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Abstract 

The main work of thls thesis is concerned with the mmparison of conju
gate gradient with hybrid conjugate gradient methods when they are applied 
to optimal control problems. Descriptions of the conjugate gnulient. and 
hybrid conjugate gradient methods, for general optimisat.ion, in finite and 
infinite dimensions are also given. The numerical met.ho<ls fi>r solving the 
differential equations and the line searches require<! in the opt.imisat.iou m·e 
discussed next. 

We have applied seven different numerical techniques to six prnhlems. 

1. Gradient in function space. 

2. Steepest. descent.. 

3. Flet.cher Reeves. 

4. Polak-Ribiere. 

5. Hybrid!. 

G. Angle test Hybrid. 

7. Hybrid3. 

The problems considered are as follows: 

1. A simple reactor control problem. 

2. An unconstrained problem called minimum drag (MD). 

3. A discontinuous optimal control problem consist.in!', of a singular me 
followed by a nonsing;ular arc. 

4. An optimal control problem with fixed ell<! points. 

5. A nonlinear continuous stirred-tank reaetor. 

6. A nonlinear singular control problem. 

The methods are compared from the point. of view of accumcy of the cost. 
function, convergence rate and finally the wmputing tin w taken. 

In all the computational exercises at.t.empte<l in this wmk the prognumning 
is done in the Fortran language. 

The first problem is run on the Prime b operating syst<eHI, all< I the other 
five problems are run on Hewlet.t. Pac&1.rd (HP-UX) systen1. 

In the final chapter a critical comparison of the hyhri<l In<et.hnds ag<tiust 
the conventional methods is umlertaken. 



Chapter 1 

INTRODUCTION 

1.1 Introductory 

Nowadays as computing facilities are improved greatly, we can compare 
different techniques of optimization more effectively, but nevertheless since 
there are several techniques for solving optimal control problems, it may not 
be easy to choose the best out of all and it seems that each single method 
has some advantages over the others. However certain types of problems may 
perhaps best be tackled by one specific tedmique compared with any other, 
and as computational experience increases it may well be possible to type 
cast problems in this way. 

1.2 Introduction to Optimal Control 

1.2.1 The General Optimal Control Problem 

It is well known that the fundamental problem of optimal control theory 
can be formulated as a problem of Bolza, Mayer or Lagmnge. These three 
formulations are quite equivalent to one another (Bliss, 1946) [1 ]. 

The problem of Bolza in optimal control theory is the following. Detennine 
the control function ~1( ·) which minimizes the cost functional 

where the system equation is 

subject to the constraints 

.i: = f(x, ·u., t) 

:~:(to) = Xo 

1¥[.7:(tt), ttl = 0 

1 

(1.2.1) 

(1.2.2) 

(1.2.:3) 

(1.2.4) 



u(·) is a member of the set U, t a member of the interval 

(1.2.5) 

Here x is an n-dimensional state vector and u is an m-dimensional control 
vector. The function Land F are scalar and the terminal constraint function 
W is an s-dimensional column vector function of x(t,) at t,. 

The functions L, F and 'It are assumed smooth. The set U is defined by 

U = { u( ·); u; ( ·) is piecewise continuous in time, 

lu;(t)l < oo, to ::c:; t ::c:; t,, 
i=1,2, ... ,m}. (1.2.6) 

The initial time to is given explicitly but the final time t 1 may be unspecified. 

The n-dimensional vector function f of equation (1.2.2) and the scalar 
functions F and L are assumed to be at least twice continuously differentiable 
in each argument. 

1.2.2 The First Variation of J 

Introducing the Hamiltonian function for the problem of Bolza in optimal 
control theory as 

H(x, u, >., t) = L(x, u, t) + >.T f(x, u, t) (1.2.7) 

The following necessary conditions (Pontryagin's principle) can be shown to 
hold along an optimal trajectory (refer to Bell & Jacobson (1975) [132]): 

where 

->. = Hx(x, u, >., t) 

>.(t1) = Fx[x(t1), t1] + W~v 
H(t1) = -Ft[x(t1 ), t1]- w[ v 

u = arg minH(x, u, .>.., t) 
u 

u(·) a member of U. 

(1.2.8) 

(1.2.9) 

(1.2.10) 

(1.2.11) 

Here x(·), u(·) denote the candidate state and control functions respectively, 
.>..(·) denotes an n-dimensional vector of Lagrange multiplier functions of 
time, and v is an s-dimensional vector of Lagrange multipliers associated 
with Ill. 

2 



1.2.3 The second variation of .J 

A further necessary conclitinn for a minimizing m·e is known in the dasskal 
literature as the .Jam hi condition. The .Jam hi conclitionmay be stated as fol
lows (Bryson ancl Ho, HJG!J) [2]: an optimal trajectory contains no conjugate 
point between its encl points. This will be thee caste if the matrix 8 remains 
finite for tu:::; t:::; t1 where S satisfie-S the matrix clifferent.inl ecputtion 

-S' = Hn + 8f, + j'[S- (!{,.. + SJ,.)H.,-;,~(H,., + f.~S (1.2.12) 

at end condition 
S(t1) = <I•;,"[:r:(t1 ), t1]. 

where <I>(:r:(t1), t1) = F+ 1/TI!J. 

1.2.4 Singular Control Problems 

(1.2.1:3) 

The class of prohlt:lliS to which t.his mtalysis appli"s is t.hte following: 
tennine the control ·u'(t:), t E [l:u, t.rJ, which lllillillliz"s the fnnd.innal 

{tf 
.J(u) = F(:r:(ti), t1) + ./,, [Lu(t, :~:) + L,(l., :r)u]dt (1.2. 14) 

where the syste1n <e<Jnation is 

:i: = fo(t, :r:) + f,(t, :D)u (1 ') le) . .... ., 
suhjeet to the constmint.s 

IH(t)l :<:: k(t) E [tu, t,], (1.2.1G) 

{tu. :r:(lo), ft, :I:(t,)} E S'. (1.2.17) 

Here .1: is all n-ved.or mi<l 8 is 11 dos.,<l snhsd of H2"+2
• The functions 

J0 , J,., L0 , L,. are II.'H111Jt<e<l to he analyt'.ic in both arguments in a snit;thle 
domain k(t) is nssui!H·:cl to hce ;umlyt'.ic in 11 lldghhourhno<l of each junction 
ancl lu(t)l < k(t) almost everywhem on the singular snhans. Of course, the 
usual case l·ul :<:: k with k = <xmst is indn<k:cl as a spedal case. We restrict 
attention to a scalar <:cmtrol in onlc·:r to silnplify notation. 

A similar analysis hnlcls for e;tch eolliJ><ment of a vced.or control. Clearly, 
the Hamiltonian for this problem is litwar ill the: collt.rol, i.e:. 

H(t, :r:, .\, u) = _xT fu(t,- :r:) + Lu(t, :r:) + [.\Tf,(t, :1:) + L.,(t, :r:)]u. (1.2.18) 

The multiplier equation~ ane given l>y; 

~ = -H,(t, :1:, .\, u) (1.2.FJ) 

where Hx is linear in '11 .. Th" cod'ficic,nt. of u in (1.2.1K) is callcctl the switching 
funet.ion, whieh we shall '].,si)!,natce ns </1(1.), i.e. 

<W) = H,.(t, :1:(t), .X(t)). (1.2.20) 

The mininnun prindpl<e (i . .,. Pollt.ryn)!,in'~ llliiXillllllll prillciple in a minimum 
form) states that for ahnosl every/. E [l:n, t 1] awl <each u sat.is(ying lu(t)l :<:: 
k(t), the optimal collt.rol u''(t) umst. sat.is(y; 

H(t., :r:(t), .\(!), u'(t)) :<:: II(t, :J:(t.), .\(1:), u(t)). (1.2.21) 

Therd(me, as i~ wdl kiiOWll, 011 <:<lc:h oj><·'ll suhiut.erval of [t.n, I: I] t.!Hene ane two 
clistinct. J><>~~ihlit.ie~ for u''. 

., ., 



Either 
u*(t) = -k(t) sgn <f>(t) (1.2.22) 

or 
<t>(t) = 0 (1.2.23) 

Equations (1.2.22) and (1.2.23) define, respectively the nonsingular and sin
gular subarcs of the optimal control. The class of problems defined above 
will be called singular control problems, even though only a portion of the 
total trajectory may be singular. 

1.2.5 Necessary Conditions for Singular Optimal Con

trol 

The following definition will clearly clarify the terminology used in this 
section. 

Definition 1. Let u be an optimal singular control on the interval [tl> t2], 

and let (tfqjdt2q)[Hu(x, A, t)] be the lowest order total derivative of Hu in 
which u appears explicitly with a coefficient which is not identically zero on 
[t1, t 2]. Then the integer q is called the order of the singular arc. 

Implicit in this definition is the property that u first apears explicitly in 
an even order derivative of Hu; i.e. it is correct to refer to q as an integer. 
For a proof of this property see Rob bins (1967) [3]. 

When the control is a scalar, Kelley (1964) [4] deduced a new necessary con
dition for a singular optimal control by studying the second variation under 
a special control variation. Kelley's method was geberalized by Tait (1965) 
[5], Kopp and Moyer (1965) [6], Kelley et al. (1967) [7] to give what has 
since become known as the generalized Legendre-Clebsch condition (Kelley
Contensou test): 

8 tfq 
(-1)q

8
udt2qHu(x, A, t) 2:0 (1.2.24) 

where the integer q is the order of the singular problem. 

The generalized Legendre-Clebsch condition for a vector control was ob
tained by Robbins (1967) [8] and Goh (1966) [9]. In this case the controls 
can appear in an odd time derivative of Hu but if this does occur then there 
are necessarily exists a control u in U such that the second variation is nega
tive (for a minimization problem). Hence, the generalized Legendre-Clebsch 
condition for vector control is 

and 

8 dP 
.,-d Hu = 0 for all tin [to, t1] p odd 
vU tP 

8 tfq 
(-1)q---H > 0 for all tin [to, t,]. 8udt2q u-

4 

(1.2.25) 

(1.2.26) 



1.2.6 Sufficient Conditions and Necessary and Suffi

cient Conditions for Optimality 

By establishing the generalized Legendre-Clebsch condition Research be
gan into finding a generalized sufficient conditions for the nonsingular prob
lem. Before such a generalization was found, a new necessary condition for 
non-negativity of the singular second variation, not equivalent to the gener
alized Legendre-Clebsch condition was derived (Jacobson, (1!JG9, 1970) [10]. 
This set of new conditions known as Jacobson's condition are as follows: 

where 
-Q = Hxx + /[Q+Qfx 

Q(t,) = Fxxf.'t(tf), t1J 

(1.2.27) 

(1.2.28) 

(1.2.29) 

assuming that the matrices Hxx 1 H, .. , fx and f,. are suffieiently differentiable 
with respect to time, and the partial derivatives J,., H,« and fx are all eval
uated along the singular arc x(-), u(-). A strong version of this condition is 
given by Mayne (1973) [11]. 

It has been shown by Jacobson (1970) [12] that in general the general
ized Legendre-Clebsch condition and the Jacobson condition together are 
not sufficient for optimality. A sufficient condition for a weak local minimum 
in a non-singular problem is that the second variation he strongly psoitive 
(Gelfand and Fomin, (1963) [13]. This condition gives rise to a well known 
matrix Riccati differential equation. In singular problems the seconrl varia
tion c.an not be strongly positive (Tait., 1!JGfi) [4], (Jolmson, 1!JGG) [14] but 
investigations have shown that Riccati-type conditions· do exist for the sin
gular case. Jacobson (1970) [10], using a direct approach, derived sufficient 
conditions for the second variation to be non-negative in both singular and 
nonsingular control problems. These conditions are that there exist a real 
symmetric bounded, matrix funetion of time P(·) such that 

H,.x + J,~ P = 0 fortE [to, t1J (1.2.30) 
. T 

P + Hxx + fx P + P fx ~ 0 fortE [to, t,] (1.2.31) 

and 
zT[Fxx + vT'lixx- P]t, z ~ 0 

where z is then x (n- s) matrix 

(1.2.32) 

(1.2.:n) 

and the s x 8 matrix D1 and the 8 x (n- s) matrix D2 are such that 

(1.2.34) 

The above conditions in strengthened form are sufficient. conditions for a weak 
relative minimum. It is demonstrated that the two ne~essary conditions fin· 
sin!,'1ilar optimal control discussed in section 1.2.5 above, are implied by 
the new conditions for the case of totally singular control and tmccmstminecl 
terminal states. 



A general sufficiency theorem for non-negativity of a large class of second 
variations was presented by Jacobson (1971) (15] for the partially singular 
case. It is that there should exist for all t E [to, t 1] a continuously differen
tiable, symmetric, matrix function of time P( ·) such that 

. T 

[
P+Hxx+Pfx+fxP Hx .. +Pf,.] ~O 

Hux + /,r P H1m 
(1.2.35) 

fortE (to, t1], together with (1.2.32- 34). 

Jacobson then applied this condition to both the totally singular case m1d 
to the nonsingular case. Sufficient conditions were thus obtained for the two 
special cases, demonstrating tlk'tt both singular and nonsingular second cari
ations can be treated in a common general framework. The results developed 
by Jacobson m1d Speyer [H3] through the trm1sformation approad1 and the 
limit approach lead to the conclusion that the sufficiency conditions m·e also 
necessary for optimality for a large class of problems. In the nonsingular 
case the well knwon Rkcati differential equation emerges and since this is 
known to be a necessary condition for the nonsing1.ilar second variation, this 
implies that the sufficiency conditions of the theorem are also necessary. In 
the sing1llar case the algebraic and difierential inequalities (1.2.30 - 32) in 
strengthened form are obtained and these have been proved necessm-y m1<l 
sufficient conditions for optimality in the 1971 papers of .Jacobson and Speyer 
[16]. Thus, in the sing1.1lar case, the sufficiency conditions me also necessary. 

1.2.7 Outline of Chapters 

The !1k<tin work of this thesis is contained in Chapters 4 to 9. Chapter 2 
describes the conjugate gradient m1d Hybrid conjugate gradient techniques 
in general optimization in finite dimensions and infinite dimensions. 

Chapter 3 deals with the numerical work put into solving the differen
tial equations m1d line seard1es involving the problems. In Chapters 4 to 9 
we tackle some practical problems by using conjugate gnulient and Hybrid 
conjugate gradient methods, also at the end of each chapter the compari
son of the methods and the advm1tages and disadvm1tage.9 of each individual 
method over the other are discussed in details. 

Finally, Chapter 10 is the mnclusion. 

1.2.8 The Problems Considered 

The six problems considered in this work are outlined in Chapters 4 to 9. 

In problem 1 a simple control function problem taken from Abdul Wahab 
Jusoh (1979) (17] is cxmsiderec\. The problem is first. solved Analytically and 
then numerically using conjugate gmdient and Hybrid conjugate g,Taclient 
techniques developecl by D. Tnuati Ahmed and C. Storey (1987) [18]. 

G 



In problem 2 an unconstrained problem called Minimum Drag (MD) taken 
from S C Carg (1977) [19] is tackled numerically using conjugate gradient 
and Hybrid conjugate gradient methods. 

In problem 3 a discontinuous optimal control problem consisting of a sin
gular arc followed by a nonsingular arc taken from E R Edge and W F 
Powers [20] is solved analytically and also by conjugate gradient and Hybrid 
conjugate gradient techniques. 

In problem 4 an optimal control problem with fixed end points is consdiered 
taken from Barnett and Cameron (1985) [144], and is solved analytically, and 
also numerically using conjugate gradient and Hybrid conjugate gradient 
teachniuqes. 

In Problem 5 a non linear continuous stirred-tank reactor taken from Rein 
Luss and Marco Galli (1990) [21] is considered and tackled by conjugate and 
Hybrid conjugate gradient methods. 

Finally, in Problem 6 a non-linear singular control problem taken from 
Rein Luss (1990) [22] is solved using conjugate and Hybrid conjugate gradient 
teachniques. 

In all the computational exercises attempted in this work, the program
ming is done in the Fortran language. 

The first problem is run on the operating system Prime b, and the other 
five problems are run on Hewlett Packard ~HP-UX) system. 

1.2.9 Some Notations Used Throughout the Thesis 
For convenience we use the following abbreviations in this thesis: 

A = Analytical Solution. 
ACC = llgJJ = ACCURACY. 
AT H = Angle test hybrid. 
Cputime = Computing time in seconds. 
eabs = Absolute error. 
FR = Fletcher-Reeves. 
G F S = Gradient in function space. 
G LC = Legendre Clebsch condition. 
h = Integration step. 
H1 = Hybrid 1. 
H3 = Hybrid 3. 
K = Coefficient of the penalty function. 
m = Number of iterations. 
N = Integration step number. 
PR= Polak-Ribiere. 
SD =Steepest descent. 
u0 = Initial control. 
c = Step length factor. 
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Chapter 2 

CONJUGATE GRADIENT 

AND HYBRID CONJUGATE 

GRADIENT METHODS 

2.1 Finite dimensional problems 

The basic problem here is to minimize a scalar fund.ion L of parameters 1r 
subject to constraints: 

min L(1r), 1r E P ~ FJ' 

with j(1r) = 0, j(1r) E E" 

h(1r) S 0, h(1r) E E'~ 

(2.1.1) 

(2.1.2) 

(2.1.3) 

where L is a single valued mapping from P, a subset of t.he p-dimensional 
real Euclidean space EP, to the real line E'. In most. eases conditions on 
continuity and differentiability of L( 1r) are required. The functions f and h 
are vector-valued mappings from P to E" and E'~ respeet.ively, where n < p 
and the region R formed by the intersection of the constraints is <1.~sumed to 
be nonempty in order that a solution exists. 

The equality constraints f mean that there are m= p-n free parameters 
to minimize L subject to (2.1.3). In most methods, constraints f and h are 
also required to possess continuous derivatives to the first or second order. 

These requirements will not be detailed further and will be tacitly <1.~
sumed to be met, except when convergence theorems are stated. 

A classical treatment of the equality constrained problem is the theory 
of maJdma and minima as discussed, for example by Hancock (1917) [23]. 
Recent developments in this field have occurred mostly in 1950's and onwards. 
Several textbooks and monogmphs are available on general [24-29] and more 
specialized [30 - 34] aspects. The unifying concepts of funetional analysis 
have been used to carry over many of these results to the infinite-dimensional 
<:<'lse, also the unconstrained optimal control methods are all extm1sions, both 
basically and historically, of their finite-dimensional ;umlogs. 
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2.1.1 Types of problems 

There can be a classification according to special clmracteristic.s of the func
tions L, h and f. We define some of these terms here. References are g,iven 
for specialized topics. 

Unconstrained optimization: Here f and h are absent, and the dassical 
theory of maxima and minima applies [23, 27]. 

Penalty FUnctions: In these methods, L is augmented by suitable func
tionals of f and h to generate a sequence of unconstrained problems whose 
solutions converge to the solution of (2.1.1 - 2.1.3). 

Mathematical Programming (MP): These problems are formulated so 
that f is absent. Conceptually, of course, f = 0 is equivalent to (! :2: 
0,- f :2: 0), but this device is troublesome in practice. Linear Prog,nunming 
(LP): An important special case of MP where L and h are linear in 1r. A 
formulation of LP is often used where inequalities are converted into equali
ties (i.e. h absent but f present) by introducing extra variables called 'slack' 
variables. Note that in the absence of inequality c.onstmints, a linear func
tion has no maximum or minimum [31]. Quadratic programming: A special 
case of MP where the c.onstraints are linear hut L is quaclratic in rr, i.e., 
L = rrT Qrr + bT 1r + 11 [24, ch.8]. 

Nonlinear Programming: A general tenn used when some or all of L, f 
and h are nonlinear. Usually reserved for the case where h is nonlinem· and 
L non-quadratic. Equality constraints may or may not be present [82, 88]. 

Geometric prognunming: A class of specialized but sometimes very ef
fective methods for MP when L, h are polynomials in 1r; haserl initially on 
Cauchy's inequality between arithmetic and geometric means [20]. 

Integer Prog,ramming: A special case of LP, frequently mHxmntere<l in 
industry, where the elements of rr are restricted to be integers. 

Classical techniques do not apply here [35]. 
Dynamic Programming: A powerful technique for problems not usually 

of the form (2.1.1), but representable as a multistage decision process [23]. 
It is mentioned here only bemuse some integer programming problems lend 
themselves naturally to it. 

Separable Programming: A special case of LP where L and h are sums 
of functions of a single variable: 

(2.1.4) 

This special structure enables dynamic progran1ming to be used. It also 
makes it possible to solve larger LP problems [24]. 

It can be seen from the above that these problems can he divided into 
two basic types: 

Unconstrained problems and constrained, i.e. mathematical program
ming problems. 

Linear pi·ogramming is a special case of the latter which has found a very 
large number of applications in business, operational research ami some as
pects of eng,ineering desig,n, where a large number of variables alHl constraints 
are present. It is also unique in that the global minima can he found. The 
size of these problems can be up to several thousands of variables. An im
portant practical origin of nonlinear unconstrained prohhems is in nonlinear 
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least-square curve fitting, while constrained nonlinear problems arise rou
tinely in design, with many inequality constraints. Wlien the functions are 
mildly nonlinear, linear programming methods can sometimes be applied suc
cessively. A problem to which not known solution exists in the general case 
is to determine the global minimum on a ~:,>iven set. In many cases it cannot 
even be proved that an algorithm converges to a local minimum, as distinct 
from a stationary point. 

Most theoretical results are available only for convex (e.g. quadratics 
with positive definite Hessians) functions Land constraints, a condition that 
cannot be easily verified in most practical problems, except in lint>~<tr pro
gramming where it exists by definition. 

The current situation for strongly nonlinear problems with many con
straints and variables is not entirely satisfactory. 

It is essential to rely on experience and intuition, both of which fail pro
gressively as the dimensionality of the problem increases. 

Now we shall review some existing g,Tadient and mnjugate clirect.ion algo
rithms for finite-dimensional problems. It is not intended here to duplicate 
the detailed discussion available in several books, only to present a brief 
survey. 

2.2 Descent Methods and their Convergence 

Properties 

We wish to consider methods that. in addition to using function values also 
make use of the g,mdient of the objective function. Descent methods form 
a class of method in whicl1 the solution of the general unconstrained mini
mization problem: 

minf(x), x E IR" (2.2.1) 

is bound by solving a sequence of one dimensional problems. From the point 
of view of practical computations conjugate direction methods are one of 
the most important descent methods for solving the genera.! unconstraine<l 
minimization problem (2.2.1). 

It is assumed that in the neighbourhood of the minimum, the function 
can be closely approximated by a positive definite quadratic form, and this 
is the major assumption made in the development of descent methods in 
general. 

When we apply descent methods, we attempt to move from the current 
point .r<kl in such a way as to reduce the value of the objective function f. 

Each descent method is characterised by the provision of a descent vector 
s<k) at each iteration k (Search Direction), and the next point, :x:<k+I), is found 
by solving the one dimensional minimum problem, in which the function to 
be minimized is: 

(2.2.2) 

Geometrically, we proceed in the direction s(k) to lowP-r and lower level sur
faces until :x:<k+I) is reache<l. 
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·-------
As f can not be reduced in this direction, s<k) must lie in the tangent 

plane to the level surface through x<k+t). Therefore when exact line search 
is applied we have: 

(2.2.3) 

where g<k+t) = \1 f(x<k+l)) denotes the gradient fat :~:<k+t>. See Fi!;ure 2.2.1 
below: 

-g<k+l) 

Figure 2.2.1: The descent vector ,s(k) lies in the tangent plane to the level 
surface through x<k+l). 

The following property is satisfied at iteration k of a descent met.!K><i: 

(2.2.4) 

The property (2.2.4) is called the descent property ami ,s(k) is said to he a 
descent vector. 

In descent methods, the descent vector s<k) is usually a certain transfor
mation of the gradient of f at :z;(k) : 1/k>. We could say that all descent 
methods use the basic iterative step: 

(2.2.5) 

where B is a matrix which defines a transformation of the gradient and a is 
the step length in the direction ,s(k) = B.g<k). What is important here is to 
choose a suitable direction s<k), in other words how to choose a suitable trans
formation matrix B of the gradient g(k). In contrast to the one-dimensional 
case, where the only moves are in the positive or negative directions, even in 
two dimensions there are a finite number of possible choices. Before consider
ing a specific algorithm, we shall first consider some necessary and sufficient 
conditions for the convergence for descent methods. 

2.2.1 Some theorems on convergence of descent meth-

ods 

In order to establish the convergence of descent. metlwds, it woulcl be con
siderably easier by considering a model algorithm. All descent methods have 
the basic general form of the model algorithm below: 

Step 1: Set k = 1 
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Step 2: Compute a descent search direction s<k) =f 0 
Step 3: Compute a step length oikl such that 

f(x(k) + a(k)s(k)) = min f(:r:(k) + as<kl) 
"' 

This is called a line search. 
Step 4: Compute x<k+t) = x<kJ + as<kl 
Step 5: Has the process converged? Yes: Then x(k+!) is the required 

minimum. No: Set k = k + 1 then go to step 2. Since the search di
rection s<kJ computed in step 2 is a descent direction, it follows that there 
must exist a > 0 such that f(x(k) + as<kl) < f(:r:<kl). The requirement 
f(x(k+!)) < f(x<kl) by itself is not sufficient to ensure that the sequence 
{ x<kJ }keJN converges to a minimum of f. Ideally a<kJ is chosen to solve the 
one-dimensional minimization problem 

(2.2.G) 

but in practice however, an exact solution to problem (2.2.(1) is not. usually 
possible and one accepts any value of a<'•l that satisfi<e<l c<ertain stmHlanl 
conditions. 

Let x<tJ be an arbitrary stmting point. for a descent md.hod of the form 
of the model algorithm above to solve the problem (2.2.1 ). The levd set for 
this problem is defined as follows: 

{x E IR": f(x) ::S j(:1Pl)}. (2.2.7) 

We also introduce: 

(2.2.8) 

where (J(k) is the angle test between the negative gmdi<ent -u<k) and the semch 
direction s<kJ. 

cos((J(k)) > 0 holds for all descent methods. 
The following convergence theorem has been established. 

Theorem 2.2.1 (Zoutendijk (1976)) [36] 

1. Suppose f is twice mntinuously differentiable in (2.2.7); 

2. (2.2. 7) is bounded; 

3. The Hessian mattix H(x) of second partial derivatives off is boumlerl 
in (2.2. 7); 

4. a<kJ = Argminf(:r:(k) +as<kl) 
o>O 

5. I:; cos2 ((J(kl) = +oo. 
k 

Then \1 f(x) = 0 for at least one point of accumulation :I: of the sequence 
{ x<k)} generated by the model algorithm. 
Theorem 2.2.2 (Zoutendijk (1976)) [36] 

If in Theorem (2.2.1) condition (5) is replaced by the t<>llowing condition: 

(5'). :Jk' E N aJHl 3(1 > 0 : Vk 2:: k' cos(O(kl) 2:: (I > 0, 
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then \1 f(ft) = 0 for all points of aecumulation :1: o( the sequence {:~:<kl} 
generated by the model algorithm. 

The conditions for theorem 2.2.1 to hold are quite reasonable. The second 
condition prevents infinite solutions and in pmticular mnvergenee of f(:~:<kl) 
to a finite value while x<k) -> ±oc. 

This will exclude functions sueh as e-x that m·e hounded below but. 
strictly decreasing as jjxjj bemmes infinite. The third condition is eligi
ble to hold if only the first condition holds, and it puts a restridion on the 
curvature of the objective funetion. It r.an be expeeted that functions with 
unbounded second partial derivatives will cause some problems. The fift.h 
condition states that the angle between the negative gmdient and the search 
direction should not go to ~ too rapidly. This is strengthened in theorem 

2.2.2. A limit should exist on the closeness of s<kl to orthogonality with the 
negative gradient. This prevents s<kl to be clwsen so that. to first order, f 
is almost constant along s<kl which will only occur if 8(k) is almost. parallel 
to the first order approximation to the contour line J(:r:) = f(:r:<~'>), so that 
the negative gradient and the search direet.ion are almost orthogonal (i.e. -
\1 J(x<kl)T s(k) /ll"il J(x<kl)iiiis<k)ll is dose to zew). The stronger requir·ement 
(5') implies strong convergence ("il f(x) = 0 for all poiirts of accumulation); 
mndition (5) only implies weak cunvergence (there exist a point of accumu
lation x with \1 J(.'i:) = 0). If there is only one point of accumulation, which 
is usually the c,ase in practiee, then it does not make any differenee; if there 
is more than one point of aeeumulat.ion. Then they obviously all have the 
same value. The type of convergence result, that has just been mentioned, 
is termed "Global Convergenee", since there is no rest.rietion on the close
ness of x<1l to a stationary point. For more details on global convergence we 
ean refer to Ostrowski (19GG) [37], Wolfe (19G9) [38], Sargent and Sebastian 
(1973) [39], Polak, Sargent and Sebastian (1974) [40], Zoutendijk (1970) [41] 
and (197G) [3G], Fletcher (1980) [42] and Gill Murray ami Wright (HJ81) [4:~]. 

Even if it can be proved theoretically that a sequence {:~:<klhEIN generated 
by the model algorithm above will converge in the limit to the required 
minimum, a method will be practicable only if convergence occurs with some 
rapidity. Global convergence does not give a measure for this rapidity and 
therefore gives no idea pract.ieally ori the efficieney of a method. Now we 
try to discuss briefly some means of characterizing the rate of convergence 
at which such sequences converge. 

Let {x<kl}kEIN be a sequence of points generated by.the model algorithm 
above, converging to x*. In order to simplify the discussion, we assume that 
the elements of this sequence me distinct, and for no value of k does .1:(k) 

equal x*. 
An effective technique for judging the rate of convergence is to compare 

the improvements at two consecutive steps, i.e., to measure the doseness of 
x<k+I) to x* relative to that of :r:<kl to x*. 

A sequence {:z:(k)hEIN is said to converge with order r, if r· is the largest 
number such that 

-.- llx(k+l) - :1:* 11 
0 < Inn < oc 

- k-oo ii:r:(k) - :r:* 11'" 
(2.2.9) 

r is usually known as the asymptotic mte of convergence. 
If r = 1, the sequence is said to have linear c<mvergerHxe mHl if r = 2, it 



is said to have quadratic convergence. If the sequence { :r;(k) he"' has order of 
convergenc.e r, the asymptotic error constant is the value "( that satisfied: 

-.- !lx(k+I)- x*ll 
'Y = hm . k-"' llx(k)- x*W 

(2.2.10) 

when r = 1, 'Y must be strictly less than 1 in order for convergence to occur. 
If a sequence has linear convergence, the step-wise decrease in ll:1;(k)- x*ll 

varies substantially with the value of the asymptotic error constant. If the 
latter is zero when r = 1, the associated type of convergence is given the name 
superlinear convergence. Any value of r greater than 1 implies superlinear 
convergence. The importance of superlinear convergence is if it holds then 
-.- llx(k+I) - x<k) 11 . . . . 
J~ llx(k) _ x*ll -+ 1 so that that closeness of successiVe Iteratwns IS 

an indication of the closeness of x<kl to x*. For more details about rates of 
convergence we can refer to Polak (1971) [44], Wolfe (1978) [45] and Gill, 
Murray and Wright (1981) [43]. 

2.2.2 Steepest descent method 

Steepest descent method is one of the oldest and ea.~i<est methods for finding 
a solution to the general problem (2.2.1). 

The method was first proposed by Cauchy ( 184 7) [ 46] for the solution of 
systems of nonlinear equations. 

The algorithm for the steepest descent methorl is M follows: 

l.Setk=l 

2. Compute "V f(x<kl) = g<kl. 

3. Compute a(k) such that j(J;(k)- a<klg(k)) = n~!n j(:I:(k)- ag<kl). 

4. Compute x<k+I) = :r;(k) - ag<kl. 

5. Has the process converged? If yes then x<k+I) is the required minimum 
if no set k = k + 1 Go to (2). 

Consider the linear approximation to f based on the Taylor series expan
sion about x<kl: 

(2.2.11) 

If we assume that a step of unity is taken along s, it will appear that a 
good way to achieve a large reduct.ion in f(x) is to chooses so that g<kJT.s 
is large and negative. Naturally some normalization must be imposed on s, 
otherwise for any .s such that y(k)T;<J < 0, one would simply choose s as an 
arbitrary large positive multiple of s. The aim, is to chooses so that amongst 
all suitably normalized vectors, g<k)T s is minimum. . 

Given some norm 11.11, s(k) is thus the solution of the minimization prob
lem: 

(2.2.12) 
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The solution of the problem (2.2.12) depends on the choice of norm. When 
the norm is defined by a given symmetric positive definite matrix, C say, i.e., 
llsllc = (sTCs)~, the solution of (2.2.12) is: 

(2.2.13) 

The matrix B defined in (2.2.5) used as a transformation of the gradient. is 
in this case B = -C-1• 

If the two-norm is used, i.e. s = (sT s)!, the solution of (2.2.12) is just 
the negative gradient: 

(2.2.14) 

In this case we have B = -I, where I is the identity matrix. 
Since (2.2.14) solves (2.2.12) with respect to the t.w<; norms, the negative 

b'l·adient direction s<kl in (2.2.14) is termed the direction of steepest dt'.scent. 
and the algorithm using this direction at every iteration is called the steepest 
descent algorithm. 

Unless the gradient vanishes, the steepest descent (liredion is clearly a 
descent direction, since the vectors s<k) and y<k) are hounded away from 
orthogonality and the directional derivative is such that 

!/(k)T8(k) = -y(k)T y(k) < O. 

Consequently a suitable line search technique, may he combine(! with the 
steepest descent. algorithm to yield a method with guaranteed global conver
gence. 

Unfortunately, a proof of global convergence for an algorithm does not 
ensure that it is an efficient method. Although this method is useful for 
a large class of well conditioned problems, experienee has shown it is too 
slow. Kowalik and Os borne (19G8) [27] discuss some of the reaBons for this 
inefficiency. 

The weakness of the method is mainly due to the fact that the sem·ch 
directions generated by the algorithm are not linearly hidepemlent. However 
the fact that the method only uses successive linear approximations to the 
objective function is another fact.or in its efficiency. The steepest. descent. is 
shown to have at best a linear rate of convergence. When applied to quadratic 
the rate of convergence is 

. (>w- >.m) 
n.e.c (asymptotic error constant) :::; (.>. ), ) M+ m 

for proofs of global and local convergence we can refer to Gill, Murray and 
Wright (1981) [43]. 

2.3 Conjugate Gradient Methods and their 

Convergence Properties 

In order to overcome the weakness we faced in using the steepest descent 
method described in section 2.2.2 we introduce the conjugate gnulient meth
ods. TheHe methods were originally proposed hy H<eHteJWH mHl Stiefel (1952) 
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[47] for the solution of systems of linear equations and are theref(Jre based 
on the assumption that in the neighbourhood of a nondegenerate minimum 
point, a ftmction behaves like a quadratic function. These methods were 
adapted later as methods for optimisation by Flet.eher and Reeves (1964) 
[48]. 

For problem (2.2.1), a quadratic model at :x:<k) is 

(2.3.1) 

where 

(2.3.2) 

and [J(k) E R"x" is an approximate to the Hessian at :1:, or is the Hessian 
itself. Let [J(k) = G(k) and write p(k) as 

(2.3.3) 

Two distinct nonzero directions s<•> and s<i) are saicl to hP. eonjugatP. to P.aeh 
other with respP.ct to G(k) if 

If we have a set of n mutually conjugate directions s<•>, ... , s<k-l), thP.n by 
carrying out exact line seard1es along eacl1 direction (assume they are descent 
directions and G(k) is positive definite) we shall find the minimum of (2.3.:3) 
within n steps. 

The sea.rch directions generated by conjugate gmclient algorithms are of 
the form: 

(k) _ { -y(k) if A: = 1 
s - -y<k) + [J(k)s(k-1) if k > 1 (2.3.4) 

where f3 can be calculated by one of the following formulae: 
Hestenes and Stiefel (1952) [47]: 

(k) C1P+I) - y<k>JT y<k+l) 

(3 HS = (y(k+!) _ y(k)T)s(k) 

Fletcher and Reeves (1964) [48]: 

Daniel (1967) [49]: 

Sorensen (1969) [50]: 

,
1
(k+I)T G(k+l) 8(k) 

(J(k)' 
D "-.-c~(""'k)"'T:-:Q~(-,-k+-:cl") s-c·("'k ),..-

• IJ(k+!)T(IJ(k+l) - iJ(k)) 
(J(k) = ' . . 

s 8(k)T(y(k+l) _ g(l·)) 

lG 

(2.3.5) 

(2.3.G) 

(2.:3.7) 

(2.:3.8) 



and 
-g(k+I)T(y(k+l) _ y(k)) 

flcs = s(k)T y(k) (2.3.9) 

Polak and Ribiere (1969) (51]: 

(k) _ y(k+!)T(y(k+l) _ !/(k)) 

flPR- y(k)T.y(k) 
(2.3.10) 

Dixon (1972) (52] attributes the following formula to Myers: 

(k) _ y(k+I)T !J(k+l) 

flv - - s(k)T.g(k) 
(2.3.11) 

Lin and Storey (1991) (53]: 

where 

s(k+l) = (ny(k+I)T 8(k) _ ty(k+!)Ti/k) + ('u,g(k+!)T!I(k+l) _ vg<k+I)T 8(kl)s(k) 

'W 

and 

and 
1t = y(k+I)T G(k+l) 8(k). 

Generalized Polak-Ribiere (1992) (54]: 

where 

and 

{Jg~R = -y(k+I)T(y(k+l)- !Pl)jg(k)T.-.;(kl 

8 = min(l, .fii/V s(k)T_s(k)) 

!J(k) = g(x(k+l) - o.s(kl). 

(2.:U2) 

(2.3.13) 

When all these fJ are used on quadratics with exact arithmetic and start 
with the steepest descent direction on the first iteration they are equiv
alent. When they are used on general non-quadratic functions, we do not 
try to minimize the quadratic approximation (2.3.3) at .1:(k) by using several 
iterations of the conjugate gradient method on it, as this would lead us to 
the tnmcated Newton method. Instead in each iteration, after finding the 
direction (2.3.4), a line search is carried out on the fmiet.ion f to get a new 
point, then the quadratic approximation at the new point is taken as the 
quadratic approximation (2.3.3) and a new direction of the form (2.3.4) is 
calculated. 

This is known as the conjugate gmdient method of approximation for 
general functions. When the various methods with di!Tenent (3 are applied 
we could not guarantee the same efficiency, as a matter of fact, the difference 
could be finite sig11ificant. Amcmg the two well known formulae (2.3.G) aJHl 

17 



(2.3.10), without restarts, it was found in most cases the the PR performs 
better than the FR.. One reason (Powell, 1977) [55] for this is that if at. 
some iteration the search direction is nearly orthogonal to the gradient, then 
it is likely that little reduction in function value will be achieved and the 
two subsequent !,'Tadients will be close to each other. If the FR formulae 
is used in such a case the new direction will again be nearly ort.hogonal 
to the gradient, and this inefficient situation will be maintained for several 
iterations before recovering. But if the PR formula is used then it will give 
j3 ~ 0, which amounts to restarting the algorithm "automatically". In the 
study that (Hu and Storey, 1990) [56] carried out on the conjugate gradient. 
algorithms, they found that the search direction given by the PR formula is 
generally much closer to the corresponding two dimensional Newton direction 
than is the direction given by the FR. formula. They have the idea that 
lacking the "automatic" restart property does account for the inefficiency 
of the FR. algorithm in some c<t.ses, but possessing it may not imply an 
efficient algorithm. They explained the differences in efficiency of different 
conjugate gradient algorithms by the differences in their closeness to the two 
dimensional newton algorithm. 

The global convergence of the conjugate gradient method was investigatecl 
by Powell (1984) [57] and Al-Baali (1985) [58]. At this stage before going 
any further let us introduce some definitions and mnvergenee. 

Definition 2.3.1 
A model iterative procedure Algorithm for solving (2.2.1) is said to be 

globally convergent if starting from any point :r;(o), the sequence { :r:(k)} k=<>,J, ..• 

satisfies 
lim inf IIY(k) 11 = 0. 
k-oo 

Powell (1984) [57] and Al-Baali (1985) [58] found that the FR. method is 
globally convergent if the line search conditions (Goldstein (1965) [59], Wolfe 
(1969) [38], Powell (1976) [60]) 

(2.3.17) 

and 
(2.3.18) 

1 
where 0 < p <a< 1 are satisfied with 0 < p <a< 2, but counter examples 

(Powell (1984) [57]) show that PR method may not be globally convergent 
even on some smooth functions with exact line searches. Efforts were made to 
combine the globally convergent property of the FR. method with the Letter 
numerical performance of the PR method (Touati Ahmed and Storey, 1990) 
[61] and also some results by (Gilbert and Nocedul, 1990) [62] shows that 
any conjugate gradient method is globally convergent if {i is restricted to be 
positive, the search direction satisfies a sufficient descent condition and the 
method has some kind of "automatic" restart property. The resem·ch done 
by Hu and Storey (1991) [63] refined some of the results of Touati-Ahmed 
and Storey (1990) [G1]. 

The conjugate gradient methods required very liH.lte storage and very 
little operational cost .. It has been estahlished inmunerical experiments that 
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they generally prefer accurate line searches, and restart with steepest descent 
directions should often be made. A restart criterion which was adapted 
by Powell (1977) [55] was IY(k)T y{k-t)l > 0.2!1y<klW. Since the immediate 
effect of restarting with steepe.st descent directions may not be good, other 
restart procedures were studied by Beale (1972) [64], Powell (1977) [55] and 
Nazareth (1977) [65] and substantial improvement in numerical performance 
was observed. 

Compared with the quasi-Newton methods the conjugate gmrlient meth
ods are simple, but they generally require more iterations and more function 
(gradient) evaluations, therefore they are suitable for use when function and 
gradient evaluations are cheap, or when the sizes of the problems are very 
large and computer storage becomes a limiting factor. 

2.3.1 A study of quadratic functions and their proper

ties 

A quadratic ftmction c.an be described as: 

(2.a.19) 

where n is the dimension of the vector :1: with n a fixed integer, G a real 
symmetric n x n matrix, b a fixed n-dimensional vector mHl C a scalar. The 
gradient of F at .1: is the vector: 

y(J:) = Gx +b. (2.3.20) 

A stationary point of f is a point x such that y(x) = 0. for the quadratic 
function F we could say x is a stationary point if and only if :1: is a solution 
of the linear system of equations: 

Gx= -b. (2.3.21) 

The system (2.3.21) may or may not have a solution, but if G is non singular 
then there is only one solution, i.e. 

(2.a.22) 

where x' is the unique stationary point of F. If G is singular and .1:* is a 
solution of (2.3.21) then every solution of (2.3.21) can be exprt>.ssed in the 
form x = x* + z, where z is a null vector of G, i.e. a vector z such that 
Gz = 0. hence, if x' is a stationary point ofF, then every stationary point 
of F differs from :x' by a null vector z of G. 

Since F is quadratic the following identity exists: 

(2.3.23) 

This is based on the fact that the quadratic approximation to F based on 
Taylor series expression: 

(2.:~.24) 
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where H(k) = '\72 F(x(k)) is the matrix of second pmtial derivatives at :1:(k) or 
Hessian matrix. 

Therefore the quadratic function (2.3.23) c.an be rewritten a.s: 

(2.3.25) 

The matrix H(x) = G is the Hessian matrix of F. If x' is a stationary point, 
then, by replacing x by :1:' and s by x- x' in (2.3.25) we obtain the formula: 

1 
F(x) = F(x') + 2(x- x'fG(x- :~:') (2.3.26) 

for F relative to a stationary point of F. 
Geometrically this function states that., when G is non singular, the sta

tionary point x' = -G-1b ofF is the centre of the quadratic surfaee 

F(x) = 'Y· (2.3.27) 

where 'Y is a const.m1t. 
A minimum point x' of F is a stationary point of F and by (2.3.2G) 

a stationary point x' of F is a minimum pont. of F if mHl only if G is 
nonnegat.ive, i.e. if and only if the inequality sT Gs 2:: 0 holds for every vector 
s. If sTGs > 0 whenever s # 0, i.e. if G is positive definite, then x' = -G-1b 
is the unique minimum point of F. F is said to be a positive clefinit.e quadratic 
function if G is positive definite. The level surfaces (2.;{.27) for a positive 
definite quadratic ftmction F are ellipsoids having :1:' = -G-1b as their 
common centre. Then in fact the problem of minimizing F is equivalent to 
the geometrical problem of finding the centre of an ellipsoid. This can lead 
us to a geometrical description of the rnethocls of conjugate directions and 
conjugate gradients. 

It should be noted that the level surfaces 

F(:1:) = 'Y for 'Y > F(x') 

are similar ellipsoids. 
This means that if x,., ancl :1:fl are the points in whieh a ray emanating 

from the common centre x' cuts the level surfaces F(x) =a and F(:~:) = /3, 
respectively, then the ratio 

1.7:iJ- x'l 
=T 

lx.,- x'l 
of the distances of x,., and xp from x' is independent of the choice of this ray. 
This situation is illustrated a.~ follows in figure 2.3.1: 

20 



ray 

Figure 2.3.1 
The matrix G is positive definite so that it ensures the existence of the 

minimum point x• = -G-1b. 

2.3.2 Conjugacy of quadratic functions 

Two distinct non zero vectors x E JR" and y E JR" are said to he conjugate 
with respect to ann x n symmetric positive definite matrix, G, if xTGy = 0. 
We can see that if G is the identity matrix I, then the definition of conjugacy 
becomes that of orthogonality. Therefore conjugacy is a generalization of the 
concept of orthogonality by letting the scalar product he 

(2.3.28) 

On the other hand if x and y are conjugate with nesped. to the matrix G 
then the vectors x and z = Gy are orthogonal. 

A S t f t { (1) (2) (;•)} E mn · • •· · \ t · ] ·t f ys em o vec ors z , z , •.. , z ID>. 1s saH .o 1e a sys .em o 
conjugate vectors with respect to matrix G if 

(2.3.29) 

Since G is a symmetric matrix, the system {T(l), 1'(2), ..• , r·<"l} of its eigen
vectors is a system of conjugate vectors. So we have: 

(2.3.30) 

where >..i is the jth eigenvalue of G. 
A system of conjugate vectors with respect to the matrix G can be con

structed from any linearly independent system of vectors aPl, ... , x<"l by 
using the orthogonalization method of Gram-Schmidt using the scalar prod
uct (2.3.28). Refer to (Dahlquist and Bjork (1874) [GG]. 

The procedure is as follows: 
Put z< 1l = x<1l. Then for i = 2, 3, ... , n successively put. 

i-1 

z(i) = 1:(i) + "'i:.fJ;jzUl, (2.3.31) 
j=l 

where the coefficients (J;i are chosen to make z(i)T G .::(!•) = 0, V A: = 1, 2, ... , 'i-

1. 

21 



This means that {3;; must satisfy the equations: 

i-1 
x(i)TQz(k) + 'L.f3;;z(i)TQz(k) = 0 (2.:3.32) 

j=1 

In principle (2.3.32) defines i-1 simultaneous equations for the i-1 unknown 
{3;;. But if we use the fact that z(1), ••• , z<•-1) are mutually conjugate with 
respect to the matrix G, we find that they reduce to the i-1 simple equations: 

{3;;=-x<•lTczUljz<i)Tcz(j) j=1, ... ,i-l. (2.3.33) 

Since xW are assumed linearly independent then zUl cannot vanish (they are 
linear combinations of xUl) and hence the denominator in (2.3.33) is not zero 
if G is positive definite. 

Now we can describe the properties of the quadratic function (2.:'..19), 
which the algorithms of conjugate gradients are baser! on. 
Theorem 2.3.1: 

The minimum points of the quadratic function (2.:'1: HJ) on parallel lines, 
lie on an (n-1) plane 7rn_1 through the minimum point ~r:' nf f. The (n-1)
plane 7rn_1 is defined by the equation 

(2.3.34) 

where s is a direction vector for these parallel lines. The vector G s is normal 

to 1l"n-1· 

1T: n-1 

• X 

Figure 2.3.2 
For the proof refer to Touati-Ahmed (1989) [G7]. 

Theorem 2.3.2: 
Let x<1l E IR" and let { z(1), z<2), ••• , z(n)} be a system of conjugate vec

tors with respect to the positive definite matrix G of the qnarlratic function 
(2.3.19). Let, z be the set: 

Z = {.1: = :1;< 1) + ziz E [z(l), ... , z("')]} 
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where [z<1l, ... , z(n)] is the subspace of the linear combination of z< 1l, z<2>, ... , z(n). 

Then: 
The minimum point x* of the quadratic function (2.3.19) over t.he set z 

can be calculated by minimizing f over the points z(il E Z such that 

successively. In other words: 

= minF(x) where x* = x<1l + a;z<1> + a;z<2l + ... + a;,z<">. 
xEz 
For the proof refer to Touati-Ahmed (1989) [67]. 
Now computational methods can be developed to minimize the positive 

definite quadratic function F of (2.3.19). These methods comist of mini
mizing F successfully along lines. Where these lines are nmtually conjugate, 
the method is called a conjugate direction method for fill< ling the minimum 
point x* = -G-1b of F. 

Considering theorem 2.3.2, a conjugate direction method terminates in 
m ::; n steps if there is no round off error. Also Theorem 2.3.1 r.onfirms 
this fact, as it. can he seen from the following geometrical description of a 
conjugate direction method. 

(1) Select a point x<1> and a line £ 1 through .1:(1) in a <lirect.ion s(ll. 
(2) Find the minimum point .1:<

2> of F on £1. 
(3) Construct the (n- 1)-plane 7r,._1 through x<2> which is conjugate to 

s<Il. 
By theorem 2.3.1 the minimum x* ofF is in Jr,_1. Consequently, our 

next search can be limited to Jr,._ 1 so that the dimensionality of our space of 
search is reduced by one. 

The process can now be repeated, restricting to the (n-1)-plane 1l'n-l· 
(1) Select a line L2 in 1!',._1 through x<2l in a direction s<2>. 
(2) Find the minimum point x<3> of F on £2. 
(3) Construct the (n- 2)-plane 1l'n-2 through x<3> which is conjugate to 

s<2l. 
Again using theorem 2.3.1, with 1l'n-l playing the role of the Eucli<lean 

space E .. , the minimum point :r:* of F is in 'lrn-2 so that our search can be 
limited to 1!',._2. Again the dimension of our space of search has been reduced 
by one. Proceeding like this the dimensionality of our spar-e of seard1 is 
reduced by one at each step. 

At the nth step our space of search in the line 1!'], through :r:* so that 
the minimum point x<n+I) of F on 1!'1 ('.()incidt>.s with the minin~um point :r:*. 
There are rare occasions that we have .r.<w+l) = x* at an mt.h step (m< n), 
in which case we can terminate in m< n steps. In a quadratic with m< n 
distinct eigenvalues convergence is in m steps. 

A conjugate gradient method is a conjugate direction method character
ized by the construction in step (3) of each iteration k of the (n - k )-plane 
1t'n-k> through the minimum point .7:(k+l) ofF on the line Lk. which is con-
jugate to the direction s{k) of the line Lk. · .: 
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2.3.3 The convergence properties of conjugate gradi

ent methods on quadratic functions 

We now consider the convergence properties of conjugate gnulient methods 
when the objective function is a positive definite quadratic function. 

When the conjugate gradient method is applied on a positive definite 
quadratic function using the formulae of Fletcher-R.eeves m Polak-Rjbit\re to 
compute the update fJ(k) it will termjnate in at most n steps from any starting 
point x<1l, provided the starting direction is the steepest descent direction 
s(ll = -g<1l. This result follows from Theorem 2.3.2. It can also be shown 
that the number of steps required for termination to occur, is equal to the 
number of distinct eigenvalues of the matrix G. For a proof of this result see 
Hestenes (1980). (68]. 

Crowder and Wolfe (1971) (69] have shown that if the wrong starting 
direction is used, then the rate of convergence is at hest linear. Also the 
extension of this result has been carried out by Powell (197G) (GO], to show 
that if the objective function is a positive definite qumlmt.k function and 
if the initial search direction is an arbitrary descent direction, then if ter
mination does not occur within n + 1 steps, the rate of convergence is only 
linear. Therefore when F is quadratic superlinear convergence never occurs. 
Powell (197G) (60] also found that linear convergence ean he obtained and 
every sequence of(£+ 1) consecutive search directions is mutually conjugate, 
where l! is a positive integer less that (n - 1). He also found conditions to 
improve on x(ll and s<l) that are necessary an< I sufficient for termination to 
occur in a finite number of steps. 

From this result of Powell's one can see that if s<l) is fixed and if the 
components of x(ll are chosen at nmdom, for instance from the uniform dis
tribution in (-1, 1], then that probability of obtaining tennination by chance, 
where n ;::: 3 and there are no discrepancies, is zero. Thus a linear rate of 
convergence is usual when the conjugate gTmlient algorithm is applied on a 
general convex quadratic function and when both s(ll and a:< 1l are ar·bitrmy. 

2.3.4 Extension of conjugate gradient methods to gen

eral functions 

We can combine the conjugate gradient algorithm for minimizing a qumlmt.ie 
function with Newton's method for minimizing a non-quadratic function f 
to obtain an effective method for finding the maximum :1:' of f. Here we 
assume that the Hessian matrix off is positive definite. The only sig,nificant 
modification done is that the step lengths cikl are no longer easily provided 
by an exact line search but they are usually computed hy an inexact line 
search procedure. 

The finite termjnation property of the method on quadratic functions 
suggest that the definition: 

8 (k+l) = _!l(k+l) + {J(k) 8 (k) 

should be abandoned after a cycle of linear search<es an<! that s(k) should 
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then be set to the steepest descent direction -g(k). This strategy is known 
as restarting; it is also know as "resetting" or"reinitialization". 

The combined method is as follows: 

I. Select a starting point x<1l. 

2. Set up the Newton approximation: 

3. Setting s(ll = 0, as the initial point of F, use a conjugate gmclient 
routine to obtain the minimum point s<n+l) of F. 

4. Repeat computations (2) and (3) with x(ll replaced by .1Pl + s<n+I). 

Terminate if g(k) I is so small that x<k) = :1Pl + s<k(~•+I)) is an acceptable 
estimate of the minimum point :1:* of f. 

It should be pointed out that the approximation is not done explicitly, 
and due to difficulty in obtaining an exact step length without complicatiollR, 
instead inexact line search procedures are used. 

2.4 Fletcher Reeves Method and its Conver-

gence Properties 

Conjugate gradient methods form a cla.~s of methods that generate directions 
of search without storing any matrix. The aim is to solve tlu~ unconstmiuecl 
minimization problem: 

Minimize j(:1:), x E !R" (2.4.1) 

using a sequence of line searches: 

(2.4.2) 

Starting from x<l) an estimate of a minimizer of x*. Where the line search is 
exact, the stepsize a<k) in the direction of s(k) is as follows: 

(2.4.3) 

But in practice, and exact line se.'trdl is not usually possible, therefore certain 
conditions are forced on the value of a<k). Fletcher (1980) [42] suggests that 

(k) . h tl t (k+l) t' fi tl l't' a IS sue . 1a , x sa .1s es . 1e com 1 .wn: 

(2.4.4) 

together with the Goldstein (19G5) [59] requirement: 

(2.4.5) 
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where g<k) = \lf(x(k)) is the gradient vector at x<kl,p E (0,~),11 E (0,1) and 

p < 11. 

The search direction s<k) when it is descent can he defined a.~: 

(2.4.G) 

It holds for all k such that g(k) of 0, which ensmes that f(::c:) can he decrP.ased 
in the line search. 

Condition (2.4.4) ensures that the modulus of the slope is reduced by a 
factor 11 or less in the line search. Refer to Fletcher (1980) [42]. 

The search direction s<kl, for conjugate gradient methods is defined a.~ 
follows: 

8(1) = _
9

(1) 

8(k+I) = _9(k+I) + p<kl 8(k), k > 1 } 
(2.4. 7) 

We consider {l(k) as follows: 
The Fletd1er-Reeves update (19G4) [48]: 

{l(k) = ll!!(k+l) 112 /ll!!(k) 112 . (2.4.8) 

Where I I-ll denotes the Eudide<UJ norm. 
We assume that the level set: 

(2.4.'J) 

is bounded. This will ensure that a(k) is well defined for all h:. 

2.4.1 Descent property and global convergence in the 

case of exact line search 

It is obvious that for any conjugate gradient algorithm when s< 1lT_g<1l 
-g<1lT.g(ll < 0, the descent property (2.4.G) holds on the first iteration, 
moreover when the line search is exact we have: 

g<k+I)T s(k) = 0 for k 2: 1. 

Hence from (2.4.7) and (2.4.10) it follows: 

g<k+!)T 8 (k+!) _ g<k+I)T( -g<k+I) + p<kls<kl) 

= -llg<k+~>w < o 

(2.4.10) 

(2.4.11) 

This shows that a descent property holds on all iterations for any conjugate 
gradient formula and in particular for Fletcher-Reeves. 

In the c,'\se of Global convergence Powell (1983) [70] shows that if the 
level set (2.4.9) is bounded, if a(k) is defined so that (2.4.10) holds for all 
k, and if f(x) is twice continuously differentiable, then the Fletcher-Reeves 
method achieves the limit: 

lim inf ll!!(k) 11 = 0 
k~oo 

(2.4.12) 
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2.4.2 Descent property and global convergence in the 

case of inexact line search 

Powell's result was extended by Al-Baali (1985) [58] to show that even for 
an inexact line search, the descent property (2.4.6) holds for all k ami global 
convergence is achieved for the Fletcher-R.eeves method. 
Theorem 2.4.1: (Al-Baali (1985) [58]) 

If and a<kl is calculated whkh satisfies (2.4.4) witli rr E (0, ~] for all k: 

such that g<kJ # 0, then the descent property for the Fletcher-R.eeves method 
holds for all such k. He also prove-S a theorem for the global convergence of 
the Fletcher-R.eeves method with an inexaet line search satisfying (2.4.4) aiHI 
(2.4.5). 
Theorem 2.4.2: (Al-Ba.c1.li (1985) [58] 

If the level set (2.4.9) is bounded, if /(:~:) is twice continuously differ
entiable, and if an inexact line search satisfying (2.4.4) and (2.4.5) with 

p <a<~ is used, then the Fletcher-Reeves achieves tlu~ limit (2.4.12). 

2.5 The Polak-Ribiere Method and its Global 

Convergence 

If equation (2.4.8) is replaced by the expression 

(2.5.1) 

the conjugate gradient method of Polak and Rihiere (l!J6!J) [51] results. 
When numerical computations are carried out it is usually found that the 

method of Polak-Ribiere is more successful that that of Fleteher-Reeves. 
Powell {1977) [55] and Touati-Ahmed (l!J89) [67] have solved some mini

mization problems to c.onfirm this. 
To try to explain this remark, we ask whether either conjugate gradient 

method can be highly inefficient. Specifically, we suppose that the k-th itera
tion of a conjugate gradient method has made a change llx(k+I)- x<klll that. 
is much smaller than the step that would have been taken by the steepest 
descent algorithm, and we ask whether the next iteration can be as bad. A 
relatively tiny value of llx(k+I) -x<klll occurs only if the angle fh say, between 
s<kJ and _,p> is close to '!!_, Since the line search along s<k-l) and ec1uation . 2 . 

imply the value 

cos (J(k) - -s<klg(k) /(lls(klll.lli/klli) 
- II!P>illlls<k>ll, 

(2.5.2) 

(2.5.3) 

we must have lls(k)ll >> ll!!(k)ll, and we wish to avoid lls(k+l)ll >> II!P'+'lll· 
Now the relatively small value of 113:(k+l) - .1:(k)ll gives !P+ll "" 1/'\ so tlu~ 
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Fletcher-Reeves and Polak-Ribiere formulae yield {3(k+i)"" 1 and lf3(k+l)l << 
1 respectively. F\1rther using the line search along s<k) ami the definition of 
s<k+i), we deduce the relation 

(2.5.4) 

It follows that the Fletcher-Reeves formula gives lls(k+l)ll ""lls(k)ll, but the 
Polak-llibiere formula gives lls(k+l) 11 < < lls(k) 11 as required. Refer to Powell 
(1985) (71) for more details. 

2.5.1 Global convergence 

Although numerical computations indicate that the Polak-Ribit\re method 
is superior to the Fletcher-R.eeves, it has not been possible to establish for 
the Polak-Ribiere method, the global convergence results obtained for the 
Fletcher-R.eeves by Powell (1983) (70) and Al-Baali (HJ85) [58). But when 
some additional conditions are imposed sud1 as f is a convex function or 
the step lengths ll:r.(k+l)- x(k)ll tend to zero, the global convergence of the 
Polak-Ribiere method with exact line search eau be obtained. Powell (H177) 
[55) e.stablished the following theorem: 
Theorem 2.5.1 (Powell 1977) [55] 

If the level set (2.4.9) is bounded, if f is continuously differentiable and if 
the step lengt.hs llx(k+l) - .T.(k) 11 tend to zero, then the Polak-Ribit\re method 
without restart achieves the limit (2.4.12). 

Untill983, it was not known whether either of the Flet.cher Reeves or the 
Polak-llibiere methods provide the limit (2.4.12) for a twice continuously dif
ferentiable function with bounded level set from an arhi trary stmting point. 
But with the help of theorem 2.5.1 and some conditions developed by Pow
ell (1977) (55), it is straight forwm·d to show for the Polak-Ribiere method 
that if the sequenoe {:~:<kl,k = 1,2, ... } c.onverges to a limit.<:* say, then 
\1 f(x*) = 0. Hence, one coulrl think that establishing (2.4.12) would be 
easier for the Polak-Ribiere method than for that of Fletcher-R.eeves. Pow
ell (1983) [70) came out with the surprising negative results. Not only has 
he shown by a standard method of proof that the limit (2.4.12) is always 
achieved by the Fletcher Reeves method a result that has been extended by 
Al-Baali {1985) [58) for the case of inexact line search, but he also fouml that 
if the Polak-Ribiere method is used, then with exact arithmetic m1d an ex
act line search, there exists a twice continuously differentiable function with 
bounded level set for which the gradient {IIYII,k = 1,2, ... } are boumlecl 
away from zero. 

2.6 Hybrid Conjugate Gradient Methods 

Although the superiority of Polak-Ribiere method in numerical computations 
over the Fletcher-R.eeves in most cases has been obHerve<l it has not been 
possible to establish global convergence results for the Polak-Hibiere method 
as was done for the Fletcher-R.eeves. Furthermore aH it wa.~ mentioned bdore 
powell (1983) [70] shows that if f)(k) is chosen to sat.is(y (2.fi.1), then even 
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with exact line search and exact arithmetic, there exist twice continuously 
differentiable functions with bounded level sets (2.4.9) f<)r which the gnulients 
norms {llg(kl[[,k = 1,2 ... } are bounded away from zero. However, it was 
found that if the Polak-R.ibiere [J(k) are restricted to remain non negative 
and at the same time less than or equal to the Fletdter-R.eeves [J(k), then 
the convergence proofs given by Powell (1983) [70] and by Al-Baa1i (1985) 
[58] both apply to the Polak-Ribiere method also, hut these restrictions are 
unfortunately not always satisfied. 

All this has consequently led to thoughts by D. Touati Ahmed and C 
Storey (1986), [72], (1987) [18], on how to combine the desirable computa
tional aspects if the Polak-Ribiere method and t.he useful theoretic.al features 
of the Fletcher-Reeves method in an attempt to constmct some efficient hy
brid algorithms that are globally convergent. 

2.6.1 Hybrid 1 algorithm 

The new hybrid algorithms were developed by D Touati-Alnned and C Storey 
(1990) [61 ]. Let fJ(k) (F.R) and fJ(k) (P.R.) denote the betas satisfying (2.4.8) 
and (2.5.1) respectively. We then have: 

If fJ(k) (P.R.) were always non-negative, we woul<l have 

[J<kl(P.R) 2: 0 ===> [J<kl(F.R) 2: 1/(k+l)T!/k) /[[1/(kJW 
===> llll'k+l)w 2: g<k+l)T!P) 

(2.G.l) 

and if [J(k) (P.R.) were always less than for equal to (J(k) (F.R) we would have 

[J<kl(P.R):::; [J<kl(F.R) ===> _1/(k+!)T!/k) /[[y(kl[[2:::; 0 
===> 1p+t)T g(kJ 2: 0 

(2.G.2) 

Hence the restrictions that imposed on the Polak-Ribit\re beta will hold if 

(2.G.3) 

As consequence of this remark the first hybrid algorithm, Hybrid 1, was 
suggested, using formula (2.5.1) whenever condition (2.6.a) is satisfied and 
formula (2.4.8) otherwise. In other words the [J(k) is defined as follows: 

(k) = 11(k+l)T (1/(k+l) - 11(k)) /llr/k) W if (2.6.3). is true } 
fJ llll(k+l)W/IIa'kl[[2 otherwise 

(2.6.4) 

2.6.2 Descent property and global convergence in the 

case of exact line search 

It has already been seen (2.4.11) that if the line search is exad. then the 
descent property holds on all i temtions for both Fletcher Reeves and Polak
R.ibiere methods, so it is obvious that it holds also for Hybri<l 1 met.!wd. 

Now for the global convergence of Hybri<l 1 the following theorem wa.~ 
. . 

established by D. Touati-Alnned a11<l C. Storey (Hl8()) [72]. 
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Theorem 2.6.1 (D Touati-Ahmed and C Storey (1986) [72] 
If f(x) is twice continuously differentiable, if the level set. (2.4.9) is bounded 

and if an exact line search is performed at each iteration, then the limit 
(2.4.12) is achieved by Hybrid 1. 

2.6.3 Descent property and global convergence in the 

case of inexact line search 

Hybrid 1 can also be shown to have the descent property and to be globally 
convergent when an inexact line search is performed. The following theorems 
established by D Touati-Ahmed and C Storey confirms this 
Theorem 2.6.2: ( D Touati-Ahmed and C Storey (1986) [72]). 

If an o/k) is calculated which satisfies (2.4.4) with a E (0, ~] for all k such 

that g(k) # 0, then the descent property (2.4.6) for Hybrid 1, holds for all 
such k. 

A consequence of this descent property is the followiug global convergent 
result. 
Theorem 2.6.3: (D Touati-Ahmed and C Storey (1986) [72]). 

If the set (2.4.9) is bounded, if f(x:) is twice continuously differentiable, 

and if a(k) is any value satisfying (2.4.4) and (2.4.&) with p < a < ~' then 

equation (2.4.12) holds for Hybrid 1. 

2. 7 Angle Test Hybrid 

Shanno (198&) [73] gives an angle test to determine when mnjugate gradient 
algorithms should be restarted with a steepest descent direction. Using the 
fact that the Fletcher-Reeves algorithm is globally convergent when exact 
line searches are used we have: 

is a divergent series. Obviously if L cos2((1(k)) is divergent then for any 
k 

-r > 0, -r L cos2((1(k)) is divergent.. Thus for any -r > 0, 'Y(k) is defined by: 
k 

(2.7.1) 

Shanno's algorithm is then to use any eonjugate gradient formula anrl restart 
the algorithm with a steepest descent direction whenever 

(2.7.2) 
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is not satisfied, where 

cos(O(k)) = -y<k)T s(k) /ll!i(k)ll·lliklll (2.7.3) 

A possible hybrid algorithm (the angle test hybrid) would be to use this tt>.st 
for every f3(k) (P.R) for which condition (2.6.3) is not satisfied. D Touati
Ahmed and C Storey (1987) (18) suggested the use of the following algorithm 
to compute f3(k) in (2.4.7). 

Step 1: If f3(k)(P.R) < 0, then f3(k) = f3(k)(F.R), return to 
main program. Otherwise, go to Step 2. 
Step 2: if (2.6.3) holds, then f3(k) = f3(kl(P.R), 
return to main program. Otherwise, go to Step 3. (2.7.4) 
Step 3: If (2. 7.2) holds, then f3(k) = f3(k)(P.R), return 
to main program. Otherwise set f3(k) = f3(k)(F.R), return 
to main program. 

When exact line seard1es were performed throughout the algorithm, it 
c.an be shown that a descent property holds and that the method is globally 
convergent. But when inexact. line searches are performed, condition (2.7.2) 
can no be used directly to ensure a descent. property with which it would be 
possible to prove global convergence. 

2.8 Hybrid 3 

A further hybrid algorithm (Hybrid 3 algorithm) was proposed hy D Touati
Ahmed and C Storey (1990) [Gl]. For the pmvose of what follows consider 

1 llg<k+r)W 
f3(kl(P.R)::; 2Jt llyCklll2 ' Jt >a (2.8.1) 

where a is the constant in the line search. 
If at each iteration we ensure that: 

1 .AII!J(k+I) 112 ::; (2JL)k+l > 2 > J! > a . (2.8.2) 

for some>. > 0, then the method will be globally convergent. In other words if 
algorithm (2.7.4) with condition (2.7.2) replaced by (2.8.1), whenever (2.8.2) 
is satisfied and restart with a steepest descent direction otherwise, the descent 
property (2.4.6) holds and the limit (2.4.12) is achieved. 

Consequently the use of the following algorithm to compute f3Ck) in (2.4. 7): 
was suggested as Hybrid 3 algorithm: 

Step 1: If (2.8.2) holds go to Step 2. Otherwise f3(k) = 0, 
return to main program. 
Step 2: If f3(k)(P.R) < 0, then f3(k) = f3Ckl(F.R), return to main 
program. Otherwise go to step 3. 
Step 3: If (2.8.1) holds, then {3(k) = f3(kl(P.R), retum to main 
program. Otherwise {3(k) = {3(k)(F.R), return to main program. 

(2.8.3) 

It should be noted that step 2 of algorithm (2. 7.4) ha.~ been misserl out 
because the set of numbers that satisfy (2.8.1) indurles those that satisfy 
(2.6.3) and therefore it is not necessary to check whether (2.G.3) is satisfied. 

1 1 
This is so of course, bec,"tuse J! < 2. The case Jt 2': 2 is covered in Hyhrirl 1. 
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2.8.1 Descent property and global convergence 

It was shown by D Touati Ahmed and C Storey (1990) [61] that when Hybrid 
3 algorithm is used to find the least value of a twice continuously differentiable 
function f(x) with bounded level set (2.4.9), a descent property holds on all 
iterations and the limit (2.4.12) is achieved. The following theorems mnfirms 
this when an exact line seard1 and when an inexact line search satisfying 
(2.4.4) and (2.4.5) are used respectively. 
Theorem 2.8.1 (D Touati-Ahmed and C Storey (1990) [61]). 

If f(x) is twice continuously differentiable, if the level set (2.4.9) is bounded 
and if a<kl satisfies (2.4.3) on all iterations then the limit (2.4.12) is achieved 
by Hybrid 3. 
Theorem 2.8.2 (D Touati-Ahmed and C Storey (1990) [61]). 

If an o;(k) is calculated whid1 satisfied (2.4.4) with a E (0, ~) for all k 

sudl that y<kl =/= 0, then the descent property (2.4.6) for Hybrid a, holds for 
all sudl k. 

2.9 Infinite Dimensional Problems 

Here were are concemed with functionals defined on !Ul infinite-dimensional 
space. The classic example of this is the simplest problem of the calculus of 
variations, where in we minimize 

1
,, 

F(x) = L(t,x,x')dt; :r:(a),x(li) fixe<!, 
" :r:(t) E dn, li] =.:!: 

(2.9.1) 

and c is the linear space of functions having piecewise continuous derivatives, 
defined on the closed interval [a, b]. Considering that :r: is determined given 
x(O) and :r.'(t), an equivalent formulation is: 

1
1> 

rnin F(:r:, v) = L(x, v, t)dt 
" :r:' = v,x(n),x(b) fixed (2.9.2) 

and v E ro[n,b] =V 

where ro is the space of piecewise continuous functions on [n, li]. This second 
formulation can be interpreted as a functional defined on the product space 
.::r. x V, minimized subject to the equality constraint. .1:' = v. Alternatively, 
since the constraint in fact determines :r: uniquely given V, we may regard F 
as a functional defined on V alone. In either case, an additional constraint 
exists on x(b). These are called terminal constraints and may in general 
be of the form 'lj;(.r., b) = 0. The 'constraint' .r.' = v may be regarded as 
a special case of :r! = f(t,x, v). Other conditions of the form h(v(t)) ~ 
0, h(x(t), V(t), t) < 0 may also exist, where h is either a set of functional 
defined on .:!: x V, or a set. of on\inary functions of :r:, V which, evaluated at 
any t E [n, b], satis(y the inequality. Combinations of these may also exist. 

The cla.~s of problems considered here will not indmle explicit statement 
of inequality constraints h ~ 0. these may of course be included hy penalty 



functions. Moreover, we allow x, V to be functions that take values in or
dinary Euclidean spaces E", Em respectively. Such problems are sometimes 
called finite dimensional control problems [74]. In this terminology, infinite
dimensional problems are those involving partial differential equations, i.e. 
distributed parameter systems. 

2.9.1 Theoretical methods 

Historically, such problems were first treated about the time the calculus 
was invented, when the brachistochrone problem wa.~ JH'Opose<l hy .Jacohi 
Bernoulli and solved by Newton. An account of the early <levdopment. of 
the calculus of variations is given by bliss (198G) [7GJ. The first systematic 
necessary conditions were found by Euler and the suh.i<ert approache<l rda
tive mmpleteness with the theory of the problem of Bolza a.~ dreveloped hy 
Bliss and eo-workers at the university of Chieago [7ti], at about l!JfiO. This 
theory is founded on the theory of differential equations a!l(l was <thle to 
cope only partly with the demands placed on it hy rapidly increasing ap
plications in the computer age. A control theory vitewpoint. wa$ taken hy 
Pontryagin and eo-workers, leading to the new wi<lely ns<'!illlaxinnuu prin
ciple [76]. While this principle is similar to the nmltiplirer mles fon11<l hy 
the Chicago school, in particular the work of McShmw (1!J:1!J) [77], it was 
able to solve problems with control constraints all<! <liscontinnons controls 
more rapidly. An even more general approach wa.~ t.akren by Bdhuau in his 
method of dynamic programming [78], formulatred in tenus of a mnltistage 
decision process and a 'principle of optimality'. This appro,tdl Wil$ of grreat 
value in treating discrete, stochastic and highly <llllstrailw<l problems not 
amenable to older techniques. Later connections hetweren t.lue variational cal
culus, Pontryagin's piinciple and dynamic prognumuing <ll'le munerons all<! 
are explored, for example hy Dreyfus [79] ami HesteJHes [xO]. 

2.10 The Conjugate Gradient Method for Op-

timal Control Problems 

In this section we c.onsider the extension of the conjugate gm<lient minimiza
tion method of Fletcher-Reeves to optimal control prohi<ems. The technique 
is directly applicable only to those problems, where t.<muinal <:nn<litions mu\ 
inequality constraints are not present. If such constraint~ are present th<e 
problem must be converted to an unconstrained form, e.g. hy penalty func
tions, [81] to [84]. Only the gradient. trajeetory, its norm, an<i one iul<iitional 
trajectory, the actual direction of search, nee<! to he st.nn;<i. These search 
directions are generated from past and present. valwes of t.!He ohjeet.ive a11<l 
its gradient .. Successive points are determinecl hy linrear lllinimizat.ion <!own 
these directions, which are always directions of descr-:nt .. 

Thus the method trends to converge, even from poor npproxin111tions to 
the minimum. Since, near it minimum, a genemlnon litu:m· pmhlt-:111 can h<e 
approximated hy one with a linear system all<! qwulmt i.- ohj<,:tiw. Thre mtr; 



of r.onvergence is studied by considering this case. Here, the directions of 
search are conjugate and hence the objective is minimized over an expanding 
sequence of sets. Also, the distance from the current. point to the minimum 
is reduced at each step. It is evident that the efficiency of these methods 
depends greatly on the tedmique used to solve the unconstrained optimal 
control problem. 

Presently available techniques all have short comings. The convergence 
of steepest descent methods is often slow (81] whereas second-variational and 
Newton methods may not converge at all. Thus there is strong motivation 
for developing more efficient means for solving unconstrained optimal control 
problems. 

Similar difficulties existed until the late 1960's in the field of finite dimen
sional optimization, i.e. mathematical programming. However, later several 
rapidly convergent finite dimensional unconstrained minimization techniques 
have been developed. Among these are the method of Fletcher and Powell 
(1963) [85] and the Fletcher Reeves (19G4) [48] adapt.ion of the conjugate 
gradient method of Hestenes and Stiefel (1952) [47]. 

The combination of these propertit',s implies that. the methods converge 
rapidly to the nearest local minimtnn for a general function of n variables. 
Experience has shown that both techniques converge much more rapidly, in 
general, than the method of steepest descent while requiring only function 
and gradient evaluation. 

F\mction space analogs of the steepest descent ancl second-order Newton 
techniques have been developed and applied to problems of optimal control. 
In particular Kelly (1960) [86], McReynolds and Bryson (1965) [87] and Mit
ter (19G6) [88], and others have developed steepest descent ami second order 
methods. Since these methods are oonsidered by some authors [85], [89] to 
be the most powerful presently available for finite dimensional minimization 
problems, it seems appropriate to consirler their generalization to optimal 
control. 

2.10.1 The algorithm for conjugate gradient method 

Consider the following problem: 

minimize .J = 4>((:~:(t1 )) 

subject. to :i; = j(x, u, t) 

;r:(to) = c 

(2.10.1) 

(2.10.2) 

(2.10.:3) 

where xis ann vector, ~Lis an m vector, and to, t1 are fixed. It is assumed that 
given a controlu, (2.10.2) and (2.10.3) can be solver\ for a unique :1: = x('n), 
and thus .J = J(u) is a function of 'IL alone. F\uthennore, the existence of the 
gradient of J(u), 'V J(u) = g(u) is assumed. The objeetive function (2.10.1) 
may include penalty funetion terms to ac{',(}unt for constraints. 

Here for the convenience only the case of a scalar control fundi on u(t) (rn = 
1) will he considered. 

The extension to the multicontrol case is straightf<.nwan\. In order to 
compute the conjugate gradient algorithm we need the graclient trajectory. 
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Let 

where 

Then the gradient is 

" 
H = 2:->..;J, 

i=l 

8H 
g(u) = -8 . 

'IL 

(2.10.4) 

(2.10.5) 

(2.10.fi) 

(2.10.7) 

Let u;(t) be the ith approximation to the optimal controlu0 (t). The corre
sponding gradient g(u;) is computed by solving the state equations (2.10.2) 
and (2.10.3) forwards with 1t = ·u;, solving the adjoint. equations (2.10.5) ;md 
(2.10.6) backwards and then computing g(ui) from (2.10.7). 

The algorithm proceeds as follows: 

'1/.u = arbitrary 

!Jo = g(uo) 

So = -!lo 

choose 
a= a; to minimize .J(u; + asi) 

and then 

Now fJ; can be computed as 

f3 ( )/( ) ll!!i+IW 
i = !/i+I>!li+l !Ji,!/i = 11!1•112 

which is Fletcher-Reeves or 

{3; = (!/i+I' !/i+l) - (!li+l> [li) 
(g;,g;) (g;,!J;) 

which is Polak-Ribiere. 

(2.10.8) 

(2.10.!)) 

(2.10.10) 

(2.10.11) 

(2.10.12) 

(2.HU:3) 

(2.10.14) 

(2.10.15) 

In the case of Hybrid methods {3; can be computed as (2.6.4) for Hybrid 
1, (2. 7.4) for angle test. hybrid and (2.8.3) for hybrid 3. 

(2.10.16) 

where the norms I I!!• W and ll!!i+I W can be calculated as follows: 

1
,, 

(g;,w) = !l•(t)r/i(t)dt 
to 

(2.10.17) 

we should note that the new direet.ion of l:<em·ch 8;+J is not the negative direc
tion -Yi+l but is computed via (2.10.16). The step length in this direction 
is determine by one dimensional minimization in (2.10.11). 



2.10.2 Convergence 

Let that control u be an element. of a Hilbert space H and J (n) a Frechet 
differentiable mapping from H to the real numbers. The conjugate gmcli
ent method when applied to J(u) generates directions S; which are always 
directions of descent, i.e. 

d 
-J(·u· +as·) 0 < 0 da' 1.a= 

(2.10.18) 

and this ensures that J(u) is decreased at each step. The following theorems 
state this fact and the proofs can be found in L.S. Lasdon, S.K. Mitter, and 
A.D. Waves (1967) [90]. 
Theorem 2.10.1 

If g(u;) = g; f 0 then 
(s;, [/i+t) = 0 

and d~ J(u.; + as;)la=O = (s;, g;) = -IIY•W· 
Theorem 2.10.2 

If g; f 0 then j(ui+t < j('ll.;). 
The sequence of real numbers {.1('11.;)} is thus monotone decreasing and 

therefore has a limit. ] 00 in the extended real numbers. Also of interest. is 
the limiting behaviour of the sequences {uk} and {yk}. Results sirnilm· to 
those that have been obtained for the methml of steepest. descent. [91], [fl2] 
are given below. 
Theorem 2.10.3 

If the following assumptions me made 

1. .J(u) is bounded below 

2. J(u) and g(u) me continuous 

3. D2 J ( u, h, h) exists and 

ID2.J(u,h,h)i :S mllhWu, hE H,and m.> 0 

4. { uk} has a cluster point u* 

Then the sequenc.e {1tk} formed with arbitrary uo by the conjugate 
gradient method has the following properties: 

By assumption 4, { uk} contains a convergent subseqtience {D.k}, with limit 
point u*. Then continuity of g(u) implies that. g('ll.*) = 0. From Theorem 
2.10.2, J(uk+t) < J(·uk) and hence by the c.onvergence of uk and continuity 
of .J ( u), property 1 follows. 

Computational experience has shown that. methods which rlecrea.~e the 
function .J at each step will generally converge to the nearest lm<'ll mini
mum. Since the function is generally convex in some neighbouriH)Or! of a 
local minimum. This statement. is supported hy the following result .. 
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Theorem 2.10.4 
If the assumptions of theorem (2.10.3) hold and if the following assump

tion is made: 
M >0, 

1,,hEH 

then 
J(n*) = min J('U). 

uEH 

:w 



Chapter 3 

NUMERICAL 

CONSIDERATION 

3.1 Numerical Computations 

In this chapter we consider the numerical work involved in solving the 
differential equations, calculating the norms and also the linear sem-eh for 
the problems in Chapters 4 to 9. The importance of numerical stability 
brings about the need of selecting accurate methods for munerical integ;m
tions. Therefore, in this chapter we briefly review some of the well-known 
methods that are useful. 

3.2 Numerical Integration Methods 

For the problems being considered in the following Chapters we need to 
solve the state and adjoint equations using a suitable integmtion routine, also 
an appropriate technique is needed to find the norm described in Chapter 
2 Section 2.10.1, Equation (2.10.17). In the coming Sub Sections we briefly 
review the Runge Kutta method and also Simpson's Rule. 

3.2.1 Runge Kutta Methods 

Consider the initial value problem 

y' = J(:~:, y), y(n) = 17. (3.2.1) 

The easiest of all c.omputational methods for the munerical solution of this 
problem to implement is Euler's rule, 

Yn+i - 1ln = hj(x.,, y,.) = hj.,. (3.2.2) 

It is explicit and, being a one step method, it requires no a<l<litional starting 
. . 

values and easily allows a change of step-leng;th during; the <YllllJmtation. Be
ing low order, of <X>urse, makes it. of limit.<e<l pmd.ieal valwe. Linear mult.istep 



methods achieve higher order by sacrificing the one-step nature of the algo
rithm, whilst returning linearity with respect to 1}n+.i> fn+.i> .i = 0, 1, ... , k. 

Higher order methods can also be achieved by sacrificing linearity, but pre
serving the one step nature of the algorithm. This is the philosophy behind 
the methods first proposed by R.unge (1895) [93] and suhsequently developed 
by Kutta (1901) [94] and Hetm (1900) [95]. R.unge-Kutta methods thus re
tain the advantages of one-step methods but, due t.o t.he loss of linearity, 
error analysis is considerably more difficult than in t.he case of linear multi
step methods. 'fraditionally, R.unge-Kutta methods are all explicit although 
since the early 1970's, implicit R.unge-Kut.ta methods, which have improved 
weak stability characteristics, have been considered. Hence we sha.ll use the 
expression 'R.unge-Kutta method' to mean 'explicit Runge-Kut.t.a method'. 

Thus a R.unge-Kutt.a method may be regarded as a particular ease of the 
general explicit one-step method 

Yn+1 - Yn = lu/>(.7:,., y,., h}. (3.2.3} 

3.2.2 Order and Convergence of the General Explicit 

One-step Method 

The fact that. the general method (3.2.3} makes no mention of the funetion 
f(x, y}, which defines the differential equation, makes it. impossible to define 
the order of the method independently of the differential equation, as is t.he 
case with linear multi step methods. 

Definition 3.2.1 

The method (3.2.3) is said to have order p if p is the largest integer for 
which 

y(x +h) -y(:x:} - lup(:r.:, y(x), h) = ow>+l) (3.2.4} 

holds, where y(x) is the theoretical solution of the initial value problem. 

Definition 3.2.2 

The method (3.2.3} is said to be consistent with the initial value problem 
if 

</J(x:, y, 0} = f(x, y). (:3.2.5} 

If the method (3.2.3} is consistent with the initial value problem (for future 
reference we shall simply say 'consistent.'), then 

y(x +h)- y(x)- h,P(x, y(x}, h)= hy'(x}- h</>(:1:, y(:r.}, 0} + O(h2
} = O(h2

}, 

since y'(x) = f(x,y(x:)) = </J(x, y(x),O), by (3.2.fi). Thus a consistent. method 
has order at. least. one. 



The only linear multistep method which falls within the class (a.2.:3) is 
Enter's rule which we obtain by setting 

1/>(~:, y, h) = 1/>E(X, y, h) = j(~:, y). 

(The subscript E denotes 'Euler':) The consistency eom!ition (:3.2.5) is then 
obviously satisfied and a simple calculation shows that the order, aer.onling 
to (3.2.4), is one. 

The Taylor algorithm of order p also falls within the class (:3.2.:3) and is 
obtained by setting 

- - h (I) 1/>(x, y, h)- <h(x, y, h)= f(x, y) + 
2

/ (:r., y)+ 

I 1>-1 
t f(l>-1) ( ) ... +-,- x,y, 
]!. 

d'l 
where f(ql(x, y) = -L-f(:x, y), 1J = 1, 2, ... , (p- 1). 

( xq 
(The subscript T denotes 'Taylor'.) 

(:3.2.6) 

The following Theorem, whose proof may be fouml in Henrid (HJ()2) ['JG], 
states conditions on f(x, y) which guarantee the existence of a unique solution 
of the initial value problem (3.2.1). 
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Theorem 3.2.1 

Let f(x, y) be defined and continuous for all points (:r:, y) in the region D 
defined by a ::; x ::; b, -oo < y < oo, a and b finite am! let f(:~:, y) satisfy 
Lipschitz condition, i.e., there exists a constant L such that, for every .r., y, y* 
such that (x,y) and (x,y*) are both in D, 

lf(x,y)- f(x,y*)l ::0: Lly- v*l. (3.2.7) 

Then, if 1J is any given number, there exists a unique solution y(:r:) of the 
initial value problem (3.2.1), where y(.r.) is continuous and differentiable for 
all (x, y) in D. 

The following theorem, whose proof may also be found in Henrici (HJG2) 
[9Gj, states necessary and sufficient conditions from the method (3.2.:3) to he 
convergent. 

Theorem 3.2.2 

(i) Let the function </J(:r:,y,h) be continuous jointly as a function of its three 
arguments, in the region V defined by .1: E [a, b], y E ( -oo, oo), h E 

[0, ho], ho > 0. 

(ii) Let </J(.r., y, h) satisfy a Lipschit.z condition of the form 

1</J(:r, y*, h) - </J(:I:, y, h)i ::0: Miy*- Yl 

for all points (x,y*,h), (:r:,y,h) in V. 

Then the method (3.2.3) is convergent of and only if it. is eonsistent. For all 
the Runge-Kutta methods we shall consider, in the next. sections condition (i) 
and (ii) are satisfied if f(.r., y) satisfies the conditions stated in theorem3.2.1. 
For such methods consistency is necessary and sufficient. f(:>r convergence. 

We should note that there is no requirement corresponding to zero-stability, 
since no parasitic solutions can arise with a one-step niethocl. 

3.2.3 Algorithms for Runge-Kutta Methods 

The general R-stage Runge-Kut.t.a method is defined by 

Yn+! - Yn = h</J( :1:,., y,., h), 

R 

<P(x, y, h) :L c,k,. 
1'=1 

f(:r:, 11) 

k,. f ( :r: +ha,., y + h~b,_,k,) , T = 2, :3, ... R, 
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f'-1 

ar = L b,., r = 2, 3, ... , R. 
s=l 

(3.2.10) 

Note that an R- stage Runge-Kutta method involves R fund.ion eval
uation per step. Each of the functions k,.(.r., y, h), r = 1, 2, ... , R, may he 
interpreted as an approximation to the derivative y'(x), and the function 
lf>(x, y, h) as a weighted mean of these approximations. We should also note 

R 

that consistency demands that LCr = 1. If we can choose values for the 
r=l 

constants c,., a"' brs such that the expansion of the function qJ(:r., y, h) defined 
by (3.2.9) in powers of h differs from the expansion for 4'r(:~:, y, h) given by 
(3.2.6) only in the pth and higher powers of h, then the method dearly has 
order p. (Note that in (3.2.6) we are assuming tlmt y(.'l:) E O'[a, b].) 

Here we quote some of the well known Runge-Kut.ta methods. For the 
derivation and further information on Runge-Kut.t.a methods of :v·<~ order 
and higher we could refer to Lambert., .J. D. (HJRG) [97]. Bntcher (19G3-19G!'i) 
[98] to [103], and Huta, (1%7) [104]. 

Algorithm 3.2.1 
The following formula is known as Hetm's third order f(mnula which is 

one of the well known third-order Runge-Kut.t.a methO<ls. 

Yn+l- Vn = ~(kt + 3k3), 

kt - f(x,., y,.), 

h:z f(x,. + }h, y,. + }hkt), 
(3.2.11) 

-

k3 f(:r.,. + ~h, Yn + ~hkz). 
Hence kr denotes the function k,.(x,., y,., h) and his integration step length. 

Algorithm 3.2.2 
The following method is known as Kutta's third order mle. 

Yn+l - y,. - %(kt + 4kz + k3), 

kt f(:~:,., y,.), 

k2 - f(:z:,. + !h, y,. + !hkr), 
(3.2.12) 

k3 - f(x,. + h, y,.- hkt + 2hk2 ). 

It is the most popular third-order Runge-Kutta methn<l fi>r desk compu

tation, mainly because the coefficient ~ is preferable to ~· which appears 

frequently in (3.2.11 ). 

Algorithm 3.2.3 
The following formula is known as a Runge-Kut.ta fourth-order method. 
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Yn+l- Yn - %(ki + 2k2 + 2ka + k4), 

k! - f(x,.,y,.), 

k2 - f(x,. + !h,y,. + !hk1), (8.2.18) 

ka - f(x,. + !h,y,. + ~hk2), 

k4 f(x,. + h, y,. + hka). 

This method is undoubtedly the most popular of all H.ung;e-Kutta meth
ods. Indeed it is frequently referred to, loosely as even 'The H.ung;e-Kutta 
Method'. 

Algorithm 3.2.4 
The following method is also known as a fourth-order Rung;e-Kutta met.hod. 

1/n+l- Yn ~(A:I + 8A:2 + 8A:a + k4), 

f(x,., y,..), 

k2 - j(:1:, + ~h, 1/n + ~/i,A;I), 
A:a f(.1:,. + 1h, 1/n- ~h.A:1 + hk:2), 

k4 - f(x:,. + h, 1/n +hA:, - hk2 + hk:J). 

(:3.2.14) 

The derivation of fourth-order R.unge-I<utta methods involves tedious ma
nipulation, it transpires that with R = 4, fourth order a11<lno higher, can he 
obtained. F\tll details may be found in Ralston (l!JG!i) [lO!i]. 

Algorithm 3.2.5 
The following formula is the fifth-order Kutta-Nystriim method which is 

a six-stage method. 

Yn+!-Yn - 1
:;2(23k, + 125k:a- 8lA:5 + 125k:6 ), 

k, - f(x,., y,.), 

k2 - f(x,. + !h, Yn + !hk,), 

ka - f(x,. + ~h, y,. + }5h(4k:I + GA:2)), (3.2.15) 

k4 - f(x,. + h, 1/n + ih(k,- 12k2 + 15k:a)), 

k5 - f(x,. + ~h, Yn + "'t h(Gk, + 90k2 - 50k:a + 8A:4)), 

kG - f(:r:,. + ~h, y,., + 7
1
5 h(Gk, + 8Gk:2 + lOk:a + 8k:4)). 
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Algorithm 3.2.6 
The following formula is the six-order eight-stage method. 

Yn+I-Yn = 8; 0 (41kl + 216ka + 27k4 + 272ks + 27kr; + 216k7 + 41kH), 

k1 = f(x,., y .. ), 

k2 = J(xn + ~h, Yn + ~hki), 
ka = f(xn + ~h, Yn + 2~h(k1 + 3k2)), 

k4 = f(xn + ih, Yn + ~h(k1- 3k2 + 4ka)), 

k5 = f(x,. + !h,y,. + ~h(-5k1 + 27k2 - 24k3 + <lk4)), 

kr; = f(:r:,. + ~h, y,. + ~h(221k1 - 981k2 + 867A:a- 102k4 + kr,)) 

k7 = f(xn + *h, Yn + 4
1Rh( -183kl + 678k2- 472ka- ()Gk4 + 80kr, + :3kn)) 

ks = f(x .. +h,y,.+ "V'·(7lGk~-2079k2+ 1002k3+834k4 -4fi4k,-!Jkn+72k7)). 

(:3.2.1G) 
The derivation of the sixth-onler eight-stage method coni(! he fonJl(\ in 

Huta (1957) [104]. 

3.2.4 Error Bounds for Runge-Kutta Methods. 

In the previous section we mentioned only the order of an explicit one-step 
method and no mention of its truncation error. 
Definition 3.2.3 

The local truncation error at .r-,.+1 of the general explicit one step method 
(3.2.3) is defined to be T,.+l where 

(:3.2.17) 

and y(x) is the theoretical solution of the initial value problem. If we make 
the assmnption about (:3.2.3) that no previous errors have h<eenmade (namely 
that y,. = y(.r. .. )) then, from (3.2.17) and (3.2.3) it follows that 

Thus the truncation error defined by (3.2.17) is local. We can define the 
global truncation error en+! as e,.+I = y(Xn+J) - y,.+h where now it is no 
longer assumed that no previous truncation errors have been made. 

If y(x) is assumed to be sufficiently differentiable, the local truncation error 
for the non-linear method (3.2.3) of order p can be written in the form 

(:3.2.18) 

where we shall callll'(x, y) the prineipal error function, amlll'(:c,, y(x,))hl'+1 

the principal local truncation error. 
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Consider, for example, the general two-evaluation R.unge-Kutta method 
obtained by setting R = 2, in [(3.2.8) to (3.2.10)], the local truncation error 
can be obtained as 

where 

If the order is two, then we obtain 

For more detail we can refer to L<unbert (1986) [97]. ThuH the principal error 
function for the general seeond-order Runge-Kutta metho<l iH given by 

(:~.2. Fl) 

Following an arg,1unent originally proposed hy Lotkin (HJ51) [lOG] we can 
find a bound for w(:x:, y), if we assume that the followi11g bomHis for f ;md 
its partial derivatives hold for :z: E [a, b], 11 E ( -oo, oo) : 

if(x, y)i < Q, \()i+i f(x,y) I < pi+i /Q·i-1, 
o:z:'l)yJ 

i+j~P. (:~.2.20) 

Where P are Q are positive constants, and p is the order of the metho<l (in 
thls case 2). Then 
lfvl < P, 
IFI = ifx + ffyi < PQ + QP = 2PQ, 
IGI = ifxx + 2/ fxy + J2 /yyj < P2Q + 2QP2 + fl2 P 2 jQ = 4P2 jQ = 4P2Q. 

Hence from (3.2.19) 

jw(x, y)l < G + ~~- azl) P2Q, 

and we obtain the following bound for the prineipal local truncation error: 

(3.2.21) 

It can be shown that the bound we have just found fin· the principal local 
trunc-ation error is also a bound for the whole loc.al truncation error T,,+ 1• 

(Refer to Henrici (1962) [96], where, however, the hounds assume<! for the 
partial derivatives off are not those we have assumed in (:3.2.20).) This is a 
consequence of the fact. that the Runge-I<ut.ta metho<l iH a one-step e.xplicit 
method. We must write in place of (:3.2.21), 

(:t2.22) 
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The corresponding bound for the local truncation error of the general Third
order Runge-Kutta method obtained by setting R = 3 in [(3.2.8) to (3.2.10)] 
is shown by Ralston (1962) [107] to be as follows, for ca.qe a2 # 0, a3 # 0, 
a2 # aa: 

JTn+II < U2 + 8JAd + JA2J + j2A2 + Aal + JA2 +All+ 2JAal} IN'3Q, 

where 

It. is assumed that the following conditions are satisfied; 

c1 + c2 +ea 1, 

1 
c2a2 + caaa - 2' 

2 2 1 (3.2.24) 
c2a2 + Calt3 - 3' 

caa2ba2 
1 

- -
{j 

and aiso a2 and aa are the two free parameters. 
In the case of the general fourth order R.unge-I<utbt method, the bound 

for the local truncation error is much more complicated; it. may be found in 
Ralston (19G2) [107]. For the popular fourth-order method (3.2.13), Lot.kin 
(1951) [106], using the above analysis shows that 

(3.2.25) 

AI ternative bounds for the local truncation error can be found by bounding 
the partial derivatives off in a manner other than that of (3.2.20). Thus the 
well known bound of Bieberbach (1930) [108] for the local truncation error 
of (3.2.13) is given by 

(3.2.2G) 

where, in the neighbourhood Jx- :r:oJ <A, Jy- Ynl < B, 

u f x,y i-1 

I 
ni+i ( ) I 

lf(x,y)J < Q, ih'Oyi < N/Q , i + .i :::; 4, 

jx- :r:nJN < 1 and AQ <B. 

Numerical evidence suggests that. (3.2.25) gives a sharper hmu11! than (3.2.2G) 
(refer to Lotkin (1951) [lOG]). It. can be shown that for the general explieit 
one step metho1l (:~.2.:~) the bouwl f()r the global truncation (error is m1 nnler 
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of magnitude greater than the bound for the local truncation error. (Refer 
to Lambert (1963) [97]). 

' 
If the local truncation error Tn+! defined by (3.2.17) satisfies 

where K is a constant, then the global truncation error e,. = y(x:,..) - y ... 
satisfies the inequality 

(3.2.28) 

where L(> 0) is the Lipschitz constant of f(x, y) with respect to y. For the 
proof of this result, and an extension to take account of nnuHl-oft' error, we 
could refer to Henrici (1962) [96]. 

CarT (1958) [109] gives an alternative bound for the glohal truncation error 
of the fourth-order method (3.2.13); it applies, however, only t.o restricted 
class of initial value prohlems. Assume that the local t.mncat.ion error, T,,., 

satisfies IT .. I < E. Then Carr's Theorem states that. if 
1
!)! is continuous, 
(]} 

negative, am! bounded from above and below in a region D of the .1: - y 
plane by 

lJf 
-Mz <-,-<-M,< 0, 

dy 
(:3.2.2!Ji) 

them for all points (x,., y,.) in a region D* of the x: - y plane, the global 
truncation error of the method (3.2.13) satisfie$ 

le.,l:::; 2E/hMr, (3.2.2'Jii) 

provided that the step-length is chosen such that 

h < min(Mr/Mi, 4Ml/Mt). (3 2 2')"') .. . nz 

The region D* is such that if (x,.,y,.) E D', then (x,.,y(x:.,)) E D. Note 
that (3.2.29), like (3.2.28), indic.a.tes that the bound for the global error is 
an order of magnitude, greater than that for the local error. CarT's result 
can also take account. of round-off error in the sense that if E bounds not. 
the local tnmcation error, but. the total local error, including round-oft', then 
(3.2.29ii) holds with e .. replaced bye,. (which denotes the total global error). 
An extension of this result, which applies to a more general dass of R.unge
Kutta methods, can be found in Galler and R.esenberg (19GO) [110]. The 
error bounds we have discussed in this section may be very hard to apply 
in practice. In particular it is quite impracticable to attempt to form a step 
control policy on the basis of (3.2.27) and (3.2.28). However, there are two 
good reasons for studying bounds for the local truncation errors of R.unge
Kut.ta methods. Firstly, an important application of R.unge-Kut.t.a methods 
is to provide additional starting values for a mult.istep predictor-corrector 
algorithm. In such circumstances, the R.unge-Kutta method is applie<l only 
for a small number of steps, and a hound on the local error rather than on 
the global error is adequate. Moreover, it is then necessary to find bou!Hls ii>r 
the partial derivatives off only in the immediate vicinity of the initial point. 
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If, in our choice of steplength for the R.unge-Kutta starting method (whieh 
need not be the same as the steplength of the predictor corrector alguritlnn) 
we are guided by an error bound which turns out to be too conservative, then 
at least the resulting computational ineffidency is restricted to the starting 
process; we have the consolation of knowing that in the remainder of the 
numerical solution starting errors will not dominate. 

The second point concerns the choice for the free parameters in Runge
Kutta methods. In the classical methods, these were chosen in order to give 
simple coefficients. Ralston (1962) (107] has investigated the possibility of 
choosing these coeffidents to minimize the bound for the local tmncation 
error. 

3.2.5 Estimation of Error for Runge-Kutta Methods 

In the previous section we have seen that bounds for the local t.nmeation 
error do not form a suitable basis for monitoring local truncation enor with 
a view to c.onstructing a step-control policy. What is neede<l, in plaee of a 
bound, is a readily computable estimate of the local truncation error. Several 
such estimates exist ami we shall discuss a number of th<;m briefly in this 
section. The most commonly used estimate arises from-an application of the 
process of the differed approach to the limit, altematively called Hidmnlson 
extrapolation (Richardson ( 1927) (111]). 

Under the usual localising assumption that no previous errom have been 
made, we have seen that we may write, using (3.2.18) 

(3.2.:30) 

where pis the order of the Runge-Kutta method. Now let us compute 1J.',+1, 
a second approximation to y(x,.+l), obtained by applying the same method 
at Xn - 1 with step length 2h. 

Under the same localising assumption, it follows that 

_ IJI(x,._b y(x,._J))(2h)1'+1 + O(h"+2
) } 

IJI(x,., y(.7:,.))(2h.)'rt1 + O(h''+2), 
(:3.2.31) 

on expanding IJI(x,._by(x,._ 1)) about (::r:,.,y(x,.)). On subtracting (3.2.30) 
from (3.2.31) we obtain 

Yn+l- y;,+l = (27'+1- l)IJ!(:z:,., y(:c,.))h1'+1 + O(h1'+2
). 

Thus the principal local truncation error, whidt is taken a.q an estimate for 
the local truncation error, may be written as 

(3.2.32) 

Thus to apply Riclmrdson extrapolation we compnt<; ov<;r two successive 
steps using steplengt.h h, ami then reeompute over t.h<; <lonble step using 
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steplength 2h. The difference between the values for y· so obtained, divided 
by 31 in the case of a fourth-order method, is then an estimate of the local 
truncation error. This estimate is usually quite adequate for the purpose of 
step-control, but it involves a considerable increase in computational effort; 
thus to obtain such an estimate at every sec.ond step will call for an increase of 
roughly 50% in computational effort. Estimates for the local truncation error 
which do not involve additional evaluations of the function f(:c, y) have been 
considered by Kuntzmann (1959) (112]. The.se e.stimates, however, involve 
data calculated at a number of previous steps and essentially estimate the 
average local truncation error over these steps. In a situation where the 
local truncation error is changing rapidly and this is the important case from 
the point of view of step-control policy, su<"h estimates can he misleading. 
One such estimate, quoted by Scraton (19G4) (113], whkh applies for the 
fourth-order Runge-Kutta method (3.2.13) is 

where fn+i = f(x,.+i• 1Jn+.;),j = 0, 1, 2,; note that these evaluations off will 
already have been made in applying (:3.2.1:~). 

The idea of deriving a special Runge-Kutta met.!H><l which admits an easily 
calculated error estimate which does not depenrl on quantities calculated at 
previous steps was first proposed hy Merson (1957) (114]. Merson's method 
is 

h 
Yn+l - 1Jn - G(kl + 4k4 + A:r.), 

kl - j(J:,.,y,.), 

1 1 
k2 - f(x,. + 3h, 1J,. + 3hkJ), 

1 1 1 
k3 J(x,. + J"·· y,. + 6hk1 + 6hk2), 

(:3.2.34) 

1 1 3 
f(:r.,. + zh, 1/n + s"'kl + s"'k3), 

1 3 
f(.'I:,. + h, u .. + 2hk1 - 211.k3 + 2hk4). 

The method has order four and an estimate of the local truncation error is 
given by 

(:3.2.:35) 

This method has been widely used for non-linear problems, although, as 
pointed out. by Scraton (19G4) (113], the error te.stimate is valid only when 
the differential equation is linear in both .1: and y, that is of the form 

1/1 = a::r: + by + c. 

when (3.2.34) is applied to a non-linear difl'erential equation, t.lue error es
timate (3.2.35) frequently grossly over estimates the loeal truncation terror 
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and occasionally (England (1969) [115]) under estimates it. A fourth or
der method which admits an error estimate which is valid for a non-linear 
differential equation is derived by Scraton (1964) [113]. It. is 

Yn+!- Yn 1 [ 17 k 81 k 32 k + 250 k l ~ 162 I + 170 •3 + 135 •4 )377 •5 ' 

J(xn,Yn), 

k2 J(xn + ~h, Yn + ~hk,), 
k3 - f(xn + ~h, y,. + 112hk1 + ~hk2), 
k4 f(x,. + ~h,y,. + i1~~(23k,- 81k2 + 90k3)), 

k 5 - f(x,. + {;Jt,y,. + H~~;10 (-345k1 + 2025k2 - 1224k3 + 544k4)). 
(3.2.:36) 

The estimate for the local truncation error of (3.2.36) is given by 

T,,+l = hqr'/ s, 

where 
q - - J"k' + t2~,A:a + t4,k4 + t2;lA:5, l 
r 1!11_ 27 k + 57 k 4 k 
. - 24 f'i;l - ~ '2 2G <3 - lf1 '4' 

s k4- kl· 

(:3.2.:n} 

We should note that the methods of both Merson fllHI Scmton do not require 
additional function evaluations in order to compute the error estimate. How
ever 

1 
when we observe that both methods have fourth order ami require five 

function evaluations per step, whereas we know that there exist fourth-order 
Runge-Kutta methods which require only fom evaluations per step, we see 
that additional function evaluations are in effect require<! if we demawl an 
error estimate. 

Scraton's estimate, although more realistic than Merson's when applied 
to a general non-linear differential equation, has the disadvantage that it is 
not linear in the k,.. As a result. it is applicable only to a single differential 
equation and does not extend to a system of equations. In order to find a 
method which admits an error estimate which is linear in the k,., and thus 
holds for a general non-linear differential equation or system of equations, 
it is necessary to make fmther sacrifices in the form of additional function 
evaluations. Thus England (1969) [115] giw.s the following fomth order six
stage method; 

Yn+l- Yn - ~(kl + 4k3 + k4), 

k, - J(:~:,y,.), 

k2 f(x .. + ~h, y,. + ~hk1 ), 

ka f(x,. + ~h, 1/n + thk, + ~hk2), 
k4 - f(x, + h, y,.- hk2 + 2hk3), 

k5 f(x,. + ~h, y,. + ~~ (7kt + 10k2 + k4)), 

kn !(:~:, + f;h,y, + r;~r,(28kt- 125k2 + 54Gka + 54k4- 37xk,)). 
(:l.2.3X) 
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The associated estimate for the local truncation error is 

h 
Tn+I = 

336
(-42kl- 224ka- 21k4 + 162k5 + 125k6 ). (3.2.39) 

We should note that if (3.2.38) is used without the estimate (3.2.39) it is 
essentially a four stage method. Further Runge-Kutta processes which admit 
error estimates have been derived by Shintani (1965-1966) (116] to (118]. We 
can conclude that all the estimates for the local truncation error of Runge
Kutta methods we have discussed either average the error over a number of 
steps or require, in one way or another, additional function evaluations. 

3.2.6 Weak Stability for Runge-Kutta Methods 

It is possible to develop a theory of weak stability for Runge-Kutta methods 
along exactly the same line as for linear multi step methods. It can be shown 
for the linear multi step methods (refer to Lambert, .J.D. (1986) (fJ7]) that 
the linearised equation satisfied hy the total error e,. = y(.7:,.) - fj,. (which 
includes round-off as well as tnmcation error) generated hy the linear multi 
step method 

k k 

I: aj1/n+i = h I: /3jfn+i (3.2.40) 
j=O i=O 

is of the form 
k 

L (a.;- h>../3j)Cn+i = </J, 
j=O 

provided that. we make the assumptions 

const.ant (3.2.4li) 

and, 
local error = constant. (3.2.41ii) 

Subsequently, we make no use of the function <P and, in effeet., define intervals 
of absolute and relative stability, in terms of the behaviour of the solution of 
the equation 

k 

L:;(ai- h>../3;)en+i = 0. 
j=O 

Let us, instead apply (3.2.40) directly to the test equation 

y' = >..y, 

for which the assumption (3.2.41i) is obviously valid. 

We obtain 
k 

L (a;- h>..{:Jj)1/n+i = 0, 
j=O 

(3.2.42) 

(~U43) 

which is exactly the same equation as (3.2.42) with simply a change of ar
g1unent. Thus, for example, we obtain exactly the same nesnlts as in linear 
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multistep methods {refer to Lambert {1986) [97]) if we define the interval of 
absolute stability to be that interval of the h>. line for which all solutions 
of the difference equation, obtained by applying the method (3.2.40) to the 
test equation y' = >.y tend to zero as n tends to infinity. To interpret the re
sult in terms of the general equation y' = f(x, y) subject to the unavoidable 
assumptions {3.2.41) we simply take>. to be an estimate of of joy. In this 
approach we are linearizing the original differential equation, as opposed to 
linearizing the error equation. 

Let us now apply the Runge-Kutta method {3.2.8) to {3.2.10) with R = 3 
to the test equation y' = >.y 

kl - f(x,y) = >.y, 

k2 - f(x + ha2, y + ha2k1 = >.(y + ha2>.y) = >.y(1 + a2h>.), 

ka - f(x + haa, y + h(aa - b32)k1 + hba2k2) 

- >.[y + h>.y(aa- ba2) + h>.yb32(1 + a2h>.)] 

- >.y( 1 + aah>. + a2b32h2 >. 2). 

Hence 

1/J(x, y, h) - c1k1 + c2k2 + caka 

- >.y[(c1 + c2 +ea))+ (c2a2 + caaa)h>. + caa2b32h2 >.2], 

and from (3.2.8) we obtain the difference equation 

Yn+l- Yn = h>.[c1 +~+ea)+ (c2a2 + caaa)h>. + caa2b32h2 >.2]Yn· 

Introducting the notation li = h>., we obtain 
- -2 -a 

Yn+dYn = 1 +(cl+ c2 + ca)h + (c2a2 + caaa)h + caa2ba2h . 

The general solution of this equation is 

where d1 is an arbitrary constant and 

r1 = 1 +(cl+ c2 + ca)li + (c2a2 + caaa)h2 + caa2ba2ha. (3.2.44) 

We can then define the three stage Runge-Kutta method to be absolutely 
stable on the interval (a, {3) if r 11 given by (3.2.44) satisfies !r1! < 1 whenever 
liE (a, /3). 

If the Runge-Kutta method under discussion is consistent, then c1 + c2 + 
ea = 1, and from (3.2.44) we may write 

r1 = 1+ li + O(h2
). 

Hence for sufficiently small positive li, r1 > 1, we may conclude that, the 
interval of absolute stability has the form (a, 0). Moreover, if the three stage 
method has order three, then equation (3.2.24) holds, and (3.2.44) yields 

- 1-2 1-a 
r1 = 1+ h + 2h + 6h . (3.2.45) 
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A plot of this function against h reveals that lrii < 1 whenever h E ( -2.51, 0). 
Recalling that (3.2.24) does not specify the coefficients of the method uniquesly, 
we may conclude that all three-stage R.unge-Kutta methods of order three 
have the same interval of absolute stability, namely ( -2.51, 0). 

We can obtain a generalization of this n·.sult from the following alternative 
approacli. In Section 3.2.3 we saw that if the general R-stage Runge-Kutta 
method (3.2.8) to (3.2.10) has aor·der p, then <f;(x, y, h), defined by (3.2.9) 
differs from <f;r(x,y,h), defined by (3.2.6), by terms of order hP. Thus for a 
method of order p, by (3.2.8) 

Yn+I- Yn - h<f;r(x.,, y,., h)+ O(h1'+1) 

_ hf(x,.,y,.) + ~~~f(!l(.r.,.,y,) + ... 
+ ~;J<r•-!l(x,.,y,.)+O(h''+l). 

For the test function y' = A.y, f(x,.,y,.) = >.y,., J<"l(:r:,., y,) = XJ+ 1y,., q = 
1, 2, ... ,p- 1. Hence 

or 

I - ,- 1 -,2 1,-,, (-,,,+!) 
Yn+l y, = TJ - 1 + L + t L + ... + t /, + 0 /, . 

2. Ji. 
(3.2.46) 

On the other hand, it is clear from a generalisation of the analysis leading to 
(3.2.44) that for a R-stage method, r 1 is a polynomial of degTee R in li .. 

We know that if an R-stage methods has order p, then R 2': p, and R 
can equal p only for p = 1, 2, 3, 4. Hence for a p-stage method of order Jl, 
(p::; 4), we have 

- 1-2 1 ' 
TJ = 1 + h + -h + ... + th1 

2 Ji. 
(3.2.47) 

irrespective of the values given to the parameter left free after satisfying the 
order requirements. It follows that, for a given p, p = 1, 2, 3, 4, all 11-stage 
R.unge-Kutta methods of order p have the same interval of absolute stability. 
These intervals are given in Table (3.2.1), where Rp denotes any 11-stage 
Runge-Kutta method of order p, p = 1, 2, 3, 4. 

If the R-stage method has order p < R (and this will always be the r.ase 
for p > 4) then r 1 takes the form 

(:3.2.48) 

where the coefficients v4 are functions of the coefficients of the R.unge-Kutta 
method, but are not determined by the order requirement. In such a case 
the interval will depend on the particular dwiee for the free parameters. If, 
for example for R = 3 we consider methods of order two, then only the first 
two of the equation (3.2.24) need be satsified aiHl we obtain from (:3.2.44) 

- 1-2 -:l 
TJ = 1 + h + 2/i. + Vah , 



where v3 = c3a2b32 • If v3 = 0, the interval of absolute stability is clearly 
(-2,0), whereas for v3 = i it is, from table 3.2.1, (-2.51,0). (Note that 
v3 = fl is not a sufficient condition for the order of the method to be three, 
since the third of the equations (3.2.24) is not ncessarily satisfied). For 
v3 = 1~, the interval of absolute stability becomes ( -4.52, 0). 

(Table 3.2.1) 

method T! Interval of 
absolute stability 

RI 1+h ( -2, 0) 
R2 1 + Tt + l/12 ( -2, 0) 
Ra 1 + h + J)t2 + lJi3 (-2.51, 0) 2 y 
R4 1 + h+ ~Ji2+ ,y + ,J.Ji4 ( -2.78, 0) 

Here we should mention that the algorithm we have usecl for the solution 
of state and adjoint differential equations for our problems in the following 
chapters is the R.unge-Kutta fourth order method, i.e. Algorithm 3.2.3, 
Formula (3.2.13). 

3.3 Simpson's Numerical Integration Rule 

Calculating; the definite integml of a given real function f(x), 

1
,, 

f(:x:) dx, 
" 

is a classic problem. For some simple integrals f(x), the indefinite integral 

{x j(x)dx = F(x), F'(x) = f(:x:), },, 

can be obtained in closed form 1md then 

1." f(x)dx = F(b)- F(n). 
" 

See Grobner and Hofreiter (19Gl) [119] for a comprehensive collection of 
formulas describing such indefinite integrals and many important definite 
integrals. 

As a rule, however, definite integrals are computed using discretization 
methods which approximate the integral by finite smns corresponding to 
some portion of the interval of integration [a, b] ('numerical quadmture'). A 
typical representative of this class of methods is Simpson's mle, which is still 
one of the best-known and most widely used integration method. 
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Simpson's rule corresponds to quadratic approximation; thus, for Xj ::; :r: ::; 

Xj + 2h, 

{H'• J(x)dx - h t f(xi + Oh)dO 
J 

~ ht[1 +M+ ~0(0- 1)Ll2]fid0 

_ h[(O + ~02t. + (i03 _ ~02)t,2)h]~ 

h[2/i + 2(/j+J- /i) + ~{Jj+2- 2fi+I + fi) 

~h(fi + 4fHI + fm). 

where the forward difference operator t. is defined by Ll = E- 1, where E is 
called the shift operator and Ek fi = fi+k· Furthermore, t. k fi = t. k-I fi+ 1 -

t,k- 1 Ji, where k is any integer. 

A parabolic arc is fitted to the curve y = j(.1:) at the three tabular points 
Xj, Xj +hand Xj + 2h. Consequently, if N = (I!- a)/his even, one obtains 
Simpson's rule: 

1
1, 

" 

where 

f(x)d:r: = ("' J(.1:)d:r: + r·f(.r.)d:r: + ... 
lxu Jx2 

f(x)d:r: = ~h[fo + 4fi + 2fz + 4f3 + 2f4 + ... + 4fN-1 + !N], 

(3.:U) 

h = J(xi) = J(a + jh), j = 0, 1, 2, ... , N. 

Integration by Simpson's rule involve$ computing a finite sum of values given 
by the integrand f(x). Simpson's rule is also effective for automatic compu
tation, and one direct. application is desk calculation usually gives sufficient 
accuracy. 

3.3.1 Accuracy 

In automatic computation involving a known integrand f(x), we emphasize 
that it is quite appropriate to program increased interval subdivision to pro
vide the desired accuracy, but that for desk calculation a (tmncation) error 
bound is again useful. Suppose that in Xj-h ::; :r; ::; :r:;+h the function /(:r:) 
has the Taylor expansion 

f(.7:) = h + (x- xj)fj + ~! (x- xi)2 Jj' + ... , 

then 

1x;+h [ . 1 h2 
11 1 h4 

(4) ] 
f(x)rh = 2h fi + -

3
-21 fi + ;;--41 /; + .... 

~~ . D . 

One may re-express the qnadratnre rule for Xj - h ::; .1: ::; .7:; + h by 

f:i+I = f(:r:; +h) and h-1 = f(:r:.; - h) 



as Taylor series; thus 

- 1h[(fj- hfj + ~h2 fj'- .. . ) + 4/j 

+ (fj + hfj + ~h2 fj' + ... )] 
2h(f 1 h2 !" 1 h. !(4) ) - j + 32! j + 34! j + .... 

Comparison of these two forms shows that the correction is needed and it is 

2h (! - !) h4 ~~4) = _ _!_hs/~4) 5 3 4! J + . . . 90 J + ... 

Ignoring higher order terms, we conclude that the approximate bound on the 
truncation error estimating 

[ f(x)dx 

by Simpson's rule (with If subintervals of width 2h) is 

Here we should mention that the algorithm we have used for the solution of 
numerical integration, the norms for our problems in the following chapters 
is the Simpson's ~rule, i.e. (3.3.1). 

3.4 The Linear Search 

In this section we discuss some of the linear search techniques, i.e. methods 
for finding a maximum or minimum of f(x) along a given line; this is es
sentially a one-dimensional problem. Some linear search techniques involve 
the evaluation of the derivatives of f ( x), others do not; both types are in 
common use. Linear searches are used in conjunction with many gradient 
methods. (Refer to Walsh (1975) [120]). 

The linear search can occupy a large proportion of the total time for the 
solution of the problem and should, therefore, obviously be as efficient as 
possible. Some suitable balance should be struck between the order of the 
polynomial required to obtain a given accuracy and the amount of compu
tation required. 

Let us consider the minimization problem: 

min <l'(a), 
o>O 

(3.4.1) 

where 4.> is defined as (2.2.2) in Chapter 2. Here we shall describe some of 
the techniques that only impose some weak acceptance criteria on aCk), that 
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lead to methods that perhaps as well in theory and in practice. Let JL(k) be 
the first value of a such that 

where 0 < a < 1. In this case we have: 

Jik) ~ -1; a ms((/kl). IIY' /(x(k))ll· 

where!! is an upper bound on ll\72 f(x)ll. 

It indicates that convergence can still be maintained even if we ·do not 
require a<k) to be the solution of the one-dimensional minimization problem 
(3.4.1) but only require that a<k) ~ 1ik). 

Therefore if during the line search an a is found such that 

(3.4.2) 

then the seard1 for a can be stopped. 

A frequently used method for det.ermining the step lengths a(k) is to esti
mate a local minimizer of <I>( a). Then a<kl satisfies at. l~ast the requirement: 

(3.4.:3) 

That. means, a<k) satisfies at least approximately the requirement.: 

<l/(a) = 0, (:H4) 

where <I>' is the first. derivative of <I>. 

In general, since (3.4.4) is a non linear equation it. can not. be solved ana
lytically. Hence a numerical method is selected to find the value of a which 
satisfies (3.4.3). We use the term 'Exact line search', when a<k) is chosen such 
that it satisfies (3.4.4) exact.ly. When (3.4.4) is satisfied only approximately, 
the procedure is termed an 'Inexact. line search'. 

A sufficient decrease in fat. each iteration, is an essential requirement for a 
step length algorithm, associated with a descent. method. In order to assume 
the convergence, the step length must produce a "sufficient.' or 'satisfactory' 
decrease in f(x). Although it seems to be common sense to require that. 

(3.4.5) 

it comes as no great. survrise that this simple condition does not. guarantee 
that the sequence {:~:<k)heN will converge to a minimizer of f. Counter 
examples to prove this statement can be found for example in Gill, Murray 
and Wright. (1981) [43] and Dennis and Schnabel (19il:3) [121]. 
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A great deal of effort has been expended upon the construction of efficient 
line search procedures. Most of these procedures are based on the principles 
of Goldstein (1962) [122], (1965) [42], [12:3] and (1967) [128] and Annijo 
(1966) [124] from which the well known Goldst.ein-Armijo principle is derived. 

We can describe the Goldstein-Armijo principle as follows: 

A sufficient decrease in J(x) is achieved if a<kl satisfies: 

a<klq2 \1 J(~1_:(klf 8(k) < f(x<k+Il) _ J(x<kl) 

< a<klq1 \1 f(x<kl)T 8(k), 
(:3.4.6) 

where q1 and q2 are scalars satisfying 0 < q1 < q2 < 1 and q1 = 1 - lJ2· To 
ensure that a<kl is neither too large nor too small we set suitable upper <UHI 
lower bounds in (:3.4.6). 

It should be emphasized, that condition (:3.4.6) alone can not guarantee a 
good value of a<k). Although this strategy would be 'efficient.' in that a suithle 
a<k) would be found with only a single funct.ion evaluation per iteration, but 
it. would be extremely inefficient if any descent method uses such a step length 
algorithm. It is true that minimizing the munher of funct.ion ev<tluat.ions for 
the sake of computational labour required is important, but it is also essential 
to consider the performance of a step length algorithm not merely in tenus 
of that., but also in terms of the overall reduction in J achieved at each step. 
To balance this, some flexibility is desirable in specifying the conditions to 
be satisfied by a<kl. 

Fletcher (1980) [42] suggests that a<kl is such that .7:(!c+t) satisfies the con
dition: 

IY(k+I)Ts(k) I :::; -ug<klTs(k), 

together with the Goldstein (1965) [59] requirement that: 

J(x(k+l):::; f(x(k)) + pcP>g<k)T 8(kl. 

(:3.4. 7) 

(:3.4.8) 

where g<k) = \1 J(x<kl) is the gmdient vector at .T.(k), and where p E (0, ~), a E 

(0, 1) and p < u. 

Condition (:3.4. 7) ensures that a(k) is not too small. u determines the 
accuracy with whid1 a<kl approximates a stationary point of f along .s<kl, 

and also provides a means of c.ontrolling the balance of effort. to he expenclecl 
in computing a<kl. When u = 0, we have the case .of exact line search, 
condition (:3.4.8) requires that. f(:r:<kl + as<kl) lies on or below the line p(a) = 
f(.y,(k)) + pag<klTs(k), and ensures a sufficient decrease when usecl together 
with (:3.4.7). 

The advantage that eom\it.ion (:3.4.7) has as an acceptance criterion in that 
its interpretation in terms of a local minimizer suggests efficient methods 
for computing a good value of a<k). In particular saf<egltardc~d polynmnial 
fitting techniques for univariate minimiz<ttion conwrg<e v<ery rapidly on well 
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balanced functions. We can refer to Gill, Murray and Wright (1981) [43] for 
a full description of these techniques. Also Dennis and Schnabel (1983) [121] 
describe a similar procedure. They give an algorithm of back trad1ing line 
search procedure using quadratic and qubic interpolation. An investigation of 
line search procedures was carried out by Al-Baa.li and Fletcher (1986) [125]. 
They mainly aimed at developing a line search method that is applicable 
to the nonlinear least-square problem in which f(:~:) is a sum of squares of 
nonlinear functions: 

1 m. 

f(x) = 2 I: (r-;(:tW. 
i=l 

(3.4.9) 

If r-E !Rn denotes the column vector whose elements are the functions r-;(:x:) 
and A= 'ilrT is the jacobian matrix of r, then it follows that: 

g(x) = A(x) · r-(x). (:3.4.10) 

Therefore in order to evaluate f(:r:), it. neecls the evaluation of r·(:~:), and also 
to evaluate g(x) it requires in addition an evaluation of the jacohian matrix. 

In their work they studied various interati ve sd1emes for the line search 
sub-problem that g11arantee finding an acceptable step length a in a finite 
number of steps. This can be achieved by first bracketing an interval of 
acceptable a values, and then reducing this bracket uniformly by repeated 
sectioning of the bracket in a systematic way. These schemes for the line 
search sub-problem include a scheme for finding an acceptable value of a that 
satisfies (3.4.2) together with the Goldstein (1965) [59] requirement (3.4.8). 
This is then generalised in order to find an acceptable value of a that satisfies 
(3.4.7) and (3.4.8) as well as that of Flet.cher (1980) [42]. 

F\1rther investigations lead to modifications suggested with the aim of pro
ducing schemes in which the gradient vector is evaluated as frequently as 
possible, on the assumption that this is the major cost in using the methods. 
Their works show in particular that suLstantial gains in efficiency can he 
obtained in non-linear least square problems by making polynomial approx
imations to the individual functions r;, rather than the overall function .f of 
(3.4.9). 

The problem of using proper line search concli tions to ensure global con
vergence of unconstrained optimization algorithms was studied by many au
thors (Goldstein (1965)) [59], Wolf (1969) [38], Zoutenclijk (1976) [36], Powell 
(1976) [50]). 

A well known result is that, if the angle between ~g(k) and the sem-dt 
direction s<kl is bounded away from%, and if the line seard1 conditions (a.4.7) 
and (3.4.8) are satisfied, then global convergence is assumed. More precisely, 
let 

then we have 
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Theorem 3.4.1 (Lemarechal, 1981) [12G)). 
Let f be bounded below on the level set 

s = {:rlf(x) :::; f(xo)}, 

and \1 f be Lipschitzian on s, that is, there exists a constant L > 0 sud1 that 

ll\1 f(x)- \1 f(x)ll :::; Lll.1:- yll, Vx, y, E s. 

Let the line searches in the algorithm satisfy the line seard1 omditions (:3.4.7) 
and (3.4.8) at ead1 iteration, and let 

00 

I: ms2 (J(k) = +oo, 
i=O 

then the algorithm is globally convergent, that is 

lim inf 11:/k) 11 = 0. 
k-oo 

Moreover, if 
cos &(k) 2: c > 0, k = 1, 2 ... , 

then 
lim q(k) = 0. 
k-oo~ 

In practice, the following line seard1 conditions which are slightly stronger . . 

that (3.4. 7) and (3.4.8) are often used, 

<I>(a(k)) :::; <I>(O) + pa(k)<I>(O), 

I<P(a(k))l :::; -a<I>'(O), 

(3.4.lli) 

(:3.4.ll'i·i.) 

where 0 < p :::; a < 1. Usually we require p < ~ to· preserve superlinear 
c.onvergence (Fletcher 1987 [127]). This set of com!itions gives line searches 
that are as accurate as we like when a -+ 0, and the two conditions are 
consistent (there exists an interval of acceptable points) as long as <I>( a) is 
bounded below, 0 < e < a and <I>'(O) < 0. 

In the next sections we desciibe the two linear search techniques we have 
used in this thesis to solve our problems. 

3.4.1 Linear Search at Constant Step 

In this technique the step is retained at a constant value until a reduction 
in the objective function is achieved. A quadratic is then fitted through the 
last three points. Obviously, in the regions remote from the final solution, 
the smaller the step the better the fit.. Computational experience with this 
technique in conjunction with the conjugate gmdient method requires the 
inclusion of a step-halving procedure. Thus, if at any stage the step is found 
to be too large, it is automatically halved and the new value is retained in 
subsequent searches unless further redudion is necessary. The procedunes 
for this technique is as follows: 

GO 



Algorithm 3.4.1 
To locate the maximum of the function X = X(c:) set c: = 0 calculate 

X=XA 
c: = c: + 15 r.alculate X = X n 

Case (1) or Case (2) is now appropriate. 
Case (1) Xn 2: XA 

Stage {i} 

Stnge {ii} 

Stnge {iii} 

Case (2) 

Stnge (i} 

Stnge {ii} 

Stage (iii) 

Formula (1) 

Formula (2) 

where 

c: = c: + 8 calculate X = Xc 

if Xc 2: Xn 
Set XA = Xn, Xn = Xc 
Repeat stage (i) and (ii) 
until Xc < Xn 

When Xc < Xn 
use formula ( 1) for the c: umx 

Calculate X= X(c:,,,.x) 
The larger of Xn and X is then selected. 

Set. Xc = Xn 
c: = !c: calculate X = Xn 

if Xn::; XA 
Repeat stage (i) and (ii) 
until Xn > XA 

WhenXn >XA 
use formula (2) for C:max 
Calculate X= X(emax)· 
The larger of X n and X is then selected. 

Z1 =Xn-XA 

Z2 = Xc-Xn 

The derivations of formula (1) awl (2) can he fouml in Walcb· (1!JG9) [12!J]. 
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3.4.2 Quadratic Interpolation Method 

Consider the linear seard1 problem of minimizing the function f ( x) along the 
line x = xk+>.., where Xk is the current point and s is a given direction. Pow
ell (1964) [130] published a simple algorithm for determining the minimizing 
value of >., using quadratic inte1volation together with a few common-sense 
rules. This algorithm forms part of Powell's more general method for finding 
the minimum value of a function f(x) without calculating derivatives (see 
Walsh (1975) [120]). However, it may also be used in conjunet.ion with any 
gradient method or, more generally, with any optimization technique that 
requires a one-dimensional seard1. In each iteration, Powell's algorithm finds 
a quadratic function h(>.) which takes the same values as f(:r:k +A,,) for three 
current values of>.. Having found the value of>.(>.= >.•, say) which mini
mizes h(A), one of the three current values of A is discarded and is replaced 
by 5. •. The iterations continue until the desired accuracy is attaine<L 

Let 
fA - f(.r.k +As), 
fs - f(.r.k + Bs), 
fc - f(.1:k + Cs), 

be function values at. three points, not necessarily mnsec.nt.ive, on the line 
X= Xk+As. 

Assume that the quadratic function 

(3.4.12) 

takes the values of fA, fs, fc at A= A, B, C, respectively, i.e. assmne, 

Equation (3.4.13) gives, 

a+bA+cA2 

a+bs +cB2 

a+bC+cC2 

fA, } 
fs, 

- fc. 

[
JABC(C- B)+ fsCA(A- C)+ foAB(B- A)] 

a ~-B)~-q(C-A) ' 

b _ [JA(B2
- C2

) + fs(CZ- A
2

) + fc(A- B)] 
(A- B)(B- C)(C- A) ' 

c = _ [JA(B- C)+ fs(C- A)+ fo(A- B)] 
(A- B)(B- C)(C- A) . 

(3.4.14) 

The quadratic function h(>.) of (3.4.12) has a turning point at A = - ~~ and 
has a minimum there if c > 0. Hence using equation (3.4.14), we can find 
that this turning point is at >. = 5.', where . 

,\* _ fA(B 2
- C2

) + fs(CZ- A 2
) + fc(A2

- B 2
) 

- 2[fA(B- C)+ fn(C- A)+ fc(A- B) ' 
(:l4.1G) 



and h(A.) has a minimum there if, 

fA(B- C)+ fB(C- A)+ fc(A- B) 
(A- B)(B- C)(C- A) < o. (:3.4.16) 

Given an initial point .T.k and a direction of seard1 s, Powell's quadratie 
interpolation method for minimizing the general function f(x) on the line 
x = Xk + >..s is as follows: 

1. Choose a step length his!; the vector s need not he a unit vector. 

2. Evaluate f(xk) and f(xk + hs). 

3. If f(xk) < f(xk + hs), evaluate f(xk- hs), otherwise evaluate f(:r:k + 
2hs). 

4. Find the turning point >.. = 5.• of the quadratie function h(A.) fitted 
through these three points, using (3.4.15) ami test for n minimum, 
using (3.4.16). Go to mle 5, G or 7, as appropriate. 

5. If the point >.. = 5.' corresponds to a maximum of h(A.) or if it corTe
sponds to a minimum whieh is at a greater distance than His! (where 
H is prescribed), from the nearest of the three current points, proceed 
as follows. Discard the point whidt is furthest from the turning point 
and obtain a step His I in the direction in whieh the function decrea.ses; 
this step (Fig 3.4.1) is taken from the point furthest from (nearest 
to) the turning point when tuming point correspcmds to a maxiunuu 
(minimum). Return to rule 4. 

2 

3 
. • '1 

I 
4 I 

I H L.,: 
!Hisl I I Hb·l I 

Figure {3.4.1): Rule 5 of Powell's quadratic interpolation method 

G. If the point>..= 5.• mrresponds to a minimum of h(A.) and it is within 
a small prescribed distance cl si of the nearest point >.. = A, say of the 
three current points, take 

min{f(.1:k + 5.'s), f(.r.k +As)} 

as the required minimum value of f(:x:). 

7. If the point>..= ).• corresponds to a minmum of h(A.) to which neither 
rule 5 nor rule 6 applies, i.e;, if it is not further than His! from the 
nearest of the three curTent points, but not within clsl of it, cliscmd 
the point with the highest fundi on value and rceplace it hy >.. = 5.'. 
Return to rule 4. 

Note: It is always desirable to locate the next turning Jloiut by interpolation 
rather than by extrapolation; au exception is made to ml~e 7 to allow for this. 
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In Figure (3.4.2), print 3 has the highest function value, though point 2 is 
discraded because the minimum lies between points 1 and 3. 

As a very useful case, the three current points on the line x = .T.k + .As may 
be equally spaced. It is then possible by suitable changes of origin and scale 
to take A= -1, B = 0, C = 1, and equation (3.4.15) reduces to 

-. !A-le ),. = . 
2(/A- 2/B + fe) 

(3.4.17) 

from equations (3.4.12), (3.4.14) and (3.4.17), we find the turning value of 
h(.A) in this case to be 

3 

2 

I 

Figure (3.4.2): Exception to rule 7 of Powell's quadratic 
interpolation method 

-. UA-!d 
y(.A ) = /B- 8(/A-2/B +/e)' (a.4.18) 

and the condition (3.4.16) that is a minimum reduces to fA-dB+ le> 0. 

In applying Powell's quadratic interpolation method, the number of func
tion evaluations may be reduced when more than one search has to be made 
in the same direction by noting that three function values ru·e sufficient to 
predict the second derivative. 

The prediction is, 

D = 
2
C = 2[C- B]fA +(A- C)fB + (B- A)fe] 
' (A- B)(B- C)(C- A) 

Then if /A, /Band Dare knwon, the minimum of it( .A) is predicted to be at 
.>.. = :X. •, where, 

(a.4.19) 

Equation (3.4.19), which replaces equation (3.4.15) for the second and sub
sequent seard1es in the direction s, is derived by subtracting the second of 
equations (3.4.13) from the first and using the relations, 

- b -b 
),.* = -- = -. 

2c D 

For the flow chart of the quadrat.ic inteqK>Iation method se<e Figure (3.4.3). 
Also for more details on this met.horl refer to Walsh (1'J7G) [120] and Hao 
(1979) [131]. 
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t 

fYes 

( isft.::fA k No 

I setfc- h l 
tYe:-; 

find-, ( 4ln 3lA le) I fB = ftl 
T A. = 4 f 2{ 2{ 10 

1 •. 1' 
• B- C- A 

rof 

.I 
~ 

. lhr;'l t<~'>l 
No "I r<;'l -~<F17 

t 
No I -. -. - -.1 is Ul ,. dl ) _£.(l' d l ) . ? 

Yes set ;• == ~~. 
2,u' 

< F.2 . 
stop 

( isi >;,,,/'1 + 
Yes 
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T 
i_i+l 

Figure (3.4.3) 
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Chapter 4 

PROBLEM 1 

4.1 A Simple Control Problem 

A simple optimal control problem is considered (see for example, Ahdul 
Wahab (1979) [17]). 

Let the state equation of a simple process be 

(4.1.1) 

with 
( 4.1.2) 

The problem is to select a control u.(t), t0 ::; t::; tf> to minimize the integral 

(4.1.:3) 

The problem is solved first analyti<'ally and then numerically, using the seven 
methods described in Chapter 2, (sections 2.2.2, 2.4, 2.5, 2.G.1, 2.7, 2.8) and 
also this chapter, section 4.4.1. 

4.2 Analytical Solution 

Let us transform the problem (4.1.1), (4.1.2), (4.1.:3) in the usual way. 

By introducing an additional state variable, 

(4.2.1) 

we get the alternative formulation: 

(4.2.2) 
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subject to: 

dx1 

dt 
( 4.2.a) 

The value.s of a= 1, t1 = 1, to= 0 and c1 = 12 were chosen for computa
tional purposes. 

Now using the maximum principle, we solve the problem (4.2.2) to (4.2.:3) 
analytically. 

Here the Hamiltonian is &iven by, 

and the adjoint equations are then as follows: 

so that, 

• 
2 Of 

A;=- L.\;-1 
' i = 1,2, 

i=l Ox; 

The boundary conditions in ( 4.2.4) m·ise from ( 4.2.2). 
To find the optimal control u', set. 

i.e. 

so that 

OH 
-8 =0, 

'lL 

·u' = - ~: =-Al. 

( 4.2.4) 

( 4.2.fi) 

Now by substituting u' and also the parameters a, t, anrl c1 with their values 
&iven in ( 4.2.a) we get, the state equations, 

and the adjoint equations become, 

A1 - .\1 - A2J:1 , 

A2 0, 

From (4.2.G) and (4.2.7) we have 

-:r:1 - .\1 , 
A1- J:1 , 

G7 

x1(0): 12, } 
:zdO)- 0, 

A1(1)=0,} 
A2(1) = 1. 

(4.2.G) 

(4.2.7) 

( 4.2.8) 



so that, 

and, x, (t) 

where, 

and 

Ae,rz' + Be_,rz,, ) 

- -A ( -J2eV2t + eV2') - B (e_,rz,- v'2e-V2') 

A _ 12( v'2- 1 )e-,/2 
- (1 + -/2)eV2 + ( v'2- 1)e-V2 

Then from (4.2.5) and (4.2.8A) we get the optimal control ·u* as, 

1t* = 12 ( e-h(l-t) - eh(l-t)) 

( y'2 + 1) eh+ ( y'2- 1) e-h' 

By substituting >.1 and .r1 in ( 4.2.6) we solve for :i:2 to get, 

x (t) = ~ ( A2 e2ht- B2 e-2ht) 
2 

2 2-/2 2-/2 

1 { A2(3 + 2-/2) 2ht B2(3- 2-/2)c2ht} C' +- c - + ' 2 2v'2 · 2J2 · 

where C = 29.21006166. 

(4.2.8A) 

( 4.2.9) 

When t 1 = 1, the optimal value of the performance imlex .J* is given hy 

.J* = x2(1) = 27.77893885 to 8 decimal places. 

4.3 Numerical Solution 

4.3.1 The State and Adjoint Equations 

The state differential equations ( 4.2.3) are solved using the fourth onler 
Runge-Kutta method by setting 

where, 

X!,n+l - Xl,n + i{k1 + 2k2 + 2k3 + k4), } 

X2,n+1 - ::r:2,n + ft (v, + 2v2 + 2v3 + v4), 

k1 h( -!LXJ,n + 11,.), 
v1 - h( ~xi,,. + ~'lt~.), 
k2 - h[-a(::r:,,,. + ~ki) + u,..J, 
'll2 h[ ~ ( X!,n + ~ k1 )2 + ~-u.~J, 
k3 h[-n(X!,n + ~k2) + ·u.,], 
'113 h[~(::r:,,,. + ~k2) 2 + ~u~J, 
k4 = h[-n(::r:,,,. + A:3) + u,.J, 
'U4 h[~(:1:1,n + k:3)2 + ~u:.J, 

GR 

(4.3.1) 



and a= 1, c1 = 12. 

The adjoint equations: 

).1 a>.1 - AzXt , 
>-z - 0, 

(4.a.2) 

are also solved using the fourth order Runge-Kutta method by setting, 

where, 

Wt -
Zt -

Wz -

Zz -
'Wg -
Z3 

104 -
Z4 -

and a= 1, t1 = 1. 

At,n+l + t { Wt + 2wz + 2w3 + w4}, } 

>.z,n+! + 'ii {zt + Zz + 2z3 + z4}, 

-h(a>.l,n+l- Az,n+t·T.!,n+J), 
0, 
-h[a(>.!,n+! + ~'Wt)- (>.2,n+l + ~zt):r.l,n+d, 
0, 
-h[a(>.i,n+i + ~wz) - (>.2,n+l + ~=z):r:i,n+!J, 
0, 
-h[a(>.l,n+l + 'W3) - (>.z,n+i + Z3):1:i,n+1J, 

0, 

4.4 Results and Discussion 

4.4.1 Gradient Method 

(4.a.a) 

The algorithm for the gradient in function space methochtpplied to prob
lem 1 is as follows: 

i. Select an initial control as a possible estimate of n'. 

a 
ii. Compare g0 = g(u0 ), where !J =-a = >.1 + >.zu. 

u 
(4.4.1) 

iii. Choose c: so that Ui+t is a better solution to the optimal profile u;. 

iv. Compare u; = u; - c:g;. 

v. Has the process converged? If yes u;+1 is the optimal profile, if no go 
to (iv). 

In order to analyse the efficiency of the gmclient method in function space, 
applied to the problem, we compare the results obtained numerically when 
we vary the three ciitical parameters, step length fact.or (c:), integmtion step 
size (N) and initial control (·u{1), with the analytical solution found earlier in 
section 4.2. 
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The rt>.sult.s for this method and also ot.l11er metho<ls in this chapter show the 
minimum number of iterations to achieve the hest. absolute error (e.,.~,.) so that. 
any further iterations pro<luce<lno improvement.. Notice that. the absolute 
error falls from approximatdy l.fi x Hr'• when N = 100 to approximately 
.07 when N = fi. 

Table (4.4.1), shows t.h<e dfect. of c: awl N in achieving the minimum yield 
x2 (1) = J', from an initial c:omt.aut. control 'll{o = -4 i.e. the l><est. starting 
c.ont.rol. The best. value obtained W<tS 27. 77!l087!J:3 to 3 decimal places with 
e,.,_, ~ 1.5 x w-4 . The eonespowliug parmnd<er values were c: = 0.4, N = 
100, or 400 mHl ·m = 2!). Hene the skp l<eugt.h factor played an important 
role, i.e. as the step length increase<! t.o 0.4 t!He munber of it.erat.ious mH! qm 
time <l<ecreas<e<l but. neHmiwe<l rdat.ivdy sitnilar nfter that.. 

The effect of N is also cl<ear from Tahi<e (4.4.1) i . .e. hy choosing larger 
values for N we eau obtain a llHll'<e accnmt<e llliuium1n yid< I :r:2 (1) for a given 
number of iterat.ious. 

Tahle ( 4.4.2), shows the df<ed. of choir"' of init.inl coutrol '1111 on the minimum 
yield ;r:2 (1), with snlfi<:i<ent.ly larg<e <ellongh N = lOO <UH! e = 0.4. For <example, 
by sdect.iug u11 at -4 or -5 "'" can achiew' J' = :r:2 ( 1) with 1:,.,_, ~ l.fi x w-4 in 
fewer iterations all< I l<ess co!npntiug tiuHe than wlwu u11 is tak<eu as 0, -1, -2 
or -3. 

Fig (4.4.1) and Fig (4.4.2) show typi<:al growth curves !in· the yield :r:2 and 
the control u resp<ed.ively along t.h<e tiuHe nxis, wlwu W<e <:OIIIJHU'<e the analytical 
solutions with t.h<e lllllllt!rical ou<es, with N 1 = m = 1, N2 = m= 2!) mHI A = 
Analytiml, using N = 100, u11 = -4 aJHI c: = 0.4. As it. C<Ul be seen when 
m = 29 the lHehaviour of the curves both for :t1 mH! n are doser to the 

analytiml one. 

Fig ( 4.4.;{) comJ><u·.es t.ltte an;tlyt.ical solution for :r:1 wit.h th<e mmHerieal solu
tions with the nmnhter of int.egmtion steps N 1 = N = 10 am\ N1 = N = lOO 
and the mtmher of iterations 28 a!HI 2!) rtespect.ivdy, with u.11 = -4 am\ 
c: = 0.4, to givte thte IH~st yiel<l, all<! Fig ( 4.4.4) givtes similar nesults for control 
·u. It. may not be nnu:h dtear frmn :r:2 to s<ee the <liff,~r<enne gmphically for 
different N's hut for '1/. we eau S<·!<e thitt. wlH·!ll N = lOO tlHe behaviour of the 
curve is dose t.o t.hte analytical solution. 

Fig1tres ( 4.4.5) aJHI ( 4.4.G) <lmnonst.mt<e the eff<ect on the yiel<l :1:2 and 
the control u. respted.ivdy of using step lmtgt.h fa<:t.ors N 1 = E = 0.1 am! 
N2 = c: = 0.4, when t.lw st.mting control is -4 ruHI N = 100. Here also for :r:2 

we may not. see mtH:h <liiT<enem:<' graphically for <lifT.,nent. c:'s, hut. for u we can 
see that when c: = 0.4, the cmv<' I ><-:hav<es dos<er to the analytical solution. 

Fig (4.4.7) shows how :r:A1) vari<" with '"'· fin· '1/.o == -4, N = 100 and 
c: = 0.4. 
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Finally Fig (4.4.8) shows the effect on x 2 (1) of changing 'ILo for different 
number of iterations (m= 0, 1 and 29) with N = 100 and c: = 0.4. Here we 
can see that as m increases the curves for all starting controls get closer to 
each other and merge to the optimal x2 (1). 

Although for this simple problem the results obtained above may not show 
much significant improvement in minimizing the yield x2(1), when we vary 
the critical parameters u0 , c: and N, but still some advantages exist by se
lecting a proper combination of these parameters. 

The choice of initial control regardless of c: and N is a factor in achieving 
the best yield, i.e. by referring to Fig ( 4.4.8) even with 1 iteration we can see 
how the change in !Lo can effect the yield x2(1), but as m incre<tses it seems 
the effect fades away and for the higher munber of iterations the yield .r.2(1) 
does not vary mud1 with the change in ·u0 . Now we consicler the intemction 
of the other two essential factors c: and N ancl their affect on minimizing 
X2(1). 

As we established before dearly the hest combination was founcl to he 
with the larger c: and larger N i.e. 0.4 ancl 100 respectively, hut if we choose 
smaller values for N, we can compensate by selecting larger valut>.S for c: and 
vice versa. The problem of numerical instability can occur when we select c: 
too large or N too small e.g., when we take c: equal to 0.8 with N = 100 <mcl 
!Lo = -4, we get .r.2 (1) as 27.77908796 to 8 decimal places after 30 iterations, 
which is worse than minimum obtained by£ = 0, 0.4. Incre<l.,ing f even more, 
for example to 1.8, gives a complete numerical break clown. Also by taking 
N too small, we get numerical instability, e.g. when N = 5 ancl m= 29, with 
!Lo = -4 ancl c: = 0.4, we get x2 (1) as 27.832089:30 to 8 decimal places ancl 
even if we increase m to 98 still there is no improvement on the yield .1:2(1). 
In view of the above discussion when we are selecting the hest combination 
of parameters, appropriate care is necessary and balance should he made 
between selecting N and c: to cut down, computer storage requirements on 
one hand and to prevent numerical instability on the other. Also a proper 
choice of initial control will help to speed up the proce.qs of convergence. 

4.4.2 Steepest Descent 

The algorithm for steepest descent applied to the problem 1 is as descrihecl 
in Chapter 2, Section 2.2.2. The line search technique URecl for thiR methocl 
is linear search at constant step, whid1 was clescribecl in Chapter :3, Section 
3.4. L The gradient (g) is obtained in the same way <1.~ for gradient method 
in function space (see (4.4.1)). · 

Here we again examine the effeet of selecting step length factor, integTation 
step and initial control in the solution of problem 1. Tahle (4.4.3), Rhows 
the effect of c: ancl N in obtaining the minimum yiel<l .J* = :r:2 (1), with the 
best starting u0 = -4. The best yield achieved W<l.' 27. 77!lOR7R:3 to 8 decimal 
places with Cnbs ~ 1.5 X w-4 , £ = 0.4 and N = 100 or 400 af't.er 21 it<emtionR. 
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Selecting a larger step length factor speeds up the search for the minimum 
yield x2(1), in terms of reducing the number of iterations and consequently 
the computing time. Table ( 4.4.4) shows how the starting control affects the 
yield x 2(1) when N = 100 and € = 0.4, i.e. by selecting initial control as -4 
or -5 we can achieve x2(1) with eabs ~ 1.5 x w-4 in slightly fewer iterations 
than when Uo is taken as 0, -1, -2 or -3. 

Figure (4.4.9) and Fig (4.4.10) show the growth curves for the yield :r.2 and 
the c.ontrol u respectively along the time axis, when the numerical solutions 
are compared with the analytical one, with NI = m = 1 and N2 = m = 21 
with N = 100, Uo = -4 and € = 0.4. Hence for x2 with both m = 1 ami 
m = 29 we don't see much difference gmphically, but for "lL we can see that 
when m = 29 the behaviour of the curve is closer to the analytical one than 
when m is selected as 1. 

Fig (4.4.11) and Fig (4.4.12) compare the analytical solutions for :1:2 and 
1t respectively with the numerical ones, with the number of integration steps 
NI = N = 10 and N2 = N = 100, with 11.0 = -4, € = 0.4 ami the mnnher 
of iterations 15 and 21 to give the best yield. There is not much difierenee 
graphically for x2 , between N = 10 m1d N = 100, but for u, it can be se<en 
that. when N = 100, the curvature is closer to the analytical curve than 
when N = 10. Fig;ures (4.4.13) m1d (4.4.14) show the effect on the yielrl 
x2 and the control u. respectively of using step length fact.ors NI = € = 0.1 
m1d N2 = € = 0.4 for 21 iterations with "Ito = -4 and N = 100. As can he 
seen from the graph of :r:2 , there is not mud1 difference between e = 0.1 and 
e = 0.4, graphically, but for u, a little difference can be seen in the behaviour 
of the curves between the two e's, i.e. when e = 0.4, the curvature is doser 
to the analytical one. 

Fig (4.4.15) shows how the yield x2(1) varies with m, when u0 = -4, N = 

100 and e = 0.4. 

Finally fig (4.4.16) demonstrates the effect on x2(1) of changing initial 
control for different number of iterations, (m= 0, 1 am! 21) with N = 100 

m1d € = 0.4. 

Here also we cm1 see as m increases, no matter what starting c.ontrol wi~~ 
selected, they all converge towards optimal J* = x1(1). 

The main difference between the steepest descent method and the gmdient 
methods was that in the former the minimum was formed along ead1 gradient, 
but in the latter a fixed step length is used throughout. The results achieved 
did not show much significant difference between the two in terms of selecting 
1to and the interaction between e and N. 

The instability pattern is also the same as GFS with € too large or N 
too small, e.g., € = 0.8, "11{) = -4, N = 100 and m = 21, we get :z;2 (1) = 
27.77908804 to 8 decimal placeR, which is worse than with f = 0.4, awl if f 
is increased more, say to 1.9 we get instabilities. 
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Also, when N = 5 with Uo = -4, £ = 0.4 and m= 21, we get x2(l) as 
27.8320893 to 8 decimal places and by increasing the number of iterations 
even to 98 still there is no change in the yield x2 (1). 

Thus the conclusions reached for the GFS on selecting the best combina
tions of 14h £ and N is also applicable for SD for this particular problem. 

4.4.3 Fletcher-Reeves 

The algorithm for Fletd1er-Reeves applied to the problem 1 is as described 
in Chapter 2 Section 2.4. The line search technique used for this method 
is linear search at constant step (see Chapter 3 Section 3.4.1). A further 
numerical tedmique was necessary to estimate the norm of each gmdien t 
trajectory, where the norms can be calculated as was described in Chapter 2 
Section 2.10.1. The b'Tadient (y) is obtained in the smi\e way as for gmclient 
method (refer to equation ( 4.4.1) ). 

Table (4.4.5), shows the effect of£ mu! N in achieving the minimum yield 
x2(1), with the best stmting uo = -4. The hest.!*= :1:2(1) was 27.77908774 
to 8 decimal places with e,1,. ~ 1.5 x 10-4

• The corresponding parameter 
values were£= 0.4, N = 100 or 400 and m= 8. 

Again the selection of a larger N gives the minimum yield in fewer itera
tions for a required e,,,.. Similarly the effect of E can also he seen from Table 
( 4.4.5). 

Table (4.4.u) shows the effect of selecting different initial controls 'lLo, when 
N = 100 and£= 0.4, i.e. by choosing ·u0 = -3 or -4 we can achieve x2(1) 
with eal>s ~ 1.5 X 10-4, in fewer iterations m1d less computing time than when 
Uo is taken as 0, -1, -2 or -5. 

Fig (4.4.17) and Fig (4.4.18) indicate the growth curves for the yield :r:2 

and controlu along the time axis, comparing the analytical gTOwth with the 
numerical ones, when N1 = m = 1, ami N2 = m = 28, with 1Lo = -4, E = 
0.4 and N = 100. As cm1 be seen from :1:2 , there is not much difference 
graphically, between m = 1 m1d m = 8, but for ·n we can see that by taking 
m = 8, the behaviour of the curve is much closer to the analytical one than 
m=l. 

Figures (4.4.19) and (4.4.20), show the comparison of the mmlytical solu
tions with the numerical ones for x2 and u respectively with N 1 = N = 10, 
m1d N2 = N = 1 = 100, when m= 10 and m= 8, with '141 = -4 and E = 0.4 
to give the best yield. Here for .1:2 , there is not much <lifierence graphically 
for different N's but for ·n, with N = 100, behaviour of the curve is closer to 
the analytical solution. 



Figures ( 4.4.21) and ( 4.4.22), demonstrate the growth curve of time against 
the yield X2 and also the change in u respectively, when we compare the 
analytical solutions with the numerical ones, where the step length faetors 
are N 1 = e = 0.1 and N2 = € = 0.4, for m= 8, Uo = -4 and N = 100. Here 
as it can be seen, for x2 , there is not much difference graphically between 
€ = 0.1 and € = 0.4. Also for u not much difference can be seen in the 
behaviour of the curves fore= 0.1 and c = 0.4. 

Fig (4.4.23), shows how the yield x2(1) varies with m, when u0 = -4, N = 
100 and € = 0.4. 

Finally Fig (4.4.24) demonstrates the effect on x2(1) of changing initial 
control for different number of iterations (m = 0, 1 and 8), with N = 100 
and € = 0.4. Here also as m increases, the curvature of all starting controls 
merges towards the optimal x2(1). 

The effect of u0 and the interaction between € and N are similm to G FS 
and SD, apart from the fact that, it takes fewer iterations to get to an optimal 
x2 ( 1) for a required e"''" for FH. than the other two rnethoc!B. 

The numeriml instability behaviour is also similar to GFS. For example 
with e = 0.8, at ·u0 = -4, N = 100 and m= 8, :r-2(1) = 27.77908801 to 
8 decimal places, which is getting distant from the optimal minimum value 
obtained with e = 0.4 and as we extend e even more to 1.9, then instability 
occurs. Also when we select N too small say 5 at u,1 = -4, c = 0.4 and 
m= 8, we get x2(1) = 27.83209026 to 8 decimal places, with relatively poor 
e""" ~ 0.05, and as we increase the iterations to fJO, then we get a complete 
break down. 

The recommendation on selecting 1l<J, e and N can he followed as suggested 
for the previous methods, for the problem 1. 

4.4.4 Polak-Ribiere 
The algorithm for Polak-Rjbiere method is described in Chapter 2, Sec

tion 2.5. The line search technique and the calculation of the nonns are as 
described for FR. 

Table (4.4.7), shows the effect of c and Non the optimal x2(1), with the 
best Uo = -4. The best yield was 27.77908793 to 8 decimal places with 
e"b• ~ 1.5 x w-4 and corre.sponding parameter values, e = 0.4, N = 100 
or 400 and m = 17. Like previous methods with larger N am! c a better 
minimum yield in fewer iterations is achieved for a better e,r. •. 

Table ( 4.4.8), shows that selection of a proper initial control speecls up 
finding the optimal yield. Here also a sufficient large N = 100 wa.s taken 
with € = 0.4. By selecting u0 = -4 or -fJ compnre<l with 0, -1, -2 awl 
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-3 the best minimum yield were obtained in fewer number of iterations and 
less computing time. 

Figures (4.4.25) and (4.4.26), show the growth curve of time against the 
yield x2 and u respectively, comparing the analytical solutions with the nu
merical ones, N 1 = m= 1 and N2 = m = 17, e = 0.4, "U() = -4 tmd N = 100. 
Here for x2 , we don't see much difference graphically, by changing m= 1 to 
m = 17. But for the graph of control we can see taking m= 17 confirms the 
behaviour of the curve closer to the analytical one, compared with rn = 1. 

Figures (4.4.27) and Fig (4.4.28), show similar grow~h for :r:2 ami u with 
N 1 = N = 10 and N2 = N = 100, with corresponrling number of iterations 
25 and 17 respectively, where u0 = -4 and e = 0.4. As can be seen there is 
not much difference graphically for x2 , between selecting N as 10 with N a.q 
100. But for the graph of control we can see that taking N = 100 can lead 
to a curvature closer to the analytical solution, than N = 10. 

Fig;ures ( 4.4.29) and ( 4.4.30), show the gTowth curve of time against the 
yield x 2 and also change in u respectively, when the analytical solutions are 
compared with the numerical ones, where N, = c = 0.1 awl N2 = e = 0.4, 
for m = 17, u0 = -4 and N = 100. Here also for .1:2 there is not much 
difference graphically between c = 0.1 and e = 0.4 and they are both close 
to the analytical one. But some difference can be seen from the gTaph of 
u, as when e = 0.4 is selected the behaviour of the curve is similar to the 
analytical one, where as fore= 0.1, the curvature is not quite as close as the 
previous one. 

Fig (4.4.31), shows how varying m affects the yield .r.2 (1) when uo = -4, 
N = 100 and c = 0.4. 

Finally fig (4.4.32) demonstrates how the change in '11<1 cm1 affect .1:2(1) 
for different number of iterations, e.g., m = 0, 1 and 8, with N = 100 and 
c = 0.4. Here we can see that as m increases all the starting c.ontrols merge 
towards the optimal x2(1). 

The examination of PR. method was cm-ried out the same a.~ previous 
methods, and the findings were similar in terms of proper choice of u0 m~d 
interaction between e and N. 

Also we found out that the numerical instability happens for e too large 
or N too small. 

When e is taken as 0.8 with N = 100 and "~~<1 = -4, we get ::r:2 (1) as 
27.77908804 to 8 decimal places after 17 iterations which is worse than op
timal minimum achieved by 0.4, mHI as we increa.qe<l e to 1.8 then complete 
break down happens. 
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Also by taking N too small, i.e. (N = 5) with u0 = -4, mlCl e = 0.4 for 
m= 17 we find x2 (1) as 27.8:1208!):30 to 8 cb:imal pbms an<l when we increase 
m to 50, instability occurs. Thencfore w~e come to the s;,une conclusion as for 
previous met.hocls, whenc we have t.o sekd. appropriatP. u0 awl find t.he bc-:st 
combinations of e a!Hl N. 
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4.4.5 Hybrid 1 
The algorithm for the Hybrid 1 method is described in Chapter 2, Section 

2.6.1. The line search technique used and calculation of the nonns are the 
same as for FR and PR. 

Table ( 4.4.9), shows the effect of<: and N in achieving the minimum yield 
x2(1), with the best starting control u0 = -4. The best yield was 27.77908774 
to 8 decimal places with the corresponding e,.t,. ~ 1.5 x 10-4

, <: = 0.4, N = 
100 or 400 and m = 8. Again the selection of larger N and <: gives the 
minimum yield in fewer iterations for a required accuracy. 

Table (4.4.10), shows the effect of selecting different starting controls with 
N = 100 and e = 0.4, i.e. by choosing ·u.0 = -2, -3 or -4 we can obtain 
better minimum :r:2(1) with e,.l>s ~ L5 X 10-4 in fewer iterations and less 
computing time than when ·u0 is taken as 0, -1 or -S. 

Fig ( 4.4.43) and Fig ( 4.4.34) show the growth curve of time against x 2 

and 'lL respectively and compare the analytical solution with the munerical 
ones with N1 = m = 1 and N2 = m = 8, where <: = 0.4, N = 100 aiHl 
1Lo = -4. For the graph of x 2 , we c.an not see mud1 difference in the shape of 
the curves for m = 1 and m = 8 and they both are similar to the analytical 
solution. But for u we can see that with m= 8, the behaviom of the curve is 
similar to the analytical one, where with m.= 1, a difference mu he seen from 
the analytical solution. Figmes ( 4.4.3S) and ( 4.4.3G) <lemonstrate the effect 
of N on the yield x2 and the control (u) respectively, when the analytical 
solutions are compared with the numerical ones, with N 1 = N = 10 and 
N2 = N = 100 for m = 8, u11 = -4 and c = 0.4. 

Here also for :r:2 graphically, there is not much difference between N = 10 
and N = 100, but for u, selecting N = 100 can lead to a closer behaviour of 
the curve to the analytical one, than N = 10. 

Fig (4.4.37) and Fig (4.4.38), show similarly, the effect. of con the yield 
x2(1) for x 2 and 11 respectively with c = 0.1 and<:= 0.4 for m.= 8, 'tt.o = -4 
and N = 100. 

Here, both for the graphs of x and u, we can not. see mnC'h difference in 
the way the curves behave, between c = 0.1 and <: = 0.4, and they both are 
close to the analytical one. 

Fig (4.4.39), shows how the yield x:2 (1) varies with m, when 'lliJ - -4, 
N = 100 and <: = 0.4. 

Finally Fig (4.4.40), shows how the d1ange in u0 affects the yield x:2 (1) 
with m = 0, 1 and 8 where N = 100 and c = 0.4. Hem also we eau see that 
as m increases all the starting controls behave similarly and the cmve gets . . 

closer to the optimal x2(l). 
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The Hybrid 1 method produced similar results to FR in terms of proper 
selection of Uo and interaction between c and N. 

The instability behaviour is also similar, i.e. it occurs with c too large or 
N too small. 

With c taken as 0.8, at Uo = -4, N = 100 and m= 8, we obtain x2(1) 
as 27.77908801 to 8 decimal places, which is worse that c = 0.4, and as we 
increase the value of c to 1.9 then complete instability occms. 

When N is selected too small and say 5 for example with u0 = -4, c = 0.4 
and m = 8 we get x2(1) = 27.83209252 to 8 decimal places ami as ·m is 
increased to 50, complete break down happens. 

Thus, we arrive at the same conclusion as previous methods, when we 
come to select u0 ami the best combination of c and N. 

4.4.6 Angle Test Hybrid 

The algorithm for Angle test hybrid method is cles(~rihecl in Chapter 2, 
Section 2. 7. The line search and calculation of the norms are the same as 
for Hl. For this method we hac! to consider the effect of ;mother parameter, 
namely r > 0. 

Table (4.4.11), shows the effect of c and Non fimling the optimal x2 (1), 
with the best starting control u0 = -4, and T = 0.00001. The best yield 
x2 (1) was 27.77808774 to 8 decimal place.s after 8 iterations with N = 100 
or 400 and eabs ~ 1.5 X w-4• The effect of c and N is also clear from the 
table, i.e. by selecting larger c and N, we get better minimum yield in fewer 
iterations. 

Table ( 4.4.12) can also reveal the effect of selecting 'tto in achieving a better 
minimum yield .r.2 (1), with N = 100, r = 0.00001 ancl c = 0.4. By choosing 
Uo = 2, -3 or -4 we can obtain a better yield with e,.~,,, ~ 1.5 x 10-4 in 
fewer iterations and less computing time compared with uo = 0, -1 or -5. 

The effect of r on obtaining the minimum .1:2(1) was praetically negligible. 

Figures (4.4.41) and (4.4.42), show the growth curve of time against :r:2 and 
1t respectively comparing the analytical solutions with the numerical ones, 
with N2 = m = 1 ancl N2 = m = 8, where c = 0.4, N = 100, u0 = -4 mtd 
T = 0.00001. 

Here for the graph of x we can see little difference in the behaviour of the 
curves with m = 1 and m = 8, since they both are similar to the analytical 
one. But for the graph of u, we can see, with m = R t.!He behaviour of the 
curve is closer to the analytical solution, than m = 1. 
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Figures (4.4.43) and (4.4.44) similarly give the graphs of time against x 2 

and u respectively, showing the effect of N taken as N 1 = 10 and N2 = 100, 
with € = 0.4, u0 = -4 and m= 8. Here for x2 both N = 10 and N = 100 
had similar curvature close to the analytical one. But for 11., the behaviour 
of the curve was closer to the analytical one when N wa.~ taken as 100. 

Figures ( 4.4.45) and (4.4.46), in the same way demonstrate the effect of con 
x 2 and u respectively with N 1 = c = 0.1 and Nz = c = 0.4, and corresponding 
parameter values, N = 100, 1/.Q = -4, m = 8 and T = 0.00001. Here also, 
for both the graphs of x and u, there is not much difference between c; = 0.1 
and c = 0.4, and they both are close to the analytical one. 

Fig ( 4.4.4 7) demonstrates the effect of m on the minimum yiel< I :1:2 ( 1) with 
lLo = -4, c = 0.4, N = 100 and T = 0.00001. 

Finally Fig ( 4.4.48), shows the change in ·u0 against the minimum yield 
x2(1) with m= 0,1 and 8, where € = 0.4, N = 100 awl T = 0.00001. Here 
also as m increases, the behaviour of the curve for all the starting enntrols 
were similar and get closer to the optimal :~:2 ( 1}. 

For the Angle test hybrid, the effect of uo am! the best combinations of c 
and N, were the same as for previous methods. Similarly munerical instabil
ity occurs for c too large or N too small. 

When c is taken as 0.8, with 1/.o = -4, N = 100,m = fl am! T = 0.00001, 
x2 (1} is found as 27.77908801 to 8 decimal places, which is worse, than the 
optimal value obtained, with c; = 0.4, and as the value of € is increased to 
1.9 instability occurs. 

Also when N is selected too small, e.g. N = 5 with u" = -4, c = 0.4, m= 
8 and T = 0.00001 we get x2(1} = 27.83208930 to 8 decimal places and ns m 
is increased further to 50 we get complete break down. 

The same conclusions are reached for the previous inetho<ls on selecting 
proper lto and best c.ombinations of c; and N are also true for ATH. 

4.4. 7 Hybrid 3 

The algorithm for Hybrid 3 method can also be found in Chapter 2, Section 
2.8. The calculation of the norms and line search are the same as for H1 and 
ATH. The effect of the new parameters, A > 0 and ·u < ~ had to he considered 
for this method. 

Table (4.4.13}, shows the efl'ed. of c; and N in achieving the mnnrnum 
yield x2 (1} with ·no = -4 as the best starting control, A = 0.00001 and 
it = 0.45. The best yield was found ns 27.7790877 4 to 8 decimal places with 
e,1,. ~ 1.5 x 10-4 , € = 0.4 and N = 100 or 400 after 8 iterations. As in 
previous metho<ls the select.ion of n larger N gives the tninimmn yield in 
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fewer iterations, and less computing time for a required accuracy of e,.1,.. 
Similarly the effect of c: can be seen from Table ( 4.4.13). 

Table (4.4.14), shows the effect of selecting different initial controls '''<" 
with N = 100, c: = 0.4, A = 0.00001 and JL = 0.45. By choosing uo = -2, -3 
or -4 we can get x2(1) with Cnbs ~ 1.5 x 10-4 in fewer iterations and less 
computing time than when ti{) is taken as 0, -1 or -5. The effect of A and 
Jt on minimising the yield x2 (1) , had practically no signifimnt importance. 

Fig (4.4.49) and (4.4.50), compare the analytical solutions with the muner
ical ones for x2 and u respectively, with Nt =m= 1 and N2 = m= 8, with 
corresponding parameter values, c: = 0.4, N = 100, ti{) = -4, A = 0.0001 
and JL = 0.45. Here also for the gmph of x there is little difference between 
m = 1 and m = 8, and the behaviour of the curves are similar to the an
alytical one. But for the gTaph of control we can see that when m. = S, 
the behaviour of the curve is similar to the analytical one am! for m. = 1 a 
difference can be see with the analytical one. Figures (4.4.G1) all<! (4.4.f>2), 
show the effect of N for N1 = N = 10 am! N2 = N = lOO an(! correHp<.mding 
value.s of m = 10 and 8 respectively, with u., = -4, c: = 0.4, A = 0.00001 
and Jt = 0.4G. Here for :x:2 we can see no difference in the curvat.me, between 
N = 10 and N = 100 and analytical solution. But for u, we can see that. the 
behaviour of the curve is closer to the analytical one when N is selecte<l as 
100. 

Figures (4.4.53) and (4.4.G4) show the effect of c: for N1 = c: = 0.1 and 
N2 = c: = 0.4, with N = 100, u.o = -4, m = 8, A = 0.00001 and 11 = 0.4G. 
As it can be seen for both gTaphs of x and u, the curves of c: = 0.4 ancl 
0.1 behave similarly and close to the analytical solution. Fig (4.4.G5), shows 
how the yield :x:2 (1) reacts with different. number of iterations, when u0 

-4, N = 100, c: = 0.4, ,\ = 0.00001 and Jt = 0.4G. 

Finally Fig (4.4.56) demonstrates how the dtange in u0 can affect :x:2(1) for 
different number of iterations (m= 0, 1 and 8) with N2 = 100, c: = 0.4, A= 
0.00001 and Jt = 0.45. Here also as m increases the behaviour of the curves 
for all the starting c.ontrols, were similar and get. doser to the optimal :x:2(1). 

For Hybrid 3 method, the effect. of '11{) and interaction between c: and N, 
are found to be the same as for previous methods. 

The numerical instability also happens for c: too large or N too smalL 

When c: is selected as 0.8, at. uo = -4, N = 100, m. = 8 we get :x:2(1) 
as 27.77908801 to 8 decimal places which is worse than the optimal value 
obtained with c: = 0.4, and as we take larger values of c:, say 1.9, then we 
get complete break down. Also, when we select. N too small, e.g. N = 5 
at ti{) = -4, c: = 0.4 and m= 8, we get x2 (1) = 27.8~120WHO to 8 decimal 
places and even by increasing m to 50 not only we get no improvement. on 
the yield, but. also we get a complete break clown. The n"~mmnemlation on 
selecting un, c: and N can h<~ followed a.~ suggested for t.Iu~ previom methods. 
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4.5 Summary of the Results 

Referring to the summary table (4.5.1) and Fig (4.5.1) when c: = 0.4, N = 
100, JL = 0.45, T = 0.0001, A= 0.00001 and e,.,,. ~ 1.5 X w-4

' the following 
results can be seen. 

At Uo = 0, FR performed the best in terms of converging to the minimum 
x2(1), then the four methods of PR, H1, ATH !UHI H3 performed the same, 
then SD and finally GFS. 

At Uo = -1, PR, H1, ATH and H3 performed the same mtd the hest from 
convergency point of view, then SD, FR and finally GFS. 

At U<J = -2, the three methods of HI, ATH and H3 performecl the smne 
and the best in terms of convergency, then FR, then SD and PH. perfonne<l 
the same mHl finally G FS. 

At u.0 = -3, the four methods of FR, HI, ATH mH! Ha performed the same 
and the best from convergency point of view, then PR awl SD performed 
fairly the same and finally GFS. 

At 11{) = -4, the four methods of FR., Hl, ATH and Ha performed the 
same and the best in terms of eonvergency, then PR, SD and finally GFS. 

At 11{) = -5, the four methods of FR., HI, ATH and Ha performed the 
same and the best. Also in terms of convergency, then PH., SD all< I finally 
GFS. 

4.6 Conclusion 

In this chapter for the problem concerned all seven methods produced 
c.onsistent results. 

They all produced better values for :r:2(I) when larger step length factors 
were selected. Also choosing smaller integration step helped in producing a 
better minimum yield x2(tt), i.e. closer answer to the analytical solution. 

Overall for this particular problem it seems that the Hybrid methods per
formed better in most cases from the convergency point of view than other 
methods, since they could converge to min :r:2(tt) in fewer iterations than 
other techniques for a required e,.1,., and therefore less computing time was 
consumed. Here we should note that when starting control was selected as 
'Uo = 0, the performance of FR was better than Hyhricl methods. If the 
number of function evaluations were to be considered, GFS method had ob
tained its optimal J:2(t1) in fewer NFE than other tedmiques. But for this 
problem we could say after the Hyhricl eonjugate gradient tedmicgtes and 
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FR, Polak-Ribiere performed better than steepest descent and also in turn 
steepest descent performed better than Gradient method in function space. 
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TABLE (4.4.1): Results of GFS with varying e and N. 

N 

0.3 

0.5 

5 

=27.8523789 
=87 

abs=0.073440 1 
utime<l 

FE=88 

10 50 

=27.77953398 
=39 

abs=6.0 x lQ-4 
Cputime=1 

E=40 

=27.77953152 
=22 

abs=6.0 x 1o-4 
utime=1 

FE=23 

100 

= 7. 77908796 
=30 

abs= 1.5 x 10-4 
utime=4 

FE=31 



TABLE (4.4.2): Results of GFS with change in u0• 

uo m J eabs Cpuome NFE 

0 35 ,a.77~0~~ll 1.5 xiQ-4 f3 36 

-1 34 27.77908804 1.5xi0-4 f3 35 

-2 32 L.7. 77908799 1.5 X IQ-4 ~ 33 

-3 32 127.77908798 1.5x I0-4 12 33 

-4 ~9 L-7.7790'0793 1.5x IQ-4 L. 130 

-5 ~9 27. 77~087~3 1.5x Io-4 L. 130 



TABLE (4.4.3): Results of SD with varying e and N. 

N 5 10 50 100 

=27.83211421 =27.77908840 
=53 =68 

abs=5.0xi0-2 abs=1.5 x 1o-4 
utime<1 utime=25 

FE=269 =344 

=27.79289556 
=50 

abs=l.Ox w-2 
utime<1 

FE=253 

=27. 77908790 =27. 7790879 
=45 =45 

abs=1.5 x 1o-4 abs=1.5 x 1o-4 
Cputime=ll utime=20 

E=227 =227 

0.4 =27.779087 =27.77908783 
=21 =21 

abs= 1.5 X 1Q-4 abs=1.5 x lo-4 
Cputime=6 utime=12 

E=107 =107 



TABLE (4.4.4): Results of SD with change in u0• 

uo m J"' eabs ,L'puttme NFE 

0 ~ 27.779087':}8 1.5X lQ-4 ~ 122 

-1 p .. 7.77908799 l.SxlQ-4 ~ 117 

-2 ~3 .. 7. 7790~~06 l.Sxl0-4 I) 117 

-3 ~3 ;z7.77':JU8804 1.5 xl0-4 ~ 117 

-4 ~1 27.77908783 1.5x lQ-4 ~ 107 

-5 121 27.77':}08788 1.5x1Q-4 ~ 107 



TABLE (4.4.5): Results of FR with varying e and N. 

N 5 10 50 

0.1 

0.5 

100 

=27.77908781 
=9 

abs=1.5 x 10-4 
Cputime=3 

E=44 

=27.77908787 
=30 

abs= 1.5 X I0-4 
utime=12 

=154 

787 

789 

774 

=27.77908512 
=8 

abs=1.5 X I0-4 
utime=S 

FE=43 



TABLE (4.4.6): Results of FR with change in u0• 

uo m J"' eabs Cpunme NFE 

u 18 <. 7. 77908790 1.5X lQ-4 p lJ2 

-1 ~3 <-7.77908802 1.5 X lQ-4 p 117 

-2 l} <-7.7790878'} 1.5 X 1Q-4 IZ 47 

-3 8 <-7.779U877H 1.5x 1Q-4 ~ 42 

-4 8 <-7.77908774 1.5 X lQ-4 :z 42 

-5 10 27.77908783 1.5x1Q-4 f3 p2 



TABLE (4.4.7): Results of PR with varying e and N. 

N 

0.1 

5 

=27.83208931 
=25 

abs=5.0x 10-2 
utime<l 

FE=253 

10 50 

=27. 77952980 
=20 

abs=6.0 x I0-4 
Cputime=3 

E=98 

100 



TABLE (4.4.8): Results of PR with change in u9• 

uo m J" eabs IL'putime NFE 

0 18 ~7.17908807 1.5x1Q·4 fl ~2 

-1 23 ~7.779087911 1.5x1Q-4 ~ 117 

-2 23 p.7790871506 1.5 x10-4 ~ 117 

-3 23 ~7.17908805 1.5x1Q-4 0 117 

-4 17 127.17908793 1.5x1Q-4 s 87 

-5 17 .o7.17908818 1.5x1Q-4 s 87 



TABLE (4.4.9): Results of Hl with varying e and N. 

N 5 10 50 

0.2 

0.8 

100 

=27. 7790877 4 
=8 

abs=1.5 x I0-4 
utime=3 

FE=42 



TABLE (4.4.10): Results of Hl with change in u0• 

uo m J eabs 
1

qmnme NFE 

0 18 27.77908807 1.5X 1Q-4 p 92 

-1 fl3 27.77908798 1.5xlo-4 6 117 

-2 18 27.77908776 1.5 x 1o-4 2 42 

-3 8 27.77908778 1.5x1Q-4 2 42 

-4 Ill <.7.77908774 1.5x lQ-4 2 42 

-5 10 27.779087'1'.3 1.5x 10-4 3 52 



TABLE (4.4.11): Results of ATH with varying e and N. 

N 5 

=27.8 209137 
=30 

abs=5.0x10·2 

utime<1 
FE=154 

=27.83209256 
=12 

abs=S.O x 10·2 
utime<1 

FE=64 

10 50 100 

=27.77908 12 
=8 

abs=l.S x 10·4 
utime=S 

FE=43 



TABLE (4.4.12): Results of ATH with change in u0• 

UQ m J" eabs Cputime NFE 

0 18 <-7.77908'1i07 1.5 x 10-4 5 n 

-1 ~3 <-7.7790'Ii79'1i 1.5x 10-4 6 117 

-2 :'li <.7.7790'1i776 1.5 x 10-4 2 42 

-3 8 <-7.7790'1i77'1i 1.5x 10-4 "' 42 

-4 8 .&.7.77908774 1.5 X 10-4 "' 42 

-5 10 L.7.779U871S3 1.5 X 10-4 3 :>L. 



TABLE (4.4.13): Results of H3 with varying e and N. 

N 5 

=27.83209137 
=30 

abs=S.Ox 10-2 
utime<l 

FE=154 

10 50 100 



TABLE (4.4.14): Results of H3 with change in u0• 

uo m r eabs Cpuome NFE 

0 1!S <. 7 .771)08807 1.5X lQ-4 p <J2 

-1 L3 t-7.77908798 1.5x1Q-4 () 117 

-2 8 <-7. 7NU'I677 o 1.5x10-"~ ll 42 

-3 ,!S <-7. 77<JU877 !S 1.5x10-4 "' 42 

-4 !S <-7.71<JU8774 1.5x10-"~ "' 4l. 

-5 10 27.77908783 l.SxlQ-4 3 52 



Table (4.5.1): Summary table for tbe seven methods 

~ GFS SD FR PR HI I ATII I H3 

Xz(t I)= 21. 779088tt Xz(l I)= 21.77908798 x,(t 1)- 27.77908790 x2(r1 ) = 27.77908807 x2(r1)- 27.77908807 xz(t 1 ) = 21.77908807 x2(r1)- 27.71908807 
m =35 m=24 m= 18 m= 18 m= t8 m= 18 m= 18 

0 .... = 1.5 x to""' e,w, = t.5xto""' e,w, = 1.5 X t0-4 e,w, = t.5xto""' e,w, = 1.5 xto-4 e,w, = t.5xto-4 •.w. = 1.5 x to""' 
Cputime=3 Cputime=6 Cputime= 5 Cputime= 5 Cputime= 5 Cputime=5 Cputime= 5 
NFE =36 NFE = 122 NFE=92 NFE=92 NFE=92 NFE =92 NFE=92 

<= 0.00001 A= o.oooot, p = 0.45 
x2(t I)- 27.17908804 x,(t 1) = 27.77908799 x2(t I)= 21.77908802 x2(r1)= 27.77908798 Xz(l I)- 27.77908798 x2(r1 ) = 27.77908798 Xz(l I)= 27.77908798 
m =34 m=23 m=23 m=23 m=23 m =23 m=23 

-1 • .., = t.5xto""' e..,=t5xto-< e,w, = I. 5 x to-4 .... = LS X 10-4 e.m = 1.5 X to-4 e,w, = 1.5 x to-4 e,w, = 1.5 x 10-< 
Cputime=3 Cputime=6 Cputime= 6 Cputime= 6 Cputime= 6 Cputime= 6 Cputime =6 
NFE =35 NFE~ 117 NFE= 117 NFE = 117 NFE = 117 NFE = 117 NFE = 117 

<= 0.00001 A- 0.00001. p- 0.45 
x2(t I)= 27.17908799 x,(t 1) = 27.77908806 x2(r1)- 27.77908789 x2(r1 )- 27.77908806 x2(r 1)- 27.77908776 Xz(l I)- 27.77908176 xz(t1 )- 27.77908776 
m=34 m=23 m=9 m=23 m=8 m=8 m=8 
• .., = t.sxto""' •.w. = t.s x to""' e,w, = 1.5 X to""' ..... e,w, = I.S x 10 ..... •.w, = 1.5 X 10 ..... ..... 

-2 e,w, = 1.5xl0 e,w, = 1.5x 10 
Cputime=2 ~utime=6 Cputime= 2 Cputime= 6 Cputime= 2 Cputime = 2 Cputime = 2 
NFE=33 FE= 117 NFE=47 NFE = 117 NFE=42 NFE =42 NFE =42 

<- 0.00001 A= 0.00001, p- 0.45 
Xz(l I)= 27.77908798 Xz(l I)- 27.77908804 x2(r 1 ) = 27.77908778 x2(t I)= 27.77908805 x2(r1)- 27.77908778 x2(t1)- 27.77908778 Xz(t I)- 27.77908778 
m=32 m=23 m=8 m=23 m=8 m=8 m=8 

-3 e,w, = 1.5 x to""' e.m = t.5 X t0-4 e,w, = t.5 x to-4 e,w, = I.Sxto ..... e,w, = 1.5 X 10-4 e,w, = l.S x t0-4 e,w, = 1.5xto""' 
Cputime=2 Cputime=6 Cputime= 2 Cputime= 6 Cputime =2 Cputime= 2 Cputime=2 
NFE=30 NFE= 117 NFE= 42 NFE = 117 NFE=42 NFE = 42 NFE= 42 

<= 0.00001 A.= 0.00001, !l = 0.45 
x,(t 1) = 27.17908793 x,(t 1) = 27.77908783 x2(r1 )= 27.77908774 x2(r1 )- 27.77908793 x2(r1 ) = 27.77908774 x2(r1 )- 27.77908774 x,(t1 )= 27.77908774 
m=29 m=2t m=8 m= t7 m=8 m=8 m=8 •.w, = 1.5 x to""' •.w. = t.s x to-< e,w, = I.S X to""' ..... e,w, = 1.5 x 10""' e,w, = l.S x to""' e,w, = 1.5 x to-4 -4 e,w, =1.5xl0 
Cputime=2 Cputime =6 Cputime= 2 Cputime=5 Cputime = 2 Cputime= 2 Cputime =2 
NFE =30 NFE= 107 NFE=42 NFE =87 NFE=42 NFE =42 NFE=42 

<= 0.00001 A= o.oooot, p = 0.45 
x,(t I) = 21.77908793 x,!t1> = 27.77908788 x,(t 1) = 27.77908783 x2(r1)- 27.77908818 Xz(l I)= 27.77908783 xz(l 1) = 27.77908783 x2(t I)= 27.77908783 
m=29 m=2t m= 10 m= t7 m= tO m= 10 m= 10 

-S •.w. = t.Sxto-4 •..,=t.Sxto""' e,w, = t.5xto""' •.w, = t.s x to""' e,w, = 1.5 X to""' e,w, = 1.5 x to-4 e,w, = 1.5 X 10-4 
Cputime=2 Cputime= 6 Cputime=3 Cputime= 5 Cputime =3 Cputime=3 Cputime =3 
NFE=30 NFE= 107 NFE= 52 NFE=87 NFE=S2 NFE=52 NFE=52 

<= o.oooot A.- 0.00001, !l - 0.45 
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Chapter 5 

PROBLEM 2 

5.1 Minimum Drag (MD) Problem 

An unconstrained optimal control problem taken from a report by S.C. Carg 
(1979) [19] is considered in this chapter. This problem was also considered 
by Bryson and Ho (1969) [2]. The aim is to minimize the Drag Coefficient 
of an axisymmetric body in Newtonian hypersonic flow. The pressure drag 
of a body in hypersonic flow is given by the expression (see sketch) 

r 

Flow 

... 

(5.1.1} 

where 

GP(()) __ { 2
0

;sin
2 

B; () > 0 } ffi . () < 
0 

= pressure coe crent. (5.1.2) 

(Newtonian approximation), 
q = dynamic pressure, 
x = axial distance from point of maximum radius, 
r = r(x) =radius of body, 
£ = length of body, 
and r(O) =a = maximum radius of body. 

The slope is given by dr / dx = - tan(), the problem can be cast into 
the form of a fixed terminal time, unconstrained optimal control problem as 
follows: 
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-------------------------------------------------------------------

Select tan 0 = u as the control variable, then 

0 2 dr -2u3 

Cvdr = 2sm 0-d dx = 
1 2 dxo (501.3) 

x +u 
Allow for the possibility of a blunt tip by writing (5ol.1) in the form 

4~q = ~~~q [l Cv(O)r dr- r
2
(i)] 

D 1 2 1 ft -2ru3 

4IIq = 2r (f) - 2 lo 1 + u2 dx, 

i.e., 
D 1 llru3 

4II 
= -r2(£) + 

1 2 dxo 
q 2 o +u 

(501.4) 

By nondimensionalizing the variables, make x1 = rjf,x2 = 1/f x the inte
grand in (5ol.4) and insert a non-negativity constraint on u to enforce (501.2)0 
The independent variable t = xj£0 

The problem now reduces to: 
Minimize 

with 

(501.5) 

and 
Cv = 4(f/a)2 if>o 

When Cv the drag coefficient is defined as IID 
2 

o Refer to [2]0 See also 
qa 

Appendix A1 for the complete derivation of (5ol.5)o Once again the problem 
has been tackled analytically and then numerically using conjugate gradient 
and hybrid conjugate gradient method mentioned in chapter 4, section 4.1. 

5.2 Analytical Solution 

Here we use the maximum principle to solve problem (5.1.5). We set up the 
Hamiltonian as follows: 

i=2 u3x1 
H=~>..;j;=->..!u+>-.2 1 + 2 

i=l u 
The adjoint equations can be written as, 

i.e., 

oH 
~i = -,---, i = 1, 2, 

vxo 
aif> • 

>..;(t,) = ax;lt=t/ i= 1' 2' 
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so that >.2 = 1. 
To find the optimal u we set Hu = 0. 

i.e., 
>. _ A2Xtu2(3 + u2) 
t- (1 + u2)2 . 

Since >.2 = 1, At becomes, 

Now substituting for At in H gives, 

i.e., 

H-
-xtu2(3 + u2)u AtU3Xt 

(1 + u2)2 + (1 + u2) 
-xtu2(3 + u2)u + >.2u3xt(1 + u2) 

(1+uT 
-3XtU

2
- XtU5 + U Xt + U5Xt 

-2XtU3 
(1 + u2)2 

- (1 + u2)2' 

Now H = const, since the problem does not involve t explicitly. Therefore, 

-2XtU3 

H = (1 + u2 )2 = const. (5.2.3) 

>. (1) = Xt(1)u2(1)(3 + u2(1)) 
t (1 + u(1)2)2 

and since from (5.2.2), >.t(t,) = >.t(1) = Xt(1), the above equation reduces 
to, 

u2(1) = 1 ==> u(1) ± 1, 

but because of the non-negativity condition we must have u(1) = 1. 
From equation (5.2.3), at t = t1 = 1 we have, 

and since u(1) = 1, it follows that, 

-2xt(1) 
4 

= const. (5.2.4) 
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From (5.2.3) and (5.2.4) we get, 

-2X!U
3 

(1 + u2)2 
X! 

X! (1) 

Thus, 

-2 - 4 x 1(1), i.e., 

(1 + u2)2 (5.2.5) 

(5.2.G) 

Equation (5.2.6) gives the body shape in terms of 11 and x 1(1). To intro<luce 
t into the solution we proceed as follows: 

But from (5.1.5), 

so from (5.2. 7) we get, 

i.e., 

Now integrating both sideB, 

1" 1 d.'LJ 
--du 

1 u tlu 

1" 1 dx1 --du 
1 u du 

From (5.2.5) at u = 1, 

i.e., 

lhl - -· ( ) 

l 
- 1/. t , 

tt 

dx1 dt 
-=-'11-
tlu tlu' 

1 dx1 dt 
:;; · tlu = du. 

x1(t) = x 1(1), thus at '11 = 1, t = 1 and at ·11 = u, t = t. 

1" 1 dx1 1'=' . Thus --
1
-du = -dt = -t + 1, I.e., 

I 111'11 !=I 

1 1" 1 d:I:! 1 -t= --1'1/.. 
1 'll du 

From (5.2.8) and (5.2.!J) we get, 

1- t 

1- t 
or--
. XJ(1) 

:I:! [ 1 1 3 7] 
4 '(!.2 - Pn:;; + 4u4 - 4 
1 [ 0 1 7 1] - -+----1'11-4 4u4 u2 4 · 'u · 

8G 

(5.2.7) 

(5.2.8) 

(5.2.!)) 

(5.2.10) 



From (5.2.5) at t = 0 we get, 

x 1(0) (1 + ul,) 2 

-
x 1(1) 4uil 

and since x1(0) =a/£ from (5.1.5), then by selecting the fineness ratio 7. = 
0.5 for simplicity we get, 

0.5 (1 + ul,)2 

x1(1) = 4uil 

Now from (5.2.10) when t = 0 we have, 

1 1[3 1 7 1] 
x1(1) = 4 4uA + uB- 4 -l'n1Lo · 

By multiplying both sides of (5.2.11) by 2 we get, 

1 (1 + u~) 2 

:1:( 1) = 2u;i 

From (5.2.12) and (5.2.1:3) we have, 

i.e., 

.. · 

~ [-:3- + _1 _ '!_ _ l'n-1 ] = _,_(1_+~u1-"'~)_
2 

4 4u~ u~ 4 · u" 2u.il ' 

:3 u.o 7 3 u;i 1 ( 22 - +-- -
8

u;, = -
2 
l'n-- 1 + u11 ) = 0. 

8u.o 2 ·u.o 

(5.2.11) 

(5.2.12) 

(5.2.1:3) 

(5.2.14) 

Solving equation (5.2.14) numerieally using the Newton Raphson method 
gives, tto = 0.:3:342450. 

Substituting u0 in (5.2.12) we get, .x1(1) = 0.0604275. From (5.2.5) and 
(5.1.5) we can write, 

so that, 

and 
() [ 1XJ(1)( 2) x2 1 = lo -

4
- 1 + ·a dt, (5.2.15) 

since x2 (0) = 0. From (5.1.5), 

(5.2.16) 

Now substitute (5.2. 15) into (5.2. 16) to get, 

1 . . [,! (1 + u2
) 

cp = ;-.7:12(1) + :1:1 (1) dt. 
2 . 11 4 

(fi.2. 17) 
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From (5.2.10) we have, 

1- t = x,(1) [~ + _!._- ~ -f!n.!.] 
4 4u4 u 2 4 u 

or 

Hence 
dt d { ) [3 4 2 7 ] } - - 1 - x1 (1 -u- + 1C - - - f!nu 
du du 4 4 

-x1(1) [-12 _5 2 _3 1] 
- --'lt - 'lt + -

4 4 u 
i.e., 

dt -x,(1) [ 3 _5 2, _3 + 1] - u - lt -
~ 4 'lt 

x, (1) [ 5 3 1] dt -- 3u-· + 2·tC -- du. 
4 'lt 

(5.2.18) 

Substituting (5.2.18) into (5.2.17) we get, 

</> - !_;z:i(1) + x~(Gl) {' (1 + '11?)(3u-" + 2u-3 - !_) du. 
2 1 ~~ '1/. 

~xi(l) [ 1+ ~ l> + '11?) e·tc" + ~::~-3- '11.-4) d'll] 
- ~;z:i(l) [1 + ~ ],~ (3u-5 + 2u-3

- u- 1 + 3u-
3 + 2u.-

1 -·a) du] 

- ~xf(1) [ 1 + ~ L, (3u.-
5 + 5u-3 + u- 1 

- u) du] . 

(5.2. HJ) 

At t = O,u(O) = Uo,t = 1 and u(1) = 1 we have, 

1' (3u.-5 + 5u-3 + u.-1 
- u) du. 

[~3 ·a-4 - ~u-2 + P.nu- Lu2] 

1 

4 ' 2 2 ' 
15 3 -4 5 -2 l 2 - -4 + 4un + 2110 - f!mto + 2u.,. 

(5.2.20) 

Substituting (5.2.20) into (5.2.19) we obtain, 

xi(l) [ 1 ( 15 :~ _4 5 _2 1 2)] 
</> = -

2
- 1 + 8 -4 + 4'1Lo + 2110 - f!mt0 + 2u., . (5.2.21) 

Now from (5.1.5) we have, 

and, 
a 

.x, (0) = f 

also from (5.2.5) at t = 0 
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i.e., 

From (5.2.12) we can write, 

4 
X! (1) = -r[--::--..,..-~----.-

1 
, 

2_ + _!_ - ~ - £n_!_ 
4'U~ ~ 4 'UQ 

and from (5.2.22) and (5.2.23) we get, 

a 

" ~[ 3 1 7 1]. 4u0 - + - - - - £n-
4uf 1~ 4 "ILo 

From (5.2.22), 

Since, 

Co=4(~r ~. 
from (5.2.21) and (5.2.24) we get., 

(5.2.22) 

(5.2.23) 

(5.2.24) 

llo X 1 . - V '"' -4 d -2 2 

[ 
4' 3 ~2 2(1) 1 '1" ., c 1 

Co = 4 x,(1)(1 + u~) ----:2 [1 + S ( 4 + 4'll·o + 2'1/.o - fu:no + 2uo)] , 

i.e., 

32u:; [ 1 ( 15 3 _4 5 _2 · 1 2)] 
Co = (1 +~)4 1 + 8 -4 + 4'1/.o + 21/.o - £nno + 2'1/.o . 

At u0 = 0.3342450, Co = 0.320851G to 7 decimal places. 

5.3 Numerical Solutions 

5.3.1 The state and adjoint equations 

The state equations are: 

. f dx, ( ) 
X! = 1 = -1-= -'ll t , 

rt 3 . _ f _ dx2 _ u x, 
X2- 2- dt - (1 + u2), 

x 1(0) = 0.5 ) 

.'1:2(0) = 0. 

(5.2.25) 

(5.3.1) 

Using the Runge-Kut.t.e 4th order method for numerical solution of (5.:3.1) 
we get, 

1 
X!,n + ~(k! + 2k2 + 2k3 + k4) 

:r:2,n + G(v, + 2v2 + 2V:J + '114), 

gg 



where, 

k, -

v, -

k2 

v2 -

ka 

V a -

k4 = 

'V4 -

The adjoint equations are: 

· -.\2u3 

.A, = !J = (1 + "1/.2)' 
5.2 = h = 0, 

(fi.:3.2) 

Using the R.unge-Kutta 4th order method for muuerieal solution of (fi.:3.2) 
we get, 

.A,,,. 
1 • 

.\ 1,n+1 + ~(w, + 2w2 + 2wa + '1114) 

A2,n+l + G(z, + 2z2 + 2za + Z4), 

where, 

DO 



5.4 Results and Discussions 

5.4.1 Gradient method 

The algorithm for the gradient in function space method applied to problem 
2 is the same as that described in Chapter 4, section 4.4.1, where for this 
problem 

(5.4.1) 

For examining the efficiency of this method when it is applied to the prob
lem in this chapter once again we compare the results obtained numerically, 
when the critical parameters E, N and '11{) are varied, with the analyticaJ ~o
lution. Here, throughout this chapter the results show the minimum number 
of iterations to achieve the best e,,;,. so that any further iterations produC'ed 
no improvement. Table (5.4.1) shows, the effeet. of f and N in achieving the 
minimum Drag Coefficient (CD), from the best starting control, i.e. u" = 1.0. 
The best CD obtained was 0.3208517 to 7 decimal places with e,1,. ~ 1 x 10-7 

with the eorrespomling parameter values, € = 1.8, N = 800 or 1GOO and 
m = 30. Here by selecting a larger steplength factor, up to a limit of 1.8 
in this case, we obtain the minimum in fewer it.eratiom, and fewer funet.ion 
evaluations for the best possible e,l>.•· 11te effect of N is also clear from Table 
(5.4.1), we can see that a better CD is achieved as N is increased but at the 
expense of more cpu time. Table (5.4.2), shows that effeet of initial control 
'11{) on the minimum CD,when a sufficiently large enough N is taken as 800. 
As can be seen the best CD with the best e"1,. was achieved at u0 = 1.0, ah.> 
taking Uo in the range 0 ~ 'li<J ~ 0.3 could achieve e,,;,,, ~ 4 x 10-7

, which 
performed better in terms of convergence to the minimum and number of 
iterations taken, than selecting ·u.0 as 0.4, 0.5 or 1.1. Figure (5.4.1) and figure 
(5.4.2), show the curves from the radius of body .1:1 (t) and local slope u(t) 
respectively against distance along body axis, for the analytical solutions and 
the numerical ones, with m = 1 and m = 30, using N = 800,u.0 = 1.0 and 
€ = 1.8. Hence from the graph of x 1 we can see that when m = 30, the 
curve behaves similar to the analyt.ic~1.l solution, but for m= l,the difference 
is quite obvious. Also from the graph of tt, we can see that. with m= 30, the 
behaviour of the curve is similar to the analytical one, where as when m= 1, 
the difference is quite eminent. 

Figure (5.4.3) compares the analytic.al curve for the radius of body x1 (t) 
with the numerical solutions, when the number of integTation steps are lOO 
and 800, respectively after 2 iterations, with 'll{J = 1.0 and € = 1.8. Figure 
(5.4.4) gives similar results from the local slope tt(t). Here from both the 
graphs of x1 and u, we c.an not see much difference in the behaviour of the 
numerical curves, between N = 100 and N = 800. 

Figures (5.4.5) and (5.4.G) demonstrate the effect. on the radius of body 
x 1(t) and the local slope u.(t) rt>.spect.ively when using step length factors 
€ = 1.0 ancl 1.8 after 2 iterations, when u, = 1.0 and N = 800. As can be 
seen from the graph of x~, taking f = 1.8 can lead to the behaviour of the 
curve closer t~ the analytical one than taking € = 1.0. 

But from the graph of u, we can not see mudt <lifl'erence in the eurvatnne 
behaviour of the numeric.al solutions, between f = l.H mu! < = 1.0. Figure 
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(5.3.7), shows how the Drag Coefficient varies with m for Uo = l.O,N = 800 
and c = 1.8. . 

Figure (5.4.8), shows the effect on the Drag Coefficient (CD) of changing 
Uo for different number of iterations (m= 0.1 and 30) with N = 800 and 
e = 1.8. Here we can see that as m increases, for all the starting controls, the 
value of CD converges to the optimal one. Figure (5.4.9), shows the gmph 
of error, when the optimal numerical results of distance along body axis 
against radius of body x1 (t) are compared with the analytical solution. Note 
that here x 1N(t) and x1A(t) denote the numerical solutions and analytical 
solutions of x1(t),respectively. Similarly figure (5.4.10), shows the graph of 
error of distance along body axis against the local slope u( t) and also here 
U N(t) and U A(t) denote that numerical solutions and analytical solutions of 
u(t) respectively. The parameters for both fig·ures are m = 30, t = 1.8, N = 
800 and Uo = 1.0. 

The results above show that some improvement can be obtained in min
imizing the Drag (CD), by varying the critical panuneters ·u,~, c and N. 

The correct. choice of initial mntrol is an impmtant. iil.dor in achieving 
the be.st CD in fewer iterations and therefore less cmnputing time and fewer 
number of function evaluations. Considering the interaction of the other two 
critical factors c ~me! N, the bt>.st combination exists with lm·ger t and larger 
N, in this C'l.~e c = 1.8 and N = 800, but if we choose smaller values for 
N we can compensate by selecting larger values for t all<! vice versa. But. 
we should note that if the value of c is taken too large, i.e. in this case 
c > 1.8, while N is large enough for accuracy purposes, we get. no more 
improvement on the minimum yield CD. In view of the above comments, by 
selecting proper initial control and accurate enough integration steps, along 
with an appropriate step length factor a speed up in the convergency to a 
better minimum for CD is obtained. 

5.4.2 Steepest descent 

The algorithm for steepest descent applied to the problem 2 and also the line 
search techniques used for this method are described in Chapter 2, section 
2.2.2 and chapter 3, section 3.4.1 respectively. The gradient (g) is obtained 
in the same way as for gradient method in funet.ion space in this chapter (see 
section (5.4.1)). 

Here we again investigate the effect of selecting step length factor, inte
gration step and initial c.ontrol in the solution of problem 2. 

Table (5.4.3), shows the effect of c and N in obtaining the minimum CD 
with the best starting control 1/<J = 1.0. The bt'.st minimum achieved was 
0.3208526 to 7 decimal places with e,.~,. !:0! 1 x 10-G, c = 2.0 and N = 800 
or N = 1600 after 243 iterations. Hence generally for larger N, selecting a 
larger step length factor (c) speeds up the search from the minimum CD, in 
terms of computing time, reduction in number of itemtions and also function 
evaluations, for a required eal-s· Table (5.4.4), shows how the starting control 
affects the minimum CD, i.e. by selecting 'lto as 1, 1.1 ancl 0.4 we achieve 
better minimnm CD respectively eomparecl with 0, 0.;{ anc\ O.fi. Here N w~1.' 

taken as 800. 
Figure (5.4 .11) and Fignre (!!.4.12), show the gmphs of clistanee alon12: 
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body axis against the radius of body x1(t) and the local slope u.(t) respec
tively, when the numerical solutions are compared with the analytical one, 
when m = 1 and m = 243, N = 800, Uo = 1.0 and e = 2.0. As can be seen 
from the graph of x 1 taking m = 243 c~w produce solutions closer to the 
analytical one than m = 1. The same comment is also tme for the gmph of 

controL 
Figure (5.4.13) and Figure (5.4.14) compare the analytical solutions for 

radius of body axis x 1(t) and local slope u(t) respectively with the numeric~'ll 
ones, with N = 100 and 800 respectively, with m= 5, Uo = 1.0 and e = 2.0. 
Here as can be seen from the graphs of x1 and u, there is not much difference 
in the behaviour of the curves between the numeric,'ll solutions of N = lOO 
and N = 800. figures (5.4.15) and (5.4.16), show the effect on radius of body 
x 1(t) and local slope u(t) respectively of using step length factors<' = 1.0 
and e = 2.0 from 5 iterations, when ·u0 = 1.0 and N = 800. Here from the 
graph of x1 we can see that the curve of e = 2.0, performs slightly better that 
e = 1.0, in being closer to the curve of analytical solution. But. not much 
difference could be seen gmphically, between f = 1.0 mHl 2.0 for the control. 

Figure (5.4.17), shows how the Drag Coefficient (CD) varies with m., 
when Uo = 1.0, N = 800 and f = 2.0. Fig11re (5.4.1H), dmnonstrates the 
effect on Drag Coefficient of dumging initial control for difi"erent munlHer of 
iterations (m = 0, 5 and 243), with N = 800 aJHl f = 2.0. Here as can he 
seen from the gTaph a.~ m increases, the value of CD gets dose to the optimal 
one. Figure (5.4.1!J) and Figme (5.4.20), show the gmph of errors when the 
best numerical results of distance along body axis against ra(lius of body 
x

1
(t) and local slope ·u(t) respectively m·e r.ompared with the analytical ones, 

where the parameters from numeric.al solutions are u0 = 1.0, N = HOO, f = 2.0 

and m= 243. 
From the results obtained we can see that even when N is large enough, 

i.e. 800 selecting e too large say 2.1 does not lead to a better minimum value 
for CD. 

Once again the results show that. a proper choice of initial control is a 
factor in achieving the be.st minimum CD in fewer iterations, and also Immber 
of function evaluations and less computing time. 

When the interaction between e and N is e.xantined, where N is not. large 
enough, i.e. 100 we can not establish a suitable pattern between f and N to 
justify the convergence from the minimum CD. The conclusions reached for 
the GFS on selecting the be.st combinations of '11{), e and N is also applicable 
for SD for this particular problem. 

5.4.3 Fletcher-Reeves 

The algorithm for Flet.cher-R.eeves method applied to problem 2 is a.~ de
scribed in Chapter 2 Section 2.4. Also the line se<trch technique used for this 
method is linear search at constant step (see Chapter 3 Section 3.4.1). The 
norm of each gradient trajectory are calculated a.~ descrihed in Chapter 2, 
Section 2.10.1. The gradient (y) is obtained in the same way as for GFS in 
this Chapter Section 5.4.1. 

Table (5.4.5) shows the effect of<' all(! N in achieving tlw miniunun Dm)!; 
Coeffici<'Jlt (CD) with the hest start.ing control 'llo = 0.'1. TIHe hest CD 



was 0.3208517 to 7 decimal places with eai>B ~ 1 X 10-7• the c.orresponding 
parameter values were € = 1.0, N = 800 or N = 1600 and m = 15. 

Again the selection of a larger N gives th minimum CD in fewer iterations 
and also number of function evaluations, and finally less c.omputing time for 
a required eabs· Also for larger N say e.g. 800 selecting larger € up to a limit 
in this case less then 1.1 can guarantee a better convergence to the minimum 
value for CD. 

Table (5.4.6) shows the effect of selecting different initial control un, when 
N was taken as 800. Here taking 'l4J = 0.4, leads to the best optimal value for 
CD, with the best ea/,. = 1.0 x 10-7

• But if less accuracy of e,.1,. is required, 
i.e. :s; 6 x 10-7, then selecting u0 as 0 or 1.0 can get to a reasonable minimum 
value for CD, in slightly fewer iterations than others. 

Figure (5.4.21) and Fig;ure (5.4.22), show the graph of radius of horly 
x1 ( t) and local slope u( t) respectively, along the body axis, comparing the 
analytical curve with the numerical ones, when m = 1 and m = 15, with 
€ = 1.0, u = 0.4 and N = 800. As can be seen from the graphs of x1 and u, 
taking m = 15, lead to the behaviour of the curves closer to the analytical 
solutions than taking m = 1. 

Figures (5.4.23) and (5.4.24), show the cmnparison of the analytical so
lution with the numeric<tl ones for radius of body :~: 1 (t) am! local slope ·a(t) 
respectively with N = 100 and 800, with 'll{l = 0.4, m = 2 anrl f = 1.0. 
Graphically we can not see much difference in the behaviour of the numer
ical curves, between N = 100 ami N = 800, for both the graphs of x 1 and 
u. Figures (5.4.25) and (5.4.26) demonstrate the curves of distance along 
body axis against the radius of body x1(t), and also local slope ·u.(t), when 
we compare the analytical solutions with the munelical ones, where the step 
length factors are f = 0.5 and f = 1.0 for m= 2, u11 = 0.4 and N = 800. 

Again as can be seen from the graphs of :x:1 and u, not much difi"erence 
ca.n be seen in the behaviour of the curves, between f = 0.5 and f = 1.0. 

Figure (5.4.27), shows how the minimum Drag CD varies with m, when 
'l4J = 0.4, N = 800 and t = 1.0. 

Figure (5.4.28), demonstrates the effect on CD of changing the initial 
c.ontrol for different number of iterations (m= 0,1 and 15), with N = 800 
and € = 1.0. As can be seen from the graph by increasing m, the value of 
CD for all the starting c.ontrols gets closer to the optimal one. 

Figures (5.4.29) and (5.4.30), show the curves of errors, (i.e., (- Jn(x1N(t)
x1A(t)) and -ln(UN(t)- U A(t))), when the best numerical solutions of rlis
tance along body axis against radius of body :x:1(t) and local slope u(t) re
spectively are compared with the analytical solutions, where the parameters 
for numerical solutions are 'tto = 0.4, N = 800, f = 1.0 and m = 15. 

In view of the above results, again for N large enough, i.e., 800, selecting 
f too large say 1.1 does not give a better minimum for CD. Here also fin· 
smaller values of N say 100, we can see that, taking £, relatively smaller 
say 0.5, can produce minimum CD with better e,.~,., than larger t's. Also by 
selecting a proper initial c.ontrol 'll{l a better convergence for the minimum 
Drag Coefficient (DC) can be ad1ieved, providing N and f are sufficiently 
large enough. 
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5.4.4 Polak-Ribiere 

The algorithm for the Polak-Ribiere method is described in chapter 2, sec
tion 2. 5. The line search technique and the calculation of the norms are as 
described for FR. 

Table (5.4.7), shows the effect oft and Non the minimum Drag (CD), 
with Uo = 0.0 which is the best starting control. The best yield was 0.3208[;22 
to 7 decimal places, with eabs ~ 6 x 10-7 and corresponding parameter values 
of0.9, N = 800 or N = 1600 and m= 15. By selecting larger N the minimum 
value for CD can be obtained in fewer iterations and also fewer number of 
function evaluations and consequently less computing time. For larger N, 
e.g., 800, selecting larger t up to a limit in this case less then 1.0 can ensure 
a better convergence for minimum CD. 

Table (5.4.8), shows that selection of a proper initial control would help in 
finding better convergence to the minimum CD. Here N is taken sufficient.ly 
large enough i.e., 800. Although for~~{)= O.[i and 1.0, we can find a reasonable 
minimum for CD close to the optimal one, in fewer number of iterations than 
~I{) = 0 or 0.3, but as we increase the number if iterations for ·u,, = O.[i ancl 
1.0, we get no more improvement in convergency, where as with ·a0 = 0 or 
0.3 for a few more iterations we obtain a better minimum CD with a better 

eubs· 

Figures (5.3.31) and ([;.4.32) show the graphs of distance along hocly 
axis against the radius of body x 1(t) and the local slope u(t) respectively, 
comparing the analytical solutions with the numerical ones, with rn = 1 and 
m = 15, ~ = 0.9, ll{) = 0.0 and N = 800. As can he seen from both the 
graph of x 1 and u, the behaviour of the curves, with m = l[i are closer to 
the analytical one than when rn = 1. 

Figures (5.4.33) and (5.4.34), show the curves of distance along body axis, 
against the radius of body x 1 (t) and also the loc.al slope u(t) respectively, 
when the analytical solutions are compared with the numerical ones, where 
N = 100 and N = 800 for m = 2, t = 0.9 and ·u<J = 0.0. Here both for the 
graphs of x 1 and u we can not. see much difference, between the behaviour 
of the curves, with N = 100 and N = 800. Fig1m·s (5.4.35) and (5.4.:{6), 
show similar gmphs for radius of body x1(t) and local slope ·a(t) with t = O.[i 
and t = 0.9, with rn = 2, N = 800 and u0 = 0.0. As can be seen for both 
the gTaphs of x 1 and u the behaviour of the curves with f = 0.5 and 0.9 are 
similar and not much difference can be observed. Figure (5.4.37) shows how 
varying rn affects the minimum CD, when uo = 0.0, N = 800 and t = 0.9. 

Figure (5.4.38), demonstrates how the change in uo can affect the Drag 
Coefficient (CD) for different number of iterations (m= 0, l and 15), with 
N = 800 and t = 0.9. Figures (5.4.39) and (5.4.40) show the curves of 
error, when the best numerical solutions of distance along body axis, against. 
radius of body ::r: 1 (t) and local slope ·u(t) respectively are compared with the 
analytical solutions, i.e. for the parameters, 'll<l = 0.0, ·m= l[i, N = 800 and 
t=0.9. 

From the results obtained here for sufficiently large N and f large enough, 
we can find a better minimum for CD. But we should he aware, that selecting 
t too large, does not improve the minimum. Also proper choice of initial 
control is an impmt.ant factor in achieving the optimal CD for a more accurate 



5.4.5 Hybrid 1 

The algorithm for the Hybrid 1 method is described in Chapter 2, section 
2.6.1. The line search technique used and calculation of the nonns are the 
same as FR and PR in this chapter. 

Table (5.4.9), shows the effect oft and N in achieving the minimum CD, 
with the best initial control 141 = 0.4. The best yield was 0.3208520 to 7 
decimal places, with eabs ~ 4.0 x w-7 and corresponding parameter values, 
t = 1.0, N = 800 or N = 1600 and m= 15. Here also for larger n, e.g., 800 
selecting larger t up to a limit, in this case less than 1.0, can guarantee a 
better convergence for minimum Drag Coefficient (CD), with fewer number 
of iterations and number of function evaluations, and also less computing 
time. 

Table (5.4.10), shows the effect of selecting different starting control on 
convergence of CD. Here, although for u0 = 0.5 and 'lLo = 0, we can find a 
reasonably good minimum for Drag Coefficient (CD) in fewer iterations than 
'lLo = 0.4, but as the number of iterations are increased for un = 0.5 ami 0, 
there is no improvement in the convergency, where as with 'lf.o = 0.4, for a few 
more iterations we obtain better minimum yield for Drag Coefficient (CD) 
with a better minimum yield for Drag Coefficient (CD) with a better Cal>s· 

Figure (5.4.41) and (5.4.42), show the b'Taphs of clist.lmce along body axis 
against radius of body x1(t) and local slope u(t) respectively and compare 
the analytical solutions with the numerical ones, with rn = 1 ancl m = 1.5, 
where t = 1.0, N = 800 ami '141 = 0.4. Here we can see from both the graphs 
of x1 and in that taking m = 15 produces results doser to the analytical ones 
than m= 1. 

Fib'1lres (5.4.43) and (5.4.44), demonstrate the effect of Non the radius of 
body x1(t) and the local slope u(t) respectively, when the analytical solutions 
are compared with the numerical ones, with N = 100 and N = 800 for 
m = 2, t = 0.9 and ·u0 = 0.4. As can be seen from both the graphs of x1 

and u, there is not much difference between the behaviour of the curves of 
N = 100 and N = 800. Figure (4.4.45) and Fig;ure (5.4.46), show similarly 
the effect oft on the radius of body x1(t) and local slope u(t) respectively, 
with t = 0.5 and t = 1.0 for m= 2, N = 800 and 141 = 0.4. 

Here also not much difference can be observed from both the curves of x 1 

and u, between t = 0.5 and t = 1.0. Figure (5.4.47), shows how the minimum 
CD varies with m, when u0 = 0.4, N = 800 and t = 1.0. 

Figure (5.4.48), shows how the change in u0 affects the minimum CD with 
m = 0, 1 and 15, where N = 800 and t = 0.9. Here also we can see that as 
m increases, the value of CD for all the starting controls get closer to the 
optimal one. 

Figures (5.4.49) and (5.4.50), show the curves of enur, when the best 
numerical solutions of distance along body axis, against. radius of body x 1 (t) 
and local slope u(t) respectively are compared with the analytical solution, 
i.e. for the parameters ·u0 = 0.4, N = 800, t = 1.0 ancl m.= 15. 

In view of the above results, here also for sufficiently large enough N and 
€ large enough we find a better minimum for CD. Al~o likP. PR. taking f too 
large does not improve the convergency. Finally, a proper ~election of initial 
control can help in finding a better minimum for CD. 
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5.4.6 Angle test hybrid 

The algorithm for angle test hybrid method is described in Chapter 2, section 
2. 7. The line search and calculation of the norms are the same as for Hl. For 
this method we had to consider the parameter r > 0 as well. The method 
was tested in the same way as the previous methods, plus the new parameter 
r. Table (5.4.11), shows the effect of € and Non finding the minimum Drag 
(CD), with the best starting control u0 = 1.0 and r = 0.000001. The best 
minimum for CD was 0.3208527 to 7 decimal places after 12 iterations with 
eabs ~ 1.1 x 10-6 and corresponding parameter values, € = 1.5, N = 800 
or N = 1600 and m = 12. Clearly for larger N and larger € up to a limit 
of 1.5, the minimum Drag Coefficient can be obtained in fewer iterations 
and therefore fewer number of function evaluations and also less c.omputing 
time. This relation between € and N could also be held for smaller values 
of N. Table (5.4.12), can also reveal the effect of selecting u0 in achieving 
a better minimum for Drag (CD), with N = 800 ami r = 0.000001. By 
choosing 1to = 0.5 and 1.0, we can obtain a better minimum for CD with 
eabs = 1.2 X 10-6 and e .. 1,. = 1.1 X 10-G respectively, in fewer iterations and 
number of function evaluations compared with ·u11 = 0, 0.3 and 0.4. 

The value of r was also tested with 0.01, 0.0001 and 0.000001, but the 
effect of it on obtaining the minimum CD was practically negligible. 

Figures (5.4.51) and (5.4.52), show the gmphs of distance along body axis 
against radius of body .r.1 (t) ami local slope u(t) respectively, compming the 
analytical solutions with the numerical ones, with m = 1 ami m = 12, where 
€ = 1.5, N = 800, r = 0.000001 and u0 = 1.0. As can he seen from both the 
graphs of .r.1 and u, with m = 12, the behaviour of the curwB are closer to 
the analytical one c.ompared with m = 1. 

Figures (5.4.53) and (5.4.54) give the gmphs of distance along body axis 
against radius of body x 1(t) and local slope u(t) respectively, showing the 
effect of N taken as 100 and 800, for m = 2, with ·u0 = 1.0, r = 0.000001 
and € = 1.5. Here we can not observe much difference both from the gmphs 
of x 1 and u, when N = 100 is compared with N = 800 <Uid graphically they 
show similar patterns. 

Also Figures (5.4.55) and (5.4.5G), in the same way demonstrate the effect 
of € on radius of body axis x1 (t) and local slope ·u(t) respectively, with f = 0.5 
and 1.5 and corresponding parameter values, N = 800, r = 0.00001, 'tto = 1.0 
and m = 2. As can be seen from both the j,>Taphs of .T.J and u, there is not 
much difference in the behaviour of the curves between f = 0.5 and f = 1.5. 

Figure (5.4.57), demonstrates th effect of m on the minimum CD with 
1Lo = 1.0, € = 1.5, r = 0.000001 and N = 800. 

Figure (5.4.58), shows the change in 'llo against the minimum yield CD 
with m = 0, 1 and 12, with f = 1.5, N = 800 and r = 0.000001. As can be 
see, by increasing m, the values of CD for all the starting controls get closer 
to the optimal CD. 

Figures (5.4.59) and (5.4.GO), show the curves of errors when the lwBt 
numerical solutions of distance along body axis against radius of body x 1(t) 
and local slope u(t) respectively are compared with the analytical solution, 
i.e. for the parameters, u0 = 1.0, N = 800, € = 1.5, m= 15 ami r = 0.000001. 

From the above results we can see that taking f in the range 1.0 S E S 
1.5, along with sufficiently large enough N can produce consistent results. 
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Also a proper choice of initial control will help to speed up the proeess of 
convergency. 

5.4.7 Hybrid 3 

The algorithm for Hybrid 3 method can be fmmd in Chapter 2 Section 2.8. 
The calculations of the norms and line search afe the same as for ATH. The 
effect of the new parameters, >. > 0 and /L < 2 had to be considered from 

this method. 
Table (5.4.13), shows the effect of f and N in achieving the minimum 

CD, with the best starting control u0 = OA,jt = 0.45 and >. = 0.0001. 
The best minimum for CD was 0.3208518 to 7 decimal places, with e,,,_, ~ 
2.0 x 10-7

, f = 1.0 and N = 800 or N = lGOO after 15 iterations. As in 
previous method selection of a larger N gives the minimum yield in fewer 
iterations and also fewer number of function evaluations. For larger N, e.g., 
800 selecting larger € up to a limit in this ease less than 1.1 can g·uarantee a 
better convergence for minimum Drag Coeffident (CD), with lower munber 
of iterations and number of function evaluations. 

Table (5.4.14), shows the effect of selecting different initial controls u0 

with N = 800, >. = 0.0001 and JL = 0.45. Here although for 'lto = 0, 0.:3 and 
0.5 or 1.0 we ean find a minimum for CD in fewer iterations than 'ltn = 0.4, 
but as the number of iterations are increased for those '11{1 's, there is no 
improvement in the convergence, where as with '11{) = 0.4 for a few more 
iterations we obtain better minimum for CD with more accurate e,,,.. 

The values of >. with 0.01, 0.001 and 0.0001, also Jt with 0.1, 0.25 and 
0.45 were tested on this problem and on minimizing the CD hac! practically 
no significant importance. 

Figure (5.4.61) and Figure (5.4.62), compare the analytical solutions with 
the numerical ones for radius of body axis x1(t) and local slope ·u(t) re
spectively with m = 1 and m = 15 and corresponding parameter values, 
>. = 0.0001, JL = 0.45, f = 1.0, N = 800 and 'lto = 0.4. Here for both the 
graphs of x1 and u, we can see, from the behaviour of the curves that when, 
m= 15 they get closer to the optimal curves than when m= 1. 

Figures (5.4.63) and (5.4.64), show that effect of N for N = 100 and 
800, with m = 2, ~Lo = 0.4, >. = 0.0001 and ft = 0.45. As can be seen from 
both the graphs of x1 and n, not much difference exist, between the curves 
of N = 100 and N = 800. 

Figures (5.4.65) and Figure (5.4.66), similarly show the effect of f's for 
f = 0.5 and 1.0, with N = 800, 'lLo = 0.4, m= 2, >. = 0.0001 anc!Jt = 0.45. 

Here also the curvature for both the graphs of .oz: 1 and n are similar with 
f = 0.5 and € = 1.0. 

Figure (5.4.67), shows how the minimum Drag (CD) reacts with different 
number of iterations, with no= OA,N = 800,>. = 0.0001,/t = 0.45 and 
€ = 1.0. 

Figure (5.4.68), demonstrat.es how the change in u" ean affect CD for 
different number of iteration (m= 0,1 ami 8), with N = 800, < = 1.0, >. = 
0.0001 and /L = 0.45. It is clear gmphically, as m increa.ses the values of CD 
for all starting controls, get closer to the optimal one. Fignre (5.4.69) ancl 
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Figure (5.4. 70), show the curves of errors when the best numerical solutions 
of distance along body axis against radius of body Xt(t) and local slope 
u(t) respectively are compared with the analytical solutions, i.e. for the 
parameters, '11{) = 0.4, J.L = 0.45, A= 0.0001, E = 1.0, m= 15 and N = 800. 

Here from the above results, we can see that with N sufficiently large 
enough and E in the range 0.9 ~ E ~ 1.0 we can find better minimum CD 
in fewer number of iterations and also number of function evaluations, than 
selecting E too small or too large or N too small. Here also a proper choice 
of initial control is an important factor in finding the optimal minimum CD. 

5.5 Summary of the Results 

Referring to the summary Table (5.5.1), with N = 800,Jt = 0.45,7 = 
0.000001, A = 0.0001, also Fig·ure (5.5.1) with the ahov<e parameters, plus 
the best Uo for ea.ch method, the following results cai1 he seen. The best 
performance in achieving the minimum CD, i.e. the most aceurate c,.,,,., the 
methods performed as follows in terms of preferences; 

At 11{] = 0.0, GFS, then H1 and PR. performed the same, then FR, H:3, 
ATH and finally SD. 

At '11{) = 0.:3, GFS, H1, then PR and FR performed the same, then H:~, 
ATH and finally SD. 

At u0 = 0.4, FR., H:3, Hl, GFS, PR, ATH and finally SD. 
At u0 = 0.5, PR, ATH, then H1 and H:3 performed the smne, then FR. 

and GFS performed the same and finally SD. 
At 1Lo = 1.0, GFS, FR., H1, SD m1d finally PR, ATH mu! H:3 performed 

the smne. 
But taking into considerations the number of iterations taken, as well as 

a reasonable accuracy of e,.,,. say ~ 2.0 x w-", the methods performed as 
follows in terms of preferences; 

At 1Lo = 0.0, ATH, then H1, then H3 m1d FR. performed the same, then, 
PR, GFS and finally SD. 

AT Uo = 0.3, ATH and H3 performed the smne, then, PR, then H1 and 
FR. performed the smne, the GFS and finally SD. 

At u0 = 0.4, ATH, then FR., H3 and H1 performed the smne, then PR., 
GFS and finally SD. 

At u0 = 0.5, PR, ATH, H1 and H3 performed the same, then FR., GFS 
m1d finally SD. 

At u0 = 1.0, PR. and ATH performed the same, then FR. and H3 per
formed the same, the H1, GFS and finally SD. 

5.6 Conclusion 

Applying the seven methods of optimization to Problem 2, we can see that 
each tedmique produced its own best minimum value for CD, with different 
initial control, and step length faetor. But one faetor that. was common 
among all of them was the choice of integration step munher (N), i.e., by 
selecting larger N we could guarantee a better optimal result. for CD in all 
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the methods. Although for larger N we could find an interaction between E 

and N, i.e., by selecting larger Ewe could ad1ieve better minimum for CD, 
but we could not establish that for smaller integration step numbers. 

Also the fact that overall for this problem the best, minimum value for CD 
was obtained by GFS, but when we taken into consideration the number of 
iterations taken it did not seem to be the ideal method. Thus if the number of 
iterations as well as the convergency is going to be considered, when the best 
results are obtained for eadl method, with the best possible initial control, 
step length factor and integration step, the best performance may be selected 
in the following order; 

FR, H3, Hl, ATH, PR, GFS and finally SD. 
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TABLE (5.4.1):Results of GFS with varying E and N. 

N 100 800 1600 

1.0 

1.7 

1.8 

1.9 

2.5 



TABLE (5.4.2):Results of GFS with change in u0• 

uo m Q) eabs Cpunme eps NFE 

u 40 fJ.::S:2UlS520 4XIO-I 1 1.8 fl1 

0.3 50 fJ.320lS519 3xiO-' 1 1.8 ~1 

U.4 6U fJ.32Uij531 1.5 x w-o 1 1.8 ~1 

0.5 70 fJ.3201j531 1.5x w-o 1 1.7 [71 

1.0 30 fJ.3208517 1 x w-t 1 1.8 31 

1.1 (JO p.3208531 1.5x w-o 1 1.7 ~1 



TABLE (5.4.3):Results of SD with varying e and N. 

N 100 800 1600 

1.0 

1.2 

1.8 

1.9 

2.0 

2.1 



TABLE (5.4.4):Results of SO with change in u0 • 

uo m Q) eabs [Cputtme eps NFE 

0 400 fJ.320lS534 1.8 x w-o ~4 1.9 1624 

0.3 400 fJ.320lS534 1.8 X lQ-0 24 1.9 1624 

0.4 300 0.3201!535 1.9x w-o 18 1.9 1222 

0.5 400 0.3201!535 1.9x w-o ~4 2.0 1622 

1.0 243 fJ.320lS526 1 X lQ-0 15 2.0 ':}87 

1.1 300 fJ.320lS534 1.8x w-o 16 2.0 1221 



TABLE (5.4.5):Results of FR with varying e and N. 

N 100 800 1600 

75 

1.0 

1.1 

1.5 



TABLE (5.4.6):Results of FR with change in u0• 

uo m Q) eabs Cputime eps NFE 

0 14 p.3208525 9x1Q-/ 1 1.5 60 

0.3 17 p.3201S522 6x1Q-7 ~ 1.0 81 

0.4 15 p.3208517 1 X 10-7 2 1.0 0 

0.5 15 p.3208531 1.5x w-o [l 1.2 1 

1.0 14 p.3208522 6 X 10-1 1 1.3 65 



TABLE (5.4.7):Results of PR with varying e and N. 

N 100 800 1600 

1.0 

1.5 



TABLE (5.4.8):Results of PR with change in u0• 

uo m CD eabs Cputime eps NFE 

-0.1 15 p.3208530 1.4x 10 -o rz U.9 7 

0 15 p.3208522 6x1Q-/ rz U.9 f(J 

0.3 15 p.3208522 6x IQ-I rz U.9 6 

0.4 16 0.3208533 1.7 X IQ-0 rz 1.1 81 

0.5 12 0.3208527 1.1 x w-<> 1 1.0 62 

1.0 12 0.3208527 1.1 x w-<> 1 1.5 53 



TABLE (5.4.9):Results of Hl with varying e and N. 

N 100 800 1600 

1.0 

1.1 

1.5 



TABLE (5.4.10):Results of Hl with change in u0• 

uo m Q) eabs Cputime eps NFE 

0 14 ~.3208522 ~xw-7 1 1.4 60 

0.3 17 ~.3208521 f5 x w-1 ~ 1.0 82 

0.4 15 ~.3208520 ~X JQ-1 12 1.0 3 

0.5 12 0.3208530 1.4x 1o-o 1 1.4 53 

1.0 16 0.3208523 17 x 1o-t 12 1.1 7 



TABLE (5.4.11):Results of ATH with varying £ and N. 

N 100 800 1600 

1.0 

1.4 

1.5 

1.6 

2.0 



TABLE (5.4.12):Results of ATH with change in u0• 

uo m m eabs Cputime eps NFE 

0 u ~.u:w8528 1.2X lQ-0 1 1.0 66 

o.:; u ~.U208533 1.7xlo-o 1 1.0 64 

0.4 13 p.3208534 1.8x w-o 1 1.0 o5 

0.5 12 p.3208528 1.2x 10-o 1 1.0 62 

1.0 12 0.3208527 1.1 x 1o-o 1 1.5 53 

1.1 20 0.3208534 1.8 x w-o rz 1.5 YO 



TABLE (5.4.13):Results of H3 with varying e and N. 

N 100 800 

0.9 

1.0 

1.1 

1.5 

1600 

D=. 11 
=20 

abs=9 .5 X IQ-6 
utime=4 

=127 

1 



TABLE (5.4.14):Results of H3 with change in u0• 

uo m m Cabs Cpuume eps NFE 

0 14 0.3208526 1 x Io-o 1 1.4 ~0 

0.3 13 0.3208527 1.1 X IQ-0 1 1.7 f53 

0.4 15 lJ.3208518 ~.Ox IQ-I !l 1.0 l/3 

0.5 12 lJ.3208530 1.4 X IQ-tJ 1 1.4 p3 

1.0 14 u.:;20~5z7 1.1 X IQ-() 1 1.3 ~5 



Table (5.5.1): Summary table for the seven methods 

1~1 GFS 

I 
SD FR PR HI ATH H3 

CD = 0.3208520 CD = 0.3208534 CD = 0.3208525 CD = 0.3208522 CD = 0.3208522 CD = 0.3208528 CD = 0.3208526 
m=40 m=400 m=l4 m= 15 m= 14 m=13 m= 14 

0 eab, =4x10-7 eab, = 1.8 x J0-6 eab, =9xlo-7 eab, =6xlo-7 eab, =6xlo-7 eab, =1.2xJ0-6 eabs = 1 X 10-6 
Cputime= 1 Cputime=24 Cputime= 1 Cputime=2 Cputime=2 Cputime= 1 Cputime= 1 
E = 1.8 E = 1.9 E = 1.5 E =0.9 E = 1.4 E = 1.0 e = 1.4 
NFE=41 NFE= 1624 NFE=60 NFE=76 NFE=60 NFE=66 NFE= 60 

CD= 0.3208519 CD = 0.3208534 CD = 0.3208522 CD = 0.3208522 CD= 0.3208521 CD = 0.3208533 CD = 0.3208527 
m=50 m=400 m=l7 m= 15 m= 17 m=13 m=13 

0.3 eab, = 3x 10-7 eab, = 1.8xJ0-6 eab, =6xl0-7 eab, =6xto-7 eab, =5xto-7 eab, = 1. 7 x J0-6 eab, = 1.1 x J0-6 
Cputime= 1 Cputime=24 Cputime=2 Cputime=2 Cputime=2 Cputime= 1 Cputime= 1 
E = 1.8 E = 1.9 £ = 1.0 £ = 0.9 E = 1.0 E = 1.0 £ = 1.7 
NFE=51 NFE= 1624 NFE=81 NFE=76 NFE=82 NFE=64 NFE=53 

CD= 0.3208531 CD= 0.3208535 CD= 0.3208517 CD = 0.3208533 CD = 0.3208520 CD = 0.3208534 CD= 0.3208518 
m=60 m=300 m=15 m= 16 m= 15 m=13 m=15 

0.4 eab, = 1.5 x J0-6 eab, =1.9xJ0-6 eab, = 1 x J0-7 eabs = 1. 7 X J0-6 eab• = 4 X J0-7 eab, = 1.8xJ0-6 eab, = 2.0 x to-7 

Cputime = 1 Cputime= 18 Cputime=2 Cputime=2 Cputime= 1 Cputime= 1 Cputime= 1 
E = 1.8 E = 1.9 £=2 E = 1.1 E = 1.0 E = 1.0 £ = 1.0 
NFE=61 NFE= 1222 NFE=70 NFE=62 NFE=73 NFE=65 NFE=73 

CD = 0.3208531 CD= 0.3208535 CD = 0.3208531 CD = 0.3208527 CD = 0.3208530 CD = 0.3208528 CD = 0.3208530 
m=70 m=400 m= 15 m= 12 m= 12 m=l2 m= 12 

0.5 eab, =1.5xJ0-6 eab, = 1.9x J0-6 eab, = 1.5xt0-6 eab1 = 1.1 X 10-6 eabs = 1.4 X 10-6 eabs = 1.2xl0-6 eab, = 1.4 x 10-6 
Cputime= 1 Cputime=24 Cputime=2 Cputime= 1 Cputime= 1 Cputime= 1 Cputime= 1 
E = 1.7 E =2.0 E = 1.2 E = 1.0 E = 1.4 E = 1.0 E = 1.4 
NFE=71 NFE= 1622 NFE=62 NFE= 62 NFE=53 NFE=62 NFE=53 

CD=0.3208517 CD = 0.3208526 CD = 0.3208522 CD = 0.3208527 CD = 0.3208523 CD = 0.3208527 CD = 0.3208527 
m=30 m=243 m=l4 m= 12 m=l6 m=l2 m=l4 

1.0 eab, = 1 xto-7 eab, = 1.0 x J0-6 eab, =6xto-7 eab, = 1.1 x 10-6 eab, =7xto-7 eab, = 1.1 x 10-6 eabs = 1.1 X 10-6 
Cputime= 1 Cputime= 15 Cputime= 1 Cputime= 1 Cputime=2 Cputime= 1 Cputime= I 
E = 1.7 E =2.0 E = 1.3 E = 1.5 E = 1.1 E = 1.5 E = 1.3 
NFE=31 NFE=987 NFE=65 NFE=53 NFE=77 NFE=53 NFE=65 
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Chapter 6 

PROBLEM 3 

6.1 An Optimal Control Problem Consisting 

of a Singular Arc Followed by a N onsin

gular Arc 

Here we consider an optimal control problem consisting of a singular arc 
followed by a non singular arc, taken from E.R.. Edge and W.F. Powers 
(1976) (20]. 

1 {2.!185 . 
Minimize J = 2 lo (x~- xi)dt, 

subject to, 
Xt = X21 .T.t(0) = 0, Xt(t,) = 0.065, 

X2 = U, X2(0) = 1, X2(t,) = -1.336, JuJ:::; 1. 

In the usual way we introduce an additional state variable; 

X3(t) = ~ l (x~ - xi)dt, 

then the state equation for .T.3 will be 

dx3 1 ( 2 2 dt = 2 x2- Xt), X3(0) = 0. 

Thus the problem is transformed into; 

minimize J = x3(t1 ), 

where, t1 = 2.985, subject to, 

ft = Xt = X2, .T.t(O) = 0, Xt(t/) = 0.06fi, 

h = ±2 = u, :r:z(O) = 1, x2(t1) = -1.336, 

1 
f _ x· _ (·1.2 ,1.2) 
3-. ·3 - 2 ''2- ''I , 
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.7:3(0) = 0. 

(6.1.1) 

(6.1.2) 

(6.1.3) 

(6.1.4) 

(6.l.fi) 

(6.l.G) 

(6.1.7) 



Since for this problem terminal constraints are involved, they can be han
dled using quadratic penalty terms, i.e., we introduce the augmented cost 
functional, 

(<J.1.8) 

Here, the value of 10 in the augmented cost functional was suggested by Edge 
and Powers [20], as being a reasonable value to use. 

The problem has been tackled both analytically and numerically using 
the conjugate gradient and Hybrid conjugate gradient methods described in 
chapter 4, section 4.1. · 

6.2 Analytical Solutions 

Using the maximum principle, we solve the problem (6.1.1) to (6.1.3). 
The Hamiltonian is given by 

1 
H2 = 2(:r:~- xD + .\1:r:2 + .\2u. (6.2.1) 

and the adjoint. equations are, 

)_! 
DH 

) - --=Xt, 

all 
>-2 

{) 
-- = -:r:2- .\1. 

Dx2 

(6.2.2) 

In order to determine the order of the singular arc we need to use the gener
alized Legendre-Clebsch condition (GLC) which was described in chapter 1 
section 1.2.5, inequality (1.2.24). For convenience we rewrite it here, 

fJ [ rP" ] ( -1 )'I fJu dt2q H,. :2: 0. (6.2.3) 

The inequality (6.2.3) is called the strengthened GLC condition when strict 
inequality holds. In our problem the switching function and its ser.ond deriva-
tives are, 

.. d . 
H,. = -

1 
H,. 

rt 

H,. = .\2 

- !!_ [d>-2] = !!_ [-.\I - :z:2] 
dt dt dt 

- -A1-x2 

i.e., fl,. =-X!- 'U. 

Checking the GLC condition (6.2.3), 

f).. ,[)[rf2'I] I . 
fJu.H,.=-1,q=1,(-1)1[1u dt'}.qH,. =(-1) (-1)=1:2:0. 

(6.2.4) 

(6.2.5) 

Thus the singular arc is first order. From (6.2.5) we see that. the strengthened 
GLC condition is satisfied. Setting the right hand sirle of (6.2.5) to zero we 

get., 
H,. = 0 =} X! = -11., 
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substituting in (6.1.2) we get, 

du 
---X2 =0 

fti2 -u=O' 
dt ' 

The solution is as follows: 

u(O) = 0, ) 

X2(0) = 1. 

u(t) = -sin t, x2(t) =cost and X1 (t) =sin t. 

(6.2.6) 

(6.2.7) 

Now before proceeding any further we introduce the junction theorems. 
Theorem 6.2.1: 

Let tc be a point at which singular and nonsingular subarcs of an optimal 
control u are joined and let q be the order of the singular subarc, suppose 

the strengthened GLC condition is satisfied at tc, i.e., ( -1 )'~ ( ~ ) H,~2'1) > 0, 
(I'll 

and assume that the control is piecewise analytic in a neighborhood of t0 • 

Let u<rl(r 2:: 0) be the lowest order derivative of u which is discontinuous at 
tc. Then q + r is an odd integer. 
Proof. Refer to McDanell and Powers (1971) [137]. 
Theorem 6.2.2: 

Let tc be a point at which singular and nonsingular suharcs of an optimal 
control u are joined, and let q be the order of the singular arc. Assumed that 
the control is piecewise analytic in a neighbourhood of tc. Let u<•·l(r 2:: 0) be 
the lowest order derivative of 1t which is discontinuous at tc, and let (J<"'l(m 2:: 

0) be the lowest order derivative of the GLC expression (.!!__) H(2
'1) = (-1 Du " - · 

which is nonzero at tc. 
Then, 
(i) if m::; r, q+r+m is an odd integer; (ii) if m > T, -~~gn[(J<"'l(tt)(J'"(t;:-)] = 

(-1)q+r+m. 
Proof. A proof of the above theorem was given by McDanell and Powers 
(1971) [137], but later on this proof was shown to be incorrect in general hut 
true for when q = m= 1 (Bell (1979) [138]), and for m= 1, q > 1 (Bortins 
(1983) [140]). 

Also part 2 of the conjecture has also been shown to be false, (Bell, 
(1987) [141] and Bell has also recently found a counter example to part 
1 (to be published later). Now for the problem (6.1.1) to (6.1.3), when 
the terminal state (0.065, -1.336) is chosen to lie on the trajectory (6.2.7), 

the solution is singular with 'lt = -sin t, t E [ 0, 
3
: ) and nonsing<Jlar with 

u = -1, t E ( 3:,2.985], as can be shown by the suffident c.onditions in 

[142] and [143]. 
For this case the optimal control is 

, ~-sint, 
'U. = 

-1, 

The above can be justified as follows: 

311 
t E [ 0,4), 

37f 
tE(4,2.985]. 
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Whenever H,. = >'2(t) '!- 0, u*(t) =· -sgn >.2 (t). Now there are 3 possibil
ities for >.2(t) that should be examined, 

( i) >.2 > 0, ( ii) >.2 < 0 and (iii) >.2· = 0. 

When (i) is considered, then u = -1 and equations (6.1.2) to (6.1.3) 
beeome 

.i:J = X2, } 1 ( ) . u=- 6.2.9 
X2 = -1, 

and the adjoint equations are as (6.2.2). 
Solving (6.2.9) we get 

Thus 

-1.336 
I.e., C2 

0.065 

i.e., c1 

.'1:2 C2- t, 
t2 

x 1 c2t- 2 + c1. 

- C2- 2.985, 
1.649 and 

" (2.985)2 

- c2(2.98v)-
2 

+ c1 

-0.4021525. 

t2 
::r:1 = -2 + 1.649t- 0.4021525, 

X2 = 1.64!)- t. 

Considering the adjoint equations (6.2.2) related to (6.2.9) we have, 

t2 
.X1 - ~t- 2 +c1 

. ( ) ( ) 0~ 2 t3 
>.2 - -C2 - A! 0 + 1 - C! t - 2t + 6 ' 

and the solutions are, 

(6.2.10) 

(6.2.11) 

When (ii) is c.onsidered, then u = 1 and the equations (6.1.2) to (6.1.3) 
beeome · 

~; 1 : 
3

1
;2 } 'lL = 1 (G.2.10) 

.'!:2 

Solving (6.2.10) we get, 
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Since x 1(tJ) = 0.065 and x2(tJ) = -1.336, therefore, 

-1.336 - B2 + 2.985, 
I.e., B2 - -4.321 and 

0.065 -4321(2.985) + (2 ·9~5)
2 

+ B2• -

i.e., B! - 8.5080725. 

Thus, 
t2 

X! = 2 - 4.321t + 8.5080725, 

X2 = t - 4.321. 

Considering the adjoint equations related to (6.2.10) we have, 

t2 
~~ - B2t + 2 + B2 

~2 -(AJ(O) + B2)- (1 + B1)t- ~2 t2 
t3 

-"G, 

and the solutions are 

(6.2.11) 

(6.2.12) 

When (iii) is considered, then u = -sin t and equations (6.1.2) to (6.1.3) 
become 

~1 = "7:
2 

. t } u = - sin t 
X2 = - S111 

Solving (6.2.13) we get, 

x2 = cost+~ 
x1 = sin t + ~t + d1 . 

Considering the adjoint equations related to (6.2.13) we have, 

~~ - sin t + d2t + d1 , 

~2 = -~t2-c'1t-(~+.\~(O)). 
The solutions are, 

-cost+ J t2 + c'1 t + A~ (0) 

- ~t3 - dt2
- (c~ + A'1(0))t + A~(O). 

Here since A2(t) = 0, therefore, 

A~ (0) = .\~(0) = c2 = A~(O) = 0. 
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Also 
x2 =cost, 

x1 = sint. 

(6.2.14) 

(6.2.15) 

Now we need to find the switching time tc. Suppose the control is singular 
up to tc and +1 up to 2.985 then from (6.2.11), (6.2.12) and (6.2.14), (6.2.Ui) 
we have, 

-4.321 + tc = COS tc } 

-4.321tc + t; + 8.5080725 = sin tc. 
(6.2.16) 

Here, since tc E [0, 2.985] and -1 ::; cos tc ::; 1, therefore we can find no 
solution to satisfy (6.2.16), i.e. the curve will not switch to u = +1. Now 
suppose control is singular up to tc and -1 up to 2.985, then from (6.2.10), 
(6.2.11) and (6.2.14), (6.2.15) we have, 

1.649 - fc = COS tc, } 
t2 

-; + 1.649tc = 0.4021525 =sin t, 
(6.2.17) 

which is satisfied by tc = 
3:. Therefore the optimal control u' can be as 

(6.2.8). 
Now in order to find the optimal cost J' we have to find 

(G.2.18) 

where 
(6.2.HJ) 

and 1 {2.985 
J2 = 2 h· (x~- xndt. (6.2.20) 

4 

To find J1 the solution of equation (6.2.13) should be sithstituted for x2 and 
x1 in J1 , therefore by substituting (6.2.14) and (6.2.15) into x 2 and .r.1 in 
(6.2.19) respectively we get, 

1 311' 

2 ~ 4 
(cos 2t - sin2 t)dt, 

/J_{1 1 } - !o 4 
-(1 +cos 2t) - 2(1- cost) dt 

0 ' 2 
1 : - - Jo cos2tdt, t 0 ~ 

- 4 [sin 2t]0
4 

, 

(6.2.21) 

- -0.25. 

To find J2 the solutions of equation (6.2.9) should be substituted for :r:2 and 
x1 in J2 , therefore by substituting (6.2.10) and (6.2.11) into :r:1 and .1:2 in 
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(6.2.20) respectively we get, 

J2 - ~ ~:·985 { ( -t + 1.649)2 - ( -~t2 + 1.649t0.4021525)2} dt 

1 {".l.985 { 1 } - 2 h· -4t4 + 1.649t3 - 2.1213535t2 - 1.9717011t + 2.5574744 dt 
4 

[-_!_t5 + 0.412250t4 - 0.7071178t3- 0.9858506t2 + 2.5574744t]
2

.!JRs 
20 •• 

4 

- 0.2723751. 
(6.2.22) 

Now substituting (6.2.21) and (6.2.22) into (6.2.18) we get the optimal coRt 
J* = 0.0223751 to 7 decimal places. 

6.3 Numerical Solutions 

6.3.1 The state and adjoint equations 

The state equations are: 

(G.a.1) 

Using the R.unge-Kutta 4th order method for numerical solution of (G.a.1) 
we get, 

where 

1 
X!,n+l = Xl,n + G('ltJ + 2u2 + 2u3 + 11.4), 

1 
X2,n+1 = X2,n + G (vi + 2v2 + 2va + '114), 

1 ' :r:3,n+l = X3,n + G('WJ + 2w2 + 2'W3 + 'W4), 

Ut = hft (:r:l,n, X2,n. 1 Xa,n) == hx2,n1 

'UJ = hfz(xl,n> Xz,n, X3,,.) = /m,., 

) h( 2 2 
tilt= h/a(Xt,n 1 .'l:2,n,X3,n = 2 :I:2,n- :I:l,,.J, 

1 1 1 1 
'ltz = h/J(.'tl,n + ZUJ, :r:z,n + 2'liJ, X3,n + 2'W1) = h(:1:2,n + Z'UJ), 

1 1 1 
112 = hfz(xl,n + 2'U.J,J:2,n + 2'UJ,:r:a,n + Zwi) = hu,., 

1 1 1 
'W2 - hfa(xl,n + Z'llJ,.'t2,n + 2'UJ,:T:3,n + 2'W1) 

- ~ [(x2,n + ~vl)2 - (xl,n + ~'U.J)2], 
1 1 1 [ 1 l '1!3 = h!J(xl,n + 2'1lz,.7:2,n + 2'll2,.1:a,n + 2w2) = h :1:2,n + 2'112 , 
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1 1 1 
Va = hf2(xt,n + 2u2, Xz,n + 2vz, Xa,n + 2wz) = hu,., 

1 1 1 
Wa - hfa(xt,n + 2'U2, X2,n + 2v2, Xa,n + 2wz) 

h [< 1 )2 ( 1 2] - 2 X2,n + 2V2 - Xt,n + 2u2) , 

U4 = hft(Xt,n + ua,Xz,n + Va,Xa,n + wa) = h(xz,n + va), 

V4 = hfz(Xt,n + ua, X2,n + Va, Xa,n + wa) = hu,., 

W4 - hfa(xl,n + ua, X2,n + Va, Xa,n + Wa) 

= ~ [ (xz,n + va)2
- (xt,n + 1tn ]. 

The adjoint equations are: 

ft = AaX1r At(tJ) = 20(:~:t(t/)- 0.065), } 
/2 =-At- Aa.T-2, A2(t/) = 20(xz(tJ) + 1.33), 
fa=O, >-a(t/)=1. 

(6.3.2) 

Using the Runge-Kut.t.a 4th order method for numerical solutions of (6.:~.1) 
we get, 

1 

where 

,\l,n 

,\2,u 

Aa,n -

At,n+l + ~(kt + 2kz + 2ka + k4), 

A2,n+l + ~(Zt + 2zz + 2z3 + z4), 

Aa,n+J + -(, (;t!t + 2yz + 2y3 + ;t/4), ' . 

kt = -hft(At,n+lrA2,n+l> A3,n+I) = -hA3,n+l•T-l,n+lr 

Zt = -h/2(At,n+1rA2,n+I 1 A3,n+I) = -h(-At,n+t-A3,n+I 1 .'l';2,n+I), 

Yt = -hfa(At,n+lr A2,n+lr A3,n+l) = -h(O) = 0, 
1 1 1 

k2 - -hft(At,n+l +fk1rA2,n+1 + 2zt,A3,n+I +2y1), 

-h [ (.\a,n+I + 2yi).r.l,n+l] , 

1 1 1 
Zz -hfz(AI,n + 2klr A2,n+I + 2ZI, A3,n+l + zYI), 

- -h [-(AI,n+I + ~kt)- (Aa,n+I + ~yi):r:2,n+I] , 

1 1 1 
Y2 = -hfa(.\I,n+I + 2k1, A2,n+I + 2Z1r Aa,n+I + 2yi) = 0, 

1 1 1 
-hft (AI,n+l + {ikz, A2,n+I + 2z2, A3,n+l + 2;t/2) 

-h [(A3,n+l + zYz):r:I,n+l] , 

ka -

-

1 1 1 
-hfz(>-1,,+1 + Zk2, A2,n+1 + 2z2, A3,n+t + zYz), 

-h [ ( -AI,n+l + ~kz) - (Aa,n+I + ~112):r:2,n+I] , 

za -

-

1 1 1 
Ya = -hfa(>.I,n+l + 2kz, Az,n+I + 2zz, A3,n+l + zY2) = 0, 
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k4 - -hft(>.l,n+i + ka, A2,n+1 + za, Aa,n+l + Ya), 
- -h [(>.a,n+! + Ya)Xt,n+J], 

Z4 - -h/2(>.t,n+l + ka, A2,n+1 + za, >.a,n+! + Ya), 
-h [( ->.l,n+l + ka) - (>.a,n+J + Ya)X2,n+J], 

Y4 = -hfa(>.l,n+l + ka, A2,n+1 + Za, Aa,n+J + Ya) = 0. 

6.4 Results and Discussion 

Here, before proceeding to analyse the results it is worth pointing that, 
the value of k (the coefficient of penalty function) is an important factor in 
minimizing the optimal J, but since we were not able to find the value of k 
analytically, the tests were carried out using k = 10, as suggested by Edge 
and Powers [20.] 

6.4.1 Gradient Method 

The algorithm for the gradient in function space method applied to prob
lem 3 is the same as that described in Chapter 4, Section 4.4.1, but for this 

problem g = >.2. 

In order to examine the efficiency of this method, when it is applied to 
the mentioned problem as usual a comparison is made, when the critical 
parameters, c:, hand 1LQ are varied, with the analytical solution. Some criteria 
for accuracy of norms (Ace) have been set throughout this chapter. Ace:::; 0.1 
and Ace :::; 0.05 were common in all methods, and also the best Ace that each 
method could achieve is included in those cases where the accuracy set could 
not be achieved. Here for GFS the best Ace was set to :::; 2.0 x 10-2. 

Table (6.4.1), shows the effect of c: and N in achieving the optimal J with 
the best starting control1LQ = 3.0. The best J' obtained was -0.00294302 to 
8 decimal places, with IIYII = 1.891 x 10-2 and the corresponding parameter 
values c: = 0.008, N = 100 or 200 with m = 1000. Choosing c: fairly 
small, between 0.007 and 0.00850, can produce consistent. results while N 
is sufficiently large, i.e. 50 or 100 or 200, and as c: increases to 0.009, then 
lll!merical instability occurs, resulting in large IIYII aiHl .J. Also for N too 
small, e.g. 10, consistent results are obtained for c: between 0.007 and 0.008, 
but instability occurs for c: 2:: 0.00850. Here by selecting N as 100 we can 
achieve the optimal J' in less computing time than N = 200. 

Table (6.4.2), shows the effect of choice of 1LQ on J, when Ace is :::; 0.1, for 
N = 100. It can be see that it. takes fewer iterations to get to the required 
accuracy, when 1LQ is selected in the range 0.0 :::; u0 :::; 1.0. 

Table (6.4.3), shows that the same effect occurs, when Ace :::; 0.05 and 

N = 100. 
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Table (6.4.4), shows the same effect, but for Ace::::; 2.0x 10-2 and N = 100. 
Here the Ace can only be achieved, when tto is in the nmge 3.0 ::::; tto ::::; 4.0. 

Here for this method and other methods in this chapter, we have c.omparecl 
graphically the numerk.al solutions with the analytical ones, but it should 
be noted that the analytical graphs represented here are the ones, that were 
solved without the penalty function, whereas the numerical gmphs are the 
ones solved with the penalty function with k = 10, and since by changing k 
in fact we are solving a different problem, therefore we expect a reasonable 
difference, even when the best optimal numerical solution is compared with 
the analytical one. 

Fig (6.4.1), shows plots of control against time, for the analytical ancl 
numerical solutions, with m = 10, 100 and 1000, respectively, using N = 
100, tto = 3.0 and £ = 0.008. As can be seen from the figure, there are 
differences between the behaviour of the curves for diffe"rent. number of it.era
tions. Although none of them could behave quite similarly to the analytical 
one, but as m increases to 1000, the behaviour of the curve was closer to the 
analytical one than with the lower number of iterations. 

Fig (6.4.2) compares the analytical with the numerical solutions for control, 
when the number of integration steps are 10, 50 and 100 respectively, with 
their best corresponding step length factors , 0.007, 0.007 and 0.008, m = 
1000 and tto = 3.0. Here also none of the curves behaved quite similarly to 
the analytical curve but the one that was closer to it wa.~ with N = 100. 

Fig (6.4.3), demonstrates the effect on the mntrol of using step length 
factors, £ = 0.007, 0.008 and 0.00850, with 1000 iterations, when 'tto = 3.0 
and N = 100. Here as mn be seen from the fig11re, the curves of c = 0.008 
and£= 0.00850, behaved fairly similarly, but by taking£ as 0.007, although 
the pattern of behaviour up to time approximately 2.5, was quite similar to 
the other two, but from there, as can be seen, it behaved differently. Here 
again, although none of the numerical curves behaved quite similarly to the 
analytical one, but the ones that were closer to it were, with c = 0.008 and 
0.00850. 

Fig (6.4.4), illustrates the effect of 11o on optimn.l J for different values of 
m, when N = lOO and c = 0.008. Here we can see from the 1,\Ta]lh that as m 
increases, the values of optimal J for all3 starting controls, ·u.0 = - 1.0, u0 = 
1.0 and 11o = 3.0 converges to approximately near enough to 0.0. 

In view of the above results, we c.an see that the correct choice of initial 
control, ca.n give a better value for optimal J, for higher degrees of accuracy 
(Ace) in fewer iterations and number of function evaluations aml ultimately, 
computing time. 

The interaction between the other two critical factors, £ a!Hl N, shows 
that the best combination exists with smaller c and larger N, in this case 
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e = 0.008 and N = 100, but if e is taken too small say 0.007, then the 
convergence is worse. If the value of e is taken too large, say, 0.00!) the 
numerical instability will result. 

In view of these comments, by selecting proper initial control and accurate 
enough integration steps, along with an appropriate step length factor, a 
speed up in the convergency to a better J* is obtained. Also higher deg,Tees 
of Ace are not obtainable from remote starting controls, but lower accuracies 
may be achieved even with remote initial control. 

6.4.2 Steepest Descent 

The algorithm for steepest descent applied to problem 3 is as describecl in 
Chapter 2, Section 2.2.2. The line search technique used for this method is 
the quadratic interpolation method of Powell which was described in Chapter 
3 Section 3.4.2. The gradient, g, is the same as the one for g,mdient mP.thod 
in function space ((see (G.4.1)). 

Here again we inve.stigate the effect of step length factor, integ,Tation step 
and initial control on the solution. 

Table (6.4.5), shows the effect of e and N in obtaining .J' with the best 
starting control u0 = 0.0. The best optimal J' obtained wa.~ -0.0027:3340 to 
8 decimal places with llall = 2.223 X w-2, N = 100 or 200 and € = 0.008. 
By taking small step length factors in the range 0.007 ::; e ::; 0.00850, for 
larger N gave a better J'. Here also by taking N as 100 the optimal .!' can 
be achieved in less computing time than N = 200. 

Tables (6.4.6) to (6.4.8), show the effect of choice of u11 on .J' for Ace::; 0.1, 
Ace::; 0.05 and finally the best Ace that could be achieved, i.e., Ace ::; 0.02:~ 
respectively, with N = 100. 

From Table (6.4.G), it can be seen that for Ace ::; 0.1, taking tLQ as 0.0 or 
0.5 results in getting .!* in fewer iterations than for other starting controls. 

Table (6.4.7), show the same effects for Ace ::; 0.05. But as can be seen 
from Table (6.4.8), for higher degrees of accuracy, i.e., Ace ::; 0.023, some 
starting controls fail to converge. Here taking '1/.o = 0.0 achieves this Ace in 
the smallest number of iterations. 

Fig (6.4.5), shows the g,mph of time against control, when the numerical 
solutions are compared with the analytical one, for m = 10, 500 and 2000, 
with N = 100, e = 0.008 and u0 = 0.0. Here as can be seen from the plots 
of numerical solutions, as m increases to 2000, the hehaviour of the cmve is 
as close as it can get to the analytical solution. 
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Fig (6.4.6), compares the analytical solution for control, with the numerical 
ones, with the number of integration steps, 10, 50 and 100 respectively with 
their best corresponding c's of 0.008, 0.009 and 0.008, when m = 2000 and 
Uo = 0.0. Here also we can observe that for the numerical solutions, with 
larger N's, say 50 and 100, the behaviour of the curves are quite similar and 
closer to the analytical one, than with N = 10. 

Fig (6.4. 7), shows the effect on control of using step length factors, € = 
0.007, 0.008 and 0.00850, with N = 100, Uo = 0.0 and m= 2000. As can be 
seen from the graphs of numerical solutions, taking e's as 0.008 and 0.00850, 
the curves behave, quite similar, with minor differences from c = 0.007 and 
fairly close to the analytical curve. 

Fig (6.4.8), demonstrates the effect of 1t0 on optimal J for different values 
of m, when N = 100 and c = 0.008. As can be seen as m increases we c.an get 
a better value of minimum J for all starting c.ontrols, but the best value for 
optimal J obtained with 'lto = 0.0 and the worst with u, = -1.0. The above 
results show that a proper choice of initial control is an important factor 
in achieving the best J' in fewer iterations. The interaction between £ and 
N, shows that for small enough £, and i<u·ge enough N a better minimum 
J would be ochieved. Also here for higher delo\Tees of Ace, e.g., Ace:::; 0.023 
remote starting controls would fail convergence, whereas for lower degret>.s of 
Ace say, Ace :::; 0.1 or :::; 0.05 most. starting controls would converge. In view 
of the results and discussions, the best minimum optimal value of J' could 
be achieved with a proper starting control, along with suffieiently large N 
and small enough £. 

6.4.3 Fletcher-Reeves 

The algorithm for the Flet.cher-Reeves method applied to Problem 3 is 
as described in Chapter 2, Section 2.4.1. The caleulation of the norms of 
the gradients are as given in Chapter 2, Section 2.10.1. The line search 
technique is the same as that for steepest 'descent in this Chapter, Section 
6.4.2. The gradient, g is obtained in the way desc1'ibed in Section 6.4.1. 

Table (6.4.9), shows the effect of c and N in achieving the minimum J* with 
the best starting control u0 = -1.0. Best J' was obtained as -0.00010353 
to 8 decimal places with c = 0.008, \loll = 3.088 x w-2

, N = 100 or 200 and 
m = 47. Here by increasing m up to a limit, not only J' will not improve, 
but also it results in numerical instability. With large N, say 100, taking£ in 
the range 0.007 :::; € :::; 0.008 leads to a better value for J', but for N = 10, 
£ can be taken in the range 0.006 :::; c :::; 0.009 to produce consistent and 
fairly similar results. Selecting N as 100 as opposed to 200 could achieve the 
optimal J' in less computing time. 

Tables (6.4.10) to (6.4.12), show how varying ·u, would affeet .J' for Ace's, 
:::; 0.1, :::; 0.05 and, the best Ace possible in this r.ase:::; 0.031, respectively, 
with N = 100. It can be seen that these accuraeies can b(e obtained with 'llo, 
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in the range -1.0 ::::; 1to ::; -0.9 in fewer number of iterations than for other 
starting controls. Also taking 1to, in the range 0.0 ::::; 1to ::::; 1.0, none of the 
Ace's of::::; 0.1, ::::; 0.05 and ::::; 0.031, could be achieved. 

Fig (6.4.9), shows the comparison of the analytical solution, with the nu
merical ones, for control with m= 5, 20 and 47, where e = 0.008, 1to = -1.0 
and N = 100. As can be seen from the plots, none of the numerical curves 
matches the analytical one, but as m increases the numerical curves start to 
decline to control, -1 at time approximately 1.7, and stay there up to the 
find time, t1 = 2.985. 

Fig (6.4.10), compares the analytical solution, for control, with the nu
merical ones for different N's, i.e., N = 10, with its best correspondings 
e = 0.007 and m= 48, also N = 50, with its best corresponclings e = 0.008 
and m = 47, all with starting controls 1to = -1.0. Here also none of the 
numerical curves behaved similar to the analytical one, but. for larger N, say 
100, the slope of the control is downward till it. gets to time approximately 
1.7 and u = -1.0, where it st.ays there up tot,= 2.98fi. 

Fig (6.4.11), demonstrates the curve of time against control, when we 
compare the analytical solution with the numerical ones, where the step 
length factors are e = 0.006, with m = 60, e = 0.008, with m = 10 and 
e = 0.009 with m = 10, for N = 100 and u0 = -1.0. Here, it can he 
seen, that the numerical curves with e = 0.006 and e = 0.009, behaved quite 
similarly, and they both had the smne pattern of downward slope for control 
up to time approximately 2.5 with u = -1.0, and at. this point the curves 
stay the same up to t1 = 2.985. But for e = 0.008, the downward slop 
continues up to time approximately 2.3 with control -1.0, and from there it 
stays the same till time t 1 = 2.985. 

Fig (6.4.12), shows the effect of u0 on optimal J, for different values of m, 
when N = 100 and e = 0.008. As can be seen from the gmphs, the value of 
optimal J converges near enough to 0.0, as m increases for all the starting 
controls, 1to = -1.1, -1.0 and -0.5. 

In view of the results and comments above, the recommendations for ob
taining the best possible .J' is to select 1to in the range [-1.0, -0.9], with N 
sufficiently large and e relatively small in the range [0.007, 0.008]. Here we 
should note that for distant initial controls, i.e., ·u0 's in the range [0.0, 1.0], 
even for lower Ace's we could not achieve convergence. 

6.4.4 Polak-RibiE~re 

The algorithm for the Polak-Rjbiere method is as given in Chapter 2, Section 
2.5. The line search tedmique, the mlculation of the norms and 9 are as 
given for FR. in this Chapter, Section 6.4.3. 



Table (6.4.13), shows the effect of£ and N on the minimum J*. Here 
when the Ace and m are considered, the best minimum ./* could be found 
as -0.00268271 to 8 decimal places, with the best st'arting control, u0 = 
0.0, 11911 = 2.30 x w-2 and corresponding parameter values,£ = 0.007, N = 
100 or 200 and m = 2000. Here as can be seen from the Table for all N's, 
not selecting a proper £ results in numerical instability as the number of 
iterations increases. Also selecting N as 100 can achieve optimal J* in less 
computing time than N = 200. 

Tables (6.4.14) to (6.4.16), show the effect of selecting the initial control 
on the minimum J* for different Ace's, ~ 0.01, ~ 0.05 and the best possible 
that could be obtained Ace ~ 0.023 with N = 100. Here as can be seen from 
Tables (6.4.14) and (6.4.15), for the lower Ace's of~ 0.1 or~ 0.05, selecting 
'l1o = 0.5 could achieve convergence in fewest iterations, also fewer function 
evaluations, and less computing time, than other uo 's, whereas for higher 
Ace of~ 0.023 from Table (6.4.16), we can see that selecting no= 0.0, could 
achieve that, better than other '1/.o 's. 

Fig (6.4.13), shows the graph of time against control, comparing the an
alytical solutions with the numerical ones, with m = 100, 500 and 2000, 
where £ = 0.007, N = 100 and 110 = 0.0. As can be· seen from the plots, 
although none of the numerical curves are too dose to the analytical one, 
as m increases to 2000 we can see that, compared with fewer iterations, the 
behaviour gets closer to the analyti<<'ll one. 

Fig (6.4.14), shows similar gmphs for N = 10, 50 aml lOO respectively, 
with their best corresponding step length factors of 0.00750, 0.008 and 0.007, 
where m = 2000 and uo = 0.0. As clearly can be seen from the plots the 
closest behaviour of the numerical curves to the analytical one was with 
N = 100. 

Fig (6.4.15), shows the curve of time against the control, when the ana
lytical solution is compared with the numerical ones, where c: = 0.006, 0.007 
and 0.008, respectively, with coiTesponding number of iterations 13, 2000 and 
34, where N = 100 and 110 = 0.0. Here as can be seen the closest numeiical 
curve to the analytical one is with c: = 0.007. 

Fig (6.4.16), demonstrates the effect of 'lLo on optimal J, for different mun
ber of iterations, when N = 100 and c: = 0.007. As can be seen from the 
plots, selecting u0 as 0.5, results in a better optimal J up to approximately 
300 iterations, but for m in the approximate range of 300 < m~ 1300, se
lecting u0 = 0.0, leads to a better convergence for optimal .J, and for higher 
number of iterations > 1300, both ·u.0 = 0.0 and 'llo = 0.5, converge to similar 
values for optimal J. 

In view of results obtained above in order to find the best minimum J*, 
a proper 'llo should be selected in this c.·1.se in the range [0.0, 0.5]. Also a 
suitable large N, with relatively small c:, where c: shoul<l he chosen with a 
great care, since it plays a sensitive role in avoiding munerical instabilities. 
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We should also note that for higher accuracy, i.e., Ace < 0.023, selecting 
distant tto's would not meet the requirements of convergency. 

6.4.5 Hybrid 1 

The algorithm for Hybrid 1 method is described in Chapter 2, Section 
2.6.1. The line search techniques, the calculation of the norms and 9 are as 
given for FR in this Chapter, Section 6.4.3. 

Table ( 6.4.17), shows the effect of c: and N in achieving the best minimum 
J*. Considering the number of iterations and Ace the best ./* was obtained as 
-0.00327211 to 8 decimal places, with 11911 = 2.0x 10-2 , m.= 1147, N = 100 
or 200 and c = 0.006. Here for large enough N, say 100 taking value of c 
in the range [0.006, 0.007] can produce minimum J' in fewer iterations, than 
taking c too small, say 0.005 or larger say 0.008. When N is too small e.g. 10, 
numerical instability occurs, when c: is in the range [0.006, 0.008], and only 
for£ small enough, say 0.005 can it be avoided. Here also selecting N = 100 
also c.an achieve the optimal J* in less computing time than N = 200. 

Tables (6.4.18) to (6.4.20), show the effect of selecting uo on the minimum 
J* for different Ace's ~ 0.1, ~ 0.05 and ~ 2.0 X 10-2 with N = 100. To 
achieve the Ace ~ 0.1 or ~ 0.05, taking the initial control in the range 
[-1.0, -0.5], can produc.e minimum J* in fewer iterations than other starting 
controls, although it should be pointed out that, the minimum obtained for 
J' is not as good as when the starting control is selected in the range [1.0, 2.0]. 

To obtain higher Ace say ~ 2.0 x 10-2 , selecting u0 in the range [1.0, 2.0] 
can produce better minimum J' in fewer iterations, than selecting '1/<J in the 
range [-0.5, 0.0], and selecting v0 as -1.0 or 0.5 does not satisfy the accuracy 
required. 

Fig (6.4.17), shows the graph of time against control, comparing the ana
lytical solution with the numerical ones, with m = 10, 500 and 1100, with 
c: = 0.006, Uo = 1.0 ru1d N = 100. As can be seen none of the numerical 
curves behaves similar to the analytical one, but as m increases the shapes 
of the curve could get closer to the rumlytical one. 

Fig (6.4.18), demonstrates the effect of N on control, when the analyt
ical solution is compared with the numerical ones, with N = 10, 50 and 
100, respectively, with corresponding (c, m) of (0.005, 930), (0.007, 1300) and 
(0.006, 1100) are with u0 = 1.0. As c.an be seen again, none of the numerical 
curves are similar to the analytical one, but as N gets larger, the numerical 
curves become closer to each other. 

Fig (6.4.19), shows similarly the effect of c on the control, with £ = 
0.005, 0.006 and 0.007, with m= 1100, N = 100 aJH! u0 = 1.0. Here as can 
be seen none of the numerieal solutions behave similarly to the analyt.ieal 
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one, and they are all different from each other, but those with behaviour 
closer to the analytical curve are with e = 0.006 and e = 0.007. 

Fig (6.4.20), shows how the change in Uo affects the optimal J for different 
numbers of iterations, when N = 100 and e = 0.006. As can be seen with 
starting controls taken as 1.0 and 1.5, both converge to the same value for 
optimal J, and with u0 = 0.0, for increased number of iterations, convergence 
is fairly close to the same value of optimal J as the other two. 

In view of the results obtained above, the best possible minimum J* could 
be achieved by selecting a proper critical control in the range {1.0, 2.0], with 
a sufficiently large N and relatively small e, in the range (0.006, 0.007]. It. 
should also be noted that not all starting controls can achieve convergence 
for higher accuracy of norms. 

6.4.6 Angle Test Hybrid 

The algorithm for the Angle test hybrid is described in Chapter 2, Section 
2. 7. The line search technique, and calculation of the norms and gradient, 
g, are as given for FR. in this Chapter, Section 6.4.3. For this method we 
had to consider the effect of another parameter T > 0, as well as the usual 
parameters. 

Table (6.4.21), shows the effect of e and N on findi)1g the minimum J'. 
Here for N too small say 10, no matter what value of E is selected in the range 
(0.005, 0.008], numerical instability occurs after a few iterations. But for 
sufficiently larger N, say 100 with E small enough in the range (0.005,0.006], 
we can find a minimum for J*. The best minimum J* was -0.00324!)!)6 to 8 
decimal plac.es with T = -0.00001, m= 1135, e = 0.006, N = 100 and the 
best starting control 1Lo = 0.5. Taking N = 100 achieves optimal J* in less 
computing time than N = 200. 

Tables (6.4.22) to (6.4.24), show the effect of the selection of the initial con
trol on minimum J* for Ace ::; 0.1, ::; 0.05 and the best possible that could 
be obtained ::; 2.0 X 10-2 , respectively, with N = 100, T = 0.000001. To 
obtain accuracies of::; 0.1 and::; 0.05, selecting 1to in the range (-1.0, -0.5], 
would achieve these in fewer iterations, than other starting controls, but the 
value of J* is not as good as those with the starting controls in the range 
(0.0, 1.0]. However, for higher degrees of accuracy::; 2.0 x 10-2, selecting 1Lo in 
the range (0.0, 0.5] would ensure a better minimum J* with fewer iterations, 
fewer function evaluations and less computing time than other starting con
trols. Some starting controls, i.e., -1.0, 1.0 and 2.0, never achieved accuracy 
::; 2.0 X 10-2• 

Fig (6.4.21), shows the graph of time against control, comparing the ana
lytical solution with the numerical ones, with m = 10, 500 and llOO, when 
E = 0.006, 1Lo = 0.5, T = 0.000001 and N = 100. As can be seen from 
the plots, none of the numerical solutions behaved similarly to the analytical 
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one, but we could see some resemblance with higher number of iterations, 
i.e., m= 1100, between the numerical and the analytical curves. 

Fig ( 6.4.22), gives the graph of control showing the effect of N taken 
as 10, 50 and 100 respectively, with corresponding (£,m) of (0.005, 150), 
(0.005, 1500) and (0.006, 1100), when Uo = 0.5 and r = 0.000001. Here also 
can be seen that although none of the numerical curves. behaved similarly to 
the analytical one, the one closest to it was with N = 100. 

Fig (6.4.23), in the same way demonstrates the effect of£ on control, with 
£ = 0.005, 0.006 and 0.007, when Uo = 0.5, N = 100, r = 0.000001 and 
m = 1100. Here the curves, that behaved closer to the analytical solution 
were with £ = 0.005 and 0.006. 

Fig (6.4.24), shows the effect of change in !I<J, on optimal .J for different 
numbers of iterations, when £ = 0.006, r = 0.000001 ami N = 100. As eau 
be seen from the plots, the convergence of different u0 's for various ·m's eau 
be assessed as follows: 

For m in the range [0, 200], u.0 = -0.5 obtained better values for optimal 
J than ~to = 0.5, 11.0 = 1.0 and in turn, u0 = 0.5, performed better than 
Uo = 1.0. 

For m in the range [200, 600], uo = 0.5 obtained bett_er values for optimal 
J than uo = -0.5 and 'l/.o = 1.0, and in turn, uo = -0.5, performed hetter 
than Uo = 1.0. 

For m in the range [600, 800], Uo = 0.5 obtained better values for optimal 
J than u0 = -0.5 and ·u0 = 1.0, and tto = -0.5 and ·u11 = 1.0 performed 
similarly. Finally, for m in the range [800, 1100], ~Lo = 0.5 and ~10 = 1.0, 
performed similarly and obtained better values for optimal .J than uo = -0.5. 

In view of all the above results, the best. possible minimum J' could be 
achieved by selecting a proper initial control, where here for higher degTees 
of accuracy say, Ace ~ 2.0 x 10-2 , the control can be seleet.ed in the range 
[0.0, 0.5], with a sufficiently large N, i.e., 100 and relatively small £ in the 
range [0.005,0.006]. We also tested different values of r = 0.01, 0.0001 
and 0.000001, and the effect on obtaining the minimmn J' was practieally 
negligible. We should also note that on obtaining gr!"~'1ter Ace, care should 
be taken in selecting ·u0 , since some would fail to convergence. 

6.4. 7 Hybrid 3 

The algorithm for the Hybrid 3 method can also be found in Chapter 2, 
Section 2.8. The calculation of the norms, the line search and also !I are as 
for FR. in this Chapter, Section 6.4.3. The eHect of new parameters, .>- > 0 
andjt < ! had to be considered for this method. 
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Table (6.4.25), shows the effect of e and N in achieving the minimum.!'. 
Here for N small say 10, taking e small say 0.005 can produce consistent 
results, but. when e is taken larger say in the range [0.006, 0.008], numerical 
instability occurs. For N larger say 100, the best minimum for .!* can be 
obtained when e is taken in the range [0.006, 0.007] and if e is too small say 
0.005, it takes more iterations to get a minimum: Also for e relatively large 
say 0.008, numerical instability results. Here the best minimum .!' obtained 
was -0.00327211, with llgl\ = 2.0 x 10-2 and conesponding parameter values, 
e = 0.006, N = 100, or N = 200 m = llOO, A = 0.000001, JL = 0.4999, 
and the best starting control Uo = 1.0. But selecting N = 100 can achieve 
optimal ./' in less computing time than N = 200. 

Tables (6.4.26) to (6.4.28), show how the selection of 11.0 can afl'ect the 
minimum .!' for Ace :::; 0.1, :S 0.05 and the best that can he obtained :::; 
2.0 X 10-2 with N = 100 A = 0.000001 and JL = 0.4999. 

Selecting v11 in the range [-1.0, -0.5] would achieve Ace :S 0.1 and :S 0.05, 
in fewer iterations than other starting controls, but for a higher degree of 
accuracy, i.e., Ace:::; 2.0 x 10-2

, selecting 1/.o in the range [1.0, 2.0] will achieve 
that. Here taking 11.0 as 0.5 could not achieve the lower accuracy of :S 0.1 
and for higher Ace :::; 2.0 x 10-2

, taking '11(1 as -1.0 and 0.5 could not meet. 
this requirement. 

Fig (6.4.25), shows the g;raph of time against control, comparing the ana
lytical solution with the numerical ones, with m = 10, 500 and 1100, where 
u0 = 1.0, N = 100, e = 0.006, A = 0.000001 and JL = 0.4<)99. As can be 
seen none of the numerical curves behaves quite the same a.s the analytical 
one, but as m increases we can see some improvements with the numerical 
curves getting closer to the analytical one. 

Fig (6.4.26), demonstrates the effect of Non control, when the analytical 
soh1tion is compared with the numerical ones, with N = 10, 50 and 100 
respectively, with their best corresponding e of 0.005, 0.007 and 0.006, where 
m = 1100, u0 = 1.0, A = 0.000001 and JL = 0.4999. Here we can see from 
the plots that as N increases the numerical curves are closer to the analytical 
one. 

Fig (6.4.27) illustrates the effeet of e on control when the analytical solution 
is compared with the numerical ones, with e = 0.005,0.006 and 0.007, when 
N = 100, u0 = 1.0, m= 1100, A = 0.000001 and JL = 0.4999. Here also, the 
numerical solutions closest to the analytical curve, are with e = 0.006 and 
0.007, where for t small, taking e = 0.007, the curve behaves closer to the 
analytical one than e = 0.006, but when it gets to time approximately 2.0 at 
control -1.0, then from there on the behaviour of the curve with e = 0.006 
is closer to the analytical one than e = 0.007. 

Fig (6.4.28), shows the effect of u0 on optimal .J for different numbers of 
iterations, when N = 100, e = O.OOG, A= 0.000001 and JL = 0.4<J99. As can 
be seen from the g,Taph as 'tn incre;1ses the optimal .! for all starting controls, 
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converges towards the same value, but taking ·uo as 1.0 or 1.5 can achieve 
this in fewer iterations than uo = 0.0. 

In view of the results and comments given above, the best minimum J* 
could be achieved by selecting a proper initial control, in this case 1.0, with 
a sufficient large N, Le., 100 or 200 and relatively small e = 0.006. Here 
A and J1. with different values of A = 0.01, 0.001 and 0.000001 and JL = 
0.15, 0.35 and 0.4999 were tested, but their effect on minimizing J* was 
practically negligible. Also in order to obtain a required Ace, special care 
should be taken in selecting uo, since if a distant control is selected it fails to 
convergence, 

6.5 Summary of the Results 

Summary of the results could be found in Table (6.5.1) and also the com
parisons could be seen in Fig (6.5.1), when N was taken as 100, for ATH, 
r = 0.00001, and for H3, )., = 0.000001 and JL = 0.499!). Cousidering all the 
effects of convergency for minimum J*, i.e., the munher of iterations, Ace 
and numerical stability, the methods performed as f(>llows: 

At 1Lo = -1.0, FR. performed the best, then in order of performance H1, 
ATH and H3 performed the same, then SD, PR. and fillally GFS. 

At u0 = 0.0, H1 and H3 performed the same ami the he,;t, then ATH, PR., 
SD and GFS. Numerical instability occurred for FR.. 

At u0 = 0.5, in order of preference ATH performed the he,;t, then PR, SD 
and finally GFS. The FR., H1 and H3 produced unstable re,;ults. 

At uo = 1.0, H1 and H3 performed the same and the best, then in order of 
preference SD, GFS, ATH and finally PR. FR. produced numerically unstable 
results, 

At Uo = 3.0, H1 and H3 performed the same and the hest. Then in order 
of preference of performance, GFS, SD, PR. and finally ATH. Once again FR. 
produced numerically unstable results. 

6.6 Conclusion 

In this <'hapter we have tested the problem numerically using k = 10 and 
since by varying this value, i.e., the coefficient of the penalty function we 
practically solve a different problem, therefore the solution for minimizing 
J* may not be the same as those obtained when the problem was solved 
analytically, without the penalty function. But however still a comparison is 
valid since k ha.~ been fixed the same for all the seven md.hods of optimiza
tion. 



We could see that taking the initial control 'Uo = a.o produced a better 
minimum J' for GFS, and also in the same way, taking '11<> = 0.0 for SD and 
PR, 11{} = -1.0 for FR, 11{} = 1.0 for Hl and Ha and finally ·u, = 0.5 for ATH, 
taking into consideration the Ace, m, NFE and Cputime. 

The common factors for obtaining stable numerical results in all these 
methods were choice of suitable large integration step (N) and small enough 
step length factor (e). 

Thus if the number of iterations, as well as the convergency, is going to 
be COnsidered when the best rE'.SU]ts are obtained for each method, With the 
best possible initial control, step length factor am! integration step, the hest 
performances may be selected in the following order: 

H3 and Hl performed the same as each other and the hest, then in order 
of preference of performance.s, ATH, GFS, SD, PR and finally FR. 
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TABLE (6.4.l):Results of GFS with varying e and N. 

N 10 50 100 200 
E 

~.005 ,~ =-0.00284170 lr" =-0.00282311 ,~ =-0.00251543 ,~=-0.00251764 
m=3000 1n=1200 m=1000 1n=1000 
M=4.612x w-2 llgi=2.301 x w-2 ~gl=3.136x1o-2 ll&ll=3.024x w-2 
Cputime=1 8iutime<1 Cputime=3 Cputime=5 
NFE=3001 NFE=1201 NFE=1001 NFE=1001 

~.007 ,~ =-0.00285790 lr" =-0.00282821 t" =-0.00270756 IT" =-0.00270757 
m=3000 1n=1200 m=1000 1n=1000 
11&11=4.59x w-2 11&11 =2.132 x w-2 M=2.023x1o-2 11&11 =2.0 12 x w-2 
~utime=1 BZ,utime<1 Cputime=3 Cputime=5 

FE=3001 NFE=1201 jNFE=1001 NFE=1001 

~.008 ,~ =-0.00283535 ,~ =-0.00282291 ~~ =-0.00294302 , .. =-0.00294302 
m=3000 m=1200 1n=1000 m=lOOO 
11&11=4.607 X 10-2 llgll=2.306x w-2 11&11 = 1.891 x w-2 llgll=1.891 X 10-2 
Cputime=1 Cputime=1 9i,~time=3 Cputime=5 
NFE=3001 NFE=1201 NFE=l001 NFE=1001 

~.00850 r"' =2.48713207 lr" =-0.00280 150 ~"' =-.00294046 r"' =-.00295156 
m=3000 ~=1200 1n=1000 m=1000 
11&11 =33.01036 llgll =2.33 x w-2 11&11 = 1.999 X 10-2 llgll = 1.895 x 1o-2 
~utime=1 Cputime=1 ~utime=3 Cputime=5 

FE=3001 NFE=1201 E=1001 NFE=1001 

0.009 ,~ =36.6976158 !T" =23.5867701 ~" =9.24522591 T" =9.24511231 
!ll=3000 1n=1200 1n=1000 m=1000 
11&11=112.618 llgll =99.0522 11&11 =62.9244 llgll =62.8551 
f:putime=1 Cputime=1 Cputime=3 Cputime=5 
~FE=3001 NFE=1201 NFE=1001 NFE=1001 



TABLE (6.4.2):Results of GFS with change in u0 for ACC~ 0.1. 

uo m J"' llgll NFE eps Cputime 

-1.0 132 0.00056562 p.897x1o-z 133 p.oo8 <1 

-0.5 141 0.00056321 ~.876x1Q-2 142 p.oo8 <1 

0.0 p1 0.00019564 9.646x1Q-2 52 p.oo8 <1 

0.5 [02 u.Ouu2~b54 9.517x w-~ 63 p.oo8 <1 

l.U 12 f-'.00020847 9.597 x w-~ 3 f1.008 <1 

2.0 87 f-'.00012814 9.898x w-~ 88 f1.008 <1 

3.0 ~9 f-'.00001040 9.639x w-~ 100 f-'.008 <1 

4.0 ')5 0.00067814 9.741x w-~ 'J6 LJ.OO~ <1 



TABLE (6.4.3):Results of GFS with change in u0 for ACCS 0.05. 

uo m r llgll NFE eps ~:punme 

-1.0 176 0.00007013 ~.983 x w-L. 177 0.008 r<:1 

-0.5 185 0.00007133 ~.970 x w-L. 186 0.008 <1 

0.0 172 0.00010746 ~.925x10-2 173 0.008 <1 

0.5 r14 0.0000CJ646 f4.902x lQ-L. 75 0.008 <1 

1.0 85 0.0001CJ333 f4.931 X 10-L. 86 0.008 <1 

2.0 103 0.00034711 '1.802x 10-2 104 p.oo8 <I 

3.0 114 f!.00102974 '1.946x w-L. 115 p.oo8 <1 

4.0 109 0.00067814 4.861 x w-L. 110 p.oo8 <1 



TABLE (6.4.4):Results of GFS with change in u0 for ACC:s; 2.0xlo-2. 

uo m r llgll NFE eps Cputime 

-1.0 - - - 0.008 - -

-0.5 - - - - 0.008 -

0.0 - - - - 0.008 -

0.5 - - - - u.008 -

1.0 - - - - u.008 -

2.0 - - - - U.008 -

3.0 652 0.00227928 1. 99993 x w-z 653 0.008 1 

14.0 986 0.0027503 1.9998 x Io-z 987 0.008 4 



TABLE (6.4.5):Results of SD with varying e and N. 

N 10 50 100 200 
e 

10.005 =-0.00208572 ~~ =-0.002320 15 ,~ =-0.00236213 ~~ =-0.00244313 
111=1975 !m=1971 m=1971 lm=1970 
llgll =4.731 x 1o-2 llgll=2.461 x1o-2 llgl =2.237 x w-2 11£11 =2.236 x w-2 
~putime=1 a,utime=6 Cputime=14 ~FYtime=25 
NFE=7856 NFE=7849 NFE=7849 FE=7838 

0.007 IT~ =-0.00213163 ~~ =-0.00240 197 r" =-0.00244705 ~" =-0.00244711 
f11=1964 lm=1959 m=1960 lm=1960 
llgll =4. 708 X lQ-2 llgll=2.444x 10-2 llgll =2.291 x w-2 11£11 =2.282 x w-2 
~utime=1 ~utime=5 Cputime=14 Cputime=25 

FE=7912 E=7821 NFE=7825 NFE=7825 

0.008 ,~ =-0.00230381 ~~=-0.00251521 ,~ =-0.00273340 ~~ =-0.00273340 
f11=1951 !m=1856 m=2000 !m=2000 
llgll=4.646x lQ-2 llgll =2.43 X lQ-2 llgll =2.223 x w-2 11£11 =2.223 x 1 o-2 
~utime=1 Cputime=5 Cputime=14 Cputime=25 

FE=7796 NFE=7811 NFE=8004 NFE=8004 

0.00850 IT" =-0.0022732 ~" =-0.00260150 T"=-0.00271658 ~"'=-0.00271754 
fl1=1985 fl1=1862 m=2000 im=2000 
M =4.656x lQ-2 llgl=2.40x w-2 llgll =2.233 x w-2 11£11 =2.233 x w-2 
~putime=1 i<)i_utime=6 Cputime=14 Cputime=25 
~F£=7942 INFE=7838 NFE=8004 NFE=8004 

0.009 ~· =1.66710067 ~"' =-0.00271616 T"' =5.67360449 ~" =5.67351559 
f11=12 lm=1875 m=15 lm=15 
llgll =27.3374 llgll=2.376x w-2 llgll =50.23397 llgll =50.23396 
~putime<1 Cputime=6 g>_utime<1 Cputime=l 
!NFE=26 NFE=7856 NFE=35 NFE=35 



TABLE (6.4.6):Results of SD with change in u0 for ACC~ 0.1. 

uo m r M NFE eps Cputime 

-1.0 180 0.00057073 9.906x 10-L. 724 ~.008 1 

-0.5 275 0.00058569 9.984x w-L. 1104 ~.008 1 

0.0 139 0.00057829 9.953x 10-L. 560 ~.008 2 

0.5 143 0.00057110 9.838 X 10-L 576 fl.008 1 

1.0 152 0.00058642 9.911 X 10-L. ~12 fl.008 1 

2.0 164 0.00060927 9.994x w-2 ~60 p.008 I 

3.0 168 0.00061235 9.924x w-L. 676 p.oo8 1 

4.0 174 0.00061537 9.858 X 10-L. 00 p.oo8 I 



TABLE (6.4.7):Results of SD with change in u0 for ACC~ 0.05. 

uo m r llgll NFE eps Cputime 

·l.U :l4U o.00006lS98 4.959x lQ-L ~64 0.008 1 

-0.5 362 0.00007615 4.999x lQ-L 1452 0.008 3 

0.0 182 0.00007302 4.940x lQ-:l 1732 0.008 1 

0.5 185 0.00007970 4.952x lQ-:l 1744 0.008 1 

1.0 196 0.00008715 4.970x w-:l [788 0.008 1 

2.0 210 0.00010089 4.995 X 10-:l 844 0.008 2 

3.0 ~13 p.00010977 4.981 X 10-:l 856 p.oo8 2 

4.0 ~20 p.00011542 4.943 x w-:l 884 p.oo8 2 



TABLE (6.4.8):Results of SD with change in u0 for ACC~ 0.023. 

uo m r llgll NFE eps '-'Putime 

-1.0 - - - - f-1.008 -

-0.5 - - - - p.008 -

0.0 1609 0.00242712 2.30x 1Q-L ~440 0.008 11 

O.J - - - - 0.008 -

1.0 1791 0.00243135 2.30x 1Q-L [7168 fJ.008 13 

2.0 1848 0.00243241 2.30x 10-L [7396 0.008 13 

3.0 1838 0.00243313 2.30x IO-L [7356 0.008 13 

4.0 1872 0.00243298 2.292x1Q-L 492 fJ.008 14 



TABLE (6.4.9):Results of FR with varying e and N. 

N 10 50 100 200 
e 

0.005 r~ =0.00007521 ~~ =-0.00005802 r• =-0.00004723 IT"' =-0.00004723 
m=60 pn=60 m=60 pn=60 
llgiJ=5.322x 10-2 JJgJJ =3.361 x 10-2 Jlgll =3.241 x 10-2 JlgiJ=3.241 x 1o-2 
~utime<l Cputime<1 Cputime<1 ~utime=1 

FE=244 NFE=244 NFE=244 E=244 
0.006 , .. =0.00007483 ~"' =-0.00005811 , .. =-0.00004752 IT"' =-0.00004753 

m=60 pn=48 m=60 pn=60 
JJgJJ=5.312x 10-2 JJgJJ=3.279x 10-2 M=3.237x1o-2 JJgJJ =3.237 x 10-2 
C:putime<1 Cputime<1 ~utime<1 Cputime=1 
NFE=244 NFE=196 E=244 NFE=244 

0.007 r• =-0.00003722 ~· =-0.00003566 r"' =-0.00009514 r• =-0.00009514 
m=48 pn=60 m=48 pn=47 
JJgJJ=4.759x 10-2 JJgJJ =3.345 x 10-2 JJgJJ =3.088 x 1o-2 JJgJJ =3.088 x 1o-2 
Cputime<1 Cputime<1 Cputime<1 Cputime=1 
/'!FE=196 NFE=244 NFE=196 NFE=192 

0.008 '"'=0.00007483 ~· =-0.00005942 '"'=-0.00010353 "' =-0.00010353 
m=60 tm=45 m=47 m=47 
JJgJJ =5.312x 10-2 llgJJ =3.265 x 10-2 JJg! =3.088 x 1o-2 JJgJJ =3.088 x 10-2 
~utime<1 Cputime<1 Cputime<l ~putime=1 

FE=244 NFE=184 NFE=192 NFE=192 

. 
0.00850 r• =0.00007245 ~· =-0.00003566 ~·=-0.00004752 r"' =-0.00004754 

f!1=60 f!1=60 pn=60 )11=60 
JJgJJ=5.288x 10-2 JJgJJ =3.345 x 10-2 JJgJJ =3.237 X 10-2 JJgJJ =3.236 x 10-2 
~putime<1 Cputime<1 Cputime<1 Cputime=1 
!N'FE=244 NFE=244 NFE=244 NFE=244 

0.009 IT"'=0.00007564 ~· =-0.00003556 ~"' =-0.00004818 r~ =-0.00004821 
f!1=60 lm=60 tm=60 m=60 
JJgJJ=5.320x 10-2 JJgJJ =3.346x 10-2 JJgJJ =3.234 x 10-2 JJgJJ =3.232 x 10-2 
~putime<1 Cputime<l se,utime<1 Cputime=1 
iNFE=244 NFE=244 NFE=244 iNFE=244 



TABLE (6.4.10):Results of FR with change in u0 for ACC:s; 0.1. 

uo m J~ llgll NFE eps Cputime 

-1.1 34 u.00049759 19.540x w-2 140 0.008 <1 

-1.0 31 U.00053036 19.734x 10-L 128 0.008 <1 

-0.9 32 U.00051206 19.525 X lQ-L 132 U.008 <1 

-0.6 35 0.00049006 l9 .282 X lQ-L 144 0.008 <1 

-0.5 41 0.00050590 19.446 X lQ-L 168 0.008 <1 

0.0 - - - - - -

0.5 - - - - - -

1.0 - - - - - -



TABLE (6.4.1l):Results of FR with change in u0 for ACC~ 0.05. 

uo m r llgll NFE eps ~'putime 

-1.1 42 0.00008683 ~.647x 10-:t 172 lJ.008 <1 

-1.0 39 0.00007492 ~.547 x w-:z 160 0.008 <1 

-0.9 J9 0.00010189 14.923 x w-:t 160 0.008 <1 

-0.6 42 0.00010246 j4.870x 10-:t 172 o.Oo8 <1 

-0.5 49 0.00010913 j4.846x w-:t 200 0.008 <1 

0.0 - - - - 0.008 -

0.5 - - - 0.008 - -

1.0 0.008 - - - - -



TABLE (6.4.12):Results of FR with change in u0 for ACC:s; 0.031. 

uo m J" llgll NFE eps Cputime 

-1.1 51 f-0.00010108 ~.064x1Q-2 208 0.008 <1 

-1.0 47 -0.00010353 ~ .088 x w-L. 192 0.008 <1 

-0.9 48 0.00010692 ~.091 x w-z 196 0.008 <1 

-0.6 51 0.00010042 j.098 x w-L. 208 0.008 <1 

-0.5 59 0.00009258 j.081 x w-L. 240 fi.008 <1 

0.0 - - - - - -

0.5 - - - - - -

1.0 - - - - - -



TABLE (6.4.13):Results of PR with varying E and N. 

N 10 50 100 200 
E 

~).005 =0.02256417 ~·=0.14578623 r•=11.73154631 ~"'=11.73154430 
m=181 ~=15 m=15 ~=15 
~gll =0.9127626 llgll=0.6723512 llgll=0.7213542 llgll=0.7213542 
~utime<l Cputime<l Cputime<l Cputime=l 

FE=810 ~FE=64 NFE=64 ~FE=64 
~.006 r"' =0.02255347 ~ .. =0.09389538 =9.64800358 ~ .. =9.64800358 

m=174 ~=13 m=13 ~=13 
llgll=0.9127525 llgll =0.4693886 llgll =0.4370945 llgll =0.4370945 
~utime<l ~utime<l Cputime<l Cputime=l 

FE=700 FE=56 NFE=56 ~FE=56 

0.007 r"' =407 .9664307 ~"'=1.68449748 =-0.00268271 ~ .. =-0.00268271 
fl1=139 fl1=89 m=2000 f11=2000 
llgll=l.62764 llgll = 15.97277 M=2.231 x w-2 llgll =2.231 x w-2 
~utime<l ~ftime<l Cputime=14 Cputime=25 

FE=560 E=360 NFE=8004 ~FE=8004 

0.00750 IT"' =-0.00029134 1"'=0.01673043 T"' =4.62655735 ~"' =4.62655734 
~=2000 m=26 m=52 ~=51 
llgll =3.935 x w-2 llgll =2.863 x w-2 llgll=0.8601911 llgll=0.8601911 
~utime=l Cputime<l Cputime<l Cputime=l 

FE=8004 NFE=108 NFE=212 ~FE=208 

~).008 ~ .. =0.04754090 , .. =-0.00029958 1"'=16.40071869 ~"'=16.40071869 
~=2000 m=2000 fn=34 1m=34 
M=1.32203 llgll =2.596 x w-2 llgll = 1.88379 llgll= 1.88379 
~utime=l 92_utime=8 Cputime<l Cputime=l 

FE=8004 NFE=8004 NFE=140 NFE=140 

~.009 .. =-0.00021008 r"' =217 .2554779 ~"' =0.25288621 =0.25288531 
m=268 m=22 fl1=22 m=21 
llgll=4.975x Io-2 llg~ = 1.03771 llgll =0.6614708 llgll =0.6614708 
~utime<l Cputime<l Cputime<l Cputime=l 

FE=1076 NFE=92 ~FE=92 NFE=87 



TABLE (6.4.14):Results of PR with change in u0 for ACC$ 0.1. 

UQ m J'" llgll NFE eps Cputime 

-1.0 196 p.00057927 9.971 X lQ-2 [788 p.007 1 

-0.5 ~91 ~.00058020 9.931 X lQ-L 1168 p.007 2 

0.0 329 0.00028614 9.996x lO-L 1320 ~.007 3 

0.5 1155 ~.OUU5834Y 9.928x1Q-L 624 ~.007 1 

1.0 1227 p.00059323 9.916x lQ-L 912 p.007 £, 

1.5 190 p.00059648 9.909x1Q-L 64 p.007 1 

2.0 191 p.00059942 9.881 x w-2 68 p.007 1 



TABLE (6.4.15):Results of PR with change in u0 for ACCs; 0.05. 

uo m r ~gJJ NFE eps Cputime 

-1.0 261 0.00007051 ~.974x1Q-:l. 1048 0:007 1 

-0.5 418 0.00007712 ~.992 x w=z- 1676 0:007 4 

0.0 419 0.00056451 ~.970x1Q-:l. 1680 0:007 4 

0.5 201 0.00008146 ~.962x1Q-2 808 0.007 :2. 

1.0 ~92 0.00009179 ~.998x w-z 1172 0.007 :2. 

1.5 ~43 0.00009563 .983x w-z 976 0.007 2 

2.0 243 0.00010044 .974x 10-:2. 976 0.007 2 



TABLE (6.4.16):Results of PR with change in u0 for ACC~ 0.023. 

uo m r M NFE eps Cputime 

-1.0 - - - - lJ.U07 -

-0.5 - - - - 0.007 -

0.0 1649 0.00242977 ~.230x1Q-L 6600 0.007 12 

0.5 1749 0.00242999 ~.230x1Q-L 7000 0.007 12 

1.0 - - - - 0.007 -

1.5 - - - - 0.007 -

2.0 - - - 0.007 - -



TABLE (6.4.17):Results of Hl with varying e and N. 

N 10 50 100 200 
E 

~).003 ,~ =-0.00291241 ~~=0.07832151 ~~ =-0.00107566 1"'=-0.00110431 
m=950 jm=401 jm=1501 ~=1499 
M=4.415x1o-2 llgl=2.05642 M=3.121x10-2 llgll=3.12x 10-2 

~utime<1 Cputime=1 Cputime=10 ~utime=19 
FE=3975 INFE=1482 INFE=6183 FE=6201 

~.005 1"' =-0.00292066 T"' =0.07488351 ~"' =-0.00108499 '"'=-0.00110566 
m=930 m=347 jm=1492 jm=1489 
M=4.398x10-2 llgll = 1.98921 llgll =2.997 x 10-2 llgll =2.912 x 10-2 
~utime<1 2t~time=1 9i,utime=9 Cputime=16 

FE=3724 E=1392 NFE=5972 iNFE=6023 

0.006 =3.21129179 =0.09107057 =-0.00327211 ~"' =-0.00327211 
p1=153 m=650 m=1147 ~=1147 
M=6.46442 llgl =0.8701492 llgll=2.0x10-2 llgll=2.0x 10-2 
~utime<1 Cputime=2 Cputime=8 Cputime=15 

FE=616 NFE=2604 NFE=4592 NFE=4612 

0.007 T"' = 11.23644543 T"' =-0.00297981 , .. =-0.00236861 ~"'=-0.00236971 
m=32 m=l312 m=1200 ~=1199 
llgll=33.01036 11&11 =2.150 x 10-2 llgll =2.152x 10-2 llgll=2.151 x 1o-2 

~utime<1 Cputime=5 ~utime=8 Cputime=15 
FE=l32 NFE=5252 FE=4004 ~FE=4011 

0.008 ~"' =0.07349106 T"' =0.00126187 T"' =-0.00009449 ~"' =-0.000 10102 
~=266 m=1608 m=460 ~=460 
llgll = 1.59355 ll&l=4.762x 10-2 llgll =4.374 x 10-2 llgll=4.372x 10-2 
!:putime<1 Cputime=6 Cputime=3 Cputime=5 
INFE=1068 NFE=6436 NFE=1844 NFE=1851 



TABLE (6.4.18):Results of HI with change in u0 for ACC:s; 0.1. 

uo m J'" llgll NFE eps Cputime 

-l.Q 42 ~.Q0056Q63 ~.943x IQ-£ I72 O.QQ6 <I 

-U.5 43 u.Q0054596 ~.716x IQ-£ I76 O.QQ6 <I 

u.u IS3U u.QQI54769 ~.274xiQ-£ J324 lJ.UU6 6 

Q.5 - - - - - -

l.Q 327 Q.QOOQ5675 ~.644x IQ-£ I3I2 lJ.QQ6 3 

1.5 255 u.QOOQ532I ~.598x IO-L 1024 O.QQ6 2 

2.Q IQ27 O.QQQI6448 ~.772x IO-L f4112 u.QQ6 7 



TABLE (6.4.19):Results of Hl with change in u0 for ACC~ 0.05. 

uo m J"' jjgjj NFE eps ~'putime 

-1.0 52 0.00010941 4.869 x w-.t j212 0.006 <1 

-0.5 52 fJ.OOO 11313 4.852 x w-.t .d2 fJ.006 <1 

0.0 843 fJ.00112306 4.877 x w-.t 3376 0.006 7 

0.5 - - - - - -

1.0 349 0.00026370 4.918x w-.t 1400 fJ.006 3 

1.5 309 0.00015775 4.970x w-.t 1240 fJ.006 3 

2.0 1034 0.00021023 4.796x w-.t 4140 fJ.006 7 



TABLE (6.4.20):Results of Hl with change in u0 for ACCS 2.0xlo-2. 

UQ m J llgll NFE eps Cpuume 

-1.0 - - - - 0.006 -

-0.5 1832 .00325432 2.0xiO·Z 7332 fJ.006 14 

0.0 1322 0.00329290 1.999x w-z )292 0.006 9 

0.5 - - - - - -

1.0 1147 0.00327211 2.0x w-z ~592 p.006 9 

1.5 1289 f-0.00325565 1.999x IO-L p160 o.uo6 10 

2.0 1469 0.00328785 1.998x IO·L p880 p.006 11 



TABLE (6.4.21):Results of ATH with varying e and N. 

N 10 

=28.81435013 
=150 

JjgJJ= 112.618 
putime<1 
FE=604 

50 100 200 

=-0.00133513 =-0.0035611 =-0.00315422 
=1500 =1200 =1200 

M=2.914x1Q·2 JjgJJ=2.046x10-2 JjgJJ=2.046xi0-2 
utime=5 utime=9 Cputime=15 

=6004 FE=4804 FE=4815 
=-0.00143401 =-0.0031682 =-0.0031691 
=1500 =1200 =1200 

JjgJJ=2.903x10-2 M=2.045xi0-2 JJgJJ=2.044x10-2 
utime=5 utime=9 Cputime=16 

FE=6004 =4804 NFE=4815 

=817.1523438 
=1500 

Jjgjj =598.4329 
utime=6 

=6004 

=-0.00324996 =-0.00324996 
=1135 =1134 

Jjgjj =2.0x 10-2 JjgJJ=2.0x w-2 
utime=8 putime= 15 

FE=4544 NFE=4549 

=28.81449509 =28.81450122 
=1200 =1199 

M=112.7434 M=112.7434 
utime=9 Cputime=15 

FE=4804 NFE=4813 

=185.5828247 =185.5828247 
=1200 =1200 

Jjgjj =286.5673 Jjgjj =286.5673 
utime=9 Cputime=15 

FE=4804 FE=4815 



TABLE (6.4.22):Results of ATH with change in u0 for ACC::; 0.1. 

uo m J'" M NFE eps [C'putime 

-1.0 42 f1.00056U63 9.943 x w-.t 172 p.006 <1 

-0.5 49 f1.0005125l:S 9.434x IQ-.t 2W p.006 <1 

o.u 212 U.0WU1YIS2 9.361 X IQ-L IS 52 p.uu6 2 

0.5 166 o.ooo 1 o27 4 9.0401 X IQ-.t 668 fJ.OOo 1 

1.0 545 f1.00035 368 9.050xiQ-L 2184 f1.006 5 

1.5 938 f1.00190120 8.419x 10-.t 3756 f1.006 7 

2.0 - - - - - -



TABLE (6.4.23):Results of ATH with change in u0 for ACC::> 0.05. 

uo m J" llgll NFE eps ~'putime 

-1.0 52 0.00010941 4.869 x w-.l 212 0.006 <1 

-0.5 59 o.Ouu10454 4.723 X 1Q-.l 240 O.OOb 1 

0.0 225 0.0UUUl!712 4.947 X lQ-.l 904 0.006 2 

0.5 175 0.00027 68l! 4.771 X 10-.l 704 0.006 1 

1.0 550 fJ.00001793 3.563 X 10-.l 21204 fJ.006 5 

1.5 950 fJ.00162452 14.957 x w-.l 3804 fJ.006 7 

2.0 - - - - - -



TABLE (6.4.24):Results of ATH with change in u0 for ACC~ 2.0xl0·2. 

uo m r JJgJJ NFE eps Cputime 

-l.U - - - - p.Out> -

-0.5 1893 0.00321805 2.0x w-:l 7576 p.006 14 

0.0 1348 0.00326430 2.0x w-..: 5396 '-'.006 11 

0.5 1135 O.OU324996 2.0x w-..: 4544 fJ.OU6 9 

1.0 - - - - fJ.OU6 -

1.5 1377 0.00328307 1. 997x 1 o-:.t 5512 f-1.006 10 

2.0 - - - - - -



-- ------------------

TABLE (6.4.2S):Results of H3 with varying e and N. 

N 

.003 

0.008 

10 

=817 .1522217 
=1200 

llgll=597.6071 
utime<1 

=4804 

=0.01000185 
=1475 

llgll=0.8199844 
utime=1 

FE=5904 

50 

=0.09107057 
=650 

llgll=0.871492 
Cputime=2 

FE=2604 

100 200 

=-0.00315421 

~=-0.00315818 =-0.00317778 =-0.00317781 
=1300 =1260 =1259 

llgll=2.178x10-2 iigll=2.087xl0-2 M=2.087x1o-2 
utime=4 utime=9 utime=15 

=5204 =5044 =5052 

=0.06731721 =817.1523475 =817.1523475 
=1300 =1300 =1300 

llgll = 1.4624 7 llgll =598.5401 llgll =598.5401 
utime=4 Cputime=10 Cputime=18 

=5204 =5204 FE=5215 



TABLE (6.4.26):Results of H3 with change in u0 for ACC:<> 0.1. 

uo m r ~g~ NFE eps ~'putime 

-1.0 42 U.00056063 ~.943x to-:.: 172 U.006 <1 

-0.5 43 U.00054596 ~.716x 10-:.: 176 U.006 <1 

0.0 830 U.00154769 ~.27 4x w-:.: ~324 U.006 (J 

0.5 - - - - - -

1.0 327 0.00005675 ~.644x w-:.: 1312 0.006 :; 

1.5 255 0.00005321 p .598 x w-:z 1024 0.006 2 

2.0 1027 0.00016448 p.772x1Q-2 ~112 0.006 7 



TABLE (6.4.27):Results of H3 with change in u0 for ACC:s; 0.05. 

no m J~ llgll NFE eps Cputime 

-1.0 52 ~.00010941 ~.869 x w-L. .d2 ~.006 <1 

-0.5 52 ~.00011313 f'l-.852x IO-L. .dZ ~.006 <1 

0.0 843 ~.00112306 f'l-.877 X 10-L. 3376 ~.006 7 

0.5 - - - - - -

1.0 349 0.00026370 f'l-.918x10-L. 1400 0.006 3 

1.5 309 0.00015775 ~.970x 1o-z 1240 0.006 3 

2.0 1034 0.00021023 ~.796x 10-2 4140 p.006 7 



TABLE (6.4.28):Results of H3 with change in u0 for ACC::; 2.0xi0·2. 

uo m r 1&1 NFE eps '-punme 

-1.0 - - - - ~J.006 -

-0.5 1832 .00325432 2.0x10-2 332 fJ.OU6 14 

0.0 1322 0.00329290 l.999x w-z ~292 0.006 9 

0.5 - - - - - -

1.0 1147 0.00327211 2.0x lQ-.l 4592 fJ.006 9 

1.5 1289 0.00325565 1. 999 x w-"' 5160 fJ.006 10 

2.0 1469 0.00328785 1.998 x w-.L :J880 0.006 11 



r Table (6 51)· Summary table for the seven methods . . . ----- ------ ------- ---

~ I I I I I I I ~ 
GFS SD FR PR HI ATH H3 

m= 176 m=240 m=47 m =261 m=52 m=52 m=52 
]' = 0.00007013 ]' = 0.00006898 1' = -0.00010353 1' = 0.00007051 1' = 0.00010941 1' = 0.00010941 1' = 0.00010941 

-1.0 
h 1 = 4.983 xw-2 I gJ = 8.959 xlo-2 hi= 3.088 xt0-2 lgl = 4.974 xto-2 hll = 4.869 x1o-2 hi= 4.869 x1o-2 ~gJ = 4.869 x1o-2 

£= 0.008 E= 0.008 E = 0.008 E = 0.007 £= 0.006 E = 0.006 E= 0.006 
NFE = 177 NFE=964 NFE = 192 NFE= 1048 NFE= 212 NFE= 212 NFE=212 
Cputime < 1 Cputime= 1 Cputime < 1 Cputime= 1 Cputirne < 1 Cputirne < 1 Cputime < 1 

m=72 m= 1609 m =2000 m= 1322 m= 1348 m= 1322 

J' = -0.00010746 1' = -0.00242712 1' = -0.00268271 1' = -0.00329290 ]' = -0.00326430 1' = -0.00329290 

0.0 hi= 4.925 x1o-2 lg 1 = 2.30 x1o-2 - Jg 1 = 2.23o x1 o-2 Jg ~ = 1.999 xw-2 Jg 1 = 2.0 x1o-2 ~gl = 1.999 x1o-2 

£= 0.008 £= 0.008 E= 0.007 E = 0.006 E= 0.006 E = 0.006 
NFE=73 NFE=6440 NFE= 8004 NFE= 5292 NFE = 5396 NFE= 5292 
Cll_utime< 1 Cputime= 11 Cputime = 14 Cputirne = 9 Cputime = 11 Cputime = 9 

m=78 m= 185 m= 1749 m= 1135 
J' = -0.0006646 1' = 0.00007970 ]' = -0.00242999 1' = -0.00324996 

0.5 hi= 4.902 x1o-2 I gJ = 4.952 xto-2 - Jg I = 2.330 xt0-2 - hi= 2.0 x1o-2 -
£=0.008 £=0.008 £= 0.007 E = 0.006 
NFE=75 NFE=744 NFE =7000 NFE =4544 
Cputime < 1 Cputime= 1 Cputime= 12 Cputirne = 9 

m=85 m= 1791 m=292 m= 1147 m=550 m- 1147 

]
0 = -0.00016333 1' = -0.00243135 ]' = 0.0009179 J' = -0.0032721 I J' = 0.00001793 1' = -0.003272 I 1 

1.0 JgJ = 4.931 x1o-2 181 = 2.30 x1o-2 - lgl= 4.998 xlo-2 hll = 2.0 xt0-2 h J = 3j63 xt0-2 ~gJ = 2.0 xto-2 

£= 0.008 E = 0.008 £= 0.007 £= 0.006 £= 0.006 E= 0.006 
NFE=86 NFE=7168 NFE = 1172 NFE=4592 NFE =2204 NFE=4592 
Cpgtime< 1 Cputime= 13 Cputime=2 Cputirne = 9 Cputirne = 5 Cputime = 10 

m= 1000 m=2000 m= 1200 m= 1200 m= 1200 

J' = -0.00294302 ]' = -0.00273340 J' = -0.00322215 l = -0.00199214 1' = -0.00372215 

3.0 Jg 1 = 1.891 x1o-2 I gJ = 2.223 x1o-2 - - 1 gll = 2.020 x1o-2 hi= 2.714 x1o-2 IKI = 2.020 xw-2 

£=0.008 £= 0.008 £ = 0.006 £= 0.006 E= 0.006 
NFE= 1001 NFE=8004 NFE=4804 NFE =4804 NFE =4804 
Cputime=3 Cputime= 14 Cputime= 8 Cputirne = 8 Cputime= 8 
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Chapter 7 

PROBLEM 4 

7.1 An Optimal Control Problem with Fixed 

End Points 

A system is described by, 

(7.1.1) 

O::St::Sl, 

and the controlu(t) is to be chosen so as to minimize, 

.] = ~o• u2dt. (7.1.2) 

This problem is taken from Barnett and Cameron (1985) [144]. 

It is solved first analytically as it stands and then with a penalty function 
introduced to satisfy x1(1) = 0, thereby allowing known conditions for the 
adjoint equation at t = 1. 

7.2 Analytical Solutions without the Penalty 

Function 

Using the maximum principle, we solve the problem (7.1.1) and (7.1.2). 

The Hamiltonian is given by, 

H = ·u? +.X( -2.7:1 + u), (7.2.1) 

and the adjoint. equation is, 

(7.2.2) 

121 



To find the optimal control u', set 

i.e., 

so that, 

8H _
0 au- ' 

A +2u' = 0, 

' A 
'U =-z, 

Now by solving the adjoint equation (7,2,2) we get, 

and substituting A in (7.2.3) it follows that 

Substituting u' in the state equation (7.1.1) we get, 

. 1 2! 
Xi+ 2x:i = -2Ae . 

so that, 
A 2t -2t 

xi= -se + Ce . 

Since, Xi(O) = 1, (7.2.6) gives 

C. A 
=l+s· 

Also since, Xi(1) = 0, from (7.2.6) and (7.2.7) we get, 

A 2 ( A) -2 0= -se + 1 +s e 

so that 
8e-2 

A= 2 2· e -e-

By substituting A from (7.2.8) into (7.2.4) we get, 

Then from (7.2.9) and (7.2.:l) 

, '- -~ (8e-2+2t) 
n - 2 e2 - e-2 ' 

i.e., 
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(7.2.4) 

(7.2.5) 

(7.2.fi) 

(7.2.6) 

(7.2.7) 

(7.2.8) 

(7.2.9) 

(7.2.10) 



x1 can also be found by substituting C and A from (7.2. 7) and (7.2.8) re
spectively into (7.2.6) 

i.e., 

(7.2.11) 

To find the optimal J, substitute n' from (7.2.10) into (7.1.2) to give, 

f ( -4e2'r J' - -4-- dt, 
o e - 1 

1u Ll 4t z 
( 4 )2 e ( t, e - 1 o 

4 4t I 
(7.2.12) 

- (e4-1)2[e ].,. 

J' 
4 

- e4 -1· 
J' - 0.07 4629441to 9 deeimal places. 

7.3 Analytical solutions with the Penalty Func-

tion 

By introducing a penalty function the problem (7.1.1) to (7.1.2) ean he 
transformed into the following; 

minimize J = b:~(1) + fu1 

u2dt, (7.3.1) 

subject to; 
(7.3.2) 

Once again using the maximum principle, gives us the Hamiltonian and the 
adjoint equation, as in (7.2.1) and (7.2.2) respectively. However we now have, 

and {}if> 
A(1) = !.)(x1(1)) = 2b:1(1). 

(;.7; 

The optimal controlu' can be obtained by setting 

{)H- 0 ' • 1.e., A+ 2u = 0, iiu - ' 

so that, u* can be obtained as (7.2.3). 

Also by solving the adjoining equation (7.2.2) we get, A a.~ (7.2.4), awl hy 
substituting A in (7.2.3), ·u.' follows a.~ (7.2.5). 



Substituting u• in the state equation (7.3.2) we get (7.2.5), and :1:1 follows 

as (7.2.6). 

Here since A(1) = Ae2 = 2kx1 (1), thus 

Ae2 

x,(tJ) = 2k · (7.3.3) 

Since x1(t) = -~021 + ce-21 and x1(0) = 1, C can be found as, C = 1 + ~. 
thus, 

x 1(t) = -~e21 +(1+~)e-21 , 
x,(1) = -~e2 + (1+ ~) e-2

• 

From (7.3.3) and (7.3.4) we get, 

i.e., 

or 

And, 

Ae
2 A 2 ( A) 2 - = --e + 1 +- e-2k 8 ' 8 ' 

e' 
A=.-----~ 

[_!_e2 + !e2 - !e-2] ' 
2k·' 8' 8 

1 
A= ( , ')' 2 lf~~~ 

e -x,2 +8+2k 

Multiply top and bottom by k we get, 

We also find A and u• as, 

and, 

J* 

e-2+2t 
A - .,--_:__--,----__, 

- [_!_e2 + !e2 - !e-2] ' 
2k ·' K H 
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Hence in order to substitute for x 1 (1), let us multiply top and bottom of 
(7.3.5) by 4

1
k. Then we get 

Xi(1)=k[l 4 I I]' -e +=--k 4e 4 

and then substitute it back in J* we get, 

J* -

1 
multiply top and bottom by 

4
k we get, 

J
• 1 

'-14 !4 I' 
ke + 4e -4 

Multiply top and bottom by 4k we get., 

.]* = 4k 
4e4 +ke4 -k. 

(7.:{.8) 

In order to find the value of k, so that u' with the penalty function is equiv
alent to u' without it, we set up the following proceclures: 

From (7.2.10) and (7.3.7) we get, 

e4 -1 [le4 + le4 _ l] ' 
k 4 4 

1 k = 0, when A:--+ oo. 

The same value of k can also be confirmed for .J* in the following manner; 

From (7.2.20), 

lim 4k = 4 =4 
k-oo 4e4 + A:e4 - k ~e4 + e4 - 1 e4 - 1 

which is equivalent to (7.2.12). 

Thus the two problems are only equivalent when k --+ oo ancl for any other 
A: the solutions are different, i.e., the problem solved is that with .7:1(1) given 
by (7.1.1). Refer to Fig (7.3.1) to see how the optimal j wu·ies with different 
k's. Notice that J increases monotonically with k so that great care must 
be taken in numerical work to ensure that the correct. optimal J has been 
obtained. In order to get .J* correct to G dedmal places would require taking 
k > G.7 X 108

• 
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7.4 Results and Discussion 

7.4.1 Gradient Method 

The algorithm for the gradient in function space me~hod applied to prob
lem 4 is the same as that described in Chapter 4, Section 4.4.1, where for 
this problem, 

(7.4.1) 

The critical parameters involved in this problem are k, c:, h and uo, ancl we 
have examined the effect of these parameters on the optimal J. 

Remark 7.4.1: Here we should note that throughout this chapter, the 
absolute error (eabs) is the difference between the value of the optimal .J 
obtained analytically, without the penalty function and the value of .J' oh
tained numerically, except in Tables (7.4.1), (7.4.4), (7.4.7), (7.4.10), (7.4.1:~), 
(7.4.16) and finally (7.4.19), where e,1, is the difference hetwtxm the value of 
J' obtained analytically with the penalty function, with k = 500, ami the 
value of J* obtained numerically. Also in this chapter the value of <X>effi
cient of penalty function k, has been taken as 500, which is sufficiently large 
enough to be selected as a reasonable value for testing. 

The analytical value of J', when k = 500 is obtaine<l from (7.3.8) am! 
is 0.07402618 to 8 decimal places, and the absolute error between this and 
the exact analytical value of J' (which obviously can not be better unless a 
larger k is used or because of munerical inaccuracy) is G.0:~261 x w-4

• 

Table (7.4.1), shows the effect of c: and N in achieving the minimum value 
of J*' from the best initial control 'll.o = 0.0. Taking Ace ::; w-G' the best 
J' obtained was 0.0740286!) to 8 decimal places with 11!111 = 7.05 x w-7

, 

e"''" = 2.51 x 10-6 (refers to remark 7.4.1), and the corresponding parameter 
values, c: = 0.004, k = 500, N = 100 or N = 200 and m = 7. Selecting c: 
fairly small in the range [0.003, 0.006], produced consistent. re.sult.s, for all N's. 
When the best choice c: is selected with larger N, it takes fewer iterations 
to satisfy the Ace ::; w-6 , for the optimal J'. Here selecting N as 200 as 
opposed to 100 may result in slightly better minimum .J' for some t's but at 
the cost of more computing time. 

Table (7.4.2), shows, the effect. of selecting k, for different values of Ace 
i.e.,::; w-2 ,::; w-4 and::; 10-6 , with U{l = 0.0 and N = 100. As can be seen 
from the Table the closest solution to the optimal one was obtained, when k 
was selected as 500, and when k was taken too small, say k = 10, thee"'" i.e., 
the difference between the analytical solution without .the penalty function 
and numerical one was fairly great. 

Table (7.4.3), shows the effect the choice of initial control ·u0 on the mini
mum J', with N = 100, k = 500 ancl the best Ace possible, i.e. Ace::; w-G. 
it is clear from the Table that there is a big clifference betwtxm selecting '1/.n 

as 0.0 as opposed to u.0 's in the range [-0.6, -0.1], in terms of numher of 
iterations taken to minimize .J'. 
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We have also compared the effect of the critical parameters, graphically, in 
Figures (7.4.1) to (7.4.5), which show the numerical solutions together with 
the analytical ones. 

Figure (7.4.1), shows the plot of time against 1£ for different values of k, 
i.e., k = 10, with e = 0.05, m= 35, k = 100, with e = 0.005, m = 57 and 
k = 500, with e = 0.004, m= 7, when N = 100, 1£o = 0.0 and Ace ::::; w-6• 

As can be seen from the graphs, as the value of k increases, the behaviour 
of the curves get closer to the analytical one, without the penalty function. 

Fig (7.4.2), shows the effect of m on ·u, with N = 100, k = 500, ·a0 = 0.0 
and e = 0.004. Here as m increases, the curve of numerical solutions get closer 
to the analytical one. But here since, it does not take many iterations for 
GFS, to obtain the optimal J', therefore even by taking m.= 1, it produces 
close solution to the analytical one. 

Figure (7.4.3), compares similarly the effect of Non control, with N = 
10, 50 and 100 respectively, with their corTespmHling munher of iterations 
9, 8 and 7, associated with their best step leugt.h factors of 0.005, 0.004 and 
0.004, when k = 500, m= 4 and '11{1 = 0.0. Here taking N large, i.e., 50 or 
100 produced numerical curves doser to the analytical ones than, taking N 
smalL 

Fig (7.4.4), illustrates the effect. on control of using, e = 0.0005, 0.008 
and 0.004, after 4 iterations, when the starting control is 0.0, k = 500 ;u1d 
N = 100. As ca.n be seen from the plots, the best e that its numerical curve 
behaved similar to the analyt.ical one was e = 0.004. Taking <: too small 
i.e., 0.0005 or large in this c.ase 0.008 did not produce similar results as the 
analytical one. 

Finally Fig (7.4.5), shows the effect of u0 on optimal J for different values of 
m, with 1£o = -0.6, -0.3 and 0.0, respectively with their best corresponding 
c:'s of 0.008, 0.008 and 0.004, where N = 100 and k = 500. Here by taking 
starting controls as 'l/.o = -0.3, and 0.0, we can see that their behaviours are 
the same graphically and they both converge towards the optimal value of J, 
after the 1st iteration. But taking a distant initial control, i.e., ·u.0 = -0.6, 
we can see that the values of optimal J g;radually converge, in the direction 
of minimum optimal J, hut in a much slower rate of speed than the other two 
initial controls. The above results, show that improvement can be obtained 
in minimising the optimal J by varying the critical parameters, k, 'l/{1, e and 
N. The correct choice of initial control is very crucial, in speeding up the 
search for an optimal J, by reducing the number of iterations and function 
evaluations and consequently computing time. The interaction between e anrl 
N, show that for smaller N, it may require a relatively larger e, but. up to 
the limit of< 0.006, in order to find minimum J' in fewer iterations, but. for 
larger N, sufficiently small e can produce the minimum .J' in fewer iterations. 
In view of above comments, by taking A: large enough, also s<el<ecting a proper 
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'll{) and large N, along with an appropriate value for c, the convergency, to 
the minimum optimal J* can be speeded up. 

7.4.2 Steepest Descent 

The algorithm for steepest descent applied to the problem 4 is as described 
in Chapter 2, Section 2.2.2. The line search technique used for this method is 
the quadratic interpolation method of Powell which was described in Chapter 
3, Section 3.4.2. The gradient g is as (7.4.1). Here also as before we have 
examined the effect of critical parameters, k, c, h and 'll{) on the optimal 
J'. Table (7.4.4), shows the effect of c and N, in achieving the minimum 
optimal J', with the best starting control ·u0 = 0.0, and Ace ::; w-6

• The 
best J' obtained was 0.07402869 to 8 decimal places, with IIYII = fi.23x w-7 , 

Cal,. = 2.5 x 10-6
, c = 0.007 or 0.008, k = 500, N = 100, or N = 200 and 

m = 3. Here abo selecting c fairly small in the range [0.006, O.OmJ] can 
produce consistent re.sults. Taking larger N, with appropriate c, results in 
finding the minimum J', in fewer iterations and function evaluations. For N 
small, say 10, selecting c in the range [0.008, 0.009], results in finding .J' for 
the required Ace in slightly fewer iterations, than other c's. 

Table (7.4.5), shows the effect. of k on the values of Ace , (::; w-2 , ::; 

w-4 and ::; w-6), with 'lto = 0.0 and N = 100. Here also, the numerical 
experiment shows by taking larger k, the numerieal solution gets closer to 
the analytical one without the penalty function. 

Table (7.4.6), shows the effect. of selecting un on the optimal .J' with N = 
100 and k = 500, in terms of the best Ace, possible for each u0 . Here also a.~ 
can be seen from the Table, selecting u0 a.~ 0.0 can make a lot of difference 
in achieving the best minimum .J' in fewer iterations, with the lw.st Ace, 
compared to the other starting c.ontrols. 

Fig (7.4.6), shows the plot of time against ·u, for different values of k, i.e., 
k = 10, lOO and 500 respect.ively, with their corresponding values of (c, m) 
as (0.3, 4), (0.02, 4) and (0.07, 3) for the Ace ::; 10-6

, when N = 100 and 
lto = 0.0. From the plots, it can be seen, as the value of k increases the 
behaviour of the numerical curves get. closer to the analytical one without 
the penalty function. 

Fig (7.4.7), shows the eflect of m on u, with N = 100, k = 500, and 
c = 0.007. Here since, it takes only a few iterations to achieve J*, even with 
one iteration, the numerical curve behave similar to the analytical one, and 
not much difference for higher number of iterations can be observed. 

Fig (7.4.8), compares the effect of Non control, with N = 10, fJO and 100 
respectively with their best corresponding step length factors of 0.000, 0.01 
and 0.007, with m= 1, u0 = 0.0 and Ace ::; w-G. Here as N gets larger the 
behaviour of the numerical cmve is closer to the analytical one. Fig (7.4.0), 
illustrates similarly the eflect. of € on control, with c = O.OOOfi, 0.007 and 
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0.01 with N = 100, uo = 0.0 and m = 1. As can be seen from the g,mphs, 
taking s too small, e.g., 0.0005, the numerical curve is far away from the 
analytical one, but with sufficient small s's, i.e., 0.007 or 0.01, the behaviour 
of the numerical curves are similar to the analytical one. 

Fig (7.4.10), shows the effect of 1to on optimal J, for different values of m, 
with Uo = -0.6, -0.3 and 0.0, respectively, with their best corresponding 
s's of 0.004, 0.004 and 0.007, where N = 100 and k = 500. 

Here we can see that taking 1Lo as 0.0, can speed up the process of conver
gency to optimal J, much faster than the other two starting controls, ami 
the most distant starting control amongst them is Uo = -0.6. 

The numerical results, show that as with GFS, the right choice of A:, uo, s 
and N is crucial in achieving the best minimum for .!'. Here the correct 
choice of initial control is very important in obtaining the optinml .J in fewer 
iterations and therefore less computing time. 

7.4.3 Fletcher-Reeves 

The algorithm for Fletcher-Reeves applied to the Problem 4, is as clescribecl 
in Chapter 2, Seetion 2.4. The norm of each g,mclient trajectory can be 
calculated as was described in Chapter 2, Section 2.10.1. The line search 
technique and the g,radient 9, are the same as the one for steepest descent in 
this Chapter 7 .4.2. The effect of critical parameters, k, s, N and no on the 
optimal J, were examined and the results were similar t.o those obtained for 
SD. Refer to Tables (7.4.7) to (7.4.9) and Figures (7.4.11) to (7.4.Hi), with 
the same parameters as were taken for SD. Therefore the recormnendations 
on selecting k, u<, s and N can he followed as suggested for the steepest 
descent. 

7.4.4 Polak-Ribiere 

The algorithm for the Polak-Ribiere method is described in Chapter 2, 
Section 2.5. The line sear<"h tedmiques, the calculation of the norms arHl 9 

are the same as those for FR. in this chapter 3.4.3. 

Hence also similar results obtained as SD ancl FR., when the critical pa
rameters, k, u0 , s and N were tested. Refer to Tables (7.4.10) to (7.4.12) 
and Figures (7.4.16) to (7.4.20), with the same parameters as were taken for 
SD. Thus for the search of the best minimum optimal J, we should select 
k, u0 , s and N as we did for SD. 

7.4.5 Hybrid 1 

The algorithm for the Hybricl1 method is clescribecl in Chapter 2, Section 
2.6.1. The line seard1 technique ancl the calcnlatinn of the norms, n1w g are 
the same a.~ FR in this chapter, section 7.4.3. 
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The numerical experiments on critical pru·ameters, k, 'lLo, £ arHI N, m·e 
found to be similar to the previous methods, SD, FR and PR. 

Refer to Tables (7.4.13) to (7.4.15) and Fi~11!'es (7.4.21) to (7.4.25), with 
the same parameters as for SD. 

Here also the recommendations on finding the best minimum optimal .J* 
can be followed as for SD. 

7.4.6 Angle Test Hybrid 
The algorithm for the Angle test hybrid method is described in Chapter 

2, Section 2. 7. The line seard1, C<'"llculat.ion of the norms and !I are the same 
as for FR. in this chapter section 7.4.3. 

The method was tested in the same way as the previous methods plus the 
new parameter 'T > 0, i.e., 0.01, 0.0001 and 0.000001. 

The results obtained were similar to SD. Refer to Tables (7.4.Hi) to (7.4.18) 
and Figures (7.4.25) to (7.4.30), with the same parameters as for SD, plus 
'T = 0.000001. 

Here the effect of r on obtaining the minimum .J* was practically negligible, 
therefore the same suggestions for achieving t.he optimal .J* for SD <~mid he 
applied t.o ATH. 

7.4.7 Hybrid 3 

The algorithm for Hybrid 3 method r.an also be found in Chapter 2, Section 
2.8. The calculation of t.he norms, ru1d the line search, also !I me the same 
as FR. in this chapter, section 7.4.3. 

The effect of new parameters >. > 0 and JL < ! had t.o be considered for 
this method. So JL was taken as 0.2, 0.3, 0.45 and 0.4flf)fl ami >. as 0.01, 
0.0001 and 0.000001. 

The method was tested as before with the new parameters JL and >. and 
the results obtained were again similar to SD. 

Refer to Tables (7.4.19) to (7.4.21) and Fi~ures (7.4.31) to (7.4.35) with 
the same parameters as SD, plus JL = 0.45 and >. = 0.000001. 

Here the effect. of >. and JL on the optimal .J were negligible. Thus, the 
same recommendations on obtaining minimum .]* a.q SD on other critical 
parameters can also be applied to H3. 
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7.5 Summary of the Results 

The results are summarized in Table (7.5.1) with N = 100, k = 500, for 
ATH, T = 0.000001 and for H3, .\ = 0.000001, Jt = 0.4999, and also in Fig 
(7.5.1), that shows the plots of J against number of iterations for all seven 
optimization techniques, with their best c:, N = 100, u0 = 0.0 and k = SOO. 

At u0 in the range [-0.6, -0.1], we can see that although for GFS, it takes 
more number of iterations to achieve minimum J* than other 6 methods, but 
the Ace ~ 10-6 obtained for this method is more accurate than the other 
methods, since they can not ad1ieve this, even by increasing m. 

At u0 = 0.0 the six methods of SD, FR., PR., H1, ATH and H8 performed 
similarly, and they all found the minimum value of J* in fewer item.tionR alHl 
also better Ace than GFS. 

7.6 Conclusion 

The results for this simple problem, show that. the best value for the initial 
c.ontrol was 0.0, for all the methods, to achieve their best. minimum .J*, in 
terms of Ace, number of iterations, munber of function evaluations and finally 
computing time. 

For those methods that use line search the choice of initial control was very 
crucial, since with a bad guess the Ace~ 10-6

, coulcl never be achieve<!. 

The other common factors for obtaining the optimal J' for all the methods 
were choice of suitable large integration step number (N) and small step 
factor (c:). 

All the methods that use line seard1 performed about the same, and when 
Uo was selected as 0.0, they all performed better than GFS, in terms of Ace 
and number of iterations to find the optimal .J'. 

Obviously this problem is very easy to solve numerically and so does not 
bring out the expected improvement for the Hybrid methods, in terms of 
number of iterations. The importance of selecting k sufficiently large to get 
a reasonable approximation for the optimal .J' with the correct end condition 
on the state is also demonstrated. 



TABLE (7.4.1):Results of GFS with vatying e and N. 

N 10 50 100 200 

=0.07403651 =0.07402891 =0.07402889 
=17 =17 =17 

M=9.15x1o-7 Jlgl=9.72xl0-7 M=9.83x1o-7 JJgJJ=9.85x10-7 
abs=2.57x lQ-4 abs=1.03x 10-5 abs=2.51 X 10-6 abs=2.71 X lQ-6 

utime<l utime<1 Cputime<1 Cputime=l 
FE=21 FE=18 FE=18 NFE=18 
=0.07428352 =0.07403623 =0.07402869 =0.07402869 
=18 =15 =16 =16 

JJgJJ=8.08xlQ-7 JJgJJ=1.54x10-7 JJgJJ=1.61x10-7 JJgJJ=1.61x10-7 
abs=2.57 X 10-4 abs=l.Ox Io-5 abs=2.51 X w-6 abs=2.51x w-6 

utime<1 Cputime<1 utime<l Cputime=1 
FE=19 FE=16 FE=17 NFE=17 

=0.07428351 =0.07403623 =0.07402869 "'=0.07402869 
=12 =8 =7 =7 

JJgJJ=8.29x1o-7 JJg~=1.39x1o-7 M=7.05x1o-7 JJgJJ=7.05x10-7 
abs=2.57x 10-4 abs=l.Ox 1o-5 abs=2.51 x 10-6 abs=2.51 x w-6 

utime<1 utime<1 utime<1 Cputime=1 
FE=13 E=9 FE=8 FE=8 

=0.07428351 
=9 

=0.07428351 =0.07403623 
=17 =26 

JJgJJ=8.39x Io-7 JJgJJ=8.12xlQ-7 
abs=2.57 X 10-4 abs= 1.0 X lQ-5 

utime<l Cputime<l 
FE=18 =27 

=0.07402869 "'=0.07402869 
=14 =14 

JJgJJ=3.23xlQ-7 M=3.23x1o-7 
abs=2.51 X w-6 abs=2.51 X I o-6 

utime<1 Cputime=l 
FE=15 NFE=15 

=0.07402869 "'=0.07402869 
=24 =24 

lgJJ =9.82 x Io-7 JJgJJ =9.82x w-7 
abs=2.5J X lQ-6 abs=2.5J X lQ-6 

Cputime<l Cputime=l 
E=25 FE=25 



TABLE (7.4.2):Results of GFS with varying ACC and K. 

ACC ~10-2 <Io-4 <w-6 
K 

10 lr"' =0.05303199 "'=0.05302648 =0.05302644 
~=13 m=24 m=35 
llgl!=8.68x 10-3 llgll = 1.55 X I o-5 ~gll =8.73 X JQ-7 
e=0.05 e=0.05 e=0.05 
~abs=0.0215974 eabs=0.0216030 eabs=0.021603 
~time< I Cputime<l Cputime<1 

FE=14 NFE=25 NFE=36 

100 "=0.07171135 "'=0.07171 020 "'=0.07171019 
m=26 m=42 m=57 
llgll=9.14x 1o-3 11£11=8.62 x 10-5 llgll =9.87 X JQ-7 
£=0.005 £=0.005 £=0.005 
~abs=2. 92 x 10-3 eabs=2.92 x Jo-3 eabs=2.92 x J0-3 
Cputime<1 Cputime<l Cputime<l 
NFE=27 NFE=43 NFE=58 

500 r"' =0.07402869 "'=0.07402869 I"' =0.07402869 
m=4 m=5 m=7 
llgll=5.47x 10-3 11£11= 1.01 x Jo-5 llgll = 7.05 X 10·7 

£=0.004 £=0.004 £=0.004 
~abs=6.01 X 1()-4 leabs=6.0 1 X J0-4 leabs=6.0 1 x 10·4 

~putime<1 Cputime<l Cputime<l 
iNFE=5 NFE=6 NFE=8 



TABLE (7.4.3):Results of GFS with change in uo. 

uo m J* llgll eabs NFE eps Cputime 

-0.6 891 0.07402869 8.00283x I0-7 6.01 X I0-4 892 0.008 I 

-0.5 912 0:07402869 ~.91989 X 10-/ 6.01 X 10-4 191~ 0.008 I 

- 0.4 810 0.07402869 ~.27786 X J0-1 6.01 x w-4 811 p.oos I 

-0.3 845 0.07402869 3.64625 X 10-7 6.01 xi0-4 846 p.oos I 

-0.2 817 p.07402869 3.64625 x w-t 6.01 xlo-4 818 ~.!.008 I 

-0.1 815 0.07402869 8.39578 X J()-/ 6.01 X J0·4 816 ~.008 1 

0.0 7 0.07402869 ~ .0457 X J0·7 j6.01 xlo-48 0.004 <1 



TABLE (7.4.4):Results of SD with varying e and N. 

N 10 50 

=0.07403623 
=5 

JJgJJ = 8.42 X 1Q-7 JJgJJ = 1.43 X lQ-7 
abs=2.57 X lQ-4 abs=l.O X lQ-5 

utime<1 utime<1 
FE=38 FE=24 

=0.07428351 =0.07403623 
=7 =4 

M=8.35x1o-7 JJgJJ=1.43xi0-7 
abs=2.57 X w-4 abs=l.Ox w-5 
putime<1 utime<1 
FE=32 FE=20 

=0.07428351 ~ =0.07403623 
=6 =4 

JJgll=8.15x 10-7 JJgJJ= 1.40x 1o-7 
abs=2.57 X w-4 abs=l.Ox w-5 

utime<1 utime<1 
FE=28 FE=20 

100 200 

=0.07402869 =0.07402869 
=5 =4 

M=1.71x1o-7 JJgJJ=1.61x1o-7 
abs=2.51 X lQ-6 abs=2.51 X lQ-6 

utime< 1 utime= 1 
FE=24 FE=20 

=0.07402869 
=3 

JJgJJ = 1.61 X 10-7 JJgJJ =5.23 x lQ-7 
abs=2.51 X 1 o-6 abg=2.51 X lQ-6 

Cputime<1 Cputime=1 
FE=20 FE=20 

=0.07402869 =0.07402869 
=3 =3 

~gJJ=5.23x1Q-7 JJgJJ=5.23xi0-7 
abs=2.51 X lQ-6 abs=2.51 X 1 o-6 

utime<1 Cputime=1 
E=16 E=16 

=0.07402869 =0.07402869 
=3 =3 

M=5.23xi0-7 JJgJJ=5.23xJo-7 
abs=2.51 X lQ-6 abs=2.51 X lQ-6 

utime<1 Cputime=1 
FE=16 E=16 

=0.07402869 ~ =0.07402869 
=4 =4 

JJgJJ=1.62xi0-7 JJgJJ=1.62xi0-7 
abs=2.51 X 1 o-6 abs=2.51 X lQ-6 

utime<1 putime= I 
E=20 FE=20 



TABLE (7.4.5)Results of SD with varying ACC and K. 

ACC ~10-2 <Io-4 <w-6 
K 

10 ,~ =0.05302645 ~~"=0.05302645 IT~ =0.05302644 
im=2 lm=3 lm=4 
llgll=3.91x10-3 llgll = 1.14 x w-5 M=1.55x1o-7 
€=0.3 €=0.3 €=0.3 
~abs=0.0216030 ~abs=0.0216030 i:abs=0.021603 
rputime<1 Cputime<l Cputime<l 
INFE=12 NFE=16 NFE=20 

lOO "'=0.07171019 ~"'=0.07171019 ~"'=0.07171019 
im=2 m=3 m=4 
llgll=5.29x w-3 llgll = J. 9 6 X J0-6 llgll =8.47 x 1 o-8 
€=0.02 €=0.02 €=0.02 
<>abs=2.92x ]()-3 eabs=2.92x Io-3 eabs=2.92 X I o-3 
~putime<1 Cputime<l Cputime<l 

FE=12 NFE=16 NFE=20 

1500 "'=0.07402869 "'=0.07402869 "'=0.07402869 
lm=2 m=7 m=3 
llgll =5.45 x w-3 llgll=2.90x w-5 ll£11=5.23x Io-7 
€=0.007 £=0.002 £=0.007 
~abs=6.01 X J0-4 eabs=6.01 x Jo-4 eabs=6.0 I x J0-4 
k:"putime<l Cputime<l Cputime<l 
INFE=12 NFE=33 NFE=l6 



TABLE (7.4.6):Results of SD with change in uo. 

UQ m r llgll eabs NFE ps Cputime 

-0.6 f700 p.07403014 2.42598 X IQ-j 15.99 X I0-4 ~804 0.004 3 

-0.5 1550 0.07403580 5.38615 X IQ-j 15.94 X 10·4 2204 0.004 2 

-0.4 1300 0.07407081 1.31377 X IQ-L 5.59x 10·4 1204 0.004 2 

-0.3 550 p.07403020 2.59041 x 1 o-:; 15.99x10-4 2204 ~-004 2 

-0.2 300 0.07403763 6.04926 X IQ-:; 15.92 x w-4 1204 ~.008 2 

-0.1 400 0.07403089 2.99524 X IQ-_; 15.98 X 10·4 1604 llJ.003 2 

0.0 3 p.07402869 5.22767 X IQ·/ 6.0 I X J0-4 16 llJ.007 <1 



TABLE (7.4.8):Results of FR with varying ACC and K. 

ACC ~10-2 <to-4 ~10-6 

K 
10 =0.05302645 ,. =0.05302645 ~- =0.05302644 

m=2 m=3 m=4 
llgll=3.91 x w-3 llgll= 1.14x 10-5 llgll = 1.55 x 1 o-7 
e=0.3 e=0.3 e=0.3 
~abs=0.0216030 eabs=0.0216030 ~abs=0.021603 
~putime<1 Cputime<l Cputime<l 
~FE=12 NFE=16 NFE=20 

100 ,. =0.07171019 ~=0.07171019 ~- =0.07171019 
~=2 m=3 m=4 
llgll=5.29x lo-3 llgll = 1.96 X I o-6 llgll=8.47x 10-8 
e=0.02 e=0.02 e=0.02 
~abs=2.92 X I o-3 eabs=2.92x J0-3 ~abs=2.92 X 1 o-3 
lcputime<l Cputime<l Cputime<1 
~FE=12 NFE=I6 NFE=20 

~00 ~· =0.07402869 J¥ =0.07402869 J~ =0.07 402869 
~=2 m=7 m=3 
llgll=5.45x 10-3 ll£11=2.90x w-5 11£11=5.23 x j()-? 

e=0.007 e=0.002 e=0.007 
Fabs=6.01 X w-4 ~abs=6.0J X J0-4 "abs=6.() 1 X 1 o-4 

jCputime<1 Cputime<l Cputime< 1 
~FE=I2 NFE=33 NFE=16 



TABLE (7.4.9):Results of FR with change in uo 

uo m J llg~ eabs NFE ~ps Cputime 

-0.6 700 p.07403014 ~.42598 x 1 o-::s ~.99x I0-4 L804 p.004 3 

-0.5 550 p.07403580 5.38615 x 1o-::s ~.94x I0-4 2204 0.004 2 

0.4 300 p.07407081 1.31377x1o-..:: ~.59x J0-4 1204 0.004 ~ 

-0.3 550 p.07403020 ~.59041 x w-::s ~.99xi0-4 2204 p.004 2 

-0.2 300 p.07403763 p.04926xlO-j ~.92x I0-4 1204 0.008 2 

-0.1 400 fJ.07403089 2.99524 X I Q-5 5.98x J0-4 1604 U.003 2 

0.0 3 p.07402869 5.22767x 10-1 6.0 I X 1()-4 16 p.007 <1 



TABLE (7.4.10):Results of PR with varying E and N. 

N 10 50 100 200 
c 

0.003 ~~ =0.07428351 1" =0.07 403623 ~~ =0.07 402869 , .. =0.07402869 
lm=8 m=5 lm=5 m=4 
ll&ll=8.42x w-7 11&11 = 1.43 x w-7 llgll = 1.11 x 1o-1 11&11=1.61 x w-7 
~abs=2.57 X 1Q-4 eabs=l.Ox w-5 ~abs=2.51 X 10-6 eabs=2.51 X lQ-6 
Cputime<1 ~time<l ~utime<l Cputime=1 
NFE=38 FE=24 E=24 NFE=20 

0.006 1~=().07428351 1" =0.07 403623 11"=0.07402869 , .. =0.07402869 
m=6 m=4 lm=4 m=3 
ll&ll=8.15x10-7 11&~ = 1.43 x w-7 ll&ll=1.61x10-7 ll&ll=5.23x w-7 
eabs=2.57 x 10-4 ~abs=l.Ox J0-5 ~abs=2.51 X lQ-6 eabs=2.51 X lQ-6 
~;time<1 Cputime<1 Cputime<1 Cputime=1 

FE=28 NFE=20 NFE=20 NFE=20 

p.007 1" =0.07428351 r" =0.07 403623 ~" =0.07 402869 r" =0.07402869 
m=7 p1=4 lm=3 m=3 
llgll=8.35x1o-7 11&11 = 1.43 X 10-7 11&11=5.23x10-7 llgll=5.23x 10-1 
eabs=2.57 X 1Q-4 eabs=l.OxlQ-5 ~abs=2.51 X 10-6 eabs=2.51 X w-6 
~time<1 Cputime<1 Cputime<1 Cputime=1 

FE=32 NFE=20 ~FE=16 NFE=16 

p.oos =0.07428351 =0.07403623 ~~ =0.07 402869 "'=0.07402869 
m=5 m=4 lm=3 m=3 
M=8.4ox w-7 11&1=1.43x10-7 M=5.23x1Q-7 llg~ =5 .23 x w-7 
eabs=2.57 X lQ-4 eabs=l.OxlQ-5 ~abs=2.51 X 10-6 eabs=2.51 X lQ-6 
~utime<1 Cputime<l Cputime<1 Cputime=l 

FE=24 NFE=20 iNFE=16 NFE=16 

~.009 , .. =0.07428352 1" =0.07 403623 1" =0.07 402869 r" =0.07 402869 
m=4 m=4 lm=4 m=4 
ll&ll=8.19x w-7 11&~=1.41x10-7 II&II=L62x1o-7 11&11 = 1.62x w-7 
eabs=2.57 x 10-4 babs=l.OxlQ-5 ~abs=2.51 X 1Q-6 eabs=2.51 X lQ-6 
~time<1 ~utime<1 ~utime<1 ~putime=1 

FE=20 FE=20 E=20 NFE=20 

~).01 =0.07428351 1" =0.07403623 ~" =0.07 402869 , .. =0.07402869 
m=6 1m=4 1m=4 m=4 
llgll=8.15x10-7 11&11 = 1.40 x w-7 ll&ll=1.62x10-7 llgll = 1.62 x w-7 
eabs=2.57 X lQ-4 eabs=l.OxlQ-5 ~abs=2.51 X 10-6 eabs=2.51 X w-6 
~utime<l ~utime<l Cputime<1 Cputime=1 

FE=28 FE=20 iNFE=20 NFE=20 



TABLE (7.4.ll):Results of PR with varying ACC and K. 

ACC <1o-2 <Io-4 <I0-6 

K 
10 ~~ =0.05302645 lr"' =0.05302645 ~~ =0.05302644 

m=2 m=3 m=4 
llgl\=3.91 X lQ-3 11£11 = 1.14 x 1 o-5 ~gl\=l.SSxi0-7 
e=0.3 e=0.3 E=0.3 
eabs=0.0216030 eabs=0.0216030 ~abs=0.021603 
C_putime<1 Cputime<l Cputime<l 
NFE=12 NFE=I6 NFE=20 

lOO 1"'=0.07171019 "'=0.07171019 "'=0.07171019 
m=2 m=3 m=4 
llgll =5.29 X J0-3 11£11= 1.96 x 1o-6 11£11=8.47 x 10-8 
E=0.02 e=0.02 E=0.02 
eabs=2.92x J0-3 ~abs=2.92x w-3 eabs=2.92x Io-3 
Cputime<l Cputime<l Cputime<l 
~FE=I2 NFE=l6 NFE=20 

500 IT"' =0.07402869 ~"' =0.07402869 J"' =0.07402869 
f11=2 m=7 m=3 
l\gll=5.45x10-3 ll£11=2.90xi0-5 ll£11=5.23xi0-7 
e=0.007 e=0.002 e=0.007 
~abs=6.0 I x J0-4 ~abs=6.0 I X w-4 eabs=6.0 I X w-4 

~putime<l Cputime<l Cputime<l 
r"FE=12 NFE=33 NFE=I6 



TABLE (7.4.12):Results of PR with change in uo. 

uo m J" M eabs NFE eps Cputime 

-0.6 00 f.J.07 403014 2.42598 x w-:; 5.99x w-4 !2804 0.004 3 

-0.5 :>50 f.J.07403580 s.38615 x w-j 5.94x10-4 2204 0.004 2 

-0.4 300 f.J.07407081 1.31377x 10-L 5.59x I0-4 1204 u.004 1. 

-0.3 p50 0.07403020 2.59041 x 1 o-j p.99x 10-4 2204 u.004 2 

-0.2 300 0.07403763 6.04926x1o-j 5.92x 10-4 1204 u.oo~ 2 

-0.1 ~00 0.07403089 2.99524 x w-j 5.98 X J0-4 1604 U.003 2 

0.0 3 0.07402869 5.22767 X IQ-/ 6.01 xJ0-4 16 0.007 <1 



TABLE (7.4.13):Results of Hl with varying E and N. 

N 10 50 100 

=0.07428351 =0.07402869 
=8 =5 

=0.07403623 =0.07402869 
=4 =3 

M=8.35xi0-7 ll£~=1.43xi0-7 
abs=2.57 x lQ-4 abs=l.Ox lo-5 
putime<1 utime<1 
FE=32 FE=20 

200 

=0.07428351 =0.07402869 
=5 =3 

=0.07403623 =0.07402869 
=4 =4 

11£11 =8.15 x w-7 11£11 = 1.40x 1o-7 
abs=2.57x IQ-4 abs=l.Ox w-5 

utime<l utime<l 
FE=28 NFE=20 



TABLE (7.4.14):Results of HI with varying ACC and K. 

ACC $10-2 <w-4 <1o-6 

K 
10 ,~ =0.05302645 "'=0.05302645 ~"' =0.05302644 

m=2 m=3 m=4 
M=3.91x1o-3 llgll = 1.14 x w-5 ~g~=1.55x10-7 
e=0.3 e=0.3 e=0.3 
eabs=0.0216030 eabs=0.0216030 ~abs=0.021603 
Cputime<1 ~utime<1 Cputime<1 
NFE=12 FE=16 NFE=20 

100 "'=0.07171019 IJ"'=0.07171019 "'=0.07171019 
lm=2 m=3 m=4 
llgll=5.29x 1o-3 llgll= 1.96x 10-6 llgll =8.47 x 10-8 
e=0.02 e=0.02 e=0.02 
abs=2. 92 X JO-3 leabs=2.92x J0-3 eabs=2.92 x 1()-3 

Cputime<1 Cputime<l Cputime<l 
NFE=l2 NFE=16 NFE=20 

~00 "'=0.07402869 "'=0.07402869 ~ "'=0.07 402869 
~=2 ~=7 m=3 
llgll=5.45x w-3 llgll=2.90x 10-5 llgll =5 .23 x w-7 
e=0.007 e=0.002 e=0.007 
~abs=6.0 1 X J0-4 eabs=6.0 1 X J o-4 ~abs=6.0 1 x I0-4 

~putime<1 Cputime<l Cputime<l 
NFE=12 NFE=33 NFE=16 



TABLE (7.4.15):Results of Hl with change in uo. 

uo m 1" ~g~ eabs NFE ~ps Lputime 

-0.6 [700 p.07403014 ~.42598 x w-j ~.99x 10-4 2804 ~.004 3 

-0.5 f) 50 0.07403580 ~.38615 x w-5 5.94x 10-4 2204 p.004 fL 

-0.4 300 0.07407081 1.31377 x w-2 5.59x 10-4 1204 p.004 fL 

-0.3 f) 50 p.07403020 ~.59041 x w--' 5.99x 10-4 2204 p.004 2 

-0.2 300 0.07403763 r>.04926 x w-j 5.92x 10-4 1204 f-!.008 2 

-0.1 1400 0.07403089 ~.99524x J0-5 5.98 X 10-4 1604 KJ.003 2 

0.0 3 0.07402869 ~.22767 X 1 Q- I 6.01 X J0-4 16 p.007 <1 



TABLE (7.4.16):Results of ATH with varying e and N. 

N 10 50 

=0.07428351 =0.07403623 
=8 =5 

l\gl\=8.42x w-7 1\g\1= 1.43x w-7 
abs=2.57x 10-4 abs=l.Ox w-5 

utime<1 utime<1 
FE=38 FE=24 
=0.07428351 =0.07403623 
=6 =4 

1\g\1=8.15 X 10-7 1\g\1= 1.43x J0-7 
abs=2.57x J0-4 abs=l.OxJ0-5 
putime<l utime<l 
FE=28 FE=20 

=0.07428351 =0.07403623 
=7 =4 

l\g\1=8.35x 1o-7 l\gl\=1.43x!0-7 
abs=2.57x J0-4 abs=l.Ox w-5 
putime<1 Cputime<1 
FE=32 FE=20 

=0.07428351 "'=0.07403623 
=5 =4 

l\g\1=8.40x10-7 M=1.43xJ0-7 
abs=2.57 X w-4 abs=l.Ox to-5 
putime<1 utime<l 
FE=24 =20 

=0.07428352 
=4 

l\gi\=8.J9x 10-7 1\g\1= 1.41 X IQ-7 
abs=2.57 x IQ-4 abs=l.Ox to-5 

utime<1 Cputime<1 
FE=20 FE=20 

=0.07428351 =0.07403623 
=6 =4 

M=8.15x 10-1 1\g\1= 1.40x I0-7 
abs=2.57 X lQ-4 abs= 1.0 X 1 o-5 
putime<l utime<l 
FE=28 =20 

100 200 

=0.07402869 =0.07402869 
=5 =4 

~g\\=1.71x10-7 l\gl\=1.61x10-7 
abs=2.51 X IQ-6 abs=2.51 X J0-6 

utime<1 Cputime=1 
FE=24 FE=20 
=0.07402869 =0.07402869 
=4 =3 

~g\1=1.61x10-7 l\gl\=5.23x!0-7 
abs=2.51 x1o-6 abs=2.51 x 10-6 

utime<1 Cputime=1 
FE=20 FE=20 

=0.07402869 =0.07402869 
=3 =3 

l\gl\=5.23x10-7 l\gl\=5.23x10-7 
abs=2.51 X w-6 abs=2.51 X 1 o-6 

Cputime<1 Cputime=1 
FE=16 FE=16 

=0.07402869 "'=0.07402869 
=3 =3 

l\gl\=5.23x10-7 l\gl\=5.23x10-7 
abs=2.51 X J0-6 abs=2.51 X J0-6 

Cputime<1 putime=1 
FE=16 FE=16 

=0.07402869 "=0.07402869 
=4 =4 

l\gl\=1.62x10-7 l\gl\=1.62x10-7 
abs=2.51 X w-6 abs=2.51 X 10-6 

Cputime<1 Cputime=l 
FE=20 NFE=20 

=0.07402869 =0.07402869 
=4 =4 

1\g\1 = 1.62 x 10-1 \\g\1 = 1.62 x 1o-1 
abs=2.51 X I o-6 abs=2.51 X I o-6 

Cputime<l Cputime=l 
FE=20 NFE=20 



TABLE (7.4.17):Results of ATH with varying ACC and K. 

ACC <1o-2 <1o-4 <1o-6 

K 
10 ~~ =0.05302645 ~"' =0.05302645 ~"' =0.05302644 

im=2 lm=3 m=4 
[[g[[ =3.91 X IQ-3 M=1.14xiQ-5 ~g~ = 1.55 X IQ-7 
E=0.3 E=0.3 E=0.3 
~abs=0.0216030 eabs=0.0216030 eabs=0.021603 
~utime<l Cputime<l Cputime<l 

FE=l2 NFE=l6 NFE=20 

lOO r"'=0.07171019 "'=0.07171019 "'=0.07171019 
im=2 m=3 m=4 
[[g[[=5.29x IQ-3 [[g[[= I.96x 10-6 [[g[[ =8.47 x w-8 
E=0.02 E=0.02 E=0.02 
Fabs=2.92x IQ-3 eabs=2. 92 x IO-3 eabs=2.92x w-3 
~putime<l Cputime<l Cputime<l 
INF£=12 NFE=16 NFE=20 

500 ~~ =0.07402869 "'=0.07402869 "'=0.07 402869 
im=2 m=7 m=3 
M=5.45x1o-3 [[g[[=2.90x ]Q-5 [[g[[ =5.23 X )Q-7 
E=0.007 E=0.002 E=0.007 
abs=6.Q 1 X IQ-4 eabs=6.0 1 X ]Q-4 eabs=6.0 I X w-4 

Cputime<l Cputime<1 Cputime<1 
NFE=12 NFE=33 NFE=16 



TABLE (7.4.18):Results of ATH with change in uo. 

uo m J~ llgll eabs NFE FPS Cputime 

-0.6 '700 ().07403014 l2.42598x lQ-5 5.99x lQ-4 fl8U4 ~.004 3 

-0.5 ,'550 0.07403580 ~.38615x lQ-J 5.94x 10-4 12204 ~.004 2 

-0.4 300 0.07407081 1.31377 X 10-L 5.59x 10-4 1204 p.004 2 

-0.3 D50 0.07403020 ~.59041 X lQ-3 5.99x 10-4 12204 p.004 ~ 

-0.2 300 u.07403763 ~.04926 X J0-3 5.92x lQ-4 1204 p.008 2 

-0.1 ;'100 u.07403089 12.99524 X J0-5 5.98 X I0-4 1604 p.003 2 

0.0 3 u.07402869 ~.22767 X J0-1 6.01 X J0-4 16 ~.007 <1 



TABLE (7.4.19):Results of H3 with varying e and N. 

N 10 50 100 200 
E 

~.003 ,~ =0.07428351 !T~ =0.07403623 ~~ =0.07402869 ,~ =0.07402869 
m=8 ~=5 ~=5 ~=4 
\\&\\ = 8.42 x w-7 \\&\\ = 1.43 x w-7 \\&\\ = 1.11 x 1o-1 J\g\\=1.61xi0-7 
eabs=2.57 X 10-4 ~abs=l.Ox 1o-5 f!abs=2.51 X IQ-6 ~abs=2.51 X 1 o-6 
~utime<1 Cputime<1 Cputime<1 Cputime=1 

FE=38 ~'FE=24 ~FE=24 ~FE=20 
~).006 =0.07428351 !r+=0.07403623 ~"=0.07402869 "=0.07402869 

m=6 ~=4 ~=4 m=3 
J\g\l=8.15x1o-7 llgll = 1.43 x 1o-1 llgll = 1.61 x 1o-1 J\g\\=5.23xlo-7 
eabs=2.57 X J0-4 ~abs=l.Ox1o-5 ~abs=2.51 X 1 o-6 ~abs=2.51 X 10-6 
C)utime<1 ~utime<1 Cputime<1 Cputime=1 
NFE=28 NFE=20 [NFE=20 [NFE=20 

~.007 I" =0.07428351 ~· =0.07 403623 ~"=0.07402869 'I" =0.07402869 
m=7 ~=4 ~=3 ~=3 
\\&l\=8.35xi0-7 \\g\\ = 1.43 x 1o-1 \\&\\=5.23x10-7 \\g\\ =5 .23 X I0-7 
eabs=2.57 X I0-4 ~abs=l.Ox w-5 ~abs=2.51 X 10-6 eabs=2.51 X 10-6 
~utime<1 Cputime<l Cputime<1 Cputime=1 

FE=32 INF£=20 NFE=16 ~FE=16 

~.008 =0.07428351 ~" =0.07 403623 ~~ =0.07 402869 ,~ =0.07 402869 
m=5 ~=4 ~=3 m=3 
~g\J =8.40x w-7 \\g\\ = 1.43 x w-7 l\g\J=5.23xi0-7 M=5.23xio-7 
eabs=2.57 X 10-4 ~abs=l.Ox w-5 Fabs=2.51 X 1 o-6 ~abs=2.51 X 10-6 
~_putime<1 Cputime<1 Cputime<1 Cputime=1 
~FE=24 INFE=20 iNFE=16 iNFE=16 

~.009 =0.07428352 ~"' =0.07 403623 ~~ =0.07402869 1"' =0.07 402869 
frl=4 ~=4 ~=4 ~=4 
l\g\\=8.19x1o-7 \\&\\= 1.41 x 1o-1 \1&11 = 1.62x w-7 llg\J = 1.62x IQ-7 
~abs=2.57 x IQ-4 f!abs=l.Ox1o-5 Fabs=2.51 X 1o-6 Fabs=2.51 X 1o-6 
~putime<1 Cputime<1 Cputime<1 Cputime=1 
IN'FE=2o !N'FE=2o NFE=20 ~FE=20 

0.01 =0.07428351 ~~ =0.07 403623 ~· =0.07 402869 ,~=0.07402869 

~=6 
JJgJJ=8.15x w-7 

~=4 
J\g\J = 1.40 x 1o-1 

Jm=4 
1\gl\ = 1.62 x w-7 

Jm=4 
J\g\J= I.62x 10-1 

~abs=2.57 X 1 o-4 Fabs=l.Ox w-5 Fabs=2.51 X 1o-6 eabs=2.5J X J0-6 
~utime<l ~utime<l Cputime<1 Cputime=l 

FE=28 FE=20 [NFE=20 ~FE=20 



TABLE (7.4.20):Results of H3 with varying ACC and K. 

ACC ~10..:2 <Io-4 <w-6 
K 

10 ~" =0.05302645 ~" =0.05302645 =0.05302644 
~=2 ~=3 m=4 
llgll=3.91 x w-3 llgll= 1.14x 1o-5 M=1.55xi0-7 

£=0.3 e=0.3 £=0.3 
~abs=0.0216030 Fabs=0.0216030 leabs=0.021603 

~uti me <I Cputime<1 Cputime<l 
FE=12 NFE=l6 NFE=20 

lOO '"=0.07171019 lr" =0.07171 019 ~"=0.07171019 
~=2 m=3 m=4 

llgll=5.29x ro-3 llgll = 1. 96 x 1 o·6 llgll =8.47 x w-8 

£=0.02 £=0.02 £=0.02 
leabs=2.92x w-3 leabs=2. 92 x JO· 3 eabs=2.92x ro-3 

~time< I Cputime<l Cputime<l 
FE=12 NFE=16 NFE=20 

pOO =0.07402869 "=0.07402869 • =0.07402869 
m=2 m=7 m=3 
llgll=5.45x w-3 ll£11=2.90x J0·5 llgll =5.23 x ro-7 
£=0.007 £=0.002 £=0.007 

leabs=6.0 I X ro-4 leabs=6.0 I x 10·4 eabs=6.0J X J0-4 

jCputime<1 Cputime<l Cputime<l 
INFF:=12 NFE=33 NFE=l6 



TABLE (7.4.21):Results of H3 with change in uo. 

uo m J"' llg~ eabs NFE ~ps Cputime 

-0.6 700 p.07403014 ~.42598 X 1Q·5 ~.99x 10·4 .o804 0.004 3 

-0.5 550 p.07403580 ~.38615x w-j ~.94x IQ-4 2204 0.004 2 

• 0.4 300 p.07407081 1.31377 x 1 o<L 5.59x IQ-4 1204 0.004 2 

-0.3 550 p.07403020 ~.59041 x w-:; S.99x 10·4 12204 0.004 2 

-0.2 300 ~.07403763 ~.04926x IQ-5 5.92x 10·4 1204 0.008 2 

-0.1 400 ~.07403089 ~.99524 x 1 o-:; 5.98 X J0-4 1604 0.003 2 

0.0 3 p.07402869 ~.22767 X JO· I p.OI X J0-4 16 0.007 <1 



Table (7.5.J):SU.,.,..Q,..1 tC4\>lc. t .... tl,., S"evcto\ •etol,.c.ls 

~'V GFS SD I FR I PR I HI I ATH I H3 I 
,. = 0.07402869 ,. = 0.07403014 ,. = 0.07403014 ,. = 0.07403014 ,. = 0.07403014 ,. = 0.07403014 ,. = 0.07403014 
m= 891 m=700 m=700 m=700 m= 700 m=700 m=100 

-0.6 
181 = 8.00283x 10-7 

lcl= 2.42598 x1o-3 hi= 2.42598 xlo-3 Id= 2.42598 xw-3 I cl= 2.42598 xJ0-3 I ell= 2.42598 xJ0-3 181 = 2.42598 xi0-3 

eab, = 6.0lx 10-4 eab, = 5.99 x 10-4 eu, = 5.99 xl0-4 ea/11;:: 5.99 xw-4 eab, = 5.99 xl0-4 eab, = 5.99 xl0-4 eab, = 5.99 xl0-4 
e = 0.008 e = o.oo4 e= 0.004 e= 0.004 6= 0.004 e = 0.004 • = 0.004 
NFE= 892 NFE• 2804 NFE= 2804 NFE=2804 NFE =2804 NFE= 2804 NFE = 2804 

· Cputime= I Cvutime= 3 ~ulime=3 Cvutime= 3 C[!utime= 3 I U,utime = 3 C[!utime= 3 
,. = 0.07402869 ,. = 0.07403580 ,. = 0.07403580 ,. = 0.07403580 ,. = 0.07403580 ,. = 0.07403580 ,. = 0.07403580 
m =912 m= 550 m= 550 m= 550 m= 550 m= 550 m= 550 

-0.5 lci= 91989 xi0-7 hi= 5.l8615 xi0-3 181 = 5.l8615 x10-3 1811 = 5.38615 xi0-3 181 = 5.38615 xw-3 Jell= 5.l8615 xi0-3 
le!= 5.l86 xW

3 

eab, = 6.01 xl0-4 eab, = 5.94 xl0-4 eab, = 5.94 xi0-4 tabs= 5.94 xi0-4 eab, = 5.94 xl0-4 eab, = 5.94 xto-4 eab, = 5.94 xl0-4 
e = 0.008 • = 0.004 6= 0.004 • = 0.004 •= 0.004 • = 0.004 •= 0.004 
NFE=918 NFE=2204 NFE= 2204 ~~·2204 NFE =2204 NFE=2204 NFE =2204 

I ~utime= 1 ~time=2 Cputime=2 time=2 Cputime:::: 2 J O.utime = 2 C,eutime=2 
,. = 0.07402869 ,. = 0.07407081 ,. = 0.07407081 ,. = 0.07407081 ,. = 0.07407081 ,. = 0.07407081 ,. = 0.0740l7081 
m= 810 m=300 m= 300 m= 300 m= 300 m=300 m= lOO 

-0.4 181 = 6.27786 xw-7 lcl= l.lll77 xw-2 hi= 1.l1l77xW2 Jg~ = l.lll77x10-2 JgJ= l.lll77x10-2 lcll= l.lll77x10-2 lcl= J.l1l77x10-2 

eob, = 6.01 xl0-4 eab, = 5.59 xl0-4 eab, = 5.59 xto-4 eabl = 5.59 xto-4 eab, = 5.59 xto-4 e(Jb, = 5.59 xi0-4 eab, = 5.59 xi0-4 
E• 0.008 • = 0.004 • = 0.004 e= 0.004 • = 0.004 • = 0.004 • = 0.004 
NFEz 811 NFE = 1204 NFE = 1204 NFE= 1208 NFE = 1204 NPE= 1204 NFE = 1204 I a;;.;.,.= I I C:;;utime = 2 9>1>time =2 ! Cb~time = 2 Coutime= 2 1 ~~time=2 C(!utime =2 
,. " 0.07402869 ,. = 0.07403020 ,. = 0.0743020 ,. = 0.07403020 ,. ; 0.0740l020 ,. = 0.0740l020 ,. = 0.0740l020 
m•845 m • 550 m= 550 m= 550 m= 550 m= 550 m= 550 

-0.3 JgJ = l.64625 xJ0-7 I cl= 2.59041 x10-3 le I= 2.59041 xJ0-3 Id= 2.59041 x10-3 lcl= 2.59041 xJ0-3 Id= 2.59041 xw-3 le I= 2.59041 xi0-3 

ea~~,= 6.01 xto-t eab, = 5.99 xto-4 eab, = 5.99 xto-4 eab, = 5.99 xl0-4 eab, = 5.99 xto-4 eab' = 5.99 xto-4 eab, = 5.99 xl0-4 
E• 0.008 •= 0.004 E• 0.004 6=0.006 £ = 0.004 6=0.004 • = 0.004 
NFEz 846 NFE= 2204 NFE = 2204 NFE=2204 NFE= 2204 NFE= 2204 NFE= 2204 

I Cputime•l Cputime= 2 I Cputirne = 2 I Q;utime = 2 CP:utime=2 Cputime=2 CP:utime=2 
,. = 0.07402869 ,. = 0.0740l76l ,. = 0.0740l76l ,. = 0.0740l76l ,. = 0.0740l76l ,. = 0.0740l76l ,. = 0.0740l76l 
m•817 m • 300 m= lOO m=lOO m= lOO m=300 m= 300 

-0.2 le I= l.64625 xJ0-7 le 1 = 6.04926 x1o-3 lcl= 6.04926 x10-3 Id= 6.04926 xi0-3 I cl= 6.04926 xJ0-3 le~= 6.04926 x1o-3 Jg I= 6.04926 X w-3 

ea~,= 6.01 xto'""' eab, = 5.92 xto-4 eab, = 5.92 xto-4 eab, = 5.92 xto-4 eab, :;: 5.92 xl0-4 eab, = 5.92 xl0-4 eab, = 5.92 xto-4 
£•0.008 e = 0.008 E= 0.008 • = 0.008 6 = 0.008 6=0.008 • = 0.008 
NFE•818 NFE= 1204 NFE= 1204 NFE=1204 NFE= 1204 NFE= 1204 NFE = 1204 

, Ct>utime = I Cputime = 2 Ct>utime=2 Cputime=2 Cputime=2 Cputime=2 CQutime=2 
J' = 0.07402869 ,. = 0.0740l089 ,. = 0.0740l089 ,. = 0.07403089 ,. = 0.0740l089 ,. = 0.0740l089 ,. = 0.0740l089' 
m• 815 m=400 m=400 m:::400 m=400 m=400 m=400 

-0.) lci= 8.l9578 xw-7 JgJ= 2.99524 x!0-3 I cl= 2.99526 x10-3 Jg~= 2.99524 x1o-3 I cl= 2.99524 xJ0-3 !cl= 2.9952 xw-3 Jg 1 = 2.9952 x w-3 

eM, = 6.01 xl0-4 eab, = 5.98 xto-4 eob, = 5.98 xto-4 eab, = 5.98 xto-4 eab, = 5.98 xi0-4 eab, = 5.98 xl0-4 eab, = 5.98 xl0-4 
E = 0.008 •= O.OOl 6= O.OOl • = O.OOl 6 = 0.003 6=0.00l 6 = O.OOl 
NFE• 816 NFE = 1604 NFE= 1604 NFE= 1604 NFE= 1604 NFE= 1604 NFE= 1604 

I O,~me= 1 Q>utime= 2 Cputime= 2 'Ct>utime = 2 CP:utime=2 Coutime=2 CEutime=2 
o.o ,. = 0.07402869 1' = 0.07402869 ,. = 0.07402869 J' = 0.07402869 ,. = 0.07402869 ,. = 0.07402869 ,. = 0.07402869 

m=7 m=3 m=3 m =3 m=3 m=3 m=3 
181= 7.04S71 xw-7 lcl= 5.22767 xlo-7 I cl= 5.22767 x10-7 Id= 5.2276 xJ0-7 I cl= 5.22767 x!0-7 I ell= 5.22767 xl0-7 JgJ = 5.22767 xw-7 

eob, = 6.01 x104 
e01u = 6.01 x10-4 eob, = S.94 xl0-4 eofll = 6.01 xlo-4 ellb, = 6.01 xi0-4 eab, = 6.01 xto-4 ellb, = 6.01 xi0-4 

-"""' -"~' l,,noo7 e 0.007 I 
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Chapter 8 

PROBLEM 5 

8.1 A nonlinear continuous stirred tank reac-

tor 

Here we consider the numerical solution of a nonlinear continuous stirred 

tank reactor. 
This physical system was at first modelled by Aris and Amundson (1958) 

[145] to [147] and then used for optimal mntrol studies by Lapidus and Luss 
(1967) [148], and by Luss and Connack (1972) [149]. Luss and Connack sug
gested that, since the example that is dwsen is a model of a physical system, 
one must be aware of the possibility of more than one solution to he necessary 
oonditions for optimality, even when optimizing real engineering syst.ems. To 
ensure that the global optimum has been reached, they recommended that 
the optimal control problem be solved not only by choosing several vastly 
different initial oontrol policies, but by also cross-checking the final results 
by a different optimization procedure altogether. 

The equations describing the chemical reactor are g,iven by; 

f - . - (2 )( 0 20) ( 0 "") [ 25:x;l ] I - X! - - + lL X! + . d + X 2 + .. J exp , , x2 +2 
:x:, (0) = 0.09, 

(8.1.1) 

_ .. _ "- (" "-) . [ 25x, ] h - x2 - O.v - X2 - .1.2 + O.v exp 
2 

, x,+' 
:rdO) = O.OfJ, 

h = :h = :r:~ + :r.~ + 0.1u2
, :r:a(O) = 0.0, 

where, 
x1 = deviation from dimensionless steady state temperature, 
x2 = deviation from dimensionless steady state c.oncentration, 

t1 = final time, 
u = Control Variable. 

(8.1.2) 

(8.1.3) 

The optimal control process is to choose the control ·u in the time interval, 

0 ~ t ~ t1 to minimize, 
(8.1.4) 

where the final time t 1 = 0. 7R. 



The Hamiltonian for this problem is, 

a 
H - 2:.>-;J;, 

i=l 

>-d1 + >-2!2 + >.a fa, 

- AI [-(2 + u)(:r:l + 0.25) + (x2 + 0.5) exp C~5:12)] 
- +>-2 [o.5- :x:2 - (x2 + 0.5) exp ( ~S:r: 1 

)] 
:1.1 + 2 

(8.1.5) 

- +>-a [:c~ + x~ + O.lu2
]. 

The adjoint equations are, 

with, 

i.e., 

(8. l.G) 

(8.1.7) 

(8.1.8) 

with, 

>-1(t1) = ..}!-cxa(t1 ))\ = o, 
o:1:1 t=t1 

(8.1.9) 

>.2(t1) = "a (xa(t1))\ = 0, 
o:r:2 t=t1 

(8.1.10) 

(8.1.11) 



8.2 Numerical Solutions 

8.2.1 The state and adjoint equations 

The state equations are: 

x 1 - fi = -(2 + u)(x1 + 0.25) + (x2 + 0.5) exp [x~5:12] , XJ(O) = 0.09 

/2 = 0.5- x 2 - (x2 + 0.5) exp [x~5:12] , 

X3 - /3 =X~ +x~ +0J'IL2
, 

~;2(0) = 0.09 

~:3(0) = 0.0. 
(8.2.1) 

Using the Runge-I<utta 4th order method for numerical solution of (8.2.1) 
we get, 

1 
XJ,n+l - ~:l,n + G('u1 + 2'U.2 + 2'1L3 + '1L4), 

1 
~:2,,.+1 ~:2, .. + G (vi + 2v2 + 2va + '114), 

1 
:1:3,,.+1 - .1:3,,. + G (wi + 2w2 + 2w3 + 'W4), 

where, 

'ltJ hf1 (xl,n• :r:2,u. 1 a:3,u.) = h { -(2 + u,)(:!:J,u. + 0.25) 

( ") [25xl "] } + X2,n + 0.'-l exp ' , 
Xt,n+2 

- 1 f ( . . ) _ 1 { c ( c) [25xt,u]} VJ - L 2 XJ,,., :1.2,,., X3,n - /, O . .J- X2,n- X2,n + O.d exp ' ' 
Xt,n+2 

'WJ = hfg(.TJ,n,.1:2,n 1 ~:3,n) = h [:~:t,. + ~:~,,. + 0.1u~], 



1 1 1 
W2 h/3(x1,n + 2U11 X2,n + zv" X2,n + zw1)1 

- h [(x!,n + ~u,) 2 + (x2,n + ~vi)2 + O.lu~] 1 

U4 - hft(x!,n + 'l/.3~·T.2,n + V31.1:3,n + Wa)~ 
- h { -(2 + 'lt.,,)(x,,,. + '1!3 + 0.25) + (:r:2,n + 'lla + 0.5) 

[ 
25(x,,,. + ·u.a) ] } 

exp( )' 1 X!,n + 'IL3 + 2 

V4 - hh(x!,n + U31X2,n + '113,.1:3,n + 'W3)1 

{ [ , ] [ , c] [ 25(.7:!,n + 1t3) ] } 
- h 0.5 - X2,n + V3 - :r.2,n + '113 + O.u exp ( ) 1 

X!,n + '11.3 +2 

W4 hfa(x,,,. + ua,X2,n + 'lla1Xa,n + '1113)1 

h { (x,,,. + '1!a)2 + (x2,n + va) 2 + O.lu~,} . 
The a<ljoint equations are: 

.).1 = ft = -.A1 [ -(2 + u) + (.r.2 + 0.5) (x, ~ 2)2 e;;~·2 ] 
+.A2 [(x2 + 0.5) ( 

50 ) 2 e;;~·2 ] - 2-Aa:r:~, 
x, +2 

>.2 h = -.A,e;;~~ - .A2 [-1- e;;~~] - 2.Aa:r:2 1 

Aa - fa= 0, .Aa(t,)=l. 
(8.2.2) 



Using the Runge-Kutta 4th order method for numerical solutions of (8.2.2) 
we get, 

1 
At,n = At,n+l + G {kt + 2k2 + 2kg + k4}, 

1 
A2,n = A2,n+1 + G {zt + 2z2 + 2zg + Z4}, 

1 
A3,n = A3,n+l + G {Yt + 2y2 + 2y3 + 1/4} , 

where, 

Zt -hh(At,n+l>A2,n+l>A3,n+l), 

- -h {-Al,n+le:;~~~~~";.~- A2,n+1 ( -1- e;:·~:;;";.',) 
- 2Aa,n+ 1 :z:2,n+2} , 



8.3 Results and Discussion 

Here before presenting the results, it is worth mentioning that this problem 
was found to have two distinct loc~'\l minima and this was confirmed when 
all the seven different c.onjugate gmdients and hyhri<l conjugate gmdient 
methods were tested. 

In most cases when 'tto was selected in 1.0 :::; 141 :::; 1.8, the optimal .J* 
converged to one of the minima and when 11o wa.~ selected in 2.0 :::; '141 :::; 3.0 
it converged to the other one. 

8.3.1 Gradient method 

The algorithm for the gradient. in function space applie<l to problem 5 is the 
same a.~ that described in dw.pter 4 section 4.4.1. Here, 

g = -.\1 (:z: 1 + 0.25) + 0.2.\a·u .. 

The efficiency of the method is examined by varying the critical parameters, 
E, N and 11Q. Here the stopping conditions are taken as Ace (:::; 10-2

,:::; 10-4 

and :::; 10-6 ), also the best Ace possible for each md.hod, throughout this 
chapter. 

Table (8.3.1), shows the effect of E and N in obtaining tlH~ best optimal J 
with no= 1.4, which is the hest starting controL Till~ hest J' obtained was 



0.24446096 to 8 decimal places, with 11!111 = 7.840 x w-7 mtd the correspond
ing parameter values, f = 4.0, N = 78, or N = 156 and m = 18. Choosing 
f in the range 1.0 ::::; f ::::; 4.0, produced consistent results for N, suffieiently 
large, i.e., 78. For N = 40, the stopping condition of ::::; 10-6 was satisfied 
for f = 1, 2, and 3, but not for f = 4 and 5, provided enough iterations were 
carried out. and finally for N too small, say 10, numerical instability occurs. 

Similarly Table (8.3.2), shows the effect off and N in obtaining the second 
local minimum. Here by taking the best initial control u0 = 2.0, the best 
J' obtained was 0.13327228 to 8 decimal places, with II!JII = 7.168 X 10-3 

and the corresponding parameter values f = 0.17, N = 78, or N = Hi6 ilild 
m = 95. Choosing f in the range 0.1 ::::; f ::::; 0.17, along with sufficient 
large N, say, 78, can produce consistent results with the hest possible Ace 
(:::0 7.2 x 10-3 ), that can be obtained. By taking f too large say, 0.18 or 0.2, 
even when the number of iterations are increased after a certain amount no 
improvement on J' is obtained. For smaller N's say 40 and 10, their hest 
Ace can be achieved with f = 0.16. Here selecting N as 1fiG as oppose<! to 
78 may result in slightly better minimum .J* for some f's hut at the mst of 
more computing time. 

Tables (8.3.3), (8.3.4) (8.3.fi) mul (8.3.G), show the effect of 'lln on .J', 
when the best N is selected, i.e., N = 78, for Ace ::::; 10-2 ,::::; 0.072 and 
::::; 10-6• Here the best Ace that we could achieve for some 'lln 's in the range 
2.0 ::::; 110 ::::; 3.0 was Ace ::::; 0.0072. 

From Tables (8.3.3), (8.3.fi) and (8.3.G), it can he seen that taking '11(> in 
the range 1.0 ::::; 11{) ::::; 1.8, produces fairly similar resnlt.s in achieving the 
optimal J, for the first local minimum with the required Ace's. It can be 
seen from the tables that selecting u0 = 1.4, in most ca.qes, can lead to a 
better minimum J' with a better Ace than other starting controls. 

From Tables (8.3.3) and (8.3.4), it can be seen that when un is in the 
range 2.0 ::::; u0 ::::; 3.0, selecting 11{1 = 2.0, can lead to a better minimum .J', 
with a better Ace in fewer iterations, for the second loc.alminimum. Various 
aspects of the effect of critical parmneters are shown graphically in Figures 
(8.3.1) to (8.3.8). Figure (8.3.1), effect of m on ·u, with m= 0, 2 imd 18, for 
N = 78, u0 = 1.4 and f = 4.0. As can be seen there are minor clifferences 
between the curves of m= 2 and m = 18. Figure (8.3.2), effect of N on 
u, with tl{) = 1.4, N = 40 and 78 respectively, with their best corresponding 
(€,m) as (2.0, 36) and (4.0, 18). As can be seen there is a little difference in 
the curvature of the plots, between N = 40 m1d N = 80. 

For N = 78, at approximate time of 0.1fi, the slope of the curve is down
ward for the rest of the time, where as for N = 40, at the approximate time 
of 0.18, the slope of the curve goes up, until approximate time of 0.2, and 
then, it comes down steady, similar to the curve of N = 78. 

Figure (8.3.3), effect of € on u, with f = 4.0 and fi.O, with N = 78, 'llo = 1.8 
and m= 5.0. 

Here, we can see some differences, between the curvature, behaviour of 
f = 4.0 and f = 5.0, but the pattern of behaviour are fairly similar. 

Figure (8.3.4), effect of ·no on optimal J with '!to= 1.0, 1.4 ami 1.8, where, 
N = 78 m1d f = 4.0. As can be seen from the plots, as 'In, increMes, the 
value of optimal J for all staring controls cmwl~rg,es to th" same value. 

Figure (8.3.5), effect of m on n, with m.= 1, 20 all< I !JG, with n0 = 2.0, f = 

138 



0.17 and N = 78. As rn increases, the curve of control tends steady towards 
zero, along time axis. 

Figure (8.3.6), effect of N on control, with tl{] = 2.0, N = 10 and 78, 
respectively, with their best corresponding (€, m) as (0.16, 103) and (0.17, 
95). As can be seen from the graphs, the behaviour of the curves are fairly 
similar, apart from the fact that with N = 78, the curve of u, started at. 
approximately, u = 4.4, where as with N = 10, it started at u = 3.4. 

Figure (8.3.7), effect of € on u, of using € = 0.17 and 0.2, with N = 
78, u0 = 2.0 and m = 5. The behaviour of the curves, for both € = 0.17 and 
€ = 0.2, are fairly similar, with the exception that, from approximate time of 
0.1, onwards the slope of curve of € = 0.2 is nf:'.'lrer to zero, then the slope of 
€ = 0.17. Figure (8.3.8), effect of 110 on optimal.!, with 'Uo = 2.0, 2.4 and a, 0, 
where N = 78 and € = 0.17. Here also as m increases the value of optimal J 
for all starting controls converges towards the same value. 

In view of the above results, for both the local minimas, the correct 
choice of initial control can give a better .J', with a more accurate Ace. The 
interaction between € and N, shows that for the first local minima, the hest 
combination exists, with fairly large €, and sufficiently large N, i.e., f = 4.0 
and N = 78. Also here for t.he first local minima, taking 11{1 in the range 
1.0 ::; 11o() ::; 1.8 could produce consistent results even for higher accuracy of 
Ace::; 10-6

• 

For the second local minima, the best combination for achieving optimal 
J' is with small € and sufficiently hu·ge N, i.e.,€ = 0.17 and N = 7S. But 
for this minima, although for lower accuracy of, Ace ::; 10-2

, taking u0 in 
the range 2.0 ::; 11o ::; 3.0, could produce consistent results, hut. for higher 
Ace ::; 0.0072, not all the u0 's in that range oould achieve it, so it shows that 
special care should be taken, in select.ing the initial control for higher Ace. 

8.3.2 Steepest descent 

The algorithm for steepest descent applied to the problem 5 is the same as 
that given in chapter 2, sect.ion, 2.2.2. The line search techniques used for 
this method is linear search at constant step, which was clescribed in dmpter 
3, section 3.4.1. 

Here again we investigate the effect of step length faetnr, integmtion step 
and initial control in the solution. 

Table (8.3. 7), shows the effect of € and N in achieving the optimal J, 
with tl{] = 1.0, which is the best starting control to obtain this. The best J' 
was fotmd to be 0.24446096 to 8 decimal places, with ll!!ll = 3.053 x 10-7

, 

and the corresponding pararneter values, < = 6.0, N = 78 or 156 and m = 
18. Choosing € in the range a.O ::; € ::; 6.0, can produce consistent results, 
providing N is sufficiently large, i.e., 78. With N small, i.e., 40 taking <, 
relatively smaller, say 3.0, would produce consistent results, hut when < is 
taken larger, there would be no more improvement in J, after a few iterations. 
Also, when N is too small, say, 10, numerical instability occurs. Similarly 
Table (8.3.8), shows the effect of € and N, in obtaining the set~md local 
minimum. By taking the hest initial control ·no = 2.4, th~ hest. minirmun .J' 
obtained, was 0.13317500 to 8 decimal places, with ll!!ll = 3.4S3 x w-7

, ancl 
the corresponding parameter values, f = 0.5, N = 78 or 15() allC) m, = 7G. 



Here for N large, say 78, taking <' as 0.5, produces the best optimal J*, in 
fewer iterations with a better Ace. For relatively smaller N, i.e., 40, taking 
f in the range 0.1 ::; f ::; 0.6, can produce consistent results. But when N is 
too small say, 10, it results in numerical instability. Here also selecting N as 
156 as opposed to 78 may result in slightly better minimum .J* for some f.'s 
but at the cost of more computing time. 

Tables (8.3.9), (8.3.10) and (8.3.11), show the effect of Uo on J*, when 
the best N is selected, i.e., N = 78, for Ace ::; 10-2

, Ace ::; 10-4 and Ace 
::; 10-6• From Table (8.3.9), it can be seen that when u0 is in the range 
0.9::; Uo ::; 1.8, to obtain Ace ::; 10-2

, selecting U0 = 1.4, results in a. better 
minimum J*. 

Also when Uo is selected in the range 2.0 ::; u0 ::; 3.0, we get two different 
sets of results, for Ace ::; 10-2

, i.e., taking 2.0 ::; u0 ::; 2.4 results in finding 
the second local minimum and taking 2.6 ::; u{1 ::; 3.0, results in finding t.he 
first local minimum. 

Table (8.3.11), shows that for better accuracy, i.e., Ace::; w-<;, the best 
starting control in order to find the best first local minimum .J* in fewer 
iterations can be selected as 1.0, also in order to find the second optimal 
local minimum J*, the best starting control can be selected as u 0 = 2.4. 
Here we can also see that some stmting eontrols would fitil to achieve this 
Ace. 

Various aspects of the effect of m, N, <' and uo are shown gTaphically in 
Fig11res (8.3.9) to (8.3.16). Figure (8.3.9), effect of ·1n on u, with rn = 0,2 
and 18, where N = 78, u0 = 1.0 and <' = 6.0. Here as can be seen from the 
graphs, there are some minor differences, between the curves of m = 2 and 
m= 18, but, the pattern of the curvature for both are fairly similar, with 
the difference that, for m = 18, the finishing toudt is u = 0 at time 0. 78, 
where as for m= 2, it, gets near to it, but does not quite touch it. 

Figure (8.3.10), effect of Non u, with N = 40 ;md 78, nespectively, with 
their best corresponding parmneters, <' = 3.0, m = 43 aml <' = 6.0, m = 18 
where Uo = 1.0. Here also, the pattern of the curves get. more similar as time 
increases, and there are some differences in the early stages of time, as can 
be seen from the curves. Figure (8.3.11), effect of<' on <xmtrol, of using step 
length factors, <' = 6.0 and 7.0, with, N = 78, u0 = 1.0 and m = 2. Here 
also, some differences can be observed from the curves, between f = 6.0 and 
<' = 7.0, but generally the behaviour of the curves are similar, with some 
minor differenc.es, e.g., at time 0.78, the curve of control for<'= 6.0 is nem·er 
to zero than, that of<' = 7.0. 

Figure (8.3.12), effect of un on optimal .J with '1/.o = 1.0, 1.4 aml 1.8 
respectively, with their best. corresponding c's of 6.0, 6.0 an<l5.0 and N = 78. 
As can be seen from the graph, by increa.~ing m, the value of optimal .J, for 
all starting controls, converges to the same one. 

Figure (8.3.13), effect of m on u, with rn = 0,10 and 76, wher·e m = 
78, u0 = 2.4 and f = 0.5. As can be seen as rn increases, the slope of the 
curve of control is downward, towards zero. 

Figure (8.3.14), effect of N on u, with N = 78, f = 0.5, m = 26 <m<l 
N = 40, t = 0.3, m= 76 where u.0 = 2.4. Here there is not much differenee, 
between the two cmves of N = 40 and 78, apart from the bet that, with 
N = 78, the curve touches zero, at. time 0.78, where as with N = 78, it gds 
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near zero, but does not touch it. 
Figure (8.3.15), effect of£ on u, with f = 0.5 and 0.1, where N = 78,uo = 

2.4 and m = 2. Here the slope of the curve, £ = 0.5 is downward, steady, and 
at time 0.6, onwards, it is quite near zero, where as, although the slope of 
f.= 0.1, is also downward, but for a short period of time, say up to 0.2, then 
it converges towards, 2.0 for the control, not zero, for the rest of the time. 

Figure (8.3.16), effect of Uo on optimal J for different values of m, when 
N = 78 and £ = 0.5. Here, the value of optimal J, for Uo = 2.4 ami 3.0, as 
m increases, converge similarly, towards approximately, 0.13, whereas, with 
1l{) = 2.0, the value converges towards, 0.25. 

The above results, show that a proper choice of initial control is an im
portant factor in achieving the best J' in fewer iterations, since for higher 
Ace purposes, taking distant 'If{) 's may never ad1ieve this. 

The interaction, between £ and N, shows that for the first local optimal 
minimum, the best combination is achieved, with N, large enough ancl f, 

in the range 3.0 ::; f. ::; 6.0. Also for the second local minimum, the hest 
c,ombination is achieved, with N sufficiently large fUHl f in the range 0.1 ::; 

f. :::: 0.5. 

8.3.3 Fletcher-Reeves 

The algorithm for the Fletcher-R.eeves, method applie<l to problem 5, is as 
described in chapter 2, section 2.4. The line search tedmique is the same as 
that for steepest descent in this chapter seetion 8.3.2. The calculation of the 
norms are as described in chapter 2, section 2.10.1. The gmclient g is in the 
way obtained in section 8.3.1. 

Table (8.3.12), shows the effect of f. mul N in achieving the minimum .T', 
with the best initial control 'If{) = 1.0. The best J' was found to be 0.244460!)6 
to 8 decimal places, with \\g\\ = 8.109 x w-1

, and the corresponding parmn
eter values of£ = 6.0, N = 78 or 156 aml m = 13. Choosing f. in the range 
3.0 ::; f. ::; 6.0, can produce consistent results, providing N is sufficiently large 
enough, i.e., 78. Taking N, smaller, i.e., 40, with f = 3.0, produces better 
results in terms of Ace and J, than when € is taken in the range 4.0 ::; f. ::; 7.0. 
Here also, when N is too small say 10, numerical, instability occurs. Simi
larly, Table (8.3.13), shows the effect of f. and N, in obtaining the second local 
minimum, by taking the best initial control, u0 = 2.4, the best minimum J', 
obtained was 0.13317414 to 8 decimal places, with \\g\\ = 8.535 X 10-4, with 
the corresponding parameter values, f.= 0.12,N = 78 or 156 mHI m= 28. 
Here for N large enough, say 78, taking f., in the range 0.1 :::; €:::; 0.13, can 
produce consistent results. When N is too small, say 10, taking f, in the 
rm1ge 0.1 ::; f. ::; 0.12, result.s in numerical instability, but. taking f. = 0.1:3, 
produces consistent results. Here also selecting N as 200 as opposed to 100 
may result in slightly better minimum J' for some f.'s but. at. the cost of more 
computing time. 

Tables (8.3.14), (8.3.15), (8.3.16) and (8.3.17), show the effect of n0 on 
J', when the best. N is selecte<l, i.e., N = 78, for Ace ::; w-2

, Ace ::; 
10-3, Ace ::; 10-4 m1d Ace ::; 10-6 . Here the Ace :S 10-3, was the best 
that could be achieved for some of the u0 's in t.h<e range 2.0 ::; u0 ::; 3.0. From 
Table (8.3.14), it can be seen that., when u0 is in the riu1ge O.!J ::; u0 ::; 1.8, 
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to obtain Ace ::; 10-2 , selecting uo = 1.4, would result in a better value for 
J*, than other Uo's for the first local minima. Also when 11{) is selected in 
the range 2.0 ::; Uo ::; 3.0, to obtain Ace ::; IQ-2

, selecting 11{) = 2.4, would 
result in a better J* for the second loc.al minima. 

Table (8.3.15), show that only a few u0 's can achieve the Ace ::; 10-3, i.e, 
Uo = 2.4 or 2.8, which the best performance in this case was with ·ao = 2.4, 
in obtaining the best J* in fewer iterations and also function evaluations. 

Tables (8.3.16), shows in order to obtain Ace ::; 10-4, starting controls 
in the range 0.9 ::; Uo ::; 1.8, could all achieve that for the first local minima, 
but none of the starting controls in the range 2.0 ::; u0 ::; 3.0 could achieve 
the required Ace for the second local minima. 

Table (8.3.17), shows similarly for Ace ::; 10-6
, that taking u 11 in the 

range 0.9 ::; u0 ::; 1.8 could all achieve the first. local minima, and the best 
result with fewer number of iterations and function evaluations was obtaine<l 
with 1/{) = 1.0, but for the second local minima non of the '//" 's in the range 
2.0 ::; u0 ::; 3.0, could achieve the required accuracy. 

Various aspects of effect of m, N, t and 'U" are shown g,raphieally figures 
(8.3.17) to (8.3.24). Fig,·ure (8.3.17), effect of m on ·u, with m= 0, 2 and18, 
where u0 = 1.0, N = 78 and t = 6.0. Here as can be seen there are some 
difference, between various m's, hut as m increases, the pattern of behaviour 
gets closer to each other. 

Figure (8.3.18), effect of N on ·u., with N = 40, f = 3.0, m. = 6 and 
N = 78, t = 6.0, m = 6, where starting control is 1.0. Here also as can 
be seen, there are some differences in the behaviour of the curves of control 
between N = 40 and N = 78, in the early stages, i.e., from time 0.0 to 
approximately 0.35, and from there to the end, the curves of control behave 
similarly. 

Figure (8.3.19), effect oft on u, with u 0 = 1.0, N = 78 and m= 2. Here 
also, although the pattern of behaviour of the curves of control are similar, 
but some differences, exist from approximate time of 0.15 onwards, ancl it can 
be seen that at final time of 0.78, the cnrve of control with t = 6.0, is nearer 
to zero, than t = 7.0. Figure (8.3.20), effect of u.0 on optimal J, for different 
values of m, with 11{) = 1.0, t = 6.0, no = 1.4, t = 6.0 and '11{1 = 1.8, t = 2.0, 
where N = 78. Here as m increases, the value of optimal .J for all starting 
controls, converges to the same one. 

Figure (8.3.21), effect of m on u, of u.0 = 2.4, N = 78 and t = 0.12. As 
can be seen, as m increases, the slope of curve of control tends towards zero 
along time axis. 

Figure (8.3.22), effect of Non ·u, with N = 10, t = 0.13 and N = 78, t = 
0.12, with u0 = 2.4 and m = 4. As can be seen, there are some differences, 
between the curves of N = 10 and N = 78. At time 0.0, the curve of control 
for N = 1, starts at approximately u = 3.9, whereas for N = 78, it starts 
at approximately u = 3.9, where as for n = 78, it starts at approximately 
3.6 and at final time, the curve of control for N = 10, is nearer to zero 
than N = 78. Fig;ure (8.3.2:~). effect of t on u, with N = 78, 'II<J = 2.4 and 
m = 4. Here also there are some difference, between the curves of t = 0.12 
and t = 0.15. At time 0.0, the curve of control for. f = 0.12, starts at 
approximately u = 3.6, where as, for t = 0.15, it starts at approximately 
3.0, and at final time the curve of control for f = 0.15 is nearer to z<m> than 
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€ = 0.12. 
Figure (8.3.24), effect of u0 on optimal J for different values of m, when 

N = 78, 1Lo = 2.0 with f = 0.18, u0 = 2.4, with € = 0.12 and finally u0 = 3.0 
with € = 0.10. As can be seen from the plots, by increasing m the value of 
optimal J, for all starting controls tends to the same one. The above results, 
show that a proper choice of initial control is an important factor in achieving 
the best J*, in fewer iterations and function evaluations, and also for higher 
Ace requirements, e.g., Ace ::; 10-6 , that not all starting controls could 
satisfy them. 

The interaction, between € and N, shows that for the first local optimal, 
the best combination is achieved with N, large enough and €, in the range 
3.0 ::; € ::; 6.0. Also for the second local minimum, the best J* is obtainer! 
with N, sufficiently large and € in the range 0.1 ::; f ::; 0.13. 

8.3.4 Polak-Ribiere 
The algorithm for Polak-Ribiere method can he fimnd in chapter 2, section 
2.5. The line search technique and the calculation of the norms are as FR. 
in this chapter section 8.3.4. The gradient g, also is, a.s obtained in section 
8.3.1. Table (8.3.18), shows the effect of f and N in achieving the minimum 
J*, for the first local minima, with u0 = 1.0, which is the· best initial control to 
be selected. The best . .J* was fouml to be 0.24446096 to 8 deeimal places, with 
llgll = 9.308 x w-7 , and the con-esponding parameter values f = 6.0, N = 78, 
or N = 156 and m= 20. Choosing fin the range 3.0 ::; f ::; G.O, can produce, 
consistent. results, providing N, is sufficient,ly large enough, e.g., N = 78. 
When f is too large say 7.0, there will be no more improvement after a 
certain number of iterations for J, in this case after 5 iterations. When N 
is smaller, i.e., 40, taking f = 3.0, will produce better results, in terms of 
Ace and J, than when f is taken in the range 4.0 ::; f ::; 7.0. When N is too 
small, say 10, numerical, instability occurs. 

Similarly Table (8.3.19), show, the effect of f am! N in obtaining the 
second local minimum. Here by taking, the be.st initial control, 'li{J = 2.0, the 
best minimmn J*, obtained was 0.13318594, to 8 decimal place.s, with, llgll = 
1.985 x w-3 , and the corresponding parameter, values, f = 0.18,N = 78 or 
156 and rn = 27. when N is sufficient,ly large, say, 78 taking f in the range 
0.1 ::; €::; 0.18, can produce consistent results, with het.ter Ace. For smaller 
N, say 40, taking f = 0.1, or f = 0.19, could find .J*, with a better Ace, than 
other c's, but it took, a lot more iterations for f = 0.1, to achieve that than, 
f = 0.19. When N is too small, say, 10, taking € too small, say 0.1, produces 
consistent results. Tables (8.3.20), (8.3.21), (8.3.22) m;d (8.3.2:~), show the 
effect of u.0 on J, when the best N is selected, i.e., N = 78 for Ace ::; 10-2

. 

Ace ::; 2 X w-3 ' Ace ::; w-4 and Ace ::; w-6
• Here we should note that 

Ace ::; 2.0 x 10-3 , is the best Ace , that some of the ·u.0 's muld achieve in the 
range 2.0 ::0 ·u.0 ::0 3.0. From Table (8.3.20), selecting u0 = 1.4, cm1 produce 
better J*, than other starting values, from the required Ace ::; w-2

, for 
the first local minimum. Also selecting un = 3.0, produces better .J*, for the 
Ace ::; w-3 , with fewer iterations, than other starting values. 

Table (8.3.21), show that, the hest Ace ::; 2.0 x w-'l, could be achieved 
for some initial controls, and not all starting controls coni<! achieve that .. 



Table (8.3.22), shows that for the first local minima, all the 'll{)'s in the 
range 0.9 ::; 'UQ ::; 1.8 could achieve the required Ace ::; w-4 , and the bt>.st 
11{}, in terms of number of iterations and function evaluations, to achieve that 
was 'UQ = 1.0. But none of the starting controls in the range 2.0 ::; 'tto ::; 3.0, 
could achieve the required Ace for the second local minima. Also from Table 
(8.3.23), we can see that, all the starting controls, in the range 0.9 ::; ·u0 ::; 1.8, 
~~~fu~~~::;1~0,~~~~~~~~ 
number of iterations and function evaluations, was with 'll{) = 1.0, but yet 
again, non of the 1Lo 'sin the range 2.0::; 'U{} ::; 3.0, could achieve the required 
Ace for the second local minima. 

Different, aspects of critical parameters, are also shown gmphically, in 
Figures (8.3.25) to (8.3.32). Figure (8.3.25), effects of m on u, when u0 = 
1.0, m = 0, 2 and 20, with N = 78 and t = 6.0. As can be seen for ·tn = 2 
and m = 20, the pattern of curves for control are fairly similar, and the 
difference lies towards the end of time, that, the curve with m = 20 touchtes 
zero, wherea.~, m = 2 does not. 

Figure (8.3.26), effect of Non u., with N = 40, am! 78 respeetively, with 
their best corresponding t's of 3.0 and 6.0, where u0 = 1.0 and m= 5. Hem 
as can be seen, there are some <liff.erences, in the early stages of time, i.e., 0.0 
to approximately, 0.2, between the gmphs of controls of N = 40 and N = 78. 
Then from there to the final time, they behave similarly. 

Figure (8.3.27), effect of f on u, of using step length factors, t = G.O 
and 7.0, with N = 78, 'ttu = 1.0 and m = 2. Here, although the pattern 
of the cmvature of the control is similar, for both t's, but there are some 
differences, that could he observed, i.e., at approximate time of 0.15, the 
peak of the curve for t = 6.0, is higher than E = 7.0, then from, there, the 
slope of the cure for both of them are downward, but. as it gets near the final 
time the slope of the curve for t = 6.0, is nearer to zero than t = 7. 

Figure (8.3.28), effect of u0 on optimal J for different values of m, when 
N = 78, u0 = 1.0 with t = 6.0, u.0 = 1.4 with t = 6.0 and finally ·u.0 = 1.8 
with t = 4.0. 

Here as can be seen from the plots, although for the first few iterations, 
there may be some difference, between, different starting controls, but aB m 
increases, they all converge, to the same value of optimal .J. 

Figure (8.3.29), effect of m on u, for 11{} = 2.0, with m= 0, m = 5 and 
m = 27, where N = 78 and f = 0.18. As cJm be seen hy increasing m. to 
27, the slope of the curve of control is downward along time axis, and a.~ it 
gets to the final time, it touches zero. Fig;ure (8.3.30), effeet. of Non n, when 
'UQ = 2.0, with N = 10 and 78, respectively, with their best corresponding 
parameters, t = 0.1, m = 61 and f = 0.18, m. = 27. The pattern of the 
curvature of the control, for both N's ar·e similar, except at the beginning 
that the curve of N = 10, starts at approximately u = 3.4, whereas the curve 
of N = 78, starts at approximately 'tt = 4.4. Figure (8.3.:31), effect of € on 
u, of using the step length factors, f = 0.18 and O.HJ, with N = 78, ·u.0 = 2.0 
ar1d m = 2. Here also, the pattern of the behaviour for both the curves 
oft = 0.18 and t = 0.19, are similar-, except at the start and finish points 
where fort = 0.18, the curve started at approximately ·a= 3.9 and finished 
at n = 0.0, whereas, fort= O.l'J, the curve started at approximately u. = 2.8 
and finished near zero. 
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Figure (8.3.32), effect of uo on optimal J, for different values of ·m, when 
N = 78, 1LQ = 2.0 with t = 0.18, u0 = 2.4, with t = 0.18 and finally u0 = 3.0, 
with t = 0.11. As can be seen, although, for the first few iterations, the value 
of optimal J, may be different for some starting controls, but as m increases, 
they all converge, to the same value for optimal J. 

In view of the above results, a proper choke of initial control is an im
portant factor in achieving the best J*, in fewer iterations and function eval
uations. also, for higher Ace purposes, selecting distant uo's may never 
achieve that. 

The interaction between t and N, shows that for the first local, optimal, 
the best combination is achieved with N large and t in the range 3.0 ::; c ::; 

6.0. 
Also, for the second local minimum, the best J* is obtained, with N 

sufficiently large and t in the range 0.1 ::; c ::; 0.18. 

8.3.5 Hybrid 1 
The algorithm for the hybrid 1 method is described in chapter 2, section 
2.6.1. The line search technique used a11<l calculation of the norms me the 
same as FR, in this d1apter section 8.3.3. The gradient !I is also as obtained 
in section 8.3.1. Table (8.3.24), shows the effect off mHl N, in achieving the 
minimum J* for the first local minima, with the best initial control u,. = 1.0. 
Here the results are similar to those, obtained for FH., therefore, the best 
minimum J*, also the analysis of the results, that were used for FR, coul<l 

also be applied to H 1. 
Table (8.3.25), shows, the effect oft m1d N, in obtaining the second local 

minimum. Here by taking the best initial control un = 2.4, the best. minimum 
J* obtained was, 0.13318403, to8 decimal places, with m= 2fJ, II!JII = 8.832x 
w-4, N = 78 or 156 and t = 0.13. Here for N large enough say, 78, taking 
t, in the range 0.1 ::; t ::; 0.14, can produce consistent results. when N is 
smaller, say, 40 taking t in the rm1ge, 0.1 ::; £ ::; 0.12, produces consistent 
results. When N is too small, say, 10, taking c = 0.13, pro<luces stable results 
but, for other values oft numerical instability occurs. 

Tables (8.3.26), (8.3.27), (8.3.28) a11d (8.3.29), show that effect. of '11.11 

on J*, when the best N is selected, i.e., 78, for Ace ::; 10-2
, Ace ::; 

w-3 , Ace ::; 10-4 and Ace ::; 10-6• We should note that Ace ::; w-3, is 
the best Ace, that some of the ·u.0 's could achieve in the range 2.0 ::; no ::; 3.0. 
From Tables (8.3.26), (8.3.28) a11<l (8.3.29), we can see that, for the v<J's in 
the range, 0.9 ::; u0 ::; 1.8, similar n•.sults are obtained as FR, therefore the 
same comments, on selecting the best u0 's are also applicable for Hl. 

From Table (8.3.26), when ·u.0 is selected in the range 2.0 ::; uo ::; 3.0 to 
obtain Ace ::; w-2 , selecting 11" = 2.4, would result in a better J*, for the 
second local minimum. The interesting result here is that, when ·u0 = 2.6, 
is selected, the value of J converges to the first loc.al minimum. From Table 
(8.3.27), it can be seen that in order to obtain Ace ::; w-3, selecting ·u.o as 
2.0 or 2.8, will fail this Ace , m1<l selecting ·u.0 = 2.6, will H'$Ult in finding 
the first local minimum and '1/.o = 2.2, 2.4, 2.6 and 3.0 in finding the second 
local minimum. 

145 



From Tables (8.3.28) and (8.3.29), we C."l.n see that the Ace ::; 10-4 and 
::; w-6 , are not achieved for the u0 's in the range 2.0 ::; uo ::; 3.0. 

Various aspects of critical parameters, m, N, £ and Uo are also shown 
graphically, in Figures (8.3.33) to (8.3.40). The effects of m, N, £for the first 
local minima from Figures (8.3.33) to (8.3.36), are similar to figures (8.3.17) 
to (8.3.20) of FR and therefore similar comments on the behaviour of the 
curves can also be applied to Hl. 

Figure (8.3.37), effect of m on u, of u0 = 2.4, with m= 0, 5 and 29, where 
N = 78 and £ = 0.13. As can be seen from the plots as m increases, the 
slope of the curve of control along time axis, is downward, and for m = 2fJ, 
it touches zero at time 0. 78. 

Figure (8.3.38), effect. of N on u, where N = 10 and 78, respectively, 
with their best £ of £ = 0.13, m = 4 and u0 = 2.4. Here the pattern of 
the behaviour of the curve of control for both N = H) and 78, are similar 
except the fact that the curve of control for N = 10, started at. approximately 
u = 3.9 and finished at approximately, 'll = 1.2, whereas the curve of control 
for N = 78 started at approximately u = 3.6 mHl finished at. approximately 

u = 1.3. 
Figure (8.3.39), effect of£ on ·u, of using the step length factors, £ = 0.13 

and 0.15, with N = 78, 'llu = 2.4 and m = 4. Here, the curve of control for 
£ = 0.13, started at approximately, u = 3.6 and finished at approximately, 
1.25, where as, the curve of control, for f = 0.15, stmtte<l at n = :3.0 1utd 
finished at approximately ·u = Ul. 

Figure (8.3.40), effect of u0 on optimal .J, for different values of m, when 
N = 78, ·u.0 = 2.0 with t = 0.18, ·uo = 2.4 with t = 0.13 and finally, n0 = 3.0, 
with £ = 0.13. Here as can be seen from the graphs, although, starting value$ 
of optimal .J are different for various u0 's but as the munber of iterations, 
increases, they all converge to the same value of .J. 

The above results, show that a proper d10ice of initial control is again 
an important factor in finding the optimal .J, in fewer iterations and better 
Ace. Also for higher Ace, e.g. Ace ::; w-3

, for the 'll{l 's in the range 
2.0 ::; ~Lo ::; 3.0, selecting distant 'ILo, may neve achieve that. when '1/.o is 
selected in the range 0.9 ::; uo ::; 1.8, the same recommendations as FR. 
can be applied to the interaetion, between t and N. For the second local 
minimum, the best .J* is obtained, with N, sufficiently large, and E, in the 
range 0.1 ::; E ::; 0.12. 

8.3.6 Angle test hybrid 
The algorithm for the angle test hybrid method is as described in chapter 2, 
section 2. 7. The line search technique and the calculation of the norms are 
the same as FR., in this chapter, section 8.3.3. Also !I can be obtained as 
GFS, in sect.ion 8.3.1. For this method, we had to consider, the parameter 
T > 0, as well. The method was tested, in the same way as the previous 
ones, plus the new parameter -r, with the values, 0.01, 0.0001 and 0.0000001. 
Table (8.3.30), shows the effect of E and N, in achieving the minimum J' 
with ·u0 = 1.0, which is the hest initial control to be selected, also the value of 
T was taken as 0.0000001. The results obtained are similar to those obtained 
by FR., therefore the best minimum .J', for the first local minimum and its 
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corresponding parameters are also the &'l.me. Thus the analysis of the results 
that were applied to FR are also applicable to ATH. 

Table (8.3.31), shows the effect of E and N, in obtaining, the second local 
minimum. Here by taking the best initial control, u0 = 2.4,r = 0.0000001, 
the best minimum J* obtained was 0.13317505, to 8 decimal places, with 
llgll = 9.674x w-4 and corresponding parameter values, E = 0.12 and N = 78 
or 156. Here for N, large enough, say, 78, taking E in the range 0.12 ::; E ::; 

0.13, produces consistent results, when N, is smaller say, 40, taking fin the 
range 0.1 ::; E::; 0.11, produces consistent results. When N is too small, say 
10 only for E = 0.13, we get stable result and for other values of E numerieal 
instability occurs. Here again selecting N as 200 as opposed to 100 may 
result in slightly bett.er minimum J* for some f's but at the cost of more 
computing time. 

Tables (8.3.32), (8.3.33), (8.3.34) and (8.3.35), show the effect of u0 on 
J*, when sufficient large enough N, i.e. 78 is select.ed am! r = 0.0000001, 
for Ace ::; w- 2 , Ace ::; w-'l, Ace ::; w-4 am! Ace ::; w-e;. Hene 
Ace ::; w-3 is the best Ace , that could be achieved for' the u0 's in the nmgte 
2.0::; u0 ::; 3.0. When 'llo is in the range 0.9 ::; uo ::; 1.8, the same results are 
obtained as FR, therefore the same comments mHl reconnnendations, could 
also be applied to ATH. 

From Table (8.3.32) for the Ace ::; w-2
, selecting un = 2.6, finds reason

ably, a better value for minimum J* for the seeon<l local minima compare<! 
with others, considering the munber of iterations and funet.ion evaluations, 
it has taken. From Table (8.3.:33), for Ace ::; w-3 , selecting u0 = 2.4, 
takes fewer iterations tlutn other starting values, to find minimum .J* for the 
second local minima. Here, we C>lll see from, Tables (8.:3.:34) and (8.:3.:3&), 
that for higher Ace's, i.e. Ace ::; w-4 and Ace ::; w-r., selecting v,, 's in 
the range, 2.0 ::; u0 ::; :3.0, could not adlieve those. 

Various aspects of critical parameters, are also shown graphically in Fig
ures (8.3.41) to (8.3.48), with r = 0.0000001. 

The effects of m, N, E and tto for the first local minima, from figures 
(8.3.41) to (8.3.44), are similar to fig11res (8.:3.17) to (8.:3.20) of FR. and there
fore similar comments on the behaviour of the curves can also be applied to 
Hl. 

Figure (8.3.45), effect of m on ·u, with tLo = 2.4, N = 78, E = 0.12 and 
m = 0, 5 and :34. Here as can be seen from the gTaphs, as rn increases, the 
slope of the curve of control, along time axis, is downward, and it touches 
zero for m= 34. 

Fi!,'Ure (8.3.46), effects of N on 'IL, of ~Lo = 2.4, with N = 10 and 78 
respectively, with their best corresponding E's of 0.13 and 0.12, where rn = 4. 
As can be seen from the plots, the slope of the curves of control for both 
N = 10 and 78 are similar, with some minor differences at the st.art mHl 
finish points. 

Figure (8.3.47), effect. off onn of 11{) = 2.4, with f = 0.12 and f = 0.15, 
when n = 78 and m = 4. Here also, the slope of the curve of control 
is downward for both f's, but there are some differences at the starting and 
finishing points, i.e., the curve of control for f = 0.12 starts at approximately, 
tL = :3.6 and finishes at approximately u, = 1.25, where as the curve of control 
for f = 0.1G, starts at approximately, u = :3.0 and finishes at approximately 
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u = 3.0 and finishes at approximately u = 1.6. 
Figure (8.3.48), effect of tto on optimal J for different, value.s of m, where 

N = 78,tto = 2.0 with t = 0.13,u0 = 2.4 with t = 0.12 and finally tto = 3.0, 
with t = 0.14. As can be seen from the plots, as the number of iterations 
increases, the value of optimal J, for all starting controls, tends to the same 
value. 

in view of the above results and comments, we can see that a.n appropriate 
choice of u0 is critical in finding the best. minimum J' in fewer iterations mHl 
a better Ace . Here also, selecting distant u0 's may never adtieve higher 
accuracies at all. 

When tto is selected in the range 0.9 ::; "14J ::; 1.8 the san1e recormnen<la
tions for FR can also be suggested for the interaction between t am\ N. 

For the second local minima, the best J* is obtained, with N large enough 
and t in the range 0.12 ::; t ::; 0.13. Here the effect of r on obtaining the 
minimum .J* was practically negligible. · 

8.3. 7 Hybrid 3 

The algorithm for Hybrid 3 method cart also be found in chapter 2, sect.ion 
2.8. The caleulation of the nmms, and line search are the smne as for FR in 
this chapter, section 8.3.3. The gradient., g can also be caleulat.ed the smne 
way as for GFS, in this chapter, section 8.3.1. The effect of new parameters, 

1 
.\.0, with the values of0.01, 0.0001 am\ 0.0000001, mHlJt < 2' with the values 

of 0.15, 0.35 and 0.4999, were also considered and tested for t.his method. 
Tables (8.3.36), shows the effect. of t and N, in achieving the minimum 

J* ,with u0 = 1.0, which is the the best initial control to be selected, along 
with the value of .\ = 0.0000001 and Jt = 0.4999. The results obtained for 
the best minimum J' of the first. local minima me the same as those obtaine(\ 
for FR. or Hl, therefore the smne analysis of the resul t.s cm1 be true for H:~. 

Table (8.3.37), shows, the effect. of f. and N, in obtaining the second local 
minimum. Here by taking the best initial control u0 = 2.4, .\ = 0.0000001 
and Jt = 0.4999, the results obtained are the same as ·those obtained from 
H1 and therefore the san1e eomment.s and suggestions for selecting € and N 
could be applied to H3. 

Tables (8.3.38) to (8.3.41) show the effect. of 11{1 on .J' when N = 78, .\ = 
0.0000001 and JL = 0.4999, for Ace ::; 10-2

, Ace ::; 10-3
, Ace ::; 10-4 and 

Ace ::; 10-G. Here the Ace ::; 10-3 , was the best, that. could be achieved 
for tto 's in the range 2.0 ::; tt{l ::; 3.0. As can be seen these tables are similar 
to Tables (8.3.26) to (8.3.29) of Hl, and therefore the sar11e comments and 
recommendations could be applied to H3. 

Figure (8.3.49) to (8.3.56), are similar to Figmes (8.3.33) to (8.3.40) of 
H1 with .\ = 0.0000001 an<IJL = 0.4999, and t.hei·efore show similar e!Iect.s for 
m, N, t and ·a0 • In view of all the above the same recomrnemlat.ions as Hl on 
selecting u0 , as well as N and f to find the best. minimum .l', for both local 
minimas can also be applied to Ha. Here, the efiect. of.\ mHIJt on minimizing 
.]' was practically negligible. 
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8.4 Summary of the Results 

Summary of the results, could be found in Table (8.4.1), also comparison of 
the seven optimization techniques,graphically can be seen in figure (8.4.1), 
for the first local minima, and Figure (8.4.2), for the second local minima, 
where N is taken as 78, r = 0.0000001 for ATH, .\ = 0.0000001, ft = 0.499!) 
for H3. Here in Figure (8.4.1), the comparison of the methods are shown, 
with their best initial controls, i.e., for GFS, u0 = 1.4 and the other methods 
with u0 = 1.0. This has also been applied to Fig·ure (8.4.1), with u0 = 2.0 
for GFS and PR, and u0 = 2.4 for the other methods. 

Considering all the aspects of convergency for minimizing .J', i.e. the 
number of iterations, the best Ace , number of function evaluations, cmn
puting time and finally munerical stability, the methods performed as follows. 
At !to = 1.0, all the methods achieved the high Ace of ::; 10-G, and also 
similar value of .J* up to 7 decimal places, for the first local minima. Taking 
into consideration the number of iterations, FR., H1, ATH awl H8, performed 
similarly and the hest, hut. it took more number of function evaluations than 
GFS to achieve that. 

At u0 = 1.4, all the methods could achieve the Ace ::; w-n, ami produced 
similar .J* for the first local minima, up to 7 decimal places. Here also taking 
into consideration the number of iterations FH., H1, ATH and H8, performed 
similarly and the best, but it took more number of function evaluations than 
GFS to achieve that. 

At u0 = 2.0, considering the number of iterations taken to achieve, the 
best J' for the second minima in fewer iterations, to :3 <lecimal places, FR. 
performed the best, then H1 awl H8 performed simihu-ly, then in order of 
performance PR, ATH, SD ancl finally G FS. But regardless of munber of 
iterations, the best .J* up to 8 decimal places were achieved in order of 
preference by ATH, then SD, then PR, then H1 and Ha, that perf(Jrmed 
similarly, then G FS and finally FR.. 

At 1to = 2.4, considering the number of iterations, the heBt rninimum .J' 
for the second local minima, up to 3, decimal places, in order of performance 
were achieved as follows; 

1-PR, 2-FR, a-H1 and Ha, 4-ATH, 5-SD and 6-GFS. But, if we consider 
the best J' obtained up to 8 decimal places, regardless of m, the order of 
performance will be as follows; 

1-FR, 2-SD, :3-ATH, 4-H1 and Ha, 5-PR. and G-GFS. 

8.5 Conclusion 

In this chapter, we have tested, the problem numerimlly, using seven gmdient 
and conjugate gradient techniques. The test, has shown that, there are two 
different local optimal minimum for this problem. Usually hy taking u0 in 
the range [1.0, 1.8], lead to finding the first. local minimum and taking 'ILn in 
the range [2.0, a.O], confinned the other. But in some odd eases taking some 
'liD's in the range [2.0, a.O], produced the first local miniunun. It. happened 
when we used SD, H1 and Ha. 

The comparison of the methods were carried out hy varying th<e erit.kal 
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parameters, such as, t, Nand 'tto. In all c.ases selecting a proper initial control 
facilitates the procedure of finding the optima J in fewer iterations with 
better Ace and less computing time, Also always selecting large enough 
integration step number (N), with appropriate step ler)gth factor (t), could 
help to overcome numerical instability in search for optimal J. 

Although for this problem, one may not be able to recommend only one 
or two techniqut>.s, in absolute certainty as the best, but. overall in view of 
convergency, number of iterations, computing time and numerically stabilit.y, 
we could see that the best J' for the first local minimum could be achieved 
by FR, Hl, ATH and H3, where they all performed similarly, and the l><est 
minimum J' for the second loc.c'll minimum could be achieved by FR. 
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TABLE (8.3.1):Results of GFS with varying e and N. 

N 10 f40 78 156 
£ 

1.0 1"=0.24473309 r" =0.24446097 ~" =0.24446097 
m=75 m=77 m=76 

- JJgJJ = 9.440 x w-7 JJgJJ =9.670x 1o-7 JJgJJ =9 .668 x w-7 
Cputime<l 
NFE=76 

Cputime=1 
NFE=78 

Cputime=2 
~FE=77 

2.0 r~ =0.24473309 =0.24446097 ~"' =0.24446097 
m=36 m=37 !m=36 

- JJgJJ=9.020x w-7 JJgJJ =8.457 x w-7 JJgJJ =8.448 x w-7 
~time<1 Cputime<1 Cputime=l 
NFE=37 NFE=38 NFE=37 

3.0 r" =0.24473312 T" =0.24446097 ~" =0.24446097 
m=76 m=24 !m=24 
JJgJJ=9.48x1o-7 JJgJJ =6.853 x w-7 JlgiJ=6.853 x w-7 

- Cputime<l Cputime<l Cputime=l 
NFE=77 NFE=25 NFE=25 

4.0 "'=0.24473312 "'=0.24446096 ~"' =0.24446096 
m=200 p1=18 m=18 
JJgJJ=3.835 x w-3 JJgJJ = 1.840 x w-7 JJgJJ = 7.840 x J0-7 

- Cputime<l Cputime<l Cputime=l 
NFE=201 NFE=19 !NFE=19 

p.O r" =0.24494711 r" =0.2446097 ~"' =0.2446096 
m=200 p=124 !m=124 
JJgJJ = 1.551 x 1o-2 JJgJJ=9.671 xw-7 JJgJJ=9.671 x w-7 

- ~time=1 Cputime=1 Cputime=2 
FE=201 !NF'E=125 NFE=125 

~.0 =0.24495821 T" =0.2446097 ~"' =0.2446097 
m=210 f11=128 !m=128 
JlgJJ= 1.662x 10-2 JJgJJ =9.834x 10-1 JlgJJ =9.834 x 1o-1 

- Cputime=l Cputime=l Cputime=2 
NFE=211 !NF'E=129 NFE=129 



TABLE (8.3.2):Results of GFS with varying e and N. 

N 10 40 78 156 
£ 

0.1 ~"'=0.13766994 r"' =0.13349582 ~"' =0.13328145 "'=0.13328143 
~=163 m=161 ~=161 m=161 
JJgJ\=7.131 x w-3 JJgJ\=7.191 x1o-2 JJgJJ = 7.184x Io-3 JJgJJ= 7.173 x Jo-3 
~putime<1 Cputime=1 Cputime=2 Cputime=3 
\NFE=76 NFE=162 \NFE=162 NFE=162 

0.16 ~"' =0.137 66484 r"' =0.13348867 ~"' =0.13327397 "'=0.13327397 
~=103 p1=101 ~=101 m=100 
JJgJJ =7.025 x 10-3 JJgJJ =7.017 x1o-3 M=7.172x1o-3 JJgJJ = 7.111 x w-3 
~utime<1 Cputime=1 Cputime=1 Cputime=2 

FE=103 NFE=102 \NFE=102 NFE=101 

0.17 ,~ =0.13789450 "'=0.1347623 ~~=0.13327228 "'=0.13327228 
m=80 fr1=97 ~=95 m=95 
M= 1.363 X 10-2 JJg~ = 1. 440 x w-2 JJgJJ = 7.168 x1o-3 JJgJJ = 7.168 x 10-3 
~utime<1 Cputime<l Cputime=1 Cputime=2 

FE=81 ~=102 JNFE=96 NFE=96 

~.18 '"'=0.13788830 IT"' =0.13373600 ~"' =0.13338626 r"' =0.13338625 
m=75 ~=74 ~=80 m=80 
JJgJJ= 1.342x 10-2 JJgJJ= 1.353 x1o-2 JJgJJ = 1.379 x w-2 J\g\\=1.371 x 1o-2 
~;time<1 Cputime<1 Cputime=1 Cputime=2 

FE=76 NFE=75 !NFE=81 NFE=81 

~.2 =0.13766229 lr"'=0.13541269 1"' =0.1348734 r"' =0.1348734 
fr1=104 ~=48 m=50 p1=50 
~gJJ=8.108x1o-3 IJgiJ=3.436x w-2 M=2.991 x1o-2 JJgll =2.991 x w-2 
~putime<1 Cputime<l Cputime<1 Cputime=1 
~FE=105 NFE=49 NFE=51 !NFE=51 



TABLE (8.3.3):Results of GFS with change in uo for ACC:oao-2. 

uo m J lgft NFE eps Cputime 

1.0 3 f-1.24444990 8.78792x w-j 4 4.0 <1 

1.2 4 0.24448322 5.35426 x w-j 5 4.0 <I 

1.4 4 0.24448171 5.51124x w-j 5 4.0 <I 

1.6 4 0.24448836 6.33551 x 1o-j 5 4.0 <I 

1.8 5 p.24449331 6.72935xlo-5 6 4.0 <I 

2.0 86 p.13337086 9. 92293 x w-j 87 0.17 I 

2.2 89 p.13336717 9.80322x1Q-5 90 0.17 1 

2.4 91 p.13337527 9.99689x w-j 92 0.17 I 

2.6 94 p.13336457 9.7239x1Q-5 95 0.17 I 

2.8 96 f-'.13336681 9.77310x w-j 97 0.17 I 

3.0 98 f-'.13336672 0.76900x J0-5 99 0.17 I 



TABLE (8.3.4):Results of GFS with change in uo for ACC~0.00722· 

uo m J" M NFE eps C'putime 

2.0 95 ~.13327228 7.16762x IQ-:5 96 0.17 1 

2.2 97 ~.13327950 7.18269x w-j 98 0.17 1 

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.5):Results of GFS with change in uo for ACC~Io-4. 

uo m r ~g~ NFE eps ~'putime 

1.0 10 0.24440172 8.79201 X lQ·:l 11 4.0 <1 

1.2 11 0.24446172 6.24158x1o-=> 12 4.0 <1 

1.4 11 0.24446172 6.12983 x~o-:> 12 4.0 <1 

1.6 11 0.24446173 7.26314x w-:> 12 4.0 <1 

1.8 12 0.24446185 8.60888 x w-:> 13 4.0 <I 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.6):Results of GFS with change in uo for ACC::ao-6. 

uo m r ~gll NFE eps Cputime 

1.0 18 0.24446097 6. 03057 X IQ-/ 19 f4.0 <1 

1.2 18 0.24446097 1.93442 x w-·1 19 f4.0 <1 

1.4 18 0.24446096 ~.84019x w-7 19 f4.0 <1 

1.6 18 p.24446097 8.71432x w-7 19 14·0 <1 

1.8 20 f1.24446096 5.36816x 10-1 21 ~.0 <1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.7):Results of SD with varying e and N. 

N 10 f40 78 156 
t 

~.0 ~~ =0.24473308 ~~ =0.24446096 ,~ =0.24446096 
1m=43 1m=31 /11=30 

- llgll=9.086x 1o-7 ~gll =9.927 x w-7 llgll =9.915 x 1o-7 
Cputime=l Cputime=1 Cputime=2 
INFE=190 INFE=127 NFE=123 

~.0 ~~ =0.24945948 =0.24446096 r~ =0.24446096 
im=2 m=25 im=25 

- llgll = 1.482x w-2 llgll =2.521 x 10-1 llgll =2.521 x w-7 
Cputime<1 Cputime<1 Cputime<l 
NFE=10 NFE=103 NFE=103 

5.0 "=0.24531672 "=0.24446096 T"' =0.24446096 
m=1 m=20 lm=19 
llgll=0.6623269 llgll =6.337 x w-7 llgll=6.242x 10-7 

- Cputime<1 Cputime=1 Cputime=2 
NFE=6 NFE=81 NFE=78 

6.0 r~ =0.26430095 r~ =0.24446096 T"' =0.24446096 
m=1 m=18 im=18 
llgll= 1.50813 llgll =3.053 x w-7 llgll =3.053 x 1o-1 

- Cputime<1 Cputime<1 Cputime=l 
NFE=6 NFE=73 NFE=73 

7.0 r" =0.246557 80 r" =0.24446096 ~" =0.24446096 
m=2 m=40 lm=40 
llgll =2.408 x w-2 llgll =5.029x 10-7 llgll =5 .029 x 1 o-7 

- Cputime<l Cputime=1 Cputime=2 
~FE=9 Nf£=178 NFE=178 

~.0 "=0.24725561 "=0.24446096 ~" =0.24446096 
m=2 m=45 m=45 
llgll=.9135220 llgll =5.345 x ro-7 llgll =5.345 x w-7 

- Cputime<1 Cputime=l Cputime=2 
NFE=9 NFE=201 iNFE=201 



TABLE (8.3.8):Results of SD with varying E and N. 

N 10 40 78 156 
E 

0.1 r~ =0.13339408 "~ =0.13319629 "'=0.13319619 
m=200 fl1=100 m=100 

- JlgJJ=6.052x w-6 JJgJJ =3.048 x 10-3 JJgJJ =3.013 x 10-3 
Cputime=4 Cputime=4 Cputime=8 
NFE=990 NFE=540 NFE=551 

0.3 T"' =0.13339239 ~"'=0.13319844 "'=0.13319844 
m=200 fl1=100 m=99 

- JJgJJ =2.841 x w-6 JJgJJ =3.392x w-3 JJgJJ =3.365 x w-3 
Cputime=4 Cputime=3 Cputime=7 
NFE=1153 ~FE=419 NFE=421 

0.4 r~=0.13339224 ~~=0.13317670 =0.13317670 
fl1=200 fl1=100 m=100 
JJgJJ = 1.760x 10-5 JJgJJ =3.445 x w-4 JJgJJ = 3.445 x w-4 

- Cputime=4 Cputime=4 Cputime=4 
NfE=1399 ~FE=570 NFE=570 

~.5 11"'=0.13339251 ~"'=0.13317500 1"'=0.13317500 
lm=200 lm=76 ~D=76 
JJgJJ=2.01 x1o-5 JJgJJ=3.483 x 1o-1 JJgJJ=3.483x w-7 

- Cputime=4 lse.,utime=3 Cputime=7 
~FE=1214 NFE=450 NFE=450 

~.6 ~"'=0.13337754 1"'=0.13317687 "'=0.13317687 
lm=200 m=100 lm=100 
JJgJJ = 1.948 x 1o-1 JJgJJ=L061 x w-3 JJgJJ=L061 x w-3 

- Cputime=3 Cputime=3 Cputime=7 
~FE=817 NFE=410 ~=410 

0.7 1"'=0.13338211 1"'=0.13317723 ~"'=0.13317721 
m=210 m=115 lm=115 
JJgJJ=2.03x1o-6 JJgJJ =3.512x w-3 JJgJJ =3.51 x w-3 

- Cputime=4 Cputime=4 Cputime=8 
NFE=953 NFE=614 NFE=602 



TABLE (8.3.9):Results of SD with change in uo for ACC~lo-2. 

uo m f* llg~ NFE eps Cputime 

0.9 2 P:24449588 ~~26189x10=3 9 ~.0 <1 

1.0 2 P:24455006 ~-.23059 x w-3 9 ~.0 <1 

1.2 2 P:24465877 ~~5650x w-3 9 ~.0 <1 

1.4 3 P:24446458 l3.os2o2 x w=:r 13 IQ.O <1 

1.6 3 P:24451868 i4.31404x 10=:1 13 16.0 <1 

1.8 3 0.24480176 ~. 79006 X lQ-3 13 15.0 <1 

2.0 35 KJ.13342755 17.20393 x w-3 153 KJ.5 1 

2.2 34 Kl.13351020 8.58810x w-3 147 KJ.5 1 

2.4 33 Kl.13365698 ~.31940x 1Q-3 145 KJ.5 1 

2.6 7 FJ.24468170 9.37026x I0-3 50 p-,5 <1 

2.8 8 P:24456707 17.77207 x 1 o=:r 57 p-.5 <1 

3.0 8 KJ.24456794 8.72479 x w-3 57 KJ.5 <1 



TABLE (8.3.10):Results of SD with change in uo for ACC:s;lo-4. 

no m J llg~ NFE eps Cputime 

0.9 7 0.24446133 9.36289x 10·:> 29 ~.0 <1 

1.0 8 0.24446157 5.86540x w-:> 23 6.0 <1 

1.2 9 0.24446164 8.95227 x w--' 37 o.o <1 

1.4 10 0.24446172 7.95043x w-:> 41 p.O <1 

1.6 10 0.24446173 ~.19126x w-:> 41 6.0 <1 

1.8 12 0.24446172 8. 79033 X IQ-:l 49 D.U 2 

2.0 55 f-1.13317762 f5.4J984 X IQ-:l 259 f-1.5 2 

2.2 56 f-1.13317508 f>.I0893 x Io-:> 260 u.5 2 

2.4 56 f-1.13317770 ~.49609 X IQ-) 264 f-1.5 2 

2.6 93 f-1.24446164 ~.74202x IQ-) 417 f-1.5 3 

2.8 93 p.24446163 ~.92667 X lQ-5 417 p.5 3 

3.0 92 p.24446163 ~.9345lxi0-5 416 p.5 3 



TABLE (8.3.ll):Results of SD with change in uo for ACC!>l0·6. 

uo m I" M NFE eps Cputime 

0.9 22 0.24446096 6.35642x1Q-7 185 ~.0 1 

1.0 118 U.24446UY6 3.05272x1Q·/ 73 ~.0 <1 

1.2 20 U.24446W7 9.40090x lQ-1 81 ~.0 1 

1.4 20 fJ.24446W6 1.51156x lQ-1 82 ~.0 1 

1.6 121 fJ.24446UY7 8.34666x lQ-1 85 ~.0 1 

1.8 126 p.24446UY6 7.90829 X lQ-/ 105 f5.0 1 

2.0 - - - - - -

2.2 - - - - - -

2.4 76 fJ.13317500 tJ .48297 X 10-1 450 fJ.5 3 

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.12):Results of FR with varying e and N. 

N 10 f40 78 156 
c 

~.0 ~~ =0.24585320 =0.24446097 ~"' =0.24446097 
tm=6 m=19 tm=18 

- llgll=5.214x 1o-3 llgll =9.001 x 1o-1 llgll=8.981 x w-7 
~utime<l Cputime<l Cputime=1 

E=31 ~FE=77 ~FE=77 
~.0 ~"' =0.24945948 T" =0.24446096 ~" =0.24446096 

m=2 m=17 tm=17 
- llgll = 1.482 x w-2 llgll =8.314x 10-1 llgll =8.314 x Io-7 

Cputime<1 
NFE=10 

Cputime<l 
NFE=70 

Cputime=1 
~FE=70 

p.O T" =0.2553!672 I" =0.24446097 ~" =0.24446097 
m=1 m=14 tm=I3 
llgll=0.6623269 llgll = 1.038 x w-6 llgll = 1.032x Io-6 

- Cputime<1 Cputime<1 Cputime=1 
NFE=6 NFE=57 NFE=55 

6.0 =0.26430095 T"' =0.24446096 ~"' =0.24446096 
m=1 m=13 tm=13 
llgll = 1.50813 llgll =8.109 x w-7 llgll=8.109x w-7 

- se_utime<1 Cputime<1 Cputime=l 
NFE=6 ~FE=53 NFE=53 

7.0 1" =0.24655780 T" =0.24455418 ~"=0.24455418 
m=2 111=5 m=5 
llgll =2.408 x w-2 llgll =2.027 x 10-3 llgll =2.027 x w-3 

- Cputime<1 Cputime<1 Cputime<l 
~FE=9 NFE=21 NFE=21 

8.0 T" =0.24655783 IT" =0.24455223 r" =0.24455223 
m=2 tm=5 m=5 
llgll =2.612x 10-2 llgll =2.821 x w-3 llgii=2.82I x Io-3 

- Cputime<l Cputime<l Cputime<l 
NFE=10 INFE=23 NFE=23 



TABLE (8.3.13):Results of FR with varying E and N. 

N 10 40 78 156 
t 

0.1 "'=0.13544655 ~"' =0.13335130 r"' =0.13335129 
m=14 im=19 m=19 

- 11&11=4.241 x1o-2 11&11 =8.425 X J0-3 11&11=8.391 x 1o·3 
~utime<1 Cputime<l Cputime=l 

FE=79 INFE.=102 NFE=99 
0.11 "'=0.13342054 ~"' =0.13451461 r"' =0.13451461 

1!1=30 ~=16 m=16 

- 11&11=4.547 x 1o-3 11&11 =3.092 X 10·2 llgll=3.092x 10-2 
Cputime<1 Cputime<1 Cputime=1 
NFE=141 iNFE=83 NFE=83 

p.12 11"'=0.13366719 ~"'=0.13317414 1"'=0.13317414 
lm=15 m=28 111=28 
ll&ll=4.920x10-3 11&11 =8.535 X J0-4 11&11 =8.535 X J0-4 

- ~utime<1 Cputime=1 Cputime=2 
NFE=78 NFE=133 NFE=133 

~.13 =0.13751878 r~ =0.13367046 "'=0.13326260 1"'=0.13326258 
m=15 im=15 m=14 im=14 
ll&ll=3.398x 10-2 11&11 = 1.034 X 10-2 11&11 =3.053 X 10·2 11&11 =3.033 X 10·2 
~utime<1 Cputime<1 Cputime<1 Cputime=1 

FE=78 NFE=75 NFE=76 NFE=76 

~.15 r~ =0.34263748 ~~ =0.25859973 "'=0.25873187 ~"' =0.25872431 
111=2 im=4 m=4 im=4 
11&11 =0.3605352 11&11 =0.5172537 llgll =0.5222807 llgll =0.49876431 
~putime<1 Cputime<1 ~utime<l Cputime<1 
!NF'E=14 INFE.=25 E=25 iNFE=25 



TABLE (8.3.14):Results of FR with change in uo for ACCsao-2. 

UQ m J"' llgll NFE eps Cputime 

0.9 2 p.24449082 ~.70378x10-j 9 5.0 <1 

1.0 2 p.24455006 17.23059 x w-j 9 6.0 <1 

1.2 2 p.24465877 ~.56650x w-j y 6.0 <1 

1.4 3 p.24446587 ~.87109x IQ-3 13 6.0 <1 

1.6 3 f-1.24458319 r>.63058 X IQ·j 16 2.0 <1 

1.8 4 f-!.24459255 r>.08296x lQ-j 21 ... o <1 

2.0 12 f-!.13328645 ~.60359x 10-j 63 0.18 <1 

2.2 14 f-!.13327442 17.73252x w-j 69 0.12 <1 

2.4 18 f-!.13317278 8.64012 x 1 o-j 92 0.12 <1 

2.6 20 p.13319968 ~.95821 x w-j 106 0.12 <1 

2.8 13 f-!.133401854 ~.43664 x w-j 75 0.11 <1 

3.0 13 p.13319774 8.30700x 10-j 77 0.10 <1 



TABLE (8.3.15):Results of FR with change in uo for ACC!>lo·3. 

uo m J"' lgl NFE eps ~putime 

2.0 - - - - - -

2.2 - - - - - -

2.4 28 0.13317414 8.53505 X lQ-4 133 0.12 1 

2.6 - - - - - -

2.8 30 u.l3317522 p.74618x1Q-4 151 ~.11 1 

3.0 - - - - - -



TABLE (8.3.16):Results of FR with change in uo for ACC~lo-4. 

uo m J"' M NFE eps L'punme 

0.9 7 0.24446170 ~.32802x 10-:> 29 p.o <1 

1.0 7 0.24446170 ~.72530x w-:> 29 r>·O <1 

1.2 8 0.2444() 179 ~.66357 x 1o-::> 33 ~.0 <1 

1.4 8 f.1.24446172 f-1.73333x w-s 33 r>·O <1 

1.6 13 0.24446175 r.s5836x w-::> 59 [<!.0 <1 

1.8 13 f.1.24446170 9.73085x w-:> 60 [<!.0 <1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.17):Results of FR with change in uo for ACC:oao-6. 

uo m J" M NFE eps 11-:punme 

0.9 14 p.24446096 3.47414x w-t 57 5.0 <1 

1.0 13 0.24446096 8.1 099o x w-t 53 6.0 <1 

1.2 14 0.24446097 9.52095x w-t 57 6.0 <1 

1.4 15 0.24446097 ~.91567x w-t 62 6.0 <1 

1.6 24 0.24446097 4.80018 x w-t 104 2.0 <1 

1.8 27 0.24446097 1.36489 x 1 o-t 117 L.O <1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.18):Results of PR with varying E and N. 

N 10 40 78 156 
£ 

3.0 =0.24452166 r~ =0.24446096 =0.24446096 
m=5 im=37 m=36 

- JJgJJ = 1.916x w-3 JJgJJ =8.933 x 1o-1 JJgJJ =8.933 x w-7 
~time<1 ~utime=1 Cputime=2 

FE=22 FE=151 NFE=149 
4.0 "'=0.24945948 ~· =0.24446096 "'=0.24446096 

m=2 f11=27 m=27 

- llgJJ=1.484x10-2 JJgll=8.747 X 10-7 JJgJJ =8.747 x w-7 
Cputime<1 B>,utime= 1 Cputime=2 
NFE=10 NFE=110 NFE=llO 

5.0 r"'=0.24531672 r"' =0.24446096 r"' =0.24446096 
)11=1 f11=25 m=25 
JJgJJ =0.6623269 JJgJJ =7.711 x 10-1 JJgJJ = 7.711 X IQ-7 

- Cputime<1 Cputime=1 Cputime=2 
NFE=6 ~=101 NFE=101 

~.0 ~· =0.24446096 r"' =0.24446096 
Jm=20 111=20 
JJgJJ=9.308x w-7 JJgJJ =9.308x w-7 

- - ~utime<1 Cputime<l 
E=81 NFE=81 

~.0 ~"' =0.24655780 ~"'=0.24446918 "'=0.24446918 
m=2 Jm=5 m=5 
llgli=2.408x10-2 JJgJJ = 1.302x 1o-5 JJgJJ = uo2 x 1o-1 

- Cputime<1 Cputime<1 Cputime<l 
!NFE=9 INFE=21 NFE=21 

8.0 ~"' =0.24656351 ~· =0.24446921 lr"'=0.24446919 
Jm=2 
JJgJJ =2.611 x w-2 

Jm=5 
JJgJJ = 1.561 x w-5 

Jm=5 
JJgJJ = 1.47 X 1()·5 

- Cputime<1 Cputime<1 Cputime<l 
iNFE=9 NFE=21 NFE=21 



TABLE (8.3.19):Results of PR with varying e and N. 

N 10 40 78 156 
E 

~.1 ~"'=0.13758790 T"' =0.13340677 "'=0.13318709 ~"' =0.13318709 
1n=61 m=71 lm=30 lm=29 
M=1.894x1o-3 llgll=1.961 x1o-3 llgll =3.212x 1o-3 llgll=3.131 x w-3 
~putime<1 ~utime=1 Cputime=1 Cputime=2 
INFE=297 FE=349 INFE=161 NFE=159 

0.17 ~"' =0.13785391 r"' =0.1345692 ~"' =0.13318905 =0.13318905 
m=20 pt=14 pt=27 m=27 
llgll = 1.194x 10-2 M=5.743x1o-2 llgll =8.468 X J0-3 llgll=8.468 x 1 o-3 
~utime<1 Cputime<1 Cputime=1 Cputime=2 

FE=95 r#E=72 ~f£=134 NFE=134 

~.18 '"=0.16595612 11"=0.13377790 ~" =0.13318594 "'=0.13318594 
m=7 1n=15 1n=27 m=27 
llgll =0.2167893 llgll= 1.555 x 10-2 llgll = 1.985 x w-3 llgll = 1.985 X I0-3 
~time<l Cputime<1 ~!me=1 Cputime=2 

FE=39 ~=76 =123 NFE=123 

~.19 1"' =0.13879003 ~"'=0.13343252 ~"' =0.13353486 "'=0.13353483 
m=10 1m=25 1m=13 m=13 
llgll =2.659x w-2 llgll =3.805 x w-3 llgll =4.903 x w-2 11£11 =4.899 x w-2 
~putime<1 Cputime<1 Cputime=1 Cputime=2 
~f£=50 ~f£=125 ~FE=68 NFE=68 

0.2 =0.13765053 ~~=0.13375513 =0.13319346 "'=0.13319346 
fr1=25 im=15 m=30 fr1=29 
llgll =5.091 x w-3 llg~=1.072x10-2 ~gll =2.921 x w-2 llgll =2.921 X J0-2 
iCputime<l Cputime<1 Cputime=l Cputime=2 
~f£=120 !Nf£=78 NFE=136 NFE=134 



TABLE (8.3.20):Results of PR with change in uo for ACC~lo-2. 

uo m r" ~g~ NFE eps Cputime 

0.9 2 p.24449082 5.70378 X IQ-3 9 p.O <1 

1.0 2 0.24455006 7.23059 X IQ-3 9 f5.0 <1 

1.2 2 0.24465877 9.56650 X IQ-::5 9 6.0 <1 

1.4 3 f-'.24446583 3.00946x IQ-3 13 f'i.O <1 

1.6 3 0.24451984 4.31510x IQ-5 13 p.O <1 

1.8 4 0.24454834 4.9951xl0-3 17 ~.0 <1 

2.0 15 p.13329974 9.66388x 10-3 74 p.18 <I 

2.2 20 p.13323140 19.02354 X lQ-j 92 p.19 <1 

2.4 17 p.13333426 8.16410x J0-3 87 p.18 <1 

2.6 26 p.13317345 8.70550x 10-3 136 p.12 1 

2.8 23 p.13320670 9.42516x lQ-5 146 0.10 1 

3.0 15 p.13318340 5.81214x lQ-5 97 p.11 <1 



TABLE (8.3.2l):Results of PR with change in uo for ACCsao-3. 

uo m J"' !gl NFE eps Cputime 

2.0 27 ~.13318554 1.98509 x 1 o-J 123 0.18 1 

2.2 - - - - - -

2.4 - - - - - -

2.6 43 ~.13317397 l.94184x 10-j 207 0.12 1 

2.8 42 ~.13317129 1.93341 X 10-j 228 U.lO 1 

3.0 40 p.13317174 1.98038 X 10-j 204 U.11 1 



TABLE (8.3.22):Results of PR with change in uo for ACC~Io-4. 

uo m J M NFE eps Cputime 

0.9 10 ~.24446134 ~.90800x w-:> 41 p.O <1 

1.0 8 ~.24446148 7.29565x IQ-:> 33 ~.0 <1 

1.2 10 ~.24446169 7.69852x w-:> 41 ~.0 <1 

1.4 11 p.24446169 fJ.44105x 10-:> 45 ~.0 <1 

1.6 11 p.24446172 fJ.35948x l0-5 45 ~.0 <1 

1.8 17 ~.24446169 9.86105x w-:> 70 f'!.O <1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.23):Results of PR with change in uo for ACC:510·6. 

uo m J ftgft NFE eps q,utime 

0.9 21 u.2444o096 7.49008 X 1Q·/ 85 5.0 <1 
. 

1.0 20 U.24446IJIJ6 ~.3078xlO-I 81 o.O <1 

1.2 23 0.24446096 9.40211 X IQ-/ 93 o.O 1 

1.4 24 0.24446097 ~.41687x w-t 98 o.O 1 

1.6 24 0.24446IJIJ7 ~.3042110"' 98 o.o 1 

1.8 38 0.24446097 ~.56529x w-t 154 4.0 1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.24):Results of Hl with varying E and N. 

N 10 40 78 156 
E 

3.0 T" =0.24585320 lr" =0.24446097 "=0.24446097 
m=6 P1=19 m=18 

- llgll=5.214x w-3 llgll =9.001 x 1o-7 llgll =8.981 x w-7 
Cputime<1 te_utime<l Cputime=1 
NFE=31 NFE=77 NFE=77 

~.0 =0.24945948 ~~ =0.24446096 =0.24446096 
m=2 ln=17 m=17 

- llgll=l.482xJ0-2 llgll =8.314x w-7 llgll=8.314x 10-7 
Cputime<1 Cputime<1 Cputime=1 
NFE=10 NFE=70 NFE=70 

5.0 T" =0.25531672 lr" =0.24446097 ~"' =0.24446097 
m=1 ~=14 lm=13 
llgll=0.6623269 llgll = 1.038 x 1o-6 llgll = 1.032 x w-6 

- Cputime<1 Cputime<1 Cputime=l 
NFE=6 ~FE=57 NFE=55 

~.0 r~ =0.26430095 r~ =0.24446096 r~ =0.24446096 
p1=1 ~=13 m=13 
llgll = 1.50813 llgll =8.109 x w-7 llgll=8.109x w-7 

- Cputime<1 Cputime<l Cputime=1 
NFE=6 ~FE=53 NFE=53 

[7.0 =0.24655780 tr =0.24455418 "=0.24455418 
m=2 ~=5 m=5 
11£11 =2.408 x w-2 llgll =2.027 x w-3 llgll =2.027 x 1o-3 

- Cputime<1 Cputime<1 Cputime<l 
~FE=9 NFE=21 NFE=21 

~.0 =0.24655783 r~ =0.24455223 "'=0.24455223 
~=2 ~=5 m=5 
llgll =2.612x 10-2 llgll =2.821 x w-3 llgll =2.821 x w-3 

- Cputime<1 Cputime<l Cputime<l 
~FE=10 NFE=23 NFE=23 



TABLE (8.3.25):Results of Hl with varying e and N. 

N 10 flO 78 156 
E 

~.1 ~~ =0.13339758 =0.13318526 ~~=0.13318525 
~=38 m=35 m=35 

- llgll=9.188 x 10·4 llgll =3.028 X 10·3 llgll =3.024x 1o-3 
Cputime<1 ~utime=1 Cputime=2 
~FE=194 FE=167 NFE=165 

0.12 ~~ =0.13339739 =0.13318658 ~~=0.13318658 
~=55 m=35 fl1=35 

- llgll= 1.106x 1o-3 11&11 =3.977 x 10·3 llgll =3.977 X J0-3 
Cputime<1 
iNFE=297 

Cputime=1 
NFE=167 

Cputime=2 
iNFE=167 

0.13 ~=0.13745473 ~~ =0.13390099 ,.=0.13318403 ~=0.13318403 
m=25 ~=15 m=29 ~=29 
ll&ll=5.025x10-2 11&11= 1.566x 10-2 11&11 =8.832 X J0-4 11&11 =8.832 X J0-4 
8iutime<1 Cputime<1 Cputime=1 Cputime=2 
NFE=127 NFE=84 NFE=149 iNFE=149 

. 

0.14 ~~ =0.13343967 =0.13318703 ~~=0.13318703 

~=15 m=30 ~=29 
11&11= 1.542 x 1o-2 11&11 =8.937 X 10·4 11&11 =8.937 x 1o-4 

- Cputime<1 Cputime=1 Cputime=2 
NFE=73 NFE=141 NFE=141 

0.15 '"'=0.13519949 r"' =0.13330998 lr"' =0.13330998 
m=9 m=20 fl1=20 
11&11=5.593 x 10-2 11&11 =2.778 X J0-2 llgll=2.778x 10·2 

- Cputime<1 Cputime=1 Cputime=2 
NFE=50 NFE=94 ~FE=94 



TABLE (8.3.26):Results of Hl with change in uo for ACC~;ao-2. 

no m J"' M NFE eps Cpuume 

0.9 2 0.24449082 ~.70378 x w-:; 9 5.0 <1 

1.0 2 0.24455006 r? .23059 x w-_j 9 o.O <1 

1.2 2 0.24465877 r.56650x w-_j 'J 6.0 <1 

1.4 3 0.244465lS7 ~.87109x w-_j 13 6.0 <1 

1.6 3 0.24458319 ~.63058x 10-j 16 rz.O <1 

1.8 4 0.24459255 ~.08296x IQ-:; 21 il.O <1 

2.0 16 0.13320453 ~.90606 x w-:; 77 p.18 <1 

2.2 20 0.13323534 ~.36870x 10-_j 95 0.13 <1 

2.4 17 0.13318469 ~.46456 x w-:; 89 p.13 <1 

2.6 24 0.24460027 ~.40841 x 1o-:; 150 0.13 1 

2.8 21 0.133419467 8.73069x IQ-:; 108 p.12 1 

3.0 16 0.13339801 ~.78239x10-j 84 0.13 <1 



TABLE (8.3.27):Results of Hl with change in uo for ACC~I0·3. 

uo m r M NFE eps L'putime 

2.0 - - - - - -

2.2 30 p.13318481 ~.74198x1o-4 140 p.13 1 

12.4 29 0.13318403 ~.8315Sx10-4 149 p.13 1 

2.6 30 p.24446444 ~.61432x1Q-4 203 p.13 1 

2.8 - - - - - -

3.0 33 0.13317961 17.21462x IQ-4 161 p.13 1 



TABLE (8.3.28):Results of Hl with change in uo for ACC~lo·4. 

uo m J"' l!gll NFE eps Cputime 

0.9 7 0.24446170 9.32802x 1Q·:l 29 ~.0 <1 

1.0 7 0.24446170 f4.72530x w-:> 29 ~.0 <1 

1.2 8 0.24446179 ~.66357 x w-:> 33 ~.0 <1 

1.4 8 0.24446172 9.73333x w-:> 33 ~.u <1 

1.6 13 0.24446175 7.55836x w-:> 59 rz.o <I 

1.8 13 0.24446170 ~.73085 x to-5 60 rz.o <I 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.29):Results of Hl with change in uo for ACC~lo-6. 

uo m r JJg! NFE eps FPuume 

10.9 14 0.24446W6 3.47414xlo-t 57 :>.0 <1 

1.0 13 0.24446W6 ~.10990x w-t 53 6.0 <1 

1.2 14 0.24446W7 9.52095x1Q-1 57 6.0 <1 

1.4 15 0.24446097 ~.91567x1Q·/ 62 p.O <1 

1.6 24 0.24446097 ~.80018x10·I 104 2.0 <1 

1.8 27 0.24446097 1.36489 X IQ·/ 117 ~.0 <1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.30):Results of ATH with varying E and N. 

N 10 40 78 156 
E 

3.0 '"'=0.24585320 ~"' =0.24446097 r"' =0.24446097 
1n=6 1n=19 111=18 

- llgll=5.214x 1o-3 llgll =9.001 x w-7 llgll =8.981 x w-7 
Cputime<l Cputime<1 Cputime=1 
N'FE=31 INFE=77 NFE=77 

4.0 IT"' =0.24945948 ~"' =0.24446096 T"' =0.24446096 
1n=2 m=17 1n=17 

- llgi = 1.482 x w-2 llgl=8.314xi0-7 igll=8.314x10-7 
Cputime<1 Cputime<1 Cputime=1 
INFE=IO NFE=70 NFE=70 

~.0 ~"' =0.25531672 r"' =0.24446097 IT"' =0.24446097 
1n=1 m=14 1n=13 
llgll =0.6623269 llgll = 1.038 x w-6 llgll = 1.032 x 1o-6 

- Cputime<1 Cputime<1 Cputime=1 
INFE=6 NFE=57 INFE=55 

~.0 ~"' =0.26430095 T"' =0.24446096 ~" =0.24446096 
m=l m=13 ~=13 
llgll = 1.50813 llgll =8.109 x 1o-1 llgll =8.109 X 10-7 

- Cputime<l Cputime<l Cputime=1 
NFE=6 NFE=53 NFE=53 

7.0 T"' =0.24655780 T" =0.24455418 ~"'=0.24455418 
m=2 m=5 m=5 
llgi =2.408 x w-2 llgll =2.027 x w-3 llgll =2.027 x w-3 

- Cputime<l Cputime<1 Cputime<1 
NFE=9 NFE=21 NFE=21 

8.0 "'=0.24655783 "=0.24455223 T" =0.24455223 
m=2 m=5 m=5 
llgll=2.612x 10-2 llgll =2.821 x w-3 llgll =2.821 x w-3 

- Cputime<l Cputime<l Cputime<1 
NFE=10 NFE=23 NFE=23 



TABLE (8.3.31):Results of ATH with varying e and N. 

N 10 40 78 156 
E 

0.1 ,~=0.13338819 r" =0.13508597 ~" =0.13508596 
m=45 m=15 lm=l5 

- llgll= 1.970x1o-3 llgll =4.291 X lQ-2 llgll =4.213 X 10-2 
Cputime<1 Cputime<1 Cputime=1 
NFE=226 NFE=84 lr-!FE=84 

0.11 =0.13339970 T" =0.13927 680 ~"=0.13927679 
!!1=45 m=10 m=IO 

- llgll=2.243 X J0-3 llgll =0.1413501 llgll=0.1413501 
Cputime=1 Cputime<l Cputime=l 
jNFE=237 NFE=61 NFE=61 

0.12 T" =0.13374761 T" =0.13317505 ~"=0.13317505 
~=15 lm=34 lm=34 

- llgll= 1.707 X 10-2 llgll =9.674x 10-4 llgll =9 .67 4 X 10-4 
Cputime<1 
iNfE=87 

Cputime=1 
~=168 

Cputime=2 
NFE=168 

~.13 ["=0.13768117 ~" =0.13666050 [" =0.13317530 =0.13317530 
m=15 im=10 im=34 m=34 
llgll=3.125x 10-2 llg~=4.326x 10-2 llgll =9. 787 x 1o-4 llgll =9.787 x Io-4 

Cputime<1 Cputime<1 Cputime=1 Cputime=2 
NFE=82 ~=58 iNFE=170 NFE=170 

~.15 ~~ =0.13629642 ~"=0.13381931 T" =0.13 381929 
im=10 . ~=15 m=15 
llgll =4.268 X lQ-2 llgll =2.603 X 10-2 llgll =2.587 X lQ-2 

- Cputime<l Cputime<1 Cputime=1 
NFE=51 iNFE=72 NFE=72 



TABLE (8.3.32):Results of ATH with change in uo for ACC:o;lo-2. 

uo m J" M NFE eps L'puttme 

0.9 2 0.24449082 5.70378xiO-J 9 5.0 <l 

1.0 2 f.!.24455UU6 7.23059xlo-3 9 p.O <1 

1.2 2 p.24465877 9.56650x w-j 9 6.0 <1 

1.4 3 p.24446587 2.87109x w-j 13 6.0 <1 

1.6 3 f-'.24458319 6.63058 x w-j 16 ... o <1 

1.8 4 f-'.24459255 6.08296x w-j 21 rz.o <1 

2.0 22 f-'.13318247 8.99351 x 1 o-J 104 0.13 1 

2.2 15 p.13322805 6.92920x 10-j 77 f-'.12 <1 

2.4 15 p.13330087 9.66302x w-j 82 o.12 <1 

2.6 17 p.13318977 6.79285x1o-J 81 f-'.13 <1 

2.8 24 f-'.13317827 7.67838x 10-J 115 f-'.12 1 

3.0 22 f-'.13317822 9.77898x w-j 112 f-'.14 1 



TABLE (8.3.33):Results of ATH with change in uo for ACC~lo·3. 

uo m J ~g~ NFE eps qmtime 

2.0 3lS 0.13317530 9. 93926 X 10-4 18::S fJ.13 1 

2.2 43 0.13317545 9.94395 X 10·4 236 fJ.12 1 

2.4 34 0.13317505 9.67378x10·4 168 U.12 1 

2.6 42 fJ.13317526 9.93680x1Q·4 2UU fJ.13 1 

2.8 35 0.13317594 9.99775x I0-4 162 fJ.12 I 

3.0 42 0.13317584 9.53071 X 10-4 201 0.14 1 



- ·- ----------------- - - -·-

TABLE (8.3.34):Results of ATH with change in uo for ACC:~ao-4. 

uo m J+ llg~ NFE eps jLlJutime 

0.9 7 p.24446170 ~.32802 X IQ-;) 29 ~.0 <1 

1.0 7 p.24446170 ~.72530x10-;, 29 ~.0 <1 

1.2 8 p.24446179 ~.66357 x w-;, 33 ~.0 <1 

1.4 8 p.24446172 ~.73333 x w-;, 33 ~.0 <1 

1.6 13 p.24446175 7.55836 x w-;, 59 ~.0 <1 

1.8 13 0.24446170 p.73085x1Q·J 60 [L.O <1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.35):Results of ATH with change in uo for ACCsao·6. 

uo m J~ M NFE eps ~'puume 

0.9 14 0.24446096 3.47414x10-I 57 5.0 <1 

1.0 13 0.24446096 8.10990x w-t 53 6.0 <1 

1.2 14 0.24446097 9.52095x w-t 57 6.0 <1 

1.4 15 0.24446097 8.91567x w-t 62 6.0 <1 

1.6 24 0.24446097 4.80018x J0-7 104 2.0 <I 

1.8 27 0.24446097 1.3 648 9 x w-7 117 2.0 <I 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.36):Results of H3 with varying e and N. 

N 10 r40 78 156 
e 

~.0 IT* =0.24585320 ~* =0.24446097 IT* =0.24446097 
~=6 m=19 ~=18 

- JJgJJ=5.214x w-3 JJgJJ =9.001 x 1o-1 JJgJJ =8.981 x w-7 
Cputime<l Cputime<1 Cputime=1 
NFE=31 NFE=77 NFE=77 

fi.O ~* =0.24945948 T* =0.24446096 "'=0.24446096 
~=2 m=17 rn=17 

- JJgJJ = 1.482 x w-2 JJgJJ =8.314x 10-7 JJgJJ=8.314x Jo-7 
Cputime<1 Cputime<1 Cputime=l 
INFE=10 NFE=70 NFE=70 

5.0 ~~ =0.25531672 T* =0.24446097 J* =0.24446097 
lm=1 m=14 lm=13 
JJgJJ =0.6623269 JJgJJ = 1.038 x w-6 JJgJJ = 1.032 x Jo-6 

- Cputime<1 Cputime<l Cputime=1 
NFE=6 NFE=57 NFE=55 

6.0 ~* =0.26430095 "'=0.24446096 J"' =0.24446096 
lm=l m=13 rn=l3 
JJgJJ = 1.50813 JJgJJ =8.109x Jo-7 JJgJJ=8.109x Io-7 

- Cputime<1 Cputime<1 Cputime=l 
NFE=6 NFE=53 NFE=53 

7.0 "'=0.24655780 "'=0.24455418 ~*=0.24455418 
m=2 m=5 Jm=5 
JJgJJ=2.408 x 10-2 JJgJJ =2.027 x w-3 JJgJJ=2.027x J0-3 

- Cputime<l Cputime<l Cputime<l 
NFE=9 NFE=21 NFE=21 

8.0 T* =0.24655783 r* =0.24455223 r* =0.24455223 
m=2 m=5 m=5 
JJg~=2.612xlQ-2 JJgJJ =2.821 x w-3 JJgJJ=2.82J X JQ-3 

- Cputime<l Cputime<l Cputime<l 
NFE=lO NFE=23 NFE=23 



TABLE (8.3.37):Results of H3 with varying E and N. 

N 10 f40 78 156 
£ 

~.1 ~~ =0.13339758 =0.13318526 r~=0.13318525 

~=38 m=35 ~=35 

- 11811 =9 .188 x w-4 118 11 =3.028 x w-3 11811 =3.024 x 1o-3 
Cputime<1 Cputime=1 Cputime=2 
INFE=194 NFE=167 NFE=165 

~.12 ~~=0.13339739 ,~=0.13318658 ~~ =0.13318658 
~=55 m=35 ~=35 

- 11£11 = 1.106 x w-3 ~811 =3.977 x w-3 11£11 =3.977 x Jo-3 
Cputime<1 ~utime=1 Cputime=2 
NFE=297 FE=167 NFE=167 

0.13 r~=0.13745473 ~~=0.13390099 =0.13318403 ~~ =0.13318403 
~=25 ~=15 m=29 ~=29 
llgll=5.025x 10-2 11£11 = 1.5 66 x w-2 11811 =8.832 x w-4 11811 =8.832 x 1o-4 
8iutime<1 Cputime<1 ~utime=1 Cputime=2 
~=127 NFE=84 E=149 ~FE=149 

0.14 ,. =0.13343967 ,~=0.13318703 ~·=0.13318703 
m=15 iU=30 ~=29 
11811 = 1.542 x w-2 11£11 =8.937 x w-4 llgll=8.937x J0-4 

- Cputime<1 Cputime=1 Cputime=2 
NFE=73 !'fFE=141 NFE=141 

0.15 y¥ =0.13519949 IT~ =0.13330998 ~· =0.13330998 
m=9 iU=20 m=20 
11811 =5.593 x w-2 11811 =2.778 x 1o-2 llgll=2.778x 10-2 

- Cputime<1 Cputime=1 Cputime=2 
INFE=50 ~FE=94 NFE=94 



TABLE (8.3.38):Results of H3 with change in uo for ACC!>Io-2. 

uo m J M NFE eps Cputime 

0.9 2 0.24449082 5.70378x 1o·J 9 5.0 <1 

1.0 2 0.24455006 1.23059 x w-J 9 6.0 <1 

1.2 2 0.24465877 9.56650x w-3 9 16.0 <1 

1.4 3 0:24446587 ~~87109x1Q=3 13 j6.0 <1 

1.6 3 0:24458319 ~.63058 X 1Q=3 16 !L.O <1 

1.8 4 0:24459255 ~.08296x 10=3 21 2.0 <1 

2.0 16 p.13320453 ~.90606x w-j 77 0.18 <1 

2.2 20 p.13323534 6.36870x w-j 95 p.13 <1 

2.4 17 p.13318469 p.46456x 10-j 89 p.l3 <1 

2.6 24 P.24460027 ~.40841 x w-3 150 P.13 1 

2.8 21 0:133419467 8.73069x w-j 108 p.12 1 

3.0 16 0:13339801 fJ.78239x w-j 84 p.l3 <1 



TABLE (8.3.39):Results of H3 with change in uo for ACC~Io-3. 

uo m J'" ~g~ NFE eps FPutirne 

2.0 - - - - - -

2.2 30 p.13318481 ~.74198x1Q·4 140 p.13 1 

2.4 29 p.13318403 ~.83155 x w-4 149 p.l3 1 

2.6 30 p.24446444 ~.61432x w-4 203 p.l3 1 

2.8 - - - - - -

3.0 33 p.13317961 17.21462 X 1Q·4 161 fJ.l3 1 



TABLE (8.3.40):Results of H3 with change in uo for ACC~lo-4. 

uo m r llg~ NFE eps Cputime 

O.Y 7 f1.24446170 f).32802x 10-:l 29 p.O <1 

l.U 7 f1.24446170 ~· 72530 X 10-:l 29 ~.0 <1 

1.2 8 f1.24446179 p.66357 X 10-) 33 ~.0 <1 

1.4 8 0.24446172 ~.73333x10-J 33 ~.0 <1 

1.6 13 0.24446175 ~.55836x10-5 59 ~.0 <1 

1.8 13 0.24446170 f). 73085 X 10-:l 60 ll.O <1 

2.0 - - - - - -

2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



TABLE (8.3.4l):Results of H3 with change in uo for ACC$10·6. 

uo m r lgl NFE eps Cj)utime 

0.9 14 P:2444@6 3.47414x 10~ 57 1).0 <1 

1.0 13 P:24446096 8.10990x10~ 53 p.o <1 

1.2 14 P:2444@7 9.52095 X 10::'] 57 16.0 <1 

1.4 15 P:24446097 8.91567 X 10~ 62 p.o <1 

1.6 24 P.24446097 4.80018x w-7 104 12.0 <1 

1.8 27 P.24446097 1.36489x IQ-7 117 12.0 <1 

2.0 - - - - - -
2.2 - - - - - -

2.4 - - - - - -

2.6 - - - - - -

2.8 - - - - - -

3.0 - - - - - -



Table (8.4.1): Summary table for the seven methods 

~I GFS SD FR PR H1 ATH H3 

. uo Cl7 
m=18 m= 18 m=13 m=20 m=13 m=13 m=13 

J* = 0.24446097 J* = 0.24446096 J* = 0.24446096 J* = 0.24446096 j* = 0.24446096 J* = 0.24446096 J* = 0.24446096 

llgU = 6. 03057 X 10-1 llgll = 3.05272 x1o-7 llgll = 8.10990 x 10-1 llgll = 9.3078 x 10-7 llgll = 8.10990 x 1 o-2 llgll = 8.10990 x 10-7 llgll = 8.10990 x 1o-7 

1.0 e=4.0 e= 6.0 e= 6.0 e= 6.0 e= 6.0 e= 6.0 e= 6.0 

NFE= 19 NFE=73 NFE=53 NFE=81 NFE=53 NFE=53 NFE=53 

I Coutime< 1 Cputime < 1 Cputime < 1 Cputime <I Cputime < 1 Cputime < 1 Cputime <I 

m= 18 m=20 m= 15 m=24 m= 15 m= 15 m= 15 

J* = 0.24446096 J* = 0.24446096 J* = 0.24446097 J* = 0.24446097 J* = 0.24446097 J* = 0.24446097 J* = 0.24446097 

llgll = 7.84019 x w-1 llgll =151156xi0-7 llgll = 8.91567 X I0-7 llgll =2.41687xlo-2 llgll =8.91567x1o-7 llgll =8.91567x10-7 llgll =8.91567x1o-7 

1.4 e= 4.0 e= 6.0 e= 6.0 e= 6.0 e= 6.0 e= 6.0 e= 6.0 

NFE= 19 NFE=82 NFE=62 NFE=98 NFE=62 NFE=62 NFE=62 

Coutime < 1 Cputime= 1 Cputime <I Cputime= I Cputime <I Cputime <I Cputime <I 

m=95 m=55 m= 12 m=27 m= 16 m=38 m= 16 

J* = 0.13327228 J* = 0.13317762 J* = 0.13328694 J* = 0.13318594 J* = 0.13320453 J* =0.13317530 J* = 0.13320453 

IIgB = 7.16762 x lQ-3 llgll = 5.41984 x to-s llgll =6.60359xto-3 llgll = 1.98509 x to-3 llgll = 6. 90606 X I o-3 llgll =9.94926x10-4 llgll = 6. 90606 X I o-3 

2.0 e = 0.17 e= 0.5 e = 0.18 e= 0.18 e = 0.18 e = 0.13 e= 0.18 

NFE=96 NFE=259 NFE=63 NFE = 123 NFE=77 NFE= 183 NFE=77 

Coutime= 1 Cputime=2 Cputime <I Cputime = 1 Cputime <I Cputime = 1 Cputime< 1 

m=91 m=76 m=28 m= 17 m=29 m=34 m=29 

J* = 0.13337527 J* = 0.13317500 J* = 0.13317414 J* = 0.13333426 J* = 0.13318403 J* = 0.13317505 j* = 0.13318403 

2.4 
llgU = 9.99689 X 10-3 llgll = 3.4 8297 x 1 o-2 ilgll = 8.53505 X 10-4 llgll = 8.16410 X I0-3 llgll = 8.83155 X 10-4 llgll =9.67378xi0-4 llgll =8.83155xi0-4 

e= 0.11 e= 0.5 e = 0.12 e = 0.18 e = 0.13 e = 0.12 e= 0.13 

NFE=92 NFE=450 NFE= 133 NFE=87 NFE= 149 NFE = 168 NFE= 149 

Coutime= 1 Cputirne =3 Cputime = 1 Cputime < 1 Cputime= 1 Cputime = 1 Cputime= 1 
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Chapter 9 

PROBLEM 6 

9.1 A Nonlinear Singular Control Problem 

Here we consider the problem used by Yeo (1980) [150] to illustrate the use of 
quasi-linearization to solve non linear control problems and then by R. Luus 
(1990) [22] using discrete dynamic programming with systematic reclud.ion 
in grid size. 

The non-linear singular control problem is clescrihed by the state equa
tions: 

:i:r = :1:2, J:t(O) = 0, 

:i:2 = -X3'l/. +Hit- 8, X2(0) = -1, 

.i:3 = u, .1:3(0) = -J5. 
The performance index is 

J = l [x~ + :~:~ + o.ooo5(x2 + 1Gt- 8- o.1x3u?r dt. 

(fU.1) 

(fJ.l.2) 

(9.1.3) 

(9.1.4) 

We are to find the control ·a in the time interval o :::; t :::; 1 such that the 
performance index J is minimized. The control is bounclec I by 

-4 :::; u :::; 10 (9.1.5) 

Now by introducing new state variables .1:4 and :r5 we transform the problem 
into, 

Subject to, 
ft = .i:1 = :1:2, Xt (0) = 0, 

h = i:2 = -J;3'1/, + 16:z:r,- 8, :1:2(0) = -1, 

h = i::l = u, x3(0) = -J5, 

.fr, = :i:r, = 1, :r.s(O) = 0, 
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(9.1.7) 

(9.1.8) 

(9.1.9) 
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with, 
O~t~l. 

The Hamiltonian is, 

5 

H = LAd; = AJ/, + Ad2 + Aa/a + A4j4 + A5j5. 
i=l 

The adjoint equation are, 

with, 

i.e., 

>.a 

• 5 ar 
A;=- LAi-', 

i=l Dx; 

A;(t1)= 0°~-~ , i=1,2,3,4,5 . 
. :r,t t-t ·-I 

8xa D.1:3 Dxa Dxa lh:a 

(9.1.12) 

(fJ.l.1:3) 

_[A, 8!1 + A2 Dh + Aa ?Ja + A4 Dj4 +As Dfr.] , 

- { -A21L + 0.0005A4 [-3.2J:su2 + l.Gu2 + 0.02u.4.ra- 0.2J:2u2
]} , 

(9.1.15) 

(9.1.1G) 

>,
5 

_ -[A
1
8f,+Az8h+A3 8fa+A48f4+AsDJr.], ( ) 

. . 8x5 8.r.s O:~:s D.1:s lJ.1:r. 9.1.17 
- {16A2 + 0.0005A4 [-3.2xgu2 + 512x5 + 32J:2- 256]}, 

with, 

A,(t,) = Dr/> I = 8(.r.4(1))1 = 0, 
ih:, •=•t=l ax, t=l 

(9.1.18) 

)..2(t/) = Dr/> I = lJ(x4(1)) I = 0, 
8.1:2 •=•t=l 8x2 t=l 

(9.l.HJ) 

Ag(t,) = Dr/> I = lJ(J:4(1)) I = 0, 
OXg t=t,=l 8.1:3 t=l ' 

(9.1.20) 

A4(tr)= ~r/>~ =8(~4(1))1 =1, 
(h;4 t=t,=l d.7::l t=l 

(9.1.21) 

>-r.(tt) = ~r/> I = D(~:r.(l)) I = 0. 
d:I:r. t.=t,=l <J:r:s t=l 

(9.1.22) 
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Here, before proceeding to solve the problem numerically, we should note 
that, singular arc occurs at x3 = 0, where det(H,.,.) vanishes at any point 
along it. Here also on the bounded control if -4 ::::: u ::::: 10, the following 
conditions must be satisfied; 

8H 
u= 10 ==> B < 0, 

11 (9.1.2:3) -4 < ·u < 10 ==> T - 0, 

11 
0. u= -4 ==>- > au 

On these intervals, u is tnmcated, such that if u > 10, u is set equal to 10, 
and if u < -4, u is set to equal -4. 

9.2 Numerical Solutions 

9.2.1 The state and adjoint equations 

The state equations are; 

/! = it = .1:2, :r. 1 (0) = 0, 
:1:2(0) = -1, 

:r.3(o) =-VG", 
X4(0) = 0, 
Xr.(O) = 0, 

(9.2.1) 

h = :i:2 = -xau + 1G:r:s ~ 8, 
fa = :i:a = u, 
!4 = X4 = :r:~ + x~ + 0.0005(:~:2 + 1Gx5 - 8- O.l:r.3u2

)
2

, 

fs =is= 1, 

0::::: t::::: L 

Using the Runge-Kutta 4th order method for munerical Rolut.ion of (9.2.1) 

we get, 

where, 

:r:a,n+l 

X5,n+l 

1 ' 
Xt,n + G {'u.1 + 2uz + 2u3 + u4} , 

1 . 
Xz,n + G {Vt + 2v2 + 2v3 + '1!4}, 

1 
Xa,n + G {wi + 2wz + 2w3 + w4 } , 

1 
:r:4,n + G {Pt + 2Pz + 2P3 + P4}, 

1 
Xs,n + G { Q 1 + 2Q2 + 2Q3 + Q 4} , 

U1 = hft {xt,n1 .T.2,n, .'t3,n1 X4,n 1 :t:n,n) = h.7:z,u 1 

Vt = h/2(Xt,n 1 X2,n 1 .7:3,n 1 .'X4,n 1 .'l:fi,n) = h( -.1:3,n'lln + 16:r:r,,u - 8) 1 

Wt = hj3(Xt,n 1 :r:z,n, :r:a,n, :I:4,n, :I:5,n) = hun, 

P1 = hJ4(:1:1,n1 :r:z,n, :r:3,n, .'l:4,n, :1:ri,11.) = h [:r:f,n + :r:~,n 
+ 0.0005(:r:2,n + 1G.7:r.,n- 8- O.h:a,u.'/1.~) 2], 



1 1 1 . 1 
Uz - hfi (xi,n + 2ttb Xz,n + 2!1" Xa,n + z'W" :1:4,,. + 2 PI, 

Xs,n + ~QI) = h [.xz,n +~vi] , 
1 1 1 1 

!12 - h/z(XI,n + 2!t1,X2,n + 2V!,X3,n + z'WI,X4,n + zpi 

Xs,n + ~QI) = h {- [xa,n + ~'WI] u.,, + 16(xr.,n + ~QI)- 8}, 

1 1 1 1 
'Wz = hfa(xi,n + 2tt1,X2,n + 2li!,X3,n + zw":1:4,n + 2p" 

1 
Xs,n + 2QI) = lw.,., 

1 1 1 1 
Pz - hf4(xi,n + 2'1LJ>:I:z,n + 2VI,X3,n + zWI,:x:4,n + 2p" 

1 ) - { ( 1' )2 ( ' 1 ' )2 Xs,n + 2QI - h XI,n + zlti + X2,n + 21JI 

+0.0005 [ (a:2,n +~vi) + lG(.xr.,,. + 4QI) - 8 

1 2 2 
-0. 1(.Ta,n + zwl)v,] } , 

1 1 1 1 
hj5(X1,n + 2'U1,:z:2.n + 2'0IJ.'C3,n + 2w~,a:4,n + 2P11 

1 
:I:s,n + 2QI) = h, 

tta 

Wa = 

1 1 1 1 
hj4(XI,n + z'U.2,X2,n + 2vz,X3,n + z-wz,.T-4,n + z-Pz, 

1 1 1 
.T.s,n + 2Qz) = h { (.1:1,n + 2'1!2)2 + (:x:2,n + z-vz)

2 

+0.0005 [ (xz,n + 4v2) + lG(xs,n + ~Qz) - 8 

1 2 ]} -0.1(xa,n + 2wz)u,. , 

1 1 1 1 
hfs(XI,n + 2Uz,.1:2,n + 2v2, ::r:a,n + 2'Wz, X4,n + 2Jz, 

1 
Xs,n + 2Qz) = h, 

U4 h/J (:x:i,n + '1!3, X2,n + Va, :I:a,n +'Ilia, X4,n + Pl, :I:r.,n + Q:J), 
h(xz,n + va), 

'll4 hj2(:1:1,n + 'U3,:r:2,n + 'U3,:1:3,u. + 'W3,:X:4,n + P1, 
.1:r,,n + (l:J) = h {- [:I::J,n + 'W:J] '11.,. + HJ [:I:r,,n- Q:<]- 8}, 
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W4 hfa(xl,n + Ua,X2,n + va,xa,n + wa, X4,n + Pa, :I:r.,n + Qa), 
hu,., 

P4 - hl4(x1,n + 'Ua,X2,n + va,xa,n + Wa,X4,n + Pa, Xr.,n + Qa), 
- h { (xl,n + ua)2 + (x2,n + va) 2 + 0.0005 [ (x2,n + va) 
+ 16(xs,n + Qa)- 8- 0.1 (xa,n + wa)u?,]

2 
} , 

Q4 = hls(XI,n+ua,X2,n+va,xa,n+wa,X4,n+Pa, 
Xs,n + Qa) = h. 

The adjoint equations are: 

/! - ~~ = -[2A4XI], .>-,(1) = 0, 
/2 - ~2 =- {.>-, + A4 {2x2 + 0.0005 [2:1:2- 0.2xau2 + a2:r.r,- 16]}}, >-2(l) = 0, 
la ~a= - { -.>-2u + 0.0005.>-4 [-3.2:rs·tt2 + 1.6u2 + 0.02u4:r.3 - 0.2:I:2u2]}, .>-3 (1) = 0, 

14 ~4 = 0, >-4(1) = 1, 
Is - ~s = - {16.\2 + 0.0005.>-4 [-a.2:1:3u.2 + 512:r:r. + ;{2:c2- 25G]}, Ar,(l) = 0. 

(9.2.2) 
Using the R.unge-I<utta 4th order method for nmnerical solution of (9.2.2) 
we get, · 

1 ' 

where, 

At,u. -

A2,u. -

.\3,n -

.X4,u 

A5,u 

AI,n+l + 2 {u, + 2u2 + 2ka + A:4}, 

A2,u.+I + 2 {zi + 2z2 + 2za + Z4}, 

A3,n+I + 2 {YI + 2y2 + 2ya + :t/4} , 

A4,n+l + 2 {a,+ 2a2 + 2aa + a4}, 

.\r.,n+I + G {h + 2b2 + 2ba + b4}, 

k1 = -h/J (AI,n+I, A2,n+l> Aa,n+I, A4,n+l> Ar.,u+t), 
= -h { -2A4,n+J.'I.'J,n+I} = h {2A4,n+J.'I.'J,n+I}, 

Z2 - -h/2(-AI,n+J, A2,n+l> A3,n+l, A4,n+l, Aa,n+t), 
- -h {- {Al,n+I + A4,n+l {2:I:2,n+I + 0.0005 [2:r.2,n+l 

-0.2:x:a,n+J'll.?,+l + a2:x:5,n+I- 16]}}}' 

Y1 -hfa(>-,,n+l> A2,n+I• Aa,n+h A4,n+I• Ar.,n+I), 
-h{- { -A2,n+I'II,,+J + 0.0005A4,n+I [-3.2.1:r.,n+J'IL?,+I+ 

1.6u?,+l + 0.02u~•+I·1.'3,n+I- 0.2.'1:2,n+lu?,+I]}}, . 

- h{ { -.\2,n+J11-n+I + 0.0005A4,n+l [-3.2:I:5,n+J1l.?,+I 

1.6u?,+1 + 0.02u~•+I·'l.'3,n- 0.2.1.'2,n+J'lL?,+I]}}, 

a, = -h/4(.>-,,,.+J, .\2,n+1> >-a,n+I• .A4,n+I> >-s,n+J), 
= -h(O) = 0, 

b, -hfo(.>-I,n+l• .A2,n+1> >-a,n+l> A4,n+l> A&,n+J), 
-h {- { Hi.A2,n+I + 0.0005A4,n+I [ -3.2:ra,u.+J'//,~•+I + 
512:I.'s,n+I + 32:I.'2,n+l - 25G]}}, 

h { { l6A2,,.+1 + 0.0005A4,n+l [ -3.2.1:3,n+J'11-~.+I + 512:cr.,n+I 
+ 32.1.'2,,.+1 - 25G]}}, 
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1 1 1 
k2 - -hfi (>.t,n+I + 2k~, >.2,n+1 + 2z1, >.a,n+t + 2y~, 

1 1 
A4,n+J + 2(LJ, AS,n+J + 2b1), 

- h { 2(.\4,n+J + ~at)XJ,n+l} , 
1 1 1 

Z2 - -hh(AJ,n+J + 2kJ, A2,n+J + 2ZJ, A3,n+l + 2Y1o 

1 1 {{ 1 A4,n+l + 2aJ, A5,n+J + 2b1) = h (.\J,n+J + 2ki) 

+ (>.4,n+J + ~aJ) {2x2,n+J + 0.0005 [2x2,n+J 

0.2xa,n+J + u;.+l + 32:z:s,n+J- w]}}}, 
1 1 1 

Y2 - -hfa(.\t,n+J + 2kt,A2,a+l + 2ZJ,A3,n+J + 2y1, 
1 1 

A4,n+J + 21LJ, Ar,,n+J + 2b1) 

- h { { -(A2,n+l + ~ZJ)'IIn+J + (.\4,n+l + ~i!t)0.0005 
[ -3.2:rs,n+ J"U~,+ 1 + Uiu?,+l + 0.02v.~+ 1 :r::l,n+ ~-
0.2.T.2,n+J7l.?,+I]}}, 

1 1 1 
IL2 - -hh(AJ,n+I + 2A:t, A2,n+I + 2ZJ, A3,n+J + 21/J, 

1 1 
A4,n+J + 21LJ, An,n+J + 2b1) = -h(O) = 0, 

lfi(j 



1 1 1 
aa - -hf4(At,n+I + 2k2,A2,n+1 + 2z2,A3,n+I + 21Jz, 

1 1 
A4,n+l + 2a2, As,n+J + 2b2) = 0, 

1 1 1 
ba - -hfs(At,n+J + 2k2, A2,n+J + 2z2, Aa,n+J + 2y2, 

1 1 {{ 1 >.4,n+I + 2a2, >-s,n+I + 2b2) = h 16(>.2,n+t + 2z2) 

+ (A4,n+l + ~a2)0.0005 [-3.2.T.a,n+Iu?,+J + 512xs,u+I 

+ 32x2,n+l - 256)}} , 

k4 -h/J(AJ,n+J + ka, A2,n+J + za, A3,n+J + ya, A4,n+l + rta, 
As,n+I + ba) = h {2(A4,n+J + aJ)xJ,n+d, 

Z4 - -h/z(AJ,n+J + ka, A2,n+l + Za, Aa,n+J + Ya, 
A4,n+J + aa, As,n+J + ba) = h { { (At,ro+I + ka) 

+ (>.4,n+l + aa) { 2x2,n+l + 0.0005 [2x2,n+I - 0.2:r:a,n+J'Il;,+J 
+ 32xs,n+I - 16]}}} , . 

Y4 -hfa(AJ,n+J + ka, A2,n+1 + za, Aa,n+l + 1J:J, A4,n+l + na, 
As,n+l + ba) = h { { -(A2,n+J + za)'lln+J 

+ (>.4,n+l + aa)O.OOO::i [ -3.2.7:s,u+J'II;,+l + l.6u?,+I 

+ 0.02u:,+J·T.3,n+l- 0.2x2,n+!'U;,+l]}}, 

IL4 = -hf4(At,n+l + ka, A2,n+l + Za, Aa,n+I + 1}3, 

A4,n+l + na, As,n+I + ba) = 0, 

U4 - -hfs(AJ,n+J + ka, A2,n+J + za, Aa,n+I + 1}3, 

A4,n+J + aa, Ar.,n+J + ba) = h { {1G(Az,n+I + za) 
+ (A4,n+J + 1La)0.0005 [ -3.2:I:a,n+J'II?,+J + 512:r:r.,n+J 
+ 32x2,n+J - 25G]}}. 

9.3 Results and Discussion 

9.3.1 Gradient method 

The algorithm for the gradient in function space applied t.o problems the same 

as that described in <'hapter 4, section 4.4.1. Here, the gmdient (g = 
1~,H) 
(J!f, 

is obtained as follows: 
from, (9.1.12), 

H - A1.1:2 + A2( -:r:an + 1Gxs - 8) + Aan + A4 
[.1:~ + .T.~ + 0.0005(:~:2 + 1Gx5 - 8- O.l:r:3u2

)
2

] + >.5 , 

- A1:z:2 + >.2( -xan + 1Gxs- 8) + Aan + A4 {.1:~ + :r:~ 
+ 0.0005 [x~ + (1G:r:r.)2 + G4 + 10.1:r:3u2)2 

2(0.1xan2)x2- 2(1G.xs)(O.lxan2) 
+ 2(8)(0.1x3u2) + 2.r.2 (1Gx5) - 2(8)x2 

2(8)(1Gxr.)]} + Ar.. 

DH . c [ 2 :J "· = - A2:c3 + Aa + 0.000.JA4 0.04:r::<n 
(}!{, 

0.4:c3:r:2u - G.4:r:5:r::fa + a.2:t::ru]. 
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The efficiency of the method is examined by varying the critieaJ paramet.ers 
t,N and Uo- Here the stopping conditions are taken as IIYII < Ace, where 
Ace is set to 1.628 X w-2 ' 2.0 X w-2 and 5.0 X w-2• It should be pointed 
out that selecting Ace ::; 1.628 x 10-2 is because, that even by increasing the 
number of iterations no improvement can be found for smaller values of Ace. 

Table (9.3.1), shows that effect of t and N in obtaining the optimal J 
with the best Ace possible, and best starting eontrol Uo = 4.0. The best .]' 
obtained was 0.12000835 to 8 decimal places, with IIYII = 1.628 x 10-2 and 
the corresponding parameter values, t = 1.9,N = 400 or 800, ami m= 244. 
Selecting N sufficiently large, i.e. 100 or 400 produces consistent results, hut 
with N too small, i.e., 10, the stopping eondition for Ace ::; 1.628 x 10-2 was 
not met, even by increasing the number of iterations, and best Ace obtained 
was Ace::; w- 1 for tin the range, 1.0 :<:; t ::; 1.9. Here selecting N as 800 as 
opposed to 400 may result in slightly better minimum J* for some t's, hut 
at the cost of more computing time. 

Tables (9.3.2), (9.3.3) and (9.3.4), show the effect. of '11<1 on J when the 
best N is seleeterl, i.e. n = 400 for Ace ::; 5.0 X w-2 '::; 2.0 X w-2 and 
::; 1.628 x w-2 respect.i vely. 

From Table (9.3.2), it ean be seen that select.ing u0 in the range, 2.0 :<:; 
Uo ::; 4.0 achieves the required Ace ::; 5.0 X w-2

' in fewer iterations than 
Uo = 1.0 or ·u0 = 5.0. Seleeting uo = 4.0, produces the hest overall result. 
Also, from Table (9.3.3) it can be seen that selecting '11{} in the range 2.0 :<:; 
11(1 ::; 4.0 achieves the required Ace ::; 2.0 X w-2 in fewer iterations than 
Uo = 1.0 or u0 = 5.0 and the best overall result is obtained with u0 = 4.0. 

From Table (9.3.4), it. can be seen that, selecting 110 in the range, 2.0 :<:; 
1to ::; 4.0, ad1ieves the required, Ace ::; 1.628 x 10-2

, where ·u., = 1.0 and 
Uo = 5.0, do not meet the requirement, for the Ace ::; 1.628 x 10-2

• But 
selecting u0 = 4, again gives the best result. 

Various aspects of the effect of the critical parameters, are shown graph
ically in figures (9.3.1) to (9.3.4). 

Figure (9.3.1), effect of m on ·u with u 0 = 4.0,N = 400 and t = 1.9, 
where m = 1.0, 100 and 244. As earl be seen from the plots, all the curves of 
eontrol start at 10, for the 3 different iterations, but then each curve behaves 
differently along time axis. 

Figure (9.3.2), effect of N on ·a, with 141 = 4.0, m = 210, N = 100, with 
t = 1.0 and N = 400 with t = 1.9. As can be seen there are some differenct"s 
in the behaviour of the curves of control between N == 100, ar1d N = 400, 
e.g. at approximate time of 0.1 to 0.25, hut then from there, they behaved 
similarly for a while, till the approximate time of 0.32, that from there to 
the final time of 1, they behaved differently. 

Figure (9.3.3), effect of € on ·u, with 'l4J = 4.0, m = 244, N = 400 and 
t = 1.0 and 1.9. Here from the graph we can see there a.re some differences 
between the curves of f = 1.0 and 1.9. Although at start, both curves 
behaved similarly for a while, but from approximate time of 0.16 onwards, 
the difference is quite eminent from the plots. · 

Figure (9.3.4), effect of .J* against m, with N = 400, '11.0 = 1.0 with 
€ = 0.9, u0 = 3.0 with t = 1.9 and u11 = 4.0 with f = UJ. As can be seen 
from the graph, as 1n inereases the vain<~ of optimal J fi>r all stmting eontrols 
converges to the same value. 
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The correct choice of initial control in this case u0 = 4.0, can give a better 
J' with a more accurate Ace. Also for higher Ace, e.g., 1.628 x w-2

, selecting 
distant Uo's will never achieve that. The interaction between t and N, shows 
that the best combination to give a better optimal J, in fewer iterations, less 
computing time and better Ace, is given by selecting sufficiently large N, i.e., 
400 and t in the range 1.8 :::; t :::; 2.0. 

9.3.2 Steepest descent 

The algorithm for steepest descent applied to the problem 6, is as described 
in chapter 2, section 2.2.2. The line seard1 technique used for this method 
is linear search at constant step, which was described in chapter 3, section 
3.4.1. The g is as GFS in this chapter, section 9.3.1. 

Here again we investigate the effect of step length factor, integration 
step and initial control on the solution. Stopping wnclition are taken as 
llgiJ :::; 1.6263 X 10-2, 2.0 X 10-2 and 5.0 X 10-2• 

Table (9.3.5) shows the effeet. of t and N, in obtaining the optimal .J, 
with the be.st Ace possible, and best '11<> in this case v., = 4.0. The hest. .!' 
obtained was 0.11993895 to 8 decimal places with IIYII = 1.621 x 10-2 and the 
corresponding parameter values, f = 2.0, N = 400 or ROO ami m.= 21:3. For 
N large enough say, 400 selecting f in the range 1.9 :::; f :::; 2.0 can produce 
better values for optimal J than selecting t in the range 1.0 :::; f :::; 1.5 or 
t = 2.1, although it. might take more number of iterations to achieve those. 

For N smaller, say 100, selecting fin the range 1.9 :":: .- :":: 2.1 can achieve 
their best Ace :::; 1.628 X w-2 in fewer iterations thnn selecting f in the 
range 1.0 :::; t :::; 1.5. For N too small, say, 10, the best Ar.c obtained was 
Ace :::; ro- 1, which is not. accurate enough, and even an increase in rn made 
no improvement. Here also selecting N as 800 as opposed to 400 may result. 
in slightly better minimum J' for some t's hut at. the cost of more computing 
time. 

Tables (9.3.6), (9.3. 7) ami (9.3.8), show that effect of initial control on .!', 
when the best N is selected, i.e. N = 400, for Ace:::; 5.0 X w-2 ,:::; 2.0 X w-2 

and :":: 1.6263 X 10-2• 

From Table (9.3.6), it can be seen that selecting 'l!o in the range 1.0 :::; 
Uo :::; 2.0, achieves Ace:::; 5.0 X w-2 in fewer iterations than uo, in the range 
3.0 :":: 1J.o :":: 5.0. From Table (9.3.7), it. an be seen that selecting uo, in the 
range 2.0 :::; 1J.o :::; 4.0, adtieves, the required Ace :::; 2.0 X w-2 ' in fewer 
iterations than 11.0 = 1.0 or 1111 = 5.0. But. the best. J' wa..~ achieved with 
Uo = 2.0. 

From Table (9.3.8), it can be seen that selecting '1/<J in the range 2.0 :::; 
Uo :::; 4.0 achieves the required Ace :::; l.G263 X w-2 , in fewer iterations, than 
Uo = 1.0. Also at u0 = 5, the required Ace could never be achieved. 

Various aspects of the effect of ·rn, N, t and u0 are shown graphically in 
Figures (9.3.5) to (9.3.8). 

Figure (9.3.5), effect of m. on ·n with ·u0 = 4.0, N = 400 and t = 2.0, where 
m= 10, m= 100 and m= 21:3. 

As can be seen from the plots the behaviour of the. curvc~s of control are 
different from each other, along time axis, but as 'In increase the pattern of 
behaviour gets closer. 
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Figure (9.3.6), effect of Non u, with 11o = 4.0, N = 100, with t = 1.5, m= 
344 and N = 400 with € = 2.0 and m = 213. Difference can be seen from 
the plots of control, between N = 100 and 400. Although they both started 
at u = 10, but soon at approximate time of 0.09, the pattern of behaviour 
started to differ and it continued till the final time. 

Figure (9.3. 7), effect of € on u, with 14> = 4.0, m = 200, N = 400 and 
€ = 1.0 and 2.0. Here again some differences can be seen from the graphs of 
controls between € = 1.0 and t = 2.0. Here, although the pattern of behaviour 
are similar, and at time 0.0, they both started at u = 10.0 and behaved 
similarly for a while up to approximate time of 0.15, but from there, some 
differences can be observed, the the behaviour of the curves, that mntinued 
up to the approximate time of 0.81, and then again from there to the final 
time, they behaved similarly. Fig·ure (9.3.8), effect of J* against m, with 
N = 400, 11o = 1.0, with t = 0.9, 11o = 4.0 with € = 2.0 and ·u,, = 5.0 with 
€ = 0.9. As can be seen, by increasing m, the value of optimal J, for all 
starting controls, converges to the same one. 

The above results show that a proper choice of initial mntrol is an impor
tant factor in achieving the best J* in fewer iterations, function evaluations, 
and finally computing time. Also seleding a distant. 'II<J may IHwer achieve a 
high Ace. 

The interaction between t aiH I N, shows that. the best. combination in 
order to produce a better optimal J, in fewer iterations, less computing time 
and better Ace, exists with selecting sufficiently hu·ge enough N, i.e. 400 
with t in the range 1.9 :::; t :::; 2.0. 

9.3.3 Fletcher-Reeves 

The algorithm for the Fletcher-Reeves methorl, applied to problem 5, is as 
described in chapter 2, section 2.4. The caleulation of the norms of the 
gradients are as given in chapter 2, section 2.1.1. 

The line search technique is the same as that for steepest descent in this 
chapter, section 9.3.2. The gradient (y) is the same as the one obtained in 
this chapter, section 9.3.1. 

Table (9.3.9), shows the effect oft and N, in obtaining the optimal J, 
with best Ace possible and best '"" in this case 'l4J = 3.0. 

The best J* obtained was 0.12009654 to 8 decimal places, with IIYII = 
1.589 x w-2 and the corresponding pm·ameter values t = 1.4, N = 400 or 
800 and m = 67. 

For N, lmge say 400, selecting f in the range 1.0 :::; f :::; 1.4 can meet the 
requirement. for the Ace:::; 1.60x-2

, in fewer iterations, also fewer function 
evaluations and finally less computing time than selecting f and f = 0.5 or 
€ = 1.5. For N large enough say 1.0, selecting E in the range 1.3 :::; E :::; 1.4 
can meet the requirement for the Ace :::; 1.6 x 10-2 in fewer iterations and 
function evaluations, also less computing time than selecting t in the range 
0.9 :::; t :::; 1.0 and t = 1.5. 

For N too small, say 10, none of the t's can achieve an accurate Ace and 
even increasing the number of iterations would not improve the value of J. 
As for previons methods ~electing N a.~ 800 a.~ opposer! to 400 may result in 
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slightly better minimum J' for some €'s but. at the cost of more mmputing 
time. 

Tables (9.3.10), (9.3.11) and (9.3.12), show the effe~t of initial control on 
J, when the best N is selected, i.e., 400 for Ace :::; 5.0 X w- 2, :::; 2.0 X w-2 

and ::0 1.60 X IQ-2• 

From Table (9.3.10) it can be seen that, selection of 1to, in the range 
1.0:::; Uo:::; 3.0, a<'hieves Ace:::; 5.0 X w-2, in fewer iterations thmltto in the 
range 4.0 :::; Uo :::; 5.0. From Table (9.3.11), it can be seen that selecting !to 
as Uo = 1.0 or u0 = 3.0 can achieve the required Ace:::; 2.0 x w-2 , in fewer 
iterations, than selecting Uo = 2.0 or u0 in the range 4.0 :::; 1to :::; 5.0. 

From Table (9.3.12), it cm1 be seen that selecting ·u0 , in the rm1ge 3.0 :::; 
Uo :::; 4.0, achieves the required Ace :::; 1.6 X w-2 , in fewer iterations than 
selecting 1to = 2.0 or ·u" in the range 4.0 :::; tto :::; 5.0. The best optimal J was 
achieved with u0 = 3.0. 

Various aspects of effect of m, N, ( and u11 are shown graphkally, in Fig
ures (9.3.9) to (9.3.12). 

Figure (9.3.fJ), effect of m on u, with ·u11 = 3.0, N = 400 and € = 1.4, 
where m = 1, 10 and 67. As can he seen from the plots, there are smne 
differences between the curves of control for various m's and as m increaHes 
to 67 we can see the behaviour of the curve is completely different from m = 1 
or m= 10. 

Figure (9.3.10), effect. of Non u, with u0 = 3.0, m= :H, N = 100 with 
€ = 1.0 and N = 400 with f = 1.4. Here, although the curves of control for 
N = 100 and N = 400, both started at 10, mHl behaved similarly for a little 
while, but. from approximate time of 0.08 the difference is quite eminent. and 
it continued to the final time. 

Figure (9.3.11), effect of € on ·u with u = 3.0, m= 67, N = 400 and f = 0.5 
and € = 1.4. Here, we can see some similarities in the pattern of behaviour 
between the curves of control for f = 0.5 Me! 1.4, but there are differences in 
the curvature between the two. Figme (9.3.12) effect. of .J' against. m, with 
N = 400, 'll{) = 1.0 with c = 1.4, u,1 = 3.0 with f = 1.4 awl u11 = 5.0 with 
€ = 0.9. As CM be seen from the plots by increasing m the value of optimal 
J for all starting controls converges to the same value. In view of the results 
obtained a proper choice of initial control is an important factor in achieving 
the best J', in fewer iterations in this <'.ase u0 = 3.0. 

Also the interaction between c aml N shows that the best combination in 
order to produce a better optimal J in fewer iterations less computing time 
Md better Ac.c, exists with selecting sufficiently large N, i.e., 400 with E in 
the rMge 1.0 :::; c :::; 1.4. 

9.3.4 Polak-Ribiere 

The algorithm for Polak-Ribiere method is described in chapter 2, section 
2.5. The line search technique and calculation of the norms are as described 
for FR in this chapter, section 9.3.1. The gmdient (g) is the same as GFS 
in this chapter, section 9.3.1. Table (9.3.13) shows the effect of£ and N in 
obtaining the optimal J with the best Ace possible ami hest initial control 
in this case 110 = 4.0. The hest .J' obtained wa.~ 0.119'J9489 to S decimal 
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places, with IJgll = 1.624 x 10-2 and the corresponding parameter values 
t = 0.11, N = 400 or 800 and m= 144. 

For N large, e.g. 400 selecting tin the range 0.09 ~ t :::; 0.12 can meet 
the requirements for Ace :::; 1.63 x 10-2 , but, selecting t = 0.2, can not meet 
this requirement, even when m is increased. The best optimal J for N = 400, 
considering the Ace and number of iterations taken, obtained with f in the 
range 0.11 :::; t:::; 0.12. 

For smaller N, say 100, selecting tin the range 0.1 :::; t:::; 0.11 can achieve 
optimal J with a better Ace than t = 0.09 or t = 0.2, since with € = 0.09 or 
0.2 even with increasing m no more improvement in Ace could be obtained. 

For N too small e.g. 10, none of theE's c.-m meet an accurate Ace, and 
even increasing the number of iterations could not improve the value of .J. 
Here also selecting N as 800 as opposed to 400 may result in slightly better 
minimum .J* for some E's but at the cost of more computing time. 

Tables (9.3.14), {(1.3.15) and (9.3.16) show that. effect of selecting n0 on .J' 
when the hest. N is selectecl, i.e. N = 400 for Ace :::; 5.0 X w-2

':::; 2.0 X w-2 

and :::; 1.63 X 10-2 • 

From Table (9.3.14) it. can be seen that selecting u.0 in the range 3.0 :::; 
u0 :::; 5.0 can achieve the required Ac.c :::; 5.0 x 10-2

, in fewer iterations 
and also function evaluations than u0 in the range 1.0 :::; u., :::; 2.0. From 
Table (9.3.15) it can be seen that selecting ·a0 in the range :l.O :::; ·u0 :::; fi.O 
can achieve the required Ace :::; 2.0 x w-2 in fewer iterations also NFE ami 
Cput.ime than u0 in the nu1ge 1.0 :::; n0 :::; 2.0. 

From Table (9.3.16), it can be seen that selecting u0 in the range 4.0 :::; 
u0 :::; 5.0 can achieve the required Ace :::; 1.63 x 10-2 in fewer iterations am! 
also NFE than ·u0 in the range 1.0 :::; u0 :::; 3.0. 

Various aspects of eftect of critieal parameters, are shown gTaphically, in 
Figures (9.3.13) to (9.3.16). 

Figme (9.3.13), effect. of m on u with u0 = 4.0, N = 400 and f = 0.11, 
where m= 1, 20 and 144. Here as can be seen from the graphs of control there 
are quite considerable differences, between various m's and as m increa.<;es 
the behaviour of the curve.s of control along time axis changes more. 

Figure (9.3.14), effect of Non ·a with 'ILn = 4.0, m = RO, N = 100 with 
t = 0.10 and N = 400 with € = 0.11. As can he seen from the gmphs, 
although the curves of control for both N = 100 and 400, started similarly 
but there are some minor differences in their behaviours along time axis that 
can be observed. 

Figure (9.3.15) effect of t on u, with u0 = 4.0, m = 100, N = 400 and 
€ = 0.11 and t = 0.2. Here also, the curves of control for both f = 0.11 ami 
0.2, started similarly but as time increases we can see· there are cliflerenees 
in their curvature behaviour. 

Fig·ure (9.3.16) effect of J' against m, with N = 400, 'li<J = 1.0 with 
€ = 0.11, 'Uo = 4.0 with t = 0.11 and u0 = 5.0, with € = 0.11. Here as can be 
seen as m increa.~es, the value of optimal J for all starting control, converges 
to the same value. 

In view of all above a proper choice of initial control is an important 
factor in ad1ieving the hest. J' in fewer iterations in this ease no = 4.0. 

Also, the interaction between f and N shows that. the hest combination in 
order to proclnce a better optimal J in fewer iterations less computing time 
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and better Ace, exists with selecting sufficiently large N, i.e. 400 with f in 
the range 0.11 ~ t ~ 0.12. 

9.3.5 Hybrid 1 

The algorithm for the Hybrid 1 method is dP.scribed in d1apter 2, section 
2.6.1. The line search technique and calculation of the norms are the same 
as for FR in this d1apter, section 9.3.5. The gmdient (g) is also obtained in 
the same way as for GFS in section 9.3.1. 

Table (9.3.17), shows the effect oft and N in obtaining t.he optimal .J 
with the best Ace possible and best initial control in this case u0 = :3.0. 

The best J' obtained was 0.11979908 t.o 8 decimal place.s with ll!!ll = 
1.595 x w-2 and the corresponding parameter values t = 1.5, N = 400 or 
800 and m= 120. 

For N, large say 400 selecting t in t.he range 1.0 ~ · e ~ 1.5 can produce 
fairly better J than selecting t in t.he range l.G ~ f :5 2.0. 

For smaller N say lOO selecting f in t.he range 1.4 :5 f ~ 1.5 can obtain 
optimal J for the Ace :5 l.GO x 10-2 in fewer iterations than l.G :5 f :5 2.0 
or e = 1.0. But it does not. necessarily achieve a bet.t.er minimum .T'. 

For N too small e.g. 10 with most e's the optimal .J converges with a 
poor Ace~ w- 1 and even by increasing m t.he Ace or convergency of.! does 
not improve. Selecting N as 800 as opposed to 400 may result in slightly 
better minimum .J' for some e's but at the cost. of more computing time. 

Tables (9.3.18), (9.3.19) and (9.3.20) show that. effeet of seleeting u"' on 
J when t.he best. N is selected, i.e. N = 400 for Ace :5 5 X w-2 ' :5 2 X w-2 

and ~ l.G x w-2 . From Table (9.3.18) it. can be seen that. selecting u0 = 2.0 
of u0 = 4.0 can ad1ieve the requirecl Ace :5 5.0 x w-2 in fewer iterations 
than other starting control 'll{) = 1.0 or 4.0. Here although selecting 'll{1 = 5.0 
can achieve Ace ~ 5.0 x w-2 for the same iterations as '141 = 2.0 or 4.0 but 
the J obtained is not. as good as t.he one obtained for t.he other t.wo starting 
controls. 

From Table (9.3.19) it can be seen that selecting u0 in t.he range 3.0 :5 
1lo :5 5.0 c.an achieve the required Ace :5 2.0 X w-2 in fewer iterations than 
selecting 11.0 in t.he range 1.0 :5 ·u{) :5 2.0. 

From Table (9.3.20) selecting ·uo = 3.0 can achieve t.he required Ace ~ 
l.GO x w-2 in fewer iterations than other starting controls in terms of achiev
ing better optimal J and although ·u0 = 5.0 car1 achieve Ace ~ l.GO x w-2 

in fewer iterations than ·u{) = 3.0, t.he J obtained is not as goocl as the one 
obtained with '11{] = 3.0. 

Various aspects of critical parameters ar·e shown graphically, in Figures 
(9.3.17) to (0.3.20). 

Figure (9.3.17) efl'ect of m on u with tto = 3.0, N = 400 and t = 1.5 
where m = 1, 20 and 120. Here as can be seen from t.he plots of controls for 
different m's as m increases the behaviour of the curves get. more complex 
along the time axis. 

Figure (9.3.18) effect. of N on u with u.o = :3.0, m. = :w, N = 100 with 
e = 1.4 ancl N = 400 with t = 1.5. Here a.~ can lw S(een from t.he curves 
of control alt.hough at start both curve of N = 100 alHI N = 400 hehn.vecl 



similarly but at approximate time of 0.08 some minor differences started to 
emerge and it continued along the time axis to the end of time 1.0. 

Figure (9.3.19) effect of € on u with Uo = 3.0, m = 100, N = 400 and 
e = 1.5 and e = 2.0. Here also we can see some differences between the curve 
of control for e = 1.5 and 2.0. The curves started similarly up to approximate 
time of 0.09 and from there onwards to the final time they behaved clifierently. 

Figure (9.3.20) efiect of J* against m with N = 400, Uo = 1.0 with € = 
1.5, Uo = 5.0 with € = 1.5 and 110 = 5.0 with € = 1.2. As can be seen from the 
plots as m increases the value of optimal J for all starting controls converges 
to the similar value. 

In view of the above results an appropriate d10ice of initial control is an 
important factor in achieving best J' in fewer iterations in this c.ase '~~<~ = 3.0. 

The interaction between e and N shows that the be.st combination in 
order to produce a better optimal J in fewer iterations less computing time 
and better Ace, exists with sufficiently large N, i.e. 400 with f in the range 
1.0 :s: € :s: 1.5. 

9.3.6 Angle test hybrid 

The algorithm for the angle test hybrid method is described in chapter 2, 
section 2. 7. The line search tedmique and the caleulation of the norms are 
the same as FR in this chapter, section 9.3.3. The gmdient (g) is obtained 
in the same way as GFS in this chapter, section 9.3.1. For this method we 
had to consider the parameter T > 0 as well. The method was tested in 
the same way as the previous ones with the new parameter r taken as 0.01, 
0.0001 and 0.000001. 

Table (9.3.21) shows the effect of f and N in obtaining the optimal .J 
with the best Ace possible and hest. initial control in this ease n0 = :3.0, T = 
0.000001. 

The best J' obtained was 0.11984135 to 8 decimal places, with IIYII = 
1.587 x 10-2 and the corresponding parameter values f = 1.3, N = 400 or 
800 and m= 119. 

For N large say 400 selecting f in the rang;e 1.2 :S: f :S: 1.3 can produce a 
better J with Ace :s: 1.60 X w-2 in fewer iterations than other f'S. 

For smaller N say 100 selecting f as 2.0 can obtain J for Ace :S: 1.60 x 10-2 

in fewer iterations than other e's. For N too small say 10 with most e's the 
optimal J, converges with a poor Ace :S: 10-1 aml even by increasing the 
number of iterations the Ace of convergency of J does not improve. Here 
selecting N as 800 as opposed to 400 may result in slightly better minimum 
J' for some e's but at the c,ost of more c,omputing time. 

Tables (9.3.22), (9.3.23) and (9.3.24} show the effect of selecting u0 on 
J when the best N is selected, i.e. N = 400 and T = 0.000001, for Arc 5 
5 X 10-2 , :S: 2.0 X 10-2 and S 1.60 X 10-2• 

From Table (9.3.22) it r<m be seen that selection of 11.0 = 4.0 can achieve 
the required Ace :s: 5.0 X w-2 , in fewer iterations than other no's. 

From Table (9.3.23) we ean see that selecting u,,· = :3.0, can get the 
Ac.c :S: 2.0 x 10-2 in fewer iterations than other starting controls. 

From Table (U.:3.24) selecting '1111 in the range 2.0 :S: '1/.o :S: 3.0 can satisfy 
the Ar.c :s: 1.60 X w-2 in fewer it.emtions than other starting controls. 
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Various aspects of the critical parameters are shown graphically in Figures 
(9.3.21) to (9.3.24) where r is taken as 0.000001. 

Figure (9.3.21) effect of m on u with 'tl{) = 3.0, N = 400 and t = 1.3 where 
m= 1,20 and 119. Here we can see that by increasing m the curvature of 
the curves of control differ from each other along the time axis. 

Figure (9.3.22) effect of N on u with u0 = 3.0, m = 46, N = 100 with 
t = 1.4 and N = 400 with t = 1.3. Here the curves of control start simihu·ly 
but as time increases we can see some minor differences in the behaviour 
between N = 100 and N = 400. 

Figure (9.3.23) effect of t on u, with 1Lo = 3.0, m = 100, N = 400 and 
t = 1.3 and t = 2.0. As ean be seen from the gmphs oft= 1.3 and 2.0 =, the 
start of the curves of control are similar but at approximate time of 0.09, the 
behaviour of the curve starts to differ from each other along the time axis. 

Figure (9.3.24) effect. of J* against m with N = 400, u0 = 1.0, with 
€ = 1.3, 1to = 3.0 with f = 1.3 and 11.0 = 5.0 with f = 1.0. Here the value of 
optimal J for all starting controls converges to the same one, as m increaBes. 

In view of the results obtained a proper choice of initial control is an 
important factor in achieving hest J' in fewer iterations in this rase u., = :3.0. 

The interaction between € and N show that the best combination in 
order to produce a better opt.imal J, in fewer iterations less computing time 
m1d better Ac.c exists with sufficiently large N i.e. 400 with f in the range 
1.2 ::; t ::; 1.3. Here the effect of r on minimizing J was practically negligible. 

9.3. 7 Hybrid 3 

The algorithm for Hybrid 3, can also be found in chapter 2, section 2.8. The 
calculation of the norms and line seard1 are the same as FR in this chapter 
section 9.3.3. The gradient (!/) is obtained in the same way as for G FS in 
this chapter, section 9.3.1. 

1 
The effect of the new parameters, >. > 0 m Hilt < '2, had to be considered 

for this method so test can·ied out as before with the addition of >. taken as 
0.01, 0.0001 and 0.0000001 and I' as 0.15, 0.35 and 0.49999. 

Table (9.3.25) shows the effect of E and N in obtaining the optimal J with 
the best Ace possible and best. starting c.ontrol in this ease u0 = :to. 

Values of>. and IL were taken as 0.0000001 and 0.499~)9 respectively. 
The best J' obtained was 0.11981238 to 8 decimal places with ll!ill 

1.585 x w-2 and the corresponding parmneter values € = 1.4, N = 400 or 
800 and m = 113. 

For N large say 400 selecting t in the range 1.:3 ::; f ::; 1.5 can produce 
J' with Ace::; 1.60 x w-2 in fewer iterations than selecting f as 1.0 or 2.0. 
For smaller N say 100 selecting fin the range 1.4 ::; f ::; 2.0 can achieve the 
Ace ::; 1.60 X w-2 , in fewer iterations than f in the range 1.0 ::; f ::; 1.3. For 
N too small say 10, with most f's J is found wit.h a poor Ace ::; w-1 mu! 
even by increasing the number of it.erat.ions the Ace or convergency of J does 
not improve. Here also selecting N as 800 as opposed to 400 may result. in 
slightly bett.er minimum J' for some E's but at t.he cost. of more computing 
time. 

Tables (9.:3.26) to (9.:~.28) show that effect of seb~ting '//11 on J when the 
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best N is selected i.e. N = 400 with A = 0.0000001 and fL = 0.4!)!)!)!) for 
Ace ::; 5.0 x 10-2,::; 2.0 x 10-2 and ::; l.GO x 10-2• 

From Table (9.3.26) it can be seen that selecting u0 in the range 2.0 ::; 
tto ::; 3.0 can achieve the required Ace ::; 5.0 x 10-2 in fewer iterations than 
other Uo'S. 

From Table (9.3.27) we can see that selecting Uo = 1.0 or 'tto in the range 
3.0 ::; tto ::; 4.0 can achieve the required Ace::; 2.0 x 10-2 in fewer iterations 
than u0 = 2.0 or Uo = 5.0, but the best was achieved with 'tto = 3.0. 

From Table (9.3.28) selecting u0 in the range 3.0 ::; Uo ::; 5.0 can achieve 
the Ace::; 1.60 x 10-2, in fewer iterations than 1.0::; u0 ::; 2.0. 

Various aspects of the critical parameters were shown graphically in Fig
ures (!:>.3.25) to (9.3.28) where A= 0.0000001 and ft = 0.49!J!J!J. 

Figure (9.3.25) effect of m on u with 'tto = 3.0, N = 400 and f = 1.4 
where m = 1, 20 and 113. We can see that difference in the behaviour of the 
curves of control as m increases along the time axis, and this rliff<erence is 
more eminent between m = 1 and m = 113. 

Figure (9.3.26) effect of N on 'tt with u0 = 3.0, m = 39, N = 100 with 
f = 1.4 and N = 100 also with t = 1.4. As can be seen from the graphs of 
control there is not much difference in the behaviour of t1Ie curves of N = 100 
with N = 400 except in the approximate time intervals of [0.08, 0.15] and 
[0.32, 0.58]. 

Figure (9.3.27) effect of f on u. with 'llo = 3.0, m = 100, N = 400 and 
t = 1.4 and t = 2.0. 

Figure (!:>.3.28) effect of J' against m with N = 400, u 11 = 1.0 with f = 1.0. 
As can be seen from the graphs as m increases the value of optimal .J from 
all starting cont.rols converges to the same value. 

In view of the results obtained a proper choice of initial control is an 
important factor in ad1ieving the J' in fewer iterations in this case 'll<~ = 3.0. 

The interaction between t ami N shows that the hest combination in 
order to produc.e a better optimal J in fewer iterations less computing time 
and better Ac.c exists with sufficiently large N, Le, N = 400 with f in the 
range 1.3 ::; t ::; 1.5, Here the effeet of A m1d fL on minimizing J' was 
practically neglig,ible. 

9.4 Summary of the Results 

A summary of the results can be found in Table (!:>.4.1) and also a comparison 
of the methods can be seen in Figure (9.4.1) when N is taken as 400 for ATH, 
r = 0.000001 and for H3, A = 0.0000001 and fL = 0.4(JfJCJ!J. Also in Figure 
(!:>.4.1) the u0 is taken as 4.0 for GFS, SD ami PR and uo is taktm as 3.0 for 
FR., Hl, ATH and H3. 

Considering all the aspects of convergency for minimum J, i.e. the mun
ber of iterations Ac.c mHlnumerical stability the methods performed as fol
lows; 

At u0 = 1.0 the best J* obtained was by Hl but in terms of m, Cput.ime 
and NFE, FR performed the best. But overall taking all the parmnetem 
Ace, m, Cputime ami NFE into consideration, H3 per!immxl the best. At 
v{, = 2.0 the hest J' was found hy Hl, lmt eonsirltering ·m, Cput.ime alHl 
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NFE, FR performed the best. But overall taking the Ace, m., Cputirne and 
NFE into consideration H3 performed the best of all. 

At u0 = 3.0 the lw.st J* obtained was by Hl, but considering m, Cputime 
and NFE, FR performed the best. But overall taking the Ace, rn, Cputime 
and NFE into consideration, H3 performed the best of all. 

At 1to = 4.0 the best J' was found by H3 but considering m, Cputime 
and NFE, FR perfmmed the best. But overall taking the Ace, ·rn, Cputime 
and NFE into consideration again H3 performed the best of all. 

At u0 = 5.0 the best J* was found by H3, but considering m, Cputime, 
NFE and also an accurate Ace, H1 performed the best. But overall taking 
the Ace, m, Cputime and NFE into consideration again H3 performed the 
best of all. 

9.5 Conclusion 

In this chapter we have testecl the problem numerieally, inveBtigat.ed the 
efficiency of seven gTadient and conjugate gTaclient techniques with respect 
to the critical parameters, f, N and 'l4>· 

The performance of the methods are compared ha. sec 1 on the following 
factors: 

i. Best minimum J' achieved. 

ii. Level of Ace. 

iii. Number of iterations. 

iv. Number of function evaluations. 

v. Computing time. 

As can be seen from the results and also from the smmmuy table (9.4.1) 
the GFS, SD and PR methods achieve their best J* with u0 = 4.0 and the 
FR., H1, ATH and H3 methods achieved their best by seled.ing 'lto = 3.0. 

Also it can be seen from Table (9.4.1) that overall, taking the 5 mentioned 
important factors into account, H3 performed relatively better with various 
starting ('.()ntrols than other techniques. 

In all cases selecting a good initial control, facilitates finding the optimal 
J in fewer iterations with better Ace and less computing time. Also always 
selecting large enough integration step number (N) with appropriate step 
length factor (t) can help to M~hieve a better value for the optimal J. 

1G7 



TABLE (9.3.l):Results of GFS with varying e and N. 

N 10 100 400 800 
c ' 

1.0 r" =0.15864126 "=0.12150251 r" =0.12000934 lr" =0.12000932 
m=13 m=210 m=472 ~=472 
11£11 =9.941 x w-2 11£11 = 1.628 X 10·2 11£11 = 1.628 x w-2 11£11 = 1.628 X I o-2 

~putime<1 Cputime=1 Cputime=14 Cputime=28 
NFE=14 NFE=211 NFE=473 NFE=473 

1.5 "'=0.15889294 "'=0.12151104 "'=0.12000860 ~"'=0.12000860 
m=9 m=140 m=312 ~=311 
ll£11=9.954x w-2 llgll= 1.628 X 10-2 11&11 = 1.628 x w-2 11£11 = 1.628 x w-2 
~utime<1 S&time=1 • Cputime=9 Cputime=l7 

FE=10 NFE=141 NFE=313 NFE=312 

1.8 ~~=0.15748745 =0.12151168 r" =0.12000857 ~" =0.12000857 
~=11 m=110 m=258 ~=258 
ll£11=9.932x w-2 llgll = 1.628 x 1o-2 11£11 =1.628 X 10-7 11£11 = 1.628 x I o-7 
~putime<1 Cputime=1 Cputime=8 Cputime=15 
NFE=12 NFE=111 NFE=259 NFE=259 

1.9 "=0.15854882 "=0.12151168 T" =0.12000835 ~"=0.12000835 
~=11 m=llO · m=244 ~=244 
llgll=9.932x w-2 11£11 = 1.628 ><w-2 11£11 = 1.628 x 1o·2 M= 1.628 x w-2 

~utime<1 Cputime=1 · Cputime=7 Cputime=l3 
FE=12 NFE=111 NFE=245 NFE=245 

2.0 ~~ =0 .16079366 =0.12151942 1 ~=0.12001007 =0.12001007 
~=11 p1=105 m=251 m=251 
llgll=0.1080021 11£11= 1.628 X 10-2 11£11 = 1.628 X 10-2 llgll = 1.628 x 1o-2 
~putime<1 Cputime<1 , Cputime=7 Cputime=15 
NFE=12 NFE=106 , NFE=252 NFE=252 

~.3 r" =0.1712356 1"=0.12160342 T" =0.1200 1191 =0.12001009 
m=9 m=115 m=255 m=254 
11£11=0.2340131 11£11 = 1.630><10-2 11£11 = 1.628 X 10-2 11£11 = 1. 628 x w-2 
C)utime<1 Cputime=1 Cputime=8 Cputime=IS 
NFE=10 NFE=116 NFE=256 NFE=255 



TABLE (9.3.2):Results of GFS with change in u0 for ACC~ S.Oxlo-2. 

uo m r+ M NFE eps Cputime 

1.0 19 p.15018608 f4.90165x 10-L 20 p.9 <1 

2.0 10 p.15728053 ~.93213 x 1o-:t 11 1.9 <1 

3.0 9 p.15361698 ~.90792 x 10-z 10 1.9 <1 

4.0 10 0.14851412 ~. 6697 4 x 10-z 11 1.9 <1 

5.0 19 p.15018608 ~.90165 x 10-2 20 p.9 <1 



TABLE (9.3.3):Results of GFS with change in u0 for ACC$ 2.0xto-2. 

uo m f" M NFE eps ~'putime 

1.0 111 ~.12376547 1.99736 X JQ·L 112 ~.9 3 

2.0 50 ~.12344520 1.98793 X JQ·L 51 1.9 1 

3.0 48 ~.12347513 1.99591 x JQ·:l 49 1.9 1 

4.0 48 ~.12337772 1.98493 x w-z 49 1.9 1 

5.0 98 ~.12350924 l.99507x 1Q·L 99 ~.9 3 



TABLE (9.3.4):Results of GFS with change in u0 for ACC$ 1.628x to-2. 

uo m J" M NFE eps jC'putime 

1.0 - - - - - -

2.0 417 0.12000845 1.62760 x w-:z 418 1.9 13 

3.0 286 U.12000847 1.62760x w-2 287 1.9 8 

14.U 244 U.1 35 1.62759 X IQ·L. 245 1.9 7 

5.0 - - - - - -



TABLE (9.3.5):Results of SD with varying e and N. 

N 10 100 400 800 
c 

1.0 1"'=0.15654120 ~"'=0.12149884 "'=0.12009685 ~"'=0.12009683 
m=13 lm=457 m=215 im=215 
JJgJJ=9.877x w-2 JJgJJ = 1.628 x w-2 JJgJJ = 1.627 x w-2 JJgJJ = 1.627 x 1 o-2 
f=:putime< 1 Cputime=l Cputime=21 Cputime=40 
NFE=61 ~FE=1943. NFE=l162 NFE=l162 

1.5 =0.15572529 ~"'=0.12150063 1"' =0.11998067 ~· =0.11998067 
~=13 lm=344 m=224 m=223 
JJgJJ=9.792x1Q-2 JJgJJ = 1.628 x w-2 JJgJJ = 1.626 x 10-2 JJgJJ = 1.626 x 1 o-2 
~putime<l Cputime=lO Cputime=21 Cputime=40 
INF'E=57 NFE=1436. NFE=ll22 NFE=1117 

1.9 11"'=0.16629115 "'=0 .. 12150366 r"' =0.11993905 ~· =0.11993905 
lm=8 m=272 m=219 m=219 
JJgJJ=9.873x w-2 JJgJJ = 1.628 x w-2 JJgJJ = 1.625 x 1o-2 JJgJJ = 1.625 x w-2 
~utime<l Cputime=7 Cputime=25 Cputime=43 

FE=416 NFE=ll37 NFE=1067 NFE=1067 

2.0 "'=0.16001064 "'=0.12150429 "'=0.11993895 ~"' =0.11993895 
im=9 m=249 m=213 im=213 
JJgJJ =9.852x w-2 JJgJJ = 1.628 xw-2 JJgJJ = 1.621 x 1o-2 JJgJJ= 1.621 x Jo-2 
~utime<1 Cputime=5 Cputime=21 Cputime=40 

FE=38 NFE=1041 NFE=1026 NFE=l026 

2.1 ~~ =0.17200524 "'=0.12150429 =0.11994712 ~"=0.11994709 
im=4 m=240 · m=218 im=218 
JJgJJ=0.10370511 JJgJJ= 1.628 x 10-2 JJgJJ = 1.627 x 1o-2 JJgJJ = 1.627 X J0·2 
~time< I Cputime=5 Cputime=20 Cputime=40 

FE=19 NFE=1002 NFE=1048 NFE=1048 

2.3 "'=0.17201021 "'=0.12150429 r~ =0.11994801 ~"'=0.11994799 
m=4 m=245 . m=219 m=218 
JJgJJ=0.10418521 JJgJJ = 1.628 x w-2 JJgJJ = 1.627 x w-2 JJgJJ = 1.627 x w-2 
~utime<1 Cputime=5 · Cputime=20 Cputime=40 

FE=19 NFE=1035 NFE=1069 NFE=1061 



TABLE (9.3.6):Results of SD with change in u0 for ACC~ S.Oxlo-2. 

uo m J'" ~g~ NFE eps Lputime 

1.0 7 0.15750064 4.96722x 10-:.1. 49 0.9 <1 

2.0 8 0.15415585 4.95863 x w-:t 36 "·o 1 

3.0 10 0.14593692 4.34585 x 1o-:t 44 "·0 1 

4.0 9 0.14647810 4.55623 X 1Q·L. 39 2.0 1 

5.0 10 p.14670852 4.58038 x w-:.~. 54 0.9 1 



TABLE (9.3.7):Results of SD with change in u0 for ACC::; 2.0xlo-2. 

uo m J M NFE eps Cputime 

1.0 31 ,_,.12380461 1.95794 X 1Q·L 206 p.9 3 

12.0 30 ,_,.12342590 1.93410x 1Q·L 140 j2.0 3 

3.0 30 ,_,.12364164 1.95637 X 1Q·L 137 fl.O 3 

4.0 29 p.12388872 1.98149x w-z 132 12·0 3 

5.0 32 p.12373973 1.95782 x w-z 197 0.9 3 



TABLE (9.3.8):Results of SD with change in u0 for ACC!> 1.6263xl0·2. 

uo m J"' ~g~ NFE eps !Q>utime 

1.0 223 0.12019060 1.62620 X lQ•Z 1262 fJ.9 25 

2.0 214 0.11994554 1.62196x w-z 1048 rz.o 24 

3.0 213 0.11999889 1.62529x 1Q·:l 1043 rz.o 21 

4.0 213 0.11993895 1.62098 X lQ-2 1026 ~.0 21 

5.0 - - - - - -



TABLE (9.3.9):Results of FR with varying e and N. 

N 10 100 400 800 
£ 

~.5 1"=0.16288812 ~=0.12189481 1"=0.12034753 ~~ =0.12034753 
1n=20 m=43 m=100 ~=99 
~gll=0.1790719 11&11 = 1.598 x 1o-2 11&11 = 1.598 x w-2 llgll = 1.598 x 1o-2 

~putime<1 Cputime=1 Cputime=9 Cputime=18 
~FE=88 NFE=219 NFE=478 NFE=469 

1.0 =0.14294314 =0.12184268 ~ =0.12026827 ~* =0.12026826 
1n=l0 m=31 m=80 m=80 
11&11 =0.1389834 11&11 = 1.597 X 10-2 llgll=1.596x 10-2 11&11 = 1.596 x I0-2 
~putime<1 Cputime<1 Cputime=7 Cputime=14 
rF£=45 NFE=144 NFE=364 NFE=364 

1.3 IT" =0.17496419 1"'=0 .. 12194301 , .. =0.12035177 ~"'=0.12035177 
~=10 m=27 m=78 ~=78 
11&11=0.1885805 llgll= 1.598 x 1o-2 11&11 = 1.598 x w-2 llgll = 1.598 x Io-2 

~~time<l Cputime<1 Cputime=7 Cputime=13 
FE=43 NFE=124 NFE=341 NFE=341 

1.4 ~"'=0.17465729 ~=0.12216884 ~ =0.12009654 ~~ =0.12009654 
~=4 m=29 m=67 m=67 
11&11=0.1870243 11&11= 1.598 X 10-2 11&11 = 1.589x 10-2 llgll = 1.589 x 1 o-2 

C_putime<1 Cputime<1 Cputime=5 Cputime=9 
NFE=19 NFE=126 NFE=296 NFE=296 

1.5 1*=0.18363695 ~ =0.12204595 "'=0.12044837 "'=0.12044837 
m=4 m=30 ~=95 m=95 
11&11=0.1983155 llg~=1.598xi0-2 llgll = 1.598x w-2 llgll = 1.598 x 1 o-2 
~utime<1 Cputime<1 Cputime=8 Cputime=15 

FE=27 NFE=131 rF£=398 NFE=398 

1.7 =0.18591032 r"'=0.12210391 r"'=0.12044941 ~ =0.12044939 
m=3 p1=30 ~=97 m=97 
llgll =0.2145631 llgll= 1.598 x w-2 llgll = 1.598 x w-2 llgll = 1.598 x w-2 
Cputime<1 Cputime<1 Cputime=8 Cputime=l6 
NFE=24 NFE=131 NFE=404 NFE=404 



TABLE (9.3.10):Results of FR with change in Uo for ACC~ 5.0 X 1 o-2. 

uo m ]'" M NFE eps Cputime 

1.0 5 0.13999659 ~.38504x 1Q·L 29 1.4 <1 

2.0 6 0.13407625 ~.96083 X 1Q·L 29 1.4 1 

3.0 5 0.13999659 ~.38504x w-:t 29 1.4 <1 

4.0 7 0.13390277 ~.98363 x w-:t 33 1.4 1 

5.0 8 0.13204935 ~.30970x IO-L 44 0.9 1 



TABLE (9.3.1l):Results of FR with change in u0 for ACC:s; 2.0xlo-2. 

uo m J. !gl NFE eps Cputime 

1.0 8 0.12245834 1.82184 X 10·2 46 1.4 1 

2.0 11 0.12181071 1.79332x 1o:Y 55 1.4 1 

3.0 8 0.12245834 1.82184x 10-2 46 1.4 1 

4.0 12 0.12196881 1.79913x 10-2 58 1.4 1 

5.0 13 0.12216973 1.88267 X 10·2 75 0.9 2 



TABLE (9.3.12):Results of FR with change in u0 for ACC~ 1.60xi0-2. 

UQ m r ~g~ NFE eps rrutime 

1.0 100 ~.12039648 1.59399 X JO•L 417 1.4 9 

2.0 86 ~.12020817 1.59114x w-2 372 1.4 8 

3.0 67 ~.12009654 1.58964x w-.t 296 1.4 5 

4.0 70 0.12028246 1.59270 X IQ-L 301 1.4 6 

5.0 100 0.12036894 1.59386 x IQ-L 440 p.9 9 



TABLE (9.3.13):Results of PR with varying E and N. 

N 10 100 ~00 800 
t 

~.09 ,~=0.15379918 ~~=0.12135162 ~~ =0.12002120 ~=0.12002120 
m=20 m=70 1m=145 m=144 
llgll =0.1035159 llgll= 1.713 xw-2 llgll = 1.626x 10-2 llgll = 1.626 x w-2 
Cputime<1 Cputime=7, Cputime=77 Cputime=145 
NFE=297 INF'E=1976' NFE=5542 INFE=5534 

~.10 T"' =0.15375738 ~"' =0.12134460 r"' =0.11999519 ~=0.11999518 
m=20 lm=80 m=145 lm=145 
llgll=0.1031916 llg~=1.693 x w-2 llgll = 1. 624 x w-2 llgll = 1.624 x w-2 
<:putime<1 Cputime=6 Cputime=69 Cputime=l35 
NFE=277 NFE=1908. NFE=5259 ~FE=5259 

0.11 1"'=0.15381491 ~"'=0.12134523 , .. =0.11999489 "'=0.11999489 
m=20 1m=81 m=144 m=144 
llgll=0.1045886 llgll= 1.693 x w-2 llgll = 1.624x w-2 llgll = 1.624 x w-2 
~utime<1 Cputime=6: Cputime=64 Cputime= 121 

E=261 NFE=1768 NFE=4809 INFE=4809 

0.12 T"'=0.15382610 "'=0.12134628 "'=0.11999510 "'=0.11999510 
/n=20 m=70 m=144 /n=144 
llgll =0.1052193 llgll= 1.693 x w-2 llgll = 1.624 x w-2 llgll = 1.624 xI o-2 
~putime<1 Cputime=6 Cputime=61 Cputime= 118 
INF'E=245 NFE=1584 NFE=4442 NFE=4442 

0.2 IT"'=0.15424785 T" =0.12134916 T"=0.12016363 1("=0.12016361 
fi1=15 m=55 m=110 m=110 
llgll=0.1061884 llgll= 1.699 >< 10-2 llgll = 1.723 x w-2 llgll = 1.723 x Jo-2 
~utime<1 Cputime=3 Cputime=33 Cputime=59 

E=153 NFE=1015 NFE=2161 NFE=2161 

0.23 ~"=0.15425181 "'=0.12135013 "'=0.12016521 ~"'=0.12016519 
fi1=14 m=53 m=110 fi1=110 
llgll=0.1072443 llgll = 1. 711 x w-2 llgll = 1. 725 x w-2 llgll = 1. 724 x w-2 
~utime<l Cputime=3 Cputime=33 Cputime=59 

E=151 NFE=1003, NFE=2173 INF'E=2173 

' 



TABLE (9.3.14):Results of PR with change in u0 for ACC~ 5.0 x 10-2. 

UQ m J"' lgl NFE eps FPutime 

1.0 18 0.15978053 ~.75269x 1Q·L 285 0.11 4 

2.0 15 0.15721001 ~.69841 x 1Q·L 235 0.11 3 

3.0 13 0.15627567 ~.69734x 1Q·.L. 207 0.11 3 

4.0 12 0.15077874 ~.63935 X 10·.L. 218 0.11 3 

5.0 13 0.15087337 ~.65923 X 10·L 212 0.11 3 



TABLE (9.3.15):Results of PR with change in u0 for ACC:s; 2.0xlo-2. 

uo m J~ !gl NFE eps L'putime 

1.0 43 fJ.1239857 5 1.98555 X JO·L. 1049 fJ.ll 14 
. 

2.0 40 0.12367667 1.96831x1o-:t 1009 fJ.11 14 

3.0 37 0.12365513 1.96397 X JO·L 965 fJ.11 13 

4.0 35 p.12347949 1.95800x JO·L 957 fJ.ll 13 

5.0 35 p.12360186 1.96063 X IO-L 925 p.11 13 



TABLE (9.3.16):Results of PR with change in u0 for ACC~ 1.63xi0-2. 

uo m J"' ~g~ NFE eps jCPutime 

1.0 150 p.12008077 1.63135 x1 o-:.: 4957 p.ll 65 

2.0 146 p.12001346 1.62958x 10-2 4920 p.ll 64 

3.0 148 f-'.1200043 1.62870 X 1Q·L 4844 p.ll 64 

4.0 144 U.l1999489 1.62358x IO-L 4809 p.ll 64 

5.0 144 U.ll999571 1.62823 X IO-L 4843 p.ll 64 



TABLE (9.3.17):Results of Hl with varying E and N. 

N 10 100 800 

1.0 =0.17733932 =0.12232688 =0.11982405 =0.11982405 
=10 =62 =121 =120 

llgll=9.908x 10-2 llgll= 1.597 X 10-2 ~gll = 1.597 X 10-2 llgll = 1.597 X I0-2 
utime<1 utime=1 utime=12 utime=24 

FE=44 =285 FE=576 E=566 
1.4 =0.17278498 =0.12164238 =0.11982345 =0.11982345 

1.5 

1.6 

=6 =39 =120 =119 
~gll=9.918xi0-211gl=1.596x10-2 M=1.597xi0-2 !gll=1.597xi0-2 

putime<1 utime<1 putime=ll Cputime=20 
FE=29 FE=178 FE=535 NFE=525 

=0.20098841 
=5 

llgll =0.106987 
utime<1 

FE=21 

=0.12185869 =0.119873 83 

=0.12166820 =0.11983945 =0.11983943 
=130 =122 =122 

llgl=1.596x10-2 M=1.597xiQ-2 llgll=1.597x1Q-2 
Cputime<1 Cputime=ll Cputime=20 

FE=180 FE=519 NFE=519 



TABLE (9.3.18):Results of Hl with change in u0 for ACC!> S.Oxlo-2. 

uo m r ~gJJ NFE eps Cputime 

1.0 7 0.13855714 p.76910x 1Q·.l 37 1.2 1 

2.0 6 0.13432360 p.72048 x w-.t 29 1.5 1 

3.0 6 0.13941722 p.88949 x 1 o-:t 28 1.5 1 

4.0 7 0.13449875 p.72148x1o-:t 32 1.5 1 

5.0 6 0.15048155 ~.91634x w-:t 27 1.2 1 



TABLE (9.3.19):Results of Hl with change in u0 for ACC~ 2.0xl0-2. 

uo m J"' !gll NFE eps ~putime 

1.0 17 p.12410783 1.97710x w-z 91 1.2 1 

2.0 14 p.12395976 1.97248 x w-z 70 1.5 2 

3.0 11 ~.12261068 1.96016x 10"2 58 1.5 1 

4.0 12 ~.12328072 1.96879 x w-z 56 1.5 1 

5.0 12 0.12381171 1.96996x w-:z 65 1.2 1 



TABLE (9.3.20):Results of Hl with change in u0 for ACC~ 1.60x1o-2. 

uo m r llgll NFE eps C'putime 

1.0 128 0.11981111 1.59994 X 1Q·l. 595 1.2 12 

2.0 127 ~.11980949 1.59986x 10-L. 588 1.5 12 

3.0 120 ~.11979908 1.59549x 10-L. 551 1.5 11 

4.0 134 ~.11981637 1.59995 X lQ·l. 605 1.5 12 

5.0 9Y 0.11999296 1.59996 X IQ-l. 464 1.2 9 



TABLE (9.3.21):Results of ATH with varying e and N. 

1.0 =0.16733932 =0.12191387 =0.11984896 

1.2 

1.3 

1.4 

=0.1644566 =0.12169886 =0.11984135 =0.11984135 
=8 =39 =119 =119 

11&11=9.914xi0-2II&II=1.597x10-2ll&ll=1.587x10-2 ll&ll=1.587x10-2 
putime<1 utime<1 putime=12 Cputime=24 
FE=37 FE=180 FE=38 NFE=38 

=0.20380440 
=4 

11&11 = 0.106607 4 
putime<1 
FE=19 

=0.12224316 =0.11985070 =0.11985070 
=31 =122 =121 

ll&l=1.599x1Q-2 ll&ll=1.589x10-2 ll&ll=1.589x 10-2 
utime<1 Cputime=11 putime=20 

=127 =521 NFE=510 



TABLE (9.3.22):Results of ATH with change in u0 for ACC!> S.Oxl0-2. 

uo m J* M NFE eps !QJutime 

1.0 6 0.13663711 13.07048 X 10·l 32 1.3 <1 

2.0 6 0.12894283 ~.48550 X JO·l 31 1.3 <1 

3.0 7 0.14223580 13.08488 X J0·2 35 1.3 <1 

4.0 5 p.l3624345 13.07033 X J0-2 26 1.3 <1 

5.0 6 p.14255868 f4.18792x JO·l 30 1.0 <1 



TABLE (9.3.23):Results of ATH with change in Uofor ACC$; 2.0x10·2. 

uo m J ~g~ NFE eps Cputime 

1.0 1() f-1.1239261() 1.93348 x w-:t 87 1.3 1 

2.0 14 p.12419740 1.98015x w-:t 72 1.3 1 

3.0 9 p.12361266 1.92913 x w-:t 45 1.3 1 

4.0 14 f-1.12389185 1.93153x lQ-L 73 1.3 1 

5.0 1lS f-1.12422641 1.99855 X 1Q·L 97 1.0 1 



TABLE (9.3.24):Results of ATH with change in u0 for ACC~l.60xi0-2. 

uo m r• !gl NFE eps FPutime 

1.0 126 p.11992437 1.58894x w-z 577 1.3 11 

2.0 121 p.l1986701 1.58883 x 1o-z 550 1.3 10 

3.0 119 p.11984135 1.58782 x 1 o-z 535 1.3 10 

4.0 124 p.11985712 1.58859x 10-2 566 1.3 11 

5.0 121 p.11985118 1.58853 x w-z 575 1.0 11 



TABLE (9.3.25):Results of H3 with varying E and N. 

N 10 100 400 800 
E 

1.0 r~=0.16733932 1~=0.12189907 r~ =0.11982405 ~~ =0.11982403 
p=lO m=62 m=121 p=121 
~gll=9.916x w-2 llg~ = 1.599 x w-2 !gJ = 1.588 x 1o-2 M= 1.588 x w-2 
~putime<1 ~me=1 ~putime=12 Cputime=24 
INFE=44 =285 NFE=576 INFE=565 

1.3 IT" =0.16944566 =0.12169143 T" =0.11983722 ~" =0.11983721 
p=8 m=56 m=117 ~=116 
M=9.917x1o-2 llgll = 1.598 x w-2 ~g~ = 1.588 x w-2 M=1.588xi0-2 

~utime<1 ~utime=1 ~putime=12 Cputime=24 
FE=37 FE=254 NFE=545 INFE=534 

1.4 r~ =0.17272498 1"=0.12164238 r" =0.11981238 ~" =0.11981238 
p=6 m=39 m=113 p=113 
llgll=9.918x w-2 M=1.598xi0-2 ~g~ = 1.585 x w-2 llgll = 1.585 X 10·2 

~putime<1 Cputime<1 Cputime=10 ~putime=20 
INFE=29 NFE=178 NFE=506 INFE=506 

1.5 1~=0.17451821 ~~=0.12191905 =0.11981452 ~~ =0.11981452 
~=6 m=41 m=118 p=118 
llgll=9.993x w-2 llg! = 1.599x 1o-2 M= 1.585 x w-2 llgll = 1.585 x w-2 

~utime<l ~utime<1 Cputime=lO ~putime=20 
FE=28 FE=175 NFE=543 INFE=543 

2.0 ~" =0.2009004 T" =0.12166820 T" =0.11983082 ~" =0.11983082 
~=5 m=43 m=121 ~=120 
llgll =0.106987 llg~ = 1.598 X 10-2 M= 1.589 x w-2 llgll = 1.589 x w-2 
~putime<l 9i.utime<l Cputime=lO ~putime=20 
1Nffi=21 NFE=180 NFE=515 INFE=505 



TABLE (9.3.26)::Results of H3 with change in u0 for ACC~ S.Oxl0-2. 

uo m J" llgll NFE eps f-'putime 

1.0 8 0.13074902 3.00439 X IO-L 43 1.4 <1 

12.0 6 O.Ll568401 3.25334 X IO-L :;o 1.4 <1 

3.0 6 0.13096619 3.01442x1o-L 36 1.4 <1 

4.0 7 u.13931906 4.68011 x w-2 33 1.3 <1 

5.0 8 f1.14000118 4.78633 X IO-L 40 1.0 <1 



TABLE (9.3.27):Results of ATH with change in u0 for Ace::; 2.0xto-2. 

uo m J"' lgJ NFE eps Cputime 

1.0 12 p.12319517 1.86955 X IQ·l. 66 1.4 1 

2.0 14 p.12353310 1.91408 X IQ-l. 72 1.4 1 

3.0 10 p.12250342 1.84277 x w-z 75 1.3 2 

4.0 12 ~.12334539 1.93354 X IQ-L. 58 1.3 1 

5.0 20 ~.12397129 1.97044x IQ-L. lOll 1.0 2 



TABLE (9.3.28):Results of H3 with change in u0 for ACC~ 1.60xi0-2. 

uo m r 11811 NFE eps Cputime 

1.0 126 p.11981779 1.58632x lQ-L 567 1.4 11 

2.0 125 p.11981299 1.58545 x 1 o-:t 567 1.4 12 

3.0 113 p.11981238 1.58536x 10-2 506 1.4 10 

4.0 121 p.11982717 1.58771 x 1 o-:t 549 1.3 11 

5.0 118 p.11984933 1.59185x 10-:t 578 1.0 11 



------ -- --

Table (9.4.1): Summary table for the seven methods 

~ GFS 

I 
SD PR PR HI ATH H3 

'f7 
-------------·--------·- ------------------ -----· ------------ --------------------------

m= 111 m= 223 m= lOO Ill= 150 Ill= 128 Ill= 126 m= 126 
,. = 0.12376547 J* = 0.12019060 ,. = 0.12039648 ,. = 0.12008077 ,. = 0.1198049 ,. = 0.11992437 ,. =0.11981779 
llgll =1.99736x1o-2 llgll =1.62220x!0-2 n8n = 1.59399 x w-2 llgll = I. 63135 X 10-2 llgll = 1.59994 X J0-2 n8n = 1.58894 x w-2 n8n = 1.58632 x w-2 

1.0 £=0.9 E= 0.9 E= 1.4 £= 0.11 e = 1.2 e = 1.3 e= lA 
NFE= 112 NFE= 1262 NFE=417 NFE = 4957 NFE =595 NFE =577 NFE=567 
Cputime = 3 Cputime = 25 Cputime =9 Cputime = 65 Cputime = 12 Cputime = 11 Cputime = 11 

m=417 m=214 m= 86 m= 146 m= 127 m= 121 m= 125 
,. = 0.12000845 j* =0.11994554 J* = 0.12020817 ,. = 0.12001346 ,. = 0.1198049 ,. = 0.11986701 ,. = 0.11981299 
n8n = 1.62760 x 10-2 llgll =1.62196xJ0-2 n8n = t.59t14 x w-2 llgll = 1.62958xJ0-2 llgll =1.59986xto-2 llgll = 1.58831x!0-2 n8n = 1.58545 x w-2 

2.0 £= 1.9 E= 2.0 E= 1.4 e = 0.11 E= 1.5 E= 1.3 e = 1.4 
NFE=418 NFE= 1048 NFE=372 NFE =4920 NFE=588 NFE =550 NFE =567 
Coutime = 13 Cputime=24 Cputime = 8 Cputime = 64 Cputime = 12 Cputime = 10 Cputime = 12 
m=286 m=213 m=67 m= 148 m= 120 m= 119 m= 113 
,. = 0.12000847 J* = 0.11999889 ,. = 0.12009654 ,. = 0.1200043 ,. = 0.11979908 ,. = 0.11984135 ,. =0.11981238 

3.0 
ngn = 1.62760 x to-2 n8n = 1.62529 x to-2 n8n = 1.58964 x w-2 llgll =1.62870xto-2 llgll = 1.59549 X J0-2 n811 = 1.58782 x to-2 llgll =1.58536xJ0-2 

E= 1.9 e= 2.0 e=IA E= 0.11 £ = 1.5 e = 1.3 £=1.4 
NFE=287 NFE= 1043 NFE=296 NFE=4844 NFE = 551 NFE=535 NFE=506 
Coutime=8 Cputime = 21 Cputime =5 Cputime = 64 Cputime = 11 Cputime = 10 Cputime = 10 ·-
m=244 m=214 m=10 m= 144 m= 134 m= 124 m= 121 
J* = 0.12000835 ,. = 0.11993895 ,. = 0.12028246 ,. = 0.11999489 ,. = 0.11981637 ,. = 0.11985712 ,. =0.11982717 
llgll =1.62759x1o-2 llgll = 1.62098 X J0-2 n8n = 1.59270 x w-2 llgll = I. 62358 X I o-2 llgll = 1.5995 X J0-2 llgll = 1.58859 X !0-2 llgll = 1.58771 X J0-2 

4.0 E= 1.9 E= 2.0 e= 1.4 e = 0.11 e = 1.5 £= 1.3 £= 1.3 
NFE=245 NFE= 1026 NFE = 301 NFE=4809 NFE = 605 NFE=566 NFE =549 
Cputime=7 Cputime =21 Cputime = 6 Cputime = 64 Cputime = 12 Cputime= 11 Cputime = 11 
m=98 m=32 m= 100 m= 144 m=99 m= 121 m= 118 
J* = 0.12350924 j* = 0.12373973 ,. = 0.12036894 ,. = 0.11999571 ,. = 0.11999296 ,. = 0.11985118 ,. = 0.11984933 
llgll =1.99507xto-2 llgll = t.95782x to-2 llgll = 1.59386xJ0-2 n8n = 1. 62823 x w-2 llgll = 1.59996 X J0-2 llgll = 1.5883xJ0-2 llgll = 1.59185 X J0-2 

5.0 E= 0.9 e= 0.9 £= 0.9 £= 0.11 £= 1.2 £= 1.0 e= 1.0 
NFE=99 NFE= 197 NI--13 = 440 NFE =4843 NFE=464 NFE=575 NFE=578 
Cputime=3 Cputime= 3 Cputime =9 Cputime = 64 Cputime =9 Cputime =!I Cputime =!I 
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Chapter 10 

CONCLUSION 

In this thesis, we have investigated the performance of a munber of Hybrid 
mnjugate gTadient methods for solving infinite dimensional, i.e., dynamic 
optirnisation problems and compared them with some existing gradient. and 
mnjugate gmdient. techniques. 

The superiority of a method over the others could he deci<lecl by taking 
into mnsideration the following factors: 

i. Ease of Progmnnning, 

ii. computing time, 

iii. Convergence, 

iv. number of iterations, 

v. number of function evaluations, 

vi. numerical stability, 

vii. versat.ili t. y. 

In Problem 1, the best minimum value of x 2(t1) was found by FR., H1, ATH 
and H3. They also took the same number of iterations, amount of c.omputing 
time and number of fundion evaluations to achieve this optimum. When a 
distant initial control from the one that found the optimal :r:2 ( t 1) was select.ecl, 
FR. achieved a better value for :r:2 (t1) than the other methods. 

AI though G FS took more iterations to obtain :r:2 ( t 1 ), than the other meth
ods, it took fewer function evaluations and also less c:.omput.ing time to ad1ieve 
this. In this problem for all the methods, although taking N as 400 as op
posed to 100 could produce slightly better minimum J for some t's, but. 
taking into mnsidemt.ion the computing time, it. is more eeonmnical to select. 
N as 100 rather than 400. Here, concerning problem ·1 as a test problem, 

1G8 



due to the simple nature of the problem, the results for some methods were 
so similar to each other that we could not establish a firm superiority of one 
technique over the other. 

In problem 2, the best value for the Drag coefficient (CD) was found by 
FR and GFS in the sense of being closest to the analytical minimum value. 
FR took 50% fewer iterations than GFS to achieve this, but GFS took fewer 
function evaluations than FR. When a distant initial control was selected all 
the Hybrid methods, FR and PR performed fairly similarly and were superior 
to GFS and SD in terms of number of iterations taken to achieve the optimal 
CD up to 5 decimal places. Here taking N larger, say 1600, produced better 
minimum J* for most methods but at the cost of more computing time, 
therefore the best possible N that could have been selected was N = 800. 
This particular problem showed that SD took a greater number of iterations 
and consequently much more computing time than all of the other methods. 

In problem 3, the best minimum value of J*, when the coefficient of penalty 
function (k) was taken as 10, was obtained by Hl and H3. They took the 
same number of iterations, amount of computing time and number of function 
evaluations to achieve this. But the advantage of GFS, SD and ATH over the 
above two methods was that they could achieve a reasonable value for J for 
distant and different initial controls, where the other two were not successful. 

Also ATH and PR are sensitive with respect to the selection of c, even 
with N sufficiently large very special care should be taken in choosing c, 
otherwise numerical instability occurs. In terms of stability, the performance 
of FR was poor, since regardless of N and € after 60, or so, iterations we 
could get no more improvement in the value of J* even by increasing the 
number of iterations or taking larger values for N. For GFS numerical in
stability happened with € relatively large, say 0.009, regardless of what N 
was selected. For SD numerical instability happened for N = 10, 100 and 
200 with € relatively large say 0.009. For PR selecting the proper € for each 
N was crucial in avoiding numerical instability, and due to its sensitivity 
special care should have been taken in selecting €. For H1 numerical insta
bility occurred for € ~ 0.006 and for N = 50 numerical instability happened 
for € in the range 0.003 ::::; € ::::; 0.006. For ATH, selecting N small, say 10, 
resulted in numerical instability. For N = 50, numerical instability occurred 
with € ~ 0.006 and for N = 100 and 200 numerical instability occurred with 
€ ~ 0.007. For H3, when N was taken as 10 numerical instability occurred 
with € ~ 0.006, for N = 50 numerical instability occurred with € in the range 
0.003 ::::; € ::::; 0.006 and also € = 0.008. This showed the great sensitivity of 
H3 with regard to the selection of proper €. For N = 100 and 200 numerical 
instability occurred for € relatively large say 0.008. In this problem although 
for all methods taking N as 200 as opposed to 100 could produce slightly 
better minimum J* for some €'s, but taking into consideration the computing 
time taken it is more economical to select N as 100 rather than 200. 

In Problem 4, the best value of J*, when the coefficient of the penalty 
function was taken ask = 500, was found by SD, FR, PR and all three Hybrid 
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conjugate gradient methods. They all took the same number of iterations, 
amount of computing time and number of function evaluations to obtain this 
value. In fact, all the methods performed similarly except GFS, whid1 had 
two advantages over the other methods. Firstly, even with selecting a distant 
starting control it adlieved, Ace ::; 10-6 , whereas with the other tedmiques 
this was not possible. Secondly although G FS took more iteration to obtain 
the optimal .J, but took fewer function evaluations mrilpared to the others. 
Here also taking N as 200 as opposed to 100 produced either slightly better or 
the same minimum J* for some t's, but at the mst of more computing time, 
therefore the best possible N that could have been selected was N = 100. 
Due to the similarity of the results for different optimization techniques in 
this particular test problem, we could not establish a definite superiority of 
a method over the others. 

In Problem 5, two distinct localmininm were present and with most meth
ods the first minima was found by seleeting '11" in the range 1.0 ::; u0 ::; 1.8 
and the second with 2.0 ::; n0 ::; a.o. The best value of .J* for the first min
ima was obtained by FR, HI, ATH and Ha. They took the same number 
of iterations, amount of computing time and munher of function ewtluations 
to ad1ieve the minima. The best value of .!* for the secowl minimum was 
obtained by FR. which took fewer iterations and function evaluations than 
the other methods to achieve this value. Here for all of the methods consid
ering the first minimum taking N too small resulted in munerical instability. 
For the seeond minimum taking N too small resulted in complete numerical 
instability for SD. Also for PR, FR, Hl, ATH and Ha, unless e: was selected 
very carefully numerical instability occurred. The only method that even 
by selecting N too small r.ould produce consistent results was GFS. When 
distant initial cmitrols selected for the first minima all the techniques muld 
adlieve a required high accuracy, but for the second minima, the performance 
of GFS was very poor and FR was poor, Ha, Hl and PR were better, ATH 
was good and the best was SD. Here taking N as 156 as opposed to 78 pro
duced slightly better minimum .J' for some methods, but at the cost of more 
computing time. 

In problem G, the best minimum value of .J* up to 8 dedmal places was 
found by HI. But taking into consideration the munher of iterations, the 
number of function evaluations and the computing time, the hest value of J' 
up to 4 decimal places was obtained by Ha. When a distant initial control is 
selected, the performances of GFS and SD were poor compared to the other 
techniques. Here also the number of integTation steps, should be selected 
large enough for all the methods, otherwise poor convergence results. 

When N was selected as 800 as opposed to 400 the same or slightly better 
minimum .!* was obtained but at the cost of more computing time. 

Now in view of the performance of the Optimization techniques used in 
this work for the six practical problems, one can see that for each problem, 
there were one or more techniques that performed h<etter than the others, 
but overall there was no technique that could claim complde superiority in 
terms of the seven criteria mentioned earlier in this clmpt<er. In terms of ease 
of programming, the Grarlirent met.horl was relatively easy to pn>gTam and it 
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required the least storage compared with the other methods. 

Steepest descent involved substantially more programming than GFS be
cause of the linear search required as part of the method. For the conjugate 
and Hybrid conjugate gradient methods, further numerical tedmiqtws were 
necessary to estimate the norm of E>.ad1 gradient trajectory. 

For most problems although it took more iterations for GFS to obtain 
optimality, but due to lack of complexity it took fewer function evaluations 
and therefore less computing time than other methods. But for more accurate 
optimal results considering the number of iterations taken FR, HI and H3 
produced better results. When problems were experienced through selecting 
a remote initial control in most C<'l.Ses, the performance of FR. and ATH 
in achieving optimality was better than other tedmiques. Concerning the 
approximation to ·u' with comparison to the analytical solutions, we could 
see that almost for all the problems, the hybri<l conjugate gmclient 1neth(l(b 
produced hetter results than the conventional gradient or conjugate graclient 
techniques. 

Here, for the problems that used penalty fundions, it is worth mentioning 
that, when the coefficient of the penalty function (A:), was changed, in effect a 
different problem was solved, and it was shown mmlytically for problem 4 that 
when k -> oo only then was the solution using a penalty function equivalent 
to the conect solution. Overall, the tests provicled valuable information on 
the convergence characteristics of various conjugate aiHl hybrid conjugate 
gmdient algorithms and should serve as a practical g;uidt' to the potential 
user wishing to implement these methods. 

Finally, in this work all of the methods used for all the problem~, produced 
consistent results, providing sufficient.ly large values were taken for the num
ber of integration steps, N, along with appropriate values for f and the initial 
control u11 • 
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Appendix Al 

The complete derivation of (5.1.5) from Chap

ter 5. 

Now from (5.1.4) we have 

D 1 2(£) fe ru
3 

d 
4IIq = :t + lo 1 + u2 x. 

r(x) r(£t) 
Since x 1 = -e- = -£- ===> r = £x1 

i.e., 

D 
4IIq 

dx 
Since X = et ===> dt = e 
i.e., 

D 
4IIq 

D 
When CD the drag coefficient in hypersonic flow is defined as CD = -II 2 qa 
(Bryson and Ho [2]) 
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