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ABSTRACT 

The optimal estimation theory of the W.~ener-Kalman filter 

is extended to cover the situation in which the number of memory elements 

in the estimator is restricted. A method, based on the simultaneous 

diagonalisation of two symmetric positive definite matrices, is given 

which allows the weighted least square estimation error :to be' -

minimised. 

A control system design method is developed utilising this 

estimator, and this allows the dynamic controller in the feedback path 

to have a low order. A 12-order once-through boiler model is constructed 

and the performance of controllers of various orders generated by the 

design method is investigated. Little cost penalty is found even for 

the one-order controller when compared with the optimal Kalman filter 

system. Whereas in the Kalman filter all information from past 

observations is stored, the given method results in an estimate of the 
/ 

state variables which is a weighted sum of the selected information 

held in the storage elements. For the once-through boiler these weighting 

coefficients are found to be smooth functions of position, their form 

illustrating the implicit model reduction properties of the design 

method. 

Minimal-order estimators of the Luenberger type also generate 

low order controllers and the relation between the two design methods 

is examined. It is concluded that the design method developed in this 

thesis gives better plant estimates than the Luenberger system and, more 

fundamentally, allows a lower order control system to be constructed. 

Finally some possible extensions of the theory are indicated. 

An immediate application is to multivariable control systems, while 

the existence of a plant state estimate even in control systems of very 

low order allows a certain adaptive structure to be considered for systems 

with time-varying parameters. 

Stochastic systems: 

KEYv/ORDS 

1/ 
Multivariable control: 

.. ~ 
• ; . 1 

·t 

Discrete time: Estimation: 

Direct digital control: Once-through boiler: Simple controllers: 

Model reduction: Observers 
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CHAPTER 1 

INTRODUCTION 

1. Outline of Contents of Chapters 

The origina1 work of this thesis is largely contained 

in chapters 3 to 9, and in these a new control system design 

method is derived and assessed. Chapter 2 generates the 

optimum control law for the discrete time plant shown in 

Figure 2.2 and governed by the equations: 

(1.1) 

= Hxi + ? i (1.2) 

The plant state at time i is described by a set of 

variables x(1), x(2), ••••••• x(N) which form the elements of 

the state vector x. • 
1 

Similarly the control ar>.d observation 

vectors are ui nnd. yi respectively, while S i and ~ i are 

Plant disturbaaces. 

The derivation of the optima1 control law follows the 

working of Aoki (reference 1) a1though equiva1ent results are 



- 2-

given by Astrom (reference 2) and Kalman (reference 3), the 

latter giving his name to the filter which generates the 

optimal plant state estimate required by the control law. 

This derivation of the optimal control law is included since 

it forms the basis up~n which the reduced order controller is 

constructed in subsequent chapters. Computer programs were 

written to generate the optimal controller, and the method is 

illustrated by an example of dimension 2, i.e. two variables to 

describe the plant state. These same programs are later used 

in chapter 8 to generate the optimal control law for a large 

dimension plant model. 

The remaining chapters deal with the sub-optimal control 

situation where a simple low order controller is required. 

The cons.truction of such a controller is a more complex 

task than the optimal case, and chapter 3 illustrates the 

problems that arise in the form of multiple minima of the cost 

function. However a promising approach is shown to involve the 

ass1l!Dption of an "a priori" probability distribution for the 

plant state as this allows the control law to be derived as for 

the optimal case. 

This approach is taken up·in chapter 4 for the general 

case in which the controller is able to store some, but not all, 

of its plant information, as this is the restriction which leads 

to a simple low order controller. The implementation of this 

controller based on the theory of chapter 4 and the necessary 

computer program are given in chapter 5. 
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The performance of the controller depends absolutely 

upon the choice as to which infomation to store and an 

appropriate method of making this selection is required. 

Chapter 6 describes a suitable method, which is based upon the 

simultaneous diagonalisation of two symmetric matrices. 

Again a computer program, now more complex, is written, the 

same simple example is used and the method is shown to perform 

very well. 

The content of chapters 4,5 and 6 together form a 

design method which is summarised in Figure 1.1. 

To prove the design method more conclusively required 

a higher order model, and chapter 7 derives a once-through 

boiler model of order 12. The model is deliberately simplified 

and in fact is no more than a heat exchanger. When the design 

method is applied to this model in chapter 8 the structure of 

the low order controllers generat~d can be more easily 

interpreted as a result of this simplification. The low 

order controllers so generated appear, both in terms of cost 

function and eigenvalue plots to be very adequate controllers. 

Unexpectedly some higher order controllers cause the closed 

loop system to be bordering on instability, and this aspect 

is discussed. 

The reduced order plant state estimator developed in 

chapters 4,5 and 6 has a number of similarities with observer 

theory as developed by Luenberger (references 4,5,6) and in 

chapter 9 these similarities are discussed. 

that 

Also it is shown 
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(i) The reduced order estimator is able to 

generate a much lower order estimator than is 

observer theory. 

(ii) When the two have the same order the 

reduced order estimator is not an observer within 

the Luenberger definition. 

(iii) For the same order and for the same design 

criterion the reduced order estimator provides a 

better estimate of plant state than does observer 

theory. 

There are a number of interesting and relevant areas 

which require further study, and these are discussed in 

chapter 10. Particularly important is the generation of 

controllers with suitable pre-programmed gain variations, .and 

a method of generating this simple adaptive system is 

suggested. Also considered are the effects of noise in the 

controller itself and the structure of controllers for 

multiloop systems. 

The remaining sections of this introduction trace some 

of the developments in control theory which have led, to the 

present.situation in which a design technique for low order 

controllers is required. 

2. Control of Plant 

Automatic control of plant is required where either ·oi 
the following apply: 

(a) The task is burdensome on human operators 

and there is an economic case for reducing 

I ... 
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staffing by use of automatic control. 

(b) The response required is fast and this would 

be difficult or impossible for an operator to achieve. 

Different indUstries have different.problems and may 

employ automatic control on account of one or both of the above. 

Fortunately it has been found possible to describe most control 

situations by a common mathematical notation and it has been in 

this notation that the traditional methods of control system 

design have been expressed. Single input, single output, linear 

control systems can be designed with aid ot 

(i) · Simulation of the system on an analogue 

or digital computer 

(ii) Bode or Nyquist stability criteria in the 

frequency domain 

(iii) The "Root Locus" technique· 

The latter method (reference 7) comes closest to 

synthesis of a control system, as the effect of gain changes 

On the system's roots is traced. This method can be extended 

from a pure stability assessment (roots in left half plane for 

stability) to include the desirable attributes of adequate 

damping and sufficiently fast response. 

J!oaenbrock (reference 8) has been able to "extend the frequency 

domain description to multivariable systems (i.e. those with more than 

single inputs and single outputs) and some of these techniques are 

. discussed in section 7 below. In reference 9 the approach is 

enhanced by the use of interactive computer graphics. 
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Raving carried out a study using one or more of the above 

techniques a simulation may be decided upon to assess the effects 

of any known non-linearities, for example controller dead-bands or 

actuator rate limits. This simulation would also allow. the effects 

of control system failures to be assessed. Further the simulation 

. would al.low typical disturbances to be injected, such as, for an 

. .aircra£t control system, wind gusts. 

It is at this stage that. shortcomings of a control 

s15tem often appear. The controller, by means of derivative 

tel'IIIB, may give a very stable system but in response to normal 

disturbances may have an entirely unsatisfactory response. To 

overcome this sort of difficulty a more direct approach has been 

developed, for example as set out by Aoki (reference 1) and has 

come to be known as "Optimal Control Theory". 

}. Optimal Control Theory 

!he approach here is to synthesize a control system 

directly by first defining 

(a) the performance criterion, or cost function 

(b) the typical plant disturbances 

Taking the example of an aircraft height control system 

a control law can be derived which will feed back to the control 

surface the filtered sum of the available measurements in certain 

proportions. These m.ight include pitch and pitch rate from 

gyro signal.a and height information from an al.timeter. 
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The plant state is simply defined by relatively few parameters 

in the case of the aircraft system, and it was in such a context 

that optimal control theory was developed. Because it is found 

that the dynamic system which forms the controller must have the 

same dimension as the plant itself, the implementation of the 

theory in cases where the plant model has large dimension is 

relatively rare. Blomnes et al (reference 10), however, report a 

field application in the ca.Se of a nuclear power station and Herbrik 

and Jamshidi (reference 11) report a theoretical study for a once­

through boiler. 

The theory aims to control the plant over a given period 

or for a certain number of time steps. This will be relevant 

for a landing or docking manoeuvre but in many instances the 

control period is infinite, such as for a long-running chemical 

process or a power station. Curiously the theory in this case 

is hardly simplified at all, it is merely a question of omitting 

suffices from certain, otherwise time-varying, quantities. 

Instead of the optimal feedback gains over a period being 

generated, an asymptotic feedback gain is found, and if desired 

direct methods, as discussed in section 9 below, may be utilised 

for its determination. 

4. Model Building and Reduction 

As part of a simulation study there may be a requirement , 

to fit a plant model to a given size analogue computer. Or 

digital computer costs may require a small model which is 



- 8-

representative of a large dimension plant. In addition to these 

rather basic reasons for requiring some reduction in model size, 

there follovs from the optimal control theory approach the 

consequence that if the model dimension can be reduced then the 

controller dimension will be _similarly reduced, and the control 

system therefore simplified. 

A number of methods are available. Davison (reference 12) 

has suggested a method which allows system eigenvalues far from 

the origin to be neglected. Such a modal approach is also used 

by Porter and Crossley (reference 13) in applications to 

control system design. 

Wilson (reference 14) considers the open loop model reduction 

problem and gives a method which minimises the weighted mean square 

difference between outputs of the model and the original system. 

·- . -The method-of· Mitra-(reference-'15)-involves-projection on 

to subspaces and in reference 16 Mitra applies this method to a 

power station boiler system. It is interesting to note that 

this method,· which is in continuous time, involves a simultaneous 

diagonalisation of two positive definite matrices. This is also 

a step in the reduction method of chapter 6. 

Rickin and Sinha (reference 17) give a method whereby 

the first few Markov parameters (coefficients of the Taylor 

expansion in the Laplace operators of transfer function) of 

the two models are matched. 

When reducing the order of the model some criterion is 

required since clearly almost any·approximation is a candidate. 



!. 

- 9-

In the context of control theory it should in principle be possible 

to apply a criterion which will give a model most suitable !or 

the purpose to which it is to be applied, that is as part of the 

control system design method following the optimal control theory 

approach. Mitra refers to the desirability of such a criterion. 

A novel approach to modelling is adopted in chapters 4 

and 5. In effect the modelling is integrated into a control 

system design method and the requirement to generate a model 

explicitly is dropped. However since the order of the dynamic 

system forming the controller has been reduced a low order model 

must be present implicitly, and some further analysis is carried 

out in chapter 9.which allows a view to be taken of this implicit 

model. 

5. Random Disturbances 

As vas pointed out above a perfectly stable control system 

may be found to respond undesirably, perhaps due to a derivative 

term, when a disturbance is applied. In general a system may 

be subject to several such disturbances simultaneously and a 

convenient method of expressing these disturbances is to use 

random variables in the analysis and to define the statistical 

properties of these by means of their probability distributions. 

'l'he system is now termed "stochastic11 and cost !unctions are now 

expressed in terms of expected values~ 

All control systems have a set point and the manner in 

which this is varied will be relevant to the control system 

design. The stochastic plant model will be able to embrace this 

feature and so will allow this disturbance, as it truly is, to 

be balanced against others. in the process of control system desi~ 
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. · The stochastic system description is employed in the 

theoretical work of all chapters as, for the reasons given above, 

it appears to be the most general and most relevant to control 

system design. However deterministic systems are not excluded 

from consideration since if a particular system input is to be 

studied for its effect, this input may be given a variance, and, 

perhaps with other disturbance variances made small,. the resulting 

Yariances of the state variables may be studied. This is, in 

effect, equivalent to obtaining the system step response. 

The development of the probability distributions involved 

is based on a "Bayesian" view in which an "a priori" distribution 

is assumed initially, and this distribution is updated as further 

observations are made. An exposition of the Bayes approach is 

given by Raeside in reference 18. 

A more· general· view· of a-stochastic··system·would-illclude---------­

random changes in the plant characteristics themselves. Such a 

rlew was taken by Fel'dbaum in reference 19, where even a simple 

system is found. to require extensive on-line computation in order 

to determine the optimal control law. Adaptive control must 

therefore be seen as requiring considerable theoretical effort. 

However such an approach is particularly relevant to the building 

of low order models since an adaptive controller could attempt 

to answer the question: "What characteristics of the plant are · 

to be determined for adequate control?" If one initially has 

little knowledge of the plant this is a daunting problem. However 

this learning situation confronts humans continuously, and 

clearly humans are able to evolve suitable control methods. 
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There would seem therefore to be no reason why this process could 

not be automated in a fully adaptive control system design. 

Apart from a short discussion of simple adaptive control 

in chapter 10, this aspect is not considered further in this 

thesis, but a full understanding of low order controllers would 

seem to be useful contribution to adaptive control since in 

this way there are fewer control parameters whose values require 

optimiaing. 

6. Direct Low Order Control Derivations 

From section 4 above it· is clear that low order control 

· may require either a model reduction step, or alternatively an 

estimator reduction step. Several more direct methods have been 

given whereby a low order controller is assumed and ita 

parameters then adjusted to optimiae a criterion. A computer 

aided design method for various cost functions is suggested by 

Bereznai and Sinha (reference .20). 

Jameson and Rothschild (reference 21) give a method but 

the designer still needs to specify part of the control structure. 

By far the most promising direct method is that of 

lnrtaran (reference 22) who, for the discrete time case, finds 

conditions for optimality. However it is stated that no method. 

is currently available to find a solution, and this is 

1mderatandable in view of the multiple solutions shown to exist 

in chapter 3. 

A gradient method using the Fletcher-Powell routine for 

the deterministic system is given by Berger (reference .23) and 

it may be that such a technique could be used to find the Kurtaran 

solution. 
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7. Multi-loop Systems 

By ita structure, optimal control theory will generate 

plant control inputs which are functions of all the plant outputs. 

In practice, however, a preferred method is to control one output . . 

using perhaps only one input. One finds frequently then a 

multi-loop situation and this has the following advantages: 

(i) Reliability: a failure of any one component 

will remove from service at most one control loop, 

.which will then be controlled manually. 

(ii) Flexibility: during plant start-up control 

loops may be introduced one by one, allowing any 

problems to be solved on one loop before passing 

to the next loop. 

Optimal control theory promises to give a performance 

that is better (in some defined sense) than the multiloop 

system. However before such methods can gain acceptance some 

consideration will be required in the above two areas. 

If, in a control system, failure of a single transducer, 

for example, causes the whole plant control system to be removed 

from service this is clearly undesirable. One is led to the 

conclusion that a stand-by system is required which would have 

its own set of transducers. Some form of updating of the 

stand-by system would ensure. that it would be able to take over 

without unduly disturbing the plant. 

A different approach, and one which would allow.the loops 

to be introduced one by one, is based on the work of Rosenbrock 

(reference 9) where, by forming simple filtered combinations of 

control or output variables, the frequency domain .input - output 
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11,-stem matrix is constrained to be "diagonally dominant". By 

utilising a computer graphical display to generate "Gershgorin 

bands", which quantify the degree of diagonal dominance, the 

best design may be found interactively. This technique is 

particularly powerful since it makes possible the design of each 

loop separately, there now being little interaction between· these 

loops. 

Because some interaction will remain the system will not be 

optimal, but nevertheless will be close to optimal and will have a 

relatively simple structure. A system designed in this way will, 

in common with those designed by optimal control theory, be prone 

to low reliability since a single transducer may affect several 

loops. The use of several transducers, one for each input loop, 

for.each output measuring point would seem to overcome this 

problem, but would introduce additional installation and maintainance 

costs. 

Thus the use of more complex controllers such as envisaged 

in optimal control theory appears "to imply some hardware costs in 

terms of extra equipment, and in any application this must be 

balanced agaiust the potential improvement in control system 

performance. 

8. Simple Controllers 

As mentioned above the optimal control theory approach 

will lead to controllers with dimension equal to that of. the 
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plant model, whereas it is known that good 3-term control 

is obtainable (i.e. derivative, proportional and integral terms). 

On asking why this is so one is led to the conclusion that 

while the three term controller is sub-optimal it. may often 

be only marginally so. To construct such a simple controller 

rigorously in the style of optimal control theory-appears to 

require even more complex analysis. 

Borg and Giles in reference 24, seek to show that three 

term controllers are a special case of optimal control theory, 
.. 

but the approach is not constructive in general since a plant 

model of order 3 is used. Considerable advances have been made 

in chapters 4 and 5 where the optimal control theory approach is 

extended to yield a simple controller while still maintaining 

the optimal control theory advantages, namely 

(i) An estimate of plant state is available 

(ii) A synthesis method will not require lengthy 

hill climbing to obtain the best control gains. 

9. Computer Methods 

The manipulation of matrix equations is a central part 

of optimal control theory. To assist in computer implementation 

the MATLAN matrix handling package is used. -This package is 

tnlly described in reference 25, while a summary of those 

statements which have been used is given in Appendix 1. The 

package is designed to be efficient for large matrices where 

the required storage becomes large. This is particularly 

encouraging from the point of view of control theory since as 

confidence is gained larger dimension plant models can be 

contemplated. 
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The discrete time matrix Riccati equation occurs in 

connection with optimal control and estimation and is of the 

form 
I -1 -1 

X. 1 = [(AX.A + Q) + B) 
1 + 1 

(1.3) 

If control over an infinite period is being studied then 

it becomes the asymptotic solution of this equation that is 

required. In all chapters this asymptotic solution is simply 

obtained by iterating equation (1.3) until convergence is 

achieved, as the main interest will be the demonstration of 

viable methods of control system design. However the inclusion of 

direct techniques for solving (1.3) would be straight forward. 

For continuous time systems the Riccati equation, analogous 

to the discrete time equation (1.3), is given for example by 

Barnett (reference 26) as 

dX I 
rt=AX+IA-XBI+Q 

Barnett also· indicates some methods of solution, for example the 

explicit solution (based on characteristic roots) due to Potter 

(reference 27) and O'Donnell (reference 28), and iterative methods 

using Newton's approximation. Repperger (reference 29) has suggested 

a novel approach to this problem. Analogous methods for the discrete 

Riccati equation (1.3) would give a computational improvement over 

the simple asymptotic method used in this thesis. 

The foregoing considerations concern off-line computing 

methods but consideration must be given also to on-line methods. 

The development of relatively cheap small computers has le.d;.l to 

the choice of D.D.C. (direct digital control) in preference to 

analogue methods in many current control designs and for these 
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the generation of control laws in discrete time is more useful 

than a continuous time approach. Although a derivation of low 

order controllerd of continuous systems, along the lines of chapters 

3, 4 and 5 is probably not difficult this has not been attempted in 

this thesis as D.D.C. is seen as the more likely application. 

For this reason in deriving the discrete-time model of the 

once through boiler in chapter 7 the control input is specifically 

assumed to be fixed for the duration of the time interval. 
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CHAPI'ER 2 

OPTIMAL CONTROL AND ESTIMATION 

1. Introduction 

In this chapter the control and estimation of a linear discrete 

time stochastic system is considered. The optimal control structure is 

shown to be separable into an estimator section and a control section. 

In subsequent chapters in which the estimator is no longer optimal this 

separation will no longer apply. The derivations set out here are taken 

from Aoki (Reference 1). Since the results will be frequently referred 

·to and will be illustrated by examples they are included here for 

completeness. They are also set out here since the optimal case will be 

used as a basis. for comparison with sub-optimal cases. 

~e system considered is 

(2.1) 

where ~ is an n - dimensional state vector 

;· · 'Ui ·is a p - dimensional control vector 

and where ~i is an independent random disturbance .vector distributed 

normally with zero mean and covariance matrix Q. 

Xi will be·observed by ari observation vector Yi according to 

:r i = Hxi + TJ:i. (2.2) 

where~i is an independent random disturbance vector distributed normally 

with zero mean and covariance matrix R 

The performance criterion is 

J= 
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where E represents expectation 

. J = E Iwi 
1 

I I 

where Wi = Xi Vxi + Ui-1 Pui-1 

and where V and P are positive definite n ~ n and p M p matrices respectively. 

The various system matrices A, B, Q, R, H, V, P may be made 

time-dependent with no modification to the derivations. For simplicity 

of presentation, however, suffices have been omitted, which implies that 

these matrices do not vary with time. 

2~ Required Matrix Inversion Formula 

A formula which will frequently be used in this and subsequent 

chapters is derived as follows:-

Let X = A-1 • A-1 B (C-1 + B1 A-1 B)-1 Bl A-1 

. ' Then the product X (A+BCB ) 

= I + A-1 BCB 1 
- A-1 B (C-1 + B' A-1 B)-1 (B 1 + B1 A-1 BCB 1

) 

= I + A-1 BCB 1 - A-1 B (c-1 + B' A-1 B)-1 (C-1 + B1 A-a) CB 1 . 

=I+ A-1 BCB 1
- A-1 BCB 1 

= I 
It follows that 

(A + BCB 1)-
1 = X 

= A-1 - A-1 B (C-1 + B1 A-1 B)-1 B A-1 

which is the required formula. 

3• Required Probability Relation 

(2.4) 

A result concerning expected values will be required. This 

result is obtained.as follows:­

E (xla) = Lx x p (xla) d x 

= Ixx Lb p (x, bla) db dX 

= Jx x Jb p (xla, b) p (bja) db dx 

using the chain rule of probabilities. 

• • 
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In the inner integration x is fixed while integration is 

carried out over the range of b. It is therefore permissible to move x 

within the inner integration to give 

E Cxla) = fx Jb x p (xla, b).p (bja) db dx 

Interchanging the order of integration 

E (xja) = Jb fx x p 'cxla, b) p (bla) dx db 

. Since p (bla) is independent of x it may be taken outside the 

inner integration to give 

E (xja) = Jb p (bja) Ux x P (xla, b) dx ]db 

= Jb p (b la) ~ (x!a, b) ]db 

= E ~ (x la, b) la] (2.5) 

This is the required result. 

4. Qptimal Control Law 

Let the information state of the system at time i be written as 

Ifi• This is useful when considering probability distributions based 

upon' this information. For a system with a complete memory Ifi will 

consist of all past observations Y~· For a memory system which is not 

perfect Ifi will contain less information than this. 

Using the principle of dynamic programming, this method of analysis having 

been set out in a book by Bellman (Reference 30) XN is evaluated first. 

AN= E (WN!IfN_1) 

t • ... ' 

~ E (x N VXN + u N-1 ~-11IfN-1) 

= E[(~-1 + B~-1 +i;;N-1)
1 

V (AXN-1 + B~-1 +i;;N-1) 

+ ~~1 ~-11IfN-1] 

[ ' ' = E X N-1 A VAXN-1 ' ' + 2 X N-1 A ~-1 
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' + E 1;; N-1 V ~-1 (2.6) 

where other terms in ~-1 vanish since tN_1 is an independent random vector 

' This expression is now manipulated to form a square in u N-1• 

·This is analogous to "completing the sq1,1are11 for a quadratic expression. 

0[ • -1 • ] • • I· • -1 • ] ~ = El uN_1 + (P+B VB) B VA"N_1 . (P,.+B VB) uN_1+(P+B VB) B VA"N_1 

' [A' . ' ' -1 ' J I J + x N-1 VA - A VB(P+B VB) B VA "N-1 IfN_1 + trace QV 

The trace of a matrix is the sum of its diagonal elements and 

is used above as a convenient alternative to L: L: Qj.v .. . . ~ ~J 
~ J 

+ trace QV (2.7) 

where AN_1 
' )-1 ' = (P + B VB B VA (2.8) 

' (2.9) T1 =P+BVB 

D ' ' 1 ' (2.10) 1. 
= A VB (P + B VB)- B VA 

I 

' (2.11) and I1 =AV.--n1 

The first term in the expression for AN is a positive definite 

quadratic form so it has a minimum value of zero. Consequently AN is 

minimised when "' 

~-1 ;, -A N-1 "H-1 (2.12) 

This is the required control law when "N-1 is known. The 

feedback control system implied by this equation is shown in Figure 2.1. 

·In the system being considered "N-1 is .known only as a result 

of the observations yi' that is the information about "N-1 may be 

expressed as the probability distribution 
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Let this distribution be Gaussianwith mean ~N-1 and convariance 

matrix rN_1• 

Then 

AN = ~ [( ~-1 + 11N-1~N-1 + JIN-1 

+ x'N-1 11XW-1IIfN-1J + trace QV 

• 
= (~-1 + I\N-1~N-1) T1 (~-1 + ,\.N-lN-1 ) 

+ 2 E [ (~-1 + AN-~N-1.)' T 1 AN-1 <xw-1-v.N-1~ IfN-1 J 
+ E[<xw-1-~.N-1)' A\•{-1 T1 AN-1 (XW-f~N-1)1 IfN-J 

• 
+ E X N-1 11 XW-1 

+ trace QV 

Now E <xw_ 1-~N_ 1 ) = 0 and if v1 ~s defined as 

v1 =trace Qv+ E[<xw-f+.IN-1>' n1 <xw-11-IN-1)1IfN-J 

then 
' I 

•• 
AN= (~-1 + ~N-~N-1) T1 (~-1 + 1\N-~N-1) 

+ E [ x 
0

N-1 11 XW-1IIfN-J + v1 . 

(2.13) 

As before AN is minimised if the first term on the right hand 

side, which is a positive definite quadratic form, is made zero. 

This is achieved by setting 

u.__ - - A J..l_ 
If-1 - N-1· N-1 (2.14) 

Let the corresponding minimum value of AN be denoted by yN*' i.e. 

Y
._miny 

N - . N 
~-1.. . . ,. 

= E[x'N-1 I1 XW-11IfN-J +~ 
It is now necessary to find the optimal control vector uN_2 

for the preceding point in time. Let 

YN_1 = E[WN + WN_11IfN-J 
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• 
= ~-1 + E (KN iifN_2) 

= EG'N-1v~-1 + u'N-2~-21IfN-2 + E (yN·IrrN-2) 

= E[x'N-1(V+I1)~-1 + u'N-2~-2 + v11IfN-2~ 

In the above the relation (2.5) E[E(61IfN_1 )1IfN_2~ = E(ajifN_2 ) 

which was proved in section 3 has been used. 

and 

Proceeding as before it follows that 

YN~1 = E[x'N-2 12 ~-2 + v2IIfN-2J (2.15) 

(2.16) 

where P (x,.;]
1
IfN_2) is Gaussian with mean flN_2 and covariance matrix rN_2 
I 

and where r
2 

=A (V+ r
1

) A -n
2 

n
2 

= A
1 

(V+ r
1

) B (P + B
1 

(V+ I
1

)B )-1 B
1 

(V+ r
1

) A 

A~_2 = (P + B
1 

(V+ r
1

) B)-1 B
1 

(V+ r
1

) A 

V 2 = ~ + trace (V+ r
1

) Q 

+ E [<~-241N-2) 1 
112 (~-241N-2)1 IfN-2~ 

Continuing in this way all optimal control vectors can be 

calculated so that in general 

Yi:1 = E [xi' ~-i xi + vN-i I rrJ 

• 
ui = - Ai fli 

where 
t 

~-i = A (V+ ~-i-1) A - nN-i 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

nN-i =A' (V+ ~-i-1)B[P + B' (V+ ~-i-1)B~~1 B' 

Ai = [p + B' (V+ ~-i-1)BJ1 B' (V+ ~-i-1) A 

vN-i = vN-i-1 + trace [cv + ~-i-1) Qi~ 

(V + ~-i-1 ) A (2.; 

(2.25) 

+ E [<x1 - fli) 
1 

nN_1(x1 -- fl 1)i If J (2.26) 
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The probability distribution of x.,p (x.IIf.),i~ Gaussian with 
1 1 1 

mean ~i and convariance matrix ri. 

'All the feedback coefficients may be obtained in this way. In 

the case of perfect observation the coefficients may be calculated 

independently of the probability distributions p (xillfi). 

The structure of the control system is shown in Figure 2.2. It 

can be seen that the estimator and the controller are separate and in 

addition that the controller feedback gains are those which are applicable 

to the determinate case. This property is sometimes called the "certainty 

equivalence principle", (Reference 1). 

5• eptimal Estimator 

To provide the above conditional means~. for the controller an 
1 

estimation system is required to accept the new observations y. given by 
. 1 

equation (2.2), i.e. 

:ri = Hxi + Tji 

·suppose the state-variable distribution at time i is given by p (xilyi) = 

const. exp [-l (x.-f.L.)' r. - 1 (x.-~. )lthat is, the distribution is (2.27) 
. 1 1 1 1 1~ 

Gaussian with mean~i and co~variance matrix r .• 
- • 1 

The notation yi has been used to abbreviate yi' yi_1 •••••• y
0

, 

that is all past observations. 

Following the observation yi+1 it isn:cessary to calculatep (xi+.J:ri+
1

) 

the state variable probability distribution for the next point in time. 

By the chain rule of probabilities 

p (xi+1lyi+1) = P (xi+1lyi+1' yL) 

P (xi+1' Yi+1lyr) 
= p (yi+1iyi) (2.28) 
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·The numerator may be. found from 

P (xi' xi+1' Yi+1lyi) = P (xi+1' Yi+11xi' yi) P (xilyi) 

I i I i i · 
= p (yi+1 xi+1' xi' Y ) p (xi+1 xi' Y) P (xily) 

= P (yi+11xi+1) p (xi+11xi) p (xilyi) (2.29) 

Integrating this with respect to xi gives the numerator of (2.28) 

p (xill> is const. exp[4 (x.-f.L.)'r.-1 (x.-!li)l 
J. 'J. J. . J. J 

. [ ' 1' ~ p (xi+11xi) is const. exp 4<xi+1 - Axi - Bui) Q- (xi+1 - Axi - Bui)j 

.P (yi+11xi+1) is const. exp[ 4Cyi+1 - Hxi+1)'R-
1

(yi+1 - Hxi+1 )~ . 

The numerator in (2.28) may therefore be written 

J const. exp C4 Ei) dxi 

where 

Ei = (xi - ll i) 'r i -1 (xi - ll i) 

+ (xi+1 - Ax1 - Bu1)'Q-1 (x1+1 - Axi- Bui) 

+ (yi+1- Hxi+1)' R-
1 

(yi+1- Hxi+1) 

To allow integration by x1 this expression must be re-arranged 

as follows:-

Ei = (xi - ll i) 'r i -1 (xi - ll i) 

+ (xi+1 - AJ.Ii- Bui- A(xi- J.Li)) 'Q~ 1 (xi+1 - 411 -"Bui- A(xi -lli)) 

) ' -1 
+ (yi+1 - Hxi+1 R (yi+1 - Hxi+1) 
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Writing r
1
- 1 = ri-1 +A 

1
Q-1 A then by completing the square (2.30) 

Ei = Gi - f1i - riA ~Q-1 (xi+1 - Afli - Bui) J Ti-1Gi - fli - ri A ~Q-1 

.xi+1 - Afli - Bui~ 
) 

I -1 I -1). 
+ (xi+1 - A{.li - Bui (Q AI' iA Q (xi+1 - At•i - Bui) 

+ (yi+1- Hxi+1)
1

R-
1
(yi+1- Hxi+1) 

Performing the integration with respect to xi 

I exp [ 4 Ei] dxi = const. exp [ 4 Ei 
1

] 

I 

where Ei - (xi 1 - Afl. - Bu.l 1M.-1
1 (x. 

1 
- Afl. - B .) + ~ ~ ~+ ~+ ~ ~ 

( ) 
I -1 

+ yi+1 - Hxi+1 R (yi+1 - Hxi+1) 

and where M. - 1
1 

= Q-1 ~ Q-1 A T. A 
1 
Q-1 

~+ ~· 

= Q-1- Q-1 A [ri-·1 + AIQ-1 A]-1 A'Q-1 

I -1 
= (Q +A ri A ) 

.·using the matrix relation of section 2 

The expression (2.32) must now be further re-arranged. 

' >' -1 Ei = (xi+1 - Afli - Bui Mi+1 (xi+1 - Afli - Bu1) 

(2.31) 

(2.32) 

+ (yi+1-H(Afli+Bui)- H(xi+1-A~1+Bu1 ))
1

R-1 (yi+1-H(Afli+Bu1)-H(xi+1-Afli+Bu1)) 
( ) 

I -1 I -1 = x1+1 - Afli - Bui (M1+1 + H R H) (xi+1 - A(-Li - Bui) 

( ) 
I I -1 

-2 x1+1 - Afli - Bui HR (yi+1 - H(Afli + Bui)) 

+ (yi+1 .- H(Afli + Bu1)) 
1
R-

1 
(yi+1 - H(Afli + Bu1)) 

-1 -1 I -1 
Let r1+1 = Mi+1 +HR H 

Then, completing the square 

Ei 
1 

= [xi+1 - Afli - Bui- r1:~ H
1

R-
1 ~:i.+1 - H(Afli + Bui)] 

X ri:~ ~i+1 - Afli- Bui- ri:~ H
1

R-
1 ~i+1 - H(Afli + Bui>] 

+ (y.+
1

- H(Af.\. + Bu.))
1
(R-

1
-Hri 

1
n'R-1)(yi 

1
-H(Afl. + Bu.)) 

~ ~ ~ + + ~ ~ 
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After integration with respect to x1+1 

J exp ~ 4 Ei 
1

] dxi+1 = const~ exp [ 4 E;i.
11

] 

11 . I -1 
where E. = (y. 1 - H(A\l.+Bu.)) E .+1 (y.+1-H(Af.l. + Bu1) 

1 1+ 1 1 1 ·1 1 

E -1 -1 -1 I -1 and where i+1 • R - R H ri+1 HR 

Thus p(yi+1 ly
1

) = const. exp -~ Ei . [ 'J 
and from (2.28) 

p (xi+1~yi+1) = const. exp[ 4(xi+1 - fli+1) I r i:~ (xi+1 fli+1)J 

where fl i+1 = Afli + Bui + r i+1H 
1
R-

1 
[ y i+1 H(Af!i + Bui ~ 

and r.-1 = (Q+Ar A
1
)-

1 +H
1
R-1H· 

1+1 i. . _/ 

(2.35) 

The required probability distribution for the next time interval 

has thus been obtained. The equations (2.35, 2.36) provide the relations 

necessary to calculate all future means and covariance matrices. The 

discrete time filter system is shown in Figure 2.3, and this filter generates 

the conditional meam recyired by the control system. 

6. E?Cample 

A simple example is considered here. The reasons for doing 

this are firstly to provide an illustration of an optimal controller and 

in subsequent chapters illustrations of the effect'of modifications of 

this controller and secondly to provide a means of checking computer programs. 

The example chosen is shown in Figure 2.4. 

The example chosen is the combination of two devices each of 

which performs a purely additive function. Hence there is a similarity 

with a double integrator continuous system and this similarity becomes - •' 

rigorous for a sufficiently small time interval. The example has 

divergent properties when uncontrolled and can be said to be similar to 

a number of familiar systems. 
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The equations are 

(x1)i+1. = (x1)i + ui + <~;;1)i 

(Xz)i+1 = (x2)i + (x1)i + (f;;2)i 

·This system may be written in the form 

xi+1 = Axi + Bui + l;;i Yi = Hxi + ?i 

A = c ~) • B d (~) and H = (0 1.) 

If the aim of the control system is to restrict the value of 

x2 then a suitable cost function matrix is 

V =·c ~) 
The remaining cost, the cost of control,is chosen as 

.p = 3 

·This·value is chosen in order to give a simple asymptotic solution for the 

optimal controller (equation 2.23, 2.24 and 2.25). The controller is 

given by 

I=(~ ~ 
n = G '!) 

.. ,.,..· and.fl. =- (1, j-) .. •·· 

The example is interesting in that the elements ofn show the 

importance of being able to estimate the current value of x1 , in 

comparison with the estimation of x2• 

For the optimal estimator the following values of the 

variances of the disturbances are chosen 

Q=C ~)andR=4 
With these values the asymptotic solution of the equation for 

the estimation variance (equation 2.36) is 

The optimal control and estimation system for this example is 

·shown in Figure 2.5. 
.~ .· .. 
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7. Optimal Control Subroutine CONTRL 

The I.B.M. System/36o Matrix Language System, MATLAN, 

(reference 2' has been used to implement the recursive equations 

(2.23, 2.24 and 2.25) for the optimal controller. The subroutine CONTRL 

accepts the system matrices A, B, the control costs P,V, and a particular 

value of I and computes the values of I and PI for the previous time point 

according to equations (2.23 and 2.24). The detail of the subroutine is 

shown in listing 2.1. 

The subroutine was checked using the example. A program was 

written which read in the various matrices from punched cards, called 

CONTRL;. and printed the resulting values of I, PI and IAMDA. When 

the asymptotic value of I, 

was read in, the program computed new values of I and IAMDA which agreed 

with the above example. 

A note explaining the meaning of the MATLAN statements used in 

the computer work is given in Appendix 1. 

8. Optimal Estimation Subroutine ESTIM 

In a similar way a subroutine ESTIM was written to solve the 

equation (2.36). The subroutine accepts the system matrices A, B, H, Q, R 

and a value of G, the covariance matrix of the optimal estimator. The 

subroutine then calculates the next value of the covariance matrix according 

to equation (2.36). 

A listing of the subroutine, the main program which calls ESTIM, 

and the program output is given in listing 2.2. The 2 x 2 example of 

section 6 was used and found to be computed correctly. The subroutines 

CONTRL and ESTIM were now available for use with larger systems. 

PL 
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9. Plant Models and the Kalman Filter 

1he "conditional mean generator" developed in section 5 and 

shown in figure 2. 3 is frequently referred to as the "Kalman Filter". 

This follows from the papers by Kalman where this technique was 

developed (ref. 3).· The filter requires a model of the plant to be 

set up and for the model to be updated with information from the observed 

state of the plant. The corrections are in fact proportional to the 

degree by which the observation does not coincide with the expected 

value of the observation. This is clearly seen in Figure 2.5, 

illustrating the example system, where the means ;-t1 and f-
2 

form a 

model of the plant analogous to x1 and x2 , and are updated according 

to the difference between y and its expected value. This expected value 

is itself generated by the model. The Kalman Filter thus has a special 

appeal since the. mathematics has generated a system whose functioning 

is seen to perform in a perfectly understandable fashion. This must 

set the method apart ·from methods of filter design based upon optimising 

techniques where the best parameters are found by searching methods. 

It should therefore be possible to utilise this structure of the Kalman 

Filter when other constraints are. put upon the system, such as a requirement 

for the filter to cope with changing plant parameters • 

• 
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STMT 

1 
2 
3 
4. 
5 
6 
7 
13 
9 

10 

11 
12 
13 
14 
15 
16 

MATLAN ::TAT!;ciVENT 

~UE~f<O 

ADD 
IIIUL T 
lf.'l\"5 
IVULT 
llllJL T 
IVULT 
A()() 

CIV 
lfMNS. 

IVUL l 
TRA"S 
"'ULT 
::uo 
f<t: TURN 
END 

- 34 

CONH<L(A,o,p,v, IoLA~DA,FI) 
v.r .vr 
VI,!I,~.A 

o,er 
ET,~AoE!A 

~r.e.~11 

BT,~H,B[l 

P,Be oi=fl 
PB,S.AoLAMOA 
BAoAfJ 
ABoLAIVDAoPI 
!I oAT 

.AT,V.Ao.AA 
!I.A,FI,I 

Listing 2.1 Subroutine CONTRL 

Calculates the optimal control la¥ according to the recursive 
equations (2.23) and (2.24). 

-~· .-~-~ -----· 



STMT 

1 
2 

4 
5 

STI1T 

1 
2 
;: 
4 
: 
6 
7' 
8 
c; 

10 
11 
12 
t:: 
14 
1!:: 

Listing 2.2 

MATLAN SlAlEME~T 

MA1"LAN 

f>IAI~ 
READ 
~RITE 

CALL 
~RI lE 
END 

~lA TEf>IE 1\1 

SLBFRD 
1RAI\5 
"ll 1 
MLL 1 
ADD 
f>ll.Ll 
lRAI\S 
f>llll 
ACD 
DIV 
TRA~ S 
I'll 1 
SLB 
1'": lL RN 
END 

Subroutine ESTIM 

35 -

(f.A,8,H,CeR,G) 
(A,B.~,c.~,G),FCRMAT=I5 

E=Tlf>I(A,n,H,Q,r.,G,Gh=XT) 
G~EXT,FCt.~AT=A5 

E!TIM(A,~,H,C,~,G,G~EXT) 
A ,AT 
G,Jr.T,GA 
A,GA,ftA 
C ,I\ 'I ,GC 
H ,GC ,1-'G 
H ,HT 
HG,HT,HH 
R ,HH , I'H 
f<H,HG,RG 
HG tHT 
HT,RG,GG 
GC,GG ,Gf'.r:XT 

Calculates the optimal estimator matrices according to 
equation (2.36). 

Output of the subroutine for the example system. 
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H 

a 

1 
2 

1 

1.00'JCE 00 
1.0000E OC 
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DIMENSICH~~ : ( 2• 2) 

2 

o. 0 
1. IJ 00 CE 0 0 

END OF MATRIX A 

DIM;::NSIONS = ( 2. 1) 

1 

1· 1.000CE 00 
2 o.o 

1 

1 
2 

EN C 0 F M A TR t X l3 

0 H~EN S ID N S - ( 1 • 2 ) 

I 2 

o.o 1.ococc oc 

EN C 0 F MA TR I X H 

1 

1.000CE CC 
o.o 

l>HlENS!ONS = ( 2. 2) 

2 

o.c 
4. ococc -eo 

ENC OF MATRtX a 

DI~1ENSIONS : ( 1. 1) 

1 

1 4.CO'JCE 00 

END QF MATRIX R 

· Listing 2.2 (continued) Output of Subroutine ESTIM 



G 

1 
2 

GNI'OXT 

1 
2 

37 

DH1EIISIOW: = ( 2t 2) 

1 

~ .ooo OE 00 

loOOOCE QC 

2 

loOCOCS CO 
;. OOOCE CC 

END CJF MATRIX G 

DH1ENSI::JN~ = 

1 2 

~.OOllOE cc loOCOCE cc 
loOOOCE 00 3o0COCE eo 

ENC OF MATRIX GNEXT 

( 2. 2) 

Listing 2.2 (continued) Output of Subroutine ESTIM 
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CHAPTER 3 

SYSTEMS ~IITH IHPERFECT MEMORY 

1. The Non-Classical Information Pattern 

In the previous chapter the optimal design of a linear 

stochastic control system has been considered and the design has been . 
shown to be separable into the design of an optimal control law and 

the design of an optimal estimator. The control law is that law 

which applies in the deterministic case and this property has been 

' 
call~d the "certainty equivalence principle". 

The optimal estimator will have the same dimension as the 

system being controlled. In order to represent the system, or plant, 

accurately in an analysis its dimension could become very large, 

for example if finite difference methods are being used. However, it 

is difficult to justify using such a large order estimator, and consequently 

such a large order control system, in practice as it is known that a 

control system of order two or three is usually satisfactory. A control 

system which has a smaller dimension than that of the system it 

controls corresponds to an estimator which has an imperfect -memory. 

Witsenhausen (Ref ._31) has called the optimal estimation system of 

Chapter 2 the "classical information pattern". This title applies 

to an estimation system which is able to store all information that 
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it receives. The structure of optimal controllers is considered when 

the information pattern is non-classical. To illustrate the problems 

that are encountered in the non-classical situation Witsenhausen 

uses a simple two stage control problem. This problem will be re-stated 

below and will later be used to illustrate a method for finding the 

optimal controller in the.non-classical case. 

Witsenhausen also uses the example to show how a non-linear 

controller may be superior to a linear controller in the non-classical 

case. In order to preserve system structure the work below is restricted 

to a consideration of linear controllers. 

2. Two Stage Control Example* 

State equations: x1 = X + u1 0 

X a = x1 Ua 

Output equations: Yo = xo 

y1 = x1 +v 

Cost function: kll u 11 1 + X Sill kll 

Stochastic properties: Gaussian where 

E f~j = 0 :f:j = 0 

E = (1' 11 ' = 1 

Controllers: u1 = ~-1) yo 

ull = f1Y1 

>o 

(3.1) 

(3.2) 

(3.8) 

(3.9) 

The problem is that of minimising the cost J with 

respect to 'A and 1.1 

where J = E kll U 11 + X 11 
1 • 

• The ~tation used by Witsenhausen is retained 

(3.10) 



I 
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Jhaa a minimum with respect to 1-' 

when 

1-' 
).2 <T2 

= 1 + >..2cr2 
(3.11) 

and for this 1.1 

J = k 2 (l-'A.)2cr a+ ?..2 era 
1 + All <T" (3.12) 

Witsenhausen establishes that this expression has either one 

unique minimum or two local minima with respect to A, depending on the 

values of k 2 and cr11 
• 

In the following a particular case is examined with k = fa 
and <T = ~0 , which corresponds to the case in which the two local 

minima are equal. A graph of J against 'A. for these values is shown in 

figure 3.1. 

The common minimum value of J is 0.91 and the minimising 

values of A and I.L are 

(i) A=!l = 0.9 

which corresponds to u1 = -0.1 y
0 

u. = 0.9 y1 

(ii) A= !l = 0.1 

which corresponds to u = -0.9 Yo 1 

u = 0.1 y 1 • 
These minimising values have been obtained by an analytical 

method and no structural significance is apparent. In the following 

the significance of these solutions is developed.· 

3. Solution ~dth Classical Information Pattern 

This case differs from the above example in that u
2 

is able 

to be a function of the observations y and y , and also the control u • 
0 1 1 

As there is perfect memory the certainty equivalence principle applies 

and it is first necessary to obtain the optimal deterministic controller. 
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In this case E and the optimal control law is 

obtained by dynamic programming as 

i.e. 'A.: 1.0 
(3.15) 

ua. = x 1 i.e. p= 1.0 

for which the cost J is zero. 

Secondly the estimator must be obtained. Since the 

estimator has perfect memory y0 and u1 are available for the estimation 

of x 1 • Therefore x 1 is ~nown exactly at the second stage and the 

case becomes identical to the deterministic case. 

4. Estimator for Non-Classical Information Pattern 

In this case only y1 is available for the estimation of 

xu so the conditional distribution p(x 1 I y1 ) is required. Let the 

first stage control be 

(3.16) 

Then 

(3.17) 

The distribution of x
0 

is Gaussian with mean zero and variance ~a, 

so then from equation (3.1?.)the distribution of ~is Gaussian with 

mean zero and variance ).a~ a, that is 

(3.18) 

Since the distribution of v is Gaussian with mean zero 

and unit variance, it follows from the observation equation(3.4)that 

p (y 1 1 x 1 ) ':' const. exp. [ -~·(x1 - y1 )a J (3.19) 
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Combining equations (3.18) and _(3.19) 

= const. exp. -~ [<x 1 - y 1 ) 
1 + 

= const. exp. 

where a-1 
1 = A 2 IT 1 

1+l.lla-l 

Since p (x 1, y1 ) = p (x1 I y1 ) p (y1 ) it follows from 

equation (3.20) that 

·P (x
1 

I y1 ) = const. exp. -~[ (x, 

The conditional distribution of x1 given ~bservation y 1 

has therefore beeD: found to have mean a-1 1 y1 and variance 

5. Sub-optimal Control ~li th Reduced Estimator 

2 
!Tl • 

(3.22) 

In order to examine the breakdown of the certainty equivalence 

principle it is possible to use the deterministic control law, 

equations (3.15)in conjunction with the reduced estimator obtained 

in· the last section. The resulting controls are 

i.e. 

i.e. 

l.=l 

!1 = cr. I 
1 

The cost when using these controls is 

J. = E [ kll u 12 + x 2
1 ] = E[x1

1] 

=E [ (x1 - U!!)ll J 
=E [ (x1 - a-1lly1 ) • J 
·= cr. I 

1 

(3.23) 

(3.24) 
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With rr = ~O , then the controls are X= 1, ~ = 0.917 and the cost, 

J is 0.917. 

This case does not correspond exactly to either of the 

optimal solutions obtained in section 2., but can be seen to be 

close to the optimal solution (i) in which X=~= 0.9. The cost 

is only slightly greater than the optimal cost of 0.91. 

In this section the certainty equivalence principle has 

been applied when the estimator had an imperfect memory. Although 

the optimal solution is not obtained by its use, it can be seen that 

this sub-optimal control gives a very close approximation to one of 

the optimal solutions. As this sub-optimal control appears to be an 

important case, it will be called "pseudo-classical control". 

6. Interaction of Control and Estimation 

Since the certainty equivalence principle does not hold in 

the non-classical situation the control' law given by equation (3.23) 

need no longer be related to the deterministic control law. However, 

instead of falling back on an analytical method of optimising X and u 

as in section 2., it is possible to retain the structure of the 

classical solution and to modify it to meet the new situation in which 

the information pattern is non-classical. For this case the cost is 

J = E. [ k 11 u 111 + XII 11 J 
= kll ulll + E [<xl - ull)ll J 

This cost is minimised with respect to u 
11 

when 

= 

where = the mean of the conditional distibution 
P (xl I Y1) 



From equation (3.22) 

From equation (3.21) 

).2 0"2 

1-1 = 1 + }..20"2 
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i.e. 

{3.26) 

Although u2 does in fact correspond to the classical case 

a new feature becomes apparent \·Then J is minimised ~1ith respect 

Putting u 2 = f.LYl in equation (3.25) 

J=E [ k2 u1 
2 + Cx1 - f.LY1)2 ] 

=E [k2 u 2 1 + (~ - (.1 ~ - f.LV)2 J 
= E [ k 2 u 2 + 1 X 2 

1 
( 1-j.1)2 J + 1-12 (3.27) 

The new feature that appears here (as a result of the non-

classical information pattern) is the fact that equation (3.27) 

contains a cost related to~· This will result in a non-zero control 

u1, and this is at variance with the classical solution. Equation(3.27) 

can be written 

where 

and 

Jl = E[xlll+ k12 . ll 
ul . J 

Jl 
J llll = ( 1- (.1)2 

~. ~ 
= ( 1-(.1)2 

Completing the square in equation (3.28) 

Ji = E [ (x~ + ~) 2 + k 1 2 1\ 2 J 
= E [ u1

2 (1+k 12) + 2 x
0
u1 + x

0
2] 

= E [ (1 + k~) (u1 + Xo )2 + 1 + k12 

(3.29) 

::;, xo2 ~2 J 
1 + k 2 

1 
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The minimising value of u1 is 

X u = 0 
1 1 + kl a 

).. l- l or = l + ka 
1 

·Using equation (3.30) 

).. = 

= k,2 
l + k a 

1 

(3.31) 

The inter-relation of control and estimation is now evident 

from equationsC3.26) and (?-31) The classical method has been extended 

using a q!ladratic minimisation method but the result is that X depends 

-<m 1J and that 1J depends on X. 

7. Iteration to Optimal Solution 

Starting from the pseudo-classical solution).. = l, u = 0.917 
0 0 

it is possible to ·iterate using equations<3.25)and (3.31 )successively 

to obtain 

).. = 1.0 11o = 0.917 
0 

)..1 = 0-930 Ill = 0.906 

Xa = 0.910 1111 = 0.902 

This process con·1erges to a solution X = 11 .= 0.9 as can be seen by 

substitution. This is precisely the optimal sol~tion (i) obtained in 

section 2. The significance of this is that it is possible to use 

methods appropriate to the classical situation to obtain the optimal 

solution for the non-classical situation. In this process a state 

estimator is generated and the classical control and estimation 

structure is maintained. 
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. The solution (ii) of section 2 for which X = f1 = 0.1 

is known to exist. Starting ~rith values ).
0 

= flo= O, iteration 

using equationsG.26)and(3.31)gives 

>. = o 0 Jlo = 0 

~ = 0.0826 Jll = 0.0704 

X.= 0.0943 1\ = 0.0899 

converging to X = ll = 0.1. 

Thus the above method is also capable of yielding the 

other local minimum provided iteration is begun sufficiently close 

to it. 

8. Application to Larger Systems 

The example has shown that despite the problems of the 

non-classical situation, such as local minima and multiple solutions, 

it is possible to proceed very much as in the classical situation 

and to obtain a solution provided the interactions of control and 

estimation are taken into account. 

The most useful area of application for this method is 

that of continuously running systems and later chapters illustrate. 

this. However, there will be two aspects requiring careful 

examination. 

(i) The example demonstrated the existence of local minima. 

In the multi-dimensional case these will be far more difficult to 

detect. 

Witsenhausen showed that local minima only occur for 

k 8 < i and with this ka, local minima occur for er a within a 

certain range. 

In the light of section 7 it is now possible to interpret 

these conditions as saying that there will be an optimum that can 

be reached from the pseudo-classical solution provided k a is 

sufficiently high, that is the cost of transmitting information via 
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the controls is sufficiently high and provided ~2 is sufficiently 

high, which corresponds to a poor kno~rledge of the initial state of 

the system. 

(ii) It is well known that in reducing the order of a control 

system, such as when a phase advance network is reduced to a proportional 

network, it is possible that a stable system cannot be designed 

with the new structure. In the process of reduction from the classical 

to the non-classical situation, such an effect would manifest itself 

as the approach of state variable variances to infinity. 

In computing terms this phenomenon would be difficult to 

distinguish from a stable solution with large state variable variances. 

However, from the point of vie11 of system design this would not be a 

serious restriction since if the system cost has risen significantly 

above the optimal _classical cost the reduced configuration, even if 

stable, would not be a viable proposition. 

It ~10uld be necessary to use alternative methods to 

investigate the stability of. a particular configuration. 

MP 
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CHAPTER 4 

THEORY OF THE REDUCED ORDER ESTIMATOR 

. l.. ·Structure of the Reduced System 

·In Chapter 2 the theory of the optimal estimator was derived and 

it was shown that this estimator is required if optimal control is to be 

achieved. In this· chapter a structure is considered which leads to an 

estimator of reduced order. The derivation is similar to the derivation of 

the optimal estimator of Chapter 2. 

The structure of the reduction process is shown in Figure 4.1. The 

·state vector Xi, the control vector.Ui, and the observation vector Yi are 

defined as before. The vector zi is defined as part of the control system 

and is a memory element. For the optimal estimator Zi can be identified with 

the conditional mean ~i• and will therefore be of order n. For the reduced 

order estimator zi is taken to be of order q where 

l < q < n 

With this structure an estimate of the state vector, xi, is made 

from the information stored in zi from the previous time point and from the 

latest observation Yi• These two vectors can be combined together·to define 

a vector Vi of dimension (m + q) whic~ mey be called the "information vector", 

i.e. 

(4.1) 
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From this vector the estimate o~ the state vector is constructed, 

by means o~ the matrix F., according to:­
l. 

jl• 
l. = (4.2) 

The determination o~ the values o~ Fi will be described subsequently. 

At this point it ·Can be seen that it is necessary to reject some 

o~ the in~ormation contained in the in~ormation vector vi (dimension m + q) 

in order to construct zi+1 (dimension q), the vector containing the in~ormation 

which is to be carried over to the next time step. The most general 

representation o~ this rejection process is by means o~ a non-singular 

trans~ormation matrix T o~ dimension (m + q) x (m+ q). 

Let Vi = 
T rH!} ai+1 

(4.3) 

or v· l. = Ta ai+1 + Tz zi+1 (4.4) 

where T has been partitioned as 

The in~ormation which is rejected has been denoted by ai+lo and it 

will be shown later how the choice o~ the matrix T can be made in an optimal 

manner so as to minimise a particular cost criterion. 

2. A Priori Distribution o~ In~ormation Vector, Vi 

The probability distribution o~ a. given z~+l will be required and 
. l. +1 • 

this will be obtained directly ~om the "a priori" distribution o~ vi which 

can be assumed to be Gaussian with covariance matrix P. So that 

p(vi) = const. exp (-~Vi' p-1 Vi) 

A notation will be introduced here to simplify derivations and 

this writes the above equation as 

or 

= v·' p-1 v· e l. l. 

= e v·' l. P-1 ( ) • 

(4.6) 

\ 
where the empty bracket signi~ies that the transposed expression is simply 

repeated. 
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From equations (4.4) and (4.6) 

p(vi) = p(ai+l• zi+l) 

c p(ai+l I Zi+l) p(zi+l) 

:; (Ta ai+l + Tz Zi+l) 1 p-l (.) 

+ z! T1 p-l T z~+l 
~+l z z • 

+ I . ( T1 p-l T - T1 p-l T P1 T1 
zi+l z z z a a 

where P1l = T1 p-l T 
a a 

Introducing the abbreviations 

al = ai+l + pl T~ p-1 Tz zi+l 

it ~oll.ows from equations (4.8) and (4.9) that 

p(ai+l I zi+l) :; ai P11 a1 

d ( ) I p-l 
an P zi+l :; zi+1 z zi+l 

3. The Conditional. Distribution p(ai+l I zi+l Yi+l) 
• 

(4.7) 

(4.8) 

(4.9) 

(4.1.0) 

(4.1.1) 

(4.1.2) 

( 4.1.3) 

(4.1.4) 

The information being rejected is contained in the vectorai+l' and 

it is very rel.evant to take account o~ the next observation Yi+l" In other 

words there is no point in storing information i~ this same information will. 

be availabl.e anyway in Yi+l" Consequently the distribution p(ai+l I zi+l) 
. ,. 

must now be used to obtain p(ai+l I Zi+l• Yi+l). 

From equation (2.34) 

p(yi+l I Pi) ~ (Yi+l - H (APi + Bui)) E-1 (.) (4.1.5) 

where (4.1.6) 
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With the reduced structure of·equation (4.2), omitting the suffix 

\li = F vi 

= F Ta ai+1 + F Tz Zi+l (4.17) 

The control vector Ui will, in the present context, be given by 

where A is the optimal control feedback matrix obtained in Chapter 2. 

However the present analysis would apply whatever the origin of A. 

From equations (4.17) and (4.18) it follows that 

Yi+1 - H (A\Ii + Bui) 

= Yi+l - H (A - BA) \li 

= Yi+l - H (A - BA) F (Ta ai+l + Tz zi+1) 

where Ha = H (A - BA) F Ta 

and Hz = H (A - BA) F (T - T· P1 T' p-1 T ) z a a z 

From equations (4.15), (4.19) it follows that 

p(ai+1• Yi+1 ] Zi+1) 

= (yi+1- Hz zi+1)' ~-1 (.) - 2 (yi+1 - Hz zi+1)' ~-1 Ha a1 

+ a' (P11 + H' ~- 1 H ) a1 
1 a a 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 



- 53 --

= (a1- p2 H~ L-1 (yi+1- Hz zi+1))' P21 (.) 

+ (yi+1- Hz zi+1)' (L-1- L-1 Ha p2 Ha L-1) (.) 

= 

where 

and the matrix inversion relation of equation (2.4) has been used. 

Comparing equation (4.22) with the alternative expansion 

it can be deduced from equation (4.23) that 

p(ai+1 I Yi+1' zi+l) ~ a~ P21 a2 

and 

(4.23) 

(4.24) 

. (4.25) 

(4.26) 

(4.27) 

(4.28) 

·These two probability distributions are required later, the first 

to express the discarded information in terms of information which is not 

discarded and the second to construct the "a priori" distribution of the 

information vector at time (i+l). 

4. Probability Distribution of State Variables 

It is now possible to proceed to determine the distribution of the 

state vector xi+1, given the observation Yi+1• The analysis follows exactly 

as for the optimal estimator, with the exception that some information is 

not available from the last time point. However the result from equations 

(2.35) and (2.36) may be quoted. 

p(xi+1 I Yi+1' Pi) ~ (xi+l - Pi+1)' ri~1 (.) (4.29) 

where 

(4.30) 

and 

(4.31) 
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- Since, from equation (4.2), ~i is given by Fvi ·and Vi is given 

by equation (4.4) in terms ofai+1andzi+1 it follows that, using also the 

expression (4.18) for Ui• 

~i+l 

(4.32) 

where 

A = (A- BA) FT 
a a (4.33) 

and 

(A - BA) F (T - T P1 T' P-1 T ) . z a a z (4.34) 

Using equation (4.25), fUrther rearrangement gives 

lli+l 

(4.35) 

where 

(4.36) 

and 

= A P2 H' ~- 1 + r;+l H' R-l (I - H P2 H' 
a a • • a a (4.37) 

The mean ~i+l is now in a suitable form to·use in conjunction with 

the distribution ofai+1in terms of zi+l andyi+
1
as given by equation (4.27). 

B,y the chain rule of probabilities 

p(xi+l• ai+1 I Zi+1• Yi+l) 

(4.38) 

and also 

= p(xi+l (4.39) 

• 
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+ a2 P21 a2 

~ {xi+l - ~r+1l rt+1 {.) - 2a2 A~Y ri:t {xi+i - ~i+ll 

where 

{4.40) 

Completing the square for the above probability distribution 

gives.it as 

=· (a2- P3 A' r-1 {x.+ - ~!! )] ' p-31 (.) 
e ay i+l ~ 1 ~+1 

_1 _1 _1 
~~ )' <ri+1- ri+1 Aay P3 A~Y ri+1) {.) 
~+1. 

: a; P31 a3 + {xi+1 - ~!+1)' {ri + Aay P2 A~y)-1 {.) 

where P31 = P2 1 +.A~Y ri~1 Aay 

_1 
a3 = az - P3 A~Y ri+1 {xi+1 - ~i+1) · 

and the inversion relation of equation {2.4) has been used. 

{4.41) 

Comparing equation (4.41) with the expression {4.38) shows that 

{4.42) 

{4.43) 

The estimator equations for determining Xi+l given only zi+1 

and Yi+l have now been found and are given by the equation {4.40) for the 

conditional mean, ~i+1 ·and by the equation {4.43) for the covariance matrix, 

5. Modification of Covariance Matrix due to Reduction 

Equation {4.43) shows that, by limiting the quantity of information 

stored by the estimator, the covariance matrix of the state variable distributi 
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is modified by the addition of a positive definite matrix, which may be 

expressed in a more useful form as follows 

Aay P2 Aey 

= (Aa- ri+l H'R-1 Ha)(pll + H~ E-l Ha)-1 (.)' 

= . {(A-BA) FTa - ri+l H'R-1 H (A-BA) FTa} 

X . {T' p-1 T + T' F' (A-BA) I H' E-l H (A-BA) FT }-1· { }' a a a· a • 

= A T . {T' (p-1 + F' (.A-BA) 1 H' E-l r a a 

H(A-BA) F) T }-1 T' A' 
a a r 

= A T [T' p-1 T )-1 T' A' r a a E a a r 

where the new symbols have been used, 

and 

A = (I-r. H'R-1 H)(A-BA)F r . J.+1 

p-1 = p-1 + F' (A-BA)' H' E-1 H (A-BA)F 
E 

(4.44) 

(4.45) 

The expression for the covariance matrix of the reduced order 

estimator may therefore be written, from equation (4.43) 

rl.?+1 = rJ..+1 +A T [T' p-1 T )-1 T' A' (4.46) r a a E a. a r 

In the above derivation of equation (4.46), the various definitions 

of symbols given in equations (4.36), (4.24), (4.33), (4.10) and (4.20) have 

been used. 

The significance of the expression derived above is that only 

T appears in the positive definite matrix and that it appears in this matrix a 

in a particular manner. This will be amplified in subsequent chapters and 

used as the basis for choosing T according to a certain criterion. However a 

the remainder of this chapter will be confined to establishing the remaining 

relations which are required in order to construct the complete reduced order 

estimating system. 
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6. Storage Relation 

Equation (4.3) shows how zi+l is constructed from the information 

vector Vi• that is 

v· 1 

where vi 

= 
. 

(Tz : T )' 
• a 

~ ( YiJ ... 
z· 1 

.It follows that. since T has been assumed non-singular. 

r-1 v· 
1 

which gives 

= (r-1) v· z 1 

where the inverse matrix has been partitioned 

(4. 47). 

(4.48) 

Equation (4.47) defines the storage algorithm to be implemented in 

a practical estimator since it defines how the stored information zi+1 (of 

dimension q) is made up from the currently available information zi (dimension 

q) and Yi (dimension m). 

7. New Estimate of State Vector 

From equation (4.40) the new estimate of the state vector xi+l is 

= 

(4.49) 
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where Ayz = (Az - Ay Hz) (4.50) 

Fi+1 may therefore be defined 

.. 
Fi+1 = (Ay ; Ayz) (4.51) 

so that 

1Ji+1 = Fi+1 vi+1 (4.52) 

where 

vi+1 =[''.,) ..... 
zi+1 (4.53) 

and this new matrix Fi+1 
is available to repeat the reduction process for 

the next time step. 

The expression for Ay is given by equation (4.37) but some 

simplification is possible as follows 

= (I - r. H' R-1 H) A P2 A' H' L-1 + r
1
.+

1 
H' R-1 

J.+1 a a 
\ 

= A P2 A' H R-1 (I - Hr. 'H' R-1) + r
1
.+

1 
H' R-1 

ay a J.+1 

= (A P2 A' + r. ) H' R-1 
ay ay J.+1 

= rt~ H' R-1 
J.+l (4.54) 

where the various definitions given in equations (4.33), (4.20), (2.34), 

(4.36) and (4.43) have been used. 

Similarly, from equation (4.50) 

Ayz. = (I - rt~ H' R-1 H) A J.+1 z (4.55) 

8. Prior Distribution for Next Time Step 

Associated with the above definition of Fi+1 is the "a priori" 

probability distribution of the information vector vi+
1 

for the next time 

step, defined, as in equation (4.6), by 

= v! P71 v. e J.+1 J.+1 J.+1 (4.56) 
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The values o:f these expected values ma;y be obtained using 

equations (4.14) and (4.28) :from which it is possible to write 

and 

where 

= 

= p z 

l: + H P1 H' a a 

Since (yi+I - Hz zi+I) and zi+I are independent statistical 

quantities* it :follows that 

or, using equation (4.59) 

* Provided yi+l and zi+l have a jointly Gaussian distribution and 

it can be shown that (yi+I - Hz zi+I) and zi+I are independent. 

( 4. 57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 
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From equation (4.6o) it follows that 

E(yi+l Yi+1) - {E(yi+l zi+1)} H~- Hz E(zi+l Yi+l) 

= p 
yz 

and further that, using equation (4.62) 

= p 
yy 

(4.63) 

(4.64) 

Combining the above results the covariance matrix of the prior 

probability distribution for the next time step may be constructed, using 

the partitioning of equation (4.58) as 

(4.65) 

With Pi+l and Fi+l now determined for the next time step it is 

possible to carry out a similar reduction process for the next time step. 

If.required this process may be continued indefinitely until an asymptotic 

solution is found when the various gains can be incorporated into a practical 

reduced order estimator algorithm. 



FIGURE 4.1. SCHEMATIC. OF INFO~Mf\iiON VEC.Io~ ~EOUC.iiON 
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CHAPTER 5 

THE APPLICATION OF REDUCED ORDER ESTUIATION TO CONTROL 

1. The Certainty Eauivalence Principle 

For the case of control systems with perfect memory the certainty 

equivalence principle states that the optimal control strategy is that 

which uses the deterministic control law and derives an estimate of 

the state vector according to the Kalman filter. In chapter 3 the case 

of "pseudo-classical" control was examined for a particular example and 

it was found that very little extra system cost resulted from the adoption 

of this form of control. 

The control system design method was to use the deterministic 

control law associated with a reduced order observer. Since the certainty 

equivalence pinciple will no longe~ apply in this situation, the control 

law used, say 

ui = -JliJAi (5.1) 

where ~i is derived as in chaper 2 1 will no longer be optimal. 

However, in order to gain some experience in the application of this 

technique the example of chapter 2 will now be re-considered using a 

reduced order observer·.·· In order to proceed with this a choice has 

to be made for the reduction matrix T. 

2. Choice of Reduction Matrix T 

In the expression for the reduced order covariance matrix 

• 
'f""1 (equation 4.46) it is only the sub-matrix To< of T which ;1i+1 

appears. This implies that it is only the choice of T .t. which can 
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affect the performance of the estimator. The·other sub-matrix, 

T , of T will affect the structure of the estimator, that is the z 

values of gains apd the amplitudes of the elements of~. while 
~ 

not affecting the estimator performance. This can be seen for 

the case of the example of Chapter 2 where the optimal estimator 

according to Kalman filter theory had order 2 and for which it is 
' 

desired to construct a reduced order estimator of order 1. Suppose 

it is decided that the stored information '1..f1(a scalar) is formed by 

(5~2) 

·From equation (4.47) this implies 

, (T-1) = (f e ) 
z 

If the matrix T is given by 

T = (: :) (5.4) 

then 

T-1 1 (d -b) = ad- be -c a 

so that comparing (5.3) and (5.5) gives _ 

d = f 
ad - be 

and· -b = e' 
ad - be 

It follows from (5.4) that 

T"'. = (:) = 
ad - be 

1 (5.6) 

In the expression for the covariance matrix of the reduced order 

estimator, equation (4.46), To{ appears equally inside and outside 

of the inversion. Consequently the scalar uncertainty in T ol. , the 

factor 

1 
ad - be 
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will not affect the covariance matrix • [ • This example has . J.+1 

illustrated for a system of order 2 how the choice of estimator structure 

is equivalent to the choice of a particular T • For higher order 

systems this is less clear but is implied by the form of equation 

(4.46). 

3. Example of Reduced Order Estimation 

The choice of a particular matrix T will now be examined using 

the same example as was used to illustrate optimal control and-estimation 

.in chapter 2. Suppose the stored information is chosen simply to be 

the previous observation vector yi' that is 

(5.7) 

This is a special case of the control method described by Box & Jenkins 

(ref. 32) where the general form of the controller is 

u. + ·a.u. 1 + a..u. 
2 

+ 
J. 1 J.- c J.- .... = b y. + b

1
y. 1 + b_v. 2 + •••• 

0 J. 1- CJ.-

,i.e. vi+1 =(;~+ ~ 
and the conditional mean of the state vector x. 

1 
is thus formed from J.+ 

the two observations y. and y. 1• A suitable transformation matrix, 
J. . J.+ I 

T, is then the unit matrix so that 

T-1 = T = ( ~ ~) (5.9) 

This choice ofT satisfies equations (4.47), (5.?), and (5.8). The 

control law used can be taken as the steady state solution of the 

recursive optimal control equations for the example, that is, 

from Chapter 2 

ui = -A fi 
where A= (-1 -~) (5.10) 

Tb carry out the computing tasks associated with the generation of 

the reduced order estimator, a MAT.LAN subroutine OPRED has been 



- 65 -

written. This subroutine is suitable for any order system and is 

described in detail in section 4. 

B,y calling the subroutine successively until convergence is achieved 

the following results are obtained 

(1) The estimator covariance matrix is 

['* = ( 3-058 0.972) 
l.->- 0.972 3.108 

and this compares with the optimal estimator result of 

r= (~;) 
(2) · The prior distribution covariance matrix is 

p = (4.462 3-451) 
i-><» 3.451 4.462 

(3) The estimate of the state vector is given by 

= F. v'. l. l. 

where F = ( 0.243 
i-+.. 0.777 

-0.491) 
0.173 

so that;u1 = 0.243 yi -0.491:yi-1 

jU2 = 0.777 yi + 0.173 yi-1 

Hence from equation (5.10) it follows that 

ui = -.A.F vi 

= - (1 j-) ( 0.243 
0.777 

-0.491 )(Y· ) 
0.173 y~-1 

= -0.502 y. + 0.433 y. 1 l. l.- (5.11) 

The resulting control law is seen from this equation to 

be of a highly derivative na'ture, which is as would be expected 

considering that the system has the form of a double integrator, and 

would therefore require derivative action to achieve stability. 

Proportional only action of the form 

= -ky. l. 
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can be shown to be unstable for any value of k 

When assessing the performance of a control system it is 

essential to know whether the system cost has been appreciably increased. 

Tb this end a further subroutine, SYSTEM, was written to calculate 

the system cost of any particular control system design and is 

described in section 5. 

The cost of control for the above example is found to be 54.5 

which is to be compared with a similar result for the optimal controller 

of chapter 2 of 54.0. In more detail the results are 

Costs on control, u 

Costs on state vector x2 

Cc-variance of system ( ::) 

Optimal 
Controller 

13-71 

40.29 

(
8.1 -6.1) 
-6.1 40.3 

Reduced Estimator 
Controller 

13.84 

40.62 

( 
8.2 -6.1 ) 
-6.1 40.6 

Thus the particular choice of reduction matrix T has resulted 

in a control system whose performance is virtually as good as the controller 

of chapter 2. If a different choice of reduction matrix had been made 

a very much poorer system could have resulted. While the arbitrary choice 

of T in this example was very successful the problem remains _ · of how· 

to choose the most suitable matrix T. A method of selecting T in a 

near optimal manner is discussed in the next chapter. 

4. The subroutine OPRED 

The subroutine is shown in Listing 5.1. There.are a number 

of statements whose purpose is not yet described, but are related to the 

material of chapter 6. Apart from these the subroutine is exclusively 

concerned with generating the reduced order estimator. In general a set 

of statements will correspond to a particular equation in the text, and 
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Table 5.1 sets out the functions of the subroutine statements. The 

nomenclature is given in Table 5.2. 

For input variables the program requires 

(a) System matrices A, B, H, Rand control matrixJl. 

(b) The optimal covariance matrix r'i+1 as calculated by ESTIM, the 

·associated matrix~, the current value of the prior distribution 

covariance maxtrix P, and the current value of F. 

Variables output by the subroutine are the reduced covariance 

matrix • r the new value of the prior distribution P, and the new i+1 

value of F. 

5. The Computation of System Cost 

The system cost for a time step has been defined in Chapter 2. 

as 

J. 
1• (5.12) 

It is required to evaluate the expected value of Ji for the general 

system defined by 

xi+1 = Ax. + Bu. + si 
1 1 

y. p = Hxi + ?i 1 

ui = Czi + Dyi 

(5.16) 

Substituting 

= (5.17) 

and 

zi+1 = Ezi + FHxi + F?i (5.18) 

Defining the matrices 
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A+BDH 
SYS = FH :) 
and 

SDIST 
_ (r BD)· -\o F 
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then equations (5.1~ and (5.18) can be written 

= 

(5.19) 

(5.20) 

(5.21) 

Again by substitution the expected cost E(Ji) becomes 

E(Ji) = E(x; Vxi + u~Pui) 

,. I ., I I 

+ x. H n·PDHx. + z. C PDHx. 
1 1 1 1 

I I I I I 
+ x. H D PCx. + ? . D PD7. 

1 1 1 1 
(5.22) 

ignoring products involving x and ?• z and ? since these are independent~ 

Defining the matrices 

COST = ((~1 D'PDH + V) 

C PDH 

and OCOST =G ~~PD) (5.24) 

then equation (5.22) can be written 

(5.25) 

The co-variances of the disturbances are known so that 

E[(0)i (~);} = VDIST = (~ ~) 
and it remains only to evaluate 

·~:), ( :)~ J • V"t (5.27) 
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This eo-variance can be evaluated using equation (5.21) 

so that 

I I 

= SYS.VARi.SYS + SDIST.VDIST.SDIST (.5.28) 

.where the independence of the disturbance vectors has been used to set 

some product terms to zero. 

For an asymptotically stable system VARi will converge, 

and the resulting value of VAR can be used to determine the system 

cost. From equation (5.25) 

E(Ji) = Trace (VAR. COST) + Trace (VDIST. DCOST) (.5.29) 

Various subroutines were written to carry out these calculations 

as below: 

(a) TOTSYS. Listing 5.2 

Constructs SYS and SDIST according to equations 5.19 and 5.20. 

(b) TOTCST. Listing 5·3 

Constructs COST and DCOST according to equ~tions. 5.23 and 5.24. 

(c) TOTDST. Listing 5.4 

Constructs VDIST according to equation .5.26 

(d) PROD. Listing 5."4 

Performs the elementwise multiplication required in equation 5-29. 

(e) POWER. Listing 5.5 

Carries out the iteration to compute VAR according to equation 5.28 • 

. The method was made more efficient by the use of a technique 

described in section 6. of this Chapter. 

(f) SYSTEM. Listing 5.6 

Calls the above subroutines and comtlutes: the cost according to 5.29 
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. The subroutine SYSTEM is called by the main program in order to assess 

the effectiveness of any control strategy, and serves as an entirely 

independent check on the validity of any control strategy. For 

example, if a control strategy is thought to be close to the optimum, 

this can be checked by running SYSTEM for both cases. 

For the particular control systems studied earlier in this chapter. 

the controller is of the form 

= (A - A H ) + A:~. Z yzz y-1. 

which reduces to the form 

upon setting 

c = -A<Az- AzHz) 

and D = -AAy 

(from 4.40) 

(5.15). 

(5.30) 

(5.31) 

The form (5.16) for the generation of the.storage vector is obtained by 

defining the matrices E,F by the partition 

·~· ' . \ 

· (F lE)= (5.32) 

where the right hand side is the partition of the inverse of T given 

in equation (4.48). 

The matrices C, D, E, F are constructed in subroutine OPRED for use 

in subroutine SYSTEM using the dummy arguments SYSC, SYSD, SYSE, SYSF. 

6. ··A TechniQue for Rapid Iteration 

For the above calculation of system costs it is required to 

find the asymptotic solution of the following equation 
, 

= A C.A + B 
l. 

(5.33) 
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Thus if C
0 

is any initial positive 
, 

= A CA +B 
0 

, 
= A (A C A+ B) 

0 

= (A A ) C0(AA~ 
I 

A
1 

+ B 
I 

+ (A BA +B) 

definite matrix 
. (C

0 
= I say) 

I 

= A 1CoA1 + B1 where A1 = AA and B1 = A BA + B 

c2 can be evaluated directly from C
0
,in one step by this 

means. Similarly c4 can be evaluated from C
0 

by means of 
I 

C4 = A 2CoA2 + B2 

where A2, B2 and further values of Ai and Bi are formed by means of 

Ai+1 = A.A. 

} l. l. 
I 

and Bi+1 = A .B.A. +B. l. l. l. l. 
(5.34) 

It is thus possible to advance to the asymptotic solution 

rapidly such that n evaluations of equations 5.34 allows evaluation of 

Ci for i = 2n according to 
I 

Cl.. .- A C A + B non n 

It is this computation that is carried out by subroutine 

FOWER, listing 5.5. 

The a~mptotic solution of equation (5.33) that is the 

solution C of the equation 
I 

C - A CA - B = 0 (5.35) 

could be obtained by direct solution of the simultaneous equations 

for the elements of C, but the iterative method was used as it appeared 

likely to be less complex in terms of computing. 

In the theory of the Liapunov stability criterion as set 

out by Barnett for example (reference 33) there occurs an equation 
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of the same form as (5.35). The numerical solution of this equation 

is considered by Barnett and Storey (reference 34) involving first 

a bilinear transformation of the form 
I I I -1 

A = (I + ! ) (I - A ) 

which brings (5.35) to 
, I 

!' C + CA = -! (I - h_) B (I - A ) (5.37) 

This is now the form of the continuous Liapunov equation 

for which Barnett and Storey give a number of numerical methods. both 

direct and using series. 

7. A Relationship with Liapunov Stability Theory 

Reference 33 gives the following theorem for a discrete 

linear system defined by 

"The real matrix A is convergent if and only if for any 

real symmetric positive definite matrix Q the solution P of the 

discrete Liapunov matrix equation 
I 

A PA- P = -Q 

is also positive definite". 
I 

Since A and A have the same characteristic roots it 

follows that A
1 

is convergent if and only if A is convergent and 

thus the Liapunov condition may be written equally as 
, I 

APA - P = -Q (5.40) 

'The similarity of this equation with the asymptotic 

eo-variance equation (5.35) implies that if Q is taken as the 

positive definite eo-variance matrix of the independent Gaussian 

disturbance Vector~- of the system 
l. 

Xi+1 = AX i + lf.i 
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then the eo-variance matrix ofx. is given by Pin (5.40) and, 
l. 

according to the above Liapunov theorem, P will be positive definite 

if and only if A is convergent. 

Thus negative definite matrices will occur as solutions 

of the asymptotic covariance equation when unstable systems are 

being studied. While such a result is not constructive since 

covariance matrices are intrinsically positive definite (or semi-

definite), negative definiteness is a preferable outcome for a 

numerical procedure than is failure to converge, which would result 

using the method of section 6, above, when treating an unstable 

system. 

This would seem to be a very strong argument in favour 

of direct methods of solution for the eo-variance matrix of. 

stochastic systems when it is not known in advance whether the 

system is stable. 

• • 



Statement 
Numbers 

2 - 17 
19 - 22 
23 
24- 28 
29 - 33 
35 - 36 
37 - 46 
47 
48 - 51 
53 ,.. 55 
56 - 58 
59- 66 
67 
68 - 69 
70 - 82 
83- 90 

. 

Computation of Ar 

Computation of Pz 

Purpose of Statements 

Spec"ification of T. Either explicitly or by call of SIMUL as in Chapter 6. 
Extraction of sub matrix T from T .. . 
Construction of reduced estimator covariance ft+

1 
Computation of P1 
Computation of P z 
Computation of Az 

Computation of A 
y 

Computation of P 
. yz 

Computation of A 
yz 

.. • 

Construction of F for next time step from submatrices 

Computation of H z 
Computation of P 

Y'Y' 
Construction of P for next time step from submatrices 

Computation of system matrices for use in subroutine SYSTEM 

Table 5.1 Functions of Statements in Subroutine OPRED 

Corresponding 
Equations in 

Text 

4.44 
4.45 

4.5 
4.46 
4.10 
4.12 
4.34 
4.54 
4.61 
4.55 
4.51 

4.21 and 4.34 
4.64 
4.65 

5.30 to 5.32 
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Table 5.2 Nomenclature for Subroutine OPRED 

Program Name Symbol Program Name Symbol 

B B P1 p1 

LAMDA A PZ p 
z 

A A AZ A z 

F F AY A y 

H H PYZ p 
yz 

R R AYZ A yz 
I 

HT H pyy p 
yy 

GNEXT r !!M T-1 

UNIT I 

AG Ar SYSTEM MATRICJ!S 

THE'l'A e SYSC c 
p p SYSD D 

rn p-1 SYSE E 

PSIGM Pr SYSF F 

SIGMA 'E 

T ·T 

TA To( 

i"Z Tz 
• RGAM r 

• 
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1 SUilPRIJ OPRED,IA,B,H,GNEXT,SIG~A,F,P 1 THETA 1 ADIH, 
,PNEXT,R,RGAM,SYSC,SYSO,SYSE,SYSF,LI . 

2 HULT B,LM~D,\ ,EL ·---·-- .--.,.,-- ----------

3 SUB A,B L1 AB 'LAMDA,FNEXT• 
4 CANCEL BL 
5 MULT AB, F,ABF 
6 HULT H,A~F,HABF 

• 
7 DIY R 1 H ,RH 
8 TRANS H,HT 
9 MULT HT,RH,HH 

10 CANCEL HT 1 RH 
11 HULT GNEXT ,lili 1 GH ., 

• 
12 RDIH GNEXT ,XDIM 
13 FORMS UNIT,IXDIM,XDJHI,Il,1) 1 (l,li 1 XDJH,l.O 
14 CANCEL XDIH 
15 SUB UNIT,GH,GHU 
16 CANCEL GH 
17 MULT GHU ,ABF ,AG 
18 CALL TLSIDE,IAG,THETA,FTTFI 

0 

19 INV P,PM 
20 INV SIGHA 1 SIGH 
21 CALL TLS JOE, (IIABF,SJGM,PSIGH I 
22 ADO PM,PSIGM 1 PSIG~l 
23 CALL SIMUL,(PSIGH,FTTF,T,L) 

0 

2'i RDIM T,VCJH 
25 SUB VDIM,ADJH,lOIM 
26 EXSUBM T ,11,11 ,IVDIH,lDIHI, TZ 
27 ADD lDJM.Irll 
28 EXSUBM T r llr Zll, (VD IM,ADJM I, lA 
29 CALL TLSJDE,fTA,PSIG~,TPTI 
30 INV TPT,TPTM 
31 CALL TRSIDE,(TA,TPTM,TTPTTI 
32 CALL TRSJOE,IAG,TTPTT,GGI 
33 ADD GNEXJ 1 GG,RGA!1 
34 CANCEL TPT,TPTH,TTPTT,GG 

0 

35 CAll TLSICE, ITA,PM,PlMI 
36 INV P lH ,P 1 
37 CALL TR S I 0 Er (lA, PI, TT ) 
38 HULT TT, PM, TP 
39 Hlll T TP 1 TZ,TP 
40 SUB TZ,TP,TIIl 
41 CAt\Ctl TT, TP 
42 HUll PH,TAZ,PTZ 
43 TRANS TZ,TTZ 
44 HULl TTZ ,PTZ 1 PZM 
45 CANCEL PTZ 0 TTZ 
46 INV PZH 1 PZ. 
47 HULT ABF,TAZ,AZ 
48 INV R 0 RH 
49 TRANS H,HT 

Listing 5.1 Subroutine OPR$D 

In this chapter T is set to be the unit matrix so that statement 23 \{OUld 
·read 

'COPY UNIT, T' 

Chapter 6 requires a call of SIMUL to generate T. 
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.slM l HJIHAN SlAlEHENl 

50 HUll RGH,Hl,R" 
. 51 MUll RH,RI',AY 

52 CANCEL Hl,RM,Rii 
53 CALL lRS !DE, IT 11 1 P 1, llJ 
54 CALL lRS ICE,IHABF,TT,PYll 
55 ADD PYZ ,S IGMA ,pyz 

0 

56 HUll RGA I' 1 HH ,RGH 
51 SUB Ull 1 1 RGt 1 RGHU 
58 HUll RGI-l,AZ,AYl 
59 RDIM F, R F 

. 60 CDIM F,C F 
61 tiULLMAl FNE>l,IRF,CFI 
62 CANCEL RF 1 {f 

63 INSUBM AY,FIIEXl,lloll 
64 CD IM AY,t'l 
65 ADD DY, J, D 
66 IN SUB M AYZ ,JNEXl,ll 1 Dl FNEXl FORME 

0 

61 MULl lirA Z,HZ 
68 CALL 1RSICE,IHZ 1 PZ 1 PYYl 
6<; ADD FYl ,FYZ ,Fn 
10 lRAtlS I'Z,tZT 
11 MUll PZ,t-2T,PHZ 
12 lRANS PHZ 1 1-PZ 
13 CD IM PZ, [1 
14 ADC tY ,1 1 ZBEG 
15 ADD CY, t1 rDYZ 
16 NULLI1Al PNE :n, IDYl,OYZl 
11 INSUBH PYY,FNDl 1 11 1 11 
H INSUBM tP1,FNEH,Il 1 ZBEf>l 
19· JNSUBH PHZ ,FNEXl,(ZBEGrll 
80 INSUBM PZ,F~EX1ri1BEG,ZBEGI PNEXT FORH 
81 CANCEL ZBEG,PHZ,HPZ AND THE 
82 IIR JTE IR(It,F~E)l,PNEX11,FrRMA1=A5 

• 
o CALC. OF SYSTEM IIAlRI CES .• c .. o .. E •• F 
Cl 

83 HUll LAHIJI 1 Al 1 SYSD 
84 IWL T -1, !lSD,SlSC 
85 MULl LAM [I ,AYZ ,SYSC 
86 MUll -l,SlSC,SYSC 

Cl 

81 JNV l, 1" 
88 EXSUBM lM, (l,lJ,IZCIM,Dll,S'ISf 
89 EXSUBH TM,Il,OJ,IZDIM,ZDIMJ,SYSE 
90 COPY TI-lt L 
91 RETURN 
92 END 

Listing 5.1 (continued) Subroutine OPRED 

Carries out the functions listed in Table 5.1 in order to construct 
the optimal estimate of the state vector when the information stored is of 
reduced order. 

RES 
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--· --;;:;;,;;··· -------- -----~----~-~.----..,.------:----- ---------· ----

STMT MATLAN STATEMENT 

1 
2 
3 
4 
5 
6 

SUB PRO 
TRANS 
MULT 
MULT 
PETURN 
END 

TRSIDE,(A,B,CI 
A,AT 
A,tl,D 
D,AT,C 

STMT MATLAN STATEMEfJT 

1 
2 
3 
4 
5 
6 

SUB PRO 
TRANS 
MULT 
MULT 
RETURN 
END 

TLSIDE, IA,B,CI 
A,AT 
AT,B,C 
D,A,C 

Listing 5.1 (continued) Subroutine OPRED 

The subroutines TLSIDE and TRSIDE, above, are called by subroutine 
OPRED to perform the frequently required computations 

TRSIDE: A = BCB' 

TL'3IDE: A = B'CB 
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..... 

STMT MATLAN STATEMENT 
. 

1 .SUE PRO TOTSYSIAt B ,c, 0, E, F, Hr SYS'~ SDI$ Tl 
2 MULT O,H,OI-
3 MULT a,ou,euH 
4 ACD A,BOH,AdDH 
5 1-lULT a,c,ac 
6 MlJLT ftHtfh 

* 
* 7 RDIM A,ox 

8 RDIM H,OY 
9 RCIM E,oz 

10 CDIM a,Du 

* 11 ADO ox,oz,RoiM 
12 ACD DX,1,R8EG 

* 13 NULL MAT SYS,(RDIM,RDH') 
14 II\SU8M ABOH,SYS,(ltl) 
15 INSUtlM BC,SYS,(l,RBEG) 
16 I 1\SUBM FH,SYS,(RBEG,l) 
17 IIISUBM EtSYS,(RBEGrRBEGl 
18 FORMS I OX,( DX,OX) t ( 1,1), (l, 1) ,ox,l.O 

* 19 ADD ox,ov,oorsr 

* 20 NULL MAT SDIST,(RDIMrDDISTl 
21 rr-,suaM IDX, SDIST, I 1, 1) 

22 MULT a,o,aD 
23 II\SUBt~ F,SDIST,IRBEG,RBEGl 
24 INSUBM BD,SDIST,(l,RSEG) 

* 
* 25 RETURN 

26 END 

Listing 5.2 Subroutine TOTSYS 
... 

Constructs SYS and SDISTaccording to equations (5.19) and (5.20). 
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STMT MATLAN STATEMENT 

1 Sl8PRO TOTCSTIH,o,c,F,v,ccsr,ccosTI 
2 MULT O,H,OH 
3 TRANS' OH, TDI-
4 MULT P,DH,FOH 
5 MlLT TDH,PDH,ClO 
6 ACD C10,V,Cll 
7 TRANS C,TC 
8 MULT TC,PDH,C21 
9 TRANS C2l,Cl2 

10 11UL T P,C,PC 
11 Mll T TC,PC,C22 

* 12 RDIM v,DX 
13 COIM c,DZ 
14 ADD Dx,oz,RDIM 
15 ADD OX,1,RBEG 
16 NULLMAT COST,(RDII-',RDIMI 
17 ·1 NSUBM Cll,CCST, 11,11 
18 I NSUBM C12,COST,IloRBEGl 
19 INSUBM C21,CCST, IRBEG,ll 
20 INSUBM C22,COST,(R8EG,RBEGI 

* 21 MULT P,D,PO 
22 TRANS O,TD 
23 MULl TO,PD,022 

* 24 CDIM D,ov 
25 ADD DXo.OY,OOIST 
26 NULLMAT DCOST,IDOIST,DOISTI 
27 II\SUBM D22,DCOST,IRBEGoRBEGI 
28 RETURN 
29 END 

... 
Listing 5. 3 Subroutine TOTCST 

Constructs COST and DCOST according to eouations (5.23) and 
(5.24). > 



STMT ~ATLAN STAtEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

SUB PRO 
RDH1 
COIM 
ADO 

_ NULL~1AT 
INSUBM 
ADO 
INSUBM 
RETURN 
END 

STMT MATLAN STATEMENT 

1 
2 
3 
4 
5 
6 

Listing 5.4 

SUB PRO 
EfiULT 
ROwSUI1 
CCLSUM 
RETURN 
END 
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TOTDSTIQ,R,VOISTI 
Q,ox 
R,ov 
DX,OY,OOIST 
VDIST,IDDIST,DDISTI 
Q, VD I ST, I 1, 11 
OXtl, RBt:G 
R,VOIST,IRBEG,kBEGI 

PRODIV,C,PI 
v,c,vc 
VCrROW 
RO~,p 

:.,=--

Subroutine TOTSDT Constructs VDIST accord.ing to equation (5.26) 

Subroutine PROD Performs the elementwise multiplication required 
in equation (5.29). 



STMT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 L2 
14 
15 
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MATLAN STATEMENT 

SUB PRO 
COPY 
COPY 
LOOP 
TRANS 
MULT 
MULT 
ADD 
MULT 
MULT 
ADD 
MULT 
LOOP END 
RETURN 
END 

POWERliNIT,AA,B,CI,NITI 
AA,A 
I NIT ,c 
L2, J, 1,NIT 
A tAT 
C,AT,CA 
A,CA,ACA 
ACA,B,CI 
B,AT,BA 
A,BA,A!:lA 
ABA,B,B 
A,A,A 

Listing 5.5 Subroutine PO\VER 

Carries out the iteration necessary to find the asymptotic variance, VAR 
of the system according to equation 5.28 • 

. . -· . 



STMT MATLAN STATEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 
15 
16 

. 17 
18 
19 

Listing 5.6 

* 

SUB PRO 
RDI M 
RDI M' 
ADD 
NULLMAT 
ADD 
CALL 
CALL 
CALL 
TRANS 
TRANS 
MULT 
MULT 

CALL 
CALL 
CAll 
ADD 
RETURN 
END 

Subroutine SYSTEM 
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SYSTEMIArBrHrFrVrCrRrCrDrErFrVARr / 
ArXDI~ · 
CrZDI~ . · 

'XDIMrZDIMrVDIM SYSrSUM,STEPSJ 
VlNITriVDIMrVDIMJ . · 
1.0,VINITrVINIT 
TOTSYSIArBrCrDrErFrHrSYSrSDISTJ 
TOTDSTIQ,R,VOISTl 
rorcstJH,D,c,P,v,cosr,ocosrl 
SYS,TSYS 
SDIST,TSDIST 
VDISTriSDISTrVTD 
SDISTrVTDrSS 

POWERIVINIT,SYSrSS,VARrSTEPSl 
PRODIVAR,COST,SUMSl 
PRODIVDISTrOCOSTrSUMDl 
SUMSrSUMDrSUM 

Calls the subroutines required to compute the asymptotic cost of 
the system according to equation (5.29). 
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CHAPTER 6 

THE CHOICE OF AN OPTIMAL REDUCTION MATRIX 

1, Quantifying the Cost of Reduction 

In chapter 4 the covariance matrix of the state variables 

following the estimator reduction process is modified according to 

(4.46) 

The significance in terms of control must be assessedaccording to 

the theory of the optimal controller of chapter 2. At a particular 

time step there will be an expected cost associated with the state 

variable covariance matrix which is given by equation 2.26. 

E {(-x,-jA-i~TTN-~(?Ci~f';J[!fi} =Trace 

E {(x,j';)(xi"f"i)\lfi} ·= f7~ 
since 

(6.1) . 

Thus it is possible to assess quantitatively the effect 

of the use of a·reduced observer and the cost function at each time 

step is the matrix 7\ N .• 
-l. 

It is possible to proceed to minimise the cost associated 

with the reduced observer by means of the most favourable choice 

of the matrix T. To make the treatment more general the matrix 

rr i. can be a more general cost function, e . perhaps not derived 

from control theory, but quantifying the desired estimator properties, 
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The construction of an appropriate cost function for 

use in control system design is further considered in section 7. 

As only the last term on the right hand side of equation (4.46) can 

.be affected by the choice of T the objective is then to minimise 

the cost. 

where 

Ji = Trace 

Re-arranging 

Ji = Trace 

= Trace 

I 

equation (6.2) gives 

1: A~ eAr Tot l T/ p;' T-<J -I 
T. , \ I T [ , _, 1-1 -< w ot T" P l: T-< 

w = Af1 9 Ar 

(6.2) 

(6.4) 

The trace of a matrix is the sum of its eigenvalues so 

that when seeking a matrix T ~ which will minimise the cost J it 

is natural to look at eigenvalue properties associated with 

equation (6.3). A method based on eigenvalue properties has been 

developed and is described below. It employs the simultaneous 

. diagonalisation of the two positive definitesymmetric matrices 

W and P 1:.. • 

2. Simultaneous Diagonalisation of Matrices 

If A and B are positive definite symmetric matrices then 

there exists a non-singular matrix T such that 

T
1
AT .- I 

and 
(6.5) 

where A is a diagonal matrix of positive :elements.. T is obtained 

by applying, in succession, two non-singular transformations R and 

S (Mirsky, reference 35). 
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The first, R, is chosen such that 
I 

R AR = I 

This is possible since A is positive definite. When this 

(6.6) 

transformation is applied to B a new positive definite matrix 

C is formed 

R
1
BR = C 

The second transformation, s, is ortho.gonal and 

chosen to carry C into diagonal form, i.e. 

s'cs = S
1
R1 BRS = ~ 

(6.7) 

(6.8) 

Since this transformation is orthogonal it leaves the unit matrix 

unchanged, so that, from (6.6) 
I I I 

SIS = SRARS =I 

Equations (6.8) and (6.9) show that 

T = RS 

(6.9) 

satisfies equations (6.5) and is the required transformation • 
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}. Evaluation of the Reduction Cost J. 
. o-1 

Since r~ and W are positive definite it follows from 

the above that there exists a non-singular matrix T such that 

-I 
'1' P~ T '7 I (6.10) 

and 'l'W'l'= A (6.11) 

where .A.-

Using the partitions 

'l'ot is a {q + m) x m matrix 

A.is a q x q diagonal matrix 

Artis an m x m diagonal matrix 

it follows from (6.10) and (6.11) that 

'1' 1P-1 T = I 
"~ ~ p 

and 

= 0 

= I m 

I 
'l'~W 'l'J! =A,_ 

I 
'l'~W '1' .c = 0 

I 
T"" w '1' o( = A o~. 
Substituting (6.15) and (6.16) inio (6.3) 

Ji = Trace (Im>-
1Aoe 

= Trace Aw. 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 
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+ >. 2 + q + 
......... (6.17) 

This equation shows that Ji is the sum of the last m diagonal 

elements of A . 
4. 

m elements to be minimum. 

, 

The elements of .A. are the eigenvalues of C and the columns 

of S are the eigenvectors of C. J\_ and S may be constructed so 

that the eigenvalues of C lie in descending order along the 

diagonal of A . The smallest m eigenvalues will then lie in the 

last m positions of the diagonal. 

T is then formed as the product RS. Since Ji is the sum of the m 

smallest elements T has been chosen so as to minimise J .• 
l. 

The method can be illustrated using a simple example 

using arbitrarily chosen elements of the matrices A and B. 

Let P-1 
:E = A = \~ ;) 

and w = B = c· :) 
The eigenvalues of A are 

and the corresponding eigenvectors are 

( 
0.8507) and 

-0.5257 ( 
0.5257) 

0.8507 

(6.18) 

Dividing these eigenvectors by the square roots of their corresponding 

eigenvalues gives the. columns of the matrix R. 
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( 

0.7234 
Thus R = 

-0.4470 

0.2764) 

0.4473 

so that 

R
1 
AR = I 

and 

(
1.228 0.6003) I 

C=RBR= 
0.6003 2.571 

The eigenvalues of C are 

2.80 and 1.00 

and the corresponding eigenvectors are 

( 
0.9342) 

-0.3567 
and ( 0.3567) 

0.9342 

S is now constructed ·30 that the eigenvalues are in descending 

order along the diagonal of .A. , that is 

s'cs = ( ;-80 :.00) = A 

where s =c·3567 0.9342) 

0.9342 -0.3567 

T is now constructed as the product 

. (0.5162 
T = RS = 

. . 0.2584 

so that T..: = ( 
0

•
5772

) 
-0.5771 

0.5772) 

-0.5771 

and the minimum. value of J. is 
J. 

·. ( I -1 )-1 I 
Ji = Trace Tci P :E. To< To< WT « 

(6.19) 

(6.20) 

= 1 

In general there may be other methods of choosing the 

T to minimise the reduction cost Ji by the use of hill-climbing 

subroutines. These methods would involve a number of variables 

approaching the number of elements of T o( and clearly the 
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• 

eigenvalue method involves working more directly and with a smaller 

number of variables. However for the above example T cC involves 

onl.y two variables and a sui table T can be found by an algebraic 

method which is comparable to the hill-climbing method. 

The Optimum Choice ofT from the minima of J. 
Cl 

then 

If T = (TzlTo~) =(T11 ~12) 
T21 T22 

J i = 

= 
If r = T12 then 

T22 

= 5r
2 

+ 8r + 6 Ji ~2~~~~~ 

2r +2r+3 

Differentiating to find stationary values 

dJ. 
lf 

= 

= 

(2r2 + 2r + 3)(10r + 8) - (5r2 + 8r + 6)(4r + 2> 
(2r

2 + 2r + 3)
2 

-6(r + 1Hr -2) 

(2r2 + 2r + 3)2 

= 0 when·r = -1 and r ~ 2 

.. 
A graph of Ji against r, as in Figure 6.1, shows r = 2 

to be a maximum and r =-1 to be the required minimum of Ji. 

This minimum value of Ji is 1. 

• 
,. 

Comparing this result with the eigenvalue method in which, 

from equation (6.20), 

T12 = 0.5772 

and T22 = -0.5771 

so that r = T12 = -1.00 
T22 
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it can be seen that the two results are in complete agreement. 

6. Computation of a Cost Function for Control Application 

In Chapter 2 the choice of the control vector u. was 
l. 

shown to be optimal ~hen chosen as 

= (equation 2.~2) 

·since x. is not known exactly as for the deterministic case, the 
l. 

cost incurred i using ui as the estimate of xi instead of xi 

itself is quantified by the cost 

Ji = E [c ~. -r-S rr t -x, -;u-. )] 6.21 

where the suffix is omitted from T1 as it can be assumed to have 

reached an asymptotic value. 

• I, The process of introducing a reduced order estimator 

necessarily increases the uncertainty in the state x. and so contributes 
l. . 

to an increased system cost. This can be quantified directly from 

equation (6.21). However to do this would be to overlook the 

indirect effects of the reduction. These are 

1. The uncertainty introduced into the estimate for x. will cause 
l. 

uncertainties to be introduced into the estimates of x. 
1

, 
l.+ 

xi+2 ' etc.· This is apart from the uncertainties introduced 

by reductions at time i+1, i+2, etc. 

2. The choice of ui according to2.22 may no longer be optimal 

as the control vector is able to influence the estimation 

process as.a result of the estimator reduction. 

The second effect has been discussed in Chapter 3, where 

an example showed how, even though the certainty equivalence 

principle no longer strictly applied, the use of a control law 

according to the principle was likely to give near optimal results. 

While reduction costs remain small it is unlikely that this choice 

of the control vector will be downgrading the system significantly. 
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For this reason further control system study will use the 

control law given by 2.22. 

The first effect, above, implies that the future effects 

of reduction must b~ taken into account by means of.the cost 

function. Suppose a suitable cost function is given by 

that 

Ji = Et(x:.,-fl,)'e;(x,-r-i)J (6.22) 

Using the dynamic programming approach it follows 

E { ( x, ;u.) e, (xi -r·)} 
= E l(x,+,-r ... -·~0-,-t-,(x, .. ,-/"•··~~ <6.23> 

· + E[(x,-_,.u.,~TT{x,-1-'-•~~ 
A recursive equation for ei can now l:ie set up if the 

relation between (xi+1 ~i+1 ) and (xi - fAi) is known. From 

equation (2.35) which defines the optimal estimator structure 

(x i+1 - fi+1) = Axi + Bui + ·~h 

-[P.f' -t Bu.; -t T-;.,.,1--\' R-'( ~;.I H (ty; -tl3~.~:'J)] 
=_{ 1-r;' .. ,H'rr'H) R ( x, -?·J 

+{I n ,,',·'H)-r T1 H'R-' (6.24) 
-•;.,., n 1<. .)i- 'i~• 7• 

Substituting into (6.23) and taking expectations, when 

the terms involving the independent quantities S and ~ vanish, 

gives 

(6.25) 

A subroutine EsTIM2 was written to obtain the asymptotic 

solution of this recursive equation and is given in listing 6.1. 

Using the value of Tf from the example system of 

TT=(~_~) 
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and iterating, the subroutine gives an asymptotic solution for 

e of 

= ( 20.3 e -. 7.4 
-.74) 
2.52 (6.26) 

As this is identical with the solution which can be 

obtained analytically as 

e _ .!!.. ( 137 -5 ) 
- 27 -5 17 

the example also serves as a. check on the programming of ESTIM2. 

The calculation of e has assumed. the estimator structurj'l 

to be optimal, that is with no reduction, and this is not the case 

as e will be used as a cost function for the reduction process. 

However, if the reduction is efficient and the covariance matrices 
.• 

are not greatly altered, the value of e calculated in·this way 

is likely to be a very relevant cost matrix. If there were sufficient 

reason in a particular application it could be worthwhile to extend 

the derivation of 9 to include a reduced estimator. This point 

is discussed further in chapter 10 (section 4) • 

. .7. ·· Application of Control Cost Function to the Example System 

Having established a sui table value of the cost function 

it is possible to apply the method of simultaneous diagonalisation 

of quadratic forms to the choice of the· reduction matrix T. The 

computation is handled by the subroutine SIMUL which is called from 

subroutine OPRED, which const~cts the reduced estimator and has 

been described in Chapter 5. Subroutine SIMUL performs the matrix 

transformations and calls a Fortran e:l;genvector subroutine 



- 94-

to perform the necessary diagonalisations.· The details of 

this Cite given in Section 8. 

The construction of the reduced order estimator is now 

identical to the method of Chapter 5, with 6 being supplied as data. 

After ten iterations all quantities have converged,. giving: 

r = r 3.01 1.003) 
\ 1.003 3.08 

and the control system 

1.83 z. - -508 y. 
]. . ]. 

= - .0343 z. + .246 y. 
]. ]. 

(6.27) 

(6.28) 

This control system can be seen to be similar to that of 

(5.11), but the performance is slightly better, as shown by: 

Optimum Reduced order 
Controller estimator using 

SIMUL 
,, 

Costs on control, u 13.71 13-75 

Costs on state vector x2 40.29 40.54 

eo-variance of system ( ::) ( 8.1 
-6.1 

-6.1) 
40.3 

( 8.2 
-6.1 

-6.1) 
40.5 

The eigenvalues of the diagonal matrix obtained by SIMOL 

are 94 and 0.2, demonstating that the cost of reduction is only 

likely to be 0.2 per time step if a reduced order estimator is 

used, and this is confirmed by running the subroutine SYSTEM, which 

gives an independent check, and calculates the above costs. 

What the example has shown is that the method of simultaneous 

diagonalisation can construct a reduced order observer with a 

performance very close to that of the optimal system. 

More fully the system is obtained by the simultaneous 

diagonalisation of (from 6.4) 
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and 

giving the transformation matrix 

T =(·4.21 0.14) 
1.00 0.99 

which upon inversion, implies 

( 
zi+1) _ -1 -(0.25 . _1 vL -
O(i+1 -0.25 

giving the relation (6.28). 

The system mean is generated from 

= ( 5.67 -0.84) 
-0.84 0.33 

= ( 0.25 
0.77 ~:~~)(:~) 

Upon setting the control law 

this relation.gives the control equation (6.27). 

8. The subroutine SIMUL 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

Listing 6.2 gives the subroutine SIMUL and the main program 

used to test it using the test matrices A and B of equation 6.18. 

Subroutine SIMUL calls the Fortran subroutines UNIMAT and EIGMAT, 

given inlistings 6.3 and 6.4 respectively and these each call the 

Fbrtran subroutine EIGEN which obtains the eigenvalues and eigenvectors 

of a'symmetric matrix. A listing of EIGEN, which is part of the 

IBM Scientific Subroutine Package. is given in 'Appendix :2, 

together with the job control statements for mnning MATLAN in 

conjunction with Fortran and listings of subroutines LOC and MSTR 

which convert matrices from two dimensional arrays to single 

dimension arrays and conversely. 

, UNIMAT constructs the matrix R which transforms A to a 

unit matrix according to equation (6.6) and EIGMAT constructs the 
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I 
matrix S which diagonalises R BR according to equation 6.8. 

· The diagonal matrix so obtained is also returned by EIGMAT 

with eigenvalues in descending order of magnitude, this being a 

consequence of the operation of EIGEN, so that when SIMUL returns 

the matrix T as the product RS this'will be as required in section 

4 for the choice of the reduction matrix. 

When the matrices A and B of 6.18 are read by the main 

program of listing 6.2 the output is as shown in listing 6.5. The 

matrix T is precisely that of equation 6.20, and the diagonal matrix 

is precisely that of equation 6.19, giving a check on the programming 

of SIMUL and associated subroutines. Also given in the output are 

'A I 0 0 Td the products T T and T BT wh~ch demonstrate that the matr~x oes 

indeed transform the matrices A and B as required. 
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STMT MATLAN STATEMENT 

1 SUB PRO 

2 TRANS 
3 MULT 

4 MULT 

5 ADD 
Q MULT 

1 TRANS 

ll MULT 
9 ADD 

10 DIV 

1 1 TRANS 

12 MULT 
13 sue 
14 DIV 

15 TRANS 

16 MULT 

17 MULT 

18 SUB 
19 MULT 

20 MULT 

21 TRANS 

22 MULT 

23 ADD 
24 RETURN 

25 END 
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ESTIM2(AoBoHo0o~oGoGNEXToSIGMA,PI,THETAl 
A,AT 
GoAT,GA 
/1 oGA, AA 
C oAA, GQ 
H,GQ,HG 
t'oHT 
t'GoHToHH 
R,HH, SJGMA 
SIGI~A,HG, RG 
HGoHT 
HT,RG~GG 

GQ,GG,GNEXT 
~.H,RH 

Ho HT 
HT oRH ,Hd 
GNEXT,HHoGH 
t.O, GH, IG 
IG,A ,lA 
ThETA.IAoTA 
I A .I AT 
IAT, TA 1 ATA 
PltATA,THETA 

Listing 6.1 Subroutine ESTIM 2 

Given the control cost matrix Tf the subroutine computes the 
recursive equation fore given by. (6.22). 

. ' 
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STMT MATLAN STATEMENT 

1 MAIN 
2 READ (A,Bl 
3 WRITE (A, B) oFCRMAT=AS 
4 CALL SIMUL(A oBoT•oX) 
5 WRITE (T,X) oFCRMAT=AS 
6 TRANS T ,AT ********** 
7 MULT AToAoTA * CHECK 
8 MUL T. TAoToTAT ********** 
9 MULT AT,B,TB 

10 MULT TBoToTBT 
11 WR I 'TE (TAToTBTloFORMAT=AS 
12 END 

.-----··· ... 

STMT MATLAN STATEMENT 

1 SUB FRO SIMUL(A,s,T,X) X WILL BE VECTOR 
2 RDIM AoD 

~---·--
3 ALL CC ATE R,(DoCl 
4 CALL UNI MAHAoRoD) oF OF EIGENVALUES 
5 TRANS RoRT 
6 MULT RToBoRT8 

-.l 

7 MUL T RTBoRoC 
8 'oiR ITE (R,C l oFORMAT=AS 
9 ALL CC ATE So(D.oC) 

10 ALLOCATE Xo(Do1l 
11 CALL EIGMAT(C,S,X,D),F 
12 MUL T RoSoT 
13 l'iR I TE (S,ToXloFORMAT=AS 
14 RETURN 
15 END 

Listing 6.2 Subroutine SIMUL 

T which simUltaneously diagonalises 
The main program reads the test 

T'AT and T'BT to check the 

Finds the transformation matrix 
the symmetric matrices A and B. 
matrices A and B and calculates 
subroutine. The output is given in listing 6.5. 

--------
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FORTRAN IV G LEVEL 1. MOD ~ UNIMAT DATE = 70169 

0001 SUBROUTINE UNIMAT!AAA,RR,XN) 
0002 DIMENSICN AAA( 2o 2loAA( 4loA( 3).R( 4l.~R( 2. 2) 

0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 

Listing 6.3 

c 
C THIS NEEDS NEW NUMBERS FOR OTHER CASES 
c 

N=XN 
IA=l 
DO 30 J=1 ,N 
DO 40 I=loN 
AA( IA l=AAA( I ,J) 
IA=IA+l 

40 CONTINUE 
30 CONTINUE 

CALL MSTR(AA 0 A 0 N0 0,1) 
CALL EIGEN(A,R,N,C) 
IA=1 
DO 50 J=l,N 
DO 60 I=l•N 
RR( I ,J)=R(IA l 
IA=IA+l 

60 CONTINUE 
50 CONTINUE 

DO 10 J=1•N 
CALL LCC(J,J,IA,N.~.1) 
RT=SQRT (A (I A l) 
DO 20 I=l,N 
RR(I,Jl=RR(I,Jl/RT 

20 CONTINUE 
10 CONTINUE 

RETURN 
END 

Fortran Subroutine UNIMAT 

Subroutine UNIMAT is called by SIMUL in order to construct the 
transformation matrix R which converts matrix A to the unit matrix. 

The operation of the storage conversion subroutines LOC and MSTR is 
described in Appendix 2. 



- 101 -

FORTRAN IV G LEVEL 1. MOD ~ EIGMAT 

SUBROUTINE EIG~AT(~Cc.ss.xL.XN) 
DIMENSION XL(2) 

DATE = 70169 

0001 
0002 
0003 DIMENSION CCC( 2. ::>.CC( 4).C( ~>.SI 4l.SS( 2. 2)•· 

0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 

. 0022 
0023 
0024 
0025. 

Listing 6.4 

c 
c 
c 

THIS. NEEDS NEW NUMBERS FCR OTHER CASES L( 2) 

N=XN. 
IA=1 
DO ~0 J=l'•N 
DO 40 I= 1 • N 
CC( IA l=CCC (I .J) 
IA=IA+l 

40 CONTINUE 
30 CONTINUE 

CALL MSTR(CC.c.N.O.l) • 
CALL EIGEN(c.s.N.O) 
IA=1 
DO 50 J=1•N 
DO 60 I=1•N 
SS ( I • J ) = S ( I A ) 
.IA=IA+1 

60 CONTINUE 
50 CONTINUE 

OD 10 I=1•N 
CALL LOC(I.I.IC•N•N•ll 

10 XL( I) =C( IC) 
RETURN 
END 

Fortran Subroutine EIGMAT 

Subroutine EIGMAT is called by SIMUL in order to construct the 
transformation matrix S which diagonalises the matrix R1 BR. The 
diagonal elements are returned in the vector XL. 



·. -

,.,. . 
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X 

TAT 

TBT 
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DIMENSIONS = ( 2o 2) 

1 
2 

1 2 

5o1640E-01 5o7735E-01 
2o5820E-01 -5o7735E-01 

END OF MATRIX T 

DIMENSIONS = ( 2o 1) 

1 

1 2o8000E 00 
2 1oOOOOE 00 

END OF MATRIX X 

DIMENSIONS = ( 2. 2) 

1 2 

1 loOOOOE 00 s. 5060E-07 

2 3o0972E-07 1o0000E 00 

END OF MATRIX TAT 

OIMENS.IONS = ( 2o 2) 

1 2 

1 2o8000E 00 o.o 
2 3o0972E-07 loOOOOE 00 

END OF MATRIX TBT 

Listing 6.5 Output for SIMUL Test Matrices 

Given the test matrices of (6.18) as input, listing 6.2 gives the 
above output, checking that the matrix T does indeed diagonalise 
matrices A and B. The diagonal elements are given in the matrix X. 

'"7"' 
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CHAPI'ER 7 

A ONCE-THROUGH BOILER MODEL 

1. Model Description 

The theory and associated MATLAN subroutines developed in 

previous chapters are suffi.cient to allow the construction of a control 

system whose order may be chosen to be that of the plant itself, as 

dictated by optimal control theory and the Kalman filter, or whose 

order may be chosen to be lower. When considering the control of a 

plant with a large number of state variables, that is with a high order 

state vector it is to be expected that the order of the control system 

can be substantially reduced without any significant penalty in terms 

of control system performance. 

Such a high order plant is typically found in distributed parameter 

systems since an adequate description of these can only be made by 

subdivision into a large number of small elements each of which will be 

represented by one or more state variables. 
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The example used so far has the smallest possible dimensions 

and for testing the reduction method developed in previous chapters 

a model with a larger dimension is required. The model chosen is 

developed from the finite difference form of the equations for a 

once-through boiler. While many models of large dimension ~10uld be. 

suitable, an advantage of this model is that it is defined by 

relatively few parameters~ Simplifications are made, reducing the 

model to the equations for a counter-flow heat exchanger. In this 

form the weighting coefficients determined by optimal control theory, 

for example, produce recognisable patterns. The form of the heat 

exchanger is shown in Figure 7.1. The transit times of the two fluids, 

steam and gas respectively, are assumed to be small, so that at any 

instant these streams have achieved equilibrium with the local tube 

metal. The time constants of the system are.associated with the time 

constants of the tube metal. The metal tube is assumed to be thin so 

that its temperature throughout is defined by one temperature. 

2. Finite Difference Model 

2.1 Steam Equations 

·----
Defining 

Steam now rate WS kg -1 = sec 

Steam specific heat = SHS J.kg -1o0-1 

Heat transfer coefficient = K J o0-1 -1 • sec 

Tube metal temperature perturbation = T(N) oc 

Steam temperature perturbation = T.S(N) oc 

Heat Flow into steain Q J sec -1 = 

where N is the section number, the equations for the steam side 

are: 
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(i) Heat Transfer 

Q = X(T (N) -
TS(N) + TS(N' + 1) ) 

2 ,• 

(ii) Temperature Rise. 

Q;, WS. SHS [ TS(N) - TS(N +. 1)] 

Eliminating Q from the above equations gives 

AS5.TS(N t 1) - AS6.TS(N) = T(N) 

where AS5 = WSKSHS + t 

and AS6 = WS.SHS - i 
K 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

The complete steam side may be represented in matrix 

form, taking TS(1), the inlet steam temperature perturbation 

as zero, as 

St.TS = T (7.6) 

where S1 = AS5 .o 0 (7.7) 

-AS6 AS5 

0 . 
' 

AS5 0 

0 0 -AS6 AS5 

TS = TS(2) and T = T(1) (7.8) 

TS(3) T(2) 

TS(N + 1) T(N) 

An explicit solution for steam temperature can be obtained 

from (7.6) as 

TS S -1 -= 1 ·• T •. 

or TS = S2.T 

where S2 = S1-1 
. . 

(7.9) 

(7.10) 

(7.11) 
The construction of S2 is carried out by subroutine OTBOIL 

which is given in listing 7.1 
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Mean steam temperature in any section is 

given by: 

TS(N) = ~ TS(N + 1) + ~TS(N) 

or TS = s4.TS (7.12) 

where s4 = 0.5 0 (7.13) 

0.5 0.5 
.... ..... 

0 .. ..... ... ..... .... ..... ...... ..... ..... .... 
' 0 0.5 0.5 

From equations (7.12) and (7.10) mean steam 

temperature is given in terms of metal temperature by: 

TS = S5.T 

where S5 = S4.S2 

S4 and S5 are also constructed by OTBOIL. 

2.2 Gas equation 

For the gas side an entirely similar derivation i.s 

(7.14) 

(7.15) 

possible, with the exception that fluid flow is reversed and the 

fluid inlet temperature is not assumed constant but is taken as 

the control input to the system. 

The heat transfer and temperature rise equations are: 

cyJ = KG~tTG(N + 1~ + TG(N)] - T(N)1 

QG = WG.SHG [TG(N + 1) - TG(N)] 

and these lead, as before, to 

AG5.TG(N) - AG6.TG(N + 1) = T(N) 

where 

AG5 
WG.SHG 

+~ = KG 

AG6 WG.SHG - ~ = KG 

and WG = Gas flow rate 

SHG = Gas specific heat 

QG = Heat flow from gas to metal 

KG = Heat transfer coefficient for 

(7.16) 

(7.17) 

(7.19) 

(7.20) 

gas side 
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2.3 Tube metal eauation 

0 -1 If the element of tube wall has thermal capacity, C J. C 

then 

c dT(N) 
dt = QG- QS (7.31) 

Substituting for the heat flows from equations (7.1) 

and ·(7.1'6) gives 

c dT(N) 
dt 

or 

= KG [ TG(N) - T(N~ - K [T(N) - TS(N)] 

dT (N) = AM1.TG(N) + AH2.TS(N) - AM3.T(N) 
dt 

where AM1 KG K =c,AM2=c } 
and AM3 = Al11 + AM2 

(7.32) 

(7.33) 

Substituting for TG(N) and TS(N) from (7.12) andQ.29) gives, 

in matrix form 

~t T. = AM1 [G5.T + G6.TG(NB +.1>] + AM2 [s5.T - AM3~TJ (7.34) 

or 

d dt T = ACON.T + BCON.TG.(NB + 1) 

where ACON = AM1.G5 + AM2.S5 - AM3.I 

and BCON = AM1.G6 
} 

(7.35) 

(7.36) 

·Equation (7.35) now describes the plant dynamics in the 

conventional form 

x = Ax+Bu c c (7.37) 

and this continuous differential equation requires to be converted 

to a discrete time form in order to apply the control theory developed 

in previous chapters. 

The generation of ACON, BCON and the other related 

matrices are carried out by subroutine OTBOIL, Listing 7.1. The 

matrices so generated using the data of section 5 are shown in Fig. 7.2 
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3. Discrete Time Model 

Using the Crank·-Nicholson approximation given in reference 36 

gives for equation (7.37) 

+ = 
2 

+ A x. c ~ + 

where u. is assumed constant throughout the interval. The discrete 
~ 

form is then 

X i+1 = Ax. + Bu. (7.38) 
~ -~ 

where A = (I - .H A ,-1 
2 c 

(I +~A) 
2 c (7.39) 

and -B = (I _llA )-1 B. At 
2 c c (7.40) 

The construction of matrices A and B is carried out 

in subroutine ·cRANK which is shown in Listing 7.2. 

In a time interval the control variable u is assumed constant. 

Using this fact it is possible to subdivide the-interval to give a more 

accurate finite difference representation. In such a sub-division 

Axi + Bu 

= Ax. + Bu 
~ 

= A.Axi + A.Bu + Bu 

-· A.Axi + (A+I)Bu 

Repeating this process NSUB times allows the system matrices 

to be built up and the programming necessary is shown in Listing 7.2. 

Matrices A and B generated as above with NSUB = 8 and a tiro~ 

step of 2 seconds using the data of section 5 are shown in Figure 7.3. 

A check that NSUB = 8 was sufficient subdivision was confirmed 

by comparison with the transition matrix derived directly from the 

continuous time matrices as in section 7.7(b). 
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In matrix form 

AG5 -AG6 0 TG(1) 

0 AG5 

0 • ·= 

0 AG5 TG(N) 
·. 
or 

G1.TG = T + Gu.TG(NB +1) 

where the matrices are suitably defined. 

FUrther 

TG = G2.T + G3.TG(NB + 1) 

where G2 = G1-1 

-1 and G3 = G1 .GU 

Mean gas temperature is given by 

TG = G4:TG + ADDN.TG(NB + 1) 

where 

0.5 0.5 0 

' .... 
G4 0 .... ' = ... .... 

' ' ' 
0 

and 0 

ADDN = 

0 

0.5 

Using (7.26) and (7.23) 

TG = G5.T + G6.TG(NB + 1) 

where G5 = G4.G2 

and G6 = G4.G3 + ADDN 

T(1) 0 

+ 
0 

T(N) AG6 

(7. 21) 

• TG(NB+1) 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

(?.29) 

(7.30) 

The matrices G1, G2, G3, G4, G5, and G6 are constructed 

in OTBOIL from the input data AG5,. AG6. 
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4. Observation Matrix 

The observation is taken to be steam temperature only, 

that is TS(NB + 1). This quantity is one element of the steam temperature 

vector given by equation (7.9). It is a simple matter then to define 

the observation vector H in the equation 

(2.2) 

as.the bottom row of the matrix S2 and this operation is included in 

subroutine OTBOIL (Listing 7.1). 

5. Data for Model 

The following typical data was used, representing a power 

station once-through boiler unit at full load. Averages were taken 

so that similar data could be used for each region of the model. Twelve 

regions (NB = 12) were used, this being typical of the minimum number 

that could be used for this type of finite difference model. 

Mass per unit length of tube: 

Gas flow rate: 

Steam flow rate: 

Gas specific heat: 

Metal specific heat 

Length of tube 

Gas heat transfer coefficient 

Steam heat transfer coefficient 

Steam specific heat 

MW 

WG 

ws 

= 5934.0 kgm-1 

= 315.6 kg.sec-1 

-1 = 39.86 kg.sec 

SHG - 1.16 x 103 J.kg-10c-1 

SHM = 670.0 J.kg-10c-1 

L 

KG 

K 

SHS 

= 7.92 m 
6 0 -1 -1 

= 0.1907 x 10 J C sec 

= 0.5616 x 106 J°C-
1sec-1 

13.53 x 103 Jkg-1
°C-

1 
= 

The thermal capacity of each metal region is then: 

c = ffil.~~-L A= 2;623 X 106 J°C-1 

From the above, using equations (7.4), (7.5), (7.19), 

(7.20), and (7.33) the following input data for OTBOIL can be obtained 

AS5 = 1.46 

AS6 = o.46 

AG5 = 2.42 

AG6 = 1.42 

AM1 = 0.0727 

AM2 = 0.2141 
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6. Construction of System Hatrices from Data 

The subroutine OTBOIL was run with the above data being read 

in. The matrices generated were printed and are given in Figures 

In addition further subroutines were called which caused the 

matrices generated to be punched on'to cards, in formats suitable for 

use of these cards as data input cards for MATLAN programs or by 

calling different subroutines, in formats suitable for use as data 

cards for an eigenvalue package. Details of these subroutines are 

given in Appendix 3. 

It is worthwhile at this point to examine the elements of the system 

matrices A, B, and H, whose structure largely define the control 

problem. 

(a) Matrix A 

The matrix has a clear ''banded" structure, all diagonal 

elements being approximately equal with a value of around 0.68, 

this corresponding to a time constant of the tube of around 6 

seconds. Elements in a line parallel to the main diagonal are 

also approximately equal, tne values becoming smaller away from the 

main diagonal. This would result from a mechanism whereby tube 

temperature is influenced more by nearby tube temperature than by 

remote tube temperatures. 

(b) Matrix B 

The importance of gas inlet temperature (the control 

variable) at the gas inlet end of the boiler is shown clearly by 

the elements of this matrix, their magnitude falling off rapidly 

from the gas inlet end (element 12). 

(c) Matrix H 

This matrix demonstrates the dependence of steam outlet 

temperature on the tube metal temperature at the steam outlet 

end, elements remote from this end falling in magnitude. 
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7. Step Response of the System 

To give a visual picture of the behaviour of the plant the step 

response of the system was obtained. The disturbance applied was a 10 

degree C step on gas inlet temperature. The response of steam outlet 

temperature was examined in the following ways: 

(a) From System Matrices 

The matrices ACON and BCON obtained in section 2 can be 

used via eigenvalues and the transition matrix, of the form 

(ACON)t 
e 

to give the step response. The result is shoWn in Figure 7.4. As 

the transition matrix for 2 seconds was found to be identical with 

the matrix A as derived in section 3 it follows that the discrete 

matrix A, if used to generate a step response would give an identical 

result. 

The same program gives the dynamic behaviour of the metal 

temperatures and these are also shown. 

·(b) Inverse La place Transform 

As a check on the matrix modelling an entirely separate method 

of obtaining the step response was used as described below. Very 

close agreement with (a) was found. 

It can be seen that the respon~e of the steam temperature is in the form 

of a delayed response with a time constant in the region of 20 seconds. 

Metal temperatures remote from the gas inlet respond with a longer time 

constant. 

8. Inverse Laplace Transform Method for.Step Response 

If the frequency domain transfer function can be obtained for a 

system then numerical methods of Laplace'Inversion are available 

which allow the time·response to be obtained. Such a method (reference 

37) was used for the present plant model, the transfer function being 
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· obtained from the partial differential ·equations using the method below, 

which follows a method which has been given in reference 38. 

The model equations may be re-cast into continuous space partial 

differential form, where AL is the length of the region used for the 

discrete space model. 

lT 
C 'Clt ~ KG(TG - T) - K(T - TS) 

WG.SHG aro = KGL (TG - T) 
ax A . (7.42) 

WS SHS oTS = ...[_ (T - TS) 
. • l x AL 

Putting s =~at .in equation (7.41) and using (7.42) and (7.43) gives 

Cs T = KG(TG - T) - K(T - TS) 

and T = KG.ro + K.TS 
Cs + KG+ K 

Substituting into equation (7.41) gives 

-;)TG 
(l x • AG(s) (Cs TG +K.TG- K.'l'S) = 0 

where AG(s) KG 
= WG.SHG. ilL (Cs + KG + K) 

Similarly substituting (7.44) into (7.43) gives 

~ - AS(s) (~CsTS + KG.TG - KG.TS) = 0 
Cl X 

where.AS(s) K 
= WS.SHS. A.L(Cs + KG + K) 

(7 .44) . 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

A solution to equations (7.45) and (7.47) can be obtained by. seeking 

a solution 

TG = BG(s)lx and TS = BS(s)lx 

Substituting into (7~45) and (7.47) gives 

~.BG(s) - AG(s) [<cs + K)BG(s) - K.BS(s~ = 0 

~.BS(s) - AS(s) [-(Cs + KG)BS(s) + KG.BG(s)] = 0 

From (7.50) 

BS(s) = i [- ~~~J) + (Cs + K)BG(s) J 

(7.49) 

(7.50) 

(7 .51) 

(7.52) 
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-
Substituting into (7.51) implies 

. tj + [-AG(s)(Cs+K) + AS(s)(Cs+KG)J id - AG(s)(Cs+K):(Cs+KG)AS(s) + KAS(s)AG(s)Ki 

= 0 (7.53) 

If the roots of this equation areid
1 

and id
2 

then the general solution 

to equations (7.45) and (7.47) is 
id X id X' 

TG = GI e 1· + G2 e 2 

(7.54) 

Boundary conditions are that 

TS = 0 at x = 0 

TG = BG(s) at x = L 

It is required to find the steam temperature TS at·x = L, as follows: 

Substituting (7.54) into equation (7.47) and noting that the coefficients 
~~X id X 

of e.· and· e .2 must be-:zero gives 

S1(id
1 

+ AS(Cs + KG)) - AS.KG.G1 = 0 

S2({d2 + AS(Cs +KG)) - AS.KG.G2 = 0 

The boundary condition at x = 0 implies 

S1 +52 = 0 

and that at x = L gives 
fd1L id2L 

G1e + G2e = BG(s) 

Using (7.56) and (7 • .57) in (7.55) gives 

AS.KG.BG(s) 
S1 = ~2L 

+ AS(Cs +KG)) - e (id
2 

+ AS(Cs +KG)) 

The solution for the steam outlet temperature is therefore 
fd1L .id2L 

TS = S1 e + S2 e 

= AS.KG ( id L /
1

L 
e 1 (~+AS(Cs+KG)) 

id2L 
- e 

id2L 
- e (~+AS(Cs+KG)) 

BG(s) 

(7.55) 

(7.57) 

(7.59) 

If the gas inlet temperature is disturbed as a step function 

then the response of the steam outlet temperature is given by setting 

in (7.59) 

BG(s) = 1 
s 
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and taking the Inverse Laplace Tranoform. 

A program for obtaining this transform was available from 

reference 37 and this is given in listing (7,3) together with the 

programming of equation (7.59), which forms subroutine FS2. 

The time response obtained is shown in ~gure 7.4 where 

it can be seen to agree'with the time response obtained by matrix methods. 

9. Eir;envalue Pronerties of the Uncontrolled System 

Tb give some insight into t~e form of the dynamic system 

represented by the model the eigenvalues of the system matrices were 

t'oimd 

(i) Continuous system matrix ACON 

The eigenvalues are given in Figure 7.5. It 

can be seen that the uncontrolled system is stable since 

the eigenvalues have negative real parts. 

(ii) Discrete system matrix A 

The eigenvalues of the system are given in 

Figure 7.6. The discrete system is also stable since all 

eigenvalues lie within the unit circle. 

The eigenvalue/eigenvector method used was from reference39 • 

10. Disturbance Matrices· 

Some assumed disturbance pattern i.s required for the model. 

(i) ObserVation noise 

Pnity disturbance covariance matrix was arbitrarily' 

used. 

(ii) Plant noise 

The unit matrix was used for the plant disturbance matrix. 

11. Cost Matrices 

Since the object of control has been taken t6 be the maintaining 

of a uniform steam temperature, and a cost of unity per time step may 
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arbitrarily be put UPon it. In terms. of the plant state vector 

Cost = [TS(NB + 1)] 2 = (H.T)'(H.T) 

= 

The cost matrix for the plant may theref?re be obtained 

from 

and the matrix so obtained is shown in Figure 7.7. 

(7.60) 

The cost of control is a scalar quantity and initially was 

taken as unity, the reasoning being that then both gas inlet temperature 

(the control vector) and steam outlet temperature would have equal 

weightings in terms of cost. 

Thus P = 1 (7.61) 

The disturbance and cost matrices are used in the control 

studies of the following chapters. 

. . 
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ACON. DIMENSIONS = (12tl2) 

I 2 3 4 5 6 

I -lo9846E-CI 2 o3937E-02 I o3'l87F.-C2 8o2074E-03 4o815~E-OJ 2o8259E-03 
2 9o6417E-02 -lo9846E-01 2 o.3037E-O:? I o3987E-O 2 8o2074E-03 4o8159E-03 
3 3o0378E-02 9o6417E-C2 -I ,9846.E-C 1 2o3837E-C2- lo3987E-O?. 8o2074E-03 
4 9o5712E-03 3o0378E-02 9o6417E-C2 -1.9846t-01 2o3837E-02 lo3987E-02 
5 3o0156E-OJ 9o5712E-03 3,QJ78E-C2 9o6417E-02 -1,9t146E-OI 2o3837E-02 
6 9o5CIIE-04 3o0156E-03 9 o5712E-C3 3 ,0378E-C·2 9.6417E-C2 -1,9846E-01 
7 2o9935E-!)4 9, SO 1 I E- C 4 3.Cl06E-C3 9o5712E-03 3.v378E-C2 9o6417E-02 
8 9o4316E-05 2o9935E-C4 9o5Cll!"'-C4 3o0151;E-03 9o5712E-03 3o0378E-02 
9 2o9716E-05 9o4316E-05 2 o9'J35E-04 9o5011E-04 3,0 156E-CJ 9o5712E-03 

~~ 9o3626E-C6 2.9716C::-C5 9,4316E-05 2.99J5E-04 9,501\E-04 3o0156E-03 ..... 
11 2o9499E-CJ6 9o3">26E-C6 2.9716E-;-C5 9o43!6!':-0S 2.9935E-04 9, 50 11 E-04 ..... 

"' 12 9o2941E-07 2, 9499E-C 6' 9,J626E-Ot 2o9716E-05 9o4316E-C5 2o9935E-04 

7 8 9 10 1 1 1 2 
• 

1 1o6581E-03 · 9o7296E-04 5, 7091E-04 3o3500E-04 1o9657E-04 1 ol534E-04 
• 

2 2o8259E-03 I o6581E-03 9o7296E-04 5o7C91E-04 3,3500C:-C4 lo9657E-C4· 

3 4 o8159E-:•)3 2.82 59E- 03 lo6581E-OJ 9.7296E-04 5.7C91E-04 3o35COE-C4, 

4 8o2074E-03 4 o8159E-03 2• 8259E-03 1o6581E-03 9. 7296F-04 5o7091E-G4 

5 I ,393 7E-02 8.20 74E-O 3 4, 8159E-C3 ', 2o8259E-03 lo65il!E:-1)3 9.7291\E-04 
.•.. 6 2o3837E-02 lo3987E-02 8o2074E-03 4o8159E-C3 2o8259C-03 1 o6581E-03. 

7 -lo9846E-O! 2o3837E-02 1• 3987E-02 8.2C74E-03 4od159E•03 2 o8259E-C3 · 

'l 
·a 9o6417E-02 -1.9846E-O 1 2. 3837E-02 1.3987E-02 8.2C74E-03 .4, 8159E-03: .. 

2.3837F.-02 1.3987~-02 a.2074E-03 9 3 ,0371:lE-02 9o6417E-02 -1. 9846E-OI 

I 10 9, 5712E-03 3 o03 78E- 02 9o6417E-02 -t.9846E-O 1 2o3837E-02 1 o39tl7E-C2 

11 3 o0156E-03 9o5712E-03 3, 0378E-02 9o6417E-02 -1, 9846E-O 1 2.3837E-02' 

12 9.SOI1E-04 3o0156E-03 9, 5712E-03 3,0378E-02 9o6417E-02 -1 o984cE-Cl 

END OF MATRIX ACON 

F I GlJI'?E 7.1. 
.. 
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BCON DIMENSIONS= (l2o 1) 

1 

l 1o637\iE-04 
2 2o79!3E-04 
3 4 0 7570E-04 
4 a. 10 70E-o 4 
5 1o38!6E-03 
6 2.3546E-03 
7 4o0!27E-03 
8 6o8386E-03 
9 1o1654E-02 

10 1 o9862E-O 2 
11 3o3849E-02 
12 5o7686E-02 

END UF MATRIX BCON 

Ft&U~E7.2,CTD. MPrTI'tiCE.S Q.CON AND 1-\ 

OO't'PUT ~y -ri-\E. MF'ITLI'\N SUQ.aaUTtNE OIBOIL 

·.· .•. 



. A. DIMENSIONS = ( 12o12) B 

1 2 3 4 5 6 . 1 

1 6o7642E-01 Jo 4536'::-02 2o1107E-02 1o2892E-02 7o8705E-03 4oB025E-03 1 4o0!:24E-04 
2 lo 3144E-01 6o7969!:::-01 3o6508E-02 2o2295::'-02 1o3609E-02 8o3022E-03 I. 2 6o'>'i53E-C4 
3 5o411 OE-02 1o 326E!o':.-01 6o8043':-01 3o6957E-02 2o251':61':-02 lo 3771 E-02 3 1o16J6E-03 
4 2o1866F.-02 So 4576E-02 1o32C::fE-01 6oS060r-ot 3o 70 5£'!:-0 2 2o2626!::-02 4 1o919.!00:-03 
5 8o7042E-03 2o 2C40e-C2 5o4681E-02 1o3302E-01 6. eo 64 e-o 1 3o7081E-02 5 3o15911:-03 
6 3o4217E-03 8o7689f::-03 2o2C7 <;E-02 5o4704!':::-02 1o 3303E-O 1 6o a 01\4 E-O 1 6 So1'i5fl'-03 
7 1o3300E-03 3o4456E-C3 8o7S32E-C3 2o 2C88C:-O 2 5o47C9E'-02 1o .1303F.-O 1 7 8o541.!E-03 
a 5. 126 'ic-04 1o 3 39 6E-03 3o45Ce:::-o3 8o7862F-03 2o208G(;-02 5o4709E-02 a 1o40351:-02 
9 1o960!lE-04 5o 1609<::-04 1o3415E-03 3o45170::-03 8o76~2C.-03 2o20i3il'~-02 9 2o3054E-C2 

10 7o4417E-05 lo 9720!::-04 5o1~64E-C4 lo3415E-03 3o45CBE-03 So7832E-03 10 3o7e53E-02 
1 1 2o803<;[;-05 7, 4753E-05 1o 'i720e'-04 5o 1609E-O 4 1o33<;6E-03 3· 4 4561"-03 1 1 ~.2123E-02 ..... ..., 
12 1 0 046 2E-05 2o 8039E-05 7o4417iZ-05 lo960BE-04 5o1289E-04 lo 3305E-03 12 1o0191E-Ol 0 

7 8 9 1 0 11 12 Ef\0 OF fo/ATRIX l1 

l 2o9289E..;03 lo7853E-03 1o0872E-03 6o 605l!E-04 3oC::771E-04 2o:!021E-04 
2 5o0625:':-03 3o0853E-03 lo8766F.-03 1o1412~-03 6o !0705!:::-04 3o~771E-C4 

3 6o4000E-03 5ol20SE-03 3oll90E-03 1. e c;s 2":-03 1o 1412E-03 6o<;054E-04 
4 1o3B08E-02 8o4210E-03 5o13111J-03 3o1190E-03 1oS7B6E-03 1oC€72E-C3 
5 2o2639E-02 lo3Bl4E-02 8o4210E-03 5o1208F-03 3o Od 53£- C3 1o7853C::-C3 
6 3o7085E-02 2o2639E-02 1 o380RE- 02 8o4000E-03 5e 0 t:2 !:E-03 2o',;28SF.-OJ 
7 6o 8064"0-0 1 3o7081E-02 2o2626E-02· 1o3771E-02 Bo ~022E-03 4o8025E-03 
e t. 3303:;-o 1 6o8064F-01 3o705BF-02 2o2566E-02 1o 360;1.~-02 7o87C!:C:-03 
g 5o4704E-02 1o3302E-01 6o8060F.- 01 3o6957E-02 2o2295E-02 1o2~'i2E-C2 

10 2o2079E-02 5 o468 1''- 02 1o3296r-ot 6o 8043E'-O 1 3o~508E-02 2o11C7t:-02 
1 1 Bo7689E-03 2o204CF.-02 5o4576F.-02 lo 3268<'-01 6o7q69~-0l 3o45JE'"-02 
12 3o4217E-03 6o7042E-03 2o1866E-02 5o4'110E-02 1o H44E-01 6o7E42E-01 

END OF ~ATRl X A 



6 

5 

+ 

3 

2 

F~E<SlliE:.NC't' il>oi'<\RIN ' METHOD GIVES 

ALMOST oO~NTIC~L RESPONSE oF 

-Sf"E"IW\ 0\ll'LE.T TI'OMPG.RI'IT<lRE 

AS .:SHOWN &Y CRoSSES 

- -x-
--

STE:o'\1"\ OUTLET TEMl'E~f\TUieli 

. -><---- -- -~ 

X,. ,.. 
USING MA'!'R LC!i S f\CON ~A:N:O~A:.------~-------:----~ 

I 

I 

I 

/ 

TUllE METAL TE:MPEJ<ATURE.S. 
OSINQ. 1"\ATRICE S llCON AND A 

T( '1-) 

-r(z.) 

10 /00 

OF G-AS INLET IE.MPE.RFI.TURE. 

SECONDS 

STEP INCREASE 

_. 
N .-



-122-

FIG-URE 7.5 EIG-E.NVALVES OF 

CONTINUOUS MftTRl)( ACON 

J( X 

REAL X X -0·2 -O·I 

SYSTeM IS. S.TI'II!.LE A-s 1\LL Roo,-S. LIE 

IN -ntE LE:f"l lti'ILF PLANE 

0·8 0·9 

• 

FIGU~E 7.6 E:t~E.NIJALUES OF II+E DISCRETE 

TIME SYSIE.M fV\PrTIZI '/. R 

SYSTEM IS STITBLE. AS ALL Roo,-s I'I~E. v.JITHIN 

.HI-E: UNII C.I~C.Lf: 

0 ·I 

0 

I·O 

REm 

-0·1 
'..:-



7:7 
I 

FRoM H. H 



- 124 -

1 
2 

SUBI'RO 
ADD 
FORMS 
sue 
IJULT 
JNSLBI~ 

JNV 
FORMS 
INSUBt~ 

IJULT 

OTBOIL,(AM1oAIJ2oAS5oAS6oAG5oAG6oNB,ACON, 
AIJ1oAII2oAM3 

3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 
26 

27 

* 

* 

* 

STEAM CCMPLETE 
FORMS 
fJUL T 
IN SLBM 
JNV 
EX SUO M 
IIUL T 
FORMS 
INSLBM 
IIUL T 
IIUL T 
FORMS 
ADD 

GAS COIJFLEll~ 

!lULl 
IJULT 
ADC 
SUB 

S1o (1\EoNBl ,( lo1 ), ( 1o1 l.I\BoAS5 
NBo 1oi\EH 
AS6 ,-1 ,MAS6 
~I AS f, S 1, ( 2 • 1 l • ( 1, 1 ) • N 8 I 
S1.S2 
54 • ( 1\ B • NB ) • ( I • 1 ) • ( 1 • 1 ) • "B • 0 o 5 
Oo5oS4,(2o1l~ (1,1 loNB1 
S4,S2tS5 

G 1o (NB oNB) • ( 1 o1) • ( 1 • 1) • NBo AG5 
AG6 ,-1 oMAG6 
1J AG 6 , G 1 , ( 1 • 2 I • ( 1 • 1 l • N 81 
G1oG2 
G2ol1oN8loiNB.J),G3 
AG6oG3,G3 
G 4, ( N 8, 1-.B l • ( 1 • 1 l • ( 1 • 1 l • 1\B • 0 o 5 
Oo5oG4ollt2loC1o1loNB1 
G4oG2tG5 
G4oG39G6 
ACDNoCNB,1loCNB,1)o(O,OltloOo5 
G6oAC:CN,G6 

AMloG!O,ACON 
AM2,S5oDUM 
ACONoCUMoACON 
ACONoAII3,ACON 

CONTlNl;CUS A 
IJULT 

FORMED 
AMl,Gf:,BCON 

* CONTJNUCUS B FORMED 
28 EXSUBM S2,(N8,1),(1,NBloH 
29 FETURN 
30 FND 

Listing 7.1 Subroutine OTBOIL 

BCO~, H) 

This subroutine constructs the matrices describing th; relation 

between gas, metal and water and generates the continuous system matrices 

ACON and BCON. 



1 SUB PRO 
2 ADD 
3 FOR 
4 LOCF 

.5 tJULT 
6 J2 LCOFEND 
7 CONT DIV 
8 CIV 
9 MUL T 

10 SUB 
11 ADD 
12 INV 
13 tJUL T 
14 tJUL T 
15 tJULT .. AoE FOI' SUE TIME 
16 FOR 
17 LOC'F 
18 tJUL l 
19 ADD 
20 tJUL l 
21 J1 LOOPEND 
22 EXIT J;ElUF=N 
23 END 

Listing 7.2 Subroutine CRANK 
0 •• 

125 -

CRA~K,(ACONoBCONoDELT,~SUBoAoB) 

o loOoCIIINS 
(NSUEoEOoOoOoOOlloCONT 
J2o J, 1oNSUB 
DlVII:So2oDIVNS 

DIVNSoDELToDEL2 
2oOE'L2oCEL3 
DEL3 oACON oAC02 
1o0oACC2oiMA 
lo0oAC02oiPA 
I MA o I tJ A 
IMAoiFAoA 
lii'AoBCCI'ioB 
BoDEL2oB 
STEP 
(NSUEoEOo0oOo001loEXIT 
J1oJo1oNSUB 
~oBoAE 

AEoBoE 
A oA, A 

The continuous system matrices ACON and BCON are converted to 

discrete forms A and B. 



100 DIMFHSION TIME(200),FT(200) 
110 COI~PLFX t':(S),AI CSl,S,F,CT,G 
130 ftl(ll=Cl.2P3767708Fl,l.66606258~FQ) 
1~0 AL(2)=(1,222613148E1,5.0127192~4FOl 
150 ftl(3)=(1,093430343Fl,8,409672996FOl 
160 AL(4)=(~.776434640EO,l,l921P.5390El) 
170 M ( 5) =( 5, 2 254 5 3~6 7FO,l. 5 7?952905Fl.) 
lRO C(ll=C-3.690204687E4,1,9690046~SF5l 
190 C(2)=(6.127699970F4,-Q,540P59~r7F4l 
200 C(3)=(-2,F91F57227F4,l.Pl69lPSIOr4l 
210 C(4)=(4.6~5360P47F3,-1.901772~~~FO) 
220 C(5)=(-l,l874l4019F2,-l.41303~924F2) 
230 ~JRITF(6,10) · 
2~0 10 FOR~AT(l2P+T~,TF,TSTFP) 
250 RfA0(5,•lTS,TF,TSTFP 
260 IIHl•l 
270 T=T~ 
280 40 SUt-11=0 
290 SliM?=O 
300 DO 20 1•1,5 
310 S =Al.( I l/T 
400 CALLFS2CF,S) 
470 

620 SUBROIJTII1F FS2(F,S) 
6~0 COMPLEX S,F,~P,AS,Cs,r.P,nP,nc,Pl,P2,RT,Fl,F2 
700 ftK•.SG16F+06. 

AKC:=O.l907F+06 
~IS=39. PG 
l~G=315,6 
~HS=1~.~3FO~ 
SHG=l.1H+O~ 
Ol=7.9?/l?. 
C=2 .F.?3E+Of. 
NB=l2 

AG=IKG/(WP•SI!P•OI•(~*S+IK~+I~)) 
AS=AK/(WS•S~S•OL•(~•S+IrP+IK)) 
CR=r.•S+JIK 
CG=r.•S+I'Kr. 
QB=-M•rS+IS•r.r. 
QC=~P•AS•(IK•IKP-rs•r.P) 
RT=CSQIH(Qr.•Q6-~ .•nr.) 
Pl•(-QI3+RTl/2. 
P2=( -Q!3-RTl/2. 
Fl=CfXP( P1 •nt•I'P l 
F2•CD'P(P?•OI•IIP) ' · 

.· 

500 SUI1l=SWl+flFI\L(C(I ))•RF.IILCF) 
~10 20 Slii-'2•SU~2+AIM!r.(C:(Ill•III"II'(F) 
520 FT( ft1('1)=2•(Sl.lf.'l-~l'~'2)/T 

710 
12r 
730 
74 ~ 
7~0 

760 
770 
780 
790 
800 
810 
820 
830 

. 840 
850 
860 
870 
880 
890 
900 
910 
920 
980 
990 

F•AS•AKP•(f1-F2)/(Fl•(Pl+IS•~r)-F~•(P2+JI~•CP)) 
F=F•lO,/S 

530 Tlf.'F(I~Ol•T . 
5~0 WRITE(S,•lT,FT(INO) 
5f.O INO•ItiO+l 
570 T=T+TSTFP 
5PO IF(TF-T+l,F-6)30,40,40 
590 30 C:0~1TII'UE 
610 FND 
620 

Listing 7.3 

RETURN 
FND 

Inverse Laplace Transform Program 

Sub-routine FS2 forms the frequency domain transfer function according 
to equation (7.59) which is then inverted to giv~ the step response. 

,..... 

"' "' 

;. 

'( 
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CHAPl'ER 8 

REDUCED ORDER CONTROL FOR THE 

ONCE THROUGH BOILER MODEL 

1. · . Deterministic Control Law 

In the previous chapter the plant state cost matrix was found 

t;o be 

V = H'H 

and is shown in Figure 7.7. The control vector (gas inlet temperature) 

cost was initially taken as 

p = 1 

Using these costs and the derived plant matrices A and B (Figure 7.3) 

the design method of Chapter 2 may be applied to find the optimal 

deterministic control law. This will be in· the form 

u. = -A x. 
J. J. 

(8.1) 

where the matrix Jl is obtaned from subroutine CONTRL (Listing 2.1) •. 

The result of a run using the data for the once-through boiler model 

is shown in Figure 8.1. 

As the control law was seen to have such low values (all elements 

less than 0.1), a further run was carried out to investigate sensitivity 

to the control cost·by setting 

p = 0.1 
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The resulting control law is also shown in Figure 8.1 and it can be 

seen that the control is now considerably more active. As this 

controller would be more likely to require a satisfactory estimator, 

it was used subsequently in order to more fully test the reduction . 

method. 

Associated with the derivation of the control law is the cost 

matrix PI. Being a .12 x 1_2 matrix it was punched onto cards for use 

by subroutine ESTIM2. The instructions to call CONTRL and punch the 

cards, using the sUbroutines of Appendix 3, are shown in Listing 8.1. 

The cost matrix PI associated with the control cost P = 0.1 is shown 

in Figure 8.2. It is clear that the cost weighting is concentrated-

near the steam outlet end of the boiler (mesh 12). 

In order to investigate the performance of the deterministic 

system with this controller the system equations were written as 

xi+1 = Axi + Bui + ~ i (2.1) 

= £A - BA)x. + ~ ~ (8.2) 
l. s l. 

The matrix (A - BJ\) was computed by subroutine CONTRL and this 

matrix is shown in Figure 8.3. FUrther the eigenvalues were obtained 

and these are plotted in Figure 8.4 • It can be seen that they are 

well within the unit circle sho~dng the system to be very stable. 

There is a considerable similarity to the uncontrolled system eigenvalue 

plot (Figure ?.6), although the eigenvalues have been shifted towards 

the origin, implying some improvement in stability. 

Before passing· to the construction of the Kalman Filter it is 

possible to note the convergence properties of the matrix IOccati 

equations solved by subroutine CONTRL. More rapid convergence occurs 

for mesh points near the steam outlet end of the boiler, but as many 

as 30 iterations are required near the gas outlet end for convergence 

to 3 significant figures, indicating relatively slow convergence properties. 

A more direct method of solving the Ri.ccati equations, similar to those 
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considered tn the introduction (Chapter 1) would probably be useful if this 

calculation were to be required frequently. 

2. Control using Kalman Filter 

In order to be able to judge the performance of the reduced order 

estimators to be considered in this chapter it is desirable to first. obtain 

the optimal control performance using the "Kalman Filter" as the plant 

estimator. 

The Kalman Filter is defined when the covariance matrix r has 

been computed. The subroutines ESTIM (Listing 2.2) and the enhanced form 

ESTIM2 (Listing 6.1) were written to evaluate this matrix. Using the 

once-through boiler system matrices A, B, H, and the disturbance covariance 

matrices Q and R defined in the previous chapter as the unit matrix and 

unity respectively gives the value of ras sho~ in Figure 8.5 as output 

from ESTIM2. The Kalman Filter estimator (Equation 2.35) when combined 

with the control law given by the certainty equivalence principle as 

= 

gives 

t i+1 =<I -rH'R-1HHA- aA>fi + T"H'R-1yi+1 

These relations can put into the forms 

zi+1 

by setting 

c = 
D = 
E = 
F = 

= 

- A<I -rH·R-1HHA- B.A.> 

-ArH'R;..1 

(I - rH'R-1H)(A - B./1..) 

rH'R-1 

(2.22) 

(8.3) 

(5.15) 

(5.16) 

(8.4) 

and identifying the storage vector zi as the conditional mean f i-1• 

To evaluate these matrices the subroutine SYSOPT was written as 

shown in Listing 8.2. The simple example system of Chapter 2 was used 

to confirm the validity of this subroutine. 
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The properties of the combined plant and controller system, which 

is of order 24, can now be investigated using the subprograrn SYSTEM as 

described in Chapter 5. The result of this is a cost per time step of 

1.475. Also calculated is the 24 x 24 system matrix SYS whose eigenvalues 

determine the stability of the control configuration. The eigen values 

were obtained and are plotted in Figure 8.6. There is roughly now a 

double set of eigenvalues, due to the similarity of the estimator 

dynamics with the plant dynamics. A new point appears on the real axis 

at (0.4, 0) and this will be associated with the estimator. Again the 

eigenvalues are all within the unit circle indicating a stable system. 

Subprograrn SYSTEM also computes the covariances of the state 

vector and the storage vector. This 24 x 24 matrix is too large to 

reproduce but the diagonal elements are plotted in Figure 8.7 where it 

can be seen that the greatest variance of the state vector occurs near 

the pentre of the boiler, due to 

(i) Control action at the steam outlet end holding down the 

cumulative addition of disturbances at that end. 

(ii) ,The control action will not be suitable for control of 

state variable variation further down the boiler and will 

indeed contribute to the variation near the centre, giving 

the maximum value here. 

The variances of the elements of the mean r (the storage vector) 

are larger near the steam outlet end, showing the increased activity 

here, due to updating ·of these estimates. On the other hand the diagonal 

elements of r . the covariance matrix of the state estimate which are 

also shown in Figure 8.7 reduce at this end as information from steam 

outlet temperature is available. 

3. Reduced Order Control of the Once-Through Boiler 

As the procedure for the design of a reduced order controller has 

been set out in Chapter 6, it is straightforward to apply the method 



'' ..... 

- 131 -

for this much larger system. The required matrices will have been 

generated and punched on to cards. The cost matrix g was computed 

by ESTIM2 and is. shown in Figure 8.8. Set out below are the various 

cases that have been analysed.For the present system the order of the 

reduced estimator may range from 11 to 1. Not all of these cases were 

treated, some of the higher order cases being omitted. 

Case Estimator Overall System Reduction 
Order Order ADIM 

B 11 23 1 

D 9 21 2 

F 7 19 3 
H 5 17 4 
I 4 16 5 
J 3 15 6 

K 2 14 7 
L 1 13 8 

Each of the above cases were treated by applying the following 

processes: 

1. OPRED. Successive calls of this subroutine from the main 

program shown in Listing 8.3 allows a reduced order 

estimator to be constructed. The order .of the estimator 

is specified via the reduction dimension ADIM (Listing 5.1.). 

2. SYSTEM. This set of subroutines provides an assessment of the 

performance of reduced order controller in terms of cost, and 

generates state and covariance matrices for the overall 

system. 

EIGENVALUES. The state matrix generated by SYSTEM can be 

assessed for stability directly by the evaluation of its 

eigenvalues. 

4. Reduced System Costs 

The results for each of the reduced cases can now be 

examined. The most obvious indicator of performance is the overall 
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system cost, as calculated by SYSTEM. The results are shown in 

Figure 8.9 and it' is clear that only when the estimator becomes of very 

low order is th~ cost at all increased, the one-dimensional estimator 

increasing the cost by 0.2% from the optimal (Kalman Fi~r) system. 

For a more difficult control situation it could be expected 

that the cost curve would rise earlier. This procedure is particularly 

revealing in terms of control "difficulty" and could be used directly 

as a control system design technique. 

5. Simultaneous Diagonalisation: Eigenvalue Pattern 

A central procedure in the choice of a reduced order 

estimator was the simultaneous diagonalisation of two matrices and 

the examination of a set of eigenvalues of a positive definite matrix 

(Chapter 5). 

If a large number of these Eigenvalues are small then a 

successful reduction to a lower order estimator could be anticipated. 

Taking for example case B, the eigenvalues rapidly fall off in value, 

the second and third eigenvalues being 5% and 0.01% of the first 

respectively. 

~ Eis,:envalues X 10-3 

J 109.6 5.8 0.014 0.2 X 10-6 

K 109.5 5.8 0.005 

L 92.8 2.48 

6. Information Storas,:e 

Case L, for example, has a storage vector of dimension one. 

It is interesting to examine the manner in which the information 

that is to be stored is selected. As there is the observation· vector 

to complement the stored information, and the observation vector is 

closely associated with the elements of the state vector at the steam 

· outlet end of the boiler, it would not be surprising to find that the 

stored information relates to a section of the boiler towards the 
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centre. This can be seen by considering the elements of the matrix 

F, which was defined in equation (4.2) as 

f i = F( :~) 
Thus in the present case where F has dimension 12 x 2 the first ·column will 

give the weighting given to the observation y. and the second ·column that 
1 . 

given to the stored information z .• A value for F is obtained by 
1 

the subroutine OPRED and the two columns of F are,plotted in:Figure 8.10, 

where it can be seen that the weighting on z was as expected, with a 

peak towards the boiler centre. 

Similar weighting curves can be plotted for the other cases. 

Figure 8.11 shows the three weighting curves for case K. TWo of 

these are similar to case L, while the third is of different form with 

some negative values. 

This clear visual picture of how the reduced model represents 

the original model is possible since a plant model has been.used with 

a great deal of similarity between mesh points. Such smooth curves 

would not in general be encountered. However the technique would be 

equally valid, even though the reduced variables would in general 

be combinations of state variables, resulting in weighted_ averages 

of such variables as fluid pressure and flow rate. 

7. System Stability 

The system matrix SYS describes the dynamics of the plant 

and its associated reduced order controller. The eigenvalues of the 

matrix SYS for each of the cases B to L are plotted in Figures 8.12 to 

8.19. There are two interesting points to emerge from these graphs: 

1. A set of eigenvalues around the point (.6, 0) on the real 

axis remain almost unchanged for each of the cases. 

2. Fbr the higher order cases (B to H) there are eigenvalues very 

close to the unit circle, a situation which is undesirable 
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since a small change in plant or controller parameters 

could result in instability. 

On the last point the closeness of the eigenvalues to the unit circle 

is surprising. This is perhaps associated with he redundancy in the 

estimator system, where such near instability is (mathematica+ly) 

acceptable provided the behaviour does not contribute to the costs. 

From a system design viewpoint this behaviour is unacceptable however, 

and it can be seen that as the order of the estimator is reduced there 

remain no points very close the the unit circle. The implication here 

would appear to be that in reducing a system's order the lower order 

system is to be preferred provided costs are not increased. 

That the higher order system's closeness to the unit circle 

did not result in extra system costs has already been indicated above 

where the cost did not increase before case L. There is therefore a 

range of acceptable cases I to K, or L where there is good stability 

as well as no significant increase in system cost. 

8. Proportional Controller 

The theory developed fqr the reduced order controller 

implicitly assumes that the estimator order is not reduced below unity, 

that is a storage vector of dimension one. However, simple proportional 

control has no storage vector, the control being of the form 

= (8.5) 
• 

Tb investigate to what extent the control of the once-through 

boiler would be further degraded by the use of proportional control 

the set of SYSTEM subroutines were used by setting in equations (5.15, 16) 

E = 0.1 (arbitrary but within ! 1.0) 

F = 0.1 (arbitrary) 

and C = 0.0 

The value of D, the proportional control gain was varied between 

-0.65 and -1.16. The resulting system costs per time step are shown 
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in Figure 8.20, showing a minimum cost of around 1.53 for a proportional 

gain of D = -0.94. 

This is clearly a further degradation in system performance 

over case L, and would be the type of cost increase that would be 

used to justify the use of a controller with some information.storage. 

Another method of obtaining the optimal proportional control 

law makes use of the reduced order estimator subroutines but with a 

minor modification. Suppose, in case L, the stored information .z. , 
J. 

(dimension 1), is in fact discarded, and set to zero. The estimate 

of plant state mustthenrely entirely on the observed variable.yi' and 

this is the proportional control situation. 

Rejecting the stored information .z., with covariance matrix P, 
J. 

increases the covariance matrix r' and since covariances are 

additive the new plant state covariance becomes 

r prop = r + FPF' 

Setting z to zero was modelled by putting 

Pprop = o.00001.P 

(8.6) 

(8.7) 

Running the subroutines with these modifications gave a proportional 

controi law of 

(8.8) 

This point is shown on Figure 8.20 and it can be seen to be close to the 

optimum value. 

In addition some insight is gained into the action of the 

proportional controller as can be seen from Figure 8.21 which shows 

how the state estimate is calculated based solely on the observation yi. 

It is the multiplication of these weighting coefficients by the 

deterministic control law of Figure 8.1 that gives the simple proportional 

control law of equation (8.8). 
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A further case, the uncontrolled system, was examined by setting 

D = 0.0, and the cost per time step was found to be 1.95. 

9. Conclusions 

The reduction method applied to the once-through boiler model 

has provided low order estimator models whose performance is very 

acceptable. That a simpler model would adequately model the 12 region 

once through boiler model was clear from the step response shown in 

Figure 7.4. What has been demonstrated in this chapter is that the 

reduction technique is capable of making the decisions which effectively 

determine which part of the model is redundant and can be left out. 

The relationship between this simpler model and the original 

can be seen in terms of weighting coefficient curves which allow a 

clear visual understanding of how the reduced model is able to represent 

the original model. It is possible to obtain such a curve even for 

the extreme case of simple proportional control. Clearly estimates of 

plant state from such very common simple controllers could have applications 

.in the fields of process control and where plant parameters vary with 

time. 

The positive eigenvalues obtained in the "simultaneous 

diagonalisation" process appear to provide a qualitative technique for 

the assessment of control "difficulty". 

. ' 

' .... 
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Figure 8.2 Cost Matrix PI computed by subroutine CONTRL. 
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A13L DlME'NSlONS = ( Ho·12) .. 

1 2 ·3 4 5 6 .. . , 
I 6o7642:::-01 .3o 4533~-02 2oii01E-02 lo2f384i"'-02 7oS5flOF.-03 4o782C?E-03 I 

2 lo3143E-Ol 6o 7 ~61'\F -c 1 3o ~4<;<;:;:..;02 2o22'31E-02 lo 35E7E-02 s. 2 636E:-03 

3 5o41041'-02 1o 3 267C:-O I 6oi?042E-OI 3o6934E-02 2o2530E-02 1o3715E-02 
4 2old56E-02 5o 455 0!:.- 02 lo 32·:;:3[-01 6oi.!056i":-01 3o699,<E-02 2o2534"'-02 
5 bo6o71E-03 2o 20 3E-C 2 5o 46~9<:-02 lo3295l'.-O 1 6o 80 54 E-O 1 3o6929E-O<! 

·. 6 3o3935E;-03 "· 7 245f-03 2o 2011.::-02 5o4600E-02 1o3287i:'-OI 6o a 039 E:-0 r 
7 le 2EA6C-03 3o 3726[-03 (·o6714t':-03 2ol917L-02 5o4445L-02 1o 3262[-0 1 
0 4o 3613 4<:-04 1o 2197L-C3 .!e2t.7le.-C3 eo 5057E-O 3 2o1657E-02 5o 4033E.-02 
9 7o1160E-05 3o 1906E-04 1o 0398E-03 2o9909f.'-03 3o 075-IE-03 2o 0977E-02 

10 -1o3069E-04 -1o262St:-04 2o 130~t:.- 05 5o8494E-04 2o2641E-03 6«95·;3E-03 
1-1 -3o0$57E-04 -4o 561 6E-O 11 -6ol573E-04 -7o2566C:-04 -5o 75C6':-C 11 4o 5299E-04 
12 -5o4172E-04 -8o42~.9E-04 -t. ,C5t;2E.-03 - lo e4 1 Of -o 3 -2o6281E-03 -3o 5783E-03 

-----·--- --- - ..... ' ~' ,- ..., ',. 
7 8 9 1 0 11 12 "' I 

1 2o89BOE-C3 1o7358E-03 loOOSOE-03 5o 346 6E-04 2o 0357E-04 -4oENJ4~~-05 

2 5o 009 1=:-o 3 2o999<;E-03 lo7418E-03 9o23'JIE-04 3o 51<)2f:-04 -9o4C6~E-C5 

3 e. 3113E-03 4o97A<;E-03 2o8914E-03 lo533!'E-03 5. F375E-04 -1. 40iJ4E-04 

4 lo3661E-02 8ol868£!-03 4o755BE-03 2o5220E-03 9o 5<;1 OE-04 -2o346cf.-04 

5 2o2..l98E-02 1o342<;E-02 7o8032E-03 4o1396f'-03 lo571BE-03 -3o<;047E-04 

6 3o6688E-02 2o2006E-02 1o2792E-02 6o 7.'J62E-03 2o 5733<:-03 -6o4S47C:-04 

7 6o7">99F-O 1 3o603<;E-02 2o0956E- 02 1;111 BE-02 4o 2103[-03 -1.cec1E-o3 
(l 1o3196E-0 1 6o78<;3F.-01 3o4314E-02 lof-206"-02 6o !'545!:.-03 -1o7$5SI'::-O" 

9 !5·. 294 5E- 0 2 lo3021E-01 6o760<;E-OI 2 .·{·796f -02 1o 1250!':-02 -2eS€5CL0::-03 

10 lo9191E.-02 5e0063E-02 1o2555E- 01 ' 6o6f'68::-o1 1o f374E-02 -4oS62£L-.03 

1 1 4o0293E-03 1o4462E-02 4o2428E-02 lo1338i:'-01 6o 4<;9zr·- 01 -0.248 L'::-03 

12 -4. 3533E-03 -3o7275E-03 lo9384E-03 2o245c:.-C2 !lo2Cl5t-02 6e0C23E-Ol 

ENC OF '-'AlRIX ABL 

Figure 8.3 System Matrix for deterministic control of once-through boiler 
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'GNEXT OIMENi!IONS .. ( 12.12) 

l 2 3 4 5 6 

1 lo9SOOE 00 So 2S91E-01. 4o31S9E-01 3o6007E-O 1 3o0 1 B 1E-O 1 2o5132E-01 
2 5o2S91E-Ol 2o 2790E 00 Bo 0837E-01 6o7050E-O 1 So5877E-Ol 4o6314c-01 
3 4o3159E-01 Bo 0837E-01 2• 526€E 00 lo0224E 00 8o464CE-Ol 7o 0079E-01 
4 3o6007E-01 6o 7050E-01 1o0224E 00 2o7127E 00 1o1737E 00 9o6540~-01 

5 3o0181E-01 So SSTTE:-01 8o4840E.-Ol 1o1737E 00 2o8334E 00 1o 2614E 00 
6 2o5132E-01 4o 6314E-01 7o 0079E-O 1 9o 6540E-O 1 1o2614E 00 2o 8E09E OD 
7 2o 0556E-Ol 3o 7754E-01 5o699 4:::-o 1 7o8289E-01 1o 01 86E 00 1o 2824E 00 
8 lo6286E-Ol 2o 9340E-01 4o4982E-01 6ol68UE-O 1 8o0044E.001 1o0034E 00 
9 1o2215E-Ol 2o 2346E-01 3o3658E-01 4o6124E-01 5o9770E-01 7o 4729E-01 

10 Bo2484E-02 1o 5071E-01 2o2692c-01 3o1093E-O 1 4o0276E-01 5o 0304E-01 

11 4o 2057E-02 7o 6776E-02 lo1559E-01 1o5042E-01 z.os::ioe-o 1 2o 5640E-01 
12 -4o0593E-03 -7o 4349E-03 -1o1165E-02 -1o52€s9E-02 -lo9754E-02 -2.4676!!-02 .... . ' • .... .... 

7 i3 9 10 11 12 
i 

1 ! 2o 0556!:- 0 1 lo 628€E- 01 t.2215E-01 Bo2484E-02 4o 2057E-02 -4o0593E-03 
2 3o77S4E:-Ol 2o984 Ot:- 01 2o2346E- 01 loS071E-01 7o 6776E-C2 -7o4349E-03 
3 5o6994E-O 1 4o4982E-01 3o365BE-01 2o2692E-01 1o 1559E-01 -lo 11 BSE-02 
4 7o8289E-O 1 6ol688E-01 4 o6 124£:-o 1 3o1093E-01 1o5842E-01 -to52SSE:-C2 
5 lo0186:; 00 8o00440:-01 5o9770F-01 4o0278E-01 2• 0530E-Ol -1o<>754E-C2 
6 1 o2324::: 00 1 oO 034E 00 7o4729E-Ol So0304E-01 2• 5640E-01 -2o4676E-02 
7 2.875 oc: 00 1o2316E 00 9o1333E-01 6o1328E-01 3o 1222E-01 -3.04161:::-02 
e lo2316:' 00 2o7863E 00 1o1019E 00 7o3655E-01 3o 7.:!61E-01 -3o8144E-02 
9 9o1333E-Ol 1 o1 0 1 <;E 00 2o6130E CO 8o7742E-01 4o 411 4::0-01 -5o1562E-02 

10 . 5o132B::-o 1 7o365SE-01 Bo7742E-Ol 2o3309E 00 So 1201E-01 -Bo2470E-02 
. 11 3o1222:'-01 3o7361E-01 4o4114E.-01 Sol201E-Ol 1o8593E 00 -1o68<;7E-01 

12 -3o0416E-02 -3oS144E-Q2 -5ol562t-02 -Bo2470E-02 -to 6897E-01 8o5678E-01 

END OF MATRIX GNEXT 

Fi5!:!re 8. 5 Covariance Matrix r for 
Optimal Estimator 
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THETA DIMENSIONS "' (12ol2) 

1 2 3 4 5 6 

1 le6357E-03 2o 1300E-03 2o55:>BE .. 03 2o8785E-03 3o084BE-03 3ol343E-03 ' 2 2o1300E-03 2· 7970<::-03 3o3B42E-03 3o8664E-03 4o 2044E-03 4o345BE-0;3 I . 

3 2o550BE-03 3o 3B42i::- 03 4o1474F.-03 4o 6111E-03 5o3264F.-03 5o622BE-03 
4 2o0785E-03 3o 8664E-03 4e8111E-03 5o6835E-03 6o4261'lF.-03 6o9572E-03 
5 3oOB4BE-03 4o 2044E-03 5o3264E-03 6o42BOE-03 7o4536E-03 a. 304o~:-o3 

. -·'·:I 6 3o1343E-03 4o 345BE-C3 5o6228E-0:3 6e9572£-03 8o3040E-03 9o5647E-03 
7 2o9873E-03 4o 2281E-03 5o609EE-03 7o1465E-03 BoB2E4E-03 1o0566E-02 
8 2o6064E-03 3• 7854E-03 So 1614E-03 6o8459E-03 8o805BE-03 1o 1 035E-02 
9 1o9662E-03 2o9620E-03 4o2331E-03 5o6721E-03 'To96e5E-03 1o0554"-02 

10 1o 0703E-03 1o 7369E-03 2o6'>2EE-03 4o0657E-03 6o0155E-03 Bo7210E:.-03 
1 1 -1.7466E-05 1o7262E-04 5o90l1E-04 1o3743E-03 2o73·37E-03 4o 9647E-03 
12 -1o1087E-03 -1o4608E-03 -1.7637E-03 -1o9197E-03 -1.6992~-03 -1. BZOOE-04 I 

··~-. --····~·· ·~~ . ...... 7 e . 9 10 1 1 12 _... _... 
1. I 2o9673E-03 2o6064E-03 1o9662E-03 lo0703E-03 -lo7466E-05 -lol067E-03 I' 

2 4o2281E-03 3o7854E-03 2o9620E-03 1o7369E-03 1o7262E-04 -1.4806!::-03 
3 

I 5o6096E-03 5o1814E-03 4o2331E-03 2o692EE-03 So '>011E-04 -1o7S37E-03 
4 7o1485E-03 6o8459E-03 5o8721E-03 4o0657E-03 1o 3743E-03 -lo9197E-03 
5 8 • 8264E-O 3 a. eos eE.- o3 7o9685E-03 6o0155E-93 2o 7 337E-03 -1o6992E-03 
6 1o0566~-02 1o1 035E-02 lo0564E.-02 8o7210E-03 4o 9647E-03 -7o8200E-C14 
7 1o2197E•02 lo3409E-02 1 o3700E-02 1o2J42E-02 Bo4557E-C3 1o402BE-03 ' e 1 o340'>E-02 lo5629E-02 lo7123E-02 1o6928E-02 lo 364oE.-02 5o7441E-03 
9 1o3700f"-02 1o7123f'-02 2o0327E-02 2o221EE-02 2o0867E-02 lo348CE-02 

10 1o2342E-02 1o6921JE-02 2o2216E-02 2o7280E-02 2o 9935E-02 2o597BE-02 
1 l !3.4557:0-03 1o3646E-02 2o0667E-02 2o9935E-02 3o 9213E-02 4o3743E-02 
12 1o4028E-03 5o7441E-03 

. ' 1o34E\Of:-02 2o5978E-02 4o 3743E-02 6o3397E-02 

END OF MATRIX THETA 

Fifl!!re 8.8 Cost Matrix Q computed by subroutine ESTIM2. 
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SHlT MATLAN STATEtiENT 

1 1/.A If': 
2 f'EAD (A,E,P,Hl 
3 ~iUTE (A,e,P,H),FDRtiAT=A5 
4 TRAI\5 H,Hl 
5 tiUL T Hl,H,\1 
6 ~RITE ( \/) ,Fc;;r.<AT=A5 
7 FORMS I • ( 12 • 12) , ( 1 , I) , ( 1, I l , 12o 1 o 0 
8 LOOP '-'l.Jtlt20 
9 LGCI' I1.Ktlt5 

10 CALL CONTRL(A,B,P,\/,!oLAMDA,I'Il 
I 1 I 1 LDOI'END 
12 'wRITE' (I,PI,LAMDA),FQRMAT=A~ 
13 Jl LOCI=ENC: 
14 CALL AFLI\CH (l l, F 
15 CALL AFUI\CH(PI) ,F 
16 CALL EPUI\CI-' ( LAMDA) ,F 
17 tiUL T S,LAIVCA,IJL 
18 ~UB A,OL,A8L 
19 \IR I Tt: (ABL),FGRMAT=A5 
20 CALL GECFCI- (ABL l ,F 
21 CALL Gf:DFCI-'(A),F 
22 END 

I . 

Listing 8.1 Matlan program to calculate optimal boiler control 
law using subroutine CONTRL. 

• 
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STMT MATLAN 

1 
2 
3 
4 
5 
6 
7 
8 
9 

STMT MATLAN 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

STATEMENT 

MA IN 
RE .AD 
WRITE 

CALL 
WR I TC:: 
CALL 
CALL 
CALL 
END 

STATEMENT 

SU8PRO 
MULT 
SUB 
lNV · 
TRANS 
MULT 
MULT 
MULT 
SUB 
MULT 
MULT 
MULT 
MULT 
MULT 
RETURN 
END 
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(AoBoHoRoGoLAMDA) 
(A,O,H 1 R 1 G,LAMDA),FORMAT=A5 
S~SOPT(A,OtHtR,r.,LAMDA,SYSC,SYSD,SYSE,SYSF) 

(SYSCoSYSOtSYSE,SYSF),FORMAT=A5 
EI'UNCH ( SY SC), F 
APUNCH(SYSE},F 
ePUNCH(SYSF),F 

S~SOPT(A,B,H,R,G,LAMOA,SYSC 1 SYSD 1 SYSE 1 SYSF) 
BtLAMDA,EJL 

AtBLoAUL 
RoRM 
H 0HT 
HToRI~tHR 

GoHRoSYSF 
S~SF,H,GH 

1o0tGHoiG 
IG,AOL, SYSE 
LAMDA,SYSE, SYSC 
-1, SY S(, SYSC 
LAMDA,SYSFoSYSD 
-1.svsD, svso 

Listing 8.2 Subroutine SYSOPT 

Computes for the optimal "Kalman Filter" system the matrices for use 
in subroutine SYSTEM. 



STMT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
l I 
12 
13 
14 
15 

16 
17 
18 
1? J1 
20 
21 
22 
23 

24 
25 
26 

MATLAN STATEMENT 

. 

"AIN 
RE' AD 
~RITE 

TRANS 
H.L T 
1\IH TE 
RDI M 
RDIM 
.aoo 
ADD 
FORMS 
FORMS 
LOOP 
CALL 
CALL 

(AoBoHoOoRoGoLA~DAoPCLoTHETAoAOIM) 

(AoEoHo0oRoGoLAMDAoPCLoTH~TAoADIMloFORMAT=A5 
HoHT 
HTol"oV 
(V)oFORMAT-=A5 
A oDX 
HoDY 
OoloZCIM 
CYoZDI~oDYZ 

P, ( CY Z oDYZ), ( 1o 1), ( 1, 1) oDYZo le 0 
F , ( 0 X, OYZ) , ( 1 o1 ) , ( 1 o 1 ) , CY Z, 1 o 0 
JloJo1o50 
ESTIM(AoBoHoOoRoGoGNF-XToSIGMA) 
OPRED,(AoBoHoGNEXToSIG~AoFoPoTHETAoADIMoLAMDAoF~EXT• 

oPNEXToRoRGAMoSYSCoSYSDoSYS~oSYSFoL) 

COPY I'<GA~oG 

COPY PNEXToP 
COPY FNEXToF 
LOCPEND 
NE \\PAGE 
\\RI TF. 
\'OR I lE 
CALL 

(ZCIMoGoSIGMAoFoPoLioFCPMAT=A5 
(SYSCoSYSOoSYSF.oSYSFioFCRMAT=A5 
SYSTEM(AoBoHoFCLoVoOoRoSYSCoSYSOoSYSEoSYSFoVARoSYS,. 

SUMo20l 
WRITE (SYSoVARoSUMloFCRMAT=A5 
CALL GEDFMN(SYSloF 
END 

Listing 8.3 Matlan program to call subroutine OPRED and construct the reduced order estimator. 
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CHAPTER 9 

OBSERVER SYSTEMS 

1. Luenberger Observer System 

The reduced order estimator system that has been developed in 

earlier chapters has many similarities with the "observer" system as 

described by Luenberger (references 4, 5 , 6 ). This observer theory 

was developed for continuous time systems and the corresponding discrete . 

till)e observer theory was described by Aoki and Huddle (reference 40). 

Some other developments in observer theory are discussed in section 8. 

The system is described as in Chapter 2 by 

XJ..+1 = Ax. + Bu. + ~. 
l. .l. l. 

(2.1) 

and = (2.2) 

An estimator is then constructed according to 

The vector z contains memory elements and is of order 1 where 

n-m~l~n 

and n and m are the dimensions of x and y respectively. 

An estimate of the plant state·is taken as the expression 

A x
1
. = Pz. + Vy. 

l. .J. 
(9.2) 

For the deterministic system in which Si and YJi are zero it is 
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stated by Aoki and Huddle that zi .can be related to xi by a fixed 

linear transformation T provided z is chosen to be equal to TX 
0 0 

where T satisfies 

TA- FT = DH 

and Gin (9.1)isgivenbyG =TB. 

It is indicated that, with the restriction that 1 = n - m, 

a choice of matrix F.can be made to ensure that its eigenvalues realise 

an arbitrarily fast response in the sense that any initial error in 

z is quickly eliminated. 
0 

2. Stochastic Observer System 

Aoki and Huddle then consider the stochastic case wh~re S . 
. 1 

and7i in (2.1) and (2.2) are non-zero. They state that by choosing in 

general F and D such that 

D = TAV and F = TAP 

and requiring that T satisfies 

PT+VH = I 
n 

where I is the n x n unit matrix, then (9.3) will be satisfied. 
n 

They proceed to examine the error covariance matrix of the 

estimator given by (9.2) and by means of a numerical example show 

that such an observer system can have a performance nearly as good 

as the Wiener-Kalman filter system. 

This result is very clearly in line with the observations 

of chapter 4, where a reduced order estimator was constructed. 

This similarity will·be pursued further in section 4. 

3· Observers with Minimum Mean-Square Cost 

It is possible to choose an observer system according to a design 

procedure which minimises a weighted-mean-square estimation error; This 

is the approach of Iglehart and Leondes (ref 41) who carry out the 

minimisation in a stage by stage manner·by direct differentiation of 
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the weighted mean square error cost function. Setting the two differential 

coefficients so obtained to zero for a minimum value gives a pair of 

{matrix) simultaneous equations whose solution yields choices for the 

matrices V and P in (9.2). In turn a matrix T is found which satisfies 

(9.5). 

Although the system is chosen now to be optimal in a given. sense, 

the order of the observer system, 1, is again constrained to 

n-m{:l(:n 

as was the observer system of Aoki and Huddle. It is further shown 

·that when 1 = n the observer system is equivalent to the Weiner-Kalman 

filter. 

There is similarity between the approach to observer design 

adopted by Iglehart and Leondes and the theory in chapter 5. In both 

cases a minimisation of a weighted-mean-square estimation error is taken 

as the criterion of the.estimator design. The methods used to accomplish 

the design of the estimator are, however, entirely different .• 

4. Observer Dimension Constraints 

As mentioned above, the observer system described in sections 

2 and 3 has a structural similar~ty with the reduced order estimator 

developed in Chapter 4. Both form estimates of the plant state using 

memory elements zi together with the most recent observation yi and 

both lead to an equation for updating the memory element. However, 

there are very big differences in approach and in allowed dimensions, 

as follows: 

(a) The "reduced' order estimator" of chapter 4 allows the observer 

order to be reduced by any desired degree down to a minimum of 

unity. The 1bbserver" system of Aoki and Huddle or Iglehart 

and Leondes allows the observer to have an order reduced from 

the plant order n, but only down to a minimum order of n - m, 

where m is the order of the observation vector. 
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(b) The extension of the observer approach to low order as in chapter 

4 is made possible by use of "a priori" information about the 

plant parameters. No such information is used in the 

conventional "observer" system, and this leads to a concept of 

a "minimal order" observer system of order n - m. 

In the once-through boiler model system, of plant model dimension 

12, the "minimal order" of a conventional observer would be 11 since the 

observation vector has dimension 1. As this is typical of a distributed 

parameter system, the conventional observer approach of Aoki and Huddle 

can be seen to be severely restricted. On the other hand it was shown 

in chapter 8 that it was entirely possible to control the plant 

satisfactorily with an estimator of order 1. 

However, despite the difference in approach and the difference 

in dimensional constraints there remains an area of overlap when the 

order of the· estimator system· of chapter· 4 is constrained to lie between 

n and n-m. The relationships between the two systems in this region of 

overlap is discussed in the next section. 

5. Comparison of Estimator Systems 
. 

The 2 x 2 system example given by Aoki and Huddle can be adapted 

to be identical with the 2 x 2 example system used in chapters 2, 4, 5 

and 6. Applying the design technique of Aoki and Huddle involves 

minimising element f'11 of the. error covariance matrix r in the 

asymptotic solution where 

M = 8v/ + 4v1
2 

+ 1 
I 11 (9.6) 

v
1

(2 - v
1

) 

and v1 is a partition of matrix V, i.e. 

V = ( :1) (9.7) 

~ 11 has a minimum when v1 = 0.29 and this gives for the 

.observer system an error covariance matrix~-
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r - ( 3-09 
- 1.16 (9.8) 

This may be compared with the asymptotic solution for r computed 

for the reduced order estimator of chapter 6 as 

=( 3.01 
1.00 

1.00) 
3.08 

(9.9) 

It is clear that the observer design method of·Aoki and Huddle 

has resulted in a poorer estimator than that·of chapter 6. The 

associated gain matrices of (9.1) and (9.2) are 

D = .29 F = .71 

T = 

G = 

(-3.45 1)} 
(9.10) 

-3.45 

These matrices can be seen to satisfy the constraint (9.5). 

The control system that results from this observer system is 

similar numerically to the reduced order estimator of chapter 6, with 

the exception that the zero element in P requires that the estimate of 

x2 in the state vector is made only on the basis of the observation y 

and no stored information from z is used. This is clearly a constraint 

introduced by Aoki and Huddle and explains the poorer estimator 

performance as shown above in comparing (9.8) and (9.9). 

6. Is the reduced order estimator a Luenberger observer? 

Having shown that the performance of the reduced order 

estimator of chaprer 6 is superior to the observer system of Aoki and 

Huddle it is reasonable to investigate whether the reduced order 

estimator is merely a superior observer system or whether, as it uses 

"a priori" inform~tion which the conventional observe: does not, it has 

no theoretical connection with observer systems of the Luenberger type. 

A direct test of this is to see whether the reduced order estimator gain 

·· matrices satisfy the observer constraint (9.3) Taking the 2 x 2 example 

system of chaper 6 the gain matrices in the notation of (9.1) and (9.2) 

can be derived as follows: 
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Equivalencing (6.32) and (9.2) 

p = (-.2.10) V = ( 0.25) (9.11) 
0.81 0.77 

Equivalencing (6.28) and (9.1) is less direct. Setting 

T = (t1 , t 2 ) then 

G = TB = ( t 1, t 2 ) ( :) = t 1 

From (6.27) 

ui = 1.83zi - 0.508yi 

. Substituting into (9.1) gives 

= Fz. + D,y. + Gu. 
l. l. l. 

= (F + 1.83t1) z1 + (D - 0.508t1) yi 

Equivalencing this with (6.28) gives 

and 

F = -0.034- 1.83t1 

D = 0.246 + 0.508t1 

The relations (9.4) require 

~-25t1 + 1.02t2 = 0.25 

0.27t1 + 1.29t2 = 0.034 

giving a solution 

Substituting into the left hand side of the constraint equation 

(9.5) gives ( 1.00 
PT+ VH = 

-39 

-.02) 
.87 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

(9.17) 

The observer constraint of (9.5) required that this expression 

be the unit matrix, and as this is not the case it follows that the 

reduced order estimator of chapter 6 is not an observer system in the 

sense of Luenberger. 
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?. The Observer T Matrix 

Central to observer theory is the matrix T which is said to define z 

in the absence of noise such that 

z = Tx (9.19) 

In the derivation of the reduced order observer in chapter 4 no 

such concept was encountered since the storage element z was generated 

directly from probability considerations. However such a consideration 

may be introduced by asking what value would z be likely to have for any 

given plant state x.? Again this would have to be calculated in terms 
1 ' 

of probability distributions using the known distribution, from (4.42), 

of xi given z 

p(xJvi) e (xi- Fivi)' fi•-\.) 

where vi is the information vector 

=( ~~) 
with "a priori" distribution, from (4.6) of 

= V.' 
1 

Omitting suffices the above relations give 

p(x, v) = p(x!v)p(v) 

e 
(x- Fv)' f'-1 (.) + v'P-1v 

= 

where the matrix M has been defined by 

M-1 = F' f'"'1F + p-1 

and the matrix relation of (2.4) has been used. 

Since (9.20) may also be written 

p(x,v) = p(v!x)p(x) 

it follows that the distribution of v, given x is 

p(v!x) = (v- MF'f'-1x)M-1(.) 

(4.42) 

(4.6) 

(9.20) 

(9.21) 

(9.22) 
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This distribution defines the expected value of the infamation vector 

v to be given by 

-v = MFGx 

where the matrix MFG is defined by 

MFG = HF'f'-1 (9.24) 

A MATLAN subroutine ADAPT, shown in Listing 9.1, was written 

to compute M and MFG according to equations (9.21) and (9.24). When 

applied to the 2 x 2 example system of Chapter 6 and the derived reduced 

order estimator, subroutine ADAPT gives 

MFG = (O 
-.271 

so that the best estimate of z is given by 

1.0 ) 
0.164 

(9.26) 

Considering that z is known to have a variance of 2.5 (from 

the prior distribution covariance matrix P) the variance of z about 

z, as given by (9.26), of 0.31 is small showing (9.26) to be a very 

effective estimate. 

Equation (9.25) also giv:s the expected value of y given x1 

and x2• As this estimate is 

-y = Hx 

it follows that the top row of MFG in (9.25) is the observation matrix 

H. Also M contains the observation noise covariance matrix R, which 

has .the value 4.0 in this example. 

The same technique may be applied to the once-through boiler· 

model of chapters 7 and 8. Taking case L where the storage element is 

one dimensional1 the matrix MFG as given by ADAPT has a bottom row as 

shown in Figure 9.1. It can be seen that the difference between the 

weightings of y and z is that those of y decrease more rapidly so that 

z contains a greater weighting of.the state variables x
9

, x8, x
7

, etc. 

This explains why it was that, in chapter 8, the state estimate as 
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expressed by the weightings of figure 8.10 on z peak for x8 and x
9

• 

Thus in the context of observer theory the relation (9.26) 

has been seen to define a relation between the storage element z and the 

state variable x which is analogous to the relation 

z = Tx (9.19) 

which appears for example in reference 5. 

This completes the comparison of observer systems with the 

reduced order estimator as developed in.chapter 4. Broadly the 

reduced order estimator, while not an observer within the Luenberger 

. definition, has been shown to possess all the useful properties of 

observer systems. 

8. Other Developments in Observer Theory 

It is clear that observer theory requires the choice of 

matrices P, V F,D in (9.1) and (9.2) and various methods for 

choosing these matrices have been developed. Tse and Athans 

(reference 42), and Tse (reference 43) consider the relationship 

between deterministic and stochastic minimal order observer systems 

and also sho>l how, when certain qbservations are noise-free these 

may be incorporated into the, otherwise stochastic, observer. 

Leondes and Novak (reference 44) also deal with this topic and, as in 

the earlier work by Iglehart and Leondes, the. optimal '~intermediate· 

order" observer is obtained by differentiation of a cost function. 

Various limiting cases are examined showing the Kalman Filter and 

the Tse and Athans observer to be embraced. 

The design of a continuous-time observer system.is considered 

by Newmann (reference 45) in the light of uncertainties in the plant 

initial conditions, although the system is otherwise non-stochastic. 

This same viewpoint is adopted by O'Reilly and Newmann 

(reference 46) for the discrete-time system, and a design method for 
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an observer based control system is developed. Surprisingly perhaps, 

the certainty equivalence principle is found to be applicable so that 

control and observer systems may be independently determined. An 

equivalent "canonical" form for an observer is utilised which by 

means of an arbitrary gain matrix allows some simplification. 

Perhaps the reason for the relevance of the certainty equivalence 

principle is that the only covariance parameter involved, that of 

the initial state uncertainty, will remain unaffected by the subsequent 

control actions. 

Yoshikawa (reference 47) considers the stochastic discrete­

time filter problem. If there are k noise free observations, it is 

shown that, with certain rank conditions, the optimal filter system 

is of order (n- k), and the method for constructing this filter 

is developed. If a small variance was taken for the noise-free 

observations, then in practice the Kalman Filter would seem to 

give an equally useful filter system. ·The method of Yoshikawa 

does however give a rigorous treatment. 

There is published work on the theory of minimal realisations, 

and Akaike (reference 48) gives a number of references in his paper 

on the stochastic theory of minimal realisations. This theory would 

appear to be relevant to observer theory since by using the smallest 

order model to represent the plant, a reduction of observer or 

estimator dimension is achievable. 

In the various methods of observer construction the restriction 

to order n - m appears not bo make best use of the known nature 

of the control inputs to the system. In .Chapter 8 a successfu1 

estimator of much lower order was designed. This relationship between 

control and estimation is considered ·for the time-varying case by 

Asher and Durrett (reference 49) and by Kurtaran (reference 22) for 
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the constant system. In each case the problem is approached directly 

by means of an augmented state vector and this approach is discussed 

further in the next chapter. 
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HATLAN STATEMENT 

SUB PRO 
Ill V 
INV 
CALL 
ADD 
INV 
TRANS 
MULl 
HULl 
RETURN 
END 

.. - J· 

ADAPTIF,G,P,H,HFGI 
P,PH 
G,GH 
TLSIDEIF 0 GH,FFI 
F F, Pt-1 , f P 
FP,K 
F,FT 
H,FT,HT 
HT, GH,HFG 

Listing 9.1 MATLAN Subroutine ADAPT 

This subroutine computes the matrices M and MFG according to equations 
(9.21) and (9.24). MFG estimates the value of the information vector 
(containing y and z) for any given value of the state variable x • 

• 



174 -

CHAPTER 10 

CONCLUSIONS: A discussion of some possible areas of 

further investigation and a review of the results 

of the present study 

1. Nulti-variable Systems 

The example of a once-through boiler model which ~tas 

examined had 12 variables composing its state vector and the design 

method ~1as shown to behave satisfactorily for this case. The system 

nevertheless was single input, single output which is the simplest 

possible in terms of control. The general case of a multivariable 

system l'l'ith many observations and man~ :o;1trol inputs, while covered 

by the theory has not been tested using an example. 

Such a case would, for example, arise on a once-through 

boiler since other parameters such as 

(a) steam pressure 

(b) gas outlet temperature 

will require to be controlled. The available control inputs are 

(i) water flo~r rate 

(ii) gas flo~1 rate 

Thus the once-through boiler example is capable of 

extension to a three input, three output system. It is normal practiae 

to construct control loops which typically control (a) above using 

(i) and control (b) using (ii). Using a design based on a reduced 

order estimator would result in a multi-variable system in which the 

stored information z is used to construct each of the control inputs. 
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The controls would thus be cross-connected in a way that is not usual 

practice. One of the objects of further study would be to ascertain 

(i) To what extent would the "shared z" system improve 

performance over the present practice. 

(ii) To what extent is the stored information in z 

attributable to separate single loops. 

The last point is illustrated by Figure 9.1 which shows 

that z is largely modelling the regions ~ to ~ 2 of the boiler. 

In a multi-variable system another element of z might model the 

regions ~, X2 of the boiler and be related strongly to the control 

of gas outlet temperature. If this were the case then the system 

would approximate to the present practjce of building three separate 

single input, single output loops. The degree of connectedness would 

thus become a point of interest in such a study, as would the 

necessary dimensions required for z. 

Further interest would attach to the generation of plant 

state estimates, this being of particular relevance when the boiler 

materials have temperature limits which must not be exceeded. At 

present if such an on-line estimate of plant state '~as required 

then a special system would be designed and this would be separate from 

the control systems. However with a unified controL/estimation 

approach the two functions could be combined using the memory elements 

z as described in the following section. 

2. Combined Control and State Estimation 

If a plant state variable (or function of state variables) 

were being estimated in this way it is Fossible that, with the 

estimator design method employed, a poor estimate would result since 

there might be a low weighting on the variable with respect to control 
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requirements <=trix e, chapter 5). It would be a simple step to 

cover this point by injecting into e a weighting relating to the 

particular variable of interest. This, together with an adequate 

dimension for the storage vector z,would ensure an estimate of the 

variable as close as required to the optimum as given by the Kalman 

filter. 

A more direct approach ~10uld be to recall the selection of 

the stored information according to equation (4.3), i.e. 

( 'J•) = . (i!:,.,.,) (10.1) 
;!. T 0(· I . , ... 

and to impose conditions on the choice of T in order to ensure 

optimal estimation of a particular variable. Such an approach would 

have the drawback that while practical for a single time step, an 

optimal estimate imposes restrictions on all past choices of T. It 

is likely that the full Kalman filter would be the necessary result 

for optimal estimation of just one variable. 

Thus the former method in which the \1eighting matrix is 

suitably modified would appear to be the more suitable method for 

joint estimation and control. 

3. Integral term in controller 

Normal plant controllers similar to the three-term type 

will contain an integral term whose function in part will be to 

correct drifting of plant variables. With only proportional control 

action a drift will be only partly corrected. While it is possible 

to add an integral term to any designed controller a more basic 

approach would be to ·include a drift component in the plant model 

of the form 
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(10.2) 

where ( S_J is a Gaussian 

independent disturbance. 

Other state variables would then be related to this drift 

variable, according to 

where x,.is generated in the normal way and x: represents state 

variables subject to drift. In computing the control law, plant 

costs would be 
I 

J = L ( x~) V ( x:) 

so that in minimising the cost J the deterministic control law 

(10.3) 

(10.4) 

(derived as in chapter 2) 11ould require some feedback from the drift 

variable xd. This implies the requirement for an estimator for xd, 

and such an estimator would perform the integral term function. 

In designing such an integral term controller, infinite 

~ariances occur since xd is not controllable. Although a modification 

to the theory could perhaps allow.this situation to be treated an 

easier solution ~rould be to re-write (10.2) as, say 

(10.5) 

Such a relation would result in a large, but finite, 

variance for xd and there should be no computational difficulties 

while at the same time a suitable integral controller would result. 

A particularly interestirig aspect of further work concerns the 

structure of the storage elements. of such a controller. Would it be 

obvious that a particular element of z forms the integrator, or would 

a transformation of z be required to make the presence of the 

integrating element obvious? 
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A related topic concerns the number of such drift elements 

which require to be established for any given multi-variable control 

system. Clearly a system which already contains an integrating element 

has little requirement for an integral.term in its control system. 

A proper approach to this aspect, which results in part from use of a 

linearised system model, is therefore required. 

The use of an "optimal control theory" approach to nuclear 

power station control·was reported by B. Blomnes et al in reference •o. 
Drift elements were found to be essential and the number used was 

made equal to the number of control inputs. 

4. Certainty Eauivalence 

In deriving the reduced order control schemes it was assumed 

that the application of the "certainty equivalence principle" would 

give a performance close to optimal, and this was found to be the 

case. As the certainty equivalence principle applies only to the case 

of perfect information storage it follows that some cost penalty must 

result from using a reduced order estimator. This implies that for 

the control law given by 

u:, = A f'-L 
it will be possible to find a control matrix A ~1hich performs 

better in the reduced order case than does that given by the certainty 

equivalence principle. 

This altered control law can be seen as a use of the plant 

itself to store relevant information. That this·is the case can be 

setln by considerin(S a' hypothetical plant which contains a storage 

channel of the form 

(10.6) 
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\1ith complete storage the Kalman Filter system as· sho~m in 

Figure 10.1 (a) ~1ill not utilise the storage channel and u will be s 

zero. Ho~1ever it is clear that if the order of the estimator storage 

elements were to be reduced, as in Figure 10.1 (b) the control 

performance could be improved by utilising the available storage 

channel which is part of the plant. Structurally, since a signal 

now passes through the control variable us' the control matrix ll 

will have been.modified. 

~fuile this example makes it clear that the certainty 

equivalence does not give optimal control, it does not provide any 

insight into ho1'1 the best control law may be synthesised. Figure 10.2 

shows how estimation costs might be included in the derivation of Jl . 

In turn, however, an altered control matrix would result 

in a modified choice for the reduction matrix T in the estimator, 

and this is also shown in Figure 10.2. An inter-dependence is thus 

set up between control and estimation, which is perhaps capable of 

rigorous analytical treatment. A computer solution by means of 

iteration would then be practical in order to achieve the overall 

optimal reduced order system. 

It is interesting to note that, in reference 50 

the certainty equivalence principle has been extended to the case 

of non-Gaussian disturbances which are not independent. 

A further related problem concerns the generation of 

the estimation weighting.matrix 9. Equation (6.25) ftives a 

recursive relation for 9 l'lhose asymptotic solution is used as 

an input to the subroutine OPRED. However the coefficients in the 

recursive relation were taken from the optimal Kalman filter case, 

so that there remains scope for an approach in which these coefficients 
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are altered iteratively as the solution of the reduced order control 

system develops. 

A more general treatment which has the .. benefit of being 

completely rigorous is given by Kurtaran (reference 22). In 

this the storage elements are combined with the state variables to 

form an augmented state vector. Equations are obtained which are 

satisfied by the optimal reduced order controller, but Kurtaran 

states that a method is still needed to solve these equations. 

However such an approach could perhaps be combined with the iterative: 

method described above and allow a truly optimal controller to be 

generated. 

5. Noisy Storage Elements 

It has been assumed that the storage elements z are not 

subject to noise disturbances. However even for a digital controller 

rounding error effects will effectively introduce noise into these 

channels, and Figure 10.3 shows a "noisy estimator" system. It ~ras 

found in chapter 8 that for some cases the eigenvalues of the system 

were only just inside the unit circle and hence only just stable. 

Had noise been modelled in the storage system the resulting system 

might have been more stable. 

To include noise is relatively straightforward, requiring 

only an observation equation such as 

w. = z. +f. 
J. J. J. (10.7) 

where wi is the corrupted stored signal and Si is a Gaussian random 

variable. The theory of chapter 4 would require the construction of 

the probability distribution p (x.jy., w.) rather than p (x.(y.,z.). 
. J.J. J. J.J.J. 

The derivation of a reduced order estimator would follo~1 as before, 

including the choice of a reduction matrix T. 

i 
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In applying the theory some consideration ~rould need to be 

given to the choice_of convariance matrix, Rz say for the disturbance Si. 

Clearly this needs to be related to the variance of z itself 

other\rlse by simply increasing the scale of z the effect of the 

noise would be reduced. A simple treatment would be to apply a 

non-singular transformation to z so that its covariance matrix 

is unity and then to define the disturbance by 

R = A I z 
(10.8) 

where I is the unit matrix and A has a. small value in the region 

.of 0.02. 

A topic ~rhich would require investigation would be the 

optimal storage of the information in the presence of estimator 

noise, for example the above "orthogonal" storage system could be 

examined to see if it is the best. 

6. Time-Varyine; Parameters and· Adantive Control 

Most plants under control ~rill possess different control 

parameters as, for example, throughput or load is increased. Normally 

this chanr:;e is intentional, so that "identification" of the new 

parameters is not required. But for optimal performance gains of 

control and estimation systems will require considerable adjustment 

in line with the changed parameters. 

The simplest possible "adaptive" system will therefore 

comprise, as shown in Figure 10.4. 

(i) A un~t concerned with defining the current plant 

condition, e.g. "load", usually by means of a single 

slow-moving parameter. 

(ii) A means of using this parameter to adjust gains of 

the control system in a pre-determined manner. 

(iii) A control (and estimation) system. 
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With an estimation system based on a reduced order estimator, 

the storage elements, zi' do not obviously map into corresponding. 

storage elements for a system \~ith changed parameters. This problem 

is less acute with the full Kalman Filter system since the state 

vector estimate is of full dimension, and it may be assumed that the 

state vector in one system may be mapped into the state vector in the 

one with changed parameters. 

Given a plant sta:te estimate 

n = F v
1
• ri 

= Cz. + Dy. 
l. l. 

and a corresponding estimate in the changed system of 

)4.* = c• z.• + n• y. 
l. l. l. 

it is possible to assess the estimation error ()4.•- )4.) resulting 
l. . l. 

from the transfer from (10.9) to (10.10). 

As there is always a aegree of freedom to transform z.• 
l. 

(10.9) 

(10.10) 

by means of a non-singular matrix S, this may be utilised to allow zi 

to be mapped into zi • \'lithout modification, so simplifying the 

adaptive control system structure; The estimation error will then be 

jf (c*s -c)-c, (D*-o)';l, f-• - f'! = + 
:: c.*s 'Z:· + W· • • 

where w· = (o*-o) t:l• -c r·. • • 
The matrix S may be chosen to minimise the estimation 

according to some criterion ~1hich may be properly taken, as in 

chapter 5, to be related to the control costs by a cost function 
I 

J = E (14.*- )4.) EJ(Jl..*- J1.) 
l. l. l. . l. 

Omitting suffices, and using (10.12) 
I 

;r-= E ( c* s :z. -r w ~ e ( es -c. + w) 
r- r I I I 

= <= L'rSC*9C*S-c + w 1 9C*S=c 

+ :c.'s 'c *' e w + w I~ ...., J 

(10.11) 

(10.12) 

(10.13) 

error 

(10.14) 

(10.15) 



The joint probability distributions of z and w will be 

known and if 

E(z z
1

) = P , E. (wz 1 
) = P 

z wz 

and E(w w') = P 
w 

} 
then 

J = Trace ( S 
1 
(>fIe ( lf $ p~ ~ I 

+ e c s PWc 

+ _s'c*'eP .... t. + eP ... ) 
Since, from a relation .given by Newmann (reference 51), 

c{ ~ ( T ro.c e AS) - A' 

it follows that J has a minimum ~1hen 

clT 
JS 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

Solution of this equation for the elements of S gives the 

optimal choice of s. 

A simple demonstration for the 2 x 2 example system would 

be to modify the system matrix A to 

This system, with no other modifications to the example 

of chapter 6, leads to a reduced order estimator system 

r· - t~:~:);;· + (:~~) ~· 
-·56 l:. 

L + ·29 'ji 

With the cost matrix e given by 

e = 
~20.3 ~·7~ 

~ -.7 2.5~ 

(10.20) 

(10.21) 

(10.22) 

(10~~3) 
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· and the joint distribution given by 

E (z2 ) = 2.6, E (zy) = 8.5 

and E (y2 ) = 45.4 

which in turn, from (10.13) gives 

E hrz') = and E (ww')= . ~ 5.12~ ~10.11 - 3.09~ 
-1.60. -3.09 1.04 (10.24) 

then from (10.17) the cost J is the quadratic in S 
2 

J = 194.5 s - 405.6 s + 212.2 

The minimum value of J is 0.8 and this is achieved when 

( 
' -1 1 I 

s =- c*ec*) C"e P..,~ P; = 1.o4 

(10.25) 

and this transformation may now be applied to the estimator equations 

(10.21) and (10.22) by replacing z by 1.04 z to give 

Jl.. = 
l. ~-1.96~ . z. + 

o. 73 l. 

~.2l~y. 
~ .83~ l. 

This completes the demonstration of how the minimising S 

can be found. 

(10.26) 

Such a choice of S obtained in this or a similar manner will 

allow z to be used in a continuou~ fashion during parameter changes 

without unduly disturbing the plant. It is interesting to note the 

large magnitude of the coefficients of S and S2 in (10.25). Clearly 

an inappropriate.choice of S would result in considerable plant 

disturbance, and hence costs. Confirmation ~1ould be required that 

such a choice of S would give a reasonable performance ~rhen the plant 

parameter change is reversed. The reverse process could well require 

a different s, in which case a mean value might be suitable. 

Extension of this approach over the whole range of parameter chances 

will allow a simple estimator structure to be maintained. Ho~rever the 

constraint is not very severe since the consequence of any poor 
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.. 
mapping is only temporary and eventually asymptotic costs will 

dominate, so that a slightly sub-optimal choice of S would normally 

be adequate. 

Further work in this area requires simulation of an adaptive 

system and its relationsip with a reduced order estimator. However 

adaptive situations will have particular constraints and problems so 

that rather than studying a hypothetical example it would be 

preferable for the design method to be applied to a suitable real 

plant system where a consideration of adaptive control is necessary. 

The requirement for adaptive control of the simplest kind, i.e. control 

·gain variation with load or throughput, is frequently met so that 

implementation of an "optimal control theory" approach using a reduced 

order estimator is almost certain to require the consideration of 

adaptive control~ 

The approach outlined above provides a practical framework 

for designing such adaptive systems while still maintaining a simple 

.control structure. 

7• A Review of the Results of this Thesis 

In the preface to one of his books (reference 9 ) Rosenbrock 

observes that space state methods have clarified some questions of 

structure for automatic control systems, but nevertheless he feels that 

they have not been able to establish themselves as proven tools for 

the design of industrial control systems. Part of the reason for this 

may lie in the complexity both .of the off-line design calculation and 

also of the hardware implementation. The design method derived and 

evaluated in this thesis removes at least the complexity of the hardware 

implementation, but at the expense of the off-line design calculation. 

However to digital computers now in use such off-line calculations are 
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routine and with the advent of graphical display facilities these 

design procedures become considerably more attractive. 

The design method of this thesis (illustrated in Figure 1.1) 

leads to a fUller appreciation of the structure underlying even the most 

simple of control systems. For example the proportional control law 

considered in Chapter 8 (an extreme case with no dynamic elements in 

the controller) is designed via an estimation of plant state (as in 

Figure 8.21) and the application of a control law derived from the 

certainty equivalence principle (perhaps modified as discussed in 

section 4 above). The uncomplicated scalar gain of the feedback 

loop thus belies the underlying more complex structure. However this 

insight into the structure cannot but benefit the designer, and the 

advantages of the control system design method of this thesis are 

given below: 

(a) The design method provides a viable control system 

design technique 

(b) The technique is applicable to multi-input, multi­

output systems 

(c) By gauging the effect on the error-squared cost of 

employing a controller of a given dimension, the 

lowest dimension controller with adequate performance can 

be selected. 

(d) By setting dimension against cost in this way the 

technique provides an assessment of "control difficulty" 

in any situation. 

(e) The technique makes available an approach to slowly 

time-varying systems: the preservation of the state 

estimate in a varyirig gain situation is a valuable 

criterion. 

A discussion of the Luenberger type of observer in Chapter 9 

leads to the conclusion that the design technique of this thesis gives 

an estimator which is not of the Luenberger type. The Luenberger observer 
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is shown to be inferior both in performance and, more fUndamentally, 

to be restricted to a higher dimension. A reason for this may be 

the use made in Chapter 4 of "a priori" information regarding the 

likely magnitudea and relationships between plant and storage 

variables. For a closed loop system such information is always 

available, and it may be the failure of the luenberger approach 

to fully make use of it which accounts for ita poorer performance. 

TJne design technique of this ~esis depends critically on 

the selection of appropriate information for storage and the m·ethod 

to do this, developed in Chapter 5, has been found to give very 

sa~isfactory performance. The criterion, based on the selection of 

the largest subset of the real positive eigenvalues of a real 

symmetric positive definite matrix, has the advantage of being 

straightforward as .well as mathematically optimal. The application 

of the method in Chapter 8 results in storage elements whose 

respective state estimate weightings (Figures 8.10, 8.11) form a 

set of smooth curves. These weighting curves illustrate clearly the 

manner in which the storage elements summarise the available plant 

information and. this gives encouragement that application of the same 

eigenvalue method to other industrial control problems, where such 

smooth weighting curves would not necessarily be present, would be 

· successful. 

It is a reflection of the central part played by eigenvalue 

methods in the analysis of linear control systems that eigenvalues 

(albeit real) should figure so strongly in the design method of this 

thesis. 
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.APPENDIX 1 

A Summary of MATLAN Commands 

A full description of the command specification is given in 

reference 24 but a brief account is given here, only those commands 

which have appeared in program listings being included. 

1. ADD X1, X2, y 

Performs y = X1 + X2 

2. SUB X1, X2, y 

Performs y = X1 - X2 

MlJLT X1 2 X2, y 

Performs y = X1.X2 

4. DIV X1, X2, y 

Performs y = X1-1X2 

Note: If in any of the above operations square matrices are being used, a 

scalar may be used for X1 or X2. It will first be multiplied by the unit 

matrix before the operation is carried out. 

5. INV X, Y 

Performs Y = x-1 

6. RO\vSUM X,Y 

7-

Adds the elements forming the rows of X to form the column 

vector Y. 

COLSUM X, Y 

Adds the elements forming the columns of X to form the row 

vector Y. 
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8. EMULT X1, X2, Y 

Each element of X1 is multiplied by a corresponding element of 

X2 to form the elements of Y. (Used in PROD, Listing 5.4). 

9. COPY X, Y 

Performs Y = X 

10. TRANS X, Y 

Performs the transposition of X to form Y, i.e. Y = X' 

11. EXSUBM X, (rbeg, cbeg), (rdim, cdim), Y 

Allows the partitioning of matrix X and the extraction of submatrix 

Y, defined by the other parameters. 

12. INSUBM X, Y, (rbeg, cbeg) 

Allows the construction of the la,ger matrix Y by the insertion 

of a sub-matrix X, starting at the given element. 

In addition the command INSUBM x, Y, (rbeg, cbeg), (1,1), N allows 

the scalar element x to be inserted in the matrix Y as a band of N 

elements starting at a given location. Used in OTBOIL (Listing 7.1) • 

. 13. FORMS Y, (rdim, cdim), (rbeg, cbeg), (1,1), rePet, val 

Comtructs a band matrix of dimension rdim x cdim containing zeros 

and the elements "val". The band starts at (rbeg, cbeg) .and extends 

diagonally with repet elements. Used in OTBOIL (Listing 7.1) 

14. NULLMAT Y, (rdim, cdim) 

Generates a matrix of given di~ensions with zero elements. 

15. RDIM X, N 

N is set equal to the number of rows of matrix X. 
-- --4-...' -

16. CDIM X, N 

N is set equal to the number of columns of matrix X. 

17. CANCEL X1, X2 ••• 

Saves storage space if matrices are no longer required • 

. .. 
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18. \iRITE (X1, X2, ••• ), FORMAT= 8 

Prints matrices or scalars in floating point form with eight 

significant figures. 

19. READ (X1, X2, ••• ) 

Matrices will be read from cards. Generally the card format 

used has been as below, although other formats are available. 

A 

1.624 

0.761 
• 
• • 
• 
mD 

12 12 

.......... 
••••• 

Matrix with dimensions 

Matrix elements in 

free format 

The subroutines of Appendix 3, were written to allow matrices to be 

punched on to cards, and the format used for each element was E20.10, 

with four elements per card. 

20. LOOP 11, J, I, N 

11 lOOPEND 

Performs a loop for J = I to N 

21. SUBPRO Name, (X1, X2, ••• ) 

Specifies a MATLAN subroutine with dummy arguments. Subroutine 

to finish with RETURN and END. 

22. CALL Name, (X1; X2, ••• ) 

Call of above subroutine. 

23. CALL Name, (X1, X2, ••• ), F 

The addition of ·the "F" indicates that the subroutine to be called 

is a Fortran subroutine. The conversion of the matrix arguments is 

handled automatically by MATLAN, provided the appropriate job control 

statements have been supplied as in Appendix 2. 
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APPENDIX 2 

Fortran Subroutines Called by MATLAN 

In chapter 6 it was necessary to obtain the eigenvalues and 

eigenvectors of a real symmetric matrix, and this was achieved by calling 

the Fortran subroutine EIGEN which is given in listing A2.1. As a 

description of this subroutine, which forms part of the IBM Scientific 

Subroutine Package, is given in the comment statements at its head, no 

fUrther description is given here. 

Storage of matrix elements differs between MATLAN and Fortran, and 

fUrther the Scientific Subroutine package has its own convention for storing 

elements. 

The various methods are as follows: 

(a) MATLAN 

Matrices are stored by rows in two ways. The first stores all . 

elements (A form) while the second stores only non-zero elements and 

their co-ordinates (C form). The more economic storage mode is selected 

internally by MATLAN. 

(b) Fortran 

A matrix is stored in an array column by column. 

(c) IBM Scientific Subroutines 

A choice of three storage methods are available, but subroutine 
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EIGEN assumes that the symmetric matrix whose eigenvalues and 

eigenvectors are required is E to red in storage mode 1. This is a 

specific mode for symmetric matrices since only the upper triangle 

is stored, the lower triangle being inferred by symmetry. Storage 

is then by columns to form a vector of large dimension. 

Tb make the various storage modes compatible requires some 

detailed programming. Conversion between 11ATLAN and Fortran is handled 

automatically with the argument matrices being transposed to allow for 

the change from row to column storage, and vice versa. 

Conversion from Fortran to the IBM Scientific Subroutine Modes 

is handled by means of the subroutines I.OC and MSTR which also form part 

of the Scientific Subroutine Package. Listing A2.ashows subroutine LOC, 

while a call of LOC appears in EIGMAT (Listing 6.4) as a special case of 

CALL LOC (I, J, IC, N, M, 1). 

This generates the integer IC which indicates the location in the 

storage vector of the element (I, J) of aN x M matrix when stored in mode 1, 

i.e. upper triangle only. The matrix element may then be referenced, for 

example, as A(Ici). 

The subroutine MSTR is shown in Listing A2.3. This subroutine 

performs storage conversion for a square matrix. For example, the call of 

MSTR in UNIMAT (Listing 6.3) is 

CALL MSTR (AA, A, N, 0,1 ). 

The vectors AA and A store N x N matrix elements and AA, with storage 

mode 0 (general column b;,: .. column storage into vector) is to be converted into 

. A, with storage mode 1· The subroutine MSTR itself calls I.OC to carry out 

this conversion. Thus within UNIMAT a further conversion is required between 

the normal Fortran matrix storage and the vector "mode 0" storage and this 

is accomplished by means of a "DO" loop where necessary. 

In calling Fbrtran subroutines it is necessary to place these 

in a special position in the deck of cards forming a MATLAN job, in order 

to avoid confusion with MATLAN subroutines and to allow proper compilati~n. 
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Listing A2.4 shows the necessary job control cards and the positions of 

MATLAN, Fortran, and data cards. 

This deck was used for all MATLAN work, the Fortran subroutines 

being omitted when not reouired. The "TIME"parameter causes the job to 

be cancelled if this length of computing time is exceeded. This was normally 

set to 30 seconds as a typical run (e.g. chapter8, cases B to I) occupied 

around 20 seconds on the CEGB IBM 370 computer. 

The following listings have been retained by the author, as they 

form part of the IBM Scientific Subroutine Package, which is 

subject to an IBM copyright. 

Listing A2.1 Fortran· Subroutine Eigen 

Finds the eigenvalues and eigenvectors (all real) of a real 

symmetric matrix. 

Listing A2.2 Subroutine LOC 

Listing A2.3 Subroutine MSTR 

These Fortran subroutines allow the conversion from one matrix 

storage mode to another. 

> 

Further information on the above subroutines can be obtained from 

the author. 



11 MSGLEVEL:(Ioll• 
I/ PRTY=~t.RFGION:~l~K,TiMF:(0,3~) 
//•MAIN ORG:GENO,CARDS:5~0.LTNFS:(3,CJ,CLASS:ANY,IORATF:(ow 
//*PROCESS RTCONTL 
//*PROCESS MAIN 
//•PROCESS PRINT 
//•FORMAT PRrDDNAME:SYSMSG,OFSi:GENO 
//•FORMAT PR,ODNAMF=FT,3F~~I.OFST:~ENO 
//•FORMAT PR,DONAMf=•ACCOUNT,DFST:GENO. 
//•PROCESS PliN~H 
!/•FORMAT PU,OONAHF:FT~SFO~!.OEST:LOCAL 
1/•ENDPROCESS 
1/CLGL EXE[ MAiFORT,PARH:G:'OCALNG:l~' 
IIM,STFPLIB DD _UNIT:3310,VOL:SER:PP,OISf:SHR,OSN:PP,MAfLAN 
//M,SVSIN DO * 
I• 
1/F,SYSIN DD * 
I• 
1/L,SYSLMOD DD DISP:CNFW,PASS) 
I• 
//G,FT08F00l D~ UNIT=C~T~,.OFFFRl,OCB=~RFCFM:F,BLKSIZE=80) 
1/G,~TlOAF OD IJNIT:UT,~PACF:~TRK,(~0)),0CO=BLKSIZE:J84_ 
/IG,STEPLIB DD UNIT:3J10,VOL=SFR=PP,DlSP:SHR,DSN:PP,MATLAN 
1/G,DATA DO * 
I• 

Listing A2.4 MATLAN Job Control Statements 

MATLAN Main Program 
and MATLAN Subprograms 

Fortran Subroutines 

MATLAN data cards 
to be read in 

The above card deck executes a MATLAN job, reads in data on cards, calls the Fortran subroutines and punches 
cards if required. 

,• 
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APPENDIX 3 

Subroutines to Punch Matrices on to Cards 

MATLAN will read matrices from cards where the first card gives 

the matrix name and its dimensions and the remaining cards contain the 

elements, row by row. For the large matrices being used hand punching was 

not practical so Fortran subroutines were written to punch suitable cards 

when the matrix to be punched is passed to the subroutine as an argument. 

Two basic subroutines were written and are shown in Listings A3.1 and 

A3.2. 

1. APUNCH 

A square matrix is punched on to cards, row by row. E.g. system 

matrix A. 

2. BPUNCH 

A vector is punched on to cards. E.g. control matrix B. 

Because of the dimensions used in the examples no other subroutines 

were required for punching MATLAN matrices. 

For punching matrices· which could be read by the eigenvalue program 

GEDES a Fortran subroutine GEDPMN was written which is shown in Listing A3.3. 

Although normally used for punching square matrices, non-square matrices can. 

be punched if required. The elements are punched row by row together with 

their co-ordinates, with four elements per card. Before GEDPMN was written 

a simpler subroutine GEDPCH was written specifically for use with square 

12 x 12 matrices. This is shown in Listing A3.4. 
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SUBROUTINE APUNCH(A) 
DIMENSION A(12,121 
DO I 2 I = 1 , 1 2 
N=l 

13 Nt>=Ni-3 
II'RITE(8,21 (A(I,JI,J="•NPI 
N=Ni-4 
IF(NoEOo!3) GO TO 12 
GO TO 1 3 

12 CONTINUE 
2 FORMAT (4(E20o10)) 

RETURN 
END 

SUBROUTINE BPUNCH(B) 
D li4EN SI ON B ( 12 ) 
N=1 

13 NP=Ni-3 
WRITEI8e2l {B(I)ol=Ne"F) 
N=Ni-4 
!F(NoEOo131 GO TO 12 
GO TO I 3 

12 CONTINUE 
2 FORMAT (4(F20o10)) 

RETURN 
END 

Listing A3.1 and A3.2 Fortran Subroutines APUNCH and BPUNCH 

These subroutines punch matrices on to cards in a format which can be read 
by the l1ATLAN read commands. 



5 

15 

25 

35 

45 

SUBROUTINE GEDPMN(A) 
DIMENSION A(14o14) 
M=14 
N=M 
I= 1 
J=1 
CONTINUE 
IF(JoGToN) GOTO 10 
CONTINUE 
11=I 
J1=J 
Al=AIIoJ) 
IFI(J.EQoN)oAND.(IoEOoM)) GOTO 400 
J=J+1 
JF(J.GToN) GOTO 20 
CONTINUE 
12= [ 
J2=J 
A2=A(J,J) 
JF((JoEOoN)oANDo(loEOoM)) GOTO 300 
J=J+l 
IFIJoGToN) GOTO 30 
CONTINUE 
13=I 
J3=J 
A3=A( I o J_) 
JF((JoEOoN)oANOo(IoEOo~)) GOTO 200 
J=J+1 
JF(JoGToN) GOTO 40 
CONTINUE 

Listing A3. 3 Fortran Subroutine GEDPMN 

-
14=1 
J4=J 
A4-=A(I,J) 

100 WRITE(8,1) (11oJl,A1,12oJ2oA2oi3,J3,A3,14oJ4,A4) 
IF((JoEOoN)oANOo(IoEO.M)) GOTO 500 
J=J+1 
GOTO 5 

10 J=l 
l-=I+1 
GOTO 15 

20 J=1 
I= 1+1 
GOTO 25 

30 J=1 
I= 1+1 
GOTO 35 

40 J=l 
I=I+l 
GOTO 45 

400 WRJTE(8,4) (11oJ1oA1) 
GOTO 500 

300 WRJTE(8,3) (I1oJl,A1,12,J2,A2) 
GOTO 500 

2CO WRITE(8o2) (lloJloA1ol2oJ2oA2ol3oJ3oA3) 
1 FORMAT (4( I3oi3olPE14o6)) 
2 FORMAT (3( I3,l3,1PE14o6)) 
3 FORMAT (2( I3oi3olPE14o6ll 
4 FORMAT ( I3.J3olPEl4o6) 

500 RETURN 
END 

An arbitrary matrix of dimension M x N is punched on to .cards according to a particular format to allow these 
to be input into an eigenvalue program. 
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SUUROUTINE GEDPCH(Al 
DIMENSION A(l2,12) 
DO 12 I= I, 12 
N=1 

13 NP=Ni-3 
WR I TE ( tl, 1 ) ( I, J, A ( I , J ) , J=N, NP) 
N=N+4 
JFIN.EQ,I3) GO TO 12 
GO TO 13 

12 CONTINUE 
1 FOR I~ AT ( 4 ( I 3, I 3 o1 PE I 4 • 6 )) 

RETURN 
END 

Listing A3.4 Fortran Subroutine GEDPCH 

A less gene~al subroutine than GEDPMN. Punches square 12 x 12 
matrices on to cards., with four elements and element co-ordinates 
per card. 

: ... ~... . . 
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lliDEX TO PROGRAH LISTINGS 

Subroutine CONTROL 

Subroutine ESTIN (and Output) 

Subroutine OPRED 

Subroutine TOTSYS 

Subroutine TOTCST 

Subroutines TOTSDT, PROD 

Subroutine PO\oJER 

Subroutine SYSTEM 

Subroutine ESTI!1. 2 

Subroutine SIMUL 

Fortran Subroutine UNIMAT 

Fortran Subroutine EIGMAT 

Output for SINUL Test Natrices 

Subroutine OTBOIL 

Subroutine CRANK 

Inverse Laplace· Transform Program 

Optimal control Program calling CONTROL 

Subroutine SYSOPT 

Reduced Estimator Program calling OPRED 

Subroutine ADAPT 

~ 

34 

35 

7~ 

79 

80 

81 

82 

83 

98 

99 

100 

101 

102 

124 

125 

126 

158 

159 

16o 

173 



- 210 -

~ 

A.2.1 Fortran Subroutine EIGEN 203 

A.2.2. Subroutine LOC 203 

A.2.3 Subroutine MSTR 203 

A.2.4 Matlan Job Control Statements 204 

A.3.1 Fortran Subroutine A PUNCH 206 

A.3.2 Fortran Subroutine BPUNCH 206 

Ao3o3 Fortran Subroutine GEDPMN 2.07 

A.3.4 Fortran Subroutine GEDPCH 208 




