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ABSTRACT

The optimal estimation theory of'the Wiener-Kalman filter
is extended to cover the situation in which the number of memory elements
in the estimator is restricted. A method, based on the simultaneous
diagonalisation of two symmetric positive definite matrices, is given
which allows the weighted least square estimation error :to be';
minimised.
A control system design method is developed utilising this
estimator, and this allows the dynamic controller in the féedback path
to have a low order. A 12-order once-through boiler model is constructed
- and the performance of controllers of various orders generated by the
design method is investigated. Little cost penalty is found even for
the cne-order controller when compared with the optimal Kalman filfer
system. Whereas in the Kalman filter all information from past
observations is stored, the given method results in an estimate of the
state variables which is a weighted sum of the selected information
held in the storage elements. For the once-through boiler these weighting
coefficients are found to be smodth functions of position, their form
illustrating the implicit model reduction properties of the design
method. .
| Minimal-order estimators of the Luenberger type also geﬁerate
low order controllers and the relation between the two design methods
is examined. It is concluded that the design method developed in this
thesis gives better plant estimates than the Iuenberger system and, more
fundamentally, allows a lower ofder control system to be constructed.
Finally some possible extensions of the theory are indicated.
An immediate application is to multivariable control systems, while
the existence of a plant state estimate even in control systems of very
low order allows a certain adaptive structure to be considered for systems

- e

with time-varying parameters.
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CHAPTER 1

INTRODUCTION

Cutline of Contents of Chapters

The original work of this thesis is largely contained

in chapters 3 to 9, and in these a new control system design

method is derived and assessed., Chapter 2 generates the
onimum control law for the discrete time ﬁlant shownt in

Figure 2,2 and governed by the equations:
¥ =B vy (1.2)

The plant state at time i is described by a set of
variables x(1), %(2),00000eeX{N) which form the elements of
the state vector X; Similarly the control and observation
vectors are ug and.yi respectively, while § i and ']i are

plant disturbasces,

The derivation of the 6ptimal control law follows the

working of Aoki (reference'1) although equivalent results are
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given by Astrom (referenée 2) and Kalman (reference 3), the
latter giving his name to the filter which generates the
optimal plant state estimate required by the control law.

This derivation of the optimal control law is included since

it forms the basis upon which the reduced order controller is
constructed in subsequent cﬁapters. Computer programs were
written to generate the optimal controller, and the method is
illustrated by an’example éf dimension 2, i.e. two variables tb
describe the plant state. These séme programs are later used
in thapter 8 to generate the optimal qontrol'law for a large

dimension plant model.

The remaining chapters deal with the sub-optimal control

situation where a simple low order controller is required.

'~ The constructioh ‘of such a controller is a more complex
task than the optimal case, and chapter 3> illustrates the
problems that arise in the form of multiple minima of the cost
" function. However a promising approach is shown to involve the
assumption of an Ya priori"‘préﬁability @istribgtion for the

plant state as this allows the control law to be derived as for

the optimal case,

This approach is taken up in chapter & for the general
case in which the controller is able to store some, but not all,
of its plant information, as this is the restriction which leads
to a simple low order controller, The implementation of this
controller baséd on the theory of chapter 4 and the necessary

computer program are given in chapter 5.
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The performance of the controller depends ébSolutely
upon the choice as to which information to store and an
appropriate method of making this selection is required.
Chapter 6 describes a suitable method, which is based upon the
similtaneous diagonalisation of two symmetric matrices, |
Again a computer prog;am, now more complex, is written, the
same simple example is used and the method is shown to perform

very well,

The content of chapters 4,5.and 6 together fofm a
design method which is summarised in Figure 1.1.

To prove the design.method more conclusively required
a higher orﬂer model, and chapter 7 derives a once-through
boiler model of order 12, The model is deliberately simplified
and in fact is no more than a heat exchanger. When the design
method is applied to.this model in chapter 8 the structure of
Fhe low order controllers generated can be more easily
_interpreted as a result of this simplification. The low
order contreollers so generﬁted appear, both in terms of cost
function and eigenvalue plots to be very adequate controlieré.
Unexpectedly some higher‘order controllers cauée the closed
loop system to be bordering on instability, and this aspect

is discussed.

L

The reduceg_order plant state estimafor developed in
chapters 4,5 and 6 has a number of similarities with observer

theory as developed by Luenberger (references 4,5,6) and in

chapter 9 these similarities are discussed. Also it is shown

that
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(i) The reduced order estimator is able to
generate a much lower order estimator than is
observer theory. |

(ii) When the two have the same order the
reduced ordér estimator is not an observer within
the Luenberger definition,

(iii) For the same order and for the same‘design
c¢riterion the reduced order estimator provides a.
better estimate of plant state than does observer

theory.

There are a number of interesting and relevant areas
which require further study, and these are discussed in
chapter 10. Particularly important is the generation of

controllérs with suitable pre-programmed gain variations, and

a method of generating - - this simple adaptive system is

suggested, Also considered are the effects of noise in the

controller itself and the struqture of controllers for

multiloop systenms,

The remaining sections of this introduction trace some
of the developments in control theory which have led. to the
presgnt‘situation in which a design technique for low order

controllers is required,

Control of Plant

Automatic control of plant is required where either»d{
the following apply:
(a) The task is burdensome on human operators

and there is an economic case for reducing



staffing by use of antomatic control.
(b) The response required is fast and this would
be difficult or impossible for an operator to achieve.

Different industries have differeﬁt'problems and may
employ automatic control on agcount of one or both of the above.
Fortunately it has been found possible fo describe most control
situations by a common mathematical notation and it has been in
this notation that the tradifional methOAB of control systenm
design have beeﬁ expressed. Single input, single output, linear
control systems can be designed with aid of

| (i) - Simulation of the system on an analogue

or digital computer |
(ii) Bode or quuist stability criteria in the
!requencg domain ’

- {4ii) The "Root Locus" technique- -

.fhe lafter method (reference 73 coﬁes closest‘to
rsynthesis of a control system, as the effect of gain éhanges
on the system'é roots is traced. This method can be extended
- from a pure stability assessment (}oots in left half plane for
stability) to include the desirabl? attributes of adequate
.damping and sufficiently fast response.

Rosenbrock (reference 8) has been able to extend the frequency
domain description to multivariable systems (i.e. those with mdre than
singlé inputs and single outputs) and some of these techniques are
. discussed in section 7 below. In reference 9 the approach is

enhanced by the use of interactive’coﬁputer graphics.
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Having carried out a study using one or more of the above
fechhiques a simulation may be decided ﬁpon to assess the effects
of any known non-linearities, for example control}er dead-bands or
actuator fate’limits. This similation would also allow the effects

of control system failures to be assessed. Further the simulation

. would allow typical disturbences to be injected, such as, for an

.aircraft control system, wind gusts.

It is at this stage that shortcomings of a control
system often appear; The controller, by_ﬁeané of derivative
_terms, may give a very stable system but in respbnse to norﬁal
disturbances may have an entirely unsatisfactory response. To
overcome this sort of difficulty a more direct approach.has beenl

developed, for example as set out by Acki (reference 1) and has

come to be known as "Optimal Control Theory".

‘Optimal Control Theory

The approach here is to synthesize a coﬁtrol system
directly by first defining

. {a) the perfo}mance critéfion, or cost function

(5) the typical plant disturbances

 Taking the example of an aircraft height control system
a control law can be derived which will feed back to the control
aprface the filtered sum of the available measurements in certain
proportions. These might include pitch and pitch rate from

gyro signals and height information from an altimeter.
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The plant state is simply defined by relatively few parameters
in the case of the aircraft system, and it was in such a context
that optimal control theory wasldeveloped. Because it is found
that the dynamic system which forms the controller must have the
same dimension as the plant itself, the implementatiqn of the |
theory in cases where the plent model has large dimension is
relatively rare. Blomnes et al (reference 19); however, repoert a -
field application in the case of a nuclear power station and Herbrik
and Jamshidi (reference 11) report a theoretical study for a once-
through boiler.

AThe theory aims to control the plant over a given period
or‘for a certain numbér of time steps. This will be relevant
for a landing or docking manceuvre but in many instances the
control period is infinite, such as for a long-running chemical

process or a power station, Curicusly the theory in this case

is hardly simplified at all, it is merely a question of omitting

suffices from certain, otherwise time-varying, quantities.
inatead of the optimal feeﬁback gains over a period being
generated, an asymptotic feedback gain is found, and if desired
direct methods, as discussed in section 9 below, may bé utilised

for its determination.

Model Building and Reduction

Ads part of a simulation study there may be a requirement
to fit a plant model to a given size analogue computer. Or

digital computer costs may requiré a small model which is
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representative of a large dimension plant. In addition to these
rather basic reasons for requiring some reduction in model size,
thefe follows from the optimal control theory approach the
K consequence that if the model dimension can be reduced then the
controller dimension will Be_similarly reduced, and the control
system therefore simplified. |

A number of ﬁethods are availablé. Davison treference 12)
has suggested a method which allows systém eigenvalues far from
the origin to be neglect;d. Such a modal approach is also used
by Porter and Crossley (reference 13) in applications to
control system design. ' - ‘ - R

ﬁilson(referen9e1h) considers the oéen loop model reduction
" problem and gives a method which minimises the weighted mean square
difference between outputs of the model and the original system.
- -The method-of Mitra- (reference 15)+1nvolves projection on . .
%o subspaces and in reference 16 Mitra applies this method to a
poﬁer station boiler system. It is interesting to note that
this method,'wﬁich is in continuous time, involves a simultaneous
" diagonalisation of two positive definite matrices. This is also
a step in the reduction method of.chapter 6.

Hickin and Sinha (reference 17) give a method whereby
the first few Markov parameters (coefficients 6f the Taylor
expansion in the Laplace operators of transfer function) of
the two models are matched. - , <

'lﬂhen reducing the order of the model some criterion is

required since clearly almost any approximation is a candidate.
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In the context of control theory it should in principle be possible

to apply a criterion which will give a model most suitable for

. the purpose to which it is to be applied, that is as part of the

control system design methed following the optimal control theory
approach. Mitra refers to the desirabiiity of such a criterion.
‘ novel approach to modelling is adopted in chapters 4
and 5. In effect the modelling is integrated into a control
gystenm désign method and the requirement to generate 2 model
explicitly is dropped. However sipde the order of the dynamic
system forming the controller has beeﬁ reduced a low ordef model
must be present implicitly, and some further anal&sis is carried
out in chapter.9,which allows a view to be taken of this'implicit

model.

Random Pisturbances

As was pointed ocut above a perfectly stable control system
may be found to respond undesirably, perhaps due to a derivative
term, when a disturbance is applied. In general a system may

be subject to several such disturbances simultaneously and a

convenient method of expressing these disturbances is to use

random variables in the analysis and to define the statistical

properties of these by means of their probability distributions.
The system is now termed “stdchasticﬁ and cost functions are now
expressed in terms of expécted-values.

- A1l control systems have a set point and the manmer in
which this is varied will be relevant to the control éystem
design. The stochastic plant model will be ablé to embrace this

feature and so will allow this disturbance, as it truly is, to

be balanced agaiﬁst others in the process of control system design,
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."The stochastic system descripticn is employed in the
thecretical work of 511 chapters as, for the reasons given above,
it appears to be thé most general and most relevant to control
_ Bystem design. However deterministic systems are not excluded
from consideration since if a particular system input is to be
studied for its effect, this input may be given a variance, and;
perhaps with other disturbance variances made small, the resulting
variances of the state varisbles may be studied. This is, in.
effect, equivalent to obtaining the systém step response.

The development‘of the.probability distributions involved
is based on a "Bayesian"lview in which an “a priori" distribufion
is assumed initially, and this distribution is updated as further
observations are made. An exposition of the Bayes approach is
given by Raeside in reference 18.

A more general view of a“stochastic-system would-include——-———-
r#ndom changes in ihe plant charactefistics themselves. Such a
view was taken by Fél'dbaum in reference 19, where even a simple
system ig found teo require extensive on-line computation in order
to determine the optimal control iaw. Adaptive control must.
therefore ﬁe seen as requiring considerable theoretical efforf.
Rowever such an approach is particularly relevant to the building
of low order models since an adaptive controller could attempt
to answer the question: "What characteristics of the plant are .
to be determined for adequste control?" If one initially has
little knowledge of the plant this is a daunting problem., However
this learning situation confronts humans contiruously, and

¢learly humans are able to evolve suitable control methods.



6.

T =11 -

There would seem therefore to be no reason why this process could

not be automated in a fully adaptive control system design.
..Apart from a short discussion of simple adaptive control

in chapter 10, this aspect is not considered further in this

thesis, but a full understanding of low order controllers would.

seem to be usefullcontribution to adaptivé control since in

this way there are feQer coptrol parameters whose values reguire

optimising,

Direct Low Order Control Derivations

Fron section 4 above it is clear that low order control

- may require either a model reduction step, or alternatively an

estimator reduction step. Several more direct methods have bheen
given whereby a low order controller is assumed and its
parametérs then adjusted to optimise a criterion. A computer

ajded design method for various cost functions is suggested by |

* Bereznai and Sinha (reference 20).

Jameson and Rothschild (refefence 21) give a method but
the designer still needs to specify part of the control structure.
By far the most promising direct method is that of
Kurtaran (reference 22) who, for the discrete time case, finds
conditions for optimality. However it is stated that no method
is currently available to find a solution, and this is
understandable in view of the multiple solutions shown to exist
in chapter 3.
A gradignt method using the Fletcher-Powell routine for
the deterministic system is given bj Berger (reference 23) and
it may be that such a technique could be used to find the Kurtaran

solution.
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7. Multi-loop Systems

'By its structure, optimal control theory will generate
plant control inputs which are functions of all the plant outputs.
In practice, however, a p;eferréd method is to control one output
using perhaps only one input. One finds frequently then a
multi-loop situation and this has the following advantages:
(i) Reliability: a failure of any one component
will remove from service at most one control locop,
which will then be controlled manually.
(ii) Flexibility: during plant start-up control
loops may be introduced one by one, allowing any
problems to be solved on cone loop before passing
to the next loop.
Optimal control theory promises to give a performance
thgt is better (in some defined sensg) than the mﬁitiloop
ﬁystem. However before such methods can gain accepfance some
consideration will be required in the above two areas.
. If, in a control system, failure of a single transducer,
for example, causes the wvhole plant control system to be removed
from service this is ciearly undesirable; One is led to the
conclusion that a stand-by system is required which would have
its owmn set of transducers. .Some form of upda?ing of the B
stand-by syafem would ensure that it would be able to take over
without unduly distu¥$ing the plant.
A different approach, and one which would allow the loops
to be introduced one by one, is based on the work of Rosenbrock
‘(reference 9) where, by forming simple filtered combinations of

contrecl or output variables, the frequency domain input - output
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system matrix is constrained to be "diagonally dgminant". By
utilising a computer graphical display to generate "Gershgorin
bands", which quaﬁtify the degree of diagonal dominance, the
ﬁest design may be found interﬁctively. This technique is
particularly powerful since it makes possibie the design of each
loop sepafately, there now being little interaction Eetweeﬁ'these
loops. . | |
Because some interaction will remain the system will not be
optimal, but nevertheless will be close to optimal and will have a
relatively simple structure. 4 sysfem designed in this way will,
in common with those designed by optimal control theory, be prone
to low reliability since a single transducer may affect several
loops. The use of several transducers, one for each input loop,

for each output measuring point would seem to overcome this

problem, but would introduce additional installation and maintainance

‘costs.

Thus the use of more complex controllers such as envisaged
in optimal control ;heory appears to imply some hardware costs in
terms of extra equipment, énd in any-aﬁplicatioﬁ this must be
balanced against the potential improvement in contrél system

performance.

Simple Controllers

As mentioned above the optimal control theory approach

will lead to controllers with dimension equal to that of the
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plant model, whereas it is known that good 3-term control

is obtainable (i.e, derivative, proportional and integral terms).

On aéking why this is so one is led to the conclusion that

while the three term controller is sub-optimal it may often
be only marginally so. To construét such a simple controller
rigorously in the style of optimal control theory‘appeérs to
require even more complex analysis.

Borg and Giles in refe?ence 2k, seek to show that three
term controllers are a special casé of opfimal control theory,
but the approach is not constructive in genéfal since a plant

model of order 3 is used., Considerable advances have been made

. in chapters 4 and 5 where the optimal control theory approach is

extegded'tc yield a simple controller while still maintaining

the optimal control theory advantages, namely

(i) An estimate of plant state is available
(ii) A synthesis method will not require lengthy

hill climbing to obtain the best control gains.

Computer Methods

The manipulation of matrix equations is a central part
of optimal control theory. To assist in computer implementation
the MATLAN matrix handling package is.used."Thiﬁ package is
fully described in reference 25, while a summar& of those
statemehts ﬁhich havé“been used ig éiven in Appendix 1."The
package is designed to be efficient for large matrices wﬁere

the required storage becomes large. This is particularly

‘encouraging from the point of view of control theory'sinée as

confidence is gained larger dimension plant models can be

contemplated.
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The discrete time matrix Riccati equation occurs in
connection with optimal control and estimation and is of the
form

-1

X. = [(Axiﬁ'-i- Q)"1 + B] (1.3)

i+
If control over an infinite period is being studied then

it becomes thé asymptotic solution of this equation that is

-~ required. -In all chapters this asymptotic solution is simply

obtained by iterating equation (1.3) until convergence is

achieved, as the main interest will be the demonstration of

viable methods of control system design. However the inclusion of

direct techniques for solving (1.3).would be straight forward. -
For‘continuqus time systems the Riccati equation,.analogbus

to the discrete time equation (1.3), is given for examﬁlé by

Barnett (reference 26) as

ax ’
Tl AX + XA - XBX + Q

Barnett aiso: indicates some methods of solution, for example the
explicit solution (based on characteristic roots) due to Potter
(reference 27) and 0'Donnell (reference 28), and iterative methods
using Newton's approximation. Repperger (reference 29) has suggested.
a novel approach to this problem. Anaiogous methods for the discrete_
Riccati equation.(1.3) would give a computational improvement over
fhe simple asymptotic method used in this_thésis. |

The forégoing considerations concern off-line computing
methods but consideraéion must be given also to on-line methods.
The development of relatively cheap small computers has ledli to
the choice of D.D.C. (direct digital control) in preference to

analogue methods in many current control designs and for these
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the . generation of control laws in discrete time is more useful
than a continuous time approach. Although a derivation of low
ordef controllers of continucus systems, along the lines of chapters
3, & and S5 is probably not difficult this has not been attempted in
this thesis as D.D.C. is seen as the more likely application.

~ For this reason in deriving the discrete—time.model of the

once through boiler in chapter 7 the control input is specifically

assumed to be fixed for the duration of the time interval.
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‘CHAPTER 2

OPTIMAL CONTROL AND ESTIMATTON

1+  Introduction

- In this cﬂapter the control and estimation of a 1inear discrete
time stochastic system is considered. The optimal control structure is
shown to be separable into an estimator section and a control section.

In subsequent chapters in which the estimator is no longer optimal this
separation will no longer apply. The derivations set out here are taken
from Aoki (Reference.1)- Since the results will be frequently referred .
'tb and will be illustrated by examples they are included here for
completeness. They are also set out here since the optimal case will be
used as a basis for comparison with sub-opfimal cases.

The system considered i§

X549 = AXg + Bujy + & | ' 2.1
where x; is an n - dimensional state vector .

fn=gifis‘a p - dimensional control vector

- and where £j is an independent random disturbance vector distributed
normally ﬁith Zero méan and coyariance matrix Q. '

x; will be'observéa by an observation vector ¥yi according to

¥i=HEx; + 4 o ' _ (2.2)
wheren; is an independent random distufbance vector distributed normally
with zerc mean and cpvariance matrix R

The performance criterion is

o N-1 . . ’ |
J=E [ixi' Vox; + Z ,“i' Pui} . ) (2.3)

| )



where E represenis expectation-

19,

J=E iwi . e e e - C e e e

' '
where Wi = xj in + uj_q Puy 4

and where V and P are positive definite n x n and p x p matrices respectively.

The various system matriceés A, B, Q, R, H, V, P may be made

time-dependent with no modification to the derivations. For simplicity

of presentation, however, suffices have been omitted, which implies that

v

these matrices do not vary with time.

2. Required Matrix Inversion Formula

A formula which will frequently be used in this and subsequent

chapters is derived as follows:-

Let X = A1 = a”1 8 (™1 + B 477 B)™ T Bt a7

Then the product X (A+BCB’)
1

=1+4 BB -2 B+ a7 B (B + B A7 BeB")

IT+a VB’ -a ' e AT By (¢ B ad) BT

=T +4 188"~ 2" BcB'

I

"

It follows that
(a + 8" - x
Ao B B A BT B AT (2.1)
which is the required formula.

3« Required Probability Relation

-

A result concerning expected values will be required. This

result is obtained as follows:-

E (x|a) = j; X P ﬁxla) dax
a fxxfb p (x, ‘bla) db dx

[xx[bp (xla, b) p (bla) db dx 4

using the chain rule of probabilities.
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In the inner integration x is fixed.while integration is
carried out over the range of b It is therefore permissible to move x
within the inner integration to give

E (x|a) = ]x fb x p (xla, b) p (bla) ab ax

Interchanging the order of integration

E (x|a) = fb [x x p (xla, b) p (bla) dax db
‘ Since p (bla) is independent of x it may be taken outside the

inner integration to give
E (xla) = fb p (bla) Ux x p (x|a, b) dx}db

fb p (b la) EE‘(xIa, b)}db
E [E! (x]a, b) la} ' - _ (2.5)

This is the required result,

k. Optimal Control Law
| Let the iﬁformation state of the system at time i be written aé
Ifj. This is useful when comsidering probability distributions based
upon this information. For a system with a complete memory Ifi will"
consist of all past observations Yie Foz: a memory system which is not
| perfect Ifi will conta-:i.n less information than thise.
Iet N =E (WilIfiL

Using the principle of dynamic programming, this method of analysis hafing _
-_ been éet out in a book by Bellman (Reference 30) hN is evaluated first.

Ay

E(x'y Vg + 'y, Puy |18 )
= El:("”‘w-1 +Buy g +8y_ )V (o + Bag_q +Ey_q)
* Uy P“N-1|Ifn-1]

t ' ' '
- t
= El xN_1 A UAxN_1 + 2 xN_1 A VBuN_1

E (Wyl1ey, )

'
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+ u'ﬁ_,' (p + B' VB) uN-1lIfN-1]
' . ‘ . ‘
+EE g Ve, - - ©(2.6)

. . E
where other terms in §N_1 vanish since S
. .
This expression is now manipulated to form a square in u Ne1®
This is analogous to "completing the square" for a quadratic expression.

N -.-‘r.[[ g+ (P+B'VB)"‘B'VAxN_1]'_(P;B'VB) Lyy_+(e+8"v8) '8 'vaxy

' ['va - a"vB(psn'vB)Y "B WAl l1s.; t v
+ X - + XN N-1 + trace Q
The trace of a matrix is the sum of its diagonal elements and
is used above as a convenient alternative to: 2; %; jSvij

o e '
s EI:(“N-‘I tAyg Hyeg) Tyl FAgeg neq) *F e Ty Mg 1T :'

+ trace QV : ' ‘ (2.7)
— _
where A . = (P + B VB) T8'va " - (2.8)
' . T ' :
T, =P+BVB _ (2.9)
f ) -1 L
O, =AVB(P+BVB) BVA : (2.10)
L} ‘f ‘ .
: '
and I = A V. -1 (2.11)
1, : 1 ;

The first term in the expression for lN is a positive definite
quadratic form so it has a minimum value of zero. Consequently'ln.is
minimised when: m

et = A Nt e I (2.12)

This is the required control law when Xy.q 18 Rnown. The
feedback control systéﬁ implied by this equation is shoﬁn in Figure 2.1.

-In the system being considered'xN_1 is known only as a result
of the observations Yi0 that is the information about Xyoq TRY be

expressed as the probability distribution

P (xy_qlT8y o)

is an independent random vector
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Let this distribution be Gaussian with mean pN-‘l and convariance

" matrix I’N_

1.
Then
. . ' ) s ,
A=E [[_“N_q * A * ey Cpog bty Tl g + Ky qbgg + A g Gy g
L)
*+ X N1 I1xN_1lIfN_1] + trace QV
1
=l ) Ty Gyt Ay )
: t '
o+ El:(“N-1 + AN—%‘N-j) Ty Ayeq Coyoqtiy ) IfN-‘l]
' r ot
' EI:(xN-'I'“N-':) A Net T Ageq Corrbyy)l IfN"J
] ' ' .
B X gty
+ trace QV
Now E (xy_ .My ) = O and if v, is defined as | '
‘ ‘ ,
v1 = trace FW + E[(xﬂ-‘l#N-']) II1 (xN_.l-ilN_.}NIfN_-]] (2.13)
then |

. " ‘. .
M= Gy F At T G+ Ay )
: | |
+ El:x Ne1 I xN-1IIfN-1:' + v,

As before )\, is minimised if the first term on the right hand

N

side, which is a positive definite quadratic form, is made zero.

This is achieved by setting .
Uen = = Aoty - (2.14)
Let the corresponding minimum value of lN be denoted by YN"", i_.e.
‘ min
Ty = Y
N oCuyg N

. _
= E[" N-1 Iq xN—‘lIIfN-‘l:l ™
It is now necessary to find the optimal control vector Uy o
for the preceding point in time. Let '

Ty = E[WN + \-JN_1|IfN_:}
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‘ [
Agq +E &y |IfN_2)
' ' {Tf E (v, |I£, .)
Bl X nqVyoq ¥ W poPy o iy o + B Uy 116y 5
] |
E[x N_1(v+x1)xN_1 tu g SPug o+ v1|IfN_2]

In the above the relation (2.5) E[E(GIIfN_1)IIfN_ :’ = E(Q] IfN—E)

1]

which was proved in section 3 has been used.

‘Proceeding as before it folléws that

; _
Ty, = E[x N2 Io Xgp * V5 IfN_] - (2.15)
and Ut = Andnez | | C (2.16)
where P (xg.],IfN-a) is Gaussian with mean Py and covariance matrix | S
end where I, = A' (V+ I,) A -1, | | " (2417)
. [] t - 1
I,=a' (v+1)B(@+3 (v+I1)B) 8 (v+I)a  (2.18)
. t ' -1 .t '
A =
Ne2 = (P+B (V+ 11) B B (V+ I1) A - (2.19)
y = ¥V . ‘ ‘
5 )+ trace (V + I‘I) Q

. ] : -
* E[("N-a'“n-a) T ("N-a"“N-a)'IfN-z:l 7 (2.20)
Continuing in this way all optimal control vectors can be

caleulated so that in general

T =E| % Tug %t vN—ilIfi] g (2.21)

Gy o=y : " (2
wvhere | |

Ig=A (Veqy, Ya-T c (2.23)

IIN_i = A (Vv + 1;,;1_1)13 [p +B (v + .IN_i_,l)B:’ -1 B"'(V + IN_i_,[) A (2.

A = [P +B (V4 11\1_11_1)13:"'l B (V+I,, A (2.25)

Vuoi = Vpoioq * trace l:(v + Ty 547 Qi:'

| I T (2026)
+ 1?:[:(::i -4 IIN_i(xi - p.i)l Ifi:' ..
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The probability distribution of x.,p (inIfi),ié Gaussian with

" mean ¥; and convariance matrix Pi.

‘All the féedback coefficients may be obtained in this way. In
the case of perfect observation the coéfficients may be calculated
independently of the probability distributions p (inIfi).

The structure of the control system is shown in Figure 2.2. It
can be seen that the estimator and the controller ;re separate and in
addition that the controller feedback gaiﬁs are those which are applicable
to the determinate case. This property is sometimes called the "certainty
equivélence principle”, (Reference 1).

Se Optimal Estimator

-To provide the above conditional meanslli for the controller an
estimation system is required to accept the new observations ¥ given by
equation (2.2), i.e. |

yi = H.‘xi +T].

‘Buppose the state varlable distribution at time i is glven by p (x Iy ) =
const. exp[:-& (x4 ) P (x - i]that is, the distribution is (2.2?)
_ Gauf531an with meany. and co,avarlan.ce matrix I' i

The notation yi has been used to abbreviate Yiv Ty_q soveee Too

that is all past observations.

+
Follow:.ng the observation Vi it isnecessary tocalculatep (xi+ i 1)
the state variable probability distribution for the next point in time.
By the chain rule of probabilities
p (x| 1+1) =p (x Iy, )
i+1 9 i+t Tie? T
P (x40 7; ly“
i1 i (2.28)

p (.Yi_,_."y%)
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‘The numerator may be found from

- i
P (xyr Xy pqr T3aql¥) = 0 Cxppns 544050 350 P (1D

i i
P (y1+1|xi+1. X0 ¥ 1y p (x5, 0% ¥ 2 Oyly)

i
= p (y1+1|xi+1) p (xi+1|xi) P (xily ) (2.29)

Integrating this with respect to x; gives the numerator of (2.28)
[ - .
P (xilyi) is const. exp [—% (xi-l._l.) I‘, 1 (x,_p.i):l

i1 141 Ax-Bu) Q Tx, 1-Ax -Bu)]

p (x, .lx,) is const. exp [:-}(x
. ol
P (yi+1lxi+1)- is const. exp l:-%(yiﬂ +1’ '»” (¥54q - Hxi+1):|
The numerator in (2.28) may therefore be written
f const. exp (=% Ei) dx,
where
E, = (x, -#,) .77 ( )
S T T S

4 (x.

f o '
j4q = Ax - Bui) Q " (x. ., - Ax,; - Bui)

i+1.
( Y ' Hx, )
T T B R g - X
To allow integration by X3 this expression must be re-arranged

as followsi~
| ]
- - r,=~1 -

~

) 1 ..,1 - . -.' - -
+ (x;,4 =AM, - Bu, - Alx; -1,)) Q7 (xy,, A, = Buy A(xi p.i))

o+ (yi+1 1+1) 'R ( Vi = BX 4y

) " i
[a =1 L ) ' |
= (x:i. -pi) I‘i +4A Q A:I (xi -pi)

- Bui)

T - :
-2 (x5 =) A Q7 (g, - Ay

| e
* (xypq = Ay - Bug) Q7 (x; g = Apy - Buy)

4 (yi .- Hx;, ,) 'R 1(y. - Hx 1y
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i m =1 n=t
- Writing Ti = Pi

= [:"i =By - DA Gy - Ay - B‘f‘i):l‘Ti- E‘i -y =Ty AQ

+ A'Q"1 A then by completing the square (2.30)

. (xi+1 - Ay - Bu )'(Q‘ AT A q ) (segpq = M1y - Buy ) S
- .
* gy = gy Ly aq = By ) | S y . {2.31)

Performing the integration with respect to xg

I exp [-% Eij dxi = const. exp [-% Ei':l

t - - _ 1 _1 - -
where E; = (x Au, B“i) Mlq (x5 4 = A1, =B )

i1

I - | ! S
t g = Bxy ) B (g - Bxg ) (2.32)

R e " -1
+1—Q "'Q ATiA'Q

- Q—1‘ A l:ri-1 +a'g? A] -1 3!

Q+AT Ay (2.33)

and where Mi

""using the matrix relation of section 2

The expression (2.322) must now be further re-arranged.

E, = (x.

-1
A -Al-l-Bu)M (x - AR, - Bu

i+1 i i+1 i)

] -
+ (yi+1-H(AP.+Bu.) - H(xi 1-Api+Bui)) R 1(yi+1-H(Api+Bui)-H(xi+1-Api+Bui))

R
= (x5 4 = Ay - Bu, ) (Mi+1 + BRH) (x5 4= Ay = Buy)

- .
-2 (:&:i_'_1 - Ay, - Bui) H'R (yi+1 - B(Ap, + Bui))

' . .
* (3, 4.~ H(Ay + Bu))'R 1 (7y,q = B, + Bu,))

-1

Let T, M"1+HR H

i+
Then, completing the square

E, AM, - Bu, - T,J ERT |y, . - H( Bu,) 1
T o T R R T Yipq = HlAH; + Bu

-1 -1
T541 {xiﬂ = Ay - Buy - ri+1 H'R |:1+1 H(AW; + Bu, ):B

=1 -1
(544 = BAW, + Bu,)) (R Hri+1H R )y, ,~H(AY; + Bu,))

X

+
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After integration with respect to x; ,
’ 1, . "

f exp [-3 E, ] ax, . = conste exp [-} E; )

n . t -1
where B, = (y, . =H(au+Bu.)) 2.7 (3, ,-HAu + Bu,)

1 =1 =1 1 =1
and whereEi+1 = R - R H ri+1 HR
i n )
Thus p(y,,,|3") = const. exp| -3 Ei:l | | ('2.34)

and from (2.28)

i+ ' -1
P (xi+1|y ) = const, exp[:-%(xi+1 -*li+1) P1+1 (xi+1!‘i+1i] .

where “i+1 'Ap.. + Bui + I‘i 1H R 1[yi 1 H(Ap. + Bu ):] (2.35)

T2 = (Q+ AT, Ay 'y

and %41 o o (2.36)

The required probabilityrdistribution for the next timé interval.
‘has thus been obtained. The equations (2.35, 2.3%6) provide the relations
necessary to calculate all future means and covariance matrices. The
discrete time filter system is shown in Figure 2.3, and this filter generates
‘the conditional mesns required by the control system.
6. Example

A simple example isrconsidered here. The reasons for doing
this are firstly to provide an illustration of an optimal controller and
in sﬁbsequent chapters illustrations\of the effgcf'of modifications of
this controller and secondly to provide a means of checking computer programse.
The example chosen is shown in Figure 2.4. .

The example chosen is the combination of two devices each of
which performs a purely additive function, Hence there is a s;mllar;ty
with a double integrator continuous system and this similaritx becomes
rigorous for a sufficiently smali time interval. The example has
‘divergent properties when uncontrolled and can be said to be similar to

a number of familiar systems.
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The equations are

(x,) (x,); +u; + (), _ -

17541 = V14 i i
This system may be written iﬁ the form

Ax + Bu + g ; = Hxi +

vhere ( ) () and H = (0 1)

If the aim of the control system is to restrict the value of

"

xa then a suitable cost function patrix is

G Y
1
The remaining cost, the cost of control,is chosen a&s

P=3
"This value is chosen in order to givé a simple asymptotic solution for the

optimal controller {equation 2.23, 2.24 and 2.25)s The controller is

etven by e
"G

- (1’ g’) i

The example is interestihg in that the elements of II show the

i sndd
importance of being able to estimate the current‘vaiue of Xy in
comparison with the estimation of Xye
For the optimal estimator the following values of the

variances of the disturbances are chosen

Q=((1 0)andR=
N4

With these values the asymptotic solution of the equation for

the estimation variance (equation 2.36) is

- | "‘_
C)

The optimal control and estimation system for this example is

. -shown in Figure 2.5.
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7 Optimal Control Subroutine CONTRL

The I.B.M. System/360 Matrix Language System, MATIAN,
(reference 29 has been used to implement tﬁe recursive equations
(2.23, 2.24 and 2.25) for the optimal controller. The subroutine CONTRL
acbepts the system matrices A, B, the control costs P,V, and a particular
value of I and computes the values of I and PI for the previous time point
according to equations (2;23 and 2.24). The detail of the subroutine is
shown in listing 2.1.

The subroutine was checked using the example. A program was
written which read in the various matrices from punched cards, called
CONTRL, . and printed the reéulting values of I, PI and IAMDA. When
the asymptotic value of I,

(62
| 3 )
! was read in, the program computed new values of I and LAMDA which agreed
with the above example.. |
| A note explaining the meaning of the MATIAN statements used in
the computer work is given in Appendix 1.

8. Optimal Estimation Subroutine ESTIM

In a similar way a subroutine ESTIM was written to solve the
equation (2.36). The subroutine accepts the system.maééices A, B, H, @, R
andra value of G, the covariance matrix of the optimal estimator. The
subroutine then calculates the next value of ?he covariance matrix according
to equation (2.%6).

A listing of the subroutine, the main program which calls ESTIM,
and the program output is given in listing 2.2. The 2 x 2 example of |
section 6 was used and found to be computed correctly. The subroutines

CONIRL and ESTIM were now available for use with larger systems.

PL
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Plant Models and the Kalman Filter

The "conditional mean generator” developed in section 5 and
shown in figure 2.3 is frgquently rgfgrred to as the "Kalman Filter'.
This follows from the papers by Kalman where this technique was
developed (ref. 3)." The filter requires a model of the plant to be
set up and for the model to be updated with informatidn from the observed
state of the plant. The corrections are_in fact proportional to the
degree by which the observétioh doeg not coincide with the expected
value of the observation. This is ¢learly seen in Figure 2.5,
illustrating the example system, where the mean3f41 and/12 form a

model of the plant analogous to x, and X5 and areupdated according

1

to the difference between y and its expected value. This expected value

is itself generated by the model. The Kalman Filter thus has a special

appeal since the mathematics has generated a system whose functioning
is seen to perform in a perfectly understandable fashion. This must

set the method apart from methods of filter design based upon optimising

techniques where the best parameters are found by searching methods.

It should therefore be possible to utilise this structure of the Kalman

Filter when other constraints are put upon the system, such as a requirement

e

for the filter to cope with changing plant parameters.
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STMT MATLAN STATENMENT
1 SUBFRO CONTRLCA+B4Ps Vs IsLAMDA,,EI)
2 ADD Velavli
3 MULT . VIisAsva
4. T ANS B.87
5 NMULT ETsVALEA
6 MULT VIisBsVvR
7 MULT BT« \vB,.,88
5 | ALD PsBB+FH
S clv PRsBAJLAMDA
10 CTRANS BA,AB
11 MULY AB+sLANCA,P1
12 TRANS AsAT
13 MULT ATsVAAA
14 £un AASFT LI
15 RECTURN
1€ END
Listing 2.1 Subroutine CONTRL

Calculates the optimal control law according to the recursive

equations (2.23) and (2.24).

.



STMT MATLAN STATEMERNT
1 VATIN o
2 READ (A48 4H 4G aR3) ‘
3 wWRITE (A3 sk oCs5+G) s FCRMAT=£S
4 CALL ESTIN(A B yH 3 Qs R GeGNEXT)
s WRITE GMEXT«FCRMAT=AS '
€ END :
T STMT ° MATLAN STATENENT

1 SLBFRO ESTIM{A133H ,CaRaGy GNEXT
2 TRANS A JAT :

- 3 ML T G sAT +GA C

4 MLL Y AWGA 4 2A
L] ADD C +AA LCG
6 MLLT H G2 +EG
7" TSANS HHT
8 MLLY HG ¢H T 4HH
S ATD R gHH oFH

10 DIV RHWHG 456G

11 " TRANS HG+H T

12 MLLT HTsRG +GE

132 s1.8 GGrGG $GAEXT -
14 R= TLRN '

1g END

Listing 2.2 Subroutine ESTIM

Calculates the optimal estimator matrices according to
equation (2.36).

Cutput of the subroutine for the example system.



A
1
1 1.009CE 00
2  1.00008 00
END DF MAT
8
1
1 1.0060CE 00
2 0.0
ENC OF MAT
H
1
1 040
' ENC OF MAT
aQ
1
1 1.000CE 0O¢
2 0a0
ENC OF MAT
R

1

1 4.C00CE OO

CEND OF MAT

‘Iisting 2.2 (continued)

DIMENSIONE

- 36 =
DIMENSIONE = { 2, 2)

2

e 0
1.000CE 00

RIX A

{ 2, 1)

RIX B

DIMENSIONS = (. 1+ 2)
2
1.080CE QC

RIX

DIMEMSIONS = ( 24 2)

2

Q«C -
4,0C0CE -CQ

RIX Q

DIMENSIONS = ( 1+ 1)

RIX R

Output of Subroutine ESTIM
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DIMEMSIONS = ( 2, 2)

2

1.0C0C= ¢0
2.000Cz €¢C

END OF MATRIX G

G
1
1 3.,0000F QO
2 1.000CE OC
GNEXT

1

1 2«G000E QO
2 1.0008CE 0OC

DIMENMSIONS = ( 2, 2)

2

1.0CACE CC
J«000CE (3

ENC OF MATRIX GNEXT

Listing 2.2 (continued)

Output of Subroutine ESTIM
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CHAPTER 3

SYSTEMS WITH JMPERFECT MEMORY

l. The Non-Classical Information Pattern

" In the previous chapter the optimal design of a linear

stochastic control system has been considered and the design has been
shown to be separsble into the design of an optimal control law and
" the design of an optimal estimator. The control laﬁ is that law
which épplies in the deterministic case and this property has been
called the "certainty equivalence principle".

The optimal estimator will have the same dimension as the
system being controlleds In order to represent the system, or plant,
accurétely in an analysis its dimension could become very large,
for example if finite differepce methods are being used. However, it
is difficult to justify using such a large order estimator, and consequently
such a large order control system, in practice as it is known that a
control system of order iwo or three is usually satisfactory. A control
system which has a smaller dimension than that of the system it
controls corresponds to an estimator whi;h has an imperfect -memorye.

Witsenhausen (Ref.31) has called the optimal eStimatinn system of

Chapter 2 the "classical information pattern™. This title applies

to an estimation system which is able to store all information that
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it receives. The étructure of optimal controllers is considered when
the information pattern is non-classical. To illustrate the problems
that are encountered in the non-classical situation Witsenhausen

uses a simple two étage control problem. This problem will be re-stated
below and will later be used to illustrate-a method for finding the
optimal controller in the non-classical case.

Witsenhausen also uses the example to show how a non-linear
controller may be superior to a linear controller in the non-classical
cases In order to preserve system structure the work ﬁelow is restricted
‘to‘a consideration of linear cont?oller;. |

2+ Two Stage Control Example*

State equations: .xl = X, + u, (3.1)

X, = X, - ug | (3.2)

Output equations: y, = x, (3.3)
| Yy = X, +V (3.4)

Cost function: k3 u,3 + x,9 k? >0 | (3.5)

Stochastic properties: Gaussian where

E B = 0 , .E v = 0 (3.6)

E x| = E{®l =1 - (7
Controllers: w o= O-1) Y, BN (3.8)
“la = py, . (3.9)

The problem is that of minimising the cost J with
respect to A and M
= 2 5, 2 v 8
where J = E Kk u + X,
E k312 x2 + (y -pdx, - pv)?

k3 (31P0? + 2 (Wo2+ 1) - 2ur302 + W03 (3.10)

* The notation used by Witsenhausen is retained
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J has a minimum with respect to p

when

2 g2 . L
‘.l = %TF:’ : | ‘ ] (3-11)

and for this

J = k3(Q-N?c% A% o* _
. 1 + xﬂ o-ﬂ (3012)

ﬁitsenhaﬁsen establishés_that this expression has either one
unique minimum or two local minima with résPect to N, depending on the
values of k2 and o,

In the following a particular case is examined with k ='%6
and O = %9-, which corresponds to the case in which the‘two Jocal
minima are equal. A graph of J against A for these values is shown in
figure 3.1.

The cdmmon minimum value of J is 0.9) and the minimising

values of \ and py are
(1) aA=p = 0.9

vhich corresponds to u; = -0.1 Y,

=
u

., = 097 (3.13)
(i1) A= p= 0l
which correspands to u, = -0,9 Yo
| w, = 0.1y, ' (3.14)
These minimising values have been obtained by an analytical
method and no structural significance is apparent. In the following

the significance of these solutions is developed.

3. Solution with Classical Information Pattern

This case differs from the above example in that u, is able

2
to be a function of the observations Yo and ¥, and also the control ul.
As there is perfect memory the certainty equivalence principle applies

and it is.first necessary to obtain the optimal deterministic controller.
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In this case E {v’} = 0, and the optimal control law is
obtained by dynamic programming as

u, =0 i.ee A= 1.0 '

: ' (3.15)

ug. =X, i.e. p= 1.0 .
fof which the cost J is zero.

Secondly the estimator must be obtained. Since the
estimator has pérfect memory yo and u; are available for the estimation
of x,. Therefore Xy is knbwn exactly at the second stage and the

case becomes identical to the deterministic case.

4_. Estimator for Non-Classical Information Pattern

In this case only y, is available for the estimation of
Xy; 50 the conditional distribution p(x; 1 yy) is required. Let the
first stage control be _

o= O ' .16

Uy (a-1) Y, (3.16)
Then

Xy = X+ uy = AX (3.17)
The distribution of %, is Gaussian with mean zero and variance o3,
so then from equation (3.17)the distribution of x is Gaussian with

mean zero and variance A%¢ *, that is

| 3 =t C(3.18)
- p (x;) = const. exp. [_% 2 ] 3.1

Since the distribution of v is Gaussian with mean zero

and unit variance, it follows from the observation equation(3.4) that

p (y, ! x,) = const. exp. [-%.(xl - yl)z} (3.19)
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Combining equations (3.18) and (3.19)

p (5, 5)=p@]x)r(x)
= const. exp. =% [(x1 -y,)2%+ x,*
r Sl Al
= const. e -3 (xl-qxn)’_'_ %2 (3.20)
= - XDe 0_13 T + 0-2 Y-8,
2_ . 3 q
where ¢;°= = 3 2449 ) (3.21)

Since p (x,, ¥, = p (x; | ) p () it follows from

equation (3.20) that

\2
P (x; | 1) = const. exp. _%[(x, — c;,_’y_-,_) } (3.22)
oy

The conditional distribution of x, given observation y; .
has therefore been found to have mean 01®% and variance 0.

5. Sub-optimal Control with Reduced Estimator

In order to examine the breakdown of the certainty equivalence'
principle it is possible to use the deterministic control law,
ei;uations {3.15) in conjunction with the reduced estimator obtained

in the last seétion. The resulting controls are

u: =0 i-ec l = 1
(3.23)
u, = 0'123'1 i.ee B = o‘l’
The cost whenp using these controls is
J =E | k?u,? + xa® = E{x,’]
_ .
=E (x, - uz)a }
e
=E | (xy - 0% )*]
h .
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With o= %g-, then the controls are A = 1, B = 0.917'and the cost,
J is 0.917.

This casé does not correspond exactly to either of the
optimal solutions obtained in section 2., bﬁt can be seen to be
close to the oﬁtimal solution (i) in which A= p = 0.9. The cost '

is only slightly greater than the optimal cost of 0.91.
| | In this section the certainty equivalence principle has
been applied when the estimator had an imperfect memory. Although
the optimal solution is not obtained by its usé, it can be seen that
this sub-optimal control gives a very close approximation to one of
the optimal sclutions. As this sub-optimal control appears to'be an
important case, it will be called "pseudo-classical control".

6. Interaction of Control and Estimation

Since the certainty equivalence principle does not hold in
“the non-classical situation the control law given by equation (3.23)
need no longer be related to the deterministic control law. H;wever,
instead of falling-back on an analytical method of optimising Aandu
as in section 2., it is possible to retain the stfucture of the

¢lassical solution and to modify it to meet the new situation in which

the information pattern is non-classical. For this case the cost.is

. 2 2
J = E,{k u,?® + x, }
- kr e Gy -u,)°] (2%
This cost is minimised with respect to112 vhen
- )
w, = X,
where X, = the mean of the conditional distibution

p (x, | ¥1)
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From ecquation (3.22)
From equation (3.21)
)'2 0.2

W= Tiiies - {5.26)

Although u, does in fact correspond to the classical case
a new feature becomes apparent vhen J is minimised with respect
to u,.

Putting ug = By1 in equation (3.25)

oy
1

=E {k’ w® o+ (x, —py;)z}

Y
E {k’ u,? +(x, ~px -pv) ]
=B {k 2 u.l2 + x,2 .(1-p)2} + u? ' (3.27)
The new feature that appears here (as a result of the non-
¢classical information pattern) is the fact that equation (3.27)
- contains a cost related to x;. This will result in a non-zero control

u,, and this is at variance with the classical solution. Equation{3.27)

11

can be written

Jy = E{x;’% k,? u"_} (3.28)

| ‘vhere J, = 1_‘:; - u? ' - (3.29)
2 k2 )

and ‘kQ, = 1_p 2 ) ) (3-30)

Completing the square in equation (3.28)
E {(x(;"—l- wl? o+ k2 111’]

E [“1 2.(14k,2) + 2 xu; + xoz]

g

2 Xo ‘ 2
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The minimising value of u, is

u = = xo
: - T+k,s
Car A = 1. g = k3
‘ 1 1+k,?
'Using equation (3.320)
= kz . s
A = ey .30

The inter-relationhof.control and estimation is now evident
from equations(326) and (331) The classical method has been extended
.'usingaaquadraticnﬁnimisation method but.the result is that N depends
-on M and that p depends on A.

7. Iteration to Optimal Solution

Starting from the pseudo-classical solution A, =1, u =0.917

it is possible to iterate using equations(3.25)and{(3.31)successively

to obtain
A, = 1.0 ' p, = 0.917
A, = 0.930 p, = 0.906
Ay = 0.910 g = 0.902
This process converges fo a solutioﬁ A = '1_;.0.9 as can be seen by

substitution. This is precisely the optimal solufion (i) obtained in
section 2. The significance of this is that it is possible to use
methods appropriate to the classical situation to obtain theloptimal
solution for the non—c}aséical situation. In this process a state
estimator is generated and the classical control and estimation

structure is maintained.
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' The solution {ii) of section 2 for which A = B = 0.1
" is known to exist. Starting with values lo = §1,= 0, iteration

using equations (3.26)and(3.31)gives

l°=0 By, =0
A, = 0.0826 B, = 0.0704
= 0.0943 = 0.0899
Y

- gonverging to A\ = = O.l.

Thus the above method is a2lso capable of yiel&ing the
other local minimum provided iteration is begun sufficiently close
tolit.

8. Application to Larger Systems

The example has shown that despite the problems of the
non-classical situatioﬁ, such as local minima and multiple solutions,
it is possible to proceed very much as in the classical situation
and to obtain a solution provided the interactions of control and
estimation are taken into account.

The most useful area of application for this methed is
that of continuously running systems and later chapters illustrate.
this. However, there will be two aspects requifing careful
examination.

(i) The example demonstrated the existence of local minimae
In the multi-dimenéional case these will be far more difficult to
detect.
| Witsenhausen showed that local minima énly occur for
k® < £ and with this §3, local minima occur for o 2 wﬁthin a
certain range.

In the light of section 7 it is now possible to interpret
these conditions as saying that there will bé an optimum that can
be reached from the pseudo-classical scolution provided k2 is

sufficiently high, that is the cost of tramsmitting information via
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the controls is sufficiently high and provided ca.is sufficiently.
‘high, which corresponds to a poor knowledge of the initial state of
the system.

(ii) It is well known that in reducing the order of a contiol
system, such as when a phase advance network is reduced to a pr0p6rtiona1
network, it is possibie that a stable system cannot be designed
with the new structure. In the process of reduction from the classical
to the non-claséical situation, such an effect would manifest itself
as the approach of state variable variances to infinity.

In computing terms this phencmencn would be difficﬁlt to
distinguish from a stable solution with large state variable variances.
However, from the point of view of system design this would not be a
éeribﬁs restric#ion since if the system cost has risen significantly
abﬁve the optimal classical cost the reduced configuration, even if
stable, would not be a viasble proposition. |

It would be necessary to use alternative methods to

investigate the stability of a particular configuration.
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' CHAPTER 4

4 ~ THEORY OF THE REDUCED ORDER ESTIMATOR

-.-1. iiStructure of‘the Reduced System
o In Chaepter 2 the theory of the optimai éstimator was derived and
. 1t was shoﬁn that this estimator is required if_optimal control is to be
a&hieved} In this chapter a structure is considered which ieads to an.“
gstimdfor of reduced order. The derivation is similar to the.derivation of .
the optimal estimator of Chapter 2.

The struéture of the redﬁction process 1is shovn in Figure 4.1. The
-staté vect;r X4, tﬁe control vector uj, and the observation vector y; are

defined as before. The vector z-

i is defined as part of the control system

and is & memory element. For the optimal estimator zj can be identifiea with
tpe conditional mean‘ui, end will therefore be of order n. For the reduced
order estimator z; is taken to be of orde; q where

"1<q<n

| With £his structure an estimate of the state vector, xj, is made
from £he information stored in z; from the previous time pdint.and ffom the
latest ébservation ¥;+ These two véctors canlbé combined togethef‘to definé
a vector v of dimension (m + q) whié@ may be called the "information vector",
i,e. ‘ |

vy = |3 o . (4.1)
2i
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From £his vector the estimate of the state vector is constructed,
by means of the matrix Fi’ according to:-
u; = Fy vy - | (4.2)
The determination of the values of F; will be deseribed subsequently.
At this point it .can be seen that it is necessary to reject some
of the information contained in the information vector wv; (dimension m + q)
.in ordér to construct z;,, (dimension q), the vector containing the information
which 1s to be carried over to the next time step. The most general

representation of this rejection process is by means of a non-singular

transformation matrix 7 of dimension (m + gq) x {(m + q).

Let vi = T |2%it} i | (%.3)
: %i+1
or vy = Ta-ui+£ + Ty Zi4y . ' . (h.h)

where T has been partitioned as
T = (T, iTh) : . | (b.5)
The information which is rejected has been denoted b& ®i+1, and it
will be shéwn later how the choice of the matrix T can be made in an optimal

manner so &s to minimise a particular cost criterion.

2. A Priori Distribution of Information Vector, vi

will be required and

babili i ibuti fa. i .
The probability distribution o ul+1 glven Zl+1

this will be obtained directly from the "a priori" distribution of v; which
can be assumed to be Gaussian with covariance matrix P. So that
p(vi) = _const. exp (-3 v;' P71 vy)
A notation will be introduced here to simplify derivations and
this writes the above equation as

plvi) = v Pl vy | ' . (4.6)

vi' P71 (L)

ol

or plvi)

_ \ .
where the empty bracket signifies that the transposed expression is simply

repeated.
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From equations (4.4} and (4.6)

P(vi) = P(ai+1: zi+1) . Co (4.7)

plaj+g | 2541) P(Zi+1) o (4.8)

ol

(Tq U341 + T 234y)" P71 (L)

-1 ’
= a!  TLP1T g, +2al TPLT, g

1+1 o Tit) i+l i+l

+ Zi+1 T' P~ 1 T Zi41
= (%j4; + Py T Pl T, 254,07 PTI(L)
+ 1+1[ Tt Pl - ple pyT! P Ty ) z4 (4.9)

where Pl = T& p~l Ta (4.10)

Introducing the abbreviations

ap = agy +P1 T p-1 T, Zj41 ' - (%.11)
-1 = ' -1 _ p~1 t p—1 -
and P, T, (p PPLT P TP ) T, (4.12)

it follows from equations (4.8) and (4.9) that

plojsy | 2549) s a3 PT! oy _ (4.13)
- -1, ‘
and plz4) 2y Py Zin S (5.1h)

3. The Conditional Distribution P(“1+1 [ 241, Yie)

The information being rejected.is contained in the vector-ai+1, and
it is very relevant to take account of the next observation Yisqe In other
words there is no point in storing information if this same information will
be available anyway in y1+1. Consequently the distribution plajs | zl+1)
must now be used to obtaln plagy, | Zi41s Yi41)

From equation (2.3%4)

D(yiay | 13) 3 (rier = H (ang + Bug)) 271 () O (kas)

vhere Il =®rl-RrlErg, B R! (4.126)
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With the reduced structure of:equation (4.2), omitting the suffix

from Fyi,
vy = Fyy
= F T, ®j+1 * FT, 2541 . | (4.17)
The eontrol vectarlui will, in the present context, be given by
w o= - Ay | (4.18)

~where A is the oﬁtimal control feedback matrix obtained in Chapter 2.
However the present analysis would apply whatever the origin of A.

" From equations (4.17) and (5.18) it follows that

¥is1 - B (Aug + Buy )

= yi+1 - H (A - BA) uj

Yiep - H (A - BA) F (T aj,) + T 234)

yi+1 - H'(A - BA) F (Gi+1 + Pl T& P—l TZ Zi+1)

‘ - - -1
+ H (A gn) F(T, - T, Py T P"1 T ) z5y,
Yig; tH, 01 Y H) z54, (4.19)
where H = H(A-BA)FT - (4.20)
= - - t p—l : '
and H, E(A-BA)F (T, Tg Py T, P Tz) (k.21)

1

From equations (4.15), (k.19) it follows that

plajer> ¥ie1 | 2i41)

= p(yier | ege1s 2550) p (0301 | 254) ' (4.22)

P(Yi+1'| Ui) P (“i+1'[ Zi+1)

(yi'l'l - Ha Gl - HZ Zi+1)' E-l (-)

on

+ u' PIl a
LBl F1 1

(yi4; - H 2i4)" 1 (.) -2 (yi+1 - H oz, s H, o

" ' -1+ 1 -l
ol (P71 H oz Hu) ay
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(a; - Py B! I (y34, - H, 2349))" P2t (L)

+ (y34 " Hyz3) (71 -7 H P H 1y (.)

= Gé PEI an + (Yi+1 - Hz Zi'l'l)' (E + Ha Py H&)-I (.) (}-I».23)
vhere Pzl =Pl + H, I H, o » C (b2
a; =a; - Py H! 271 (34 - H, 2;,1) - (4.25)

and the matrix inversion relation of equation (2.4) has been used.
Comparing equation (4.22) with the alternative expansion
P(o5415 ¥imy | 2i41) = Plogmy | 5415 2140) POgay | 2iag) (h.26)

it can be deduced from equation (4.23) that

p(ui+1-| Yiers Zie)) 5 @) Pzl o | | (L.27)
and 7 |
P(¥i+1 | 25,1) S (Y4 —Hy 254" (2 +H Py Hé)—l (.).  (h.28)
These two érobability distributions are required later, the first
to express the discarded information in terms of information which is-not
discarded and éhe second to construct the "a priori" distribution of the

information vector at time (i+1).

Y, Probability Distribution of State Variables

It is now possible to proceed to determine the distribution of the
state vector xj4,, given the observation yj4;. The analysis follows exactly
as for fhe optimal estimator, with the exception that some information is
not available from the last time point. However the result from equations
(2.35) and (2.36) may be quofed. | .

2(x54y | ¥iap> ¥g) 5 (%34 = Biag)' T34 () (1.29)
vhere |

Bisy = Apg + Bu;y + Ty HY R'I'{Yi*l - H (apg + Bu; )l (4,30)
and

Tiap = (Q + ATg AN + B R71 E o (4.31)
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- Since, from equation (4.2), u; is given by Fvi ‘and vi is given
by equation (4.4) in terms ofa, . and zi4) it follows that, using also the

expression (4.18) for uj,

Hisl

= A aj +A 24 +Tiwg B R U {yge - Hy oy - H) 244) (k.32)
where

A, = (A-BA)FT, . o _ : (L.33)
and

A, = (A-BA)F(T,-T P T,P1T) (b.34)

Using equation (%.25), further rearrangemenﬁ gives ]

Hi+l )

= 'Aqy wp + A, ziyg t AL (yig - By 254) | (4.35)
where |

Aay = A - ry4 H' R H, - (4.36)
and

Ay = A P H! et H'_R"l (I -H, P, H L) (h.g’()

The mean Wj4y is now in a suitable form to use in conjunction with

the distribution of o, .interms of z;,, andyi+1asgiven by equation (4.27}.

1
By the chain rule of probabilities

(X541 934 l Zi41s Yi41)

= plai+r | %5415 25410 Y1) P (g | 25405 ¥iad) | (4.38)
and also
P(xi41 | 0is Ziegs Ti41) P (eiey | 2iags ¥i49) (4.39)

= P(xi+1 I Ui+1) P (ai+1 I Zitys Yi+1)
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(%547 = Agy 92 = A, 234y ~ Ay (7341 — B, 1+1)) 1+1 (.)

e oy
Gi PEI an
) ¥ . ’ -1 *
e (xi+1 r i+l (.) - Auy Pi+1 (x1+1 ui+1)
: ' 1 1
+a) (P2 + AL rl+1 Agy) a2
vhere _
u;+1 = AZ z541 + Ay (Yi+1 - HZ Zi+1) i : (h-ho)

Completing the square for the above probability distribution
gives it as

= - - . - y% Y1t pTl
[02 Pq Aay rl (Xl+1 ‘ui+1)] P3* (.}

1 -1 =1
+ (x54p = “z+1>' (Ti4) = Tieq Aoy P3 Agy Tiyy) (C)
-1 e o -1
T oy et oagt (xgyy — ol ) (T + Ay Py Ag) 0 (L) (4.41)
-1 = ~1 ' -1
where Pj = Po +.Aay Tin Auy
=1 :
93 = @z - P3 A&y Tisy (xi+1 = Ui+1)‘

and the inversion relation of equation (2.4) has been used.

Comparing equation (L4.41) with the expression (4.38) shows that

1
vhere T¥ = =Tjy + Ag P2 Ay | ' | (h.43)

The estimator equations for determining xj4+; given only 2541

‘and ¥j,, have now been found and are given by the equation (4.40} for the
conditional mean, uj,, and by the equation (h.hS) for the covariance matrix,
- T#

r1+1

5. - Modification of Covariance Matrix due to Reduction

Equation (4.43) shows that, by limiting the quentity of information

stored by the estimator, the covariance matrix of the state variable distributi
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is modified by the addition of a positive definite matrix, which may be
expressed in a more useful form as follows

Py A!

Agy i

- 1p—1 71 -1 -1 1
(A, - T, BRTEH)(ED + 8 27 )T (L)

" {(A-BA) FT. - -1 -
{(a-BA) FTa. Ti4y H'R™HH (A-BA) FT )

'{T&‘P'l T, + Ty F (aBA)Y w3l ; (A-BA) FT Y7V (.}

x

A Ta. {z! [P~1 + F' (A-BA)' H' -]

r

- -1
H(A-BA) F] Ta} T! Al

= v p—l ~1 m1 pt
AL T, [Ta Py Ta] ) Al

where the new symbols have been used,

. = - 1) -1 — . :
A, = (I Iy 'R H) (A~BA)F . | (b.hk)
and
P31 = P71 4+ P (a-BA)' B' 7! H (A-BM)F  (4.45)
The expression for the covariance matrix of the reduced order

‘estimator may therefore be written, from equation (4.43)

* = r p—1 =1 m1 opt ‘ |
I':i.-l-l I‘i+1 +‘AP Ta [Ta PE Tul Ta AP (4.46)

In the above derivation of equation (4.46), the various definitions
of symbols given in equations (4.36), (4.24), (4.33), (4.20) and (4.20) have
been used.

The significance of the expression derived above is that only
Tu appears in the positive definite matrix and that it appears in this matrix
in a ﬁarticular manner. This will be amplified in subsequent chapters and
used as the basis for choosing T, aécording to a certain criterion. However
the remainder of this chapter will be confined to establishing the remaining
relations which are required in order to construct the complete reduc;d order

estimating system.
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6. Storage Relation

Equation (L4.3) shows how 2541 is constructed from the information
vector vy, that is
Ty

T
o 1+1

Vi = (Tz

a.
1+1

where vy = ¥i

2i

It follows that, since T has been assumed non-singular,

2191 .

* e =T- v.
. i

0"1-i-1

which gives
= 1 . ’ C
Zi4) (T~ )z vi | _ (%.47)

vhere the inverse matrix has been partitioned

1l = (T-l)z

(1), | e

Equation (h.47) defines the storage slgorithm to be implemented in

a practical estimator since it defines how the stored information z (of

i+1
dimension q) is made up from the currently availasble information z; (dimension
q) and y; (dimension m).

T. New Estimate of State Vector

From equation (4.40) the new estimate of the state vector x,,. is

1+1
* = - +

Aya 234 * Ay Vi L o o (b.b9)
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where Ayz = (A, - Ay H,) | - ' (4.50)

Fi+1 may therefore be defined

Fing = Uy .Ayz) | (4.51)
so that |
Y T Fig fi+1 ' ' 7 ' (.52)
where
Vitr * .?éf} : :
| 2i41 | | (.53)

and this new matrix Fi+1 is available to repeat the reduction process for
the next time step.
The expression for Ay is given by equation {4.37) but some

simplification is possible as follows

Ay

t p=1 1 p—1 - t v—1
A, P2 H "t 4T, H'R (1 HaPZHaZ)

- 1 g1 t gy y-1 r p—-1
(1 T;p H'R H)AuPzAaH I +riﬂHR

= ' -1 - 1 p—1 1 -1
Aaypp_AaHR (1 By, B R )+I‘i+1H R

[} t p—1
(A{W P, Aay-l- T +1) H' R

ra, H' 71 - o (4.5h)
vhere the various definitions given in equatioﬁs (4.33), (4.20), (2f3h),
(%.36) and (%.43) have been used.

Similarly, from equation (L4.50)

Ay; = (T -r3 ' R1EH) A, | (4.55)

8. Prior Distribution for Next Time Step
Associated with the above definition of Fi+1'is the "a priori"
probability distribution of the information vector vi+1 for the next time

step, defined, as in equation (4.6}, by

- -1
PUVia) 5 ViaFin Yin (4.56)
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or E i Vint = Pin ' ' (k.57)

From equation (4.53) it follows that

-

. 1
E(y1+1 y1+1) v E(y1+1 21+1)

P- - LIRS I O B N R B R I R B B N N ]

1+1 .
E(zl+1 y.1+1) . E(zj_+1 ;{+1) {(4.58)

The values of these expected values may be obtalned using

equations (4.14) and (4.28) from which it is possible to write

E(zy,, 2},,) = P, _ - . I(h-59)
and

By ~ Bz 234y (g ~ By 25,,)")} = By, (k.60)
vhere

Py, = I+H P E . L (4.61)

Since (yi+1 - H, zi+1) and Z;4, 8T€ independent statistical

quantities* it follows that

! =
Blygy) ~ Hz 2g4y) 2fy, =0

or E(yi+ 1+1) - Hy E(z, zi+1) =0

or, using equation (4,59)

E(yi+ 1+1) = H, P, (4.62)
* Provided y..., and z.. . have a jointly Gaussian distribution and
1+] 1+1.
' = 1 1
POi12540) 5 Oiay ~ By 254 Py ()

it can be shown that (y, . - H; zi+1) and z,

141 afe independent.,
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From equation (4.60) it follows that

E(y;q, ¥i4) - E(y;, 141)} Hy - 8, Blzg,, vi,)
+H, {E(zi+1 2}, 1 H, = Py,
and further that, using equation (%.62)
B(yy,, vi) = By . S (k.63)
vhere Py - sz *E P E (h.64)

Combining the above results the covariance matrix of the prior
probability distribution for the next time step may be constructed, using

the ﬁartitioning of equation (4.58) as

_ Pyy Hy Py
Pi"‘l - seesssasmense

P, HI P, ~ (4.65)

With Pi+1 and Fi+1'pow determined for the neixt time step,lt'ls

possible to carry out a similar reduction process for the next time step.
If required this process may be continued indefinitely until an asymptotic

" solution is found when the various gains can be incorporated into a practical

reduced order estimator algorithm.
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CHAPTER 5

THE APPLICATION OF RED&CED ORDER ESTIMATION TO CONTROL

1. The Certainty Ecuivalence Principle

For the case of control systems with perfect memory the certainty
: equivalehce prinéiple states that the optimal control strategy is that
vhich uses the deterministic control law and derives an estimate of

the state vector éccbrding to the Kalman filter. In chapter 3 the case

~ of "pseudo-classical' control was examined for a particular example and

-it was_found that very little extra system cost resulted from the adoption
of this form of contfol.

The control system design method was to use the deterministic
contrel law éssociated with a reduced order observer. Since the cerfainty
equivalence pinciple will no longer apply in this situation, the control
law used, say

u; = ﬁj\if*i ‘ (5.1)
where JALi‘iS derived as in chaper 2, will no longer be optimal.

However, in order to éain_some experience in thé application of this
technique the example of chapter 2 will nov be re-considered using a
reduced order observer. In order to proceed with this a choice has

to be made for the reduction matrix T.

2, Choice of Reduction Matrix T

In the expression for the reduced order covariance matrix

3
I; » (equation 4.46) it is only the 'sub.-matrix T, of T which

-

appears. This implies that it is only the choice of T¢< which can
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affect the performance of the estimator. The-other sub-matrix,'

T;. of T will affect thé structure of the estimator, that is the

values of gains and the amplitudes of the elements of Z s while

not affecting the estimator performance. This can be seen for

- the case of the example of Chapter 2 where the optimal estimator

according to Kalman filter theory had order 2 and for which it is

desired to construct a reduced order estimator of order 1. Suppose

it is decided that the stored information 2 ,4(a scalar) is formed by

¥ = e 2 + vy,
i+1 i yl

'From‘equation (4.47) this implies
EN, = € e)

If the matrix T is given by

p (2 b
¢ d

" then

a = f .
ad - be

and; -b = €
ad - be

It follows from (5.4) that

() atw 3)

- 1 a -b |
-T."'ad-bc (-c a) ' .

g0 that comparing (5.3) and (5.5) gives _

(5.2)
(5.3)

(5.4)

(5.5)

In.the expression for,éhe'covariance matrix of the reduced order

estimator, equation (4.46), Tcg appears equally inside and outside

of the inversion. Consequently the scalar uncertainty in Ty the

factor

S
ad - be
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»
will not affect the covariance matrix I;+1 « This example has

illustrated for a system of order 2 how the choice of estimator structure
is equivalent to the choice of a particular T . For higher order

- systems this is less clear but is implied by the form of equation

(4.46).

3. Example of Reduced Order Estimation

The choice of a particular matrix T will now be examined using
the same example as was used to illustrate optimal control and estimation
.in chapter 2. Suppose the stored information is chosen simply to be
the previous observation vector ¥io that is

(5.7

This is a special case of the control method described by Box & Jenkins

(ref,32)where the general form of the controller is

ui + 'aﬂui_,l + azui-a‘l“ sena = boyi + b1yi—1 + bzyi—a + saee

C _ y. : ’ . |

riees Vo o = Viv 1 (5.8)
| vs

and the conditional mean of the state vector xi+ is thus formed from

1

A suitable transformation matrix,

the two observations ¥; and Yi41°,

T, is then the unit matrix so that ‘

-1 _ o _f[10 |

T "T_(O.l) . (509)’

This choice of T satisfies eéuations (4.47), (5.7), and (5.8). 'The
control law used can ?é taken as the steady state solution of the
recursive optimal control equations for'the example, that is,
from Chapter 2
e A |
where A= (-1 -3 (5.10)

~ To carry out the computing tasks associated with the generation of

the reduced order estimator, a MATLAN subroutine OPRED has been
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described in detail in section 4.

il

This subroutine is suitable for any order system and is

By calling the subroutine successively until convergence is achieved

the following results are obtained

(1) The estimator covariance matrix is
r‘* - 3.058 0.972
> 1 0.972 3.108
and this compares with the optimal estimator result of
- [3
(2) * The prior distribution covariance matrix is
p o (4462 3.45
_ isee \ 3,451 L, LE2
(3) The estimate of the state vector is given by
MR

ireo 0.777 0.173

0. 243 y£ 0491y, .

vhere ¥ = (0.243 -O.1+91>

&0 that/q1

M2

Hence from equation (5.10) it follows that

L

0.777 y; + 0,173 ¥; _,

u,

i -AF Vi

0.243 <0.491 \(7y. |
-0 P ( 0.777 0.173)(3@_1)

-0.502 y, + 0.433 V501

(5.11)

The resulting control law is seen from this equation to

be of é highly derivative nature, which is as would be expected

considering that the system has the form of a double integrator, and

would therefore require derivative action to achieve stability.

Proportional only action of the form
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can be shown to be unstable for any value of k

When assessing the performance of a control system ié is
essential to know whether the system cost has been appreciably increased.
To this end a further subroutine, SYSTEM, was written to calculate |
the system cost of any particular control system design and is
described in section 5. |

The qost of control for the above example is found to be Sh.5
~which is to be compared wiéh a similar result for the optimal controller

of chapter 2 of 54.0. In more detail the results are

Optimal ' Reduced Estimator
Controller Controller
Costs on control, u 13.71 13.84
' Costs on state vector X5 4o.29 Lo,62

Co-variance of system X, 8.1 =6.1 8.2 -6.1
| (xa -6.1 40.3 6.1 40.6

Thus the particular choice of reduction matrix T has resulted
in a control system whosé performance is virtually as gpod.as thé controller
of chapter 2. If a different choice of reduction matrix had been made
a véry much poorer system could héve resulted. While the arbitrafy choice
of T in this examplé was very successful the problem remains - of h&w-l
to choose the most suitable matrix T. A method of selecting T in a

near optimal manner is discussed in the next chapter.

&k, The subroutine OFRED

The subroutine is shown in Listing 5.1. There.are a number
of statements whose purpose is not yét described, but are related to the
material of chapter 6. Apart from these the subroutine is exclusively

.concerned with generating the reduced order estimator. In general a set

of statements will correspond to a particular equation in the text, and
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Table 5.1 sets out the functions of the subroutine statements. The
nomenclature is given in Table 5.2. | |

For input variables the .program requires
(a) System matrices A, B, H, R and control matrix A .
(b) The optimal covariance matrix r;+1 as calculated by ESTiM, the
=+~ -associated matrix 5:1, the current value of the prior distribﬁtion

co#ariancebmaxtrix P, and the current value of F.

Variables output by the subroutine are the reduced covariancé

the new value of the prior distribution P, and the new

]
matrix [ﬂ i+

value of F.

5. The Computation of System Cost

The system cost for a time step has been defined in Chapter 2.
as

I ¥
Ji_ = % Vki +u iPui | (5.12)

It is required to evaluate the expected value of Ji for the general

system defined by

X;0q = A +Bu + i ) _ (5.13) |
;b= Expvny (5.14)
uoo= Oz e Dy (5.15)
Zigq = F2y +Fyy | | (5.16)
Substituting |

X;4q = (A + BDH) X+ mzi} BDn, +&. w (5.17)
and

2,4 = Ez, + FHx, + ), T (5.18)

Defining the matrices
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A+BDH BC
578 =\ E (5.19)
and

I BD\ _ '
SDIST =\, ¢ (5.20)

then equations (5.17) and (5.18) can be written

(‘x) = sys(x> + SDIST( 5) | (5.21)7
Z/i+1 2 /i v _ '

Again by substitution the expected cost E(Ji) becomes

’ ’
E(J,) E(x; Vx, +u iPui)
= E x.V, + 2. ¢ FCz,
: i i i i
[ ] F ]
f Xg HD PDHxi + Z; c PDHxi |
i F_ 7 ri ¥ .
+x; HDECx; +9; D PDp, (5.22)
ignoring products involving x and q, z and n since these are independent;
Defining the matrices

. 7
CosT = (HD'PDH + V) HDEC (5.23)

4 ¢
C PDH CPC

0O o ‘
and DCOST = .
(o n’pn) . (5.24)

then equation (5.22) can be written

E(J;) = E (’z‘)'1 COST (’z‘)l . (;2 DCOST (3

The co-variances of the disturbances are known so that

I (S B

and it remains only to evaluate

X «\
E z /. 2/ . = VARi (5.27)
' i\ i

) (5.25)

1
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This co-variance can be evaluated using equation (5.21)

go that

r
: x X
27 341 Y2/ 341
x xy ;) .
E {518 SYS ,
z/. \2 i ‘ ’ _

1

B)(5) e
+ EJ SDIST  SDIST
VAR

' ’
SYS.VARi.SYS +  SDIST.VDIST.SDIST (5.28)

where the independence of the disturbance vectors has been used to set

some product terms to zero.
For an asymptotically stable system VAR; will converge,.
and the resulting value of VAR can be used to determine the system
cost. From equation (5.25)
E(Ji) = Trace (VAR. COST) + Trace {VDIST. DCOST; (5.29)
Various subroutines were written to carry out thesg calculations
' 45 below:
(a)  TOTSYS. Listing 5.2 )
| Constructs SYS and SDIST according to equations 5.19 and 5.20;
(b) TOTCST. Listing 5.3
Constructs COST and DCOST according to equations. 5.23 and Se2kte -
(c) TOTDST. Listing S.4 |
Constructs VDIST according to equation 5.26
(d) PROD. Listing 5.4
Performslthe elementwise multiplication required in equation 5.29.
(¢)  POWER. Listing 5.5 '
Carries out the iteration to compute VAR according to equation 5.28.
. The method was made more efficient by the use of a technique

described in section 6. of this Chapter.

(f) - SYSTEM. Listing 5.6

Calls the above subroutines and computes . the cast according to 5.29
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. The subroutine SYSTEM is called by the main program in order to assess
the effectiveness of any control strategy, mnd serves as an entirely .
independent check on the validity of any control é&rategy. For
example, if a control strategy is thought to be close to the optimum,
this can be checked by running SYSTEM for both cases.

For the particular control systems studied earlier in this chaptex:

the controller is of the form
. ‘ *
Lu = - 4&7}11
. .
rgi = (Az - Asz)z + A&yi (from 4.49)
which reduceg to the form

w, = Cz, + Dy, . : : {5.15)

i
_upon setting
¢ = ~Ahy - Aglp) | - (5.3
and D = -\ Ay ' (5.31)
The form (5.16) for the generation of the.storage vector is obﬁained'by
defining the matrices E,F by the partition '
Fime @, | (5.32)
whére the right hand side is the pértition of the inverée of T given
in equation (4.48).
The matrices C, D, E, F are.constructed in subroutine OPRED for use

in subroutine SYSTEM using the dummy arguments SYSC, SYSD, SYSE, SYSF.

6. “A Technique for Rapid Iteration

For the above calculation of system costs it is required to
find the asymptotic solution of the following equation

acA (5.33)
Ci+1 = A Ci + B. | | ) B33
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Thus if C is any initial positive definite matrlx

(C = I say)
01 = A COA +B
and C, = ACA+B
= A(A coAf+ B) A+ B
!
= (A4)cC(a) + (A BA +B)
: ' : :
= A 1C°A1 + B1 where A1 = AA and B1 =ABA+B
C, can be evaluated directly from C_.in one step by this

means. Similarly Ch can be evaluated from Co by means of

'
04 = A 2COA2 + B2

where A.,Iqaand further values of Ai and Bi are formed by means of
. Ai+1 = A.A.
' - _ (5.34)
and Bi+1_ = A lBlAl + B

- It is thus possible to advance to theasymptotix:solution
- rapidly such that n evaluations of equations 5.34 allows evaluation of -
c; for i = 2" according to

ci = A npoAn + B

It is this computation ?hat is carried cut by subroutine
?OWER, listing 5.5.
| The asymptotic solution of equation (5.33) that is the

.solution C of the equation

c-acA-B = 0 (5.35)
could be obtained by direct solution of the simultaneous equations
for the elements of C, but the iterative method was used as it appeared
likély to be less complex in terms of_computing.

In the theory of the Liapunov stébility criterion as set

out by Barnett for example (reference 33) there occurs an equation



'
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of the same form aé (5.35). The numerical solution of this equation
Ais considered by Barnett and Storey (reference 34) involving first
a bilinear transformation of the form '

A= @aen ) - (5.36)
which brings (5.35) to

A C+CA=-3(I-A)B(I-4) (5.37)

This is now the form of the continuous Liapunov equation

for which Barnett and Storey give a number of numerical methods, both

direct and using series.

7« A Relationship with Liapunov Stability Theory

Reference 33 gives the following theorem for a discrete

linear system defined by

X1 = A% 6B

"The real matrix A is convergent if and only if for any
real symﬁetric positive definite matrix Q the solution P of the
'diécrete,Liapunov matrix equation

A'PA-P=-Q - ' (5.39)
is also positive definite'.

Since A and A‘ have the sameAcharacteristic roots it
follows that A' is convergent if and only if A is convergent and
thus the Liapunov condition may be written equally as

TGS JT- R (5.40)

The simila;ity of this equation with the asymptotic
co-variance equatioﬁ (5.35) impliés that if Q is taken as the
- poeitive definite co-variance matrix of the independent Gaussian
‘disturbance Vector §i of the system |

X = AX ; + gi | (5.41)

i+1



then the co-variance matrix of‘xi is.given by P in (5.40) and,
according to the above Liapunov theorem, P will be positive definite
if gnd only if A is convergent.

Thus.negative definite matriées will occur as solutions
of the asymptétic covariance equation whgn'unstable systems are
being studied. While such a result is not constructive since
covariance matrices ére intrinsically positive definite (or semif
definite), negative definiteness‘is a preferéble outéome for a
numerical procedure than is failurq to converge, which would result
‘using.the method of section 6, above, when treatiﬁg an unstable |
gystem. |

This would seem to be a very strong argumént in favour
of direct methods of solution for the co-variance matrix of.
stochastic systéms when it is not known in advance whether the

systen is stable.



Statement Corresponding

Numbers Purpose of Statements Equations in
Text

2 - 17 Computation of A L bl

19 - 22 Computation of Py . 445

23 Specification of T. Either explicitly or by call of SIMUL as in Chapter 6.

2 - 28 Extraction of sub matrix T from T \ &.5

29 - 33 Construction of reduced estimator covariance r2+1 IITS

25 - 36 Computation of P, 4,10

37 - 46 Computation of P, . e 4,12

b7 Computation of Az L, 3k

L8 - 51 Computation of Ay 4,54

53 = 55 Computation ?f Pyz 4.6

56 - 58 Computation of Ayz 4.55

59 - 66 Construction of F for next time step from submatrices k.51

67 Computation of H_ 4,21 and b.34

68 - 69 Computation of P 4,64

70 - 82 Construction of P for next time step from submatrices 4,65

83 - 90 . Computation of system matrices for use in subroutine SYSTEM 5.30 to 5.32

Table 5.1 Functions of Statements in Subroutine OPRED

-] -
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Table 5.2 Nomehclature for Subroutine OPRED
Program Name Symbol Program Name
B B. P1

LAMDA A PZ

A | A AZ

F F AY

" H PYZ

R R AYZ

HT ;4 PYY

GNEXT r ™

UNIT I

AG “ Ay SYSTEM MATRICES
THETA 8 SYSC

P P SYSD

™ ) SYSE
PSIGM Py SYSF
SIGMA b3 ’

T .

TA T,

72 T,

RGAM r

)
Y

NM

o
N

aw qb qm qb
3 ]

bgl
-

T T ~ I~
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1 SURPRC OPRED y{AyByH GNEXT ,SICHA,FoP, THETA, ADIM.
+PNEXT 4R sRGAM,SYSC svsu,svsc SYSFeL) .
2 MULT BoLAMDALEL o
3 susB AsBL,AB = ' )
pt CANCEL Bt }AMDA.FNEXT
5 MULT AB, FyABF
6 MULTY H,ABF ,HABF
S ’
7 DIV R 4H 4RH
8 TRANS HyHT
9 MULT HT » RH 4yHH
10 CANCEL HT4RH
11 HULT GNE XT 41{H,GH o
* .
12 RDIH GNEXT,XO1IM
13 FORMS UNI T {XDIM XDIM) ,(1,1),(1,11:XDIH*,1.0
14 CANCEL XD IH .
15 SUB UNIT,GH ,GHU
16 CANCEL GH
17 MULT GHU JABF 4AG
18 CALL TLSIDE ¢ {AGs THETA ,FTTF)
2
19 InNV PePH
20 INV SIGMA,SIGM
21 CALL TLSIDE, (HABF ,SIGH,PSIGH )
22 ADD PMyPSIGM,.PSIGM
23 CALL SIMUL,(PSIGMFTTF,T,L) v
2
24 RDIM TL,VLIM
25 susB VDIM,ADIN 2D 1M
26 EXSUBM Tell,1) ,(VDIM,IDIM]),TZ
21 ADD IDIM,1,21
28 EXSUBM Te(1,211, (VDIM.ADIH)-IA
29 CALL TLSIDE, {TA,PSIGH ,TPT}
30 IRY TPT,TPTM
31 CALL TRSIDE, (TA,TPTM,TTPTT)
32 CALL TRSIDE S (AG, TIPTT GG}
33 ADD GNE XT oG G oRGAYN
34 CANCEL TPT o TPTHN,TIPTT,GG
‘ .
35 CALL TLSIDE, (TA,PH,PIN)
36 INV PI1M,P1
.37 CALL TRSIDE, {TA,P1,TT}
38 HULT TT4PM,TP
39 HULT TP, T12,1°P
40 sup TZ,TP,TAZ
41 CANCEL 1T, 1P
42 MULT PM,TA2,PTZ
43 TRANS 12,112
44 MULT TTZ ,PTZ,PZNM
45 CANCEL PYZ,1T72
46 INV PIM,PZ ©
47 MULT ABF,TAZ A2 -
48 INV RsRM
- 49 ~ TRANS HoHT

Listing 5.1 Subroutine OPRED

In ;hls chapter T is set to be the unit matrix so that statement 23 would .
- rea

'COPY UNIT, T'
Chapter 6 requires a call of SIMUL to generate T.



STHY
50
51
52
53
54
55

56
51
58
59
60
61
62
63
64
65
6&

67
68
65
70
71
72
73
24
15
76
17
78

19
80

81
82

83
84
85
86

81
88
89
90
91
$2

Listing 5.1 {continued)

Y

2

MATLAN STATEMENT

MULT
MULT
CANCEL
CALL
CALL
ADD

MULT
SUB -
HULT
RD I
CDIN

"KULLKAT

CANCEL
INSUBM
COIM
ADD
INSUBM

HULT
CALL
ADD
TRAKS
HULT
TRANS
CDIM
ADC

ADD
KULLMAT
INSUBH
INSUBH
INSUBH
INSUBH
CANCEL
WRITE

HULT
WULT
MULT
MULT

"INV

EXSUBM
EXSUBM
cory
RETURN
END
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RGAVHT s RE

RHyRM,AY

HT o RM 4 RH
TRSIDE,(TALP1,TT}
TRSICES (FABF,TT,PY2)
PY2 ,STGHA,LPYZ

RGAMyHH 4RGH
LKI1,RGF 4RGKU
RGFLsAZ,AYZ
FeRF

FoCF
FNEXT s {RF4CF1]
RELCF

AY s FREXT 4 (1411
AY , LY

DY, 1,0

BYZ JFNEXT,(1,0]

HeA24HZ

" TRSICER{HZ,PZ4PYY}

FYYFYZ, FYY

FZok2T

PZ,+1T4+PH2Z

PHZ +FPZ

PZ,L1

CY,1,ZBEC
bY,C21,0YZ
PMEXT,(DY2,DYZ)
PYY sFNEXT,{1,1)
FPZ,FNEYT,(1,2ZBEC]

- PH2 4FNEXT4({ZBEGs1]

PZ+FREXT, (ZBEG+ZBEG]
IBECG4PHZI HPZ

(RC2V JFREXT ,PNEXT)FCRMAT=AS

L CALCO UF SYSTEM FATRI(ES . & C.-D..E-QF-

LAMDE yAY, SYSD
~14 815D, SYSE
LANEL JAYZ 4 SYSC
-1, SY5C,SYSC

Te1¥

TMe €241 ) 4 (ZCIM,CY}SYSF
T (14D) 2 (ZDIM,ZDEIM) 4 SYSE -

THsL

Subroutine OPREDI

FNEXT FORME

PNEXT FORKE
AND THE RES

Carries out the functions listed in Table 5.1 in order to construct
the optimal estimate of the state vector when the information stored is of

reduced order.
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e e T e A kT R e = e e

|
¢

STMT MATLAN STATEMENMT

1 SUBPRO TRSIDE,(A4BsC)
2 TRANS Ay AT

3 CMULTY As8yD

4 MULT DyATHC

5 FETURN
6 END

STMT MATLAN STATEMENT

1 SUBPRO TLSIDE,(A,8,C)
2 TRANS Ay AT

3 MULT ATeBsC

4 MULT DyA,C

5 RETURN

6 END

Listing 5.1 (continued) Subroutine OPRED

The subroutines TLSIDE and TRSIDE, above, are called by subroutine
OPRED to perform the frequently required computations

TRSIDE: A = ECB'

TLSIDE: A B'CB

At
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STMTY
1 SUBPRO TOTSYS(A+BeCsDyEyFeHyeSYSySDISTY
2 MULT DyH,DF
3 MULT ByDH4 BDH
& ACD AyBDH,ABOH
5 MULT BsCyBC
6 MULT FsHyFH
. * _
*
7 RDIM A,DX
8 RDIM HyDY
9 RCIM EsDZ
10 COIM B,DU
%
11 ADD OXeDZ+RDIM
12 ACD DXs1,RBEG
*
13 NULLMAT S5YSe(RDIMRDIM)
14 CITNSUBM ABDH,SYS»{1,1)
15 INSUBM BCeSYSH»(1sRBEG)
16 INSUBM FHySYS»(RBEG, 1)
17 IMSUBM E+ySYSy(RBEGyRBEG)
18 FORMS IDXe{OXsDX) g{Llyl)pilyl}yDXsls0
* ‘
19 ADD DXsDY,LODIST
%*
20 NULLMAT SDIST{RDIM,DDIST)
21 INSUBM IDXsSDISTs(1,41)
22 MULT B+DyBD
23 INSUBHM FeSDISTH{(RBEG+RBEG)
24 INSUBM BDy SDISTy(1,RBEG)
*
%
25 RETURN
26 END
Listing 5.2 Subroutine TOTSYS

Constructs SYS andléDISTaccording to equations (5.19) and (5.20).
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STMT MATLAN STATEMENT

o1 SLBPRO TOTCST(HsDyCe PV CCSTHCCAST)
2 MULT DyHy DH
"3 TRANS DHyTDF
& MULT P+DH,y FDH
5 MULT TDHy PDH,LC L0
6 ACD Cl0,V,4C11
7 TRANS -CsTC
8 MULT TC+PDHsC21
9 TRANS C21,C12
10 MULT - PsCyPC
11 MULT TC,PC4C22
%
12 ROIM VDX
13 COIM CsDZ
14 ADD DXy DZ4RDIM
15 ADD DXs+1,RBEG
14 NULLMAT COSTL{RDIM,RDIM)
17 "INSUBM Cl14CCST4(1,1)
18 INSUBM Ci12,4C0S5Ty(14+RBEG)
19 INSUBM C214yCCSTy(RBEGs1}
20 INSUBM C22,C0ST, (RBEGy)RBEG)
. *
21 MULT PyDyPD
22 TRANS DsTD
23 MULT TD+PD4D22
*
24 CDIM D,0Y
25 ADD . DXy DYLDDIST
26 NULLMAT DCOSTH(DDIST,DDIST)
27 INSUBM D22,0(0ST+{RBEG,RBEG)
28 RETURN :
29 END
Listing 5.3 Subroutine TOTCST

Constructs COST and DCOST according to equations (5.23) and
(5.24). "\:
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MATLAN STATEMENT

STMT
1 SUBPRQ TOTDST(QsR4VDIST)
2 ROIM - Q,DX
3 CDIM “RyDY
4 ADD " DXyDYL0D1IST
5 CNULLMAT VDIST+{0ODIST,DDIST)
6 INSUBM QyVDIST(1,1)
T ADD DXy 1,RBEG
8 INSUBM ReVDIST(RBEGyKBEG)
9 RETURN ) : :
10 END

STMT  MATLAN STATEMENT

1 SUBPRO PROD(V,C,P)
2 ENULT VsC,yVC
3 ROWSUM VC+ROW
4 CCLSUM ROW,4P
5 RETURN
6 END
Listing S.h
Subroutine TOTSDT Constructs VDIST according to eguation (5.26)

Subroutine PROD Performs the elementwise multiplication required
in equation (5.29). :
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MATLAN STATEMENT

STMT
1 SUBPRO POWERCINITyAA4ByCI4NIT)
2 COPY AdyA
3 coPy INIT,C
4 Lcaop L2y s 1. NIT
5 TRANS A AT
6 MULT CsAT,,CA
7 MULT - AyCA,ACA
B ADD ACA+8B,CI
9 MULT . BysAT+BA
10 MULT AyBAyABA
11 ADD ABA,B,B
12 MULT AyAsA
13 L2 LOGPEND
14 RETURN
15 END
Listing 5.5 Subroutine POWER

Carries out the iteration necessary to find the asymptotic variance, VAR
of the system according to ecuation 5.28.
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STMT MATLAN STATEMENT.

1 SUBPRD SYSTEM(A,BeHePyVsQyRyCyDyEyFe VAR,

2 RDIM Ay XDIWV - )f
3 RDIM’ - Co2DIV e :

4 ADD "XODIMLZDIM,VDIM SYS,y SUMy STEPS)
5 NULLMAT VINIT{(VDOIMyVDIM) ) :

b ADD le Oy VINITVINIT

T CALL - TOTSYS(AsB+C+D4EFyHs SYS,SDIST)

8 CALL TOTDSTIQyR,VDIST)

9 CALL TOTCSTAHsD4Cy Py V,COSTDCAST)
10 TRANS SYS,TSYS

11 TRANS SOIST,TSDIST

12 MULT VDISY,TSDIST,VTD

13 MULT SDISTs+VTD,SS

- *

14 CALL POWER(VINIT+S5YS)SSsVARLSTEPS)

15 CALL PRODIVAR,COST, SUMS)

16 CALL PRODAVDIST,OCOSTy SUMD)

17 ADD SUMS s SUMD ¢ SUM

18 RETURN
19 . END

Listing 5.6 Subroutine SYSTEM

Calls the subroutines required t{o compute the asymptotic cost of
the system according to equation (5.29).
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CHAPTER 6

THE CHOICE OF AN OPTIMAL REDUCTION MATRIX

1. Quantifying the Cost of Reduction

In chapter 4 the covariance matrix of the state variables

foilowing the estimator reduction process is modified according to

. T ’
I 'nl
The significance in terms of control must be assessed according to
the theory of the optimal controller of chapter 2. At a particular

time step there will be an expected cost associated with the state

variable covariance matrix which is given by equation 2.26.

-

! ’ ¥ -

E {(xi-/)\;\ﬂ_i(xi—/ui\lrfi} = Trace l?ﬂN-i (6.1) °

since ' , o v '
' .
E {(xem) e T} = 17
Thus it is possible to assess quantitatively the effect
of the use of a 'reduced observer and the cost fﬁnci:ion at eacli time
step is the matrix nN-i'
| It is possible to ﬁroceed to minimise the cost associated

vith thfa reduced observei' b;;r means of the most i‘ayourable choice
of the matrix T. To make the treatment more general the matrix

[ v can be a more general cost function, 9 s perhaps not derived

from control theory, but guantifying the desired estimator properties. .
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The construction of an appropriate cost function for
use in control system design :'Ls‘further considered in section 7.
As only the lastterm on the right hand side of equation (4.46) can
.be affected by the choice of T the objective is then to minimise
‘ .the cost.

- -,
J, = Trace Aply [TQ PEIT,(] TR0 (6.2)

1

Re-arranging equation (6.2) gives
!t ! - -1
Ji = Trace T.( HP e RT'T"l [Ta(’ PZ |T.,(]
Trace T;" W T, [Ta(’ PZ-I ‘T_(]-' (6.3)

where .W. = {-\r’, 6 An (6.4)
The trace of a matrix is the sum of its eigenvalues sol

that when seeking a matrix T , which will minimise the cost J it

is natural to look at eigenvalue properties aséocia‘ted vlrith

equation (6.3). A method based on eigenvalue properties has been

developed and is described below. 1t emplojs the simultaneous

_ diagonalisation of the two p;sitive definite symmetric mafrices

" Wand Py .

2. Simmltaneous Diagonalisation of Matrices

If A and B are positive definite symmetric matrices then.
there e;cists a non-singular matrix T such that

pAD = T

A

where A_ is a diagonal matrix of positive !clements. T is obtained

by applying, in succession, two non-singular transformations R and

i

, T (6.5)
and T BT

I

S (Mirsky, reference 35). ' .
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The first, R, is chosen such that
RAR = I o | (6.6)
This is possible since.A is positive definite. ‘When this
transformation is aﬁplied to B a new positive definite matrix
.C is formed _
rER =c¢ - 6.7
The second transformation, S, is orthogonal and
chosen to carry C into diagonal form, i.e.
s'es = s'r'ERs = A | (6.8)
Since this transformation is orthogonal it leaves the unit matrix
unchanged, so tﬁat, from (6.6)
s'1s = s'R'ars =1 | (6.9)
Equations (6.8) and (6.9) show that
T = RS

satisfies equations (6.5) and is the required transformation.
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3e Bvaluation of the Reduction Cost Ji

. -}
Since P,-_ and W are positive definite it

the above that there exists a non-singular matrix
=1
TPe T = I
and TWD = _/\
N

vhere _/\_ = A +

Using the partitions
v = (1i,)

- (i

where T, is a (q + m) x q matrix
T, is & (q + m) x m matrix
_A.Eis a q x q diagonal matrix
A“is an m x w diagonal matrix
it follows from (6.10) and (6.11) that

[ | .
5

1]
[}

-t
T{.Pl.‘. T‘ =0

I =i
Pe T, = I

and

!
TV Ta= A

W T, = O
'
'I'*W 'I‘.( = A“ |
Substituting (6.15) and (6.16) inb (6.3)
-1
J; = Trace (I) j\_d

= Trace _/\__‘

follows from

T such that
(6.10)
(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
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(6.17)

Ji =kq+1 +kq+2+ooooocooo +Xq+m
This equation shows that Ji is-the sum of the last m diagonal
elements of JAL .

L4, The Minimisation of Ji

The ordering of the diagonal‘elements occurs at equafion
(6.8). It is a simple matter to arrange for the sum of the last
m elements to be‘minimpm.- |
The elements of Jﬂ. are the eigenvalues of C and the columns
of S are the eigenvectors of C. J\_ and S may be constructed so
that the eigenvalues of C lie in descending order along the
diagonal of A . The smallest m eigenvalues will then lie in the
- last m positions of the diagonai.
T.ié then formed as the product RS. Siﬁce Ji is the sum of the ﬁ
smallest eléments T has been chosen so as to minimise Ji.
| The method can be illustréted using.é'Simﬁle example
using arbitrarily chosen elements of the matrices A and B.
A - (2 1 )' '
1 3
) (6.18)
5 & -
(’+ 6)

The eigenvalues of A are

| -
Let Pz

t
i
v ]
"

and

1.382 and 3.618
and the corresponding eigenvectors are
0.8507 0.5257
and
~0.5257 0.8507
Dividing these eigenvectors by the squére roots of their corresponding

eigenvalues gives the,cplumns of the matrix R.
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, 0.7234 0,2764
Thus R = ,
=0, 4470 0O,4473

so that
RAR = I
and
" 1.228 0.6003
C=RIER = :
0.6003 2.571

The eigéﬁvalues of C are

2.80 and 1.00
and the corresponding eigenvectors are

0.9342 0.3567

and
~0.3567 0.9342

S is now constructed ‘30 that the eigenvalues are in descending
order along the diagonal of A.A., that is

, 2.80 © S ,
s'es =1 = A ' (6.19)

. Y 1,00
wvhere § = ( 0.3567 O. 93‘*2)
0.9342 ~0,3567

T is now constructed as the product

RS =

3
"

0.5162 0.5772
(6.20)

0.2584 -0.5771

so that T, = (0'57?2
| ~0.5771

and the minimum.value of J. is

-1 !
s w Py T T,oWD, =1

J. = Trace (7 P_'
In general there may be other methods of choosin_g the
T to minimise the reduction cost J, by the use of hill-climbing

subroutines. These methods would involve a number of variables

approaching the number of elements of T ,, and clearly the
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eigenvalue'method involves working more directly and with a smaller

mumber of variables. However for the above example T, involves

only two variables and a suitable T can be found by an algebraic

" method which is comparable to the hill-climbing method.

Se The Optimum Choice of T from the minima of Ji

: [T, T
IfT = (T,iT,) _(11 '.12)

oy Top

the J. = Trace (P.P0 )1 qlwr

en i = ace el = o o oL

= @r.2+2r. 7 +30. N5t 2 4801
12 12722 22 12 12Tz
Ifr = ?1% then '
s
J. = 5r2 +8r +6
1 21‘2 + 2r + 3

Differentiating to find stationary values

(2r° + 2r + 3)(10r + 8) ~ (5r2 + 8r + 6)(hr + 2)
(2r2 +2r + 3)2

8,
dr

-6{r + 1)(r =2)
(2% + 2r + 3)2 .

= 0 wheﬁ'r = =tand r = 2

A graph of Iy against r, as in Figure 6.1, shows T

fo be a maximum and r =-1 to be the required minimum of Ji'

This minimum value of Ji is 1.

+ 67T

2
22 )

=2

Comparing this result with the eigenvalue method in which,

from equation (6.20),

T12 = 0.5772
and T22 = 0,577
g0 that r = 12 = =1.00

T -~

22
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it can be seen that the two results are in complete agreement.

- 6. Computation of a Cost Function for Control Application

In Chapter 2 the choice of the control vector u; was
shown to be optimal when chosen as

L "—ALi/*i ) (equation 2.22)
‘Since X5 is not known exactly as for the deterministic case, the

cost incurred i using u, as the estimate of x; instead of'xi
itself is quantified by the cost

I = E[(xi—/«&i) T (‘xi-—/\xi)] _ 6.21
where the suffix is omitted from |1 as it can be assumed to have
reached aﬁ asymptotic value.
A1 Tﬁe process of introducing a reduced order estimator.
necessarily increases the uncertainty in the state xg and so confributes
to an increased system cost. This can be quantified d?rectly from
equation (6.21). However to do this would be to overlo;k the
indirect effects of the reduction. These are
1. The uncertainty introduced into the estimate for X will cause

uncertainties to be introduced into the estimates of X5 41
X 400 etc. - This is apart from the uncertainties introduced
by reductions at time i+1, i+2, etc.
"2+ The choice of u, according to2.22 may no longer be optimal
aé. the control vector is able to infiuence the estimation
process as .a result of the estimator reduction.

The second effect has been discussed in Chapter 3, where
an example showed how, even though the certainty equivalence
rrinciple no longer strictly applied, the use of a control law
according to the principle was likely to give near optimal results.

While reduction costs remain small it is unlikely that this choice

of the control vector will be downgrading the system significantly.
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. For this reason further control system study will use ;the
control law éiven by 2.22.

The First effect, above, implies that the future effects
of reduction must be taken into ac?ount by means of the cost
function. Suppose a suitable cost function is given by

J, = E{(x‘,_/u;)’a-(xc -/.gl-v] (6.22)

Using the dynamic programming approach it follows

that

=

{ & "'/Aij’ 6, (x: “/"*i)}

E {(xt-\-l t-\-IB et.ﬂ(x \-HYS (6.23)
* E{(’C i YTT (2 A \i

A recursive equation for 91 can now be set up if the

relation between (x1+1 }kl_ﬂ) and (x /,\ ) is known. Fron
equation (2.35) which defines the optimal estimator structure
w1 Paer) = A 4By 4+ 5y
-[A ;+BLL1 ;-HH R ('jul H Q/M -t'Bu\}]
1=t
= (1-T,HR H)A (x-—/a.-)
TR T3, - TR, (620
Substituting into (6.23) and taking expectations, when
" the terms involving the independent quantitiess and- V} vanish,
' gives .
/ ! A
6 =T + A(T-TH'e"H) H.(I—r?ﬂH RTH)A (6.25)
A subroutine ESTIM? was written to cobtain the asymptotic
solution of this recursive equation and is given in listing 6.1.

Using the value of 1 from the example system of

m-(33)
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and iterating, the subroutine gives an asymptotic solution for

O of

20.3 =74 ' ;
6 = 7% 2.52 ' | (6.26)

As this is identical with the solution which can be

‘obtained analytically as

5 . (137 -5)
S 27 \-5 17

the example also serves as a.check on the programming of ESTIM2.

The calculation of O has assumed the estimator structure
to be optimal, fhat is with no reduction, and this is not the case.
as © will be used as a cost function for the reduction procesé.
However, if the reduction is efficient and the covériance matrices
are not greatly aitered, the value of 63 calculated in this way
is likely to be a very relevant cost matrix. If there were sufficient
reason in a particular application it could be worthwhile to extend

the derivation of © to include a reduced estimator. This point

is discussed further in chapter 10 (section 4).

7.7 Application of Control Cost Function to the Example System

Having established a suitable value of the cost function
it is possible to apply the method of simultaneous diagonalisation
of quadratic fo;és to the choice of the reduction matrix T. The-
_ computation is handled by the subroutine SIMUL thch is called from
subroutine OPRED, which constructs the reduced estimator and has
been described in Chapter 5. Subroutine SIMUL performs the matrix

transformations and calls a Fortran ejgenvector subroutine
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to perform the necessary diagonalisations. The details of
- thisate given in Section 8. |

The construction of the reduced order estimator is now
identical to the method of Chapter 5, with 8 being supplied as data.

After ten iterations all quantities have converged, giving:

_ (3.0"1 1.003)
1.003 3,08

and the control system

v, = 1.83z - .508 y, | (6.27)

2,4 = - L0343 z; + 246 ¥; : (6.28)

This control system can be seen to be similar to that of

(5.11), but the performance is slightly better, as shown by:

Optimum Reduced order
Controller . estimator using
SIMUL ‘
Costs on control, u 13.74 . 13.75
Costs on state vector X, 40,29 40,54
*i 8.1 -6.1 8.2 -6.1
Co-variance of system * * * *
X2 - —601 !'1'003 "'6.1 40.5

The eigenvalues of the diagonal matrix obtained by SIMUL
are 94 and 0.2, demonstating that:the cost of reduction is only
_likely to be 0.2 per time step if a reduced order estimator is
used, énd this is confirmed by running the subroutine SYSTEM, which
gives an independent check, and calculates the above costs.

What the example has shown is‘that the method of simultaneous
diagonalisation can construct a reduced order observer with a '
yverformance very close to that of the optimal system.

More fully the system is obtained by the simultaneous

diagonalisation of {from 6.4)
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w1 [ 0412 <0.27 ’ 5.67 ‘-0.84
P = and A BA =
* ("_0-27 1-10) o (-0.84 0.33 ) o 6

giving the transformation matrix

o = L.21 0.14 _ (6.30)
1.00 0.99 :
which upon inversion, implies
e o [0.25  -0.03h y.
( ”1)‘ =Tv, =( ) ( 1) (6.31)
a&+1 -0.25 1.05 z; ‘

giving the relation (6.28).

The system mean is generated from

' 0.25 2.10\[y.
. = Fr, = i
_ }‘l 1 (0.77 . 0.81) (zi) (6.32)
| Upon setting the qpntrol law
R Ay o (6.33)

this relation gives the control equation (6.27).

8. - The subroutine SIMUL

i

Listing 6.2 gives the subroutine SIMUL and the main program
used to test it using the fest matrices A and B of equation 6.18.
Subroutine SIMUL calls the Fortran subroutines UNIMAT and EIGMAT,
 given inXistings 6.3 and 6.4 respectively and these each call the
Fortran subroutine EIGEN which obtains the eigenvalues and eigenvectors
of a‘symmetric ﬁatrix. A listing of EIéEN, which is part of the
IBM Scientific Subroutine Package, is given in ‘Appendix 2,.-
together with tﬁé Jjob control statements for mnning MATLAN in
?onjunction with Fortran and listings of subroutines IOC and MSTR
which convert matrices from two dimensional arrays to single
dimension arrays and conversely.

., UNIMAT constructs the matrix R which transforms A to a

unit matrix according to equation (6.6) and EIGMAT constructs the
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matrix S which diagonalises B'BR according to equation 6,8.

' The diaéonal matrix so obtained is also returned by EIGMAT

with eigehvélues in descending order of magnitude, this being a
consequence of the operation of EIGEN, so that when SIMUL returns
the matrix T as the product RS this will be as required in section
L for the choice of the reduction matrix.

When the matrices A and B of 6.18 are read by the main
program of listing 6.2 the output is as shown in listing 6.5. The
matrix T is precisely that of equation 6.20, and the diagonal matrix
is precisely that of equation 6;19, giving a check on the programmiﬁg
of SIMUL and associated subroutines. Also givep in the output are
the products T AT and T'BT which demonstrate that the matrix T does

indeed transform the matrices A and B as required.
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FIGURE 6.] STATIONARY VALUES OF THE COST FUNCTION Ti



N 3
-
=
-'

- .
COIPNOIIOL UN-

-
—

12
13
14
15
16
17
18
19
20
21
22
23
24
25

MATLAMN STATEMENT

SUBPRO
TR ANS
MULT
MULT
ADD
MULT
TRANS
MULT’
ADD
DIV
TR ANS
MULT
suB
DIV
TR ANS
MULT
MULT
sUB
MULT
MULT
TRANS
MULT
ADD
RE TURN
END
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ESTIM2{(A+BsHs QR

AGAT
GsAT 2 GA
AysGA s AA :
CsAA GO

Hs GO+ HG

F L HT

ECoHT oA )
RyHH , SIGMA
SIGMAHGRG
HGaHT

HTyRG GG
CQsGG s GNEXT
F 'H,RH

He+HT
HTsRHsHH
ENEXT s HHs GH
1.0+4GHyIG
1G4A,IA
TRETALIAsTA
IA,TAT

IAT, TA,ATA
PI+ATA,THETA

Listing 6.1 Subroutine ESTIM 2

sGaGNEXT s SIGMAyP I+ THETA)

Given the control cost matrix TT the subroutine computes the
recursive equation for O given by (6.22).



MATLAN STATEMENT

4]
-
=
~4

MATIN
READ

WRITE
CALL
WRITE
TRANS
MULT
MULT.
MULT
MULT
11 WR1TE
12 , END

- ‘
CYONOG L UL

v
-~
=
ariy

MATLAN STATEMENT

'SUBFRO
RDIM
ALLCCATE
CALL
TRANS
MULT
MUL T
WRITE
ALLCCATE
10 ALLOCATE
11 CALL

12 MUL T

13 KRITE

14 RE TURN
15 END

QONGOOE -

. AsD
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{(A.+B)
(AsB)+FCRMAT=AS
SIMUL(A B3 Te X)
(T+X) sFCRMAT =AS

T+AT T ddeokokkdk kK ko
ATsA+TA : * CHECK
TAs T+ TAT : 3 3 sk sk & Aok 4ok
AT,B, 78

" TEB« THTBT

{TATsTEBT) FORMAT=AS

SIMULLA ,8,T,X) X WILL BE VECTOR

Re{D,sC) ) -
"UNIMAT{ARD) +F OF EIGENVALUES
R+RT , ,
RT+E.RTE
RTBsRC
{RsCIFORMAT=AS
Ss(Dsl)

i

. Xs(Ds1)

EIGMATIC,S54XeD)F
ReS»T
(SesTeX) s FORMAT=AS

Listing 6.2 Subroutine SIMUL

Finds the transformation matrix T which simultaneously diagonalises
the symmetric matrices A and B, The main program reads the test
matrices A and B and calculates T'AT and T'BT to check the
subroutine. The output is given in listing 6.5.
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FORTRAN IV G LEVEL 1, MOD 2 UNIMAT ' DATE = 70169

0001 SUBROUTINE UNIMAT(AAA 4RR 4 XN)

0002 DIMENSIFN AAAL Zw 2)eAAL 4)sA0 32)sR( 4)sRRL 24 2)
c .
C THIS NEEDS NIDW NUMBERS FCR OTHER CASES
C

0003 o N= XN

0004 IA=1

0005 DO 30 J=1,.N

0006 DO 40 I=1,.N

0007 AALTAY=AAA{T +J)

0008 - IA=1A+1

0009 40 CONTINUE

0010 30 CONTINUE

0011 CALL MSTR{AALAWNs0,1)

0012 CALL EICEN(AsRsN,C)

0013 IA=1 ‘

0014 ‘ DO SO J=1,.N

0015 DO 60 I=1,N

0016 RR{I+JI=R(IA)

0017 IA=IA+}

0018 60 CONTINUE .

0019 S50 CONTINUE

0020 . 0D 10 J=1.N _

0021 . CALL LCC{JsJsTAWNINs1)

ooz22. RT=SQRT{A{(IA))}

0023 DO 20 TI=],.N

0024 . ‘ RRET+JISRRII W JI/RT

0025 20 CONTINUE ’

0026 10 CONTINUE

0027 RETURN -

0028 ) END

Listing 6.3 Fortran Subroutine UNIMAT

Subroutine UNIMAT is called by SIMUL in order to construct the
transformation matrix R which converts matrix A to the unit matrix.

The operatlon of the storage conversion subroutines LOC and MSTR is
described in Appendix 2.



FORTRAN IV G LEVEL 1, MOD 3 . EIGMAT : DATE = 70169
0001 - SUBRDUTINE EIGMAT(CCC +5Se XL e XN}
o002 DIMENSICN XL(2Z2)
0003 DIMENSICN CCCH( 2. Z)DGC( 4)sC( 2),50 4),35( 2+ 2)v
C
C THIS NEEDS NEW NUMBERE FCR OTHER CASES L 2)
C ’ .
0004 N=XN. :
0005 . 1IA=1 )
0006 DO 320 J=1sN
0007 DO 40 I=1.N
0008 CC(IA)=CCC(1.+d)
Q009 - JTA=TA+1
0010 40 CONTINUE
001} 30 CONTINUE :
0012 CALL MSTR(CCsCeNsCal) ‘ -
0013 CALL EIGEN{CsS+N;y Q)
0014 IA=1
Q015 . DO 50 J=1+N
0Cl6 DD 60 I=1+N
0017 " 8S(I,J)=5(1A)
0018 IA=TA+1
0019 60 CONTINUE
0020 50 CONTINUE
0021 ) DO 10 I=1sN
- o022 CALL LOC(IsI1+1ICsNaNsl1)
‘0023 10 XL(I)=C{1IC)
0024 RETURN

0025. " END

Listing 6.4 Fortran Subroutine EIGMAT

Subroutine EIGMAT is called by SIMUL in order to construct the
transformation matrix S which diagonalises the matrix R BR. The
diagonal elements are returned in the vector XL.
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T  DIMENSIONS = ( 2, 2)
- : "1 2
1 5,1640E-0f =~ S5«7735E-01
2 2.5820E-01 =547735E=01

END OF MATRIX T

X . DIMENSIONS = ( 2, 1)

1

1 2.8000E 00
2  1.0000E 00

END OF MATRIX X

TAT DIMENSIONS = ( 2, 2)
1 2

| 1.0000E 00 5.5060E=07.
2 2,0972E-07 1.0000E 00

END OF MATRIX TAT

TBT DIMENSIONS = ( 2, 2)
1 2
1 2.8000E 00 0.0 .
2 3.0972E-07 1.0000E 00

END OF MATRIX T8T

Listing 6.5 Output for SIMUL Test Matrices

Given the test matrices of (6.18) as input, listing 6.2 gives the
above output, checking that the matrix T does indeed diagonalise
matrices A and B. The diagonal elements are given in the matrix X.
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CHAPTER 7

A ONCE-THROUGH BOILER MOCDEL

Model Description

The theory and associated MATLAN subroutines developed in

pfevious chapters are sufficient to allow the construction of a control

system whose order may be chosen to be that of the plant itsglf, as

dictated by optimal control theory and the Kalman filter, or whose
ordef may be chosen to be lower. When considering the control of a
plant with a large number of state variables, éhat is with a high order
statg vector it is to be expected that the order of the control system
can be substantially reduced without any significant penalt& in terms"
of control system performance.

Such a high order plant'is typically found in distributed parameter

systems since an adequate deséription of these can only be made by

subdivision into a large number of small elements each of which will be

w

represented by one or more state variables,
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Tﬁe example used so far has the smallest possible dimensions
and for testing the reduction method‘developed in previous chapters
a model with a larger dimension is required. The model éhosen is
developed from the finite difference form of the eguations for a
once~through boiler., While many models of large diménsion.would be.
suitable, an advantage of this modél is that it is defined bﬁ
relatively féw parameters. Simplifications are made, reducing the
model to the equations for a counter~flow heat exchanger. 1In this
form the'weighting coefficients determined by optimal control theory,
for example, produce recogniséble patterns. The form of the heat
exchanger is shown in Figure 7.1. The transit times of the two fluids,
sfeam and gas respectively, are assumed to be small, so that at any
instant these streams have achieved équilibrium with the local tube
metal. The time constants of the system are associated with the time
constants of the tube ﬁetal. The metal tube is assumed to be thin so

that its temperature throughout is defined by one tempefature.

Finite Difference Model

2.1 Steam Equations

—

Defining

Steam flow rate - kg sec !
Steam specific heat _ | = SHS J.kgﬁ1°C_1
Heat transfer coefficient = K | J.OC-1sec-1
Tube metal temperature perturbatibn = T() °c

Stegm temperature perturbation = Ts(N) ¢

Heat Flow into séeam ' = Q J sec” !

where N is the section number, the equations for the steam side

are:
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(i) Heat Transfer

Q= KT () - TS(N) Z TSN = 1) ) (o)
(ii) Temperature Rise . _

Q = WS. SHS [TS(N) - TSN + 1)] : (7.2)

Eliminating Q from the above equétions gives

ASS.TS(N + 1) = AS6.TS(N) = T(N) - (7.3)

where ASS = Eﬁﬁﬁgg + % (7.4)

end AS6 = WS.SHS - 3 (7.5)

K
The complete steam side.may be represented in matrix
form, taking TS(1), the inlet steam temperature perturbation

. as zero, as

S1.T8 = T . R . (7.6)
‘where S1 = /ASB L0 . o ) (7.7)
456 AS5
o . . : ’
AS5 C 0
1o 0 -AS6 ASS
i =(m@ ) wma oz o=(on) (7.8
Té(s) | m2)
LIS(N + 1)) . | ()

An explicit solution for steam temperaiure can be obtained

from (7.6) as

s = s1les - ©(7.9)
where 52 = g1 : C(7.11)

The construction of 82 is carried out by subroutine OTBOIL

which is given in listing 7.1
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Mean steam temperature in any section is

given by:
B = 2 ISOV + 1) + ISV
or TS = Shk.TS ' (7.12)
~
where Sk = (5.5 0 (7.13)
0.5 005 )
o] > ~ ~ ~
~ ~
~ ~
L ~
~ -~
0 0.5 0.5
. ~

From'equétions (7.12) and (7.10) mean steam

temperature is given in terms of metal temperature by:

(7.14)

——a

s

55.T

shk.s2 (7.15)

where S5

Sk and S5 are also constructed by OTROIL.

. 2.2 Gas equation

For the gas side an entirely similar derivation is
possible, with the exception that fluid flow is reversed and the
fluid inlet temperature is not assumed constant but is taken as
the control input to the system.'

The heat transfer and temperature rise equations are:

© = ICGM?G(N 2 1) TG(N)] - T(N;} (7.16)
@ = .we.sHe [T6( + 1) - 1G] (7.17)
and these lead, as before, to
AG5.TG(N) - AGE.TG(N + 1) = T(N) (7.18)
where
WG.SHG

AGS = —Ta_ * 3 (7.19)

_  WG.SHG ,
AGE = —pr— - % (?7.20)
and WG = Gas flow rate

SHG = Gas specific heat

QG = Heat flow from gas to metal

KG = Heat transfer coefficient for gas side
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2.3 Tube metal eocuation

If the element of tube wall has thermal capacity, C J.OC"1
then

dT(N) |
C—F~ = ®W-0a i (7.31)

Substituting for the heat flows from equations (7.1)

and (7.16) gives

aT(N) - —
C-—H— = XG [TG(N) - T(NZ-I - K [T(N) - Ts(N)]
or
gf(N) = AM1.TG(N) + AM2,TS(N) - AM3.T(N) S (7.32)
where AM1 = %E y A2 = '%
. (7.33)
and AMZ = AM1 + AM2

Substituting for TG(N) and TS(N) from (7.12) and ¢.29) gives,

in matrix form

-g—t- T = AM1 [GE.T + G6.TG(NB + 1)] + AM2 [s's.'r - AM}'.T] (7.34)
or

LT - ACON.T + BCON.TG(NB + 1) ] (7.35)
where ACON = AM1.G5 + AM2.S5 - AM3.I } | (7.36)
and BCON = AM1.G6 |

Equation (7.35) now describes the plant dynamics in the
conventional form
% = Ax+Bu | - (7.37)
and this continuous differential equation requires to be converted
to a discrete time form in order to apply the control theory developed
in previous chapters. |

The generation of ACON, BCON and the other related
matrices afe carried out by subroutine OTBOIL, Listing 7.1. The

matrices so generated using the data of section 5 are shown in Fig. 7.2
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Discrete Time Model

Using the Crank - -Nicholson approximation given in reference 36

gives for equation (7.37)

b - X, A x, + Bu, + Ax., + Bu,
i+1 i = ¢ i+1 c 1+1 el c i

At 2

- _ At _ At :
or (I - = Ac)xi+‘| = '(I + 2Ac) x; + B Atou,
where ﬁi is assumed constant throughout the interval. The discrete

form is then

X g4 = Axg ¥ By | | o (7.38)

'where_A = (I - %; Ac)-1 (I + %; Ac) ' (7.39)
_— At , 41 ‘

and B = (I.- 3 Ac) B,. At | (7.40)

The constructibn of matrices A and B is carried out
in subroutine 'CRANK which is shown in IListing 7.2.

In a time interval the control vafiable u is assumed constant.
Using this fact it is possible to subdivide the.interval to give a more
accurate finite difference represéntation. In such a sub-division

X. =A.xi+Bu

i

and xi+2 = Axi + Bu

n

A.Axi + A.Bu + Bu

CAlAxg o+ (A+I)Bu

Repeating this process NSUB times allows the system matrices
to be built up and the programming necessa?y is shown in Listing 7.2.

Matrices A and B generated as above with NSUB = 8 and a time
step of 2 seconds ;;ing the data of section 5 ére shown in Figure 7.3.

A check that NSUB = 8 was suffiéient subdivision was eonfirmed
by comparison with the transition matri# derived directly from the

continuous time matrices as in section 7.7(b).



In matrix form

(1o
0

0

or .

G1. TG

u

AGS

-AG6 0

AGS J \ TG(N))

T + GU.TG(NB +1)

where the matrices are suitably defined.

further

TG
where G2
and G3
Mean gas

G =

where

and

ADDN =

Using (7
G =
where G5

and  G6

= G2.T + G3.TG(NB + 1)

]
(o]
3

temperature is given by

Gh. TG + ADDN.TG(NB + 1)

' N
! O¢5 0.5 0
~ ~
o N ~
~
~ -
~
-~
\ 0 0.5
% J
o
O
. . 0'54

.26) and (7.23)

GS5.T + G6.TG(NB + 1)

Gh. G2

G4.G3 + ADDN

It

(T(15

; T(N)/

AGH
\

N
(7.27)

. TG(NB+1)

(7.22)

(7.23)
(7.24)
(7.25)

(7.26)

(7.27)

(?;28)

(7.29)
" (7.20)

The matrices G1, G2, G3, G4, G5, and G6 are constructed

in OTBOIL from the input data AGS, AGS.
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Observation Matrix

The observatlon is taken to be steam temperature only,
that is TS(NB + 1) This quantity is one element of the steam temperature
vector given by equation (7.9). It is a simple matter then to define
the observation vecter H in the equation

y; = B vy : ’ (2.2)

as -the bottom row of the matrix S2 and this operation is included in

 subroutine OTBOIL (Listing 7.1).

Data for Model

The following typical data was used, representing a power
station once-through boiler enit at full load. Averages were taken
so that similar data could be used for each region of the medel. Twelve
regions (NB = 12) were used, this being typical of the miniﬁum number 

that could be used for this type of finite difference model.

Mass per unit length of tube: Md = 5934.0 kgm |
Gas flow rate: WG = 315.6 kg.sec-1
- Steam flow rate: | fWB = 39,86 kg.sec-1
Gas specific heat: - SHG = 1.16 x 10° J.kg™ 1°¢7"
Metal specific heat _ SHM = 670.0 J.kg oG
Length of tube L = 7.92 m
Gas heat transfer coefficient K@ = 0,197 x 106 JOC _1
Steam heat transfer coefficient ' K = O. 5616 x 106 ec_1
Steam specific heat SHS = 13.53 x 10° Jkg_1°C-1

The thermal capacity of each metal region is then:

¢ = MLSHLL 5 gos 4 100

0.~
s J°c

From the above, using equations (7.4), (7.5), (7.19),

(7.20), and (7.33) the following input data for OTBOIL can be obtained

AS5 1.46 AGS = 2.42 AM1

A6 = 0.46 AGE

i}
It

0.0727

]
1!

1.42 | AM2 0.2141
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Construction of System Matrices from Data

The subroutine OTBOIL was run with the above data being read
in, The matrices generated were printed and_age given in Figures
(7.2) and (7.3).

| " In addition further subroutines were called which caused the
matrices generated to be punched on to cards, in forméts suitablelfor
use of fhese cards as dafa input cards for MATLAN programs or by
calling different subroutines, in formats suitable for use as data
cards for an eigenvalue package. Details of these subroutines are
given in Appendix 3.
It is worthwhile at this point to examine the elements of the system
matrices A, B, and H, whose structure largely define the control
problem. | -
(a) Matrix A
The matrix has a clear "banded" structure, ali diagonal
elements being approximately equal with a value of around 0.68,
this corresponding to a tiﬁe constant of the tube of around 6;
seconds. Elements in a line parallel to the main diagonal are
 also approximately equal, the values becoming smaller away from the
main diagonal. This would result from a mecﬁanism whereby tube
temperature is influenced more by nearby tube temperature than by
-remote tube temperatures. |
(b} Matrix B
The importance of gas inlet temperature (the control
variable) at the gas inlet end of the boiler is shown clearly by
the elements of this matrix, their magnitude falling off rapidly
from the gas inlet end (element 12).
(c¢) Matrix H
This matrix demonstrates the dependence of steam outlet

temperature on the tube metal temperature at the steam outlet

end, elements remote from this end falling in magnitude.
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Step Response of the System

To give a visual picture of the behaviour of the plant the step
response of the system was obtained. The disturbance applied was a 10
degree C step on gas inlet temperature. The response of steam outlet

temperature was examined in the following ways:

(a) ¥From System Matrices
The matrices ACON and BCON obtained in section 2 can be
-used via eigenvalues and the transition matrix, of the form

(ACON) %
e

to give the step response. The result is shown in Figure-?.h; As
‘the transitioﬁ matrix for 2 seconds was found to be identical with
* the matrix A as derived in section 3 it follows that the discrete
matrix A; if used to generate a step response would give an identical
result.
The same program gives the dynamic behaviour_of the metal

temperatures and these are also shown.

(b) Inverse laplace Transform

As a check on the matrix modelling an entirely separate method
of obtaining the step responée was used as described below. Verj
close agfeement with (2) was foﬁnd. |

It can be seen that the respon§elof the steam %emﬁérature is in the form
of 5 delayed response with a time constant in the region of 20 seconds.
Metai temperatﬁres remote from the gas inlet réspdnd with a longer time
constant.

Inverse laplace Transform Method for Step Response

If the frequency‘domain transfer function can be obtained for a
system then numerical methods of Laplace Inversion are available
which allow the time response to be obtained. BSuch a method (reference

37‘)was used for the present plant model, the transfer function being
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' obtaihed from the partial.differential-equations using the method below,
which follows a methéd which has been given in reference 38.

The model equations may be re-cast into coﬁtinuous space partial
differential form, where AL is the length of the region used for the

discrete space model.

C— = KGTG-1T) - K{(T - TS) (7.41)

T
T
.37 KG ' - o | -
WG.SHG T2 = 75 (16 - T)_ S . __ (7.42)
TS K | . - - N
wS.SHS > % = AT (T - 'I'S) | ) (7.43)
Putting s =.§%—_in equation (7.41) and using (7.42) and (7.43) gives
Cs T = KG(TG - T) - K(? - TS) '
' KG.TG + K.TS
and T = e+ KG+ K . _ - | (7.4%)

Sﬁbstituting into equation (7.41) gives -

%?-G; ~ AG(s) (Cs TG +K.TG -~ K.TS) = O | L (7.45)
wh;ré AG(s) = KG ‘ T (7.46)
, .~ WG.SHG. AL (Cs + KG + K) (7.

Similarly substituting (7.44) into (7.43) gives

?ST-;SC- - AS(s) (-CsTS + KG.TG - KG.TS) = O . (7.47)
 where‘AS(s)‘ = K S o (7.48)

WS.SHS. AL(Cs + KG + K)
A solution to eguations (7.45) and (7.47) can be obtained by.seeking

a solution

% = Ba(s)e™ and 1S = BS(s)e?* | L (7.9)
Substituting into (7:45) and (7.47) gives | | | |
#.8G(s) - AG(s) [(CS + K)BG(s) - K.BS(si] = 0 | - (7.50)
§.35(s) - a5(s) [-(Cs + Ka)BS(e) + KG.BA(S)] = O | (@7.5m)
From (7.50)

BS(s) = % [_%%l + (Cs + K)BG(S)]

o (7-52)
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Substituting into (7.51) imblies

'92 + [}AG(S)(CS+K) + AS(S)(CS+KG)] g - AG(s) (Cs+K){(Cs+KQ)AS(s) + KAS(s)AG(s)K
| =0 (7.53)

If the roots of this eouation arezﬂ1 end Qé then the general solution

to equations (7.45) and (7.47) is

g1x ¢2}C C e
TG = GI e ~ + G2 e _ : _
g x g (7.54)

TS = 8T e +82 ¢

Boundary conditicns are that

jiist 0 at x = O

TG Ba(s) at x = L

It is required to find the steam temperature TS at x = L, as follows:

Substituting (7.54) into equation (7.47) and noting that the coefficients
g.x gx '
1

of e and e.® must béizero gives

s1(¢5 + AS(Cs + KG)) -~ AS.KG.G1

0
! 7.55)
0

sz(gé + AS(Cs + KG)) - AS.KG.G2

The boundary condition at x = O implies

s1+48 = 0 (2.58)
and that at x = L gives
7] 1 L 2L )
Gle + G2e = BG(s) (7.57)
Using (7.56) and (7.57) in (7.55) gives
AS.XG.BG(s)
81 = Q&L ¢2L
e (g, + AS(Cs + KG)) - e © (7, + AS(Cs + K&)) (7.58)
~ The solution for the steam outlet temperature is therefore »
gL #,L
TS = S1e  +82e
AL gL |
. e - e .
= AS.KG | T4 L BG(s) (7.59)

e g,
e (f+AS(Cs+KG)) - e © (@+AS(Cs+KG))

If the gas inlet temperature is disturbed as a step function
then the response of the steam outlet temperature is given by setting
in (7.59)

BG(s) = 1

s
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and taking the Inverse Laplace Transforﬁ.

A program for obtaining this transform was available from
reference 37 and this is given.in listing (7.3) together with the
programming of equation (7.59), which forms subroutine FS2.

The time response obtained is shown in Eﬁgure 7.4 where.
it can be seen to agree 'with the time response obtained by m;trix methods.

Eigenvalue Proverties of the Uncontrolled System

PP . . P ‘ P

To give some insight into the form of the dynamic system

_represented by the model the eigenvalues of the system matrices were

found
(i) Continuous system matrix ACON
The eigenvalues are given in Figure 7.5. It
can.be seen that the uncontrolled system is stable since
the eigenvalues have negative real parts.
(ii) Discrete system matrix A

The eigenvalues of the system are given in
Figure 7.6. The discrete system is also stable since all
eigenvalues lie within.ihe unit circle._
The eigenvalue/eigenvector method used was from reference39 .

Disturbance Matribeé

Some assumed disturbance pattern is required for the model.

(i) Observation noise

Unity disturbance covariance matrix was arbitrarily’
. used.
(i) ~  Plant noise
The unit matrix was used for the plant disturbance matrix.

Cost Matrices

Since the object of control has ﬁeen taken t6 be the maintaining

of a uniform steam tempersture, and a cost of unity per time step may
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arbitrarily be put upon it. In terms of the plant state vector
Cost = [?S(NB + 1)] 2 & (D H.T)

1’ HT

It

The cost matrix for the plant may therefore be obtained

from
P

v - ®'m | | | - (7.60)
and the matrix so pbtained is showm in Figure 7.7. '
| The cést of control is a scalar gquantity and initiallj was

taken as unity, the reasoning being that then both gas inlet temperature
(the control vector) and steam outlet temperature would have equal

" weightings in terms of cost. |

Thus P = 1 . - (7.61)
The.disturbanée and cqst matrices are used in the control |

'studies of the following chapters;
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H

e
P =

"
(o]

1

~14984KE-C1
9.6417E-D2
3.0378E-02
9.5712E-03
3.0156E-03
T 9.5C11E-04
2.9935E-04
9.4 316E~05
2.9716E-05
9.3626E~06
2.9499E-06
9+2941E-07

7

146581E-03
2¢8259E-03
4 «BI1S59E=03
8+2074E-03
1+39837E-02
23837E-02
=1.9846E-01
F«6417E-02
3.0378E-02
9.5712E-03
3.0156E-03
9.501 1E~04

DIMENSIONS =

2

243337E=-02
=149846E-01
9.06417E~-C2
3.0378£-02
9.5712E-073
Js0156E-03
9.5011E-C4
249935E£-04
9.4316E-05
243716c-C5
e 3H26E-CH

2.9493E-C6H

8

- 9aT296E~-04
1.6581E-03
2+8259E~03
4.,8159E~03
B.2074E-03
1.3987E-02
2.3837E~-02

~1.93465E-01
F.6417E-02
3.0378E-02
9.57126-03
3.0156E-03

Fieure 7.72.

(12,12)

3

1 .3987E~02
24.3837-02
~1.9846E-21
9.6417E-C2
3.0378E~-C2
9 .5712E-02
3.0156E-C3
9,.,5C11E5-C4
2 «9U35E-04
9,4316E-05
2.9716E-C5
9 .3626E-06&

.9

5.7091E~04

9. 7296504
1.6581E-03
20 8259E-03

-143987E-02
2.3837E-02
~1.9846E-01

QeHA41TE-02 -

3.03785-02

945712E~03

4.8159E~C3 |
8.2074E-03

4
Ba20745-03

! 3937E~-02
23837E-C2.

=1.9846E~01

F+6417E~02
3.0378BE~C2
G571 2E-03
3.015€E-03
F.501 1E-04
2.9935E~04
9+4316E-C5
2.9716E~05

10

3.3500E~-04
S.7TCI91E-04
Q9.,7296E-04
1.6581E-03
2.8259E~-03
4.8E59E-C3
1.3987E-02
2.3837E-02

~1.9846E-01

Q.6417E-02
3,0378E-02

4.8153E-03

8.2074E-03
1.3937E-02
2.3837€-02
~1.9846E-01
9.6417E-C2
3.0378E-0C2
9.5712E-03
3.0156E~C3
9.5011E-04
2.9935E-04
9.4 316E-C5

11

1.9657E-04
3.3500C-Ca
5.7C91E~04
© 9.,7296F-04
1.6531E-03
2.8259C-03
4.8159€E~03

8.2C74E~-03 . .

1.39875-02
2.3337€-02
~1.9B846E~-01
F.6417E-02

END OF MATRIX ACON

6

2. 8259E=-03
4.8159E-03
Be2074E~03
1.3987E-02
2.3837E-02
1.9846€E-21
9.6417E~02
3.0378£-02
9.5712€E-03
3.01565-03
9.5011E-04
2.9935E-04

12

141534E~-04

1 «9657E=-Ca

3.3502E-Ca
S«7091E-C4a
Qe T29RE-Q4

1.65316-03
2.8250E~C3 "
4 «8156E-03
8.20745-03
1.3987E-C2
2.3837E-02

=1.9B4€EE-C1

~ 811 -
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DIMENSIONS = (12. 1)

1
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2.7913E-04
4,757CE~04 .
8.1070E-04
1.38165-03
2.3546E-03
4.0127E~03
6.8386E-03
1.1654E~02

1 .9862E-02
3.3B849E-02 ‘
5.7686E-02

END OF MATRIX BCON

CIMENESICNS = ( 1,12)
1 2 3

240502£E~06 60 6CL232-06 20 0G558E-05

S & v

2011310E=-04 6a 7000E~Q4 2« 1265E=~03

9 10 : 11

241422E=02  6479IZE-02 24 15205=C1

END OF MATRIX H

RCON AND H

4

606510605

g

6.?4945-03.

12

£s£463=-01

AS

oLTPUT BY THE MRTLAN SUBROUTINE

OTROIL
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DIMENSIONS =
1 2
EeT7642E~01 3e 4536%5~02
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201866E~02
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344217E-03
133086E=03
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- 190462E-05

-

2492BGE=03
Se06255-03
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143808FE=02
24263GE=02
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S50 ASTOHE=C2
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807689E-03
304456E~C3
1¢ 33S6E=03
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10 S720E~04
Te 4753E=05
20 8039E=05

8

17853E8=03
3. 0853£=-03
5¢120&E~03
8+42105=03
103814E=02
20263GE-02
3.7081E=02
6e8064E=~01
1e3302E=-01
Se4681F~02
2e204C0F=02
Be7042F~03

(12.12)

3

241107E=-02
346508E~02
60£0433-01
10 22G€E=01
S5e4681E=02
2e2C7¢E-02
Be7832E~-C3
344508503
1o3415E~03
Se 1664E~C4
14 S7205~=04
7e4417C-05

9

1.08726~-03

1e8786FE=03

3¢1190E~03
S5+1311E-03
8e4210E=-03
1.3808E-02

2e2626E=02

3.7058F=02
6e2060F=01
1¢3296F=-01
544576E~02

201866E=02

4

1.2882E~02
2 2295E=02
3e6957E=02
GeEVEOE-01
143302E~-01
S54704E~02
Ze2C8B3E~-02
B847862F=013
304517=03

102415E-03

S5¢160SE~-04

1 SE0BE-D4

10

646054E=C4

" l1e1412F-03

1,£6525=03
2¢1190E=C3
Se¢1208E-03
Be4d00E-03
12771E~Q2
24256EE~Q2
30695T7E~0G2
e 804 3E-01
l1e 3268E-01
£04110E-02

S

Te8TOEE~03
1o 3609E=02
2e25€6E-02
3.705pE=02
64 8064E~01
1¢330C3E-01
5447(¢F=02
24 208GE=02
Be7BE2E=03
304508E-02

‘14 33G6E=-03

561289E=04

11

30S771E~Q4
60 E705E~04
1o 1412E~03
14 8786E=02
30 0HE3E=C3
5¢ 0E2EE~03
Be Z022E=03
lo2009&E=02
20 2ECEE=02
Je €E0RE~Q2
6o 73655=01
1e 3144E~01

END OF MATRIX A

6

44 B025E-03
80 3022F=-03
1le3771E-02
242626E=02
3+ 7081E=02
66 8064E=01
1¢ 3303E~01
Se4T709E-02
2:20A3'1=-02
Be T832E~03
344 456FE=03
1¢ 3303E~03

12

2¢ 2021E~C4
3e5771E~-C4
Ee£054E=04
1eCE72E~-C3
1478533-03
24528605E-023
4+8Q25€E=03
T7e87CEZ-03
1428G2FE=C2
2e¢11C78~02
J0453€£~-02
EoT7€42E~01

F1auRE 7.3. Discrere Time SvsTem MaTRicgs A And B

=3
COVBNONSWN -

Ll )
[,V I

\: 1 V

4.0E24E=04
€eCS53C=C4a
141636E-03
1¢91932=03
3415912-03
Se1S56F=03
BoS5413E-03
144035E=02
203054E=02
3e7E52E-02
€e2123E~02
140191E=01

- 0¢1 -

END OF MATRIX O
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DIMENSIONS = {12.12)

1 

43272E=12

16 3734E-11
4359 1E~11
16383 EE-10
49351Z2E-10
163537tH=~09
44423 6E-09
1e404 0E=-08
4045562E~08
164144E-07
44890E-07
le4242F-06

»

4 44236E~09
1e40A0F=08
T A 4A85K2E=-08
1e41842=07
4 0483F0E~07
124248F=06
44522 1E=-06
144353E-05
J 445555E-05
1e84592=04
84589 1E=0 4
1045656=-03

2

1¢ 37345=-11
44 3591E~11
1, 3835E=10
4e3G512F—~10
l1e 2G37E-09
4o 423EF=(9
1« 4040E—-Q2
444562E=C8
le 4144E=C7
40 48S0E=07
le 4248E=C6

405221E=06"

g

1404 0E-08
4 44562E=-08
164144E-07
444850F=07
1,4248£-06
465221E~06
1¢4353E~05
4655556E=05
1,445G6E-04
4,589 1E~04
1e4565E-03
40622GE~03

2
-

443561C~11
103E835F5=10
4435125 =190
1436377=09
4e423€E~08
le40407~-08
4445625=08
le4144E=07

44485505=07

1442485=06
4452215~06
1443532Z~05

9

4 44562E~-08
1¢4144E-07
4,4890E~Q7

1424BG=-06

4 45221E=-06
164353E-05
4 45555E=05
le4459F-04
445891E~04
144565E~023
446229E~03

1e4673E~02

4

143835E=10
4¢3912E=10
13937E=09
444236E=0%
144040E~08
404562E-08
1e4144E=07
4,48G0E=07
104243F=06
445221F=06
1e4353F=-05
4455558-05

10

104144E~«07
4 04890E=-07
led248E=06
445221F=06
124353E=05
4 ¢5555E~=-05
1lo445CE—-04
4e58521E~04
led4565E=-03
40 E22GE-03
la4673-02
44£570CE-02

5

4,3912E=10
1a3937E=09
40423EE~0S
140 40E-0PF
4045€2E-038
ledl44F~-07
44890F=-07
1a42483F-06
445221E=-06
1e43£3FE~05

405555£-05 .

1:4489=2=04

11

40 4890E-C7
10 4248Eg-C€
4o S221E=0€
1o 4253€~05
40 ECSEE~CS
1s 4459E=04
405639 1E~04
le 45655~0C3
44 E229E=03
1o84673E=C2

. Ao EST70E~-C2
le 4781E=01

ENC OF MATRIX V-

6

16 3937E=09 -

444236E=09
10 4CA0E=0R
444562F-08
1o 4144E=07
40 4390E~07
16 424812=06

445221E-06
10 4253E~065
"4455552-05
1o 4459E=04

8,5591E-04

12

10424EE~06
405221E~CC
1e4353E=C5
49 S552E~CS
16445GE-C4
445SE31E=04
145€5E-03
he £22GE~-C3
le4673C=02
44€E57CE=Q2
le47215-C1
44661 2E~01

L ) ’
Figure 7.7 StaTE Vector Cost MAaTtrix V' eormed frFrom H.H
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23
24

25

26

27 -

28
29
30

i — e [

SUBFRO
ADD

FORMS
suB
MULT
INSLBM
INV
FORMS
INSUBM
MULT

* STEAM CCMPLETE

FORMS
NMULT
INSLEBM
INV
EXSUBM
NVULT
FORMS
INSLUBM
vULT
MULT
FORKME
ACD

* GAS COMFLETE
NULTY
NVULT
ADE
suB

% CONTINULCUS A FORM
MULT

% CONTINUCUS B FORM
EXSUBM
RETURN
END

Listing 7.1 Subroutine OTBOIL

- 12 -

e —— e e

OTBDIL'(AMIiANZ;ASS:A¢6!AG50AG6tNBgACDNo f/
AMI JAN2 4AM3 E’,
Sl.(hE,NB).(l.1);(1.1).thASS BCOQ.H)
NEs 1o NEL T
AS6 -1 sMASE . .
MASE+S14(2+1)s(1s1)NE]

5152

S4Q(NBQNB)’(191’!(101’ AB3es005
005154:(2!130(191)1N51

84,452,435

GloUNEBNB)Ys(14+135(14+1)sNBsAGS
AGE »=14+MAGE

MAGE 4Gls({1+2)+({151)sNP1

Gl:G2

G2+ {1sNB)s(NBs1),G3

AG6 4G3+G3
Gas(NByhNB)+(1s1)s(1s1)XsK3s0e5
005954|(102}|(191’0N81

GA9G 2G5S

G43G3+GE
ACDNo(NB.l):(NB;l).(OoO) 1’0.
GﬁoACCN'G6

AM1 ¢+ GE4ACON
AM2 4+ S5,DUM
ACON+CUMLACON
ACON.ANS.ACON

ED .

ANM1 4GELBCON

£D
SZ.(NE;I)-(I-N@).H

This subroutine constructs the matrices describing the relation

between gas, metal and water and generates the continuous system matrices

ACON and BCON.



SUBPRO CRANK {ACON.BCONDELT 2 NSUBsA+B)

1
2 ADD « 1O sCIVNS
3 FOR {NSUEsEQsQ+000C1)+CONT
4 LOCF JZ2sJe14NSUB
.5 o NULT DIVNS+2,01VNS
6 J2 LCOFEND
7 CONT DIV DIVNSSCELTSDEL2
8 civ 2+CELZ4CEL3
9 MUL. T DEL3 +ACON,ACD2
10 sUB 1s0,ACC2,IMA
11 ADD 160 4ACO2,IPA
12 INV . IMA,INMA
13 MULT IMASIFA,A
14 VULT IMASBCCN.B
15 VULT BeCELZ2,B
% AsB FOR SUE TIME STEP
16 FOR (NSUE 4yEQs0+0e001),5XIT
17 LOCF JleJdelsNSUB
18 ‘ MUL T 2284 AE
19 ADD ABsB+E
20 MULT AsAA
21 J1 LOOPEND
22 eBxIT RETUFRN
23 ~© - END

Listing 7.2 Subroutine CRANK

The continuous é&stem matrices ACON and BCON are converted to

discrete forms A and B.



160
110
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
29n
300

sep
590
610
620

'DIMENSION TIME(200),FT(200) . Y e

COMPLFX €(5),A1(5), S F,CT,G .- B0
A(1)=(1. 2?3757708F1 1 66606258UFQ) - 700
AL(2)=(1,222613148F],5.01271926LF0) 710
AL(3)=(1,0934303L3F1,8.409672996F0) : 720
AL({L)=(8. 776h3ﬁ5hﬂF0 1.192125390F1) _ 720
AL(5)=(5, 2?5&53*57F0 1,572952905F1) . 740
€(1)=(-3.650204687FL, ] ,9FRIONLEZSES) 750
C(2)=(6.1276899970FL, -Q SLORSQRPTFL) 760
C(3)=(~2,891F57227F,1.816918510F1) 770
C(h)=(u,655360RLTE3, -1 9N1772623F0) 780
c(s)=(-1. ]87k1ﬁ0]9F2,-] 413036924F2) 790
WRITF(6,10)" 800
10 FORMAT(]?F+TS,TF,TSTFP) : 810
READ(S5,*)TS,TF,TSTEP : gz2n
IND=]1 ‘ - 830
T=T8 . 1T
Lo SUM1=0 . ‘ 250
SliM2=0 o 860
DO 20 t=1,5 : . : 870
S=ALCI)/T ‘ as0
CALLFS2(F,S) 890
900
SUM1= QUN1*FFAL(C(|)}*REAL(F) : 910
20 SUH2=QUM?+A1MIP(P(I})*AINAP(F) : 920
FTOIND) =2 (SUIMI -SUM2) /T o 980
TIMECIND)=T 990
WRITE(F, *)T,FT(IND) C o
th=lN0¢1
T=T+TSTFP
IF(TF-T+1,E-R)30,40,40

30 CONTIMUE
END

Listing 7.3

Inverse laplace Transform Program

SUBROUTIMF FS2(F,S) - ‘
COMPLEX S,F, A0, AS cs,cn, nP nc,P: P2 RT,F3, F2
AX=, SGIBF+05
AKG=0,1907F+06

¥S=30,806

WG=215.6

§HS§=13,.53F02

SHG=1,1RF+03

nL=7.92/17.

C=2.823E+0€F

NB=12

AG=AKG/ (HEaSHED] #(CaS+pRA+AK))

AS=AK /(WS SHS#DL#(NeS+p¥R42K))

CS=Cx5+AK

CO=CxS+LKN

QB=-AC* S+ AS# 00

AC=AR*AS» (PR PY D= PQ*PP) I
RT=CSQRT(QB*RB-b, +0OF) =
P1=(-QB+RT)/2. .
P2={-Q3-RTY/2.

F1=CEXP(PYI«NL+}'P)

E2=CFXP(P2=Dl «MP) :

F=AS#AKC*(F) F?)/(FJ-(P1+pq.rr) ry.(pz+nc.rr))
F=F*10,/S _
RETURN

END

Sub~routine FS2 forms the frequency domain transfer function according
to equation (7.59) which is then inverted to give the step response.

- 921 -
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CHAPTER 8

REDUCED CRDER CONTROL FOR THE

. ONCE THROUGH BOILER MODEL

. Deterministic Control Law

In the previous chapter the plant state cost matrix was found |
to be
V¥ = H'H

and is shown in Figure 7.7. The céntrol vector (gas inlet temperature)

- cost was inifially taken as

. P = 1 il

Using these costs and the derived plant matrices A and B (Figure 7.3)

" the design method of Chapter 2 may be applied to find the optimal

deterministic control law, This will be in- the form

w, = - J\.xi (8.1)
where the matrix J\ is obtdned from subroutine CONTRL (Listing 2.1).
The result of a ruh using the data for the once-through boiler model
is shown in Figure 8.1. L ' ' |

As the control law was seen to have such low values (all elements
less than 0.1), a'further run was carried out to invesfigate sensitivity
to the control cost by setting |

P= 0.1
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The resﬁlting control law is also shown in Figuré 8.1 and it caﬁ be
seen that'the control is now considerably more active. As this
controller would be more likely to require a satisfactory estimator,
it was used subsequently iﬁ order to ﬁore fully test the reduction
method;

Associated with the derivation of the control law is the cost
matrix PI. Being a 12 x 12 matrix it was punched onteo cards for use
by subroutine ESTIM2. The instructions to call CONTRL and punch the
cérds, using the svhroutines of Appendix 3, are shown in Listing 8.1.
The cost matrix PI associated with the control cost P = 0.1_is shown
in Figure 8.2. It is clear that the cost weighting is concentrated.
near the steam outlet end of the boiler (mesh 12).

In order to investigate the performance of the deterministic

system with this controller the system equations were written as

X Ax; + Bu, + gi (2.1)

i+

LA - BADx, *Ei : (8.2)
The matrix (A - BA) was computed by subroutine CONTREL and this
matrix is shown in Figure 8.3. Further the eigenvalues were obtained
I'and these are plotted in Figure 58.4 . It can be seen that they are
‘well within the unit circle showing the system to be very stable.
There is a considerable similarity to the uncontrolled system eigenvalue
plot (Figure 7.6), aithough the eigenvalues ﬁéve been shifted towards
thelorigin, implying some improvement in stability.

Before passing: to the construction of the Kalmaﬁ Filter it is
poésible to note the convergence properties of the matrix Ricecati
equations éolved by subroutine CCNTﬁL. More rapid convergence occurs '
for mesh points near the stéam outlet end of the boiler, but as many
as %0 iterations are required near the gas outlet end for convergence
to 3 significant figures, indicating relatively slow convergence propefties.

A more direct method of solving the Riccati equations, similar to thése
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consideped in the introduction (Chapter 1) would probably be useful if this
calculation were to be required frequently.

2. Control using Kalman Filter

In order to be able to judge the performance of the reduced order
estimators toc be consideréd in this chapter it is desirable to first obtain
the optimal control pérformance using the "Kalman Filter' as the plant
estimator. |

The Kalman Filter is defined when the covariance matrix T has
béen computed. The subroutines ESTIM (Listing 2.2) and the enhanced form
ESTIM2 (Listing 6.1) were written to evaluate this matrix. Using the
once-through boiler system matrices A, B, H, and the disturbance covariance
matrices Q@ and R defiﬁed in the previous chapter as the unit matrix and ‘
unity respectively gives the value of I" as shpwﬁ in Figure 8.5 as'oﬁtput
from ESTIM2. The Kalman Filter estimator (Equation 2.35) when combinéd_
with the control law given by the certainty equivalence principle as
u, = 'A}*i (2.22)

gives

=1 -1
s i41 = (I -MER H(A - B.A)f.li + T'H'R Y541 (8.3)
These relations can put into the forms
w, = Cz + Dy, | . : (5.15)
B4 T 'Ezi'+ gy ' o (5.16)
by setting '
| ¢ = - AT -PE'RE(A - BA)
D = -ATHR |
) > (8.
E = (I -CH'R H(4 ~ BA)
F = FH'R-1 ]

and identifying the storage vector zi as the conditional mean.f&i_1.
To evaluate these matrices the subroutine SYSOPT was written as
shown in Listing 8.2. The simpie example system of Chapter 2 was used

to confirm the validity of this subroutine.
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The properties of the combined plant and controller system, which

is of order 24, can now be investigated using the subprogram SYSTEM as

- described in Chapter 5. The result of this is a cost per time step of

1.475. Also calculated is the 24 x 24 system matrix SYS whose eigenvalues

determine the stability of the control configuration. The eigen values

were obtained and are plotted in Figure 8.6. There is roughly now a-

doublé set of eigenvalues, due to the similarity of the estimator

dynamics with the plant dynamics. A new point appears on the real axis

at (0.4, 0) and this will be associated with the estimator. Again the

eigenvalues are all within the unit circle indicating a stable system.
Subprogram SYSTEM also computes the covariances of the state

vector and the storage vector. This 24 x 24 matrix is too large to

.reproduce but the diagonal elements are plotted in Figure 8.7 where it

can be seen that the greatest variance of the state vector occurs near

%he centre of the boiler, due to

(i) Control action at the steam outlet end holding down the
cunulative addition of disturbances at that end.

(ii) The control action will not be suitable for control of

state variable variation further down the boiler and will

indeed contribute to the variation near the centre, giving

the maximum value here.

The variances of the elements of éhe mean)w (the storagé vector)
are larger neﬁr the steam outlet end, showing the increased activity
hgre, due to uﬁdating~of these estimates. On the other hand the diagonal
elements of [°, the cqvariance matrix of the state estimate which are

also shown in Figure 8.7 reduce at this‘end as information from stean

outlet temperature is available.

Reduced Order Contrel of the Once-Through Boiler

As the procedure for the design of a reduced order controller has

been set out in Chapter 6, it is straightforward to apply the method
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for this much larger system. The required matrices will have been
generated and punched on to cards. The cost matrix © was computed

by ESTIM2 and is shown in Figure 8.8. Set out below are the various

- cases that have been analysed.For the present system the order of the

reduced estimator may range from 11 to 1. Not all of these cases were

treated, some of the hiéher order cases being omitted.

Case Estimator Overall System Reduction
Order ' Order ADIM

B 11 ) ’ 23 1

D 9 21 2

F 7 19 3

H 5 17 b

I b 16 5

J 3 15 6

K 2 14 7

L 1 13 8

Each of.the ébove cases were treated by applying the following
processes: |
1e OPRED. Successive calls of this subroutine from the main
program shown in Listing 8.3 allows a reduced order
estimator to be constructed. The order of the estimator
is specified via the reduction dimension ADIM (Listing 5.1.).
2o SYSTEM. This set of subroutines provides an assessment of the
performance of reduced order controllér in terms of cost, and
generates state and covariance matrices for the overall
system.
3. _ EIGENVALUES. The state matrix generated by SYSTEM can be
assessed for stability directly by the evaluation of its
eigenvalues.

Reduced System Costs

The results for each of the reduced cases can now be

examined. The most obvious indicator of performance is the overall
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system cost, as calculated by SYSTEM. The results are shown in

Figure 8.9 and it is clear that only_when the estimator bécomes of very
low order is the cost af all increased, the one-dimensional estimator
increasiﬁg the cost by 0.2% from the optimal (Kalman Filer) system.

For a more difficult control situation it could be expected
that the cost curve would rise earlier. This procedure is particularl&
revealing in terms of control "difficulty" and could be used directiy
as a control system design technique.

Simultaneous Diagonalisation: Eipgenvalue Pattern

A central procedure in the choice of a reduced ordefi
estimator was the simultaneous diagonalisation of two matrices and
the examination of a set of eigenvalues of a positive definite matrix

{Chapter 5).

| If a large number of theseeigenvalués are small then a
successful reduction to a lower order estimator could be anticipated.
Taking for example case B, the eigenvalues rapidly fall off in valﬁe,

the second and third eigenvalues being 5% and 0.01% of the first

fespectively. '

Case _ Eigenvalués x 10-3.
3 109.6 5.8 0.014 0.2 x 1070
4 109.5 5.8 0,005 -
L 92.8 2.48

Information Storage

Case L, for example, has a storage vector of_dimensioh one.,
It is interesting to examine the manner in which the information
that is to be stored is selected. As there is the observation vector -
to complement the stored information, and thé observation vector.is’

¢tlosely associated with the elements of the state vector at the steam

. outlet end of the boiler, it would not be surprising to find that the

stored information relates to a section of the boiler towards the
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centre.. This can be seen by considering the elements of the matrix

F, which was defined in equation (4.2) ag
| g
i
p= ()
i

Thus in the present case where I has dimension 12 x 2 the first'colﬁmn will
give the weighting giveﬁ to the observation ¥; and the second‘column that
given to the stored information 2&. A value for F is obtained by

the subrouﬁine OPRED and the two columns of F are.plotted in"Figure 8.10,

where it can be seen that the weighting on 2 was as expected, with a

peak towards the boiler centre.

Similar weighting curves can be ploﬁtgd for the other cases.
Figure 8.11 shows the three weighting curves for case K. Two of
these are similar to case I, while the third is of different form with.
some negative values.

This clear visual picture of how the reduced model represents

the original model is possible since a plant model has been-used with

~a great deal of similarity between mesh points. Such smooth curves

would not in general be encountered. However the technique'would be
equally valid, even though the reduced variables would in general

be combinations of state variables, resulting in weighted_ averages
of such variables aé fluid pressure and flow rate.

System Stability

The system matrix SYS describes the dynamics of the plant
and its associated reduced order controller. The eigenvalues of the
matrix SYS for each of the cases B to L are plotted in Figures 8.12 to
8.19. There are two interesting points to emerge from éhese graphs:
1. A set of eigenvalues around the point (.6, 0) on the real

axis remain almost unchanged for each of the cases.
2e " For the.higher order cases (B to H) there are eigenvalues very

close to the unit circle, a situation which is undesirable
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since a small change in plant or controller parameters

could result in instability.
On the last point the closeness of the eigenvalues to the unit circle
is surprising. This is perhaps associated with he redundancy in the
estimator system, where such near instability is (mathematicﬁlly)
acceptable provided the behafiour does not contribute to the costs.
From a system design viewpoint this 5ehaviour is unacceptable however,
end it can be seen that as the order of the estimator is reduced there
remain no points very close the the unit circle. The implicafion here
" would appear to be that in reducing a system's order the lower order
system is to be preferred provided costs are not increased;

That the higher order system's closeness to the unit circle
did not result in extra system costs has already been indicated ahove
where the cost did not increase before case L. There is therefore a
range of acceptable cases I to K, of L vhere thefe is good stability
as well as no significant increase in systeﬁ coét.

Proportional Controller

The theory'developed for the reduced order controller
implicitly assumes that the estimator order is not reduced below unity,
that is a storage vector of dimension one. Howe#er, simple proportional

control has no storage vector, the control being of the form

u, = Dy.

1 1

(8.5)
To investigate to what extent the control of the once-through
boiler would be further degraded by the use of proportional control

the set of SYSTEM subroutines were used by setting in equations (5.15, 16)

E = 0.1 (arbitrary but within * 1.0)
F = 0.1 (arbitrary)

The value of D, the proportional control gain was varied between

~0.65 and -1.16. The resulting system costs per time step are shown -
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in Figure 8.20, showing a minimum cost of around 1.53 for a proportional
gain of D - -0.94.

This is clearly a further degradation in system performance
over case L, and would be the type of cost increase that would be
used to justify the use Bf'a controller with some information. storage.

Another method of obtaining the optimal proportional control
law makes use of fhe reduced order'estimator subroutines but with a
minoxy moéification. Suﬁbose,.in case L, the stored information.%i,
‘(dimension 1), is in fact discarded, and set to zero. The estimate
of plant state musttheﬁreiy entirely on the observed variable.yi, and
this is the proportional control situation.

Rejecting fhe stored information Z with covariance ma?rix ?,
increases the covariance matrix f‘, and since covariances are |
additive the new plant state covariance becomes

Mprop = I + ¥R | . (8.6)
Setting z to zero was modelled by putting
' Pprop = 0.00001.P : ,' (8.7)
ﬁunning the subroutines with these modifications gave a proportional
control law of

u, = -1;04yi ‘ o | : | (8.8)
This point is shown on Figure.8.20 and it can be seen to be close to the
optimum value,

In addition some insight is gained into the action of the
proportional éontroiiér as can be seen from Figure 8.21 which shows
how the state estimate is calculated based solely on the observation Yo
It is the multiplication of these weighting coefficients by the

" deterministic control law of Figure 8.1 that gives the 'simple proportional

control law of equation (8.8).
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A further case, thé uncontrolled system, was examined by setting

D = 0.0, and the cost per time step was found to be 1.95.

Conclusions

The reduction method applied to the once-through boiler model
has provided low order estimator models whose performance is very
acceptable., That a simpler mod?l would adequately moael the 12 region
once through bdilef model was.clear from the step response shown in
Figure 7.4. What has beeﬁ.demonstrated in fhis chapter is that the

reduction technique is capable of making the decisions which effectively

"determine which part of the model is redundant and can be left out.

The relationship between this simplér.model and the original
can be seen in terms of weighting coefficient curves.which allow a
clear visual understanding of how the reduced model is able‘to represent
the original model. It islpossible to obtain such a durve even for
the extreme case of simple proportional control. Clearly estimates of

plant state from such very common simple controllers could have applications

_in the fields of process control and where plant parameters vary with

tine. .
The positive eigenvalues obtained in the "simultaneous -
diagonalisation" process appear to provide a qualitative technigque for

the assessment of control "difficulty'.
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STMT MATLAN STATCMENT
1 CNAIN
2 FEAD : {ALE+FP sH)
3 WRITE © (A28 aF4H) ,FORNMAT=AS
4 TRANS HeHTY
5 MULT HTsHsV .
6 WRITE (V) sFCRAMAT=AS
7 FORMS T+012012)4(151)4(151)912:100
8 LGOP JlsJs1,20
9 LCGCFE . IlsKelsE
10 CALL CCNTRL{AsBsP s Vs I4LAMDALEI)
11 11 LOCFEND
12 wWRITE (IsPI L LAMDA) s FOKMAT=AE
13 J1 LOGFENC :
14 cALL AFUNCH(1) ,F
15 cALL . AFPUNCH(PI) 4F
1€ © CALL BPUNCHF(LAMDA) 4F
17 - MULT . BLLANCA,BL
18 SUB AsBL s ABL
16 WRITE (ABL) s FGRMAT=AS
20 : . CALL -~ GELECK(ABL)SF
21 : CALL GEDFCH(A),F
22 : END : c

Listing 8.1 Matlan program to calculate optimal boiler control
, law using subroutine CONTRL. ‘ :



v :
-y i
=
part

MATLAN STATEMENT
MA IN

RE AD
WRITE
CALL
WRITE
CALL
CALL
CALL
END

VO NOU LW

STMT MATLAN STATEMENT
1 SUBPRO
2 MULT
3 suB
4 INV .
5 TRANS
6 MULT
7 MULT
8 MULT
9 sua
10 MULT
11 MULT
12 MUL T
13 MULT
14 MULT
15 RE TURN
16 END
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(AsBsHsRsGILAMDA)

(A]DgH,R,G,LAMDA) +FORMAT=AS
SYSOPTL{ABsHsReGsLLAMODALSYSC +5YSD+SYSEWSYSF)
(SYSC+SYSDSYSE 4 SYSF ) oFORMAT=AS
EFUNCH(SYSC),F

APUNCH{SYSE)+F

BPUNCH{SYSF)sF

SYSOPT{A,ByHsRyG JLAMDA,SYSC4SYSD 4SYSELSYSF)
Het . AMDA ,BL

AsBL » A3L

RsRM

H4HT

HT+sRMsHR

GsHR ¢ SYSF

- SYSF 3 Hy GH

1.0:GH- G
1GsABLs SYSE
LAMDA ;SYSE, SYSC
=145Y5C, SYSC
LAMDA s SYSF+SYSD
~145YSD,SYSO

Listing 8.2 Subroutine SYSOPT

Computes for the optimal "Kalman Filter'" system the matrices for use

in subroutine SYSTEM.
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Listing 8.2 Matla_m program to call subroutine OPRED and construct the reduced order estimator..

J1

MATLAN STATEMENT

NAIN
READ
RRITE
TRANS
MLLT
WRITE
RDIM
RDIM
T ADD
ADD
FORMS
FORMS
Loce
CALL
CALL

{(AsBsH QR 3G LANDAWPCLsTHETALACIM) -
(AsEBaHsQaRsGeLAMDAWPCLs THETALACIM) sFORMAT=AS
HoHT '

HTsHsV

(V) FORMAT=AS

AsDX

H.DY

Os1+ZCIM

CYLZDINVDYZ
Pe{CYZDYZ)s(101)e(141)+DYZs1e0
FelDXsOYZ) (1 41)s{141)sCYZ,y1eC
J1lsdsel .50 ‘

ESTIM(AsBsH+Q +R +GsGNEXT+SIGMA)

" OPRID + (AsBsHs GNEXT s SIGVA, FoPoTHETA-ADIMoLAMDAnFNEXT*

P PNEXT iR sRGAMeSYSCsSYSD s SYSEWSYSFsL)

COFRY
coPY
COPY
LOCPEND
NE WPAGE
WRITE
WRITE
CALL

- RGANLG

FNEXTWP
FNEXTsF

(ZLIM+GCoSIGMAIF +PsL ) » FLEMAT=AS
(SYSCsSYSD+SYSE +SYSF) +FCRMAT=AS
SYSTEM(AsBeHs FCLsVeQes Re SYSCe SYSD s SYSE s SYSF VAR SYSe ®

SUM+20)

WRITE
CALL
END

{SYS+VARSUM) ¢ FCRMAT=AS
GECFMNISYS)WF

- 09T -
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CHAPTER 9

OBSERVER SYSTEMS

Junenberger Obéerver System

The reduced order estimator system that has been developed in

earlier chapters has many similarities with the "observer" system as

described by Luenberger (references 4, 5, 6 ). This observer theory

was developed for continuous time systems and the corresponding discrete

time observer theory was described by Acki and Huddle (reference 4o).

Some other developments in observer theory are discussed in section 8. -

and

The system is described as inChapter 2 by

X4 = Axg + Bu, o+ g, | (2.1)

y; = Ha; + oy : : (2.2)

An estimator is then constructed according to

z; . = Fz; + Dy; + Gu, {(9.1)

The vector z contains memory elements and is of order 1 where

n-m<lsn

and n and m are the dimensions of x and y respectively.

An estimate of the plant state -is taken as the expression

A )
X, = Pzi + V?i (9.2)

For the deterministic system in which ¥, andy, are zero it is
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stated by Acki and Huddle that z; -can be related to Xg by a fixed

‘linear transformation T provided Z, is chosen to be equal to Iko

where T satisfies

TA - FT = DH _ - (9.3)
and G in (9.1) isgivenby & = TB.

It is indicated that, with the restriction that 1 =n —lm,
a choice of matrix F-éan be made to ensure that‘its eigenvalues realise
an arbitrérilj fast response in the sense that any initial error in
io is quickly eliminated.

Stochastic Observer System

Aoki and Huddle then consider the stochastic case where % i
and.qi in (2.1) and (2.2) are non-zero. They state that by choosing in
genéral F and D such that

D = TAVand F = TAP (9.4)
and requiring that T satisfies

Pl + Vi = In ' | (9.5)

where In is the n x n unit matrix, then (9.3) will be satisfied.

They proceed to examine the error covariance matrix of the
estimator given by (9.2) and by means of a numerical example shéw
that such an observer system can have a performance nearly as good
as the Wiener-Kalman filter system.

This result is very clearly in line wikh the observations

of chapter 4, where a reduced order estimator was constructed.

This similarity will.be pursued further in section 4.

Observers with Minimum Mean-Sguare Cost

1t is possible to choose an ébserver system according to a design
procedure which minimises a Qeighted-mean—square estimation error. This
is the approach of Iglehart and Leondes (ref 44) who carry out the

minimisation in a stage by stage manner by direct differentiation of
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the weighted mean souare error cost funétion. Setting the two differentiél
‘coefficients so obtained to zero for a minimum value gives a pair of
{matrix) simultanecus equations whose solution yields choices for the
 matrices V and P in (9.2). In turn a matrix T is found which satisfies
9.5. | | .

Although the Sysfem is chosen now to be optimal in a given_sense,_
the order ofrthe ogserver'system,‘l, is again constrained to

n - mﬁé.lsg n
as was the observer system of Acki and Huddie. It is further shown
that when 1 = n'thé observer system is equivalent to the Weiner—Kalmaﬁ
Filter. -

There is similarity between the approach to obéerver design
adopted by Iglehart and Leondes and the theory in chapter 5. In both |
cases a minimisation of a weighted-mean-square estimation error is taken
~as the criterion of the estimator design. The methods used to accomplish

the design of the estimator are, however, entirely different.

Observer Dimension Constraints
As mentionéd above, the observer system described in sections
2 and 3 has a structural similarity with the reduced ordér estimator
developed in Chaﬁter L. Both form estimates of the plant state using
memory elements z; fogether with the most recent observation Yy and
both lead to an'equation for updating the memory glement. However,
there are very big differences in approach and in allowed dimensions,
as follows:. |
(a) The "reduced order éstimator" of chapter 4 allows the observer
‘order to be reduced by any desired degree down to a minimum of
unity. The 'bbserver" system 6f Aoki and Huddle or Iglehart
and Leon@gs allows the observer to have an order reduced from
the plant order n, but only down.to a minimum order of n - m,

where m is the order of the observation vector.
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(b) Tﬁe extension of the observer approach to low order as in chapter
L is made possible by use of "a priori" information about the
plant parameters. No such information is used in the
conventional "observer' system, and this leads to a cdncept of
a "minimal order' observer system of order n - m.

_In the once-through boiler model system, of plaﬁt model dimension

12, the "minimal order' of a conventional observer would be 11 since the

observation vector has dimension 1. As this is typical of a distributed

parameter system, the conventional observer approach of Aoki and Huddle

~ can be seen to be severely restricted. On the other hand it was shown

in chapter 8 that it was entirely possible to control the plant
satisfactorily with an estimator of order 1. |

However, despite the difference in approach and the difference
in dimensionai constraints there remains an area of overlap when the
order of the estirmator system of chapter 4 is constrained to lie between -
n and n-m. The relationships bgtween the two systems in this region of
overlap is discussed in the next section.

Comparison of Estimator Systems

The 2 x 2 system example-given by Acki and Huddle can be adapted
to be identical with the 2 x 2 example system used in chapters 2, 4, 5
an& 6. Applying the design technique of Aoki and Huddle involves
minimising element ]_;1 of the error covariance matrix ['in the

asymptotic solution where

. 3 2 .
T - 8‘&:51 + 4v1 + 1 _ .
.M ‘ v1(2 - v1) (9.6)

and v, is a partition of matrix V, i.e.

vV = ( v1) ' (9.7)
1

]_‘11 has a minimum when v, = 0.29 and this gives for the

1

. observer system an error covariance matrixi-



6.

- 165 -
3.09 1.16) - |
“\1.16 &4 _ o (9.8)
This may be compared with the asymptotic solution for T1computed
for the reduced order estimator of chapter 6 as _
1.00 3.08 :
It is clear that the cbserver design method of ‘Aoki and Huddle

has resulted in a poorer estimator than that of chapter 6. The

associated gain matrices of (9.1) and (9.2) are

- .29 .29 : |
0 : v 1 T
: (9.10)

D = .29 F = .7 G L =3.45

These matrices can be seen fo satisfy the constraint (9.5).

The control system that results from this observer system is
siﬁilar numerically to the reduced order estimétor of chapter 6, with
the exception that the zero element in P requires that the estimate of
x5 in the state vector is made only on the basis of the observation y
and no stored information from z is used. This is clearly a constraint
introduced by Aoki and ﬁu@dle and explains the poorer estimator

verformance as shown above in comparing (9.8) and (9.9).

Is the reduced order estimator a ILuenberger observer?

Having shown that the performance of the reduced order
estimator of chager 6 is superior to the observer system of Aoki and
Huddle it is reasonable to investigate whether the reduced order
estimator is merely a superior observer system or whether, as it uses
"a priori® information which the convéntional observe does not, it has
noc theoretical connection with observer systems of'the Tuenberger type.

A direct test of this is %o see whethér the reduced order estimator gain

" matrices satisfy the observer constraint {9.3) Taking the 2 x 2 example

system of chaper 6 the gain matrices in the notation of (9.1) and (9.2)

can be derived as follows:
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Equivalencing (6.32) and (9.2) -
P = —?.10 v = 0.25 (9.11)
_ 0.81 0.77 ,

Equivalencing (6.28) and (9.1) is less direct. Setting

T = (t1, ta) then ‘
1
G = T8 = (t,,t,) (o)= t, | (9.12)
From (6.27)
. Substituting into (9.1) gives
235 4 = in + Dyi + Gui
= (F + 1.83t1) 2, + (D - 0.508t1) Y5 (9.13)

' Equivalencing this with (6.28) gives

F

-0.034 - 1.83t1 | . (9.18)

and D

]

0.2146 + 0.508t, o (9.15)

The relations (9.4) require

-.25t1 + 1.02t2 = 0.25
- (9.16)

giving a solution

T = (t1, t.) = (0.485, 0.127) ' (9.17)

2

Substituting into the left hand side of the constraint equation
(9.5) gives
1.C00 .02

PT + VH = ' N . (9.18)
: .39 .87 '

The observer constraint of (9.5) required that this expression
be the unit matrix, and as this is not the case it follows that the
reduced order eétimator of chapter 6 is not an observer system in the

sense of Luenberger,

e
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The Observer T Matrix

Central to observer theo;y is the matrix T which is said to define g
in the absence of noise such' that

z = Tx | - (9.19)

In the derivation of the reduced order observer in chapter &4 no-
suéh concept was encounéered since the storage.element 2z was generated
~ directly from probability considerations. However-such a consideration
may be introduced b& asking what value would % be likely to have for any
given plant state xi? Again this would hgve to be calculated in terms
of probability'distributions using the known distribution, from (4.42),
of x; given z

pOx;|v,) = (= Fv) ' T3 () (4.42)

where vi_is the information vector

y.
Vi =( 1)
‘ Zi

with "a priori" distribution, from (%.6) of

ple) = v pi"‘"fi (4.6)

Omitting suffices the above relations give

plx, v) px|v)p(v)

(x = W) T + vy

i

-1

v'(F'T‘-1F + P_q)v‘+ v T 'x o+ i'T"-1F&' +‘x'T"-1x ‘

(v - MR T TG+ k0 (P FRFD x (9.20)
where the matrix M has been defined by

M—1

0 Al S | (9.21)
and the matrix relation of (2.4) has been used.

Since (9.20) may also be written

plx,v) = plvix)p(x)

it follows that the distribution of v, given x is

plvlx) = (v - ¥ Tou (L) o (9.22)
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This distribution defines the expected vdue of the infamation vector
v to be given by _
v = MFGx o (9.23)
where the matrix MFG is defined by
MPG = ME'TT | (9.24)
A MATLAN subroutine ADAPT, shown in Listing 9.1, was written
to compute M and MFG'éccording to equations (9.21) and (9.24). When
applied to thé 2 x 2 example éystem of Chapter 6 and the derived reduced
order estimator, subroutine ADAPT gives _
. [ho O ' : 0 1.0
Moo= C; 0.314) MFG = (-.271 o.16!+) (9.25)
g0 that the best estimate of z is given by
| z = =e27%y + J16x, : ' (9.26)
Considering that z is known to have.a.variance of 2.5 (from
the prior distribution covariance matrix P) the variance of z about
2, as given by (9.26), of 0.31 is small showing (9.26) to be a very
‘effective estimate. |
Equation (9.25) also gives the expected value of y given x,

and x2. As this estimate is

¥y = Hx

it follows that the top row of MFG in (9.25) is the observation matrix
H. Also M contains the observation noise covariance matrix R, which
has the value 4.0 in this example.

The same technique may be applied to the once-through boiler
mo&el of chapters 7 and 8. Teking case L where the storage element is
one dimensional,the matrix MFG aé given by'ADAPT has a bottom row as
shown in Figure 9.1. It can-be seen that the difference between the
weightings of y and z is that those of y decrease more rapidly so that
z contains a greater weightingrof'the state variables Xgr Xgs Xy etc.

This explains why it was that, in chapter 8, the state estimate as
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expressed by the weightings of figure 8.10 on z peak for xg and ¥9'
Thus in the context of observer theory the relation (9.26)
has been seen to défine a relation between the storage element z and the
state variable x which is analogous to the relation
z = Tx ' . | (9-19)_.
which appears for example in reference 5.
This completes the comparison of observer syéfems with the

reduced order estimator as developed in.chapfer L, Broadly the

reduced order estimator, while not an observer within the Luenberger

- definition, has been shown to possess all the useful properties of

observer systems.

Other Developments in Observer Theory

‘It is clear that observer theory requires the choice of
matrices P, V F,D in (9.1) and (9.2) and various methods for
choosing these matrices have been developed. Tse and Athans

(reference 42 ), and Tse (reference 43) consider the relationship

_between deterministic and stochastic minimal order observer systems

and alsé show ﬁow, when certain observations are noise-free these
ﬁay be incorporated into the, otherwise stochastic, observer.
Leondes and Novak (reference 44) also deal with this topic and, aé iﬁ
the earlier work by Iglehart and Leondes, the optimal "intermediate
order" observer is obtained by differéntiation of a cost function.
Various limiting cases are eﬁamined showing the Kalman Filter and
the Tse and Athans observer to be embraced.

The design of a continuous-time observer system is considered
by Newmann (reference 45) in the light of ﬁncertainties in the plant

initial conditions, although the system is otherwise non-stochastic.

This same viewpoint is adopted by O'Reilly and Newmann

(reference 46) for the discrete-time system, and a design method for
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an observer based control system is developéd. Surprisingly perhaps,
the certainty eduivalence principlé is found to be applicable so that
control and observer systems may be independently determined. An
equivalent "canonical" form for an observer is utilised which by
means of an arbitrary ggin matrix allows some simplificatién.

Perhﬁps the reason for the relevénce of the certainty equivalence -
principle is that the only covariance parameter involved, that of
the initial state uncertainty, will remain unaffected by the subsequent
confrol actions.

| Yoshikawa (reference 47) considers the stochastic discrete-
time filter problem. If there are k noise free observations, it is
shown that, with certain rank conditions, the optimal filter system
is of order (n - k),.and the method for constructing this filter

is developed. If a small variance was taken f;r the noise-free
observationé. then in practice the Kalman Filter would seem to

give an equally useful filter system. The method of YoshikaWa

does however give a rigorous treatment.

There is published work on the theory of minimal realisations,
and Akaike (reference 48) gives a number of references in his paper
on the stochastic theory of minimal realisations. This theory would
appear to be relevant to observer theﬁry since by using thé smallest
order model to fepresent the plant, a reduction of observer or
estimator dimension is achievable.

In the various methods of observer construction the restriction
to order n-m aﬁééars not to make best use of the known nature
of the control inputs to the system. _In.Chapier-S a successful
estimator of much lower order was designed. This relationship between
control and estimation is considered for the time-varying case by

Asher and Durrett {reference 49) and by Kurtaran (reference 22) for
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the constant system. In each case the problem is approached directly
bj means of an augmented state vector and this approach is discussed

further in the next chapter.
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MATLAN STATEMENT

(7
-
=
-

1 SUBPRO ADAPTIF 5G 9P 4 M 4HFG)
2 INV P,PHM
3 INV G,6HM
4 CALL TLSIDECF4GM4FF}
5 ADD EFsPM,FP
6 ~ INV FP,H
7 TRANS FoFT
8 KMULT MeFT,.KT
9 HULT BT, CH,MFG

10 RETURN

11 END

Listing 9.1 MATLAN Subroutine ADAPT N

This subroutine computeé the matrices M and MFG according to equations
(9.21) and (9.24). MFG estimates the value of the information vector
(containing y and z) for any given value of the state variable x.
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CHAPTER 10

CONCLUSIONS: A discussion of some possible areas of

further investigation and a review of the resulté

of the present study

Multi-variable Systems

The example of a once-through'boiler model which was

examined had 12 variables composing its state vector and the design

method was shown to behave satisfactorily for this case., The systenm

nevertheless was single input, single output which is the simplest
possible in terms of control, The generai case of a multivariable
system with many observations and nﬁnacontrpl inputs, while covered
by the theory has not been tested using an‘example.

Such a case would, for example, arise on a once=through
boiler since other parameters suc@_as

(a) steam pressure

(b) gas outlet temperature
will require to be controlled. The available control inputs are

(i) water flow rate

(ii) gas flow rate

Thus the once~through boiler example is capable of

“extension to a three input, three output system. It is normal practice

to construct control loops which typically control (a) above using
(i) and control (b) using (ii). Using a design based on a reduced
order estimator would result in a multi-variable system in which the

stored information % is used to construct each of the control inputs.
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The controls would thgs be cross-connected in a way that is not usual
practice. One of the objects of further study would be to ascertain
| (i) To what extent would the "shared z" system.improve
| performance over the present practice,
(ii) To what extent is the stored information in z
attributable to separate single loops.

The last point is illustrated by Figure 9.1 which shows
that z is largely modelling the regions x; to x,, of the boiler.
In 2 multi-variable system another element of z might model the
regioné X3 % of the boiler and be related strongly to the control
of gas outlet temperature., If this were the case then the system
‘would approximate to the present practice of building three separate
single input, single output loops. The degree of connectedness would
thus become a point qf iﬁterest in such a study, as would the
necessary dimensions required for =z. y

Further interest woul& attach to the generation of'plant
state estimates, this being of particular relevance when the boiler
materials have temperature limits which must not be exceeded, At
present if such an on-line estimaée of plant state was required
then a special system would be designed and this would be separate from
the control systems. However with a unified control/estimation
approach the two functions could be combined using the memory elements
2 as describgd in the following section,

Combined Control and State'Estimation

If a plant state variable (or function of state variables)
were being estimated in this way it is possible that, with the
estimator design method employed, a poor estimate would result since

there might be a low weighting on the variable with respect to control
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reQuirements (matrix 6,‘chapter 5). It would be a simple step to
cover this point by injecting into B a weighting relating to the
particular variable of interest, This, together with an adequate
dimension for the storage vector z,would ensure an estimate of the
variable as close as required to the optimum as given by the Kalman
filter, t

A more direct approach would be to recall the selection of
the stored information according to eqﬁation (4.3), i.e.

. . 2.
( ‘g) =T (o«l:.) (20.1)

and to impose conditions on the choice of T in order to ensure
optimal estimation of a particular variable, Such an approach would

have the drawback that while practical for a single time step, an

‘optimal estimate imposes restrictions on all past choices of T. It

is iikely that the full Kalman filter would be the necessary result
for optimal estimation of just one variable,

Thus the former method in which the weigﬁting‘matrix is
suitably modified would appear to be thé more suitable method for
joint estimation and control,

Integral term in controller

Normal planf controllers similar to the three-term type
will contain an integral term whose function in part will be fo
correct drifting of plant variables. With only proportional control
action a dfift will be only partly corrected. ‘While it is possible
to add an integral term to any designed controller a more basic
approach would be to -include a drift component in the plant model

of fhe form
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(x L+, (=), (80, (20.2)
where ( Ed) is a Gaussian
indepeﬁdent disturbance.
Other state variables WOuld fhen be related to this drift

variable, according to

(:lej)i = ( 35&1) vt ( jCcL)L

. (10.3)
where xhis generated in the normal way and x:‘represents state
variables subject to drift. In computing the control law, plant
costs would be

,
* x*
T = Z (el) V(=)
' (10.4)

5o that in minimising the cost J the deterministic control law

(derived as in chapter 2) would require some feedback from the drift

variable x This implies the requirement for'an estimator for x

d* a’
and such an estimator would perform the integral term function.

In designing such an integral term controller, infinite
yariances occur since xd'is not controllable., Although a modification
~ to the theory could perhaps allow.this situation té be treated an

easier solution would be to re-write (10.2) as, say
(xa),,, = 0999 (2), + (&), (10.5)

Such a relation would result in a large, but finite,
variance for X3 and there should be no computational difficulties
whlle at the same tlme a suitable integral controller would result,
4 particularly 1nterest1ng aspect of further work concerns the
structure of the storage elements.of such a controller, 'Would it be
obvious that a particular element of z forms the integrator, or would

a transformation of z be required to meke the presence of the

integrating element obvious?
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A related fopie concerns'the number of such drift elements
wﬁich require to be established for any given multi-variable control
systen, Clearly a system which already contains an integrating element
has little requirement for an integral term in its control systen.

A proper approach to this aspect, which results in part from use of a
linearise& system model, is therefore required,

The use of an "oftimal control theofy“ approéch to nuclegr
power station control was reported by B, Blomnes et al in reference 10.
Drift elements were found tb be essential and the number used was |
made equal to the number of control inputs.

Certainty Fauivalence

In deriving the reduced order control schemes it was assumed

that the application of the '"certainty equivalence principle' would

give a pefformance close to optimal, and this was found to be the
case, As the certainty equivalence principle applies only to the case

of perfect information storage it follows that some cost penalty must

. result from using a reduced order estimator, This implies that for

the control law given by
w, = J\-/J-L .

if wiil be possible to find a control matrix A which perforns
better in the reduced order case than does that given by the certaintj
equivalence principle,

| This altered control law can be seen as a use of the plant
itself to store relevant information, That this-is the case can be
seen by considering a' hypothetical plant which contains a storage

channel of the form

RN CR A | | (10.6)

5 1i+}
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With complete storage the Kalman Filter system as shown in

Figure 10,1 (a) will not utilise the storage channel and u, will be
zero., However it is clear that if the order of the estimator.storage
gleménts were to be reduced, as in Figure 10.1 (b) the control
performance could be improved by utilising the available storage
channel which is part of the plant. Strucfﬁrally, singe a signal
now passes through the control variable L the control matrix A
will have been{modifiéd.

While this example makes it c¢lear that the cértainty.
equivalence does not give optimal control, it does not provide any
insight into how the best control law may be synthesised; Figure 10.2
shows how estimation costs might be included in the derivation of A .

In tuwrn, however, an altered control matrix would result
in a modified choice for the reduction matrix T in fhe estimator,
and this is also shown in Figure 10.2. .An inter-dependence is thus
set up between control and estimation, which is perhaps capable of
rigorous analytical treatment, A computer solution by means of
iteration would then be practical in order fo acﬁieve the overall
. optimal reduced order systenm. -

It is interesting to note thét, in reference 50
the certainty equivalence principle has been extended to the case
of non-Gaussian disturbances which are not independent,

A further related problem concerns the generation of
the estimation weighting matrix 8. ZEquation (6.25) jives a
recursive relation fo;we whose asymptotic solution is used as
an input to the subroutine OPRED, However the coefficienfs in the
recursive relation were taken from the optimal Kalman filter case,

so that there remains scope for an approach in which these coefficients
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rare altered iteratively as the solution of the reduced order control

system develops,

A more general treatment which has the.benefit of being
completely rigorous is given by Kurtaran (reference 22} . 1In
this the storage elements are combined with the state variables to
foém an augmented state vector, Equations are obtalned which are
satisfied by the optimal reduced order controller, but Kurtaran
states that a method is still needed to solﬁe these equations.
However such an approach could perhaps be combined with the iterative:
method described abové and allow a truly optimal controller to be
generated.

Hoisy Storage Elements

o 1% hgs been assumed that the storage elements z are not
subject to noise disturbances. However even for a digital controller
rounding error effects will effectively introdﬁce noise into these
channels, and Figure 10,3 shows a 'noisy estimator" system. It was
found in chapter 8 that for some cases the eigenvalues of the system
ﬁere only just inside the unit circle and hence only just stable,

Had noise been modelled in the st;rage system the resulting system
night have been more stable,
To include noise ié relatively straightforward, requiring

only an observation equation such as

vy = Zg 4Gy (10.7)
vhere v, is the corrupted stored signal and Si is a Gaussian random
voriable. The theory of chapter 4% would require the construction of
the probability d1§tr1but10n P (xi|yi, wi) rather than p (xi[yi,zi).

The derivation of a reduced order estimator would follow as before,

ineluding the choice of a reduction matrix T,
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In applying the theory some consideration would need to-be
given to the choice of convariance matrix, Rz say for the disturbance Si'
Clearly this needg to be related to the variance of z itself
otherwvise by simply increasing the scale of z the effect of the
noise would be reduced. A simple treatment would be to apply é '
non-singular transformation to z so that its covariance matrix
is unity and then to define the disturbance by

R =AI : . (10,8)

vhere I is the unit matrix and A has a small value in the region

of 0.02,

A topic vwhich would require investigation would be the
optimal storage of the information in the presence of estimator
noise, for example the above "orthogonal' storage system could be

examined to see if it is the best.

- Time-Varying Parameters and Adantive Control

Most plants under control will possess different control
parameters as, for example, throughput or load is increased. Normally
this chanpge is intentional; so that "identification" of the new |
parameters is not required., But for optimal performance gains of
control an& estimation systems will require c&nsiderable adjﬁstment
in line with the changed parameters,

Thé simplest possible Yadaptive" system will therefore
comprise, as shown in Figure 10.k4,

(i) A unit concerned with defining the current plant
condition, e.g. "load", usually by means of a single
slow—mbving parameter,

(ii) A means of using this parameter to adjust gains of
the control system in a pre-determined manﬁer.

(iii) A control (and estimation) system.



- 182 .

With an estimation system based on a reducgd order estimator,
the storage elements, Zsy do not obviously map into cérresponding.
storage elements for a system with changed parameters. This prcoblenm
is less acute with the full Xalman Filter system since the state
vector estimate is of full dimension, and it may be assumed that thé
state vector in one system may be mapped into the_staté vector in the
one with changed parameters.

Giveﬁ a plant state estimate

'p.i = Fvi

= Cz, + Dy, | (10.9)
and a corresponding estimate in the changed system of
ws* = C* z;* + D* y, -. (10,10)
it is poésible to assesslthe estimation error (pi* -_ui) resulting
from the transfer from (10.9) to (10.10).
As there is always a degree of freedom to transfornm zi*
by means of a non-singular matrix S, this may be utilised to allow z;

*

to be mapped into zZy without modification, so simplifying the

adaptive control system structure; The estimation error will then be

pL-pm = (Cs-c)z + (0%-D) g, (10.11)
= (*S =z, + w; | (10.12)
vhere : w; = (D*—D) Yo ~ C.%a ) | (10.13)

The matrix S may be chosen to minimise the estimation error
according to some criterion which may be properly takeﬁ, as in
chapter 5, to be relééed to the.control costs by a cost:function
| J=E(pi*-p.i)’9(ui* - nyd | - - (10.18)
Omitting suffices, and using (10.12) |
T=€e(c*sz -t-w)'e((_‘_*Sz + w)
=el2s'cec*sz + woC*se

+ E’S'C*’éw + m’Qw] (10,15)
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The joint probability distributions of z and w will be |

known and if

Ez z') = Pz’ E (wz' ) =. sz: , (10.16)
and Eww') = P
T T
then . _ : . -
J = Trace (S'CW@ c*s Pi + 6C*S P:.uz
+ S'c*op,, + BP,) (10.17)

Sincey from a relation given by Newmann (reference 51),

L SNt
75 | Trace AS) =" A (10,18)
:.t follows that J has a minirmum when

4T _ *l o % *’ -
g - 2 (o crsp, + C*PRL, ) =0

(10.19)
) Solution of this equation for the elements of 5 gives fhe
optimal choice of S. |
A simple demonstration for the 2 x 2 example system would
be to modify the system matrix A to |
(10.20)
A =51 og
2 1
This system, with no other modifications to the example

of chapter 6, leads to a reduced order estimator systenm

_ [—1-88 1} -2 (10.21)
. — %i -+ : -
po= 5e)e o+ ()

z., = —-56 2, + .29 Y ' (10.22)

 Tier
With the cost matrix & given by

20.3 =a7) S N
e = : : (10.23) -
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- and the joint distribution given by
B(£ ) = 2.6, E(zy) = 8.5
and E (3?) = 45.hk

which in turn, from (10.13) gives

5,12 _ 10.11 ~ 3,09
BE (uz’) = and E (ww’) = .
-1.60 ~3.09 1.0k (10.24)
then from (10,17) the cost J is the quadratic in S
J = 194.5 g . 405.6 S + 212.2 " (10.25)

The minimum value of J is 0.8 and this is achieved when

. , )
. - * % L4 -1
§=-(C"0C*) C*0FR. P =1.04
and this transformation may now bhe applied to the estimator equations

(10,21) and (10,22) by replacing z by 1,04 z to give

| 3-1.962 ?.'215 (10.26)
pe = 0 z. + ¥

* 0.?3 + 083 * . ‘ ) '
Zigy = - <56 zg ¥ 28 Y5 ‘ - (10,27)

This completes the demonstration of how the minimising S
can be found.

Such a choice of S obtained in this or a similar manner will
allow z to be used in a continuous fashion during parameter changes
yithout unduly disturbing the plant. It is interesting to note the
large magnitude of the coefficients of S and $ in (10.25)., Clearly
an inappropriate choice of S would result in considerable plant
diéturbance,.and hence costs., Confirmation would be required that
such a choice of S would give a reasonable performance when the plant
parameter change is féversed; The reverse process could well require
a different S, in which case a mean value might be suitable,

Extension of this approach over the whoie range of'parameter changes
will allow a simple estimator structure to be maintained. However the :

constraint is not very severe since the consequence of any poor
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ﬁapping is only temporary and eventually asymptotic costs will

dominate, s0 that a slightly sub-optimal choice of S5 would normally

be adequate. |

| Further work in this area requires simulation of an adaptive
system and its relationsip with a reduced order estimator. However
adaptive situations will have particular constraints aﬁd problems so
that rather than stndjing a hypothetical example it would be

preferable for the design ﬁ;thod to be applied to a suitable real

plant system where a consideration of adaptive control is necessary.

The requirement for adaptive control of the simplest kind, i.e. control

-gain variation with load or throughput, is frequently met so that

~ implementation of an "optimal control theory" approach using a reduced

order estimator is almost certain to require the consideration of
adaptive control.

The approach outlined above provides a practical framework

. for designing such adaptive systems while still maintaining a simple

'control structure.

A Review of the Results of this Thesis

Iﬁ the preface to one of his books (reference 9 ) Rosenbrock
observes that space state methods have clarified some qneéﬁions of |
structure for automatic contrﬁl systems, but nevertheless he feels that
they have not been able to establish themselves as proven tools for
the design of industrial control systema.' Part of the reason for this
may lie in the complékity both:of the off-line design calculation and.
also of the hardware implementation. The design method derived and )
evaluated in this thesis removes at least tﬁe complexity of the hﬁrdware
implementation, but at the expense of the off-line design calculation.

However to digital computers now in use such off.line calculations are
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routine and with the advent of graphical display facilities these
design procedures become considerably more attractive.

‘ The design method of this thesis (illustrated in Figure 1.1)
leads to a fuller appreciation of the structure underlying even the most
simple of control systems. For example the proportional control law .
considered in Chapter 8 (an extreme case with no dynamic elements in
the controller) is designed via an estimation of élant state (as in
- Figure 8.21) aﬁd the application of a control law derived from the
certainty equivalence prﬁnciple (perhaps modified as discussed in
section 4 above). The uncomplicated scalar gain of the feedback
loop thus belies the underlying more complex structure. However this

insight into the structure cannot but benefit the designer, and the
advﬁntages of the control system design method of this thesis are
given below:

(a) The design method provides a viable control system
design technique '

(b) The technique is applicable to multi-input, multi-
output systems '

{c) By gauging the effect on the error-squared cost of
employing a controller of a given dimension, the
lowest dimension controller with adequate performance can
- be selected. '

(d) By setting dimension against cost in this way the
technique provides an assessment of "control difficulty®
in any situation.

(e) The tecﬁhiqne makes available an approach to slowly
time~varying systems: the preservation of the state
 estimate in a varying gain situation is a valuable
criterion.

A discussion of the Luenberger type of observer in Chapter 9
leads to the conclusion that the design technique of this thesis gives.

an estimator which is not of the Luenberger type. The Iuenberger observer
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is‘shown to be inferior both in performance and, more fundamentally,
to be restricted to a higher dimension. A reason for yhis may be
the use made in Chapter 4 of "a priori" information regarding the
likely magnitudes and relationships between plant and storﬁgé
variableé. For a cloaed'loop system such information is alwajs
- available, and it may be the failure of the Iuenbefger apﬁroach
to fully make use of it which accounts for its poorer performance.
The design techniqué of this thesis depends critically 6n
the selection of appropriate informatiﬁn for storage and the method
‘to do this, developed in Chapter 5, has been found to givs‘very
- satisfactory performance. The criterion, based on the selection of
- the largest subsgt of the real positive eigenvalues of a real
symmetric positive definite matrix, has the advantage of being
straightforwvard as well aé mathematically optimal. The application
of the method in Chapter 8 results in storage-elements whose
respective state eatimﬁte weightings (Figures 8.10, 8.11) form a
] set of smooth curves. These weighting curves illustrate clearly the
mamner in which the storage elements suﬁmarisé the available plant
informatiog-and'this gives encouragement that application of the same
eigenvalue methed te cther industrial control problems, where such
~ smooth weighting curves would not necessarily be present, would be
successful. | .
| It is a reflection of the central part played by eigenvalue
methods in the anaiysié of linear control systems that eigenvélﬁes
(albeit real) should figure so strongly in the design methoa-of this
thesis. |
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. APPENDIX 1

A Summary of MATLAN Commands

A full description of the command specification is given in
reference 2L but a brief account is given here, only those commands

vwhich have appeared in program listings being included.

Ta ADD X1, X2, Y
‘ Performs Y = X1 + X2
2a SUB X1, X2, Y

Performs ¥ = X1 - X2
3. MULT X1, X2, Y

| Performs Y -= .Xﬁ.XE

b, DIV X1, X2, ¥

Performs Y = X1 X2

Note: If in any of the above operations square matrices are being used, a
- scalar may be used for X1 or X2. It will first be multiplied by the unit
matrix before the operation is carried out.

5.  INVX, Y

Performs Y = X'1

6. ROWSUM X,¥Y
Adds the elements forming the rows of X to form the column
.vector Y. |
7. = COLSUM X, Y
Adds the elements forming the columns of X to form the row

vector Y.
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8. EMULT X1, X2, Y

Each element of X1 is multiplied by a corresponding element of
X2 to form the eléments of Y. (Used in PROD, Listing 5.4).
9. COPY X, Y |
Performs Y = X
10. TRANS X, ¥
Perfofms_the trénspositiqn of X to form ¥, i.e. ¥ = X!

1. EXSUBM X, (rbeg, cbeg), (rdim, cdim), ¥

Allows the partitioning of matrix X and the extraction of submafrix
Y, defined by the other parameters.

12, INSUBM X, Y, (rbeg, cbeg)

Allows the construction of the larger matrix Y by the insertion
of a sub-matrix X, starting at the given element.

In addition the command INSUBM x, ¥, (rbeg, cbeg), (1,1), N allows

the scalar element x to be inserted in the matrix Y as a band of N
elements starting at a given location. Used in OTBOIL (Listing 7.1).

13.  FORMS Y, (rdim, cdim), (rbeg, cbeg), (1,1), revet, val

Comstructs a band matrix of dimension rdim x cdim containing zeros
-and the elements Mval'. The band starts at (rbeg, cbeg) .and extends
diagonally with repet elements. Used in OTBOIL (Listing 7.1)

14, NULIMAT ¥, (rdim, cdim)

'Generates a matrix of given dimensions with zero elements.
15. RDIM X, N

N is set equal to the number of rows of matrix X.

16. CDIM X, N
N is set equal to the number of columns of matrix X.

17. CANCEL X1, X2 ...

Saves storage space if matrices are no longer required.
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19.

21.

22.

23
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WRITE (X1, X2, e..), FORMAT = 8

Prints matrices or scalars in floating point form with eight
significant figures.

READ (X1, X2, .es)

Matrices ﬁill be read from cards. Generally the card format_

used has been as below, although other formats are available.

A 12 12 ‘ Matrix with dimensions
: '!
1-62&h 0051*1 saene
+ 0.761 rerererees Matrix elements in'
. : ' free format
FND

s

The subroutines of Appendix 3, were written to allow matrices to be
punched on to cards, and the format used for each element was E20;10,
with four elements per card.

IOOP 11, J, I, N

11 LOCPEND

Performs a loop for d = I to N

SUBPRO Name, (X1, X2, ...)

Specifies a MATLAN subroutine with dummy arguments. Subroutine

to finish with RETURN and END.

CALL Name, (X1, X2, ...)

Call of above subroutine.

CALL Name, (X1, X2, sss), F

The addition of the "F'" indicates that the subroutine to be called
is a Fortran subroutine. The conversion of the matrix arguments is

handled éutomatically by MATLAN, provided the appropriate Jjob control

statements have been supplied as in Appendix 2.

L=
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APPENDIX 2

Fortran Subroutines Called by MATLAN

Inrchapter 6 it was necessary to obtain the eiéenvalues and
eigenvectors of a real symmetric mé£rixg and this was achieved by calling
the Fortran subroutine EIGEN which is given in listing Aé.1. As a
description of this subroutine, which forms part of the IBMVScientific
Subroutine Package, is given in the comment statements at its head, no
further description is given here.

Storage of.matrix elements differs between MATLAN and Fortran, and
further the Scientific Subroutine package has its own convention for storing
elements.

The various methods are as follows:

(a) MATLAN :
| Matrices‘are stored by rows.in two ways. The firét stores all
elements (A form) while the second stores only non-zero elements and
their co-ordinates {C form). Tﬁe more economic storage mode is selected
internally by MATILAN.
(b) Fortran
A matrix is stored in an array column by column.

(c) IBM Scientific Subroutines

A choice of three storage methods are available, but subroutine
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ETGEN assumes that the symmetric matrix whose eigenvalues and
eigenvectors are required is etored in storage mode 1. This is a
specific mode for symmetric matrices since only the upper triangle
is stored, the lﬁwer triangle being inferred by symmetry. Storage
is then by columns to form a vector of large dimension.

To make the various storage modes compatible requires some
detailed proéramming. Conversion between MATLAN and Fortran is handled
automatically with the argument matrices being transposed to allow for
_‘the change from row to column storage, and.vice Versa.

Conversion from Fortran to the IBM 801ent1flc Subroutine Modes
is handled by means of the subroutlnes I0C and MSTR which also form part
of the Scientific Subroutine Package. Listing A2.2. shows subroutine TOC,
while a call of IOC appears in EIGMAT (Listing 6.4) as a special case of

. : CALL 10¢ (I, J, IC, N, M, 1).

fhis generates the integer IC which indicates the 1§cation in the
storage vector of the element (I, J) of a N x M matrix when stored in mode ﬁ,
i.e} upper triangle only. The matrix element may £hen be référenced, for
éxample, as A(IQ.

The subroutine MSTR is shown in Listing A2.3. This subroutine
performs storage conversion for a sgquare matrix. Ebr_éxample, the call of
MSTR in ﬁNIMAT (Listing 6.3) is

-CALL MSTR (AA, A, N, 0,1).

The vectors AA and A store N x N matrix elements and A4, with storage
mode O (general column bx"column étorage into vector) is to be converted into
. Ay with storage mode 4. The subroutine MSTR itself calls IOC to carry out
this conversion. Thus within UNIMAT a further conversion is required between
the normal Fortran matrix storage and the vector "made O" storage and this
is accomplished by means of a "DO" loop where necessary.

In calling Fortran subroutines it is necessary to place these

in a special position in the deck of cards forming a MATLAN job, in order

to avoid confusion with MATLAN subroutines and to allow proper compilation.
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Listing A2. 4 shows the necessary job control cards and the positions of

MATLAN, Fortran, and data cards.

This deck was used for all MATLAN work, the Fortran subroutines

being omitted when not recuired. The "TIME"parameter causes the job to

be cancelled if this length of computing time is exceeded. This was normally

set to 30 seconds as a typical run (e.g. chapter 8, cases B to I) occupied

around 20 seconds on the CEGB IBM 370 computer.

The following listings have been retained by the author, as they
form part of the IBM Scientific Subroutine Package, which is

subject to an IBM copyright.

Listing A2.1 Fortran Subroutine Eigen

Finds the eigenvalues and eigenvectors (all real) of a real

_sxggetric matrix. -

Listing A2.2 Subroutine ICC

Listing A2.3 Subroutine MSTR

These Fortran subroutines alloew the conversion from one matrix

storage mode to another.

Further information on the azbove subroutines céh be obtained firom

the author.
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//  MSGLEVEL= r1 1, '
7/ PRTY=(1{,REGION=210K, TIMF=(0,30)
//*MAIN ORG= GEND CARDS=5M0,LINFS= (3.C) CLASS=ANY, IORATE=LOW
//+PROCESS RICONTL
//*PROCESS MAIN
//*PROCESS PRINT
//+FORMAT PR,ONDNAME=SYSMSG, OFST=GEND
//*FORMAT PR,ODNAMF=FTR3F2AL,DFST=GEND
//*FORMAT PR,ODNAME=*ACCOUNT,DFST=GEND -
//*PROCESS PUNCH _
//%xFORMAT PU,DDNAME=FTABFOML,DEST=L0OCAL
//+«ENDPROCESS _
//CLGL EXEC MATFORT,PARM.Gz'DCALNG=1M"
//M, STEPLIB DD UNIT=23330.VOL=SER=PP,DISP=SHR,DSN=PP, MATLAN
//M,SYSIN DD « <

MATLAN Main Program
and MATILAN Subprograms

Fortran Subroutines

- %07 -

MATLAN data cards

/ % . to be read in
//F,SYSIN DD * '
V2 T o

//L.SYSLMOD DD DISP=(NFW.PASS)

/%

//G,FTR8FBOL DN UNIT= (CTF'.DPFFR) DCR tRFCFM F,BLKSIZE=80)
//G,MTLDAF DP UNIT=UT,SPACF=(TRK,(50)),DCB=BLKSIZE=384.

//G,STEPLIB DD'UNIT=3319.VOL=SFR=PP,DISP=SHR.DSN=PP.MATLAN
//G.DATA DD *
/ x ~

Listing A2.h4 MATLAN Job Control Statements

The above card deck executes a MATLAN job, reads in data on cards, calls the Fortran subroutines and punches
cards if required.
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APPENDIX 3%

Subroutines to Punch Matrices on to Cards

MATLAN will read matrices from cards where the first card gives
the matrix name and its dimensions and the remaiﬁing cards contain'the
elements, row by row. For the large matriées being used hand punching was
notApractical 50 Fortran subroutines were written to punch suitable cards
when the matrix to be punched is péssed to the subroutiné as an argument.

Two basic subroutines were written and are shown in Listings A3.1 and

A3, 2,
1. APUNCH
A square matrix is punched on to cards, row by row. E.g. system
matrix A.
2. ey

A vector is punched on to cards. E.g. control matrix B.
Because of the dimensions used in the examplés no other subroutines
were required for bunching MATLAN matrices.

For punching matrices which could be read by the eigenvalue program

GEDES a Fortran subroutine GEDPMN was written which is shown in Llstlng A3 3.

Although normally used for punching square matrices, non-square matrlces can,
be punched if required. The elements are punched row by row together with
.their co-ordinates, with four elements per card. Before GEDPMN was written
a simpler subroutine GEDPCH was written specifically for use with sQuare

42 x 12 matrices. This is shown in Listing A3.4.
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Listing A3.1 and A3.2
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SUSROUTINE APUNCHUA)
DIMENSION A(12,12)
DO 12 I=1,12
N=1

NP=N+3 :
WRETE(B,2) (A{I,J)4J=NsNP}
N=N+4

IF{NEQ.13) 6D FO 12

GO TO 13 :
CONTINUE

FORMAT (4(EZCe10))

RETURN

END

+

SUBROUTINE BPUNCH(8)
DIMENSION B(12)

N=1

NP=N+3

WRITE(8,2) {B(1)s I=NsKF)
N=nN+4

IF(N«EQ«13) GO TO 12
GG TO 13

CONTINUE

FORMAT (4(FE2C.10))
RETURN

END

Fortran Subroutines APUNCH and BPUNCH

These subroutines punch matrices on to cards in a format which can be read
by the MATLAN read commands.
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25

35

45

SUBROUTINE GEDPMN(A)

DIMENSION A(l14.14)

M=14

N=M

I=1

J=1

CONTINUE

IF(JsGTeN) GOTO 10

CONTINUE

11=]

Ji=J

Al=A(1.4)
IF({JeEQaN)«AND (I <EQaM)} GOTO 400
J=J+1 .

IF{J«GTeN}) GOTO 20

CONTINUE

12=1 .
J2=4

A2=A{1,J)

IF({JaEQeN)YANDJ{I +EQeM)) GUTO 300
J=J+1

IF(J.GT.N) GOTO 30

CONTINUE

13=1

J3=J

A3=A(1+3)

IF((J-EQ.N’OANDC(IQEQQN)) GOTO 200 .

J=J+]
IF(J«GT«N) GOTO 40
CONTINUE

Listing A3.3 Fortran Subroutine GEDPMN

100

10

20

30

40

400

300

14=1

Ja=g

AG=A(I4+J)

WRITE(Bs1) (I14J10A912:024A2:134J34A3414,534,4A8)
IF((JeEQeN) +sANDs(1EQeM)) GOTD 500
J=J+1

GOTO S

J=1

I=1+1

GOoT0O 1S

J=1 '

1=1+1

GOTO 25

J=1

I=1+1

GGTO 35

J=1

I=1+1

GDTO 4S5

WRITE(8+s4) (11,J14A1)

GDTO 500

WRITE(QQ3) (11+.U13A1,12402,A2)
GOTO 500 )
WRITE(B+2) (I14J1sA112,02,A2,13sJ3,A3)
FORMAT (4(13+1341PE14.6))

FORMAT (3({13,13,1PE1l4.6))

FORMAT (2(13,1341PE144.6))

FORMAT (I3,13+41PE14.€)

RETURN '

END

An arbltrary matrix of dimension M x N is punched on to cards accordlng to a particular format to allow these

to be input into an eigenvalue program.

- LOT -
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SUBROUTINE GEDRPCH{A)
DIMENSION A(12,12)
DO 12 I=1,12 ‘
N=1
13 NP=N+3
WRITE(S41) (Lo JdsAl(14Jd) sJ=NNP)
N=N+4
IFIN.EQ.13) GO TD 12
GO TO 13 .
12 CONTINUE i
1 FORMAT (40 12,13241PE14.6))
RETURN
END

Listing A3.4 Fortran Subroutine GEDPCH

A less general subroutine than GEDPMN. Punches square 12 x 12
matrices on to cards, with four elements and element co-ordinates
per card. ' '
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2.2

5.1‘

5.2

5.3

Sk
5.5
5.6
6.1
6.2
6.3
6.4
645

71

7.2

73

8.1 .

8.2
8.3

9
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INDEX TO PROGRAM LISTINGS

. Subroutine CONTROL

Subroutine ESTIM (and Output)

Subroutine OPRED

Subroutine TOTSYS

Subroutine TOTCST

Subroutines TOTSDT, PROD
Subroutine POWER

Subroutine SYSTEM

Subroutine ESTIM 2

Subroutine SIMUL

Fortran Subroutine UNIMAT
Fortran Subroutine EIGMAT

Output for SIMUL Test Matrices

Subroutine OTBOIL .

Subroutine - CRANK

Inverse Laplace Transform Program

Cptimal Control Program calling CONTROL

Subroutine SYSOPT

Reduced Estimator Program calling OPRED

Subroutine ADAPT

101

102

124
125

126

158

159

160

173



A.2.1
Ad2.24
A.2.3
A.2.h
A.3.1
CA3.2
A.3.3

AJ3.4
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Fortran Subroutine

Subroutine LOC
Subroutine MSTR
Matlan Job Control
Fortran Subroutine
Fortran Subroutine
Fortran Subroutine

Fortran Subroutine

EIGEN

Stateﬁents
APUNCH
BPUNCH
GEDPMN

GEDPCH

203
203
203
204
206
206

208






