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SUMMARY 

This thesis considers the optimal control of systems governed 

by hereditary systems. In particular, the thesis examines the 

numerical solutions of these optimal control problems, but some 

theoretical results are obtained. 

Gradient, conjugate gradient and second order methods for 

integro-differential systems are presented here together with a 

proof of the convergence of the £-method and the minimum principle 

for these systems. In addition, gradient, conjugate gradient and 

second order methods for time lag systems are discussed and some 

results on other hereditary processes are presented, 

The implementation of the numerical methods for time lag and 

integro-differential systems is examined at length, and several 

numerical examples are discussed. Some consideration is given to 

systems having state variable inequality constraints. 
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CHAPTER I 

Introduction and Terminology 

Mathematical models have long been used to describe processes 

vhich may occur in such fields as economics, medical science, 

engineering and biology. A large proportion of these processes 

can be modelled by means of a set of ordinary differential equa-

tions. A typical example is a process vhose state may be described 

by a set of parameters x1 , x2 ..• xn' vhich are termed the state 

variables. It may be possible to determine an empirical or 

theoretical relationship betveen the rate of change of each of 

these variables and the values of these parameters. This rela-

tionship might be of the form: 

(1.1) 

dt 

It is likely that the values of some of the parameters determining 

the evolution of the system are at the operator's disposal. These 

parameters are termed control variables. The mathematical model 

may then be of the form: 

= f.(x
1
(t), .... ,x (t),u

1
(t), ... u (t)) 

1 n r 
dt 

In addition, the system equations may be explicitly time depend-

ent and so the model becomes 

l 



dx.(t) 
1 ----= 
dt 

f. ( x
1 

( t ) , •.. , x ( t ) , u
1 

( t ) , ... , u ( t ) , t ) 
1 n r 

i=l, .... n 0 

~'his mAY be more concisely expressed by usinr: vector 

notation as: 

~(t) = f(x(t),u(t),t) 

where x(t) is ann-vector, u(t) an r-vector and f(x,u,t) is an 

n-vector f\mction of the state, control and time. 

The operator may wish to choose a control which in some 

(l. 3) 

( 1 • 4 ) 

sense is the best control. To do this, he woul.d have to consider 

what his objectives are, ann bearing these in mind, choose a 

performance index which accurately measures the sense in which 

he wishes to optimise t.he process. 

A typical statement of an optimal control problem for these 

systems is for r:i ven t 0 , x0 , f, ljJ, <P such that 

1 t
0

r, R , 

n x0f'; R , 

f lS a flmction from Rn x Rm 

ljJ is a function from Rn into 

and <P is a function from Rn into 

X R1 . n 
1nto R , 

Rq 
' 

R, 

choose the control u( t) t 0 l> t l> t f which minimises <P(x(tf) ,tf) 

sub,ject to 

~(t) = f(x(t),u{t),t) 

and 

This problem, or others similar, has been investigated by 

many authors and several methods of calculating optimal controls 

numerically have been described [1] - [8], 

Ordinary differential eqnations ( l.l) have been extensively 

analysed by many workers: see for example ref. [.9]. For some 
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sytems, however, the ordinary differential equation is an in-

adequate model. One alternative is to model the system in terms 

of a distributed parameter system. The corresponding optimal 

control problem has been investigated by Holliday [10] among 

others. 

Another class of problem, where the model (1.5), (1.6) is 

insufficient, is that of hereditary systems, in which the dynamics 

are dependent on the past history of the state and control, as 

well as their present values. 

Some examples of models which could be used to describe such 

processes are: 

i) differential-delay or time lag systems 

~(t) = f(x(t),x(t-T),u(t),t) 

where T is a known constant greater than zero, and 

x(t) = a(t) 

with a(t) a known function of time; 

and 

ii) neutral systems 

x(t) = f(x(t),~(t-T),x(t-T),u(t),t) 

x(t) = a(t) 

~<t> = ci<t> t -T 
0 

(1. 7) 

(1.8) 

where T is a known positive constant, and a(t) a known function 

of time; 
, 



iii) integro-differential systems 

t 

~(t) = f(x(t),u(t), f e(x(s),u(s),s,t)ds) 

to 

with x(t
0

) known, 

(1. 9) 

Processes governed by ordinary differential equations have 

been the subject of investigations for many years. In contrast, 

hereditary systems are of more recent origin. They arise 

naturally in population dynamics. Cooke [11] suggested the 

following model for the size, x(t), of a population with con-

stant gestation period t, constant birth rate a, and fixed life 

span a; 

~(t) = a{x(t-t)-x(t-t-a)} 

Volterra (12] investigated the dynamics of a predator-prey 

population and derived a pair of coupled integro-differential 

equations: 

0 

~(t) = {a-tly(t)- J F( -6)y(t+6)d6}x(t) 

-h 

0 

y(t) = {o-Ex(t)- f G(-6)y(t+6)d6}y(t) 

-h 

where x represents the prey population and y the predator 

population. More recently, Bellman and Cooke [13] have given 

a comprehensive treatment of differential-difference equations 

and Halanay [14-j has written on differential delay equations. 



The optimal control problem for hereditary systems has a 

fairly short history. The first major contribution was probably 

the extension of Pontryagin's Maximum Principle [1] to time la~ 

systems by Kharatishvilli [15_!, [16] . Computational methods 

for generating optimal controls for time lag systems have been 

given by T. E. Mueller [17], Sebesta [18] and Eller [19] among 

others. T. E. Mueller gives an algorithm for linear differen

tial delay systems with a quadratic performance index, and 

Sebesta gives a similar algorithm for more general systems. 

Eller derives a set of partial differential equations whose 

solution yields a feedback control for linear time lag systems. 

Little work seems to have been done on any of the other 

forms of hereditary systems. C. E. Mueller [20] derives feed

back controls for a wide class of linear hereditary systems 

and discusses extensions to non-linear equations. Banks and 

Jacobs [21] and Kushner and Barnea [22_1 discuss the optimal con

trol of systems governed by linear functional-differential equa

tions. Oguztareli ['2jj has given results for a large class of 

optimal control problems of hereditary systems and has an exten

S1Ve bibliography. 

This thesis describes methods of calculating optimal controls 

for hereditary processes. In chapter 2 we give the derivation 

of the gradient, conjugate gradient, and second order methods 

for the optimal control of time lag systems. The chapter con

tinues by giving a discussion of processes with inequality con

straints, and concludes with a description of numerical techniques 

suitable for calculating the optimal control of time lag systems 

in the presence of inequality constraints. 



Chapter 3 begins by describing the £-technique as applied 

to integro-differential systems and we present gradient, con-

jugate gradient and second order methods for these processes. 

Chapter 4 eives a brief discussion of some results on other 

forms of hereditary processes, such as neutral systems and systems 

governed by integral equations. 

In chapter 5 we apply the techniques described in chapters 2 

and 3 to examples of time lag and integro-differential systems 

with and without inequality constraints; 

\le will now discuss some of the terminology which will be 

used. We have already classified several types of hereditary 

systems in (1.7) to (1.9) as time lag, neutral o.nd integro-dif-

ferential nystems. This classification of the state equations 

can be further divided into linear and non-linear systems, in the 

usual way. For example, a linear time-lag system could be written 

as: 

~( t) = A(t)x(t) + R(t)x(t-T) + C(t)u(t) 
:I 

x(t) = <j>(t) 

where A(t) and B(t) are n x n matrices and 

C(t) is ann x r matrix. 

Similarly, a linear integro-differential system could be 

written as 

x(t) = A(t)x(t) + C(t)u(t) + 

t 

J {B(s,t)x(s) + D(s,t)u(s)}ds 

to 

• 
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Here A(t) and B(s,t) are n x n matrices and 

C(t) and D(s,t) are n x r matrices. 

Optimal control systems can also be classified by their 

performance index. A performance index which may be written as 

tf 

J = ~ xT(tf)Px(tf) + ~ J {xT(t)Q(t)x(t) + uT(t)R(t)u(t)}dt 

to 

where P and Q(t) are n x n matrices and R(t) is an r x r matrix, 

will be termed quadratic. R(t) will be termed the control cost 

matrix. 

Much of the research on optimal control, whether on heredi-

tary or lumped parameter systems, has been centred on linear 

systems with a quadratic performance index. These will be refer-

red to as linear-quadratic systems. 

The majority of the new results presented in this thesis are 

contained in chapter 3, 11here a gradient method, conjugate gradient 

method, second order iterative !".ethod and a minimum principle for 

integro-differential systems are derived. 

In addition, the tcrndient method for systems governed by 

integral equations des~ribed in chapter 4 is new, as is the second 

order Runee Kutta method for integrating integro-differential 

equations described in appendix D. 

A c'ornparison or these numerical methods, both for integro-

differential and time lac: systems is also presented, together with 

a comparison of transformation techniques for dealing with con-

strained optimisation problems. 



CHAPTER II 

Optimal Control of Time Lag Systems 

2.1 Introduction 

In this chapter, we will outline some iterative procedures 

for the optimal control of systems described by 

~(t) = f(x(t),x(t-T),u(t),t) 

x(t) = $(t) 

with a scalar performance index 

which is to be minimised. 

Here x(t) is an n-vector, u(t) an r-vector,T a constant 

delay and $(t) a known function of time. 

(2.1) 

(2.2) 

(2. 3) 

Some of the earliest work on systems governed by time lag 

equations of this type was done by Kharatishvilli [15]. He 

extended Pontryagin's maximum principle to cover systems with a 

single delay in the state, as in equation (2.3). Chyung [24] 

derived necessary conditions for linear systems with single 

delays and, under additional conditions, proved existence and 

sufficiency conditions for optimal controls. 

Chyung and Lee [25J later derived necessary and sufficient 

conditions for the optimal control of linear systems with multiple 

delays in the state and having a quadratic performance index. 

Kharatishvilli [16[ extended his maximum principle to differen

tial delay equations with multiple delays. Much of this work 

has been discussed and extended by Oguztoreli [23[. 

8 



Computational algorithms for finding the optimal control 

of differential-delay systems have been presented by Mueller, 

Sebesta, McKinnon, Ray and Soliman, and Sebesta and Asher. 

Mueller' s [171 algorithm is applicable to linear-quadratic 

systems with a fixed lag. Sebesta 118[ gives an extension of 

the gradient method of Bryson and Denham 14] to systems with 

time varying lags. This work has been further extended by 

Sebesta and Asher [26] to systems with time and state dependent 

lags. McKinnon's [271 algorithm is a second order algorithm 

and Ray and Soliman 128] outline a conjugate gradient method. 

Most of the above methods are based upon the maximum 

principle. An alternative approach is given by Huang [291 who 

extends the £-method of Balakrishnan [6j to systems with multiple 

time lags. The advantage of this method is that the state 

equations do not have to be solved. For systems described by 

ordinary differential equations or time lag equations, which 

can usually be integrated fairly easily, this method is probably 

inferior [30[ to the gradient, conjugate gradient and second 

order methods. It has, however, been used to solve some problems 

L31], [32] and leads to an interesting derivation of the maximum 

principle. A further extension to systems represented by integro

differential equations is given in a following chapter. 

9 



2.2 Gradient Methods 

Consider the system described by 

i(t) = f{x(t),x(t-t),u(t),t) 

x(t) = q>{t) , 

where x(t) is an n-vector, u(t) an r-vector and q>{t) a known 

continuous n-vector function of time. 

We seek to minimise the performance index 

where tf is unspecified but subject to the following stopping 

condition 

It is assumed that f(x(t),x(t-t),u(t),t) is defined and 

n r · continuous for all xER ,uER and tER and possesses cont1nuous 

derivatives. The scalar functions G(x(tf)'tf) and K(x(tf),tf) 

have similar properties. 

(2. 4) 

(2.5) 

We choose an initial control u*(t) and then the corresponding 

response x*(t) and terminal time tf are found by integrating (2.4) 

until (2.6) is satisfied. 

We now seek a modification ou{t) to the control such that 

the new control u*(t) + ou{t) gives an improved value for J. 

We start by linearizing (2.4) about the nominal pair (x*,u*) 

to give 

oi(t) = A
1

(t)6x(t) + A2(t)6x(t-t) + B(t)ou(t) (2.7) 

ox(t) • o 

where the matrices A
1
(t), A2(t) and B(t) are defined as 
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[ 
af. ) 

"' -
1 (x*(t),x*(t-T),u*(t),t) 

ax .(t) 
J 

[ 
af. ) 

"' -
1 (x*(t),y,u*(t),t) 

ay. 
J 

y "' x*(t-T} 

[ 
af. ) 

B(t) = - 1 (x*(t),x*(t-T),u*(t),t) 

au.(t) 
J 

where f. is the ith component of f(x(t),x(t-T),u(t),t) and x. 
1 J 

th .th t f e J componen o x, etc. 

The superscript * denotes evaluation along the nominal 

trajectory. In future, we will denote partial derivatives with 

respect to the lagged state by the subscript T, 

Thus our definition of A2(t) above may be written as 

A2(t) = fT(x"(t),x1t-T),u'{t),t). 

We define the Hamiltonian by 

H(x(t) ,x(t-T) ,u(t) ,>.(t),t) T "'>. (t)f(x(t),x(t-T),u(t),t)
1 

(2.8) 

where 

>.(t) - 0 t > t~ 

[
aG - ( G/K) 
ax 

* 
aK ) 

ax t=t* 
f 

• 

•r 
Prernultiply (2.7) by>. (t) and postmultiply the transpose of 

(2.9) by ox(t) to give, 

11 
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+ AT(t)B(t)liu(t) 

~T(t)6x(t) = -AT(t)A
1
(t)6x(t)- AT(t+t)A

2
(t+t)6x(t). 

Adding (2.10) and (2.11) gives 

!!__ {AT(t)lix{t)} 
dt 

T - A (t+t)A
2

{t+t)lix(t) 

t* 

AT(t})6x(tf) = If{AT(t)A
2

(t)6x(t-t)-AT(t+t)A
2

(t+t)6x(t)}dt 

to 

t* 

+If AT(t)B(t)6u(t)dt. 

to 

But 

t* 

Jf AT(t+t)A
2

(t+t)6x(t)dt = 
t* 

If AT(t)A
2
(t)6x(t-t)dt 

to 

as 

to 

A(t) = 0 for t > tf and ox(t) - 0 for t ~ t 
0 

Hence (2.13) becomes: 
t* 

AT(tf)lix(tf) = r AT(t)B(t)6u(t)dt > 

to 

or in terms of the Hamiltonian, 

t* 

AT(tf)lix(tf) = r H~{t)6u(t)dt. 
to 

12 
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(2.11) 

(2.12) 

(2 .13) 

( 2.14 } 



The first order change in the performance index J, due to 

the modification, ou(t), to the control is given by 

(2.15) 

The first order change in value of the stopping condition 

is given by 

(2.16) 

We set ~K to zero to ensure the stopping condition remains 

zero. 

So from (2.16) 

~t = 
f 

Substituting in (2.15) gives: 

M = {G* -(G*/K*)K*}T ox(t ) . 
X X f 

But from our definition of the terminal condition of (2.9) 

and so from (2.14) 

t* 

~J = Jf H~(t)6u(t)dt 
to 

We vish to minimise this expression for ~J, but first ve 

(2.17) 

have to constrain ou(t) so that the linearisation (2. 7) is "'ccu.n.-le. 

We choose a S > 0 and a positive definite symmetric r x r matrix 

W(t) and constrain ou(t) by 
t 

s = JfouT(t)W(t)ou(t)dt 

to 
13 

(2.18) 



Adjoining the equality constraint (2.18) to the expression 

for M gives 

t:.J = 
A 

tf 
J H~(t)ou(t)dt 
to 

tf 
+ 11<e- J ouT(t)W(t)ou(t)dt}. 

to 

From the calculus of variations, we see that (2.19) is 

minimised by 

ou(t) 

Substituting this into (2.17) gives 

11 = + II/2/e 

where 

therefore 

ou(t) = ~ {S/I}~ w-1(t)H (t) 
u 

(2.19) 

(2.20) 

(2 .21) 

It can easily be seen that, substituting (2.21) into (2.17), 

the minus sign gives t:.J as negative, as required. 

We can now choose the change in control to be 

14 



ou(t) = - {S/I)~ W-1 (t)H (t) 
u 

(2.22) 

and repeat until satisfactory convergence is obtained. 

Alternatively, in the case of the final time being specified, 

Ye may proceed as follows: 

Noting that atf = 0, Ye change the final time condition 

on l.(t) to 

* a a 

l.(t) = 0 

In this case, the change in performance index, to first 

order, is given by 

So Ye see that, as in (2.17), 

aJ = Jf H~(t)ou(t)dt 
to 

Instead of constraining the control by means of equation 

(2.18) Ye can set 

cSu(t) = - e: H (t) 
u E > 0 • 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

If e: is chosen small enough and the linearization (2.7) is 

valid, then this value of ou(t) will ensure a decrease in the 

performance index. We have tYo alternatives for setting e:. 

15 



The first is to choose a fixed e, suitable for the problem, and 

make a fixed step, - £ H (t) at each iteration. 
u 

termed the fixed step method. 

This will be 

The second alternative is to perform a linear search on e, 

so as to find the minimum of the performance index along each 

search direction. This is done by choosing an initial e > 0 

and correcting the control by -eH(t). 
u 

If this results in a 

decrease in J, e is increased by some factor and the controls 

recorrected. J is again evaluated and the process repeated 

until an increase in performance index is found. The e giving 

the minimum value of J is then found by quadratic interpolation 

and the new control calculated. 

Should the first step, -eH (t), fail to give an improved 
u 

cost, the £ is reduced by some factor until some improvement is 

found, and the e giving the minimum value can again be found by 

interpolation. 

For the latter method, at each evaluation of the performance 

index, the state equations have to be integrated. As there will 

be at least three performance index evaluations per iteration, 

it may appear that the time involved in integrating the state 

equations would make this method slow. In practice, however, for 

the fixed step gradient method, and the gradient method for vary-

ing final time, the change in performance index index has to be 

monitored, as it is often necessary to modify e and 6(or W(t)) 

respectively. 

2.3 Conjugate Gradient Methods 

The conjugate gradient method is an algorithm which is similar 

to the steepest descent method described in the previous section, 

16 



but requiring some additional computation and storage, Instead 

of simply searching along the direction of steepest slope, pro-

gressive improvements are made to the search directions at each 

iteration, in the hope that better convergence will result. 

It may be summarised as follows: 

a) the first search direction, s
1

, is the same as the steepest 

ascent method, i.e. 

The algorithm then proceeds by the following steps: 

b) the (i-l)th step taken is 

u.(t) = u. 1 (t) + E· 1s. 1 Ctl 
1 1- 1- l- ') 

where E. 
1 

is chosen by a one dimensional search along 
1-

s. 1 to minimise J(u.): 
1- 1 I 

c) the state and adjoint equations are integrated and the 

gradient at (x.,u.) is calculated by 
1 1 

d) the ith conjugate gradient search direction is calculated 

as follows 

where 

s. = g. + a. 
1 

s. 
1 1 1 1- 1-

17 
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i > 1 

(2.27) 

(2.28) 

(2.29) 

(2.30) 



,,, 

where 
tf 

la,bl = J aT(t)b(t)dt 

to 

This generates a new search direction and we return to 

step (b) and repeat until satisfactory convergence is 

obtained. 

The conjugate gradient algorithm was originally applied to 

the minimisation of functions in n-space. It can be shown that 

a quadratic function of n-variables can be minimised by such a 

procedure in n-iterations from any starting point. The proof 

of this is given in appendix A. The proof assumes that the one 

dimensional searches along each direction are perfect, i.e. the 

exact minimum is found along each search direction. Lasden, 

Warren and Mitter [5] applied the method to lumped parameter 

systems. They also prove, under certain assumptions, that the 

conjugate gradient method always generates directions of descent. 

In n-space, if the function to be minimised is non-quadratic, 

then the conjugate gradient method, in general, will not converge 

in n-iterations, and so will have exhausted its potential. It is 

therefore advantageous to make a steepest descent step after 

n-iterations, i.e. to restart the algorithm. For optimal control 

problems, the dimension n must be arbitrarily imposed. Pierson [33] 

compares the conjugate gradient method and the conjugate gradient 

with restart every four or five iterations and obtains improved 

convergence with the latter approach. 

2.4 Second Order Methods 

Several authors [5], [34] have reported poor convergence 

near to the optimum for steepest descent and conjugate gradient 

18 



methods. These remarks are made on lumped parameter systems 

but it is expected that they apply equally well to hereditary 

systems. Accordingly, second order methods have been developed 

in an effort to improve the convergence near to the optimum. 

Merriam l35:l derived a second order method for lumped parameter 

systems, and later Mitter 1361 presented a more general dis

cussion of second order algorithms. McKinnon [ 27j extended 

the approach of Merriam to non-linear systems with time lag. 

Freeman [8J derived an algorithm, based on a contraction 

mapping principle, for linear-quadratic systems without any 

delay. This scheme does not always converge, but Freeman 

established conditions for convergence. llire recently, Allwright 

[7.1 has published a method similar to Freeman's, but with 

guaranteed convergence for all positive definite control cost 

matrices. Numerical results presented by Allwright suggest 

that even when Freeman's method converges, Allwright's scheme 

gives better convergence. 

The algorithms of Freeman and Allwright are for linear 

systems , but their approach is particularly attractive 

in the derivation of second order methods for non-linear here

ditary systems, and has been used by Connor l37J and Connor and 

Hood [381, and will be described in this section. 

We consider the system represented by the following 

differential-difference equation 

~(t) = f(x(t),x(t-t),u(t),t) t 0 ~ t ~ tf 

x(t) = .p(t) t
0
-t :: t :: t

0 

where, as before, x(t) is an n-vector, u(t) an r-vector and 

<jl(t) a known function of time. 

19 
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We wish to minimise the fUnctional 

t:r 
J = G(x(tf),tf) + J F(x(t),u(t),t)dt , ( 2. 32) 

to 

It is assumed that each element of u(t) is measurable and 

square integrable on [t0 ,t:rJ. This assumption is needed for the 

application of the contraction mapping principle. In addition, 

it is assumed that f(x(t),x(t-~),u(t),t) and F(x(t),u(t),t) are 

defined and continuous for all x~~n Rn, ~~~n Rr and tin R, and 

have continuous derivatives up to third order. 

The function G(x(ti') ,tf) is continuous in x and tf and has 

continuous derivatives up to third order. 

We define the Hamiltonian by 

H(x(t) ,x(t-~),u(t) ,>.(t) ,t) 

= F(x(t),u(t),t) + >.T(t)f(x(t),x(t-~),u(t),t), (2.33) 

and consider the augmented functional 

tf 
J {H(x(t),x(t-~),u(t),>.(t),t) 
to 

( 2. 34) 

Taking variations ;(t), n(t) in x(t) and u(t) respectively 

and expanding JA to second order terms gives, 

t:.J A = (Gx(tf) ,;(tf)> +(~ Gxx(tf);(tf) ,;(tfl) 

tf 

+ <J (Hu(t),,(t~dt- ~(t:r),;(tfll 
to 
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{<H (t),{t),,(t)> 
XX 

+ 

<H (t),,(t-t)>dt 
t 

+ <Huu{t)n{t),n(t)> + 2 <H (t),(t),~(t)> 
ux . 

+ 2 <H (t),{t-t),n(t)> ut + 2 <H (t),(t-t),~(t)> )dt • xt 

We also have the following identity 

tf I <H,(t),,(t-t)>dt 
to 

= I <H,(t+t),,(t)>dt 

to 

But we have 

'(t) = 0 

to-• 

<H (t+t),,(t)>dt , 
T 

( 2. 35) 

(2.36) 

so we may eliminate the first term of the right hand side of (2.36). 

Using (2.36), we may write 

tf 
+ A(t),,(t)>dt + I <HT(t),,(t-t)>dt 

to 

+ H (t+t) + ~{t)),,{t)> 
T 

tf 
+ I <llx(t) + A(t),,(t)>dt • 

tf-t 
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We now define A(t) to satisfy the following: 

i(tl = - H (t) - H (t+T) t 0 ~ t < t -T 
' f X T . 

i.(tl = - H ( t) tf-T < t t; tf 
X 

A(tf) = Gx(tf) • 

Using (2.38) - (2.40) in (2.35) we may write 

tf 
fiJA = ~<Gxx(tf),(tf),,(tf)> + f 

to 

<H (t),n(t)>dt 
u 

tf . 

J 
{<H (t),(t),,(t)> + <H ~(t-T),~(t-T)> 

XX 11" 

to 

+ <H (t)n(t),n(t)> + 2<11 E;(t),n(t)> uu ux 

+ 2<11 (t)~(t-T),n(t)> + 2<11 (t)f;(t-T),E;(t)>}dt. 
Ut XT 

(2.38) 

( 2. 39) 

(2.40) 

(2. 41) 

If we assume a nominal control u0(t), we may solve equations (2.31) 

to give the nominal state x0(t) and solve (2.38} - (2.40) in back

ward time for A0 (t}. 

In general these solutions will not satisfy the normal 

optimality condition, H (t) = 0. 
u 

We seek a control correction n(t) minimising the expression 

for 6JA given in (2.41}. We have to minimise this expression 

subject to the following constraints: 

?
,, ,_ 



~(t) = f (t)~(t) + f (t)~(t-T) + f (t)n(t) 
X T U 

(2.42) 

and 

~(t) = 0 

f (t), f (t) are all evaluated along the nominal 
T U 

where fx(t), 

trajectory. It can be shown [see appendix IiJ that the solution 

of (2.42) may be written 

t 

~(t) = J N(o,t) 

to 

f (a )n(o )da , 
u 

(2.43) 

where N(a,t) is an n x n matrix satisfying a certain differential 

equationland from (2.43) write 

N(o,t-T)f (o)n(a)do • 
I U 

Using Freeman's approach, we rewrite (2.43) and (2.44) in 

the form 

F;(t) = Ln(t) 
~ 

~(t-T) = Ln(t-T) = Ln(t) 

Let 

where a ( t) is the Dirac function • 

We have to minimise 

tf 
6JA = J {<Hu(t),n(t)> + ~<Q(t)~(t),~(t)> 

to 
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(2.47) 



+ ~<H (t)E;(t-t),E;(t-t)> + ~<H (t)~(t),~(t)> 
lt uu 

+ <H (t)E;(t),~(t)> + <H (t)E;(t-t),~{t)> 
UX Ut 

+ <HX
1

(t)E;(t-t),E;(t)>}dt • (2.48) 

Using ( 2. 45) and ( 2. 46) ;~e may re;~ri te 6.J A in the form 

= I(R + H )~.~1 + I2H ,nl uu u 
( 2. 49) 

;there 

* "* ... * .. 
Rn = (L QL)n + (L H L)n + 2(H L)n + 2(H L)n+ 2(L H L)TJ, 

1"1 UX UT XT 

Here I · • · I denotes the inner product on the control Hilbert 

space and is given by 

tf 

la,bl = J <a{t),b(t)>dt 

to 

lfo .* 
L and L denote the adjoint operators of L and L respectively. 

The derivation of the above results is given in appendix C. 

We ;~ill ;trite J' for ~JA for ease of notation. Let n0 (t) be 

the optimum value of n(t). We give a small variation n(t) to n
0
(t) 

and determine a necessary condition for the optirnality of n
0
(t). 

Expanding to the first order in n gives 

or 

2AJ • = 1 { < R + u l + < R + H l *} ~o. nl + 2(H • iil uu uu . u 
(2.51) 

Hence, a first order condition for n0 to be the optimum value for 
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n 1S: 

* {(R+I! )+(R+ H ) ln0 = -2H uu uu u • 

As H lS uu 
self adjoint we may write (2.52) as: 

* 2l! no = -21! - (R +R )n
0 uu u 

Finally, (2.53) may be written as an integral equation: 

Let us write (2.54) in the more compact form: 

n = cn
0 0 • 

(2.52) 

(2.53) 

( 2. 54 ) 

The above equation can be used to provide an iterative procedure 

for generating a control increment n
0 

and is based on f'reeman's IBI 
approach. 

If the operator C 1s a contraction operator then the procedure 

defined by 

will converge to n0 for any starting point. 

* 

(2.55) 

If H is small compared to (R + R ), then the convergence of uu 

(2.55) will be poor and it may fail to converge entirely. In an 

attempt to improve this we now follow Allwright's r~ argument. 

We may rewrite (2.49) as 

J(n) = ~ IPn,nl + IH ,nl 
u 

(2.56) 

We see from (2.52) that the first order condition for n to be 

optimal is 

* (P + P )n + 2H = 0 
u 

(2.57) 



This suggests using the generalized Newton Raphson technique. 

Noting that 

* * P + P = R + R + 2H uu (2.58) 

the Newton Raphson algorithm may be written as 

(2.59) 

* Unfortunately, this cannot be implemented as (R + R ) is an 

infinite dimensional operator and so, in general, its inverse 

cannot be found. We follow Allwright 's suggestion and approximate 

[H + HR + R * Jl by [ H + Ell-~ where 0 is the upper bound for uu uu 

* ~ 11 R + R 11· This approximation leads to the algorithm 

-1 
= nn -!H + cnl IH + HP + p*)n J uu u n (2.60) 

which defines our alternative algorithm. 

Note that setting e = 0 in (2.60) leads to 

= n - H-1 [H + H n + HR + R*)n] 
n uu- u uu n n 

= n - H-l H - 1!-l H 
n uu u uu uu 

Allwright also makes the following suggestion for determining 

0. Set 0 to zero initially, giving Freeman's algorithm, and adjust 

0 adaptively to optimise the convergence rate, which might be 

measured by the rate of decrease of the norm of the gradient. 

The two contraction mapping algorithms defined by (2.55) and 

(2.60) do not require optimisation along search directions, as in 
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the gradient methods described in an earlier section. 

2.5 Processes with Inequality Constraints 

In addition to satisfYing dynamic constraints, some processes 

have to satisfY inequality constraints of the form: 

C(x(t),u(t),t) ~ 0 

or 

S(x(t),t) ~-0 t
0 

:r. t < t . .. f 

These are termed control inequality constraints and state 

inequality constraints respectively. Such problems may arise, 

for example, in a re-entry vehicle entering the earth's atmosphere. 

The speed of re-entry must not exceed a certain value, otherwise 

the vehicle would break up. Alternatively, a component may not be 

able to exceed a certain level of performance, and so it is subject 

to some form of inequality constraint. Trajectories satisfYing the 

constraints will be termed feasible, and the set of all feasible 

trajectories will be called the feasible region. 

Bryson, Denham and Dreyfus 139_1 derive necessary conditions 

for lumped parameter systems with control and state inequality con-

straints. 

Consider the problem of minimising 

subject to 

~(t) = f(x(t),u(t),t) 

and 

C(x(t),u(t),t) ;:. 0 
' 



Bryson et al show that there are no discontinuities in the adjoint 

multiplier A(t) although there may be discontinuities in u(t) and 

A(t). 

Now suppoGe that the control inequality constraint is replaced 

by a state variable inequality constraint of the form 

S(x(t),t) ~ 0 

Let t
1 

be the point at which the trajectory enters the constraint 

boundary, and t 2 be the time at which it leaves the boundary. Bet

ween t 1 and t 2 , the state variables are related by 

S(x(t),t) "0 • 

As S vanishes identically along the constraint boundary, then its 

time derivatives must also vanish; 

thus 

But from the state equation we may write 

::" (::] + (::] f(x(t),u(t),t) 

Thus dS/dt may be an explicit function of the control u(t). If it 

is not an explicit function of u(t), dS/dt may be differentiated 

repeatedly until it is. The derivative at which the control first 

appears explicitly defines the order of the constraint: 

i.e. if 

but 

!... s(q}(x(t),t) f. o 
au 

L s(i)(x(t),t) - o 
au 

identically 

i < q 

then the constraint is said to be of order q. Here the superscript 

. . .th t• d . t" 1 denotes the 1 1me er1va 1ve. 
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Thus ve have S(q)(x(t),u(t),t) playing the same role as 

C(x(t),u(t),t) did earlier but, in addition, at the entry points 

the folloving tangency conditions have to be satisfied 

S(x(t1 ),t1 ) = 0 

S'(x(t
1

),t
1

) = 0 

s(q-l)(x(t
1
),t

1
) = o. 

These conditions lead to discontinuities in the influence 

functions A(t) at t
1

• The influence functions are still continuous, 

hovever, at the exit point. Bryson et al apply their necessary con

ditions to tvo analytic examples, and in an appendix, shov that the 

influence functions are non-unique along the constraint boundary. 

They can, in fact, have their points of discontinuity at the exit 

point instead of the entry point, or they can have discontinuities 

at exit and entry points. 

Speyer and Bryson [4o] shov that this non-uniqueness of the 

influence functions results from neglecting to make use of a state 

space of reduced dimension along the constraint boundary, and present 

a nev set of necessary conditions. 

Jacobson, Lele and Speyer [411 suggest that the necessary con

ditions of [39.] and [40] tmder-specify the behaviour of the influence 

functions at entry and exit points and derive another set of neces

sary conditions. 

The results mentioned above are all for lumped parameter systems. 

Similar results for time lag systems have been given by Budelis and 

Bryson [49] , and Sebesta and Asher [26] • 

Budelis and Bryson derive necessary conditions for an extremal 

path for processes governed by time lag systems and subject to control 
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inequality constraints. 

Asher and Sebesta present necessary conditions for a time lag 

system with control inequality constraints. Their derivation in

volves transforming the control variable inequality constraint to 

an equality constraint by adding a slack variable, a device which 

will be described below in the discussion of Jacobson's transforma

tion method. 

2.6 Numerical Techniques for Inequality Constrained Optimal Control 

a) Direct Methods 

Denham and Bryson [~2] describe a steepest descent method for 

lumped systems with modification on the constraint boundary. These 

modifications are necessary because the control increments on the 

boundary are not independent of the state, but are related by 

C(x +ox, u + 6u, t) = 0 

or 

s(q)(x + 6x, u + ou, t) = o. 

Their modifications also take into account discontinuities at 

the junction points. 

b) Penalty Function Techniques 

Probably the most widely used of the indirect methods are the 

penalty function techniques. The constrained problem is replaced 

by an unconstrained problem with the same system dynamics but with 

a different performance index. The new index is formed by adding 

a penalty term to the original performance index. This term has 

the property that it is small when the constraint is satisfied and 
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non-
takes on large values in the feasible reg1on. Penalty function 

methods are applicable to lumped and time-lag systems. 

There are two different types of penalty functions in common 

use; the interior penalty functions and the enterior penalty 

functions. 

Consider the following problem: 

Minimise 

subject to 

~(t) = f(x{t),x{t-T),u{t),t) 

x(t) = <j>{t) 

and 

C(x(t),u(t),t) ~ 0 • 

This inequality constrained problem is converted to a problem 

without constraints by adding a penalty function to the objective 

function to form the new objective function, 

tf 

P1(rk) = G(x(tf),tf) + rk J 

to 

dt (2.61) 
C(x,u,t) 

where rk is a positive scalar. This penalty term is an interior 

penalty function. The computation of an optimal control proceeds 

as follows: 

An initial control is chosen such that the resulting trajectory 

does not violate the constraint. A sequence of rk•s is set up, 

such that rk > rk+l > 0 and The optimal control mini-

mising P
1

(rk) is found for each rk. As rk is reduced, more effort 

is being made to minimise the original performance index, and the 
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trajectory is allowed to get closer to the constraint boundary, 

assumine; it is profitable to do so. Lasden, Warren and Rice [4~1 

prove that, for lumped parameter systems, the sequence of uncon-

strained solutions converges to the solution of the constrained 

problem as k~ and this can be extended to hereditary systems. 

Unfortunately, the numerical procedures for finding the optimal 

control all use discrete approximations to the continuous problems. 

It is thus possible for the trajectory to cross a constraint 

boundary in between two points of discretization and not get heavily 

penalized. Note that outside the feasible region, the penalty 

function (2.61) is negative, therefore once the trajectory has 

crossed the constraint boundary, it will tend to stay there. This 

would obviously cause a breakdown of the method, and so any changes 

in control have to be monitored to ensure they do not violate the 

constraint boundary. 

Alternatively we can formulate another unconstrained problem 

whose performance index is given as 

where 

and 

h(a) = { 10 

rk > rk+l > o 

tf 

f h(C)[c(x,u,t)]
2 

dt 

to 

a < 0 
a ~ 0 

and 

This is exterior penalty function method. It has the ad-

(2.62) 

vantage that the initial control, and any subsequent changes, do 

not have to be monitored. Lele and Jacobson l44] show that, for 

lumped parameter systems, the sequence of unconstrained minima 

approaches a solution to the constrained problem as k~. The 
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proof of convergence of the two penalty function methods may be 

trivially extended to time lag systems. 

c) Jacobson's Transformation Technique 

An alternative approach is to transform the constrained 

problem into an unconstrained problem of increased dimension by 

the introduction of slack variables, an approach described by 

Jacobson and Lele [45] for ordinary systems with state space con

straints. An advantage of this technique is that any nominal 

control gives a feasible trajectory. Another feature is that the 

transformed problem exhibits singular arcs corresponding to arcs 

lying on the constraint boundary in the original problem. This 

prohibits the use of second order methods but the gradient and con

jugate gradient methods are still applicable. 

Consider the problem of minimising 

subject to 

and 

~(t) = f(x(t),u(t),t) 

x(t0 ) = x0 

S(x(t) ,t) ~ 0 

We assume here that u(t) is a scalar control function and 

S(x(t),t) a scalar qth order constraint. 

The state variable inequality constraint is converted to an 

equality constraint by the introduction of a slack variable a( t) 

S(x(t),t) - ~ a 2(t) = 0 , (2.63) 

If this equality can be enforced for all t in the interval 
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rto,t;l. then the state variable inequality constraint will ob

viously be satisfied. Differentiating (2.63) with respect to t: 

Here 

and 

s(l)(x(t),t)- a(t)a
1
(t) = 0 

s( 2 )(x(t),t) - a~(t) - a(t}a
2
(t) = 0 

s(q}(x(t),u(t,),t) - (terms involving a,al,---aq) = 0 

a1 ~t) = ~(t) 

a .(t) = ~-
1
(t) 

J J-

Solving the final equation in (2.64) for u(t) 

(2.64) 

u(t) = F(x(t) ,aq,aq-l ,----a1 ,a,t) • (2.65) 

Substituting (2.65) for u(t) in the original problem gives 

the following unconstrained problem: 

Minimise 

subject to 

~(t) = a
1 

('t) 

~1 (t) = a 2 (t) 

.; 
1

(t) =a (t) 
q- I q 

x(t
0

) = x0 

(2.66) 

The initial conditions on a(t),----,a 
1

(t) are chosen to satisfy 
q-



(2.63) and (2.64), i.e. 

etc. and a (t) is treated as the control variable. 
q 

Jacobson's transformation technique can be applied to time 

lag systems and we illustrate this with an example. 

Consider minimising 

(2.67) 

where t = 1 f and 

~l(t) = x2(t) + x2 (t-~) (2.68) 

~2(t) = -x2 (t) - x2 (t-~) + u(t) 

~3 (t) 
2 2 2 = 10x
1

(t) + 10x2(t) + u (t) 
•) 

with 

x1 (t) = 1 

x2(t) = 0 1 
~ t -~ 0 -~ 

x
3
(t) = 0 ' 

and 

(2.69) 

Introduce the slack variable a(t) and rewrite (2.69) as 

(2.70) 

Differentiating (2.70) with respect to time: 
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Substituting for ~2 {t) 

or 

Let x4(t) = a{t) and let a
1

{t) be the new control, then our 

unconstrained problem becomes: 

Minimise 

subject to 

~1 (t) = x2(t) + x2 (t-~) 

~2 (t) = x4(t)a1(t) 

2 2 2 x
3

(t) = 10x
1

(t) + 10x2(t) + (x2(t) + x2 (t-~) + x4(t)a1 (t)} 

~4 (t) = a
1 
(t) ~ 

with 

x1 (t) = 1 1 . ., t -~ 0 -;; 

x
2
(t) = 0 1 

~ t ~ 0 -2 

x
3
(t) = 0 1 < t < 0 -~ ., 

' 

and x
4 
(t) = + lil.b - -~ ~ t < .. 0 • 

Unfortunately, the application of Jacobson's transformation 

technique to time lag systems can yield an unconstrained problem 

' 

whose dynamics are governed not by differential difference equations, 

but by neutral systems. Such problems are more difficult to solve. 

Connor !48] describes a gradient method for these systems which is 

discussed further in a following chapter. 



For an example of a neutral system arising from the applica-

tion of the transformation technique we return to the example, (2.67) 

and (2.68), already examined. We replace the first order constraint 

(2.69) by the second order constraint 

(2.71) 

Converting (2.71) to an equality constraint by the addition 

of a slack variable 

2 x
1 

( t) - 0. 7 - ~a ( t) = 0 • 

Differentiating 

~l (t) - a(t).;(t) = 0 • 

Substituting for ~1 (t) from (2.68) 

• 

Differentiating again 

• • • 2 .. 
x

2
(t) + x

2
(t-3) -a (t) - a(t)a(t) = 0 . 

Substituting for ~2 (t) from (2.68) gives 

or 

Let il(t) be the new controller m(t) and let 

x4(t)=a(t) 

x5 ( t) = a( t) 

then the new system dYnamics become 
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• 2 2 
x

3
(t) = lOx

1
(t) + lOx

2
(t) + 

• 2 2 
{x

2
(t) + x2(t-~) - x2 (t-~) + x

5
(t) + x4(t)m(t)} 

~4 (t) = x
5
(t) 

~5 (t) = m(t) • 

The initial conditions on x4 and x
5 

are found in the usual 

manner. Note that the equations describing the dynamics of x
2
(t) 

and x
3
(t) both contain derivaties of x2 with lagged arguement on 

the right hand side, and thus the new unconstrained problem is 

of the neutral type rather than the simpler time lag systems dis-

cussed in this chapter. 
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CHAPTER III 

Inteero-Differential Systems 

3.1 Introduction 

In the previous chapter, some iterative techniques for finding 

an optimal control, for systems governed by differential delay equa-

tions, have been described. These delay equations may be used to 

model processes whose rate of change depends on the present values 

of the state and control, and on the values of the state and control 

at some previous time(s). 

It is a natural extension to consider processes governed by a 

system of integro-differential equations of the form: 

where 

~(t) = f(x(t),u(t),v(t),t) 

t 

v(t) = J g(x(s),u(s),s,t)ds 

to 

(3.1) 

The optimal control of such systems has not been widely 

studied. C. E. l~ueller L2oj discusses some numerical methods of 

generating a feedback control for function-differential equations. 

In one chapter, he describes the application of his technique to 

systems governed by equations of the form : 

where 

~(t) = A
0

(t)x(t) + A
1

(t)x(H(t)) 

t 

+ J L
0

(t,s)x(s)ds + B(t)u(t) + v(t) 

ll(t) 

t
0

:; H(t) .~ t 

and H(t) ~ 0 
39 
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Although generally the system described by {3.2) cannot be 

~Titten in the form (3.1), all of the examples Mueller gives are 

of the form {3.1). 

Connor [47] derives a set of necessary conditions for systems 

similar to {3.1) and he also describes (46] a·l;radicnt method for 

linear systems with a quadratic performance index. Connor and 

Hood [38] present a second order method for differential-integral 

systems. 

We begin by extending Balakrishnan's £-method [6] to integro-

differential systems, and use this approach to prove a maximum 

principle. 

3.2 The £-Probiem 

Consider the following special case. of system {3,1): 

t 
. ;;( t) = f{x{t),u(t),t) + I g{x{s),u{s),s;t)ds { 3. 3) 

to 

x{t
0

) = xo ' {3.4) 

-where f{x,u,t) and g{x,u,s,t) are continuous in all their argue-

menta and continuously differentiable with respect to x. Here x 

is an n-vector and u an r-vector. 

We wish to minimise· the performance index 

tf 
J{x,u) = I F{x{t),u(t),t)dt 

to 

over the class of all functions x{t),u{t) satisfying {3.3) and 

{3.4) such that x{t) is absolutely continuous, the derivative ~{t) 

is square integrable over [t0 ,tf1 and u{t) is an admissible control. 
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It is assumed tbat F(x(t),u(t),t) is a scalar function continuous 

in all variables nnd continuously differentiable with respect to x. 

Let U be some convex subset of Rr, then the control u(t) will 

be termed admissible if it is measurable and square integrable on 

[t
0
,tf] and u(t) is contained in U for all t on [t0 ,t;.J. The set of 

all admissible controls will be denoted by n. It is assumed through

out that (3.3) has a ~~ique solution for each admissible control. 

We will further assume that for all u in n, there exists M > 0 

such that: 

llf(x,u(t),t)ll f:M{jlxll +1} 

llf(x,u(t),t)- f(y,u(t),t)ll f: Mllx- Yll 

tf 
J I lg(x,u(t),t,s)l las f: M£1 lxll + 1} 
t 

tf 
J llg(x,u(t),t,s)- g(y,u(t),t,slllds f: Mllx- Yll 

t 

IF(x,u(t),t) - F(y,u(t),t) I f: Mllx - Yll 

for all t in [t0 ,tf] and all x,y -e RO. 

(Note: see Appendix F for remarks on these assumptions). 

(3.6) 

(3. 7) 

(3.8) 

We will define Gt to be the set of all admissible states and ~ 

to be the subset of .Q l' ft such that [u,x] in J1 x!\t satisfy" equation 

( 3. 3). 

We now formulate the c problem. For each c > 0, we seek the 

minimum of the following functional: 

J(e:,x,u) 
tf 

= J F(x(t),u(t),t)dt 
tf 
J ll~(t) - f(x(t),u(t),t) 

to to 

- 1 g(x(s),u(s),s,t)dsll
2 

dt 

to 
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over the class of absolutely continuous functions x(t) satisfying 

(3.4) and the class of admissible controls. We call this the c 

problem. 

Suppose that for each £ > 0, there exists an absolutely 

continuous function x0 (t,£) satisfying (3.4) and an admissible 

control u
0

(t,£) such that J(£,x
0

(•,£),u
0
(·,£)) attains the minimum,ou•r 

0'\•Slof J(c,x,u), then "We may prove the follo"Wing theorem: 

'l'heorem 1 

For each £ > 0, let x
0

(t,c) be as defined above, and let 
. 

• J'(£,x0 (•,£),u0 (·,£)) be the m'"'"'""'· If x(t,£) is the solution 

of (3.3) and (3.4) for the control of u0(t,£) then 

lim tJf 
£->0 F ( x ( t , £ ) , u

0 
( t , £ ) , t ) dt 

tf 
= inf J F(x(t),u(t),t)dt (3.10) 

to 

"Where the infimum is over admissible controls and absolutely con-

tinuous x(t) satisfying (3.3) and (3.4). 

Proof 

and let 

No"W, by definition 

1 

~2 

t 

- J g(x0(s,£),u0(s,£),s,t)ds 

to 

tf 

dt + J F'(x0 (t,£2 ~u0 (t,£2 ),t)dt 
to 
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is the infimum of J(E
2

,x(•),u(•))o\Jer fhJb. 

Thus we have that 

and similarly we have 

tf I F ( xo ( t 'E2 ) 'uo ( t 'E2 ) 't ) dt 

to 

tf 

dt + I F ( xo ( t' El ) '~ ( t' El ) 't ) dt 

to 

tf 

dt + J F(x
0

(t,E
1

),u0 (t,E1 ),t)dt 

t 

tf 

+ I F ( xo ( t, E2 ) 'uo ( t 'E2) 't ) dt 

to 

So we have inequalities of the form 

( 3.12) 

_LA + B2 ~ _L Al + Bl 2 2E
2 2£~ 

(3.13) 

and _L > 1 
• 2E

2 2El 

So from (3.12) and (3.13) 

) 

and so ,since 
' 



we have 

Similarly 

Thus 

and 

tf I F(x0 (t,E1 ),u0 (t,&1 ),t)dt ~ 
tf I F(x0 (t,E2 ),u(t,&2 ),t)dt ~ 

to to 

So we have that 
tf I F(x0 (t,E),u0 (t,E),t)dt is monotonically in-

to 

creasing as E~ and that is monotonically 

decreasing as E~O. We now show that in fact 

decreases monotonically to zero. 

tf 
Suppose I 11~0 (t ,E) 11 2 

dt has an infimum .O<,n.s BO. Obviously 

to 

a~O, so assume that a>O. 

Let h(E) = inf(J(E,x( •,d,u(• ,E)} 
!1<51 

We know that, by definition, 

tf 
h(E) ~ inf I F(x,u,t)dt ~ F0 

to 
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say,where the infimum is taken over admissible u(t) and absolutely 

continuous x(t) satisfying (3. 3) and (3.4), Lo_, cu~r @>. 

So 

h(t) 1 
;: -

2E 

tf 

J IIB0(t,t:lll
2

dt 

to 

+If F(x
0
(t,e),u

0
(t,e),t)dt 

to 

tf 
~ a./2£ + f ~'(x0 (t,c),u0 (t,E),t)dt. 

to 

F' > a/2E + 
0 

If F(x0 (t,e),u0 (t,e),t)dt 

to 

But by choosing £ small enough, we can make u/2E as large as we 

like, giving a contradiction, thus a " 0, and we have shown that 

tf 
f J jB0(t,t)J 1

2 dt decreases monotonically to zero. 

to 

" 
Let x(t,E) be the solution of (3.3) and (3.4) using the control . 

u0 (t,t:), We now show that x(t,c) converges to x0 (t,c) uniformly on 

From ( 3.11), we have that 

~0 (t,t) "B0(t,t) + r(x0(t,c),u0(t,c),t) 

t 

+ J g ( x0 ( s, E) , u0 ( s, E) , s, t) ds • 

to 

" By the definition of x(t,E) 

(3.14) 



. . 
x(t,E) = f(x(t,E),u

0
(t,E),t) 

t 

+ I g(~(s,E),u0 (t,E),s,t)ds 1 

to 

(3.15) 

and so by (3.14) and (3.15) 

But 

t 

ll~(t,E) - x
0

(t,Elll = 11 J {f(x(o,E),u0 (o,E),o) 

to 

a 

- f(x0 (o,E),u
0

(o,E),o) +I [g(~(s,E),u0 (s,E),s,t) 
to 

t t 

~ I lls0 (o,E)IIdo +I llr(x(o,E),u0 (o,E),o) 

t., to 

t a 

+ J J llg(~(S,E),u0 (S,E),s,o)- g(x
0

(5,E),u0 (4,E),s,o)llds do. 

to to 

t a 

J I llg(~(s,E),u0 (s,E),s,o) - g(x
0

(s,E),u
0

(s,E),s,o)llds do 

to to 

t t 

= J I 11 g ( ~ (a, cl , u
0 

(a, E ) , a, s ) - g ( x
0 

(a, E) , u0 (a, E) , a, s ) 11 ds do , 

t
0 

a 
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t 

Jllg(;(o,c),u
0

(o,£),o, s) - g(x
0

(o,E),u
0
(o,c),o,s) lids 

a 

tf 
~ J flg(;(o,E),u

0
(o,c),o,s)- g(x

0
(o,c),u

0
(o,c),o,s)llds c 

a 

But by (3.7) 

So 

tf 
J llg(;(o.c),u

0
(o,c),o,s)- g(x

0
(o,c),u

0
(o,c),o,s)llds 

a 

t 

11 x ( t, c ) - x~ ( t , £) 11 ~ J 11 £ 0 (a, cl 11 do 

to 

t 

+ J llr(x(o,c),u
0
(o,c),o)- f(;

0
(o,c),u

0
(o,c),o)lldo 

to 

+ 1· f'l\ 11 ; (a,£) - x0 (a,£) 11 do , 

to 

whicl. i•y ( 3. 6) becomes 

t 

11; ( t, c) - x
0 

( t, £) 11 ~ J 11 £0 (a, cl 11 do 

to 

t 

+ 2 J M 11 x (a, £) - x0 (a, c) 11 do • 

to 

(3.16) 



We have already seen that 

tends to zero as E tends to zero, and thus 

and 

tf 

J 11110 ( o, d 11 do -> 0 as c -> o 

to 

t 

ME(t) = J jjs0 (o,c) jjdo -> 0 as c ... o, 

to 

then ve may vrite (3.16) as 

t 

VE(t) {; ~IE(t) + 2 J , M iVE(o)do 

to 

t 

.0:: ME(tf) + 2 f .M VE(o)do • 

to 

Thus by Gronvall's inequality 

for all 

Hence, 

for all 

t 

VE(t) ~ ME(tf) exp{2 f. {1'1, do} 

to. 

t in [t0 ,t;l • 

V (t) ... 0 as £ ... 0 E 

t in [t0 ,t;J 

or, in other words 
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( 3.17) 

uniformly on [t
0
,tf], and so x(t,e)- x0 (t,£) converges uniformly to 0 

B,y assumption (3.S) 

.:; '· M 11 x( t, e) - x0 ( t, E) 11 , 
. ,./.., 

so by (3.17) and (3.18) 

This last result implies 

lim 
E->() 

tf 
J F(~(t,E),u0 (t,e),t)dt = 

to 

By definition, for each e, we have that 

Taking the limit as e tends to 0: 

lim {.!.._ 
E:->0 2 E 

tf 

J !!110 ( t , E) 11 2 
dt + 

to 

tf 
J F(x0 (t,E),u

0
(t,E),t)dt} 

to 

tf 
J F ( ~ ( t , E ),u0 ( t , E ) , t ) dt • 

to 

(3.18) 



and so we have that 

1irn 1 
tf 

J ll100 (t,dll
2 

dt = o • 
2£ 

to 

Thus we have proved that 

But, by definition 

for any E < 0, 

t 
' lirn Jf 

e->0 
F'(x(t,e},u

0
(t,e},t}dt , 

to 

inf 
(2, 

tf 

J F'(x(t},u(t),t}dt 

to 

t 

~ r F(~{t,e~u0 (t,e},t)dt 
to 

Therefore, by (3.20} and (3.21} 

t 
= 1irn ff 

E->0 

to 

and the theorem is proved. 

' 

inf 
~ 

Jf F(x(t},u(t},t}dt 

to 

F'( x ( t, £}, u
0 

( t, £} , t }dt 
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3.3 Necessary Conditions for the £-Problem 

As before we assume that for each £-problem there exists an 

admissible control u0(t,c) and an absolutely continuous function 

x0(t,c) such that x0 (t0 ,c) = x0 and J(c,x0 (·,£),u0(•,£)) is the 

minimum of J(c,x(•),u0 (•)). 

Let w(t) be an n-vector valued function which has derivatives 

of all orders on [t0 ,tf] and such that w(t0 ) = 0. 

where 

Let 0 be a real variable and let 

x(t) = x0 (t,c) + Ow(t) , 

If the pair (x0 (t,E),u0(t,c)) gives the m1n1mum of J(c,x(•),u(•)) 

= 0 • 

Let zz,0 (t,£) be as defined in (3.11) then, by (3.22) 

1 

£ 

r < l'JO ( t, E) , ~( t) - f X ( XO ( t, £) , UO ( t, £), t )w ( t) 

to 

t 

- J gx(x0 (s,c),u0 (s,c),s,t)w(s)ds > dt 

to 

+ Jf < Fx(x0 (t,E),u0(t,c),t),w(t) > dt = 0 

to 

< a,b > 
T = a b > 
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(3.23) 



f = 
X 

F = 
X 

gx = 

ar1 

axl 

ar 
n 

axl 

agl 

ax1 

ag 
_n 

ax 1 

. . . 

. . . 

. . . . 

. . . . 

We may rewrite (3.23) as 

arl ) 
ax 

n 

ar . n 

ax 
n 

agl . 
ax 

n 

ag 
n . 

ax 
n 

1 tJf . 
< s

0
(t,E),w(t) > dt 

E 
to 

• 

+ ~ Jf < s
0

(t,E),fx(x0 (t,E:),u0(t,E),t)w(t) > dt 

to 

1 +-
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We may substitute the following identities into equation (3.24) 

and 

Jf < s
0
(t,d ,;,(t) > dt " < B

0
(tf,c) ,w(tfl > - < s

0
(t

0
,c) ,w(t

0
) > 

to 

Jf < ii
0
(t,c),w(t) > dt 

to 

tf t 

f f < l'i0 (t,c),g(x0(s,c),u
0
(s,c),s,t)w(s) > ds dt 

to to 

, 

and noting that w(t
0

) = 0, we obtain 

> dt 1 = - < 

> ds 

( 3. 25) 
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Now, since (3.25) holds for all w(t) with the previously indicated 

property, we have that 

and 

=-

tf 
- J g;(x0(t,c),u0 (t,c),t,s)g0 (s,c))ds 

t 

(3.26) 

(3.27) 

The existence of the derivative of s0 mny be shown as in ref. 6. 

We set 1/l(t,c) = s0 (t,d/c, then (3,26) and (3,27) may be 

be written as: 

and 

tf . ; 

- J g;(x0(t,c),u0(t,c),t,s)l/l(s,c)ds 

t 

(3.28) 

(3.29) 

Now by (3.26), s0(t,c) exists and is finite, and hence we have that 

s0 (t,c) is absolutely continuous, and therefore 1/l(t,c) is absolutely 

continuous. 



Now let 

H(e,l'l(t),x(t),u(t),t) = -F(x(t),u(t),t) 

+ < l'l(t)/e,f(x(t),u(t),t) > 

S(s)/e,g(x(t),u(t),t,s) > ds 1 

where S(t) is defined by 

t 

l'l(t) = ~(t)- f(x(t),u(t),t)- I· g(x(t),u(t),s,t)ds. 

to 

We can easily show that 

tf 

J(e,x
0
(t,c),u(t),t) = f F(x

0
(t,c),u(t),t)dt 

to 

( 3. 30) 

t 2 

- f(x
0
(t,e),u(t),t)- I g(x

0
(s,e),u(s),s,t)dsjj dt 

to 

tf I I! f(x
0
(t ,e) ,u

0 
(t ,e), t) 

to 

t 2 -I g(x0 (s,e),u0 (s,c),s,t)dsjl dt 

to 

+.!_ 

t 
2 

+ I {g(x
0

(t,e),u0 (t,e),s,t) 

to 
- g ( x

0 
( t, e) , u ( t ) , s, t ) } ds 11 dt 
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tf 

- J H(c,130(t,c),x
0
(t,c),u{t),t)dt • 

to 

( 3. 31) 

Thus, given any c > 0, ( 3. 31) attains its infimum for ou<;>,r ~·Jl.. 

Jf H(c,s
0
(t,c),x0 (t,c),u(t),t)dt 

to 

attains its supremum at u( •. ) = u
0

(,•.,cl. 

Thus we have proved the following: 

Theorem 2 

If u0(t,c) and x0(t,c) are solutions of the E-problem, there 

exists ann-vector valued function ~(t,c), defined and absolutely 

continuous on [t0 ,tf] )satisfying (3.28) and (3.29) and not 

identically zero on [t0 ,tf] such that 

Jf H(c,s0(t,c),x0 (t,c),u(t),t)dt 

to 

jf H(c,~0 (t,c),x0 (t,c),u0(t,c),t)dt 
to 

for all admissible controls u(t). 

( 3. 32) 

We can demonstrate a pointwise form of the above theorem as 

follows: 

We wish to show that 

almost everywhere on [t0 , t ;.1 , for all VE U. We define E to be the 



Define a new control w(t) as follows: 

w( t) = v for t in E 

for t in the complement of E 

then w(t) is an admissible control. 

Now we have that 

on E and 

on the complement of E, and so we have 

tf 
J H(c,s

0
(t,c),x

0
(t,c),w(t),t)dt 

to 

tf 
> J H(c,s0 (t,c),x0 (t,c),u0 (t,c),t)dt 

to 

which contradicts (3.32) unless E has measure zero. Thus, for 

any v in U 

( 3. 33) 

almost everywhere on [_t0 ,tf]. 
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3.4 The Limiting Case 

We now examine the behaviour of the E-maximum principle as E 

goes to zero. As before, we assume the existence of the solution 

to each E-problem. 

Let {Ek} be a sequence decreasing monotonically to zero. 

From Theorem 1 we know that 

where the infimum is taken over all absolutely continuous x{t) and 

admissible controls satisfYing (3.3} and (3.4). 

We assume that there is an admissible control u0 (t) such that 

for all t in [to. t fl • 

. 
Let x(t,Ek) be the solution of (3.3) and (3.4) with control 

u0 (t,Ek). Now from (3.17) we see that the sequence {nk(t)}, where 

converges to zero uniformly on [t0 ,tfl as k-+ '"• 

All convergent sequences are bounded. Let A be the bound of 

We may write x(t,Ek) as 

t a 

= J {f(~(o,Ek),u0 (o,Ek),o) + J g(x{s),u{s),s,o)ds}do + x0 
to to 
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Therefore 

t 0 

+ J llf(x(o,Ek),u0 (o,Ek),o) 

to 

+J g(~(s ,Ek) ,u0 (s ,Ek) ,s ,o )ds 11 do 

0 

t 

~ llx0 11 + J llf(~(o,Ek),u0 (o,Ek),olldo 
to 

t 0 

+ J f llg(x(s,Ek),u0 (s,Ek),s,o)llds do , 

to to 

But we have the following: 

t t 
J J llg(x(o,Ek),u0 (o,Ek),n1s)llds do 

to {1-, 

and 

J I llg(~(s,Ek),u0 (s,Ek),s,o)llds do 

to to 

t. t 

= J J llg(~(o,Ek),u0 (o,Ek),o,sllds do, 

t
0 

a 

so we may write 

t 

11 ~ ( t '"k) 11 ,:: J 11 f( x (a , Ek) , u0 (a , Ek) , a) 11 do + 

to 
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t t-f J J llg(~(a,tk),u0 (o;tk),a,s)llds do +.II"QII • 

to (}' 

Using assumptions (3.6) and (3.7) in the above expression 

t . t 

ll;(t,tk) 11 :s !~ r II;(O",£k) + lllda +M r I i~Co;tk) + lllda 

to to 
t . 

or ll;(t,tk) 11 :: 2M(t - t 0 ) + 2M J ll~(cr,tk) 11 J 0, 

to 
By Gronwall 1 s inequality·: 

t 

ll~(t,tk)ll:: 2M(t - t 0 )expJ 2Mda 

to 
and so ll;(t,~:k>ll is certainly bounded for all t in [t

0
,t;.J, by 

B say. 

Thus from the triangular inequality 

A . A 

11 x0 ( t, £k) 11 :S 11 x( t , tk) 11 + 11 x0 ( t, £k) - x ( t 1 £k) 11 , 

we have that 

for and for all k. 

Thus the sequence of functions x0 (~,£k) is uniformly bounded 

on (t0 ,tf]. In other words, each element of 

is uniformly bounded. 

We proceed now by showing that the family {x~(t,tk)} indexed 

by k is equicontinuous. In order to show equicontinuity, we first 

show that 
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We may write 

then 

t 

t 

+ f g(x0 (s,e:k),u0 (s,e:k),s,t)ds ~ 
to 

+ J g(x0 (s,e:k),u0 (s,ck),s,t)dsll
1 

to 

therefore 
2 2 

11 ~0 ( t, e:k) 11 ~ 11 s0 ( t, ck l 11 + 211 s0 ( t, c) 11 x 

t 

11 f(x0 ( t ,e:k) ,u0 (t ,e:k) ,t) + J g(x0 (s ,ck) ,u0 (s ,e:k) ,s, t )ds 11 

to 

t 2 

+ llr(x0 (t,ck),u
0

(t,ck),t) + f g(x0 (s,ck),u
0
(s,e:k),s,t)dsll, 

But 

to 

t 

+ J g(x0 (s,e:k),u0(s,ck),s,t)dsll :; 

to 

Hence 
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Integrating gives 

tf : tf 

J llio<t,e:k) 11
2 

dt ~ 2 J ll!!0 (t,e:k) 11 2 
dt 

to to 
tf 

+ 2 J ·llf(x0 (t,e:k),u0 (t,e:k),t)_-

t 
to 

+ J g(~(s,£k),u0(s,e:k),s,t)dsll 2 dt , 

to 
i.e. 

by assumptions (3.6) and (3.7). 

But ve have already proved that x
0

(t,e:k) is bounded, therefore 

ve can find a number a such that 

2 + 1} dt ~ a • 

We knov that is a convergent 

. sequence and hence has an upper bound, -say a, thus 

tf 

J llx
0
(t,£klll

2
dt ~ 4a + 2s 

to 

and hence is bounded. 

We nov proceed to shov equicontinuity. 
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Recall the Schwar~ inequality 

b 

f~(t )dt J f;(t )dt • 

a a a 

Now we can write 

2 

llxo(tl,£k)- xo(t2£klll = 11 

and hence by the Schwarz. inequality with 

Let the 

2 

llxo(tl,£k) - xo(t2,£klll 

< 
' 

t2 2 

.::: ( t2 - tl) J 11 ~0 ( t '£k) 11 dt d 

tl 

bound for 

tf 2 

J 11 ~J t '£k) 11 dt 

to 

then for each i ' 1 < i < n 

be A, 

Thus, given any n > 0, we may choose 6 = n/A so that for all 

63 

( 3. 34) 



i.e. 

Hence, {xi(t,ek)} is an equicontinuous family for all i. 

Hence, by Arzela's theorem, (x~(t,ek)} is relatively compact and 

therefore contains a uniformly convergent subsequence, converging 

to a function x~(t)wh•~h is contrnuous. 

Let 

T 
x~(t) I , 

We assumed at the beginning of section 3.4 that there is an 

admissible control u0 (t) such that for all t in Ft
0

,tf] 

From (3.19) we see that 

lim s0 (t,ek) = o 
k-

This is equivalent to 

tf 
- J g(x0 (s,Ek),u0(s,ek),s,t)dsl = o 

to 
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But 

~ the continuity of f(x,u,t) and g(x,u,s,t) and 

by (3.36) we may rewrite (3.35) as 

t 

+I g(x0(s),u0 (s),s,t)ds • 

to 

Now, since x
0

(t,ck) is absolutely continuous, we have that 

t 

x0 (t,ck) = x0 + I ~0 (s,ck)ds 
to 

Taking the limit of (3.38) 

= x + lim 
0 k--

We have already shown that 

tf 2 I 11 ~0 ( t, ck) 11 dt = 1\ 
to 

where sk is finite. 

Hence a constant function Yk can be found such that 
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lxoi(t,Ek) I < Yki , 
i .th 

where yk is the 1 component of the n-vector Yk. 

Hence by Lebesgue~ dominated convergence theorem, we may 

write (3.39) as 

Hence, from (3.37), we may write (3.40) as 

t 

x0 (t) = x0 + J f(x0(a),u
0

(a),a)do 

to 

t a 

+ f f g ( x0 ( s ) , u0 ( s ) , s , a ) ds do • 

to to 

But (3.41) implies that 

t 

~0 ( t ) = f ( x0 ( t ) , u0 ( t ) , t ) + J g ( x0 ( s ) , u
0 

( s ) , s , t ) ds 

to 

Also, since 

lim 1 
tf 2 
J 11 i30 ( t. £k) 11 dt = 0 

to 

we may write 

inf J(x(•),u(•)) 
'@> 

ti6 

( 3. 40) 

( 3. 41) 

( 3. 42) 



NoY, by continuity properties 

and 

Hence, from (3.28), there exists a lji(t) such that 

where 

~( t) 

t 

-I 

In addition, lji(t) satisfies 

HoY from ( 3. 30) 

= < 1ji(t),f(x0(t),u(t),t) +If e(x0(t),u(t),t,s)ds 

t 

+ F'(x0(t),u(t),t) > 1 
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and 

= < ,P(t),f{x
0
{t),u

0
(t),t) +If g(x

0
(t),u

0
{t),t,s)ds 

t 

l'hus the £-maximum problem, in the limit, becomes 

where ljl{t) is as defined by (3.43) and (3.44). 
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3.5 Gradient Methods 

The development of numerical methods for finding the optimal 

control of integro-differential systems is similar to the discus-

sion in section 2.2 and following sections. The calculation of 

the gradient to the Hamiltonian is somewhat different and so a 

full discussion of the steepest descent method is given here. 

We consider the following system: 

~(t) = f(x(t),w(t),u(t),t) t 0 ~ t -.< t f I 
( 3. 46) 

where x(t) is an n-vector, u(t) an r-vector control function and 

w(t) is a p-vector defined by 

g.(x(s),u(s),s,t)ds 
1 

We seek to minimise the function 

l,::::i~p. 

where tf is the known terminal time. Vie also have the initial 

condition 

where x0 is known. 

(3.47) 

( 3. 49) 

In the usual way, a nominal control u*(t) is chosen and the 

corresponding response x*(t) is derived from integrating (3.46). 

We now seek an incremental control ou(t) such that the control 

u(t) + ou(t) gives an improved value for J. 

Equation (3.46) is linearised about the nominal pair (x*,u*) 

to give 
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with 

where 

o~ = A(t)ox(t) 

ox(t0) = o 

A(t) = 

B(t) = 

C(t) = 

) 

ar 
1 

ax
1 

of 
n 

ax
1 

af
1 

au
1 

of 
.n 

au
1 

of 
n 

+ B(t)ou(t) + C(t)ow(t) ( 3. 50) 

* af
1 

ax 
n 

(x"~'(O, w• (-t.),C~.1 (0,-t) 

of 
n 

ax 
n 

* af
1 

au 
(xi ( t l, w• ( t ) , v-' (-!. ), {) r 

of 
n 

au r 

* af
1 

awP (x~t-tl, w'*(tl,l).*(t),t) 

af 
n 

aw 
p 

Also we have from (3.47) that, {p ~u-s1 "'"cl....- "" ~x, StA 

t 

ow(t) = J {F1(t,s)ox(s) + F2(t,s)ou(s)}ds 

to 
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Using (3.51) in (3.50) gives 

where 

with 

6x(t) = A(t)6x(t) + B(t)ou(t) 

t 

+ J {S
1

(t,s)ox(s) + s
2

(t,s)6u(s)}ds , 

to 

S.(t,s) = C(t)F.(t,s) 
1 1 

i = 1, 2. 

He now introduce the adjoint system of equations: 

~ ( t) 
tf I S~(s,t)A(s)ds 
t 

( 3. )2) 

Premultiplying (3.52) by >?(t) and postmultiplying the transpose 

of (3.53) by 6x(t): 
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t 

+ i.T(t) J {S1 (t,s)ox(s) + s2(t,s)ou(s))ds, (3.54) 

to 

and 

~T(t)ox(t) = -AT(t)A(t)ox(t) 

Adding (3.54) and (3.55): 

tf 
- J AT(s)s

1
(s,t)ox(t)ds. 

t 

tf 
J AT(s)s

1
(s,t)ox(t)ds 

t 

T A (t){s1 (t,s)ox(s) + s2 (t,s)ou(s))ds • 

(3.55) 

(3.56) 

Integrating (3.56) between t
0 

and tf and recalling the identity 

we may write 

where 

M(t) = B'l'(t)A(t) 

tf 
J P(t,s)ds dt 

t 

tf 
= J MT(t)ou(t)dt 

to 

tf 
+ f s;(s,t)A(s)ds. 

t 

But we see that the first order change in J is given by 

so we have 
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(3.58) 



M = Jf MT(t)ou(t)dt • 

to 

Thus we see that if we choose an incremental control 

ou(t) =- cM(t), 

( 3. 59) 

and c is chosen small enough to ensure the validity of the lineari-

sation (3.52), then there will be a decrease in the performance 

index J. 

The discussion on methods of choosing c at the end of section 

2.2 again applies here. Similarly, the conjugate gradient method 

can be developed in a similar fashion to section 2.3 and so no 

further discussion will be given here. We will continue by 

deriving a second order method for integro-differential systems. 

3.6 Second Order Methods 

We will extend the second order methods, described in section 

2.5, tointegro-differential systems. Such an extension has been 

given by Connor and Hood [38], but we consider here a more general 

system. 

We consider the system represented by the integro-differential 

equation: 

~(t) = f(x(t),w(t),~(t),t) (3.60) 

with 

specified, and where x{t) is ann-vector, 

u{t) an r-vector control function and w(t) is as defined in (3.47). 



It is desired to minimise the functional 

tf 
J = G{x(tf),tf) +I F'(x(t),u(t),t)dt , (3.61) 

to 

It is assumed that each element of u(t) is measurable and 

square integrable on [t
0

, t
1
J. Moreover it is assumed that 

f(x,u,t), g(x,u,t,s) and F(x,u,t) are defined and continuous for 

.n .Rr ·nP · · all x 1n R , u 1n , w 1n and s,t 1n R and have cont1nuous 

first and second derivatives. The function G(x,tf) is assumed 

continuous for all x in Rn and has continuous first and second 

derivatives. 

We adjoin the dynamic constraint (3.60) to (3.61) in the 

usual way and we seek to minimise the functional 

tf 
JA = G(x(tf),tf) +I [Hx(t),u(t),t) 

t 
0 

T • 
-X (t)x(t) 

T J +X (t)f(x(t),w(t),u(t),t) dt. ( 3. 62) 

Taking variations ~(t), n(t) in x(t), u(t) respectively gives 

to second order in the variations : 

tf 
+I {<Fx(x,u,t),~(t)> 

to 

t 

+ <F (x,u,t) ,q(t)>}dt 
u 

If 'l' 
+ {<fx(x,w,u,t)X(t),~(t)> 

T <S
1 
(t,s)X(t),~(s)>ds}dt 

to 
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tf 
+ f {<f~(x,v,u,t)A{t),~(t)> T 

<S2 (t,s)A(t),~(s)>ds}dt 
to 

+ 1 
tf 

f {<H (x,v,u,t)t(t),t(t) 
XX 

to 

+ 

<H (x,v,u,t)6w(t),6w(t)> + <H (x,w,u,t)n(t),n(t)> ww ' uu 

+ 2<H (x,w,u,t)n(t),t(t)> + 2<H (x,w,u,t)ow(t),n(t)> xu uw 

tf 
+I <~(t),tx(t)>dt , 

to 

where 

( 3. 63) 

H(x(t),w{t),u{t),t) = F'{x{t),u{t),t) + AT{t)f{x{t),w(t),u{t),t) 

and w{t), s1 (t,s) and s2 {t,s) are as defined in (3.51) and (3.52). 

and 

We may simplify (3.63) further by requiring that: 

~ ( t) T =- Fx(x,u,t) - fx(x,w,u,t)A(t) -
tf I si(s,t)A(s)ds 
t 

Using (3.64) and (3.65) in (3.63), we see that we have to 

minimise 

tf 
6JA = ~<Gxx(tf)t(tf),~(tf)> +I <F'u(x,u,t),n(t)>dt 

to 
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(3.65) 



t t 

f
f 1' 

+ {fu(x,w,u,t)A(t),n(t)> + f <s2 (t,s)A(t),n(s)>ds}dt 

to to 

tf 

I {<H (x,w,u,t)t(t),t(t)> 
XX 

to 

+ <H (x,w,u,t)5w(t),5w(t)> + <H (x,w,u,t)n(t),n(t) ww uu 

+ 2<H (x,w,u,t)n(t),t(t)> + 2<H (x,w,u,t)6w(t),n(t)> xu uw 

subject to 

+ 2<H (x,w,u,t)5w(t),t(t)>}dt xw 

~(t) = fx(x,w,u,t)t(t) + fu(x,w,u,t)n(t) 

t 

+ J !S
1

(t,s)((s) + s
2

(t,s)n(s)}ds 

to 

(see derivation of equation (3.52)) 

and 

From (3.51) 

6w(t) = 1 !F
1 
(t,s)t(s) + F

2
(t,s)n(s)}ds • 

to 

(3.66) 

( 3. 67) 

(3.68) 

But we can show that we may write the solution, t(t), of (3.67) 

and (3.68) as 



t 

t(t) = J M(o,t)n(o)do 

to 

where !4(o, t) is an n x m matrix (see appendix B). 

Therefore 

t 

ow(t) = J {F'l (t,s) 

to 

which we may rewrite as 

t t 

s 

J H(o,s)n(o)do + F
2

(t,s)n(s)}ds 

to 

ow(t) = J {J F
1
(t,o) M(s,o}do + F2(t,s)}n(s) ds. 

t 0 s 

We write this in operator form as 

In a similar fashion we may write 

If we let 
. 
G( t) = H ltl + G (trlolt-tfl 

XX XX 

(3.69) 

( 3. 70) 

(3.71) 

where o(t) is the Dirac function, then we may rewrite the problem 

defined by (3.66)-(3.68) as: 

Find the n(t), t 0 ~ t ~ tf, which minimises 

= IIR + H )n,nl + 2jH ,nl uu uu 
(3.72) 



where I· , ·I denotes the inner product in the control space 

defined by 

and where 

I a, e I = J f aT ( t le ( t l dt ) 

to 

and L* denotes the adjoint operator of L with respect to the 

inner product (3.73), and is derived in appendix C. 

We can now follow the arguement given in Chapter 2 from 

(3.73) 

( 3. 74) 

equation (2.119) onwards and derive the two second order techniques 

defined by: 

and 

where 

n -n 

P=R+JI 
uu 

(3.75) 

(3.76) 

,. 
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CHAP'l'ER I V 

Some Other Hereditary Systems 

4.1 Introduction 

We give here details of some results on hereditary processes 

which are not covered by the earlier chapters. Probably the most 

important of these systems are neutral systems which, as we. saw 

in chapter 2, arise naturally from applying Jacobson's transforma-

tion technique to time lag systems. Several results on neutral 

systems have been presented by Connor. In [.48] he derives a 

gradient method for neutral systems, and in [50] gives the results 

of applying this gradient method to some examples of neutral 

systems. In [51], an extension of the c-method to neutral systems 

is given and in [ 52·1 the time optimal control of neutral systems 

with amplitude and rate limited controls is considered. 

Aggarwal I 53] discusses the feedback control of linear systems 

with distributed delay. He shows that this type of system can be 

used to represent linear time lag systems. He goes on to compare 

his feedback control for linear time lag systems with optimal 

controls obtained numerically from gradient type methods. 

An extension of the gradient method to systems governed by 

integral equations has been given by Connor and Hood ['54] . The 

problem considered is as follows: 

find the control u(t) minimising 

J =If F(x(t),u(t),t)dt 

to 

7<J 

(4 .1) 



subject to t 

x(t) = f(t) + f K(t,x(s),u(s),s)ds 1 

to 

where the final time tf, is specified by the scalar stopping 

condition 

tf 
f G(x(s),u(s)s)ds = B , 

to 

(4.2) 

(4. 3) 

where a> 0 is a specified constant and G(x(s),u(s),s) is positive 

for t
0 

< s < ~. The state and control are assumed to be scalar, 

although the extension to vectors is straightforward, and f(t), 

aK( , aF 
K(x,u,t), ax x,u,t), F(x,u,t)1a-;/x,u,t)1 G(x,u,t) and 

a a 
ax(x,u,t) 

arguments. 

are all considered to be continuous in all their 

Integral systems arise naturally from integro-differential 

systems in the following way: 

and 

consider the scalar equation 

~(t) = f(x(t),u(t),w(t),t) 

w(t) = J g(x(s),u(s),s,t)ds • 

to 

We may write (4.4) as 

x(t) = x
0 

+ 1 f(x(s),u(s),w(s),s)ds 

to 
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(4.5) 

(4.6) 



Equations (4.5) and (4.6) are a pair of coupled integral equations 

and the numerical techniques for the solution of integral equations 

may be applied. Mocarsky (55] examines the convergence of step by 

step methods of solution of systems of the form: 

t 

w(t) = f g(x(s),s,t)ds (4.7) 

to 

t 

x( t) = xo + f f'(x(s),w(s),s)ds. (4.8) 

to 

Obviously systems of ordinary differential equations may be 

written in the form of an integral equation. 

4.2 The gradient method for systems governed by integral equations 

Consider the problem of finding the control which minimises 

subject to 

J = r F(x(t),u(t),t)dt 

to 

t 

x(t) = f(t) + J K(t,x(s),u(s),s)ds 

to 

(4.9) 

(4.10) 

where f'(t) is continuous for t 0 ~ t -~ tf and F(x,u,t), K(t,x,u,s), 

aK and aF are continuous in all their arguments. We consider 
ax ax 

the case of the terminal time, tf, being fixed. The state, x(t), 

is an n-vector and the control, u(t), is an r-vector. 
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We take a nominal pair (x*,u*) and consider perturbations 

(~(t),n(t)) about this nominal trajectory. 

Linearising equation ( 4.10) : 

t 

~(t) = J (A{t,s)~(s) + B(t,s)n(s)}ds 

to 

(4.11) 

and A and Bare evaluated along the nominal trajectory. Defining 

the adjoint variable, A(t), as the solution of 

A(t) = F (t) 
X 

tf 
+ J AT(s,t)A(s)ds 

t 

we see that the first order variation in the performance index 

due to the perturbation (~,n) is given by 

tf 
fD = J {l<'~(t)E;(t) T 

+ F (t)n(t)}dt • 
u 

to 

Multiplying (4.11) by AT{t) and integrating over [t0 ,tf] 

tf 
J AT ( t) E; ( t) dt 

to 

•r +A (t)B(t,s)n(s)}ds dt , 

82 
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(4.13) 

(4.14) 



Multiplying (4.12) by ~(t) and integrating over [t0,t;l 

t r ,,T ( t )<;( t )dt 

to 

tf 
+I >.T(t)A(s,t)~(s)ds)dt. (4.15) 

to 

Subtracting (4.14) from (4.15) and using the following identity 

dt • (4.16) 

we have 

tf t 

= I I >.T(t)B(t,s)n(s)ds dt ~ 
J 

(4.17) 

to to 

so by substituting (4.17) into (4.13) we have 

tf t I {F~(t)n(t) +I T 
l>J = ). (t)B(t,s)n(s)ds}dt 1 (4.18) 

to to 

or using the identity (4.16) 

tf 
+ f >.T(s)B(s,t)ds)n(t)dt ( 4.18) 

t 



and so, in the usual manner, we have the direction: 

tf 
- {F) t ) + J B T ( s , t ) ~ ( s ) ds} 

t 

which 
as the direction of steepest descent / can be used to generate 

either a conjugate gradient method or a steepest descent method 

as described in the previous chapters. 

4.3 The Gradient Method for Neutral Systems 

This will not be described in detail as it is basically 

similar to the gradient methods for time lag and integro-differ-

ential systems, although the adjoint system is unusual. 

1'he problem considered in [48] is that of minimising the 

scalar performance index 

( 4.19 ) 

where 

~(t) = f(x(t),x(t-t),x(t-t),u{t),t) (4.20) 

x{t) = X(t) 

where t > 0 is a known constant, X(t) is continuously differentiable, 

and the final time tf is defined by the scalar stopping condition 

(4.21) 

1'he state equation is linearized about the nominal control 

and state in the usual manner to 

~(t) = ~ {t)C(t) + A2(t)C(t-t) + A3(t)~(t-t) + B(t)n(t) (4.22) 



where 

[ 
af. I 
_a-.2:. h . ._ ({) J<."' (t-c) x"" (t- 1) l}. ( {) t) 

X. I j 1 J 

J 

A
3

( t) = [ af. 

-axj ~t-t) I (:x.., ( t), :x. * ( t - 'L ) 1 )C " (-!: - l: ), lA ( 1 l, t ; 

and 

] ( :x.'"it\x" (-1:-'Ll, ?c "( 1: -t:l, v.[-t),i), [ 
a f. 

B(t) 1 = 
au.(t) 

J 

A1 , A2 , A
3 

and Bare evaluated along the nominal trajectory. 

We define the adjoint system of equations as: 

T 'l' ~(t) =- A1 (t)A(t) - A2(t+t)A(t+t) 

+si_ [A~(t+t)A(t+t)] • 
dt 

We define A$(t) to be the solution of (4.23) 

with 

t=t 
f 

and A
0

(t) to be the solution of (4.23) 

with A
0

(t) = o t > 

An(tf) = ( :~J • 
t=tf 

El) 

tf 

(4.23) 

(4.24) 

(4.25) 



From equation (4.22) and (4.23) 

where 

d 

dt 

+ p(t+'t)~{t) 

Integrating (4.26) we obtain 

tf 
= J AT(t)B{t)n(t)dt 

to 

( 4. 26) 

(4.27) 

But we see that the first order change in the performance index 

is 
T 

"~ = l£ 
ax 

and the first order change in the stopping criterion is 

But we require lln to be zero so we may write 

T 

M = (~ - ~ an ) 6x(t ) • 
ax n ax f 

( 4. 28) 

From our definitions of A<j>(t) and ASl(t) we may write (4.28) as 

T 

64> = (A<I>(tf) - ~ An(tf)) 6x(tf) 
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or by (4.17) 

6$ = Jf A~n(t)B(t)n(t)dt 
to 

where 

(4.29) 

Connor [48] derives his control perturbation from equation 

(4.29), and considers the possibility of discontinuities in ~(t), 

and hence in the second integral on the right hand side of 

equation (4.29). The second integral may however be determined 

as a function of n(t) by writing the solution of (4.22) in terms 
' 

of the transition matrix, as is done in the second order methods 

described in chapters two and three. 
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CIIAPTEH V 

Results and Conclusions 

5.1 Introduction 

We give here details of the application of some of the 

algorithms described in earlier chapters to particular optimal 

control problems. The numerical work has been done using the 

Loughborough University I.C.L. 1904A computer. 

We will consider first the results obtained for time lag 

systems. For these systems, a fourth order Runge Kutta integra-

tion technique was used to solve the differential-difference 

equations which occur in the ale;orithms. A convergence criterion 

was not used in these examples. Instead, the algorithm was run 

for a number of iterations large enough to guarantee convergence. 

This makes comparison of methods simpler. 

Unless stated otherwise, steepest descent refers to the 
dimensional 

technique incorporating the one j search for the optimum along 

successive directions of steepest descent. The conjugate gradient 

method with restart has restart after five iterations. In some 

problems convergence has been obtained in under five iterations 

or the restart has given similar results to the conjugate gradient 

method and so the restart results are not given. 

8fl 



5.2 Differential-Difference Systems 

Problem l 

Minimise 

subject to 

+ r [loxi(t) + lO~(t)+ u
2
(t)jdt 

0 

~1 (t) = x2(t) + x2 (t-~) 

~2 (t) = (l-xi(t))x2 (t)-x1 (t)-x1 (t-~)+u(t) 

with initial conditions 

x
1
(t)=l 

x
2
(t) = 0 

and the final time is given as: 

This example is from McKinnon who used his own second order 

(5.1) 

( 5. 2) 

( 5. 3) 

( 5. 4) 

(5.5) 

method to find an optimal control for this system. For compari-

son the steepest descent and con,jugate gradient methods of 

chapter 2 were applied to this problem. All used an initial 

control 

u(t) - 0 0 ~ t " l 



Iteration Value of Performance Index J 

Number McKinnon's l·lethod Steepest Descent Conjugate Gradient 

0 42.76 42.76 112.76 

1 11.8996 13.667 13.667 

2 11.70 12.957 12.82 

3 11:683 12.536 11.725 

4 11.683 12.225 11.696 

- 7 - 11.821 11.671 

10 - 11.693 11.671 

~'he optimal trajectory given by the conjugate gradient method 

is shown in fie. l. 

Problem 2 

Minimise 

subject to 

tf 
J Lroxi(t) + lOx~(tf) + }(t)]dt 

0 

~1 (t) = x2 (t) + x2 (t-~) 

~2 (t) = -x2(t)- x2 (t-~) + u(t) 

and the initial conditions 

x
1
(t) = l 1 

·~ t " 0 -; 

x2(t) = 0 1 

"' t ;(.0 -; 

with final time specified: 
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(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 



The results of applying the steepest descent and conjugate 

gradient methods to this problem may be summarized as .follows 

for an initial control u(t) o l. 

Iteration Performance Index J 

Number Steepest Descent Conjugate Gradient 

0 40.6289 40.6289 

l 10.6656 10.6656 

2 10.4031 10.3821 

4 10.3875 10.3658 

6 10.3661 10.3658 

The optirr~l trajectory calculated by the conjugate gradient 

method for this problem is plotted in figure 2. 

Problem 3 

This is the same as problem 2 but with the additional con-

straint: 

(5.11) 

This problem is also discussed by McKinnon [27] and he uses 

his second order method to synthesize an optimal control for this 

problem. The inequality constraint (5.11) is allowed for by adding 

a penalty term 

( 5.12) 

to the performance index (5.6). 
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The computation is started with w = 2 increasing the value 

to w = 3 after three iterations. The constraint imposed by the 

penalty term (5.12) is in fact 

but the upper limit is not approached. 

The con,jugate gradient and steepest ascent methods were used 

on this problem with the same penalty term. 

From an initial control 

u( t) = 0 

the following results were obtained. 

Iteration Value of Performance Index J 

Number McKinnon's Method Steepest Descent Conjugate Gradient 

0 19.or·o 19.c (.rj 19.C00 

1 16.0796 12.7620 12.7620 

2 12.2832 12.513 12.4991 

3 12.0610 12.2863 12.2051 

4 12.0202 12.1682 12.1187 

5 12.0187 12.0931 12.0172 

The optimal trajectory r,iven by the conjugate gradient method 

for this problem is shown in fig. 3. 

An alternative approach is to apply Jacobson's transformation 

technique to this example. '!'he transformed problem becomes: minimise 

tf 
+ J [wxi(t) + lOx~(t) + (x

3
(t)m(t) + x2 (t) +x2 (t-nl

2
]dt (5.13) 

0 

subject to 
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~1 ( t) = x2
(t) + x2 (t-~) ().14) 

~2(t) = x 3
(t)m(t) (5.15) 

~3 ( t) = m( t) (5'.16) 

with initial conditions: 

x
1 

( t) = 1.0 1 :: t ~ 0 -~ 

x
2

(t) = 0.0 1 -; ~ t ~ 0 

x
3

( t) = 16-:6 1 -; ~ t ~ 0 

and t = f 1 

~'he control u( t) in the untransformed problem is related to 

m(t) by: 

The results for the transformed problem, starting with initial 

control m(t) " 1, were: 

r-· 
Iteration Performance Index J 

Number Steepest Descent Conjugate Gradient With Restart 

0 66.19611 66.1964 66.1964 

2 11.4946 11.5006 11.5006 

4 11.2887 11.2851 11.2851 

6 11.2714 11.2713 11.2710 

8 11.2690 11.2661 11.2657 

10 11.2673 11.2654 11.2654 

~'he optimal trajectory calculated by the conjugate gradient 

method is shown in figure 4, 
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1'he interior penalty function technique was also applied to 

this problem by adding a term 

r ._c:c:.___ dt ().17) 

0 

to the performance index (5.6). Care h!>d to be taken, when this 

technique was used, that the constraint boundary was not violated 

between time step points, It was thus necessary to monitor the 

steps taken along each search direction. Because of this, it was 

pointless using a one dimensional search for the optimum along 

each of the search directions. Consequently only one step was 

taken along each search direction unless the constraint was violated 

or the performance index increased in the value. 1'he step length 

was repeatedly halved until the constraint remained unviolated and 

the value of the performance was decreased. 

The results obtained with u(t) ~ 0 

Iteration Value of Performance Index 

Number c ; .1 c ; .01 c ; .001 £ ; .0001 

0 19.3333 19.0333 19.0033 19.0003 

1 14.9376 12.7793 12.4644 14.8642 

2 14.6)113 12.7742 12.4121 12. 8159 

3 14.6179 12.7713 12.4028 12.3433 

4 14.5441 12.6893 12. 3648 12.2854 

5 14.0770 12.4689 12.3535 12.2756 

6 13.9376 12.4385 12.3138 12.2546 

7 13.6977 12. 35'10 12.3099 12.0888 

The optimal state and control trajectories for c ; • 0001 

are shown in figure 5. 



Finally, the exterior penalty function technique ~as applied 

to this problem. A term 

~here 

S(x
2

) = 0 

S(x2 ) = 10
4 

tf 

J S(x2 )(x2(t) + 0.3)
2 

dt 

0 

x)t)+0.3<0 

~as added to the performance index (5.6). 

( 5.18) 

With the exterior penalty function, ~e do not need to monitor 

the constraint boundary; consequently the steepest descent and 

conjugate ~ere used ~ith the follo~ing results: 

Initial control - 0 

Iteration Value of Performance Index 

Number Steepest Descent Conjugate Gradient With Restart 

0 19.000 19.000 19.000 

1 15.515 15.515 15.515 

2 13. 337 13.755 13.755 

3 12.803 12.728 12.728 

4 12.429 12.338 12.338 

5 12.246 12.198 12.198 

6 12.202 12.179 12.175 

7 12.185 12.176 11.868 

8 12.018 12.173 11.742 

9 11.946 12.168 11.669 

10 11.940 12.158 11.640 

The optimal trajectory generated by the restart method is 

sho~n in figure 6. 
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Problem 4 

Minimise 

subject to 

with initial conditions 

~(t)=l.O -~ ~ t ~ 0 

-~ ~ t ~ 0 

and the state variable inequality constraint 

The final time is specified 

Using Jacobson's transformation technique, this problem was 

transformed to: 

subject to 

Choose the control m(t) minimising 

tf 
+ f [xi ( t) + xi ( t) + u

2 
( t)] dt 

0 

(5.19) 

( 5. 20) 

( 5. 21) 

(5.22) 

(5.23) 



~1 (t) = x2
( t) + x

2
(t-1) (5.24) 

~2(t) = -4(t-l~) + x
3
(t)m(t) (5.25) 

~3( t) = m(t) (5.26) 

with initial conditions 

x
1 

( t) = 1 1 
~ t ~ 0 -. 

x
2
(t) = 0 1 

" t ~ 0 -2 

x
3 

( t) = 212 1 
~ t 

"' 
0 -; 

where the control u( t) of the untruns formed problem is given by 

The results obtained mny be surrunarised us: 

Initial control m(t) = 2t-3 

Iteration Value of Performance Index 

Number Steepest Descent Conjugate Gradient With Restart 

0 33.9375 33.9375 33.9375 

2 12.7006 12.8637 12.8637 

4 11.5044 11.6679 11.6679 

6 11.4959 11.2199 11.1945 

8 11. 4956 11.2135 11.1908 

10 11.4955 11.2111 11.1264 

12 11.4954 11.2038 9.8576 
14 11.0505 11.1894 9. 8548 

'l'he optimal trajectories generated by the steepest descent 

and conjugate gradient ~ith restart are shown in figures 7 and 8. 

The interior penalty function technique was also applied to 

the problem. 'l'he dynamics remained as defined in equations ( 5.20) 
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and (5.21.) but a penalty term, 

was added to the performance index ( 5.19). 

A single step steepest descent method was used on this problem, 

with each step monitored to ensure the constraint boundary was not 

violated. The results for £ = 10-6 are shown in the following 

table. 

Iteration Performance Index 
Number 

£ = 10 -6 

0 35.7787 

2 35.3728 

4 22.3471. 

6 20.9810 

8 20.5310 

10 20.1468 

12 20.0028 

The value of the performance index was not affected by removal of 

the penalty term. 

initial control, 

These results were obtained using the following 

u(t) = 1.6 + 1.33t 

u(t) = 8.1 - 3t 

u(t) = 0 

O:>tf:l.5 

1.5f:tf:2.7 

2.7 < t 

The trajectory corresponding to iteration number 12 is shown in 

fig. 9. 

To test the sensitivity of the results shown in fig. 9 to the 

initial control, the following alternative initial control was also 

used. 
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O~t:>l.3 u(t) ; 1.6 + 2t/1.5 

u(t) = 7.3- 3t l.3<t::3 

The results corresponding to this control are given below. 

Iteration Performance Index 
Number c = 10 -6 

0 23.9750 

2 20.4872 

4 17.1166 

6 17.0761 

8 16.3802 

10 16.1610 

and the corresponding trajectory for iteration 10 is shown in 

fig. 10. A modification of the monitoring system at iteration 10 

allowed further progress to be made towards the minimum, and this 

is indicated in the following table. 

Iteration Performance Index 
Number c = 10 -6 

11 16.0422 

12 15.7409 

13 15.3185 

The removal of the penalty function term does not affect the value 

of the performance index. The trajectory corresponding to iteration 

13 is shown in fig. lOa. 

A description of the monitoring systems used in the above in-

vestigations will now be given. 

99 



First Method 

(1) 

(2) 

Set new control u (t) = u ld(t) - nH (t), new o u 

Integrate state equations using u (t) and check if constraint new 

is violated. 

(3) If constraint is violated set n = 0,75n and go to step (1), 

otherwise go to step 4. 

(4) Check to see if new performance index is less or equal to the 

old performance index. If yes, the search is ended and we 

calculate a new search direction, H (t). If no, set n = 0.75n 
u 

and 

u (t) = u ld(t) - nH (t). new o u 

(5) Integrate state equations and go to (4). 

On the completion of this monitoring n is reset to some user 

input value. 

Second Method 

Due to the poor performance of the interior penalty function 

method, a modification of the above monitoring technique was attempted. 

This will now be described. 

Suppose we have discretized the state and control functions to 

x(i) and u(i), i = 1, .•. , NSTEP, then the method is: 

(1) 

(2) 

(3) 

Set new control u (i) = u ld(i) - nH (i). new o u 

Integrate state equations using u (t), new 

For j = 1, ••• , NSTEP, check if the constraint is violated at the 

jth point, then for i = 1 to j set H (i) = .95H (i), 
u u 

If no constraint violation has occurred for j = 1, ••• , NSTEP, go 

to step (1). 

Steps (4) and (5) are as in the first monitoring technique. 

It is difficult to justify theoretically the above method of 

monitoring the control increments as (a) the "shape" of H (t), which 
u 

the gradient method calculates, is deformed, (b) the method will be 
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strongly dependent on the discretization used. For these reasons 

this method was not used by itself but was used in conjunction with 

the original monitoring system. When the original method had con-

verged to a control, one iteration was performed using the modified 

monitoring system. With this new control the method proceeds using 

the original monitoring. It was hoped that this would overcome the 

metho~s tendency to converge quickly to a poor control. The only 

problem tested where this modification gave any improvement was 

problem 4 using the second initial control. 1he trajectory generated 

is shown in fig. lOa. The trajectory before application of the 

modified monitor is shown in fig. 10. 

The exterior penalty fUnction technique was applied to this 

problem by adding the term, 

tf I S(x2)(x2(t) - 0.5 + 2(t - l.5)
2

)
2

dt 

to the performance index (5.19) where, 

S(x2 l = 0 

S(x
2

) = 104 

For an initial control: 

u(t) = l + 4t/3 

u(t) = 7.5 - 3t 

u(t) = 0.0 

the results obtained are given 

2 
x2(t) ~ 0.5 - 2(t - 1..5) 

~ < 0.5 - 2(t - 1.5) 
2 

0 ~ t :> 1.5 

1.5 $, t ~ 2.5 

2.5 , t 
below. 
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Iteration Performance Index 

Number 
Steepest Descent Conjugate Gradient With Restart 

0 618.000 618.000 618.000 

1 25.152 25.1522 25.1522 

2 23.927 23.9582 23.9582 

3 23.883 23.9223 23.9223 

4 23.866 23.9174 23.9174 

5 22.197 23.6097 23.6097 

6 22.099 23.5993 16.7080 

7 22.081 23.5989 15.1765 

8 20. 441 - 14.291 

9 19.671 - 14.2629 

10 19.629 - 14.2523 

11 19.628 - 14.2213 

12 19.626 - 14.1725 

13 19.628 - 13.6596 

The optimal trajectory calculated by the exterior penalty function 

technique with the conjugate gradient method with restart is shown in 

fig. 11. Removal of the penalty function for this trajectory gives a 

performance index of 13.6556. In general the removal of the penalty 

terms from the final performance index calculated made little difference 

to its value, although the removal of McKinnon's penalty function from 

the conjugate gradient solution to problem 3 reduced the performance 

index from 12.01722 to 11.4528. 
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).3 Interrro-Differential Systems 

As for the differential-difference systems, the steepest 

descent method referred to in the followinf: incorporates the one-dimen-

sional search for an optimwn along successive directions of steepest 

descent, and similarly no convergence criteria was used. The 

integro-differential equations were integrated by a second order 

Runee Kutta method (Appendix D). 'l'he £ technique was also used 

on the following problem. 'l'he resulting c problem was optirnised 

by using l'owell's function minimisation technique. 

Problem l 

This problem was investigated by c. E. Mucller [20). 

subject to 

Minimise I 

J = [t/(t) 

t 

~(t) = 1 + x(t) + u(t) + 4 Jx(s)ds 

0 

x(O) = 1 

(5.28) 

( 5. 29) 

The results of using steepest descent and conjugate gradient 

ID-"thod on this problem, starting with a control u(t) = l, may be 

summarized as: 

Iteration Performance Index 

Number Steepest Descent Conjugate Gradient 
I 

0 40.lil83 h0.4183 

l 7.2375 7.2375 

2 7.1931 7.1984 

3 '[.lli)l 7.1839 

4 6.8019 6.97U6 

5 6.8019 6. 8067 
--·-·- -- -
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The E method was also used on this problem. 

The state and control were approximated by 

x( t) (5.30) 

-4 Taking E as 10 gave the following values of a. and b .• 
1 1 

1 a. b. 
1 1 

0 l -5.016016 

l -3,040163 12.885894 

2 ·r .o6o962 -16.219442 

3 -5.235314 10. 8'(6119'( 

4 3. 373973 -2.529044 

Using this control function and integrating equation (5.29) 

gives a performance index 

J = 6. 7883 

The trajectories generated by the steepest descent and £-method 

are plotted in figures 12 and 13 respectively. 

Problem 2 

Minimise: 1 

J = [tx2 
( t) + u2 

( t)] dt (5.31) 

subject to t 

;(t) = x(t) + u(t) + 4cosnt + 4J(l-t)(~-s)x(s)ds (5.32) 

0 

with 

x(O) = 1 
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The conjugate gradient and steepest descent techniques 

were applied to this problem and the following results obtained 

from an initial control u(t) : 1. 

Iteration Performance Index 

Number Steepest Descent Conjugate Gradient 

0 19.9734 19.9734 

1 6.2456 6.2456 

2 6.1960 6.1970 

3 6.1951 6.1949 

4 6.1951 6.1920 

Balakrishnan's £-method was also used on this problem with 

the representation (5.30) used in problem 1. 

The following notation will be used: 

J the optimum value of the £-problem 
£ 

i.e. J = J(x
0
(•,£),u

0
(•,£)) 

tf 

+ ~ J I li0 (t,£) - f(~·~·tl 
to 

t 

- J g(x0 ,~,s,t)dsll 2dt. 
to 

JA the value of the performance index of,the optimal control 

problem using the £-problem state x
0
(t,£), 

JB this is a measure of the error in the approximation of the 

solution of the system equations, 

i.e. 
tf 

JB = J I li0(t,£) - f(x0,u0,t) 

to 

104 

-1 g(x0 , u0 ,s,t )ds 11
2
dt • 

to 



J the value of the performance index using the state obtained 

i.e. 

from integrating the system equations using u0(t,c), the c

problem control as input • 
. 

J = J(xE·~(·,c)) 

The following results were obtained: 

£ = 0.1 

i a. b. 
l. l. 

0 1.00 -2.985935 

1 3.008772 3.015719 

2 -2.022025 .247812 

3 -.59691 .133773 

4 -.032428 -.036405 

£ = .005 

J£ = 34.02192 JA = 6.761882 JB = .01381 

i a. b. 
l. l. 

0 1.00 -3.669798 

1 1.28163 -. 326371 

2 2.162075 11.44347 

3 -5.923631 -5.207725 

4 2.21542 -2.312005 
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E = .0001 

J A = 6.85565 JB = .01204 

i a. b. 
~ ~ 

0 1.00 -3.711 

1 1.224185 -. 366723 

2 2.190146 11.5 

3 -5.958365 -5.14017 

4 2.1694 -2.5404 

E = .000002 

J = 5854.4987 
E 

JA = 6.855324 JB = .011695 

i a. b. 
~ ~ 

0 1.00 -3.696992 

1 1.220504 -. 435944 

2 2.221066 11.570538 

3 -6.oo8471 -5.146686 

4 2.177623 -2.610154 

The solutions for the controls from the E-problems with E 

= .005 and E = 0.1 were used to obtain the state by solving the 

system equation. This procedure gave values of J = 6.7604 and 

J = 6.2210 respectively. 

These solutions are shown in figures 15 and 15a. In figure 

15a the state, x0 (t,E), given by theE-problem representation is 

shown for comparison. The trafectory generated by the conjugate 

gradient method is shown in figure 14. 
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In addition, a least squares best fit solution, using cubic 

polynomials, was obtained from the conjugate gradient method solution 

to this problem. This was used as a starting point for the £-method 

with £ = .0001 with the following result: 

£ = .0001 

Best fit: 

i a. b. 
l. l. 

0 1.00 -3.54508 

1 2.31264 6.48314 

2 .77904 -4.33907 

3 -2.5535 1. 40715 

Resulting £-problem: 

J£ "' 3179.1195 JA = 6.224872 JB = • 317289 

After optimisation: 

J = 2801. 5663 J A = 6. 726589 JB = .279484 £ 

i a. b. 
l. l. 

0 1.00 -3.674138 

1 2. 552373 6.602254 

2 • 334119 -4.303243 

3 -2.664663 1.410132 

4 -.000297 -1.466552 
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Problem 3 

Minimise 

(5.33) 

subject to 

i:(t) = x(t) + u(t) 

vith x(l) = 1 

and t:r = 2 

With an initial control u(t) - 1, the following results vere 

obtained: 

Iteration Performance Index 

Number Steepest Descent Conjugate Gradient 

0 57.2592 57.2592 

1 18.95 18.95 

2 1.8294 9.0905 

3 1. 8293 l. 7988 

4 1.8293 l. 7988 

The trajectory generated by the conjugate gradient method is 

shown in figure 16. 

Balakrishnan • s £-method vas also used on this problem. All the 

runs used £ = .0001 vith the representation: 

2 3 4 x(t) = 1 + a
1 

(t-1) + a2(t-l) + a 3(t-l) + a4(t-l) 

u(t) = b0 + b1(t-l) + b2(t-1)2 + b
3
(t-1) 3 + b4(t-1) 4 

Starting from ai = bi = 0, except~= -0.8, b0 = -2, b1 = 1.75, 

the following result vas obtained: 
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J c = 6. 300556 JB = .000371 

i a. b. 
~ 1 

0 1.00 -2.10221 

1 -1.104105 1.911175 

2 .436346 -.031694 

3 -.051326 -.019148 

4 .020068 -.088719 

When this control was used to integrate the system equation, the 

value or the perrormance index obtained was J = 2.588. This is shown 

in rigure 17. 

A least squares best rit approximation to the solution given by 

the conjugate gradient method was obtained and used as a starting point. 

Best rit coerricients 

i a. b. 
~ ~ 

0 1.00 -1.92347 

1 -.8665 1.94706 

2 . 3975 -. 36973 

3 -.4248 .12339 

Resulting &-problem: 

After optimisation, the following results were obtained: 

J = 180.95087 
c 
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i a.. b. 
1 1 

0 1,00 -1.924 

1 -.871 1.947 

2 • 398 -.369 

3 -.425 .123 

4 o. -.0186 

A less detailed representation va.s used on this problem with 

b2' b3, b4 = o. 

Starting from a..,b. = 0 ga.ve the following: 
1 l. 

J = 14.9375 
£ 

i 

0 

1 

2 

3 

4 

JA = 4.5075 

a.. 
1 

1.00 

-.25632 

.11588 

-.211147 

-.000829 

JB = .001053. 

bi 

-1.250317 

• 367569 

o.o 

0.0 

0.0 

Starting from a.1 = -.8, b
0 

= -2, b1 = 1.75: 

J£ = 33.322 JA = 2.8018 JB = .003052. 

i a.. b. 
l. 1 

0 1.00 2.0804 

1 -1.07538 1.903 

2 .40697 o.o 

3 .000156 o.o 

4 .038517 0.0 
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CONCLUSIONS 

We have examined the application of the conjugate gradient 

and steepest descent methods to four differential-difference systems 

and three integro-differential systems. Of the four differential-

difference systems, two had inequality constraints. These two 

constrained problems were converted to unconstrained problems by 

means of Jacobson's transformation technique and by the interior 

and exterior penalty function techniques. 

In addition, a penalty function due to McKinnon was used to 

solve problem 3. Thus there are effectively ten unconstrained 

problems which have been solved by the three gradient methods. 

Ranking the methods by the final value of the performance 

index produces the following: 

Problem 2 3 l = l = 

Problem 3 with 
McKinnon P.F. 3 1 = l = 

Problem 3 with 
Jacobson's Trans. 3 1 = l = 

Problem 3 with 
Exterior P.F. 2 3 l 

Problem 4 with 
Jacobson's Trans. 2 3 l 

Problem 4 with 
Exterior P.F. 2 3 1 

------ ------·--·----M 
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integro-differential systems 

Position 

Problem Steepest Descent Conjugate Gradient with Restart 

Problem 1 1 2 = 2 = 

Problem 2 3 1 = 1 = 

Problem 3 Inconclusive - -

The most significant fact to emerge from this ranking is that 

the conjugate gradient with restart is the best method for all but 

one of the problems studied and in some cases is far superior to 

the other two methods, in particular problem 4 using Jacobson's 

transformation technique. The conjugate gradient with restart was 

always at least as good as the conjugate gradient method in all the 
directions 

examples tested, the latter seems to choose poor search/after six or 

seven iterations. 

Comparing these methods with McKinnon's second order method, on 

problem 1 the second order method is superior, but on problem 3 the 

second order method and the conjugate gradient method seem equally 

efficient. 

As would be expected from three basically similar methods, the 

time per iteration for the steepest descent, conjugate gradient and 

restart are very much the same. Thus it takes the same amount of 

computing time to perform six iterations with a conjugate gradient 

as it would take with the steepest descent method. The only exception 

to this is when one method has converged earlier than the other, and 

the converged algorithm spends, at each iteration, a long time per-

forming a fruitless one-diinensional search. This search is halted 

by a limit set by the programmer, and the next iteration is started. 
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To compare the timing of the three algorithms it is sufficient 

to compare the number of iterations required for convergence. For 

all the examples tested, after six iterations have elapsed, the 

performance index given by the conjugate gradient method with re

start after an iteration has been completed, is lower than the per

formance index given by the other methods after the corresponding 

iteration. For the simpler problems where convergence has been 

reached in less than six iterations, the conjugate gradient has not 

restarted. The conjugate gradient does still seem superior to the 

steepest descent for these problems. 

In addition, we have considered the £-method for integro

differential systems. This method gave the best solution of problem 

1 in section 5.3. A comparison of figures 12 and 13 shows that the 

£-method gives a control whose value at tf is closer to zero than 

that given by the gradient methods. The true optimal control for 

this problem should be zero at tf. Had an initial control, u(t) : 0, 

been chosen then the gradient methods would not have moved away from 

u(tf) = 0 and they may have been superior to the £-method. For 

problems 2 and 3 of section 5.3 the £-method is inferior to any of 

the gradient methods - markedly so in the case of problem 3. The £ 

method did, however, have a shorter running time than the gradient 

methods for all the problems tested. 

The performance of the £-method when applied to problem 2 was not 

as good as in problem 1. Except for the £ = .1 solution, the perform

ance index given by the controls generated by the £-method were 

inferior to those of the gradient method solutions. For £ = .005 and 

smaller, it is obvious that a lot of effort is going into keeping JB 

small, and it is tempting to think that relaxing £ might in fact 

improve the performance. This, superficially at least, is borne out 
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by the solution obtained to the £-problem with £ = 0.1. Closer 

inspection of figure 15a shows that the state trajectory given by the 

polynomial representation and that given by integration of the state 

equations, using the control given by the £-method, are markedly 

different. This is emphasised by the difference between JA and J. 

In the examples tested in (30], where the true solution for the 

control and state to the optimal control problem was in fact a set of 

polynomials in t, the £-method coupled with Powell's method performed 

well. The coefficients of the polynomials given by the £-method were 

correct to four significant places with £ = 10-5• In this reference, 

all of the integration of the performance index and the adjoined 

system equations was done analytically. Because of the greater com-

plexity of the examples examined here, all of the integration in the 

£-method solutions was done numerically. This obviously could lead 

to inaccuracies. Consequently, in addition to the normal runs, using 

a time step of h = .02, several runs were made with a timestep h = .002. 

This change of timestep size did not make any significant change to 

the results. However, to ensure that the numerical integration was 

accurate, each solution for h = .02 was used as a starting point for 

the same £-problem, but with h = .002. Two iterations of Powell's 

method were then performed. In no instance did this procedure lead 

to a significant modification of the original solution. 

The £-problems, although quadratic in the fitting parameters, were 

obviously difficult to optimise. For instance, in the solution to 

problem 2 with £ = .0001, the solution to the £-problem starting from 

a. = b. = o, and the solution starting from the best fit to the con-
1 1 

jugate gradient solution are obviously different. Further, examination 

of the £ = .000002 solution to problem 2 shows that this is in fact a 

better solution to the £ = .0001 solution than the one given. When 
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applied to problem 3, Povell's method did not move ~ar ~rom the 

starting point. Consequently, in order to obtain a reasonable 

solution, the starting point used vas a good linear approximation 

to the conjugate gradient solution. This strong dependence o~ the 

method on the starting point used suggests that the contours o~ the 

~-problem are sets o~ ellipsoids vith a large eccentricity, This, 

together vith the usual problem in computing o~ rounding error, and 

the ~act that there is probably some "noise" ~rom the integration, 

could lead to poor convergence. This is also probably the reason 

~or the poor convergence seen in problem 2. 

In an attempt to cure this, some attempts vere made to rescale 

the variables in both problems, but vith no improvement in convergence, 
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The shorter running time of the £-method as compared with the 

gradient methods is due to the comparatively lengthy numerical inte-

gration of the integro-differential equations. a problem which is 

increased by the fact that all of the gradient methods tested search 

for an optimum along each gradient direction. each search involving 

an integration of the state equations. Similarly. whatever optimisa-

tion procedure is used to solve the £-problem. the performance index 

of the epsilon problem will have to be repeatedly evaluated. and each 

evaluation will involve an integration of the state equation for each 

set of values of a .• b .• However. in this case we need only integrate 
1 1 

an explicit function of time instead of solving the state equations 

using. for example. a Runge Kutta method. It is possible that a one 

step gradient method would be faster than the gradient methods investi-

gated. It would still be necessary to monitor the step along each 

gradient direction to ensure that an iteration does not give an in-

crease of the performance index. It is also likely that the reduction 

in the number of searches along the gradient direction would be at 

least partially compensated by the increased number of iterations 

required, 

The problems on which the epsilon method and the gradient methods 

have been compared are simple, It seems likely that an increase in 

the complexity of the problems would affect the epsilon method more 

adversely than it would affect the gradient methods. 

An examination of the problems 3 and 4 of section 5.2 gives a 

comparison of the transformation and penalty function techniques that 

have been used. It can be seen from these problems that the Jacobson 

transformation technique is by far the most effective method tested 

for solving constrained optimisation problems. It has the additional 

advantages that: a) there is no need to search for a feasible initial 

control. b) all the trajectories generated are feasible. This con-
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trasts with the interior penalty function technique which requires 

a feasible initial control; and the exterior penalty function tech

nique which can generate optimal controls that are infeasible. 

In problem 3, Jacobson's transformation gives a trajectory that 

quickly approaches the constraint boundary, and follows it closely 

up to termination. McKinnon's penalty function gives a similar 

trajectory and performance index, but does not follow the constraint 

boundary as closely as the Jacobson transformation solution. The 

most noticeable feature of the trajectory generated by this method 

is the "kink" in the control at t "' 0. 5. This kink is noticeable in 

McKinnun's own solution to this problem, reproduced here in fig. 3a. 

Both the interior and exterior penalty function methods approach the 

constraint boundary more slowly, but the exterior penalty function 

solution does follow the constraint boundary fairly closely. 

For problem 4, McKinnon's penalty function technique was not 

applicable, and again the Jacobson transformation technique was the 

most successful technique used on the problem. The performance of 

the interior penalty function method was very disappointing, and 

failed, in general, to change the nominal control in any significant 

way (see fig. lOa for an exception to this generalization). This 

poor performance, together with the difficulty of selecting a suitable 

nominal control, suggests that the Jacobson transformation technique 

is of more general application than the interior penalty function 

method for optimal control problems with state space inequality con

straints. 

However, Jacobson's method cannot always be used and, in this 

event, the exterior penalty is the better of the two penalty function 

techniques. It has the advantage that it may be used in conjunction 

with the conjugate gradient method with restart which, on the basis 
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of this investigation, is an effective algorithm for solving an 

optimal control problem. It would be useful to have a direct method 

of solving constrained problems, similar to that of Bryson and 

Denham (42] for ordinary differential equation systems, but no such 

extension is currently available. 

Finally, the main new theoretical results obtained in this thesis 

are those of Chapter 3, namely the gradient method, the E-method and 

a minimum principle for integro-differential systems. A conjugate 

gradient method for these systems is also indicated. The numerical 

properties of these techniques have been investigated in Chapter 5. 

A second order method for integro-differential equations is also 

presented but no numerical results have been obtained using this 

method. Integral systems are studied in Chapter 4, where a gradient 

method for these systems is proposed, but no numerical experience has 

yet been obtained with this approach. The problem of state space 

inequality constraints is investigated using Jacobson's transforma

tion technique and the exterior and interior penalty function 

techniques, and a critical numerical comparison is reported in 

Chapter 5. 
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APPENDIX A 

The Conjugate Gradient Method in R 
n 

Consider the minimisation of the general quadratic function 

vhere H is a constant n x n positive definite matrix, c a scalar 

constant and a a constant n-vector. We vish to find the n-vector 

x* vhich gives V(x) its minimum value. 

Definition 

Two non-zero vectors di' dj are said to be conjugate vith 

respect to the positive definite matrix H if 

T d.Hd. = 0 
1 J 

A set of non-zero vectors {di; i = l, ••• ,r; r < n} is said to 

be a set of mutual1y conjugate vectors if 
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(A.1) 



T d.Hd. = 0 
l. J 

for all i ,j = 1, •••• ,r i t- j 

Assume that there exists a set {s.} of n mutually conjugate 
l. 

directions, then we may prove the following: 

Lemma 

Proof 

Let the set of scalars {a.; i = l, •••• ,n} be such that 
l. 

Multiplying (A.2) by s~H for 
l. 

T a.s.Hs. = 0 
l. l. l. 

+a s = 0 
n n 

But H is positive definite and s. is non-zero, thus 
l. 

therefore, {s.} is a set of n linearly independent vectors and 
l. 

thus spans Rn. 

We may now prove the following theorem: 

Theorem 

If each of then mutually conjugate directions {s.} is used 
l. 

once and only once as a search direction, then the successive 

linear searches for a minimum along each direction will lead to 

the minimum of V(x) from any starting point. 

Proof 

Choose the arbitrary starting point x0 • 
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Form 

i ~ 1 (A. 3) 

where A. 
1 

is chosen so that V(x. +A. 
1 

s.+
1

) is a minimum· l+ l l+ l 

along si+l' 

Thus 

(A. 4) 

where gi+1 is the gradient of V(x) at xi+l' 

By (A.l) we see that 

g. = a + llx. 
l l 

i 
(A. 5) 

= a + 11( x
0 

+ l: A. s.) 
J J ' 

j=l 

i 
T T T r A.s.) therefore s. g. = s.a + \ll(x0 

+ 
1 1 l J J 

j=l 

T -1 T = s.ll(ll a + x
0

) + A.s.Hs. 
l l l l 

But by (A.4) T 
0 s. g. = l l ' 

T -1 
+ xo) 

Ao 
siH(Il a 

= l T s. H s. 
(A. 6) therefore 

l l 

And so by (A.6) we may write 

i -1 
+ xo) s.l!(ll a 

x. = X - l: (A. 7) 
l 0 T 

j=l s. H s. 
J J 

The set {s.} spans R (see lemma) and therefore we may write 
J n 
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n 

V = I a.s. 
J J 

j=l 

where v is an arbitrary vector. 

T 
~lultiply (A.8) by siH 

) 

T s.Hv 
1 

T = a. s. H s. 

so from (A.8) and (A.9) 

V = L 

for any vector v. 

1 1 1 

T s .Hv 
J 
'1' s.Hs. 
J J 

Comparing (A.7) with (A.lO) and setting i equal ton 

• 

(A.8) 

(A.9) 

(A.lO) 

It can readily be seen that x*, the value of x giving the 

-1 
minimum of V(x), is x* = H a 

Thus x = x* 
n 

We now seek a method of generating the n conjugate directions 

{si}. We proceed as follows: 

Starting at x0 , calculate the gradient, g0 , of V(x) • 

Set • 

!i'or i = 1,2, .•.. n, form 

x. = x. + A.s. 
1 l-1 l l 

with A
1
. such that V(x. 1 + A.s.) is a minimum along s .• Calculate 

1.- l.l ]. 

gi, the gradient of V(x) at xi and set 
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s =- g. + y.s. i+1 ~ ~ 1 • 

We wish to choose y. so that 
~ 

From our definition of xi, 

J = 1,2, .... i 

s. = 1/1.. (x. - x. 
1

) 
~ ~ 1 ~- ) 

therefore Hs. = 1/A.(IIx. - Hx. 1 ) 
l. l. l. I.-

Substituting from equation (A.5) 

= 1/l.(g. -g. 1) 
l. l. I.-

(A.ll) 

(A.12) 

>Now assume we are at stager and we have {s.; i = 1, ••• r}, 
l 

a set of known conjugate gradients, and we know that 

Now, for k < r 

T T' 
sk gr = sk ( '' 

~· = skf 

t 

T 
s. g. = 0 

1 l 

llxr) 

.. H(x
0 

+ 

k 

l: 
i=1 

r 

= s~[a + H(~ + l: 
k+1 

r 

l.s. + 
~ l 

l. s. >J 
l l 

T T l: A.s. = sk gk + sk 11 
~ l • 

k+1 
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X l. s. >) 
l l 

i~l. •>1 

(A.13) 



By (A.l3) and by the conjugacy of (s.}, this last expression is 
1 

zero, thus 

For i < r we have, by (A.l4) 

T = -gr gi-1 
I 

i.e. 

'l.' 
gr gi-1 = 0 

We require that 

Now 

s = r+l 

Therefore by (A.l2) 

Expanding, we have 

T l!s 0 • s = r+l r 

-g + y s r r r 

"' = ( -g + y s ) -
r r r 
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k ~ r (A .14) 

• 

i ~ r • (A.l5) 

l /). ( g - g l) 
r r r- • 



By (A.l4) and (A.l5) 

Thus sr+l 1s conjugate to sr if 

Finally Ye have to prove that, in addition to sr+l being 

conjugate to s , it is conjugate to s., j <; r. 
r J 

T T T s J!s. = ( -g + y s )Hs. r+l J r r r J 

T J!s. T lis. = -g + y s r J r r J 

By conj ugacy of sr and s j 

From (A.l2) 

Thus by (A.l5) 

T = -g (g.- g. 1)/A. 1 
r J r J-

Thus {si ; i = 1, ... , ,r+l} 1s a set of conjugate directions. 

This method Yill continue to generate conjugate directions 

until it reaches the minimum point of V( x). From the theorem 

proved earlier, this minimum is reached in at most n iterations. 
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APPENDIX B 

Variation of Parameters Solution 

1. 'l'ime Lag Eguations 

Consider the set of differential time lag equations 

C(t) = A(t)E;(t) + B(t)E;(t-·r} + c(t)n(t) 

where E;(t) is a state n-vector and n(t) a control r-vector. 

A(t) and B(t) are n x n matrices and C(t) is an n x r matrix. We 

also have the initial condition: 

E;(t) = 0 

From (B.l) we may write 

N(s,t)C(s) = N(s,t)A(s}E;(s) + N(s,t)B(s)E;(s-t) 

+ N(s,t)C(s)n(s) 

where N(s,t) is an n x n matrix. 

Integrating (B.2) between t 0 and t 

t t I N(s,t)i(s) = f N(s,t)[~(s)E;(s) + B(s)E;(s-t) 

+ C(s)n(s)]ds 

We have the following identity 

t I N(s,t)C(s)ds = 
to 

t 

I~ (s,t}E;(s)ds 
t as 

0 
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Recalling that 

we may write (B.3) as 

t 

N(t,t)~(t)- J 2!!. (s,t)~(s)ds 
t as 

0 

t 

=I [N(s,t)A(s)~(s) + N(s,t)B(s)~(s-T) 
to 

+ N(s,t)q(s)]ds • 

If we set 

N(s,t)=O for s>t, 

we may write 

t t I N(s,t)B(s)~(s-T)ds 
to 

=I N(s+T,t)B(s+T)~(s)ds 
to 

Equation (B.4) becomes 

t 

t 

N(t,tn(t) = J 2!!. (s,tH(s)ds 
t as 

0 

+I [N(s,t)A(s) + N(s+T,t)B(s+T8~(s)ds 
to 

If we set 

t 

+I N(s,t) (s)ds • 

to 

N(t,t) = I 
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(B.7) 



and 

aN (s,t} = -N(s,t}A(s} - N(s +t,t}B(s+T}, 
as 

we may write 

t 

~(t} =I N(s,t}~(s}ds 
to 

where N(s,t} satisfies (B.5},(B.7} and (B.8}. 

2. Integro-Differential Equations 

Consider now the set of integro-differential equations 

~(t} = A(t)C(t} + C(t}n(t) 

t 

+I [B(a,t}~(a} + D(o,t}n(a}]da 

to 

(B. 8} 

(B.9} 

(B.lO} 

A(t} and B(a,s} are n x n matrices and C(t} and D(a,t} are n x r 

matrices. 

We may write 

N(s,t}~(s} = N(s,t}A(s},(s} + N(s,t}C(s}n(s} 

s 

+I [rr(s,t}B(a,s}'(a} + N(s,t}D(a,s}n(a}]da. 

to 

Integrating (B.ll} between t 0 and t 
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t t I N(s,t)~(s)ds 
to 

= f N(s,t)[A(s)f;(s) + C(s)n(s)]ds 

to 

t s 

+I f N(s,t)[B(o,s)f;(o) + S(o,s)n(o)]do. 

to to 

But we may write the following identity 

I r F'(o,s,t)do ds = J J F(a,s,t)ds do 

t
0 

t
0 

t
0 

a 

t t 

=I JF(s,o,t)do ds • 

t
0 

s 

Using (B.l3) we may rewrite (B.l2) as 

t t 

I N(s,t)~(s)ds =I 

t 

t 

[N(s,t)A(s) +I N(a;t)B(s,o)da];;(s)ds 

s 

t 

+I [N(s,t)C(s) 

to 

+I N(o,t)D(s,o)do]n(s)ds • 

s 

( B.l2) 

(B.l3) 

( B.l4) 

Integrating the left hand side of ( B.l4), recalling that !; ( t 0 ) = 0, 

gives 

t 

l."N (s,t) + N(s,t)A(s) 
as 

+I N(o,t)B(s,o)do_h(s)ds 

s 
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t t 

+ I [N(s,t)C(s) +I N(a,t)D(s,a)da]n(s)ds • 

s 

By setting 

we may write 

where 

N(t,t) = I 

aN (s,t) = 
as 

t 

-N(s,t)A(s) - I N(a,t)B(s,a)da , 

s 

t 

~(t) = J M(s,t)n(s)ds, 

to 

M(s,t) = N(s,t)C(s) N(a,t)D(s,a)da , 

s 
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APPENDIX C 

Derivation of Adjoint Operators 

We define the adjoint L*, of the operator L: H + H , with 
m n 

respect to the inner products I • and I • • I 
' n 

the operator satisfying 

IL*a, bl = la, Lbl m n 

for arbitrary a, b in H , H , respectively. 
n m 

The inner product used is 

-- tJf la, bl n 

to 

<a(t),b(t)> dt 
n 

where <a, b>.is the usual scalar product inn space. 

Adjoints for time lag systems 

as 

The operators L and L are given in equation (2.43) and 

(2.44) as t 

( Ln) ( t) = J N(cr,t)f (cr)n(cr)dcr u 
to 

and t . 
J (Ln)(t) = N(cr, t-t )f (cr)n(cr )do • . u 
to 

By our definition of the adjoint operator in (C.l) we wish to 

find an operator L* satisfying 
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tf tf 
I <(L*~)(t),n(t)>dt =I ~T(t) 
to to 

identically. 

t I N(o,t)fu(o)n(o)do 

to 

But we may write the right hand side of (C.4) as 

tf t I I ~T(t)N(a,t)fu(o)n(o)do dt 

to to 

t t 

If If ~· = ~ (t)N(o,t)fu(o)n(o)dt do 
t

0 
a 

tf tf 
= I J ~T(o)N(t,o)fu(t)n(t)do dt 

t
0 

t 

tf tf 
=I nT(t) I f.(t)NT(t,o)~(o)do dt 

t
0 

t 

= ln(t),(L*~)(tll 

= I (L*U(t),n(t) I • 

(C.4) 

'l'hus we see that L* is in fact the operator we are looking for, 

and may be written 

and similarly 

tf 
(L*~)(t) = I f~(t)NT(t,o)~(a)do 

t 

t 

If T T 
(L*~)(t) = fu(t)N (t,a-T)~(a)da 

t 
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Adjoints for Integro-Differential Systems 

By an argument identical to that used above we may write 

tf 
(L!~)(t) =I MT(t,a)~(o)do 

t 

For the adjoint of 12 we proceed as follows 

t t 

= J {F1 (t,s) 

to 

J H(s,a)do + F2 (t,s)}n(s)ds • 

s 

Therefore 

tf t t 

= J ~T(t) I {F
1

(t,s) J M(s,o)do + F
2
(t,s)}n(s)ds dt 

t
0 

t
0 

s 

tf tf t 
= J J ~T{t){F1 (t,s) J M(s,a)do + F2(t,s)ln(s)dt ds 

t
0 

s s 

tf 
J ~T(s){F1 (s,t} 

t 

so we may now write 

s 

s 

J M(t,a)do 

t 

+ F
2 

( s, t) l n ( t) ds dt 

T 
+ F2 (s,t)}~(s)ds dt, 

(L*O(t) 
2 J 

T T M (t,o)F
1

(s,t)do ~· + F2 ( s, t)} ~ ( s) ds • 

t 
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APPENDIX D 

Derivation of a second order Runge-Kutta method for 

Integro-Differential Equations 

We wish to integrate an integro-differential equation of 

the following form: 

where 

~(t) = f(x(t),w(t),t) 

t 

w(t) = J g(x(s),s,t)ds 

0 

using a second order Runge-Kutta method. 

By a Taylor series expansion we have that 

x(t+b) = x(t) + h~(t) + lh2 ;(t) + h3/3! x(t) + ••••• 

Now 

~(t) = 

.. 
x(t) = 

·~(t) = 

f(x,w,t) • 
• 

fx(x,w,t)f(x,w,t) + fw(x,w,t) [g(x(t),t,t) 

t 

• r gt(x(s),s,t)ds] + ft(x,w,t) 1 
J 
0 

f f2 + 2fxt XX 

t 

+ 2fxw f[g + J 
0 

t 

f + f [f f + f + f (g 
X X t W + J 

0 

t 

gt ds] + 2fwt lg + J gt ds] 

0 

gt ds l] 

t 

+ f [g f + g + 2sr. + I 
W X S '-

t 

gtt ds] + fww[g+ I 
0 

2 

Bt ds] 

0 
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We vill use the following integration formula 

vhere 

vhere 

k1 = hf(x(t) ,w(t) ,t) 

w* = 1 g(x(s),s,t+a1h)ds + mhg(x+a2k1 ,t+a2h,t+a2h) , 

0 

We wish to choose a
1

, a
2

, v
1

, v
2 

and m so as to best fit the true 

solution. 

Expanding k
2 

by Taylor series up to order h3 

t 

k2 = hf(x(t),w(t),t) + h{t'xa1k1 + fw(a1h J gt ds + mhg(x,t,t)) 

0 

0 

t 

+ fv(aih
2 J gtt ds + 2mhgxa2k1 + 2mhgsa2h + 2mhsta2h)} , 

0 

We may thus write 
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t t 

+ 2fxw(a1 r gt ds + mhg)a1f + 
2 I 2 

fww(al gt ds + mg) 
J 
0 0 

t t 

+ 2f'Wt(a1 I gt ds + mg)a1 + 
2 

fttal + f)a~ I ~t ds + 2mr,xa2r 
0 0 

Thus by choosing w
1

, w
2

, a1 , a2 and m such that: 

wl + w2 = 1 

w2al = 1 
~ 

Y
2

m = 1 
~ 

2 
then the expansions (1) and (2) match up to order h • Further, 

if we set 

we are left with a truncation error: 

t 

h
3
/6 fJrxr + ft + fw(g +I gt dsl] 

0 

+ terms of higher order. 

Solving (3) - (7) 

al = 2/3 

a2 = 1/3 

wl = 1/4 

w2 = 3/4 

m = 2/3 
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APPENDIX E 

FLOWCHARTS FOR GRADIENT AND CONJUGATE GRADIENT METHODS 

We give here a more detailed description of the programming 

aspects of the methods used. Sections A and C of the flowchart 

describe the generation of the search directions for the conjugate 

gradient method, section B describes the 1-dimensional search used. 

This search routine consisted of stepping along the search direction 

tmtil the minimum was bracketed, and then using cubic interpolation 

to locate the minimum. 

No details are given in the flowcharts of the integration 

routines. For the time-deley systems, a fourth order Runge-Kutta 

method was used, whereas for the integro-differential systems the 

second order Runge-Kutta method described in Appendix D was used. 

The following flowchart describes the conjugate gradient 

method. The gradient method used can be generated by setting 

~i = 0 throughout. 

14/ 



Conjugate gradient method 

Set iteration counter i = 1, 
Set e0 = O, s0 (t) = 0 

~ 
~· 

Use nominal control u. (t) 
l. 

integrate the state equations 
and evaluate performance index. 
store value of performance index 

Integrate 
and hence 
gradient: 

t 
adjoint equations 
evaluate the 
gi (t) 

t 
Set: e. 1 = o :L- • i = 1 

e. 1 = <g.,g.>/<g. l'g. 1>,· i > 1 • 
:L- l. l. :L- :L-

Calculate the conjugate 
gradient direction: 

s. c -g. + a. ls. 1 
1 1 1- 1-

B 

~ 
Set new control 

u.+1 (t) = u. (t) + o;:*s. (t) 
1 l. 1 

Set i = i 



One dimensional search procedure 

Set £
1 

.. = 0 

£2 = £I (user input constant) 

t 
Set new control 

u(t) = u.(t) + £ 2s.(t) 

• J. +. J. • 

Use thJ.s control to J.ntegrate state equat1ons 
and evaluate performance index. Store value 
of performance index as J 2 

----Yes 
r---------Set &3 = 1.5£2 

+ Set new control 

u(t)= u.(t) + c
3
s.(t) 

1 J. 
and evaluate performance 
index. Store the value 
as J

3
• 

Yes 

Set 

Set: 

No---

Set £3 + o75£2 . 

Set new control 

u( t) = u. ( t) + £ 
3

s . ( t) 
J. J. 

and evaluate performance 
index. Store the value 
as J 3• 

No 

Set £ 2 = £
3 

J2 = J3 

1!_----,-----' 

£* = ~{Jl(£2- £3)(£2 +£3) + J2(£3- £1)(£3 + £1) 

llt3 



APPENDIX F 

Conditions (3.6) - (3.8) may be derived directly, by continuity 

and differentiability arguments, from the assumption that the re

sponse x of the system always satisfies the condition that x(t) is 

contained in a closed and bounded subset of Rn, i.e. x(t) is in X 

for all t in [t0 , tf], where X is a closed and bounded subset of Rn. 

(see "Ordinary differential equations and stability theory: an 

introduction", by D. A. Sanchez, page 124). 
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