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Abstract

General n-pownt formulae for difference operators and their errors are derived in terms of
elementary symmetnc functions. These are used to denive high-order, compact and par-
allehsable fimite difference schemes for the decay-advection-diffusion and linear damped
Korteweg-de Vnies equations. Stabihity calculations are presented and the speed and ac-
curacy of the schemes is compared to that of other finite difference methods in common
use. Appendices contain useful tables of difference operators and errors and present a sta-
bility proof for quadratic inequalities. For completeness, the appendices conclude with the

standard Thomas method for solving tri-diagonal systems.
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Preface

Many partial differential equations (PDEs) in common use do not have solutions in ‘closed
form’, that 15 to say they do not have solutions that can be expressed 1n terms of well known,
and simple to calculate, functions Often no analytical solutions are known or perhaps are
known only 1n certain cases, e g. with trnivial imtial and boundary conditions For these
reasons numerical methods are used in all industres throughout the world for modelhing all
manners of problems.

Any properly constructed and well-posed PDE that models physical processes will have
solutions (after all, nature finds them) so the problem lies with how to extract these solu-
tions, and moreover how to extract them in a reasonable time and to a high accuracy It
1s & testament to the attractive properties of finite difference schemes (their ease of deriva-
tion/solution and their generally acceptable stability properties) that the Crank & Nicolson
(1947) method is still 1n use today, more than fifty years after its publication Refinements
have of course been made. Crandall (1955) presented a high-order method and McKee &
Mitchell (1970) used alternating direction 1mplicit {ADI) methods to simplhfy solution in
higher dimensions. More recently Smith (1999) introduced a method for denving high or-
der schemes that 1s well suited to parallel solution in higher dimensions and forms the basis
of this work. Smith & Bowen (2003) extend a one-dimensional (1D) case to non-constant
coefficients and demonstrate non-tnvial boundary conditions.

Designing numerical schemes is often considered an art in itself, due to the apparent

abundance 1n choice of how to go about such a task. However, with certain constraints, such

iv



PREFACE

as locally ensuring a scheme 18 accurate and forcing a parallelisable ADI structure in higher
dimensions, the schemes presented here almost design themselves such that the derivation
for any scheme follows essentially the same straightforward steps The basic approach is
that schemes are denved by calculating weights of difference operators, arranged mn such a
way that m hgher dimensions a parallel solution is possible. By matching expansions (in
dervatives of the spatial dimensions) over an exact time-stepped framework, the scheme 1s
tuned to alugh order It is the cancellation of error terms that provides hagher accuracy than
that given by the term by term replacement used in traditional finite difference methods.
A compact module with three points in each spatial dimension results in a solution that
mvolves solving tri-diagonal systems Whether these systems are solved 1n senal or parallel,
the improvement 1n speed by solution of tri-diagonal systems over laborious matrix inversion
or relaxation methods is clear

Chapter 1 provides an introduction to the methods used, covering all areas from design-
ing a 1D scheme for the decay-advection-diffusion equation to assessing its stabihty criteria
and interpreting the accuracy of schemes in terms of its wave properties. Comparisons are
made with several finite difference schemes mcluding the classic Crank & Nicolson (1947)
method.

In chapter 2 an expheit formula for n-pomnt difference operators is derived in terms of
clementary symmetric functions. The derivation culminates in a recurrence formula that
gives the errors between the difference operators and their corresponding denivatives. Thus
chapter has been accepted for pubhcation (Bowen & Smith 2005a). Forn = 1,. ,5a
table of difference operators is presented in appendix A and their corresponding errors m
appendix B

Chapter 3 contains the derivation of a high-order scheme for the linear damped Korteweg-
de Vnies (KdV) equation. The stark demonstration of this chapter 1s that a two time-level
module with three points in the spatial dimension can be used to model the effects of a

third derivative term, which would require a minimum of four points to model directly. This
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chapter has been submtted for publication (Smith & Bowen 2005).

The method is expanded to lgher dimensions m chapter 4 where a numerncal scheme
for the three-dimensional (3D) advection-diffusion equation 1s denived This chapter demon-
strates the use of ADI methods that allow the solution to be spht into stages {one for each
spatial dimension), each containing tri-diagonal systems that may be solved in parallel over
the remaining dimensions. The results are compared to various methods including that of
McKee, Wall & Wilson (1996). This chapter has been submitted for publication (Bowen &
Smith 2005b).

Chapter 5 concludes this work and details more areas to be explored The remaining
appendices C and D provide, respectively, stability proofs and the Thomas algorithm for

solving tri-diagonal systems.

vi




Chapter

1D decay-advection-diffusion equation

1.1 Introduction

This chapter provides a basic introduction to the methods used throughout this work. A
high-order numerncal scheme for the 1D decay-advection-diffusion equation is derived, along
with stabihity conditions. Wave properties of the resulting scheme are mterpreted and the
scheme is compared to §—methods, including the popular Crank & Nicolson (1947) method

In operator notation, the 1D decay-advection-diffusion equation with time-dependent

coefficients, is

Bye(x,t) + L{t)e(z, t) = g(,1), (1.1a)

where the operator

L(t) = M2) +u(t)d: — s(t)82. (11b)

This is a linear parabolic PDE with one dependent variable, ¢, and two independent
vanables, x and ¢ An application of this PDE is in modelhng the dispersion of a pollutant
i an estuary. Then c denotes the concentration of the pollutant, A 1t3 decay rate, u
represents 1ts velocity (as carned by the flow), & its diffusion and q represents forcing The
dimensional scales ¢ denotes time and z denotes space, 1 e. the position along the estuary

There are several extensions that can be made, many of which are explored in later
chapters. For example, a third order derivative is accounted for, whilst retaining a compact

scheme, 1 the denvation for the linear damped Korteweg-de Vries (KdV) equation in




1.2 Difference operators and errors

chapter 3 and chapter 4 extends the decay-advection-diffusion scheme to three dimensions

on a moving grid, whlst retaimng a structure smtable for fast solution.

1.2 Difference operators and errors

To introduce the methodology mvolved in deriving the schemes, the structure of the nu-
merical scheme is first considered after which the exact problem is moulded mnto a form
suitable to tune the numerical scheme to as high an order as possible. Firite difference
methods mvolve discretising the PDE mto a local module over the spatial and temporal
dimensions, resulting in a system of, typically implicit, equations to solve. The precise s1ze
of this module dictates the maximmm order of accuracy that can be obtaned, as well as
affecting the scheme’s stabihity and the method/speed of solution. That does not, however,
imply that a larger module gives a more accurate scheme; in fact the schemes derived here
improve upon traditional methods using a compact module of three points in each spatial
dimension, over two time-levels, so for this 1D example the module 15 said to be of size
3 x 2. Figure 11 shows such a module on a regular gnd (with constant grid spacing Az),
although the schemes denved allow for arbitrary spacing along each dimension.

900
lo-0-0

t

Figure 1.1 A 3 x 2 (3 spatial points, 2 time-levels) local module with constant spacing

Such a module size offers room for dramatic unprovements (see the results in §1 6) over




1.2 Difference operators and errors

standard methods by better use of the avalable degrees of freedom, as well as retaimng
good stabiity criteria and a fast solution time (by solving tri-diagonal systems). There
is, however, no need to resirict modules to this size as the tools derived in chapter 2 are
apphicable to any number of points.

A general discretisation, wath zero forcing, can immediately be wntten as

3 3
3 aC (z, t") = Y_b.C (7, t") (1.2)
1=1

1=1

with non-zero undetermined coefficients a, and b, providing weights to the discrete concen-
tration C(z.,t") evaluated at three pownts x;, 22 and x3 at each of the two time-levels n
and n + 1. Traditional finite difference methods such as Crank & Nicolson (1947) involve
term by term discretisation of (1 1a,b), yielding the coefficients a, and b,. The method used
here calculates the cocflicients by insistence that the numerical discretisation models the
operator L to as a ligh a degree as possible given the available degrees of freedom. With
six coefficients a, and b, there are five degrees of freedom, since dividing {1.2) by e g. a;
and relabelling gives the same choice of schemes Five degrees of freedom wall lead to the
scheme matching from the identity to fourth order with errors arising at mmimum fifth
order.

Smith (2000) derives schemes in terms of difference operators acting on the module
instead of by direct consideration of the discrete points in (1.2) The two approaches result
in identical schemes but the difference operator notation 1s more succinct and is thus the
approach used here A full derivation of the formulae used to denve the difference operators
for an arbitrary number of points is presented 1n chapter 2 With three spatial pomnts x;, z3

and r3, the 1D difference operators acting on the numerical concentration C, from appendix




1.2 Difference operators and errors

A, are
0 az03C (1) ayaC (x2) 010:2C (x3)
DIC] (o1 —az) (o1 —a3) * (ez—oq) (o —a3) (a3 — o) (a3 — ag)’ (1 3a)
1 _ 2+ a)C(m)  (aa+e3)Clxe)  (e1+09)C (z3)
D;[C] (o —a2) (1 —a3) {m—a1){az—0a3) (a3—on)(ag—a)’ (1.3b)
Dcl = 20 (z1) + 20 (z2) + 2C (z3) (1.3¢)

(a1 —ag) (o1 —ag)  (e2—a1)(ez—a3)  (a3—a)(as—og)’

The subscnipt x denotes the dimension along which the operators act - chapter 4 builds a
high-order scheme for the 3D decay-advection-diffusion-equation using these 1D operators
acting 1n each of the three spatial dimensions. The superscripts denote the derivative,
so that D2, D} and D? are the discrete analogues of identity, first derivative and second
derivative operators respectively.

The notation o, represents a displacement from a reference point x, so that e, = 7, — x
and o, — @, = ¥, — x; In the schemes presented ) 1s chosen to represent the centroid of
the three points along any dimension on any time-level, ie. x = {z1 + z2 + x3) /3. This
sunphfies the error formulae below, although x will not anse in the final scheme whatever
its value. On a regular grid with spacing Ax, then £ = 19 — Az, o = x and 13 = 12 + Az

so that the three-point difference operators reduce to the fammhar central difference form:

DJIC] = C(z2), (1 4a)
pie] = L0l (1.4b)
o C($1)—2CA'E:22)+C(::3)' 140

The discrete template (1.2) can now be written in terms of difference operators acting

on the numerical concentration C™ at two time-levels n and n + 1,

[DZ + 38t (U D + UF DF)} €™+ = Uy [D§ - 384 (U D+ U5 DR)) €, (1.9)




1.2 Difference operators and errors

with five degrees of freedom given by Uy, U, Uy, Ui*' and Uf. In fact, the U,i will be
read directly from a mampulated form of the exact scheme, which wnll itself be wmtten
terms of undetermined parameters M, (introduced in §1 4). The 1At factors are extracted
for tidiness 1n the matching., The difference operators (1 3a-c) may be solved for C (z,) so
that the notations (1 2) and (1.5) are interchangeable.

No discrete representation of an arbitrary smooth function can be exact and errors will
arise at some order Thus the difference operators (1 3a-¢), exactly representing denvatives
at lower orders, will have errors arising at minimum third order with three spatial points
The essential step in deriving the high-order schemes requires matching future and previous
time-level operators to calculate M, and hence U,i and, for this, knowledge of the errors of

the difference operators 1s required. From appendix B, the three-point error formulae are:

D =1 +%3-ag —%%362+..., (1 6a)
2

1 _€23 €300 € s

DL = @, 66§+24a”’+1203’ +.eny (1.6b)

D? = 82 —f—;ag+%ag Heen. (1 6¢)

The parameters e2 = a1 + @103 + azes and ez = oyaza3 have the geometrical inter-
pretation of measuring grid spacing and asymmetry, respectively. Formally these quantities
are known as elementary symmetric functions and their advent and generahsation to an ar-
bitrary number of points is detailed in chapter 2. Appendix B lists the error formulae with
arbitrary y and by comparison to the formulae (1.6a-c) the notational benefit of positioning
x at the centroid, and therefore making e; = a1 + a2 + a3 = 0, is evident. On a regular
gnd the elementary symmetnc functions reduce to e; = —Az? and eg = 0.

With I denoting the 1dentity operator, the right-hand side of (1 6a-c) shows that the
difference operators exactly mimic derivative operators up to the second derivative, beyond
which order errors anse. With three points this is the best that can be achieved, although

the choice of x gives an extra degree of matching to the second order derivative (1 6c).




1.3 Exact time-stepping and time dependency

1.3 Exact time-stepping and time dependency

Thus section introduces forcing and begins the manipulation of the PDE (1 1a,b) into a form
similar to (1.5), 1n preparation to match the numerical discretisation to as high an order as
possible The PDE 1s transformed into an exact time-stepping form as explored by Mitchell
& Griffiths (1980, chapter 2). Multiplication by an imntegrating factor exp ( fot L(r) df) and

integrating over a time-step of size At from t = " to t = t**! = t* 4+ At yields

gntl

J.

Integrating the first term by parts results in

exp (j:L () d*r) {Bc(z,t) + Le(x,t) — g (z, t)} At = 0. (1.7)

[exp ( fo ‘L) d-r) e(z, t)} :ﬂ - j:ﬂ

in+ 1

Dividing by exp ( s L{7) d7} and rearranging yields the exact time-stepped form of the

exp(/otL('r) d'r)q(x,t) dt. (18)

PDE (1 1a,b)

tﬂ“- 1

e(x, tn+1) = exp (— j: L(7) d'r) clx, ™) + f:' exp (—[ L) d‘r) g(z,t) dt.
(1.9)

The forcing term is interpolated over the two time-levels

exp (-— /t tﬂH L(7) d‘r) q(z,t) =~ (1 _t ;:n) exp (— '[t :ﬂﬂ L(7) d'r) g(z, ")

_4n
A: g(z, ") + O (Ar?) (1.10)

t
+

Integration of the forcing term by the Trapezium rule leads to the particularly simple time-

stepped structure with interpolated forcing (exact when forang 1s absent)

cfz, t"*1) — LAt g(z, ™) = exp(~At L) {e(z,t™) + 1At g(z, t"}+o0(Aad), (11)




1.4 Viewpoint operator

where the time-averaged operator

i+l

. At
L=£; . L(T)d‘r=-§—t A L{"+71)dr. (1.12)

Thus time dependent coefficients in the operator L should be integrated over the time-step
and dinided by the step-length With this in mind the coefficients are henceforth treated

as 1f constant.

1.4 Viewpoint operator

The discrete form (1 5) has multipliers at both future and previous time-levels To manip-
ulate the time-stepped equation (1.11) to such a form, a ‘viewpoint’ operator M (so called
since 1t can shift between exphcit and implicit views) is introduced as a truncated series of

derivatives in the spatial dimension,

4
M=I+AtY MoP. (1.13)

p=1

I denotes the 1dentity operator and M, are adjustable parameters For a 3 x 2 module (with
five degrees of freedom) it 1s sufficient that p ranges from 1 to 4 but for differmg module
sizes the upper limit would need to be altered accordingly (see §3.3 for a 1D generalisation).
Multiplying (1.11) by the operator M exp (At (L — A)) gives the desired form

& {c(z, ") — 1At q(z, ")} = exp (-AA) & {c(z,t™) + 3Ot g(z,t™)},  (1.14)

where the future and previous time-level operators £ are, respectively:

& = Mexp(+iat(L-N), (1 15a)
& = Mexp(—3At(L-))). (1.15b)
7




1.4 Viewpoint operator

With the introduction of forcing, the final form (still with unmatched parameters) of the
discrete two time-level scheme is constructed 1n terms of the difference operators (1.3a-c),

based on (1.5) and (1.11),
EFX{c* - 1AtQ™ ) = U E; {C™ + JALQM} (1.16)

where the superseripts on the discrete concentration and forcing, C and @, denote the

time-level. The future and previous time-level discrete operators are, respectively,

Ef DY+ 1At (UFDL+ UFDE) (1 17a)

E; = DS-3iAt(UTDL+U;DE). (117b)
The exponent of an operator can be written in series form as

o

exp(rL)=I+ ; %}L" . (1.18)

Now the multipher Uy can be immediately calculated (using one degree of freedom) by

matching the identity terms (so that D1 = D2 = 0 and £&& = I) of (1.14) and (1.16), giving
Uy =exp(—AAt).

With the series form (1.18), the exponential structure of the operators (1 15a,b) can be

expanded as a series of derivatives and multiplied by the truncated senes (1.13) so that:

4

& = I+iaM uroe+..., (1.19a)
=1
4

& = I-3AY U 2+.... (1.19b)
p=1

The coefficients U;,E are simple to extract with a computer algebra package (e g Maple or
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Mathematica), giving

Ut = ut2M, (1.20a)
Uf = —r+ld®At+MulAt+2M,, (1 20b)
U = FlunAt+ 5uA2 + MiAt(—r % L1u®At) + Mou At £2M;,  (1.20c)
U = +120t— JuPs Af? + LAt + MiuA? (Lu? At F 3K)

+ Mot (—r + LuAt) + MauAt£2M;. (1 20d)

Each coefficient U:t is a hnear combination of the, as yet undetermined, viewpoint param-

eters M,, ensuring four degrees of freedom remain in (1.17a,b).

1.5 Optimal matching

It remains to tune the numerical scheme to the exact scheme. This is accomplished by
matching the operators of the numencal scheme (1.17a,b) to those of the exact scheme
(1 19a,b) to as gh a degree as 1s possible given the chosen module size, as has already
taken place at the identity order. To thus end, the difference operators Df, DY and D3 are
substituted by their error expansions (1 6a-c). From these expansions 1t is clear that the
difference operators are exact at orders I, 8L and 82 so the time-level operators (1 17a,b)
immediately match their exact counterparts (1.19a,b) at these orders, whatever the choice
of the adjustable parameters M,.

By nspection (or by use of a computer algebra package), at order 82, the relevant
equations to match are

+IALUF = Les F At e U . (1.21)




1.5 Optimal matching

The solution of this pair of equations gives the parameters Mz and M;

M, = -’“uﬂ - E% — Lu?At, (1.222)
M; = E% +isult— M (Re2 + %‘u2At2) . (1 22b)

To avoid a singularity in Mp, the adjustable parameter M, is written as

M] =—Su. (123)

Substitution of (1.22a,b) mto (1.20a,b) gives the scheme parameters-

Ut = u(1F285), (1 24a)
U = -n(1£285)+(xh-8)wAtF 2 (1 24b)

At order 8%, the equations to match, after dividing through by :l:%At, are
Uih = 51183Ui|: - le“eré't. (1 25)

The solution of this pair of equations provides the optimal choice for the high-order param-

eter S,
2k (e2 + 2u? Atz) +3ue;

Sopt = — : 1.2
opt 2 At (1252 + u2ey + utAt?) (1.26)
My, wnitten 1n terms of S for brevity, 1s given by:
1152M At = 16€} + (3 + 325%) u'At* — 48 (3 — 85%) K2A¢?
+16epAt ((1 + 25%) uAt + 85x) — 805u?At’x . (127)

With all available degrees of freedom used in the matching then the derivation 15 complete

and the scheme is formally said to be high-order, with errors arising at minimum order 82.

10




1.5 Optimal matching

Save for a different method of denvation and notational differences, this scheme is 1dentical
to that derived by Smuth (2000).

To summarise, the numerical scheme is

[D2+ 3At (U Dy + UF DZ)] {C™*! - LAt Q™)

= exp(—AAt) [DS - 3At (UT D, + Uy D2)] {C™ + 1At @7}, (1 28)
with parameters

Ut u(l F28), (1 29a)

1

i

—r(1£25) + (£} - §) WAt F o1 (1.29b)

Uy
and high-order parameter S given by

g = 2k (82 + 2u? Atz) 4+3ues
o7 = T2 AL (1262 + ule; + utAL?)

(1.30)

This particular scheme is referred to as the S = S, scheme. A trivial choice for S is given
by So =0 A scheme with this non-optimal choice is referred to as the S = 5y scheme.

With zero decay and zero velocity (i e. the diffusion equation) on a regular grid (A =0,
u =0, eg = ~Az?, e3 = 0), the high-order parameter becomes § = Az2/(12x At) and the
scheme 13 that of Crandall (1955).

For comparison m the subsequent sections, a fammly of numerical schemes known collec-
tively as the 6—method 1s introduced In difference operator notation the §—method, with
zero decay and no forcing, can be written

crtl —cm

~— +u{(l-8) D;[C"] +6DZ[C™1]} — s {(1 - 6) DZ[C™] + 6DI[C"H]} =0,

(1.31)

where 8 = 015 an exphat fimite difference scheme, 6 = % corresponds to Crank & Nicolson
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1.6 Numerical results

(1947) and 8 =1 is fully impliat

The solution of the 1D schemes is simple - the 3 x 2 module, along with boundary
conditions apphcable to the problem being solved, produces a tri-diagonal system that
can be solved for the future time-level in terms of the known previcus tume-level Tri-
diagonal systems can be solved in O(n) by the Thomas algonthm (appendix D). A higher
cdimensional scheme is derived in chapter 4 with a structure designed to take advantage
of parallel computers by distnbuting solution of tr-diagonal systems across processors. If
solving the 1D case on a parallel computer then algonthms such as recursive doubling (Stone

1973) and recursive striding (Evans 1997) may be used for an increase in speed

1.6 Numerical results

Four tests are performed consisting of a single pount source of unit strength (a unit delta
function) left to advect/diffuse from the centre of a gnd of p points. The § = Sy and
S = Sy schemes are compared to the §-method (1.31) with § = 0 (expliat), # = 1 (Crank
& Nicolson 1947) and & = 1 (fully implcit). The S = Syp and S = 0 schemes match m
the long-wave (see the wave interpretation i §1.7) so such tests with short scale imtial
conditions are particularly severe For the PDE (1.1a,b), an exact Gaussian solution exists

for an mitial pomnt source of strength s at position z:

clz,t) =

. —-)\t——l—( - ’—ut)2 (1.32)
2 it exp 4K,t xr X . .

This solution assumes zero concentration at infinity. For these tests the concentration 1s
held at zero at the boundary, so that the Gaussian solution provides a vahd comparison
before the profile builds up at the boundary.

Standard error norms are introduced to measure the accuracy of the various schemes,

12




1.6 Numerical results

compared to the exact solution (1.32):

Fier-een (Eer- c(t")f)%

h= y la=

Sle(en) (% (tn)zf

maz [C" — ¢ (t™)|
s loo =
maz |c (t™)|

(1.33)

In all tests, error norms are shown at the geometrically progressive time-steps At, 4At and
16A¢. If the schemes were perfect then, in the absence of errors at the boundary, the error
norms would be zero Error norms further from zero sigmfy poorer results.

The first two tests have time-step At = 0.2 and are on a grid size of 21 points (from
z =1 to z = 21, with the source of strength 1 at x = 11). The first test is of pure diffusion
with parameters

Az=1, A=0, u=0, x=0.8, (1.34)

The results are shown in table 1 1. The second test introduces advection

Az=1, A=0,u=1, k=038 (1.35)

The results are shown 1n table 1.2. Figure 12 contains a plot (from = = 8 to = 20,
following the advecting solution) of these results after sixteen time-steps, with the exact
solution 1 bold sohd hne.

The third and fourth tests increase the fime-step At to 0.6 and the number of grid
points to 61 (from z = 1 to z = 61 with the source of strength 1 at z = 31) but otherwise
have the same parameters as the first two tests (1.34) and (1.35), respectively. The pure
daffesion results with the increased time-step are shown in table 13 and the advection-
diffusion results are shown in table 1.4, Figure 1 3 contains a plot (from = = 32 to z = 48,
followmng the advecting solution) of these results after sixteen time-steps, with the exact
solution 1n bold sold line

For both pure diffusion tests the S = Sy scheme performs as well as the Crank &

13




1.6 Numerical results

[Time[ Scheme | & | I | loo | |Time[Scheme] & [ & [ lo |
At ]S = S,p [[0.0607 ] 0 0477 | 0.0404 At | S=Som [[00383] 00327 00248
S =5Sp ||03905]0.2710 | 0 2029 S =5p ]0.3332[0.2347( 0.1790
g =0 [0052100416 [0 0358 9=0 |[00372]00322]0 0264
6= [0.1048]00725}00504 9=3 ||01864]01431[01082
6=1 ]/02026]0.1445]01072 8=1 10.2886]0.2227] 0.1645
4At |8 = Sop [ 00142100149 ] 0.0159 4At | § = Sop |[ 00216 | 00207 | 00229
§ =50 ||0.0740| 0070900759 8 =5p || 00787{0 0671 [0.0677
=0 }{00170{00183[0.0204 6 =0 |/00803}00731]0.0784
f=5 [{0.1144{01148]0.1369 6=: J]01726/01778) 02135
6=1 [0.2095]0.2152] 0 2565 8=1 []0.2910]0.2913]0.3448
16At | S = S,y |] 0.0006 | 0 0006 | 0 0007 16At | S = S, || 00039 | 0 0058 | 0.0110
S =S5p [|00225]00199]0.0226 S =5p [|00216[00192 00208
6 =0 [{0.0015 [0.0014 [0 0017 6 =0 _{/0.0658 [ 0.0598 { 0 0704
6=3 [100240]00221]0.0272 9=1 |{00739]00686 [0.0728
f=1 ]00469]00440]00571 =1 ]/01191]0.1157 01139

Table 1.1' Error norms for diffusion test Table 12  FError norms for advection-
(1.34) with At =0.2 diffusion test (1 35) with At =0.2

Nicolson (1947) scheme When advection is introduced the S = S scheme improves upon
the Crank & Nicolson (1947} scheme by a factor of three in the second test and a factor

of ten 1n the fourth test, after sixteen time-steps. The S = S, scheme gives a dramatic

0.20 Time 16At==32

0 S=Sopt

0.10}

0.05

Figure 1.2 Advection-diffusion plot on a 21 point grid (z =1 to 21) with At =02
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1.6 Numerical results

[Tme| Scheme [ 1 | b | Iw [Time| Scheme || &4 | & lo
At |8 = S, [[0.1996 | 0.1863 [ 0 1639 At |8 = Sop || 0 52470.5039 | 0.5000
S =S50 |[05110]05033{0.4841 S =Sp [{0.6420{06117{0 6156
6 =0 {[0.9525]0.9381 [ 0.9018 0 =0 ]0.9561]0.9866 ] 1.0822
=7 J00592]00510]00526 9=z [01494]0.1473]0.1583
f=1 {03975[04073|0.4373 0=1 [l0.5201[0.5064 (05729
4At [ S = S, [] 0.0072 [ 0.0064 [ 0 0065 4At [ 5 = Sy [ 0.0812]0.0784 [ 0.0878
S = 5g [{00603 [0 0606 | 0 0593 S=0 110.1756 0 1637 0.1747
6=0 [[0.7241]0.6927] 0 6166 9=0 |[0.7988]0.8650[1.1248
0=1 1j0.0264]0.0231]0.0270 6=3 [[00932]0.0853{0.0883
=1 {[01135[01217]0.1822 60=1 [[0.25160.2382} 0 2382
16At | S = Sop [|0.0004 ] 0.0004 | 0 0005 16A¢L | S = Sop || 00034 ] 0.0031 [ 0.0033
S =5 |10.0079 |0 0073 | 0.0084 S =S [|00042]00040]0.0042
6=0 |[0.2636]0.2573 |0 2546 9 =0 [[0.33650.3720 [ 0 5658
6=z [0.0072{0.0066 | 0 0078 6=z |{00467)0.0430]0.0457
=1 [ 00293}0 0276 0.0339 =1 [{0.1769]01577]0.1772

Table 1.3: FError norms for diffusion test Table 1.4. Error norms for advection-
(1.34) with At =06 diffusion test (1.35) with At =06

improvement over all schemes, 1n particular by a factor of 36-40 for the first test, 6-18 for
the second, 15-18 for the third and 14 for the fourth, over the Crank & Nicolson (1947)
scheme after sixteen time-steps. The exphct scheme does particularly well in the first test

0 S=Sopt . Time 16At =96
® 5=So +

& B=0 a
a 6=1/2

0 - n i 1 " a ".
32 34 36 38 40 42 44 46 48 x

Figure 1 3. Advection-diffusion plot on a 61 point grid (z = 1 to 61) with At =06
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1.7 Wave interpretation

with pure diffusion and small time-step, with the S = Sy scheme being a factor of three
better. But with the introduction of advection the S = Syt scheme pulls away

The third and fourth tests demonstrate instabilities with the exphcit (§ = 0) scheme,
with the error norms suffering as a result. The S = S, and § = 0 schemes are virtually
indistinguishable from each other and the exact solution as shown in figures 1.2 and 1.3,
the latter of which vividly demonstrates the instabihty of the expheit scheme

The improvement of the § = S,,; and S = 0 schemes with the increased At is for a
combination of reasons For the second test, figure 1 2 shows how the solution is starting to
buld up at the boundary This has a small effect on the error norms after 16 time-steps (the
schemes themselves are performing correctly but the exact solution from which the error
norms are calculated is becoming inappropnate). The second reason is bnefly explained
here and covered mn more depth in §3 8 There is a particular time-step At = Ax?/(/20x) =
0 2795 .. that prowides an extra level of matching For these tests At = 0 60 > 0 28 performs
slightly better than At = 020 < 0 28, demonstrating that a small time-step is not always

the best choice for accuracy

1.7 Wave interpretation

Consider the Fourier component
e(x,f) = Aglwi-ke) (1.36)

where A is a constant, k is the wavenumber and w 1s the angular frequency. The wavenumber
denctes the number of waves that exist over a distance of 2r and the angular frequency is
the number of waves that pass a fixed pomnt over a time of 27

Inserting (1.36) into the PDE (1 1a,b) shows that for the Founer component to satisfy

16




1.7 Wave interpretation

®{)1

¢1_

Figure 1.4. Real part of growth factors

the PDE then the dispersion relation is
w (k) = ix+ ku +1k%x. (1.37)

This gives the angular frequency as a function of the wavenumber. Over a time-step At the
Fourier component (1.36) changes by a quantity formally known as the complex multipher:
C(x t"‘At) Juw AE —(D=k 2 A
kAt et St L R SN L — () 1kud-k IC) t. 1.38
(At = ZEE - gnar = (1.35)
By inserting the spatial part exp(—ik z) of the Fourier component (1.36) into the numerical
schemes, the numerical complex mmultipher can be calculated over a time-step At on a
regular grid with spacing Az. Thus knowledge of DZ[exp(—1kz)] 1s required, which can be

calculated from (1 3a-c) as,
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1.7 Wave interpretation

3(r)
— Exact 6.6 e
—_— S=Sopt "."' ..
— 8=Sp -,
- 9=0 0.4 { ; )
-- 8=1/2
-- 8=1 L .

0.2 AR
- - -T/2 /2 T k

e . .2 L
-0.4
-0.6

Figure 1 5 Imaginary part of growth factors

Dilexp(~ikz)] = exp(-ikz), (139a)
) ., 8 .
D lexp(—1kz)] = -i k__%k e exp(—ikz), (1.39b)
52
Dilexp(-ikz)] = 452@&;)3 exp(—ikz), (1 39¢)

where for brevity ¢ = cos {3k Az) and s = sin (3k Ax). Then the complex multiplier for

the #-method (1.31) is

2At s (uAx e+ 21k s)

Rk Af)=1- 20Ats (ubhzc+ 21xs) +iAz?”

(1.40)

For the S = S, and S = Sy schemes the complex multipher, with zero decay, 1s given by

_ Dflexp(—ik )] — 3¢ (Ur Difexp(=ikz)] + Uy Diexp(-ikz)])

~ DYexp(—1k2)] + 2 At (U Dexp(-ikz)] + Uf D2[exp(—ikz))) (1 41)

Figures 1.4 and 1.5 show the real and imaginary parts of the exact (bold line) and numerical

(S = Sopt, S = S0, 0 =0, § = 1 and 8 = 1) multipliers with parameters used 1n the fourth
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1.7 Wave interpretation

®{w) 3
= Exact
— S=Sopt gl
5=5%o 4
0=0
- 9=1/2
- 9=1 2 .
- T T2 ] /2 T k
. aa- Ll
-4 L
.-"”f‘

Figure 1 6: Real part of dispersion relations

test 1n the results §1 6, that is (1 35) with At =06 The S = S, and S = Sy results are
almost indistinguishable.

Since the numerical multipliers (1.40) and (1.41) are calculated through the use of (1.39)
then 1t is immediately apparent that the multipliers must be periodic such that 27 = %kAa:
In fact, by mnspection of (1.39), it can be seen that the double angle trigonometric formulae,
sm (kAz) = 2cs and cos (kAz) = 1 — 252, are directly applicable so that periodicity 1s given
by 27 = kAz. Thus, with Az = 1, the numencal mulliphers are necessarily 2# periodic in
the wavenumber k

With the component

C = R(k, At)" e (1.42)

then the numerical growth factor R and numerical dispersion relation W (k) are related by

eVt = R(k, AD)" (1 43)

19




1.7 Wave interpretation

S{w)

Figure 1.7: Imaginary part of dispersion relations
Thus the numencal dispersion relation, with branch cut chosen by arbitrary m, is given by

_llog R(k,Al) + 2mw
At ’

W (k) = (1.44)

Figures 1 6 and 1.7 show the real and imaginary parts of the exact (bold line) and numerical
dispersion relations, with the same parameters as before. Again, the numerical dispersion
relations are necessanly 27 periodic in the wavenumber k, with the addition of branch cuts
to the real part

The phase velocity is the speed and direction in which an individual component of a

wave moves and is given by

(1.45)

=8

=

The group velocity denotes the speed and direction in which information is transmtted
and is calculated as




1.8 Stability conditions

so both phase and group velocity are directly related to the dispersion plots already shown.

It 18 evident from all the graphs that in the long-wave region k& =~ 0, the § = S,
and § = Sy schemes are more accurate than the §—methods. This is a consequence of
the dertvation which is eqmvalent to matching of the exact and numerical growth factors
as expansions in the wavenumber. Indeed, that is the approach taken by Smith (2000) to

derive equivalent schemes

1.8 Stability conditions

A scheme is said to be stable if 1ts growth over some time period is bounded Stabihty for a
two time-step linear PDE on a regular gnd is equivalent to the condition |R| < 1+ O (At)
where R is the growth factor (Ruchtmyer & Morton 1967, §4 7). This is known as the Von
Neumann stabihty condition and 1s shown in figure 1 8 for the complex case R = e +if

When denving stabahity conditions it is required only to find sufficient conditions, 1n
terms of the scheme parameters, that guarantee the Von Neumann stabihty condition. As
long as these conditions are not too strict then they provide a framework in which the
numerical scheme can be used with prier knowledge that instabilhifies wall not arise.

The Courant-Friedrichs-Lewy (CFL) condition states that a necessary condition for
stabihty is that the analytical domain of dependence is a subset of the numercal domain
of dependence. The domain of dependence for some point (z,t) 1s the set of imtial values
which influence that pomnt and figure 1.9(a) shows this case for a typical 1D hyperbolic
equation. If the numerical domam of dependence, as shown in 1.9(b) for an explicit case,
does not include the imtial values of the analytical domain of dependence then there is no
way that the scheme can react to changes in the mitial conditions, hence the CFL condition
is necessary for stability Finally, 1 9(c) shows the typical case for an implicit numerical
method in which the domain of dependence includes all initial conditions and hence the
CFL condition is always satisfied.

The O (At) term of the Von Neumann stability condition allows for hmited growth but
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1.8 Stability conditions

Figure 1 8 Conditions for stability

the stability is considered with A =0 (exponential decay ensures that with A > 0 the scheme

will also be stable). The complex growth factor (1.41), with (1 39a-c), 15 of the form

_ o + /n
ag + Poi

where

@ = 3Ac%— (28z% + (1+65) u?AL? +6(1—25) sAt) 5°,
B = 3(1+25)ultAzcs,
ay = 3Az%— (2Az% + (1 — 65) u?AL® — 6 (1 +25) xAt) s%,

fa = —3(1-—2S)ultAzcs.
Then the stability constraint | R[> € 1 simphfies to
(a2 — 1) (o2 + 1) + (B2 — B1) (B2 + 1) 2 0.
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Figure 19 Domain of dependence for analytical and numerical cases

Inserting equations (1.48a-d), applying the trigonometnc identity ¢ = 1 — s?, and dividing

by the positive quantity 24At s? yields
3Ax%k — [3A2%k — (Su’At + k) (125xAt + Ax® — w?At?)] s >0 (1 50)

where 0 < 5* = sin? (3k Az) < 1. Evaluating the linear (in s?) inequahty (1 50) at the end
points, s = 0 and s% = 1, gives two conditions that, when both satisfied, are sufficient for

stability
3Az%6 > 0 and (Su’At + k) (125kAt + Az? — u?At?) > 0. (1.51)

The first condition holds true by definition. The second condition holds true if the high-

order parameter S is constrained such that

2442 2
K u AL — Azx
§S> - war —ar 1.52
2at 2452 e (1.52)
With u = 0 (no flow), the only requirement is
—Az?

p-

7 125At (183)

With the non-optunal choice S = Sy, a sufficient condition for stability is the classical

CFL condition |u|At < Az.
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1.9 Concluding remarks

1.9 Concluding remarks

The main aspects in deriving a high-order numerical scheme have been presented in the form
of a derivation for the 1D decay-advection-diffusion equation. The S = S, scheme uses
all available degrees of freedom available with a 3 % 2 module to match future and previous
time-level operators to their exact counterparts. This has the consequence of matching the
numerical dispersion relation, complex multiplier, phase velocity and group velocity to the
exact values in the long-wave lirmt, the results of which have been demonstrated graphically

Conditions sufficient for stability have been derived and the scheme has been compared
to standard #-methods, including the popular Crank & Nicolson (1947) method. The dra-
matic improvements possible whilst preserving a simple method of solution through solving
a tri-diagonal system on each time-step have been demonstrated in tabular and graphical

form for pomnt source test cases with flow and diffusion
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Chapter

Derivative difference operators !

2.1 Introduction

Computational engineering often requires the numencal solution of differential equations
A natural and direct way to construct fimte difference computational models 15 to replace
the differential operators 8¢/0z% at some reference pomnt x = x by discrete counterparts
Dy corresponding to denvatives of polynomial Lagrange mterpolation from the function
values at n > d distinct grid points z1,.. ,%, If the grid points are regularly spaced then
the y-dependence of the fimte difference operators Dy 1s known exphcitly and tabulated
(Abramowitz & Stegun 1965, equations 25 2.7, 25.3 4-6, tables 25.1, 25.2). In applications
the grid spacing might not be uniform (eg gnd points to mclude sites where data 1s
available or 1s sought). For non-umform grids Fornberg (1988, 1998) and Corless & Rokicla
(1996) gve neat computer algorithms that construct Dy for 0 € d < n. In §2.3 of the
present chapter an explicit formula for Dy 15 derived in terms of elementary symmetric
functions. Appendix A evaluates Dj1n terms of the displacements o, = x, — x for the cases
0<d<n,n=1,...,5.

In a term-by-term finite difference model of a differential equation, the size of the errors s
related to the worst of the errors that arise m replacing 8% /8z% by Dy For a computational
scheme constructed in terms of Iy, it may be possible to make slight adjustments to the

coefficients multiplymng each of the Dy, so that there is extra cancellation of the errors.

1 Accepted for pubhcation (Bowen & Smuth 2005a)
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2.2 Elementary symmetric functions and main results

Crandall (1955) performed such error cancellation with n = 3 and a umform grid for the
diffusion equation at two levels in time. Mitchell & Griffiths (1980, chapter 2, table 1}
demonstrate the leap in accuracy over the Crank-Nicolson (1947) scheme Smmth (2000)
extended the Crandall (1955) scheme to mclude gnd non-uniformity via neat Taylor series
for the n = 3 errors in Dy, D1, Dz. The motivation for the present chapter is to derive
error Taylor series for all n. Appendix B states the first four error termsfor0 €< d < n,n=
1,.. ,5. Computer algebra packages (e g Maple or Mathematica) make it straightforward
to confirm the vahdity for n =1, ..,5 of the neat error expressions.

The next section 1ntroduces elementary symmetric functions and states the main results,
from which operators and errors can be constructed for any number of grid points. The
subsequent four sections detail a direct derivation of the main results, involving generalsed
Vandermonde determnants and Schur functions (De Marchi 2001). Functions introduced
by Schur in his 1901 thesis on groups of matniees are today called S or Schur functions

(MacDonald 1995)

2.2 Elementary symmetric functions and main results

In this chapter, o denotes the ordered set of displacements o, = z, — x. For the set o, the
elementary symmetnc functions e are defined as the sum of all distinct permutations of
order 4 over the set. An equivalent algebraic definition (Baker 1994, MacDonald 1995) is

that for arbitrary z:

E et = H (I1+az2). (2.1)
=0

1=1
For indices 1 < 0 or 1 > n, it is implicit that el = 0. The zero order elementary symmetric
function is ef = 1. To minimise confusion with powers, the superscript mdicating the set

will usually be omitted. For example, with n = 3:

g1 = a; + g+ a3, ey =10+ 03+ @z, €3 = Q1203 . (22)
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2.2 Elementary symmetric functions and main results

The derivatives, with respect to a varied reference point, are-

da, de a N
=1 g2 =—(t1-0e1s go{ahe) =~ -Doles  @3)

If the chosen reference powmnt x is the centroid, then there is the simphfication

n n
e1=Za,=Zz,——nx=0. (2.4)

1=1 =1

With e; = 0, equations (B 6a-c) correspond to equations (3.3a-c) of Srmth (2000) If the

reference point x comncides with any of the grid points, the simphfication 1s

en =L e =2 =0. 25)

=1

On uniformly spaced gnds with y chosen to be the centrmd, e,=0 for all odd i.
In §2.3, the n-pomnt finite difference operator D; operating on a function f(z), 1s shown

to be the weighted sum of the function values at the grid points

Ddf=a-y Y ety (26)

=1 1ragn

Extensive numerical tests confirm the agreement of this explicit formula (2 6) with results
from the computational algonthms of Fornberg (1988, 1998) and of Corless & Rolack
(1996). Dy[f] 1s n-point Lagrange interpolation (Abramowitz & Stegun 1965, 25 2 2) and
D,[f] is the d’th denvative with respect to x of the Lagrange interpolation (Fornberg 1988)

A mathematical way of expressing the equvalence of the subseript d to the number of x-

ax

In appendix A, the sign changes and the increasing factorial numerators between successive
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2.2 Elementary symmetric functions and main results

Dy, .,Dp-1 can be explained from equations (2 3, 2.7)

If the function f(z) 1s not a polynomial mn z of degree < n — 1, then an error will anse
1 at degree n or beyond For umiform spacing, series for differences in terms of derivatives
are well known (Abramowitz & Stegun 1965, equations 25 3.16-20) In §2 4 it is shown that

the error terms from the weighted sum of Taylor sertes about the reference point y, can be

) . 239
z=x

After some technical preliminaries in §2.5, it 15 shown 1 §2 6 that the higher order Schur

wrnitten as a series involving Schur funetions in the displacements

a4 ne=d—
Dy _B—z{:,:x -1) '“Z(

| functions can be calculated through the recurrence relation for 3y 2 n

n

|
i Shtram = 3 (=1 exSag-k,am) (2.9)
I k=1

Exact arithmetic avords mstability for large 3. An interpretation of the left-hand side term

in equation (2 8) gives the low-order error coefficients for 0 € 3 < n

(—l)ﬂ_d—'l , 1=d,
SAU,d,ﬂ) = (2'10)

0, ji#d. .

From these degree zero starting values (2.10), at the £’th apphcation the recurrence relation
(2.9) generates the 3 = n+ £ — 1 term, that has homogeneous degree n +£ —1 — d in
the displacements and is polynomial of order £ m €;,.. ,eq. In particular, the leading four
error terms prescnted in appendix B are respectively linear, quadratic, cubic and quartic in

€13« - 16n-

For the errors, a consequence of the consistency relationship (2 7) 1s

ad+1f a adf
= {de -2 Fx} : (211)

Danlfl - | _ =
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2.3 Derivation of difference operators

In appendix B, the sign changes and decreasing factorial denominators for the lowest-order

error terms f(")(x) in Dy can be linked to equations (2 3, 2 11)

2.3 Derivation of difference operators

Let the operator Dy[f] be the weighted sum of discrete values of a function f(z) over n

distinet points so that
Ddfi =) wf(z) - 212)

=1

Taking the Taylor series of f (z,) about the position y and writing o, = z, — x:

)) ) (2.13)

To avoid convergence considerations, the arcle of convergence about x is assumed to in-
+

= Ly
Difl=Y" (wtz (3;- s

1=1 =0

clude all the z, Let Dgyn,[f] represent the truncated form of D;[f] with the j-summation

terminated at degree m — 1. For finite term truncations, the order of : and 3 summations

can be exchanged

) . (2.14)
T=x

There are n weights w, to be selected. The truncated operator Dy,[f] can be forced to

m—1 n ar’ 57
o~ 5(5-9)2

=0 =1

represent the d’th derivative operator for d < n-

4f
Dynfl= 5ad — (2 15)
‘With the standard notation for the Kronecker delta,
l,2=3,
8y = (2 16)
0,i#7,




2.3 Derivation of difference operators

then the unit column vector (60,;, O1dy-evs J(n_l)d)T represents the derivative to be approx-

imated. The system to be solved can thus be wrntten 1n matrx form as

(0 1 o N fm) ()

o a2 - oy w3 814
g o9 o =] s (2.17)
3 P ne _2n w3 - 2d . -

Q"_l n=-1 n=1
\ &y o &) \wm )\ G
Cramer’s rule states that any system Aw = b with non-zero det {A) has general solution for

each component wy, of w = (w1,...,w,)

A b
—det
p(y) O 018
where the unit row vector p(y) = (81,82, ---,0ay) picks out the component wy of the

solution

In this form, the system (2 17), upon factoring out and cancelling factorials, has solution
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2.3 Derivation of difference operators

for each component

( 1 1 . - 1 60:1 \
a o .- Gy ‘Sld
052 az .. 012 2!5 d
—det ! ’ " 2
aft ot o ol (n— 1)y
\ Sy by - by 0 )
- : \ . (2.19)
1 1 e 1
(431 (252} O
det| o2 o -+ a?
\ o ot et

The denominator m (2.19) is a Vandermonde determinant (De Marchi 2001), hereafter
denoted by V.DM (a), 1n terms of the ordered set a@ = (e, ...,0,) It has value

VDM (a)= [] (m-o). (2.20)
1g<ksn

The matnx in the npumerator has zero last column except for the value d! at the position
(d+1,n+1) and 1t has zero last row except for 1 at the position (n + 1,y). As temporary

notation within this section, let -
B() = (a1,---,a0) \ (), (2.21a)
a length n — 1 ordered set of displacements that excludes o, and let

7=1{0,-..,n—1)\(d), (2.21b)
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2.3 Derivation of difference operators

a length n — 1 ordered set of integers excluding d at position d + 1 that arise as powers of

the displacements By expansion down the last column then the last row, the numerator i

(219) can be written
d (-1)7" 4 det (B()7*), 1< s, t Sn— 1. (2.22)
The denominator can be evaluated in a way that involves VDM (8(y)):

VDM (o) = I (a-a) [[ (ey—2) JI (ex—oy)

1gy#y<k#y<n 1K<y y<k<n

= VDM (3(y)) H (ay —oy) H (0 — o)

1<y y<ysn

= ()"vvDM(Bw) ] (w-e). (2.23)

1r#ysn

This 18 non-zero because the gnd points x,, and therefore the displacements «,, are distinct.

Then the quotient (2 19) takes the form

v = LEDT S ()
=T (o - ) (2.24)
1<r#ysn

where S () is a Schur function over 8(y) with partition A {(Baker 1994, MacDonald 1995):

5, (00) = gt (2.25

Partitions can be calculated by talang the difference 1n the powers of the numerator and
the denominator i (2.25), m reverse order {Baker 1994, MacDonald 1995) The powers m
the numerator are -y = (0,...,n — 1)\ (d) and those in the denominator are (0,. .,n—2)

so that the partition M 1s given by

A=(n—=1, . ,0\(d)—(n—2,.. ,0)= (1"—'1—1) . (2.26)
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2.3 Derivation of difference operators

For convenience the notation a® represents b occurrences of a e g. (1*) = (1,1,1,1). Trailng
Zeros in pa.\rtltmns are dropped as they are equivalent to multiplication of the Schur function
by eg = 1. The conjugate of A is obtained by transposing the diagram of A to give N =
(n—d—1) (Baker 1994, MacDonald 1995)

The Jacobi-Trudi identity for elementary symmetric functions states (MacDonald 1995)
that for an arbitrary partition A of length £:

Sr=det (e _p4s), 1< 5,2 <L (2.27)
In ths particular case with X' = (n — d — 1) the Schur function has the simple form
S(8) = eﬂ(f’i_l : (228)
This gives the exphat form of (2.24) as
I A (2 29)

UTTT (- oy)

1#y<n

The weighted sum (2.12) over all . of the pomts gives the difference operator that approx-

imates the d'th denvative

no AW
Dd[f] =d! (_1)11—;1—1 Z v ﬂ—(;—ll— ~ )f (:1:,) . (2.30)
=11 Gn . :
Also,
n n—1
E eit‘)zk = Z eg(i)zk + eﬂ(a)zn
k=0 k=0
= I a+s8en2 = J] @+
1€k<n—1 1gk#ign
n n
N (Z) - > e @an
k=0 o, =0 k=0
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2.4 Derivation of error terms

where the definition (2.1) of elementary symmetric functions and the result ™ = 0 have

been used i e. 5{2) is only of length n — 1. Equating powers of z gives

f = ef], o - (2.32)

The temporary notation 8 can be replaced in (2 30), to give the result

n—d—

o,=0
(C!,—ﬂj)f(xt) . (233)
1i¢ #t(n

Dlf] =d'(- 1)““’"2

The displacement differences o, — o, can also be written as grid differences x, —z; Thus,
the denominators do not depend on .

Dq[f](x) is a polynomial of degree n—1 1n x and can be recognised as n-point Lagrange
interpolation of f(x) (Abramowitz & Stegun 1965, 25 2.2) If a general function f(x) is
replaced by Do[f](x)} then the grid-point values f(z,) and operators Dy f](x) are unchanged
That restriction to polynomials of degree n — 1, permits D, to be replaced by Dy in
the denvative matching (2 15). The freedom to vary x imphes that Dy[f](x) is the d’'th
denvative with respect to x of Dp[f](x) Fornberg (1988) made that hnkage the premise

for an algorithm, rather than a consequence.

2.4 Derivation of error terms

At degree n and beyond, errors will arise It 1s useful to be able to cdlculate the ligher-
order errors, for example to extend high-order numencal schemes to non-uniform grids

{(Smuth 2000). The general difference operator can be written

Dulf) Suf) =) (w,i"*'* e )
=1 =1 3= =X

n oo O!J

- 5 (=59

(2.34)

9’_ _VEQ) 2f
2 | LT B X)EJ!B:L‘J

J=0

T=x
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2.4 Derivation of error terms

where

The derivation in §2 3 for the approximate derivatives ensures that with 0 € 3 < n:

For j = n, the expression (2 19) for the weights w, has the consequence

1=1

( 1 1 1 dod
oy 2 [+ 4% 51d
al o ol 2604
—det 1 2 " .2
o o e 0l (nm 1
\ o] o o 0
E(y)=
( 1 1 1 \
o1 (2] n
det | o2 o a
\ o™ ag™! oq! )

(2.35)

-

(2.36)

(237)

The denominator is VDM (o) From (2 16) and by expansion down the last column, the

numerator 1s

& (1)1 det (afﬂ) ,1<s,t<n

where I'=(0,1,2, ..,n~—1,3)\ (d) (sunilar to «y but including j at position n).

Then

& (~1)"%1 get (af-)

E@)= VDM (a)

= d'(-1)"" S am (0)

(2.38)"

(2.39)




2.5 Preliminary results

where the partition is
AGid) = (=1, 0\ (@ — (0= 1,...,0 = (- n+ 1,179 T) . (2.40)

The conjugate partition A'(j; d,n) = {n — d,17"™) is of length 7—n+ 1. Inserting the above
expression into (2.34) gives the explicit form for the general difference operator in terms of

Schur functions as

(5 () &f
g ayn—d—1 AGdm) (@) & F
Dylf] =d'(-1) > (—-———-—J! Ba7|_ (2 41)
J=0‘ =X
With the initial Sy(; gq) for 0 < § < n defined as
(_l)n—d—l » =4,
Shg.dm) = (2.42)
0, J#d
then (2 41) can also be wnitten as
8f —d-1%= { SAGam) (@) B f
pan- L —ay Papan @) P71 ) o)
dzd r=x ; by 827 |,

2.5 Preliminary results

Before the recurrence relation (2.9) 1s derived some prelminary results are first obtained. As
used earher, the Jacobi-Trud identaty for the conjugate partition gives the Schur fuI_J.ctions

1n terms of elementary symmetric functions
Sh(an) (@) = det (eA:_ . +:) L 1<s,t<g—n+1. (2.44)

where A, denotes element s of the conjugate partition A'(j,d, n) = (n—d, 13"“). The

square matrix, of size § — n + 1, which gives the subscripts for the elementary symmetric
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2.5 Preliminary results

funetions 1n (2 44) is
n—d n-d+1 .- 3-—d
[A;—-s+t]8’t= : iy | rgst<iont1 @)
I—j34n 0 1

By the definition (2.1), e, = 0 when : > n so the highest subscript that yields a non-zero
elementary symmetric function is given when the subscript + = n. The first element n—d of
the conjugate partition gives the subscripts n—d — s+t on the first row. So, with s =1, the
last non-zero elementary symmetric function e, arises whenn—d—-1+t=nie. t =d+1

Simce 3 —n + 1 2> ¢ then the first row consists of the elements e,—g,...,en padded with
zeros for 3 2 n + d otherwise 1t consists of the elements e,_g4,...,€,q¢ Accordingly, the

Schur function Sy, 4.1 (@) 15 considered over two intervals

4
€n—d Tt Cy—d
det o ) , n<rsntd,
M —n+1
3-n+1
Sa(z.am) (@) = ¢ (2.46)
en—d - .. eﬂ 0 -y 0
det s 12ntd.
(—n+1}
\ MJ—n+1

For convenience the notation M‘(z) refers to the upper-tnangular matnx M, (of size 1) with
row z removed and the notation M,(I) (y) refers to M, with row = and column ¥ removed

The second row of (2 45), and hence the first row of M, 511, has final element e, when
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2.5 Preliminary results

7 —n=n, so that 3y = 2n, giving

l & €n
o . . .
Mj_n+1 = . y ] = 2n. (2 473.)
. . e
0 0 1

The values of this matrx are a direct consequence of (2 45). The matrix is upper-triangular
since for s > t+ 1 m (2.45), 1e. in the stnctly lower triangular region of (2 47a), then the
conjugate partition has elements 1+s—¢ < 0 and e, = 0 for ¢ < 0. For other values of j 2 n,
(2.45) shows that the matrices M,_n41 may be defined iteratively in terms of the above
case (2.47a). The last rows of (2.47a) and 1n the second case below (2 47b) are chosen for
compatibility in this 1terative definition and as a result they preserve the upper-tnangular

nature of M;_n41.

s

{Mj—n+2}k.b 1..<Jc,£$_7—n+1<n+1,
( 0 )
0
M, en |» 3>2n.
€1
o - 0 1
(\ /

In the first case the final column goes up from 1 to €;_,. In the second case the zeros at

the start of the final column are a consequence of e, =0 when z > n.
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2.5 Preliminary results

With the first row and column removed 1t is clear that for ¢ > 1
det(M™ (1)) =1. (2.48)

For brevity in the following denvations this result is also assumed for the case ¢ = 1. From

the 1terative defimtion 1t is clear that
MO () = M, i 2. (2 49)

Since M, 1s upper triangular with unit diagonal elements then

det(M))=1,:21. (2 50)
Forl<k, £<randt>2
det (M® (9)) = det (ME,,  ©) . (2.51)

This result 1s due to the trailing 1’s on the leading diagonal of M,. The determinant can
be expanded up the leading diagonal untal the first of either row k or column £ 15 reached
when the traihng 1’s end and the expansion of the determinant stops

By expansion up the leading diagonal in (2.47a,b), when 1 € k£ < j~nandj—n 2 2,

det (M}"“"‘“) (e)) =0, j—n—k+1<¢,

det (Mf{;"“"“) (e)) = (2.52)

det (MIED(9),  s-n-k+13¢

In the first case the matrix can be reduced to size maz(j — n — k + 1,£) = £ by (2.51)
Since the row removed 3 — n — k + 1 is less than the column removed £, 1t can be seen by
considering (2 47) that the last row 1s all zero, giving the zero deterrunant In the second

case, when the row removed j —n —k + 1 is greater than or equal to the column removed
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2.6 Construction of the recurrence relation

£, then the matnx can be reduced to size maz(j —n—k+1,£) = j —n—k+1 by (2.51).

Expanding the determinant along the first row m (2.46) gives

1-n+ N
> e 1) ey gy g1 det (Mf{ﬂ:-ll-l)(e)), n<y<ntd

Sagam (@) =1 =t (2.53)

d+1 n
> (1) en-gper det (MITHD (@),  72n+d.
=1

By expansion of the deterrinant up the final column 1 (2 47a,b), when £ < j —n (i.e not

removing the final columny,

5 (1) ex det (M"’" ) (2)), n<j<2n,

det (METD (0)) = ¢ = (254
3 (=1)%+1 ¢ det (MET D (9), s>2n
k=1

Strictly speaking, with 3 = n+ 1, det (M (f_:_:_-'l'l) (E)) = ¢; so for compatibihty with the
first case above it 18 assumed that det ( 1(1) (1)) =1

2.6 Construction of the recurrence relation

The results of the previous section form the building blocks used 1n deriving the recurrence
relation. In accordance with the intervals over which these results are vahd, Sy(; 4z) (@)
is considered for (a) low-order error terms n € 3 € n + d, (b} moderate-order error terms
n+d < j < 2n and (c) high-order error terms 7 > 2n  The initial values of Sy 45 (@) are
defined on the interval 0 € § < n asn (2.42)

(_l)n_d_l ’ - di
Sagdm (@) = ’ (2.55)
0, 1#4d
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2.6 Construction of the recurrence relation

It 1s left to show that with these mitial values the Schur functions Sa(;an) (@) can be

calculated for all 3 2> n through the recurrence relation

n
SaGam (@)= (=1 exSag-r.am (@) - (2 56)
k=1

2.6.1 Low-order error terms: n<j<n+d

For the interval n € j € n + d, the first case in (2.53) gives
J—n+l -
Sapam (@) = 3 () e ayerdet (MU (0))
=1
= 01(j) +020)+03(s) (2.57)

where the summation is split up as

1-n
o1{7)+02(3) = Z(—l)ﬂ+1 €n—d+¢-1 det (M(ﬂﬂl) (f)) )
=1
030) = (1 "e,a. (258)

The last case 1s with £ = j —n + 1 and (2 49) and (2.50) have been used to simphfy the
determinant When 7 = n it is clear from the summation in (2.57) that o1 (3) + o2 (3) =0

since these terms do not arise. For the remamning 3 > n, the first case of (2 54) is used to

give

7—n
o1 (§) + 02 (j) = Z(- ) e _gie (z (~1)** ex det (MY (e))) . (2.50)

£=1 k=1

The order of summmation is exchanged to give

1N
70)+o2 ()= Y ) (2( 1) e _gre dot (MI2HHD (f)))- (2.60)

£=1
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2.6 Construction of the recurrence relation

The 1nner summation of the sum o1 (n) + o2 () 18 spht such that
J-n 3—n—k+1 el
a1 (1) =Y (-1 e ( > 1 enmareadet (MIHY (e))) . (26)
k=1 =1

When j = n+1 then g2 (3) = 0 as k only takes the value one 1n the outer summation hence _

£ takes all the values in the inner summation For 7 > n+ 1 the remaining part of the split

15 given by
I—n -n r
)= 0 a| Y (D e ardet (MISED @) 262)
k=1 f=3—n—k+2

Using the second case of (2 52), since from the inner summation 3 —n— k412> ¢,
j—n 3—n—k+1 .
a1() =), (-1 e ( > (1) en-are-rdet (MUY (e))) . (263)
k=1

=1

The outer summation implies that n < 7 — k. Since k > 1 and 7 < n + d, for this interval,
then 7 — k € n+d — 1. Together, these mequahties imply that n < 3 —k €< n+d so the
first case of (2 53) may be mserted with j replaced by 7 — k to give

01 (0) =Y (-1 exSag—ran (@) (264)
P

Using the first case of (2 52), smce from the inner summation 3 —n—k+1 < ¥,

Jj-n -n
20 =3 (- e ( JE (1) en—grer det (MPTHD (e))) =0. (265)
£

k=1 =3—n—k+2

The initial conditions (2.55) are used to rewrite o3 (3) as

o3()=(-1)""ema= Y, (1" eSag-tim () (2.66)
k=3—n+1
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2.6 Construction of the recurrence relation

As 9 2 n, for this interval, and from the upper hmt n > &, then 3 — k > 0. Combining this
with the lower hmit gives 0 < 3 — k <n From the imtial conditions (2 55), the only non-
zero initial value for Sp(;- 4) arises when 3 — k = d so that (—1)""‘ erSA(—k,dn) (o) =
(-1 7" e,—q as required.

Finally, from (2.57), the recurrence relation over the interval n < j < n+dis

J—n

Sagam @ = > (-1 erSpppam + E (1% €18 —k,dm) (@)
k=1 k=3—n+1

= > " erSap-kdm (@) - (2 67)
k=1

2.6.2 Moderate-order error terms: n+d <7 < 2n

The proofs over the remaining intervals are much the same with differing summation indices

For the interval n 4+ d < j < 2n, the second case in (2 53) and the first case in (2 54) give

d+1

Sapamy @ = (1) enoare s det (MITH (1))
£=1

d+1 -n
= i( 1% en_gpe (Jz( 147 e det (MO (e))). (268)

k=1
On exchanging the order of summation

3=n d+1
Sagam (@ = Y (1) e (z (1) en_gye1 det (M,(’_;n_kﬂ) (3)))
x=1

=1
o1(3) +02(2) +03(y) 5 (2 69)

where the notation o1 (3), 02 (7) and o3 () 15 reused to agamn denote a sphit in the summa-

tion. The first part of the split is

—n—d d+1
no)= 3 (De (Z( 1" ey det {MUIPTHHY (e))) (270)

k=1 =
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2.6 Construction of the recurrence relation

"When 3—n—d=3—-n1e d=0 then the split doesn’t arse hence then o2 (3) +o3(3) =0

The remaining terms for d > 0 are spht 1n the inner summation to give

-n 7—n—k+1
()= Y (—1)"‘“ek( > (1 enare-r det (MY (2))) (2.1)
k=3—-n—-d+1 £=1
and
J-n
() = Y, (De
k=3—n—d+1
a1 "
> D engrendet (MITT @) | @)
f=1—n—k+2

The last case of (2 53) with 3 replaced by 3 — k gves

—n—-d

a1() =Y (D" exSag-ran) (2.73)
=1

since from the outer summation 3 — k 2 n + d. The second case of (2 52) is used on the

inner summation simce the hmts give 3 —n— k+ 1 2 £ so that

J—n 1—n-k+1
o2(3)= >, (-1)k+16k( 3 (D) engieoadet (M,(J_;ﬁﬂl) (f)))- (274)
k=3-n—-d+1 =1
Then
1-n
a2() = Y, ()" eSap-ran (2.75)
k=3-n—d+1

where the first case of (2 53) has been used with j replaced by j — £, since from the outer

summation k< 7—nand k> j3—n—-d+1so thatn<j—k < n+d-1 The remaining
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2.6 Construction of the recurrence relation

part of the summation ford > 1 1s

1-n
03(0) = Y, (e
k=p-n—d+1
d+1 el
3 (1) en-ape—1 det (M,‘"“‘ + )(E)) =0, (2 76)
{=3—n-k+2

by the first case 1n (2 52) as, from the inner summation, £ > j—n—k+2sothat 3—n—k+1 <

£. When 7 < 2n then the initial conditions (2.55) give

n

z (—1)k+1 ekSA(_g—k,d,n) () =0. (2.77)
k=3-n+1

This result 1s since j > n + d for this interval and from the outer summation n 22 k, giving

J—k>dandso Syt dn) =0 Then

1-n—d I—n

Sagam @ =Y (D" eSxgram @+ > (1 erSag-kdn . (278)
k=1 k=3-n—d+1

With (2 77) used as required to extend the upper hmt of the summation, the recurrence
relation forn+d < 3 < 2nis
n
Sagam (@) =Y (-1 exSa—kam (a) - (2.79)
k=1
2.6.3 High-order error terms: j > 2n
For the interval 3 > 2n, the second cases n (2.53) and (2 54) give
d+1 1
Savam (@) = D (1) enaye det (METD (0)

=1
d+1

= 3 (D" en i (Z (—1)*+ ey det (MI D (e))) . (280)
£=1 k=1
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2.6 Construction of the recurrence relation

Exchanging the order of summation and sphtting the summations into three parts, with

further reuse of the o1 (1), o2 (7} and o3 (3) notation, gives

d+1

Sapdm (@) = z":(_l)kﬂ . (Z (_1)z+1 enaro_1 det ( MJ(:n—Hl) (E)))

k=1 =1
= a1())+o203) +o3(3) . (281)

The first part of the split summation 18

3-n—d d+1
o10) 2 e (Z (1) en—dpr1 det (M:U_:l;ﬁl) (5)))

k=1 £=1
j—n—d

= Y ()" exSagoram (@) (2 82)
k=1

where the second case of (2 52) has been used smec from the summation limits y —n—k+1 >
d+ 1 2 £ and the second case of (2.53) has been used since from the outer summation
3—k2n+d Forj22n+d, o2(5)+03(3) =0since a2 (j) and o3 (5) don’t arise 1n this

case For 3 < 2n 4+ d:

n y—n—k+1 .
o2() = Y, (-DMe ( > (1) en-arerdet (MO A (E))) (283)
k=y—-n-d+1 =1
where the second case of (2.52) has been used since from the inner summation j—n—k+1 2
£. Then
o2 (3) = Z (=1 erSay—r.am) (@) (2.84)
k=3-n—d+1

where the first case of (2.53) has been used since m this interval 3 2> 2n and from the upper

hmmt n 2 k so that n < 7 — k and, from the lower hmit, j — k €< n+d — 1 which combined
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gove n < 7 — k € n+d — 1. The last split of the summation 1s

n

o30) = Y, (-)*e

k=3—n—d+1
d+1

> (U enogrerdet (P (9) | =0, (2 85)
f=3—n—k+2

where the first case of (2.52) has been used since from the inner summation 3 —n—k+1 < £.

Finally, the recurrence relation for 7 2 2n is

Sagdmy (@) = o1(3)+o2(3)

= z (—1)k+1 €kSA(3—k,d.n) (), (2 86)
k=1

completing the proof of the recurrence relation (2.56) with initial conditions (2 55).

2.7 Concluding remarks

Explicit one-dimensional difference operators D4 have been denved that mmic denvative
operators 8%/8z¢ at a reference point  for any number n of distinct ponts x, .. & over
an irregular grid and for any derivative d < n. Along with these, a recurrence relation has
been derived that allows caleulation of Taylor series for the errors. The n + 7’th derivative
error terms are polynomials of order 7 + 1 in the elementary symmetric fimctions for the
displacements 1 — x, -,Th —X.

The Taylor senies for the errors makes it simple to obtain the error from a linear sum
of D terms ¢ g. when selecting coefficients 1n a finite difference scheme to mimic a dsffer-
ential equation. At all accuracy levels, the error coefficients involve polynomials in the n
non-constant elementary symmetne functions ey, .. ,e, for the set of displacements. The
difference operators Dy together with the elementary symmetiric functions are a natural
combmation of tools with which to extend high-order numerical schemes from uniform to

nor-uniform grids.
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Chapter

Linear damped Korteweg-de Vries equation!

3.1 Introduction

This chapter concerns the construction of high-accuracy compact finite difference schemes

for a linear evolution equation that is first order in time-
dc+Le=gq. (3.1)

The conventional approach to constructing a compact {few gnd points) numerical scheme,
amounts to a sum of compact numerical discretisations for 9; and for each of the z-denvative
terms that comprnise the lnear operator L (Crank & Nicolson 1947) The accuracy of the
sum js limited by the least accurate of the terms. High-accuracy schemes {Crandall 1955,
Smith 2000, Spotz & Carey 2001) do better from consideration of the combined action for
the sum of terms. The error in a low-accuracy term is compensated by small adjustments
to the higher-accuracy terms.

Mitchell & Griffiths (1980) advocated the use of exact time-stepping, of infinite-order
m z For discrete computational points in z, numerical schemes have the accuracy of the
fimte order approximations to the z structure. The present chapter gives a straightforward
method for scheme construction, in which N-pomnt difference formulae for the a:-deﬁvati\'res

and for the errors (Bowen & Somth 2005a) lead to order 2N —2 accuracy for the z structure.

!Submtted for pubhcation (South & Bowen 2005)
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3.2 Exact time-stepping

Formally, exact time-stepping applies to vector ¢ with vanable-coefficient matrix L and
vector r. For ease of exposition, the chosen test case 15 a single equation with one spatial-

drirection z and coefficients that do not vary with z:
L=X+ udy—x8%+ hPud3 with &, h>0. (32)

A third denvative augments the decay-advection-diffusion equation. The classical apph-
cation (Korteweg & de Vrnies 1895) is the propagation of small amplitude surges from the
sea into a shallow estuary ¢(z,) beng the current associated with the surge, g(z,t) the
composite tidal and atmospheric forcing, A the non-denvative damping, = the long-wave
speed, k > 0 diffusive or dispersion damping, and h the mean water depth. The depth and
long-wave speed are related « = (gh)*/2, where g is gravitational acceleration. It is impheit
that |¢| << u, otherwise the nonlinear term %camc should be added to the hinear damped
KdV (Korteweg & de Vries 1895) equation.

The many applications of KAV models and the widely-studied mathematical structure
(Grimshaw 2005, Marchant & Smyth 2002), have led to a diversity of numencal schemes
and to a wealth of experience in the use of the schemes (Feng & Wei 2002, Ma & Sun 2000,
Sohman 2004, Yan & Shu 2002). The distinctive feature of the present work is the use of a
smaller computational module than 1s usual. The high accuracy of the scheme allows the
oscillations and skewmess caused by the 83¢ term to be modelled with only three points in

x, even though direct numerical modelling of 3¢ would have required at least four points

3.2 Exact time-stepping

As explored at length by Mitchell & Gnffiths (1980, chapter 2), if the hnear differential

operator L 1s independent of time, then time-integration from one time-level £* to the next
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3.2 Exact time-stepping

"+l — " 1 At yields an exact time-stepping equation.
At
c(z,t"*) = exp (-At L) ¢z, t*) + f exp (—[At — 7] L) ¢(z,t" + 7)dr . (3.3)
0
Exponentials of linear differential operators have a series defimtion,

X n
exp(rL)=I+Y. %L", (3.4)

n=1

and are of infinite order 1n ;. In the test case (3 2) the 1dentity operator I 1s unity
If the forcng is non-zero and is only known at the discrete time-levels, then hnear

interpolation of the integrand,
exp(— (At—1) L) g(z,t” + 1) = (1 - L) exp{—At L) q(z,t") + iq(:lr: "), (3.5)
’ At ’ A oY
leads to an elegant approximation to the time-stepping equation:
c(z, ") — At q(z, t*1!) = exp (—At L) {c(z, t") + 1At g(z,t™)} (36)

Half of the foreing at time-level £* 15 accounted for 1n the [t"~, t*] step and the other
half 1n the subsequent [t*, t"*!] step, which may be of dufferent span. For time-dependent
coefficients, 1t would suffice that L be replaced 1n equation (3 6) by its time-average over
the [t*, t**!] step (see §1.3).

The vanety of posmible numencal schemes is associated with the selection of an operator

M (non-normalised projection or viewpoint operator):

M exp (+1AtL) {c(z,t"*!) — 1At q(z, ")}

= M exp(—3AtL) {c(z,t*) +1lAtg(x,t™) }. (3.7
Expliat schemes correspond to M = exp (H%At L), while conventional two time-level im-
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3.3 Truncation of exponentials

phcit schemes correspond to the identity operator M = I. In this chapter it is asked- which
viewpomt M can formally be discretised to greatest precision on compact computational

modules of a given size?

3.3 Truncation of exponentials

With N-points in z, suitable viewpoint operators for the +’th module can be represented
2N-2
M=I+At> M, (38)

r=1

with 2N — 3 adjustable matrix or scalar constants M,. For a constant-coefficient operator

L with z-independent part Ly, the exact time-stepping equation (3 7) is re-written
EF {e(z,t") — LAt q(z,t")} = exp (At Lo) &7 {c(z, ") + 1At q(z, ")} . (3.9)

The operators £ are defined and their finite-order truncations are denoted

2N=2

Ef = Mexp(-iAtLo)exp (JAtL) =T+1At Y Uiab+..., (310a)
p=1
2N=-2

£; = Mep(jAtLo)exp(—3AtL)=I1—-3At > U;82+....  (310b)
=1

Faithfulness to the exact problem (3.1) is only posaible if 2N — 2 1s greater or equal to
the order of the differential operator L For the third-order test case (3 2), the minimum

mumber of gnd points1s N =3
The coefficients U are linear in M, with g < p. For the scalar case (3.2), the first five
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3.4 Difference counterparts to derivatives

scalar coefficients UJ!,i are:

Uf = ut2M,

Uf = —rntiu®At+MulAt+2M,,

(3 11a)

(3.11b)

Uy = ih*ulucAt+ 5u°A2 + My (—sAt + Lu?Af%) + MpuAt £2M;, (311c)

Uf = At (3% + Sh%?) — Leu?A® £ Lu'Add
+My (3RPu At ru AR + LuPALY) + My (—x At £ Ju?At?)
+MzuAtE2M,,

UE = Fhush®At+ (Ah%® + tetu) A F LudwAt® + o’ At
+M;y (:i:At2 (%nz 4 Tlih?'u2) - %K. WAL + F}zu"At‘l)
+M (12w At F JeuAr® + LuPAR) + My (—k At £ Ju°AL?)

+MiudAt+2 M.

3.4 Difference counterparts to derivatives

(3 11d)

(3 11e)

Bickley (1941) derived N-point finite difference approximations to the derivatives at each

of N uniformly spaced grnd points Chapter 2 gives the extension to non-uniform gnds1e.

fimte difference approxamations D2, with p < N — 1, to the derivatives 8% at an arbitrary

position x. In particular, with three pomnts x,_3, x;, %41, the fimte difference formulae are

0 _ (Tt - X)(x1+1 — X) (xt—l - X)($l+1 - X)
Dlfl = (1 — ) (21 — J:;+1)f (@-1) + (z, — 2:m1) (2 — 7242)
(@—1 = x) =z — x)
($=+1 - xz—l) ($=+1 - fu"a) f (2.'14.1) ’
(xl + Tip1 — 2X)

(%11 + Tog1 — 2x)

D:}:[f] = - .f(ml.—l)_

(11’:,_1 - 37:) (3:;—1 - xi+1)
_ (-'L':—l +x; — 2X)
($=+1 - -'L't-l) (xi'l'l - Ii) f (l‘H_l) !
2 fa) + 2
(m‘l—l - x:) (xz—l - -7:1+1) - (Es - ml-—l) (m‘l. - x1+1)

2 )f($:+1) .

[l
" (@t — 2om1) (T — 3,

(z: — 1) (22 — 2oy1)

D37
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3.4 Difference counterparts to derivatives

The optimal scheme cannot depend upon the choice of reference position x. The choice
X=x, = %(xz—l + &, + Z141) sunphfies the representation n terms of Dr
The error expansions can be constructed to an arbitrary number of terms through (2.8)

and (2.9)

oo
DY =% +2€§ ie. /=0 for y#p and e =1 wmith 0Kj<N. (3.13)
3=
Error coeflicients E.‘g for j > N are generated from the previous NV coefficients, with the

recurrence relation

N R
S NI U 019

4]
=1
where e; 1s the elementary symmetric function of homogeneous degree £ n the displacements
xx —x for the computational module. In particular, ey = ¥ (zx — X). Selecting x = % 3z

gives e; = 0 and the recurrence relation (3 14) becomes

23: 1)_1-!—1 (-7 ‘e) EE;:t

P . (3.15)
£=2

With N = 3 and x = Z,, the quadratic and cubic elementary symmetric functions are:

€ = (-'171.-1 - IT',‘,) (-Ts - -'Et) + (331—1 - :fa)(37=+1 - Et) + (:L‘, - -'z't) (a:i-i-l - -'Et)
= —1{ma-2)+ (@ - %)Y+ (@4 - 7)) <0, (3 16a)
es = (14-1— .'E,)(m, —Z)(Z41 ~ z,) . (3.16b)

To the order of accuracy required 1n this chapter, the operator expansions are

D =1 +'3—333 ‘3122‘3365 , (3 17a)
Dl = a8 - e3a4+120 +.o., (3.17b)
D = 82 ;’;a‘* ggag TR (3 17¢)
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3.5 Finite difference scheme

For umform z-spacing x,=z¢ + iAz, then %, = r,, e3 = —Az> and e3 = 0. Thus, D2 1s
precisely the computed value at the middle grid point and the errors i DL, D2 only involve
even powers of Azx.

For ease of exposition, the computational points z, and the grid properties es, es are
assumed to be the same at times t* and " (Smith 2000). An extension to a moving gnd

is presented in chapter 4

3.5 Finite difference scheme

Finite dufference counterparts to £} and £ are the combinations

N-1

Ef = Dj+3At) UXDE, (3 18a)
p=1
N-1

DY -1At > U, DE. (3.18b)
p=1

&=
|
i

The discrete counterpart to the exact time-stepping equation (3.9) is the implicit scheme
EF {c(z,t*1) — LAt g(z, ")} = exp(—LoAL)E; {c(z,t™) + §Atg(z,t™)} . (3.19)

The (scalar or matrix) coefficients for the numerical scheme are Uli eee Uﬁ_l, and depend on
the choice of the adjustable (scalar or matrix) constants M; ... My_1. The computational
task remains essentially the same whatever the choice of those constants, whether the scheme
be of modest accuracy or optimal.

For N = 3 the necessary computations are tri-diagonal, and solvable easily and efficiently
with two opposite-direction computational sweeps in z (see appendrx D). As N increases,
g0 does the number of diagonals and the amount of computational processing for each of

the sweeps (Sebben & Baliga 1995).
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3.6 Near-optimal matching

3.6 Near-optimal matching

The more accurate the matching £ =~ EF the more accurate the finite difference scheme.
To assess the formal accuracy, D2... DY¥~1 are replaced by their denvative expansions
(3.13) up to order 82V-2. Error terms first anse at order Y. The matching conditions at

order V" are

HIALUR,, =X J £ 1AL Nz_le’,’v wUE for 720, (3.20)
p=1
which are hinear in the adjustable constants Mi,..., My,.. As exemplified below, this pair
of conditions (3 20) is associated with solutions for My_;_, and Myy,. Starting with r =0
and incrementing to r = N — 3 yields the span of adjustable constants Ms. . May_3.
For N = 3 and r = 0, with error coefficients €5 from equations (3 17a-c), the matching
conditions (3 20) are:

+1AtUY = les 7 LAt UE. (3.21)

Via the coefficients Uli and U;, there is lhinear dependence on M; and M3 For the test

case (3 2) the specific coefficients (3 11a,c) lead to the solutions:

My A2
My = S-St i, (3.222)
My = g+ ieute— M (Jer+ JaA2). (3 22b)

The possible simgularity in Mo as « tends to zero, can be removed if M, tends to zero with
u, so it is written as

M, = —Su, (3.23)

where S is an adjustable constant. A simple, but non-optimal, selection1s § = 0.
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3.7 Optimal matching

In terms of adjustable S, the scheme coefficients are-

I

Ut u(1F28), (3.24a)

62+h2

+ 2
U3 —k(1£28)+ (25 - S)wdtF o7

(3.24b)

The occurrence of h? in the formula (3 24b) demonstrates that account is being made for
the KdV term. For h =0, the scheme coefficients (3 24a,b} are equivalent to those derived
by Smith (2000) for the decay-advection-diffusion equation.

3.7 Optimal matching

At r = N—2 the lowest index M (via S) and highest index Man_2 adjustable constants are
deterrmned. For N = 3 and r = 1, with €] from equations (3.17a-c), the pair of matching
conditions (3 20) divided through by +1Atf1s

Ui = ZesUT — SeUE. (3 25)

For the test case (3 2), with the expressions (3.11a,b,d) for U, Uzi, Uf the non-changing

terms are hinear in S and the sign-changing terms are linear in My. The solution for § is:

2r(eg + 2h? + 2u% At?) + 3ues

5= 2A8 (1252 + u?(eg — 2h%) + viAL2)

(3 26)

Provided that x > 0, there 1s not a simgularity 1n S as « tends to zero The simple selection
S5 =0 1s close to optimal if x and ez are both small.

For A=0,u=0,h=0,e = —Azx? e3 = 0 (the diffusion equation with uniform
z-spacing) then § = Az?/(12x At) and the optimal three-point scheme is that derived by
Crandall (1955). The considerable improvement in computational accuracy, at neghgmble
extra cost, over the better-known Crank & Nicolson (1947) umpliait scheme is exemphfied

by Mitchell & Griffiths (1980, chapter 2, table 1).

56




3.8 Exceptional case of yet more accuracy

With e3 eliminated in favour of S, the selection for My can be written

144M4At = SSN,tht— (6);2 (3 — 832) +u2h2 (3+832)) At2
+(2h% +16S k At + (2 + 4 5%) u?At?) e — 10 Su’k AL

+(E+4S8%)ut At +263. (327)

3.8 Exceptional case of yet more accuracy

Saul’ev (1958) noted that for the decay-diffusion equation © = 0, h = 0 wath umform spacing
Az, the optimal three-point implicit scheme gives yet more accuracy if the time-step At 19

tuned
Azx?

At = e

(3.28)

This section 1nvestigates how k # 0 modifies the tuning.
To extend matching to r = N — 1, there would be only one more adjustable constant
M;n—1 but two more £ ~ EX matching conditions (3 20). For N = 3 and r = 2, with £

from equations {3 17a-c), the pair of matching conditions is
+1IALUE = —doeses + s At SUT £ (oAt esUs . (3:29)

For the one-variable test case (3.2) with the expressions (3.11a,b,e) for Uf:, Uzi, Ug:, the
sign-changing terms in the + matching (3.29) do not involve M5 and lead to a different
selection for S from the previous selection (3 26).

The consistency condition for equality between the alternative S values, 18

0 = 4 (uzAtz + ez — 2h2) ((uzAtZ + %ez - 5h2)2 - %e% + 15h%ey — 45h4)
+24udk2 A (3uAL? + 5 ey + 30h%) + 12uk? (9€3 + 10 h2ez — 180x%A1%)

+27 eu® — 108 e3x (1262 — 4 h%u® — u?AL%) . (3.30)
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3.8 Exceptional case of yet more accuracy

For non-umform gnds, vanahmhty of e and ez between computational modules makes it
mmpassible to satisfy this consistency condition
For uniform z-spacing, with es constant and eg = 0, the consistency condition (3 30) can

be divided by u and regarded as a tuning condition that is cubic in At? (or in e = —Ax?)

0 = u?(u?At?+ep - 2R7) ((u2At2 + Bey — 5h?)% — 263 + 15h%; — 45h4)

+24u?k2A12 (3ulAL? + Sez + 30 h%) + 122 (92 + 10 h%eg — 180£%At%) . (3 31)

There can be erther one or three real roots for At? (or for e; = —Az?).
In the it = 0, the last group of terms in the tumng condition (3.31) leads to the

single solution:

At (3 32)

Az? 1082 \ /2
= 20172, (1 B 9Ax2)
For the time-step At to be real, this vanant of the Saul’ev (1958) tumng (3.28) is restricted
to Az > 1.054k i e. to gnd spacing greater than water depth.

In the limit 5 = 0, the first line of (3.31) leads to three real solutions for At2.

WA = Az + 2R, (3.33a)

WA = BA? 45k + 1 (9Az* + 60 AzPh? + 180h%) /% . (3 33b)
Two of these tunmngs are beyond the classical CFL (Courant-Friednchs-Lewy) condition
(Ju]At £ Ax) that the distance moved in one time-step should be no more than one grid
spacing, malking numerical stability questionable. The third tuning, associated with the
minus square root, has a restriction Az > 1 314 if At? 1s to be positive,
Equations (3 32, 3 33a,b), exemplify that there are circumstances in which one more
order of scheme accuracy is achievable. Alas, such circumstances seem elusive and restricted
to uniform grids and an interval of Az? for which the cubic (3.31) has a real positave root

At? for general (u, K, h) has not been found.
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3.9 Stability conditions

I's

3.9 étability conditions

Formal lngh accuracy between time-steps on a single computational module need not con-
cide with computational stabihty (Mitchell & Griffiths 1980, §2 7). This section addresses
computational stabihty for uniform z-spacing.

For a Fourier component of the error of amphitude a on a umform gnd
c(z,t") = aexp(—1kz), (3.34a)
the corresponding error at the next time-step can be wrnitten
ez, ") = a Rexp(—ikz — LoAl), (3.34b)

where the complex multiplier R is the quotient

_ DYexp(—1k2)] - 1AL TN Uy Dilexp(~ik )]

* Dllexp(—1ka)| + §At S5 U Dlexp(—1ka)]

(3.34¢)

The condition for stabihty, and avoiding relative growth of errors, is that |R]2 < 1.
With N = 3 and a umform gnd, the difference operators D2, DL and D2 applied to

exp(—ik ) are equivalent to the multiphers on the right-hand sides

Dlexp(—ikz)]/exp(—1kz) = 1, (3 35a)
DXJexp(~i ka)]/ exp(~ika) = _lksm(%mfgf:(%“w), (3 35b)
2
. 2
DE{exp(~i )|/ exp(~ik) -kﬂi‘ﬁu_j‘;)_ (3 350)

Saw-tooth disturbances with k Az = « yield DL = 0 wath R real and zero phase veloaty,
whatever the real coefficients U;,‘:. For the one-vanable KdV test case (3 2) the exact phase

veloaity is u(l — %h2k2). With N = 3 the numencal and exact zero phase velocities comncide
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3.9 Stability conditions

provided that the gnd spacing 1s chosen-

} T

) Az = i~ 128255h. (3 36)

Thus, there 1s reasonable accuracy in the phase veloaity extending well away from k = 0.
However, the grid spacing (3.36) would be too coarse if the focus of attention was the
short-scale left-propagating oscillatory tail (Marchant & Smyth 2002)

For the KdV test case (3 2) the U coefficients (3.24a,b) are reasonably simple The

outcome from equation (3 34c) is that the deviation of [R|? from unity can be factorised-

2
|RZ=1- U MG , (3.37a)
F
where
s = sm(ikAz) with 0€s%°<1, (3.37b)
F = [3A2%—s* (2A2% — 212 + w2 AL(1 — 68) — 6(1 + 25)x At)]°
+9u2Az(1 — 28)2A¢%(1 - 5%)s® >0, (3 37¢)

G 3xAz?(1 — 5%) + 5%(k + u® AL S) (126 AL S + 2h% + Az® — u? At?). (337d)

The non-negativity of the semi-sine-squared s? and of the sum of squares F' reduce the
condition for stability to the condition for non-negativity of G.

The lineanty in 52 of G requires the non-negativity at the two extremities s2 = 0 (long
waves) and s2 = 1 (saw-teeth at successive gnd pomnts). At s> = 0 the non-negativity of
the diffusivity & suffices to 1mply non-negativity of G. At s2 = 1 there are two factors for

G, both linear in S. There 1s stabihity if both factors have the same sign For positive signs,
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3.10 Numerical results

7 —_

the stability condition is that S must satisfy the two inequalities.

wiSAt > -k, (3 38a)

126AtS > w2 A2 — Az? —2R2. (3 38b)

There ig instability should one, but not both, of the mequalities be violated

For the decay-diffusion equation (i.e. u = 0, b = 0 waith & > 0) the Crandall (1955}
scheme y1elds S = Az?/(12x Af) > 0 With u = 0 the positavity of S is sufficient to satisfy
both inequalities (3.38a,b) and to guarantee stabhty, whatever the value of Az

The simple selection S = 0 is stable if x > O and the time-step 18 restricted such that:
lu| At € (Az? +287)1/% . (3 39)

This is marginally less stringent than the classical CFL condition.

3.10 Numerical results

The matching of the low to moderate-order derivatives ensure that the scheme gmves the
best possible results at long length scales. The severest type of numerical test would involve
initial conditions at the shortest possible scale.

For a unit delta function starting condition at = = 0, t = 0 the exact solution of the
linear damped KdV equation (3 2) can be written as a convolution in space of the Gausstan

(v =0, h =0) and Arry (s = 0) sumilanty solutions

clz,t) = exp(—At) ( 2 )1/3

(Ankt)l/2 \uht
[ () () ") o

The Gaussian has strong decay at large distances in both directions. The Airy function
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3.10 Numerical results

has strong decay to the far right, but to the far left there 15 an increasingly oscillatory
but decaying taill. The convolution c(z,t) exhibits oscillations to the far left and non-
oscillatory decay to the far right (contmuous curves in figures 3.1-3 3). In the advection
limit & = 0, h = 0 the delta function would propagate to z = ut.

For the numerical scheme the grid points are taken to be umformly spaced z, = 1 Az

The urut delta function initial condition is discretised as a kick-start-
co=i, e,=0 for i#0 ati=0 (3.41)

Linear interpolation would be a ramp from zero at © = —Ax nising to 1/Az at = = 0,
then a reversed ramp down to zero at x = Az, with composite area umty. The subsequent
numerical tests turn out to be more about sensitivity to triangular smoothing of the imtial
value than about errors from the mumerical scheme.

The chosen numerical coefficients, with a non-trivial h are
A=0, u=1, k=001, h=1, Az=1.28255, At=0.75, §=000640. (342)

The small & has been chosen to give predominance to the Airy regime, because the effective-
ness of three-point compact schemes in the Gaussian regume is well-estabhshed (Crandall
1955, Spotz & Carey 2001). The stability inequahties (3 38a,b) are both satisfied, so the
numerical scheme is stable. Zero value ¢ = 0 1s imposed at distant end points (at +20Ax).

Figure 3 1 compares the continuous exact solution with the discrete nmumerical solution
at t = At. For z < 0 the three-point scheme fails to resolve the sub-gnid oscillations wath
group (or energy) velocity arbitrarily large negative. In the numerical scheme, the choice
(3 36) of Ax bounds the negative group velocity by that of the saw-tooth oscillations Those
saw-teeth only propagate back to about —Az. Thangular smoothing over (—Az, Az) of
the exact solution would almost eliminate the sub-grid oscillations and make the numencal

scheme look less inadequate for x < 0. By contrast, for 2 > 0 the scheme succeeds in
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3.10 Numerical results
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Figure 3 1: At one time-step after the delta-function start, the three-point numerical scheme
fails to resolve the sub-gnd oscillations that propagate rapidly to the left.

0.50 o §=Sup Time 4At =30

-0.25

Figure 32 At four time-steps after the delta-function start, a few oscillations to the near
left are long enough to be resolved and replicated by the three-point numerical scheme.
accurately replicating the height, position and shape of the nght-propagating positive surge

Figure 3.2 compares the exact and numerncal solutions at 4Af. To the far left the
three-point scheme continues to fail in resolving the sub-grid oscillations. Again, tnangular
smoothing over (—Az, Az) of the exact solution would almost remove those oscillations
and remove the largest errors. The saw-teeth have propagated back to about —4Az To
the right of figure 3 2, the solution length scale increases and the scheme accuracy improves
The first zero-crossing has just advanced right of x = 0. The position of the leading peak
lags behind the advection prediction ¢t = 3. Further to the right the forward skewness has
become more apparent.

Figure 3.3 compares the exact and numencal solutions at 16A¢. Now that the short-
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3.10 Numerical results

© S=8opt o. Tume 16At=120

Figure 3 3 By sixteen time-steps after the delta-function start, several oscillations are long
enough to be resolved and replicated by the three-point numerical scheme
scale transients have propagated away and the dommnant features are longer than the grid
spacing, the overall accuracy of the three-point scheme has improved. The saw-teeth and
some accuracy have propagated back to about —12Ax. To the right of z = 0 there are
now three zero-crossings The peak value is near = = 10, sigmficantly behind the advection
prediction wt = 12. The forward front remains noticeably skew.

In the context of water-wave surges from the sea into estuaries, the exact phase velocity
and the corresponding KdV approximation can be written

1/2
U (E_'BETE@) ~u(l—1k2h%) with u= (gh)/2. (3.43)

In the context of water waves, if the conversion between dimensionless lengths or depths
and metres is multiphcation by 10 metres, then the conversion between dimensionless times
and seconds 1s multiplication by 1 01 seconds The numerical coeffictents (3.42) would cor-
respond to an estuary of depth 10 metres and diffusive damping of 1 m2s~1. The horizontal
span of the figures would be from -275m to +275m. If the vertical range of the figures
were to correspond to the free-surface elevation in metres, then the instantaneous forward
displacement at ¢t =0, z = 0 would need to have beer 1m.

The KdV approximation 1s only accurate for kh < 1. Zero phase velocity water waves
have kh = oo not kh = 62, In the water-wave context, the left-propagating short-scale
oscillations in figures 3.1-3.3 are shortcomings of the KdV model It is only the osallation

to the nght of z = 0 that are physically relevant to undular bores.
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3.11 Concluding remarks

With N = 3, a computational module has too few points 1n z for the direct numencal
representation of the KAV @3¢ term. The osaillations left of z = ut and the skewness right
of £ = ut would be absent but for that term While the KdV term cannot be represented

with N = 3, the effects of the KdV term are modelled.

3.11 Concluding remarks

This chapter grves a straightforward method for the construction of compact schemes. It
brings together exact time-stepping (Mitchell & Gnffiths 1980) and expansions for the error
in difference approximations to dernivatives (Bowen & Smuth 2005a). For the test case of the
linear damped Korteweg-de Vries equation with computational modules spanning only three
points 1n space, the order of truncation and numerieal accuracy of the scheme at scales larger
than grid spacing go beyond what would usually be expected. The suggestion implicit in this
chapter is that scheme construction with accuracy beyond usual expectations should also
be possible for compact computational modules of different sizes, for other linear operators,

vector dependent variables, non-constant coefficients and several spatial dimensions.
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Chapter

3D decay-advection-diffusion equation 1

4.1 Introduction

In the early days of electronic computers, it was a major challenge to design a scheme capa-
ble of solving a multi-dimensional partial differential equation. A breakthrough was made
by Peaceman & Rachford (1955) and Douglas (1955) with the development of compact al-
ternating direction impheit (ADI) methods for the computation of isotropic diffusion with
no flow or decay. Mitchell & Fairweather (1964) optimised the accuracy The methods use
two time-levels and a compact computational module with three points in each spatial direc-
tion The time-stepping for the N-dimensional solution is factored into N one-dimensional
(non-optimal Crank & Nicolson 1947, or optimal Crandall 1955) stages each of which in-
volves solving implicit tri-diagonal systems Those systems can be solved by alternating
direction forward and backward sweeps. The number of computations is proportional to
2N times the number of grid points. For moderate N, multi-dimensional computations are
only difficult because of the large number of points at which the solution is required

Now, half a century later, compact ADI schemes are ideally suited for computation on
parallel computers. For each par of one-dimensional sweeps, there is an /N — 1 dimensional
array of computations to be performed. Those numerous computations can be run in serial
on a single processor or in parallel on separate processors.

Alas, the linear addition of decay, flow, or off-diagonal diffusivity terms to the partial

1Submitted for pubhcation (Bowen & Smith 2005b)
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4,2 Exact free and approximate forced time-stepping

differential equation and of corresponding linear additions to the numerical scheme, can lead
to a collapse of accuracy Shortening the steps and increasing the number of grid pomnts
can recover accuracy, but sacnfices the speed advantage of ADI schemes.

Restoring the accuracy of ADI schemes restores their competitiveness. Beam & Warm-
ing (1978) used the method of approximate (spatial) factonsation to derive a second-order
accurate compact ADI scheme, with three points 1n each spatial direction, for the compress-
1ble Navier-Stokes equations An equivalent method was used by McKee, Wall & Wilson
(1996) to derive a second order accurate compact ADI scheme for the temperature or con-
centration distribution in flow with off-diagonal diffusivity. For that problem, Smuth & Tang
(2001) used Founer methods to increase the accuracy to third order, but with restrictions to
uniform grid spacing and to two dimensions. The increasing non-linearity from low to high
order, of the optimal scheme coefficients m equations (2.4b,c,d) of Smuth & Tang (2001)
explains the inadequacy of linear addition of terms to the numerical scheme

As an alternative to Fourier methods, and without any restnction to uniform spacing,
Bowen & Smith (2005a) give derivative expansions for the fimte difference counterparts to
spatial derivatives The purpose of the present chapter is to excmplify the ease with which
derivative expansions lead to optimally accurate ADI schemes. Numerical comparisons
with the McKee, Wall & Wilson (1996) scheme and other three-point compact methods, are
conducted in serial with a 21 % 21 x 21 grid for decay-advection-diffusion i three dimensions.
Relative to non-ADI schemes there is a 20-fold speed up. For the chosen parameter values,

there is also a 12-fold accuracy 1mprovement

4.2 Exact free and approximate forced time-stepping

In operator notation, a forced lmear evolution equation can be denoted:

die+ £c(x, 1) = g(x,1). (4.1)
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4.2 Exact free and approximate forced time-stepping

For the chosen 1llustrative example of the decay-advection-diffusion equation in three di-
mensions, ¢(x,t) is the concentration at position x = (xj, w2, z3) and time t. The Linear

operator is

L=A+u-V-V.k-VT, 42

where A is the decay rate, u = (uy, ug, u3) is the flow vector,

K11 K12 ki3
E=] K12 Kz K3 (4.3)

K13 K23 K33

15 the symmetric diffusion matrix, and V = (8y,, 9z,, 9z,)7 denotes the derivative column
vector For the imtial value problem to be well-posed, the diffusion matrix k,, must be
positive definite Throughout this chapter, the subscript , indicates the spatial direction
whereas superscripts ™ and ®*! refer to time-levels.
For a two time-level compact computational module the reference location x% (centroid)
at which the spatial derivatives d,, are performed at time ¢*, need not comcide with the
n+l

reference location x4 (centroid) at time ¢**! = "+ At. The vector displacement between

those reference locations (centroids) can be used to define a veloaity
ug At =x3t —xg. (4.4)

For each compact computational module, using a local coordmnate system moving at velocity
g ehminates the displacement in reference locations Computationally, u — ug replaces u
m the operator £. To avoid lengthening the expressions for scheme coefficients, henceforth
where u is wntten @ — ug is imphed.

As explored by Mitchell & Gnffiths (1980, chapter 2) and by Cox & Matthews {2002),
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4.3 Factorised spatial discretisation

the exact evolution between time-levels t® and t*+1 = ¢* 4 At 1s given by

*H1(x) = exp (-At £) ¢ (x) + OAt exp (— (At — 7)€ ¢(x,t* + r)dr. (4.5)

The exponential of an operator 1s formally defined via Taylor senes

exp(-at) = 3 0, (46)
n=0

and 15 of infinite order 1n the denvatives 8/0x,. It leads to exponential non-linearty in
—A At and polynomial non-hnearity mn &, %, for the numerical scheme. A two time-level

interpolation model for the forcing integrand is
o (~(At — 1)) g " +7) = (1- ) ep (- ALY (X} + =™ (x).  (47)
’ At At
The resulting exact free and approximate forced time-stepping equation 1s
(%) — 1AL g™ (x) = exp (—At€) {(x) + TAtg*(x)} . (4.8)

Time dependence merely requires the replacement of £ by the average £ between time-levels
#" and t"t! = ¢* + At. For ease of exposition, henceforth the operator £ is assumed to be

mdependent of position (see §1 3)

4.3 Factorised spatial discretisation

The essence of ADI schemes is the spatial factorisation (Peaceman & Rachford 1955; Douglas
1955; Mitchell & Fairweather 1964; Beam & Warming 1978; Mitchell & Gnffiths 1980, §2 12;
McKee, Wall & Wilson 1996) For N arbitrary constant coefficient differential operators

M, = I+ At Y m, ,0%,, with I the 1dentity operator, and with £ speaified by equation (4 2),
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4.3 Factorised spatial discretisation

the exact free and approximate forced time-stepping (4 8) is equivalent to

N
HM‘ exp ([dr, — 82 ] 341) {*(x) - 1AL g (%)}
=1

N
= ¢Xp (—A At) {H Mzexp ([—u‘lal‘; + K'“agi] %At)

=]

N
+ TT Moexp ([, + mu2] 300)

=1

N N
x [exp (2At ZZK,kaJ&,‘) - 1] } {c*(x) + JAtq"(x)}. 49

1=1 k>3

In the one-dimensional case, the off-diagonal diffusivity term would be absent and the
product of exponentials would be restricted to a single z, exponential. The product [[ M,
1s & (non-normalised) projection of the exact time-stepping

A general template for a derivative expansion is

N

H (1 + %AtEU:pag‘) {1 (x) - 1At (x)}
p=1

=1

N

= exp(-AAf) {H (1 - %AtZU&@)
=1

1=1

m=0  py=0

+28tY ... Y Ulpr,...,pn)o8! ag;g} {"(x) + 1At (x)}.  (410)

The decay term is exponential in —A At. The single-direction coefficients Ufp are polynomial
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4.3 Factorised spatial discretisation

in 4, and in diagonal &,, but hnear m the adjustable constants m,

UL = w£2m,;, (411a)
UL = —rutlulAt+mulAt+2m;, - (411b)
UL = FlukaAt+ LudA? + m At (—k, £ JulAL) + mgw At +2m,3, (4 11c)
Ui = :I:%nf,At - %u?n,,AF + 'u%“:lAts +m,1 u, At? (—gqu?At F %K“)

+mmy g At~k 2 LuZAL) + mygu AL +2m, 4. (4.11d)

In §4 5 1t is shown that to the requisite accuracy U(p;,.. ,pn) have elementary expressions
wnvolving U5, U, and off-diagonal «,,

For compact finite differences with P points in all coordinate directions, there are fimte
difference counterparts Df to derivatives 6}’5 at the refercnce location xZ with0 <p < P-1
(Fornberg 1988, Corless & Rokicki 1996). A compact ADI finite difference counterpart to

the denvative expansion (4.10) is simply

N P-1
[T D) +3atd utDr) {C*(x) - 34t Q™ (x)}
=1 =1
N P-1
= exp(-AA){ [[{ PP -3AtDd U,DP
=1 p=l
m+ 1pn=F
428t Y Ulpn - pw)DP .. DR M {CP(x)+ 3ALQ"(x)} . (4.12)
n+ +pn=2

Upper-case quantities C*(x), @"(x) are used to distinguish the computed discrete numerical
values from the lower-case continuous variables ¢*(x), ¢"(x) On the last line, the notation
indicates that the summation over py, ..., py is restricted to total denvative order up to P.

The accuracy of the scheme relates to the magnitude of the errors The next section
illustrates that the absence of counterparts to UfPaf .. .Ujfz,,_zagf’ =2 from the scheme

(4.12) can be rectified with the selection of m,3...m,2p_2
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4.4 Three-point difference approximations to derivatives

4.4 Three-point difference approximations to derivatives

For three points, the 2-coordinates for the grid and reference points are denoted z, z,, .'c;*
and x, Three-point difference operators from appendix A that approximate the identity,

first derivative and second derivative at yx, are.

(2:, - Xl)(zf - Xt)c (mz_) (I_ - X:) (-'5:. - x,)C (:L‘,)
DO = 1
e G- @ -27) | (@-o;) @-o)

(z; — x:)(z — x)C (z})

R 5 Y P pa e
ne (@t E—=2x)C () (a7 42 —2x) Clzy)
D;[C] (z7 —z) (=7 —z}) (2, — z7) (22 — )
X, X, — ) l‘;‘-
e m:)?;fi.)) | o
. _ 2C (:L‘,_ 2C (=)
P T T e e
2C (z) (4.13c)

NCERIGEDR

The optimal scheme cannot depend upon y,. However, there is y,-dependence in the way
that scheme 15 represented m terms of D?.

Chapter 2 derives derivative expansions for the errors in terms of the P elementary
symmetric functions 1n the displacements. For three pomts the displacements are denoted
af = z} — X;, wmith * denoting *, null or ~. The hnear, quadratic and cubic elementary

symmetric functions are:
e1=0, +o+af, ea=0]o+ o af +ael, e3=al ot . (4.14)

In the error expansions mn appendix B, e, 1 occurs more frequently than the higher degree
elementary symmetric functions To set €, ; = 0 and achieve the consequent simplfications,
it is henceforth assumed that for each three-point computational module, the reference point

is the centroidie x, = 3(z] +z,+z}). With this assumption, e, 2 is strictly negative and
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4.4 Three-point difference approximations to derivatives

can be interpreted as minus the effective mean-square spacing, For regular spacing Az, the
centroid is y, = x, and the elementary symmetnec functions are e,2 = -Az? and e, 3=10

With the x, at the centroid, the derivative expansions from appendix B become

Dl =1 +1ie38% — Sse2e3d +.. (4 15a)
Dl = 8, —1lte:8 +Lesd; +5¢k.0, +..., (4 15b)
D? = 82 —te2dt +&esd>  +. .. (4 15¢)

Hence, term-by-term compact modelling of the partial differential equation would give spa-
tial errors of third order. For DP the derivative order of error terms 1s the same as their
polynomal power 1n the displacements This derivative and power dual meamng of ‘order’
transfers to the grnd pomt accuracy of the numerical scheme.

The one-dimensional matching at order 83 of the derivative expansion (410) to the
difference scheme (4.12), yields the ™ and ™ pair of matching conditions

ntl 1 1
%—AtU:'?, = %et"s" —ﬁAtU:'le:'; , (4.16a)

—JALUS = iels + AU €. (4 16b)
At order 3:,‘, the derivative and difference matching shofts one term along to

1
OLUN, = EAtUR S — LAtULEE!, (4 16c)

1, 1

—3ALUL = —fAtUSely + 5 AtUSel,. (4 16d)

The matching (4 16a-d) involves the elementary symmetric functions at two time-levels

It is convenient to define time averages and semi-differences,

n+1 n n+l n
- _ €y x + € x ; LN 4
B = =S5, =g (417)
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4.4 Three-point difference approximations fo derivatives

where + denotes 1, 2 or 3. On a fixed grid &, = €;,0, €}, =0
The formulae (4 11a-d) hnking U;J:;, to m, p, convert the third-order matching (4.16a,b)

to a pair of hnear equations 1n m, 2 and m, 3. The solution for m, 2,

&2 61'3 +m, 1 At (3k, AL — e‘Lz)
k]

6 At 3u, A2 (4.18)

M2 = —ggui At —

becomes singular m the pure-diffusion lirmit as u, tends to zero. This failure can be rectafied

if m, 1 is restricted to the one-parameter family
m,1 = —F - S, (4 193’)

where S, is an adjustable constant (possibly zero) and

F, = : . (4.19b)

On a fixed grid F, is zero
With the restricted structure (4 19a,b) for m, 1, there is not a singulanty mn m, 3. For

arbitrary S,, the third-order scheme coefficients are given by.

UL = wF2(F+Su), (4.20a)

!

€2 €2
UL = —kw—wFAt—SulAt+LulAts 3I_At F25 (n,, — ﬁ?) . (4.20b)

The third-order matching also determines m, 3, U:f; but these are not needed directly
in the finite difference scheme nor in the evaluation of the mixed-direction coefficients
U(pr,...,pn) as performed mn §4 5.

Fourth-order matching (4 16¢,d) gives the optimal value of the parameter J9,:

= (2u2A2 8, 5) — e 3u + S,

Sopt = 4.21a
P TAL (1262 + Bgul + ulAR) g, (4212)
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4.5 Mixed-direction coefficients

where

fi = (gufm + —3-%) ea— (WAL + & u At +¢3) F, (4 21b)
e,
& = 3A‘,t + ute:,,a - 6"1:‘3:,2 . (4 21c)

On a fixed grid f,, ¢. are both zero. With this optimal choice for S, the scheme is referred
to as the § = S,z scheme With a non-optimal choice S, = 0, the scheme 1s referred to as
the § = Sp scheme There is striking non-lineanty of S, in u,, £i; and &, 2. Fourth-order
matching also determunes m, 4, Uﬁ but these are not needed Smith (2000) gave a Fourer
dervation of the results (4 20a,b, 4.21ac)

For umform spacing and zero flow, there 13 inverse dependence on «,,,

Az?

S = 2F 422
ot T 19k, At (422)

and the scheme coefficients (4 20a,b, 4 21a-c) gave the one-dimensional optimal scheme of
Crandall (1955) or the Mitchell & Fairweather (1964) optimsation of the Peaceman &
Rachford (1955) and Douglas (1955) ADI schemes

4.5 Mixed-direction coefficients

The mixed-direction coefficients {/{m,...,pn) with p, < 2 are sought, such that
nt +pN=3

Z Upy,...,pN)0EL ... 0PN + fourth and higher order derivatives
vt +pN=2

N
- -2%; 1:[1 {1 + At Z m‘,pai’i} exp ([~1.s, + K02 1AL

N N
x |exp 2Atzzn3kax,ax,‘) —1] . (4 23a)

=1 k>3
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4.5 Mixed-direction coefficients

The low level of truncation permts the replacement of the M,-exponential products by

low-order denivatives, and the expansion of the off-diagonal exponential

N N
~ [I (1 ~ 1AtU;0,, - 3t U:zai‘) S #3k02,8s, - (4 23b)
=1 =1 k>3

The expansion can be wntten

N N
~ Zkznjk (s, — 1atU;;82 ) (8, - JAtUL, 32, )
1=1k>y

N N N

A3 ral30n 0

1=1 k>31#2.k
+ fourth and higher order denvatives. (4.23c)

Corresponding to (4.23c), the N = 3 compact ADI scheme can be written

3
[1(D? +3atUiD} + JAtU, D7) {C™1(x) - §At Q™ (x)}
=]
3

= exp(—AAt) {H (D? - IAtUS D! - JAt U,;D?)
=1
+2At [Mz (D} - %At Ul—.lD%) (D% ~ 34t UilD%) D3
+ag (D} - §at U7, DF) D§ (D} - §At U3, DF)
+a33DY (Di — 34t Uz_.lpg) (Dé - 4t U3_'1D§)
~ 3¢ (a3, + Uz + kU7, ) DIDADY] }

x {C"(x) + JALQ ()} . (424)

Formally, the errors are of fourth order wath S, arbitrary

76




4.6 ADI solution

The N = 3 McKee, Wall & Wilson (1996) scheme, with decay mmcluded, is

3
[T (D? + 4Atw, D} - Atk D?) {C™(x) - 3ALQ™(x)}
=1
' 3
= exp(—MAt) {H (D? - 3Atw,D} + 1At K, D?)
=1

+2 At [ k12D1 DADY + k13D} DID} + ros DD} D] }

x {C*(x) + 1At Q™(x)} - (4 25)

The simphaty of the coefficients, as compared with the optimal ADI scheme (4.24), comes

with a loss of accuracy that is quantified in §4.8.

4.6 ADI solution

The nght-hand side of the scheme (4 24) consists of known values from the ™ time-step. As
elaborated by Mitchell & Griffiths (1980, §2.12), the factorised structure of the left-hand
side of the scheme (4.24) allows for fast solution, by solving sets of tri-diagonal systemns
The scheme is solved in three alternatmg-direction mmplict (ADI) stages. Assuming n,
pomts along each dimension, there is a total of nins + nyng + ngng tri-diagonal systems to
be solved, either in senal or parallel.

For definiteness, the 7, sweeps are performed first. The quasi-concentration C*+1,

associated with the central grid point of the computational module, is the solution over all

77




4.6 ADI solution

the gnd ponts of the nz X ng tn-diagonal systemns:

(DY + atuy, D} + JAtUy, DY) O
3
= exp(~AAt) { 1T (D? ~3AtU; D! - 1At U‘;Df)

=1

+2At [m (D} ~ 1At U;ID}’-) (D; — 1At Uzjlug) Dl
+K13 (D} ~ 1At U;_lpf) e (Dg ~1at U§:1D§)
+xD} (D} — §AtU;, D) (D} — 1AtU3, DY)
—3A¢ (w1l + m13Us; + rasU7y ) DIDADY| }

x {C™(x) + 1At Q™ (%)} . (4 268)

For definiteness, the z2 sweeps are performed next. Another quasi-concentration 6"+1,
associated with the central grid point of the computational module, is the solution over all

the gnd points of the n; % n3 tri-diagonal systems:
(Dg +1AtU#, D} + LAt Ug21)§) Crtl = gt (4.26b)

Finally, the x3 sweeps give the actual concentration C™F1, by solving the n; x ng tri-

diagonal systems:
(D8 -+ 3ALUL DY + JALUL, D) {C™H(x) ~ JALQ™1 ()} = 8. (a260)

Tri-diagonal systems can be solved very quickly using standard methods (Mitchell & Gnf-
fiths 1980, §2 5; Rachtmyer & Morton 1967, §8 5). The structure ensures no coupling be-
tween systems. At each of the IV stages, the left-hand side operates i just one dimension
Thus, the systems can be solved in parallel and split amongst processors. To advance the
solution by a time-step, the computational running time is proportional to 2N times the

total number of points, and is inversely proportional to the number of processors involved.
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4.7 Stability conditions

4.7 Stability conditions

With a fixed grid and zero off-diagonal diffusion, the growth factor for the 3D case is of the
e

form (1.32) and so the stability calculation mvolves finding sufficient conditions such that

the inequality (1.34) 1s satisfied. For this case (1.34) 1s a lengthy expression of the form

(C 6), and hence the mequahties (C 8) are applied to split the solution into smaller parts.

After removing constant factors and factors that are non-negative by definition (such as &,

Az, and At), the inequalities (C.8) for the 3D case become-

3-a1 20, T:ay20, 19:0320,

5:nfe+ereb1 20, 1l:knfs+rxf20, 13:kK2ef:3+ k33 20,

6:a16+K2m 20, 8:asf + K112 20, 12 a1 83 + k3311 2 0,
16 apfB3+ Kkazye 20, 20. azfi + k13 20, 22 a3 + K273 2 0,
9:m72+agm 20, 21: 13 +asm 2 0, 25: a3+ 0312 20,
14 : k116285 + K22P1 03 + K33fr Pz + 144A¢% k11 Koakas 2 0,

15:

17

23:

18:

24

26 :

27 :

T (522163 + H33ﬂ2) +m (ﬁzﬂa + 144At2522533) 20,

192 (k1183 + r33B1) + 02 (5153 + 144A¢% K11 533) > 0,

3 (116 + K2aP1) + a3 (8182 + 144A83% K13 622) 20,

B3 (ary2 + aam) + kaa (mi72 + 144A8a309) 2 0,

: B2 (@173 + asm1) + k22 (M7 + 144482 aza3) > 0,

Bi (ezys + azy2) + k11 (273 + 14488 0n03) 2 0,

27 + a3 + eanyz + 144A 8 aza3 > 0. (4.27)
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4.8 Numerical results

- Inequalities 1, 2, 4 and 10 are immediately satisfied and have been omitted The inequalities

(4 27) are satisfied if the followmng quantities are non-negative.

o, = (S,u?At + K.“) (12S,n,,At + A:r:'2 —- qutz) , (4 28a)
B = 125%2A8% 4 248k, At + 2822 + 4 2AL2, (4 28b)
Y = 12At(35? (u/AL +4kZAL) + 25,k (202087 + Az?) + 32 AL)

+ (A2 —uAr?)? . (4 28¢)

In the absence of off-diagonal diffusion terms, the conditions for numerical stabihity are
mhented from the N one-dimensional cases. In particular, for the 3D case with uniform
spacing, (4 28a-c) show that for each direction, S, > 0 together with the classic CFL
(Courant-Friedrichs-Lewy) condition [u,|At < Az, are sufficient conditions for stability
For zero flow and uniform spacing, the well-posed requirement that the diffusion matrix «,;
be positive definite 1s also a sufficient condition for numerical stabihty (McKee & Mitchell
1970, Smith & Tang 2001).

4.8 Numerical results

To compare the S' = S, and S = Sp schemes to other schemes, a restriction 1s made to

umformly spaced grids with D? = 1. Standard error norms are introduced

(i (cm— c(t"))z) : , _ maz |C™ = c(t™)]

7 mazx fe (t™)]

p
2lCt —e(t)

Lh=

» b2 ,  (429)

P P! )
3 le(t)| (z (tn)2)“

where p = ninsns denctes the total number of gnd points and summation or maximum
is over all of the gnd points Error norms near zero are desirable and above umty are

extremely bad.

For umiform spacing, the § = S,z and § = Sp schemes and the McKee, Wall & Wilson
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4.8 Numerical results

(1996) scheme in (4 25) are tested against a 3D forward-time f-method time-averaged spatial

derivatives scheme, written in difference operator notation as

Cn+1_ -AAtcm 3 B
* A+ [m{e?* 0 -0 plcm +oplio™H)

=1

. {e"’\m (1—6) D2[C™) + 9D2[C™] }] —=0. (4.30)

The values used are 8 = 0 (explicit), # = 3 (Crank-Nicolson) and ¢ = 1 (fully implicit).
For large grids the Crank & Nicolson (1947) and fully imphat schemes, as wntten, are
unsuitable for general use due to the matrix system that has to be solved. Here, the modest
number of grid points along with Mathematica’s sparse array routines make the run-time
of these comparisons bearable. Methods to directly convert the #—methods into a faster
ADI structure would only reduce their accuracy yet further

Point source tests are used due to the severe strain they cause numerical schemes. An
imtial pomnt source of unit strength is placed 1n the centre grid point and left to advect and
diffuse The boundary values are held at zero

The first test is of pure diffusion with the parameters (making all schemes stable):

At=02, Azx=1, A=0, u=v=w=0,

Kl =4Ka=kK3=08, Kiz=K13=4Ke=0. {4 31a)

The gnd size is 21 x 21 x 21 ie 9261 pomnts The error norms are shown in table 4 1.
The @ = 0 exphcait scheme is always less accurate than the other schemes. For zero flow
and zero off-diagonal diffusion, odd derivatives in any direction are absent. Instead of the
designed third order errors, the & = 1 and McKee, Wall & Wilson (1996) schemes, have
errors of fourth order. Their accuracy matches that of the S = Sp scheme, that is designed
to have fourth-order errors. In the absence of off-diagonal diffusion, the S = S, scheme is

designed to have fifth order errors. However, for zero flow 1t has errors of sixth order and
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4.8 Numerical results

Time| Scheme || &1 | & | lo [Tme| Scheme | & | I | lo |

At | S = S,pe || 0.0926 | 0.1051 [ 0 1163 At | 5= 5., || 0.0644 00632 | 00720
S§=25 [|068931{0.4736 | 0 4936 S5=25 (0646104091 04467
=0 |(|10373 09547 |0.8860 8=0 | 10409]10095}08624
0= % 0.182410.0935] 0 0724 0= % 0.3200 | 0.2495 | 0.2593
=1 | 0.5017]0.4920 | 0 5195 =1 1| 0.64641{06844 |0 8002
McKee || 0.2181]0.1672)01713 McKee || 03375|02119|01443
AAL | S = Sop || 0 0229 | 0 0262 | 0.0484 4At | S = 8, ][00347 [ 00359 | 0 0442
5 =5p {10.1544 | 0.1305 | 0 2110 5= [|0.1483]0.1235 ] 0.1897
2=0 |[|0.7451 | 0.6490 [ 0 4515 =0 10.8268 {0.8140 | 0.7320
7= % 0.1698 | 0.2011 | 0 3951 0= % 02969 [ 0 3159 | 0 4186
=1 (10327805825 1.4831 =1 J104678)07002|1 6243
McKee [|0.1721 (0 2210| 04782 McKee |[03968]0.3445 | 0.4797
16AL | S = Sy || 0.0011 § 0.0010 | 0 0020 16At | S = Sop 1}0.0092] 00100 | 00110
S=35p (0039500371 | 0 0663 8 =5 ||00395]|00356 | 00611
=0 | 02643 |02457}0.2371 =0 [|03422]03597|0 4697
9= % 0.0395 | 0.0407 | 0 0806 g= % 0.12620.1223 | 0.1765
=1 | 0.0870]0.1080 02539 8= 0.2340 {0 2498 | 0 3259
McKee || 00397 | 0 0416 | 0.0839 McKee ([0 385003759 04884
Table 4.1: Diffusion test (4 31a) Table 4.2. Advection-diffusion test (4 31b)

coincides with the Mitchell & Fairweather (1964) optimal scheme for pure diffusion After
sixteen time-steps the optimal scheme 18 about a factor of forty superior to the alternatives

Table 4 2 contams the error norms, For the # = 0 and 5 = Sp schemes the error norms
are sumilar to those in the zero flow case. The other schemes suffer substantial drops in
accuracy The § = S,;; scheme remains the most accurate, followed by S = Sy. At sixteen
time-steps the ¢ = % scheme has error norms between 12 and 16 times optimal. The error

norms for the remaining schemes are larger. The second test includes advection

At=02, Azx=1, A=0, u=v=w=1,

K11 = Ko = k33 = 0.8, K192 = K13 =Ko =0. (4.31b)

Figure 4.1 shows the solution after sixteen time-steps for the second test, along the arbitrar-
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4.8 Numerical results

[Time[ Scheme | & | b [ lw |
At | S =8, |0.2286 01552 [ 0.0944
S =5 [|0.9702(0.4971 | 0 2560
McKee || 0.48720.3012 | 0 2283

4At {5 = Sypt || 0 0485 | 0.0540 | 0 0893
8 =25 ||04550]0 3081 |0 2642
McKee |j0 44580 3136 { 0.4004
16At | S = S5, |j 00154100164 | 0 0271
S = 8p || 0.0546 | 0 0365 | 0 0483
McKee || 0.3844|0.3158 [ 0 3584

Table 4 3: Off-diagonal test (4 31)

ily chosen slice x = 8, ..,20 with y = 11, 2 = 11. The § = S, scheme is indistinguishable
from the continuous exact curve. For clanty, the plots for the other schemes are joined by
dotted lines. The jaggedness of the & = 0 explicit scheme is a reminder of the vulnerability
of that scheme to numerical instabihity. The relative proximity of the numerical results to
the continuous exact curve does not fully conform with the error norms. In figure 4 1, the
McKee, Wall & Wilson (1996) results looks better than either the @ = 0 or 8 = 1 results,
although the error norms would suggest the opposite.
The third test incorporates both advection and off-diagonal diffusion:

At=02, Azr=1, u=v=w=1,

K11 =0.8, kKeay=1, k33=08, k12=04, K13=kKg;=0. (4.31¢)

Table 4 3 contains the error norms for the suitably versatile S = Spr, S = Sp and McKee,
Wall & Wilson (1996) schemes. After sixteen time-steps, the respective error norms are
approximately 1 the ratio 1-3 20.

The tests were carried out in serial using Mathematica The § = Sy, § = Sp and
McKee, Wall & Wilson (1996) ADI-schemes were approximately 20 times faster per time-

step than non-ADI schemes, not taking into account the speed increase that would be
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4.9 Concluding remarks

0.0014 6 S=Sopt Time 16At=32

0.0012 | a 6=0
ag=1/2 a a

0.0010

® McFee

0 0008¢

0 0006

0.0004

0.0002 |

Figure 4.1 Numenical and exact results with flow and diffusion

attained by running the ADI schemes in parallel.
Formally the § = S,pt and S = Sp schemes both have mixed-direction errors at fourth
order. The above tests are suggestive that by eliminating uni-directional 6:‘ errors, the

S = Syt scheme is consistently more accurate than the § = Sp scheme

4.9 Concluding remarks

An accurate compact finite difference scheme has been presented, that is structured in
such a way that 1t has the potential to be exploited on parallel computers. Through the
use of three-point difference operators and derivative expanstons for the error, the scheme
is straightforward to denve and simple to program. The lugh speed at which the tri-
diagonal scheme can be solved, even on a serial computer, should not be underestimated
The running time scales linearly with the total number of grid points and inversely to the

number of processors used.
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Chapter

Conclusion

A toolkit for deriving igh-order parallehsable schemes has been presented along with nu-
mencal schemes, and results, for the 1D and 3D decay-advection-diffusion equations and the
1D Lnear KdV equation. The toolkit allows for the simple derivation of multi-dimensional
schemes 1n terms of 1D difference operators. A simple recurrence relation gives the errors
of these operators and it is the knowledge of these errors that allows lgh-order schemes
to be denved 1n a straightforward manner. The benefits of high-order schemes are clear,
the results are sigmficantly more accurate offering the possibility of increasing time-steps
and/or decreasing grid resolution whilst retamning results as good as, or better, than those
given by other schemes

Along with accuracy, a major area of concern with any scheme is the solution time. For
this reason the schemes involve solving tri-diagonal systems and, in lgher dimensions, an
ADI structure is enforced. With this structure in place the compact module still provides
enough degrees of freedom to derive ligh-order schemes and the speed benefit of such a
structure should not be underestimated Even when runmng in serial, the solution in any
number of dimensions involves solving repeated tn-diagonal systems, an operation that is
very fast and leads to a solution time that scales linearly with the total number of grid
points, however many dimensions are involved. When running in parallel, the process of
solving these schemes can be shared amongst multiple processors and thus the speed of

solution increases proportionally With parallel computers becoming more commonplace,
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even available as desktop systems, schemes that can take advantage of this situation will
become increasingly desirable

Conditions sufficient for stability in certain cases have been derived. These are typically
related to the classical CFL condition along with a condition on the high-order parameter/s
of the scheme. If the high-order condition is not met, the schemes can still be used by
setting the relevant parameter to a given value, such as zero. As the results show this still
provides nghly accurate results

There are many ways in which this work can be continued. The methods can be apphed
to different equations and in various dimensions. The module size can be experimented with,
since the toollat works with any number of points. Non-trivial boundary conditions can
be used to model different problems and research into applying the methods to non-hnear
problems, perhaps even on completely irregular grids, can take place

In practice it is the time reductions available that will ensure the work presented replaces
the standard fimte difference methods in the future. It is a stark reality that in business,
time costs money, and in medicine and weather predictions, time costs lives so any methods
that can 1mprove on those currently used, such as those presented here, should be studied

and applied
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Appendix A

Finite difference formulae for derivatives

A.1 Introduction

Formulae are listed for n-point finite difference operators Dg that mmic the d'th derivative
of a function f at some position X, expressed 1n terms of the displacements o, = 2, — x- In
the denommators, displacement differences o, — @, can also be wntten as grid differences

x, — T,. Errors for the finite difference representations are presented in appendix B

A.2 One-point formula

Dolf] = f(=m). (A1)

A.3 Two-point formulae

_ _oaf(m)  ouf(x)
DU[f] - a1 — a3 ag — oy » (A 23)
b = L& 4 S (z2) (A 2b)
] — k2 o9 — ]
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A4 Three-point formulae

A.4 Three-point formulae

_ oo f (1) aasf (x2) oo f (x3) o
Dolfl = G as) (o1 —ca) t Ta—an) (as —a0) T (s—on) lwa—ap)’
_ (et} f(m) _ (mtas)flz) _(oa+om)f(zs)
DUl = ~Gr—a)(er-0s) (az—on)(as—e3)  (as—an)(as—az)’ O30
D2[f] — Zf ('Tl) + 2f (32) 2f (3:3) (A 30)

(a1 —ag) (o1 - a3)  (a2—a)(e2—a3)  (az—a1)(ez —az)

A.5 Four-point formulae

Dolfl = - az0304f (21) _ onasasf (22)
(o1 — ) (a1 — ) (a1 — @) (a2 — o) (02 — axg) (2 — xa)
_ arooay f (z3) _ arozozf (4) (A 4a)
(as— ) (azs— o) (s —ag) (aa—on)(as—az)(as—as)’
Dif] = (203 + oo+ azay) f(z1) | (om0 + onoy + azay) £ (22)
(@1 — az) (o1 — as) (o1 — ) (@2 — 1) (o2 — 3) (02 — @)
| f(oas + a0 + 0204) f(z3) | (0102 + n03 + a203) f (%2) (A.4b)
“(az—on) (03— ag) (03— ) (as—on) (s —oo) (g —az)’
Doff] = ——2leatostadf(@m) __ 2atasta)f(z)
(1 = 0a) (o — as) (e — a4} ~ {2 = o) (o = a) (e — @)
__ 2mtoatag)f(zs)  2(m+ostas)f(ze) (A 4¢)
(a3 — ) (a3 —az) (o3 —0s)  (0a—on)(0a— a3) (g —a3)’
_ 6f (;cl) 6f (552)
Dslf] (01 —a2) (01— 03) (a1 —ag) (02 — 1) (02 — 03) (02 — ag)
N 6f (x3) + 61 (z4) (A.4d)

oz —a1) (a3 — ) (az —aq) ' (oa—on) (04— az) (g — @)’
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A.6 Five-point formulae

A.6 Five-point formulae

_ agozasosf (21)
Dalf] = (1 — a2) (a1 — a3) (a1 — 04) (01 — as5)
+ ayazoas f (x2)
(02 — a1) (02 — a3) (a2 — a4) (a2 — as)
4 ayazasos f (£3)
(o3 — ) (@3 — a2) (a3 — a4) (a3 — as)
+ o oz0305 f (Z4)
(04 — 1) (@4 — a2) (04 — a3) (g — a5)
ajazazay f (zs5)
H os — ) (@5 — a2) (05 — 03) (a5 —x3) (A.52)
Dif] = - (a2a3as + azazas + apagas + azayoes) f (21)

(01 — a2) (1 — as) (1 — a4} (a1 — as)
_ (a3 + arazas + e1as0s + azayas) f (z2)
(aa — a1) (a2 — az) (02 — a4) (02 — as)
_ (10204 + enazas + 10405 + az04055) f (23)
(a3 — @) (a3 — a2) (03 — ag) (a3 — as)
(e1203 + anagas + arosos + azasas) f (x4)
(g — 1) (04 — 02) (04 — 03) (04 — 015)
(10903 + onagay + ayo30 + asasay) £ (x5)
(a5 — 01) (@5 — a) (@5 — a3) (5 — @)

, (A.5b)

2{apaz + agaq + anos + agos + azas + agos) f(x)
(a1 — &) (1 — 3) (o1 — e4) (@1 — ax5)

2 (103 + @104 + ay a5 + azay + azas + agos) £ (x2)
(az — a1) (a2 — a3) {02 ~ 1) (a2 — 05)
2{maz + may + ajo5 + aooy + asas + agos) f(x3)
(a3 — ) (a3 — @2) (a3 — aq) (a3 — as5)

2 (g + o103 + ar05 + agas + asas + azas) f(z4)
(4 — a1) (@4 — 2) (04 — a3) (@4 — 025)
2(maz + mas + o104 + 03 + azos +asoy) f (zs)
(a5 — ) (a5 — a2) (a5 — 03) (a5 — 4)

Dilf] =

+

) (A.5¢)
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A.6 Five-point formulae

6 (a2 + as + o4 + as) f (z1)

biln = (a1 — a2) (a1 — a3) (a1 — a4) (01 — as)
B 6 (o1 + a3 + ay + as) f (x2)
(a2 — 1) (02 — 03) (22 — 24) (02 — a5)
B 6 (01 + o + 0 + as) f (z3)
(a3 — a1) (a3 — az) (a3 — 04) (a3 — a)
_ 6 (a1 + a2 + a3 + as) £ (z4)
(as — 1) (ag — a2) (04 — @3) (g — 5)
6 (a1 + o2 + a3 + aq) f (25)
(a5 — a1) (a5 — a2) (05 — 03) (05 — )’ (A.5d)
_ 24f (Il)
Ddfl = e e as) (ar — ) (o —a)
.\ 241 (z2)
(agz — 1) (02 — a3) (a2 — ay) (a2 — a5)
+ 24f (z3)
(a3 — o) (03 — az) (a3 — ay) {3 — 015}
+ 241 (z4)
(a4 — 1) (4 — @2) (4 — @3) (24 — x5)
24f (-'55) ( A 53)

T os —ax) (a3 — a2) (o5 — a3) (03 — a)
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Appendix B

Finite difference errors

B.1 Introduction

Formulae are histed for the n-point elementary symmetric functions e, in terms of the dis-
placements o, = x; — x, and for the first four error terms in the fimte difference operators
D[ f] that mimic the d’th derivative of a function f(z) at a reference position x {see ap-

pendix A)

B.2 One-point formula

Elementary symmetric functions

e =ayq- (B.].)
Error terms (Taylor series):
y e . e {3) el (4)
Dolfl =5 = ef )+ 5 f G+ 5 ) + 5,770+ (B-2)
B.3 Two-point formulae
Elementary symmetric functions-
er1=0a;+ay, ex=0o109. (B3)
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B.4 Three-point formulae

Error terms.
DAl - Fx) = ~2f"() - D200 - L2 oy
2
=t 3265)6”2 1900 -, (8 43
2
Diffl - f'(x) = f”( )+ D220 () + DR 4y
3 5162 + 62 (5)
+-———--—-—120 ™0+, . (B.4b)
B.4 Three-point formulae
Elementary symmetrc functions:
e1=a1+ast o3z, €= oo+ oraz+ozoy, e3=ajooag. (B5)

Error terms.

Dolfl~ 1) = 250+ 8220y 4 Dy
(e% —2ejes + 63)63

(6)
750 O +..., (B.6a)
ez —e 2eq — —e2
Dif]- () = —2iPO0) -T2 W) - 2R R 8y
3 2 2
_ejes —ejes — 2e1e; + 2eze3 (6) _
—2eje +

DI~ 160 = L0009 + L2 0 —“%Bﬂ‘ﬁf 20

+el —36182 +2ele3+62f(6)(x)+ . (B 6¢)

360
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B.5 Four-point formulae

B.5 Four-point formulae

Elementary symmetric functions:

e = oo+ ooz 004 + az03 -+ asoy + o304,

eqr = mtoxtaztos,
€3 = monos -+ a1000y + onostg + aoasoy,
€4 = 1Q0x3004.
Error terms:
€4 e1eq
Dolfl - f0) = —5f P - 355 /000 -

(€ —cades oy

_ (e1® — 2e1e2 + e3)ea () =

5040
€1z —

Difl - () = 5700+

+eles — ele4 — 2ej1e2e3 + eaeq + e3

5040

Dolf) = ") = 22900 -

3

6182

AL 200 -

2
_€xe] —eje3 — 2e2e1 +ejes+ 2eqe3 f(7) ) —

2520

Ds[fl - fNx) = f“*’( )+

A2 () () + 2

el - 36182 +2ele3 + e2

840
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(B.7a)
(B.7b)
(B.7¢)

(B.7d)

(B 8a)

(B.8b)

¥ x)

(B.8¢)

(B.8d)




B.6 Five-point formulae

B.6 Five-point formulae

Elementary symmetric functions.
€1 oy +art+az+ogt+as, (B 92)
€2 arag + oo + a0y + o105 + ooz + 0204 + 0205 + oz
+azag + ag05, (B 9b)
€3 o o203 + 010204 + @ra2es + 010304 + O35 + aya0s
+agazay + agasas + azasas + azouos (B.9¢)
€4 Q020304 + 0 20305 + Q100405 + Q10305 + G2030405 , (B.9d)
€5 0 Qg (304005 - (B.9¢)
Error terms
€5 (5 €1€s5 (g (€2 — e2)es
Dolf}— 00 = mf( W) + %f( )(x) + —M—f("’(x)
G 2:6;;;_ ) (@) + . (B.10a)
Difl- () = 1 fO00 - F55— 000 - cles — 168~ e2c4 ()
_ eleq — eles — 2 ;&;;? + ezes + e3€4 O — .., (B 10b)

e e1€3 — € e2eq — e1€4 — €263 + €
Dalfl— 100 = S5O(x)+ DL Oy + DB 2T 1 (x)
60 360 2520

 ches = cfea =2 creacy ; ewes +eaeat €8 w9)y 4. L (B.10c)
Dlfl - 1900 = —2 P00~ e 1000 - deazeies ¥ sy

_efea— eles — 281;%;;)6184 +2eze3 — €5 F®)=..., (B.10d)
Dilfl- 1900 = FFO00+ ffg‘T”f“’"(x) + i‘—zg;?ﬂfm )

+e‘1‘—3e¥ez -l-lggaea+e§—-e4f(8)(x)+ . (B 10¢)
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" Appendix

Stability proofs for quadratic inequalities

C.1 Introduction

In denving stability calculations 1t 1s often necessary to find sufficient conditions such that
a quadratic mequality holds true over a bounded (e g- sine-squared) variable. §C.2 states
the problem in 1D and denves equivalent conditions, one set of which serves as suffictent
conchtions, hnear in the coefficients of the quadratic inequality. A simple geometrical inter-
pretation of these results is made in §C 3. By repeated application of these results, a table

of sufficient condrtions is generated for the 2D and 3D cases in §C.4.

C.2 Derivation in one dimension

Let 0 < ¢(k) < 1, with ((k1) = 0 and ¢(kz) = 1 for some ki, k2 and consider the quadratic
inequality a + B¢ + (2 > 0, with @, 8, v, ¢ € R and v # 0. The problem is to find
inequalities as functions of a, 8, v (independent of ¢) that satisfy the quadratic inequality
with gven constrants. A trivial solution is to require all coefficients a, 3 and 7 to be non-
negative, and, along with the non-negatvity of ¢, these are sufficient conditions to satisfy

the quadratic mnequality. In practice these restrictions are not flexible encugh to yield useful
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C.2 Derivation in one dimension

stability cnitenia  This section proves that the problem is equivalent to the conditions.

(>0 and 20+ 4 < 0 and §2 — 4oy < 0) (C.1a)

or (¢20and2a+p20anda+pf+v20). (C.1b)

The veracity of the mequalties (C 1b) provides relaxed conditions that are sufficient n
solving the problem, whilst bemmg linear in the coefficients (and therefore simi)le to apply)
This makes (C 1b) particularly smtable for stability calculations of the form described.

Proof. A quadratic equation has three degrees of freedom, that as well as being interpreted
as the coefficients @, § and v multiplying increasing powers of ¢, can also be interpreted in
a geometrical manner by writing the equation in the form 4({ —21)(¢ — z2). Thus1t is clear
that -y denotes a scalar factor/orientation along with two, possibly equal, real or complex
roots z12 . The roots are given by z12 = ——E\f:@, with z; talang the negative sign.
For real roots, and when < > 0, then 1 < 2 so that 1) is the left-most root. With ¥ <0
the situation is reversed and x; is to the right. Since the two quadratic representations are
equivalent, the problem 1s solved by consideration of the second form of the quadratic for
its ease of geometrical interpretation.

Figure C 1 shows generic examples of all four cases of quadratic equation that satisfy
the problem. These are found by consideration of the degrees of freedom that affect the
solution, 1e. the orientation and postion of the roots relative to the mterval 0 € ¢ € 1
The proof is thus reduced to enumerating these cases and showing their equivalence to the
conditions (C.la,b)

Consider the four cases in turn:

Case A consists of two imaginary roots, so that the discnminant 52 — 4ay < 0 (for ease
of proof this also mcludes the case of zero discriminant with two equal real roots). Since the
quadratic is restricted to the upper half of the plane, the quadratic is non-negative for all

¢ and thus in particular for { = 0 so that o > 0. Conversely, with the quadratic restricted
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C.2 Derivation in one dimension

f(C)‘

CaseD Case A

Case B ] Case c

Figure C 1' Quadratic cases

to one half plane, if a 2> 0 then the quadratic is non-negative at { = 0 and hence must be
case A

Case B consists of two (possibly equal) real roots, with discriminant 3% —4a-y > 0 That
the quadratic points upwards 15 equivalent to ¥ > 0 The final characteristic of case B is
that the right-most root z2 is before the left of the interval 0 < ¢ < 1 at ¢(k;) = 0 so that
z3 < (k1) =0.

Case C consists of two (possibly equal) real roots, with discriminant 82 —4ay > 0 The
quadratic points upwards and as before this is equivalent to v = 0. The left-most root z;
is beyond the right of the interval 0 < ( < 1 at {(k2) =1 so that 21 > {(k) =1

Case D consists of two (possibly equal) real roots, with discriminant 32 — 4y > 0. The
quadratic points downwards so that ¥ < 0. The roots straddle the mterval 0 < { € 1 so

that the left root zy < C(kl) =0 and the right root z; > C(kz) =1.
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C.2 Derivation in one dimension

The converses of all cases follow simply so that equahty exists. To summarise.

Case A & f’—4ay<O0anda>0, (C.2a)

Case B & f(?>—4oy20andy>0and zo =

CaseC & fB°—4oy20andy>0andz =

_ /2
CaseD & A*—4oy>0andy<0and zg= R g
and z; = — _-"82_40721. (C2d)

2y

With mathematical descniptions of the four cases in place, in terms of the coefficients «,
B and «, 1t is left to show the equvalence of the inequalities (C 2a-d) to the conditions
(C.1a,b).

Proposition It will be shown that each of the four cases A, B, C and D imples the
inequalities (C.1a,b).

Case A (C.2a) It 1s given that & > 0 and 5% — 4y < 0.

Consider the case when 2+ 8 £ 0 Then (C.1a) is immediately satisfied

Consider the case when 2a+ 8 > 0. Then o > 0 and 5% —4ay < Oimply v = 0
Adding to each side of the discriminant condition yields 52 — day + 48y + 472 < 487+ 442
and rearranging to complete the square gives (8 + 27)? € 4y(a + 8+%) The left side is
non-negative, so the right side must also be non-negative. Since y 2 Qthena+ g4y >
which 1mphes (C.1b)

Case B (C.2b). It 1s given that v > 0, % —day > Oa.nd:.:g-—ﬁggQE <0

The denominator of zs is positive so that the numerator must be negative. Then
VB2 — 4oy € B so that 8§ > 0. The conditions v > 0 and % — 4oy > 0 imply that
o 2 0. With all coefficients non-negative then 2a+ 8 > 0 and a + 8+ v 2 0 which gives
(C 1b).

Case C (C 2¢): It is given that v > 0, 82 —4ay >0 and 71 = ——‘3——32'6_:@ =1L
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C.2 Derivation in one dimension

The denominator of z; is positive so that 2y + § € —m and then 2v4+ <0
Since v 2 0 then § £ 0. Squanng both negative sides of 27+ 8 £ —-m gives
44y + P =dy(a+B+7) 2P -4ay>0 Smncey 2 0thena+F+v2>0 With
2v+ 3 < 0then -2y — 8 2 0 Adding this to 2ac + 28 4+ 2y = 0 gives 2a + 8 2 0 which
yields (C.1b).

Case D (C 2d): It is guven that v € 0, 82 - 4oy 2 0, 71 = B4/ day £ 0 and

2y
xp = :bfj@ >1

The denominator of x; is negative so that \/,62——4a7 2 3. Both sides are non-negative
so that squaring them gives 5% —4ary > % Thus 4oy < 0 so that a > 0. The denommator
of T2 is negative so that 8+ 2v 2 \/ﬂ_ Since v < 0 then trivially 8 = 8+ 2y
Combining these inequalities gives /02 — 4oy 2 B 2 B+ 27 = —/B% — 4oy so that
18+ 29| € m. Both sides are positive so that upon squaring 82 + 4y2 + 48y <
f* — 4ary. Rearranging gmives 4y(a+ S +) < 050 that a4+ S+ > O since 7 € 0 Then
o+ [+ 2 vsothat a+ 8 2 0 and finally 2a + § 2 0 since a 2 0 which yields (C.1b).

Converse The final part of the proof is to show that (C 1a,b) imples one of the cases
A,B,CorD.

The inequality (C.1b) is split into two cases so that (C.1a,b) become:

(@>0and 20 + 8 < 0 and 8% — day < 0) (C.3a)
or (@a>0and2a+8>0anda+f+v>0and 82— 40y <0) (C.3b)

or (@>0and2cx+B820anda+f+~2>0and 52 — 4oy > 0). (C.3c)

The two mequalities (C 3a,b) both imply case A (C.2a). This leaves the inequality (C.3c)

99




C.2 Derivation in one dimension

which is spht into three cases.

((C.3c) and 2 0 and v > 0) (C.4a)
or ((C.3c) and S <0 andvy>0) (C.4b)
or ((C3c)andv<0). (C.4c)

These conditions (C 4a~c) are examined in turn in the following three cases:

Case 1 (C4a): a > 0 and v > 0 so that 4oy > 0 and thus 52 — 4oy < $% Both
sides are the squares of positive quantities so, on taking the square-root, \/z'p——tl—oTy £8
Rearranging and dividing by the positive value 2y gives z3 = -—‘Gbéiz_z £ 0 so that all
the conditions for case B (C 2b) are satisfied.

Case 2 (C.4b): 2 — 4oy > 0 immediately gives 4oy < #2. 2a+ 4 > 0 and g < 0 imply
that 2a8+5% < 0so that 2 < —208. Combining these inequalities gives 4oy € 8% < —2af3
so that 4ay € —2af. Dividing through by 2a 22 0 yields 2y + 8 <

The inequalities @ + 8+ > 0 and v > 0 imply 4oy + 48y + 4y2 + 82 > B2 so that
after rearranging and completing the square then 2 — 4oy < (27 + )% Smce 2y+ 8 <0
then taking the square-root imphes /B2 — 4oy < |2y + B] = —(2v + B) Rearranging and
dividing by the positive value 2y gives x; = :‘BJ@ 2 1 so that the conditions for
case C (C.2¢) are satisfied

Case 3 (C.4c) @ > 0 and v < 0 1mply 4oy < 0 so that 8% € 52 — 4ay. On taking
the square-root then \/m 2 |/l and since |8 > 8 then \/ﬁi-—_tla'y— = [ After
rearranging and divrding by 2y € 0 then 25 = :@ <0

With o+ 8++ > 0 and y < 0 then 4oy +48v+ 472+ 5% < 2 and, after rearranging and
completing the square, (27 + )% < 6% — 4ay. Taking the square-root gives /3% — dary >
2y + 8] 2 —-(2y + 8) Rearranging and dividing by 2y < 0 gives 2y = iﬂé’:”_ﬁ =1,

completing the conditions for case D (C 2d). D
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C.3 Geometrical interpretation

C.3 Geometrical interpretation

Geometrically the condition (C 1b) can be interpreted as shown in figure (C.2) The value
of the quadratic at { = 0 (pomt A) and at { = 1 (point C) must both be non-negative
and the tangent through ¢ = 0 and { = 1 evaluated at their intersection at { = % (pomnt
B) must also be non-negative. The remaining condition (C 1a) consists of those quadratics

with imaginary roots that have negative values at pomnt B.

Proof The value of the quadratic a + 8¢ + (% evaluated at ¢ = 0 1s & so the inequality
a > 0 states that this value must be non-negative. Siumilarly, evaluating the quadratic at
¢ =1 gives the value a + 8 + v which also must be non-negative by (C 1b)

The tangent to the quadratic a + 8¢ + 1¢2 at { = (o is gven by

(B +270)¢ + a — 7G5 - (Cs)

This intersects with the tangent at { = {; when (8+2v(){+a—7( = (B+27(1)+a—¢E
ie at the midpomnt ¢ = % (¢o+ ¢1). The condition 20+ 820 a+ % = 015 of the form
(C5) with ¢ = % and {p = 0 and thus implies that the tangent through the points ¢ = 0

and ¢ = 1, meeting at { = 1, must be non-negative.

™
AR

Figure C.2- Geometrical interpretation of (C.1b)
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C.4 Application to two and three dimensions

For (C 1a), the discriminant ymplies that the quadratics have imaginary roots. With a
similar argument as above, the condition 2¢ + g < 0 further reduces the set of quadratics
to those that have a negative value at the intersection at { = % formed by the tangents to

the quadratic at { =0 and { = 1. O

C.4 Application to two and three dimensions

Consider a quadratic inequality over three dimensions,

a1+ a3 + a3 + (as + a5 + a6(F) G + (a7 + asCy +aolf) &
+ [a1w0 + @111 + a126F + (013 + @14C1 + 015¢F) G2 + (a16 + 017¢1 + a18¢F) (3] G

+ [a19 + azoCi +andi + (azz + @231 + a24(}) G2 + (@25 + azeCr +a2r¢?) E] 3 > 0,
(C6)

with 0 < (1,¢2,{3 < 1. A trivial sufficient solution is to require all the coefficients a,,
7=1,...,27 to be non-negative, but in practice this 18 too severe a requirement that does
not yield useful conditions for stability.

Instead, (C.1b) 1s applied repeatedly to give a set of 27 inequalities, which if all satisfied
prove sufficency of the inequality (C.6). The non-linear condition (C 1a) is not required m
proving sufficlency

First, (C 6) is wntten in the form a + 8¢ + fng 2 0 where

a = ay+aly +asl + (as+ asC + as(?) G2 + (a7 + asCy + ao(?) (5, (C.7a)
B = aw+an+ a2 + (a13 + a1 + a15¢7) G + (15 + arry + a1s¢?) ¢, (C )

7 = a9+ 000 +axnll + (e + a2y +024(F) & + (a2s + azel1 + a2r(P) G, (C.T¢)

so that (C.1b) is directly apphcable. This gives three inequalities, each of which is agan

quadratic, of the form « + B¢ +¥(Z > 0 (reusing the notation o, 8 and 7). Thus (C.1b)
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C.4 Application to two and three dimensions

can be applied again directly to yield nine imnequalities. The final step involves inequalities
of the form a+ B¢1 +v¢} > 0 so that (C.1b) is again apphcable, resulting mn 27 inequahities.
Thus a complicated non-linear inequality is reduced to a series of 27 mequalities Each

inequality is linear and of the form:

27
Zﬂ-jaJ =0. (C8)

=1
The coefficients r, are hsted in table C.1 (with dashes corresponding to zero)

The first three inequalities are sufficient conditions for the 1D inequahty ey + a2¢; +

e3¢} > 0 (with { = {3 = 0)

a 2z 0, (C.9a)
201 4+a2 2 0, (C Qb)
a1 tay+az = 0. (C9c)

These are the sufficient conditions (C.1b} Similarly, the first mne inequahties correspond

to the 2D case with (3 =0
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C.4 Application to two and three dimensions

Index j of coefficients r,
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Table C.1: Coefficients of the mnequahties (C 8)
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Appendix D

Solution of tri-diagonal systems

D.1 Introduction

The speed at which a scheme can be solved is an important factor to consider when choosing
or designing a scheme Finite difference schemes involve solving banded systems, and in
particular tri-diagonal systems when a module with three spatial pomnts 1s used. For the
particular case of solving such a 1D scheme in parallel, specific methods exist to take
advantage of such capabihties, such as recursive doubling (Stone 1973) and recursive stnding
(Evans 1997). To solve a 1D scheme 1n serial, or a mgher dimensional ADI scheme 1n erther
senial or parallel, a fast method such as the Thomas algonthm (Richtmyer & Morton 1967
§8 5, Mitchell & Gnffiths 1980 §2.5, Sebben & Baliga 1995) as described here is apphcable

D.2 Derivation

The solution 1s sought to a tri-diagonal system of N equations

(b o O 0 0 Y/ a ) [ 4 )

ag bp 2 0 0 Ca da
0 a3 b c3 0 Cs ds
. 1= | o
0 an-2 by-2 cn-2 O Cn-2 dn-2
0 0 an-1 by enN— Cn-1 dy-1
\ o o o0 av b /J\onv /) \ dv )
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D.2 Derivation

Each equation is of the form
a,Cy-1 +b;C;+C¢C;+1 =d,, 1= 1,...,N, (DZ)
with a; = ey = 0 The first equation is written as
1
C]+b—C2="‘—. (D3)
1

Substituting this into the next equation gives a relation m terms of C; and C; and so on,

yielding, in general, the relation
C‘+0101+1=ﬁ|, 3=1,. -,N_]., (D.4)

or, equivalently,
Cia1+ 010, = B, i=2,...,N. (D5)

Thus knowledge of a,, 8, and C, allows previous values C,—; to be calculated in a sweep

back through the system. Insertmg the form (D 5) mto (D.2) removes C,—; to give

G C dl. - a’lﬁt—l (D 6)

for s =2,...,N. Companng (D 4) with (D 6) gives the relations

) 8, = d, —a,f1 (D?)

a, = ) = ’
b, —a,0,1 b, — a1

so that o, and J3, can be calculated iteratively in a sweep forwards through the system. The

initial values a; and B; are found by comparing (D 3) to (D.4) with 2 =1 so that
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D.3 Summary

When 2 = N, (D.1) and (D 7) give any = 0 so that

Cn=0N, (D9)

and thus the final value C seeds the backwards sweep

D.3 Summary

The process of solving a tri-diagonal system involves the steps-
e Calculate o and $ using (D 8).
o Sweep forwards, calculating ¢, and §, for 2 = 2,...,N with (D 7).
e Calculate C'y using (D.9)

s Sweep backwards, calculating C; for : = N —1,.. ,1 with the relation (DA4).
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