i1 M Loughborough
 University

This item was submitted to Loughborough's Research Repository by the author.
ltems in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

A spin-coefficient approach to space—times with torsion
PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© S. Jogia

PUBLISHER STATEMENT

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-
NoDerivatives 2.5 Generic (CC BY-NC-ND 2.5) licence. Full details of this licence are available at:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LICENCE
CC BY-NC-ND 2.5

REPOSITORY RECORD

Jogia, Shashi C.. 2019. “A Spin-coefficient Approach to Space—times with Torsion”. figshare.
https://hdl.handle.net/2134/27380.


https://lboro.figshare.com/

B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/




o 3“*”"«33’ N - \-4537557@/8/
 LOUGHBOROUGH

o _' umvensmr OF TECHNOLO.GHY'
' T LIBRARY -

AUTHOR/FILING TITLE

A _, f'aaa‘gs‘s‘.aafea;vﬁa“"“."“""'““‘-“‘-““‘"

VOL. NO. CLASS MARK

g ‘\“’f‘&udoz
!

LeAwn cofY







A SPIN-COEFFICIENT APPROACH TO
SPACE-TIMES WITH TORSION

by

S C JOGIA, MsSc

A Doctoral Thesis
Submitted in partial fulfiiment of
the requirements for the award of
- ~ Doctor of Philosophy of the
Loughborough University of Technology

1 April 1981

Supervisor:™ Dr-J B-Griffithsy
3 , Department of Mathematics

Tdwcwar o mrame .

¥ Lo
Fran Mo . - e . e . . ot
!

¥ i
Mo ey g e e e ey

© by S Jogia, 1981 . s

- ¥




Leughboreugh University |

of Technalngy Library

Class

N W4 209 4




ABSTRACT

The Newman-Penrose formalism, which has been extremely use-
.fui in general relativity, is extended to inc]ude the possibility
of space-times with torsion. Initially, Riemann-Cartan geometry
is discussed and the torsion and contortion tensors are defined.
The possible alternative but equivalent approaches in developing
the formalism are given in Chapters 3 and 4. These involve the
- use of tetrads and spinor dyads. In the definition of the spin
coefficients, the components of the contortion tensor appear as
corréction terms to the spin coefficients defined in the associa-
ted Riemannian space-time. The algebraic structure of the curva-
"~ ture is analysed in both its tensor and spinor forms and distinc-
tive labels are given to the additional 16 independent components
that vanish in Riemannian space-time. The generalised Newman-Penrose
“jdentities are obtained in Chapter 5 and consist of 4 lengthy sets
of equations. Of these, the Bianchilidentities for the torsion are
a new feature and consist of essential integrabi1it& conditions on

the contortion tensor.

In Chapter 6, it is shown how the formalism may be used to
generate exact solutions. Two different forms for the contortion

tensor are considered and simple plane wave geometries are obtained.

The formalism is applicable to any theory of gravitation that
includes torsion. Of particular intereét however is the Einstein-
Cartan theory which is introduced in Chapter 7. Classical Neutrino
fields and semi-classical spih fié{ds_are considered in this theory
in Chapters 8 and 9. A number of general properties and exact solu-

tions are obtained for these sources. For example it is shown that
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the oniy possible ghost neutrino solutions are those with a plane
wave metric. The exact solutions for the semi-classical spin
fluid have in general.non-zero acceleration and so provide the
first "tilted" cosmological models in the Einstein-Cartan theory.

However, these models are very special and have an equation of

state corresponding to “stiff matter".
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The conventions
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NOTATION

for tensor indices are:

Gy By Ys eoe range over the values 1, 2, 3, 4.
The conventions for tetrad indices are:

L, My N, ... range over the Qalues 1, 2, 3, 4,
The conventions for spinor indices are:

A, B, C, range over the values 0, I.

, X, Y, range over the values 0, 1.

The conventions for dyad indices are:

a, b, ¢, ... range over the values 0, 1.

vees X3 Yy 2 range over thervalues 0, i.

(Note that when different conventions are used for indices, they

will be specified in the thesis}).

Symmetrization is denoted by round brackets, e.q.

- .1
Blagy) 37 (Bagy * Bava ¥ Brag * Bayp ¥ Bypa * Boay)
and anti-symmetrization by square brackets, e.g.

_ ] '
B[uBY] - 37'(BaBY ¥ BBTU * BYGB ayR  yBa BaY)

The symbol “c.c" denotes complex conjugate.




vii

The signature of space-time is chosen to be — —— 4.

Cartan's torsion tensor and the contorsion tensor are respec-

N K K
tively denoted by Suv and Kuv .

The sign of the Riemann-Christoffel curvature tensor is

specified by the Ricci identities

2v. v.A =-R *a¥io2k
RVK

K at
[ %) v, A

[uv]

where "v" denotes covariant differentiation with respect to the

affine connection.

The Ricci tensor and curvature scalar are defined by

Finally, the permutation tensor is defined by

Cuvkd T Spvka]

and

£1034 = V-9

where g is the determinant of the metric tensor 9y




CHAPTER 1
INTRODUCTION

The spin coefficient approach to general relativity was
used in a classic paper by Newman and Penrose (1962) tao develop
a notation which has now become a familiar tool to numerous

Are1ativists. In the paper they were concerned primarily with
gravitational'radiation in the context of Einstein's theory.
However their notation, also known as the Newman-Penrose (N-P)
formalism, has since been successfully applied to a wider class
of problems and is now a well established method in refativity
theory [see for example the general reviews in Alekseev and
Khlebnikov (1978), Carmeli (1977), Frolov (1973) and Kramer et
al (1980)]. It is particularly useful for the'analysis of gravi-
tational fields and for obtaining algebraically special exact

solutions of the field equations.

.Because of its tremendous success, a mathematical éxtension
of the formalism from Riemannian space-times (V4) to the more
general Riemann-Cartan space-times (U4) may be of use to gravi-
tational theories expressed in terms of the latter. Such an
extension is presented in the first half of this thesis. The
Uy affine structure is more general than that of the assocjated
V4. The connection in U4 is taken to be generally asymmetric and
its antisymmetric part is called Cartan's torsion tensor. There-
fore if this tensor vanishes then U, reduces to Vy The "metric
postulate", which is the compatability condition between the symme-

tric metric and the asymmetric connection, is also imposed so that

o




local Minskowskian structure can be ensured. The space-times,
considered in this thesis, are then restricted to the class of
Riemann-Cartan manifolds. The essential geometry of these mani-

folds is given in Chapter 2.

A N-P type formalism for-space-tiﬁes with torsion is pre-
sented in Chapters 3, 4 and 5. Two equivalent methods may be
considered in developing the formalism which culminates in the
generalised N-P identities of Chapter 5. These involve the use
of tetrads and spinor dyads. Emphasis will be placed throughout
this thesis on the tetrad approach given in Chapter 3. However
the spinor dyad approach given in Chapter 4 will be useful when

dealing with Neutrino fields.

In Chapter 3, the spin coefficients are defined in terms of
the Ricci rotation coefficients by taking the same linear combi-
nations and using the same labels as Newman and Penrose. It is
found that the contortion tensor, defined in Chapter 2, adapts to
this scheme a 1little more naturalily than the torsion tensor. Its
components are treated as correction terms to the values of the '

spin coefficients in a V4.

A new decomposition of the U4 Riemann-Christoffel curvature
tensor is presented in Section 3.2. This tensor now has 36 inde-
pendent components which are defined explicitly with respect to the
tetrad basis. Of these the 16 components of the Ricci tensor are
represented by the familiar components of its symmetric part, ¢AB
and A, and 3 new complex components 7Y which represent its anti- -

symmetric part. The remaining 20 independent components belong to



decomposed into the. generalised Weyl tensor Ankuv, a tensor

B and a scalar D. The components of A are expressed in
KAuv KAUV

terms of the five familiar complex components ¥gs ¥ys ¥ps ¥s and
¥y The remaining new components belonging to the tensor Bnluv

and the scalar D are represented respectively by the components of

a 3 x 3 hermitian matrix %p and a real parameter I.

\
|
the trace free part of the curvature tensor C:Auv. This part is

The generalised N-P identities, given in Chapter 5, are con-
siderably longer and more numerous than the original ones. They also
include a new set of identities, introduced in Section 5.3, wﬁich
are essential integrability conditions on the torsion. These equa-
tions are called the Bianchi identities for the torsion and originate
from the generalisation of a symmetry property of the curvature
.tensor defined in a V4. In the application of this formalism, the
Bianchi identities for the torsion have proven'to be an important

new feature and a starting point in the simplification of the full

set of equations.

At fifst sight the generalised N-P identities appear to be

unmanageable. However it should be noted that any gravitational

theory involving torsion is mathemafica11y complicated in any

approach. Thus extending the N-P formalism to such a complicated |
form is not out of proportion and in some applications the form

of the contortion tensor drastically reduces the number and the

length of the equations to a point at which they can be handled. |
This is seen in Chapter 6 where two different forms for the con-

tortion tensor have been chosen in order to obtain simple plane-wave




geometries for space-times with torsion. Although this exercise
is not physically important, it is instructive and shows how

the formalism can be used to generate metrics.

The motivation for the development of this formalism has
not been purely mathematical. Riemann-éartan manifolds are the
space-times for the so-called torsion theories of gravity that
extend Einstein's theofy to include the concept of spin angular
momentum. The formalism developed here is applicable td'any

torsion theory which considers such an extension.

The mathematician E]ie Cartan fntroduced torsion and appre-
ciated that it might be connected with the intrinsic angular momen-
tum of matter (Cartan 1922, 1923, 1924, 1925). For historical
reasons however his work was largely fofgotten until Sciama (1962)
and Kibble (1961) took an interest in the problem. They redis-
covered the field equations for a gravitational theory incorpora-
ting spin and torsion. This theory will be called the Einstein-
Cartan theory in this thesis although some authors refer to it as
the Einstein-Cartan-Sciama-Kibble (ECSK) theory . The essential

features of the theory are presented in Chapter 7.

It should be emphasised that the Einstein-Cartan theory is
only one of many gravitational theories involving torsion that are
being considered at present., However it is the most aesthetically

pleasing and takes spin into account more naturally.

I have attempted in this thesis not only to present a spin-

coefficient formalism for space-times with torsion, but also to show

how such a formalism can be used to obtain general results and exact




solutions in the context of the Einstein-Cartan theory. The
physical sources considered are the Neutrino field and classical
spin fluids. Exact solutions are presented in Chapters 8 and 9.
‘Chaptér 10 concludes the thesis with suggestions for further

work.

Some of the material included in the first half of this
thesis has been published in a joint paper with Dr J B Griffiths
(1980a)*. Another joint.paper containing the material of Chapter
9 has been submitted for publication (Griffiths and Jogid 1981).
Some parts of this thesis have been summarised in an abstract

published jointly with Dr J B Griffiths (1980b).

It should be noticed that the definitions of the components of
the curvature tensor in spinor form are, at two points, inconsistent
with their use in the remainder of this publication. This may be
corrected by replacing, in equation (4.24) of the paper, the follo-
wing: |

A g8 ,C D

i | 2 .
x=g{a-0), ¥p-Fix=Ypge 001

However it has been found to be more appropriate to redefine
these components in this thesis so that the original definitions

given in the spinor section of the publication are retained (with x

being relabelled ).




CHAPTER 2
RIEMANN-CARTAN GEOMETRY

Torsion theories of gravity use a Riemann-Cartan geometry
for their description of space-time. "It is the purpose of
this chapter to present the essential features of this geo-
metry. Detailed descriptions are given in Schroedinger (1963)
and Lovelock and Rund {1975). Riemann-Cartan geometry is
also summarised with reference to the Einstein-Cartan theory

by Hehl (1973, 1974) and Kuchowicz (1975}.

2.1 Affine Geomefry

In order to decide upon an invariant method of varying
vectors from point to point, a concept of parallel displace-
ment must be introduced. Namely, a vector A%, parallely dis-
placed from the points x to x* + dx" changes according to

the affinity postulate

a _ o AV U
§ A" = ruv A” dx

in which & A% 1is assumed to be bilinear in AY and dx". The
affine connection T A is assumed to be generally asymmetric

uv
in its lower indices and therefore the order of these indices

is important when stating the affinity postu]ate. In the

terminology of Schro-dinger (1963), a manifold equipped with

art A
HV

is called a linearly connected space.




The antisymmetric part of the connection transforms as a

tensor and is called Cartans torsion tensor:

A A
:=T 2.1
w [uv] . (2.1)

This tensor is a purely affine quantity and has in general
24 independent components. It vanishes in standard Riemannian

geometry.

The covariant derivative with respect to I‘WA of a

contravariant vector field A% is defined by

v, At = ch A+ ruv“ A, (2.2)

Covariant differentiation of an arbitrary rank tensor field

can be defined in the usual manner.

It is possible at this stage to introduce repeated co-

variant differentiation. This yields the Ricci identity

(vuvv-vvvu)A" =Ry K-z S v A (2.3)

where the Riemann-Christoffel curvature tensor is defined by

Al oap A A o AL o, AL @
Ruvn = Burvm +avl‘uK rua LI +T I‘mc (2.4)




2.2 Metric Geometry

For a reasonable space-time, the theory of special
relativity must be valid Tocaliy. This is accomplished, just
as in V4, by introducing a symmetric metric guv which is
locally taken to be the Lorentz metrie of flat space-time.

In addition, the "metric postulate"

vy guv =0 (2.5)
is imposed so that units of length and time are preserved.
under parallel displacement. A manifold equiﬁped with this

metric and connection is called a Riemann-Cartan space-time (U4).

Equation (2.5) is seen to be a constraining equation with res-

pect to the connection. Solving it we obtain

A_(A)_y A
Ly _EW} Ky (2.6)
where EJ;; is the Christoffel symbol of'the 2nd kind and
AL __e A AL e
Kuv T = SW +5, " STy (2.7)

. . ' _ A
is the contortion tensor. Kuvk =9 Kuv has the symmetry

property

KU(VA) =0 (2.8)




indicating that it has 24 independent components. The torsion
tensor is given in terms of the contortion tensor by the
useful equation

A A

= - K

S [uv] (2.9)

Although one is at liberty towork with either thé torsion or
the contortion tensors, preference is given to the contortion
tensor because it describes, more directly, {non-Riemannian)
rotational degrees of freedom of the space-time (Hehl 1973,
1974). This choice is partigu]arly appropriate for the

spin-coefficient formalism developed later.

It is convenient at this stage to define the preferred
paths of particles in a U4. One must distinguish between two
classes of curves, both of which reduce to the "geodesics"

of Riemannian geometry. Namely

Extremal cufves (shortest or longest 1ines) are those

curves which are of extremal length with respéct to the
metric of the manifolid. Since the'1ength befween two given
points depends only on the metric, the extremal equation

is derivable from a variation of the interval:

IdS = I/( guv dxu =0

dx ) ds
ds ds

The definition is independent of the torsion field. We obtain
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d2x* %) dx* dxY _
2 + 5“"; s .y =0 (2.]0)

Autoparallel curves (straightest lines) are those curves
over which a vector U* is transported parallel to itself with
respect to the total connection rwA of the manifold. The

defining equation is
U“ﬂlw =0 - (2.11)

or, upon choosing a suitable affine parameter s,

d?x* adx dxY
dsz + PU\) —a-s—- ?E- =0 (2.]2)

Theorem 2.1 Autoparallels and extremals coincide if, and only if,
the contorfion tensor is totally antisymmetric, i.e.

Kpwa = ¥puoag-

This theorem follows simply by noticing that enly the symmetric
part of the connection enters (2.12). Note that extremal curves
have the same form as geodesics defined in the associated V4,
over which a vector is transported parallel to itself with

respect to the Christoffel symbols.

Schouten {1954) and most other mathematicians use the

term “geodesic" instead of autoparallel. In fact the path of

a particle need not be extremal or autoparallel. In such cases




1

3

the curve must be calculated from the field equations or con-

servation 1aws of some'physica1 theory.

2.3 Properties of the Curvature Tensor

In terms of the contortion tensor, the Ricci identity (2.3).
* can be written
o A ApK L K K x
(vuvv-vvvu)A = '-Ruvm A" + (Kuv - Kvu VA (2.13)

and the curvature tensor (2.4) can be seen to have the symmetry

property

R(uv)K

' |
oo | | (2.14)
Upon introducing the metric, it also has the symmetry property

Reo(r) = © (2.18)

(2.14) and (2.15) are the only symmetry properties of the curva-
ture tensor which therefore has 36 independent components.
The other identity of interest is the cyclic identity of'V4.

The generalisation of this to U4 yields the following:

K o_ K_ a K Ky @
=3 Rp e Ko Koga * Katw ) (2..16)

V[kKuv]
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These equations are integrability conditions on the contortion

tensor and will be regarded here as the Bianchi identities

- for the forsion.

The integrability conditions on the curvature are given

by the Bianchi identities for the curﬁature which take the

form

B _ _ K B ,
V[ARuv]a = 2-K{uv RA]KQ {2.17)

It is often useful to identify the terms that are
responsible for the deviation of a U, quantity from its value
in the associated V4. Therefore a notationrwill now be intro-
duced by which a degree sign is used to denote the V4 vé]ue of
a quantity. This is the value which depends only on the
metric structure in U4 and is obtained by replacing the connection
with the Christoffel symbol alone. For example the V4 value

of the curvature tensor is denoted RouvKA and the deviation

A

K - is givén by the

of the U, curvature tensor from Rouv
expansion

A_p0 A A A

R Ap® Ay K ey (2.18)

o, A o
HVK HVK [nvlk 2K[uv] oK Kux Kva +er Kuu
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CHAPTER 3
THE TETRAD APPROACH

Following the notation of Newman and Penrose (1962), we
adopt a set of four null basis vectors (&M, n¥, m', W),
defined at each point in space-time, of which 2" and n* are

real and future pointing. The null tetrad is denoted by

emu = (M, oM, ¢, W) m=1,2,3,4.

and satisfies the orthogonality conditions

M =-n"m =1,2"'m =n"m =0 (3.1):

Components of the metric tensor in the tetrad frame are

therefore given by:

0100
uv 1000
M. =€ & g = (3.2)
mo My 0 0 0-1
0 0-1 0
mn

where the matrix Ngp =N is used to raise and lower tetrad
indices. The metric is consistent with the contractions
(3.1) if, and only if, it satisfies the "completeness rela-

tion"

=e_ e n =4n +n¢ -mﬁﬁ -m m (3.3)




Components_of a tensor in the tetrad frame will now be
referred to as its tetrad components. For example, the

tetrad components of the contortion tensor are given by

for which

KE(mn) =0

Tensor indices may be regained by inverting this oberation.

3.1 The Spin Coefficients and Contortion Components

Complex Ricci rotation coefficients are defined by:

- vV M
Youn = ©n - m Vv eiu (3.4)
for which
Y(m)n = 0 (3.5)

The latter identity is easily derived by covariantly differen-
tiating equation (3.2). Also, by expanding (3.4), with the
aid of (2.6), we obtain

_ oV U0, (@ o
Yom = &n” & 16,3, i"“? 3 W (3.6)
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Equation (3.6) shows that the tetrad components of the
contortion tensor and the rotation coefficients are related.
More precisely, the contortion components are the quantities
by which the rotation coefficients differ from their values
in the associated V4. The unfortunate reverse order in
the subscripts of these components is a result of maintaining
the notations of Hehl and of Newman and Penrosé. However,
this does not present itself as a.major problem in developing

the formalism.

In the N-P formalism, the twelve spin coefficients are
defined as linear combinations of Yomn These definitions
are carried over here identically. In addition it is also
convenient to take the same combinations of the K . and
use the same symbols for these combinations but with a
subscript "1" to denote contortion components. Accordingly,

we make the definitions.

=2 e €y =Ky 2 e

p =AY 2 oy = K,m\,'ﬁkrﬁ“!tv

.c =mm'y vg’u 0y = K;\wmlmuﬂ,v

T =n"m'y vg‘u T = Klu vnlmuz\’
e:=§£v(nuvv£u¥ﬁuvvmu) | €1 =§K;uvlk(nu2v -m"m")
a = 3m(nMv oY u-ﬁuv vmu) ay = ;K)m \,ﬁk(nuﬂ,\’-ﬁum\’)

A
B = gm"(n“vvzu-'ni“v o) By = 3Ky (n"eV-m'm”)




Y = inv(nuvvquﬁuvvmﬁ) Y = QKAuvnl(nuzv-ﬁ“mv)

A = A A = -Kmﬁ"r‘n“n“

n= —mvﬁuvvnu Y = -Kku\yﬁﬁ?nv

v = -nvr'nuvvnu vy = -Kxuvnkﬁunv. “{3.7)

The spin coefficients may now be expressed in terms of their

values in a v4 and the contortion components, i.e.

K = K® + K1s p = p° + 0 etc. (3;8)

The definitions {3.7) can be.given in the alternative forms:
vuz v = ('y+?)sz,usz, v+(a+’€)nu£v - (a+§)musz.v - (E+s)ﬁu2. v (3.9)(a)’
-T 2., - "3 nm, + Emumv + Ei’ﬁumv‘
-1 gu E% - K nHEQ +p muﬁs + o'ﬁ;ﬁv

"/

= -lvg e, - (efe)nn, + (a+B)mn, + (a+B)mn,, (b)

+v lpmv + T numv =Amm -~upmm

TV TR
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Ym =V oL +7TNL ~upmi -Am4i
B, HT L, T L, =AM (c)

- - + ™
Tﬁunv Knuﬂv pmunv+cmunv

+ (YN, + (e-e)n m, -'(a-ﬁ)mumv- (8-m)m m,

Kluv = (112A+ Kl -pymy - q]mA)(nUEQ- mu"v) (d}

+ (Y1£A +EqNy - ooqmy - B]mk)(Qunv—nuzv-mumv+mumv)

+Wﬁfrﬂfdﬂfﬁﬂﬂ%%-%%)+m.

In general terms, the spin coefficients describe how the
null tetrad varies from point to point. Some of them relate
more directly to the geometric properties of the null con-
gruences to which 2* and ¥ are tangent. (A null congruence
in a region of space-time is a 3-parameter family of null
curves such that exactly one curve passes through each point
of the region (Pirani, 1964)). In particular, &, is tangent
to a null autoparallel congruence if, and only if, x = 0.

In addition, the null autoparallel congruence is affinely
parameterised if, and only if, e+ = 0. Similarly, £u is

tangent to a null extremal congruence if, and only if, % =0

and this is affinely parameterised if, and only if, e+e° = 0.

If 2¥ is tangent to an affinely parameterised null auto-

parallel congruence then the "optical scalars" (Sachs, 1961),
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associated with such a congruence are defined in terms of the

spin coefficients by

expansion 8 = - § (p#5) = 0° - } (p{+F)) (3.10)(a)

shear o] = 05 =[]0]0? + 005, +300, +c.|6']]5 (b)

twist w = i (p-p) = W + L (pq ~07) (c)
| z " A

where their V4 values are defined with respect to an affinely

parameterised extremal null congruence.

If 2¥ is tangent to both affinely parameterised autoparallels
and affinely parameterised extremais then the optical scalars
associated with the former need not be equal to their V4
values defined with respect to the latter. {The deviations
of the scalars associated with autoparallels from their V4

values are given in equations (3.10).

For a scalar field ¢, it is easily shown that
N o _ o
(vuvv"vvvu)¢ = (Kuv Kvu-)va¢ (3.11)

Therefore &¥ is proportional to the gradient of a scalar field
¢ if, and only if, k% = 0 and p° = p% if 2¥ is in fact equal

to the gradient of ¢ then, in addition, e°+€° =0 and 1° = E°+3° .

Finally, the spin coefficients -v, =-A, -p describe geo-
metric properties for n" analogously to those determined by

K, g, p for ¥,
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3.2 The Curvature Tensor

The curvatufe tensor in U4 has 36 indeﬁendent components,
In order to give these components distinctive labels with
respect to the tetrad basis, it is necessary to suitably
decomﬁose the curvature tensor. We begin with the trace

free part of the curvature tensor. This is given by

P o R
Ckhuv B RKAuv Rh[u-gv]g + Rr[u 9y1a ¥ 3 Bk Oau (3.12)
where the Ricci tensor and curvature scalar are defined by
R =R %, R=RY (3.13)

In U4 the Ricci tensor is not necessarily symmetric and so
has 16 independent components. The remaining 20 independent
components of the curvature tensor are given by cxkuv which
may be regarded as a generalisation of the Weyl tensor defined
in‘V4. However, an alternative and more convenient generalisa-

tion of the V4 Weyl tensor is g{ven by

Aoy = ¥ G * Suand = Craa) (3.14)
This tensor has the symmetry properties
(3.15)

Aper) (wvy Aoy ten) © A[fckuv'_] =0

which indicate that it has 10 independent components. It will be
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referred to here as the generalised Weyl tensor. The remaining

10 independent components of CKAuv are given by the tensor

By = 2 (G = Chuin)s (3.16)
which has 9 independent components, and the scalar
D=-3 MR (3.17)

AUV

The decbmposition of the curvature tensor in U4 can therefore

be given by

e
b

= A

KALY KAV +i (Rlugvx"RlvguK B qugvA+RKvgul)

R
- 3'(gvKgAu'gvkgKu)

+ B (3.18)

D
ALY * T2 Seanv

The tensors B and the scalar D, vanish in the limit

KApv? R[w]
when torsion vanishes.

The authors Gambini and Herrera (1980) have recently
obtained an alternative decomposition. They have found it
convenient to express the components of the curvature described

by B and D, in terms of the tensor

KAuv® R{uv!
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a1 IaBy
Duv éeu RaBY\)

With this definition, it is easily shown that

aB

Riww) =~ 28 Dog

The decomposition in terms of Duv is given by

RKJ\]J\J'-'AKAuv * é[R(Jm)gvlc-R()w) guK‘R(Ku)gkaR(m))guA]
R D
"% (gvKgAu B gv)\glcu) Y17 Ceav
21 o a a o
T [Ezuk Dav'*eulv Dam'+€AvK Dau'+EvKu D
where
_na
D= Da

The components of the Ricci tensor are now expressed

in terms of the familiar 9 components of a hermitian 3x3

‘matrix °AB’ the real parameter A and 3 new complex components

7Y (A,B = 0,1,2). These are defined by

= - HoV

- RN TRV

- - v
$gp =~ % vam m

cz)\]

(3.19)

(3.20)

(3.21)

(3.22)
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$q = - 3 R(uv) (2HnY + m“ﬁ“) '
3 = - B Ry nHm¥

- - UV
Sy = 3 Ruv nn

A=orR

0 = - 3 R 2’ = -3 Doy X0

9 = - 3 R[uv](aunv— wRY) = - ;.D[uv](lunv— maY)

8 = - 3 Ry W - - ;-D[uv] WY (3.23)

The generalised Weyl tensor Ankuu is expressed in terms of

the familiar 5 components

- Ko AUV
¥y = Ankuv Lme m
- K A MV
‘P]— AKMN.Qan
¥, = - 3 A (250t 2V - 2 nPRY) (3.24)
- KA =V
¥y Amluv £n" mn
A EnY

It is convenient to express the tensor Bxluv in terms of the

9 components of a hermitian matrix BAB (A, B = 0,1,2) as follows

- iR KA U=y H,V
000 = =i BKAuvR mam =413 Duvz L

_ 1
01 " Z Br:?\uv

0 25m {(2HnV- wnY) =+ 3D 2Hm”

{uv)
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902 =i Békﬁv szAnumv =+ 3 Duv a'm”

O = %- Klpv(l ﬁKmA)(zun; + Eﬁmv’ =+ } D(uv)(zun +m @ )
999 = - ;'Bxkuv nKmx (Eunv-+.ﬁumv? =+ 3} D(uv) n¥m’ _‘ |

Oy = - i-BKAuv MY =+ 3 Dy n"n" (3.25)

It should be noted that these components, when expressed

in terms of Duv’ are analogous to the components ¢, of the trace
free Ricci tensor. This analogy wi]].bé illustrated more
'clearly'in Chapfer 4. The remaining scaiar component D is

given the label
1o  (3.26)

The tensors Axkuv and B are given in terms of the components

KALV
defined in (3.24) and (3.25) by

U + 2 ¥ (U.M +M

Axkuv = - ¥ Yo iy kA uv” KA uv)
1112 (v A v +4 HKAMuv Kk uv)
£ 295 (VM + Mg u\,) ¥y Vg, Vo, + GG (3.2D)
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BKApv == OdU AU v 21 %1 MLAU v i 02 v%kuuv

+

- i ezo'U V + 21 0y, Hkxvuv =10, VEkvuv (3.28)
where 3 complex self dual tensors have been defined by

Upy = 2 m[u"v]’ =2 hnmiys My = Ay T Py

The trace free Ricci tensor is given in terms of the tetrad

basis by

R
Ry T Gu™ ~222% % * 40122 Myy = 272,05y M)
- 2@02 mﬁﬁ§+ 4@01 n(umv) - %50 LTUN
- 43, z[umv] + 29, (E[nnv] - m[umv])

- 48y W ny + C.C. | (3.29)

Finally, the tensor Duv is given in terms of the tetrad

basis by




Dw = ezzzpkv-4e12 m(umv) + 2911(1(11"\)) + 'rh'(u'mv))

+ 2@02 mumv - 460] m(unv) + 950 nunv

+ 4o, Ay - 2i 9 (2[upv]+ ﬁtumv]) + 41 ¢, ﬁiunv]

+3 2 9 + C.C. (3.30)

Variations of the spin coefficients and the tetrad components
of the curvature tensor under a number of tetrad transforma-

tions are given in Appendix A.
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“wio CHAPTER 4
THE SPINOR _APPROACH

4,1 Spinor Algebra and Analysis

Following the notations of Pirani (1965) and Bade and
Jehle (1953), 2-component spinors afe introduced at each point
of space-time in a tangent two dimensional complex space. To.
each tensor, one may then associate a spinor. The correspondence
between tensors and spinors is achieved by means of a set of
four 2 x 2 Hermitian matrices o A% (A =0,1 and X = 0,1)

satisfying

BX . _BX _ .. B

- Spinor indices are raised and lowered according to the rule

A AB B
E =€ EB’ EA =g SBA (4.2)

where

(eg) = 0 = (] @)

In Minkowski space-time, ouAX may be taken to be the set of

Pauli matrices

0 X

1 0-i, A
724G o) o3

110
=72 (o -7
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These satisfy the useful relations

BY B . Y

u -— - .

CAk % T 6A 6)( ‘ (4.3)
6 gy 0.5% « g g . = ie ¢ . OBBX (4.4)
pAX %y VA% “y wvag % AX A

8
GGAX of X UTB? % %(gas °YAY f et °BA? f gBY UaA??
- 3 *BYS I ny (4.5)

The spinor equivalent of a tensor is defined by associating

with each tensor index a pair of spinor indices as follows

Therefore a spinor associated with a real tensor is Hermitian
(where indices that are not dotted become dotted and vice versa

under complex conjugation).

It is easily shown using the identity

epreecp] = O
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that any spinor £...p..p .. MUst satisfy

. C
Eo-.A--cB-.- -EoocB----A-oo = EAB E---C ------ (4.6)
Equation (4.6) is essential for simplifying the spinor equi-
valent of tensors with pairs of anti-symmetric indices. (See
Pirani (1965)). The spinor equivalent of a real tensor which
is anti-symmetric in a pair of indices T..,, .. =T

- a8 [uv]II
satisfies

T

'-A).(BY e = %[T ..ARBY l.-’T--BiA? .-- + ..BiA?.."T- -B?A)‘(- -]

Z
=3 epg Toegg gee + 3 oegy T B - (4.7a)
Now let
T S Toosl =T (4.7b)
.IBA.. ..BZA LR 3 IIAB. -
Then
Topgel -+ = Toompes Sy *+ T 47 - ©AB (4.7¢)

Note that T"AiBi .. has been decomposed into parts symmetric

and anti-symmetric in AB and XY alternately.

The covariant derivative of a spinor quantity is defined in

terms of a spinor affine connection as follows
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A _ A A B
VuE -aug +ruB £

In U4, the requirements vu €ag = 0 and Vu chX = 0 respectively
imply that
Tuas = TigA
B

BX o, «y B, _ a B )
b g, (au % AX +Eu Bgc ax " Kig 9 AR

and therefore determine the form for ruAB'

ruA

4,2 The Spin Coefficients and Contortion Components

The spinor approach to the spin coefficient formalism is

based on a dyad of rank 1 spinors
caé = (oM a={0, 1)
which are normalised such that
U= mp00 = 1 _ (4.8)
and satisfy the completeness relation

(4.9)

“AB " °A BT A B
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The null tetrad in vector space can be constructed from the

basis spinors by

M= oqu 6A6x , n' = UHA* 1A TX, m = GuAi oA =;X

(4.10)

If we represent the covariant derivative in the spinor form
R |
S VIR

then the analog of the rotation coefficients can be given in

dyad components* by

A C= X_ .
r Cb CC Cx VCX :aA | (4.11)

~ abcx

where

_ (4.12)
Tabex ™ Thack

With the aid of equation (4.7¢c) (noting the symmetry (2.8))
the spinor equivalent of the contortion tensor can be written in

the form

Kaxsics = Xaxac €vz'* Fxavz cac (4.13)

spinors. The definition ¢2 = ¢ for a rank 1 spinor is

inconsistent with the above notation. I will consisten§1y define
dyad components with respect to lower case spinors as in (4.11).

* Care must be taken when defining dyad components of odd rank
pd
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where

K ]

axec = Kax

The derivative of a spinor can be expanded about its V4 value

by

. - g0 - . C | |
ax &8 = Vax & *Kas ¢ (4.15)

Thus

r°,. . -K

Fabex = T abex (4.16)

cxba

where roabci are the dyad components of the spinor affine connec-
. - . . .. C -ZX B, A
tion defined in the associated Yy and Kciba =g Ty by Ly KCXBA‘

The distinct components of Tabek and K are equal to the spin

cxba
coefficients and the contortion components respectively:

ab 01 ab Ol
g 00 or N N | 00 or 11

10 ) cX 10
0b K € T | | 00 -ky "Ep "My
_ 110 L - 16 ~pa =0y =A
Tabex = . - Kexap® . 1A
01 c 8 u 01 -0 -B] ~H
11 T . Y v 11 -T-I -Y] -V'I

These are given by the expansions (c.f. (3.9))

gy Op = v 0p0g0x = a0p0g1g - 80, 10y +e0p1pty

(4.17a)
- 'nAO U + plA B 1y +o 1AT.BU)'( - K 1g1gly
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gy A T vOAOBU A OAOB X uOAlBU)'( + 7 0]-'\181).(

(4.17b)
- YIAOBU)'( +a IAOBT).( +B IAIBU).( -c IAIBT)'(
Kngae = (-v7 Onlx * Mq07g *+ w0y = miatg) Og0;
| (4.17¢)
+ ( X OA § - B-I U + E]IAT).()(OB.IC + lBOC)

+ (-T-I OAUX + p-l OAI* + U-I IA-O_X - K-I IA‘L*)_‘BIC

The spinor equivalent of the commutation relation, equation

(3.11), is given by

- cY ..oy -
(Vaw e = Vax “ai)® = (Kagmg - Kpgai )Wy (4.18)

Comparing the left hand side of this equation with equations (4.7)

(a) and (b) we may write

_ H U
Y V8% " Bk Vaw T =aB Y(w Y x) T swx Y(a Byp  (4-19)

The right hand side of (4.18) can be decomposed with the aid of
(4.13). We obtain

. H P n P,
(Paasx = YBa"an® = Kams Yug - KBXAH‘?HW"KNAX Yap~ Ksew Taple

Equating the latter with {4.19) and contracting with ENX gives the
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simplified spinor equivalent of the commutation relations:

P B H - PQ
Y "Byp¢ = Kag) e - Kea QVB)Q]¢ (4.20)

4.3 Decomposition of the Curvature Spinor

The symmetries (2.14) and (2.15) may be used, together with
equation (4.7c), to decompose the spinor equivalent of the curva-

)

ture tensor as follows:

Ramssctnz = Qpeo cix €v2 * Qaxvz <as Scp

+ Pag¥7 € Six * Puke Sas ©V2 (4.21)

where
Uacp = Uag)(co) (4.22)
Pagvz = P(as) (V1) (4.23)

The spinors (4.22) and (4.23) may be further decomposed. QABCD

written in terms of its totally symmetric part is given by

‘ 1 1 |
Ongep = Uasco) * 5 (Caseo - acos) * 5 (Casco ~ %hosc?

1 1 1
+ 5(Qacp - %cpa) * 5{Qscp ~%cosa) * 5 %sco - QoCA)
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It is easily shown using this relation, with the aid of equation

(4.6), that

) ]
Qascp = ~¥aBco *7 [(Eacesp * Zpcean *2apssc * Zapeac)

*% fepcegp * epceap! (4.24)
where
asco = ~Q(ascn) ~ (4.25)
s = = Qoan)o | (4.26)
a =P | | o (4.27)

The spinors ¥ABCD anq Irg are the spinor equivalents of the
~ generalised Weyl tensor AnAuv’ defined in (3.14), and the anti-

symmetri¢ part of the Ricci tensor R respectively.

[uv]

The spinor PAB?Z can be given in terms of its Hermitian and
anti-Hermitian parts, of which the Hermitian part is the spinor
equivalent of the symmetric part of the trace free Ricci tensor,

as follows

Pagtz = - %agiz t 1 © gz ‘ (4.28)

where

: |
agt2 = = 7 (Pagys * Pyzap) (4.29)
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1

iz = -7 (P Pyiag) | (4.30)

ABYZ ~

Hence, the irreducible decomposition of the curvature spinor

is given by

RuwsxcYnZ = = YABCD SWX SVZ ~ ©AB €cD TWXVZ

+ (Zrr Enpn + Inp €an + Zapn Ene T Znp Eap) €0V VS
T ‘““Ac ®BD T “BC SAD T ZAD °BC T “BD ®AC/FWX ®YZ

+~l E € (E" s"-'-—- E--+ ™ gre +-Z_- E'.)
7T A ScD ‘4WY Sxz T CX¥ SWZ T MWZ ExY 7 EWy

2 Qenr €an + Epr Eant ENY EV
B “\CAC °BD T ®BC ®AD/ SWX tYZ

+ .i 55 ( .o ss 4 cow E-o)
% €AB °CD ‘(WY SXZ XY Wz

- (2apy2 - 1 Opgy2) ecp Siix

- Gageo * 1 © psen) cas SV (4.31)

The components of the curvature tensor defined in § 3.2 using

the tetrad approach can equivalently be obtained from the dyad

components of the above spinors as follows:




D

¥y = ¥agep 070°0°0
1 = ¥ygep 0'0°0%
¥, = ¥aRCD OAOB1ctD
t = gy 04P

_ ABCD
‘{‘4""*’ABCDIIII

- 41512 0000

. ABY-Z
201 = €apy7 O 0°0'%

. . ABYZ
292 = dpgyz 0011

A BN-7
iABYZO 101

... ABYZ
o2 = #ppyz 01 1t

A BY-1
8 = dppyz * v U1

36

A=-15(2+ D)
I=yy(n-0)
¢y =} }:ABOAOB
o1 = zABOA13

0 = 3 g’

®00

o1 = i 00T
002 = Oagid ohoBi+
®11 * OpyzZ ot Bt

.. ABYZ
812 = fapyz 0 v 10

(4.32)
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4.4 Properties of the Curvature Spinor

In this section I will trace the steps of Penrose (1960)
(given explicitly in Pirani (1965) § 3.8) in order to generalfﬁe
the spinoh.eduivalents of the V4 Ricci identities and Bianchi
identities for the curvature to U4. The spinor equivalents of

the Bianchi identities for the torsion are also obtained.

The Ricci identity (2.13) implies that, for a bivector

TKA = T[KA]’

. p O o
(vuvv - Vvvu) TKA - Ruvn Tak + Ruvl Tra

o a
+ (Kuv - K. ") VaT

Vit KA

The spinor equivalent of this equation is given by

L] L]

. & . - - P EQ T -EQ CO
(Vau¥sx - VBiVaw) Tctoz = Ramesct = Tedpz *Raisipi  Toved

» lEQ - . 'Eé . .
* (Kngx BXaW ) VEQ Tcvpz (4.33)
where we may choose
Tetnz = & %p &vz (4.34)

We may substitute the equation (4.19) into the left hand side of

the Ricci identity (4.33) and then consider separately the two
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equations obtained by contracting first with ewx'and second with -

eAB. With the aid of the decomposition (4.31), the first contrac-

tion yields

p p _ E 2
“5cV(A VB)PED™ S0¥(A "B)PSC = * Pape(ctp)E T 3E(ccD) (alB)

E
* &A%y (ctp)* Ze(a®B)(ctD)

Ky Teqléc &) | (4.35)

CD

n s where nc

We now multiply by n is an arbitrary spinor, and

then remove the common factor gcnc. nD now appears as a common

factor and may also be removed to give

P . D 1
Va V)P fc Ttascp & T3 @ S(as)c

i 1 D
- ?'E(AEB)C t 5 E ZD(AEB)C (4.36)

0 B, . _g. PO .
*Kagy G 5~ Rpa VBYG Bc
This equation is one of the two Ricci identities in spinor form.

The other is obtained by contracting initially with EAB.

Then, following analogously the steps of the first contraction,
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the second Ricci identity is given by

g H- - .. . 3 .o E
¥ %) = * [Bprix * Teprasd &

AE Ai)QvAé £ G

Kol V(%) o " K

Note that equation (4.36) can be further decomposed. It may be
symmetrised on ABC, and contracted with sBC. These operations

respectively yield

»

P .. . D | .
YA "B|P5c) T Yaeep & "7 Z(as b (4.38)
S L
. _ 1 3
BPS T 2R T I b (4.39)

| Q E_. B . PO .B
*Ras) Q¢ T Ke(a B)ot

The Bianchi identities for the curvature (2.17) can be

written in the form

VG w 2¢ M R6K'

EGA Ruvas = Sx afB (4.40)

~where the spinor equivalent of eaxuv is given by (Penrose, 1960)
AWBX . A B M X . AB WX ‘

ecypz = 1 8c Sp 67 69 - 1 8p &¢ oy &3 (4.41)
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Using this and (4.13), the spinor-equivalent of (4.40) is given
by

.F .0 F .0

AX LF .
BPE %W~ Kmi Op

vV R = K

AWBXCYDZ
(4.42)

C QL F . .0 F EP ..
+Rpgi S - Kugp S8 1 R pgeynz

Upon symmetrizing (4.42) with respect to CD and using (4.31),

one obtains an expression which can be decomposed first by sym-

metrizing with respect to BCD and second by contracting with eBC.

The symmetrization and contraction respectively yield the following
-identities, which are the spinor equivalents of the Bianchi

identities for the curvature (spinor indices have been relabelled):

E. W T
V'x Yeac TV (A %Beyw T Y (A T OBoyxw T 7 Y(A|X|Be)

EF

EF
=Y (ps

A E
gtz

F : . '
+ 3l (A8 B! [ZKiexioyr ~ Koyxer)  (4-43)

PN . PW e T
“ Lo * e g 1 iy - Kixjoyen!

Y 2P [ A.

V' (opgyz * 710 apyz) T 7 py O Vy Zpp

i EFG oo ANX XMW

= Yerea Ky 7 gy * 70 pguxd Ky - &) (4.44)

1 EF EF 2. . A
tolpp Kgy I Ky + 39 Ky
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The Bianchi identities for the torsion (2.16) can be written

in the form

1 pv A Cuv o A A
uve | 2 &) Ruv ¥ € Kuv_ (Ka K K GK)

A uv
v Esx K

The spinor equivalent of this equation is given, with the aid of

(4.31) and (4.41), by

P X W ﬁ'ﬁ)

E,
Vs (Kag e -Kepa

(4.45)

WX ) G WX 1 WX -

EPFQ X ,FQEP X
- (K0T - K

W

MKnge 7 = Ke aped)
The curvature components that enter this equation are those

. belonging to the spinor equivalents of the tensor Duv defined in
Chapter 3. Explicit expressions may be giyen for these spinors
by taking various combinations of contractions and symmetriza-
tions of (4.45). For example the spinor © Ang is given by

symmetrizing with respect to AB and KX. After a series of

laborious caiculations, which involve the decomposition of the

contortion spinor (4.13), one obtains

. oK
- £ hs SRINH R?B) (4.46a)

W EXF —(P Q) (W X).
- &K Fyak gyt &P\ e, 4
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AW NP P %) X
+KB) +KPP K AB+K
-J b

—

. . N .
PE WX w x (W X)| EP PE
% + KW X) + R GEP vk ]

(A B) ] (A B)
E(W Q(N— X) P
K F(AKB) "¢ + Kpa B)Q
2 P |
B < VP [KE aB = 2 Kip gyl (b)
EPF PE Q
2 K7 aXgyper * Kep (ARQB)Q * K(A B) Kggp

3 PF . op WWp. ..
*+ K5r (akg) E+K%A Kii18)p0

Q
- K [Ke pg + Kea B)E!

EQ 3E E
PEQ [K AN RP

p KE‘P Fo_,xlP Q¢

K(E F)(A B) " (A~ |P|B)HQ

2 {2 -0) = Vg [KEXAE - K AXP} * Kaxae K (Hec - Keexy R
| (c)
Variations of the spin coefficients and the dyad components
of the curvature spinor under a number of dyad transformations

are given in AppendixA‘.
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CHAPTER 5
THE GENERALISED NEWMAN-PENROSE IDENTITIES |

The generalised Newman-Penrose identities given in this
chapter are the intrinsic components of the commutation rela-
tions, the Ricci identities, the Bianchi identities for the
torsion and the Bianchi identities for the curvature. They
may be obtained either by taking the tetrad components of these
tensor identities or by faking the dyad components of their
spinor equivalents. In either case it is convenient to introduce

the intrinsic derivatives

v (5.1)

|
|
Vak = %a %% VAX (5.2)
denoting their components separately by

D=ty = 0h vy (5.3a)
b=ty =P T (b)
§ = m* v, = o X Vak (c)

&|
"
=l
<
]
-

ak (d)
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5.1 The Commutation Relations

When operating on a scalar field ¢, the tetrad components

of the commutators (3.11) are given by

' _, P P i
The djad equivalent of this equation is given by taking the dyad

components of equation (4.18), which gives the commutators in

spinor form. We obtain

(Vai Ybx ~ "bx Vaw!?
- € [(Peabi + Kbiae) Vew ~ (rebaﬁ + Kaube) Vil

rs — —
e UThun * Keowr) Vag = (Trsa * Kiaxs) Vbl

(5.5)

Using the definitions (5.3), the equations (5.4) or (5.5) can be’

expanded in the form

(aD-DaYe = (v%+¥%)D¢ + (0 +20)ap - (0 +70)Tp - (70 +70)6¢

(5.6a)
(8D-D8)¢ = (e +8° ~7?)Do + k0 A¢ - o¥86 - (p° +0- €0)69  (b)
(64-08)Y¢ = V0 Do - (a? +8° - 10)ag + A08s+ {u® -y0 +30)&4 (c)
(S6-68)¢ = (W0 -u0)D¢ + (60 -p0)ap + (80 -aP)§p + (ol -B)6¢

(d)




£.2 The Ricci Identities

If the Ricci identity (2.13) is applied to the four tetrad

vectors emu and then tetrad components are taken, we obtain (with

the aid of (3.18))
Vo Yok = Yk Yong =

P - P _ p -
Yomk Yng " Ypmg ¥ nk = ZYmn (Yp[kz] K[ik]p)

D
* Acomn * Bremn * T2 Skamn

1
* Bz[m"n]k " Remm®nye ~ 3 R0y mngk | (5.7)

The dyad equivalent of this expression is derived by applying

the spinor Ricci identities (4.36) and (4.37) to the basis spinors

A
a

¢ and taking dyad components. We obtain

= e L] « - e - -
Vaw Tedbx = Tox Tedaw © (r daw Tecbx = T dbx Tecaw

- -

e e ,
* T haw Tedex = T abx Tedew) *(Teda Traxp = Tedb T

o r e f e e r
tepx [Tedta K b)ie " Teder(a b) J *€ablTed (WX %)efTedetNw %) ]

$

2 ] .
*enx [Yedab * 3 Sc(a®b)d ~ 2 (Ec(a®b)d *Ed(a®b)e!] *ean{Peaix® @ canx)
(5.8)
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We may now expand equations (5.7) and (5.8) explicitly in terms
of the notations given in Chapters 3, 4 and 5. The following 18
equations are derived either by expanding (5.7) and taking certain.
linear combinations or, more directly, by simply expanding equa-

tion (5.8),

Dp = 5k = D(PH+E+E) + 00 = TK = K(3a+B~%) + 0

“p(py=e *ey) = 00y + Ty + k{ayHBym) + a0, ' (5.9a)

Do - & = po + 0(p+3e=€) ~ TK — k(a+38-T) + ¥,

- - olp - o - ' b)
pay c(p1+sl el) + K, + K(a1+81 "1) (b)

1

Dt = Ak = p(T+T) + o(T+1) = T(E-€) = R (3Y+Y) + Yoot e,

—p('rlﬂrl) - c(tlﬂrl) + 'r(Elﬂ:l) + K(Ylwl) + 1601 * o (c)
Da = 8¢ = a(p+e~c) + BO - YK - £(a+B-T) + pT - KA 4+ @
171 1 10

—a(plﬂ-:l-sl) - Boy + yx) + e(a,+E_-n.) + i6 ! (d)

DB - 6 = 0o + B(P-€) = YK = £(a-T) + oW - Ky + ¥,

(e)

O

—aal - B\pl-—sl-rsl} + YKy + e(a1+31-1r1) -

DY - A = a(T+7) + B{T+7) = Y(E+E) = €(Y+Y) + TH = KV + v, = A+ d

11

malrpam) - Byt +v(epre)) ¢ elyytyy) + 10y —4F (£)
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DA = 8m = po + Alp=3€+€) = M(~0+B-T) = VK + @20

-0, - A(pl-el-n:l) + 'n(a1+f51-ﬂ'1) * vk, 410, ] _(g)

Dit = 67 = p(p-e=€) + AG ~ W(a~B-T) - VK + ¥, + 2A

-u(51+e:1-£1) - 101 + w(al-}al-wl) + vxl - ¢1+ 2iZ | (h)

DV = A7 = u(m+1) + A(T4T) = 7(Y-Y) - v(3c+E) + ¥y + 0oy

-u(n1+rl) - A(nlﬂ-l) + n(ylwl) + v(el-rel) + 1921 -0, (1)

AX = §v = =pd = A(+37-Y) + TV + V(20+B-T) - Y,

A+ AGI-!-YI-YI) i M v(a1+51-11) | (3)

Sp - 60 = p(a+B) + o(B-3a) + T(p-p) + K(u=p) - ‘1’1 + @01
=0 (@78)) = o(Bma)) = Tl =p)) - k(=) + Q6 = 0 (k)
ba = 38 = a(a-g) + B('Efa} +¥(P-p) + e(u-p) +ou = oA - ¥, + A+ ®,
~a(a,=8,) = B -e)) = (o 7p ) - e(utu)) + ién_+ iZ (1)
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- B
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- Ao

48

H(E-i-u) + 1(3—38) + T (u~p) + v(p~ ) - \P3 + ¢21

-"(El—al) - 1(31-61) - ﬂ(ul-§1§ - v(pl"?;l) + i0

U(E+YHY) + AN = TV = v(3B+a=T) + %,

oA + B(u=Y+Y) ~ Y(B+a=T) = EV + UT — VO + L

-akl - B(ul'vlﬂrl) + Y(Bl+u1-tl) + ey, ¢ 1912

PA + O{u=-3y+Y) - T(a=B~T) = KV + Q02

=pAy ~ u(ul-yl-"yl) + t(u1+81-1:1) * kv, + 10,

2

=p(u=y=y) = ok + t(B-a~T) + kv ~ ¥, = 2A

+p (§1+ ' Yl"?l) + U?tl - r(§1+a1

~a(p=y) = BA + Y(B~-T) + €V + pv = TA =~ ¥,

+a(171+11"71) + BA - 1(§1+a1-?1) -ev o, .

-11) - K\’l - 01-215:

(5.9)(m)

(n)

- (0}

(p)

(q)

(r)
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5.3 The Bianchi Identities for the Torsion

The Bianchi identity for the torsion (2.16), which generalises
a symmetry property of the curvature tensor - in Vq, written out

in terms of its tetrad components takes the form

_ 1 D 1
v[EKmn]k - ?’B[zmn]k Yk Sk * 2 R[m"n]k

- p p p
Yok[ekmn] * Yp[men]k * Yprem® nlk

P
* K *apkp = Kok aKmny” (5.10)

The dyad equivalent of equation (5.10) is derived by taking the
dyad components of equation (4.45) which gives the Bianchi
identities for the torsion in spinor form. We obtain the follo-

wing Tengthy expression

er er e -
ewx ¥ Kapeb = ab? Rﬁeri * VoK wab ~ b K amk

- - - _.I- 1 e L] L) -
Zab €k~ €ab Zax = 2V ©abwx * 7 Cab-Sax (8 - 9)

+
m
L4
~
-~
=3
-h
+

= S§r er = rs
+2 Kﬁaé(fqr)’() b +Ty Ke ¢s + Ts b Ko e
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erf K

. (e f)
+ e+ K b

ef
WX aref = 2K % Kewat * Koz Kepbf
- ._;‘eél ] .. (F‘ §). - LI | - [ ] ié - LI 3
eab K x Kieps + 2K b X K.raws Rﬁb K.raxs

v re er y e _.p e r
2 Kiplalsoike b2 Kepaib)at x* 22 epfe # X #15Ka eb

(5.11)

Written out explicitly, equation (5.10) yields the following set
of equations which may also be obtained by expanding equation

(5.11) and taking certain linear combinations.

D(pl-pl) + 8k - bk = 2ig,, + p(pl+2e1) - p(El+2e1) + (a+E)(ol-pl)

- r(2u1-11) + n(zul-rl) + (3a+B'ﬂ)K1 - (3G+B*H)K1

+ 00y = g0, - (pl“ol)(91+ol+al+el)

+K1(381+BI‘Tl"ﬂl) - n1(3a1+81-11-ﬂ1) (5.122)

o, - - €. - Iy = =" o aree) f -
D{a, 81) 6(91+e1 el) + 601 2i0,, + 26 4 (p+p+€ BICH 31)

= (=Pt +pm* TP~ (@48)0) = p(a *8,) + (@4B-T)(e;7E))

+ ) Qu Y, Y )RR SRk, e

1Y TR ARtk (BomB-moy + oo, +8,mmy)

i

- (QIJEi)(El-Bl) + (pl-pl)(11+n1) - Kl(u1+Y1‘Y )*Klll

+ (2u1-u1)(p1+el~el) = (2a

- b
1 nl)cl (b)
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D(u)=)) + 8(a +E -7 ) - T(a,+B,-7)) = 26, +6i3%- R

+ (p+p~e=€) ()=, )+ (0-0) (y¥7p ) *ulo, +e -e)
- "(Ei+el-el)
=KV + KV, = Xcl + 101 + (U—B)(G1+51'“1
- (a~B}(al+81'nl)

- (B )w(28,7T )= (0,0, ) (i )P0, R0 Oy 4Yp)

V)~ KT (&'1-81) (a1+81-1rl) + (al~81)(a1+31-1r1)

(c)

D(v, =3, -8 )=Bk_ +&(c +E,) = 2i 5@, +B, 47 -0 (a_+E.
( 17% 81)_ Ky d(el+el) 21601+2¢0 p(a1+Bl+ﬂ1) a(a1+31+n1)

+t(pl+251)¥F(9143i)¥?bl+(eJE)(tIJEi-Bl)

+ (a+B-T T yexs Y. - -y-3 XX,
(a+8 n}(el+el)+x(ul+yl 71)+(u Y‘3Y)K1 + x11+1n1

+0) (@ #8y+1 )-8, (3147, )0, (3 )~0 7B )= (e 45)) @y 48T )

"1 (d)

m(ey7ep) (7 ey =B dr Gy~ 2y ey oy
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D(u1+71-71)+A(91+e1-el)-6(rl+ﬂ1) = -21911+6f2-¢1-¢1
+D(u1+271)—u(p1+251)-(e+5)(u1+vl-vl)+(v+7)(pl+cl-e1)
-(T+g—5-ﬂ)(tl+nl)-(?Lﬂ)(El+ﬁl)-(t+n)(al-81)+tﬂl

-ntl’xul+vxl
~Aoy+oh =Py (v 4y )+ (g e )=2€ 7, 426, 7y
+(1y7my) (T +ny)

+(11+w1)(a1~81)+1101-0111 (e)

D11+A01-6(11+n1) = 21620-A(pl+251)+d(u1+271)-1(11+281)+u(n1+2a1)

*(a-B)(Tl+ﬂ1)*(p+€-38)11"(u+7-37}01-xv1+vx1
=2_.2

+11-wl : (f)

P -7 }=8 Y. ) = 2i0 =20 ~u(T - +a.+
Dv1+A(a1+31 nl) 5(71+yl) 21621 2®2 u(11+a1+31) 1(11 o 81)
+w(u1+271)+r(u1-u1)+ﬂ11*(Y-Y)(a1+81-w1)

-(T-a—B)(Yl+vl)+v(p1+el-el)+(0-8-33)01+v01+cv1
4y (T +a 1B )mwy (T 4w )00 ()48, )+ (v 41 T)70,78))

HOr Y (@487 )= (=28, )9, 70y vy (9)
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B(py =Py )+6 (T, -0 =By )-8 (t ~a =B,) = “Zlo -6iZ -0 47
= GHmY=Y) (070, )= (ko) (8 +€, 1=0 (uy 47 =Yy 40 1, +7, 7Y, )
+vxl-vx1+cll~akl-(u~6)(11-a1-31)+(a~8)(Tl‘al'ﬁl)

+'T'(2<_='1~11)-'r (Zal-?1)+(u1+§'1) (01-5'1)+(u1-i'1) (81+?1)

-K1u1+x1v1+(al-ﬂl)(tl-al“Bl)-(ai'Bl)(TI'GI'BI)
(h)
A(GI'BI)-611+6(MI+ 1-71)=-21621-2¢2-(u+u+¥-v)(al-Bl)
= G +ut 4 = 4By~ (e B, )= (-o-B) (v, Y, )
+v(p1+e1-el)-val—ov1+pv1-(1+a-38)11-1(11-a1-81)
+(u1+u1)(a1-81)+(u1-u1)(?1+w1)-v1(pl+el-el)+ 191
-(Tl'zﬁl) (111+YI'Y1)+(‘:1-261)J\1 (i)

A(ul‘ﬁi)-6v1¥3;f-2i022-u(u1+271)¥ﬁ(ﬁl+2?1)-(74§)(uléﬁi)
fV(ZBI-ﬂl)-v(zﬁl-w1)+(r—a—38)v1-(t—u~3s)v1

-u1+nl+ (ul-ul) (u1+u 1+71+Yl)

+v1(Tl~al-381+ﬂ1)-vl(11'd1‘361+“1) (3)
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Since the above identities are a feature of Uy only, some
comments on their interpretation are appropriate. They can,

for example, simply be thought of as defining the new components
of the curvature tensor which vanish in a V4. In most applica-
tions the torsion tensor is determined algebraically by the spin
densitj of the matter field. Thus once a tetrad or dyad basis is
adopted, the components of the contortion tensor are determined.
These can then be inserted into the above identities to determine
the components of the curvature tensor which are peculiarto a U4.
On the other hand the above identities may alse be regardeﬁ as

integrability conditions on the components of the contortion ten-

sor. It is this interpretation which has led to their descrip-

tion as "Bianchi identities for the torsion".
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5.4 The Bianchi Identities for the Curvature

The Bianchi identity for the curvature (2.17) can be

written in terms of its tetrad components as

I ¢ _ .k ‘
V[JLRmn]_pq - p[ngn]qk Yq Eszn] pk

k K
2 Y [mnRe1kpg * 2 X Rejkpg

(5.13)
The dyad equivalents of equation (5.13) consists of two equations
obtained by taking the dyad components of equations (4.43) and
(4.44) which give the Bianchi identities for the curvature in

spinor form. We obtain -

»

e r . 1
V' Yabce " (a Dbe)xi ¥ O boyir! T Z V(a|x| be)

ef, ef,_ o8 T ce #10 ..
[3wef(abrc) x T ¥abce T f x]_ ¢r (ab [¢c)exr A c)exr]

_ . = ,
% (al®c)rs * 1 9 peyisd™ T3 (albe)ir * 1 2 peyxr]

ef e f) 9
HY g * st (a%pt o (al b][ZKlex|c)f Keyxef!
rs , . rs T e
"t Oap ][2K|f|c)i§ " Kixjeyrsd ~ Ze(ad o)x

(5.14)
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-

er . 1 e
Vo (fpasr * 1 caxr) = 7 Vax @~ Vex Ia
) e i LT TSE L ia ..y=Tse
[(@gazrt ¥ Ogasi)Ts ¥ (%gaps + 1 Ogape)Ty ]
. efr : efr
tOrzi * 1 %fxi)Ta + (Beagi * 1 Peasi)Tr ]

Keifg - (2 _ec+1 O ..)(K;ers - 2Ky

+
¥ ears ears X

efga

‘ ef ef 1 ef 2 | e
*2I0Ta) %t Zea Kes * 72 %ef Kax  * 32 Kea

(5.15)

The explicit expansions of the Bianchi identities for the
curvature can now be written down in terms of the notations in
chapters 3, 4 and 5. In V4, linear combinations are usually taken
such that tﬁe component A is eliminated from the first eight equa-
tions. In U4 however, the equations are all considerably more
1engthy.and preference is therefore given to combinations that
yield the shortest equations. The difference that this introduces
is only in the components of the Ricci tensor, and therefore in the

vacuum case the equations are in the standard form.

The Bianchi identities for the curvature are given below as
twelve complex equations. These were obtained either by expanding
equation {5.13) and taking certain_line&r combinations or by doing

likewise with equations (5.14) and (5.15).




They could also have been obtained by taking intrinsic

derivatives of the Ricci identities (5.9) and then taking linear
combinations using the comutation relations (5.6) together

with the Bianchi identities for the torsion (5.12). This approach
has in fact been used to confirm the results obtained by the pre-
viously described method, thus providing an independent check on

the system of equations (5.6), (5.9}, (5.12) and (5.16).

GWO-D(W1~¢01-1001+¢0)-6(¢00+1900)

a (fa-T-20 +w1)?0-2(2p+e—p1)wl+(3n-nl)¥2-

1
7(2a+28-n-2al+n1)(¢00+1900)+2(p+e—pl)(¢01+1601)
+2o(¢10+1010)—2x(¢11+1911)—(x«nl)(@02+1902)

-2K1§A+rz) ~2(e-pl)¢0+(x-nl)¢1

(5.16)(a)
B¥m8 (14801 +10) +8,)+D (8, +i0 )
= (47-9-271+u1)w0-2(21+B-t1)w1+(30-ol)w2
~( -11)(¢00+1900)+2(ﬂ-8-ﬂ1)(¢01+ieol)+20(¢11+i911)
DemTE AT gE S . b
+{2e-2c+p+2 1 pl)(¢02+1602) 2:(@12+1912) (b)

—201LAﬁi£)-2(B-11)@0+(a-ol)QI |
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G(‘!'l-\bo)-D(‘!’2-¢11-1611-A-12)-6 (¢10+1010)

- ;lq’ - - - - -
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~h-iX)-8(¥,+0,)+5 (¢, ,+i0,,)

= (2\'-\:1)‘i‘l-(3u-2u1)‘i’2+(28--2-r—231+11)‘{’3+c‘i’4

—v(@01+1001)-(v-v1)(¢1O+1010)+2(u—u1)(@11+1611)+k(®02+1002)
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A(w3-¢21-iezl—¢2)—aw4f§(§22+iezz)
= (3v-vl)W2“2(2u+Y“ ul)‘l’3+(48-1-281+11)‘i‘4
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Equations (5.6), (5.9),(5.12) and (5?]6) give a complete set of
identities generalising those of Newman and Penrose for a V4.

An alternative approach to the extension of the N-P identities

has recently been given by Gambini and Herrera (1980). However
they have chosen to work with the torsion tensor and have written
its components exﬁ]icitTy. It has been found here to be more
convenient to work with the contortion tensor since its components
can be regarded as corrections to the V4 spin coefficients and this
interpretation can be used to simplify the notation. Furthermore
Gambini and Herrera have not given the Bianchi identities for the

torsion explicitly in terms of tetrad or dyad components.
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CHAPTER 6
ON THE INTEGRATION OF THE GENERALISED N-P IDENTITIES

Now that a N-P type formalism for space-times with torsion
has been developed, we must face the problem of getting it to work
in the integration of the identities in order to obtain metrics.

This being one of the main uses of the N-P formalism.

Although we are guided by the standard V4 approach, we can
expect some mo@ifications due to the introduction of torsion which
is usually specified algebraically, the increase in the number of
field variables and the introduction of the Bianchi identities for

the torsion.

The purpose of this chapter is to show how the formalism may
be applied, by obtaining a number of simple exact solutions. The
field equations of gravitational theories that include torsion,
like for example the Einstein-Cartan theory, determine the non-
zero components of the Ricci tensor and the torsion tensor. In
this chapter however, no field equations are considered. Instead
some simple geometries are derived by imposing certain severe con-
ditions on the torsion and curvature. The geometries obtained need
not be solutions of any specific theory. Consequeﬁtiy no physical

importance is attached to the results obtained.

A distinction 1s drawn here between geomeiries and exact solu-
tions of physical field equations. A specific choice of metrfc and
torsion fields is referred to as a geometry. Assumptions on the
torsion are trivial to impose because the generalised identities hold

) L3 L] [ - hd
for any metric and torsion. The conditions on the curvature are non-
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trivial since they require the metric and torsion to satisfy

certain differential equations.

6.1 Trivector Torsion

We first assume that the contortion tensor is a trivector,
i.e. totally antisymmetric. In this case we may describe it in

terms of the vector S, defined by

_ VKA _ A
Su T 3r Suvac)\ K™ K]..IVK - Eu\ml

With this form for the contortion tensor, the contortion components

(3.7) are given in terms of the four independent components

K-l = 0, p-l = -E.l’ U-I = 0, T-] = '2;]

'ép'ls 3] =G.-|, ‘Y-I =-%]_|.I

n
1
n
Q
—
-
g
—
I

1T-l = 0, ].l-l = -H-i, \)] = 0

Using the identity

= - A' 3 ™
EeAuy - 4 1 LIKnlmumv]

together with equation (3.9d) it can be shown that Sv is given

by
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Su =1 zu + 21 o mﬁ- 2 Tog mﬁ- 1 ¢ n11

With these independent components, the Bianchi identities

for the torsion reduce to the following equations

Dpl = (E+E)p1 - 2(01 + 2?&; + ieoo
SpI = (E#B)p1 - an] + 253} + 160] -9,
D1.1-l + 2&1.I - 2353 = (p+5:e-23u1 + (u+ﬁ)p1 + Z(E:B';)“]

-2 (Q-E-T[)E:l + 1.9]] + 32 - i (Q-I-E-i)
ZDa-l = moy - 2 (E-au] + Eu-l + iew - EO

DIJ'I + 2‘50-] - Ap] = (E-'E'E)U] + (H'Y'?)F‘] + 2('”';'8';)“]

-2(T-n)ay - foy) + 3¢ - 3(0,43;)

23&1 Ay = 2(318)a] + Eh] + 1920
ZAG-I = \’D] - 2("('?)&] + .T_U.-I + 162] - @2

hpy - 260:.1 + 2_6-&-] = -(p+ﬂ-y-——ﬂp1 - (p+5)u.|+2(a-§+?)g-l

-Z(Els+r)a] - i8qy - 32 - 5(¢1-6})

(=3
=4
o
1

= -((I-I'E)u.l - 2ua-| + ZAU.] - 1-92] ." @2

H

AU] '(Y"'?)lﬁ + 2\’&-1 - 2;(11 - 'i922

These equations are now further reduced by assuming that Su

is a null vector and that it is continuously defined. The latter
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condition is equivalent to assuming that the spin of the source
field which gives rise to the contortion in spaée-time is locally
aligned. It is then possible to align the tetrad vector Lu with

Su' and this implies the conditions

Therefore Wy - E} = =2 (y] - ?i) is now the only remaining non-

zero contortion component.

At this stage, conditions are imposed on the curvature tensor
in order to obtain a fairly simple geometry. It is assumed that

the only non-zero component of the Ricci tensor is 8595 i.e.

%00 = %1 T %02 * %1 T %2 A=9% =9 =9 =0,
and that the only non-zero components of the tensor CKAuv are W4

6,,. The latter condition can be expressed in the form

V=0, B =0, D=0

AKAuv KAUV

With these éonstraints, the Bianchi identities for the tor-

sion'impiy that

o
=
w—d
I
1
—
]
+
o)
1=
e

=
=
md
[l
]
L)
2|
+
>
S
=
wnmd
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AIJ'I = '(Y"‘?)u] - 1922

Thus zu is tangent to an autoparallel null congruence for which

the expansion, twist and shear are all zero.

Note that for a trivector torsion, autoparallels and extre-

mals coincide (see theorem in Section 2.2).

The Bianchi identitiés for the curvature are now reduced to

DW4 = 45‘1’4
8¥y = Bloyp*it,y) = -4 8Y, + 2(a¥B)(0,5+i0,,)
So far only the direction of the vector zu has been specified,

and we can therefore make use of the tetrad transformations (given

in Appendix A}

¥ =R12
" "

® =e' (m +RTe)
U " u

¥ =R1n +Tm +Tm +RIT 2
u M W u u

Since «° and p° are zero, we have the result from section 3.1 that
ﬂu is proportional td the gradient of a scalar field. The freedom

in R above can then be used to make L equal to a gradient, which

imposes the conditions
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It can be seen from equations (A.4} that if these are to be pre-

served then R must be restricted by
DR =0, R =0

The condition e+e=0 implies that the autoparallel congruence
to which Ru is tangent is affinely parameterised. It is also
possible to use the freedom in § to put both e-e= 0 and w-g= O.

To show this, we have from (A.4) that

a
€

t-¢ = e-g + iDS
N, me »
B-o = 'S (g-a+iss)

Thus we want

DS

i(e-¢)

85

i(8-a)

These can only hold simultaneously provided the commutation rela-

tion [(5.6(b))]

(5D - D8)S = - DS - (e-2)8S

is satisfied identically. This condition implies that



69

8¢ = 8¢ - DB + Da = -7 (e-¢)-{e-¢)(B-a)
which can be shown to be identically satisfied using the Ricci
identities (5.9)(d) and (e). In order to preserve the conditions
e-e= 0 and a-g= 0, the function S must.in future be restricted by

pS =0, &5 =20

We now have e=a=p= 0. It is now also possible to use the
freedom in T to put w=a= 0. This can be done following analog-

ously the steps above except that in this case the transformations

(A.6) are used. T must in future be restricted by
BT =0, &T=0

The remaining, non-zero,spin coefficients are now given

by
y=y"-3iM
0
VEY
p=p + i M
where

=iM.

=
v
[l
|
™
-2
v
[l
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If we denote the affine parameter along Lu by r and put
£u = auu, we may adopt the Robinson and Trautman [1960] coordi-
nate system (x', x2, x3, x*). = (u, r, X, ¥). The tetrad can then

be written in the form

M = 8k, g =681

T u 3 . B b o W
61 + U 62 + X 63 + X 64

U " 3 5 M 4 o U
m—w52 + E 53 + & 54
and the metric equations (obtained by substituting the coordinates

into the commutations relations {5.6)) become

Dgi =0
Du = 0
X' =0

= =(y +")

Sw - 6w = P -u

where i = 3, 4, X! and U are real scalar functions, w and g1 are

complex scalar functions. The metric equations imply that E‘, w
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and X' are all independent of r. The above form for the tetrad
vectors is preserved under the following coordinate transforma-

tions [Newman and Tamburino, 1962]

u(r, x3, x*)

=32
n

r + h{u, x3, x*)
¥ = X"(u, x3, x¥)

and

'\l.»= 'b= '\;-__ ';:= u
us=flu), r r/au flu), Lu auf(u) zu, nu 3;?TUT

It is convenient at this stage to introduce the complex coordinate
n Y _
Z=x + iy. The coordinate transformation Z = Z (u, z, z) can

then be used to put

g3 =P, g = 1P

This coordinate is now defined up to the transformation 7= %Xu,z)

and the u dependence of this can be used to put
X' = 0

(The rigorous mathematica] steps of the Z-coordinate transformations
are given in Trim,.1972'and Collinsen and Morris, 1972). The remai-

") v
ning freedominZ is given by Z = Z(z}.

The Ricci identities now reduce to:
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Dy = 0, Dp = 0, v =20
8y = 0, 3y =0, Sp=0
§v = W4

dv - Ap = U(U"‘Y"'?) - 2l!11'| + ‘1’22 + 1922

- =24y 2 2

Thus the Bianchi identities for the torsion and the Ricci
identities imply that uo = 1° (u, Z). HWe may therefore use the

remaining freedom in T to put

and the transformation

U= f(u), etc.

The coordinate transformation ¥ = r + h(u, z, Z) can be used to

put
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(See Collinson and Morris, 1972). The metric equations imply

that P = P (Z) and therefore the remaining z-coordinate freedom

n

z b1 (z) can be used fo set

p =2t

The tetrad is now given by

Ho_ H = 1
L 62 | Ly Gu
eI S | B YR n =-Usl+s2
1 2 u u u
U _ o=} U, 5. W _ o=} 34 95 4
m =2 + = - +
(63 18y ) m, 2 (Gu 16u )

The non-zero spin coefficients and contortion components

are

u:wl_I] = -2Y= -2-Y_[ = 'iM
0
v =V
The remaining metric equations, Ricci identities, Bianchi identi-
ties for the torsion and curvature are now given by
0, 2}

DU U= -y

=
az

Ov 2%

H]
O
w
]
]
-+
-
o]
o
a2
<
1
=
™
+
L=
(")
r

=y
¥
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- 9 M = O M= -
DM - 0; ‘5‘-z‘ M - 0. ‘ai M - 922

i o 3, . 0 ——
D‘Y4 =0, D(¢22 + 1622) =0, B_E ‘1’4 37 (@22 + 1922) =0

Substituting for v above we obtain the non-zero components of the

curvature tensor

¥, = -2 22y
4U 572

¢22 = 'M2 - 2 32_ U
923z

]
82 = = w3 M

where M = M(u) and U = U{u, z, Z). The last equation above is now
identicallysatisfied. The metric, obtained through the completeness

relation (3.3),1s the plane wave metric given by
ds? = 2 du dr - 2U (u, z, Z) du? - dz dz

and contains a single arbitrary function U(u, z,'E). Finally,
the contortion tensor is given by

Khuv = 63 M{u) L[lmUEQ]

It is interesting to note that for this solution if U =0

the metric is flat, but there remains a finite curvature generated

through the presence of torsion.
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6.2 Semisymmetric Torsion

It is possible to repeat the calculation of section 6.1,
replacing the assumption that the contortion is a trivector by

the assumption that it has a semisymmetric form given by

Kluv = -2 (gku av --glv au)

_1 o
where au f E'Kau .

In addition, au is assumed to be a continuous null vector.

The tetrad vector Ru is aligned with au, and the contortion tensor

then has only one independent real component given by
W+ =20y + ) = -4 a nt,
We may now proceed to make the remaining assumptions of Sec-

tion 6.7, and we find that the Bianchi identities for the torsion

imply that

DTJ] = - (€+al-l'|

Sup = - (a*8)iy
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Thus again zu is tangent to an autoparallel null congruence for
which the expansion, twist and shear are all zero. We therefore
proceed exactly as before obtaining the same metric, but this time

the contortion tensor is given in terms of

LI

f=T]
n

where N

My is a real function, and the non-zero components of

the curvature tensor are
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6.3 Discussion

It is possible to combine the two geometries obtained in

Sections 6.1 and 6.2. We then have that the Eontortion tensor

-— - . K |
Kluv = N(u) (gAu 2, " 9y zu) + M(u) 2 € Auv
is consistent with the metric

ds? = 2 du dr - 2 U(u, z, Z)du? - dz dz

and the non-zero components of the curvature tensor

32
‘P4='2—“U
3z2
2
8, = N2 - M2 - 2N -2 2y
22, ou 92z
—E
922 = “ T M.

It is also instructive to compare the latter with their values
in a V4. These are given (using the identities in Appendix B)

by

¥g =¥

_ 0 2 - M2 o Eﬂi
gy = Bpp- + N - ME - o

It can clearly be seen now that in the associated V4, the geometries
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obtained correspond to the familiar plane-parallel wave solutions
of the Einstein-Maxwell field equations describing null electro-

magnetic and gravitational plane waves.

The authors Baker, Atkins and Davis (1978) have attempted
to reinterpret plane null eIectromagnefic solutions, of the
standard Einstein-Maxwell equations, in Uy in terms of the two
types of torsion tensors considered above. They have considered
a flat U4 consistent with a plane wave metric. In fact the argu-
ments presented here show that thé plane-wave metric which they
introduce is the only possible metric that is compatible with their

other assumptions.

In the combined solution above, if U4 is flat then the asso-

ciated V4 is conformally flat with

0 _ w2 _ 2_ aN{u
00 = W - N(u)2- 234

U=3 (- Nz - Bz o) 2 4 f(u) T+ Fy0)

and we have the same result as Baker, Atkins and Davis except that
this solution is obtained with greater ease and generality (since
the initial assumptions of this chapter lead uniquely to a plane-

wave metric).

Although the formal results of this chapter are not physically
important, they should be considered as a convenient step in
developing the formalism. The techniques developed here should also

be useful for the generation of realistic exact solutions of gravita-
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of the trivector torsion case will be useful later because this

is exactly the type of torsion induced by a Neutrino field in the

Einstein-Cartan theory.

\
|
tional field theories involving torsion. In fact the results
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CHAPTER 7
THE EINSTEIN-CARTAN THEORY

The Einstein-Cartan theory, as proposed by E Cartan (1922,
1923), is a slight modification of Einstein's theory. It incor-
porates spin from the beginning as a dynamical quantity in the
theory of gravitation. In it, spin and the geometrical concept
of torsion are related algebraically. As a.consequence of this
relation, the torsion must be zero outside matter, and the vacuum
field equations are identical to those of standard general rela-
tivity.

The purpose of this brief chapter is simply to present the
field equations of the Einstéin-Cartan theory. It contains no
new material, but must necessarily be included since in the follo-
wing two chapters the formalism developed in the first half of this
thesis is appTied to particular source fields in the framework of

the Einstein-Cartan theory.

Physical and mathematical arguments in favour of the Einstein-
Cartan theory have been given in Hehl (1973, 1974), Trautman (1972,
a,b,c; 1973, a,b), Kuchowicz {1975 ) and Hehl et al (1976). The
latter contains further relevant references in connection with this
theory_and with other theories involving torsion. This chapter follows

mainly the notation of Hehl (1973, 1974).

Let us assume that space-time is described by the Riemann-Car-

tan manifold U4 which has a locally Lorentz metric and a Tinear

connection which is not necessarily symmetric. We start with a

I _ | |
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Lagrangian density for the matter field in the framework of special
relativity theory. By applying the principal of minimal gravi-
tational coupling, we are led to the desired matter Lagrangian
for the Einstein-Cartan theory. This procedure merely involves
infroducing the Uy metric guv and replacing partial derivatives

by covariant ones with respect to the connection ruvl.

If ¢ denotes the matter field, then its Lagrangian density
in special ré]ativity is given by { .= £ (¥, 3y, n) where n is the
constant Minkowski metric. In general re]ativity, minimal coupling
Teads to the Lagrangian density f (v, v, g) =f (v, 3y, g, 3g).
The corresponding total action function over the sum of two scalar

densities is gfven by

W= [ dgx [f(vs 3y, g, 39) - 2]1;?1(9, 3g, 33g9}]

Here,® = Y=g R is the familiar density of the curvature scalar

of the Riemannian space-time V, and k = 87 & ch,

In the Einstein-Cartan theory, field equations are derivable

through the total action function

M= [ dgx [f(vs 2%, 95 39, K) = o1 R (g, 29, 339, K, 3K)]  (7.1)

where £ (v, vy, g} =L (v, 3y, 9, 3g, K) is the Lagrangian density of
the matter field with non-zero spin density, & = /=g R is the den-
sity of the curvature scalar of the Riemann-Cartan space-time U4

and K is a symbolic representation of the contortion tensor Kuvk.
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It should be noticed that the contortion tensor appearing in
(7.1) is treated as a new independent variable. Therefore the
action function depends on the independent variables

A
vs 9, (10 components}, Kuv (23 components). (7.2)

If we vary the action function (7.1) with respect to the

independent variables (7.2}, we obtain the matter field equations

L.
$=0 | | (7.3)

and the 10 plus 24 independent field equations

sd 1 R
8 guv % 8 guv
s&L _ 1. &R .
sK ¥ K 5yg «
uv uv

Now the dynamical metric energy-momentum tensor of the matter field

'is defined by

v Gcﬂ

» .
o = (7.4)
V-g & guv

and the dynamical spin angular momentum tensor is defined by

sf (7.5)

—
A
"
I sl
[T}

s K ¥
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These can be determined for any given matter field if a suitable
Lagrangian is known. It is convenient at this point to introduce

the differential operator

a

) (7.6)

*

v =v +K

W u o
It can be shown by direct calculation (Hehl, 1974) that

*
SR -R*Y 4 % "V R + v (KHVE +gw-KAKA - guchAv

1
- )
v-g B 9y A

i

_py VE VU u WA _pv A
ch +K|c +6K KA 9 K)uc

It can aiso be shown that the first of these expressions is symmetric

as required. Substituting these expressions together with the defi-

nitions (7.4) and (7.5) into the field equations above we obtain
w1 _pv * UVK . UV JAK
R -7 9 R-VK(K +g K

Lo KV = k™ (7.7)

Z (KKW B chu-gu!c K}w t gw KAK ) = -kt (7.8)

These field equations can be rewritten in the convenient form

Ruv "z guvR= -k zuv (7'9),
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= - - o _ o
KuvK = -k (Tuvm TVKU + Txuv * guv Tak gux Tty ) (7.10)

where Iuv is the canonical energy momentum tensor defined by

A T L el e (7.11)

Equations (7.9) and (7.10) are the Einstein-Cartan field equations.

The equation (7.10) is an algebraic relation between the tor-
sion of the manifold and the dynamical spin density of the source
field indicating that torsion is present at all points of space-
time where spin is present. Thus for a particular matter field
the contortion tensor is uniquely determined, and outside of matter

the torsion vanishes.

Equation (7.9) can be seen to resemble Einstein's familiar
equation. However contortion and spin angu1af momentum components
are also inciuded. It is important to notice that the components
of this equation are not necessarily symmetric. However the anti-
symmetric part of this equation is identically satisfied as a con-
sequence of the field equation (7.10) or (7.8) and the definition
(7.11). In fact the vanishing of the anti-symmetric part of (7.9)
can be -interpreted as a conservation equation for the local spin-

angular momentum of the field (Kuchowicz, 1975 }.

Hehl {1974) has shown that in Einstein-Cartan theory, the

process of minimal coupling cannot be applied to the lagrangian

of an electromagnetic field as this would Tead to the violation of
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gauge invariance. Therefore, in order to preserve gauge invariance,
we assume that the e-m field does not produce nor feel torsion.
Hence, when considering the applications of the spin coefficient
formalism in Einstein-Cartan theory, it would not be fruitful 7

to investigate electromagnetic fields in vacuum. Torsion would

not be present in this case and solutions would be equal to those

of general relativity.

In order to demonstrate the applicability of the formalism
developed in this thesis we consider classical neutrino fields
and semi-classical spin fluids. Since these sources give rise
to torsion in Einstein-Cartan theory, they can be used to
demonstrate some new features and additional difficulties that
arise in the generalised formalism. These are illustrated in the

following two chapters.
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CHAPTER 8
CLASSICAL NEUTRINO FIELDS IN THE
EINSTEIN-CARTAN THEORY

A classical Neutrino field fs a phrticuTérIy simple example
of a source field with non-zero spin density. In the Einstein-
Cartan:theory, this spin density is related algebraically to
the torsion of the manifold Ug. We assume that a Neutrino is
 a Dirac particle with zero mass, zero charge and spin %w Such
a particle is described by a single two-component spinor which
satisfies the Weyl equation. The Tatter is simply the Dirac
equation with the mass and charge parameters put to zero. A
Neutrino field can then be treated as a classical field. Such
an approach has already been considered in general relativity.
This work has been reviewed by Kuchowicz (1874). 1In this chapter,

the same approach is considered in the Einstein-Cartan theory.

In general relativity, Neutrino fields are known to have a
number 6f anomalous properties (Griffiths, 1980a). For example,
the sign of the energy density of a Neutrino field is usually obser-
ver dependent and it may also change as the field propagates. The
complete energy-momentum tensor may even vanish while the Neutrino
current vector remains non-zero. Exact solutions for which this
occurs are known as ghost Neutrino's. By using the spin coeffi-
cient approach developed here, Griffiths (1981) has shown that
these anomalies do not occur as readily in the Einstein-Cartan
theory (see also, Griffiths 1980b}. This chapter is a review of

his work.




8.1 Field Equations

The field equations for Neutrino fields in the Einstein-

Cartan theory are derivable through the Lagrangian density

L =2vgidg (Po 7 -F o (8.1)

87 |
where ¢A(x”) is a two component spinor defining the Neutrino
\

field. Upon varying this lagrangian, we obtain via (7. 3) the

Neutrino-Weyl equation'

. A o . A
cqu-vutb =0 or Vag'd =0 (8.2)

the dynamical energy momentum tensor

. Kok AL L X % A
oV = % uAX (¢Avu¢ "6V eT) oy (¢AV\,¢ -$ V)

(8.3)

and the dynamical spin angular momentum tensor

- . k . A X
T T "Capve @ AX ¢ ¢

This can be written in the form
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T -

" .
A T Eapvk J | (8.4)

where J" is the Neutrino current vector given by

R (8.5)

The canonical energy-momentum tensor (7.11) takes the form

-

A (8.6)

o A X
zw-21 O A (¢ v, ¢

(8.4) and (8.6) may now be substituted into the field equations
(7. 9) and (7.10). We obtain

v

Ry = 7 9,y R = 2ik o (R v, T - F v, o (8.7)

Kipp = K € Jc (8.8)

u AUVE

Note that the contortion tensor in (8.8) is linearly related to

the current vector. Therefore any solutions of these field equa-
tions descéibing Neutrino fields in the Einstein-Cartan theory do
not reduce to those of general relativity in the 1imit when con-

tortion vanishes, as this would also imply the vanishing of the
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Neutrino field. In addition, since the contortion tensor is
totally antisymmetric, we have that extremals of the metric are

also autoparallels of the connection.

8.2 General Properties

We now introduce a spinor dyad (OA, 1A) or an equivalent

tetrad of complex null vectors (2%, n*, m¥, @}. The basis

A A,

spinor 0" may be aligned with the Neutrino spinor ¢

and the current vector J" is then given by
M = 43 oH (8.10)

With this notation, the Neutrino-Weyl equation (8.2) can be written

as two complex scalar equations

D$ = (p - <)o (8.11)
59 = (v - 8)¢ (8.12)

and the contortion tensor, obtained from the field equation (8.8),

becomes
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K

Ko =K 8 23, 2 (8.13)

Al AUVK

It can easily be shown, using (3.7) or (4.17)(c), that the only

non-zero contortion combonents are
u1=-27.|=-ik¢$' (8.14)
The componenfs of the Ricci tensor, defined by (3.23) or

(4.32), may be evaiuate& using the field equation (8.7) together
with the Neutrino-Weyl equations (8.11) and (8.12). We obtain

%00 = 0
¢0]='éik¢$—|(
Sgo = - ike¢¢o

4y =2iked(p-0)

b= 1 k[480+¢9 (a-21)]

®o=Tk[$A6-88 ¢+63(Y-7)]
A =0

o =2ikedx

9 =ikedp

1ik[p80 +¢¢ al (8.15)
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The contortion components {8.14) are now inserted into the
Bianchi identities for the torsion (5.12 a-j) and the components

of the curvature tensor Opp and £ are then given by

w
@
o
-
"
-
e
>
B2
-
=

'i@”=§'ik‘¢3(p +p)

Pik[$8%+¢¢ (a+21)]

10, =1 k680G +386+60 (v+7)]

iz=0 (8.16)

Note that the jdentities involving the antisymmetric part of the
Ricci tensor ¢, are automatically satisfied as required (see

Chapter 7).

In order to relate the basis tetrad more directly with the

Neutrino field, we choose the basis spinor o? so that

¢ =07, i.e. ¢ =11n (8.9).
The tetrad is now defined up to transformations of the form (see

Appendix A).

T, WMot e T, e+ T+ TR+ TTRY(8.17)
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where T is arbiFﬁary. A tetrad defined in this way is referred
to as a Neutrino tetrad. The non-zero contortion components My

and y] are now given by
u-|=-2'Y-I=-ik

and the Neutrino-Weyl equations (8.11) and (8.12) are expressed

as the following conditions on the spin coefficients
E=p, B=T" (8.18)

We may now substitute the components of the curvature tensor -
(8.15) and {8.16), together with the above conditions on the spin
coefficients and contortion components, into the last four Bianchi
identities for the cﬁrvature. The latter do not contain deriva-
tives of the components of the'generalised Weyl tensor. (5.16)
(i) is identically éatisfied with the aid of the Ricci identity
(5.9)(a). The Ricci identities (5.9) (c, d and k) may be used to
simplify (5.16) (j and k). Similarly, the remaining identity
(5.16) (1) may also be simplified using the Ricci identities
(5.9} (f, 1 and q). We obtain

20tk (H-2y -y +yik)+y

(5.16)(§) + B0 - A« .

(5.16){k) » 3o - Ak

200 +k (y -2y - v + %—i k) + ?1

(5.16)(1) + 21k (o

o+

p) =0
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These equations are only consistent if

«=0 (8.19)
p+p =0 ' (8.20)
§a = 200 + ¥, (8.21)

The first two of these conditions imply that the Neutrino current
is necessarily tangent to a congruence of expansion-free null

Autoparallels.

With these further conditions, the Ricci jdentities (5.9)

(a and b) become

Dp = O ' (8.22)
p2 + g0 = 0 | (8.23)
Do = 4po + ¥, . (8.24)

and we may now deduce the following

Theorem 8.1 Neutrino fields in the Einstein Cartan theory necessa-
rily propagate along expansion-free null autoparallels,

whose twist and shear are equal and are constant along

the autoparallels.
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Theorem 8.2: The congruence tangent to the Neutrino current vector

is twist-free if and only if it is shear-free, and
is then necessarily aligned with the repeated principal
null congruence of an algebraically special gravita-

tional field.

The proof of theorem 8Zfollows from equations (8.23), (8.21) and
(8.24). Tt should be noticed that the conditions (8.19) and

(8.23) automatically satisfy two of the three conditions that

are required for the sign of the energy density of the Neutrino
field to be constant with respect to all observers (Griffiths 1980a).
Thus the energy non-definiteness that occurs as an anomaly in
general relativity does not occur as readily in Einstein-Cartan

theory.

The converse of theorem 2 can also be obtained as follows:

Theorem 8.3: 1f the Neutrino current vector is aligned with a

_ repeated principal null congruence of an algebrai-
cally special gravitational field, then the shear

and twist of the congruence must vanish.

Proof: < Under the conditions of the theorem:

We assume that p and ¢ are non-zero and look for a contradiction.

With this assumption it is possible to use the tetrad freedom

(8.17), which is written explicitly in (A.6), to put




95

in-addition to the conditions (8.18 - 24). The Bianchi identity

for the curvature (5.16b) immediately implies that
=1
‘*‘2—3‘1kp,

and the Ricci identities (5.9, d, 1, q, p) now reduce to

8p = pa - on
Da=-p(u-21r)+§a—
= a2
6a-aa+p(2u-u+2'y+-3-1k)-.c7t
_ - - 2.
Ap—-p(u-y—y--j"lk)-ol
Ao =px -~o (p -3y +y+2ik)

It can be shown now, by applying the commutator (5.6b} to ¢ and

using the above identities that

Thus é&p

0 (from above), and the commutator (5.6d) applied to p

implies that ap = 0, and hence

oA = -p (F-Yf?-gik) or pA = -0 (u-y-?+%ik)




96

From (8.23) and (8.21) we have that

and therefore the commutator relation (5.6d)} applied to o implies

that

ikpo = 0

contradicting the assumption and thus completing the proof.

Note that theorems 82 and 93 bear some resemblance to the
Goldberg-Sachs theorem for vacuum space-times in the general theory

of relativity.

8.3 Exact Solutions

We now follow the methods of Collinson and Morris (1972} in
order to obtain all possible exact solutions corresponding to
Neutrino pure radiation fields. Such fields are characterised by
the fact that the symmetric energy-momentum tensor only possesses
a 9,, component (Griffiths and Newing, 1971). Hence for a Neutrino

tetrad, (8.15), (8.18) and (8.20) imply that

k=g=p=¢=90, a=2t, B=T1.
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It is now possible to use the tetrad transformation (8.17) to

put

and such transformations in future must be restricted by DT = 0

(see {A.6)).

Under these conditions, we have from Section 3.1 that the
Neutrino current vector is equal to the gradient of a scalar
field i.e. %, =auu. The coordinates (xl, xz, x3, x4) = (U,ryX,Y)
are now introduced where r isanaffine parameter along the auto-
parallel tangent to zu. Just as in Section 6.1, the tetrad can

be written in the form

B - s !

8=, 2, =8,

W o_ LU u LAY .
nt=8y U, + X8 _ (i = 3,4)
m = u,ﬂz+g 91 (i = 3,4)

where X' and U are real scalar functions, @ and 51 are complex

scalar functions. It is convenient to put
zZ=x+1Yy.
The coordinates are then defined up to the transformations

r+h(u z, 7) (8.25){a)

~t
n

=z (u, z, 2) {b)

N
!
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u="f(u), *r=r/fu), iu =3, flu)e, ﬁu= n /2, f(u)

(c)

The metric equations are given by

DU = -vy- ¥
ox' =0
Du = 0
el = 0

§U-20==v+ie+(n-y+y+2ik)o
sXV - At =XE + (u -y +7 + 2ik)E"

8w - 8w=yp~-u -~ 2ik

AR L
Therefore 51, wand X' are independent of r. The coordinate

transformation (8.25){(b) can now be used to put (Newman and Tam-

burino, 1962)
£3 =P, g*=iP and X' =0.

Note that P is complex and the last metric equation implies that

T = 0. (The remaining freedom in z is given by z = z(z)).
The Ricci identities reduce to

Dy

0
0

Dx
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Du =0
Dv = W3
A - 6v=-Aa{p+u+3y-y-2ik) - ¥y

§\ - 611 = '\FS

Sv - An

=pu (u+y+75+ 2ik) + A% + 2iky
sy =0
5y = ¥s
where
___3__ =_a. _a_ = —3- —-a—-'
D= T A v + U 57 §=w T + 2P 7

Thus the Ricci identities imply that A is independent of r and

therefore the z dependence of T in (A.6) can be used to put

T must in future be restricted by

DT =0, 8T =0 ie. T=T(u, z)

The Bianchi identities for the curvature now reduce to

Dy = 0

6‘?3 =
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0

5v3 - Dw4

by = &Y, -2 (2p + v + ik) ¥qs

which together with the Ricci identities and the metric equations

imply (noting that A = 0, X' = 0).

U=-(y+Y)r+V

vy N L | | (8.26)
N=%-2w%+(u+ﬁ+2wm

W=y +7y+2ik = - 2 (Log P) : (8.27)

= . oir - op W _ on dw
u-u+21k-2P-—a—i—_ Z-Faz

_ 55 du du _ 3y -
¥3=P57, 3E% (8.28)
_ 9 aN
‘P4 = W ?3 + ZFT “1’3|" + 2-5'5'2' (8.29)
2T = w v, 2P N L T s 20k (8.30)

where V (real), N, pand o are functions of u, z and Z,
P = P{u, Z) and y = y{u,z). There are now two cases to consider

according to whether or not ¥, is zero.

Case glz. w3 =0

(8.28) implies that u = u{u, z) and therefore the remaining

tetrad freedom in T can be used to put

W =0, i.e. u = -ik




101

T is now a function of u only. We may also use the coordinate

transformation (8.25)(a) to put

The real part of equation (8.27) now implies that

ja(u)

<
n
1]

&l

where the remaining coordinate transformation z = z{z) has been
used to make P a function of u only. Also, since y is now a
function of u only (see (8.28)), we may use the freedom in

(8.25)(c) to put

Yy+v=0.

Equations (8.26), (8.27), (8.29) and (8.30) together with (8.15)
imply that '

71 G+

> dda(u) U
fZ'e -3?

<
1

= _pe-2ia(u) 22U

¥
4 az2

-y (dafu) 082U 2
0 = k Gl v k) = 2 T - ke,

and all the other curvature components are zero.
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The tetrad yields the familiar plane wave metric

ds2 = 2 du dr - 2U du? - dx? - dy?

with
U=m{u)zz +F
where

m(u) = - 5 k (22U 4 7

and F = F(u, z, Z) is a real arbitrary solution of Laplace's
3%F

323z

equation

= 0. The Weyl tensor in this case is of type Nor 0.

This solution has alsoc been obtained independently by Dereli

and Tucker (1981) vsing a different approach.

Case (2). ¥3 # O

Because v is a function of u and z only, we note from (8.28)

2
that é%g% = 0. The remaining freedom in T can now be used to put
H =14 (usz)s

and (8.28) then implies that

‘y=u+1g(u)+%ik
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where g{u) is real. We may also use the transformation (8.25)(a)

to put
Rl
w == (u - 1k)Q
where Q = Q(u, z) is defined such that

0.1
Z P

Thus, from (8.27) we have

. . P ]
u = -2ig + ik + o (1og 3%)

The only remaining equation is (8.30) which, after a lengthy caicu-
lation, can be written as
3

dyp + 10,y = 20k (i - ig - % ik) = (u + ik) g 2

- 2 Tl 1
+ (W - k) FQ 2 - app -——zza‘i[ *+u(u + 21k)

This defines V in terms of Q and g up to an arbitrary solution of '

2 B
Laplace's equation JLAL = 0. The Weyl tensor is of type III and is

given by (8.28) and (8.29).
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8.4 Ghost Neutrinos

In general relativity, the term Ghost Neutrinos has been given
to those so]utiﬁns of Efnstein's equation for which the energy-
momentum tensor of the Neutrino field vanishes, while its current
vector remains non-zero. Letelier (19?5) has shown that certain
restrictions on.the curvature tensor imply the non-ex%stence of
ghost neutrinos in Einstein-Cartan space-time. He considers the

following conditions

R =R =0 (A)

=R ' (B)

Rickuv KARV

Rnluv =0 . (C)
These are shown to imply the vanishing of the Neutrino current
vector and therefore ghost neutrinos do not exist in Einstein-

Cartan spaces subject to these restrictions.

Griffiths (1980,b) has pointed out that the restrictions
(A), (B) and (C) are unnecessarily strong. He argues that the

=_p and goes on

only necessary condition for "Ghos§g9§§2_1§_3uv

T g

to present an exact solution satisfying this condition.

For a Neutrino tetrad, the condition Ruv = 0 implies, from

Section (8.2) that
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These are just the conditions considered in the previous section
but with the additional constraint y = ?Z The latter in fact
immediately implies that ¥q = 0 above. Thus the only possible
ghost solutions in the Einstein-Cartan theory are the type N

sofutions given above with the additional constraint

2
o 8V
3Z37

+ k2 = 0.

These solutions have a zero canonical energy-momentum tensor
and therefore do not contribute to the curvature of space-time
through the gravitational field equations. Some curvature however
is still generated by the torsion. Thus the characterisation of
"ghostness" is not as clear in the Einstein-Cartan theory as in

general relativity. A number of different characterisations have

been suggested and analysed by Letelier (1980).
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CHAPTER 9

SEMI-CLASSICAL SPIN FLUIDS IN THE

EINSTEIN-CARTAN THEORY

The analysis of "perfect fluid source fields with spin" is
relevant to the derivation of cosmological models based on the
Einstein-Cartan theory. It is sufficient at this stage to
restrict ourselves to a semi-classical spin fluid. The fluid
generalises the "perfect fluid" of general relativity by permitting
a non-vanishing spin density, which we assume to be aligned so that

the spin varies continuously from one fluid element to another.

9.1 The Weyssenhoff Model

In the Weyssenhoff model, it 1is postulated (Hehl et al 1976)
that the canonical energy-momentum tensor and the spin angular

momentum. tensor take the forms

Zuv =PU, + p(Uqu - guv) (9.1)
Kk K =
T = Tuv U, Ty = Tfuv] (9.2)

where U is the normalised fluid four-velocity (U"‘Uu = +] for our
signature --- +), P¥ is the linear momentum density, p is the
pressure and Tuv the spin density. One effect of spin is that

P* and UM are not necessarily parallel and we may write

P = UM + ¥ _(3-5)
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where " is a space-like vector satisfying f“Uu = 0 and
.
| e=P Uu (9.4)

is the fluid energy density (which is taken to be non-zero). It
should be noticed that the components of f* define the anti-

symmetric part of ZHV:-
- - '
Apey = Tl R Iy

- The spin angular momentum tensor is chosen to satisfy the Weyssen-

hoff restriction
. =0 (9.5)

The latter is a generalisation from special relativity, where
1., is orthogonal to U" (see box 5.6 in Misner et al, 1973).

An alternative restriction is. given by

T P¥ = 0 | (9.6)

although this is not considered here.

The above characterisation of a "perfect fluid with spin"
is an extension, from special relativity, of the semi-classical

model of a spin fluid given by Weyssenhoff and Raabe (1947).

Kuchowicz (1976) has called this model the Weyssenhoff fluid.
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The Einstein-Cartan field equations (7. 9) and (7.10) can
now be written for Weyssenhoff fluids in the form

1 .
Riw) =2 9 R =k e+ ) UL, - pg, +f 0,1 (5.7)

uv

= -k (9.8)

R[uv] f[u Uv]

Kuv'c = -k (Tuv U, - 1, Uu t . Uv) (9.9}

Note that (7. 9) has been separated into its symmetric and anti-

symmetric parts. The antisymmetric part (9.8) defines the conser-

vation of angular momentum within the field (see Chapter 7).

9.2 General Properties

We begin by defining a continuous intrinsic angular momentum

four-vector as follows

. a By
T, YENGBYU T (9.10)

This is clearly a space-1ike vector, orthogonal to . As a con-
sequence of the Weyssenhoff restriction (9.5) the tensor ™V can

then be regainea from the expression

e B (9.11)

v = Fuvag
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Also as a result of this restriction, Ty and T have only three

independent components.

The tetrad of null vectors (g%, n¥, m", W) are now introduced
at all points in space-time. It is possible in general to rotate

and align these with the vectors U" and " as follows

(¥ + n¥) ‘ (9.12)

- n¥) ' (9.13)

The torsjon is then determined by a single function S, while the

tetrad must in future be restricted by transformations of the form

Mgt pt = e M, M

= ¥ (9.14)

As a consequence of (9.13), T is given in terms of the tetrad

by

oS =
Tl.l\’ = ‘21[2 1 'E- m[u mv] (9-15)

It is easily shown, using (3.7) or (4.17)(c), that the only

non-zero contortion components are given by

PP =W = Ze-l = 2'y.| = i$ (9.16)

These can now be substituted directly into the Bianchi identities

for the torsion (5.12 a-j). The companents of the curvature tensor
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Opp> 2p and & are then given by

@
1

n

%(K“T—Z-'I-T—)s

= {

1 - -
9n=2(€fE+Y+ﬂs+%%o+%%z

9]2 ?%‘(-\)-' -T-F-‘ 21') S

1

L =30

o ==L 1) s

0 Z

¢, == (e +e -y~ y)iS - 1ie,, ++io

1 LEN Z'%0 "7 Y22

8, =% (v + 1) iS (9.17)

00 =DS - (p+p +e+e)s ,

The 1ést three of these components describe the antisymmetric
part of the Ricci tensor, which according to (9.8) is related to
the vector f" defining the antisymmetric part of the canonical energy-
momentum tensor. Hence expressions for these components can also be
obtained via this relation. By writing ¥ in terms of the tetrad ,

components

! =b(e" - n*) + cn* + T A

where b is real, (9.8) implies that
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42
2/2
Qz‘_'-'—.l—kc
42

Comparing this with the components above, we obtain the conditions -
b=0, ¢=2/2 (k+T1)iS/k = =2v/Z (v + 1)iS/k

-Because we have interpreted (9.8) to define angular momentum
conservation, these conditions are regarded as the constraint equa-
tions describing the conservation of angular momentum within the
fluid. Note that for the clasﬁica] Neutrino field considered in
Chapter 8 these equations were identically satisfied as a consequence
of the Neutrino field equations. However, no anaiogous field
equations are considered here, so these'additionaI conditions are

necessary, They immediately imply that
k+t+v+nr=0 ) (9.18)
600 - 022 = -2 (E + -E- i ?)S (9-19)

which are equivalent to the constraints

¢, =0, 8y + &, = 0 (9.20)
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They also imply that the vector f* takes the form
P27 B e - e+ R M) (9.21)
and we obtain:-

Theorem 9.1 If the canonical energy-momentum tensor has a non-zero

antisymmetric part, then the vector f¥ is orthogonal to

™ as well as UY,

It should also be noticed that, using (9.17), the condition

(9.19) can be written as
DS+AS=(p+b-p-u-e-c+y+Y)S
which can be conveniently rewritten in the form
v (su*y = 0 _ | (9.22)
This can be seen to imply that the magnitude of the intrinsic
angular momentum of each particle of the fluid is conserved along
its world-line. The other constraint (9.19) is related to the

condition that the direction of the intrinsic angular momentum is

conserved, as can be seen from (9.12) and the identity
& _ — - i
U v, (Eu - nu) =(e+te+vy+ Y)Uu /E_(K + 1+ v-l-'rr)mu

L E)EL
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The remaining components of the Ricci tensor, defined by
(3.23) or (4.32), can be obtained from (9.7). These are given,

using the above constraints, by

_ _ _ 1
@00—2113” —sz-q-k(e-i-p)

1 .
¢0-| = @]2 = '2‘ (I( + T)1s
%g2 = 0
1,
A= mrk (e - 3p) (9.23)

At this point it is convenient to introduce the acceleration
vector (E11is 1971) defined by

" v

u =U"v U

I v op
This measures the acceleration, of the fluid elements, due to non-
gravitational forces. Note that as a consequence of the Weyssenhoff
restriction (9.5) and the field equation (9.9) it can be seen that

components of the contortion do not enter this equation. In terms

of spin coefficients we obtain using (9.16)

Uu = %-(F +€ + Y.+ 7)(£u- nu) - (x + ?)mu - (k + T)ﬁﬁ (9.24)

By comparing this with (9.21) we obtain the following
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Theorem 9.2 The vector fu' if non-zero, is orthogonal to the

acceleration vector of the fluid.

Theorem 9.3 If the acceleration vector of the fluid is zero,
' then the canonical energy-momentum tensor is symmetric
and the momentum vector is parallel to the velocity

vector.

The converse of theorem 9.3 is not generally true because of thé
presence of the first term in (9.24). However it is instructive
to note that if the canonica? energy-momentum tensor is not symme-
tric, then the momentum vector is not parallel to the velocity

vector and the fluid must be accelerating.

It should be noticed that the three theorems given above are
consequences of the field equation (9.8), which is interpreted
to represent the conservation of angular momentum within the fluid.
It is possible to take certainlinear combinations of the components
(5.16)(1)-(2) of the Bianchi identities .for the curvature and obtain
equations in which only the new components Opp? ®pn and T appear in
the derivatives .on the left hand side. These equations are peculiar
to U4 only-and are now found to be automatically satisfied for

Weyssenhoff fluids in the Einstein-Cartan theory.

The acceleration vector Uu defined earlier is one of four
kinematic quantities which will be of assistance in the interpre-
tation of the exact solutions presented in Section 9.3. The other

three are defined by (E11is 1971).
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The volume expansion 0=, UM

_ o _ 1 -
The shear tensor Oy = v(qu) U(qu) 3 e(gw Uqu)

The vorticity tensor Oy = v[vUp] - U[qu]

These can be given in terms of the spin coefficients associated

with the tetrad defined by {9.12) and (9.13) as follows

1 - - — -
g==-~——{p+tp-u=-p-e-c+y+y) (9.25)
vZ ‘ :

:.l_ 5 - - = - - - =
w3 (p+p-u=-u+2+2 -2y-2y){g -UUs+ 3me Moy}

1 — _
+7-2_ (e + v -a-g) {L(umv) - n(umv)}

+ L (c +v -0 - B) {z(u'rﬁv) - n(uﬁv

)}

1 T L mm
+ - (o - %) mm, + i (0 - A)mm | (9.26)

-n.m~}

|

==L +v+a+®) 12

v

oy

.- 'l — — —— - —
5 (k +v +0a+8) {P’[u m, 1 "[u"'v]}

LT A, .27




116

It can be seen that the contortion components (2.13) only
appear in the vorticity tensors which can be decomposed with the

aid of (9.15) as follows

=w +kT ' (9.28)

It is well known (Kuchowicz 1976) that if the vector U is

v o
hypersurface orthogonal then Oy = 0 and Uu = 0.

9.3 Exact Solutions

In this section the following assumptions are made in order
to simplify the field equations to a pbint at which they can be
easily integrated. The exact solutions obtained are not claimed

to be general in any sense but they are believed to be new.

Assumptions: -

1. The equation of state of the fluid corresponds to stiff matter

(p = e). Using the above notation this implies that

¢]1 + 30 =0

2.  The momentum vector is parallel to the velocity vector so that

the energy-momentum tensor is symmetric (f* = 0). Equations

(9.18) and (9.21) now imply that
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3. s a tangent vector to an expansion-free and shear-free
null autoparallel congruence. In terms of the spin coefficients

this implies that (see Section 3.1)

p+p=oc=k=0

4. Both ¢" and n* are tangent to repeated principal null direc-

tions of the generalised Weyl tensor. This implies that

and therefbre the generalised Weyl tensor is either of type D

or 0.

We now use the tetrad freedom (9.14) to put

a -R=10
so that in future such transformations must be restricted by
§¢ = 0

With the above conditions we now turn to the field equations. The

Ricci identities (5.9)(a) and (p) immediately imply that

: |
¥y =mges =0 ' (9.29)
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1t was mentioned in the last section that those linear combinations

of the components (5.16)(i) - (1) of the Bianchi identities for
the curvature which vanish in V4 are automatically satisfied for
Weyssenhoff fluids in the Einstein-Cartan theory. The remaining

combinations of these equations now reduce to
(D+a)p==-(e+e-y=-y+u+up

- — i — 4
(=== (e+T+y Y+ (=T -35e,

1
o

ép

These together with the Ricci identities (5.9)(a), (9), (J), (k},
(1) and (q) imply that

W2=pu+2p° (s-!-a -‘]3-921'%-'1 e.l.l

0 7. + 3 -

P (¥ =T tgie) =0

269 (e +T =) - (0 W) e=0 (9.30)

The remaining field equations are now given by

The cormutation relations:

(D = DA) = (yO+ YP)D + (&0 + €P)a (9.31)(a)

(6D - D&) = (p% - €% +€P) &

(b)
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(68 - A8) = (n0 - ¥0 +y0)s (c)
(66 - &68) = =(n® - PU)D - 2p0a (d)
The Ricci identities:
Dp = (p0 - iS)(e + &) + 2i N - (9.32)(a)
Ap=+p(y+7-p-i)-2p°(e+z‘)-2ie” (b)
D = (2%~ u){e + %) + 21 oy (c)
Ay = 92 - uZ -(u - 2iS)(y + y) - 2i o | (d)
Dy - 8 = (20 - 1)(e +3) - £(r +7) +olu - o) + 20 0y (o)
8 =6e =0 (f)
sy =By = 0 (9)
§p =8p =0 (h)
Su=0 (i)
Thg Bianchi identities for the torsion:
DS = -(é +€)S +2 o1 (9.33)(a§
85 = (v +¥ - - WS - 2 ey (b)

20,1 = 0gg *+ 2(c + €)S = 0,5 + 2(y +¥)S = 6T (C{
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The Bianchi identities for the curvature:

5050 = 0 (9.38)(a)
595, = 0 ‘ | (b)
o0 [D(c +5) + (¢ + ©)2 - 5 o(ud ~W- 20)] = 0 (c)

oOh(c + ) -p0(c + E)(2e +26 - v - ) -%p(il”-io)(uo-—u"- 2p0) =0

(d)
p0 [ien +p%e +€) + %:p(u +u)] =0 (e)
(4O-30) [0y, +0(c + ) + g0 (u + W] =0 (f)
Su = 0 (9)

From {9.30) it can be seen that there are two cases to consider -

according to whether or not o0 is zero.

Case (i) 0% =10

‘In this case equation (9.29) reduces to @11 = %-82, so the
following solutions do not reduce to perfect fluid solutions in
general relativity in the limit when torsion vanishes. The energy

density e and the spin density S are now related by

Y =-% ke.

Therefore the "effective" energy density and the "effective" pressure

defined by (Arkuszewski, Kopcynski and Ponomariev 1974)

ca .2 e2
Corf = & E’s
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2
Peff =P E'S

both vanish in this case.

Equation (9.34)(d) immediately implies that

ul =0

and all the remaining Bianchi identities for the curvature are
automatically satisfied. It can now be shown by using the equa-

tions (B.1) given in Appendix B that

Ro
KAUY

so the metric is flat and the curvature is generated purely by
the torsion. It is also possible to use the remaining tetrad

freedom (9.14) to put

and the scalar ¢ must in future be treated as a constant.

It is now possible to choose two null cordinates x! = u

and x2 = v and two space-Tike coordinates x3 = x, x* = y such that

the tetrad takes the form

b, =B 8l ' M =Agh
n =ATl g2 - n* = B gf

=
"

H 53 6‘-13 +El{ 6“4
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where A, B are real and g‘ (i =1, 2) are complex functions.
This tetrad is preserved under the following coordinate trans-
formations

= fi(u) + 97 (%y)

= £,(v) + gy (%)

y' o=
x' = x' (x,y)
Y=y (%)

The intrinsic derivativeswhen acting on scalars are now given

by

| = ..i. = ..a.. =.3_.a_ ."“_‘?_

D =A av ’ 4=8 3u ’? 6=t X te oy
The metric equations are given by

DB = ~2€9 B

A = 290 A

A =68 =0

DE' = 0

AEY = - 0 g i = (3,4)

TE -6 =0

We can now make a coordinate transformation and put

g3 = gt =— P

1o i
— P, —
V2 2




123

imply that

A(u,v), B = B{u,v), P = P{u)

3V
¥ = 3 B -2 Tog A
0 -_pod

u B gy 109 P

The remaining Ricci identities give

32

TED) (log A + Tog B) =0

d? -1 d -1y 0O _
E;;—(P ) + i (p~1) 33-(109 A + log B) -_0

The first of these implies that a coordinate transformation can be -

used to put

where P is a real function and the metric equations immediately

AB =1
|
|
|

and then the second implies that
P=(au+b)?
where a and b are real constants. Thus the metric is given by

ds2 = 2 dudv - (au + b)2 (dx2 + dy?)
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and clearly for the case a = 0 it is possible to put b = 1.

In the case a # 0 one can easily put a = 1, b = 0. However even
though the metric is flat, it is not in general possible to make
a coordinate transformation to put a = 0, b = 1. Because of our
choice of tetrad vectors we do not have the required coordinate
freedom to allow us to do this. The four-velocity of the fluid

is given by

uo_
U."' -I

T o(p-1 gk u

where A = A(u, v) is totally arbitrary. The intrinsic angular
momentum four-vector is given by
S

™= - E (A1 5‘]* - As“z)

where S = S{u,v) satisfies the equation

....a... ...?_. -1 = = 2& -1
3V (SA)+BU (SA ) iau+EiSA

which is the condition (9.19). The non-zero components of the cur-

vature tensor are

- - = - - <2
@00 = 2¢]1 =9y, = 6A S

M - 3 (aA”1y = =9

2011 = g 5V

- ia - 24 9 _ .2
Y @By Aty Gy (SA) - §9)

;

Because of the arbitrariness of the function A(u,v}, a wide
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class of solutions having in general non-zero acceleration, volume
expansion, and shear have been obtained. The kinematic quantities

are given by

b =1 3A _ 3 (a1 el o p-l a2
U, =7 5y - 50 (A"4)1 (A §, - AT 8 )

_ 1 2a - A 3 sp-
o= au+oy Aty tag ()]
_} a -1 3A 9 =1
0y = = [ R )
MY 3/ (au +b) v au

1 _p-1 52 1. a-1523. 2 §3 gl 2 slhgh
X[(Ae;u A 6u )(Aav ATie )=(au+b) 6u 8, (au+b) 6u 5.1

uv

Case (ii) p%# 0

If the commutator (9.31)(d) is applied to p then it can be
shown using the equations (9.30) and (9.32)(a) and (b} that

(n - % - 20)(u +u~de -4y =0~

It i{s easily shown with the aid of equations (9.32)(c) and (9.34)
(c) that the case (u - u - 2p) # O leads to a contradiction. We

therefore conclude that - “

p-u=2

" Equation (9.30) now immediately implies that

Y=t
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If the commutator (9.31)(d) is now applied to u then it
can‘be shown by using equations (9.32)(a) and (b), togethef with

the above condition, that

u=p

Finally, it is possible to use the remaining tetrad freedom to

put

E=Es Y =Y.
A1l the Bianchi identities for the curvature are now automatically
satisfied,

In this case it is convenient to introduce three space-Tike
coordinates x! = x, x2 =y, x3 = z and one time-like coordinate

x* = t defined such that

Mo u u

Mo u_ u
I'I'Iu=E.‘l6_i‘1 i=1’2’3s4
where A = A (z,t) and B = B (z, t). This tetrad is preserved

under the following coordinate transformations

x' = x' (xy)
yt =yt {xy)
z' = £(2) + gi(xy)
t o= £5(t) + gy(x,y)
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The intrinsic derivatives are given by

= 2 -2
D+aA=2A X3
- ]
D‘A—ZBSE-
5=£i_a.r i=1323394
0 X

B2 - 2cn

B-o

Ad gla- ol rane, i=1,2,3,4
B-af’z-siws 531' i=1,2,3,4
Tel -6F =-400 A i=1,2,3,4
%%; =0 B 3%; = 2 pl%

2=0 BE = -20¢ & =0
3k _g B3E = -2¢2 | e = 0

at 3z

The first of the metric equations above together with the Ricci

identities %% = 8c =0 immediately imply that
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0

53

It is bossib]e to make a coordinate transformation and put

(o2
1]

1 A = A(Z)

Integrating'the above equations we obtain

A= L 2e = a
az+E .az+5
p = E—ilEE p0 = i (az + b)f
S = g - (az +b)f (9.35)

where a, b and ¢ are real constants, one of which may be taken to
be unity if it is non-zero. (The constant c is related to the

energy density of the fluid by

2¢2

€ @z F o> .

and is therefore required to be non-zero).

f = f (x,y) is a real function yet to be determined.

A cdordinatg transformation can be made to put
£2=igl

The functions si =g (x,y,t) (i =1, 2, 4) are now given by

gl = - g2 = Pe*lct % = Qe-ICt

]
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where P = P(x,y) and Q = Q(x,y) are complex. However a further
transformation can also be used to make P into a real function.

The remaining metric equations now give

1.
Q= E’(l‘%g" %;0
32 | 9?
2cf (x,y) =P2 (—+ —) log P (9.36)
ax2  ay?

The Tatter equation may be taken to define the function f when P
-1 considered to be an arbitrary function. Alternatively it may
be considered as an equation for P when ¢ and f are defined by the

torsion according to (9.35).

The metric is thus given by

1
Pc

(azt+b)2

ds? = [dt +

3P _3P 2_] 2 2_] 2
(EY'dx Ei'dy)] E;; (d* + dy?) v dz

The four-velocity of the fluid and its intrinsic angular momentum

four-vector are given by

iaz + EF

The non-zero components of the curvature tensor are
=2 = = -bA = c?
%0 = ¢ 1 T ¥pp = OA = (az ¥+ b)2

_ lac - - -
%0 = %2 = "z E Bz O 7 ¥ =t )

__ L c2 2 s
‘{’2-“'3'm+'3'a' if(x.y)
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Finally, the kinematic quantities are

w0 =32 D) fXy) (52 g1 L1 52)
uv /7 Pp2 TRV BV

Thus the solution in general has non-zero acceleration and vorticity-

It has three arbitrary parameters a, b and ¢ and an arbitrary func-

tion P{x,y).

The above solution is seen to reduce to a stiff matter alge-
braic type D solution of a perfect fluid in general re]ativity in
the 1imit when torsion vanishes. This occurs if a = 0 and f = ¢/b?
and then, the acceleration vector is zero. Therefore the resulting
solution belongs to the same class. of solutions considered by
Wainwright (1970). By putting b = 1 in this case, a simple solution
of (9.36) may be obtained in the form

P(x) = d cosh x + vd% + Zc? sinh x

‘where d is an arbitrary constant.

It is of interest to note that if e = p = 0 then the above
equations do not imply the vanishing of the torsion. For a physi-
cal spin fluid however, the energy must be non-zero. (We are not

considering "ghost” Weyssenhoff fluids!).
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9.4 Discussion

The exact solutions given above are believed to be nHew.

Most previously known solutions for Weyssenhoff fluids in Einstein-

Cartan theory have been reviewed by Kuchpwicz (1976). These have
| all been described in terms of possib1e cosmological models and
interest is focused on the question as to whether or not such models
have singularities. They all have zero acceleration and vorticity,
and have been obtained using more fami]iar and standard techniques.
The solutions presented above generally have non-zero'acceleration
and are therefore possibly the first “tilfed“ cosmological models
in Einstein-Cartan theory, a]though'they are restricted to the case

of stiff matter.

A numbef of authors however have considered semi-classical
spin fluid theory in a slightly different form to that which has
been used in this chapter. For example Kuchowicz (1976) appears to
specify only the symmetric energy momentum tensor and therefore
does not obtain the antisymmetric equation (9.8) as an additional
field equation. However not all the results described in his review
have been obtained using his approach. Also a number of authors
have considered the restriction

T P* =0 (9.37)
instead of the Weyssenhoff restriction (9.5). Rosenbaum, Ryan and
Shepley (1979) have obtained a number of simple exact solutions

using this condition.
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The general results described in Section 9.2 do not apply
to these two alternative approaches. However for the exact
sojutions given in Section 9.3, f

F.
tensor is symmetric and the restriction (9.37) is identical to

= 0, so the energy-momentum

(9.5). Thus the exact solutions obtaiﬁed here are also solutions

of theSe alternative theories.
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CHAPTER 10
CONCLUSION

The main purpose of this work has been to develop an alter-
native set of techniques for the analygis of soufce fields in U4
theories of gravity. The generalised N-P identities are derivable
- from two equivalent mathematical approaches. These involve the
use of tetrads and spinor dyads and are given exhaustively in this
thesis. Note however that the tetrad approach can a}so be deve-
Toped in terms of exterior differentiéi forms. This would involve
the extension to U4 of the complex vectorial formalism of Debever

(1964) and Cahen, Debever and Defrise (1967).

As the formalism developed is an extension to U4 of an esta-
biished technique in general re]ativity, it 1s tempting to simply
add torsion to all the main results of the N-P formalism for
Einstein's theory. However it is not obvious that this would be
useful. Each application of the formalism should achieve some
goal of the torsion theories. For example, it was hoped that the
anomalous properties of the classical Neutrino field in Einstein's
~ theory would be removed in the Einstein-Cartan theory. The tech-
niques developed here have proven to be ideal for the investigation

of such a proposal.

The generalised formalism has in fact been extremely success-
ful when applied to the Neutrino field in Einstein-Cartan theory.
In this case it probab]y offers the best set of techniques for
obtaining exact solutions. The contortion tensor for the field has

a particularly simple form and all exact solutions for the case of .
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pure radiation fields are given in Chapter 8. Although the
anomalies nentfoned above still persist, they do not occur as
readily in Einstein-Cartan theory. For example the only possible

ghost Neutrino solutions have a plane wave metric.

It has been difficult to generate exact solutions for the
case of Weyssenhoff fluids in Einstein-~Cartan theory using the
formalism. This is not.surprising since the N-P formalism has
not been particularly convenient.for the analysis of perfect fluids
in G.R.. Severe assumptions have had to be made in order to obtain
the very specia] solutions presented in Chapter 9. Hdwever, fur-
ther progress can still be made along the lines developed. In
particular one might consider spinning dust and then, matter corres-
ponding to a more general equation of state for the fluid. It
should also be possible to obtain exact solutions in the case when
the generalised Weyl tensor Anluv is zero. Such solutions are seen
to generalise the conformally flat perfect fluid solutions in
Einstein's theory. On an optimjstic note, the solutions obtained
- for Weyssenhoff fluids are the first to describe "tilted cosmolo-

gical models" in the Einstein-Cartan theory.

The applications of the formalism in Chapters 8 and 9 have
clarified the role of the Bianchi identities for the torsion.
After the tetrad or dyad basis is adapted in each case, the non-
zero components of the contortion tensor can be inserted into these
identities. They then yield the components of the curvature that
are peculiah to U4. These components together with the components

of the Ricci tensor can then be inserted into the appropriate Bianchi
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identities for the curvature and yield conditions on certain spin
coefficients. This general procedure will probably be appropriate
to most future applications of the formalism. Further conditions
on the spin coefficients appear through the matter field equa-
tions or the conservation theorems. The generalised identities are
then considerably reduced. In order to obtain a particular solu-
tion it is necessary to make assumptions on certain spin coeffi-
cients and also on the “free" gravitational field described by

the components of AKAuv which are not determined by the field

equations.

For future applications of the formalism, there are a number -
of different directions open to us. In connection with these, a
few comments on alternative torsion theories of gravity are
appropriate. As already mentioned in Chapter 7, one troublesome
point in the usual form of the Einstein-Cartan theory is that the
electro-magnetic field is decoupled from torsion. If, in géneral,
particles with spin are to generate and react to torsion then it is
reasonable to expect that photons should be coupled to it. The
authors Hojman et al (1978) have suggested a way oflachieving this
and have also presented a dynamical theory (the HRRS theory) which
allows the propagdtfon of torsion” in a vacuum. It should be
pointed out however that the HRRS theory is refuted by the results
of solar system experiments (Ni 1979). Nevertheless the work of
Hojman et al has generated considerable intefest on gravity theories
which permit torsion to propagate in a vacuum (see for example the
review by Neville 1980). It is believed that the N-P type formalism
presented in this thesis may provide a convenient method for the analy-

sis and generation of exact solutions in these theories.
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We now turn to gravitation theories formulated in the
Weitzenbock space-time (A4) (Weitzenbock 1923). This space-
time is obtained from a Riemann-Cartan space-time U4 by simply
putting the curvature tensor to zero. This definition is
equivalent to the notion of absolute parallelism in U4. One

of these so called teleparallel theories formulated in A4 that
might be considered in future applications of the formalism is
that proposed by Hayashi and Shirafuji (1979). The generalised
identities in such theories are drastiqa11y reduced and the
Bianchi identities for the torsion take over the role of the Vq
Bianchi identities for the curvature in that they are the only
set of integrability conditions. Teleparallel theories obviously
do not reduce to Einstein’s theory and they therefore offer one
application of the formalism not motivated through the successes

of the N-P formalism in general relativity.

Finally, there are also torsion theories in which a variety
of alternative lagrangians are proposed (see the recent review by
HWallner 1980). These are also worthy of consideration in appli-

cations of the generalised formalism.
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Consider the most general transformation of the basis dyad

spinors
A -achsp P (A.1)(a)
YA et edh (b)

where a, b, c and d are complex scalar functions which, from

the orthogonality relation (4. 8) satisfy
ad - bc = 1

The corresponding general transformation of the tetrad vectors is

easily shown to be
t¥=ad 2" + ab " + ba B + bb n¥ (A.2)(a)

|

|

|

APPENDIX A |
|

|

' |
m¥=ac oM + ad m" + bc m" + bd n* (b) |
| \

m=ccM+cda® +dcm” + dd n¥ (¢)

A special case of interest occurs when b = 0 in these trans-

formations. In this case, the direction of 2" is preserved and if

we put
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i
c=RET®

where R>0 and S are real functions and T is complex then

TY =R ¥ ‘ (A.3)(a)
B¥ = e’ (M +RT 1Y) (b)
‘AWM =R 1 pd £ T+ TA* +RIT 2V (c)

This transformation is called the null rotation about ¢! and

corresponds to a Lorentz transformation in the tangent space,

Teaving fixed the direction of g¥,

The behaviour of the variables in the spin coefficient

formalism under (A.3) is listed below:

With T = 0
¥=rze' ¢ ¥ =Rz el
? = e1S T ?1 = 815 L3
¥ =RreZS 5 = Re? o
5 = Rp 3] =R pq
vee 1, ?1 =13 ™
v =R2 e-is\: B %] = R72 e-iS Vi
¥=R1y ﬁ] = R71 4
¥ =Rl e P, ¥ =R eHS
Y -Re+3ODR+3RDS Y =R e
YRy +3R2ZM+ RIS =Ry,
¥=e® (a+3Rs R+% 5S) gy = eis B1
§=elS (o + 3 RGR *"% §3) g]_= ™13 o1 (A.4)
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¥50 = R? 2gg : oo = R?® oo.
B =ReE 2y 6 o =Re” oy
%2 e a5, 0 02 ~ ¥’ o 02
- N
CTREY °n = on
bp =R e 5 2 =RLe™ o
N
by = R72 0y, © 5p =R72 0y
"?0 = R2 eZiS Y9
%‘I:Re‘s ¥ '<¥0=Rt=3'S %
¥, = v, 3 = ¢
¥, = Rl 7S ¥q 8 = R e 1® %
¥, = R2 e 215 ¥y (A.5)
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K=K

» — _

t=1+Tp+To + Tk

v =0+ Tk

r;§'=p+.—|:|¢:

T =+ Tk

Y=y +Ta +T(B+1)+TT (p+¢€) + T2 +TTk

E¥B+To +T€+T_|:K

o =a+T(p+ ) + T2k

T=mx+2Te + T2¢ + DT

'\\5=v+TA+T(u+Zy)+TT(ﬂ+2u)+?2(T+ZB)+T_f2(p+2€)
+ T3+ TT3% + AT+ TET + T 6T + 1T DT

Neu+Tn+ 2TR +2 TTe + T20 + TT2¢ + 6T + TDT

Y =a+T (n+2)+7T2 (p+2) + T3 + 6T + 10T

qJ‘--

5=

"\t'.|='r]‘+T_p.l +Tcr-l +TTK-|‘

o

0= c.|+T|<.|

= ey + T 1y

?:'1=e1+T'o<

n

Wyt T“‘i +T (s]+r1)+ 17 (p-I-I'E]) + 12 o + 1T €

§1= By + T oy + Teg + 1T iy

1= 0+ T (ogey) + T2 g

S e ’’'’’’SS'"””’’U’U’’OOEHHHHHENNNHHRL

} . 140 | -

-

With R =1, S = 0: | -

|
|
|
\
\
\
\
\
\
\
|
|
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Tr\r'-| = + 2T €y + 72 Kq

V= e A+ T (up+2yq) + TT (ny42a)) +?(r1+2sl) + TT2(p+2¢;)
+ T3 oy + 173 K1

W= #Tom + 2T 8 + 21T ¢ + T2 o + T2

Xp=a +T (mq+20q) + T2 (0142¢;) + T° 3

(A.6)
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%0 = %0

01 = %01 * 00
Y oo 2

e —_
_ = 2 27
312 =0, ¢ 2T¢” + choz + 2TT¢m + 7T d0 * T beoo

= = T, 2 T2 T,
$yy = 0 + 2Mayy + ZTogp +4TToyy + T2y + T20g, + 21770y +

T2 272
.+2TT<I>0]+TT<I>00

O
® 00 = 00
4"
0= o *T %o
A\

_ 2
@ 90 0 gp + 2T (—)0]+T 900
47
e”‘= 9”+Tew+T 60].+TT 00
\

= T T 0. 2 9 27
6]2 912+2T6”+T602+2TT90]+T 10+T Taoo
u

- = T 2 T2 ©
© 99 = 922+2T 921+2T912+4TT0H+T 920+T 02 +

T2 T2 272 ©
+2TT6]0+2TT 90]+TT 00

Yo=¥g

11!1:‘{'-‘ +T1P0

v = T T2

- T 2 T3
Ws ¥q+ 3T ¥, + 312 + T3 y,

_ z, To T3 T
'§’4-w4+4Tw3+6T v, + 4 T3y + Thyy
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LY
%= %
31 =0y + 2T %
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APPENDIX B

It is useful to know the way in which a component. of the
curvature tensor differs from its value in the associated V4
This then c1ear1y describes the effect of torsion. Therefore, in
the spirit of the spin coefficient formalism, the following
expansions are given using the notations in Chapters 3, 4 and
5. They have been obtained by taking the tétrad components of
equation (2.18) but may also be derived from the dyad components
of its spinor equivalent. The expansions of the new components
that vanish in a Vq, could atternatively have been obtained
directly from the Bianchi identity for the torsion given in

§5.3.
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- '
!b = ?o + Dcl-éxl - (E°+3e°4zo)ul - co(p1+251) - (§0-38°¥E°)K1

o .
+ K (11+281) - 201el+281r1 (B.1){(a)

- . . e e
4?1 4?1 + D(11+281) - A, - 6(p1+2el) + 8o

1 1

=T (o) #426)) + (0°-50-e%4E0) (1)428)) = (TO+3r%43°F0)a,

~ 20°(7,42a,) + <3u°4i°+3v°+§°>n1+2n°<u1+2v1>

* 281py = 2(mtag)oy = ZegTy + 2(H Hy )k

(b)
o —
6?2 = 6?2 + D(u1+271) - A(p1+2sl) - 6(n1+2a1) + 6(11+281)
+ (2u°-ﬁ°+Y°+?°)(pl+2€1) + (200-E°+EO+E°)(u1+271)
- (2n°+?o+a°-§o)(11+281) - (2f°+w°-Eo+B°)(n1+2u1) (c)
+ 3v°x1 + 3K°v1 - 300A1 - 3l001

20ty - 2(myra) Ty + vy - 200y * 2e0my - 28T,

. _
4v3 4Y, + Dv, A(w1+201) - 6l1+6(u1+211)
= @B (uy2v)) + W) (mH2a)) - (3rOT-a0+3800

1

- 2A°(rl+231) + (39045°+3e°+3°)v1+2v°(p1+251)

*2oguy = 20rp Ay = 2vymr20p,ve) )V, (d)
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(o] by 0 O -0 - [a] - - 0_—0
¥, " Yy = ARV 3y YA = A7 (u+2y,) (7°-3:°-8 )V

o]
*vimt2a)) = 24 vty (B.1)(e)

2% = D{uy=uy =¥ *Y) - Alpy~py-eyte,) - 6(11+ﬂ1-u1-61)+6('rlﬂrl-al-'ﬁl)

R e R YTy

~0 0. 0 =0 -~ _ 0 =0 =0_,0, ~ o
- (T -1 +a ~B )(-rl-l-wl EN 81) + {1 -1 +a -8 )('rl+1rl oy ﬁl)

= (uy=2vpdey + Gup=2v Doy +2e u =25y +A 0, X 0

(8.2)

+

(nl—Zal)Tl - (w1-2a1)11-281ﬂ1+261n1 - v1:1+v1x1

21900 D(D1 pl) 5K1+5K1 (e +¢ )(p1 pl) D (p1+-el)+p (pl+2e1) 0 0,40 0y

+ E°(Tl-zai)-K°C?i-2a1)-(n°-3a°4§°)x1+(F°-§E°-B°>E1

+2¢. p,+2a.x.~20. .

" 281y *2ey0 %20 k) =20y (B.3)(a)
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0 [s] — —
= T (py*2e,)=p (zl+zsl)+E°(11+2n1+2a1)-cu°4i°-3y°4?°)ul
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(7 +1 =30 +( )01+20 (a1+Bl) ax Al 2X Ky
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