|

RILDSC nei- DX 173345

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

T AUTHOR/FILING TITLE

___________ MARMeeD, W

_________ et e e o ——— e ——— = —_——— — ——— —— ———— = —-

ACCESSION/COPY NO.

____________________ O%6oeoBIT. .
! voL.No. CLASS MARK
, LW cofy
2 8-3uN-1385
27 JUN 1997
2 6 JUN 1998
036000397 4

-

i

THE NUMERICAL SOLUTION OF
QUADRATIC MATRIX EQUATIONS

by
KHALID MAHMQOD

Submitted in partial fulfilment of the requirements

for the award of
Doctor of Philosophy of the Loughborough University of Technology

October 1990

© By K. Mahmood, 1990.

toughborough University
ot Technology LiDrary

e N g

A

5 03 6000 29477

a2l

ABSTRACT -

Methods for computing an efficient and accurate numerical solution of the real monic

unilateral quadratic matrix equation,
X*+PX+Q=0

are few. They are not guaranteed to work on all problems. One of the methods performs a
sequence of Newton iterations until convergence occurs whilst another is a matrix analogy
of the scalar polynomial algorithm. The former fails from a poor starting point and the
latter fails if no dominant solution exists. A recent approach, the Elimination method,
is analysed and shown to work on problems for which other methods fail. The method
requires the coefficients of the characteristic polynomial of a matrix to be computed and
to this end a comparative numerical analysis of a number of methods for computing the
coefficients is performed. A new minimisation approach for solving the quadratic matrix
equation is proposed and shown to compare very favoura.bly with existing methods.

"A special case of the quadratic matrix equation is the matrix square root problem,
where P = (. There have been a number of method proposed for it’s solution, the more
successful ones being based upon Newton iterations or the Schur factorisation. The Elimi-
nation method is used as a basis for generating three methods for solving the matrix square
root problem. By means of a numerical analysis and results it is shown that for small order
problems the Elimination methods compare favourably with the existing methods.

The algebraic Riccati equation of stochastic and optimal control is,
ATX+XA-XBR''BTX+H =0

where the solution of interest is the symmetric non-negative definite one. The current
methods are based on Newton iterations or the determination of the invariant subspace of
the associated Hamiltonian matrix. A new method based on a reformulation of Newton’s
method is presented. The method reduces the work involved at each iteration by intro-
ducing a Schur factorisation and a sparse linear system solver. Numerical results suggest
that it may compare favourably with well-established methods.

Central to the numerical issues are the discussions on conditioning, stability and accu-
racy. For a method to yield accurate results, the problem must be well-conditioned and the
method that solves the problem must be stable-consequently discussions on conditioning
and stability feature heavily in this thesis.

The units of measure we use to compare the speed of the methods are the operations
count and the Central Processor Unit (CPU) time. We show how the CPU time accurately
reflects the amount of work done by an algorithm and that the operations counts of the

algorithms correspond with the respective CPU times.

ACKNOWLEDGEMENTS

Dedicated to my family for their support and encouragement.

.. . nc
I am especially thankful to my supervisor Professor C. Storey for his guidance and advige.
I thank both Professor C. Storey and Dr G. Evans for help in revising my thesis.

I greatly appreciate the efforts of Miss Helen Sherwood and ‘Miss Louise Howard for the
speedy and professional typing.

1

ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS
CHAPTER 1 INTRODUCTION
1.1 Outline of the chapters ,
1.2 Background theory in numerical matrix algebra
1.3 Conditioning and Stability
1.4 Numerical consideration of relevant problems
1.5 Systems of non-linear equations
1.6 Some theory on quadratic matrix equations
CHAPTER 2 PERTURBATION ANALYSIS
2.1 The derivative of F(X)
2.2 Conditioning of the problem
2.3 Some examples of perturbed problems
CHAPTER 3 COMPUTING THE CHARACTERISTiC POLYNOMIAL
o OF A MATRIX
3.1 Introduction
3.2 Condition of the problem
3.3 LeVerriers method
3.4 Stable LeVerriers method
3.5 Danilevski’s method and an extension
3.6 Block Frobenius method
3.7 Krylov’s method
3.8 Characteristic polynomial of matrices with

3.9

CONTENTS

distinct eigenvalues

Conclusions

1

Page

i1

i

12
21
31
37

44
45
48
95

61
61
62
63
65
67
70
73

77
84

CHAPTER 4
4.1
4.2
4.3
4.4
4.5

CHAPTER 5

5.1
5.2
5.3
5.4
5.9

CHAPTER 6

6.1
6.2
6.3

CHAPTER 7
7.1
7.2
7.3
7.4
7.5

CHAPTER 8

REFERENCES

APPENDICES

THE ELIMINATION METHOD WITH APPLICATIONS
Introdu_ction

The Elimination method

The quadratic matrix equation

Elimination method for the square root problem

Applications to matrix square root solutions

CURRENT METHODS FOR QUADRATIC
MATRIX EQUATIONS

Introduction

Methods for the algebraic Riccati equation
The unilateral quadratic matrix equation
The matrix square root problem

Minimisation of the constituent equations

PRACTICAL METHODS FOR THE QUADRATIC MATRIX
EQUATIONS BASED ON NEWTON’S METHOD

Introduction
Newton’s method applied to the algebraic Riccati equation

Towards a globally convergent Newton method for

the unilateral quadratic matrix equation

EXAMPLES, RESULTS, COMPARISONS
Introduction

Methods for computing the characteristic polynomial
Methods for solving the quadratic matrix equation
Methods for the matrix square problem

Methods for the algebraic Riccati equation

CONCLUSIONS

v

86
86
87
99
108

112

123
124
126
138
144
149

155
155
156

168

181
181
185
189
199
204

207

Acknowledgement and comment on the error analysis

A fundamental point concerning the error analysis has been pointed out by the
external examiner, Dr. Nicholls. The floating point analysis as presented in Chapter
1, section 1.3, results in the inequality

flwTz) = wlz| < nujwTz) (1)
which follows correctly from the assumption that

Fl(z1 — 22) = (21 — 22)(1 +). - (2)

Indeed, this is the approach employed by Wilkinson(1965), and depends on the above
floating point form being valid, and in ¢ being small. Clearly there is a flaw in this
assumption if cancellation occurs in the subtraction of z; — z; when ¢ may not now
be small in equation (2). Hence the analysis presented is only valid in the stable
case when the Wilkinson assumption i1s valid. If cancellation occurs, a more sensible
assumption is)

fi(z, — :rg) =y —T2+¢€ (3)

which no longer links € to the size of the resulting difference. With this assumption
the inequality in equation (1) becomes

Ifli(wTz) — wTz| < nujwT||z] (4)
where cancellation in the inner product wTz will no lo-nger invalidate the result.
Hence the analyses presented may under-estimate the error in the cases when

lwTllz] >> |wTz]| (3)

and in particular in the elimination method (pp 96,97 and 111), the errors would be
of order n’ul|A4||". :

In practice, instabilities in the algorithms are carefully monitored, and with mod-
ern computer arithmetic, it is possible to carry sufficient numbers of szgmﬁca.nt digits
to absorb some ill-conditioning. A run at a lower precision will then give 2 measure of
the loss of accuracy. In this work the practical loss of accuracy was always at a non-
fatal level, and demonstrates that upper bounds on errors, though they gwe absolute
certainty of the result, may prove over restrictive.

CHAPTER 1 - INTRODUCTION

SECTION 1.1: Outline of the Chapters

Chapter 1 begins with an overview of relevant topics in numerical matrix algebra. The
discussion does not go into any detail nor does it presume an in-depth knowledge of the
subject on the part of the reader, aiming more to present fundamental and derived results
necessary to achieve a greater understanding of matrix equations within the context of this
thesis. The chapter continues with a general discussion on the importance of estimating
the condition of problems and determining the stability of the methods used to solve those
problems. Section 1.4 applies these discussions specifically to certain problems relevant
to the thesis. Section 1.5 introduces definitions and summarises results that will be used
throughout the thesis. These concern the solution of a system of non-linear equations by
using a sum of squares minimisation technique. Section 1.6 gives a summary of some of
the available theory on quadratic matrix equations.

Chapter 2 uses the discussions and results from Chapter 1 to derive bounds pertaining
to the conditioning of the quadratic matrix equations. Central to this analysis as well as
to other analyses throughout the thesis is the derivative of FI(X). Therefore Chapter 2
begins with a discussion on the existence of this derivative and its inverse.

Chapter 3 discusses a number of methods for computing the characteristic polynomial
of a matrix. The discussions include the operations count and storage requirements for
implementing the methods on a computer. There is a new look at the stability of Krylov’s
method and at an interpolation technique for computing the characteristic polynomial of
a matrix possessing distinct eigenvalues.

Chapter 4 discusses the Elimination method and shows how it may be used to derive
new algorithms for computing the solution of the quadratic matrix equation and the square
root problem. These discussions include original work on the stability of the algorithm
and the operations count and storage requirements for their implementation.

Chapter 5 summarises the current methods for solving the matrix equations. These
discussions include the stability of the methods and a brief comparison of the operations
count and algorithmic features of the methods. Section 5.5 shows how globally convergent
minimisation methods can be used to solve the quadratic matrix equations by redefining
the problem as a system of non-linear equations.

Chapter 6 derives new methods for the solution of the matrix equations. The method
for the algebraic Riccati equation is based on the minimisation approach and makes use
of the sparse nature of the Jacobian matrix. The method performs matrix factorisations
in obtaining an efficient and stable algorithm. The method for the unilateral quadratic
matrix equation is also based on the minimisation approach and uses Newton iterations

towards providing a stable, efficient and globally convergent algorithm.

lb.

Chapter 7 compares the methods discussed in the thesis by showing how they perform
on particular problems. The results obtained pertaining to the accuracy of the solutions
and the computational efficiency of the algorithms are discussed and related back to the
earlier analyses on the conditioning of the problem and the stability of the methods.

Chapter 8 concludes the thesis by reflecting on the objectives of the thesis and how far
this work has gone towards meeting these. There are concluding comments on the thesis
contents and recommendations for further areas of research.

The Appendices give listing of new computer subroutines relevant to this work and a
list of the test matrices used in Chapter 7.

SECTION 1.2: Background Theory in Numerical Matrix Algebra

This section summarises those aspects of matrix theory and numerical matrix algebra
relevant to the remainder of the work as well as providing a reference for notations used.
For a detailed discussion refer to {Wilkinson|, [Stewart, 1], [Golub & Van Loan], {Lancaster
& Tismenetsky].

Note that there is no loss of generality in focussing attention on the real space. All

definitions and algorithms have obvious analogs in the complex space.

Vectors and Matrices
R™ denotes the real vector space with n components, such that

z€R™ &z = (z;) = {z1,22,...,2,}7

where & denotes a two-way implication.
Similarly, R™*™ denotes the space of m-by-n real matrices, such that

a1 Qjo e Ain

mxn azy @G22 ... QGn
AzeER @A=(ai1‘)=

aml am2 P amﬂ

" where a;; € R.

Where a capital letter denotes a matrix, the corresponding lower case letter with
subscript i refers to the (7,7)*" component. In the case of a vector it will be clear from
the context of the passage whether, for example z, refers to a vector or a scalar.

Some basic matrix manipulations are,

addition C=A+4+B, c¢j=aj+b, R™*"™ + R™*" — R™*"
scalar multiplication C = aA, cij = aajj, R x R™*" — R™*"
vector multiplication y = Az, Yi =3 po; GikTk, RTTTxR" - R™
matrix multiplication C = AB, Cijy = E?:l aikbkj, R™*™ x R®**P R™>P -
matrix transposition C = AT, Cij = @ji, R™*" o R"*™

A matrix A is square if A € R"™",
The n-by-n identity matrix has unit entries along its diagonal with zero entries every-
where else and is denoted by I,,, or I where the context is clear.

A matrix in R™™" is,

Z€ero if aj;=0 forall z,;
diagonal if a;;j=0 forall [i—j]>1
upper triangular if a;j=0 forall i>j
upper hessenberg if aij=0 forall z>j+1

strictly upper triangular if a;; =0 forall {>j—1

3

Some important types of square matrices are,

symmetric if AT=4)
positive definite if £TAz >0, 2 #0cR" then 4> 0
non-negative definite if z7 Az 2 0, € R" then A>0
orthogonal if ATA=1I |
nilpotent if A* =0 for some k
idempotent if A2=4A4 ,
diagonally dominant if |ai] > Z |aij| for all 2

‘ J#i

A matrix is sparse .if it has relatively few non-zero entries. If 4, B € R™™" satisfy
AB = I then B is the inverse of A and is denoted by A~1. If A™! exists then A is said to
be non-singular, otherwise A is singular.

If A,B € R"*", then A commutes with B if AB = BA.

The vector ey defined by {0,0,...,1,0,...,0} is in R™ unless otherwise indicated and
the ‘1’ is in position k.

A is a permutation matrix if A = {e;,,e;,,...,€;, } where {j1,72,...,7n} is a permu-
tation of (1,2,...,n). |

Let A € R*™", then the determinant of A, denoted by det(A4), may be defined by

det(A) = Z(—l)tu) Q1 Q2jy -.-Cnj,
J

where #(j) is the number of inversions in the permutation j = {1,J2,...,Ja} and j varies
over all n permutations of 1,2,...,n.
Alternatively,

det(A) = Z(—l)j+lalj det(AU)
j=1 .

where the minor A,; is an (n — 1)-by-(n — 1) matrix obtained by deleting the first row
and j'* column of A. det(A) # 0 implies A is non-singular and vice-versa. The rank of a

matrix A € R™*"

is the order of the largest non-singular minor of A and is denoted by
R(A). The trace of a square matrix A is the sum of the elements on the diagonal of that
matrix and is denoted by ¢r(A).
fAeR™" and k£ € m, £ < n then any k rows and ¢ columns of A determine a
k-by-£ submatrix or partition of A.
The elementary row (column) operations are,
1. interchange two rows (columns) of a matrix
2. multiply all elements of a row by some non-zero number
3. multiply any row (column) of a matrix by a non-zero number and add it to any other
row (column) of the matrix.

The matrices that effect any of these operations are called elementary matrices.

4

An inner product of z,y € R" is given by,

n

zly=) cyi=y'z

“i=1

A set of vectors {a;,a2,...,a,} is linearly independent if

n

Za.‘a.-:l]#al =a;=...=Qp =290

=1
for scalars a;. Otherwise a non-trivial combination of a;,as,...,a, is zero and the set
{a1,4a2,...,a,} is said to be linearly dependent.

A set of vectors {z1,22,...,2,} with each z; € R™ is orthogonal if
zTz; =0 for i#j

A system of n linear equations in n unknowns given by

n

Za;,—z,—=b,— :=1,2,...,n

=1

may be written as Az = b, AeR"™" and z,b € R™.

Let the augmented matrix be B = (A,b), then Az = b possesses,
1. a unique solution if and only if R(4) = R(B) =n
2. an infinite number of solutions if and only if R(A) = R(B) <n
3. no solution if and only if R(A) < R(B)

The homogeneous system Az = 0 possesses a non-zero solution if and only if R(A) < n.
The Eigenvalue Problem and The Characteristic Polynomial
The eigenvalue problem is one of determining those A for which

Az = Xz where A€ R"™*", z e R", A €eR

has a non-trivial (or non-zero) solution. Writing this as (A — Al)z = 0, it follows from
the assertions above that a non-zero solution exists if and only if the matrix (4 — AI) is
singular, that is det(A — AI) = 0. The determinant may be expanded as follows,

Qo+ @A+ @A 4 ...+ (=1)"A" =0

This is the characteristic equation of A and the expression on the left hand side is the char-
acteristic polynomial of A. The n roots of the characteristic polynomial, Aj, Aq, ..., A, are
the eigenvalues of A. Corresponding to any eigenvalue, there exists at least one non-trivial

solution z satisfying Az = Az. This is an eigenvector corresponding to that eigenvalue.

5

The matrix A and its transpose AT possess the same eigenvalues but different eigenvec-
tors. If A possesses distinct A; then the associated z; are linearly independent. In this
case, the n sets of equations Az; = A;z; may be written as AX = X diag (Ai). Since the
n columns of X are in fact the eigenvectors z; and they are linearly independent, then X
is non-singular and |

XTAX = diag (\;)

such that there exists a similarity transformation X which reduces A to diagonal form.
Two matrices, A and B, are said to be similar if there exists a non-singular matrix P such
that A= P~1BP, _

If A has non-distinct A;, the number of occurrences of each distinct eigenvalue is
called the algebraic multiplicity of that eigenvalue. In this case the existence of a set of n
independent eigenvectors of A is dependent on the elementary divisors of A. If these are
linear, then the eigenvectors are linearly independent.

If A has k eigenvalues of multiplicities m,, ma,..., m; such that

mit+me+...+mp=n
then there exists a similarity transformation H such that H~! AH is in Jordan form,
H' AH = diag (Jp,(M1),---, Jp. (A1), Jn(PA2)yo g (M) oo s Jur (Ak)s ooy Juy (Ak))

where
pt+p2t...+pr=m

q1+q2+---+q;=m2

Uy g 4. U, =My

and each J,(A) is an r-by-r Jordan block,

A 1 0 0 07

o A 1 00
To(3) =

0 0 A1

10 0 0 A]

The number of independent eigenvectors of A is equal to the number of Jordan blocks in the
Jordan form. If a matrix has at least one Jordan block of order greater than unity then it
has one or more non-linear elementary divisors and fewer than n independent eigenvectors.
Such a matrix is called defective. Non-defective matrices may be reduced to diagonal form

by unitary (complex orthogonal) transformations.

6

An eigenvalue is simple if it has only one eigenvector associated with it. A matrix A is
normal if it satisfies the commutativity relationship AAT = ATA. A matrix is called non-
derogatory if it has only one Jordan block and therefore only one eigenvector -associated
with each distinct eigenvalue. Otherwise it is derhogat.ory.

The companion matrix of the characteristic polynomial of A is given by,

0 1 0 0
0 0 1 0
C =
-y —Qp_1] —Qp—2 —

The matrices A and C have the same characteristic polynomial. Also, A is similar to C' if
A is non-derogatory such that H~1CH = A. If A is derogatory, it may be transformed to

a direct sum of Frobenius matrices, such that
H™'AH = diag (F\, F2,...,F})

where each F' is a non-derogatory matrix which may be transformed into its companion
form by a similarity transformation.

A polynomial f, annihilates A if f(A) = 0. The unique monic polynomial of least
degree which annihilates A is the minimum polynomial of A. Non-derogatory matrices
have the same minimum and characteristic polynomials.

The Cayley-Hamilton Theorem states that every matrix A € R™™" satisfies its own

characteristic equation, i.e.

A"+ A"V Fa A"+ 4 a l =0

Kronecker Products
If Ae R™™" and B € R?*7, then the Kronecker product of A and B, denoted by
A ® B is defined by the following partitioned matrix,

anB algB alnB
A@B: ag.lB (122.8 v ag,..,B
amB am2B ... amn.B

[

Some useful results concerning Kronecker products now follow,
A®(B)=(A®B)
AR(B+C)=(A®B)+ (4@ ()
AR(BRC)=(A@B)®C
(A® BT = AT @ BT
(A®B)C®D)=AC®BD

(A B)' = A @B}

(A®B)=(A®I){I®B)
det(A ® B) = (det(A))"(det(B))"
tr(A ® B) = tr(A)tr(B)
R(A® B) = R(A)R(B)
If A(A) = A; and A(B) = y; then
| A(A® B) = A
and
AMARD+(IQB)) =i+ ui

where A, B, C are matrices of appropriate dimension.
If vec(Z) € R™" is a vector made up of the elements of a matrix Z € R™™" taken a

row at a time, then the following results hold for A € R™*" B € RRT and X € RW%§
A® I i
vec(AX) = (Lr@#A) vec(X)
LneB
vec(X B) = (BX-@F;,) vec(X)

therefore, i mm,p:zq, A®I, In®@ BT
vec(AX + X B) = ({r-®-4) + (BX&Fn)) vec(X)

One important application of Kronecker products is in the study of linear matrix

equations. By using the above notation the Sylvester equation,
AX+XB=C
may be represented as _ oy
A®I, I,®B
((Fr®A) + (BL® 1)) vee(X) = vec(C)
| 8

Similarly, the Lyapunov matrix equation,

ATX +XA=-C whereC=CT20 ,p:n
may be represented as

(1. ® A) +{AT 8 1)) vec(X) =-vec(C)

{(Lancaster & Tismenetsky) discuss the algebraic aspects of linear equations with respect

to Kronecker product theory.

Norms ‘ _

In any analysis of matrix methods it is necessary to be able to assess the ‘size’ of a
vector or matrix. This is done by defining a function called the norm.

The vector norm on R" is a function f : R" — R with the following properties,
(1) f(z)=20 for every z € R", with equality

if and only if z =0

(2) f(z+y) < f(&) + f(y) forall z,y € R”
3) flaz) = |a|f(z) where a € R,z € R"
Such a function is denoted by ||z|| with subscripts to distinguish between various norms.

The p-norms or the Holder norms are defined by,

. X
zllp = (Jz1 [P + |22 + ...+ |zafP); p21

of which
el = o] + [z2| + ...+ |zal = D |2l
=1
lizll2 = (|l21)* + [22]* + .- + [za}?)? = (z72)}
and

oo = ma |z

are the most commonly used.
Unless otherwise indicated, the 2-norm will be used in the remainder of this work

since it is invariant under orthogonal transformations. This is since if UTU = I then
Uz|f; = 2"UTUz =272 = ||z|[3

Similar definitions exist for matrix norms,

(1) f(A)=0 for all A € R™*" with equality
ifandonlyif A =0

(2) f(A+ B) < f(AY+ f(B) for all 4, B € R™*"

(3) f(aAd) = |aff(A) for all € R, A € R™*"

9

(4) f(AB) < f(A)f(B) for all A € R™*", B ¢ R"*?
The p-norms are defined as follows,

1AL,
HAll, = sup Azl
b T TH

and in particular,

Al = mj.ixz laij

. T
llAlleo = max) _ |a;;|
i=1

|| Allz = max(a;)}

where o; are the singular values of A4, i.e. the eigenvalues of AT A.
An important norm, and one that will be used throughout unless otherwise indicated,
is the Euclidean one,

3

lAlle = | D> laiil?

=1 j=1
More generally, for any vector norms ||.|]o € R" and ||.||s € R™,
l4zlls < ||Alla,sll=lle

where ||A{fqp is said to be subordinate to the vector norms ||.||« and [|.||s, and defined by,

Az
- i
I o

llzlla=

Gerschgorin’s Theorem
Every root of the complex matrix A € R™*" lies in at least one of the discs with centre

n
ri= |l
i=1

e

a;; and radii

Schur’s Theorem
If A is a complex n-by-n matrix and A, A2, ..., A, are the eigenvalues of A, then

n

Yol < 141

i=1

3 Re(A? < 1B

Yo mO Y < IC1E
1=1

10

where B = (A + A¥) and C = 1(4 — 4H)

Hirsch’s Theorem
With the above notation, if p = max|a;;|, ¢ = max|b;;|, T = max|c;;|, then

|A] £ np, |Re(A)} £ no, [Im(A)| < nr
|det(4)] < n¥p"

If A and AT A have eigenvalues A; amd p; respectively, then
Yo il
i=1 i=1

Matrix Algorithms
In the subsequent chapters it is necessary to describe new algorithms for the imple-
mentation of some of the methods discussed in this thesis. These algorithms are not given
in any formalised language but in one which is precise enough to convey the important
algorithmic concepts but informal enough to permit the suppression of cumbersome details.
Operation counts are used to measure the amount of work involved in an algorithm.
One count is equivalent to doing a floating point add, a floating point multiplication and

a little subscripting. For example the following step is equivalent to one operation count,
8= 5+ aikbi;

Two identities that are used to determine operation counts are,

Y p= g(q+ 1)

r=1

., ¢ 4 g

2P =TTt
It is important to note, however, that this means of quantifying work is crude since it
ignores looping, code jumping, subroutine calls, subscripting, paging and numerous other
activities that go on during program execution. One such important activity has always
been the handling of and the requirements for storage. The degree of inefficiency that
this represents is dependant on a number of factors including the programming language,
efficiency of the code, the storage management system, the computer used and the size of
the problem. These days though, mass storage systems are readily available at relatively
little cost and the problem of storage is no longer of great significance. However, for

completeness, the storage requirements for each algorithm are included.

A much more accurate measure of work involved in the processing of an algorithm is
the Central Processor (CPU) time, which will be discussed and used in Chapter 7.

11

SECTION 1.3: Conditioning and Stability

1.3.1. Introduction

Consider the problem of computing the value of a function- f(z). The accuracy at-
tainable by any algorithm is limited since in practice only an approximation to z is known.
The inaccuracies in the data z may be a result of two processes. Firstly, z may be deter-
mined directly from physical measurements and therefore subject to the errors inherent in
all observations. The second source of inaccuracy is in the storage of the data in a digital
computing machine which can only handle a finite number of digits. The data may be
defined exactly by a mathematical formulae or generated internally. Either way, the exact
representation of the data may require a greater number of digits than the machine may
be able to hold. This leads to the rounding off of the excess digits giving rise to an element
whose representation in the machine is only an approximation to the exact element.

Consequently, if z* is an approximation to = then an algorithm can at best calculate
only f(z*). If f(z*)is ‘near’ f(z) then the problem of determining f(z) is said to be well-
conditioned, otherwise it is ill-conditioned. The requirement for ‘nearness’ in this sense
is that ||f(z*) — f(z)|| be small with respect to ||f(z)]|| for any appropriate norm. The
process that is used to determine the conditioning of a problem is Perturbation Analysis.

 Notice that the conditioning of a problem is independent of the method used to com-
pute a solution. A separate analysis for the algorithm is required. Essentially an algorithm
may be regarded as a black box that takes a problem and after a number of inexact opera-
tions returns what purports to be a solution. The operations are inexact either because of
inaccuracies in the given data upon which the calculations are based, as discussed above,
or because of inaccuracies introduced in the subsequent analysis of that data.

Hence, if the algorithm yields a computed solution f* as an approximation to f then
if f*(z)is ‘near’ f(z*), the algorithm is said to be stable, otherwise unstable. The process
that is used to investigate the stability of a problem is Error Analysis.

When the problem is well-conditioned and the algorithm is stable, then the results
produced will be accurate. In this case f(z) is ‘near’ f*(z). Otherwise there can be no
guarantee of accuracy in the computed solution.

In the analysis of an algorithm one must be aware that the algorithm may be required
to solve a problem that may be ill-conditioned.

There now follows a discussion of perturbation analysis and error analysis and their

respective roles in the investigation of conditioning and stability.

1.3.2. Perturbation Analysis
The purpose of carrying out a perturbation analysis of a problem is to determine the
-degree to which any perturbations or inaccuracies in the data may affect the solution.

Any small inaccuracies giving rise to large perturbations in the solution will imply that

12

the problem is ill-conditioned. The degree of smallness of the quantities is measured in
relation to their magnitudes in the unperturbed state.

~ As mentioned earlier, the sources of the inaccuracy are either inherent in the data or
are due to storage limitations. Although these causes cannot be overcome, the latter can
be minimised by using a computing machine with extended precision or using multiple
length arithmetic. Even so, minimising the inaccuracies in the original data of a problem
that is very ill-conditioned will be of little consequence since even very small inaccuracies
may cause massive perturbations in the solution. _

Therefore the importance of a perturbation analysis is not in determining an accurate
bound for ||f(z*) — f(z)|| / [|f()|] but in that it will indicate whether a problem can
possibly be solved to within a reasonable accuracy and also where any possible sources of
ill-conditioning are likely to occur. -

It must be noted that a perturbation analysis of a problem is independent of the
method employed to find a solution so that a well-conditioned problem does not automat-
ically imply that a method will produce an accurate solution.

There now follow results from linear analysis useful in the perturbation analysis of a
problem:

If ||.|| denotes any matrix norm for which |||} = 1 and if ||M|| < 1 then (I + M)™!

exists,

I+My'=I-M+M— ..

and

1
T+ M) € ——

[Lancaster & Tismenetsky] give a proof for this result.

If [|[M]|| < 1 and}|I|| = 1, then

(] — MY [[M]]
”I (I M) Hsl_llM”

If A is non-singular and Ee R™™", then [Stewart],

(A+E)" = 47" - A7 EA™ +0(|E|P)

Condition Number

It is useful to have some scalar that reflects the change in the solution of a computing
problem with respect to small perturbations in the initial data. Such a scalar is called the
condition number and is specific to a particular computing problem - Section 1.4 gives the

condition numbers for some common problems.

13

1.3.3. Error Analysis . _

Error analysis is concerned with the resclution of the round-off errors that arise as a
consequence of using floating point arithmetic. Floating point numbers are those numbers,
known exactly, which are rounded to r digits according to the storage capability of the
computer. The number of digits in a floating point number is known as the precision of
the number and on most computers, this is fixed. Many computers also have the ability to
manipulate floating point numbers with about twice the usual precision. These are known
as double precision numbers and although computations involving them reduce the effect
of rounding errors there is an increase in computer time and the storage required for the
calculations. .

Computers with floating point hardware are provided with a set of instructions for
manipulating floating point numbers. These instructions mimic the operations of addition,
subtraction, multiplication and division. However, these operations cannot be performed
exactly and rounding errors result such that in an extensive calculation there is a real pos-
sibility that rounding errors will accumulate and contaminate the solution. It is therefore
desirable that any proposed algorithm be analysed to show that rounding error will not
affect the results unduly. '

There are two main forms of error analysis in common use. These are known as

forward and backward analysis and their general principles may be described as follows:

Forward Analysis

In this case, the computation in question is regarded as being described by a number
of mathematical equations. In each equation some new quantity z say, is defined in terms
of previously computed quantities a1, as,...,an, say, where some of these may be initial

data. The mathematical equation may be written in the form,

z=g(a1,02,...,a:) = g(ai)

The determination of z from the a; must involve only the fundamental arithmetic oper-
ations. Now due to rounding errors made in the calculations, the computed value of =
will be different from that obtained if g(a;) were evaluated exactly. Forward error analysis
denotes the computed value by 7 and attempts to obtain a bound for |Z — g(a;)|. An

essential feature of the analysis then is a comparison of # with z.

Backward Analysis
This type of analysis is not concerned with the differences between the computed
values and the true values at each step. Instead at each stage, it is shown that the

computed value obtained by interpreting

z=g(a,az,...,an) = g(a;)

14

1s exactly equal to

z Eg(a] +€1,(12 +€23"'7a’ﬂ +6ﬂ)

for some values of the ¢; and to give bounds for these ;.
It is clear that both types of analysis are informative and preference of one over the
other depends on the context in which it is used. In this thesis both types will be used.
We now turn our attention to the way in which rounding errors manifest themselves

in floating point computations.

Rounding Errors Due to Floating Point Computation
On a computing machine with a precision of ¢ binary digits, each number z is rep-
resented by an ordered pair @ and b such that = = 2%a where b is an integer, positive or

negative, and a is a number satisfying

<lal <1

Do =

b is known as the exponent and a as the fractional part. Denote the operands by z; and
T, where

T, = 2b‘a1 and x4 = 2b’a2

Firstly consider the operation of addition. Then suppose z; is the number with the
greatest modulus and compute the integer b1 — by If
(i) & — b2 > ¢, then 74 is too small to have any effect as fa,r as the first ¢ significant

digits of the sum are concerned so that
fli{zy + z2) = x4

where fl denotes floating point.
(i) by — b <t, then a, is divided by 25152 by shifting it b, — b, places to the right. The
sum a; + 227 %1 q, is then calculated exactly and requires less than 2t + 1 digits for
its presentation. This sum is then multiplied by the appropriate power of 2 using a
left shift or a right shift so that the resulting number lies in the range permitted for
the fractional part (mantissa) of a floating point number, and the exponent (index)
by is adjusted to deal with this shift. Finally this 2¢-digit mantissa is rounded to ¢
digits.
In this way if the normalised sum is exactly 2°2a3, then the modulus of the error is
bounded by 2°2.227* and the modulus of the exact sum lies between 12% and 2% so that

filzi+z2) =(z1 +22)(1 4+ €)
where|e| < 27

15

With respect to multiplication, the exponents b; and b, are added together to give b3 and
the exact 2t-digit product of a; and a, is computed, satisfying

: ‘
1 <layay| £1

with normalisation, if necessary.
The resulting 2¢-digit product is rounded to give the t-digit mantissa of the computed
product,

fl(z1z2) = z122(1 + €) le} < 27°

If either 1 or z2 are zero then the computed product is zero.

In division, a denominator of zero is not permissible. Consider z;/z2. If z; is zero
then fl(z1/x2) = 0, otherwise the exponent b, is subtracted from b, to give b;. a; is placed
in the ¢ most significant digits of the double length accumulator and zero in the ¢ least
significant digits. If |a;| > |a| then the number in the accumulator is shifted one place to
the right and b3 is increased by one. The number in the accumulator is then divided by
ay to give a correctly rounded ?-digit quotient,

fr[“]——1+e), o < 2°¢

The floating point analysis may be extended to give bounds for the rounding errors
resulting from computations involving operations on matrices.

Let u denote the unit machine round-off. It may be represented by the largest number
for which the computation 1 + u =1 is valid. Now if A, B are square matrices of order n

and u = 27* then their computed sum denoted by € may be written as
C = fl(ai; +by;)
= (ai; + bi;)(1 + eij), leij] < u
= A4+ B+ AC
with ||AC[} < (A + B)E||, E =(es;)
<274+ B]|

The error bounds associated with multiplication of matrices are a little more difficult to

ascertain and are related to the problem of computing the inner product.

Absolute and Relative Errors
The size of the error involved can be mea.suréiin two senses. f y =zy, Oxe, 0O 1is

some operation and the computed approximation to y is ¥,
j=fllz10z2)=(z1 Oz}l +6), |¢f<27°

16

then the Absolute Error in y is,
[9 — y| = (21 O z2)e

and the Relative Error in y is,

One significant consequence of finite precision arithmetic is the cancellation error induced
as a result of taking the difference between two nearly equal numbers.

Consider the following problem on a computer with precision of four decimal places.
y =1x3 — 1), where z; = 0.12325
T2 = 0.12344

Since the number of decimal places in z; and z is greater than the precision, the computer
rounds them so that

§ = fl(zo — 1) = 0.1234 — 0.1233 = 0.0001

. 0
It is clear that in exact arithmetic, y = 0.00019 so that the absolute erroris |g—y| = 0.0609
and the relative error is -'%Hl = 0.4737.
Depending on the precision of the computer, computing the difference between two

nearly equal number may lead to unacceptably large relative errors.

Computing the Inner-product
Let

n
Yn = E Ty = 'wT:r
j=1

where w;, T; are standard floating point numbers.

Then
¥n = fl{wiz1 + ... + wnTy)
Define
tAk = fI(wk:rk)
and

i1 =11, 9% = fl(Ge-1 + &)
These yield the following expressions
tr = wrz(l + ¢€), le] < 27°
gk = (ye—1 +te)(1+96), 8] <27

17

Therefore
n=wizi(l+e))+... + wnza(l +en)

= z wk:r:k(l + ck)
k=1

where
1+e = (14€)(1+8)"!

1+ e =(14€)(14 65

k=2,...,n
As a means of leading to this, consider the problem of extended additions and multiplica-
tions.

Extended Addition

y = Z z;, z; are standard floating point numbers.

In fact P=A(z1+x2+...4+2,)
K fl(zi+z;)=(zi+2;)(1 +¢) foralli,7, e/ <u
then

i =@ +22)(1+) +aa)(14+) +... 421 +€)
=(@1+z2)(1+ " +z(1+ 6" 2+ ...+ za(l4¢)
Since (1 + €)" =1+ re + 0(e?) and ignoring terms of 0(e)
y=(z1+z2)(1+(n—-1De) ¥+ z3(1+(n—-2)e)+ ... + zo(1+¢€)
Taking norms
[=yl < |E]

where

B < (n=1u [zl

Extended Multiplication

ﬁ=ﬂ(f£]$2..‘$n)
y=z122(1 +€)x3(1 +¢€)...2(1 + ¢€) le] € u
=I1Zq2.. ..‘Bn(]. + E)n_l

g=y+y(n—1)e+0(?)

18

Taking norms

Hence _
- (1=2"""<1+4e <1427

(1 o 2—t)n—k+2 _.<_. 1 + ex S (1 +2—-t)n—k+2

k=2,...,n

and it can be shown [Wilkinson] that inequalities of the form
(- 27 <1+e<(1427Y
may be replaced by the simpler inequality
le] < ru where u = (1.06)27"

so that
ler] £ nu and |ex| < (n — k + 2)u

implies :
1A(wT2) = wlz| < nujw’z|.

Now consider the product C of two matrices A, B of order n,
' n
cij =1 (Z a:’kbkj)
A& :

= Z a,‘kbkj(l + ne,-j) |E,'J'| <u
k=1

and from the result obtained above it follows that since the determination of an element

of C involves the computation of an inner product, then
C=AB+AC

where
[JAC|| < nu|C| £ nu|]AB||

< nu|[A|[]|B||

Similarly if we require to compute

y = Ax where z e R*,y € R™, Ac R™*"

19

then

' n
yi=fl (Eaikxk), 1=1,...,m

E=1
and

y=Az+Ay where ||Ay|| < nuj|Affjz|

In the course of such analysis, unless otherwise indicated, the Euclidean norm will be

used to estimate the size of a matrix, since

@ 1Al =114l
(ii) it is invariant under orthogonal transformations

(1i1) it is easy to compute.

20

SECTION 1.4 : Numerical Consideration of Relevant Problems

A number of problems are common to many of the algorithms described in this thesis.
Consequently it is appropriate to place them at one point of reference. This section states
each of the problems and discusses the respective conditioning. An outline of the error

analysi_s of their method of solution is also given.

1.4.1 Solution of Linear Equations
" The problem is one of solving Az = b for non-singular A. Suppose that perturbations

exist in the coefficient matrices A and b such that an exactly computed solution satisfies

(A+E)z+6bx)=0b+ f

Eliminating Az = b and re-arranging gives
AI+ A 'EYoz = f - Ex
now assume that [[A~!{|||E|| < k¥ < 1 and |||| = 1, then using a result from the previous
section implies that (I + A71E)™! exists and that ||+ A7 E|| < (1 — k)~'. Thus
bz=(I+A"E) A7 f—(I+A'E)Y 1A E:
e 1Ak
< e 1.1
ozl < By 2y (1)
since |[b]{ < ||A[|||z|| and hence iy < Uall with & 5 0,
-1
8=l . HANRAT|[o=} , &
=l 1-k]| ~1-k
. £ £
Now since k = ||A™1}|||64|| = C(A)J-h%’ﬂl where
C(A) = [lAlHIA™ (1.2)

(1.1) may be written as

18] Cc(4) £, 1IE]
= = T= (CANEAD (ubu * uAn)' (1.3)

This gives an upper bound for the relative perturbation of z in terms of the relative

perturbations of b and A and the so called condition number, C(A4). In particular, the

condition number is the dominant feature in this expression.

21

Note that C(A) may be considered as a magnification constant with respect to this
problem and if it is large then the problem is ill-conditioned regardless of the algorithm
used to compute z.

From (1.2), the problem of estimating C(A) is one of estimating ||4™!]| since ||4]| is
easy to determine - [Cline et al] suggest calculating an z satisfying ATz = b for a specially
constructed vector b, then solving Ay = z and using [|y||1/||z||1 as an estimate for {|47!]|;.

The algorithm that is used to solve the problem when A is square, dense and unstruc-
tured is the method of Gaussian elimination with partial pivoting. A complete treatment
of this algorithm is given in [Golub & Van Loan].

A combination of Gauss and elementary transformations M can be found such that

Mn—IPn—l .. .M1P1A =U
. where U is upper triangular and P are permutation matrices. The original problem is then
equivalent to the problem of solving the upper triangular system
Uz = (Mn—l-Pn—l v M;P])x
This is solved by back-substitution.
The following algorithm, in two stages, determines z € R” for k =1,...,n — 1.

Find |ayx| = max|a;i| for > k and interchange rows p and k. If az; = 0 then quit
else

ty=p

T = Qkj j=k+1,...,n

Fori¥k+1,...,n

Qik
§= —

T
Gig = 8

Forj=k+1,...,n
@ij = Qij — ST;
b; = b; — sby
Fori=mn,...,1
z; = b;
For;=:4+1,...,n
Ti = X; — Qi L;
T

z;=—
Qi

22

The permutations Py,...,P,_1 are represented by the integer vector (¢i1,...,%tn—1)
and P is obtained by interchanging row k and row t; of I,,.

From the discussion in the previous section a test of an element being zero is,
|axx| £ TOL

where TOL reflects the computer’s precision and the effects of any errors in ag; resulting
from changes in that element.
The operations count for this algorithm is determined by the identities of Section 2.

The algorithm requires
3
n

3
where 0(n) implies ‘order of n’.

+n?+ 0(n) operations

If no errors occur during the Gaussian Elimination process other than those in storing

A and b, then the computed solution # would satisfy

(A+E)=5b+e

where || Ef|oo < ul|Al|eo and |lefles < 2][b]loo-
However, in practice, Gaussian Elimination does give rise to rounding errors and the
computed solution £ satisfies
(A+E)z=b
where

I Elloo < u8n®pl|A|leo + 0(x*) (1.4)

The growth factor p measures how large the numbers become during the elimination
process. In practice p is modestly sized (e.g. p = 10). Therefore Gaussian Elimination
(with partial pivoting) is stable. The storage requirement for this algorithm is n? 4 2n if

b is required to be kept or n? + n if & is not required since z can then be stored in b.

1.4.2 The Eigenvalue Problem.

The problem is one of determining the n roots of the characteristic polynomial of A,
J(A) = det(A — AT)

A Wl
= (&= M)A = As) oo (h = An)(=H
where A € R"™", A, are the eigenvalues of A.

Firstly consider the case of a non-defective matrix. In this case there exists a non-

singular similarity transformation X, that reduces A to a diagonal form,
X'AX = diag (A;) X eR™"

23

If A is perturbed then the approximate A satisfy ,
A o~ "
X_I(A + E)X = diag (\)
Then the eigenvalues of A + E satisfy [Stewart],

in A — Ayl < X! Ell = k(X)IE 1.5
Agﬁ)l | < HX T HAIXNAIEY = R(X)IIE]] (1.5)

k(X) is called the spectral condition number for A with respect to the eigenvalue problem.
For the case of a general matrix A, there exists an orthogonal transformation @ €
R"*" such that
QTAQ=D+N

where

D = diag (A1,...,An)

with real A; and N is strictly upper triangular. For complex }; the transformation is a
unitary one.

This is the Schur decomposition of A. If A4 is perturbed to A + E and p; are the
eigenvalues of this perturbed matrix, and p is the smallest positive integer such that N? =
0, then [Golub + Van Loan],

min [A — p| < max{6, 67}
AEA(R)

where
p-1
0=l S IN|E
k=0
In the case of a normal matrix A, there exists an orthogonal transformation such that
QTAQ = D = diag (A1,---,An)
The eigenvalues of the perturbed matrix A 4+ E are such that

min [X - | < [|QTI||IQIIIE]]
ANR).

and since [|Q7])11Ql] = 1,
min | ~ | < [|E] (1.6)
AE X

The first two cases indicate that for non-normal matrices, if lf,(X) or ||[N |57} is large
then the eigenvalues of A may be sensitive to small changes in the elements of A i.e.
ill-conditioning.

However, for normal matrices, the absolute error in the eigenvalues is of the same

order as the perturbations in A, implying well-conditioning.

24

The conditions above, reflect the sensitivity of the spectrum (set) of eigenvalues rather
than the sensitivity of particular eigenvalues. Now suppose that A is a simple eigenvalue
of A and that z and y satisfy

Az = Az and yTA4 = \yT

with
[lz{l2 = 1 and ||y||2 = 1.

Then if perturbations of order ¢ are made in A, an eigenvalue A may be perturbed by an
amount ¢/s(A) where

s(A) = y"s| (1.7)

Therefore if s(A) is small then X is regarded as being ill-conditioned and s—(vl;) is referred
to as the condition of the eigenvalue A.

Note that z and y are normalised right and left eigenvectors of A associated with A
and are unique if A is simple.

In the perturbation analysis for defective eigenvalues, Ostrowskis’ theorem on the
continuity of the eigenvalues is very useful:

Let A, B , € R*™" be matrices with elements that satisfy

|a,-j| < 1 and |b,‘j| <1
I 4 is an eigenvalue of (A + e€B) and X is an eigenvalue of A then,
lu— A < (n+2)(n2e)» (1.8)

It may be shown that if A is a defective eigenvalue of A the, perturbations of order ¢ in
A give rise to perturbations of order e* in A. A detailed study of the perturbations of
eigenvalues is given in [Wilkinson).
The practical QR algorithm is used to solve the eigenvalue problem. The algorithm
makes use of the following definition and algorithm. '
If v# 0 € R", a matrix P € R"™" defined by

P=1I-200" [Ty

is called a Householder matrix.
Given A € R"*" the following algorithm overwrites A with H = UT AU where H is

upper Hessenberg and U = P, P,,..., P,_5 is a product of Householder matrices,

25

Fork=1,...,n -2,
determine a Householder matrix Py € R ~F%*("=%) g ch that

F]
Ak41,k
_ 0
Py =
Ak 0

A= P,‘TAPk where P, = diag (I}, I—)k)
Next k.

A detailed algorithm is given in [Smith et al).

As an efficiency note, Py can be stored in factored form below the subdiagonal of A.
The operations count is %n:". If U is required then the operations count is %n:’. An analysis
of the round-off errors in this algorithm reveals that the computed Hessenberg matrix H
satisfies

H=QTA+E)}Q, QTQ=I (1.9)

where ||E||g < cn’ul|A||g, ¢ is a small constant. Therefore this algorithm is clearly a
stable one. H is said to be unreduced if it has no zero subdiagonal entries.

The development of the QR algorithm is based on the Real Schur Decomposition:
If A€ R"™", then there exists an orthogonal Q € R"*" such that,

-Rll Rl2 “ e le T
r 0 Ry ... Ry
Q AQ =
L 0 0 ... Ruml

where each R;; € R'™! or R;; € R¥"?, the latter having complex conjugate eigenvalues.

The first step of the algorithm computes unreduced upper Hessenberg matrices,
U(;T AUp=H

The next step is an iterative one and is based on the double-shift QR technique of Francis
(QR step) with shifts determined by the bottom 2 x 2 matrix. [Golub + Van Loan|. This
step also includes a trace on the sub-diagonal elements. Effectively, the upper Hessenberg

matrix is reduced to Schur form,
UTAU, =T

that is
QTAQ=T where Q = UpU,

26

The operations count for the whole algorithm in about 8n3. If @ is required then the
operations count is 15n3, :

Since the QR algorithm is an orthogonal matrix technique, its round-off. properties
are favourable. In fact, the computed real Schur form 7' is orthogonally similar to a matrix

near to A, a
QT4+ Eye=T, Bl <ullAl (1.10)
and the computed Q satisfies,

QTQ=I+F where ||F||; <u

Eigenvector determination

Now consider the problem of determining the eigenvectors z
Az = Az

when A possesses distinct eigenvalues Ay, Az,...,A,. The computed eigenvalues are as-
sumed to be the exact eigenvalues of a matrix near to A. If y is a right eigenvector of A

then the computed £, satisfies,

n TR
ok — zell < ull 3 { v);Txi}mi\+ o(u?) (1.11)

i=t

o

where the computed } satisfy

x A
(A+E) =3z and ||E|| < ullFl

Therefore the sensitivity of z is dependent on the eigenvalue sensitivity and the separation
of Ag from the other eigenvalues. That is, if A; is ill-conditioned or Ax is near any other
eigenvalue then z; will be ill-conditioned.

If A is a nondefective, repeated eigenvalue then there are an infinite number of possible
eigenvector bases for the associated invariant subspace.

The following iterative algorithm, Inverse Iteration, computes an eigenvector z; cor-
responding to an eigenvalue A; of A:
(i) Compute the Hessenberg decomposition UTAU = H
(ii) Fori=1,2,...,n

Fork=1,2,...
Solve (H — A;I)z'® = z{*~1
(%)
Norma.lise: .'L'Ek) = ”—;&-"I'I:

with :1:50) being the unit vector (1,1,..., l)T.

27

A suitable stopping criterion is to quit when the residual
r® = (H - \;Da®

is such that
k
1M loo < u}|Hlool2¢® (oo

(ili) Compute z; = Uz{”, p= max(k)

The operations count is %n"" + rn? + n® 4+ 0(n?) where r is the sum of iterations for
each eigenvector. In practice r & 3n so that an overall estimate for the operations
count is 8n?®.

From the error analysis point of view this algorithm uses the Hessenberg decom-
position and Gaussian Elimination which are both stable algorithms. Hence for a
well-conditioned eigenvalue the process of inverse iteration is stable.

The QR algorithm requires n? + n storage locations to compute the eigenvalues. I

the eigenvectors are also required then an exact n? storage locations are required.

1.4.3 Linear Matrix Equations
In the course of the many algorithms treated in this thesis, it is necessary to determine

the numerical solution of the Sylvester equation
AX +XB=C, C,XeR™", AeR™™, Be R™" (1.12)
and the Liapunov matrix equation
ATX +XA=-C, A X QeR"™™ Cc=CT>0 (1.13)

These equations also occur in various applications and so are important in their own
right. Some applications of (1.12) are in the solution of certain boundary value problems
and o.d.e. systems and in the analysis of beam gridworks [Bickley & McNamee], [Doul,
[Lasalle & Lefschetz]. Variations of the type (1.13) occur in stability theory, construction of
Luenberger observers, design of optimal control systems, |[Barnett & Storey], [Luenberger],
[Levine & Athans]. :

[(Gantmacher|, [Barnett & Storey], [Lancaster & Tismentesky] study the theoretical
and algebraic aspects of the solution of these equations. We are more interested in the
numerical conditioning of the equations and the stability of their numerical method of
solution.

Firstly consider problem (1.12). Suppose that there exist perturbations in A, B and
C so that a solution X, computed by an ‘exact’ algorithm satisfies

(A+E)Y X+ X(B+F)=C+G

28

where ||E|} < u||4]}, ||F}] < u||B[{, IIG]] € ¥||C||. From the earlier discussion on Kronecker '

products, (1.12) may be represented as a linear equation
A ®TIn In® Y
Pr=c where P = (I-®4 + (BXeF7)

and the linear transformation

#(X)=AX + XB

is non-singular if A and-B have no eigenvalues in common.
Then

sz [y min BT o

and the solution X satisfies, [Golub, Nash & Van Loan]

lIX - X||

4uf||A B -1 - 1.15
X1l < 4uf|| 4[| + || Bl) (1.15)

This inequality implies that if P! is well-conditioned then the problem is well-conditioned.
Currently the best numerical technique for the solution of (1.12) [Golub, Nash & Vg')nol
Loan| uses the Hessenberg and Schur reductions, discussed earlier, in the following way.

(i) Reduce A to upper Hessenberg form by using Householder’s method,
UTAU=4H vTu =1

(i) Reduce B to lower Schur form by using the QR method,
VIBV =S Viv =1

(iii) Update the right-hand side
vtev =T

7 so that the original problem is equivalent to solving
(ivy HY +YS =T

by back substitution, where
(v) X=U0YVvT

If p = max(m,n) then the operations count for this algorithm is 20p® and the storage
locations required is 6p?.

Applying the error analysis of the previous section pertaining to orthogonal matrices
and that of Section 1.3 shows that the computed X satisfies,

IX - X)|

I1X]I Scul|¢'1II(HAII+ ||B||)+0(u2) (1.16)

where ¢ is a small constant.

29

This bound is essentially the same as that in (1.15) obtained for an exact algorithm.
Therefore, this ‘Hessenberg-Schur’ algorithm is a stable technique for solving (1.12).
Now consider the problem (1.13). If A and C are perturbed slightly, X satisfies

(A+EX X +X(AT+F)=C+G

and the perturbation in X is bounded by

[1X - X

xS Sul|All I|¢"“II (1.17)

where ||¢7}|| is defined by (1.14). - ' r
The following steps effect the numerical solution of (1.13), {Bartels & Stewart],
(i) Reduce A to lower Schur form
UTAU =S

(i) Update the right-hand side
vtecu =T

so that the original problem is equivalent to solving
(i) STY +YS=T ' '
- by a back substitution algorithm, where
(iv) X=UYUT |
The operations count for the algorithm i& 19n® and the storage locations required is
5n2.

The bound on the error in the solution is similar to (1.16);

X - X

x| < cull6 ™M]1AIl + 0(x*) (1.18)

where ¢ is a small constant.
This implies that the Bartels-Stewart algorithm is a stable technique for solving (1.13).

30

SECTION 1.5; Systems of Non-linear Equations
‘ The problem is that given a continuous function F' : R™ — R"™ made up of n component
functions fi(z),R" - R, non-linea.r in the n unknowns T, it is required to find some
. z* € R" such that each component function fi(z) va.mshes at z* for i = 1,...,n, that is
F(z*) = i
This problem may be solved by applying Newton’s method for systems of non-linear

~ equations, iteratively from a starting guess 7o € R", such that at each iteration k, we solve
J(e®)p®) = — F(z®)y (1.19)

and update with
251D = (B 4 (B ‘ (1.20)

where the-Jacobian, J(z(¥)) is the matrix of first partial derivatives of F at z{*),

7(a®) = ai{;‘” ii=1,...n (1.21)
i
The iterates (1.20) are dependent on a ‘good’ initial guess z(® and on the non-
singularity of J at z*. It is known [Dennis & Schnabel] that the iterates have a quadratic
convergence property. from a good starting point but the convergence is not always global.
To remedy this, a global strategy must be used.
One such strategy is to transform this into a sum of squares problem and minimise -

the resultant function; that 1s, minimise the scalar function
1 n
=3 3£t (1.22)
=1)

Newton’s method _fbr unconstrained minimisation of an arbitrary function f from a starting
guess z(9) € R™, solves i : -
' Vi f(a®p® = —V f(z V) = (1.23)

and updates
LR+ (0 4 o(8)

where the gradient V f(z®) is the vector of first partial derivatives of f at z(®

V(™) = {k) i=1,...,n (1.24)

and the Hessian, V2 f(z(¥}) is the matrix of second partial derivatives of f at z(¥),

*f

V‘Zf(l.(k) = ———
) axgk)azgk)

ij=1,...,n (1.25)

31

With respect to the function fc in (1.22), the expressions in (1.24) and (1.25) may be

defined in terms of f and J, as follows,

d
(V£(z)]; = f’, j=1,....n

from (1.21)

Also

n

Il
Q>|H‘
+
E_ﬂ

»
I

Z k:Jk)+ka 9 (
k=1

n 2
= [JTJ)i; + kaa(: i
k=1

0z

We can now state that starting from an initial z(%), the iterates

ZHD = () 4 (050

where the direction of search p{*) solves
T k
A(k)p(k) =—J (:x(k))f(z()),

converge to a z* that minimises (1.22).

(1.26)

(1.27)

(1.28)

(1.29)

The scalar a{¥) is chosen so as to approximately minimise fc(z(*+1) with respect to

a®) and A®) is a matrix characteristic of the particular Newton method.

One such A is V2 f(z(*)), the Hessian of fc at z(¥), This is typically a modified

Newton method and it is well-known [Ortega & Rheinboldt] that,

32

(1) it is locally convergent irrespective of where the starting point is
(i1) it has quadratic local convergence,
N e |

R RTM C ppy is finite

A necessary condition is that every V?f(z®)) must be non-singular. It has been
argued that the determination of the Jacobian and the Hessian at each iteration is unde-
sirable, particularly for large problems and since fc(z*) is sufficiently small then neglecting
the second term in (1.29) would not significantly affect the local convergence properties of
this method.

This argument gives rise to the Gauss-Newton method which sets A = JTJ. This has

quadratic local convergence if
M(J@)T Iz)< k fe(z*)t for k > 0
In this case (1.29) ma; be written as
J(®Fp® = —f{w”") (1.30)

The iterations may give rise to a near-singular Jacobian implying ill-conditioning with
respect to the problem (1.30). However, this may be overcome by adding a scalar matrix
H®T to A®) the problem of choosing H*) not being a difficult one [Brown & Dennis].

It is perhaps best to use a combination of these methods, taking advantage of their
respective ‘nice’ properties, as follows.

From a starting point z(?, generate a sequence of iterates (1.28) intended to converge
to a local minimum of (1.22) where the direction of search depends upon the reduction in
the sum of squares obtained during the last iteration. If the sum of squares was sufficiently
reduced then the Gauss-Newton direction is used, otherwise the Newton direction.

This is designed to ensure that steady progress is made, whatever the starting point
and to have the rapid ultimate convergence of Newtons method.

The steps in the algorithm are as follows,

(i) Select z{? € R", the initial estimates to z*
(ii) Determine whether the Gauss-Newton or the Newton iteration is to be used
Gauss-Newton |
(iii) Determine the jacobian J(z(*))
(iv) ¥ J(z(%)) is singular add a scalar matrix u¥)T to JTJ and solve

(JTT+ P np*) = —JTF for pt® (1.31)

otherwise solve

Jp*¥ = - F for p® (1.32)

33

Newton .
(ii) Determine the Jacobian J(z(¥), the gradient V f(z(*)) and the Hessian
V2 f(2®) | o
(iv) If V2 f(z*))is not positive definite add a scalar matrix u(*) I such that (V2 f(2(¥))
+ p® 1) is positive definite and solve

(V2 f(@®) + uB Dp® = ~JTF for p® (1.33)

otherwise solve

V2f(z®p® = —JTF for p¥ (1.34)

(v) Minimise fc(z(®) 4 a®p(¥)) with respect to o!® € R
(vi) Update, z(k+1) = z(¥) 4 o(®)p(¥)
(vii) If convergence criterion is not met, go to (ii)).

At step (iv), Gaussian Elimination may be used to solve (1.32). For (1.31), (1.33) and
(1.34) a more efficient technique is available. Since JTJ and V2 f(z) are symmetric and
positive definite, the matrices in (1.31), (1.33) and (1.34) are also symmetric and positive
definite. As such, they may be reduced to LLT where L is a lower triangular matrix with
positive entries on the diagonal. This is known as the Cholesky decomposition and gives
rise to an algorithm for solving the linear system which uses half the number of operations
used by the Gaussian Elimination algorithm [Wilkinson). It is known that this algorithm
is stable and gives rise to accurate solutions when the problem is well-conditioned.

Step (v) involves a line search; i.e. given an initial a{” and a direction p{"”), min-
imise the function fc(z{(" + a(Mp(M) with respect to a!”). Powell developed a quadratic
interpolation method [Powell] specifically for this problem which may be summarised:

(i) Choose a step length h|p("}|
(ii) Evaluate fo(z("), fe(z™) + hp")
(i) H _
fe(z) < fe(z(7 + hp™), evaluate fe(z™ — hp{h
otherwise evaluate fe(z(™ + 2hp(")
Values are now known at 3 points on the line z{” + Ap(7.
(iv) Determine the turning point o(” = ol of the quadratic function y(af™) fitted

through these three points - denoted as a, b, e - using the following formula,

1 ((b2 —e!)fea + (2 —a?)fep + (a® — bz)fc,)
2 (b—c)feca +(c—a)fep+ (a—b)fe,

a(”? =

and test for a minimum by using,

(b—e)fea+(e—a)fcy +(a—b)fe,
(a=b)(b—e)c—a)

34

<0

(v) If:
(a)

hlp®1

the point A = A,, corresponds to a maximum of y(a{”) or if it corresponds to a
minimum which is at a greater distance then k|p{"| (where h is prescribed) from
the nearest of the three points, proceed as follows. Discard the pointr which is
furthest from the turning point and obtain a new current direction in which the
function decreases; this step is taken from the point furthest from (nearest to)

the turning point when the turning point corresponds to a maximum (minimum).

hip®|

or (b) If the point al” = o' corresponds to a minimum of y(a(”) and if it is within

a small prescribed distance €|p(”| of the nearest point al”) = B say, of the three

current points, then take
min{fc(z" + o{p), fe(z” + Bp)}

as the required minimum value of fe(z{™)

or (c) If the point a!” = o'y} corresponds to a minimum of y(a{™) to which neither
(a) or (b) applies i.e. if it is not further than A|p'™{ from the nearest of the three
current points but not within e|p("”)| of it, discard the point with the highest
function value and replace it by a(" = o'y,
Goto (iv)

35

Using exact arithmetic, a necessary condition for convergence is V f(z) = 0. However,
in a finite precision environment that uses floating point arithmetic, this condition must
be revised to test that

IVf®l < TOL

holds, where TOL is some small tolerance.

This global strategy has one significant but unavoidable short-coming. This may arise
when the function fc has a local minimiser which is not a root of F(z). The algorithm
may then converge to this point if the iterations are started at an z(®) near to this point.
In this case all one can do is to restart the algorithm from a different z(%.

A discussion on the operations count for this algorithm, at this stage, is largely not
informative, since the formation of f;J and V?f(z) contribute significantly to the count.
It is problem specific and will be discussed whenever this algorithm is used for a particular
problem. It suffices to say that the line-search algorithm, the test for convergence and
the determination of u are processes of 0(n?) and that the solution of the linear system,

In3

by a combination of Cholesky method and Gaussian Elimination, takes less than

operations.

36

SECTION 1.6. Some Theory-on Quadratic Matrix Equations.

The real monic unilateral quadratic matrix equation
X’ +PX+Q=0 (1.35)

has coefficient matrices P and @ both real, square and of order n. The matrices that solve
(1.35) are referred to by X and are also real, square and of order n. The equation (1.35)
is a general one in the sense that for arbitrary P and @ we have very little information
pertaining to the matrices P, @ and X. Nothing is known about their definiteness or
their symmetry, we do not know how many solutions exist generally, how their localization
manifests 1tself, if at all and if a solution is found, it is not known how to eliminate it and
generate further solutions.

As a consequence, practical methods for solving (1.35) have been iterative ones re-
quiring an initial approximation to the solution matrix, usually by guesswork. One such
method, known as the ‘worst possible algorithm’ [Ingraham| and discussed at length in
Chapter 5, expresses the matrix equation as a set of n? quadratic scalar equations which
are then solved by some appropriate technique. The disadvantage of this method, apart
from the considerable amount of work involved in solving a set of n? non-linear equations,
is that the matrical properties of the elements in the equation are lost. Nevertheless, there
are instances where no other available method can determine a solution for (1.35) in which
case the ‘worst possible algorithm’ would be the best and only option. A number of exact,
non-iterative method have been proposed and these are discussed in [McDonald]. However,
these are workable only for low order problems since the degree of algebraic complexity
involved when dealing with high order matrices does not lend itself to the development of
practical algorithms.

However, a practical non-iterative approach to determine certain solution matrices

may be developed by considering the associated lambda-matrix problem defined by
AP T+ ™ 4 A ™24 4 AL =0 (1.36)

which frequently occurs in the study of differential equations [Lancaster], [Gohberg, Lan-
caster & Rodman]. A special case is the quadratic one such that

/\2I + Al/\ + Az = 0 (1.37)

Put A; = P and A; = @ and (1.37) may be written as the quadratic eigenvalue

problem

(A T+ PA+Q)z =0

or

37

F(Az =0 (1.38)
with A
X*+PX +Q=F(X)
where it is required to find all scalars A and non-zero vectors z that satisfy (1.38). A and

z are referred to as the latent roots and latent vectors respectively. Now (1.38) possesses

a non-zero = provided

NIT+PA+Q[=0 (1.39)

The problem of determining the solutions of (1.35) is very closely related to the prob-
lem of determining the roots of the polynomial in (1.39) because every characteristic root

of a solution of (1.35) is a root of (1.39) [MacDuffee],
0=|)I+Pxr+@Q
= |AI+ PA - X? - PX|
= |A + P+ X||AI - X|

The latent roots of F(\A) are the union of the characteristic roots of X and those of
(-P - X).

As a way to determine the roots of F(X), consider the Block Companion matrix
associated with (1.36) _

(0 I 0 0\

: I
\—Am' _Am—l —Am_2 —-Al }

The equivalent matrix for the quadratic case is

A= 0 1 1.40
_(—Q —P) G40

which will be used frequently when considering the Elimination Method.

The eigenvalues of this 2n X 2n real matrix are the latents roots of F(A) since

Y4 I
|A— | =
-Q -P-2AI
= |A?T+ PX+ Q|

38

The relationship between the eigenvectors of A and the latents vectors of F(X) is not
so obvious. Let p; be a latent root of F(A) and y; the corresponding latent vector, then

(Ui 1+ Ppi+ Q)i =0 - (1.41)
Now y; is also an eigenvalue of A and if z; is the corresponding eigenvector, then we have
Az,- = iz (1.42)

Since z; is a vector of length 2n, it may be partitioned into 2 n-vectors.

2= (2, 2T | (1.43)

using (1.40), (1.42) and (1.43)
2 = piz) (1.44)
-Qz{" = P={? = piz? | (1.45)

substitute (1.44) into (1.45)

w2 4 P 1 Qe = 0

(B3I + Pui + Q)= 0 (1.46)
comparing (1.46) with (1.41)
2.(1) =Y
and from (1.44)
252) = W;iYi (1.47)
such that
= {yi, pivi}” (1.48)

If the solution of (1.35) has linearly independent eigenvalues then it may be dlago-
nalised by elementary operations U say such that

U='XU = A = diag (M1, ..., 2n)

such that
X =UAU™? (1.49)

Substituting into F(X) = 0 gives
(UAUT'+ PUAUT' + @) =0
(UAN*+PUA+QUY™ =0 (1.50)

39

Comparing (1.50) with (1.41), it is clear that the columns of U are the latent vectors
corresponding to the latent roots of Fi(A). From (1.48)

= [V, 2", ..., 2] (s

Therefore, for diagonalisable X a solution to (1.35) is given by (1.49) where U is defined
by (1.51), the z; being determined by solving the eigenvalue problem (1.38).

For non-diagonalisable matrices X a transformation of the type in (1.49) still exists
but in this case the diagonal matrix A is replaced by J, the Jordan éa.npnica.l form. If X
has r distinct eigenvalues A1, Az, ..., A, of multiplicities my, m2,...,m, such that Zm; =
n (i =1,...,r) then J consists of simple Jordan submatrices along the diagonal with all

other elements equal to zero. A simple Jordan submatrix of order k, associated with X;,

(])

A1

is defined as

1
\ xi/

wa, to determine a solution of (1.35) it is necessary to determine U from
UJ?+PUT+QU =0 ' (1.52)

where J has n of the latent roots of F(}) as its eigenvalues. From the numerical point of
view (1.52) is difficult to solve without multiplying out the matrices to obtain a system of
n? linear equations in the elements of U. However, this results in loss of information due
to the breaking of the structure.

Before giving an example to solve (1.35) for diagonalisable X, it will be helpful to give
the following definition.

Definition
A set of 2 solutions of F(X) = 0 is a complete set of solutions if the set of 2n

eigenvalues of the 2 solutions is the same, counting multiplicities, as the set of 2n latentg
roots F(A) [Dennis, Traub & Weber, 1].

Example

Consider solving

: -1 -6 0 12
F(X):Xu()X+()
2 -9 -2 14

40

The block companion matrix A is

0 0 1 0

0 0 0 1
A=

0 -12 1 6

2 -14 -2 9

The eigenvalues of A are 1, 2, 3, 4, which are also the latent roots of F(A) where
AP —6X+12
F(A\) =
2X—-2 A2-9\+14

The eigenvalues of é are {1,2,3,4} and the corresponding eigenvectors are,
(1,0,1,0)7, (0,1,0,2)7} (1,1,3,3)7, (1,1,4,4)T
Therefore the latent vectors of Fi(A) are,
1,07, (o,H7, (1,H7,(1, 1"

The problem has solutions with eigenvalue pairings (1,2), (1,3), (1,4), (2,3), (2,4). The
pair (3,4) cannot be the eigenvalues of another solution since the corresponding eigenvec-

tors are linearly dependent. Also, this problem has 2 sets of complete solutions.

1 2 4 0 S 30
H an 7
0 3 2 2 0 4 1 2
This example illustrates the shortcoming of this method. That is, it is not known, prior to
the determination of the latent vectors, which combination of the latent values of F(AT)

are also the eigenvalues of X. This uncertainty factor is the reason why this technique is

not currently used in practice.
Matrix Square Root
Putting P = 0 in (1.35) results in the following special case,

X?-A=0 (1.53)

This is the matrix square root problem, so-called since the solution X of (1.53) is the
square root of A. This problem has merited considerable research in its own right since it
arises in a number of applications, e.g. least squares estimation, the study of differential

equations and estimation of navigation systems.

41

It is not always easy to establish the existence of a square root of a matrix. Consider
the following matrices, '

01 ' 11 1 0
Al= 1A2=)A3=
: 0 0 ‘ o 0 G 1

A; has no square root, A; does possess a square root and A, has infinitely many square

roots. It may be shown that if A has at least n — 1 non-zero eigenvalues then a square root
always exists, otherwise the existence of one depends upon the structure of the elementary
divisors of A corresponding to the zero eigenvalues {Gantmacher], [Cross & Lancaster].

Since the eigenvalues of X are the square roots of the eigenvalues of A, the total
number of square roots of a non-singular matrix with distinct eigenvalues is 2.

If A is derogatory, that is there is more than one Jordan block associated with an
eigenvalue, then it possesses an infinite number of square roots [McDonald).

Notice that if X; is a square root of A then so is X = —X since X = (—-X;)? =
X? = A

From the above discussion it is clear that unlike in (1.35), a number of relationships
exist between that matrices A and X in (1.53). Consequently there has been a greater

emphasis on determining efficient and stable solutions to the matrix square root problem.

Algebraic Riccati Equation

We.now move onto another type of quadratic matrix equation,-the algebraic-Riccati-
equation (ARE). The ARE plays a fundamental role in the analysis, synthesis and design of
estimation systems as well as in many other branches of applied mathematics; for example,
in the determination of steady-state solutions of the matrix Riccati differential equation
[Reid]., in the theory of multiwire transmission lines [Sternberg & Kaufman] and in optimum
automatic control theory [Kalman)].

The ARE may be derived by considering the Linear-Quadratic-Gaussian control prob-
lem:

Let A, H be n X n matrices with H symmetric and positive semi-definite,
B be a n X m matrix,
and R be a m X m symmetric, positive definite matrix.
Define a quadratic cost functional by
1 o0
Jz,u] = > / (T Hz + w7 Ru) dt (1.54)
0

input .
where z, the state vector and u the cantret vector are of length n and linked by the linear

relation

= Az + Bu (1.55)

42

The L.Q.G: control problem is then:
M1mrmse J[z,u] for z,u satisfying (1.55). - : s

It is known [Wonham] that if the pair [A, B] are stabilizable and the pair [4, K] are
detectable then the optimal control u* is given by

u*=—-R1'BTK:

the closed-loop system matrix being A — BR 'BTK where K is the non-negative definite
solution of the equat:on

ATK + KA-KBR'BTK + H=0 (1.56)
This is the Algebraic Riccati Equation. Writing G = BR™'BT | it may be written as
ATK4+KA-KGK+H=0 (1.57)

There has been a great deal of research carried out in this area and this has led to a
number of successful. methods for solving (1.57). Much of this has been motivated by the
fact that G and H are symmetric and at least positive semi-definite and that in most cases
the solution of interest is the symmetric non-negative definite one. A sufficient condition
for the existence of such a solution is that [A, C] is stabilizable, i.e. there exists a matrix
D such that Re(Mi(A — CD)) < 0 where CCT = G [Wonham)].

It is interesting to note that K may be expressed in terms of the solution to (1.35) by
observing the following transformation [Barnett].

Since G is positive definite and therefore non-singular, G~ 1 exists. Put K = VG-
to give

Y2 - ATY - YG'AG-HG =0
put Y = X + AT
X2+ ATAT + XAT + ATX —ATX — ATAT - XG'AG - ATG'AG-HG =0
or write as |
X?*+XP+Q=0

where

P=AT _ G 1AG

Q=-ATG'AG - HG
and the solution of (1.57) is given by
K=(X+AT)G™! (1.58)

The current methods for solving (1.35) for this P, Q will not compare favourably with
those that solve the ARE directly since they cannot make use of the special properties of

G and H and since it is not clear how the properties of X relate to the symmetric, positive
definite K in (1.58).

43

CHAPTER 2 - PERTURBATION ANALYSIS

In this Chapter, we make use of the discussions and results of Section 1.3 to derive
bounds pertaining to the sensitivity of the solution of quadratic matrix equations to small -
perturbations in the elements of the coefficient matrices.

Fundamental to the analysis is F'(X), the derivative of F(X), and its inverse F'(X)™1.
Section 2.1 discusses the existence of this derivative and shows that for each matrix equa-
tion, there is an equivalent matrical representation.

Section 2.2 presents a detailed analysis for the conditioning of each problem and
derives bounds for the error in the solution of a perturbed problem. Each bound possesses
the factor |[F/(X)7Y||. 7

Section 2.3 shows how, by the way of small order examples, small perturbations in the
initial data may cause massive perturbations for ill-conditioned problems. In fact, some

perturbations in the solution are unbounded.

44

SECTION 2.1: The Derivative of F(X)

‘Consider the matrix function F(X) € R"*" given by
FX)=X*+PX+Q ‘ (2.1)

The Fréchet derivative F'(X) of F(X) at X € R™" is a linear operator on R"*" defined

by its action on a matrix, say H € R"*", as follows

F(X+H)-F(X)=F'(X)H +- 0(H?) (2.2)
| witﬁ-reséeqt, to ('2..1), (é.z) gives
F(X 4+ H)— F(X)= (X + HY + P(X + H) + A— X* — PX — Q

such that '
FI(X)H=(X+P)H+HX (2.3)

- This derivative operator and in particular its inverse operator will be referred to frequently
in this thesis. Consequently, we require some estimates for their sizes. From the definition

of an operator norm, we have that

IF'(X)HY

TIHIT 24

FXO] = sup
H#0
Usin_g-the results of Section 1.2, céncerning Kronecker products, (2.3) may be written as,
veé[ﬁ'(X)_H] ={(X+P)®I+] ® X7 vec[H]
Taking Euclidean norms, |
|F'(X)H| = || vee[F'(X)H]|| = ||IT vec[H]|| (2-.5)

where ,
T=X+P)®I+IXT
usmg (2.4), (2. 5) and the fact that ||H||g = || vec[H]||g,

’ IIF'(X)H]| g T vec[H]||g
F X — _— = - Tt
1P - SL;;;, 1HllE veettiizo I veclHllg

IIF'(X)II =171l

The conditions for existence and boundedness of the inverse operator are contained in the
following theorem [Milne]:

45

Let F'(X) € R"™" be an operator. If there exists a constant m > 0 such that
IF'(X)H|| 2 m||H|] VH € R™™" A (2.6)

then F'(X) has a continuous inverse F'(X)~!. Furthermore ‘

) - 1
1P s = | 27

. o I . . .
Now assuming that T exists and using the notation and the matrix T as above,

vec|H] = T™'T vec[H]

Taking norms
|| vec[H]|| < [IT7M}||IT vec[H]||
1 ;
Let m = then we have
= |
ml| vec[H]|| < ||T vec[H]||
using (2.5)

mi|H|| = m|| vec[H}||.< || vec[F'(X)H]|| = {IF'(X)HI||
so that the condition (2.6) is satisfied and the norm of the inverse operator is given by
IFX)TNLNTH = (X +P)I+10 X | (2.8)

This result in particular, will be used frequently. The singularity of F'(X) may be related
to that of T' [Golub, Nash & Van Loan] where they show that the operator F/(X) is nea-
singular 1f a.nd only if the matrices (X + P) and — X have elgenvalues in common. Similarly
F'(X)is smgula.r if and only if (X + P) and —X do not have eigenvalues in common. It
follows that the conditioning of the operator norm with respect to nversion 1s directly
related to that of matrix T. '

The following analysis relates this matrix T' to the Jacobian matrix of Section 1.5.

From (2.1),

n n
(fij) = Z TikTkj + Zpikmkj + Gij
k=1 k=1
Let fc, zc € R™ be composed of the elements of F and X respectively taken a row at a

time. The Jacobian, J of a function fc is the matrix of first partial derivatives of fc with
respect to zc,

r 9fu 0fin Ofn 0f11 1
%o Ber. Do T Bon
Of12 dfi2 Ofiz 0f12
= (06 _ | 8en 7 Bria Bzm 7 Oz
Ozce;
Fun 3fnn Ofan 8 fun
L Oz 0 Orn OBzyr T Ozgn A

46

. : i
- Differentiating each element of F}; and using Kronecker products, we have
IJ=(X+P)@I+IgXT

which is exactly the matrix T above.
An analogous approach for the algebraic Riccati equation

X .
ATX+XA~AGX +H =0
where H is denoted so as not to confuse it with H , shows that

F(X+H)-F(X)=(AT - XG)H + H(A - GX) + 0(H?)

such that
F'(X)H =(AT - XG)H + H(A - GX)

taking norms

FI(X)H]||
F(X = sup IECOH]
1Fz = sup =)
¥
H
_ Sup” vec[F'(X)H]||
H#0 [|H]
- sup |1 T vec[H]||
H#o || vecH]||
= ||Tl|e

Similarly ||F'(X)™|| < ||T7!]| where
T=(AT-XG)®I+I1®(AT - XG)

This is also the expression for the Jacobian matrix.

(2.9)

(2.10)

As aresult of this analysis, it is clear that the existence of the inverse operator depends
upon the non-singularity of the matrix T (or ’f‘) Similarly, we can say that if T (or f’) is

well-conditioned then so is the derivative operator.

Re(

Moreover, for the algebraic Riccati equation, the stabilising solution satisfies A;(A4 —

GX))< 0 in which case T is non-singular and the inverse operator exists.

47

SECTION 2.2: Conditioning of the Problem

We now examine how the presence of perturbations in the original data may affect
any solution of the matrix equations. .

Firstly consider the quadratic matrix equation,
F(X)=X*+PX+Q=0 (2.11)
Assume that P and @ are perturbed such that (2.11) bepornes
GX)=X:+(P+AP)X +(Q+4AQ) - (2.12)
Now the computed solution, X that makes F(X) = 0 satisfies,
(X +AX) +(P+AP)YX + AX)+(Q+AQ)=0 (2.13)
Multiplying out,
X?+ XAX + AXX + AX? + PX + APX £ PAX + APAX +Q+AQ =0 (2.14)
Re-arranging this gives,
X? 4+ PX +Q+ (X + P)AX + AX X + AX? + APX + APAX +AQ=0 (2.15)
Using (2.3) and (2.11), (2.15) may be written as
F'(X)AX = —~(AX? + APX + APAX + AQ)
Let F'(X)~! exist. Premultiply by F'(X)~ and take norms,
IAX(| < IFCO IAIAXIE + (AP IXI|+ HAPIHIAX] + 16QI) (2.16)

Let k = ||F'(X)~1||[|AP]|, then

IAX(] < IO IAXIE + AP IAXN +IAQ) (217)
Let e
o= XN 5= aquapiiixii+ naql)y (218)

then (2.17) may be expressed as

—a|AX|? + [AX]| -8 <0 (2.19)

48

To understand this inequality, consider the quadratic function,
y = —al|AX|* +]lAX]| -8

The gradient is,
dy
— = —20||AX]||+ 1
d||AX]]
The function y has turning points when the gradient vanishes. In this case there is only

one turning point, at [|AX{|= o and since
. a

d’y
—_—=—2a <0
diaxiE =
and a g 0, this point is a maximum. The y co-ordinate at this point is

1—4af
y=-

oo > 0 for sufficiently small [|AP|| and }|AQ||

Now, the roots of y are

1 \/1—40:3 and 1 \/1—40:3

r=—— rg = — +

2a 2 2o 2c

which for sufficiently small ||AP{| and ||AQ|| are real and positive. The curve of y may
look like this, '

-

(x2, y2)

/Tl,)n) | (x3, ¥3)

(0’ 'ﬂ)

1 1-4af

where (xl:yl) = (TI,O), (2y2) = (%1 da

)+ Grom) = (r20)

49

The implication of these observations is that (2.19) holds for all ||AX|| satisfying,

1-y1-4ap o (2:20)

IAX]| £ 72 = o
where a, §# are given by (2.18).
Now for sufficiently small ||AP|| and ||AQ|],
(1-4aB)t ~1 —#

so that (2.20) becomes

IAX (| S 8= a(l|aP|HIXH + |AQI)
(2.21)

”—F'l(i)-_”(uAPII X1+ 1AQIN

Now, from earlier, k = ||F'(z)"!|||JAP}|. AP is the matrix of perturbations in P and as
such, ||AP|| will be of order u}|P||. Typical, in computing machines using double precision

arithmetic, u & 107'® so that we can safely say that k < . Then, (2.21) may be written

as

IAXI oy os 1aq)
S < 2o (iapy + B (222)

This relationship expresses the error in computing X in terms of the perturbations in the
coefficient matrices. It suggests that if F'(X)™! exists and F'(X) is well-conditioned at
the solution then the computed solution is near the exact solution. If however, F'(X) is
ill-conditioned and therefore {|F'(X)~1[| is very large then we cannot guarantee that the

computed solution is near the exact solution.

Now consider the matrix square root problem,
X*~A=0 | (2.23)
The solution that solves the perturbed system satisfies
(X +AX)Y ~(A+AA4)=0 (2.24)
The definition of the derivative for this problem is
FI(X)AX =XAX +AX X (2.25)
From (2.23) and (2.25), (2.24) may be written as,
F'(X)AX = AA - AX?

50

From the earlier discussion of Kronecker products, the derivative in (2.25) is non-singular

if and only if X and —X have no eigenvalues in common. In this case,
IAXH < {IF' ()M AA] 2 |F'(X) 7 I AX?| (2.26)

This is a quadratic inequality in [JAX||. Using a similar approach to that for the quadratic
matrix equation, we have that for sufficiently small |JAA||, (2.26) holds for all ||AX]

satisfying,
lAX|] < IF'(X)7H [IAAl

2.27
HXII B x|
From (2.23), [|4[} = [|X?]| < || X)? .
Taking roots, [|A||} < ||X]|| = <
Substituting into (2.27),
laxiy| 'y~ 3 [1AA]l
< IFI(X)=H] 1A (2.28)

This bound is valid when X is non-singular in which case F'(X) is non-singular and
the bound suggests that any relative error in X is only as large as the relative error in
A multiplied by a constant. This constant say C, may be regarded as the magnification

constant or condition number and is given by
C = IF(X)~ 14
Now consider the conditioning of the Algebraic Riccati Equation,
ATX — XA - XG':-(i- H=FX)=0 (2.29)
If the coeﬂ"-icient matrices are perturbed slightly then the computed solution satisfies

(AT+AAT)(X+AX)f(X+AX)(A+AA)—(X+AX)(G+AG)(X+AX)+I;+AH =0

(2.30)
'where
IAAT]| < ullAll, [IAA]l < wllAll, 1AG]| < wIGIl, IAH] < ul|H| (2.31)
The Fréchet derivative in this case is,
F'(X)H = (AT - XG)H + H(A - GX) (2.32)

ol

Also,
F(X)H = (AT + AAT - X(G+ AG))H + H(A+ AA - (G + AG)X) (2.33)

Define AF/(X)H = F'(X)H — F(X)H
then : ‘
AF'(X)H = (AAT - XAG)H + H(AA — AGX) (2.34)

Substituting (2.29), (2.32) and (2.34) into (2.30) gives
F'(X)AX + AF'(X)AX - AX(G +AG)AX + R=0 (2.35)

where

R=AATX + XAA = XAGX + AH (2.36)
Multiplying each side by F'(X)~! and taking norms,
lAX]] = [|F'(X)T | I(AX(G + AG)AX — AF'(X)AX - R)| (2.37)

NAX|| < [IF'(X)7HIUIG + AG| HAX]? + IAF (X)HIAX][+ RI) (2:38)

Let) . ’
(IF(X)HHHIAF (X} = &,
_HFO™ _ IFE IR
o a="_p IGHAGH B="—7
then (2.38) becomes
—allAX|[? + [|aX]| - 8 <0 | (2.39)
This is a quadratic inequality in ||AX]|. Using a similar analysis to that used for (2.19)
yields,
F(X) IR
lax] < g = 1 1)_k”” I (2.40)
for sufficiently small ||AAT||, }4ll, |IGII, |AH]|.
Now from (2.34) and (2.31),
HAF(XH< 2nu(||All + 1G] IX]])
since this is of order:u we can assume that
1
k= PO AR OO < 5 (241)
From (2.36) and (2.41), (2.40) becomes
AX _ AH
UL < ciir e (2niaan+ nacix + 12 (242)

52

This expression gives the relative error in computing X in terms of the absolute pertur-
bation in the coefficient matrices and the inverse of the derivative operator. Clearly this
relationship is only valid when the operator F'(X) is non-singular. In fact the stabilising
solution will always yield a non-singular F'(X), although if it is ill-conditioned there is no
guarantee that the computed solution is near the exact solution.

A slightly different approach to determining the sensitivity of the Riccati problem
is given by [Byers, 1] where the term in (2.36) is represented as the sum of three linear
operators such that -

F'(X)'R=F(X)"{(AH) - §(AA) + ©(AG) - (2.43)

where : —
8(Z2)=F(X)"(ZTX + X2) (2.44)

- and |
m(Z) = F'(X)"(XZX) (2.45)

The operators 8, F' and n determine the sensitivity of X with respect to the uncertainty
in the matrices, A,G and H respectively. Then the relative error in computing X is

”lf}ﬁ,” < ,|_f}|, (1 CX) ™ HIAE| + 18] AN + =l [|AG]] (2.46)

We can relate the bound in (2.46) to that derived in (2.42). From the definition of an -
operator (Euclidean) norm,

' -1 T
1] = sup IO THETX + X2))

Z3£0 ”Z”E
r -1
Ly IFEOTT ez
vec(Z)#0 || vec(Z}|]
= [IF'(X)7'T| < ||[F'(X)7HT (2.47)
Since
T=X@I+IeXxT (2.48)
161l < 1F'(X)~H 12X |} (2.49)
Similarly
= l] < 1F' (X)) 11X)2 (2.50)
Substituting these into (2.46) gives,
AX . AH
H <alP 0 284+ nacyiaxy + L) (2.51)

53

We observe that the bound on the right hand side of (2.46) is less than the bound
on the right hand side of (2.51). Just how close the bounds are depends largely on the
particular problem.

[Byers, 1] performs a comparison of the condition number obtained from (2.46),

IF (XY HA] + (18] 1AL+ [l]

K¢ =
(2]

with a condition number obtained from a bound similar to (2.42), [Byers, 2],

- H
Ko = IFC0™) (2014l1+ 61 1 + 2l
and with [Arnold & Laub),
L IPEO Al
Kyq=
* 1X1]

He shows that K4 < K¢ < Kp.
[Arnold & Laub] observe that K 4 tends to be too small and K g tends to be too large.

In numerical experiments [Byers, 1], K¢ compares favourably with K 4 and Kp.

o4

SECTION 2.3: Some examples of perturbed problems

‘The -difficulties encountered when solving problems with a singular derivative at a
solution may be illustrated by looking at some examples.

Consider the square root problem

(00 (2.52)
(o) |

Let a solution of (2.52) be of the form

x={®" (2.53)
_(C d) .

Substituting (2.53) into (2.52) yields a set of four non-linear equations in the four

where a, b, ¢, d € R.

unknowns,
a®+bc=0
(a+d)b=20
(a+d)c=0
bc+d* =0

These imply that either =0, c=0o0ra+d=0.
If =0 then a =0, d =0 and c is arbitrary
If c=0then a =0, d =0 and b is arbitrary
If @ = —d then b is arbitrary and ¢ = —a?/b.
Therefore there are three groups of solution that satisfy (2.52),

¢ o
X1=
0 0

The partial derivatives of the corresponding functions are

Q C a 0
0 0 .
J(Xy) = 0 0 , then [|[F'(Xy)|| = |IJ(X1)]|
0 aa 0O
0 8 00
J(Xz2) 000l th F'(Xa)|| = ||J(X2)li
(2) = 6 0 0 ﬂ ’ cn || 2 —l 2
0 A 0 0
2y € § 0
6 0 .
J(X3) = , then [[F'(X;3)]| = |[J(X3)l)
e 0 O € .
0 € & -2«

These derivatives are all singular. This implies that the bound (2.28) is not defined
and therefore cannot determine the effect of any perturbations in the coefficient matrix.
To see this, assume that in generating the coefficient matrix a small inaccuracy occurs in

the element in position (1,2) so that the problem (2.52) is now perturbed to

x? 0 w B 0 O 0 54
"(o 0)_(0 0) (2:54)

where w is a small non-zero element.
Again assume that the solution of (2.52) is of the form (2.53) and substitute this into
(2.54) giving

A +bc=0
(a+dp=w
(a+d)e=0
be+d=0

Since w > 0, (a + d) and b must be non-zero. But this is not consistent with the
remaining equations and therefore a solution of (2.54) does not exist. Thus a small per-
turbation in the coefficient matrix has caused unbounded changes in the solution to (2.52)

and hence the problem is ill-conditioned.

o6

Now consider the following problem where not all the solutions possess singular deriva-

0 0 0 :
xx-(Y "}= (2.55)
: 0 y 0 0 .
where y > 1.0.

Once again assume that that solutions are of the form-(2.53) and substitute into (2.55)

giving

tives,

a®+bc=y
(a+d)=0
(a+d)c=0
be+d =y

Solving this set of non-linear equations gives the followirig set of solutions,

where a, 3, 7,6 are arbitrary and

The derivative of the function F(X),) is,
J(X1) =2/yly

which is clearly non-singular since y > 1. We can now estimate [|F'(X)™!|| from the

singular values,
JTXNI(X) =4y, 0y =02 =03 =04 =2/7

57

then, e
' s 1
FI(X)) 1«—=«<1
HE(X1) 77|} < ; ¥
such that F'(X,) is well-conditioned.
The partial derivatives corresponding to X3, X3, X4 and X5 are all singular since for

the square root problem any 2 x 2 solvent of the form

has the derivative

2¢ ¢ b 0

0 0 b

J(X) - c 00 c
0 ¢ b —2a

which is clearly singular.
Now since F'(X;) is non-singular and well bounded, (2.28) suggests that the norm
of the error in X; due to a perturbed system will be well-bounded. Therefore, consider a

non-zero inaccuracy, w in the coefficient matrix, such that,

e (¥ “Y_(°°%) - (2.56)
(0 y)(ﬂ 0) |

Substitute (2.53) into (2.56) giving

a’+be=y
(a+dbp=w
(a+d)e=0
be+di=y
These equations imply that ¢ =0, a # —dand &’ =y, a® =y, b= aj—d'

Therefore the solutions of (2.56) are,

X=4+ (‘/?7 w/Zﬁ) (2.57)
0 vy

Now since, for Xy, [[F’'(X)~!{] is known and

IQll= 7 end [IAQII=3

S

58

we would expect, from (2.28), that the relative error is bounded by,

X <" v, ‘
Xl ~ |2y — 2wyl
In fact
X = X4 ‘ w ’ w
X1 | 2yv2y| ~ | V2y — 2 /@y
but observe that ‘ '
|1 X — X)
— > | /¥ for1=2,3,4,5
o v

The relative error in X, due to the perturbation w is less than w and satisfies (2.28), as
expected. However, the relative error in X; for 7 = 2,3,4, 5 is proportienal to the elements

of the original coeflicient matrix.

59

SECTION 2.4: Conclusi_ons

This chapter derives bounds for the sensitivity of the solutions of the quadratic matrix
equations, to small perturbations in their coefficient matrices. The results indicate that
when the derivative of F(X) is singular at a solution then the derived bounds can reveal
no information regarding the conditioning of the problems. This is a direct consequence
of the inverse of F'(X) not being defined. _

When F'(X) is non-singular with a well-conditioned inverse, then ||[F'(X)™!| is rea-
sonably sized and the computed solution is near to the exact solution.

When F'(X) is non-singular with an ill-conditioned inverse then ||[F'(X)™!|| is large

and the computed solution is not guaranteed to be near the exact solution.

60

CHAPTER 3 - COMPUTING THE CHARACTERISTIC POLYNOMIAL
‘OF A MATRIX

SECTION 3.1: Introduction

In many of the methods of Chapfer 4, where we solve the quadratic matrix equation
using Elimination method techniques, it is required to compute the coefficients of the
characteristic polynomial of a matrix, usually within an iterative scheme. Consequently,
the method used must be efficient and stable and must determine the coefficients accurately.

There have been a number of methods proposed, the most well-known and widely used
one being the stable LeVerriers method. We discuss the original LeVerriers approach and
show that it’s instability can be overcome by considering a reformulation of the method.
One of the oldest methods based on similarity transformations is Danilevski’s method,
which pays no attention to the stability properties of the algorithm. An extension of
this method is discussed which addresses the stability aspects but which can at best be
viewed as a 2-phase algorithm which uses stable orthogonal similarity transformations for
the first phase and unavoidably, unstable elementary similarity transformations for the
second phase. A recent approach extends the 2-phase Danilevski’s method to one which
stabilizes the elementary similarity transformations of the second phase by reducing the
original matrix to Block Frobenius form. It has always been viewed that Krylov’s method
involves the solution of an ill-conditioned linear system. It is shown, firstly, how rounding
errors give rise to this ill-conditioned system and secondly that there exists a certain class
of matrices for which Krylov’s method will yield an accurate characteristic polynomial. A
new approach for matrices possessing distinct eigenvalues is discussed. It is shown that the
approach involves the solution of a linear system. The matrix in this system is the well-
known Vandermonde matrix which is known to be generally ill-conditioned with respect
to solving the linear system. However, we show that there exist a certain class of matrices
for which this interpolation method will yield a very accurate solution.

Accuracy of solutions is not solely dependent on the stability of the algorithm, but
also on the sensitivity of the problem to small perturbations in its coefficients. Therefore

we begin by looking at the condition of the problem.

61

SECTION 3.2: Condition of the Problem

Let the characteristic polynomial of a matrix X € R"™" be
FOY=1X = A= A" +a 3" 4@ A" 4+ ag (3.1)

where a; are the scalars to be determined.
Suppose that the elements of X are perturbed by-a small amount ¢, then the charac-
teristic polynomial of X + eX is [witkinson],

FO)=|X+eX = M|=A"+a 2" 1+ @ " 2+, +aé,

where .
a; = a,~(1 + E)t

= a;(1 +ie) + O(€%)
Taking norms,
llai — a;]| = [laiie + O(*)|
< i||aille + O(*) (3.2)
Since ¢ is small, we ignore terms of O(e?). Then

||a; — ai]

— 2 <te < ne (3.3)
|lei]

This says that the relative errors in the computed coefficients of a perturbed matrix are

only of the same order as the perturbations. That is, the problem is well-conditioned and

that any stable method used to determine the coefficients will produce accurate solutions.

62

SECTION 3.3: LeVerriers Method

This method requires the traces of the powers of a matrix. Define

n

tr (XY= i) =sx say (3.4)
=1

- where zgf) denotes the element of X* in position (i,1), [Faddeev &F?ddeeva.])
. Now since thé trace of a matrix is equivalent to the sum of the eigenvalues of that

matrix, we have that :)
tr (Xk) = Z /\f = S (3.5)
i _ _ o o

The problem of determining the eigenvalues of a matrix was discussed in Section 1.4 where
it was shown that the problem is genera.lly well-conditioned with ill-conditioning for partic-
ular types of non-normal matrices. The QR method is a stable technique for determining
the eigenvalues and provides accurate solutions for a well-conditioned eigenvalue problem.
--In faet, '

-~

Ni=X1+e Jd<u (3.6)

The a.lgotithm for determining sy from (3.5) is as follows.

For J=1n
ti; = A
" For j=1n " “ (3.7)
| For 1= ..?,ln |
tii=tic1,* A
For i=1,n
$; =00
For j=1n

8¢ =S,'+t,'j

The operations count for determining the); and the s; is approximately 8n3 and the

storage required is n? + 2n.

63

Once the s have been found, the coefficients are determined from the following New-
ton formulae [Dief], '

—kax =5k + a18k—1 + a28k—2 + ...+ ar_15 : (3.8)
for k=1,...,n
This may be written algorithmically as,
al=a2=...=an.'=0 ' (39)
- For k=1n
For :=1,k— 1
G = Q) + Q{S§—;
a Sk — ag
TR
The operations count is O(n?) with no additional requirements for storage.
Applying the ﬂoatmg point error analysis of Section (1.3) to the algorithm that effects
(3.5), with computed }; (3.6), gives

AGE) =M@+ 1 +e)* " = \i(1+(2k — 1)e) + O(€?)

=1

A=A M) = (Z M+ (2k —~ l)e) +O(€?)) - (3.10)
Re-arranging and taking norms, '
[$x — si| < u(2k—1+n—'—':1)|sk| < 3nufsi| (3.11)

This bound suggests that (3.7) is a stable algorithm for determining sg. A similar treat-
ment for algorithm (3.9) reveals that the computed characteristic polynomial possesses
coefficients of a matrix ‘near’ to the original matrix,

| X(1+6)— AI| = “(/\) =A"+a(1 +6),\"_1 +az(1+ 6)/\“_2 +...+a.(1+9)
where |8] = |4n €| < an’y ' (3.12)

This suggests tha,_iéh the algorithm in (3.9) is a stable technique -for computing the
coefficients ax given thet sums sx. However, in this analysis, we have presumed that the
problem of determining the ay from (3.8) is a well-conditioned one. In fact, this is not the
case and [Wilkinson] states that it is common for severe cancellations to take place.

Therefore, since LeVerriers method requires the solution of an ill-conditioned problem,
the method, in this form, must be considered unstable.

[Faddeev & Faddeeva] overcome this limitation by re-addressing the approach above
and considering the traces of matrices rather than the sum of the eigenvalues to yield a
modified stable LeVerriers method.

64

SECTION 3.4: Stable LeVerriers M_ethpd

This method determines the coefficients by successively computing the traces of certain
matrices Ay, Az, ..., Ap, as follows, [Faddeev & Faddeeva]
Let A; = X then a;=—tr(4;), denote By, =4, -aql
Let A; = X B, then ay = % tr (As2), denote B —-2=A3—ay]

Let A, = X:B,.._l then a, = %1— tr (An), denote B, = A, —a,f
where a1, a3, ...,a, are the coefficients of the characteristic polynomial of X.

This method is a reformulation of LeVerriers method and gives rise to the following
algorithm:

let X =(Xij;)and B=1I, a; =a3 =... = a, =0, sign = -1 then

For p=11n

For t=1,n
v; = 0.0
For k=1,n

For t=1n
bij =V
For 1=1n

ap = ap + bj;

ap = (ap +sign)/p
sign = —sign

For 1=1,n

next p

4

The operations count is n* — n® + O(n) and the storage required is 2n? + 2n.

65

Applying the floating point error analysis to this algorithm reveals that the computed

characteristic polynomial is the exact characteristic polynomial of a matrix
X(1+68) where |5 <nu L (3.13)

suggesting that this method is stable and will always yield accurate coefficients.

66

SECTION 3.5: Danilevski’s Method and an Extension

This method [Danilevski] is applicable for non-derogatory matrices since in this case
X may be reduced to its companion form by a sequence of simple elementary (similarity)

transformations.
If Ry is the transforming matrix at step k of the reduction,

X(+) = prix® g, xM=-x (3.14)
where
1l ... T1,k+1 ... 07
0 e T2’k+1 - 0
Ry =
[0 T‘n’k+1].J
and
0 . —T1,k+1 .. 07
1 0 ... Ty k+1 .- 0
-1
R;' =
Tk, k41
0 —Tn,k+1 1.

The companion matrix C, given by

r0 0 ... ap 7
1 0 an—1
C =
-0 0 a;
1s such that
C=X"=(RRy...Rn-1)'XRiR; ... Ru—y (3.15)

Since the characteristic polynomial is invariant under similarity transformations, C and X

have the same characteristic polynomial.

67

The following algorithm effects the transformation in (3.14)

For k=1n-1

For t=1,n

For 3=1,n
k 1 () .
ik
bg.‘) = :L‘Ef) - zfz)bgﬂl, i otherwise

For 1=1,n

For j=1n

(k41) _ (8
ij

n

(k+1) _ Zb(-k)x;i) when j=k+1

i < ij

=1
Next k

The operations count for this algorithm is 2n® and the storage required is 2n?.
This is the usual description of Danilevski’s method and pays no attention to numerical

stability [Wilkinson]. An approach possessing better stability properties, firstly reduces a

general X to an upper Hessenberg matrix H.

Fhir hiz ... hia—1 hin
k2 h21 ce h2,n—l h2n
H=
L0 0 kn hpn

by using stable orthogonal transformations. Then H is reduced by elementary similarity

transformations to F, where

0 0 zn

’Cg O cen Tpeq
F =

[0 0 kn ry J

Then finally there exists a diagonal similarity transformation D such that

C=D'FD (3.16)

68

is in companion form.:

We assume that the &; are non-zero, since if any k; = 0 then the relevant smaller
Hessenberg matrices are reduced in exactly the same way.

The transformation from H to F is affected by the following algorithm:

For r=1n-1

For 1=1,r
hir
3i,r+1 = k " (3-17)
For i=1Ln

hij = hij — i rg1hrt1;
For r=1r
Rivtr = hirg1 + Kig1Sir41

Next r
For the reduction in (3.16),
D = diag (1, ky, ko, ks...kp)
and the coefficients are given by
a; = kaks ... kijz;

The operations count for the whole process is about 2n® and the storage requirements are
n? + 2n.

The numerical processes for computing H and for the reduction in (3.16) are stable.
The algorithm (3.17), however, is not so since if in a typical step, |kr41|is much smaller than
the |hir|, the multipliers s; .4+1 Will be unacceptably large and numerical instability will
result. This situation will arise if X is nearly derogatory. Unfortunately it is not possible
to use interchanges because this would destroy the pattern of zeros. Hence, there is no

related transformation based on orthogonal matrices which would stabilize this method.

69

SECTION_3.6: Block Frobenius Method

Here we extend the approach in the previous section to yield a stable algorithm for the
coefficients of a general matrix X. [Wang & Chen] reduce the upper Hessenberg matrix H
to Block Frobenius form, as illustrated in the following example for n = 8§,

b; bz b3

| |
t 0 010 0'0 0 0
1
0o 1 0.0 0,0 0 O
_______ o]
0 0 e.¢ o fy f2 f3
B= | : (3.18).
o 0 0!1 0,0 0 O
_______ R
0 0 0.0 € :1dy dy d
| |
o 0 0!0 0,1 0 0
! 1
0 0 0.0 00 1 O

where |e;| are relatively small numbers or zero.

In this reduction, eliminations using small pivotal elements are avoided and the com-
putation is numerically stable. Since the reduction is via elementary similarity transfor-
mations the characteristic polynomials of B and H (and X) coincide. In fact,

M —bA2—bAr-by —gl—g —hy A2 = Aoh — by
f(A) = det e1 MNoch—cs —fA—fod —fs (3.19)
0 €2 Aa—dlz\z—dgA—d;;

(3.19) is multiplied out to yield the required polynomial. The algorithm that effects this
method is given in Appendix A2.13. The operations count is dependent on the form of the
elementary divisors of X, but from practical experience it is estimated by (¢+ 1)n® where
¢ is the number of Frobenius matrices on the diagonal of B. The storage requirements for
this method are n? + n.

Householder
From Section 1.3, the rounding error for the reduction of a matrix to upper Hessenberg
form is
H=RYX+E)R, (3.20)
where u
Il < en®B|1X||

If H has well-conditioned sub-diagonal elements, then B will be the companion matrix in
which case the computed B would satisfy

B=S"YH+F)S (3.21)

70

where

IFI} < 8n’ul|H|| < 8nul|X]|

However, if any of the subdiagonal elements of H is very small then the computed B would
certainly satisfy (3.20) also. Hence combining (3.20) and (3.21),

B=T"Y (X +E)T

where

IIE|| < (c+ 8)n’ul|X]||

If B has k Frobenius blocks, then it may be regarded as an upper Hessenberg parti-
tioned matrix, as in the example in (3.18). This can then be regarded as a k x k upper
Hessenberg polynomial matrix, as in (3.19), with a zero subdiagonal element corresponding
to a derogatory X or a small subdiagonal element (corresponding to a possible source of
ill-conditioning only if the element were to be used as a pivot).

The error involved in expanding the polynomial matrix is dependent on the number
of Frobenius blocks. The error in the computed coefficients can be viewed as a normal

distribution curve,

error 4
-
4o a1 Qnp ... Gn1 an computed coefficients
An upper bound for the maximum possible relative error is
|A] < 272 (3.22)

and this occurs when there is a maximum of int (n/2) Frobenius blocks. At first sight

it would seem that this bound is too big to be useful. In practice however, this bound

71

represents the worst possible case and is never attained. Thus for non-large order systems

the error in the coefficients will be small and well-bounded. Consider the following,
n=10, |A]<nu
n = 20, |A] < 3n’u
n = 30, |A] < 5nlu
n = 50, |A| € nfu

Since on a double precision machine u &~ 10718 we are guaranteed accuracy to 11 decimal

places for a matrix of order 50.

72

SECTION 3.7: Krylov’s Method

The Cayley-Hamilton theorem states that every matrix satisfies its own characteristic
polynomial,
fO=X"+aX" 1 +...+ad

The characteristic equation is f(X) = 0 such that
alX"_l + u‘.I;»)(ﬂ_2 +...+ anI =-X" (323)

Now (3.23) represents a system of n? linear equations in the n unknowns a;, ag,...,dn.
From this set, a subset of n linearly independent equations is necessary to uniquely deter-
mine the q;.

Now consider the first column of X"~/ and denote it as the n-vector t;. Equating the

coefficients in the first column of (3.23) gives
arty +aqzts + ...+ anty = —1o

We may write this in a matrix form with
t; = (1, ng,...,rnj)T where j=1,...,n—1

and t, =(1,0,...,007

Iy T12 --+ -ee Tip—1 1 ay tio
21 Toq vee een T2n-1 0 a9 t«zo
Tnl Tn2 Ta,n-1 0 Gn tno

This is a linear matrix equat-ion of the form
Ta=1b (3.24)

If T is non-singular then (3.24) may be solved uniquely to determine the a;.
If the matrix T is singular then the second columns of X" (i = 0,n) are used to
form T, etc.

The following new theorem concerns the existence of a non-singular matrix T'.

Theorem
If the minimum polynomial of a matrix X is equal to its characteristic polynomial,
i.e. X is non-derogatory, then there always exists a non-singular matrix T

Moreover, any column of X"~ ¢ may be used to form T.

73

Proof

Conversely, assume that T is singular. Then its rows are linearly dependent,
a1ty + ogts +. .I.A-i— apt, =0 - (325)

for some a;, as,...,a,, not all zero.,

Now ¢; = X"~y where y is some column-vector of size n of the form (0,0...0,1,0...0)7.

mX"'ly+a2X""2y+..-+.an—1Xy+any =0

(alX""l +012X.“_2 +...+a,Ny=0

Now since the minimum polynomial - the unique monic polynomial of least degree that
annihilates X - and the characteristic polynomial of X are the same, and y is non-zero,
(3.25) can be valid only if

oy =ar=az...=a, =10

which contradicts our assumption that T is singular.

Clearly the position of the 1 in the n-vector y is arbitrary.

As an aside, if X is derogatory then the minimum polynomial is not equal to the
characteristic polynomial and T' will be singular. In this case if Gaussian Elimination is
used to solve (3.24) and rank (T') = r then at the r'® stage of the Elimination , the element
in positic;n tr41, r+1 is zero and the unique scalars a;, az...a, are the coefficients of the
minimum polynomial of X. '

The following algorithm computes the matrix T = (7;;):

For k=1,n
Tkl = Tkl
For j=2,n
For 1=1,n (3.26)
7ij = 0.0
For k=1,n
Tij = Tij + TikTk, j-1
by = — Tia
T1n =0.0
For k=2n
by = —Tkn
Tien = 0.0

74

The operations count is n?(n—1). Since Gaussian Elimination requires %1r13+n2 operations,
the total count for Krylov’s method is §n® and the storage requirements are 2n? + 2n.

Now let ¢; represent the columns of T. These are generated by the following recursion,
t; = Xt 71=2,...,n—-1 (3.27)

We try to find bounds for the rounding errors incurred in the computation of these ¢;.

Using the notation and results of Section 1.3,
t; = f(XE;0)
= FUX(1+ i (14 A1) el < u
=X(1+e)t; 1 (14 A;-1)(1+ ne)
= Xtj1(1+ (n + 1)1+ Ajr) + O()

1

= tj(l + AJ') + 0(62)

where
: 1
Aj=A8;1(1+(n+He)+(n+ 1) (3.28)
Since to = (1,0,...,0)7 is known exactly,

A= (n + 1)6
Az = A1 (14 (n+ 1))+ (n+ e = 2(n + e + O(€?)

Az =Ay(14 (n+1)e) + (n + 1)e = 3(n + 1)e + O(€*)

Dpoy = (n? = De+ O(€?)

A, =n(n+1)e+ O(e?)

therefore f; —t; = tjA; where |A;| <j(n+1)u
[£5 — t5] < 5(n + Dult;] < (n® +n)ult;] (3.29)

which suggests that the relative error in determining the columns of T is small and well-
bounded.

75

Consider the absolute error in column £;4;
fin =t =t +1)(n+1)e +0(e)
=Xt +D(n+1e +O0()
= X' (G + 1)(n + 1)e + O(e?)
41 =t SUXIPH (i +n 47 + D

A
This shows that the rounding error in the columns of T' can become very large and there-
fore lead to dependencies between the columns. Consequently T may be nearly singular,

possessing at least one very small eigenvalue. In this case T will be ill-conditioned and

Gasissian Elimination is not guaranteed to provide an accurate solution. o
However, if T is well-conditioned then we solve the system equivalent to (3.24),
(T + El)a =b HEi|| < 2nu||T|| (3.30)
and Gaussian Elimination provides a solution & satisfying
(T+E)a=5b ||Ez|| € (8n°p + 2n%)u||T| (3.31)

A necessary condition for T to be well-conditioned is that X must possess well-distributed

eigenvalues [Wilkinson].

76

SECTION 3.8: Characteristic Polynomial of Matrices with Distinct Eigenvalues

Let the characteristic equation of X bé
fA)=A"+a A"+ . +a,=0 (3.32)

Substitute A;, the eigenvalues of X, into (3.32),
al)\’f_] + agz\;"'z +...+ap=—-AT

alx\g_l + agz\;‘"'z +...4a, ==A}

aAr @A 4 4 a, = =AT

Let a=(ay,az,...,a,)"
and A" = (=A%, <AR,..., -AD)T

Then the above éystem of simultaneous equations may be written as

Pa=\" (3.33)
with
/\;‘_1 /\;‘_2 R PR |
P =
Ar=loAm=2 0 A, 1

Since the A; are distinct, P will be non-singular and the unique solution of (3.33) will
be the coefficients of the characteristic polynomial of X.

From earlier discussions the problem (3.33) is ill-conditioned if the condition number
of P, that is |[[P~!||{|P||, is large. Two possible sources of ill-conditioning are,

(i) any two eigenvalues are nearly equal,
(i1) the eigenvalues are poorly distributed.

Rounding errors in the computed }; may cause (1) to hold.

It is known [Gautschi], that for general points A; the condition of P with respect to the
problem (3.33) is large. An immediate implication of this is that no algorithm (whether
stable or not) will accurately solve (3.33). However, it is also known [Wilkinson], that
if the eigenvalues of X are well-distributed then P will be well-conditioned. (3.33) can
obviously be solved by Gaussian Elimination but a much quicker technique is in existence.

This is due to [Bjorck & Pereya] and is implemented as follows:

77

interchange rows of P such that

rl A A2 L AP

) 1 X A ... At

P= =VvT
D W U AR-1

where V 1s The Vandermonde matrix.
Let b = (bl,. .. ,bn)T
where a; = b, 14, t=1,...,n

The problem of solving (3.33) now becomes one of solving

VIb=A" for b

(3.34)

This is the ‘dual problem’ and is equivalent to polynomial interpolation [Bjorck & Pereya).

This follows because if

VIb=A" and f(A)=) b

i=1

then
Ff(A) = =-AT for i1=1,...,n

The first step in computing the b; is to calculate the Newton representation,

n

k-1
=) e [[J(r-2)
k=1 =1

The constants ¢; are divided differences and may be determined as follows,
cfl)':—,\? for 1=1,...,n

thenfork=1,...,n-1
fori=n,...,k+1

C('_H'l) = (cgk) — Cgi)l)/(’\i — Xi-k)

The next step is to generate the §; from the ¢;. Define polynomials gn(A}, ..

by the iteration
gn(A) = ca
For k=n-1,1
ge(A) = ci + (A — A)grt1(A)

78

(3.35)

(3.36)

-, go(A)

(3.37)

and observe that go(A) = f(\). Writing

ge(A) = bOARE plB) ammkl g pE) (3.38)

and equating like powers of A in the equations (3.37) and (3.38) gives the following recursion
for the coefficients bgk),

b = ¢,
For k=n-1,...,1

B = ¢ — ab{SHY

For :=%k+1,...,n-1

RIS

bslk) - bg""’l)

Consequently the coefficients b; = bﬁ") can be calculated as follows:
bgn) = cgn) (i=1,n) (3.39)
For k=n-1,...,1

For 1:=k,...,n—-1 (3.40)

bgk) _ bsk+1) _ Akbgi-il)
The operations count for this interpolation procedure is of the order n? — n. The
majority of the work is involved in determining the eigenvalues of X. Therefore the overall

operations count is 8n® + n? and the storage requirements are n? + 2n locations.

Error Analysis
Now we take a detailed look at the error analysis associated with implementing this
algorithm on a computer using floating point arithmetic.
The eigenvalues are determined by the QR algorithm and satisfy
lw=(X+E)y, E=X§ with [§<u

Since Xy = Ay
Ay = Ay + X by = Ay(1 + 8)

Taking norms
A=Al < uf)]

79

From (3.35)

= —fl (H I\,-) =—(1+6)" fi (H A.-)
1 1
using a result from Section (1.3),

& =14 (2n - 1)) + O(®) where |e] Su

Now consider (3.36),

alE+1) = fi f[(n(k) ,u.)
' fI(A -A, k)
[rie® _ g™y
=fl f(ct Cl—l) (1+2E)+O(62)
Ai — Ak

e — &l
Ai — Aie

when k=1, 652) = fl (1+ 2¢) + O(e?)

[y
Ai - /\:-—1

(1 + 2e)(1 + (2n — 1)e) + O(€*)

m_
= [%{—_—/\'—:—] (14 &)(1+ €)(1 + 2e)}(1 + (2n — 1)e) + O(€?)

& = D1+ (2n +3)) +0(), el <u

similarly & =P+ 2+ +0(?), el <u
&7 = 1+ 2n + 4r — 5)e) + O(€) (3.41)

(3.41) gives the error in computing c(),

80

The following result is useful in the error-analysis for (3.40),
¥ = fl(2, + a2q) where £1 = 21(1 + mye)
fIQ = 1?2(1 +m2€)

é=a(l+e) “and le] < u
Then
| § = Fl(er(L+mie) + a(1 + e)za(1+mae)(1 +¢))

= fl(z;(1 + mye) + azz(1 + (m2 + 2)e)) + O(€?)

Wé would like m; and m2 + 2 to be equal. This is achieved by multiplying the

respective term the appropriate number of times by 1 so that

§ = (z1 + az2)(1 + de) + O(e?) (3.42)

¥ = y(1 + de)

where d = max {m,, m, + 2}
Now consider (3.40),
k=n-1

n—

Bt = 1 [B, ~ Rama B
using (3.41),
BN =5 (1 4 (6n — 4)e) — Auc1bV(1 + (6n — 2)€) + O(€?)

from (3.42),
B = 5010 (1 + (60 — 2)€) + O(€?)

k=n-—2 Similarly,
BB = b (1 + (6 + 1)e) + O(e?)

and

b = 575 (1 + (60 = 1)e) + O(€?)
Continuing in this way we obtain the following general relation,
b = 5{(1 + pije) + O(€?) (3.43)

where the p;; are given as follows,

81

1

1 7 9n -9 9n — 8

2 gn — 11 9n — 10
n—3 6n+4
n—2 6n-f-1 6n + 2
n—1 6n — 2 6n—1 6n

n—1 n—2 n—3 2 1 i
Generally,

pij=9n—-5—-1-2

The coefficients d; are then given by

R 0

a =500, ., k=1
Using (3.42) and (3.44),
ar =81 1+ (Tn—8+2k))+0(*) je|<u
ar —ar = ax (Tn — 8 + 2k)e + O(€*)

Taking norms over all &

& — a| £ |a|9nu for any norm

(3.44)

so that the relative error incurred in computing the a; using this interpolation algorithm

is
la — af
|a]

< 9nu

which is well-bounded and very small.

(3.45)

In summary, if the eigenvalues of X are well-distributed then the matrix P is well-

conditioned and the Interpolation algorithm will yield a very accurate solution, such that

the computed coefficients of X are in fact the exact coefficients of a matrix X + E, near

to X where F is bounded by
HE|| £ 9nul|X]]

82

However, if the matrix P is ill-conditioned then there is no guarantee that the method will
provide an accurate solution. There are situations where this method does give accurate
solutions to an ill-conditioned P [Higham, 1]. _

Therefore, since the overall method may give rise to an ill-conditioned matrix P, it
must be considered as unstable. [Higham, 1] presents an error analysis for the Bjorck-
Pereya algorithm for when the A; are non-negative and arranged in increasing order. It
is shown that for a particular class of Vandermonde problems, the error bound obtained
depends on the dimension n and on the machine precision only, being independent of the
condition number of the coefficient matrix.

[Higham, 2] develops algorithms for solving (3.34) for when the points in the Vander-

monde’s structure are polynomials that satisfy a three term recurrence relation.

83

SECTION 3.9: Conclusions

It i3 evident from the discussions and analyses of this chapter, why the stable LeVer-
riers algorithm is so widely used. It is a stable algorithm which will always yield accurate
solutions. The only disadvantage it appears to have is the number of arithmetic operations
it ‘'must perform.

The original implementation of LeVerriers algorithm will always give rise to a poten-
tially ill-conditioned problem and is therefore inappropriate in any circumstance.

The reduction of the original matrix, by Danilevski’s method, to its upper Hessenberg
form uses stable orthogonal similarity transformations. The reduction of the Hessenberg
form to companion form can use only elementary similarity transformations which are not
always stable. In the reduction, a small sub-diagonal pivotal element may cause drastic
changes to the elements in that column. If this method is used then any good algo-
rithm should detect this condition and terminate processing with an error code. Clearly
Danilevski’s method is not appropriate for derogatory matrices. However, it is not always
possible to determine beforehand whether a matrix is derogatory or not, and if Danilevski’s
method is used then rounding errors may accumulate to produce an ill-conditioned Hes-
senberg form. The processing will eventually terminate with an error-code and it will
appear on the surface, that a small sub-diagonal pivotal element has been detected for a
non-derogatory matrix.

The Block Frobenius method is potentially a very good one in the sense that for a
well-conditioned matrix it will determine the solutions accurately and very quickly. The
reference to well-conditioning is related to the number of Frobenius blocks that arise on
the diagonal of the reduced matrix. The method works on any type of matrix, the only dis-
advantage being a possible loss of accuracy in mid-ranged coefficients of the characteristic
polynomial, for large order matrices.

Krylov’s method has been discussed extensively in the literature and is commonly
regarded as being unworkable. We have seen why this pessimism is attached to the method,
firstly in that it is valid for non-derogatory matrices only and secondly, it involves the
solution of a linear system in which the matrix is generally ill-conditioned. It is known,
however, that this matrix is well-conditioned when the eigenvalues of the original matrix
are well-distributed. In this case, Krylov's method yields accurate solutions and involves
very few arithmetic operations.

The Interpolation method has a number of similarities to Krylov's method. It is valid
only for those matrices possessing distinct eigenvalues and the method involves the solution
of a linear system in which the matrix is a Vandermonde matrix. This matrix is generally
ill-conditioned but if the original matrix has well-distributed computed eigenvalues then

the Vandermonde matrix is well-conditioned. In this case, an Interpolation approach rather

84

than Gaussian Elimination is used to solve the linear system. This approach makes use of
the structure of the Vandermonde matrix to yield very accurate solutions very rapidly.

From the discussions above, the best general purpose algorithm to provide accurate
solutions for all problems is the LeVerriers method. For problems of order less than 50,
the Block Frobenius is a better alternative since it will be considerably faster with very
little loss of accuracy in the solutions. Solely on the basis of speed, the quickest method
is Krylov’s, under the conditions discussed above. From the accuracy point of view, the
errors involved in the Interpolation method are very small when compared with the ‘best
algorithm’ case in section 3.1. 7

85

CHAPTER 4 — THE ELIMINATION METHOD WITH APPLICATIONS

SECTION 4.1 : Introduction ‘
The Elimination method is a techni_que— that generates an expression that gives the
~solution X to the quadratic matrix equé.tion, in terms of the coefficient matrices P and Q
and the coefficients of the characteristic polynomial (c.c.p) of X. The expression is of the
form RX = —S§ where the matrices R and S are ge_nerafed recursively.

‘ We derive alternative explicit representations for R and S, that are related to the
a.ssolc.iz_l.ted quadratic eigenvalue problem. Further analysis leads to a relationship between
the conditioning of the original problem and the conditioning of matrix R. This is not an
if and bnly if” condition and an example illustrates that R may be ill-conditioned even

* when the original problem is not. '

- An error-analysis of the Elimination method reveals that the rounding errors generated
as a result of computing R and S are small and well bounded such that the accuracy of
the solution of the matrix equation RX = —S is dependent on the conditioning of R.
~ Section 4.3 describes an iterative Elimination method based algorithm for computing
the solution to the quadratic matrix equation. The problem of finding a suitable starting
point to the iterations is discussed and a heuristic formula is suggested. An analysis of the
.st'opping criterion for the iterations shows it to be truely reflective of the accuracy of the
computed solution. We conclude that if R is well-conditioned at each iteration and a stable
method is used to determine the c.c.p of the current X then the iterations are stable. A
- discussion of convergence theory as applied to the iterative algorithm is included, mainly
“to- provide a foundation for further analysis.

“Section 4.4 discusses and applies the points of section 4.2 to the matrix square root
problem.

" Section 4.5 describes three methods for computing the square root of a matrix, all

-, based on the Elimination method. Method 1 applies the Elimination method iteratively as
section 4. 3 does for the quadratic matrix equation and it is shown that the work done by

. the algorithm may be reduced considerably by transforming the coefficient matrix. Method

2 determines the c.c.p of X from its eigenvalues and uses these as input to the Elimination
method. Method 3 derives a relationship between the c.c.p of X and those of the coefficient
matrix. The relationship yields a system of n non-linear equations which are solved by a
globally convergent algorithm to give the c.c.p of X. These coefficients are then used as
input- to the Elimination method. For each method, there is a discussion on the stability

of the algorithm and the operations count involved in their implementations.

86

SECTION 4.2: The Elimination _Me_thod

Consider the monic unilateral quadratic matrix equation

FX)=X*+PX+Q=0 " (4.1)
where P,Q,X are square matrices of order n. Let a; (i = 1,...,n) be the c.c.p. of X,
satisfying
FO) =X =M =0" + & A" 4.t an)-)

The Cayley-Hamilton theorem states that every square matrix satisfies its own char-
acteristic polynomial.

Therefore we have that

X'+ Xt taX™ 4. +a =0 (4.2)

Postmultiply (4.1) by X™—2,

X"+ PX"4+QX" =0 (4.3)

Subtract (4.3) from (4.2) to give

(a1l ~P)X™ ! 4 (a2l — QX" 4 a3 X" +...+a,I=0 (4.4)

Let
Rl = a1I-—P
51 = G2I—Q

such that (4.4) may be written as

RiX" ' 451 X" 2 +as X" 4. +a. =0 (4:5)

Postmultiply (4.1) by X™~% and premultiply by R,

RiX" '+ RPX" 24+ RiQX"%=0 (4.6)

Subtracting (4.6) from (4.5) eliminates the term in X"~?,

(S1 = RiP) X" 2 4 (as] —RiQ)X"* +au X" +... +a, =0 (4.7)
Let
Rz = Sl - R]P
S2 = a3l ~ R, Q

87

such that (4.7) may be written as

ReX" 2 4 S X" P4 X" 4. +a, I =0

Continuing in this way, at the i** stage we eliminate the term in X "' between the

following equations,

RiX" 4 §;Xn—0H) 4 g x4 4 g, T=0
. R;'Xn_i + RiPXn_(i+l) + Rian—(l'-l'Z) =0
giving ' ’
R.‘+]Xn_(i+l) + S,‘+1Xn_(i+2) + a,'+3Xn-(i+3) +...4+a, =0 (48)
where

Riy1 = Si — RiP

Sit1 = aiy2] — RiQ
At the (n — 2)** stage, we have that

Ro 1 X+4+5,.1=0 (49)
where X solves (4.1).

What this gives us is a relationship between the coefficients of the characteristic poly-

normmal of a matrix X satisfying (4.1) and the elements of X. This is known as the Elimi-
nation method [McDonald].

An Explicit Representation
From (4.8) it follows that

Riy1 = aipil # RiiQ — RiP
or

Ri=a;l - Ri_1P— Ri_2Q

The equations may be transposed and expressed in the following way,
On In On
= +
a; I,

—QT -pT
ci=ATei_1 +b; (4.10)

R,
RT

R{,

RT,

a more convenient form being

88

where “

i)

0, 0n
b = ‘with bp =
a; I, I,

(4.10) is a first order difference equation. An explicit solution is given by

ci = Zt: (AT)*bis
k=0

Transposing both sides and substituting for ¢; and b; gives,

[Ri-1 Ri] =[0, In] i ai—k A"

(4.11)
k=0

where 4 = is the companion matrix of the corresponding quadratic eigenvalue
problem. Therefore
: . n—1 . . -In-
Roa={0n 1]) a@axadA*| (4.12)
k=0 | YV
and . i
Raci=[0n I Y ansad*| (4.13)
k=0 n .
Let . 7
TeR™™ = f(A) =) ans_14* (4.14)
k=0
and partition T as
[Ty | Ty
T =
Rn—2 I Rn—l
. [0 —Q
Let z € R2nx2n
I X
(XQ7 I
then Z7l= Q
e o
0 -Qilo0 -@ [0 —Ql[-(X+P) 0
and =
I -P||I X I X7 X
AZ=2 B
A=Z Bz (4.15)

89

A is similar to a matrix B which has as its eigenvalues, the union of the eigenvalues of
—(X +P) and X. We would expect this, since from Section 1.6, A is the companion matrix
of the associated quadratic eigenvalue problem. Substitute (4.15) into (4.14) to give,

n—1

f(A)=) ani-1(ZBZ71)

k=0

n—l1

= Za,,_k_l Z B* z-1
k=0

n—1

=2Z Za,,_,,_l Bt z—1
k=0

=Z f(B) 2! (4.16)

Given the similarity relationship in (4.15), (4.16) is a standard result concerning func-

tions of matrices [Lancaster & Tismentsky]. Two other results which we use here are
#(B)B = Bf(B) (4.17)

and if

- B = dia.g(Bl,Bg,...,B,-)

then
f(B) = diag (f(B1), f(Bz),..., f(Br)) (4.18)

(4.18) suggests that the form of f(B) is,

[f(—(XJrP)) 0]

4.19
fa f(X) (19

for unknown fa.
Substitute this into (4.17),

{f(—(X+P)) 0 H-(X+P) 0
fa f(X) I X

[—(X+P) OHf(—(X+P)) 0]

I X fa f(X)
Expanding both sides,

[f(—(X +P)-(X+PFP)) O]

[—(X+P)f(—(X+P)) 0]
—fo(X+P)+ f(X) X)X

f(-(X+ P)}+ Xfa Xf(X)

90

Comparing coefficients and using (4.17) gives

Xfat+fa(X+P)+ f(—(X+P))-f(X)=0

(4.20)
Xfa+ fa(X + P)= f(X) - f(—(X + P))
Substitute (4.19) into (4.16) f(A) = |
[o —Q] [f(—(X+P)) 0] [XQ“ I
I x fa x| L- o
_ L -Q] [flI-(X+PHXQ~' f(—(X+P))
I X | [fex@™ - f(X)Q fa
_ [-QfaXQ™ '+ Qf(X)Q! —Qfa]
(X +PHXQ7' + XfaXQ™' - X f(X)Q™' f(—-(X+ P))+Xfa

Using (4.20)

) [Q(f(X) - faX)Q~" ~Qfa] wa
- fa F(~(X +P)) + X fa '
Tyt | T2 -
From the earlier definition, f(A) =T =
Rn-—2 l Rn—l
Rp—2 = fa
(4.22)

Roy = f((X+ P+ Xfa=f(X)- fo(X +P)

where fo is given by (4.20). (4.22) gives us an explicit expression for R,_;, used in the
next section.

We can show that (4.22) is the correct expression for R,_) since,

f(X)=an1I+an2X +...4a; X" 24 X!

X-f(X) = an—IX + an_24Y2 + ...+ aIX"—l + X"

and since a; are the c.c.p. of X and X satisfies its own characteristic polynomial,

f(X) X = —anl (4.23)
substituting this into (4.22) gives

91

Rac1 = —an X' — fa(X + P)
R, 12X =—a,] — Rp2(X + P)X
= —an] — Ro_2(X? + PX)
= —(an — Ru_sQ)
=—Sn_1 as required
Condition of R,_1
We must firstly look at the effect of perturbations in the initial data, P and a;, to the
solution fa of (4.20). This is a Sylvester equation and the results of section 1.4.3 on the

conditioning of this type of equation may be applied here. Let the error in P be AP with
|AP|| < u|| P||, then the solution fa, to (4.20) satisfies

| fa— fall = |afal| <4IAPHGT) || fo (4.24)

where & solves

G vec (fa) = vec [f(X) - f(—(X + P))]

- Let the perturbed coefficient a; be such that

di=ai(l+e) , f|<u
Since
f(X)=-a. X!
then
fX) = —a,(14+)X = f(X)(1+¢) (4.25)
From (4.22)

Rn_y = f(X) - fa(X + P+ AP)
=f(X)+ef(X) = fa(X + P)— faAP - Afa(X + P+ AP)

Taking norms

| Baes = Raca || S ull SO +ull Pl §fall +4ull PINX + PRIGT | || fal

92

now,

ivee (fe)llg =l falk < NG I el

where

c=vec [|| f(X) - f(-X - P}||]
Finally

[Baos ~ Ruoafl _ ulan) [X7 +ul| G714 +ull G124,
| Rntll A Raall

and recalling our definition of the derivative of #'(X} in section 2.1, we observe that G and

(4.26)

the matrix T of that section possess the same eigenvalues and
Gl =TIl = {|F"(Xl.

Notice that as X é.pproaches singularity, its determinant approaches zero so that at sin-
gularity (4.26) is still defined with |a,| = 0.
For non-singular X, Rank (X) = n and

Rank (Rn—1) = min {Rank (Sn_1), Rank (X~1)}
- Rank (Rn_;) = Rank (an] — faQ) <n

with equality implying the existence of a unique matrix X, otherwise there is an infinite
number of solutions of RX = —§ for this particular set of a;.

Singularity may be considered as an extreme form of ill-conditioning. However ill-
conditioning does not necessarily imply the existence of a small eigenvalue.

The following example illustrates the case of a singular R,,_; when the derivative is

non-singular and well-conditioned.

-1 -6 0 12
Xt+ X + =0
2 -9 -2 14
The eigenvalues of the associated quadratic eigenvalue problem are 1,2,3,4. If we select
A = 1,2 as possible eigenvalues for X, then

| X =M |=A-3\+2=a; =-3,a, =2

2 -6 2 -12
RiX=-5= X =
2 -6 2 -12

93

Then

10 -6 0
/10 1o 2 0 -6
X = a.ndF'(X)=

0 2 2 0 -6 0

0 2 0 -5

where R is singular and F'(X) is non-singular and well-conditioned.

Error Analysis
We now investigate the effect of rounding errors in computing R,_; and S,_;. It is not

necessary to compute all the elements of the 2n x 2n matrix A*, since if A is partitioned

as

. AR 40 “
A N L, AP e rrm (4.27)
A A

then A**! is

A(k+1) A(k“l"l) 'Agﬁ) Ag;) 0 _Q

I -pP

AGFD gt | Ty ()

(4.28)
AR 4B 4®p

A(k) (k)Q A(k)

and from our definitions for R,_; and R,_», (4.12) and (4.13), we require only the bottom
blocks,

[AG+D gD] = [400 (k)] A (4.29)
and
n—1
[Rn—2 Rn—l] == Z Ap—k-1 [A(k) A(k) (430)
)
We can write (4.29) as
B*) = M 4 with B® =[0, I.] (4.31)

The following algorithm determines R,_; and R,—2 (hence S,-1):

94

k=0 until k =n -1
Form B®) = [4% 4] using (4.31)
Ro2=R, 2+as_r1 Ag’;)
Rn-1 = Ruc1 + an_k-1 Aby
Next k

Sn—1 =a,] — R, 2Q

For ease of notation the following analysis is for the transposed system B,f:,: ATBE .
and is equivalent to that for 4.31.

Let the errors in P and @ be of machine precision u and the relative error in the

coefficients of the characteristic polynomial of X be a. Ignoring terms of O(u?),
B® = fe (AB(*-I)) le| < u
= A1+ e)(B* D L AB*D)14n16) ny=2n
= (A + Ae + An1e)(BXD 4 ABE1) 4 O(e?)
= AB*=D 4 AB*-D(1 4 ny)e + AABH-Y
AB® = AAB*~D 4 AB*1(1 4n,)e
since B®) = okp®
AB® = 4 (AAB“" + A BO(1 4+ n,)e) + A*BO(q 4 n))e
= A2AB® 4+ 24¥BO(1 4 ny)e
Continuing in this way,
AB® = A*B® + £A*B°(1 + ni)e
= A*BO (1 + k(1 + n1)e) = BE(Q + k(ny + 1)e).

(k)

Now form R,
R = fo [as—k(l + ba) (B(k) + AB("))]

= ai—(1 + 6a)B® (1 + k(1 + n1)e)(1 + €)
= a;_1(1+ 6a) B (1 + k1€) + O(e?)

95

where ky = 2nk + k + 1.
Finally,

Ri = ft {Z ai_x(1 + 6a) BX (1'+ k;s)} (4.32)

0

this is equivalent to computing § in section 1.3.3 where

y=flz1+z24...+ i)
A similar analysis on (4.32) gives

Ri=Y" aick(1+6a)BP(1 +nke + (i + 2)¢) + O(e?)
0

= Ri + (1 + 2)e(1 + 6a)R; + 6aR; + ne(1 + 8a) Z kaixB®
0

atir=n-—-2

n—2

Ru s — Ru_n = (en(1 + 6a) + 8a) Ra—p + ne(1 + 6a) Y kan_i_2B®
0
Taking norms,

[Rn—2 — Rn-2ll S un(1+|a]) | Razl +|éa| | Ra—s |

n—2

+nu(l+18al) 3k lan_i-a] BP)]
0

“Rn_z hand Rn—2" nu
< |éa| + nu +
||R"_2|| "Rn—2”

(n — Damax||A%|| + 0(u?) - (4.33)

where ag,x = max |a;|
)

The bound in (4.33) implies that the rounding errors induced from computing R,_;
are of the order u. The effect of any errors in the c.c.p of X on R,_, are of the same
order as the errors in the initial coefficients. An immediate consequence of this is that the
algorithm used to determine the initial coefficients must be accurate. Clearly this is an
important observation, particularly with regard to those iterative methods of the next two
Sections, that are based on the Elimination method.

From earlier

96

Snc1 = flland — R,—2Q)
= (an(l + a)I ~ ff,n_gQ(l +(n+1)e))(1 +) +0(e?)

stbstituting Rn_2 gives

gﬂ_ _Sn— 2 n
It = ool < o] 4w T2 [Rl + amae 471] Q14 0(7) (438)
" n—l” " n—1 ”

similarly, for R,

n—1

Rny=Rn-1+(n+1)e(1+6a) Ry1 +8aRn_y +ne (1+6a) > kap_g_1BY
0

IRn-1 = Rual _ n?) i
Bl = < [bal + u(n +1) + ”R i A} + O(u?) (4.35)

The comments pertaining to (4.33) are also valid here. The final step in the Elimina-

tion method is the solution of

Rn—l X = "'Sn—l-

However, due to rounding errors the problem becomes

(Rac1 + ARna_1)X = —(Sac1 + AS,-1)

Using the Gaussian Elimination method of Section 1.4, the computed solution satisfies

(R,—,_l + AR, 1 + E) X = —(Sn_l + A.S'n_l)

where

|E|| <80 u ||[Ra-y + ARp_1]| €80 u [|Ru_1f| + O(u?)

so that in terms of exact R,,—1 and S,_1, we solve a system ‘close’ to the original one,

(Rn-1 + B1) X = ~(Sn-1 + E2) (4.36)

where ||Ei|| < |E|| + |A Ra-||

and [|B2]l < ||E|| + (1A Sn-l|
HA Rn_1]|| and J|A Sn—1]| given by (4.35) and (4.34) respectively.

97

Remarks

We have shown how the Elimination method may be used to determine the solution
matrix of (4.1) given the coefficients of its charcteristic polynomial. The method is closely
linked with the quadratic eigenvalue problem, via the companioh matrix. In fact, the
matrices R,_; and S,_1 may be determined by the c.c.p of X and powers of the companion
matrix. It has been shown that the problem of determining R,_; may lead to difficulties
and that a relationship between the condition of R,—; and of the original problem (4.1)
exists. Clearly it is necessary that R,_; be well-conditioned for there to be a unique
accurate solution X, of the linear matrix equation.

The rounding errors generated by the algorithm that computes R,_; and Sn_l are
relatively small and well-bounded. The error due to the c.c.p of X are of the same order
as the initial inaccuracies. A

In summary, provided that R,_, is well-conditioned, the Elimination method will
accurately determine X of (4.1) given the c.c.p of X. |

98

SECTION 4.3: The Quadratic Matrix Equation

The Elimination method may be used in the following iterative scheme for determining
a solution of (4.1):

(i) Select scalars a; (1 =1,... ,nj as initial estimates to the c.c.p of X.

(ii) Carry out one step of the Elimination method to determine R,._; and S,_1.

(iii) Solve Roy Xt = _g5,_,.
- IFX D) — FXO))|
(iv) Compute
) Compn FXO]| |
If this is less than some specified tolerance, then the iterations have converged.

(v) Compute the c.c.p of X"V, Go to (ii). a

We know that when the derivative of F(X) is ill-conditioned, the problem (4.1) is
ill-conditioned and R,_; may be ill-conditioned also. The impact of this is that at step
(iii), it may not be possible to solve the linear system at all and when it can be solved, the
computed solution would be unreliable. The example of the previous section illustrates
also that R,—; may be ill-conditioned even when F'(X) is not. Consequently any good
algorithm should monitor and report on the condition of R,,_; at each step of the iterative

process and terminate with an error message if necessary.

Starting Point

The algorithm requires n values as initial estimates to the c.c.p of X. It is not possible
to select values that will ensure convergence and it has been shown through examples
{McDonald], that convergence may occur to the same solution from totally different starting
points and that initial points near to each other may not converge to the same solution, if
they converge at all.

The following heuristic procedure yields a formula for determining a set of initial
estimates and has been justified through numerical experience.

Any non-derogatory matrix, X say, can be transformed into its companion form C

say, by similarity transformations,

[O 1 0 0 7
0 0 1 0
H'XH=C =
L—adp —Q4p-~1 —Q4p-2 ... —apl

where a; are the c.c.p of X.

Consider

99

H'XHH'XH+ H'PHH'XH+H'QH =0

X4+ PX+Q=0
(4.37)

C*+PC+Q=0

whereP = H-'PH and § = H™'QH. Denote P = (§;;) and Q = §i; then equating the

elements in the bottom row of (4.37) gives,

418 — Prndn + dn1

—ap + ajdn-1 + Pn1

—Qni + G1Qp_i+1 + ﬁn.i+1

—az + a4 Pana
Since we are dealing with estimates, let
pij = sign ((pi;)||Plle
and

i = sign (g:;;)I1Qll e

= 0
- ﬁnnan—l + ‘in? = 90
= PanGn-i—1 + qn,:'+2 = 0
- ﬁnnal + qnn = 0.

then we can write the above systems of equations in terms of the c.c.p of X,

a. = dnl
= ——
ay — Pan
a _ Ap — Pnl — Gn2
-1 =
" a) — Pnn
(4.38)
a An—i — Pn,i+1 — Qn 42 ‘
——1 =
m ai — Pan
a3 — Pnn-2 — 9n,n—1
as = .

a1 — Pnn

It only remains for us to determine an estimate for a;.

100

Since
Q=-X*-PX
QI < IXI? + 1P| 1 X

Let ¢ = || X{|, p=[IPll, ¢ =1Q|. Then

—zt —pr4+4¢<0 (4.39)

We have already dealt with this type of inequality in Chapter 2 and a similar analysis

gives
p VP +4g P VP +44
TS -5 — 0 or T2 5+
2 2 2 2
Since z = || X{| > 0, we choose z? to satisfy (4.39).
Then

—p+ /P2 + 4
a1 = trace (X) < |X|| = “2EV + 74
Therefore an estimate for a; is given by

4 (—p+\/p2 +4q)
5

with the sign chosen such that a; — ppn # 0 and the remaining a; are generated by the
formulae in (4.38).

Accuracy of Convergence Criterion

We need to specify, in the algorithm, when we consider convergence to have occurred. It
is not sufficient to insist on F(X*11) = 0 exactly since due to rounding errors, exact zero
may never be obtained. The quantity that is most often compared against is the relative

decrease in the function defined by,

IF(X D) — FXM))|
IR(X)

= FNORM, say

computed at the r** iteration.

For convergence to occur, FNORM must be less than some absolute tolerance value, TOL
say. We would like TOL to be as small as possible. This ‘smallness’ is dependent on the
rounding incurred from computing FNORM, as follows:

F(X(r+1)) — x(r+1)? + P XD Q

101

Due to the storage errors, the machine representations of X, P and @ have an error of
O(u). On computing F(X{"+1)), rounding errors arise due to floating point arithmetic
such that the computed matrix is given by,

BXHDy = gy {X('“)’(l +€)? + fe [Px('“)(l +e)?+Q(L+ s)] }

= f¢ {x("“”(l +e)? + PXTH(146)°(1+ne) + Q1 + s)’}

= XU (1 4 ne)(1+) + PXUHD(1 4)4 (1 + ne) + Q(1 + ¢)°
B(XTH)= X (1 4 (n + 3)e) + PXC(1 + (n + 4)e) + Q(1 + 3¢) + O(?).

A similar expression exists for F(X("), such that
o x (r+1) (r+1) | F((+1)
T —_— r r
FXY) = F(XUH) + AX)

. F(
F(XOy =F(X™M) +4ax™M)

Our convergence criteria must take these errors into account, such that

[FXUHD) — FXO)|| _ JAFX D) — ARX)

|
FNORM = <
[F(X) IE(X)

| © (4.40)
[IFX)+ | FX)]
| F(X)]

<'(n+4) < 2(n + 4)u.
This says that TOL must be set to greater than or equal to 2(n + 4)u and that it will
truly reflect the accuracy of the computed solution.

Accumulation of Rounding Error

In general terms, accumulation of rounding errors may contaminate the solution ob-
tained by any algorithm, particularly an iterative one. In this particular algorithm, there
are three processes within the algorithm where it is possible for a significant loss of accu-
racy to occur. These are in the determination of the c.c.p of the current estimate to the
solution matrix, in the computation of R, .; and S,_; and in the solution of the linear
system at step 3. We have already discussed the stability of the algorithms to effect these
processes, individually. The error in determining the a; is small, du say and the error
in the computed R,_; and S,— is of the same order as du plus some small multiple of
the machine precision u. This implies that the condition of the computed R,_; will not
be affected by rounding errors, that is, any well-conditioned exact R,_; will not appear

102

to be ill-conditioned, and vice versa. The accuracy of the solution of the linear system
using Gaussian Elimination is dependent on the condition of R,_;: For an ill-conditioned
Rn_1 the computed solution X may not be close to the exact solution and any ensuing
processing will lead to erroneous results.

Therefore, if R,_, is well-conditioned and a stable method for determining the c.c.p
of X is used, then at each iteration the error increases by a small multiple of machine
precision. If the processing continues for a large number of iterations then the errors in
the computed solution become significantly large. In practice however, we would expect

to terminate the processing long before such a number of iterations is reached.

Convergence :
The analysis presented here attempts to apply convergence theory to the iterative

algorithms as well as laying the foundations for further investigation into their convergence.
The Contraction Mapping Theorem states that:

Let G map R™ — R™. If for some norm || - ||, there exists a € [0, 1) such that

IGz)-Gy)| <ellz—-yll ., z,y€R" (4.41)
then

1 there exists a unique z* € R™ such that G(z*) = «*,
q

(11) for any z{® € R, the sequence generated by

) = Gz ' (4.42)

remain in R™ and converges q-linearly to z* with constant a,
(iii) for any n > [|G(2(®) ~ (9,

r

. na”
||z(’”)—:c||51__a, r=0,1,...

This implies global convergence of the iterations (4.42) provided that (4.41) is satisfied.

Also it is known [Morris] that if, with respect to (4.41)

(i) G(z{") is defined and continuous ona region M, and

(i} for each (™ € M, there exists a G(z(”) € M and

(iii) the Jacobian matrix J of G(z(") satisfies ||J|| < 1,
then the sequence of iterates (4.42) converge to a solution z* € M,

There are two approaches to redefining the iterative algorithm of this section in terms
of the iteration (4.42).

Firstly, at iteration r we have,

RN x+) = _g0 (4.43)

103

where from section 4.2,

R, = (X)) - fa(XD + P)

and
-$21 = [a1- R, Q]
== [d01- %]

— f'(X(f)) x +fa(f) Q
Using Kronecker products, (4.43) may be written as
()
R, ®T

(L@R%"%l-) ™) = vec (—.5'5:21)

2_ vector containing the elements of X("*!) taken a row at a time.

where)_c(""'l) isan
Then our iteration, equivalent to that in (4.42), is
R{r) @I
n=1i

) — [L@—R—,(f_l;]_l vec (—S,(,’_’l) (4.44)

Secondly, from (4.30),

) (r) (k)
RE:_] = Z anr—k—l Ase
0
and
= ® ®)
51(21 =aI Z aEzr k—1 Az1

(r)

that is, REHI and Sflr)l are functions of a;"’ and consequently we can write R', S,_; as

some n function say G, of aEr). Also, since a non-derogatory X"+ may be transformed
into its companion form which holds the c.c.p of the matrix X "+1)_ it may be possible to

obtain an iteration,
o™ = ((a”) | (4.45)
Notice that the iterates are € R™ whereas those in (4.44) are € R".

An alternative analysis now follows:
We have that

104

F(X*)=0=X"+PX*+Q (446)
F(X)y = x4 px®4q - (447)
FXU+)y = x+D* | px(+D) 4 g (4.48)
Also, A
2 2 2
(X(r.) *-X‘) _ X(r) +X* - X(r) X* - X* X(f‘)

From the definition of the Fréchet derivative F'(X), this may be written as
2
(X(') - X‘) = X 4 x - P(X) X* 4+ PX* C (4.49)

Similarly

(xtr+v - X‘”)z = XD 4 xO) _ prx()y x4 px (i) (4.50)
Adding (4.46) to (4.47),
FXYy= (X" - x* + F(X") X* + PX™ 1 29 (4.51)

Adding (4.47) to (4.48),

F(X(r)) + F(X(r+1)) = (X(r+l) _ X(r))2 + FJ(X(I"))X(T+1} + PX(") + 2Q (452)

Subtract (4.51) from (4.52),

F(x(r-}-l)) — (X(r+1) _ X(r))Q . (X{r) _ X")2 + F!(X(f')) (X(r-{-l) _ X*)

or

F:(X(r)) (X(r+1) X" = (X(r) . X*)2 + F(X(l’+1)) - (X("+1) _ X("))2 (45‘3]

Let the inverse of F'(X{") exist. Multiply both sides by F'(X)~! and take norms,

XD X ooy)
< |F(xth?
e —xep = I e e

(”F(X(r+l)) B (X(r+l) B X(r))2 “)

(4.54)

105

This implies that the convergence of any iterative algorithm for the quadratic matrix

equation is dependent on the conditioning of the derivative at each iteration.

‘Operations Count and Storage

We now look at the implementation of the method on a computer and determine
the operations count and storage requirements. Detailed algorithms may be found in the
Appendices. |
Step 1. Generate a starting point from the following formulae,

oy = —IPle + IPTE + 4@l
2

P

Fori=0, n—2

Qn—(i—1) — Pn,i — 9n,i+1

ay — Pa,n

n-i =

where pi; = sign (pi;) | Plle . ¢i; = sign (4j) |Qll=
This step requires 2n? + n storage locations - for P, @ and ai.

The operations count is n? + n.

Step 2.
R1=R2=0
A2l =0"
A22 =1
For k=0,...,n-1
APREV = A22
A22 = —A21%Q — A22+ P
A2]1 = APRAV
R2=R2+an_k_1 * A21
Rl =Rl+an_g-1 %Az
Next &
then R,_, = R1

Soci =anl— R2¥Q

Since P and Q are already stored, we require 5n? 4+ n storage locations for

this step. The operations count is 2n?* + 2n3.

106

Step 3.

Step 4.

Step 5.

Gaussian Elimination with partial pivoting solves
Ro 1 X =— n-1

4 . g . .
It uses 3 n?® operations and does not require any additional storage locations.

Here we compute the norm of F(X) = (f;;).
Fori=1,...,n
Foryj=1,...,n

n

fii = (mik +pix) zaj + g
k=1

IFOlz= (XY)

The operations count for this step is n® + n?.

Chapter 3 discussed a number of techniques for computing the characteristic poly-
nomial of a matrix. For the purposes of this problem where the matrix X has no
special form we choose the method due to Wang and Chen with a modest value of

5 for the constant ¢. Therefore the operations count is 6n® and no further storage

1s required.

Note that Steps 2,3,4 and 5 are repeated until the algorithm is deemed to have

converged.

The total operations count is (2n* + 11n*} m where m is the number of iterations.

The total storage locations required is 6n? + n.

107

SECTION 4.4: Elimination Method For The Square Root Problem

In this case, we require the solution X of -

F(X)=X*-A=0 (4.55)

for the general matrix A.

The Elimination method of Section 4.1 gives the solution of (4.55) to be the solution
of

Rpo 1 X =-85,21 (4.56)
where
Riy1=5; - where R;=a11
SH—I = a,-+2I+ R;A Si=a I+ A

The explicit expression for R,,—1 and R,—2 (and hence Sp,-1) is

n-1 o a}*
[Rn—2 Rn—l] = [On In] Z AGn-k-~1 |:] (457)
k=0 I -0

Alternatively, R,y and R,_; may be represented as,

Rpo1 = f(A) — faX (4.58)
R, 2= fa {4.59)

where
Xfa+ faX = f(X) - f(—-X) (4.60)

and the scalar polynomial f(c) is

n—1
fl) =2 an-krc*
k=0

From Chapter 2, the derivative of F(X) is F'(X) and is defined as an operator such
that (4.60} may be written as,

F'(X) fa = f(X) - f(~X) (461)
Also if F'(X) is operating on a matrix f(X), then
FI(X)f(X)=Xf(X)+ f(X)X

108

.Since f(X) X = Xf(-X),

| FX)F(X) =2 f(X)X R
From (4.58), |
| F(X) R = F(X)[f(X) - faX]
o = P(X) f(X) - F(X) faX
~ using (4.61) and (4.62),

F(X) Ruoy = 2f(X) X = f(X) X + f(~X) X (
- 4.63)
= f(X) X+ f(-X) X

Let F'(X) be non-singular. Multiply both sides of (4.36) by F'(X)~! and take norms,

IIRn 1II<IIF’(X) || ILFC0)+ F(=X)] X| (4.64)

similarly

1Rzl < [F'(X)7H] IAXY) = f(=X) |

- Therefore the condition of the matrlces R is related to the cond1tzon1ng of the ongmal
problem (4.55).
Sumalowr

Using terminology, to that in Section 4.2, we can write

0o Al . [Ag';) A(k)}
k k
I 0 Ay A%
then
0 A1 a4 A"" 0 A
1o 4 Al L1 o
&k k
[
A 40
(k+1) (k)
A = A
f:ﬂ) f:) with AY =1 AQ = (4.65)
Azz. = Azl A '

(4.57) may be written as,

n—1

[Rn—2 Rpn—i] = Z G g1 [A(k) A(k)]

109

The sequences in (4.65) are alternating between the zero matrix and an increasing

power of A such that

int (l;—z)
R,_p = Z an_(2k+2) A* = f2(A) say

0

int (l'-;—l)
Ruci=) an-esn) A" = f1(4) say

0

and

Sn-1=apl+R,_2 A

int (-’%)
= Z an_2t A¥ = f3(A) say

0

(4.66)

(4.67)

(4.68)

It is known that the characteristic roots of fi1{A) are fi(Ai(A)) where A\;(A) are the

eigenvalues of A. Since the eigenvalues of 4 are the square roots of those of X, then for

singular X the following results hold,

Hr (Rn—l) = dn-1
Hr (Rn—2) = ap-2

pr (Snc1)=a, =0 for some r,

and for general X, the eigenvalues of R,_; and S,—; are

int ("T-l)
pi (Rpo1) = Z Gn(2k41) AF
k=0
int (-g—)
Hi (Sn—l) = Z Qp—_2k ’\:‘
k=0

where A; (i =1,...,n) are eigenvalues of Q.

An analysis of the rounding errors from (4.67) reveals,

ri
Rn-1=ft {Z an—(2k+1)(1 + 8a) Ak} , T1=int (
1]

110

M_l 2

Now,

F0(A?) l=,f€(AI2(.1 +6)?) = A%(1 + 26)(1 + ne) + O(e?}
FU(A®) = A*(1 + 36)(1 + 2ne) + O(e?)

generally fO(A¥) = A*(1 + ke)(1 + (k — 1)ne) + O(e%)
then

Fl@n-26+1)A*) = @n-(ars1y (14 8a) A* (14 ke) (14 (k — 1)ne) (1+¢) + O(e?)
= an_(2k+1) A* (1 4+ 8a)(1 + (k4 1 4 kn — n)e) + O(€?)

then from Section (1.3.3), the result on extended addition gives

Roor = Z @n—(2k41) AF (1+6a) (1 +(k + 1+ kn—n)e) (1 + (r1+1—k)e)
0

.Rn— - Rn— + 4 n 1 + 60' -
[-1 1| < |6a| + (>) u(l + |al) + nu(l + [8a) Z klan—(2r+1 A5
0

| Rn<al | Bre1 |
| Bazi — Rz} (n+4) nu
< |ba _— amax| - | A" 4.69)
T Sl (T)k e lamas 147 (
Similarly, for (4.68)
1$n-1 — Snl| (n + 4) n2u
< |ba| + l@maxi - [|A"| (4.70)
|Sr—-1]l 2 IISn— 151l

These bounds suggest that the error in the computed matrices is of the same order

as that in the initial data. That is, (4.67) and (4.68) are stable techniques for computing
Rn-._]_ and Sn—l. i

In summary, if a; are the c.c.p of X and the problem of solving (4.55) is well-

conditioned, then R, _; is well-conditioned and the solution of

R, 1 X=-5n-1

where R,_; and 5,.; are accurately computed, is also the solution of (4.55).

111

Q"

SECTION 4.5: Applications to Matrix Square Root Equations

This section describes three Elimination method based techniques for computing the
square root of a matrix. The discussions consider the conditioning of any ihterprocess
problems, the stability of the algorithms and the operations count for each defined task of
an algorithm. '

Method 1
This method is similar to that in Section 4.3 for the quadratic matrix equation. The
algorithmic steps are as follows:

(i) Select scalars a; (1 =1,...,n) as initial estimates to the c.c.p of X.
(11) Carry out one step of the Elimination method to determine R,_; and Sn_1.
(iii) Solve Ro_y XUtV = _g_ ..

IF(X D) ~ P
IF(X)|

If less than some specified tolerance, then the iterations have converged.

(iv) Compute

(v) Compute the c.c.p of X+, Go to (ii).

If R,._, is singular at any iteration then the Gaussian Elimination method that solves
the equation in step (iii) will fail. If R,_; is ill-conditioned at any iteration then the
solution provided.by Gaussian Elimination will be wholly unreliable. Within a computer
algorithm, both these possible outcomes should be monitored, and reported on occurrence.

The discussions in Section 4.3 on a suitable starting point, accuracy of convergence
criterion, accumulation of rounding error and convergence of the iterations are applicable
and valid here with the following modifications:

The starting point is generated by

an—(t = 1)+ gn,i+1
Q Ap—i = a
i . q
where a; = || || and ¢ ; = sign (i}l 4|5

The bound for the convergence criterion is

FNORM <2(n+ 3)u

The step-by-step operations count now follows:
Step 1. n? to determine ||Al

n to determine q;

Step 2. R,-1 and S,~; are computed simultaneously, using (4.67) and (4.68). The oper-
4

. . n
ations count 1s ? + ns.

112

4 . C e .
Step 3. §n3 operations are used by the Gaussian Elimination algorithm.

Step 4. n® to determine f,-(;ﬂ)

n? to determine [F(X(+D)j

Step 5. The Wang and Chen method of Chapter 3 requires approximately 6n? operations.

4
. . n . . .
The total operations count is around ?+10n3 per iteration. The storage requirements

are 4n? + n locations. '

The operations count here as compared to that for other algorithms for the matrix
square problem will, in due course, be shown to be unfavorable. One way to speed up this
algorithm is as follows:

From Section 1.4, there exists an orthogonal matrix H, say, that transforms a general
matrix A, to upper Schur form. If A4 is symmetric then the transformed form A, is block
diagonal with Jordan blocks on the diagonal. If additionally, A has distinct eigenvalues
then A will be diagonal. In any of these cases we have,

X2-A=0
H'X HH'XH-H'4H =0 (4.71)
X2_A=0

so the problem of solving (4.55) is now of solving (4.71) for X, then X = HXH~!, The

operations count for when A is upper Schur and diagonal are now given:

113

Upper Schur Form Diagonal Form

Form A. 15n® 15n°
Step 1. n?+n n?4n
nt nd n? n?
Step 2. —_—t— +— — +n?
ep 12 + 2 + 5 3 +n
n‘ n
Step 3. —_—4 =
ep 3 5 + 5 n
Step 4. nd +n? 2nt4+n
Step 5. 4n? 3nd
X=HXH"! 2nd n® +n?
4 3
Total (approx) 173 +m (-1;—2 + 21:,) 16n% 4+ n? + 4n®m

where m is the number of iterations for convergence to occur. Clearly this represents a
major saving in the iterative processing. For small order problems, this saving is offset by
the large amount of work required to transform A to A but for large order problems, the

saving may prove to be significant.

Method 2.
The roots of a polynomial are very sensitive to small changes in the coeflicients of the
polynomial, but the reverse is generally well-conditioned.

Let the characteristic polynomial of X be

A=A+ ad" + A" + . +an. (4.72)

and if Ay, Ag,..., A, are the roots of f(A) i.e. the eigenvalues of X, then (4.72) may be

factored as

FO) = (= M) (A= Xa) (A= Ag)oo. (A= An) (4.73)

Equating coefficients in powers of X in (4.72) and (4.73) yields expressions which relate
the coefficients a; in terms of the elementary symmetric functions of the eigenvalues. The
mth elementary symmetric function is the sum ¥ of the n eigenvalues A}, A2,... A, taken

m at a time so that ¥ has n(,,) terms where [Turnbull]

") " (4.74)

Tim) = (m!(n — m)!

m

The m** coefficient is given by

114

n—(m=-=1) n— (m—2) o n

am = (— 1)*1 > Yoo DD Ain A A, (4.75)

f1=1 /12=‘1+1 Im=tm-1+1

Let p; be the eigenvalues of A a.nd A; the éiggnva.lues of X. Then since

#i(X?) = ((X))?
and X? = A, we have that the eigenvalues of X are the square roots of the eigenvalues of
A.

Ai = i,u# ‘ | (476)

The choice of signs determines the definiteness of X. If a matrix X with eigenvalues
{A1, A2,...2,} is a square root of A then so is X; = —X with eigenvalues {1, X2,... An}.

If each distinct set {A1, Az,... A} represents a distinct solution X then there are 2"
possible solutions corresponding to 2" possible combinations of n positive and negative
signs in (4.76). |

The observations above lead to the following algorithm for computing a square root
of A.

(i) Compute the eigenvalues of A sa.;v [T 17 T T

(ii) Determine the square roots of p; and denote as A; (i = 1,n). These are the

eigenvalues of X.
(i1i) Compute the coefficients a;, the c.c.p. of X from (4.75).

(iv) Use the Elimination method to compute X.

Error Analysis

From Section 1.4, we have that if a general square matrix A is perturbed by a matrix
E of order ¢ then an eigenvalue pi may be perturbed by an amount ¢/s; where
XE

sk=lyTz| , ie. |I-‘k—#k|<—k

(4.77)

and

Az = pz yTA - py”

with z, y normalised such that |[z|2 = ||y|]z = 1. The @R algorithm that is used to compute
the eigenvalues does not generate errors that are not present in the original data, so that
the errors in the computed eigenvalues at step 1 are bounded by (4.77).

At step 3, the coefficients are computed from (4.75). The results from Section 1.3 on

the rounding errors analysis of extended addition and subtraction are used here.

115

wr(E)

= :\1 (1 +€)n1—1 +Z :\'_ (1 + e)m—-i-i-l
=2

—a,+z 6); +Z i Xi €~ \E

i=1

' mog na
a—a|<u) —+(m=1) ud I\
i=1 ’ =1

Similarly,

d; —az| <u

(_)'+n2uZZ|AA|

max (|Ak|)
<u? E E AiA
4 e min gy l il

“min (sk)

and generally,

max |Ag|
—am| < m T m Aiy Aiy - A
am| < umn — + u(nm +m—2) Z Z | 2~ ol

(%) o (4.78)
where of = max il = 2 |/\1!)\‘ R
Hence min (5¢) ? B g ;m o 1
lam = am] . (nm(at) +(m -2 (4.79)
|am| lam| V5

This bound suggests that if the eigenvalues of the matrix A i}t’e ill-conditioned, then
the computed coefficients may be at least as large as the error in the most ill-conditioned
eigenvalue multiplied by n,,u. The existence of n,, on its own may lead to significant errors

in the computed values, for large n. To give some idea of the sizes involved we give some

1
values of nm for varying n. The term n,, has a greatest value at m = int (n—2}-) .

116

n Nm UNm u =~ 1018
10. 252 10-18
20 184756 10-13
30 1.6 x 108, 10718
40 1.4 x 10" 107
50 1.2 x 1014 104

It is evident that as n increases by 10, the accuracy of the coefficient diminishes by a
factor of 1073,

At step 4 of the Elimination method, the computed coefficients are used to build a
solution. From the previous section we observed how the accuracy of R,—_1, Sp—1 and
hence X is dependant on the accuracy of the coefficients. Therefore, we can say that this
method will produce an accurate solution to a low order matrix square root problem that
has a well-conditioned eigenvalue problem.

Now let us examine the operations count and storage requirements for this method.

The storage locations needed is 4n? + 2n.

The operations count for each step is:

(i) 16n® to compute the eigenvalues
(ii) n to compute the roots of the eigenvalues

(iii) to compute each coefficient requires n,, * (m — 1) operations

sum Z (m—l)

(n— m)!

4
(iv) % + n® for the Elimination method

Total == Z: (m m+n +16n +0(n)

The factorial term in the total suggests that this method is unsatisfactory for large
order problems.

Method 3
Let the characteristic polynomial of X be

FOY=2A"4a A" 4. daa =X — A (4.80)
and that of A be

117

fw)=p"+eap" 4. e =|A—pll

Now since X? = A it follows that

A —w?l] = |X? —w?l|= |X —wl| |X +wl| (4.81)

or

w4+ cf(“_l) +ew?=B 4+ eawd +cn
= (w“ +awt 14 auw" 4. .t ap w+ a,,) (4.82)

* (w" —aqw 't auw®t+. .+ (~1)"aﬂ)

All the coefficients in odd powers of w vanish on the right hand side of (4.82) giving,

w2 ™V 4 e =+ (2a2 — a?) w2 44 (=1)"a3T (4.83)

Comparing coefficients of w in (4.83) gives:

c1 = 2an —a%

c3 = a% + 2a4 — 2a1a;3

Cn_1 = (—1)""l (av.i_1 - 2a"an_2)
en = (-1)"a?

Generally

23
ci =2 Z (—I)Qi'k A2i—k Ak + (—l)i—l af (4.84)

k=i
withas=c=1andi=1,...,n
(4.84) is in fact a relationship between the c.c.p of A and the c.c.p of X, giving rise to a
system of n non-linear equations in n unknowns.
This relationship yields the following algorithm for computing the square root X of a
matrix A :

(i) compute the c.c.p of A

(1) solve (4.84) for the unknowns a;, i =1,...,n

118

(iii) use the Elimination method to determine X.
The problem of determining the a; from (4.84) is equivalent to one of finding the zeros
of,

f.'(a) = C; — 2 Z (_1)21'—]: Aok Qk + (-—1)'.(1.'2 (4.85)
Py

Newton’s method for non-linear equations may be used to determine the zeros. However,
the convergence is not global. A global strategy of Section 1.5 uses a combination of
Newton and Gauss-Newton iterations to determine an unconstrained minimisation of fc,

where

Zn: fil.
1

(SR

fe=
The update is given by
o+ = g8 _ o8 p(8)
where

JTJ p® = _J7 §® Gauss — Newton iteration (4.86)

or

H p™ = —_JTf Newton iteration

where J and H are the Jacobian and Hessian respectively, of the function fc at a(®).
Notice that (4.86) is equivalent to

Jp® = —5® (4.87)
Using (4.85), we have that
fa; -1 0 0 0 1
az —az aQ -1 0
; as; —a4 dz3 —dz 0
7=5k s (4.88)
aaj :
0 (_l)n_lan—Z
[0 0 (—1)"‘1a,,]

and from (1.27), H = J7J + Z, where

119

-fl 0 fz 0 ']
0 —fp 0 —f3
o~ Ofi | 0 A
Z_Z; fi Barda; =2 . (4.89)
i= 0 _f3 ..
| ()i

A couple of interesting points arise out of these expressions. Firstly, if the solution X
of the matrix square root problem is singular then its derivative F'(X) is singular, since
ay, = 0, and consequently the Jacobian in (4.88) is singular at the root. - Therefore the
addition of a scalar matrix to J7J, as described in section 1.5, is necessary.

Secondly, the argument put forward in Section (1.5) implying that the local conver-
gence of the iterates would not be greatly affected if the Gauss-Newton iteration is used
rather than the Newton certainly stands up here owing to the smallness of Z, locally. From
an operations count point of view, this is clearly preferable.

Algorithmically, (4.88) may be represented as

and .
(9;)=JTF =) Fiifi
i=1

Let . .
JTI =U = (u;) = Z Jei Jij = 42 A2k—i Q2k—j
k=1 k=1

Since some of the operations in forming U are redundant due to the number of zeros

in J, an efficient way to express U is

1
uj; =4 Z: Q2k—i A2k—j
k=iy
. . - . . - 1] 1 y 1 .
where =1, n and i =4y, 1; with ig = int (J ;_) and z + 1 = int (n-{z-m)

where int represents the integer part.

Similarly

i
gi =Y 2azi-if;

i=ig

and

120

(—1y*! % when ¢+ 7 is even

Zij = .
0 when 7 +; 1s odd
We may determine the operatlon count in determining J TJ JTf and H.

Total (for J7J) = Z Z Z 1

1=1 1i=ip k=+1p

n il
= S Y 1-i)
J=1 i=iq
and since tp, 71 are independent of i

-=Z (31 + 1 ~1g)?
Jj=1

n
=" (i +if — 2doir + 2y — 2o + 1)
=1

From earlier, put ig = % and ; = ntio

, to give

n
n 1
Total = Z [—+n+1+— (5° -i—2j-|-1)—— G+1) —-= (j-l-l)
—
Using the identities from Chapter 1 concerning the summation of series we have,
1 3,1 ,
total = 5" +§ n” + 0(r)

To compute JT f and Z it is necessary to determine f; fori =1,...,n.
fi may more usefully be expressed as,

2i
=ci— Y (1) agi_gar +(~1)a}
k=1

so that the number of operations required to determine the f; is given by,

n

> (2i+1-14)+2)

i=1

n

=4n +2 Z i =n?+5n
i=1

n !1

X . 7
To determine J7 f requires Z Z 34+n?+5n= Z n? + Tn operations.

J=1 i=1p

121

Since it requires one operation to determine the sign of a scalar, the operations count

in determining the signs of the elements of the matrix Z is 92—'4- O(n), so that overall, to

compute the Hessian once requires about

= n? + 2n? operations

6

The Choleski decomposition method 1s used to solve the linear system with an oper-
3

. n
ations count of —.

Overall, the Newton iterates require

n3

—+cln2+n+3+2n2+62§n—2+0(n) _

6 6 2 -~
operations per iteration. ¢; is the number of function calls and ¢; = 1 if the Hessian is
required, otherwise 0.

An estimate for the operations count at each step of the square root algorithm is,
(i) 6n® to compute the c.c.p of A
n

3 2
(i1) (3 + % (44 2a + cz)) m , m is the total number of iterations

4
(ii1) % + n?® to compute X from the Elimination method.

Step (ii) exhibits all the usual convergence and stability properties of the Newton
method, as described in Section 1.5. The known constants c;, the inputs to the Newton
iterations, are computed accurately at step (i) using the Block Frobenius method (or
alternatively the Stable Le Verriers method). The a; determined by the Newton iterations
will usually be accurate since the terminating condition is that the norm of the gradient
vector be less than some specified small tolerance value. Consequently, provided that
the matrix Rn—1 in the Elimination method is well-conditioned at the root, step(iii) will

determine an accurate solution for the matrix square root problem.

122

CHAPTER 5: CURRENT METHODS FOR QUADRATIC MATRIX

EQUATIONS

This chapter summarily describes some of the more widely used methods for solving

the matrix equations of interest. For each type of matrix equation, numerical methods are
discussed with respect to their efficiency, stability and accuracy of solution. At the end
of each section, a brief comparison of the operations count and algorithmic features of the
methods is given. Notice that these comparisons are only relative. Consequently, it would
be useful to have some absolute point of reference with which the efficiency of the methods
can be compared with. Therefore, we discuss a globally convergent variant of the ‘worst’
possible algorithm where the matrix equation of order n, say, is redefined as a system of
n? non-linear equations in the n? unknown elements of the solution matrix and solved by
minimisation. It may be that for certain problems, no method can provide a solution in
which case this variant of the ‘worst algorithm’ would be the only alternative.

- We begin by identifying the classes of methods that have been used to solve the matrix

equations.

123

SECTION 5.1: Introducf.ion

There have been greater advances towards the solutions of the Algebraic Riccati Equa-
tions than the monic unilateral quadratic matrix equation. This not surprisinf;r since the
ARE arises more frequently in applications where information on the coefficient matrices
and on the solution matrix is known beforehand. This is in contrast to the unilateral
equation where usually nothing is known about the matrices. Clearly, when P = 0, we
have the matrix square root problem for which a large amount of theory is available.

The currently available practical methods for solving the ARE fall into two groups,
there is a possible third group which we will discuss later. These are iterative methods
and those that are based on the determination of the invariant subspace of the associated
Hamiltonian matrix, sometimes referred to as doubling algorithms. The classical method
based on successive Newton iterations involving an induced Lyapunov equation is still the
best iterative method available, and is the only one of that type to be considered here.
As a consequence of advances in numerical analysis and in the production of more reliable
and accurate numerical techniques, this Newton's method is continually being tuned to
improve performance and stability [Hammarling].

In a similar way, the broader principles of the eigenvector method still form the basis
of new methods. With the emergence of numerically stable and efficient algorithms, like
the QR algorithm, variants of the eigenvector approach have arisen, particularly the Schur
vectors approach. A recent method uses the properties of the Hamiltonian matrix, common
to both the eigenvector method and the Schur vectors approach, to derive a variant of the
QR algorithm for determining the Schur vectors.

The matrix sign function was originally designed for control problems and forms the
basis of a family of algorithms for solving a variety of invariant subspace related problems.
With respect to the ARE, the matrix sign function gives rise to a matrix X that is close to
the solution of the ARE. X is not close enough to be considered as an accurate solution,
hence iterative refinement in the form of Newton’s method takel {)la,ce. In this sense,
this method, as mentioned earlier, may be thought of as belonging to a different class
of methods, that combine the properties of both the invariant subspace and iterative
approaches.

However, analysis of matrix sign function algorithms has shown them to be numerically
stable only for a small class of matrices. This includes symmetric matrices and a recent
method shows how non-symmetric matrix inversions in the matrix sign function based
methods for the ARE can be changed into symmetric matrix inversions.

From the theoretical point of view there have been a number of proposed approaches
to solving the unilateral quadratic matrix equation but those taking numerical aspects into
consideration have been far fewer, due to the arbitrary nature of the coefficient and solution

matrices. The two methods discussed in this chapter are the Newton Iterations method

124

and a generalisation of a scalar polynomial algorithm, the Matrix Polynomial algorithm.
The convergence conditions for the iterative method are extensions of th s of Newton’s
method for the scalar case. To our knowledge there does not exist any stability analysis of
the Matrix Polynomial algorithm and as such we develop a relationship between the norm
of the inverse of the derivative operator introduced in Section 2.1 and the stability of the
algorithm.

A number of methods for computing the square root of a matrix have been proposed,
some for general problems and others for specific problems. Specific types include those
that are real, symmetric, positive definite, of small order etc. For all problems, advances
in numerical mathematics have lead to improved algorithms, the more successful ones
being based on Newton’s method either directly or via the sign function and Schur vector

factorisations. We discuss these along with some algorithms for special problems.

125

SECTION 5.2: Methods For The Algebraic Ricatti Equation

Of interest here is the non-negative symmetric solution of the equation

ATK + KA-KGK +H=0 (5.1)
~

where all matrices are square, of order n with H = HT positive semi-definite and G positive
definite.

5.2.1 Eigenvector Method
" This method [Potter] is based on the eigenvalue-eigenvector analysis of a 2n partitioned
matrix M, given by '

G -A
Suppose K, _the solution of (5.1) is such that

[AT H
M=

C=GK-A (5.2)
From (5.1)
KC=H+ATK. (5.3)
Let S transform C into its Jorda.ﬁ canonical form J,
J=8"1CS (5.4)
and let
R=KS. (5.5)
Using (5.2)-(5.5) to eliminate C and K yields

RJ=ATR+HS

SJ =GR - AS
R AT H R R
J = =M (5.6)
S G -A S S

R
In (5.6) J must be diagonal for if a;, aa,...a, are the columns of [S] and J is not

a diagonal matrix, then for some %

126

0 = (M — A)ay

and

ak = (M — A)ak

where ax is an eigenvector of M corresponding to the eigenvalue A. If M is assumed to
possess a diagonal Jordan canonical form then its minimal polynomial is a product of

distinct linear factors,

m(z) = (z = A1) ... (z =)z — A)

Now

0= m(M)arss = (A= A1)...(A— X,)as

and since A # Aj for ¢ = 1,...,p we conclude that ax = 0. But this is impossible since S
is non-singular. It follows from the fact that J is diagonal that a,,...,a, are eigenvectors
of M and the solution K is given by (5.5).

The following theorems, due to Potter, concern the symmetry and definiteness of the

solution K.
b
If a is an eigenvector of M of dimension 2n then let a = [] where b and ¢ are
¢
n-vectors.
- Theorem

If H and G are hermitian, a, ... a, are eigenvectors of M corresponding to eigenvalues
AL, Agy..., Ap and Ay # A} (* denotes the complex conjugate) for 1 < ¢, j < n, and if

[c1,--.,¢n] is non-singular, then

[61,....bs] [€1,...,¢n]”" is hermitian.

Theorem
Let H,G be positive semi-definite hermitian and a,,...,a, be eigenvectors of M
corresponding to eigenvalues A;,..., A,, then
(a) if H or G is non-singular and
X =1[by,...,bs] [c1,..-1¢a]" is positive definite

then Ai,..., A, have positive real parts

127

(b) if Ai,...,A, have positive real parts and [ci,...,¢cn] is non-singular then
[b1,.--,bn] [c1,...,¢n]™" is positive semi-definite.
Here is a sequence of steps which would effect the eigenvector method, along with the
operations count.

1. Compute the upper Hessenberg form of M such that

UIMU, = H, M, Uy, H € R***?"
The operations count is g (2n).

2. Compute the Schur form of M from the upper Hessenberg form, without accu-
mulating transformations, to determine the eigenvalues of M. Operations count
is about 8(2n)3.

3. For each eigenvalue A; satisfying Re (A;) > 0, apply the following algorithm
(inverse iteration):
For k=1,2,...
Solve (H — M) z¥) = 2+
| O
C 1 e
(0)

with z;’ as the unit vector.

Normalise: z

A suitable stopping criteria might be to quit when the residual

r &) = (H — \;D2P

is such that

k (k)
oo = o0 1 o ~]
oo < et [|Hlloo 12 I

where ¢ is of order unity.
The operations count is about k(2n)? per eigenvalue = 4kn3. From experience,

it is found that an average of 3 iterations is required.

4. Setai=Usz, i=1,...,n, ai € R*".
B
If J[a1,a2,...an] = [C] where B, C € R"™” and B = [by,b2,...,b,] and

C = [c1,¢2...,¢n), then the solution of (5.1) is given by X where

XC=B
The operation count for this step is

4n3-t-éns=-l—§n3

3 3
128

The operation count for the entire process is about 100n® 4 O(n?). The storage re-
quirements are 10n? storage locations. |

From section 1.4, the methods for determining the Hessenberg form and the Schur form
of a matrix are stable and accurate. Similarly, the methods for determining the eigenvectors
of a matrix and for solving a linear system are also stable. However, the problem of
determining the eigenvectors is dependent on the cbnditiom'ng of those eigenvalues of M
having Re (1) > 0. If these eigenvalues are ill-conditioned, then the problem of determining
the eigenvectors is also ill-conditioned and the overall method is considered as unstable.
Having said this, in applications which require the solution of the ARE, the solution is
symmetric and the eigenvalues are usually well-conditioned [Hewer & Nazaroff].

5.2.2 Schur Vectors Method

In this method {Laub], it is assumed that (A, B) is a stabilizable pair [Wonham], where
BBT = G with Rank (B) = Rank (G), and (C, A) is a detectable pair [Wonham]|, where
CTC = H with rank (C) = rank (H).

The method uses a set of Schur vectors to solve (5.1) for the unique non-negative
definite solution.

Consider the Hamiltonian matrix

AT H
Z =
G -4

where the above assumptions guarantee that Z has no pure imaginary values. There exists

an orthogonal transformation, U € R***?" which puts Z into real Schur form

S11 Si2

UTzy =
[0 S

] , SIJ E Ruxn

Moreover, it is possible to arrange that the real parts of the spectrum of Sy, are nega-

tive while the real parts of the spectrum of S, are positive. U is conformably partitioned

[Uu Ulz]
=
Uy Usz

The first n-vectors of U are the Schur vectors corresponding to the spectrum of Sy;.

into four n x n blocks,

Theorem
Uy is invertible and X = Uy U7 solves (5.1) with X = X7 positive definite.

Proof
See [Laub)].

129

The steps involved in the implementation of this method along with the respective
operation counts are as follows,

1. Reduce Z to Upper Hessenberg form, using Householder reductions. The opera-

tions count is g (2n)? bearing in mind that Z is 2n x 2n.

2. Reduce the Upper Hessenberg form to Upper Real Schur form.
Order the blocks on the diagonal of the Schur matrix such that the eigenvalues
appear in descending order of magnitude along the diagonal.
The ordering can be incorporated into the @R algorithm [Stewart, 2], requiring
8(2n)® + O(n?) operations.

3. Solve
XUu = Uzl for X

Gaussian Elimination with partial pivofing uses :;- n® operations to solve this
matrix equation.
An overall estimate for the entire process is 75n% operations.
With respect to storage considerations, the algorithm requires 8n® storage loca-
tions.

A recent analysis [Petkov, Christov & Konstantinov] shows that in some cases this

method is numerically unstable, as reflected by the following theorem.

Theorem
Define the separation between two matrices M and N say, by

sep (M,N) = min {|MY ~ YNz}

Then if

A =sep (S11,522) —2a1uf|Z|| > 0

and

1
aul|Z|*(1 + au) < 3 A?
then the solution of (5.1) using the Schur approach satisfies
X

IX - X (1) 1o N
e <2qu(l+ 214 + (|1HHI+ |G + cau cond (U11) +—

where ¢;, ¢z are small constants, u is machine precision and cond (U1,) is the condition of

U]l.

130

This bound suggests that the error in the computed solution X will be very large if
the computed matrix X,r is ill-conditioned, or if ||I]'”‘1 || is very large.

5.2.3 Hamiltonian-Schur Decomposition
This approach [Byers, 5] differs from the Schur Decomposition of Section 5.2.2 in the
way it takes advantage of the Hamiltonian structure of the matrix Z. '

A matrix Z is Hamiltoman if

JZ+2T1=0

and symplectic if

Z2Tjz-J=0

where

The approach in Section 5.2.2 computes the invariant subspace by using the QR algo-
rithm, which does not make use of the Hamiltonian structure of Z. The symmetric solution
matrix X is then obtained from the product of two non-symmetric matrices Uz; and Uﬁl.
The Hamiltonian-Schur approach computes the invariant subspacé using similarify trans-
formations with symplectic matrices, which preserve the Hamiltonian structure of Z and
maintains the symmetry of an approximate solution X at each step of the variant QR
algorithm [Byers, Mehrmann)].

Details of the algorithmic and analytical aspects of this method are given in [Byers, 5]
where it is shown to be numerically stable. Test examples indicate that this method is faster
than the method in Section 5.2.2 with less storage requirements and a smaller operations
count. Unfortunately, this method is not a general one in the sense that 1t is limited to

solving those ARE’s arising from a single input control system, i.e. Rank (G) = 1, when
G is symmetric and posttive semi-definite.

5.2.4 Newton’s Method

This method [Kleinman] is a monotically convergent iterative technique based on the
method of successive substitutions. ‘

Remember from Chapter 1, that the optimal control that minimises the quadratic
cost functional

Jlz,u] = % / (=T Hz + uT Ru) dt
1}
is given by

131

U, = —R_I.BT Kz.
Now suppose that | A
- ur(z(t)) = —La(t)
is an arbitrary feedback law. If this is applied to the system

z = Az + Bu (5.7)

“ the resulting cost functional is

Tz, ur) = 2TViz

" where V], is defined as the cost matrix associated with the feedback gains L. Note that the

cost matrix associated with the optimal

L.=R'BTK is V=K.
The cost matrix is given by
VL= f " ABUTE (g | [TRL)eABLN gy
0 '

V1 is finite if and only if the closed-loop system matrix A — BL has eigenvalues with
-negative real parts. In this case Vi is the unique positive definite solution of the linear
equation

0=(A-BLTV+V(A—-BLY+ H+ LTRL.

The method for solving (5.1) is embodied in the following theorem.

. Theorem
Let Vi, £ = 0,1,... be the unique positive definite solution of the linear algebraic

_ equation

0=ATVi + ViA, + H+ L{RL; (5.8)

where

Ly =R'BTvi_,
(5.9)
A, =A-BL; fork=1,2...

132

and where L¢ is chosen such that the matrix Ag = A — BLy has eigenvalues with negative
real parts, Then '

1 P<Vip<Vi<... k=0,1,...
7(2 kllgnoo Vk =\y %
Proof

See [Kleinman).

Since the system (5.7) is completely controllable it is al\#ays possible to choose an L
such that Real {\i(40)} < 0. ‘

It is necessary for Real {A;(A¢)} < 0 to insure the boundedness of the cost matrix V;,
otherwise the iterations may converge to an indefinite solution of (5.1), if they converge
at all. The iterative scheme embodied in (5.8) is precisely that which is obtained by
applying Newton’s method to solve (5.1), however Newton’s method alone will not provide
conditions that will insure monotonic convergence.

In addition to being monotonically convergent, the iterates Vi are also quadratically
convergent.

The first step in the computation of the solution of (5.1) is to determine a matrix Lo

such that Ao is positive definite. The following theorem provides a constructive solution

[Armstrong].
Theorem _
Let (A, C) be stabilizable. Then 11
e— '/ q
D=CcTz*, with cC” =@ ~ C
-
is a stabilizing gain matrix where Z = ZT > 0 satisfies
(A+BL)Z + Z(A+ BI)T =20CT (5.10)

with 0 < 8 < |||

The superscript + denotes the matrix pseudoinverse used to accommodate the inverse

and solution of non-square systems. It is defined as

zt=(2"zy'z"

The most efficient method, currently, for implementing the above theorem uses Schur
reductions [Sima] and may be summarised as follows:
Let U be an orthogonal matrix such that UT AU is in Real Schur.form. Denote

Premultiplying (5.10) by UT and U respectively, gives the following reduced Lyapunov
matrix equation, |

(A+BL)Z + Z(A + BI)T =2W

with

D=CTuTwzu™ytr =¢Tz+vvT =cTuzu”

For m < n an approximation for the operations count in determining a D by this
method is 16n®. The locations required for storage are 5nZ.

The next stage is to solve (5.8) and compute (5.9) repeatedly until convergence. The
first is effected as shown in Section 1.4, by an orthogonal reduction of A to its Schur form
using the QR algorithm and then back substituting to solve the transformed system and
hence to find Vi. The operation count for this process is approximately 20n® + O(n) and
the storage requirements are 5n?. _

Computing (5.9) involves 5n® operations and requires 6n* memory locations.

Therefore, to solve (5.1) by a Newton method requires 9n? memory locations, since
some may be shared, and (16 + 25m)n?® operations, where m is the number of iterations
needed for (5.8) to converge.

[Ha.mma.rling] provides a detailed study of Newton’s method and suggests how it may
be used to find the Choleski factor of X without first finding X.

With respect to the stability of the method, the accuracy of the computed solution is
limited by the conditioning of the original problem and the precision for the mathematical
operations. Also, since by definition the algorithm is iteratively self-refining it is considered
to be stable.

5.2.5 The Matrix Sign Function

A scalar sign function is defined as

+1if Real (Ai) >0
f(Xi) = sign (M) =
—1if Real (A) <0

The corresponding matrix sign function of a matrix Z say, is then

sign (Z) = M sign (J)M ™1

where J is the Jordan Cancnical form of Z and M is the matrix of eigenvectors for the
eigenvalues of J. J is such that J = diag (J1, J2,... J&) and J; are the Jordan blocks for
the eigenvalues A; of Z. If A; is a distinct non-repeated eigenvalue then J; = A;, a scalar.

If X; is repeated r times and there is only one independent eigenvector for A;, then J; is of

134

dimension r X r with A;’s on the diagonal and 1’s on the superdiagonal. The number of J;
blocks in J is equal to the number of elementary divisors of Al — Z, [Gantmacher]. Now,
sign (J) = diag (sign (J1),...,sign (Jx)) and sign (J;) is diagonal [Denman & Beaver).
[Roberts] shows that the sign function of a matrix can be defined in terms of a contour

integral or as a result of an iterated map

The connection between the sign function. and the ARE is given in the following
analysis [Byers, 4].
Now (5.1) is equivalent to [Potter],

AT H X -1
Z = =

G _A In On
Applying the matrix sign function to this equation, and observing that
Ai{A - FX) <0,

—(A-GX) -G x -1,
0, (A—GX)T] [I,, 0,

Wl 1 W12

x -1,17"
(5.12)
Wy Wiy

I, 0,

sign =W = =
e L. 0] |o. I
Since Z and sign (Z) commute, T satisfies the Lyapunov equation

(A-GX)T+T(A-GX) =2G

Subtracting Iz from both sides of (5.12) and multiplying out gives,
[Wn -1,] [W2
X=-
Wa Wa — I,

MX=-N

or

M,N € R (5.13)

T

This is a full-rank, consistent system of 2n? equations in the n? unknowns z;; and
solved by using least squares QR factorisation [Lawson & Hanson]. The solution to (5.13)
is then also the solution of the Algebraic Riccati Equation.

Clearly, it is necessary to devise a numerically efficient and stable technique for de-
termining an accurate sign function of the Hamiltonian and many convergent algorithms
have been proposed, [Roberts], [Balzer|, [Anderson]. A stability analysis for the matrix
sign function reveals that all these algorithms are not numerically stable since they work

135

o
with a matrix that does not satisfy certain criterign [Byers, 3]. However, the matrix

sign function is stable for symmetric matrices but few others. [Byers, 4] shows that by a
simple reorganisation, the non-symmetric matrix may be changed into symmetric matrix

inversions giving the following convergent iteration for sign (Z) = W,
w® =z

T = W det (W) (5.14)

W= _ k) _ [T“" - (JT“’))'IJ]

2

where

Since the desired solution X of (5.1) is symmetric, replace the solution X computed
from (5.13) by (X + X7T)/2.

The problem of choosing a suitable stopping point for the iterations (5.14) is a non-
trivial one and it has been observed that proposed criteria stop the iteration too early or
too late and rounding errors may even prevent the criteria from being satisfied at all. For

this reason, iterative refinement of the computed solution X is very necessary. Let

R=RX)=ATX+XA-XGX +H

If P = PT € R"*"™ and P satisfies the ARE [Bierman],

R+(A-GX)YTP+P(A-GX)-PGP=0 (5.15)

then X = X + P satisfies (5.1). Newton’s method is used to solve (5.15) and rounding
errors will yield a matrix P, an approximation to P so that this refinement step may need
repeating iteratively until convergence to within the specified tolerance is reached.

Therefore, the sign function method can be considered to be in a class of its own in
that it combines the properties of both the invariant subspace determining methods and
Newton’s method. In fact, the iterates (5.14) in conjunction with (5.13) may be regarded
simply as a way to obtain a good initial guess for Newton’s method.

Analysis and test examples [Byers, 4] suggest that this sign function method with
iterative refinement is a stable method for determining the solution of (5.1) and compares

favorably with the Schur vector method with respect to work, storage and accuracy.

136

5.2.6 Discussion

We stated earlier that the Eigenvector method and the Schur vectors approach are
unstable in that ill-conditioned eigenvalues may contaminate the solution computed by
the Eigenvector method and an ill-conditioned matrix U1; will do likewise for the Schur
vectors approach. However in practice, the eigenvalues of the Hamiltonian matrix arising
in applications are generally well-conditioned [Hewer & Nazaroff], and in the very rare case
that the matrix Uy, is ill-conditioned, this condition can be detected and an alternative
method used. This statement is backed up by the fact that the Eigenvector method and
the Schur vectors method have been used extensively in real applications. .

By definition, any problem that is solved by the eigenvector method can be solved
more efficiently By the Schur vectors approach. Additionally, if the problem arises from
a single input control system, the Hanﬁlténian<Schur approach would prove to be more
efficient.

Newton’s method is stable, yields a very accurate solution and is gunaranteed to con-
verge. A disadvantage of the method is that it requires more work than any of the methods
above and in particular if the eigenvalues of the starting matrix are such that A;(A — BLO)
are near zero then convergence will initially be slow.

. The formulation of the sign function method discussed here is a very recent approach

and all indications are that it compares favorably with the Schur vectors approach.

137

SECTION 5.3 : The Unilateral Quadratic Matrix Equation

Of interest here is the solution of the equation

X*+PX+Q=0 (5.16)

where all matrices are square and of order n.
5.3.1 Newton Iteration Method

This approach [Davis, 1} is based on the application of Newton’s method to the matrix
function F(X),

- FX)=X*+PX+Q

After choosing an initial guess X, successive iterates are generated by the formula

Xinn=Xi-T; 1=0,1,2,... (5.17)

where T; solves

F'(X)T; = F(X)) (5.18)

Now, the derivative of F(X) is an operator and given by

F(X)H=(X+P)H+HX

such that (5.18) becomes

(.X,'+P)T.'+T.'X,'=F(X.') t=20,1,2,... (5.19)

The steps of the algorithm with their respective operations count are now given
[Davis, 2].

1. Choose a starting matrix Xo, [Davis, 2] proposes

P+ JP[Z +4
x, = [1EI+ IIzll +4lQll| ,

2. Compute
F(X)=X!+PX;+Q

=(X;+P)X;+Q

This involves n® operations.

138

3. Solve (5.19) for Ti. We showed in Section 1.4 that this may be achieved by a
Hessenberg-Schur [Golub, Nash & Van Loan] approach which uses 20n® opera-
tions.

4. Generate X4 from the formula (5.17). Goto 2. until convergence.

The process is terminated when ||[F(X;)||, for some appropriate norm, is less than
some specified tolerance.

The total operations count is 21kn® + O(n?) where k is the number of iterations, and
the storage requirements are 5n® storage locations.

An error analysis of this method [Davis, 1] reveals that the algorithm does not in-
troduce any errors that are not inherent in the problem itself. That is, the method is
stable. Therefore, for a well-conditioned problem (5.16), this Newton method provides a
solution whose accuracy 1s limited only by the condition of the original problem and by
the precision of the arithmetic operations involved.

The method does have shortcomings however, in that it is not known beforehand if the
starting matrix will yield a convergent sequence of iterates and if the Newton correction
T; is large then iterates will converge very slowly, if at all. {Kratz & Stickel| discuss the
convergence properties of these Newton iterates. Also, in the course of the iterations a
singular or ill-conditioned derivative will make the problem in (5.18) unstable. [Davis, 1]
carried out experimental examples using constant well-conditioned derivative F'(X,) only

to find that this approach is unreliable.

5.3.2 Matrix Polynomial Algorithfns

This method [Dennis, Traub & Weber, 2] is a generalisation of an algorithm for scalar
polynomials [Traub]. The algorithm is designed to determine a dominant solution of (5.16).

A matrix A dominates a matrix B if all the eigenvalues of A are greater, in modulus,
than those of B. If the solution S) dominates S2 then S; is said to be a dominant solution.
The algorithm fails if no dominant solution exists.

The algorithm is in two stages:
Stage 1:

Let T” = I and T{° = 0 then for i = 0,1,...,€ — 1 for some ¢

Tl(i+1) — T2(i) _Tl(')P

. . (5.20)
T2(1+l) — _Tl(t)Q

Stage 2:
Let

Xo = (T?) (1) (5.21)

139

and generate Xx4+; by

Xip1 = (TOX, + TO) (T X, 4+ 1Y) (5.22)

This algorithm is globally convergent in the sense that if ¢ is sufficiently large and
F(X) is such that S
(1) it has solutions S;, S2

(ii) S)is a dominant solution

(iii) |S2 — Si|#0and |S2] #0 :
then the iterates of Stage 2 are globally convergent to a solution of (5.16).

- The operations count for Stage 1 is 2¢n® and for Stage 2, 2n® + Lkn® making a total
of about (2_t-1-31_015) n® operations where ¢ and k are the number of iterations for the first
and second stages respectively. The storage requirements are 6n? storage locations.

To our knowledge there is no documented analysis what follows for the Matrix Poly-
nomial algorithin so that this is an original critique of the method.

The expressions in (5.20) may be transposed and written as

2 - _qri®
B | _ (5.23)

T+ — 70 _ pT{? |
where the matrices are understood to be the transposes of those in (5.20). (5.23) may be

represented as

L+ 0 —Q] [TV
T+ “ir -pP T®
or
TG+ = 4 T (5.24)

where A is the companion matrix of the quadratic eigenvalue problem associated with

(5.16). Corresponding to the requirements in (5.21) for the transposed equation, we have

Xo = (Tt T

or

TV Xo = 79 (5.25)
From (5.25)

140

0 _ | ? 0
T I
Partition A¢ as
Al] A
[:‘ 22 (5.26)
A21 A22
then from (5.27) and (5.23)
AR =T = —@ T{*V (5.27)
and
A9 =10 (5.28)

We would like to find expressions for the A4;; in (5.26) and we progress in a similar way to
the analysis of the Elimination method in Section (4.2). From (4.15),

] Pl el e

A=ZBzZ! (5.29)

or

Let

f(4) = A

then

f(A)=2 f(B)Z™"

_, [f(-X - P) (5.30)
fs

0] 7
Now, B f(B)=f(B)B ‘
[—(X+P) 0 Hf(—x_p) 0]&
! -X fs Xy}~
[f(—X—P) 0] [—(—X——P) 0]
X I _x
Multiplying out gives, fs f(X)

Xfe+fs(X+P)=f(X)- f(-X - P)

141

Since we are still dealing with transposes and using the definition of the derivative

operator introduced in Section 2.1, we have -
[F(X) f5]" = f(X) - f(-X - P) (5:31)

which will be used later.
Now multiplying out (5.30) gives an expression similar to that in (4 21),

QUI(X) - £sX)Q? ~Qfs] (5:32)

)= fa f(-X-P)+Xfs

Comparing (5.26) with (5.32) and noting that f(4) =

ALY = -Qfs
| Ay = f(-X — P)+ X fs
From (5.27), (5.28),

A) = -1V = -Qfs
A =T = f(-X - P)+ X f3

giving
TV = fs (5.33)

Now at stage 2 of the algorithm, it is necessary to solve (5.25) and it is well known that
the condition of this linear system is related to the condition of Tl(t_l) and therefore fg,
from (5.33). Multiplying both sides of (5.31) by (F'(X)™")T and taking norms, gives

ITE DN = 15l < I1F(X)H) IF(X) - (=X = P)| (5.34)

Tl(t_l) may also

This bound implies that if the original problem is ill-conditioned then
be ill-conditioned so that the solution of (5.25) will then not be accurate.
Additionally, investigation is required into the condition of the linear system in (5.22)

and into the possibility of rounding errors contaminating the computed solution.

5.3.3 Discussion _

Newton’s method is stable and for a well-conditioned problem, it will yield a very
accurate solution. There does not seem to be any stability analysis for the Matrix Polyno-
mial algorithm although test examples have shown it too produces very accurate solutions
[Dennis, Traub & Weber, 2]. We have shown that the condition of a linear system within
the algorithm is dependent on the condition of the original problem.

142

Each method has a significant limitation. Newton’s method requires for convergence,
a starting matrix that is ‘close enough’ to the solution matrix, and the Matrix Polynomial
algorithm will work only for problems that possess a dominant solution. In practice,
neither of these shortcomings can be detected before attempting to solve the problem and
therefore the iterations should be terminated when divergence is assumed to be occurring.

Additionally for the Newton’s method, if an ill-conditioned derivative matrix is en-
countered at any iteration then the method as described here cannot continue.

From the operation count point of view, the Matrix Polynomial method requires much

less work per iteration.

143

PRI SR T T M M (gt . P S RS —art gt w4t .

SECTION 5.4: The Matrix Square Root Equation

Of interest here is the square root X of the matrix A, such that

X2 - A=0 ' (5.35)

5.4.1 Newton’s Method
If X' is an approximation to X then
X=X,+E

Substitute this into (5.35) to give

X'+ X,E+EX,—-A=0

which gives the Newton iteration -

X, E, +E.X, = A— X? (5.36)

or

F(X,)E,=A-X?

with the update

X,-+1=X,-+Er fOI‘T=0,1,...

Several methods start with an initial approximation X that commutes with A and
instead of (5.36) use the iteration

1
2
so that X, will then commute with A for r > 1. However due to instability and rounding

errors in (5.37), (5.36) is the preferred iteration. Note that (5.36) is the Lyapunov Matrix

Equation.

E.X,=<(A-X} r=0,1,2,... (5.37)

The iterations are stable and they converge quadratically to the square root of A if
the initial matrix X is sufficiently ‘close’ to the solution X and F'(X,) is non-singular at
each iteration.

The operations count is 14kn? + O(n?) operations where k is the number of iterations

and the storage requirements is 3n? locations.

144

ST TR M MR e Tl A GO AT WD Y MY AT Tabe ISR, T ——

5.4.2 Sign Function Method
The problem of computing a square root of a matrix can be stated in the form of a

degenerate ARE, [Denman & Beavers),

A-XIX=0
with
0 A
7 =
I 0

The iterated map (5.11), that defines the matrix sign function gives rise to the follow-
ing iteration,
let Ry=A4, So=1
then the sequence

1
Ripr =5 (Re+ Seh)
(5.38)

1 -
Skt1 =3 (Sk + R:1), k=0,1,2,...

converges, such that

. 1
k—l-}I)noo Rk+1 =X =47

and

im Sy =X"1
k=200 +

for when A has no root that is real and negative.
The operation count is -g— n® per iteration and the storage requirements are 6n2.
[Higham, 4] shows through analysis and examples that the iterations are stable.
The convergence of the iterates in (5.38) may be slow if the spectrum of A is large.
This leads to the following variant [Hoskins & Walton).

Let
Ry=A S =1I
then
Rii1 = ok Ry + B Sy
Sky1 = arSg + PRy k=0,1,2,...
where '

145

2
br + By + 6/bx Br

B2 = by Bra?i

ok =

where
br =1—€x1
Br=1+4¢€r
and
e =1— 4o fs
1
where by = ——— and By = || 4]
A=

5.4.3 Schur Vectors Approach

This method [Bjorck & Hammarling} computes the Schur factorisation of A such that

A=0sQT

where @ is orthogonal and S is an upper triangular matrix with at most one zero diagonal

element. Then the square root of A is given by

X =QuQT
where
U*=S5
.such that
]
stj”_"z Uik Ukj 1<
k=1
and hence
Y .
Ui = 87, 1=1,2,...,n
and
.. i-1 . .
ws = 8ij =) k=i+1 UYikUkj i<
N Uii + Ujj ’

146

Therefore the elements of U are computed one superdiagonal at a time starting with
the leading diagonal and working upwards. ‘ '
If whenever s;; = s;;, uii = u;; is chosen then since S has at most one zero diagonal’

element, it is assured that

Ui + ujj # 0

and hence u;; is defined.
This method requires:
15n3 operations to determine the orthogonal matrix Q,

a total of
LA o nd 5n
2 l1+n= 3" n? + 5 (using results from Section 1.2)
o J=1 i=1 k=il

operations to obtain U,
2n® operations to compute X,
so that the overall operations count is 18n® and the storage requirements are 4n? locations.
[Bjorck & Hammarling] state that for a symmetric matrix A the Schur method is
numerically stable. For general matrices the method is stable if the norm || X||?/||4] is
small.
However, the method may produce an ill-conditioned square root even where a well-
conditioned square root exists. Although this is an extremely rare case, [Bjorck & Ham-

marling] attempt to address this problem.

[Higham, 3] addresses and resolves a disadvantage of the Schur method, that is, if A
is real and has no real eigenvalues, the Schur method necessitates complex arithmetic even
if the computed square root is real. However, this technique is applicable only for real
square roots that are functions in A. The following represent some of the important issues
in [Higham, 1].

The matrix A has a real square root if and only if each elementary divisor of A
corresponding to a real negative eigenvalue occurs an even number of times.

The square roots of A which are functions of A are ‘isolated’ square roots, characterised
by the fact that the sum of any two of their eigenvalues is non-zero.

If A has a real negative eigenvalue, then A has no real square roots that are functions
of A.

The operations count for the entire algorithm is around 17n3. The real Schur method
is stable provided that || X||?/||A|| is sufficiently small.

147

5.4.4 Discussion .

All the methods of this section when successful, provide accurate solutions to (5.35). In
particular, the iterative methods can be repeated to refine the solution. It is assumed that
" the problem of determining the square root is well-conditioned. The matrix sign function
method fails if A posseses a real negative eigenvalue. The Newton method requires a well-
conditioned derivative at each iteration and a suitable starting point. The Schur vectors
*. method will not yield reliable solutions in the unlikely event that [|.X /1| Al is large. If
the matrix sign function method requires less than 8 iterations, it will compare favorably
with the Schur method, otherwise it will be slower. For the Newton method to be as fast,
- it will require to converge in 2 iterations, which is highly unlikely.

The Schur vectors method for real square roots is useful if it is known that a matrix
possesses real square roots and if the requirement is to determine a root that is a function
in A. Similarly, if we required the square root of a symmetric, positive definite matrix then

more efficient methods are available, e.g. [Higham, 5].

148

SECTION 5.5: Minimisation Of The Constituent Equation -

In this section, - we look at the problem of solving

F(X)=0 (5.39)
where
X*-A
F(X) = | X+ PX+Q (5.40)

ATX t XA-XGX+H

by transforming it into a sum of squares problem and minimising the resultant scalar
function.

Denote the elements of F(X) by F;; and form a n®-vector, f;, from the rows of F,

fl' = (F].l,Fl‘Z:‘",FlnsF21$---1an)Ta 1= 17”‘2 (541)

Similarly,

Wi = (xll,xl2,°-- yT1n, 21 ---}xnn)T; t = 1:n2 ' (542)

The scalar function that we minimise is then,

fe=3 3 1

i=1
where the % is included for convenience.

In Section 1.5, we discussed how Newton’s method for unconstrained minimisation
may be used for this problem. To use the algorithm developed in that section, we require
to find the Jacobian and Hessian matrices of {f;} for each equation in (5.40). Section 2.1
derived expressions for the Jacobians by using Kronecker products. We begin by re-stating
the algorithm of Section 1.5,

(i) Select 4 ¢ IR™, the initial estimates to y*.

(ii) Determine whether the Gauss-Newton or Newton iteration is to be used.

Gauss-Newton

(iii) Determine the Jacobian at yt*).

(iv) If the Jacobian is singular, add a scalar matrix u{¥) I to J7 J such that JT J+u® T

is safely non-singular, and solve

149

(JTJ'+ p(k)_[) p(k) =-JTf

otherwise solve
JTIp®) = —JTf for p®)

Newton

(iti) Determine the Jacobian, the gradient and the Hessian, at y(¥).

(iv) If the Hessian M, is not positive definite, add a scalar matrix u¥I such that
M + u ¥} 1) is positive definite and solve
(P
(M +p®1) p® =—gTs

otherwise solve

Mp® =-JTf

(v) Minimise fC(“y(k) + a(k)p(k)) with respect to a'*) € R.
(vi) Update, y(¥t1) = y(k) 4 o(F)p(k)
(vii) If convergence criterion is not met, go to (ii).

Section 1.5 discussed steps (i), (iv)-(vii) of this algorithm. At step.(i) the initial
matrix is chosen arbitrary and in fact X(® = I is as good as any, such that from (5.42)

1 fj=@GE—-1n+: fori=1,...,n
j

0 otherwise

At step (ii), if the sum of the squares was sufficiently reduced during the last iteration,
then the Gauss-Newton iteration is used, otherwise the Newton iteration [Gill, Murray].
At step (iii) we require explicit expressions that give the Jacobian and Hessian matrices

in terms of z;;, and hence yi, since

Y(i—~1)n+j = Lij

Quadratic Matrix Equation
From Section 2.1,

J=(X+P)QI+IgXT (5.43)

150

which is non-smgula.r 1f)\ (X 4+ P)# —Xi(X)
The elements of J are such that J = Jy + J2, where

N({(i—1)*n+k, (j-1)*xn+k)=zi+pij

Jo((k—1)*xn+i, (k=1)*xn+j)=zj, i,5,k=1,...,n

The gradient is given by,

g=J"f=[(X+P)@I+I®XT]Tf

=[(X+P)TQI+I®X]|f

Forming-a matrix G € R™*" from the elements of ¢ and using (5.41),

G=(X+PTF+FxT

Hence

Gi-Nntj = Gij = Z (ki + pri)Frj + Z Firzji
3 %

. The Gauss-Newton iteration requires J¥ J if J is singular,

JTI=((X+P)@I+I@XT) (X +P)@I+I1®X")

=(X+P)TRI+IQX{(X+P)RI+I®XT)

=(X+P)(X+P)@I+(X+PY X T+(X+P)@ X +I@XX"

The Newton iteration uses the Hessian H. From (1.27)

(mu) = JTJ+Z fk

k=1

=JTJ+2, say
where Z = Z; + Z{ and

151

(5.44)

(5.45)

F F,...F 10 0...0 1. do...0
| | |
0 0 0 | Fll Flz . le |
o . I
0 0 010 o 0o i | E, F,
F,, F, F,j0. 0 0| |
0 0 o Ir_F_ ..F | '
= 21 22 2
2 = | 1 |
|- I I
0 o 0. 40 0 0 | |
'_—__[-_—__l__l T
. | | |
P ST e ko 40 0..0
. I I I
0 0 0 l I IEI Fllz an
— — (5.46)
such that
Zy({(k—1*n+j, i—L*n+k)y=F(:,j) 1,7, k=1,...,n (5.47)
Therefore, for the quadratic matrix equation, to form:
J requires 3n® operations
JTf requires 3n? operations
JTJ requires n* + 4n? operations
f requires n? operations
z requires 4n? operations
M requires n + 5n3 4 4n? operations

For the matrix square root problem, the Jacobian is given by
J=X@I+Ig®X"

such that J is non-singular if A; # —A; for all 7,7 where A are the eigenvalues of X. The
gradient is given by

Gli-Dntj = Z i Fij + Z Fixz i
% X

and
JTI=XTXI+I0XXT+XTeoxT4+X@X

152

Th(_a Hessié.n is given by -
& fr
By;0y;

n2
M=JTJ+Z fx
k=1

=JTI+2
where Z = Z, + ZT and Z, is given by (5.46).

Algebraic Riccati Equation

FX)=ATX +XA-XGX+H=0

=1

Fij = Z ariTkj + Z Tik (arj — Z gkexei) + hij
1 1

The Jacobian is given by

J=(AT - X QI+Ig4A-G6X)T (5.48)
Let " .,
ui; = Z ZTikgr; and vi; = z GikTkj
. k=1 k=1
then J = J, 4+ J2, where ' '

Jl((i— 1)*n+k, (J -1)*n+k) =aj; — Uij

and

Ja((k—1)*n+j, (k—1)*xn+1i)=aij — vij
The gradient g is given by
g=JTf=[(AT-XG)®I+IQ®(A-GX)|f
=[(A-GXT)®I+I® (A~ GX)|f, since G=GT
then

GGi—ynts = Y (aik = Y Gezwe)Fij + > Falaj—Y Gu zjr)
¢ k ¢

k
Let C = A— GX, then

JTr=ccTor+1eccT+cToc+cocT

The Hessian is given by
M=JTI+2Z

133

where Z is of the form

To form:

J
JTf
JTJ
f

z
M

gufu + g fi-.

gn1f11 + gn1fin-...
g1 fa + ¢12f11 ..

gn1f21 + gl2f1n .-

911 fn1 +91;1f11 ...

-gnlfnl + glnfln .-

cgunfin+ gmigur.. ... ginf11 + 911 fm

gnlfln +gn1fln ----- gnnfll +911fnn---gnnfln+gn1fnn
cgufan + gn2fun.. ... g1nfa1 + g12fm1

. gnlen + ganln ----- gnanI + gl2fnn ‘e gnnf2n + gn?fnn

gllfnn + gnnf11..... glnfnl +glnfnl---gnlfnn+gnnfnl

ognlfnn + grmf]n ----- gnnfnl -+ glnfnn vee gnnfnn + gnnfnn d

requires 2n® 4+ 3n?
requires 7n®

requires n* 4 6n3
requires 3n?

requires 2n' + 3n® + 4n?

requires 3n? + 9n? + 4n?

.. ‘glnfln + gnlfnl

e G1nfon + gn2fn1

operations
operations
operations
operations
operations

operations

To give some idea of the magnitudes involved, we give the operations count for this
algorithm when the iterations are all Gauss-Newton or all Newton. Remember from Section
1.5 that the solution of the linear system is performed by using the Choleski decomposition
[Golub & Van Loan] and the other steps in the algorithm use O(n?) operations. -

(per iteration)
unilateral equation

Riccati equation

Gauss-Newton

6

6

6

6

LA O(n?)

Z ot 413 + 0(n?)

Newton
"
5 +nf + T + O(n?)

8
i 3nt + 16n3 + O(n?)

excluding the operations required to perform the line search.

For the unilateral equation, there is no advantage in using the Gauss-Newton iterations
over the Newton iterations. In fact, as X(¥) approaches X*, it is clear from the expression
for Z in (5.46) that the Gauss-Newton and Newton iterations approach equality.

For the ARE there is a saving of 2n* at each iteration in using the Gauss-Newton
rather than the Newton iteration. For small order problems this is significant.

Clearly, for large order problems the term O(n®) is dominant and this is the reason why

minimisation methods are not favoured as numerical algorithms, when others are available.
However, leaving aside the Elimination method for the moment, we have discovered that
there are cases where the methods for the unilateral quadratic matrix equation fail, in
which case the minimisation approach of this section would be the only alternative.

154

CHAPTER 6 - PRACTICAL METHODS FOR THE QUADRATIC
' MATRIX EQUATIONS BASED ON NEWTON’S METHOD

SECTION 6.1: Introduction

This chapter discusses two new approaches to the solution of the matrix equations.
In the first case, we show how an efficient reformulation of Newton’s method for a

system of non-linear equations may be used to solve the Riccati equation,
FX)=ATX+XA-XGX+H=0 (6.1)

The approach is significant in that the computational labour usually associated with the
Newton’s method for (6.1) is significantly reduced by observing the sparse nature of the
associated Jacobian matrix. Also, from Section 1.5, it is known that the Newton iterates
have a local quadratic convergence property from a good starting point.

If y; and f;, ¢ = 1,n? are vectors formed from the rows of X and F respectively,
then the Newton iterates are,

gD = (B 4 (0

where p®) solves,

Jy®p®) = —f® (6.2)

We have already shown in Section 5.5 that the Jacobian J can be determined with relatively
little computational effort. The problem of solving (6.2) for p*) is more difficult and is
treated in the next section. In that section, an algorithm for this approach is presented
along with an operations count and an error analysis.

In Section 6.3, it is shown how a matrix analogy of the sum of squares minimisation

method can be used to solve the unilateral quadratic matrix equation,
F(X)=X*+PX+Q=0 (6.3)

We show how the restrictions imposed by the methods of Sections 5.3 and 5.5, namely,

' failure to converge from an arbitrary starting point for the Newton method,
failure to converge for problems not possessing a dominant solution for the Matrix
Polynomial method,
large amount of computational labour required for the minimisation method,
solution of a possibly ill-conditioned linear system,

may be overcome, towards providing an efficient, stable and globally convergent method.

Section 6.3 provides an analysis and the description of the algorithm along with an oper-

ations count.

155

SECTION 6.2: Newton’s Method for the Algebraic Riccati Equation 2.09)
— : =)
The Jacobian matrix associated with (6.1) was determined in Chapter $ as being,

J=(AT-XG)@I+I®(A-GX)T

Now, in control applications, the coefficient matrices of the algebraic Riccati equation

possess certain properties,
G=GT>0, H=HT>0
and the solution usually of interest is the non-negative symmetric one, such that
X=xT>0
Under these conditions the Jacobian may be written as
J=AT -XG)®I+1® (AT - XG)

Let
T=AT - XG

such that
J=TQRQI+I®T . - (6.4)

Now there always exists an orthogonal U € R™*" such that

Ry; Ry ... Ry
0 Ry Ry

Uty =S=| . (6.5)
0 0 Rom

where each R;; is either a 1-by-1 matrix or a 2-by-2 matrix having complex conjugate

eigenvalues.
Premultiply and postmultiply (6.4) by UT @ UT and U ® U respectively,

UTRUNIUU)=UTRUNTRHUU)+{UT®UT)I’T)U V)
since (A ® B)(C ® D) = AC @ BD, the above equation becomes
UToUNYJWUeU)=UTTUQUTU +UTU @ UTTU
and since U is orthogonal, UTU = I and from (6.5),
UTQUNUQU)=SRI+I®S (6.6)

156

where the right hand side of (6.6), say J, is of the form

(1 s12 ... S | sz 0 ! b osin 0 0 \
I] [
1 sutsz - smo 0 LY I , 0 Sla 0
0 512 S | : I ! :
. I 1 I
I 1 i
I | t
I t I
0_ 0 :sutsmy O O v 52t ____t 0 0 - sw
s 0 0 :Snﬂ'u s12 Sia : : :
0 s 0) su sprsm--- sm [
B | . 1 |
| ' ' (6.7)
0 0 su 0 0 S22t 5 | |
_________ O
I | f
I | f
i | I
| I I
I I I
_________ lm = — — = = — — = e L e e - -
I [Sam1 O O sersn S2 Sin
: : 0 snm 0 'I 52 SwitS2 5
i ' |
\ : : 0 90 ---s,.,,._;! 0 0 . s,..+sM}
In partitioned form,
(311.[-}-5 s1271 slnI \
521I 822I + S e SgnI
. 0 832I - S3nJ
j= (6.8)
0 0 Sn—l,nI
\ o 0 Smmet1l Sanl+S/
where the subdiagonal elements of S satisfy;
sji+1,; #0 and sjt, ;41 =0 (i)
or sj4153= 0 and 5542, j41 -'/: 0 (ll) (69)

or sj4+1,;, =0 and sj42 ;41 =0 (iii)

(i) implies complex conjugate eigenvalues of T associated with the block

(i Sig+1)
Si+1,7 Sj+1, ;41

157

(ii) implies complex conjugate eigenvalues of T associated with the block

(i1, 41 Si1j42)
Sj+42, j+1 Sj+2, j42
(iii) implies T has a real eigenvalue s;41, j+1

Now,if y € R™ and fE€ R™ are formed from the rows of X and F(X) respectively,

the iterates
Yyt = () 4 5

converge to a solution of (6.1) where p(") solves
J(")p(f‘) = _f(f‘) (6.10)

J being defined by (6.4).
Now, since the iterative algorithm is prohibitively expensive due to the solution of the

linear system in (6.10) make the following transformation,
Premultiply (6.10) by UT @ UT,

WToUTI M = (UT ® UT)f(r)
since U@ U)UTQUT)=1
| UTeUT) U U)('UT U™ = —UT @ UT)f)
Let 5 = (UT @ UT)p(" and f";’ = —~(UTQUT)f™, and using (6.6), (6.10) becomes
FO0 = fo) (6.11)

where J) = S@I+I®S

To develop a strategy for solving (6.11), we observe the sparsity and the special form
of the J given by (6.8). We can use a block back substitution type of technique which is
dependent on the subdiagonal elements of S. If we.consider the technique to be composed
of n phases, since there are n blocks, then the processing at the &** phase will depend on
which of the conditions in (6.9) is satisfied.
(a) if (iii) of (6.9) is satisfied, then we attempt to solve,

[Sn—k,n—kI + 3 Sn—k,n—k-!-lI s Sn—k,nI]ﬁ-y': i‘-((612)
for the first n elements of p., where

ﬁ‘f = W(ﬂ—k—-].)n-l-h s aﬁnﬁ]T

158

R e IR = L e R R (RS L e Ly S kg g, o o b S VY S T o I S i S0 R R A B R T —

and
T A ; T
f’f = [f(n—k—l)n+l3 v)f("_kn]

Now since by this stage, P(n—k)nt1s - - - »DPn2 are already known, we can update the
right hand side of (6.12), algorithmically, as follows,

k—1
far—(k41)n+i = for—(b41)n+j — Z Sn—k,n—iPn?—(i+1)n+j (
_ i=0 : _ (6.13)
i=1...,n
so that (6.12) may now be expressed as
[sn—k,n—rd + SIPs = fs (6.14)

where

Ps = [Pn—k=1)n+1s - - s B{n—k)n]

and ?5 is the updated right hand side.

The matrix on the left hand side of (6.14) is an upper Schur matrix. (6.14) may be
solved by back-substituting either a row at a time or two rows at a time depending
on the sub-diagonal elements of S. If (iii) of (6.9) is satisfied, then we update the
corresponding element on the right hand side of (6.14). At stepm,form =n,... 1,

‘we have
.f(n—k—l)n-i-m = f(n—k-—l)n+m - Z smjﬁ(n—k—l)n+j (615)
j=m+1 .
then 3
~ f(n--k-l)n-f—m
Pn—k—1)n+m = (616)

Sm,m + Sn—kn-k

If (i) of (6.9) is not satisfied, then we have a system of 2 linear equations in 2
unknowns. The right hand side elements are updated using (6.15) with m = m and

m = m — 1, such that we solve,

(sm-—l,m—l + Sn-—k,n-k)ﬁ(n—k-l)n-i-m—-l + sm—l,mﬁ(n—k—l)n+m = f(n—k—l)n-}-m—l
3m,m—]ﬁ(n—k—-1)n+m—] + (Sm,m + 3n—k,n—k)ﬁ(n—k-1)n+m = f(n—k—l)n-{-m

(6.17)

for the unknowns p(n—x~1)ntm-1 and Pn-k—1)ntm-

159

(b) if (if) of (6.9).is not satisfied, then either of conditions (i) or (ii) lead to the same
processing. Let j = n — k, then at the k' phase of the process, if 5;4, ; # 0, then

we have
(] | Loy Y (I\
I N | | |
s I+ S 8;5+id vor 8l Pa B £, (6.18)
sj#15L sjvrinl+5 ... sjuaal bs fs
| I | | |
\ l BYAYVERNY.
where i i) ’
Paoa = (P(j—l)n+1 yeeo !p(j—l)n-{»-n)
Pg = (Pjn+1, Pint2s--- ,ﬁjn+n)T
Similarly fo = (f(j—l)n+la---:f{j-1)n+n)T
?»6 = (fjﬂ'i'l) fjn-l-?'r e :fjn-{-ﬂ)T
Now since, by this stage, we already know pm, for m = (j + 1)n + 1,...,n?, we can

update the right hand side using (6.13). (6.18) now becomes

siiI+S sj 5411 o f.

si+1,d Siy, I+ S Ps fg
The matrix on the left is sparse, in fact it possesses at most n? 4 3n non-zero elements
from a total of 4n? possible elements. (6.19) can clearly be solved by the Gaussian
Elimination method. However, there exists a stable variant of the Gaussian Elim-

. ination method that takes advantage of the sparsity of the matrix, requiring fewer
computations [Duff]. '

We continue in this way until element s;; has been tested. Then since U7 = U™}
P =0T eUT) " = (U eU)"

gives the direction of search used to update y{"*1) and hence X{r+1),
The convergence is quadratic from a good starting point, which i1s what we would
expect from a Newton method. To maintain the symmetry of the computed X ("1} under

round-off error, we use the following transformation
xr+1) _ Loy 1) | yr4n)T
= 3(+)

160

6.2.1 An Algorithm with Operation Counts
We now present an algorithm, with operation counts, for the non-negative definite
symmetric solution of the algebraic Riccati equation. Notice that the problem of computing

a Kronecker product of the form,
a=UT@UT)H
where
a,beR” and U ¢R™"

requires an operations count of O(n!). A more efficient way of computing e, using only

O(n?) operations, is to transform the problem to
A=UTBU

where a and b are formed from the elements of A and B, taken a row at a time.

(i) Input X©@ = :r:S?), the initial estimates to the solution of (6.1).
Set r =0
(i) Form T = AT - XN @G (n® operations)
(iii) Compute
F(XMN=TWXx" 1 XA H (2n® operations)

Jli-tynt; = Fij ,j=1,...,n (n? operations)

(iv) Compute S(), the Schur decomposition of T,
vTTy = g (15n® operations)
where UTu =1

(v) Compute)
f(r) — _(UT ® UT)f(f)
by
) = _pgTry (2n® operations)

(vi) k=0
Start:
If $p_ n_k_3 < EPSorifk=n—1
update right hand side f using (6.13). (2kn operations)
solve (6.14), using (6.15), (6.16) and (6.17). (3n? operations)
Putk=%k+1

If £ > n —1 then go to (vii).

otherwise go to Start:

161

Otherwise
update right hand side f using (6.13), for k = k and
k=k+1. (4kn operations)

solve (6.19) using the sparse variant of the Gaussian Elimination method.
- 2

The algorithm requires approximately % + 7 operations where 7 is the num-
ber of non-zero elements in the matrix. In this case 7 < n? + 4n so that an
overestimate of the operations count is —g-na + 22n% + O(n).
Put k=k+2
If k> n—1goto (vii)
" otherwise go to Start:
(vil) Compute
P = (U o U
by
P =pypyT (2n® operations)

(V]l]) Update X, X(r+1) =AX(,..) + P(r)
(ix) Transform to a symmetric X (r+1)

1
X(r+l) — §(X(I"+l) + X(r+1)'r)

(x) Test for convergence,
X (r+1) _ x(r)
i IX0 X0
X))
then convergence has occurred,

<TOL (2n? operations)

otherwise go to (ii).
Excluding Step (vi), the operations count per iteration is 22n® + 3n? 4+ O(n).
The operations count at Step (vi) depends on the number of complex eigenvalues of T

3_p2

for real T, the count is n
for non-real T, the count is 3n* + 13n® per iteration.
These values reflect a real saving in using this method over the Newton’s method appled
directly to the constituent equations or by the sum of squares minimisation approach of
Section 5.5. This is especially so when the Jacobian possesses real eigenvalues at each

iteration.

6.2.2 Error Analysis
Consider the consequences of using floating point arithmetic in the algorithm of 6.2.1.
Using the results and notation of Section 1.3, we have that at the r*P iteration, the com-

puted estimate of the solutions is X("), such that
X =XM1+ Ax)

162

performing step (ii),
T = fYAT - X&)
where the coefficient matrices of the algebraic Riccati equation are such that

¥ .

A=Al+¢), ler] € u

G=G1+e), la|<u

H=H(l+e), |a/<u
Then)

) =T+ Ax + (n +2)e) + O(2), |e| <u
T = TUV(1 + Ar) + O(€?) (6.20)
At step (iii)
F=f(tmMxm 4 x4 4 f)
F=F(1+4Ar+Ax+(n+3)e) + O(e?)
F=F1+Ar) (6.21)
At step (iv), the computed $ satisfies
| UT(TO + B =5, |B|| <U|F| <U|T)| (6.22)

with
UTU=I+F, |F||<u
At step (v),

FO = fi(—OTFOT
= FO 1+ Afp + 2¢ + 2ne) + O(€)
= F"N (14 Ap) + O(e?) (6.23)
Using (6.20), (6.21) and (6.23),
Ap =2Ax + (4n + T)e (6.24)

The processing at step (vi) depends on the values of the sub-diagonal elements of $(7. For
each element that is considered to be zero we update f by (6.13) and solve the triangular
system in (6.14). (6.13) is essentially a matrix-vector product, such that

f=fuf - 5)
= FIF(L+ 6;) = S(1+ (1 + 65))
}~=f(1+5f+6,;+2e+ne) (6.25)

163

LR, e N TR N T e, e P T e T ST e TR TR0 e T R R TR e TGN GTERIT DN v e e e s

Qﬁere
16711 = }A£]]

Next, we try to solve the triangular system in (6.14),
S5 = f (6.26)
The computed solution satisfies [Golub & Van Loan],
S+B)p=F |IEll <nullS| (6.27)
Using a result from Section 1.3.2,
S+E)=8"1-§7EST +O(|EIP)

such that

A

ﬁ: (3+E1)}:= S_IF—S_IE]S_If

Using (6.26),

-

p=p- S Eip
Taking norms,

l16:1l _ |16 — Bl o1
I — < nul||Si||S 6.28
[18]| li5]| ISt (6.28)

If a sub-diagonal element of $¢” is non-zero, then once again we update using (6.13),

this time to yield 2 vectors, and then solve the sparse linear system in (6.19). Using (6.13)
gives,)
fa = fall + 87+ 6; + 26 + ne)

fo="Ffs(1+8;+6;+2¢+ne)
The ‘error involved in solving the 2n x 2n system in (6.19) is such that [Duff],

S+E¥p=Ff (B <3nu|S| (6.29)

and a similar analysis to that above shows that,

15311 _ |ip — 5]l . »
Bl - S eSS (6.30)

At step (vii),
. . 2lr)
P = sy P U7

P = P14 Aj 4 2¢ + 2ne) + O(€?)

164

Finally at step (viii), we update X,
' X+ _ x () ¢ p(r)

We observe that accuracy of the update matrix P(") is dependent on how accurately
the solutions of the linear systems (6.27) and (6.29) can be computed. The accuracy is
dependent on two things, on the accuracy of f and on the smallness of the bounds in (6.28)
and (6.30). Now (6.28) and (6.30) are small if the matrix S is well-conditioned. This would
guarantee the accuracy of a linear system with an exact right hand side. In (6.28) and
(6.30), the computed and exact right hand sides, f and f respectively, are such that

= f=(6;+6; + 2+ ne)

Using (6.24)) _
f=f=Ff2Ax + 8 + 9¢ + 5ne) (6.31)

We have already stated that é; is small when S is well-conditioned. Ax is the error
in the current estimate to the solution, computed at the previous step. If the matrix S at
the previous iteration was well-conditioned, then é; and hence Ax will be small.

To summarize, if the matrix S is well-conditioned at each iteration of the algorithm,
then the rounding errors introduced in the algorithm are small and well-bounded. If
however S is not well-conditioned, then the update matrix P may be inaccurate leading
to erroneous results.

The following example serves to illustrate the method, with a well-conditioned matrix

S at each iteration.

Example
Consider
ATX + XA~ XBR'BTX+H=0

T AR

-1 1 00
Choose X(® = 1 with Re(A(A — GX)) < 0 where G = BR™!BT = (.)
v

?

where

Observing each step of the algorithm,

0 -1
(ii) T=AT—X(°>G=()
1 -1

v 0])
(i) F(XYY=TX+XA+H

- 7)

165

and ||F]|g = 3.

(iv) Since T is already in Schur form, U =L, and S =T

2
~ -2
(v) SinceU=1I, f=f= 0
1
k=0,
(vi) Since s9; # 0 and k # 1, solve
| 5 gi=7
where
0 -1 -1 0 7
1 -1 0 -1
% §= 0 1
1 -1 -
/
0 1 1 =2
This gives
ﬁ:(z, =y Yy l)T
, ' d - ~ 4
(vii) Then # = p SESCIEIED

1 0
(viii) -"'"Sj) = -"'"Sj) ~ Pli-1)n+;

25
1
1

25/

(ix) XM is already symmetric. Repeat from (ii) until convergence.

The following table gives the solution matrix, the function norm and the eigenvalues

of the closed loop system, at each iteration.

166

Iteration X Function Norm MT)
0 1.0 10 3.0 05 +/3i
2.0 1.0 ' -0.5 —V3i
1 25 | 10 3.25 15
1.0 - 2.5 -2.0
2 206 | 10 02025 0.8
1.0 | 205 ' -1.25
3 2.000609 | 10 0.002431316 -0.975625
10 | 2.000609 . -1.02498
4 00 | 10 0.00000001 110
1.0 2.0 -1.0

We observe that the convergence here is ultimately quadratic, which is what we would

expect from Newton’s method.

Remarks

It is known that the problem of determining a solution of (6.1) by multiplying the
matrices to produce a system of n? non-linear equations and then using Newton’s method
to solve these, is computationally expensive. An attempt to overcome this difficulty has
been made. The Jacobian matrix is easily determined and the ensuing linear system may
be solved efficiently by observing and utilising the sparse nature of the Jacobian. When
the Jacobian possesses real eigenvalues at each step of the Newton method, the overall
operations count compares favourably with that for Kleinman’s method. The iterations
are stable and yield accurate solutions provided that the matrix S is well-conditioned.

167

SECTION 6.3: Towards a Globally Convergent Newton Method for the
Unilateral Quadratic Matrix Equation

In this section, a new sum of squares minimisation method for the solution of the

quadratic matrix equation,
X*+PX+Q=FX)=0 (6.32)

is proposed.

We show how the problem of an ill-conditioned linear system during the iterations
may be overcome and how the inclusiori of a line search in the algorithm may guarantee
global convergence. We also show that by using suitable transformations, the operations
count is much smaller than that of the minimisation method of Section 5.5.

We propose the following algorithm, with analysis to follow,

(i) Select X(® € R"*™ as an initial estimate to X*, the solution of (6.32).
(i1) Initialise k, k=0
(i1i) Compute
F(X®)y=(x® £ P)x® 1@ (6.33)

(iv) Test for convergence
(v) Form y® e R™,
| Ay = X (634
(vi)(a) Determine the condition of the Jacobian
(b) Compute the descent direction, d*) € R’
(vii) Perform a line search - find «(*) such that

n?
fe= _;_ 3 Ay + aPd®y?
i=1

is sufficiently reduced, where f; are formed from the elements of F'.

(viii) Update current solution,
X1 — xR0 o o0 p(k)

where the elements of the matrix D*) € R"*" taken a row at a time, forms d(*).
(ix) Increment k, go to (ii).

The line search ensures that under certain conditions, steady progress towards the
solution is made, irrespective of the starting matrix - this is global convergence. The
necessary conditions are that the update matrix, J7J for the Gauss-Newton iterations,
is always non-singular and bounded above. Otherwise, if J7J is singular (or very nearly

singular) then the Gauss-Newton iterates may converge very quickly to a point that is not

168

even a stationary point of fc [Powell]. Alternatively, if J7 J is very large then the direction
and gradient vectors are nearly at right angles to each other and convergence is very slow.

The problem of an ill-conditioned Jacobian can clearly be overcome by adding a small
scalar matrix to JTJ, as we observed in Section 5.5. However, this requires that the
solution of an n? linear system must be computed. This is a computatioﬁally expensive
task and accounts for the prohibitive nature of the minimisation technique. We address
this problem in due course but firstly we take a closer look at the problem of perfox‘mjhg
a line search. |

In Section 1.5, we discussed how Powell’s quadratic interpolation method may be
used to perform the line search. The following analysis highlights the problems that can
be encountered by line search algorithms and how they may be overcome.

The problem of determining an a®) in the line search has, until recently, been one
of choosing the a{¥) that solves the one-dimensional minimisation problem accurately.
However, more careful computational testing has led to the belief that low accuracy min-
imisations are better in theory and in practice. The question now arises as to what the

criteria for the low-accuracy minimisation should be. Consider
' K
LD Z (B 4 (9 (@
Clearly we require that fc(z**1)) < fc(2®). However, this does not guarantee con-

vergence, as illustrated in the following monotonically decreasing sequences of iterates,
[Dennis & Schnabel].

fe(x) fetx)
X1 X3 X4X3 X0 X2 X1 X0
T) }‘r)F_
-2 -1 1 2 1 2

In the first case, we have very small decreases in f¢ values relative to the length of
the steps. This is resolved by requiring that the average rate of decrease from fc(z(*))
to fc(z(*11)) be at least some prescribed fraction of the initial rate of decrease in that
direction. That is, choose an a € (0,1) and an a(*) satisfying

fc(:r(k'*'l)) < fc(z(k)) + anc(:r:(k))T(x("“) _ z(k))

169

where V fc(z(*)) is the gradient of fc at z(¥),

In the second case, the steps are too small relative to the initial rate of decrease of fe.
[Dennis & Schnabel] suggest the following condition that ensures sufficiently large steps,
for some fixed constant b € (a,1),

Vfc(x(k+l))T(I(k+1) _ m(k)) > beC(&I(k))T(;E(k+1) _ .'I:(k))

Therefore the accuracy of the minimisation depends on the values of a and b.

Now we return to the problem of an ill-conditioned Jacobian.

At Step (vi) of the algorithm, we estimate the condition of the Jacobian. The iterative
processing distinguishes between a well-conditioned and an ill-conditioned Jacobian as
follows.

Well-conditioned Jacobian

In this case, we choose to use the Gauss-Newton direction given by the solution of,
JOT g gy — _ (0T k) (6.35)

where J(¥) denotes the Jacobian at X*) and f(*) are the elements of the function matrix
F(X®) taken a row at a time. (6.35) may be written as,

JE R = 0

From (5.43),

Using the Kronecker Product theory of Section 1.2, (6.36) may be expressed as the Sylvester
equation, _
(X® 4 pyD® 4 D) x () = _ p(x(®) (6.37)

where d*) are the elements of the matrix D taken a row at at time.

The discussions in Section 1.4 on the Sylvester equation suggest that since the Jacobian
is well-conditioned, the problem (6.37) is well-conditioned and the method of Section 1.4
for solving (6.37) is stable thus providing an accurate solution. Determining the direction
d®) (or DI*)) by (6.37) is clearly more efficient than solving the linear system of order n?
in (6.36).

Ill-conditioned Jacobian
In this case either of the following two options may be considered:

(a) Use the previous well-conditioned Jacobian, say J(X,). If this situation occurs at
the first iteration then the iterative algorithm should be re-started from a different

starting matrix.

170

The new direction is then given by,

(6.38)

J,d® : —f®
or equivalently |
(X, + P)D® £ DX, = —F(X®) (6.39)
Now, a direction d is a descent direction if [Dennis & Schnabelj,
gTd<0 (6.40)

where g is the gradient, in this case g=JTf as determined in Section 5.5. Therefore
the direction d®) of (6.38) is a descent direction if

—fOTg® g1 68 g ' (6.41)

For arbitrary J*) and J, we cannot predict whether (6.41) holds or not. If it does
hold then d®) is a descent direction and the line search algorithm determines an o)
and hence X{¥*1) such that the decrease of f(*+1) satisfies some prescribed criterion.
- K (6.41) does not hold, then the line search algorithm determines an a{¥) and hence
L3 X (k+1) that may be farther away from the solution X* than X (¥} is. We could then
only hope that J (k+1) is well-conditioned and treated accordingly.
(b) . Use the Steepest Descent direction d*) = —Jw7) This is clearly a descent
direction since (6.40) is satisfied, o

gBTg®) = _ BT g7 £ _ —(JWT fONT JOT g8 g (6.42)

' The updated estimate X*+1 determined via the line search algorithm is nearer to
X* than X® is to X*. This suggests that alternative (a) above is superfluous since (6.42)
is always satisfied. However, it is known (Dennis & Schnabel] that for a minimisation algo-
rithm employing the Stéepest, Desceﬁt_djrection throughout, the convergence is only linear,
and sometimes very slowly linear. In contrast, the Gauss-Newton iterations are known to .
have fast convergence; we will show later that they exhibit quadratic local convergence for
this problem. Therefore, it may be that over the course of the minimisation method, there
are found to occur a number of ill-conditioned Jacobians, most of which satisfy (6.41).
This would justify using (a) over (b).

In the following analysis however, we will use (b).
6.3.1 Condition of J
The problem of determining the condition number of a matrix, say J, is not easy.

[Wilkinson] shows how the Singular Value Decomposition may be used to determine the
spectral condition number, ko(J) say, with

n

_ H
ka(J) = ||l |72 = j’

171

where u? are the singular values of J with u? > u2 > ... > u2 > 0. However, the operations
count in the computations of the SVD for J is O(n®) which is clearly unacceptable.
Alternatively, steps (vi) and (vii) can be combined so that the condition of the Jaco—
bian can be estimated in the course of solving (6.37), in the following way.
Rather than using the Hessenberg-Schur method to solve the equation (6.37), we use
the Schur method [Bartels & Stewart]. The latter is slightly more expensive in computa-
tional terms, but serves our purposes nicely. If we write (6.37) as,

AD+DB=-H (6.43)

where

A=X+P B=X, H=F(X)
the Schur method reduces A to upper Schur form and B to lower Schur form,
UTAU = A (6.44)
VIBV = B (6.45)

If U,V are unitary (complex orthogonal) similarity transformations, then A and B
will be upper and lower triangular respectively. (6.43) can then be written as

- o~ ~

AD+DB=-H (6.46)

where
D=U0TDVv, H=UTF(X)V (6.47)
Using Kronecker products, (6.46) may be written as

Jd = | (6.48)

where
J=A®I+I1®BT (6.49)

From our knowledge of Kronecker products we observe that J is upper triangular and
that

UTeVHIUeV)=UTQVTYARI+I®BTYURV)
=(UT4@VT+UT@VIBT)(U V)
=(UTAU @ VTV +UTU @ VT BTV
=(A®I+1®B)
=J (6.50)

172

Also U ® V is unitary since
UeVUeV) =UeV)U eV
=UUTevvT
=IQ@I

as required.
Hence from (6.50) and since the norm is invariant under unitary (orthogonal) trans-
formation

1= 1171l ‘ (6.51)

and since

I'=weVv) i uTevT)

we have that _
W= = Tt . (6.52)

Therefore the problem of determining a condition number kqo(J), (we choose oo norm

because it is easily computed) is such that,
koo (J) = 1Moo 17 oo = 1]leo 1T oo = koo() (6.53)

(6.53) states that the condition number is invariant under unitary (orthogonal) transfor-
mations.

Determining ||J| is relatively simple. To determine |{J~!]|co [Golub & Van Loan]
provide an algorithm that computes an estimate for the 0o norm of the inverse of an upper
triangular matrix. The algorithm is stable with an operations count of n?.

Summarising, at step (vi) of the minimisation algorithm we attempt to determine the
descent direction by solving (6.37) for D) using the Schur method. Once the upper and
lower Schur forms of (X¥) + P) and X* respectively are computed, we form the matrix
J and compute an estimate to the condition number of J and hence J. If it is found that
the Jacobian is well-conditioned, the Schur method is continued until completion to obtain
D) Then the vector d*) is formed and used in step (vii). However, if the Jacobian is
ill-conditioned then we choose the Steepest Descent direction.

6.3.2 Convergence Criteria

With respect to the convergence of the iterates, there are two considerations to be
made here. Firstly, the algorithm should detect that the iterations have converged and
secondly to ensure that convergence is to (6.32) rather than a local minimum of the scalar

function fe,

ey oo
i=1

173

We choose to terminate the iterations when some quantity say XNORM, is less than some

specified tolerance value, say TOL. The following criterion is used,

|| X (k1) — x|

< ' .
o < ToL (6.55)

XNORM =

To test whether (6.32) is satisfied, the following criterion is suggested [NAG],
FNORM = ||F(X")}| € Vu ' (6.56)

where u is the unit machine round-off .
With respect to rate of convergeﬁce, it is known [Gill & Murray] that if the Hessian
matrix is |
JTT + 2, say

then the Gauss-Newton steps will ultimately converge at the same rate as Newton’s
method, i.e. locally quadratic, provided that ||Z|} is small compared with ||J7J||. From
(5.46) and the fact that F(X*) — 0 as the iterates approach X*, ||Z]|| becomes smaller
such that in exact arithmetic ||Z(X*}{] = 0. Hence we can say that the method of this

section can exhibit quadratic local convergence.

6.3.3 Operations Count
The operations performed by the algorithm are as follows:

Step (iii) n® to compute F(X("))

Step (iv) Compute the norm of F(X(*+1)
1

2

FNORM = |5, 3, Fif*"']

uses n? 4 O(n) operations

Step (v) 7n to form ygk), i=1,n%
Step (vi) Either,
' Compute Schur forms of (X*) 4 P) and X(*) 20n3
Form J 3n?
Estimate koo(J) %n"
Complete the solution of (6.37) 5n3
Form d(2,,,,; = Dij’ ' n
or

Compute Schur forms of (X*) 4 P) and X ¥ 20n3

174

Form J 3n?
Estimate koo (J) Spt

Form d® = - JTf _ 3n3
where J and —JT f are formed by using (5.43) and (5.44) respectively.
We see that both branches perform approximately the same number of operations.

)
Therefore we can generalise the operations count of Step (vi) to En“ + 25n° 4 3n? + O(n)

Step (vii) 3(2n3 4+ n?) to evaluate fc at a;, oz, aj say, in
the line search algorithm and ,
2n? + n? for each further function evaluation.

Generalise as r(2n® + n?)
Step (viii) n? to update to X(*+1),
The overall operations count for this algorithm is then,
5 .
Zn4 + (26 + 2r)n® + (4 + r)n? + O(n)
per iteration, where r is the average number of function evaluation performed by the line
search procedure.

6.3.4 Numerical Results
The following examples illustrate how the method of this section may be used to solve
various problems. Some of these problems cannot be solved by the methods of Section 5.3.

Example 1

A singular Jacobian is encountered at the first iteration

e (V4L (78 1) _,
+ + =
0 1 ~18 26

Let xo_ {720 then f(® = —(6,12,18,26)7,
0 -05/' ||F|| = 34.542,

J(X©) = diag (-3, —1.5,~1.5,0),

and

o(J(X)=3,15,1.5,0

Since the Jacobian is singular, we take the Steepest Descent direction,
40 = _ JOT £(0)
d® = —(18,18,27,0)T

175

The line search yields & = 0.1257 such that the updated solution is,

—4.2619 —2.2619
XM=
—3.3928 —0.5000

and

|IF(XM)|| = 23.8532

so that using the Steepest Descent direction has resulted in a new estimate that is closer

to the solution. Continuing in this way,

176

Singular values

FNORM

k « (alpha) | Solution X JB iR iRl
1| 30 15 0.1257 | -4.2619 22619 | 2.2619 23.8532
15 00 13.3028 -0.5000

2 | 105082 43060 | 0.4548 | -23183 -3.5060 | 0.5109 16.7477
3.7622 2.5300 5.2604 -1.0748

3 | 11.3606 6.8163 | 04252 | -0.5493 -3.5723 | 0.4100 11.5133
23031 2.1512 53500 -3.2363

4 | 122017 6.9341 | 07954 | -0.1123 -2.7679 | 0.2069 5.3126
27856 2.5000 04152 -4.7567

5 | 122625 52007 | 10000 |-1.1069 -2.4523 | 0.1667 1.2601
3.8690 3.1837 36784 -4.6697

6 | 11.9125 50016 [10000 |-14716 -22373 | o0.0857 0.3061
47766 2.0443 33560 -4.8405 |

7 | 118781 54945 | 09999 | -L6787 -2.1472 | 0.0417 0.0716
53122 1.0715 132208 -4.8088

8 | 11.8704 57246 | 1.0000 | -1.7700 -2.1054 | 0.0188 0.0145
5.5775 0.5683 -3.1581 -4.9277

0 | 11.8671 58314 | 09999 | -18007 -2.0012 | 0.0064 0.0017
5.6972 0.3385 31367 -4.9375

10 | 11.8660 5868 | 00098 | -1.8055 -2.0890 | 0.00098 | 0.00004
5738 0.2596 31335 -4.9389

177

Example 2 o
The Newton and Matrix Polynomial methods of Section 5.3 work on the following

problem,
1 0 -8 12
X%+ X+ =0
0 1 -18 -26

yo_ 10
0 1

In this case ||F(X(©)|| = 32.8634.

with

The method of this section converges to (; i) in the following way,

Iteration 1 2 3 4 5 6 7

I
[|[F(X®*+1))|| | 1.4365 | 0.3552 | 0.0848 | 0.0178 | 0.0023 | 0.00007 | 0.000009

”ﬁrr-ﬂx(:;"x(” 3.1557 | 0.1095 | 0.0538 | 0.0246 | 0.0088 | 0.0016 { 0.00004

Example 3 -

In this case the norm of the starting matrix is very large compared to the solution.
y 1 6 ¢ 12
X - X+ =0
2 9 -2 14

-99 10
X = () and F(X®) = 1.044 x 10°
14

with
-2

The method converges to (; g) in the following way,

Iteration 1 2 3 4 5 4] 7 8 9

[|F(X®))||| 2615 653.7 | 164.3 | 41.871 | 63.243 | 3.4159 | 0.9995 | 0.1424 | 0.0005

178

Example 4 _
The Matrix Polynomial method of Section 5.3 does not work since the problem does

not possess a dominant solution.
1 6 0 12
X% - X+ =0
-2 9 -2 14

10
X = (0 1) and || F(X)| = 8.4853

and

The method converges to (3') g) in the following way,

Iteration 1 2 3 4 5

I|F(X)} | 2.0365 | 0.4338 | 0.0596 | 0.0023 | 0.000003

Example 5

The Newton method of Section 5.3 does not converge.
1 0 -8 12
X%+ X+ =0
' 01 ~18 ~26

1 6
x(°>=(; 1), [|F(X (™)) = 73.055

with

0.8056 2.0889

The method converges to (3.1334 3.9390

) in the following way,

Iteration 1 2 3 4 5 6 7 8

||F(X(F))]|]16.1342| 11.9821 | 2.7678 | 0.4753 | 0.0581 [0.0117 { 0.0012 | 0.00002

Remarks

In this section, a new sum of squares minimisation method for solving the quadratic
matrix equation has been proposed. The method is based on Gauss-Newton iterations and
is shown to possess local quadratic convergence. The method is shown to be efficient in
the sense that the operations count per iteration is O(n*) rather than O(n®) as usually

required for the minimisation of the constituent equations. The term O(n*) is wholly due

179

to the determination of the singular values of the Jacobian. It may be that a more efficient
technique for determining the condition of the Jacobian exists in which case the operations
count is O(n?) per iteration and compares favourably with that for the methods in Section
5.3, ' N |

Perhaps the most significant attribute of this method is its global convergence prop-
erty. The line search at each iteration ensures that progress is made towards the solution.
Also, the problem of solving an ill-conditioned linear system at an iteration is overcome,
by choosing the Steepest Descent direction in such cases.

The comments above are reflected in the numerical results where this method is shown
to work on problems for which other methods fail.

Therefore the analysis and method of this section may contribute towards provid-
ing a stable, efficient and globally convergent algorithm for solving the general unilateral

quadratic matrix equation.

180

CHAPTER 7 - EXAMPLES, RESULTS, COMPARISONS

SECTION 7.1: Introduction

In this chapter we use the methods of the preceding chapters to solve a number of
problems in order to determine the merits of one method over another. The measures we
use of ‘goodness’ of a method are the accuracy of the computed solution and the Central
Processor Unit (CPU) time. The CPU time is the time accurnulated while a particular task
1s 1n execution and is independent of external factors, for example, the number of users
currently in session on the mainframe, the amount of memory resident in the machine,
etc. The operations count and access rates to stored arrays are reflected in the CPU time.
Immediately prior to executing a task, the program calls a function called CPU() and passes
one integer parameter through it. On return, the integer contains a value representing the
number of micro-seconds of CPU time that has accumulated since some arbitrary base.
This base generally remains unchanged across successive CPU() calls, a non-zero return
code indicating otherwise. On completion of the task, another call is made to CPU() with
an integer parameter and the difference between this and the previous integer gives the
accumulated CPU time.

Broadly speaking, the relative CPU times of the methods should correspond roughly to
the relative operations count of the methods. The operations count, however, does not take
into account the numerous other tasks the CPU must do within a program. Consequently
it is important to minimise the work involved in these other tasks and reduce/re-use
storage spaces wherever possible. The work involved in multiplying matrices dominates
in the methods and the way in which this operation is approached can be observed by
considering the following matrix multiplications,

(a)
C=AB, AERnXm, BeRan, CeRan

For t=1,...,n

Fork=1,....m

sum = sum + a;xby;

Next k
Ci; = sum
Next 3

Next 2

181

(b)

B = AB, A,BeER™"™, veceR"
Forj=1,...,n
For:=1,...,n
sum =0.0
Fork=1,...,n
sum = sum + aipby;
Next k

vec; = sum

Next 2
For ¢ = .1,....,n
bej = vecy
Next ¢
Next j

Both examples illustrate how the introduction of a scalar ‘sum’ reduces the amount

of subscripting. Also, the second example shows how, by using an n-vector, the storage of

a third n x n matrix C is unnecessary. When the problem is large, optimisations of this

kind prove to be very useful.

Bearing in mind that it takes more work to perform some operations than others,

great care has been taken to maintain uniformity in the program code written for the

implementation of each method. Examples of some tasks common to a number of methods

are;

(a)
(b)
(c)
(d)
(e)
()

The determination of the eigenvalues of a general matrix.
The computation of the upper Hessenberg form of a matrix.
The computation of the real Schur form of a matrix.

The computation of the companion form of a matrix.

The solution of the Lyapunov and Sylvester matrix equations.

The solution of a general linear system of order n.

The program code for carrying out these tasks is not included in the Appendices since

it is readily available in literature [NAG], [Faddeev & Faddeeva], [Golub, Nash & Van
Loan], [Bartels & Stewart), [Xinogalas et al], [Golub & Van Loan)].

182

Three subroutines that merit greater attention and are taken from the Numerical

Algorithm Group (NAG) are:

1)

2)

E04HEF - sum of squares minimisation. _

This is a comprehensive modified Gauss-Newton algorithm for finding an uncon-
strained minimum of the sum of squares of N non-linear functions in N variables,
with M > N. The routine is intended for functions which have continuous first
and second derivatives but will usually work even if the derivatives have occasional
discontinuities.

The subroutine requires three external functions,

(a) to calculate the vector of function values and the Jacobian matrix of first deriva-

tives at any point.

(b) to calculate the elements of the symmetric matrix

M .
B(X)= Z Ff(X)Gi(X) at any point X

1=1

where G;(X) is the Hessian matrix of F;(X).
For the matrix equations, f; are the elements of the matrix F(X), taken a row

at a time.

(¢) to monitor the minimisation process.

F04AXF - Sparse System Solver

This subroutine calculates the approximate solution of a set of real sparse linear
equations with a single right hand side. The coefficient matrix is decomposed by sub-
routine FO1BRF then FO04AXF computes the solution by block forward or backward
substitution, using simple forward and backward substitution within each diagonal
block [Duff].

Subroutine FO1BRF obtains the LU decomposition of a permutation of A,

PAQ=LU

where P and () are permutation matrices, L is unit lower triangular and U is upper
triangular. The routine uses a sparse variant of Gaussian Elimination and the pivotal
strategy is designed to compromise between maintaining sparsity and controlling loss
of accuracy through round-off.

Optionally the routine first permutes the matrix into block lower triangular form and
then only decomposes the diagonal blocks. For some matrices this gives a considerable

saving in storage and execution time.

183

3) EO04ABF - Line Search

This subroutine searches for a low-accuracy minimum, in a given finite interval, of
a continuous function of a single variable, using function values only. The method
is based on quadratic interpolation and is intended for functions which have a con-
tinuous first derivative (although it will usually work if the derivative has occasional
discontinuities).

It computes a sequence of values which tend to a minimum of the function. The
sequence is terminated when the function is deemed to have been sufficiently reduced

as illustrated in the discussion of the line search in Section 6.3.

The subroutines are written in FORTRAN 77 on the Honeywell computer using the
Multics operating system. All computations are performed using double precision arith-

metic for added precision.

184

SECTION 7.2: Methods for Computing the Characteristic Polynomial

_ From_ the discussion in Chapter 3, the problem of determining the ‘coefficients of the
characteristic polynomial of a matrix is well-conditioned suggesting that a stable method
will yield an accurate solution for any matrix. It was shown that the stable version of
LeVerriers method was the only method that could be considered as stable in this sense.
- The question therefore arises as to whether there is any need to consider any other method.
The answer lies in the fact that the operations count for LeVerriers method is O(n*) as
compared to O(n?) for the other methods of Chapter 3 which, for large order problems, may
prove to be signiﬁcé.nt. Allied with the fact that the other methods provide an accurate
solution for certain classes of matrices, the choice of method for a particular problem may
not be straightforward. ' '
 We begin by illustrating the failings of some of the methods.

Examples of Failure
Consider the problem of determining the characteristic polynomial of
r0.000 1 2 37
0 0.1 4 7 _
A= (7.1)
-1 100 1 1 .
L 1 0 4 100

The matrix is ill-conditioned and the characteristic polynomial, correct to 4 decimal places
is,
F(X) = A% —101.101)% + 65.2011)% + 3520.4339\ — 374.0104

Using Danilevski’s method, the reduction of A to upper Hessenberg form is stable, pro-
ducing small sub-diagonal elements. However, in the reduction of the Hessenberg matrix
to the companion form, these small sub-diagonal elements give rise to errors that are so
large that the computed coefficients are wholly inaccurate.

The Block Frobenius method however, is accurate since it recognises the small sub-
diagonal elements and reduces the Hessenberg matrix to a block matrix with Frobenius

matrices on its diagonal.

Consider the following matrix,

12 11 10 2 17

1 11 10 ... 2 1
A= Do (7.2)

2 2 2 2 1

1 1 1 1 1]

The eigenvalues are not well-distributed,

1 (2i —)x\1™ .
.\,—2[1 cos(75)] L i=1,...,12

and the exact characteristic polynomial is,

F(A) = A1 — 7821 + 10010 — 50051° + 128701% — 1944817 + 18564)°

—11628)° + 4845A% — 133023 + 23107 — 23X + 1

Using Krylov’s method, the linear equation that must be solved therein is ill-

conditioned as a result of the eigenvalue distribution of 4. Consequently, Gaussian Elimi-

nation fails to solve the linear equation and terminates with a division by zero condition,

indicating the presence of a very small pivotal element.

Using the Interpolation method, the closeness of the eigenvalues of A results in rela-

tively large rounding errors being produced. If we assume the accuracy to be determined

by the norm, |a; — a;|, where &; and a; are the computed and exact coefficients respec-

tively, then for this example, |é; — a;| = 1072%. That is, a loss of accuracy has resulted as

a consequence of the rounding errors.

Consider the following matrix,

6 2 -2
A=|-2 2 2
2 2 2

'This matrix is derogatory since the characteristic polynomial given by,
F) = 2% —10X% +32) - 32
does not coincide with the minimal polynomial,
m(A) = A - 61 +8

Consider Krylov's method. In exact arithmetic the matrices A% and A3 are,

28 12 -—12 120 56 —56
Al=|-12 4 12 |, A= -5 8 56
12 12 4 5 56 8

(7.3)

However, the error in the computed A2 and A3 is less than 82 and 82 times the machine

precision, respectively. That is, the error is small.

186

Next, we form the matrices T to solve the linear system T'a = b of (3.24) to determine
the coefficients a;. Taking the elements of A, 4% and I a column at a time, gives

-6 28 1 2 12 0 —2 -12 0
T=|-2 -12 0|, |2 4 1|, [2 12 o
2 12 0 2 12 0 2 4 1

The Gaussian Elimination algorithm recognises that each of these matrices is singular
and terminates the processing. Notice that the eigenvalues of the matrices T are well-
distributed.

Now consider the matrix .-
100 2 -2

A=|-2 2 2 (7.4)
2 2 2
In this case, the matrix T}, formed from the first column of 4, 4? and [is
100 10*-8 1
Ty=1-2 =200 O
2 200 O

This matrix is clearly singular. However, using Gaussian Elimination with a low tolerance
value, the poor distribution of eigenvalues of T) contributes towards the generation of
significant rounding errors. At the final stage of the Gaussian elimination process, the
element in position (3,3) is very small, but not considered zero. Therefore the computed
coeflicients are wholly inaccurate.

This example shows that to compute the coefficients accurately, it is not sufficient to
let the Gaussian elimination algorithm decide whether the initial matrix is derogatory (by
detecting a non-singular matrix T') or not. It is necessary also to investigate the eigenvalue
distribution of the matrix.

Operations counts and CPU times

Now we look at the efficiency of the methods with respect to operations counts and
CPU times. We begin by re-stating the operations counts and storage requirements as
determined in Chapter 3.

Method Operations Count Storage
LeVerrier nt—nd 2n? + 2n
Block Frobenius (¢ = 5) 6n® n?+n
Danilevski 2n3 n?42n
Krylov %n"’ + n? 2n2 4+ 2n
Interpolation 8n3 + n? n? 4 2n

187

The operations counts ignore terms of O(n). An average figure of ¢ = 5, corresponding

to the number of Frobenius blocks, is taken for the Block Frobenius method. The storage
requirements are also stated here but as stated in Chapter 1, mass storage systems are
currently widely and cheaply available and, as such, storage limitations are no longer a
significant concern. _ | _
' As discussed in the 1ntroduct10n a more realistic estimate of the efﬁc:ency of an
algorithm is the CPU time taken to perform the processing. The following table gives the
CPU times and the accuracy attained by each method for computing the coefficients of
the characteristic polynomials of various sized matrices, given in Appendix 1.1. The times
are given first, in seconds, followed by the accuracy. The machine precision is 1078, The
examples were constructed so that all methods worked to their respective abilities.

7 LeVerrier Block Frobenius Danilevski Krylov Interpolation
4 0.06 0.05 0.05 0.10 007
0.0 10-17 1017 10716 1018
8 0.32 0.14 0.15 0.13 1.17
1016 10-17 10-1% 10~ 10715
12 1.32 0.58 0.45 0.32 0.38
10-—-]5 10—]6 10—15 10—-13 10—13
16 3.82 1.06 1.02 0.77 0.79
107# 10-14 10-13 10712 10—

For matrices of small order, all methods take about the same time to compute the
coefficients. For larger problems, LeVerrier’s method is significantly slower than the others.
This effect was predicted in Chapter 3 since the operations count for LeVerrier’s method
is of O(n*) whereas it is of O(n?) for the other methods. From the accuracy point of view,
the LeVerrier, Block Frobenius and Danilevski methods are consistently more accurate
than the other two methods.

Remarks

These resuits, coupled with the earlier discussions on the stability of the methods,
indicate that for determining the coefficients of a general matrix accurately, LeVerrier’s
method should be employed. If efficiency is a significant consideration then the Block
Frobenius method is much faster with a little loss in accuracy of the coefficients.

The other methods should not be ignored, however, since the problem may arise from
a physical application where it is known that the matrix satisfies certain requirements con-
cerning eigenvalue distribution, defectiveness, singularity, etc, in which case these methods
may prove to be much quicker than the Block Frobenius method.

188

SECTION 7.3: Methods for solving the Quadratic Matrix Equation

In the examples of this section, the problems are all well-conditioned since otherwise
no methods can be guaranteed to compute an accurate solution, regardless of how stable:
they are. Therefore, the accuracy of the computed solutions will be wholly a reflection
of the stability of the method used. This is due to the fact that since the methods are
iterative, a solution can be refined by further iterations but only to within the accuracy

allowed by the presence of rounding errors generated by the algorithm.

Examplés of Failure

We begin by studying problems for which some of the methods fail.

, [-1 -6 0 12
e N RS R L (7.5)

The eigenvalues of the associated quadratic eigenvalue problem satisfy,

Consider

NI+ PA+Q|=0

such that
A= {1,2,3,4)

From the discussions and example of Section 1.6, this problem has solutions with the
following eigenvalue pairings,

(1’2)’ (1’3)3 (1v4)a (2:3)? (2:4)

The Matrix Polynomial algorithm of Section 5.3 fails to compute a solution (7.5) because

the problem does not possess a dominant solution.

Using the Elimination method with a; = —3, a; = 2 gives
RX =-S5
2 -6 2 -12
— X=- (7.6)
2 -6 2 -12

The matrix on the left hand side of (7.6) is singular suelf that and (7.6) does not pos-
sess a unique solution. In fact, (7.6) has an infinite number of solutions. The Gaussian

Elimination process terminates with a singularity condition.

Now consider using Davis’s Newton Iterations method to solve,

1 0 -8 -12
X? + X + =0 (7.7)
¢ 1 —-18 —-26

189

with

X(b)z 1 6 -'
-5 1

After 30 iterations, the iterates are not converging. One reason may be that the starting
matrix is not good enough. '

.Consider the same problem with a different starting matrix,

yo_[2 0
_ 0 —0.5

From (5.19) the Newton iterate T; solves

(XO 4 PYT; + T, X . = F(X©) (7.8)

Now, from Section (1.4) the problem of solving this Sylvester equation is ill-conditioned if
[|J71]| is large, where : o)
J=(X®+P)@I+IQ@X®"

In fact
J = diag (-3,-1.5,-1.5,0)

is singular, which is an extreme form of ill-conditioning. Therefore the Newton Iterations
method in this case gives rise to an ill-conditioned problem (7.8), the solution of which
may not exist. Rounding errors may cause J to be non-singular and ill-conditioned in
which case the computed solution of (7.8) is inaccurate and may lie outside the problems
region of convergence.) R

As we observed in the examples in Section 6.3, the matrix function minimisation
technique of that section worked successfuily on the two problems above. In fact, no

well-conditioned problems have been found that cause the method to fail.

Convergence and Accuracy

Now we look at the rate of convergence of the methods.

.Example 1
Consider the problem of (7.5),

, [-1 -6 0 12 '
X2+ \ 9X+ , 14 =0 (7.9)

As discussed earlier, this problem does not possess a dominant solution and hence the

Matrix Polynomial method does not work.

190

Using the Newton’s Iterations method, the starting matrix is

x© = (1PIl+ /P 4|'|Q‘T|) ;
2 .

(7.10)
X© = 1.526057

If convergence is not achieved in 30 iterations, the strategy is restarted from X9 = [|Q||.1
If this fails to converge, the iterations are restarted from X (°) = I [Davis]. Starting from

(7.10), the Newton iterations converge to

v

in the following way,

Iteration FNORM CPU time (secs)
7 103 ~0.505
8 10-10 0.554
9 10717 0.607

The convergence here is quaﬂratic. Further iterations cannot improve the accuracy beyond
1018,
Using the Elimination method, the formulae in (4.38) provide the starting point,

ol = (1.4566,1.4729), i=1,2

[
The method converges to X = ? g in the following way,
Iteration FNORM CPU time (secs)
7 10-¢ 0.602
12 10-12 0.827
13 1016 - 1.041

Generally, the convergence here is only linear in the sense that each iteration improves
accuracy by one decimal place. As with the Newton Iterations method, an accuracy of
10~!8 cannot be improved upon.

Using the sum of squares minimisation approach, the starting matrix is I and the

. 3 0
solui'.lonlsX--[1 2],

191

Iteration ~ FNORM © CPU time. (secs)
5 | 1wt | osu
6 10-2 0.898
7 10~ 1.002
8 1071® 1.105

The convergence is quadratic and an accuracy of 10718 is attained.

Using the new matrix function minimisation technique of Section 6.3 with start-

ing matrix I, the iterates converge to ((1) g), as follows
- Iteration FNORM CPU time (secs)
4 1072 0.325
5 107° 0.407
6 10°¢ - 0.491
8 10~° 0.661

Very few iterations are required to obtain a small FNORM. The maximum accuracy

attainable however, is 107,

Example 2

‘Consider solving the test problem [Lancaster, 2],

X?+PX+Q=0

where .
3a —(1+a®+282) o(1+26%) -—B%a?+ %)
2 0 0 0
P =
0 2 0 0
L 0 0 2 0 1
and
(—1+42a? a-—ofa®?+28%) 2282 —af*(a® + %)
Q 2a ~(a®+28%) 2ap% -pHa* +)
- 1 0 0 0
L 0 1 0 0]
B=a+1

192

The latent roots associated with the problem are,
{0, i, —a, £(1 +a)i, a'£ (1 + a)i}
When a = 1, a dominant solution of this problem exists, being (to 4 significant figures}

—1.5047 6.9503 —6.1303 15.3257

—0.6660 -0.2705 0.3527 —0.8816
0.1355 -—-1.3883 0.7932 —1.9829
0.2506 —0.1639 0.0072 -0.0181/

Another solution is (to four decimal places),

—-0.1324 1.7237 -0.1729 1.0443

—0.6018 -0.0253 -0.0043 —0.0260
0.0576 —-1.4980 0.0995 —0.6042
1.1520 -0.103¢ -0.0037 -0.0215

It

The Newton Iterations method does not converge from any of the three starting
points.

The Matrix Polynomial method converges to the dominant solution X, in 7 iter-
ations of the first step and 3 iterations of the second step with an accuracy of 1072 and
CPU time of 2.480 seconds.

The Elimination method converges to X1, in the following way,

Iteration FNORM CPU time (secs)
10 10~° 2.051
15 10712 2.402
18 10-19 2.721

An improvement in accuracy of one decimal point per iteration is achieved and this time
an accuracy of 10718 is attained.
The sum of squares minimisation approach converges to X, in the following way,

Iteration FNORM CPU time (secs)
7 1073 7.314
8 106 8.422
9 10712 9.596

193

The convergence is quadratic and an accuracy of 107!° is attained at the 10th iteration.
The matrix function minimisation approach converges to X, from the starting matrix
I, in the following way,

Iteration FNORM CPU time (secs)
3 102 . 0864
4 10— 1.109
5 10-10 1.431
6 10°18 1.728

The convergence here is quadratic and the accuracy is 107'° attained at the 6th
iteration.

For this problem, a dominant solution exists so long as a > 0. Now as a — 0, the
functionality of the methods is affected, as follows:

The Newton Iterations method still fails to converge from any of the three starting
points. This is because the starting matrices are outside the region of convergence for this
problem.

The convergence rate for the Matrix Polynomial algorithm becomes considerably
slower since the smallest eigenvalue of the dominant solution approaches the largest eigen-
value of the next solution. _

The convergence and accuracy properties of the other three methods remain unaf-
fected. '

Example 3
In this example, there is an ill-conditioned solution.

X*+PX+Q=0

(122 41 40 26 25\ /_0_0001 0 0 0 0 \
40 170 25 14 24 O 0 0 0 0
p=]27 2 112 7 3| o- 0 0 -1 0 0
32 22 9 106 6 0o 0 0 0 0
\31 28 -2 -1 165) \ 0 0 0 0 -1000/
/107° 0 1077 0 —6.218
107 0 1072 0 -—-4.24
Infact, X ={(10"% 0 1072 0 -0.6044
10-¢ 0 1072 0 -0.0217
\10~¢ 0 10-? 0 48.338 /

194

with

A(X) =

48.338 \ | / 79.313 \
0.006177 251.88
107 , AMP+X)=] 112.244
10719 . 143.413

\ 10-2 / \ 196.494 /

All four methods converge to this solution in the following way,
Newton Iterations method:

Iteration FNORM CPU time (secs)
18 104 5.014
22 10710 5.578
25 1015 5.973

Matrix Polynomial algorithm:

3 iterations of the first step and at the second step,

Iteration FNORM CPU time (secs)
2 1074 1.114 |
3 1077 2.212
4 10-H 3.320
sum of squares minimisation:
Iteration FNORM CPU time (secs)
11 103 9.310
14 10-8 12.301
17 107 15.491
Elimination method:
Iteration FNORM CPU time (secs)
7 10~ 3.301
9 10~* 4.011
11 10~12 4.608
14 1016 5.685

195

matrix function minimisation:

Iteration FNORM CPU time (secs)
2 102 0.442
3 10-# 0.837
4 10-14 1.114
5 10715 1.442

The accuracy attained By all the methods is consiéteptly high implying that the effect

e

of rounding errors in their computations is relatively small. For this particular problem,
the convergence for the Newton Iterations method and the sum of .squares minimisation
approach is no longer quadratic, probably due to the ill-conditioning of the solution matrix
and the Jacobian near to the solution. Notice also, that this has not affected the matrix

function minimisation technique which exhibits very fast convergence.

CPU times and operations counts
Now we look at the eﬂ'iciencfbf the methods with respect to the operations counts
and CPU times for algorithm execution, beginning with a review of the operations counts

and storage requirements for each method, as determined in the previous chapters.

Method | Operations Count Storage
Newton Iterations 21n®m 5n?
Matnx Polynomial 6nm 6n?
Elimination Method (2n* + 6n3)m 6n? +n
Sum of Squares Minimisation (3n% +n' + 5n3)m nd + 4n?
New (Matrix Function) Minimisation Snt + (26 +7)n*)m | nt 4+ 8n?

where m is the number of iterations and r is the number of function evaluations for the line
search, at each iteration. Terms of O(n?) and O(n) are ignored in the operations counts.

The methods were used to solve problems of orders 6, 8 and 11 (see Appendix 1.2).
The stopping criterion for the iterations is activated when the function norm is less than

10~%. The following table gives the results obtained.

196

n Elihﬁnation Newton{ Matrix Sum of Squares New
Polynomial | Minimisation Miniﬁlisation

function norm 10-1°0 1012 1078 . 10710 - 10-1
iterations 6 10 12 5 and 10 10 9
CPU time 7.0 7.2 3.9 15.2 9.1
function norm 1010 10713 | 1070 10~° 10712
iterations 8 11 14 6 and 9 12 8
CPU time 10.0 15.2 5.4 28.2 17.9
function norm 1077 10— 10°° 10~° 101!
itérations 11 11 14 8 and 11 14 10
CPU time 18.9 29.3 10.6 - 48.0 33.5

These results indicate that the quickest method is the Matrix Polynomial one, where
the execution time of the stage 2 algorithm is about twice that for the stage 1 algorithm.
The next fastest is the Elimination method where most time is taken in determining the
matrices R,_; and S,_;. The next quickest algorithm is the Newton Iterations approach
followed by the New minimisation and the sum of squares minimisation methods. For the
New minimisation method, the problem of determining the singular values of the Jacobian
contributes over 30% to the total CPU time. Notice that although the Newton Iterations
method and the New minimisation method are essentially Newton methods, the use of a
line search technique in the latter significantly reduces the number of iterations performed.

It is interesting to observe, firstly that'the relative difference between the CPU times
for the methods corresponds to the relative differences between the operations counts for
the methods and secondly that although the CPU times increase rapidly as n increases,

the number of iterations required for convergence to occur does not necessarily increase.

Remarks

In practice, a dominant solution to a problem may not exist, in which case although
the Matrix Polynomial algorithm is the fastest method, it will not yield a solution.

It maybe that none of the three pre-defined points used to initiate the Newton Itera-
tions method is sufficiently ‘close’ to the solution for convergence to occur. Clearly other
starting points can be used but there is no way to predict whether a particular point leads
to convergence or not. Also, at any iteration, an ill-conditioned Sylvester equation, in

the form of an ill-conditioned Jacobian, may need to be solved. In this case either the

197

condition is detected and the iterations terminated prematurely or the computed solution
may be inaccurate and lie outside the region of convergence for the problem.

The Elimination method, however, is not reliant on a suitable starting matrix and has
been shown to work on virtually all problems considered. The exceptions arise when, at
any iteration, the computed matrix R,,_; is ill-conditioned or singular. It is not known
beforehand whether this situation will occur or not and all we can do in this case is to
restart the iterations from a different starting point.

The sum of squares minimisation approach is globally convergent. However, the it-
erations may converge to a point that is not a solution to the problém in which case the
iterations are restarted from a different starting point.

The New minimisation approach also suffers from this disadvantage. The problem
of an ill-conditioned Jacobian at an iteration is overcome by using the Steepest Descent
direction, for that iteration only. However, if the Jacobian is singular, then the direction is
no longer a descent one and the computed estimate to the solution may not be any closer
to the solution than the previous estimate. Additionally, subsequent Jacobians may prove
to be ill-conditioned or singular. Most importantly however, if the Jacobian is non-singular
then the method is globally convergent from any starting point. . |

The remarks above in conjunction with the CPU time analysis, indicate that the Elim-
ination mefthod and the New minimisation method do not suffer from any disadvantages
additional to those exhibited by the Newton Iterations method and the Matrix Polynomial

algorithm. In fact, both methods possess certain ‘good’ convergence properties.

198

SECTION 7.4: Methods for the Matrix Square Root Problem

As discussed in Chapter 5, there are a number of methods in existence that compute
the square root of a matrix, whether it is a general matrix or a special matrix. The purpose
of this section is to compare the efficiency of the Elimination methods of Chapter 4 with
those of Chapter 5.

The different Elimination methods are,

Elimination 1 is the Elimination method applied iteratively

Elimination 2 .is the method based upon the symmetric functions

Elimination 3 is the method that determines the coefficients of the

characteristic polynomial of X by solving a set of
in-linear equations.
The Matrix Square Root problem is one of solving,

X —-A=0
We begin with some examples.
Selected Examples
Example 1
Consider '
4 1 -1
X?~11 3 0]=0
-1 0 5

The eigenvalues of 4 are 4, 4 + /3, 4 — /3. All methods converge to
[19667 0.2730 —0.2398
X=| 02730 17100 00166
_0.2398 0.0166 2.2223

in the following way,

Method No. of iterations CPU time (secs) Function norm
Elimination 1 8 0.245 10710
Elimination 2 — 0.042 1018
Elimination 3 9 Newton iterations 0.077 1010
Newton 5 0.410 1014
Sign function 6 0.309 10718
Schur vectors — 0.092 10-1°
Minimisation 6 0.511 10716

199

For the Newton method and the minimisation method, the initial estimate is

X© = a|i
Example 2
1.2x10° 230 10 1.2 x 10°
D, 230 10x10® 1 | =0, AMX)=]|1l.0x10°
10 1 05/ 0.498

Here, the eigenvalues of the coefficient matrix are very different from each other such that
the condition number with respect to inversion is large.

All methods converge to

346.41 0.6084 —0.0288
X =1 06084 31.6169 -0.0304
—-0.0288 -0.0304 0.7050

in the following way,

Method No. of iterations - CPU time (secs) Function norm
Elimination 1 35 0.9091 101
Elimination 1 60 1.318 1010
Elimination 2 —_ 0.030 10714
Elimination 3 | 11 Newton iterations " 0.091 10~4
Newton 5 0.411 1014
Sign function 7 0.329 1016
Schur vectors _— 0.120 1012
Minimisation 8 0.534 10~14

The eigenvalues of the solution are,
{346.411, 31.616, 0.706}
The characteristic polynomial is,

f(X) = A% ~ 378.733)% 4 11219.016) — 7732.204

200

The error analysis of Chapter 4 relating to the Elimination method and in particular
the relationships (4.69) and (4.70) suggest that rounding errors may contaminate the solu-
tion if the determinant of the matrix X is large. Therefore the fact that the determinant
of X is large and the problem has a spectral condition number of 2.4 x 10° may explain the
slow convergence of Elimination 1. Nevertheless, as indicated in the table above, greater
accuracy of solution can be obtained at the expense of many more iterations.

It is clear that the condition of the problem has not affected the convergence properties
of the other methods. |

) Exémple 3
01 2 37
10 2 -3 2
X?- =F(X)=0
00 1 -4
[0 0 0 3.

Here, the coefficient matrix is singular and the derivative, as defined in Chapter 2 1s

also singular. The methods converge as follows,

Method No. of iterations . | CPU time (secs) Error norm
Elimination 1 40 ' 1417.8 10~10
Elimination 2 — 270.9 107%
Elimination 3 | 55 Newton iterations 1011.7 10~12
Newton 100 NO CONVERGENCE
Sign function 100 NO CONVERGENCE
Schu;' vectors , 22.3 10~1¢
Minimisation 100 _ NO CONVERGENCE

Clearly, the fact that the coefficient matrix is given in a Schur form reduces the work
required by the Schur vectors method.

The Schur vectors method computes the square root with no problems but if the
matrix had 2 zero eigenvalues then this method would have failed, as observed in Section
54.3. .

The fact that the Jacobian matrix associated with the minimisation method is singular
at the root explains why the method has failed. Consequently all those methods based on

Newton iterations fail to converge.

201

The Jacobian matrix associated with the linear equations in Elimination 3-is singular.
However, the iterations do converge, although very slowly.
This example illustrates the fact that the Elimination methods may be used to accu-

rately compute the square roots of a matrix when other well-established methods fail.

Operations Counts and CPU times
The table below summarises the operations counts and storage requirements for each.

method.

Method Operatioﬁs Count - Storage Requirements
Elimination 1 (n* + Tn® — 2n%)m ' 5n? +n
Elimination 2 | n*+16n3+ 30 (i — 1)',(+_'-'), © 4n? 4+ 2n
~Elimination 3 n +2n® + (3n® + 6n?)m 3n?+n
Newton : 14n®m 3n?
Sign function 3n3m | 6n?
.Schur vectors 18n3 ' 4n?
Minimisation | (in® +n* +5n*)m) n* + 3n?

where m is the number of iterations.
The methods were used to compute the square roots of various matrices, See Appendix

1.3, with the following results,

Method, n = 8 No. of iterations CPU time (secs) Function norm
Elimination 1 10 4.1 1018
Elimination 2 — 0.6 10~17
Elimination 3 9 Newton iterations 0.9 10-1
Newton 7 2.2 10-18
Sign function 6 1.4 10-18
Schur vectors — 0.7 101
Minimisation 9 8.0 1014

202

Method, n = 12 No. of iterations CPU time (secs) Function norm
Elimination 1 9 7.2 1010
Elimination 2 — 5.1 10718
Elimination 3 12 Newton iterations 5.4 10~1°
Newton 11 78 1013
Sign function 9 32 10713
Schur vectors — 2.9 1010
Minimisation 8 17.4 107
Method, n = 16 No. of iterations CPU time (secs) Function norm
Elimination 1 1 233 10-1
Elimination 2 — 61.1 10~°
Elimination 3 15 Newton iterations 11.4 107°
Newton 12 15.6 10712

~ Sign function 9 6.7 10-13
Schur vectors — 4.2 108
Minimisation 10 36.0 10712

For problems of a general order, the sign function method and the Schur vectors
method provide the quickest means for computing the square roots. However, for small
order problems (n < 10), Elimination 2 is very quick and very accurate, although for larger
problems its CPU time increases significantly. The minimisation method is too slow to be
of much use. ' '

Observe that as n increases, Elimination 2, Elimination 3 and the Schur vectors meth-
ods increasingly lose accuracy. This is because they are ‘exact’ methods as opposed to the
other iterative methods, the latter also acting as solution-refining algorithms.

From the discussion in Section 5.4, the matrix sign function method fails if the co-
efficient matrix possesses a real negative eigenvalue and the Newton method requires a
starting matrix ‘close’ to the solution and a well-conditioned Jacobian at each iteration
otherwise converge may be very slow or may not occur at all.

Therefore, the results and analysis of this section show that for certain problems it
may be better to use the Elimination methods rather than the others, as illustrated by the
behaviour of Elimination 2 for small problems and by the results of Example 2.

203

SECTION 7.5: Methods for the Algebraic Riccati Equation

The operations count and storage requirements for

following table,

each method are given in the

Method Operations Count Stbrage Requirements;
Eigenvector Method 100n? 10n?
Newton Iterations (25m + 16)n® In?
Schur Vectors 75n3 8n?
Spa.rsé—Newton Method (23n% — 2n%)m 12n?

where m is the number of iterations. The operations count given above, for the new Sparse-
Newton method of Chapter 6, is for problems with real Jacobians at each iteration. Now

consider the following example.

Example
0 0 0 1 0 1 0
X+X -X (0 NX + =0
10 0 0/ 1 \0 2
0 0
where G = 0 1 > 0 as required.

1 0
and H = (2) > 0 as required.

0
Method No. of iterations | CPU time (secs) | Function norm
Eigenvector method — 0.3 10—
Newton Iterations 5 0.4 10~12
Schur Vectors — 0.5 10-10
Sparse-Newton method 4 0.5 10~°

Notice that although the Newton method and the Sparse-Newton method are based
upon Newton iterations, they converge after a different number of iterations as a conse-
quence of updating the solution matrix in different ways.

Since the algebraic Riccati equation of optimal control is always assumed to be stabi-

lizable and observable, a non-negative definite solution always exists.

204

The methods were used to solve a number of problems with the following results. The

coefficient matrices and the solution matrix are given in Appendix 1.4.

M_etkhod, n=4 Iterations | CPU time ‘(s.ecs) Function norm
Eigenvector | — o 0.6 10-13
Newton Iterations 5 1.8 1016
Schur Vectors — 0.6 10—16

~ Sparse-Newton 6 1.2 1016
Method, n = 8 Iterations CPU time (secs) Function norm
Eigenvector — 2.7 1012

- Newton Iterations 7 4.3 1015
Schur Vectors — 3.1 10—14

- Sparse-Newton '8 3.9 10-16
Méthod, n=12 Iterations CPU time (secs) Function norm
Eigenvector — 6.6 1010
Newton Iterations 11 13.2 1015
Schur Vectors — 6.1 10713
Sparse-Newton 9 10.8 10-15

‘The problems were chosen to be stabilizable and observable and well-conditioned such
that all methods converged to a solution. Clearly the vector methods are much quicker
than the Newton-based methods, particularly for increasing n. However, since the vector
methods are non-iterative, they are less accurate than the iterative methods, which are
solution-refining. The implication here is that any significant rounding errors in the vector
methods may contaminate the solution.

The Schur vectors method is faster than the eigenvector method and is more stable
since from Section 5.2, the eigenvectors are more likely to be ill-conditioned than the Schur

vectors.

205

The new iterative method based on a Newton step and the solution of a sparse linear
system at each _iteration, converges faster than Kleinman’s Newton method. This is because
the update is computed by a more efficient technique, provided that the Jacobian possesses
real eigenvalues at each iteration.

The (;oncllision is that the vectors approach, in particular the Schur vectors method,
is in general the best technique for computing a solution of the algebraic Riccati equation.
However, for when the associated Hamiltonian matrix possesses ill-condition eigenvectors
and/or Schur vectors, then the iterative methods may prove to be the most efficient and
most accurate.

No mention of the Sign Function method has been presented here since the re-
formulation of this method in Section 5.2 is a relatively new technique. However, all

indications suggest that it compares favourably with the Schur vectors approach [Byers,

3].

206

CHAPTER 8: CONCLUSIONS

The initial aim of this thesis was to present an analysis of the Elimination method
for the numerical solution of the general unilateral quadratic matrix equatibn (QME)
and to compare its numerical and functional properties with those of existing methods.
Progressively, the field of study widened to include two other types of quadratic matrix
equation, the matrix square root and the algebraic Riccati equation (ARE). In addition to
the original aims two new approaches to solving the QME and the ARE were propbsed.

Central to the numerical issues were the discussions on conditioning, stability and
accuracy. Conditioning analysis was performed not only on the main problems of solving '
the matrix equations but also on the various problems arising from within the methods.
This analysis along with the stability analysis of the methods determined the accuracy ‘of
the methods.

In these days of large-order systems and the requirement for fast problem-solving -
algorithms, the speed of the methods was considered to be a significant factor in comparing
the methods. Two units of measure were used in this thesis, the operations count and the
Central Processor Unit (CPU) time.

Current methods for the solution of the QME will not always provide a solution,
the Newton Iterations approach relying on a good starting point for the iterations and the
Matrix Polynomial algonthm succeedmg only on problems possessing a dominant solution.
The Elimination method was shown to compare favourably with the Newton Iterations
method with respect to accuracy and efficiency. It was shown to work on problems for
which the other methods failed. Significantly, the Elimination method requires only n
values as a starting point to the iterations compared with n? for the other methods. The
analysis of the Elimination method raised some interesting points which may form the

basis of further study, as follows,

conditions on the convergence of the Elimination method
accelerating the convergence from near the solutions

restarting algorithms for when the Elimination method fails

A new minimisation method was proposed. This was shown to work on problems for
which other methods failed and shown to be globally convergent and to yield accurate
solutions. The sum of squares minimisation approach is impractical for large problems but
for when no other method will work, this approach should be used.

In this thesis, we have studied a number of methods for the numerical solution of
the matrix square root problem including three new approaches based on the Elimination
method. The analyses of Chapters 4 and 5 showed that all the methods posses¢s at least
one limitation that prevents them’for computing a solution and as such no one method

L
can be guaranteed to always yield a solution. For general well-conditioned problems, the

207

Schur vectors approach was shown to be the quickest and the most stable of all the meth-
ods considered. However, it yielded solutions that were generally less accurate than those
computed by the iterative, self-refining methods. The Elimination methods did not, in
general, compare favourably against the best of the existing methods. One exrception is
Elimination 2 which was shown to be very fast and accurate for lower order problems. The
sum of squares minimisation technique is computationally too expensive to be considered
seriously although there may be case for it to be used when the coefficient matrix is such
that no other method can expect to compute a solution. For problems where informa-
tion pertaining to the coefficient matrix is known beforehand, particular methods may be
employed. |

The three existing methods for solving the ARE discussed in this thesis have all had
varying levels of success. The eigenvector method has recently been superceded by the
Schur vectors method because the latter is more stable and slightly faster as borne out
by the experiments in Chapter 7. However, since it is an exact method rather than an
iterative one, it does tend to lose accuracy for larger problems. The Newton iterations
method is slower than the Schur vectors method but is more accurate. Therefore the
choice of method is dependent on whether accuracy or efficiency is of greater importance.
Chapter 6 proposed a new approach to solving the ARE that is ba.se;‘\on a reformulation of
Newton’s method. This new approach is shown to be stable and to require fewer iterations
than Newton’s method to converge. However, it is more efficient than Newton’s method
6nly under certain conditions. .

To summarise, this thesis has studied the Elimination method for solving the QME
and the matrix square root problem. Additionally, it has proposed two new approaches
to solving the QME and ARE. Finally, it has compared many methods for computing the
coefficients of the characteristic polynomial of a matrix and for solving the three types of
matrix equations mentioned above, basing the comparison on the functionality, stability

and efficiency of the methods and the accuracy of the computed solution.

208

REFERENCES

ANDERSON:
‘Second Order Convergent Algorithms for the Steady State Riccati Equation’,
International Journal of Control, Vol. 28, pp. 295-306, 1978.

ARMSTRONG:
‘An Extension of Bass’ Algorithm for Stabilising Linear Continuous Constant Systems’,
IEEE Transactions on Automatic Control, Vol. AC-20, pp. 629-631, 1976.

ARNOLD, LAUB: : .
‘Generalised Eigenproblem Algorithms and Software for Algebraic Riccati Equations’,
Proceedings of the IEEE, Vol. 72, No.12, pp. 1746-1754, 1984.

BALZER: .
‘Accelerated Convergence of the Matrix Sign Function Method of Solving Lyapunov,

Riccati and other Matrix Equations’,
International Journal on Control, Vol. 32, No.6, pp 1057-1078, 1980.

BARNETT:
‘Matrices in Control Theory’,
Van Nostrand Reinboldt, 1971.

BARNETT, STOREY:
‘Matrix Methods in Stability Theory’,
Nelson, 1970.

BARTELS, STEWART:
‘Solution of the Matrix Equation AX + XB = (C’,
Communications of ACM, Vol. 15, No.9, Sept. 1972.

BICKLEY, McNAMEE:
‘Matrix and Other Direct Methods for the Solution of Systems of Linear

Difference Equations’,
Philos. Trans. Roy. Soc. London, Ser. A, Vol. 252, pp. 69-131, 1960.

BIERMAN:

‘Computational Aspects of the Matrix Sign Function of the ARE’,
Factorised Estimation Applications, Inc. 7017, Deveron Ridge Road, Canoga Park,
California 91301, 1984.

BJORCK, HAMMARLING:
‘A Schur Method for the Square Root of a Matrix’,
Linear Algebra and its Applications, Vol. 52/53, pp. 127-140, 1983.

BJORCK, PEREYRA:
‘Solution of Vandermonde Systems of Equations’,
Vol. 24, No.112, October 1970.

‘BROWN, DENNIS: :
‘Derivative-Free Analogues of the Levenberg-Marquard and Gauss Algorithms for

Non-Linear Least Squares Approximation’,
Numerische Mathematik, Vol. 18, pp. 289-297, 1972.

BUNSE-GERSTNER, MEHRMANN:

‘A symplectic QR-like Algorithm for the Solution of the Real Algebraic

Riccati Equation’,
Fakultat Fiir Mathematik, Universitat Bielefeld, Postfach 8640, 4800 Bielefeld 1, Germany.
To appear in the IEEE.

BYERS, 1:
‘Numerical Condition of the Algebraic Riccati Equation’,
Contemporary Mathematics, Vol 47, pp. 35-49, 1985.

BYERS, 2:
‘Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation’,
Ph.D. Dissertation, Cornell University, Ithaca, New York, 1983.

BYERS, 3:

- ‘Numerical Stability and Instability in Matrix Sign Function Based Algorithms’,
Computational and Combinational Methods in Systems Theory, Elsevier Science
Publishers BV. (North-Holland), pp. 185-201, 1986.

BYERS, 4:
‘Solving the Algebraic Riccati Equation with the Matrix Sign Function’,
Linear Algebra and its Applications, Vol. 85, pp. 267-279, 1987.

BYERS, 5:

‘A Hamiltonian QR Algorithm’,
SIAM Journal of Scientific and Statistical Computing, Vol. 7, No.1, pp. 212-229, January
1986.

BYERS, MEHRMANN:

‘Symmetric Updating of the Solution of the Algebraic Riccati Equation’,
Procedures of the 10th Symposium on Operations Research, Universitat Munchen,
pp. 117-125, 1985.

CLINE et al:
‘An Estimate for the Condition Number of a Matrix’,
SIAM Journal of Numerical Analysis, Vol. 16, No.2, pp. 368-375, 1979.

CROSS, LANCASTER:
‘Square Roots of Complex Matrices’,
Linear and Multilinear Algebra, Vol. 1, pp, 289-293, 1974.

DANILEVSKI:
‘On the Reduction of a General Matrix to Frobenius Form’,
O cislennom resenii vekovogo uravnenija mat. sb., Vol. 2(44) pp. 169-171, 1931.

DAVIS, 1:
‘Numerical Solution of a Quadratic Matrix Equation’,
SIAM Journal of Scientific and Statistical Computations, Vol. 2, pp. 164-175, 1981.

DAVIS, 2: , :
‘Algorithm 598 - An Algorithm to Compute Solvents of the Matrix Equation
AX*+BX +C =0,

ACM Transactions on Mathematical Software, Vol. 9, No.2, pp. 246-254, June 1983.

DENMAN, BEAVERS:
 “The Matrix Sign Functions and Computation in Systems’,
Applied Mathematics and Computation, Vol. 2, pp. 63-94, 1976.

DENNIS, SCHNABEL:
‘Numerical Methods for Unconstrained Optimisation and Non-Linear Equations’,
Prentice-Hall, 1983.

DENNIS, TRAUB, WEBER, 1:
‘The Algebraic Theory of Matrix Polynomials’,
SIAM Journal of Numerical Analysis, Vol. 13, pp. 831-845, 1976.

DENNIS, TRAUB, WEBER, 2:
‘Algorithms for Solvents of Matrix Polynomials’,
SIAM Journal of Numerical Analysis, Vol 15, pp. 523-533, 1978.

DIEF:
‘Advanced Matrix Theory’,
Abacus 1982.

DOU:
‘Method of Undetermined Coefficients in Linear Differential Systems and the
Matrix Equation YA — AY = F’,

SIAM Jour. App. Math, 14, pp. 691-696, 1966.

DUFF:

‘MA28 - A Set of FORTRAN Subroutines for Sparse Unsymmetric Linear Equations’,
AERE report R. 8730, HMSO, 1977.

FADDEEV, FADDEEVA:
‘Computational Methods of Linear Algebra’,
Freeman, 1959. '

FORSYTHE, MOLER:
‘Computer Solution of Linear Algebraic Systems’,
Prentice-Hall, 1967.

GANTMACHER:
‘Matrix Theory’,
Volumes I and II, Chelsea, 1959,

GAUTSCHI:
‘On Inverses of Vandermonde Matrices’,
Numer. Math., 24, pp. 1-12, 1975.

GILL, MURRAY: _ _
‘Algorithms for the Solution of Non-Linear Least Squares Problems’,
SIAM Journal on Numerical Analysis, 15, pp. 977-992, 1978.

GOHBERG, LANCASTER, RODMAN:
‘Matrix Polynomials’,
Academic Press, 1982.

GOLUB, VAN LOAN:
"~ ‘Matrix Computations’,
John Hopkins, 1983.

GOLUB, NASH, VAN LOAN:
‘A Hessenberg-Schur Method for the Problem AX + XB = C’,
Transactions on Automatic Control, Vol. AC-24, No.6, pp. 909-913, 1979.

GRAHAM:
‘Kronecker Products and Matrix Calculus’,
John Wiley, 1981.

HAMMARLING:
‘Newton’s Method for Solving the Algebraic Riccati Equation’,
NPL Report DITC 12/82, September 1982.

HEWER, NAZARQFF:
‘A Survey of Numerical Methods for the Solution of Algebraic Riccati Equations’,
Naval Weapons Center Report, China Lake, California.

HIGHAM, 1:
‘Error Analysis of the Bjorck-Pereyra Algorithms for Solving Vandermonde Systems’
Numensche Mathematik, Vol. 50, pp 613-632, 1987.

HIGHAM, 2: .
‘Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomials’,
IMA Journal of Numenca.l Ana.lys:s Vol. 8, pp. 473-486, 1988. .

HIGHAM 3:
‘Computing Real Square Roots of a Real Matrix’,
Linear Algebra and its Applications, Vol. 88/89, pp. 405-430, 1987.

HIGHAM, 4:
‘Newton’s Method for the Matrix Square Root’,
Mathematics of Computation, Vol. 46, No.174, pp 537-549, April 1986.

HIGHAM, 5:
‘Computing the Polar Decomposition with Applications’, _
SIAM Journal of Scientific and Statistical Computing, Vol. 7, No.4, pp. 1160-1174, 1986.

HOSKINS, WALTON:
" ‘A Faster Method for Computing the Square Root of a Matrix’,
IEEE Transactions on Automatic Control, Vol. AC-23, No.3, June 1978.

HOUSEHOLDER:
~ ‘The Theory of Matrices in Numerical Analysis’,
Ginn-Blaisdell, 1964.

HOWLAND:
“The Sign Matrix and the Separation of Matrix Eigenvalues’,
Linear Algebra and its Applications, Vol. 49, pp. 221-232, 1983.

INGRAHAM:
* Rational Methods in Matrix Equations’,
Bull. Amer. Math. Soc., Vol. 47, pp. 61-70, 1941.

KALMAN:
‘Contributions to the Theory of Optimal Control’,
Proceedings of the Conference on O.D.E.’s, Society of Math. Mexicana, Mexico City, 1959.

KLEINMAN:
‘On an Iterative Technique for Riccati Equation Computation’,
IEEE Transactions on Automatic Control, Feb. 1968.

KRATZ, STICKEL:
‘Numerical Solutions of Matrix Polynomial Equations by Newton’s Method’,
IMA Journal of Numerical Analysis, Vol. 7, pp. 255-369, 1987.

LANCASTER, 1:
“The Theory of Matrices’,
Academic Press, 1983.

LANCASTER, 2:
‘Lambda Matrices and Vibrating Systems’,
Pergaman Press, 1966,

LASALLE, LEFSCHETZ:
‘Stability by Lyapnov’s Direct Method with Application’,
Academic Press, New York, 1961.

LAUB:
‘A Schur Method for Solving Algebraic Riccati Equations’, _
IEEE Transactions on Automatic Control, Vol. AC-24, No.6, Dec. 1979.

LAUB, MEYER:
‘Canonical Forms for Hamiltonian and Symplectic matrices’,
Celestial Mechanics, Vol. 9, pp. 213-238, 1974.

LAWSON, HANSON:
‘Solving Least Squares Problems’,
Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

LEVINE, ATHANS:
‘On the Determination of the Optimal Constant Output Feedback Gains for Linear
Multivariable Systems’, '

IEEE Trans. Aut. Cont., AC-15, pp. 44-48, 1970.

LUENBERGER:
‘Observing the State of a Linear System’,
IEEE Trans. Aut. Cont. Mil-8, pp. 74-80, 1964.

McDONALD:
‘A Study of Matrix Equations’,
PH.D, Thesis, Loughborough University of Technology, 1987.

MacDUFFEE:
“The Theory of Matrices’,
Chelsea, 1956.

MILNE:
‘Applied Functional Analysis - An Introductory Treatment’,
Pitman, 1980.

MURRAY:
‘Numerical Methods for Unconstrained Optimisation’,
Academic Press, 1972.

NAG:
Numerical Algorithms Group Subroutines for Numerical- Computatlons
256 Banbury Road, Oxford OX2 7DE.

ORTEGA, RHEINBOLDT:
‘Iterative Solution of Non-Linear Equations in Several Variables,
Academic Press, 1970.

PAIGE, VAN LOAN:
‘A Schur Decomposition for Hamiltonian Matrices’,
Li.nea,r Algebra and its Applications, Vol. 41, pp. 11-32, 1981.

PETKOV, CHRISTOV, KONSTANTINOV:
‘On the Numerical Properties of the Schur Approach for Solving the Matrix
Riccati Equation’

Systems and Control Letters, Vol. p, pp. 197-201, 1987.

POTTER:
‘Matrix Quadratic Solution’,
SIAM Journal of Applied Math., Vol, 14, No.3, May 1966.

POWELL:
‘A Hybrid Method for Non-linear Equatlons

“in Numerical Methods for Non-linear Algebraic Equatxons ed. P. Robinowitz, Gordon and'
Breach, pp. 87-114, 1970.

REID:
‘Riccati Differential Equations’,
Academic Press, 1972,

ROBERTS:
‘Linear Model Reduction and Solution of the Algebraic Riccati Equation by use of the

Sign Function’,
International Journal of Control, Vol. 32, No.4, pp. 677-687, 1980.

SIMA.:
‘An Efficient Schur Method to Solve the Stabilising Problem’,
IEEE Transactions on Automatic Control, Vol. AC-26, No.3, June 1981.

SMITH et al:
‘EISPACK Guide’,
Springer-Verlag, New York, 1974.

STERNBERG, KAUFMAN: '
‘Applications of the Theory of Systems of Differential Equations to Multiple
Non-Uniform Transmission Lines’,

Journal of Math. and Phys., Vol. 3, pp. 244-252, 1952.

STEWART, 1.
Introduction to Matrix Computations’,
Academic Press, 1973.

STEWART, 2:
‘Fortran Subroutines for Calculating and Ordering the Eigenvalues of a Real Upper
Hessenberg Matrix’,

ACM Transactions on Mathematical Software, 2, pp. 275-280, 1976.

TRAUB:
‘A Class of Globally Convergent Iteration Functions for the Solution of Polynomial
Equations’,

Mathematics of Computation, Vol. 20, pp. 113-138, 1966.

TUEL:
‘On the Transformation to (Phase-Variable) Canonical Form’,
IEEE Transactions on Automatic Control, Vol, AC-11, pp. 607, 1966.

TURNBULL;:
‘The Theory of Equations’,
QOliver and Boyd, 1939.

WALSH:
‘Methods of Optimisation’,
John Wiley, 1975.

WANG, CHEN:
‘On the Computation of the Characteristic Polynomial of a Matrix’,
IEEE Transactions on Automatic Control, Vol. AC-27 pp. 449-451, April 1982

WILKINSON:
‘The Algebraic Eigenvalue Problem’,
Oxford, 1965.

WONHAM:
‘On a Matrix Riccati Equation of Stochastic Control’,
SIAM Journal of Control, Vol. 6, pp. 681-697, 1968.

XINOGALAS, DASIGI, SINGH:
‘Computational Study of Six Methods for Solving BX + XA =C and ATX + XA = C,
Control System Centre, UMIST, 1982.

APPENDIX 1

The characteristic polynomial of a matrix A is given by,

n - -
£(A) = A+ as‘f 'y azx"

5- 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

The eigenvalues are

The coefficients are :

Al.

1

[I o= i oo e]

.2886853458
.8580574559
. 1015004840
.8431071499

1 of &4

-1 -5 3 7 ~9 -2
1 -1 0 0 0 0
0 1 -2 2 1 -3
0 0 1 -5 0 0
0 0 0 1 -10 0
0 0 0 3 1 -0.1
0 0 0 -2 0 1
0 0 0 0 0 0

The eigenvalues are -9

-5

-5

-1

-1

2

1

-4

The coefficlents are : 24
214
137
-738
-8533
-10641
-2969
87598

Al.1

[—
1

.9972305317
.B264679893
.B264679893
.0370943194
.0370943194
.6044226916
.9946555455
. 9847230879

.110
.6410
. 3540
.5570
.8360
.3360
.6770
.2150

M=o Qoo o

I+ 1+

0.46691640328 i
0.46691640328 1
0.22347318691 i
0.22347318691 1

2 of 4

The eigenvalues are

The coefficients are :

4

Al.

LI o]
(L0 L]

QOO0 O

19.
180.
-672.
1210.
-1370.
1051.
-560.
209.
-55.

CO00OO0OoOO0O0O00O0O

.8774881521
.7938972379
.6630323284
.6630323284
.0552050803
.0552050803
.5636960544
.5636960544
.5897965489
.5897965489
.6655561223
.5073929395

L+ 1+ o+
coO0oOo0O0OQ

.9245702233
.9245702233
.3093216119
.3093216119
.5750463850
.5750463850
.2526872626
.2526872626

He e e e b e e

3 0f 4

The eigenvalues are

The coefficients are :

Al.

1

-20.
19.
190.
-168.
~-625,
419.
905.
424,
-596.
191,
179,
-350.
-234.
343,
-512.

lal=BolaNaolaeloloeBaolaloellelelolNa

4431977471
.7571118200
.9732247968
.6813358119
.3616405514
.39868888872
. 1303948354
.7983785860
.7534387161
.6799857692
.5292013529
.4509020252
.2581613032
.3114454330
.3508081123
.0

4 of 4

Al.2 : The Quadratic Matrix Equation

X*+ px + Q = 0
N=2¢6
P=f-2 -1 0 0 -3 0)
0 -1 -1 2 o0 1
0o 2 0 1 2 0
-1 0 0. 1 0 -2
1 0 4 o0 1 -1
[0 2 0o o 4 2]
Q={-3 -1 o o -3 o)
0 -6 -2 4 0 2
0 -6-18 8 8 2
3 1 0-20 3-10
-3 -1-16 &4 .-25 =6
| 0 -6 -2 4 -20 -50]
A dominant soclution is,
X = 3 Tt 0 0 3 0
o 3 1 -2 0 -1
0 0 4 -1 -2 0
0 0 0 4 0 2
0 0 0 o0 5 1
0 0 0 0 0 6

where the eigenvalues are such that,

AX) =[3] . Ax) = [-2
3 -1
4 0
4 1
5 1
| 6 L 2

All methods converge to this dominant solution.

Al.2 1l of 3

N=28

o o000

%
COO0OO0OO N
I
OOoC OO O 0
] 1
COO0OOoO™EWN~-O
1 1
coo-N=~O0oO
1 I
00124_000
1
OmNS~COCOOO
1 1
—_NHOO O OO
) 1
NHOoOODQCOoOCO
i
A 7
]
A

All methods converge to the following dominant solution

X = diag{1,1,1,1,1,1,1,1} = I,

and A(X) > AtP+X)

2 of 3

.2

Al

P=-{16 12 1 1 3 0 0 0o 0 0 oY
13 16 12 1 1 2 ©0 0 0 0 O
12 13 15 11 1 1 O ©0 0 o0 O
12 11 12 14 10 1 1 ©0o 0 ¢ ©
14 11 10 11 13 9 1 1 0 o0 O
11 16 10 9 10 12 8 1 1 0 0
11 10 9 9 8 9 11 7 1 1 o0
11 10 9 8 8 7 8 10 6 1 1
11 10 9 8 7 7 6 7 9 5 1
11 10 9 8 7 6 6 5 6 8 3

|11 10 9 8 7 6 5 3 4 4 6)

Q = (132 120 63 40 28 18 0 ¢ 0 0 0)

121 110 81 24 0 -6-10 0 O 0 O
165 150 126 88 35 12 5 0 0 ¢ O
176 160 135 112 77 30 10 4 0 0 0
209 190 144 120 98 66 25 8 3 0 O
242 220 198 128 105 84 55 20 6 2 O
176 160 144 128 112 90 70 44 15 &4 1
176 160 144 128 112 96 75 56 33 10 2
165 150 135 120 105 90 75 56 39 20 &
143 130 117 104 91 78 65 52 36 22 8
| 99 90 81 72 63 54 45 36 27 16 7 |

All methods converged to the dominant solution,

-

X = (11 10 0 0 ©0 o0 0 0 0 0 0
11 10 9 0 0 0 0 O O ©0 ©
117 10 9 8 0 0 0 0 0 0 O
11 10 9 8 7 0 0 0 0 0 O
11 10 9 8 7 6 0 0 0 0 O
11 10 9 8 7 6 5 0 0 0 0
i1 10 9 8 7 6 5 4 0 0 0
11 10 9 8 7 6 5 &4 3 0 0
11 10 9 8 7 6 5 4& 3 2 0
11 10 9 8 7 6 5 4 3 2 1

(11 10 9 8 7 6 5 4 3 2 1]

where 2(X) > A(P+X)

Al.2 3 of 3

Al.3 : The Matrix Square Root Problem

a=[22 21 9
21 22 9
7.5 7.5 13
7.5 7.5 9
21 21 6
21 21 6
7.5 7.5 9
7.5 7.5 9
!
A square root is,
x=f(3 2 1
2 3 1
0.5 0.5 3
0.5 0.5 1
2 2 0
2 2 0
0.5 0.5 1
i 0.5 0.5 1

et OO) e

WO WO WOWw

SO MNWOONLDN
P -
Ln

21
21
7.5
7.5
22
21
7.5
7.5

OO WLWNOONN
W

LY e e e OO

21
21
7.5

~t
.
(%]

21
22

~J
L
W WO O OO

[Rrg—

7.5

W s e et e OO

All methods converge to this solution.

Al.3

YV OVOVOoOOoNN

1 of 3

QOO0 OCCOOOOCOOW
COQO OO ODOo0OO0COMNO

A square root is,

x={ 1.738 0
0 1.
-0.143 0
0 -0.
-0.586(-2) 0
0 -0.
-0.478(-3) 0
0 0.
-0.503(~4) 0
0 -0.
0.782(-5) 0
| o 0.
0

0

-0

0

0

0

-1

0

-0.

0

0.

0

0.50 0 0 0

0 0.50 0 0

3 0 0.5 0 ¢

0 0.5 0 0 0
0.50 3 0 0.5

0 0.50 0.50

0 0 6.5 0 3

0 0 0 0.50
0 0 0 0 0.5

0 0 0 0 0

o 0 0 0 0

0 0 0 0 0
1.434 0
433 0 0.
1.744 0
230 0 0.
-0.143 0
364(-1) 0 -0.
-0.581(-2) 0
146(-1) 0 -0.
-0.476(-3) 0
810(-2) 0 -0.
0.659(-4) 0
121(-2) 0 0.
.478(-3) 0 -0
0 0

.588(-2) 0 0
0 0

.143 0 -0
0 0

. 744 0 0
0.707 0

144 0 1
-0.354 0

725(-2) 0 0
0.297(-1) 0

All methods converge to this solutiecn

Al.

144

.731

. 159

CO 0000000 OCO
COoOQCWOOOCOOO0OR

.503(-4) 0

0

.486(-3) 0

0

.593(-2) 0

OO0 0O0DO

0 0
0 0
0 0
0 0
0 o
0 0
0 o
0 0
0.5 0
50 0
2 0
50 3|
.556(-2) 0
0
.143 0
: 0
.7b4 0
0.
.143 0
0.
.593(-2) 0
0.
.625(=3) 0
0.
0
0
-0
0
0
0
-0
0
0
707 0
1
205 0

(=B = I = T R T e B e B e B o B B o

707
354
884(-1)

117(-1)

.782(-5)
.660(-4)
.625(-3)
.725(-2)
-159

.405

2 of 3

2
7

6 2
7 2
7 2
7

78 38 30
78 165 80 39 30

32
28 38 80 166 80 39 30

[127 50 32 28
50 159

16

oo

2
7

7 30 39 80 166 80 39 30

6 30 39 80 166 80 39 30

2

2
6

38 28

7
30 39 80 165 78 32

2

2
7

30

30 39 80 166 80 39 30
7 30 39 B0 166 80

2

7

30 39 80 166 80 39 30
30 39 80 159 50

6 28 32 50 127

2
7

7 30 39 80 166 80 39 30
7

7
2

7
2

7

30 39 80 166 80 39
2

7

7 30 39 80 166 80 39 30
2 7
2
2

30 39 80 166 80 39 30
2

7
2

2

(=R =]

oo

N=1
A=

A square root is,

11
3 of 3

Al.3

All methods converge to this solution

Al.4 : The Algebraic Riccati Equation

T
A X + XA - XGXlH = 0
where
G=6G =Cc¥ 3 0, H=H' > 0
N =4
A=[2 1 1 1}, #w=1[5 4 1 1]
1 -0.5 1 1 4 5 1 1
1 0 -1.5 1 1 1 &4 2
-2 -2 -3 -2 1 1 2 4]
- T . -
6 =cc =13)[3 2 1 0] =[9 6 3 o
2 : 6 4 2 0
1 3 2 1 0
0 L0 0 0 0]
Two solutions are,
Xy= I,
X,=(-2.120 2.200 1.662 0.882

-3.939 4,452 5.216 0.934
-0.688 0.320 1.513 0.209
1.812 -1.918 -2.903 0.634

Al Xg) = , ACXy) =[0.4786

b
[== B e B o B}
b
ooo

The eigenvector method converges to X,

The Newton iterations method converges to X,
The Schur vectors method converges to X,

The new Sparse approach converges to X1

Al.4

lof 3

hl

QOO0 OO M=N

-

o
-4
"
—
b

DO OO OO NKH

COO0OO WO

CDOQ WM OO

Two solutions are,

X,={-3.
-12
-11
-17.
~12.
-14
-3
| -6.

The eigenvector method converges to X4

53

-885
.607

183
907

. 749
.599

546

1 1 1
1 1 1 1
-1 01 1 1
-1.51 1
-1 -1.51
-1 -2 -2
-1 0 -1
-1 -1 -1
00 0 0
0 0 0 0
0 0 0 0
0 0 0 0
4 1 0 0
1 4 0 0
0 0 5 1
0 0 1 5
1 0 1 0)
645 ~2.277
364 4.727
499 - 4.864
.553 8.012
.575 5.582
.178 8.111
164 4.665
.364 5.120

= O O e e NN

[R R

.284
. 305
.661
.585
.567
.880
.992
.508

e S P T gy =

B W OV O P e

.639 1.
.250 -3,
.687 -3,
.182) -5.
.349 -3,
.295 -3
.663 -2,
.955 -2,

The Newton iterations method converges to X,

The Schur vectors method converges to X,

The new Sparse approach converges to X4

Al.4

299
862
468
202
894

.501

622
043

O~ QOQOOOO

.331
344
.353
.274
.253
.102
.066
.120

-0.101
-3.103
-2.594
-5.010
-3.541
-4.930
-2.841
~1.964

2 of 3

A=(ay) , H=(hy;), C= (c5)

where
’ i+l \ .
asy = | (-1) " (i-1) » Wwhen i =j
2

1 s when j > i

0 s otherwise
hi:l = 1 3 when i = J

0 s otherwise
¢y = 1 s for 1i=1, , I

Two solutions are,

X = Iy,
X =le £7
-——-:-”
i

é ! I11
where
e = 0.251
£7 = {f1.071, 0.892, 0.712, 0.532, 0.352, 0.176, 0, 0, 0, 0, O }

(=N

= (d3) , dy= 0 , i=1, , 11

The eigenvector method converges to X4
The Newton iterations method converges to Xq
The Schur vectors method converges to X
The new Sparse approach converges to Xl

Al.4 3 o0of 3

APPENDIX 2

The subroutines in this Appendix relate to the Elimination method
and the new methods for the solutions of the quadratic matrix
equations. The calling routines and the subroutines called are
given below along with their corresponding Appendix references.

subroutine QMESOSMIN A2.1
calls QMEFUN AZ2.2
calls QMEHES A2.3
calls QMEMON A2.4
subroutine SARENS A2.5
calls SPARYSYS A2.6
subroutine NEWMIN A2.7
calls CONDEST A2.8
calls LINESRCH A2.9
subroutine INITIALCPX A2.10
subroutine ELIMINMETH A2.11
subroutine FUNNORM A2.12
subroutine CHARPOLY A2.13
calls BLOFROB A2.14
calls TRANSFORM A2.15
calls POLYDET A2.16
calls POLYMULT A2.17
calls POLYADD A2.18
subroutine EIGENVALUES A2.19
subroutine SQROOT AZ.20
subroutine COROOT A2.21
subroutine CPXSOSMIN A2.22
calls CPXFUN A2.23
calls CPXHES A2.24
calls CPXMON A2.25

The subroutines may be. incorporated into programs in the following

way :

ii.

iii.

iv.

vi,

Solving the quadratic matrix equation by minimising the n?
constituent non-linear equations,

CALL QMESOSMIN

Solving the algebraic riccati equation by using the new
sparse approach of Section 6.2,)

CALL SARENS

Solving the quadratic matrix equation by using the new
global approach of Section 6.3,

CALL NEWMIN

Solving the quadratic matrix equation and the matrix square
root problem by using the Elimination methoed iteratively,

CALL INITTALCPX

CALL ELIMINMETH
CALL FUNNORM repeat until convergence
CALL CHARPOLY

Solving the matrix square root problem by using the
Elimination method 2,

CALL EIGENVALUES
CALL SQROOT
CALL COROOT
CALL ELIMINMETH

Solving the matrix square root problem by using the
Elimination method 3,

CALL INITTALCPX
CALL CPXSOSMIN
CALL ELIMINMETH
CALL FUNNORM

(]

GOQOOQOOOOQOOOOCJOOOOOhOGOOQOOOGOOOOOOOQCJOOOOQOOOQ

SUBROUTINE QMESOSMIN(X,P,Q,N,NA,TOL,ITERMAX, ITERNO,FNORM,NF, IFAIL)

Description
This subroutine solves a system of n**2 non-linear
equations in n**2 unknown variables.
The function relates the known variables p(i,j) and q(4i,j)
to the unknown variables x(i,j}).
The matrices P, Q and X are related by the equation :
X2+PX+Q=0
The method is & comprehensive modified Gauss-Newton algorithm

‘for finding an unconstrained minimum of a sum of squares function

At each iteration a line search is used to ensure that convergence
is global (under certain conditions on the Jacobian matrix) and
the choice of update, a Gauss-Newton or a full Newton step, is
dependant on the choice of update depends on the reduction in

the sum of squares obtained during the last iteration.

Input Parameters

P - Coefficient matrix P

Q - Coefficient matrix Q

X - Initial estimate to the solution of the problem

N - The size of the matrices P, Q, X

NA Row dimension of matrices P, Q, X in calling program

TOL - Convergence criteria on the norm of the function
vector '
- If 14 £(i) |, <= TOL then method is deemed to have
converged,
ITERMAX - The maximum number of iterations to be executed by

the routine

Output Parameters

i
=
=
=z
Q
'

The iteration step at which the routine returns to
main program
X ~ The computed estimates to the solution matrix

FNORM - The Euclidean norm of the function matrix at solution
NF ~ Specifies the number of function evaluations performed
IFAIL - On output :
If IFAIL = 1 the method converged to within the
required tolerance in ITERNO iteratioms.
If IFAIL = 2 the method has not converged to within the
required tolerance in ITERMAX iterations.
If IFAIL = 3 the method is diverging.
If IFAIL = 4 the Jacobian matrix is singular at

iteration ITERNO

A2.1 1 of 3

aaOaoaaoaaoaoaaaooaoaoaoaaaooaoaooaaQaoaaaaoaOnaaOaaQa

Subroutine called :

EO4HEF - NAG routine that minimises a sum of squares scalar

function.
This subroutine requires the following parameters :

NN - The dimension of the problen.

QMEFUN - Subroutine that calculates the vector of values f(x)
and the Jacobian matrix at the current point X.

QMEHESS - Subroutine that calculates the Hessiam matrix at the
current point X. ‘

QMEMON - Subroutine that moniters the minimisation process.

IPRINT - Specifies the frequency with which QMEMON is to be
called. QMEMON is called every IPRINT iterations.

ETA - Specifies the accuracy of the line search at each
iteration. ETA lies between 0 and 1. The line search .
is more accurate for small values of ETA, at a cost of
a greater number of calls to QMEFUN.

STEPMX - An estimate of the Euclidean norm between the solution'_
and the starting point. For a general purpose algorithm
4 large value is suggested.

Y - The vector of dimension NN, the current estimate to the
solution.

FVEC - Residual vector of dimension NN.

FJAC ~ Jacobian at the final point.

IJ - =~ First dimension of FJAC as declared in calling program

8 - Contains the singular values of FJAC at the final point

v - The matrix associated with the SVD J = USVT of the

- Jacobian at the final point: o T

Lv - First dimension of V as declared in calling program.

Iw - Integer array of dimension at least 1,used as workspace

LIW - Actual length if IW.

W - Real array used as workspace.

Lw - Actual length if W as declared in calling program.

LW > 8*NN + 3*NN*NN

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N)

DOUBLE PRECISION S(50),V(50,50),W(200),Y(50),FJAC(50,50),FVEC(50)
DOUBLE PRECISION FNORM,ETA,TOL,STEPMX

INTEGER IFAIL,IPRINT,LIW,LJ,LV,LW,ITERMAX ,NF,ITERNO,N,NA,NN,I,J
INTEGER IW(99)

EXTERNAL QMEFUN,QMEHES ,QMEMON

COMMON /BLK1/P,Q '

COMMON /BLK2/N

A2.1 2 of 3

NN = N*N
IPRINT =
ETA =
STEPHX = 1 00000.0
Do 1 I=1,N

Do 2 J=1,N
Y((I-1)*N+J) = X(I,J)
CONTINUE
LJ=50
LvV=50
LIW=99
LwW=200
IFAIL=1
CALL EO4HEF(NN,NN,QMEFUN,QMEHES, QHMEMON, IPRINT, ITERMAX ,ETA, TOL,

1STEPMX,Y ,FNORM,FVEC,FJAC,LJ,S,V,LV, ITERNO,NF, IW,LIW,W,LW,IFAIL)

RETURN
END

A2.1 3 of 3

agaoaoaoaaan

—- W P

Vo~

SUBROUTINE QMEFUN(IFLAG,MM,NN,XC,FVECC,FJACC,LJC,IW,LIW,W,LW)

Description

This subroutine computes the function vector and the
Jacobian matrix for the problem. The calling routine is the
NAG module EO4HEF which itself is called from QMESOSMIN.
For details of input and output parameters, see QMESOSMIN.

DOUBLE PRECISION FJACC(LJC,NN),FVECC(NN) ,W(LW) ,XC(NN)
DOUBLE PRECISION P(NA,N},Q(NA,N),SUM1,SUM2

INTEGER IFLAG,LIW,LJC,LW,MM,NN,N,S51,52,53,54,55,586
INTEGER IW(LIW)

COMMON /BLK1/P,Q

COMMON /BLK2/N,NA

Compute the function vector

DO 1 I=1,N
S1=(I-1)*N
DO 2 J=1,N
SUM1=0.0D0
DO 3 K=1,N
DO &4 K=1,N
FJACC(I,J) = 0.0D0
SUM1 = SUM1 + (XC(S1+K) + P(I,K))*XC((K-1)*N+J)
FVECC(S1+J) = SUM1 + Q(I,J)
CONTINUE

-Compute the Jacobian matrix - -

N
(I-1)*N
J=1,
§2 = (J-1)*N
SUM1 = XC(S2+I)
SUM2 = XC(S1+J) + P(I,J)
DO 7 K=1,N
$3 = 81 + K
S4 = 82 + K
S5 = (K-1)*N
S6 = 85 + I
S5 = 85 + J
FJACC(S3,S4)
FJACC(S5,56)
CONTINUE
CONTINUE

] Ilr'\zv

[I (S | I}

SUM1
FJACC(S5,586) + SUM2

nH

RETURN
END

A2.2

lofl

aaoaaoaaan

[l 2 I

£

SUBROUTINE QHEHES(IFLAG,MH,NN,FVECC,XC,B,LB,IW,LIW,W,LW)

Description

This subroutine computes the Hessian matrix of the function
in QMESOSMIN. The calling routine is the NAG module EQ4LHEF
itself is called from QMESOSMIN. .
For details of input and output parameters, see QMESOSMIN.

DOUBLE PRECISION B(LB),FVECC(N),W(LW),XC(N),SUM,Z(500,500)
INTEGER IFLAG,LB,LW,LIW,MM,NN,S1,N

INTEGER IW(LIW)

COMMON /BLK2/N,NA

DO 1 I=1,N
51=(I-1)*N
DO 2 J=1,N
SUM = FVECG(S1+J)
DO 3 K=1,N
Z((K-1)*N+J,51+K) = SUM
CONTINUE
CONTINUE
DO 4 I=1,NN
S1 = I*(I-1)/2
DO 5 J=1,1
B(S1+J) = Z(I,J) + 2(J,I)
CONTINUE

RETURN
END .

A2.3

1of 1

acooagaoaoaaaaaan

SUBROUTINE QMEMON(NN,NN,XC,FVECC,FJACC,LJC,S,IGRADE, ITERNO,NF, IV,
ILIW,W,L¥)

Description

This subroutine moniters the minimisation process.
At each iteration it prints the iteration number,the number of
function evaluations,the norm of the residual. and the current
estimate to the solution.
For details of input/output parameters refer to QMESOSMIN.

Functions called

FO1DEF - This functions computes the Euclidean norm of a vector

DOUBLE PRECISION FJACC(LJC,NN),FVECC(NN),S(NN),W(LW),XC(NN),FNORM
DOUBLE PRECISION X(50,50) '

INTEGER IGRADE,LIW,LJC,LW,NN,NF,ITERNO,MM

INTEGER IW{LIW) ‘

FNORM=FO01DEF(FVECC,FVECC,N)
WRITE(*,99) ITERNO ,NF ,FNORM

WRITE(*,98)
99 FORMAT(//,14H ITERATION: ,12,4X,11H FUN EVALS ,12,4X,10H FUN NORM
1 ,D14.6)
98 FORMAT(/,30H CURRENT SOLUTION MATRIX IS : ,/)
DO 1 I=1,N
Do 2 J=1,N
X(I,J)=XC((I-1)*N+J)
2 . -CONTINUE - :
1 CONTINUE
DO 3 I=1,N

WRITE(*,97)(X(I1,J),J=1,N)
97 FORMAT(4D10.4)
3 CONTINUE

RETURN
END

A2.4 ‘ 1 of 1

SRR Rz s ke Rz R Rz ks e R Rr R R R Rs Rz R R Rt R R Rz e Rr R e Rz R e Rr e Ko R R e R R K Rz e e R N X ¢

SUBROUTINE SARENS(X,A,G,H,N,NA,TOL,EPS,FNORM,ITERNO, ITERMAX, IFAIL)

Description

This subroutine computes the solution of the Algebraic Riccati
Equation, . '
ATX + XA - XGX + H = F(X) = 0
by using the method of Chapter 6. _
The computed solution is the symmetric, non-negative definite
one, i.e., the stabilising solution.
The method reduces the matrix (A™ - XG) to upper schur form so
that the associated Jacobian matrix is either sparse or upper
triangular. A combination of back-substitution and sparse system
solver techniques are then used to determine the solution.
The algorithm is iterative and stops when either the maximum
number of iterations has been reached or when convergence is
deemed to have occurred. ‘

Input Parameters

X - Initial estimate to the solution matrix

A,G,H - Coefficient matrices

N ~ Dimension of the coefficient and solution matrices

NA - Row dimension of the matrices in the calling program
TOL - Tolerance used to determine when the iterations are to

be terminated

If DABS|F(X)| < TOL then convergence has occurred
EPS - Tolerance used to determine when an element is zero

If DABS|s| < EPS then s is considered to be zero

ITERMAX - Maximum number of 'iterations to be performed

Output Parameters
X -~ The solution matrix
FNORM Euclidean norm of the function matrix
ITERNO Iteration number at which the processing terminated
IFAIL Indicates the result of the processing
If IFAIL = 0 solution computed successfully
If IFAIL = 4 Solution has not converged in ITERMAX
iterations
See SPARSYS for more IFAIL codes

Subroutines Called

UPHESS - Computes the upper hessenberg form of a matrix

UPTRAN - Computes the transforming matrix for the hessenberg
reduction

SCHUR - Computes the upper schur form of a matrix, along with
the transforming matrix

SPARSYS - Solves AX = B, where A is a sparse matrix

A2.5 1 of 6

99

aaa

30
20
10

Qaaaan

60

50
40

aaoaaa

aoOoaaQ

aaaan

DOUBLE PRECISION X(NA,N),A(NA,N),G(NA,N),H(NA,N)

DOUBLE PRECISION FNORM,TOL,EPS,SUM,SUM1,S5UM2 ‘

DOUBLE PRECISION ORT(20),U(20,20),5(20,20),T(20,20),WORK(20,20),
1FVECT(400),PVECT(400) ,FVEC(400) ,FBKUP(400),FT(20,20),PT(20, 20),
2,8T(40,40)

INTEGER I1,J,K,L,ITERMAX, ITERNO,IFAIL,IR ,NN,NNA,N,NA,IFLAG

ITERNO
ITERNO

0
ITERNO + 1

Compute § = A - XG

DO 10 I=1,N
DO 20 J=1,N
SUM = 0.0DO
DO 30 K =1,N
SUM = SUM + X(I,K)*G(K,J)
S(I,J) = A(J,I) - SUM
CONTINUE

Cdmpute the function matrix using
F(X) = SX + XA
and determine the Euclidean norm of F

FNORM=0, 0DO
DO 40 I=1,N
DO 50 J=1, N
SUM = 0.0DO
DO 60 K =1,N
: © SUM = SUM + SCT,K)*X(K,J) + X(I,K)*A(K,J)
F(I,J) = SUM1 + H(I,J)
FNORM = FNORM + F(I,J)#*2
CONTINUE
FNORM = DSQRT(FNORM)

Compute the function matrix using
F(X) = 8X + XA
and determine the Euclidean norm of F

IF (DABS(FNORM) .LT. TOL)
' IFAIL =

GO TO 399
ENDIF

Transform S to upper hessenburg form, accumulating the
transformations in U

CALL UPHESS(NA,N,S,ORT)
CALL HESSTRAN(NA,N,S,ORT,U)

Transform the upper hessenburg form to an upper schur,
updating the transformations in U

CALL SCHUR(S,U,N,NA,EPS,JFAIL)

A2.5

2 of 6

anoaon

120
110
100

150

140
130

aan

199

aaoaaonoaan

170
160

aaaon

Transform the matrix F to FT = U'FU
Form the vector FVECT of size N*N, by taking the
elements of the matrix FT a row at a time

DO 100 I=1,N
DO 110 J=1,N
SUM = 0.0DO
DO 120 K=1,N
SUM = SUM + F(I,K)Y*U(K,J)
WORK(I,J) = SUM
CONTINUE

DC 130 I=1,N

I1 = (I-1)*N
DO 140 J=1,N

S5UM = 0.0D0

DO 150 K=1,N

SUM = SUM + U(K,I)*WORK(K,J)

FT(I,J) = SUM
FVECT(I1+J) = SUM
CONTINUE

Process the Jacobian at the current iteration

IR=0
CONTINUE
IF ((DABS(S(N-IR,N-IR-1)) .LT. EPS) .OR. (IR .EQ. (N-1))) THEN

If IR = N-1 or the subdiagonal element is zero, perform
this bit of processing. . T

Update the function vector

DO 160 J=1,N
SUM = 0.0D0
DO 170 I=0,IR-1
SUM = SUM + S(N-IR,N-I)*PVECT(NN-I*N-N+J)
FVECT(NN-IR*N-N+J) = SUM + FVECT(NN-IR*N-N+J)
IFLAG = 0
DO 180 I=N,1,-1

If the previous processing involved the solution of a
set of two simultaneous equations, increment I

IF (IFLAG .EQ. 1) THEN

IFLAG = 0
GO TO 180
ENDIF

A2.5

3 0of 6

C If the sub-diagonal element is zero, then update the right

c hand side and determine an element of the direction vector
C : :
IF (DABS(S(I,I-1)) .LT. EPS) THEN
SUM = 0.0DO
DO 190 J=I+1,N
190 SUM = SUM + S(I-1,J)*PVECT(NN-IR*N-N+J)

FVECT(NN-IR*N-N+I) SUM + FVECT(NN-IR*N-N+I)
PVECT(NN-IR*N-N+I) = FVECT(NN-IR*N+I)/(S(I,I)
1 + S(N-IR,N-IR)})
ELSE

If the sub-diagonal element is not zero, then a set of
two simultaneocus equations .must be solved. The right hand
side (function vector) is updated before this is done.

oo

SUM = 0.0D0
DO 200 J=I+1,N
SUM = SUM + S(I-1,J)*PVECT(NN-IR*N-N+J)
200 SUM1= SUM1+ S(I-2,J)*PVECT(NN-IR*N-N+J)
FVECT(NN-IR*N-N+I) = SUM + FVECT(NN-IR*N-N+I)
FVECT(NN-IR*N-N+I-1) = SUM1+ FVECT(NN-IR*N-N+I-1)
SUM = S(I,I-1)*FVECT(NN-IR*N-N+I-1)
SUM1 = S(I-1,I-1)*FVECT(NN-IR*N-N+I)
SUM2 = S(I,I-1)*S(I-1,I) - S(I,I)*S(I-1,I-1)
PVECT(NN-IR*N-N+I) = (SUM ~ SUM1)/SUM2
SUM = S(I,I-1)*FVECT(NN-IR*N-N+I-1)
SUM1 = S(I,I-1)*S(I-1,I)*PVECT(NN-IR*N-N+I)
SUM2 = S(I,I-~1)*S(I-1,I-1)
- PVECT(NN-IR*N-N+I)-=-(SUM - SUM1)/SUM2

IFLAG = 1
ENDIF
180 CONTINUE
C
IR=1IR +1
IF (IR .GT. (N-1))} GO TO 299
ELSE
c
c If IR < N-1 or the sub-diagonal element is non-zero then
C this bit of processing is performed.
Cc
c Update the right hand side (function vector)
c Set up the 2N vector FBKUP holding function values
c
DO 210 I=1,2
DO 220 J=1,N
SUM = 0.0DO
DO 230 K=0,N-1
230 SUM = SUM + S(N-(IR+1-I),N-K)*PVECT(NN-K*N-N+J)
FVECT(NN-IR*N-I*N+J) = FVECT(NN-IR*N-I*N+J) - SUM
220 FBKUP((I-1)*N+J) = FVECT(NN-IR*N-I*N+J)
210 CONTINUE

A2.5 4 of 6

(@]

aaaa

250
240

270
260

299

290
280

Set up the 2N-by-2N sparse matrix

DO 240 I=1,N

I1 = (I-1)*N

DO 250 J=1,N

- ST(I,J) = S(I,J)

ST(I,I) = ST(I,I) + S(N-IR-1,N-IR-1)
ST(I,I+N) = S(N-IR-1,N-IR)
ST(J+N,J) = S(N-IR,N-IR-1)
ST(I+N,J#N) = S(I,J) .
ST(I+N,I+N) = S(N-IR,N-IR) + ST(N+I,N+I)

]

CONTINUE

NN = 2*N

NNA = 2*NA

IFAIL = 0

CALL SPARSYS(ST,FBKUP,NN,NNA,EPS,IFAIL)
IF (IFAIL .NE. 0) GO TO 399

Form a 2N portion of the direction vector

DO 260 I=1,2
I1 = (I-1)*N
Do 270 J=1,N
PVECT(NN-IR*N-I1*N+J) = FBKUP(I1+J)
CONTINUE

IR = IR + 2
IF (IR .GT. (N-1)) 60 TO 299
ENDIF S
GO TO 199

Form the N-by-N direction matrix made up of the elements
of the direction vector PVECT

CONTINUE
DO 280 I=1,N

I1 = (I-1)*N

bo 290 J=1,N

PT(I,J) = PVECT(I1+J])
CONTINUE

A2.5

50f 6

c Transform the directipn matrix and update the current X

C)
: DO 300 I=1,N
DO 310 J=1,N
SUM = 0.0D0
DO 330 K=1,N
330 . SUM = SUM + PT(I,K)*U(J,K)
320 WORK(I,J) = SUM
310 CONTINUE .
DO 340 I=1,N
I1 = (I-1)*N
DO 350 J=1,N
SUM = 0.0D0
DO 360 K=1,N
360 SUM = SUM + U(I,K)*WORK(K,J)
350 5(I,J) = X(I,J) - SUM
340 CONTINUE
c
C Transform X to (X(i,3j) + X(j,i)/2 such that it is symmetric
C
DO 370 I=1,N
DO 380 J=1,N
380 X(I,J) = (8(1,7) + S(J,1))/2.0D0
370 CONTINUE
C
IF (ITERNO .EQ. ITERMAX)
IFAIL = 4
GO TO 399
A ENDIF
C . :
' GO TO 99 _
C
399 CONTINUE
RETURN

END

A2.5 6 of 6

[»]

sRrReRsNeRsRsRoNoNeNesReNeNaNsEolsNolsNoRsNoNsNoNeNeNeNe N ReRs R R Rt R R R R R R R R R R R R R o R D)

SUBROUTINE SPARSYS(S,Y,M,MA,EPS,IFAIL)

Descrlption

This subroutine solves a sparse linear system using NAG the
NAG routines FO1BRF and FO04AXF.
FO1BRF is sued to obtaim an LU-decomposition of a permutation of
S5, PSQ = LU, where P and are permutation matrices, L being unit
lower triangular and U upper triangular. The routine uses a sparse
variant of Gaussian elimination, the pivotal strategy designed to
compromise between maintaining sparsity and controlling loss of
accuracy through round-off.
FO4AXF then computes the solution by block forward and backward
substitution, using simple forward or backward substitution within
each diagonal block.

Input Parameters

S - The coefficient matrix

Y - The right hand side vector

M ~ The order of the matrix S and vector Y
MA - Row dimension of 8 in the calling routine

EPS - Tolerance to determine whether an element is to be treated
as zero or not

Output Parameters

Y - the soultion vector

IFAIL - If IFAIL is not equal to zero on exit, then an error in
FO1BRF has occurred. Consult the routine decsription in
the NAG documentation

Subroutines Called

FO1BRF - Decompose a matrix using Gaussian-type elimination.
Some of the required input parameters are as follows

NZ - specifies the number of non-zerc elements in A

A - contains the NZ non-zero elements of S

ICN - contains column indices of the non-zero elements
stored in A

LICN - length of vector ICN

IRN =~ contains row indices of the non-zero elements
stored in A

LIRN - length of vector IRN

U - controls the choice of pivots

A2.6 1l of 2

aaaoooooaao

aaoaaaaaaQ

1

LBLOCK - if .TRUE. then routine FO1BRY is called to pre-
order the matrix to block lower triangular form
before the LU decomposition is performed

GROW - if ,TRUE. then on exit,W(1) contains an estimate

o for .the increase in size of the elements, '
IW - integer array of dimension at least 8*M
ABORT - vector of logicals that determine whether the
processing is terminated when particular
conditions are met

F04AXF - Solve the transformed system bu back-substitution
Some of the required input parameters are as follows
IKEEP - integer array, dimension at least 5%M, containing
_ indexing information about the decomposition
IDISP - communicates between FO1BRF and FO04AXF
MTIYPE - if = 1 then the problem is AX=Y

DOUBLE PRECISION S(MA,M),Y(M),EPS,IFAIL

DOUBLE PRECISION A(400),W(40),U,RESID

INTEGER I,IFAIL,LICN,LIRN,N,NZ

INTEGER ICN(400),IDISP(10),IKEEP(200),IRN(400),IW(320)
LOGICAL GROW,BLOCK,ABORT(4)

NZ=0
DO 1 I=1,M
DO 2 J=1,M
IF (DABS(S(I,J)) .GT. EPS) THEN
A(NZ) = S(I,J) .
IRN(NZ) = I
- ICN(NZ) = J
NZ = NZ+1
ENDIF
CONTINUE
CONTINUE
LICN = 400
LIRN = 400
U = 0.1D0

BLOCK = .TRUE.
GROW = .TRUE.

ABORT(1) = .TRUE.

ABORT(2) = .TRUE.

ABORT(3) = .FALSE.

ABORT(4) =. .TRUE.

IFAIL = 0

CALL FO1BRF(N,NZ,A,LICN,IRN,LIRN,ICN,U,IKEEP,IW,W,BLOCK,GROW,ABORT
1,IDISP,IFAIL)

IF (IFAIL.GT.0) RETURN

MTYPE = 1

CALL FO4AXF(N,A,LICN,ICN,IKEEP,RHS,W ,MTYPE,IDISP,RES)
RETURN

END

A2.6 2 of 2

+RrREeRoRsNasNsBeoNsRNrReoRsNsNoRsNeNoNsNsNsReNoNosNesNoNsNsNoleNeNsNoNsNosNoNrNoNsEosNo RNy Ry]

SUBROUTINE NEWMIN(X,P,Q,N,NA,TOL,EPS,FNORM,ITERNQ,ITERMAX,IFAIL,
1JCOND)

Description

This subroutine computes the solution of the quadratic matrix
equation,

X2+ PX +Q=F(X) = 0

by using the minimisation method of Chapter 6.
The method is a sum of squares minimisation technique with a line
search. The update at each step depends on the condition of the
Jacobian. If it is ill-conditioned then the Steepest Descent
direction is used otherwise Gauss-Newton is used. The reason why
the full Newton step is not used is that it would severely impact
the operations count and CPU time for the method. With the Gauss-
Newton step, the direction vector is be determined by transforming
the problem from one of solving a linear system of order N*N to
the easier problem of solving the Sylvester equation.
The starting point may be chosen to be the identity matrix.
The condition of the Jacobian is determined in the course of
solving the Sylvester equation by calling CONDEST, a subroutine
that determines the condition number of an upper trinagular
matrix.
The line search uses a quadratic interpolation technique that
performs a low accuracy minimisation.
Convergence 1s deemed to have occured when the function norm 1is
less than some specified tolerance, and the processing terminates.
The processing also terminates when a specified maximum number of
iterations have been reached.

Input Parameters

X - Initial estimate to the sclution matrix

P, Q - Coefficient matrices

N - Dimension of the coefficient and solution matrices

NA - Row dimension of the matrices Iin the calling program
TOL ~ Tolerance used to determine when the iterations are to

be terminated

If DABS|F(X)| < TOL then convergence has occurred
Tolerance used to determine whether the Jacobian is
well-conditioned or not.

If c¢ondition no. < JCOND then it is well-conditioned
EPS - Tolerance used to determine when an element is zero

If DABS|s| < EPS then s is considered to be zero
Maximum number of iterations to be performed

o
]
o
z
[}
)

ITERMAX

A2.7 1 of 5

Cutput Parameters

X -~ The solution matrix
FNORM Euclidean norm of the function matrix
ITERNO Iteration number at which the processing terminated -
IFAIL Indicates the result of the processing
If TFAIL = 0 solution computed successfully
If IFAIL = 3 Solution has not converged in ITERMAX
iterations
See LINESRCH for more IFAIL codes

Subroutines Called

UPHESS - Computes the upper hessenberg form of a matrix

UPTRAN - Computes the transforming matrix for the hessenberg
reduction _

SCHUR - Computes the upper schur form of a matrix and updates
the transforming matrix obtained from UPTRAN

CONDEST - Computés the estimate to the condition number of an

upper triangular matrix _
LINESRCH~ Performs a line serach based on quadratic interpolation

aaaoaoaoaoaoaoaaoaaaoaoaaaooaad

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N),TOL,EPS,FNORM,JCOND
DOUBLE PRECISION JAC(400,400) ,DIR(400),F(20,20),FVEC(400),
1WORK(20,20),U(20,20),V(20,20),0RT(20),XT(20,20),XTS(20,20)
DOUBLE PRECISION SUM,COND,ALPHA

INTEGER I,J,K,N,NA,NN,NNA,IFAIL,JFAIL,ITERNO,MAXITER,MAXCAL

NN = N*N
NNA = NA*NA
ITERNO = 0
99 ITERNO = ITERNO + 1

Compute the (negative) function vector and the function norm.
Assign matrices X+P and the transpose of X to WORK and XT
respectively.

Qaaaan

FNORM=0. 0D0
DO 10 I=1,N
I1 = (I-1)*N
DO 20 J=1,N
SUM=0.0D0
DO 30 K =1,N
30 SUM = SUM + (X(I,K) + P(I,K))*X(K,J)
F(I,J) = - SUM - Q(I,J)
XT(I,J) = X(J,1)
WORK(I,J) = X(I,J) + P(I,J)
FVEC(I1+J) = F(I,J)
20 FNORM = FNORM + F(I,J)*¥2
10 CONTINUE
FNORM = DSQRT(FNORM)
C

A2.7 : 2 of 5

aQaan

Qo

40
30

60
50

90
80
70

Test for convergence.

IF (DABS(FNORM) .LT. TOL)

IFAIL = 0
GO TO 199
ENDIF

Transform WORK (= X + P) to upper schur form accumulating the

transformations in U

CALL UPHESS(NA,N,WORK,ORT)
CALL HESSTRAN(NA,N,WORK,ORT,U)
CALL SCHUR(WORK,U,N,NA,EPS,JFAIL)

Transform XT to upper schur form, accumulate transformations in V

CALL UPHESS(NA,N,XT,ORT)
CALL HESSTRAN(NA,N,XT,ORT,V)
CALL SCHUR(XT,V,N,NA,EPS,JFAIL)

Transpose the transformed matrix XT to obtain the lower

schur form for X.

DO 30 I=1,NN
DO 40 J=1,NN
XLS(I,J) = XT(J,I)
CONTINUE

Form the upper triangular Jacobian matrix

DO 50 I=1,NN
DO 60 J=1,NN
JAG(I,J) = 0.0D0
CONTINUE
DO 70 I=1,N
I1 = (I-1)*N.
DO 80 J=I,N
J1 = (J-1)*N
DO 90 K=1,N
K1 = (K-1)*N
JAC(I1+K,J1+K)
JAC(K1+I,K1+J)
CONTINUE
CONTINUE

Estimate the condition of the Jacobian

CALL CONDEST(JAC,NN,NNA,COND)

A2.7

JAC(I1+K,J1+K) + WORK(I,J)
JAC(K1+I,K1+J) + XLS(J,I)

3 of 5

aaaaaan

110
100

130
120

160
150
140

180

170

200
190

If the Jacobian is well-conditioned, solve the transformed
Sylvester equation by back-substitution to obtain the Gauss-
Newton direction

otherwise, form the-full jacobian matrix and compute the
Steepest Descent direction. ’

IF (COND .LT. JCOND) THEN
CALL BACKSUB(WORK,U,XLS,V,F,N,NA,JFAIL)
DO 100 I=1,N
I1 = (I-1)*N
DO 110 J=1,N _
DIR(I1+J) = F(I,J)
CONTINUE
ELSE
DO 120 I=1,NN
DO 130 J=1,NN
JAC(I,J) = 0.0DO
CONTINUE
DO 140 I=1,N
I1 = (I-1)%*N -
DO 150 J=1,N
J1 = (J-1)*N
DO 160 K=1,N

K1 = (K-1)*N
JAC(I1+K,J14K) = JAC(I1+K,J1+K) + X(I,J) + P(I,J)
JAC(K14I,K1+J) = JAC(R1+I,K1+J) + X(J,I)
CONTINUE
CONTINUE
DO 170 I=1,NN
5UM = 0.0D0

DO 180 K=1,NN
SUM = SUM + JAC(I,K)*FVEC(K)
DIR(I) = SUM
CONTINUE
ENDIF

Perform a line search

CALL LINESRCH(X,P,Q,DIR,ALPHA,IFAIL)
IF (IFAIL .NE. 0) GO TO 199

Update the estimate to the solution X

DO 190 I=1,N
I1 = (I-1)*N
DO 200 J=1,N
X(1,J) = X(I,J) + ALPHA*DIR(I1+J)
CONTINUE

A2.7 4 of 5

If maximum number of iterations performed, set IFAIL and return

IF (ITERNO .EQ. ITERMAX) THEN
IFAIL = 3
GO TO 199

ENDIF

GO TO 99
199 CONTINUE

RETURN
END

AZ.7 Sof5

aacaoagaoaaoaoaaaaaan

anaoa

aoaQaaQ

LA B S

SUBROUTINE. CONDEST(A ,N,NA,COND)

This subroutine computes an estimate to the condition number
of an upper triangular matrix.

Ref : Matrix Computations - Golub and Van Loan - p.77.

The algorithm requires an operations count of 2.5*%N*N.

A - The upper triangular matrix
N - Order of A
NA - Row dimension of A

COND - An estimate to the condition number of A

DOUBLE PRECISION A(NA,N),COND

DOUBLE PRECISION P(500),W(500),Y(500),YP(500)
DOUBLE PRECISION YM(500),SP,SM

INTEGER I, K

Initialise work and weights vectors

DO 1 I=1,N
W(I) = ODO/A(I,I)
P(I) = 0.0D0

DO 2 R=N,1,~1
YP(K) = (1.0D0 - P(K))/A(K,K)
YM(K) = (-1.0D0 - P(K))/A(K,K)

SUM1 = 0.0D0
SUM2 = 0.0D0
Do 3 I=1,K-1

SUM1 = SUM1 + W(I)*DABS(P(I) + A(I,K)*YP(K))
SUM2 = SUM2 + W(I)*DABS(P(I) + A(I,K)*YM(K))
SP = DABS(YP(K)) + SUM1
= DABS(YM(K)) + SUM2
IF (SP .GE. SM) THEN

Y(K) = YP(K)
ELSE
Y(K) = YM(K)
ENDIF
DO 4 I=1,K-1
P(I) = P(I) + A(I,K)*Y(K)
CONTINUE

Estimate infinite norm of vector Y, as an estimate to the
condition number.

COND = 0.0D0

DO 5 I=1,N

IF (DABS(Y(I)) .GT. COND) COND = DABS(Y(I))
RETURN

END

A2.8

l1of 1

aaoaoaOoaoaaaaaaaaoaoaoaaoaoaaaQaaan

SUBROUTINE LINESRCH(X,P,Q,N,NA,DIR,NN,ALPHA,IFAIL)

Description

This subroutine performs a line search by using a quadratic
interpolation technique, It uses the NAG routine EO04ABF.

Input Parameters

X - Current estimate to the solution matrix

P, Q - Coefficient matrices

N - Dimension of the coefficient and solution matrices
NA - Row dimension of the matrices in the calling program-
DIR - Current direction vector ’ .

NN - Dimension of direction vector

Cutput Parameters

ALPHA - An estimate to the minimum

IFAIL - If IFAIL = 1 parameter is outside expected range
' If IFAIL = 2 MAXCAL has been exceeded

Subroutines Called

FUNCT - Calculates the value of the function at any point

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N),DIR(NN),E1,E2,A,B,FALPHA
INTEGER N,NA,NN,IFAIL MAXCAL

COMMON /BLK1/P,Q,X,DMAT,/BLK2/N

EXTERNAL FUNCT

MAXCAL = 99

CALL EO4ABF(FUNCT,E1,E2,A,B,MAXCAL,ALPHA,FALPHA,IFAIL)
RETURN

END

SUBROUTINE FUNCT(ALPHA,FALPHA)

DOUBLE PREGCISION ALPHA,FALPHA,WORK(20,20),DIR(400)
DOUBLE PRECISION P(20,20),Q(20,20),X(20,20),5UM
COMMON /BLK1/P,Q,X,DIR,/BLK2/N

A2.9 1 of 2

20
10

50
40
30

DO 10 I=1,N
I1 = (I-1)*N
DO 20 J=1,N
WORK(I,J)
CONTINUE
FALPHA = 0.0D0
DO 30 I=1,N
DO 40 J=1,N
SUM = 0.0
DO 50 K=1,
SuM =
FALPHA = FALPH
CONTINUE

RETURN
END

= X(1,J) + ALPHA*DIR(I1+J)

DO

N
A

A2,

SUM + (WORK(I,K) + P(I,K))*WORK(K,J)
+ (SUM + Q(I,J))**2

9

2 of 2

aaoaoooaoaoacaaoaaoaoaaaoaoaoaoooan.

a0

el

SUBROUTINE INITIALCPX(P,Q,CPX,N,NA,EPS)

Description

This subroutine computes estimates to the coefficlents of ‘the
characteristic polynomial of X, by using a set of formulae that
give the coefficients in terms of the norms of matrices P and Q.

These values are used to initiate the iterative Elimination Method

Input Parameters

N - Dimension of the matrices

NA - Row dimension of array in calling program

P, Q - Square matrices of order N

EPS - Determines whether an element can be regarded as =zero

Output Parameters

CPX - Array of size n, containing estimates for the c.c.p of X.

DOUBLE PRECISION P(NA,N),Q(NA,N),CPX(N),QNORM,PNORM,EPS,DNUM ,DDEN

INTEGER N,NA
Compute the norm of matrices P and Q

QNORM=0.0D0
DO 1 I=1,N
Do 2 J=1,N -
PNORM = PNORM + P(I,J)*P(I,J)
QNORM = QNORM + Q(I,J)*Q(I,J)
CONTINUE
PNORM = DSQRT(PNORM)
QNORM = DSQRT(QNORM)

Compute the estimates, using equations (4.38)

CPX(1) = (DSQRT(PNORM**2 + &4.0DO*QNORM) - PNORM)/Z.0DO
IF (DABS(CPX(1) - P(N,N)*PNORM) .LT. EPS) THEN
CPX(1) = -CPX(1)
ENDIF
DDEN = CPX(1) - P(N,N)*PNORM
CPX(N) = -(QNORM*Q(N,1))/DDEN
DO 5 I=0,N-3
DNUM = P(N,I+1)*PNORM + Q(N,I+2)*QNORM
CPX(N-I-1) = (CPX(N-I) - DNUM)/DDEN

RETURN
END

A2.10

1 of 1

lsNoNosNeoNsEsErEs>EeNeoNoNsReNsRoNoNsNrEsNoNsoNsNeRoNoNoNsNeNy NN]

QA

SUBROUTINE ELIMINMETH(X,P,Q,CPX,N,NA,EPS,IFAIL)

Description
This subroutine computes the matrix X by
solving the following matrix equation
RX =- 8
where the R and S are calculated from the Elimination method.

Input Parameters

P, Q - The coefficient matrices (unchanged on exit from

routine}
N - Size of the matrices P, Q, X
NA - Row dimension of the matrices P, Q, X in the calling
" routine

CPX -~ Vector of length N containing the coefficients of
the characteristic polynomial of X
EPS - If | X(i,j) | <= EPS then X(i,j) is considered zero

Output Parameters

X - an N-by-N matrix array containing the computed solution
IFAIL ~ on exit if IFAIL = 0 then the matrix R is singular

Subroutine called

LUSOLVE - solves a system of N linear equations

DOUBLE PRECISION X(NA,N),P(NA,N),Q(NA,N),CPX(N)
DOUBLE PRECISION R1(50,50),R2(50,50),APREV(50,50)
DOUBLE PRECISION A21(50,50),A22(50,50),EPS,SUM
INTEGER N,NA,ITER,IPTR,I,J,K

Initialise the matrices

DO 1 I=1,N
DO 2 J=1,N
R1(1,j) = 0.0d0
R2(i,j) = 0.0d0

A21(1,J} = 0,0D0
A22(1,J) = 0.0DO
A22(I,1I) = 1.0D0

A2.11

1 of 2

aaaa

(]

w

v~

11
10
99

14
13
12

Begin the recursive procedure

DO 99 K=0,N-1
DO 3 I=1,N
DO 4 J=1,N
APREV(I,J) = A22(1,J)
CONTINUE
DO 5 I=1,N
DO 6 J=1,N
SUM = 0.0D0
DO 7 K=1,N
SUM = SUM + A21(I,K)*Q(K,J) + A22(I,K)*P(K,J)
X(I,J) = -SUM

CONTINUE
DO 8 I=1,N
DO 9 J=1,N
A21(I,J) = APREV(I,J) —
A22(1,J) = X(I,J)
CONTINUE
DO 10 I=1,N
DO 11 J=1,N
R2(I,J) = R2(I,J) + CPX(N-K-1)*A21(I,J)
R1(I,J) = RI1(I,J) + CPX(N-K-1)*A22(I,J)
CONTINUE
CONTINUE

End of recursive procedure

DO 12 I=1,N
DO 13 J=1,N
SUM = 0.0DO
DO 14 K=1,N
SUM = SUM + R2(I,K)*Q(K,J)

X(I,J) = CPX(N) - SUM
CONTINUE

R=Rl, § =X
Solve the linear system RX = - 5, for X

CALL LUSOLVE(R1,X,N,NA,EPS,IFAIL)

RETURN
END

A2.11 2 of 2

sEsREsEoREesEsResNsNoNsRsNsNoleNeoNoNoNoNol e Nele]

SUBROUTINE FUNNORM(F,X,P,Q,FNORM,N,NA)

Description
This subroutine computes the Euclidean norm of
the function F defined by :
F(X) = X*+ PX + Q

Input Parameters

P - Matrix of size N by N

Q - Matrix of size N by N

X - Matrix of size N by N

N - Size of the matrices P, Q, X

NA - Row dimension of the matrices P, Q, X in the calling
routine

Output Parameters

FNORM - The Euclidean norm of the function matrix
F - On exit contains the function matrix

DOUBLE PRECISION F(NA,N),X(NA,N),P(NA,N),Q(NA,N),FNORM,SUM
INTEGER N,NAI,J,K

FNORM = 0.0DO
DO 1 I=1,N
DO 2 J=1,N
SUM = 0.0D0
PO 3 K=1,N
SUM = SUM + (X(I,K) + P(I,K))*X(K,J)
CONTINUE
F(I,J) = SUM + Q(I,J)
FNORM = FNORM + F(I,J)%*2
CONTINUE
CONTINUE
FNORM=DSQRT (FNORM)

RETURN
END

A2.12

lofl

aaaooaoaaoaaaoOoOoaoaogaOaQaaaoaoQOaoaOoOoaoOOaaOgOQana

SUBROUTINE CHARPOLY(A,CPA,N,NA,EPS)

Description

This subroutine computes the coefficients of
the characteristic polynomial of a general square matrix A.
This involves the reduction of the matrix to a block frobenius
matrix via stable elementary operations,and then using the
polynomials associated with the blocks to obtain the
coefficients of the characteristic polynomial of the matrix.

Input Parameters

A ~ A general square matrix

N - The size of the matrix A

NA - The row dimension of the matrix A in the calling routine
EPS If 1k, <= eps then k is considered as zero

Output Parameters

A - Square matrix containing the block frobenius matrix
CPA - An n-vector containing the coefficients of the
characteristic polynomial of the matrix A

Subroutine Called

BLOFROB - Determines the block frobenious form of a matrix
TRANSFORM - Transforms block frobenious matrix into a
polynomial matrix

DOUBLE PRECISION A(NA,N),CPA(N),EPS
INTEGER N,NA,KBLOCKS,I

CALL BLOFROB(A,N,NA,EPS)
CALL TRANSFORM(A,N,CPA,KBLOCKS,NA,EPS)

KBLOCKS is equal to the number of frobenius blocks on diagonal

IF(KBLOCKS.EQ.1)THEN

DO 1 I=1,N
CPA(I)=-1.0DO*A(1,I)
CONTINUE
ELSE
ENDIF
RETURN
END

A2.13

1l of 1

aaoaooagaoaoaoaoaaaaoaoaoaoaaoaaooaaoaan

200

400

SUBROUTINE BLOFROB(A,N,NA,EPS)

Description

- This subroutine computes the block frobenius
matrix associated with a matrix A. The block form consists
of companion matrices on the diagonal. The blocks in the
upper triangle have zero entries everywhere except the
elements in the first row of the block. The sub-diagonal
blocks have elements k(1) only in the top right hand corners
of the blocks,

Input Parameters

A - The matrix to be transformed to frobenius form.

N - The size of the matrix

NA - The row dimension of the matrix in the calling routine
EPS - Used to determine whether an element may be considered

to be zero

Output Parameters

A - The block frobenius matrix
CPA - The coefficients of the characteristic polynomial of A

DOUBLE PRECISION A(NA,N),W(50),5(50),EPS,SUM1
INTEGER N,NA,IR,I1,J1,1,J,K

SUM1 = DABS(A(I,J))
IR = 1
ENDIF
CONTINUE
IF (IR .EQ. (J+1)) GO TO 400
DO 2 K=1,N :
SUM1 = A(J+1,K)
A(J+1,K) = A(IR,K)
A(IR,K) = SUM1
DO 3 K=1,N
SUM1 = A(K,J+1)
A(K,J+1) = A(K,IR)
A(K,IR) = SUM1
CONTINUE
IF (DABS(A(J+1,J)) .LE. EPS) GO TO 600

A2.14

l of 2

10
600

12
11

700

14
13

16
15
800

300

18
17

DO 5 I=J+2,N
W(I) = A(I,J)/A(J+1,T)
IF (DABS(A(I,J)) .LE. EPS) THEN
A(I,J)=0.0D0
GO TO 500
ENDIF
DO 4 K=1,N
A(I,K)=A(L,K)-A(J+1,K)*W(I)
CONTINUE _
CONTINUE

DO 6 I=J+2,N

DO 7 K=1,N

A(K,J+1) = A(K,J+1) + A(K,I)*W(I)

CONTINUE
DO 8 K=1,N

IF (DABS(A(J+1,K)) .LT. EPS) GO TO 8

IF (DABS(A(J+1,K)) .LT. (EPS*A(J+1,K))) GO TO 600
SUML = A(J+1,J)

b0 9 K=1,N

A(J+1,K) = A(J+1,K)/SUM1
DG 10 K=1,N

A(K,J+1) = A(K,J+1)*SUM1
CONTINUE :
DO 11 Il1=1,N

DO 12 J1=1,N

IF (DABS(A(I1,J1)) .LE. EPS) A(I1,J1) = 0.0DO

CONTINUE
IF (J .LT. (N-1)) THEN

J=J+1

GO TO 200
ENDIF
I=N
IF (A(I,I-1) .NE. 1) GO TO 800
DO 13 J=I,N

S(J) = A(I,J)

DO 14 K=1,N
A(K,J) = A(K,J) - A(K,I-1)*S(J)

CONTINUE
DO 15 J=I,N

DO 16 K=1,N

ACI-1,K) = A(I-1,K) + A(J,K)*S(J)

CONTINUE
IF (I .EQ. 2) GO TO 900
I=1-1
GO TO 700
CONTINUE
DO 17 I=1,N

DO 18 J=1,N

IF (DABS(A(I,J)) .LT. EPS) A(I,J) = 0.0D0

CONTINUE

RETURN
END

A2.14

2 of 2

aaoaoaaacaoaaoaoaoaoaaaaoaoaoaaoaaoaaaoaoaoaoaaaQn

SUBROUTINE TRANSFORM(A,N,CPA,KBLOCKS,NA,EPS)

Description

This subroutine classifies the blocks, their
sizes -and their positions in the matrix obtained from
subroutine BLOFROB thus we effectively obtain an upper
hessenburg block matrix with each block representing a
polynomial.

Input Parameters

A - N*N matrix obtained from subroutine BLOFROB -

NA -~ Row dimension of A in the calling routine

EPS - Tolerance to determine when an element may be
taken as zero

Output Parameters

CPA ~ The coefficients of the characteristic
polynomial of A : '

KBLOCKS - The number of blocks on the diagonal of
the block matrix

Subroutine Called

POLYDET - Determines the determinant of a polynomial matrix

DOUBLE PRECISION EPS,CPA(N),POLY(50,50,50),A(NA,N)
INTEGER*4 POS(50),SI2E(50,50)
INTEGER- N,NA ,KBLOCKS, IMP1,IMP2,NN,IJ KL, INK,I,J

KBLOCKS = 1
POS(1) = 1
DO 1 I=2,N
IMP1 = 0
IMP2 = 0
Do 2 J=I-1,N

IF (DABS(A(I,J)) .LT. EPS) IMP1 = IMP1+1
IF (DABS(A(I,J)-1.0D0) .LT. EPS) IMP2 = IMP2+1
CONTINUE
IMP = IMP1 + IMP2
NN=N-1+2
IF (IMP .NE. NN) THEN
KBLOCKS = KBLOCKS + 1
POS(KBLOCKS) = I
ENDIF
CONTINUE

A2.15

1 of 2

aaan

w

There are KBLOCK frobenius blocks
the r'th beginning at (pos(r),pos(r))
and ending at (pos(r+l)-1,pos(r+1)-1)

IF (RBLOCKS .EQ. 1) RETURN
DO 3 I=1,N :
DO & L=1,KBLOCKS
IF (I .EQ. POS(L)) THEN
DO S IJ=1,KBLOCKS
IF (I1J. EQ. KBLOCKS) POS(IJ+1) = N + 1
DO 6 KL = POS(IJ),POS(IJ+1)-1
IF (IJ .EQ. L) THEN
POLY(L,1J,1) = 1.D0
INK = KL-(POS(1J) - 1)
POLY(L,IJ,INK+1)=-A(I,KL)
SIZE(L,IJ)=INK+1
ELSE
INK=KL- (POS(1J)-1)
POLY(L,IJ,INK)=-A(I,KL)
SIZE(L,IJ)=INK

ENDIF
CONTINUE
CONTINUE
ENDIF
CONTINUE
CONTINUE

CALL POLYDET(POLY,SIZE,EPS,CPA,KBLOCKS,N)

RETURN
END

A2.15

2 of 2

aaoaoaoOoaoaaaoaoooaaoaoOooaaoaaoaaQaoooaaan

SUBROUTINE POLYDET(P,SIZE,EPS,CPA,N,NA,NSIZE)

Description
This subroutine computes the determinant of the n*n
polynomial matrix P.

Input Parameters

P - The matrix containing the coefficients of the
poelynomials in the blocks,

SIZE(i,j) equals the order of the polynomial in the
(i,3)'th position of the block matrix P

N ~ The number of blocks in the matrix

SIZE

NA - Row dimension of the array P
EPS - Tolerance to determine when an element is zero
NSIZE - The length of the vector CPA

Qutput Parameters

CPA - an N-vector containing the coefficients of the
characteristic polynomial of the matrix

Subroutines called

POLYMULT - Determines the product of two polynomials
POLYADD - Determines the sum of two polynomials

DOUBLE PRECISION P(NA,50,50),AV(50),BV(50),D(50,50),CV(50)
DOUBLE PRECISION CPA(NSIZE),EPS

INTEGER*4 DS(50),SIZE(NA,N)

INTEGER N,NA,NSIZE,KIP,JDIM,ICT,ISIZE1,ISIZE2,I,K,L

KIP = 0
DO 1 I=1,N-1
ICT = SIZE(I+1,I)
IF (DABS(P(I+1,I,ICT)) .GT. EPS) THEN
DO 2 K=I,N
DO 3 L=1,SIZE(I+1,K)
AV(L) = P(I+1,K,L)
DO 4 L=1,SIZE(I,I)
~ BV(L) = P(I,I,L)
CALL POLYMULT(AV,SIZE(I+1,K),BV,SIZE(I,I),CV,IDIM)
DO 5 L=1,SIZE(I,K)
BV(L) = P(I,K,L)
CALL POLYADD(BV,SIZE(I,K),CV,IDIM,AV,JDIM)
DO 6 L=1,JDIM
P(I+1,K,L) = AV(L)
SIZE(I+1,K) = JDIM
CONTINUE
ELSE

A2.16

1 of 2

KIP = RIP + 1
DO 200 L=1,SIZE(I,I)
200 D(KIP,L) = P(I,I,L)
DS(KIP) = SIZE(I,I)
ENDIF
1 CONTINUE :
IF (KIP .EQ. 0) GO TO 99
IF (KIP .GT. 1) THEN
DO 41 I=1,KIP
IF (I .EQ. 1) THEN
AV(1) = 1.D0
ISIZEL = 1
ELSE
DO 42 1=1,ISIZE3
42 AV(L) = CV(L)
ISIZE1 = ISIZE3
ENDIF
_ DO 43 L=1,DS(I)
43 BV(L) = D(I,L)
ISIZE2 = DS(I)
CALL POLYMULT(AV,ISIZE1,BV,ISIZE2,CV,ISIZE3)

41 CONTINUE
ELSE
DO 44 L=1,DS(1)
44 ~CV(L) = D(1,L)
- ISIZE3 = DS(1)
ENDIF
DO 45 L=1,SIZE(N,N)
45 BV(L) = P(N,N,L)

ISIZE2=SIZE(N,N)
CALL POLYMULT(CV,ISIZE3,BV,ISIZE2,AV,ISIZE1)
DO 46 L=1,ISIZE1

46 P(N,N,L) = AV(L)
SIZE(N,N) = ISIZEl

99 CONTINUE -

DO 98 I=1,NSIZE
98 CPA(I} = P(N,N,I+1)

RETURN
END

A2.16 2 of 2

aaoaoaooaoaoaoaaaaoaaoaaaooaaaan

SUBROUTINE POLYMULT(A,M,B,N,C,MN)

Description
This subroutine computes the product of two
polynomials, not necessarily of the same degree.

Input Parameters

A - An M-vector containing the cocefficients of the polynomial
of degree M

B - An N-vector containing the coefficients of the polynomial
of degree N

OJutput Parameters

€C - The mn-vector containing the product of the polynomials
A and B .

 MN - Degree of the polynomial C. MN = M + N

DOUBLE PRECISION A(M),B(N),C(50)
INTEGER M,N,MN,I,J

MN=M+N-1
DO 1 I=1,MN

C(I) = 0.0D0
DO 2 I=1,M

DO 3 J=1,N

_ C(I+J-1) = C(I+J-1) + A(I)*B(J)

CONTINUE
RETURN
END

A2.17

1 of 1

aaooaoaaoaoonooaaNaoaoaoaaaan

SUBROUTINE POLYADD(A,M,B,N,C,IMAX)

Description

This subroutine computes the sum of two
polynomials not necessarily of the same degree.

Input Parameters

Output Parameters

c - vector of length IMAX containing the coefficients of the
sum of the polynomials A and B.
IMAX - Degree of the polynomial C.

INTEGER M,N,IMAX,IMIN
IMAX=MAX(M,N)
IMIN=MIN(M,N)
DO 1 I=1,IMIN

IF(IMIN .EQ. M)THEN

C(IMAX-I+1)=A(IMIN-I+1)+B(IMAX-I+1)

ELSE

ENDIF

. CONTINUE
- DO 2 I=1,(IMAX-IMIN)

IF(IMIN .EQ. M)THEN
C(I)=B(I)
ELSE .
- C(I)=A(I)
ENDIF -
CONTINUE

RETURN
END

* A -.M-vector containing the coefficients of the
) ‘polynomial of degree M- :

. B - ‘N-vector containing the coefficients of the
polynomial of degree M

' DOUBLE PRECISION A(M),B(N),C(50)

C(TMAX-I+1)=A(IMAX-T+1)+B(IMIN-I+1)

AZ2.18

lofl

[>HsNeNrNsNesNsEsEsNEsErNoNsReNoN+NoNoNoNeNoNe NeoNe]

aacaaqQ

SUBROUTINE EIGENVALUES(A,ER,EI,N,NA,IFAIL)

Description

This subroutine uses the NAG routine FO2AFF to calculate the
eigenvalues of a general matrix by reduction tc the hessenberg
and schur forms using the QR algorithm.

A - The square matrix whose eigenvalues are desired
N - The size of the matrix A -
NA - The row dimension of the matrix A in the calling routine

ER - A n-vector containing the real parts of the eigenvalues of
EI - An n-vector containing the imaginary parts of the eigenvalues
IFAIL - an error indicator :
If IFAIL = 1, more than 30%n iterations are required to
isclate all the eigenvalues

DOUBLE PRECISION A(NA,N),ER(N),EI(N},A1(50,50)
INTEGER*4 INTGER(50)
INTEGER IA,IFAIL,N,NA,I,J

The NAG routine overwrites the matrix A, so make a copy of
so that it remains unchanged on exit

DO 1 I=1,N
DO 2 J=1,N
AL(I,J) = A(I,J)
CONTINUE
IA = NA
IFAIL = 1
CALL FO2AFF(A1,IA,N,ER,EI,INTGER, IFAIL)

RETURN
END

A2.19 lof 1

sErNeEsNsNesNrNosNsNoNsNoNasNoNsNsNe RN NeoNele

SUBROU

TINE SQROOT(ER,EI,N,TOL)

Description

This subroutine computes the ~square roots of N

complex numbers

Parameters

A vector containing the real parts of the
complex numbers

EI - A vector containing the imaginary parts of the
complex numbers
N - The size of the vectors ER, EI .
TOL - If .. ER(i) iy <= then ER(i) =
Output Parameters -
ER - An N-vector containing the real part of the
square root
EI - An N-vector containing the imaginary part of the
square root
DOUBLE PRECISION ER(N),EI(N),XR(50),XI(50),TOL,SUM1
INTEGER LIR,LII,N,I
DO 1 I=1,N
LIR = 1
IF (ER(I) .LT. 0.0D0) LIR = -1
LII = 1- i .
IF (EI(I) .LT. 0.0D0) LII = -1
IF (DABS(EI(I)) .LE. TOL) THEN
IF (LIR .EQ. 1) THEN
XR(I} = DSQRT(ER(I))
XI(I) = 0.0D0
ELSE
XR(I) = 0.0DO
XI(I) = DSQRT(LIR*ER(I))
ENDIF
ELSE
IF (DABS(ER(I)) .LE. TOL) THEN
XR(I) = DSQRT(LII*EI(1)/2.0D0)
XI(I) = LII*SQRT(LII*EI(I)/2.0D0)
ELSE :
SUM1I = DSQRT(ER(I)**2+EI(I)%*%2)
SUM1 = (SUM1+4ER(I))}/2.0D0
XR(I) = DSQRT(SUM1)
SUM1 = XR(I)**2-ER(I)
XI(I) = LIT*DSQRT(SUM1)
ENDIF
ENDIF
CONTINUE
DO 2 I=1,N
ER(I) = -XR(I)
EI(I) = -XI(I)
CONTINUE
RETURN
END

A2.20

lof1l

aaaoaaoaoaaaooaaaaaaans

5

SUBROUTINE COROOT(COEFF ,ROOTR,ROOTI,N)

Description
This subroutine computes the coefficients of a
polynomial given its roots.

Input Parameters

ROOTR - A vector containing the real parts of the roots
of the polynomial

ROOTI - A vector containing the immaginary parts of the
roots of the polynomial

N - The size of the vectors ROOTR, ROOTI

Output Parameters
COEFF -~ An N-vector containing the coefficients of the
polynomial

DOUBLE PRECISION ROOTR(N),ROOTI(N),COEFF(N),CI(50)
DOUBLE PRECISION SUM1,SUM2,SUM3

INTEGER*4 IPT(5Q)

INTEGER INT,N,I,J,K

DO 5 I=1,N
COEFF(I)=0.0D0
CI(I)=0.0D0
K=0
K=K+1 .

IF(K.EQ.1)THEN
INT=0
ELSE
INT=IPT(K~1)
ENDIF
IPT(K)=INT
IPT(K)=IPT(K)+1
IF (K .LT. I)GO TO 1
SUM1=1.0D0
SUM2=0.0D0
Do 3 J=1,1
SUM3=5UM1

SUM1=SUM1*ROOTR(IPT(J))-SUM2*ROOTI(IPT(J))
SUM2=SUM2*ROOTR(IPT(J)})+SUM3I*ROOTI(IPT(J))

COEFF(I)=COEFF(I)+SUM1
CI(I)=CI(I)+5UM2

DO 4 I=1,I
IF(IPT(I+1-L).LT.(N-(L-1)))THEN
K=I+1-L
GO TO 2
ENDIF
CONTINUE
CONTINUE
RETURN
END

A2.21

lofl

coaaaooooaooaoaoaaoaoaaoaoaaoaoaaaaaaaaaQaOaan

SUBROUTINE CPXSOSMIN(CPA,CPX,N,TOL,ITERMAX, ITERNO,FNORM,NF,IFAIL)

Description

This subroutine solves a system of N non-linear equation
in the N unknowns.
‘The function relates the known variables, CPA(i), the
coefficients of the characteristic polynomial of a matrix
A to the unknown variables, cpx(i), the coefficients of the
characteristic polynomials of a matrix X.
the matrices A and X are related by the equation :

X*-A=0
Input Parameters
CPA - The coefficients of the characteristic polynomial
: of the matrix A

CPX - Contains the initiasl estimates to the C.C.P of X

N ~ The length of the vector CPA

TOL - convergence criteria on the norm of the function vector
If |} F(i) |} <= tol then newtons method is deemed to
have converged.

ITERMAX - The maximum number of iterations to be executed by the

routine

Output Parameters
CPX - - The computed estimates to the coefficients of the
characteristic polynomial of X.

For futher &etéils of.bﬁéﬁﬁt parameters and a decsription of the
NAG rotuine EO4HEF used here, see Subroutine QMESOSMIN.

DOUBLE PRECISION CPA(N),CPX(N)
DOUBLE PRECISION S(50),V(50,50),W(200),Y(50),FJAC(50,50),FVEC(50)
DOUBLE PRECISION FNORM,ETA,TOL,STEPMX

INTEGER IFAIL,IPRINT,LIW,LJ,LV,LW,ITERMAX,NF,ITERNO,N,NA,NN,I,J
INTEGER IW(99)

EXTERNAL CPXFUN,CPXHES ,CPXMON

COMMON /BLK1/CPA

COMMON /BLK2/N

IPRINT = 1

ETA = 0.9

STEPMX = 100000.0

LJ=50

LV=530

LIW=99

LW=200

IFAIL~1

CALL EO4HEF(N,N,CPXFUN,CPXHES,CPXMON, IPRINT, ITERMAX,ETA,TOL,
1STEPMX,Y ,FNORM,FVEC,FJAC,LJ,S,V,LV,ITERNO,NF, IW,LIW,W,LW,IFAIL)

RETURN
END

A2,22

lof1l

nnaaaaacaa

SUBRQUTINE CPXFUN(IFLAG,N,N,XC,FVECC,FJACC ,LJC,IW,LIW,W,LW)

Description

This subroutine computes the function and Jacobian.
The calling routine is the NAG library routine EO4HEF which
itself is called from CPXSOSMIN.
For details of input and output parameters consult CPXSOSMIN.

DOUBLE PRECISION FJACC(LJC,N),FVECC(N),W(LW),XC(N),CPA(N),SUM
INTEGER IFLAG,LIW,LJC,LW,M,N,I,J,K

INTEGER IW(LIW)

COMMON /BLK1/CPA

COMMON /BLK2/N

Compute the Function vector

DO 1 I=1,N
SUM=0.0D0
Do 2 J=1,I
K=2%I-J
IF (K .LE. N) SUM = SUM + ((-1)**J)*XC(J)*XC(K)
FVECC(I) = CPA(I) - SUM + ((-1)**J)*(XC(I)**2)
DO 5 I=1,INT(N/2)
FVECC(I) = FVECC(I) + XC(2*I)

Compute the Jacobian matrix

DO 3 I=1,N- -
DO 4 J=1,N
K = 2%I-J
IF ((K .GE. 1) .AND. (K .LE. N))
FIACC(I,J)=((-1)**(J+1))*2.0D0*XC(K)
CONTINUE
CONTINUE
K = INT(N/2)
DO 6 I=1,K
FJACC(I,2*I) = 1.0D0
CONTINUE
RETURN
END

A2.23

Lof 1

aaaaoaaaaoaan

f—

SUBROUTINE CPXHES(IFLAG,N,N,FVECC,XC,B,LB,IW,LIW,W,LW)

Description

This subroutine computes the Hessian type term
relating to the function in cpxfun. The calling routine is
the NAG library routine EO4HEF which itself is called
from CPXSOSMIN. For details of input and output parameters
consult CPXSOSMIN.

- DOUBLE PRECISION B(LB),FVECC(N),W(LW),XC(N),SUM

INTEGER IFLAG,LB,LW,LIW,N,M,I,J,K,L
INTEGER IW(LIW)

DO 1 I=1,N
L=I*(I-1)/2
Do. 2 J=1,1
K=(I+J)/2
IF (INT(((I+J)/2)-INT((I+J)/2)).EQ.0)THEN
SUM=FVECC(K)
ELSE
5UM=0.0D0
ENDIF
B(LH+I)=((~1)**(J-1))*SUM
CONTINUE
CONTINUE
RETURN
END

A2.24

lofl

SUBROUTINE CPXMON(N,N,XC,FVECC,FJACC,LJC,S,IGRADE, ITERNO,NF,IW,

1LIW,W,LW)
c
C Description
c @ ==
C - .
C This subroutine moniters the minimisation process.
c At each iteration it prints the iteration number, the number of
c function evaluations, the norm of the residual and the current
c estimate to the solution.]
c For details of input/ocutput parameters refer to CPXSOSMIN.
c ‘
c Functicns called
e e
C
c FO1DEF - used to determine the Euclidean norm of vector
c
DOUBLE PRECISION FJACC(LJC,N),FVECC(N),S(N),W(LW),XC(N),FNORM
INTEGER IGRADE,LIW,LJC,LW,N,NF,ITERNO,M
INTEGER IW(LIW)
C
FNORM=F0 1DEF(FVECC,FVECC,N)
WRITE(*,99)ITERNO,NF,FNORM
WRITE(*,98)
99 FORMAT(//,14H ITERATION: ,I2,4X,11H FUN EVALS ,12,4X,10H FUN NORM
1 ,D14.6)
98 FORMAT(/,24H CURRENT ESTIMATES ARE : ,/)
DO 1 I=1,N
WRITE(*,97)XC(I)

97 . FORMAT(D10.4)
1 CONTINUE
c :
RETURN
END

A2.25 1of 1

