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ABSTRACT 

Methods for computing an efficient and accurate numerical solution of the real monic 

unilateral quadratic matrix equation, 

are few. They are not guaranteed to work on all problems. One of the methods performs a 

sequence of Newton iterations until convergence occurs whilst another is a matrix analogy 

of the scalar polynomial algorithm. The former fails from a poor starting point and the 

latter fails if no dominant solution exists. A recent approach, the Elimination method, 

is analysed and shown to work on problems for which other methods fail. . The method 

requires the coefficients of the characteristic polynomial of a matrix to be computed and 

to this end a comparative numerical analysis of a number of methods for computing the 

coefficients is performed. A new minimisation approach for solving the quadratic matrix 

equation is proposed and shown to compare very favourably with existing methods . 

. A special case of the quadratic matrix equation is the matrix square root problem, 

where P = o. There have been a number of method proposed for it's solution, the more 

successful ones being based upon Newton iterations or the Schur factorisation. The Elimi­

nation method is used as a basis for generating three methods for solving the matrix square 

root problem. By means of a numerical analysis and results it is shown that for small order 

problems the Elimination methods compare favourably with the existing methods. 

The algebraic Riccati equation of stochastic and optimal control is, 

where the solution of interest is the symmetric non-negative definite one. The current 

methods are based on Newton iterations or the determination of the invariant subspace of 

the associated Hamiltonian matrix. A new method based on a reformulation of Newton's 

method is presented. The method reduces the work involved at each iteration by intro­

ducing a Schur factorisation and a sparse linear system solver. Numerical results suggest 

that it may compare favourably with well-established methods. 

Central to the numerical issues are the discussions on conditioning, stability and accu­

racy. For a method to yield accurate results, the problem must be well-conditioned and the 

method that solves the problem must be stable-consequently discussions on conditioning 

and stability feature heavily in this thesis. 

The units of measure we use to compare the speed of the methods are the operations 

count and the Central Processor Unit (CPU) time. We show how the CPU time accurately 

reflects the amount of work done by an algorithm and that the operations counts of the 

algorithms correspond with the respective CPU times. 
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Acknowledgernent and COlTIll1ent on the error analysis 

A fundamental point concerning the error analysis has been pointed out by the 
external examiner, Dr. Nicholls. The floating point analysis as presented i,";. Chapter 
1, section 1.3, results in the inequality 

(1) 

which follows correctly from the assumption that 

(2) 

Indeed, this is the approach employed by WiLlcinson(1965), and depends on the above 
floating point form being valid, and in E being small. Clearly there is a flaw in this 
assumption if cancellation occursj,n the subtraction of Xl - X2 when E may not now 
be small in equation (2). Hence the analysis presented is only valid in the stable 
case when the vViL1.cinson assumption is valid. If cancellation occurs, a mOre sensible 
assumption is 

jl(Xj-x2)=Xj-X2+E (3) 

which no longer links E to the size of the resulting difference. With this assumption 
the inequality in equation (1) becomes 

where cancellation in the inner product w T X will no longer invalidate the result. 
Hence the analyses presented may' under-estimate the error in the cases when 

.( 5) 

a~d in particular in the elimination method (pp 96,97 and 111), the errors would be 
of order n2uIlAII". 

In practice, instabilities in the algorithms are carefully monitored, and with mod­
ern computer a.,."ithmetic, it is possible to carry sufficient numbers of significant digits 
to absorb some ill-conditioning. A run at a lower precision will then give a measure of 
the loss of accurac5·. In this work the practical loss of accuracy was always at a non­
fatal level, and demonstrates that upper bounds on errors, though they give absolute 
certainty of the result, may prove over restrictive. 



CHAPTER 1 - INTRODUCTION 

SECTION 1.1: Outline of the Chapters 

Chapter 1 begins with an overview of relevant topics in numerical matrix algebra. The 

discussion does not go into any detail nor does it presume an in-depth knowledge of the 

subject on the part of the reader, aiming more to present fundamental and derived results 

necessary to achieve a greater understanding of matrix equations within the context of this 

thesis. The chapter continues with a general discussion on the importance of estimating 

the condition of problems and determining the stability of the methods used to solve those 

problems. Section 1.4 applies these discussions specifically to certain problems relevant 

to the thesis. Section 1.5 introduces definitions and summarises results that will be used 

throughout the thesis. These concern the solution of a system of non-linear equations by 

using a sum of squares minimisation technique. Section 1.6 gives a summary of some of 

the available theory on quadratic matrix equations. 

Chapter 2 uses the discussions and results from Chapter 1 to derive bounds pertaining 

to the conditioning of the quadratic matrix equations. Central to this analysis as well as 

to other analyses throughout the thesis is the derivative of F(X). Therefore Chapter 2 

begins with a discussion on the existence of this derivative and its inverse. 

Chapter 3 discusses a number of methods for computing the characteristic polynomial 

of a matrix. The discussions include the operations count and storage requirements for 

implementing the methods on a computer. There is a new look at the stability of Krylov's 

method and at an interpolation technique for computing the characteristic polynomial of 

a matrix possessing distinct eigenvalues. 

Chapter 4 discusses the Elimination method and shows how it may be used to derive 

new algorithms for computing the solution of the quadratic matrix equation and the square 

root problem. These discussions include original work on the stability of the algorithm 

and the operations count and storage requirements for their implementation. 

Chapter 5 summarises the current methods for solving the matrix equations. These 

discussions include the stability of the methods and a brief comparison of the operations 

count and algorithmic features of the methods. Section 5.5 shows how globally convergent 

minimisation methods can be used to solve the quadratic matrix equations by redefining 

the problem as a system of non-linear equations. 

Chapter 6 derives new methods for the solution of the matrix equations. The method 

for the algebraic Riccati equation is based on the minimisation approach and makes use 

of the sparse nature of the Jacobian matrix. The method performs matrix factorisations 

in obtaining an efficient and stable algorithm. The method for the unilateral quadratic 

matrix equation is also based on the minimisation approach and uses Newton iterations 

towards providing a stable, efficient and globally convergent algorithm. 
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Chapter 7 compares the methods discussed in the" thesis by showing how they perform 

on particular problems. The results obtained pertaining to the accuracy of the solutions 

and the computational efficiency of the algorithms are discussed and related back to the 

earlier analyses on the conditioning of the problem and the stability of the methods. 

Chapter 8 concludes the thesis by reflecting on the objectives of the thesis and how far 

this work has gone towards meeting these. There are concluding comments on the thesis 

contents and recommendations for further areas of research. 

The Appendices give listing of new computer subroutines relevant to this work and a 

list of the test matrices used in Chapter 7. 
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SECTION 1.2: Background Theory in Numerical Matrix Algebra 

This section stunmarises those aspects of matrix theory and ntunerical matrix algebra 

relevant to the remainder of the work as well as providing a reference for notations used. 

For a detailed discussion refer to [Wilkinson], [Stewart, 1], [Golub & Van Loan], [Lancaster 

& Tismenetsky]. 

Note that there is no loss of generality in focussing attention on the real space. All 

definitions and algorithms have obvious analogs in the complex space. 

Vectors and Matrices 

Rn denotes the real vector space with n components, such that 

where # denotes a two-way implication. 

Similarly, Rmxn denotes the space of m-by-n real matrices, such that 

A.zE R mxn 
# A = (aij) = 

where aij E R. 

Where a capital letter denotes a matrix, the corresponding lower case letter with 

subscript ij refers to the (i,j)th component. In the case of a vector it will be clear from 

the context of the passage whether, for example x, refers to a vector or a scalar. 

Some basic matrix manipulations are, 

addition C = A + B, Cij = aij + bij , 

scalar multiplication C = aA, 

vector multiplication y = Ax, 

matrix multiplication C = AB, 

R X omXn ~ R mxn 
Cij = O'f1ij, lA ~ 

"n omxn X on -+ R m 
Yi =L....ok=lajkXk,"' n 

"n b R mxn X onxp -> Rmxp 
Ci; = L."i=l aik kj, " 

matrix transposition C = AT, c'· - a" R mxn -> Rnxm 
IJ - }1' 

A matrix A is square if A E Rnxn. 

The n-by-n identity matrix has unit entries along its diagonal with zero entries every­

where else and is denoted by In, or I where the context is clear. 

A matrix in R mxn is, 

zero if aij = 0 for all t,) 

diagonal if aij = 0 for all li - jl > 1 
upper triangular if aij = 0 for all i>j 
upper hessenberg if aij = 0 for all i>j+1 
strictly upper triangular if aij = 0 for all i>j-l 
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Some important types of square matrices are, 

symmetric if AT = A 

posi ti ve definite 

non-negative definite 

orthogonal 

if xT Ax :> 0, x"f 0 E Rn then A > 0 

if xT Ax ~ 0, x E Rn then A ~ 0 

if ATA=I 

nilpotent if A k = 0 for some k 

idempotent if A 2 = A 

diagonally dominant if laiil > L lai;1 for all i 
;"ti 

A matrix is sparse .if it has relatively few non-zero entries. If A, B E Rnxn satisfy 

AB = I then B is the inverse of A and is denoted by A-I. If A-I exists then A is said to 

be non-singular, otherwise A is singular. 

If A,B E R nxn , then A commutes with B if AB = BA. 

The vector ek defined by {O, 0, ... ,1,0, ... , O} is in Rn unless otherwise indicated and 

the '1' is in position k. 

A is a permutation matrix if A = {eh, e;" . .. ,e;n} where {jI ,j2, . .. ,jn} is a permu­

tation of (1,2, ... , n). 
Let A E Rnxn

, then the determinant of A, denoted by det(A), may be defined by 

det(A) = L(-l)t(i) aliI a2;, ... an;n 

j 

where tU) is the number of inversions in the permutation j = {jI,h, ... ,jn} and j varies 

over all n permutations of 1,2, ... ,n. 

Alternatively, 
n 

det(A) = L(-l)i+laljdet(Alj) 
j=I 

where the minor Alj is an (n - 1 )-by-( n - 1) matrix obtained by deleting the first row 

and ph column of A. det(A) "f 0 implies A is non-singular and vice-versa. The rank of a 

matrix A E Rmxn is the order of the largest non-singular minor of A and is denoted by 

R(A). The trace of a square matrix A is the sum of the elements on the diagonal of that 

matrix and is denoted by tr(A). 

If A E Rmxn and k :::; rn, e :::; n then any k rows and e columns of A determine a 

k-by-C submatrix or partition of A. 

The elementary row (column) operations are, 

1. interchange two rows (columns) of a matrix 

2. multiply all elements of a row by some non-zero number 

3. multiply any row (column) of a matrix by a non-zero number and add it to any other 

row (column) of the matrix. 

The matrices that effect any of these operations are called elementary matrices. 
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An inner product of x, y E Rn is given by, 

n 

xTy = LXiYi = yTx 
. i=] 

A set of vectors {aI, a2, ... , an} is linearly independent if 

n 

L aiai = 0 $} al = a2 = ... = an = 0 
i=l 

for scalars a;. Otherwise a non-trivial combination of aI, a2, ... , an is zero and the set 

{aI, a2, ... , an} is said to be linearly dependent. 

A set of vectors {XI,X2, ..• ,xn } with each Xi E Rm is orthogonal if 

A system of n linear equations in n unknowns given by 

n 

"'a··x·-b· L., 1) J - • 

;=1 
i = 1,2, ... ,n 

may be written as Ax = b, A E Rnxn and X, b ERn. 

Let the augmented matrix be B = (A, b), then Ax = b possesses, 

1. a unique solution if and only if R(A) = R(E) = n 

2. an infinite number of solutions if and only if R(A) = R(E) < n 

3. no solution if and only if R(A) <: R(E) 

The homogeneous system Ax = 0 possesses a non-zero solution if and only if R( A) < n. 

The Eigenvalue Problem and The Characteristic Polynomial 

The eigenvalue problem is one of determining those .x for which 

Ax =.xx 

has a non-trivial (or non-zero) solution. Writing this as (A - AI)x = 0, it follows from 

the assertions above that a non-zero solution exists if and only if the matrix (A - .xI) is 

singular, that is det(A - AI) = O. The determinant may be expanded as follows, 

This is the characteristic equation of A and the expression on the left hand side is the char­

acteristic polynomial of A. The n roots of the characteristic polynomial, .xl, .x2, ... , An are 

the eigenvalues of A. Corresponding to any eigenvalue, there exists at least one non-trivial 

solution x satisfying Ax = Ax. This is an eigenvector corresponding to that eigenvalue. 
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The matrix A and its transpose AT possess the same eigenvalues but different eigenvec­

tors. If A possesses distinct ..\ i then the associated x i are linearly independent. In this 

case, the n set~ of equations AXi = "\iXi may be written as AX = X diag (..\i): Since the 

n columns of X are in fact the eigenvectors Xi and they are linearly independent, then X 

is non-singular and 

X-I AX = diag (..\i) 

such that there exists a similarity transformation X which reduces A to diagonal form. 

Two matrices, A and B, are said to be similar if there exists a non-singular matrix P such 
that A . p-I BP. 

If A has non-distinct "\i, the number of occurrences of each distinct eigenvalue is 

called the algebraic multiplicity of that eigenvalue. In this case the existence of a set of n 

independent eigenvectors of A is dependent on the elementary divisors of A. If these are 

linear, then the eigenvectors are linearly independent. 

If A has k eigenvalues of multiplicities mI, m2, • •. , mk such that 

then there exists a similarity transformation H such that H-I AH is in Jordan form, 

where 
PI + P2 + ... + Pr = mI 

UI + U2 + ... + Uv = mk 

and each Jr (..\) is an r-by-r Jordan block, 

..\ 1 0 0 0 
0 ..\ 1 0 0 

Jr (..\) = 

0 0 ..\ 1 
0 0 0 ..\ 

The number of independent eigenvectors of A is equal to the number of Jordan blocks in the 

Jordan form. If a matrix has at least one Jordan block of order greater than unity then it 

has one or more non-linear elementary divisors and fewer than n independent eigenvectors. 

Such a matrix is called defective. Non-defective matrices may be reduced to diagonal form 

by unitary (complex orthogonal) transformations. 
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An eigenvalue is simple if it has only one eigenvector associated with it. A matrix A is 

normal if it satisfies the commutativity relationship AAT = AT A. A matrix is called non­

derogatory if it has only one Jordan block and therefore only one eigenvectorassociated 

with each distinct eigenvalue. Otherwise it is derogatory. 

The companion matrix of the characteristic polynomial of A is given by, 

1 
o 

o 
1 Il 

The matrices A and C have the same characteristic polynomial. Also, A is similar to C if 

A is non-derogatory such that H-ICH = A. If A is derogatory, it may be transformed to 

a direct sum of Frobenius matrices, such that 

where each F is a non-derogatory matrix which may be transformed into its companion 

form by a similarity transformation. 

A polynomial f, annihilates A if f(A) = o. The unique monic polynomial of least 

degree which annihilates A is the minimum polynomial of A. Non-derogatory matrices 

have the same minimum and characteristic polynomials. 

The Cayley-Hamilton Theorem states that every matrix A E Rnxn satisfies its own 

characteristic equation, i.e. 

KroneckerProducts 

If A E Rmxn and B E Rpx q, then the Kronecker product of A and B, denoted by 

A 0 B is defined by the following partitioned matrix, 

[aUB al2 B a,.B 1 
a21 B a22 B a2n B 

A0B= . 

am1B am2B amnB 
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Some useful results concerning Kronecker products now follow, 

A0(B) = (A0B) 

A0(B + C) = (A0B) + (A0 C) 

A0(B0C)=(A0B)0C 

(A0B)T = AT 0BT 

(A0B)(C0D) = AC0BD 

(A0B) = (A0I)(I0B) 

det(A0B) = (det(A)t(det(B)t 

tr(A 0 B) = tr(A)tr(B) 

R(A 0 B) = R(A)R(B) 

If A( A) = Ai and A( B) = J1.i then 

A(A0B) = AiJ1.i 

and 

A«A 0 I) + (I 0 B)) = Ai + J1.i 

where A, B, C are matrices of appropriate dimension. 

If vec(Z) E Rmn is a vector made up of the elements of a matrix Z E Rmxn taken a 

row at a time, then the following results hold for A E Rmxn
, B E R~ and X E R~ 

A@I." 
vec(AX) = (I" e A-) vec(X) 

In ®13T 

vec(XB) = (ET ® Im) vec(X) 

therefore, 'it ""n, 1> ='j," A ® I pI" ® B T 

vec(AX + XB) = «In e .4) + (ET ® Im)) vec(X) 

One important application of Kronecker products is in the study of linear matrix 

equations. By using the above notation the Sylvester equation, 

AX+XB=C 

may be represented as 
A®Ip In®BT 

«!" eA.) + (ET ® 1n)) vec(X) = vec(C) 
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Similarly, the Lyapunov matrix equation, 

where C = CT ~ 0 ) '?'" 

may be represented as 

.,. 
«In ® A) +(,4T ® In)) vec(X) =-vec(C) 

(Lancaster & Tismenetsky) discuss the algebraic aspects of linear equations with respect 

to Kronecker product theory. 

Norms 

In any analysis of matrix methods it is necessary to be able to assess the 'size' of a 

vector or matrix. This is done by defining a function called the norm. 

The vector norm on Rn is a function f : Rn -> R with the following properties, 

(1) f( x) ~ 0 for every x E Rn, with equality 

if and only if x = 0 

(2) f(x + y) ::; f(x) + f(y) for all x, yE Rn 

(3) f(o:x) = 100If(x) where 0: E R, x E Rn 

Such a function is denoted by Ilxll with subscripts to distinguish between various norms. 

The p-norms or the Holder norms are defined by, 

.J. 

Ilxllp = (IXIIP + IX21P + ... + IxnjP); p~l 

of which 
n 

i=l 

and 

Ilxlloo = max IXil 
• 

are the most commonly used. 

Unless otherwise indicated, the 2-norm will be used in the remainder of this work 

since it is invariant under orthogonal transformations. This is since if UTU = I then 

Similar definitions exist for matrix norms, 

(1) f(A) ~ 0 for all A E Rmxn with equality 

if and only if A = 0 

(2) f(A + B) ::; f(A) + f(B) 

(3) f( o:A) = 100If(A) 

for all A, B E Rmxn 

for all 0: E R, A E Rmxn 
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(4) f(AB) ~ f(A)f(B) 
The p-norms are defined as follows, 

11 11 
IIAxllp 

A p = sup 11 11 
x#O x p 

and in particular, 
n 

IIAIII = max L laijl 
1 ;=1 

n 

IIAlloo = mF L laijl 
j=1 

where Ui are the singular values of A, i.e. the eigenvalues of AT A. 
An important norm, and one that will be used throughout unless otherwise indicated, 

is the Euclidean one, 

IIAII8 ~ [t. t.1o,;I'l' 
More generally, for any vector norms 11.110 E Rn and 11· lip E Rrn, 

where IIAllop is said to be subordinate to the vector norms 11.11" and II.IIp, and defined by, 

IIAxllp 
"Allo,p = sup 11 11 = sup IIAx"p 

%#0 x Q IIxllo =1 

Gerschgorin's Theorem 

Every root of the complex matrix A E Rnxn lies in at least one of the discs with centre 

aii and radii 

Schur's Theorem 

n 

ri = L laijl 
j=l 
j ,#:-i 

If A is a complex n-by-n matrix and >'1, >'2, ... , >'n are the eigenvalues of A, then 
n 

L 1>.;/2 ~ IIAlli-
i=l 

n 

L IRe(>.;f12 ~ IIBlli-
i=1 

n 

L IIm(>'ifI2 ~ "Clli-
i=I 

10 



Hirsch's Theorem 

With the above notation, if p = max laijl, (j = max Ibijl, r = max ICijl, then 

IAI ::=; np, IRe(A)I::=; nu, IIm(A)1 ::=; nr 

I det(A)1 ::=; n'f pn 

If A and AT A have eigenvalues Ai amd P.i respectively, then 

n n 

L IAil
2 

::=; L lp.d
2 

i=l i=l 

Matrix Algorithms 

In the subsequent chapters it is necessary to describe new algorithms for the imple­

mentation of some of the methods discussed in this thesis. These algorithms are not given 

in any formalised language but in one which is precise enough to convey the important 

algorithmic concepts but informal enough to permit the suppression of cumbersome details. 

Operation counts are used to measure the amount of work involved in an algorithm. 

One count is equivalent to doing a floating point add, a floating point multiplication and 

a little subscripting. For example the following step is equivalent to one operation count, 

Two identities that are used to determine operation counts are, 

q 

LP = ~(q+ 1) 
p=l 

q 3 2 

'" p2 = L + L + 2. 
~ 3 2 6 
p=l 

It is important to note, however, that this means of quantifying work is crude since it 

ignores looping, code jumping, subroutine calls, subscripting, paging and numerous other 

activities that go on during program execution. One such important activity has always 

been the handling of and the requirements for storage. The degree of inefficiency that 

this represents is dependant on a number of factors including the programming language, 

efficiency of the code, the storage management system, the computer used and the size of 

the problem. These days though, mass storage systems are readily available at relatively 

little cost and the problem of storage is no longer of great significance. However, for 

completeness, the storage requirements for each algorithm are included. 

A much more accurate measure of work involved in the processing of an algorithm is 

the Central Processor (CPU) time, which will be discussed and used in Chapter 7. 
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SECTION 1.3: Conditioning and Stability 

1.3.1. Introduction 

Consider the problem of computing the value of a functionf(x). The accuracy at­

tainable by any algorithm is limited since in practice only an approximation to x is known. 

The inaccuracies in the data x may be a result of two processes. Firstly, x may be deter­

mined directly from physical measurements and therefore subject to the errors inherent in 

all observations. The second source of inaccuracy is in the storage of the data in a digital 

computing machine which can only handle a finite number of digits. The data may be 

defined exactly by a mathematical formulae or generated internally. Either way, the exact 

representation of the data may require a greater number of digits than the machine may 

be able to hold. This leads to the rounding off of the excess digits giving rise to an element 

whose representation in the machine is only an approximation to the exact element. 

Consequently, if x' is an approximation to x then an algorithm can at best calculate 

only f(x'). If f(x') is 'near' f(x) then the problem of determining f(x) is said to be well­

conditioned, otherwise it is ill-conditioned. The requirement for 'nearness' in this sense 

is that Ilf(x') - f(x)11 be small with respect to Ilf(x)11 for any appropriate norm. The 

process that is used to determine the conditioning of a problem is Perturbation Analysis. 

Notice that the conditioning of a problem is independent of the method used to com­

pute a solution. A separate analysis for the algorithm is required. Essentially an algorithm 

may be regarded as a black box that takes a problem and after a number of inexact opera­

tions returns what purports to be a solution. The operations are inexact either because of 

inaccuracies in the given data upon which the calculations are based, as discussed above, 

or because of inaccuracies introduced in the subsequent analysis of that data. 

Hence, if the algorithm yields a computed solution J* as an approximation to f then 

if J*(x) is 'near' f(x'), the algorithm is said to be stable, otherwise unstable. The process 

that is used to investigate the stability of a problem is Error Analysis. 

When the problem is well-conditioned and the algorithm is stable, then the results 

produced will be accurate. In this case f(x) is 'near' J*(x). Otherwise there can be no 

guarantee of accuracy in the computed solution. 

In the analysis of an algorithm one must be aware that the algorithm may be required 

to solve a problem that may be ill-conditioned. 

There now follows a discussion of perturbation analysis and error analysis and their 

respective roles in the investigation of conditioning and stability. 

1.3.2. Perturbation Analysis 

The purpose of carrying out a perturbation analysis of a problem is to determine the 

·degree to which any perturbations or inaccuracies in the data may affect the solution. 

Any small inaccuracies giving rise to large perturbations in the solution will imply that 
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the problem is ill-conditioned. The degree of smallness of the quantities is measured in 

relation to their magnitudes in the unperturbed state. 

As mentioned earlier, the sources of the inaccuracy are either inherent in the data or 

are due to storage limitations. Although these causes cannot be overcome, the latter can 

be minimised by using a computing machine with extended precision or using multiple 

length arithmetic. Even so, minimising the inaccuracies in the original data of a problem 

that is very ill-conditioned will be of little consequence since even very small inaccuracies 

may cause massive perturbations in the solution. 

Therefore the importance of a perturbation analysis is not in determining an accurate 

bound for 11/(x·) - l(x)11 / 11/(x)11 but in that it will indicate whether a problem can 

possibly be solved to within a reasonable accuracy and also where any possible sources of 

ill-conditioning are likely to occur. 

It must be noted that a perturbation analysis of a problem is independent of the 

method employed to find a solution so that a well-conditioned problem does not automat­

ically imply that a method will produce an accurate solution. 

There now follow results from linear analysis useful in the perturbation analysis of a 

problem: 

If 11.11 denotes any matrix norm for which 11111 = 1 and if IIMII < 1 then (I + M)-l 
exists, 

and 
1 

II(I + M)-lll :::; 1 -IIMII 

[Lancaster & Tismenetsky] give a proof for this result. 

If IIMII < 1 and 11111 = 1, then 

III - (I _ M)-lll < IIMII 
- I-IIMII 

If A is non-singular and E E Rnxn, then [Stewart], 

Condition Number 

It is useful to have some scalar that reflects the change in the solution of a computing 

problem w~th respect to small perturbations in the initial data. Such a scalar is called the 

condition number and is specific to a particular computing problem - Section 1.4 gives the 

condition numbers for some common problems. 
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1.3.3. Error Analysis 

Error analysis is concerned with the resolution of the round-off errors that arise as a 

consequence of using floating point arithmetic. Floating point numbers are those numbers, 

known exactly, which are rounded to r digits according to the storage capability of the 

computer. The number of digits in a floating point number is known as the precision of 

the number and on most computers, this is fixed. Many computers also have the ability to 

manipulate floating point numbers with about twice the usual precision. These are known 

as double precision numbers and although computations involving them reduce the effect 

of rounding errors there is an increase in computer time and the storage required for the 

calculations. 

Computers with floating point hardware are provided with a set of instructions for 

manipulating floating point numbers. These instructions mimic the operations of addition, 

subtraction, multiplication and division. However, these operations cannot be performed 

exactly and rounding errors result such that in an extensive calculation there is a real pos­

sibility that rounding errors will accumulate and contaminate the solution. It is therefore 

desirable that any proposed algorithm be analysed to show that rounding error will not 

affect the results unduly. 

There are two main forms of error analysis in common use. These are known as 

forward and backward analysis and their general principles may be described as follows: 

Forward Analysis 

In this case, the computation in question is regarded as being described by a number 

of mathematical equations. In each equation some new quantity x say, is defined in terms 

of previously computed quantities ai, a2, ... , an, say, where some of these may be initial 

data. The mathematical equation may be written in the form, 

The determination of x from the ai must involve only the fundamental arithmetic oper­

ations. Now due to rounding errors made in the calculations, the computed value of x 

will be different from that obtained if g( ai) were evaluated exactly. Forward error analysis 

denotes the computed value by x and attempts to obtain a bound for Ix - g(ai)l. An 

essential feature of the analysis then is a comparison of x with x. 

Backward Analysis 

This type of analysis is not concerned with the differences between the computed 

values and the true values at each step. Instead at each stage, it is shown that the 

computed value obtained by interpreting 

14 



is exactly equal to 

for some values of the fi and to give bounds for these fi. 

It is clear that both types of analysis are informative and preference of one over the 

other depends on the context in which it is used. In this thesis both types will be used. 

We now turn our attention to the way in which rounding errors manifest themselves 

in floating point computations. 

Rounding Errors Due to Floating Point Computation 

On a computing machine with a precision of t binary digits, each number x is rep­

resented by an ordered pair a and b such that x = 2ba where b is an integer, positive or 

negative, and a is a number satisfying 

1 
- < lal < 1 2 - -

b is known as the exponent and a as the fractional part. Denote the operands by XI and 

X2 where 

Firstly consider the operation of addition. Then suppose x I is the number with the 

• greatest modulus and compute the integer bl - b2 . If 

(i) bl - b2 > t, then X2 is too small to have any effect as far as the first t significant 

digits of the sum are concerned so that 

where ft denotes floating point. 

(ii) bl - b2 S; t, then a2 is divided by 2b,-b, by shifting it bl - b2 places to the right. The 

sum al + 2b,-b, a2 is then calculated exactly and requires less than 2t + 1 digits for 

its presentation. This sum is then multiplied by the appropriate power of 2 using a 

left shift or a right shift so that the resulting number lies in the range permitted for 

the fractional part (mantissa) of a floating point number, and the exponent (index) 

bl is adjusted to deal with this shift. Finally this 2t-digit mantissa is rounded to t 

digits. 

In this way if the normalised sum is exactly 2ba a3, then the modulus of the error is 

bounded by 2ba. ~ 2-' and the modulus of the exact sum lies between ~ 2ba and 2ba so that 

wherelfl S; T' 
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With respect to multiplication, the exponents bl and ~ are added together to give b3 and 

the exact 2t-digit product of al and a2 is computed, satisfying 

with normalisation, if necessary. 

The resulting 2t-digit product is rounded to give the t-digit mantissa of the computed 

product, 

If either Xl or X2 are zero then the computed product is zero. 

In division, a denominator of zero is not permissible. Consider XI/X2' If Xl is zero 

then fl(xI/x2) = 0, otherwise the exponent b2 is subtracted from bl to give b3 . al is placed 

in the t most significant digits of the double length accumulator and zero in the t least 

significant digits. If lall > la21 then the number in the accumulator is shifted one place to 

the right and b3 is increased by one. The number in the accumulator is then divided by 

a2 to give a correctly rounded t-digit quotient, 

[
Xl] Xl fl - == -(1 + e), 
X2 X2 

The floating point analysis may be extended to give bounds for the rounding errors 

resulting from computations involving operations on matrices. 

Let u denote the unit machine round-off. It may be represented by the largest number 

for which the computation 1 + u = 1 is valid. Now if A, B are square matrices of order n 

and u = 2- t then their computed sum denoted by (; may be written as 

= A+B+6.C 

with II6.CII ::; II(A + B)EII, 

::; z-t IIA + BII 

le"1 < u .) -

The error bounds associated with multiplication of matrices are a little more difficult to 

ascertain and are related to the problem of computing the inner product. 

Absolute and Relative Errors 

The size of the error involved can be measur~in two senses. If y = Xl 0 X2, 0 IS 

some operation and the computed approximation to y is fj, 
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then the Absolute Error in y is, 

and the Relative Error in y is, 

I Y ; y I = lel ~ 2- t 

One significant consequence of finite precision arithmetic is the cancellation error induced 

as a result of taking the difference between two nearly equal numbers. 

Consider the following problem on a computer with precision of four decimal places. 

where Xl = 0.12325 

X2 = 0.12344 

Since the number of decimal places in Xl and X2 is greater than the precision, the computer 

rounds them so that 

Y = fl(x2 - Xl) = 0.1234 - 0.1233 = 0.0001 

o 
It is clear that in exact arithmetic, y = 0.00019 so that the absolute error is Iy-yl = 0.q.o09 

and the relative error is I";" I = 0.4737. 
Depending on the precision of the computer, computing the difference between two 

nearly equal number may lead to unacceptably large relative errors. 

Computing the Inner-product 

Let 
n 

Yn = L WiXi = w T x 
i=l 

where Wi, Xi are standard floating point numbers. 

Then 

Define 

and 

These yield the following expressions 

lel ~ Tt 

Yk = (Yk-l + tk)(l + 8), 181 ~ 2- t 
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Therefore 

n 

= L: Wk Xk(1 + ek) 
k=1 

where 
1 + el = (1 + f)(1 + br- I 

1 + ek = (1 + f)(1 + br-HI 

k = 2, ... ,n 

As a means of leading to this, consider the problem of extended additions and multiplica­
tions. 

Extended Addition 

n 

y=L:X;, X; are standard floating point numbers. 
1=1 

In fact y=fl(XI+X2+",+Xn) 

If fl(x; + Xj) = (X; + xj)(1 + €) for all i,j, If I ~ u 

then 

Y = [((XI + x2)(1 + €) + x3)(1 + f) + ... + xn](1 + f) 
= (XI + x2)(1 + fr- I + x3(1 + €)n-2 + ... + xn(1 + f) 

Since (1 + €r = 1 + rE + O(€2) and ignoring terms of O(€2), 

Y = (XI + x2)(1 + (n - 1)€) + x3(1 + (n - 2)€) + ... + xn(1 + €) 

Taking norms 

lii - yl ~ IEI 
where 

n 

IEI ~ (n -1)u L: Ix;] 
i=1 

Extended Multiplication 

y = IT X; 

1=1 

ii = fl(XI X2'" Xn) 

ii = xl x2(1 + €)x3(1 + €) ... Xn(1 + €) 

= XI X2 ... xn(1 + €)n-I 

ii = 11 + y(n -1)€ + O(€2) 

18 



Taking nonns 

Hence 

Iy - yl ~ lyl(n-1)u 

Iy - yl < ( -1) 
Iyl - n u 

k = 2, ... ,n 

and it can be shown [Wilkinsonl that inequalities of the fonn 

(1- Tt)' ~ 1 + e ~ (1 + Tt)' 

may be replaced by the simpler inequality 

lel ~ ru where u = (l.06)T' 

so that 

lell ~ nu and h I ~ (n - k + 2)u 

implies 

Now consider the product C of two matrices A, B of order n, 

n 

= L a;k bkj(l + nf;j) If··1 < u 'J -

k=l 

and from the result obtained above it follows that since the determination of an element 

of C involves the computation of an inner product, then 

where' 
IIl>ClI ~ nullCl1 ~ nu11AB11 

~ nu11A1111B11 
Similarly if we require to compute 

y= Ax 
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then 

Yi = ft (t aikXk) , 
k=! 

i = 1, ... ,m 

and 

ii = Ax + f:l.y where lIf:l.yll ~ nullAlllxl 

In the course of such analysis, unless otherwise indicated, the Euclidean nonn will be 

used to estimate the size of a matrix, since 

(i) IIIAIII = IIAII 
(ii) it is invariant under orthogonal transfonnations 

(iii) it is easy to compute. 
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SECTION 1.4 : Numerical Consideration of Relevant Problems 

A number of problems are common to many of the algorithms described in this thesis. 

Consequently it is appropriate to place them at one point of reference. This section states 

each of the problems and discusses the respective conditioning. An outline of the error 

analysis of their method of solution is also given . 

. 1.4.1 Solution of Linear Equations 

The problem is one of solving Ax = b for non-singular A. Suppose that perturbations 

exist in the coefficient matrices A and b such that an exactly computed solution x satisfies 

(A + E)(x + ox) = b+ f 

Eliminating Ax = b and re-arranging gives 

A(I + A-I E)ox = f - Ex 

now assume that IIA-IIIIIEII ~ k < 1 and 11111 = 1, then using a result from the previous 

section implies that (I + A -I E)-I exists and that III + A -I Ell < (1 - k)-I. Thus 

and 

Iloxll ~ IIA-Illllfll + _k_llxll 
1-k 1-k 

(1.1) 

since Ilbll ~ IIAllllxl1 and hence Tfxrr ~ *11 with b f. 0, 

Iloxll < IIAIIIIA-Illlloxll + _k_ 
Ilxll - 1 - k Ilxll 1 - k 

E £ 
Now since k = IIA-IIIIIMII = C(A)l!r1i¥ where 

(1.2) 

(1.1) may be written as 

Iloxll < C(A) ("f" IIEII) 
TxIf - 1 - (C(A)IIEII(lIAID IfbIT + IIAII . (1.3) 

This gives an upper bound for the relative perturbation of x in terms of the relative 

perturbations of b and A and the so called condition number, C(A). In particular, the 

condition number is the dominant feature in this expression. 
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Note that C(A) may be considered as a magnification constant with respect to this 

problem and if it is large then the problem is ill-conditioned regardless of the algorithm 

used to compute x. 

From (1.2), the problem of estimating C(A) is one of estimating IIA-III since IIAII is 

easy to determine - reline et all suggest calculating an x satisfying AT x = b for a specially 

constructed vector b, then solving Ay = x and using Ilylldllxlh as an estimate for IIA -lib. 
The algorithm that is used to solve the problem when A is square, dense and unstruc­

tured is the method of Gaussian elimination with partial pivoting. A complete treatment 

of this algorithm is given in [Golub & Van Loan]. 

A combination of Gauss and elementary transformations M can be found such that 

Mn-IPn- 1 ... MIPIA = U 

where U is upper triangular and P are permutation matrices. The original problem is then 

equivalent to the problem of solving the upper triangular system 

U x = (Mn-IPn- 1 ... MIPI):x; 

This is solved by back-substitution. 

else 

The following algorithm, in two stages, determines x E Rn, for k = 1, ... , n - 1. 

Find lapkl = max laikl for i :2: k and interchange rows p and k. If akk = 0 then quit 

rj = akj j=k+1, ... ,n 

For i = k + 1, ... , n 

aik = s 

For j = k + 1, ... , n 

bi = bi - sbk 

For i = n, ... , 1 

Xi = bi 

For j = i + 1, ... , n 

Xi = Xi - aijXj 
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The permutations PI;." ,Pn- I are represented by the integer vector (t l , ..• , tn-I) 

and Pk is obtained by interchanging row k and row tk of In. 

From the discussion in the previous section a test of an element being zero is, 

lakkl ::; TOL 

where TOL reflects the computer's precision and the effects of any errors in akk resulting 

from changes in that element. 

The operations count for this algorithm is determined by the identities of Section 2. 

The algorithm requires 
n 3 

3 + n2 + O(n) operations 

where O(n) implies 'order of n'. 
IT no errors occur during the Gaussian Elimination process other than those in storing 

A and b, then the computed solution x would satisfy 

(A+E)x = b+e 

where IIElloo ::; ullAlloo and Ilell oo ::; ullblloo . 
However, in practice, GaiIssian Elimination does give rise to rounding errors and the 

computed solution x satisfies 

(A+ E)x = b 

where 

(1.4) 

The growth factor p measures how large the numbers become during the elimination 

process. In practice p is modestly sized (e.g. p = 10). Therefore Gaussian Elimination 

(with partial pivoting) is stable. The storage requirement for this algorithm is n2 + 2n if 

b is required to be kept or n 2 + n if b is not required since x can then be stored in b. 

1.4.2 The Eigenvalue Problem. 

The problem is one of determining the n roots of the characteristic polynomial of A, 

where A E Rnx 
n, Ai are the eigenvalues of A. 

Firstly consider the case of a non-defective matrix. In this case there exists a non­

singular similarity transformation X, that reduces A to a diagonal form, 

X-I AX = diag (Ai) 
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If A is perturbed then the approximate 'xi satisfy, 

" " A x-I(A + E)X = diag (Ai) 

Then the eigenvalues of A + E satisfy [StewartJ, 

min I'xi - Ail ~ IIX-IllyIIXltylIEII = k(X)IIEII 
).e)'(A) 

(1.5) 

k( X) is called the spectral condition number for A with respect to the eigenvalue problem. 

For the case of a general matrix A, there exists an orthogonal transformation Q E 

Rnxn, such that 

QTAQ=D+N 

where 

with real Ai and N is strictly upper triangular. For complex Ai the transformation is a 

unitary one. 

This is the Schur decomposition of A. If A is perturbed to A + E and I'-i are the 

eigenvalues of this perturbed matrix, and p is the smallest positive integer such that NP = 

0, then [Golub + Van LoanJ, 

where 

min lA - 1'-1 ~ max{O,O*} 
AEM.A) 

" 

p-I 

0= IIEI12 L IINII~ 
k=O 

In the case of a normal matrix A, there exists an orthogonal transformation such that 

The eigenvalues of the perturbed matrix A + E are such that 

and since IIQTIIIIQII = 1, 

min lA - 1-'1 ~ IIEII (1.6) 
),€ >.cAl 

The first two cases indicate that for non-normal matrices, if ~X) or IINII~-I is large 

then the eigenvalues of A may be sensitive to small changes in the elements of A i.e. 

ill-con~itioning. 

However, for normal matrices, the absolute error in the eigenvalues is of the same 

order as the perturbations in A, implying well-conditioning. 

24 



The conditions above, reflect the sensitivity of the spectrum (set) of eigenvalues rather 

than the sensitivity of particular eigenvalues. Now suppose that A is a simple eigenvalue 

of A and that x and y satisfy 

with 

Then if perturbations of order e are made in A, an eigenvalue A may be perturbed by an 

amount e/s(A) where 

(1.7) 

Therefore if S(A) is small then A is regarded as being ill-conditioned and sIx) is referred 

to as the condition of the eigenvalue A. 

Note that x and y are normalised right and left eigenvectors of A associated with A 

and are unique if ,\ is simple. 

In the perturbation analysis for defective eigenvalues, Ostrowskis' theorem on the 

continuity of the eigenvalues is very useful: 

Let A, B, E Rnxn be matrices with elements that satisfy 

If f1. is an eigenvalue of (A + eB) and A is an eigenvalue of A then, 

(1.8) 

It may be shown that if ,\ is a defective eigenvalue of A th~ perturbations of order e in 

A give rise to perturbations of order et in A. A detailed study of the perturbations of 

eigenvalues is given in [WilkinsonJ. 

The practical QR algorithm is used to solve the eigenvalue problem. The algorithm 

makes use of the following definition and algorithm. 

If v ¥ 0 E Rn, a matrix P E Rnxn defined by 

is called a Householder matrix. 

Given A E Rnxn the following algorithm overwrites A with H = UT AU where H is 

upper Hessenberg and U = PI, P2 , ..• ,Pn - 2 is a product of Householder matrices, 
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For k = 1, ... ,n - 2, 

determine a Householder matrix Pk E R(n-k»«n-k) such that 

- [ak+.I'k 1 
Pk : -

ank 

A = pr APk where Pk = diag (It, Pk) 

Next k. 

A detailed algorithm is given in [Smith et all. 

x 

o 

o 

As an efficiency note, Pk can be stored in factored form below the sub diagonal of A. 

The operations count is ~n3. If U is required then the operations count is ~n3. An analysis 

of the round-off errors in this algorithm reveals that the computed Hessenberg matrix iI 
satisfies 

(1.9) 

where IIEIJE ~ cn2uJJAIIE, C is a small constant. Therefore this algorithm is clearly a 

stable one. H is said to be unreduced if it has no zero sub diagonal entries. 

The development of the QR algorithm is based on the Real Schur Decomposition: 

If A E Rn
)( n, _then there exists an orthogonal Q E Rn

)( n such that, 

Rl1 RI2 RIm 

o R21 R 2m 

o o 

where each R;; E RI)(I or R;; E R 2 )(2, the latter having complex conjugate eigenvalues. 

The first step of the algorithm computes unreduced upper Hessenberg matrices, 

U;r AUo = H 

The next step is an iterative one and is based on the double-shift QR technique of Francis 

(QR step) with shifts determined by the bottom 2 x 2 matrix. [Golub + Van Loan]. This 

step also includes a trace on the sub-diagonal elements. Effectively, the upper Hessenberg 

matrix is reduced to Schur form, 

that is 

where Q = UOUI 
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The operations count for the whole algorithm in about 8n3 • If Q is required then the 

operations count is 15n3 • 

Since the QR algorithm is an orthogonal matrix technique, its round-off. properties 

are favourable. In fact, the computed realSchur form T is orthogonally similar to a matrix 

near to A, 
Ta. 

Q (A+ E)p= T, (LlD) 
A 

and thE. coml'l.Ile.d et Sat1s~i.eS, 

QTQ=I+F where 11F112 ::; u 

Eigenvector determination 

Now consider the problem of determining the eigenvectors x 

Ax = AX 

when A possesses distinct eigenvalues >'1, A2, ... , An. The computed eigenvalues are as­

sumed to be the exact eigenvalues of a matrix near to A. If y is a right eigenvector of A 

then the computed ch satisfies, 

where the computed .x satisfy 

A 
and IIEII ::; ullfll 

(1.11) 

Therefore the sensitivity of Xk is dependent on the eigenvalue sensitivity and the separation 

of Ak from the other eigenvalues. That is, if Ak is ill-conditioned or Ak is near any other 

eigenvalue then Xk will be ill-conditioned. 

If A is a nondefective, repeated eigenvalue then there are an infinite number of possible 

eigenvector bases for the associated invariant subspace. 

The following iterative algorithm, Inverse Iteration, computes an eigenvector Xi cor­

responding to an eigenvalue Ai of A: 

(i) Compute the Hessenberg decomposition UT AU = H 

(ii) For i = 1,2, ... , n 

For k = 1,2, .. . 

Solve (H - AiI)xlk) = xlk-I) 
(k) x\') 

Normalise: xi = Ilx\L)II~ 

with xlO) being the unit vector (1,1, ... , I)T. 
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A suitable stopping criterion is to quit when the residual 

is such that 

(iii) Compute Xi = Ux\p), P = max(k) 

The operations count is ~n3 + rn2 + n 3 + O(n2) where r is the sum of iterations for 

each eigenvector. In practice r ~ 3n so that an overall estimate for the operations 

count is 8n3 • 

From the error analysis point of view this algorithm uses the Hessenberg decom­

position and Gaussian Elimination which are both stable algorithms. Hence for a 

well-conditioned eigenvalue the process of inverse iteration is stable. 

The QR algorithm requires n2 + n storage locations to compute the eigenvalues. If 

the eigenvectors are also required then an exact n 2 storage locations are required. 

1.4.3 Linear Matrix Equations 

In the course of the many algorithms treated in this thesis, it is necessary to determine 

the numerical solution of the Sylvester equation 

AX+XB=C, (1.12) 

and the Liapunov matrix equation 

(1.13) 

These equations also occur in various applications and so are important III their own 

right. Some applications of (1.12) are in the s·olution of certain boundary value problems 

and o.d.e. systems and in the analysis of beam gridworks [Bickley & McNamee], [Dou] , 

[Lasalle & Lefschetz]. Variations of the type (1.13) occur in stability theory, construction of 

Luenberger observers, design of optimal control systems, [Barnett & Storey], [Luenberger], 

[Levine & Athans]. 

[Gantmacher], [Barnett & Storey], [Lancaster & Tismentesky] study the theoretical 

and algebraic aspects of the solution of these equations. We are more interested in the 

numerical conditioning of the equations and the stability of their numerical method of 

solution. 

Firstly consider problem (1.12). Suppose that there exist perturbations in A, B and 

C so that a solution X, computed by an 'exact' algorithm satisfies 

(A+E)X +X(B+ F) = C+G 
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where IIEII ::; ulIAII, IIFII ::; uIIB~, IIGII ::; ullCII· From the earlier discussion on Kronecker y 
products, (1.12) may be represented as a linear equation 

A ®In 1",<8>.8" 

Px = c where P = (1" e ,~ + (BT ® Jm ) 

and the linear transformation 

4>(X)=AX+XB 

is non-singular if A and-B have no eigenvalues in common. 

Then 

IWIII = [x min 114>(X)II]-1 = lip-Ill 
zE Rm)(n IIXII (1.14) 

and the solution X satisfies, [Golub, Nash & Van LoanJ 

(1.15) 

This inequality implies that if p- I is well-conditioned then the problem is well-conditioned. 

Currently the best numerical technique for the solution of (1.12) [Golub, Nash & V\,>n 0-

LoanJ uses the Hessenberg and Schur reductions, discussed earlier, in the following way. 

(i) Reduce A to upper Hessenberg form by using Householder's method, 

UTAU =A' H 

(ii) Reduce B to lower Schur form by using the QR method, 

(iii) Update the right-hand side 

UT CV =T 

so that the original problem is equivalent to solving 

(iv) HY + YS = T 

by back substitution, where 

(v) X = UYVT 

If p = max( rn, n) then the operations count for this algorithm is 20p3 and the storage 

locations required is 6p2 . 

Applying the error analysis of the previous section pertaining to orthogonal matrices 

and that of Secti~n 1.3 shows that the computed X satisfies, 

(1.16) 

where c is a small constant. 
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This bound is essentially the same as that in (1.15) obtained for an exact algorithm. 

Therefore, this 'Hessenberg-Schur' algorithm is a stable techriique for'solving (1.12). 

Now consider the problem (1.13). If A and C are perturbed slightly, X satisfies 

and the perturbation in X is bounded by 

IIX - XII < 8ullAllllr111 
IIXII - . 

where 11</>-111 is defined by (1.14). 

The following steps effect the numerical solution of (1.13), [Bartels & Stewart], 

(i) Reduce A to lower Schur form 

UTAU = S 

(ii) Update the right-hand side 

so that the original problem is equivalent to solving 

(iii) STy + YS = T 

by a back substitution algorithm, where 

(iv) X = UYUT 

(1.17) 

The operations count for the algorithm i~ 19n3 and the storage locations required is 

5n2 • 

The bound on the error in the solution is similar to (1.16); 

(1.18) 

where c is a small constant. 

This implies that the Bartels-Stewart algorithm is a stable technique for solving (1.13). 
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SECTION 1.5: Systems of Non-linear Equations 

Th~ problem is that given a continuous function F : Rn -+ Rn made up of n component 

functions fi(x),R n -+ R, non-linear in the n unknowns Xi~ it is required to find some 

x· E Rn such that each component function fi(X) vanishes at x' for i = 1, ... ,n, that is 

F(x') = O. 

This problem may be solved by applying Newton's method for systems of non-linear 

equations, iteratively from a starting guess 'xo E Rn, such that at each iteration k, we solve 

(1.19) 

and update with 
X(k+l) = x(k) + p(k) (1.20) 

where the·Jacobian, J(x(k») is the matrix of first partial derivatives of Fat x(k), 

J( (k»)= 8j; 
x 8x(k) , 

J 

i,j=I, ... ,n (1.21 ) 

The iterates (1.20) are dependent on a 'good' initial guess x(O) and on the non­

singularity of J at x'. It is known [Dennis & Schnabel] that the iterates have a quadratic 

convergence property from a good starting point but the convergence is not always global. 

To remedy this, a global strategy must be used. 

One such strategy is to transform this into a sum of squares problem and miniInise 

the resultant function; that is, miniInise the scalar function 

(1.22) 

Newton's method for unconstrained IniniInisation of an arbitrary function f from a starting 

guess x(O) E Rn, solves 

(1.23) 

and updates 
X(k+l) = x(k) + p(k) 

where the gradient '\7 f(x(k») is the vector of first partial derivatives of fat x(k), 

i=l, ... ,n (1.24) 

and the Hessian, '\72 f(x(k») is the matrix of second partial derivatives of fat x(k), 

i,j=I, ... ,n (1.25 ) 

31 



With respect to the function fe in (1.22), the expressions in (1.24) and (1.25) may be 

defined in terms of f and J, as follows, 

from (1.21) 

Also 

8fe 
[~f(x)Jj = 8x.' 

J 

n 18n 
=L 28x 

1=1 ) 

= tfi8fi 

i=1 8xj 

n 

= LfiJij 
1=1 

j = 1, ... , n 

n n 8 (8f ) =" hih· +" fk- _k ~ J ~ 8Xi 8x. 
k=1 k=1 ) 

We can now state that starting from an initial x(O) , the iterates 

where the direction of search p(k) solves 

converge to a x· that minimises (1.22). 

(1.26) 

(1.27) 

(1.28) 

(1.29) 

The scalar a(k) is chosen so as to approximately minimise fe(x(k+1» with respect to 

a(k) and A (k) is a matrix characteristic of the particular Newton method. 

One such A(k) is ~2 f(x(k», the Hessian of fe at x(k). This is typically a modified 

Newton method and it is well-known [Ortega & RheinboldtJ that, 
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(i) it is locally convergent irrespective of where the starting point is 

(ii) it has quadratic local convergence, 

lim Ilx(k+l) - x*11 
k-oo Ilx(k) - x*W 

is finite 

A necessary condition is that every '\72 f(x(k») must be non-singular. It has been 

argued that the determination of the Jacobian and the Hessian at each iteration is unde­

sirable, particularly for large problems and since f c( x*) is sufficiently small then neglecting 

the second term in (1.21) would not significantly affect the local convergence properties of 

this method. 

This argument gives rise to the Gauss-Newton method which sets A = JT J. This has 

quadratic local convergence if 

>'i(J(x*f J(x*))< k fc(x*)t for k > 0 

In this case (1.29) may be written as 

(1.30) 

The iterations may give rise to a near-singular Jacobian implying ill-conditioning with 

respect to the problem (1.30). However, this may be overcome by adding a scalar matrix 

H(k) I to A(k), the problem of choosing H(k) not being a difficult one [Brown & DennisJ. 

It is perhaps best to use a combination of these methods, taking advantage of their 

respective 'nice' properties, as follows. 

From a starting point x(O), generate a sequence of iterates (1.28) intended to converge 

to a local Ininimum of (1.22) where the direction of search depends upon the reduction in 

the sum of squares obtained during the last iteration. If the sum of squares was sufficiently 

reduced then the Gauss-Newton direction is used, otherwise the Newton direction. 

This is designed to ensure that steady progress is made, whatever the starting point 

and to have the rapid ultimate convergence of Newtons method. 

The steps in the algorithm are as follows, 

(i) Select x(O) ERn, the initial estimates to x* 

(ii) Determine whether the Gauss-Newton or the Newton iteration is to be used 

Gauss-Newton 

(iii) Determine the jacobian J(x(k») 

(iv) If J(x(k») is singular add a scalar matrix I.P) I to JT J and solve 

otherwise solve 
Jp(k) = _ F for p(k) 
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Newton 

(iii) Detennine the Jacobian J( x(k»), the gradient 'il f(x(k») and the Hessian 

'il2 f(x(k») 

(iv) If 'il2 f( x(k») is not positive definite add a scalar matrix ,P) I such that ('il2 f( x(k») 

+ j.l(k) I) is positive definite and solve 

otherwise solve 
'il2 f( x(k»)p(k) = _JT r for p(k) 

(v) Minimise fc(x(k) + o(k)p(k») with respect to o(k) ER 

(vi) Update, X(k+l) = x(k) + O(k)p(k) 

(vii) If convergence criterion is not met, go to (ii)). 

(1.33) 

(1.34) 

At step (iv), Gaussian Elimination may be used to solve (1.32). For (1.31), (1.33) and 

(1.34) a more efficient technique is available. Since JT J and 'il2 f( x) are symmetric and 

positive definite, the matrices in (1.31), (1.33) and (1.34) are also symmetric and positive 

definite. As such, they may be reduced to LLT where L is a lower triangular matrix with 

positive entries on the diagonal. This is known as the Cholesky decomposition and gives 

rise to an algorithm for solving the linear system which uses half the number of operations 

used by the Gaussian Elimination algorithm [WilkinsonJ. It is known that this algorithm 

is stable and gives rise to accurate solutions when the problem is well-conditioned. 

Step (v) involves a line search; i.e. given an initial a(r) and a direction p(r), min­

imise the function fc( x(r) + o(r)p(r») with respect to o(r). Powell developed a quadratic 

interpolation method [PowellJ specifically for this problem which may be summarised: 

(i) Choose a step length hlp(r)1 

(ii) Evaluate fc(x(r»),fc(x(r) + hp(r») 

(iii) If 
fc(x(r») < fc(x(r) + hp(r»), evaluate fc(x(r) - hp(r») 

otherwise evaluate fc( x(r) + 2hp(r») 

Values are now known at 3 points on the line x(r) + '\p(r). 

(iv) Detennine the turning point o(r) = a~) of the quadratic function y(a(r») fitted 

through these three points - denoted as a, b, e - using the following formula, 

and test for a minimum by using, 

(b-e)fca+(e-a)fq+(a-b)fce <0 
(a - b)(b - e)(e - a) 
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(v) If: 

(a) the point A = Am corresponds to a maximum of y(a(r») or if it corresponds to a 

minimum which is at a greater distance then klp(r) I (where h is prescribed) from 

the nearest of the three points, proceed as follows. Discard the point which is 

furthest from the turning point and obtain a new current direction in which the 

function decreases; this step is taken from the point furthest from (nearest to) 

the turning point when the turning point corresponds to a maximum (minimum). 

2 

. .. 
hlp(r)1 

... .. 
hlp(r)1 

or (b) If the point aIr) = a~) corresponds to a minimum of y( aIr») and if it is within 

a small prescribed distance Elp(r)1 of the nearest point aIr) = {3 say, of the three 

current points, then take 

min{Jc(x(r) + a~)p), jc(x(r) + {3p)} 

as the required minimum value of jc(x(r») 

or (c) If the point aIr) = a~) corresponds to a minimum of y(a(r») to which neither 

(a) or (b) applies i.e. if it is not further than hlp(r)1 from the nearest of the three 

current points but not within 'Ip(r) I of it, discard the point with the highest 

function value and replace it by aIr) = a~). 

Goto (iv) 
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Using exact arithmetic, a necessary condition for convergence is \1 f(x) = O. However,· 

in a finite precision environment that uses floating point arithmetic, this condition must 

be revised to test that 

holds, where TOL is some small tolerance. 

This global strategy .has one significant but unavoidable short-coming. This may arise 

when the function fc has a local minimiser which is not a root of F(x). The algorithm 

may then converge to this point if the iterations are started at an x(O) near to this point: 

In this case all one can do is to restart the algorithm from a different x(O). 

A discussion on the operations count for this algorithm, at this stage, is largely not 

informative, since the formation of E. J and \12 f( x) contribute significantly to the count. 

It is problem specific and will be discussed whenever this algorithm is used for a particular 

problem. It suffices to say that the line-search algorithm, the test for convergence and 

the determination of J1. are processes of O( n2 ) and that the solution of the linear system, 

by a combination of Cholesky method and Gaussian Elimination, takes less than ~n3 

operations. 
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SECTION 1.6. Some Theory on Quadratic Matrix Equations. 

The real monic unilateral quadratic matrix equation 

X 2 +PX+Q=O (1.35) 

has coefficient matrices P and Q both real, square and of order n. The matrices that solve 

(1.35) are referred to by X and are also real, square and of order n. The equation (1.35) 

is a general one in the sense that for arbitrary P and Q we have very little information 

pertaining to the matrices P, Q and X. Nothing is known about their definiteness or 

their symmetry, we do not know how many solutions exist generally, how their localization 

manifests itself, if at all and if a solution is found, it is not known how to eliminate it and 

generate further solutions. 

As a consequence, practical methods for solving (1.35) have been iterative ones re­

quiring an initial approximation to "the solution matrix, usually by guesswork. One such 

method, known as the 'worst possible algorithm' [Ingraham] and discussed at length in 

Chapter 5, expresses the matrix equation as a set of n 2 quadratic scalar equations which 

are then solved by some appropriate technique. The disadvantage of this method, apart 

from the considerable amount of work involved in solving a set of n2 non-linear equations, 

is that the matrical properties of the elements in the equation are lost. Nevertheless, there 

are instances where no other available method can determine a solution for (1.35) in which 

case the 'worst possible algorithm' would be the best and only option. A number of exact, 

non-iterative method have been proposed and these are discussed in [McDonald]. However, 

these are workable only for low order problems since the degree of algebraic complexity 

involved when dealing with high order matrices does not lend itself to the development of 

practical algorithms. 

However, a practical non-iterative approach to determine certain solution matrices 

may be developed by considering the associated lambda-matrix problem defined by 

(1.36) 

which frequently occurs in the study of differential equations [Lancaster], [Gohberg, Lan­

caster & Rodman]. A special case is the quadratic one such that 

(1.37) 

Put Al - P and A2 - Q and (1.37) may be written as the quadratic eigenvalue 

problem 

or 
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F(>.!)x = 0 (1.38) 

with 

X 2 +PX +Q = F(X) 

where it is required to find all scalars >. and non-zero vectors x that satisfy (1.38). >. and 

x are referred to as the latent roots and latent vectors respectively. Now (1.38) possesses 

a non-zero x provided 

(1.39) 

The problem of determining the solutions of (1.35) is very closely related to the prob­

lem of determining the roots of the polynomial in (1.39) because every characteristic root 

of a solution of (1.35) is a root of (1.39) [MacDuffeeJ, 

0= 1>.2[ + P>.+ QI 

= 1>.2[ + P>' - X2 - PXI 

= I>.! + P + XII>.! - XI 

The latent roots of F( >.) are the union of the characteristic roots of X and those of 

(-P - X). 
As a way to determine the roots of F(>.), consider the Block Companion matrix 

associated with (1.36) 

o [ o o 

o o [ 

A= 

[ 

The equivalent matrix for the quadratic case is 

(1.40) 

which will be used frequently when considering the Elimination Method. 

The eigenvalues of this 2n x 2n real matrix are the latents roots of F( >.) since 
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The relationship between the eigenvectors of A and the latents vectors of F( A) is not 

so obvious. Let /Ji be a latent root of F( A) and Yi the corresponding latent vector, then 

(1.41 ) 

Now /Ji is also an eigenvalue of A and if Zi is the corresponding eigenvector, then we have 

AZi = /JiZi 

Since Zi is a vector of length 2n, it may be partitioned into 2 n-vectors. 

using (1040), (1.42) and (1.43) 

substitute (1.44) into (1.45) 

1/2 z(l) + PII-Z(I) + QZ(I) = 0 
r-l • ,-1 I I 

comparing (1.46) with (1041) 

and from (1.44) 
(2) 

Zi = /JiYi 

such that 

(1.42) 

(1.43) 

(1.44) 

(1.45) 

(1.46) 

(1.47) 

(1048) 

If the solution of (1.35) has linearly independent eigenvalues then it may be diago­

nalised by elementary operations U say such that 

U-1XU=A= diag(AI, ... ,An ) 

such that 

x = UAU-I 

Substituting into F(X) = 0 gives 

(U A2U-1 + PU AU-I + Q) = 0 

(UA2 +PUA + QU)U-I = 0 
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Comparing (1.50) with (1.41), it is clear that the columns of U are the latent vectors 

corresponding to the latent roots of F(A). From (1.48) 

_ [(I) (I). (I») U - zl ,z2 , ... , Zn (1.51 ) 

Therefore, for diagonalisable X a solution to (1.35) isgiven by (1.49) where U is defined 

by (1.51), the Zi being determined by solving the eigenvalue problem (1.38). 

For non-diagonalisable matrices X a transformation of the type in (1.49) still exists 

but in this case the diagonal matrix 11. is replaced by J, the Jordan canonical form. If X 

has r distinct eigenvalues AI, A2, ... , Ar of multiplicities ml, m2, ... , mr suclJ "that Emi = 

n (i = 1, ... , r) then J consists of simple Jordan submatrices along the diagonal with all 

other elements equal to zero. A simple Jordan submatrix of order k, associated with Ai, 

is defined as 
Ai 1 

Ai 1 

Ai 1 

Ai 

Now, to determine a solution of (1.35) it is necessary to determine U from 

U J2 + PU J + QU = 0 (1.52) 

where J has n of the latent roots of F(A) as its eigenvalues. From the numerical point of 

view (1.52) is difficult to solve without multiplying out the matrices to obtain a system of 

n 2 linear equations in the elements of U. However, this results in loss of information due 

to the breaking of the structure. 

Before giving an example to solve (1.35) for diagonalisable X, it will be helpful to give 

the following definition. 

Definition 

A set of 2 solutions of F(X) = 0 is a complete set of solutions if the set of 2n 

eigenvalues of the 2 solutions is the same, counting multiplicities, as the set of 2n latentj 

roots F(A) [Dennis, Traub & Weber, 1) . 
• 

Example 

Consi der solving 

(

-1 
F(X) = X 2 + 2 -6) ( 0 

-9 X + -2 
12) 
14 
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The eigenvalues of A are 1, 2, 3,4, which are also the latent roots of F(>.) where 

A 
The eigenvalues of r:t are {1,2,3,4} and the corresponding eigenvectors are, 

Therefore the latent vectors of F( A) are, 

(l,of, (O,l)T, (l,lf,(l,l)T 

The problem has solutions with eigenvalue pairings (1,2), (1,3), (1,4), (2,3), (2,4). The 

pair (3,4) cannot be the eigenvalues of another solution since the corresponding eigenvec­

tors are linearly dependent. Also, this problem has 2 sets of complete solutions. 

This example illustrates the shortcoming of this method. That is, it is not known, prior to 

the determination of the latent vectors, which combination of the latent values of F( AI) 

are also the eigenvalues of X. This uncertainty factor is the reason why this technique is 

not currently used in practice. 

Matrix Square Root 

Putting P = 0 in (1.35) results in the following special case, 

(1.53) 

This is the matrix square root problem, so-called since the solution X of (1.53) is the 

square root of A. This problem has merited considerable research in its own right since it 

arises in a number of applications, e.g. least squares estimation, the study of differential 

equations and estimation of navigation systems. 
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It is not always easy to establish the existence of a square root of a matrix. Consider 

the following matrices, 

Al has no square root, A2 does possess a square root and A3 has infinitely many square 

roots. It may be shown that if A has at least n - 1 non-zero eigenvalues then a square root 

always exists, otherwise the existence of one depends upon the structure of the elementary 

divisors of A corresponding to the zero eigenvalues [Gantmacher], [Cross & Lancaster]. 

Since the eigenvalues of X are the square roots of the eigenvalues of A, the total 

number of square roots of a non-singular matrix with distinct eigenvalues is 2n. 

If A is derogatory, that is there is more than one Jordan block associated with an 

eigenvalue, then it possesses an infinite number of square roots [McDonald]. 

Notice that if XI is a square root of A then so is X 2 = -XI since Xi = (_XJ)2 = 
X 2 -A 1- . 

From the above discussion it is clear that unlike in (1.35), a number of relationships 

exist between that matrices A and X in (1.53). Consequently there has been a greater 

emphasis on determining efficient and stable solutions to the matrix square root problem. 

Algebraic Riccati Equation 

We~now move onto another type of quadratic matrix equation, the algebraic Riccati 

equation (ARE). The ARE plays a fundamental role in the analysis, synthesis and design of 

estimation systems as well as in many other branches of applied mathematics; for example, 

in the determination of steady-state solutions of the matrix Riccati differential equation 

[Reid], in the theory of multiwire transmission lines [Sternberg & Kaufman] and in optimum 

automatic control theory [Kalman]. 

The ARE may be derived by considering the Linear-Quadratic-Gaussian control prob-

lem: 

Let A, H be n x n matrices with H symmetric and positive semi-definite, 

B be a n x m matrix, 

and R be a m X m symmetric, positive definite matrix. 

Define a quadratic cost functional by 

(1.54) 

where x, the state vector and u the ~~~rel vector are of length n and linked by the linear 

relation 

:i; = Ax +Bu (1.55) 
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The L.Q.G~ control problem is then: 

Minimise J[x, uJ for x, u satisfying (1.55). ·\1 if 
It is known [WonhamJ that if the pair [A, BJ ¥e stabilizable and the p,air [A, KJ are 

detectable then the optimal control u' is given by . 

u' = -R-1BTKx 

the closed-loop system matrix being A - BR-I BT K where K is the non-negative definite 

solution of the equation 

(1.56) 

This is the Algebraic Riccati Equation. Writing G = BR-1 BT, it may be written as 

ATK +KA- KGK+H = 0 (1.57) 

There has been a great deal of research carried out in this area and this has led to a 

number of successful. methods for solving (1.57). Much of this has been motivated by the 

fact that G and H are symmetric and at least positive semi-definite and that in most cases 

the solution of interest is the symmetric non-negative definite one. A sufficient condition 

for the existence of such a solution is that [A, CJ is stabilizable, i.e. there exists a matrix 

D such that Re(A;(A - CD)) < 0 where CCT = G [WonhamJ. 

It is interesting to note that K may be expressed in terms of the solution to (1.35) by 

observing the following transformation [BarnettJ. 

Sin~e G is positive definite and therefore non-singular, G-1 exists. Put K = YG- 1 

to give 
y2 _ ATy _ YG-1AG - HG = 0 

put Y =X +AT 

X2 + AT AT +XAT + ATX - ATX - AT AT - XG-1AG - ATG-1AG - HG = 0 

or write as 

X 2 +XP+Q=O 

where 
P=AT -G-1AG 

Q = _ATG-1 AG - HG 

and the solution of (1.57) is given by 

(1.58) 

The current methods for solving (1.35) for this P, Q will not compare favourably with 

those that solve the ARE directly since they cannot make use of the special properties of 

G and H and since it is not clear how the properties of X relate to the symmetric, positive 

definite K in (1.58). 

43 



CHAPTER 2 - PERTURBATION ANALYSIS 

In this Chapter, we make use of the discussions and results of Section 1.3 to derive 

bounds pertaining to the sensitivity of the solution of quadratic matrix equations to small 

perturbations in the elements of the coefficient matrices. 

Fundamental to the analysis is F'(X), the derivative of F(X), and its inverse F'(X)-l. 
Section 2.1 discusses the existence of this derivative and shows that for each matrix equa­

tion, there is an equivalent matrical representation. 

Section 2.2 presents a detailed analysis for the conditioning of each problem and 

derives bounds for the error in the solution of a perturbed problem. Each bound possesses 

the factor IIF'(X)-lll. 
Section 2.3 shows how, by the way of small order examples, small perturbations in the 

initial data may cause massive perturbations for ill-conditioned problems. In fact, some 

perturbations in the solution are unbounded. 
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SECTION 2.1: The Derivative of F(X) 

Consider the matrix function F(X) E Rnxn given by 

F(X) = X2 + PX +Q (2.1) 

The Frechet derivative F'(X) of F(X) at X E Rnxn is a linear operator on Rnxn defined 

by its action on a matrix, say H E Rnxn , as follows 

F(X + H) - F(X) = F'(X)H + O(H2) (2.2) 

with respect to (2.1), (2.2) gives 

F(X +H)- F(X) = (X +H)2 +P(X +H)+A-X2_pX - Q 

such that 

F'(X)H = (X + P)H + HX (2.3) 

This derivative operator and in particular its inverse operator will be referred to frequently 

in this thesis. Consequently, we require some estimates for their sizes. From the definition 

of an operator norm, we have that 

IIF'(X)II = sup IIF'(X)HII 
H#O IIHII 

(2.4) 

Using the results of Section 1.2, concerning Kronecker products, (2.3) may be written as, 

vec[F'(X)H] = [(X + P) IS! I + I IS! XT] vec[H] 

Taking Euclidean norms, 

IIF'(X)HIIE= II vec[F'(X)HJlI = liT vec[HlIl 

where 

T = (X + P) IS! I + I IS! XT 

using (2.4), (2.5) and the fact that IIHIIE = II vec[H]llt, 

liT vec[HJllt IIF'(X)II = sup IIF'(X)HIIE = 
. H#O IIHIIE 

sup 
vec[H]#O II vec[HlIlt 

IIF'(X)II = IITIIE 

(2.5) 

The conditions for existence and boundedness of the inverse operator are contained in the 

following theorem [Milne]: 
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Let F'(X) E Rnxn be an operator. If there exists a constant rn > 0 such that 

IIF'(X)HII ~ rnllHll (2.6) 

then F'(X) has a continuous inverse F'(X)-I. Furthermore 

IIF'(X)-III:S 2. (2.7) 
rn 

Now assuming that T-~xists and using the notation and the matrix T as above, 

vec[H) = T-IT vec[H) 

Taking norms 

II vec[HIII:S liT-Ill liT vec[HIII 
1 

Let rn = liT-Ill' then we have 

rnll vec[HIII :s liT vec[HIII 

using (2.5) 

rnIIHII.= rnll vec[HIII:S II vec[F'(X)HIII = IIF'(X)HII 

so that the condition (2.6) is satisfied and the norm of the inverse operator is given by 

(2.8) 

This result in particular, will be used frequently. The singularity of F'(X) may be related 

to that of T [Golub, Nash & Van Loan) where they show that the operator F'(X) is_ 

singular if and only if the matrices (X + P) and -X have eigenvalues in common. Similarly 
non-

F'(X) is"singular if and only if (X + P) and -X do. not have eigenvalues in common. It 

follows that the conditioning of the operator norm with respect to inversion is directly 
related to that of matrix T. 

The following analysis relates this matrix T to the J acobian matrix of Section 1.5. 

From (2.1), 
n n 

(Jij) = L XikXkj + LPikXkj + % 
k=l k=l 

Let Ic, xc E Rn2 be composed of the elements of F and X respectively taken a row at a 

time. The Jacobian, J of a function Ic is the matrix of first partial derivatives of Ic with 
respect to xc, 

J = (8I c i
) = 

8xcj 

8/ll 
aXll 

8/12 
aXll 

alll Nll 

alnn alnn 

46 

Nll 
8x nn 

8/i2 
8x nn 



. f1j 
. Differentiating each element of F;j and using Kronecker products, we have 

which is exactly the matrix T above. 

An analogous approach for the algebraic Riccati equation 

T X_ 
A X+XA-A'GX+H=O 

where fI is denoted so as not to confuse it with H, shows that 

F(X + H) - F(X) = (AT - XG)H + H(A - GX) + 0(H2) 

such that 

F'(X)H = (AT - XG)H+ H(A - GX) (2.9) 

taking norms 

IIF'(X)IIE = sup IIF'(X)HII 
H#O IIHII 

II vec[F'(X)HJII 
= ~10 IIHII 

wt vec[HJII 
= sup 

wO II vec[HlIl 

= IITIIE 

Similarly IIF'(X)-III::; liT-Ill where 

(2.10) 

This is also the expression for the J acobian matrix. 

As a result of this analysis, it is clear that the existence of the inverse operator depends 

upon the non-singularity of the matrix T (or 1'). Similarly, we can say that if T (or 1') is 

well-conditioned then so is the derivative operator. R .. ( 
Moreover, for the algebraic Riccati equation, the stabilising solution satisfies"A;(A -

GX»)< 0 in which case l' is non-singular and the inverse operator exists. 

47 



SECTION 2.2: Conditioning of the Problem 

We now examine how the presence of perturbations in the original data may affect 

any solution of the matrix equations. 

Firstly consider the quadratic matrix equation, 

(2.11 ) 

Assume that P and Q are perturbed such that (2.11) becomes 

G(X) = X 2 + (P + b.P)X + (Q + b.Q) (2.12) 

Now the computed solution, X that makes F(X) = 0 satisfies, 

(X + b.X? + (P + b.P)(X + b.X) + (Q + b.Q) = 0 (2.13) 

Multiplying out, 

X2 +Xb.X +b.XX + b.X2 + PX + b.PX +Pb.X + b.Pb.X+ Q +b.Q = 0 (2.14) 

Re-arranging this gives, 

X2 + PX + Q + (X + P)b.X + b.X X + b.X2 + b.PX + b.Pb.X + t:,.Q = 0 (2.15) 

Using (2.3) and (2.11), (2.15) may be written as 

F'(X)b.X = _(b.X2 + b.PX + t:,.Pb.X + b.Q) 

Let F'(X)-l exist. Premultiply by F'(X)-l and take norms, 

IIb.XII ::; 11F'(X)-III(IIb.XW + IIb.PIIIIXII + IIb.PIIIIb.XII + IIt:,.QII) (2.16) 

Let k = IIF'(X)-IIIIIb.PII, then 

IIb.XII::; 1 ~ kllF'(X)-III(IIb.XW + IIb.PIIII#XII + IIb.QII) (2.17) 

Let 
IIF'(X)-lll 

a = 1- k ' (3 = a(IIb.PIIIIXII + IIb.QII) (2.18) 

then (2.17) may be expressed as 

(2.19) 
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To understand this inequality, consider the quadratic function, 

y = _0'11~XI12 + II~XII - {3 

The gradient is, 
dy 

dll~XII = -20'1I~XII + 1 

The function y has turning points when the gradient vanishes. In this case there is only 

one turning point, at II~XI\= ~ and since 
. 20' 

dll~XW = -20' < 0 

and 0' ~ 0, this point is a maximum. The y co-ordinate at this point is 

1 - 40'{3 .. 
Y = > 0 for suffiCIently smallll~PII and II~QII . 40' 

Now, the roots of y are 

1 VI - 40'P 
Tj = --

20' 20' 
d 

1 VI - 40'P 
an r2 = 20' + 20' 

which for sufficiently small II~PII and II~QII are real and positive. The curve of y may 

look like this, 

Y 

(X2, Y2) 

-----+----7~-----~-------~-~--~ X 
(X3, Y3 ) 

(0, -fJ ) 
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The implication of these observations is that (2.19) holds for all II~XII satisfying, 

where 01, (3 are given by (2.18). 

Now for sufficiently smallll~PII and II~QII, 

so that (2.20) becomes 

~ 401(3 
(1-401(3)2 :::::1--

2 

II~XII ~ (3 = o.(II~PIIIIXII + II~QII) 

= IIF'(X)-III(lI~PIIIIXII + II~QII) 
1-k 

(2.20) 

(2.21 ) 

Now, from earlier, k = IIF'(x)-IIIII~PII. ~P is the matrix of perturbations in P and as 

such, II~PII will be of order ullPll. Typical, in computing machines using double precision 

arithmetic, u ::::: 10-18 so that we can safely say that k < t. Then, (2.21) may be written 

as 

II~XII < 21IF'(X)-11I (II~PII + II~QII) 
IIXII - IIXII 

(2.22) 

This relationship expresses the error in computing X in terms of the perturbations in the 

coefficient matrices. It suggests that if F'(X)-I exists and F'(X) is well-conditioned at 

the solution then the computed solution is near the exact solution. IT however, F'(X) is 

ill-conditioned and therefore IIF'(X)-III is very large then we cannot guarantee that the 

computed solution is near the exact solution. 

Now consider the matrix square root problem, 

(2.23) 

The solution that solves the perturbed system satisfies 

(X + ~X)2 - (A + ~A) = 0 (2.24) 

The definition of the derivative for this problem is 

F'(X)b.X = X~X + ~X X (2.25) 

From (2.23) and (2.25), (2.24) may be written as, 
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, 
From the earlier discussion of Kronecker products, the derivative in (2.25) is non-singular 

if and only if X and -X have no eigenvalues in common. In this case, 

(2.26) 

This is a quadratic inequality in II~XII. Using a similar approach to that for the quadratic 

matrix equation, we have that for sufficiently small II~AII, (2.26) holds for all II~XII 
satisfying, 

II~XII ~ 11F'(X)-IIIIl~AII 

II~XII < 11F'(X)-III"~AII 
IIXII - IIXII 

From (2.23), IIAII = IIX2 11 ~ IIXW 
Taking roots, IIAI11 ~ IIXII :} II~II ~ 11:111 
Substituting into (2.27), 

II~XII < 11F'(X)-IIlIlAI11 II~AII 
IIXII - IIAII 

(2.27) 

(2.28) 

This bound is valid when X is non-singular in which case F'(X) is non-singular and 

the bound suggests that any relative error in X is only as large as the relative error in 

A multiplied by a constant. This constant say C, may be regarded as the magnification 

constant or condition number and is given by 

Now consider the conditioning of the Algebraic Riccati Equation, 

x ~ 
ATX - XA - XG,,+ H = F(X) = 0 (2.29) 

If the coefficient matrices are perturbed slightly then the computed solution satisfies 

N 

(AT +~AT)(X +~X)+(X +~X)(A+~A)-(X +~X)(G+~G)(X +~X)+H +~H = 0 

(2.30) 
where 

N 

II~ATII ~ ulIAII, II~AII ~ ulIAII, II~GII ~ ulIGII, II~HII ~ u11H11 (2.31) 

The Frechet derivative in this case is, 

F'(X)H = (AT - XG)H + H(A - GX) (2.32) 
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Also, 

F'(X)H = (AT + LlAT - X(G + LlG»H + H(A + LlA - (G + LlG)X) (2.33) 

Define LlF'(X)H = F'(X)H - F'(X)H 

then 

LlF'(X)H = (LlAT - X LlG)H + H(LlA - LlGX) 

Substituting (2.29), (2.32) and (2.34) into (2.30)gives 

(2.34) 

F'(X)LlX + LlF'(X)LlX - LlX(G + LlG)LlX + R = 0 (2.35) 

where 

R = LlA T X + X LlA ~ X LlG X + LlH (2.36) 

Multiplying each side by F'(X)-l and taking norms, 

IILlXII = IIF'(X)-IIIII(LlX(G + LlG)LlX - LlF'(X)LlX - R)II (2.37) 

IILlXII ~ 1IF'(X)-III(IIG + LlGIIIILlXW + IILlF'(X)IIIILlXII + IIRID (2.38) 

Let 
1IF'(X)-IIIIILlF'(X)11 = k, 

0'= IIF~(~)k-lIIIIG+LlGII, 

then (2.38) becomes 

(3 = 1IF'(X)-IIIIIRII 
1-k 

-O'IILlXW + IILlXII- (3 ~ 0 (2.39) 

This is a quadratic inequality in IILlXII. Using a similar analysis to that used for (2.19) 

yields, 

IILlXII ~ (3 = 1IF'(~)~I~IIIRII 

for sufficiently small IILlATII, IIAII, IIGII, IILlHII. 
Now from (2.34) and (2.31), 

IILlF'(X)II~ 2nu(IIAII + IIGIIIIXIIl 

since this is of order ~ we can assume that 

k = IIF'(X)-IIIIILlF'(X)11 ~ ~ 

From (2.36) and (2.41), (2.40) becomes 

(2.40) 

(2.41) 

IILlXII < (21IF'(X)-111 (2I1LlAII + IILlGIIIIXII + IILlHII) (2.42) 
IIXII - IIXII 
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This expression gives the relative error in computing X in terms of the absolute pertur­

bation in the coefficient matrices and the inverse of the derivative operator. Clearly this 

relationship is only valid when the operator F'(X) is non-singular. In fact the stabilising 

solution will always yield a non-singular F'(X), although if it is ill-conditioned there is no 

guarantee that the computed solution is near the exact solution. 

A slightly different approach to determining the sensitivity of the Riccati problem 

is given by [Byers, 1J where the term in (2.36) is represented as the sum of three linear 
operators such that 

F'(X)-l R = F'(X)-I(fl.H) - 8(fl.A) + 7r(fl.G) (2.43) 

where 
.------

(2.44) 

and 

7r(Z) = F'(X)-I(XZX) (2.45) 

The operators 8, F' and 7r determine the sensitivity of X with respect to the uncertainty 

in the matrices, A, G and H respectively. Then the relative error in computing X is 

We can relate the bound in (2.46) to that derived in (2.42). From the definition of an 
operator (Euclidean) norm, 

Since 

Similarly 

11811 = sup IIF'(X)-I(ZTX + XZ)II 
Z#O IIZIIE 

sup 
vec(Z)#O 

1IF'(X)-IT vec(Z)11 
11 vec(Z)11 

(2.4 7) 

(2.48) 

(2.49) 

(2.50) 

Substituting these into (2.46) gives, 

IIfl.XII < 41IF'(X)-111 [211fl.AII + IIfl.GIIIIfl.XII + IIfl.HII] (2.51) 
IIXII - . IIXII 

53 



We observe that the bound on the right hand side of (2.46) is less than the bound 

on the right hand side of (2.51). Just how close the bounds are depends largely on the 

particular problem. 

[Byers, 1] performs a comparison of the condition number obtained from (2.46), 

r _ 11F'(X)-IIIIlHII + 1181111AII + 111rllllall 
\c- . IIXII 

with a condition number obtained from a bound similar to (2.42), [Byers, 2], 

and with [Arnold & Laub], 

He shows that KA :S Kc :S K B. 

[Arnold & Laub] observe that KA tends to be too small and KB tends to be too large. 

In numerical experiments [Byers, 1], Kc compares favourably with KA and K B. 
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SECTION 2.3: Some examples of perturbed problems 

The -difficulties encountered when solving problems with a singular derivative at a 

solution may be illustrated by looking at some examples. 

Consider the square root problem 

(2.52) 

Let a solution of (2.52) be of the form 

(2.53) 

where a, b, e, dE R. 

Substituting (2.53) into (2.52) yields a set of four non-linear equations in the four 

unknowns, 

a 2 + be = 0 

(a + d)b = 0 

(a + d)e = 0 

These imply that either b = 0, e = 0 or a + d = O. 

IT b = 0 then a = 0, d = 0 and e is arbitrary 

IT e = 0 then a = 0, d = 0 and b is arbitrary 

IT a = -d then b is arbitrary and c = _a2 lb. 
Therefore there are three groups of solution that satisfy (2.52), 

XI = C ~) 
X 2 = G ~) 
X3= C ~J 

"(2 
where n, (3, "(, 0 are arbitrary and f = -{;. 

55 



The partial derivatives of the corresponding functions are 

0 0 Cl< 0 

Cl< 0 0 Cl< 

J(X.) = 
0 0 0 0 

, then IIF'(X.)II = IIJ(XIlII 

0 0 Cl< 0 

0 (3 0 0 

0 0 0 0 
J(X2) = 

{3 0 0 {3 
, then 1IF'(X2 )11 = IIJ(X2 )11 

0 (3 0 0 

2'"( € 6 0 

6 0 0 6 
J(X3) = 

0 
' then IIF'(X3)1I = IIJ(X3)11 

€ 0 € 

0 € 6 -2'"( 

These derivatives are all singular. This implies that the bound (2.28) is not defined 

and therefore cannot determine the effect of any perturbations in the coefficient matrix. 

To see this, assume that in generating the coefficient matrix a small inaccuracy occurs in 

the element in position (1,2) so that the problem (2.52) is now perturbed to 

2 (0 X -
o 

(2.54) 

where w is a small non-zero element. 

Again assume that the solution of (2.52) is of the form (2.53) and substitute this into· 

(2.54) giving 

a
2 + bc = 0 

(a + d)b = w 

(a + d)c = 0 

bc+~ = 0 

Since w > 0, (a + d) and b must be non-zero. But this is not consistent with the 

remaining equations and therefore a solution of (2.54) does not exist. Thus a small per­

turbation in the coefficient matrix has caused unbounded changes in the solution to (2.52) 

and hence the problem is ill-conditioned. 
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Now consider the following problem where not all the solutions possess singular deriva­

tives, 

X2 _ (y 0) = (0 0) . 0 y 0 0 (2.55) 

where y ~ 1.0. 

Once again assume that that solutions are of the form (2.53) and substitute into (2.55) 

gIVIng 

(a+d)=O 

(a + d)c = 0 

bc+~=y 

Solving this set of non-linear equations gives the following set of solutions, 

Xl = ± (V: ~) 
X 2 = ± (v: -~) 

(-Vu X3 = ± 0 ~) 
(-Vu X 4 = ± f3 ~) 

Xs = ± (0 ') 
€ -0 

where fr, (3, ,,0 are arbitrary and 

The derivative of the function F(Xd is, 

which is clearly non-singular since y > 1. We can now estimate IIF'(X)-lll from the 

singular values, 
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then, 

such that F' (X I) is well-conditioned. 

The partial derivatives corresponding to X 2 , Xa, X 4 and Xs are all singular since for 

the square root problem ~y 2 x 2 solvent of the form 

has the derivative 

which is clearly singular. 

Now since F'(X I ) is non-singular and well bounded, (2.28) suggests that the norm 

of the error in XI due to a perturbed system will be well-bounded. Therefore, consider a 

non-zero inaccuracy, w in the coefficient matrix, sum that, 

Substitute (2.53) into (2.56) giving 

a 2 + be = y 

(a + d)b = w 

(a + d)e = 0 

w 
These equations imply that e = 0, a i' -d and ~ = y, a2 = y, b = a + d· 

Therefore the solutions of (2.56) are, 

Now since, for XI, I/F'(X)-III is known and 

y 
IIQII = v'2 and 
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.JY 

IIt.QII = ~ 

(2.56) 

(2.57) 



we would expect, from (2.28), that the relative error is bounded by, 

In fact 

but observe that 

II~XII I w, I 
Ilxll· :S V2y - 2"foy . 

IIX -XIII I w I 
IIXII= 2yy'2ij :S 

w 

V2y -2..jWY 

IIX - Xiii> Ivyl 
IIXII -

for i = 2,3,4,5 

(2.58) 

The relative error in X], due to the perturbation w is less than w and satisfies (2.28), as 

expected. However, the relative error in Xi for i = 2,3,4,5 is proportional to the elements 

of the original coefficient matrix. 
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SECTION 2.4: Conclusions 

Tills chapter derives bounds for the sensitivity of the solutions of the quadratic matrix 

equations, to small perturbations in their coefficient matrices. The results indicate that 

when the derivative of F(X) is singular at a solution then the derived bounds can reveal 

no information regarding the conditioning of the problems. Tills is a direct consequence 

of the inverse of F'(X) not being defined. 

When F'(X) is non-singular with a well-conditioned inverse, then /IF'(X)-l// is rea­

sonably sized and the computed solution is near to the exact solution. 

When F'(X) is non-singular with an ill-conditioned inverse then I/F'(X)-l /I is large 

and the computed solution is not guaranteed to be near the exact solution. 
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CHAPTER 3 - COMPUTING THE CHARACTERISTIC POLYNOMIAL 

°OF A MATRIX 

SECTION 3.1: Introduction 

In many of the methods of Chapter 4, where we solve the quadratic matrix equation 

using Elimination method techniques, it is required to compute the coefficients of the 

characteristic polynomial of a matrix, usually within an iterative scheme. Consequently, 

the method used must be efficient and stable and must determine the coefficients accurately. 

There have been a number of methods proposed, the most well-known and widely used 

one being the stable LeVerriers method. We discuss the original LeVerriers approach and 

show that it's instability can be overcome by considering a reformulation of the method. 

One of the oldest methods based on similarity transformations is Danilevski's method, 

which pays no attention to the stability properties of the algorithm. An extension of 

this method is discussed which addresses the stability aspects but which can at best be 

viewed as a 2-phase algorithm which uses stable orthogonal similarity transformations for 

the first phase and unavoidably, unstable elementary similarity transformations for the 

second phase. A recent approach extends the 2-phase Danilevski's method to one which 

stabilizes the elementary similarity transformations of the second phase by reducing the 

original matrix to Block Frobenius form. It has always been viewed that Krylov's method 

involves the solution of an ill-conditioned linear system. It is shown, firstly, how rounding 

errors give rise to this ill-conditioned system and secondly that there exists a certain class 

of matrices for which Krylov's method will yield an accurate characteristic polynomial. A 

new approach for matrices possessing distinct eigenvalues is discussed. It is shown that the 

approach involves the solution of a linear system. The matrix in this system is the well­

known Vandermonde matrix which is known to be generally ill-conditioned with respect 

to solving the linear system. However, we show that there exist a certain class of matrices 

for which this interpolation method will yield a very accurate solution. 

Accuracy of solutions is not solely dependent on the stability of the algorithm, but 

also on the sensitivity of the problem to small perturbations in its coefficients. Therefore 

we begin by looking at the condition of the problem. 
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SECTION 3;2: Condition of the Problem 

Let the characteristic polynomial of a.matrix X E ~nxn be 

(3.1) 

where ai are the scalars to be determined. 

Suppose that the elements of X are perturbed by. a small amount €, then the charac­

teristic polynomial of X + €X is [W;!I('''Scln], 

where 

Taking norms, 

Ilai - aill = lIaii€ + O(€2)1I 

::; illaill€ + O(€2) 

Since € is small, we ignore terms of O(€2). Then 

lIai - aill < i€ < n€ 

lIaill - -

(3.2) 

(3.3) 

This says that the relative errors in the computed coefficients of a perturbed matrix are 

only of the same order as the perturbations. That is, the problem is well-conditioned and 

that any stable method used to determine the coefficients will produce accurate solutions. 
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SECTION 3.3: LeVerriers Method 

This method requires the trace~ of the powers of a matrix. Define 

n 

( 
k) ,,(k) tr X =~xii =Sk say (3.4) 

;:;;;:;;1 

where xl:) denotes the element of X k in position (i, i)J l.Faddeev &1=~deeva.J. 
Now since the trace of a matrix is equivalent to the sum of the eigenvalues of that 

matrix, we have that 
n 

(3.5) 
;=1 

The problem of determining the eigenvalues of a matrix ~as discussed in Section 1.4 where 

it was shown that the problem is generally well-conditioned with ill-conditioning for partic­

ular types of non-normal matrices. The QR method is a stable technique for determining 

the eigenvalues and provides. accurate solutions for a well-conditioned eigenvalue problem. 

In fact, 

(3.6) 

The algorithm for determining Sk from (3.5) is as follows. 

For j=l,n 

. For ·j=l,n (3.7) 

For i = 2,n 

For i = 1,n 

Si = 0.0 

For j = 1, n 

S·-S·+t·· t -, 'J 

The operations count for determining the Ai and the Si IS approximately 8n3 and the 

storage required is n2 + 2n. 
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Once the Sk have been found, the coefficients axe detennimid from the following New­

ton fonnulae [Dief], 

(3.8) 

for k = 1, ... , n. 

This may be written algorithmically as, 

. (3.9) 

For k=ln . , 

For i = 1,k-1 

The operations count is O( n2 ) with no additional requirements for storage. 

Applying the floating point error analysis of Section (1.3) to the algorithm that effects 

(3.5), with computed Ai (3.6), gives 

fi(An = A7(1 + €)k(l + €)k-l = Ai(l + (2k - 1)€) + O(€2) 

Sk = fi("L A7) = fi (~A7(1 + (2k -l)€) + O(€2)) (3.10) 

Re-arranging and takingnonns, 

(3.11) 

This bound suggests that (3.7) is a stable algorithm for detennining Sk. A similar treat­

ment for algorithm (3.9) reveals that the computed chaxacteristic polynomial possesses 

coefficients of a matrix 'neax' to the original matrix, 

(3.12) 

This suggests that the algorithm in (3.9) is a stable technique for computing the 

coefficients ak given u!f sums Sk. However, in this analysis, we have presumed that the 

problem of detennining the ak from (3.8) is a well-conditioned one. In fact, this is not the 

case and [Wilkinson] states that it is common for severe cancellations to take place. 

Therefore, since Le Verriers method requires the solution of an ill-conditioned problem, 

the method, in this form, must be considered unstable. 

[Faddeev & Faddeeva] overcome this Hmitation by re-addressing the approach above 

and considering the traces of matrices rather than the sum of the eigenvalues to yield a 

modified stable LeVerriers method. 
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SECTION 3.4: Stable LeVerriers Method 

This method determines the coefficients by successively computing the traces of certain 

matrices AI, A2, ... , An, as follows, [Fadde.ev ~ Faddee.vaJ, 

Let Al = X then al = - tr (AI)' denote BI = Al -'. all 
1 

Let A2 =XBI then a2 = 2 tr (A2)' denote. B-2 = A2 - a2l 

( _1)n 
Let An =XBn- 1 then a n = tr(An), denote Bn=An-anl 

n 
where ai, a2, ... , an are the coefficients of the characteristic polynomial of X. 

This method is a reformulation of LeVerriers method and gives rise to the following 

algorithm: 

let X = (Xij) and B = l, al = a2 = ... = an = 0, sign = -1 then 

For p= l,n 

For j = l,n 

For i = l,n 

Vi = 0.0 

For k=ln ., 

Vi = Vi + Xikbkj 

For i = l,n 

bij = Vi 

For j = l,n 

a p = a p + bjj 

a p = (ap + sign)/p 

sign = -sign 

For i = l,n 

bii = bii - a p 

next p 

The operations count is n4 - n 3 + O(n) and the storage required is 2n2 + 2n. 
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Applying the floating point error analysis to this algorithm reveals that the computed . . . 

characteristic polynomial is the exact characteristic polynomial of a matrix 

X(1 + 8) where (3.13) 

suggesting that this method is stable and will always yield accurate coefficients. 

66 



SECTION 3.5: Danilevski's Method and an Extension 

Tills method [DanilevskiJ is applicable for non-derogatory matrices since in tills case 

X may be reduced to its companion form by a sequence of simple elementary (similarity) 

transformations. 

If Rk is the transforming matrix at step k of the reduction, 

where 

and 

R
- 1 _ 1 

1 

o 

o 

k -
Tk+l,k+l 

The companion matrix C, given by 

C= 

is such that 

1 

o 

o 

X(I) = X 

Tl,k+l 

-Tl,k+l 

o 
o 

1 

o 
o 

1 

(3.14) 

(3.15) 

Since the characteristic polynomial is invariant under similarity transformations, C and X 

have the same characteristic polynomial. 
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.The following algorithm effects the transfonnation in (3.14) 

For k = l,n-l 

For i=l,n 

For j=l,n 

when i = k + 1 

otherwise 

For i=l,n 

For j=l,n 

when j = k+ 1 

Next k 

The operations count for this algorithm is 2n3 and the storage required is 2n2 . 

Tills is the usual description of Danilevski's method and pays no attention to numerical 

stability [WilkinsonJ. An approach possessing better stability properties, firstly reduces a 

general X to an upper Hessenberg matrix H. 

H= 

o o 

hI,n-I hIn 

h 2,n-I h2n 

by using stable orthogonal transfonnations. Then H is reduced by elementary similarity 

transformations to F, where 

Xn 

F= 

o 0 

Then finally there exists a diagonal similarity transformation D such that 

C = D-IFD (3.16) 
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is in companion form.' 

We assume that the ki are non-zero, since if any k i = 0 then the relevant smaller 

Hessenberg matrices are reduced in exactly the same way. 

The transformation from H to F is affected by the following algorithm: 

For r=1,n-1 

For i - 1 r - , 

hir 
Si,r+l = -k­

r+1 

For j = 1, n 

For i=l,r 

Next r 

For the reduction in (3.16), 

and the coefficients are given by 

(3.17) 

The operations count for the whole process is about 2n3 and the storage requirements are 

n2 + 2n. 

The numerical processes for computing H and for the reduction in (3.16) are stable. 

The algorithm (3.17), however, is not so since if in a typical step, Ikr+11 is much smaller than 

the Ihirl, the multipliers 8i,r+1 will be unacceptably large and numerical instability will 

result. This situation will arise if X is nearly derogatory. Unfortunately it is not possible 

to use interchanges because this would destroy the pattern of zeros. Hence, there is no 

related transformation based on orthogonal matrices which would stabilize this method. 
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SECTION 3.6: Block Frobenius Method 

Here we extend the approach in the previous section to yield a stable algori thm for the 

coefficients of a general matrix X. [Wang & ChenJ reduce the upper Hessenbergmatrix H 
to Block F'robenius form, as illustrated in the following example for n = 8, 

bI b2 bj I K] K2 I h] h2 hj 

1 0 0 I 0 0 I 0 0 0 
I 

0 1 0 I 0 0 
I 

0 0 0 I 

-------r----~------

o 0 e] I c] £2 If] f 2 I j 

B= I I (3.18) . 

0 
I 

0 
I 

0 0 0 0 0 I 1 I 
-------r----'------
0 0 0 I 0 e2 I d I d2 dj 

0 0 0 0 0 1 0 0 

0 0 0 I 0 0 I 0 1 0 

where le;1 are relatively small numbers or zero. 

In this reduction, eliminations using small pivotal elements are avoided and the com­

putation is numerically stable. Since the reduction is via elementary similarity transfor­

mations the characteristic polynomials of Band H (and X) coincide. In fact, 

[

A3_bIA2_b2A-b3 -gIA-g2 

J(A) = det eI A2 - CIA - C2 

o e2 

-hIA2 - h2A - h3 ] 

-JIA2 -/2A-fa 

A3 - dIA2 - d2A - d3 

(3.19) 

(3.19) is multiplied out to yield the required polynomial. The algorithm that effects this 

method is given in Appendix A2.13. The operations count is dependent on the form of the 

elementary divisors of X, but from practical experience it is estimated by (c + 1 )n3 where 

C is the number of Frobenius matrices on the diagonal of B. The storage requirements for 

this method are n 2 + n. 
Housoh:>tder 

From Section 1.3, the rounding error for the,[eduction of a matrix to upper Hessenberg 

form is 

(3.20) 

where u 
/I E /I ::; en 2P" /IX /I 

If iI has well-conditioned sub-diagonal elements, then B will be the companion matrix in 

which case the computed iJ would satisfy 

iJ = S-I(H + F)S (3.21 ) 
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where 

However, if any of the subdiagonal elements of ii is very small then the computed iJ would 

certainly satisfy (3.20) also. Hence combining (3.20) and (3.21), 

iJ = T- 1(X + E)T 

where 

If iJ has k Frobenius blocks, then it may be regarded as an upper Hessenberg parti­

tioned matrix, as in the example in (3.18). This can then be regarded as a k x k upper 

Hessenberg polynomial matrix, as in (3.19), with a zero subdiagonal element corresponding 

to a derogatory X or a small subdiagonal element (corresponding to a possible source of 

ill-conditioning only if the element were to be used as a pivot). 

The error involved in expanding the polynomial matrix is dependent on the number 

of Frobenius blocks. The error in the computed coefficients can be viewed as a normal 

distribution curve, 

error 

computed coefficients 

An upper bound for the maximum possible relative error is 

(3.22) 

and this occurs when there is a maximum of int (n/2) Frobenius blocks. At first sight 

it would seem that this bound is too big to be useful. In practice however, this bound 
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represents the worst possible case and is never attained~ Thus for non-large order systems 

the error in the coefficients will be small and well-bounded. Consider the following, 

n = 10, I~I ::; n2u 

n = 20, I~I ::; 3n2u 

n = 30, I~I ::; 5n3 u 

n = 50, I~I ::; n 6u 

Since on a double precision machine u ~ 10-18 we are guaranteed accuracy to 11 decimal 

places for a matrix of order 50. 
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SECTION ,3.7: Krylov's Method 

The Cayley-Hamilton theorem states that every matrix satisfies its own characteristic 

polynomial, 

The characteristic equation is I(X) = 0 such that 

X n - l xn-2 + I xn al + a2 + . . . an =- (3.23) 

Now (3.23) represents a system of n 2 linear equations in the n unknowns aI, a2,· •. , an. 

From this set, a subset of n linearly independent equations is necessary to uniquely deter­

mine the ai. 

Now consider the first column of xn-i and denote it as the n-vector ti. Equating the 

coefficients in the first column of (3.23) gives 

We may write this in a matrix form with 

and tn = (1,0, ... , of 

Tl,n-l 1 

T2,n-1 0 

Tn,n-l 0 

This is a linear matrix equation of the form 

Ta= b 

where j = 1, ... , n-1 

If T is non-singular then (3.24) may be solved uniquely to determine the ai. 

(3.24) 

If the matrix T is singular then the second columns of xn-i (i . 0, n) are used to 

form T, etc. 

The following new theorem concerns the existence of a non-singular matrix T. 

Theorem 

If the minimum polynomial of a matrix X is equal to its characteristic polynomial, 

I.e. X is non-derogatory, then there always exists a non-singular matrix T. 

Moreover, any column of X n - i may be used to form T. 
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Proof 

Conversely, assume that T is singular. Then its rows are linearly dependent, 

(3.25) 

for some aI, a2, ... ,an, not all zero .. 

Now ti = Xn-iy where y is some column-vector of size n of the form (0,0 ... 0,1,0 ... of. 
alXn-Iy + a2xn-2y + ... + an_IXy + anY = 0 

(a,Xn- 1 + a2xn-2 + ... + OnI)y = 0 

Now since the minimum polynomial - the unique monic polynomial of least degree that 

annihilates X - and the characteristic polynomial of X are the same, and y is non-zero, 

(3.25) can be valid only if 

which contradicts our assumption that T is singular. 

Clearly the position of the 1 in the n-vector y is arbitrary. 

As an aside, if X is derogatory then the minimum polynOlnial is not equal to the 

characteristic polynomial and T will be singular. In this case if Gaussian Elimination is 

used to solve (3.24) and rank (T) = r then at the r'h stage of the Elimination, the element 

in position tr+l, r+l is zero and the unique scalars aI, a2'" a r are the coefficients of the 

minimum polynomial of X. 

The following algorithm computes the matrix T = (Tij): 

For k=l,n 

For j = 2, n 

For i = 1,n (3.26) 

Tij = 0.0 

For k = 1, n 

TIn =0.0 

For k-2n - , 

Tkn = 0.0 
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The operations count is n2(n-1). Since Gaussian Elimination requires fn 3+n2 operations, 

the total count for Krylov's method is 1n3 and the storage requirements are 2n2 + 2n. 

Now let tj represent the columns of T. These are generated by the following recursion, 

tj = Xtj-l j = 2, ... ,n-1 (3.27) 

We try to find bounds for the rounding errors incurred in the computation of these tj. 

Using the notation and results of Section 1.3, 

where 

i j = Jl(Xij-d 

= Jl(X(1 + €)tj_l(1 + f>j-J)) 

= X(1 + €)tj_l(1 + f>j-d(1 + ne) 

= Xtj_l(1 + (n + 1)€)(1 + f>j-d + O(€2) 

= tj(1 + f>j) + O(€2) 

1 
f>j =f>j_l(1 + (n +i)€) + (n + l)€ 

Since to = (1,0, ... , of is known exactly, 

therefore 

f>l =(n+1)€ 

f>2 = f>1(1 + (n + 1)€) + (n + 1)€ = 2(n + 1)€ + O(€2) 

f>3 = f>2(1 + (n + 1)€) + (n + 1)€ = 3(n + 1)€ + O(€2) 

f>n-l = (n2 -1)€ + O(€2) 

f>n = n(n + 1)€ + O(€2) 

where If>jl:''O j(n + 1)u 

lij - tjl :"0 j(n + 1)ultjl :"0 (n2 + n)ultjl 

(3.28) 

(3.29) 

which suggests that the relative error in determining the columns of T is small and well­

bounded. 
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Consider the absolute error in column iHI 

= Xtj(j + 1)(n + 1)e + O(e2
) 

= XHltoU + 1)(n + l)e + O(e2
) 

liHI - tHII ~ IIXIIHI(nj + n + j + l)u 

" This shows that the rounding error in the columns of T can become very large and there-
A 

fore lead to dependencies between the columns. Consequently T may be nearly singular, 
"-

possessing at least one very small eigenvalue. In this case T will be ill-conditioned and 

Gatissian Elimination is not guaranteed to provide an accurate solution. 
.--.. 

However, if T is well-conditioned then we solve the system equivalent to (3.24), 

(T + EJ)a = b (3.30) 

and Gaussian Elimination provides a solution a satisfying 

(3.31 ) 

A necessary condition for T to be well-conditioned is that X must possess well-distributed 

eigenvalues [WilkinsonJ. 
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SECTION 3.8: Characteristic Polynomial of Matrices with Distinct Eigenvalues 

Let the characteristic equation of X be 

Substitute Ai, the eigenvalues of X, into (3.32), 

\ n-I \ n-2 + \ n 
al"l + a2"1 +... an = -"1 

,n-I ,n-2 + \n 
al"2 + a2"2 + ... an = -"2 

,n-I + ,n-2 + + \n alAn a2An ... an = -An 

Let a=(al,a2", ... ,an )T 

and An=(_Ai',-'\2, ... ,-A~)T 

Then the above system of simultaneous equations may be written as 

with 

[
A~_l 

P= : 

,\n-I 
n 

Pa= An 

(3.32) 

(3.33) 

Since the Ai are distinct, P will be non-singular and the unique solution of (3.33) will 

be the coefficients of the characteristic polynomial of X. 

From earlier discussions the problem (3.33) is ill-conditioned if the condition number 

of P, that is IIp-IIIIIPII, is large. Two possible sources of ill-conditioning are, 

(i) 

(ii) 

any two eigenvalues are nearly equal, 

the eigenvalues are poorly distributed. 

Rounding errors in the computed ~i may cause (i) to hold. 

It is known [Gautschi], that for general points Ai the condition of P with respect to the 

problem (3.33) is large. An immediate implication of this is that no algorithm (whether 

stable or not) will accurately solve (3.33). However, it is also known [Wilkinson], that 

if the eigenvalues of X are well-distributed then P will be well-conditioned. (3.33) can 

obviously be solved by Gaussian Elimination but a much quicker technique is in existence. 

This is due to [Bjorck & Pereya] and is implemented as follows: 
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interchange rows of P such that 

1 

1 

1 

where V is The Vandennonde matrix. 

Let b = (b l , ... , bn f 
where ai = bn + l - i , i = 1, ... , n 

=vT 

The problem of solving (3.33) now becomes one of solving 

for b (3.34) 

This is the 'dual problem' and is equivalent to polynomial interpolation [Bjorck & Pereya]. 

This follows because if 

n 

VTb = An and f(A) = L bjAj - 1 

j=1 

then 

f(Ai) = -Ai for i = 1, ... , n 

The first step in computing the bj is to calculate the Newton representation, 

n k-l 

f(A) = LCk Il(A - Ai) 
k=l i=l 

The constants Ck are divided differences and may be determined as follows, 

C(I) = -A~ 
• • for i = 1, ... , n (3.35) 

then for k = 1, ... , n - 1 

for i = n, ... , k + 1 

(HI) = ( (k) _ (k) )/( \ . _ A' ) 
Cl Cl C 1 - 1 AI I-k (3.36) 

The next step is to generate the bi from the Ci. Define polynomials gn(A), ... ,gO(A) 

by the iteration 

For k = n -1, 1 

(3.37) 
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and observe that gO(A) = f(A). Writing 

(3.38) 

and equating like powers of A in the equations (3.37) and (3.38) gives the following recursion 

for the coefficients bl k
), 

For k = n - 1, ... , 1 

b(k) _ \ b(HI) 
k - Ck - "k k+1 

For i = k + 1, ... , n - 1 

b
(k) _ b(k+l) _ \ b(HI) 
i - i Ak i+l 

Consequently the coefficients bi = blO) can be calculated as follows: 

(i = 1,n) (3.39) 

For k = n - 1, ... ,1 

For i = k, ... , n - 1 (3.40) 

b
(k) _ b(k+l) _ \ b(HI) 
i - i Ak i+l 

The operations count for this interpolation procedure is of the order n 2 - n. The 

majority of the work is involved in determining the eigenvalues of X. Therefore the overall 

operations count is 8n3 + n2 and the storage requirements are n2 + 2n locations. 

Error Analysis 

Now we take a detailed look at the error analysis associated with implementing this 

algorithm on a computer using floating point arithmetic. 

The eigenvalues are determined by the QR algorithm and satisfy 

~y = (X + E)y, E = X6 with 161:S: u 

Since Xy = Ay 

~y = Ay + X 6y = Ay(1 + 6) 

Taking norms 
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From (3.35) 

C\I) = fl( -Ai) 

=-fl(~~i) =-(l+St fl(~Ai) 
using a result from Section (1.3), 

Now consider (3.36), 

C~k+I) = fl c: -,Ci _ 1 [f1(
'<k) '(k))] 

fl(Ai - Ai-k) 

= fl C, C,_I 

[

f1('(k) _ ,(k) )] 

Ai - Ai-k 

when k = 1, c~2) = fl ci -ci _ 1 [f l('<I) '(I))] 
A, - A,_I 

=fl ' ,-I [f l(CO) _ C(I) )] 

Ai - Ai_1 

similarly 

(3.41) 

for t = r, ... , n 

(3.41) gives the error in computing c~r). 
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The following result is useful in the error-analysis for (3.40), 

Then 

where 

ii=a(l+e) 

fj = /1(xI(l + ml e) + a(l + e)x2(1 + m2e)(1 + e» 

= /1(xl(l + mle) + aX2(1 + (m2 + 2)e» + O(e2) 

We would like ml and m2 + 2 to be equal. This is achieved by multiplying the 

respective term the appropriate number of times by 1 so that 

fj = y(l + de) 

where d = max {ml, m2 + 2} 

Now consider (3.40), 

k=n-1 

using (3.41), 

from (3.42), 

k=n-2 Similarly, 

and 

b(n-l) = /1 [b(n) :... ~ _ b(n)] 
n-l n-l n 1 n 

Continuing in this way we obtain the following general relation, 

where the Pij are given as follows, 
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! 

1 

2 

n-3 

n-2 

n-l 

Generally, 

6n - 2 

n-l 

9n-9 

9n -11 

6n +4 

6n+ 1 6n +2 

6n -1 6n 

n-2 n-3 2 

P;j = 9n - 5 - i - 2j 

The coefficients ak are then given by 

k = 1, ... ,n 

Using (3.42) and (3.44), 

ak = b~lll_k(1 + (7n - 8 + 2k)f) + O(f2) 

ak-ak=ak (7n-8+2k)f+O(f2) 

Taking norms over all k 

la - al ::; lal9nu for any norm 

9n- 8 

9n -10 

1 ! 

(3.44) 

so that the relative error incurred in computing the a; using this interpolation algorithm 

IS 

which is well-bounded and very small. 

la - al < 9 
lal - nu (3.45) 

In summary, if the eigenvalues of X are well-distributed then the matrix P is well­

conditioned and the Interpolation algorithm will yield a very accurate solution, such that 

the computed coefficients of X are in fact the exact coefficients of a matrix X + E, near 

to X where E is bounded by 

IIEII ::; 9nullXII 
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However, if the matrix P is ill-conditioned then there is no guarantee that the method will 

provide an accurate solution. There are situations where this method does give accurate 

solutions to an ill-conditioned P [Higham, 1 J. 
Therefore, since the overall method may give rise to an ill-conditioned matrix P, it 

must be considered as unstable. [Higham, 1 J presents an error analysis for the Bjorck­

Pereya algorithm for when the Ai are non-negative and arranged in increasing order. It 

is shown that for a particular class of Vandermonde problems, the error bound obtained 

depends on the dimension n and on the machine precision only, being independent of the 

condition number of the coefficient matrix. 

[Higham, 2J develops algorithms for solving (3.34) for when the points in the Vander­

monde's structure are polynomials that satisfy a three term recurrence relation. 
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SECTION 3.9: Conclusions 

It is evident from the discussions and analyses of this chapter, why the stable LeVer­

riers algorithm is so widely used. It is a stable algorithm which will always yield accurate 

solutions. The only disadvantage it appears to have is the number of arithmetic operations 

it'must perform. 

The original implementation of Le Verriers algorithm will always give rise to a poten­

tially ill-conditioned problem and is therefore inappropriate in any circumstance. 

The reduction of the original matrix, by Danilevski's method, to its upper Hessenberg 

form uses stable orthogonal similarity transformations. The reduction of the Hessenberg 

form to companion form can use only elementary similarity transformations which are not 

always stable. In the reduction, a small sub-diagonal pivotal element may cause drastic 

changes to the elements in that column. If this method is used then any good algo­

rithm should detect this condition and terminate processing with an error code. Clearly 

Danilevski's method is not appropriate for derogatory matrices. However, it is not always 

possible to determine beforehand whether a matrix is derogatory or not, and if Danilevski's 

method is used then rounding errors may accumulate to produce an ill-conditioned Hes­

senberg form. The processing will eventually terminate with an error-code and it will 

appear on the surface, that a small sub-diagonal pivotal element has been detected for a 

non-derogatory matrix. 

The Block Frobenius method is potentially a very good one in the sense that for a 

well-conditioned matrix it will determine the solutions accurately and very quickly. The 

reference to well-conditioning is related to the number of Frobenius blocks that arise on 

the diagonal of the reduced matrix. The method works on any type of matrix, the only dis­

advantage being a possible loss of accuracy in mid-ranged coefficients of the characteristic 

polynomial, for large order matrices. 

Krylov's method has been discussed extensively in the literature and is commonly 

regarded as being unworkable. We have seen why this pessimism is attached to the method, 

firstly in that it is valid for non-derogatory matrices only and secondly, it involves the 

solution of a linear system in which the matrix is generally ill-conditioned. It is known, 

however, that this matrix is well-conditioned when the eigenvalues of the original matrix 

are well-distributed. In this case, Krylov's method yields accurate solutions and involves 

very few arithmetic operations. 

The Interpolation method has a number of similarities to Krylov's method. It is valid 

only for those matrices possessing distinct eigenvalues and the method involves the solution 

of a linear system in which the matrix is a Vanderrnonde matrix. This matrix is generally 

ill-conditioned but if the original matrix has well-distributed computed eigenvalues then 

the Vandermonde matrix is well-conditioned, In this case, an Interpolation approach rather 
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than Gaussian Elimination is used to solve the linear system. This approach makes use of 

the structure of the Vandermonde matrix to yield very accurate solutions very rapidly. 

From the discussions above, the best general purpose algorithm to provide accurate 

solutions for all problems is the LeVerriers method. For problems of order less than 50, 

the Block Frobenius is a bett~r alternative since it will be considerably faster with very 

little loss of accuracy in the solutions. Solely on the basis of speed, the quickest method 

is Krylov's, under the conditions discussed above. From the accuracy point of view, the 

errors involved in the Interpolation method are very small when compared with the 'best 

algorithm' case in section 3.1. 7 
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CHAPTER 4 - THE ELIMINATION METHOD WITH APPLICATIONS 

SECTION 4.1: Introduction 

The Elimination method is a technique that generates an expression that gives the 

,solution X to ,the quadratic matrix equation, in terms of the coefficient matrices P and Q 
and the coefficients of the characteristiC 'polynomial (c.c.p) of X. The expression is of the 

form RX = -5 where the matrices R and 5 are generated recursively. ' 

We derive alternative explicit representations for R and 5, that are related to the 

asso'dated qu~atic eigenvaJue problem. Further analysis leads to a relationship between 

the conditioning of the original problem and the conditioning of matrix R. This is not an 

'if and only if' condition and an example illustrates that R may be ill-conditioned even 

when the original problem is not. 

An error analysis of the Elimination method reveals that the rounding errors generated 

as a result of computing R and 5 are small and well bounded such that the accuracy of 

the solution of the matrix equation RX = -5 is dependent on the conditioning of R. 

Section 4.3 describes an iterative Elimination method based algorithm for computing 

the solution to the quadratic matrix equation. The problem of finding a suitable starting 

point to the iterations is discussed and a heuristic formula is suggested. An analysis of the 

stopping criterion for the iterations shows it to be truely reflective of the accuracy of the 

computed solution. We conclude that if R is well-conqitioned at each iteration and a stable 

method is used to determine the c.c.p of the current X then the iterations are stable. A 

discussion of convergence theory as applied to the iterative algorithm is included, mainly 

to provide a foundation for further analysis. 

Section 4.4 discusses and applies the points of section 4.2 to the matrix square root 

problem. 

, ' Section 4.5 describes three methods for computing the square root of a matrix, all 

based on the Elimination method. Method 1 applies the Elimination method iteratively as 
. ~ . .' . 

section 4.3 does for the quadratic matrix equation and it ,is shown that the work done by 

, the algorithm may be reduced considerably by transforming the coefficient matrix. Method 

2 determines the c.c.p of X from its eigenvalues and uses these as input to the Elimination 

method. Method 3 derives a relationship between the c.c.p of X and those of the coefficient 

matrix. The relationship yields'a system of n non-linear equations which are solved by a 

globally convergent algorithm to give the c.c.p of X. These coefficients are then used as 

input to the Elimination method. For each method, there is a discussion on the stability 

of the algorithm and the operations count involved in their implementations. 
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SECTION 4.2: The Elimination Method 

Consider the monic unilateral quadratic matrix equation 

F(X)=X 2 +PX+Q=O (4.1) 

where P,Q,X are square matrices of order n. Let aj (i = 1, ... ,n) be the c.c.p. of X, 

satisfying 

The Cayley-Hamilton theorem states that every square matrix satisfies its own char­

acteristic polynomial. 

Therefore we have that 

Postmultiply (4.1) by xn-2, 

xn + PXn- I + QXn- 2 = 0 

Subtract (4.3) from (4.2) to give 

Let 

such that (4.4) may be written as 

Postmultiply (4.1) by xn-3 and premultiply by RI 

RIXn- I + RI P X n- 2 + RI QXn- 3 = 0 

Subtracting (4.6) from (4.5) eliminates the term in xn-I, 

Let 
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such that (4.7) may be written as 

R X n-2 + S X n- 3 . X n- 4 + I 0 2 2 + a4 ... +an = 

Continuing in this way, at the ith stage we eliminate the term in X n - i between the 

following equations, 

RiXn- i + RiP Xn-(i+I) + RiQXn-(i+2) = 0 

giving 

R · xn-(i+I) + S· X n -(i+2) + a· X n -(i+3) + + a 1-0 ,+1 _+1 1+3 . . . n-

where 

Ri+l = Si - RiP 

Si+l = ai+21 - RiQ 

At the (n - 2)th stage, we have that 

where X solves (4.1). 

(4.8) 

(4.9) 

What this gives us is a relationship between the coefficients of the characteristic poly­

nomial of a matrix X satisfying (4.1) and the elements of X. This is known as the Elimi­

nation method [McDonald]. 

An Explicit Representation 

From (4.8) it follows that 

or 

The equations may be transposed and expressed in the following way, 

[
RT;I] _ [_OnT _InT] [R;2] + [ On ] 
R. Q P R._l a,In 

a more convenient form being 
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where' 

with Co = [On], bi = [ On ], with bo = [On] 
In a,In In 

(4.10) is a first order difference equation. An explicit solution is given by 

i 

Ci = L (AT)kbi_k 
k=O 

Transposing both sides and substituting for Ci and bi gives, 

i 

[Ri-l Ri] = [On In] L ai-kA k (4.11 ) 
k=O 

where A = '[0 -Q] 
I -P 

problem. Therefore 

is the companion matrix of the corresponding quadratic eigenvalue 

and 

Let 
n-l 

T E 1R2nx2n = f(A) = L an_k_l Ak 

k=O 

and partition T as 

[
Tll T12] 

T = -R-n---2--1I--
R
-

n
-_-

1

-

Let Z E 1R2nx2n' [~ -~] 

then Z-l = [XQ-l I] 
_Q-l 0 

and [~=~] [~ -~] = [~ -~] [;(X +P) ;] 
AZ=Z B 

A = Z B Z-l 
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A is similar to a matrix B which has as its eigenvalues, the union of the eigenvalues of 

-( X + P) and X. We would expect this, since from Section 1.6, A is the companion matrix 

of the associated quadratic eigenvalue problem. Substitute (4.15) into (4.14) to give, 

n-l 

f(A) = L an-k-l (ZBz-l)k 
k=O 

n-l 

= L an-k-l Z Bk Z-l 
k=O 

n-l 

= Z L an-k-l Bk Z-l 
k=O 

= Z f(B) Z-l (4.16) 

Given the similarity relationship in (4.15), (4.16) is a standard result concerning func­

tions of matrices [Lancaster & TismentskyJ. Two other results which we use here are 

f(B)B = Bf(B) 

and if 

then 

f(B) = diag (f(Bd,f(B2), ... ,f(Br)) 

(4.18) suggests that the form of f(B) is, 

[
f(-(X+P)) 0] 

fo: f(X) 

for unknown fo:. 

Substitute this into (4.17), 

[

f(-(X+P)) 

fo: 
o ] [-(X + P) 

f(X) I ;]= 

Expanding both sides, 

[
f( -(X + P))( -(X + P)) 

- fo:(X + P) + f(X) 

[
-(X+P) 0] [f(-(X+P)) 0] 

I X fo: f(X) 

o ] [-(X + P)f( -(X + P)) 

f(X)X = f(-(X+P))+Xfo: 
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Comparing coefficients and using (4.17) gives 

Xfo +fo(X + P) + f(-(X + P)) - f(X) = ° 
Xfo + fa(X + P) = f(X) - f(-(X + P)) 

Substitute (4.19) into (4.16) f(A) = 

[
OI -Q] [f(-(X+P)) 0] [XQ-I I] 

X fa f(X) _Q-I ° 
= [0 -Q] [f(-(X+P))XQ_I f(-(X+P))] 

I X fOXQ-I - f(X)Q-I fa 

[ 

-QfoXQ-1 + Qf(X)Q-I 

- f(-(X + p))XQ-I + XfoXQ-1 - Xf(X)Q-I 

-Qfo ] 

f( -(X + P)) + Xfo 

Using (4.20) 

= [Q(J(X) - fOX)Q-I 

fa 
-Qfo ] 

f(-(X+P))+Xfo 

From the earlier definition, f(A) = T = [ __ T_ll_-t-_
T
_

I
_
2
_] 

R n- 2 Rn-I 

R n - 2 = fa 

Rn-I = f( -(X + P)) + X fa = f(X) - fa(X + P) 

( 4.20) 

( 4.21) 

(4.22) 

where fa is given by (4.20). (4.22) gives us an explicit expression for Rn-I, used in the 

next section. 

We can show that (4.22) is the correct expression for Rn-I since, 

and since aj are the c.c.p. of X and X satisfies its own characteristic polynomial, 

f(X) . X = -anI (4.23) 

substituting this into (4.22) gives 
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Condition of Rn-I 

= -anI - Rn_2(X2 + PX) 

= -(anI - R n- 2Q) 

= -Sn-I as required 

We must firstly look at the effect of perturbations in the initial data, P and ai, to the 

solution fa of (4.20). This is a Sylvester equation and the results of section 1.4.3 on the 

conditioning of this type of equation may be applied here. Let the error in P be 6.P with 

I16.P 11 :::; ull P 11, then the solution la, to (4.20) satisfies 

11 la - fa 11 = l16.fa 11 :::; 4116.P 11 11 C- I 
11 11 fa 11 (4.24) 

where C solves 

C vec (fa) = vec [f(X) - f( -(X + P))] 

Let the perturbed coefficient ai be such that 

iti = aiel + e) , lel:::; u. 

Since 

then 

lex) = -an(l + e)X-1 = f(X)(l + e) (4.25) 

From (4.22) 

Rn - , = lex) - la(X + P + 6.P) 

= f(X) + ef(X) - fa(X + P) - fa6.P - 6.fa(X + P + 6.P) 

Taking norms 

11 Rn-I - Rn-Ill:::; ull f(X) 11 + ull P 11 IIfa 11 + 4ull P 11 11 X + P 11 11 c- I 
11 11 fa 11 
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now, 

IIvec (la) 11, = 11 fa 11::; IIG-Illllcll 

where 

c = vec [11 f(X) - f( -x - P) III 

Finally 

11 Rn- I - Rn-Ill < ulanlll X-Ill + ull G-I IIAI + ull G-I 112 A2 

11 Rn-Ill - .. 11 Rn-Ill 
(4.26) 

and recalling our definition of the derivative of F(X) in section 2.1, we observe that G and 

the matrix T of that section possess the same eigenvalues and 

IIGII = IITII = IIF'(X)II· 

Notice that as X approaches singulari ty, its determinant approaches zero so that at sin­

gularity (4.26) is still defined with lanl = o. 
For non-singular X, Rank (X) = n and 

Rank (Rn-I) = min {Rank (Sn-I), Rank (X-I)} 

:. Rank (Rn-I) = Rank (anI - faQ) ::; n 

with equality implying the existence of a unique matrix X, otherwise there is an infinite 

number of solutions of RX = -S for this particular set of ai. 

Singularity may be considered as an extreme form of ill-conditioning. However ill­

conditioning does not necessarily imply the existence of a small eigenvalue. 

The following example illustrates the case of a singular R n - I when the derivative is 

non-singular and well-conditioned. 

[

-1 
X2+ 2 -6] [0 X+ 

-9 -2 
12] = 0 
14 

The eigenvalues of the associated quadratic eigenvalue problem are 1,2,3,4. If we select 

A = 1,2 as possible eigenvalues for X, then 

I X - AI I = A2 - 3A + 2 =? aI = -3, a2 = 2 

RIX = -SI =? [2 -6] 
2 -6 
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Then 
1 0 -6 0 

X'=c ~) and F'(X) = 
0 2 0 -6 

2 0 -6 0 

0 2 0 -5 

where R is singular and F'(X) is non-singular and well-conditioned. 

Error Analysis 

We now investigate the effect of rounding errors in computing R n - 1 and 5 n - 1 • It is not 

necessary to compute all the elements of the 2n x 2n matrix A k, since if A is partitioned 

as 

then Ak+l is 

[

A(k) 
11 

A(k) 
21 

A (k) E lRnxn 
. , IJ (4.27) 

A~;)] [0 -Q] 
A (k) I-P 

22 

(4.28) 
A(k)Q _ A(k) P] 11 12 

A
(k)Q _ A(k) P 
21 22 

and from our definitions for Rn_I and Rn- 2 , (4.12) and (4.13), we require only the bottom 

blocks, 

( 4.29) 

and 

n-l 

[Rn - 2 Rn-I 1 = L an_k_1 [A~~) A(k) 1 
22 ( 4.30) 

o 

We can write (4.29) as 

( 4.31) 

The following algorithm determines Rn-I and Rn- 2 (hence 5 n - 1 ): 
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k=O untilk=n-l 

Next k 

Form B(k) = [A~~) A~~) 1 
(k) 

Rn- 2 = Rn- 2 + an-k-l A21 

(k) 
Rn- 1 = Rn- 1 + an-k-l A22 

Sn-l = anI - Rn-2Q 

using (4.31) 

For ease of notation the following analysis is· for the transposed system B;{., = A T B~ . 

and is equivalent to that for 4.31. 

Let the errors in P and Q be of machine precision u and the relative error in the 

coefficients of the characteristic polynomial of X be oa. Ignoring terms of O( u2), 

sInce 

fP) = le (AIW- 1») 

= A(1 + c:)(B(k-l) + t.B(k-l»)(1 + nlC:) 

= (A + Ac: + Anlc:)(B(k-l) + t.B(k-l») + 0(c:2) 

= AB(k-l) + AB(k-l)(1 + nl)C: + At.B(k-l) 

t.B(k) = At.B(k-l) + AB(k-l)(1 +nt}c: 

B(k) = Ak B(O) 

t.B(k) = A (At.B(k) + A k- 1 B(O)(1 + nt}c:) + Ak B(O)(a + nl)C: 

= A 2t.B(k) + 2Ak B(O)(l + nl)C: 

Continuing in this way, 

t.B(k) = A k B(O) + kAk BO(l + nl)C: 

Now form R\k), 

= Ak B(O) (1 + k(l + nt}c:) = B(k)(l + ken! + 1)0). 

fl\k) = le [a i - k(l +oa) (B(k) + t.B(k»)] 

= ai-k(l + oa)B(k)(l + k(l + nt}c:)(l + c:) 

= ai_k(l + 6a)B(k)(1 + klC:) + 0(c:2) 
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where kl = 2nk + k + 1. 

Finally, 

this is equivalent to computing 11 in section 1.3.3 where 

A similar analysis on (4.32) gives 

ati=n-2 

Ri = L ai_k(l + Sa)B(kl(l + nkc: + (i + 2)c:) + 0(c:2
) 

o 

= Ri + (i + 2)c:(1 + Sa)Ri + SaRi + nc:(l + Sa) L kai_kB(k) 
o 

n-2 

Rn -2 - R n - 2 = (cn(l + Sa) + Sa) R n - 2 + nc:(l + Sa) L kan _k_2 B (k) 

o 

Taking nonns, 

n-2 

+ nu (1 + ISal) L k lan -k-21 IIB(k) 11 
o 

where amax = m~ lail 
• 

(4.32) 

( 4.33) 

The bound in (4.33) implies that the rounding errors induced from computing Rn - 2 

are of the order u. The effect of any errors in the c.c.p of X on Rn - 2 are of the same 

order as the errors in the initial coefficients. An immediate consequence of this is that the 

algorithm used to determine the initial coefficients must be accurate. Clearly this is an 

important observation, particularly with regard to those iterative methods of the next two 

Sections, that are based on the Elimination method. 

From earlier 
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Sn-l = je(anl - Rn- 2 Q) 

= (an(l + oa)l - Rn_2Q(1 + (n + l)c))(l + c) + 0(02) 

substituting Rn -2 gives 

• 2 

IISn-1 - Sn-lll I I un [11 nil] II II (2) IISn-11l ~ anoa + u + IISn-11l IIRn- 2 + amax IIA Q + 0 u (4.34) 

similarly, for Rn - l 

n-l 

Rn- l = R n- l + (n + l)c (1 + oa) R n- l + oaRn_1 + ne (1 + oa) L k an_k_IB(k) 
o 

• 2 
IIRn- l - Rn-Ill I I ( un II nil 2 IIRn-11l ~ oa +u n+l)+ IIRn-11l amax A +O(u) (4.35) 

The comments pertaining to (4.33) are also valid here. The final step in the Elimina­

tion method is the solution of 

Rn - l X = -Sn-l. 

However, due to rounding errors the problem becomes 

Using the Gaussian Elimination method of Section 1.4, the computed solution satisfies 

(Rn - l + t>Rn _ 1 + E) X = -(Sn-l + t>Sn-tl 

where 

so that in terms of exact Rn-l and Sn-l, we solve a system 'close' to the original one, 

(Rn - l + Etl X = -(Sn-l + E2 ) 

where 11 El 11 ~ IIEII + lit> Rn-Ill 
and IIE211 ~ IIEII + lit> Sn-lll 

lit> Rn-l 11 and IIt>Sn-dl given by (4.35) and (4.34) respectively. 
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Remarks 

We have shown how the Elimination method may be used to determine the solution 

matrix of (4.1) given the coefficients of its charcteristic polynomial. The method is closely 

linked with the quadratic eigenvalue problem, via the companion matrix. In fact, the 

matrices R n - 1 and Sn-l may be determined by the c.c.p of X and powers of the companion 

matrix. It has been shown that the problem of determining R n - 1 may lead to difficulties 

and that a relationship between the condition of R n - 1 and of the original problem (4.1) 

exists. Clearly it is necessary that Rn - 1 be well-conditioned for there to be a unique 

accurate solution X, of the linear matrix equation. 

The rounding errors generated by the algorithm that computes Rn - 1 and Sn-l are 

relatively small and well-bounded. The error due to the c.c.p of X are of the. same order 

as the initial inaccuracies. 
" In summary, provided that R n - 1 is well-conditioned, the Elimination method will 

accurately determine X of (4.1) given the c.c.p of X. 
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SECTION 4.3: The Quadratic Matrix Equation 

The Elimination method may be used in the following iterative scheme for determining 

a solution of (4.1): 

(i) Select scalars aj (i = 1, ... ,n) as initial estimates to the c.c.p of X. 

(ii) Carry out one step of the Elimination method to determine R n - I and Bn - I . 

(iii) Solve 

(iv) Compute 
IIF(x(r+I») - F(x(r»)11 

IIF(x(r»)1I 
If this is less than some specified tolerance, then the iterations have converged. 

'--", 

(v) Compute the c.c.p of x(r+I). Go to (ii). 

We know that when the derivative of F(X) is ill-conditioned, the problem (4.1) is 

ill-conditioned and R n - I may be ill-conditioned also. The impact of this is that at step 

(iii), it may not be possible to solve the linear system at all and when it can be solved, the 

computed solution would be unreliable. The example of the previous section illustrates 

also that Rn-I may be ill-conditioned even when F'(X) is not. Consequently any good 

algorithm should monitor and report on the condition of Rn-I at each step of the iterative 

process and terminate with an error message if necessary. 

Starting Point 

The algorithm requires n values as initial estimates to the c.c.p of X. It is not possible 

to select values that will ensure convergence and it has been shown through examples 

[McDonald], that convergence may occur to the same solution from totally different starting 

points and that initial points near to each other may not converge to the same solution, if 

they converge at all. 

The following heuristic procedure yields a formula for determining a set of initial 

estimates and has been justified through numerical experience. 

Any non-derogatory matrix, X say, can be transformed into its companion form C 

say, by similarity transformations, 

H-IXH = C = 

where aj are the c.c.p of X. 

Consider 

o 
o 

1 

o 
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X2+pX+Q =0 

H-1XHH-1XH + H-1 PHH-1XH +H-1QH = 0 (4.37) 

C2 +PC+Q = 0 

whereP = H-1pH and Q = H-1QH. Denote P = (Pij) and Q = qij then equating the 

elements in the bottom row of (4.37) gives, 

+ 

+ 
+ Pnl 

+ Pn,i+! 

+ Pn,n-l 

Since we are dealing with estimates, let 

Pij = sign ((Pij)IIPIIE 
and 

qij = sign (qij)IIQIIE 

+ qn2 

+ 

then we can write the above systems of equations in terms of the c.c.p of X, 

a3 - Pn n-2 - qn n-l 
a2 = . , 

al - Pnn 

It only remains for us to determine an estimate for al. 
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Since 

.Q=_X2_pX 

IIQII ~ IIXII2 + IIPII IIXII 
Let x ':"IIXII, P = IIPII, q = IIQII. Then 

_x2 -px +q ~ 0 (4.39) 

We have already dealt with this type of inequality in Chapter 2 and a similar analysis 

gIves 

P Vp2 +4q P 
Xl < -- or X2 > --- 2 2 - 2 

Since X = IIXII ~ 0, we choose x 2 to satisfy (4.39). 

Then 

al = .trace (X) ~ IIXII = -p + vt + 4q 

Therefore an estimate for al is given by 

± (-p+ ~P2+4q) 
with the sign chosen such that ai - Pnn f 0 and the remaining ai are generated by the 

formulae in (4.38). 

Accuracy of Convergence Criterion 

We need to specify, in the algorithm, when we consider convergence to have occurred. It 

is not sufficient to insist on F(X(k+I») = 0 exactly since due to rounding errors, exact zero 

may never be obtained. The quantity that is most often compared against is the relative 

decrease in the function defined by, 

computed at the rth iteration. 

For convergence to occur, F NORM must be less than some absolute tolerance value, TOL 

say. We would like TOL to be as small as possible. This 'smallness' is dependent on the 

rounding incurred from computing FNORM, as follows: 
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Due to the storage errors, the machine representations of X, P and Q have an error of 

O( u). On computing F(x(r+I», rouhding errors arise due to floating point arithmetic 

such that the computed matrix is given by, 

F(x(rH » = If {x(rH )2 (1 + E)2 + If [p x(r+I)(l + E)2 + Q(l + E)]} 

= If {x(r+I)\l + E)2 + P x(r+I)(l + E)3(1 + nE) + Q(l + E)2} 

= x(r+J)2(1 + nE)(l + E)3 + px(rH )(1 + E)4(1 + nE) + Q(l + E)3 

F(x(rH »= x(r+I)2(1 + (n + 3)E) + px(r+I)(l + (n + 4)E) + Q(l + 3E) + O(E2). 

A similar expression exists for F(x(r», such that 

and 

Our convergence criteria must take these errors into account, such that 

II~F(x(r» - ~F(x(r+I»1I 

IIF(X(r»11 
(4.40) 

This says that TOL must be set to greater than or equal to 2(n + 4)u and that it will 

truly reflect the accuracy of the computed solution. 

Accumulation of Rounding Error 

In general terms, accumulation of rounding errors may contaminate the solution ob­

tained by any algorithm, particularly an iterative one. In this particular algorithm, there 

are three processes within the algorithm where it is possible for a significant loss of accu­

racy to occur. These are in the determination of the c.c.p of the current estimate to the 

solution matrix, in the computation of Rn_I and Sn-I and in the solution of the linear 

system at step 3. We have already discussed the stability of the algorithms to effect these 

processes, individually. The error in determining the aj is small, tiu say and the error 

in the computed Rn-I and Sn-I is of the same order as tiu plus some small multiple of 

the machine precision u. This implies that the condition of the computed Rn-I will not 

be affected by rounding errors, that is, any well-conditioned exact Rn-I will not appear 

102 



to be ill-conditioned, and vice versa. The accuracy of the solution of the linear system 

using Gaussian Elimination is dependent on the condition of Rn-I. For an ill-conditioned 

Rn-I the computed solution X may not be close to the exact solution and any ensuing 

processing will lead to erroneous results. 

Therefore, if Rn-I is well-conditioned and a stable method for determining the c.c.p 

of X is used, then at each iteration the error increases by a small multiple of machine 

precision. If the processing continues for a large munber of iterations then the errors in 

the computed solution become significantly large. In practice however, we would expect 

to terminate the processing long before sum a number of iterations is reached. 

Convergence 

The analysis presented here attempts to apply convergence theory to the iterative 

algorithms as well as laying the foundations for further investigation into their convergence. 

The Contraction Mapping Theorem states that: 

Let G map Rn -+ Rn. If for some norm 11·11, there exists 0< E [0,1) such that 

IIG(x)-G(y)lI:5o< IIx-yll , 

then 

(i) there exists a unique x· E Rn such that G(x·) = x·, 

(ii) for anyx(O) E R, the sequence generated by 

remain in Rn and converges q-linearly to x· with constant 0<, 

(iii) for any 1] ~ IIG(x(O» - x(O)II, 

r 

IIx(r) - x·11 :5 11]0< , 
-0< 

r = 0, 1, ... 

(4.41 ) 

( 4.42) 

This implies glob1l-l convergence of the iterations (4.42) provided that (4.41) is satisfied. 

Also it is known [Morris] t):lat if, with respect to (4.41) 

(i) G(x(r» is defined and continuous on a region M, and 

(ii) for each x(r) E M, there exists a G(x(r» E M and 

(iii) the Jacobian matrix J of G(x(r» satisfies PII < 1, 

then the sequence of iterates (4.42) converge to a solution x· E M. 

There are two approaches to redefining the iterative algorithm of this section in terms 

of the iteration (4.42). 

Firstly, at iteration r we have, 

R(r) X(r+l) = _S(r) 
n-l n-l ( 4.43) 
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where from section 4.2, 

and 

_s(r) = [a(r) I _ R(r) Q] 
n-l n n-2 

= - [a~) I - /o.(r) Q] 
= /(x(r») X(r) + /o.(r) Q 

Using Kronecker products, (4.43) may be written as 

R(~\ @I 
'n_I 

(I~R~\) ,,(r+1) = vec (
_s(r) ) 

n-1 

where ,,(r+1) is a n 2 _ vector containing the elements of x(r+l) taken a row at a time. 

Then our iteration, equivalent to that in (4.42), is 

R~~', t8J I 

,,(rH) = [H~ R!,'\ r 1 
vec (-S~~l) (4.44) 

Secondly, from (4.30), 

and 

n-1 
R(r) = '" 

n-l ~ 
(r) A(k) 

an _k_1 22 

o 

n-1 
S(r) = a(r) I _ '" 

n-l n L....t 
o 

(r) A(k) 
an-k-l 21 

that is, R~21 and S~~l are functions of a~r) and consequently we can write R;:~l Sn-1 as 

some n function say G, of a~r). Also, since a non-derogatory x(r+1) may be transformed 

into its companion form which holds the c.c.p of the matrix x(r+1), it may be possible to 

obtain an iteration, 

a~r+1) = G ((a~r») (4.45) 

Notice that the iterates are E Rn whereas those in (4.44) are ERn'. 

An alternative analysis now follows: 

We have that 
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, 
F(X·) = 0 = X· +PX· + Q 

F(x(r)) _ X(r)' + P X(r) + Q 

X(r+1)' + P X(rH ) + Q 

Also, 

(x(r) _ X·) 2 = X(r)' +X·' _ X(r) X· _ X· X(r) 

From the definition of the Frechet derivative F'(X), this may be written as 

(x(r) _ X·) 2 = X(r)' + X·' _ F,(x(r)) X· + P X· 

Similarly 

(4.46) 

(4.47) 

( 4.48) 

(4.49) 

(x(rH) _ x(r)) 2 = x(rH)' + x(r) _ F'(X(r)) x(rH) + px(rH) (4.50) 

Adding (4.46) to (4.47), 

F(X(r)) . (X(r) - X·)2 + F,(x(r)) X· + px(r) + 2Q (4.51) 

Adding (4.47) to (4.48), 

Subtract (4.51) from (4.52), 

or 

Let the inverse of F,(x(r)) exist. Multiply both sides by F'(X)-l and take norms, 

Ilx(r+1) - X·II < F' (r) -1 IIF,(x(r))-lll 
IIx(r) _ X.11 2 - 11 (X ) 11 + IIx(r) _ X.1I2 

(IIF(x(r+1)) _ (x(rH) _ x(r)) 211) 
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This implies that the convergence of any iterative algorithm for the quadratic matrix 

equation is dependent on the conditioning of the derivative at each iteration . 

. Operations Count and Storage 

We now look at the implementation of the method on a computer and determine 

the operations count and storage requirements. Detailed algorithms may be found in the 

Appendices. 

Step 1. Generate a starting point from the following formulae, 

Step 2. 

al = -IIPIIE + vllPlI} + 411QIIE 
2 

For i = 0, n - 2 

an-(i-l) - Pn,i - Qn,i+l 
an-i = 

at - Pn,n 

where Pij = sign (Pij) IIPIIE , qij = sign (qij) IIQIIE 
This step requires 2n2 + n storage locations - for P, Q and ai. 

The operations count is n 2 + n. 

RI = R2 = 0 

A21 = O· 

A22 =1 

For k = 0, ... , n - 1 

APREV =A22 

A22 = -A21 * Q - A22 * P 

A21 = APRAV 

R2. R2 + an-k-I * A21 

RI = RI + an-k-I * An 

Next k 

then R n - l = RI 

Sn-l = anI - R2 * Q 
Since P and Q are already stored, we require 5n2 + n storage locations for 

this step. The operations count is 2n4 + 2n3
• 
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Step 3. Gaussian Elimination with partial pivoting solves 

It uses ~ n 3 operations and does not require any additional storage locations. 3 . 

Step 4. Here we compute the norm of F(X) = (fij). 
Fori=l, ... ,n 

For j = 1, ... , n 

and 

n 

J;j = 2:: (Xik + Pik) Xkj + qij 

k=! 

1 

IIF(X)IIE = (2:: 2:: f&) 2 

The operations count for this step is n 3 + n 2
• 

Step 5. Chapter 3 discussed a number of techniques for computing the characteristic poly­

nomial of a matrix. For the purposes of this problem where the matrix X has no 

special form we choose the method due to Wang and Chen with a modest value of 

5 for the constant c. Therefore the operations count is 6n 3 and no further storage 

is required. 

Note that Steps 2,3,4 and 5 are repeated until the algorithm is deemed to have 

converged. 

The total operations count is (2n4 + lln3 ) m where m is the number of iterations. 

The total storage locations required is 6n2 + n. 
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SECTION 4.4: Elimination .Method For The Square Root Problem 

In this case, we require the solution X of· 

F(X) = X2 - A = 0 (4.55) 

for the general matrix A. 
The Elimination method of Section 4.1 gives the solution of (4.55) to be the solution 

of 

where 

Ri+! = Si where Ri = all 

Si+l = ai+21 + RiA Si = a21 + A 

The explicit expression for R n - l and Rn -2 (and hence Sn-l) is 

n-l 

[Rn-2 Rn-I] = [On In] L an-k-l 
k=O 

[
0 A] k 

10 

Alternatively, Rn - 1 and R n - 2 may be represented as, 

R n - l = f(A) - fa:X 

R n - 2 = fa: 

where 

Xfa: + fa:X = f(X) - f( -X) 

and the scalar polynomial f( c) is 

n-l 

f(c) = L 
k=O 

k 
an-k-1 C 

(4.56) 

( 4.57) 

(4.58) 

( 4.59) 

(4.60) 

From Chapter 2, the derivative of F(X) is F'(X) and is defined as an operator such 

that (4.60) may be written as, 

F'(X) fa: = f(X) - f( -X) (4.61 ) 

Also if F'(X) is operating on a matrix f(X), then 

F'(X)f(X) = Xf(X) + f(X)X 
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Since f(X) X= Xf(X), 

F'(X)f(X) = 2 f(X)X (4.62) 

From (4.58), 

F'(X) R n - 1 = F'(X) [f(X) - faX] 

= F'(X) f(X) - F'(X) faX 

using (4.61) arid (4.62), 

F'(X) R n - 1 = 2f(X) X - f(X) X + f( -X) X 
(4.63) 

= f(X) X + fe-X) X 

Let F'(X) be non-singular. Multiply both sides of (4.36) by F'(X)-1 and take norms, 

II Rn-ll1 :::; IIF'(X)-111 11 [f(X) + f( -X)] XII ( 4.64) 

similarly 

Therefore the condition of the matrices R is related to the conditioning of the original 

problem (4.55). 
'SiMilar 

Using .terminologyAto that in Section 4.2, we can write 

then 

[~ 

A(k+l) 
21 

A(k+l) 
22 

(4.57) may be written as, 

A] HI [ A(k) A\~)] [0 :] <>. 11 

o . A(k) A(k) I 
21 22 

[ A(k) A(k) A] 12 11 

A(k) A(k) A 
22 21 

A(k) 
22 ·th A(O) - I A(O) - 0 

Wl 22 - , 21-

A(k) A 
- 21 

n-l 

[Rn- 2 Rn-d = L an-k-l [A\~) A~~)l 
o 
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The sequences in (4.65) are alternating between the zero matrix and an increasing 

power of A such that 

and 

jot (¥) 
Rn - 2 :...- L an -(2k+2) Ak = h(A) say 

o 

jot (!!.J-!) 
Rn - 1 = L a n -(2k+I) Ak = f,(A) say 

o 

jnt (-~) 

-L an -2k Ak = h(A) say 
o 

(4.66) 

(4.67) 

( 4.68) 

It is known that the characteristic roots of f,(A) are f,(Ai(A)) where Ai(A) are the 

eigenvalues of A. Since the eigenvalues of A are the square roots of those of X, then for 

singular X the following results hold, 

for some r, 

and for general X, the eigenvalues of Rn - 1 and Sn-l are 

jnt ("; 1 ) 

J.li (Rn-d = L a n -(2k+I) A~ 
k=O 

jnt (-~) 

J.li (Sn-d = L an -2k A~ 
k=O 

where Ai (i = 1, ... , n) are eigenvalues of Q. 

An analysis of the rounding errors from (4.67) reveals, 

Rn-l = If { ~ a n -(2k+I)(1 + ca) Ak} 
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Now, 

then 

t€(.tP) =!€(A2(1 + e)2) = A2(1 + 2e:)(1 + ne:) + 0(0:2
) . 

t€(A3) = A3(1 + 3e:)(1 + 2ne:) + 0(0:2
) 

generally t€(Ak) = Ak(1 + ko:)(1 + (k -1)no:) + 0(0:2
) 

Ak k 2 t€(an -(2k+I)A ) = an-(2k+1) (1 + 6a) A (1 + kc) (1 + (k -1)no:) (1 + 0:) + 0(0: ) 

= an -(2k+1) Ak (1 + 6a)(1 + (k + 1 + kn - n)e:) + 0(0:2
) 

then from Section (1.3.3), the result on extended addition gives 

rl 

A ""' k Rn-I = ~ an-(2k+1) A (1 + 6a) (1 + (k + 1 + kn - n)e:) (1 + (rl + 1 - k)o:) 
o 

IIRn- 1 - Rn-Ill (n + 4). nU(1 + 16a!) ~ k 
IIRn-11l ~ 16al + -2- u(1 + 16a!) + IIRn-11l 7- klan-(2k+dllA U 

IIRn - 1 - Rn-Ill 16 I (n + 4) n2u I 1.IIAnll 
IIRn-11l ~ a + 2 u + IIRn-11l am •• ( 4.69) 

Similarly, for (4.68) 

(4.70) 

These bounds suggest that the error in the computed matrices is of the same order 

as that in the initial data. That is, (4.67) and (4.68) are stable techniques for computing 

R n - l and Sn-l. 
In summary, if ai are the c.c.p of X and the problem of solving (4.55) is well­

conditioned, then R n - l is well-conditioned and the solution of 

R n - 1 X = -Sn - 1 

where Rn - l and Sn-l are accurately computed, is also the solution of (4.55). 
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SECTION 4.5: Applications to Matrix Square Root Equations 

This section describes three Elimination method based techniq':"es for computing the 

square root of a matrix. The discussions consider the conditioning of any interprocess 

problems, the stability of the algorithms and the operations count for each defined task of 

an algorithm. 

Method 1 

This method is similar to that in Section 4.3 for the quadratic matrix equation. The 

algorithmic steps are as follows: 

(i) Select scalars a; (1 = i, ... , n) as initial estimates to the c.c.p of X. 

(ii) Carry out one step of the Elimination method to determine R n - 1 and Sn-l. 

(iii) Solve 

(iv) Compute 
IIF(x(r+I») - F(x(r»)1I 

IIF(X(r»)1I 
If less than some specified tolerance, then the iterations have converged. 

(v) Compute the c.c.p of x(r+l). Go to (ii). 

If Rn _ 1 is singular at any iteration then the Gaussian Elimination method that solves 

the equation in step (iii) will fail. If R n - 1 is ill-conditioned at any iteration then the 

solution provided by Gaussian Elimination will be wholly unreliable. Within a computer 

algorithm, both these possible outcomes should be monitored, and reported on occurrence. 

The discussions in Section 4.3 on a suitable starting point, accuracy of convergence 

cri terion, accumulation of rounding error and convergence of the iterations are applicable 

and valid here with the following modifications: 

The starting point is generated by 

an - (i - 1) + qn';+l 
an-i = 

Q al 

'.1 ~ 
where al = 11111E and q;,j = sign (q;»1I4I1E. 
The bound for the convergence criterion is 

FNORM ::; 2(n + 3)u 

The step-by-step operations count now follows: 

Step 1. n 2 to determine 11 All 
n to determine ai 

Step 2. R n -l and Sn-l are computed simultaneously, using (4.67) and (4.68). The oper-
4 

ations count is ~ + n3 
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Step 3. ~n3 operations are used by the Gaussian Elimination algorithm. 

Step 4. n3 to detennine 

n 2 to detennine 

Step 5. The Wang and Chen method of Chapter 3 requires approximately 6n3 operations. 

4 

The total operations count is around ~ +lOn3 per iteration. The storage requirements 

are 4n2 + n locations. 

The operations count here as compared to that for other algorithms for the matrix 

square problem will, in due course, be shown to be unfavorable. One way to speed up this 

algorithm is as follows: 

From Section lA, there exists an orthogonal matrix H, say, that transfonns a general 

matrix A, to upper Schur fonn. IT A is symmetric then the transfonned form A, is block 

diagonal with Jordan blocks on the diagonal. IT additionally, A has distinct eigenvalues 

then A will be diagonal. In any of these cases we have, 

(4.71) 

so the problem of solving (4.55) is now of solving (4.71) for X, then X = HXH- 1
• The 

operations count for when A is upper Schur and diagonal are now given: 
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Upper Schur Form Diagonal Form 

Form A. 15n3 15n3 

Step 1. n 2 +n n 2 +n 

n4 n 3 n 2 n 3 

Step 2. 
12 +"4+"6 _+n2 

8 

Step 3. 
n2 n -+- n 
2 2 

Step 4. n 3 +n2 2n2 + n-

Step 5. 4n3 3n3 

X = HXH- l 2n3 n 3 +n2 

Total (approx) 17n3 +m - +--(n4 21n
3

) 

. 12 4 16n3 + n 2 + 4n3 m 

where m is the number of iterations for convergence to occur. Clearly this represents a 

major saving in the iterative processing. For small order problems, this saving is offset by 

the large amount of work required to transform A to A but for large order problems, the 

saving may prove to be significant. 

Method 2. 

The roots of a polynomial are very sensitive to small changes in the coefficients of the 

polynomial, but the reverse is generally well-conditioned. 

Let the characteristic polynomial of X be 

(4.72) 

and if AI, A2, . .. , An are the roots of f( A) i.e. the eigenvalues of X, then (4.72) may be 

factored as 

(4.73) 

Equating coefficients in powers of A in (4.72) and (4.73) yields expressions which relate 

the coefficients aj in terms of the elementary symmetric functions of the eigenvalues. The 

m'h elementary symmetric function is the sum E of the n eigenvalues AI, A2, ... An taken 

m at a time so that E has n(m) terms where [Turnbull] 

(
n) n! 

n(m) = m = m!(n - m)! (4.74) 

The m'h coefficient is given by 
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n-(m-l) n 

L (4.75) 

.~, . 

Let J.Li be the eigenvalues of A and Ai the eigenvalues of X. Then since 

and X 2 = A, we have that the eigenvalues of X are the square roots of the eigenvalues of 

A. 

(4.76) 

The choice of signs determines the definiteness of X. If a matrix X with eigenvalues 

{AI, A2, ... An} is a square root of A then so is Xl = -X with eigenvalues {AI, A2, ... An}. 

If each distinct set {AI, A2, ... An} represents a distinct solution X then there are 2n 

possible solutions corresponding to 2n possible combinations of n positive and negative 

signs in (4.76). 

The observations above lead to the following algorithm for computing a square root 

of A. 

(i) Compute the eigenvalues of A say J.LI, J.L2,··· J.Ln. 

(ii) Determine the square roots .of J.Li and denote as Ai(i - 1,n). These are the 

eigenvalues of X. 

(iii) Compute the coefficients ai, the c.c.p. of X from (4.75). 

(iv) Use the Elimination method to compute X. 

Error Analysis 

From Section 1.4, we have that if a general square matrix A is perturbed by a matrix 

E of order c then an eigenvalue J.Lk may be perturbed by an amount c/Sk where 

Sk = lyTxl I.e. liLk - J.Lkl ~ K£ (4.77) 
. Sk 

and 

Ax = J.LX yT A _ J.LyT 

with x, y normalised such that IIxl12 = lIyll2 = 1. The QR algorithm that is used to compute 

the eigenvalues does not generate errors that are not present in the original data, so that 

the errors in the computed eigenvalues at step 1 are bound~d by (4.77). 

At step 3, the coefficients are computed from (4.75). The results from Section 1.3 on 

the rounding errors analysis of extended addition and subtraction are used here. 
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Similarly, 

and generally, 

RI 
= ~I (1 + e)"I- 1 + L ~. (1 + e)Rl-'+1 

;=2 

nt nt 

= a. + L 6A. + L i A. e - Ale 
;=1 ;=1 

RI 
lih - all ::; u L 

;=1 

1 R, 
- + (nl -1) U L 
Si ;=1 

LL I(A~ + Ai)1 + 
.. 5 J SI 
I 1 

n2u L L IA.Ail 
i 

= u(nmCl' + (nm + m - 2),8) 
wh~ 

Hence 
()( = m max m.1 ) {3: ~ ... } 1,1.;1)., .... '\;_1 

'min (5K) t, T,.. . a 

I ii m - a m I < u -'-( n...:.:m,-,,(_Cl'_+....:.,8,",")_+.,....(,....m_-_2.:.:-),8 
laml - laml 

(4.78) 

(4.79) 

This bound suggests that if the eigenvalues of the matrix A ¥'e ill-conditioned, then 

the computed coefficients may be at least as large as the error in the most ill-conditioned 

eigenvalue multiplied by nmu. The existence of nm on its own may lead to significant errors 

in the computed values, for large n. To give some idea of the sizes involved we give some 

values of nm for varying n. The term nm has a greatest value at m = int (n; 1) . 
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11 nm unm u ~ 10-18 

10 252 10-15 

20 184756 10-13 

30 1.6 X 108 10-16 

40 1.4 X 1011 10-7 

50 1.2 X 1014 10-4 

It is evident that as n increases by 10, the accuracy of the coefficient diminishes by a 

factor of 10-3 • 

At step 4 of the Elimination method, the computed coefficients are used to build a 

solution. From the previous section we observed how the accuracy of Rn-I, Sn-I and 

hence X is dependant on the accuracy of the coefficients. Therefore, we can say that this 

method will produce an accurate solution to a low order matrix square root problem that 

has a well-conditioned eigenvalue problem. 

Now let us examine the operations count and storage requirements for this method. 

The storage locations needed is 4n2 + 2n. 

The operations count for each step is: 

(i) 16n3 to compute the eigenvalues 

(ii) n to compute the roots of the eigenvalues 

(iii) to compute each coefficient requires nm * (m - 1) operations 

sum 
n , 

_ " (m -1) n. 
~ m!(n-m)! 
m=l 

4 

(iv) ~ + n 3 for the Elimination method 

n , 

Total ~ L (m - 1) '( n~ )' + n 4 + 16n
3 + 0(n

2
) 

m. n m. 
m=l 

The factorial term in the total suggests that this method is unsatisfactory for large 

order problems. 

Method 3 

Let the characteristic polynomial of X be 

( 4.80) 

and that of A be 

117 



f(p) == pn + C1pn-1 + ... + Cn = lA - pII 

Now since X 2 = A it follows that 

lA - w 2 II = IX2 - w 2 II = IX - wII IX + wII (4.81 ) 

or 

( n n-I + n-2 + + ) = w +alw a2W ... an-l w+an ( 4.82) 

( n n-I + n-2 ( l)n ) * w - al w a2W + ... + - an 

All the coefficients in odd powers of w vanish on the right hand side of (4.82) giving, 

Comparing coefficients of w in (4.83) gives: 

Generally 

Cn = (_l)na! 

2i 

Ci = 2 L (_1)2i-k a2i-k ak + (_l)i-1 a; 

k=i 

with ao = Co = 1 and i = 1, ... ,n 

( 4.83) 

(4.84) 

(4.84) is in fact a relationship between the c.c.p of A and the c.c.p of X, giving rise to a 

system of n non-linear equations in n unknowns. 

This relationship yields the following algorithm for computing the square root X of a 

matrix A: 

(i) compute the c.c.p of A 

(ii) solve (4.84) for the unknowns ai, i = 1, ... , n 
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(iii) use the Elimination method to determine X. 

The problem of determining the adrom (4.84) is equivalent to one of finding the zeros 

of, 

2i 

fi(a) = Ci - 2 L (_1)2i-k a2i_kak + (_1)ia~ ( 4.85) 
k=i 

Newton's method for non-linear equations may be used to determine the zeros. However, 

the convergence is not global. A global strategy of Section 1.5 uses a combination of 

Newton and Gauss-Newton iterations to determine an unconstrained minimisation of fe, 

where 

The update is given by 

where 

JT J p(k) = _JT f(k), Gauss - Newton iteration (4.86) 

or 

H p(k) = _JT f, Newton iteration 

where J and H are the Jacobian and Hessian respectively, of the function fe at a(k). 

Notice that (4.86) is equivalent to 

Using (4.85), we have that 

J= of; =2 
oaj 

al 

aJ 

a5 

o 
o 

-1 

-a2 

-a4 

and from (1.27), H = JT J + Z, where 

( 4.87) 

0 0 0 

al -1 0 

aJ -a2 0 
(4.88) 

( _l)n-l an_2 

0 ( _1)n-l an 
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11 0 12 0 

0 -12 0 -13 
n 

li (p f; 12 0 13 Z=L =2 (4.89) 
i=l 

8ak 8aj 
0 -13 

(_1)n-1 In 
A couple of interesting points arise out of these expressions. Firstly, if the solution X 

of the matrix square root problem is singular then its derivative F'(X) is singular, since 

a~ = 0, and consequently the Jacobian in (4.88) is singular at the root. 'Therefore the 

addition of a scalar matrix to JT J, as described in section 1.5, is necessary. 

Secondly, the argument put forward in Section (1.5) implying that the local conver­

gence of the iterates would not be greatly affected if the Gauss-Newton iteration is used 

rather than the Newton certainly stands up here owing to the smallness of Z, locally. From 

an operations count point of view, this is clearly preferable. 

Algorithmically, (4.88) may be represented as 

and 
n 

(gj) = JT 1= L Jijf; 
i=l 

Let 
n 

JT J = U = (Uij) -, L hi 
k=1 

Since some of the operations in forming U are redundant due to the number of zeros 

in J, an efficient way to express U is 

i, 

Uij = 4 L a2k-i a2k_j 
k=io 

where j = 1, nand i = i o, i1 with io = int 

where int represents the integer part. 

Similarly 

(
j + 1) d' 1 . -2- an z+ =mt 

i, 

gj = L 2a2i-jli 
i=io 

and 
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.) -

fHj 

2 
when i + j is even 

z 
.. _ {(_1)i+ 1 

o when i + j is odd 

We may determine the operation count in determining JT J, JT f and H. 
n i1 11 

Total (for JT J) = L L L 1 
j=1 ;=10 k=io 

n i1 

- L L (il + 1- io) 
;=1 i=lo 

and since io, i 1 are independent of i 

n 

;,. L (id 1 - i o? 
j=l 

n 

= L (i~ + i~ - 2ioil + 2il - 2io + 1) 
j=l 

Ft Ii . j + 1 d' n + io . om ear er, put to = -2- an tl = 2 ' to gtve 

n 

Total - L 
j=l 

Using the identities from Chapter 1 concerning the summation of series we have, 

1 1 
total = 6n3+2n2+0(n) 

To compute JT f and Z it is necessary to determine fi for i = 1, ... , n. 

fi may more usefully be expressed as, 

2i 

fi = Ci - L (_1)2i-k a2i-kak + (_I)ia; 
k=i 

so that the number of operations required to determine the fi is given by, 

n 

L (2(2i + 1 - i) + 2) 
1=1 

n 

=4n+2 L i=n2+5n 
i=1 

n i1 7 
To determine JT f requires L L 3 + n2 + 5n = - n2 + 7n operations. 

;=1 l=io 4 
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Since it requires one operation to detennine the sign of a scalar, the operations count 

in detennining the signs of the elements of the matrix Z is n; + O(n), so that overall, to 

compute the Hessian once requires about 

~ n3 + 2n2 operations 

The Choleski decomposition method is used to solve the linear system with an oper­
n 3 

ations count of 6' 
Overall, the Newton iterates require 

----
operations per iteration. Cl is the number of function calls and C2 = 1 if the Hessian is 

required, otherwise O. 

An estimate for the operations count at each step of the square root algorithm is, 

(i) 6n3 to compute the c.c.p of A 

(ii) (

n3 n2 ) 3" + 2 (4 + 2Cl + C2) m, m is the total number of iterations 

(iii) 
n4 

2 + n 3 to compute X from the. Elimination method. 

Step (ii) exhibits all the usual convergence and stability properties of the Newton 

method, as described in Section 1.5. The known constants Ci, the inputs to the Newton 

iterations, are computed accurately at step (i) using the Block Frobenius method (or 

alternatively the Stable Le Verriers method). The ai detennined by the Newton iterations 

will usually be accurate since the tenninating condition is that the norm of the gradient 

vector be less than some specified small tolerance value. Consequently, provided that 

the matrix R n - l in the Elimination method is well-conditioned at the root, step(iii) will 

determine an accurate solution for the matrix square root problem .. 
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CHAPTER 5: CURRENT METHODS FOR QUADRATIC MATRIX 

EQUATIONS 

This chapter summarily describes some of the more widely used methods for solving 

the matrix equations of interest. For each type of matrix equation, numerical methods are 

discussed with respect to their efficiency, stability and accuracy of solution. At the end 

of each section, a brief comparison of the operations count and algorithmic features of the 

methods is given. Notice that these comparisons are only relative. Consequently, it would 

be useful to have some absolute point of reference with which the efficiency of the methods 

can be compared with. Therefore, we discuss a globally convergent variant of the 'worst' 

possible algorithm where the matrix equation of order n, say, is redefined as a system of 

n 2 non-linear equations in the n 2 unknown elements of the solution matrix and solved by 

minimisation. It may be that for certain problems, no method can provide a solution in 

which case this variant of the 'worst algorithm' would be the only alternative. 

We begin by identifying the classes of methods that have been used to solve the matrix 

equations. 
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SECTION 5.1: Introduction 

There have been greater advances towards the solutions of the Algebraic Riccati Equa­

tions than the monic unilateral quadratic matrix equation. This not surprising since the 

ARE arises more frequently in applications where information on the coefficient matrices 

and on the solution matrix is known beforehand. This is in contrast to the unilateral 

equation where usually nothing is known about the matrices. Clearly, when P = 0, we 

have the matrix square root problem for which a large amount of theory is available. 

The currently available practical methods for solving the ARE fall into two groups, 

there is a possible third group which we will discuss later. These are iterative methods 

and those that are based on the determination of the invariant subspace of the associated 

Hamiltonian matrix, sometimes referred to as doubling algorithms. The classical method 

based on successive Newton iterations involving an induced Lyapunov equation is still the 

best iterative method available, and is the only one of that type to be considered here. 

As a consequence of advances in numerical analysis and in the production of more reliable 

and accurate numerical techniques, this Newton's method is continually being tuned to 

improve performance and stability [HammarlingJ. 

In a similar way, the broader principles of the eigenvector method still form the basis 

of new methods. With the emergence of numerically stable and efficient algorithms, like 

the QR algorithm, variants of the eigenvector approach have arisen, particularly the Schur 

vectors approach. A recent method uses the properties of the Hamiltonian matrix, common 

to both the eigenvector method and the Schur vectors approach, to derive a variant of the 

QR algorithm for determining the Schur vectors. 

The matrix sign function was originally designed for control problems and forms the 

basis of a family of algorithms for solving a variety of invariant subspace related problems. 

With respect to the ARE, the matrix sign function gives rise to a matrix X that is close to 

the solution of the ARE. X is not close enough to be considered as an accurate solution, 

hence iterative refinement in the form of Newton's method takel ~lace. In this sense, 

this method, as mentioned earlier, may be thought of as belonging to a different class 

of methods, that combine the properties of both the invariant subspace and iterative 

approaches. 

However, analysis of matrix sign function algorithms has shown them to be numerically 

stable only for a small class of matrices. This includes symmetric matrices and a recent 

method shows how non-symmetric matrix inversions in the matrix sign function based 

methods for the ARE can be changed into symmetric matrix inversions. 

From the theoretical point of view there have been a number of proposed approaches 

to solving the unilateral quadratic matrix equation but those taking numerical aspects into 

consideration have been far fewer, due to the arbitrary nature of the coefficient and solution 

matrices. The two methods discussed in this chapter are the Newton Iterations method 
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and a generalisation of a scalar polynomial algorithm, the Matrix Polynomial algorithm. 

The convergence conditions for the iterative "method" are extensions of thfs~ of Newton's 

method for the scalar case. To our knowledge there does not exist any stability analysis of 

the Matrix Polynomial algorithm and as such we develop a relationship between the norm 

of the inverse of the derivative operator introduced in Section 2.1 and the stability of the 

algorithm. 

A number of methods for computing the square root of a matrix have been proposed, 

some for general problems and others for specific problems. Specific types include those 

that are real, symmetric, positive definite, of small order etc. For all problems, advances 

in numerical mathematics have lead to improved algorithms, the more successful ones 

being based on Newton's method either directly or via the sign function and Schur vector 

factorisations. We discuss these along with some algorithms for special problems. 
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SECTION 5.2: Methods For The Algebraic Ricatti Equation 

Of interest here is the non-negative symmetric solution of the equation 

ATK+KA-KGK+H=O (5.1) 

where all matrices are square, of order n with H = HT positive semi-definite and G positive "1 
definite. 

5.2.1 Eigenvector Method 

This meth~d [Potter] is based on the eigenvalue-eigenvector analysis of a 2n partitioned 

matrix M, given by 

M= [~:]. 
Suppose K, the solution of (5.1) is such that 

C=GK-A (5.2) 

From (5.1) 

(5.3) 

Let S transform C into its Jordan canonical form J, 

(5.4) 

and let 

R=KS. (5.5) 

Using (5.2)-(5.5) to eliminate C and K yields 

SJ = GR-AS 

(5.6) 

In (5.6) J must be diagonal for if at, a2, ... an are the columns of [;] and J is not 

a diagonal matrix, then for some k 
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0= (M - >.I)ak 

and 

where ak is an eigenvector of M corresponding to the eigenvalue >.. If M is assumed to 

possess a diagonal Jordan canonical form then its minimal polynomial is a product of 

distinct linear factors, 

Now 

and since >. ~ >'i for i = 1, . .. ,p we conclude that ak = O. But this is impossible since S 

is non-singular. It follows from the fact that J is diagonal that aI, ... , an are eigenvectors 

of M and the solution [{ is given by (5.5). 

The following theorems, due to Potter, concern the symmetry and definiteness of the 

solution K. _ 

If a is an eigenvector of M of dimension 2n then let a = [:] where b and c are 

n-vectors . 

. Theorem 

If H and G are hermitian, al ... an are eigenvectors of M corresponding to eigenvalues 

>'1, >'2, ... , >'n and >'i ~ >'i (* denotes the complex conjugate) for 1 ::; i, j ::; n, and if 

[et, ... , cnl is non-singular, then 

[bl , ... , bnl [Cl, ... , cnl- l is hermitian. 

Theorem 

Let H, G be positive semi-definite hermitian and al, ... , an be eigenvectors of M 

corresponding to eigenvalues >'1, ... , >'n, then 

(a) if H or G is non-singular and 

x = [bl , ... , bnl [cl, ... , enr l is positive definite 

then >'1, ... , >'n have positive real parts 
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(b) if >'1, ... , >'n . have positive real parts and [cl, ... , cnJ is non-singular then 

[bl , ... , bnJ [et, ... , CnJ -1 is positive semi-definite. 

Here is a sequence of steps wlllch would effect the eigenvector method, along with the 

operations count. 

1. Compute the upper Hessenberg fonn of M such that 

UlMUo = H, 

The operations count is ~ (2n)3. 

M, Uo, H E R2nx2n 

2.. Compute the Schur fonn of M from the upper Hessenberg form, without accu­

mulating transfonnations, to determine the eigenvalues of M. Operations count 

is about 8(2n)3. 

3. For each eigenvalue >'i satisfying Re (>'i) > 0, apply the following algorithm 

(inverse iteration): 

Fork=1,2, ... 
Solve (H - >'i1) z~k)= zlk-l) 

(k) 

N al· (k) Zi 
orm Ise: Zi = -"';(k7)-

IIzi 1100 
with zlO) as the unit vector. 

A suitable stopping criteria might be to quit when the residual 

is such that 

where C is of order unity. 

The operations count is about k(2n)2 per eigenvalue = 4kn3 . From experience, 

it is found that an average of 3 iterations is required. 

4. Set ai =UOZi, i=1, ... ,n, aiER2n . 

If [al,a2, ... a nJ = [~] where B, C E R nxn and B = [b l ,b2, •.. ,bnJ and 

C = [cl, C2 ••• , cn], then the solution of (5.1) is given by X where 

XC=B 

The operation count for this step is 

3 4 3· 16 3 
4n +"3 n = 3" n 
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The operation count for the entire process is about lOOn3 + O(n2 ). The storage re­

quirements are 10n2 storage locations. 

From section 1.4, the methods for determining the Hessenberg form and the Schur form 

of a matrix are stable and accurate. Similarly, the methods for determining the eigenvectors 

of a matrix and for solving a linear system are also stable. However, the problem of 

determining the eigenvectors is dependent on the conditioning of those eigenvalues of M 

having Re (A) > O. If these eigenvalues are ill-conditioned, then the problem of determining 

the eigenvectors is also ill-conditioned and the overall method is considered as unstable. 

Having said this, in applications which require the solution of the ARE, the solution is 

sYmmetric and the eigenvalues are usually well-conditioned [Hewer & Nazaroff]. 

5.2.2 Schur Vectors Method 

In this method [Laub], it is assumed that (A, B)is a stabilizable pair [Wonham], where 

BBT = G with Rank (B) = Rank (G), and (C,A) is a detectable pair [Wonham], where 

CTC = H with rank (C) = rank (H). 

The method uses a set of Schur vectors to solve (5.1) for the unique non-negative 

definite solution. 

Consider the Hamiltonian matrix 

Z=[AT H] 
G -A 

where the above assumptions guarantee that Z has no pure imaginary values. There exists 

an orthogonal transformation, U E R 2n
)(2n which puts Z into real Schur form 

T [Sl1 U ZU= 
o 

S12] , 
S22 

Moreover, it is possible to arrange that the real parts of the spectrum of Sl1 are nega­

tive while the real parts of the spectrum of S22 are positive. U is conformably partitioned 

into four n x n blocks, 

[

Ul1 
U= 

U21 

The first n-vectors of U are the Schur vectors corresponding to the spectrum of Sl1. 

Theorem 

Ul1 is invertible and X = U2 1Uil 1 solves (5.1) with X = XT positive definite. 

Proof 

See [Laub]. 
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The steps involved in the implementation of this method along with the respective 

operation counts are as follows, 

1. Reduce Z to Upper Hessenberg form, using Householder reductions. The opera­

tions count is ~ (2n)3 bearing in mind that Z is 2n x 2n. 

2. Reduce the Upper Hessenberg form to Upper Real Schur form. 

Order the blocks on the diagonal of the Schur matrix such that the eigenvalues 

appear in descending order of magnitude along the diagonal. 

The ordering can be incorporated into the QR algorithm [Stewart, 2], requiring 

8(2ri)3 + O(n2 ) operations. 

3. Solve 

for X 

Gaussian Elimination with partial pivoting uses ~ n 3 operations to solve this 

matrix equation. 

An overall estimate for the entire process is 75n3 operations. 

With respect to storage considerations, the algorithm requires 8n2 storage loca­

tions. 

A recent analysis [Petkov, Christov & Konstantinov] shows that in some cases this 

method is numerically unstable, as reflected by the following theorem. 

Theorem 

Define the separation between two matrices M and N say, by 

Then if 

and 

sep (M,N) = min {liMY - YNIIE} 
11Y1I=l 

2 1 2 
Cl ullZII (1 + Cl u) ::; 4 6-

then the solution of (5.1) using the Schur approach satisfies 

IIX - XII ( 1) IIXII ::; 2ClU 1 + IIXII (211AII + IIHII + IIGII) 

where Ct, C2 are small constants, u is machine precision and cond (Ul1 ) is the condition of 

Ul1 . 
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This bound suggests that the error in the computed solution X will be very large if 

the computed matrix X,H' is ill-conditioned, or if 110;,111 is very large. 

5.2.3 Harniltonian-Schur Decomposition 

This approach [Byers, 5] differs from the Schur Decomposition of Section 5.2.2 in the 

way it takes advantage of the Hamiltonian structure of the matrix Z. 

A matrix Z is Hamiltonian if 

and symplectic if 

where 

J = [On . In] 
-In On 

The approach in Section 5.2.2 computes the invariant subspace by using the QR algo­

rithm, which does not make use of the Hamiltonian structure of Z. The symmetric solution 

matrix X is then ~btained from the product of two non-symmetric matrices U21 and U1-;1. 

The Hamiltonian-Schur approach computes the invariant subspace using similarity trans­

formations with symplectic matrices, which preserve the Hamiltonian structure of Z and 

maintains the symmetry of an approximate solution X at each step of the variant QR 

algorithm [Byers, Mehrmann]. 

Details of the algorithmic and analytical aspects of this method are given in [Byers, 5] 

where it is shown to be numerically stable. Test examples indicate .that this method is faster 

than the method in Section 5.2.2 with less storage requirements and a smaller operations 

count. Unfortunately, this method is not a general one in the sense that it is limited to 

solving those ARE's arising from a single input control system, i.e. Rank (G) = 1) wnU\ 
G i~ S!:I""",etric: and "f'OS'ttlVe. se;m;, -defin\t:e. 

5.2.4 Newton's Method 

This method [Kleinman] is a monotically convergent iterative technique based on the 

method of successive substitutions. 

Remember from Chapter 1, that the optimal control that minimises the quadratic 

cost functional 

is given by 
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R -1BT K· u. = - . x. 

Now suppose that· 

UL(X(t)) = -Lx(t) 

IS an arbitrary feedback law. If this is applied to the system 

:i: = Ax + Bu (5.7) 

. the resulting cost functional is 

. where VL is defined as the cost matrix associated with the feedback gains L. Note that the 

cost matrix associated with the optimal 

The cost matrix is given by 

V
L 

= lOO e(A-BL)T1 (H +LTRL)e(A-BL)1 dt 
lo 

VL is finite if and only if the closed-loop system matrix A - BL has eigenvalues with 

negative real parts. In this case VL is the unique positive definite solution of the linear 

equation 

0= (A - !3LlV + V(A - BL) + H + LTRL. 

The method for solving (5.1) is embodied in the following theorem. 

Theorem 

Let Vk , k =0,1, ... be the unique positive definite solution of the linear algebraic 

equation 

(5.8) 

where 

(5.9) 
Ak = A-BLk fork=I,2 ... 
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and where Lo is chosen such that the matrix Ao = A - BLo has eigenvalues with negative 

real parts. Then 

1 L~ 5, Vk+I 5, Vk 5, .,. k = 0,1, ... 

f 2 lim Vk -,'R It\ 
k->oo \Y' 

Proof 

See [KleinmanJ. 

Since the system (5,7) is completely controllable it is always possible to choose an L 

such that Real {Ai(Ao)} < O. 

It is necessary for Real {Ai(Ao)} < 0 to insure the boundedness of the cost matrix Vo, 

otherwise the iterations may converge to an indefinite solution of (5,1), if they converge 

at all. The iterative scheme embodied in (5.8) is precisely that which is obtained by 

applying Newton's method to solve (5.1), however Newton's method alone will not provide 

conditions that will insure monotonic convergence. 

In addition to being monotonically convergent, the iterates Vk are also quadratically 

convergent, 

The first step in the computation of the solution of (5,1) is to determine a matrix Lo 

such that Ao is positive definite, The following theorem provides a constructive solution 

[ArmstrongJ. 

Theorem 

Let (A, C) be stabilizable. Then 

'I 
D = CTZ+, with CCT -9 G-

is a stabilizing gain matrix where Z = ZT ~ 0 satisfies 

(A + f3In)Z + Z(A + f3In )T = 2CCT (5,10) 

with 0 5, f3 5, IIAII 

The superscript + denotes the matrix pseudoinverse used to accommodate the inverse 

and solution of non-square systems. It is defined as 

The most efficient method, currently, for implementing the above theorem uses Schur 

reductions [SimaJ and may be summarised as follows: 

Let U be an orthogonal matrix such that UT AU is in Real Schur,form. Denote 

- T - T - T - - -T A = U AU, Z = U ZU, C = U C, W = CC 
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Premultiplying (5.10) by UT and U respectively, gives the following reduced Lyapunov 

matrix equation, 

with 

For m ::; n an approximation for the operations count in determining a D by this 

method is 16n3 • The locations required for storage are 5n2 . 

The next stage is to solve (5.8) and compute (5.9) repeatedly until convergence. The 

first is effected as shown in Section 1.4, by an orthogonal reduction of Ak to its Schur form 

using the QR algorithm and then back substituting to solve the transformed system and 

hence to find Vk. The operation count for this process is approximately 20n3 + O(n) and 

the storage requirements are 5n2
• 

Computing (5.9) involves 5n3 operations and requires 6n2 memory locations. 

Therefore, to solve (5.1) by a Newton method requires 9n2 memory locations, since 

some may be shared, and (16 + 25m)n3 operations, where m is the number of iterations 

needed for (5.8) to converge. 

[Hammarling] provides a detailed study of Newton's method and suggests how it may 

be used to find the Choleski factor of X without first finding X. 

With respect to·the stability of the method, the accuracy of the computed solution is 

limited by the conditioning of the original problem and the precision for the mathematical 

operations. Also, since by definition the algorithm is iteratively self-refining it is considered 

to be stable. 

5.2.5 The Matrix Sign Function 

A scalar sign function is defined as 

{ 
+ 1 if Real (Ai) > 0 

f(Ai) = sign (Ai) = 
- 1 if Real (Ai) < 0 

The corresponding matrix sign function of a matrix Z say, is then 

sign (Z) = M sign (J)M-1 

where J is the Jordan Canonical form of Z and M is the matrix of eigenvectors for the 

eigenvalues of J. J is such that J = diag (JI, h, ... Jk) and Ji are the Jordan blocks for 

the eigenvalues Ai of Z. If Ai is a distinct non-repeated eigenvalue then Ji = Ai, a. scalar. 

If Ai is repeated r times and there is only one independent eigenvector for Ai, then Ji is of 
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dimension r X r with Ai'S on the diagonal and l's on the superdiagonal. The number of Ji 

blocks in Jis equal to the number of elementary divisors of AI - Z, [GantmacherJ. Now, 

sign (J) = diag (sign (J1), ... ,sign (Jk)) and sign (Ji) is diagonal [Denman & BeaverJ. 

[RobertsJ shows that the sign function of a matrix can be defined in terms of a contour 

integral or as a result of an iterated map 

1 -I 
SrH = "2 (Sr + Sr ) with So = Z, say (5.11) 

The connection between the sign function. and the ARE is given in the following 

analysis [Byers, 4J. 

Now (5.1) is equivalent to [PotterJ, 

Z = [AT H] = [X 
G -A In 

-In] [-(A-GX) -G T] 
On On (A-GX) 

Applying the matrix sign function to this equation, and observing that 

Ai(A - FX) < 0, 

sign (Z) = W = [
Wl1 

W 21 

Since Z and sign (Z) commute, T satisfies the Lyapunov equation 

(A - GX)T+ T(A - GXf = 2G 

Subtracting hn from both sides of (5.12) and multiplying out gives, 

or 

MX=-N, M,NEIR2nxn 

(5.12) 

(5.13) 

This is a full-rank, consistent system of 2n2 equations in the n 2 unknowns Xij and 

solved by using least squares QR factorisation [Lawson & HansonJ. The solution to (5.13) 

is then also the solution of the Algebraic Riccati Equation. 

Clearly, it is necessary to devise a numerically efficient and stable technique for de­

termining an accurate sign function of the Hamiltonian and many convergent algorithms 

have been proposed, [RobertsJ, [BalzerJ, [AndersonJ. A stability analysis for the matrix 

sign function reveals that all these algorithms are not numerically stable since they work 
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'" with a matrix that does not satisfy certain criteril"'J1 [Byers, 3]. However, the matrix 

sign function is stable for symmetric matrices but few others. [Byers, 4] shows that by a 

simple reorganisation, the non-symmetric matrix may be changed into symmetric matrix 

inversions giving the following convergent iteration for sign (Z) = W, 

w(O) = Z 

T(k) = W(k) I det(W(k) Win 
(5.14) 

W(k-l) = T(k) _ [T(k) - (~T(k»)-l J] 

where 

J = [On In] 
-In On 

Since the desired solution X of (5.1) is symmetric, replace the solution X computed 

from (5.13) by (X + XT)/2. 

The problem of choosing a suitable stopping point for the iterations (5.14) is a non­

trivial one and it has been observed that proposed criteria stop the iteration too early or 

too late and rounding errors may even prevent the criteria from being satisfied at all. For 

this reason, iterative refinement of the computed solution X is very necessary. Let 

If P = pT E lRnxn and P satiSfies the ARE [Bierman], 

R+(A- GXfp+P(A - GX) - PGP = 0 (5.15) 

then X = X + P satisfies (5.1). Newton's method is used to solve (5.15) and rounding 

errors will yield a matrix P, an approximation to P so that tills refinement step may need 

repeating iteratively until convergence to within the specified tolerance is reached. 

Therefore, the sign function method can be considered to be in a class of its own in 

that it combines the properties of both the invariant subspace determining methods and 

Newton's method. In fact, the iterates (5.14) in conjunction with (5.13) may be regarded 

simply as a way to obtain a good initial guess for Newton's method. 

Analysis and test examples [Byers, 4] suggest that this sign function method with 

iterative refinement is a stable method for detennining the solution of (5.1) and compares 

favorably with the Schur vector method with respect to work, storage and accuracy. 
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5.2.6 Discussion 

We stated earlier that the Eigenvector method and the Schur vectors approach are 

unstable in that ill-conditioned eigenvalues may contaminate the solution computed by 

the Eigenvector method and an ill-conditioned matrix Ull will do likewise for the Schur 

vectors approach. However in practice, the eigenvalues of the Hamiltonian matrix arising 

in applications are generally well-conditioned [Hewer & Nazaroff]' and in the very rare case 

that the matrix Ull is ill-conditioned, this condition can be detected and an alternative 

method used. This statement is backed up by the fact that the Eigenvector method and 

the Schur vectors method have been used extensively in real applications. 

By definition, any problem that is solved by the eigenvector method can be solved 

more efficiently by the Schur vectors approach. Additionally, if the problem arises from 

a single input control system, the Hamiltonian-Schur approach would prove to be more 

efficient. 

Newton's method is stable, yields a very accurate solution and is guaranteed to con­

verge. A ,disadvantage of the method is that it requires more work than any of the methods 

above and in particular if the eigenvalues of the starting matrix are such that A;(A - BLo) 

are near zero then convergence will initially be slow. 

The formulation of the sign function method discussed here is a very recent approach 

and all indications are that it compares favorably with the Schur vectors approach. 
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SECTION 5.3: The Unilateral Quadratic Matrix Equation 

Of interest here is the solution of the equation 

X2 +PX+Q =0 

where all matrices are square and of order n. 

5.3.1 Newton Iteration Method 

(5.16) 

This approach [Davis, 1J is based on the application of Newton's method to the matrix 

function F(X), 

F(X) = X 2 + P X + Q 

After choosing an initial guess Xo, successive iterates are generated by the formula 

i = 0,1,2, ... (5.17) 

where Ti solves 

F'(X)Ti = F(Xi) (5.18) 

Now, the derivative of F(X) is an operator and given by 

F'(X)H = (X +P)H +HX 

such that (5.18) becomes 

(Xi + P)Ti + TiXi = F(Xi) i = 0,1,2, ... (5.19) 

The steps of the algorithm with their respective operations count are now glVen 

[Davis, 2J. 

1. Choose a starting matrix Xo, [Davis, 2J proposes 

2. Compute 
F(Xi) = xl + PXi + Q 

= (Xi + P)Xi + Q 

This involves n3 operations. 
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3. Solve (5.19) for Ti. We showed in Section 1.4 that this may be achieved by a 

Hessenberg-Schur [Golub, Nash & Van Loan] approach which uses 20n3 opera­

tions. 

4. Generate Xi+l from the formula (5.17). Goto 2. until convergence. 

The process is terminated when IIF(Xi)lI, for some appropriate norm, is less than 

some specified tolerance. 

The total operations count is 21kn3 + O(n2 ) where k is the number of iterations, and 

the storage requirements are 5n2 storage locations. 

An error analysis of this method [Davis, 1] reveals that the algorithm does not in­

troduce any errors that are not inherent in the problem itself. That is, the method is 

stable. Therefore, for a well-conditioned problem (5.16), this Newton method provides a 

solution whose accuracy is limited only by the condition of the original problem and by 

the precision of the arithmetic operations involved. 

The method does have shortcomings however, in that it is not known beforehand if the 

starting matrix will yield a convergent sequence of iterates and if the Newton correction 

Ti is large then iterates will converge very slowly, if at all. [Kratz & Stickel] discuss the 

convergence properties of these Newton iterates. Also, in the course of the iterations a 

singular or ill-conditioned derivative will make the problem in (5.18) unstable. [Davis, 1] 

carried out experimental examples using constant well-conditioned derivative F'(Xo) only 

to find that this approach is unreliable. 

5.3.2 Matrix Polynomial Algorithms 

This method [Dennis, Traub & Weber, 2] is a generalisation of an algorithm for scalar 

polynomials [Traub]. The algorithm is designed to determine a dominant solution of (5.16). 

A matrix A dominates a matrix B if all the eigenvalues of A are greater, in modulus, 

than those of B. IT the solution SI dominates S2 then SI is said to be a dominant solution. 

The algorithm fails if no dominant solution exists. 

The algorithm is in two stages: 

Stage 1: 

T (O) (0 . 
Let 1 = I and T2 = 0 then for l = 0,1, ... ,e - 1 for some e 

Stage 2: 

Let 

T(i+l) 
1 

T.(i+l) 
2 

_ T(i) 
- 2 
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- 1 

-Tfi)Q 
(5.20) 

(5.21) 



and generate X k+I by 

(5.22) 

This algorithm is globally convergent in the sense that if f is sufficiently large and 

F(X) is such that 

(i) it has solutions SI, 52 

(ii) SI is a dominant solution 

(iii) 152 - 5111 0 and 152110 

then the iterates of Stage 2 are globally convergent to a solution of (5.16) . 

.. The operations count for Stage 1 is 2fn3 and for Stage 2, ~n3 + 13
0 kn3 making a total 

of about (2lt3IOk
) n3 operations where f and k are the number of iterations for the first 

and second stages respectively. The storage requirements are 6n2 storage locations. 

To our knowledge there is no documented analysis what follows for the Matrix Poly­

nomial algorithm so that this is an original critique of the method. 

The expressions in (5.20) may be transposed and written as 

T.(i+ I ) _ QT.(i) 
2 - - I 

Tfi+l) = T~i) - PT}i) 
(5.23) 

where the matrices are understood to be the transposes of those in (5.20). (5.23) may be 

represented as 

_ [0 -Q] [TJ.l] 
I -P T(') 

I 

or 

(5.24) 

where A is the companion matrix of the quadratic eigenvalue problem associated with 

(5.16). Corresponding to the requirements in (5.21) for the transposed equation, we have 

or 

T (l-l) X - T(l) 
I 0 - I (5.25) 

From (5.25) 
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Partition Alas 

then from (5.27) and (5.23) 

and 

A(l) _ T.(l) _ Q T.(l-I) 
12 - 2 - - 1 

A(l) _ T.(l) 
22 - 1 

(5.26) 

(5.27) 

(5.28) 

We would like to find expressions for the Ai; in (5.26) and we progress in a similar way to 

the analysis of the Elimination method in Section (4.2). From (4.15), 

[
0 -Q] = [0 -Q] [-(X+P) 0] [0 _Q]-I 
I -P I X I -X I X 

or 

A = Z B Z-I (5.29) 

Let 

J(A) = Al 

then 

J(A) = Z J(B)Z-I 

=Z [J(-X-P) 0] 
J{J J(X) Z-I 

(5.30) 

Now, B J(B) = J(B) B 

[
-(X+P) 0] [J(-X-P) 

I -X J{J 

[
J(-X-P) 0] 

J{J J(X) 

Multiplying out gives, 

XJ{J + JP (X + P) = J(X) - J(-X - P) 
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Since we are still dealing with transposes and using the definition of the derivative 

operator introduced in Section 2.1, we have· 

[F'(X) Jp{ = J(X) - J( -x - P) (5.31) 

which will be used later. 

Now multiplying out (5.30) gives an expression similar to that in (4.21), 

J(A) = [Q(J(X) - JfJX)Q-I 
. JP 

-QffJ ] 
J(-X-P)+XJfJ 

(5.32) 

Comparing (5.26) with (5.32) and noting that f(A) = At, 

A~1 = -QJp 

A~1 = J(-X - P) +XffJ 

From (5.27), (5.28), 

A(t) - _QT(t-I) - -Qf 
12 - 1 - P 

A~1 = Tit) = J( -x - P) + XJp 

giving 

T(t-I) - J 
1 - P (5.33) 

Now at stage 2 of the algorithm, it is necessary to solve (5.25) and it is well known that 

the condition of this linear system is related to the condition of Tit-I) and therefore Jp, 

from (5.33). Multiplying both sides of (5.31) by (F'(X)-I)T and taking norms, gives 

(5.34) 

This bound implies that if the original problem is ill-conditioned then Tit-I) may also 

be ill-conditioned so that the solution of (5.25) will then not be accurate. 

Additionally, investigation is required into the condition of the linear system in (5.22) 

and into the possibility of rounding errors contanUnating the computed solution. 

5.3.3 Discussion 

Newton's method is stable and for a well-conditioned problem, it will yield a very 

accurate solution. There does not seem to be any stability analysis for the Matrix Polyno­

mial algorithm although test examples have shown it too produces very accurate solutions 

[Dennis, Traub & Weber, 2]. We have shown that the condition of a linear system within 

the algorithm is dependent on the condition of the original problem. 
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Each method has a signillcant limitation. Newton's method requires for convergence, 

a starting matrix that is 'close enough' to the solution matrix, and the Matrix Polynomial 

algorithm will work only for problems that possess a dominant solution. In practice, 

neither of these shortcomings can be detected before attempting to solve the problem and 

therefore the iterations should be terminated when divergence is assumed to be occurring. 

Additionally for the Newton's method, if an ill-conditioned derivative matrix is en­

countered at any iteration then the method as described here cannot continue. 

From the operation count point of view, the Matrix Polynomial method requires much 

less work per iteration. 
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SECTION 5.4: The Matrix Square Root Equation 

Of interest here is the square root X of the matrix A, such that 

(5.35) 

5.4.1 Newton's Method 

If xr is an approximation to X then 

X =Xr+E 

Substitute this into (5.35) to give 

X;' + XrE + EXr - A = 0 

which gives the Newton iteration 

XrEr + ErXr = A - X;' (5.36) 

or 

F'(Xr)Er = A - X;' 

with the update 

for r = 0, 1, ... 

Several methods start with an initial approximation Xo that commutes with A and 

instead of (5.36) use the iteration 

1 2 
ErXr = 2" (A-Xr) r = 0, 1,2, ... (5.37) 

so that Xr will then commute with A for r ~ 1. However due to instability and rounding 

errors in (5.37), (5.36) is the preferred iteration. Note that (5.36) is the Lyapunov Matrix 

Equation. 

The iterations are stable and they converge quadratically to the square root of A if 

the initial matrix Xo is sufficiently 'close' to the solution X and F'(Xr) is non-singular at 

each iteration. 

The operations count is 14kn3 + O(n2 ) operations where k is the number of iterations 

and the storage requirements is 3n 2 locations. 
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5.4.2 Sign Function Method 

The problem of computing a square root of a matrix can be stated in the form of a 

degenerate ARE, [Denman & BeaversJ, 

A-XIX=O 

with 

z = [~ :] 

The iterated map (5.11), that defines the matrix sign function gives rise to the follow­

ing iteration, 

let Ii<J = A, So = I 
then the sequence 

converges, such that 

and 

1 ( -1) Rk+I = 2" Rk + Sk 

Sk+I = i (Sk + R"kI), k = 0,1;2, ... 

J. 
lim RHI = X = A' 

k->oo 

lim SHI = X-I 
k->oo 

for when A has no root that is real and negative. 

(5.38) 

The operation count is ~ n 3 per iteration and the storage requirements are 6n2
• 

[Higham, 4J shows through analysis and examples that the iterations are stable. 

The convergence of the iterates in (5.38) may be slow if the spectrum of A is large. 

This leads to the following variant [Hoskins & WaltonJ. 

Let 

Ro =A So = I 

then 

k=0,1,2, ... 

where 
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2 

ak = bk + Bk + 6,jbkBk 

2 

where 

bk = 1 - €k-I 

and 

1 
where bo = ";;"IIA-;-";IC7."1I and Bo = IIAII· 

5.4.3 Schur Vectors Approach 

This method [Bjorck & Hammarling] computes the Schur factorisation of A such that 

where Q is orthogonal and S is an upper triangular matrix with at most one zero diagonal 

element. Then the square root of A is given by 

where 

such that 

and hence 

and 

; 
Si; = L ILik ILk; , i ::; j 

k=1 

i = 1,2, ... ,n 

",;-1 
Si; - L.."k-i+l UikUkj 

ILij = , i < j 
ILii + IL;j 
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Therefore the elements of U are computed one superdiagonal at a time starting with 

the leading diagonal and working upwards. 

If whenever Sii = Sjj, Uii = Ujj is chosen then since S has at most one zero diagonal· 

element, it is assured that 

Uii + Ujj # 0 

and hence Uij is defined. 

This method requires: 

15n3 operations to determine the orthogonal matrix Q, 

a total of 

n j=1 ;-1 

2 2:: 2:: 2:: 
;=1 i=) k=i+l 

n 3 5n 
l+n=--n2 +-

3 3 
(using results from Section 1.2) 

operations to obtain U, 

2n3 operations to compute X, 

so that the overall operations count is 18n3 and the storage requirements are 4n2 locations. 

[Bjorck & Harnmarling] state that for a symmetric matrix A the Schur method is 

numerically stable. For general matrices the method is stable if the norm IIXII2/11AII is 

small. 

However, the method may produce an ill-conditioned square root even where a well­

conditioned square root exists. Although this is an extremely rare case, [Bjorck & Ham­

marling] attempt to address this problem. 

[Higham, 3] addresses and resolves a disadvantage of the Schur method, that is, if A 

is real and has no real eigenvalues, the Schur method necessitates complex arithmetic even 

if the computed square root is real. However, this technique is applicable only for real 

square roots that are functions in A. The following represent some of the important issues 

in [Higham, 1]. 
The matrix A has a real square root if and only if each elementary divisor of A 

corresponding to a real negative eigenvalue occurs an even number of times. 

The square roots of A which are functions of A are 'isolated' square roots, characterised 

by the fact that the sum of any two of their eigenvalues is non-zero. 

If A has a real negative eigenvalue, then A has no real square roots that are functions 

of A. 

The operations count for the entire algorithm is around 17n3 • The real Schur method 

is stable provided that IIXII2/11AII is sufficiently small. 
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5.4.4 Discussion 

All the methods of this section when successful, provide accurate solutions to (5.35). In 

particular, the iterative methods can be repeated to refine the solution. It is assumed that 

.. the problem of determining the square root is well-conditioned. The matrix sign function 

method fails if A posseses a real negative eigenvalue. The Newton method requires a well­

conditioned derivative at each iteration and a suitable starting point. The Schur vectors 

.. method will not yield reliable solutions in the unlikely event that IIXll2 /11AII is large. If 

the matrix sign function method requires less than 8 iterations, it will compare favorably 

with the Schur method, otherwise it will be slower. For the Newton method to be as fast, 

it will require to converge in 2 iterations, which is highly unlikely. 

The Schur vectors method for real square roots is useful if it is known that a matrix 

possesses real square roots and if the requirement is to determine a root that is a function 

in A. Similarly, if we required the square root of a symmetric, positive definite matrix then 

more efficient methods are available, e.g. [Higham, 5J. 
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SECTION 5.5: Minimisation Of The Constituent Equation 

In this section,.we look at the problem of solving 

where 

F(X) = 

F(X) = 0 

X 2 +PX+Q 

ATX+XA-XGX+H 

(5.39) 

(5.40) 

by transforming it into a sum of squares problem and minimising the resultant scalar 

function. 

Denote the elements of F(X) by Fij and form a n 2 -vector, fi, from the rows of F, 

(5.41) 

Similarly, 

(5.42) 

The scalar function that we minimise is then, 

n' 
1 

fc= 2 L fl 
i=l 

where the! is included for convenience. 

In Section 1.5, we discussed how Newton's method for unconstrained minimisation 

may be used for this problem. To use the algorithm developed in that section, we require 

to find the Jacobian and Hessian matrices of {Id for each equation in (5.40). Section 2.1 

derived expressions for the Jacobians by using Kronecker products. We begin by re-stating 

the algorithm of Section 1.5, 

(i) Select y(O) E JRn" the initial estimates to y'. 

(ii) Determine whether the Gauss-Newton or Newton iteration is to be used. 

Gauss-Newton 

(iii) Determine the Jacobian at y(k). 

(iv) If the Jacobian is singular, add a scalar matrix J1.(k) I to JT J such that JT J +J1.(k) I 

is safely non-singular, and solve 
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otherwise solve 

for p(k) 

Newton 
(iii) Detennine the Jacobian, the gradient and the Hessian, at y(k). 

(iv) If the Hessian M, is not positive definite, add a scalar matrix ",(k) I such that 

(M + ",(k) I) is positive definite and solve 

(M + ",(k) I) p(k) = _JT f 

otherwise solve 

(v) Minimise fc(y(k) + ",(k)p(k)) with respect to ",(k) E JR. 

(vi) Update, y(k+ 1) = y(k) + ",(k)p(k). 

(vii) If convergence criterion is not met, go to (ii). 

Section 1.5 discussed steps (ii), (iv)-(vii) of this algorithm. At step.(i) the initial 

matrix is chosen arbitrary and in fact X(O) = I is as good as any, such that from (5.42) 

(0) {I if j = (i - l)n + i for i = 1, ... , n 
y. = 
) 0 otherwise 

At step (ii), if the sum of the squares was sufficiently reduced during the last iteration, 

then the Gauss-Newton iteration is used, otherwise the Newton iteration [Gill, MurrayJ. 

At step (iii) we require explicit expressions that give the Jacobian and Hessian matrices 

in tenns of Xij, and hence Yk, since 

Quadratic Matrix Equation 

From Section 2.1, 

y(i-l)n+j = Xij 
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which is non-singular if Ai(X + P) of -Ai (X) 

The elements of J are such that J = J1 + h, where 

h((k-1)*n+i, (k-1)*n+j)=xji, i,j,k=l, ... ,n 

The gradient is given by, 

9 = JT f = [(X + P) 0 I + I 0 XT]T f 

= [(X +pf 01 +10Xlf 

Forming-a matrix G E IRnxn from the elements of 9 and using (5.41), 

Hence 

9(i-l)n+j = Gij = L (Xki + Pki)Fkj + L FikXjk 
k k 

The Gauss-Newton iteration requires JT J if J is singular, 

JT J = ((X + P)01 + 10XT)T((X + P)01 + 10XT) 

= ((X + pf 0 I + I 0 X)((X + P) 0 I + 10 XT) 

= (X +pf(X +P)01 + (X +pf 0XT +(X +P)0X +10XXT 

The Newton iteration uses the Hessian H. From (1.27) 

where Z = ZI + Z[ and 
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Fn FIl ... Flnl 0 

00 OIFll 

0 ••• 0 J •••... L 0 ••• 0 

I 
Fll .. Fin 

I I 

I I 

such that 

Therefore, for the quadratic matrix equation, to form: 

J requires 3n 2 operations 

JT! requires 3n 3 operations 

JTJ requires n4 + 4n3 operations 

! requires n 3 operations 

Z requires 4n 2 operations 

M requires n4 + 5n3 + 4n2 operations 

For the matrix square root problem, the Jacobian is given by 

J = X 1)9 I + I I8i X T 

(5.47) 

such that J is non-singular if Ai of -Aj for all i,j where A are the eigenvalues of X. The 

gradient is given by 

g(i-I)n+j = L XkiFkj + L FikXjk 

k k 

and 
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The Hessian is given by . 

= JT J + Z 

where Z = Z1 + zT and Z1 is given by (5.46). 

Algebraic Riccati Equation 

F(X) = ATX +XA-XGX +H = 0 

n n n 

Fij = L akiXkj + L Xik (akj - L gklXlj) + hij 
1 1 l=1 

The Jacobian is given by 

J=(AT -XG)0 I +118i(A-GXf 

Let 
n n 

Uij = L xikgkj and Vij = L gikXkj 

k=1 k=1 

then J = J1 + h, where 

and 

The gradient 9 is given by 

g=JTf=[(AT -XG)0I+10(A-GXf]Tf 

= [(A - GXT) 0 I + I I8i (A - GX)]f, since G = GT 

then 

g(i-1)n+j = L (aik - L GtXkl)Fkj + L Fik (ajk - L Glk Xjl) 

k l k l 

Let C = A - GX, then 

The Hessian is given by 

M= JTJ+Z 
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where Z is of the form 
911/11 + 911/11. ··911iIn + 9n1911 ..... 9In/11 + 911/nl ···9In/ln + 9nl/nl 

9nl/11 + 9ndln ... 9ndln + 9ndln ..... 9nn/11 + 911/nn ... 9nniIn + 9nl/nn 

911121 + 912/11 ... 911hn + 9n2/11 ..... 9In/21 + 912/nl ... 91nhn + 9n2/nl 

9nl/nl + 9IniIn··. 9nl/nn + 9nn/ln ..... 9nn/nl + 9In/nn ... 9nn/nn + 9nn/nn 

To form: 

J requires 2n3 + 3n2 operations 

JT/ requires 7n3 operations 

JT J requires n4 + 6n3 operations 

/ requires 3n3 operations 

Z requires 2n4 + 3n3 + 4n2 operations 

M requires 3n4 + 9n3 + 4n2 operations 

To give some idea of the magnitudes involved, we give the operations count for this 
algorithm when the iterations are all Gauss-Newton or all Newton. Remember from Section 
1.5 that the solution of the linear system is performed by using the Choleski decomposition 
[Golub & Van Loan] and the other steps in the algorithm use O(n2

) operations. . 

(per iteration) Gauss-Newton Newton 

unilateral equation 

6 6 

Riccati equation ~ + n4 + 13n3 + O(n2
) ~ + 3n4 + 16n3 + O(n2) 

excluding the operations required to perform the line search. 
For the unilateral equation, there is no advantage in using the Gauss-Newton iterations 

over the Newton iterations. In fact, as X(k) approaches X·, it is clear from the expression 
for Z in (5.46) that the Gauss-Newton and Newton iterations approach equality. 

For the ARE there is a saving of 2n4 at each iteration in using the Gauss-Newton 
rather than the Newton iteration. For small order problems this is significant. 

Clearly, for large order problems the term O( n6
) is dominant and this is the reason why 

minimisation methods are not favoured as numerical algorithms, when others are available. 
However, leaving aside the Elimination method for the moment, we have discovered that 
there are cases where the methods for the unilateral quadratic matrix equation fail, in 
which case the minimisation approach of this section would be the only alternative. 
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CHAPTER 6 - PRACTICAL METHODS FOR THE QUADRATIC 

MATRIX EQUATIONS BASED ON NEWTON'S METHOD 

SECTION 6.1: Introduction 

This chapter discusses two new approaches to the solution of the matrix equations. 

In the first case, we show how an efficient reformulation of Newton's method fo~ a 

system of non-linear equations may be used to solve the lliccati equation, 

F(X) = ATX +XA-XGX +H =0 (6.1 ) 

The approach is significant in that the computational labour usually associated with the 

Newton's method for (6.1) is significantly reduced by observing the sparse nature of the 

associated Jacobian matrix. Also, from Section 1.5, it is known that the Newton iterates 

have a local quadratic convergence property from a good starting point. 

If Yi and !i, i = 1,n2 are vectors formed from the rows of X and F respectively, 

then the Newton iterates are, 

where p(k) solves, 

(6.2) 

We have already shown in Section 5.5 that the Jacobian J can be determined with relatively 

little computational effort. The problem of solving (6.2) for p(k) is more difficult and is 

treated in the next section. In that section, an algorithm for this approach is presented 

along with an operations count and an error analysis. 

In Section 6.3, it is shown how a matrix analogy of the sum of squares minimisation 

method can be used to solve the unilateral quadratic matrix equation, 

F(X) = X2 + PX + Q = 0 (6.3) 

We show how the restrictions imposed by the methods of Sections 5.3 and 5.5, namely, 

failure to converge from an arbitrary starting point for the Newton method, 

failure to converge for problems not possessing a dominant solution for the Matrix 

Polynomial method, 

large amount of computational labour required for the minimisation method, 

solution of a possibly ill-conditioned linear system, 

may be overcome, towards providing an efficient, stable and globally convergent method. 

Section 6.3 provides an analysis and the description of the algorithm along with an oper­

ations count. 
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SECTION 6.2: Newton's Method for the Algebraic Riccati Equatio~ (t.'o) 

The Jacobian matrix associated with (6.1) was determined in Chapter $ as being, 

J=(AT -XC)<8II+I<8I(A-CXf 

Now, in control applications, the coefficient matrices of the algebraic Riccati equation 

possess certain properties, 

C = CT > 0, H = HT ~ 0 

and the solution usually of interest is the non-negative symmetric one, such that 

Under these conditions the Jacobian may be written as 

J = (AT - XC) <81 I + I <81 (AT - XC) 

Let 

such that 

J =T<8II+I<8IT (6.4) 

Now there always exists an orthogonal U E Rnxn such that 

RIl R12 RIm 

o R22 R2m 
(6.5) 

o o 
where each Rii is either a 1-by-1 matrix or a 2-by-2 matrix having complex conjugate 

eigenvalues. 

Premultiply and postmultiply (6.4) by UT <81 UT and U <81 U respectively, 

since (A <81 B)(C <81 D) = AC <81 BD, the above equation becomes 

and since U is orthogonal, UTU = I and from (6.5), 

(UT <81 UT)J(U <81 U) = S <81 I + I <81 S (6.6) 
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where the right hand side of (6.6), say i, is of the form 

2s11 $12.. . Sill I S12 

S21 Sll+S22 -,. S2ft o 
o s" 

o 
S" 

o 
o 

1 5,," 

o 
o 

5", 

o 
o 

~ __ 0 ___ ~U~M_I_ '?. __ ~ ___ ~_I _______ .!. _0 ___ 0 ___ _ s~ 

Szl 0 0 I S:ZZ+SIl SI1.' • • SlA I I 
1 

o o I $11 SZZ+S22 . • • 8111 I 

o 0 S21 1 0 0 stt+ .... 1 _________ 1 __ - _______ 1 _____ ~ _ .1 

1 .. . .. _________ 1 __________ 1 _______ .1 ________ _ 

I ~ ,..1 0 . . . 0 I S.."tSll 512' . . $111 

1 0 0 1 SIlo It-! • . • S21 S"+S22 . . . $111 

o 1 o ," $",,...1, 0 o 

In partitioned form, 

sllI + S SI2 I Sln I 

S21 I S22I + S S2n I 

i= 
0 

o 
o 

S32 I 

o 
o 

where the subdiagonal elements of S satisfy; 

S '+1 . t- 0 } ,} and 

or sj+I,i = 0 and 

or Sj+I,j = 0 and 

SanI 

Sn_l,n I 

Sj+2, j+I = 0 (i) 

S i+2, HI t- 0 (ii) 

Sj+2, j+1 = 0 (iii) 

(i) implies complex conjugate eigenvalues of T associated with the block 

( 

Sjj 

S '+1 . ) ,} 
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(ii) implies complex conjugate eigenvalues of T associated with the block 

(

Sj+l, }+I 

8j+2, j+l 

(iii) implies T has a real eigenvalue 8j+1, }+I 

Now, if y E Rn2 and f E Rn2 are formed from the rows of X and F(X) respectively, 

the iterates 

converge to a solution of (6.1) where p(r) solves 

(6.10) 

J being defined by (6.4). 

Now, since the iterative algorithm is prohibitively expensive due to the solution of the 

linear system in (6.10) make the following transformation, 

Premultiply (6.10) by UT 1)9 UT, 

since (U 1)9 U)(UT 1)9 UT) = I 

Let p(r) = (UT 1)9 uT)p(r) and pr) = _(UT 1)9 uT)f(r), and using (6.6), (6.10) becomes 

(6.11) 

where j(r) = S 1)9 I + 11)9 S 

To develop a strategy for solving (6.11), we observe the sparsity and the special form 

of the j given by (6.8). We can use a block back substitution type of technique which is 

dependent on the subdiagonal elements of S. IT we.consider the technique to be composed 

of n phases, since there are n blocks, then the processing at the kth phase will depend on 

which of the conditions in (6.9) is satisfied. 

(a) if (iii) of (6.9) is satisfied, then we attempt to solve, 

(6.12) 

for the first n elements of p-y, where 

- r.;;· - ]T P-y = lI'(n-k-l)n+I,' " ,Pn2 
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and 
- - - T 
f~ = [!(n-k-l)n+l,··· ,!(n-k.l 

Now since by this stage, P(n-k)n+l,'" ,Pn2 are already known, we can update the 

right hand side of (6.12), algorithmically, as follows, 

k-l 

in2-(k+l)n+i = in2-(k+l)n+i - L Sn-k,n-iPn 2-(i+l)n+i 
i=O 

so that (6.12) may now be expressed as 

where 

P6 = (P(n-k-l)n+I,··· ,P(n-k)n] 

and £6 is the updated right hand side. 

(6.13) 

j = 1, ... ,n 

(6.14) 

The matrix on the left hand side of (6.14) is an upper Schur matrix. (6.14) may be 

solved by back-substituting either a row at a time or two rows at a time depending 

on the sub-diagonal elements of S. If (iii) of (6.9) is satisfied, then we update the 

corresponding element on the right hand side of (6.14). At step m, for m = n, ... , 1, 

we have 

then 

n 

i(n-k-l)n+m = !r.n-k-l)n+m - L SmjP(n-k-l)n+j 

j=m+l 

_ !(n-k-I)n+m 
P(n-k-l)n+m = + 

sm,m Sn-k,n-k 

(6.15) 

(6.16) 

If (iii) of (6.9) is not satisfied, then we have a system of 2 linear equations in 2 

unknowns. The right hand side elements are updated using (6.15) with m = m and 

m = m - 1, such that we solve, 

(Sm-l,m-l +_ Sn-k,n-k)P(n-k-l)n+m-l + sm-l,m~(n-k-l)n+m = ~(n-k-l)n+m-l } 

Sm,m-lP(n-k-l)n+m-l + (Sm,m + Sn-k,n-k)P(n-k-l)n+m = !cn-k-l)n+m 

(6.17) 

for the unknowns P(n-k-l)n+m-l and P(n-k-l)n+m. 
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(b) if (if) of (6.9).is not satisfied·, then either of wnditions (i) or (ii) lead to the same 

processing. Let j = n - k, then at the kth phase of the process, if Sj+I,j ~ 0, then 

we have 

where 

SjjI + S 

sj+1,jI 

S' ·+1 Jt) • 

- (- -)T Pa = PU-1)n+1, ... ,PU-1)n+n 

- ( - -)T Pp = Pjn+1, Pjn+2,'" ,pjn+n 

- - - T 
Similarly fa = (fU-1)n+1,"" !U-1)n+n) 

fp 
(6.18) 

Now since, by this stage, we already know Pm for m = (j + l)n + 1, ... , n 2 , we can 

update the right hand side using (6.13). (6.18) now becomes 

(

SjjI + S 

8·+1 I 1 ,1 
(::) = G:) (6.19) 

The matrix on the left is sparse, in fact it possesses at most n2 +3n non-zero elements 

from a total of 4n2 possible elements. (6.19) can clearly be solved by the Gaussian 

Elimination method. However, there exists a stable variant of the Gaussian Elim-

. ination method that takes advantage of the sparsity of the matrix, requiring fewer 

computations [Duff]. 

We continue in this way until element S21 has been tested. Then since UT = U- 1 

gives the direction of search used to update y(r+1) and hence x(r+1). 

The convergence is quadratic from a good starting point, which is what we would 

expect from a Newton method. To maintain the symmetry of the computed x(r+1) under 

round-off error, we use the following transformation 
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6.2.1 An Algorithm with Operation Counts 

We now present an algorithm, with operation counts, for the non-negative definite 

symmetric solution of the algebraic lliccati equation. Notice that the problem of computing 

a Kronecker product of the form, 

where 
2 

a, bE Rn and U E Rnxn 

requires an operations count of O( n4 ). A more efficient way of computing a, using only 

O( n3
) operations, is to transform the problem to 

where a and b are formed from the elements of A and B, taken a row at a time. 

(i) Input X(O) = xl~), the initial estimates to the solution of (6.1). 

Set r = 0 

(ii) Form 

(iii) Compute 

(n3 operations) 

(2n3 operations) 

fU-l)n+j = Fij i,j = 1, ... ,n ( n 2 operations) 

(iv) Compute s(r), the Schur decomposition of T, 

(v) Compute 

(vi) k = 0 

Start: 

where 

by 

If Sn-k, n-k-l < EPS or if k = n - 1 

(15n3 operations) 

(2n3 operations) 

update right hand side j using (6.13). (2kn operations) 

solve (6.14), using (6.15), (6.16) and (6.17). (3n2 operations) 

Put k = k + 1 

If k > n - 1 then go to (vii). 

otherwise go to Start: 
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Otherwise 

update right hand side j using (6.13), for k = k and 

k = k + 1. (4kn operations) 

solve (6.19) using the sparse variant of the Gaussian Elimination method. 

The algorithm requires approximately 57
2 

+ 7 operations where 7 is the num-
2n 

ber of non-zero elements in the matrix. In this case 7 < n 2 + 4n so that an 

overestimate of the operations count is ~n3 + 22n2 + D(n). 

Put k = k + 2 

If k > n - 1 go to (vii) 

otherwise go to Start: 

(vii) Compute 

by 

(2n 3 operations) 

(viii) Update X, x(r+l) =x(r) + per) 

(ix) Transform to a symmetric x(r+l), 

(x) Test for convergence, 
IIx(r+l) _ x(r)11 

if Ilx(r)11 ~ TDL 

then convergence has occurred, 

otherwise go to (ii). 

(2n 2 operations) 

Excluding Step (vi), the operations count per iteration is 22n3 + 3n2 + D(n). 

The operations count at Step (vi) depends on the number of complex eigenvalues of Tj 

for real T, the count is n3 - n2 

for non-real T, the count is ~n4 + 13n3 per iteration. 

These values reflect a real saving in using this method over the Newton's method applied 

directly to the constituent equations or by the sum of squares minimisation approach of 

Section 5.5. This is especially so when the Jacobian possesses real eigenvalues at each 

iteration. 

6.2.2 Error Analysis 

Consider the consequences of using floating point arithmetic in the algorithm of 6.2.1. 

Using the results and notation of Section 1.3, we have that at the rlh iteration, the com­

puted estimate of the solutions is X( r), sum that 
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performing step (ii), 

l' = fl(.F - x(r)c) 

where the coefficient matrices of the algebraic Riccati equation are such that, 

Then 

At step (iii) 

A = A(1 + ed, lell ~ u 

C=G(1+e2), le21~u 

H = H(1 + e3), . le31 ~ u . 

P = fl(T(r) x(r) + x(r) A + H) 

P = F(1 + /::"T + /::"x + (n + 3)e) + Q(e2 ) 

P = F(1 + /::"F) 

At step (iv), the computed S satisfies 

UT (T(r) + E)U = s(r), 

with 

uTu = 1+ F, IIF" ~ u 

At step (v), 

p(r) = fl( _UT p(r) U) 

= p(r)(1 + /::"F + 2e + 2ne) + Q( e2 ) 

= p(r)(1 + /::"t) 

Using (6.20), (6.21) and (6.23), 

/::" t = 2/::"x + (4n + 7)e 

(6.20) 

(6.21 ) 

(6.22) 

(6.23) 

(6.24) 

The processing at step (vi) depends on the values of the sub-diagonal elements of s(r). For 

each element that is considered to be zero we update j by (6.13) and solve the triangular 

system in (6.14). (6.13) is essentially a matrix-vector product, such that 

j = f/(j - Sp) 

= flcJ(1 + OJ) - S(1 + e)p(1 + op)) 

j = j(1 + 0 j + op + 2e+ ne) 
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where 

Next, we try to solve the triangular system in (6.14), 

(6.26) 

The computed solution satisfies [Golub & Van Loan], 

(6.27) 

Using a result from Section 1.3.2, 

+ O(IIE1W) 

such that 

Using (6.26), 

Taking norms, 

lIopll = lip - fill < nu11SIIIIS-111 
Ilfill Ilfill-

(6.28) 

IT a sub-diagonal element of s(r) is non-zero, then once again we update using (6.13), 

this time to yield 2 vectors, and then solve the sparse linear system in (6.19). Using (6.13) 

gIVes, 

jo = jo(1 + Of + op + 2e + m) 

j p = jp(1 + 0 i + op + 2e + m) 

The error involved in solving the 2n x 2n system in (6.19) is such that [Duff], 

and a similar analysis to that above shows that, 

lIopll = lip - fill < 3nu11SIIIIS-111 
Ilfill Ilfill-

At step (vii), 

p(r) = //(U p(r) UT) 

p(r) = p(r)(1 + l:1p + 2€ + 2m) + O( €2) 
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Finally at step (viii), we update X, 

x(r+l) = X(r) + p(r) 

We observe that accuracy of the update matrix p(r) is dependent on how accurately 

the solutions of the linear systems (6.27) ~d (6.29) can be computed. The accuracy is 

dependent on two things, on the accuracy of j and on the smallness of the bounds in (6.28) 

and (6.30). Now (6.28) and (6.30) are small if the matrix S is well-conditioned. This would 

guarantee the accuracy of a linear system with ~ exact right hand side. In (6.28) and 

(6.30), the computed and exact right hand sides, j and j respectively, are such that 

Using (6.24) 

j - j = ](26.x +bp +9€ +5n€) (6.31) 

We have already stated that bp is small when S is well-conditioned. 6.x is the error 

in the current estimate to the solution, computed at the previous step. IT the matrix S at 

the previous iteration was well-conditioned, then bp and hence 6.x will be small. 

To summarize, if the matrix S is well-conditioned at each iteration of the algorithm, 

then the rounding errors introduced in the algorithm are small and well-bounded. IT 

however S is not well-conditioned, then the update matrix P may be inaccurate leading 

to erroneous results. 

The following example serves to illustrate the method, with a well-conditioned matrix 

S at each iteration. 

Example 

Consider 

ATX +XA -XBR-1BTX + H = 0 

where 

A= R=I,H=[~ ;J 
Choose X(O) = (-1 1) with Re(A(A _ GX(O»)) < 0 where G = BR-1 BT = (0 

-1 1 0 
Observing each step of the algorithm, 

(ii) T=AT-X(O)G= (0 -1) 
1 -1 

o (.) "" 
(iii) F(X(1») = TX + XA + H 
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and IWIIE = 3. 

(iv) Since T is already in Schur form, U = 12 and S = T 

2 

(v) SinceU=I,i=f= 

k = 0, 

-2 

o 
1 

(vi) Since 821 ¥ 0 and k ¥ 1, solve 

where 

1S t= 

This gives 

x :> 

0 

1 

1 

0 

Sji= i 
f 

-1 -1 0 

-1 0 -1 

0 -1 -1 

1 1 -2 

ji~T 

(vii) Then ji = P 

( 
... ) (I) _ (0) 

Vlll Xii - Xii - P(i-I)n+ i 

2.5 

1 

1 

2.5 

0 1 .( 0 _L.. - ('J) 

(ix) X(l) is already symmetric. Repeat from (ii) until convergence. 

? 

The following table gives the solution matrix, the function norm and the eigenvalues 

of the closed loop system, at each iteration. 
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Iteration X Function Norm A(T) 

0 -1.0 1.0 3.0 -0.5 +y3i 

-1.0 1.0 -0.5 -y3i 
• 

1 2.5 1.0 3.25 -1.5 

1.0 2.5 -2.0 
-- - --- --

2 2.05 1.0 0.2025 -0.8 

1.0 2.05 -1.25 
- ---

3 2.000609 1.0 0.002431316 -0.975625 

1.0 2.000609 -1.02498 
-- --

4 2.0 1.0 0.00000001 -1.0 

1.0 2.0 -1.0 

We observe that the convergence here is ultimately quadratic, which is what we would 

expect from Newton's method. 

Remarks 

It is known that the problem of determining a solution of (6.1) by multiplying the 

matrices to produce a system of n 2 non-linear equations and then using Newton's method 

to solve these, is computationaliy expensive. An attempt to overcome this difficulty has 

been made. The Jacobian matrix is easily determined and the ensuing linear system may 

be solved efficiently by observing and utilising the sparse nature of the Jacobian. When 

the Jacobian possesses real eigenvalues at each step of the Newton method, the overall 

operations count compares favourably with that for Kleinman's method. The iterations 

are stable and yield accurate solutions provided that the matrix S is well-conditioned. 
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SECTION 6.3: Towards a Globally Convergent Newton Method for the 

Unilateral Quadratic Matrix Equation 

In this section, a new sum of squares minimisation" method for the solution of the 

quadratic matrix equation, 

X 2 +PX +Q = F(X) = 0 (6.32) 

is proposed. 

We show how the problem of an ill-conditioned linear system during the iterations 

may be overcome and how the inclusion of a line search in the algorithm may guarantee 

global convergence. We also show that by using suitable transformations, the operations 

count is much smaller than that of the minimisation method of Section 5.5. 

We propose the following algorithm, with analysis to follow, 

(i) Select X(O) E Rnxn as an initial estimate to X', the solution of (6.32). 

(ii) Initialise k, k = 0 

(iii) Compute 

(iv) Test for convergence 

(v) Formy(k) ERn', 
(k) _ X(k) 

y(i-l)n+ j - ij 

(vi) (a) Determine the condition of the Jacobian 

(b) Compute the descent direction, d(k) E Rn 
, 

(vii) Perform a line search - find a(k) such that 

is sufficiently reduced, where J; are formed from the elements of F. 

(viii) Update current solution, 

(6.33) 

(6.34) 

where the elements of the matrix D(k) E Rnxn taken a row at a time, forms d(k). 

(ix) Increment k, go to (ii). 

The line search ensures that under certain conditions, steady progress towards the 

solution is made, irrespective of the starting matrix - this is global convergence. The 

necessary conditions are that the update matrix, JT J for the Gauss-Newton iterations, 

is always non-singlliar and bounded above. Otherwise, if JT J is singular (or very nearly 

singular) then the Gauss-Newton iterates may converge very quickly to a point that is not 
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even a stationary point of / c [PowellJ. Alternatively, if JT J is very large then the direction 

and gradient vectors are nearly at right angles to each other and convergence is very slow. 

The problem of an ill-conditioned Jacobian can clearly be overcome by adding a small 

scalar matrix to JT J, as we. observed in Section 5.5. However, this requires that the 

solution of an n 2 linear system must be computed. This is a computationally expensive 

task and accounts for the prohibitive nature of the minimisation technique. We address 

this problem in due course but firstly we take a closer look at the problem of performing 

a line search. 

In Section 1.5, we discussed how Powell's quadratic interpolation method may be 

used to perform the line search. The following analysis highlights the problems that can 

be encountered by line search algorithms and how they may be overcome. 

The problem of determining an o(k) in the line search has, until recently, been one 

of choosing the o(k) that solves the one-dimensional minimisation problem accurately. 

However, more careful computational testing has led to the belief that low accuracy min­

imisations are better in theory and in practice. The question now arises as to what the 

criteria for the low-accuracy minimisation should be. Consider 

• x(Hl) = x(k) + o(kld(<i') 

Clearly we require that /c(x(Hl) < /c(x(kl ). However, this does not guarantee con­

ve~gence, as illustrated in the following monotonically decreasing sequences of iterates, 

[Dennis & SchnabelJ. 

fc(x) fc(x) 

-2 -1 1 2 1 2 

In the first case, we have very small decreases in / c values relative to the length of 

the steps. This is resolved by requiring that the average rate of decrease from /c(x(kl) 

to /c(x(Hl) be at least some prescribed fraction of the initial rate of decrease in that 

direction. That is, choose an a E (0,1) and an o(k) satisfying 
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where V le(x(k») is the gradient of le at x(k). 

In the second case, the steps are too small relative to the initial rate of decrease of le. 

[Dennis & Schnabel] suggest the following condition that ensures sufficiently large steps, 

for some fixed constant b E (et, 1), 

Therefore the accuracy of the minimisation depends on the values of a and b. 

Now we return to the problem of an ill-conditioned Jacobian. 

At Step (vi) of the algorithm, we estimate the condition of the Jacobian. The iterative 

processing .distinguishes between a well-conditioned and an ill-conditioned Jacobian as 

follows. 

Well-conditioned Jacobian 

In this case, we choose to use the Gauss-Newton direction given by the solution of, 

(6.35) 

where J(k) denotes the Jacobian at X(k) and I(k) are the elements of the function matrix 

F(X(k») taken a row at a time. (6.35) may be written as, 

From (5.43), 

(6.36) 

Using the Kronecker Product theory of Section 1.2, (6.36) may be expressed as the Sylvester 

equation, 

(6.37) 

where d(k) are the elements of the matrix D taken a row at at time. 

The discussions in Section 1.4 on the Sylvester equation suggest that since the Jacobian 

is well-conditioned, the problem (6.37) is well-conditioned and the method of Section 1.4 

for solving (6.37) is stable thus providing an accurate solution. Determining the direction 

d( k) (or D( k») by (6.37) is clearly more efficient than solving the linear system of order n 2 

in (6.36). 

Ill-conditioned Jacobian 

In this case either of the following two options may be considered: 

(a) Use the previous well-conditioned Jacobian, say J(Xp). If this situation occurS at 

the first iteration then the iterative algorithm should be re-started from a different 

starting matrix. 
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The new direction is then given by, . 

(6.38) 

or equivalently 

(6.39) 

Now, a direction d is a descent direction if [Dennis & Schnabel], 

(6.40) 

where 9 is the gradient,in this case g= JT I as determined in Section 5.5. Therefore 

the direction a.<k) of (6.38) is a descent direction if 

(6.41 ) 

For arbitrary J(k) and Jp we cannot predict whether (6.41) holds or not. If it does 

hoid then d(k) is a descent direction and the line search algorithm determines an a(k) 

and hence X(Hl) such that the decrease of I(HI) satisfies some prescribed criterion. 

If (6.41) does not hold, then the line search algorithm determines an a(k) and hence 

.. X(Hi) that may be farther away from the solution X· than X(k) is. We could then 

only hope that J(k+l) is well-conditioned and treated accordingly. 

(b) . U~·e the Steepest Descent direction d(k) = _J(k)T I(k). This is clearly a descent 

direction since (6.40) is satisfied, 

(6.42) 

The updated estimate X(Hl) determined via the line search algorithm is nearer to 

X' than X(k) is to X'. This suggests that alternative (a) above is superfluous since (6.42) 

is always satisfied. However, it is known [Dennis & Schnabel] that for a minimisation algo­

rithm employing the SteepestDescentdirection throughout, the convergence is only linear, 

and sometimes very slowly linear. In contrast, the Gauss-Newton iterations are known to. 

have fast convergence; we will show later that they exhibit quadratic local convergence for 

this problem. Therefore, it may be that over the coUrse of the minimisation method, there 

are found to occur a number of ill-conditioned Jacobians, most of which satisfy (6.41). 

This would justify using (a) over (b). 

In the following analysis however, we will use (b). 

6.3.1 Condition of J 

The problem of determining the condition number of a matrix, say J, is not easy .. 

[Wilkinson] shows how the Singular Value Decomposition may be used to determine the 

spectral condition number, k2( J) say, with 
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where Jl~ are the singular values of J with Jl? ~ Jl~ ~ ... ~ Jl~ ~ O. However, the operations 

count in the computations of the SVD forJ is O(n6 ) which is clearly unacceptable. 

Alternatively, steps (vi) and (vii) can be combined so that the condition of the Jaco­

bian can be estimated in the course of solving (6.37), in the following way. 

Rather than using the Hessenberg-Schur method to solve the equation (6.37), we use 

the Schur method [Bartels & StewartJ. The latter is slightly more expensive in computa­

tional terms, but serves our purposes nicely. If we write (6.37) as, 

AD+DB =-H 

where 

A=X+P, B=X, H=F(X) 

the Schur method reduces A to upper Schur form an"d B to lower Schur form, 

UTAU = A 

VTBV = iJ 

(6.43) 

(6.44) 

(6.45) 

If U, V are unitary (complex orthogonal) similarity transformations, then A and iJ 
will be upper and lower triangular respectively. (6.43) can then be written as 

(6.46) 

where 

(6.47) 

Using Kronecker products, (6.46) may be written as 

jd = -h (6.48) 

where 

(6.49) 

From our knowledge of Kronecker products we observe that j is upper triangular and 

that 

(UT €I VT)J(U €I V) = (UT €I VT)(A €I I + I €I BT)(U €I V) 

= (UT A €I VT + UT €I VT BT)(U €I V) 

= (UT AU €I VTV + UTU €I VTBTV 

= (A €I I + I €I iJ) 

=J 
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Also U ® V is unitary since 

=I®I 

as required. 

Hence from (6.50) and since the norm is invariant under unitary (orthogonal) trans­

formation 

lIill = IIJII (6.51 ) 

and since 

we have that 

(6.52) 

Therefore the problem of determining a condition number k",,( J), (we choose 00 norm 

because it is easily computed) is such that, 

(6.53) 

(6.53) states that the condition number is invariant under unitary (orthogonal) transfor­

mations. 

Determining lIill is relatively simple. To determine Hi-Ill"" [Golub & Van Loan] 

provide an algorithm that computes an estimate for the 00 norm of the inverse of an upper 

triangular matrix. The algorithm is stable with an operations count of !n4. 
Summarising, at step (vi) of the minimisation algorithm we attempt to determine the 

descent direction by solving (6.37) for D(k) using the Schur method. Once the upper and 

lower Schur forms of (X(k) + P) and X(k) respectively are computed, we form the matrix 

i and compute an estimate to the condition number of i and hence J. If it is found that 

the Jacobian is well-conditioned, the Schur method is continued until completion to obtain 

D(k). Then the vector d(k) is formed and used in step (vii). However, if the Jacobian is 

ill-conditioned then we choose the Steepest Descent direction. 

6.3.2 Convergence Criteria 

With respect to the convergence of the iterates, there are two considerations to be 

made here. Firstly, the algorithm should detect that the iterations have converged and 

secondly to ensure that convergence is to (6.32) rather than a local minimum of the scalar 

function f c, 

(6.54) 
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We choose to terminate the iterations when some quantity say XNORM, is less than some 

specified tolerance value, say TOL. The following criterion is used, 

(6.55) 

To test whether (6.32) is satisfied, the following criterion is suggested [NAG], 

(6.56) 

where u is the unit machine round-off . 

With respect to rate of convergence, it is known [Gill & Murray] that if the Hessian 

matrix is 

JT J + Z, say 

then the Gauss-Newton steps will ultimately converge at the same rate as Newton's 

method, i.e. locally quadratic, provided that IIZII is small compared with IIJT JII. From 

(5.46) and the fact that F(X*) ~ 0 as the iterates approach X*, IIZII becomes smaller 

such that in exact arithmetic IIZ(X*)II = O. Hence we can say that the method of this 

section can exhibit quadratic local convergence. 

6.3.3 Operations Count 

The operations performed by the algorithm are as follows: 

Step (iii) 

Step (iv) 

Step (v) 

n 3 to compute F(X(k» 

Compute the norm of F(X(k+I» 

FNORM = [L:i L: j Fi~k+I)2l t 
uses n2 + Q( n) operations 

n to form y~k), i = 1 n2 , 

Step (vi) Either, 

or 

Compute Schur forms of (X(k) + P) and X(k) 

Form j 

Estimate koo ( J) 

Complete the solution of (6.37) 

,( k) (k) 
Form aii-I)n+j = Dij 

Compute Schur forms of (X(k) + P) and X(k) 
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Fonn j 

Estimate k=( J) 

Fonn If-k) = _JT f 
where j and _JT fare fonned by using (5.43) and (5.44) respectively. 

We see that both branches perfonn approximately the same number of operations. 

Therefore we can generalise the operations count of Step (vi) to ~n4 + 25n3 + 3n2 + O(n) 

Step (vii) 3(2n3 + n2) to evaluate fc at Qt, Q2, Q3 say, in 

the line search algorithm and 

Step (viii) 

2n3 + n2 for each further function evaluation. 

Generalise as r(2n3 + n 2 ) 

n 2 to update to X(k+ 1). 

The overall operations count for this algorithm is then, 

5 
4n4 + (26 + 2r)n3 + (4 + r)n2 + O(n) 

per iteration, where r is the average number of function evaluation performed by the line 

search procedure. 

6.3.4 Numerical Results 

The following examples illustrate how the method of this section may be used to solve 

various problems. Some of these problems cannot be solved by the methods of Section 5.3. 

Example 1 

A singular Jacobian is encountered at the first iteration 

(1 0) ( -8 X2+ X+ 
o 1 -18 

-12) =0 
-26 

Let X(O) = (~2 -~.5)' then f rO) = -(6 12 18 26)T , " , 
IIFII = 34.542, 

J(X(O») = diag (-3, -1.5, -1.5, 0), 

and 

a(J(X(O») = 3, 1.5, 1.5, 0 

Since the J acobian is singular, we take the Steepest Descent direction, 

d(O) = -(18,18,27, Of 
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The line search yields a = 0.1257 such that the updated solution is, 

and 

X(l) = (-4.2619 -2.2619) 

-3.3928-0.5000 

IIF(x(I»)11 = 23.8532 

so that using the Steepest Descent direction has resulted in a new estimate that is closer 
to the solution. Continuing in this way, 
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k Singular values Cl' (alpha) Solution X 
IIx( 0+,) -x( 0) 11 

IIxil)1I FNORM 

1 3.0 1.5 0.1257 -4.2619 . -2.2619 2.2619 23.8532 

1.5 0.0 -3.3928 -0.5000 

2 10.5982 4.3060 0.4548 -2.3183 -3.5069 0.5109 16.7477 

3.7622 2.5300 -5.2604 -1.0748 

3 11.3606 6.8163 0.4252 -0.5493 -3.5723 0.4100 11.5133 

2.3931 2.1512 -5.3590 -3.2363 

4 12.2917 6.9341 0.7954 -0.1123 -2.7679 0.2969 5.3126 

2.7856 2.5000 -0.4152 -4.7567 

5 12.2625 5.2097 1.0000 -1.1069 -2.4523 0.1667 1.2601 

3.8690 3.1837 -3.6784 -4.6697 

6 11.9125 ·5.0916 1.0000 -1.4716 -2.2373 0.0857 0.3061 
. 

4.7766 2.0443 -3.3560 -4.8405 

7 11.8781 5.4945 0.9999 -1.6787 -2.1472 0.0417 0.0716 
. 

5.3122 1.0715 -3.2208 -4.8988 

8 11.8704 5.7246 1.0000 -1.7700 -2.1054 0.0188 0.0145 

5.5775 0.5683 -3.1581 -4.9277 

9 11.8671 5.8314 0.9999 -1.8007 -2.0912 0.0064 0.0017 

5.6972 0.3385 -3.1367 -4.9375 

10 11.8660 5.868 0.9998 -1.8055 -2.0890 0.00098 0.00004 

5.738 0.2596 -3.1335 -4.9389 
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Example 2 

The Newton and Matrix Polynomial methods of Section 5.3 work on the following 

problem, 

0) ( -8 X+ . 
1 -18 

-12) =0 
-26 

with 

X(O) = C ~) 
In this case IIF(X(O»)II = 32.8634. 

The method of this section converges to (~ ~) in the following way, 

Iteration 1 2 3 4 5 6 7 

IIX(O+l)_X(O)1I 

IIx(') 11 3.1557 0.1095 0.0538 0.0246 0.0088 0.0016 0.00004 

IIF(X(Hl»)11 1.4365 0.3552 0.0848 0.0178 0.0023 0.00007 0.000009 

Example 3 

In this case the norm of the starting matrix is very large compared to the solution. 

with 

2 (1 6) ( 0 X - X+ 
2 9 -2 

12) = 0 
14 

X(O) = and F(X(O») = 1.044 x 105 

(
-99 10) 

-2 14 

The method converges to (~ ~) in the following way, 

Iteration 1 2 3 4 5 6 7 8 

IIF(X(k»)11 2615 653.7 164.3 41.871 63.243 3.4159 0.9995 0.1424 
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Example 4 

The Matrix Polynomial method of Section 5.3 does not work since the problem does 

not possess a dominant solution. 

and 

12) = 0 
14 

x(O) = G ~ ) and IIF(X(O»)II = 8.4853 

The method converges to (~ ;) in the following way, 

Iteration 1 2 3 4 5 

IIF(X(k»)11 2.0365 0.4338 0.0596 0.0023 0.000003 

Example 5 

The Newton method of Section 5.3 does not converge. 

(1 0) ( -8 X2+ X+ 
o 1 -18 

-12) =0 
-26 

with 

X(O)=(l 6), 
-5 1 

IIF(X(O»)II = 73.055 

(
0.8056 

The method converges to 3.1334 

Iteration 1 2 

IIF(X(k»)11 16.1342 11.9821 

Remarks 

2.0889). h r II . 3.9390 III t e 10 owmg way, 

3 4 5 6 7 

2.7678 0.4753 0.0581 0.0117 0.0012 

8 

0.00002 

In this section, a new sum of squares minimisation method for solving the quadratic 

matrix equation has been proposed. The method is based on Gauss-Newton iterations and 

is shown to possess local quadratic convergence. The method is shown to be efficient in 

the sense that the operations count per iteration is O(n4) rather than O(n6 ) as usually 

required for the minimisation of the constituent equations. The term O( n4 ) is wholly due 
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to the determination of the singular values of the J acobian. It may be that a more efficient 

technique for determining the condition of the Jacobian exists in which case the operations 

count is O(n3 ) per iteration and compares favourably with that for the methods in Section 

5.3. 

Perhaps the most significant attribute of this method is its global convergence prop­

erty. The line search at each iteration ensures that progress is made towards the solution. 

Also, the problem of solving an ill-conditioned linear system at an iteration is overcome, 

by choosing the Steepest Descent direction in such cases. 

The comments above are reflected in the numerical results where this method is shown 

to work on problems for which other methods fail. 

Therefore the analysis and method of this section may contribute towards provid­

ing a stable, efficient and globally convergent algorithm for solving the general unilateral 

quadratic matrix equation. 
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CHAPTER 7 - EXAMPLES, RESULTS, COMPARISONS 

SECTION 7.1: Introduction 

In this chapter we use the methods of the preceding chapters to solve a number of 
problems in order to determine the merits of one method over another. The measures we 

use of 'goodness' of a method are the accuracy of the computed solution and the Central 

Processor Unit (CPU) time. The CPU time is the time accumulated while a particular task 

is in execution and is independent of external factors, for example, the number of users 

currently in session on the mainframe, the amount of memory resident in the machine, 

etc. The operations count and access rates to stored arrays are reflected in the CPU time. 

Immediately prior to executing a task, the program calls a function called CPUO and passes 

one integer parameter through it. On return, the integer contains a value representing the 

number of micro-seconds of CPU time that has accumulated since some arbitrary base. 

This base generally remains unchanged across successive CPUO calls, a non-zero return 

code indicating otherwise. On completion of the task, another call is made to CPUO with 

an integer parameter and the difference between this and the previous integer gives the 

accumulated CPU time. 

Broadly speaking, the relative CPU times of the methods should correspond roughly to 

the relative operations count of the methods. The operations count, however, does not take 

into account the numerous other tasks the CPU must do within a program. Consequently 

it is important to minimise the work involved in these other tasks and reduce/re-use 

storage spaces wherever possible. The' work involved in multiplying matrices dominates 

in the methods and the way in which this operation is approached can be observed by 

considering the following matrix multiplications, 

(a) 
C=AB, BE Rmxn , 

For i = 1, ... , n 

For j = 1, ... ,n 

sum = 0.0 

For k = 1, ... ,m 

Next k 

Cij = sum 

Next j 

Next i 
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(b) 
B=AB, 

Forj=l, ... ,n 

Fori=l, ... ,n 

sum =0.0 

For k = 1, ... , n 

Next k 

veCi = sum 

Next i 

For e = 1, ... ,n 

bti = veCt 

Next e 

Next j 

Both examples illustrate how the introduction of a scalar 'sum' reduces the amount 

of subscripting. Also, the second example shows how, by using an n-vector, the storage of 

a third n x n matrix C is unnecessary. When the problem is large, optimisations of this 

kind prove to be very useful. 

Bearing in mind that it takes more work to perform some operations than others, 

great care has been taken to maintain uniformity in the program code written for the 

implementation of each method. Examples of some tasks common to a number of methods 

are: 

(a) The determination of the eigenvalues of a general matrix. 

(b) The computation of the upper Hessenberg form of a matrix. 

(c) The computation of the real Schur form of a matrix. 

(d) The computation of the companion form of a matrix. 

(e) The solution of the Lyapunov and Sylvester matrix equations. 

(f) The solution of a general linear system of order n. 

The program code for carrying out these tasks is not included in the Appendices since 

it is readily available in literature [NAGJ, [Faddeev & Faddeeva], [Golub, Nash & Van 

LoanJ, [Bartels & StewartJ, [Xinogalas et al], [Golub & Van LoanJ. 

182 



Three subroutines that merit greater attention and are taken from the Numerical 

Algorithm Group (NAG) are: 

1) E04HEF - sum of squares minimisation. 

This is a comprehensive modified Gauss-Newton algorithm for finding an uncon­

strained minimum of the sum of squares of M non-linear functions in N variables, 

with M ~ N. The routine is intended for functions which have continuous first 

and second derivatives but will usually work even if the derivatives have occasional 

discontinuities. 

The subroutine requires three exte~al functions, 

(a) to calculate the vector of function values and the Jacobian matrix of first deriva­

tives at any point. 

(b) to calculate the elements of the symmetric matrix 

M 

B(X) = Lf;(X)G;(X) at any point X 
i=l 

where G;(X) is the Hessian matrix of F;(X). 

For the matrix equations, f; are the elements of the matrix F(X), taken a row 

at a time. 

(c) to monitor the minimisation process. 

2) F04AXF - Sparse System Solver 

This subroutine calculates the approximate solution of a set of real sparse linear 

equations with a single right hand side. The coefficient matrix is decomposed by sub­

routine F01BRF then F04AXF computes the solution by block forward or backward 

substitution, using simple forward and backward substitution within each diagonal 

block [Duff]. 

Subroutine F01BRF obtains the LU decomposition of a permutation of A, 

PAQ=LU 

where P and Q are permutation matrices, L is unit lower triangular and U is upper 

triangular. The routine uses a sparse variant of Gaussian Elimination and the pivotal 

strategy is designed to compromise between maintaining sparsity and controlling loss 

of accuracy through round-off. 

Optionally the routine first permutes the matrix into block lower triangular form and 

then only decomposes the diagonal blocks. For some matrices this gives a considerable 

saving in storage and execution time. 
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3)· E04ABF - Line Search 

This subroutine searches for a low-accuracy minimum, in a given finite interVal, of 

a continuous function of a single variable, using function Values only. The method 

is based on quadratic interpolation and is intended for functions which have a con­

tinuous first derivative (although it will usually work if the derivative has occasional 

discontinuities ). 

It computes a sequence of Values which tend to a minimum of the function. The 

sequence is terminated when the function is deemed to have been sufficiently reduced 

as illustrated in the discussion of the line search in Section 6.3. 

The subroutines are written in FORTRAN 77 on the Honeywell computer using the 

Multics operating system. All computations are performed using double precision arith­

metic for added precision. 
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SECTION 7.2: Methods for Computing the Characteristic Polynomial 

From the discussion in Chapter 3, the problem of determining the coefficients of the 

characteristic polynomial of a matrix is well-conditioned suggesting that a stable method 

will yield an accurate solution for any matrix. It was shown that the stable version of 

LeVerriers method was the only method that could be considered as stable in this sense. 

The question therefore arises as to whether there is any need to consider any other method. 

The answer lies in the fact that the operations count for LeVerriers methodis 0(n4) as 

compared to O( n 3 ) for the other methods of Chapter 3 which, for large order problems, may 

prove to be significant. Allied with the fact that the other methods provide an accurate 

solution for certain classes of matrices, the choice of method for a particular problem may 

not be straightforward. 

We begin by illustrating the failings of some of the methods. 

Examples of Failure 

Consider the problem of determining the characteristic polynomial of 

A= 

0.001 1 2 3 

o 0.1 4 7 

-1 

1 

lO.O 1 1 

o 4 100 

(7.1) 

The matrix is ill-conditioned and the characteristic polynomial, correct to 4 decimal places 

IS, 

1(>') = >.4 - lO1.101>.3 + 65.2011>.2 + 3520.4339>' - 374.0104 

Using Danilevski's method, the reduction of A to upper Hessenberg form is stable, pro­

ducing small sub-diagonal elements. However, in the reduction of the Hessenberg matrix 

to the companion form, these small sub-diagonal elements give rise to errors that are so 

large that the computed coefficients are wholly inaccurate. 

The Block Frobenius method however, is accurate since it recognises the small sub­

diagonal elements and reduces the Hessenberg matrix to a block matrix with Frobenius 

matrices on its diagonal. 

Consider the following matrix, 

12 11 lO 2 1 

11 11 10 2 1 

A= (7.2) 

2 2 2 2 1 

1 1 1 1 1 

185 



The eigenvalues are not well-distributed, 

,\ = !. [1 _ ((2i - 1)11")]-1 
• 2 cos. 25 . , i = 1, ... , 12 

and the exact characteristic polynomial is, 

f(,\) = ,\12 -78,\11 + 1001,\10 _ 5005,\9 + 12870,\8 _ 19448,\7 + 18564,\6 

- 11628,\5 + 4845,\4 - 1330,\3 + 231,\2 - 23'\ + 1 

Using Krylov's method, the linear equation that must be solved therein is ill­

conditioned as a result of the eigenvalue distribution of A. Consequently, Gaussian Elimi­

nation fails to solve the linear equation and terminates with a division by zero condition, 

indicating the presence of a very small pivotal element. 

Using the Interpolation method, the closeness of the eigenvalues of A results in rela­

tively large rounding errors being produced. If we assume the accuracy to be determined 

by the norm, lai - ail, where ai and ai are the computed and exact coefficients respec­

tively, then for this example, la i - ad = 10-2 • That is, a loss of accuracy has resulted as 

a consequence of the rounding errors. 

Consider the following matrix, 

(7.3) 

This matrix is derogatory since the characteristic polynomial given by, 

f(,\) =,\3 -10,\2 +32,\ - 32 

does not coincide with the minimal polynomial, 

Consider Krylov's method. In exact arithmetic the matrices A2 and A 3 are, 

However, the error in the computed A2 and A 3 is less than 82 and 83 times the machine 

precision, respectively. That is, the error is small. 
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Next, we form the matrices T to solve the linear system Ta = b of (3.24) to determine 

the coefficients a;. Taking the elements of A, A2 and I a column at a time, gives 

T {: ~~,:] [: ~:] [:' -~' :] 

The Gaussian Elimination algorithm recognises that each of these matrices is singular 

and terminates the processing. Notice that the eigenvalues of the matrices T are well­

distributed. 

Now consider the matrix 

A~ [~~ : :'] 
(7.4) 

In this case, the matrix TJ , formed from the first column of A, A 2 and I is 

[

100 104-8 ~1] 
TJ = -2 -200 

2 200 

This matrix is clearly singular. However, using Gaussian Elimination with a low tolerance 

value, the poor distribution of eigenvalues of TJ contributes towards the generation of 
significant rounding errors. At the final stage of the Gaussian elimination process, the 

element in position (3,3) is very small, but not considered zero. Therefore the computed 

coefficients are wholly inaccurate. 

This example shows that to compute the coefficients accurately, it is not sufficient to 

let the Gaussian elimination algorithm decide whether the initial matrix is derogatory (by 

detecting a non-singular matrix T) or not. It is necessary also to investigate the eigenvalue 

distribution of the matrix. 

Operations counts and CPU times 

Now we look at the efficiency of the methods with respect to operations counts and 

CPU times. We begin by re-stating the operations counts and storage requirements as 

determined in Chapter 3. 

Method Operations Count Storage 

LeVerrier n4 _ n3 2n2 + 2n 

Block Frobenius (c = 5) 6n3 n 2 + n 

Danilevski 2n3 n 2 +2n 

Krylov .1 n3 + n2 
3 2n2 + 2n 

Interpolation 8n3 + n2 n 2 +2n 
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The operations counts ignore terms of O( n). An average figure of c = 5, corresponding 

to the number of Frobenius blocks, is taken for the Block Frobenius method. The storage 

requirements are also stated here but as stated in Chapter 1, mass storage systems are 

currently widely and cheaply available and, as such, storage limitations are no longer a 

significant concern." 

As discussed in the introduction, a more realistic estimate of the efficiency of an 

algorithm is the CPU time taken to perform the processing. The following table gives the 

CPU times and the accuracy attained by each method for computing the coefficients of 

the characteristic polynomials of various sized matrice~, given in Appendix 1.1. The times 

are given first, in seconds, followed by the accuracy. The machine precision is 10-18 • The 

examples were constructed so that all methods worked to their respective abilities. 

n LeVerrier Block Frobenius Danilevski Krylov Interpolation 

4 0.06 0.05 0.05 0.10 0.07 

0.0 10-17 10-17 10-16 10-15 

8 0.32 0.14 0.15 0.13 1.17 

10-16 10-17 10-15 10-14 10-15 

12 1.32 0.58 0.45 0.32 0.38 

10-15 10-16 10-15 10-13 . 10-13 

16 3.82 1.06 1.02 0.77 0.79 

10-+i 10-14 10-13 10-12 10-11 

For matrices of small order, all methods take about the same time to compute the 

coefficients. For larger problems, Le Verrier's method is significantly slower than the others. 

This effect was predicted in Chapter 3 since the operations count for LeVerrier's method 

is of O(n4) whereas it is of O(n3 ) for the other methods. From the accuracy point of view, 

the LeVerrier, Block Frobenius and Danilevski methods are consistently more accurate 

than the other two methods. 

Remarks 

These results, coupled with the earlier discussions on the stability of the methods, 

indicate that for determining the coefficients of a general matrix accurately, LeVerrier's 

method should be employed. If efficiency is a significant consideration then the Block 

Frobenius method is much faster with a little loss in accuracy of the coefficients. 

The other methods should not be ignored, however, since the problem may arise from 

a physical application where it is known that the matrix satisfies certain requirements con­

cerning eigenvalue distribution, defectiveness, singularity, etc, in which case these methods 

may prove to be much quicker than the Block Frobenius method. 
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SECTION 7.3: Methods for solving the Quadratic Matrix Equation 

In the examples of this section, the problems are all well-conditioned since otherwise 

no methods can be guaranteed to compute an accurate solution, regardless of how stable· 

they are. Therefore, the accuracy of the computed solutions will be wholly a reflection 

of the stability of the method used. This is due to the fact that since the methods are 

iterative, a solution can be refined by further iterations but only to within the accuracy 

allowed by the presence of rounding errors generated by the algorithm. 

Examples of Failure 

We begin by studying problems for which some of the methods fail. 

Consider 

[

-1 
X2+ 2 -6] [0 12] X+ =0 

-9 -2 14 
(7.5) 

The eigenvalues of the associated quadratic eigenvalue problem satisfy, 

such that 

A = {1,2,3,4} 

From the discussions and example of Section 1.6, this problem has solutions with the 

following eigenvalue pairings, 

(1,2), (1,3), (1,4), (2,3), (2,4) 

The Matrix Polynomial algorithm of Section 5.3 fails to compute a solution (7.5) because 

the problem does not possess a dominant solution. 

Using the Elimination method with al = -3, a2 = 2 gives 

R.X: =-s 

- [~ -6]X=_[2 
-6 2 

-12] 
-12 

(7.6) 

The matrix on the left hand side of (7.6) is singular sloldr tlHrt and (7.6) does not pos­

sess a unique solution. In fact, (7.6) has an infinite number of solutions. The Gaussian 

Elimination process terminates with a singularity condition. 

Now consider using Davis's Newton Iterations method to solve, 

X
2 
+ G ~) X + ( ::8 -12) =0 

-26 
(7.7) 
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with 

After 30 iterations, tile iterates are not converging. One reason may be that the starting 

matrix is not good enough . 

. Consider the same problem with a different starting matrix, 

x'(O) = (-2 0) 
. 0 -0.5 

From (5:19) the Newton iterate T; solves 

(7.8) 

Now, from Section (1.4) the problem of solving this Sylvester equation is ill-conditioned if 

IIJ-1 11 is large, where 

J = (X(O) + P) 0 I +10 X(O)T 

In fact 

J= diag(-3,-1.5,-1.5,0) 

is singular, which is an extreme form of ill-conditioning. Therefore the Newton Iterations 

method in this case gives rise to an ill-conditioned problem (7.8), the solution of which 

may .not exist. Rounding errors may cause J to be non-singular and ill-conditioned in 

which case the computed solution of (7.8) is inaccurate and may lie outside the problems 

region of convergence. 

As we observed in the examples in Section 6.3, the matrix function minimisation 

technique of thai section worked successfully on the two problems above. In fact, no. 

well-conditioned problems have been found that cause the method to fail. 

Convergence and Accuracy 

Now we look at the rate of convergence of the methods . 

. Example 1 

Consider the problem of (7.5), 

[

-1 
X2 + 2 -6] [ 0 

-9 X + -2 
12] = 0 
14 

(7.9) 

As discussed earlier, this problem does not possess a dominant solution and hence the 

Matrix Polynomial method does not work. 
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Using the Newton's Iterations method, the starting matrix is 

(7.10) 

X(O) = 1.526051 

H convergence is not achieved in 30 iterations, the strategy is restarted from X(O) = IIQII.! 
H this fails to converge, the iterations are restarted from X(O) = I [DavisJ. Starting from 

(7.10), the Newton iterations converge to 

in the following way, 

Iteration FNORM CPU time (secs) 

7 10-5 0.505 

8 10-10 0.554 

9 10-17 0.607 

The convergence here is quadratic. Further iterations cannot improve the accuracy beyond 
10-18 . 

Using the Elimination method, the formulae in (4.38) provide the starting point, 

(0) 
aj = (1.4566,1.4729), i = 1,2 

The method converges to X = [~ ~] in the following way, 

Iteration FNORM CPU time (secs) 

7 10-6 0.602 

12 10-12 0.827 

13 10-16 1.041 

Generally, the convergence here is only linear in the sense that each iteration improves 

accuracy by one decimal place. As with the Newton Iterations method, an accuracy of 

10-18 cannot be improved upon. 

Using the sum of squares minimisation approach, the starting matrix is I and the 

solution is X = [~ ~ ] , . 
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Iteration FNORM CPU time (secs) 

5 10-4 0.811 

6 10-8 0.898 

7 10-14 1.002 

8 10-18 1.105 

The convergence is quadratic and an accuracy of 10-18 is attained. 

Using the new matrix function minimisation technique of Section 6.3 with start-

ing .matrix I, the iterates converge to (~ ;), as follows 

Iteration FNORM CPU time (secs) 

4 10-2 0.325 

5 10-5 0.407 

6 10-6 0.491 

8 10-6 0.661 

Very few iterations are required to obtain a small FNORM. The maximum accuracy 

attainable however, is 10-6 . 

Example 2 

Consider solving the test problem [Lancaster, 2], 

-1 + 2a2 a - a(a2 + 2/P) 2a2(32 -af32 (0.2 + (32) 

2a _(a2 + 2(32) 2a(32 -(32(a2 + (32) 
Q= 

1 0 0 0 

0 1 0 0 

(3=a+1 
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The latent roots associated with the problem are,. 

{O, ±i, -0:, ±(1 + o:)i, o:± (1 + o:)i} 

When 0: = 1, a dominant solution of this problem exists, being (to 4 significant figures) 

The Newton Iterations method does not converge from any of the three starting 

points. 

The Matrix Polynomial method converges to the dominant solution Xl in 7 iter­

ations of the first step and 3 iterations of the second step with an accuracy of 10-9 and 

CPU time of 2.480 seconds. 

The Elimination method converges to XI, in the following way, 

Iteration FNORM CPU time (secs) 

10 10-5 2.051 

15 10-12 2.402 

18 10- 16 2.721 

An improvement in accuracy of one decimal point per iteration is achieved and this time 

an accuracy of 10-16 is attained. 

The sum of squares minimisation approach converges to X I, in the following way, 

Iteration FNORM CPU time (secs) 

7 10-3 7.314 

8 10-6 8.422 

9 10-12 9.596 
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The convergence is quadratic and an accuracy of 10-15 is attained at the 10th iteratio~. 

The matrix function minimisation approach converges to X 2 from the starting matrix 

I, in the following way, 

Iteration FNORM CPU time (secs) 

3 10-2 0.864 

4 10-4 1.109 

5 10-10 1.431 

6 10-15 1.728 

The convergence here is quadratic and the accuracy IS 10-15 attained at the 6th 

iteration. 

For this problem, a dominant solution exists so long as Cl! > O. Now as Cl! -+ 0, the 

functionality of the methods is affected, as follows: 

The Newton Iterations method still fails to converge from any of the three starting 

points. This is because the starting matrices are outside the region of convergence for this 

problem. 

The convergence rate for the Matrix Polynomial algorithm becomes considerably 

slower since the smallest eigenvalue of the dominant solution approaches the largest eigen­

value of the next solution. 

The convergence and accuracy properties of the other three methods remain unaf­

fected. 

Example 3 

In this example, there is an ill-conditioned solution. 

X2 +PX +Q =0 

122 41 40 26 25 -0.0001 0 0 0 0 

40 170 25 14 24 0 0 0 0 0 

P= 27 26 172 7 3 Q= 0 0 -1 0 0 

32 22 9 106 6 0 0 0 0 0 

31 28 -2 -1 165 0 0 0 0 -1000 

10-6 0 10-2 0 -6.218 

10-6 0 10-2 0 -4.24 

In fact, X= 10-6 0 10-2 0 -0.6044 

10-6 0 10-2 0 -0.0217 

10-6 0 10-2 0 48.338 
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with 
48.338 79.313 

0.006177 251.88 

A(X) = 10-7 A(P+X)= 112.244 

10-19 . 143.413 

10-23 196.494 
All four methods converge to this solution in the following way, 

Newton Iterations method: 

Iteration FNORM CPU time (secs) 

18 10-4 5.014 

22 10-10 5.578 

25 10-15 5.973 

Matrix Polynomial algorithm: 

3 iterations of the first step and at the second step, 

Iteration FNORM CPU time (secs) 

2 10-4 1.114 

3 10-7 2.212 

4 10-11 3.320 

sum of squares minimisation: 

Iteration FNORM CPU time (secs) 

11 10-3 9.310 

14 10-6 12.301 

17 1013 
~ 

15.491 

Elimination method: 

Iteration FNORM CPU time (secs) 

7 10-6 3.301 

9 10-9 4.011 

11 10-12 4.608 

14 10-16 5.685 
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matrix function minimisation: 

Iteration FNORM CPU time (secs) 

2 10-2 OA42 

3 10-8 0.S37 

4 10-14 1.114 
.. 

5 10-15 1.442 

The accuracy attained by all the methods is consistently high implying that the effect 

of rounding errors in their computations is relatively small. For this particular problem, 

the convergence for the Newton Iterations method and the sum of squares minimisation 

approach is no longer quadratic, probably due to the ill-conditioning of the solution matrix 

and the Jacobian near to the solution. Notice also, that this has not affected the matrix 

function minimisation technique which exhibits very fast convergence. 

CPU times and operations counts 

Now we look at the efficiency of the methods with respect to the operations counts 

and CPU times for algorithm execution, beginning With a review of the operations counts 

and storage requirements for each method, as determined in the previous chapters. 

Method Operations Count Storage 

Newton Iterations 21n3 m 5n2 

Matrix Polynomial 6n3 m 6n2 

Elimination Method (2n4 + 6n3 )m 6n2 + n 

Sum of Squares Minimisation (t n6 + n4 + 5n3 )m n4 + 4n2 

New (Matrix Function) Minimisation (~n4 + (26 + r)n3 )m n4 + Sn2 

where m is the number of iterations and r is the number of function evaluations for the line 

search, at each iteration. Terms of O(n2) and O(n) are ignored in the operations counts. 

The methods were used to solve problems of orders 6, S and 11 (see Appendix 1.2). 

The stopping criterion for the iterations is activated when the function norm is less than 

10-8 . The following table gives the results obtained. 
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n Elimination Newton Matrix Sum of Squares New 

Polynomial Minimisation Minimisation 

function norm 10-10 10-12 10-8 10-10 10-11 

iterations 6 10 12 5 and 10 10 9 

CPU time 7.0 7.2 3.9 15.2 9.1 

function norm 10-10 10-13 10-9 10-9 10-12 

iterations 8 11 14 6 and 9 12 8 

CPU time 10.0 15.2 5.4 28.2 17.9 

function norm 10-9 10-11 10-9 10-9 10-11 

iterations 11 11 14 8 and 11 14 10 

CPU time 18.9 29.3 10.6 48.0 33.5 

These results indicate that the quickest method is the Matrix Polynomial one, where 

the execution time of the stage 2 algorithm is about twice that for the stage 1 algorithm. 

The next fastest is the Elimination method where most time is taken in determining the 

matrices Rn-I and Sn-'I' The next quickest algorithm is the Newton Iterations approach 

followed by the New minimisation and the sum of squares minimisation methods. For the 

New minimisation method, the problem of determining the singular values of the Jacobian 

contributes over 30% to the total CPU time. Notice that although the Newton Iterations 

method and the New minimisation method are essentially Newton methods, the use of a 

line search technique in the latter significantly reduces the number of iterations performed. 

It is interesting to observe, firstly that' the relative difference between the CPU times 

for the methods corresponds to the relative differences between the operations counts for 

the methods and secondly that although the CPU times increase rapidly as n increases, 

the number of iterations required for convergence to occur does not necessarily increase. 

Remarks 

In practice, a dominant solution to a problem may not exist, in which case although 

the Matrix Polynomial algorithm is the fastest method, it will not yield a solution. 

It maybe that none of the three pre-defined points used to initiate the Newton Itera­

tions method is sufficiently 'close' to the solution for convergence to occur. Clearly other 

starting points can be used but there is no way to predict whether a particular point leads 

to convergence or not. Also, at any iteration, an ill-conditioned Sylvester equation, in 

the form of an ill-conditioned Jacobian, may need to be solved. In this case either the 
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condition is detected and the iterations terminated prematurely or the computed solution 

may be inaccurate and lie outside the region of convergence for the problem. 

The Elimination method, however, is not reliant on a suitable starting matrix and has 

been shown to work on virtually_ all problems considered. The exceptions arise when, at 

any iteration, the computed matrix R n - 1 is ill-conditioned or si?gular. It is not known 

beforehand whether this situation will occur or not and all we can do in this case is to 

restart the iterations from a different starting point. 

The sum of squares minimisation approach is globally convergent. However, the it­

erations may converge to a point that is not a solution to the problem in which case the 

iterations are restarted from a different starting point. 

The New minimisation approach also suffers from this disadvantage. The problem 

of an ill-conditioned Jacobian at an iteration is overcome by using the Steepest Descent 

direction, for that iteration only. However, if the J acobian is singular, then the direction is 

no longer a descent one and the computed estimate to the solution may not be any closer 

to the solution than the previous estimate. Additionally, subsequent Jacobians may prove 

to be ill-conditioned or singular. Most importantly however, if the Jacobian is non-singular 

then the method is globally convergent from any starting point. 

The remarks above in conjunction with the CPU time analysis, indicate that the Elim­

ination method and the New minimisation method do not suffer from any disadvantages 

additional to those exhibited by the Newton Iterations method and the Matrix Polynomial 

algorithm. In fact, both methods possess certain 'good' convergence properties. 
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SECTION 7.4: Methods for the Matrix Square Root Problem 

As discussed in Chapter 5, there are a number of methods in existence that compute 

the square root of a matrix, whether it is a general matrix or a special matrix. The purpose 

of this section is to compare the efficiency of the Elimination methods of Chapter 4 with 

those of Chapter 5. 

The different Elimination methods are, 

Elimination 1 is the Elimination method applied iteratively 

Elimination 2 

Elimination 3 
.is the method based upon the symmetric functions 

is the method that determines the coefficients of the 

characteristic polynomial of X by solving a set of 

I' -linear equations. 
The Matrix Square Root problem is one of solving, 

We begin with some examples. 

Selected Examples 
Example 1 

Consider 

X 2 
- [: ~ ~1] = 0 

-1 0 5 

The eigenvalues of A are 4, 4 +,)3, 4 -,)3. All methods converge to 

[ 

1.9667 0.2730 

X = 0.2730 1. 7100 

-0.2398 0.0166 

in the following way, 

-0.2398] 
0.0166 

2.2223 

Method No. of iterations CPU time (secs) Function norm 

Elimination 1 8 0.245 10-10 

Elimination 2 - 0.042 10-18 

Elimination 3 9 Newton iterations 0.077 10-10 

Newton 5 0.410 10-14 

Sign function 6 0.309 10-16 

Schur vectors - 0.092 10-15 

Minimisation 6 0.511 10-16 
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For the Newton method and the minimisation method, the initial estimate is 

Example 2 

(

1.2 X 105 

X2 - 230 

. 10 

x(O) = IIAIII 

230 

1.0 x 103 

1 

10) 1 =.0, 

0.5 . 
(

1.2 X 10
5
). 

A(X) = 1.0 X 103 

0.498 

Here, the eigenvalues of the coefficient matrix are very different from each other such that 

the condition number with respect to inversion is large. 

All methods converge to 

in the following way, 

Method 

Elimination 1 

Elimination 1 

Elimination· 2 

( 

346.41 

X = . 0.6084 

-0.0288 

No. of iterations 

35 

60 

-

0.6084 

31.6169 

-0.0304 

.-0.0288) 
-0.0304 

0.7050 

CPU time (secs) 

0.9091 

1.318 

0.030 

Elimination 3 11 Newton iterations ·0.091 

Newton 5 0.411 

Sign function 7 0.329 

Schur vectors - 0.120 

Minimisation 8 0.534 

The eigenvalues of the solution are, 

{346.411, 31.616, 0.706} 

The characteristic polynomial is, 

f(A) = A3 
- 378.733A2 + 11219.016A - 7732.204 
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10-1 

10-10 

10-14 

10-11 

10-14 

10-16 

10-12 

10-14 



The error analysis of Chapter 4 relating to the Elimination method and in particular 

the relationships (4.69) and (4.70) suggest that rounding errors may contaminate the solu­

tion if the determinant of the matrix X is large. Therefore the fact that the determinant 

of X is large and the problem has a spectral condition number of 2.4 x 106 may explain the 

slow convergence of Elimination 1. Nevertheless, as indicated in the table above, greater 

accuracy of solution can be obtained at the expense of many more iterations. 

It is clear that the condition of the problem has not affected the convergence properties 

of the other methods. 

Example 3 

0 1 2 3 

0 2 -3 2 X2_ = F(X) = 0 
0 0 1 -4 

0 0 0 3 

Here, the coefficient matrix is singular and the derivative, as defined in Chapter 2 is 

also singular. The methods converge as follows, 

Method No. of iterations CPU time (secs) Error norm 

Elimination 1 40 1417.8 10-10 

Elimination 2 - 270.9 10-13 

Elimination 3 55 Newton iterations 1011.7 10-12 

Newton 100 NO CONVERGENCE 

Sign function 100 NO CONVERGENCE 

Schur vectors 22.3 I 10-14 

Minimisation 100 NO CONVERGENCE 

Clearly, the fact that the coefficient matrix is given in a Schur form reduces the work 

required by the Schur vectors method. 

The Schur vectors method computes the square root with no problems but if the 

matrix had 2 zero eigenvalues then this method would have failed, as observed in Section 

5.4.3. 

The fact that the Jacobian matrix associated with the minimisation method is singular 

at the root explains why the method has failed. Consequently all those methods based on 

Newton iterations fail to converge. 
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The Jacobian matrix associated with the linear equations in Elimination 3is singular. 

However, the iterations do converge, although very slowly. 

This example illustrates the fact that the Elimination 'methods may be used to accu­

rately compute the square roots of a matrix when other well-established methods fail. 

Operations Counts and CPU times 

The table below summarises the operations counts and storage requirements for each. 

method. 

Method Operations Count Storage Requirements 

Elimination 1 (n 4 + 7n3 
- 2n2)m 5n2 +n 

Elimination 2 4 16 3 2:n Cl) n! n + n + ;= 1 z - ;!( n i)! 4n2 + 2n 

.. Elimination 3 n4 + 2n3 + (3n 3 +6n2)m 3n2 + n 

Newton 14n3 m 3n2 

Sign function 3n3 m 6n2 

Schur vectors 18n3 4n2 
. 

Minimisation (tn6 + n4 + 5n3 )m n4 + 3n2 

where m is the number of iterations. 

The methods were used to compute the square roots of various matrices, See Appendix 

1.3, with the following results, 

Method, n = 8 No. of iterations CPU time (secs) Function norm 

Elimination 1 10 4.1 10-15 

Elimination 2 - 0.6 10-17 

Elimination 3 9 Newton iterations 0.9 10-11 

Newton 7 2.2 10-15 

Sign function 6 1.4 10-15 

Schur vectors - 0.7 10-11 

Minimisation 9 8.0 10-14 
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Method, n = 12 No. of iterations CPU time (secs) Function norm 

Elimination 1 9 7.2 10-10 

Elimination 2 - 5.1 10-15 

Elimination 3 12 Newton iterations 5.4 10-10 

Newton 11 7.8 10-13 

Sign function 9 3.2 10-13 

Schur vectors - 2.9 10-10 

Minimisation 8 17.4 10-14 --
Method, n = 16 No. of iterations CPU time (secs) Function norm 

Elimination 1 11 23.3 10-11 

Elimination 2 - 61.1 10-9 

Elimination 3 15 Newton iterations 11.4 10-9 

Newton 12 .15.6 10-12 

Sign function 9 6.7 10-13 

Schur vectors - 4.2 10-8 

Minimisation 10 36.0 10-12 

For problems of a general order, the sign function method and the Schur vectors 

method provide the quickest means for computing the square roots. However, for small 

order problems (n < 10), Elimination 2 is very quick and very accurate, although for larger 

problems its CPU time increases significantly. The minimisation method is too slow to be 

of much use. 

Observe that as n increases, Elimination 2, Elimination 3 and the Schur vectors meth­

ods increasingly lose accuracy. This is because they are 'exact' methods as opposed to the 

other iterative methods, the latter also acting as solution-refining algorithms. 

From the discussion in Section 5.4, the matrix sign function method fails if the co­

efficient matrix possesses a real negative eigenvalue and the Newton method requires a 

starting matrix 'close' to the solution and a well-conditioned Jacobian at each iteration 

otherwise converge may be very slow or may not occur at all. 

Therefore, the results and analysis of this section show that for certain problems it 

may be better to use the Elimination methods rather than the others, as illustrated by the 

behaviour of Elimination 2 for small problems and by the results of Example 2. 
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SECTION 7.5: Methods for the Algebraic Riccati Equation 

The operations count and storage requirements for each method are gIven In the 

following table, 

Method Operations Count Storage Requirements 

Eigenvector Method 100n3 10n2 

Newton Iterations (25m + 16)n3 9n2 

Schur Vectors 75n3 8n2 

Sparse-Newton Method (23n 3 
- 2n2 )m 12n2 

where m is the number of iterations. The operations count given above, for the new Sparse­

Newton method of Chapter 6, is for problems with real Jacobians at each iteration. Now 

consider the following example. 

Example 

G~)x+xG ~)-xG) (0 l)X+G ~)=O 

where G -- (00 01) ~ 0 as required. 

and H = (~ ~) > 0 as required. 

Method No. of iterations CPU time (secs) Function norm 

Eigenvector method - 0.3 10-11 

Newton Iterations 5 0.4 10-12 

Schur Vectors - 0.5 10-10 

Sparse-Newton method 4 0.5 10-9 

Notice that although the Newton method and the Sparse-Newton method are based 

upon Newton iterations, they converge after a different number of iterations as a conse­

quence of updating the solution matrix in different ways. 

Since the algebraic Riccati equation of optimal control is always assumed to be stabi­

lizable and observable, a non-negative definite solution always exists. 
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The methods were used to solve a number of problems with the following results. The 

coefficient matrices and the solution matrix ,are given in Appendix 1.4. 

Method, n = 4 Iterations CPU time(secs) Function norm 

Eigenvector - 0.6 10-13 

Newton Iterations 5 1.8 10-16 

Schur Vectors - 0.6 10-16 

Sparse-Newton 6 1.2 10-16 

Method, n = 8 Iterations CPU time (secs) Function norm 

Eigenvector - 2.7 10-12 

Newton Iterations 7 4.3 10-15 

Schur Vectors - 3.1 10-14 

Sparse-Newton 8 3.9 10-16 

Method, n = 12 Iterations CPU time (secs) Function norm 

Eigenvector - 6.6 10-10 

Newton Iterations 11 13.2 10-15 

Schur Vectors - 6.1 10-13 

Sparse-Newton 9 10.8 10-15 

The problems were chosen to be stabilizable and observable and well-conditioned such 

that all methods converged to a solution. Clearly the vector methods are much quicker 

than the Newton-based methods, particularly for increasing n. However, since the vector 

methods are non-iterative, they are less accurate than the iterative methods, which are 

solution-refining. The implication here is that any significant rounding errors in the vector 

methods may contaminate the solution. 

The Schur vectors method is faster than the eigenvector method and is more stable 

since from Section 5.2, the eigenvectors are more likely to be ill-conditioned than the Schur 

vectors. 
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The new iterative method based on a Newton step and the solution of a sparse linear 

system at each iteration, converges faster than Kleinman's Newton method. This is because 

the update is computed by a more efficient technique, provided that the Jacobian possesses 

real eigenvalues at each iteration. 

The conclusion is that the vectors approach, in particular the Schur vectors method, 

is in general the best technique for computing a solution of the algebraic lliccati equation. 

However, for when the associated Hamiltonian matrix possesses ill-condition eigenvectors 

and/or Schur vectors, then the iterative methods may prove to be the most efficient and 

most accurate. 

No mention of the Sign Function method has been presented here since the re­

formulation of this method in Section 5.2 is a relatively new technique. However, all 

indications suggest that it compares favourably with the Schur vectors approach [Byers, 

3J. 
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CHAPTER 8: CONCLUSIONS 

The initial aim of this thesis was to present an analysis of the Elimination method 

for the numerical solution of the general unilateral "quadratic matrix equation (QME) 

and to compare its numerical and functional properties with those of existing methods. 

Progressively, the field of study widened to include two other types of quadratic matrix 

equation, the matrix square root and the algebraic Riccati equation (ARE). In addition to 

the original aims two new approaches to solving the QME and the ARE were proposed. 

Central to the numerical issues were the discussions on conditioning, stability and 

accuracy. Conditioning analysis was performed not only on the main problems of solving 

the matrix equations but also on the various problems arising from within the methods." 

This analysis along with the stability analysis of the methods determined the accuracy of 

the methods. 

In these days of large-order systems and the requirement for fast problem-solving 

algorithms, the speed of the methods was considered to be a significant factor in comparing 

the methods. Two units of measure were used in this thesis, the operations count and the 

Central Processor Unit (CPU) time. 

Current methods for the solution of the QME will not always provide a solution, 

the Newton Iterations approach relying on a good starting point for the iterations and the 

Matrix Polynomial algorithm succeeding only on problems possessing a dominant solution. 

The Elimination method was shown to compare favourably with the Newton Iterations 

method with respect to accuracy and efficiency. It was shown to work on problems for 

which the other methods failed. Significantly, the Elimination method requires only n 

values as a starting point to the iterations compared with n 2 for the other methods. The 

analysis of the Elimination method raised some interesting points which may form the 

basis of further study, as follows, 

conditions on the convergence of the Elimination method 

accelerating the convergence from near the solutions 

restarting algorithms for when the Elimination method fails 

A new minimisation method was proposed. This was shown to work on problems for 

which other methods failed and shown to be globally convergent and to yield accurate 

solutions. The sum of squares minimisation approach is impractical for large problems but 

for when no other method will work, this approach should be used. 

In this thesis, we have studied a number of methods for the numerical solution of 

the matrix square root problem including three new approaches based on the Elimination 

method. The analyses of Chapters 4 and 5 showed that all the methods possests at least 

one limitation that prevents them§ computing a solution and as such no one method 

can be guaranteed to always yield a solution. For general well-conditioned problems, the 
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Schur vectors approach was shown to be the quickest and the most stable of all the meth­

ods considered. However, it yielded solutions that were generally less accurate than those 

computed by the iterative, self-refining methods. The Elimination methods did not, in 

general, compare favourably against the best of the existing methods. One exception is 

Elimination 2 which was shown to be very fast and accurate for lower order problems. The 

sum of squares minimisation technique is computationally too expensive to be considered 

seriously although there may be case for it to be used when the coefficient matrix is such 

that no other method can expect to compute a solution. For problems where informa­

tion pertaining to the coefficient matrix is known beforehand, particular methods may be 

employed. 

The three existing methods for solving the ARE discussed in this thesis have all had 

varying levels of success. The eigenvector method has recently been superceded by the 

Schur vectors method because the latter is more stable and slightly faster as borne out 

by the experiments in Chapter 7. However, since it is an exact method rather than an 

iterative one, it does tend to lose accuracy for larger problems. The Newton iterations 

method is slower than the Schur vectors method but is more accurate. Therefore the 

choice of method is dependent on whether accuracy or efficiency is of greater importance. 

Chapter 6 proposed a new approach to solving the ARE that is base~on a reformulation of 

Newton's method. This new approach is shown to be stable and to require fewer iterations 

than Newton's method to converge .. However, it is more efficient than Newton's method 

only under certain conditions. 

To summarise, this thesis has studied the Elimination method for solving the QME 

and the matrix square root problem. Additionally, it .has proposed two new approaches 

to solving the QME and ARE. Finally, it has compared many methods for computing the 

coefficients of the characteristic polynomial of a matrix and for solving the three types of 

matrix equations mentioned above, basing the comparison on the functionality, stability 

and efficiency of the methods and the accuracy of the computed solution. 
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APPENDIX 1 

A1.1 : The Characteristic Polynomial 

The characteristic polynomial of a matrix A is given by, 

N = 4 

A = 

[ 1 
7 

10 
8 
7 

6 
8 

10 
9 

,1] 
The eigenvalues are 30.288,6853458 

3.8580574559 
0.1015004840 
0.8431071499 

The coefficients are -35.0 
146.0 

-100.0 
1.0 
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N = 8 

A = -1 -5 3 7 -9 -2 -8 0 
1 -1 0 0 0 0 0 0 
0 1 -2 2 1 -3 -100 -0.3 
0 0 1 -5 0 0 0 0 
0 0 0 1 -10 0 0 0 
0 0 0 3 1 -0.1 0 0 
0 0 0 -2 0 1 -0.01 1 
0 0 0 0 0 0 1 -5 

The eigenvalues are -9.9972305317 
-5.8264679893 + 0.46691640328 i 
-5.8264679893 - 0.46691640328 i 
-1.0370943194 + 0.22347318691 i 
-1.0370943194 - 0.22347318691 i 

2.6044226916 
1.9946555455 

-4.9847230879 

The coefficients are 24.110 
214.6410 
737.3540 

-738.5570 
-8533.8360 

-10641. 3360 
-2969.6770 
87598.2150 

ALl 2 of 4 



N = 12 

A = (a •• ) = 1 + j/i 
IJ 

Tbe.eigenvalues are 22.8774881521 
-3.7938972379 

0.6630323284 + 0.9245702233 i 
0.6630323284 - 0.9245702233 i 
0.0552050803 +0.3093216119 i 
0.0552050803 - 0.3093216119 i 
0.5636960544 + 0.5750463850 i 
0.5636960544 - 0.5750463850 i 
0.5897965489 + 0.2526872626 i 
0.5897965489 - 0.2526872626 i 
0.6655561223 
0.5073929395 

The coefficients are -24.0 
19.0 

180.0 
-672.0 
1210.0 

-1370.0 
1051.0 
-560.0 

209.0 
-55.0 

9.0 
-1.0 
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N = 16 

A = a U = n/ (i + j) 

The eigenva1ues are 

The coefficients are 

ALl 

18.4431977471 
2.7571118200 

-1. 9732247968 
1. 6813358119 
1. 3616405514 

-1. 3988888872 
-1. 1303948354 
-0.7983785860 

0.7534387161 
0.6799857692 

-0.5292013529 
0.4509020252 

-0.2581613032 
0.3114454330 

-0.3508081123 
0.0 

-20.0 
19.0 

190.0 
-168.0 
-625.0 

419.0 
905.0 

-424.0 
-596.0 

191.0 
179.0 

-350.0 
-234.0 

343.0 
-512.0 

0.0 
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Al.2 : The Quadratic Matrix Equation 
------------------------------------

X2.+ PX + Q = 0 

N = 6 

P = -2 -1 0 0 -3 0 
0 -1 -1 2 0 1 
0 2 0 1 2 0 

-1 ·0 0 1 0 -2 
1 0 4 0 1 -1 
0 2 0 0 4 2 

Q = -3 -1 0 0 -3 0 
0 -6 -2 4 0 2 
0 -6 -16 6 6 2 
3 1 0 -20 3 -10 

-3 -1 -16 4-25 -6 
0 -6 -2 4 -20 -50 

A dominant solution is, 

X = 3 1 0 0 3 0 
0 3 1 -2 0 -1 
0 0 4 -1 -2 0 
0 0 0 4 0 2 
0 0 0 0 5 1 
0 0 0 0 0 6 

where the eigenvalues are such that, 

" (X) = 3 ~(P+X) = -2 
3 -1 
4 0 
4 1 
5 1 
6 2 

All methods converge to this.dominant solution. 
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N = 8 

P = -3 1 0 0 0 0 0 0 
1 -3 1 0 0 0 0 0 
0 1 -3 1 0 0 0 0 
0 0 1 -3 1 0 0 o· 
0 0 0 1 -3 1 0 0 
0 0 0 0 1 -3 1 0 
0 0 0 0 0 1 -3 1 
0 0 0 0 0 0 1 -3 

P = 2 -1 0 0 0 0 0 0 
-1 2 -1 0 0 0 0 0 

0 -1 2 -1 0 0 0 0 
0 0 -1 2 -1 0 0 0 
0 0 0 -1 2 -1 0 0 
0 0 0 0 -1 2 -1 0 
0 0 0 0 0 -1 2 -1 
0 0 0 0 0 0 -1 2 

All methods converge to the following dominant solution 

X = diag{l,l,l,l,l,l,l,l} = 19 

and >,,(X) > A(P+X) 
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N = 11 

P = - 16 12 1 1 3 0 0 0 0 0 0 
13 16 12 1 1 2 0 0 0 0 0 
12 13 ·15 11 1 1 0 0 0 0 0 
12 11 12 14 10 1 1 0 0 0 0 
14 11 10 11 13 9 1 1 0 0 0 
11 16 10 9 10 12 8 1 1 0 0 
11 10 9 9 8 9 11 7 1 1 0 
11 10 9 8 8 7 8 10 6 1 1 
11 10 9 8 7 7 6 7 9 5 1 
11 10 9 8 7 6 6 5 6 8 3 
11 10 9 8 7 6 5 3 4 4 6 

Q = 132 120 63 40 28 18 0 0 0 0 0 
121 110 81 24 0 -6 -10 0 0 0 0 
165 150 126 88 35 12 5 0 0 0 0 
176 160 135 112 77 30 10 4 0 0 0 
209 190 144 120 98 66 25 8 3 0 0 
242 220 198 128 105 84 55 20 6 2 0 
176 160 144 128 112 90 70 44 15 4 1 
176 160 144 128 112 96 75 56 33 10 2 
165 150 135 120 105 90 75 56 39 20 4 
143 130 117 104 91 78 65 52 36 22 8 

99 90 81 72 63 54 45 36 27 16 7 

All methods converged to the dominant solution, 

X = 11 10 0 0 0 0 0 0 0 0 0 
11 10 9 0 0 0 0 0 0 0 0 
11 10 9 8 0 0 0 0 0 0 0 
11 10 9 8 7 0 0 0 0 0 0 
11 10 9 8 7 6 0 0 0 0 0 
11 10 9 8 7 6 5 0 0 0 0 
11 10 9 8 7 6 5 4 0 0 0 
11 10 9 8 7 6 5 4 3 0 0 
11 10 9 8 7 6 5 4 3 2 0 
11 10 9 8 7 6 5 4 3 2 1 
11 10 9 8 7 6 5 4 3 2 1 

where A(X) > A(P+X) 

A1.2 3 of 3 



A1.3 : The Matrix Square Root Problem 
-------------------------------------

N = 8 

A = 22 21 9 9 21 21 6 6 
21 22 9 9 21 21 6 6 
7.5 7.5 13 9 7.5 7.5 9 9 
7.5 7.5 9 13 7.5 7.5 9 9 
21 2.1 6 6 22 21 9 9 
21 21 6 6 21 22 9 9 
7.5 7.5 9 9 7.5 7.5 13 9 
7.5 7.5 9 9 7.5 7.5 13 9 

A square root is, 

X = 3 2 1 1 2 2 0 0 
2 3 1 1 2 2 0 0 
0.5 0.5 3 1 0.5 0.5 1 1 
0.5 0.5 1 3 0.5 0.5 1 1 
2 2 0 0 3 2 1 1 
2 2 0 0 2 3 1 1 
0.5 0.5 1 1 0.5 0.5 3 1 
0.5 0.5 1 1 0.5 0.5 1 3 

All methods converge to this solution. 
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N = 12 

A = 3 0 0.5 0 0 0 0 0 0 0 0 0 
0 2 0 0.5 0 0 0 0 0 0 0 0 
0.5 0 3 0 0.5 0 0 0 0 0 0 0 
0 0.5 0 0.5 0 0 0 0 0 0 0 0 
0 0 0.5 0 3 0 0.5 0 0 0 0 0 
0 0 0 0.5 0 0.5 0 0 0 0 0 0 
0 0 0 0 0.5 0 3 0 0.5 0 0 0 
0 0 0 0 0 0.5 0 0.5 0 0 0 0 
0 0 0 0 0 0 0.5 0 3 0 0.5 0 
0 0 0 0 0 0 0 0.5 0 0.5 0 0 
0 0 0 0 0 0 0 0 0.5 0 2 0 
0 0 0 0 0 0 0 0 0 0.5 0 3 

A square root is, 

X = 1. 738 0 1.434 0 -0.556(-2) 0 
0 1.433 0 0.230 0 0 

-0.143 0 1. 744 0 0.143 0 
0 -0.230 0 0.744 0 0 

-0.586(-2) 0 -0.143 0 1. 744 0 
0 -0.364(-1) 0 -0.339 0 0.707 

-0.478(-3) 0 -0.581(-2) 0 -0.143 0 
0 0.146(-1) 0 -0.803(-1) 0 0.354 

-0.503(-4) 0 -0.476(-3) 0 -0.593(-2) 0 
0 -0.810(-2) 0 -0.389(-1) 0 O. 884(-1) 
0.782(-5) 0 0.659(-4) 0 0.625(-3) 0 
0 0.121(-"2) 0 0.568(-2) 0 0.117(-1) 

0.478(-3) 0 -0.503(-4) 0 0.782(-5) 0 
0 0 0 0 0 0 

-0.588(-2) 0 0.486(-3) 0 -0.660(-4) 0 
0 0 0 0 0 0 
0.143 0 -0.593(-2) 0 0.625(-3) 0 
0 0 0 0 0 0 

-1. 744 0 0.144 0 -0.725(-2) 0 
0 0.707 0 0 0 0 

-0.144 0 1. 731 0 0.159 0 
0 -0.354 0 0.707 0 0 
0.725(-2) 0 0.159 0 1.405 0 
0 0.297(-1) 0 0.205 0 1. 732 

All methods converge to this solution 
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N = 16 

A = 127 50 32 28 6 2 1 0 0 0 0 0 0 0 0 0 
50 159 78 38 30 7 2 1 0 0 0 0 0 0 0 0 
32 78 165 80 39 30 7 2 1 0 0 0 0 0 0 0 
28 38 80 166 80 39 30 7 2 1 0 0 0 0 0 0 

6 30 39 80 166 80 39 30 7 2 1 0 0 0 0 0 
2 7 30 39 80 166 80 39 30 7 2 1 0 0 0 0 
1 2 7 30 39 80 166 80 39 30 7 2 1 0 0 0 
0 1 2 7 30 39 80 166 80 39 30 7 2 1 0 0 
0 0 1 2 7 30 39 80 166 80 39 30 7 2 1 0 
0 0 0 1 2 7 30 39 80 166 80 39 30 7 2 1 
0 0 0 0 1 2 7 30 39 80 166 80 39 30 7 2 
0 0 0 0 0 1 2 7 30 39 80 166 80 39 30 6 
0 0 0 0 0 0 1 2 7 30 39 80 166 80 38 28 
0 0 0 0 0 0 0 1 2 7 30 39 80 165 78 32 
0 0 0 0 0 0 0 0 1 2 7 30 39 80 159 50 
0 0 0 0 0 0 0 0 0 1 2 6 28 32 50 127 

A squsre root is, 

X = 11 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
2 12 3 1 1 0 0 0 0 0 0 0 0 0 0 0 
1 3 12 3 1 1 0 0 0 0 0 0 0 0 0 0 
1 1 3 12 3 1 1 0 0 0 0 0 0 0 0 0 
0 1 1 3 12 3 1 1 0 0 0 0 0 0 0 0 
0 0 1 1 3 12 3 1 1 0 0 0 0 0 0 0 
0 0 0 1 1 3 12 3 1 1 0 0 0 0 0 0 
0 0 0 0 1 1 3 12 3 1 1 0 0 0 0 0 
0 0 0 0 0 1 1 3 12 3 1 1 0 0 0 0 
0 0 0 0 0 0 1 1 3 12 3 1 1 0 0 0 
0 0 0 0 0 0 0 1 1 3 12 3 1 1 0 0 
0 0 0 0 0 0 0 0 1 1 3 12 3 1 1 0 
0 0 0 0 0 0 0 0 0 1 1 3 12 3 1 1 
0 0 0 0 0 0 0 0 0 0 1 1 3 12 3 1 
0 0 0 0 0 0 0 0 0 0 0 1 1 3 12 2 
0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 11 

All methods converge to this solution 
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.,. 
A X .+ X A 

where 

... 
C C ~ 0, H=H"'> o 

N = 4 

,. P 1 1 ;]' H = 

U 
4 

-0.5 1 5 
0 -1.5 1 

-2 -2 -3 -2 1 

... ~ 

'ur 0] u G = C C 2 1 = 6 
4 
2 
0 

Two solutions are, 

Xl = 14 

X, . [.'.120 2.200 1.662 0.'" 1 -3.939 4.452 5.216 0.934 
-0.688 0.320 1.513 0.209 

1.812 -1. 918 -2.903 0.634 

>-.( X1) = l LO 1 " '.) r""] 1.0 1.0 
1.0 1.0 
1.0 1.0 

The 
The 
The 
The 

eigenvector method converges to Xl 
Newton iterations method converges to 
Schur vectors method converges to Xl 
new Sparse approach converges to Xl 

A1.4 

1 

1] 1 
4 
2 

!l 3 
2 
1 
0 
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N = 8 

A = -0.5 1 1 1 1 1 1 1 
-2 -1 1 1 1 1 1 1 

0 -1 -1 1 1 1 1 1 
-1 -1 -2 -1.5 1 1 1 1 

0 -1 0 -1 -1.5 1 1 1 
-1 -1 -1 -1 -2 -2 1 1 

0 -1 0 -1 0 -1 -2 1 
-1 -1 -1 -1 -1 -1 -2 -1.5 

H = 2 1 0 0 0 0 0 0 
1 2 0 0 0 0 0 0 
0 0 3 1 0 0 0 0 
0 0 1 3 0 0 0 0 
0 0 0 0 4 1 0 0 
0 0 0 0 1 4 0 0 
0 0 0 0 0 0 5 1 
0 0 0 0 0 0 1 5 

c"'" = {I 0 1 0 1 0 1 0) 

Two solutions are, 

Xl = 18 

X = -3.53 2.645 -2.277 -1.284 1.639 2 -12.885 3.364 4.727 -5.305 5.250 
-11.607 2.499 4.864 -4.661 4.687 
-17.183 1.553 8.012 -6.585 7.1821 
-12.907 1.575 5.582 -5.567 6.349 
-14.749 0.178 8.111 -6.880 6.295 
-3.599 0.164 4.665 -3.992 3.663 
-6.546 -1. 344 5.120 -3.508 2.955 

The eigenvector method converges to X 1. 
The Newton iterations method converges to Xz 
The Schur vectors method converges to Xz 
The new Sparse approach converges to X 1. 

A1.4 

1.299 0.331 -0.101 
-3.862 0.344 -3.103 
-3.468 0.353 -2.594 
-5.202 0.274 -5.010 
-3.894 0.253 -3.541 
-3.501 0.102 -4.930 
-2.622 1.066 -2.841 
-2.043 -0.120 -1. 964 
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N = 12 

where 

a' • 1 J = (-1) (i-I) 

{ 

i+l 

h· . = l.J 

c' 1 = 

{ 

---r-
1 
o 

1 
0 

1 

Two solutions are, 

x = 1 12 . 

X = 

F-!-" J d : In , 

where 

e = 0.251 

when i = j 

when j > i 
otherwise 

when i = j 
otherwise 

for i = 1, ...... , n 

fT = {1.071, 0.892, 0.712, 0.532, 0.352, 0.176, 0, 0, 0, 0, 0 } 

i = 1, .•••. , 11 

The eigenvector method converges to X 1 
The Newton iterations method converges to X2 
The Schur vectors method converges to X2 The new Sparse approach converges to Xl 
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APPENDIX 2 

The subroutines in this Appendix relate to the Elimination method 
and the new methods for the solutions of the quadratic matrix 
equations. The calling routines and the subroutines called are 
given below along with their corresponding Appendix references. 

subroutine QMESOSMIN A2.1 
calls QMEFUN A2.2 
calls QMEHES A2.3 
calls QMEMON A2.4 

subroutine SARENS A2.S 
calls SPARYSYS A2.6 

subroutine NEWMIN A2.7 
calls CONOEST A2.8 
calls LINESRCH A2.9 

subroutine INITIALCPX A2.10 

subroutine ELIMINMETH A2.11 

subroutine FUNNORM A2.12 

subroutine CHARPOLY A2.13 
calls BLOFROB A2.14 
calls TRANSFORM A2.1S 
calls POLYOET A2.16 
calls POLYMULT A2.17 
calls POLYAOO A2.18 

subroutine EIGENVALUES A2.19 

subroutine SQROOT A2.20 

subroutine COROOT A2.21 

subroutine CPXSOSMIN A2.22 
calls CPXFUN A2.23 
calls CPXHES A2.24 
calls CPXMON A2.2S 



The subroutines may be incorporated into programs in the following 
way 

i. Solving the quadratic matrix equation by minimising the n' 
constituent non-linear equations, 

CALL QHESOSHIN 

ii. Solving the algebraic riccati equation by using the new 
sparse approach of Section 6.2, 

CALL SARENS 

iii. Solving the quadratic matrix equation by using the new 
global approach of Section 6.3, 

CALL NEWHIN 

iv. Solving the quadratic matrix equation and the matrix square 
root problem by using the Elimination method iteratively, 

CALL INITIALCPX 

CALL 
CALL 
CALL 

ELIHINMETH } 
FUNNORM 
CHAR POLY 

repeat until convergence 

v. Solving the matrix square root problem by using the 
Elimination method 2, 

CALL EIGENVALUES 
CALL SQROOT 
CALL COROOT 
CALL ELIMINMETH 

vi. Solving the matrix square root problem by using the 
Elimination method 3, 

CALL INITIALCPX 
CALL CPXSOSMIN 
CALL ELIMINMETH 
CALL FUNNORM 



C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE QMESOSMIN(X,P,Q,N,NA,TOL,ITERMAX,ITERNO,FNORM,NF,IFAIL) 

Description 
-----------

This subroutine solves a system of n**2 non-linear 
equations in n**2 unknown variables. 
The function relates the known variables p(i,j) and q(i,j) 
to the unknown variables x(i,j). 
The matrices P, Q and X are related by the equation: 

X2.+ PX + Q =O 
The method is a comprehensive modified Gauss-Newton·algorithm 
. for finding· an unconstrained minimum of a sum of squares function 
At each iteration a line search is used to ensure that convergence 
is global (under certain conditions on the Jacobian matrix) and 
the choice of update, a Gauss-Newton or a full Newton step, is 
dependant on the choice of update depends on the reduction in 
the sum of squares obtained during the last iteration. 

Input Parameters 

P - Coefficient matrix P 
Q - Coefficient matrix Q 
X - Initial estimate to the solution of the problem 
N - The size of the matrices P, Q, X 
NA - Row dimension of matrices P, Q, X in calling program 
TOL - Convergence criteria on the norm of the function 

vector 
If:: f( i) : :<=. TOL then method is deemed to have 

converged. 
ITERMAX - The maximum number of iterations to be executed by 

the routine 

Output Parameters 

lTERNO 

X 
FNORM 
NF 
IFAIL 

- The iteration step at which the routine returns to 
main program 

- The computed estimates to the solution matrix 
- The Euclidean norm of the function matrix at solution 
- Specifies the number of function evaluations performed 
- On output: 

If IFAIL = 1 the method converged to within the 
required tolerance in ITERNO iterations. 

If IFAIL = 2 the method has not converged to within the 
required tolerance in ITERMAX iterations. 

If IFAIL = 3 the method is diverging. 
If IFAIL = 4 the Jacobian matrix is singular at 

iteration ITERNO 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 

C 

Subroutine called : 

E04HEF - NAG routine that minimises a sum of squares scalar 

NN 
QMEFUN 

QMEHESS 

QMEMON 
IPRINT 

ETA 

function. 
This subroutine requires the following parameters : 

- The dimension of the problem. 
- Subroutine that calculates the vector of values f(x) 

and the Jacobian matrix at the current point X. 
- Subroutine that calculates the Hessiam matrix at the 

current point X. 
- Subroutine that moniters the minimisation process. 
- Specifies the frequency with which QMEMON is to be 

called. QMEMON is called every IPRINT iterations. 
- Specifies the accuracy of the line search at each 

iteration. ETA lies between 0 and 1. The line search 
is more accurate for small values of ETA, at a cost of 
a greater number of calls to QMEFUN. 

STEPMX - An estimate of the Euclidean norm between the solution 
and the starting point. For a general purpose algorithm 
a large value is suggested. 

Y - The vector of dimension NN, the current estimate to the 

FVEC 
FJAC 
LJ 

solution. 
- Residual vector of dimension NN. 
- Jacobian at the final point. 
- First dimension of FJAC as declared in calling program 

S - Contains the singular values of FJAC at the final point 
V - The matrix associated with the SVD, J = USV T of the 

Jacobian at the final point; 
- First dimension of V as declared in calling program. LV 

IW 
LIW 
W 
LW 

- Integer array of dimension at least l,used as workspace 
- Actual length if IW. 
- Real array used as workspace. 

Actual length if W as declared in calling program. 
LW > 8*NN + 3*NN*NN 

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N) 
DOUBLE PRECISION S(50),V(50,50),W(200),Y(50),FJAC(50,50),FVEC(50) 
DOUBLE PRECISION FNORM,ETA,TOL,STEPMX 
INTEGER IFAIL,IPRINT,LIW,LJ,LV,LW,ITERMAX,NF,ITERNO,N,NA,NN,I,J 
INTEGER IW(99) 
EXTERNAL QMEFUN,QMEHES,QMEMON 
COMMON /BLKl/P,Q 
COMMON /BLK2/N 
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C 

C 

NN = N*N 
IPRINT = 1 
ETA = 0.9 
STEPHX = 100000.0 
DO 1 I=1,N 

DO 2 J=1,N 
2 Y«(I-1)*N+J) = X(I,J) 
1 CONTINUE 

LJ=50 
LV=50 
LIW=99 
LW=200 
IFAIL=1 
CALL E04HEF(NN,NN,QHEFUN,QHEHES,QHEHON,IPRINT,ITERHAX,ETA,TOL, 

1STEPHX,Y,FNORH,FVEC,FJAC,LJ,S,V,LV,ITERNO,NF,IW,LIW,W,LW,IFAIL) 

RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 

C 

SUBROUTINE QMEFUN(IFLAG,MM,NN,XC,FVECC,FJACC,LJC,IW,LIW,W,LW) 

Description 
-----------

This subroutine computes the function vector and the 
Jacobian matrix for the problem. The calling routine is the 
NAG module E04HEF which itself is cailed from QMESOSMIN. 
For details of input and output parameters, see QMESOSMIN. 

DOUBLE PRECISION FJACC(LJC,NN),FVECC(NN),W(LW),XC(NN) 
DOUBLE PRECISION P(NA,N),Q(NA,N),SUM1,SUM2' 
INTEGER IFLAG,LIW,LJC,LW,MM,NN,N,S1,S2,S3,S4,SS,S6 
INTEGER IW(LIW) 
COMMON /BLK1/P,Q 
COMMON /BLK2/N,NA 

C Compute the function vector 
C 

C 

DO 1 I=1,N 
S1=(I-1)*N 
DO 2 J=1,N 

SUM1=O.ODO 
DO 3 K=1,N 

DO 4 K=1,N 
4 FJACC(I,J) = O.ODO 
3 SUM1 = SUM1 + (XC(S1+K) + P(I,K))*XC((K-1)*N+J) 
2 FVECC(S1+J) = SUM1 + Q(I,J) 
1 CONTINUE 

C Compute the Jacobian matrix' 
C 

C 

C 

DO 5 I=1,N 
S1 = (I-1)*N 
DO 6 J=1,N 

S2 = (J-l)*N 
SUM1 = XC(S2+I) 
SUM2 = XC(S1+J) + P(I,J) 
DO 7 K=1,N 

S3 = S1 + K 
S4 = S2 + K 
S5 = (K-1)*N 
S6 = S5 + I 
S5 = S5 + J 
FJACC(S3,S4) = SUM1 

7 FJACC(S5,S6) = FJACC(S5,S6) + SUM2 
6 CONTINUE 
5 CONTINUE 

RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 

C 

SUBROUTINE QMEHES(IFLAG,MM,NN,FVECC,XC,B,LB,IW,LIW,W,LW) 

Description 

This subroutine computes the Hessian matrix of the function 
in QMESOSMIN. The calling routine is the NAG module E04HEF 
itself is called from ~MESOSMIN. 
For details of input and output parameters, see QMESOSMIN. 

DOUBLE PRECISION B(LB),FVECC(N),W(LW),XC(N),SUM,Z(500,SOO) 
INTEGER IFLAG,LB,LW,LIW,MM,NN,SI,N 
INTEGER IW(LIW) 
COMMON /BLK2/N,NA 

DO 1 I=I,N 
SI=(I-l)*N 
DO 2 J=I,N 

SUM = FVECC(SI+J) 
DO 3 K=I,N 

3 Z«K-l)*N+J,S1+K) = SUM 

C 

C 

2 CONTINUE 
1 CONTINUE 

DO 4 I=I,NN 
SI = I*(I-l)/2 
DO 5 J=I,I 

5 B(S1+J) = Z(I,J) + Z(J,I) 
4 CONTINUE 

RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

SUBROUTINE QMEMON(NN,NN,XC,FVECC,FJACC,LJC,S,IGRADE,ITERNO,NF,IW, 
lLIW,W,LW) 

Description 

This subroutine moniters the minimisation process. 
At each iteration it prints the iteration number,the number of 
function evaluations,the norm of the residual· and the current 
estimate to the solution. 
For details of input/output parameters refer to QMESOSMIN. 

Functions called 

FOlDEF - This functions computes the Euclidean norm of a vector 

DOUBLE PRECISION FJACC(LJC,NN),FVECC(NN),S(NN),W(LW),XC(NN),FNORM 
DOUBLE PRECISION X(SO,SO) 
INTEGER IGRADE,LIW,LJC,LW,NN,NF,ITERNO,MM 
INTEGER IW(LIW) 

FNORM=FOlDEF(FVECC,FVECC,N) 
WRITE(*,99)ITERNO,NF,FNORM 
WRITE(*,98) 

99 FORMAT(//,l4H ITERATION: ,I2,4X,llH FUN EVALS ,I2,4X,lOH 
1 ,Dl4.6) 

98 FORMAT(/,30H CURRENT SOLUTION MATRIX IS : ,I) 
DO 1 I=l,N 

DO 2 J=l,N 
. X(I ,J)=XC( (I-l)*N+J) 

2 CONTINUE 
1 CONTINUE 

DO 3 I=l,N 
WRITE(*,97)(X(I,J),J=l,N) 

97 FORMAT(4DlO.4) 
3 CONTINUE 

RETURN 
END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
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C 
C 
C 
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C 
C 
C 
C 
C 

SUBROUTINE SARENS(X,A,G,H,N,NA,TOL,EPS,FNORM,ITERNO, ITERMAX, IFAIL ) 

Description 

This subroutine computes the solution of the Algebraic Riccati 
Equation, 

ATX + XA - XGX +H = F(X) = 0 
by using the method of Chapter 6. 
The computed solution is the symmetric, non-negative definite 
one, i.e. the stabilising solution. 
The method reduces the matrix (A~ - XG) to upper schur form so 
that the associated Jacobian mstrix is either sparse or upper 
triangular. A combination of back-substitution and sparse system 
solver techniques are then used to determine the solution. 
The algorithm is iterative and stops when either the maximum 
number of iterations has been reached or when convergence is 
deemed to have occurred. 

Input Parameters 

x 
A,G,H 
N 
NA 
TOL 

- Initial estimate to the solution matrix 
- Coefficient matrices 
- Dimension of the coefficient and solution matrices 
- Row dimension of the matrices in the calling program 
- Tolerance used to determine when the iterations are to 

be terminated 

EPS 
If DABSIF(X)I < TOL then convergence has occurred 

- Tolerance used to determine when an element is zero 
If DABSlsl < EPS then s is considered to be zero 

ITERMAX - Maximum number of ~iterations to be performed 

Output Parameters 

X 
FNORM 
ITERNO 
IFAIL 

- The solution matrix 
- Euclidean norm of the~ function matrix 
- Iteration number at which the processing terminated 
- Indicates the result of the processing 

If IFAIL = 0 solution computed successfully 
If IFAIL = 4 Solution has not converged in ITERMAX 

iterations 
See SPARSYS for more IFAIL codes 

Subroutines Called 

UPHESS 
UPTRAN 

SCHUR 

- Computes the upper hessenberg form of a matrix 
- Computes the transforming matrix for the hessenberg 

reduction 
- Computes the upper schur form of a matrix, along with 

the transforming matrix 
SPARSYS - Solves AX = B, where A is a sparse matrix 
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C 

DOUBLE PRECISION X(NA,N),A(NA,N),G(NA,N),H(NA,N) 
"DOUBLE PRECISION FNORM,TOL,EPS,SUM,SUMl,SUM2 
DOUBLE PRECISION ORT(20), U(20, 20) ,Se 20 ,20), T(20, 20), WORK ( 20,20) , 

IFVECT(400),PVECT(400),FVEC(400),FBKUP(400),FT(20,20),PT(20,20), 
2,ST(40,40) 

INTEGER I,J,K,L,ITERMAX,ITERNO,IFAIL,IR,NN,NNA,N,NA,IFLAG 

!TERNO = 0 
99 ITERNO = ITERNO + 1 

C 
C Compute S = A - XG 
C 

DO 10 I=I,N 
DO 20 J=I,N 

SUM = O.ODO 
DO 30 K =1,N 

30 SUM = SUM + X(I,K)*G(K,J) 
20 S(I,J) = A(J,I) - SUM 
10 CONTINUE 

C 
C Compute the function matrix using 
C F(X) = SX + XA 
C and determine the Euclidean norm of F 
C 

FNORM=O.ODO 
DO 40 I=I,N 

DO 50 J=I,N 
SUM = O.ODO 
DO 60 K =1,N 

60 SUM = SUM + S(I,K)*X(K,J)+ X(I,K)*A(K,J) 
F(I,J) = SUMl + H(I,J) 

50 FNORM = FNORM + F(I,J)**2 
40 CONTINUE 

FNORM = DSQRT(FNORM) 
C 
C Compute the function matrix using 
C F(X) = SX + XA 
C and determine the Euclidean norm of F 
C 

C 

IF (DABS(FNORM) .LT. TOL) 
IFAIL = 0 
GO TO 399 

ENDIF 

C Transform S to upper hessenburg form, accumulating the 
C transformations in U 
C 

C 

CALL UPHESS(NA,N,S,ORT) 
CALL HESSTRAN(NA,N,S,ORT,U) 

C Transform the upper hessenburg form to an upper schur, 
C updating the transformations in U 
C 

CALL SCHUR(S,U,N,NA,EPS,JFAIL) 
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C Transform the matrix F to FT = UTFU 
C Form the vector FVECT of size N*N, by taking the 
C elements of the matrix FT a row at a time 
C 

C 
C 
C 

DO 100 I=l,N 
DO 110 J=l,N 

SUM = 0.000 
00 120 K=l,N 

120 SUM = SUM + F(I,K)*U(K,J) 
110 WORK(I,J) = SUM 
100 CONTINUE 

DO 130 I=l,N 
I1 = (I-1)*N 
DO 140 J=l,N 

SUM = 0.000 
DO 150 K=l,N 

150 SUM = SUM + U(K,I)*WORK(K,J) 
FT(I,J) = SUM 

140 FVECT(I1+J) = SUM 
130 CONTINUE 

Process the Jacobian at the current iteration 

IR = 0 
199 CONTINUE 

IF ((DABS(S(N-IR,N-IR-1» .LT. EPS) .OR. (IR .EQ. (N-1») THEN 
C 

C If IR = N-1 or the subdiagonal element is zero, perform 
C this bit of processing. 
C 
C Update the function vector 
C 

C 

DO 160 J=l,N 
SUM = O.ODO 
DO 170 I=0,IR-1 

170 SUM = SUM + S(N-IR,N-I)*PVECT(NN-I*N-N+J) 
160 FVECT(NN-IR*N-N+J) = SUM + FVECT(NN-IR*N-N+J) 

IFLAG = 0 
DO 180 I=N, 1,-1 

C If the previous processing involved the solution of a 
C set of two simultaneous equations, increment I 
C 

IF (IFLAG .EQ. 1) THEN 
IFLAG = 0 
GO TO 180 

ENDIF 
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C If the sub-diagonal element is zero, then update the right 
C hand side and determine an element of the direction vector 
C 

190 

1 

IF (DABS(S(I,I-1)) .LT. EPS) THEN 
SUM = O.ODO 

ELSE 

DO 190 J=I+1,N 
SUM = SUM + S(I-1,J)*PVECT(NN-IR*N-N+J) 

FVECT(NN-IR*N-N+I) = SUM + FVECT(NN-IR*N-N+I) 
PVECT(NN-IR*N-N+I) = FVECT(NN-IR*N+I)/(S(I,I) 

+ S(N-IR,N-IR)) 

C If the sub-diagonal element is not zero, then a set of 
C two simultaneous equations .must be solved. The right hand 
C side (function vector) is updated before this is done. 
C 

C 

C 

SUM = O. ODO 
DO 200 J=I+1,N 

SUM = SUM + S(I-1,J)*PVECT(NN-IR*N-N+J) 
200 SUM1= SUM1+ S(I-2,J)*PVECT(NN-IR*N-N+J) 

FVECT(NN-IR*N-N+I) = SUM + FVECT(NN-IR*N-N+I) 
FVECT(NN-IR*N-N+I-1) = SUM1+ FVECT(NN-IR*N-N+I-1) 
SUM = S(I,I-1)*FVECT(NN-IR*N-N+I-1) 
SUMl = S(I-1,I-1)*FVECT(NN-IR*N-N+I) 
SUM2 = S(I,I-1)*S(I-1,I) - S(I,I)*S(I-1,I-1) 
PVECT(NN-IR*N-N+I) = (SUM - SUM1)/SUM2 
SUM = S(I,I-1)*FVECT(NN-IR*N-N+I-1) 
SUM1 = S(I,I-1)*S(I-1,I)*PVECT(NN-IR*N-N+I) 
SUM2 = S(I,I-1)*S(I-1,I-1) 
PVECT(NN-IR*N-N+I)·= ·(SUM - SUMl)/SUM2 
IFLAG = 1 

ENDIF 
180 CONTINUE 

IR = IR + 1 
IF (IR .GT. (N-I)) GO TO 299 

ELSE 

C If IR < N-1 or the sub-diagonal element is non-zero then 
C this bit of processing is performed. 
C 
C Update the right hand side (function vector) 
C Set up the 2N vector FBKUP holding function values 
C 

DO 210 1=1,2 
DO 220 J=l,N 

SUM = O.ODO 
DO 230 K=0,N-1 

230 SUM = SUM + S(N-(IR+1-I),N-K)*PVECT(NN-K*N-N+J) 
FVECT(NN-IR*N-I*N+J) = FVECT(NN-IR*N-I*N+J) - SUM 

220 FBKUP((I-1)*N+J) = FVECT(NN-IR*N-I*N+J) 
210 CONTINUE 
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C Set up the 2N-by-2N sparse matrix 
C 

C 

C 

DO 240 1=1,N 
11 = (I-l)*N 
DO 250 J=1,N 

ST(I,J) = S(I,J) 
ST(I,I) = ST(I,I) + S(N-IR-1,N-IR-1) 
ST(I,I+N) = S(N- IR-I ,N- IR) 
ST(J+N,J) = S(N-IR,N-IR-1) 
ST(I+N,J+N) = S(I,J) c 

250 ST(I+N,I+N) = S(N-IR,N-IR) + ST(N+I,N+I) 
240 CONTINUE 

NN = 2*N 
NNA = 2*NA 
IFAIL = 0 
CALL SPARSYS(ST,FBKUP,NN,NNA,EPS,IFAIL) 
IF (IFAIL .NE. 0) GO TO 399 

C Form a 2N portion of the direction vector 
C 

C 

C 

DO 260 1=1,2 
11 = (I-l)*N 
DO 270 J=1,N 

270 PVECT(NN-IR*N-I*N+J) = FBKUP(II+J) 
260 CONTINUE 

IR = IR + 2 
IF (IR .GT. (N-I» GO TO 299 

ENDIF 

GO TO 199 

C Form the N-by-N direction matrix made up of the elements 
C of the direction vector PVECT 
C 

299 CONTINUE 
DO 280 I=1,N 

11 = (I-1)*N 
DO 290 J=1,N 

290 PT(I,J) = PVECT(I1+J) 
280 CONTINUE 
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C Transform the direction matrix arid update the current X 
C 

DO 300 "I=l,N 
DO 310 J=l,N 

SUM = O.ODO 
DO 330 K=l,N 

330 SUM = SUM + PT(I ,K)*U(J ,K) 
320 WORK(I,J) = SUM 
31(j CONTINUE" 

DO 340 I=l,N 
I1= (I-1)*N 
DO 350 J=l,N 

SUM = O. ODO 
DO 360 K=l,N 

360 SUM =" SUM + U(I ,K)*WORK(K ,J) 
350 S(I,J) = X(I,J) - SUM 
340 CONTINUE 

C 

C" Transform "X to (X(i,j) + X(j,i~/2 such that it is symmetric 
C 

C 

C 

"C 

DO 370 I=l,N 
DO 380 J=l,N 

380 X(I,J) = (S(I,J) + S(J,I))/2.0DO 
370 CONTINUE 

IF (ITERNO ".EQ. ITERMAX) 
IFAIL = 4 
GO TO 399 

ENDIF 

GO TO 99 

399 CONTINUE 
RETURN 
END 
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C 

SUBROUTINE SPARSYS(S,Y,M,MA,EPS,IFAIL) 

Description 
-----------

This subroutine solves a sparse linear system using NAG the 
NAG routines FOlBRF and F04AXF. 
FOlBRF is sued to obtaim an LU-decomposition of a permutation of 
S, PSQ = LU, where P and Q are permutation matrices, L being unit 
lower triangular and U upper triangular. The routine uses a sparse 
variant of Gaussian elimination, the pivotal strategy designed to 
compromise between maintaining sparsity and controlling loss of 
accuracy through round-off. 
F04AXF then computes the solution by block forward and backward 
substitution, using simple forward or backward substitution within 
each diagonal block. 

Input Parameters 

S - The coefficient matrix 
Y - The right hand side vector 
M - The order of the matrix S and vector Y 
MA - Row dimension of S in the calling routine 
EPS - Tolerance to determine whether an element is to be treated 

as zero or not 

Output Parameters 

Y - the soultion vector 
IFAIL - If IFAIL is not equal to zero on exit, then an error in 

FOlBRF has occurred. Consult the routine decsription in 
the NAG documentation 

Subroutines Called 

FOlBRF - Decompose a matrix using Gaussian-type elimination. 
Some of the required input parameters are as follows 
NZ - specifies the number of non-zero elements in A 
A - contains the NZ non-zero elements of S 
ICN 

LICN 
IRN 

- contains column indices of the non-zero elements 
stored in A 
length of vector ICN 

- contains row indices of the non-zero elements 
stored in A 

LIRN - length of vector IRN 
U - controls the choice of pivots 
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C LBLOCK - if . TRUE. then routine FOlBRY is called to pre-
C order the matrix to block lower triangular form 
C before the LU decomposition is performed 
C GROW - if .TRUE. then.on exit,W(!) contains an estimate 
C for.the increase in size of the elements. 
C IW - integer array· of dimension at least 8*M 
C ABORT - vector of logicals that determine whether the 
C processing is terminated·when particular 
C condi.tions are met 

C F04AXF - Solve the transformed system bu backcsubstitution 
C Some of the required input parameters are as follows 
C IKEEP - integer array, dimension at least 5*M, containing 
C indexing information about the decomposition 
C IDISP - communicates between FOlBRF and F04AXF 
C MTYPE - if = 1 then the problem is AX=Y 
C 

C 

DOUBLE PRECISION S(MA,M),Y(M),EPS,IFAIL 
DOUBLE PRECISION A(400),W(40),U,RESID· 
INTEGER I,IFAIL,LICN,LIRN,N,NZ 
INTEGER ICN(400),IDISP(lO),IKEEP(200),IRN(400),IW(320) 
LOGICAL GROW,BLOCK,ABORT(4) 

NZ=O 
DO 1 I=l,M 

DO 2 J=l,M 
IF (DABS(S(I,J» .GT. EPS) THEN 

A(NZ) = S(I,J) 
IRN(NZ) = I 
ICN(NZ) = J 
NZ = NZ+l 

ENDIF 
2 CONTINUE 
1 CONTINUE 

LICN = 400 
LIRN = 400 
U = O.lDO 
BLOCK = . TRUE. 
GROW = .TRUE. 
ABORT(l) = .TRUE. 
ABORT(2) = .TRUE. 
ABORT(3) = .FALSE. 
ABORT(4) . TRUE. 
IFAIL = 0 
CALL FOlBRF(N,NZ,A,LICN,IRN,LIRN,ICN,U,IKEEP,IW,W,BLOCK,GROW,ABORT 

C 

C 

l,IDISP,IFAIL) 
IF (IFAIL.GT.O) RETURN 
MTYPE = 1 
CALL F04AXF(N,A,LICN,ICN,IKEEP,RHS,W,MTYPE,IDISP,RES) 

RETURN 
END 
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----------

SUBROUTINE NEWMIN(X,P,Q,N,NA,TOL,EPS,FNORM,ITERNO,ITERMAX,IFAIL, 
lJCOND) 

Description 

This subroutine computes the solution of the quadratic matrix 
equation, 

X2. + PX + Q = F(X) = 0 
by using the minimisation method of Chapter 6. 
The method is a sum of squares minimisation technique wit·h a line 
search. The update at each step depends on the condition of the 
Jacobian. If it is ill-conditioned then the Steepest Descent 
direction is used otherwise Gauss-Newton is used. The reason why 
the full Newton step is not used is that it would severely impact 
the operations count and CPU time for the method. With the Gauss­
Newton step, the direction vector is be determined by transforming 
the problem from one·of solving a linear system of order N*N to 
the easier problem of solving the Sylvester equation. 
The starting point may be chosen to be the identity matrix. 
The condition of the Jacobian is determined in the course of 
solving the Sylvester equation by calling CONDEST, a subroutine 
that determines the condition number of an upper trinagular 
matrix. 
The line search uses a quadratic interpolation technique that 
performs a low accuracy minimisation. 
Convergence is deemed to have occured when the function norm is 
less than some specified tolerance, and the processing terminates. 
The processing also terminates when a specified maximum number of 
iterations have been reached. 

Input Parameters 

x 
P, Q 
N 
NA 
TOL 

JCOND 

- Initial estimate to the solution matrix 
- Coefficient matrices 
- Dimension of the coefficient and solution matrices 
- Row dimension of the matrices in the calling program 
- Tolerance used to determine when the iterations are to 

be terminated 
If DABSiF(X)i < TOL then convergence has occurred 

- Tolerance used to determine whether the Jacobian is 
well-conditioned or not. 
If condition no. < JCOND then it is well-conditioned 

EPS - Tolerance used to determine when an element is zero 
then s is considered to be zero 
iterations to be performed 

If DABSisi < EPS 
ITERMAX - Maximum number of 
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Output Parameters 

X 
FNORM 
ITERNO 
IFAIL 

- The solution matrix 
- Euclidean norm of the function matrix 
- Iteration number at which the processing terminated 
- Indicates the result of the processing 

If IFAIL = 0 solution computed successfully 
If IFAIL = 3 Solution has not converged in ITERMAX 

iterations 
See LINESRCH for more IFAIL codes 

Subroutines Called 

UPHESS 
UPTRAN 

SCHUR 

- Computes the upper hessenberg form of a matrix 
- Computes the transforming matrix for the hessenberg 

reduction 
- Computes the upper schur form of a matrix and updates 

the transforming matrix obtained from UPTRAN 
CONDEST - Computes the estimate to the condition number of an 

upper triangular matrix 
LINESRCH- Performs a line serach based on quadratic interpolation 

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N),TOL,EPS,FNORM,JCOND 
DOUBLE PRECISION JAC( 400 ,400),DIR( 400) ,F(20, 20) ,FVEC( 400) ; 

1WORK(20,20),U(20,20),V(20,20),ORT(20),XT(20,20),XTS(20,20) 
DOUBLE PRECISION SUM,COND,ALPHA 
INTEGER I,J,K,N,NA,NN,NNA,IFAIL,JFAIL,ITERNO,MAXITER,MAXCAL 

NN = N*N 
NNA = NA*NA 
ITERNO = 0 

99 ITERNO = ITERNO + 1 
C 
C 
C 
C 
C 

C 

Compute the (negative) function vector and the function norm. 
Assign matrices X+P and the transpose of X to WORK and XT 
respectively. 

FNORM=O.ODO 
DO 10 I=1,N 

I1 = (I-l)*N 
DO 20 J=l,N 

SUM=O.ODO 
DO 30 K =l,N 

30 SUM = SUM + (X(I,K) + P(I,K»*X(K,J) 
F(I,J) = - SUM - Q(I,J) 
XT(I,J) = X(J,I) 
WORK(I,J) = X(I,J) + P(I,J) 
FVEC(Il+J) = F(I,J) 

20 FNORM = FNORM + F(I,J)**2 
10 CONTINUE 

FNORM = DSQRT(FNORM) 
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C Test for convergence 
C 

C 

IF (DABS(FNORM) .LT. TOL) 
IFAIL = 0 
GO TO 199 

END IF 

C Transform WORK (= X + P) to upper schur form accumulating the 
C transformations in U 
C 

C 

CALL UPHESS(NA,N,WORK,ORT) 
CALL HESSTRAN(NA,N,WORK,ORT,U) 
CALL SCHUR(WORK,U,N,NA,EPS,JFAIL) 

C Transform XT to upper schur form, accumulate transformations in V 
C 

CALL UPHESS(NA,N,XT,ORT) 
CALL HESSTRAN(NA,N,XT,ORT,V) 
CALL SCHUR(XT,V,N,NA,EPS,JFAIL) 

C Transpose the transformed matrix XT to obtain the lower 
C schur form for X. 
C 

DO 30 1=1,NN 
DO 40 J=1,NN 

40 XLS(I,J) = XT(J,I) 
30 CONTINUE 

C 
C Form the upper triangular Jacobian matrix 
C 

C 

DO 50 I=1,NN 
DO 60 J=1,NN 

60 JAC(I,J) = O.ODO 
50 CONTINUE 

DO 70 1=1,N 
11 = (I-1)*N 
DO 80 J=I,N 

J1 = (J-1)*N 
DO 90 K=1,N 

K1 = (K-1)*N 
JAC(I1+K,J1+K) = JAC(I1+K,J1+K) + WORK(I,J) 

90 JAC(K1+I,K1+J) = JAC(K1+I,K1+J) + XLS(J,I) 
80 CONTINUE 
70 CONTINUE 

C Estimate the condition of the Jacobian 
C 

CALL CONDEST(JAC,NN,NNA,COND) 
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C If the Jacobian is well-conditioned, solve the transformed 
C Sylvester equation by back-substitution to obtain the Gauss-
C Newton direction 
C otherwise, form the· full jacobian matrix and compute the 
C Steepest Descent direction. 
C 

IF (COND .LT. JCOND) THEN 
CALL BACKSUB(WORK,U,XLS,V,F,N,NA,JFAIL) 
DO 100 I=l,N 

Il = (I-1)*N 
DO 110 J=l,N 

110 DIR( Il +J) = F(I,J) 
100 CONTINUE 

ELSE 
DO 120 I=l,NN 

DO 130 J=l,NN 
130 JAC(I,J) = O. ODO 
120 CONTINUE 

DO 140 I=l,N 
I1 = (I-l)*N 
DO 150 J=l,N 

J1 = (J-l)*N 
DO 160 K=l,N 

K1 = (K-l)*N 
JAC(I1+K,J1+K) = JAC(I1+K,J1+K) + X(I,J) + P(I,J) 

C 

160 JAC(K1+I,K1+J) = JAC(K1+I,K1+J) + X(J,I) 
150 CONTINUE 
140 CONTINUE 

DO 170 I=l,NN 
SUM = O.ODO 
DO 180 K=l,NN 

180 SUM = SUM + JAC(I,K)*FVEC(K) 
DIR(I) = SUM 

170 CONTINUE 
ENDIF 

C Perform a line search 
C 

C 

CALL LINESRCH(X,P,Q,DIR,ALPHA,IFAIL) 
IF (IFAIL .NE. 0) GO TO 199 

C Update the estimate to the solution X 
C 

DO 190 I=l,N 
I1 = (I-1)*N 
DO 200 J=l,N 

200 X(I,J) = X(I,J) + ALPHA*DIR(I1+J) 
190 CONTINUE 
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C If maximum number of iterations performed, set IFAIL and return 
C 

IF (ITERNO .EQ. ITERMAX) THEN 
IFAIL = 3 
GO TO 199 

ENDIF 
C 

GO TO 99 
199 CONTINUE 

C 

C 

RETURN 
END 
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SUBROUTINE CONDEST(A,N,NA,COND) 

This subroutine computes an estimate to the condition number 
of an upper triangular matrix. 
Ref : Matrix Computations - Golub and Van Loan - p.77. 
The algorithm requires, an operations count of 2.5*N*N. 

Inputs 

A - The upper triangular 'matrix 
N - Order of A 
NA - Row dimension of A 

Outputs, 

COND - An estimate to the condition number of A 

DOUBLE PRECISION A(NA,N),COND 
DOUBLE PRECISION P(500),W(500),Y(500),YP(500) 
DOUBLE PRECISION YM(500),SP,SM 
INTEGER I,K 

C Initialise work and weights vectors 
C 

C 

C 

DO 1 l=l,N 
W(I) = l.ODO/A(I,I) 

1 P( I) = O. ODO 

DO 2 K=N,l,-l 
YP(K) = (l.ODO - P(K))/A(K,K) 
YM(K) = (-l.ODO - P(K))/A(K,K) 
SUMl = O.ODO 
SUM2 = O.ODO 
DO 3 I=l,K-l 

SUMl = SUMl + W(I)*DABS(P(I) + A(I,K)*YP(K)) 
3 SUM2 = SUM2 + W(I)*DABS(P(I) + A(I,K)*YM(K)) 

SP = DABS(YP(K)) + SUMl 
SM = DABS(YM(K)) + SUM2 
IF (SP .GE. SM) THEN 

Y(K) = YP(K) 
ELSE 

Y(K) = YM(K) 
ENDIF 
DO 4 l=l,K-l 

4 P(I) = P(I) + A(I,K)*Y(K) 
2 CONTINUE 

C Estimate infinite norm of vector Y, as an estimate to the 
C condition number. 
C 

C 

C 

COND = O.ODO 
DO 5 I=l,N 

5 IF (DABS(Y(I)) .GT. COND) COND = DABS(Y(I)) 

RETURN 
END 
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SUBROUTINE LINESRCH(X,P,Q,N,NA,DIR,NN,ALPHA,IFAIL) 

Description 

This subroutine performs a line search by using a quadratic 
interpolation technique. It uses the NAG routine E04ABF. 

Input Parameters 

x - Current estimate to the solution matrix 
P, Q ~ Coefficient matrices 
N 
NA 

- Dimension of the coefficient and solution matrices 
- Row dimension of the matrices in the calling program· 

DIR - Current direction vector 
NN - Dimension of direction vector 

Output Parameters 

ALPHA - An estimate to the minimum 
IFAIL - If IFAIL = 1 parameter is outside expected range 

If IFAIL = 2 MAXCAL .has been exceeded 

Subroutines Called 

FUNCT - Calculates the value of the function at any point 

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N),DIR(NN),El,E2,A,B,FALPHA 
INTEGER N,NA,NN,IFAIL,MAXCAL 
COMMON /BLKl/P,Q,X,DMAT,/BLK2/N 
EXTERNAL FUNCT 

El = O.ODO 
E2 = O.ODO 
A = O.ODO 
B = l.ODO 
MAXCAL = 99 
CALL E04ABF(FUNCT,El,E2,A,B,MAXCAL,ALPHA,FALPHA,IFAIL) 
RETURN 
END 

SUBROUTINE FUNCT(ALPHA,FALPHA) 
DOUBLE PRECISION ALPHA,FALPHA,WORK(20,20),DIR(400) 
DOUBLE PRECISION P(20,20),Q(20,20),X(20,20),SUM 
COMMON /BLKl/P,Q,X,DIR,/BLK2/N 
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C 

C 

DO 10 I=l,N 
11 = (I-l)*N 
DO 20 J=l,N 

20 WORK(I,J) = X(I,J) + ALPHA*DIR(Il+J) 
10 CONTINUE 

FALPHA = O.ODO 
DO 30 I=l,N 

DO 40 J=l,N 
SUH = O.ODO 
DO 50 K=l,N 

50 SUH = SUH + (WORK(I,K) +P(I,K»*WORK(K,J) 
40 FALPHA = FALPHA + (SUH + Q(I,J»**2 
30 CONTINUE 

RETURN 
END 
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SUBROUTINE INITIALCPX(P,Q,CPX,N,NA,EPS) 

Description 

This subroutine computes estimates to the coefficients of ·th·e 
characteristic polynomial of X, by using a set of formulae that 
give the coefficients in terms of the norms of matrices P and Q. 
These values are used to initiate the iterative Elimination Hethod 

Input Parameters 

N - Dimension of the matrices 
NA - Row dimension of array in calling program 
P, Q - Square matrices of order N 
EPS - Determines whether an element can be regarded as zero 

Output Parameters 

CPX - Array of size n, containing estimates for the c.c.p of X. 

DOUBLE PRECISION P(NA,N),Q(NA,N),CPX(N),QNORH,PNORH,EPS,DNUH,DDEN 
INTEGER N,NA 

C Compute the norm of matrices P and Q 
C 

QNORH=O .ODO 
DO 1 I=l,N 

DO 2 J=l,N 
PNORH = PNORH + P(I,J)*P(I,J) 

2 QNORH = QNORH + Q(I,J)*Q(I,J) 
1 CONTINUE 

C 

PNORH = DSQRT(PNORH) 
QNORH = DSQRT(QNORH) 

C Compute the estimates, using equations (4.38) 
C 

C 

C 

CPX(l) = (DSQRT(PNORH**2 + 4.0DO*QNORH) - PNORH)/2.0DO 
IF (DABS(CPX(l) - P(N,N)*PNORH) .LT. EPS) THEN 

CPX(l) = -CPX(l) 
ENDIF 
DDEN = CPX(l) - P(N,N)*PNORH 
CPX(N) = -(QNORH*Q(N,l))/DDEN 
DO 5 I=O,N-3 

DNUH = P(N,I+l)*PNORH + Q(N,I+2)*QNORH 
5 CPX(N-I-l) = (CPX(N-I) - DNUH)/DDEN 

RETURN 
END 
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SUBROUTINE.ELIHINHETH(X,P,Q,CPX,N,NA,EPS,IFAIL) 

Description 
-----------

This subroutine computes the matrix X by 
solving the following matrix equation 

RX = - S 
where the Rand S are calculated from the Elimination method. 

Input Parameters 

P, Q - The coefficient matrices (unchanged on exit from 
routine) 

N - Size of the matrices P, Q, X 
NA - Row dimension of the matrices P, Q, X in the calling 

routine 
CPX - Vector of length N containing the coefficients of 

the characteristic polynomial of X 
EPS - If : X(i,j) : (= EPS then X(i,j) is considered zero 

Output Parameters 

X - an N-by-N matrix array containing the computed solution 
IFAIL - on exit if IFAIL = 0 then the matrix R is singular 

Subroutine called 

C LUSOLVE - solves a system of N linear equations 
C 

C 

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N),CPX(N) 
DOUBLE PRECISION Rl(50,50),R2(50,50),APREV(50,50) 
DOUBLE PRECISION A21(50,50),A22(50,50),EPS,SUH 
INTEGER N,NA,ITER,IPTR,I,J,K 

C Initialise the matrices 
C 

DO 1 I=l,N 
DO 2 J=l,N 

Rl(i,j) = O.OdO 
R2(i,j) = O.OdO 
A21(I,J) = O.ODO 

2 A22(I,J) = O.ODO 
1 A22(I,I) = 1.0DO 
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C Begin the recursive procedure 
C 

C 

DO 99 K=0,N-1 
DO 3 l=l,N 

DO 4 J=l,N 
4 APREV(I,J) = A22(I,J) 
3 CONTINUE 

DO 5 l=l,N 
DO 6 J=l,N 

SUM = O.ODO 
DO 7 K=l,N 

7 SUM = SUM + A21(I,K)*Q(K,J) + A22(I,K)*P(K,J) 
6 XCI ,J) = -SUM 
5 CONTINUE 

DO 8 l=l,N 
DO 9 J=l,N 

A21(I,J) = APREV(I,J) 
9 A22(I,J) = X(I,J) 
8 CONTINUE 

DO 10 l=l,N 
DO 11 J=l,N 

R2(I,J) = R2(I,J) + CPX(N-K-1)*A21(I,J) 
11 R1(I,J) = R1(I,J) + CPX(N-K-1)*A22(I,J) 
10 CONTINUE 
99 CONTINUE 

C End of recursive procedure 
C 

C 

DO 12 l=l,N 
DO 13 J=l,N 

SUM = O.ODO 
DO 14 K=l,N 

14 SUM = SUM + R2(I,K)*Q(K,J) 
13 X( I ,J) = CPX(N) - SUM 
12 CONTINUE 

C R = RI, S = X 
C Solve the linear system RX = - S, for X 
C 

C 

C 

CALL LUSOLVE(R1,X,N,NA,EPS,IFAIL) 

RETURN 
END 
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SUBROUTINE FUNNORM(F,X,P,Q,FNORM,N,NA) 
C 
C Description 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

the function 
This subroutine computes 
F defined ~ : 

F(X) = X + PX + Q 

Input Parameters 

P - Matrix of size N by N 
Q - Matrix of size N by N 
X - Matrix of size N by N 
N - Size of the matrices P, Q, X 
NA - Row dimension of the matrices 

routine 

Output Parameters 
-----------------

the Euclidean norm of 

P, Q, X in the calling 

FNORM - The Euclidean norm of the function matrix 
F - On exit contains the function matrix 

DOUBLE PRECISION F(NA,N),X(NA,N),P(NA,N),Q(NA,N),FNORM,SUM 
INTEGER N,NAI,J,K 

FNORM = O.ODO 
DO 1 I=l,N 

DO 2 J=l,N 
SUM = O.ODO 
DO 3 K=l,N 

SUM = SUM + (X(I,K) + P(I,K»*X(K,J) 
3 CONTINUE 

C 

C 

F(I,J) = SUM + Q(I,J) 
FNORM = FNORM + F(I,J)**2 

2 CONTINUE 
1 CONTINUE 

FNORM=DSQRT(FNORM) 

RETURN 
END 
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SUBROUTINE CHARPOLY(A,CPA,N,NA,EPS) 

Description 

This subroutine computes the coefficients of 
the characteristic polynomial of a general square matrix A. 
This involves the reduction of the matrix to a block frobenius 
matrix via stable elementary operations,and then using the 
polynomials associated with the blocks to obtain the 
coefficients of the characteristic polynomial of the matrix. 

Input Parameters 

A - A general square matrix 
N - The size of the matrix A 
NA - The row dimension of the matrix A in the calling routine 
EPS - If :k: (= eps then k is considered as zero 

Output Parameters 

A - Square matrix containing the block frobenius matrix 
CPA - An n-vector containing the coefficients of the 

characteristic polynomial of the matrix A 

Subroutine Called 

BLOFROB - Determines the block frobenious form of a matrix 
TRANSFORM - Transforms block frobenious matrix into a 

polynomial matrix 

DOUBLE PRECISION A(NA,N),CPA(N),EPS 
INTEGER N,NA,KBLOCKS,I 

CALL BLOFROB(A,N,NA,EPS) 
CALL TRANSFORM(A,N,CPA,KBLOCKS,NA,EPS) 

C KBLOCKS is equal to the number of frobenius blocks on diagonal 
C 

C 

C 

IF(KBLOCKS.EQ.l)THEN 
DO I I=l,N 

CPA(I)=-l.ODO*A(l,I) 
1 CONTINUE 

ENDIF 

RETURN 
END 

ELSE 
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200 

SUBROUTINE BLOFROB(A,N,NA,EPS) 

Description 
-----------

This subroutine computes the block frobenius 
matrix associated with a matrix A. The block form consists 
of companion matrices on the diagonal. The blocks in the 
upper triangle have zero entries everywhere except the 
elements in the first row of the block. The sub-diagonal 
blocks have elements k(i) only in the top right hand corners 
of the blocks. 

Input Parameters 

A - The matrix to be transformed to frobenius form. 
N - The size of the matrix 
NA - The row dimension of the matrix in the calling routine 
EPS - Used to determine whether an element may be considered 

to be zero 

Output Parameters 

A - The block frobenius matrix 
CPA - The coefficients of the characteristic polynomial of A 

DOUBLE PRECISION A(NA,N),W(50),S(50),EPS,SUMl 
INTEGER N,NA,IR,Il,Jl,I,J,K 

J = 1 
SUMl = 0.000 
IR = J + 1 
DO 1 I=J+l,N 

IF(DABS(A(I,J)) .GT. SUMl) THEN 
SUMl = DABS(A(I,J)) 
IR = I 

ENDIF 
1 CONTINUE 

IF (IR .EQ. (J+l)) GO TO 400 
DO 2 K=l,N 

SUMl = A(J+l,K) 
A(J+l,K) = A(IR,K) 

2 A(IR,K) = SUMl 
DO 3 K=l,N 

SUMl = A(K,J+l) 
A(K,J+l) = A(K,IR) 

3 A(K, IR) = SUMl 
400 CONTINUE 

IF (DABS(A(J+l,J)) .LE. EPS) GO TO 600 
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C 

C 

C 

DO 5 I~J+2,N 
W(I) ~ A(I,J)/A(J+1,J) 
IF (DABS(A(I,J» .LE. EPS) THEN 

A(I ,J)~O. ODO 
GO TO 500 

ENDIF 
DO 4 K~l,N 

4 A(I ,K)~A( I ,K)-A(J+1 ,K)*W(I) 
500 CONTINUE 
5 CONTINUE 

DO 6 I~J+2,N 
DO 7 K~l,N 

7 A(K,J+l) ~ A(K,J+1) + A(K,I)*W(I) 
6 CONTINUE 

DO 8 K~l ,N 
IF (DABS(A(J+1,K» .LT. EPS) GO TO 8 

8 IF (DABS(A(J+1,K» .LT. (EPS*A(J+1,K») GO TO 600 
SUM1 ~ A(J+l,J) 
DO 9 K~l ,N 

9 A(J+1,K) ~ A(J+1,K)/SUM1 
DO 10 K~l,N 

10 A(K,J+1) ~ A(K,J+1)*SUM1 
600 CONTINUE 

DO 11 Il~l,N 
DO 12 J1~1,N 

12 IF (DABS(A(Il,J1» .LE. EPS) A(I1,J1) ~ O.ODO 
11 CONTINUE 

IF (J .LT. (N-1» THEN 
J~J+1 

GO TO 200 
ENDIF 
I ~ N 

700 IF (A(I,I-1) .NE. 1) GO TO 800 
DO 13 J~I ,N 

S(J) ~ A( I ,J) 
DO 14 K~l,N 

14 A(K,J) ~ A(K,J) - A(K,I-1)*S(J) 
13 CONTINUE 

DO 15 J~I,N 
DO 16 K~l,N 

16 A(I-1,K) = A(I-1,K) + A(J,K)*S(J) 
15 CONTINUE 
800 IF (I .EQ. 2) GO TO 900 

I = I-I 
GO TO 700 

900 CONTINUE 
DO 17 I~l,N 

DO 18 J=l,N 
18 IF (DABS(A(I,J» .LT. EPS) A(I,J) ~ O.ODO 
17 CONTINUE 

RETURN 
END 
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SUBROUTINE TRANSFORM(A,N,CPA,KBLOCKS,NA,EPS) 

Description 

This subroutine classifies the blocks, their 
sizes-and their positions in the matrix obtained from 
subroutine BLOFROB thus we effectively obtain an upper 
hessenburg block matrix with each block representing a 
polynomial. 

Input Parameters 

A - N*N matrix obtained from subroutine BLOFROB 
NA - Row dimension of A in the calling routine 
EPS - Tolerance to determine when an element may be 

taken as zero 

Output Parameters 

CPA - The coefficients of the characteristic 
polynomial of A 

KBLOCKS - The number of blocks on the diagonal of 
the block matrix 

Subroutine Called 

POLYDET - Determines the determinant of a polynomial matrix 

DOUBLE PRECISION EPS,CPA(N),POLY(SO,SO,SO),A(NA,N) 
INTEGER*4 POS(SO),SIZE(SO,SO) 
INTEGER N,NA,KBLOCKS,IMPl,IMP2,NN,IJ,KL,INK,I,J 

KBLOCKS = 1 
POS(l) = 1 
DO 1 I=2,N 

IMPl = 0 
IMP2 = 0 
DO 2 J=I-l,N 

IF (DABS(A(I,J» .LT. EPS) IMPl = IMPl+l 
IF (DABS(A(I,J)-l.ODO) .LT. EPS) IMP2 = IMP2+l 

2 CONTINUE 
IMP = IMPl + IMP2 
NN = N - I + 2 
IF (IMP .NE. NN) THEN 

KBLOCKS = KBLOCKS + 1 
POS(KBLOCKS) = I 

ENDIF 
1 CONTINUE 
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C 
C 
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C 

C 

C 

There are KBLOCK frobenius blocks 
the r'th beginning at (pos(r),pos(r» 

(pos(r+l)-l,pos(r+l)-l) and ending at 

IF (KBLOCKS .EQ. 1) RETURN 
DO 3 I=l,N 

DO 4 L=l,KBLOCKS 
IF (I .EQ. POS(L» THEN 

DO 5 IJ=l,KBLOCKS 
IF (IJ. EQ. KBLOCKS) POS(IJ+l) = N + 1 
DO 6 KL = POS(IJ),POS(IJ+l)-1 

IF (IJ .EQ. L) THEN 
POLY(L,IJ,I) = I.DO 

ELSE 

ENDIF 

INK = KL-(POS(IJ) - 1) 
POLY(L,IJ,INK+l)=-A(I,KL) 
SIZE(L,IJ)=INK+l 

INK=KL-(POS(IJ)-l) 
POLY(L,IJ,INK)=-A(I,KL) 
SIZE(L,IJ)=INK 

6 CONTINUE 
5 CONTINUE 

ENDIF 
4 CONTINUE 
3 CONTINUE 

CALL POLYDET(POLY,SIZE,EPS,CPA,KBLOCKS,N) 

RETURN 
END 
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SUBROUTINE POLYDET(P,SIZE,EPS,CPA,N,NA,NSIZE) 

Description 

This subroutine computes the determinant of the n*n· 
polynomial matrix P. 

Input Parameters 

P - The matrix containing the coefficients of the 
polynomials in the blocks. 

SIZE - SIZE(i,j) equals the order of the polynomial in the 
(i,j)'th position of the block matrix P 

N - The number of blocks in the matrix 
NA - Row dimension of the array P 
EPS - Tolerance to determine when an element is zero 
NSIZE - The length of the vector CPA 

Output Parameters 

CPA - an N-vector containing the coefficients of the 
characteristic polynomial of the matrix 

Subroutines called 

POLYMULT - Determines the product of two polynomials 
POLYADD - Determines the sum of two polynomials 

DOUBLE PRECISION P(NA,SO,SO),AV(50),BV(SO),D(SO,SO),CV(SO) 
DOUBLE PRECISION CPA(NSIZE),EPS 
INTEGER*4 DS(SO),SIZE(NA,N) 
INTEGER N,NA,NSIZE,KIP,JDIM,ICT,ISIZEl,ISIZE2,I,K,L 

KIP = 0 
DO 1 I=l,N-l 

ICT = SIZE(I+l,I) 
IF (DABS(P(I+l,I,ICT)) .GT. EPS) THEN 

DO 2 K=I,N 
DO 3 L=l,SIZE(I+l,K) 

3 AV(L) = P(I+l,K,L) 
DO 4 L=l,SIZE(I,I) 

4 BV(L) = P(I,I,L) 
CALL POLYMULT(AV,SIZE(I+l,K),BV,SIZE(I,I),CV,IDIM) 
DO 5 L=l,SIZE(I,K) 

5 BV(L) = P(I,K,L) 
CALL POLYADD(BV,SIZE(I,K),CV,IDIM,AV,JDIM) 
DO 6 L=l,JDIM 

6 P(I+l,K,L) = AV(L) 
SIZE(I+l,K) = JDIM 

2 CONTINUE 
ELSE 
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C 

C 

C 

KIP = KIP + 1 
DO 200 L=l,SIZE(I,I) 

200 D(KIP,L) = P(I,I,L) 
DS(KIP) = SIZE(I,I) 

ENDIF 
1 CONTINUE 

IF (KIP .EQ. 0) GO TO 99 
IF (KIP .GT. 1) THEN 

DO 41 I=l,KIP 
IF (I .EQ. 1) THEN 

AV(1) = 1.DO 
ISIZE1 = 1 

ELSE 
DO 42 L=1,ISIZE3 

42 AV(L) = CV(L) 
ISIZE1 = ISIZE3 

ENDIF 
DO 43 L=l,DS(I) 

43 BV(L) = D(I,L) 
ISIZE2 = DS(I) 
CALL POLYHULT(AV,ISIZE1,BV,ISIZE2,CV,ISIZE3) 

41 CONTINUE 
ELSE 

DO 44 L=l,DS(1) 
44 CV(L) = D(l,L) 

ISIZE3 = DS(l) 
ENDIF 
DO 45 L=l,SIZE(N,N) 

45 BV(L) = P(N,N,L) 
ISIZE2=SIZE(N,N) 
CALL POLYHULT(CV,ISIZE3,BV,ISIZE2,AV,ISIZE1) 
DO 46 L=1,ISIZE1 

46 P(N,N,L) = AV(L) 
SIZE(N,N) = ISIZE1 

99 CONTINUE· 

DO 98 I=l,NSIZE 
98 CPA(I) = P(N,N,I+l) 

RETURN 
END 
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SUBROUTINE POLYHULT(A,H,B,N,C,MN) 

Description 

This subroutine computes the product of two 
polynomials, not necessarily of the same degree. 

Input Parameters 

A - An M-vector containing the coefficients of the polynomial 
of degree M 

B - An N-vector containing the coefficients of the polynomial 
of degree N 

Output Parameters 
-----------------

C - The mn-vector containing the product of the polynomials 
A and B 

MN - Degree of the polynomial C. HN = M + N 

DOUBLE PRECISION A(M),B(N),C(50) 
INTEGER M,N,MN,I,J 

MN = M + N - 1 
DO 1 I=l,MN 

C(I) = O.ODO 
DO 2 I=l,M 

DO 3 J=l,N 
C(I+J-l) = C(I+J-l) + A(I)*B(J) 

CONTINUE 

RETURN 
END 
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SUBROUTINE POLYADD(A,M,B,N,C,IMAX) 

Description 
C 
C 
C 
C 
c_ 
c 
C 
c­
c 
C 

This subroutine computes the sum of two 
polynomials not necessarily of the same degree. 

-C 
C 
C 
C 
C 
C 
-C 

Input Parameters 

-- A-- -M-vector containing the 
polynomial of degree M-

B - -N-vector containing the 
polynomial of degree M 

Output Parameters 

coefficients of the 

coefficients of the 

C C - vector of length IMAX containing the coefficients of the 
C sum of the _ polynomials A and B. 
C IMAX - Degree of the polynomial C. IMAX = max(M,N) 
C 

C 

C 

DOUBLE PRECISION A(M),B(N),C(50) 
INTEGER M,N,IMAX,IMIN 
IMAX=MAX(K,N) 
IMIN=MIN(K,N) 
DO 1 I=l,IMIN 

IF(IMIN .EQ. M)THEN 
C(IMAX-I+l)=A(IMIN-I+l)+B(IMAX-I+l) 

ELSE 
C(IMAX-I+l)=A(IMAX-I+l)+B(IMIN-I+l) 

ENDIF 
1 _ CONTINUE 

DO 2 I=l,(IMAX-IMIN) 
IF(IKIN .EQ. M)THEN 

C(I)=B(I) 
ELSE 

ENDIF 
2 CONTINUE 

RETURN 
END 

C(I)=A(I) 
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SUBROUTINE EIGENVALUES(A,ER,EI,N,NA,IFAIL) 

Description 

This subroutine uses the NAG routine F02AFF to calculate the 
eigenvalues of a general matrix by reduction to the hessenberg 
and schur forms using the QR algorithm. 

Input 

A - The square matrix whose eigenvalues are desired 
N - The size of the matrix A 
NA _. The row dimension of the matrix A in the calling routine 

Output 

ER - A n-vector containing the real parts of the eigenvalues of 
El - An n-vector containing the imaginary parts of the eigenvalues 
IFAIL - an error indicator : 

If IFAIL = 1, more than 30*n iterations are required to 
isolate all the eigenvalues 

DOUBLE PRECISION A(NA,N),ER(N),EI(N),A1(50,50) 
INTEGER*4 INTGER(50) 
INTEGER IA,IFAIL,N,NA,I,J 

C The NAG routine overwrites the matrix A, so make a copy of 
C so that it remains unchanged on exit 
C 

C 

C 

DO 1 I=1,N 
DO 2 J=1,N 

2 A1(I,J) = A(I,J) 
1 CONTINUE 

lA = NA 
IFAIL = 1 
CALL F02AFF(A1,IA,N,ER,EI,INTGER,IFAIL) 

RETURN 
END 
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SUBROUTINE SQROOT(ER,EI,N,TOL) 

Description 

This subroutine computes the square roots of N 
complex numbers 

Input Parameters 

ER - A vector containing the real parts of the 
complex numbers 

El - A vector containing the imaginary parts of 
complex numbers 

N - The size of the vectors ER, El 
TOL - If ' , ER(i) , , 

<= then ER(i) = 0;0 , , , , 

Output Parameters 

ER - An N-vector containing the real part of the 
square root 

the 

El - An N-vector containing the imaginary part of the 
square root 

DOUBLE PRECISION ER(N),EI(N),XR(SO),XI(SO),TOL,SUMl 
INTEGER LIR,LII,N,I 

DO 1 1=1,N 
LIR = 1 
IF (ER(I) .LT. O.ODO) LIR = -1 
LII = 1-
IF (EI(I) .LT. O.ODO) LII = -1 
IF (DABS(EI(I)) .LE. TOL) THEN 

ELSE 

IF (LIR .EQ. 1) THEN 
XR(I) = DSQRT(ER(I)) 
XI(I) = O.ODO 

ELSE 
XR(I) = O.ODO 
XI(I) = DSQRT(LIR*ER(I)) 

ENDIF 

IF (DABS(ER(I)) .LE. TOL) THEN 

ELSE 

XR(I) = DSQRT(LII*EI(I)/2.0DO) 
XI(I) = LII*SQRT(LII*EI(I)/2.0DO) 

SUM1 = DSQRT(ER(I)**2+EI(I)**2) 
SUM1 = (SUM1+ER(I))/2.0DO 
XR(I) = DSQRT(SUM1) 
SUM1 = XR(I)**2-ER(I) 
XI(I) = LII*DSQRT(SUM1) 

ENDIF 
ENDIF 

1 CONTINUE 
DO 2 1=1,N 

ER(I) = -XR(I) 
EI(I) = -XI(I) 

2 CONTINUE 
RETURN 
END 
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SUBROUTINE COROOT(COEFF,ROOTR,ROOTI,N) 

Description 
-----------

This subroutine computes the coefficients of a 
polynomial given its roots. 

Input .Parameters 

ROOTR - A vector containing the real parts of the roots 
of the polynomial 

ROOTI - A vector containing the immaginary parts of the 
roots of the polynomial 

N - The size of the vectors ROOTR, ROOTI 

Output Parameters 

COEFF - An N-vector containing the coefficients of the 
polynomial 

DOUBLE PRECISION ROOTR(N),ROOTI(N) ,COEFF(N) ,CI(50) 
DOUBLE PRECISION SUMl,SUM2,SUM3 
INTEGER*4 IPT(50) 
INTEGER INT,N,I,J,K 

DO 5 I=l,N 
COEFF(I )=0.000 
CI(I)=O.ODO 
K=O 

1 K=K+l 

2 

3 

4 
5 

C 

C 

IF(K.EQ.l)THEN 
INT=O 

ELSE 
INT=IPT(K-l) 

ENDIF 
IPT(K)=INT 
IPT(K)=IPT(K)+l 

IF (K .LT. I)GO TO 1 
SUMl=!. 000 
SUM2=0.ODO 
DO 3 J=l,I 

SUM3=SUMl 
SUMl=SUMl*ROOTR(IPT(J»-SUM2*ROOTI(IPT(J» 
SUM2=SUM2*ROOTR(IPT(J»+SUM3*ROOTI(IPT(J» 

COEFF(I)=COEFF(I)+SUMl 
CI(I)=CI(I)+SUM2 
DO 4 L=l,I 

IF(IPT(I+I-L).LT.(N-(L-l»)THEN 
K=I+I-L 
GO TO 2 

ENDIF 
CONTINUE 

CONTINUE 

RETURN 
END 
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SUBROUTINE CPXSOSMIN(CPA,CPX,N,TOL,ITERMAX,ITERNO,FNORM,NF,IFAIL) 

Description 

This subroutine solves a system of N non-linear equation 
in the N unknowns. 
The function relates the known variables, CPA(i), the 
coefficients of the characteristic polynomial of a matrix 
A to the unknown variables, cpx(i), the coefficients of the 
characteristic polynomials of a matrix X. 
the matrices A and X are related by the equation : 

XlL - A = 0 

Input Parameters 

CPA - The coefficients of the characteristic polynomial 
of the matrix A 

CPX - Contains the initial estimates to the C.C.P of X 
N - The length of the vector CPA 
TOL - convergence criteria on the norm of the function vector 

If :: F(i) :: (= tol then newtons method is deemed to 
have converged. 

ITERMAX - The maximum number of iterations to be executed by the 
routine 

Output Parameters 

CPX - The computed estimates to the coefficients of the 
characteristic polynomial of X. 

For futher details of output parameters and a decsription of the 
NAG rotuine E04HEF used here, see Subroutine QMESOSMIN. 

DOUBLE PRECISION CPA(N),CPX(N) 
DOUBLE PRECISION S(50),V(50,50),W(200),Y(50),FJAC(50,50),FVEC(50) 
DOUBLE PRECISION FNORM,ETA,TOL,STEPMX 
INTEGER IFAIL,IPRINT,LIW,LJ,LV,LW,ITERMAX,NF,ITERNO,N,NA,NN,I,J 
INTEGER IW(99) 
EXTERNAL CPXFUN,CPXHES,CPXMON 
COMMON /BLK1/CPA 
COMMON /BLK2/N 

IPRINT = 1 
ETA = 0.9 
STEPMX = 100000.0 
LJ=50 
LV=50 
LIW=99 
LW=200 
IFAIL=1 
CALL E04HEF(N,N,CPXFUN,CPXHES,CPXMON,IPRINT,ITERMAX,ETA,TOL, 

ISTEPMX,Y,FNORM,FVEC,FJAC,LJ,S,V,LV,ITERNO,NF,IW,LIW,W,LW,IFAIL) 

RETURN 
END 
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C 

SUBROUTINE CPXFUN(IFLAG,N,N,XC,FVECC,FJACC,LJC,IW,LIW,W,LW) 

Description 

This subroutine computes the function and Jacobian. 
The calling routine is the NAG library routine E04HEF which 
itself is called from CPXSOSHIN. 
For details of input and output parameters consult CPXSOSHIN. 

DOUBLE PRECISION FJACC(LJC,N),FVECC(N),W(LW),XC(N),CPA(N),SUH 
INTEGER IFLAG,LIW,LJC,LW,H,N,I,J,K 
INTEGER IW(LIW) 
COHHON /BLKl/CPA 
COHHON /BLK2/N 

C Compute the Function vector 
C 

C 

DO 1 I=l,N 
SUH=O.ODO 
DO 2 J=I,I 

K=2*I-J 
2 IF (K .LE. N) SUM = SUH + ((-I)**J)*XC(J)*XC(K) 
1 FVECC(I) = CPA(I) - SUH + ((-l)**J)*(XC(I)**2) 

DO 5 I=I,INT(N/2) 
5 FVECC(I) = FVECC(I) + XC(2*I) 

C Compute the Jacobian matrix 
C 

C 

C 

DO 3 I=I,N 
DO 4 J=I,N 

K = 2*I-J 
IF ((K .GE. 1) .AND. (K .LE. N» 

1 FJACC(I,J)=((-l)**(J+l»*2.0DO*XC(K) 
4 CONTINUE 
3 CONTINUE 

K = INT(N/2) 
DO 6 I=I,K 

FJACC(I,2*I) = I.ODO 
6 CONTINUE 

RETURN 
END 
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SUBROUTINE CPXHES(IFLAG,N,N,FVECC,XC,B,LB,IW,LIW,W,LW) 

Description 
-----------

This subroutine computes the Hessian type term 
relating to the function in cpxfun. The calling routine is 
the NAG library routine· E04HEF which itself is called 
from CPXSOSMIN. For details of input and output parameters 
consult CPXSOSMIN. 

. DOUBLE PRECISION B(LB) ,FVECC(N) ,W(LW) ,XC(N) ,SUM 
INTEGER IFLAG,LB,LW,LIW,N,M,I,J,K,L 
INTEGER IW(LIW) 

DO 1 I=l,N 
L=I*(I-l)/2 
DO. 2 J=l,I 

K=(I+J)/2 
IF (INT«(I+J)/2)-INT«I+J)/2)).EQ.O)THEN 

SUM=FVECC(K) 
ELSE 

SUM=O.ODO 
ENDIF 

B(L+J)=«-l)**(J-l))*SUM 
2 CONTINUE 
1 CONTINUE 

RETURN 
END 
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SUBROUTINE CPXMON(N,N,XC,FVECC,FJACC,LJC,S,IGRADE,ITERNO,NF,IW, 
lLIW,W,LW) 

Description 

This subroutine moniters the minimisation process. 
At each iteration it prints the iteration number, the number of 
function evaluations, the norm of the residual and the current 
estimate to the solution. 
For details of input/output parameters refer to CPXSOSMIN. 

Functions called 

FOIDEF - used to determine the Euclidean norm of vector 

DOUBLE PRECISION FJACC(LJC,N),FVECC(N),S(N),W(LW),XC(N),FNORM 
INTEGER IGRADE,LIW,LJC,LW,N,NF,ITERNO,M 
INTEGER IW(LIW) 

FNORM=FOIDEF(FVECC,FVECC,N) 
WRITE(*,99)ITERNO,NF,FNORM 
WRITE(*,98) 

99 FORMAT(//,14H ITERATION: ,I2,4X,11H FUN EVALS ,I2,4X,lOH FUN NORM 
1 ,D14.6) 

98 FORMAT(/,24H CURRENT ESTIMATES ARE: ,/) 
DO 1 I=l,N 
WRITE(*, 97)XC( I) 

97 FORMAT(DIO.4) 

C 

C 

1 CONTINUE 

RETURN 
END 
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