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ABSTRACT

A number of detection processes are proposed, which are develop-
ments of the Viterbi Algorithm (V.A) detector. These detectors aré
suitable for use in high speed digital data transmission systems, in
which the associated baseband channel introduces severe intersymbol

interference.

The aim of the project has been to develop algorithms for detec-
- tion processes , which do not require the large amount of computation
that is sometimes ﬁeeded by the V.A. These algorithms should ideally
- have performances which'are close toooptimum, and should not be

significantly more complicated to implement than the V.A.

- The proposed detectors are compared to the V.A. detectér and
“a conventional non linear equalizer, by means of computer simﬁlation
tests. The tolerance to additive white Gaussian noise is given for
each detector, when used with a number of time invariant cﬁanne]s.
Graphs are given showing the variatibn {n_the ﬁerformancés of the

 detectors, with certain system parameters.

Cénsideration is given to channels whose response grows slowly
with time, so that the first few components of their sampled 1mpu1§e
respohses are small. Results are presented which give an indication
of how small these initial elements.have to be, for them to be
profitably ignored ﬁy'thevdéteéfaﬁi;Lﬁ’

It was found tbat some'of’the'aéﬁéétors had a tendency to become
fixed in a "poor" m%déhdfmﬁbeFétibn;"f? they were left running for a
sufficiently long time. In this mode, some of the vectors stored by
the system are identical, and the effective number of these vectors
- is reduced, thus causing a loss of perfonnaﬁce. The occurrence of this
“poor" mode of operation fs analysed, and some modifications to the

detectors are suggested, to overcome the problem.
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Glossary of Symbols and Terms

Viterbi Algorithm,
Approximately equé] to.
Defined to be equal to.

The product Xg X7 Xp eee Xoo

The natural logarithm of x.

The modulus of the vector x, i.e.

the Euclidean dis-
tance between X and the origin.. - '

The normal probab111ty distribution with mean u and
variance o2.

The vector formed from the last g components of V,
for any given vector V,

The vector whose last component is J and whose other
components are those of the vector_gi.

The number of possible values of a data element, .

The number of components. of a channe] s sampled impulse
response. .

The variance of a normally distributed random variable
representing noise.

The interval of time between the transm1ss1on of succ-
essive data elements.

A data element, : e
The‘sequence of numbers Xgr X3s Xy ee
The impulse response of a transmission channel.

A samhle value of the impulse response y(t).

~ The vector represenfing a channel's sampled impulse

response.
A function representing white Gaussian noise.

A sample of the function w(t) representing white Gaussian
noise,

The signal received at the detector.
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8(t)
(1.J) -

(1,3),

ix

A sample of the received signal r{t).

- A unit impulse at time 0,

The vector with components I and J.

The node representing the possible vector value
(I,J) of Q. ona trellis diagram. :

The sequence of k+1 vectors giving the shortest
path through the trellis, from point A to the
node (I, J)k Each.vector in this sequence is a
functlon of k, T and J.

{P (k 1,K, I)} (I,d) The sequence-of k+1 vectors wﬁose.f1rst k

uk(I,J)

d(z) [(K,sI),(I,d)] The distance between the two trellis nodes (K,I)

{0,
- Q(0)

[Q(1),d]

(1,9)

R(K)

u(l)

V(I,9)

members are those of the sequence {P; (k-1,K,I)},
and whose k+1 st. member is the vector (I J)

The 1ength'of the shortest path through the
trellis, from point A to the node (I,J)k.

and (1,9),.,1- k

The number of N component vectors stored at the
start of each cycle.

The number of components of the vectors stored at

the start of each cycle.

The sequence of vectors Qy5 Qys Qs «vnu

The I th., N component vector stored at the start
of some unspecified cycle of a detection process.

The N+1 component vector whose first N components
are those of Q(I) and whose N+1 st. component is J.

Same as [Q(1),Jd].

One of the N+l component vectors of the form T(I,d),

. which have been selected by the decision rule
- for the process.

The cost for the vector Q(I).

The cost for the vector T(I,J).



[Q1),9 44

YLD g

[Q(1),d,L]

D(I,d,L)

o(D)

{Q_j(I)sxj,*_]]

TyalloXse)

[Ij+1(1’xj+1)]g+1

uy(1)

Vi (Isxg)

Two sequences {ai} and {bi} are said to be equal if a;

values of 1.

The vector formed from the last g+1 components
of vector [Q(I),J].

Same as [g(I),J]g+1
The scalar product of the vectors Y and [I(I,J)]g+1

The N+2 component vector whose first N components
are those of Q(I} and whose last two components
are J and L. .

The cost for the vector [Q(I),J,L].

The 1 th. N component vector stored at the start

. of the j+2 nd. cycle of a detection process.

The N+1 component vector whose first N components
are those of Q {I), and whose N+1 st, component

is XJ -l.‘

Same as [Q (I), xJ+]]

The vector formed from the last g+l components of

the vector T ](I, xJ+1)

The cost for the vector Q-(I).

The cost for the vector T +](I xJ+])

= bi for all



CHAPTER 1

1.01 Background

* In recent years the amount of data being sént from one point
to another, by means of digital signals, has been steadily increa-
sing and this trend seems likely to continue. It is therefore

desirable to transmit data as quickly as possible, while making
.use of existing facilities, in order to keep equipment cost to a
minimum. |
An essential part of.most digital data transmission systems
is the detector [2, 11, 12]. The detector takes the received
signal, which is usually a distorted version of the signal trans-
mi tted, and tries to recover the transmitted signal in a fairly

efficient manner.

Many methods of detection already exist [1-49] but some, al-
though simple to implement, give a ﬁoor tolerance to noise or do

not allow high data transmission rates.

From Shannon's famous channel capacity theorem [1,7], it is
theoretically possible to send information over a transmission

-

channel, without errors in deteetion, at the rate

¢c=N 1092 (1 +s) bitsssec (1.01)

where s is the ratio of signal power to average noise power and

W is.the bandwidth of the channel. This formula assumes an ideal
channel with constant signal attenuation over its bandwidth, and
that the noise introduced in the channel is additive white Gaussian

noise.



The majority of data transmission is over standard telephone
networks which ideél]y have W = 2700 Hz and typically have the

signal to noise ratio s given by
10 logyy s > 25 db or s > 10%°3

Hence, with an optimum detection proéess and the conditions
described above, the transmission rate attainable over such tele-

phone networks has a theoretical maximum value of at-least
2700 Tog, (1 + 102°%) = 22.4 x 10° bits/sec

At present, conventicnal data transmission systems operate at
rates of up to 4800 bits/sec so there is‘clearly much scope for

improvement.

1.02 Model of a Data Transmission System

Figure'1.01 describes a theoretical model of a synchronous
serial data transmission system. Data is transmitted in the form
of a sequence {Si} of numbers, which are used to modulate a sequence
of unit impulses 6(t).. The impulses are regularly spéEed in time

- with some interval T seconds between them, so that the sequence

Sgs Sqs eevs Sn can be represented in the form

1 t~13

i=0

where §(t - iT)is a unit impulse at time t = i 7.  The transmitted

signal is assumed to have an even number m of levels, so that each
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data element S, has m possible values. The allowable values for
each s; are 1, +3, 5, .., *(m - 1) and each of these values
is equally likely. Furthermore, each data element is assumed to

be statistically independent of the other data elements.

The transmission path is a linear baseband channel which
may include a telephone circuit or a high frequency radio link, in
which case a linear modulator at the transmitter and a linear

demodulator at the receiver must also be included.

The transmitter filter is used to limit the frequency spec-
trum of the impulses so that é]most all of the energy going_into
the transmission path is contained in the available bandwidth,
It is inefficient to feed the impulses directly to the transmission
path, as they have a large {ideally infinite) bandwidth, The trans-
mission path would then cause considerable attenuation of the higher
- frequency components of the signal, resulting in an unnecessary

loss of signal energy.

The model assumes that the only noise introduced by the system,
-is additive white Gaussian noise, which is introduced between the
transmission path and the receiver filter. The other types of
additive and multiplicative noise which occur in a practical sys~
tem are neglecfed here., It has been shown that the tolerance of

a system to additive white Gaussian noise, givés a good guide to

its tolerance to other forms of additive noise [6].

The receiver filter cuts out frequencies outside of the band-
width of the channel, so that much of the noise is eliminated.
This filter is assumed to be such that the samp]e values of the

noise funct1on w(t), taken at intervais of T seconds by the sampler,



are statistically independent normally distributed random variables,
with zero mean and fixed variance., This type'of filter may include

a noise whitening network. (See reference 6).

The'combination of transmitter filter, transmission path and
receiver filter, forms alinear baseband channel. The impulse res-
ponse y(t} of the chamel is assumed to be constant, or to vary
only slowly with time. If y(t) is not constant, some device for
estimating the channel'simpulse response must be included at the

receijver.

An impulse §(t) at the input of the channel causes an output
y(t) +w(t), where w(t) is the noise waveform at the output of the

receiver filter., The channel is linear so the input

n

y .
20 57 S(t -1 7)

causes an output given by

n

r(t) =i£051 y(t - iT)+ w(t) (1.02)

r(t) is sampled at intervals of T seconds, and the sequence produ-
ced'is processed by the detector, to give the sequence'{si‘}-which

is an estimate of the transmitted sequence'{si}. Note that, due to
the randomness of w(t), it is not possible to recover the transmftted
data sequence with certainty. The best that can be done is to ob-
tain the estimate of {si} which has the least probability of error
or, alternatively, find the estimate whose expected proportion of

errors is as small as possible.



1.03 Detection Processes

Usually to attain transmission rates as high:as 4800 bits per
second, data elements must be transmitted at sﬁch a speed, that fhe
response of the system to one of them has not died away before the
next one is- transmitted. Hence the response of the system at any
time may depend on several data elements. This overlapping of sig-
nals is known as intersymbol interference. An a]ternative method
of achieving a high rate of data trénsmission, is to increase the
number of signal 1évels to a point where each data element con~
tains a large amount of information. This avoids the problem of
intersymbol interference but usually gives a poorer performance

than the former method [9].

‘A linear equalizer (described in Section 1,10), is among the
simplest of detection processes for signals with intersymbol inter-
ference, and is an approach which is often used commerciaT]&

[6, 14-18]. This equalizer can easily be made adaptive to a sTowly
time varying channel [6, 16, 18}, and can be placed either before
“or after thé transmission path. 1t gives the same tolerance to
noise in either of these Tocations, but a significant improvement
can sometimes be obtainéd by splitting the equalization between the

two ends of the pdth [3, 4.

For channels giving only pure phase distortion'(see Section
1.11), the linear equalizer gives the optimum detection process
{9, 14]. However, for channels with some amp]ftude distortion, a
non 1inear detection process can give an improved tolerance to

noise.

The nonlinear equalizer, using a feedback transversal equali-

zer and a process of decision directed cancellation, often offers



a better performance than the linear equalizer [6, 14, 23, 24].
When each signal element is detected by the feedback transversal
equalizer, its contribution to the hext received signal is can-
celled, thus removing intersymbol interference. (See Section
1.12). If a data element is incorrectly detected at some stage,
the wrong quantity is subtfacted in the cancellation process, and
errors in the next few elements detected are more likely than they

would otherwise be. This effect is known as error extension.

A further improvement in tolerance to ﬁoise may be obtained
using the system described in Section 1.13, which is a combination
of the detector just describedland a linear equalizer [6, 14, 24].
Such a combination is sometimes reférred‘to as a non tinear equali-
zer. This arrangement 1srst111 not particu]afly complicated to
implement, and can be made to’adapt to a slowly time varying

channel without great equipment complexity [6].

Where the degree of amplitude distortion is high, more sophi-
.sticatgd detection processes are needed, if a good to]érance to
noise is to be obtained. Among these processes is the one-des-
cribed in Section 1.15, in which data is transmitted and received
inlfairly short seduences, with gaps between them [25-27]. These
gaps are Iargerenough so that there is no intersymbol interference
between the separate data sequences. ‘Now the optimum detected
sequence for each group may be found, by selecting the member from
the set of possible data sequences, which minimises some given func-
tion. There are no error extension effects with thié type of pro-
cess, as a complete group of data e1ements'is detected at once.
The detected sequence for one group, does not then depend on the

sequences detected for the previous groups.



A development of the system described above, which makes use
of signal caﬁce11ation, can be used for the case of continuous
data transmission. (See Section 1.16) [29-31]. With this sysfeﬁ,
a number N of the first received signal samples, are used to pro-
duce an estimate of the first N data elements. Only the estimate
for the earliest of the elements is taken as a detected element.
The contribution of this element is then cancelled from the received
signal samples (see Sectioﬁ 1.16), énd the process 1; repeated to
detect another dafa-element. The performance of this detection pro-
cess can approach that of an optimum detector (i.e. one which gives
the detected sequence'which has the least probability of being in

error, [6].

One system which obtains the optimum tolerance to additive
white Gaussian noise, is the Viterbi Algorithm (V.A) detector,
which is described in Chapter 2. The V.A. was originally pfoposed,
by Viterbi, for decoding convolutional codes. [34]. Sometime later,
several authors pointed out thét the V.A. could be used as the basis,
for a detectbr in a digital data transmission system with a disper-
sive channel, [35, 45, 46]. This detector has the disadvantage that,
where intersymbol interference exists over a large number of symbo]s;
the amount of computation required can be very large, m;n this case,
the system described in Section 1.16 (employing decision directed
cancellation), probably gives a more cost effective process, although
. its tolerance to noise is usually poorer than that of the V.A. detec-

tor.

Several suggestions have been made for modifying the V.A. detec-
tor, or using it in conjunction with another detector. It is hoped

- that, by these means, a system may be found with a reasonable perfor-



mance and a moderéte demand on computation. One proposal was to
use a 1inear filter between the transmission path and the V.A.
detector, so that the comﬁined impulse response of the channel and
filter is of a fairly short duration. [32, 36]. Unfortunate]y, the
filter usually causes a correlation of the noise samples (see Sec- -
tion 1.10), thus giving somé loss of system performance. A sugges-
tion made by Forney was to modify the V,A. so that, instead of an '
exhaustive search through all possib]e transmitted sequences, only
the sequences which seemed most likely should be considered [33].

A number of systems described in Chapter 3, are based on this idea

of Forney's. The systems are also examined in references 47 and 48.

1.04 Outline of the Thesis

Chapter 1, so far, has discussed some of the conventional
detection techniques used in digital communi cation systems., Some
of these techniques are discussed in more detail in Sections 1.10

-to0 1.16.

In the model of a data transmission system described in Section
1.02, the transmission path is a linear baseband channel which may
iﬁciude a telephone circuit or a high frequency radio link. Des-
criptions oflthese types of transmission paths, and the types of
random noise they suffer from, are therefore given in Sections 1.06

to 1.09.

Chapter 2 gives a detailed description of the V.A., and intro-
duces some of the notation that is used in the later chapters.
Maximum likelihood detection is also defined at this point, and it

. is shown that under certain conditions, the maximum likelihood
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sequenée is the one which has the lowest probability of being in
error, 1t is shown in Section 2.04, that the problem of finding
the maximum Tikelihood detected data sequence, is equivalent to
‘that of findihg the shortest path through a given trellis diagram;
This shortest path problem fs well known, as one that can be
 solved efficiently with a technique known as dynamic programming.
It can then be seen that the V.A. is a dynamic programming algo-

rithm.

In Section 2.69, some indication is giéen of the number of
basic operations requiréd to implement the V.A. It is evident
from this section, that the number of such operations can be
véry large indeed, for cases where fhe data elements have to be
transmitted at high speed, and where the number of signal levels
is High. |
Chapter 3 begins by considering again, the trellis diagram
desﬁribed in Chapter 2. It is pointed out that some'of the possi-
_ ble paths through the trellis, are unlikely to coincide with the
optimum path, and may therefore be ruled out without fully assessing
their length, Four detection processes (systems 1, 2, 3 and 4) are
then described, which are developments of tﬁe V.A. detector. These
processes were.designed, with the hope of cutting down considerably
on the amount of computation required'by the V.A, while still off-

ering a performance close to that of a maximum 1ikelihood detector.

- In Section 3.09, the amount of computation needed per detected
data element, is assessed for Systems 1-4, By means of an example,
a compar{son is then made between the number of basic operations,

needed for each of these systems and the V.A. detector.
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Section 3.10 gives a number of theorems concerning the
operation of Systems 1, 2 and 4, when they are used with a
channel whose sampled impulse response has its first comenent
equal to zero. (See Section 2.03 for a definition of the sampled

'impuise response of a channel),

Chapter 4 deals with the testing of the various detéctfon
processes, by means of computer simulation. The reasons for tes-
ting the processes.in this way are discussed, together with some
of the advantages and disadvantages of this method. The simula-
tion results are all from situations, where the detectors are
working in the presence of random noise, so the results of the
tests are all subject to statistical fluctuation (i.e. if a test
is repeated with a difference sequence of noise samples, the
result may be changed slightly). Some measure of the confidence
in these results is therefore fairly essential. Section 4.04 of
the thesis gives a definition of the term, "Confidence limits",
and gives an estimate of these Timits for some of the simulation

" tests which follow.

Section.4.06 lists the sampled impulse responses of the various
transmission channels, which were used in the tests, A function,
'd;, of the imﬁu]se response is given, which is known to give a
measure of the degree of amplitude distortioh introduced by the
channels. The modulus and argument of the sampled Fourier Trans-
form is also given, for these sampled impulse responses, so that
information about both the amplitude and phase distortions for these

channels, can be derived,
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Section 4.07 gives the results of simulation tests which
compare the performances of each of the Systems 1-4, the V.A,
detector and the conventional non linear equalizer. These results
cover a.fairly wide range of situations, with both a two and a four
level signal being used, with each of the channels included in the
tests. These simulation tests give a comparison of the various
~detectors, in terms of the noise power required with them, to give
an error rate of 0,004 for a given situation. It would be unreason-
able though, to assume that the detection processes with the best
performances at this error rate, would be superior over a wide
range of error‘rates. Hence simulation tests were carried out to
.assess the performance of the systeﬁs over ane channel, with the
proportioﬁ of errors occurring, varying from 10-! to 10-*. These

tests are described in Section 4.08.

With Systems 1-4,‘tﬁg two main parameters which affect perfor-
mance.and complexity, are the number of vectors stored and the num-
ber of components of these vectors. Sections 4.09 and 4.10 des-
.cribe some simulation tests, which show just how the system perfor-
mance varies with these parameters, for two separate transmission
channels. The results of these tests may be used to estimate the
values of thesé parameters, needed to obtain the best performances

that can be obtained with the systems.

The final section (4.11) of Chapter 4, is of interest when
deaiing with transmission channels whose sampled impulse response
has some very small initial components. The simulation results in
this section compare the performances of Systems 1-4 with modified

versions of these systems, which ignore thelfirst component of the

channel'ssampled impulse response. These tests give a useful guide,
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when deciding whether a component of a certain size in the sampled
impulse response, would be better ignored or taken into account,

by the detector.

Chapter 5 is concernéd with a phenomenon called merging which,
when it occurs, can cause a sudden drop in the performances of
Systems 1 and 2. This phenomenon is one in which several of the
vectors stored in the detection process, become the same and remain
locked in this state for long periods. _Thig effectively reduces
the number of possible data sequences which can be considered by
the process, and can therefore 1éad to a loss of system performance.
Sectfon 5.02 gives a formal definition of the term, "Merged vectors",
and provides an upper bound for the probability of two vectors beco-

ming merged.

It is shown in Section 5.04, that Systems 1 and 2 Ean sometimes
get locked in a state,.where the number of distinct yectors s tored
by the processes, is half of.the total number of stored vectors.

. This state is referred to as, "The failure mode”. In Sections 5.05
- 5,09, the brobabi]ity of System 1 eventually entering the failure
mode, is estimated by means of two separate app}oaches. In the
first, a theoretical model of the system is set up, which will give
the probability of the failure mode occurring, if certain transition
probabilities are known. These probabf]ities are estimated from tne
results of simulation tests. The second approach arrives at an
estimate of the probability of System 1 enterihg the failure mode,
by simulation testing alone, and without the use of the model.

The results of the two approaches are compared in Section 5.07.

~

Section 5.10 discusses two modifications to System 1, which
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may be used to prevent the detection process from entering the
failure mode. Evidence of the effectiveness of the first method
is provided by means of simulation tests, carried'out for a parti-
cular situation, in which System 1 suffered very noticeably from
the effects of merging. The second method is proved generally
effective at keeping the stored vectors distinct, by means of

theoretical analysis.

1.05 Digital and Analogue Signals

An analogue signal may be defined to be one in which the
signal waveform may take on an infinite number of possible shapes.
When information (i.e. data) is transmitted in the form of ana-
lTogue signals, the detected waveform at the receiver will usually
be corrupted, to some extent, by noise. Even if the noise is of
a fairly Tow intensity, the detected waveform may differ sTightly

from the waveform transmitted.

VTHe situation may be 1mﬁroved by the u§e of diéital signals,
(i.e. signals whose waveform may take on one of .a finite numbér of
fairly distinct shapeé). [7]. Then for a finite amount of data and
a system which introduces no nqise, there will be a finite set of
possib]e'received waveforms (or received signals), each one corres-
ponding to some transmitted waveform. With a suitable detector,
the appropriate transmitted signal can be derived from any member of

this set of received signals.

For a practical system which does introduce noise, the received
message will not be one of those in the set mentioned above. How-
~ever, if the noise level is fairly low, the actual received wave-

form will be closely matchéd {in shape) to a member of this set,
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and the exact transmitted signal can be derived from this mem-

ber,

If the data to be transmitted is in analogue form, it can
be converted to a digital waveform without any loss of informa-
tion [7]. From Nyquist's sampling theorem, this conversion to a
digital waveform méy be carried out by sampling the analogue wave-
form at regular intervals (i.e. every T seconds, for some value of
T). If the sampling interval T is such that 1/(2T) is less than
the highest frequency contained in the analogue waveform, these
samples contain all of the relevant information, and the ana1o§ue
signal can be recovered exactly from them [7]. This result allows
the transmission of speech over a digital system without any infor-
mation lToss. If the noise Tevel introduced by a digital data
system is low, the speech waveform may be recovered at'the

receiver, as exactly as if there was no noise present.

- 1.06 Telephone Circuits [9] .

Telephone circuits can generally be divideq into two types:
private lines and switched lines [9]. Switched Tines are ones which
are part of the public.te]ephone network. They are mééé up from an
almost random combination of different links and they genera11y cause

more distortion than private lines,

Most telephone circuits consist of three different types of
links called: unloaded links, loaded links and carrier links [9].
The unloaded 1inks may consist of lengths of wire having an imped-
ance of 6007 and a length of about two or three miles. Being rela-

tively short, the unloaded 1inks have a good frequency response
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(i.e. their attenuation and delay distortions are moderate).

The attenuation caused by the unloaded links is proportional to
the square root of the frequency, over the voice frequency band
(300 to 3000 Hz), and increases with distance at the rate of about
23 dB per mile, in the centre of the band, This high increase

in attenuation with length, prohibits the use of very long un-
loaded audio links. The delay distortion introduced by these

Tinks is negligible.

Loaded audio Tlinks may be much 1onger'than the unloaded ones,
with lengths up to about 100 miies. These links may consist of
a pair of wires with inductances placed at regular intervals.
(Typically 44 or 88 nH at Tengthslof 2000 yards). The loaded
Tinks have the same impedance (6002) as the unloaded ones, and
have a frequency response simi.lar to that of a low pass filter.
Their attenuation per mile is less than 1 dB, up to a certain fre-
quency, and then increases rapidly as the frequency rises. Hence-
the attenuation per mi]é of thé loaded links, is considerably less
- than thatrof the un]baded-1inks, at the centre of the voice frequency
band. The delay distortion is about ten times as great as in the
unloaded links and may be quite considerable. Loaded 1jnks require
émp]ifiers‘at various stages along the 1lines, if they ;;e to be more
than a few miles in length, As amplifiers can only operate on a
signal travelling in one direction, a separate pair of wires must

then be used for transmission and reception.

Carrier 1inks may be much longer than loaded audio links, and
may consist of a coaxial cable or open wire lines, forming a wide-
band channel, With these 1inks, the signal frequency band is shif-

ted upwards by'a 1inear process of amplitude modulation. Several
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- signals are‘then transmitted simultaneously using an arrangement
of frequency division multipliexing, each signal being sent on a
separate frequency band. The aistortion of a voice frequency
signal transmitted over carrier links, is almost exclusively
caused by the filters at each end, which are used for the linear
modulation - demodulation process. The resulting frequency res-
ponse is effectively that of a high pass filter, with attenuation
rising rapidly below some cut off frequency (200 to 300 Hz).
Delay distortion i§ considerable at frequencies just above this
cut off frequency, and there is some attenuation at the high end

of the voice frequency band.

Microwave satellite and PCM (pulse code modu]ation) Tinks
are also used in telephone circuits. These links are made to a
high standard, and their attenuation and delay distortions are
small in comparison.to the more common types‘of lines in teiephone
circuits. If a data transmission system functions satisfactorily
over loaded and unloaded audio 1inks, and the poorer carrier links,
it shoU]d not have any prob]éms over satellite, microwave and PCM

links,

—

1.07 Attenuation and Delay Distortions Over Telephone Circuits [9]

Figures 1,02 and 1.03 show the ideal éttenuation-frequency and
group>de1ay-frequency characteristics fdr a telephone circuit. The
group delay curve is flat over the voice frequency band, i.e. over
the range 300 to 3000 Hz. The attenuation increases rapidly out-
side of the voice frequency band, so the behaviour of the group

delay curve is not impdrtant there. The rapid increase of attenua-
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tion outside of the voice frequency band is desirable, so that
unwanted signals with energy in frequencies outside of this band,

may be eliminated to some extent.

Figﬁfes 1.04 and 1.05 show two typical characteristics, for
telephone circuits containing both audio and carrier links. If a
ten dB variation in attenvation can be tolerated, the whole of the
voice frequency band is avai1a51e for transmission, over the cir-

cuit represented by Figure 1.04.

Figures 1.06 and 1.07 show two chafacfe%istics of poor tele-
phone circuits.‘ For the circuit correspohding to Figure 1.06, the
whole of the voice frequency band is not available, unless varia-
tions in attenuation of moré than 20 dB can be tolerated. It
should be noted that these characteristics véry greatly over
different telephohe circuits. - A ripple is often present in both

~ the attenuation and group delay characteristics.

Clearly, 1% the group delay-frequency characteristic is not
flat over the voice frequency band, the received signal will be
-disper;ed in time, with some frequency cémponents arriving later
than others. Hence Un1es§ the rate of transmission is'kept below
a certain level, the received signal elements correSponding to the
different data é]ements, will overlap. Tests have shown that the
time dispersion produced by telephone tircuifs does not usually

exceed six milliseconds.

The attenuation at about 1000 Hz (this is usually the minimum
level on the attenuation-frequency characteristic), may be as much

as 30 dB for a switched line, but is usually less than 15 dB on a
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private Tine. Rising attenuation with frequencies above 1000 Hz

is a common characteristic of telephone circuits.

1.08 H.F, Radio Links [9]

High frequency (H.F) radio links work on the same basic prin-
ciple as carrier links, having a number of signals transmitted
separately on different frequency bands. These frequency bands

are contained withfn the range 3 to 30 MHz. .

Whereas the distortion chéracteristics of most telephone cir-
cuits are fairly constant, this is not the case with H.F. radio |
links. The H.F. links suffer from an effect known as frequency
selective fading, which causes a variation of the characteristics
with time. This fading may occur if the transmitted signal takes
more than one path from the transmitter to the receiver. The sig-
nal is then said to suffer from multipath propagation. One example
of this phenomenon is the casé where the radio waves are reflected
- from the 1oﬁosphere and the ground,‘perhaps several times. The
waves reaching the receiver via different routes, typically have a
difference in delay of about one or two milliseconds. The diffe-
rehce in delay, and the actual paths the signals take“}rom the
transmitter to the receiver, will of course vary with the height of

the ionosphere. Hence the attenuation-frequency and groﬁp delay-

frequency characteristic of H.F. radio links, may vary with time.

As with telephone circuits, the time dispersion of signals
transmitted over H.F. radio 1inks is usually less than six milli-
seconds. The dispersion with these links is, however, of a more

harmful nature, as there may be more energy in the latter part of
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the dispersed signal, than is found with telephone circuits.

Thelchanges in the distortion characteristics are periodic
with cycles usually occurring at the rate of four to fifteen per
minute. This rate at which the characteristics change is, in many
cases, slow enough so that the receijver equipment can continually
estimate them and adapt to the changes. The variation of the Tevel

in the received signal, due to fading, is typically up to 40 dB.

In te]ephone.circuits? Tow cost is usua}ly a priority, but,
with H.F. radio 1inks, more effort is made to ensure that the equip-
ment is of a high standard, Hence the distortion occurfing in the
transmitted signal is due almost entirely to the.transmission path,

and not to the components of the data transmission system.

- 1.09 Random Noise [9]

The noise appearing in telephone circuits can be divided into
two categories: additive noise and multiplicative noise. The addi-
tive noise fakes the form of a random signal added to the transmitted
signal, whereas multiplicative noise modulates the signal waveform.
When the noise is sufficiently intense, the received signal waveform
may be mis taken for ohe corresponding to the wrong transmitted sig-
nal and errors.may occur in the detectﬁon process. If the main
cause of errors is additive noise, the error rate may be reduced by
incfeasing the signal level, For the case of multiplicative noise,
the noise level in the received signal is proportional to the level
of the transmitted signal, so the error rate cannot be reduced in

this way.
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White Gaussian Noise (WGN) is a waveform with a constant two
sided power spectral density. It has the property that the value
of its waveform at any time, is a normally distributed random
variable with zero mean. Two samples of the waveform taken at
any distinct times are also statistically independent. This
type of noise is not physically realisable, but it can be mod-
elled by a real waveform with a power spectral density function

which is constant over a wide range of frequencies.

Additive WGN is not a type of noi se thét occurs with great
intensity over telephone circuits. However tests and Fheoretica]
considerations have shown that systems which have a good tolerance
to this type of noise, also have a good tolerance to other forms
of additive noise [6]. Usually, if one system has a better tol-
erance to this noiée than another system, it will also havg a

better tolerance to other additive noise.

Additive WGN is relatively easy to simulate, is'easy to work
with in practice, and is often the only type of noise used in

testing data transmission systems,

Over switched telephone circuits, the majdfity of noise is
additive, but multiplicative noise is more common over private
lines. The tests and theoretical analysis in this thesis assume
that additive WGN is the only type of.noise present in the systems.
Strictly speaking, systems which perform well under these conditions,

will not have been shown 10 be the best for use on private lines,

Over H.F. radio links, the main source of additive noise is
atmospheric noise caused by lightening. It can be shown that

Gaussian noise is a reasonable model for atmospheric noise. As
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before, tolerance of a system to additive WGN, is a good guide to

the tolerance to the various types of additive noise present.

1.10  The Linear Equalizer [6, 14-18]

The Tinear equalizer (or linear transversal filter), is
among the simplest of detection processes for signals with inter-
symbol interference. It consists of a network of delays and multi-

pliers, as shown in Figure 1.08,

The samples Fgs p» ++e» 1 are fed to the input of the
filter at intervals of T seconds, say, and the delays are the
same length as these intervals. The delays are such that, if they
receive a sample value v at their input at time i T, this value
r; will appear at their output at tfme (i + 1)T. The multipliers
with coefficients Yi» produce an output equal to Y; mul tiplied by
their input. The outputs from the multipliers are added together,

so that the output of the equalizer at time 1T 1is given by:

f .
t, = z b Vi for  1=0,1, ..., n+f
h=0
' (1.03)

whefe rs ét]for i not contained in the set {0, 1, ..., n}.

The z transform of a sequence of numbers S0° s], -ees Sp

is defined by

f(z) =sg+ sy 2 + .ous 4 s, 2" (1.04)

Let R(z) and Y(z) be the z transforms of the input sequence {ri}

and the sequence of multiplier coefficients {yi}, respectively.
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Then
In. -h § ‘
R(z) =] rpz and ' (1.05)
h=0
f .
Y(z) =) Y; 2 : (1.06)
§=0 - .
Hence:
R(z) Y(z) = (yo + ¥ 27V 4 + z'f)(r vr 2 4 rr.z M
0% N e T Yy VIS AL
= Yo T+ 27! (Yo Py + ¥Yq oy + 272 (Yo To + ¥ Py + Yo Tr)
00 01 1.°0) 02 11 20
+ .
0 -1 -2
=z Yoy 42 Yoy, r 4z E V. roF ...
i+h=0 1 M jth=p 10D j+h=p 7T D
where i and h are restricted to being > 0,
R(z) Y(z) = z iZO Yi Tyt 2 120 i Tyog ¥ 2 izo Yy Poog e
f
(-n-f} :
.tz 120 %5 Traf-i (1.07)

where r; 20 for i not contained in the set {0, 1,...,n},

The output of the equalizer at time iT1is given by:

;
t, =h§0 ri'h Yh for i =0, 1, ..., n+f

(see equation 1.03), Hence the z transform of the output of the
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equalizer is

o f f . f
ZOhEd Ph Y+ 2 1 ) Yy Pap ¥ oo t zm("+f) Y

Y, roe
h20 hZo h "n+f-h

which is equal to R{z) Y(z) (see equation 1.07); Hence the z

transform of the output sequence from the equalizer, is equal to
the product of the transforms, of the input sequence and the se-
quence of mu1t1p1iér coefficients, The sequence Yos Y7o +ovs V¢

is called the sampled impulse response of the equalizer.

A similar result with z transforms applies to the casé'whére
the sequence {s.} is used to modufate impulses, which are then
sent over a transmission channé], as in the model described 1in
Section 1.02. From equation 1.02, the output from theibaseband
- channel at time t is given by

n 4
r(t) =) syt - iT)+u(t)
-1=0
where y(t) is the impulse response of the channel and w(t) is a
- function representing random noise. r(t) is sampled at intervals
of T seconds to give a sequence {ri} of received signé& samples,
which {s fed to the detector. Suppose that the first sample is

taken at time 0 so that the received samples are given by

n
r{(jT) =,IO s, Y(IT=9T) +w(iT) (1.08)
":
Let p and q be the smallest and largest integers respectively,
such that y(pT) # 0 and y(qT) # 0. Let g=q ~ pandy, = y[(p+i)T]

fori=0,1, ..., g. Then the vector
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(yo’ y'I’ LY .yg)

is called the sampled impulse response of the transmission

channel,
Now let
P =T [(p + k)T and -
W =W [(p + k) TI].

Then, from equation 1,08,

n _
Py iZO s; y [{p + k- 1)T] +w

But y[(p +k -1)T] =0 fork ~i<0ork-i>g (this follows
from the definitions of p and q). | ' '

k-g
fk'=i§k s; ¥ [(p +k -Ai)T] + Wy

‘ 9 A
| R =i§0 Seoq Vit ¥ _(1.09)

for k =0,1, 2, ....

Let the z transforms of the sequences {ri}, {Si}’ {yi} and
{wi} Be R(z), S(z), Y(z) and W(z) respectively. During the analysis
of the linear equalizer, it was shown that the z transform of the
sequence whose i th term is

a

hgo “i-h Yh
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is the product of R(z) and Y(z).

Hence the z transform of the sequence whose k th term is

hid-sk-h h

is 5(z) Y(z) and, from equation 1.09,
- R(z) = S(z} Y(2) + UW(z)
Now let the sequence Pl of received signal samples, be fed to

a linear equalizer whose z transform is Y;(z). ‘Then the z trans-

form of the output of the equalizer‘is given by

R¥(2) = R(z) Y*(2)
= [8(2) ¥(z) +U(2)] Y¥(2)
R*(2) = S(2) Y(2) Y*(2) + W(z) Y*(2) O (1.0)

It is often possible to choose the multiplier coefficients of the

i

equalizer to give a z transform Y*(z) such that
Y*(z) Y(z) = z°K ' (1.11)
for some integer k 2 0. Then the z transform of the sampled

impulse response, of the combined channel and equalizer, is

approximately of the form

(0, 0, vov’ 0, 1, 0, ..., D).
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Thus the combination of the channel and equalizer only intro-
duces a delay in the data sequence {Si}’ and there is no signal

distortion.

Then, from equation 1.10, the output of the equalizer has

Z transform

R¥(z) = S{z) 2% + W(z) Y*(z) ' (1.12)
Now let
W(z) Y5(z) =uy +uy 27 vu, 270 (1.13)

for some set of coefficients Ups Ups Ups +oe and let the samples

at the output of the equalizer.be ra, r{, r§, +ees SO that

R¥(z} = rg +r] 2714 r; 724 ., - (1.18)

Then from. equations 1,12, 1.13 and 1.14

? — r; ;"2 Fo = sy ¥ 5y z ' +s_z +.)z

' -1 -2
tuyptup U, 2T

Hence, equating coefficients of z1+k,

Fig = S5 T U (1.15)

i+k itk
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Now, from equation 1.13, it can be seen that-the sequence'{ui}
is forméd from the convolution of the sequence {wi}, and the
sequence'{y?} which forms the z transform Y*(z}. Hence each
term uj is a linear combination of the terms from the sequence
{Wi}’ which are samp]gs from a white Gaussian waveform with zero
mean. It therefore follows that each u; must have zero mean.

Hence, from equation 1.15,

where u. is a random variable with zero mean. Each element

i+k
S5 is then detected as the possible data element value which is

closest to ri+k'

The random variables ui'are formed from a linear combination
of the inﬂependent random variables Wis SO the uj terms will not

be independent of each other. This fact is of no disadvantage

if the linear equalizer is used as a detector, in the manner des-

' cribed‘above. The Tlinear eqﬁa]izer is, however, sometimes used in
conjunction with other detection processes, as mentioned in Section
1.03. HWhen this equalizer is used with a V.A. detector, it is
usﬁa]]y placed between the detector and the transmission path.

Then the equalizer's coefficients are chosen in such a way, that

the combination of channel and equalizer has a shorter impulse
response than that of the channel alone, (i.e. the sampled impulse
response of the combination has fewer componehts than that of the

: chanﬁe]). As far as the V.A. detector is concerned, the original
éhanne1 has then been replaced by one with fewer componentsin its
sampled impulse response. In Chapter 2, it is shown that the amount

of computation required by the Y.A., increases rapidly with the num-
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ber of components of the channel's sampled impulse response, It
may therefore be seen that the use of a Tinear filter, with the

V.A. detector, will allow a reduction in computation.

The combination of linear filter and V.A. detector, does
have the drawback that the linear filter usually causes a corre-
lation of the noise samples (i.e. noise samples which are inde-
pendent, at the input to the filter, will give rise to noise
samples which are not independent at the filter's output). This
corre]ation effect may cause some loss in thé tolerance to additive

white Gaussian noise, of the detection process.

It may be shown that a linear filter which causes only pure
phase distortion (see Section 1.11), does not cause a correlation
of the noise samples [6]. It hay not, howevgr, be very beneficiél
to use this type of filter with the V.A. detector, if it cannot
effectively shorten the sampled impulse responselof the trans-
mission channel, to any great extent.' This type of ﬁure phase
equalizer can be used with advantage though, with some of the

detection processes described in Chapter 3.

1.11 Phase Distortion and Amplitude Distortion

Consider a linear filter with sampled impulse reSponse (yo,

Yys ooes yg). The z transform of the sequence Yor Y15 + oo yg is

defined by

-9
2
g

Y(z) = yy + ¥ 7V e ¥
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The reverse of this z transform is given by

-1 -
X(2) =Yg+ Yqu1 2 ¥ eee 4 Yy 2 g

A filter causing pure phase distortion may be defined as one
whose sampled impulse response (yo, Yis oo yg) is such that

Y(z) X(z) = 2K

for some intéger k > 0. Hence, the z transform of the filter
formed from the filter Y(z) in series with X(z), is 27X, Hence
the combination of the two filters has a sampled impulse response
of the form (0, 0, 1, 0, - , 0), and no distortion is caused by
the combined filter. i.e. apa}t from the delay introduced by the
combined channel,
X(z) = (217"

Therefore a channel causing pure phase distortion may be defined
as one whose z transform Y(z), 1s such that its reverse X(z), is

also its inverse (neglecting the delay represented by the term z'k).

It is not possible, in fact, for the equation
_ -k
Y(z} X(z) = 2

to hold, for any finite sequence Yos Yyo <ees Y So, strictly

g'
speaking, pure phase distortion is not possible with a filter (or
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transmission channel) whose sampled impulse respohse has a
finite number of components. However, if the number of terms
is fairly large, it is possible to get close to the case of

pure phase distortion.

A filter introducing pure amplitude distortion, may be

defined as one whose sampled impulse response (yo, Yis eees yg)

has an odd number of terms, and is symmetric in the sense:

yo = .Yg
.y] = .Vg_]
Y1g-1 = Yig+l

A typical filter or transmission channel, w111.intr0duce
both amplitude and phase distortion. It is not usually a
_straightforward matter to determine the degree of each of these

types of distortion, from a given sampled impulse response.

It is possible to assess the degree of amplitude distortion,

to some extent, as follows.,

Let the sampled impulse response of the channel or filter

under consideration be (yo, Yir eees yé), as before. lLet

) ' 8 i
b, Hhioyh Yi-g+h (where ¥; = 0 for i not contained in
the set {0, 1, ..., g})

fori=0,1, ..., g and let
-1
1 9 .
d = RN (1.16)
by 4% ' |
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Then it may be shown [6} that the magnitude of d gives a measure
of the degree of amplitude distortion, i.e. a large value of d
indicates that the amplitude'distortion is.severe. It will be
seen in Chapter 4, that the channels with the largest values of
d, usually givé the poorest tolerance to additive white Gaussian

noi se,

1.12 The Feedback Transversal Equalizer Using Decision Directed
Cancellation {b, T4, 20-24] '

Consider a baseband channel with sampled impulse response
(yo, Yys cees yg), in the data transmission system described in
Section 1.02. The sampled received signal will form a sequence
{ri} such that |

Py =Yg Syt Y] Sjap Tt Yy Sig Ty

g 1

(see equation 1.09), where Sg» Sqs +evs Sy is the data sequence

“and {w{} is a sequence of noise samples. The detector described
below work; reasonably well, if one of the components ¥; is large
ip comparison to the others. Suppose that yj is such a component,
foflsome integer j such that 0 < j < g. A training signal of known
elements S5 is sent out by the transmitter, before the actual data
sequence, so that the detector has knowledge of the recent elements

transmitted. Each data element S5 is then detected from the received

signal sample iej? as follows:

From equation 1.09,
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Pitg T Y0 594 T Sieg1 oo F Y55

+ yj+1 Sj-p toeee t yg s1'+j-g * w1'+j

By the time is arrives at the detector, s

j .i_"! s,i_2’ [N | s_i+j_g
will have been detected. Hence the expression

Tiag TV Sia1 Vg2 Si-2 T P Yy S

can be calculated, assuming that 5.1 Si.p0 have

ll, Si+j-g
been detected correctly. Now let

Ri+j i+] t1’+j

Then

Riaes =90 Siag Y1 Siwgar o T Y5 S5 T gy
g SR Do Sy T Siagar e P Y50 St Yey)
- L] 1 yj ‘yj

(1.17)

Now, if yj is much larger than Yor Yo soe yj-l

Yo Sivd YY1 Sqag1 oo T Y50 Sia
Y5

will be small and
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Ss is then detected as the possible value of a data element which

is closest to Ri+j/y

j°
If the first channel ccmponent Yo is reasonably large, it
is usually best to take j = 0, so that each data element S4 is

detected from rs. Then

it] i
=Yy Sy TV Sip e Yq Si-g
and
Ri+j = R,
= r ...t1
=y05i+w1.

Theh Ri depends only on S and not on $i.1* Si-20 s S0

..,"_51._g
'that the contribution to Ri from all data elements ofher than Sy
has been removed before S5 is detected. If Yo is small, this
arrangement does not perform very well, as the value of Rs will
then be influenced more by the noise component W than by Yo si}
The expression for ti+j is evaluated by means of a linear trans-

versal filter and is subtracted from rigi> 35 shown in Figure 1.09.

. )
The decision mechanism then selects the possible value of a data

é¢lement which is closest to Ri+j/yj and assigns this value to Sy
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FIGURE 1.09 A nonlinear equalizer using a feedback transversal filter
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1.13 A Combined Decision Feedback and Linear Equalize
[6, 14, 20-24] :

This is a detector which makes use of both of the processes
described in Sections 1.10 and 1.12. Consider the case where the
feedback transversal equalizer of Section 1.12, is used with j chosen
such that Y3 is the largest component of the sampled impulse response

(Yps Y10 +o0> yg), of the channel. From equation 1.17,

CRiag O Sqag P Sqegar T F Y500 St Yiay)
1 V. _y\_i

J

In this expression for Si» the terms containing yj+], yj+2, cens yg

are not present, as these have been removed from PP by means of

+J
the feedback equalizer, Ss is- then detected as the possible value
of a data element which lies closest to R1+j/yj. If the terms
Ygr Y15 +os yj“] are significantly large, they will make up a
sizeable contribution to the right hand side of equation 1.17.

‘It will then no longer be true that

In this case, the performance of the decision feedback equalizer
may not be satisfactory. However in many cases it is possible to
use a linear feed forward transversal filter, to effectively remove
the terms containing Yoo Yis +ees yj_], from the right hand side of
equation 1.17, i.e. it may be possible to choose the linear filter
in such a way, that the sampled impulse response of the channel in

series with the linear filter, is (ayj, OY s, 13 ooes ayg) for some

Jj+1
constant a. [6, 14]. A diagram of a detector using this type of



a1

linear filter, and a decision feedback equalizer, is given in
Figure 1.10. With the terms involving Yos Yys coe» yj-l removed,

equation 1.17 becomes

CRiti a4
i TTYS T Y
j j

and the data sequence'{si} may'be detected more accurately.

There is in fact, great freedom of choice in the particular
combination of linear filter and feedback transversal filter used
to equalize the channel. It is'therefore possible to choose an
arrangement which maximises the toTerancé of the system to addi-

tive white Gaussian noise [6, 14].

Let the z transform of the channel's sampled impulse response

be given by

~ 0‘.2) (z“"1 -a)

P

for some integer p, where a]_] , a2"1, vens ap_1 are the roots of
A(z). Let 81'],'82"], cees Bq_] be the roots which satisfy the
condition 181'1] > 1, where 0 < g < p. Then it may be shown, that

_ the combination of equalizers which gives the greatest tolerance to
additive white Gaussian noise, is the one in which the linear filter

has the z transform

Ty .. (%, PaL

- 8]) (Z-] - 82) e (2-1 - Bq)

2 -1) (3,2
(2"

where E& is the complex conjugate of By« [6, 14].
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1.14 Probability of Error for the Combined Linear and Decision
Feedback Equalizer, when used with the Ideal Channel

Consider the optimum combination of equalizers described in
Section 1.13, when used in conjunction with the ideal channel.
(A channel with unity as the only non zero component of its impulse
response). With this channel, each data element S5 is detected
according to the position of the corresponding rebeived sample ris

relative to a set of decision thresholds. The detected value of

s; is the data element value which is closest to r,.

First consider the case of a binary signal, so that the
possible values of each data element Sis are +1. From equation

1.09,

{taking Yo = 1 and y; =0 for i # 0) where W, is a normally dis-

tributed random variable, with zero mean and variance o2,

'Subpose that Sy = 1. Then
ry = 1+ W

S will be detected as a 1 or -1, according to whether r is closer
to 1 or -1, respectively., Hence S5 will be detected incorrectly

ff w{<~1. Similarly when s; = -1, it w511 be detected incorrectly
ifwi>1. Let

Pe = Probability (s1 is detected incorrectly).
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Then:

O
"

n

Prob (s; 1 and wi<:—1 or s, = -1 and w, > 1)

"
L}

Prob (s; =1 and wi< -1) + Prob (s, = -1 and w; > 1)

as the events Sy = 1 and s; = -1 are mutually exclusive,

Therefore

Po = Prob (si = 1) Prob (wi%-1) + Prob (si = -1) Prob(wi> 1)

The possible values of s, are assumed to be equally Tikely (see

Section 1.02) so

Prob (s, = 1) = Prob {s; = -1) =}

Hence

Po = % Prob (wi«<-1) + 1 Prob (wi>'1)

' W, is-norma11y distributed with zero mean so, from the symmetry

of the distribution,

Prob (w;<-1) = Prob (w;>1)

-
.
0
n

e = 3 Prob (wi:>1) + } Prob (wi> 1)

Hmb(wi>1y

If the variance of w, is specified, Prob (wi> 1) can be found from
tables of the normal probability distribution, and Pg éan be

evaluated.
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Now consider the case of a quaternary signal, so that the

possible data element values are #1 and %3, From equation 1.09,

Ss is detected as the data element value which is closest to-ri.

i
closer to one of the values 1, -1, -3, than it is to 3. Hence 54

For a case when s, = 3, S5 will be detected incorrectly if r is
will be detected inéorrectly if

3+w,<?2
or

W, < =1
i

Similarly, if 5; = -3, it will be detected incorrectly if Wy > 1.

Now consider a case where sy = 1. Then

r.=1+w,
i |

and an error will occur if r; is closer to one of the values 3, -1,
-3, than it is to 1. Hence s, will be wrongly detected if [w;| > 1.

Similarly, when's, = -1, there will be an error if [w.| > 1,

Hence, for the quaternary signal,

Pe = Prob [(s; =3 andw;<-1) or {s; =1 and Jw;| > 1)

n .

or (s; =-1and [w;| > 1) or (s; = -3 and w; > 1)]
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fl

= Prob (-Si 3) Prob (w,.l<-'i) + Prob (51. = 1) Prob (|w1.[ > 1)

+ Prob (s,

-1)Prob ([w1.| > 1) +Prob (s, = -3) Prob (w,>1)

But
Prob (|w:| > 1)

n

Prob (wi <-1 or W >1)

il

Prob (wi <=«1) + Prob (wi >1)

2 Prob (wi > 1)

as the distribution is symmetric about zero. Therefore

Py = Prob (s; = 3) Prob (w;>1) + 2 Prob (s, = 1) Prob (w;>1)

n

+ 2 Prob(si --1) Prob (wi> 1) + Prob (Si = 3) Prob (Wi>])

¥

~The four possible values of a daf.a element are equally likely, and
occur with probability 3. Therefore
Py = Prob (w;>1) (1 +2x% +2x} +14)

= 3 Prob (w; >1).

As for the case of a in‘nary' signal, this probability of error, may

be evaluated if the variance o® is specified.
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1.15 A Detection Process which deals with Data Transmitted in
Dis tinct Groups

Consider once again the data transmission system described in
Section 1.02, but with the modification that thé data is sent in a
number of distinct sequences, of the form 50,.51, chees Sh The
corresponding sampled received signal is given by

ri];%srh*%

fori=0,1, ..., n+ g, (see Equation 1.09).

S5 is defined to be zero for i<O ori =n+1,n+2, ..., N+ g.
Thus there is a gap in transmission, of at least g elements, after
the sequence Sg» S1s +vs S, 18 transmitted. (yo, Yis « o yg) is,

‘of course, the sampled impulse response of the channel.

Now let
R = (rq, Fis eees rn+g)
¥

= (wo, Wi, rees wn+g) and

©§ = (so, Sqs eees sn).

Let Y be the (n+1) x {(n + g+1) matrix given by

Y = Yor Yo vees Vg 0, 05 vvvurs 0

0, Yor Yys -0 ¥ 0, 0, ....0

g,

* L] .

0’ 0’ *ae 0, y0’ y'lg ooc-;y

9
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th

so that the §“ row of Y is

(0, 0, ... 0, Yor Y1o +oeo yg, 0, 0, ... 0)

j-1 zeros n+l-j zeros

Then, from equation 1.09,

R=SY+U

§_{s a vector with n+1 components, each of which has m possible

values. The number of possible values of § is therefore mn+].

1. Then

Let these values be denoted gd for j =1, 2, ...y m
it may be shown {6] that the vector Ej with greatest probability

of being equal to S, is the one for which
IR - Zﬁ Y|

is minimised. (Where |R ”'Xd Y| is the Euclidean distance between
the vectors R and X5 Y). This vector X, is then said to give the

optimum estimate of the data sequence Sg» S1s +++s Sy
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1.16 An Advanced Decision Feedback Equalizer

From equation 1.09, the received sighal sequence is given
by

Lt W
yn s1—h w1

Y‘.i:z

h=0

fori=0,1, 2, ...., where (yo, Yis vees yg) is the sampled
impulse response of the channel. {si} is, of course, the data
sequenée_and W, is a sample from a white Gaussian waveform, 55

is defined to be zero for i<0.

First consider the detection of Sg° The received samples
Fgs 1o eees rg each contain information about S (see equation
1.09). Hence there is no reason why only one of them should be
used in the detection of Sg» s in the case of the decision feed-
back equalizer described in Section 1.12. With the more éobhi-
sticated version of this detector, any number p + 1, .of samples,

may be used in the detection of each data element.

Let

and let Y be the (p + 1) x (p + 1) upper triangular matrix given

by
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yo’ y'I, st es s asan y

g
yoy]
Yo
Then, from equation 1.09,

R=SY+MU (1.18)

S isavector with p + 1 components, each of which has m possible
values. Let these values be denoted Zj, for 3 =1, 2, ..., mp+].‘
Then it may be shown [6] that the vector'z_‘j which has the highest
' probabi]ity of being equal tb S when R is given, is the one for

which

R- %Y

is a2 minimum. This quantity may be evaluated for each value of
J, to give the optimum estimatelgd of S. In this detection process,
the first component of the optimum Kj is taken as the detected value

of Sg and the other components are discarded.

From equation 1.09,
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P, =§ Yy S:_ . F W,
i h=0 h i-h i
fori=0,1,2, .v...s Where S =0 for i<0.

RS T [ T A B

Po =Yg Sp tY1 Syt Y5t W,

-
tl

Yo Sq * ¥ Sga1 + .as +yg S, + Wg.

p+'| =y0 Sp+-l +y] Sp + ... +yg SP‘H-Q +Wp+]

These equations can be rewritten in the form

r T=_:_so 2 L (51, 5‘2, cees spﬂ) Y + Wy T
"2 : 2

Yq

0 .
rp+] 0 ¥p+1 B

where T denotes the transpose of a vector. Now redefine the vec-

tors R, S and W as follows:

Let:
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_ T _ T _ _ T
3—: ™ = S| » 3 =[5y Tandﬂ-.w]
r2 2 52 Y2
. Yg . .
- 0 - .
r‘p+1 0 ' sp+'l Wp+1

Then it can be seen, that the above equation can be written in

the form

R=5Y+U

and that equation 1.18 holds for these new vectors R, S and W.
Now denote the mpﬂ

va]Ues of the new vector S by 5\]—. for
p+1

j=1,2, ....m Then an optimum estimate _)EJ., of S, can be
found as before, and the first component of this estimated vec-
tor §, taken as the detected value of S+ The process continues

in this way until the complete data sequence has been detected.

. “When Sg is detected, the vector R is redefined by~

R N
"2 yz
2
:
- 0
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This subtraction of vectors is performed by means of a de]ay and
buffer store, as shown in Figure 1.11. Consider the stage of the
detection process.in which the data'element'sj is about to be
detected. The output from the delay at this time is sj_1, which

is multiplied by the p+1 compcnent vector

(y]’ .Y2! L L | yg! 03 RN T 0) ’

The resulting vector is then subtracted from
(r"]'s rj+'!’ 4y rj+p)

which is held in a buffer store, so tbat the new vector R is formed.

The detector then selects the vector Kd such that

R - X .
R - X V]

is minimised, and detects S5 from the first component of this

vector.
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R = (rj, Fipqr soee , rj+p)

RO
e rrer—

Buffer store contai- -sj_1(y1, Ypr eeres Yoo 0..0)

ning the vector

(rj, 3410 0

h Y

C

Detector

v

W,

Delay

Sj".[(y.l’ yzg c oy ygg 0.. ..0)

p+l-g zeroes

5

FIGURE 1.11

(y'l’ .y2, ...,yg?o. -0

An advanced decision feedback equalizer
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CHAPTER 2

2.01 ‘Data Transmission without Intersymbol Interference

Consider the model of a data transmission system described
in Section 1.02, in which the data elements s. modulate a series

of unit impulses §(t). Each s; can take on the m values:
"m+]’ -m+3, oyo-ogm-]

for some given even integer m. The transmitted signal then takes

the form

n
=0

where T is the time interval between successive data elements S5
The transmission channel is a-linear baseband channel with impulse

response y(t). Let the duration of y(t) be T*, so that y(f) is

only non zero for 0gtxgT*,

Now consider a case where there is no noise introduced by

' the‘sjstem, and the interva]IT between successive data elements
being transmitted, is greater than T*. Then the response of.the
channel to one data element will have died away before. the next
e]ément is transmitted, and there will be no intersymbol interfer-
ence (i.e. no overlapping of signals). The channel is linear, so
an input So §(t) will give rise to an output S, y(t). To determine
the value of So the detector can compare the output So y(t} with

-the m possible outputs sy(t), where s may take the values

—m+], -m+3’ .....,m‘].,

The value of s for which sy(t) = So y(t) is then taken as the

. detected value of S0
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Now consider the case where a white Gaussian noise waveform
is added to the signal, at the end of the transmission path, as
shown in Figure 1.01. Then, for an input So 8(t), the output from

the channel is given by

F(t) = s, ¥(£) +w(t) | (2.01)

where the value of w(t), at any time, is a sample from a normal

distribution with zero mean.

Let the maximum value of the impulse response y(t) occur

at t = t, and let Yo = y(to). Also let

-
0

r(to) and

=
i

w(to).
Then, from equation 2.01,

r =2: + W .
0 OyO‘ o

In general, the sampled response r of the received signal at

time t, + 1T 1is given by -

where w; = w(tO +1T).

Now, if W = 0, r; may be compared to s Yoo for s taking the
values -m+ 1, -m+ 3, ....., m~ 1. Then s; may be detected as

the value of s for which ¢
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vy Es Y.

In éeneraT, the noise samples w; are non zero, and are random
variables. It is then not possible to derive the transmitted
sequence {si} Qith cerfainty, from the received sequence {ri}.

It is however possible to find the sequence {si‘}, which has the
greatest probability of being equal to the transmitted data

sequence.

2.02 Méximum Likelihood Detection

Now consider a more general situation than the one described

in Section 2.01, in which the transmitted data sequence:.
80’ S]’ Y ERE Sn ’

gives rise to a received sequence:

where g > 0.

Let

f(ro, Pps <oes rn+g/so’ Sq3 Teees sn)

be the joint probability density function (pdf) of the random

variables

ro’ r"l, ...,_Y'n_l_g

when

. SO, S-I, “ ey S
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are given.

Assume that the m possible values of each data element s,

are equally likely., Then the maximum Tikelihood sequence

s& ,sf ,....,sd

when the received sequence {ri} is given, may be defined to be

the sequence {51} which maximises the function

f(ro, Fps eees rn+g/so, S1s +evs sn)

A detector which produces the maximum likelihood sequence

is called a maximum likelihood detector.

Theorem 2.01

Assume that the m possible values of the data elements 85
are equally Tikely and statistically independent. Then the maxi-
mum 1ikelihood sequence'{si'}; is the estimate of the transmitted

- data sequence, which has the least probability of being in error.

Proof:

Let

=
1

(ro’ r13 veay rn+g)

s = (so, S1s +ees sn)
9 (s'/r') = Prob (s =s' given that r = r')

9, (E') = Probability density function (pdf} of r, or the joint

pdf Of ro, l“-l, 'R ] r‘n+g
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g3 (s') = Prob (5 = ')
Then

g (s'/0) gy (1)) = F (r'/s') 95 (s') (2.03)

(see appendix 1).

The m possible vaTues of the data elements S have been assumed
to be equaliy likely and statistically independent, so all

sequences

SO, S-I’ [ NE ] Sn

have a probability of (1/m)n+] of occurring. Therefore equation

2.03 gives‘

9, (s'r') 9, (_r;')_‘-- f(r'/st) (1/m™
The only terms w.hich depend on s' are

9'1 (g*/f)_ and f(r'/s').

Hence the maximum Tikelihood sequence s', which maximises f(r'/s')

for given r', also maximises 9 (s'/r'). But
9 (s'/r') = Prob (s =s' given that r = r'}),
so the maximum 1ikelihood sequence s' also maximises

Prob. (s = s' given that r = r').
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Therefore the maximum 1ikelihocd sequence s', is the one which
has the greatest probability of being correct.

End of proof.

Now return to the problem of Section 2.01. From equation
2.02,

. = 5. + W,
3551 Y% ¥

where W, is N (0, o?) i.e. w; is a normal1y distributed random

i
variable with zero mean and some variance ¢?. Therefore r; is
2 » ] 3
N(si Yos © ) if s, 1s g1vgn.
A random variable X which is N(u, o?), has a probabi]ity

density function.(pdf) given by

g(x) = —— exp (- Lx)y

o/en - 2 o*
Hence the pdf of rys when 54 is known, is given by

(r'i'

-s.y)?
iJo )

1 exp (- "

fio (r.'/s:) =
LI ovem 20

(2.04)
For this particular problem r; depends only on si:/and not on

any of the other data elements. (See equation 2.02). Hence the

received signal-samples r, are independent of each other, and the

i
conditional pdf of r, when it is given that s = s', is given by

n -
f(r'/s') = 304 fy (r'/s') (this is a standard result),

But each r; depends only on s,, and not the other data elements.

e Fprgt/st) = fy (gt syt)
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and

=

Flet/sthy= I % (ry'/s)

Now, using equation 2.04 gives

' n 1 (‘".i - S'i' yo)z
f(r'/s')= I exp [- ]
(/s i=0 ovZr 20°
1 (n+1) n  (r.! -.5.3 y )2
= () ep - § i To g
aven i=0 202
Flerss) [(-‘ ST B )2
2n r‘/s') = &n - — r.' -s.,'y
- oVZR 202 i=0 LI

(2.05)

The maximum 1ikelihood sequence‘{si'} is the one.which maximises

f (r'/s'), and 2n x is an increasing function of x. Hence this
sequenqe_{si'} also maximises &n f (r'/s'). Therefore, from equa-
.tion 2.05 the maximum Tikelihood sequence'{si'} is the one for

which
. h . ' 2

is minimised. In this particular situation, the maximum likelihood
estimate can be found by choosing each Si' separately, in such a
way that (ri' - 55! yo)2 is minimised,

Note that the usual definition of the distance between two

vectors
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Hence choosing the segquence {Si} which minimises

n

[ 1 2
Lot sy )

is equivalent to finding the vector

l,l S-I|’ sy S l)

Yo (89 n

which, is closest to
(ro, r1', cees rn')
Also note thaf
(;0 Yor S1 Ygr +ve0s Sy yo)

represents the set of a1] possible received signatl vectors, in

- the absence of noise. (Letw, =0 for i =0,1, ..., nin
equation 2.02). Hence the maximum 1ikelihood sequence {51}’ may
be found by considering the set of all possible received signal
vectors, in the absence of noise. Then the vector from this set
“which is closest to the actual received signal vector, is the one

corresponding to the maximum likelihood sequence {si}.
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2.03 Data Transmission with Intersymbol Interference

Now consider a case where the time T, of the separation
between transmitted digits, is less than the time T* that it
takes the channe]'s impulse response to decay to zero. Then the
output of the channel at any time will depend upon several of the
transmitted digits, thus giving intersymbo} interference (i.e. over-

Tapping of signals).

Let the input to the channel be described by the function

n
h=0 '

as before, so that the data elements S; are transmitted at intervals

of time T. The channel's impulse response is y(t) (see Section

1.02), so the output at time £ is given by
n .
r(t) = I sy y(t-hT)+w(t) _ (2.06)
h=0 :
(fhis is the same as equation 1.02)

Let p and q be the smallest and largest integers respectively, such

' that
y(pT) # 0 and

y(aT) # 0.
Let _
9=q-p

~and Y;i =¥ [{p +1)T] o fori=0,1, ..., g.
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Then

(yo, Yys =ees yg)
is called the sampled impulse response of the channel, when sam-
pled at intervals of T seconds (see Figure 2.01). T is the inter-
val between successive data elements being transmitted, so the
number of components of the sampled impulse response depends on
the rate of transmission of data. (The number of components also

depends, of course, on the duration of the impulse response y(t)).

Now let

-
i

r [(p+ 1)T] | and

=
H

;=W (e + )T

Then
i ,
r. = Sy Yo o + W (2.07)
T peig h“i-h 74
where S; has some fixed given value for i < Qor i>n
(see equation 1.09),
or i
Py o= Zp g (2.08)
where
i
"z, = S, ¥._ ' (2.09)
i h=§-g h 7i-h

Now suppose that a random variable X is normally distributed with

mean u and variance o, i.e. X is N{u, o?). Then it is a standard



y{pT)

- FIGURE 2.01
A channel's impulse response
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result that X + ¢ is N(u +.c, o?), for any given value c. Let
‘the data sequence'{si} be given, so that the sequencé'{zi} is
also given. W, is assumed to be N(0, o) for some value of o,

and

r. = Z. + W,
1 1 1

(see equation (2.08)), . . ri is N(zi; 02).

Hence, 1f'{si} is given, r, has a probability‘density function
given by

i 2
(rk zk)

exp[- ——————o] (2.10)
oven 2 o -

Cf (r s =

and the samples r; are independent random variables.

It is also a standard result that, for a sequence of 1hdepen-
dent random variables {ri}, the joint probability density function

(pdf) of

I"gr'-l, ...,I"

0 n+g

satisfies the equation

n+g -
' = @ f.(r,') where I denotes

ntg . ivi

] 1
f(ro s 's e I

the product of the
n+g+] terms

and fi(ril) is the pdf of ry
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Now let .
fr® Ly ey /5 5 S

o' n+g o’ °1?

~ be the joint pdf of

when the sequence'{si} is giwen.

the equation

f(l"‘o', r'll$ ceey 1! /{5 }) =

where f., ( '/{s }) is the pdf of r

when {Si} is given.

2, is a function of the terms

-given when'{si} is given,

Therefore

1

B (R O A C)

. ] 1
cens sn) or f(ro » ' P

Then this joint pdf satisfies

ng -
JFO fj (rj /{Si})'

of the sequence {si} SO {zi} is

n+g |
iz% fj(rj Hz;})

n+g

i fJ(rJ /25)

n+g

/s 1)

as rj depends only on zj and not on the other terms of the series {Zi}’

(see equation 2.08). Hence from equation 2.10,
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f( ] 1 [ /_[ }) n;g [] ( (rk' - zk)z)]
r 5 r 3 re ey r S = - EXp -
o’ METNT a0 o/ 202
or
n+ (r,' -2)?
flr'fs) = T [—— exp (- —& K
i=0  o/enm 25°
where
..r_‘.l = (rOIS r" 's s rn'_},g)
and
_S_ - (SO’ s-is .y Sn)
- 7 Mg+l n+g (rk..- z,)?
oot f(r'/s) = an [(—=) 1- ) ————  (2.17)
o/er - i=0 2aq?

en(x) is an increasing function of x, so an f(r'/s) is maximised

‘when f(r'/s) is maximised. Hence the maximum Tikelihood sequence

{Si'}’ is the sequence which minimises

" oen
r, = 2
k=0 k k

when {ri} is given, where

2, = 1 Sp Y-
LA h 74-h

(this follows from equation (2.11) and the definition of the maxi-

mum 1ikelihood sequence,. given in Section 2.02).
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Now let

n+g k ) n+g
g(_s_) : kZO (rk - h?E-g Sh yk-—h) = HZ (rk - zk) .

Then g(s) is called the cost function for the sequence

SO’ s-[, ...,S

and the problem of finding the maximum Tikelihood sequence is equi-

valent to finding the sequence’{sil which minimises g(s).

For the case of an m level signal, each ¥ make take on m

possible values. Then

g(s) or g(sys Sqs «-vs S.)

can take on mn+] possible values corresponding to the different

possible combinations of the sequence
s,S]’ LI ) Sn

One method for finding the maximum 1ikelihood sequence is to
_eQaTuate g(s) for each possible data sequence, and select the
sequence corresponding to the minimum value of g(s). It will be
shown in the following section, that the problem of finding the
maximum likelihood detected sequence, is equivalent to that of
finding the shortest path through a given trellis diagram. This
shortest path problem can then be solved by a technique known as
dynamic programming. A dynamic programming é]gorithm (the Viterbi

Algorithm) will then be described, which can produce the maximum
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Tikelihood sequence with much less computation, than that which

would be required to evaluate g(s) for all values of S.

2.04 The Trellis Diagram

Define gk by
Y = (Sk-gr Skogars ++0s Sop)

for k =0, 1, 2, ..., n+g+l, where sk is defined to be equal to

-m+1 for k < 0 or k > n, 'C1ear1y, for any sequence
So, S]’ 'EEEN] S

there is only one corresponding sequence
91’ QZ’ crre gn+g‘

Let

h(g-lﬁ g_z’ ey 'Q—n+g) = g(So, S-l, ...,Sn).

- Then the problem of minimising g(s) is transformed to one of finding

the sequence
-Q—], 9_2’ LRI _Q_n+g
which minimises

h(Qps Qs+ s Qpag)
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Each data element s; can then take on m different values and Q
depends on g of these elements, therefore, Q, can take on m°
different possible values. Now consider the trellis diagram
shown in Figure 2.02. In this diagram, each vertical line rep-
resents a vector Q, , and each horizontal tine represents one of
the m9 possible vector va&ues that Q, can take on. The intersec-
“tion of a vertical and a horizontal line is called a node. Now
any sequencé of vectors can be represented by a pafh through

the trellis, passing through one node for each vector gk'

From the definition of Q,, and the fact that s, = -m+1 for

i< 0and i >n, it can be seen that

Qo = (-m+1, -m+1, ..., -m+l)

and

9n+g+1 = (-m+1, -m+l, ..., -mtl}.

. Hence the path through the trellis must start at point A, on the
diagram, and finish at point B. (Both of these points lie on the
horizénta] line representing the appropriate vector value).

i

- Example 2.01

Now consider a channel with sampled impulse respohse
(aoﬁ a-l s 32)

being used in conjunction with a binary data signal, so that each

S has the possible values +1. For this channel, g = 2 so

& = (s Sy



(~m+]1,-m+1,..

-m+1, -m+l,

ves =M1}

c‘ .y "TTH'U

Y

“n+g

-

+g+1

f=]
—
f o}

N
N

FIGURE 2.02

A trellis diagram

L
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Suppose that n = 4 so that the transmitted message is

(so, Sy rees 54)

with S5 defined to be equal to -1

for i < 0ori >4, Then

Q, can take the values
(]s ]): (]a "])s (-]: 1) and ("]s "])

for k =2, 3, 4 and 5
Let

(so, S1s Sps S3» 54) = (-1, 1, -1, -1, 1)
for this example. Then .
' Q] = (—m+]: SO) = (f]’ ”])

= (-1, 1)

=
N
.
w
o
L' 3
7
—r
S
1

Qg = (515 55) = (1, -1)
g4 = (52, 53) = (-1, -1)
54) = {-1, 1) and

Qg = (sg> -m#1) = (1, -1),
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Hence the path through the treliis diagram shown in Figure 2.03,
exactly represents the transmitted data sequence‘{si}. Note that,

for any given vector
9 = (54,20 S49)

there are only two possible following vectors

Qi1 = (S50 540

as S;_q is given, and s; can take on only two values in this
example., Figure 2.04 shows the transitions that are possible from

any vector Qi to a succeeding vector g4+1.

Now return to the general case of an m level signai, and a

channel whose sampled impulse.response has g+1 components, so that

..Q.k = (sk_g, Sk-g+1’ s ey Sk_-l)c

| Then, jf gk is given, ék-g+]? sk-g+2’ cres Spoy will be given, and

the following vector:

Qe = (Sp_gars Skgazs o0 Sk-1 ) -

can take on m values corresponding to the m possible values of Sk
Hence, from any node on the general tre]}is (Figure 2.02) represen-
ting a vector_gk, there are only m possible following nodes repre-
senting §k+]'

It was shown in Section 2.03, that the maximum likelihood
detected sequence {Si}’ is the sequence which minimises the func-

tion



&o

K

FIGURE 2.03
‘Trellis for example 2.01

(-1, 1)

FIGURE 2.04

Tranéitiqns from one vector to another

174
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n4g K

Y (r, - 'S, Yeon)?
k=0 k h=E-g h “k-h

where S has some given fixed value for i < 0 or i > n. This

function may also be written as

h=k-g

g
kzo de ' (Skegs Skoga1® o0 Sg)
where
k
dfh) (s S sp) ={r, = 1 spy._p)?
k k-g* “k-g+1° **** 7k k h “k-h

_Now note that there is only one pair of vectors (gk, gk;]) corres-

ponding to the data elements

S S

k=-g* sk'9+1’°'°’ k
Hence
l)(: 2
(T“ Sy—)
.k h=k-g h~k-h

is a function of Qk and gk+1, and the maximum 1ikelihood sequence

may be found by minimising the function

P

n+g 2
L @ 4
where
| k
4 @ Q) = = T sy

(It is assumed here that the sequence'{ri} is known).
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Let the distance between two nodes on the trellis diagram,
representing gk and gk+], be defined to be equal to d(z) (—k’ —k+1)
Then any path through the trellis, through the sequence of nodes

representing

go’ Q1, e gn+g+1

has length

d(()Z) (R d1(2) Qs Q) + +.u dr(H% Qneg> Qnrge)

or

ntg
14 (@ 8-
1=0 . .
But it has been shown above that the maximum likelihood seduence

-{si} may be found, by finding the sequence of vectors {94} which

minimises
Z d(2) =k? Qk+])’

Hence this maximum likelihood sequence may be found, by finding
- the sequence of vectors {Q.}, which minimises the path length
through the trellis diagram from poinf A to point B, i.e. the
problem of maximum likelihood detection has been reduced to a

shortest path problem.
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2.05 The Viterbi Algorithm Applied to a Particular Example

Now consider again, the problem of example 2.01, in which a
two level signal is used with a_channe{ whose sampled impulse
response is (a, ays az). Let u, (I, J} be the 1ength of the
shortest path from point A (on Figure 2.03) to the node (I, J)k.
This is the node representing the possible vector value (I, J) of
gk. Also let the sequence of vectors {gj}, which gives the
shortest path to the node (I, J)k be denoted

Ry (ko I, 9))

Note that each of the vectors in this sequence is a function of

k, I and J.

The Viterbi Algorithm (V,A) is a dynamic programming algo-
rithm, which sets up a relationship between the shortest pdths
to the four Qk nodes, and the shortest paﬁhs to the four gk+1
nodes. This is repeated for all values of k until point B, on

. the tre]]is; is reached.

For this example,

= s Sgr)
and $; ® -1 for i<0 or i>4. Therefore
Qo = (-1, =1).

From Figure 2.04, it can be seen that there are only two possible

values for QJ.
Q; can be either

(-1, -1) or (-1, 1).
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The sequence of vectors {Q.}, giving the shortest path from

point A to the node

(‘]a '])]

is (-1, -1), (-1, 1))

(This is, in fact, the only path from point A to this node).

i.e,

—i
Similarly

Py (1, -1, )} = {(-1, -1), (-1, 1))
The length of the path to the node

(-1, 1),

is the distance between the nodes

(-1, -1, and (-1, -1),

which is denoted
a{®) (-1, -1, (-1, )
(see Section 2.04), i.e.

uy (-1, -1) = 4@ (1, -0, (4, -

Similarly the length of the shortest p&th to the node

‘('] s 1 )]

. (1, -1, -1} = {(-1, =1}, (-1, -1)}

(2.12)

(2.13)

(2.14)
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is given by

up (1, 1) = ¢ -1, -n, 1, ) (2.15)

The shortest paths to the four 92 nodes will now be derived.

From Figure 2.04, the node
(-1, -1),
can only be reached from the two nodes
(-1, -1)] and (1, -1
However the node

(19 -1 )'l

is not allowable as it cannot be reached from point A of the
trellis. Hence the sequence of vectors giving the shortest {and

-only)} path ffom point A, to the node

(-1, -1,
ig inen by

(B; (2, -1, ~1)} = L1, 1), (1, 1), (1, M) (2.16)
The tength of the shortest path to the node

(-1, -1,
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is equal to the length of the shortest path to the preceeding
node (-T, -1)]
+

the.disfance between the two nodes.
The Tength of the shortest path to the node

(-1, -1); is given in equation (2.14).

Hence

y 1 1) =y (1 1)+ P ), (1, D (27)

2
The shortest path to the node
(-1, "1)2:

and the length of this path, have now been found and are given
by equations 2.16 and 2.17 respectively. The shortest paths to

the other 92 nodes can be found in a similar manner.

For k > 2, each Q, node can be reached from two O, ; nodes,

The node

(Is J)k
can be reached from the nodes
: (_]’ I)k”l and (]’ I)k—]
(see Figure 2.04). Hence the shortest path to the node

(I, J)k is either:
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(a) the shortest path to the node
("1 » I)k-—'l
+ the distance between the nodes

(-1, Dy and (1, 9),

or

(b) the shortest bath to the node
(1, )y

+ the distance between the nodes
(1, I)k-] and _ (I,_J)_k

i.e.’

vy (1, 9) = min [y (K 1) 4 d) [k, 1), (1, NI (218)

Equation 2.18 holds for 1 = #1 and J = +1. Let the value of K
selected here, be K;. (K; will, of course, be different for diff-
erent values of I and J). Then the sequence {gj}, giving the shor-

test path to the node
(1, 9),
is the sequence {Qi} giving the shortest path to the node
Ky Iy

with the additional vector (I, J)
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i.e.

B (k 1, )} = (P, (k-1, Ky, 1)}, (1, 9) (2.19)

Equations 2.18 and 2.19 form the Viterbi Algorithm (V.A)
for the problem of example 1, and they can be used rchrsively to
find the shortest path, through the trellis, from point A to point
B. '

2.06 Method for Dealing with Long Transmitted Data'SeqUences

In Section 2.05 the V.A. was presented in a form which was
quite suitable for the problem of example 2.01, in which the trans-
mi tted data‘sequence had only five elements. With the V,A. used
in this way, no data elements are detected until the shortest path
from point A to point B of the trellis is found. This épproach is
however impracticable, if the data sequence, and hence the trellis
diagram, is very long. Large amounts of Storage wouid then be
_requifed, tq'ho1dthe$equence‘of vectors {gj}, giving the shortest

paths tb-the various nodes of the trellis.

One way of overcoming this problem is to store no more than

akgiven number N, of the vectors in the sequences {91}’ giving the
shortest paths to each node of the treilis. Hence the sequence of
vectors representing the shortest path to each gk node, would con-

sist only of the appropriate values for the vectors

Qe Lenipe o0 &

In general, the trellis has m’ nodes (see Section 2.04), so there

9

will bem séquences of N vectors gﬁ, to store.
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From equation 2.19 it can be seen that the shortest path
to some given Qk node, is formed by adding a new vector to the
sequence'{gi} of vectors, which represents the shortest path to
one of the Q, ; nodes. The sequence for the Q, 4 node will

contain N vectors representing
Qeenr Qemars s Yool

Hence the vector representing Q, . must be deleted in order to
store the sequence of N vectors for the__gk node. Before the
veCtor gk_N is deleted, its earliest component (which represents
Sk-N-g) could be taken as the detected value of the data element
o : g '
Sk-Nig" There will however be m® Q, _, nodes, and therefore many
vectors representing gk“N, which must be deleted from the appro-
priate sequences of vectors., -Each of the vectors representing
Q. _y has an element representing Sk-N-g° which could be used as

the detected value for the data element Sk-N-g"

Now consider the Q, node which has a shorter. possible path to
it, from the point A of the trellis, than any of the other gk
nodes. Let Q _, be the Q,_, node which lies on the optimum path

_k
. detecting Sk-N-g® S€ems to be that of using the earliest component

from point A to this Q, node. Then a reasonable strategy for

of the vector Qy ., which Ties on the shortest path from A to QL-i'

It has been found from simulation tests that, for fairly large
values'of N, the shortest paths to each of the gk_] nodes, tend to
pass through the same Q .y node. In tﬁis case there should be no
errors in detection, due fto the fact that only N nodes, of each

path through the trellis, are stored.
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2.07 A General Version of the Viterbi'ATgOrithm'With:DecisiOns
made after a Fixed Delay

Consider again the problem of an m level signal being used

with a channel with sampled impulse response

(yog y], LY ] yg).

- This version of the V.A. stores a number of N component vec~

tors denoted

%51y A2y Yzyr oo

Each vector Qg (I) has the form

(Xioners Xjonene woo0 %yl

where N > g and each'xi represents one of the m ﬁossib1e values of
the data element Sie The algorithm begins each cycie of its
detectjon process with m? such vectors in store, and with one
.vector corresponding to each possible combination of the g ele-

ments

Xj_g+'|’ Xj_g+23 vassy XJ--

(This is true except for the first few cycles, when the algorithm
is starting up). As before, the transmitted data sequence is

denoted

{SO, Sps sees sn}

and 5 is defined to be equal to -m+] for i <Qor i >n



8

Initially the process starts with one N component vector

Q_4 (1) which is given by
Q_q (1) = (-m+l, ~mel, Loy -mel)

This vector is then extended to m vectors, each with N+1 compo-
nents, by the addition of the component X, which can take onm

values. These m vectors are given by

T, (1s %) = (@ (1), %,).

A quantity called the cost function is now defined for the vector

IE (1, xo), by the equation

Vo(Ts %g) = [yg %, +yq (-m#l) + Yo (-mt1) TR yg(—m+1)- ro1?

where s is the first received signal sample. This équation can be

~written as

Vo1 %) = (Y. [Ty (15 %)1gy = 7)

Y=y, .yg,.'is ceny yO)

and

[12(1, XO)]g+] is the vector formed from the latest g+1

components (i.e. the g+l components furthest to the right) of

IR (1, xo).
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X,[Igﬁ], xo)]g+1 is, of course, the scalar product of the

two vectors. Note that the vector Y.is the reverse of the channel
vector (i.e. the reverse of the vector representing the channel's

sampled impulse response).

The next step of the algorithm is to find the vector
To(l, xo) which has the smallest cost.. This is equivalent to
;ghding the value X5 which'giyes the lowest value of'vo(T, xo).
The earliest element of this §e1ected vector is then taken as
a detected data element. (The earliest component is, of course,
the.one furthest to the left). This first detected element will:
have the value -m+1, as Q_, (1) was defined to be the N component

vector with all components taking the value -m+1.

To complete the first cycle of the algerithm, the Tatest N
elements of the m vectors To(l, xo),'are stored in the array QO(I).

The m costs v0(1, xO) are stored in the array uO(I),.where I1=1,2,

ey M.

For the second cycle, the m vectors Q_(I) are extended to the

.—-0
m? vecters defined by

T](Is x]) = (Q_O(I)a X'I)

-—

where Xy can take on the m-'data element values. The costs for each

of these m? vectors are given by
V](Is x]) = UO(I) + (Y. [I-I_(I’ X])]g_]_] - r.]}z

where r] is the second received signal sample. As before, the
earliest element of the vector T](I, x]) with smallest cost, is

taken as a detected data element.
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The latest N elements of the vectors IJ(I,X]) are then
stored iﬁ the array_g](J), where J = 1, 2, ..;, m2. The corres-
ponding costs v1(I, x1), are stored in the array u](J), to complete
the second cycle of the V.A.

Hence, after two elements have been detected {after two cycles
of the algorithm), the number of vectors stored is m?, where m is

* the number of §igna1 levels.

The process continues in this way, with.each cycle beginning

by extending each of the vectors 95(1) to the m vectors defined by
T (D %540) = (Q5(1)s x549) ; (220
The costs for these extended vectors are given by

'Vj+1 (I, ’(_j+]) = UJ-(I) + {Y. [QJ(I)’ xj+1]gﬂ - .r_j_l_'l}z (2.21)

where r; ] is the j+2 nd received signal sample. The detected

j+
element is, as before, the earliest component of the vector Ij+](l, xj+])
with smallest cost. ‘

- After the (g+1)st element has been detected, theré will be mg+.I

- vectors denoted Ig (1, xg). AThen in this cycle (and every followjng
cycle) of the algorithm, all but md of these vectors are deleted
from storage, before defining the vectors gg(d). The m? vectors to
be retained for the next cycle, are selected by keeping the vector
'with Towesf cost, for each possible combination of the latest g

components of the vectors. Then the latest N components of the

retained wvectors Id+1 (I, Xj+1) are stored in the array gj+](a),
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and the costs Visl (1, xj+]) for the retained vectors, are stored
in the array uj+](J). (J may take the values 1, 2, ..., m9).
Hence each following cycle of the afgcrithm will begin with m?
vectors stored in an array‘denoted gi(a), for some integer i. A

flowchart for this form of the V.A. is given in Figure 2.05.

Note that, instead of starting the detection process with
one veCtor‘g_] (1), a full set of mJ vectors, representing each
possible combination of the Tatest g elements, could be used.

These vectqrs would be denoted

In this case the vector Q , (I), whose Tatest g components have
the value -m+1, should be assigned a cost equal to zero and the
other vectors assigned some very large cost. Then a11'future
vectors stemming from the ones with large cbsts, will also haﬁe
large costs, and will eventually be deleted from the system.
_After g cycles of the process, the mI vectors retained by the
algorithm wf]] all have stemmed from the vector Q_; (I) with
zero cost., These mJ vectors will then be identical to those for

the situation where the algorithm is started with just one vector

Q4 ().



U

Set
Q1) = (-m+1, -m1, ..... s —m+1)
N components
¥
Set u(1) = 0 and K=0
« ¥
Id
¥
Set
T(1,d) = [Q(I), J]
for
I=1,2, vecos m® and
J = -mtl, -m+3, ....., m-1}
L4
Input a received signal
sample r
v

Set

- - 2
v(I,J)‘~ u(l) + {1.}1(1,J)]g+1 r}
for

I1=1,2, ....., m and

J

1
1
3
e
—
1
=]
F
G
3
H
—

Y

OQutput the earliest component of
the vector T(I',J') as a detected
element, where (I',J') are the values
- for which v(I,J) is a minimum

\/

If K=g, delete vectors so that, for
each combination of the latest g
components, only the vector with

smallest cost is retained

’W/'

Store the last N components of the
retained vectors T(I,d), in the array

Q(.), and their costs v(I,d),

- in the array u(.)

A

If K<g, set K = K+1

Y

FIGURE 2.05
A flow diagram for 'the Viterbi algorithm
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2.08 Starting up Procedure for the V.A.

The data elements S, are defined to be equal to -m+l for
i < 0. This means that the transmitter must send out a sequence

of elements with the value -m+1, before the data sequence

SO, S-I, Y] Sn

-

is transmitted. If the number of components of the vectors 95(1)
is N, then N elements with the value -m+1 must be transmitted,

and Q_, (1) is defined to be the N component vector
(-m41, -m+1, ...., -m+1)

This sequence of e]ementé, which preceeds the data sequence, is

calied a training signal. It has been found that, if no training
signal is used or the wrong training sighal is used,'the perfor-
mance of the detection process will be unaffected, apart from an

initial burst of errors [33].

p—

2.09 Number of Operations Required by the Viterbi Algorithm

Apart from the first few cycles, ihe algorithm hés md vectors
gj(l) in store, at the start of each cycle. (m is the number of
signdl levels, and g+1 is the number of components of the channel’s
sampled impulse response). When a new received signal sample

g+1 vectors

r5+1 arrives, these m9 vectors are extended to the m
denoted Ij+] (I, xj+]). The costs for these extended vectors are

computed using equation 2.21.
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Note that, for a situation where the channel characteristics
are constant, all possible values of the terms Yi %5 should be
stored before the detection process begins. (x‘j represents the
possible values of the data element Sj)‘ Then no further multi-

plications are needed to form the scalar product

Y105 (1 %541gn

in equation 2.21. One multiplication (or squaring operation) is
carried out for the evaluation of each of the mg+1 costs

Vi1 (I, Xj+1)‘ Then, for each combination of the latest g ele~-
ments of the vectors, all but the one vector with lowest cost is

deleted from storage. There are m vectors Ij+1 (I, x;,4) con-

j+1
taining each combination of thg latest g elements, stho find the
one with smallest cost requires m-1 comparisons. There are mJ
possible combinations of the latest g e1ements,'so (mf1) md com-
parisons must be made by the algorithm, ddring each cycle.

Hence the V.A. must perform mg+] mul tiplications and (m-1) m3
comparisons; for each data element detected, (apart from the first
few). Clearly, if m and g are large (typically m =4 or 16 and

g = 8),a vast number of'operatibns must be performed, per detected

_elemeht.

Other operations, such as additions and the moving of numbers
from one store to another, are also needed during the execution of
the algorithm. These have not been considered here, but it is hoped
that the number of multiplications and comparisons required, will

give a good guide to the complexity of the algorithm.
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2.10 Probability of Error for the V.A. Detector when uséd with
"the Tdeal Channel

From the description of the V.A. given in section 2.07, md
vectors are stored at the start of each cycle of the algorithm
(where m is the number of signal levels and g+1 is the number
of components of the channel's sampled impulse response). The
ﬁhannel whose sampled impulse response has just one non zero
component, with the value unity, is called the ideal channel.
It is ideal in the sense that it causes no\cﬁange in the trans-
mitted data sequence. For the ideal channel, g=0, so the V.,A.
has just one vector ih store at the start of each of the algo-

rithm's cycles.

The first cycle of the algorithm begins with one N component -

vector given by

Q_y (1) = (-m+1, -ml, ..., -mHl)
“This vector is then extended to the m N+1 component vectors:

T (1, xo) = (-m+1, ~m+l, ..., -m+l, xo)

The cost for this vector is given by
- , - 2
| Vo (1, xo) = {!,[IB (1, xo)]g+1 ro}

ﬂrxo=-mﬂ,—m6,.“.,m4,

where Y is the vector whose components are the reverse of the
~ channel's sampled impulse response, and o is the first received

signal sample (see section 2.07).
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For the case of the ideal channel, g=0 and Y is the scalar

with va]ge unity.
- - 2
yo(l, xo) = (xo ro) _ . (2.22)

pnly the one of the vectors IO(], xo), with smallest cost is retained
for the next cycle of the algorithm. Hen;e only one value of %o

wi]1 be available for the detection of S, at a later stage. The_
retained vector'Io(T, xo) is given by'the value of Xq for which

the cost v0(1, xo) is a minimum. Hence, from equation 2.22, So

is detected as the data e]ement value which is closest to o The
latest N elements of the vector_Io(1, so'), are then retained for
use in the next cycle of the algorithm, where s ' is the detected

0
value of So Hence the vector.go(l) is given by

go(l) = (-m+], -m+l, v -m+1, so')

~and the corresponding cost is given by

u (1) = (s;' - ro)2 ' (2.23)

This N component vector is extended to the m N+1 component vectors:
I} (1’ X-]) = (‘ITH'], —m'”’ LN 'm+]s 50': X])

for x]=-mﬂ,-mﬁ,.”,m4,

at the start of the following cycle. The cost for Iﬁ(], x]) is
given by
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vi(Ts xq) = u (1) + {Y.10,(7), X1 1g41 - r

(see equation 2.21), But Y is the sba]ar with value unity so,

using equation 2.23,
v1(1, x1) = (s, - r0)2 + (x] - r])2 | (2.24)

As before, only one of the vectors 11(1, xf) is retained for use
in the next cycle of the algorithm, so there.will be only one
value of X available for the detecfion of s;. The value of X1 s
giving the selected vector_I](1, x]), is the value for which
v](1, x]) is smallest. Hence, from equation 2.24, S is detected
as the data element value which islc1osest'to E1. (This is the

data element value for X7 which minimises vl(l, x1) ).

The detection process continues in this way, so that each
data element Sy is detected as the one of its m possible values
which is closest to rs Therefore, with £he ideal channel, the
VA, detectok produces the same detected data sequence, as does
the optimum combination of linear and decision feedback equalizers.
(See sections 1.13 and 1.14). Hence, for this case, the probability
of any given data element being in error, is the same 5; that given
in section 1.14,
i.e.

. Pg = Prob, (wi > ])
for a binary signal
and

VPe'= 1.5 Prob. (w, > 1)

for a quaternary signal.
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(wi is, of course, the normally distributed random variable

representing Gaussian noise in the system).
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CHAPTER 3

In Section 2.09, it was shown that the Viterbi Algorithm
(V.A) requires a large amount of computation, per detected data
efement, if the sampled impulse response of the channel has many
components, or the number of signal levels is fairly large. The
number of multiplications plus the number of comparisons, per

detected data element, is
(2m - 1) md

where m is the number of signal 1evejs and g+1 is the number of
components of the sampled impulse response. From Section 2.03

it can be seen that g is determined by the duration of the impulse
response, and the time T between successive data elements being
transmitted. To transmit information at high speed, T must be smaill
so that many data elements are transmitted per second, or the number
'm of s{gnal'levels must be lérge. g increases as T decreases so it

is clear that
(2m - 1) md

may be very large in cases of high speed data transmission. The

amount of computation required by the V.A. may then prohibit its use.

~ The trellis diagram of Figure 2.02 shows the mJ possible values

for the vector
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where'{si} is the transmitted data sequence. Using the given
definition of the distance between two nodes of the diagram (see
Section 2.04), the shortest path from point A to point B, dic-

tates the maximum 1ikelihood sequenée'{si}.

Suppose that at some stage of the V}A., the shortest path
to each of the nodes for some vector 9& have been found, together
with the cost function for each of these nodes. The cost function
for each node is the 1engfh of the shortest path from point A to
that node. It therefore seems unlikely that'the.gi nodes with
relatively large costs, will 1ie on the shortest path from A to
B. The basic principal of the four -algorithms described in this
chapter, is that of removing all the nodes representing a vector
Q;, from consideration, except for a f{xed number k of them, whose
costs are fairly éma11. Each of these k retained vectors are exten-
ded to m new vectors representing Q1+], thus giving mk vectors.,
Then k of these vectors are selected aS'before; for use in the -

next cycle of the algorithm, .

The four algorithms described below, each have different strat-
egies for deciding which k of the mk nodes available, to select
during each cycle. The basic form of the algorithms is- the same
as that of the V.A., described in Section 2.07. The V.A. holds m®
vectors gd(l) in store at the beginning of each cycle of the algo-
rithm. m and g are fixed by the data transmission system, so there
is no freedom of choice over the number of such vectors used. With
S}stems 1-4, however, the number of vectors may be chosenrto give
the desired compromise between the perfonnance.of the detection pro-

cess and its complexity (see Section 3.02). System 1, for example,
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may be used with any number k of vectors, from one upwards.

As with the V.A., these algorithms may be started off

with one vector set equal to

(-m+1, -mil, ..., -mHl),

or can be started with a full set of k vectors defined in this
way. In the latter case, one of the vectors should be assigned
a cost equal to zero, and the other vectors given some very large

cost (such as 10%).

3.02 Systems 1-4 | )

These four systems hold a fixed number k, of N component

vectors:

05 (1, Q5 (2 vevnns g (R)

at the start of a cycle. The number of components of the vectors
represents the delay in detecting an element S; from the time
information about this element first reaches the receiver. Each

vector gd (1) takeé the form oo

gd(l) = (Xj-N+1’ xj-N+2’ ceeees xj) (3.01)

where each component X has one of the m possible values of the
data element S As for the V.A., the transmitted data sequence
is denoted

{so, Sqa erenes sn}
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and 5 is defined to be equal to -m#] for i <0 and 1 > n,

From equation 3.0l
g_‘l (I) = (.X_N’ X""N"I'.l’ a sss ey X_-I)

where X; has one of the poésib]e values of the data element S5

But S; = -m+l for i < 0, therefore
Q1 (1) = (-m+l, -m+l, ooo.., -mH)

for I =1, 2, ....., k. (i.e. the k stored vectors.g_ﬂl) are

initially all equal to the same vector).

The costs for the vectors Q_,(I) are defined by:

I
—

u_q(I) = )0 for I

1l

)
-
W
L

-

-
~

o for I

The first cyé1e of the algorithm begins by extending the k vectors

Q_y (I) to the N+1 component vectors given by

Ty (1, %) = [Qq (1), %]

for I =1, 2, «...s k and Xy taking on the m possible values of a

data element, Hence
To (I x)) = (-ml, -mel, Looon, -mid, Xo)

for I =1, 2,....., k

and Xo= “n+l, -mi3, ... m=1,
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The costs corresponding to these extended vectors are given by
‘ ] » ) .
Vo (1o %)) = u_l(I) +{Y. [T, (;, xo)]g+1 ro}
where rs is the first received signal sample and Y is the vector

(yg, yg_1g LK ) yo)n

(Note that Y is the reverse of the vector formed from the channel's

sampled impulse response). The term

Y. [Io (I, x0)]g+'!

is defined as in Section 2.07.

Then the Veétor with smallest cost is found, from the set
of vectors T (i, Xo)’ and the ‘earliest element of this vector
is taken as the detected value of Sy This detected value will
be -m+1, as
Q 4 (1) = (-m+1, -ml, Lloee, -me)

for T=1,2, ...., k. i.e. all of the vectors T (I, x ) have

R

their earliest element equa1 to -m+1.

A1l but k of the mk extended vectoré are deleted from storage,
according to decision rules which are different for each of the
four systems., (These decision rules are described bé]ow). The
latest N elements of the remaining k vectors Io (1, xo) are then
stored in the array QO(J), ford =1, 2, ...., k. The corresponding
costs vo(I, xo) are stored in the array uo(d). This completes the

" first cycle of the algorithms. -
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Af the start of the j+1 st. cycle, k vectors gd_1(1) are
stored, together with their cosfs uj_](l). These k vectors are
extended to the N+1 component vectors IJ(I, xj), by the addition
of the component xj, which can take on m values. These mk exten-

ded vectors are given by

Ti(L xg) = 184 (1)s %] | (3.02)

The corresponding costs are given by
. - . . _ )
vj(I, xj) = uj_1(I) + {iﬁ[gd_1(1), xJ.]g+1 rj} | (3.03)

where rs 1§ the (j+1)st received signal sampie.

The element S5on is detected as the earliest element of the
vector, from the set Ij(l, xj),VWhich has smallest cost. Then all
but k of the extended vectors IJ(I’ xj) are deleted, and the remai-
ning k vectors are stored in the array Q,(J), for J = 1, 2, L.uus K
(In fact only the latest N elements are stored). The corresponding
cbstsvj(i, xj), for the k selected vectors, are stored in the qrray'
uj(J). This completes the j+1 st. cycle of the process. The
algorithm continues in this way until the entire data sequence
fsi}‘hag been detected. A.flow diagram for Systems 1-4 is givén

in Figure 3.01.
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Set N components
Q(I) = (-TI'H‘], 'l'IH'], s e 0.0y 'TTH'])
for

Cfor 1 =2, 3, ...... k

Set u({1) = 0 and u(I) = 10°

—3 A
Set
T(I, J) = [Q(I), J]
for

I=1,2, ....., k and
Jd = -m+l, -m+3, ....., m~1

A 4

Input a received signal sample r

N2

Set
- 2

v(I, J) = u(l) + {X,[I(I,‘J)]g+] - r}

for

I =12, ....., kK and

Jd = -m+l, -m+3, ...... , m-1

2

Qutput the first component of the vector

T(I', J') as a detected data element, where

(I',d') are the values for which v(I, J) has
its minimum value

<+

Delete all but k of the mk vectors:
(L, 9)
according to the appropriate decision rule

-

Store the last N components of the selected
vectors T(I, J) in the array Q(K), and their
costs in the array u(K), for K=1, 2, ...., k

<V B

FIGURE 3.01
Block diagram for Systems 1-4
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3.03 Decision Rules for Systems 1-4

Each of the systems 1-4 works in a similar manner, except for
the decision rules which dictate which vectors are to be rejected
during each cycle. k N component vectors are stored at the start
of each cycle of the aigorithms. These vectors are then eitended
to mk N+1 component vectors, by the addition of another componént
with m possible values, to each of them. A data element is then
detected and all but k of the mk vectors are deleted from storage.
The rules which decfde which k vectors to refain are described

~below, for each of the systems.

Algorithms similar tb the one employing decision rule 1,
have been proposed independénf]y by F.L. Vermeulen, S.A, Fredricsson,
G.J. Foschini, J. Gordon and N. Montague [40-43]. The decision

rules for Systems 2, 3 and 4 a}e due to A.P. Clark.

3.04 Decision Rule 1 (System 1)

This decision rule is the simplest of the four. With it, System
1 selects the k vectors with sma11est‘costs from the set of mk

extended vectors, during each cycle of the algorithm. -

3.05 Decision Rule 2 {System 2)

" For System 2, the number k of vectors stored at the start of
each cycle of the algorithm, must be a multiple of the number m of

signal levels.

Let £ = k/m.
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Then the number of vectors stored at the start of each cycle is

mt. These mi N component vectors are extended to m2% N+1 compo-
nent vectors, as explained in Section 3.02, These extended vectors
are divided into m groups, with the vectors in each group all having
the same latest component. Then the & vectors with smaTlest costs
-are retained from each group, giving Zm (or k) stored vectors again,
This ruie ensures that, for each possible vaiue of the latest compo-
nent of the vectors, there will be an equal number of vectors in

the system, having this latest component. (The latest component

| being the one furthest to the right in the vectors).

One foréseeable problem with System 1, is that it is possib?é
for all of the k veétprs selected by decision rule 1, to have the
same.]atest component xj; If this is the case, then there is only
one possible value available for the detection of S0 at a later
~ stage of the algorithm. Thé algorithm will then have inadvertently
made a decision on a data element even though only the firét'samp1e
rj, containing information about this daté element, had been received.
,For cases where the first element of the channel's sampled imbu]se respohse
is small, this first sample will contain only a small amount of
information about the data element S3e (See equationl2.07). A
detection of this type is clearly undesirable. It is haf easy to
predict the seriousnessof this factor jn Sysfem 1, without peffor-
ming simulation tests. However, the decision rule for System 2

overcomes any difficulty, that may arise from this bossib1e disad-

vantage of System 1.
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3.06 Decision Rule3 (System 3)
As for System 2, the number k of vectors stored at the start

of each cycle, must be a multiple of m for System 3.

Let
% = k/m as before.
The vectors stored at the start of the (j+2)nd cycle are denoted

by

QJ(I) = (xj-N+1’ X5 pag? wreees xj)

for I =1, 2, .c..., tm. Decision rule 3 ensures that these

vectors contain all possible values of the latest & elements:

Xj_£‘+-|, Xj_2+2, tea sy Xj.

except while the process is starting up. From the expanded set

of vectors of the form:
lj+] (I’ Xj+.[) = (xj-N'l'.I’ xj‘N+2’ oo-o-og xj+1)’

2 vectors must be selected and retained for use in the following

-

cycle of the algorithm. Decision rule 3 selects these m vectors

as follows:

Some particular value for x is chosen and, from the set

J-2t2
of vectors which have this value for X5 942 the one with smaliest

cost is selected. This is repeated for the other m~1 possible values

of X. giving m selected vectors so far. In the same manner, m

j-2+2° _
vectors are selected corresponding to the m possible values of

xj_£+39 xj“2‘+4s Y ENEY xj"'.l
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giving a total of 2m vectors. One restriction on the selection

procedure is that no vector may be selected twice.

¢m vectors are selected corresponding to the different

possible values of the components

XJ_'QA_Z, xi_2'+3, sre vy Xj"l'.l

so the stored vectors QJ(I) must have at least £-1 components,
Hence, if it is decided that some particular value of N is to be
used with Sysfem 3, then the maximum value for 2 is N+1.
m{N+1) is then the maximum number of vectors that may be stored

at the start of each cyc]é of the algorithm,

Note that, when the detection process is sfarting up, all k

of the stored vectors are set equal to the N component vector
{(-m+1, ~-m+l, ..... s ~m+1)

(see Sectioni3.02).‘ Until several cycles of the algorithm have
‘been compieted, the garlien cbmponents of all of the stored vectors
wf]l be equal to -m+1. Therefore it will not be possible for a

set of k vectors, with all possible element values in the latest 2
cbmponents, to be selected. Hence decision rule 3 needs to be modi-
fied for the first few cycles of the algorithm. The modified rule
chooses vectors with a full selection of element values, in as many
as possible of the latest components. The set of k vectors is then

completed with an arbitrary selection from the remaining vectors.
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- Example -

Consider a case with

N=3
m=2 and
k =6

i.e. a two level signal with 6 vectors stored at the start of each
cycle of the algorithm, the vectors each having three components.
Let the 6 vectors 1ﬁ store, at the start of some cycle of the
process, be those on the left in Figure 3.02._ These six vectors
are extended to:twelve four component vectors, by adding either a
1ora -1 to the right hand side of each, as shown. Let the costs

for the extended vectors be those given in brackets in Figure 3.02.

£ is defined equal to k/mys so
L =6/2 =3,

Hence, decision rule 3 gives a variety of element values in the

latest 3 components of the vectors (i.e. in the 3 components furthest
- to the right of the se1ected vectors)., Let the Components'of the

extended vectors beldenoted 1, 2, 3 and 4, as shown, with the vectors

_denoted 1, 2, ..... , 12.

The first step of the decision rule is to select thé vector
withlsma11est cost, which has component 2 equal to -1. Hence vector
3 is selected. Then the vector with smallest cost, which has compo-
nent 2 equal to 1 is selected. This is vector 1. These vectors are
now removed from consideration so that they may not be selected again.

In a similar manner, two vectors are selected which have component 3
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(Component 1)

FIGURE 3.02

Selection of vectors by decision rule 3
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equal to -1 and component 3 equal to 1. The ones with lowest
costs are vectors 5 and 2, Finally vectors 4 and 7 are'se1ected,

to give a set of 6 vectors.

Now consider again the possible difficulty mentioned for
System 1, that the set of k vectoré selected during some cycle,
may all have the same 1atést component. System 2 ensures that such
a set of vectors will not be selected, but it is still possibﬁe that
the selected vectors may have one of their latest elements in common.
System 3 should offer more protection against this sort of diffi-
culty, as it ensures a variéty of e]eﬁent values in thé latest 2

components of the vectors.

3.07 Decision Rule 4 (System 4)

For System 4, the number k of vectors stored at -the start of

each cycle, must be such that
=m

for some positive integer® (where m is the number of signa] levels).
RuTe 4 ensures that these vectors contain all possible combinations
of values, in their latest & components (except while the process
is starting up). Hence, if mz vectors are stored at the start of
each cycle, the number N of components of these vectors must be
greafef than or equal to &. Alternatively, if it is decided that

a certain value of N is to be used with System 4, the maximum

value for k is mN.
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Note that, with its decision rule, System 4 also ensures
that premature detections will not be made due to the selected

vectors having any of their Tatest £ elements in common.

- During each cycle df the algorithm, k of the mk extended
vectors must be selected for use in the following cycle. System
4 is such that these k (or mz) vectors must contain all possible
combinations of the Tatest & components. Hence, for each of these
combinations, the vector with lowest cost is selected, giving mg
vectors in all. (There are m possible combinations of the latest

2 elements, as each element has m possible values).

For the first few cycles of the algorithm, it will not be
possible to select a set of vecfors ﬁith all possible combinations
of the latest £ elements, This is because all of the vectors are
initially given the same components, i.e. all componenté arg set
equal to -m+1, Hence, as with System 3, the‘selection procedure
must be modified for the first few cycles of the algorithm. For
the first few cycles, the veétor with smallest cost is selected,
‘for all combinations of as mahy as possible of the latest components

£

of the vectors. The set of m~ selected vectors is then completed

by choosing vectors arbitrarily from those remaining.

Note that System 4 is identical to the V.A. detector if £ is

set equal to g.

3.08 Starting up Procedure

As with the V.A., the data elements s; are defined to be equal

to -m+1, for i<0 and i>n (see Section 2.08). Hence the trans-

mitter must send out a training signal of N elements with the value

-m+1, before transmitting the data sequence:
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SO, S'I’ LIE I R I Snn

(N is, of course, the number of components of the vectors gd(l) ).

It has been found that the V.A. will synchronize itself to
the correct data sequence, after a few cyc]eé, even if an incorrect
training signal is used [33]. It seems likely that Systems 1-4
will also have this property, and, apart from an initial burst of

errors, will function correctly with a false training sequence,

There 1is one particular start up hrocedure for Systems 1 and
2, which gives a very poor performance. Suppose thaf all of the
k vectors of System 1, are set equal to the same vector, and that
their costs also haQe the same value. In particular, suppose that
all of the vectors Q 4 (I) are set equal to (-m+1, -m+l, ..... -m+l),
and all of the costs u_](I) arg'set equal to zero. Then the expan-

ded set of vectors is given by

IO(I, xo) = (~m+1, -m+], Ceevey -, xo)
'with costs:
u (1, X)) = u_q(1) .+' {y. 17,1, XM gs1 = Tob?

0+ {YLIT(T, %)y - Tl

(see Section 3.02). Therefore the values of the vectors IO(I, xo),

and their costs uo(I, xo) are independent of I,

Hence the vectors split into m groups, according to the vatue
of Xo» with all vectors in a group being identical and all costs

being identical. Now assume that the m costs for the different
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groups are distinct. (This assumption is supported by simulation
results). Then, from the set of mk costs for the extended vectors,
the k smallest cﬁsts will come from the same group. Hence decision
rule 1, will select k vectors from the same éroup, and the selected
vectors will be identical, and will af] have identical costs., The
situation with k identical vectors and k identical costs, at the
start of the first cycle, will be preserved at the start of the
second cycle. It can be seen, therefore, fhat-each following

cyc]é of the process will begin with k idéntipal vectors, and
System 1 is effectively functioning with k=1. The abi]ity.of the
de tection procéss to store a reasonable number of possible data
sequences, has then beén lost and the performance of the detector

may be reduced.

The reéommended starting up procedure is given fn Section 3.02.
If this procédure is followed, one vector is given a cost equal to
zero, and the other vectors are given very large costs. It can
then be shown that a distinct set of vectofs will be present in the
system, after a few cycles. (See the proof of theorem 3.02 in

Section 3.10).

The starting pfocedure with all vectors identical and having
oﬁe common cost, is also fairly disastrous for System 2. Suppose
“that System 2 is initialized by setting the k vectors Q _; (1) equal

- to

(M1, -m#1, ..., -M4D)

and setting the k costs equal to zero. The exhanded set of vectors

will then be given by
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IO(I, xo)'= (-m+1, -1, ..oius -m+j, X,)

with costs given by

[}]

(T %g) = Uy (1) + (GIT (T, X gyq - 12

=0+ {LITG(T X)) gy = 1)

(see Section 3.02).VA5 for System 1, the vectors form m groups

with k identical vectors in each group. The vectors in each group

also have a common cost. It will be assumed that the costs for

each group are all different. The decision rule for System leiil sel-
ect the k/m vectors with smallest cost, for each possible value of |
X Hence, k/m vectors will be selected from each group.. Then, at
the start of the second cycle of the algorithm, the k vectors

QO(I) form m groups of vectors,‘with the vectors in each group

being identical, and having a common cost.

I%eoreﬁ 3.01

Sﬁppose that, at the start of some cycle of Systemnz, the
vectors stored may be divided into m groups, with the k/m vectors
“in each group being identical. Assume.also fhat the vectors in
any one group have a common cost, but that the costs are different
from one group to another. (m is, of course, the number of signal
levels). Then this grouping'of vectors and costs, will be maintained

at the start of the following cycle of the algorithm .
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Proof
Let the set of &m (or k) vectors, stored at the start of

some cycle of the algorithm, be

!q,]' !4,2, ceeeay XJ,R W1th costs = ¢y
Vo1 Yp,o0 eeee s Yoo with costs = ¢,
Vo 1r Yp,2e cceeees Yoo with costs = Coe

?

Then the jth., vector in the group with cost Cis is denoted v i’
The vectors in each group are the same, S0

Yii T ik - {3.04)

for i =1, 2, veevesmy  J=142, cvvses & andk =1, 2, .....58.

These vectors are extended to the m?f% vectors (lij’ X), by the
addition of a new element x which can take on m values. The cost

for the vector (!ij’ X) is given by
. ] = ‘ - 2
D(i,x) = ¢; + {X’I!i,j' x]g+1 r}

fori=1, 2, ...., mand x = -m+l, -mt3, ..... m-],-where ris

the appropriate received signal sample. (See Section 3.02).

From equation 3.04, it can be seen that this cost is independent of
J, and for each pair of values (i,x), there are £ vectors with

cost D(i,x). Assume that the costs D(i,x) are all different, for
diffefent values of i and x. (This is supported by simulation

results),
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Decision rule 2 selects the £ vectors with smallest cost, for
each possible value of the latest component x. Let i(x} be the
value of 1 which minimises D{i,x), for a given value of x. Then,

for given x, the & vectors with smallest costs are

(Xi(x)s]’ Xx), (!4(XL2’ X)s vvenes (!5(3)’2’ x).

which all have cost equal to D[i(x), x].

Hence, the m% vectors selected by System 2 are

W00, ¥ Wige, 2 XD eee sy 00 ¥)
- for x = -m+l, -m3, ..., m-T, But, from equation 3.04,

Yix),1 T Vi,2 T T Vi,

for any value of X. Hence the mf selected vectors divide intom
groups, a;cording to their value of x, with the vectors in any one
QrOUp befng all the same. The.vectors in any group also have the
common cost D[1(x), x].

Bnd of proof.

—

If Sysfem 2 is starfed up with all of its vectors set equal to
the same vector, and 611 having a common cost, they become grouped
in the form indicated in theorem 3.01. This grouping will then be
maintained throughout the operation of System 2, except possibly if
the costs for two groups become equal. Simulation results show that
this is a rare or impossiblie évent, so System 2 would then be stuck-

in a mode of operation in which only m of its vectors were distinct,
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i.e, the number of vectors stored, at the start of each cycle of

the algorithm, would be effectively reduced from me to m.

The decision rules for System 3 and 4 ensure that a reasonable
variety of vectors are always present in the algorithm., Therefore
these systems will never enter a mode of operation, in whicﬁ the
number of stored vectors is effectively reduced, as can happen
with Systems 1 and 2 under certain conditions. In fact, System
4 selects vectors in such a way, that all combinations of element
values ére present, in as many of the Tatest components of the vec-
tors as is possible. This ensures that all of the vectors stored
by System 4 will be distinct, except for the first few cycles of
the algorithm, |

3.09 Number of Operations Required by Systems 1-4

System 1

System 1 selects the k vectors with smallest cost, from a group
of mk véctbrs, during each cyéle of the algorithm. Hence the k small~
est costs must be found, from a group of mk costs. There are many
methods of varying efficiency, for solving this problem, but a
fa1r1y simple method w111 be assumed here. Let the k smallest costs

“be selected as follows:

First select the smallest cost from the group of mk., This

. requires mk-1 comparisons between itwo numbers. The selected cost

is then removed from consideration, and the process repeated to find
the smallest cost from a group of mk-1. Thislrequires mk-2 compari-
sons., In this manner, the k smallest costs may be found with a number

of comparisons equal to
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(mk-T) + (mk-2) + ..... + (mk-k)

= mk? - 3k (k+1)

- System &

With System 2, the expanded set of mk vectors is considered
in m separate groups of k, each group having a -common value for
the latest component of its vectors. The'& (or k/m) vectors with
smallest cost must then be selected from each group of k. Hence

using the procedure described above for System 1, the number of

comparisons needed for each group is
(k=1) + (k-2) + ..... + (k - k/m)

= kem -5 K

There are m groups, so the total number of comparisoné required

for a cycle of System 2 is
k2 k Kk
H:(-'ﬁ_ m('ﬁ;"']))

or

k-5 &),
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‘System 3

Let & = k/m as in Section 3.06. System 3 works by first
considerin§ the set of mk expanded vectors in m separate groups.
The groups are divided according to the value of the component
which is the 2th from the righf of the vectors. The vector with
lowest cost is then selected from each group, ‘and removed from

consideration for. the remainder of the selection process.

let the number of vectors in each of these groups be:

np oty +oa +n_ =mk , (3.05)

~ The number of comparisons required to find the vector with smallest
cost, from a group of n, vectors, is ne - 1. Hence the number of
comparisons required to select one vector from each 6f the m groups

is:

(n] -1) + (n2 - 1)+ ..... + (n
\ -

+ F vaees + -
n] n2 nm m

mk -~ m

(using equation 3.05). Then m vectors have been selected, and there
are still mk - m vectors available for selection. These mk - m
vectors are now split into m groups, according to the values they

have for the {2-1)st element from the right. Note that, although
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every possible'value of this element may be présent in th; larger
setrpf mk vectors, some values may not be avaﬁ]ab]e in the remai-
ning set of mk-m vectors, Hence some of the m groups, formed
according to the value of the component which is (2-1)st from
the right, may be empty. Howevef many‘simu]ation tests have been
performed with System 3, and this situation was never found to
arise. It will therefore be assumed, for this-section, that each

of the m groups has at least one vector.

It has been shown above that, for the selection of the first
m vectors from a set of mk, mk-m comparisons are required by
System 3. Similarly, for the selection of the next m vectors from

a set of mk-m, the number of comparisons required is

(mk-m) - m
or m{k-2)
The remaining mk-2m vectors are then split into m groups, according
to the values they have for the component which is (2-2)nd from the

right, and so on. Then the total number of comparisons required

for the selection of the k vectors is

m(k-1) + m{k-2) + ..... + m(k-2)

= mkf - img (241)

.But. & is defined equal to k/m, so the required number of comparisons

per cycle of the algorithm is

K2 -3k )

which is the same as for System 2.
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sttem 4

Let ¢ be an integer such that
n¥ =k

as in Section 3.07. System 4 functions by considering the mk exten-

ded vectors in m2

separate groups, corresponding to the mg possible
combinations, of the latest £ components of thé vectors. Each of
these groups contains m Vectors, and the véctor with smallest cost
must be selected from.each group. Hence m-1 comparisons must be
made, for each of the mg’(or k) groups-and the number of comparisons

required, per cycle of the algorithm, is

k (m-1).

From Section 3.02, it can be seen that mk multiplications
(or squaring operations) must be performed by Systems 1-4, for the

calculation of the costs during each cycle.

Now consider a particular situation, in which a two level sig-
nal is transmitted over a channel whose sampled impulse response has
fifteen components. -

Then m

) | : -
14.

and g

Simulation results have shown that a value for k of 16, was sufficient
for Systems 1-4 to give a performance close to that of the V.A, detec-
tor, for some such channels. Hence k will be taken to be 16, for

this example.

Table 3.01 gives the number of multiplications required per

cycle, for the V.A. detector and Systems 1-4, for this situation.
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(The number of operations required by the V.A. was derived in

Section 2.09).

It can be seen from the table, that each of the

Systems 1-4 offers @ large saving in the number of basic opera-

tions, over the V.A. detector. System 4 offers the greatest

saving, and the number of multiplications and comparisons requi-

red, is only one hundredth of that required by the V.A. detector.

Detection Number of mu]t{plications and comparisons
Processes required for each element detected,
- with.m = 2,.k.= 16, and g = 14
V.A. o ey md = 49152
System 1 mk + mk? - 3 k(k+1) = 408
System 2 )
) mk+ k2 -5 Ky 2t
System 3 ) :
System 4 mk + k (m-1) = 48
TABLE 3.01

3.10 The Effect of a Zero as the First Component of the Channel's

Sampled Impuise Response

-

* Congider the case of a transmission channel whose characteristics

" vary with time, so that channel vector (or sampled impulse response),

is not constant. Assume also that the detectof stores an estimate of

the channel's sampled impulse response, which has a fixed number of

components., Then some device for estimating the channel vector must

be used in conjunction with the detector. Now, in a situation where

the duration of the channel's impulse response varies with time, some
P

components of the estimated channel vector may be set to zero.
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Suppose that the sampled impulse response of the channel

under consideration is

(ygy,-o--o,y)
1772

9

Define System A to be System 1 with the channel vector estimated

correctly as

(.y]s yzs ------: .yg)

and let System B be System 1 with the channel vector estimated as

'(yo. Ypo eevens ¥g)

where Yo = 0.

Let System A have k N component vectors stored at the start
of each cycle, and let System B have mk N+1 component vectors
stored at the start of each cycle. It will now be shown that Sys-
tems A and B are equivalent. (This result and similar results for

'Systemﬁ 2 and 4 were suggested by A P Clark).

Lemma 3.01 o ‘ , —

Let the k vectors of System A, at the start of some cycle of
the alyorithm be denoted Q(I), with a distinct set of costs u(I),
for

I=1,2, .....5 k.
Let the signal sample received during this cycle be r.

Now suppose that the mk vectors of System B, at the start of

the cycle in which r is received, are of the form
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(Q (I)s J)

for
I=1,2, ..... . k and R
J = -m+l, ~-m3, ..., , m=-1.

(J takes on the m possible values of a data element). Suppose also

that the costs for the vectors

(1), J9)
are independent of J and equal to
u(I) + ¢

for some co.nstant c.

Then this relationship between the vectors and costs of
Systems A and B, will be maintained at the start of the fo]]owihg

cycle of the algorithms.

For System A, the extended set of mk vectors is

|

em.r -

for

—
1

1, 2, .....s k and

~-mit, -m+3, ..... s m-1,

R
]

The costs for these vectors are given by:

V(1K) = u(1) + oA [o(n), K1y - 22
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where

Y& = (yg. .Yg_-la
(seé'Section 3.02).

Let the k pairs (I, K) which give the k smallest values of
v(I, K) be denoted

(I,» K;)

. L]

for 2 =1, 2, .....s K. | : | .

Then the k vectors selected by System A are
ﬂg(IR), KR] with costs v[IR, KQ]

for 2=1,2, ...., k.

For System B, the extended set of m2k vectors is
[Q(I}, J5 L] for

I = 1, 2, sesnas k

J : "ITH'] 3 "m+3’ ----- 3 lTl"' a!’ld
L = -mtl, -m#3, ....., -1,
The costs for these vectors are given by -

D(L, 3, 1) = u() + ¢+ 0%, [QD), 3y L]y =TI (3.07)

where;

(see Section 3.02).
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B

o), 9, Ly,

is the scalar product of XF and the latest g+1 components of

[Q(I), J, L] (i.e. the g+l 6omponents furthest to the right).

But, from the definitions of XA and !F, it is clear that

¥8 - (vA, 0)

ce M, 9 gy = X e, o

Hence, from equation 3.07,

D(I, 3, L) = uw(I) + c + (YA (1), 9y - (3.08)

Comparing equations 3.06 and 3.08 gives

D(I, d, L) = ¢ +v(I, J) ‘ | (3.09)

Now the k pairs (I, J) which minimise v(I, J) have beén denoted
(s K,)

for 2=1,2, ..... » k

——

_From equation 3.09, the value of D(I, J, L) is independent of L.

Hence the mk values of (I, J, L) giving the smallest values of

D(I, J, L) are
[IQ, KE, L]

for %

n
-—

-
™
-

-
-~
foi]
=
Q.

[
i
1

3

e

et
1

3

+

(%)

™

3
1

—
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The mk vectors selected by System B are therefore:

[Q(1,), Ko L1 for

£=1,2, ...., k and

L = -m+l, -m+3, ..... s M-1.

From equation 3.09, the corresponding costs for these mk vectors

are given by

o

D[I,, K,, L] =c¢c + v[IR, K

2 Kpo g

These are the same as the costs for the vectors

[Q(1,), K]

selected by System A, except for the additive constant c. Hence
the relationship between the vectors and costs of Systems A and B,
will be preserved at the start of the following cycle of the algo-

" rithm.

End of proof.

Theorem 3.02

Tne Systems A and B, defined above, will produce the same

detected data sequences.

Proo

The theorem will be proved with the help of lemma 3.01.
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System A, 1st Cycle:

System A initially has k stored vectors equal to the N compo-

nent vector -

(-m+1, -m+1, ....., -m+1)

One of these vectors is assigned a zero cost and the others, an
infinite cost., The extended set of mk vectors contains m vec-

tors of the form
(—m+1, M1, seaees -MH, Ii)

with costs

SryA - m+l, - )2
. [—m+1, m+t, ....., -mt], I]}g r]}

" where

11 = -mtl, -m+3, ...,y M1

“(see Section 3.02). The set of expanded vectors also contains m(k-1)
vectors with infinite costs. ry is the first signal sample received

by System A.

——

The decision rule for System A (decision rule 1) now selects
the k vectors with smallest costs, from the set of mk vectors.

Hence the k selected vectors will contain m vectors of the form

-("HH'], -m+1, ser ey —m+1’ I]),

with costs

A

- - - 2
L P N LIRS AL}
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and k-m vectors with costs = » (assuming that kzm).

System A, 2nd Cycle

The set of mk expanded vectors will contain m? vectors of

the form

(-m'l'], -m+1, ed 0s oy _m+'[’ I-t’ 12)

with costs
:{YA [-m+1, -m+] -m+t, 1,1, - r.}?
LI 3 5 se s Y . s 1.9 ]
+'-{YA f-m+1, -m+] -m+1, I I'] -~ r,}?
P N 3 cesse s L L ) g 7

(see Section 3.02), where ro is the second signal sample received

'by'System A.

I-I and 12 may each take on the values

'm+]: -m+33 .....,-m*].

‘The setof expanded vectors will also contain m{k-m) vectors with

costs = =,

4
1

Hence the k selected vectors (the ones with lowest-costs) will

contain m? vectors of the form

(-m+], “m+]’ Tees ey ”m+]9 I], 12)

with costs

2
A o i _ e
Z] L L P P LTI ST PR e rj}

J
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The set of selected vectors will also contain k-m® vectors with

infinite costs (assuming that k»m?).

System 4, itk'cycle (where i i8 the smallest integer such that

mtzk):

The expanded set of mk vectors will Contajn m' vectors of

the form

(=m+1, -m+1, ....., -mt1, I], 12, creens Ii)

with costs

i
I oh

- —ml . - o - p.12
i . [FmEl, -l L., m+1,_I], Ips veeess Ij]g rJ}

where each Ij may take on the m values
'ITH'], "'ITH'3, TN m-.l
and rj is the jth signal sample received by System A.. The expanded

set of vectors will also contain mk-m' vectors with costs = o,

i has been defined to be the smallest integer such that m' 2k,
so there are now k vectors with finite costs, present in the set of
expanded vectors. Hence the k selected vectors will be ones with

fin{te costs,

let

[I](g), I5(2)s «eee s 150001
be the values of

[I], 12, ceeees Ii]

which giVe the k smallest values for the cost function
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i
R

. ["m+1, —m+]’ EENEEE -m+]’ I Y I 3 s s ssay I-]
251 - : 1* "2

- p.}2
Hg =Ty

where & may take on the values 1, 2,'....., k. Then the k selected

vectors are the N+1 component vectors
[-m+T, -m+1, ....., -m+], I1(2), 12(2), ..... s Ii(k)]

for

2=1, 2, vivues ke

Note that the k selected vectors have been chosen from the set

of m.l vectors

(—m+1, -ITH'.I, s v ey 'm'{"], I'l, 12, ----- [ I.i)
where each Ij may take on the m values:

"m'}'], "m+3, tvensy m-]-

Hence the k selected vectors are distinct. (This result is needed

only for the justification of an ear]ier comment).

System B, lst ciycle

At the start of the first cycle, System B has mk stored vectors

which are set equal to the N+1 component vector
(_m'!'.l, "'m+.|, .....,_‘m'ﬂ)

One of these vectors is assigned & zero cost and the others, infinite

costs (see Section 3.02).

The estimated channel vectors for Systems A and B are:

(y]S yza cisaes Y ) and

(0’ Y]’ y23 LR NS ] y
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respectively, therefore

Y8 = (vA, 0) . (3.10)

where 1? and Xﬁ are formed by reversing the channel vectors for
System B and System A respectively. Therefore the received signal
samples will be the same fbr Systems A and B, except that System B
will receive an extra sample re at the beginning. But, from

equation 2.07,

0
ro=J sy ,+w
0 h= g h Yo-h 0
where {Si} is the sequence of symbols sent out by the transmitter,

' and'{wi} is a sequence of noise samples, In defining System B, y

was set equal to zero, therefore

and it can be seen that L does not contain any information about

‘the data sequence

S‘O’ S-l, 32, re et

Hence the extra signal sample Fo? received by System B, does not
“represent the data sequence, and fhe received sequences for the

two systems are effectively the same.

Following the algorithm for System B (see Section 3.02), the

set of m?k expanded vectors will contain m vectors of the form
(-m+1, -m+1, .....,.-m+1, J])

in the first cycle. The costs for these m vectors are:
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P

R [-m+] I "ITH'] 3 s , -m+-] [y J.I]g'l'] e ro}z
where J] may take on the m values -m+l, -m+3, ....., m=-1. The set
of expanded vectors will also contain m?k-m vectors with infinite

costs.
Now

B
.Y- . [_m+T, 'TTH'], s er e ey -m+], J]]g‘l'.l
is the scalar -product of XF and the vector formed from the ng

components of

A
Y8 [emal, m, L. T o A A )

Hence the m vectors ofi the form

{(-m+1, -m+1, ....., -m+l, J])s

"

in the set of expanded vectors, have costs equal to*b, where

c =V {_Y_A' [_m+]’ -m+]3|--oo, 'm‘l".l]g - r'o}z

The mk vectors selected during the first cycle, are the ones with
smallest costs, Hence this set of vectors will contain m vectors

of the form

(_m"l']’ -m+1, ree sy "'ﬂH‘], J'I)
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with costs equal to ¢, and mk-m vectors with infinite costs.

System B, 2nd cycle

The expanded set of m?k vectors will contain m® vectors of

- the form

(-mtl, -mil, Lol mmH], 9y Jp)
with costs equal to
c.+-{XF. [-mts ~ml, oo, -ml, dps J2]9+] - rl}z

(see Section 3,02). The expanded set will also contain m2k - m?
vectors with infinite costs. Now, applying equation 3.10, the

costs for the first m* vectors may be written as
T ,
Cc + {i . [—m+]’ —m+.l’ s as ey 'ITH'.[,_ J'l]g = r"l}

The set of mk selected vectors will contain these first m? vectors,

plus mk-m2 vectors with infinite costs.

Systen; B, (i+1)st cyecle . . e
} The set of m?k expanded vectors will containm""‘l vectors of
the form
(~-m+1, ~m+1, .o.ooay =m+l, J1, JZ’ ..... R Ji+1)

where each Jj may take on the m values

-m+.|’ -m+3, YEEEX] m'].
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The costs for these m1+1'vectors are

.i
c+ §

. ["'m'i"l, -m+1’ .....,'ITH'], \J'I’ ng L \JO]
=T

2
-T.
J°9 J}

The set of expanded vectors will also contain mzk-mi+] vectors with

infinite costs.

i hés been  defined to be the smallest integer such that miz;k,
so the number mi+1, df vectors with finite costs, is greater than
or equal to mk. Hence the mk vectors selected by decision rule 1
will all have finite costs, and will come from the set of vectors

of the form

("m‘l'.l, '-ITH'], srs s ey "'!TH'.I, J"Ig J2, ter ey Ji“l'])

The values

[1(2)5 1p(R)5 ... » 13(0) )

for 221, 2, couus k

have been defined to be the values for

4
1

(1> Tps evvens 1)

which give the k smallest values for the cost function

i
Lot [, m, e, w1, Ly e
=t =

;]

_ 2
j rst

S

(see the analysis of System A, cycle i).

Hence the mk vectors of the fdrm

("m'l'], "m+], ..... s 'm+1, J],Jz, ----- Y J_i_l_-l)
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which give the mk smallest values for the cost function

c+ 3 o [, e, L, e, Jys J

are the vectors
[—m+1, -ITH'], esaeay -m+1, I-I(R)g 12(2)9 ¢y I.i(,q,), J_i+']]

for 2=1, 2, ...., k.
and J_i_l_-l = "m'l'.l, "m+3’ ----- . ITI-'I .

These are the mk vectors selected by System B in the (i+1)st

cycle.

Now consider cycle i of System A and cycle i+1 of System B.

These are the cycles in which Systems A and B receive the signal

sample ry. Let the k vectors selected by System A, in cycie i,

be denoted
R(I)
\

for I1=1,2, ....., k.

_and let the corresponding costs be denoted u(I). Then the mk vectors

retained by System B in the (i+l)st cycle are .

[R(I} J]

for 1=1,2, ....., k

]

a.nd J —m+]’ "m+3’ 400y m‘].

The corresponding costs for these mk vectors are ¢ + u(l). (They are

independent of the value of J).
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Now, applying Temma 3.01, it can be seen that this relation-
ship between fhe vectors and costs of Systems A and B, will be
maintained at the end of the next cycle of the algorithms. Clearly
lemma 3.01 can be applied again and again, and this re]afionship
will always be maintained, '(It has been assumed here that the k

costs u(Il) are always distinct).

Of theN+] component vectors R(I) stored by System A during
some cycle, the component furthest to the Teft of the vector with
smallest coSt, is téken as a detected element. Similarly, in the
corresponding cyc]é of System B, the earliest element of the N+2
component vector [R(I), J] with smallest cost, is taken as a detec-
ted element. But it can be seen from the above analysis, that the
vectors R(I) of System A, have the same costs as the vectors
[R(I), J] of System B. Therefore bbth Systems will produce the
same detected data element., This is clearly true for all following
cycles of the algorithms. .

End of proof of theorem 3.02.

From theorem 3.02 it can be seen that, if the estimated

channel vector

I (0, y'ls yzs v ey .Yg)

is used with System 1, instead of the channel vector

(y'ls yzg crsny yg),

then m times as many vectors are needed to produce the same detected
data sequence. Hence, if the number k of vectors stored by System 1,
is a multiple of m, then the extra zero effeﬁtively reduces k by a

factor of m. The nunber of components of the vectors is also effec-

tively reduced by one.
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The effect of an extra zero, at the start of the channel's
sampled impulse response, will now be examined for System 2.

Define System C to be System 2 with the estimated channel vector
(Vg Yp» eenees ¥g)

and mk N+1 component vectors stored at the start of each cycle.

Yo is defined equal to zero, as for System B.

Lemma 3.02

As in Temma 3.01, let the k vectorg stored by System A at the
start of some cycle, be Q(I), with a distinct set of costs u{I),

for

Let.the signal sample received by System'A, in this cycle, be r.
Suppose that the mk vectors stored by System €, in the cycle in

which r is received, are

- 19(1), J]
for 1=1,2, ...., kK~ -
-and J = -m+l, -m+3, ....., m-1.

Suppose also that the costs for these mk vectofs are independent
of J, and equal to ¢ + u(l) for some constant c. Then this rela-
tionship, between the vectors and costs of Systems A and C, will

be maintained at the start of the following cycle of the process.
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The proof of this lemma is similar to that for lemma 3.07T.

For system A, the set of mk expanded vectors is

[Q(I), Xj
for T =1,2, ..... , k

and K = -m+1, -m+3, ..... , m=1.

The costs for these vectors are given by

V{1, K) = (1) + rh o), K1 -} (3.11)

(see Section 3.02). Let the k pairs of values (I, K}, which give

the k smallest values of v(I, K), be denoted

[1(2), K(2)]
.for 2=1, 2, .c... s K.

Then the k vectors selected for System.A are

[Q(1(£)).K(2)]

for =1, 2, «eu.n , K.

For System C, the expanded set of m?k vectors is

(1), J, L]

for I =1, 2, ..... , K.

("
i
1

3

-

-

o
1

3

+

(L)

~

3
]

——t

and L

1

!
=1
+
—r

I
=
+
Lo

-
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The costs for these vectors are given by

DI, J, L) = c +u(1) + YA (o), g - r¥

(see equation 3.08). From this equation and equation 3.11, it -

follows that

D(I, J, L) = ¢ + v(I, J) . (3.12)

System C is a System 2 process, so it uses decision rule 2. Hence

k vectors of the form

[Q(1), 4, L]

must be selected, for each possible value of L, i.e. the k values

of (I, J), giving the smallest values of the cost function

D(I, J, L), must be found for each value of L. However, from
equation 3.12, it can be seen that the value of D({I, J, L) is inde-
pendent of L. Hence, fpr any given value of L, the kX pairs of
values (I, J) which minimise D(I, J, L), are the ohes which minimise

.v(I, J). These values have been denoted
[1(2), K(2)]

for 2=1, 2, ....., k.

Hence, for a given value of L, the k vectors selected by System C

are

[Q(I()), K(2), L]

for £2=1,2, ....., k. The mk vectors selected by System C are

[Q(I(2)), K(2), L]
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for =1, 2, ....., k

and L

"'m+.lg -m+3, s w v by m-]n

The costs for these vectors are independent of L and are equal to

c + v[I{2), K(R)]

These are the costs for the k vectors

[Q(1(2)) K(2)]

selected by System A, except for the constant c. Hence the given
relationship between the vectors and costs of Systems A and C, will

be maintained at the start of the following cycle.

End of proof.

Theorem 3.03

Systems A and C will produce the same detected data sequence,

Proof
Details of the cycles of System A, up to the ith cycle, are

given in the proof of theorem 3,02, where i is defined to be the

R

least integer such thatnﬁ 2 k.

System C, 1st cycle

Initially System C has mk stored vectors, each equal to the

N+1 component vector
(-m+1, -m+l, ..., -mHT)

One of these vectors is assigned a zero cost and the others, infinite
costs. (See Section 3.02). It will be seen that System C produces

the same vectors and costs; in every cycle, as System B.
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C_ .
Letl "'(yg’ yg_'lg L) yo)

c

where y =0, so that Y” is the reverse of the estimated channel

vector for System C. Then

=0 S (3.03)
and ic is the same as XF. As for System B, tﬁe first signal
sample oo received by System €, is independent of the data sequence.

The expanded set of m?k.vectors will contain m vectors with

finite costs, of the form
_'(-m+1, ~m+l, voue.,y =m+l, J])
where J; can take on the values
-m+1, -m+3, ....., -1,

The costs for these m vectors are

C

{Y". [-m+1, -m+1, ..... s ~m+l, J r 32

1]g+1 "o

(See Section 3.02). The set of expanded vectors will also contain

m*k -m vectors with infinite costs. -

Using equation 3.13, it can be seen that

O [mel, omel, oL, e, YA, e,

]g+]
Hence the first m vectors in the set of expanded vectors, have costs

{XA o [-mEl, -mel, L., -m+1]g - ro}2 = ¢, Say.
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Now, according to decision rule 2, the k vectors of the form

1

(-m+1, _m+]’ ses ey ;m+]’ J])

with smallest costs, must be seleted for each possible value of
J]. In the expanded set, there is one vector with cost ¢, and
k-1 vectors with infinite costs, for each value of Jye Hence

the m vecfors with cost ¢ must be among those §e1ected. The set‘

of mk selected vectors will therefore contain the m vectors

(-ml, -m+l, L.el, -mEl, Jy)

for J] = -m+l, ~-m4+3, ..... s, M-1,

with costs equal to c¢. mk-m vectors with infinite costs, will also

be selected.

System C, 2nd cyele

As for System B, the set of m?k expanded vectors will contain

‘m? vectors of the form:

(-l -mdl, oo, L, dgs )
with costs

¢ + A [, w1, e, omH, Nlg = Ty

The expanded set will also contain m?k -m? vectors with infinite

cos ts.

For each value of Jz,.the k vectors of the form

(-m+1, -m+], ----- Y _W+1, J]g Jz)



144

with smallest costs, will be selected by System C, (i.e. by
decision rule 2), There are m such vectors with finite costs,
for each of the m vaiues of Jps SO all of the vectors with finite
costs will be selected (assuming that k>m). Hence the set of

mk selected vectors will contain m? vectors of the form

(-m+1, ~m+j, cereay =M1, J], J2)
with costs

A _ | - - - 2
¢+ {Y. [-m+l, -ml, ..., , ~mtl, J]]g ryd

This set will also contain mk -m? vectors with infinite costs.

System C, (i+1)st cycle

The set of m?k expanded vectors will contain m1+1 vectors of

the form
(-m+]’ ”m+], -c.ooa ,"'m+.|’ J'l’ J2’ LN J’I']"I)

with costs equal to

.i .
A . 2
+ " -m+ s - s ecvsngy O s sevea . - x
¢ jg_l 00 [-m41, -m) ml, Js - 3l r}
—mzk-m1+1 vectors with infinite costs will also be included in the

expanded set. i has been defined to be the smallest integer such
that m12;k, so there are mk or more vectors in the expanded set,
with finite costs. In fact, for each of the m values of Ji+1’ there

are k or more vectors of the form

["m"‘], '“H‘], sesray -ITH'], J], st ----- ’ J,-'+-|]
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with finite costs. The k vectors with smallest costs must now be

selected, for each value of J1+1.

the k selected vectors are given by the k values of

Hence, for each value of Ji+1’

(J'l’ st *e Py J_i)
which minimise the cost function

{IA. R I A PR I PR P B Y &

o
o g "3

Jj=1

But these values have been denoted
[I'i(g’)! 12(2)5 sseey Ii(gl)]

for £=1, 2, ..cvy K. (See the analysis of System A, cycle 1).

Hence the mk vectors selected by System C, in this cycle are
[-m+], 'm+1, o;.., -m+1, I](R), 12(2), Tes e Ii(l), Ji+]]

for £.=1,2, .vuu, k.

and Ji+1 = -m+1, "m+3, EEEEE] m-]o
\

1

It can be seen that the vectors and costs stored At the end of
the (i+})st cycle, are the same for both System B and System C.
Hence the argument used in theorem 3.02 also épp]ies for this case
with System C, except that lemma 3.02 must now be used in place
of lemma 3.01. Systems A and C therefore produce the same detected

data sequences.

End of proof of Theorem 3,03.
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Now consider a situation with System 1 using the correct

estimate

)

(.y-ls y2, ......’ yg

of the channel's sampled impulse response. Then, from theorem
3.03, it can be seen that System 2 requires m times as many stored
vectors as System 1, to produce the same detected data sequence,

if it uses the incorrect estimate:

_(0, .Y-ls 'YZ’ seesay yg)

of the channel vector.

The simutation tests described in Chapter 4, show that thes
performances of Systems 1 and 2 are usually about the samé, for a
given number of stored vectors. Hence, where the number k gf vec-
tors stored by System 2; is a multiple of m?, insertihg an extra
zero at the start of the channel vector, effectively reduces the
'number of stored vectors by a factor of m. Note that System C
was dgfined to be operating with N+1 components in each vector,
whereés the vectors'of System A had N components. Hence the addi-
tion of the extra zero, also effectively reduces the number of

. these components by one.

The effect of the extra zero, at the start of the channel vec-
tor, will now be investigated for System 4. Define System D to be

System 4, with the estimated channel vector

(.V}: .Vz’ N A

g

and k N component vectors stored at the start of each cycle.
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Also define System E to be System 4, with the estimated channel

vector

('YO’ .y]s sesses Y )

g

and mk N+1 component vectors stored at the start of each cycle,

where Yo = 0.

Lemma 3.03

Consider some cycle of the detection process, in whicﬁ the
signé] sample r is received by System b. Let the k vectors stored
at the start of this cycle be denofed Q(I) with a set of distinct
costs u(I}, for I =1, 2, ....., k. Suppose that the mk vectors
of System E, at the start of the cycle in which the sample r is

recejved, are

1
—
-
~
-

for 1
and J = -m+1, -m+3, ....,. m-1

Suppose also that the cost for each vector -
[g(1), Ji

is independent of J, and equal to
¢ + u(l)

for some constant ¢, Then this relationship between the vectors
and costs of Systems D and E, will be maintained at the start of

the next cycle of the algorithm.
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Proof

System D is a particular case of System 4, so the set of k

vectors

1), Q(2)5 «..nus Q(K)

contain all possible combinations of the ]ateét £ components, where

2 1is given by

k - mg

Henée these k vectors may be divided intq m sets, of the form
‘QI(K), where I is the value of the component whfch is 2th from

the righf. Then each value of K corresponds to a particular combi-
nation of the latest 2-1 components-of the vectors., [ may take on
the m values -m+l, -m+3, ....., m-1,

and K may take the values,
]’ 2, “ht ey k/mo

For System D, the set of mk expanded vectors are of the form

10} k), 1]

for K=1,2, ....., k/m;
I = _m+]’ ..m-|-3, ----- s m-1

and L = -m+1, -m+3, ....., m-1,

The costs for these vectors are given by

v(I, K L) = ul g+ 00, 1ol(x), Llg - T2 (3.14)

(see Section 3.02), where uI(K) is the cost for the vector QF(K) and
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D _
i = (ygs .yg_]s tesany .Y'l)'

The value of K dictates a'particular combination of the latest 2-1
components of QI(K). Hence the values of K and L dictate a parti-

cular combination of the latest 2 elements of the vector

Q! (x), L1.

. According to the decision rule for System-D (i.e. decision
rule 4), the vector [QF(K); L] with smallest cost, must be selected
for each bossible combination of the latest £ components. Hence,
for each value of (K, L) one value of I must be chosen. Let this
va1ue.0f I be denoted I(K, L). Then, for given values of K and L,
the value of I which minimises the cost function v(I, K, L) is

I(K, L). Hence the k vectors selected by System D are

p

[Q" (K), L]  with costs: v[P, K, L]
for K=1, 2, ....., k/m
cand L = -m4l, -m+3, ..... s m-1
with P =

(K, L).

4
L

For System E, the set of m?k expanded vectors is

'), 9, L1

for K=1,2, ....., k/m
J = "m+.l., "m+3, sssaey m-.l
and L = -m+l, -m+3, ,...., m-1,

The costs for these vectors are given by

D(I, K, J, L} = ¢ + u (K)+ O¥E. ol(x), 9, Ugp - 132 (3.15)
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(See Section 3.02), where

E _ .
Y "'(yg’ yg-1’ PR ) y-l, 0).

Clearly, by definition,

¥ = (fP, o)

therefore

E

v olwy, 9, Lgs = 2, ef(x), g

Therefore, equatioﬁ 3.15 becomes
D(I, K, 3, L) = ¢ + o} (K)+ ¢v2, 1ol(x), 9g - 12
Hence, from this equation and'equation 3.14
“D(I, Ky, J, L) = ¢ + v(I, K, J) | _ (3.16)

The value of K dictates a particular combination of the latest -1
elements of gI(K). Hence the values of K, J and L dictate a parti-

cu]ar\combination of the latest 2+1 elements of the vector

R

k), 9, 1)

Now, according to the decision rule for Systeﬁ E, the vector with
sma1le$t cost must be selected, for each possible combination of the
latest 241 components. Hence, for each value of (K, J, L), the
value of I which minimises the cost function D(I, K, J, L), must be
found. But, from equation 3.16, the value of I which minimises

D(I, K, J, L) for given values of J, K and L, is the value which
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minimises v(I, K, J). This value of I has been denoted I{K, J).

Hence the mk selected vectors for System E are

1QP(K), 3, L]

for K=1, 2, «....., k/m
J = -mti, —m+3, ;..;., m-1
and L = -mtl, —m+3? ..... s m=1
~with P = I(K, J).

The costs for these vectors are

¢ + viP, K, J]
where
v[P, K, J]

is the cost for the vector

selected by System D. Hence the relationship between the vectors
and césts of Systems D and E, that existed at the start of the cycle,

is maintained at the start of the next cycle of the process.

End of proof of lemma 3.03.

Theorem 3,04

Systems D and E will produce the same detected data sequence.
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Proof:

System D, 1st cycle

Initially, System D has k stored vectors, each equal to the N

component vector

(-m+1, -me1, ....., -mtl)

One of the vectors is assigned a cost of zero and the other vectors
are given infinite costs. The set of mk expanded vectors contains

m vectors of the form,

(-mt+1, -m+1, ....., -mtl, 11)

with costs
{YD [-m+1, -m+] “mtl, 1.1 - )2
L. E] 9 seery » ]g -I
where r is the first signal sample received by System D, and I] may

take on the m values

-mtl, -m+3, ....., M-1

(see Section 3.02). The set of expanded vectors also contains mk-m
vectors with infinite costs. System D uses decision ruié 4, so the
vector with lowest cost must be selected, for each possible value

of I]. The set of k selected vectors is then-completed with an
arbitrary selection from the remaining mk-m vectors. The k selected

veciors will therefore contain m vectors of the form

(-m+1, -m+1, ....., -mtl, I])
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with costs

D

- - oo - 2
A m+]f M, oe...s -mtl, 11]9 r]} .

k-m vectors with infinite costs are also contained in the set of

selected vectors.

System D, 2nd cycle

The set of mk extended vectors will contain m? vectors of the

form

{-m+1, -m+t, ....., 7m+1, 11, 12)

with costs
2 D ' : \
. _+g-+,o---o’— ,I y s tev e . - .
izl {Y°. [-m+1, -m+] mtl, Ip, I, IJ]g‘ rJ}

The set of extended vectors will also contain mk-m? vectors with
infinite costs. Now, according to decisién rule 4, the vector
with lowest cost must be selected for each possible combination

of the latest two components. (For components qther than the
tatest two, only one value is available in all of the mk vectors).
The set of k selected vectors will therefore contain méfvectors of

- the form
("ITH'], -m+1g INNEER Y -m+], I'I) Iz)

with costs

2 .
D : _ p 32
=.| {'Y_ - [-m+1, -m+]’ " ean sy "m+.|, I-I, 12, s eaey Ij]g Y'j}

J
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This set will also contain k-m? vectors with infinite costs

(assuming that k= m?).

System D, Lth cycle

The set of mk extended vectors will contain mg vectors of

the form
(~m+1, -m+l, ..., -mtl, Iys Is ceenes Iﬂ)
with costs
§ {YD -m+1, -m+l -m+l, I,, 1 1.1, - r.)?
j:] — " [m L] 3 tecse ] 'I" 23.-0--’ jg J.

The expanded set will also contain mk - m" vectors with infinite
-costs, & has been defined to be the integer such that k = mg, SO
this set of mk vectors contains k vectors with finite éosts. The
vector with smallest cost must now be chosen, for each possible
combination of the latest g components, Hence all of the vectors

with finite costs will be selected. The k selected vectors will

be of the form
\

I ("m+]’ -m+]’ sy -m+1, I-l, 12, s e ey IR,)

with costs

2
D N ) _e2
‘}-Z] {.Y_ ] [ m+.|, m+.|g LI IR ) m+]’ I], 125 “ o sy Ij]g Y'J}
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System E, 1st cycle

Initially, System E has mk stored vectors, each equal to the

N+1 component vector

(-m+l, -m+l, ..., -mt])

One of the vectors is assigned a zero cost and the others, infinite

costs.

The set of m?k extended vectors ﬁ111 contain m vectors of the

form
(-m+1, -m+1, ..... s ~mtl, J])

with costs
{YE [-m+1, -m+1, | -m+1 d ] -r )2
1. Py 9 s sseas L 'I g_l_'i 0

where L is the first signal sample received by System E. J] may

take on the m values
-m+], -m+3’ ‘....., m--i

' E _
and Y - (yg, yg_'lg ----- £ Y]’O)

From the definitions of XP and IF, it can be seen that
=l 0)

Hence

E

¥ ’

[-ITH'], "ITH'], s evay "‘H‘H‘l, J'l]g+-|=_Y_ - {‘m‘!"], -m+1, es ey -m+]]g

Hence the set of extended vectors contains mrvectors of the form
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("'ITH'.], 'I'IH'.!, . -;05 "‘ﬂ'H'], J'I)

with costs ¢, where

vl _ - - 2
R A B L ol

(These costs are independent of J]). The set of extended vectors

also contains m2k-m vectors with infinite costs.

According to decision rile 4, the vector with smallest cost
must be selected, for each‘of the m possible values of J]. The
set of selected vectors is then made up by choosing mk-m vectors
arbitrarily from those remaining. Hence the set of k selected
vectors contains mk-m vectors with infinite costs and m vectors of

the form

(~m+1, -m+l, Looel, ~mil, J])

with costs equal to c.

‘System E, ond cycle

The set of m?k extended vectors will contain mk-m? vectors with

]

infinite costs, and m? vectors of the form o

(-m+l, -m+1, ..... , M1, J1» J2)
with costs
D . oy - . Y
c+ {Y ., [-m1, -ml, ...., -m+l, J1]g rl

The vector with smallest cost must be selected for each possible
combination of the lTatest two elements, thus giving m® selected vec-

tors. The set of selected vectors is then completed with an arbitrary
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choice from the remaining m®k -m? vectors. Hence the set of mk
selected vectors will contain mk-m?vectors with infinite costs,

and m? vectors of the form

(-m+]’ 'm+], PN —m+], J]’ J2)

with costs equal to

-~ ¢vD _ _ 2
c+ {1_, [-m+1, ml, ..., -mH], Jl]g r]}

System E, (+1)st cycle

The set of m?k extended vectors will contain mzk-—m2+1 vectors
with infinite costs, and m2+] vectors of the form

(-m+], -m+1, s s0 0y 'm+1, J], J2’ s sn ey J£+])
with costs equal to

R"D ' ,
+ . -+ s = 3 ressay. + - s 3 sssss 3 . - r,
c jz} {Y". [-m+ m+1. m+l, Jdys Jy 9514 J} .
2

2 is defined to be the integer such that k = m™~, so there are now
mk vectors with finite costs. The vector with smallest cost must
be selected for each combination of the latest 2+1 components, so

" the mk selected vectors are of the form

(”m+1, 'm+], ¢ ey 'm+], J], Jz, s sra vy J£+1)

with costs equal to

L
c+ § 0P

. ["m+1’ -m+.l, ces 44y "l'lH'T, J]’ Jz, YR IJ-] - rO}z
J=1

J°9 J
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Now consider cycle & of System D and cycle 2+1 of System E.
Denote the k vectors selected by System D, in cycle &, by R(I) and
their costs by u(l), for 1 =1, 2, ..... » k. (These k costs are
assumed to be distinct). Then, from the above analysis it can be
seen that the mk vectors.selected by System E, in its 2+1st cycle

are

[R(I}, J1 with costs

¢ + u{l)

'FOY‘ I=.I, 2’ .-;-o,k

and J

""m+], "'m+3’ tesany m—.lo

From Temma 3.03, this relationship between the vectors and
costs of Systems D and E, will be maintained at the end of the
following cycle of the process. Clearly the lemma can be applied
again and again, sb this relationship will be maintained dﬁring

-~ all future cycles.

0f thekN+] component vectors of System D, the one with smallest
cost gives the detected data element {n each cycle. The element
detected is the componént furthest to the 1eft,.of the vector R(I)
with smallest cost. With System E, the component furthest to the left,
_ of the N2 component vector (R(I), J) with smaliest cost, is detected.
It can be seen from the above analysis, that the costs for the vectors
R(I) of System D, are the same as the costs for the vectors [R{I}, J]
of System E. Therefore both Systems will produce the same detected
data element. As the vectors and costs of the two Systems remain
linked, in the manner indicated above, it is clear that all detected
elements will be identical for the Systems.. |

End of proof of theorem 3.04.
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From theorem 3.04, it can be seen that, if the estimated

channel vector

is used instead of

(y-I! yzp srrray y ).

g

then m times as many stored vectors are needed by System 4, if
the same detected data sequence is to be produced. Hence inserting
a zero at'the start of the channel vecfor, effectively reduces the
number of stored vectors by a factor of m, (where m is the number
of signal levels), The number of componenfs of the stored vectors
is also_effectively reduced, by one. By means of theorems 3.02
and 3.03, it has been shown that this result also holds for System
1, and is approximately true for System 2. However no such result
appeafs to be available for System 3. The simuTatioh results of
Chapter 4 show, in fact, that System 3 is affected much more
| severely than the ather'systems, by the presence of an extra zero

at the start of the channel vector.

3.11 The Effect of an Extra Small Component at the Start of the
Channel's Sampled Impulse Response

It has been shown in Section 3.10, that adding a zero at the
start of the channel vector, effectively reduces the number of
stored vectors by a factor of m, for Systems 1, 2 and 4. It seems
reasonable that this result should also hoid approximately, if a

small value is added to the channel vector instead of a zero.
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This is shown to be the case, at Teast for some channels, by means

of the simulation results presented in Chapter 4.

If the first component of the channel's sampled impulse res-
ponse is very small, it is probably best for the detector to ignore
this component completely. The estimated sampled impulse response

would then be
(Y15 Ypo .....,-yg)' instead of (ygs ¥ps vevees yg)

An alternative method for improving the performance of the
deteqtion processes, when A is small, will now be considered.
Let the z transform of the channel's sampled impulse response be
Y(z). (The z transform was defined in Section 1.11). Let the

roots of Y(z) with modulus greater than one be denoted

Oi]’ (12, “ave s apa

and Tet the roots with modulus less than 6r equal to one be

Then

L

Y(z) = c(z'1— a]'1)(z'1-a2'1)...(z']-ap'l)(z'1—81'1)(2'132"1),‘(z']_sq‘l

for some constant c. Note that Y(z) may be written as a power
series in z—]. The constant term of the power series is the first

component of the channel's sampled impulse response. Hence

S S I S 5
yO = COL] 0'.2 vasas O 8" 62 EEER) Bq (-.l)
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where all of the terms o have modulus greater than oﬁe. 'Clear]y,
if the channel vector could be transformed so that the a; terms
are replaced by their reciprocals, then Yo would be increased in
size. Hence consider the linear filter whose z transform is

given by

ST gy, =1-T -1_-1
(72 1) (0" 2 ) e ()T

-1 =1

Y*(z) = - o | Z
(z -0y )z =0y Y vveee {27 - )

If this filter is placed between the sampled received signal and
the detector, the sampled impulse response estimated by the receiver
will have z transform given by |

Y(z) Y*(z) = c(u1-1z_]-1)(a2-1z"1-1)...(ap—]z-]—1)(z-1-81-1)

Now the constant term of the power series is

c 3]'1-82'1..... Bq-]

whichtmay be considerably larger than for the case without the linear
fthér. Hence the linear filter with z transform Y*(z) may be used
" to effectively alter the components of the channel vector, in such

a way that the first component is increased in size. This may be.

expected to improve the performances of Systems 1-4.

Note that it may be shown, that the type of linear filter des-
cribed above introduces only pure phase distortion in the received
signal [6,14]. For a case where the channel characteristics vary

with time, it may be of advantage to use a linear filter of this type,
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which adapts to the changes in the channel. Then the first component
of the chamnel vector, as seen by the detector, will always

be reasonably large. Some simulation results are

presented in Chapter 4, which demonstrate the improvement in per-

formance offered by such a filter.

3.12 Probability of Error with Systems 1-4 when Used with the
Ideal Channel .

Each of the Systems 1-4, start off with a number k of N

component vectors given by
_g_-l (I) = ("m‘l'.l’ -ITH'], st s en "'m+.t)
The corresponding costs are given by

u_4(I) =)0 for I =1

N U

o  for I

“These vectors are extended to the mk N+l component vectors
IO (1, XO) = [.Q..] (1), x()]

= [-mHl, -m+l, ..., -mt], Xo]

where X, may take on the values
'm'l"lg "m+3’ “asssay m"]o

The costs for these extended vectors are given by

VolTs %)) = uq(1) + L [To(L, %) gy = Tol?
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(see Section 3.02), where L is the first received signal

sample, and Y is the vector formed by reversing the channel
vector. Here, the channel vector being considered has just one
component equal to unity, (this being the definition of the ideal

channel)}, so

Y=1 . and g=0

Hence
- - _ 2
Vo (Is X)) = uy(I) + (x; - r,)*.

Let s& be the data element value which is closest to rb. Then
the vector, frbm the set df mk extended vectors, with smallest

+ 1
cost is Io(l, So ), or

(-ITH-], -m+-|’ TEEER] -m+]’ SO')

The cost for this vector is (s ' - ro)z.

Now, according to.the appropriate decision rule (either rule 1,
2, 3 orr4), k of the extended vectors will be selected and retained
for use in the following cycle of the algorithm. All of the deci-
sion rules are designed in such a way, that the vector wjth Towest
cost will be among those selected., Hence Io(1, so').w111 be retained

“for the coming cycle.

In the second cycle, the mk extended vectors will be of the

- form
I](I’ X-I) = (-m+'i., M4l c.ie.s -MHD, XO’ x])-

m of these vectors will have stemmed from the N component vector
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("lTH‘], '[TH"1, se s s ey "'ITH'], So‘ )

with cost equal to (so"- ro)z. The costs for these m vectors
are given by

vi(l, %) = (s = r0)2 Y pmET, mil, e, s s %]

2
0 rl}

g+1 -

(sg = To)2 + (xy = ry)?

as Y is the scalar, 'one', and g = 0,

Now let s]' be the déta element value which is closest to ry-
Then the vector from the set {T,(I, x,)}} with smallest cost is

‘given by

Iﬁ(], s0') = (-mtl, -mil, L, omel, st sy')

and its cost is given by

Yills s ) = (55 - )%+ (g - 1)’

Simi]ar]y, in the third cycle of the algorithm, the extended vector

“with smallest cost is the N+1 component vector
(-ﬂ'H'], "’m+1, e a ey "m+.lg So‘ s S]' FY Szl)

where 52' is the data element value which is closest to the third

received sample T
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Now consider the (k+1)st cycle of the process, in which the
signal sample ry is received, Llet the extended vector with

smallest cost be denoted

(sk"*N ) Sk:'N'H' vevesy Skl )

Then it follows from the above analysis, that S{ is the data
element value which is closest to the received signal sample ris

for

§ o= keNy k=N#Ty vovnns Ko

Each of the Systems 1-4 afe designed in such a way that the data
elements {s;} are detected as the component furthest to the left,
of the vector with smallest cost, in each cycle. Hence each data
element S is detected as the data element value which is closest

to the received signal sample r Therefore, with-the ideal

i
channel, Systems 1-4 produce the same detected data sequence as the
non linear equalizer described in Section 1.13. (See Section 1.14).
This of course implies that the probability of error, in the detected
sequence, is the same as that for the non linear equalizer, and is

given by

P = Prob (w; > 1)

" for the case of binary signals
and

Py = 1.5 Prob (w; > 1)

for quaternary signals. (wi is a normally distributed random variable,

with zero mean and given variance}. It should be noted that these
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results are independent of the number k, of vectors stored by

the detection processes,
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CHAPTER 4

4,01 The Value of Computer Simulation Testing

When detection processes such as Systems 1-4 have been
designed, perhaps the most obvious method for assessing their
performances, would involve constructing a piece of hardware (an
electronic circuit) which carries out the required operations.

The detectors could then be used as part of a data transmission
system, and the number of errors occurring may be measured. How-
ever this approach to the evaluation of.the detection processes,
does have some disadvantages. After the various pieces of hard-
ware have been constructed, it may be desirable to make some modi-
ficatfons to the processes. -Extensive and time consuming altera-
tions may thén be required, even for‘apparent1y small changes in
the algorithms. The construction of the necessary electronic cir-

cuits itself, may also be a difficult and expensive task,

Another approach that shodid be considered, for evaluating the
detectors, is one of thorough mathematical analysis. It would be |
very useful if an expression for the proportion of errors expected,
in the detected data sequence, could be derived for Systems 1-4.
Such a derivation would however appear to be a difficuTt task, due

“to the number and type of operations required by the algorithms.
Forney [35] has obtained a bound for the probability of error in
the detected data sequence, for the Viterbi Algorithm. It may be

possible to apply a similar analysis to Systems 1-4,

The performances of the various detection processes were, in

fact, evaluated by means of computer simulation tesis. i.e. a program
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was written for a modern high speed digital computer, which per-
forms the necessary operations on any given sequence of received
signal samples., This method has the advantage, that the cost of
the materials required to produce the program is negligible. Also,
quite fundamental modifications can sometimes be made to the algo-

rithms, by just retypinga few instructions.

- The main disadvantage of computer simulation testing, seems to
be that a very Targe amount of computing time is required, to obtain
some types of perfofmance figures. Even on a reasonably fast digit§1
computer such as an ICL 1904A, some hundreds of hours of‘program run
time would be needed to produce the data supplied in this chapter.
Many of the longer program runs were carried out on a CDC 7600 com-
puter, situated at Manchester University; The shorter runs were on
the ICL T904A at Loughborough Univeréity. The programming language
used on the 1904A was 1900 Fortran, which is very similar to Fortran
IV, Apart from a few statements having to be altered, these programs

were also suitable for use on the CDC 7600.

One poiﬁt to bear in mind with computer simulation testing, is
that most‘computers can store numhers and perform calculations, to
a high degree of accuracy. However, if a piece of hardware was
constructed to implement the detection processes, arrelafﬁvely crude
“calculation facility would probab]y be employed, to reduce costs.
Hence the simulated detection procésses, may be expected to perform

. $1ightly better than those implemented in practice.
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4,02 Simulation of a Data Transmission System

The different detection prbcesses were tested for the cases
of a binary data signal (m=2), anda quaternary signal (m=4). The
mode]l of the data transmission system used, is described in Sec-
tion 1.02. The elements Sis of the data sequence, may take on

the m values

-m+l, -m+3, ..... ; m-1

The different possible values of each s; are assumed to be statis-
tically independent and equally Tikely, so a standard subroutine
was used to produce the data element vaiues in a random ménner.
The NAG (Numerical Algorithms Group) subroutine, "GOSAAF", was
used to provide a simulated random number from a uniform (0, 1)}
distribution. This is a distribution with a probability density

function f(x) such that

£(x) =[1 for 0<xg1

0 otherwise

Let X be a sample from the simulated uniform distribution. Then,

for a binary signa1;so is defined by S

(]

s =|-1 if 0gX<0.5
1 if 0.5 X<

For a quaternary signal,

s =[-3 if 0<X<0.25
-1 if 0.25<X<0.5
1 if 0.5<X<0.75

| 3 if 0.75<X<]
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" A new sample may then be called from the NAG subroutine, to define

each of the other data elements.

From the data sequence‘{si}, a received signal sequence’{ri}

must be generated, such that

where (yb,‘y], ..... s yg) is the sampled impulse response of the
thannel, and {wi} is a sequence of simulated random numbers repre-
senting noise. The samples W, are assumed to be taken from a nor-
mal djstribution, with zero mean and some fixed variance o2.

Fach Wo was provided by the standard NAG subroutine GO5AEF, in
which any desired mean, and standard deviation'o, may be specified.
One subroutine of the computér programs was devoted to generating
the sequence'{ri}, of received signal samples. This subroutihe then
represents a transmitter and a baseband channel. The remainder.of
the progfams contained the operations necessary for ihp]ementing

the detection processes.

4.03 Method of Comparison of the Detection Processes

Consider the model of a data transmission system, given in
Section 1.02, With this model, errors will occur in the detected
data sequence, if the average power level of the additive white
Gaussian noise is sufficiently high. The proportion of errors
occurring in the detected sequence, is a random variable whose
expected value increases with the noise power. Note that it is

fairly straightforward to determine the propoftion of errors
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ocecurring in a simulation test, by simply comparing the generated

data sequence with the detected sequence.

The criterion under which the different detection processes
were compared, was that of their tolerance to additive white
Gaussian noise. The tolerance to noise is just a measure of the
noise standard deviation o, which gives rise tb,some given expected
error rate in the detected data sequence. Many of the tests were
performed at an error rate of 0.004, i.e. on a long term average,
there were 4 detected elements in error, out of every 1000.
Suppose that, with one detection procesé, a larger noise level
is reqguired to produce an error rate whoselexpectéd value is
0.004, than with a second détector. Then the former detection
process is said to have the greatest tolerance to additive white
Gaussian noise, for the given conditions, and at an error rate of

0.004.

As an alternative, the various detectors could have been com-
pared, by means of simulation tests in which the noise level was
kept constant. One problem with this method is that of choosing
the values of the noise variance ¢%. If a fair]& small value of ¢
is used, so that the noise level is low, then some of the better

-detectors may yield Tittle or no errors in the duration of a test.
Suppose that o is chosen to be large enough, so that one of the
good detection processes gives a reasonable amount of errors, even
in conditions of mild signal distortion. Then this value of o may
not be suitable for testing the poorer defection processes, under
harsher conditions, i.e. o may be large enough to give an error rate

of E%l, under these conditions, where m is the number of signal levels.
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When the error rate is at this Tevel, the noise is completely
swamping the tranémittéd signa1, and the aetector is choosing the
data element values randomly. (Note that each of the data element
vé]ues is assumed to occuf with probabi]ity-%, s¢ a random detec-

E:l),

tion should give an error rate of The average error rate

should not exceed Eél with these detectors, so an increase in o

will not increase the proportion of errors. Hence it éan be seen
that,.if o is sufficiently large, two detectidn processes which
normally show différent performances, will yield the same error
rate. Then no useful comparisdn of thg detectors can be made, at
this noise Tevel. It is clear from the above discussioh, that a
syitable value of o may not be available, for simulation tests
involving chanﬁe1s with ﬁide1y varying degrees of distoftion.. It

was therefore decided to perform the fests at a fixed error rate,

The error rate chosen for the simulation tests was 0.004.
In pfactiCe, the majority of data transmi;sion systems operate at
error rates which are somewhat'lower than this. It has however
“been demonsfrated for é particular transmission channel, that the
relative performances of the detectors tested, remain constant over
‘a range of error rates from 10-' to 10-*. (See figures 4.02 to 4.05).
It is hoped that this is generally the case, so that the best of two
detection processes at an error rate of 0.004, is the one which has

the best performance over a wide range of error rates.

From Section 4.04, it may be seen that the accuracy of the
results obtained in the simulation tests, increases with the number
of errors occurring in the test. For a given accuracy, it may be
determined that the number n of data elements transmitted during

the test, must be large enough to yield a given number g of errors,
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Clearly g = n x error rate

so if the chosen érror rate is low, n must be large to give
results of a required accuracy. Hence, to perform the simulation
tests at low error rates, is very demanding on computer time. The
error rate of 0.004 was selected as one which was reasonably low,
but which would allow a wide range of results to be obtained, with

the computing resources available.

4,04 Confidence Limits

Consider a simulation test in which n data elements are trans-
mitted., Let the number of errors in the detected data sequence be
q. Then the error rate is defined to be g/n. The expected value

e, of the error rate (or the expected error rate), may be defined

by

e =lim 3
| {acart n

}n a simulation test, n will of course be finite, so the
hroportion of errors occurring in a test, will only give an estimate
of.fhe expected'error rate e. Clearly it is necessary to know, at
least roughly, how good an estimate of e is being obtained, if one
is to have any confidence in the results of tHe simu]at%dn tests.
The data necessary to determine the exact accuracy of this estimate
of e, has not been obtained for Systems 1-4 or the V.A. This data
has however been obtained by J D Harvey, for the decision feedback
equalizer described in Section 1.16. As this detection process has

a performance which approaches that of a maximum likelihood detector,

the distribution of errors it yields should be roughly the same as



174

that for the V.A. detector. Also, where the performances of
Systems 1-4 are close to that of the V.A., the distributions of
errors should be similar for these systems and the decision feed-

back equalizer of Section 1.16.

With this decision feedback equalizer, it was found that
errors usually occurred in bursts. This implies that, if an
error occurs at some point in the detected data sequence, the
likeTihood of the next few detebted elements being in error, is
relatively high. Hence the errors in the detected sequehce are
not statistically independent. It will be assumed, however, that
any two error bursts are statistically independent, if g+1 or more
data elements are detected correctly between the bursts. {g+l is
the nuﬁbgr of components of the sampled impu]sé response of the
channel). Suppose that, at some stage in the detection process,
the previous g+l data elements detected, are ali corrgct. Then
the probability of a burst of errors beginning at the detection
of the foilowing element, is the pfobabi]ity that this element is
detected incorrect]y, let this probability be denoted p. Also, let
n be the average number of errors to a burst, Then, during a simula-
tion test in ﬁhich maﬁy data elements are detected, the expected prop-
.ortion of errors is pn. (i.e. the proportion df errors is a random
variab?e with mean edual to pn).” If the error rate is low, then at
) the detection of most of the elements, the previous g+] data elements
will have been correctly detected. Henée, at almost any stage of the

detection process, the probability of an error burst beginning is p.

Now consider a simulation test in which n data elements are

detected, where n is large. Assume that the expected error rate is
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low. Then, at the detection of each of approximately n data ele-
mehts, there is a probability p of an error burst béginning. The
process hay then be considered as one consisting of approximately
n statistically independent experiments (or trials), each of which

has the two possible outcomes:

a) an error burst begins

bj an error burst does not begin,
Fach of these trials is called a Bernoulli Trial.

Suppose that in a group of n such t}ia1s, r successes are

recorded, whefe a success is defined to be the outcome {(a).
Let py = r/n ' (4.01)

Then Py gives an estimate of the probability p, that the outcome
of a particular event is a success. It may be shown (see Appendix
4) that there is a 95% probability, that p is confined to an inter-

val whose Tower and upper bounds are approximately

.2 Py 4 2 p]
Py = —— and P ¥+ —
= 1t
2 p 2p _
ie. Prob. (pq - —— <P < py+——) = 0.95  _ (4.02)
J/r r -
Th ( il + ‘ p1)
en Py = —— p eererrerea
LI 15

s called a 95% confidence interval for p. The confidence 1imits'

on the estimate of p are *2 p]//F.

The average number of errors occurring in a burst has been

denoted n, and the number of errors occurring in a simulation test
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is denoted q. Hence the number of error bursts occurring is

given by

(4.03)

-
i
J|o

Hence equation 4.02 gives

Prob. (p] -2 P1 ‘/E} Spspyt 2 p]/f%) = 0.95

or
Prob. (p]n -2 Pyn vfg-s pn < pyn # 2 pln'f(g) = 0.95
' (4.04)
(multiplying throughout by n.
Now let ey be the proportion of errors occurring in the simu-

-lation test. Then

e = g/n
where q is the number of errors occurring and n is the number of

data elements detected.

Now, from equations 4.01 and 4.03,

Py n 7 (4.05)
R Pym.
Let e be the expected proportion of errors occurring in the

simulation test. p is the expecied proportion of error bursts, and

the average number of errors per burst is n. Therefore

e = pn. (4.06)



177

Applying equatijons 4.05 and 4.06 to 4.04 gives

Prob. (e] -2 e /(g-s e ey +2 ey /(§5 = 0.95

Hence the 95% confidence limits for e are

Clearly the confidence limits are inversely proportional to /q.

The noise Tevel chosen for the simulation tests was such that
the proportion e of errors was approximately equal to 0.004. At
least 60,000 data elements were detected in each test, so the num-

ber q of errors per test may be taken as
60000 x 0.004
or 240.

Hence the 95% confidence 1imits for e are given by

c =+2 x 0.004 /?g— or

0

¢ =+5.164 x 107" /A . _ (4.07)

- The results cbtained for the decision feedback equéiizer
- described in Section 1.16, indicate that the average number of
errors per.burst is about 5, for one of the channé]s tested.
(Channel E in table 4.01).. The V.A. detector usually has a slightly
better performance than this decision feedback equalizer, It there-
fore seems reasonable to assume that n will be no greater.than 5,
for the V.A. detector with channel E. Howevgr, some of the channels

tested introduce a more severe distortion of the transmitted signal
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than 'does channel E. With all of these factors in mind, an average
value of 6 for n, seems acceptable for the channels tested, when
the V.A, detector is employed. The value n = 6 also seems to be

a good estimate for Systems 1-4, for cases where their performance

is close to that of the V.A.

It may be seen from Tables 4.05 and 4.06 that Systems 1-4
ﬁave a close to optimum performance, for the channels tested, when
the number k of vectors stored at the start of each cycle, is 8 or
16. The performance of these systems +is, however, considerably
reducgd when k is reduced to a value of 4, It has been observed
that, with this value of k, the error bursts are generally longer
than they are when k takes the values 8 or 16. It was therefore
decided to use the value 12, for the avefage length of an error
burst, in cases where k = 4. Hence, with an error rate in the
region of 0.004, the confidence limits on the estimate of the error

rate are given by

+1.789 x 10-% for k

it
=

8 or 16

( .
¢ = (4.08)
(+1.265 x 10°° for k .

(using equation 4.07).

" Now éonsider a simulation test in which a value gy is chosen,
for the noise standard deviation, which gives an error rate qf €.
Let e be close to 0.004 but not actually takihg this value. Then,
if the gradient of the appropriate curve of error rate against sig-
nal to noise ratio is known, the value of o corresponding to an

expected error rate of 0.004, can be calculated as follows:

Assume that the received signal has unit average power, when

there 1s no noise present in the system. Then the signal to noise
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ratio (S/N ratio), in the received signal may be defined by

S/N = 20 Togy, (3) db.

Figure 4,07 gives a sketch of a typical plot of expected error

rate against S/N ratio.

let o, be the value of o (to be determined), which will give

an average error rate of 0.004.

Then
0.004 - e
20 10910 (gg) - 20 10910-(g7)

90.004 ©

wher'e'go.o04 is the gradient of the curve at.an.error rate of 0.004,
and e is the expected value of the efrdr féte corresponding to a
value o = oy (Note that the error rate corresponding to oys which
actually occurred in the simulation test, has been denoted é]).
Then_the required value Ty is then given by

£ .004 -
20 logy, () = .Q_Q_L_E + 20 Togy (o) (4.09)
2 0.004 1 |

e is not known exactly, but it is known that

- a
Prob. (e] 2 e //;'s e e + 2 e

n

vy =) =0.95,
g )

. as the 95% confidence 1imits for eq are'

2 e v/ﬁ-.

T q

It is therefore possible to find a 95% confidence interval for the

value of



expected error

rate

0.004

—

/

gradient = 90.004

LY

I
" S/N ratio = 20 logyy () @B
Sketch of a curve of expected error rate against signal to noise ratio

FIGURE 4,01

031
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20 10910 Qgg).

The gradient of the curve of error rate against S/N ratio
will not normally be known. This curve.has, however, been plotted

for channel E, with System 1 and k = 4 (see Figure 4.02), and

99,004 = ~0-003

for this case.. If ey is fairly close to 0.004, a small change in
the value of dg g4 should not significiantly affect the value of
%y given by equation 4,08, Hence it shou1d.be possible to obtain

a reasonable approximation to
1
20 10910 (EE)

for most channels, by taking

90.004 .‘-". -00003|

Hence, from equation 4.09

1 e - 0.004 1 :

It has been shown that there is a 95% probability that e lies in
the interval

(e] - €, &y ¥ )

where ¢ is given by equation 4.08. Hence, from equation 4 .10, there

is a 95% probability that

20 10910 (gz)
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Ties 1in the interval whose limits are

e; £.¢ -0.004 1
07003 + 20 logyq (‘&‘]‘)

Therefore the_95% confidence Timits for

20 Togy, (E‘E)

1+

0.6 db for k
0.4 db for k

1]
E-N

C (
are # o003 ° g

I+

8 or 16..

4,05 Method for Choosing the Noise Level in the Simulation Tests

The purpose of the simulation tests is to find a value U1s
for the nofse standard deviation, such that the resulting error
rate e is close to 0.004. Then equation 4.10 may be used to
give an estimate of the value o, which gives an expected error

rate of 0.004,

Each simulation test for estimating the tolerance to noise of
system, involved the detection of at least 60,000 data elements.
A\faif]y straightforward way of conducting the tests, is to begin

_with an initia]lguess for o, and run the program for 60,000 data
elements, with o fixed at this value. This method has the disad-
vantage that, if the guess for ¢ is a poor one, the resulting error

- ~rate will lie a long way from 0.004. Then the estimate of Oy given

by equation 4.10, wi11 not be very accurate,.

To overcome the disadvantage mentioned above, the simulation
tests were split into three sections, each covering 20,000 data

elements. Then, if the initial guess for o does not give an error
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rate which is close to 0.004, for the first section of the test,
it may be adjusted for the next section. fhen the results of a
simulation test consist of three error rates, corresponding to
three values for the noise standard deviation o. A section of

a curve of error rate against o, may then be drawn, and the value

of o corresponding to e = 0.004 can be read off.

Strictly speaking, the evaluation of the confidence limits
given in section 4.04, is not applicable if the simulation tests
are Sp?it into three stages, as described above. It is however
hoped, that the derived confidence limiis will give a reasonable

estimate of those appropriate to these tests;

. 4,06 The Channels Used in the Simulation Tests

The various detection processes were tested over a range of
transmission channels with fairly widely varying characteristics,
so that the systems which are best for general use could be selected.
The samb1ed impulse responses.of the channels are given in Table

4.01.

' Itwas pointed out in section 1.11 that the channels which intro-
duce the greategt degree of amplitude distortion, are usually thé
ones which give the poorest tolerance to additive white Gaussian
noise. The quantity d, defined by equation 1.16, gives a measure
of the degree of amplitude distortion caused by the channels. Hence
the value of d should give a guide to the tolerance to noise, which
results with a channel, Table 4.02 gives the d factor for channels

A-L.
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Channel R " Sampled impulse responses -
A 0.236 0.943 0.236
B 0.880 0.477 0.063
C 0.408 0.816 0.408 .
D 0.167 0.500 0.667 0.500 0.167
E 0.167 0.471 0.707 0.471 0.167
F 0.319 0.620 0.634 0.323 0.087
G 0.070 0.478- 0.730 0.478 0.070
H 0.351 0.708 0.591 0.162 0.014
I 0.085 0.289 0.493  0.577 0.493 0.289 0.085
J 0.049 0.178 0.338 0.467 0.516 0.467 0.338 0.178 0.049
K 0.548 0.789 0.273 -0.044 0.012 0.017 -0.017 0.007 0.009
L 0.092 0.288 0.507 (1.585 0.480 0.266 0.067 -0.034 -0.041 -0.003

0.023 0.021 ©0.002 -0.011 -0.011

$1S93 UOLIR[NWLS 3y} UL pasn S|auueyd a3yl SO sasucdsad asindwl po|dues

y Yo . 0.23 0.943  0.236
a o o o
N |- Yo 0.167 0.500 0.667 0.500 0.167
B a.‘ o . o .a o
0 Yo 0.070 0.478 0.730  0.478 0.070
o o o o o o
b Yo 0.089 0.178 0.338 0.467 0.516 0.467 0.338 0.178  0.049
o o o o a o} o a 2 a
o é- V1 +y2

v81
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Channel ~Value .of.
A 0.50
B 0.50

C 0.83
D 1.50
E 1.47
F 1.47
G 1.17
H 1.17
I 2.17
J 2.83
K 0.80
L 2.06

TABLE 4.02

The d factor for channels A-L
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Channels A, C, D, E, G, I and J are all symmetric in the
sense described in section 1.11, so these channels represent
pure amplitude distortion in varying degrees. Chaﬁne]s B, F, H,
K and L are not symmetric, so they introduce both amplitude, and

phase distortion.

If certain assumptions are made about the channels, their
frequency characteristics can be determihed frbm their corresponding
sampled impulse responses, as shown in Appendix 2. Let the modulus
and argument of a channel's frequency response be denoted A(f) and
P(f) respectively. Tables 4;03 and 4,04 give a number of equally
spaced samples, from the graphs of A(f) and P{f), plotted against
f. From the simulation resuits given later in this chapter, it
may be seen that the channels for which the A{f) curves are
flattest at the peaks, are the ones which give the best tolerance

to additive white Gaussian noise.

The samplted impulse responses of each of the channels A to P,
given jn Table 4.01, satisfy the condition that the sum of the
.squares of their components is equal to unity. It will now be shown
thatﬂ with this condition satisfied and the absence of noise in the
system, the average.energy of a received signal sample ri is the

same as that of the data elements Sy

LY

From equation 1.09, the received signal samples r, are given

by

r, = Sp_p Yy tW
k = Ly kb Y T Yk

where {s } and {w } are the data and noise sequences, and

(yo, Yps eevees yg)



Channe A-B) L ACE) [ ACE) AR [ach | A [ ad | A | ) | A {ae)
A 0.471 | 0.561 | 0.797 | 1.089 | 1.325 | 1.415 | 1.325 | 1.089 | 0.797 0.561 | 0.471
B 0.472 | 0.562 0.797 1.089 1.324 1.414 | 1.324 | 1.089 | 0.797 | 0.562 | 0.472
C 0.000 | 0.156 | 0.564 | 1.068 |1.476 | 1.632 | 1.476 | 1.068 { 0.564 | 0.156 | 0.000
) 0.001 | 0.039 |0.088 | 0.706 | 1.579 | 2.001 | 1.579 | 0.706 | 0.088 | 0.039 | 0.001
E 0.099 | 0.048 | 0.146 | 0.728 | 1,572 | 1.983 | 1.572 0.728 0.146 | 0.048 | 0.099
F 0.097 | 0,046 |0.747 [ 0.729 [ 1.573 | 1.983 | 1.573 | 0.729 | 0.147 | 0.046 { 0.097
G ‘0.086 0.000 {0.321 {0.912 | 1.547 | 1.826 1.547 0.972 | 0.321 | 0.000 | 0.086
H 0.08 | 0.000 |0.322 | 0.913 | 1.547 | 1.826 | 1.547 | 0.913 | 0.322 | 0.000 {0.086
I 0.001 | 0.010 {0.058 [0.277 | 1.501 | 2.311 1.501 | 0.277 { 0.058 | 0.010 | 0.001
J 0.000 | 0.000 | 0.001 [ 0.000 | 1.291 | 2.580 | 1.29%1 | 0.000 | 0.001 | 0.000 | 0.000
K 0.056 | 0.147 | 0.653 | 1.093 | 1.444 | 1.594 | 1.444 | 1.093 | 0.653. | 0.147 | 0.056
L 0.007 | 0.012 0.022 0.217 | 1.563 | 2.231 | 1.563 | 0.211 { 0.022 { 0.012 . 0.007

A(f) = |H(f)| where H(f) is the Fourier Transform of the channel's impulse response, and f is the frequency in Hz.
B = Bandwidth of channel, assumed the same for channels A-L.

TABLE 4.03
Samples from the amplitude-frequency characteristics for the channels

(81



Chame] p(-8) | PCR) PO PR Ry [ rio) [ 2By | PEY | PR | P | P(B)
A 3.142) 2.513 1 1.885 | 1.257 | 0.628 | 0.000 -0.628 -1.257 | -1.885 | -2.513 | -3.142
B 0.000 ) 0.396 | 0.541 0.462 | 0,257 | 0.000 | -0.257 | -0.462 | -0.541 | -0.396 | 0.000
C - 2,513 | 1.885 1.257 | 0.628 | 0.000 | -0.628 -1.257 {-1.885 | ~2.513 -

D 0.000 1.885 |-2.5613 ) 2.513 | 1.257 { 0.000| -1.257] -2.513 | 2.513 | ~-1.885 | 0.000
£ 0.000 {-1.257 [-2.513 | 2.513 | 1,257 { 0.000| -1.257 | -2.513 ; 2.513 1.2567 | 0.000
F 0.000 0.389 2.296 1.901 1.003 ; 0.000§-1,003|-1.901 {-2.296 {-0,389 0.000
G 3.142 - -2.513 1 2.513 | 1.257 | 0.000| -1.257| ~2.513 | 2.513 - -3.142
H 0.000 - 1 2,283 1,609 | 0.829 | 0.000¢ -0.829{ -1.609 | -2.,283 - 07000
I 0.000| 1.257 { 2.513 {~2.513 | 1.88 | 0.0 -1.885| 2.513 | -2.513 |~1.257 | 0.000
J - - -1.885 - 2.513 1 0.000 | -2.513 - 1.885 - -

K 0.000 1.527 1 1,529 1 0.980 | 0.493 | 0.000¢ -0.493} -0.980 -1.529. -1.527 { 0.000
L 0.000{ 0.198 |-3.068 |-2.540 | 1.803 ] 0.000 L-1.803 2.540 | 3.068 |-0.198 | 0.000

P(f) = Argument of H(f), where H(f) is the Fourier Transform of the channel's impulse response; and f is the
frequency is Hz. ' :

B = Bandwidth of channel, assumed the same for channels A-L.

TABLE 4.04
Samples from the phase-frequency characteristics for the channels

831
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is the sampled impulse response of the channel under consideration.

In the absence of noise in the system,

W, = 0
and
2 2
re = (yo S F Y] Sk toeeeer ¥ yg k-g)

n
| &~

L, |
Y{ sk Y2 0 Y5 Y5 S Sk

(4.11)
1£]

i=0 -J

where the second summation is taken over all values of i and j from

0 to g, such that i # J.

Now let E (xk) dencte the average value of a sequence of numbers
‘{xk}. Then the average energies of the received signal samples s
and the data elements S> are E(rkz) and E(skz) respectively. The

possible values of the data elements are

where m is the number of signal levels (see Section 1.02), and these
values occur with equal probability. Hence the average value E(sk)

of the data elements is zero.

From equation 4.11,

E Y5 .YJ- E(sk-i sk-j)

E(r?) = % y:2E (s2.) +2
k : -1 k-1 P43

1=0

But the elements 5 are assumed to be statistically independent for

different values of k (see Section 1.02). Hence

E(sk_.i Sk-j) = E(Sk-i).E(sk-j)
0 for i # ]
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S E(nl) = iio Y& E(s¢ )

But E(skz) is the same for all values of k, so
E(r2) = E(s,”) iio y; &

Hence the condition:

g , |
Z‘y'i =1

i=0

ensures that the average energy of the received signal samples,
is the same as that of the data elements, if there is no noise
in the system. When this is the case, the channel is said to have

unit gain.

It can be seen from Table 4,01, that chanmnels M, N, 0 énd P
have been formed from channels A, D, G and J respectively, by the
addition of the component Yo at -the start of the 1atter-samp1ed
impulse responses. For channels M to P, the tolerance to noise of
Systems 1-4 was assessed for varying positive.values pf Yor The
results of the appropriate simulation tests are given in Section
5.1,

- Channels B, F and H may be formed from channels A, E and G
respectively, by placing a pure phase equalizer in series with the
latter three channels, (This is a linear filter which causes only
pure phase distortion). The.required equalizers are such that the
roots of the z transforms of the former three channels,which have
modulus greater than unity, are replaced by their reciprocals to

form the latter three channels. It may be shown [6,14] that this
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type of equalizer does not introduce any amplitude distortion in
the received signal, and therefore does not have a correlating

effect on the noise samples.

The information content of an m level data element is defined
to be 1ogzm bits. wa'consider a situation where information is
required to be transmitted over a channel at some given rate. It
can be seen that each data element of a four level signal, has
twice the information conteﬁt of a data element of a binary signal.
Hence twice as many clements per second must be transmitted with
the binary signal, as with thé quaternary one, if the desired infor-
mation rate is to be achieved. Now consider the model of a data
transmission system being used. (See Section 1.02), Clearly, with
this model, the impu1se response of the channel must be sampled at

~the same rate, as that at which.the data elements are transmitted.
Hence the impulse reéponse must be sampled twice as fast wifh a
binary signal, as with a four level signa1, and the samp]ed impulse
response wi}1 haQe more components for the binary case (assuming

a fixed 1nfofmation rate)., For this reason, most of the channels
tested with four level signals, were chosen to have fewer components
in their sampled impulse responses, than those tested with binary

signa1s.

~ 4.07 Comparison of Detection Processes

For the reasons given in Section 1.09, the various systems
under consideration were compared by means of their tolerance to
additive white Gaussian noise. The value ¢ of the noise standard

deviation, which gave an average error rate of 0,004, was found for
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each combination of detection process and transmission channel, by

means of simulation tests.

Let o* be the value of the noise standard deviation, which
gives an error rate of 0.064 with the detection process under con-
sideration, and the ideal channel, (a channel whose sampled impulse
response has just one component, equal to unity). A]éo, let o be
the noise standard deviation which gives an error rate of 0.004,
with this detector and some other channel. Then the reduction in
tolerance to noise,‘when this channel replaces the ideal channel,

may be defined by
*y 2
R = 10 Togy, (‘(E;%- ) db (8.12)

From Sections 1.14, 2,10 and 3.12 it can be seen that the
| non linear equalizer, tﬁe V.A. detector and Systems 1-4, are all
equivalent when used with the ideal channel. With this channel,
the probability of error for the case of a binary signal is given
by

Py = Prob, (w{> 1)

where Wi is a normally distributed random variab]e with zero mean.
- (Note that this probability of error is independent of the number

k of vectors stored by Systems 1-4, if the ideal channel is used),
Prob. (wi > 1)

implies that the standard deviation for W, is 0.3774 (from tables of

the normal distribution). Hence

o* = 0.3774
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for the case of a two level signal which can take the values #1.

From Sections 1.14, 2.10 and 3.12, it can be seen that the
probability of error for the case of a quaterhary signal, with

possible values #1 and *3, is given by

-
]

1.5 Prob. (wi> 1)

0. 3597

Q
%
I

for the case of a four level signal. The reduction in tolerance
to noise, when a given channel replaces the ideal chamnel, is there-

fore given by

. o . |
R =10 logyy ({%3770" ) form - 2
g
and
2
R = 10_10910 ( 19;32221“ ) form = 4

(see eduation 4,12), where o is the noise standard deviation which

.gives an error rate of 0.004, with the given channel.

, fhe value of R, for the.various combinations of transmissioﬁ
channels and defection processes tested, is given in tables 4.05
and 4. 06, The first table contains the results for tests with
channels C, D, E, F, I, J, K and L and a two level signal. Results
., for channels A, B, C, E, F, G, H and K with a quaternary signal, are
given in table 4.06. The sjmu1ation tests on Systems 3 and 4, the
V.A. detector and the non linear equalizer were carried oﬁf by d D
Harvey. (The non linear equalizer tested, is the one of optimum

design described in Section 1.13).
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k = 4 stored vectors k =8 stored vectors .. k=16 stored vectors :g g
o
5 15 & & & S &5 & &5 |..& & 5 & c |28
C 3.1 3.7 2.9 2.5 2.9 3.3 2.9 2.5 -. 2.9 2.9 29 2.5 2.5 E 9.0
D | 6.9 6.8 7.2 7.6 6.1 6.1 5.9 6.0 6.0 6.2 5.9 5.7 5.6 17.7
E " |{6.4 6.6 6.9 7.1 5.8 5.8 5.6 5.7 5.7 5.9 5.4 5.3 5.31 1.7
F 59 6.2 5.8 5.8 5.6 5.6 5.3 5.3 5.4 5.5 5.3 5.2 5.2 11.7
I 10.8 11.1 11.0 11.1 9.3 9.4 8.9 11.0 9.3 9.3 8.9 9.2 8.5 24.8
J  14.1 14.8 14,9 14.3 12.6 12.2 12.3 13.3 12.3 12.0 12.0 13.1 12.0 ] 30.1
K 2.7 3.0 2.5 2.4 2.6 2.§ 2.5 2.4 2.5 2.7 2.5 2.4 2.5 6.2
L 10.4 10.5 11.1 1.1 - 9.6 9.4 8.9 11.0 - 9.4 9.0 8.9 '9;2 8.7} 23.9
\ FIGURE 4.05
Decibels reduction in tolerance to additive white Gaussian noise, with binary signa]s; when the given channel

replaces one that introduces no distortion or attenuation

vél



., k = 4 stored vectors

k = 8 stored vectors

:k‘§.16lstored vectors

=

=

I

[ I8

o0
v = il RS
[y — [aN ] o =3 ~— o~ (0] — (9N} fap] =t 1 @ [i= 7]
= = = = g = &= = = = = = 2w | 228
S 3 3 3 3 3 3 3 s 1 3 3 Sl Ja

0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.8 0.7 0.7 0.6 0.6 1.4

B 1.0 0.6 0.7 0.6 1.0 0.6 0.7 0.8 0.7 0.7 0.6 0.6 1.4
C 1.9 5.5 5.4 5.3 4.7 . 4.6 4.1 4,7 4.5 4.0 4.0 4.0 { 9.7
E 11.4 13.9 13.5 13.5 8.9 0.1 11.3 8.7 9.1 8.6 9.2 8.3 {12.1
F ! 8.4 10.3 10.0 10.7 8.5 8.6 8.2 84 8.9 8.0 8.1 8.0 {12.1
G 10.4 9.9 10.0 10.3 7.7 8.1 8.9 6.8 6.9. 6.8 834 6.3 {11.3
H 6.8 8.8 8.1 8.6 }6.7 6.8 6.4 6.6 6.5 6.2 6.2 6.2 111.3
K 4.0 4.1 3.5 40 4.0 3.5 3.7 - 7.0

4.2 4.4 3.7 4.0

FIGURE 4.06

Decibels reduction in tolerance to additive white Gaussian noise, with quaternary signals, when the given
channel replaces one that introduces no distortion or attenuation.

g6l
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For all simulation tests described in this section, the
nuﬁber N of components of the stored vectors; was fixed at eleven,
With this value of N, the data element S5 is detected upon the
arrival of the received signal sample i1l at the detector, so

that the delay in detection is eleven sampling intervals.

From Section 3.09, it can be seen that the amouht of computa-
tion required per cycle of the V.A., rises rapid1y as ¢ increases,
(where g+l is the number of components in the channel's sampled
impulse response). For channel K of table 4.01, g=8 and the
number of multiplibations required by the V.A. for eéch data
e]emeﬁt detected is 4%, if a four level signal is used. Clearly,
for this case, a very large amount of computing time would be
required - to obtainrthe simulation result. The entry in table 4.06
has therefore been omitted, for the V.A., detected uséd with channel
K. Also, to keep computing time within reasonable bounds, the simu-
lation test for the V.A. with channel L and a binary signal, was
carried out with the last six components of the sampled impulse res-
ponse ignored. These componenfs are fairly small, so this omission

should not greatly affect the tolerance of the system, to addftive

white Gaussian noise.

R

j It is clear from tables 4.02, 4.05 and 4.06, that the V.A.
detecter offers a considerable improvement in performance over the
non linear equalizer, for the channels which introduce severe ampli-
tude distortion. These are the channels which have the highest d
rating in table 4.02, and which give the poorest tolerance to additive

white Gaussian noise.



197

With k = 16, (i.e. 16 vectors stored at the start of each
cycle), Systems 1-4 offer a performance which is quite close to
that of the V,A. detector. The greatest discrepancy then occurring,
is between the V.A. an& System 4 when used wfth channel G, and is
~about 2 db. The loss in performance, when Systems 1-4 are used
with k reduced to 4, is quite noticeable for the channels which
introduce severe amplitude distortion. System.4 can be seen to
_ have a poorer performance than Systehs 1-3, for some of the
channe]s tested, whether k takes the value 4, 8 or 16, This
appears to be a penalty that must be paid, for the fact that it
requ{res fewer operations per detected element than Systems 1-3,
(see Section 3.09). For k = 4, the channels which 1ntroduﬁe severe
amplitude distortion, and.a four level §i§na1,VSystem 1 seems to

offer a slightly better performance than the other three systems.

From the descriptions of Systéms 2, 3 and 4, it can be seen
that each of them will contain the same stored vectors, for a
case where a four level signal is used, and k = 4. (k is the num-
‘ber of vectors stored at the start of each cycle). For this case,
the decision rules for each system will ensure that the vector with
Iowesl cost is selected, for each of the four possible values of the
latést component of the vectors. Systems 2, 3 and 4 will then pro-
duce the same detected data sequences, and the tolerance to noise
will be the same for the three systems. It can however be seen from
table 4.06, that the tolerance to noise figures do not agree, for
Systems 2, 3 and 4 with k = 4, This is because the systems have been
tested with separate simulation trials, and the outcome of each trial
is subject to statistical fluctuation. For Systems 2, 3 and 4 with

k = 4 and a quaternary signal, a more accurate tolerance to noise
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figure may be obtained, by taking the average of the figures

given for the three systems.

It is evident from the tables that when the V.A. detector is
used, cﬁénnels A, E and G yield the same tolerances to noise as
channels B, F and H respectively, (within a reasonable tolerance
which should be allowed, for statistical fluctuation). But
channels B, F and H are obtained from channe1s.A, E and G res-
peétively, by the use of a pure phase equalizer (see Section 4.06).
- Hence it would appear that there is no advantage to.be gained by
- using this pure phase equalizer, in cbnjunction with the V.A.
detecfor. This equalizer does, however,'offer an improvement in
tolerance to noise with Systems 1-4, when used with k = 4 or k = 8,

hence supporting the conclusions of Section 3,11,

Clearly with k = 16, Systems 1-4 offer a performance which is
quite close to that of the V.A. detector, for the channels tested.
(See tables 4.05 and 4.06). The advantage of these systems over
the V.A. is, of course, the fact that the number of basic cperations
.requiréd by them per detected data element, is sometimes much Tess
than the number required by the V.A., The difference in the amount
of cohputation required by the V.A. and Systems 1-4, is-shoﬁn in
tables 4.07 and'4.08, which are for two and four level signaTs,
respectively. The number of basic Operatiqns'(i.e. multiplications,
and comparisons between two numbers), may be calculated from the
expressions givén in Sections 2.09 aﬁd 3.09. It can be seen from
the tables, that Systems 1-4 do not offer a significant reduct{on-in
computation, over the V.A. detector, unless a sampled impulse res-'

ponse with a large number of components is being used. ({i.e. unless



Channel g V.A. : System 1 . System.2. .. .. . .System 3 System 4

k=4 | k=8| k=16 k=4 { k=8 | k=16 k=4 | k=8 | k=16 | k=4 | k=8| k=16
C 2 12 30 ; 108 .408 18 60 216 18 60 216 12 24 48
D 4 48 30 | 108 408 18 60 216 18 60 216 12 24 48
E 4 48 30 | 108 408 18 60 216 18| 60 216 12 24 48
F 4 . 48 1 301 108 408 18 60 216 18| 60 216 12 24 48
I 6 192 30 | 108| 408 18 60 216 18 60 216 12 24 48
J 8 768 30 | 108 408 181 60| 216 18 60 216 12 24 48
K 8 768 30 | 108 408 18 60 216 18| 60 216 12 24 48
L 14 49152 30 | 108 408 18 60 216 18] 60 216 12 24 48

TABLE 4.07

Number of multiplications + number of comparisons requifed for the detection of each data element, with binary signals.

661



Channel g ) V.A. ¢ System. 1. . ... .System.2. . | . . System 3 System 4

k=4 | k=8 | k=16 { k=4 | k=8| k=16 | k=4 | k=8 | k=16 k=4 | k=16
A 2 112 70 | 252 | 952 28| 8| 280 28 | 84 | 280 28 | 112
B 2 112 | 70| 252 952 28| 84| 280 | 28| 84 | 280 28 112
c 2 112 70 | 252 | 952 281 84| 280 28 | 84 | 280 28 N2
E 4 | 1792 70 | 252 952 28| 8| 280 28 | 84 | 280 28 112
F 4 1792 70{ 252 | 952 | 28| 84| 280 28 | 84 | 280 28 112
G 4 1792 70| 252 952| 281 84| 280 28 | 84 | 280 . 28 112
H 4 | 1792 70| 252 952 28| 84| 280 | 28| 84 | 280 28 | 112
K 8 |458752 70 | 252 952 281 84| 280 28 | 84 | 280 28 112

TABLE 4.08

Number of multiplications + number of comparison§ required for the detection of each data element, with quaternary
signals. ‘

002
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g is greater than about four). It should be noted that the number
of opérations required by Systems 1-4, is governed by thé number
of stored vectors employed, and not by the value of g. (i.e. the
number of operations is independent of the transmission channel

being used).

4.08 Variation of Error Rate with Signal to Noise Ratio

The simulation tests described in Section 4.07, compare the
various detection processes, Qhen they are operating at an error
rate of 0.004. It is not, however, safe to conclude from these
tests alone, that the relative performances of the systems, will
be the same at other error rates. Hence, for channel E and a
binary data signal, the performances of the various detection
processes were examined over a range of error rates. Graphs of
error rate.against signal to noise rétio, were then produced, for

error rates from 10-! to 10-%.

Note that the sampled imbu]se response of channel E, given in
table 4.01, is such that thé sum of the squares of its components
is unity. (This is true for all of the channels given in table
4;01). This ensures that the average power E(rkz) of the received
signal, is the same as the average transmitted signal power E(sk2
(See Sectioﬁ 4.06). For binary signals, the data elemenfs may take
the values #1, so the average power of the transmitted signal is

unity.

The noise samples Wi at the output of the transmission channel,

are assumed to be normally distributed random variables with zero

mean and some variance ¢2. Hence
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E w21 = E [(w; - w)?]

It

)

var (w

where E denotes the expected value, and u is the expected value

of wi,and is equal to zero. The signal to noise ratio is defined

by
R* = 10 10910 (signal power/noise power)

Hence, in this case where the signal power is unity, the S/N

ratio for the received signal, is givén by

R =10 Togy (Q%q
o

Note that the quantity R, given in table 4.05, is defined by

) 2
R = 10 ]0910 ( (0.3774! )

0.2
Hence'R and R* differ only by the constant additive factor

10 logy, (0.3774)% = -8.464

Figures 4.02 - 4.05 show graphs of error rate against S/N
ratio, for the various detection processes, with a binary data
signal and channel E. The graphs were obtained by carrying out
simulation tests at various S/N ratios (various values of o), and

noting the resulting error rates e. Hence each simulation test
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FIGURE 4,02

Variation of error rate with signal to noise ratio for System 1
operating with binary signals over channel E,
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Variation of error rate with signal to noise ratio for System 2
operating with binary signals over channel E.
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Variation of error rate with signal to noise ratio for System 3
operating with binary signals over channel E.
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provided a pair of coordinates (ov,e}. A graph was then drawn
through the resulting pairs of coordinates, for each of the

systems.

The coordinates (o,e), obtained in each simulation test, will
be subject to stdtistica] fluctuation, as were the results of the
tests described in Section 4.07. i.e.,if a simulation test was
repeated many times with the same value of 0; aifferent values for
e would probably occur on each occasion, Each of these values would
give an estimate of the expected error rate, corresponding to the
given value of o. The accuracy of these estimates is dependent on
the ﬁumber of errors occcurring in each test. (See Section 4.04).
Clearly, at low error rates, a large number of data elements must
be detected in each simulation test, if a reasonable number of
errors are to occur. In practice, data transmission systems
commoniy work at error rates as low as 107%, It would however
have required a very 1argé amount of computer time, to obtain coor-
dinates for the graphs, at such error rates. Hence the lowest error

"vrate considered was 10-*,

figures 4,02 - 4,05 cover Systems 1-4 respectively, and show
the pérformances of'the systems for 4, 8 of 16 stored vectors, (i.e.
for‘k =4, 8 or'16). The number N, of components of the vectors, was
fixed at eleven, as for the tests described in Section 4.07. Curves
of error rate against S/N ratio, for the V,A, detector and the optimum
" non linear equalizer described in Section 1.13, are also shown on
figures 4,02 - 4,05, Hence the performances of these two detectors

can readily be compared with the performances of Systems 1-4.
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It can be seen that the V.A. detector maintains a significant
advantage over the non Tinear equalizer, for all error rates con-
sidered, with channel E and a bihary signal. A comparison of
figures 4.02 - 4.05, reveals the relative performances of the
various detectors, for error rates from 10! to 10-*. It can be
seen from these figurés that the relative performances of the
systems, at an error rate of 0.004, is representative of their

performances over the full range of error rates,.

Figure 4.05 shows that, when System 4 is used with 16 stored
vectors (i.e. k = 16), it-has the same performance as the V.A.
detector, in the given situation. This is because the V.A. detec-
tor requires 16 stored vectors, for channel E with a binary signal,
“and is equ{va1ent to System 4 for this case. (Compare the descrip-

tions of the two algorithms, given in Chapters 2 and 3).

When plotting the graphs for figures 4.02 and 4.03, 1t.was
found that a smooth curve could be fitted quite closely to almost
all of the points. There were however a few points which were loca-

"ted at a considerable distance from this curve. The error rates in
these cases were much higher than expected, suggesting that thé
detec%ion process had begun to break down in some way. This drop in
fhe'performances of Systems 1 and 2, was noticed only in a few of
the long simulation fests, which were required for the results at
low error rates. The points on the graphs which were situated a
leng way, from the curve indicated by the vast majority of points,
were ignored so that a smooth curve could be plotted. Hence the
given curves for Systems 1 and 2, represent their performances when
the cases of unusual behaviour have been excluded. This phenomenon in
which Systems 1 and 2 can lose performance, during the detection of

long data sequences, is discussed at length in Chapter 5.
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4.09 Variation in Performance with the Number of Stored Vectors
used, for Systems 1-4

Unlike the V.A, detector, Systems 1-4 allow a éhoice of the
number k, of vectors stored at the start of each cycle of the
detection process. It is therefore useful to know how the number
of vectors used, affects the perfbrmances of the systems, and how
‘many vectors are required to ensure a close to-optimum tolerance
to ﬁoise. The variation in performance of the systems, for k = 4,
8 and 16, may be assessed from tables 4.05 and 4.06. In addition,
the performances of Systems 2 and 3, with fwo of the channels from,
table 4.01, were tested for a wider range of values of k. Figures
4.06 and 4,07 show graphs of reductidn.in tolerance to noise
against k; with these two systems, for channel L with a binary
signal and channel K with a quaternéry signal. (The reduction in
tolerance to noise is expressed by R, given in equation 4.12, as

was the case for tables 4.05 and 4.06).

qu the simulation tests described in this section, the number
‘N of components'of the vectors stored at the start of each cycle, was
fixed at eleven. The tests were carried out at_an error rate of

0.004, as for those described in Section 4.07.

It can be seen from figures 4,06 and 4,07, that the to]erénce
to noise of Systems 2 and 3, increases rapidly as k increases from
four to eight. For System 3 and the cases tested, there is nosig-
nificant improvement in performance to be had, by increasing k
beyond eight. System 2, however, requires a greater number of
stored vectors to achieve its best performance, for the given situa-

tion,
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4,10 Variation in Performance with Both the Number of Stored
Vectors, and the Number of Components of the Vectors

For the simulation tests described in Section 4.09, the number
N, of components of the vectors stored at the start of each cycie,
was fixed at eleven., It was seen that, with System 3 and the
channeTs-tested, there was Tittle improvement to be obtained by
increasing the value of k past eight. It may be found, however,
that greater values of k may offer an increased_to]erance to noise,

if a different value of N is used.

For a given value of N, the maximum number k .of vectors stored
at the start of each cycle of System 3; is m{N+1), where m is the
number of signal levels. (See Section 3.06). It was desired to
plot graphs of performance against N, for values of N from one
upward. Hénce, if all of the tests were conducted with a fixed
value of k, this value could be at most four for a binary signal,
and eight for a four level signal. However, with these values of
k, Systems 2 and 3 may not reach their begt possible performance,
-no matter how targe the value of N used. It was therefore decided
that, for any given value of N, the simulation tests would be con-
ducted with k = m(N+1), thus using the maximum number of stored vec-

tors that is possible with System 3,

In figures 4.08 and 4.09, graphs are given of performance
against N, for Systems 2 and 3. The perfonnaﬁces of the systems
are specified in terms of R, defined by equation 4,12, as in Sec-
tions 4.07 and 4.09, (The value of o in the expression for R, is
of course the value which givgs an expected error rate of 0.004).
Figure 4.08 covers the case of a binary signal used with channel L,

and figure 4.09 is for a quaternary signal used with channel K.
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(Note that channels L and K were the ones used for the tests des-

cribed in the previous section).

A comparison of figures‘4.06 and 4.08 showslthat, for a two
level signal and channel L, Systems 2 and 3 do not attain their
best possible performances with N = 11, For examp]e with N = 11,
the System 2 tolerance to noise figure (4. e. the value of R) does
not risé above.9.0 db, no matter how far k is increased. However,
Qith N =15 and k = 32, a Tower value for R is obtained. With
channel K and a quaternary signal, it can be seen that a value
of eleven for N, is Tlarge enough to obtain the best performances
of Syétems 2 and 3, for the given situation. Hence it may be
concluded that there are no fixed minimum values for k and N,

which will ensure that the best tolerances to noise are offered

by Systems 2 and 3, for all situations.

4.11 The Effect of Ignoring the First Component of the Channel's
SampTled Impulse Response

It can be seen from Section 3.10 that, if a zero component at

the start of the channel vector is removed, the effect on the perfor-

“mances of Systems 1, 2 and 4 is equivalent to that of 1hcreasing k

1

by a factor of m. (m is, of course, the number of éignaT levels,
and k is the number of vectors stored at the start of each cycle

of the process). Simulation tests show that this result also holds
fairly well, if a small non zero component is removed from the start
of the channel's sampled impulse response. If this first component
of the channel vector is sufficiently small, it will not make a
significant contribution to the received sigﬁa]. In this case, it

may be advantageous if this component is ignored by the detector,
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even though the actual channel vector must remain unaltered.

Now consider Systems 1-4, when used with a transmission

channel whose sampled impulse response is

(yo, Y1s eeeees yg).

Define Systems 1A-4A to be the same as Systems 1-4, apart from
the fact that the former four detection processes take the channel

vector to be

(Yys ¥gs vevees ¥g)

i.e. with Systems 1A-4A, the first channel component is ignored

in the detection process.

Simulation tests were carried out on the eight Systems 1A-4A
and 1-4, with channels M, N, 0 and P from table 4.01. The first
component Yo» of these channel vectors, was given various non
negative values, for these simulation tests. The tegts were
~carried out ét an error rate of 0.004 and, as before, the perfor-
-mances of the systems were specified in terms of the quantity R,

defined by equation 4.12. Throughout these simulation tests, the
nunber k of stored vectors was fixed at sixteen. The number N, of

components of the vectors, was eleven.

Figures 4.10 - 4,13 show graphs of R plotted against Yoo for
Systems 1-4 and 1A-4A. The first two figures cover the case of a
two level signal used with channels N and P, Figures 4.12 and
4.13 are for a quaternary signal, used with channels M and 0 res-

pectively.

Now consider a case where the first component Yoo of the

- channel vector, is equal to zero. Note that channel M is formed
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from channel A (in table 4.01), by the addition of the component
Yp- System TA ignores the first component of the channel vector.
Hence, when used with channel M and Yg = 0, System 1A is equivalent
to System 1 used in conjunction with channel A. A simiiar relation-

ship exists for Systems 2, 3 and 4, as shown in table 4.09(a).

From Section 3.10, it can be seen that using channels M-P
with Yo = 0, instead of channels A, D, G and J respectively, has
the same effect on performance as would be obtained by reduging K

by a factor of m. (The nurber of components of the vectors also

being reduced by one). Hence System 1 with k = 16, N = 11 and
channel M, is equivalent to System 1A with k = %? » N =10 and

channel A, Similar relationships hold for System 2 and 4, and
for System 1 with channels D, G and J. These are given in table

4.09(b).

1t can be seen from table 4.09 that when Yy = 0, usingASystem
1A with M, N, 0 or P instead of System 1, has approximately the same
effect on performance, as that 6f increasfng the number of stored
wvectors. Now consider the distance between the points, at which
the System 1 and the System 1A CUrves cross thevvertica1 axes, in
figures 4.10 - 4.13. At these points on the graph, Yo = 0, so this
distance approximately repfesents the difference in pef%onnance bet-
ween System 1withk = %?—, and System 1 with k = 16. This, of
course, also épp]ies for Systems 2 and 4. (Frbm Section 3.10, it
can be seen that setting Yo * 0 has the same effect on each of the
Systems 1, 2 and 4)." It can however be seen from figures 4.10 - 4.13,
that this property does not hold for System 3. With Yo = 0, the
improvement in performance offered by System 3A over System 3, can

be much greater than that obtainable, by increasing the value of k
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(a)

Sys tem Channel. . P
1A M
1A N
1A 0
1A p
2A M
2A N
2A 0
2A P
3A M
3A N
3A 0
3A P

4A M

4A N
4A 0
4A P

(b)

1 System Channel
1 M
1 N
1 0
1 P
N M k=16

2 N N=11
2 0
2 P
4 M
4 N
4 0
4 P

TABLE 4.09

. .Channel

3 System
1 A
1 D
1 G
1 J
2 A
2 D
2 G
2 J
3 A
3 D
3 G
3 J
4 A
4 D
4 G
4. d
Sys tem Channel
1 A
1 D
1 "G
1 J
1 A k=16/m
1 D | N=10
1 G
1 J
4 A
4 D
4 G
T R J. .

Equivalent arrangements of detection processes and transmission
channels, when y3 =0
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by a factor of m. This improvement is particularly noticeable
with Channel O and a quaternary signal, as can be seen from

figure 4.13.

Clearly, if Systems 1-4 are used with a value of k, such that
a reduction of k to k/m would cause a loss in performance, it is
sometimes of advantage for the first channel component Yo 10 be
ignored, For sﬁch values of k, very .small first channel components
should always be ignored, by Systems 1-4. From figures 4.10 -
4,13, it may be asséssed to some extent, just how small Yo should
be, for it to be ignored. Consider, for example, System 1 with
k = 16, a four level signal and channel 0. The value of Yo such
that Systems 1 and 1A yield the same to1efance-to noise, is given
by the point at which the corresponding curves intersect, in '
figure 4.13. The intersection occurs-when Yo is about 9% of the
.largest component of the channel vector. Hence, for this case,
the first channel component is best ignored, if it is Tess than 9%

of the peak component. | - T

Considef now any of the Systems 1-4, together With‘its modified
_ version, in which the first channel component yo_is ignored. It
may be seen from figures 4,10 - 4.13, that the improvemgnt in per-
fdrmanée offered by the modified system, is greatest when Yo is
“equal to zero. (Only non negative values of yq were considered for
the tests). As Yo increases, the performances of the original and
modified systems become closer together, until the original system
offers the best tolerance to noise., It can be seen, therefore, that
the improvement in perfofmance gﬁven by Systems 1A-4A, over Systems
1-4, is bounded ab6ve by the improvement given when Yo = 0. For

Systems 1, 2 and 4, the improvement given when Yo = 0, is approximately
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that which wou]d.be obtained by increasing k by a factor of m.
(See Section 3.10). Hence, for Systems 1, 2 and 4, the improve-
ment offered by their modified versions, is bounded above by the
improvement obtainable by increasing k by a factor of m, This

bound is applicable for all non negative values of yo.'

One point that really stands out froh figures 4,10 - 4,13,
is that System 3 can suffer to a much greater éxtent that Systems
"1, 2 and 4, from the effect of an extra zero at the start of the
channel vector. Figure 4.13 shows that System 3 has a loss in
to]erahce to noise of about 13 db, over Systems 1, 2 and 4, when
the first channel component is equal to zero. However, a very
small increase in the va]ug of Ygs improves the performance of

System 3 by about 4 db,

it ié clear from the above discussion that System 3 can some-
times give a very poor performmance, if the first component of the
channel vector is small. If a situation occurs, where such a
small component cannot be ignored in the detection process, then
'1t wouid appear that Systems 1, 2 and 4 are to be preferred to
System 3,

A comparison of figures 4.10 - 4.13 suggests, that'ﬁ]acing an
extra small component at the start of the channel vector, has a more
serious effect on the detection process with a quatérnary signal,
than it does if a binary signal is used. It seems likely that this
effect will be even more pronounced, if the number of signal levels
is increased beyond four. (This can be seen to be the case for

Systems 1, 2 and 4, from Section 3.10).
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CHAPTER 5

5.01 The Erratic Performance of Systems 1 and 2

From the simulation results given in tables 4.05 and 4.06,
it would appear that Systems 1-4 each offer roughly the same tol-
erance to additive white Gaussian noise. It was found, however,
that during some of the longer simulation tests described in Sec-
tion 4.08, Systems 1 and 2 occasionally experienced a sudden drop
in performance, i.e. a sudden and significant increase'in the efror
rate. A close examination of the computer print-out for these
tests, revealed that thé reduction in perfo}mance was concurrent
with some of the stored vectors becoming identical to each other,
and their costs becoming almost the same. It will be seen from
the following discussion, that Systems 1 and 2 can become locked
in é state, in which several identical vectors are always present.
Clearly, the number of possible data sequences that can be stored,
is reduced if the detection process enters this staté. The detec-
tors are then effectively working with a lower number of stored

vectors, and their performances may be reduced.

From Section 3.08, it can be seen that System 1 will become
locked in a state where all of its stored vectors and costs aré
identical, if it should enter this state at anyftime. Similarly,
System 2 can become locked in a state where the vectors divide into
m groups, with the vectors and costs in a group being identical {m is
the number of signal levels). The following analysis shows that, if
two of the vectors stored by Systems 1 and 2 become the same, and
their costs become close together, the performances of the detectors

can be reduced. This phenomenon in which vectors become the same,
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and their costs become identical, or close together, is referred

" to as merging.

In order to simplify the analysis of the merginé phenomenon,
it will be assumed from here onward, that a two level data signal
is used. Then the possible values of the data elements s; are *1,
{The merging phenomenon has been examined in reference 49 which

contains some of the work from this chapfer).

5.02 Probability of Merging
Definition

Two vectors are said to be.merged together,with éeparation
e,1if their latest g components are the same, and their costs diffef
by an amount equal to e. {g+1 is the number of components of the
channel vector under consideration)., If two vectors are said to

be merged together, it is assumed thét the‘separation'is sma11;

Now consider the first cycle of the detection process, in
which two vectors are present, which are merged with a separation

less than some given amount e, Let these two vectors be defined by

o

9—j+1(1) = [xj-N+2l(I)" weees Xj_g_ﬂ(l): xj-g+2’ xj;g+3g.-..s xj

and

..Q..j.'.](K) ='[Xj_N+2(K)’ es sy xj"g‘['-l(K), Xj__g+2, x.j_g+3, ..--’xj

so that the latest g components are the same for both vectors. As-
before, X is a possible value of the data element éi' xi(I) is the
possible value of S which is present in the Ith stored vector

Qd+1(l)' The only two vectors at the end of the previous cycle of

1
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the process, which can lead to Qd+1(li are

[+1, Xj-N+2(I)’ ceees xj_g+](I), X3og42® Xjuge3® <oeeo xj]

(Note that a binary signal is assumed throughout this chapter, so
the possible data element values are +1. Similarly, the only two

vectors that can be extended to form Qj+](K) are

[i'.l, xj'N‘{"Z(K)’ LR ) Xj_g+](K)’ Xj_g+2’ Xj_g+3’ LY -XJ']

Hence it is clear that two vectors with their latest g-1 components
in common, must be present at the end of one cycle of the detection
process, if two merged vectors are to appear during the following

cycle,

A‘situation will now be considered in which two vectofs, with
their Tatest g~ e]ements.in common, are present at the end of some
cycte of the process. The transmitted data signal is.assumed fo be
a binary one, so these two vectors will be extended to four, in the
'f0110w1ng cycle. (See Section 3.02). It will then be demonstrated
that there is only a small probability, of two of these extended

vectors being merged together, -

Now define the vectors_gj(l) and_gj(K) so that

QJ(I) = [xj-N+1(I)’ cees xj-g+1(1)’ Xj_gs2® Xj-ge3® =t xj]
(5.01)
and
gd(K) = [xj-N+1(K)’ cees xj_g+1(K), Xi_ge2> Xjogaz? v X51

(5.02)
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(Note that these vectors have their Tétesf g-1 elements in common).
Let the costs for the vectors be uj(I) and uj(K) respectively.

Also let the vectors gj(I) and|gj(K), bg such that they are not
'merged'with a separation <e, Tfor some given value ¢. Then, from
the definition of merged vectors given aﬁove, at least one of the

following conditions must be satisfied:
i) xj“g+1(l) # xj_g+1(K) (5.03)

i1) ]uj(I) - uj(K)|> € . (5.04)

Let QJ(I) and QJ(K) be two vectors which are present, at
the end of the j+1st. cycle of a System 1 or a System 2 detection
process. Then, in the j+2nd. cycle, these two vectors will be

extended to the four vectors given'by

Ij+'| (I’ xj+'1) = [_Q_J(I)s xj'l'.[] . : . (5.05)‘
and

.Ij+'| (Ks Xj_”) = [Q_J(K)s XJ.H] | (5.06)
for x, . = 1. (See Section 3.02). The costs for these vectors

j+1
are given by

= : - 2
Vi (Do X)) = us(D) + (Y. [T, (T, X5 g = Pjd? (5.07)

and

where Y is the reverse of the channel vector, and i is the j+2nd.

received signal sample. [Iﬁ+] (I, Xj+1)]g+1 is the vector formed
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from the latest g+1 components of Ij+i (I, xj+]), so it can be
seen that only these components are used for the evaluation of
the cost Vj+] (1, xj+1). Let wj+] be the noiselsamp1e which con-

tributes td rj R and'1et

+1

R. - =r, ; ~w

i+ (5.09)

j+l

Then Rj+] is the value of Pipq> assuming Fhat there is no noise

in the system, But
Y. Ej.ﬂ (L, XJ'H )]g+-|
is defined to be the scalar prbduct of the vector

(vg> ¥ cees Yg)

g-1°
and the Tatest g+1 components of the vector

Tien (Io Xg5q)
‘{see Section 3.02). Hence, using equations 5.01 and 5.05,

IJIIJ+I (I, xj+1)]g+1

=Yg xj_g+](1) t ¥g-1 X5-gu2 + s Yo %541

or

i.[Ij+] (1, xj+1)]g+] =Yg *5-g41 (I) + (5.10)
where

o= yg_] xj-g+2 + yg_z xj-g+3 + . F yO xj+1 (5.11)
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Similarly,

Now, substituting equations 5.10 and 5.12 into equations 5.07 and

5.08 gives

Vi (D Xg4p) = 4j(D) + {yg x5 g (1) + @ = vyl
and

vj+1(K, xj+]) = U, (K) + {y xJ g+1(K) +q - rj+1}2.

(see equation 5.09), thereforer

and

ViarKs X54q) = u5(K) + vy xg g+1(K) - Rypq Wy

Subtracting the second equation from the first gives
vj+](I, xj+1) - vj+1(K, xj+1) = uj(I) - uj(K)

(1) +‘a - R (K) '+ o ] R

- 2
g Xj-gtl 341 " W5 ) T g X504 541
) Therefore
vj+1(I’ xj+]) B vj+](K’ xj+1)

= uj(I) - uj(K)

X g {XJ -g+

- W

j+l

1(1) - X5 g (K} (5.13)

}2
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First consider a case where

(1) = x

X5-g+ g+l

(K).

Then equation 5.13 reduces to

(I, x

Vitl J+1) "V

From the inequality 5.0

+I(K’

4,

Ju5(1) - w1 >e

V547 (85 %509) -

Vj+1(K’

3N

xj+1) = uj(I) - uj(K).

Xj+1)|>E

and the vectors jﬁ+1(I, xj+]) and Iﬁ+](K, Xj+1) cannot be merged

with a separation which

Now consider a cas

xj+g+](1) # Xi+g+l

Then, from equation 5.1

ViprlTs X549) -

where

¢ =Yg [Xjq0 (1) #

and

€27 {xj—g+1

(I) = x

is < e.

e where

(K).

3,

](K X

Xj-g

-9

J+1) = uj(I) - uj(K)

+ (cq - 2w

a8

j+1) ¢

(5.14)
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Hence

Vj+1(K’ X uj(I) - uj(K) +CC, - 2c

Vi (D Xj+1_) B 5410 = 2 Y5410

and the condition:

Vi (Ts X30) = viq (K Xl s e

is satisfied only if 2c 541 lies in an interval of width 2e i.e.

WJ.+1 must 1ie in an interva] of width

€

|c2l '
It follows, therefore, that the vectors

Tsls x59) and o T g (Ks x509)

can be merged with a separation £ ¢, on1y if w,, 4 Ties in some given

= J+1

interval of width e/]c,]. .
In the assumed model of a data transmission system {see Section
1.02), Wj+] is a normally distributed random variable with zero mean,

and variance denoted o2. Hence the probabi]ity.density function for

wj+1 is given by -
f(x) = - exp (2X)
o/ 202

A rough sketch of f(x), plotted against x, is given in Figure 5.01.

The probability of w,

541 lying in any interval (a, b) is given by

Pr(a<wﬂ4<b)= [ f(x) dx.
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Hence

Pr (a <'wj+] < b) max 9%

A
o .
—+,

IA

(b-a) fax

where fma is the maximum value of f(x).

X

But

f(x)

SO fmax

i
Q
Rﬁ
2
4
WA

~ Therefore

b-a
ov2T

Pr (a < wj+1 <b) ¢ (5.15)

It has been shown above, that the yectors Ij+](1, xj+]) and

I-j+"l

in some given interval of width ¢/|c

(K, xj+]) can be merged with separation < e, only if wj+] Ties
21>
e,

P g Prob, (wj+] Ties in an interval of width e/|[c,|)

where P is the probability that Ij+}(l, xj+1) and Ej+1(K’ xj+1) are

merged with a separation ¢ €. Now using the inequality 5.15 gives

Ps— % | (5.16)
lc2| %43

where c, is given by equation 5.14. (Note that this bound for P

has been derived for a case where xjhg+](I)'# xj_g+](K) ).
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This bound for P will now be applied, to one of the situations
covered by the simuTation tests, ‘described in Chapter 4. A‘binary
signal is assumed throughout this chapter, so that the possible

data element values are 1. Therefore, assuming that

ioger(D) # X g g (),

equation 5.14 gives

|C2‘ = 2|ygl-

Cons ider now, the simulation tests carried out on channel E, at

an error rate bf 0.004, énd a.two level signal. Then yg = 0,167

(see Table 4.07) and the appropriate value of ¢ is 0.18, for
System 1 with k=4, The inequality 5.16, therefore becomes

P < £
2 x 0,167 x 0.18 x V2r
or

P.<6.6¢

IA

In simulation tests 1£ was found that a noticeable drop in
performance, with Systems 1 énd 2, was accompanied by vectors merged
wifh a separation € of 10”% or less. Hence the probability P of the
vectors_Ij+1(I, xj+]) and_Id+](K, xj+1) being merged with a separa-
tion small enough to reduce performance, is < 6.6 x 107%. 1t should
be noted that the inequality 5.15, gives a tight bound only if a and

b are close to zero, In general,

b-a

Pr (a < w,
over

J+

1 < b) <<

P << 6.6 x 1073
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(i.e. P is much less than 6.6 x 10-%).

Summary

From the above analysis, it is é]ear that two vectors of the
. form gj(l) and gj(K), must be present at the end of the j+ist.
cycle of the process, if merged vectors are to appear in the
following cycle. If such vectors are present at the end‘of.the
j+1st, cycle, there is then a small probabitity of Vectors appearing
in the j+2nd. cycle, which are merged with a significantly small
separation. If two merged vectors do éppear in the set of‘expaﬁ-
ded vectors, in somé cyc]é of the detection process, these vectors
may not be selected by tﬁe appropriate decision rule. If they are
‘not selected, the following cycle of the précess will begin without

any merged vectors.

5.03 Non-Merged Vectors Stemming from Merged Vectors

As before, the System 1-and System 2 detection processes will
be considered. Let QJ(I) and QJ(K)'be two vectgrs present at the
end of .the j+1st. cycle, which are merged with some small separation
€. - Then, from the definition of merged vectors, gd(I)";nd.gj(K)

must have their latest g elements in common. (See Section 5.02).

Let

_Q_J(I) = [xj-NH(I)’ xj-N+2(I)’ vees xj-g(l)’ xj—g+1’ xj-g+2""’xj] |

and

QJ(K) = [Xj-N+1(K)’ Xj-N+2(K)’ cees ijg(K)’ X3-gs1® xj-g+2’ ...,xj]



237

Let the costs for these vectors be Uy (I) and u. (K) respectively,

and let
uj(,K) = uJ.(I) + e (5.17)

In the j+2nd. cycle of the process, QJ(I) and gd(K) are

extended to the four vectors given by

Ty (T %549) = Q500 %49 (5.18)

and

‘Ij.l.] (Kslxj_i_]) = [QJ(K)s Xj+']] (5.19)

where X1 MY take the values x1, (Assuming, as before, that a
binary data signal is used). The costs for these four vectors are

given by

fl

uj(I) +'{i.LIj+1(I, xj+1}]g+} - r.}2 (5.20)

vj+1(-I’ xj+'l) J

and

us(K) + {Y [T, r.32  (5.21)

Vipr(Ks X50q) = J+1( > X5q)1g T T

where Y is the reverée of the channel vector, and rj is the j+1st.
reCeived signal samp]e; (See Section 3.02). The four vectors of the

forms TJ+] (I, x;,) and T (K, xj+]) may be said to have stemmed

j+ —j+1
from Q(I) and Q;(K). : -

From the definitions of gj(I) and.g.(K), these two vectors have

their Tatest g elements in common. Hence, for a given value of X541
(K, xj+1), have their latest

the two vectors‘lj+1(1, Xs.q) and T,

j+1
g+1 elements in common. (See equations5.18 and 5.19)

—j+
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Hence

Y. [T, 4 (K, x

J+I(I xJ+1)]g+1 —j+ j+1)]g+1

as in general X,[gjg+1 is defined to be the scalar product of Y,
and the g+1 components of V, which are furthest to the right. This
definition applies to ahy vector v with g+1, or more, components.

Hence, from equations 5.20 and 5.21,
vj+](I€ Xj+1) - vj+1(K, xj+1) = uj(I) - uj(K)

But |uj(I) - uj(K)| =

as the vectors gj(I) and gd(K) are defined to be merged with a

- separation €. Therefore

Vi1 (Ts %500) = Vi (Ke X090 = e
It has been seen abovg that the vectors Ij+1( s J+]) and TJ+]
have their latest g elements in common, for a given value of x

(Ky X449)

. . j+1°
Hence T 1(I 1)'and_1j+](K, ~-1) are merged with separation .
Also,__. #(0. 1) and‘I; +1{Ks 1) are merged with a separation e.

(Note that +1 are the allowable values for xJ+])

At the end of the j+1st. cycle of the detection process, it was
assumed that there were two vectors present, which were merged with
some small separation €. The above anélysis, shows that this situa-
tion leads to one, in which two pairs of merged vectors are present
during the following cycle (assuming a binary data signal). It is
therefore clear that the number of merged vectors present in Systems
1 and 2, can increase from one cycle to the ﬁext. It is also evident

that non-merged vectors cannot stem from a pair of merged vectors.



239

5.04 Selection of Merged Vectors

The recommended starting up procedure, for Systems 1 and 2
(and Systems 3 and 4) is given in Section 3.08. With thjs proce-
dure, the initial set of k vectors are such that, one of them has
zero cost and the others have infinite costs. This ensures that
a distinct set of vectors will be present in the process, after a
few data elements have been detected. (See the proof of theorem
3.02, Section 3.10). Then, in the following cycles of the detection
" process, there is a sma]j probability that the set of expanded vec-
tors, will contain a pair of vectors which are merged with a small
separation. In each cyé]e of the process, the set of expanded
vectors will number 2k, and half of these vectors will be selected
according to the appropriate decision rule. (Note that the number

of signal Tevels is assumed to be two).

In any cycle of a System 1 or a System 2 defection process,
in which the set of expanded vectors'coﬁtains a mérged pair, this
pairmay or may not be retained for the following cycle. If the
'merged'pair of vectors is se]écted, by the appropriate decision
ru1e; there will be two merged péirs of vectors available for selec-
tion in the next cyc1e of the process. (See.Section 5.03). It is
then possible for the number of pairs of merged vectbrs to increase

after each cycle.

Now assume that the number k, of vectors stored at the start
of each cycle, is even., Then it is clearly possible for all of the
vectors stored by Systems 1 and 2, to consist of pairs of merged
vectors, It will.be demonstrated that there is a high probability,

of this situation being preserved from one cycle to the next.
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‘Theoryem 5.01

Let the number k, of vectors stored at the beginning of each
cycle of a System 1 or a System 2 detection process, be even,
Let the k vectors stored at the end of some cycle of the process,
consist of pairs of vectors which are merged together with a
separation < €, for some small number e, Vectors which are not
in the same pair are assumed not to be merged. ‘Let the k vectors

be denoted Q;(I), with costs uj(I) for

Also let these vectors be such that, any two of them which form a

merged pair, have their latest M components in common, where

Note that, by definition, merged vectors must have their latest g
components, (i.e. the g components furthest to the right),‘in‘coumon.

let the costs for the extended vectors:
in the following cycle, be denoted vj+](I, xj+1) and assume that

Ivj+1(I, -1} - vj+](J,-U| > e (5.22)
and

Ivj.l.](ls 1) - Vj_ﬂ(‘]s Nl>e ‘ (5.23)

except when I and J are such that QJ(I) and gj(J) are merged with

. a separation < e. Then the k vectors selected by the decision rule
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for System 1, will consist of 1k pairs of vectors, with the vectors
in each pair being merged with a separation g €. This also applies

to System 2 if k is a multiple of four.

Furthermore, any two of these selected vectors which form a
merged pair, will have their latest M+1 components in common (i.e.
the M+1 components furthest to the right will be the same in both

vectors) .,

‘Proof

a) First consider the vectors selected by System 1. The decision
rule for System 1 ensures that the k vectors with smallest costs will

be selected from the set of 2k extended vectors, of the form

Q1) xgy]

5 be such that the vectors gj(ll)andgj(lz) form

one of the merged pairs, and ‘the corresponding costs; uj(I])ahd

Let I] and I

_uj(Iz){ are such that
0 < Uj(IZ) - uj(II) < €.

From Section 5,03, it can be seen that

Vi1 {las X500} 7 V(T Xgq) = usg)- us(ly)

where vj+](1, xj+]) is the cost associated with the vector [gd(I)’ xj+1].

From the inequalities 5.22 and 5.23, it can be seen that

vj+](11, xj+]) is the only cost within an amount ¢ of vj+](12, xj+1).
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SimiTarly Vj+1(I2’ xj+]) is the only cost within an amount € of
vj+](I], Xj+1)‘ Hence it is clear that, whichever of these costs
is selected first, the other one will be the next to be chosen, by
the decision rule for System 1. The k costs to be selected will

be selected in pairs of the form
Vi Ds X590 viq(ds x449)

where I and J are such that the vectors gd(l) and gd(d) are merged
with a separation < €. Hence the vectors selected by decision rule

one, will be selected in ﬁairs of the form
[QJ(I)S Xj+']] s [_QJ('J)s xj+]]

with the vectors in each pair being merged with,a separation g €.
The k selected vectors will therefore cqnsist of 3k such pairs.
gj(I) and_gj(d) are such that the 1étest M componenté are common
to the two vectors. Hence the latest M+l components will be in

-common, for any of the vectors making up a merged pair of the form

[_Q_J(I)s xj+]] ’ [_Q_J(J)s Xj+'|]

b) Now assume that k is a multiple of four, and consider the vec-
tors selected by the decision rule for System 2. Decision rule 2

considers the set of 2k vectors

{[QJ(I), Xjﬂ]}
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as being divided into two separate gkéups, according to their value

of x, The 3k vectors with smallest costs are selected, from

j+1°

those whicﬁ have x.

41 7 -1. This is repeated for the vectors having

'xj+1 =1, As with the proof for System 1,

V(I Xgyq) and vy (To, Xo4q)

are the costs which are closest to each other, if I1 and 12 are
such that gj(I]) and.gj(lz) form one of the merged pairs. Hence

the two costs
vj+1(I];- 1) and vj+1(12,- 1)

will either both be se]eCted; or-neither of them will be selected.
The vectors selected for which x‘j+1 = -1 will therefore bé chosen

in pairs of the form

‘where QJ(I) and gj(a) are merged with a separation 5 . Hence the ik
selected vectors with X541 = -1, will consist of ik pairs of vectors,
with the vectors in each pair being merged with a separation < €.
CTeér]y, the same applies to the selected vectors whiéh have X417 = 1.
As with System 1, the latest Mt1 components will be in common, for

any two vectors forming a merged pair such as

Q5010 xzqls 1050905 x4yq)

End of proof of theorem 5.01.
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Corrolary to theorem 5.01

The assumptions given by inequalities 5.22 and 5.23 have beeh
found, from simulation tests, to be nearly always valid if
e < about 10~%, Hence theorem 5.01 may be applied to any'situation,
where the vectors stored by System 1 or System 2 at the end of some

. ¢ycle, consist of pairs of vectors merged with a small separatiqn.

There is then a high probability that this situation will bé main-
tained in the next cycle of the process, It is therefore possible
that System 1 with k even, and System 2 with k being a multiple of
four, can become 1ocked in a state where the stored vectors are
formed into merged-pairs.. These sysééms have been observed to
remain in this state for tens of thousands of cycles, during simu-

lation tests.

- Definition
The fatlure mode for Systems 1 and 2 with some given value

of e, 18 defined to be a state in which all of the stored vectors

are formed into merged pairs, with a separation < e.

The term, "failure mode", is real]} appropriate only if ﬁhe
value of elis small. For small values of e, it has been seen that
there is only a small probability of the systems escaping from this

“mode, in any particular 6yc1e. The definitfon only covers a situa-
tion in which a binary data signal is used, and the number of vec-

tors stored at the start of each cycle is even,

Now consider a situation in which System 1 or System 2 enters
the failure mode, during some given cycle j. Then the k vectors

stored at the start of cycle j+1, will form ik pairs of merged vectors.
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From the definition of merged vectors; any two vectors forming a
merged pair at the start of cycle j+1, must have their Tatest g
components in common. Also, from theorem 5.01, it can be seen that
any two vectors forming a merged pair at the start of cycle j+2,
will have at Teast their latest g+l elements in common. The nﬁmber
of elements in common, for two vectors forming a merged pair, must
increase after each cycle until this number reaches N, The system
wi]lltﬁen be locked in a state in which its stored vectors are
arranged in pairs, with the two vectors in any pair being identical.
Then only 3k different data sequences can be stored at the start of
each detection cycle, and‘the process is‘effective1y wbrking with k
reduced to half., The detectors then require more storage, and
perform mofe ca1cu1atidns, than required for a given performance.
| Clearly, the failure mode is an undesirable state of operation for

Systems 1 and 2,

From the above discussion, it seems advisable that System 1 be
used with an odd value of k, and System 2 be used with a value which
.is not a mu]tip1e of four. Theorem 5.01 is not then applicable, and

Systems 1 and 2 should not become locked in the failure mode.

5.05 Probability of System 1 Eventually Entering the Failure Mode,
Given that a Particular Pair of Merged Vectors are Present at

‘Some Stage

From Section 5.04, it can be seen that System 1 may eventually
enter the failure mode, if a merged pair of vectors is formed during
some cycle of the process. it is, of coﬁrse, necessary that some
merged pairs of vectors are se]e;ted by the decisién rule in each

cycle, if the failure mode is to occur.
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Now consider a situation where two merged vectors, gd(l1)
andlgj(lz) are formed, with some small separation €, during some
cycle of a System 1 detection process. This pair is assumed to be
the only pair of merged vectors present, during the j+15t. cycle.
It can Ee seen from Section 5.02, that there is only a small prob-
ability of merged vectors appearing in the following cycle, which
have not stemmed from QJ(I1) and QJ(IZ)‘ This probabi]ity will
now be assumed to be negligibly small, In the j+2nd. cycle of the
detection process, two pairs of merged vectors (separation e) will
stem from QJ(I]) and QJ(IZ)' (See Section 5.03). Hence the decf-
sion rule for System 1, ma} select zero, one or two pairs of merged

vectors in the j+2nd. cycle.

A situation will now be examined in detail, in which System 1
is used with a binary signal, and four vectors stored at the start
of each cycle, {i.e. m=2 and k=4). It will be assumed that two of
the four vectors stored, at the end of the j+1st. cycle of the pro-
cess, are merged together with Separation iero. The remaining two
vectors are assumed not to be merged with each other, or with the
first pair. The effect of the ée]ection procedure, on the occurrence

of the failure mode, will then be assessed.

-

" The four vectors present at the end of the j+1st. cycle of the
“process, will be extended to form eight vectors in the j+2nd. cycle.
- From Section 5.03, it can be seen that four of the vectors will be
formed inte two merged pairs, with separation zero. Only four of the
eight vectors will be selected, and retained for use in the j+3rd.

cycle. -

From this point onward in the thesis, it will be assumed that
the k stored vectors of the fonn_gj(l), for System 1, are denoted in

such a way that
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yj(I) < uj(K) if I <K

where uj(I) is the cost associated with the vector gd(Il'

The four vectors stored at the end of cycle j+1 are denoted
95(1). with costs uj(I), for I =1, 2, 3, 4. In the j+2nd. cycle,

the eight extended vectors are given by
JLENAE Xj+1)-= [gj(l); Xjs1]

with costs

Vj+1(I’ Xj+1)
for

Ii=1,2, 3,4 and Xj+1 = 47,

The vectors QJ(IQ and gj(IZ) are merged with zero separation,
S0 ' ‘

Tian(Ip X5q) and o Tiq(Tos X54)

will also be merged with zero separation, for X = +], (See Sec-

J+1

tion 5.03). Hence
Vi (I], -1) = vj+](12, -1} and
V341 (I], 1) = vj+](12, 1).

Four of the eight vectors, of the form lj+](1, xj+]), must be
selected by the decision rule for System 1, The latest N components

of the selected vectors, then form the vectors
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9@+1C]); Qj+1(2);-9j+1(3); gj}](?)

which are arranged in ascending order of their costs. It can be
seen that this set of four vectors may contain zero, one or two

pairs of vectors, which are merged with separation zero.

Various modes of operation will now be defined for System 1,
corresponding to the number of pairs of merged vectors, which are

present in any gfveh cycle. These modes are:

Mode R:  The recovery mode. In this mode, the system has no

merged vectors.

Mode I: In this mode, the vectors gj(I) and_gj(1+1) are merged
with zero separation.' I may take on the values 1, 2 and

3, for the situation being considered.

Mode F: The failure mode. In thié mode, vectors gj(l), QJ(Z)
and gj(B), gd(4) form two pairs'of-vectors, which are

“merged with zero separation.

Clearly, if the detection process is in mode 1, 2 or 3,.at the
end of some cycle, it may change to any of the modes 1,.2, 3, reco-
veﬁyror failure, at the end of the following cycle. From Section
5.02, it is clear that there is only a small probability, that the
system will go from a state of no merged vectors, to one with a
pair of merged vectors, in any given cycle. Hence, once the process
reaches the recovery mode, it will tend to remain in this mode. From
Section 5.04, it can be seen that there is only a small probability

of System 1 leaving the failure mode, in any cycle.



249

The transitions of the System 1 detection process,. from one
mode to another, may be described in terms of the trellis diagram
of Figure 5.02. If the process enters one of the modes: 1, 2, or
3, in any cycle, it may then wander between thesemodes in the foll-

owing cycles, until it setties at either mode R or mode F.

Let PIg be the probability of transition from mode I, in one
cycle, to mode J in the following cycle. I may represent modes 1,
2 or 3 and J may represent any of the modes. The probabilities
pid are called transition probabilities. They are éssumed to be

constant from one cycle to the next.

Let PI(T) be the probabi]ity of the process being in mode I
at the end of cycle T,‘where I may take the:values 1, 2, 3, and
T may take the values j, j+1, j+2, ;...

(i 1s the first cycle which ends with a pair of merged vectors).
Let PI*(T) be the probability of the process arriving at mode I,
from either mode 1, 2, or 3, at the end bf cycle T. Here, IAmay

represent the modes R or F, and T may take on the values

3, 3+1, 342, .....

The probability of the process arriving at mode R at the end

of cycle T, from either mode 1, 2 or 3, is given by

Pﬁ*(T) Prob. (mode 1 in cycle T-1 ~ mode R in cycle T)

-+

Prob. (mode 2 in cycle T-1 » mode R in cycle T}

+

Prob. (mode 3 in cycle T-1 -+ mode R in cycle T)
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Therefore
Fﬁf(T) = P](T-1) Pip * P2(T-1) Por + P3(T-1) P3R (5.24)

Similarly the prdbabiTity of the process arriving at mode F at the

end of cycle T, from either mode 1, 2 or 3, is given by

PE(T) = Py(T-1) pyp + Po(T-1) pyp + Po(T-1) pyc (5.25)

The probability of the process being in one of the modes:
1, 2 or 3, at the end of cycle T, is relfated to the probabilities

at the end of cycle T-1, by the equat{ons:

Py(T) = P(T-1) pyp + Po(T=1) pyy + P5(T-1) Py
Po(T) = Py(T-1) By + Po(T-1) pyp + P3(T-1) by
P3(T) = Py(T-1) pyg + Pp(T-1) Py + Py(T-1) Py

It should be noted that the purpose of this analysis, is to detemine
the probability of the process eventually entering the failure mode,
given that it has entered either mode 1, 2 or 3 at some stage. Hence
the probabi]ities of the process going from mode R to 1, 2 or 3, or

of going from mode F to 1, 2 or 3, are not required here,

The above three equations may be written in matrix form to give

S8 Pip Par Py [PalT-1)
P3| P13 Pa3 Pg3f |Pa(T-1)]



for T = j+1, j+2, ...

Therefore

P(T) = AR(T-1)

where,
Cp(T) = -P1(_T)- and A= -P}] P21 p31-|
P, (T) Mz Pz Pa
() | i3 Pa3 P
] | i J
Hence
P(T) = B2 P(T-2)
= A3 g(T-3).
= A p(T-1)

for\.i = T_j’ T"j+]g T"j+2, R

Therefore, putting i=T-j gives

p(1) = AT p(4) | (5.26)

or

p(1-1) = AT p(y)

for T = j+1, j+2, j+3, ..
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Fopn = T AT Rg)
T—J+T T=J+1.
-G A1) peg)
; Eli P(T-1} = ? AT) P (5.27)
=] T=0 _

(It is assumed here that the infinite series is convergent).

Now Tet
n
T
S, = ) A
150

so that

Sy =1 +A+AZ 4., + AT,
Then

AS =A+ A2+ ..... + An+]

Subtracting the second expression from the first gives

(1-4) s, =1 - A™!

Now assume that I-A is invertible. Then

[ 7
1]

+1
= I=m7 -

(I-A)"1 - (I-A)~1 AM*T,
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From the definition of Sn’

AT = Tim s,
T=0 N
T OAT = Tim {(I-A)Y - (I-a71) ATy
=0 n-+
[+] T _ -1 2
3oAT= e | (5.28)

if it is assumed that A" + the zero matrix as n-+e, (This assumption
will be justified at a Tater stage in this section}. If (I-A) is
not invertible, the infinite series must be summed in some other

Way .

From equations 5.27 and 5.28

T P(T-1) = (I-A)" P(3) (5.29)
T=j+1 : '
Now let PF be the probability of the process evehtua]]y reaching

the failure mode (mode F), given that it has entered either mode 1,

2 or 3, during some cycle j. Then

P = Prob. (The process reaches mode F from either mode 1, 2 or 3,]
at the end of cyé]e j+1

or -

The process reaches mode F from either mode 1, 2 or 3,
at the end of cycle j+2

or
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It has been shown that the process is likely to remain in
mode F for a large number of cycles, once it has entered this mode,
(See Section 5.04). Now consider the event in which the process
reaches mode F from either mode 1, 2 or 3, at the end of some
cycle T. Clearly the process will settle in mode F, once it arrives
there, so these events are disjoint for different values of T, i.e.
if the process enters mode F from either mode 1, 2 or 3 at the end
of cycle T, this cannot be répeated at the end of cycle T+1. Hence
the above equation for PF becomes

oG

Y Prob. (The process reaches mode F from either mode
T=j+1 ‘

R
11

1, 2 or 3, at the end of cycle T).

o0

PH(T) 5.30
DU (5.30)

-
1

(from the definition of P#*(T)). But, from equation 5.25

PE(T) = Py(T-1) pyp + Po(T-1) pyp + Po(T-1) pyp.

e

P T (Py(T1) by # R (T1) e + Po(T-1) pye)
T=J41
=p Y} P(T-1) +p I P(T-1) +p } _ Pa(T-1)
IF 3a R SR Forajer 3
= (Pips Pop> P3p) 3 [Py(T-1)
1Fe Por Papd L L P
P, (T-1)

P4(T-1)
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2]

= (Pygs Pops Pap) L P (T-T) (5.31)
1P Pors Papd L by~ _

But from equation 5.29

TP (N = (1)1 P ()
T=j+1
. PF = (p'“:s pZF’ p3F) (I*A.)-l P_(J) | : (5.32)

(=]

Comvergence of ) AT

Clearly PF is the prbbabi]ity of a certain event occurring,

S0

Hence, assuming that P1ps Pop and_p3F are non zero, it is clear

from equation 5.31 that
§ P (T-1)
T=j

must be a vector with finite components (as Pips Pops Paps P](T),

Pé(T), P3(T) are all probabilities and are 3z 0}. Hence from equa;

“tion 5,27
(3 A P(3)
T=0

must be a vector with finite components. This is true whether the

process is in mode 1, 2 or 3.at the end of cycle j. But
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2(:})=-1‘,r0-or-0-
0 1 0
R B e B

depending on whether the appropriate mode is 1, 2 or 3, respectively,

Therefore the three vectors

[==) re - [+e] -

TT

(3 a1, (3 Ahfo] and (7 AH[o]
%0 T=0 20
0 11 0
0 | 0 1

L L L

must each be finite. The matrix whose columns are formed from these

“three vectors must also be finite, hence

(Y AhYT1 0o o
720
0 1 0
o 0 1

is a finite matrix, and the components of

] oA
T=0

must each be finite. Therefore

[

T
] A
T=0

is a convergent series and A.r + 0 as T » «, as assumed above.
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An expression for the probability PF of the process eventually
reaching the failure mode is given above, in equation 5.32. A

similar expression will now be derived for the probability P, of

R
the process eventually reaching the recovery mode.

PR may be expressed in terms of the probabilities Pli" (T), of

the process entering mode R from either mode 1, 2 or 3, by the

equation:
Pob= )} Px (T)

(compare with equation 5.30). But, from equation 5.24,

P (T) = Py(T-1) pyp + Po(T-1) pyp + P5(T-1) pgp

oo D . -] .

. Py=p § P (T-1) +p P(T-1) + p T P(T-1)
R™PIR 4T 2R T=§+1 2 3R rhyp 3
(Pre y 1 [y
= (P Pops P -
1R, Pare Pap? b 1T -
Po(T-1)
| P(T-1) |

oo

=(p s P sp) Z P(T-—])
1R* F2R* "3R T=3+1
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But, from equation 5.29

o0

Y P(T-1) = (I-A)7* P(3)
T=j+1

(assuming that I-A is invertible). Hence
Pa =.(P1ps Pogs Pag) (I-A)" P(J) (5.33)

Now suppose that it is given that the process was in mode I
at the end of cycle j. Then, from the definition of P(T), it is

clear that

P = [ (0]
f,(1)
-f3(I)-

where
fJ(I) = |1 if I=J

0 otherwise
Let PR/I be the probability of the process evéntua]ly reaching
the recovery mode, given that it was in mode I at the end of cycle J.

Then, from equation 5.33,

PR/I = (p'le pZR: D3R)(I'A)"l f](I)
£,(1)
(1)
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Also, from equation 5.32

Pes1 = (Pyps Pops P3p)(1-A)7) (1)
: fz(I)
£4(1)

where PF

/1 is the probability of the process eventually reaching

mode F, given that it was in mode I at the end of cycle j. The

above two equations may be combined to give the equation

PK/I = ('p]K’ Poy p3K)(.I'A)_1 Ff'l(I) W
(1)
| f3(1) ]

(5.34)

where K may represent the modes R and F, and I may take the values

1, 2 or 3,

5.06 Evaltuation of the Transition Probabilities P19

The transitions of a System 1 detection process, from one mode

- to another, are dictated by several factors. These transitions

-depend on the costs associated with the stored vectors, the data

sequence transmitted and the sequence of noise samples. There

appears to be no feasible analytical meihod for evaluating the trans-

ition probabilities, but they may be found approximately using com-

puter simulations.

During the operation of System 1, the appearaﬁce of a pair of

vectors which are merged with a small separation (< 10-3say), is a
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fairly rare event. This means that a very large amount of simula-
‘tion testing wou]d be required, to obtain a reasonaﬁ]e number of
cases in which such pairs of vectors were formed. The simulation
tests were therefbre initialized with an artificially contrived
sef of vectors and costs, containing a pair of vectors which were
merged with separation zero. The following method appears to be a

reasonable one, for constructing such a set of vectors and costs.

The detection proéess is started up in the usual way, as des-
cribed in Section 3.08. Then after a few data elements (say 15 or
20) have been detected, the values for one of the stored vectors
and its cost , are changed. These values are replaced by the corres-
ponding values for one of the other vectors, so that two identical
vectors and costs are present in the system, The simulation test
is then completed, upon noting which mode the process has entered

at the end of the following cycle.

When a number of such simulation tésﬁs have Been completed,
the proportion of tests in whiéh the process has merd from one
-particular mbdé to another, gives an estimate of the corresponding
transition probability. The accuracy of this estimate naturally

increases with the number of simulation tests performed.

" Let the four vectors stored at the end of the j+lst. cycle of
the process, be denoted gd(l), with cosfs uj(I), for I =1, 2, 3 and
4, Now suppose that it is desired to set the detection process in
modé I, at the eqd of cycle j. (Mode I being that in which the
vectors gd(l) and gj(1+1) are merged with zero separation). The
method described above allows two alternatives for setting the pro-
cess in this mode. Either the values for Qj(I) and uj(I) can be

replaced by those for gd(l+]) and uj(I+1), or the values for 93(1+1)
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and uj(1+1) can be replaced by those for QJ(I) and uj(I). Let the
modes of the system for these two cases, be denoted mode IA and

mode IB.

For the estimation of the transition probability Prgs an
- equal number of simulaticn tests were carried out, with the
process initialized in mode IA and mode IB. These tests provided
estimates of the transition probabi]ifiés pIA,J and Pig,ge Of the
process moving from mode IA to J and mode IB to J, respectively.
The estimate for Prg was then taken to be the average of the esti~

mates for PIA.J and Pig.g-

The simulation tests described in this section were performed
on System 1 with a binary data signal, Channel E, 4 stored vec-
tors (at the start of each cycie) and a value of 0.178 for the noise
standard deviation, were used throughout. Note that 0.178 is the
value of the noise standard deviatioq, which would cause an error
rate of b.004, if the detection process was working nénnaT]y wfthout
any merged vectors. The number N, of components of the vectors,

at the start of each cycle, was fixed at eleven.

Table 5.01 gives the estimates obtained for the transition
" probabilities P1a.g* PIB.J and P14 for a case where 100Htria1s'
-were performed for each of the six starting modes (i.e. the six

modes: 1A, 1B, 2A, 2B, 3A and 3B)

Note that the four vectors stored at the start of the j+lst.

cycle of the process, are denoted

g;(1), 84(2), 04(3) and 8;(4)
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I | PIA,F P1g,F PIF
1 0.46 0.80 0.630
2 0.04 0.18 0.110
3 0.00 0.01 0.005
I P1a,1 - Pg, 1 P11
1 0.16 0.08 0.120
2 0.06 0.02 0.040
3 0.00 0.03 0.015
I P1a,2 P1B,2 P12
1 0.14 0.05 0.095
2 0.06 0.08 0.070
3 0.00 0.03 0.015
L. PlA,3 P18, 3 Pr3
1 0.10 0.03 0.065
2 0.63 0.51 . 0.570
3 .24 0.32 0.280
I P1a.R P1g,R PIR
1 0.14 0.04 0.090
2 0.21 0.21 0.210
3 0.76 0.6 0.685

Tests performed with channel E, k=4, ¢ = 0,178 and N=11.

TABLE 5,01

Results of simulation tests for evaluating the transition proba-
“bilities Pra? with 100 trials
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in ascending order of costs. Hence, from the definitions of modes
IA and IB, given above, it can be seen that the merged pair of
vectors will have a higher cost.in mode IA than in mode IB.
Whichever the initial mode‘in the simulation tests, the merged
pair of vectors will be extended to two merged pairs in the fo]f-
owing cycle of the process (see Section 5.03). If a simulation
test is started from mode IA, it should usually be the case that
the costs for the two mefged pairs of vectors, are greater than
those occurring froﬁ an initial mode IB. The decision rule is
therefore more 1ike1y to select both pairs of merged vectors, for
the case where the initial mode is IB. (The decision rule selects
the k vectors with Towest costs). The probability of the process
moving to the failure mode, should therefore be greater from the
initial mode IB, than from IA. This'is-supported by the results
shown in Table 5,01, |

The results given in Table 5.01, are for a case where 100 trials
were cafried_out for each of the initial modes 1A, 1B, 2A, 2B, 3A
and 3B. The result of each trial is, of course, the mode that the

.process has moved into after one cycle. Tables 5.02, 5.03 and 5.04
give the results of similar simulation tests, where the number n

| of trials for each starting mode, was 500, 1901 and 20001 respec-

‘tiye1y. Then, from the results of each of the tables 5.01-5.04,
the probabilities of the process eventually reéching the recovery

and failure modes, were calculated as in Section 5.05.

+

The estimated probabilities PK/I’ of the process eventually
reaching mode K given that it had entered mode I, are given in
Tab]e 5.05. These estimates are given for the four different values

of n, corresponding to tables 5.01-5.04. (n is, of course, the number
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L PIAF P18, F PIF
1 0.408 0.826 | 0.617
2 0.034 " 0.160 0.097
3 0.010 0.010 0.010
L P1a,1 P18,1 P
1 0.194 0.068 0.131
2 0.038 0.028 0.033
3 0.000 0.008 0.004
! P1a,2 P18,2 P12
1 0,130 0.032 0.081
2 0.052 10,082 0.067
3 0.002 0.038 0.020
L P1a,3 PyB,3 P13
R . 0.176 0.036 0.076
2 0.618 0.506 0.562
3 0.226 0.338 - 0.282
- I Pia,R P18,R PIR
] 0.152 0.038 0.095
2 0.258 0.224 0.241
3 0.762 0.606 0.684

Tests performed with channel E, k=4, ¢ = 0.178 and N=11,
TABLE 5.02 |

Results of simulation tests for evaluating the transition proba-
bilities Pygs with 500 trials,
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! _P1aF P1g,F Prr
1 0.396 0.833 0.615
2 0.028 0.155 0.092
3 0.006 0.008 0.007
I P1a,1 P1g,1 Py
1 0.216 0.080 0.148
2 0.032 0.032 0.032
3 0.002 0.005 0.004
1 P1a,? Pig,2 P12
1 | 0.122 0.033 0.077
2 0.055 0.078 0.067
3 0.011 0.027 0.019
I P1a,3 P1g,3 P13
1 0.129 0.025 0.077
2 0.620 0.519 . 0.570
3 ©0.229 0.335 0.282
I Pia,R Pig,R P1p
1 0.137 0.028 0.083
2 0.264 0.216 0.240
3 0.752 0.625 0.689

Tests performed with channel E, k=4, o = 0.178 and N=11.
' TABLE 5.03 |

Results of simulation tests for evaluating the transition proba-
bilities Prg with 1901 trials.
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L PILE | PegF PIF
1 0.404 0.836 0.620
2 0.028 0.155 0.002
3 0.004 0.007 0.005

I PIA,1 Py | Pny
1 0.213 0.087 0.150

2 0,028 0.033 0.031
3 0.002 0.003 0.003

I P1a,? PIB,2 P12
1. 0.129 0.024 0.076
2 . 0.063 - 0.086 0.074

3 0.011 0.031 0.021

I Pla,3 P1g,3 P13
1 0.130 0.026 0.078
2 0.617 0.521 0.569
.3 0,239 0. 331 0.285
: I ~ PIAR Pig,R P{R
1 0.125 0.027 |  0.076
2 0.264 0.205 0.234
3 0.744 0.628 0.68

Tests performed with channel £, k=4, ¢ = 0.178 and N=11.

TABLE 5.04

Results of simulation tests for evaluating the transition proba-
bilities Prg® with 20001 trials.
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n PR/ Prs2 Pr/3
100 0.264 0.834 0.974
500 - 0.275 0.857 0.978

1901 0.265 0.867 0.984
20007 0.258 0.868 0.986

" Py /2 Pr/3
100 0.736 0.166 0.026
500 0.725 0.143 0.022

1901 0.735 0.134 0.017
20001 0.743 0.132 0.014
TABLE 5.05

The calculated probabilities PI/K for different numbers n, of

trials.
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of trials carried out with each of the six starting modes, to

obtain the estimates of the transition probabilities pIJ)'

The estimates of the probabilities PI/K are, of course, sub-
ject to statistical fluctuation. It is not a straightforward
matter to obtain confidence limits for these estimates, but the
accuracy must improve as the number n of trials is increased.. If
n.is large enough, so that increasing its value does not signifi-
cantly change the estimates of PI/K’ it seems reasonabie that enéugh
trials have been carried out to give fairly accurate results. The
estimates of any partiqular prqbabi]ity PK/I’ for n = 1901 and
20001, differ by no more than 0,01, in Table 5.05. It migHt be
assumed, therefore,.that the estimates corresponding to n = 20001,

Care accurdte within a tolerance of #0.01.

Now consider again the results given in Table 5.05. It may
be seen from these results, fhat the pfobabi]ities of the proéess
reaching the modeis and F, sum to unity, irrespective of whether
the process was initially set in mode 1, 2 or 3. It appears, there-
fore, that the system can not.remain within the modes 1, 2 and 3

indefinitely. This is confirmed by the following theoretical analysis.

From equation 5.26, ' -

P(T) = AT p(j)

or
h-P] M= a3 e )]
P, (T) RN
| Py(T) |  Py(T-1) |
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where PI(T) is the probability that the process will be in mode I,
at the énd of cycie'T, for I' =1, 2, and 3. It was shown in Sec-
tion 5.05, that AT tends to the zero matrix as T-«. Hence
P (T) 0 as T+w, for I =1, 2 and 3, i.e. the probability of
the process being in any of the modes: 1, 2 and 3 at the end of
tyc]e T, tends to zero as T becomes 1arge; The process must there-
fore leave the modes-1, 2 and 3, and eventually settle in mode R
or mode F. |

For the matrices A, corresponding to the transition probabi]iv'
ties.given in tables 5.01-5.04, it was found that the elements of AT

were éffective]y zero, for T3x20. In fact the two sums:

co 20
and ¥ AT
T=0

were found to be the same, within a tolerance of 10°% for the
e1eménts of the matrices. Hence, from equation 5.26,-it can be

seen that P(T) has all of its components effectively equal to zero,
for'rzj + 20. i.e. the probability of the process leaving modes

1, 2 apd 3, wjthin twenty cycles of_entering one of these modes, is
effe;tively equal to unity. The process is therefore bound to settle
_in either mode R or mode F, within about twenty cycles of a merged
pair of vectors appearing. (Note that this result applies to a
particular situation in which the number k of stored vectors was

equal to four).
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5.07 The Direct Evaluation of PK/I'by Computer Simulation

In Section 5.05, a method was given for evaluating the pfoba-
bility PK/I’ that the System 1 detection process will eventually
enter mode K, given that it has entered mode I. I may take on the
values 1, 2 and 3, and K may‘represent either mode R or mode F.
This method calculates the probabi1ities PK/I,‘from the probabi-
lities P1ge of the process moving from mode I to mode Jlin one
cycle. The problem with this approach is that of obtaining accurate

estimates of the transition probabilities Py

The elements of the matrix A, in equation 5.34, are from the

© set of estimates of the transition probabilities Prg- It is possible
" that errors in the elements of A, may cause larger errors in the
elements of (I-A)}-!. It can then be seen from equation 5.34, that
large errors may be present in the estimated values éf the proba-
bilities Py ;. o

‘Another problem with the method of Section 5.05,'15 that it is
very complicated for values of k which are much greater than four,
(k is tﬁe number of vectors stored at the start of each cycle).
For 1qrger values of k, the number of modes of the trellis, of the
type Showﬁ in Figure 5.03, becomes alarmingly large. This method
for-ca]cu]ating PK/I’ is however useful in that the analysis involved,

gives some insight into the behaviour of the detection process.

The probabilities PK/I have also been estimated directly from
simulation results. As with the tests described in Section 5.065,
these latter tests were carried out with the process placed in each
of the modes 1A, 18, 2A, 2B, 3A and 3B. The detection process was
then continued for as many cycles as were neéded, for it to enter

either mode R or mode F. (i.e. the recovery of the failure mode).
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Consider a number n of simulation trials in which the process
is placed in mode 1A. The proportions of trials in which the
modes R and F eventually occurred, then give estimates of the
probabilities PR/]A and PF/1A' (i.e. the probabilities of the
process eventually reaching the modes R and F, given that it was
placed in mode TA at some stage). The same number n of simulation
trials, were carried out to provide estimates of PR/]B and PF/]B’

and the estimaﬁes fér PR/1 and PF/l were defined by

oo Prs1a * Priig )
R/1 S ?

and

o . Praat P
Pen = 7

This procedure was repeated for the probabilities: PR/Z’ PR/B’
PF/Z and PF/3'

The results of the simu]aiion tests %or estimating the
-probabi]itie§ qu s are given in Tables 5.06-5.08, These results
cover situations with different values of k, different noise levels
and two different channels. (k is, of course, the number of vectors
stored at the start of each cycle of the detection procéss). For
cases where k is greater than four, the modes of operation of the
process, are defined in basically the same waylas before. Mode R
is the mode in which fhere are no merged vectors, and F is the mode
in which the vectors form into merged pairs with zero separation,
Mode I is defined to be that in which only the vectors 95(1) and
gj(1+1), are merged;with ;ero separation, for I =1, 2, 3, ....
(Note that the vector with Kth. largest cost is denoted QJ(K),
for K=1, 2, ....., k).
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! PE/IA — Pr/18 PE/1
1 0.4692 0.9269 0.6981
k=4 2 0.0731 0.1577 0.1154
3 0.0038 0.0269 0.0754
1 | 0.3692 0.8731 0.6212
k=6 2 | 0.0654 0.2308 0.1481
3 0.0038 0.0154 0.0096
1 0.2769 0.8038 0.5404
k=8 2 " 0.0539 0.1538 0.1039
3 0.0038 C0.0077 0.0058
1 | o0.286 -~ 0.8231 0.5539
k=16 2 0.0423 0.2308 - 0.1366
3 0.0 0.0115 - 0.0058

TABLE 5.06

Variation of PF/I with the value k, for System 1, channel E and
o = 0,178, 260 trials.
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I Poa o | P Py
] 0.342 0.931 0.637
0=0.136 2 0.023 0.104 0.064
3 0.000 0.000 " 0.000
1 0.396 0.873 0.635
0=0.178 2 0.065 0.231 0.148
3 0.004 ~0.015 0.010
] 0.454 0.665 0.560
0=0.,282 2 0.169 . 0.29 0.233
3 0.050 1 0.100 0.075

TABLE 5.07

Variation of PF/I with the value of o, for System 1, channel E,

and k=6, 260 trials.
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1 Pertn L Pesis Pen
1 0.742 0.919 0.831
k=4 2 0.081 0.239 0.160
3 0.000 ' 0.004 0.002
1 0.481 0.835 0.658
k=6 2 0.073 0.289 0.181
‘ 3 0.004 0.015 0.010
1 0.458 0.781 © 0.619
k=8 2 0.039 0.269 0.154
3 0.008 0.015 0.012
1 0.373 0.765 - 0.569
k=16 2 0.042 0.323 0.183
3 ©0.000 0.012 0.006

TABLE 5.08

Yariation of PF/I with the value of k, for System 1, channel d
and o = 0,0762., 260 triails.
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It was shown in Section 5.06, that the System 1 detection
process with k=4 is very likely to enter either the recovery or
failure mode, given that it has entered mode 1, 2 or 3 at some
stage. The same analysis can be applied to any case where k is
even, therefore '

PR/I + P

=1

for I =1, 2 and 3. i.e. the probabilities of the process going
from mode I to the recovery mode, and the failure mode, should
sum to unity. (This is supported by simulation results). Hence
only the probabilities of the process entering mode F, are given

in tables 5.06-5.09.

Table 5.06 shows how the probabilities PF/I’ vary with the
'value of k, for System 1, channel E and a value of 0.178 for thé
noise standérd deviation o. (This is the value of o which will
give an error rate of 0.004 under the given conditfonﬁ, when there
are no merged vectors present in the system). The number N of com-
poneﬁts of the stored vectors was fixed at eleven, as was the case
for all simulation tests described in this section. Each probability
PF/I was calculated as explained abéve, with 260 simulation trials
tarried out for the estimation of each of the probabilities P. 1

and P (i.e. n = 260).

F/IB8°
It can be seen from Table 5.06, that the probabilities: PF/]’
PF/2 and PF/3’ do not change dramatically with the value of k, for
the situation tested. These probabilities do, however, decrease

slightly as k 1s increased from 4 to 16. It js also evident from
this table, that the probabilities PF);, decrease rapidly as I in-

creases from 1 to 3, for any of the values of k.
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Table 5,07 demonstrates the way in which the probabilities:
PF/I’ PF/Z and PF/3’ vary with the Qo1se level in the system,
The corresponding simulation tests were carried out on System 1,
with channel E and a value of 6, for k. As before, N was fixed
at eleven, and 260 simulation trials were carried out, for the
estimate of each of the probabilities PF/IA and PF/IB' The three
values of the noise standard deviation o, used in these tests were
0.136, 0.178 and 0.282. These ¢ values are ones which would cause
error rates of 10™%, 0.004 and 10-! réSpective]y under the given

conditions, if there were no merged vectors present in the system.

it can be seen from Table 5.07, that the probability PF/]
does not vary greatly with the value of o. The probabilities PF/2

and PF/S do, however, increase quite noticeably as o increases,

Table 5.08 shows the results of simulation tests on System 1,
with channel J and ¢ = 0.0762. This is the value of o which would
cause an error rate of 0.004, under the given conditibns, if there
were no merged vectors present in the system, These simulation
tests wére the same as those corresponding to Table 5.06, except
whére stated. From Tables 5.06 and 5.08, it can be seen that varia-
tions\in the value of k have a similar affect on the probabilities

'PFYI, for both channel E and chanrel J.

It has been observed from simulation results that, if a vector
_ gd(l) has a large cost in relation to the other stored vectors, then
the vectors stemm{ng from Qj(I) will have 1akge costs. The decision
ru]é for System 1 is such, that the k vectors_with smallest cost

are selected from a set of mk vectors, during each cycle of the pro-
cess. Hence it can be seen that vectors steﬁming from such a vector

gj(l)’ are likely to be deleted from the system.
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Now consider System 1 when operating with én even number k,

of vectors stored at the start of each cycle. Suppose that the
process enters mode I in the j+1st; cycle, so that the vectors

Qj(l) and gj(I+1) are merged with some small separation. i.e.

the vectors with I th. smallest cost and I+1st. smallest cost ,

are merged in cycle j+l. (I may have any value in the range 1, 2,
..... » k=1}). If I is fairly large, the costs for these two merged
vectors will be among the greatest costs present in the j+1st.
éycle of thé process. Then, from the‘above discussion, it can be
seen that the vectors stemming from these merged vectors, are Tikely
to be deleted, fhus;a110wing the process to enter the recovery mode.
Hence it should be expected that the probability PFYI’ of the pro-
cess eventually reéching the fai]ure‘mode given that it has entered
-mode I, must decrease as I increases. This is substantiated for

I =1, 2 and 3, by the results given in Tables 5.06-5.08.

It can be seen from Tables 5.06-5.08, that the décrease in
PF/I as I.increases, is fairly rapid apart from the case with
channel £ and o = 0.282. 1In all of the other cases tested, the
value of o was chosen such that it would give an error rate of
0.00420r less, if there were no merged vectors present in the system.
Theéé results suggest that the prbbabilities PF/I are very sma]]
‘for I >3, when the detection process is working at error rates of

0.004 or less. {Note that PF/I is only defined for I <3 if k=4).

In Sections 5.05 and 5.07, two methods were given for evalua-
ting the probabilities: PF/1’ PF/Z and PF/3' Table 5.05 gives the
results of the former method, for channel £ with k=4 and o = 0.178.
Results for the latter method may be found in Table 5.06, but the

confidence Timits for these results are not really close enough to
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allow a comparison of the two methods. (See Section 5.08 for a
derivation of the confidence limits, for the method described in
Section 5.07). The simulation tests corresponding to Table 5.06,
were therefore repeated with n=10*, i.e. 10* trials were carried
out to provide estimates of each of the probabilities PF/IA and
PF/IB' The results of these tests are given in Table 5.09.

A comparison of Tables 5.05 and 5.09, showsrthat the two methods of
calculating the probabilities PF/I,-are in reasonabTe agreement.
(The results for n=20001 should be used, from Table 5.05, as these

have the.closest confidence limits}.

5.08 Confidence Limits for the Estimates of PK/I

Consider a series of n independent trials, each of which has
only two outcomes: success and failure. Llet p be the probability

of failure, so that the probability of success is 1-p.

| Let p* be the proportion of failures in the n trials. Then, if
np and n(1-p) are reasonably lerge (greater than 5 say), it may be

shown that the distribution of the random variable p*, is approxi-

mately N (p, EL%JEJJ;

i.e. the distribution is approximately normal, with mean p and

“variance = p{1-p)/n. [50]
It may also be shown that, for any normally distributed random
variable with mean u and variance o2, there is a 95% probability
that

X - 190 <p<x+ 1.%9%¢c

for any sample x, taken from the distribution [50]. Applying this
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I Pe/in Pe/1p Pr/1c

1 0.511 0.905 ©0.708

2 0.058 0.200 0.129

3 - 0.002 0.009 0.006
TABLE 5.09

Values of the probabilities PF/I for System 1, channel E, k=4
and o = 0,178, 10* trials.
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result to the situation described above, gives

Prob. (p* - 1,96/ 2UL ¢ p ¢ px 4 1,95 /RUZR)) = g 95

If the number n of trials is fairly large, p will be quite close

to p* and

p(1-p) = p* (1-p*)

Prob. (p* - 1.96/ EXLPT) ¢ 5 ¢ pr 41,96 / RELLRT)) 2 g 95

(5.35)
Hence, if p* is used as an estimate of p, the 95%'confidence Timi ts

. for the estimate are approximately

+1.96 /22007)

For the simulation tests correspondiﬁg to Tables 5.06-5.08,
the number n of trials carried out for the estimation of each of the
probabilities PF/IA and PF/IB’waS 260. Each triél was independent
of the others, and had two possible outcomes. The proceéé could either
-enter the reccvery mode, or tﬁe failure mode. Let p* denote the
estimate of the probability of the process entering the failure mode,

in some such group of 260 trials. Then, from equation 5.35, the 95%

confidence limits for p* are

+1.96 / PX{IPT)
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p* can, however, only be assumed to be normally distributed
if np* and n(1-p*) are reasonably Targe (> 5 say). Hence, taking

n=260,the above analysis is valid if p* is »0.02.

It may readily be shown by differentiation, that p*(1-p*)

takes its maximum value when p* = 1. Therefore

IA

1.96 v/ EX{1P0) 1.96 /jtz%(n—%

0.061

1A

Hence "the 95% confidence limits for the values of PF/IA and PF/IB’
in Tables 5.06-5.08, are no more than +0.061. (This only applies

when the probabilities are>0.02).

For the simulation tests corresponding to Table 5.09, n=10"%,
Hence, from equation 5.35, the 95% confidence limits for these

values qf PF/IA and PF/IB’ are

" +1.96 / P*(2-p*)

10
But  1.96 /PE(1PF) o 4.4 /(-
10" 10*

< 0.01

Therefore the confidence limits on PF/IA and PF/IB’ are closer than

+ 0.01.

In Tables 5.06-5.09, the estimates of the probabilities PF/I’

have been obtained by taking the average of the estimates for PF/IA
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and P Hence the confidence Timits for the estimates of P

F/IB"
should be closer than those derived for P

F/1

and P

F/IA F/IB°

5.09 Probability of System 1 Eventually Reaching the Failure Mode,
Given the Appearance of a Merged Pair of Vectors

From the results given in Section 5.07, it is clear that the
probabilities PF/I’ decrease fairly rapidly as I increases from

1 to 3.‘ These results suggest that
PF/I < 0.02

for 1= 3, &, 5, ....., k=1, for cases where the rate of errors is 0.004,
or less, {i.e. where the noise level is such that the error rate

is'< 0.004)., k is, of course, the number of vectors stored at the

start of each cycle of the detéction process. It will now be assumed
‘thaf the probabilities PF/I are negligibly small, fot I1>4, where

they are defined for such values of I,

Now 1et-bI be the probability that System 1 has entered mode I,
given that it has entered either mode 1, 2 or 3i Also let PF be_

~ the probability of the process eventually éntering the failure mode,
given that it has entered one of these three modes at §6me stage.

- Then

PF = Prob. (the process had entered mode 1 and it eventually
enters mode F
or
the process had entered mode 2 and it eventually
enters mode F |
or
the process had entered mode 3 and it eventually

enters mode F),
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(Note that the probability of System 1 moving from mode I to the
failure mode, has been assumed to be negligible for I>4). Hence

it may be seen that

3
P = } Prob. (the process had entered mode I and it
I=1
eventually enters mode F)
. :
=- } Prob. (the process had entered mode I)
I=1 A
xProb.(the process eventually enters mode F, given
that it had entered mode I)
. 3 7 .
Pp = IZ] Py PrsT o (5.36)

It has been shown in Section 5.02, that the occurrence of a
'pair of vectors which are merged with a small separation, is a
fairly rare event. Hence it is clear that some very long simulation
tests may be required, to estimate the probabilities Pr In the
absence of the necessary simulation results, certain values will.
now be assumed for Pqs p2 and P3s SO that the above expression may

be evaluated.

Py is defined to be the probability that the proces; has
-entered mode I, given that it has enfered either mode 1, 2 or 3.
i.e. given fhat System 1 is in one of these three modes, but the
~ particular mode entered is not known. (I may take the values 1, 2
and 3}. It will now be assumed that Py is independent of I, and of
the number k of vectors stored at the start of each cycle of the pro-

cess. It then follows that

I |
Pp=Pr=P3=3:
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Then, from equation 5.36,

il t~lw

1
Pe =3

P

It can be seen from the simuiation results given in Section
5.07, that the probabilities PF/I do not vary greatly with the
value of k. Hence, under the assumptions made -above, it can be

~ seen that P. does not vary, to'a large éxtent, with the value of k.

F‘
i.e. the probabi]ity of System 1 eventually entering the failure
mode, given that it has entered either mode 1, 2 or 3, at some

stage, does not vary greatly with the Value of k.

- In Section 5.07 simulation tests are described in which System
1 was placed in either mode 1, 2 or 3 at some stage, and allowed to
~continue until it settled in mode R or mode F. With the tests for
which k=4, it was %ound that tﬁe process always entered either mode
R or mode F, within twenty cycles of the initial merging. However
with k=16, many instances were observed 1n.wh1ch the process réquired
several thouéand cycles to sett]effﬁ one of these two modes. Hence,
in cases where the detection process is used with fairly short déta
sequencés, it is more likely to enter the failure mode if a small

value of k is used.

This concludes the analysis of the merging phenomenon, on Sys~
tem 1, but some methods will now be discussed for preventing the

- .occurrence of merged vectors.
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5.10 Prevention of Merging

From Section 5.04, it may be seenrthat the presence of two
vectors in System 1, which are merged with a small separation,
.may lead to the process entering the failure mode. 1i.e. the pro-
cess may enter a mode of operation, in which the stored vectors
form into merged pairs with some small separation. It is, however,
possible to modify Sysfem 1 in such a way that Vebtors merged with
a small separation, cannot be formed. This can be achieved by
preventing the costs associated with the vectors, from beéoming

too close together,

The decision.rule for System 1 is such that, in each cycle,
the k vectors with smallest costs are selected from a set of mk
vectors., (See Section 3.04). Now consider.an implementation of
decision'ru1é 1, such that the selected vectors are ordered
according to the size of their costs. (This was the implementation
used for the simu]ation'tests). Let the costs for the k selected
vectors_be denoted C1s Cos =vvnns G
where

‘qi < G Vfor i=1,2, ..... s k=1.°

Consider the following sequence of operations performed on these

costs, for some given parameter a:

If fe, - c]| <a,set ¢, =¢, +a (i.e. replace the value of ¢,

by c, * a).

11

If Jc3 - ¢y <@, set ¢y = ¢y + a (where ¢, is the cost which

has possibly been updated in the previous step).
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If !c4 - c3[ <oy setc, =cy ta

IT |ck - ck_}|<:a, set ¢ = ¢ +a,

In each step where a cost Cial is being compared with Cys the value
of ¢ considered is the possible updated value, from the prévious

step.

Definition
System 1B is defined to be the version of System 1, which

hasthé modification described above.

By means of this modification to the detection process, it is
ensured that each cost fs separated by an amount greater than or
equal to o, from the other costs. Hence no pair of vectors may bé
present in the system, which are merged with a separation less than
a. This modification ddes,.of course, distort the costs for the
stored vectors. It is hoped though, that a small value of o will
brevent‘the system from entering the failure mode, while keeping
this distortion of costs to a low level. It should be noted that

System 18 is identical to System 1, if a=0. S

Table 5.10 shows.a section of computer.output, from a simula-
tion test on System 1, in which the failure mode occurred. The
detection process was being tested with a two level signal, channel
' E, & = 0.0763 and k=4 (where O is the noise standard deviation, and
_k is the number of vectors stored at the start of each cycle of the

process). This simulation test is the one in which the most dramatic

dkop in performance was observed, for System 1.
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Number - Number Proportion of
of cycles of errors errors x 10*
150000 28 1.87
2000 28 T.84
4000 28 1.82
6000 28 R
8000 28 1,77
160000 28 1.75
2000 28 1.73
4000 28 1.71
6000 - 28 1.69
8000 41 : 2.44
170000 43 2.53
2000 65 , 3.78
4000 . 109 6.26
6000 109 6.19
- 8000 ' 188 - 10.56
180000 236 13,11
2000 261 14.34
4000 305 16 .58
6000 316 ' 16.99
8000 350 18.62
190000 350 18,42
2000 383 19.95
4000 387 19.95
6000 47 21.28.
8000 432 : 21.82
Block of Number of errors
2000 cycles in the block
22,000 - 24,000
28,000 - 32,000 2
58,000 - 60,000 13
100,000 - 102,000
120,000 - 122,000
146,000 - 148,000 | | 2
TABLE 5.10

Computer output for System 1, channel E, k=4, N=11 and o = 0.0763.
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Number Number : Proportion of
of cycles : of errors ' errors x 10%

150000 28 1.87
2000 : 28 1.84
4000 28 1.82
6000 28 1.79
8000 28 1.77-

160000 - 28 1.75
2000 - 28 1.73
4000 28 1.71
6000 28 1.69
-8000 4] 2.44

170000 o 43 2.53
2000 65 3.78
4000 109 6.26
6000 109 6.19
8000 188 10.56

180000 236 13.11
2000 261 14.34
4000 305 16.58
6000 305 16.40

. 8000 305 16.22

190000 305 16 .05
2000 305 15.89
4000 305 15.72
6000 305 15.56
8000 305 15.40

TABLE 5.11

Computer print-out for System 1B (a = 0.0001), channel E, k=4,
~ N=11 and ¢ = 0.0763. '
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Number ' Number Proportion of
of cycles of errors. . _errors . x..10%
150000 29 1.93
2000 29 1.91
4000 29 . 1.88
6000 29 1.8
8000 29 1,84
160000 29 | 1.81
2000 : 29 1.79
4000 29 1.77
6000 29 , 1.75
8000 - 42 2.50
170000 A2 2.47
2000 44 2.56
4000 44 2.53
6000 - 44 2.50
8000 45 2.53
180000 45 2.50
2000 45 2.47.
4000 45 ' 2.45
6000 45 2.42
8000 45 2,39
190000 45 2.37
2000 15 2.34
4000 = 45 | 2.32
6000 45 2.30
- 8000 45 2.27
TABLE 5.12

. Computer print-out for System 1B (a = 0.001), channel E, k=4,
N=11 and ¢ = 0.0763
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Number Number Proportion of
of cycles of. errors errors x 10%.
150000 20 1.33
2000 20 1.32
4000 20 1.30
6000 . 20 - 1.28
8000 | 20 o 1.27
160000 20 1.25
2000 20 1.23
4000 20 1.22
6000 20 . 1.20
8000 20 ' 1.19
170000 - 20 1.18
2000 20 1.16
4000 20 1.15
6000 20 1.14
8000 | 22 1.24
180000 | 22 1.22
2000 22 1.21
4000 22 . 1.20°
6000 22 1.8
.~ 8000 22 1.17
190000 22 1.16
2000 22 1.15
4000 | 22 103
6000 22 102
8000 22 1.1
TABLE 5.13

Computer print-out for System 1B (o = 0.01), channel E, k=4, N=11
and o.= 0.0763
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Number Number Proportion of
.of cycles . | .. .oferrors. | . .errors x. 10%
150000 217 14.47
2000 226 14.87
4000 234 1519
6000 243 15,58
8000 | 243 - 15.38
160000 243 15.19
2000 | 243 15.00
4000 253 15.43
6000 254 15.30
8000 . 269 : 16.01
170000 269 15.82
2000 269 15.64
4000 ' 275 . 15.80
6000 : 289 16.42
8000 1 297 16.69
180000 304 : 16.89
2000 306 . 16.81"
4000 306 16.63
6000 329 17.69
8000 - 331 17.60
190000 341 17.95
2000 343 17.86
4600 343 17.68
6000 353 18.01
8000 353 : 17.83
TABLE 5.14

Computer print-out for System 1B (o = 0.025), channel E, k=4,
N=11 and ¢ ='0.0763
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Number Number Proportion of
}.-..of cycles . . .| ... of errors. | ...errors. x .10* .

150000 20867 1391.13
2000 - 21164 - 1392.37
4000 21488 1395,32
6000 21727 -1392.76
8000 22034 1394.56

160000 22284 1392.75
2000 - 22489 1388.21
4000 22811 1390.91
6000 23118 _ 1392.65
8000 23430 1394.64

170000 23678 1392.82
2000 23940 1391.86
4000 24290 1395.98
6000 24585 1396.88
8000 24834 1395.17

180000 25137 , 13%6.50
2000 - 25394 1395.27
4000 25645 ' 1393.75
6000 25976 1396.56
8000 26224 1394,89

190000 26461 . 1392.68
2000 26741 1392.76
4000 26973 1390.36 .
6000 27258 : 1390.71
8000 27579 1392.88

TABLE 5,15

Computer print-out for System 1B (a = 0.1) channel E, k=4, N=11
and ¢ = 0.0763
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The computer output given in Table 5.10, shows the number of
errors which had occurred to date, in the detected data sequence,
at different stages of the test. It can be seen that, during the
detectién of the first 166,000 elements, only twenty-eight errors
occurred. The distribution of the errors in this part of the simu-
lation test, is also given in the table. It is clear from TabTe
5.10, fhat the detection process had detenforated considerably
‘after the first 166,000 cycles. (i.e. after the first 166,000
data elements had béen detected). The number of errors occurring

in the following 32,000 elements, was 404,

The four vectors stored by the detéction process at the start
of each cycle, were printed out at intervals of 50,000 cycles. It
was found that these vectors were distinct after 50,000, 100,000
~and 150,000 cyc]es. However, after 200,000 cycles (after the point
at which the error rate had increased dramatically), these four
vectors were found to be formed into two pairs of vectors, which
were merged with a separation of 2.3 x 10-%, i.e. the detection pro-
‘cess had entered the failure mode, with separation e = 2.3 x 10‘5..
.These resul ts suggest that the occurrence of the failure mode, was

the reason for the sudden drop in the performance of the process.

| Table 5.11 shows a section of the resﬁlts from a simulation
test on System 1B, in which the data and noise sequences used, were
identical to those for the test performed on System 1. The two
simulation tests were the same in every respect, apart from the modi-
fiéation which converts System 1 to System 1B. The value of o used
for thé test on System 1B, was 0.0001. It is clear from the descrip-
tion of System 1B, that the system is equivalent to System 1, if a

is set equal to zero. It was hoped, therefore, that with a small
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value of a, the two systems would behave in a very similar manner,

apart from situations where System 1 suffered from merging.

The simulation test with System1B {and o = 0.0001), revealed
that it did produce the same error distribution as System 1, up
to the point where System 1's performance was suddenly reduced.
i.e. up to and_including the 166,000 th. cycle of the process,
A comparison of Tables 5.10 and 5.11 shows thaf the distribution of
errors, for the two‘systems, was also identical up to the 184,000 th.
cycle. At this stage, however, the performance of System 1B retur-
ned to that which would normally be expected for System 1. System 1
continued with a poor perfbrmance until the end of the simulation
test, at the 250,000 th. cycle. The four vectofs stored by System
1B, at the end of the 200,000 cycle, were found to be distinct
whereas tﬁe vectors of System 1 formed twb merged ﬁairs. It éppears
therefore, that the two systems suffered from the merging phenomenon
during cycles 166,000 to 184,000, System 1B (with « = 0.0001) then
' §eems to have escaped from the failure mode, while System 1 continued

in this mode at least until the 250,000 th. cycle.

Further simulation tests were carried out on System 1B, which
were iaenticaT to the one described above, apart from the fact that
différent values of o were used. Sections of the results for these
‘tests are given in Tables 5.12-5.15. With o = 0.001 (Table 5.12),
it can be seen that Systéh 1B had one more error in its detected
* data sequence, up to the 166,000 th. cycle. However, in the detection

of the following elements, System 1B showed no noticeable drop in

performance, whereas the error rate suddenly increased with System 1.
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Tables 5.13-5.15 show the results of the tests on System 1B,
for o = 0.01, 0.025 and 0.1 respectively. It can be seen from
these resu]ts; thaf a‘= 0.01 giveé the lowest over all error rate,
over the five values of a thch were used in the test. The per-

formance of System 1B becomes very poor if o is increased to 0.1,

Clearly, for the situation examined in which System 1 had
entered the failure mode, System 1B can offer én improved perfor-
mance. It appears to be possible to find a value of o, for
System 1B, which makes the system immune to the problem of merging,

and which allows the performance normally expected of System 1.

A second modification to System 1 will now be discussed, with

which the problems due to merging vectors may be eliminated.

During the j+2 nd. cycle of the System 1 detection process,

the k vectors

95(1) 05(2)5 s y Q.(K)

are extended to mk vectors of the form

T5,1(1:0) = (Q5(1).9)

for T=1,2, ooy k

“and J = ~m+1l, -m+3, ....., m-1.

{see Section 3.02), where m is the number of signal levels. From
this set of mk extended vectors, the one with smallest cost is
selected, and the element furthest to the left of this vector, is

taken as a detected element. The k vectors of the form

lj+] (I 3J)



297

with smallest costs, are then retained for the next cycle of the

process.

Definittion

Consider the earliest element (the element furthest to the
left), of the k selected vectors of the form
LPRTESE)

Let Systemrl be modified, so that any of these k vectors whose
| earliest element is not the same as the detected element, are
remoﬁed from the process, during each cycle. Then System 1C is
defined to be this modified version of System 1. Note that, if
some of the k selected vectors are removed from the system, the
- following cycle of the process will commence with some numbér k]

of stored vectors where k] <k. These k1 vectors are then extended,
in the usual way, tb mk] vectors (where mk] is hopefully > k), and
the k vectors with smallest costs are selected as before, If
'mk1<rk; all of the mk1 vectors are selected. This modified version
of System 1 has previously been proposed by Vermeulen, for the case

of k = 2 [40].

Now consider a situation in which System 1 enters the failure
mode. It can be seen from the discussion at the end of Section 5,04,
that the process will then go on to become locked in a state, in
which there are only 1k distinct vectors. Simulation results con-
firm that the performance of thé detector is sometimes reduced when
this mode of operation occurs. It will be seen from the }o1lowing
theorem, that System 1C will always have a distinct set of stored
vectors. It should not therefore have this weakness exhibited by

System 1.
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‘Theorem '5.02

Let System 1C be opéraﬁed with the recommended starting up
procedure, described in Section 3.08. Then, after the first few
cycles of the process, the system will have a set of distinct

stpred vectors at the start of each cycle.

‘Proof

First consider a situation where the k vectors stored by
System 1C, at the start of some cycle j, form a distinct set.

Let the vectors be denoted

_!'I, !29 st ey _Y_ko

Then, from the definition of System 1C, these vectors must be

such that the same first component is common to each of them.

During the jth cycle of the process, the above k vectors are

extended to mk vectors of the form

(v 9)

where : i=1,2, .v.., k
and J = -m+l, -m+3, ..... , m=1, -

"k of the mk vectors are then selected, and the N components furthest
to the right of these vectors, are retained for the next cycle of

the process.

Now suppose that two of the vectors, present at the start of the
J+lstcycle, are identical. Then there must exist two N+1 component

vectors of the form
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(vgo 17) and (v 1)

which have their latest N components in common (i.e. the N components
furthest to the right are the same for both vectors). All of the

vectors

'!'I, !23 “ e eny 'V"k

have their first components in common, so

(Vg 1) = (¥ 1)

and

This is a contradiction, as the vectors

-\—{'I’ _y__29 tasary !k

form a distinct set, hence the above supposition must be incorrect.
i.e. it is not possible for two of the vectors, present at the start

of the j+1st cycle, to be identical.

It has been shown above that, i the vectors of System 1C.are
distinct, at the start of one cycle of the process, this situation
will Be maintained at the start of the following cycle.. Now refer
to the proof of theorem 3.02 (Section 3.10). In the analysis of

’System A, ithcycle, it was shown that System 1 will have a set of
k distinct vectors in store, at the end of the i th cycle of the
process, (i is defined to be the smallest integer, such that miz k).
Furthermore, the first component is common in each of the vectors,
provided that the vectors have at least i+l componeﬁts. It can be
seen that the analysis given for System 1, also applies to System 1C.

Hence System1Cwill have a set of distinct stored Vectors at the

start of the i+1st cycle. It follows, therefore, that the vectors
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must be distinct at the beginning of the i+2nd cycle, and this
situation must be maintained for each of the following cycles,
- (applying an inductive argument). It has been assumed here that
the recommendéd starting up procedure, described in Section 3.08,

has been used with System 1C.

End of‘proof of theorem 5.02.

In this section, of the thesis, two detection processes,"Sys-
tems‘lB and 1C', have been proposed, which are modifications of
System 1. For a parficular situation considered, System 1B was
able to overcome the loss in performancé due to merging, while
offering the same performance as System 1 where merging had not

occurred,

Limited simulation tests have been carried out with System
1C. These tests suggést that its performance is generally as good
as thatof System 1, if N i$ greater than about ten. System 1C should
offer a definite improvement in to]erance‘to noise, over System 1,
in situations whére the failure mode occurs in the latter process,
It is recommended that one of these two modified‘versiohs be used

in preference to System 1, in any practical application.
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CHAPTER 6

6.01 Originality ‘

| The work described in Chapters 3-5 of this thesis is
believed to be original except where stated. The following
are the more important contributions and are original, to the

best of the author's knowledge:

1) A1l simulation results for Systems 1 and 2.

ii)  The results of Section 3.08 which demonstrate the impor-

- tance of the starting up procedure fdr Systems 1 and 2.

iii)  The proof of the theorems of Section 3.10, which reveal
the effect of an extra zero component at the start of

‘a channel's sampled impulse response.
iv) The analysis of the merging phenomenon given in Chapter 5.

v)  The modified algorithm, "System 18", which is immune to

merging.
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6.02 Suggestions for Further Work

The work of this project, on Viterbi based detection pro=-

cesses, might usefully be extended along the Tines of:

1.

A comparison between Systems 1-4, and detection processes

using a V.A. detector in conjunction with a Tinear or

decision feedback equalizer, The 1atter-types of detec~

tion processes are described and investigated in references

32, 36 and 44.

Simulation testing to determine the effect of quantizing

‘all numbers stored by the algorithms. (The tests described

in this thesis have been conducted with all numbers stored

to a high degree of precision).

A study of the effect on performance, of ignoring some of the
leading and trailing components of the channel's sampTed
impulse response, and thereby saving on storage.and compu-

tation.

Simulation testing to study the effect of small errors in the

channel's sampled impulse response, as estimated by the recei-

ver.

'Designing an adaptive process which adjusts the number of

initial sampled impulse response components, ignored by the .

detector.

_It has been shown in Chapters 3 and 4, that the tolerance to

noise of Systems 1-4 can sometimes be improved, if these
detectors ignore some of the leading sampled impulse response

components. With a time varying channel, the number Ny of
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these components ignored, could be varied to suit changes
in the transmission channel. An automatic process would
then be needed to adjust ny when required, to obtain the

best pefformance from the detectors.
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6.03 Conclusions

This research project has been concerned with the study of
detection processes which can offer a close to optimum performance,
without the need for excessive computation. Under certain condi-
tions, the optimum detection process is given by the Viterbi
Algorithm (V.A) detector. Simulation tests have shown that this
detector offers a considerable increase in tolerance to additive
white Gaussian noise, over the conventional non Tinear equalizer,
with channe1s.which introduce severe amplitude distortion. How-
ever, for many typical situations, the computational demands of

the V;A. detector render it impracticable.

Four detection processes, Systems 1-4, have been studied
which are based on the V.A., Unlike the V.A., detector, certain
parameters may be varied in these systems to give the desired com-
promise between performance and complexity. For many situations
it has been found that Systéms‘1-4 can offer a tolerance to noise
which is quite close to that of an optimum detection process, with
'on1y a éma]T fraction of the tomputation required by the V.A.Adetec—

tor.

~Systems 1 and 2 have been found to suffer occasionally, from
_an effect called merging which can drastically reduce their perfor-
mances. These detectors may however be modified to forms which do

not suffer from merging.

In some applications, the impulse response of the transmission
channel under consideration may grow slowly with time, so that the
first few components of the sampled impulse response are small.
Simulation tests show that it is sometimes of advantage with Systems

1-4, to ignore some of these small components. If these components
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are not ignored the complexity of the detectors may have to be

increased, to obtain a given tolerance to noise.

It has been found that Systems 3 and 4 have weaknesses not
exhibited by Systems 1 and 2. The performance of System 4 is not
quite as good as that of Systems 1-3, over some channels wifh
seyere amplitude distortion. With System 3 a much greater loss in
performance is experienced, due to the presencé of a small compo-~
nent at the start of the channel's sampled impulse response, than
with Systems 1, 2 and 4. The performances of Systems 1 and 2 are
usually about the same, but System 2 requires the least number of
basic.operations qf the two systems, pe} detected data element.
System 2 therefore appearé to be the most promising of the four
detection processes, as a possible replacement for the conventional

non linear equalizer.
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APPENDIX 1

RESULTS CONCERNING CONDITIONAL PROBABILITY

DENSITY FUNCTIONS (CONDITIONAL pdf's)

Let

let

be a vector whose components are continuous random variables.

Let

G(r', s') = Prob.(j_"'__):' and s = s"')

where r<r' means that each component of r is < the corresponding

component of r'., Then the joint pdf of r and s is defined by
t 1 -
95 (r_ ’ _5_) ""a'-"r "

s gy G(r's s')

The conditional pdf of _f‘, when it is given that s =_:;_',Jis defined

- by

/") = —gqey— (1)

‘where g3(_s_') = Prob.(s =s'}.

The probability that s = s’, when it is given that r = r', is

defined by
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g
% (2'/!‘_') = W (2)

_where gz(rf) = pdf of r' or the joint pdf of rd ’ rf s seres rn;g'

From equations 1 and 2, it is clear that

f(r'/s') gi(s') = gy(s'/r') gy(r")
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APPENDIX 2
RELATIONSHIP BETWEEN A CHANNEL'S SAMPLED

IMPULSE RESPONSE AND ITS FOURIER TRANSFORM

Consider a transmission channel with impulse response y(t).

Let Y{f) be the Fourier transform of y(t), so that

Y(F) = [ y(e) eI (1)
where f is the frequency in Hertz
and j = /-T.

Assume that the channel is band limited, so that

Y(f) = 0 when |f] > B Hz

for some value B. Also assume that Y(f) has a Fourier series

expansion, so that

vf) = § o eIfI/E (2)
. : 'i = -Co 1
for [f] < B
where
. B o
¢ = o é Y(£) e TFI/B 4 (3)

Note that y(t) is related to Y(f) by the inverse Fourier transform

and .

9t = | v(e) P g
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Hence

. B . s '
) = [ v(0e W8 4 (noting that ¥(f) = 0
B
- for |f] > B)

.*. from equation 3,

Then, using this expression in equation 2 gives

WE) =g 1 ¥ e for if] <8 (8)
Now suppose that y(gg) can be considered to be negligibly small
except for i =0, 1, 2, ....gs; for some nbn-negative integer g.
Also assume that

y(%%d, y(%g), ceeens Y(55)

) forms the sampled impulse response of the channel, so that the

impulse response is sampled at intervals of é%n '(This sampling

rate is called the Nyquist rate for the channel). Then equation 4

gives

Y(£) = 1_30 y(zg) e TR

1

- £3/B
28 .goyie !
1=

for |f]| < B
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=yt
where Y5 = y(ZB)
for i=0,1, ..o.vs Q.
Hence, with the assumptions made above, the Fourier_ transform of
the channel's impulse response is given, within a constant multiple,
by

Y(f) = '§O Y; e MfI/B for |f| <B
i= .

where (_VO, .Y], -'0-'sy)

9

is the channel's sampled impulse response.
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APPENDIX 3
COMPUTER PROGRAMS

Computer programs for Systems 1 and 4 are listed in this
' appendix, It should be noted that System 4 is identical to the
Viterbi Algorithm, if used with k = m%, i.e, if used with m9

vectors stored at the start of each cycle.

The two programs were written in 1900 Fortran, which is
very similar to Fortran IV, Both programs make use of three
routines from the Numerical Algorithms Group (NAG) Library.

These routines arae:

GOSBAF (T)
GO5AAF (FX)
GOSAEF (0.0,S)

They are each concerned with the generation of pseudo random num-

bers.

GOSBAF (T) initializes the basic random number generator,
which the other two routines use to form their number sequences.
T js a'parameter supplied by the user, which controis the starting

point in the random number sequence. T must lie in the range [0,1].

GOSAAF (FX) supplies a pseudo random number from a uniform

(0,1] distribution. FX is a dummy parameter.

GOSALF (0.0,S) supplies a pseudo random number from a normal
distribution with mean 0.0 and standard deviation S. The value of

S is supplied by the user.



Fy

e
c.
4
£

6

MASTER VITER _
DIMENSION I1S¢€15,32),B1(32),C1(32,2),A1(2),A2(2),A3(2),A%4(2),A5(2
1 AGC2) s ATCE) ) ABC(2Y,A9¢2) ) R10C2) ,AYT(2),A12(2) ,A13(2),A14(2) ,A%5¢
2 LJIRE20),01¢32),K1(32)
COMMON UV, JV2,JV3,JVE,dV5,0V6,JV7,IVB,JVO,dVI0,JVI3,JVTIE,0V18,
T JV14,M1 N1 JR,LINM,S
SYSTEM 1 WITH IN STOREL VECTORS AND A BINARY SJIGNAL
READ(1/908)A1CT) s A2, ASC1) A4 C),AS¢1)
READCY ,QO08)AG6CT1)Y ,A7CT1)Y,ABCIY  A9CY1) ,A10(1)
READCT1,908YA19(¢1),A12¢1),A13C1),A14(1),A15¢1)
A1), A1) 4.0 oA 5 (4) 15 THE SAMPLED IMPULSE RESPONSE OF THE
. CHANNEL BEING TESTED
READ(1:908)S
$ IS THE NOISE STANDARD DEVIATION
WRITE(Z,902)
WRITEC(Z,203)A1(¢1),A2C9):A3(1),A4(1),A5(1)
WRITE(2,903)A6(€1),A7¢1) ,ABC1),A9¢1),A10(1)
URITE(Z;?OS)A11(1) AT2¢1)  A1301),A14¢1),A15(1)
WRITE(2,904)8S
A1¢2)=2,.0%A1(1)
A2¢2)=2,0xA2(1)
AZ¢2)=2,0xA3¢1)
ALe2)y=2,0wAb(Y)
AS¢2)=2,0%A5(9)
Ab2)=2,00A6(N)
A7t2)Y=2,0wA7¢(Y)
AB(2)=2.0wAB8(1)
A9 (2)=2,0xA9(1)

A10(2)=2,0%A1
A11¢2)=2,0»A1
A12(2)u2 0OwA1
A13¢2)m2, 0wA1
A14(2)=2,0¢A14
A15(2)=2,00A15¢1)

ALL POSSIBLE VALUES THE TERM I*A1(J) ARE CALCULATED pFOR

0(¢1)
11
2¢1)
3¢

(1

C.oy 11,2 AND J=m4,2,.,,+15

¢

.

THE POSSIBLE VALUES OF A DATA ELEMENT ARE 1 AND 2 IN THIS PROGRAM
READC1,912) 1IN
uanE(2.913) IN

IN IS THE NUMBER OF VECTORS STORED AT THE STARY OF EACH CYCLE OF

... THE PROCESS

1End

162220001
WRITE(2,903)
WRITE(2,9207)
WRITE(Z,909)
Ite=10
IcCQUNT==10
T=0.028

CALL GOSBAF(T)
CALL GODSBAF(T)
LiM=12
LiMi=L]IMet



Do 2 1=1,LIM1
JR(1)=1
. CONTINUE
¢ SOME OF THE MOST RECENTLY TRANSMITTED DATA ELEMENTS ARE STORED IN
e... THE ARRAY JR({.)
. Mig?2
NimLIM4+2 7
READ(1,901)JV1cJVZvJV3;JV‘JJV5.JV60JV?!JVB:JVQ;JV1014V11fJV12;JV
1 V14
bo © 131|15
po 1% 9=1,32
tser,d)=1
11 CONTINUE
o CONTINUE
£ 18(1,J)nCOMPONENTY 1 OF THE J TH, STORED VECTOR
B1¢(1)20,0
Ie¢IN LEQ, 1)G0 TO 140
DO 10 J=2Z,IN
B1¢J3=1,0€06
10 CONTINUE _
¢ B1(S)RCOST FOR THR STORED VECTOR
ﬂ. [IS(?;J);IS(?-J):.--t!S(15:J)J
140 CALL GENERACZ,A1/A2/A3, AL A5 AS, AT AB, A9 AT10,AY T, AT 2,A13 A 4,A15
£ SUBROUTINE GENERA SUPPLIES A NEW RECEIVED SIGNAL SAMPLE Z,EACH TIME
e.., 1T 18 CALLED o ' :
DO 80 J=1,1IN
NOQEIS(Z:J)
N03=!S(31J’
NO“IS(4;J)
NOSE1S(5,)
NOA=1S(6,4)
NO?=18(7,))
NOg=1S(8,J)
NOO=1S(9,4)
N10=1S¢10,0)
NI9=1s5¢11,4)
Nt2=1s5(12,4)

N13=1S¢13,4)
N14=15014,))
N1§21S(15,4)
B=AZ(NTIS)#AZINTIA) AL INIZI+ASINTIZ) +AGENTTI)AZINTIO) +AB(NOP)+AD(NOS)
1 AQO(NOZ)YHATI(NOGY+AT2(NOS)+ATI(NOA) #ATL(NOS)+AT15(NQ2) 2
B19=B1(J)
no 90 K=1,2
Aap+A1(K)
C1¢JsK)I=BIT+ARA

20 CONTINUE

A3 CONTINUE

£ C1¢J,K)=C0ST FOR THE VECTOR :
¢ [!S(1;J);!S(2;J)l--illS(15;J)fK]
CALL MINCET,J1,K1,IN)
e SUBRGUTINE MIN SELECTS THE IN PAIRS OF VALUES (J,K) WHICH GIVE THE

... SMALLEST IN VALUES OF THE COST C<J,K)
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b

J2=d1¢(1)

K2ski1¢1)

IND=Y

TF¢ce(d2,K2)=1,0EN6)6,6,7

IND=2 :

IF¢IStS:32) ,NE. JR(MY1))IE=TE+"

€ A DETECTION IS MADE FROM THE FIFTH COMPONENT OF THE VECTOR WITH

-c..-

SMALLEST COST , THUS GIVING A DELAY OF 11 SAMPLING INTERVALS

¢.,. BETWEEM TRANSMISSION AND DETECTION,
& JR(M1) IS ONE OF THE DATA ELEMENYS TRANSMITTED EARLIER
f IE=NUMBER OF ERRORS

IFCICOUNT L NE, 500) Go 7O 3
1CaUNT=0
A1t=JE
A142=1C

e ICaNUMBER QF TRANSMITTED ELEMENTS

220
210

8
240

IF¢IC JEQ, 0) A112=21,0
RATE=AI11/A112
WRITE(2,900) 1C,1E,RATE
CONTINUE

1Cell+1

 ICOUNTRICOUNT 4

DA 210 J=4,14

b0 220 Is9.IN

J2=J1(1)

CTS¢d 1) ISCI+T 02D

CONTINUE

CONTINUE

Do 240 1=4,1N
18¢15,1)aK1(1)
J2e21 ()

K2=K1(¢1)
B1¢1)=C1¢2,K2)
TFLIND=1)2h04240,8
B1¢Iy=81¢1)-1,0E06
CONTINVE

€ IN THE ABOVE 14 STATEMENTS, THE SELECTED VECTORS AND THEIR COSTS AR

B

14

13

1
900

901
202
9n3
204
905
206
907

908
909
912
913

STORED IN YHE LOCATYIONS OF THE QRIGINAL VECTORS AND COSTS

IFCIC-IC2Y13,14,13

WRITE(Z2,905)1S8

WRITE(2,909)8B1

1c2=1¢2+150000

CONTINUE

IFCIC=20000) 140,140,4

STop
Fogﬁili1Xi'IC;!E;RATES'rZXfI?:?X:I?:2X}F13.9)

FORMATC14CIX,11))

FORMAT(1X, 'SAMPLED IMPULSE RESPONSE COMPONENTS 1')
FORMAT(S(2X,F10,6))

FORMAT(1X, "NOISE STANDARD DEVIATION =!,F10,6) '
FORMAT(1X,'1C IS THE NUMBER OF DATA ELEMENTS ODETECTED SO RAR!Y)
FORMATC(F10,6) o

FORMAT(1X,'1E 1S THE NUMBER OF ERRORS SO FAR ,IN THE DETECTED !/
T 'DATA SEQUENCE")

FORMAT(SF10,6)

FORMAT(1Xx,'RATE 1S THE ERROR RATE OR PROPORTJON OF ERRQRSY)
FORMAT(12)
1F0n;AT(1X.'NUMBER OF VECTORS STORED AT THE START OF EACH CYCLEm!

12)
END



SURROUTINE MIN(CY,J1,K1,IN)
£ THIS SUBROUTINE SELECTS THE IN PAJRS OF VALUES (J,K) WHICH GIVE
f... THE IN SMALLEST VALUES OF THE COST C{J,K),THESE VALUES ARE DENOTE
Cowe CITE1Y, KT (1€ 2) 0 KIC2Y) 4y e st SUJTCINY KT CLINY)
. DIMENSION £1(¢32,2),471(32),K1(32),1AB(32,2)
Do 60 [=1IIN
po 70 J=1,2
TAB(],J)=1
70 CONTINUE
&0 CONTINUE
bo 30 K=1,1IN
AMz 1 _ 0EDS8
12=1
Jesi
bno 40 I=1,1IN
Do S50 Js=1,2
TFCIARCT,U))50,50.10
10 JFCC1CI,J)y=AM)Y20,50,50
20 AMmC1 (T, Jd)
12al
Ja2=d
50 CONTINUE
40 CONTINUE
JI(KI=12
K1¢K)=J2
1AR(12,J2)2~1
30 CONTINUE
RETURN
END



SURROUTINE GENERA(Z/A1,A2,A3,AL,AS,A6,AT,A8,A9,A10,A11,A12, A3, A
1 ,A15)
€ THIS SUBROUTINE SUPPLIES A RECEIVED SIGNAL SAMPLE Z EACH TIME IT
£... 15 CALLED
DIMENSION JR(20),A1¢2),A2¢2) 1A3(2) 1 Ah(2) AS(2),A6(2)A7(2),AB(2)
1 A9(2) A10€2),A11¢2) ,A12(2),A13¢2),A14(2),A15(2)
COMMON V4 ¢ dV2rdVE VA, JV51JVE, 4V IVB, IV 3VI0JVIT, UVT2,4V18,

1 JV14, M1, N1, JRy LIM,S
Y=GOSAAF(FX)

IXm2
IFey=0,.522,3,3
P4 Ixst
z JveSa1X

ZSAVCIVIS)IHACUVIAY S AS(IVII) #ALCIYTI2)+ASCIVINISAGLIVIO) *A7CJVI) +
1 ABCJVBI+ATP(IVTIHAT0CIVE) +AT 1 CIVEICA12C¢IVAI+AIS(JYII+A1ALIVR) 4
2 At5(¢JV1)
 X=GOSAEF(D,0,45)

Z=z2+X

Jvymgve

JvRsJy3 ‘

JvimJya

Jugmgys

JvsSmJvb

JVamJvy?

JVT=,y8

JYAxJvO
S Jveayvil

Jvi0=JViI

Jvi1savi2

Jve2= V13

MVeEINIVIL

NATL A RATA R

JRINYYRIX

t SOME OF THE MOSY RECENTLY TRANSMITTED DATA ELEHENTS ARE STORED IN
t... THE ARRAY JR(.,)

M1mMt+1

NianNt+1

IFeMY LEQ, LIM$3I)IMI=1

IFENY LEQ, LIMe3XN1IE]

RETURN

END



SAMPLED IMPULSE RESPONSE COMPONENTS 3

n.100000
n.164700
H.000000

NOISE STANDARD DFVIATION

IC 1S THE NUMBER NF DATA ELEMENTS
1€ 1S THE NUMBER OF ERRORS S0 FAR
DATA SEQUENCE

RATE 1S THE ERROR RATE DR PROPORTION OF ERRORS

1C,YE.RATE=
1C,YE.RATE=
YC,YE/RATE=
!C;!E;RATE=
1C,TE.,RATE=
1C,YE,RATE=
1C,1E,RATE=
lCc!EtRATER
1C,1E,RATE=
1C,YE.RATE=
1C,1¢,RATE=
!C.!E.RATE=
1C,YE,RAYE=
1C, 1E,RATE=
1C,1E,RATE=
!Cg!EoR‘TE=
1C. I1E,RATE=
1C,1E,RATE=
1C,YE,RATE=
!cl!EJRlTES

0.166700
0.000000
0.000000

500
1000
1500
2000
2500

- 3000

3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
R500
9000
¢500
14000

0,500000
6,0N00000
0.000000

0,094200
NUMBER ©f VECTORS STORED AT THE START OF EACH CYCLE= 4

14

58

bé

92
122
156
169
184
238
243
274
336
359
380
400
430
héd
490
513
519

0.028000000
0,058000000
0.044000000
0.046000000
0,0648800000
0.052000000
0.048285714

0,046000000

0.052888889
0.048600000
0,049818182
0.056000000
0.055230749
0, 054285714
0,053333333%
0.053750000
0.054588235
0,054444444
0.054000000
0.,051900000

0,666700
0.000000
0,000000

PETECTED SO FAR
+IN THE DETECTED

0,500000
0.000000
0.000000



MASTER VITER |
L..SYSTEM 4 '
DIMENSION B1(30),A1(30, 16):!0(30.64) JV1(30) U(64) V(64 163,
1 - 1LK(64,16)
CALL GO58AF(0,0)
CaLL GOSBAE(0.0)
: 16uld
. 1G1R1G+1

" £ IG1 I8 THE NUMBER OF SAMPLED IMPULSE RESPONSE COMPONENTS

- READ(1,20B)(B1(I1),1=1,16G61)
WRITE(Z2,900)
. UR!TE(Z:gﬂZ)(B1(I)cI=1 164)
e BY(1),8B1(2),....B1¢161) IS THE SAMPLED IMPULSE RESPONSE OF THE

... CHANNEL BEING TESTED

READ(1:906)S
WRITE(Z2,903)S

£ S 1S YHE NOISE STANDARD DEV!ATION

Me2

¢ MaNUMBER OF SIGNAL LEVELS

DO -1 Jml,H
M1a—H*2*J 1

DO 2 1®m1,161
A1CL )BT (] ) wM

Sri2 . CONTINUE.
1

CONTIKVE

.8 ALL POSSIBLE VALUES OF THE TERM B1(I)*Mq1 ARE STOQRED .FOR

C.ove I21,2,0005161 AND Mi==Me1,mM+3,, ., , M=
oo READ(1,912)IN,N

WRITE(2,901) 1IN

WRITE(2,904) N

WRITE(Z2,905)

e WRITE(2,907)

WRITE(R,909)
¢ . MenINaNUMBER OF VECTORS STORED AT THE STYART 0F EACH CYCLE OF THE
C... PROCESS

i.-@ NaNUMBER OF POMPONENTS Of THE VECTQORS STORED AT TWE START OF A

c... FYCLE
.. E=u0,0
ICanN+1
~N3uNe1
NiaN«a]lIN
~MieMaex]IN
po 3 Lst, Mt
Atal .
PO & Tat,IN .
S AzAL/ (Mex (IN®]))
TAaxA
~TF(A=TA 6T, 0,0)1A=1A"
I0(Ne1=],LYa14
ALzALeMaw (N0l ) (1A «1)

4 CONTINUE

b0 5 1=1,NI1
1o¢l,L)=1
CONTINUE
CONTINUE

[V RY . ]



¢ I0CI,J)SCOMPONENT 1 OF THE 4 TH, STORED VECTOR
f THE STORED VECTOR WITH LAYEST. IN COMPONENTS:J1+d2,sserdIN IS
C... DENOTED VECTOR L,WHERE L=J1+Mw(J2rt1)+Maalu(J3~1)%*,,.,
Co. . tMER (IN~1Y % (JINT)
€ THE ARQVE 13 STATEMENTS ASSIGN INITIAL VALUES TO THE COMPONENTS
£L... OF THE STORED VECGTORS
DO 6 1=1,N3
Jye ¢l =T
& CONTINUE
¢t SOME OF THE MOST RECENTLY TRANSMITTED OATA ELEMENTS ARE STORED
... IN THE ARRAY JV1(.,)
Ue¢gy=0,0
Do 7 t=22,m!
UiLdy=1,0E08
7 CONTINUE :
c BCL) 1S THE GOST FOR THE STORED VECTOR : CIQE1/LY,1QC2:L), v, 10Q(N,L
140 CALL TRANSC21,AY,0V1,1G6,M,5,N)
¢ SUBROTINE TRANS SUPPLIES A NEW RECEIVED SIGNAL SAMPLE Z1,EACH
... TIME IT 18 CALLED
M2egMux (IN~1)
Do 8 1=1.M
bo 8 L=.'1.H2
Ite T+Mu(Clel)
Azy(lL)
Do 8 K=1,M
BzA1(1,K)
D0 9 J®1,16G
IodstadN=Jd+1,11)
B=a+A1C¢J+1,1GQJ)
9 CONTIMUE
: Be21=8
_ V(IL,X)=A+8%8
.. B .CONTINUE
¢ V(IL,e) 1S THE COST FOR THE VECTOR;
c.-- £I°‘1IIL)f!Q‘2lIL)ltllIIQ(N'IL)lK]
CALL MINCV/M2,M,ILK,LY,K1)

. QUBROUTINE MIN SELECTS A NUMBER MweIN OF VECTORS OF THE FORM:

C... [1QC1, L), 1QC2,L)savaslQCN,L),K] FOR USE JN THE NEXYT CYCLE OF
... THE PROCESS : .
T=1 LKLY, ¥ 1) +Mw(L1~1)
o TEe1Q¢t, 1) NE, JVI1C(1))E=E+1,0
£ A DATA ELEMENT IS DETECTED FROM THE FIRST COMPDNENT OF THE VECTOR
... WITH SMALLFST COST
¢ E IS THE NUMBER OF ERRORS S0 FAR,IN THE DETECTED DATA SEQUENCE
. Jv1{(1) 15 ONE OF THE DATA ELEMENTS TRANSMITTED EARLIER
TF¢1CY»13,13,32
32 RATESE/IC
13 JC=1C/300
L €=10/500.0
€ IC IS THE WUMBER QF DATA ELEMENTS TRANSMITTED SO FAR
IF{C=JC)19,20,19
20 WRITE(2,911) 1C,E,RATE
.19 . CONTINUE
I1C=1C+1
NiaNeq



10
11

12

DO 11 I=1,N1

DO 10 L=9,M2

bo 10 K=1,M
LKeL+M2x{Kk=1)
T1=TLK(L, KY+Me (=)
To¢r,LKY=1Q(1+1,11)
CONTIMNUE ‘
CONTIMUE

DD 12 L=1,M2

PO 12 K=1,M
LKsL+M2w (K=1)
I1=2YLKCL,K)Y+HMu(LmY)
TO¢N, LK) =K

LK==V (LY, K)

CONTINUVE

€ IN THE ABOVE 15 STATEMENTS,THE SELECTED VECTORS AND THEIR COSTS

c'll

'900
001

902
o003
904

905
- %06
907

908
909
211
912

ARE STORED IN THE LOCATIONS OF THE ORIGINAL VECTORS AND COSTS

GO 10 140

FORMATCIX, ' SAMPLED IMPULSE RESPONSE COMPONENTS:')

FORMATC{1X, "TNUMBER OF VECTORS STORED AT THE START OF EACH CYCLE!
T X ' EMext,12)

FORMAT(5(2X,F10.6))

FORMATCIX, 'NOISE STANDARD DEVIATION =v,F10,6)

FORMAT(1X,"NUMBER OF COMPONENTS OF THE VECTORS STORED AT THE'/
1 A%,! STARY OF A CYCLE =',12)

FORMAT(1X,"IC IS THE NUMBER OF DATA ELEMENTS DETECTED SO FARY)
FORMAT(F10,6)

FORMAT(IX,"1E 15 THE NUMBER QF ERRORS S0 FAR ,IN THE DETECTED 1,
4 X V'DATA SEQUENCE!)

FORMAT(SF10.6)

FORMATC(1X,"RATE 1S THE ERROR RATE QR PROPORTION OF ERRORSI)
FORMAT(IX, "IC,E,RATE=Y ,16,2X,F7.0,2X,F8,6)

FORMAT(12,2X,12)

END.



SUBROUTINE TRANS(ZT1,A,4V,1G,M,8,N)
¢t THIS SUBROUTINE SUPPLIES A RECEIVED SIGNAL SAMPLE Z1+EACH TIME IT
£... IS CALLED

DIMENSION A(30,16),JV(30)
YeGOSAAF(FX)
AMaM
Do 10 1=1,M
IE¢Y .GE, (I=4)/AM _AND. Y ,LE, I/AM)Ix=1I
10 CONTINUE
YiemMHeZ2wlX=1
JY (N+2)=1X
21=20.,0
169=21G+1
..po 20 1=1,161
J=JV(N+3=]1)
: 2122144 (1,J)
20 CONTINUE
o XoGOSAEF(O,0,8)
2i5Z21+X
Nimpn#1
po 30 1=1,N3
S JVCI)RJVLI®T)
30 CONTINUE

5. SOME OF THE MOSY RECENTLY TRANSMITTED DATA ELEMENTS ARE STORED IN

C... THE ARRAY JV(,)
RETURN
END



. SUBROQUTINE MIN(V,M2,M,1LK,L1,K91)
ff THIS SUBROUTINE SELECTS A NUMBER MweIN OF VECTORS OF THE FORM;
... [1QC1 LY, 1GC2,LYseevsdQCN,L),K) ACCORDING TO DECISION RULE &
DIMENSION V(64,163 ,1LK(64,16)
L120
K1=0
AM=1,0E06
DO 1 L=1,M2
DN 1 K=1,M
110
AMm1.0E08
bo 2 I1=1,M
AeviJeMul{L=1),K)
) IF(A"AM)3;4'4
.3 .. AM=A
11s]
4 CONTINUE
IF(A"BM)SIéIé
5 BM=A
. List
KtaK
6 CONTINUE _
2 . CONTINUE .. - !
ILK(L!K)=!, . -
1 - CONTIMUE
 RETURN
END



SAMPLED IMPULSE RFSPONSE COMPONENTS:
: f.408000 0.816000 0,408000
NOISE STANDARD DEVIATION = 0.283000
NUMBER OF VECTORS STORED AT THE START OF EACH CYCLE
sMww_ 2
NUMRPEFR NF COMPONENTS OF THE VECTORS STORED AT THE
T START OF A CYCLLE =12
1€ YIS TWE NUMBER NOF PDATA FLEMENTS OETECTED S0 FAR
JE IS TME NUMBER OF ERRORS SO FAR ,IN THE DETECTED
PATA SEQUENCE
RATE. 1S THE ERROR RATE OR PROPORTION OF ERRORS

1C,T.RATE® 0 n. n,.000000
1C,E.RATEe ~  50C 10. 0,020000
1C.E,RATE=® 1000 12. 0.012000
ICcEéRATE! 1500 16. 0.010667
1C,E,RATE= 2000 20. 0.,010000
1C,E.RAYE®R 2300 22.. 0.,008800
IC/E,RAYE» 3000 25. 0.008333
IC,E.RATEx 3500 30. 0.,008571
1C,E,RATE=" 4000 3z2. 0.008000
1C.E.RATER 4500 37. 0.008222
1C,E,RAYEx® 5000 42. 0,008400
1C,E.RATER 5500 42. 0.007636
1C,E,RATE" 6000 44, 0,007333
v 16 ELRAYER 4500 46. 0.007077
i JC,E,RAYE® 7000 48, 0.006857
1C.E.RATEm 7500 32. 0,004933
1C.E,RATE= B000 56. 0,007000

1C,%5,RATE® 850¢ 50, 0.006944
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APPENDIX 4
CONFIDENCE LIMITS FOR THE PROPORTION OF ERRORS

Consider a set of independent {Bernoulli) trials, with each
trial having the two possible outcomes: success or failure. Let
the probability of success in each trial be p, so that the proba-
bility of failure is 1~p. Let h be the proportion of successes

in n such trials,

Then

Prob.(-—-Ulj1L~— < K)y=20(K) -1
vh{1-h)/n .

for any positive value of K, where

K 2 .
1 -t</2

o(K) = — e dt

yon :{w

(see reference 50). Hence

Prob.(h-k /AL ¢ 5o o g ROy 290 (k) - 1

(It has been assumed here that n is large enough for the distribution
of the random variable h, to be approximately normal). Now assume

- that h is small so that /1-h =~ 1.

Then
h h
Prob.(h-K nSP< h + K ﬁ) =2¢(K) - 1

or

Prob.(h-— <p<h+—) =2¢(K) -1
= :
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where r is the number of errors occurring in the n trials,

i.e. r=nh.

Now let K be such that

26 (K) - 1=0.95
or

8(K) = 0.975

where ¢(K) is defined above. From tables of the normal distri-

bution function, K = 1,96,

Therefore '

Prob.(h-1.96 1= < p < h +1.96 1) =0.95

JF JF
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