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SUMMARY

This thesis considers the optimal control of systems governed
by hereditary systems. In particular, the thesis examines the
numerical solutions of these optimal control problems, but some
theoretical results are obtained.

Gradient, conjugate gradient and second order methods for
integro-differential systems are presented here together with a
proof of the convergence of the e~method and the minimum principle
for these systems, In addition, gradient, conjugate gradient and
second order methods for time lag systems are discussed and some
results on other hereditary processes are presented.

The implementation of the numerical methods for time lag and
integro-differential systems is examined at length, and several
numerical examples are discussed. Some consideration is given to

systems having state variable inequality constraints.

(i1)



ACKNOWLEDGEMENTS

I would like to thank Dr. M. A. Connor for his help
throughout this research, and his wife Marjorie for her

patient and skilful typing.

- {iid)



Chapter
Chapter
Chapter
Chapter

Chapter

References
Appendices

Diggrams

[y

p)

CONTENTS

Introduction and Terminology.
Optimal Control of Time Lag Systems,
Intepro-Differential Systems,

Some Other Hereditary Systems,

Results and Conclusions.

8
39

79
88

112

117



CHAPTER I

Introduction and Terminology

Mathematical models have long been used to describe processes
which may occur in such fields as economics, medical science,
engineering and biology. A large proportion of these processes
can be modelled by means of a set of ordinary differential equa-
tions. A typical example is a process whose state may be described

by a set of parameters RS which are termed the state

X1y X5
variables. It may be possible to determine an empirical or
theoretical relationship between the rate of change of each of

these variables and the values of these parameters. This rela-

tionship might be of the form:

dxi(t) .
= fi(xl(t),x2(t),....xn(t)) i=1...,n . (1.1)

dt

It is likely that the values of some of the parameters determining
the evolution of the system are at the operator's disposal. These
parameters are termed control varisbles, The mathematical model

mey then be of the form:

dx, (t) .
—_—= fi(xl(t),....,xn(t),ul(t),...ur(t)) i=1,...,n ,(1.2)

dt

In addition, the system equations may be explicitly time depend-

ent and so0 the model becomes



dxi(t) i
== fx (), x () ,u (), 0,u (8) ) (1.3)
dt
i=1,....n,
This may be more concisely expressed by using vector
notation as:

x(t) = £{x(t),u{t),t) (1.%)
where x(t) is an n-vector, u(t) an r-vector and f(x,u,t) is an
n-veetor function of the state, control and time.

The operator may wish to choose a contrel which in some
sense is the best control. To do this, he would have to consider
what his objectives are, and bearing these in mind, choose a
performance index which accurately measures the sense in which
he wishes to optimise the process.

A typical statement of an optimal control problem for these

systems is for piven to, X £, ¢, ¢ such that

to 6 R,

0!

il

f is a function from R® x R® x Rl into Rn,

¢ is a function from R" into Rq,

and $ is a function from R" into R,
choose the control ult) to $t g tf which minimises ¢(x(tf),tf)
subject to
x(t) = £(x(t},u(t),t) to $t €,
x(to) = X5
and

bix(t )t.) =0 .

This problem, or others similar, has been investigated by
many authors and seygral methods of calculating optimal controls
numerically have been describea [1] - [8].

Ordinary differential equations (1.1) have been extensively

analysed by many workers: see for example ref. [i]. For some
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gytems, however, the ordinary differential equation is an in-
adequate model. One alternative is to model the system in terms
of a distributed parameter system. The corresponding optimal
control problem has been investigated by Hollidsy [lQ] among
others.

Another class of problem, where the model (1.5), (1.6) is
insufficient, is that of hereditary systems, in which the dynamics
are dependent on the past history of the state and control, as
well as their present values.

Some examples of models whiech could be used to describe such
processes are:

i) differential-delay or time lag systems

%(6) = £lx(6),x(t-1)u(e),8) bt S b (1.7)
where 1 is a known constant greater than zero, and

x(t) = o(t) tymT St <ty
with a(t) a known function of time;

ii) neutral systems

x(t) = £(x(t),x(t-1),x(t-1),ult),t) (1.8)

fort . <t st

0 b

and

x{t)

o(t) t-T st gt

x{t) =a{t) t-T <t gt

where T is a known positive constant, and 6{t) a known function

of time;



iii) integro-differential systems

t

x(t) = £(x(t),ult), I g(x(s),u(s),s,t)ds) (1.9)

s

for t.gtgt

0 f

with x(to) known ,

Processes governed by ordinary differential equations have
been the subject of investigations for many years, In contrast,
hereditary systems are of more recent origin. They arise
naturally in population dynamics. Cooke [il] suggested the
following model for the size, x(t), of a population with con-
stant gestation period 1, constant birth rate o, and fixed life

spen o;
x(t) = a{x(t-1)-x(t-1-0)} ,

Volterra ﬁiﬂ investigated the dynamics of a predator-prey

population and derived a pair of coupled integro-differential

equations:
0
x(t) = {a-By(t)- J F( -6)y(t+0)do}x(t)
-h
- 0
i(t) = {§~ex(t)- I G(-0)y(t+0)asly(t)
-h

where x represents the prey population and y the predator
population. More recently, Bellman and Cooke [13] have given
8 comprehensive treatment of differential-difference equations

and Halanay [1#] has written on differential delay equations.

h



The optimal control problem for hereditary systems has a
fairly short history. The fifst major contribution was probably
the extension of Pontryagin's Maximum Principle [l] to time lag
systems by Kharatishvilli {15}, [16]. Computational methods
for generating optimal controls for time lag systems have been
given by T. E. Mueller [17], Sebesta IlB] and Eller llgj among
others, T. E. Mueller gives an algorithm for linear differen-
tial delay systems with a quadratic performance index, and
Sebesta gives a similar algorithm for more general systems.
Eller derives a set of partial differential eguations whose
solution yilelds a feedback control for linear time iag systems.

Little work seems to have been dcne on any of the other
forms of hereditary systems. C. E. Mueller le] derives feed-
back controls for a wide class of linear hereditary systems
and discusses extensions to non-linear equations. Banks and
Jacobs [21] and Kushner and Barnea [22] discuss the optimal con-
trel of systems governed by linear functional-differential equa-
tions. Oguztereli rQi] has given results for a large class of
optimal control problems of hereditary systems and has an exten-
sive bibliography.

This thesis describes methods of calculating optimal controls
for hereditarj processes. In chapter 2 we give the derivation
of the gradient, conjugate gradient, and second order methods
for the optimal control of time lag systems. The chapter con-
tinues by giving a discussion of processes with inequality con-
straints, and concludes with a description of numerical techniques
suitable for calculating the optimal control of time lag systems

in the presence of inequality constraints.



Chapter 3 begins by describing the e-technique as applied
to integro-differential systems and we present gradient, con-
Jugate gradient and second order methods for these processes,

Chapter 4 gives a brief discussion of some resulté on other
forms of hereditary processes, such as neutral systems and systems
governed by intepgral equations.

In chapter 5 we apply the techniques described in chapters 2
and 3 to examples of time lapg and integro-differential systems
with and without inequality constraints.

We will now discuss some of the terminology which will be
used., We have already classified several types of hereditary
systems in (1.7) to (1.9) as time lag, neutral snd integro-dif-
ferential systems. This classification of the state equations
can be further divided into linear and non-linear systems, in the
usual way. For example, a linear time-lag system could be written

as:

x(t) = A(t)x(t) + B(t)x(t-1) + C(t)u(t) tostgt

x(t) = ¢(t) t-t gt gt

where A{t) and B(t) =are n x n matrices and
c(t) is an n % r matrix.
Similarly, a linear integro-differential system could be
written as

x(t) = A(t)x(t) + c(t)ult) +

A
ot
IA
s

t
J {B(5,t)x(s) + D(s,t)u(s)}ds t
t

0

xltg) = x5



Here A(t) and B(s,t) are n x n matrices and

C(t) and D(s,t) are n x r matrices.

Optimal control systems can also be classified by their
performance index. A performance index which may be written as
by
} X : T T(e)r(e)ult) e
J=13x (tf)Px(tf) + 3 {x (t)Q(t)x{t) + u (t)R(t)u >
i
where P and Q(t) are n x n matrices and R(t) is an r x r matrix,
will be termed quadratic. R(t) will be termed the control cost
matrix.
Much of the research on optimal control, whether on heredi-
tary or lumped parameter systems, has been centred on linear

systems with a quadratic performance index. These will be refer-

red to as linear-quadratic systems,

The majérity of the new results presented in this thesis are
contained in chapter 3, where a gradient method, conjugate gradient
method, second order iterative method and a minimum principle for
integro;differential systems are derived.

In addition, the pradient method for systems governed by
integral equations described in chapter b is new, as is the second
order Runge Kutte method for intepgrating integro-differential
equations described in appendix D.

A comparison of these pumerical methods, both for integro-
differential and time lap systems is alsao presented, together with
a comparison of transformation techniques for dealing with con-

strained optimisation problems.



CHAPTER II

Optimal Control of Time Lag Systems

2.1 Introduction

In this chapter, we will ocutline some iterative procedures

for the optimal control of systems described by

x(t) = £(x(t),x(t-1),ult),t) tog-s t St (2.1)
x(t) = ¢(t) LTSt Sty , (2.2}

with a scalar performance index
J = Glx(t,),t,), (2.3)

which 1s to be minimised.

Here x(t) is an n-vector, u(t) an r-vector,t a constant
delay and ¢{t) a known function of time.

Some of the earliest work on systems governed by time lag
equations of this type was done by Kharatishvilli [15]. He
extended Pontryagin's maximum principle to cover systems with a
single delay in the state, as in equation (2.3}, Chyung [2L]
derived necessary conditions for linear systems with single
delays and, under additional conditions, proved existence and
sufficiency conditions for optimal controls.

Chyung and Lee |25 later derived necessary and sufficient
conditions for the optimal control of linear systems with multiple
delays in the state and having a gquadratic performance index.
Kharatishvilli [16] extended his maximum principle to differen-~
tial delay equatioﬁs with multiple delays. Much of this work

has been discussed and extended by Oguztoreli |23|.



Computational algorithms for finding the optimal control
of differential-delay systems have been presented by Mueller,
Sebesta, McKinnon, Ray and Soliman, and Sebesta and Asher.
Mueller's [17] algorithm is applicable to linear-quadratic
systems with a fixed lag. Sebests le] gives an extension of
the gradient method of Bryson and Denham Ih] to systems with
time varying lags. This work has been further extended by
Sebesta and Asher |26] to systems with time and state dependent
lags. McKinnon's [27| algorithm is a second order algorithm
and Ray and Soliman |28| outline & conjugate gradient method.

Most of the above methods are based upon the maximum
principle. An alternative approach is given by Huang [29| who
extends the e-method of Balakrishnan l6] to systems with multiple
time lags. The advantage of this method is that the state
equations do not have to be solved. For systems described by
ordinary differential equations or time lag equations, which
can usually be integrated fairly easily, this method is probably
inferior [30] to the gradient, conjugate gradient and second
order methods. It has, however, been used to solve some problems
|31], [32] and leads to an interesting derivation of the maximum
principle. A further extension to systems represented by integro-

differential equations is given in a following chapter.



2.2 Gradient Methods

Consider the system described by

£lx{t),x{t-1),u(t),t) t, sttt

#

x(t)

"

$(t) t-tstst

x(t) o

0

where x(t) is an n-vector, u(t) an r-vector and ¢(t) a known
continuous n-vector function of time.

We seek to minimise the performance index
J = 6{x{t.),t,)

where t. is unspecified but subject to the following stopping
condition

K(x(tf),tf) =0 .

It is assumed that f(x(t),x(t-t),u(t),t) is defined and
continuous for all stn,ueRr and t¢R and possesses continuous
derivatives. The scalar functions G(x(tf),tf) and K(x(tf),tf)

have similar properties.

{(2.4)

(2.5)

(2.6)

We choose an initiel control u*(t) and then the corresponding

response x*(t) and terminal time t} are found by integrating (2.4)

until {2.6) is satisfied.
We now seek a modification Su(t) to the control such that

the new control u*(t} + du(t) gives an improved value for J.

We start by linearizing (2.4) about the nominal pair (x¥*,u¥*)

to give
sx(t) = A (£)8x(t) + A, (t)8x(t-1) + B(t)sult)

fort, gt gt

0 b

sx(t) =0 t~T St gt

where the matrices Al(t), Az(t) and B(t) are defined as

16
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5F.
—L (x*(t),x*(t-1),u*(t),t)

A, (¢)

[ ar,
*—l-(x*(t),y,u*(t),t) y = x*(t-1)

\ ByJ

A, (t)

af.
B{t) = | —2 (x*(t),x*(t-1),u*(t),t)

L 8ujﬂﬂ

where f; is the itD component of f£{x(t),x(t-1),u(t),t) and X5
the jth component of x, ete.

The superscript * denotes evaluation along the nominal
trajectory. In future, we will denote partial derivatives with
respect to ihe lagged state by the subscript T.

Thus our definition of Az(t) above may be written as

A2(t) = f_t(x.(t),xq(t"'l'),l;(t),t)-

We define the Hamiltonian by

HOx(t) yx(8-1),u(€) A (£),8) = AT (e)E(x(t),x(t-7),ult),t), (2.8)

where
A(t) = -Af(t)x(t) - A§(t+1)k(t+t) ty €t <t (2.9)
A(t) z 0 t > tX
*
Me,) = [39 - (&) & ]
X ax Letx  °

Premultiply (2.7} by Ar(t) and postmultiply the transpose of
(2.9) by 8x(t) to give,

11



AT(t)6x(t)

Woay (0)8x() + AT(0)a(4)6x(e-0)

+ AT(4)B(t)sult) (2.10)

AT(v)yex(t)

H

—AT(t)Al(t)Gx(t) - AT(t+1)A2(t+T)6x(t). (2.11)

Adding (2.10) and (2.11) gives

L 0Fw)ex(e)) = aT(e)a(0)6x(z-1) + AT(£)B(e)sult)

dt

- AT(t+t)A2(t+r)6x(t) {(2.12)

Integrating (2.12) over [to,tf])noting that dx(to) = 0) gives:

t*
T o (f T
A (t§)5x(t;) = { (t)Aa(t)éx(t—T)-A (t+r)A2(t+t)6x(t)}dt
to
t*
£ o
+ J A {t)B{t)sult)at . (2.13)
to
But
134 ) 3 .
[ ATrayernsntiiar = [ 3Te)aye)exte)as
% %

as A{t) =0 for t > t?

and 8x(t) 2 O for t g t,
Hence (2.13) becomes:
T t;T
Mlepexten = [ ATpmsu)e,
to

er in terms of the Hamiltonian’

#
t

AT(t;)Gx(t;) = | H(t)su(t)at. (2.14)

e o

12



The first order change in the performance index J, due to

the modification, du(t), to the control is given by

P, . |
AJ = (c;) 6x(tf) + G¥at | (2.15}

The first order change in value of the stopping condition

is given by

AK = (K;)T‘Gx(tf) + k*Atf . (2.16)

We set AK to zero to ensure the stopping condition remains

Zero .

So from (2.16)

At = - %

T
. (K;) GX(tf).

Substituting in {2.15) gives:
. e T
- * [ ) *
AJ {Gx (G*/K )Kx} Gx(tf).
But from our definition of the terminal condition of (2.9)
AT = AT(t*)Gx(t*)
f £

and so from (2.14)

t*
fT
AJ = J B (t)su(t)at . (2.17)
o
We wish to minimise this expression for AJ, but first we
have to constrain 6u(t) so that the linearisation (2.7) is ‘accurale.

We choose a B > 0 and a positive definite symmetric r x r matrix

W(t) and constrain Su(t} by

th
g = J Su (£ )W(t)sult)at . (2.18)
t

0
i3



Adjoining the equality constraint {2.18) to the expression

for AJ gives

te . te o
Ay, = I Hu(t)du(t)dt + p{g - J Su (t)w(t)éu(t)atl}. (2.19)
to t

From the calculus of variations, we see that (2.19) is

minimised by
sult) = %uw'l(t)ﬁu(t) . (2.20)
Substituting this into (2.17) gives

te
.1 T -1
g = —— J Hu(t)w (t)Hu(t)dt
t

2
by o
te
N I HY ()W L (6 )H_ (t)at
L8 v v
%
W=+ V1/2/8
where t
I = ' HE (6 )W (4 )H (t)
un u ?
o
therefore

sule) = ¥ (g/m¥ w(om (0) (2.21)

It can easily be seen that, substituting (2.21) into (2.17),
the minus sign gives AJ as negative, as required.

We can now choose the change in control to be

1k



sult) = - {B/I}% W'l(t)Hu(t) (2.22)

and repeat until satisfactory convergence is obtained.
Alternatively, in the case of the final time being specified,

we may proceed as follows:

Noting that At_ = 0, we change the final time condition

T
on A(t) to

A(tf) = = (2.23)

alt) =0 t >t .

In this case, the change in performance index, to first

order, is given by

T
_ 3G *
AJ = ;;— (tf) Gx(tf) (2.2h)

So we see that, as in (2.1T7),

%
Lo
AT = J H (t)éult)at . (2.25)

ty

Instead of constraining the contreol by means of equation

(2.18) we can set

Sul(t) = - ¢ Hu(t) € >0 (2.26)

If ¢ is chosen small enough and the linearization (2.7) is
valid, then this value of §u(t) will ensure a decrease in the

performance index, We have two alternatives for setting e.



The first is to choose a fixed ¢, suitable for the problem, and
make a fixed step, - ¢ Hu(t) at each iteration. This will be
termed the fixed step method.

The second alternative is to perform a linear search on €,
so as to find the minimum of the performance index along each
search direction. This is done by choosing an initial € > O
and correcting the control by - ¢ Hu(t). If this results in a
decrease in J, € is increased by some factor and the controls
recorrected., J is again evaluated and the process repeated
until an increase in performance index is found. The ¢ giving
the minimum value of J is then found by quadratic interpolation
and the new control calculated.
| Should the first step, = € Hu(t), fail to give an improved
cost, the € is reduced by some factor until some improvement is
found, and the ¢ giving the minimum value can again be found by
interpolation,

For the latter method, at each evaluation of the performance
index, the state equations have to be integrated. As there will
be at least three performance index evaluations per iterationm,
it may appear that the time involved in integrating the state
equations would make this method slow. In practice, however, for
the fixed step gradient method, and the gradient methed for vary-
ing final time, the change in performance index index has to be
monitored, as it is often necessary to modify € and Blor W(t))

respectively.

2.3 Conjugate Gradient Methods

The conjugate gradient method is an algorithm which is similar

to the steepest descent method described in the previous section,

16



but requiring some additional computation and storage. Instead
of simply searching along the direction of steepest slope, pro-
gressive improvements are made to the search directions at each
iteration, in the hope that better convergence will result.

It may be summarised as follows:

a) the first search direction, Sl’ is the same as the steepest
ascent method, i.e.

8 =~ Hu(xl,xtl,ulhml,t) . (2.27)

The algorithm then proceeds by the following steps:

b} the (i-1)th step taken is

ui(t) = ui_l(t) + Eivlsi—l(t)ﬁ {2.28)
where e, _, is chosen by a one dimensional search along
5;.y to minimise J(u.);

¢) the state and adjoint equations are integrated and the

gradient at (xi,ui) is calculated by

gi(p) = -H (xi,xti,ui,li,t) : (2.29)

d) the ith conjugate gradient search direction is calculated

as follows

8; =e; * B854 5,4 (2.30)
where I
g8,
Pin 7 |sl, jg- | P
1-1°21-1
B =0,



where tf
ja,b] = J al(t)b(t)at
%o

This generates a new search direction and we return to

step (b) and repeat until satisfactory convergence is

obtained.

The conjugate gradient algorithm was originally applied to
the minimisation of funetions in n-space. It can be shown that
a quadratic funetion of n-vafiables can be minimised by such a
procedure in n-iterations from any starting point. The proof
of this is given in appendix A. The proof assumes that the one
dimensional searches along each direction are perfect, i.e. the
exact minimum is found along each search direction., Lasden,
Warren and Mitter [5] applied the method to lumped parameter
systems., They also prove, under certain assumptions, that the
conjugate gradient method always generates directions of descent.

In n-space, if the function to be minimised is non-quadratic,
then the conjugate gradient method, in general, will not converge
in n-iteratioﬁs, and so will have exhausted its potential. It is
therefore advantageous to make a steepest descent step after
n-iterations, i.e. to restart the algorithm. For optimal control
problems, the dimension n must be arbitrarily imposed. Pierson [33]
compares the conjugate gradient method and the conjugate gradient
with restart every four or five iterations and obtains improved

convergence with the latter approach.

2.4 Second Order Methods

Several authors [5], [Bh] have reported poor convergence

near to the optimum for steepest descent and conjugate gradient

18



methods. These remarks are made on lumped parameter systems
but it is expected that they apply equally well to hereditary
systems. Accordingly, second order methods have been developed
in an effort to improve the convergence near to the optimum.
Merriam |35| derivéd a second order method for lumped parameter
systems, and later Mitter I361 presented a more general dis-—
cussion of second order algorithms. McKinnon [27] extended
the approach of Merrism to non-linear systems with time lag.

Freeman [8| derived an algorithm, based on a contraction
mapping principle, for linear-quadratic systems without any
delay. This scheme does not always converge, but Freeman
established conditions for convergence. More recently, Allwright
[T] has published s method similar to Freeman's, but with
guaranteed convergence for all positive definite control cost
matrices. Numerical results presented by Allwright suggest
that even when Freeman's method converges, Allwright's scheme
gives better convergence,

The algorithms of Freeman and Allwright are for linear

systems |, but their approach is particularly attractive
in the derivation of second order methods for non-linear here-
ditary systems, and has been used by Connor [BTJ and Connor and
Hood[38|, and will be described in this section.

We consider the system represented by the following

~ differential-difference equation

x(t) = £(x{t),x(t-1),u(t),t) ¢

o Ity (2.31)

It

x(t) = ¢(t} t~-tstgt

0 0

where, as before, x(t) is an n-vector, u(t) an r-vector and

¢(t) a known function of time.

19



We wish to minimise the functional

t
f
J = G(x(tf),tf) + I F{x(t),ult),t)dt , (2.32)

%o

It is assumed that each element of u({t) is measurable and
square integrable on [to,tf]. This assumption is needed for the
application of the contraction mapping principle. In addition,
it is assumed that f{x(t),x{t-1),ul(t),t) and F(x(t),u(t),t) are
defined and continuous for all xitin Rn, ultin Rr and t in R, and
have continuous derivatives up to third order.

The function G(x(tf),tf) is continuous in x and t, and has
continuous derivatives up to third order.

We define the Hamiltonian by
H(x(t),x(t-t),u(t),l(t),t}
= F(x(t),ult),t) + AT (6)e(x(t),x(t-1),ult),t), (2.33)

and consider the augmented functional

t

£

Iy = Glx(tpht,) + J {H(x(t),x(t-1),u(t),r(t),t) - AT(ﬁ)i(t)}dt.
t

0 | (2.3)

Taeking variations £(t), n(t) in x(t) and u(t) respectively

and expanding JA to second order terms gives,

83, = <cx(tf),g(tf)> +(% Gxx(tf)a(tf),r,(th

t
. f@u(t),n(tbat - Ble),Ele )y
tO :

20



f

t
£
+ J <Hx(t) + A(t),E(t)>at + <HT(t),s(t-r)>dt
t

ot S———

0 o

f
{en (£)E(t),6(t)>  +  <H_(t)elt-1),(t-1)>

+
M -t
o e, F

+ <Huu(t)n(t),n(t)> + 2 <Hux(t)£(t),a(t)f

+2 <H (t)E(t-t),n(t)>  +2  <H (t)E(t-1),6(t)> }at .

(2.35)
We also have the following identity
H, o
J <H_(t),5(t-1)>at = J <H {t+1),6(¢)>at
to t0~t
tf-r
+ J <HT(t+r),£(t)>dt . (2.36)
t0
But we have
E{t) = 0 tg " TSt Sty

50 we may eliminate the first term of the right hand side of (2.36).

Using (2.36), we may write

tf tf
I <Hx(t) + A(t),E(t)>at + J <HT(t),£(t—r)>dt
t t

0 0
tf—T
= J {Hx(t) + HT(t+T) + i(t)},i(t)>
t0
tf
+ J <H_ (t) + o), e(t)>at (2.37)
tf—T
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We now define A(t) to satisfy the following:

x(t) = - H (t) - H (t+1) ty €t &t - {(2.38)
At) = - H (t) et <t £ b, (2.39)
Meo) = G (t,), (2.%0)

Using (2.38) - (2.40) in (2.35) we may write

t
by
03, = <0, (e JE(e) €8> ¢ | <t (e),n(e)va
t

0]

t .
f
1, 08,800+ < _g(em0) (e
t

0

+ <H (e)n(t),n(e)> + 2<H  &(¢),n(t)>
+2<H ()E(t=t),n(e)> + 2<i_ (£)e(t-),5(t)>}at . (2.k1)

If we assume a nominal control uo(t), we may solve equations (2,31)
to give the nominal state xo(t) and solve (2.38) - (2.40) in back-
ward time for Ao(t).

In general these solutions will not satisfy the normal
optimality condition, Hu(t) = 0.

We seek a control correction n{t) minimising the expression
for AJ, given in (2.41). We have to minimise this expression

subject to the following constraints:
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E(t) = £ (e)e(t) + £ (t)e(t=1) + £ (t)n(t) (2.42)
for to <t & tf
and
g(t) =0 t,oT § b Sty

where fx(t), fT(t), fu(t) are all evaluated along the nominal
trajectory. It cen be shown [see appendix B| that the solution

of (2.42) may be written

t
E(t) = J N(o,t) £ (o)nlo)do , (2.43)
t

0

where N{o,t) is an n x n matrix satisfying a certain differential

equation,and from (2.43) write

t-1
(o) = | Ho,emon,(dn(oddo (2.4%)
t

0

Using Freeman's approach, we rewrite (2.43) and (2.4k4) in

the form
£(t) = Ln(t) (2.45)
£(t-1) = Ln(t-1) = Ln(t) , (2.46)
Let
a(t) = H (t) + 6 (t,)5(t-t,) (2.47)

where 6(t) is the Dirac function .,
We have to minimise

t
f
AJ, = J (<H (t),n(t)> + 3<Q(t)e(t),e(t)>
t

0
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* el (£)E(6-1),6(8-1)> + 3<B_ (£)n(t),nlt)>

+ <i ()e(t),nle)> + <H (£)e(e-1),n{t)>

+ <Hx1(t)£(t-1),&{t)>}dt . (2.48)

Using (2.45) and (2.46) we may rewrite Ndy in the form

283, = [(R + Huu)n,nl + |2Hu,n| (2.49)
where
“Qin + (L'H__Lin + 2 L)n+ 2(L'H__L)
Rn = (L QL)n HTT n o+ 2 HuxL)" + 2(HUTL)n+ L xTL n,
Here |* 7 | denoctes the inner product on the contrel Hilbert

space and is given by

tf
la,b| = J <a(t),b(t)>at .
t

0

A* -~
L and L denote the adjoint operators of L and L respectively.
The derivation of the above results is given in appendix C.
We will write J' for ﬁJA for ease of notation. Let no(t) be

the optimum value of n{t). We give a small variation n(t) to no(t)

and determine a necessary condition for the optimality of no(t).

2(3* + 83') = [(R + H_ Mng +n),(ng + )|+ 2[H sny + 0| | (2.50)

Expanding to the first order in n gives

243"

[(& + 8, dngun] + [(R+H In,ngl + 2|8 ,n]

or

2A7!

* —_ -
R +n )+ (R+H ) Ing,n| + 2l ) (2.51)

Hence, a first order condition for n, to ve the optimum value for

2h



*
(R+H )+ R+H ) Ing=-20 | (2.52)
As H is self adjoint we may write {2.52) as:
21 R) (2.93)
Iy Mo = ~2H, - (R+R )ng | .53
Finally, (2.53) may be written as an integral equation:
no = —H S{H_+ }(R + R )n,) (2.5k)
0 uu - u 0o )

Let us write (2.54) in the more compact form:

The above equation can be used to provide an iterative procedure
for generating a control increment g and is based on Freeman's [8|
approach.

If the operator C is a contraction operator then the procedure
defined by

;e = Ons (2.55)

will converge to n for any startiog point.

0
*
IfH is small compared to (R + R ), then the convergence of
(2.55) will be poor and it may fail to converge entirely. In an

attempt to improve this we now follow Allwright's {7| argument.

We may rewrite (2.&9) as

J(n) = 3|Pn,n| + |Hu,nl X (2.56)

We see from (2.52) that the first order condition for n to be
optimal is

(p + P*)n +2H =0 . {(2.57)
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This suggests using the generalized Newton Raphson technigue.
Noting that

* *
P+P =R+R +2H (2.58)
uu

the Newton Raphson algorithm may be written as
- e *
~n =~ +3HR+R)] [E +3pP+P) (2.59)
T+l =~ Mo w2 SRTR 'néle -

*
Unfortunately, this cannot be implemented as (R + R ) is an

infinite dimensional operator and so, in general, its inverse

cannot be found. We follow Allwright's suggestion and approximate

” ¥ . -

Lﬂuu + (R +R )l by [Huu + 0I| where O is the upper bound for
*

AR + R'j|. This approximation leads to the algorithm

-1

Nep = Ny -[Huu + oI} [Hu + }p+P )"nJ (2.60)

which defines our alternative algorithm,

Note that setting © = 0 in (2.60)} leads to

s
[

-— - l ] *
n+l - Mn Huu[—Hu tHu gt 2R R )nn]

- - — _1_1 *
= n H - H H-H n :Huu(R + R )nn

H

..l. % -
—Huu[ﬂu + (R + R )“nJ .

Allwright also makes the following suggestion for determining
0. Set O to zero initiaslly, giving Freeman's algorithm, and adjust
@ adaptively t§ optimise the convergence rate, which might be
measured by the rate of decrease of the norm of the gradient.

The two contraction mapping algorithms defined by (2.55) and

(2.60) Qo not require optimisation along search directions, as in
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the gradient methods described in an earlier section.

2.5 Processes with Inequality Constraints

In addition to satisfying dynamic constraints, some processes

have to satisfy inequality constraints of the form:

clx(t),u(t),t) 2 0 th sttt
or

s{x(t),t) 20 ' t.<tst .

These are termed control inequality constraints and state
inequality constraints respectively. Such problems may arise,
for example, in a re-entry vehicle entering the earth's atmosphere,
The speed of re-entry must not exceed a certain value, otherwise
the vehicle would break up. Alternatively, a component may not be
able to exceed a certain level of performance, and so it is subject
to some form of inequality constraint. Trajectories satisfying the
constraints will be termed feasible, and the set of all feasible
trajectories will be called the feasible region.

Bryson, Denham and Dreyfus [3Q| derive necessary conditions
for lumped parameter systems with control and state inequality con-
straints,

Consider the problem of minimising

J = G(x(tf),tf)
subject to
x(t) = £(x(t},u(t),t)
x(to)'= Xq

and

C(x(t),ul(t),t) 20 .
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Bryson et al show that there are no discontinuities in the adjoint
multiplier A{t) although there may be discontinuities in u(t) and
At).

Now suppose that the control inequality constraint is replaced

by a state variable inequality constraint of the form
s{x(t),t}) > 0.

Let tl be the point at which the trajectory enters the constraint
boundary, and t2 be the time at which it leaves the boundary. Bet-

ween tl and t2, the state variables are related by
s(x(t),t) =0 .

As S vanishes identically along the constraint boundary, then its
time derivatives must also vanish;

thus

45 - 38 4 138 Y(t) =0,
dat at ax

But from the state equation we may write

_@_S_ = [-a—g—] + FLS“] f(X(t)$u(t)9t) .
dt ot 9x

Thus dS/dt may be an explicit function of the control u(t). If it
is not an explicit function of u(t), d5/dt may be differentiated
repeatedly until it is. The derivative at which the control first

appears explicitly defines the order of the constraint:

i.e. if
g S(q)(x(t),t) # 0 identically
Ju
but
2 s ixey,e) 20 i<q
au

then the constraint is said to be of order g. Here the superscript

i denotes the ith time derivative,
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Thus we have S(q)(x(t),u(t),t) playing the same role as
c(x(t),u{t),t) did eariier but, in sddition, at the entry points

the following tangency conditions have to be satisfied

s(x(t,),t,) = 0
5'(x(t;),t) =0
(q¢-1) -

S (x(tl):tl) =0,

These conditions lead to discontinuities in the influence

functions A{t) at t The influence functions are still continuous,

1°
however, at the exit point. Bryson et al apply their necessary con-
ditions to two analytic examples, and in an appendix, show that the
influence functions are non=-unique along the constraint boundéry.

They can, in fact, have their points of discontinuity at the exit
point instead of the entry point, or they can have discontinuities

at exit and entry points.

Speyer and Bryson {hO] show that this non-uniqueness of the
influence functions results from neglecting to make use of a state
space of reduced dimension along the constraint boundary, and present
a new set of necessary conditions.

Jacobson, Lele and Speyér [hl] suggest that the necessary con-
ditions of [39] and [40] under-specify the behaviour of the influence
functions at entry and exit points and derive another set of neces-
sary conditions,

The results mentioned above are all for lumped parameter systems.
Similar results for time lag systems have been given by Budelis and
Bryson [49], and Sebesta and Asher [?6].

Budelis and Bryson derive necessary conditions for an extremal

path for processes governed by time lag systems and subject to control
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inequality constraints.

Asher and Sebesta present necessary conditions for a time lag
system with control inequality constraints. Their derivation in-
volves transforming the control variable inequality constraint to
an equality constraint by adding a slack variable, a device which
will be described below in the discussion of Jacobson's transforma-

tion method.

2.6 Numerical Techniques for Inequality Constrained Optimal Control

a) Direct Methods

Denham and Bryson Iﬁ?] describe a steepest descent method for
lumped systems with modification on the constraint boundary. These
modifications are necessary because the control increments on the

boundary are not independent of the state, but are related by

Clx +68x, u+du,t) =0
or

S(q)(x + 8x, u+du, t) =0,

Their modifications also take into mccount discontinuities at

the junction points.

b)  Penalty Function Techniques

Probably the most widely used of the indirect methods are the
penalty function techniques. The congtrained problem is replaced
by an unconstrained problem with the same system dynamics but with
a different performance index, The new index is formed by adding
a penalty term to the original performance index. This term has

the property that it is small when the constraint is satisfied and
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non-
takes on large values in the feasible region. Penalty function

methods are applicable to lumped and time-lag systems.

There are two different types of penalty functions in common
use; the interior penalty functions and the enterior penalty
functions.,

Consider the following problem:

Minimise
Glx(t,),t )
subject to
x(t) = £(x(t),x(t-1),ult),t) £, ¢ t < t,
x(t) = ¢(¢) temT St Sty

and

c(x(t),ult),t) >0 .

This inequality constrained problem is converted to a problem
without constraints by adding a penalty function to the objective
function to form the new objective function,

PI(rk) = G(x(tf),tf) + T (2.61)

t
£ dt
k
t

Clx,u,t)
0

vwhere Pk is a positive scalar. This penalty term is an interior
penalty function. The computation of an optimal control proceeds
as follows:
An initial control is chosen such that the resulting trajectory
does not violate the constraint. A sequence of Fk's is set up,
lim

> 0 and I = 0. The optimal control mini-

such that ', > T koo Tk

k k+1
mising PI(Fk) is found for each Fk. As Pk is reduced, more effort

is being made to minimise the original performance index, and the



trajectory is allowed to get closer to the constraint boundary,
assuming it is profitable to do so. Lasden, Warren and Rice [hj]
prove that, for lumped parameter systems, the sequence of uncon-
strained solutions converges to the solution of the consﬁrained
problem es k= and this can be extended to hereditary systems.
Unfortunately, the numerical procedures for finding the optimal
control all use discrete approximations to the continuous problems.
It is thus possible for the trajectory to cross a constraint
boundary in between two points of discretization.and not get heavily
penalized. Note that outside the feasible region, the penalty
function (2.61) is negative, therefore once the trajectory has
crossed the constraint boundary, it will tend to stay there. This
would obvicusly cause a breakdown of the method, and so any changes
in control have to be monitored to ensure they do not violate the
constraint boundary,

Alternatively we can formulate another unconstrained problem

whose performance index is given as

L I £ .
PE[_I'kJ = G[_x(tf),tf_l + T I n{c)[clx,u,t)]" at (2.62)
o
- 1 a<?0
where h{a) = { 0 a3 0
and P >T, . >0 ana I _ g
kK~ T k+l K+ k .

This is exterior penalty function method. It has the ad~
vantage that the initial control, and any subsequent changes, do
not have to be monitored. Lele and Jacobson |Uk] show that, for
lumped parameter systems, the sequence of unconstrained minima

approaches a solution to the constrained problem as k+=, The
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proof of convergence of the two penalty function methods may be

trivially extended to time lag systems.

¢) Jacobson's Transformation Technigue

An alternative approach is to transform the constrained
problem into an unconstrained problem of increased dimension by
the introduction of slack variables, an approach described by
Jacobson and Lele [hs] for ordinary systems with state space con-
straints. An advantapge of this technique is that any nominal
control gives a feasible trajectory. Another feature is that the
transformed problem exhibits singular arcs correspending to arcs
lying on the constraint boundary in the original problem. This
prohibits the use of second order methods but the gradient and con-
Jugate gradient methods are still applicable.

Consider the problem of minimising

J = G(x(tr),t )
subject to

x(t) = £(x(t),ult),t)

and

s(x(t),t) 20 .

We assume here that u{t) is a scalar control function and
s{x{t),t) a scalar qth order constraint.
The state variable inequality constraint is converted to an

equality constraint by the introduction of a slack variable a(t)
. , 2
s(x(t),t) - 3 a"(t) =0 , (2.63)

If this equality can be enforced for all t in the interval
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{to’tfj* then the state variable inequality constraint will ob-

viously be satisfied. Differentiating (2.63) with respect to t:

s (x(t),6) = altday(t) = 0

S(g)(x(t),t) - af(t) - u(t)ue(t) =0

- - - - - - - r (2.6h)
S(q)(x(t),u(t),t) - (terms involving a,al,———aq) =0
J
Here al(t) = a(t)
and a.{t) = a. t) .
Jf ) J‘l( )
Solving the final équation in (2.64) for u(t)
u(t) = F(x(t),aq,aq_l,—~--al,a,t) . (2.65)
Substituting (2.65) for u(t) in the original problem gives
the following unconstrained problem:
Minimise
J = Glx(ty),tp)
subject to
x(t) = f(x(t),G(x,aq,----,al,a,t),t) (2.66)
a(t) = al(t)

o (t) = a,l(t)

uq_l(t)

it
e
fo]
t
o

x(to) = x

The initial conditions on a(t),—-——,aq_l(t) are chosen to satisfy

g



(2.63) and (2.64), i.e.

a(t,) = 2 Slxgt oL
ul(to) = Sl(xo,to)/a(to)

ete. and aq(t) is treated as the control variable.

Jacobson's transformation technique can be applied to time
lag systems and we illustrate this with an example.

Consider minimising

.2 2 N
J = 9xl(tf) + 6xl(tf)x2(tf) + 3x2(tf) + x3(tf) (2.67)
where tf =1 and
%, (8) = x,(t) + x,(t-3) ‘ (2.68)
i2(t) = =x,(t) = x,(t-3) + u(t) Ostel
k3(t) = 10x§(t) + 10x§(t) + u2(t),
with
xl(t) =]
xe(t) = 0 -3 £t£0
x3(t) =0,
and
x2(t) +0.320 . (2.69)

Introduce the slack variable a(t) and rewrite (2.69) as
, 2
x2(t) +0.3 - 3a"(t) =0 (2.70)
Differentiating (2.70) with respect to time:

i2(t) - a(t)a (t) =0,
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Substituting for ;E(t)

~x,(t) = x,(t=3) + u{t) = alt)e,(t) =0
or

u(t) = x,(t) + xe(t"%) + alt)a, (t)
Let xh(t) = a(t) and let ul(t) be the new control, then our
unconstrained problem becomes:

Minimise

J = 9xi(tf) + 6xl(tf)x2(tf) + 3x§(tf) + x3(tf)

subject to
x,(6) = x,(t) + x,(¢-) ,
ie(t) = x,(t)a, ()
:'cg(t) = 10x§(t) +20x5(8) + (xy(8) + xy(t-3) + xh(t)ul(t)}z
x, (€) = a (),
with
xl(t)=l -1st«o0
x2(t)=0 -25t£0
x3(t) =0 -35tg<o0
and xh(t) =% /576 -3 ¢tg0

Unfortunately, the application of Jacobson's transformation
technique to time lag systems can yield an unconstrained problem
whose dynamics are poverned not by differential difference equations,
but by neutral systems. OSuch problems are more difficult to solve.
Connor ‘hB} describes a gradient method for these systems which is

discussed further in a following chapter.
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For an example of a neutral system arising from the applica-

tion of the transformation technique we return to the example, (2.67)
and (2.68), already examined, We replace the first order constraint

{2.69) by the second order constraint
xl(t) -0.7T20 , (2.71)

Converting (2.71) to an equality constraint by the addition
of a slack variable

x (t) - 0.7 - 3a(t) =0 ,

Differentiating -

il(t) - a{t)alt) =0 .

Substituting for %l(t) from (2.68)

x,(t) + x,(t-3) = alt)a(t) =0 .
Differentiating again

X,(t) + %, (6-3) - 3%(¢) - alt)alt) = 0
Substituting for ia(t) from (2.68) gives

xy(t) = xy(t-d) + ult) + x,(¢-3) - &2(t) - alt) (£} =0
or
2(

u(t) = x,(t) + x,(t-3) - x,(t-3) +a(t) + @(t)a(t)

Let &(t) be the new controller m(t} and let

a{t)

[}

Xu(t)

a{t)

xs(t)

then the new system dynamics become

il(t) x,(t) + x,(t-3)

%, (t) = xg(t) + 1, (t)m(t) - x(t-3)

37



5c3(t) = lei(t) + 10x§(t) +
{x2(t) + xa(t—%) - 5:2(1;-—%) + Xg(t) + xh(t)m(t)}e
ih(t) = x5(t)

is(t) =m(t) .

The initial conditions on Xy, and x_ are found in the usual

5
manner, Note that the equations describing the dynamics of xe(t)

and x3(t) both contain derivaties of x, with lagged arguement on

2
the right hand side, and thus the new unconstrained problem is
of the neutral type rather than the simpler time lag systems dis-

cussed in this chapter.
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CHAPTER III

Integro-Differential Systems

3.1 Introduction

In the previous chapter, some iterative techniques for finding
an optimal control, for systems governed by differential delay equa-
tions, have been described. These delay equations may be used to
model proce;ses whose rate of change depends on the present values
of the state and control, and on the values of the state and control
at some previous time(s).

It is a natural extension to consider processes governed by a

system of integro-differential equations of the form:

x(t) = £{x(t),ul{t),v(t),t) t

o
oA
o
oA
ot

x{ty) = x4 | (3.1)
where £
v(t) = J g{x(s),uls),s,t)ds .
t

0]

The optimal control of such systems has not been widely
studied. C. E. Mueller [QOJ discusses some numerical methods of
generating a feedback control for function-differential equations.
In one chapter, he describes the application of his technique to

systems governed by equations of the form .

x(t) = Ay (t)x(t) + A (£)x(H(t))

t
+ J Lo(t,s)x(s)ds + B{t)ul(t) + v(t) (3.2)
H(t)
where ty € H(t) < t for all t on (to’tél
and Blt) 26 .
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Although éenerally the system described by (3.2) cannot be
vritten in the form t3.l), all of the examples Mueller gives are
of the form (3.1).

Connor [h?] derives a set of neceséary conditions for systems
similar to (3.1) and he also describes [46] a'éradien£ nethod for
linear systems with -1 quad?atic performance indek; Connor and
Hood [38] present s second order method for differentiai—integral
systens,

We begin by extending Balakrishnan's e-method [6] to integro-

. differential systems, and use this approach to prove a maximum

 principle.

3.2 The e~Problenm .

Consider the following special case of system (3.1):

-t
X3) = alxe)u(e),8) + [ ella)uledisitles (3.3)
_ t,

Cxl(tg) =y s e ERY
where f{x,u,t) and g(x,u,s,t) are continuous in all their argue-
ments and continuously differentiable with respect to x, Here x
"is an n-vector and u an r-vector. - | |

We wish to minimise the performance index

t
: , iy .
J(x,m) = J F(x(t},u(t),t)dat - (3.5)
over the class of all functions x(t),u(t) satisfying (3.3) and
(3.%) such that x(t) is absolutely continuous, the derivative x{t)

is square integrable over [fo,té] and u(t) is an admissible contrel,
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It is essumed that F(x(t),u{t),t) is a scalar function continuous
~in all varisbles zmd,éqntinuously differentiable with respect to x.
Let U be some convex subset of Rr, then the control u(t) will
be termed admissible if it is measurable and square integrable on
[to,tf] and u(t) is contained in U for all t on [to’tf]“ The set of
all admissible controlé will be denoted by Q. It is aséumed through- -
out thai.: (3.3) has 2 unique solution for each admissible control.
We will further assume that for all u in 1, there exists M > 0O

such that: _
e(x,u(t),t}] | s M{|]|x]] + 1}

el ult),t) = £ly,ul(t),t) || s M{{x - y|| (3.6)

t

f .

j | e(xsult),t,8) | [ds < M) fx]] + 1}
) etz

£
J Helx,ult),t,s) - gly,u(t),t,s)]]ds < M|[x - ¥]| (3.7)
t. ! . N . . :

|P(x,u(t),t) = Ply,u(t),t)] < 4| [x - y|| (3.8)
for all t in [tget,] and al1 x,y R | |
(Note: see Appendix F for remarks on theée assmptioné).
| We will defineﬂ to be the set of e.ll‘a.'dmissible states a.nd_@
to be the subset on xﬂvsuch tht;t [u,#] inﬂxpc satisfy equatién
(3.3). |
| We now formulete the € problem, For each £ > 0, we seek the

minimum of the following functional:

e b |
Jleyx,u) = I F(x(t),u(t),t)at + %‘E J x(t) = £(x(t),ult),t)
: | _

0 %

t o
- [ stxtersnte) s il 12 e  (3.9)
tO' : '
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over the class of absolutely continuous functions x{t)} satisfying
(3.4) and the class of admissible controls. We call this the ¢
problem.

Suppose that for each e > 0, there exists an absolutely
continuous function xo(t,s) satisfying (3.4) and an admissible
control uo(t,e) such that E(E,XO(-,e),uo(-,e)) attains the minimum over

Rdlof 31e,x,u), then we may prove the following theorem:

Theorem 1

For each € > 0, let xo(t,e) be as defined above, and let
E(E,xo(',s),uo(',e)) be the minimum. If ;(t,e) is the solution
of (3.3) and (3.4) for the control of uo(t,e) then

t

— . £ .
D0 Tle,x (a8 (o)) = 120 f F( x (t,e),ug(t,e),t)dt
%o
S
= inf [ F(x(t),u(t),t)dt (3.10)
o

where the infimum is over admissible controls and absclutely con-
tinuous x(t) satisfying (3.3) and (3.4).
Proof

< <
Let O 52 cl

and let

2o(t,e) = x,(t,6) = flxy(t,e),u(t,e),t)

t
- [ g(xo(s,e),uo(s,e),s,t)ds (3.11)
t

0

Now, by definition

2
2 to o

L2

to t
1 2 f i
] IIZO(t,62)|| at + f Flxy(t,e,dug(t,e,),t)at
t



is the infimum of E(Ez,x('),u('))mmr b

Thus we have that

t t
1 f 5 f
8. (t,e,)]1° at + Flx. (t,e,),u.(t,e ),t)at
C O 2 0 0
2t t
0 0
tf tf
1 2
§ f [1gg(t,e ) }° at +[ Flxg(tye) )sult,e ) t)a
265 t
0 0
and similarly we have
1 tf 5 tf
- fllzott,e M et +[ Flxo(tse;)suglt,eg ) t)at
‘1 t t
0
1 i 2 i
© 0T J |85 (t,e ) || at +J Fxy(t,ey)suy(t,e,),t)at
£
1 to to
So we have lnequalities of the form
B S N Sy (3.12)
o 1 1 De 2 2
€1 1
L A, + B, < Aoa 4 B, (3.13)
2e 2€
2 2.
252 2e1
So from (3.12) and (3.13)
A Aol Az(_l_ S ,
251 222 2&1 262
and sonince L
2e. 2.
1 2



we have

>
AL 2 Ay -
Similarly
Bl < B2 °
Thus
6, . te .
[MegteaelZ o s [ Hggte,epil? e
o o
and
te te
[ Flrgltaedmglee ) dae ¢ [ Flxgltsey)oul,ey) tae
o tg

t
f
So we have that J F(xo(t,e),uo(t,e),t)dt is monotonically in-
t

° %

f
creasing as €+0 and that I ||Eo(t,e)|]2 dt is monotonically
%o
tf
decreasing as €+0. We now show that in fact J ||5O(t,s)||2 at
%o
decreases monotonically to zero.
tf 7 )
Suppose I Ilgo(t,s)|| dt has an infimum w65 &30. Obviously
o

a20, so assume that o>0,
Let hie) =E%:§fj(e,x(-,e),u(-,s)} for each €.

We know that, by definition,

e
h(e) g inf I F(x,u,t)at = F,
t

0

Ly



say, where the infimum is taken over admissible u{t) and absolutely

continuous x{t) satisfying (3.3) and (3.4),&. over B,

te
n(e) = 1 [ 2y (t,0)]2at
2e %

0

tf
+ [ F(xo(t,e),uo(t,s),t)dt

ty

tf
> af2e + [ F(xo(t,c),uo(t,e),t)dt R
t

0

So F

e
0 z (1/2E + j‘ F(xo(tye),uo(tie)st)dt
t

0

But by choosing € small enough, we can make a/2¢ as large as we

like, giving a contradiction, thus ¢« = Q, and we have shown that

t

f

I ||E§O(t,a)||2 dt decreases monotonically to zero.
t

0

Let x(t,e) be the solution of (3.3) and (3.4) using the control

uo(t,e).‘ We now show that x{t,e) converges tO‘xO(t,c) uniformly on
[to'tél as £+0,

From {3.11), we have that

io(t,E) = Eo(t,S) + f(xo(t,E),uo(t,E),t)

t
+ I g(xo(s,e),u (s,e),s,t)ds . (3.1h4)
t

4]

M
By the definition of x{t,e)

Ly



| ;(t,e) = f(;(t,e),uo(t,ﬁ),t)
t
+ J 8(£(Sse):u0(ta£)3s,t)ds 3
t

0

and so by (3.14) and (3.15)

Hx(t,e) -

t
x(t.e)|] = II[ {£(x(0,€) u,(0,¢),0)
t

0

[*)
f(xy(0,€),u;(0,e),0) + I [g(;(s,E),uo(s,e),s,f)
t

0

- g(xo(s,e),uo(s,a),s,t)]ds - Eo(c,a)}dc|]

t t
f |18y(0,¢) do + f |1£(x(0,€),u5(0,) ,0)
t t

A

-~ 0

- f(xo(c,E),uO(U,e),q)lldc

t o
+ J I llg(;(s,ﬁ),uo(5,€),s,0) - glxy(8,¢),u,(6,€),5,0)|]as a0,
t. 0t

O "0

But

(3.15)

t g
J [ l|g(;(s,€),u0(s,e),s,0) - S(XO(S,E),UO(S,B),S,U)I|d$ do
t t

o 0

t t
= I J||g(;(o,e),uo(a,e),o,s) - g(xo(c,e),uo(c,e),o,s)|Ids do
t g

0

L6



Now for ¢ in [t,,t]

t
Jllg(;(a’c)’uo(c’s)scs S) - g(XO(U,E),uo(O,C),G,sH|ds
g

t
f "
s J }'|g(x(0,e),u0(o,e),o,s) - g(xO(U,E),UO(O,E),U,S)I|ds -
g
But by (3.7)

t

f -
J ]|g(x(o.a),u0(o,e),o,s) - g(xo(o,c),uo(o,c),o,s)||ds
[+]

g ﬂ4ﬂ|;(o,e) - x0(0,5)||.

So N

||; (t,e) - x&(t,£)|| g I |lzo(u,s)|]da

ty

t
+ J ||f(;(o,c),uo(c,e),a) - f(;o(c,ﬁ),uo(o’c),c)lldc
t

0

t
[ MR - xteelle
|

0

which vy (3.6) becomes

t
[1x(6,0) = x(taedl ] < [ Hgyto,0)as
t

0

t
ve J Mlx(e,6) - xglo,e)l[as (3.16)
L

0]

X



t
f -
We have already seen that J ||EO(0,E)||2 do

%o

tends to zero as € tends to zero, and thus

tf
[legeerlles » o ase + o
%o

and t

M (t) = I ||Eo(o,e)]ldo + 0 as e -+ O

Yy

Let  V (t) = ||x(t,e) - x,(t,e)]]
then we may write (3.16) as

t
Ve(t) € Me(t) + 2 I-rﬂq]vc(o)da
t

0

t
< Me(tf) 4+ 2 J  ﬁﬂﬂV£(o)da .

Y

Thus by Gronwall's inequality

t
v (t) g Me(tf) exp{2 Jiﬁ« da}
L

O
for all t in [‘to‘tf] 3
Hence, Ve(t) + 0 as € =+ O
for all t in [to’#fj

or, in other words

L8



U0k (e,e) - xle,0)|f =0 (3.17)

uniformly on [to,tf], and so x{t,e)- xo(t,E) converges uniformly to O
on [t‘o ’t’f.] .
By assumption (3.%)

lim

L p(x(6,€) g (8,€),8) - Flxg (t,6),uy(t,e),t)]

oM [ x(t,e) - xo (el (3.18)

v g

so by (3.17) and (3.18)

1i -
e¢g|F(x(t,e),u0(t,c),t) - Flxg(t,e),uylt,e),t)| =0
uniformly on [to,tf;|n

This last result implies

t t

vim ¥ - 1im [F

0 F(x(t,e),ug(t,e),tdar = L0 | Flxg(t,e),ug(t,e),t)dt .
%o ‘o

By definition, for each ¢, we have that
- N
J(Caxo('se)suo(',e)) 3 J(e,x(',e),uo(',E)),

Taking the limit as € tends to O:

t "t

lim 1 |[f 2 £
O f |85t e) [ at + J F(xy(t,e),uy(t,e),t)at}

2e ¢ t

0 )
t

lim T -
S F(x(t,e),uo(t,e),t)dt -

%

49



and so we have that

tr
lim 1 , 2 .
oy I |12, (te)|]° at =0
2¢e
to

Thus we have proved that

lim

B0 Slesxgle)ugle €)=

t

lim £ 7 .

20 F(x(t,ﬁ),uo(t,c),t)dt .
t

0

But, by definition

t
f
E(E,xo(-,e),u0(°,c)) € inf J F(x(t),u(t),t)dt
® t

0

teo L
< J F(x(t,eluy(t,e),t)at
t

0

for any € < Q.

Therefore, by (3.20) and (3.21)

t
. £
iig Tle,xyle,e),ug(-,€)) = %%f f F(x(t),u(t),t)dt
o
RTI :
- g*g[ B(x(t,e),u,(t,6) ,t)at
o

and the theorem is proved.
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3.3 Necessary Conditions for the £-~Problem

As before we assume that for each e-problem there exists an
admissible control uo(t,e) and an absolutely continuous function
xo(t,c) such that xo(to,c) = x4 and 3(e,x0(°,s),u0(°,c)) is the
minimum of E(E,x(‘),uo(-)).

Let w{t) be an n-vector valued function which has derivatives

of all orders on [to,tf] and such that w(to) = 0.
Let 6 be a real variable and let

x(t) = xo(t,e) + ow(t) ,

If the pair (xo(t,s),uo(t,e)) gives the minimum of 3(e,x(-),u(-))

Quar EQ'le,than

L [Te,x(+),uy(t,e)] =0, (3.22)
4o 6=0

Let #,(t,E) be as defined in (3.11) then, by (3.22)
1 tf .
: I < 5O(t,£),w(t) - fx(xo(t,s),uo(t,e),t)w(t)
tO
t
- I gx(xo(s,e),uo(s,e),s,t)w(s)ds > dt
o
tf
+f < F (xy(t,e),u(t,e),t)wlt) > at =0 (3.23)
t0
where
< a,b > = aT b



( 3 A
i T 5
9 )
x1 . xn
£ = :
X .
af af
n . = ® n
3 3
L * *n J
T
alF aF
Foo= |5 o0 S
ox Ix
1
r 3
Bgl Bgl
axl an
gx = .
3gn 3gn
ax ax
\ 1
We may rewrite (3.23) as
1 i .
= I < Eo(t,e),w(t) > dt
E
tO
tf .
= - J < Fx(xo(t,a),uo(t,e),t),w(t) > dt
t0
1 tf
+ = I <zo(t,e),fx(xo(t,e),uo(t,e),t)w(t) > dt
€
tO
. tf t .
- [ ] < pttaere,tplemchglesedisedts) > as ar . (3.24)
to Yo
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We may substitute the following identities into equation (3.24)

t
f
[ < so(t,a),&(t) > dt = < Eo(tf,e),w(tf) > - < ﬁo(to,e),w(to) >

Y

te
- I < éo(t,e),w(t) > dt

o

and

tf t
I I < Eo(t,c),g(xo(s,e),uo(s,e),s,t)w(s) > ds dt
to %o

f

< Zo(s,a),g(xo(t,e),uo(t,e),t,s)w(t) > ds dt

il
Sy,
'—.:
o —————

and noting that w(t.) = 0, we obtain

o)

t
f
J < éo(t,e),w(t) > dat = L. Eo(tf,e),w(tf) >

4
t0

i

€

tf 1 T
[ e uglee 0sgee) wie) >
t

- < Fx(xo(t,e),uo(t,e),t),w(t) > bt (3.25)

23



Now, since (3.25) holds for all w(t) with the previously indicated

property, we have that

éo(t,e) = - fz(xo(t,e),uo(t,e),t)Eo(t,e)

-

%
£
S O RN RS R I LN RSP
t .
+ eFx(xo(t,e),uo(t,e),t) - (3.26)
end |
| Byltse) =0 o | (3.27)

- The existence of the derivative of Eo may be shown as in ref. 6.
We set Y(t,e) = So(t,c)/c, then (3.26) and (3.27) may be

be written as:

li'(t,_t) m - f;z(xo(tae)ﬁuo(tsF):t)‘p(t’s)

t , 5
= [ rgleaeduglte) s il edas
t

e E(x(t,e)ug(t,e),t) 5 (3.28)

¥(to,e) =04 - (3.29)

Now by {3.26), éo(t,S) exists and is finite, and hence we have that
.Eo(t,s)'is absolutely contiruous, and therefore y(t,e) is absolutely

.continuous.

5k



Now let
H(e,3(t),x(t),u(t),t} = -F{x(t),u(t),t)
+ < &(t) /e, f(x(t),ult),t) »
tf
+ I < E(S)/tz,g(x(t),u(t),t,s) > ds, (3-30)
t

where Z(t) is defined by

t

2(t) = x(t) = £(x(t),ult),b) - [ glx(t),u(t),s,4)ds.
%o
We can easily show that

te

E(c,xo(t,c),u(t),t) = [ F(x,(t,e),ult),t)at
to

LT % 2

+ = [ ||x0(t,s) - f(xo(t,s),u(t),t) - f g(xo(s,e),u(s),s,t)ds|| dt
2¢e to to

.. 2 . ff
=—fﬂ%mwlﬂ-*fuﬂWmm%mam
t ¥ _

2€ 2e
0 0
t 2
- J g(xo(s,c),uo(s,c),s,t)dsl| dt
ty

t
f .
+ [ ||f(x0(t,€),u0(t.s),t) - f(xo(t,e),u(t),t)
t

2€
0
b ' 2
+ I {g(xo(t,e),uo(t,e),s,t) - g(xo(t,s),u(t),s,t)}ds|| at
t
0
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te
- J H{e,2 (t,e),x (t,e),ult),t)dt . (3.31)
t

0

Thus, given any € > 0, (3.31) attains its infimum for cver Bxl

for ut)zuel€) of

te

[ H(e,Eo(t,e),xo(t,s),u(t),t)dt
to

attains its supremum at u(.) = uo(;,e).

Thus we have proved the following:
Theorem 2

if uo(t,c) and xo(t,e) are solutions of the e-problem, there
exists an n-vector valued function ¢(t,e), defined and absclutely
continucus on [to,tél}satisfying (3.28) and (3.29) and not |

identically zeroc on [to,tél such that

te
] H{e,% (t,a),xo(t,e),u(t),t)dt
t

0

t
£
< [ H(e,ao(t,e),xo(t,e),uo(t,e),t)dt ‘ (3.32)
t

0

for all admissible controls u(t).

We can demonstrate a pointwise form of the above thecorem as
follows:

We wish to show that
H(e,zo(t,e),xo(t,e),v,t) < H(e,zo(t,e),xo(t,s),uo(t,e),t)

almost everywhefe on [to=t£l= for all velU. We define E to be the
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subset of [to,tf] on which
H(e,8,(t,e),x (t,e),v,t) > Hle 2 (t,e),x (t,e) u (t,e},8) o

Define a new control w(t) as follows:

wit) v for t in E

]

w(t) uo(t,e) for t in the complement of E

then w{t) is an admissible control.

Now we have that

H(E,go(t,t),xo(t,ii),W(t),t) > H(E,Eo(t,e),xo(t,ﬁ),u (tse),t}

on E and

H(E,Eo(t,e),xo(t,a),w(t),t) = H(e,B (t,e),xo(t,e),uo(t,e),t)
on the complement of E, and so we have

te
I H(e,zo(t,e),xo(t,e),w(t),t)dt

o

t
f
> J H(E,Eo(t,c),xo(t,e),uo(t,s),t)dt
t

0

which contradicts (3.32) unless E has measure zero., Thus, for

any v in U
H(E,Eo(t,i‘.) sxo(tﬁe),uottsﬁ)st)
3 H(;,zo(t,e),xo(t,s),v,t)

almost everywhere on [ﬁo,tf].
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3.4  The Limiting Case

We now examine the behaviour of the e-maximum principle as €
goes to zero. As before, we assume the existence of the solution
to each e-problem.

Let {Ek} be a sequence decreasing monotonically to zero.
From Theorem 1 we know that

te

lim
k4o

E(Ek,

xo(-,e ),uo(-,ek)) = inf fF(x,u,t)dt 3

te
where the infimum is taken over all absolutely continuous x{t) and
admissible controls satisfying (3.3) and (3.4).
We assume that there 1s an admissible control uo(t) such that
for all t in [to,tf s

lim _
K-+ uo(tie ) = uo(t) -

Let x(t,sk) be the solution of (3,3} and (3.4) with control

uo(t,e }. How from (3.17) we see that the sequence {nk(t)}, where
nk(t) = ||X0(t95k) = x(taek)!|s

converges to zero uniformly on [to,tf] as k +» =,
All convergent sequences are bounded. Let A be the bound of

{nk(t)} for all t on lto,tf].

~

We may write x(t,e } as

x(t,ek) = J x(s,ek}ds + %,

t g
= J {f(;(c,e ),uo(a,sk),u) + ! g(x(s),u(s),s,o)ds}do + Xo
% o
58



Therefore

[1xttae M1 < gl

t g
+ l ||f(;(c.ck),u0(0,sk),o) +t£g(;(s,c ),uo(s’ck),s’c)dslldc

0

t

< Hlxgl] +[ [ £(x(0,€,),u,(0,e,),0] a0

)

t o}
+ J f |Ig(x(SSEK)Suo(ngk),s,c)||ds do .
t t

0O 0

But we have the following!

t t
I f Helxlo,e ) e ,e, ),048) | {as a0
t

o ¥

t .
< J Tllg(x(@,ek),uofo:,ek),:_s;s)I|ds do

to a
for td NI .
and
t (o]
J f | lelx(s,e ),uo(s,c ),s,9)]|ds da
t t

SO Wwe may write
t
[xee ] [ 12Gto,e) (006,00 o +

%o

o9



t‘ ‘bf .
[ [ 116Gt gm0l as as + 115l
t +2

0
Using essumptions (3.6) and (3.7) in the above expression
. t _ t
[ |x(t,e )| s M J'Hx(cr,ck) +1]|ac + MI [|x(ere,) +1]]ao
tO ) to'
‘ t
or ||x(t,ek)|[ < 2M(t . - t5) + 2M I ”x(c,ek)lldg.
: . to
By Gronwall's inéqua.lity‘:
. . . B t —_—— e e -
| “x(t,ek)] |2 214(1;_ - to)epr 2Mdo
%

and so ||;c(t,ek)|| is certainly bounded for all t in [to,tf:], by
B.s'ay. | | .

- Thus from theltriangula.r ine.quality
[rgttaey )l < 113+ [xgleae,) = Xt

ire have that

||lx0'(t,‘ek)|| £A+B

for to ¢t s tf and for all k.'

Thus the seq_uence of functions X4 (t,e ) is uniformly bounded

on L‘to,t] In other words, each element of

o 1, .
xo(t,ek) = [xo(t,!-: ), « *+ 2 e s 3 n(tg )]
is wniformly bounded.

We proceed now by showing that the family {xg(t-,ek)} indexed
by k is equicontinﬁous. " In order to show equicontinuity, we first
show that

ta '

> S -
NIEXTRNITER®
to _ ' ' :

is . Bcunr.tul. .
' 60



We may write

xoltse ) = B(t,e ) + flxy(t,e, ),u lt,e, ),t)

t
+ f g(xo(s,ek),uo(s,ek),S,t)ds .
t

0O
then |
ol T € HBgtese )]+ helxg(t,e,) u0(t06,),t)
t
+ f g(xo(s,ek),gogs,ck),s,t)ds||,
%o
therefore
. 2 2
gt 11 € Hgleell 21 8gteo)l | x
t
llf(xo(t,sk),uo(t,ck),t) + { g(xo(s,ek),uo(s,ek),s,t)ds]|
to
t 2
+ ||f(x0(t,ek),u0(t,ek),t) + f g(xo(s,ek),uo(s,ek),s,t)dslI.
to
But
2|18t e )| £lxg(tae Yuylt e )st)
t 2
N f Blxgls e, ) suglss, )ss,0)ds | < [1By(t,e)] |
o
P 2
+ ||f(x0(t:£ )’uO(t’Ek)’t) + I g(XO(S,Ck):UO(S:EK),S,t)d’é'| -
t
O
. 2 2
lence I|x0(t,e M o< 2[]|Eo(t,ek)[| + ||f(x0(t,ek),u0(t,ek),t)
t 2
+ J g(xo(s,ek),uo(s,ek),S,t)dSI|.].
t0
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Integrating giﬁes

t . t :
f . 2 -t o

[ Hirgteae 112 a6 < 2 [ 118yce,e 112 et

tO : 'I.'.O

tf
+ 2 [l |f(xo(t'ek)’u0(t’ek)’t)‘-“

o

t
+ J g(xo(s,ck),uo(s,ek),s,t)dsl|2 a
t : ‘

0
i.e.
t t t
f ‘ g ) £ '
j 3 (tae )12 at a[ |18, (t,e )12 ot + 4 J B | x(tae) |
t t t

) o - 0 5
' - \ : + 1}°at

'by assumptions (3. 6) and (3-7)
But we have already proved that X, (t € ) is bounded, therefore
“we can find a number a such that .

t

£ o |
I M?{llxo(t,ek)|| +1%t g a .
Yo S
St . _
| £ » |
We know that J [18,(t,e ) [["at is a convergent
t . .

0

. sequence and hence has an upper bound, say B, thus

t

£ »

I ||x°(t,ek)l| dt s ba + 28
t

0

and hence is bounded,

We now proceed to show equicontinuity.
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Recall the Schwarz 1inequality

b o B b
2 2
| J fl(t)fg(t)dtl < J £1(t)at I ro(t)at |
a a a
Now we can write
2 t2 2
[xgleye) = xpltped I = 11 [ apte,edacl]
t

and hence by the Schwarz inequality with

o]
fl

1 | io(t,sk)ll and f, =1 ,

2
leo(tl,sk) - xO(tE’Ek)II

2 % 2
< I dt I [ixy(t,e )|} at
S |
t 2
g (ty =) J |[xp(tse M et
21
Let the g bound for
te . 2
[ ]lxét,sk)|| dt  be A,
o
then for each i, 1<i<n

|x1(tl,ek)_— A O IPRICHER (3.34)

Thus, given any n > 0, we may choose & = n/A so that for all
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t,,t, satisfying ltl - t2| <‘6, we may write
|xi(t e ) - x*(t,,¢ )| € AT, - t,| £ An/A
1k 2’k ~ 2 '~ )
i.e.
i i
| x (tl,ek) - x (tzek)| £n,

Hence, {xl(t,ek)] is an equicontinuous family for all i.
Hence, by Arzela's theorem, [xl(t,ek)} is relatively compact and
therefore contains a uniformly convergent subsequence, converging

to a function x;(t)w\mo}\ s 'conﬂ'n'u,.oqs."' R

Let '

T
xo(t) = |xé(t), e e xg(t)l .

We assumed at the beginning of section 3.4 that there is an

admissidble control uo(t) such that for all t in ['to,tf]

lim v (t,e ) = v (t).
ro O ©
From (3.19) we see that
lim ﬁo(t,ek) =0 almost everywhere on [to’t'f] .

koo

This is equivalent to

kreo

t
f
- I g(xo(s,ak),uo(s,e ),s,t)ds| =0 (3.35)
t

.0

almost everywhere on [to.,t f] .

an



But

lim X
k»* 70

1
kd
—
[
s’

(t,e ) =

) (3.36)

linm -
v uo(t,e ) = uo(t)

By the continuity of f(x,u,t) and g(x,u,s,t) and

by (3.36) we may rewrite (3.35) as

iim
ko

xtag) = £(xy(t),u (t),t)

t
+ [ alxgtsd ugle)ssedas (3.37)
%o
Now, since xo(t,sk) is absolutely continuous, we have that

t
xo(t,ek) = x5+ J io(s,ek)ds . (3.38)

%

Taking the limit of (3.38)

xo(t) =X, + iif J io(s,e Yds . (3.39)

We have already shown that

tr 2
[gtee ot = 8,

t

where Bk is finite.

Hence & constant function Yk can be found such that
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i i
gt )l < vy | det, 4]

where y; is the ith component of the n-vector Yk'

Hence by Lebesguels dominated convergence theorem, we may

write (3.39) as

t
xO(t) = x4 * J ii: io(s,c ) ds {3.%0)

o

Hence, from (3.37), we may write (3.L40) as

t
xo(t) N J f(xo(o),uo(a),o)do
t

0

t
3! ;
t

a
J glxy(s),u (s),s,0)ds do | (3.11)
t .

o 0

But (3.4l) implies that

t
io(t) = f(xo(t),uo(t),t) + I g(xo(s),uo(s),s,t)ds (3.42)
‘o
almost everywhere on [to’tfl'

Also, since

ke og llzo(t’sk)|| @t = 0 L

t
lim 1 Jf 2
kK t

0

we may write

lim = _ .

= J(xo(-),uo(-)) = inf J(x(-},u(+)) _
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Now, by continuity properties

Hn Tl (tae, ) aug e, ),8) = £2lx(t) up(e),8)

lim T T
o BylXgltae, )ounlt e ),t,5) = g (x (£),u (t),t,s)

and

lim
ko

Fx(xo(tsc )suo(t)c )’t) = Fx(xo(t),uo(t)’t).

k k

Hence, from (3.28), there exists a y(t) such that

m w(te) = u(t)

where

w(t) = - fi(xo(t),uo(t),t)¢(t)

t
- J gi(xo(t),uo(t),t,s)¢(s)ds + ¥ (x (t)u (t),0)  (3.43)

to

for almost all t on [to’tf]'
In addition, y(t) satisfies
= 0 (3.44)

Wow from (3.30)

lim ,
oren H(ak,ﬁo(t,ek),xo(t,ek),u(t))

t

£
= < w(t),f(xo(t),U(t),t) + I g(xo(t),u(t),t,s)ds
t

+ F(Xo(t),U(t),t) > )
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and

lim
Jre0

H(ek,ﬁb(t,ak),xo(t,sk),uo(t,ek))
tf
= < b0, Elxg 8D, (60,8) + | alxg(t)up (48,9005

t

+F(x0(t),u0(t),t) >
Thus the e-maximum problem, in the limit, becomes

max

uel H(p(t),x(t),u,t) = H(w(t),xo(t),uo(t),t)

where $(t)} is as defined by (3.43) and (3.44).
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3.5 Gradient Methods

The development of numerical methods for finding the optimal
control of integro-differential systems is similar to the discus-
sion in section 2.2 and following sections. The calculation of
the gradient to the Hamiltonian is somewhat different and so a

full discussion of the steepest descent method is given here.
We consider the following system:

x(t) = £lx(t),w(t),ult),t) t.ogtgt, . - (3.46)

where x(t) is an n-vector, u{t)} an r-vector control function and
w(t) is a p-vector defined by
t
wi(t) = J gi(x(s),u(s),s,t)ds lsigp , {3.47)
t

0

We seek to minimise the function

J = G{x(t,),t.) (3.48)

where tf is the known terminal time. We also have the initial
condition

x(ty) = x, (3.49)

where Xy is known.

In the usual way, a nominal control u*(t)} is chosen and the
corresponding response x*¥(t) is derived from integrating (3.46).

We now seek an incremental control Su(t) such that the control
u(t) + Suft) gives an improved value for J.

Equation {3.46) is linearised about the nominal pair (x*,u*)

to give
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§x = A(t)6x(t) + B{t)su(t) + C(t)su(t) (3.50)

with Gx(to) =0 ,
where _—
[ 3y af
Alt) = —— —
Bxl 8xn
; (> (®), Wt (1) W () 1)
af af
_n __n
L Bxl X J
[ af se. ) T
B(t) = 1+ .. .2
Ju Ju
B N ()c*({],w*({),u*(t)‘{)
3ul aur
[ 5f ar. ) "
clt) = i S § ,
o, swy | (ot (), w¥(b) W) )
E L Bwl W

Also we have from (3.47) that, {p gu-s‘i orcder m $x, Su

t
dw(t) = f {Fl(t,s)éx(s) + Fe(t,s)éu(s)}ds (3.51}
t

0

TO



3 g
1l . 1
where F {t,s) = —
l )
3x Ix %
2 A (J((S\th*(s\,S,t)
9 9
% . %
\ Bxl axn J
[ 3 3 ) ¥
g g
Fe(t,s) - e T .
Ju du
1 r
: : (x*@[\f(éxs,t)
9 d
gy | g
\ Bul au J

Using (3.51) in (3.50) gives

dx(t) = A(t)éx(t) + B(t)su(s)

t
+ [ {Sl(t,s)éx(s) + 82(t,s)6u(s)}ds , {3.52)
%o
where
Si(t,s) = C(t)Fi(t,s) i=1, 2.
We now introduce the adjoint system of equations:
t.
. T £ o
AMt) = - AT (L)M(t) - J 8,(s,t)x(s)ds tg St &ty (3.53)
t
with
_ 3
At) (tp) .
ax

Premultiplying (3.52) by AT(t) and postmultiplying the transpose

of (3.53) by éx(t):

Tl



AT(e)ex(t) = AT (e)at)exit) + AT(£)B(t)sult)

t
+ AT(t) f {8, (t,s)éx(s) + 8,(t,s)0uls)}lds, (3.54)
t
0

and

%) T i T
A (t)ex(t) = -2 (t)Alt)éx(t) - f A (s)Sl(s,t)dx(t)ds . (3.55)
_ i :

Adding (3.54) and (3.55) .

ot

T

a [XT(t)ax(t)]= AT(t)B(t)au(t) - [ AT(s)sl(s,t)ax(t)ds

dt -
t

t
+ J lT(t){Sl(t,s)Gx(s) + S2(t,s)du(s)}ds . {3.56)

to

Integrating (3.56) between t, and t, and recalling the identity

£
te t te to

[ f P(s,t)ds dt = f J P(t,s)ds dt |, (3.57)
to to tO t

we may write t

T T o

A (tf)éx(tf) = J M {t)su(t)dt
ty

where

t
, f
M(t) = BY(t)A(t) + f s;(s,t)k(s)ds . (3.58)
t

But we see that the first order change in J is given by

ag =[28* }t Jox(t.) = AT(t_)6x(t.)
Ak X\Le! 7 £ £y

80 we have
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t
£ g :
AT = J M {t)éult)at . {3.59)}
t

0

Thus we see that if we choose an incremental control
sult) = - eM(t),

and € is chosen small enough to ensure the validity of the lineari-
sation (3.52), then there will be a decrease in the performance
index J.

The discussion on methods of choosing € at the end of section
2.2 again applies here. Similarly, the conjugate gradient method
can be developed in a similar fashion to section 2.3 and so no
further discussion will be given here. We will continue by

deriving a second order method for integro-differential systems.

3.6 Second Order Methods

We will extend the second order methods, described in section
2.5, tointegro-differential systems. Such an extension has been
given by Connor and Hood [38], but we consider here a more general
system.

We consider the system represented by the integro-differential
equation:

§c(£) = £x{t),w(t),ult),t) t. € tsgt (3.60)

with

x(to) = x specified, and where x{t) is an n-vector,

0

u{t) an r-vector control function and w{t) is as defined in (3.47).
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It is desired to minimise the functional

t
f
5 = Glx(t,) b, +[ Flx(t),u(t),t)at . (3.61)

%

It is assumed that each element of u{t) is measurable and
square integrable on [ﬁo,té . Moreover it is assumed that
£(x,u,t), a{x,u,t,s) and F{x,u,t) are defined and continuous for
all x in Rn, u in Rr, w in RF ana s,t 1n R and have continuous
first and second derivatives. The function G(x,tf) is assumed
continuous for all x in K" and has continuous first and second
derivatives.

We adjoin the dynamib constraint (3.60) to (3.61) in the

usual way and we seek to minimise the functional

t
¢
Iy = Glxlt),t.) + J [F(x(t),ult),t) - A (8)x(t)
Yo
+ AT(t)f(x(t),w(t),u(t),t)]dt . (3.62)

Taking variations £(t), n(t} in x(t), u(t) respectively gives

to second order in the variations :

A3, = <G (x(t.),t.),E(t.)> + 3<G (t)e(t.),e(t.)>

t
f
+ J {<Fx(x,u,t),s(t)> + <Fu(x,u,t),n(t)>}dt
t

0
t t
r o ' T
+ I {<fx(x,w,u,t)k(t),£(t)> + J <Sl(t,s)A(t),£(s)>ds}dt
B o

h



2

o ~————

t
£ 7 T
+ {<fu(x,w,u,t)k(t),n(t)> + | <8 (t,s)x(t),n{s)>ds}dt
: .

0 0

tf
e 1 [ e Gonnnet) e v
t

0

<wa(x,w,u,t)Gw(t),GW(t)> + <Huu(x,W,u,t)n(t),ﬂ(t)>
+ 2<qu(X,W,u,t)n(t),£(t)> + 2<Huw(xswsust)5w(t)sn(t)>
+ 2<H_ (x,w,u,t)8w(t),g(t)>}at - <A(tf),£x(tf)>

tf
+ [ <it),ex(t)>at (3.63)
tO
where
H(x(t),w(t),ult),t) = Flx(t),u{t),t) + AT (t)e(x(t),u(t),ult),t)

and w{t), Sl(t,s) and S

2(t,s) are as defined in (3.51} and (3.52).

We may simplify (3.63) further by requiring that:

t
f
Alt) = - Fx(x,u,t) - fi(x,w,u,t)l(t) - [ Sf(s,t)h(s)ds {3.64)
t
and
Meg) = 6 (x(tg),t ) o (3.65)
Using {3.64) and (3.65) in (3.63), we see that we have to
minimise
tf
Ay, = 3<G (£ )E(t,),E(t )> + J <¥_(x,u,t),n(t)>at
t
0

5



t t
f o
+ f {fi(x,w,u,t)l(t),n(t)> + J <g_(t,s)r{t),n(s)>ds}at
t ' t

o
0 0
e
E Y RTINS RN
%o

+ <wa(x,w,u,t)6w(t),6w(t)> + <Huu(x,w,u,t)n(t),n(t)
*2<H (x,w,u,t)n(t),e(t)> + 2<Huw(x,W,u,t)6W(t),n(t)>

+ 2<wa(x,w,u,t)6w(t),E(t)>}dt (3.66)

subject to

E(t) = fx(x,w,u,t)i(t) + fu(x,w,u,t)n(t)

t
+ [ {Sl(t,s)s(s) + 82(t,s)n(s)}ds {3.67)
t

0
(see derivation of equation (3.52))

and

s(to) =0 . (3.68)

From (3.51}

t
ule) = [ (5 (6,0)e06) + F(e,00n(e s
t

0

But we can show that we may write the solution, £(t), of (3.67)

and (3,68} as

16



t
g(t) = J M{o,t)n(o}do
t

0]

where M{o,t) is an n x m matrix (see appendix B).

Therefore
t s

swit) = I {Fl(t,s) J M(o,s)n{o)do + F2(t,s)n(s)}ds
to tg

which we may rewrite as

swit) =

ot

t
([ B (6,00 H(s,0)a0 + F,(t,)0n(s) as. (3.69)
o B

We write this in coperator form as

sw(t) = Lonft] | (3.70)

In a similar fashion we may write

e(t) = Lyalt] | (3.71)

If we let

G(t) = Hxx(t) + Gxx(tf)a(t-t )

T

where 8(t) is the Dirac function, then we may rewrite the problem

defined by (3.66)-(3.68) as:

Find the n{t), t, €t & t_, which minimises

0 £’
280, = | (R + Huu)n,nl + 2] 0| (3.72)

17



where |- s " denotes the inner product in the control space.

defined by
t ]
|, 8] = I a (t)B(t)dt (3.73)
to
and where
- *“ ¥ *
R = L¥GL) + LEH L, + 2L¥H L, + 2HuxLl + '2Hqu2 ; {3.74%)

and L* denotes the adjoint operator of L with respect to the
inner product (3.73), and is derived in appendix C.

We can now follow the arguement given in Chapter 2 from
equation (2.49) onwerds and derive the two second order techniques

defined by:

- . "1 _ 2 _l »*
Moy = CHH zﬂuu(R + R )nn (3.75)
and
_ . q=1r 1 - 3
Ny =0~ By, * o1 | [, + 3(P + p¥)n | {3.76)

where P=R+1H
uu

78



CHAPTER IV

Some Other Hereditary Systems

L1 Introduction

We give here details of some results on hereditary processes
vhich are not covered by the earlier chapters. Probably the most
important of these systems are neutral systems which, as we saw
in chapter 2, arise naturally from applying Jacobson's transforma-
tion technique to time lag systems. Several results on neutral
systems have been presented by Connor. In [h8] he derives a
gradient method for neutrﬁl systems, and in [SQ] gives the results
of applying this gradient method to some examples of neutral
systems, In [51], an extension of the e-method to neutral systems
is given and in [52] the time optimal control of neutral systems
with amplitude and rate limited controls is considered.

Aggarwal [55] discusses the feedback control of linear systems
with distributed delay. He shows that this type of system can be
used to represent linear time lag systems. He goes on to compare
his feedback control for linear time lag systems with optimal
controls obtained numerically from gradient type methods.

An extension of the gradient method to systems governed by
integral equations has been given by Connor and Hood [Sh]. The
problem considered is as follows:

find the control u(t) minimising

Jd

te
f F(x(t),u{t),t)dt (4.2)
t

0
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subject to

t )
d(t) = £(e) + [ Kt,x(s),uls),0)as (v.2)
t

0

where the final time tf, is specified by the scalar stopping

condition

tf
[ G(x(s),u(s)s)ds = 8 , (4.3)
“o

vhere B > O is a specified constant and G(x(s),u{s),s) is positive
for to < 5 < o, The state and control are assumed to be scalar,

slthough the extension to vectors is straightforward, and f(t),
3K aF

K{x,u,t), "é-ifx,u,t), F(x,u,t ),—a—x-(x,u,t), G{x,u,t) and

3G . . . .

sg(x,u,t) are all conslidered to be continuous in all their

arguments.

Integral systems arise naturally from integro-differential

systems in the following way:

consider the scalar equation

x(t) = £(x(t),u(t),w(t),t) (4.4)
x(to) = X,
and t
w(t) =[ g(x{s),uls),s,t)ds . (4.5)
t

0

We may write (b.Lk) as

t
x(t) = Xy * J f(x{s),u(s),w(s),s)ds (4.6)
t

0
80



Equations (k.5) and (L.6) are a pair of coupled integral equations
and the numerical techniques for the solution of integral equations
may be applied. Mocarsky [55] examines the convergence of step by

step methods of solution of systems of the form:

t
wit) = I g{x(s),s,t)as (4.7)
o
t
x(t) = x; +f #(x(s)w(s),5)ds o - (1.8)
o

Obviously systems of ordinary differential equations may be

written in the form of an integral equation.

4,2 The gradient method for systems governed by integral equations

Consider the problem of finding the control which minimises

tf
J = f F(X(t)gu(t)st)dt (h'g)
o
subject to "
x{(t) = £(t) + J K(t,x{s),u(s),s}ds (4.10)
o

where f{t) is continuous for ty <t st and F(x,u;t), K(t,x,u,s),

f

2K and 8 are continuous in all their arguments. We consider

ox Ix

the case of the terminal time, tf, being fixed. The state, x(t),

is an n-vector and the control, u{t), is an r-vector.
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We take a nominal pair (x*,u*)} and consider perturbations
{e(t),n({t)) about this nominal trajectory.

Linearising equation (4.10):

t
g(t) = f {A{t,s)e(s) + B{t,s)n(s)}ds (h.11)
t

0

3K,
where A(t,S);- 1/8xj ('t,}x* (5)’ u*(S), S)

Blt,s) = *‘Ki/a\u‘j (L;x*(sltﬁ?(sls)

and A and B are evaluated along the nominal trajectory. Defining

the adjoint variable, A(t), as the solution of

to .
Me) = F (t) + I A"(s,t)x(s)ds (4,12)
t

we see that the first order variation in the performance index
due to the perturbation (&,n) is given by
t
£ v
ag = | {F (e)e(t) + F (t)n{t)}lat . (4.13)
t

0

Multiplying (L4.11) by AT(t) and integrating over [to,th

t t %t

fT bl T

I A (t)e(t)at = I f {» (t)a(t,s)g(s)
ts o %o

+ AT(t)B(t,s)n(s)}ds at . {L4.14)
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Multiplying (4.12) by £(t) and integrating over [to,t£|

f te
[ AT(£)E(t)at = f {Fitt)i(t)
t

o 0

t
f
+ f AT(t)A(s,t)E(s)ds}dt. (4.15)
t

0

Subtracting (4.14) from (4.15) and using the following identity

t. 0t

£ T
I f A (t)alt,s)e(s)ds at
t. t

o 0
te to .
= [ J A (s)A(s,t)e(t)ds dt (4.16)
ty t
we have
t t, t
£ o £ T
f Fx(t)g(t)dt = I f A {t)B{t,s)n(s)ds dt j (s
o *a %o

so by substiﬁuting (4.17) into (L.13) we have

t t
f
AJ = [ {Fi(t)n(t) + f AT()B(t,5)n(s)as)at | (4.18)
£ i

0 0

or using the identity (4.16)

t t
f £ o
AT = I {Fu(t) + f A (s)B(s,t)dsin(t)dt (4.18)
t t

0
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and so, in the usual manner, we have the direction:

t
T o
- {Fu(t) + f B {s,t)r(s)as}
t

which
as the direction of steepest descent [/ can be used to generate

either a conjugate gradient method or a steepest descent method

as described in the previous chapters.

4.3 The Gradient Method for Neutral Systems

This will not be described in detail as it is basically
similar to the gradient methods for time lag and integro-differ-
ential systems, although the adjoint system is unusual.

The problem considered in [48] is that of minimising the

scalar performance index

3= ¢(xlty)t ) (1.19)
where
x(t) = £(x(t),x(t=1),%(t-1)u(t),t)  t5 &St (k.20)
x(t} = X(t) tyT st sty

where 1 > 0 is a known constant, X(t) is continuously differentiable,

and the final time tf is defined by the scalar stopping condition

afx(t e ] = 0. (4.21)

The state equation is linearized about the nominal control

and state in the usual manner to

E(t) = A (£)a(t) * A ()E(e-T) + Ay(£)E(t-T) + B(t)n(t) (h.22)
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where

af.
R | .
)= e ), o0 (), %t (-, wi) )
J
[ ar. ) - N
ayt) = | 2 v ), e (-0, 5 (-0, ) )
ax.(t-t)
L% )
( ar, ] ) ) )
Ay(t) = . (xyfwle(erhm:[&-Llu{Lt/
ox. (t-1) :
S )
and . .
Be) = i (P, X -, (), w4,
auj(t)

Al, A2, A3 and B are evaluated along the nominal trajectory.

We define the adjoint system of equations as:

A(t) = = ATCA(E) = AZ(E+OA(L4)
+ [Ag(tﬂ)l(tﬂ)] . (k.23)
dt

We define l¢(t) to be the solution of (k.23)

0 t >ty {4.2h)

A

A =
W) = 2

§
——
\—-———L—-’

t=

and kn(t) to be the solution of (4.23)

i
o
o
v
[

it
with Aﬂ(t)

An(tf) (4,25)

i
J—
[+2) W
E
LM bl

-]



From equation (4.22) and (4.23)

4 [‘ATtt)s(t)] = 2T()B(e)n(t) + p(t)E(t-1)
at L J

+ plt+r)E(t) (4.26)
where p¢(t) = Ai‘(t')A3(t) .

Integrating (4.26) we obtain

t
f
AT(tf)a(tf) = J AT(£)B(t)n(t)dt
t

0]

a_
dt

[p(t)e(t-1)]at (4.27)

-+
cHe——
[

0

But we see that the first order change in the performance index
is

T
pp = 3 §x 4 b0t
ox

and the first order change in the stopping criterion is

T
AR < A 8x + QAtf

ax

But we require AR to be zero so we may write

T

A = [391 - ] Gx(tf) . (4.28)

ax

el
o lm
E] o

From our definitions of A¢(t) and An(t) we may write (4.28) as

. T

A¢ = [A¢(tf) —% Ag(tr)] ox(t,)
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or by (4.17)

s te
Ap = I Agg(t)B(t)n(t)dt + f i; [p¢n(t)£(t-t)]dt (4.29)

Y ts

vhere
A¢Q(t) [k¢(t) :

A (t)
e, 8 I

f

Connor [hB] derives his control perturbation from equation
(%.29), and considers the possibility of discontinuities in x(t),
and hence in the second integral on the right hend side of
equation (4.29). The second integral may however be detefmined
as a function of n{t) by writing the solution of (4.22) in terms
of the transition matrix, as is done in the second order methods

deseribed in chapters two and three.
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CHAPTER V

Results and Conclusions

5.1 Introduction

We give here details of the application of some of the
algorithms described in earlier chapters to particular optimal
control problems. The numerical work has beeﬁ done using the
Loughborough University I.C.L. 190LA computer.

We will consider first the results obtained for time lag
systems. For these systems, a fourth order Runge Kutta integra-
tion technique was used to solve the differential-difference
equations which occur in the algorithms. A convergence criterion
was not used in these examples. Instead, the algorithm was run
for a number of iterations large enough to guarantee convergence.
This makes comparison of methads simpler.

Unless stated otherwise, steepest descent refers to the

dimensional
technique incorporating the one'( search for the optimum along
successive directions of steepest descent. The conjugate gradient
method with restart has restart after five iterations. 1In some
problems convergence has been obtained in under five iterations

or the restart has given similar results to the conjugate gradient

method and so the restart results are not given.
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5.2 Differential-Difference Systems

Problem 1

Minimise

= 9 (6g) + 6x (b duy(t,) + Bt
tf
+ I [:10x§(t) + 1oxg(t)+ w? ()] dt (5.1)
0
subject to
x (£) = x,(t) + x,(t-3) - ~(5.2)
%, (8) = (1 (8))x,(6)=x, (£)=x, (t-3)+ult) (5.3)

with initial conditions

x (t) =1 ~f gt g0 (5.4)
xe(t) =0 -3 £t &0 (5.5)

and the final time is given as:

This example is from McKinnon who used his own second order
method to find an optimal control for this system. For compari-
son the steepest descent and conjugate gradient methods of
chapter 2 were applied to this problem. All used an initial

control

u{t) = 0 0

A
(o4
A
[
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Iteration Value of Performance Index J
Number McKinnon's Method | Steepest Descent | Conjugate Gradient
o 42,76 La.76 42,76
1 11.8996 13.667 13.667
2 11.70 12,957 12,82
3 11,683 12.536 11.725
4 11.683 12.225 11.696
S - 11,821 11.671
10 - 11.693 11.671

The optimal trajectory given by the conjupate gradient method

is shown in fig, 1,

Problem 2

Minimise

J = 9xf(tf) *6x (to)x,(t,) + 3x§(tf)
N 2 2 |
I [10xT(t) + 10x5(t.) + u (t)]at (5.6)
0
subject to
X (t) = x,(t) + x,(t-}) (5.7)
x,(t) = =x5(t) = x,(t-3) + u(t) | (5.8)

and the 1nitial conditions

1 -Jstgo (5.9)

1

xl(t)

0 -lgtgo (5.10)

xg(t)

with final time specified:

a0



The results of applying the steepest descent and conjugate
gradient methods to this problem may be summarized as .follows

for an initial control u(t) = 1.

Iteration Performance Index J
Number Steepest Descent | Conjugate Gradient
0 L0.6289 50.6289
1 10.6656 10.6656
2 10.4031 10.3821
_ b 10.3875 10.3658
6 10.3661 10.3658

The optimal trajectory calculated by the conjugate gradient

method for this problem is plotted in figure 2.

Problem 3
This is the same as problem 2 but with the additional con-
straint:

x,(t) 3 -0.3 (5.11)

This problem is also discussed by McKinnon [27] and he uses
his second order method to synthesize an optimal control for this

problem. The inequality constraint (5.11) is allowed for by adding

& penalty term

2w

x.(t) |
I 2 dt (5.12)

to the performance index {5.6)}.
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The computation is gtarted with w = 2 increasing the value
to w = 3 after three iterations. The constraint imposed by the
penalty term (5.12) is in fact

0.3 ¢ xz(t) £ 0.3

but the upper limit is not approached.
The conjugate gradient and steepest ascent methods were used
on this problem with the same penalty term.

From an initial control

the following results were obtained.

Iteration Value of Performance Index J
Number MeKinnon's Method | Steepest Descent | Conjugate Gradient
0 19.0C:0 19.cce 19.¢n
1 16,0796 12,7620 12.7620
2 12.2832 12.513 12.4991
3 12.0610 12.2863 12,2051
i 12.0202 12,1682 12.1187
5 12,0187 12.0831 12.0172

The optimal trajectory pgiven by the conjugate gradient method

for this problem is shown in fig. 3.

An alternative approach is to apply Jacobson's transformation

technique to this example. The transformed problem becomes: minimise

_ .2 2
J = 9xl(tr) + 6xl(tf) + 3x2(tf)

t
T

+[ 0x(8) + 1055 (8) + Gegltdm(e) + x,(8) +xy(e-3))7 et (5.13)

0

subject to



. il(t)

;2(t) x3(t)m(t)

x3(t)

m{t)

with initial conditions:

and

The control u(t) in the untransformed

m(t) by:

The results for the transformed problem, starting with initial

x{t) = 1.0
xa(t) = 0.0
x4(t) = /0.6
t, =1

u(t) = X4

control m(t) 1, were:

xe(t) + xz(t-é)

-3 21t s0
1

-5 £t 20
1

-2 £t £0

{tim(t) + xg(t) + x,. (t-3)

2

problem is related to

Iteration Performance Index J
Number Steepest Descent Conjugate Gradient |With Restart
0 66,1964 £6.196k 66.196k
2 11,4846 11.5006 11.5006
4 11.2887 11,2851 11.2851
6 11.2714 11.2713 11.2710
8 11.2690 11.2661 11.2657
10 11,2673 11.2654 11.265k

The optimal trajectory calculated by the conjugate gradient

method is shown in figure h.
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The interior penalty function technique was also applied to
this problem by adding a term

tf .
J —f 4 (5.17)
0

X t) + 0.3

to the performance index (5.6). Care had to be taken, when this
technique was used, that the constraint boundary was not violated
between time step points. It was thus necessary to monitor the
steps taken along each search direction. Because of this, it was
pointless using a one dimensional search for the optimum along

each of the search directions., Consequently only one step was

taken along each search direction unless the constraint was violatéd
or the performance index increased in the value. The step length
was repeatedly halved until the constraint remained unviolated and
the value of the performance was decreased.

The results obtained with u{t) = 0O

Iteration Value of Performance Index

Number e = .1 e = .01 € = .001 e = ,0001
0 19.3333 19.0333 19.0033 19.0003
1 1L.9376 12.7793 12,464k 14,8642
2 1h.6543 12.77k2 12.4121 12.8159
3 14.6179 12,7713 12.4028 12,3433
Y 1h.shl 12.6893 12,3648 12.285k
5 14,0770 12.4689 12,3535 - 12.2756
6 13.9376 12.L4385 12,3138 12.2546
T 13.6977 12.3570 12,3099 12.0888

The optimal state and control trajectories for e = ,0001

are shown in Tigure 5.
9l



Finally, the exterior penalty function technique was applied

to this problem. A term

e
J S(xz)(xe(t) + 0.3)2 dt (5.18)
0
whare
S(x2) =0 xg(t) +0.320
L
S(xg) = 10 xe(t) +0.3<0

was added to the performance index (5.6}.
With the exterior penalty function, we do not need to monitor
the constraint boundary; consequently the steepest descent and

conjugate were used with the following results:

Initial control = O

Iteration Value of Performance Index
Number Steepest Descent | Conjugate Gradient | With Restart
0 19.000 19,000 19.000
1 15.515 15.515 15.515
2 13.337 13.755 13.755
3 12.803 12,728 12.728
4 12.k29 12.338 12.338
5 12.246 12.198 12.198
6 12.202 12,179 12.175
( 12.185 12.176 11.868
8 12.018 12,173 11.7k2
9 11.946 12.168 11.669
10 11.940 ) 12,158 11.6L40

The optimal trajectory generated by the restart method is

shown in figure 6,
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Problem 4
Minimise

3= 6k () + 2x (6 )xy(t ) + xo(t)

£firetr

t
£ .
+I in(t) + xg(t) + u2(t)_]dt

0

subject to

"

x, (€)= x,(t) + x,(6-4)

xo(t) = (1-x5 (£))x, (£)-x; (£)-x (£-1)+u(t)

with initial conditions

xl(t)=l.0 -2 $t<0
xz(t) = 0.0 -1 £t <0

and the state variable inequality constraint

x2(t) 2 0.5 - 2.0(t—l%)2

The final time is specified

Using Jacobson's transformation technique, this problem was
transformed to:

Choose the control m{t) minimising

2
2('cf}

J = 6{(1;1,) +2x) (8 )x, () + x
tf

+ I [ﬁi(t) + xi(t) + ug(t)]dt
0

subject to
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xa(t) + xg(t-é)

“L(t-1}) + x3(t)m(t)

1

m{t)

(5.2h)
(5.25)

{5.26)

with initial conditions

= "y <~
xl(t) 1 $t <0

= "'1l\ S
12(t) 0 3€t<0
x3(t) = 2/2 -3 <t<0

where the control u{t) of the untransformed problem is given by

u(t) = xl(t) + xl(t—s) ~h(t-13) + x3(t)m(t) - (1-x§(t))x2(t) (5.27)

The results obtained may be summarised as:

Initial control mi{t) = 2t-3

Iteration Value of Performance Index

Number Steepest Descent { Conjugate CGradient | With Restart
0 33.9375 33.9375 33.9375
2 12,7006 12.8637 12,8637
b 11.50hk 11.6679 11,6679
6 11.49%9 11.2199 11.19k45
8 11. 4956 11.2135 11.1908
10 11.4955 11.2111 11.126k
12 11,4954 11.2038 9.8576
1k 11.0505 11.1894 9.8548

The optimal trajectories generated by the steepest descent

and conjugate gradient with restart are shown in figures T and 8.

The interior penalty function technique was also applied to

the problem.

The dynamics remained as defined in equations (5.20)
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and (5.21) but a penalty term,

€

xe(t) - 0.5 + 2(t - 1.5)2

was added to the performance index (5.19).
A single step steepest descent method was used on this problem,
with each step monitored to ensure the constraint boundary was not

violated. The results for € = 10__6 are shown in the following

table.
Iteration | Performance Index
Number e = 10«6
0 35.7787
2 35.3728
L 22.3471
6 20,9810
8 20.5310
10 20.1468
12 20,0028

The value of the performance index was not affected by removal of

the penalty term. These results were obtained using the following

initial control,

u(t) = 1.6 + 1.33t 0<t g 1.5
' u(t) = 8.1 - 3t 1.5 ¢t £ 2.7
u(t) =0 2.7T<t .

The trajectory corresponding to iteration number 12 is shown in

fig. 9.

To test the sensitivity of the results shown in fig. 9 to the

initial control, the following alternative initial control was also

used.
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u{t} = 1.6 + 2t/1.5 0stgl.3

H

il

The results corresponding to this control are given below.

Iteration | Performance Index
Number e = 1076

0 23.9750

2 20.4872

4 17.1166

6 17.0761

8 16.3802

10 16.1610

and the corresponding trajectory for iteration 10 is shown in
fig. 10. A modification of the monitoring system at iteration 10
allowed further progress to be made towards the minipum, and this

is indicated in the following table.

Iteration | Performance Index
Number £ = 10-6
11 16.0422
12 15.7409
13 15.3185

The removal of the penalty function term does not affect the value
of the performance index. The trajectory corresponding to iteration
13 is shown in fig. 10a.

A description of the monitoring systems used in the above in-

vestigations will now be given.
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First Method

(1) Set new control u (t) = u, (t) - nH (t).

(2) 1Integrate state equations using unew(t) and check if constraint
is violated.

(3) If constraint is violated set n = 0,75n and go to step (1)},
otherwise go to step k.

{(4) Check to see if new performance index is less or equal to the
0ld performance index. If yes, the search is ended and we
calculate a new search direction, Hu(t). If no, set n = 0,750
and

unew(t) = ubld(t) - nHu(t).

(5) Integrate state equations and go to (L).

On the completion of this monitoring n is reset to some user

inpuﬁ value.

Second Method

Due to the poor performance of the interior penalty function
method, a modification of the above monitoring technique was attempted.
This will now be described.

Suppose we have discretized the state and control functions to
x(i) and u(i), i = 1,..., NSTEP, then the method is:

(1) Set new control u w(i) = ubld(i) - nHu(i).

ne

(2) Integrate state equations using unew(t)'

(3) For j =1,..., NSTEP, check if the constraint is violated at the
jth point, then for i =1 to j set Hu(i) = .95Hu(i).
If no constraint violatipn has occurred for j = 1,..., NSTEP, go
to step (1).
Steps {4) and (5) are as in the first monitoring technique.
It is difficult to justify theoretically the above method of

monitoring the control increments as (a) the "shape" of Hu(t), which

the gradient method calculates, is deformed, (b) the method will be
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strongly dependent on the discretization used. For these reasons
this method was not used by itself but was used in conjunction with
the original monitoring system. When the original method had con-
verged to a control, oﬁe iteration was performed using the modified
monitoring system. With this new control the method proceeds using
the original monitoring. It was hoped that this would overcome the
methods tendency to converge gquickly to a poor contrcl. The only
problem tested where this modification gave any improvement was
problem 4 using the second initial control. The trajectory generated
is shown in fig. 10a. The trajectory before application of the
modified monitor is shown in fig. 10.

The exterio¥ penalty function technique was applied to this

problenm by adding the term,
t
£ 2,2
8(x,)(x,(t) - 0.5 + 2(t - 1.5)7)%at

to the performance index (5.19) where,

0 x2(t) 2 0.5 - 2(t - 1.5)2

10h x2 < 0.5

S(x2)

o(t - 1.5)°

S(xa)

For an initial control:

u{t) =1 + 4t/3 0%t g 1.5
u(t) = 7.5 - 3t 1.5 £ t £ 2.5
u{t) = 0.0 2,5¢ ¢

the results obtained are given below.
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Iteration Performance Index
Number
Steepest Descent | Conjugate Gradient | With Restart
0 £18.000 618.000 618.000
1 25,152 25.1522 25.1522
2 23.927 23.9582 23.9582
3 23.883 23.9223 23.9223
L 23.866 23,917k 23,917k
5 22,197 23,6097 23.6097
6 22,099 23.5993 16.7080
T 22,081 23.5989 15.1765
8 20.Ll1 - 1k,291
9 19,671 - 1h.2629
10 19.629 - 14,2523
11 19,628 - 14,2213
12 19,626 - 1h.1725
13 19.628 - 13.6596

The optimal trajectory calculated by the exterior penalty function

technique with the conjugate gradient method with restart is shown in

fig. 11. Removal of the penalty function for this trajectory gives a

performance index of 13.6556.

In general the removal of the pensalty

terms from the final performance index calculated made little difference

to its value, although the removal of McKinnon's penalty function from

the conjugate gradient solution to problem 3 reduced the performance

index from 12.01722 to 11.4528,
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5.3 Integro-Differential Systems

As for the differential-difference systems, the steepest
descent method referred to in the following incorporates the one—dimen—
sional search for an optimum along successive directions of steepest
descent, and similarly no convergence criteria was used. The
integro-differential equations were integrated by a second order
Runge Kutta method (AppendixID). The € technigue was also used
on the following problem. The resulting € problem was optimised

by using Powell's function minimisation technique.

Problem 1

This problem was investigated by C. E. Muecller [20].

Minimise 1
J = [;e(t) + ue(t)]dt (5.28)
subject to t
x(t) =1 + x{t) + ult) +14 fx(s)ds (5.29)
0
x(0) =1

The results of using steepest descent and conjugate gradient
method on this problem, starting with a control u(t) = 1, may be

summarized as:

—_
Iteration Performance Index
]
Number Steepest Descent | Conjugate Gradient
1
0 40,4183 ko,4183
1 T.2375 T7.2375
2 T.1931 T.1584
3 T.1451 7.1839
4 6.8019 6.9766
5 6.8019 6, 8067
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The € method was also

The state and contreol

i

x(t)

u(t) 0

Taking € as 10"“ gave the following values of a; and bi'

‘ N
1+ alt + a2t + a3t + aht +a_t

b +h1t + b.t 7 4+ b_t

used on this problem.

were approximated by

2 3 5

»

2 34 th + b_ts

2 3 h 5

i a; b,
0 1 -5.016016
1 -3,040163 12.885894
2 7.060962 -16,219442
3 -5.23531h 10.876497
4 3.373973 -2. 529044

Using this control function and integrating equation (5.29)

gives a performance index

J = 6.7883

(5.30)

The trajectories generated by the steepest descent and e-method

are plotted in figures 12 and 13 respectively.

Problem 2

Minimise: 1

J = [xe(t

subject to

-]
——
o
g
n

with

) + uP(t)]at

t
x(t} + u{t) + Lcosmt + h[{l-t)(%“s)x(s)ds
0
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The conjugate gradient and steepest descent techniques
were applied to this problem and the following results obtained

from an initial control u(t) = 1.

Iteration Performence Index
Number Steepest Descent | Conjugate Gradient
0 | 19.973h 19.9734
1 6.2456 ' 6.2456
2 6.1960 ' 6.1970
3 © 6,1951 6.1949
4 6.1951 6.1920

Balakrishnan's e-method was also used on this problem with
the representation (5.30) used in problem 1.

The following notation will be used:

J : the optimum value of the e-problem

i.e, J = J(xo(-,a),uo(-,e))

te t
+ %-I | 1%, (t,€) = £lxy5uy,t) - J g(xo,uo,s,t)dslladt,
t t '

0 0

JA : the value of the performance index of the optimal control
problem using the e-problem state'xo(t,e),
i'ef Jy = J(xo(-,e),uo(-,s)) .

JB : this is a measure of the error in the approximation of the

solution of the system equations,

Osuo)

t

2
t) - f g(xo,uo,s,t)ds|| at |
0 %o

tf
i.e. Jg = f llio(t,e) - f(x
t
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J

from integrating the system equations using uo(t,e), the -

problem control as input.

the value of the performance index using the state obtained

JE = 34,02192

ie I = Hxgugle,e))
The following results were obtained:
£ = 0.1
J. = 9.469632 J, = 5.683853
i a. b,
i i
0| 1.00 ~-2.985935
1 3.008772 3.015719
2 |-2.022025 247812
3| -.99691 133773
L | -.032k28 | ~-.036405
£ = 005

JA = 6,761882 J

i a, bi

0 1.00 -3.669798
1 1.28163 -. 326371
2 2.162075 | 11,hkh347
3| -5.923631 { -5.207725
4 2.215h2 -2. 312005

105

Iy = . 378578




e = ,0001

I = 127.2522 J, = 6,85565 J_ = ,01204

o | 100 -3.711

1 1.22L185 -.366723
2 | 2.1901k6 | 11.5

3 | -5.958365 | -5.1k017
L 2.1694 -2.5L40k

€ = .000002

J. = 5854, 49BT Jy = 6.85532L Iy = .011695

0 { 1.00 -3.696992
1 | 1.22050k | -.4359LL
2 2,221066 | 11.570538
3 {-6.0084T71 | -5.1k6686
L 2.177623 | -2.610154

The solutions for the controls from the e-problems with €
= ,005 and € = 0.1 were used to obtain the state by solving the
system equation. This procedure gave values of J = 6,.7604 and
J = 6,2210 respectively.
These sclutions are shown in figures 15 and 15a. In figure
15a the state, xo(t,E), given by the e-problem representation is
shown for comparison. The trafectory generated by the conjugate

gradient method is shown in figure 1h.
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In addition, & least squares best fit solution, using cubic
 polynomials, was obtained from the conjugate gradient method solution
to this problem, This was used as a starting point for the e-method

with ¢ = ,0001 with the follovwing result:

e = ,0001

Best fit:
i 8 b,
0 1.00 -3.54508
1 2.3126L 6.48314
2 . TT90k -1, 33907
3 -2,5535 1,40715

Resulting e-problem:

JE = 3179.1195 JA = 6,224872 JB = ,.317289
After optimisation:
Js = 2801.5663 JA = 6.726589 Jg = .2T9L8Y4

1 B.i b]._
1.00 -3,674138
2.552373 6.60225h

.334119 | -k.303243
-2.664663 1.410132
-.000297 -1,466552
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Problem 3

Minimise

t
f )
J = 6x2(tf) + f (x% + u?)at (5.33)
1
subject to "
X(8) = x(t) + u(s) - [x sin[lm —‘S—‘”;—t‘-'-"l] as (5.34)
1 t
with x(1) = 1
and tf =2

With en initial control u{t) = 1, the following results were

obtained:

Tteration Performance Index
Number Steepest Descent | Conjugate Gradient
0 57.2592 5T.2592
1 18.95 18,95
2 1.8294 9.0905
3 1.8293 1.7988
L 1.8293 1.7988

The trajectory generated by the conjugate gradient method is
shown in figure 16.

Balakrishnan's e-method was also used on this problem. All the

n

runs used € = .0001 with the representation:

x(t) =1+ a.l(t—l) + 53.2(1;-1)2 + as(t—l)3 + ah(t—l)l‘

u(t) = by * bl(t-l) + b2(t-1)2 + b3(t-l)3 + bh(t-1)h .

Starting from a; = b, =0, except a, = -0.8, b, = -2, b, = 1,75,

0 1

the following result was obtained:
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J_ = 6.300556 JA = 2,5906 JB =

i a. b.

1 1
0 1.00 ~2,10221
1 | -1.104105 1.911175
2 136346 -.031694
3 -.051326 -.019148
L .020068 -.088719

When this control was used to integrate the system equation, the
value of the performance index obtained was J = 2,588, This is shown
in figure 17.

A least squares hest fit ﬁpproximation to the solution given by

the conjugate gradient method was obtained and used as a starting point.

Best fit coefficients

1 ai bi

0 1.00 -1.92347
1 -.8665 1.94706
2 . 3975 -.36973
3 —-. 4248 .12339

Resulting e-problem:

J_ = 184.0148 J, = 1.915 JB = .01821 ,

After optimisation, the following results were obtained:
Jd =
€

180.95087 JA = 1.801 J, = .01T7915

B
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b

A less detailed representation was used on this problem with
5» Dgs By = 0.

Starting from ai,bi

o | 1.00
-.87

.398

3 | -.h25

~1,924
1.947
-.369
.123

-.0186

0 gave the following:

Je = 14.9375 Jy = 4,5075 Jg = .001053.
ai bi
1.00 -1,250317
-.25632 . 367569
.11588 0.0
-.2111L7 0.0
-.000829 0.0
Starting from &, = -.8, bo = -2, by = 1.75:
Jo = 33.322 JA = 2,8018 JB = 003052,
i a. b
1 1
0 1.00 2,080k
1 -1.07538 1.903
2 L0697 0.0
3 .000156 | 0.0
L .038517 | €.0
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CORCLUSTONS

We have examined the application of the conjugate gradient
and steepest descent methods to four differential-difference systems
and three integro-differential systems. Of the four differential-
difference systems, two had inequality constraints. These two
constrained problems were converted to unconstrained problems by
means of Jacobson's transformation technique and by the intefior
and exterior penalty function techniques.

In addition, a penalty function due to MeKinnon was used to
solve problem 3, Thus there are effectively ten unconstrained
problems which have been solved by the three pgradient methods.

Ranking the methods by the final value of the performance

index produces the following:

differential-difference systems

Position
Problem Steepest Descent | Conjugate Gradient | with Restart
Problem 1 3 1 = 1=
Problem 2 3 1l = 1l =

Problem 3 with
McKinnon P.F. 3 1= 1l =

Problem 3 with
Jacobson's Trans, 3 1= 1=

Problem 3 with
Exterior P.F, 2 3 1

Problem 4 with
Jacobson's Trans. 2 3 1

Problerm 4 with
Exterior P.F. 2 3 1
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integro-differential systems

Position
Problem Steepest Descent | Conjugate Gradient| with Restart
Problem 1 1 2 = 2 =
Problem 2 3 1= 1=
Problem 3 Inconclusive - -

The most significant fact to emerpge from this ranking is that
the conjugate gradient with restart is the best method for all but
one of the problems studied and in some cases is far superior to
the other two methods, in particular problem 4 using Jacobson's '

transformation technique. The conjugate gradient with restart was
always at least as good as the conjugate gradient method in all the
directions
examples tested, the latter seems to choose poor search/after six or
seven iterations. |

Comparing these methods with McKinnon's second order method, on
problem 1 the second order method is superior, but on problem 3 the
second order method and the conjugate gradient method seem equally
efficient.

As would be expected from three basiecally similar methods, the
time per iteration for the steepest descent, conjugate gradient and
restart are very much the same. Thus it takes the same amount of
computing time to perform six iterations with a conjugate gradient
as it:would take with the steepest descent method. The only exception
to this is when one method has converged earlier than the other, and
the converged algorithm spends, at each iteration, a long time per-
forming a fruitless one-dimensional search. This search is halted

by a limit set by the programmer, and the next iteration is started.
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To compare the timing of the three algorithms it is sufficient
to compare the number of iterations required for convergence., For
all the examples tested, after six iterations have elapsed, the
verformance index given by the conjugate grﬁdient method with re-
start after an iteration has been completed, is lower than the per-
formance index given by the other methods after the corresﬁonding
iteration. For the simpler problems where convergence has been
reached in less then six iterations, the conjugate gradient has not
restarted. The conjugate gradient does still seem superior to the
steepest descent for these problems,

In addition, we have considered the e-method for integro-
differential systems. This method gave the best solution of problenm
1 in section 5.3. A comparison of figures 12 and 13 shows that the

e-method gives a control whose value at t_, is closer to zero than

f
that given by the gradient methods. The true optimal control for
this problem should be zero at te. Had an initial control, u(t) = O,
been chosen then the gradient methods would not have moved away from '
u(tf) = 0 and they may have been superior to the e-method. For
problems 2 and 3 of section 5.3 the e-method is inferior to any of
the gradient methods - markedly so in the case of problem 3. The €
method did, however, have a shorter running time than the gradient
methods for all the problems tested.

The performance of the e-method when applied to problem 2 was not
as good as in problemll. Except for the ¢ = .1 solution, the perform-
ance index given by the controls generated by the t-method were
inferior to those of the gradient method solutions. For € = .005 and
smaller, it is obvious that a lot of effort is going into keeping JB

small, and it is tempting to think that relaxing & might in fact

improve the performance. This, superficially at least, is borne out

112



by the seclution obteined to the e-problem with € = 0,1, Closer
inspection of figure 15a shows that the state trajectory given by the
polynomial representation and that given by integration of the state
equations, using the control given by the e-method, are markedly
different. This is emphasised by the difference between JA and J,

In the examples tested in [30ﬂ, where the true solution for the
control and state to the optimal control problem was in fact a set of
polynonmials in t, the £-method coupled with Powell's method performed
well. The coefficients of the polynomials given by the e-method were
corréét to four significant places ﬁith £ = 10-5. In this reference,
all of the integration of the performance index and the adjoined
system equations was done analytically. Because of the greater com-
plexity of the examples examined here, all of the integration in the
e-method solutions was done numerically. This obviously could lead
to inaccuracies. Consequently, in addition to the normal rums, using
a time step of h = ,02, several runs were made with a timestep h = .002.
This change of timestep size did not make any significant change to
the results. However, to ensure ihat the numerical integration was
accurate, each solution for h = ,02 was used as & starting point for
the same e-problem, but with h = ,002. Two iterations of Powell's
method were then perfdrmed. In no instance did this procedure lead
to a significant modification of the original solution,

The e-problems, although quadratic in the fitting parameters, were
obviously difficult to optimise. For instance, in the solution to
problem 2 with € = .0001, the solution to the e-problem starting from
a; = bi = 0, and the solution starting from the best fit to the con-
jugate gradient solution are obviously different. Further, examinatioﬂ
of the € = ,000002 solution to problem 2 shows that this is in fact a

better solution to the ¢ = ,0001 sclution than the one given. When

113



applied to problem 3, Powell's method did not move far from the
starting point. Consequently, in order to obtain a reasonable
solution, the starting point used was & good linear approximation
to the conjugate gradient solution. This strong dependence of the
method on the starting point used suggests that the contours of the
c-problem are sets of ellipsoids with a large eccentricity. This,
together with the usual problem in computing of rounding error, and
the fact that there is probably some "noise" from the integration,
could lead to poor convergence. This is also probably the reason
for the poor convergence seen in problem 2.

In an attempt to cure this, some attempts were made to rescale

the variables in both problems, but with no improvement in convergence.
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The shorter running time of the e-method as compared with the
gradient methods is due to the comparatively lengthy numerical inte~
gration of the integro-differential equations, a problem which is
increased by the fact that all of the gradient methods tested search
for an optimum along each gradient direction, each search involving
an integration of the state equations. Similarly, vhatever optimisa-
tion procedure is used to solve the e-problem, the performance index
of the epsilon problem will have to be repeatedly evaluated, and each
eyaluation will involve an integration of the state equation for each
set of wvalues of a:s bi' However, in this case we need only integrate
an explicit function of time instead of solving the state equations
using, for example, a Runge Kutta method. It is possible that a one
step gradient method would be faster than the gradient methods investi4
gated. It would still be necessary to monitor the step along each
gradient direction to ensure that an iteration does not give an in-
crease of the performance index. It is also likely that the reduction
in the number of searches along the gradient direction would be at
least partially compensated by the increased number of iterations
required,

The problems on which the epsilon method and the gradient methods
have been compared are simple. It seems likely that an increase in
the complexity of the problems would affect the epsilon method more
adversely than it would affect the gradient methods.

An examination of the problems 3 and 4 of seétion 5.2 gives a
comparison of the transformation and penalty function techniques that
have been used. It can be geen from these problems that the Jacobson
transformation technique is by far the most effective method tested
for solving constrained optimisation problems. It has the additional
advantages that: a) there is no need to search for a feasible initial

control, b) all the trajectories generated are feasible. This con-
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trasts with the interior penalty function technique which requires
s feasible initial control; and the exterior penalty function tech-
nique which can generate optimal controls that are infeasible.

In problem 3, Jacobson's transformation gives a trajectory that
quickly approaches the constraint boundary, and follows it closely
up to termination. McKinnon's penalty function gives a similar
trajectory and performance index, but does not follow the constraint
boundsary as closely as the Jacobson transformation solution. The
most noticesble feature of the trajectory generated by this method
is the "kink" in the control at t = 0.5. This kink is noticeable in
McKinnon's own solution to this problem, reproduced here in fig. 3a.
Both the interior and exterior penalty function methods approach the
constraint boundary more slowly, but the exterior pen‘alty function
solution does follow the constraint boundary fairly closely.

For problem 4, McKinnon's pensalty function technique was not
applicable, and again the Jacobson transformation technique was the
most successful technique used on the problem. The performence of
the interior penalty function method was very disappointing, and
failed, in general, to change the nominal control in any significant
way (see fig. 10a for an exception to this generalization). This
poor performence, together with the difficulty of selecting & suitsable
nominal control, suggests that the Jacobson transformation technique
is of more genersl application than the interior penalty function
method for optimal control problems with state space inequality con-
straints,

However, Jacobson's method cannot slways be used and, in this
event, the exterior penalty is the better of the two penalty function
techniques, It has the advantage that it may be used in conjunction

with the conjugate gradient methed with restart which, on the basis
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of this investigation, is an effective algorithm for solving an
optimal control problem. It would be useful to have a direct method
of solving constrained problems, similar to that of Bryson and
Denham [FEJ for ordinary differential equation systems, but no such
extension is currently availsble,

Finally, the main new theoretical results obtained in this thesis
are those of Chapter 3, namely the gradient method, the e-method and
a minimum principle for integro-differential systems. A conjugate
gradient method for these systems is also indicated. The numerical
properties of these techniques have been investigated in Chapter 5.

A second order method for integro-differential equations is also
presented but no numerical results have been obtained using this
method. Integral systems are studied in Chapter L4, where a gradient
method for these systems is proposed, but no numerical experience has
yet been obtained with this spproach, The problem of state space
inequality constraints is investigated using Jacobson's transforma-
tion technique and the exterior and interior penalty function
techniques, and a critical numerical comparison is reported in

Chapter 5.
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APPENDIX A

The Conjugate Gradient Method in Rn

Consider the minimisation of the general quadratic function

V(x) = ¢ + a'x + 3x7Hx - (A1)

vhere H is a constant n x n positive definite matrix, ¢ a scalar
constant and a & constant n-vector. We wish to find the n—vector

x* which gives V(x) its minimum value.

Definition

Two non-zero vectors di’ dj are said to be conjugate with

respect to the positive definite matrix H if
atHa, =0 .
1)

A set of non-zero vectors {di; i=1,...,r; r < nl is said to

be a set of mutually conjugate vectors if
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dzﬂdj =0 for all 1,) = 1,....,r 1#7.

Assume that there exists a set {si} of n mutually cocnjugate
directions, then we may prove the following:

Lemma, The set {Si} spans Rn.

Proof

Let the set of scalars {ai; i=1l,....,n} be such that

%ﬁ+%%+“n.+%%=0 (A.2)

therefore, {si} is a set of n linearly independent vectors and

thus spans Bn.

We may now prove the following theorem:

Theorem

If each of the n mutually conjugate directions {Si} is used
once and only once as a search direction, then the successive
linear searches for a minimum along each direction will lead to

the minimum of V(x) from any starting point.
Proof

Choose the arbitrary starting peint Xq*
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Form

where Ai+1 is chosen so that V(xi + Ai+l Si+l) is a minimum -
along Sie1”
Thus
T =
giv1 %501 -0 (A.L)
where 84 1S the gradient of V(x) at X4
By (A.1) we see that
g, =a + lx; . (A.5)
i
=a + H(xo + E Ajsj) ,
J=1
i
T T T
N . =g, + 5, + X.s.
theref?re s; 6; 2 51H(x0 ¥ JSJ)
3=l
R S| T
= siH(H a + xo) +Asilis.
But by (ALL) st g =0
* i =i ‘
s{H(E ta + x,)
therefore A, = - . (A.6)
1 T
s, H s.
i i
And so by (A.6) we may write
L os.n(nta + %y)
1 9] .
. s. Hs
J=1 J J

The set {sj) spans R {see lemma) and therefore we may write
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n
v= )] as. ‘ (A.8)

vhere v is an arbitrary vector.

Multiply (A.8) vy s?H

T, =
siHv = a; s; H 5., (A.9)
so from (A.8) and (A.9)
s?ﬂv
ve] —— (A.10)
s.Hsj

for any vector v.

Comparing (A.7) with (A.10) and setting i equal to n

-1

X = x. - (H“la + xo) =H "a

n 0

k-]

It can readily be seen that x*, the value of x giving the
minimum of V(x), is x* = Hﬂla .
Thus x_ = x* .

We now seek a method of generating the n conjugate directions

{Si}' We proceed as follows:

Starting at x., calculate the gradient, Ey» of V(x) .

0
« -
Set Sl go -
For i=1,2,....0, form
= +
xl X: 4 A sl

with A, such that V(x, ., + A.s.) is a minimum along s.. Calculate
1 1-1 171 1

g;» the gradient of Vix) at x; and set
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: - g. .+ ¥.s5.
S1+l gJ. Ylsl e
We wish to choose Yi 50 that

Sin H s.j =0 J=1,2,....1 (A.11)

From our definition of Xs s

2]
"

A (g = x50,

)

therefore Hsi 1! .

1A (Hxg - Hxg _

Substituting from equation (A.5)

Hs; = 1/Ai(gi - gi_l) (A.12)

‘Now assume we are at stage r and we have {si; i=1,...r},

a set of known conjugate gradients, and we know that

s, g. =0 . (4.13)

T _ T
8 B, = Sk(u + Hxr)
k v
= <17 ¥
=5, [+ Hix  + DoAs;+ b ags))]
i=1 1= vl
by
_.T
= sk[a + Hix + )3 lisi)J
k+1
r
T T
=5, 8 *ts H { Aisi .
k+l
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By (A.13) and by the conjugacy of {si}, this last expression is

zero, thus

T
= <
5, 8, =0 ksgr {A.1h)
ow 5§ % TBia T Yi4 %51 .

For i < r we have, by (A.1k4)

-0 = 21(-
sp 8 =0 =808 v Yy 55)

. T
" Bn Biy Y Yiy 8r 85
= T8 By )
i.e
T =0 igr (A.15)
gr gl“l - . .
We require that
T
sr+1 Hsr =0,
Now
Sr+l = ”gr * Yr sr .

Therefore by (4.12)

T . T -
Speyp H8L ( 8. * L sr) 1/)‘r(gr gr-l)-

Expanding, we have

1

T
+ -
gr Er1 Yr Sr gr-l)/lr

st Hs_ = (-g- g +
I S-S

r+l r °r .
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By (A.14) and (A.15)

_ T ~ T
IISr - l/lr( é’r gr Y sr gr—l)

sr+l r
— T - Il‘ -
- l/Ar( €r Bp " Vp gr—l( S WL PSS sr—l))‘
Thus 5 4 18 conjugate to 5. if

T
_ B By
Y - P -
-1 Ep-1

Finally we have to prove that, in addition to 541 being

conjugate to 5 s it 1is conjugate to sj, Jgr.

T T
Hsj ( g, * Y. ur)Hsj

5
r+l

T T
- _— .
E, lIsJ Yy Sp Hs‘J .

By conjugacy of S, and sj

T __T
r+l Hs. = = Hs.
From {A.12)
s . Hs, = ~g{g. = g. )/,
r+l J r =) J-1 J-1 =
Thus by (A.15)
T -
Sl Hs‘j =0,

Thus {Si ; 1 =1,....,r+1} is a set of conjugate directions.

This method will continue to generate conjugate directions
until it reaches the minimum point of V(x). From the theorem

proved earlier, this minimum is reached in at most n iterations.
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APPENDIX B

Variation of Parameters Solution

1. Time Lag Equations

Consider the set of differential time lag equations

£(t) = A(e)e(e) + B(e)g(t-1) + Cltdnlt)  t5 €t < b, ,(B.1)

0\
where §(t) is a state n-vector and nf{t) a control r-vector.

A{t) and B(t) are n x n matrices and C(t) is an n x r matrix. We
also have the initial condition:

£ft) =0 t. - 1<t £t

From (B.1l)} we may write

Nis,t)E(s) = N(s,t)A(s)E(s) + N(s,t)B(s)E(s-T1)
+ N(s,t)C(s)n(s) (B.2)

where N(s,t) is an n x n matrix.

Integrating (B.2) between ty and t

t t
f N(s,t)Els) =f N(s,t) [A(s)E(s) + B(s)E(s—1)
t t

o 0

+ C(s)n(s)lds (B.3)

We have the following identity

t e
[ w0s,0)Es)as = n(e,0)206) - Wty 0ECE)
t

© t

[Eﬂ (s,t)Es)as
s
t'0
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Recalling that

we may write (B.3) as

t
N(t,t)e(t) - Iﬂ (s,t)e(s)as
as
Y

t
=[ (N(s,£)A(s)E(s) + N(s,t)B(s)E(s~1)
t

0
+ N(s,t)n(s)]ds . (B.4)

if we set

N(s,t) =0 for

4]
v
ot

) (B.5)

we may write

t t
[ N(s,t)B(s)e{s-t)ds = I N{s+t,t)B(s+t)t(s)ds
t t

0 0

Equation (B.4) becomes

t .
N(t,t)e(t) = [ 2N (s,t)e(s)ds (B.6)
95 ‘ )
to

t
+ [ (N(s,t)A(s) + N(sft,t)B(s+t)]£(s)ds
t

0

t
+ I N(s,t) (s)ds .
t

0

If we set

N(t,t) = I (B.T)
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and

N
as

(s,t) = ~N(s,t)A(s) - (s +t,t)B(s+1), {B. &)

we may write

t
g(t) = I N{s,t)n(s)ds (B.9)
t

0

where N(s,t) satisfies (B.5),(B.7) and (B.8).

2. Integro-Differentianl Fquations

Consider now the set of integro-differential equations

£(t) = A(t)e(t) + cl{t)n(t)

t
+ [ [B(a,t)E(0) + D{o,t)n(0)]do (B.10)
t

0
for t in [tO’tél’ and

E(to) =0 .

A(t) and B(o,s) are n x n matrices and C{t) and D{o,t) arepx r
matrices.

We may write

N(s,t)E(s) = N(s,t)A(s)E(s) + N(s,t)C(s)n(s)

5
+ I [N(s,t)B(o,s)E(o) + N(s,t)D(c,s)n(G)]do . (B.11)

%

Integrating (B.11l) between t. and t

0
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t t
I N(s,t)é(s)ds = f N(s,t)[A(s)&(s) + C(s)n(s)]ds
t t

0 0

+
ot S ot

s
I N(s,t}[B(o,s)E(a) + S(o,s)n(o)]do . (B.12)
t

00

But we may write the following identity

t s t
[ I F(o,s,t)doc ds f [ F(o,s,t)ds do
t.t t a

0 0

t
fF(s,o,t)dc ds . {B.13)

OS

H
et Y———

Using (B.13) we may rewrite (B.12) as

t t
N(s,t)é(s)ds =[ [N(s,t)A(s) + [ N(o;t)B(s,o)do]E(s)ds
t s

t St

0 0

t
+ f [H(s,t)C(s) +
t

N(o,t)D(s,O)dﬁ]n(s)ds . | (B.1L)

n ———ct

0

Integrating the left hand side of {B.14), recalling that E(to) =0,
gives
N(t,t)E(t) = J [-—-(s t) + N{s,t}A(s)
t

0

t
+ f N(c,t)B(s,o)do]g(s)ds
s
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t t
+ f (N(s,t)c(s) + [ N(o,t)D{s,a)doin(s)ds .
S

ts

By setting
N{t,t) =1 (B.15}
t
M (5,6) = -1ls,8)a0s) = [ Wlo,0)Bs,0040 (5.16)
a5 5 )
we may write
t
g(t) = J M(s,t)n(s)ds, (B.17)
t

0

where

M{s,t) = N(s,t)C(s) + ] N(o,t)D{s,0)do ,

s
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APPENDIX C

Derivation of Adjoint Operators

We define the adjoint L*, of the operator L: Hm - Hn, with
respect to the inner products ., im and ] v, ]n as

the operator satisfying
[L*a, b| = la, Lbln (Cfl)_

for arbitrary a, b in Hn’ Hm, respectively.

The inner product used is
tf
ja, b|n = J <a(t},b(t)> dt

%o

where <a, b>, is the usual scalar product in n space.

Adjoints for time lag systems

The operators L and £ are given in equation (2.43) and
(2.44) as t |
(w)(e) = | o)1 (oIn(o)as (c.2)
o
and £
(Ln)(t) = I No,t=1)f (o)n(o)do . (c.3)
t

0

By our definition of the adjoint operator in (C.1) we wish to

find an operator L¥* satisfying
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te te t
J <(L¥g}(t),n(t)>at = [ §T(¢) I N(U,t)fu(c)n(O)do (C.L)
%o %o o

identically,

But we may write the right hand side of (C.h) as

t. t

£ T
J f £ (t)N(U,t)fu(G)n(c)do at
t. t

00

t. t
£ of g
= [ J £ (t)N(o,t)fu(o)n(c)dt do
t a

0

t. t
£ g
= I J £ (U)N(t,c)fu(t)n(t)do dt
t. ot

0

t t

f o o |
J n(t) J fLe)N (t,0)e(0)do dt
t t

0

In(t), (L*e)(t)|

[(L*e) (t),n{t)]

Thus we see that L*¥ is in fact the operator we are looking for,

- and may be written

tf T T
(L*g)(t) = J £ (e (t,0)e(o)do (c.5)
t
and similarly
t
N f T 7
(L*c)(t) =J fu(t)N {t,o-1)t(o)do . (c.6)
t
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Adjoints for Intepgro-Differential Systems

By an argument identical to that used sbove we may write

t.f T
(L¥e) (e) =J M (t,0)g(o)ao , (C.6)
t

For the adjoint of L, we proceed as follows

t t
(Len)(t) = J {Fl(t,s) I M{s,o)do + Fz(t,s)}n(s)ds N
t s

O
Therefore le, L2n|
tf t t
= I £T(t) J {Fl(t,s) I M(s,0)do + F2(t,5)}n(8)ds dat
t t s

0 0

tf tf t
= J J ET(t){Fl(t,s) J M(s,o)do + F2(t,s)}n(s)dt ds
t s

S

t

t
f fT
= J J £ (S){Fl(s,t) M{t,o)do + Fz(s,t)}n(t)ds dt
t

ot

tf tf s
- J nFt) j {J MT(t,U)FE(s,t)do + Fg(s,t)}a(s)ds at
£ t ot

SO we may now write

. tf s ‘
were) = [ [ ufte,onfise)es + ¥lts,enetedas . (e
2
t t
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APPENDIX D

Derivation of a second order Runge-Kutta method for

Integro-Differential Equations

We wish to integrate an integro-differential equation of _

the following form:
x(t) = £lx(t),w(t),t)

where

t
w(t) = f g(x(s),5,t)ds
0

using a second order Runge-Kutta method.

By a Taylor series expansion we have that

x(t+h) = x{(t) + nhx(t) + ihb

Now
x(t) = £{x,w,t) ;
x(t) = fx(x,w,t)f(x,w,t) + fw(x,w,t)[g(x(t),t,t)
t
+ J[ gt(X(S),S,t)dS-J + ft(x,w,t) )
0
: t
Xt)=f,_ ff2r rHrrref +f(g+ | g ds)
AX xt xLl7x t W t
: 0
t t
+ 2fxw flng + [ & dS_] + QthLg + J gt ds]
0 0

2

t t
+ fw[gxf + éé +2g + J Byt ds| + fww[g-+ f g ds] +
0

0
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We will use the following integration formula

x(t+h) - x(t) = w. k. + w .k

171 221

where

k, = he(x(t),w(t),t)

k, = hf(x(t) +a k) ,w¥,t+a h)
where t

w¥ = I g(x(s),s,t+alh)ds + mhg(x+a2kl,t+a h t+a2h) .

0

We wish to choose al, 8oy Wy w2 and m so as to best fit the true
solution.

Expanding k, by Taylor series up to order h3

k., = hf{x(t),w(t),t) + h{fxa k. + f {a.h

t
5 1K TRt J g, ds + mhglx,t,t))
0

+ ih{f a’k

2.2
¥x 171 t 11 xw' 1l

t
2
+ +
2f .8 hk. + 2f {a.h I g, ds mhg)al N
0

t t

f2 (a,h ds + mhg)2 + 2f . (a.h ds + mhgl)a.h + f a2h2

wa 21t | B wt 21 €y 1 tt®1
e} 0
t

2 2
+ £ (a [ g,y 45 + 2mhg a k, + 2mhg_ah + 2mhgta2h)} .

0

We may thus write

wlkl + w2k2 = (wl+w2)hf(x,w,t)

t
2r 1..31 2.2 2
+ weh [glfxf + fw(al J & + mg) + alft] + Vs sh [fxxalf + 2fxtalf
0
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+ 2f (a

xw' 1l €

t

Oyt

t

2 2
+
+ 2f I(a.l J g, ds + mg)al + fttal + fw(atl J By ds + 2mg_a,f

0

+ Emgsﬁl.2 + 2mgt8.2 J

Thus by choosing Wis Voo al, 8, and m such that.:

then the expansions (1) and (2) match up to order h2. Further,

if we set

L3
[+
[l

%
B

[V

[T

o=

1/6

we are left with a truncation error:

3 -
n7/6 £ [£.£+ £,

+ terms of higher order.

Solving (3) - (T)

+

(]

fw(g +

2/3
1/3
1/h

3/

2/3
140

|

t

0

L g

g, as)|

2 2
ds + mhg)alf + fww(al j 8, ds + mg)

t

0

(2]

(3.

(L)

(5

(6



APPENDIX E

FLOWCHARTS FOR GRADIEHT AND CONJUGATE GRADIENT METHODS

We give here a more detailed description of the proéramming
aspects of the methods used. Sections A end C of the flowchart
describe the generation of the search directions for the conjugate
gradient method, sectioﬁ B describes the l-dimensional search used.
This seéfch routine consisted of stepping along the search direction
wmntil the minimum was bracketed, and then using cubic interpolation
to locate the minimum, |

No details are given in the flowcharts of the integration
routines, ~For the time-délay systems, a fourth order Runge-Kutta
method was used, whereas for the integro-differential systems the
second order Runge-Kutta method described in Appendix D was used.

- The fbllowiné flowchart describes the conjugate gfadient:
method. The gradient method used can be.generated by setfing

Bi = 0 throughout,
L
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Conjugate gradient methogd

Set iteration counter i =1,
Set By =0, 5,(t) = 0

0 (%) :

' Use nominal control ui(t)

 integrate the state equations
and evaluate performance index.
Store value of performance index

as J. .

1
Integrate adjoint equations
and hence evaluate the
gradient: gi(t)

1

Set: By = O s i=1
Biy ™ <ByaEg>/<65p08 9% i1

Calculate the conjugate
gradient direction:

5, & =g, +
&; B

i i-1%i-1 .

®

Set new control
= *
U (8) =u () +e s; (%)

Set i1i=4+1

42,



One dimensional search procedure

Set el== 0

€, = € (user input constent)

-

Set new control
u(t) = ui(t) + easi(t)

Use this control to integrate state equations
and evaluate performance index. Store value
of performance index as J2

BEEREN )\No

Yes
a'______-———-Set Eg = 1.552 ' B Set e3 = .7522 :
- Set new control - Set new control
u(t) = ui(t) + e3si(t) u(t) = ui(t) + essi(t)
and evaluste performance : and evaluaste performance
index. Store the value : index., Store the wvalue
as J.. ' : as J.,.
3 . 3
1 a )
A (3<% ' | I3<d; )
¥Af No Yes
.' Yes ' _ ' No
Set el = ea . Sgt 32 = e3
-
J1 = J2 T J2 = J3' 
€, = 53
ja”%
Set:

e* =3I, (e, = e5){e, +eg) + Tyleg = £))(eg + €y)
+J(ey = ey) (eg +€,)1g, (e, = &)

+ J2(g3 - Fl)-+ J3(e1 - 62)}

th3



APPERDIX F

Conditions (3.6) - (3.8) may be derived directly, by continuity
and differentiability arguments, from the assumption that-the re-
sponse x of the system always satisfies the condition that x(t) is
contained in a closed and bounded subset of Rn, i.e, x(t) is in X
for all t in [to,tfj, where X is a closed and bounded subset of R°.
(see "Ordinary differential equations and stability theory: an

introduction”, by D. A. Sanchez, page 121),
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