune to the problem of merging, 

and which allows the performance normally expected of System 1. 

A second modification to System 1 will now be discussed, with 

which the problems due to merging vectors may be eliminated. 

During the j+2 nd. cycle of the System 1 detecti on process, 

the k vectors 

Q.(l), Q.(2), ...... Q.(k) 
. -J -J -J 

.are extended to mk vectors of the form 

T '+1 (1 ,J) = (Q .(1) ,J) 
-J -J 

-.~-

for I = 1. 2, ..... , k 

-and J = -m+l. -m+3, ..... , m-l. 

(see Section 3.02), where m is the number of signal levels. From 

this set of mk extended vectors. the one with smallest cost is 

selected, and the element furthest to the left of this vector. is 

taken as a detected element. The k vectors of the form 

lj+l (I.J) 
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with smallest costs, are then retained for the next cycle of the 

process. 

Definition 

Consider the earliest element (the element furthest to the 

left), of the k selected vectors of the form 

Let System 1 be modified, so that any of these k vectors whose 

earliest element is not the same as the detected element, are 

removed from the process, during each cycle. Then System lC is 

defined to be this modified version of System 1. Note that, if 

some of the k selected vectors are remov'ed from the system, the 

following cycle of the process will commence with some number kl 

of stored vectors where kl <k. These kl vectors are then extended, 

in the usual way, to mk l vectors (where mk l is hopefully ~ k) , and 

the k vectors with sma lles t costs are selected as before. If 

mk l < k, all of the mk l vectors are selected. This modified version 

of System 1 has previously been proposed by Vermeulen, for the case 

of k ~ 2 [40]. ., 

Now consider a situation in which System 1 enters the failure 

mode. It can be seen from the discussion at the end of Section 5.04, 

that the process will then go on to become locked in a state, in 

which there are only !k distinct vectors. Simulation results con-

fi rm that the performance of the detector is sometimes reduced when 

this mode of operation occurs. It will be seen from the following 

theorem, that System lC will always have a distinct set of stored 

vectors. It should not therefore have this weakness exhibited by 

System 1. 
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Theorem 5.02 

Let System le be operated with the recommended starting up 

procedure, described in Section 3.08. Then, after the first few 

cycles of the process, the system will have a set of distinct 

stored vectors at the start of each cycle. 

Proof 

First consider a situation where the k vectors stored by 

System le, at the start of some cycle j, form a distinct set. 

Let the vectors be denoted 

~1'!2'·····'~· 

Then, from the definition of System le, these vectors must be 

such that the same fi rst component is common to each of them. 

Ouri ng the j th cycle of the process, the above k vectors are 

extended to mk vectors of the form 

where 

and 

~i' J) 

i=1,2, .... ,k 

J = -m+ 1, -m+3, .•.•. , m-l. 

k of the mk vectors are then selected, and the N components furthes t 

to the right of these vectors, are retained for the next cycle of 

the process. 

Now suppose that two of the vectors, present at the start of the 

j+l st cycle, are identical. Then there must exist two N+l component 

vectors of the form 
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which have their latest N components in common Ci .e. the N components 

furthest to the right are the same for both vectors}. All of the 

vectors 

have their first components in common, so 

and 

V n = V • 
-" --ID 

This is a contradiction, as the vectors 

form a distinct set, hence the above supposition must be incorrect. 

i.e. it is not possible for tvlO of the vectors, present at the start 

of the j+l st cycle, to be identical. 

It has been shown above that, if the vectors of System lCare 

distinct, at the start of one cycle of the process, this situation 

will be maintained at the start of the fo11owing cycle. Now refer 

to the proof of theorem 3.02 (Section 3.10). In the analysis of 

System A, i th cycle, it was shown that System 1 wi11 have. a set of 

k distinct vectors in store, at the end of the i th cycle of the 

process.Ci is defined to be the sma11est integer, such that mi?k). 

Furthermore, the first component is common in each of the vectors, 

provided that the vectors have at least i+l components. It can be 

seen that the analysis given for System 1, also applies to System 1C. 

Hence System lC wi11 have a set of distinct stored Vectors at the 

start of the i+1 st cycle. It follows, therefore, that the vectors 
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must be distinct at the beginning of the i+2nd cycle, and this 

situation must be maintained for each of the following cycles, 

(applying an inductive argument). It has been assume.d here that 

the recomnended starting up procedure, described in Section 3.08, 

has been used with System le. 

End of proof of theorem 5.02. 

In this section, of the thesis, two detection processes, 'Sys­

tems lB and le', have been proposed, which are modifications of 

System 1. For a particular situation considered, System lB was 

abl e to overcome the loss in performance due to mergi ng, while 

offering the same performance as System 1 where merging had not 

occurred. 

Limited simulation tests have been carried out with System 

le. These tests suggest that its performance is generally as good 

as that of System 1, if N is greater than about ten. System le should 

offer a definite improvement in tolerance to noise, over System 1, 

in situations where the fai.lure mode occurs in the latter process. 

It is recommended that one of these two modified versions be used 

in preference to System 1, in any practical application. 
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CHAPTER 6 

6.01 Originality 

The work described in Chapters 3-5 of this thesis is 

believed to be original except where stated. The following 

are the more.(important contribut; ons and are ori gina1, to the 

best of the author's knowledge: 

·i) All simulation results for Systems 1 and 2. 

ii) The results of Section 3.08 l'ihich demonstrate the impor-

. tance of the starting up procedure for Systems 1 and 2. 

iii) The proof of the theorems of Section 3.10, which reveal 

the effect of an extra zero component at the start of 

a channel's sampled impulse response. 

iv) The analysis of the merging phenomenon given in Chapter 5. 

v) The modified algorithm, "System 1B", which is immune to 

mergi ng. 
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6.02 Suggestions for Further Work 

The work of this project, on Viterbi based detection pro­

cesses, mi ght usefully be extended a long the 1i nes of: 

1. A comparison betl~een Systems 1-4, and detection processes 

using a V.A. detector in conjunction with a linear or 

decision feedback equalizer. The latter types of detec­

tion processes are described and investigated in references 

32, 36 and 44. 

2. Simulation testing to determine the effect of quantizing 

'all numbers stored by the a1gori thms. (The tests described 

in this thesis have been conducted with all numbers stored 

to a hi gh degree of precision). 

3. A study of the effect on performance, of ignoring some of the 

leading and trai ling components of the channel's sampled 

impulse response, and thereby saving on storage .and compu­

tati on. 

4. Simulation testing to study the effect of small errors in the 

channel's sampled impulse response, as estimated by the recei­

ver. 

5. ~si gni ng an adapti ve process whi ch adjus ts the number of 

initial sampled impulse response components, ignored by the 

detector. 

It has been shown in Chapters 3 and 4, that the tolerance to 

noise of Systems 1-4 can sometimes be improved, if these 

detectors ignore some of the leading sampled impulse response 

components. With a time varying channel, the number ny of 
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these components ignored. could be varied to suit changes 

in the transmission channel. AA automati c process would 

then be needed to adjust ny when requi red. to obtain the 

bes t performance from the detectors. 
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6.03 Conclusions 

This research project has been concerned with the study of 

detecti on processes whi ch can offer a close to optimum performance, 

without the need for excessive computation. Under certain condi­

tions, the optimum detection process is given by the Viterbi 

Algorithm (V.A) detector. Simulation tests have shown that this 

detector offers a considerable increase in tolerance to additive 

white Gaussian noise, over the conventional non linear equalizer, 

wi th channels whi ch introduce severe ampli tude distortion. How­

ever, for many typical situations, the computational demands of 

the V.A. detector render it impracti cab le. 

Four detection processes, Systems 1-4, have been studied 

which are based on the V.A .. Unlike the V.A. detector, certain 

parameters may be varied in these systems to give the desired com­

promise between performance and complexity. For many situations 

it has been found that Systems 1-4 can offer a tolerance to noise 

which is quite close to that of an optimum detection process, with 

only a small fracti on of thecomputa ti on requi red by the V.A. detec­

tor. 

Systems 1 and 2 have been found-to suffer occasionally, from 

_ an effect ca lledmergi ng ~Ihi ch can drasti ca lly reduce thei r perfor­

mances. These detectors may however be modified to forms which do 

not suffer from merging. 

In some applications, the impulse response of the transmission 

channel under consideration may grow slowly with time, so that the 

first few components of the sampled impulse response are small. 

Simulation tests show that it is sometimes of advantage with Systems 

1-4, to ignore some of these small components. If these components 
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are not ignored the complexity of the detectors may have to be 

increased, to obtain a given tolerance to noise. 

It has been found that Systems 3 and 4 have weaknesses not 

exhi bi ted by Systems 1 and 2. The performance of System 4 is not 

quite as good as that of Systems 1-3, over some channels with 

severe amplitude distortion. Hith System 3 a much greater loss in 

performance is experienced, due to the presence of a small compo­

nent'at the start of the channel's sampled impulse response, than 

with Systems 1, 2 and 4. The performances of Systems 1 and 2 are 

usually about the same, but System 2 requires the least number of 

basic operations of the two systems, per detected data element. 

System 2 therefore appears to be the most promising of the four 

detection processes, as a possible replacement for the conventional 

non linear equalizer. 
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APPENDIX 1 

RESUL IS CONCERNING CONDITIONAL PROBABILITY 

DENSITY FUNCTIONS (CONDITIONAL pdf's) 

Let 

5 = (5 0,51 , .••.• , sn) 

be a vector whose components are discrete random variables and 

let 

be a vector whos e componen ts are con ti nuous random vari ab 1 es • 

Let 

GC!:.', ~') = Prob. (r ~ r' and ~ = ~') 

where r~r' means that each component of r is ~ the corresponding 

component of r'. Then the joint pdf of r and ~ is defined by 

d d d 
g4 (r', ~') = drO' drl ... dr i G(.!:.', ~') 

- i n+g 

The conditional pdf of .!:.' when it is given that ~ =~', is defined 

- by 

where 

g (r',s') 
f(.!:.'/~') = 4 - -

93 (~') 

9 (5') = Prob.(s = 5'). 
3 - - -

(1 ) 

The probability that~ =~', when it is given thatr =.!:.', is 

defined by 
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9(r',s') 
( 4 - -

91 ~'/ . .!:') = 92(.!:'j 
(2) 

. where 92(.!:') = pdf of .!:' or the joint pdf of rO' , r1' , .... , rn~9' 

From equations 1 and 2, it is clear that 

f(r'/s') 9 (5') = 9 (s'/r') 9 (r') -- 3- 1-- 2-
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APPENDIX 2 

RELATIONSHIP BETWEEN A CHANNEL'S SAMPLED 

IMPULSE RESPONSE AND ITS FOURIER TRANSFORM 

Consider a transmission channel with impulse response y(t). 

Let Y (f) be the Fouri er transform of y( t), so that 

. 00 

Y(f) = f y(t) e-jft.2IT dt ( 1) 

where f is the frequency in Hertz 

and j = M. 

Assume that the channel is band limited, so that 

Y(f) = 0 when If I > B Hz 

for some value B. Also assume that Y(f) has a Fourier series 

expansion, so that 

00 

Y (f) = I eijfIl/B c
i 

for If I < B 

where 

i =-co 

fB Y(f) e-Ilifj/B df 
-B 

(2) 

( 3) 

Note that y(t) is related to Y(f) by the inverse Fourier transform 

and • 

00 

y(t) = f Y(f) e2Iljft df 
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Y(2-Bi ) = / Y(f)e-TIjfi/B df 
~B 

.• from equation 3, 

(noting that Y(f) = 0 

for If I > B) 

Then, using this expression in equation 2 gives 

1 
Y(f) = 2B 

1 
Y( f) = 2B 

0> 

L Y(2~) e
IIifj

/
B 

; = _00 

0> 

L y(~) e-TIifj/B 
i = -0> 

for I fl < B ( 4) 

Now suppose that y(iB) can be considered to be negligibly small 

except for i = 0, 1, 2, •••• 9, for some non-negati ve integer g • 

. Also assume that 

fonns the sampled impulse response of the channel, so that the 

impulse response is sampled at intervals of is. (This sampling 

rate is called the Nyquist rate for the channel). Then equation 4 

gives 

Y(f) = is J y(iB) e-TIifj/B 
1=0 

= 21B ~ y. e-TIifj/B 
i =0 1 

for If I < B 
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where 

for ;=0,1,·.···,9. 

Hence, with the assumptions made above, the Fourier transform of 

the channel 's impulse response is given, within a constant multiple, 

by 

where 

Y( f) = ~ y. e -I1ifj(B 
i =0 1 

forlfl<B 

is the channel IS sampled impulse response. 
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APPENDIX 3 

COMP UTE R P ROG RAMS 

Computer programs for Systems 1 and 4 are listed in this 

appendix. It should be noted that System 4 is identical to the 

Viterbi Algorithm, if used with k = mg, i.e. if used with mg 

vectors stored at the start of each cycle. 

The two programs were wri tten in 1900 Fortran, whi ch is 

very similar to Fortran IV. Both programs make use of three 

routines from the Numerical Algorithms Group (NAG) Library. 

These routines are: 

G05BAF (T) 

G05AAF (FX) 

G05AEF (0.0,5) 

They are each concerned with the generati on of pseudo random num­

bers. 

G05BAF (T) initializes the basic random number generator, 

which the other two routines use to form thei r number sequences. 

T is a parameter supplied by the user, which controls the starting 

point in the random number sequence. T must lie in the range [0,1]. 

G05AAF (FX) supplies a pseudo random number from a uniform 

[O,l] distribution. FX is a dummy parameter. 

G05AEF (0.0,5) supplies a pseudo random riumber from a normal 

distribution with mean 0.0 and standard deviation S. The value of 

S is supplied by the user. 



MASTER Vl'HR 
D I M F. N S ION I S n ~ , 32) , B 1 (3 l) , c 1 (3 l , 2> , A 1 (l) , Ai! (Z) , A3 ( 2) , A 4 (Z) , A 5 ( 2 

1 A6(Z),A7(Z),A8(Z),A9(z),Al0(2),Al1(Z),A1l(Z),A13(Z),Al4(Z),A15( 
2 , JR(ZO), J1 (32), K1 (32) 
COMMO~ JV1,JVl,JV3,JV4,JVS,JV6,JV7,JV8,JV9,JV10,JV11,JV12,JVl3, 

1 JV14,M1,N1,JR,L1M,S 
e SYSTEM 1 WITH IN STORED veCTORS AND A BINARY SIGNAL 

READ(1,908)A1(1),Al(1),A3(1),A4(1),A5(1) 
READ(1,908)A6(1),A7(1),A8(1),A9(1),A10(1) 
REAP(1,90a)A1'(1),A1l(1),A13(1),A14(1),A1S(1) 

e A1(1),A2(1),.,.,A15(1) Is THe SAMPLED IMPULSE RESPONSE OF THE 
e ..• CHANNEL BEING TESTED 

4 READ(1,906)S 
e S IS THe NOiSE STANDARD PEVIATION 

WRtTECZ,902) 
WR!TE(l,903'A1(1),AZ(1)iA3(1),A4(1),A5(1) 
WRJTE(Z,903)A6(1),A7(1),A8(1),A9(1),A10(1) 
WRITE(2,903)Al1(1),A12(1),A13(1),A14(1),A15(1) 
WRITE(2,904)S ' 
A1 (2)=2.0.A1 (n 
A2(2):2,O.A2(1 ) 
A3CZ)=Z,O.A3(1) 
A4(2).2,O*A4<1 ) 
AS (2).2, O.AS (1) 
A6(2)=2.0.A6(1 ) 
41(2)=2.0.A7(1 , 
A8(2)=2.0.A8(1 ) 
A9 (2) =2. O.A9 (1) 

A10(2).2.0.A10(1) 
AH (Z).Z.(UA11 (1) 
A1Z(Z).2,O*A1Z(1) 
A13(2).2.0.A13(1' 
A14(2,=2.0tA14(1) 
A15(2)D2.~*A15(1) 

e All pnSStBlE VALUES THE TERM I*A1(J) ARE CALCU~ATED ,FOR 
e ... 1>:,,2 ANI! J.1,2, ... "S 
C THE POSSIBLE VALUES OF A DATA ELEMENT ARE 1 AND Z IN THIS PROGRAM 

READ(1,912) IN 
WRrTE(2,913) IN 

e IN IS THE NUMBER OF VECTORS STORED AT THE START OF EACH CYC~E OF 
e ••• THE PROCESS 

a-a 
I C2=20001 
WRITE(2,905) 
WR ITE (2, 90i') 
WR nE( 2,909) 
IC=-10 
JeQUln ... 1 n 
T=0.028 
CALL G05BAF (T) 
CALL G05BAF (T) 
LJM=12 
LIM1=LlM+1 



DQ ~ 1=1, LIM1 
JRC!)=1 

2 CONTINUE 
e SOME OF THE MOST RF.CENTLy TRANSMITTED DATA ELEMENTS ARE STORED IN 
e ••• THE ARRAY JR(.) 

M1.2 
N1.L!M+Z 
READ(1.901)JV1.JV2.JV3,JV4,JVS.JV6,JV7,JV8,JV9,JV10.JV11,JV12,JV 

1 .JV14 
DO 9 1111.15 
D011J=1,32 
ISO.J),,1 

1 1 CO~TINUE 
9 CIlI/Th/UE 

e IS(I.J).COMPONENT I OF T~e J TH, STORED VECTOR 
B1 (1).O. 0 
IF(IN .EQ. 1)GO TO 140 
DO 10 J"2,IN 
B1(J,=1.0E06 

10 CONTlNUF. 
~ B1(J).COST FOR THR STORED VECTOR I 
e" [IS(1;J).IS(2,J), ••• ,IS(15.J)] 

140 CALL GENERA(Z,A1,A2,A3,A4,A5,A6,A7,A8,A',A10,A11,A12,A1 3 ,A14,A15 
e SUBROUTINE GF.NERA SUPPLIES A NEW RECEIVED SIGNAL SAMPLE Z,EACH TIME 
e •.• IT IS CALLED 

Oil 80 J=1, IN 
N02=IS(Z,J) 
N03=IS(3,Jl 
N04"IS(4,J) 
N(\5"IS(5,Jl 
N0611IS(6,J) 
N01'=IS(7,Jl 
NOllals(8,J) 
N091115(9,J) 
N101115(10,J) 
Nl1.IS(11,J) 
"1211, S <12, J, 

.-- . 

N13=15(13,J) 
N14='S(14,J) 
N15=15(15,J) 
B=A2(N15)+A3(N14)+A4(N13)+A5(N12)+A6(N11'+A7(N10)+A8(N09)+A9(N08) 

1 A10(N07).A11(N06)+A12(N05)+A13(N04)+A14(NOj)+A1~(N02)-Z 
Bl1=B1<J) 
"0 90 K=1,2 
A1I8+A1 (K) 
Cl (J,K)=e11+A*A 

90 CONTINUE 
80 CONTINUE 

e C1(J,K)=COST FOR THE VECTOR I 
e tIS(1;J),IS(2,J), ••• ,IS(15,J),K] 

CALL MIN(e1 ,J1, K1, IN) 
e SUBRnUTINE MIN SE~ECTS THE IN PAIRS Of VALUES (J,K) WHICH GiVE THE 
e ••• SMALLEST IN VALUES OF THE COST C(J,K) 



J2=J1 (1) 
1<2!11K1(1) 
I ND .. 1 
I F CC, CJ2, K2) .. ,. OE06)6,6,7 

7 IND=2 
6 IFCISC5,JZ) .~E. JRCM1»IE-IE+1 

e A DETECTIoN IS MADE FROM THE FIFTH COMPONENT OF THE VECTOR WITH 
t ..• SMALLEST COST, THUS GIVING A DELAV OF 11 SAMPLING INTERVALS 
e •.. BETWEEN TRANSMISSION AND DETECTION, 
e JR(M1) IS ONE OF THE DATA ELEMENTS TRANSMITTED EARLIER 
r. IE=NUMBER OF ERRORS 

IFCICOUNT .NE, 500) Go TO 3 
ICQUNTIIO 
A11'''IE 
A112elC 

e IC-NUMBER OF TRANSMITTED ELEMENTS 
IFoe .EQ. 0) A112-1,0 
RATE=~1"/A11~ 

3 
WRJTEC2,900) IC,IE,RATE 
CONTINU~ 
IC.le+, 
ICQUNTII,COUNH1 
00 210 J=, ,14 
DO 220 1=', IN 
J2.J1Ci> 

.IStJ,I)=IS(J",J2) 
220 CONT! "'lJE 
210 CONTINue 

Do 240 '-',IN 
Ist15, I"'K' (I) 
n=J1Ci> 
1<2 .. 1<1 (1) 
B1 (n=C1 (J2,K2) 
JF(IN~~1)240,240,8 

8 B1(1),,81(1)~1.0E06 

240 CONTINUE 
e IN THE A~OVE 14 STATEMENTS, THE SELECTED. VECTORS AND THEIR COSTS AR 
e.,. STORED IN THE LQCATIONS OF THE ORIGINAlVeeTORS AND COSTS 

IF(IC~IC2)13,14,'3 
14 WRITE <2,905) IS 

IJRITECZ,9(9)B1 
lC2"IC2+150 000 
CONTI"IUE 
IF(JC"20000) 140,140,1 

1 STOP 
900 F 0 Rt'_~(1 x, , I C , lE, RAT E. , ,2 x, I 7, 2X , 1'7,2 X, F 1 2 • 9 ) 
901 
902 
903 
904 
9ns 
906 
907 

908 
909 
912 

. 913 

FORMAT(14C1X,11» 
FORMAT(1X,'SAMPLED IMPu~se RESPONS~ COMPONENTS I') 
FORMATCSC2X,F10.6» 
FORMAT(1X, 'NQISE STANDARD DEVIATION ~"F'O.6) 
FORMATC1X,'IC IS THE NUMBER OF DATA ELEMENTS DETECTED SO FAR') 
FORMATCF10.6) 
FORMAT(1X,'IE IS THE NUMBfR OF ERRORS SO FAR ,IN THE DETECTED " 

, 'DATA SEQUENeE') 
FORMAT(5F10,6) 
FORMAT(1X,'RATE IS THE ERROR RATE OR PROPORTION OF ERRORS,) 
FORMATCl2) 
FORMATC1X,'NUMBER OF VECTORS STORED AT THe START OF EACH CVCLEa' 

1 12) 
END 



SU8ROUTINE MI~(C1,J1,K1,IN) 
C THIS SUBROUTINE SELECTS THE IN PAIRS OF VALUES (J,K) WHICH GiVE 
r. ••• THE IN SMALLEST VALUES OF THE COST C(J,K),THESE VALUES ARE DENOTE 
e ••• (J1(1),K1(1»,(J1(Z),K1(Z» " •• ,(J1(IN),K1(IN» 

DIM~NSION C1(3Z,Z),J1(3Z),K1(32),IAB(3Z,Z) 
00 60 1=1, IN 
DO 70 J=1,Z 
IAB(I,J)=1 

70 CONT! NUE 
60 CONT! NUE 

DO 30 K=1,IN 
AM. 1.0e08 
1281 
J 2.1 
DO &0 1=1,IIl 
DO 50 J=1,i! 
IFCIAB(I,J»SO,50i10 

10 IFCC1(I,J)-AM)20,50,50 
20 AM.C1(I,J) 

12.1 
J2.J 

50 CONTII.IUE 
40 CONTINUe 

J1 (K)=12 
K1CO=J2 
1AI\(I2,JZ),,-1 

30 CONT! NUE 
RETURN 
END 



SURROUTINf GF.NERACZ,A1,AZ,A3,A4,A5,A6,A7,A8,A9,A10,A1"A1Z,A13,A 
1 ."15) 

e THIS SUBROUTINE SUPPLIES" RECEIVED SIGNAL SAMPLE Z EACH TIME IT 
e ..• IS CALLED 

DIMENSION JR(20),"'(Z),A2(Z),A3(Z),A4(Z)/AS(Z),A6(Z),A7(Z),A8(z) 
1 A9(2) ,'\10(2) ,A1 1 (Z) ,A12(2) ,A13(2) ,A14(Z) ,A1 5(2) 

_____ .J.(lMMON JV1, JVl, JV3, JV4, JV5, J V6, JV7, JV8, JV9, JV' 0 / JV1.1_!.Av1 2, J V1 3. 

1 JV14,M1,N',JR/L1M,S 
V=GOSA4F (FX) 
1hZ 
IF (V-O. 5) 2,3,3 

Z I x.1 
3 Jv1 S=IX 

Z=A1(JV15)+AZ(JV14)+A3(JV13)+A4(Jv12)+AS(JV11).A6(JV10)+A7(JV9)+ 
1 A8(JV8)+A9(Jv1)+A10(JV6)+A11(JvS)+A1Z(JV4)+A13(JV3)+A14(JVZ)+ 
Z A,S(JV1) 

X=G05AEFCO.O,S) 
Z=Z+X 
JV1-Jv2 
JV2=JV3 
JV3-JV4 
JV4-JVS 

.. JVS_Jv6 
JV6.Jv7 
JV7.JV8 
JV8 .. JV9 
JV9aJV10 
JV10=JV11 
JV11-JV12 
JV.2-JV13 
JV,3-Jv14 
JV.4-JV15 
JRCNll-IX 

e SOME OF THE MOST RECENTLV TRANSMITTED DATA ELEMENTS ARE STORED IN 
C ••• THe ARRAV JR<.' 

M1.M1+1 
NhN1 ... 1 
IF(M1 .EQ. LIM+3)M1.' 
IFeN' .EQ. tIMt3)N1=1 
RETURN 
END. 



SAMPI.EO H1PIILSE HSPONSE COP1PONENTS l 
0,100000 0,166700 0.500000 
0,166700 o.ooonoo ~.nooooo 
n,OOOOOO O,~00000 0.000000 

NOI~E S,ANDARD OFVIATION = 0.094200 

0.666700 
O.(JOQOOO 
0.000000 

0,500000 
0.000000 
0,000000 

NUMBER Of VECTOR~ STOREO AT THE START OF EACH .CYCLE: 4 
IC IS THE NUMBER OF DATA ELEMENTS DETECTED SO FAR 
lE IS THE NUMaER OF ERRORS SO FAR ,IN THE DETECTED 

DATA SEauE~CE 

RATF IS THE ERROR RATE OR PPOPORTION OF ERRORS 
IC,IE,RATE= ~oo 

le,IE,RATE= 1000 
IC,IE,RATE: 1500 
IC,IE,RATE: 2000 
le,IE,RATE= 2500 
IC,IE,RATE= 3000 
IC,IE,RATE= 3500 
IC,IE,RATE: 4000 
IC,IE,RATE: 4500 
IC,IE,RAT!: 5000 
IC,IF,RATE: 5500 
H,IE,RATE: 6000 
IC,IE,RATE: 6500 
IC, lE, RATE: 700n 
IC,IE,RATE: 7500 
IC,IE,RATE= ROOD 
IC,IE,RATE: .1\500 
IC,IE,RATE: 9000 
IC,IE,RATE: 9500 
IC,IE,RATE= 10000 

1 4 
58 
66 
92 

1 22 
156 
169 
184 
238 
243 
274 
336 
359 
380 
400 
43(1 
464 
490 
513 
519 

0.028000000 
0.058000000 
0.044000000 
0.046000000 
0.048800000 
0,052000000 
O.048?85714 
0.046000000 
0.052888889 
0.048600000 
0.049818182 
0.056000000 
0,1)5,230769 
O.OS4285714 
o. ()~3333333 
0.053750000 
0.054588235 
0.054444444 
0.054000000 
0.051900000 



MASTER VITER 
e SYSTEM 4 

DIMENSION B1(30),A1(30,16),IQ(30,6A),JV1C30),U(64),V(64,16), 
1 IlK(64,'6) 

CALL G058AF(O.O) 
CALL G058AF<O.O) 
IGII2 
IG1;;IG ... 1 

C 101 I~ THE NUMBER OF SAMPLED IMPULSE RESPONse COMPONENTS 
_ READ(1.908) (B1 (I) .1 10 1, IG1> 

WRITe(Z,900) 
WRITECZ.90l) (B1 Cl), 111', IG1) 

I'! 81 (1) ,s1 (2),.; •• B1 0(1) IS THE SAMPLED IMPULSE ReSPOt-lSE OF THE 
C •.• CHANNEL BEING TESTED 

REAOC1 ,906'$ 
WRrTE(2.903)S 

C S IS THE NOISE STANDARD DEVIATION 
M!!Z 

C M=NUMaER OF SiGNAL LeVELs 
DO 1 J-1,M 
M111"M ... 2*J.,.' 
DO 2 1 .. 1,IG1 
A1(I,J)a61(!)*M1 

c:::2:.2 CONTINUE 
1 CONTINUE 

.. f ALL POSSIBLE VALUEs OF THE TERM 81(1)*M1 ARE STORED ,FOR 
C ••• 1·1,2, •••• IG1 AND M1=·M+1, .. M ... 3 •••• ,M·' 

RUD(1 ,9121 IN.N 
WRJTE(Z,901l IN 

WIIITE(2,904) N 
WRITE(Z.9!lS) 

. WRITE(2,907) 
WR nE (2.909' 

__ e . M •• IN_NUMBER OF VECTORS STORED AT THE START OF EACH CYCLE OF THE 
e •.. PROCESS 

~.cc N=NUMIER OF COMPONENTS OP THE VECTORS STORED AT THE START OF A 
e ... pelf 

ello.o 
!CIII,,"I ... 1 
N3.N+' 
NhN"11j 
M1I1M**IN 
DO 3 LIII1.M1 
AL.L 
D041=1,tN 
A=AL/(M·*(IN"I» 
IhA 
IF(A"'A .OT. O.OIIA-IA.1 
I!l(N+1"1. u=u 
AL:AL-M*.CIN-I)*(IA .1) 

4 CONTINUE 
D05111'.NI 
IOtJ.L)1I1 

5 CONTINUE 
3 CONTINUe 



~ IQCI.J)aCOMPONENT I OF THE J TH, STORED VECTOR 
e THE STORED VECTOR WITH LATEST IN COMPONENTS:J1,J2, ••• ,JIN IS 
C ••• DENOTEO VECTOR L.WNERE L=J1.M*<J2~1)+M*.2*(J3·1)+, •• 
r. •••• M**CIN~1)*CJIN-1) 
e THE ABOVE 13 STATEMENTS ASSIGN INITIAL VALUES TO THE COMPON~NTS 
~ .•. OF THE STORED VECTORS 

DO 6 Ia1,N3 
JV1(1)=1 

6. CONTUWE 
r. SOME OF THE MOST RECENTLY TRANSMITTED DATA ELEMENTS ARE STOReD 
c •.• IN THE ARRAY JV1<.) 

U(1)=O.O 
DO 7 L~2,M1 
UCU=1.0E06 

7 CONT! NUE 
c UCl) IS THE oOST FOR THE STORED VECTOR: [IQ(1,L),IQ(2,L),."IO(N,l 

14() CAll TRANS(Z1.A1,JV1,IG,M,S,N) 
e SUBROUTINE TRANS SUPPLIES A NEW RECEIVED SIGNH SAMP~E Z1,EACH 
C ••• TIME IT IS CALLED 

M2,,~1** (I N,,1 ) 
1l0IlP·1,M 
DO 8 L"1,MZ 
It" I.M.CI ... 1) 
A",U( I L) 

D08K,,1,H 
B=A1C1.K) 
DO 9 J,,1,IG 
IQJ=IQ(N-J+1,IL) 
e:;B+A1 (J+1, IQJ) 

9 CONTHIUE 
a"21 .. B 
V<!L,K)=A+8*B 

11 CONTINUE 
C VCIL,K) IS TWE COST FO~ THE VECTOR: 
e ..• CIQ(1.IL),IQ(2,1~), ••• ,IOCN,ILl,K] 

CALL MINCV,M2.M, ILK, L1 .K1) 

c- SUBROUTINE MIN SELECTS A NUMBER M**IN OF VECTORS OF THE FORM, 
c •.• [IQC1.L),IQ(Z,~), ••• ,IQCN,L),K] FOR USE IN THE NEXT CYCLE OF 
e •.. THE PROCESS 

I=ILI(CL1,1!1l+M.CL1-1) 
If(IQ(1,1) .NE. Jvl(1»E=E+1.0 

e A DATA ELEMENT IS DETECTED FROM THE FIRST COMPONENT OF THE VECTOR 
c ..• WITH SMALLEST COST 
eElS THE NUMBER OF ERRORS SO FAR,IN THE DETECTED DATA SEQUENCE 
e JV1C1l IS ONE OF THE OATA ELEMENTS TRANSMITTED EARLIER 

IF(IC)13,13,32 
32 RATE;:;E/IC 
13 JC;:;IC/500 

C=IC/500.n 
e le IS THE NUMBER OF DATA ELEMENTS TRANSMITTED SO FAR 

IF(C~JC)19,20,19 

20 WRITEC2,911) lC,E,RATF. 
19 CONTINUE 

IC .. IC+1 
N1"N"1 



10 

" 

·00 11 1=1,N1 
DO 1 0 L = 1 , M 2 
DO 10 K=1.M 
LK"L+M2*CK"1) 
11 =1 LKCL, K)+f'*CL·1) 
100, LK)=IQ( 1+' ,11) 
CI)NTPJUE 
CONTINUE 
00 12 L=1,M2 
00 12 K=1,M 
LK=L+M2H ~"1) 
11=ILK(L,K>+M*(L·1) 
IQCN,LK)"K 
U<LK)=VCl1,10 

12 CONTI NUE 
e IN THE ABOVE 15 STATEMENTS, THE SELECTED VECTORS AND THEIR COSTS 
e ... ARE STORED IN THE LOCATIONS OF THE ORIGINAL VECTORS AND COSTS 

Go TO 140 
900 FORMAT(1X,'SAMPLED IMPULSE RESPONSE COMPONENTS:') 
901 FOR~AT(1X,'NUMBER OF VECTORS STORED AT THE START OF EACH CYCLE', 

1 1X,,=rh*'d2) 
902 FORMAT(5(2X,F10.6» 
9n3 FnRMATC1X,'NOISE STANDARD DEVIATION "',F10.6) 
904 FORMAT(1X,'NUMBER O~ COMPONENTS OF THE VECTORS STORED AT THE'I 

905 
906 
907 

908 
909 
911 
912 

, 1X,' ST.RT OF A CYCLE "',12) 
FQR~AT(1X,'IC Is THE NUMBER OF DATA ELEMENTS DETECTE~ SO FAR') 
F!lRMAT< F1 0,6) 
FORMAT(1X,'IE Is THE NUMBER OF ERRORS SO FAR ,IN THE DETECTED " 

1 1X,'DATA SEOUENCE') 
FORMAT(SF10.6) 
FnAMATC1X,'RATE Is THE ERROR RATE OR PROPORTION OF ERRORS') 
FOAMAT(1X,'IC,E,RATE=',16,2X,F7.0,2X,F8.6) 
FORM~T<12,2X, 12) 
ENn. 



SU8ROUTINE TRANS(Z1 ,A,JV ,IG ,M,S,N) 
r. THIS SUBROUTINE SUPPLIES A RECEIVED SIGNAL SAMPLE Z1,EACH TIME IT 
C ••• IS CALLED 

10 

20 

, 
DIMENSiON A(3~,16),JV(30) 
V"G05AAFCFX) 
AHIIM 
DO 10 1=1,M 
IF(V .GE. (1~1)/AM .AND. V .LE. I/AM)IX=J 
CONTINUe 
V1 a,,'~+2* I x~1 
JV (N+2)=IX 
Z1110.0 
JG1 .. IG+1 
DO 20 la1,JG1 
J;JVCN+3 .. n 
21.Z1+.\(I,J) 
CONTINUE 
XaQOHEF(O.O,s) 
21 .. Z1 +X 
N3.N"'1 
On 30 1=1.N3 
JV(J);;JV(J+1) 

30 CONTI NUE 
r. SOME OF THE HOST RECENT LV TRANSMITTED DATA ELEMENTS ARE STOReD IN 
C ••• THE ARRAV JV(.) 

RETURN 
END 

\ 



SU8ROllTINe MIN(V,M2,M,ILK,L1,K1) 
. r. THIS ~UBROUTINe SELECTS A NUMBER M •• IN OF VECTORS OF THE FORM: 

C ••• CIQ(1.L).IQ(Z,L), ••• ,IQCN,L),K] ACCORDING TO oeCISION RUbE 4 
DIMENSION V(64,16),ILKC64,16) 
L 1110 
K1.0 
BMo:1.0e06 
DO 1 l"1,M2 
DO 1 1(,,',14 
Ih;O 
AM.1.0E08 
DO 'Z 1'.1,14 
A"v(I.M*(L~1),K) 
IF(A"AM)3.4.4 

:5 Af,lcA 
118' 

4 CONTINUe 
IFtA~BM)5.6.6 

5 B~ld 

LhL 
KhK 

6 CONTINUE 
2 CONTINUE 

llK(L.K)=11 
1 COIITINUE 

RETURN 
END 



-
SAMPLED IMPULSE RFSPONSF 

~.40AOOO 0.816000 
NOI~E STA~DARD DEVIATION 
NUMeER OF VECTUR~ S'ORE~ 

.M". 2. 

CO"'PO~ENTSI 

0.408000 
= 0.283000 
AT THE START OF EACH CYCLE 

~UM~fR ~F COMPO~ENTS OF THE VECTORS STORED AT THE 
STAIT OF A CYCLE =12 

le Is T~E NUMRFR OF nATA fLEMENTS OETECTED sO FAR 
lE js T~E NUMBER OF ERRORS so FAR ,IN THE DETECTED 
/JAU SEQUHJCE 
RATE IS THE ERROR 
JC,r.RATe- r, 
. IC,&.RATEII SOC 
IC,r.RATEE 'OO~ 
IC.!!,RATE"! 1500 
re,I',RATE" 2000 
lC,Ii.RA?Ea 2500 
IC.E,RATEIII 30(10 
lC,E,RAH .. 3500 
IC,[,RA'fe .. 400(1 
IC,E,RATE" 4500 
J C • I! .·11 A 'I'E 11 5000 
1C,Ii.RA'fE1II 5500 
Ic.e.RATE- 6000 

., l~,E;RA'E. 6500 
~"""-~ IC,£,RA'E~ '1000 

IC,Ii~RATE. 7500 
IC.E,RA'fE- 8000 
lC, E; RATh 8500 

RATE OR 
() . 

10. 
12. 
16. 
20. 
22. 
25. 
30. 
32. 
37. 
42. 
42. 
4/, . 
46. 
48. 
52. 
56. 
59. 

PROPORTION 
0.000000 
0.020000 
0.012000 
0.010667 
0.010000 
0.008800 
0.008333 
0.008571 
0.008000 
0.008222 
0.(')08400 
0.007636 
0.007333 
0.007077' 
0.006857 
0.006933 
0.007000 
1').006941 

OF ERRORS 
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APPENDIX 4 

CONFIDENCE LIMITS FOR THE PROPORTION OF ERRORS 

Consider a set of independent (Bernou11i) tri a1s, with each 

trial having the two possible outcomes: success or failure. Let 

the probability of success in each trial be p, so that the proba­

bility of failure is 1-p. Let h be the proportion of successes 

in n such trials. 

Then 

P rob. ( I h -p I ::: K) " 2 <I> (K). - 1 
vh(H)/n 

for any positive value of K, where 

<I>(K) = 1 

I21i 

K 
f 
_00 

-t2 /2 e dt 

(see reference 50). Hence 

Prob.(h-Ki{~-h) ::: P:::' h + KJh(~-h)) = 2<1> (K) - 1 

(It has been assumed here that n is large enough for the distribution 

of the .random vari able h, to be approximately normal). Now assume 

- that h is small so that ;r.:n " 1. 

Then 

Prob.(h-K)f::: P::: h + K~) = 2 <I>(K) - 1 

or 

Prob.(hJh ~ p ~ h + Kh) = 2<!>(K) - 1 
rr rr 
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where r is the number of errors occurring in the n trials, 

i.e. r = nh. 

Now let K be such that 

2<!> (K) - 1 = 0.95 

or 

cp(K) = 0.975 

where cp(K) is defined above. From tables of the nonnal distri-

bution function, K = 1.96. 

Therefore 

Prob.(h-l.96!.. ~ p ~ h + 1.96~) =0.95 
rr rr 
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