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SUMMARY 

Travelling waves of activity have been experimentally observed in many neural 
systems. The functional significance of such travelling waves is not always clear. Eluci­
dating the mechanisms of wave initiation, propagation and bifurcation may therefore have 
a role to play in ascertaining the function of such waves. Previous treatments of travelling 
waves of neural activity have focussed on the mathematical analysis of travelling pulses 
and numerical studies of travelling waves. it is the aim of this thesis to provide insight into 
the propagation and bifurcation of travelling waveforms in biologically realistic systems. 

There is a great deal of experimental evidence which suggests that the response of 
a neuron is strongly dependent upon its previous activity. A simple model of this synaptic 
adaptation is incorporated into an existing theory of strongly coupled discrete integrate­
and-fire (IF) networks. Stability boundaries for synchronous firing shift in parameter space 
according to the level of adaptation, but the qualitative nature of solutions is unaffected. 
The level of synaptic adaptation is found to cause a switch between bursting states and 
those which display temporal coherence. 

Travelling waves are analysed within a framework for a one-dimensional contin­
uum of integrate-and-fire neurons. Self-consistent speeds and periods are determined 
from integro-differential equations. A number of synaptic responses ( 0<-function and pas­
sive and quasi-active dendrites) produce qualitatively similar results in the travelling pulse 
case. For IF neurons, an additional refractory mechanism needs to be introduced in order 
to prevent arbitrarily high firing rates. Different mathematical formulations are considered 
with each producing similar results. Dendrites are extensions of a neuron which branch 
repeatedly and the electrical properties may vary. Under certain conditions, this active 
membrane gives rise to a membrane impedance that displays a prominent maximum at 
some nonzero resonant frequency. Dispersion curves which relate the speed of a periodic 
travelling wave to its period are constructed for the different synaptic responses with 
additional oscillatory behaviour apparent in the quasi-active dendritic regime. These sta­
tionary points are shown to be critical for the formation of multi-periodic wave trains. lt 
is found that periodic travelling waves with two periods bifurcate from trains with a single 
period via a drift in the spike times at stationary points in the dispersion curve. 

Some neurons rebound and fire after release from sustained inhibition. Many 
previous mathematical treatments have not included the effect of this activity. Analytical 
studies of a simple model which exhibits post-inhibitory rebound show that these neurons 
can support half-centre oscillations and periodic travelling waves. In contrast to IF net­
works, only a single travelling pulse wavespeed is possible in this network. Simulations 
of this biophysical model show broad agreement with the analytical solutions and provide 
insight into more complex waveforms. 

Results of the thesis are presented in a discussion along with possible directions for 
future study. Noise, inhomogeneous media and higher spatial dimensions are suggested. 

Keywords: biophysical models, dendrites, integrate-and-fire, neural coding, neu­
ral networks, post-inhibitory rebound, synaptic adaptation, travelling waves 
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Chapter 1 

Introduction 

An important goal of mathematical biology is to create models which provide 

precise statements about biological systems. Existing techniques established in mathe­

matical analysis can be utilised to study these models. Mathematical neuroscience is one 

such area of mathematical biology which has grown rapidly over the last twenty years at 

both the single cell and network levels. Forming a better understanding of the primary 

characteristics of mathematical neural models and the parameters which control their 

behaviour can lead to advances in targetting specific activity in experiments. This will 

ultimately result in capturing the essence of neural processing and structure. The human 

brain is a creamy coloured, wrinkled object isolated from the rest of the body in its own 

compartment. lt has no moving parts, and weighs, on average, about 1.3 kg. The brain 

is comprised of many different cells, the majority of which are split into two distinct sets: 

neurons and glia. Neurons transmit information between themselves, and glia can be 

viewed as the tissue which surrounds and supports neurons in the central nervous system. 

There are approximately 1012 neurons in the human brain. Due to the soft nature of 

the material, the Greeks assumed that it was the perfect site for the immortal soul. This 

changed when Alcmaeon of Croton discovered that there are connections from the eyes to 
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1. Introduction 

the brain; thus claiming that it was the seat for thought. This discovery agreed with two 

Alexandrian physicists, Herophilus and Erasistratus, who had found nerves leading from 

parts of the body into the brain. The Greek physician Galen (A.D 129-199) then pro­

posed that the soul was to be found in the fluid which bathes the brain and the spinal cord 

(cerebrospinal fluid). This fluid is constantly circulated (produced at about 0.2 ml/min in 

humans) and is known to contain salts, sugars and proteins. This is a far cry from being 

the seat of the soul and has even been called the 'urine of the brain'. People who believe 

in the immortal soul are now convinced that it cannot be found in the brain, and that the 

brain's sole purpose is for thought and feeling. 

Throughout the ages, neuroscience has attracted the interest of some of the 

most remarkable people in history including Leonardo Da Vinci, Rene Descartes and Luigi 

Galvani. This particular area of science began to increase in momentum in the 18th 

century when it was revealed that the nervous system was essentially electrical in nature. 

Experimentation using electricity supported the assertion that different regions of the brain 

controlled different aspects of physical and emotional abilities. The actual architecture 

of the brain is extremely complex and many different regions have been categorised for 

brain function. For example, the hippocampus has become the primary region in the 

mammalian brain for the study of the synaptic basis of memory and learning [145], and 

the majority of input to the cortex is relayed through the thalamus [112]. 

The first person to describe a nerve cell was Johannes Purkinje in 1837, and 

the large nerve cells in the cerebral cortex bear his name. More recently, Golgi and 

Ramon y Cajal shared the Nobel prize in medicine in 1906 for their work on the structure 

of the nervous system. The techniques they developed to distinguish individual neurons 

are still in use. lt was around this time that mathematical neuroscience began, and the 

seminal paper can be regarded as Lapicque's in 1907 [96]. The mechanisms responsible 

for the generation of neuronal action potentials were not known at this time, but Lapicque 

postulated that an action potential would be generated when the membrane capacitor 
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1. Introduction 

reached a certain threshold level. The action potential is the response of a neuron to 

sufficient stimulus. These action potentials (known as spikes) are used to communicate 

with other neurons in the system. Even though the Lapicque model is a simple caricature, 

it is extremely useful for modelling purposes. 

In the middle of the 20th century, Sir Alan Lloyd Hodgkin and Sir Andrew Field­

ing Huxley wrote a series of papers which detailed their experiments on the squid giant 

axon [70, 71, 72]. In [73], they summarised these papers and cast them into mathemat­

ical form. The four-dimensional model formulated forms the basis of many mathematical 

models used today, and the authors won a Nobel prize in medicine in 1963 for their 

pioneering work. Other popular neural models soon followed. Fitzhugh and Nagumo 

independently calculated a two-dimensional model which is the most simple model pro­

posed for spike generation [52, 53, 114]. The Morris-Lecar model is used effectively to 

describe neural dynamics, although it was originally introduced to describe the dynamics 

of a calcium spike in barnacle muscle (not nerve) fibres [110]. 

There is a great deal of evidence which suggests that when neurons communicate, 

it is the actual timing of the spikes which is important. Examples include visual encoding 

in flies [33], tiger salamander and rabbit [7], sound localisation in the auditory system 

of animals such as the barn owl [22] and odour encoding in locusts [155]. However, 

tsetse flies (Glossina spp.) process information in antenna/ olfactory cells using a rate­

coding [152]. The current theory is that rate-coding and temporal-coding are both used in 

the olfactory system, but at different stages of the encoding process [97]. Recent studies 

on the rat somatosensory cortex conclude that the timing of the first spike from single 

neurons in response to a stimulus is the crucial element for coding stimulus location [118, 

120]. Hence, more recent work has focussed on using models which support analytical 

calculations and capture these firing times. 

Analysis is difficult to perform on these biophysical multi-variable models. Many 

biologically realistic models of the single neuron are so complex that they provide little 
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1. Introduction 

intuitive insight into the dynamics they simulate. Systematic reduction of the Hodgkin­

Huxley model to a single variable model [1, 84] makes more effective analysis possible. A 

popular reduced model of a neuron is the integrate-and-fire model [96, 149]. This model 

is nonlinear, and cannot be described by smooth differential equations, since whenever 

the voltage of an integrate-and-fire neuron crosses a preset threshold, the neuron fires an 

action potential and the voltage is reset to some value. Threshold models such as this 

have led to detailed studies at the network level (see Bressloff and Coombes [18] for a 

recent review), where the properties of dendrites, axons and synapses are described with 

a biologically realistic delay kernel, and the timing of each action potential is deemed to 

be most important. 

Rhythmic activities of various neural systems (first found in humans in 1929 [6]) 

can produce oscillations in, for example, locomotion, respiration, and heart beat. A 

network model with only a few variables was proposed by Wilson and Cowan (1972) [156]. 

A popular way to model these oscillations is by using coupled oscillators, which have been 

particularly successful when describing the synchronous flashing within firefly communities 

(which has much in common with neuronal oscillators since both communicate via pulses 

of activity) [43, 44, 108]. Indeed, phase-locked oscillators form the basis for virtually 

all rhythmic motor behaviour: breathing, swimming, running, and chewing for example. 

The theory developed to describe this natural phenomena is particularly useful when 

describing other forms of coupled oscillators - in particular, the interaction of neural 

cells. Oscillations are prevalent within the brain and are associated with, for example, 

learning [132]. arousal [103]. and Parkinson's disease [151]. 

Limit-cycle oscillators are particularly hard to treat analytically, which makes 

collective behaviour extremely difficult to analyse in general. However, progress can be 

made by assuming that these oscillators interact weakly. One of the first weakly connected 

systems to be studied was in a pair of pendulum clocks. Christian Huygens in 1665 

noticed that the two clocks synchronised when attached to a beam rather than a wall. 

4 
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1. Introduction 

The weak vibrations transmitted along the beam ensured that the pendulums swung in 

phase. Analysis of weakly coupled systems has mainly been made through the application 

of phase reduction methods to reduce the network dynamics to a system in which the 

relative phase between oscillators is the relevant dynamical variable [94]. This has been 

utilised for a number of models including Hodgkin-Huxley, integrate-and-fire and more 

general descriptions of neural oscillators [41, 48, 49, 60, 61, 62, 75]. Phase-locked states 

such as synchrony and travelling waves have been studied in terms of this description. 

These are solutions in which the neurons fire at a fixed common frequency. 

However, it has not been established that neurons interact weakly and so one 

of the main challenges now involves extending this analysis to strongly coupled oscilla­

tors. For weak coupling, a ring of neural oscillators with excitatory subpopulations which 
• 

are locally connected act as a pool of independent oscillators. Increasing the connec­

tion strengths leads to complex behaviour such as stochastic oscillations and travelling 

waves [9, 10]. Mirollo and Strogatz analysed a globally coupled integrate-and-fire network 

by using a return map argument, and showed that synchronisation almost always occurs 

in the presence of instantaneous excitatory interactions [108]. Bressloff and Coombes 

have recently made progress with a novel way of solving systems of strongly coupled 

neural oscillators [17, 18, 29]. Their analysis showed that some stability results calcu­

lated previously are only applicable for weak coupling [150] or for finite networks with 

slow synapses [54]. Indeed, this work bridges the gap between weakly coupled oscillator 

models and strongly coupled firing-rate (analog) models, which utilise a slow synapse ap­

proximation. Hence, an analytically tractable model which captures many of the features 

of more biophysical models is produced, without having to succumb to phase reduction 

techniques or averaging theory to calculate results pertaining to strong coupling and fast 

synapses. 

Recently, experimentalists have been able to record travelling wave structures 

in various neural tissues. Stimulating regions of, for example, the cortex [55] and tha-
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1. Introduction 

lamus [85] leads to the propagation of electrical activity. Spindle waves are observed 

at sleep onset [133] and a travelling wave is involved in epilepsy [25]. The functional 

significance of waves in these systems is not always clear. Elucidating the mechanisms of 

wave initiation, propagation and bifurcation is therefore directly relevant to determining 

the functional roles that waves may take on. Indeed, the propagation of synchronous 

spikes has been proposed by Abeles as a mechanism for generating the precisely timed 

spike events observed in multielectrode recordings of cortical circuits [3]. 

To capture the essence of a wave of spiking activity it is natural to work with 

perhaps the most simple spiking neuron model, namely the integrate-and-fire (IF) model. 

At the network level analytical and numerical studies have already shown wave behavior 

consistent with more detailed biophysical models. In particular, Golomb and Ermen­

trout [56, 57, 58] and Bressloff [14, 15] have developed a mathematical framework that 

can provide an exhaustive analysis of the speed and stability for solitary traveling pulses. 

Golomb and Ermentrout have made the fascinating observation that discrete delays aris­

ing in synaptic interactions can lead to the formation of non-smooth lurching waves of 

the type observed in numerical simulations of thalamic networks [130]. In a complemen­

tary fashion, the work of Bressloff builds upon this treatment, covering general forms of 

delay kernel often encountered in models of synaptic and dendritic processing. Moreover, 

away from the long-wavelength limit, the determination of wave stability is shown to be 

a highly non-trivial mathematical problem, involving the solution of a linear map of in­

finite order. Hence, almost nothing is known about the stability of periodic waves nor 

of the actual mechanisms by which periodic waves can lose stability. Previous studies 

of travelling waves have consisted of numerical studies of more complicated biophysical 

models [106, 129]. 

By performing experiments, Jahnsen and Llinas found that thalamic cells offer 

two different types of neural firing; a burst and a tonic mode [82, 83]. Bursting occurs if 

sufficient hyperpolarisation occurs, an additional calcium current is activated upon depo-
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1. Introduction 

larisation and a number of conventional sodium spikes will appear riding on the crest of 

some broad voltage envelope. tonic firing occurs if the calcium current is not activated. 

Any stimulus will then either cause a sub-threshold depolarisation, or a sequence of con­

ventional sodium spikes. Many previous mathematical treatments of travelling waves do 

not take into account cells which rebound and fire an action potential after sufficient 

hyperpolarisation. 

The aim of this thesis is to provide insight into the propagation and bifurcation 

of travelling waveforms in biologically realistic systems. First, by building upon an existing 

theory, the effects of synaptic adaptation on small discrete networks of integrate-and-fire 

neurons is examined. A simple model is used to elucidate any quantitative change in 

neural function. Then, the effects of dendrites and post-inhibitory rebound on travelling 

waves in one-dimensional continua are studied. A detailed overview of the thesis follows. 

1.1 Overview of the thesis 

Chapter 2 - Mathematical tools for neural analysis 

Biological data is difficult to analyse and changing parameter values in an experiment can 

be costly and time consuming. Hence, mathematical models based on experimental data 

are formulated in order that insight can be gained quickly and effectively. Additionally, 

salient parameters in the model can be isolated without resorting to experiments. This 

chapter will discuss the biophysics of the neural models used throughout this thesis. The 

models illustrated are in current neuroscience literature. Firstly, it is important to capture 

the essential properties of a single neuron. A discussion on the Hodgkin-Huxley model of 

a neuron and its reduction to more analytically tractable models is presented. Secondly, 

neurons communicate with other neurons with action potentials. A biologically realistic 

mathematical form for this post-synaptic response is generated. Finally, neurons cap­

ture information at synaptic terminals on their dendrites (a branched tree-like structure). 

In this thesis, these are chosen to be modelled with a one-dimensional cable equation. 
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1. Introduction 

Sometimes, electrical properties may vary along the length of the dendrites, resulting 

in a cable with resonant properties. In this quasi-active case, a linearised form of the 

Hodgkin-Huxley model forms the basis of these electrical properties. Derivation of the 

dendritic model is presented in both the passive and quasi-active cases. 

Chapter 3 - Synaptic adaptation in discrete integrate-and-fire networks 

There is a great deal of experimental evidence which shows that the response of some 

neurons to synaptic input is not constant. As a result, the connection strengths between 

neurons can be modified and these modifications may persist, thereby forming elementary 

components of memory storage. A simple model for adapting synapses is incorporated 

into an existing theory of discrete networks of integrate-and-fire neurons (formulated by 

Bressloff and Coombes [18]). In this simple model of synaptic adaptation, the strength of 

the synaptic interaction is strongly dependent on the activity of the pre-synaptic neuron, 

where the connections between neurons may become stronger (facilitation) or weaker (de­

pression ). States in which the network exhibits synchronous behaviour are analysed, and 

oscillator death, bursting and pattern formation are shown to arise through a discrete Hopf 

(Neimark-Sacker) bifurcation in the firing times when the coupling strength is increased. 

The stability borders created in this chapter are qualitatively similar to those in a network 

without adaptation. By creating stability borders when the level of synaptic adaptation is 

the bifurcation parameter, depression is seen to have a significant role in neural coding. 

As the parameter regime changes from one exhibiting synaptic depression to one with 

facilitation, the firing rates in the system tend to form bursting packets as opposed to 

a more regular output, and vice-versa. These bursts can be represented effectively by a 

firing rate formalism, whereas a spike coding is more appropriate for activity with more 

spread. 

8 



1. Introduction 

Chapter 4 - Synaptic travelling waves in integrate-and-fire systems 

A travelling wave is a phase-locked state with a constant phase difference between adjacent 

units. Many spatially extended dynamical systems support travelling waves. For example, 

action potentia Is on axons, spiral waves of electrical activity on hearts, and flame fronts in 

forest fires. Travelling waves of neural activity have been experimentally observed in many 

neural systems [5, 34, 122, 128, 157]. They are believed to be the mechanism for epileptic 

seizures [25], and are found in central pattern generators ([113] and references within), 

which are neural networks producing rhythmic patterned outputs without rhythmic sensory 

or central input. Periodic travelling waves and pulses are analysed in a one-dimensional 

continuum of synaptically-interacting integrate-and-fire neurons. Neurons in the system 

are considered to be connected with either compact or non-compact support, and with 

realistic synaptic interactions such as the so-called "t:~:-function", and passive and quasi­

active dendrites. For travelling pulse solutions, qualitatively similar shapes for the speed 

curves were found for all axe-dendritic connections- two branches (one fast, one slow) 

coalescing in a saddle point at a critical value of the synaptic coupling. The faster 

(slower) branch is shown to be linearly stable (unstable). For a smooth wave, there 

is a constant phase difference between each neuron and its neighbours. Axonal delays 

introduce an instability into the system resulting in the formation of lurching waves [57]. 

These waves recruit new clusters of oscillators into the wave in a saltatory manner. This 

travelling pulse work is extended to periodic travelling waves. Dispersion curves relating 

the speed of a periodic travelling wave to its period are constructed for the various axe­

dendritic connections and similar shapes are observed. Two branches (one fast, one slow) 

meet at a minimum period. However, for quasi-active dendritic membranes, additional 

stationary points are present in the upper branch of the dispersion curve.A kinematic 

theory shows that the linear stability of travelling waves depends upon the gradient of 

the dispersion curve, resulting in a change of stability is predicted at stationary points. 

Periodic travelling waves with two constant periods are found to emerge from all local 

maxima in the dispersion curves via a drift in the spike times. 
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1. Introduction 

Chapter 5 - Biophysical models 

Recent interest in thalamic relay cells has stemmed from the discovery that the thalamus 

does not serve as a simple relay to the cortex [135]. Thalamocortical relay cells express 

slow calcium currents which give rise to post-inhibitory rebound [82, 83]. This is a 

phenomenon whereby a neuron is induced to emit an action potential upon release from 

sustained inhibition. This so-called T-current could persist and ensure bursts of activity 

occur. An analytically tractable model of this phenomenon, and a comparison with other 

models, is presented. Precise mathematical statements show that half-centre oscillators 

exist only if the external drive to the system takes values in a narrow band. The size 

of this band decreases with the coupling strength. Similarly, for a travelling pulse in a 

one-dimensional continuum, only a single branch to the speed curve exists. Simulations 

of some of the more complex waveforms in a one-dimensional continuum ofthese neurons 

are presented. 

Chapter 6 - Conclusions and further work 

A summary of the major achievements, and possible extensions, of the thesis is presented. 

The extensions include stochastic systems, inhomogeneous networks and travelling waves 

in higher spatial dimensional waves. 

10 



Chapter 2 

Mathematical tools for neural analysis 

In this chapter, models will be presented which are used throughout this thesis. 

it is important to clarify the nature and development of these models in order that 

the analytical statements are sufficiently biologically realistic. In addition, the salient 

parameters of the dynamics can be given a useful biological interpretation. The network 

studies presented in the following chapters all rely on the neural responses described here. 

2.1 Neuronal structure and spike generation 

A neuron (or nerve cell) is any of the impulse-conducting cells which constitute the 

brain, spinal column, and nerves, consisting of a nucleated cell body (called a soma) with 

one or more dendrites and a single axon (see figure 2.1). The dendrites capture action 

potentia Is generated by other neurons at chemical junctions called synapses. These signals 

propagate along the path of least resistance. Injected current can travel long distances 

along the dendritic core before a significant fraction leaks out across the highly resistive 

cell membrane. In addition, more distal dendrites are thinner than those nearer the soma. 

Hence, the current travels towards the soma (usually spherical or pyramidal in shape with 

11 



2. Mathematical tools for neural analysis 

Soma 

Dendrites 

Axon 

Figure 2.1 A cartoon depiction of a neuron. Action potentials are captured in the 

dendrites, which then cause electrical activity to travel towards the soma. Here the 

stimulus is processed and any resulting output (action potential) is passed along the 

axon. Axons form contacts at synapses with, for example, other axons or dendrites of 

other neurons. 

a nucleus at its centre surrounded by cytoplasmic material and bounded by a membrane). 

Here the currents are processed, and any resulting output (known as an action potential 

or "spike") is passed along the axon. The axon is a thin, tube-like structure which extends 

from the soma. This part of the cell can vary greatly in size and studies have found lengths 

between several micrometres to one metre and diameters between several micrometres 

and a millimetre. Axons can make one or many connections with other parts of nerve cells 

at chemical junctions called synapses. Different types of contact can exist, for example 

axon with axon, and axon with soma, but by far the most frequent is an axon with the 

dendritic structure of another neuron. A single neuron may have hundreds of thousands 

of synapses, but the network is still sparsely connected due to the large number of neurons 

in the mammalian neocortex. 

12 



,-------------------------- -------------------- -

2. Mathematical tools for neural analysis 

Sodium (Na+), potassium (K+), chlorine (Cl-) and calcium (Ca 2+) ions are 

all present in the fluid in which the neurons exist. Channels exist in the membrane 

of the neuron in order that these ions can pass through. Concentrations of these ions 

are markedly different on either side of the membrane, since these channels are stimulus 

dependent (either voltage or chemical) and selective. With no stimulus, a nerve membrane 

typically has a resting potential of approximately -70mV with respect to the exterior and 

the gated channels are closed. In this equilibrium state, the concentration of the potassium 

ions in the intra-cellular fluid is ten times that in the extra-cellular fluid, whereas the 

sodium ions have a ten times greater concentration in the extra-cellular fluid. 

For an action potential to be generated, the membrane's potential must be 

sufficiently depolarised and pass a certain threshold level (approximately -SSmV). This 

then causes the voltage-gated sodium and potassium channels in the nerve membrane 

to open. Due to the significant difference in the concentration of the sodium ions, 

and the fact that the membrane potential is negative, the membrane potential surges 

toward a positive resting potential (+50mV) whereupon the sodium gates are closed. The 

membrane then starts to attract negative ions, thus repelling positive ions, which results in 

an even greater negative potential ( -75mV) than the rest state. At this point, the voltage­

dependent potassium channels close and the potential returns to the equilibrium value. 

Whilst the sodium gates are open, the neuron may not produce another action potential, 

and this phase is called the absolute refractory period. The neuron membrane has a 

much higher resistance compared to the intra-cellular fluid and so the action potential 

propagates down the axon. 

The Hodgkin-Huxley model, which captures the method of spike generation in 

single neural cells, is presented in the following section. This four-dimensional biophysical 

model is difficult to analyse mathematically, and its reduction to the more readily analysed 

integrate-and-fire model is illustrated. 
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2. Mathematical tools for neural analysis 

2.2 Reduction of the Hodgkin-Huxley model 

The standard description of a neuron with spatially constant membrane potential V is 

based upon the conservation of electric charge (Kirchoff's Current Law1 ), such that 

dV 
CMdt = -F+ I,+ I, (2. 1) 

where V is the displacement of the membrane potential from its resting level (in mV) 

The function F is the membrane current, and I, is the sum of external synaptic currents 

contributed to by other neurons in the network, with I describing any external currents. 

The membrane capacity per surface unit (in f.LF /cm 2), CM, is taken to be constant since 

there is only a 2% change during the lOOm V depolarization of an action potential [26, 74]. 

The Hodgkin-Huxley model of a neuron is recognised as one of the most complete 

models of a neuron. lt was initially conceived to deal with the behaviour of the squid 

(Loligo) giant axon, and considerable agreement with experimental data is observed [73]. 

Currents in the model arise due to the conduction of sodium and potassium voltage 

dependent channels in the membrane. All other currents are assumed to obey Ohm's 

law2 . 

The Hodgkin-Huxley model ofthe nerve cell is equation (2.1) with the function F 

defined as, 

where the sodium activation, sodium inactivation and potassium activation gating vari­

ables are denoted as m, h, n respectively and are bounded by 0 and 1. For X E {m, n, h}, 

dX 
Tx(V) dt = X00 (V) -X, 

with 
1 

Tx(V) = ax(V) + /3x(V), Xoo (V) = ax(V)Tx(V). 

1The sum of all currents entering a node is equal to the sum of all currents leaving that node. 
2The potential difference across an ideal conductor is proportional to the current through it. 
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2. Mathematical tools for neural analysis 

Parameter Value Unit 

Cellular parameters 

YNa 50 m V 

VK -77 m V 

VL -54.4 m V 

9Na 120 mS/cm 2 

9K 36 mS/cm 2 

9L 0.3 mS/cm2 

CM 1 1-1F /cm 2 

Table 2.1 Standard cellular parameter values for the Hodgkin-Huxley model of a nerve 

cell, obtained from fits with experimental data (from the giant axon of the squid Loligo). 

These parameters are considered to be temperature independent [73]. 

The parameters 9Na. 9K and 9L are the conductances to sodium (Na), potassium (K) and 

leakage capacitance respectively. The terms on the right of equation (2.2) are respectively 

the current carried by Na ions, the current carried by K ions, and the leak current. Table 

2.1 gives typical values for the parameters based on experimental data (at 6.3°C) [73]. 

The six functions 't"m(V), 'rn(V), 'rh(V) (time constants ofthe conductance vari­

ables) and m00 (V), n 00 (V), hoo(V) (asymptotic values of the conductance variables), 

shown in figure 2.2, are given by the following formulae [73]. 

V+55 
<Xn = ( vus)' 100 1-e-

7 _ V+65 
ah= 100 e zo , 

15 

V+65 13m = 4c-,-, , 

1 _ V+65 
13n = se so ' (2.5) 
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Figure 2.2 A: The time constants of the conductance variables (m, n, h) as functions 

of the voltage V. B: The asymptotic values of the conductance variables (m00 , n 00 , 

h 00 ) as functions of the voltage V. The figures are created using the functions given in 

equations (2.4) and (2.5) with parameter values given in table 2.1. 

An example of a Hodgkin-Huxley spike is given in figure 2.3. In the paper 

by Hodgkin and Huxley [73], the formulae were given relative to the resting potential 

(approximately -65 m V) and depolarisation was taken to be negative. Throughout this 

thesis, depolarisation is taken to be positive. lt is possible to reduce the Hodgkin-Huxley 

model of the neuron to more simple models. Indeed, this is necessary in order that 

analysis can be effectively carried out. Reduction may proceed in a variety of ways. For 

example Kistler et al. [88] consider approximating the dynamics with a Volterra expansion 

resulting in the spike response model, of which the integrate-and-fire model is a special 

case. A different approach was undertaken by Destexhe [35] who constructed a pulse­

based model. The philosophy behind this description is to approximate the time course 

16 
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Figure 2.3 An action potential generated by the Hodgkin-Huxley model of nerve mem­

brane. Note that the asymptotic steady state of the potential is approximately -65 m V. 

The parameter values used are given in table 2.1. A single neuron (equation (2.1) with 

equation (2.2)) is driven with a constant current I= 5 Jl.A/cm 2 (Is= 0 !l-A/cm 2
). 

of the rate constants by a pulse, triggered when the membrane potential crosses a given 

threshold. The variables in equations (2.5) take on different values before, during and 

after this pulse. During the pulse, 13m, cxh, 13n = 0 and otherwise, <Xm, j)h, CXn = 0. 

The non-zero values of the other variables at these times are evaluated from the value 

of the voltage-dependent expressions (equation (2.5)) at hyperpolarised and depolarised 

potentials (chosen to be -70 mV and +20 mV respectively). Both of these reduced 

models show excellent agreement with the full Hodgkin-Huxley model. 

The method chosen to reduce the Hodgkin-Huxley system of equations in this 

thesis was applied by Abbott et al. [1, 84]. lt involves the use of equivalent potentials 

and proceeds as follows. From figure 2.2(A) notice that the time constant governing the 

17 
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conductance variable m is much smaller than those for n and h. Therefore, since the 

m dynamics are relatively fast, m can be replaced by its asymptotic value m 00 (V). The 

model is now already reduced to three variables from four at the expense of accuracy 

over very short time intervals. However, the variables n and h cannot be replaced by 

their asymptotic values because the model would then be unable to generate action 

potentials, as h and n would counteract the action potential as quickly as m would 

create it. To demonstrate hand n lagging behind (see figure 2.2(A)), they are slaved 

to auxilliary voltages Uh. and Un respectively. Then, the slower approach of h and n to 

their asymptotic values can be mimicked by the replacement 

X= X00 (Ux), X E {h, n}, 

This can always be solved exactly for Ux since the functions Xoo are monotonic and hence 

invertible. However, it is found in practice that the two potentials Uh., Un are remarkably 

similar and so can be assumed to be identical, and thus, Uh. = Un = U. However, the 

model will only be reduced to two variables if U is chosen appropriately. This is done 

by ensuring that the time-dependence of U in f(V, U) = F(V; moo (V), hoo (U), n 00 (U)) 

mimics the time-dependence induced in F(V; m 00 (V), h, n) in the full model. By equating 

time derivatives ofF and f at constant V, the following is imposed, 

oF dh oF dn _ (~ dhco(U) ~ dn00 (U)) dU 
oh dt + on dt - ohco dU + onoo dU dt ' 

Combining this with equation (2.3), with X00 (U) replacing X for X= h, n, gives dU/dt 

in terms of V and U, and the reduced Hodgkin-Huxley model is 

where 

C dV 
Mdt -

dU 
dt 

-f(V, U) +I, 

g(V, U), 

of ( hoo (V)-hoo (U)) + of (""" (V)-noo (U)) 
(V. U) = oh. '<h(V) on -rn(V) 

g I M !!hoo. + M ~ I 

Bh.co dli Bnoo dli 

and with the evaluation of oF/oX being performed at X= X00 (U), X= h, n. 
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__________ ._ ___________ _ 
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Figure 2.4 U, V nullclines defined by equations (2.6) with (i) I= 0 (excitatory regime). 

The impulse indicates an initial shock to the system due to current injection. As a result 

of a suitably sized impulse, the U and V variables follow the path indicated by the dashed 

line. This corresponds to an action potential being formed in the system. Without this 

initial impulse, the system will remain at the stable steady state defined by the intersection 

of the nullclines, (U, V) "'=! ( -65, -65). (ii) I =SO (oscillatory regime). The steady state 

is no longer stable and so no impulse is required to create the large potential excursion. 

A limit cycle is created resulting in repetitive firing. 

The nullclines ( dV/ dt = 0, dU/ dt = 0) of the system in equations (2.6) are 

shown in figure 2.4 for different values of the input current I. The variable V describes 

the capacitive nature of the cell and U describes the time-dependence of the membrane 

conductance. In fact, U may be regarded as a variable for the refractory period of the 
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neuron in the following way. If the neuron has just fired then the potential V will be on the 

V nullcline moving towards the steady state. Hence, for the small impulses, the neuron 

will be unable to fire since there will be insufficient stimulus to cross the positive gradient 

section of the V nullcline. For small values of input current I, the stable steady state of 

the system (at the intersection ofthe nullclines) is to the left of the local minima ofthe V 

nullcline. Hence, for small perturbations, the voltage will relax back to the steady state. 

For larger initial excursions, the refractory variable will take effect and force the voltage 

to take a large deviation following the path shown. This signifies that an action potential 

has been created and the neuron has fired. When the external input is large enough, the 

steady state is unstable and so repetitive firing must occur. lt is convenient at this point 

to define oscillatory and excitatory regimes. When a neuron is in the oscillatory regime, 

repetitive firing will occur (figure 2.4(ii)). In the excitatory regime (figure 2.4(i)), extra 

current injections need to be provided to the cell in order that an action potential can 

be generated. This reduced model (equations (2.6)) is similar to the Fitzhugh-Nagumo 

model of a nerve cell [52, 53, 114] 

dV v3 
- V---U+I 

dt 3 ' 
dW 

<jJ(V +a- bW), 
dt -

where the parameters a, b and <P are dimension less and positive. 

The equations for V incorporate the capacitive and integrative natures of the cell, 

whilst U represents the refractory period. Further reduction ofthe Hodgkin-Huxley model 

to an integrate-and-fire model can be achieved by assuming the refractory process U takes 

place instantaneously. In this case, time dependence ofthe membrane conductance is not 

produced, and the model cannot generate action potentia Is. To overcome this problem, it 

is assumed that when the membrane potential exceeds a certain threshold value, an action 

potential is fired, and the voltage reset to some determined lower level. The potential U 

can be eliminated in one of two ways; U =V or U = -65. In both cases, the parameter 

values are given by the underlying Hodgkin-Huxley model. First, consider the case where 
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Figure 2.5 The function f(V, U) evaluated for U = -65 and for U =V. lt is clear from 

the diagram that f(V, V) is approximately linear, whereas f(V, -65) is more non linear. 

U = -65. Then, the Marquardt-Levenberg algorithm can be utilised to fit this curve (see 

figure 2.5) to a quadratic polynomial f(V, -65) = a(V- V Al (V- h) where a~ -0.1, 

VA ~ -65.2 and the threshold for firing is given by h ~ -63.4. On the other hand, a 

linear integrate-and-fire model can be produced by setting U =V and fitting the curve 

to f(V, V) = a(V- h) with a ~ 1.1 and h ~ -65.4. The (linear) integrate-and-fire 

model used throughout this thesis has the form 

dV V 
-=--+I 
dt '!' ' 

where V represents the membrane potential, 'T is the membrane time constant and I 

represents any current input to the neuron. This equation is supplemented with the reset 

condition such that whenever the voltage reaches some threshold V a with positive gradient 

in time, the membrane potential is discontinuously reset to a lower predetermined level. 
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2. Mathematical tools for neural analysis 

This section has illustrated the reduction of the Hodgkin-Huxley system of equa­

tions which describe spike generation in single neural cells. The resulting integrate-and-fire 

model is more suitable for mathematical analysis since it involves a single linear ordinary 

differential equation with nonlinear reset. Single cells communicate with other cells to 

form neural networks. Methods by which these signals are transmitted are covered in the 

following two sections. 

2.3 Synaptic interactions 

In 1906, Sherrington coined the phrase "synapse" to describe the communication junction 

between neurons [136]. 

If there exists any surface or separation at the nexus between neurone and neurone, 

much of what is characteristic of the conduction exhibited by the reflex-arc might 

be more easily explicable .... In view, therefore, of the probable importance physi­

ologically of this mode of nexus between neurone and neurone, it is convenient to 

have a term for it. The term introduced has been synapse. 

Synapses can be electrical (gap junctions), but synaptic interactions in this thesis 

will be assumed to take place at the more common chemical junctions. At a chemical 

synapse, the axon enlarges to form a terminal bouton, inside which a large number of 

vesicles exist. Each vesicle is filled with a chemical transmitter. Whenever pre-synaptic 

firing occurs, these vesicles are released and flow across the gap between the axon and the 

terminal (called the synaptic cleft; approximately 20 nm wide) and bind onto receptors on 

the terminal. This causes a change in the membrane conductance of the post-synaptic 

neuron. For an excellent review of the full mechanics of this process see Thomson [142]. 
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This post-synaptic current (I, in equation (2.1)) may be written 

I,= g,s(V,- V), 

where V is the voltage of the post-synaptic neuron, V, is the membrane reversal potential 

and g, is a constant. The variables corresponds to the probability that a synaptic receptor 

channel is in an open conducting state. This probability depends upon the presence and 

concentration of neurotransmitter released by the pre-synaptic neuron. The sign of V, 

relative to the resting potential determines whether the synapse is excitatory (V, > Vresd 

or inhibitory (V, < V,05,). The main neurotransmitter responsible for inhibitory synapses 

is y-aminobutyric acid (GABA). 

The post-synaptic conductance is regarded as a train of pulses, each one induced 

by the arrival of a pre-synaptic action potential with specific shape J, 

(2.7) 

The arrival times are calculated according to a threshold crossing condition in the pre­

synatic neuron (which defines rm), plus a suitable communication delay, '!"a· The shape 

of the post-synaptic potential is given by the function J(t) (J(t) = 0, t < 0), with 

normalisation chosen such that 

Following Destexhe et al. [37], expressions for the post-synaptic firing are de­

veloped with the use of Markov kinetics. A simple first order kinetic scheme, obtained 

by assuming a closed receptor in the presence of a concentration of neurotransmitter [T] 

equilibriates with the open receptor state, is given by 

T2(V) 

c ""' 0, 
TJ (V,[l1) 

where C and 0 represent the closed and open states of the channel and r1(V, [T]) 

and rz(V) are the associated rate constants. However, in many cases, synaptic chan­

nels are found to have time dependent properties that are more accurately modelled with 
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a second order kinetic scheme [37]. The presence of one or more receptor sites on a 

channel allows the possibility of transitions to desensitised states, as they are called in 

the receptor kinetics literature, which are equivalent to the inactivated states of voltage­

dependent channels. Consider the following second-order gating system for the closed 

forms of the receptor, C and C1, and the open (conducting) form 0: 

c 
r,(ml 

where r 1, r 2, r 3 , r 4 are voltage-independent rate constants. Two approximations are made 

to simplify the mathematics: 

• The neurotransmitter concentration [T] occurs as a Dirac 6-function b(t- to). 

Thus, for a release event occurring at time t = to, the rate constant satisfies 

r, ([T]) = r,b(t- t 0). This means that the pulse is infinitely large and has an 

infinitely short duration. 

• The closed state C occurs in much greater quantites than C1 and 0. Therefore, the 

fraction of channels in state C is considered to be constant and always approximately 

unity. This happens if very few receptors bind the neurotransmitter and hence nearly 

all receptor molecules remain in C form. 

With these assumptions, the following equations are derived, 

dx 
dt 
dy 
dt 

where x, y represent the fraction of receptors in the forms C1 and 0 respectively. To 

solve these equations, the Laplace transform is employed. This transform and its inverse 
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is defined for continuous functions (t > 0) by, 

f(p) = r e-Ptf(t) dt, 
1 J<r+iR _ 

f(t) = -
2 

. lim f(p)ePtdp, 
m R-)oo a-iR 

( c:r > c, Re[p] > c ;:=:: 0), 

(2.8) 

Hereafter, all La place transforms in this thesis will be represented with the "bar" notation. 

The transformed equations (provided e-Ptf(t) ---t 0 as t ---too) are 

pX:(p)-x(O) T1e-pto -(Tz+T3)X(p), 

py(p) -y(O) - T3X:(p) -T4y(p). 

Whence, solving simultaneously, y(p) is given by 

_( ) y(O) T3 ( -pto ( )) 
lJ p = + ( ) ( ) TJ e +X 0 . p+T4 p+T4 p+Tz+T3 

Using the inverse Lap lace transform (equation (2.8)), and the fact that initially the fraction 

of channels in the C1 and 0 states is approximately zero, 

e-"" (t-tol _ e-"'2(t-tol 
y(t) = r 1r3 B(t- t 0), 

exz- ex1 

where ex1 = Tz + r 3 and exz = T4, and B(t) is the heaviside step function 

{ 

0, 
B(x) = 

1 ' 

x<O 

x;:::o 
(2.9) 

Thus, the response from a single pulse is the difference of two exponentials, 

where t 0 is the time at which the neuron produces an action potential. A different 

representation is called the ex-function response originally introduced by Rail (126] and 

will be shown below. Alternatively, a square pulse of synaptic conductance had been used 

and was adequate for some computations (124]. However, a smooth time course for the 

synaptic conductance is preferred. Consider the limit ex2 ---t ex1 = ex. Then, 

y(t) = T3T1 (t- to)e"'(t-tolB(t- t 0). 

The form of the ex-function which is used in this thesis is normalised and given by (re­

placing lJ with 71) 

(2.10) 

25 



2. Mathematical tools for neural analysis 

0.4 
J(t) 

0.3 

0.2 

0.1 

0 
0 1 2 3 4 5 6 

t 

Figure 2.6 Various synaptic responses. The ~-function with (i) ~ = 1 and (ii) ~ = 0.5 

[solid] (equation (2.10)). The passive dendritic response with (iii) 'I'D = E.o = 1 and 

D = 0.5, and (iv) 'I'D = 2, E.o = Vi. and D = 0.5 [dashed] (equation (2.16)). See 

section 2.4 for details of passive dendrites. All of these responses have qualitatively the 

same shape. 

where 1/~ is the time taken to reach the peak of the function so that~ determines the 

speed of the synapse (shown in figure 2.6). Differentiating equation (2.10) twice leads to 

a useful representation for the ~-function 

Ti1 1]2, 

T\2 - -2~T\2- ~~1 + ~2 L li(t-Tm- Tn), 
m 

(2.11a) 

(2.1lb) 

where T\1 = T\ and T\2 = Ti and with initial conditions T\1 (0) = 0, T\ 2(0) = ~2 . This form 

is used in the direct numerical simulation schemes of this thesis (see appendix A). 
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A different type of synaptic response is fast threshold modulation (FTM) [139]. 

In spiking models, the post-synaptic responses are instantaneous whilst in bursting models 

the activity accounts for a significant portion of the overall period of a driven neuron. 

Hence, it is more suitable to suppose that a post-synaptic neuron feels the effects of a 

pre-synaptic neuron whilst it is active. This naturally leads to modelling the synaptic 

interaction as an extra conductance, but with the gating variable dependent upon the 

voltage of the pre-synaptic neuron: 9syn (vprel ( v- V5yn), where Vpre denotes the potential 

of the pre-synaptic neuron and v the post-synaptic neuron. The constants Vsyn and 9syn 

respectively represent the reversal potential and the conductance associated with the 

synapse. This expression would be included (in I,) on the right of equation (2.1). 

Voltage-dependent synaptic conductances are another common way to represent 

synaptic interactions. Consider a system of differential equations based on the pre-synaptic 

potential Vpre· Then the synaptic gating variable s(t) (representing the fraction of open 

channels) satisfies an ordinary differential equation such as 

ds 
dt = ~1 (1 - s)H(vpre- va)- ~zS, 

or 
ds 
dt = ~1(1- s)H(vpre -va)- ~zH(va -Vpre)s. 

Here ~ 1 and ~ 2 are constants and H(v) is a saturating threshold function such as 

1 
H ( v) = o-1 +-ex-p7( --v_,/,--v ,...,.) 

As v, -t 0, H(v) approximates a heaviside step function. This model is often referred 

to as a direct synapse since it is activated as soon as a membrane potential crosses the 

threshold v9 (at least for the case v, -t 0). To better represent the range of synapse 

dynamics observed biologically it is sometimes necessary to consider models of the form 

dx 
dt 
ds 
dt 

cx(1- s)H(x- xa)- ~s, 
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as discussed by Rubin and Terman [131). The effect of such an indirect synapse is to 

introduce a delay in the onset of response, determined by the time it takes for the x 

variable to cross x9 after Vpre crosses Ve. Here x represents the activation level of some 

G-protein. The constant U> determines whether the turn-on in the model is fast or slow. 

A similar type of an indirect synapse is the phenomenological model of slow GABAs 

inhibition, where synaptic gating is described by [59] 

dx 
dt 
ds 
dt 

U>cx,;(l - x)H(Vpre- V e) - f3xH(ve - Vpre)X, 

Given a particular choice of synaptic transmission from those outlined above, it 

is necessary to include the details of signal propagation along dendritic branches. The 

next section introduces two primary ways to represent this propagation. 

2.4 Dendrites and the cable equation 

Dendrites are tube-like extensions of a neuron which branch repeatedly to form a tree­

like structure, and significantly influence neural firing patterns [98]. This structure can 

be large and in some neurons the dendrites can account for over 99% of the neuron 

surface area. Tiny spines exist along the length of the dendritic tissue, and it is at these 

points that synaptic junctions are created. To simplify the mathematics, the extensive 

morphology of the dendritic structure is collapsed onto a single cable, which is typically 

modelled by the cable equation, 

oV To o2V 
roCoat(E., t) =-V( E., t) + Ta oE,Z (E., t), 

where V( E., t) denotes the membrane potential at timet and position E. along the cable 

relative to the resting potential of the membrane. The passive electrical properties are 

determined by the parameters C0 ,r0 and r" which are the membrane capacitance (in units 
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ofF jcm), the membrane resistance and the internal resistance (both in units of D./cm) 

respectively. This equation is generated by applications of both Kirchoff's Current Law 

and Ohm's Law [127]. lt is useful to reduce the number of parameters in the cable 

equation, and so it is reformulated as 

ilV 
at(E,,t) = 

V( E,, t) o2V 
To + D ilE,2 (E,, t) + I(E,, t), (2.12) 

where To= roCo and D = 1/(raCo), and where in addition a source term I(E,, t) has 

been included. 

Equation (2.12) is a parabolic partial differential equation and has a unique 

solution if two boundary conditions and an initial condition are specified. The initial 

voltage is set to be V( E,, 0) = 0. Treating the soma as one end of the cable means that 

a semi-infinite cable is considered, imposing the condition 

lim [V(E,, t)[ < oo. 
~--;oo 

Other boundary conditions can take many forms, but it is typical to model the E, = 0 end 

(soma) as sealed. This means that there is no longitudinal current, and hence 

~~~~~ =0. 

The solution to equation (2.12) is given by, 

V(E,. t) = r I>( E, _ E,', t _ t')I( E,', t') dt' dE,', 

where the Green's function G(E,, E,', t, t') satisfies 

oG G a2G , 
at+ To- D aE,2 = &(t)&(E,- E, ), (2.13) 

with the same boundary conditions as V. One of the more simple ways to solve this 

equation is by use of the Fourier transform. This could be taken with respect to either 

variable, but perhaps the t variable provides most flexibilty. The Fourier transform, and 

its inverse, is defined for continuous t by 

J(t) = e""tJ(w)-. J
oo . ~ dw 

-oo 27t 
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Hereafter, all Fourier transforms in this thesis will be represented with the "hat" notation. 

Thus, equation (2.13) becomes 

(2.14) 

Let the propagation constant Ypass(w) be defined as 

2 ( ) _ 1 + iwTo 
Ypass UJ - DTo . 

Let, Zm denote the linearized, frequency dependent impedance and Za denote the serial 

impedance. For a passive dendrite, the membrane consists only of a resistor in parallel 

with a capacitor (see figure 2.7). Hence, Zm is given by 

To 
Zm = 1 + iwTo' 

The serial impedance is simply given by an ohmic resistor, Za = Ta. The propagation 

constant is given by Koch in terms of the ratio of these impedances [91J, 

2 ( ) _ Za(w) _ Ta(l +iwTo) 
Ypass UJ - ( ) - • 

Zm w To 
(2.15) 

The solution of equation (2.14), using the boundary and initial conditions, is 

G(E,,w) = 1 e-y,,~(wl~. 
DYpass( UJ) 

The Fourier transform of the Green's function is sometimes referred to as the transfer 

function or transfer impedance. Suppose I(E,, t) 

function is 

li(E,- E.o)I(t), then the Green's 

1 <2 
G(E.o, t) = e-ti'roe-im: 

V4nDt 
(2.16) 

The form of this response is plotted in figure 2.6. 

In reality, dendrites branch repeatedly and the electrical properties may vary 

along the length of the cable. Dendrites with such electrical properties are known as 

quasi-active dendrites. Under certain conditions, this type of membrane gives rise to 

a membrane impedance that displays a prominent maximum at some nonzero resonant 
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frequency. These dendrites will be addressed in the following section. Multiple branches 

will not be discussed, although Rail demonstrated that an extensively branched tree may 

be viewed as an equivalent cylinder if certain conditions are satisfied [127]. Compartmental 

modelling may be used to model the extensive branching of the dendrite by taking each 

section as a small cylinder each having its own cable equation. 

2.4.1 linearised quasi-active membranes 

For quasi-active dendrites, linear cable theory is inadequate to describe the complicated 

nonlinear processes involved. However, progress may be made if the membrane's potential 

is restricted to relatively small deviations around the rest state. The Hodgkin-Huxley 

system of equations [73] (given as equation (2.1) with equation (2.2) with no synaptic 

input) is an excellent starting point for modelling truly active membranes. The quasi­

active model is generated by linearising each current around some fixed potential [91]. 

For simplicity, consider the potassium current IK in equation (2.2). A small 

perturbation around a fixed potential Vr may be written as 

15V 3 1 4 
15IK= RK +4gKn (V-VK)8n, Rj( =gKn00 (V.). (2.17} 

Hence, from equations (2.3} and (2.4}, 

(!+an+ f3n) 8n = ( ~~- d~(San + 8f3n)) &V. (2.18) 

Combining equations (2.17} and (2.18} leads to the equation for the first-order variation 

of the potassium current, 

with 8 I satisfying 
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- { 4gkn3(V)(V- VK) [ ~~- ( ~~ + 'd;) n]} lv~v,, 
ln I 

IXn + ~n v~v, . 

Thus, for a small perturbation &V around Vro the potassium current responds as though 

the resistance RK is in parallel with a resistance Tn that is itself in series with an induc­

tance ln. Figure 2.7 shows a circuit diagram representing a dendritic cable in both the 

passive and active cases. This inductive term can lead to an oscillitory overshoot in the 

potential after the generation of an action potential. The sodium and leak currents may 

be linearised in the same manner, and the linearisation of the full set of Hodgkin-Huxley 

equations can be represented in Fourier space as 

where K( w) is the complex impedance of the linearised Hodgkin-Huxley membrane. This 

impedance has the form [91] 

K(w) = ~o + ~,w + ~zw2 + ~3w3 
. 

ao + a,w + <XzW2 + a3w3 + a4w4 

The ex;.'s and ~i's are complex constants which depend upon the values of the electrical 

components. 

Hence, in order to model quasi-active dendrites, the passive cable equation (2.12) 

is supplemented by an equation describing the current through the inductive branch of 

the equivalent system I0 (E,, t) as follows, 

V(E,,t) 0 o2
V(< l Io(E.,t) I(< l 

'to + ()[,2 "'t + Co + <.,,t' (2.19a) 

-r1I( E,, t) +V( E,, t), (2.19b) 

where l and r 1 are the inductance and the resistor in series. Note that this system can 

switch between the quasi-active (r1 finite) and passive (r1 ---l oo) with different values 
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Passive 

Quasi-active 

Cm 

Figure 2-7 A schematic description of passive and quasi-active membranes in terms of 

electrical circuit diagrams. The passive dendrite can be viewed as a capacitor Cm in 

parallel with a resistance r m· A quasi-active dendrite has an additional inductive branch 

with a resistance r 1 in series with an inductance l. 

of the parameter r 1. This system can be solved in exactly the same way as the passive 

dendrite case. The Fourier transform of both equations in (2.19) is taken with respect to 

the time variable, and f;;(E,, w), eliminated to get 
2~ d V 2 ~ 

dE,2 (E,,w) =Yact(w)V(E,,w), 

where the propagation constant is now 

2 ( ) r a 
Yact W = Zm(w)' 
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with 

Zm(w)= ro(rt+i~l) , 
ro + rt- w2ho + tw(l + r(ro) 

resulting in the Fourier transform of the Green's function given by 

This useful form is employed in the analysis of travelling waves in chapter 4 rather than 

equations (2.19). Note that the passive dendritic case is recovered in the limit rt -too 

(equation (2.15)) with DTo = ro/ra. 

2.5 Recapitulation 

This chapter has presented the derivation of some of the mathematical models used for 

describing neural oscillators and spike propagation which are popular in current neuro­

science literature. All of these models have biophysical motivation and are presented in 

a reduced form. The integrate-and-fire model of a neuron is particularly useful since it 

is a linear differential equation (with discontinuous reset), thus enabling robust mathe­

matical analysis. The integrate-and-fire model, in combination with the different synaptic 

responses, forms the basis of the neural networks studied throughout this thesis. 

34 



Chapter 3 

Synaptic adaptation in discrete 

integrate-and-fire networks 

An important property of single neurons currently being studied at the network 

level is that of synaptic adaptation (sometimes called synaptic plasticity or phasic neu­

rons). Experimental evidence shows that the amplitude of the response of a neuron to 

some synaptic input is not constant, but depends upon the previous firing history of the 

neuron [2]. lt is thought that the synaptic connections between those neurons mediating 

behaviour can be modified and that these modifications may persist, serving as elemen­

tary components of memory storage. Synaptic connections could be modified differently 

depending on the specific learning process. For example, the synaptic strength of a single 

synaptic connection could be. increased (decreased) with sensitisation (habituation) [107], 

and references within. Other hypotheses exist which concern memory storage. For in­

stance, long-term information storage could be due to the selective addressing of synaptic 

contacts onto active dendritic subunits [121]. Another type of synaptic adaptation is the 

formation of new synaptic terminals (boutons) on dendrites. This phenomena is particu­

larly difficult to model and subsequently analyse and will not be considered further. 
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Synaptic depression causes the amplitude of the response to a spike input to 

decrease with repetitive stimulus, whereas the amplitude of the response is increased for 

facilitation. The effects of synaptic adaptation in large networks of neural oscillators with 

adapting synapses have been addressed in various systems. Some analytical progress has 

been made using mean field theory in large discrete networks [12]. For integrate-and-fire 

oscillators, with the simple model of synaptic adaptation described by Abbott [2], it was 

shown that synaptic depression can decrease (increase) the collective period of oscillation 

in an inhibitory (excitatory) network and that the opposite occurs for facilitation. More­

over, synaptic facilitation can enhance the stability of a frequency locked state, whilst 

depression can have a destabilising effect. 

Other properties within the synaptic adaptation framework have been addressed. 

Within a Wilson-Cowan firing rate formalism, and using a more complex description of 

synaptic adaptation, Tsodyks et al. [147] have shown that large networks with excitatory 

coupling can support regular and irregular network activity. Short-term effects, such as 

synchronised bursting, have been associated with the dynamics of adapting synapses in 

an integrate-and-fire network [148]. Pattern formation has been shown to exist in small 

discrete networks exhibiting synaptic adaptation [102]. 

Kistler and van Hem men [90] developed a minimal time-continuous model. Using 

the spike response model of a neuron, they found that short-term depression did not 

affect the stability properties of neurons firing in a synchronous state. However, in the 

case of short-term facilitation, their theory predicts that the stability of the steady state 

is dependent upon the relative values of the asymptotic value of the facilitation and the 

synaptic coupling strength. However, after an extensive parameter search, no realistic 

parameter setting was found which would destabilise a solution which was synchronous 

in the non-adapting case. 

Complex computational [95] and mathematical [38, 51] models of synaptic adap­

tation based on experimental data exist, but are difficult to analyse. The following simple 
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mathematical model was suggested by Abbott and Marder [2]. The post-synaptic po­

tential caused by a single action potential is typically modelled as an ex-function or the 

difference of two exponentials (see section 2.3). If the shape of the post-synaptic response 

is labelled J, and a pre-synaptic spike occurs at time Tm, then the post-synaptic response 

at timet is given by J(t-Tm). Thus, for numerous pre-synaptic spikes, the post-synaptic 

response function is given by 

P(t) = _[, J(t- Tm). 
rm<t 

However, since synaptic facilitation and short-term depression cause the amplitude of 

the response to depend on the previous history of pre-synaptic firing, a more accurate 

description of post-synaptic responses may be achieved by incorporating these history 

dependent events as an amplitude factor to adjust the magnitude of the spike response J. 

Hence, take 

P(t) = _[, A(Tm)J(t- Tm). 
t>Tm 

where the function A(t) scales the response evoked by a single spike at the mth firing 

time Tm by an amount that depends on the timing of the spike relative to others in the 

train. A simple way to model this phenomenon [2] is for each spike to modify A(t), 

but between spikes, A(t) exponentially returns to its equilibrium value of unity. Hence, 

including a time constant Ty, A(t) is represented by, 

dA 
'<"y- = 1 -A for Tm < t < rm+l. 

dt 
(3.1) 

Synapses typically adapt on a time scale of between lOOms and a few seconds [92], and 

on a time scale longer than that ofthe membrane. Other phenomena, such as LTP (long­

term potentiation), can be modelled with dependence on both pre- and post-synaptic 

activity. For facilitation (depression), a pre-synaptic spike causes an increase (decrease) 

in the amplitude of the post-synaptic potentia Is. This can be modelled as follows, 
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3. Synaptic adaptation in discrete integrate-and-fire networks 

where A(t+) = lim.s-..o+ A(t+6). Thus, y > 1 (y < 1) signifies facilitation (depression). 

The effects of synaptic adaptation on discrete networks of integrate-and-fire neurons is 

included in an existing framework in the following section. 

3.1 Adaptation in discrete integrate-and-fire networks 

Consider a network of N synaptically-coupled integrate-and-fire neurons, with spike train 

outputs. Let Vi( t) denote the state of the ith neuron at time t, i = 1, ... , N. Suppose 

that the neurons evolve according to the following dynamics 

dVi(t) = _ Vt(t) +I·+ S·(t) 
dt T ' ' ' 

(3.3) 

for Tim < t < T;"'+1 where Tt' represents the mth firing of a neuron at position i, 

Ii is a constant external bias, T is the membrane time constant, and Si(t) is the total 

synaptic current into the cell. A reset condition is also required, such that whenever 

Vi(t) = Ve = 1, then Vi(t+) = Vreset = 0. The condition liT> 1 is introduced so that 

all neurons fire in the absence of coupling (the oscillatory regime). The excitable regime 

(Ii'r < 1) will not be considered here. The time constant of the membrane, T, has typical 

values in the range 5-20msec, and in this chapter the units of time will be fixed by setting 

T equal to unity. 

Including synaptic adaptation into the synaptic input, 

N 

si(tl = e L. wij L. Aj(TjmlJ(t- TrJ. 
j=l mEZ 

(3.4) 

Elements in this expression are defined as follows: e > 0 is the global coupling strength, Wii 

is the coupling weight of the connection from the jth to the ith neuron, H t) is the post­

synaptic response of a single spike with J(t) = 0 fort< 0, and Tr are the firing times 

of the jth neuron (m runs through the integers). Note that there is no restriction on the 

size of the positive coupling e. Hence the theory presented will be applicable for strong 

coupling. A biologically motivated choice for this response is a unit normalised ex-function, 

J(t) =Tj(t) = cx:2te-cct8(t), where 8 is the unit step function (see section 2.3). 
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Integrating equation (3.1) between the firing times Tt leads to the following 

difference equation for Aj(Tjm), 

Aj(Tt'+l_) = 1 + [Aj(Tt') - 1]e-(Tr+'-l;ml/~y, 

where A(t-) = limli--;o+ A(t-6), and after dropping transients this gives the asymptotic 

solution, 
()() 

Al(Tjm+l_) = 1 + (y -1) L ylke-(T;m+'-Tr-·v~y' (3.5) 
k=O 

in the additive (:j: = 0) and multiplicative (:j: = 1) cases. 

The firing times Tjm evolve according to an infinite-order nonlinear difference 

equation defined by T{" = inf{t I Vi(t) 2 Va, t > Tim-1
}. Suppose Tt = (n- <!>j)t> for a 

self-consistent period t1 and some constant phases <!>j. This mean that the oscillators are 

all firing with the same period, but at different times (phase-locked). By integrating (3.3) 

over the region t E (T{', T{'+1
) and using (3.4), the dynamics reduce to theN equations, 

N 

1 = (1- e-Ll)Ii + e L. wijKi(<t>j- <!>d, 
j~l 

(3.6) 

fori= 1, o o., N, where the convolution of the integrate-and-fire response and the periodic 

input is given by, 

and 

for a E [0, 1) and periodic extension P(9) = P(a +m). Using the ansatz for Tt. the 

asymptotic steady state of A ( t) is given by, 
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where :j: = 0 or 1 depending on whether the additive or multiplicative case is respectively 

being considered. In order that the sum converges it is required that lyle-Ll/"'yl < 1. 

The index j is dropped since the asymptotic value is the same for all Ai(t). This is 

appropriate because, after transients, all synapses see the same frequency of spike train. 

This value for A~ (Ll) diverges if y > 1 and :j: = 1, and AL{Ll) becomes negative for a 

range of values of Ll when :j: = 0 and y < 1. Thus, the multiplicative case is taken when 

y < 1 (depression) and the additive case taken when y > 1 (facilitation) in order to be 

realistically plausible. 

Consider the synchronous case <Pi = <P, \li E Z. Solutions are ensured to exist 

by imposing the balance condition 

(3.7) 

for i = 1, ... , N and where ri = _L~1 Wii· This is derived from (3.6) by decomposing 

Ii as 4 + I and balancing the synaptic current with 4 so that we get an effectively 

isolated neuron with constant drive. Then all neurons will fire at the same time (no phase 

lag) with time period Ll =In [I/(I-1)]. Perturbations of the firing times of the form 

Tk' --1 Tk' + l:k: are considered. Substitution of these perturbed firing times into the firing 

condition Vk(Tk') = 1 and linearising around the synchronous solution Tk' =nil yields a 

linearised firing map. In this case, substitution into (3.5) gives, 

where 
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Integrating (3.3) fortE (Tim' Tjm+lj and expanding to first order in the pertur­

bations leads to the following linear difference equation, 

(i:;~+l- L;~j {ri -1 +et WiiPt.(O)Afx,(.1)} = 

N 

e.[_ Wii .[_ { Mrn(O, .1)Afx,(.1) [L;j'-m- L;~] - Lm(O, .1)q(n- m, .1)}, 
j~l mEZ 

(3.8) 

where, using the notation J'(s) = dJ/ds, 

Mm(<P, .1) I: e"e-"'J'(u +(m+ cp).1) du, 

Lm(<JJ,.1)- e-"'J:e"J(u+(m+<P).1)du, 

-ryq(x, .1) [1 - Afx, (.1)] q + 'ryBj (x- 1, .1). 

The asymptotic behaviour of the perturbations is then determined by solutions 

of an eigenvalue equation, evaluated by substituting L;j = erV.L;i into difference equa­

tion (3.8). Incorporating balance condition (3.7) into eigenvalue equation (3.8), 

where 

N 

.0{(0, .1, A)i:;i = e.[_ Wii/:;ji\1(0, .1, A), 
j~l 

(3.9) 

i( ) _ [ 1-_
11 

(r- 1 eiA1,(.1)ridKAf<Pl) eA1,(.1)ridKt.(<Pl 
.Qi cjl, .1, A e + .1 dcjl + .1 dcjl ' 

Ai(cjl,Ll,A) .[_{Af,(.1)Mm(<JJ,.1)- LL(A,.1)Lm(<P,.1)}e-rnA, 
mEZ 

and where 

with 

.!_ dKt.( <P) = ' M ("' .1) 
Ll d</1 L_ m 'I'> ' 

mEZ 

- KA(<fi). 
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For sufficiently small coupling strength €, equation (3.9) shows that the local 

asymptotic stability condition of the synchronous state is given by (modified from the 

theorem in [17]) 
dK1 

€~(0)Re[Kp] > 0, p = 1, ... , N- 1, 
dt 

where Kp, p = 1, ... , N - 1 are the non-zero eigenvalues of W defined by 

N 

wij = wij - liij .[_ wik. 
k~l 

(3.10) 

and where liii is the Kronecker delta (unity when i = j and zero otherwise). As € is 

increased, destabilisation of the synchronous state can occur by one or more complex 

conjugate pairs of eigenvalues crossing the imaginary axis in the complex A-plane from 

left to right. This defines a discrete Hopf bifurcation (sometimes called a Neimark-Sacker 

or secondary Andronov-Hopf bifurcation) in the firing times. By substituting A= 0 into 

equation (3.9), it is clear to see that the system is invariant to uniform phase shifts in 

the firing times. Using the above linear stability analysis, the Hopf bifurcation point is 

established by finding the minimum value of the global coupling strength, €, for which 

the solution becomes unstable: This is the fundamental mechanism for the generation 

of complex firing patterns. The substitution A = i~ is performed in the eigenvalue 

equation (3.9). By comparing real and imaginary parts, two simultaneous equations 

are produced. Solving these for ~ and € derives solution curves (eigenmodes) for the 

two variables. [In the special case that ri does not depend upon i, Ci can be chosen 

to lie along one of the eigenvectors of the weight matrix W to greatly simplify the 

analysis.] Performing an expansion of A in the coupling strength, shows that either A 

is close to 0 or is a pole of the function A(cjl,L'.,A). Define a matrix H = (Hiil by 

Hii = €WiiA(O,L'.,A) -Qiliii· Then H( =0, where ( = ((1,(2, ••• , CN). The curve of 

Hopf bifurcation points is determined by solving det H = 0 with A= ij3. The system for 

two neurons can be represented as a pair of simultaneous equations 

Re[detH](€,~) =0, lm[detH](€,~) =0. (3.11) 

These results can be expressed in the following theorem. 
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Consider a network ofN integrate-and-fire oscillators evolving according to equa­

tions (3.3) and (3.4) with reset condition such that Vi(t+) = 0 whenever 

Vi(t) = 1. Suppose that the weights Wii and external inputs Ii satisfy equa­

tion (3. 7} so that equation (3.6) has a synchronous solution with collective period 

of oscillation Ll = ln[I/(I- 1 )]. Then the synchronous state destabilises via a dis­

crete Hopf bifurcation in the firing times at synaptic coupling strength € Hopf with 

period B, where €Hopf and B are the simultaneous solution of equations (3.11). 

In the following examples of this linear stability theory, oscillator death (in which 

one neuron suppresses the activity of all others), bursting (a periodic temporal variation 

is seen in the short term averaged firing rate), and pattern formation occur by increasing 

the coupling strength. The adaptation time constant will be set to 'ry = 1. lt has been 

found that the primary result of increasing 'ry is to shift the curves in parameter space. 

For weak coupling, the synchronous state is always stable (subject to equation (3.10)). 

3.1.1 Oscillator death in an inhibitory network 

As a first example, consider two identical integrate-and-fire oscillators with all-to-all in­

hibitory coupling and no self-interactions. This network has synaptic weight matrix W 

given by Wn = W22 = 0, W12 = W21 = -1. Then, ri = L~~l Wii = -1 for i = 1, 2. 

By solving the simultaneous equations (3.11) for the variables € and B with these param­

eter values, linear stability boundaries of the synchronous state are determined. 

Figure 3.1 shows the coupling strength bifurcation curves for two neurons which 

are inhibitorily coupled. For each value of adaptation y, the parameter space below the 

curve represents linearly stable synchronous states. Simulations show that as the coupling 

strength is increased and crosses the stability boundary, the synchronous state ceases to be 
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Figure 3.1 Symmetric inhibitory coupling in a pair of integrate-and-fire oscillators. Pa­

rameter values I= 2, y = 0.5 (depression),0.9 (depression), 1,2 (facilitation). These 

bifurcation curves correspond to the self consistent e solution of equation (3.11) with 

Ty = 1. Upon crossing these curves from below, a linearly stable synchronous rhythm 

destabilises and oscillator death occurs. This means that one oscillator continues to 

fire, but suppresses the activity of the other. Thus causing the cessation of rhythmic 

oscillations in that neuron. 

stable. Slight differences in the initial conditions mean that one neuron will suppress the 

activity of the other, resulting in oscillator death. Synchrony persists for greater values of 

the synaptic coupling when synaptic depression is apparent than for synaptic facilitation. 

A critical rise time exists for all values of y. That is, there is a value of ex such that the 

network always has a stable synchronous solution, independent of the coupling strength. 

Hence, networks with fast synaptic interactions, or high depression, promote synchronous 
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behaviour. lt can also be shown that the critical rise time is a decreasing function of N. 

This means that synchrony is more likely to occur in large networks. For a discussion in 

the non-adapting case, see [17]. 

McMillen et al. [104] have considered a simple model of synaptic adaptation 

which adapts the firing threshold of the neuron. Each equation describing a neural os­

cillator is augmented with an additional equation which governs the value of the firing 

threshold: Ye = k{V- Ye) for some constant k, and where the dot signifies differentia­

tion with respect to time. A separate description of an adapting threshold will be given 

in section 4.4.2. McMillen et al. found that mutual inhibition can lead to oscillatory 

behaviour in a pair of neurons provided that inhibitory effect is of limited duration. This 

results in the production of a half-centre oscillator. A definition and explanation of such 

models will be presented in chapter 5. 

3.1.2 Bursting in an excitatory-inhibitory pair of neurons 

An excitatory-inhibitory pair of integrate-and-fire neurons with self-connections leads to 

the production of bursting patterns. The synaptic weights are given by 

w = [ -1 -2]· 
1 -1 

The excitatory and inhibitory synaptic coupling of the second neuron can be thought of as 

having an excitatory neuron with self-connection mediated by an inhibitory interneuron. 

According to Dale's Principle and subsequent mathematical definitions [75] individual 

synapses of a neuron are allowed to have different actions, but the "averaged synapses" 

from one neuron to another must have the same action. 

The bifurcation curves generated by the self-consistent solution of equations (3.11) 

with this weight matrix are shown in figure 3.2. Once again, a critical rise time in ex ex-
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Figure 3.2 A: Excitatory-inhibitory coupling in a pair of integrate-and-fire oscillators 

with inhibitory self interactions. Parameter values are I = 2 with w,, = -1, W12 = 

-2, W21 = 1 and Wz2 =-1. The solution to equations (3.11) in this situation produces 

these bifurcation curves which correspond to the border between synchronous stability 

and bursting. Upon crossing these bifurcation curves from below, the stable synchronous 

state destabilises into a bursting state, where both neurons have periods of high activity 

separated by periods of no activity. The cusp halfway along the stability borders is created 

by the intersection of two distinct eigenmodes. B: Numerical simulation of a burst train 

in this network. The shorter spike train represents the excitatory neuron, whilst the taller 

represents the inhibitory neuron. Parameter values are y = 1 (no adaptation), ex= 2 and 

£ =4. 

ists. Direct numerical simulation shows that when this stability boundary is crossed from 

below, bursting becomes the stable state in regions close to the stability border. This 

means that for each neuron there is a period of high activity and a period of no activity. 

The dependence on y of the bifurcations is shown to be similar using an analog model 
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(section 3.2). This activity is interesting because no extra currents are needed to create 

this behaviour- it is purely a network efFect. 

3.1.3 Pattern formation in a one-dimensional network 

Certain networks of integrate-and-fire neurons support pattern formation. This will be 

shown in this final section. For example, consider a ring of N = 2n+ 1 integrate-and-fire 

neurons defined by (3.3) and (3.4), with weight matrix defined as Wii = W(li-jl) where 

W(k) = A,exp (-2k:?) - Azexp (-2:~) , 0 < lkl :::; n, (3.12) 

with W(k) = 0 for lkl >nand W(O) = 0 (no self-interactions). Choosing A, > Az 

and er, < CYz produces a Mexican hat interaction function, in which there is short-range 

excitation and long-range inhibition. For convenience, Ii = I and A, Az are chosen 

so that ri = L~-n W(k) = 0 for all i. Thus excitation and inhibition are balanced. 

With this weight matrix, the collective period of oscillation is T =log [I/ (I -1)]. Then 

eigenvalues of equation (3.12) are given by 

n 

K(p) = 2 .[. W(k) cos(pk), 
k~l 

2n 2n(N - 1) 
p=O,N, ... , N 

The corresponding eigenvectors are given by 'Vk = eikp for p = 0, ~' ... , 2"1~-l). To 

investigate the linear stability of this system, substitute in equation (3.9) the following: 

l;k = eikp, Ii =I, ri = 0 and A.= i~. The resulting equations are, 

(I -1 )(cos /3 -1) - €Re[A(O, ~. i/3 )], 

(I-1)sin ~ €1m[A(O, ~. i~)], 

where € = € K(Pmaxl. and K(Pmaxl is the first wave to cross the boundary. 

(3.13a) 

(3.13b) 

Solving these simultaneous equations produces the curves shown in figure 3.3(A). 

There are non-trivial solutions of equations (3.13) for all values of IX. The information is 
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Figure 3.3 A: "Mexican hat" coupling in a ring of integrate-and-fire oscillators. Pa­

rameter values I = 2, y = 0.5 (depression), 1, 2, 5 (facilitation). The solution of 

equations (3.13) for a given set of parameter values produces a curve which separates the 

linearly stable parameter regime (below) from the one which produces patterns (above). 

The cusp is created by the intersection of two distinct eigenmodes. B: Separation of the 

inter-spike interval orbits in phase-space for a ring of N =51 integrate-and-fire neurons. 

The attractor of the embedded inter-spike interval with coordinates (6~-l, 6rl is shown 

for all N neurons. (Inset) Regular spatial variations in the long-term average firing rate 

ak (dashed curve) are in good agreement with the corresponding activity pattern (solid 

curve) found in the analog version of the network. Parameter values are a = 2, e = 0.4, 

cr, = 2.1, O"z = 3.5, A, = 1.77 and Lk W(k) = 0. [Reproduced with kind permission 

from Coombes [18]]. An analog model is described in section 3.2. 

qualitatively the same in all cases. When adaptation reaches a critical value y crit• the bifur­

cation structure changes. Fory < Ycrit· two eigenmodes intersect to produce the stability 

boundary. A single eigenmode produces the stability boundary for y > y crit· Since previ­

ous results concerning oscillator death (section 3.1.1) and bursting (section 3.1.2) show 

48 



3. Synaptic adaptation in discrete integrate-and-fire networks 

only qualitative differences (stability boundaries are shifted), little quantitative change 

is expected here. Hence, direct numerical simulations of this network are not pursued. 

Examples of patterns in the non-adapting network are given in figure 3.3(8) [18]. 

3.2 The analog model 

One way to approximate integrate-and-fire networks is to assume that synaptic inter­

actions are slow. Then, the output of the neuron can be characterised by a mean 

(time-averaged) firing rate. Consider the a-function where the synaptic rise time a-1 

is significantly longer than all of the other timescales in the dynamics. Then, the total 

external stimulus is slowly varying, and the spike train dynamics (LmEZ b(t- Tt)) can 

be replaced with a smooth firing rate function 1.Jl(Vi(t)). This is done in the synchronous 

case, QJi = <P (for all i), where each synaptic adaptation factor Ai(Tim) can be replaced by 

its asymptotic value AUil). Decomposing Ii as Ii =I+ I;. where I> 1 and absorbing 

It into the synaptic input si (3.4), gives 

with firing rate function 

Hence, for an a-function, the total synaptic input satisfies the following system of equa­

tions, for i = 1, ... , N, 

1 dSi(t) 
<X dt 

1 dS{(t) 

<X dt 

N 

-s~(t) + e L. wijA,;,(il)1.Jl(Sj(t)) + 4. 
H 

(3.14a) 

(3.14b) 

This set of coupled ordinary differential equation generates the a-function response, and 

has fixed point defined by Si(t) = S{(t) = eL~, WiiA~(il)1.Jl(Si(t)) + 4. Linearising 
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3. Synaptic adaptation in discrete integrate-and-fire networks 

equation (3.14) about the fixed point (assumed to lie at the origin for simplicity), leads 

to the equations 

1 ds, , 
-- =-s·+s· 
()( dt t " 

1 ds{ _ I ~ w j ( A)llll( ) --d - -S; + € L ijA00 '-" r 0 Sj, 
()( t 

j=l 

(3.15) 

where s; and s{ are perturbations from the steady state, and the balance condition is 

given by 
N 

0 = € L W;jA~(t.)'l:'(O) + r::. (3.16) 
j=l 

Substituting a solution of the form (s;(t), s{(t)) = (s;, s;Jel\t and supposing W 

has eigenvalues Kp for p = 1, ... , N, leads to the eigenvalue equation 

A~= -ex± cxJ eKpA;;_, (t.)'l:''(O) for p = 1, ... , N. 

A number of different bifurcation scenarios present themselves when the global coupling 

constant e is treated as the bifurcation parameter. 

• All eigenvalues Kp are real and negative. 

The eigenvalue equation can be reduced to 

A~ =-ex± icxJ eiKpiAi(T)'l:''(O) for p = 1, ... , N. 

Then the fixed point at the origin is stable for all e > 0. 

• A single real eigenvalue crossing the imaginary axis. 

There exists an eigenvalue of W, Kmax• which is positive and has the greatest real 

part. Then, the origin will undergo a static bifurcation at a critical value of the 

coupling strength given by 

Additional fixed-point solutions which correspond to an inhomogeneous firing rate 

will emerge. 
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3. Synaptic adaptation in discrete integrate-and-fire networks 

• A pair of complex conjugate eigenvalues crossing the imaginary axis. 

Suppose there exists a complex conjugate pair K, K' of W such that K = reiB and 

} :::; 9 :::; 3; and that all other eigenvalues have negative real part. Then, 

AT= -<X± aei912V €Aio(~)'l''(O)r. 

A Hopf bifurcation will occur when Re[Fd = 0 at the critical value of the coupling 

strength, €,extHopf given by 

1 =cos ~V €HoprAio(~)'l''(O)r. 

Periodic solutions (time-dependent firing rates) are formed. Numerical examples 

indicate that this is a subcritical Hopf bifurcation. 

These solutions are illustrated in figure 3.4. The effect of adaptation (either 

facilitation or depression) merely seems to shift the curves with respect to the unadapted 

state (y = 1 ). In this rate model the dependence on y of the bifurcations shows similar 

trends to those in sections 3.1.1 and 3.1.2 for small a (cf figure 3.4 to figures 3.1 and 3.2). 

3.3 Rate-coding vs Spikes 

Tsodyks and Markram [146] have considered synaptic adaptation in the context of neural 

coding. A model of depression was formulated, in which parameters were determined ex­

perimentally. The dynamics ofthe effective, inactive and recovered fractions of resources 

in the synaptic connection were described using a pair of coupled ordinary differential 

equations supplemented with the constraint that the three fractions sum to unity. Each 

pre-synaptic action potential arriving at a neuron activates a fraction of resources in the 

recovered state. This then inactivates and recovers on two separate time scales. Experi­

mental traces for both regular and irregular trains of pre-synaptic action potentials could 
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Figure 3.4 Examples of two bifurcation states in the analog model of two coupled 

integrate-and-fire neurons using equations (3.15) with balance condition (3.16). Param­

eter values are N == 2, I == 2, ex== 0.5 and various values for the strength of adaptation 

are chosen. A: Symmetric inhibitory coupling (given in section 3.1.1). Solid (dashed) 

lines denote linearly stable (unstable) solutions. B: A subcritical Hopf bifurcation for a 

pair of analog oscillators with self-interactions (parameter values given in section 3.1.2). 

Open circles denote the amplitude of the resulting limit cycle from the Hopf bifurcation 

point. In both diagrams, the dotted lines need special consideration. To the left of the 

relevant bifurcation point (in terms of y), this dotted line is linearly stable, and unstable 

to the right. These figures are created using XPPAUT (see appendix A for more details). 

be produced using this model. Predictions regarding the coding of information through 

spike timing in physiological neurons were made. By performing experiments on a single 

neuron in slices of the rat neocortex, and monitoring its response to an input spike train, 

the predictions were verified. Tsodyks and Markram concluded that the rate of depression 
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Figure 3.5 Comparison of the integrate-and-fire (IF) dynamics and the analog model in 

the bursting regime. Parameter values a = 0.5, I = 2, and 'ry = 1. The curves are 

created from equations (3.11) and (3.15). 

has a marked effect on the neural code. When depression is fast the oscillators tend to 

have temporal coherence, ie synchrony (ail oscillators firing at the same time), but, as 

depression is reduced, the neural output tends to have alternating regions of high and 

low activity. A more useful description would therefore be given by using a rate coding, 

where the activity of the neuron can be appropriately represented by the average firing 

frequency over some time period. 

Throughout this section, the network consisting of two coupled integrate-and-fire 

neurons with self-interactions presented in section 3.1.2 will be considered. Once again 

the stability boundary is calculated from equations (3.11). However, instead of treating 

the global coupling constant e as the variable parameter, the strength of adaptation y 
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3. Synaptic adaptation in discrete integrate-and-fire networks 

and the time constant of adaptation 'ty are chosen. Figure 3.5 would seem to support 

the claims of Markram and Tsodyks. The figure shows the stability boundary for fixed 

()( = 0.5, with y as the adaptable parameter. The system is in a synchronous state 

below these curves, and then switches to a bursting state once the integrate-and-fire 

curves are crossed. If a point is picked above the boundary curve, then by keeping the 

synaptic coupling strength constant and increasing the amount of depression (y -1 0), 

the system would eventually cross the stability border and be underneath the integrate­

and-fire curve, and hence lie in the synchronous region of parameter space. The onset of 

bursting is described well by the analog model for low levels of depression and also for 

the facilitation case (see figure 3.6(B)), but begins to fail as the level of depression is 

increased. 

Figure 3.6 shows the comparison of the integrate-and-fire and analog models 

with 'ty as the variable parameter for y = 0.5 (depression) and y > 1 (facilitation). For 

small values of 'ty (fast dynamics), both the analog and integrate-and-fire models have 

stability borders which remain close, but as 'ty increases (slower dynamics) these curves 

diverge in the case of depression. As ()( decreases, or y increases, this region becomes 

larger. This is similar to the claim of Tsodyk's and Markram [146] because bursting 

occurs for fast dynamics, but by keeping the same level of adaptation and reducing the 

speed of adaptation dynamics ('ty -1 oo), the system displays synchronous behaviour. 

Figure 3.6(8) shows that in the facilitation regime, both models show qualitative agree­

ment for all values of the time constant 'ty. This means that a rate coding is appropriate 

for the network activity, suggesting smooth variation in the firing rate. As a comparison, 

figure 3.7 shows these stability boundaries in a region where the analog model is not 

defined (large ()(). lt is clear that the analog model does not represent the data well 

anywhere in this parameter regime. 

To show that the integrate-and-fire and analog models do not always agree, the 

output of the integrate-and-fire and analog models are numerically compared. In figure 3.8 

54 



3. Synaptic adaptation in discrete integrate-and-fire networks 

A B 

10 4 
£ £ 

8 3 

6 
2 

4 

2 
1 ANALOG 

.... ______ 
0 0 

0 1 2 3 4 5 0 1 2 3 4 't 5 
'ty y 

Figure 3.6 Comparison of the stability boundaries for the integrate-and-fire (IF) and 

analog models with a change in the time constant of adaptation using the self-consistent 

solution of equations (3.11) and (3.15). Both have parameter values ex= 0.5 and I= 2. 

A: Depression is set at y = 0.5. lt can be seen that for small values of 'ry, the integrate­

and-fire dynamics and the analog model produce stability boundaries which are very close, 

and that as 'ry is increased these curves diverge. This suggests that for large values of 

'ry, the analog model no longer produces results which are comparable with the integrate­

and-fire model. B: The facilitation regime y = 2. The curves are very close throughout 

indicating that the analog model gives comparable results in all parameter regimes. 

bursting patterns are plotted for the integrate-and-fire model (the spikes) along with the 

equivalent data from the analog model (the envelopes). As y is decreased (A~C), the 

envelopes of the analog model do not overlap the integrate-and-fire spikes quite so well 

and exhibit drift. As 'ry is decreased (B~C), it can be seen that these envelopes become a 

much better fit. As 'ry is increased, the drift will become more pronounced. In hindsight 

this seems an obvious conclusion since for fast dynamics, the synaptic adaptation will 
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Figure 3.7 Comparison of the integrate-and-fire (IF) dynamics and the analog model 

with a change in the time constant of adaptation using the self-consistent solution of 

equations (3.11) and (3.15). Parameter values ex= 20, I = 2, y = 0.5. Nowhere in 

the figure is the analog model close to the integrate-and-fire model. This means that the 

analog model is totally unsuitable for representing data with large values of ex. 

evolve very quickly and relax to unity. However, neurons adapt their synaptic connections 

on timescales much longer than the nerve membrane (in this thesis equal to unity). In 

conclusion, both 'ry and y play an important role in the coding of neural information. 

Rate-coded models give a good approximation to the integrate-and-fire model when there 

is little or no depression and also when the depression has fast dynamics. 
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Figure 3.8 Comparison of the integrate-and-fire dynamics and the analog model in the 

bursting regime. Output is created by cimparing direct numerical simulation of equa­

tion (3.3) and (3.4) (with balance equation (3.7)) with that of equations (3.15). Param­

eter values ex.= 0.5, I = 2, A: y = 0.99, T = 5.0, € = 3.5, B: y = 0.9, 'l'y = 5.0, 

€ = 8.0, C: y = 0.9, T = 0.2, € = 3.5. See the text for a description of the dynamics. 
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3. Synaptic adaptation in discrete integrate-and-fire networks 

3.4 Recapitulation 

A simple model to describe synaptic adaptation (the modification of inter-neural connec­

tion strengths in response to persistent stimulation) has been used in a discrete network 

of integrate-and-fire neurons. This modification of current theory has shown that the 

qualitative nature of the bifurcations remain the same, but the stability borders shift in 

parameter space. One attribute of synaptic adaptation is that it can produce a switch in 

the behaviour of the network. As the level of synaptic depression is increased (y -l 0), 

a network exhibiting synchrony evolves into one in exhibiting bursting. However, since 

the primary effect of the inclusion of synaptic adaptation in these networks leads to lit­

tle quantitative change, emphasis will henceforth be placed on studying travelling waves 

without adaptation. 

58 



Chapter 4 

Synaptic travelling waves in 

integrate-and-fire systems 

In the preceding chapter, small networks were considered in order to demonstrate 

the different phenomena which integrate-and-fire neurons can produce. lt was shown that 

synaptic adaptation has little effect on the quantitative mechanisms of neural interaction. 

Hence, synaptic adaptation will not be considered further. Even though the brain may be 

viewed as a network of discrete cells, there are billions of cells and it seems prudent to 

approximate this system as a continuum. Then, established calculus techniques can be 

used to ana lyse the systems. 

Travelling waves have been experimentally observed in many neural systems, for 

example thalamocortical regions of humans [128]. the retina of developing rabbits [157] 

and mice [5]. the visual cortex of the turtle [122] and the olfactory system of the mol­

lusc [34]. Travelling waves are present in central pattern generators in the locomotion 

system of fish ([113] and references within). Hippocrates in the 4th century BC discussed 

epilepsy as a disturbance of the brain. The actual mechanism for epilepsy is that a collec-
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4. Synaptic travelling waves in integrate-and-fire systems 

tion of neurons begin to fire synchronously [27] and then this activity propagates across 

the neural media [25]. Here, and throughout the thesis, the term travelling wave means 

that a phase difference exists between the activity of neighbouring neurons rather than 

the propagation of axonal voltage waves. 

The cortex is often considered to be a thin sheet about 0.2 m2 in area and 2-3 

mm thick. Here, to simplifiy the mathematics, a one-dimensional continuum of integrate­

and-fire neurons will be examined. Studying this reduced system will give insight into 

ways in which progress can be made in higher spatial dimensions. The integrate-and-fire 

model is a reasonable model of travelling waves in the cortex since Ermentrout showed 

that the velocity of a travelling pulse is independent of the ionic details irrespective of the 

membrane model selected, and depends only on the effective rise time of the synapse [45]. 

Boundary conditions are neglected in this model, but this is a suitable assumption since 

cortical interactions between neurons take place on distances of order 100~-tm-500~-tm 

and cortical nets are of the order of centimetres [42]. Taking the spatial extension of 

equations (3.3) and (3.4), the dynamic equation for the membrane potential V(x, t) is 

given by 
3V(x, t) _I _ V(x, t) S( ) 

" - 0 + x, t ' ut 't 
(4.1) 

where I0 is the external drive, 't is the membrane time constant (set to unity, thereby 

fixing the units oftime), and S(x, t) is the synaptic input. Equation ( 4.1) is supplemented 

by the reset condition such that, whenever V(x, t) = Ve with positive gradient in time, 

then V(x, t+) = Vreset• where Ve is the threshold value, and Vreset is the reset level. The 

notation V(x, t+) = limt->o+ V(x, t + &) is used. 

The synaptic input current has the form 

S(x, t) = e J: J: W(x, x')J(-r)'l'(x', t- -r) d't dx ', (4.2) 

where e > 0 is the global coupling strength, and W(x, x') is the weight kernel between 

neurons at positions x and x'. The delay kernel J(t) determines the shape of the post­

synaptic potential and can contain axonal delays, dendritic delays and synaptic adaptation. 
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4. Synaptic travelling waves in integrate-and-fire systems 

The general shape of such a response is given in figure 2.6. Finally, '!'(x, t) is the output 

spike train ofthe neuron at position x in the one-dimensional continuum. In the oscillatory 

regime (10 >Ye), the neurons fire independently in the absence of coupling with period 

Llo = log e~:vv;"). In the excitable regime (10 <Ye), the neurons cannot fire without 

coupling. 

Let the mth firing time ofthe neuron at position x be given by Tm(x). Neglecting 

the shape of an individual pulse, the output spike train of each neuron is represented as 

a sequence of Dirac delta functions 

'!'(x, t) = L .S(t- Tm(x)). 
mEZ 

The weight kernel is taken to be a function of the separation of the neurons. Hence, 

W(x, x') = W(x- x'). Two different types of weight function are considered in this 

chapter. The normalised square wave synaptic footprint is defined as 

1 
W(x) = l<Y8(x+ <Y)8(<Y-x), (4.3) 

where 8(x) is the heaviside step function defined in equation (2.9) and, in addition, a 

spatial scaling O" has been included. The weight kernel W(x) has compact support limiting 

the range of communication between neurons. The connection strength is independent 

of distance (provided the neurons are close enough). As a contrast, the normalised 

exponential synaptic footprint 

is considered. Each neuron communicates with every other neuron, and the interaction 

strength decreases the greater the separation between the neurons. 

Chapter 3 dealt with the emergence of various network states when the syn­

chronous state was destabilised. A transition can occur between an oscillatory regime 

and one in which a periodic travelling wave propagates. Consider a firing time of the 

form T(x) = Ll1 + ~x. For ~ = 0, synchronous behaviour will be apparent and when 
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the spatial term is switched on (~ =F 0) a travelling wave will be defined. Bifurcations in 

this system have been calculated and the transition was found to be partially due to the 

properties of the axonal coupling [32, 47]. For a periodic travelling wave, the firing time 

ansatz is 

( 4.4) 

for some fundamental period ~~ and wavenumber k. This defines a wave of speed 

c = 1/(~1 ) in the travelling wave framework. lt is implicitly assumed throughout the 

analysis that the system has already settled into some asymptotic steady state. Osan et al. 

have examined the onset and evolution of travelling waves in integrate-and-fire and theta 

neuron networks [116, 117]. lt was found that for sufficiently large coupling strengths, 

two smoothly propagating travelling wave solutions exist. 

Integrating equation (4.1) between successive firing times gives, 

Ye- Yresete-"'' = Io (1- e-"'') + e roo W(x)KL>, (kx) dx, (4.5) 

where 

KL>, (x) =ILl' e-Ll, eu. L J(u+ (m+ x)~,) du. 
O mEZ 

(4.6) 

In the limit ~~ -1 oo, the travelling pulse solution is found. lt is useful to consider 

this scenario since simulations of conductance-based models predict that the propagation 

velocity of neural activity is determined primarily by the response of the post-synaptic 

neuron to the first one or two spikes of the pre-synaptic neuron [45, 55]. In this situation, 

equation ( 4.5) obviously only has a solution if and only if the system is in the excitable 

regime (!0 <Ye). The large ~1 limit of equation (4.6) is 

KLl, (kx) ~ J:Ll, e"J( 'r +kW.,) d'r, (4.7) 

since J(t) --10 as~~ --1 oo, the sum is dominated by the m= 0 term, and KLl., (kx) -1 0 

as~~ -1 oo unless k~1 = 1/c is independent of the size of ~1 , ie c(~1 ) --1 C00 . Then, 

the large ~~ limit of equation ( 4.5) is given by 

Ye=Io+efw(x)e-~ I: etJ(t)dtdx, (4.8) 

62 



4. Synaptic travelling waves in integrate-and-fire systems 

since J(t) = 0 fort::; 0. This expression can be obtained directly by simply integrating 

equation (4.1) over the interval (-oo, T0 (x)]. lt is sometimes useful to represent the 

formulae in terms of the travelling wave coordinate x = et - x, where c is the self­

consistent speed of the wave. Firing times occur when x = 0, and thus integrating 

equation (4.1) over the range (-oo,xl 

V(x) = Io + -- S(x')ex'/c dx'. 
e-x/c Jx 

c --<>0 

(4.9) 

A number of different synaptic responses are going to be addressed in the context 

of this travelling pulse set-up, and comparisons between the compact and non-compact 

synaptic support will be made. Firstly, however, theory regarding the linear stability of 

these solutions will be presented. 

4.1 linear stability of a travelling pulse 

Consider a single pulse propagating in the excitable regime (Io < Ye) with firing times 

T(x) = x/c. Linear stability is determined by studying the dynamics of a perturbation of 

the firing times. Let T(x) -1 T(x) +l:(x). Equation (4.1) is integrated over (-oo,T(x)] 

to produce 

J
T(x)+l:(x) loo 

e T(x)H(xl(1 - 10) = € --<>0 -oo etW(x, x')f(t- T(x') -l;(x')) dx' dt. 

Expanding to order 1 leads to the original result for a pulse (equation ( 4.8)). 

Expanding to first order in the perturbations and substituting a solution of the form 

((x) = e;\x gives, 

fo et foo W(x)J'(t- x/c)[e;\x- 1] dx dt = 0. 
-oo Jo 

(4.10) 

Solutions are asymptotically stable if all non-zero solutions A of equation ( 4.10) have neg­

ative real part. These solutions depend upon the speed c which is given by equation ( 4.8). 

Let A= a+ ib in equation (4.10) and separate into real and imaginary parts to obtain 
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the simultaneous equations 

H(a, b) - r (eaxcos(bx)- 1 )W(x)f(x/c) dx = 0, 

G(a, b) - r sin(bx)W(x)f(x/c) dx = 0, 

(4.11a) 

(4.11b) 

where f(s) = f~' eCs+ulJ'(u) du. Solving these simultaneous equations for a and b leads 

to the stability of the travelling pulse for the given architecture. 

Other types of bifurcation may occur in this neural system since the firing times 

are defined by a harsh nonlinearity. Type I and Type 11 grazing bifurcations (shown in 

figure 4.1) are common in impact oscillators (such as a ship bumping against a harbour 

wall, bouncing balls and vibrating beams) ([8, 20, 115] give an introduction to a number 

of articles on this subject). Type I bifurcations occur when there is a loss of solution 

via a local maxima decreasing through threshold. Type 11 is categorised by the creation 

of a solution as a local maxima increases through threshold. The existence of grazing 

bifurcations in strongly-coupled integrate-and-fire networks can have a marked effect on 

the possible solutions [30]. This is easiest to check in the travelling wave framework 

(X= c- x), where grazing bifurcations are categorised by 

dY 
dx (0) = 0, Y(O) =Ye (Type I) {4.12a) 

dY 
Y(O) =Ye, dx ((3) = 0, Y((3) =Ye (Type 11) (4.12b) 

with (3 < 0 and Y(x) given by equation ( 4.9). 

Having established equations which define the speed and stability of travelling 

pulses in the one-dimensional continuum, solutions for the qualitatively different square 

and exponential synaptic weight kernels will be given. After these examples, the extension 

of the theory to cover periodic travelling waves will be developed. 
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Figure 4.1 Depictions of A: Type I and B: Type 11 grazing bifurcations. Type I grazing 

bifurcations result in the loss of a firing solution as the local maxima decreases through 

the threshold Ve. Type 11 grazing bifurcations result in the creation of an earlier firing 

event as a local maxima increases through threshold V9. 

4.2 Travelling pulses (square synaptic footprint) 

Using the Fourier transform of the delay kernel J(t), equation (4.8) becomes, 

_ ~{Joo Jrw)eiwo/c 
Ve-lo+ 4 (1 . )" 

7t<Y . _ 00 + tUJ tUJ 
Jr_wJ. + JrU:) (e-cr/c -1) dw}. 

(1 + tw)tw 1 + tw 

This integral is evaluated by using contour integration (see figure 4.2). Causality of 

the delay kernel and Jordan's lemma impose that the first part of the integral must be 
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Figure 4.2 A: Contours used in integrations involving ~-function responses. The limit 

of the contour integral as R -+ oo of semicircles in the complex plane are taken. B: The 

"keyhole" contour is used when evaluating the synaptic input in the passive dendritic case 

in section 4.2.2. The limit of the contour integral as € -+ 0 and R-+ oo is taken. 

evaluated in the upper complex plane (contour y ). The latter parts will be evaluated in 

the lower half plane (contour r). This is easily applicable in the case of ~-functions since 

the poles of fi( w) are solely in the upper half plane. More care needs to be taken when 

considering dendritic kernels since branch points must be taken. Suppose J( w) has poles 

at w =wk. k=l, ... ,n (and wk i- 0, i). Then, 

(4.13) 

The stability is determined from the simultaneous solution for a, b of equations (4.11). 

For a general solution 11 =a+ ib, solutions are linearly stable if a< 0. In the Fourier 
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transform representation, the linear stability condition is defined by 

0 = 
c2"AJ(-ic;\) J(i)e-cr(A+l/c) -cr/c~. 

(1+c"A) + ("A+1/c) -ce J(t) 

{
cJ(w)eiwer/ci } { wJtw)e-cr(A-iw/cJ } 

+res 1 . ; wk + res ( 1 . ) (' . I ) ; Wk . +tw +tw "-tw c 
(4.14) 

This equation is then split into real and imaginary parts and solved simultaneously for a 

and b. Solutions to equations (4.13) and (4.14) will be presented in the next two section 

in the cases of oc-function and passive dendritic delay kernels. 

4.2.1 (X-function 

Temporal delay 

First consider the oc-function J(t) = T](t-'fa), where an axonal delay 't"a has been included 

in equation (2.10), as the shape of the post-synaptic response. Both the speed and the 

stability equations need the value ofJ(w). In this case, 

Evaluation of equation ( 4.13) gives, 

€ee<.'ta C 
Ye= lo + lo-(

1 
_ oc)Z { Ke-M/c + (1 -2oc)e-"'"•- oc2e(1-"'l"•(e-cr/c- e-"·)}, 

( 4.15) 

where K = oc- (1- oc)(oco-jc- OC't"a + 1). Solutions of equation (4.15) are shown in 

figure 4.3 for different values of the axonal delay, and shows the variation of the speed of 

the pulse with the coupling strength. A critical coupling €crit exists such that there are no 

travelling pulse solutions for € < €crit and two solutions exist for € > €crit· For this value 

of the critical coupling, sufficient synaptic currents are transmitted to other neurons in 

the continuum in order that a travelling pulse can propagate. These solutions coalesce in 

a saddle-node bifurcation. 
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Figure 4.3 The variation of speed c of a travelling pulse in a network with square foot­

print interactions with a-function delay kernel as a function of the global coupling strength 

€ for different values of the axonal delay Tu (the value of Tu is given next to the curve). 

The curves are generated using equation ( 4.15) with linear stability determined by equa­

tion (4.14). Dashed lines signify unstable branches. Parameter values: <X= 0.5, CJ = 10, 

! 0 = 0, Ye = 1, Yreset = 0. The red dots next to the curve Tu= 4 indicate the values 

found for the speed using numerical simulations of an integrate-and-fire network. For 

details on the numerical simulations see appendix A. 

The bifurcation points determined from equation (4.14) are shown in figure 4.3. 

Dashed lines correspond to unstable branches of the speed curve. As T" is increased, the 

critical instability point moves away from the limit point and along the upper (stable) 

branch. This introduction of an axonal delay creates a new type of bifurcation. As with 

a discrete Hopf (Neimark-Sacker) bifurcation, a pair of complex conjugate eigenvalues 

cross the imaginary axis from left to right. However, since space is also included in the 
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description of stability, this name seems inappropriate. Bressloff stated and proved the 

following theorem for a pulse propagating via ex-function post-synaptic responses with 

axonal delays included [15]: 

Let c+ and c_ denote, respectively, the fast and slow solution branches Co = C±( e), 

e 2': €cri<• of the self-consistency condition {4.8) for the velocity of a solitary pulse 

with synaptic delay kernel J(t) = 11(t- 'fa) where T](t) is given by equation {2.10). 

Here €crit is the critical coupling for the existence of a solitary wave. Then we have 

the following stability results: (i) The branch C_ is unstable for all 'fa and ex. {ii) 

The branch C+ is stable for all ex in the case of zero axonal delays ('fa= 0). (iii) For 

non-zero delays and sufficiently fast synapses (large ex), there exists a Hopf bifurcation 

point ehopf such that c+( e) is stable {unstable fore > ehopf• ( e, ::; e < €hopr)). 

Part (iii} of this theorem is particularly interesting because instabilities are shown to occur 

on the upper (fast) branch. This is unusual in excitable systems. 

The spatial scaling r; does not affect the position of the instability. it has been 

found analytically that in order for this new bifurcation to travel along the upper branch of 

the speed curve, the axonal delay must be larger than some critical value of axonal delay 

~~1'. Simulations of the network for 't"a > ~~;, produce lurching waves (see figure 4.6 

for an example of this waveform}, and these will be analysed in more detail later. No 

solutions were found to equations (4.12} and hence there are no grazing bifurcations in 

this system. 

By considering limit points in bifurcation diagrams (for example the speed­

coupling plot in figure 4.3}, it is possible to track out boundary curves for parameters 

such that a travelling pulse solution exists. These are presented in Figure 4.4. A different 

critical value of the axonal delay -r a exists to that which governs the emergence of lurching 

phenomena (figure 4.4(C}). If the delay is greater than this value then no travelling pulse 
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Figure 4.4 Boundary curves to show the existence of a travelling pulse solution for dif­

ferent parameter pairs in a one-dimensional continuum of integrate-and-fire neurons with 

square synaptic weight kernel and oc-function delay kernel. A: (i) ex = 2, (ii) ex = 0.5. 

Solutions exist in the area to the right of the respective curve. B: (i) T a = 0, (ii) T a = 6. 

Solutions exist to the right of the respective curve. C: (i) e = 60, (ii) e = 80. Solutions 

exist to the left of the respective curve. 

solutions exist for any parameter values. From figure 4.4(8), the speed of the synapse 

must be larger than some value for a given coupling strength e in order that travelling 

pulse solutions exist. However, providing the coupling strength is large enough, any non­

zero value for the synapse speed can produce a solution. If grazing bifurcations were 
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Figure 4.5 Speed curves for a travelling pulse in a network of neurons with square synap­

tic weight kernel and the ex-function delay kernel. The synaptic response includes spatial 

delay and synaptic connections are with a square synaptic weight kernel. Parameter values 

are ex= 0.5, IJ = 10, and 't"a = 0. The Cs = oo is equivalent to the 't"a = 0 curve in 

figure 4.3. The other curves are scaled versions of this. As before , dashed lines indicate 

unstable pulse speeds whereas solid lines represent linearly stable speeds. 

present in the system then these existence boundaries would be transformed or shifted. 

This is because extra solutions would be introduced into the wave train. 

ex-function with spatial delay 

The spatial delay depends upon the separation of the neurons and the speed of the 

action potential, c8 , and is introduced in the response kernel of the neuron. Thus, 
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J(t) = r ( t- ~1 ) where X is the separation of the neurons. Following the analysis as 

before only leads to the modification -c1 -+ l- l.., and so all results carry through as c c, 

before, except the speed is scaled (see figure 4.5). 

Lurching 

Lurching waves propagate such that cells are recruited into the wave in a non-smooth 

fashion, and are defined by T(x+L) = T(x) + Tper where Lis the spatial period length, and 

Tper is the time period of the lurching cycle (see figure 4.6). Lurching is evident in models 

of a structured network model of y-aminobutyric acid-containing (GABAergic) neurons 

exhibiting post-inhibitory rebound [59, 130]. However, it is not known at present whether 

lurching waves exist in a slice of cortex since spatial measurements of the membrane 

are not sufficiently fine to discriminate variations in the velocity due to heterogeneities 

from actual dynamic lurching. Spindle waves occur in the thalamus and are a form 

of synchronised oscillation that typically appear in the electroencephalogram (EEG) as 

a brief (1-2 s) period of oscillation (6-14 Hz) during slow wave sleep or drowsiness 

and are made up of waxing and waning activity [4, 133]. Experiments have suggested 

that these oscillations propagate by progressive recruitment of neighbouring neurons into 

the oscillation [85]. Numerical simulations of conductance-based models can reproduce 

spindle and slow bicuculline induced oscillations observed in vitro [36]. In this case, in 

vitro means that a very thin slice ofthe brain is removed from the animal and bathed in 

nutrient solution. These simulations show that these discharges propagate in a lurching 

(or saltatory) manner. Suppose the lurching period starts at x = 0 and T(O) = 0, then 

T(x) = l [J Tper + f(X), 

where f describes the shape of the "lurch" and is defined on the interval [0, L] such that 

f(O) =0, andx=x-[[J L. 
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Figure 4.6 An example of a lurching wave in a one-dimensional integrate-and-fire con­

tinuum (4.1) with (4.2). The delay and weight kernels are given by equations (4.3) 

and (2.10). The firing times are shown for 150 grid points in a 500 grid point simulation 

of the network with square synaptic footprint and ~-function delay kernel. System pa­

rameter values are given by ~ = 0.5, Ve = 1, € = 30, 0' = 10, 't'a = 4. A description of 

the direct numerical simulation scheme is given in appendix A. 

Analysis is followed along the same lines as Golomb and Ermentrout in order to 

find the velocity of lurching pulses [57]. Through simulations they deduced that neurons 

only fire during a time period which is small in comparison to the delay, and that L is 

almost unaffected by the axonal delay period (provided the axonal delay is large enough). 

Hence, the pulse velocity is given by Ciurch = L/-ra. 

Since the system which exhibits lurching waves requires a large axonal delay, a 

neuron is not affected by other neurons contained within its own lurching period. The 
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axonal delay causes the neuron to be affected only by those in the previous lurching period 

since other contributions have already decayed to a negligible level. Now, suppose the 

lurching wave is initiated for large negative x, and that a lurching period starts at x = 0. 

Consider neurons in the range 0 ~ x < L Hence, equation ( 4.5) becomes, 

Ye= lo+ EJ
0 

W(x-x') J
0
_ a2(u+ T)eue-"'(u+Tl dudx', 

-l -T 
(4.16) 

where T = Tper- 'ra > 0 (shown in simulations by Go Iomb and Ermentrout [57]). lt has 

been assumed that f(x) ~ f(v) for x, v E [0, l). Golomb and Ermentrout showed that 

as a increases, af(x) tends towards a constant function (see figure 6 in [57]). Hence, 

a must be taken to be large. Thus the analysis for lurching pulses is only correct in the 

limit 'ra » 1 » 1/a. Evaluating the integral in equation (4.16), and using the condition 

that x E [0, l), the following conditions are found in the large a limit, 

Ye= -
{ 

lo+ ·~~l'(o--l), % < l~ o-, 

ro + ·cL, o ~ L < %-

Taking the limit for small T (simulations in Golomb and Ermentrout [57] show that T 

scales as 1 /a), identical expressions to those calculated by Golomb and Ermentrout are 

recovered. 

4.2.2 Passive dendrites 

In the case of passive dendrites, equation ( 4.2) describing the synaptic input current has 

the form, 

S(x,t) = E J~ G(E,,t-t') [)0 W(x-x')'l'(x',t') dx' dt', 

assuming the dendritic contact point is at E,. Rail first demonstrated that a passive den­

dritic branch can act as a spatiotemporal filter which selects specific temporal sequences 

of synaptic inputs [125]. This is because it depends upon which part of the dendrite is 
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stimulated at which time. To evaluate this integral it is best to use the La place transform 

(equation (2.8) on the time variable, with p as the La place variable. This leads to 

S E, _ €C G(E,, P )e-px/c(epcr/c _ cvcr/c) 

( 'p)- 20" p(J- e-P41) ' 

where the firing time ansatz for a periodic travelling wave ( 4.4) has been substituted 

and k.Ll1 = 1 /c. Hence, upon inverting and introducing the travelling wave coordinate 

X =ct-x, 

S(x) - S(x- c~1) = A(E,, (x + O")/c) - A(E,, (x- O")/c), ( 4.17) 

where 
_ _ €C Je+icc G(E,, p )ePt 
A(E,, t)-

4
---:- dp, 

7t0"1. e-icc P 

and the Laplace transform of the Green's function is given by 

_ e-y,,~r-tvll~l 

G(E,,p) = 2 (-· )D' Ypass tp 

with Ypass(X) is given by equation (2.15). In the case of a travelling pulse, the second 

term on the left-hand side of equation (4.17) is omitted. Calculating the inverse Laplace 

transform along the lines of Coombes in [28], 

where 

Hence, 

- €cctho VDTo 
A(E,, t) = 

4
0"D [R(E,, t)- Q(E,, t)] 8(t), 

R(E,, t) _ e-1~1/v'D~, etho, 

Q(E,, t) - et~~, { e-IWv'D~"erfc ( -IE,I/v'4iJt + ,;ttr;;) 
+ ei~I/VlhD erfc (lt.l/ v'4Dt + ,;ttr;;) } . 

S(x, t) = _ _ 
{ 

A(E,, (x + cr)/c)- A(E,, (x- cr)/c), 

L~=o { A(E,, (x + cr)/c- n~1) - A(E,, (x- cr)/c- nti.J)}, 
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Figure 4. 7 A: The speed curves for the passive dendrite calculated using the square 

weight kernel. B: The speed curves for the passive dendrite calculated using the exponen­

tial synaptic weight kernel (equation (4.18)). Parameter values D =To= cr = 1. Solid 

(dashed) lines represent linearly stable (unstable) solutions. Qualitatively similar results 

are produced for both synaptic weight kernels. 

To evaluate the threshold condition, V(O) = Ya in the travelling wave framework 

(equation ( 4.9)) the trapezium rule was employed. The curves generated in figure 4.7 A are 

qualitatively the same (except for scaling) as those derived using the exponential weight 

kernel (figure 4.7B) (the equations are given in the next section where J(w) = G(w) 

with G(w) given by equation (2.16)). There is no further bifurcation in the upper branch. 

Hence, to ease calculations in the much more complex case of quasi-active dendrites, the 

exponential synaptic footprint will be used. 
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4.3 Travelling pulses (exponential synaptic footprint) 

In the case of the exponential footprint, equation (4.13) is replaced with the more sim-

pie [15] 

( 4.18) 

This is considerably more succinct than in the compact support case since poles in the 

upper half plane are not considered. The linear stability condition (equation (4.14)) is also 

simplified. In terms of a pair of simultaneous equations, it is given by (see section 4.1) 

where, 

H(a, b) 

G(a, b) 

ReP(; +a+ib)- P (;), 

-lmP(;+a+ib), 

z ~ 

P(z) = -
1 

-J( -iz), 
+z 

and solutions are stable if the solution for A has Re[A] < 0. 

4.3.1 Quasi-active dendrites 

(4.19a) 

( 4.19b) 

So far, this discussion on dendrites has been focussed on passive cables. The speed curves 

generated by passive dendrites with an exponential synaptic weight kernel (for fixed E.) 

are given in figure 4.7. However, the presence of voltage-dependent gated channels along 

the dendritic membrane enables the dendrite to perform a number of different functions. 

There are many possible information processing activities which active membranes could 

support such as amplification and linearisation of action potentials, and decomposition 

of the dendrites into a number of distant multiplicative subunits [92, 134]. lt has been 

suggested that local computations could be performed on clusters of synapses [105]. 

Resonant elements (bandpass filters) have been located in the amphibian cochlea where 

they are used for electrical tuning [92]. Linearising the Hodgkin-Huxley equations ( equa­

tions (2.1) and (2.2)) leads to a simple model of an active linearised membrane as an 
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electrical circuit consisting of a passive component in parallel with an inductive branch 

containing an inductance l in series with a resistance r 1 (see section 2.4.1). At a phenomo­

logical level this represents the electrical behaviour of a specific type of active channel 

for small variations in the membrane potential [91]. For such a circuit, J(w) = G(w) is 

given in equation (2.20). 

The effects of quasi-active dendrites on phase-locked neurons has been addressed 

by Bressloff [13]. lt was found that when the collective frequency of a group of oscillators 

is close to the resonant frequency, then weak excitatory coupling leads to a form of 

resonantlike synchronisation. Quasi-active dendrites were shown to destabilise a pair of 

phase-locked solutions in the presence of strong coupling. This led to periodic bursting 

patterns and multistability. 

The speed curves calculated from equation ( 4.18) in this case are plotted in 

figure 4.8. Once again the same shape is present and an instability occurs at the limit 

point, so that the faster wave is stable. However, there is no Hopf-like bifurcation present 

in the upper branch for any parameter values. 

4.4 Extension to periodic travelling waves 

The theory will now be extended to include periodic travelling waves. Previous analytical 

treatments have focussed on travelling pulse solutions [15, 57, 58] and travelling wave 

solutions have been considered numerically [106, 129]. A dispersion curve is the wave 

speed cas a function of the period .:'.1 . Since Kll, {x) (equation (4.6)) is a real periodic 

function of x, Fourier transforms are used to calculate the dispersion curves. The Fourier 

series of the function Kll, (x) is calculated to be 

(1 - e-
6

,) " ( (2nm) (2nm) ) K6 , (x) = L'., ~ a L\;- cos(2nmx) + b L\;- sin{2nmx) , ( 4.20) 
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Figure 4.8 The variation of speed c of a travelling pulse as a function of the coupling 

strength e for different values of the dendritic coordinate E, generated using (4.18) with 

speed determined by ( 4.19). In this figure, l = 0.2 and r1 = 0.5 to give a quasi-active 

dendrite using (2.20). If r 1 decreases then the curves shift to the right and if r 1 increases, 

the curves shift to the left. All other parameter values (a, r", r, D, 'fD) are unity. Solid 

(dashed) lines represent linearly stable (unstable) solutions. 

where 

[ 
Jrw) ] 

a( w) = Re 1 + iw , [ 
J(w) ] 

b(w)=lm l+iw. (4.21) 

Since W(x) is symmetric, equation (4.5) simplifies to 

( 4.22) 
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4.4.1 Stability of periodic travelling waves- kinematic formalism 

Bressloff formulated a theory to analyse the stability of travelling waves [15]. 

Consider a travelling wave solution of wavenumber k and collective period L\.1 satis­

fying the phase-locking equation ( 4.5). Suppose that the set of firing times T of an 

integrate-and-fire network is decomposed according toT±= {Tm(x), (x, m) E D±} 

where D+ = {(x, m), x E JR., mE Zlm + kx > 0} and D_ = {(x, m), x E JR., mE 

Zlm + kx ~ 0}. Let T+ represent the solution to the Cauchy problem specified 

by the initial data T-. Set <Pm(x) = Tm(x)- (m+ kx)L\.1. The travelling wave 

solution is (locally) stable if and only if for all£ > 0 there exists L\.1 > 0 such 

that if sup{I<Pm(x)l, (x, m) E Q_} < L\.1 then sup{I<Pm(x)l, (x, m) E D+} < £. 

The solution is said to be asymptotically stable if it is locally stable and there 

exists L\.1 > 0. (Uniform initial data with respect to which a solution is always 

neutrally stable is excluded). Whence, the following stability result: a travelling 

wave solution is (locally) asymptotically stable if the solutions of the characteristic 

equation 

(z-1)[I0 -1 +eA]= €[B(z,p)- B(1,0)], 

satisfy lzl < 1 for all p E JR. (except for one solution z = 1 at p = 0 ), and 

A - r W(x) L J([m+ kx])L\.1) dx, 
--oo MEZ 

B(z, p) 

There are an infinite number of solutions to the characteristic equation. A 

more simple way to analyse these wave trains is by looking at a kinematic theory. The 
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kinematic formalism has been introduced to follow the evolution of the spike train at the 

expense of a detailed description of the pulse shape. The shape of the dispersion curve 

is sufficient to describe the evolution of impulse propagation in the system. Changing 

interspike intervals during impulse propagation for the Hodgkin-Huxley [40] and Fitzhugh­

Nagumo [129] models have been considered, along with propagating trains in a reaction­

diffusion system [106]. By differentiating the firing time ansatz for a periodic traveling 

wave with respect to the spatial variable, 

dTn(x) 1 
dx = c(~J)' ( 4.23) 

where c(~) is the dispersion curve. The kinematic formalism assumes that there is a 

description of irregular spike trains in this form such that the differential equation is 

dependent upon all spike times in the system. By further assuming that the most recent 

spike has the strongest influence, equation (4.23) is reproduced only if c(~,) is replaced 

by c(Tn(x)- rn-1(x)). where Tn(x)- rn-1(x) is the instantaneous period of the wave 

train at position x. The power of the kinematic theory is demonstrated in its simplicity 

and the following shows the main result. 

Suppose there are two pulses and that the first has speed ef. Then, 

1 
dx - ef' 

where t 1, t 2 are the arrival times of the pulses. Thus, the differential equation for the 

interspike interval ~,(x) is given by 

d<'l, 1 
dx - e(~,)- et· 

(4.24) 

Any interspike interval, Llt for which the dispersion relation e(~t) = et is a possible 

equilibrium solution to equation (4.24). Linear stability of this solution is considered by 

perturbing ~f- Let <'l, (x) = ~f + ~(x). Then, 

d~ 
-

dx 
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Hence, the solution is unstable if 9'(~fl < 0 and stable if 9'(~f) > 0. This result is 

put into practice in the following sections, but first an application of the theory will be 

presented showing that non-periodic waves may also be described in this formalism [76]. 

Applications of the kinematic formalism 

The "derivation" of the kinematic theory ensures that a periodic sol uti on exists for the 

ordinary differential equations (4.23), but other more complex solutions may exist. The 

exact shape of c = c(~1 ) is found by calculating the dispersion curve (shown for the 

integrate-and-fire model in sections 4.4.3-4.4.5). Consider a linear approximation (rea­

sonable in the large ~1 limit) for c(~,) (see figures 4.10-4.13 as~, --1 oo). Then, 

and the interspike intervals satisfy 

where p = ciJ/c~. The general solution of the above equation is given by 

~f(x) = L Gnm(X)~f'(O), 
m 

where 

Using the series expansion for [ eK"] nm and noting that [Ki] nm = pi8n,m+i write 

- -px (px)n-m 
Gnm(x)- e (n _m)! 

Thus, 

~](x) = e-px f_ (p.~)i ~~-i(O). 
'=() J 0 )-
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For uniform initial data Llf(O) = Ll1 for all n, 

lim Llf(x) = Ll, 
n-too 

since the sum converges to eYl' as n -l eo. Now, consider an initial spike train with a 

step. That is, Llf(O) = Ll, for n ~ n* and Llf(O) = Ll2 for n > n*. Then, 

Llf(x) = Ll, + (Ll2- Ll,)e-px n-r_-l (p.~)i, 
i~O ). 

for large n. So, if n' is close ton then the system at x will fire repetitively with period Ll,, 

but as n' and n become more separated, the system will switch to firing with a period Ll2. 

Now, consider the approximation 

for the dispersion curve. Later sections will suggest that this is a more suitable shape 

than the linear approximation (see figures 4.10 and 4.12 near the limit point/local maxima 

respectively). However, similar results are possible. Introduce a set of reference firing 

times of the form T;'(x) = nilr + x/c(Llr) for some arbitrary Llr. and re-scale the firing 

times according to Tn(x) -l B(Tn(x)- T;'(x)). Then, 

dTn(x) = -ABe-BA- (1 - e-T"(xle -m-' (xl). 
dx 

( 4.26) 

Re-scaling x such that x -l ABe-M'x and introducing a further transformaton Zn(x) = 

e T"(xl leads to an equation similar to equation (4.25) with y = 1. it is then trivial to 

generate the general solution of the firing time map. Following Horikawa, the solution for 

an initial spike train with a step difference in the interspike intervals is [76]. 

- { 
{ 

n~n· 

n*Ll1+(n-n')Ll2, n>n* 

nil, + x( e-A' - 1), 

I {
,n-n*-1 xien"'.6.J+(n-n"'-ilt12 ,n xie(n-j)tlJ} 

-X+ og Lj~O j! + Li=-n' j! ' 
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Figure 4.9 Values for the interspike intervals generated from equation ( 4.27) for different 

values of the spatial variable x. The initial data at x = 0 is such that there is a step 

interval in the sequence of interspike intervals with ~, = 1 and ~2 = 2. The kinematic 

description used to generate such firing times is given by equation ( 4.26). 

The interspike intervals of the spike times, ~n(x) = Tn(x)- rn-l (x), may be 

constructed from this solution. By taking the large n- n' limit, and introducing the 

functions U> = ~, - ~2 and e = exp( -~2) - exp( -~,), 

( 4.27) 

Note that this is a function of z. = (n- n' )w- ex, and that ~ n(x) -; e-ll., ( e-Llz) as 

z -; oo ( -oo ). Substitution clarifies that this solution does indeed satisfy the ordinary 

differential equation derived from equation ( 4.26). The sequence of interspike intervals 

given by equation ( 4.27) is plotted in figure 4.9. The position of the front connecting 

the two periodic orbits moves with constant velocity d(n- n')/dx = e;w. Hence, the 

front moves backwards in the spike train for ~2 > ~,. 
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Figure 4.10 Dispersion curves for the square synaptic footprint and <X-function response 

kernel generated from equations (4.21) and (4.22). Parameter values are <X= 0.5, e = 60, 

er= 10, Io = 0 and 'l'R = 0. Solid (dashed) lines correspond to linearly stable (unstable) 

travelling waves according to the kinematic theory. 

4.4.2 A question of re-excitation 

In figure 4.10, dispersion curves for the <X-function delay kernel with square synaptic foot­

print created using equation ( 4.22) are plotted. When axonal delays, '!' n• are introduced, 

the basic shape of the dispersion curve remains unchanged. However, bifurcations are 

known to take place for the <X-function with the introduction of delays. The gradient of 

the dispersion curve does not change under these circumstances and so it is highlighted 

that the kinematic formalism does not pick up instabilities in the presence of delays. 
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4. Synaptic travelling waves in integrate-and-fire systems 

Now, the shape of the dispersion curve is considered for the exponential footprint. 

Figure 4.11 (which will be discussed in more detail in the next section) shows the dispersion 

curve for the exponential footprint and the a-function generated from equation ( 4.22}. 

Since, the integrate-and-fire model has no notion of a refractory period, arbitrarily high 

firing rates are possible and thus divergent speeds. Pulse-based models highlight this 

fact [35]. lt may be possible that sufficient synaptic current is present at the location of 

the neuron after firing such that the neuron is able to fire again, and possibly repeatedly. 

Bressloff and Ermentrout have both presented a discussions on this topic [15, 45]. Possible 

ways to introduce a refractory period are given below. 

• Adapting threshold 

An adapting threshold can be described by the following differential equation (rem­

iniscent of the adaptation in chapter 3}, 

dVe 
dt 

-
Vg-Ve 

're 

where vg is the level to which the threshold decays and 're is the adaptation time 

constant, and is larger than all other time constants in the system. In conjunction 

with this, at the firing times, Ve -l yVe where y > 1. 

For a periodic wave, 
vc(1 -e-Ll,;~,) v•q - ---':'e-'--------,--;::_:_ 

e - 1 -ye "''/-re ' 

where v;;q is the periodic steady state value of the threshold. When il, -l oo, 

v;;q -l vg (a constant). Thus in the case of a pulse, the adapting threshold has no 

effect on the analysis. In a periodic wave, the time taken for the threshold to relax 

to its steady state is given by the transcendental equation, 

[
vg - 1 + e"'' ;~,] 

L\1 ='rein ye 
e 

However, bounds need to be placed on the new parameter 're. The duration of a 

spike is typically 1-2 ms, and the membrane time constant varies between 1-2 ms 
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in neurons specialised in processing high-fidelity temporal information to 100 ms or 

longer for cortical neurons recorded under slice conditions. A typical range for 'T 

recorded from cortical pyramidal cells in the living animal is between 10 and 20 ms. 

Hence, it is appropriate to take Ta = T. In the case of an adapting threshold, the 

equations which determine the dispersion relation are identical to equation (4.22). 

• Infinitely negative reset 

This method of correction is exactly the same as using an adapting threshold with 

unit time constant Ta. If the reset level is considered to be negative (in the integrate­

and-fire model it is typical to take the level of reset to be zero with the firing 

threshold given by unity), it takes longer for the neuron to equilibriate. Hence the 

potential difference between the neuron and the firing threshold remains large for 

some time. A small negative reset has no effect on the dynamics of the system 

because the exponential term on the left-hand side of equation (4.22) is very small, 

even for the smallest existing periodic solution. Hence, to make a suitable contri­

bution, it is typical to take the reset value to be negative infinity. Even in this case, 

identical results to those generated using an adapting threshold are produced. 

• "Dead time" refractory period 

A more definite way is to introduce a "dead time" style refractory period 'TR in 

which a neuron cannot fire again and is held at Vreset· The result of this is to 

integrate equation ( 4.1) over the range (Tn( x) + TR, rn+ 1 ( x )]. Then, instead of 

equation (4.20), the speed equation for periodic travelling waves involves the term 

K6 , (x) = L ( a[ll c:m) cos(2nmx) + brn c:m) sin(2nmx)) , 
mEZ 

where 

_,.,, 
af1l( w) = e d [( ec(d,) - ec( 'TR)) u( w) - (es(d,) - es(TR)) b( w )] , ( 4.28a) 

e_,.,, 
bf11 ( w) = T [(es(d,)- es(TR)) u( w) + (ec(d,)- ec(TR)) b( w )] , ( 4.28b) 
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where a(w) and b(w) given in equation (4.21) and 

ec(x) = e"cos(wx), es(x) = e"sin(wx), 

and, ~ = ~~ in this case. Section 4.4.5 examines waves with multiple periods 

where ~ is the sum of all periods in the system. The superscript [1] is used here 

because this coefficient is applicable for waves with a single period. 

All three ways of constructing a refractory period result in qualitatively similar 

dispersion curves for suitable parameter regimes. However, it is easier to create extra 

stationary points in the dispersion curve with the "dead time" refractory period, as will 

be demonstrated in the following sections. Henceforth, only the dead time refractory 

periodwill be considered in the analysis. it has been found that the square synaptic 

footprint is relatively unaffected by the introduction of a refractory period. This is because 

compact support means that only a finite region is considered for the synaptic input and 

hence the input can never become too large. However, when an exponential weight kernel 

is considered, a// neurons contributes to a synaptic current leading to large synaptic input 

currents and possible multiple repetitive firings. 

4.4.3 Periodic travelling waves ((X-function) 

Using the refractory mechanism, dispersion curves shown in figure 4.11 are obtained for 

the case of the exponential synaptic weight kernel and a-function delay kernel. However, 

note that if the refractory mechanism is not included in the model, divergent speeds 

may occur (compare with figure 4.10). If 'l'R is greater than some critical value, the lower 

branch, which is seen for large periods, joins with the upper branch and forms a dispersion 

curve which is qualitatively the same shape as in the square synaptic weight kernel case. 

However, once this critical value has been passed, the stationary point which is present in 

the upper branch for smaller values of the refractory period disappears. This stationary 
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Figure 4.11 Dispersion curves for the exponential footprint and ex-function response 

kernel generated from equations (4.21) and (4.22) and (4.28). Parameter values are 

ex= 0.5, ~ = 60, O" = 1, 't" = 0, Io = 0 and 'tR = 10. Solid (dashed) lines correspond to 

stable (unstable) travelling waves according to the kinematic theory. The key difference 

between this figure and the one generated using the square synaptic footprint (figure 4.10) 

is that (unrealistic) divergent speeds (dotted line) are apparent when there is no refractory 

mechanism included in the model. 

point of "supernormal" wave speeds exists for periodic travelling waves with small periods 

(using the nomenclature of Rinzel), and will be shown to be critical for the generation of 

multi-periodic solutions in section 4.4.5. As with the travelling pulse, the introduction of 

a spatial delay in the synaptic response kernel mostly serves to scale the dispersion curve 

with zero spatial delay (see figure 4.12). 
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Figure 4.12 Dispersion curves for the exponential footprint with a-function delay kernel 

including spatial delay using equations ( 4.22) and ( 4.28). Parameter values are a= 0.5, 

€ =60, 0"= 1, 'ta=O, 'fR= 10 and (a) C 5 =oc, (b) C5 = 100, (c) C5 = 10, (d) C5 = 1. 

The dotted line represents the dispersion curve when there is no spatial delay present in 

the system. Solid (dashed) lines correspond to linearly stable (unstable) travelling waves 

according to the kinematic theory. The upper branches become stable for large ~1-

4.4.4 Periodic travelling waves ( dendrites) 

Evaluating a[ll(w) and bl1l(w) using equation (4.28) in the dendritic regime (with real 

w) gives 

[yR(w)- WRYr(w)] cos(yr(w)E,)- [wRYR(w) +Yr(w)] sin(yr(w)E,) 
D((l- wr) 2 + w~)(yR(w) 2 +y1(w)2)eYRfw)l.. 

[yR(w)- WRYr(w)] sin(yr(w)E,) + [WRYR(w) +Yr(w)] cos(yi(w)E,) 
D((l- wJ) 2 + w~)(yR(w)2 +y1(w) 2)eY•(w)l.. 
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1 
D't"o' 
Ta [(r+rt -% l'TQ )Tt +(l+rt To )w~ l] 

WR 

D' 

T(1"1+wP2 l 

Ta [(l+rt -ro )wRrt-(r+rt -w~ lTo )wR t} 
rH+"4l') 

for passive dendrites 

for quasi-active dendrites 

for passive dendrites 

for quasi-active dendrites 

In both the passive and quasi-active cases, the dispersion curves created look 

qualitatively the same as those shown in figure 4.10, where a stable upper branch meets 

an unstable lower branch at a minimum critical period, for all parameter regimes (for 

large 'l'R). More interesting behaviour occurs when 'l'R is just big enough to ensure no re­

excitation in the system. Using the exponential synaptic weight kernel in equation (4.22) 

in this case, figure 4.13 shows oscillatory behaviour in the upper branch of the dispersion 

curve for quasi-active dendrites. Due to the bandpass nature of the membrane, the 

Green's function develops an oscillatory tail, which in turn leads to oscillatory phenomena 

in the dispersion curves. This behaviour becomes more pronounced as T1 ---t 0, where T1 is 

the resistance in series with the inductance term t (see section 2.4.1). The linear stability 

of the travelling wave solutions in this dispersion curve is determined using the kinematic 

theory. As 'l'R is decreased, this oscillatory behaviour is accentuated. However, when 

the refractory period becomes too small, the problem of divergent speeds is encountered 

again. The oscillations seen in the shape of the dispersion curve for quasi-active dendrites 

is apparent in dispersion curves generated by many excitable systems [106, 129]. Since 

some ofthe periodic travelling wave solutions in the upper branch ofthe dispersion curve 

are unstable, it can be postulated that the quasi-active elements of the membrane are 

tuning the travelling wave to specific frequencies. 
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Figure 4.13 Dispersion curves for the exponential footprint in a system with quasi-active 

dendritic connections using equations ( 4.22) and ( 4.28). Parameter values are t: = 15, 

E, = 0.2, Tt = 0.01, 10 = 0 and 'TR = 5. All other parameter values (D, 'To, T, Ta, <Y) 

are unity. Solid (dotted) lines correspond to linearly stable (unstable) travelling waves 

according to the kinematic theory. Regions of instability appear along the upper branch 

due to the band pass nature of the Green's function for quasi-active cables. 

4.4.5 Multi-periodic travelling wave trains 

Multiply periodic waves may be constructed in an analogous fashion to singly periodic 

ones with an appropriate choice of firing times. Instead of a wave train with a single 

period, consider a wave train with periods (interspike intervals) Lli, j = 1, ... , n. The set 

ofnfiringtimesforTm(x)::; t::; Tm+n(x) is defined by Tm(x) = (m+kx)Ll, Tm+i(x) = 

rm(x) + dj where dj = :L{~l Lli, Ll = r::l Lli, such that Tm(x + Ll) = Tm(x) + Ll. 

The speed of this wave is given by c = 1/(l<Ll). For later convenience a traveling wave 
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with n distinct periods will be denoted by Pn. A generalisation of the previous analysis 

leads to a system of n equations (cf equation (4.5)). 

Ye- Yresete-~e~· = Io(l- e-~e~•) + € .L. aln] c:m) W(2nmk), j = l, ... ,n, 
mEZ 

( 4.29) 

where 

n n 

aln1(w) = L cos(w[di- dJ)a[11 (w) + L sin(w[dj- d1])b[11 (w) 
l=l l=l 

where a[1l(w). b[1l(w) are given in equations (4.28). A travelling wave with n distinct 

periods (which occur cyclically in the train) will be denoted by Pn. The stability of Pn is 

determined once again by a kinematic theory. For stability, it is required that c'(ilj) > 0 

for j = 1 , ..• , n. 

As a first example consider a doubly-periodic travelling wave (periods il1, il2 ) in 

a continuum with ex-function delay kernel and exponential synaptic delay kernel. The P1 

curve is scaled since il = il1 +il2 . Additionally, another curve is introduced which emerges 

from the "supernormal" stationary point in the P1 curve. Note that the kinematic theory 

predicts a change in stability there (see figure 4.14). However, when 'l'R is increased, these 

waves of supernormal speed are no longer possible since this "supernormal" stationary 

point disappears as discussed in section 4.4.3. In this system, the stability of the P2 

branch still depends upon the gradient because one of the two periods always remains on 

the section of the P1 curve for il < ilsup. where f..up denotes the period corresponding 

to the maximum of the "supernormal" speed stationary point in the P1 curve. The other 

period moves along the upper branch for increasing il > ilsup· The travelling wave with 

two distinct periods bifurcates from a regular travelling wave by the drift of a spike time. 

Doubly periodic travelling waves in the quasi-active dendrite case is more inter­

esting. As with the case of ex-functions, extra P2 curves emerge from the local maxima in 

the P1 curve, and the P1 curve is scaled accordingly. This is plotted in figure 4.15. The 

stability of the P2 branches is determined by its gradient as in the ex-function case. In this 
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Figure 4.14 Equations ( 4.29) are solved to give P1 and P2 dispersion curves for a contin­

uum of integrate-and-fire neurons interacting via a-functions and the exponential synaptic 

weight kernel. Parameter values are <X= 0.5, € = 60, <r = 1 and ! 0 = 0. Solid (dashed) 

lines correspond to linearly stable (unstable) travelling waves according to the kinematic 

theory. Both the P1 and Pz upper branches become stable for large Ll. 

system, higher order Pn travelling waves are possible, and must occur wherever there is 

a change in stability because the new solutions are bifurcations from previous solutions. 

it is already known that resonant behavior can subserve specific neuronal function. For 

example, hair cells of a vertebrate cochlear exhibit their maximal sensitivity at some non­

zero frequency that depends on their location along the cochlear [31]. Moreover, rod 

photoreceptors of lower vertebrates have a receptive field that increases with the tem­

poral frequency of the stimulus [144]. The analysis presented here further suggests that 

quasi-active membrane can have an important role to play in shaping the firing patterns 

of travelling waves. 
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Figure 4.15 The dispersion curve for P1 and P2 travelling waves in the case of quasi­

active dendrites with the exponential synaptic footprint generated using equations ( 4.29). 

The P1 curve is black and the Pz curves are given in the various colours. Parameter 

values for this diagram are identical to figure 4.13. Solid (dotted) lines correspond to 

stable (unstable) travelling waves according to the kinematic theory. Each local maximum 

produces an extra P2 branch which exhibits oscillatory behaviour. The P 1 -l P2 bifurcation 

occurs through the drift of the firing times of d 1-periodic firing neurons. 

Rinzel and Maginu [129] suggested that solution forms composed of periods 

taken from the kinematically stable parts of the dispersion relation are stable (including 

combinations of different stable periods). If any combination of periods includes an 

unstable period, the resulting travelling wave will be unstable. 

95 



4. Synaptic travelling waves in integrate-and-fire systems 

4.5 Recapitulation 

Within a one-dimensional continuum of integrate-and-fire neurons, travelling wave solu­

tions have been analysed. Using a variety of axe-dendritic connections, speed curves for a 

travelling pulse have been demonstrated to have qualitatively the same shape consisting 

of two coalescing branches with the uppermost (faster) being linearly stable. In the case 

of ex-function delays, an extra bifurcation exists on the upper speed branch for sufficient 

axonal delays. Here, a smooth travelling pulse bifurcates into a lurching wave which re­

cruits neurons into the wave in a saltatory manner. The extension of this material to cover 

periodic travelling waves elucidated the fact that an additional refractory variable needs 

to be introduced into the integrate-and-fire model in order that divergent speeds are not 

possible. The addition of this new parameter enabled the existence of periodic waves with 

"supernormal" speeds. A kinematic theory has been used to deduce the stability of these 

periodic waveforms, and a change of stability is predicted at the turning point of these 

"supernormal" stationary points. Here, bifurcations take place such that multi-periodic 

waves bifurcate from the P1 curves by the drift of firing times. 
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Chapter 5 

Biophysical models 

Two currents have been explicitly considered so far in this thesis, namely sodium 

and potassium whose dynamics describe spike production. However, neural membrane 

dynamics are strongly dependent upon calcium ion (Ca 2+) conduction. These calcium 

currents are always activated by depolarisation and always act inwardly, with inactivation 

taking place on a much slower time-scale than that of the sodium current. it is unclear 

how many different types of calcium current exist throughout the dendritic structure and 

cell body, but calcium currents considered in this chapter will be of the low-threshold 

transient calcium current type; otherwise known as a T-type calcium current [92]. 

Intracellular recordings from thalamic cells in vivo and in vitro have indicated 

different types of firing which depend upon the activation of the T -type calcium cur­

rent [82, 83]. Experiments performed on live animals are termed in vivo. All sensory 

systems pass information to the cortex by first going through the thalamus, and so this 

T-type calcium current may play an important part in information transmission [82, 83]. 

If sufficient hyperpolarisation occurs, the calcium current is activated upon depolarisation 

and a number of conventional sodium spikes will appear riding on the crest of some broad 
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voltage envelope for a suitable amount of input. This type of firing is called the bursting 

mode. lt has been demonstrated that this mode of firing is a particularly effective means 

by which perigeniculate and thalamocortical neurons may influence each other [86]. If the 

calcium current is not activated, then any stimulus will either cause a sub-threshold depo­

larisation, or a sequence of conventional sodium spikes; known as the tonic mode. Recent 

interest in thalamic relay cells has increased since it became clear that the thalamus does 

not serve as a simple relay to the cortex [135]. 

As mentioned in section 2.2, the integrate-and-fire model of a neuron is quite 

a harsh reduction of the Hodgkin-Huxley model but still captures many of the essential 

elements of the experimental results. However, many neurons typically emit bursts of 

activity (a packet of spikes), instead of a single action potential, in response to some 

stimulus (similar to the bursts produced in section 3.1.2). There are a variety of different 

types of bursting phenomena in neural cells and Wang and Rinzel have presented a clas­

sification based upon geometrical analysis [154]. Many models have been developed to 

deal with bursting dynamics in neural cells, for example Hind marsh-Rose [64, 65, 66, 67], 

Mulloney-Perkel [111, 119], Fan-Chay [50] and Wang-Rinzel [153] models to name a few. 

In many such models, a so-called T-current exists which provides a slow activation vari­

able and its activation is dependent upon a certain voltage threshold. A neuron exhibits 

post-inhibitory rebound if it depolarises and fires an action potential when released from 

sustained inhibition. Many of these models share the same characteristics, and provide 

qualitatively similar results. However, as with most neural models, analytical progress for 

networks of these models can be cumbersome and unwieldy. 

As demonstrated in the previous chapter, the integrate-and-fire model provides 

a solid basis for mathematical analysis. lt will be convenient to take this model and 

somehow extend it to incorporate this slow-acting T-current. An approach along these 

lines has already been developed by Smith et al. [137, 138] and will be used throughout 

this chapter. This integrate-and-fire-or-burst model was analysed by Coombes et al. in 
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the case of a sinusoidally stimulated single neuron [30]. Travelling waves have not yet 

been studied with this model. 

5.1 The integrate-and-fire-or-burst model 

The integrate-and-fire-or-burst (IFB) model may be regarded as an integrate-and-fire 

model with the addition of a slow variable [137]. The cell can operate in either the tonic 

or bursting regime. In the tonic regime, a single spike response is evoked, whereas in the 

bursting regime a packet of spikes is emitted indicating that post-inhibitory rebound is 

having an effect. The current balance equation for the model is 

dV 
C dt = lapp- h- lr, (5.1) 

where Iapp represents an applied current and lL = gL(V- VL) is a leakage current with 

constant conductance 9L and leakage reversal potential VL. The low-threshold Ca2+ 

current is given by Ir = grh(V- Vr )E>(V- Vn) and the slow variable h has dynamics: 

dh {-h/'r;;:, 
dt = (1 - h)/T~, 

(5.2) 

The slow variable h represents the de-inactivation ofthe low-threshold Ca 2+ conductance, 

which involves T-type Ca 2+ channels and produces the transmembrane current, Ir. Cells 

that are hyperpolarised and then released from inhibition can fire a burst of action poten­

tials if there is a slow T-type Ca 2+ current present. The heaviside step function in the I r 

dynamics indicates this release from inhibition, and the slow dynamics of h ensure that 

this extra current persists and hence possible bursting phenomena may occur. This model 

exhibits excellent agreement with experimental results relating to sinusoidal stimulation 

(Iapp = 10 + 11 cos(2nft)) and mode-locking (shown in figures 5.1 and 5.2 which are 

taken from Smith et al. [137]). The experimental results were obtained from intracellular 

recordings of thalamic relay cells of young cats (5-8 weeks old). For more details of the 

experimental preparation see Smith et al. [137]. 
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A Experiment B IFS Model 

tonic burst tonic burst 
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Figure 5.1 A: Whole cell recordings of a single relay neuron showing representative fir­

ing patterns during 1 Hz sinusoidal current injection over a range of modulation am­

plitudes (11). Tonic or burst responses are evoked depending on the value of the 

mean applied current (Io). which is 335-498 pA for tonic firing and -4 to -136 pA 

for burst firing. During tonic responses, the average number of spikes/cycle increases 

as I 1 is increased for successive rows. Subharmonic burst responses are observed for 

low I1, but otherwise 1 burst/cycle is observed. 8: Behaviour of the IFB model. When 

stimulus parameters are varied in qualitative agreement with A, the IFB model repro­

duces many salient features of these responses. With depolarising mean applied current 

(1.0 'fJ.A/cm 2< Io < 1.2 'fJ.A/cm2), the IFB model responds in tonic mode and the average 

number of spikes/cycle increases as I 1 is increased in successive rows. With hyperpolaris­

ing mean applied current (Io = -0.05 JJ.A/cm 2
), the JFB model responds in burst mode. 

One burst/cycle is observed over a wide range of I 1· Table 5.1 gives the cellular parameter 

values unless otherwise stated. [Reproduced with kind permission from Smith [137].] 
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A Experiment B IFB Model 

tonic burst tonic burst 
f=0.3Hz 0.3 f=0.3Hz 0.3 

(:V)1~1~ ~ L_-llilll_ ~ 
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Figure 5.2 A: Intracellular recordings from the same neuron as in figure 5.1 showing 

responses to sinusoidal current injection over a range of frequencies (f) while the modula­

tion amplitude is held constant (I 1 = 96 pA). Relay neuron responds in tonic mode when 

a depolarising mean applied current (10 = 336 pA) is applied and responds in burst mode 

when 10 is hyperpolarising (Io = -136 pA). One burst/cycle is observed over a range 

of frequencies and subharmonic responses are observed as the cut-off frequency of 3Hz 

is approached. B: IFB model responses that reproduce these firing patterns. I FB model 

responds in tonic mode when the mean applied current is depolarising (1 0 = 0.8 JJ.A/cm 2). 

Average number of spikes/cycle decreases as f is increased in successive rows; at 10Hz, 

the model no longer responds with tonic spikes. IFB model responds in burst mode when 

the mean applied current is hyperpolarising (1 0 = -0.05 JJ.A/cm2). One burst/cycle is 

observed over a wide range off; bursts cease at f = 10 Hz, l1 = 0.2 JJ.A/cm 2 The 

cellular parameter values are given in table 5.1 unless otherwise stated. [Reproduced with 

kind permission from Smith [137].] 
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The usual action potential firing mechanism of the integrate-and-fire model is 

apparent with firing times defined by 

Tn = inf{t I V(t) 2: Vs ; t 2: Tn-l + 'rR}, 

with subsequent discontinuous reset; lim 04o V(Tn+&) = Vreset· Equation (5.2) describes 

a process whereby the de-inactivation level of h relaxes to zero with time constant Tj;: 

when V 2: Vn and relaxes to unity with time constant T~ when V < Vn. Hence, 

sufficient hyperpolarization leads to increasing values of h, representing de-inactivation 

of h. The integrate-and-fire-or-burst dynamics depend strongly on the two thresholds 

Vn and Vs, responsible for the activation of burst and tonic spiking respectively. In 

previous work, Smith et al. chose the threshold values, Vn, Vs, Vreset• the time-scales, 

T~, reversal potentials, VL, Vy, leakage conductance, 9L and membrane capacitance, 

C, to fit in vitro intracellular recordings of relay neuron responses to sinusoidal current 

injection (see table 5.1). All intrinsic and applied transmembrane currents are given in 

units of J..tA/cm 2 Of course, in order that the bursting mechanism be represented in this 

model, the external drive Iapp must be of a small enough magnitude, since large values of 

the applied external drive would result in tonic firing. The Vn threshold for activating the 

T-type calcium current would never be crossed, resulting in ordinary integrate-and-fire 

dynamics. Ensuring that the voltage in the steady state of equation (5.1) in the absence 

of the low threshold T-current is not greater than the firing threshold Vs leads to the 

condition Iapp < (Vs- VLJgL = Imax· A simple bound such that there is enough current 

driving the system in order that the potential can cross the V= Vn boundary from below 

is found by considering the steady state of equation (5.1) in the absence of synaptic 

coupling. This is given by Iapp > gdVn- VL) = Imin· 

lt is useful to rewrite the inactivation and de-inactivation dynamics in the form 

dh 
't"n(V) dt = -h + h 00 (V), (5.3) 

where hoo(V) = El(Vn- V) and Tn(V) = Tj;:El(V- Vn) + T~El(Vn- V). The form 

of this equation is reminiscent of a post-inhibitory rebound current described by Wang 
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Parameter Value Unit 

Cellular parameters 

Ve -35 m V 

VL -65 m V 

c 2 f.LF jcm2 

9L 0.035 mSjcm2 

Vreset -50 m V 

vh -60 m V 

Vr 120 m V 

'{";;: 20 ms 

'{"+ 
h 100 ms 

9T 0.07 mS/cm2 

Stimulus parameters 

Io -0.67-2.67 f.LA/cm 2 

!1 0-1.33 f.LA/cm 2 

f 0.1-100 Hz 

Table 5.1 Standard cellular parameter values for the integrate-and-fire-or-burst model, 

obtained from fits with experimental data [137]. 

and Rinzel [153]. In agreement with voltage-clamp experiments, the low-threshold Ca 2+ 

current in their model is given by IT = grm~ (V)h(V- Vr) with "smooth" equilibrium 

activation moo (V) and inactivation hoc (V) functions, 

hoo(V) 
1 + exp(B11.(V- V11.ll' 

1 
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for some appropriate constants ~m. ~h. and e; and h satisfying (5.3) under the replace­

ment '~"h.(V) -t hoc (V) exp((V +a)/b) (for constants a and b) (see the equations given 

in (5.7) for the exact form). The smooth activation function moo(V) may be consid­

ered as the asymptotic value of a fast activation variable. In the limit ~h. -t oo, the 

sigmoidal function h00 (V) tends to a step function, so that h 00 (V) = EJ(Vh.- V). As 

~m tends to infinity and € tends to zero, moo (V) = EJ(V - V h.). Hence, the two 

models may be identified in the limit ~h.. ~m -t oo, e -t 0 under the replacement 

'rh.(V) -t 'rj;"EJ(V- Vh.) + 'r~EJ(Vh.- V). 

For mathematical simplicity, smooth activation m 00 (V) and inactivation hoc (V) 

functions are avoided and instead, the original integrate-and-fire-or-burst model with 

piecewise constant activation and inactivation functions are considered. The shunting 

term, (V- VT). of the low-threshold Ca 2+ current is eliminated by assuming VT »V. 

This does not lead to any qualitatively different behaviour to the model with shunting. 

With these approximations, the slow current h takes the form IT= -gTVThEJ(V- Vh.). 

lt is now convenient to rewrite the integrate-and-fire-or-burst model with the introduction 

of the relative voltage v =V- VL and the parameters g = gTVT/C , 'r = C/9L· Hence, 

vx = Vx- VL, where X E {8, reset, h}, leading to the re-scaled equations 

v - -~ + ghEJ(v- vh.) + I(t), 
'r 

Th.(v)li. - hoc(v)- h, 

where I(t) = Iapp/C, hoc (v) = EJ(vh.- v) and Th.(v) = Tj;"EJ(v- vh.) + T~EJ(vh.- v). 

Apart from the firing times, there are two types of event which play an important role 

in the dynamics of this system; namely the times at which v crosses vh. from above or 

below. At these times the dynamics for h undergoes a switch in behavior (see figure 5.3). 

If the potential does not cross the lower vh. threshold, then tonic firing occurs. 

Throughout this thesis, the membrane time constant has been chosen to be 

unity. However, timescales have been recorded from 1-100 ms depending upon both the 

type of neuron and the conditions of the neuron. Neurons which specialise in high-fidelity 
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Figure 5.3 The integrate-and-fire-or-burst model of a neuron periodically stimulated by 

a sinusoid: Iapp = 0.1 + 0.25cos(61tX/1000). All other parameter values are given in 

table 5.1. See the text for an explanation of the various labels. 

temporal information have small time constants and cortical neurons have demonstrated 

time constants of 100 ms or longer for in vitro experiments. Cortical cells in live animals 

(in vivo) typically demonstrate time constants between 10 and 20 ms. Since there is such 

a wide range of values for this constant, and the parameter values of Smith et al. indicate 

a membrane time constant of approximately 57 ms, the analysis will henceforth include 

this parameter. 

Not only does the integrate-and-fire-or-burst model of a neuron provide excellent 

agreement with experimental results, but is analytically tractable. Network behaviour of 
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this more biophysical model will be considered in this chapter. The mathematical analysis 

of a pair of coupled oscillators and travelling waves in the continuum will be addressed. 

In particular, the study of travelling waves has not been considered previously. In order to 

generate any rhythm of post-inhibitory rebound spikes, the neurons must be connected 

inhibitorily, since excitatory connections lead to "normal" integrate-and-fire spikes and 

the results from the previous chapter carry through (the h current is never switched on). 

Denote the number of spikes within a cluster by p. Then, it is convenient to 

write the set of times for which v(t) crosses through vh from below (de-inactivation of 

the low-threshold Ca2+ current) as 

sn = inf{t I v(t) 2 vh, V> 0; t 2 sn-1}. 

Using this notation, the nth firing event can be written as 

n(p) = n mod p, (5.4) 

where [ .] denotes the integer part and n E :Z. Here, a firing event is decomposed using 

inter- and intra-cluster firing times. The notation n(p) = n mod p is introduced to conve­

niently label each ofthep spikes within a cluster, whilst the index [n/p] keeps track ofthe 

cluster to which the set ofp spikes belongs. The times B fn/pl signal the onset of a clustered 

firing pattern, whilst T0 ([n/p]) signifies the first firing event within a cluster (relative 

to the start of the clustered firing pattern) and T1 ([n/p]), T2 ([n/p]), ... , p-1 ([n/p]) 

signal subsequent intra-cluster firing events. The associated value of h(t) at the time 

Bfn./pl is denoted hfn/pl. The evolution of hfn/pl over a cycle is easily calculated in terms 

of the time spent above and below v = vh. 

(5.5) 

where L'.~/pl (L'.~/pl) is the time spent below (above) the v = vh threshold. The crossing 

times srn/pJ then satisfy Bfn/pl+1 = sfn/pJ +L'.fn/pl where ,1fn/pl = .1~/pJ +.1~/p] Having 

established a mathematical framework for analysing integrate-and-fire-or-burst neurons, 
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Figure 5.4 A: The sinusoidally driven Hodgkin-Huxley neuron (equations (2.1) and (2.2)) 

augmented with a T-current identical to that presented in the integrate-and-fire-or-burst 

model. The stimulus is given by -0.5 + lOcos(Gnx/1000). B: Two Hodgkin-Huxley 

neurons augmented with a T-current identical to that presented in the integrate-and-fire­

or-burst model coupled via £X-function synaptic responses. The Hodgkin-Huxley parameter 

values are given in table 2.1. 

it is useful to gain insight into a discrete network ofthese neurons before progressing onto 

travelling waves in the one-dimensional continuum. 

5.2 Discrete integrate-and-fire-or-burst networks 

lt is interesting to consider the effect of post-inhibitory rebound on the full Hodgkin-H uxley 

model (equations (2.2)). The Hodgkin-Huxley equations are augmented with the same 

type of slow calcium T-current which is present in the integrate-and-fire-or-burst model. 
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This adapted Hodgkin-Huxley neuron is sinusoidally driven (figure 5.4(A)) and a packet 

of action potentia Is can be seen riding the crest of the sinusoid ( cf figure 2.3 and also 

figure 4 in (30]). In figure 5.4(B), two Hodgkin-Huxley neurons are inhibitorily coupled 

together using ~-function synaptic delay kernels and a half-centre oscillator evolves. This 

rhythm only occurs because the oscillators are coupled. 

Qualitatively similar results are obtained with the reduced Hodgkin-Huxley model 

given by equations (2.6) augmented with the additional calcium current given by I T• and 

the Wang-Rinzel model, which is defined as by the equations (153] 

cdVi _ 
dt 
dht 
dt 

(5.6b) 

where Sji is the post-synaptic conductance (fraction of the maximum 9syn) in cell i due 

to the activity in cell j. This conductance is an instantaneous, sigmoid function of the 

pre-synaptic voltage with a threshold 8syn 

1 
Sji = S00 (Vj) = ) . 

1 + exp[-(Vi- 8syn /ksynl 

The voltage dependent gating functions are given by 

moo(V) 
1 

(5.7a) 
1 + exp[-(V + 65)/7.8]' 

hoo(V) 
1 

(5.7b) -
1 + exp[(V + 81 )/11]' 

't"h(V) - h00 (V)exp[(V + 162.3)/17.8], (5.7c) 

and the parameter values are given by ksyn = 2, 9syn = 0.3 mS/cm2 , C = 1 IJ.F jcm 2
, 

9L = 0.1 mS/cm2 and reversal potentials (in mV) Yp;r = 120, VL = -60, Ysyn = -80. 

The factor <f:> scales the kinetics of hand is taken to be 3. This model gives a complete 

contrast to the integrate-and-fire-or-burst model since all functions are smooth. This 

model considers the envelope of the burst (as do the Morris-Lecar equations which were 

originally designed to describe muscle fibre (110]). There is no discontinuous reset when 

a neuron reaches a pre-determined threshold. The method of synaptic interaction in 
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Figure 5.5 A: Half-centre oscillator produced by two synaptically interacting reduced 

Hodgkin-Huxley neurons (equations (2.6)) neurons with synaptic interaction governed 

by ex-functions and an imposed post-inhibitory rebound current supplied by Ir. B: Two 

Wang-Rinzel model neurons (equations (5.6)) interacting to produce a half-centre os­

cillator. The results presented here are qualitatively similar to those created using the 

augmented Hodgkin-Huxley model (see figure 5.4). 

the Wang-Rinzel model is different to synaptic interactions considered previously in this 

thesis. Instead, it is supposed that the neurons interact for the duration that one neuron 

is above this threshold. This is similar to fast threshold modulation which was described 

in section 2.3. The half-centre oscillators produced by these two different models are 

reproduced in figure 5.5. Half-centre oscillators are the primary method of locomotion 

and other rhythmic motor behaviour [21, 99, 100]. 

Now, consider a network of N integrate-and-fire-or-burst neurons and focus on 

the class of periodic solutions, such that (v,(t+~), 11-t(t+~)) = (v,(t), 11-t(t)) in which 

p E Z spikes are fired within a period~ and i = 1, .. ,, N. In this case the crossing times 
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Bn satisfy Bn+l = Bn + ~. and for neurons indexed i, i = 1, ... , N, 

Bf = n~ +~s +~i. 

where ~i is the phase difference of the clustered spike packet of neuron i, and ~B is the 

time shift of the onset of the bursting packet with respect to the start of the considered 

period. The firing times of spikes within a cluster are assumed to have the form 

T" = B!' + ~n(pJ ' ' , 

for all n, where ~0, ••• , ~p-l denote the collection of firing times. The discrete network 

of integrate-and-fire-or-burst neurons is defined as 

dvi 
dt 

(5.8b) 

fori= 1, ... , N with TJ(t) defined in equation (2.10). Throughout this chapter, synaptic 

interaction occurs via ex-functions for mathematical simplicity. 

Consider two synaptically coupled neurons defined by equation (5.8). Simula­

tions of the equations show that a half-centre oscillator evolves (see figure 5.6). This 

is consistent with the other models which exhibit post-inhibitory rebound shown in fig­

ures 5.4 and 5.5. However, the integrate-and-fire-or-burst model can be solved exactly 

and precise analytical statements can be made about periodic travelling waves in more 

biophysical neural systems. 

Numerical simulations of the integrate-and-fire-or-burst neuron model under si­

nusoidal forcing predict responses which are typically p:q mode-locked solutions [30]. 

This means that an oscillator fires a packet of p spikes in q multiples of the fundamental 

period of the sinusoidal signal. For simplicity, further discussion is restricted to the case 

ofp:1 mode-locked solutions, where the de-inactivation variable his 1:1 frequency locked 

to the stimulus, since these define the dominant responses to sinusoidal stimulation. The 
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Figure 5.6 Half-centre oscillator produced by two synaptically interacting integrate-and­

fire-or-burst neurons. Coupling strength e = -30 and a= 0.5, and all other parameter 

values as in table 5.1. This result is in qualitative agreement with that produced with the 

augmented Hodgkin-Huxley equations (see figure 5.4). 

generalisation to p:q type states is straightforward, and for clarity and brevity, will not 

be pursued here. 

Denoting the time spent on the portion of a periodic orbit with v < Vn as ,1._ 

and the time spent on the orbit with v > Vn as ,1.+ write ,1. = ,1.+ + ,1._. More usefully 

the assumption of a p:l periodic orbit allows us to determine h[n/pl using the constraint 

h[n/vl = h[n/vl+l =h. Using (5.5), 

Hence, h( t) can be written as 

h(t) -- h-e-(t-Bn ll~i; c t E [Bn Bn + A ) iOr ' '-'+. 
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There are three distinct sections of the voltage path and they have to be consid­

ered separately. Hence, equations (5.8) need to be integrated over the regions which define 

threshold crossings; namely, [Bn, Bn + 8.0), [Bn + b,i, Bn + t.i+1), [Bn + b,P-1 , Bn +b.+) 

and [Bn +b.+, Bn +b.). where j = 0, ... , p- 2. lt is useful to consider all times relative 

to Bn, without loss of generality, and thus take 8.8 = 0. The system is integrated over 

the region [Bn + y, Bn + z) to give, 

with 

where 

PIRdisc(Y, z) - ghEJ(v- Vn)e-z/-r ( ez/-ro- eYI'<o) To, 
N 

SYNdiscCy,z) € L WiiK~isc(y,z), 
H 

z -p-1 

Ktsc(y,z) = e-z/T J e'-'1'< L L J(u+ kLl-b.m +b.i-b.j) du, 
Y kEZ n=O 

and I /To= I /T- I /Tj:;:. This system of equations produces self-consistent solutions for 

the firing times along with the periods b.+ and b. (and hence b._). 

For analytical simplicity, two neurons are considered. In addition, only a single 

action potential is produced by each neuron in each bursting packet. The more complex 

case of multiple spikes is a simple extension and each additional spike considered merely 

introduces an additional equation to determine the subsequent firing time. The refractory 

period TR will not be included in the analysis for clarity, and indeed it has no effect on these 

pulse networks (provided it is smaller than the period of inhibition). The self-consistent 

solutions of equations (5.9) for the periods in the system generated by this mathematical 

treatment are plotted in figure 5. 7. lt is clear that critical values of the coupling strength 

and external drive exist such that a half-centre oscillation occurs. Stability ofthe solutions 

will not be considered, but direct numerical simulations suggest that the mode with the 

smaller period is stable. 
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Figure 5. 7 A: The self-consistent solution of equations (5.9) for ~ 0 (the relative firing 

period) for the IFS half-centre oscillator plotted against e. (I;nj = 0.2) 8: The self­

consistent solution of equations (5.9) for Ll. (the total firing period) for the IFS half­

centre oscillator plotted against l;nj ( e = -30). In both diagrams, a critical value for the 

considered parameter exists such that the half-centre oscillator does not exist for larger 

values. In both diagrams, direct numerical simulations indicate that the lower branch 

is stable (solid) and the upper branch in unstable (dashed). Parameter values are as in 

table 5.1 except e = -30, ex= 0.5, 'l'j;: = 30, '!'~ = 200 and 9T = 0.05 to ensure only a 

single pulse in each burst. 

By considering how the limit point in figure 5.7(A) moves as l;nj varies, it is 

possible to create the existence border of a half-centre oscillator in the € - I;nj plane. 

Existence of the half-centre oscillator is only apparent for a small window in the drive (see 

figure 5.8). If the drive is too small (Iinj < Imin). then the voltage will never cross the vh 

boundary from below and therefore the T-current will not activate. If the drive is too large 

(Iinj > Imax), then the voltage will not be pushed below the vh threshold and/or repetitive 
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Figure 5.8 Two parameter boundary curve for the integrate-and-fire-or-burst half-centre 

oscillator. A limit point is taken from figure 5.7 and continued with respect to both pa­

rameters. Oscillations exist providing the parameter regime lies below the curve. For 

values of the injected current greater Imax• the half-centre oscillator ceases to exist. In­

stead, complex firing (where there is a mixture of tonic and burst spikes), or oscillator 

death can occur. For l;nj < Imin there is insufficient external drive to ensure the potential 

crosses the vh threshold from below. 

firings in the oscillatory regime will be created with a mixture of tonic and burst spike. 

Oscillator death can occur with strong external drive (depending on the initial conditions 

of each neuron), where, as mentioned in chapter 3, one neuron suppresses the activity of 

the other. This existence boundary has been verified through numerical simulation. 

114 



5. Biophysical models 

In simulations, the parameter values can be adjusted in order that a single action 

potential is released per period. In order to create a single spike, the following parameter 

values are used: 'r);: = 30, 'r~ = 200, 9r = 0.05 and all other parameter values are given 

in table 5.1. A travelling pulse (rather than a travelling packet of spikes) in a continuum 

will be analysed in the following section. 

5.3 An integrate-and-fire-or-burst continuum 

The thalamus is typically modelled as two layers of neurons: the thalamocortical cells and 

the reticularis cells. The membrane is structured such that thalamocortical cells ( excita­

tory) project to the cortex and to reticularis cells, and that reticularis cells (inhibitory) 

project to thalamocortical cells as well as other reticularis cells. The T-current is the dom­

inant current. Mathematical analysis has been used to study travelling pulses and waves 

in one-dimensional thalamic models (24, 56, 58, 130, 141]. Reduced models of the thala­

mus were studied using averaging theory (24] and singular perturbation theory (141]. Both 

smooth waves and lurching solutions have been found in the one-dimensional continuum 

limit. Golomb and Ermentrout have recently used a simple integrate-and-fire model with 

discrete communication delays (see chapter 4) to study the difference between smooth 

and lurching waves (57]. lt was seen in chapter 4 that for increasing delays, smooth waves 

become unstable in favour of lurching waves. A coupling "gap" in the work of Rinzel et 

al. [130] essentially allows cells to escape from inhibition sooner so that this "delay" is 

shorter and smooth waves result. The narrower the gap, the slower the propagation of 

the travelling wave. If the gap is too narrow, then smooth propagation will be impossible. 

A priori estimates on the width of this gap were calculated for a different, but related, 

model by Terman et al. (141]. The reason for requiring this minimum gap is perhaps 

easiest to visualise if one considers the voltage profile of a neuron. A smooth wave can 

only propagate if a neuron is not inhibited by its immediate neighbours. As such, a gap 
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is needed in the synaptic weight kernel in order that communication between cells does 

not occur in this neighbourhood. 

Consider a travelling wave in the one-dimensional continuum of integrate-and­

fire-or-burst neurons. The firing time ansatz in this case is given by 

r[ii'l(x) = [;]L'.+L'.n(p) +x/c. 

In this continuous case, the spatial versions of equations (5.9) are produced when the 

synaptic input to each neuron is given by l;nj and equation ( 4.2). However, due to the 

nature of the problem, calculations are eased by shifting the origin of time to where 

the potential crosses the threshold v = vh from above rather than from below. In 

the analytical equations, it is assumed that all neurons start from rest (above vh) and 

are subsequently pushed below the vh threshold via synaptic interactions with the other 

neurons. In the travelling wave framework x = et - x, this system of equations is 

represented as 

v(z) -v(y)e(y-z)/(c~J = 't"l (1 - e(y-z)/(c~l) + PIRcontfY, z) + SYN(y, z), 

with 

PIRcont(y,z) 

SYN(y,z) 

where 

Kcont(v) = r ex/(c~) L I:. J (X ;v + kL'.- L'. m) dx, 
Y kEZmo=() 

and the various integration limits are given by the following intervals 

( -oo, 0], ( 0, cL'._], (cL'._, cL'. 0] 

(y, z) = (cL'.i, cL',i+1] for j = 0, ... , p- 2 

(cL'.P, L'..], (L'.., L'..,], (L'. .. , oo] 

(5.10) 

Equations (5.10) then define self-consistent equations for the total period L'., the time 

spent below the vh threshold prior to a bursting packet L'._, the times of the p spikes 
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within the bursting packet t,i, for j = 0, ... , p -1 and the wave speed c. In addition, the 

periods L\., and Ll.,, are determined self-consistently and these correspond to a subsequent 

vh threshold crossing which does not lead to rebound bursting (see figure 5.10). There 

may be many such threshold crossings, but only one is illustrated here, motivated by the 

necessity of a gap in the synaptic weight kernel. 

For simplicity, travelling pulse solutions will be calculated in this network. The ex­

tension to propagating packets of action potentia Is purely involves solving more equations 

simultaneously to determine the self-consistent solutions of the periods in the system. In 

fact, for each extra action potential considered in the cluster, an additional equation de­

scribing the additional v9 threshold crossing will be required. Simulations of the network 

show that the speed of the pulse does not vary greatly if more action potentia Is are intro­

duced into the bursting packet, and that the speed of the pulse dominates any travelling 

burst for the same parameter values. 

The synaptic weight kernel in this section will be the off-centre square footprint 

given by 
1 

W(x) = 
4

cr [8 (<Y-Ix- rl) + e (<Y -lx+ rl)], 

where r defines the extent to which the kernel is off-centred, and <Y is the usual spatial 

scaling (see figure 5.9). As r -l 0, the off-centre synaptic weight kernel becomes on­

centre and is a scaled version of equation (4.3). 

The precise wave profile for the travelling pulse solution is shown in figure 5.10. 

Only one extra vh threshold crossing occurs. This is due to the fact that there is a single 

pulse propagating in the system and an off-centre synaptic weight kernel. Each half of 

the footprint leads to a vh threshold crossing. This voltage profile was seen in direct 

numerical simulations. 

The self-consistent solution for the speed of a travelling pulse determined from 

equation (5.10) is plotted in figure 5.11. lt is interesting to note that the speed of the 
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Figure 5.9 The synaptic weight kernel given in terms of a square wave. An off-centre 

synaptic footprint with gap of 2r is shown. As the gap parameter r is decreased, the 

synaptic footprint becomes on-centre. 

pulse increases as the inhibitory coupling strength € becomes weaker. This is because 

it takes less time for the neuron to reach the vh threshold from below. There exists a 

critical coupling strength €trav such that a travelling pulse solution exists in this network. 

For more positive values of the coupling strength, the synaptic input obtained by each 

neuron is insufficient to hyperpolarise the neuron for a long enough duration. Hence, the 

slow calcium T-current is not strong enough to cause post-inhibitory rebound. Another 

interesting point to note is that only a single speed exists for travelling pulses in this 

regime. This is consistent with other observations [24, 56]. Direct numerical simulations 

of the network indicate that this travelling pulse solution is stable. However, a second 

critical value of the coupling strength € exists. Whenever the coupling is greater (more 

negative) than this critical value then the post-inhibitory rebound current caused by the 

second vh crossing is too strong and causes a second action potential to be released. This 

is easily visualised from figure 5.10. The point A is pushed lower due to the strength of 

inhibitory connections, and as a result, point B moves upwards. This point will eventually 
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Figure 5.10 The theoretical pulse profile generated by equations (5.10). Parameter 

values are given in table 5.1 except Th: = 200 and 9T = 0.06. The self-consistent 

solutions for € = -40 with synaptic weight parameters r = 40 and fJ = 15 are given 

by LL = 224.05, c = 0.2128, ~0 = 243.32, .1.. = 418.55 and .1.,. = 593.8. For 

larger coupling values, the self-consistent solution of equations (5.10) create a large post­

inhibitory rebound current from the second vh. threshold crossing and thus the neuron fires 

a subsequent action potential. This is one way in which a travelling pulse can destabilise 

into a double pulse solution. 

cross the Ve threshold and another spike will be produced. This grazing bifurcation is 

one way that a single pulse can destabilise into a double pulse. The grazing condition is 

given by vx(l3) = 0 and v(/3) = ve for some /3 > c.1.,.. This was observed in the direct 

numerical simulations. Subsequent v6 threshold crossings can be created through further 

increasing the € coupling strength leading to triple, or even multiple, pulse solutions. 
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-36 -32 -28 

Figure 5.11 Speed plotted against coupling e for the integrate-and-fire-or-burst pulse. 

An increase in the travelling pulse speed is present for a decrease in the inhibitorial 

coupling strength. However, the smooth travelling pulse solution does not exist if the 

global coupling strength is more positive than some critical value. These insights were 

observed in numerical simulations. Parameter values are given in table 5.1 except that 

-r~ = 200 and 9T = 0.06. The synaptic weight kernel parameter values are given by 

r =40 and rJ= 15. 

This theoretical mathematical analysis can be extended, as in chapter 4, to 

periodic travelling wave solutions. One deficiency of this type of theory is that the solution 

form (in terms of a firing time ansatz) is required to perform the analysis. Of course this 

is not always possible (as in the case of lurching in section 4.2.1) and so direct numerical 

simulations need to be performed in order that different waveforms are found and can be 

examined. The drawback of this simulation approach is that theoretical solutions which 
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are unstable will never be realised. Some simulations of a one-dimensional continuum are 

presented in the following section. 

5.4 Complex firing patterns 

A smooth periodic travelling wave in the one-dimensional integrate-and-fire-or-burst con­

tinuum is shown in figure 5.12. Technical details of the computer simulations are presented 

in appendix A. The analysis in chapter 4 indicated that complex waveforms may exist 

depending upon the parameter values and the initial conditions chosen. 

Intracellular recordings in ferret thalamic slices exhibiting post-inhibitory rebound 

display spindle waves [36], and simulations of conductance-based models of this typically 

produce lurching waves (see section 4.2.1 for more details and definitions). Rinzel et al. 

claimed that by reducing the gap in the off-centre coupling it is possible to create lurching 

phenomena in the sense that clusters of neurons are recruited to fire in a non-smooth 

fashion [130]. For on-centred coupling, Terman et al. analysed the velocity ofthis lurching 

phenomena [141]. Rinzel et al. also suggested that lurching phenomena can be produced 

with off-centre coupling, but their example is equivalent to a periodic travelling wave. A 

smooth wave emerges from the leading cluster, whilst recruitment of the leading clusters 

takes place non-smoothly in the opposite direction (see figure 2 in [130]). 

A reduction of the gap parameter r in simulations of the continuum of integrate­

and-fire-or-burst neurons leads to a qualitative change in behaviour. Figure 5.13 shows 

that a single spike is no longer the stable solution. Each neuron fires two action potentia Is 

before the next neuron spikes. This could be described as a double pulse solution. Suppose 

that the refractory period TR is re-introduced into the model. Increasing this refractory 

period to some high level in the travelling wave simulation leads to more obvious lurching 

waves in the sense that there are periods of propagation at constant speed punctuated by 
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Figure 5.12 T he smooth periodic t ravelling wave solut ion in an integrate-and-f ire-or­

burst cont inuum generated by direct numerica l simulat ion of equations (5.1) and (5.2). 

Each neuron fires only a single action pot ential in each smooth wave and t hese spikes 

are separated by a consta nt period. Paramet er values are identical to t hose given in 

figure 5. 11 with t he inclusion of £ = -60. 

st ationary interva ls ( figure 5.14 ). In t his case, more of t he t ravell ing waveform is plott ed 

to give a full impression of the rich nature of the interactions. Since the cont inuum is 

fin it e for simu lation purposes, sampling sites nearer to the ends of t he simulation region 

will be subject to boundary effect s, whereby there will be fewer neighbours t han for a 

cent ral site, and hence a reduced synapt ic input current. Boundary conditi ons do not 

af fect lurching wave propagation away from t he boundary. 
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Figure 5.13 A qual itative change in behaviour is noticed as the gap parameter r is 

reduced in a one-d imensional cont inuum of integrate-and-fire-or-burst model neurons. A 

packet with two spikes propagating at constant speed is observed. Parameter values are 

identical to t hose in figu re 5.12 except that r = 17. The insert shows the same region of 

t he cont inuum, but with only the f iring times of each neuron displayed . 

tf the refractory period is increased in the system with parameter va lues given in 

figure 5.12, then a periodic travell ing wave wit h two distinct periods emerges (figure 5.15). 

This solution cou ld easi ly be analysed along similar lines to t hose presented in section 4.4.5. 

Indeed, higher order multi-periodic waves wi ll exist in this system. 
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Figure 5.14 Lurching wave phenomena in a one-dimensional continuum of integrate­

and-fire-or-burst neurons. Parameter va lues are identical to those in figure 5.13 with 

the exception of introducing a refractory time of T R = 125. Close examination of the 

wave suggests that the shape of the waves is reminiscent of the lurching encountered in 

section 4.2.1. However, the structure of this periodic wave is much more complex and 

difficult to analyse. 

Finally, suppose that all neurons begin the simulation by fi r ing an action potential 

(figure 5.16). The travelling wave that emerges is periodic, and has a complex structure. 

Left-right symmetry is apparent, probably through the interaction of t he boundaries. The 

analysis of such a travelling wave, as well as the wave presented in figure 5.14, would 

be extremely difficult since a firing time ansatz needs to be provided for the asymptotic 
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Figure 5.15 A periodic travelling wave w ith two dist inct periods in a one-d imensional 

continuum of integrate-and-fire-or-burst neurons. Each repeated green band conta ins two 

travelling pulses. Parameter values are identica l to t hose in figure 5.13 with the exception 

of introducing a refractory time of 'TR = 125 and synaptic coupling strength € = - 80. 

steady state in order to use the framework presented here. T he kinematic theory presented 

in section 4.4.1 would be useful in determining, and givi ng insight into, t hese and other 

exotic travell ing wave states. 
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Figure 5.16 A periodic travelling wave solution in the continuum of integrate- and-fire­

or-burst neurons. At the onset of the simulation, all neurons were assumed to fire an 

action potential. Parameter values are identical to those in figure 5 .12. 

With the exception of t he simulation which produces figure 5.16 , all simulations 

in this section are initiated in the same manner. The sampling sites in the closed interval 

40 ~ x ~ 80 are assumed to have fired an action potential. The different solutions 

obtained through the numerical simulations were obtained by changing the values of 

various parameters in the system architecture. In figure 5.16, all neurons are initially 

assumed to have fired an action potential. 
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5.5 Recapitulation 

In a manner reminiscent of the analysis presented in chapter 4, a framework for the analysis 

of networks of integrate-and-fire-or-burst neurons has been developed. The region of 

existence of a half-centre oscillator has been derived. lt is shown that the injected current 

must take a value between Imin = gL(Vh.- VL) and Imax = gL(Ve-VL) and that coupling 

must be of a sufficient strength to produce the rhythm. For travelling pulses, a single 

stable branch was found by self-consistently solving equations (5.10). In integrate-and-fire 

networks, two branches were found for the travelling pulse solution with the upper branch 

being stable. Simulations of more varied travelling waves are presented, but these are 

only a few of the many examples which may be obtained in networks of integrate-and­

fire-or-burst neurons. Other varieties of travelling waves may be produced be selecting 

different parameter values and initial conditions. 
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Chapter 6 

Conclusions and further work 

This chapter will mainly describe possible ways in which to extend the work pre­

sented in this thesis. The selection of topics is by no means exhaustive, but merely serves 

to give an insight into the vast number of possibilities for future studies. First, however, 

it seems prudent to summarise the main contributions to mathematical neuroscience in 

this thesis. 

6.1 Conclusions 

The Hodgkin-Huxley model of a nerve cell and its subsequent reduction to the integrate­

and-fire model was presented, along with derivations of models which describe biologically 

realistic synaptic interactions such as the the ex-function and dendrites. Linearisation of 

the Hodgkin-Huxley model led to an appropriate description of quasi-active dendrites. 

A simple model of synaptic adaptation was included into an existing theory of 

discrete integrate-and-fire networks. The primary result of including synaptic adaptation 

is merely to shift the stability borders of the synchronous state. However, an impor-
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tant property of synaptic adaptation is elucidated when the concept of neural coding is 

considered. Tsodyks and Markram [146] observed that for low rates of depression, the 

post-synaptic response reflects the rate of firing. As the rate of depression is increased, 

temporal coherence becomes apparent, in the sense that neuronal bursting output be­

comes more synchronised. Using the framework presented in this thesis, the claim of 

Tsodyks and Markram has been extended to the network level. Using the integrate-and­

fire model, it has been shown that when the level of depression is increased (for a suitable 

value of the synaptic adaptation time constant) or when the speed of the dynamics is 

decreased, the post-synaptic potentials show a transition from primarily refecting a rate 

code to demonstrating synchronous behaviour. This switch between rate- and spike­

coding has been presented for a mixture of excitatory and inhibitory neurons. The case of 

facilitation has been considered, and no noticeable difference between the analog model 

and the integrate-and-fire model was detected. This suggests that facilitation does not 

affect the neural code. 

Kistler and van Hem men [90] stated in some of their work on synaptic adaptation 

that they had done an extensive parameter search, and could find no parameter set which 

would destabilise a frequency-locked solution which is stable in the absence of facilitation. 

From figures 3.1 and 3.2 it is easy to counter their claim with the integrate-and-fire model 

and this particular model of adaptation. All stability boundaries generated for facilitation 

lie below those for no adaptation, and never intersect. The area underneath the stability 

boundary denotes stable behaviour. Thus (at least for the case of balanced neurons) 

there is always a region below the non-adapting stability border but above the facilitation 

stability border. Hence a region which was stable in the non-adapting case is unstable for 

facilitation. 

Travelling pulses and waves have been analysed within a one-dimensional contin­

uum of integrate-and-fire neurons. For biologically realistic synaptic interactions, existence 

and linear stability was calculated. lt was found that for travelling pulses, two branches 
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were apparent for the speed of the pulse (as a function of the global coupling strength) 

with the uppermost (fast) branch being linearly stable and the lower (slow) branch being 

unstable. These branches culminate at a limit point defining the critical value of the 

coupling strength such that a travelling pulse exists. In the case of a travelling pulse 

propagating via ex-functions with temporal delay, it was found that an extra instability 

occurred on the upper branch. When the network was simulated within the region of 

instability in the upper branch, lurching waves were produced. These waves propagate in 

a saltatory fashion. No such phenomena was apparent in the dendritic cases. 

For periodic travelling waves, dispersion curves relating the speed of the wave to 

its period, were constructed. These curves initially highlighted that a refractory period 

should be included into the integrate-and-fire model to avoid an arbitrarily high firing rate. 

Various methods to incorporate this refractory period were considered and all produced 

qualitatively similar shapes for the dispersion curves. A kinematic theory was introduced to 

determine the stability with a positive gradient in the dispersion curve indicating a stable 

wave. Similar shapes for the dispersion curves were observed for all forms of axe-dendritic 

connections. For smaller values of the refractory period, stationary points could be created 

in the upper branch. From these local maxima, multi-periodic states emerged whereby the 

periodic traveling wave has a number of different periods in its wave train. Resonance in 

systems selects certain frequencies of oscillation. There are circumstances in the inferior 

olive [80] where strongly amplified resonances are used to coordinate the emergent pattern 

of network activity around some preferred frequency. it may also apply to the thalamic 

participation in delta- and spindle-wave generation [39, 36]. In the quasi-active dendritic 

case, many such multiple-periodic branches exist in the dispersion curve since the resonant 

nature of the circuit creates oscillations in the upper branch. This suggests that more 

variety of travelling waves could be selected in this regime. Simulations of the network 

showed broad agreement with the precise analytical statements (see appendix A for more 

details about the numerical simulations). 
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A model which describes thalamocortical relay cells with a slow calcium current 

was defined. An examination of the model followed. Simulations of detailed (Hodgkin­

Huxley) and reduced (Reduced Hodgkin-Huxley and Wang Rinzel) models of biophysical 

systems produce half-centre oscillations in agreement with the integrate-and-fire-or-burst 

model. Through mathematical analysis, the existence of a half-centre rhythm was shown 

to occur only for a small band of values for the external drive. Precise analytical statements 

describing a one-dimensional travelling wave were calculated. Only a single branch was 

found for a travelling pulse solution in this network. "Off-centre" coupling produced a 

smooth travelling wave, and by reducing the gap in the synaptic weight kernel, a qualitative 

change occurred in the smooth wave. A single pulse became a double pulse for small gap 

sizes. Simulations generated more intricate solutions of the one-dimensional continuum 

of integrate-and-fire-or-burst neurons. 

To conclude, the significant contributions to the field of mathematical neuro­

science can be summarised as follows. Synaptic adaptation is not seen to have any 

quantitative change on the stability properties of synchronous states in discrete integrate­

and-fire networks, but may be useful in descriptions of neural coding. An analytical 

treatment of travelling waves and pulses in a one-dimensional continuum of synaptically 

interacting integrate-and-fire neurons with an assortment of axe-dendritic connections 

has been presented. Dispersion curves and stability results broadly agree with numerical 

presentations in current neuroscience literature. Finally, analytical calculations concerning 

a continuous network of integrate-and-fire-or-burst neurons have been derived. Travelling 

wave studies have not previously been undertaken. By combining biologically motivated 

choices for neurons and neural transmission, and building on existing theory, this thesis 

presents a framework for analysing periodic travelling waves in a biophysical continuum 

of neurons exhibiting post-inhibitory rebound. Thereby giving a minimal mathematical 

framework to study travelling waves in a thalamic slice. 
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6.2 Further work 

6.2.1 Noise in systems with synaptic adaptation 

Some interesting extensions can be made to the synaptic adaptation theory presented in 

chapter 3. Abbot suggests two ways to improve the synaptic adaptation function [2). 

In the additive case, A(t) = 1 + S(t), where S(t) = Lt;<t K2(t- ti) and K2(t) = 

(y-1 )e-t/-r •. Nothing restricts K2 to be an exponential function, and so optimal functions 

may be found. The amplitude A can have a nonlinear dependence on the sum S(t) by 

setting A(t) = 1 + F(S) for some function F. 

Many synapses have multiple processes which affect the amplitude of the post­

synaptic response. In order to model this, the total post-synaptic response amplitude can 

be represented by the product of several separate amplitude factors as described above. 

Then, the fit can be adapted by raising each of the amplitudes to various powers. Thus, 

the general expression is 

A = AV' AV2AV3 1 2 3 .... 

In real life, neurons are not clean and noise occurs in the system. it would 

be interesting to consider the effects of noise in systems of integrate-and-fire neurons, 

although to some extent this would destroy the usefulness of the model. Namely that it 

can be solved without the need to resort to numerical simulations. However, a simple 

formalism for noise could be constructed. From this, it will be possible to examine the 

robustness of these neural systems. Tiesinga and Jose have shown that a network of 

integrate-and-fire-or-burst neurons with the inclusion of noise can synchronise without 

the need of a strong external drive [143). Equation (3.1) with the reset condition (3.2) 

may be written 

Ty d~i = 1 -Ai +Ty(y-1) I:. b(t- Tt), 
mEZ 
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in the additive case, and 

'ry d;j = 1 - Aj + Aj'ry logy L IS(t- Tr), 
mEZ 

(6.1) 

in the multiplicative case. By using these formulations it is easier to perform analysis 

in stochastic systems. For example, in the case of additive noise drawn from a given 

probability density p, the averaged equations describing depression take the form of (6.1) 

with the last term on the right hand side replaced by 

-rylogy/.[_Ai(Ttl<'S(t-Tim)) ""' 
\mEZ 

'rylogy L (Aj(Tjm)) (l>(t- Tjm)), 
mEZ 

(AL(Tl)p 
'ry logy T . 

The techniques described by Bressloff [12] and Chance et al. [23] may then be used to 

proceed for a given distribution p. 

6.2.2 Inhomogeneous neural networks 

Until now, a homogeneous network where all neurons react and evolve in the same manner 

irrespective of position within the system has been considered in all of the calculations. 

However, the cortex is not homogeneous. As an example, consider the retinotopic mapping 

of the visual field onto the surface of the cortex. The left and right halves of the visual 

field are mapped onto the right and left halves of the cortex respectively. There are 

a number of additional maps that have an approximately periodic structure [140]. For 

example, some cells tend to respond more strongly to stimuli presented in one eye than in 

the other. Together with this, most cells in V1 respond optimally to a bar or edge moving 

at an appropriate orientation and velocity in its receptive field [77, 78]. Cells of similar 

orientation preference are organised into vertical columns whereas there is a systematic 

variation of orientation preference transversely across the cortex [79]. Moreover, travelling 

wave solutions are sensitive to the degree of homogeneity in the connectivity pattern [16]. 
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Motivated by Bressloff, the new weight kernel to describe the inhomogeneities 

will have the form 

W' (x, y) = W(\x -y\)h(\x -y\/&)k(y/&), 

where hand k are 2rr-periodic functions and b determines the microscopic length scale. 

If the function k is the identity, then the homogenoeous network is recovered with the 

effective connection strength a periodically modulated function of spatial separation. The 

function h may be absorbed into the definition of W. Additional cortical labels could be 

added into the weight distribution such as orientation preference <P E S 1 to give a more 

detailed analysis [19]. 

6.2.3 Travelling waves in higher spatial dimensions 

Higher spatial dimensions can support more exotic travelling structures. lt is straightfor­

ward to extend the analysis presented into N dimensional space. Instead of having the 

spatial variable x, replace this with theN dimensional spatial vector r. However, the diffi­

cult part of the formal analysis is choosing a suitable firing time ansatz with which to study 

the non-trivial geometric structures which arise. Recently, studies have been undertaken 

to develop the theory of two (or more) dimensional travelling waves [15, 81, 87, 89, 109]. 

In the majority of these cases, they are extensions of the one-dimensional waves to planar 

waves in two dimensions. Simulations [47, 89, 93] demonstrate that spirals and target 

patterns, along with much more unusual patterns, can occur in neural media. lt is known 

that rotating spiral waves occur naturally in a wide variety of biological, physiological and 

chemical systems ([113] and references within,[123]}. 

In order to give an impression of the task at hand, consider the case of target 

patterns in two dimensions. This is perhaps the most simple form of travelling structure in 

higher spatial dimensions which is not a trivial extension of the work presented. Suppose 

134 



6. Conclusions and further work 

that a two-dimensional plane of neural media is silent (no neuron has fired, or is firing). 

Then, without the addition of external stimulus, the network will remain quiescent. If 

a sufficiently large current is injected at one point in space, neurons will be stimulated 

in the immediate neighbourhood of the applied current. This leads to all neighbouring 

neurons firing, which in turn will stimulate their neighbours, and ever increasing circles 

will be created. Consider a single ring of this motion. Then, the total spike activity can 

be written as 

S(r, t) = sinit(r, t) + sring(r, t) = so&(r)&(t +M)+ &lll r 11 -p(t)], 

where the radius of the front is given by p(t) and so is the strength of the initial pertur­

bation. This firing time ansatz contains an unknown function (the radius of the front), 

and numerics are the only feasible way to proceed [89]. 

Lurching waves in the one dimensional continuum of integrate-and-fire networks 

were found by simulating the system with parameter values which predicted an unstable 

travelling pulse. Analytical progress into these waveforms is difficult, and the precise shape 

of the lurch has yet to be formulated. Lurching waves must exist in higher dimensions, 

but it is practically impossible to predict the structure of these waveforms. it would 

be interesting to examine higher dimensional systems purely to gain insight into these 

fascinating, and highly relevant, travelling waves. 
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Appendix A 

Numerical Issues 

XPPAUT 

XPPAUT is available at http:j /www.pitt.edu/~phase/ and is a free package written by 

G. B. Ermentrout [46]. lt is an interactive package for numerically solving and analysing 

differential equations and provides a simple interface to most of the common features of 

AUTO (ftp:/ /ftp.cs.concordia.ca/pub/doedel/auto). Details on the numerical methods 

used by XPPAUT can be found in the reference. Simulations in XPPAUT make use of 

equation (2.11), with 11 2 -1112 + a2 whenever the neuron fires, for a-function synaptic 

delay kernels. This allows the iterations to proceed quickly without the need to store all 

the firing times in the system. Truncation of the spike train is another way to proceed, 

but obviously this will lead to numerical errors. 

Another benefit of XPPAUT is that auxilliary dynamical systems can be set up 

in order to find and track roots of nonlinear algebraic equations. This method has been 

used to produce many of the figures in this thesis and to find bifurcation points of the 

system. However, truncation of the Fourier representation in chapter 4 was necessary. lt 
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was found that the balance between accuracy and time was achieved when 2001 terms 

(centred around the zero Fourier coefficient) were considered with an a-function synaptic 

delay kernel, and 10001 terms were needed for the dendritic kernels. 

Chapter 3 - Synaptic adaptation in discrete integrate-and-fire networks 

An algorithm was formulated in Mathematica. The benefits of this approach are that the 

integral equations don't need to be evolved and that arbitrary accuracy can be achieved 

using the root-finding algorithm of the Mathematica package. However, a closed form 

expression must exist for the state variable. Equation (3.3) was integrated on the region 

(T{', t] and evaluated for an a-function delay kernel. For this closed form expression, the 

system is started at values Vi(O) =vi where Vreset :s; vi< V9 , and initially there are no 

spikes in the system. The algorithm then proceeds as follows: 

• Calculate Vi(til = 1 for each i using a root-finding process. This determines all 

possible firing times ti in the system. 

• Calculate tk = min{t1, ... , tN}. 

• Solve the system with initial data (V1 (tk), Vz(tk), ... , V,.,.,, ... , VN(tk)) with Vreset 

at the kth position. In addition, the coupling term now contains an extra spike. 

• Repeat the process for the desired number of spikes in the system. 
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Chapter 4 - Synaptic travelling waves in integrate-and-fire systems 

Chapter 5 - Biophysical models 

An extensive discussion on numerical simulations of neural models has been presented 

by Mascagni and Sherman [101]. Runge-Kutta methods are presented for the numerical 

modelling of ordinary differential equations and finite element methods are presented for 

systems described by partial differential equations. In order to represent the continuum 

in chapters 4 and 5, a portion of the real line was truncated and a lattice embedded upon 

the resulting space. Equations (4.1) and (4.2) (or the equivalent system, including the 

slow T-type calcium current, for the integrate-and-fire-or-burst model) were evolved using 

a standard Euler scheme 

V(t+ ~t) = V(t) + g: (-F +Is+ I), 

(from equation (2.1)) with small step size ~t in accordance with Hansel et al. [63]. 

They show that small time steps are required whenever differential equations describing 

integrate-and-fire networks are integrated using the standard Euler or second order Runge­

Kutta algorithms. As with the XPPAUT simulations, the a-function synaptic delay kernel 

was represented with equation (2.11) with T] 2 -) TJ 2 +a2 whenever the neuron fires. Each 

sampling site in the lattice is represented by the above Euler expression with connectivity 

determined by the discrete analog of equation ( 4.2). The network was stimulated by 

assuming some spikes had already fired in a region of the lattice and adjusting the synaptic 

current accordingly. Excellent agreement was found with the analytical solutions. 

A trade exists between accuracy and CPU time. To be computationally more 

efficient, it would be possible to use a second-order Runge-Kutta iteration scheme and 

even to formulate some sort of interpolation for the firing times along the following 

lines. Suppose there are N lattice sites, and that the time step is given by ~t. A linear 

interpolation of the firing times is then given by 

T-~t ~t(Ve-V(t)) 
+ V(t+~t)- V(t)' 
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where T is the value oftime at the first iteration such that the potential is greater than the 

threshold V e. These modifications greatly improve the integration performance. However, 

small time steps are still required. 

Other neural packages 

Excellent neural modelling packages have been produced over recent years. They involve 

constructing systems from detailed neural descriptions; even including various types of 

neuron at the cellular level. GENESIS (the GEneral NEural Simulation System developed 

by Bower and Beeman [11]) and NEURON (developed by Hines [68, 69]) are two such 

tools. Additional information can be obtained at http:/ /www.genesis-sim.org/GENESIS/ 

and http:/ jwww.neuron.yale.edu for GENESIS and NEURON respectively. 
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