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“Geometry is not true, it is advantageous.”

Henri Poincaré
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Many chemical reactions can be described as the crossing of an energetic barrier. This

process is mediated by an invariant object in phase space. One can construct a nor-

mally hyperbolic invariant manifold (NHIM) of the reactive dynamical system which is

an invariant sphere that can be considered as the geometric representation of the tran-

sition state itself. The NHIM has invariant cylinders (reaction channels) attached to it.

This invariant geometric structure survives as long as the invariant sphere is normally

hyperbolic. We applied this theory to the hydrogen exchange reaction in three degrees

of freedom in order to figure out the reason of the transition state theory (TST) failure.

Energies high above the reaction threshold, the dynamics within the transition state

becomes partially chaotic. We have found that the invariant sphere first ceases to be

normally hyperbolic at fairly low energies. Surprisingly normal hyperbolicity is then re-

stored and the invariant sphere remains normally hyperbolic even at very high energies.

This observation shows two di↵erent energy values for the breakdown of the TST and

the breakdown of the NHIM.

This leads to seek another phase space object that is related to the breakdown of the

TST. Using theory of the dividing surface including reactive islands (RIs), we can inves-

tigate such an object. We found out that the first nonreactive trajectory has been found

at the same energy values for both collinear and full systems, and coincides with the first

bifurcation of periodic orbit dividing surface (PODS) at the collinear configuration. The

bifurcation creates the unstable periodic orbit (UPO). Indeed, the new PODS (UPO)

is the reason for the TST failure. The manifolds (stable and centre-stable) of the UPO

clarify these expectations by intersecting the dividing surface at the boundary of the

reactive island (on the collinear and the three (full) systems, respectively).
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face for energy E = �4.023 eV in the middle of the stable interval
of SSPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 The ratio k of two Lyapunov exponents within and o↵ the centre
manifold for SSPO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Reactivity on the dividing surface for collinear subsystem for energy
E = �4.0. Details in the text. . . . . . . . . . . . . . . . . . . . . . 74

5.2 The reactive and nonreactive islands on the dividing surface in the
collinear case are indicated by green and red colour, respectively.
Calculations made for energies �4.15 (before the first bifurcation
of PODS) ,�4.1,�4.0 and �3.9 eV, respectively. . . . . . . . . . . 76

5.3 The contour plot for energies �4.0 eV (blue), �4.05 eV (red), �4.1
eV (green) and �4.14676 eV (dashed black). . . . . . . . . . . . . . 78

5.4 Nonreactive part for energy E = �4.0 eV with sections y =0.0, 0.1,
0.2, 0.3, 0.4 and 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 The subsection r = 3.63 a.u. through the section y = 0.0 for energy
E = �4.0 eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Zoom in the left part of the Figure 5.5. . . . . . . . . . . . . . . . . 81
5.7 Zoom in the right part of the Figure 5.5. . . . . . . . . . . . . . . . 81
5.8 Three individual energies curves, namely E = �4.0 eV, E = �4.05 eV

and E = �4.1 eV are showing the percentage of nonreactive trajec-
tories in the dividing surface versus the y-value. . . . . . . . . . . . 83

5.9 Zoom in close to the vanishing of nonreactive percentage in fig-
ure 5.8. Also the y-limit for each energy show as vertical lines. . . . 83

5.10 An overview of the y-limit and the y-value where nonreactive tra-
jectories vanish, denoted by solid and dashed lines, respectively. . . 84

5.11 Enlarge the critical interval of the breakdown of TST in full system. 84



List of Figures xi

5.12 100 trajectories in the stable manifold and also 100 trajectories in
the unstable manifold of the unstable periodic orbit (UPO) cross
the dividing surface (The DS). . . . . . . . . . . . . . . . . . . . . . 86

5.13 The stable intersection (blue) lies on the boundary of the main
non-reactive island (red) in the collinear system with two degrees
of freedom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.14 (a) Some initial conditions in the centre-stable manifold that inter-
sect the dividing surface. (b) and (c) show this intersection in (r, pr)
and (y, py), respectively. Three specific trajectories (�

1

, �
2

and �
3

)
are pointed to be used in the next figure. . . . . . . . . . . . . . . . 89

5.15 The variation along the centre manifold direction versus the energy. 90
5.16 Locations of the intersection of �

1

, �
2

and �
3

on the reactive island. 91



List of Tables

3.1 The H
2

+H potential energy parameters. . . . . . . . . . . . . . . 43

4.1 Floquet multipliers of the Symmetric Stretch Periodic Orbit (SSPO). 64
4.2 Lyapunov Exponents of SSPO . . . . . . . . . . . . . . . . . . . . . 65

xii



Abbreviations

TST Transition State Theory

PODS Periodic Orbit Dividing Surface

NHIM Normally Hyperbolic Invariant Manifold

dof degree of freedom

SSPO Symmetric Stretch Periodic Orbit

BPO Bending Periodic Orbit

ScPO Secondary symmetric stretch Periodic Orbit

RI Reactive Island

UPO Collinear Unstable Periodic Orbit

H1, H2, H3 refer to three Hydrogen atoms

xiii



To my family. . .

xiv



Chapter 1

Introduction

Transition state theory [1–5] (TST) is over 80 years old, and it is the basis of reac-

tion rate theory. It assumes that reactant and product areas can be divided by a

dividing surface. The transition state of chemical reaction is defined with a “divid-

ing surface” separating reactant and product regions of configuration space (more

generally, of phase space). Transition state theory represents a fundamental frame-

work for calculating the total flux of trajectories from reactant to product, through

the dividing surface (determining the chemical reaction rate). The main notion

of TST started in works of Marcelin [6], Polanyi and Eyring [7] and Wigner [8]

and is still an active topic in many works for di↵erent purposes such as reaction

probabilities. Recently, TST has been not only used for chemical reaction rate

problems but it also appeared in many other applications (e.g. atomic physics [9],

rearrangements of clusters [10], cosmology [11] and celestial mechanics [12]).

TST is exact if and only if there is no trajectory crossing the dividing surface

more than once. This is the fundamental assumption of TST. However, if there

are recrossing trajectories on the dividing surface, then TST provides upper bound

of the exact rate. The exact rate will depend on the choice of dividing surface.

This leads to a so-called the variational approach. In the variational problem,

the TST is not exact and results in an overestimation for the chemical reaction

1



Chapter 1. Introduction 2

rate. One can solve the variational problem by choosing the dividing surface with

minimum flux through it.

If the reaction is mediated by crossing of an energetic barrier, the dividing surface is

chosen close to the saddle point located between reactant and product. This object

is often determined by normal coordinate analysis close to the saddle point. Other

dividing surfaces generalize the definition of the transition state. An appropriate

choice of the dividing surface at small enough energy above the threshold allows

the reactive trajectory to pass through a tiny bottleneck close to the saddle point.

At high energies, the bottleneck around the saddle point becomes wider and hence

there is a possibility for recrossing.

For two degrees of freedom (2 dof), the problem of determining the optimal divid-

ing surface for TST of collinear reactions was solved during 1970’s by Pechukas,

Pollak and McLa↵erty [13–15]. At low energies just above the threshold of re-

action, they considered a dividing surface in configuration space that is given by

the projection of an unstable periodic orbit. For symmetric molecules, this is

the symmetric stretch vibration. This curve is the so-called “periodic orbit divid-

ing surface” (PODS). The unstable PODS is an optimal solution for the recrossing

problem as no projected trajectory moving from reactant to product (or vice versa)

is tangent to it. Once a reactive trajectory crosses the unstable PODS, then it

must leave the neighbourhood of the PODS before possibly recrossing it. If there

is only one PODS at a certain energy E, then it is the best dividing surface to

choose because it yields the exact reaction rate. Pechukas et al [16–18] discuss

that if there is more than one PODS at a certain energy E, then TST breaks

down and one PODS with minimum flux is the best among the others. As a

result, the reason for the breakdown of TST in the reaction with two degrees of

freedom is well-known which is the emerging of the additional PODS from the

bifurcation of the original PODS. The dynamical behaviour close to the PODS

has been explained in several references, e.g. [5, 17–20]. Quite recently, the nu-

merical continuation and the bifurcation of PODS has been studied by Iñarea et
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al [21] for the collinear H +H
2

reaction. Burghardt and Gaspard [22] examined

the bifurcation of the PODS on semiclassical quantization and quantum resonance

states in the collinear reaction of HgI
2

! HgI+I. They were able to characterize

a series of resonances at low energy where the dynamics is regular as well as at

high energies where the dynamics transit to chaos.

For many degrees of freedom (n dof), it is easy to guess that the generalized

transition state (the dividing surface) is an unstable manifold of a suitable dimen-

sion [1]. Recently, the construction of the dividing surface in phase space has been

shown firstly by Uzer et al [23] and Komatsuzaki et al [24] for linear and nonlinear

Hamiltonian systems with (finitely) many degrees of freedom. The basis is to gen-

erate a sequence of canonical transformations in the area of rank-one saddle that

transform the Hamiltonian into a normal form using Lie transformation method.

The construction provides as a new fundamental geometrical object a normally

hyperbolic invariant manifold (NHIM), which is the generalization of the PODS

in systems with many degrees of freedom.

In this thesis, we use the H +H
2

reaction as an example because it has many ad-

vantages. For instance, the collinear configuration of the system is widely studied

in the literature. Moreover, the reaction probability has been calculated for both

collinear and three (full) dimensional systems. Also, the potential energy function

of the H + H
2

reaction has been calculated several times (see e.g. [25, 26]). In

addition, the reaction itself has many features (e.g. the geometrical symmetry and

it involves three identical atoms) which allow us to calculate the centre manifold of

the saddle point and derive a Hamiltonian function with appropriate coordinates

for collinear (2 dof) and three dimensional (full 3 dof) systems.

Knowledge of the H + H
2

reaction from previous other works helps us to find

the shortcomings and gaps of TST rate. We know that the dynamics is simple

and TST is exact at small enough energies above the threshold for the collinear

system as well as the three (full) dimensional system. As energy increases, the
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dynamics surely undergoes a sequence of bifurcations, chaos and hence the TST

is not exact. For the collinear system of the H + H
2

reaction, Pechukas and

McLa↵erty [13] found that that TST is exact at su�ciently low energies (about

0.2 eV above the threshold). In addition, Miller et al [27, 28] have calculated

the reaction probability of the collinear H + H
2

reaction as well as the reaction

probability in the three dimensional system. In both cases, TST is exact to over

0.2 eV above the threshold. Quite recently, the reaction probability of the collinear

H + H
2

reaction has been calculated more accurately by Iñarrea et al [21]; they

found out that the TST fails at about 0.2 eV above the potential energy barrier.

These results used the Porter-Karplus potential energy [25] which is the same

potential energy function used in this thesis. Other than TST calculations, the

bifurcation of the PODS [21] and the bifurcation of the NHIM [29, 30] have been

investigated for collinear and three dimensional systems, respectively. The reason

for the breakdown of TST in the collinear case is well-known: It is caused by

the additional PODS that emerge from bifurcations. New periodic orbit of this

bifurcation fails the TST which provides an overestimate in chemical reaction

rate. The shortcoming is that the reason for the TST failure in the three (full

3dof) dimensional system is unknown. Figure 1.1 shows a sketch of the previous

knowledge and points out the shortcoming.

The main purpose of this thesis is to seek the phase space object that causes

the TST failure in the system with three degrees of freedom. Our attempts to

find such an object are divided into two main parts. First of all, we examine the

persistence of the NHIM under perturbation (by increasing the energy parameter).

In other words, we need to show at which energies the NHIM ceases to be normally

hyperbolic. Then we compare the output with the energy at which the TST breaks

down and find out if there is any agreement. Secondly, if the breakdown of the

NHIM is not the reason (which indeed it is not), we seek another phase space

object by investigating the reactivity on the dividing surface. In this part, we

want to determine the first nonreactive trajectory that appears on the dividing
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High
energies

Low
energies

E 

● Simple dynamics

● TST is  exact  

● Chaotic dynamics

● TST is not exact  

● Chaotic dynamics

● TST is not exact  

● Simple dynamics
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2 degrees of freedom 3 degrees of freedom 

Known reason 
Unknown reason

●

Figure 1.1: A sketch outlining the previous knowledge and pointing out the
shortcoming.

surface. We follow this trajectory until it hits the phase space object before it

returns to the dividing surface. This procedure allows us to figure out the target.

The contents of this thesis are as follows. In Chapter 2, we give an overview of some

important background material that is used in the thesis. We start by giving some

history in transition state theory. Chapter 2 also includes the fundamental basis

such as Hamiltonian vector fields, canonical transformations, the transition state

rate formula and the comparison between phase space and configuration space,

including the stability of the stationary point. In addition, we describe the phase

space structure close to the saddle point for n degrees of freedom which contains

many objects (for instance the energy shell, the NHIM and its stable and unstable

manifolds and the dividing surface). The structure of the cylindrical manifolds and

the conditions for their persistence under perturbation are stated at the end. In

Chapter 3, we provide our example which is the H+H
2

reaction as a Hamiltonian

system with two degrees of freedom as well as three degrees of freedom. In this
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chapter, we state the Porter-Karplus potential energy [25] and derive the kinetic

energy function in appropriate coordinates. Also, we represent the features of the

H + H
2

reaction, including the symmetry, calculating the centre manifold of the

saddle point and the analytical solution of the harmonic Hamiltonian. In Chap-

ter 4, we study the persistence of the NHIM. It is done by firstly investigating the

dynamics in the centre manifold using the Poincaré surface of section. The inves-

tigations include the dynamical behaviour (regular and chaotic motions) and the

bifurcation of periodic orbits. At the end of Chapter 4, we calculate the Lyapunov

exponents for an arbitrary trajectory in directions parallel and transverse to the

NHIM for both periodic and non-periodic orbits which allow us to figure out the

breakdown of the NHIM. In Chapter 5, we seek another phase space object that

causes the TST failure by studying the reactivity on the dividing surface in the

collinear and the three (full 3 dof) systems. The study includes the phase space

structure of the reactive islands and determines at which energy level nonreactive

island appeared. These attempts show the reason of the breakdown of TST. The

reason has been stated at the end. Chapters 3, 4 and 5 are the main body of the

thesis. Finally, we draw the conclusion of our results and discuss possible future

work in Chapter 6.



Chapter 2

Theoretical Background

2.1 Introduction

The idea of the transition state (TS) early appeared in the work of Marcelin [6]

in 1915. Sixteen years later, Eyring and Polanyi [7] started to reconsider the idea

of TS by calculating the absolute reaction rate of the collinear H
2

+ H reaction.

Eyring and Polanyi’s potential energy surface is calculated by a mixture of exper-

iment and theory. In their paper, they defined the potential energy surface as two

valleys associated with reactant and product which are separated by the saddle

point. The dividing surface is determined as the path of steepest ascent from the

saddle point in configuration space. I was assumed to be a surface of no return.

However, it was soon recognised that recrossing is possible due to the dynamical

e↵ects from coupling terms in the kinetic energy. The di�culty of finding a re-

crossing surface was a stumbling block to apply TST in multidimensional system

as well as in the strongly coupled case. Important contributions have been made

by Evans, Farkas, Szilard, Horiuti, Pelzer and Marcelin, and these are explained

for example in Refs [5, 31].

7
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Transition state theory (TST) is used to determine the absolute chemical reaction

rate. It makes three assumptions: the motion of the nuclei take places on the

Born-Oppenheimer potential energy surface, the motion of the nuclei is described

by the classical (Hamiltonian) mechanics and the dividing surface separates the

reactant and product and has no classical trajectory goes through it more than

once. Wigner [8] noticed if the latter assumption fails, then the reaction rate is

overestimated. Wigner’s formulation leads to the recognition that the transition

state is a general property of all dynamical systems in which a transition from

“reactant” to “product” states takes place. Thus, the TS is not confined to the

chemical reaction dynamics, but also plays an important feature in many inter-

esting systems, including, for instance, the rearrangements of clusters [24], the

ionisation of atoms [9, 32] and di↵usion jumps in solids [33].

The recognition that recrossing-free dividing surfaces are di�cult or impossible

to construct. This led to the variational TST approach. The main idea of the

variational TST is to consider the set of all possible dividing surfaces that divide

the configuration space into two parts, namely reactant and product. Then one

chooses the dividing surface with minimum flux. Even though, the minimum flux

dividing surface has been selected, there will usually still be recrossings of the

dividing surface and the chemical reaction rate will not be exact.

Pechukas and Pollak [1, 20, 34] solved the problem of variational TST for sys-

tems with two degrees for freedom. They found that the projections of periodic

orbits into the configuration space, which are called periodic orbit dividing sur-

faces (PODS), are surfaces of stationary flux. Their solution is very important

and considerable, regardless of the shortcoming because of the formulation of the

variational principle in configuration space. The shortcoming of Pechukas and

Pollak solution a↵ects the problem with the formulation of variational principle.

Consequently, new problem arises in the variational TST which is, the work must

be extended to higher dimensional system which is not easy to generated to higher

dimensions, and indeed recrossing-free dividing surface exist only in phase space,
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not in configuration space. In order to achieve this generalization, we need two

developments: (1) advanced theory in the study of multidimensional dynamical

system (provided in Section 2.6), and (2) high computing power. We will now

show a brief history of transition state theory.

In the 1970’s, Pechukas and Pollak [1, 5, 13, 15–18, 20, 34] made a good con-

tribution in the development of TST. During 1970’s, the research get improved

from the advance computer power which encouraged the scientist to investigate

the dynamics of realistic model systems. The numerical investigation was not only

achievement in the dynamics of reactive systems, but also perform many signifi-

cant tools such as the Poincaré surface of section. Such development can be seen

in many references, for instance, MacKay, Meiss and Percival [35, 36] who are in-

teresting in the existence of cantori acting as space barriers in the neighbourhood

of the last surviving torus.

In the 1980’s, number of the dynamics reactive systems have been studied in the

phase space by Davis and co-workers [37–39]. They used the manifolds of the

PODS to show the partitioning of the phase space. Similarly, Tiyapan and Ja↵é

[40–42] have developed the idea of the manifolds of the PODS to form the invariant

fractal of the phase space and the formation of complexes (unimolecular reactions)

have described the structure of the fractal. Unfortunately, these developments on

techniques are only applied on the dynamics reactive systems with two degrees of

freedom, except for the classical transition state theory simulation [27, 43]. Thus

e↵orts must rely on the extended systems with more than two degrees of freedom.

Komatsuzaki and co-workers have recently studied the dynamics in the neighbour-

hood of the TS in many-body system [10, 44–49]. They used Lie transformations

to calculate the normal form. Moreover, Li et al [29] have used partial normal

forms for the three degrees of freedom H
2

+ H reaction. In this thesis, we will

avoid the use of normal form by taking advantage of the symmetry of our reactive

system. Using this advantage, we can compute the centre manifold easily. This



Chapter 2. Theoretical Background 10

manifold involves all classical trajectories that remain trapped in the neighbour-

hood of the saddle point for all time. The centre manifold is an important tool to

formulate TST in phase space.

Nowadays, problems with two degrees of freedom are now well understood, and

many examples have been worked out in detail. In higher dimension, recent in-

vestigations of the geometry near saddle point in phase space by Wiggins [50]

have shown that a Normal Hyperbolic Invariant Manifold (NHIM) is existed in

the neighbourhood of the saddle point. The classical theory of chemical reac-

tions [51] can now be established accurately in nonlinear dynamics. Invariant

manifolds form impenetrable barriers in phase space. “Invariant” means all tra-

jectories within manifold will remain on manifold for future as well as in the past.

Therefore, no trajectory can intersect the invariant manifold, which make us able

to reformulate the definition of the dividing surface in term of geometrical object

in phase space. Thus, the NHIM is the cornerstone in the research development.

The content of this chapter is organized as follows: We will review important

background material that will be used in this thesis, starting from fundamental

concepts. Hamiltonian vector field represents in the Section 2.2. The review

includes canonical transformations and the properties of symplectic matrix. In

Section 2.3, we state the transition state theory rate formula. The definitions of

the phase space and the configuration space and the declaration the di↵erence

between them present in the Section 2.4. The stability of the stationary points

in both spaces is explored in Section 2.5. In Section 2.6, we give an overview of

the general formations of the phase space structures close to a saddle point. It

is a theory for a class of linear Hamiltonian systems. The linear systems involve

the abstract of the geometrical structures contained in nonlinear systems and also

represent the substantial advantage of being able to show all the relevant objects

(e.g. the NHIM, its stable and unstable manifolds, and the dividing surface) as

explicit formulae. The theory regarding cylindrical manifolds is represented in
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Section 2.7. In the end, we state the mathematical theory of the persistence of

the normally hyperbolic invariant manifolds in Section 2.8.

2.2 Hamiltonian vector fields

Literature reviews on Hamiltonian vector fields appear in several books on classical

mechanics (see, e.g. Goldstein [52] and Wiggins [53]). Recent research concerns

the dynamical behaviour of the flow that is generated by Hamilton’s equations of

motion. We focus on molecular motions moving from the reactants to the products

through the transition state and observe the dynamical properties of the flow.

A Cr Hamiltonian vector field with r � 2, is given by

q̇i =
@H

@pi
, (2.1)

ṗi = �
@H

@qi
, (2.2)

for i = 1, . . . , n. Here q 2 Rn represent coordinates of configuration variables

(position of component parts) and their canonically conjugate momenta are de-

noted by p 2 Rn. The function H = H(q, p, t) is so-called Hamiltonian func-

tion. We may write a Hamiltonian vector field as a phase space vector x =

(q
1

, ..., qn, p1, ..., pn) 2 R2n which is defined by

ẋ = �J ·rH, (2.3)

where

J =

0

@

0n �In
In 0n

1

A , (2.4)
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is the 2n⇥2n Poisson (antisymmetric) matrix, In denotes the n⇥n identity matrix,

and

rH =

✓

@H

@q
1

, . . . ,
@H

@qn
,
@H

@p
1

, . . . ,
@H

@pn

◆

.

For many mechanical systems, the Hamiltonian H represents the total energy of

the system and takes the form

H(q, p) = T (q, p) + V (q),

where T is the kinetic energy, while V is the potential energy depending only on q.

If a Hamiltonian does not depend explicitly on time t, then the energy is constant:

d

dt
H(q(t), p(t)) =

@H

@q

dq

dt
+

@H

@p

dp

dt
= 0,

by (2.1) and (2.2). Thus H(q(t), p(t)) = H(q(0), p(0)) = E. This is called conser-

vation of energy. If the Hamiltonian H(q, p, t) depends on time t, then the energy

is not conserved.

Hamiltonian principle

The phase space path (q(t), p(t)), t 2 [t
0

, t
1

] is a solution of Hamilton’s equations

(2.1) and (2.2), if and only if it is an extremal of the functional:

�

Z t1

t0

n
X

i=1

pidqi �H(q(t), p(t))dt = 0

The boundary conditions each have a factor of �q and �p at the initial or final

point which vanish,

�q(t
0

) = �q(t
1

) = �p(t
0

) = �p(t
1

) = 0.
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2.2.1 Canonical transformation

A canonical transformation transfers the phase space coordinates q and momenta

p to new coordinates Q and new momenta P which satisfy Hamilton’s equations

of motion with a new Hamiltonian K(Q,P, t).

Let the transformation of coordinates be Q = Q(q, p, t), P = P (q, p, t). We need

to derive the condition on transformation such that

Q̇ =
@K

@P
,

Ṗ = �@K

@Q
.

are satisfied in the new coordinates Q and P with a new Hamiltonian K. Hamil-

ton’s principle of least action in phase space for the new Hamiltonian reads

�

Z t1

t0

n
X

i=1

PidQi �Kdt = 0,

and thus

�

Z t1

t0

n
X

i=1

pidqi �Hdt = �

Z t1

t0

n
X

i=1

PidQi �Kdt = 0,

which is

�

Z t1

t0

n
X

i=1

pidqi � PidQi � (H �K)dt = 0.

This can be satisfied if the integrant is a total di↵erential

dW (q, P, t) =
n

X

i=1

pidqi �
n

X

i=1

PidQi � (H �K)dt (2.5)

where W (q, P, t) is called the generating function (one of four generating functions

type), expressed in terms of the old coordinates and new momenta. Writing out
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the terms of the di↵erential of the left hand side of (2.5) gives

n
X

i=1

@W

@qi
dqi +

n
X

i=1

@W

@Pi
dPi +

@W

@t
dt =

n
X

i=1

pidqi �
n

X

i=1

PidQi � (H �K)dt,

from which it follows that

pi =
@W

@pi
,

Qi =
@W

@Pi
,

K(Qi, Pi, t) = H(qi, pi, t) +
@W

@t
.

It is clear that if the system does not depend explicitly on time t then the new

Hamiltonian function (K) is the same as the old Hamiltonian function (H).

2.2.2 Symplectic forms

A symplectic vector space is a vector space that is equipped with a symplectic

form. For the phase space R2n a symplectic form is given by

⌦(u, v) ⌘ hu, Jvi, u, v 2 R2n, (2.6)

where h·, ·i denotes the standard inner product on R2n. Hamilton’s equations

of motion can be derived from the symplectic structure ⌦(·, ·) by the following

formula

⌦(XH(x), v) = hDH(x), vi, x = (q, p) 2 R2n , v 2 R2n. (2.7)
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Let X = (q̇, ṗ) be an arbitrary vector field on R2n and DH = (@H@q ,
@H
@p ). Thus,

equation (2.7) becomes

⌦((q̇, ṗ), v) = h(q̇, ṗ), Jvi = h
✓

@H

@q
,
@H

@p

◆

, vi.

Thus,

h�J(q̇, ṗ), vi = h
✓

@H

@q
,
@H

@p

◆

, vi, since JT = �J,

h(�ṗ, q̇), vi = h
✓

@H

@q
,
@H

@p

◆

, vi.

For any v 2 R2n,

h(�ṗ, q̇)�
✓

@H

@q
,
@H

@p

◆

, vi = 0.

Hence,

(�ṗ, q̇)�
✓

@H

@q
,
@H

@p

◆

= 0,

which are Hamilton’s equations (2.1) and (2.2).

2.2.3 Eigenvalues of symplectic matrices

The symplectic (canonical) transformation (say f) can be written as

f : (q, p) 7! (Q(q, p), P (q, p)).

The Jacobian of f is given by a 2n⇥ 2n matrix (A)

A =

0

@

@Q
@q

@Q
@p

@P
@q

@P
@p

1

A (2.8)

which is with matrix (2.4) satisfies

ATJA = J, (JA)T = JA and A�1 = J�1ATJ,
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is so-called symplectic matrix. Also, the Poisson matrix J satisfies

J�1 = JT = �J and J2 = �I
2n.

The eigenvalues of the symplectic matrix (A) can be determined by finding the

roots of the characteristic polynomial

p(�) = det(A� �I
2n),

Since the matrix A is symplectic and its coe�cients are real, the eigenvalues of

A have the following properties: if � is eigenvalue then ��1 is also an eigenvalue.

Moreover, since the coe�cients of the characteristic polynomial are real (A is real),

if � is a complex eigenvalue, its complex conjugate �̄ is also an eigenvalue. Hence,

if � = 1 or � = �1, then they must be double eigenvalues.

Proposition 2.1. Wiggins [53] Let A to be a symplectic matrix and � 2 C be

an eigenvalue of A. Then ��1, �̄ and �̄�1 are also eigenvalues of A. If � is an

eigenvalue of multiplicity k, then ��1 is an eigenvalue of multiplicity k too. Also,

the multiplicities of the eigenvalues +1 and �1, if they occur, are even.

Note that because we study the Hamiltonian system, this fixes one eigenvalue is

equal to 1, and hence by the symplectic condition another eigenvalue is equal to 1.

Thus there are only 2n � 2 eigenvalues need to calculate in order to see the type

of the stability of n degrees of freedom Hamiltonian system.

2.3 The transition state theory rate formula

Transition state theory provides a good method to describe the rate of the chemical

reactions. TST is based on the observation that large energy barriers hindering

reactive events lead to a bottleneck in phase space. The rate constant of reaction
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is determined by the flux of reactive trajectories through a dividing surface that

is chosen close to the bottleneck.

To set up the rate formula, consider the HamiltonianH(p, q) of the collinear system

with two degrees of freedom where p and q are two momentum and coordinate

vectors. The characteristic function �a of the reactive phase space is defined by

�a =

8

>

<

>

:

1, reactive trajectory,

0, otherwise.
(2.9)

Choose a dividing surface that is given by a curve in configuration space. The flux

integral through the dividing surface for the exact rate in phase space is given by

Kexact =

Z Z

dpds(p · ns)�(E �H(p, qs))�a(p, qs), (2.10)

where the function �(E � H(p, q)) is the density of phase point at fixed energy

E, qs is a point on the dividing surface parametrized by arc length s; and ns is

the normal to this line in the product direction. Equation (2.10) gives the exact

reaction rate, but it requires a detailed knowledge of the dynamics because it

contain the characteristic function �a.

By contrast, the TST rate is easier to calculate than the exact rate. In TST, we

consider a trajectory as reactive if it crosses the dividing surface from the reactant

to product side and nonreactive otherwise. The characteristic function for the

TST rate approximation is given by

�b =

8

>

<

>

:

1, (p · ns) > 0,

0, otherwise,
(2.11)

Thus, the integration of the flux in (2.10) becomes

KTST =

Z Z

dpds(p · ns)�(E �H(p, qs))�b(p, qs). (2.12)
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Thus the transition state theory rate is exact if �a = �b. This condition is the no-

recrossing assumption: It is satisfied if no trajectory crosses the dividing surface

more than once. Otherwise, TST will overestimate the reaction rate.

The momentum integral in (2.12) can be carried out to give

KTST = 23/2
Z

ds(E � V (qs))
1/2, (2.13)

where V is the potential energy. This is an action integral. The principle of

least action therefore means that qs should be the configuration space path of a

trajectory of energy E [17].

In fact, the recrossing-free assumption is strictly dependent on the choice of the

dividing surface. We want to choose the dividing surface qs with minimum flux.

Most possible dividing surfaces lead to many recrossings and lose the accuracy of

the rate [54]. For example, if we choose the dividing surface far on the reactant

side, then it would result in many recrossings, most of which have enough energy

to cross the barrier and soon recross it [34].

2.4 Phase space and configuration space

In this section, we clarify the di↵erence between configuration space and phase

space. Dimensionally, the potential energy surface is defined in n-dimensional

configuration space while the total energy in the phase space is defined in 2n-

dimensions. Consequently, finding the stationary points and calculating their lin-

ear stabilities in the phase space is hard, but we have essentially the same analysis

method for both spaces. The main di↵erence between phase and coordinate space

is that phase space is a state space. Each point in the phase space represents a

unique state of the system while each point in configuration space represents only

the physical position of the system. In the configuration space, the minima on
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the energy surface are called potential wells that are separated by a saddle point.

The motion from one potential well to another one must pass over the saddle. In

the phase space, we are concerned with the total energy surface and determine

its stationary points and their linear stabilities. The saddles work as barriers in

the phase space. Once the saddle points are found and characterized, the machin-

ery of geometrical mechanics can be applied to get the invariant manifolds and

their stable and unstable manifolds associated with the stationary points. Using

these geometrical structure of the stable and unstable manifolds in phase space

can be separated the reactive and nonreactive regions. However, finding the sta-

tionary states of the systems with more than two degrees of freedom is an unsolved

problem, the isolated stationary points are the most familiar in such manifolds.

There are two assumptions that have to be considered for the formulation of the

Hamiltonian system when we deal with the configuration space. Firstly, the Hamil-

tonian can be separated into a sum of two terms, kinetic energy function and po-

tential energy function. Secondly, the kinetic energy function has to be positive

definite and quadratic in the momenta. Under these assumptions, a stationary

point of the potential energy surface in configuration space gives rise to a sta-

tionary point of the Hamiltonian flow in phase space. That means, the momenta

at the stationary point are zero, and hence, the configuration space of this point

balances the various forces (i.e. the extremum of the potential energy).

We will face many critical problems when using the configuration space approach

to TST. The most important one is the transition state or the dividing surface

which must be defined in the phase space. The problem is that the dividing

surface that is recrossing-free in phase space does not project to a recrossing-

free dividing surface in configuration space. Of course, these di�culties will arise

when we attempt to extend the study of the system with more than two degrees

of freedom [55].
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2.5 Stability of stationary points

In configuration space, the negative gradient of the potential energy function rep-

resents the forces exerted on the system. The eigenvalues of the matrix of the

second derivative of the potential energy function evaluated at the state point

characterize the linear stability of the potential energy function. Suppose the

system possesses n degrees of freedom, then the stability of the saddle point is

characterized by the number of negative and positive eigenvalues. The extremum

is a minimum, if all eigenvalues are positive and moreover it is stable. On the other

hand, the extremum is a maximum, if all eigenvalues are negative and moreover

it is unstable. In case the system has m negative eigenvalues, it is called a rank-m

saddle which it is unstable in m degrees of freedom and stable in the remaining

n�m degrees of freedom.

In the phase space, the treatment is di↵erent due to the momenta. The stability

of the stationary point is examined by the stability matrix

0

@

@q̇
@q

@q̇
@p

@ṗ
@q

@ṗ
@p

1

A =

0

@

@2H
@q@p

@2H
@2p

�@2H
@2q � @2H

@q@p

1

A (2.14)

evaluated at the stationary point of the flow. For systems with n degrees of

freedom, the eigenvalues of the stability matrix (2.14) are n pairs which are either

complex numbers and their conjugates or real numbers and their inverses. A

pair of complex conjugate eigenvalues corresponds to a stable degree of freedom

(elliptical) and a pair of real eigenvalues corresponds to an unstable degree of

freedom (hyperbolic) [55]. There is a rare case in which the eigenvalues are equal

to zero. In this case, the manifolds of the stationary point need not be isolated

points. For more details about this case, the reader is referred to [56].
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2.6 Phase space structure close to the saddle

point

In this section we will show the phase space structure for a class of n-dof linear

Hamiltonian systems that are appropriate for the study of reaction dynamics [23].

For such a class of systems we will show some important phase space objects

that are used to describe the reaction dynamics, including the energy surface,

a higher-dimensional object of a saddle denoted by NHIM [50], its stable and

unstable manifolds and the dividing surface. In an area close to the NHIM, we

can construct the dividing surface which is a dynamical surface with recrossing-

free trajectories. The aim of this Section is to distinguish the NHIM, its stable

and unstable manifolds, the dividing surface, together with study all possible

trajectories close to the saddle point. We will begin by stating a class of n-dof

linear Hamiltonian systems.

2.6.1 The n degrees of freedom Hamiltonian

We now present the phase space structure of a linear Hamiltonian system near an

equilibrium point associated with a centre ⇥ centre ⇥ · · ·⇥ saddle type (a rank-

one saddle) in the phase space flow [23]. Close to the saddle point, the dynamics

is well described by the harmonic Hamiltonian

H =
1

2

n
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j �
�2

2
q2n. (2.15)

The corresponding equations of motion are given by

q̇j =
@H

@pj
, ṗj = �

@H

@qj
. (2.16)



Chapter 2. Theoretical Background 22

They read explicitly

q̇j = pj,

ṗj = �!2

j qj for j = 1, . . . , n� 1,

q̇n = pn,

ṗn = �2qn. (2.17)

The eigenvalues of the matrix associated to the linearized Hamiltonian vector field

around the saddle point are ±� and ±i!j where j = 1, ..., n � 1. The pair of

real eigenvalues ±� describe the hyperbolic direction of the saddle point which

are referred to as the reaction coordinates. The complex eigenvalues describe the

elliptic directions of the saddle point, i.e., oscillations transverse to the reaction

coordinate.

The dynamics described by the Hamiltonian (2.15) has a stationary point (saddle

point) at pi = qi = 0 at energy zero. We will study the dynamics at a fixed energy

h > 0 above the reaction threshold. The energy surface is (2n � 1) dimensional

and is given by

1

2

n
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j �
�2

2
q2n = constant = h > 0. (2.18)

We can split the energy for each degree of freedom individually as follows

1

2
(p2j + !2

j q
2

j ) = Ej for j = 1, . . . , n� 1,

1

2
(p2n � �2q2n) = En, (2.19)

where E
1

+ E
2

+ · · · + En = h and also h > 0, !j > 0 for j = 1, . . . , n � 1 and

� > 0.
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X

Figure 2.1: Phase portrait for the hyperbolic and elliptic directions. The
positive and negative energy are indicated in phase portrait of the saddle region.
The separatrices have zero energy. (Adapted from reference [23]).

In the qn � pn phase portrait the trajectories that go from qn > 0 to qn < 0 (or

vice versa) are said to be the trajectories that undergo reaction, see Figure 2.1.

Such trajectories can be seen with En > 0 in Figure 2.1. This Figure explains

the phase space structure of the hyperbolic direction and the elliptic directions of

systems. More precisely, it shows that there are two types of reactive trajectories.

Those with pn > 0, which are referred to as the forward reactive trajectories,

and those with pn < 0, which are referred to as the backward reactive trajectories.

Notice that the pn component of a reactive trajectory cannot change sign during its

evolution. The trajectories with En < 0 are referred to as nonreactive trajectories.

2.6.2 The energy surface

The (2n� 1)-dimensional energy surface can be visualised if we rewrite (2.18) as

follows
1

2

n
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j =
�2

2
q2n + h. (2.20)

From (2.20), we can see the that the section through the energy surface at fixed

qn is a (2n � 2) sphere with radius
q

h+ �2

2

q2n. Thus the energy surface is a

hyper-cylinder S2n�2 ⇥ R. The explicit map from the energy surface in R2n

into S2n�2 ⇥ R is clear from the formula. For each qn 2 R, we have a map of
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(q
1

, p
1

, . . . , qn�1, pn�1, pn) into S2n�2 defined by

(q
1

, p
1

, . . . , qn�1, pn�1, pn)

7!
n

(q
1

, . . . , qn, p1, . . . , pn)
�

�

�

1

2

n
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j =
�2

2
q2n + h

o

. (2.21)

2.6.3 The NHIM and its stable and unstable manifolds

The centre manifold of the equilibrium point is given by qn = pn = 0. It contains

all trajectories that remain trapped close to the equilibrium for all time in the

infinite future and the infinite past. This surface is invariant because the equations

of motion (2.17) imply q̇n = ṗn = 0. It has dimension 2n � 2. For a fixed energy

h > 0, the intersection of the centre manifold with the energy shell is in a surface

that satisfies

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h. (2.22)

This equation describes an (2n � 3) dimensional hyper-sphere S2n�3. This is the

NHIM (used in Chapter 3 and called the central sphere) that forms the bottleneck

for phase space transport from reactants to products. The term NHIM means that

the dynamical expansion and contraction rates transverse to the hyper-sphere are

larger then those in directions tangent to it. This sphere has stable and unstable

manifolds attached to it. These are (2n � 2) dimensional manifolds, denoted by

W s(S2n�3
h ) and W u(S2n�3

h ), respectively which are of one dimension less than the

energy surface. These manifolds separate reactive from non-reactive trajectories in

phase space. They act as reaction channels that guide the system from the reactant

configuration towards the transition state and on into the product region. They
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are given by

W s(S2n�3
h ) :

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h, pn = ��qn,

W u(S2n�3
h ) :

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h, pn = �qn.

(2.23)

These manifolds are referred to as reaction cylinders. Their structure is S2n�3 ⇥

R, which we refer to as spherical cylinders. Note that the stable and unstable

manifolds of the NHIM have the same energy value as energy of the NHIM since

the two lines pn = ��qn and pn = �qn have zero energy value . The stable and

unstable cylinders have two branches each that are referred to as the forward and

backward reaction cylinders. The reaction direction depends on the sign of pn.

The following definitions clarify the forward and backward reaction in stable and

unstable cylinders.

The forward stable cylinder:

W s
f (S

2n�3
h ) :

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h, pn = ��qn > 0, (2.24)

The backward stable cylinder:

W s
b (S

2n�3
h ) :

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h, pn = ��qn < 0. (2.25)

The forward unstable cylinder:

W u
f (S

2n�3
h ) :

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h, pn = �qn > 0. (2.26)
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The backward unstable cylinder:

W u
b (S

2n�3
h ) :

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h, pn = �qn < 0. (2.27)

2.6.4 The relation of the normally hyperbolic invariant

spheres to the centre manifold of the saddle

We have the saddle point of the Hamiltonian vector field (2.19). This saddle point

has a (2n�2)-dimensional centre manifold given by pn = qn = 0, a one-dimensional

stable manifold given by qj = pj = 0, j = 1, . . . , n � 1, pn = ��qn, and a one-

dimensional unstable manifold given by qj = pj = 0, j = 1, . . . , n� 1, pn = �qn. It

is easy to verify that the stable and unstable manifolds of the saddle point have

the same energy as the saddle point, i.e. h = 0. The relation is, the intersection of

the centre manifold of the saddle point with the energy surface gives the definition

of the NHIM (2.28), (2n� 3)-dimensional sphere.

1

2

n�1
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h = constant. (2.28)

Thus we see that the centre manifold of the saddle point is filled out by a one-

parameter (normally the energy) family of normally hyperbolic invariant (2n�3)-

dimensional spheres.

2.6.5 The dividing surface

Trajectories that cross the dividing surface correspond to reactive trajectories.

A recrossing-free dividing surface is a (2n � 2) dimensional hyper-sphere that is
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defined by setting qn = 0.

1

2

n
X

j=1

p2j +
1

2

n�1
X

j=1

!2

j q
2

j = h = constant. (2.29)

It has codimension-one in the energy shell and separates reactant from product

regions. Each trajectory that crosses the dividing surfaces crosses only once, go-

ing from reactants to products if pn > 0 or from products to reactants if pn < 0.

The only exceptions are trajectories within the NHIM (central sphere), which have

pn = 0 and remain in the dividing surface for all times. The NHIM (central sphere)

is an equator of the dividing surface and splits the dividing surface into two hemi-

spheres with pn > 0 and pn < 0 that mediate forward and backward reactions,

respectively. The forward dividing surface has pn > 0, and the backward dividing

surface has pn < 0. The forward and backward dividing surfaces have the struc-

ture of (2n� 2)-dimensional balls, which are denoted by B2n�2
f (h) and B2n�2

b (h),

respectively. All forward reactive trajectories pass through B2n�2
f (h); all backward

reactive trajectories pass through B2n�2
b (h). Thus all reactive trajectories have to

leave the neighbourhood of the dividing surface except for the boundary of the

dividing surface (NHIM), which is an invariant manifold.

In summary, the dividing surface will have the following properties:

• It will be of dimension 2n� 2 in the (2n� 1)-dimensional energy surface;

• Trajectories that cross the dividing surface are referred to as reactive trajec-

tories;

• The (2n� 3)-dimensional invariant hyper-sphere plays an important role in

the construction of the dividing surface;

• In the linear Hamiltonian system, the dividing surface is truly recrossing-free.
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2.6.6 The relation of the reactive trajectories and the sta-

ble and unstable spherical cylinders

The stable and unstable spherical cylinders play an important role in determining

the trajectories that do or do not react. To that end, rewrite the equation of the

energy surface as

1

2

n�1
X

j=1

(p2j + !2

j q
2

j ) +
1

2
(pn � �qn)(pn + �qn) = h

The trajectories that undergo reaction satisfy

0 <
1

2
(p2j + !2

j q
2

j ) = Ej < h, j = 1, . . . , n� 1,

1

2
(pn � �qn)(pn + �qn) = En > 0, (2.30)

where
n

X

j=1

Ej = h.

The forward and backward reactive region are determined using the relation in

(2.30). We have (pn � �qn)(pn + �qn) > 0. Thus we get either

(pn � �qn) > 0, (pn + �qn) > 0 (forward reactive region, pn > 0). (2.31)

or

(pn � �qn) < 0, (pn + �qn) < 0 (backward reactive region, pn < 0). (2.32)

The equation (2.31) defines the boundary of the forward reactive region which is

given by

pn = ��qn, pn = �qn, pn > 0,
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Figure 2.2: Phase portrait for the forward and backward reactive regions
with total energy h as well as their boundaries. (Adapted from reference [23]).

and bounded by W s
f (S

2n�3
h ) and W u

f (S
2n�3
h ). Similarly, the equation (2.32) defines

the boundary of the forward reactive region which is given by

pn = ��qn, pn = �qn, pn < 0,

and bounded by W s
b (S

2n�3
h ) and W u

b (S
2n�3
h ). These regions and their boundaries

are sketched and explained in Figure 2.2.

2.6.7 The reactive trajectories in the reactant and product

sections

In order to explain the reactive trajectories in more detail, we need to clarify their

behaviour in reactant and product sections. Let us consider the forward reactive

trajectories. Likewise the backward reactive trajectories with opposite signs of qn

and pn.

Starting with initial condition of the forward reactive trajectory pn > 0 and qn < 0,

the trajectory is shown as green dashed curves in Figure 2.3. This trajectory

propagates in time until it reaches qn = 0 where the dividing surface is located.

Then qn continues to grow as the trajectory moves into the product region (qn > 0).
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The section of the trajectory with qn < 0 is referred to as the reactant section

(shown in Figure 2.3(b)) and the section of the trajectory with qn > 0 is referred

to as the product section (shown in Figure 2.3(c)).

Figure 2.4 shows the pieces of the reactive region corresponding to forward and

reverse reactant sections of trajectories. Likewise, Figure 2.5 shows the piece of

the reactive region corresponding to forward and reverse reactive trajectories.

The interior of the stable and unstable spherical cylinders are identical. To see

this, we know that the stable and unstable spherical cylinder are S2n�3 ⇥ R. As

energy decrease in the (q
1

, p
1

), . . . , (qn�1, pn�1) components, the radius of S2n�3

contracts, until we have only R. This means

0 <
1

2

n�1
X

j=1

(p2j + !2

j q
2

j ) =
n�1
X

j=1

Ej < h.

Thus the energy of the (qn, pn) component has to be increased (
Pn

j=1

Ej = h).

As results, the (qn, pn) component of trajectories in the interior of the spherical

cylinders must satisfy
1

2
(p2n � �2q2n) = En > 0

The same procedure can be applied in the stable or unstable spherical cylinders.

Consequently, they have the same trajectories for di↵erent directions.

The following theorem summarizes the dynamics close to the saddle point.

Theorem 2.2. Uzer et al [23] The stable and unstable spherical cylinders bound

a region in the energy surface that is divided into two disconnected components by

the dividing surface. All reactive trajectories start inside one connected component,

cross the dividing surface and leave the dividing surface passing into the other

connected component.
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Figure 2.3: (a) forward reactive trajectory in a dashed green curves. (b) The
reactant section of the forward reactive trajectory. (c) The product section of
the forward reactive trajectory. (Adapted from reference [23]).

2.7 Cylindrical manifolds in phase space

In this Section, we will illustrate the configuration of the invariant manifold for a

system with two degrees of freedom. The cylindrical manifolds of the bimolecular

reaction (e.g. H
2

+H  ! H +H
2

) in phase space can be classified with respect

to the total energy (E
tot

, kinetic energy plus potential energy). The following
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Figure 2.4: Phase portrait for the piece of the reactive region correspond-
ing to forward and reverse reactant sections of trajectories. (Adapted from
reference [23]).
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Figure 2.5: Phase portrait for the piece of the reactive region correspond-
ing to backward and reverse reactant sections of trajectories. (Adapted from
reference [23]).

theory is applicable to a harmonic approximation for systems with two degrees

of freedom by De Leon et al [57]. Consider a Hamiltonian H(q
1

, q
2

, p
1

, p
2

) and

q
1

= 0 is the dividing surface. Trajectories with energy less than saddle point

energy E
sp

will be reflected o↵ the barrier. Thus, all trajectories with E
tot

< E
sp

will return back to the reactants and never reach the products. Trajectories lie on

two dimensional invariant cylinders whose geometry is the product of S1 and R1.

The motion on S1 ⇥ R1 forms an invariant cylinder denoted by ⌦rec(E) which is

shown in Figure 2.6. Similarly, the motion from the products lies on an invariant

cylinder, denoted by ⌦pro(E) which is also shown in Figure 2.6.
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Figure 2.6: Below the energy of saddle point, the trajectories are nonreactive
which their motion forms invariant cylinders ⌦rec(E) and ⌦pro(E).

For energies above the threshold (E
tot

� E
sp

), some trajectories cross. The bound-

ary between the two type of trajectory is formed ny the cylindrical manifolds

(W s,u
f ,W s,u

b ). On the reactant side, a trajectory on the invariant cylinder W s
f ap-

proaches the barrier and never crosses the barrier in the infinite future. Also, a

trajectory on the invariant cylinder W u
b departs from the barrier and never crosses

the barrier in the infinite past. A similar pair of cylinders in the product side do

the same action and will be denoted by W u
f ,W

s
b . A sketch of these manifolds is

shown in Figure 2.7(a). These four cylinders approach and emerge from the PODS

in the collinear system with two degrees of freedom.

In case of E
tot

> E
sp

, the reactive trajectory will cross the dividing surface and

never come back. They lie inside the cylindrical invariant manifolds, as shown in

Figure 2.7(b). In the linear system, they form a family ⌦rec!pro(E) of invariant

cylinders that lie inside the cylindrical manifold, W s
f and W u

f .. Similarly, tra-

jectories moving from product to reactant form a family ⌦rec pro(E) of invariant

cylinders that lie inside the other pair of cylindrical manifold, W s
b and W u

b . The

nonreactive trajectories that stay on the reactant side or the product side lie on

cylindrical invariant manifolds, outside W s,u
f and W s,u

b . Trajectories in these cylin-

drical manifolds approach the bottleneck area from the reactants or the products

side and then return back deeper into the reactants or products region. A sketch

of these manifolds is shown in Figure 2.7(c).
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Figure 2.7: Cylinders above the energy of saddle point are: (a) stable and
unstable cylindrical manifolds. (b) forward and backward reaction paths. (c)
nonreactive trajectories.

The set of invariant cylinders in phase space is

{⌦rec(E), ⌦pro(E), W s,u
f , W s,u

b , ⌦rec!pro(E), ⌦rec pro(E)}.

The four cylinders,W s,u
f andW s,u

b , meet at the NHIM. The reactive trajectories are

enclosed in these cylinders, go through the dividing surface and never return. Thus,

these cylinders provide the phase space boundary between reactive and nonreactive

trajectories. Thus, the stable and unstable cylindrical manifolds represent the

separatrix to reaction for the system.
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As discussed in more detail below, among these invariant manifolds only the NHIM

and its stable and unstable manifolds W s,u
f and W s,u

b will persist in the full nonlin-

ear system. The cylinders {⌦rec(E),⌦pro(E),W s,u
f ,W s,u

b ,⌦rec!pro(E),⌦rec pro(E)}

will in general break up in the presence of anharmonic coupling between the de-

grees of freedom. As energy increases, the cylinders, W s,u
f and W s,u

b will then

extend into the phase space and overlap one another. The dynamical behaviour

of cylinders in the phase space has an interesting property. One can focus on the

reactant side, namely W s
f and W u

b . These two cylinders intersect at so-called ho-

moclinic trajectories. These trajectories will asymptotically reach the NHIM along

the cylinders in both forward and backward in time. The overall structure in phase

space is often called the homoclinic tangle. Consequently, an obvious phase space

structure appears on the dividing surface as infinitely many layers. The manner

in which the invariant cylinders overlap one another in phase space explains that

stable and unstable manifold do not extend in the reactants or products in the

infinite time but they go back again to the dividing surface (bound motion). In

higher energies, the chaotic motion is involved in the overall motion which will

essentially recross the dividing surface. The recrossing trajectories intersect the

dividing surface in points. We will indicated the intersections with dividing sur-

face as the reactive and nonreactive islands (RIs) which will be studied in details

in Chapter 5.

2.8 Persistence of normally hyperbolic invariant

manifolds

The concept of the normally hyperbolic invariant manifolds (NHIMs) is a general-

ization of fixed points and periodic orbits to higher dimensional manifolds which

the dynamical expansion and contraction rates transverse to the NHIM are larger

than those in direction parallel to it. The dynamics on the invariant manifold is
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approximately neutral and the dynamics in the transverse directions is hyperbolic;

hence it is called normally hyperbolic.

The theory of the NHIM developed over many years. In 1970s, Fenichel [58] and

Hirsch, Pugh and Shub [59] established the theoretical framework. Wiggins [50]

describes Fenichel’s theory regarding the NHIM and provides a discussion of some

possible applications in the theory of dynamical system. This theory is more

general than we will need in this study. We will here state the general result in a

special case that will be su�cient for our purposes.

An invariant manifold is called normally hyperbolic if the dynamical expansion

and contraction rates transverse to the manifold are larger than for the internal

dynamics within the manifold. Two properties of a NHIM are relevant to our

study: These are persistence of the invariant manifold under perturbation and the

existence of stable and unstable manifolds of the NHIM.

Lyapunov exponents provide a precise formulation for the concept of transverse

and internal dynamical expansion rate.

To compute a Lyapunov exponent for an arbitrary trajectory, consider a trajectory

x(t) and a neighboring trajectory x(t) + �(t). Both trajectories must satisfy the

equations of motion (2.3). If the variation � is assumed to be infinitesimally small

and the equations of motion are linearized in �, we obtain the variational equations

�̇ = �J · P · �, �(t
0

) = �
0

, (2.33)

where P is the Hessian matrix of the Hamiltonian,

Pij =
@2H

@xi@xj
.

We integrate the combined systems (2.3) and (2.33) with arbitrary initial condi-

tions x
0

and �
0

, and we ask how fast the length of the tangent vector �(t) will
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grow. The Lyapunov exponent of the trajectory starting at x
0

is defined by

�(x
0

, �
0

) = lim sup
t!1

1

t
ln
k�(t)k
k�

0

k , (2.34)

where k�k denotes the length of the vector �. This definition corresponds to an

exponential growth k�(t)k / e�t. In general, the tangent vector � will quickly

align itself with the direction in which the expansion rate is largest. The resulting

Lyapunov exponent does then not depend on the arbitrarily chosen initial vector

�
0

. There is an exception, however, for a trajectory in an invariant manifold: if

the vector � is initially chosen tangent to the invariant manifold, it will remain

tangent to it at all times. In this situation, we can meaningfully compute a

Lyapunov exponent parallel to the invariant manifold and a Lyapunov exponent

in the full phase space. The invariant manifold is normally hyperbolic if the latter

is larger than the former.

The Lyapunov exponents are particularly easy to compute for a periodic orbit [60].

Because the evolution equation (2.33) is linear in the variation vector �, its solution

can be written as �(t) = Y (t) · �
0

with a matrix Y (t) that does not depend on �.

The matrix Y (T ) is called the monodromy matrix of the corresponding periodic

orbit with period T , its eigenvalues m
1

, . . . ,m
2n are the Floquet multipliers. For

a periodic orbit with period T , we have Y (µT ) = (Y (T ))µ for µ = 1, 2, . . . .

Therefore

�(µT ) = (Y (T ))µ · �
0

. (2.35)

So, mµ
1

, ...,mµ
2n are the eigenvalues of Y (µT ). The spectrum of Lyapunov expo-

nents of the particular periodic orbit is then

�i = lim
µ!1

1

µT
ln |mµ

i | =
1

T
ln |mi|, (2.36)

and the largest of the Floquet multipliersmi will give the Lyapunov exponent (2.34).

For a periodic orbit in an invariant manifold we can use the eigenvectors of Y (T )
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to distinguish whether eigenvalues correspond to variations parallel or transverse

to the invariant manifold, and we can then choose the largest Lyapunov exponents

in the parallel and transverse directions.

In a Hamiltonian dynamical system, the eigenvalues of the stability matrix Y (T )

will always occur in pairs e±�T or e±i'T with real numbers � and '. These types of

eigenvalues correspond to variations in unstable and marginally stable directions,

and yield Lyapunov exponents � and 0, respectively. A third possibility arises

in Hamiltonian systems with three or more degrees of freedom: Eigenvalues can

occur in quartets e(±�±i')T . In Chapter 4, this case is not relevant for our situation

because the periodic orbits we are study lie within the centre manifold, which is a

subsystem with only two degrees of freedom.

The parallel and perpendicular Lyapunov exponents will in general be di↵erent

for di↵erent trajectories in the invariant manifold, though they will be equal for

trajectories on the same invariant torus or in the same chaotic sea. To verify

normal hyperbolicity numerically, we must therefore calculate Lyapunov exponents

for a large number of representative trajectories and check that the perpendicular

Lyapunov exponent is larger than the parallel exponent in all cases.
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The H2 +H exchange reaction

3.1 Introduction

The example we consider in this work is the simplest chemical reaction,

H +H
2

�! H
2

+H.

The simplicity of this reaction is that the molecule consists of three hydrogen atoms

which involve three electrons and three protons. This reaction played an important

role in the development of theoretical and experimental investigations in reaction

dynamics. In 1927, Born and Oppenheimer [61] derived a good approximation of

the nuclei in a molecule with respect to the electrons. The Born-Oppenheimer

approximation is based on the assumption that the electronic motion in molecules

take place on much short time scales than the nuclear motion because the nuclear

mass is much larger (about 2000 times) than the electron mass. This approxi-

mation implies that the total molecular wavefunction is defined as a product of

an electronic wavefunction and a nuclear wavefunction. Born-Oppenheimer ap-

proximation is determined by fixing the nuclei at some chosen configuration and

solve the Schrödinger equation for the motion of the electrons. The energy of the

39
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electronic ground state is regarded as potential energy for the this nuclear config-

uration. The e↵ective interaction of the nuclei is described by the potential energy

surface. An early fundamental investigations of chemical reaction dynamics have

been done by London (1929) [62]. Using the framework of Born-Oppenheimer ap-

proximation, he provided a semi-empirical formula for the potential energy surface

which describes the nuclear motions for the H
2

+H system.

Eyring and Polanyi (1930) [7] extended London’s approach and numerically com-

puted the collinear potential energy surface for the H
2

+H system. Hirschfelder,

Eyring and Topley (1936) [63] calculated the first classical trajectories of the dy-

namics of the H
2

+H reaction, using the potential energy surface of Eyring and

Polanyi.

Truhlar and Wyatt [64] reviewed the improvements concerning calculations of an

accurate potential energy surface which were worked out during the 1960’s. Porter

and Karplus [25] have essentially improved the semi-empirical potential energy

function, which is applied in this thesis and also been used in some recent works

in the dynamics studies [21]. The analytic expression of this surface is presented in

section 3.2. The theoretical investigations concern the nuclei are dynamics which

is considered as a mass, moving in the potential energy surface. For development

on the experimental investigations, the reader is refereed to the literature [65–69].

In this Chapter, we present a Hamiltonian that is applied to the hydrogen exchange

molecular reaction. We derive a Hamiltonian for the system with three degrees of

freedom, called full system, and its two sub-systems with two degrees of freedom,

namely collinear and reduced centre manifold systems. The Hamiltonians derived

in this Chapter will be used in the following two Chapters. Results in Chapter 4 are

based on the Hamiltonian of full system and the reduced centre manifold system

while results in Chapter 5 are based on the Hamiltonian of full system and the

collinear system.
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3.2 Potential energy function

The Porter-Karplus potential energy function [25] is given by

V = (1/C
1

)
⇥

�C
2

� (C2

2

� C
1

C
3

)1/2
⇤

(3.1)

where the quantities C
1

, C
2

and C
3

are given as follows

C
1

= (1� S
1

S
2

S
3

)2 � 1

2

⇥

(S2

1

� S2

2

)2 + (S2

2

� S2

3

)2 + (S2

1

� S2

3

)2
⇤

,

C
2

= �(Q� J
123

)(1� S
1

S
2

S
3

)

+
1

2

⇥

(J
1

� J
2

)(S2

1

� S2

2

) + (J
2

� J
3

)(S2

2

� S2

3

) + (J
1

� J
3

)(S2

1

� S2

3
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⇤

,
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3

= (Q� J
123

)2 � 1

2

⇥

(J
1

� J
2

)2 + (J
2

� J
3

)2 + (J
1

� J
3

)2
⇤

,

Q = Qd
1

+Qd
2

+Qd
3

,

Qd
k =

1

2

⇥

1Ek +
3Ek + S2

k(
1Ek � 3Ek)

⇤

,

Jk =
1

2
(1Ek � 3Ek) + S2

k{
1

2
(1Ek +

3Ek)

+�
⇥

(1 +R�1l ) exp(�2Rl) + (1 +R�1m ) exp(�2Rm)
⇤

},

1Ek = D
1

{exp [�2↵(Rk �Re)]� 2 exp [�↵(Rk �Re)]},

3Ek = D
3

{exp [�2�(Rk �Re)] + 2 exp [��(Rk �Re)]},

Sk = (1 + ⇣kRk +
1

3
⇣2kR

2

k) exp(�⇣kRk),

⇣k = 1 +  exp(��Rk),

J
123

= ✏S
1

S
2

S
3

,
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Figure 3.1: The contour plot of the potential energy function V (R
1

, R
2

). sp
refers to the saddle point.

where k, l,m = 1, 2, 3 withm 6= l 6= k. The potential energy expression depends on

three variables, namely R
1

, R
2

and R
3

(distances between three atoms) and con-

tains nine parameters which are D
1

, D
3

, Re,↵, �,,�, � and ✏. These parameters

are shown in Table 3.1. The saddle point configuration is linear and symmetric

and satisfies

R
1

= R
2

=
1

2
R

3

. (3.2)

Thus, the saddle point configuration is collinear. Figure 3.1 shows the collinear po-

tential energy surface of (3.2). It appears like an L-shaped valley, located between

two ‘knolls’. The saddle point (sp) lies on the highest point on the valley path

and between two cli↵s. The saddle point has coordinates R
1

= R
2

= 1.70083 a.u.

and energy value �4.3504 eV.
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Table 3.1: The H
2

+H potential energy parameters. Taken from [25].

D
1

= 4.7466 eV � = 28.2 eV

D
3

= 1.9668 eV ✏ = -17.5 eV

Re = 1.40083 a.u.  = 0.60

↵ = 1.04435 a.u. � = 0.65

� = 1.000122 a.u.

H1x
x

y

r

H3

H2 H1x

R

γ
x

Figure 3.2: The coordinates for H +H
2

exchange reaction.

3.3 Kinetic energy function

Kinetic energy is the energy of motion. The kinetic energy of an object is the

energy which it possesses due to its motion.

In our example the hydrogen exchange reaction, the kinetic energy is derived from

that given, for example, by Waalkens et al [70]. They study the HCN/CNH

isomerization reaction in Jacobi coordinates: r the distance between C and N, R

the distance between H and the centre of mass of CN and � the angle between H,

the centre of mass of CN and C (i.e.: Here the atoms C, N and H take the places

of H1, H2 and H3, respectively in Figure 3.2). The corresponding kinetic energy
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expression is

T =
1

2µ
p2r +

1

2m
p2R +

1

2

✓

1

µr2
+

1

mR2

◆

p2�, (3.3)

where µ = mCmN/(mC + mN) is the reduced mass of CN and m = mH(mC +

mN)/(mH + mC + mN) is the reduced mass of the full system. In the exchange

hydrogen reaction, we have three identical atoms (all atoms have same mass).

Thus µ and m become 1

2

mH and 2

3

mH , respectively. As a result, the kinetic

energy function (3.3) has the following form

T =
1

mH
p2r +

3

4mH
p2R +

✓

1

mHr2
+

3

4mHR2

◆

p2�. (3.4)

It is singular when R = 0. This is the case for symmetric collinear configurations

such as the saddle point that is of central importance in our study. To avoid this

singularity, we replace the polar coordinates R and � by Cartesian coordinates x

and y, as shown in Figure. 3.2. The coordinate systems are related by

x = R cos �, y = R sin �,

R2 = x2 + y2, � = arctan
⇣y

x

⌘

.

We use r as the third coordinate as before.

The generating function W associated with this transformation is

W = prr + pxR cos � + pyR sin �.

It yields the following transformation of momenta:

pR =
@W

@R
= px cos � + py sin �

=
xpx + ypy

R
,

p� =
@W

@�
= �pxR sin � + pyR cos �

= �ypx + xpy.



Chapter 3. The H
2

+H exchange reaction 45

Substituting these results into (3.4), we get

T =
1

mH



p2r +
3

4
(p2x + p2y) +

(xpy � ypx)2

r2

�

, (3.5)

which is the result that will be used in the Hamiltonian systems with two and three

degrees of freedom (the collinear system, the reduced centre manifold system and

the full-dimensional system). The singularity where r = 0 is not relevant to our

study because it represents the distance between H1 and H2 which cannot be zero

during the reaction neither in the reactants, the products or the transition state.

3.4 Hamiltonian function and its subsystems

The hydrogen exchange reaction H + H
2

! H
2

+ H involves three atoms. Conse-

quently, if the atoms are assumed to move in three-dimensional space, the reaction

is described by nine degrees of freedom. Three of these, which represent the centre

of mass motion, can be separated directly. Of the remaining six degrees of free-

dom, three describe spatial rotations of the complex and three describe vibrations.

They can be separated only if the total engulf momentum of the molecule is zero,

with we will assume. Even then, the attempt to separate the rotational degrees of

freedom leads to a vibrational phase space that is singular for all collinear config-

urations, which are invariant under rotations around the axis on which the atoms

lie [71, 72].

The origin of this singularity can be illustrated with the help of Figure. 3.2. To

obtain the configuration space of the vibrational dynamics, we have to identify all

configurations of the reactive complex that can be transformed into each other by

translations or rigid rotations. The shape of the complex can then be described

by the three coordinates r, x and y, where r is the distance between H1 and H2,

y is the perpendicular distance from H3 to the distance r, and x is the distance

from the midpoint of H1 and H2 to the end of the line through H3 perpendicular
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to r. There are some configurations are not di↵erent, namely (r, x, y) can be

transformed (r, x,�y) by a rotation around the axis through H1 and H2. To

resolve this ambiguity, the configuration space must be restricted to the half space

(r, x, y � 0). It has a boundary that is formed by the collinear configurations with

y = 0. The dynamics must necessarily be singular at these configurations.

We are mainly interested in studying the dynamics in the vicinity of the saddle

point that marks the transition region for the exchange reaction. Unfortunately,

the activated complex is collinear at the saddle point, and the ensuing singularity

makes it di�cult to analyze the dynamics. To circumvent this di�culty, we regard

configurations with positive and negative values of y as di↵erent. This convention,

which has also been employed in previous studies [55, 70], can physically be inter-

preted as constraining the three atoms to move in a plane. The full system then

has six degrees of freedom, two of which correspond to the centre of mass motion

and one to planar rotations. Again, we assume vanishing angular momentum.

The remaining three degrees of freedom, which can be described, for example, by

the three coordinates r, x and y of Figure. 3.2, describe the vibrational dynam-

ics of the complex. Because the collinear configurations are not invariant under

rotations in the plane, or equivalently, because configurations with positive and

negative y cannot be transformed into each other through planar rotations, the

symmetry-reduced phase space does not have singularities. It is well suited to an

investigation of the dynamics near the saddle point.

We will study the vibrational dynamics of the complex at zero angular momentum.

The Hamiltonian is then given by

H =
1

mH



p2r +
3

4

(p2x + p2y) +
(xpy � ypx)2

r2

�

+ V (r, x, y), (3.6)

where mH is the mass of the hydrogen atom (mH = 1.00794 u). The expression for

the kinetic energy is already derived from that given, for example, by Waalkens et

al [73]. The transformation to our reaction was shown earlier. We use the potential



Chapter 3. The H
2

+H exchange reaction 47

energy surface V (r, x, y) derived by Porter and Karplus [25] (see Section 3.2).

Distances will be measured in atomic units (a.u.) and energies in electron volts

(eV), with the potential energy of three isolated hydrogen atoms chosen as zero.

The potential energy V (r, x, y) has two reflection symmetries: x 7! �x and

y 7! �y. That these transformations must leave the potential invariant is clear

from Figure. 3.2 because the three atoms are identical. The two reflections of

configuration space are extended to phase space by the canonical transformations

Px : (r, x, y, pr, px, py) 7! (r,�x, y, pr,�px, py),

Py : (r, x, y, pr, px, py) 7! (r, x,�y, pr, px,�py). (3.7)

Both of these are symmetries of the Hamiltonian (3.6), as is their composition

Px � Py : (r, x, y, pr, px, py) 7! (r,�x,�y, pr,�px,�py).

Corresponding to the two reflection symmetries (3.7) there are two subsystems

with two degrees of freedom. They contain all configurations that are invariant

under one of the reflections.

The reactive complex is invariant under Py if y = py = 0. These are precisely the

collinear configurations. The Hamiltonian of the collinear case is given by

H =
1

mH

⇥

p2r +
3

4

p2x
⇤

+ V (r, x). (3.8)

Numerous researchers including Pollak and co-workers [17–19, 74] and most re-

cently Iñarrea et al [21] have studied the collinear hydrogen exchange reaction.

The subsystem invariant under the reflection Px contains all axially symmetric

configurations with x = px = 0 (triangle with two equal angles). The dynamics
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within this subsystem is described by the Hamiltonian

H =
1

mH

⇥

p2r +
3

4

p2y
⇤

+ V (r, y). (3.9)

The saddle point of the Porter-Karplus potential energy surface is located at the

symmetric collinear configuration (r, x, y) = (r
S

, 0, 0) with r
S

= 3.40166 a.u. To

obtain a harmonic approximation of the dynamics close to the saddle point, we

expand the Hamiltonian (3.6) in a Taylor series up to second order. The last term

in the kinetic energy (the fourth order) will not contribute because x and y are

zero. Due to its symmetries the expansion of the potential energy cannot contain

any terms of odd order in either x or y. Up to an additive constant the harmonic

Hamiltonian must therefore be of the form

H
2

=
1

mH

⇥

p2r +
3

4

(p2x + p2y)
⇤

+ a
1

(r � r
S

)2 + b
1

x2 + c
1

y2 (3.10)

with constants a
1

, b
1

, c
1

that cannot be determined from symmetry considerations.

Thus, the dynamics in r, x and y will decouple in the harmonic approximation.

Because the expansion point is a saddle, the dynamics must be unstable in one of

the three coordinates, namely the reaction coordinate. In the reactant and product

states the middle atom H3 is bound to either H1 or H2, whereas the third atom

is far away. It is therefore plausible to identify the reaction coordinate with the

coordinate x that brings H3 closer to one or the other atom. Indeed, the expansion

of the Porter-Karplus potential shows that the coe�cient b
1

is negative whereas

a
1

and c
1

are positive.

As a consequence, the symmetric subsystem x = px = 0 in which the motion in

the reaction coordinate is suppressed forms the centre manifold of the transition

state, i.e. it contains all configurations in which the system oscillates around

the unstable equilibrium point. The symmetry of the system makes it easy to

identify the centre manifold without laborious calculations. It allows us to avoid
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the normal form calculations that are required in reactive systems without this

symmetry [23, 75, 76].

Furthermore, we can demonstrate the analytical solution of the harmonic Hamilto-

nian. In the full system with three degrees of freedom, the harmonic Hamiltonian

equations of motion are as follow

ṙ =
@H

2

@pr
=

2

mH
pr = a

2

pr,

ẋ =
@H

2

@px
=

3

2mH
px = b

2

px,

ẏ =
@H

2

@py
=

3

2mH
py = c

2

py,

ṗr =
�@H

2

@r
= �a

1

r,

ṗx =
�@H

2

@x
= �b

1

x,

ṗy =
�@H

2

@y
= �c

1

y.

where a
1

, b
1

, c
1

are obtained by Taylor series and denoted in (3.10). The coe�cients

a
1

, b
1

, c
1

with their units are 2.47328 eV
a

2
0
, �3.31467 eV

a

2
0
and 0.664463 eV

a

2
0
, respectively

where a
0

is the Bohr radius. The eigenvalues of the Hamiltonian Hessian matrix

are

(±�,±!
1

i,±!
2

i) = (±2.221,±2.21531i,±0.994401i)

where !
1

=
p
a
1

a
2

, � =
p
b
1

b
2

and !
2

=
p
c
1

c
2

. With the following constants

(Bohr Radius) 1a
0

= 0.52917⇥ 10�10m,

(Atomic Mass Constant) 1u = 1.6605⇥ 10�27kg,

(Electron Volt) 1eV = 1.602⇥ 10�19J,
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the frequency unit is given by

s

eV

u · a2
0

= 1.85617⇥ 1014s�1.

Thus the frequencies (!
1

,!
2

) are

!
1

= ±4.1121⇥ 1014s�1, (3.11)

!
2

= ±1.84583⇥ 1014s�1. (3.12)

Moreover we can simplify the corresponding solution in terms of the initial condi-

tions, hydrogen mass and the eigenvalues as

r(t) = r
0

cos!
1

t+
a
2

!
1

pr
0

sin!
1

t,

pr(t) = pr
0

cos!
1

t� !
1

a
2

r
0

sin!
1

t,

x(t) = x
0

cosh�t+
b
2

�
px

0

sinh�t,

px(t) = px
0

cosh�t+
�

b
2

x
0

sinh�t,

y(t) = y
0

cos!
2

t+
c
2

!
2

py
0

sin!
2

t,

py(t) = py
0

cos!
2

t� !
2

c
2

y
0

sin!
2

t,

(3.13)

where r
0

, x
0

, y
0

, pr
0

, px
0

and py
0

are the initial conditions.



Chapter 4

Chaotic dynamics in

multidimensional transition states

4.1 Introduction

As described in Chapter 2, the important structures that determine the dynam-

ics in the transition region of a system with three degrees of freedom, include a

three-dimensional sphere, the NHIM, and it stable and unstable manifolds. These

structures were found in the harmonic approximation, and the question remains

under what condition they survive in the realistic anharmonic system.

In general, the persistence of these manifolds can be guaranteed as long as the

three-sphere that embodies the transition state and that we will call the central

sphere, is normally hyperbolic, i.e., the dynamical expansion and contraction rates

transverse to the central sphere are larger than those within it. For the hydrogen

exchange reaction, we will see that the existence of the central sphere itself can be

assured up to high energies even if it is not normally hyperbolic. Its stable and

51
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unstable manifolds, the reaction cylinders, will, however, break up if normal hy-

perbolicity fails. It is therefore important to study whether, and at what energies,

that happens.

The central sphere is normally hyperbolic for energies just above the reaction

threshold. The reaction dynamics within the transition state region is then ac-

curately described by a harmonic approximation (see e.g. Section 3.4 ). The

dynamics within the invariant hyper-sphere is therefore completely regular, and

the condition of normal hyperbolicity is satisfied. At higher energies, the dynamics

within the sphere will become partially chaotic, and a breakdown of normal hyper-

bolicity may result. Such a scenario has indeed been described in [29, 75, 76] for a

model reaction. The authors analyse the dynamics with the help of normal form

transformations. Because this procedure does not in general converge, it can be-

come di�cult, in particular at higher energies, to distinguish the properties of the

underlying dynamical system from artefacts of the normal form. In this chapter,

we will investigate the dynamics within the transition state of a physical system

and present a detailed description of those features that lead to a breakdown and,

surprisingly, to a subsequent reestablishment of normal hyperbolicity.

The central sphere has customarily [23, 70, 77–80] been called “the NHIM”. Be-

cause we are interested in situations in which the invariant hyper-sphere fails to

be normally hyperbolic, we will avoid that term.

There are two fundamental periodic orbits within the centre manifold: a symmet-

ric stretch periodic orbit (SSPO) and a bending periodic orbit (BPO). In addition,

a secondary symmetric stretch periodic orbit (ScPO), that is generated by a bi-

furcation, plays an important role because it gives rise to a large regular island.

These periodic orbits undergo a sequence of bifurcations in which they successively

lose and regain stability.

To decide at what energies the central sphere is normally hyperbolic, we compute

Lyapunov exponents in directions parallel and perpendicular to the sphere for both
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periodic and non-periodic orbits. We find that the SSPO is the only orbit that

violates the condition of normal hyperbolicity, and that only in a small energy

interval. Nevertheless, the dynamics of the exchange becomes more and more

complex as the energy is increased, as is evident already in the collinear subsystem.

The results in this chapter have been published in the Journal of Chemical Physics

with co-author Thomas Bartsch [81].

4.2 Dynamics within the centre manifold

The Hamiltonian vector field of (3.6) has an equilibrium point (saddle point) which

is (r, x, y) = (3.40166 a.u., 0, 0). As we are interested in the transition state, we

seek the centre manifold of the saddle point. The reduction to the centre manifold

for the Hamiltonian system (3.9) gets rid of one degree of freedom. Hence, the

centre manifold forms a subsystem with two degrees of freedom. Specifically, it is

the space of all symmetric configurations, where x = px = 0. Since the hydrogen

exchange reaction has three identical atoms, if any arbitrary trajectory starts

with a symmetric state, it will remain in a symmetric configuration. Thus, the

symmetry makes it easy to identify the centre manifold.

The central sphere that controls transport through the transition state at low

energies can be identified with the energy shell within the centre manifold, as

described in Chapter. 2. As we aim to investigate the breakdown of the low-

energy phase space structures, we will start by studying the dynamics within the

centre manifold.

Figure 4.1 shows a contour plot of the potential energy for symmetric configura-

tions (i.e. within the centre manifold, with x = 0). The saddle point (sp) of the

three-dimensional system appears as a minimum. It lies at (3.40166 a.u., 0) in r, y

coordinates and has energy value �4.3504 eV. The second prominent feature of

the potential is a conical intersection ridge. It occurs at equilateral configurations,
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r (a.u.)

y (a.u.)

1 2 3 4 5 6

2

1

0

1

2

c.i.

c.i.

sp

Figure 4.1: The contour plot of the potential energy surface of the centre
manifold (x = 0) of the equilibrium saddle point of the Hamiltonian flow. (sp)
refers to saddle point and (c.i.) refers to the conical intersection.

where y =
p
3

2

r. For these configurations the two lowest electronic states are de-

generate. As a consequence, the potential energy surface, which gives the energy

of the lowest state, is not smooth at the intersection. The lowest point on the ridge

occurs at r = 1.90352 a.u., y = ±1.64849 a.u. with energy Ec.i. = �1.9514 eV.

Above this energy, a new reaction channel opens in which the central atom (H3

in Figure 3.1) can escape across the ridge, leaving the two outer atoms bound as

a molecule. The transition across the conical intersection cannot be described by

classical mechanics. We will restrict our following investigations to energies below

Ec.i.. As we will see, complicated dynamics develop well below this threshold.

For energies between the saddle point and the conical intersection, the contour

line of the potential energy is topologically a circle. The energy shell in phase

space (within the centre manifold) has therefore the same topology as it has in

the harmonic approximation, i.e., it is a three-dimensional hyper-sphere that we

have called the central sphere. At low energies, it is normally hyperbolic. As

the energy increases, normal hyperbolicity might, and indeed will, be destroyed.

We know from these simple considerations, however, that the central sphere will

persist even at energies where it is not normally hyperbolic.
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4.2.1 Bifurcation of periodic orbits

The internal dynamics of the central sphere, can be described by two bath modes

[82]. The first bath mode resulting in a symmetric stretch periodic orbit (SSPO).

The second in a bending periodic orbit (BPO). At energies close to the saddle

point, where the harmonic approximation is accurate, the dynamics within the cen-

tral manifold can be described by two normal mode vibrations, a symmetric stretch

and a bend of the activated complex. Their frequencies can be obtained from a

second-order Taylor series expansion of the potential, i.e., from the constants a

and c in equation (3.10), as !SSPO = 4.1121⇥ 1014 s�1 and !BPO = 1.8458⇥ 1014

s�1, indicated in more details in (3.11), (3.12) respectively. Both normal mode pe-

riodic orbits are stable with respect to a perturbation of initial conditions within

the centre manifold. As the energy increases, they undergo a sequence of bifur-

cations in which they lose their stability and give rise to further stable periodic

orbits, as illustrated schematically in Figure 4.2.

Figure 4.2 shows the bifurcation diagram of the two fundamental periodic orbits,

the symmetric stretch (SSPO) and the bend (BPO) within the centre manifold.

The first bifurcation occurs in the SSPO at E ⇡ �4.32547 eV, just above the saddle

point energy. The SSPO undergoes a period doubling bifurcation: It becomes

unstable and a new stable periodic orbit with twice the period appears. We will see

that this periodic orbit plays an important role in structuring the dynamics within

the centre manifold. We will call it the secondary symmetric stretch periodic orbit

(ScPO).

The configuration space projections of the fundamental periodic orbits are shown

in Figure 4.3 for energies E = �4.3 eV and E = �4.0 eV. It can be clearly

seen that even though the ScPO is generated by a bifurcation from the SSPO,

it takes on pronounced bending character at higher energies. All three periodic

orbits are invariant under the reflection Py. The SSPO is located within the

collinear subsystem, which means that each point on the SSPO is invariant under
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Figure 4.2: Schematic Bifurcation diagram for the system within centre man-
ifold. The solid and dashed black lines denote stable and unstable periodic
orbits, respectively. PD refers to periodic doubling bifurcation and SB refers to
symmetry breaking bifurcation.

reflection. This is not true for the ScPO and BPO. These periodic orbits are

invariant in the sense that any point on one of these orbits is mapped under

reflection to a di↵erent point on the same orbit. Periodic orbits of this type can

undergo symmetry breaking bifurcations that do not exist in systems without

reflection symmetries [83, 84]: A stable periodic orbit (ScPO) that is invariant

under reflection turns unstable and gives rise to two stable periodic orbits that

are not invariant, but are mirror images of each other. The asymmetric periodic

orbits have roughly the same period as the symmetric one.

A symmetry breaking bifurcation of the ScPO occurs at the energy E ⇡ �2.5 eV.

Figure 4.4 shows the configuration space projections of the ScPO and the two new

periodic orbits for energy E = �2.3 eV. It is obvious from the figure that the
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Figure 4.3: Periodic orbits on the potential energy of centre manifold at
energies (a) E = �4.3 eV, (b) E = �4.0 eV.

satellite orbits have lost their reflection symmetry. At a higher energy E ⇡ �2.2

eV the asymmetric periodic orbits collapse onto the ScPO again and the ScPO

regains stability in an inverse symmetry breaking bifurcation.

In a similar scenario, the BPO undergoes a symmetry breaking bifurcation at

E ⇡ �3.8 eV, and the two asymmetric periodic orbits thus generated collapse

onto the BPO again and disappear at E ⇡ �2.4 eV in an inverse symmetry

breaking bifurcation. These three periodic orbits are shown in Figure 4.5 for

energy E ⇡ �3.3 eV . The two asymmetric orbits have the same projection into
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Figure 4.4: The ScPO (black) and its branches (green and brown) at E =
�2.3 eV.

configuration space, but, as the phase space figures show, they are traversed in

di↵erent directions.

4.2.2 Poincaré surface of section

In order to investigate the dynamics within the centre manifold in more detail,

we choose a suitable Poincaré surface of section. Since the centre manifold is four

dimensional, the surface of section will have two dimensions and will be easy to

visualize. A standard approach is to look at a Poincaré surface of section.

For our example (3.9), we fix the energy E and pick the surface of section y =

0. The surface of section is two-dimensional, with coordinates r and pr. The

remaining phase space coordinates py is determined from the condition

H(pr, py, r, y = 0) = E. (4.1)

This is a quadratic equation for py. We choose the positive value of py to define

a two-dimension surface of section in the three-dimensional energy shell. A given

trajectory starting on the surface of section will in general intersect this surface
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Figure 4.5: The BPO and its branches at E = �3.3 eV.

several times. A Poincaré surface of section plot is obtained by making successive

intersection of a single trajectory with the surface of section.

The SSPO lies within the surface of section. Indeed, it bounds the area that is

energetically accessible at a given energy. In contrast, the BPO appears as the

central point in the low energy surface of section. For various energies, the surface

of section is shown in Figure 4.6.

In phase space, the Poincaré surface of sections determine the dynamical be-

haviour. If the plotted points on the Poincaré surface of sections appear as closed

curve in the two dimensional (r, pr) plane, then the motion is regular and not a

chaotic motion. This is because we have a regular orbit (quasiperiodic orbit) that

moves on a torus in the phase space and the curve appears in the intersection

of y = 0. In a non-chaotic (integrable) Hamiltonian system, the regular motion

(quasiperiodic) has more than one dependent frequency. This orbit moves on
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centre manifold at the energies (a) �4.35 eV, (b) �4.32547 eV, (c) �4.3 eV, (d)
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and (d) �3.5 eV. The main periodic orbits are labeled in (c).

an invariant torus. However, most quasiperiodic motion is preserved under weak

perturbations in accordance with the Kolmogorov Arnold and Moser KAM Theo-

rem [85]. In contrast, the chaotic motion occurs, if those KAM tori are destroyed.

The points in Poincaré section appear as randomly distributed points in the area

of chaos. In Figure 4.6(c) the energy is �4.25 eV, the chaotic region starts to

appear in a very small area. As the energy value gets higher, the chaotic region



Chapter 4. Chaotic dynamics in multidimensional transition states 62

grows up and the Poincaré section preserves also two islands where the chaos is in

between. The energy �2.3 eV has a largest chaos region in Figure 4.6 series.

Some of the bifurcations of the fundamental periodic orbits, such as the loss and

return of stability of the BPO, can also be seen in Figure 4.6. The bifurcation of

the SSPO has an unusual appearance because the SSPO forms the boundary of

the surface of section. As a consequence, the ScPO appears at the boundary and

moves toward the centre of the surface of section. The Poincaré plots show only a

single periodic point corresponding to the ScPO, as the chosen surface of section

is py > 0. A second periodic point is located in the surface py < 0. Both periodic

points can be seen in Figure 4.7, which shows the Poincaré surface of section

r = r
S

= 3.40166 a.u for some selected energies, namely (a) �4.35 eV, (b) �4.3 eV,

(c) �4.0 eV and (d) �3.5 eV. In details, the SSPO in Figure. 4.7(b) intersects

this surface transversely, and its bifurcations are therefore shown more clearly.

The neighborhood of the SSPO in Figure 4.7(c) has the appearance one would

expect close to a period doubling bifurcation. Note, however, that the situation

is di↵erent from that shown in Figure. 4.6(e) in the neighbourhood of the BPO.

As indicated by the colors, the two periodic points appearing there belong to two

di↵erent periodic orbits, each of which has approximately the same period as the

BPO. The two periodic points close to the SSPO in Figure 4.7(c) lie on a single

periodic orbit of twice the period.

In Figure 4.8, we show the two periodic orbits, SSPO and BPO, are located in

the boundary of the Poincaré section and the central point, respectively where

the section is y = 0 in the centre manifold of the saddle point. At low energies,

the intersections of a single trajectory with the surface of section lies on closed

curve, indicating quasi-periodic motion. The BPO moves along the perpendicular

circle that crosses the Poincaré section in the centre. If we move slightly away

from the BPO bath mode, the motion takes place on a small 2-torus. Any initial

condition on 2-torus corresponds to a quasi-periodic trajectory which remains on

the 2-torus. As we move from the BPO bath mode, the 2-torus becomes thicker,
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Figure 4.8: Symmetric stretch periodic orbit and Bending periodic orbit at
low energy.

and then thiner until we reach to the SSPO bath mode. The motion at SSPO

is along a horizontal circle. This procedure shows the internal dynamics of the

NHIM which is foliated by a numbers of 2-torus. Thus trajectory on the 2-torus

moves in both bath modes [82].

In addition to the fundamental periodic orbits, the surface of section plots show

many other, longer periodic orbits that are not included in Figure 4.2. Of these

there are, of course, infinitely many. Most important for our purposes is the

observation that regions of chaotic dynamics appear and grow as the energy is

increased. If the dynamics within the central sphere is chaotic, the central sphere

might fail to be normally hyperbolic. We will investigate this question in the

following section.
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Table 4.1: Floquet multipliers of the Symmetric Stretch Periodic Orbit
(SSPO).

Energy Within centre manifold O↵ centre manifold

-4.35 �0.949855± 0.312691i 543.591 0.00183962

-4.32547 �1± 0.000746992i 513.284 0.00194824

-4.02482 -2.80253 -0.35682 2.80224 0.35685751

-4.02425 -2.8049 -0.356519 0.950972± 0.309275i

-4.02251 -2.81218 -0.355595 �0.98557± 0.16925i

-4.02195 -2.81447 -0.355306 -2.83866 -0.35227832

-4.0 -2.9049 -0.344246 -52.8575 -0.0189188

-3.5 -4.63902 -0.215563 -1922.55 -0.000520141

-3.0 -5.8626 -0.170573 -6579.25 -0.000151993

-2.5 -6.54368 -0.152819 -19026.1 -0.000052559

-2.0 -6.53349 -0.153057 -57321.7 -0.000017445

4.3 Breakdown of normal hyperbolicity

For the hydrogen exchange reaction, we have seen that we can guarantee the

existence of the central sphere for energies up to the conical intersection ridge

without having to rely on its normal hyperbolicity. The full geometric structure

of TST, however, also requires the existence of the reaction tubes, i.e., the stable

and unstable manifolds of the central sphere. This can only be guaranteed if the

central sphere is normally hyperbolic. We need to investigate the energy range

in which this is the case. To do this, we compute Lyapunov exponents for our

fundamental periodic orbits and for arbitrary initial conditions.

Earlier studies of the dynamics in the collinear subsystem [19, 86] found an energy

interval in which the SSPO is stable against variations within that subsystem,

which is transverse to the centre manifold. Also the narrow energy interval coin-

cides with those values found recently by Iñarrea et al [21] in the collinear case

for the Porter-Karplus potential energy surface. For these energies, the transverse
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Table 4.2: Lyapunov Exponents of SSPO

Energy Within centre manifold O↵ centre manifold

-4.35 0 2.220474458259545

-4.32547 0.001595724796612 2.193684182205109

-4.02482 0.348776954066669 0.348741930492273

-4.02425 0.349037205882743 0

-4.02251 0.349834777590742 0

-4.02195 0.350085127667877 0.352980521930331

-4.0 0.359752944464669 1.338481833206746

-3.5 0.482967609340161 2.379868060383772

-3.0 0.514280646841623 2.556488886847313

-2.5 0.497885535004521 2.611631229788495

-2.0 0.444521028240257 2.594841756256228

Lyapunov exponent of the SSPO is zero, and it is clear that this situation must

violate the condition of normal hyperbolicity as soon as the transverse Lyapunov

exponent decreases below that within the centre manifold. Table 4.1 shows the

Floquet multipliers of the SSPO within and transverse to the centre manifold. The

SSPO is unstable within the centre manifold for those energies where it is stable

in the collinear direction. As the energy increases further, the SSPO is unstable

in both directions, but the instability in the collinear direction grows faster than

that within the centre manifold, so that soon the SSPO does not violate the nor-

mal hyperbolicity of the central sphere any more. The corresponding Lyapunov

exponents of SSPO are shown in the Table 4.2, within and transverse to the centre

manifold, respectively.

On its own, this observation does not allow us to conclude that the centre manifold

returns to being normally hyperbolic. It remains possible that normal hyperbol-

icity could be broken by any orbit other than the SSPO. To check this, we have

calculated the Lyapunov exponents for a variety of orbits in the centre manifold

over a range of energies up to the conical intersection ridge. It turns out that
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Figure 4.9: The Lyapunov exponents within centre manifold (blue) and o↵
centre manifold (red) through the section pr = 0.0 in the Poincaré surface for
energy E = �4.023 eV in the middle of the stable interval of SSPO.

across the entire range of energies no orbit apart from the SSPO violates normal

hyperbolicity.

As an example of these calculations, Figure 4.9(a) shows the Lyapunov exponents

within and o↵ the centre manifold for the energy �4.023 eV, at which the SSPO is

stable in the transverse direction, and for orbits on the line pr = 0 in the Poincaré

surface of section. This section includes the SSPO, ScPO, BPO and both regular

and chaotic nonperiodic orbits. Because the SSPO forms the boundary of the

surface of section, the two points with the highest and lowest admissible values

of r correspond to the SSPO. The figure shows that normal hyperbolicity fails

for these points, but not for any other orbits. The enlargement in Figure 4.9(b)

confirms this conclusion. Note that even for orbits arbitrarily close to the SSPO
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the transverse Lyapunov exponent is nonzero. Because the SSPO is unstable under

variations within the centre manifold, an orbit that starts arbitrarily close to the

SSPO will quickly move away from it, and its long term behaviour will be entirely

di↵erent from that of the SSPO. For this reason, the Lyapunov exponents can be

discontinuous at the SSPO.

Figure 4.9(c) focuses on the Lyapunov exponents within the centre manifold. They

are much smaller than the transverse Lyapunov exponents, and the di↵erence

between trajectories on regular islands or in a chaotic sea can clearly be seen.

For regular trajectories, we would expect these Lyapunov exponents to be zero.

The numerical results show small, but finite values instead because the Lyapunov

exponents were obtained by solving the equations of motion for a finite time only,

whereas the definition (2.34) requires the limit of infinitely long simulation time.

If the actual simulation time in is increased, the resulting Lyapunov exponents

tend to zero.

We have so far focused only on the question whether the central sphere is normally

hyperbolic, i.e., whether the ratio k of the transverse to the parallel Lyapunov ex-

ponents is larger than one. In fact, the precise value of this ratio is also relevant

because the fundamental theorems [50, 58] about normally hyperbolic invariant

manifolds [50, 58] guarantee that the stable and unstable manifolds of a NHIM

exist and are di↵erentiable at least k times. This result is important if normal

form transformations are used to compute these manifolds, as they often have

been [23, 70, 75, 76, 78]. The normal form will e↵ectively represent the invariant

manifolds by Taylor series, which requires the existence of su�ciently high deriva-

tives. Because derivatives of order higher than k are not known to exist, the use

of high order normal forms is questionable if the ratio k is low.

Figure 4.10 shows the ratio k of Lyapunov exponents for the SSPO, which is the

orbit that potentially violates normal hyperbolicity, for energies from the saddle

point up to the conical intersection ridge. The ratio is infinite just above the
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saddle point because the Lyapunov exponent within the centre manifold is zero.

It decreases from there and reaches zero when the SSPO is stable. It then rises

again and reaches a nearly constant value of k ⇡ 5. As a consequence, we can

expect the central sphere and its stable and unstable manifolds to be at least four

times di↵erentiable at all energies, except in a narrow range around the interval

in which the SSPO is stable in the transverse direction.
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4.4 Summary

We have shown that in the hydrogen exchange reaction the central sphere exists

for all energies below the conical intersection ridge and that it will possess stable

and unstable manifolds for all energies outside a small interval. The surprising fact

that the normal hyperbolicity of the central sphere is restored after it has been lost

implies that the phase space structure fundamental to TST, which consists of the

central sphere and its associated reaction tubes, will be in place even at energies

high above the reaction threshold. Unfortunately, this result does not imply that

the dynamics in the transition region will be simple. There will be homoclinic and

heteroclinic tangles that lead to complex phase space geometry and consequently

to complex dynamics. In the collinear subsystem of the full system, this complex

behaviour has been shown by Davis [38] and the most recently by Iñarrea et al

[21].

In the collinear subsystem, it is known that dynamics is as simple as assumed by

TST only if the PODS is unique [19]. However, additional periodic orbits arise

at energies even lower than the energy at which the SSPO becomes stable, and

trajectories that violate the no-recrossing assumption of TST appear at the same

energy.

Non-TST behavior in the full three-dimensional system must be at least as preva-

lent as in the two-dimensional subsystem. This means that even at energies

at which the central sphere is normally hyperbolic, non-TST behavior must be

present. These energies are both below and above the range in which normal hy-

perbolicity is broken. Thus, while the results of the current chapter demonstrate

that the normal hyperbolicity of the central sphere is more robust than one might

have anticipated, this robustness also implies that there is no direct link between

the failure of TST and the violation of normal hyperbolicity. It now becomes

a separate question to determine what dynamical e↵ects, and what phase space
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structures, cause the failure of TST. We will address this question in the following

Chapter.



Chapter 5

Reactivity on the dividing surface

in multidimensional systems

5.1 Introduction

Transition state theory [28] provides a very good approximation for the rate of

chemical reaction. Pechukas et al [13, 14] have found the TST is exact for the

collinear case of the hydrogen exchange reaction at lower energies. One year later,

Miller et al [27] on TST has also addressed the reaction probabilities for the

collinear version of the hydrogen exchange reaction and additionally the three di-

mensional space. They ended up with TST for both cases is essentially exact up to

E ⇡ 0.3 eV. This energy value is equivalent to E ⇡ �4.0 eV in our selected energy

unit because they choose the energy unit as zero at the saddle point (barrier).

Miller et al calculated the reaction rate and determined the energy at which TST

fails.

At such energies, there are regions of the dividing surface that according to TST

should be reactive, but are not. The reactive and nonreactive part have boundaries.

Their shapes (geometric structures of nonreactive part) have been early examined

71
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by De Leon and Marston in the study of isomerization reactions [87, 88] which

they called “reactive islands”. Also, Pollak and Child [15] and Davis [37] have

discussed this shape in the collinear hydrogen exchange reaction which Davis called

“droplets”. The denotation “reactive islands” (RIs) is selected as reactive and

nonreactive part in the dividing surface in this work. Note that we mean by

reactive islands (RIs) the islands of reactive and nonreactive which will be shown

in the dividing surface later.

The reactive islands are enclosed on the dividing surface. A reactive trajectory

either forward or backward must pass through one of these islands. The structure

of the reactive islands in phase space can be examined by the invariant phase

space manifolds that form their boundaries. They are cylindrical manifolds in

phase space. Tubes (S1 ⇥ R) in the collinear system (two degrees of freedom)

and n a higher dimensional cylinders for more than two degrees of freedom. The

cylindrical manifolds have a complex structure, in particular at high energies. We

get advantage of the theory of cylindrical manifolds in phase space that has been

presented in the Section 2.7.

The purpose of this Chapter is to study the reactivity on the dividing surface

that is bounded by the central sphere. This kind of study allows us to figure out

when the first nonreactive island starts to appear and what the reason of TST

failure is. In addition, it shows the dynamical behaviour of the first nonreactive

trajectories in the neighbourhood of the dividing surface. Furthermore, we want

to determine the geometric structure of reactive and nonreactive islands on the

dividing surface not only for the collinear subsystem case but also full dimensional

case of the hydrogen exchange reaction. We will focus on nonreactive islands at

the lower energies where they appear in order to discover the phase space object

that causes the breakdown of the TST.
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5.2 Collinear subsystem case

TheH
2

+H reaction is collinear if (y, py) = (0, 0) which is given by the Hamiltonain

function (3.8). We set x = 0 as dividing surface. The dividing surface is a

two dimensional sphere S2. The PODS divides it into two hemisphere, px > 0

and px < 0 that at low energies mediate the forward and backward reactions,

respectively. We will investigate reactivity on the hemisphere with px > 0. The

hemisphere px < 0 is its mirror image. Now we start analyzing the reactivity on

the dividing surface, the geometric structure of the reactive islands and then find

out at which energy level the transition state theory is not exact at the end.

5.2.1 The geometric structure of RIs

In order to show the shape of the reactive islands, we pick the energy E = �4.0

eV as an example. This is definitely above the violation of TST. Figure 5.1(a)

shows for px > 0 a big green island representing the reactive trajectories and a

small red island representing the nonreactive trajectories. One can observe that

the nonreactive islands surround a big green reactive island but does not lie on the

boundary of the dividing surface. On the boundary of these layers, the cylindrical

manifolds (tubes) are connected with the NHIM (PODS).

As described in Chapter 2, the NHIM generates four cylinders, two stable man-

ifolds W s
f (E), W s

b (E) and two unstable manifolds W u
f (E), W u

b (E) each on S1 ⇥

(0,1). The cylinders W s,u
f (E) and W s,u

b (E) intersect the dividing surface, extend

into the phase space and then partly overlap one another. The resulting geometric

structure is often called a homoclinic tangle. In Figure 5.1(b), the layers between

reactive and nonreactive islands are caused by the homoclinic tangle from the in-

tersection of two cylinders. Davis [38] has previously calculated such homoclinic

tangle and found a homoclinic point of collinear H
2

+H reaction. For energy above

the first bifurcation, there are more than one PODSs. Davis’s work was done by
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Figure 5.1: Reactivity on the dividing surface for collinear subsystem for
energy E = �4.0. Details in the text.

propagating the trajectory in the unstable manifold of one unstable PODS and

the stable manifold of another trajectory in unstable PODS forward and backward

in time, respectively, to find the homoclinic trajectory (the intersection of these



Chapter 5. Reactivity on the dividing surface in multidimensional systems 75

two manifolds). He found that there are many homoclinic trajectories because

there are many periodic orbits (PODSs) above the first bifurcation. This number

of periodic orbits has been reported by the recent paper Iñarrea et al [21]. The

layered structure of the reactive islands results from the multiplicity of periodic

orbits.

The trajectories close to the boundary of layers give a first indication of what

causes the failure of TST. More precisely, the trajectories located close to the first

exterior layer of nonreactive island provide the image of an unstable periodic orbit

on the product side. Such trajectories and periodic orbits will be examined in more

detail in Section 5.4. Similarly, the trajectories located close to the first interior

layer of the nonreactive island provide the image of an unstable periodic orbit in

reactant side. These images are shown in Figure 5.1(c) and 5.1(d) as extra loops

on the unstable periodic orbits before the trajectory leave the transition state.

These two special trajectories show the geometric structure of unstable periodic

orbits in phase space. Furthermore, the trajectories on the boundary of the middle

layers also oscillate between the two images of unstable periodic orbits before they

decide to go either to the reactant or the product side. Such a trajectory doing

this procedure can be seen in Figure 5.1(e).

5.2.2 Breakdown of TST

Throughout the numerical experiments, we find that TST above the threshold is

exact up to energy E ⇡ �4.14676 eV, where the dividing surface is fully cov-

ered by the initial conditions of reactive trajectories. Above this energy, the first

nonreactive trajectories are observed and the nonreactive islands start to grow

on the dividing surface. This observation agrees well with Iñarrea et al [21] who

recently found the first bifurcation of periodic orbit in the collinear subsystem at

E ⇡ �4.14676 eV. In this bifurcation, a stable and an unstable periodic orbits are
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Figure 5.2: The reactive and nonreactive islands on the dividing surface in the
collinear case are indicated by green and red colour, respectively. Calculations
made for energies �4.15 (before the first bifurcation of PODS) ,�4.1,�4.0 and
�3.9 eV, respectively.

generated on each side of the dividing surface. Thus, TST breaks down as soon

as more than one PODS appears. Figure 5.2 shows a series of the reactive and

nonreactive islands on the dividing surface for di↵erent energy levels.

The outcome shows good agreement with results of Refs [13, 14, 18, 19, 27]. For

energies less than �4.14676 eV, we find that TST is exact and only one PODS
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exists in phase space, namely the symmetric stretch periodic orbit. For energies

greater than �4.14676 eV, we find out that TST is overestimates the rate.

5.3 Full (3 dof) system case

The Hamiltonian function of the full three-dimensional system is given by (3.6).

The dimensionality of the geometrical phase space objects is as follows: The phase

space is six-dimensional and energy shell five dimensional. The dividing surface is

a four-dimensional sphere of which by the three-dimensional central sphere forms

the equator. Our aim in this section is to clarify the structure of the geometrical

structure of the reactive islands (RIs) on its dividing surface and hence figure out

the TST implementations.

5.3.1 The geometric structure of RIs

The geometric structure of the phase space in the full system with three degrees of

freedom is not easy to visualize. The di�culty is due to the entire dividing surface

being a four dimensional sphere and the NHIM is a three dimensional sphere.

Therefore, to simplify that, we pick a family of sections that fills the NHIM on the

dividing surface. In our full system with three degrees of freedom, we set x = 0 as

dividing surface, which satisfies the symmetry in our system. At fixed energy E,

the coordinates r and y on the dividing surface can only take values that satisfy

V (r, x = 0, y) < E.

Thus, the condition V (r, x = 0, y) = E limits the permissible region of r, y. Some

selected energies show in Figure 5.3. We choose three-dimensional sections y =

constant, through the dividing surface. Each section has reactive and nonreactive

trajectories. Comparable to the collinear subsystem case, we want to show the
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Figure 5.3: The contour plot for energies �4.0 eV (blue), �4.05 eV (red),
�4.1 eV (green) and �4.14676 eV (dashed black).

reactive islands structure in the full system and finally find out at which energy

level transition state theory fails.

We pick the same example as in the collinear case, namely the energy E = �4.0 eV.

We find out that y is limited between almost ±0.95 a.u. Figure 5.3 shows the con-

tours of three selected energies, namely E = �4.0 eV, �4.05 eV and �4.14676 eV

(our example is the blue contour in Figure 5.3). Due to the reflection symmetry

y 7! �y, a number of sections have been selected and computed in an interval

[0.0, 0.95]. Figure 5.4 shows the construction of the nonreactive part for di↵erent

y sections, namely y =0.0 a.u., 0.1 a.u., 0.2 a.u., 0.3 a.u., 0.4 a.u. and 0.5 a.u. in the

dividing surface for energy E = �4.0 eV. The nonreactive parts of these sections

are shown in Figure 5.4. We find out that y = 0.0 section has the largest non-

reactive part among. The structure of the nonreactive part resembles a cylinder

with tip, and width of the cylinder shrinks close to the boundary of the dividing
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(a) y = 0.0 (b) y = 0.1

(c ) y = 0.2 (d) y = 0.3

(e) y = 0.4 (f) y = 0.5

Figure 5.4: Nonreactive part for energy E = �4.0 eV with sections y =0.0,
0.1, 0.2, 0.3, 0.4 and 0.5.
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Figure 5.5: The subsection r = 3.63 a.u. through the section y = 0.0 for
energy E = �4.0 eV.

surface. Compared with the previous case, the layers in the collinear case come

as envelopes covering the cylinder in the full system case. The thickness of the

envelopes varies as the magnitude of layers in the collinear version varies. Figure

5.5 shows the sub-subsection at r = 3.63 a.u. through the section y = 0.0 and

presents the thickness of the envelopes. This subsection now is two dimensions

because r, x, y and px are already fixed. In the Figure 5.5, we see two separate

nonreactive pieces, one on the left and another tiny on the right, enlarged in Fig-

ures 5.6 and 5.7, respectively. The one on the left is a section close to the tip

of the cylinder while the layer on the right represents a section in the tail of the

cylinder and does not surround the whole green reactive island. Compared with

the collinear system, the important dynamical observation in Figure 5.6 is the

envelopes which are caused by the homoclinic tangle in the full system. One can

observe the symmetry around the py axis in Figure 5.6. Of course, the simple

observation shows that if the sub-subsection py = 0.0 is fixed in Figure 5.4(a) then

the result will give exactly Figure 5.1(a) which represents the collinear subsystem

case.
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Figure 5.6: Zoom in the left part of the Figure 5.5.

Figure 5.7: Zoom in the right part of the Figure 5.5.

5.3.2 Breakdown of TST

To illustrate the global structure of the nonreactive islands, we compute the per-

centage oh nonreactive phase space volume in di↵erent sections y = constant.

Results are shown in Figure 5.8. We have seen that at E = �4.0 eV, the limits of
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y are ±0.95 a.u.. Figure 5.8 shows the relation of y-value with the nonreactive per-

centage for some energies E = �4.0 eV, E = �4.05 eV and E = �4.1 eV. One can

observe, the nonreactive part on the dividing surface has 3.168% out of the total

dividing surface size at y = 0.0 section. As the y-value increases, the nonreactive

trajectories decrease until they vanish at y ⇡ 0.8 a.u. and hence the percentage

decreases. Furthermore, py is limited between ±0.6 a.u. in the section y = 0.0 and

the subsection py = 0.0 has the largest number of nonreactive trajectories among

the py limitation. We have enlarged the lower percentage of nonreactive in Figure

5.9 to show how they end and at which y section they vanish. There is a sharp

end to the nonreactive island well before the end of the dividing surface, i.e., the

largest percentage value of y, is reached.

Consequently, the collinear case where y = py = 0.0 consists of the largest num-

ber of the recrossing trajectories in the full system at any energy level above

the non-reactivity threshold. As we move from the collinear case (by increas-

ing y), the nonreactive percentage clearly decreases. Therefore, we expect that

the collinear configuration plays an important role in the TST failure in the full

three-dimensional system.

Figure 5.11 compares the maximum value of y in the dividing surface with the

maximum value in the nonreactive island, from the saddle point energy level (E ⇡

�4.3504 eV) up to the conical intersection (E ⇡ �1.9514 eV ). There are two

important observations in Figure 5.11. Firstly, the nonreactive island appears,

i.e., TST fails at energy E ⇡ �4.14676 eV, which is same value as in the collinear

case. Secondly, the energy interval from E = �4.0 eV to the TST failure energy,

the y-curve of the nonreactive trajectories drops down when it passes near the

instability interval of SSPO [81] (⇡ [�4.02425,�4.02251]). Above the instability

interval, the TST curve asymptotically converges to the curve of y limit and it is

shown in Figure 5.10. Thus, the breakdown of TST in the full three-dimensional

system has a direct link with the breakdown of TST in the collinear system. We

will discuss this relationship in the following section.
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Figure 5.8: Three individual energies curves, namely E = �4.0 eV, E =
�4.05 eV and E = �4.1 eV are showing the percentage of nonreactive trajecto-
ries in the dividing surface versus the y-value.
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Figure 5.9: Zoom in close to the vanishing of nonreactive percentage in fig-
ure 5.8. Also the y-limit for each energy show as vertical lines.
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Figure 5.10: An overview of the y-limit and the y-value where nonreactive
trajectories vanish, denoted by solid and dashed lines, respectively.
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Figure 5.11: Enlarge the critical interval of the breakdown of TST in full
system.

5.4 The reason of TST failure

According to the former results about the reactivity on the dividing surface in the

full system, there is an object in the phase space which lies in the collinear config-

uration and causes the breakdown of TST. The first nonreactive trajectories start
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to appear at the first bifurcation. In the collinear case, a saddle node bifurcation

occurs symmetrically on both sides of the saddle point and creates a stable and an

unstable periodic orbits on each side. This bifurcation was described in [29, 38].

In the recent work by Iñarrea et al [21], the unstable and stable periodic orbits

are called F
1

and F
2

, respectively. Our hypothesis is that in the full three di-

mensional system as well as in collinear subsystem with two degrees of freedom,

trajectories that violate the no-recrossing assumption of TST are separated from

those that obey it by invariant manifolds associated with the unstable periodic

orbit F
1

, which we will call UPO. For the collinear subsystem with two degrees of

freedom, this invariant manifold is the stable manifold of UPO. For the full three

dimensional system, the invariant manifold is the centre-stable manifold of UPO,

described below. These manifolds have the appropriate dimensions for partition

the energy shell into reactive and nonreactive regions. If we follow the manifolds

of UPO to the dividing surface, we expect them to intersect the dividing surface in

the boundary of a nonreactive island.

In order to investigate this hypothesis, we need to study the stability of this

collinear periodic orbit not only in the collinear system but in the full system and

hence determine the type of the manifolds. The stability type of a periodic orbit

is determined by the eigenvalues of its monodromy matrix. Since the full system

has three degrees of freedom, there will be six eigenvalues. Two eigenvalues will

be equal to 1: one eigenvector is tangent to the periodic orbit, the other transverse

to the energy shell [89]. For the UPO orbit, two of the remaining four eigenvalues

are real positive and inverse to each other: � and 1/� with � < 1. They represent

the stable and unstable manifolds, respectively. The final two eigenvalues form

a complex conjugate pair which represent the centre manifold. The eigenvectors

in the stable and unstable directions lie in the collinear subsystem. The central

eigenvectors describe variation transverse to the collinear subsystem. They have

nonzero components only in the y and py directions.
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Figure 5.12: 100 trajectories in the stable manifold and also 100 trajectories
in the unstable manifold of the unstable periodic orbit (UPO) cross the dividing
surface (The DS).

To calculate the initial conditions in the stable and unstable manifolds of the

linearized system, assume x⇤ is a point on the UPO. Denote the eigenvectors in

the direction of the stable manifold and the unstable manifold by vS and vU ,

respectively. The initial conditions in the stable manifold (Sm) are given by

Sm = x⇤ + ↵S vS,

where ↵S 2 R is the variation along the stable manifold. Similarly, the initial

conditions in the unstable manifold (USm) are given by

USm = x⇤ + ↵U vU ,

where ↵U 2 R is the variation along the unstable manifold. The dimension of

the stable and unstable manifolds of the UPO is two, its centre manifold is three-

dimensional.
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Figure 5.13: The stable intersection (blue) lies on the boundary of the main
non-reactive island (red) in the collinear system with two degrees of freedom.

Figure 5.12 shows some trajectories in the stable and unstable manifold of the

unstable periodic orbit (UPO). The stable manifold is two dimensional. It will

intersect the dividing surface in a curve, called stable intersection. The intersection

is shown in Figure 5.13 for energy E = �4.141 eV, just above the saddle node

bifurcation energy. It forms the boundary of the main nonreactive island. Thus,

our expectation is correct.

In Figure 5.13, we see that there are infinitely many layers for energy E = �4.141

eV. As seen in Figure 5.13, the stable intersection (blue) lies in the boundary

of the main layer (island) in the collinear system. Trajectories on boundaries of

other layers oscillate between the two unstable periodic orbits on both sides of

the dividing surface, and then leave the transition state, which this procedure has

been explained in Section 5.2.1. Thus, the stable intersection lies on the boundary

of the first layer (main layer).

The centre-stable manifold defined as that the directions of centre and stable

manifolds span in phase space in which the centre-stable manifold is tangent to
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their directions. In three degrees of freedom, the periodic orbit (UPO) has a four-

dimensional centre-stable manifold. The intersection of this manifold with the

dividing surface at the same energy, which is called centre-stable intersection, is

three dimensional. It partitions the dividing surface into distinct regions, and we

claim that it forms the boundary of the main nonreactive island.

Apart from the di�culty of visualization, we have the problem in computing the

centre-stable manifold very well because the centre manifold is only known in

linear approximation. The stable direction is less of a problem because every orbit

in the stable manifold will come arbitrarily close to the periodic orbit (UPO),

so that we can pick an initial condition where the linear approximation is good

and then propagate backwards to the dividing surface. Trajectory on the centre

manifold by contrast, do not approach the UPO. Those that are not close to the

UPO cannot be described accurately by the linear approximation

The initial conditions in the centre-stable manifold (CSm) is given by

CSm = x⇤ + ↵S vS + (↵C1

+ ↵C2

i) vC1

+ (↵C1

� ↵C2

i) vC2

,

where ↵C1

,↵C2

are the real and the imaginary parts of the complex conjugate

pair which are the variation along the centre manifold. Also, vC1

and vC2

are the

eigenvectors corresponding to the centre manifold directions.

Figure 5.14 (a) shows some initial conditions that lie on the centre-stable mani-

fold close to the periodic orbit (UPO) for energy E = �4.141 eV. If we extend a

choice of initial conditions further away from the UPO, the linear approximation

of the centre-stable manifold is not valid any more for two reasons. Firstly, each

trajectory will lie in di↵erent energy levels as shown in Figure 5.15, which indi-

cates that the linear approximation breaks down as we move away from the UPO.

Secondly, some trajectories away from the UPO do not go to the dividing surface

(see the disconnection in Figure 5.14 (a)). Thus we pick initial conditions where

the linear approximation is good. We propagate trajectories on the centre-stable
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Figure 5.14: (a) Some initial conditions in the centre-stable manifold that
intersect the dividing surface. (b) and (c) show this intersection in (r, pr) and
(y, py), respectively. Three specific trajectories (�

1

,�
2

and �
3

) are pointed to
be used in the next figure.

manifold, chosen as in Figure 5.14(a), backward in time toward the dividing sur-

face. The centre-stable intersection is shown in Figure 5.14 (b), (c) in projection

onto (r, pr) and (y, py), respectively. Three sample trajectories denoted by �
1

, �
2

and �
3

are selected in the centre-stable manifold. We will show that they lie on

the boundary of the nonreactive island on the dividing surface. In Figure 5.16, the

intersection of �
1

, �
2

and �
3

are clearly located on the boundary of reactive island

in Figure 5.16 (a), (b) and (c), respectively. We expect other initial conditions in

the centre-stable manifold will do the same procedure and hence have the same

conclusion. Thus, the centre-stable intersection forms the boundary of the first

(main) non-reactive island o↵ the collinear configuration. The work can be ex-

tended by computing a good approximated centre-stable manifold rather than our

linear approximation. Also, we expect the stable and unstable manifolds of the
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Figure 5.15: The variation along the centre manifold direction versus the
energy.

central sphere form the boundary of other islands which is again worth to extend

the work on it.

5.5 Summary

On the dividing surface, we described the reactive and nonreactive islands for both

the collinear subsystem and the full system. The reactivity on the dividing surface

in the collinear case has been earlier studied and well explained. Thus, it is easy

compared to the full system case as well as easy to visualize. We have observed

at which energy level the nonreactive island appears and starts to grow on the

dividing surface. Moreover, the analysis showed the geometric structure of the

reactive islands. We have seen that the layers and envelopes between the reactive

and nonreactive islands were caused by the homoclinic and hetroclinic tangle.

The progress has essentially been made in the capability to discover the phase

space object that causes the failure of TST in the hydrogen exchange reaction for

the cases: the full three dimensional system and the collinear subsystem. We have

illustrated the failure of TST by observing the reactivity on the dividing surface
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at various energy levels above threshold. The crucial observation is that TST is

exact up to the same energy level in both cases, specifically E ⇡ �4.14676 eV .

Thus, it raises the question what the relationship between the full system and the

collinear subsystem is in terms of TST.

In a nutshell, the collinear unstable periodic orbit (UPO) is the phase space object

that causes the first non-reactive trajectories to appear not only in the collinear

case but also in the full system case. We have given evidence to support the con-

clusion that the manifolds (stable and centre-stable manifold) of UPO intersect

the dividing surface on the boundary of the nonreactive island. The stable mani-

fold lies on the boundary of the collinear nonreactive island. By the three sample

trajectories in the centre-stable manifold, the intersection lies o↵ the collinear

configuration on the boundary of the nonreactive island in the full system. The

beauty of these results is that the full and collinear cases are linked by the TST

failure and hence they have the same reason for the breakdown of TST.



Chapter 6

Conclusion

We have chosen theH
2

+H exchange reaction for several reasons (e.g. the molecule

is symmetric and has three identical atoms). In this example, we figured out the

phase space object which causes the TST failure. All attempts to find this object

were explained separately in Chapter 4 and Chapter 5, respectively. We first

examined the breakdown of normal hyperbolicity of the central sphere which could

lead to a breakdown of TST. This attempt led to study of the reactivity on the

dividing surface in the three-dimensional system and in the collinear subsystem.

In this chapter, we will present a summary of the outcome of the attempts.

In the H
2

+H exchange reaction, we have shown that the central sphere exists for

all energies up to the conical intersection energy level which limited our study. The

central sphere and its stable and unstable manifolds persist for all energies below

the conical intersection ridge except for a tiny range. We examined the normal

hyperbolicity of the central sphere by computing the Lyapunov exponents within

the central sphere and transverse to it. The main outcome was that the normal

hyperbolicity breaks down in a narrow energy range and then gets restored. This

means that the reaction tubes (stable and unstable manifolds) exist even at high

energy values below the conical intersection ridge. Of course, due to homoclinic

93
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and heteroclinic tangles, the dynamics close to the dividing surface will be complex.

Thus, we have a complex geometrical phase space structure at high energies.

In the result of Chapter 4, we have seen that the main energy range represents the

interval where the normal hyperbolicity is broken down and restored, respectively.

We also knew that recrossing trajectories appear at energies below the failure of

normal hyperbolicity. As a result, the breakdown of the normal hyperbolicity can

not be the reason for the failure of the TST. Thus, the object in phase space that

is causing the violation of TST was still questionable. Our research led to study

the reactivity on the dividing surface in both systems, collinear and full cases,

respectively.

Focusing on the dividing surface enables us not only to seek our purpose (the

phase space object), but also allow us to describe the reactive islands (RIs) in the

collinear case as well as in the full system case. The collinear subsystem case was

much easier than full system case due to dimensionality.

In both cases, we showed the geometrical structure of the reactive islands and their

complexity due to homoclinic and heteroclinic tangles. The crucial outcome is that

nonreactive trajectories started to appear in both cases at the same energy level,

namely E ⇡ �4.14676 eV, which is also the energy at which multiple PODSs

appear. This suggests that the failure of TST in the full system is caused by

the same mechanism that operates in the collinear subsystem. In particular, the

collinear unstable periodic orbit (UPO) that arises from the first bifurcation of

the PODS is the phase space object that causes the TST to fail and that its

centre-stable manifold separates reactive and nonreactive trajectories. We have

shown that trajectories on the stable manifold of the UPO intersected the dividing

surface at the boundary of the main non-reactive island of the collinear subsystem.

Furthermore, we have also shown that three sample trajectories on the centre-

stable manifold of the UPO intersect the boundary of the nonreactive island in a

non-collinear configuration.
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To conclude, the failure of TST was not caused by the breakdown of normal

hyperbolicity of the central sphere at least for our example, the H
2

+H reaction.

We have seen that it is caused by the bifurcations of periodic orbits that occur

away from the central sphere. The saddle node bifurcation of the PODS is the

reason for this because it creates a new PODS. Therefore, we have several PODSs

and hence TST fails.

The research presented in this thesis has raised a number of interesting questions

that could be taken up in future work. One can be extended by studying other

reactive systems with asymmetric molecules. The H
2

+ H reaction example can

be used as a basic theory of TST failure due to the nature of molecule. Generally,

to determine the TST breakdown for any dynamical system firstly we suggest

to examine the simple case (say system with two degrees of freedom) and check

at which energy level the first bifurcation occurs. Then we use this energy level

as a limit to study the TST in a higher dimensional system. The TST will fail

either at this level or below. In our example (H
2

+ H reaction), we have found

that both in collinear subsystem and in full system TST breaks down at the

same energy level. This equivalence may be due to the symmetry property in our

example. TST may break down in higher dimensional systems at lower energy

than in the simple case. The geometric properties of molecules play an important

role for determining the TST failure. Of course the symmetry property is one

of the most e↵ective features. Moreover, we have studied our example from the

threshold until the conical intersection energy level and focused lower energies at

where TST fails. The dynamical behaviour at high energies, including cylindrical

manifolds structure, chaos and bifurcations would be noteworthy outcomes.
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