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We consider the convective Cahn-Hilliard equation that is used as a model of coarsening dy-

namics in driven systems and that in two spatial dimensions (x, y) has the form

ut +Duux +∇2(u− u3 +∇2u) = 0.

Here t denotes time, u = u(x, y, t) is the order parameter and D is the parameter measuring

the strength of driving. We primarily consider the case of one spatial dimension, when there is

no y-dependence. For the case of no driving, when D = 0, the standard Cahn-Hilliard equa-

tion is recovered, and it is known that solutions to this equation are characterised by an initial

stage of phase separation into regions of one phase surrounded by the other phase (i.e., clus-

ters or droplets/holes or islands are obtained) followed by the coarsening process, where the

average size of the clusters grows in time and the number of the clusters decreases. Moreover,

two main coarsening mechanisms have been identified in the literature, namely, coarsening due

to volume and translational modes. On the other hand, for the case of strong driving, when

D → ∞, the well-known Kuramoto-Sivashinsky equation is recovered, solutions of which are

characterised by complicated chaotic oscillations in both space and time. The primary aim of

the present thesis is to perform a detailed and systematic investigation of the transitions in the

solutions of the convective Cahn-Hilliard equation for a wide range of parameter values as the

driving-force parameter is increased, and, in particular, to understand in detail how the coars-

ening dynamics is affected by driving. We find that one of the coarsening modes is stabilised

at relatively small values of D, and the type of the unstable coarsening mode may change as

D increases. In addition, we find that there may be intervals in the driving-force parameter D

where coarsening is completely stabilised. On the other hand, there may be intervals where two-

mode solutions are unstable and the solutions can evolve, for example, into one-droplet/hole

solutions, symmetry-broken two-droplet/hole solutions or time-periodic solutions. We present

detailed stability diagrams for 2-mode solutions in the parameter planes and corroborate our

findings by time-dependent simulations. Finally, we present preliminary results for the case of

the (convective) Cahn-Hilliard equation in two spatial dimensions.
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In this thesis:

Chapters 5 and 6 of this thesis are based on a manuscript intended to be submitted in

summer 2016.
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(2.28) when ū = 0.55 and (a) L = 17.5 and (b) L = 25 for different
values of D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.20 One-droplet solution profiles of the convective Cahn-Hilliard equation
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L = 35 and D = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.38 The most unstable eigenfunctions for two-droplet solutions at ū = 0.55
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5.48 Numerical solution of the convective Cahn-Hilliard equation (2.28) on
the periodic domain of length L = 35 for ū = 0.4 and D = 3, with the
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tion (6.1) for the case when ū = 0.55 and Lx = Ly = 12.5 . . . . . . . 190

6.17 Solution profiles of the two-dimensional convective Cahn-Hilliard equa-
tion (6.1) shown on the domain [−2Lx, 2Lx] × [−Ly, Ly] when ū =
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Chapter 1

Introduction

In recent years, there has been a renewed interest in the convective Cahn-Hilliard equa-

tion as a model of coarsening dynamics in driven systems, see, for example, Emmott and

Bray [36], Golovin et al. [45–47], Watson [117], Watson et al. [119], Zaks et al. [123].

Related models have also been derived, for instance, in the context of epitaxial growth

(Šmilauer et al. [58]) and thin liquid films on inclined planes (Thiele and Knobloch

[105, 106], Thiele [102]).

The convective Cahn-Hilliard equation is a semilinear parabolic equation of fourth or-

der. In the absence of driving, the convective Cahn-Hilliard equation reduces to the

standard Cahn-Hilliard equation, that was proposed as a model to describe phase sepa-

ration (or spinodal decomposition) of two-component mixtures (see, for instance, Cahn

[16–18], Cahn and Hilliard [19, 20]). The initial dynamics of the solutions of the stan-

dard Cahn-Hilliard equation from a perturbed homogeneous state is characterised by

separation into regions corresponding to different components, i.e., clusters (droplets or

islands) of one phase surrounded by the other phase. However, after this initial stage of

evolution, these clusters slowly grow in size and the number of the clusters decreases,

i.e., the clusters coarsen. There have been identified two main mechanisms of coarsen-

ing, namely, coarsening by the volume and translational modes. In coarsening by the

volume mode (which is also known as Ostwald ripening [84]), the centres of the clusters

remain fixed in space, while the sizes of the clusters change – some of the clusters grow

in time, while other clusters decrease in size and, eventually, disappear. In coarsening

by the translational mode, the centres of the clusters are not fixed anymore, and the

coarsening happens due to the movement and joining of the clusters. The coarsening

1
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process continues until a single large-size cluster is obtained. For a more detailed dis-

cussion of coarsening see, for example, Onuki [83], Desai [27], Pototsky et al. [91]).

In the convective Cahn-Hilliard equation, an additional nonlinear term of Burgers type

(multiplied by a driving-force parameter) is introduced. In the limit of strong driving,

the convective Cahn-Hilliard equation reduces to the well-known Kuramoto-Sivashinsky

equation (see, for example, Golovin et al. [47]). In contrast to the solutions of the Cahn-

Hilliard equation, the large-time dynamics of the solutions of the Kuramoto-Sivashinsky

equation is characterised by complicated chaotic oscillations in both space and time. We

note also that for the Kuramoto-Sivashinsky equation, viewed as an infinite-dimensional

dynamical system on an appropriate function space, there has been established the exis-

tence of a finite-dimensional inertial manifold, see, e.g., Collet et al. [23, 24], Goodman

[49], Hyman et al. [57], Jolly et al. [61], Il’yashenko [59], Otto [85]. We can conclude

that, as the driving force is increased from zero to large values, there must appear transi-

tions leading from the coarsening dynamics typical of the standard Cahn-Hilliard equa-

tions to complicated chaotic oscillations typical of the Kuramoto-Sivashinsky equation.

The main aim of the present thesis is to perform a detailed and systematic investigation

of the transitions in the solutions of the convective Cahn-Hilliard equation for a wide

range of parameter values as the driving force parameter is increased. We note that

coarsening dynamics for the convective Cahn-Hilliard equation has been studied in the

limit of a weak driving force numerically by Emmott and Bray [36] and Golovin et al.

[47] and analytically by Watson et al. [119]. Zaks et al. [123] reported that driving can

be used to stop coarsening for certain parameter values. Some stationary solutions of the

convective Cahn-Hilliard equation have been analysed by Korzec et al. [68]. We also

note that Eden and Kalantarov [33] demonstrated the existence of a finite-dimensional

inertial manifold for the convective Cahn-Hilliard equation.

The thesis is organised as follows. In Chapter 2, we discuss the theoretical and numer-

ical background for the present study. We first introduce the standard Cahn-Hilliard

equation and discuss some important concepts and ideas related to this equation. In

particular, we show that the free energy functional for this equation is a Lyapunov func-

tional so that time evolution tends to minimise it. We also discuss stability of homoge-

neous solutions and introduce the concepts of spinodal and binodal curves. Next, we

discuss the two main mechanisms of coarsening for the standard Cahn-Hilliard equa-

tion, namely, coarsening by translational and volume modes. We then introduce the



Chapter 1. Introduction 3

convective Cahn-Hilliard equation and briefly review some known results for this equa-

tion. After that, we discuss the numerical background needed for the present study,

namely, we briefly explain time-dependent solution by Fourier spectral methods and

numerical continuation and bifurcation techniques.

In Chapter 3, we discuss temporal and spatial linear stability analyses of homogenous

solutions of the one-dimensional standard and convective Cahn-Hilliard equations. We

also discuss the connection of the spatial linear stability analysis to the existence of

single- and double-interface solutions (i.e., fronts and droplets/holes). We additionally

corroborate the theoretical predictions by time-dependent computations.

Chapter 4 presents the results of numerical continuation of single- and double-interface

solutions (i.e., fronts and droplets/holes). First, we discuss the results of numerical

continuation with respect to the domain size for the standard Cahn-Hilliard equation

for several values of the mean solution thickness obtaining different types of the pri-

mary bifurcations (supercritical and subcritical) from the branch of homogeneous solu-

tions and metastability in the absence of a primary bifurcation. Next, we analyse how

the driving force affects inhomogeneous solutions of the Cahn-Hilliard equation. We

first discuss double-interface solutions (i.e., fronts and droplets/holes) and then discuss

single-interface solutions (i.e., kinks and anti-kinks). Finally, in this Chapter, we dis-

cuss the weakly nonlinear analysis that can be used to analyse the nature of primary

bifurcations from branches of homogeneous solutions.

In Chapter 5, we present a systematic study of the linear stability properties of vari-

ous spatially periodic traveling solutions of the convective Cahn-Hilliard equation. Our

main focus is on the analysis of the stability of double-droplet/hole solutions. We iden-

tify coarsening modes of such solutions, and we also obtain intervals in the driving

force, where there are no unstable eigenvalues so that coarsening is stopped by driv-

ing. We also compute and analyse the stability of side branches of symmetry-broken

solutions. To obtain more complete bifurcation diagrams, we, in addition, compute

branches of time-periodic solutions. Finally, at the end of this Chapter, we produce

detailed stability diagrams in parameter planes. We note that the predictions from the

numerical continuation results are supported by time-dependent simulations for the con-

vective Cahn-Hilliard equation.
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Chapter 6 presents some preliminary results on the computation of solutions of the two-

dimensional standard and convective Cahn-Hilliard equations. Bifurcation diagrams for

two-droplet/hole solutions are presented showing primary branches of solutions with a

discrete translational symmetry and side branches of symmetry broken solutions. Con-

clusions and outlook are discussed in Chapter 7.



Chapter 2

Theoretical and numerical background

2.1 Introduction

In this Chapter, we introduce the theoretical and numerical background that is needed

in the present thesis. In Section 2.2, we discuss the standard Cahn-Hilliard equation

as a model for phase separation introducing it first in a general gradient-dynamics for-

mulation. We also discuss the determination of spinodal and binodal lines separating

the regions of linear stability, metastability and linear instability for homogeneous so-

lutions in a parameter plane. Next, in Section 2.3, we discuss the coarsening dynamics

for large-amplitude clusters (droplets or islands) for the standard Cahn-Hilliard equa-

tion, which is the process where the average size of the clusters grows in time and the

number of the clusters decreases. We introduce the two main mechanisms of coars-

ening, the volume and translational modes, and present time-dependent simulations to

illustrate coarsening. In Section 2.4, we introduce the convective Cahn-Hilliard equa-

tion, which is the main object of our research. We additionally discuss two alternative

scalings for the convective Cahn-Hilliard equation. In the first scaling, that we mainly

use in this thesis, there is only one dimensionless parameter, the dimensionless driving

forceD. For an alternative scaling, we fix the domain size and obtain two dimensionless

parameters, the dimensionless driving force and a dimensionless parameter controlling

the shape of the free energy. In Section 2.5, we discuss the Fourier spectral numerical

method that we use for time-dependent simulations for the convective Cahn-Hilliard

equation. Finally, in Section 2.6, we briefly discuss numerical continuation and bifur-

cation techniques that we use in the present thesis to obtain detailed information on

long-time behaviour of the solutions of the convective Cahn-Hilliard equation.

5
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2.2 The Cahn-Hilliard equation

The Cahn-Hilliard equation was developed by Cahn and Hilliard, who proposed a phe-

nomenological model for phase separation (see, for example, Cahn [16–18], Cahn and

Hilliard [19, 20], Cook [25], Hilliard [55]). Phase separation or spinodal decomposition

is a process when a homogeneous mixture of two components A and B in one thermo-

dynamic phase (whether it is a solid or a liquid phase) suddenly separates into regions

consisting of different components (i.e., two different phases), i.e., A-rich regions and

B-rich regions. The phase separation mechanism of spinodal decomposition is dif-

ferent from the nucleation mechanism where the homogeneous state is stable to small

local fluctuations in the composition but is unstable to sufficiently large fluctuations

so that phase separation starts at discrete nucleations sites, see, for example, Golden-

feld [44] and Onuki [83]. Normally, the phenomenon of spinodal decomposition takes

place when a mixture of two different components, for instance A and B, making up

a single homogeneous phase at a temperature T which is higher than the critical tem-

perature Tcrit, is quickly cooled (quenched) to a temperature where the homogeneous

state is unstable. The resultant inherent instability leads to composition fluctuations,

and eventually to immediate phase separation. Primarily, the theory of spinodal decom-

position has been developed by Hillert [54], Cahn [16, 17] and Hilliard [55], and can

be described by the Cahn-Hilliard equation. A review of different derivations of the

Cahn-Hilliard equation can be found, for example, in Lee et al. [73]. See also Cahn and

Hilliard [19], Gaskell [40], Porter and Easterling [89].

The Cahn-Hilliard equation can be written in the following general form:

∂tu = ∇ ·
{
Q(u)∇

(
δF [u]

δu

)}
. (2.1)

For the case of a phase-separating binary system consisting of components A and B, u

may be defined to be

u = uA − uB, (2.2)

where uA and uB are the local concentrations of components A and B, respectively,

scaled so that uA + uB = 1, see, for instance, Alt and Pawlow [35] and Elliott and

French [3]. Note that equations of the form (2.1) also arise in other contexts, for

example, in the study of thin liquid films (see, e.g., Thiele [102, 103], Thiele and

Knobloch [106]), phase separation of binary and ternary liquid mixtures (see Anders

and Weinberg [4] and Park et al. [87]), multi-phase flows (see Boyer [12], Khatavkar



Chapter 2. Theoretical and numerical background 7

u

f(u)

 

 

T<Tcrit
T>Tcrit

Figure 2.1: Schematic representation of the local free energy f(u) for T > Tcrit (dashed line)
and T < Tcrit (solid line).

et al. [64] and Kim [65]), two-layer flows in channels with topographical features (see

Zhou and Kumar [124]), tumour growth (see Cristini et al. [26] and Wise et al. [121]).

Function Q(u) is the so-called mobility, and F [u] is the Helmholtz free energy, which

is assumed to have the form

F [u] =

∫
ϕ(u,∇u)dx, (2.3)

where ϕ(u,∇u) is the energy density, which is assumed to be of the form

ϕ(u,∇u) = f(u) +
γ

2
|∇u|2. (2.4)

Here f(u) is the local free energy and the second term is the gradient term with γ being

the interfacial energy coefficient.

The form of the local free energy may depend on some parameter, e.g., temperature,

T . For example, for large values of T , f(u) may have a single minimum, whereas for

T below some critical value, Tcrit, f(u) may have a double-well form with two local

minima. A schematic representation is shown in Fig. 2.1.

For the standard Cahn-Hilliard equation,

Q(u) ≡ 1, f(u) =
α

4
(u2 + β)2. (2.5)
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Note that the variables can be rescaled so that α = 1 and γ = 1. Parameter β can then

be interpreted as a parameter that increases as temperature increases. For β > 0, f(u)

has a single minimum at u = 0. For β < 0, f(u) has two minima, at u = −1/
√
−β and

at u = 1/
√
−β.

Note that in one dimension, equation (2.1) becomes

∂tu = ∂x

{
Q(u)∂x

(
δF [u]

δu

)}
, (2.6)

where

F [u] =

∫
ϕ(u, ux)dx (2.7)

with

ϕ(u, ux) = f(u) +
1

2
u2
x. (2.8)

For the standard Cahn-Hilliard equation with α = γ = 1 (and choosing β = −1), we

obtain

f(u) =
1

4
(u2 − 1)2, (2.9)

or, equivalently, we can use

f(u) =
1

4
u4 − 1

2
u2. (2.10)

Then, we obtain

ut + (u− u3 + uxx)xx = 0. (2.11)

Lyapunov functional F [u]. Next, let us show that F [u] is a Lyapunov functional for

equation (2.6). In general, δF [u]/δu is functional (or variational) derivative such that

F [u+ v] = F [u] +

∫
δF [u]

δu
v dx+O(v2) (2.12)

when |v| � 1. We obtain

dF [u]

dt
= lim

∆t→0

F [u(t+ ∆t, ·)]− F [u(t, ·)]
∆t

= lim
∆t→0

1

∆t

{
F [u(t, ·) + ∆tut(t, ·) +O(∆t2)]− F [u(t, ·)]

}
= lim

∆t→0

1

∆t

{
F [u(t, ·)] + ∆t

∫
δF [u]

δu
utdx+O(∆t2)− F [u(t, ·)]

}
=

∫
δF [u]

δu
ut dx. (2.13)
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Substituting equation (2.6) in equation (2.13), we find

dF [u]

dt
=

∫
δF [u]

δu
∂x

{
Q(u)∂x

δF [u]

δu

}
dx. (2.14)

Integrating by parts and assuming appropriate boundary conditions (e.g., periodic or

zero-flux boundary conditions), we get

dF [u]

dt
= −

∫
Q(u)

{
∂x
δF [u]

δu

}2

dx ≤ 0, (2.15)

assuming that Q(u) ≥ 0. We conclude that F [u] is a Lyapunov functional. Therefore,

the dynamics minimises F [u] subject to the constraint that
∫
u dx is fixed and equal to

a given value.

Next, a steady-state solution u0(x) of equation (2.6) satisfies

δF [u]

δu

∣∣∣∣
u=u0

= C1, (2.16)

where C1 is a constant of integration that can be fixed by, for example, requiring that∫
u dx is fixed and equal to a given value. Equation (2.16) can be formulated as a

variational problem with C1 having the meaning of a Lagrange multiplier. Indeed, let

us consider the problem of minimising F [u] with the constraint
∫

(u− ū)dx = 0 (i.e., ū

is the mean value of u). This problem is equivalent to minimising the functional

G[u] = F [u]− C1

∫
(u− ū)dx,

=

∫
(ϕ(u, ux)− C1(u− ū))︸ ︷︷ ︸

ψ(u,ux)

dx, (2.17)

where C1 = ∂uf |u=ū. The corresponding Euler-Lagrange equation for u0 is

δF [u]

δu

∣∣∣∣
u=u0

= C1 ⇔ f ′(u0)− u0xx = C1. (2.18)

We note that C1 has the meaning of the chemical potential. Indeed, it is the first varia-

tion of the free-energy functional (or the derivative of the volumetric free energy with

respect to u). (To be more precise, C1 is the difference of the chemical potentials of

components A and B, C1 = CA − CB.) Note that G[u] is also a Lyapunov functional

for equation (2.6).
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Figure 2.2: The spinodal line in the (ū, β)-plane for the standard Cahn-Hilliard equation
separating the plane into the regions of linear stability and instability. The critical point is also
shown.

Linear stability analysis. Next, we analyse the linear stability of homogeneous solu-

tions of the Cahn-Hilliard equation (2.6). To do this, we first linearise equation (2.6) by

substituting u = ū+ εũ in this equation, where ū is a constant and ε� 1. At first order

in ε, we obtain the equation

ũt = f ′′(u0)ũxx − ũxxxx. (2.19)

Next, we assume the ansatz ũ = exp(ikx+ st) and obtain

ũt = seikx+st, ũxx = −k2eikx+st, ũxxxx = k4eikx+st. (2.20)

Substituting expressions (2.20) into (2.19), we find the dispersion relation

s = −f ′′(ū)k2 − k4. (2.21)

If f ′′(ū) > 0, then the constant solution u = ū is linearly stable. Otherwise, if f ′′(ū) <

0, the constant solution u = ū is linearly unstable. Thus, the spinodal line is given by

the equation f ′′(ū) = 0 in the (ū, T )-plane (or (ū, β)-plane). For the standard Cahn-

Hilliard equation, when f(u) is given by (2.5), we obtain the following equation for the

spinodal line:

3ū2 + β = 0, (2.22)
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_a

Figure 2.3: Constant solution with a disturbed part.

which is a parabola in the (ū, β)-plane, see Fig. 2.2. The point ū = 0, β = 0 is

the critical point. It is the point where a substance moves into the spinodal region of

the phase diagram and spinodal decomposition is occurring, see, e.g., Jones [62]. We

denote the critical value of β by βc and the corresponding critical value of temperature

by Tc.

Note that in the region of linear instability, f ′′(ū) < 0, i.e., the graph of f(ū) is concave

down. This implies that locally the free energy of the decomposed state with λ amount

of ūa < ū and (1− λ) amount of ūb > ū, where λ ∈ (0, 1), is lower than the energy of

the mixed state. Indeed, for a function that is concave down, we have

f(ū) = f
(
λūa + (1− λ)ūb

)
> λf(ūa) + (1− λ)f(ūb), (2.23)

i.e., indeed, the mixed state is locally unstable.

Determination of the binodal line. Let u(x) = ūa be a constant solutions, i.e., a

solution satisfying
δF [u]

δu

∣∣∣∣
u=ūa

= C1. (2.24)

Such a solution is considered to be stable (in the sense of classical thermodynamics),

if there does not exist a two-phase configuration whose total free energy (without the

gradient terms) is lower than the total free energy of the homogenous solution. Oth-

erwise, the solution is metastable. One way to analyse metastability is to look at the

constant solution ūa with a disturbed part, see Fig. 2.3. The energy per unit volume

of the disturbed part is g(u) = f(u) − C1(u − ūa). Then, ūa is the stationary value

of the functional G[u] and it is a stationary value of the function g(u). Let us assume

that it is a local minimum. If ūa is the global minimum, then this constant solution

is stable. Otherwise, we obtain metastability. Assuming that g(u) has two local min-

ima, the binodal line is then determined by the points (ūa, β) in the (ū, T )-plane (or,

equivalently, (ū, β)-plane) for which there exists ūb such that ∂ug|u=ūb = 0 (i.e., ūb is
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Figure 2.4: Free energy f as a function of ū at temperatures T = T1 < Tc , and T = T2 >
Tc. Underneath is the phase diagram in the (ū, T )-plane.

another local minimum) and g(ūb) = g(ūa). Since g(u) = f(u)− C1(u− ūa), we find

g′(u) = f ′(u)− C1 = f ′(u)− f ′(ūa) (because f ′(ūa) = C1). We, therefore, obtain the

following two conditions:

f ′(ūb) = f ′(ūa), (2.25)

f(ūb)− f(ūa)

ūb − ūa
= C1 ≡ f ′(ūa). (2.26)

Equations (2.25) and (2.26) imply that ūa and ūb are the points at which the common

tangent to the graph of f(ū) touches this graph. These points determine the binodal

curve (coexistence curve) in the (ū, T )-plane (or, equivalently, (ū, β)-plane). Thus, we

get the phase diagram shown in Fig 2.4, see also Alt and Pawlow [3].

Note that in the region of metastability, f ′′(ū) > 0, i.e., the graph of f(ū) is concave

up. This implies that locally the free energy of the decomposed state with λ amount of

ūa < ū and (1 − λ) amount of ūb > ū, where λ ∈ (0, 1), is higher than the energy of
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the mixed state. Indeed, for a function that is concave up, we have

f(ū) = f
(
λūa + (1− λ)ūb

)
< λf(ūa) + (1− λ)f(ūb), (2.27)

if both ūa and ūb are sufficiently close to ū. Therefore, indeed, the mixed state is locally

stable. However, globally, there exists a decomposed state with lower energy.

2.3 Coarsening

After the initiation of spinodal decomposition, the late-stage dynamics is characterised

by larger clusters (droplets or islands) of one phase surrounded by the other phase. How-

ever, these clusters are unstable to perturbations of larger length scales, and, over time,

the average size of the clusters grows and the number of the clusters decreases. This pro-

cess is called coarsening, see, for example, Onuki [83], Desai [27], Pototsky et al. [91].

Coarsening for the standard Cahn-Hilliard equation (2.11) is demonstrated in the time-

dependent simulations in Figs. 2.5–2.7. The simulations have been performed using

the Fourier spectral method described in Section 2.5. The equation is solved on a pe-

riodic domain of length 70 for ū = 0.4. The initial condition is u(x, 0) = 0.4 + η(x),

where η(x) is a randomly generated noise of small amplitude. Figs. 2.5(a)–(c), 2.6(a)–

(c), 2.7(a)–(c) correspond to the evolution of the solution in the time intervals [0, 300],

[300, 3500] and [3500, 5000], respectively. Panels (a) of the figures show the time evo-

lution of the solution in the indicated time intervals. Panels (b) show the time evolution

of the energy F [u] of the solution. Finally, panels (c) show the time evolution of the

norm of the solution.

In Fig. 2.5(a), we can observe that the solution initially evolves into a superposition of

6 droplets (we enumerate them by 1, . . . , 6 starting from the left). At the same time,

the energy and norm evolve to certain levels, as can be seen in panels (b) and (c). At

around t = 50, droplets 5 and 6 start to merge into one larger droplet. The energy

decreases and approaches another plateau. We can also observe that the norm of the

solution increases and approaches another constant value. We can also observe that at

a slightly later time, droplets 2 and 3 also start to merge, and the merging process for

these two droplets takes slightly longer than for droplets 5 and 6, up to t ≈ 150. The

energy again monotonically decreases and approaches another steady value. Similarly,
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Figure 2.5: Numerical solution of the standard Cahn-Hilliard equation (2.11) on the periodic
domain [−35, 35] for ū = 0.4. Panel (a) shows the time evolution of the solution for t ∈
[0, 300]. Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows the
time evolution of the norm of the solution. The initial condition is 0.4 superimposed with a
small-amplitude noise.
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Figure 2.6: Numerical solution of the standard Cahn-Hilliard equation (2.11) on the periodic
domain [−35, 35] for ū = 0.4. Panel (a) shows the time evolution of the solution for t ∈
[300, 3500]. Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows
the time evolution of the norm of the solution.
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Figure 2.7: Numerical solution of the standard Cahn-Hilliard equation (2.11) on the peri-
odic domain [−35, 35] for ū = 0.4. Panel (a) shows the time evolution of the solution for
t ∈ [3500, 5000]. Panel (b) shows the time evolution of the energy of the solution. Panel (c)
shows the time evolution of the norm of the solution.

the norm increases and approaches a steady value. As a result, we obtain 4 droplets. We

re-enumerate them by 1, . . . , 4. Droplets 1 and 3 are smaller than droplets 2 and 4.

In Fig. 2.6(a), we can observe that the coarsening process continues, namely, droplets

2 and 3 start to merge at about t = 1700. In panel (b), we can observe that the en-

ergy monotonically decreases again and attains an even smaller steady value. Panel

(c) shows, that the norm of the solution also undergoes a relatively sharp change (non-

monotonically this time) and attains a larger steady value.

Fig. 2.7 shows that the coarsening process further continues. Namely, in panel (a), we

can see that the left and the right droplets start to merge (through the periodic bound-

aries) at about t = 4300. Panel (b) shows that the energy monotonically decreases

again, and again attains a smaller steady value. Panel (c) shows, the norm of the solu-

tion also undergoes a relatively sharp non-monotonic change before attaining a larger

steady value. As a result, we now have two droplets. We emphasise that the coarsening

process does not stop, and eventually the two droplets should merge into one droplet.

This last step, however, takes relatively long time, and we, therefore, do not show this

merging.
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(a)

(b)

Figure 2.8: Numerical solution of the standard Cahn-Hilliard equation (2.11) on the periodic
domain [−20, 20] when (a) ū = 0.4 and (b) ū = −0.4 for t ∈ [0, 1500]. The initial conditions
are two-droplet steady solutions superimposed with the most unstable eigenfunctions obtained
in Section 5.4.1 (translational and volume modes for (a) and (b), respectively).

There are two main mechanisms of coarsening. One of these mechanisms is referred

to as Ostwald ripening. In this mechanism, the centres of the clusters remain fixed in

space while smaller clusters diffuse into larger clusters through the surrounding phase.

This phenomenon was first described by Ostwald for the case of nucleation of crystals

in liquids [84]. The theory to explain this process was first established by Lifshitz

and Slyozov [74] and Wagner [116]. In this thesis, this mechanism will be referred

to as coarsening due to the volume mode. In the other coarsening mechanism, the

centres of the clusters are not fixed in space, and the coarsening happens due to the

movement and joining of the clusters. This mechanism of coarsening will be referred to

as coarsening due to the translational mode. References [13, 27, 78, 83, 91, 115, 122]

provide more examples with modern explanations of the coarsening theory. In fact,

both of these mechanisms play a role in the coarsening dynamics. However, one of

the mechanisms maybe more important than the other, depending on the parameters of

the system. We note that the relationship between these mechanisms for the case of

coarsening of liquid droplets on surfaces has been analysed on both homogeneous and

inhomogeneous surfaces, see Glasner and Witelski [41, 42], Pismen and Pomeau [88],

Thiele [102] and Thiele et al. [104].
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A detailed discussion of the coarsening mechanisms is given later in the Thesis, see

Section 5.4.1. Here, we demonstrate the two coarsening mechanisms for the standard

Cahn-Hilliard equation (2.11) in the time-dependant simulations presented in Fig. 2.8.

The simulations have been performed again using the Fourier spectral method described

in Section 2.5. The results are shown on the domain [−L,L] with L = 20, and the ini-

tial conditions for the simulations are steady two-droplet solutions superimposed with

−0.1 cos(2πx/L) + 0.05 cos(πx/L). The time interval for both simulations is [0, 1500].

Panel (a) of the figure corresponds to ū = 0.4, and for this value of ū the translational

mode is apparently more unstable. We can observe that the two droplets move towards

each other and eventually merge into one bigger droplet. Panel (b) of the figure cor-

responds to ū = −0.4, and for this value of ū the volume mode is apparently more

unstable. We can observe that in the time evolution, the size of one of the droplets de-

creases, while the size of the other one increases, i.e., the volume is transported from

one of the droplets to the other one, and, eventually, we obtain one bigger droplet.

2.4 The convective Cahn-Hilliard equation

Our study is particularly focused on analysing how driving affects coarsening in two-

droplet systems. As a model, we consider the following one-dimensional convective

Cahn-Hilliard equation

ut +Duux + (u− u3 + uxx)xx = 0. (2.28)

Here, D is the driving force. This equation was derived, for example, by Golovin

et al. [45, 46] as a model for a kinetically controlled growing crystal surface with a

strongly anisotropic surface tension. In such a context, u is the surface slope and D

is the growth driving force proportional to the difference between the bulk chemical

potentials of the solid and fluid phases (see also Liu and Metiu [77] for modelling of

growing crystal surfaces). Equation (2.28) was also obtained by Watson [118] as a

small-slope approximation of the crystal-growth model obtained by Di Calro et al. [29]

and Gurtin [51]. Related models have also been derived, for instance, in the context of

epitaxial growth (see, for example, Šmilauer et al. [58]) and liquid droplets on inclined

planes (see, for example, Thiele and Knobloch [105, 106], Thiele [102]). We note

that coarsening dynamics for equation (2.28) has been studied in the limit D � 1

numerically by Emmott and Bray [36] and Golovin et al. [47] and analytically by

Watson et al. [119], and scaling laws for the average separation between the successive
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Figure 2.9: Exact kink solutions (2.32) of the convective Cahn-Hilliard equation (2.28) for
different values of D, as is given in the legend.

phases as a function of time have been obtained. It has also been noticed by Zaks et

al. [123] that driving can be used to stop coarsening for certain parameter values. One

of our particular interests in the present thesis is to systematically investigate the effect

of driving on coarsening for a wide range of parameter values and to construct detailed

stability diagrams in the parameter planes. Note that due to the symmetry (D, u) →
(−D,−u), it is sufficient to consider only non-negative values of D. Therefore, in this

thesis, we will assume that D ≥ 0.

The standard Cahn-Hilliard equation corresponds to the case D = 0. If the driv-

ing force grows there must be a transition from the coarsening dynamics to a chaotic

spatio-temporal behavior, because if D → ∞, then using the rescaling u → ũ/D,

equation (2.28) reduces to the well-known Kuramoto-Sivashinsky (KS) equation (see

Golovin et al. [47]), that exhibits spatio-temporal chaos. Indeed, substituting u = ũ/D

in (2.28), we obtain

ũt
D

+D
ũ

D

ũx
D

+

(
ũ

D
− ũ3

D3
+
ũxx
D

)
xx

= 0. (2.29)
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Figure 2.10: Exact anti-kink solutions (2.32) of the convective Cahn-Hilliard equation (2.28)
for different values of D, as is given in the legend.

Multiplying by D, we get (after dropping tildes)

ut + uux +

(
u− u3

D2
+ uxx

)
xx

= 0. (2.30)

Therefore, in the limit D →∞, we find

ut + uux + (u+ uxx)xx = 0, (2.31)

which is the Kuramoto-Sivashinsky (KS) equation, see Golovin et al. [47].

Equation (2.28) has exact kink and anti-kink solutions (see Golovin et al. [47]) given by

u±(x) = ±u0
± tanh

u0
±√
2
x, u0

± =

√
1∓ D√

2
, (2.32)

for ± respectively. Examples of exact kink solutions u+(x) are shown in Fig. 2.9 for

D = 0, 0.4, 0.8 and 1.2, as is indicated in the legend. Note that kink solutions exist

only for D <
√

2. Examples of exact anti-kink solutions u−(x) are shown in Fig. 2.10

for D = 0, 2, 4 and 6, as is indicated in the legend.
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2.4.1 Scalings for the convective Cahn-Hilliard equation

2.4.1.1 Scaling I

Let us consider the convective Cahn-Hilliard equation in the following general dimen-

sional form:

ũt̃ + D̃ũũx̃ + m̃(κ̃ũx̃x̃ + ãũ− b̃ũ3)x̃x̃ = 0, (2.33)

where t̃ and x̃ denote dimensional time and spatial variables, respectively, ũ is a di-

mensional order parameter and ã, b̃, m̃, κ̃ and D̃ denote constants with appropriate

dimensions. Let us also assume that the equation is given on a domain of size d̃. We

introduce non-dimensional variables by choosing a set of not-yet-specified scales τ , l

and Γ for variables t̃, x̃ and ũ, respectively, and defining

t =
t̃

τ
, x =

x̃

l
, u =

ũ

Γ
. (2.34)

Substituting ũ = Γu in equation (2.33) and using that

∂

∂t̃
=

1

τ

∂

∂t
,

∂

∂x̃
=

1

l

∂

∂x
, (2.35)

we obtain

ut +
D̃Γτ

l
uux +

(
m̃κ̃τ

l4
uxx +

m̃ãτ

l2
u− m̃b̃τΓ2

l2
u3

)
xx

= 0. (2.36)

Next, we define the following dimensionless parameters:

D =
D̃Γτ

l
, κ =

m̃κ̃τ

l4
, a =

m̃ãτ

l2
, b =

m̃b̃τΓ2

l2
. (2.37)

For the first non-dimensionalisation, we choose the scales so that κ = a = b = 1, i.e.,

m̃κ̃τ

l4
= 1,

m̃ãτ

l2
= 1,

m̃b̃τΓ2

l2
= 1. (2.38)

It can be easily verified that these equations imply the following scales:

τ =
κ̃

m̃ã2
, l =

√
κ̃

ã
, Γ =

√
ã

b̃
. (2.39)
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Substituting these scales into the definition of the dimensionless driving force, we obtain

D =
D̃
√
κ̃

ãm̃
√
b̃
. (2.40)

The dimensionless convective Cahn-Hilliard equation then takes the form

ut +Duux + (uxx + u− u3)xx = 0. (2.41)

There is one dimensionless parameter appearing in the equation, which the driving-force

parameter D. However, we note that there is one additional dimensionless parameter

that does not explicitly appear in the equation. It is the dimensionless domain size,

d =
d̃

l
= d̃

√
ã

κ̃
. (2.42)

Table 2.1 shows the dependence of the scales τ , l and Γ, the dimensionless driving

force D and the dimensionless domain size d on the dimensional constants for Scaling

I. It can be seen that the dimensionless driving force is directly proportional to D̃, and

changing D̃ results only in the change of D and does not affect the scales τ , l and Γ.

Note that parameter D can also be changed by changing any of the other dimensional

parameters (except d̃), but this also results in the change of at least one of the scales.

l Γ τ D d

ã X X X X X
b̃ − X − X −
m̃ − − X X −
κ̃ X − X X X
D̃ − − − X −
d̃ − − − − X

Table 2.1: Dependence of the scales τ , l and Γ and the dimensionless driving force D and the
dimensionless domain size d on the dimensional constants for Scaling I.
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2.4.1.2 Scaling II

In this section, we discuss an alternative scaling. We now choose the length scale l so

that the dimensionless domain size is 2π (for convenience), i.e, we choose

l =
d̃

2π
, (2.43)

where d̃ is the dimensional domain size. Then, we define the following dimensionless

parameters:

D =
2πD̃Γτ

d̃
, κ =

16π4m̃κ̃τ

d̃4
, a =

4π2m̃ãτ

d̃2
, b =

4π2m̃b̃τΓ2

d̃2
. (2.44)

Next, we choose the scales τ and Γ so that κ = b = 1, i.e.,

16π4m̃κ̃τ

d̃4
= 1,

4π2m̃b̃τΓ2

d̃2
= 1. (2.45)

It can be easily verified that these equations imply the following scales:

τ =
d̃4

16π4m̃κ̃
, Γ =

2π

d̃

√
κ̃

b̃
. (2.46)

Substituting these scales into the definition of the dimensionless driving force D and

parameter a, we obtain

D =
D̃d̃2

4π2m̃
√
κ̃b̃
, a =

d̃2ã

4π2κ̃
. (2.47)

The dimensionless convective Cahn-Hilliard equation takes the form

ut +Duux + (uxx + au− u3)xx = 0. (2.48)

The case of a positive a corresponds to spinodal decomposition or phase separation,

whereas for the case of a negative a a homogeneous (mixed) state is linearly stable.

Table 2.2 shows the dependence of the scales τ , l and Γ and the dimensionless pa-

rameters D and a on the dimensional constants for Scaling II. It can be seen that the

dimensionless driving force D is directly proportional to D̃, and changing D̃ results

only in the change of D and does not affect the scales τ , l and Γ and the parameter a.
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l Γ τ D a

ã − − − − X
b̃ − X − X −
m̃ − − X X −
κ̃ − X X X X
D̃ − − − X −
d̃ X X X X X

Table 2.2: Dependence of the scales τ , l and Γ and the dimensionless driving force D and
dimensionless parameter a on the dimensional constants for Scaling II.

Also, the dimensionless parameter a is directly proportional to ã, and changing ã re-

sults only in the change of a and does not affect the scales τ , l and Γ and the parameter

D. Note that parameters D and a can also be changed by changing any of the other

dimensional parameters, but this also results in the change of at least one of the scales.

2.5 Time-dependent solution by spectral methods

In our study, we are interested in analysing the behaviour of solutions of the convec-

tive Cahn-Hilliard equation for various values of parameters. One way to understand

how the behaviour of the solutions changes as some of the parameters change is to per-

form time-dependent simulations. In this section, we discuss how to numerically find

time-dependent solutions of the convective Cahn-Hilliard equation by a Fourier spectral

method (see, e.g., Boyd [11] and Trefethen [112]) involving a Runge-Kutta integration

in time, which is described, for example, in Gustafsson et al. [52].

We solve equation (2.11) on the domain x ∈ [−L/2, L/2], with periodic boundary

conditions. We can write equation (2.11) as

ut +
D

2
(u2)x + uxx − (u3)xx + uxxxx = 0. (2.49)

Next, our goal is to rewrite this equation in the Fourier space. To do this, we will take

the Fourier transform of (2.49). After solving the equation in the Fourier space, we can

obtain the solution in the real space by taking the inverse Fourier transform. The Fourier

and the inverse Fourier transforms are defined by

F [f ](k) ≡ f̂(k) =

∫ ∞
−∞

f(x)e−ikxdx, (2.50)

F−1[f̂ ](x) ≡ f(x) =
1

2π

∫ ∞
−∞

f̂(k)eikxdk, (2.51)
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respectively. Taking the Fourier transform of (2.49), we obtain

ût +
D

2
(ik)û2 + (ik)2û− (ik)2û3 + (ik)4û = 0, (2.52)

and after rearrangement we obtain

ût +
Dki

2
û2 + k2û3 + (k4 − k2)û = 0. (2.53)

Now, to remove stiffness, we multiply equation (2.53) by an integrating factor e−s(k)t,

where s(k) = k2 − k4,

e−s(k)tût + e−s(k)t

[
Dki

2
û2 + k2û3

]
− s(k)e−s(k)tû = 0. (2.54)

We can write equation (2.54) as

(e−s(k)tû)t + e−s(k)t

[
Dki

2
û2 + k2û3

]
= 0. (2.55)

We define

Û = e−s(k)tû. (2.56)

Then,

û = es(k)tÛ . (2.57)

Equation (2.54) takes the form

Ût + e−s(k)t

[
Dki

2
û2 + k2û3

]
= 0. (2.58)

We obtain that

u = F−1[es(k)tÛ ]. (2.59)

Then

u2 = (F−1[es(k)tÛ ])2, u3 = (F−1[es(k)tÛ ])3. (2.60)

Therefore, we obtain

Ût + e−s(k)t

[
Dki

2
F [(F−1[es(k)tÛ ])2] + k2F [(F−1[es(k)tÛ ])3]

]
= 0. (2.61)

This equation can then be considered as a coupled system of ordinary differential equa-

tions for Û(k) at a discrete set of values of the wave numbers. We can then solve this

system of equations, for example, by the fourth-order Runge-Kutta method.
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2.6 Numerical continuation and bifurcation analysis

If one is interested in analysing in detail the qualitative long-time behaviour of solu-

tions of the convective Cahn-Hilliard equation for various parameter values, performing

time-dependent simulations may be time-consuming and not very efficient. For such a

purpose, performing numerical continuation and identifying regions for various attrac-

tors (e.g., equilibria, periodic orbits, homoclinic or heteroclinic orbits, invariant tori) in

the parameter space (or parameter plane(s)) is more efficient and provides more detailed

information on the long-time behaviour of the solutions. In this section, we briefly out-

line the main ideas of numerical continuation and bifurcation analysis. More detailed

discussions can be found, for example, in Allgower et al. [2], Dhooge et al. [28], Dijk-

stra et al. [30], Doedel et al. [31], Krauskopf et al. [69], Kuznetsov [71], Thiele [102].

Note that there are several publicly available software packages for carrying numeri-

cal continuation and bifurcation analysis. In the present thesis, we use the packages

Auto07p [31] and Matcont [28].

First, we note that the convective Cahn-Hilliard equation can be considered as an infinite-

dimensional dynamical system on an appropriate function space, see, for example,

Temam [101]. By appropriately discretising this partial differential equation, we can

obtain a finite-dimensional dynamical system, i.e., the following system of first-order

ordinary differential equations written in a vector form:

du

dt
= f(u, α), (2.62)

where u ∈ Rn represents the numerical solution of the partial differential equation

(it can be, for example, a vector of function values at the given grid points for the

case of a finite-difference discretisation, or a vector of Fourier coefficients for the case

of a spectral representation). We also indicate here that the right-hand sides depend

on a parameter α, and our aim is to analyse the dependence of the solutions on this

parameter. For the case of the convective Cahn-Hilliard equation, we can choose α to be,

for instance, the driving force, D, the domain size, L, or the mean value ū =
∫ L

0
u dx.

We will use the notation x = (u, α) ∈ Rn+1.

First of all, we are interested in computing equilibrium solutions, i.e., solutions satisfy-

ing the condition
du

dt
= 0 ⇔ f(u, α) = 0. (2.63)
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We assume that for some parameter value α0 we know one of the solutions u0, and

that the Jacobian of f at x0 = (u0, α0) is of full rank. A straight-forward method

for computing the solution curve would be the natural parameter continuation, where

parameter α is increased/decreased step by step using a sufficiently small step size ∆α

and Newton iterations to obtain solutions at the next steps with the initial guesses given

by the solutions at the previous steps. The main disadvantage of the natural parameter

continuation is that it fails at turning points (i.e., at saddle-node bifurcations). This can

be fixed by utilising the pseudo-arclength continuation method, which is often used in

practice. The method is based on choosing the arclength parameter s for parameterising

the solution curve. The algorithm can then be implemented as a predictor-corrector

method. Given the point xi = (ui, αi) on the solution curve, a tangent prediction is

used to obtain an initial guess x̃i+1 for xi+1, i.e.,

x̃i+1 = xi + ∆svi, (2.64)

where ∆s is the chosen sufficiently small step size and vi is a unit tangent vector to the

solution curve at xi, i.e., a vector such that

fx(xi)vi = 0, ‖vi‖2 = 1. (2.65)

Here, fx(xi) denotes the Jacobian matrix of f at point xi. The correction step is to use

Newton iterations to satisfy the following system of n+1 equations for n+1 unknowns:

f(xi+1) = 0, g(xi+1) = 0, (2.66)

where g is the following function:

g(x) = 〈x− x̃i+1, vi〉. (2.67)

Here, 〈 · , · 〉 denotes the usual dot product in Rn+1. Solving system (2.66) means finding

the point on the solution curve that belongs to the hyperplane that passes through x̃i+1

and that is orthogonal to vi.

The stability of a steady state solution ui at α = αi can be assessed by analysing the

eigenvalues of the Jacobian matrix fu(xi) of f with respect to u. Indeed, by assuming

that α = αi and substituting u(t) = ui + ε ũ(t) in (2.62), where ε � 1, we obtain the
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following linearised vector equation:

dũ

dt
= fu(xi)ũ. (2.68)

By considering solutions of the form ũ ∝ eλtû, we obtain

λ û = fu(xi)û, (2.69)

i.e., the growth rate λ is an eigenvalue of the matrix fu(xi). Thus, if all the eigenvalues

of fu(xi) have negative real parts, ũ will tend to zero as t increases, and the solution

ui is then linearly stable. On the other hand, if some of the eigenvalues have positive

real parts, there will exist modes that grow in time, and ui is then linearly unstable.

In addition to computing the solution curve and analysing the stability of equilibrium

solutions, we are interested in detecting various bifurcation points (where the eigenval-

ues cross the imaginary axis) on the solution curve and computing side branches of,

for example, steady-state and time-periodic solutions. Detection of bifurcation points

can be implemented by monitoring additional test functions which change signs at the

corresponding bifurcation points, e.g.,

φ1(x) = det

(
fx

vT

)
, φ2(x) = vn+1 (2.70)

can be used for detection of branch points and turning points (or saddle-nodes), respec-

tively, where v ∈ Rn+1 is the tangent vector to the equilibrium solution curve. (See,

for example, Dhooge et al. [28] for a test function for detection of Hopf bifurcations).

Branch points (i.e., points at which there emerge side branches of equilibrium solu-

tions) then correspond to φ1 = 0, whereas turning points (or saddle-node bifurcations)

are detected by conditions φ2 = 0 and φ1 6= 0. A proof that these conditions correctly

determine the mentioned bifurcations is given, for example, in Kuznetsov [71]. After

detecting a bifurcation point, we can either continue computing the primary branch of

equilibrium solutions or switch to one of the solution curves emanating from this point,

or we can add an extra parameter (if possible) and an extra algebraic condition to trace

the location of this bifurcation in a parameter plane.

To conclude this section, we briefly discuss computation of time-periodic solutions (i.e.,

limit cycles) of (2.62). A time-periodic solution of (2.62) satisfies

du

dt
= f(u, α), u(0) = u(T ), (2.71)
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where T is the time period. For convenience, we can introduce the rescaled time τ =

t/T to obtain
du

dτ
= Tf(u, α), u(0) = u(1). (2.72)

Note that the boundary-value problem (2.72) does not have a unique solution. Indeed,

if u(τ) is a solution, then u(τ + τ0) is also a solution for any τ0 ∈ (0, 1), due to

periodicity. Thus, an extra phase condition is needed to break this non-uniqueness.

There are different ways to implement this. One could use, for example, the following

condition:

〈u(0)− v(0), v̇(0)〉 = 0, (2.73)

where v is some reference time-periodic solution. This condition requires u to pass at

τ = 0 through a point that belongs to the hyperplane normal to the closed curve v(τ)

at τ = 0. If a continuation of time-periodic solutions is performed in parameter α, v

can be selected to be the solution computed at the previous step, i.e., v(τ) = ui(τ). We

note that in practice the following more reliable integral phase condition is often used:∫ 1

0

〈u(τ), u̇i(τ)〉 dτ = 0, (2.74)

see, for example, Dhooge et al. [28] and Kuznetsov [71]. Thus, the complete boundary-

value problem for computing a time-periodic solution u(τ), given a reference solution

ui(τ), is 
du

dτ
− Tf(u, α) = 0,

u(0)− u(1) = 0,∫ 1

0
〈u(τ), u̇i(τ)〉 dτ = 0.

(2.75)

Next, this system can be discretised in a certain way. We can use, for example, finite

differences for the time derivatives and the trapezoidal rule for the integral. If, for

example, time interval τ ∈ [0, 1] is discretised into N subintervals and the unknowns

uj,k representing the values of the j-components of u at τ = τk = (k − 1)/N are

introduced, where j = 1, . . . , n and k = 1, . . . , N , we find that system (2.75) can

be represented as a system of nN + 1 algebraic equations for nN unknowns uj,k and

the time period T . Thus, time-periodic solutions of (2.71) correspond to fixed points of

this algebraic system of nN + 1 equations for nN + 1 unknowns. Therefore, solution

curves of time-periodic solutions can be found by, for example, performing the pseudo-

arclength continuation discussed above for this algebraic system of equations.



Chapter 3

Linear stability of homogeneous
solutions

3.1 Introduction

In this chapter, we analyse linear stability of homogeneous solutions of the standard and

convective Cahn-Hilliard equations. We perform both the temporal (in Sections 3.2 and

3.3) and spatial (in Section 3.4) linear stability analysis. The temporal linear stability

analysis allows to investigate the regions of the parameter values for which homoge-

nous solutions are stable or unstable to small-amplitude perturbations (i.e., when small-

amplitude perturbations introduced on a homogeneous solution decay or grow in time).

The temporal linear stability analysis also gives the phase velocity of small-amplitude

sinusoidal perturbations. The spatial linear stability analysis, on the other hand, allows

to investigate how a locally non-uniform solution, such as a single-interface solution

(i.e., a kink or anti-kink solution) or a double-interface solution (such as a droplet or

a cavity) approaches the uniform levels. The spatial linear stability analysis allows to

investigate the rates at which the uniform levels are approached and also to obtain the

period of the decaying oscillations that may be present on top of the uniform levels.

The spatial linear stability analysis, in fact, reduces to the analysis of the stability of the

fixed points of a finite-dimensional dynamical system. The locally non-uniform solu-

tions then correspond to homoclinic, or heteroclinic orbits (or limit cycles passing in the

vicinity of the fixed point(s)). A more detailed discussion of such locally non-uniform

solutions and their investigation from the dynamical systems point of view is given in

the final section of this chapter, Section 3.5.

29
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3.2 Linear stability of homogeneous solutions

In this section, we analyse linear stability of homogeneous solutions of the convective

Cahn-Hilliard equation (2.28). (Note that the linear stability of homogeneous solutions

of the standard Cahn-Hilliard equation, when D = 0, was already discussed in Sec-

tion 2.2.) To do this, we first linearise equation (2.28) by substituting u = ū + εũ in

this equation, where ū is a constant and ε � 1, keep terms of size O(ε) and ignore

higher-order terms. We obtain the equation

ũt = −Dūũx − ũxx + 3ū2ũxx − ũxxxx. (3.1)

Next, we assume the ansatz ũ = exp(ikx+ βt) and obtain

ũt = βeikx+βt, ũx = ikeikx+βt, ũxx = −k2eikx+βt, ũxxxx = k4eikx+βt. (3.2)

Substituting expressions (3.2) into (3.1), we find the dispersion relation

β(k) = −iDūk + k2 − 3ū2k2 − k4. (3.3)

Assuming that k is real, the real part of β(k) gives the growth rate, w(k), of a wave with

the wavenumber k. So we obtain

w(k) = [(1− 3ū2)− k2]k2. (3.4)

Now we solve equation w(kc) = 0 to find the cutoff wavenumber kc:

k2
c (1− 3ū2 − k2

c ) = 0. (3.5)

We are interested only in positive solutions, and we find that the only positive solution

of equation (3.5) is

kc =
√

1− 3ū2. (3.6)

This solution exists only when 1 − 3ū2 > 0, i.e., when −
√

1/3 < ū <
√

1/3. In

this case, there is a band of unstable wavenumbers, k ∈ (0, kc), see Fig. 3.1 showing

the dimensionless growth rate w(k) as a function of k for ū = 0 by a thick solid line.

Otherwise, if 1−3ū2 < 0, i.e., when ū >
√

1/3 or ū < −
√

1/3, we find that w(k) < 0

for all k > 0, see Fig. 3.1 showing the growth rate w(k) as a function of k for u0 = 0.6
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ū = 0.6
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Figure 3.1: The dependence of dimensionless growth rate of perturbations, w(k), on the
dimensionless wavenumber k. The solid line corresponds to ū = 0. For this value of ū, there
is a band of unstable wavenumbers, k ∈ (0, kc), where kc = 1. The dashed line corresponds
to ū = 0.6. For this value of ū, w(k) < 0 for all k > 0. The thin horizontal dotted line shows
the line w = 0 in the (k,w)-plane.

by a thick dotted line. This corresponds to the linearly stable case. The thin dotted line

in Fig. 3.1 shows the line w = 0 in the (k, w)-plane.

3.3 Linear stability of homogeneous solutions in a co-

moving frame

In this section, we analyse linear stability of homogeneous solutions of the convec-

tive Cahn-Hilliard equation (2.28) in a frame moving at a constant velocity v in the

x-direction, i.e., we introduce a new variable x̃ = x− vt, and denote û(x̃, t) = u(x, t).

Then equation (2.28) takes the form

ût − vûx̃ +Dûûx̃ + (û− û3 + ûx̃x̃)x̃x̃ = 0. (3.7)
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For simplicity, we drop the hats and the tildes, i.e., we consider the equation in the form

ut − vux +Duux + (u− u3 + uxx)xx = 0. (3.8)

Next, we linearise equation (3.8) by substituting u = ū+ εũ into this equation, where ū

is a constant and ε� 1. Keeping terms of size O(ε) and ignore higher-order terms, we

obtain the equation

ũt = vũx −Dūũx − ũxx + 3ū2ũxx − ũxxxx. (3.9)

Next, we assume the ansatz ũ = exp(ikx+ βt) and obtain

β(k) = ivk −Dūik + k2 − 3ū2k2 − k4. (3.10)

We obtain

w(k) = Re β = k2 − 3ū2k2 − k4, Im β = vk −Dūk, (3.11)

where Re β and Im β denote the real and imaginary part of β, respectively. When the

imaginary part of β is zero, the wave does not move in the corresponding frame. The

condition Im β = 0 implies

vk −Dūk = 0 ⇒ v = Dū. (3.12)

So small-amplitude sinusoidal waves do not move in a frame propagating at velocity

v = Dū, or, equivalently, the velocity of small-amplitude sinusoidal waves is v = Dū.

The real part of β gives the growth rate of the amplitude of small-amplitude sinusoidal

waves, and this was discussed in the previous section.

3.4 Linear stability of homogeneous solutions in space

In this section, we analyse linear stability in space of homogeneous solutions of the

convective Cahn-Hilliard equation in a co-moving frame (3.8). One way to do this, is to

first linearise equation (3.8) by substituting u = ū+ εũ in this equation. Keeping terms

of size O(ε) and ignoring higher-order terms, we obtain the equation

ũt − vũx +Dūũx + ũxx − 3ū2ũxx + ũxxxx = 0. (3.13)
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Figure 3.2: Shown is the dependence on D of the real parts of the eigenvalues λ1, λ2 and λ3
obtained from the spatial linear stability analysis for ū = 1 and v = 0 by solid, dashed and
dotted lines, respectively.

Next, we assume the ansatz ũ = exp(λx). Then we obtain

ũt = 0, ũx = λeλx, ũxx = λ2eλx, ũxxxx = λ4eλx. (3.14)

Substituting expressions (3.14) into (3.13), we find the following characteristic equation

for the eigenvalues λ

λ4 + (1− 3ū2)λ2 − (v −Dū)λ = 0. (3.15)

One solution of this equation is λ0 = 0, and we have three more solutions, λ1,2,3, that

satisfy the cubic equation

λ3 + (1− 3ū2)λ− (v −Dū) = 0. (3.16)

Fig. 3.2 shows the dependence on D of the real parts of λ1,2,3 and Fig. 3.3 shows the

dependence on D of the imaginary parts of λ1,2,3, for the case when v = 0 and ū = 1.
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Figure 3.3: Shown is the dependence on D of the imaginary parts of the eigenvalues λ1, λ2
and λ3 obtained from the spatial linear stability analysis for ū = ±1 and v = 0 by solid,
dashed and dotted lines, respectively.

Fig. 3.4 shows the dependence on D of the real parts of λ1,2,3 for the case when v = 0

and ū = −1. Note that the real parts of λ1,2,3 for ū = −1 are obtained from the real

parts of λ1,2,3 for ū = 1 by reflection with respect to the horizontal axis. The imaginary

parts are also obtained by the reflection with respect to the abscissa, but since one root

is real and the remaining two are either real or complex conjugate, we obtain that the

dependence of the imaginary parts of λ1,2,3 for v = 0 and ū = −1 is the same as for

v = 0 and ū = 1 and is, therefore, shown in Fig. 3.3.

To prove this symmetry, it can be seen by a direct substitution that if λ is a solution

of equation (3.16), then −λ is a solution of the same equation with ū replaced by −ū
(when v = 0). In fact, the equation remains unchanged under the transformation

ū→ −ū, λ→ −λ. (3.17)

This explains the symmetry of the roots discussed above.

We can see in Fig. 3.2 that for ū = 1 there is always one root that is real and nega-

tive. The other two roots have positive real parts. These two roots are real when D is
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Figure 3.4: Shown is the dependence on D of the real parts of the eigenvalues λ1, λ2 and λ3
obtained from spatial linear stability analysis for ū = −1 and v = 0 by solid, dashed and
dotted lines, respectively.

smaller than a certain value D∗ = 1.0887 and become complex conjugate with non-zero

imaginary parts when D is larger than this value.

To calculate the value of D∗, in Fig. 3.2, we note that all three eigenvalues are real for

small D, and another form of equation (3.16) is

(λ− λ1)(λ− λ2)(λ− λ3) = 0. (3.18)

Now at the value of D where two eigenvalues coincide (let us call it D∗) we can set

λ2 = λ3, i.e.

(λ− λ1)(λ− λ2)2 = 0. (3.19)

Then

λ3 − (λ1 + 2λ2)λ2 + (λ2
2 + 2λ1λ2)λ− λ1λ

2
2 = 0. (3.20)

Now we compare (3.20) and (3.16) to obtain

λ1 + 2λ2 = 0 ⇒ λ1 = −2λ2, (3.21)
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and

λ2
2 + 2λ1λ2 = 1− 3ū2, (3.22)

and

λ1λ
2
2 = v −D∗ū. (3.23)

From equation (3.22), after substituting λ1 = −2λ2, we obtain

λ2
2 − 4λ2

2 = 1− 3ū2. (3.24)

Then

λ2 = ±
√

3ū2 − 1

3
. (3.25)

From equation (3.23) (after substituting λ1 = −2λ2), we get

D∗ =
2λ3

2 + v

ū
. (3.26)
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Next, we substitute equation (3.25) into equation (3.26), and obtain the following gen-

eral formula forD∗:

D∗ =
±2
(

3ū2−1
3

)3/2
+ v

ū
. (3.27)

In particular, for v = 0 and ū = ±1, we obtain D∗ = ±25/2/33/2 ≈ 1.0887.

Fig. 3.5 shows the dependence of D∗ on the ū given by equation (3.27) when −1 <

u0 < −1/
√

3, 1/
√

3 < u0 < 1 and v = 0. The regions indicated by “real” show the

regions where all the roots are real and the region indicated by“complex” shows the

region where one root is real and there is a pair of complex conjugate roots.

We note equation (3.16) in addition to the symmetry (λ,D) → (−λ,D) has the sym-

metry (ū, D)→ (−ū,−D).

We note that the value D∗ can also be obtained by requiring that the so-called discrimi-

nant of equation (3.16) vanishes. For a general cubic equation

λ3 + a1λ
2 + a2λ+ a3 = 0, (3.28)

the discriminant is given by

∆ = Q3 +R2, (3.29)

where

Q =
3a2 − a2

1

9
, R =

9a1a2 − 27a3 − 2a3
1

54
(3.30)

(see, for example, [98]). For equation (3.16), a1 = 0, a2 = 1 − 3ū2 and a3 = Dū − v.

Therefore,

Q =
1− 3ū2

3
, R =

v −Dū
2

. (3.31)

The discriminant becomes

∆ =

(
1− 3ū2

3

)3

+

(
v −Dū

2

)2

. (3.32)

By solving equation ∆ = 0 for the driving force, we obtain the same formula as (3.27).

Finally, we note that the linear stability of homogeneous solutions in space can be per-

formed in a slightly different way. For this, we consider a steady version of equa-

tion (3.8):

− vu0x +Du0u0x + (u0 − u3
0 + u0xx)xx = 0, (3.33)
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and integrate it once to obtain the equation

− vu0 +
D

2
u2

0 + (u0 − u3
0 + u0xx)x = C0, (3.34)

where C0 is a constant of integration. Next, we rewrite equation (3.34) as a three-

dimensional dynamical system by introducing the functions y1 = u0, y2 = u0x and

y3 = u0xx:

y′1 = y2, (3.35)

y′2 = y3, (3.36)

y′3 = C0 + vy1 −
D

2
y2

1 − y2 + 3y2
1y2. (3.37)

A uniform solution ū corresponds to the fixed point (ū, 0, 0) of this system with

C0 = −vū+
D

2
ū2. (3.38)

The stability of the fixed point is obtained by computing the eigenvalues of the Jacobian:

J =


0 1 0

0 0 1

v −Dū 3ū2 − 1 0

 . (3.39)

The eigenvalues satisfy the equation

det(λI − J) =

∣∣∣∣∣∣∣∣
λ −1 0

0 λ −1

Dū− v 1− 3ū2 λ

∣∣∣∣∣∣∣∣ = λ3 + (1− 3ū2)λ− (v −Dū) = 0, (3.40)

which is exactly the same as equation (3.16).

3.5 Single- and double-interface solutions

In this section, we discuss single- and double-interface solutions of the standard and

convective Cahn-Hilliard equations. A single-interface solution is a solution that ap-

proaches two different constants as x → ±∞. Let us denote these constants by ūa

and ūb for x → ∓∞, respectively. If ūa < ūb we obtain a so-called kink solution. If
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ūa > ūb, we obtain an anti-kink (or front) solution. A double-interface solution, is a so-

lution that approaches the same constant (say ūb) as x → ±∞, but has a region where

it approaches a different constant (say ūa). If ūa < ūb, we obtain a cavity solution,

otherwise, we obtain a solution in the form of a droplet. We note that our discussion

of single- and double-interface solutions partly follows the discussions of Emmott and

Bray [36], Golovin et al. [47], Korzec et al. [68], Zaks et al. [123].

3.5.1 The case of the standard Cahn-Hilliard equation

For the standard Cahn-Hilliard equation, when D = 0, the dynamical system (3.35)–

(3.37) takes the form

y′1 = y2, (3.41)

y′2 = y3, (3.42)

y′3 = C0 + vy1 − y2 + 3y2
1y2. (3.43)

If v 6= 0, we find that there exists only one fixed point for this system, (−C0/v, 0, 0).

Therefore, for the existence of single- and double-interface solutions, we must have

v = 0, which also implies that C0 = 0. Then, equation (3.34) can be integrated one

more time, giving

u0 − u3
0 + u0xx = C1, (3.44)

where C1 is a constant. Thus, we obtain the following two-dimensional dynamical

system:

y′1 = y2, (3.45)

y′2 = C1 − y1 + y3
1. (3.46)

It can be easily seen that this system is Hamiltonian with the Hamiltonian given by

H(y1, y2) = C1y1 −
y2

1

2
+
y4

1

4
− y2

2

2
. (3.47)

Assuming that there exists a single-interface solution that connects uniform solutions

ūa and ūb, we obtain that the dynamical system (3.45), (3.46) has the fixed points

(ūa, 0), (ūb, 0), (3.48)
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Figure 3.6: Phase portrait for the dynamical system (3.45), (3.46) when C1 = 0. The solid
dots indicate the fixed points.

for which

ūa − ū3
a = ūb − ū3

b = C1, (3.49)

and also

H(ūa, 0) = H(ūb, 0), (3.50)

i.e.,

C1ūa −
ū2
a

2
+
ū4
a

4
= C1ūb −

ū2
b

2
+
ū4
b

4
, (3.51)

which can be written as

ū2
a/2− ū4

a/4− ū2
b/2 + ū4

b/4

ua − ub
= C1. (3.52)

Note that equations (3.49) and (3.52) can be written as

f ′(ūa) = f ′(ūb) = −C1, (3.53)

and
f(ūa)− f(ūb)

ūa − ūb
= −C1, (3.54)
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respectively, where f(u) is the local free energy that for the standard Cahn-Hilliard

equation is given by

f(u) = −u
2

2
+
u4

4
. (3.55)

Note also that equations (3.53) and (3.54) are exactly the equations determining points

on the binodal line. It can be easily verified that for the standard Cahn-Hilliard equation

the only solution of these equations for which ūa 6= ūb are

ūa = ±1, ūb = ∓1, (3.56)

and then C1 = 0. Let us choose ūa = 1 and ūb = −1. Hence, when C1 = 0, we expect

that there exist heteroclinic orbits for the dynamical system (3.45), (3.46) that connect

the fixed points (1, 0) and (−1, 0), and, indeed, these orbits are given by the equations:

y2 = ±
√

1

2
+
y4

1

2
− y2

1. (3.57)

The positive sign corresponds to the orbit connecting (−1, 0) with (1, 0), which, in

turn, corresponds to a kink solution of the Cahn-Hilliard equation. The negative sign

corresponds to the orbit connecting (1, 0) with (−1, 0), which, in turn, corresponds to an

anti-kink solution. These two heteroclinic orbits form a heteroclinic loop for the fixed

points (−1, 0) and (1, 0). This is confirmed by the phase portrait for the dynamical

system (3.45), (3.46) shown in Fig. 3.6 for the case when C1 = 0. In fact, equations

(3.57) become ordinary differential equations for u0(x) (when y1 and y2 are replaced

with u0 and u0x, respectively), and it can be easily verified that the solutions are

u0(x) = ± tanh

(
x√
2

)
, (3.58)

which for the case of the positive sign is consistent with (2.32).

We also note that there are infinitely many closed trajectories that pass near the two

fixed points. These trajectories correspond to periodically extended droplet solutions.

The closer the trajectory passes near the fixed points, the longer the period of the droplet

is.

If C1 6= 0, this heteroclinic loop breaks down, and if |C1| < 2/
√

27, we instead obtain a

homoclinic orbit for one of the two fixed points, which correspond to localised pulse or

anti-pulse (hollow) solutions (if |C1| > 2/
√

27, the dynamical system has just one fixed
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Figure 3.7: Phase portrait for the dynamical system (3.45), (3.46) when C1 = 0.1. The solid
dots indicate the fixed points.

point for which there are no homoclinic orbits). An example of the phase portrait for

the dynamical system (3.45), (3.46) when C1 6= 0 is shown in Fig. 3.7 for the case when

C1 = 0.1. As for C1 = 0, there are infinitely many closed trajectories that pass near the

fixed point. These trajectories correspond to periodically extended pulse or anti-pulse

(hollow) solutions. The closer the trajectory passes near the fixed points, the longer

the period of the pulse or anti-pulse is. We also note that if C1 is sufficiently close

to zero, then the closed trajectory also spends a sufficient amount of “time” near the

second fixed point, i.e., the periodically extended pulse or anti-pulse solutions have the

shape of a droplet whose width is smaller or larger, respectively, than the width of the

cavity. The numerical results for droplet and single-interface solutions for the standard

Cahn-Hilliard equation are discussed in Section 4.3.

3.5.2 The case of the convective Cahn-Hilliard equation

For the convective Cahn-Hilliard equation, whenD 6= 0, we consider the three-dimensional

dynamical system (3.35)–(3.37). The fixed points of this dynamical system satisfy

y2 = y3 = 0 and
D

2
y2

1 − vy1 − C0 = 0. (3.59)
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Assuming that there exists a single-interface solution that connects uniform solutions

ūa and ūb (let ūa > ūb), we obtain that

v =
D

2
(ūa + ūb), C0 = −D

2
ūaūb. (3.60)

A single-interface solution then corresponds to a heteroclinic orbit connecting the fixed

point (ūb, 0, 0) to the fixed point (ūa, 0, 0) (a kink solutions) or vice versa (an anti-kink

solution). Heteroclinic orbits are trajectories that connect the two fixed points along

the unstable manifold of the first one and the stable manifold of the second one. We

will denote the stable and unstable manifolds of (ūa,b, 0, 0) by Ws,u(ūa,b), where the

subscripts s and u correspond to stable and unstable manifolds, respectively.

Using the spatial linear stability analysis presented in Section 3.4, we find that the eigen-

values for the fixed point (ūa, 0, 0) satisfy

λ3 + (1− 3ū2
a)λ+

D

2
(ūa − ūb) = 0, (3.61)

and the eigenvalues for the fixed point (ūb, 0, 0) satisfy

λ3 + (1− 3ū2
b)λ−

D

2
(ūa − ūb) = 0. (3.62)

Since the coefficients of λ2 are zero in these equations, we obtain that either one of

the roots is positive and real and the other two have negative real parts (and are either

real or complex conjugate), or one of the roots is negative and real and the other two

have positive real parts (and are either real or complex conjugate). So, in theory, the

following cases are possible:

1. dim(Wu(ūa)) = 2, dim(Ws(ūa)) = 1, dim(Wu(ūb)) = 1, dim(Ws(ūb)) = 2,

2. dim(Wu(ūa)) = 2, dim(Ws(ūa)) = 1, dim(Wu(ūb)) = 2, dim(Ws(ūb)) = 1,

3. dim(Wu(ūa)) = 1, dim(Ws(ūa)) = 2, dim(Wu(ūb)) = 1, dim(Ws(ūb)) = 2,

4. dim(Wu(ūa)) = 1, dim(Ws(ūa)) = 2, dim(Wu(ūb)) = 2, dim(Ws(ūb)) = 1,

where Ws,u are used to indicate stable/unstable manifolds of the respective points.

Let us assume that a heteroclinic orbit connects (ūb, 0, 0) to (ūa, 0, 0) (i.e., we have a

kink solution). Then, in Case 4 we expect that there will exist heteroclinic orbits for any

sufficiently small changes of ūa and ūb (two-dimensional surfaces generically intersect
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along a one-dimensional curve). In Cases 2 and 3, we expect that there will be a curve

in the (ūa, ūb)-plane for which such a heteroclinic orbit exists. In Case 1, we expect that

such an orbit exists only for a discrete set of values in the (ūa, ūb)-plane.

Similarly, assuming that a hetoroclinic orbit connects (ūa, 0, 0) to (ūb, 0, 0) (i.e., we

have an anti-kink solution), we obtain the following options: In Case 1, we expect that

there will exist heteroclinic orbits for any sufficiently small changes of ūa and ūb. In

Cases 2 and 3, we expect that there will be a curve in the (ūa, ūb)-plane for which such a

heteroclinic orbit exists. In Case 4, we expect that such an orbit exists only for a discrete

set of values in the (ūa, ūb)-plane.

In fact, from Section 2.4, we know an exact kink solution of the convective Cahn-

Hilliard equation that is given by

u0(x) = ūa tanh

(
ūa√

2
x

)
, (3.63)

where ūa =
√

1−D/
√

2, and for which v = 0. For this solution, ūb = −
√

1−D/
√

2.

Figs. 3.8 and 3.9 show the dependence on D of the real and imaginary parts, respec-

tively, of the eigenvalues for ūa. It can be seen that one eigenvalue, λ1, is real and

negative for all D ∈ (0,
√

2). The other two eigenvalues, λ2 and λ3, have positive real

parts and are real for D ∈ (0, D̂) and are complex conjugate for D ∈ (D̂,
√

2), where

D̂ ≈ 0.47. Note that as D →
√

2, ūa → 0, and λ1 → 0, λ2,3 → ±i. The exact value of

D̂ satisfies the equation ∆ = 0, where ∆ is the discriminant given by equation (3.32).

For ū = ūa =
√

1−D/
√

2, the equation for D̂ becomes

D̂3 − 3
√

2D̂2 +
16

3
D̂ − 32

√
2

27
= 0. (3.64)

It can be checked that the roots of this polynomial are
√

2/3 (of multiplicity 1) and

4
√

2/3 (of multiplicity 2). Since D̂ must be less than
√

2, we conclude that

D̂ =

√
2

3
. (3.65)

The eigenvalues for ūb are −λ1,2,3 (due to the symmetry of the characteristic equa-

tion that was discussed above). Therefore, for ūb, one eigenvalue is real and positive

and the other two eigenvalues have negative real parts and are real for D ∈ (0, D̂)

and are complex conjugate for D ∈ (D̂,
√

2). We conclude that dim(Wu(ūa)) = 2,
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dim(Ws(ūa)) = 1, dim(Wu(ūb)) = 1, dim(Ws(ūb)) = 2, which corresponds to Case 1

discussed above. Therefore, there exists a unique kink solution for each value of D

in the interval (0,
√

2) and for the point (ūa, ūb) in some neighbourhood of the point(
[1 − D/

√
2]1/2,−[1 − D/

√
2]1/2

)
. This solution is given by equation (3.63). How-

ever, we expect that there exist anti-kink solutions for any sufficiently small changes

of ūa and ūb. We also note that although kink solutions (3.63) exist for D ∈ [0,
√

2)

(we consider only the case when D is non-negative, as the case of a negative D can be

recovered from the case of a positive D by symmetry considerations), the flat parts of

such solutions become linearly unstable (in the sense of temporal linear stability analy-

sis) when D > Ď = 2
√

2/3. We therefore do not expect to observe such kink solutions

in time-dependent simulations when D > Ď.

We note that the real parts of the eigenvalues determine the rates at which the fixed

points are approached, whereas the imaginary parts are responsible for the oscillatory

behaviour. Let us consider, for example, Case 1, and assume that there exists an anti-

kink solution, i.e., a heteroclinic orbit connecting (ūa, 0, 0) to (ūb, 0, 0). Let us addi-

tionally assume that the eigenvalues for (ūa, 0, 0) are λa1 < 0, and λa2,3 = γa ± iδa,

where γa and δa are positive. Let us also assume that the eigenvalues for (ūb, 0, 0) are

λb1 > 0, and λb2,3 = −γb± iδb, where γb and δb are positive. Then, the anti-kink solution

u0 will approach ūa and ūb as x → −∞ and x → ∞, respectively, in an oscillatory

manner with the amplitude of the oscillations decaying as exp(γax) and exp(−γbx),

respectively, and the periods of the oscillations given by 2π/δa and 2π/δb, respectively.

The double-interface (and, in fact, many-interface) solutions can be analysed, for exam-

ple, by using the Shilnikov-type approach, see, for example, Glendinning and Sparrow

[43], Guckenheimer and Holmes [50], Knobloch and Wagenknecht [66], Kuznetsov

[71], Tseluiko et al. [114]. Indeed, let us consider Case 1, and let us assume that for

ūa = ū∗a and ūb = ū∗b there exists a heteroclinic chain connecting ua = (ū∗a, 0, 0) to

ub = (ū∗b , 0, 0) and ub = (ū∗b , 0, 0) to ua = (ū∗a, 0, 0). A schematic representation of

such a chain is given in Figure 3.10. Then, for example, for the fixed value ū∗a, we expect

that there will exist an infinite but countable number of the values of ūb = ūb,k, k ∈ N,

in the neighbourhood of ū∗b for which there exist homoclinic orbits for the fixed points

(ūb,k, 0, 0) that pass near (ū∗a, 0, 0). Such orbits then correspond to droplet solutions,

and such droplet solutions differ by their lengths (the difference in the lengths of two

droplet solutions is approximately proportional to 2π/δa). We note that if the droplet

solution is sufficiently narrow, then it can be characterised rather as a pulse solution
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Figure 3.10: A schematic representation of a heteroclinic chain connecting ua = (ū∗a, 0, 0) to
ub = (ū∗b , 0, 0) and ub = (ū∗b , 0, 0) to ua = (ū∗a, 0, 0) for Case 1, when dim(Wu(ūa)) = 2,
dim(Ws(ūa)) = 1, dim(Wu(ūb)) = 1, dim(Ws(ūb)) = 2.

than a droplet. Then, assuming that γb < λb1, Shilnikov’s theory implies the existence

of an infinite but countable number of subsidiary homoclinic orbits in the vicinity of

the primary orbit (i.e., when ūb is near ūb,k) that pass near (ū∗a, 0, 0) several times before

achieving homoclinicity. Such subsidiary homoclinic orbits correspond to multi-droplet

(or multi-pulse) solutions. In addition, Shilnikov’s theory implies the existence of an

infinite number of limit cycles in the vicinity of the primary homoclinic orbits. Such

limit cycles correspond to periodic arrays of droplets (or pulses). In a similar way, we

can analyse cavity solutions (and negative-pulse solutions which correspond to narrow

cavities), and can obtain finite or periodic arrays of cavity (or negative-pulse) solutions

(we note that, of course, periodic arrays of cavity solutions are equivalent to periodic

arrays of droplet solutions).

The numerical computation of droplet and single-interface solutions for the convective

Cahn-Hilliard equation is discussed in Chapter 4. However, here we present some time-

dependent simulations (obtained by using the spectral method described in Section 2.5)

confirming differences in the solutions that we expect to see for D ∈ (0, D̂), D ∈
(D̂, Ď), D ∈ (Ď,

√
2), D >

√
2. Figs. 3.11, 3.12, 3.13 and 3.14 show the results of

numerical simulations of the convective Cahn-Hilliard equation (2.28) on the periodic

domain [−40, 40] for D =
√

2/6,
√

2/2, 5
√

2/6 and 1.5, respectively. The equation

was solved by the spectral method explained in Section 2.5. We have used 512 Fourier
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modes and the time step was chosen to be 7.8125 × 10−4. The initial condition for the

simulations was chosen to be

u(x, 0) = −
√

1−D/
√

2 tanh[10 sin(πx/L)] (3.66)

for D =
√

2/6,
√

2/2, 5
√

2/6 and

u(x, 0) = −0.1 tanh[10 sin(πx/L)] (3.67)

for D = 1.5.

Panels (a) of the figures show the time evolution of the solution for t changing from

0 to 1000. Panels (b) show the initial (dashed line) and the final (solid line) solutions

profiles. Panels (c) show the time evolutions of the norms of the solutions.

As expected, for D =
√

2/6 the solution evolves into a droplet solution and there

appears a ridge on top of the right-hand side of the droplet followed by a depression

in the cavity, and it can be seen that both change monotonically. The norm of the

solution increases monotonically in time and approaches a constant value meaning that

the solution evolves into a steady-state droplet solution.

For D =
√

2/2 the solution also evolves into a droplet solution with a ridge on top

of the right-hand side of the droplet followed by a depression in the cavity. However,

in agreement with the theory, now the ridge and the depression are non-monotonic,

but actually decay exponentially as x decreases/increases, respectively. For the case

of the ridge, this is confirmed by in the inset of Fig. 3.12 showing the dependence

of log |u(x, 1000) − (1 − D/
√

2)1/2| on x for negative values of x. The norm of the

solution first monotonically increases, but then decreases monotonically and approaches

a constant value meaning that the solution again evolves into a steady-state droplet

solution.

For D = 5
√

2/6 the theory predicts that the droplet solutions should be unstable if

the domain size is large enough. Indeed, in Fig. 3.12 we can observe that the solution

first tends to evolve into a droplet solution, but then this solution becomes unstable and

beaks up into smaller, pulse-like structures. The norm, after an initial transient period

approaches a constant value at around t = 200 corresponding to a droplet solution.

However, later there appear oscillations of an amplitude that grows in time, and for t >

600 the solution completely diverges away from the droplet shape and the norm, after
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Figure 3.11: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the pe-
riodic domain [−40, 40] for D =

√
2/6. Panel (a) shows the time evolution of the solution

for t ∈ [0, 1000]. Panel (b) shows the initial (dashed line) and the final (solid line) solution
profiles at t = 0 and t = 1000, respectively. Panel (c) shows the time evolution of the norm of
the solution.

(a)

x
-40 -30 -20 -10 0 10 20 30 40

u

-1

-0.5

0

0.5

1 final
initial

(b)

t

0 200 400 600 800 1000

‖δ
u
‖

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

(c)

Figure 3.12: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the pe-
riodic domain [−40, 40] for D =

√
2/2. Panel (a) shows the time evolution of the solution

for t ∈ [0, 1000]. Panel (b) shows the initial (dashed line) and the final (solid line) solu-
tion profiles at t = 0 and t = 1000, respectively. The inset shows the log |u(x, 1000) −
(1 −D/

√
2)1/2| for negative values of x, and confirms the presence of oscillations. Panel (c)

shows the time evolution of the norm of the solution.
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Figure 3.13: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the pe-
riodic domain [−40, 40] for D = 5

√
2/6. Panel (a) shows the time evolution of the solution

for t ∈ [0, 1000]. Panel (b) shows the initial (dashed line) and the final (solid line) solution
profiles at t = 0 and t = 1000, respectively. Panel (c) shows the time evolution of the norm of
the solution.
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Figure 3.14: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the pe-
riodic domain [−40, 40] for D = 1.5. Panel (a) shows the time evolution of the solution for
t ∈ [0, 1000]. Panel (b) shows the initial (dashed line) and the final (solid line) solution pro-
files at t = 0 and t = 1000, respectively. Panel (c) shows the time evolution of the norm of
the solution.
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a number of oscillations approaches a different constant corresponding to the solution

consisting of the superposition of the smaller structures.

Finally, for D = 1.5, we observe that the solution does not evolve into a droplet shape

(even intermediately) but directly evolves into a superposition of smaller pulse-like

structures. The norm first grows rapidly until approaching a saturation value, and then

oscillates around this value in a manner indicating that the solution probably approaches

a quasi-periodic or chaotic attractor.

To conclude this section, we note that without the derivatives of second and higher or-

ders, the convective Cahn-Hilliard equation reduces to the following scalar conservation

law:

∂tu+ ∂x[χ(u)] = 0, (3.68)

where the flux is χ(u) = Du2/2 and is a uniformly convex function of u for positive D

(since χ′′(u) = D > 0). Note that this is precisely the inviscid Burgers equation, see, for

example, Evans [38]. It is well known that the inviscid Burgers’ equation can develop

discontinuities for certain initial conditions, i.e., it admits shock-wave solutions. For

classical (compressive) shocks, the entropy condition must be satisfied (see, e.g., Evans

[38], Lax [72]):

χ′(ul) > σ > χ′(ur), (3.69)

where σ is the speed of the shock wave and ul and ur are the solution values just before

the shock and right after the shock. This condition tells that the speed of the character-

istics behind the shock must be greater than the speed of the shock and the speed of the

characteristics in front of the shock must be smaller that the speed of the shock. This

basically implies that the characteristics from the left and the characteristics from the

right must hit the curve in the (t, x)-plane along which the solution is discontinuous.

On the contrary, if the speed of the characteristics for smaller values of x is less than

the speed of the characteristics for larger values of x, we can obtain rarefaction waves.

For classical compressive shocks, the additional Rankine-Hugoniot condition gives the

speed σ of the shock:

σ =
χ(ul)− χ(ur)

ul − ur
. (3.70)

Note that for a uniformly convex flux the entropy condition is equivalent to the inequal-

ity

ul > ur. (3.71)
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If an initial condition is discontinuous and such that ul < ur, then we obtain rarefaction

waves.

Adding certain terms to the inviscid Burgers’ equation can be considered as a regular-

isation of the equation. In particular, by adding the term ε2uxx to the right-hand side

of (3.68), we obtain the viscous Burgers’ equation which was proposed by Burgers as

a model for analysing turbulent flows, see Burgers [15]. It arises in numerous other

applications, such as gas dynamics, water waves, traffic flow (see, e.g., Johnson [60]

Whitham [120]). For a wide class of initial conditions, solutions to the viscous Burg-

ers’ equation are single-valued and continuous (i.e., do not develop shocks), contrary

to the behaviour of the solutions to the inviscid Burgers’ equation. Remarkably, the

nonlinear viscous Burger’s equation can be transformed into the linear heat equation by

the so-called Cole-Hopf transformation, see Cole [22] and Hopf [56], and, therefore,

solutions to the viscous Burger’s equation can be written in terms of the solutions to

the heat equation. Introduction of the viscous term smoothes out sharp shock solution.

Nevertheless, for sufficiently small ε, the solutions can have rapid transitions and are

well approximated by shock solutions of the inviscid Burgers’ equation (if the shock

strength, (ul − ur)/ur does not tend to zero). A closed-form travelling anti-kink so-

lution of the viscous Burgers’ equation is known as the Taylor shock profile, see, e.g.,

[60], and it propagates with the shock velocity and has the width that tends to zero as

ε→ 0.

The convective Cahn-Hilliard equation can also be considered as a regularisation of the

inviscid Burgers’ equation. (We note that for a systematic investigation of such a reg-

ularisation, it would be appropriate to introduce parameters multiplying the additional

terms and consider the limit when these parameters become small so that the balance

between energy production and energy dissipation is maintained.) Then kink and anti-

kink solutions can be classified as “smoothed shocks”. Note that the first equation in

(3.60) giving the speed of a kink or anti-kink solutions is in agreement with the Rankine-

Hugoniot condition (3.70) giving the speed of the shock wave. Note also that for the

discussed anti-kink solutions, the speed of the characteristics behind the “smoothed

shock” is larger than the speed of the characteristics in front of the “smoothed shock”.

So anti-kink solutions presumably correspond to classical compressive shock solutions.

This is, however, not the case for kink solutions. Namely, for kink solutions we obtain

that the speed of the characteristics behind the “smoothed shock” is smaller than the

speed of the characteristics in front of the “smoothed shock”. So kink solutions pre-

sumably correspond to undercompressive shocks. Undercompressive shocks have been
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introduced by Shearer et al. [96] in the study of a 2×2 system of conservation laws with

application to oil recovery, see Schaeffer and Shearer [93]. Since then they have been

extensively studied, for example, for conservation laws with non-convex fluxes (see,

e.g., Hayes et al. [53], Schulze and Shearer[94]) and in particular for thin-film-type

equations (see, e.g., Bertozzi et al. [7], Münch [80] Bertozzi and Shearer [9], Bertozzi et

al. [8], Golovin et al. [48], Segin et al. [95]). Undercompressive shocks have also been

observed experimentally, for example, in thin liquid films driven by thermally induced

surface tension gradient acting against gravity, see Bertozzi et al. [6], Sur et al. [100].



Chapter 4

Numerical computation of single- and
double-interface solutions

4.1 Introduction

In this chapter, we compute various bifurcation diagrams for single- and double-interface

solutions both for the standard (when D = 0) and the convective (when D 6= 0) Cahn-

Hilliard equation. For the computations, we use a numerical continuation procedure

implemented in the continuation and bifurcation software Auto07p [31]. The details

of the computational procedure are explained in Section 4.2. The case of the standard

Cahn-Hilliard equation is analysed in Section 4.3. We start the computations from neu-

trally stable small-amplitude sinusoidal waves, and perform first continuations in the

domain-size parameter L. This leads to double-interface (droplet) solutions. As ex-

pected, we find that the computed solutions are always stationary when D = 0, and,

depending on the mean thickness parameter ū, we obtain various types of bifurcation

diagrams. In Section 4.4, we perform continuations both in the driving force parameter,

D, and the domain size parameter, L, and analyse how the bifurcation diagrams change

depending on the driving force. Finally, single-interface solutions (kinks and anti-kinks)

are computed in Section 4.4.3.

54
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4.2 Numerical procedures

4.2.1 Computation of double-interface solutions

In this section, we explain the computational procedure of double-interface solutions

(i.e., droplets) of the convective Cahn-Hilliard equation (2.28). First, we write this

equation in the form

ut = −
[
Du2

2
+ (u− u3 + uxx)x

]
x

. (4.1)

This equation, written in the frame moving at velocity v (i.e., after the tranformation

x→ x− vt), becomes

ut − vux = −
[
Du2

2
+ (u− u3 + uxx)x

]
x

. (4.2)

A stationary (when v = 0) or travelling (when v 6= 0) solution is then a steady solution

of this equation, i.e., a solution of

− vu′0 = −
[
Du2

0

2
+ (u0 − u3

0 + u′′0)′
]′
, (4.3)

where now u0 is a function of x only and primes denote differentiation with respect to x.

Next, we integrate equation (4.3) to obtain

0 = −
[
Du2

0

2
+ (u0 − u3

0 + u′′0)′
]

+ vu0 + C0, (4.4)

where C0 is the constant of integration that corresponds to the flux in the co-moving

frame.

To solve equation (4.4) numerically, we use the continuation and bifurcation software

Auto07p [31]. First we write (4.4) as a system of first-order autonomous ordinary differ-

ential equation on the domain [0, 1]. To do this, we introduce the variables y1 = u0− ū,

y2 = u′0 and y3 = u′′0. Here ū denotes the mean thickness. We obtain from equation
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(4.3) the following three-dimensional dynamical system:

ẏ1 = Ly2, (4.5)

ẏ2 = Ly3, (4.6)

ẏ3 = L[C0 + v(y1 + ū)−D(y1 + ū)2/2− y2 + 3(y1 + ū)2y2], (4.7)

where L is the physical domain size, and dots denote derivatives with respect to the

variable α ≡ x/L. We note that in Auto07p the dimension of the system is described by

the variable NDIM , so we set NDIM = 3. The system of the equations is specified

in the user-supplied subroutine FUNC. The advantage of the used form is that the

fields y1(α), y2(α) and y3(α) correspond to the correctly scaled physical fields u0(Lα),

u′0(Lα) and u′′0(Lα). To compute periodic droplet solutions, we use periodic boundary

conditions for y1, y2 and y3, i.e.,

y1(0) = y1(1), (4.8)

y2(0) = y2(1), (4.9)

y3(0) = y3(1), (4.10)

We note that in Auto07p, the number of the boundary conditions is described by the

variable NBC, so we set NBC = 3. The boundary conditions are specified in the

user-supplied subroutine BCND. In addition, we use two integral conditions, namely,

one pinning condition breaking the translational invariance of the equation, and the

condition for the mean thickness: ∫ 1

0

y1dα = 0. (4.11)

In Auto07p, the integral conditions are specified in the user-supplied subroutine ICND,

and the parameter representing the number of the integral conditions is NINT . So, we

set NINT = 2. We note that the number of the so-called free parameters (i.e., the

parameters that are allowed to vary for the well-posedness of the continuations) is given

by the formula:

NBC +NINT −NDIM + 1. (4.12)

For our problem we find that the number of the free parameters is 3. So, if we choose

one of the parameters as the principal one, e.g., the domain size or the driving force,

two more parameters must adapt. As the additional parameters, we have the flux C0 and

the velocity v.
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4.2.2 Computation of single-interface solutions

In this section, we explain the computational procedure of single-interface solutions

(i.e., kinks and anti-kinks) of the convective Cahn-Hilliard equation (2.28). Let us as-

sume that the two homogeneous levels are ūa and ūb, and let us assume that ūa > ūb.

These are two additional parameters that are introduced in the problem. For the compu-

tation of the kink solutions, we impose the following conditions:

y1(0) = ūb, (4.13)

y1(1) = ūa, (4.14)

whereas for the computation of the anti-kink solutions, we impose the following condi-

tions:

y1(0) = ūa, (4.15)

y1(1) = ūb. (4.16)

We are primarily interested in the computation of the kink and anti-kink solutions

that bifurcate from the analytical tanh solutions for D = 0. According to the re-

sults of the previous Chapter, we expect that for such solutions dim(Wu(ūa)) = 2,

dim(Ws(ūa)) = 1, dim(Wu(ūb)) = 1, dim(Ws(ūb)) = 2, for at least some range of

positive D values. Thus, an anti-kink solution corresponds the intersection of the two-

dimensional manifolds dim(Wu(ūa)) and dim(Ws(ūb)), and is, therefore, expected to

exist for any sufficiently small changes of ūa and ūb for a given value of D. Therefore,

as for the case of double-interface solutions, for anti-kink solutions we need three free

parameters (e.g., when D is the primary continuation parameter, just two other param-

eters should be adapted, e.g., C0 and v, and the remaining two parameters can be kept

fixed). We achieve this by imposing the following boundary conditions (in addition to

conditions (4.15) and (4.16)):

y2(0) = 0, (4.17)

y2(1) = 0, (4.18)

and the following integral condition:∫ 1

0

y1dα =
ūa + ūb

2
. (4.19)
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This condition plays the role of a pinning condition and places the interface between

the two phases approximately in the middle of the domain.

Next, a kink solution corresponds to the intersection of the one-dimensional manifolds

dim(Wu(ūb)) and dim(Ws(ūa)) and is, therefore, expected to exist for a discrete set of

values of ūa and ūb for a given value of D. Thus, we expect that in a continuation with a

primary parameter, e.g., D, not only the flux C0 and the velocity v must be adapted, but

also ūa and ūb, i.e., we should have five free parameters. We achieve this by imposing

the following boundary conditions (in addition to conditions (4.13) and (4.14)):

y2(0) = 0, (4.20)

y2(1) = 0, (4.21)

y3(0) = 0, (4.22)

y3(1) = 0, (4.23)

and the integral condition (4.19). We can start the continuation procedure for kink and

anti-kink solutions from, e.g., the truncated analytically know tanh profiles at D = 0.

Note that for anti-kink solutions we can also start from a half of a small-amplitude

cosine wave of a cutoff wavelength, which is consistent with the boundary conditions

that we impose for anti-kink solutions.

4.3 The case of the standard Cahn-Hilliard equation

4.3.1 Double-interface solutions of the standard Cahn-Hilliard
equation for ū = 0

In this section, we compute solutions to the standard Cahn-Hilliard equation, whenD =

0, for the case when the average value of the solution is zero, i.e., ū = (1/L)
∫ L

0
u0 dx =

0. The solutions are characterised by the norm ‖δu0‖ =
√

(1/L)
∫ L

0
u2

0 dx, the veloc-

ity v and the flux C0. We use the domain size as the control parameter. To initiate

the continuation procedure, a starting solution must be used (in Auto07p, it should be

specified in the user-supplied subroutine STPNT ), and we choose a small amplitude

sinusoidal wave of a cutoff wavelength Lc, that is obtained from the linear stability
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analysis discussed in Section 3.2, i.e.,

Lc =
2π

kc
, where kc =

√
1− 3ū2. (4.24)

For the case when ū = 0, we find Lc = 2π. By choosing this value of Lc, we can

obtain solutions that have the shape of one droplet (i.e., double-interface solutions). If

we choose instead the solutions of the same period but given on the domain size that is

an n multiple of Lc, then we will obtain n-droplet solutions. In this Chapter, we only

consider the case when n = 1. The case when n = 2 will be considered in the next

Chapter.

Figs. 4.1 and 4.2 show the results of the calculations, where the first figure shows

the bifurcation diagrams and the second figure shows solution profiles for some val-

ues of the domain size L. In Fig. 4.1(a), the dependence of the norm ‖δu0‖ on the

domain size, L, is shown. The branch of spatially non-uniform solutions bifurcates

supercritically from the homogeneous branch at L = Lc. We can see that the norm

increases monotonically and tends to 1 as L increases. In Fig. 4.2, we can observe

that the solution profile approaches a droplet shape as L increases, with the minimum

value equal to −1 and the maximum value equal to 1. (The profiles are shown for

L = 2π ≈ 6.28, 7, 10, 20, 50, 400, see the legend for the corresponding lines). To anal-

yse the large L behaviour we present in Fig. 4.1(b) the same data as in Fig. 4.1(a), but

in a different form. Namely, we give the dependence of 1 − ‖δu0‖ on the domain size

L on a log-log scale. The slope of the line for large L is equal to −1. This is confirmed

by the straight (red) dashed line which has the slope −1 on a log-log scale. Therefore,

we conclude that 1− ‖δu0‖ goes to zero as L−1 when L increases.

The facts that for large L the solution has the form of a droplet that changes from −1 to

1 and that 1 − ‖δu0‖ ∝ L−1 for large L can be explained by the analysis presented in

Section 3.5, and also by the following argument. Let us assume that ū is fixed and is not

necessarily zero and that the solution has the form of a droplet that changes between two

values ūa and ūb, where ūa > ūb. The solution profile in the transition regions from ūa

to ūb and from ūb to ūa does not change much when L becomes sufficiently large. So,

effectively, just the sizes of the regions where u0 ≈ ūa and where u0 ≈ ūb increase as L

increases, and the sizes of the transition regions between the two values become smaller

relative to the domain size, so effectively we can ignore these regions (i.e., consider

the sharp interface limit). Let us assume that La is the width of the droplet. Since the
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Figure 4.1: (a) The bifurcation diagram of the one-droplet (n = 1) steady solutions of the
standard Cahn-Hilliard equation (2.28), when D = 0, for the case when ū = 0, showing
the dependence of the norm ‖δu0‖ on the domain size L. The dotted line corresponds to the
value

√
1− ū2 = 1 towards which the norm converges as L increases, according to (4.35).

The inset gives a zoom at small values of L. Panel (b) shows the dependence of 1 − ‖δu0‖
on L on a log-log scale. The red dashed line has the slope −1 on a log-log scale and confirms
that 1 − ‖δu0‖ ∝ L−1 as L increases. Panel (c) shows the dependence of ‖δu0‖ on L − Lc,
where Lc = 2π, on a log-log scale. The red dotted line has the slope 1/2 on a log-log scale
and confirms that ‖δu0‖ ∝ (L− Lc)1/2 as L→ Lc.

droplet u0 is a steady solution, according to (2.16), we have

δF [u]

δu

∣∣∣∣
u=u0

= C1, (4.25)

or, equivalently,

f ′(u0)− u0xx = C1, (4.26)
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Figure 4.2: One-droplet (n = 1) steady solution profiles u0(x) of the standard Cahn-Hilliard
equation (i.e., equation (2.28) with D = 0) for ū = 0 for different values of the domain size
L, as is given in the legend.

where C1 is a constant. In the sharp interface limit, this implies

f ′(ūa) = f ′(ūb) = C1. (4.27)

On multiplying (4.26) by u0x and integrating, we also find

f(u0)− 1

2
u2

0x = C1u0 + C2, (4.28)

where C2 is another constant. In the sharp interface limit, this condition implies

f(ūa)− C1ūa = f(ūb)− C1ūb, (4.29)

or, equivalently,
f(ūa)− f(ūb)

ūa − ūb
= C1. (4.30)

Note that conditions (4.27) and (4.30) are exactly the conditions determining points on

the binodal line. It can be easily verified that for the standard Cahn-Hilliard equation

the only solution of these equations for which ūa > ūb is

ūa = 1, ūb = −1. (4.31)

This explains why the droplet profiles change from −1 to 1 when the domain size is
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sufficiently large. Additionally, in the sharp interface limit, the following condition

must be satisfied (which ensures that the mean of the solution is ū):

laūa + (1− la)ūb = ū, (4.32)

where la = La/L is the relative width of the droplet. This implies

la =
ū− ūb
ūa − ūb

. (4.33)

Using that for the standard Cahn-Hilliard equation ūa,b = ±1, we find

la =
1 + ū

2
. (4.34)

Now we can estimate the norm ‖δu0‖ in the limit L→∞:

‖δu0‖ →
√
la(ūa − ū)2 + (1− la)(ūb − ū)2

=

√
1 + ū

2
(1− ū)2 +

1− ū
2

(1 + ū)2 =
√

1− ū2. (4.35)

For example, for ū = 0, we find that ‖δu0‖ → 1, which is consistent with the results

presented in Fig. 4.1(a). Moreover, we can show that
√

1− ū2 − ‖δu0‖ → 0 as L−1

when L increases. Indeed, if L is sufficiently large, the solution profile approaches a

shape of a droplet so that u0 changes from 1 to−1. The solution profile in the transition

regions from 1 to −1 and from −1 to 1 does not change much and tends to a certain

limiting profile when L increases. Let (a1, La−a2) and (La+a3, L−a4) be the regions

where u0 ≈ ±1, respectively. Then∫ L

0

(u0 − ū)2dx ≈ (La − a1 − a2)(1− ū)2 + (L− La − a3 − a4)(1 + ū)2

+

∫ a1

0

(u0 − ū)2dx+

∫ La+a3

La−a2
(u0 − ū)2dx

+

∫ L

L−a4
(u0 − ū)2dx. (4.36)

Denoting

A = (a1 + a2)(1− ū)2 + (a3 + a4)(1 + ū)2

−
∫ a1

0

(u0 − ū)2dx−
∫ La+a3

La−a2
(u0 − ū)2dx−

∫ L

L−a4
(u0 − ū)2dx (4.37)
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and using the fact that A tends to a certain limit as L increases, we obtain∫ L

0

(u0 − ū)2dx ≈ La(1− ū)2 + (L− La)(1 + ū)2 − A

= L
1 + ū

2
(1− ū)2 + L

1− ū
2

(1 + ū)2 − A

= L(1− ū2)− A. (4.38)

Thus,

‖δu0‖ ≈
√
L(1− ū2)− A

L
=
√

1− ū2 − A

2(1− ū2)
L−1 +O(L−2), (4.39)

i.e., indeed,

√
1− ū2 − ‖δu0‖ ≈

A

2(1− ū2)
L−1 +O(L−2) ∝ L−1, (4.40)

for L → ∞. For example, for ū = 0, we find 1 − ‖δu0‖ ∝ L−1, which is consistent

with the results presented in Fig. 4.1(b).

In Fig. 4.1(c), we again plot the same data but present it differently, namely, we plot the

dependence of ‖δu0‖ on the difference of the domain size and the cutoff domain size,

L − Lc, on a log-log scale, and we focus on the region where L is close to Lc. The

slope of line is equal to 1/2 as L → Lc. This is confirmed by the straight (red) dotted

line which has the slope 1/2 on a log-log scale. Therefore, the norm ‖δu0‖ goes to

zero when (L− Lc)1/2 as L→ Lc. This fact can be explained by the weakly nonlinear

analysis presented in Section 4.5.1, which implies that for L close to Lc, the amplitude

of the small-amplitude sinusoidal wave scales as (L − Lc)
1/2, and, therefore, indeed

‖δu0‖ scales as (L− Lc)1/2 when L→ Lc.

We also note that in all our calculations the velocity v and the flux C0 turn out to be

equal to zeros for all the values ofL (up to numerical noise), as expected for the standard

Cahn-Hilliard equation. Therefore, we do not present the corresponding figures.
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Figure 4.3: (a) The bifurcation diagram of the one-droplet (n = 1) steady solutions of the
standard Cahn-Hilliard equation (2.28), when D = 0, for the case when ū = 0.4, showing the
dependence of the norm ‖δu0‖ on the domain size L. The dotted line corresponds to the value√

1− ū2 ≈ 0.9165 towards which the norm converges as L increases, according to (4.35).
The inset gives a zoom at small values of L. Panel (b) shows in addition the dependence of
the energy defined by (2.7) on the domain size L. The inset gives a zoom at small values of L.
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Figure 4.4: One-droplet (n = 1) steady solution profiles u0(x) of the standard Cahn-Hilliard
equation (i.e., equation (2.28) with D = 0) for ū = 0.4 for different values of the domain size
L, as is given in the legend.
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Figure 4.5: (a) The bifurcation diagram of the one-droplet (n = 1) steady solutions of the
standard Cahn-Hilliard equation (2.28), when D = 0, for the case when ū = 0.55, showing
the dependence of the norm ‖δu0‖ on the domain size L. The dotted line corresponds to the
value

√
1− ū2 ≈ 0.8352 towards which the norm converges as L increases, according to

(4.35). The inset gives a zoom at small values of L. Panel (b) shows in addition the depen-
dence of the energy defined by (2.7) on the domain size L. The inset gives a zoom at small
values ofL.

4.3.2 Double-interface solutions of the standard Cahn-Hilliard
equation for ū = 0.4, 0.55 and 0.6

In this section, we continue to analyse droplet solutions of the standard Cahn-Hilliard

equation (2.28), when D = 0, but now we consider the cases when the average value of

the solution is ū = 0.4, 0.55 and 0.6, and characterise the solutions both by their norms

‖δu0‖ and their free energies F (u0) (defined by (2.7)). Note that for |ū| < 1/
√

3, the

flat solution u0 = ū becomes unstable when L > Lc = 2π/kc, where kc =
√

1− 3ū2.

We compute Lc at ū = 0.4 and 0.55 we find that Lc = 8.7 and 20.66, respectively.

Whereas for ū = 0.6 the flat solution is linearly stable for any domain size.

The results showing the dependence of the norm ‖δu0‖ on the domain size L for ū = 0.4

are given in Fig. 4.3(a) and the results showing the dependence of the energy F (u0) on

L are given in Fig. 4.3(b). In Fig. 4.3(a), we can see that the primary bifurcation at

Lc = 8.7 is supercritical for this value of ū. Also, the dotted line corresponds to the

value
√

1− ū2 ≈ 0.9165, and we can see that the norm approaches this value as L

increases, in agreement with (4.35). We can also observe that the energy of the non-

uniform solution monotonically decreases as L increases and is smaller than the energy

of the flat solution. Fig. 4.5(a) shows the dependence of the norm ‖δu0‖ on the domain

size L for ū = 0.55 and Fig. 4.5(b) shows the dependence of the energy F (u0) on L for

this value of ū. For this value of ū, we can see that the primary bifurcation at Lc = 20.66
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Figure 4.6: One-droplet (n = 1) steady solution profiles u0(x) of the standard Cahn-Hilliard
equation (i.e., equation (2.28) with D = 0) for ū = 0.55 for different values of the domain
size L, as is given in the legend.

is subcritical. The branch of non-uniform solutions initially follows to decreasing values

of the domain size L and is unstable up to the saddle-node bifurcation at L = Ls ≈
13.818. After this point the branch turns back and becomes stable. Also, the dotted line

corresponds to the value
√

1− ū2 ≈ 0.8352, and we can see that the norm approaches

this value as L increases, in agreement with (4.35). We conclude that the nature of the

bifurcation switches from supercritical to subcritical at some value of ū ∈ (0.4, 0.55).

The exact value of ū at which this changeover happens can be obtained by the weakly

nonlinear analysis given in Section 4.5.1. It turns out that this value is ū∗ = 1/
√

5 ≈
0.45. Note that for ū = 0.55 the energy of the non-uniform solution first increases

monotonically, up to the saddle-node bifurcation, and then decreases monotonically. It

remains positive up to a certain value of the domain size, Lm ≈ 14.30 between Ls and

Lc, and then becomes negative. The point L = Lm is the so-called Maxwell point. At

this point, both linearly stable solutions, i.e. the uniform solution and the nonuniform

solution with the larger value of the norm, have the same value of the energy. For

L ∈ (Ls, Lm), the uniform solution has lower free energy, whereas for L > Lm, the

non-uniform solution has lower free energy.

As mentioned above, since ū = 0.6 > 1/
√

3, the flat solution u = ū is linearly stable

for any L, i.e., there is no primary bifurcation on the uniform solution. To produce
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Figure 4.7: (a) The bifurcation diagram of the one-droplet (n = 1) steady solutions of the
standard Cahn-Hilliard equation (2.28), when D = 0, for the case when ū = 0.6, showing
the dependence of the norm ‖δu0‖ on the domain size L. The dotted line corresponds to the
value

√
1− ū2 = 0.8 towards which the norm converges as L increases, according to (4.35).

Panel (b) shows in addition the dependence of the energy defined by (2.7) on the domain size
L. The inset gives a zoom at small values ofL.
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Figure 4.8: One-droplet (n = 1) steady solution profiles u0(x) of the standard Cahn-Hilliard
equation (i.e., equation (2.28) with D = 0) for ū = 0.60 for different values of the domain
size L, as is given in the legend.

the branch of non-uniform solutions, we can first compute the branch of non-uniform

solutions for ū = 0, and then select a solution on this branch at a sufficiently large value

of L (e.g., at L = 100). We can then keep L fixed and perform a continuation in ū, until

we reach the value ū = 0.6. This produces the non-uniform solution for ū = 0.6 at

L = 100. After that, we can again keep ū fixed and perform a continuation in L, going

in both directions, which produces the whole branch of non-uniform solutions. The

results are shown in Fig. 4.7. Panel (a) of Fig. 4.7 shows the dependence of the norm



Chapter 4. Numerical computation of single- and double-interface solutions 68

‖δu0‖ on the domain size. We can observe that the branch of non-uniform solutions

has a turning point at L = L′s ≈ 16.327. For each L > L′s, there are two non-uniform

solutions, one is unstable and is of smaller norm while the other one is stable and is of

larger norm. The dotted line corresponds to the value
√

1− ū2 ≈ 0.8, and we can see

that the norm of the stable solution approaches this value as L increases, in agreement

with (4.35). The energy of the linearly unstable non-uniform solution monotonically

decreases from some positive value to zero as L changes from L′s to ∞ (see panel b

of Fig. 4.7). Whereas the energy of the linearly stable non-uniform solution decreases

monotonically from a positive value to negative values crossing zero at the Maxwell

point, L′m ≈ 17.466. In other words, we obtain metastability for L > L′s: We have

two linearly stable solutions (a uniform one and a non-uniform one of large norm) that

are “separated” by a linearly unstable non-uniform solution of smaller norm. Moreover,

for L ∈ (L′s, L
′
m), the uniform solution has lower energy than the linearly stable non-

uniform solution and vice versa for L > L′m.

4.4 The case of the convective Cahn-Hilliard equation

4.4.1 Double-interface solutions of the convective Cahn-Hilliard
equation for ū = 0

In this section we consider how the introduction of the driving force affects the solutions

of the Cahn-Hilliard equation, namely, we consider equation (2.28) with D 6= 0. We

mainly consider the domain size L = 50 and use the driving force D as the control

parameter.

We first consider the case of zero mean concentration, ū = 0. Fig. 4.9(a) shows the

dependence of the norm ‖δu0‖ on the driving force D for L = 50. We can see that

the norm monotonically decreases as D increases. The inset shows a zoom at smaller

values of D, and we can observe that there is a relatively sharp change of the behaviour

at a value of D between 1 and 1.5 – for D smaller than this value the graph is concave

down, whereas for larger values of D the graph is concave up. This actually can be

associated with the fact that for D >
√

2, there fails to exist a kink solution connecting

two values ūb and ūa when x → ±∞, as was discussed in Chapter 3 (here ūb < ūa).

Therefore, for D >
√

2, the limit cycles that correspond to periodic solutions are not
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Figure 4.9: (a) The bifurcation diagram of the one-droplet (n = 1) solutions of the convective
Cahn-Hilliard equation (2.28) when ū = 0 and L = 50 showing the dependence of the
norm ‖δu0‖ on the driving force D. The inset gives a zoom at smaller values of D. The red
dotted line corresponds to D =

√
2. Panel (b) shows the same result but on a log-log scale.

The red dashed line has the slope −1 on a log-log scale and confirms that ‖δu0‖ ∝ D−1 as D
increases. Panel (c) shows the dependence of ‖δu0‖D=0−‖δu0‖ on D on a log-log scale. The
red dashed line has the slope 2 on a log-log scale and confirms that ‖δu0‖D=0 − ‖δu0‖ ∝ D2

as D approaches zero. Panel (d) shows the dependence of the flux C0 on the driving force D.
The inset gives a zoom at smaller values of D. Panel (e) shows the same data as in panel (d)
but on a log-log scale. The red dashed and the blue dashed lines have the slopes 1 and −1,
respectively, on a log-log scale, which confirms that C0 ∝ D as D → 0 and C0 ∝ D−1 as
D →∞.
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actually limit cycles that exist in the vicinity of a heteroclinic loop connecting (ūb, 0, 0)

to (ūa, 0, 0) and (ūa, 0, 0) to (ūb, 0, 0) (as is the case for D <
√

2), but correspond to

a different type of solutions. To better understand the behaviour for larger and smaller

values of D, we additionally present panels (b) and (c). Panel (b) of Fig. 4.9 shows the

dependence of ‖δu0‖ on the driving force D on a log-log scale. The red dashed line

in this panel has the slope −1 on a log-log scale, which indicates that the norm ‖δu0‖
approaches zero as D−1 as D increases. This is consistent with the fact that u0 scales as

D−1 asD increases, as was shown before. Panel (c) of Fig. 4.9 shows the dependence of

‖δu0‖D=0−‖δu0‖ on the driving force D on a log-log scale. The red dashed line in this

panel has the slope 2 on a log-log scale, which indicates that ‖δu0‖D=0 − ‖δu0‖ ∝ D2

as D → 0. We note that the velocity v of the computed solutions turns out to be zero

(up to a numerical noise), and, therefore, we do not show the corresponding diagram

here. This means that for the zero mean concentration the travelling-wave solutions

are in fact steady-state solutions. However, we know that in the limit D → ∞, we

approach the Kuramoto-Sivashinsky equation, which has a chaotic stable attractor on a

sufficiently large domain, see Collet et al. [23, 24], Goodman [49], Hyman et al. [57],

Jolly et al. [61], Il’yashenko [59], Kevrekidis et al. [63], Otto [85], Papageorgiou and

Smyrlis [86], Smyrlis and Papageorgiou [97]. We therefore do not expect the computed

travelling waves to be stable for sufficiently large values of D. Panel (d) of Fig. 4.9

shows the dependence of the flux C0 on D. It can be observed that the flux starts from

zero at D = 0, then increases monotonically before achieving a maximum value at

D ≈ 0.7. After that, it decreases monotonically to zero and has a sharp change at

D ≈ 1.2, after which the graph becomes concave up. Panel (c) of Fig. 4.9 shows the

same dependence of the flux C0 on D but presents it on a log-log scale. The red dashed

and the blue dashed lines in this panel have the slopes 1 and −1, respectively. These

lines reveal that the flux goes to zero as D when D → 0, and it goes to zero as D−1

when D →∞.

A confirmation that the qualitative change in the behaviour happens in the vicinity of

D =
√

2 is given in Fig. 4.10 that shows the same bifurcation diagram as in Fig. 4.9(a)

but for L = 200. We can observe that now the transition to a different type of solu-

tions becomes sharper. To additionally verify that for D >
√

2, we obtain a different

type of solutions, we performed continuation over L for several fixed values of D. The

results are given in Fig. 4.11. Panel (a) of this figure corresponds to D = 0.8, and it

can be observed that the primary bifurcation is supercritical and the norm ‖δu0‖ ap-

proaches a constant value for increasing values of L, in agreement with the fact that
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Figure 4.10: The bifurcation diagram of the one-droplet (n = 1) solutions of the convective
Cahn-Hilliard equation (2.28) when ū = 0 and L = 200 showing the dependence of the norm
‖δu0‖ on the driving force D. The inset gives a zoom at smaller values of D. The red dotted
line corresponds to D =

√
2.

for D <
√

2 there should exist heteroclinic loops connecting (ūb, 0, 0) to (ūa, 0, 0) and

(ūa, 0, 0) to (ūb, 0, 0) and corresponding to one-droplet solutions. Interestingly, there

exists another branch of solutions shown by a solid red curve. As D increases, these

two branches approach each other and reconnect at some value ofD betweenD = 0.825

(see Fig. 4.11(b)) and D = 0.83 (see Fig. 4.11(c)). We also note that there apparently

exist further branches of solutions and several more reconnection events happen, as we

can see a qualitative change in the shapes between panels (b) and (c). However, here

we do not investigate this further. In fact, Zaks et al. [123] have already noticed and

discussed this in their work. In Fig. 4.11(d) that corresponds to D = 1.5, we can ob-

serve that the branch that extends to large values of L does not approach a constant

value anymore. Instead, we observe that the norm ‖δu0‖ is a monotonically decreasing

function of L. This is in agreement with the fact that for D >
√

2 the solutions do

not anymore correspond to limit cycles in the vicinity of a heteroclinic loop. Instead,

we obtain a different type of solutions – one-hollow solutions (or one-hole solutions

or negative solitary waves, see, for example, the terminology in Chang and Demekhin

[21]) with oscillations on the left side of the hollow, as shown in Fig. 4.12 for D = 1.5
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Figure 4.11: (a) The bifurcation diagrams of solutions of the convective Cahn-Hilliard equa-
tion (2.28) when ū = 0 and (a) D = 0.8, (b) D = 0.825, (c) D = 0.83 and (d) D = 1.5,
showing the dependence of the norm ‖δu0‖ on the domain size L. The red circle corresponds
to the solution shown in Fig. 4.12.
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Figure 4.12: The solution profile of the convective Cahn-Hilliard equation (2.28) when ū =
0, L = 800 and D = 1.5.
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Figure 4.13: One-droplet (n = 1) solution profiles u0(x) of the convective Cahn-Hilliard
equation (2.28) when ū = 0 and L = 50 and v = 0 for different values of the driving force D,
as is given in the legend.

and L = 800. As L increases, the width of the hollow remains approximately constant,

resulting in the fact that the norm ‖δu0‖ monotonically decreases.

Fig. 4.13 shows travelling-wave solution profiles u0(x) when ū = 0 and L = 50 for

different values of the driving force, D = 0.1, 0.5, 1, 2, 3 and 100. For smaller values of

D, the solution profile has a droplet shape (as was the case for D = 0). As D increases,

we can see that the amplitude of u0(x) decreases and the droplet shape is deformed.

First, there appears a ridge on top of the right-hand side of the droplet followed by a

depression in the cavity. As D is increased, the ridge and the depression become more

pronounced and there appear more visible oscillations. The appearance of such oscilla-

tions can be understood by the linear stability analysis of the homogeneous solutions in

space given in Chapter 3, see Section 3.5.2 in particular. In that Chapter, it was shown

that the droplet amplitude should scale approximately as
√

1−D/
√

2 for D <
√

2,

(since only for D <
√

2 we find that there exist kink solutions, which should give the

left side of the droplet, and these solutions are given by the tanh formula). We also

found there that when D >
√

2/3, the spatial linear stability analysis of the homoge-

neous solution u0 ≡
√

1−D/
√

2 results in a pair of complex conjugate eigenvalues,

λ = λR ± iλI with positive real part λR. The period of these oscillations is 2π/λI .

The oscillations decay exponentially at the rate eλRx as x→ −∞. Similarly, the spatial
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linear stability analysis of the homogeneous solution u0 ≡ −
√

1−D/
√

2 results in a

pair of complex conjugate eigenvalues, λ = −λR ± iλI , i.e., for u0 ≡ −1 the period

of the oscillations is the same as for u0 ≡
√

1−D/
√

2, but these oscillations decay

exponentially as x → ∞ (not as x → −∞). For D >
√

2, we do not expect to see

true droplet solutions, and, indeed, we see that the solutions presented in Fig. 4.13 for

D >
√

2 do not have the form of a droplet.

4.4.2 Double-interface solutions of the convective Cahn-Hilliard
equation for ū = 0.4, 0.55 and 0.6

In this section, we continue to analyse droplet solutions of the convective Cahn-Hilliard

equation (2.28) with D 6= 0. As before, we will use both D and L as the control

paramters, and we consider three different mean concentrations, ū = 0.4, 0.55 and 0.6,

as we did for the standard Cahn-Hilliard equation. We remind that the flat solution

u = ū is linearly unstable when L > Lc = 2π/kc, kc =
√

1− 3ū2, and for |ū| > 1/
√

3

the flat solution u = ū is linearly stable for any value of L. We find that for ū = 0.4 and

0.55, Lc = 8.7 and 20.66, respectively, and for ū = 0.6, the flat solution is linearly stable

for any value of L. Moreover, we found in Section 4.3.2 that for D = 0 the primary

bifurcation changes from supercritical to subcritical at ū = ū∗ = 1/
√

5. This value

should change as D changes. This is indeed the case, as will be seen in our numerical

results presented below, and the exact value at which this changeover happens can be

found by the weakly nonlinear analysis presented in Section 4.5.1

First, let us consider the case ū = 0.4, where the primary bifurcation is supercritical for

D = 0 (when L is used as the control parameter). Fig. 4.14(a) shows the dependence

of the norm ‖δu0‖ on the driving force D for different values of the domain size L as

is indicated in the legend. We can see that for all the considered values of L, the norm

‖δu0‖ is a monotonically decreasing function of the driving force D. Moreover, at a

fixed small value of D, the norm ‖δu0‖ monotonically increases as the domain size L

increases, whereas for a fixed large value of D, ‖δu0‖ monotonically decreased as L

increases. Fig. 4.14(b) shows the same results as in Fig. 4.14(a) but on a log-log scale.

The red dotted line in this figure has the slope −1 on a log-log scale, which confirms

that the norm tends to zero as D−1 as D → ∞. The corresponding dependence of the

wave velocity v on the driving force D is shown in Fig. 4.14(c). The dotted line (best
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Figure 4.14: (a) The bifurcation diagram of the one-droplet (n = 1) solutions of the convec-
tive Cahn-Hilliard equation (2.28) for the case ū = 0.4 for various values of the domain size
L, as is indicated in the legend. (a,b) Shown is the dependence of the norm ‖δu0‖ on the driv-
ing force D. The inset in panel (a) gives a zoom at smaller values of D. Panel (b) shows the
same results as in panel (a) but on a log-log scale. The red dotted line has the slope −1 on a
log-log scale and confirms that ‖δu0‖ ∝ D−1 as D → ∞ for all the values of L. (c,d) Shown
is the dependence of wave velocity v on the driving force D. The inset in panel (c) gives a
zoom at smaller values of D. The dotted line is the phase velocity v = 0.4D as obtained from
linear stability analysis. Panel (d) shows the same results as in panel (c) but on a log-log scale.
The red dotted line has the slope 1 on a log-log scale and confirms that v‖ ∝ D as D → ∞
for all the values of L.

visible in the inset of Fig. 4.14(c)) is the phase velocity v = 0.4D as obtained from

linear stability analysis (see Section 3.2). It can be seen that this phase velocity line

forms an upper bound for the other curves. We can see that the velocity is positive for

all L for ū = 0.4 when D > 0. Fig. 4.14(d) shows the same results as in Fig. 4.14(c)

but on a log-log scale. The red dotted line in this figure has the slope 1 on a log-log

scale, and it confirms that we find v ∝ D for large driving force D. We know that when

ū = 0 the velocity was equal to zero for all values of D. However, when the mean

concentration ū is positive, the velocity v is positive for positive values of D.
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Figure 4.15: Panels (a) and (b) show the bifurcation diagrams of the one-droplet (n = 1)
solutions of the convective Cahn-Hilliard equation (2.28) for the case ū = 0.4 for various
values of the driving force D, as is indicated in the legend. Panel (a) shows the dependence
of the norm ‖δu0‖ on the domain size L, and panel (b) shows the dependence of the wave
velocity on the domain size L.
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Figure 4.16: One-droplet (n = 1) solution profiles u0(x) of the convective Cahn-Hilliard
equation (2.28) when ū = 0.4 and (a) L = 17.5, (b) L = 25, (c) L = 50, (d) L = 100 for
different values of the driving force D, as is given in the legends.
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In Fig. 4.15(a), the dependence of the norm ‖δu0‖ on the domain size, L, is shown when

ū = 0.4 for various values of the driving force, as is indicated in the legend. We can

observe that all the branches of spatially non-uniform solutions bifurcate supercritically

from the homogeneous branch at L = Lc. This is consistent with the weakly nonlinear

analysis presented in Section 4.5.1, where it is found that for ū < 1/
√

5 ≈ 0.45, the

primary bifurcation is supercritical for any value of the driving force. We can also

observe that for small values of D, the norm increases monotonically and tends to a

constant as L increases. As D increases, the norm becomes a non-monotonic function

of L but still tends to a constant as L increases (see, for example, the line for D =

0.8). For even larger values of D this behaviour seems to change – the norm first

monotonically increases, then it may be characterised by a few oscillations, and after

that it monotonically decreases. In Fig. 4.15(b), the dependence of the wave velocity on

the domain size L is shown for various values of the driving force, as is indicated in the

legend. We can see that in all the cases, the velocity is positive and is a monotonically

decreasing function of the domain size. Fig. 4.16 shows solution profiles u0(x) when

ū = 0.4 and (a) L = 17.5, (b) L = 25, (c) L = 50, (d) L = 100 for various values of

D, as is indicated in the legend. As for the case of ū = 0, we can see that for smaller

values of D, the solution profile has a droplet shape. As D increases, the solution

becomes flatter and the droplet shape is deformed, namely, there appears a ridge on top

of the right-hand side of the droplet. Also, for larger values of L, the ridge is followed

by a cavity in the depression. For larger values of D, the ridge first becomes more

pronounced and then decreases in the amplitude and there appear additional visible

oscillations of amplitude that decays upstream. As for the case ū = 0, the appearance

of such oscillations can be understood by the spatial linear stability analysis given in

Section 3.4. Also, it can be observed that for any value of D, the width of the droplet

increases asD increases and the cavity narrows down. In fact, as discussed in Chapter 3,

true droplet solutions exist only forD <
√

2, since only for these values ofD there exist

kink solutions, which give the left side of the droplet. Strictly speaking, the solution

profiles for D >
√

2 should be classified rather as anti-pulse (hollow) solutions than

droplet solutions.

Next, we consider the case ū = 0.55, where the primary bifurcation is subcritical for

D = 0 (when L is used as the control parameter). Fig. 4.17(a) shows the dependence

of the norm ‖δu0‖ on the driving force D for different values of the domain size L, as

is given in the legend. We note that for L < Lc the branches start at D = 0, then have

saddle-node bifurcations at some positive values of D, and then return to D = 0. As L

increases, the saddle-node bifurcation shifts to the left. For L = Lc, the branch starts
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at D = 0, then has one saddle-node bifurcation at a positive value of D. However, it

does not go back to D = 0. Instead, the branch terminates at the horizontal axis, where

‖δu0‖ = 0, at some positive value of the driving force, D = Dc ≈ 1.3. For L > Lc, the

branches start atD = 0, but are characterised by two saddle-node bifurcations. After the

second saddle-node bifurcation, the branch continues to infinity. For sufficiently large

L, both saddle-node bifurcations annihilate each other, as will be discussed in more

detail later. In fact, the value Dc is precisely the value at which the primary bifurcation

changes from subcritical to supercritical when the domain size L is used as the control

parameter, and it can be found exactly by the weakly nonlinear analysis presented in

Section 4.5.1 and is given by the formula

Dc = ±
√
−540ū4 + 288ū2 − 36, (4.41)

which for ū = 0.55 gives Dc ≈ ±1.3064.

Fig. 4.17(b) shows the dependence of the wave velocity v on the driving force D when

ū = 0.55 for different values of the domain sizeL, as is given in the legend. The velocity

is positive for all positive values of D. Also, we can see in Fig. 4.17(b) that for L < Lc

the branches start at D = 0, monotonically increase with D, then have one saddle-node

bifurcations at some positive values of D, then return to D = 0. For L = Lc, the branch

starts atD = 0, then has one saddle-node bifurcation at a positive value ofD. However,

it does not return to D = 0 as all the curves for L < Lc do. Instead, it ends in a special

bifurcation atD = Dc ≈ 1.3. Note that this bifurcation is not visible in a linear stability

analysis but has to be described with weakly nonlinear methods. The branch terminates

at v = 0.55Dc (phase velocity). For L > Lc, the branches start at D = 0, however,

they are characterised by two saddle-node bifurcations. After the second saddle-node

bifurcation, the branches continue to infinity approaching the line v = 0.55D at large

values of D.

In Fig. 4.18(a), the dependence of the norm ‖δu0‖ on the domain size L is shown for

ū = 0.55 and for various values of the driving force D, as is indicated in the legend.

We can observe that the primary bifurcation is subcritical for D . 1.3 while it is su-

percritical for D & 1.3. This is consistent with the weakly nonlinear analysis presented

in Section 4.5.1. When D . 1.3, there is only one saddle-node bifurcation. On the

other hand, when D & 1.3, there are two saddle-node bifurcation – the branch bifur-

cates supercritically from the uniform solution, then turns back at the first saddle-node
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Figure 4.17: Panels (a) and (b) show the bifurcation diagrams of the one-droplet (n = 1)
solutions of the convective Cahn-Hilliard equation (2.28) for the case ū = 0.55 for various
values of the domain size L, as is indicated in the legend. Panel (a) shows the dependence
of the norm ‖δu0‖ on the driving force D, and panel (b) shows the dependence of the wave
velocity on the driving force D.
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Figure 4.18: Panels (a) and (b) show the bifurcation diagrams of the one-droplet (n = 1)
solutions of the convective Cahn-Hilliard equation (2.28) for the case ū = 0.55 for various
values of the driving force D, as is indicated in the legend. Panel (a) shows the dependence
of the norm ‖δu0‖ on the domain size L, and panel (b) shows the dependence of the wave
velocity on the domain size L.

bifurcation, and then turns again at the second saddle-node bifurcation and continues

off to infinity. This is consistent with the results presented in Fig. 4.17(a), which show

that for moderately large values of L that are greater than Lc there exist three different

solutions for a certain range of the driving force D. For all D, at large L the norms

‖δu0‖ approach constant values. Fig. 4.18(b) shows the corresponding dependence of

the wave velocity on the domain size L for various values of the driving force D. We

can see that the velocity is positive for all D. Also, we can see that when the driving

force D increases the velocity increases. In addition, we observe that for all D, at large

L the velocity approaches a constant value.



Chapter 4. Numerical computation of single- and double-interface solutions 80

0 0.2 0.4 0.6 0.8 1
x/L

-1.5

-1

-0.5

0

0.5

u 0-u

0.1
0.5
1
1.35 (Ds)
1
0.5
0.1

D

(a)

0 0.2 0.4 0.6 0.8 1
x/L

-1.5

-1

-0.5

0

0.5

u 0-u

0.1
1.75
1.96 (Ds1)
1.75
1.62 (Ds2)
1.75
3

D

(b)

Figure 4.19: One-droplet (n = 1) solution profiles u0(x) of the convective Cahn-Hilliard
equation (2.28) when ū = 0.55 and (a) L = 17.5 and (b) L = 25 for different values of the
driving force D, as is given in the legends.
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Figure 4.20: One-droplet (n = 1) solution profiles u0(x) of the convective Cahn-Hilliard
equation (2.28) when ū = 0.55 and (a) D = 1 and (b) D = 1.5 for different values of the
domain size L, as is given in the legends.

Fig. 4.19 shows solution profiles u0(x) when ū = 0.55 and (a) L = 17.5 and (b)

L = 25 for various values of D, as is indicated in the legend. In Fig. 4.19(a), we can

see two different solutions at the same values of D before the saddle-node bifurcation

that occurs at Ds ≈ 1.35. For D = 0.1, 0.5 and 1, the solutions with larger amplitudes

belong to the upper part of the branch shown in panel (a) of Fig. 4.17 and are stable,

whereas solutions with smaller amplitudes belong to the lower part of this branch and

are unstable. In Fig. 4.19(b), we can see three different solutions at the same values of

D between the two saddle-node bifurcations that occur at Ds1 ≈ 1.96 and Ds2 ≈ 1.62.

For D = 1.75 the solutions with larger and the smaller amplitudes belong to the upper

and the lower parts of the branch shown in panel (b) of Fig. 4.17 and are stable, whereas

the solution with the intermediate value of the amplitude belongs to the middle part

of the branch and is unstable. As D increases further, we can see that the solution

becomes flatter, and the ridge that was pronounced for smaller values of D decreases in
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amplitude. We also remind here that the solution profiles that we observe for D >
√

2

and sufficiently large L should be classified as rather anti-pulse (hollow) solutions than

droplet solutions.

Fig. 4.20 shows the travelling-wave solution profiles u0(x) when ū = 0.55 and (a)

D = 1 and (b) D = 1.5. In Fig. 4.20(a), we can see two different solutions at the same

values of L between the cutoff value Lc ≈ 20.66 and the the saddle-node bifurcation

that occurs at Ls ≈ 15.3. For L = 17.5 and 20.5, the solutions with larger amplitudes

belong to the upper part of the branch shown in panel (a) of Fig. 4.18 and are stable,

whereas solutions with smaller amplitudes belong to the lower part of this branch and

are unstable. In Fig. 4.20(b), we can see three different solutions at the same value

of L = 21 between the two saddle-node bifurcations that occur at Ls1 ≈ 19.00 and

Ls2 ≈ 22.5. The solutions with larger and the smaller amplitudes belong to the upper

and the lower parts of the branch shown in panel (b) of Fig. 4.18 and are stable, whereas

the solution with the intermediate value of the amplitude belongs to the middle part of

the branch and is unstable.

Finally, we consider the case ū = 0.6, where there is no primary bifurcation and the

uniform solution is stable (when L is used as the control parameter). Fig. 4.21(a) shows

the dependence of the norm ‖δu0‖ on the driving force D for different values of the

domain size L as is indicated in the legend. We can see that for all the considered

values of L, the branches start at D = 0, then have one saddle-node bifurcation at

some positive values of D, and then the branches return to D = 0. The corresponding

dependence of the wave velocity v on the driving force D is shown in Fig. 4.21(b).

The inset shows a zoom at smaller values of D. The dotted line is the phase velocity

v = 0.6D as obtained from linear stability analysis (see Section 3.2). It can be seen that

this phase velocity line forms an upper bound for the other curves. We can see that the

velocity is positive for all L for ū = 0.6 when D > 0. For all the considered values of

L, the branches start at D = 0 where v = 0, then have one saddle-node bifurcation at

some positive value of D, and then the branches returns to D = 0 where v = 0.

In Fig. 4.22(a), the dependence of the norm ‖δu0‖ on the domain sizeL is shown for ū =

0.6 and for various values of the driving force D, as is indicated in the legend. There

are no primary bifurcations for all the values of D, and we always find a saddle-node

bifurcation. We can see that for smaller values of D, the upper parts of the branches

monotonically increase as L increases, whereas for larger value of D, the upper parts of
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Figure 4.21: Panels (a) and (b) show the bifurcation diagrams of the one-droplet (n = 1)
solutions of the convective Cahn-Hilliard equation (2.28) for the case ū = 0.6 for various val-
ues of the domain size L, as is indicated in the legend. Panel (a) shows the dependence of the
norm ‖δu0‖ on the driving force D, and panel (b) shows the dependence of the wave velocity
on the driving force D.The dotted line is v = 0.6D. The inset gives a zoom at smaller values
of D.
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Figure 4.22: Panels (a) and (b) show the bifurcation diagrams of the one-droplet (n = 1)
solutions of the convective Cahn-Hilliard equation (2.28) for the case ū = 0.6 for various
values of the driving force D, as is indicated in the legend. Panel (a) shows the dependence
of the norm ‖δu0‖ on the domain size L, and panel (b) shows the dependence of the wave
velocity on the domain size L.

the branches first monotonically increase and then monotonically decrease. Fig. 4.22(b)

shows the corresponding dependence of the wave velocity on the driving force D. The

velocity is positive for all the values of D. As expected, all the branches have saddle-

nodes. The upper parts of the branches monotonically increase as L increases, whereas

the lower parts of the branches monotonically decrease as L increases.

Fig. 4.23(a) shows solution profiles u0(x) when ū = 0.6 and L = 25 for various values

of D, as is indicated in the legend. In this case, we have two different solutions at same

value of D before the saddle-node bifurcation that occurs at Ds ≈ 1.31. In particular,

for D = 0.1, 0.5 and 1 the solutions with larger amplitudes belong to the upper part of

the branch for L = 25 shown in the panel (a) of Fig. 4.21 (these solutions are stable),
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Figure 4.23: One-droplet (n = 1) solution profiles u0(x) of the convective Cahn-Hilliard
equation (2.28) when ū = 0.6 and (a) L = 25 and for various values of the driving force D,
as is given in the legend, and (b) D = 0.5 and for different values of the domain size L, as is
given in the legend.

whereas solutions with smaller amplitudes belong to the lower part of this branch (these

solutions are unstable).

Fig. 4.23(b) shows solution profiles u0(x) when ū = 0.6 and D = 0.5 for various

values of L, as is indicated in the legend. In this case, we have two different solutions

at same value of L after the value of saddle-node bifurcation, Ls ≈ 13.04. For L = 50,

100 and 200 the solutions with larger amplitudes belong to the upper part of the branch

for D = 0.5 shown in panel (a) of Fig. 4.22 (these solutions are stable), whereas the

solutions with smaller amplitudes belong to the lower part of this branch (these solutions

are unstable). We can see that the solutions of the upper part of the branch have droplet

shapes and for larger values of L are characterised by a ridge on top of the right-hand

side of the droplet that is followed by a depression in the cavity, whereas the solutions

of the lower part of the branch become flatter as L increases.

From panel (a) of Fig. 4.17, it is difficult to infer where exactly the saddle-nodes appear.

To understand this process better, we follow in Fig. 4.24(a) the loci of saddle-node

bifurcations of Fig. 4.17 (i.e., for ū = 0.55) in the (D,L)-plane. The horizontal dotted

line indicates the cutoff period Lc = 2π/kc for the linear stability of uniform solution

ū = 0.55. We see that for L < Lc there is only one saddle-node bifurcation. On the

other hand, for L > Lc, there are two saddle-node bifurcations. For sufficiently large

L, the two saddle-node bifurcations annihilate each other. Fig. 4.24(b) shows the loci

of saddle-node bifurcations for ū = 0.6 in the (D,L) plane. We see that for all the

values of L ≥ Lsn where Lsn is the locus of the saddle-node bifurcation at D = 0 (cf.
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Figure 4.24: The loci of saddle-node bifurcations on the one-droplet (n = 1) solution
branches in the (D,L)-plane at (a) ū = 0.55 and (b) ū = 0.6. The horizontal dotted line
in panel (a) indicates the cutoff period Lc = 2π/kc for the linear stability of the uniform
solution ū = 0.55.

Fig. 4.7), there is one saddle-node bifurcation. For ū = 0.4 there are no saddle-node

bifurcations, so we cannot plot the loci of saddle-node bifurcation.

4.4.3 Single-interface solutions of the convective Cahn-Hilliard
equation

In Chapter 3, see in particular Section 3.5.1, it was discussed that for the standard

Cahn-Hilliard equations there exist single interface solutions given by the tanh profiles,

namely,

u0(x) = ± tanh

(
x√
2

)
. (4.42)

In this Section, we are interested in analysing how the introduction of the driving force

affects these solutions. We will be interested in analysing both kink and anti-kink solu-

tions, which correspond to the positive/negative signs in (4.42).

4.4.3.1 Kink solutions

For kink solutions, we in fact know an analytical formula given in Section 2.4, namely,

such solutions are given by

u0(x) = ūa tanh

(
ūa√

2
x

)
, (4.43)
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Figure 4.25: (a) The bifurcation diagram of the kink solutions of the convective Cahn-
Hilliard equation (2.28) when L = 100 showing the dependence of the norm ‖δu0‖ on the
driving force D. The inset gives a zoom at smaller values of D. The red dashed line in the
inset shows the dependence of the norm of the exact analytical solution (4.43) on D. (b) Kink
solution profiles u0(x) of the convective Cahn-Hilliard equation (2.28) when L = 200 for
different values of the driving force D, as is given in the legend.
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Figure 4.26: (a) The bifurcation diagram of the kink/anti-kink solutions of the convective
Cahn-Hilliard equation (2.28) when D = 2 showing the dependence of the norm ‖δu0‖ on
the domain size L. (b) The solution profiles u0(x) of the convective Cahn-Hilliard equation
(2.28) for D = 2 for different values of the domain size L, as is given in the legend, corre-
sponding to points 1–5 in panel (a).
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where ūa =
√

1−D/
√

2, and for which v = 0. Moreover, the linear stability anal-

ysis presented in Chapter 3 implies that for each value of D ∈ [0,
√

2) there exist a

unique kink solution in some neighbourhood of the solution (4.43). These observations

are supported by our numerical results. We use the numerical procedure described in

Section 4.2.2. The results of our numerical calculations are shown in Fig. 4.25. The

calculations are performed on the domain of size L = 100, and the truncated analytical

solution (4.42) is used as the starting solution. Fig. 4.25(a) shows the dependence of the

norm ‖δu0‖ on the driving force D. We can see that the norm decays monotonically as

D increases and has a sharp change in the behaviour at D ≈
√

2. Notice that the true

analytical solution (4.43) exists only for D ∈ [0,
√

2), and the norm of this solution on

the domain of size L is shown by the red dashed line and is given by the formula√
ū2
a −
√

2 ūa
L

tanh

(
ūaL√

2

)
. (4.44)

(Of course, it converges to ūa =
√

1−D/
√

2 as L → ∞.) We can notice that the

branch corresponding to the numerical solutions is very close to the branch correspond-

ing to the analytical solutions, but does not terminate at D =
√

2 but instead is con-

nected to a branch of a solutions of a different type. This is due to the finite size of the

domain. The larger the domain size is, the closer to each other the branches are. Note

also the similarity of the numerically computed branch presented in this figure to the

branches presented in Figs. 4.9(a) and 4.10. Fig. 4.25(b) shows selected solutions at

different values of D, and is given in the legend.

A confirmation that the numerically computed solutions for D >
√

2 do not correspond

to kink solutions is given in Fig. 4.26. In this figure, we take the solution computed in

Fig. 4.25 corresponding to D = 2 and perform a continuation starting from it in the

domain size L. Fig. 4.25(a) shows the branch of the computed solutions and the inset

shows the zoom onto the region of the values of L close to 100. It can be seen that

the branch of the solutions first monotonically decreases and has a saddle node at L ≈
100.85 after which it continues to monotonically decrease until the point L ≈ 100.53

where ‖δu0‖ ≈ 0. We note that the linear stability analysis discussed in Chapter 3

predicts that for ū = 0 there is a bifurcation of the uniform solution solution at L = 2π,

and a periodic solution emerges. We note that 100.53 turns out to be a value that is

close to an integer multiple of the period of this periodic solution, namely 100.53 ≈
32π. This means that when the domain size equals to 32π, the uniform solution has a

bifurcation, and a periodic solution of the period approximately equal to 2π emerges
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Figure 4.27: (a) The bifurcation diagram of the anti-kink solutions of the standard Cahn-
Hilliard equation (2.28), when D = 0, for C0 = 0 and v = 0, showing the dependence of
the norm ‖δu0‖ on the domain size L. (b) Anti-kink solution profiles u0(x) of the standard
Cahn-Hilliard equation (2.28), when D = 0, for different values of the domain size L, as is
given in the legend.

(so there are 16 waves in the domain of size 32π). We note, however, that for the

computation of kink solutions, we do not impose periodic boundary conditions, but use

conditions prescribing the solution values at the left and right end points and requiring

that u′0 and u′′0 vanish at the end points. Presumably, for these conditions there still

exists a solution that is close to the 2π-periodic solution. It turns out that our numerical

continuation code is able to pass onto a branch of such solutions, and this happens at

L ≈ 32π. After this point, the branch monotonically increases, reaches a saddle node at

L ≈ 100.1 and continues to monotonically increase. The enumerated red dots from 1 to

6 in Fig. 4.26(a) correspond to L = 100.5, 100.8, 100.3, 100.3, 101, 108, respectively,

and the corresponding solution profiles are shown in Fig. 4.26(b). It can be seen that

up to the point where the branch starts to monotonically increase the solutions resemble

kink solutions but have a widening front and a decreasing amplitude. After this point,

the nature of the solutions changes and the value at the left end-point of the interval

becomes larger than the value at the right end point. Additionally, we observe that right

after this point, the solutions are characterised by oscillations, and, to be precise, we

observe 16 local maxima or minima, which is in agreement with our earlier observation.

For larger values of L, the solutions converge to an anti-kink solution with an additional

oscillation in-between.
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4.4.3.2 Anti-kink solutions

To compute anti-kink solutions, it is possible to start from a half of a small-amplitude

cosine wave of the cutoff wavelength, as is explained in Section 4.2.2. Fig. 4.27 shows

the results of such a calculation for D = 0 (although this value of D corresponds to

the standard Cahn-Hilliard equation, we use this value of D to start our discussion

of numerically computed anti-kink solutions). The domain size is used as the control

parameter and the left-end and the right-end values ūa and ūb, respectively, are adapted

in the calculation. The velocity v and the flux C0 are fixed at zero. Fig. 4.27(a) shows

the bifurcation diagram for the norm ‖δu0‖ of the solution, which, as expected, is a

monotonically increasing function of L, and resembles the bifurcation diagram given

in Fig. 4.1. The solution profiles for the different values of L shown in Fig. 4.27(b)

converge to the tanh profile (4.42), as expected, with ūa ≈ 1 and ūb ≈ −1.

Then, we select a solution for L = 200 and perform a continuation in the driving force

D, keeping ūa and ūb fixed and using the velocity v and the flux C0 as the additional

continuation parameters. The results are shown in Fig. 4.28. Panel (a) of this figure

shows the dependence of the norm ‖δu0‖ on the driving force D. We can see that it is a

monotonically increasing function of D that approaches a constant value. We note that

the velocity v turns out to be zero in this calculation (up to a numerical noise), and we do

not show such a graph here. Fig. 4.28(b) shows two solution profiles forD = 0.8 (black

solid line) andD = 5 (red dashed line). We note that the linear stability theory presented

in Section 3.4 implies that forD < 25/2/33/2 ≈ 1.0887 all the eigenvalues for both ūa =

1 and ūb = −1 are real. Therefore, the solution should approach the constants ūa and ūb
exponentially and monotonically as eλax and eλbx, for x→ ∓∞, respectively, where λa
is the smallest of the positive eigenvalues of ūa and λb = −λa is the smallest in absolute

value of the negative eigenvalues of ūb. A confirmation of this is given in Fig. 4.29(a)

showing |u0(x)− ūa| over x/L on a log-log scale for D = 0.8. It turns out that for this

value of D the smallest of the positive eigenvalues of ūa is 0.4437, and the red dashed

line in Fig. 4.29(a) corresponds to Ae0.4437x (for a suitable value of A). We can observe

a perfect agreement between the slopes of the computed solution and the theoretical

prediction. For D > 25/2/33/2, the solution should approach the constants ūa and ūb in

an oscillatory manner with the amplitude of oscillations decaying exponentially. More

precisely the solutions should behave as e(Reλa)x cos(Imλax + φa) when x → −∞,

where λa is one of the two complex conjugate eigenvalues for ūa with a positive real
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Figure 4.28: (a) The bifurcation diagram of the anti-kink solutions of the convective Cahn-
Hilliard equation (2.28) when L = 200 for ūa = 1 and ūb = −1 showing the dependence of
the norm ‖δu0‖ on the driving force D. (b) Anti-kink solution profiles u0(x) of the convec-
tive Cahn-Hilliard equation (2.28) when L = 200, ūa = 1 and ūb = −1 for D = 0.8 (black
solid line) and D = 5 (red dashed line).
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Figure 4.29: (a) Shown is |u0(x) − ūa| on a log-log scale, where u0(x) is the anti-kink
solution of the convective Cahn-Hilliard equation (2.28) for L = 200 and D = 0.8
(Fig. 4.28(b), black solid line). The red dashed line shows Aeλa x (for a suitable value of A),
where λa ≈ 0.4437 is the theoretically predicted eigenvalue. (b) Shown is |u0(x) − ūa|
on a log-log scale, where u0(x) is the anti-kink solution of the convective Cahn-Hilliard
equation (2.28) for L = 200 and D = 5 (Fig. 4.28(b), red dashed line). The red dashed
line shows Ae(Reλa)x| cos((Imλa)x + φa)| (for suitable values of A and φa), where
λa ≈ 1.0473 + 1.1359 i is the theoretically predicted eigenvalue.
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Figure 4.30: (a) The bifurcation diagram of the anti-kink solutions of the convective Cahn-
Hilliard equation (2.28) when L = 200, D = 5 and ūb = −1 showing the dependence of
the norm ‖δu0‖ on ūa. (b) Anti-kink solution profiles u0(x) of the convective Cahn-Hilliard
equation (2.28) when L = 200, D = 5 and ūb = −1 for different values of ūa, as is given in
the legend.
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Figure 4.31: (a) The bifurcation diagram of the anti-kink solutions of the convective Cahn-
Hilliard equation (2.28) when L = 200, D = 5 and ūa = 1 showing the dependence of
the norm ‖δu0‖ on ūb. (b) Anti-kink solution profiles u0(x) of the convective Cahn-Hilliard
equation (2.28) when L = 200, D = 5 and ūa = 1 for different values of ūb, as is given in the
legend.
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part and φa is an appropriate phase shift, and as e(Reλb)x cos(Imλbx + φb) when x →
∞, where λb = −λa is one of the two complex conjugate eigenvalues for ūb with a

negative real part and φb is an appropriate phase shift. A confirmation of this is given in

Fig. 4.29(b) showing |u0(x) − ūa| over x/L on a log-log scale for D = 5. It turns out

that for this value of D the complex conjugate eigenvalues of ūa are 1.0473± 1.1359 i,

and red dashed line in Fig. 4.29(b) corresponds to Ae1.0473x| cos(1.1359x + φa)| (for

suitable values of A and φa). We can observe a perfect agreement between both the rate

of the decay and the periods of the oscillations of computed solution and the theoretical

prediction.

Finally, we remind that, unlike for kink solutions, for anti-kink solutions there is a

freedom in changing the values of ūa and ūb. A confirmation of this is given in Figs. 4.30

and 4.31. Fig. 4.30 corresponds to a continuation in ūa with ūb being fixed at −1 when

L = 200 and D = 5. Panel (a) of this figure shows the dependence of the norm ‖δu0‖
on ūa, and panel (b) shows several anti-kink solution profiles for different value of ūa,

as is given in the legend. Fig. 4.31 corresponds to a continuation in ūb with ūa being

fixed at 1 when L = 200 and D = 5. Panel (a) of this figure shows the dependence

of the norm ‖δu0‖ on ūa, and panel (b) shows several anti-kink solution profiles for

different value of ūb, as is given in the legend.

4.5 Weakly nonlinear analysis

4.5.1 Weakly nonlinear analysis for the general convective Cahn-
Hilliard-type equation with scaling 1

The aim of this section is to analyse the primary bifurcation for the convective Cahn-

Hilliard equation when the domain size is used as the control parameter and all the other

parameters are fixed. In particular, we wish to derive an amplitude equation for the first

linearly unstable mode in the vicinity of the bifurcation point. In order to obtain such an

equation, we perform a weakly non-linear analysis. To extend our analysis, we consider

the general convective Cahn-Hilliard-type equation that in the frame moving at constant

velocity v in the x-direction has the form

ut = vux −D[χ(u)]x +

[
Q(u)

(
δF (u)

δu

)
x

]
x

, (4.45)
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where Dχ(u) is the driving force term with D being the driving force strength (for the

standard Cahn-Hilliard equation is χ(u) = u2/2), Q(u) is the mobility (that will be

assumed to be non-negative for any u) and F [u] is the free energy functional given by

F [u] =

∫
ϕ(u, ux)dx, (4.46)

with ϕ(u, ux) denoting the free energy density and given by

ϕ(u, ux) = f(u) +
1

2
u2
x. (4.47)

Here f(u) is the local free energy that for the standard Cahn-Hilliard equation is

f(u) =
1

4
u4 − 1

2
u2. (4.48)

Note that
δF [u]

δu
= f ′(u)− uxx, (4.49)

which for the standard Cahn-Hilliard equation becomes

δF [u]

δu
= u3 − u2 − uxx. (4.50)

Next, let us consider a uniform solution ū and add a small perturbation to it, i.e., we

write u(x, t) = ū + w(x, t) and substitute it into equation (4.45). Then we obtain the

following equation for w(x, t):

wt = vwx −Dχ′(ū+ w)wx + [Q(ū+ w)(f ′(ū+ w)− wxx)x]x. (4.51)

Assuming that w = εw̃, where |ε| � 1, we obtain the following linearised equation:

w̃t = vw̃x −Dχ′(ū)w̃x + [Q(ū)(f ′(ū)− w̃xx)x]x. (4.52)

By substituting w̃ = eβt+ikx in equation (4.52), we obtain the following dispersion

relation:

β = ivk − iDχ′(ū)k −Q(ū)f ′′(ū)k2 −Q(ū)k4. (4.53)

The real and imaginary parts of this dispersion relation are

Re(β) = −Q(ū)f ′′(ū)k2 −Q(ū)k4, (4.54)

Im(β) = vk −Dχ′(ū)k. (4.55)
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The condition Im(β) = 0 gives v = Dχ′(ū), which is the velocity of the moving frame

in which small-amplitude sinusoidal solutions are stationary. The condition Re(β) = 0

determines the cutoff wavenumber, or, equivalently, the cutoff domain size correspond-

ing to the primary bifurcation. Indeed, assuming that Q(ū) 6= 0 and f ′′(ū) < 0, we

find that the cutoff wavenumber is kc =
√
−f ′′(ū) (i.e., the cutoff domain size is

Lc = 2π/kc), namely, the following holds:

• if k > kc (or L < Lc), then β < 0 and the corresponding mode is linearly stable,

• if k < kc (or L > Lc), then β > 0 and the corresponding mode is linearly

unstable.

Substituting v = Dχ′(ū) in equation (4.51), we obtain

wt = Dχ′(ū)wx −Dχ′(ū+ w)wx + [Q(ū+ w)(f ′(ū+ w)− wxx)x]x.

= Dχ′(ū)wx −Dχ′(ū+ w)wx −Q′(ū+ w)wxwxxx

−Q(ū+ w)wxxxx +Q′(ū+ w)f ′′(ū+ w)w2
x

+Q(ū+ w)f ′′′(ū+ w)w2
x +Q(ū+ w)f ′′(ū+ w)wxx. (4.56)

We consider equation (4.56) on the domain x ∈ [0, L]. For convenience, we introduce

the variable ξ so that x = (L/2π)ξ and we also rescale time t = (L/2π)τ (i.e., ξ =

(2π/L)x and τ = (2π/L)t). Then the domain size is fixed, ξ ∈ [0, 2π], and we obtain

the following equation

wτ = Dχ′(ū)wξ −Dχ′(ū+ w)wξ − ν3Q′(ū+ w)wξwξξ

−ν3Q(ū+ w)wξξξξ + νQ′(ū+ w)f ′′(ū+ w)w2
ξ

+νQ(ū+ w)f ′′′(ū+ w)w2
ξ + νQ(ū+ w)f ′′(ū+ w)wξξ, (4.57)

where ν = 2π/L. Now instead of varying the domain size, we vary the parameter

ν. The value of the parameter ν that corresponds to the primary bifurcation is νc =

2π/Lc = kc =
√
−f ′′(ū) (we consider a value of ū for which f ′′(ū) < 0). Assuming

that w ∝ esτ+inξ for n = 0,±1,±2, . . . , we obtain the following dispersion relation

s(n) = −ν3Q(ū)n4 − νQ(ū)f ′′(ū)n2. (4.58)

Let us assume that ν = νc − ε2, where ε is a small parameter, i.e., we are just beyond

the cutoff value where the uniform solution u = ū becomes linearly unstable. Then we
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find that for n = ±2, ±3, . . . , s(n) < 0 (if ε is sufficiently small), whereas for n = 1

we obtain

s(1) = −2f ′′(ū)Q(ū)ε2 +O(ε4), (4.59)

which is positive for sufficiently small ε. Thus, we find that the growth rate of the

unstable mode is O(ε2), which suggests that it is appropriate to rescale the time as

τ = T/ε2. Next, we use a regular asymptotic expansion for w:

w = εw1 + ε2w2 + ε3w3 + · · · , (4.60)

where wk = wk(ξ, T ), k = 1, 2, . . . .

Substituting expansion (4.60) in (4.57) and using Taylor series expansions of χ′, Q, Q′,

f ′′ and f ′′′ at ū, we obtain at order O(ε):

Q(ū)ν3
c (w1ξξξξ + w1ξξ) = 0, (4.61)

that simplifies to

w1ξξ + w1ξξξξ = 0. (4.62)

The general solution of equation (4.62) is

w1 = c0 + c1ξ + A1e
iξ + A∗1e

−iξ, (4.63)

where c0 and c1 are real functions of T , A1 is a complex-valued function of T and A∗1
denotes the complex conjugate of A1. Since w1 has to be a periodic function of ξ, then

in fact

c1 = 0. (4.64)

Also, we have ∫ 2π

0

w1 dξ = 0, (4.65)

which implies that

c0 = 0. (4.66)

Therefore,

w1 = A1e
iξ + A∗1e

−iξ, (4.67)

where A1 = A1(T ) is the amplitude of the unstable mode eiξ.
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At order O(ε2), we obtain:

Q(ū)ν3
c (w2ξξξξ + w2ξξ) = [−2νcQ(ū)f ′′′(u0)− iDχ′′(ū)]A2

1e
2iξ

+ [−2νcQ(ū)f ′′′(ū) + iDχ′′(ū)]A∗21 e
−2iξ, (4.68)

which after division by Q(ū)ν3
c becomes

w2ξξξξ + w2ξξ =

[
−2f ′′′(ū)

ν2
c

− iDχ′′(ū)

Q(u0)ν3
c

]
A2

1e
2iξ

+

[
−2f ′′′(ū)

ν2
c

+
iDχ′′(ū)

Q(ū)ν3
c

]
A∗21 e

−2iξ. (4.69)

The general solution of equation (4.69) is

w2 = w2h + w2p, (4.70)

where w2h is a solution of the homogeneous equation, i.e., the solution of

w2hξξ + w2hξξξξ = 0, (4.71)

which is given by

w2h = A2e
iξ + A∗2e

−iξ, (4.72)

and w2p is a particular solution of equation (4.69). We look for a particular solution in

the form

w2p = Be2iξ +B∗e−2iξ. (4.73)

Substituting this ansatz in the left-hand side of (4.69), we find

w2pξξ + w2pξξξξ = 12Be2iξ + 12B∗e−2iξ. (4.74)

By comparing the right-hand sides of equations (4.74) and (4.69), we obtain

B =

[
−f

′′′(ū)

6ν2
c

− iDχ′′(ū)

12Q(ū)ν3
c

]
A2

1, (4.75)

so, the particular solution is

w2p =

[
−f

′′′(ū)

6ν2
c

− iDχ′′(ū)

12Q(ū)ν3
c

]
A2

1e
2iξ +

[
−f

′′′(ū)

6ν2
c

+
iDχ′′(ū)

12Q(ū)ν3
c

]
A∗21 e

−2iξ, (4.76)
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Adding w2h and w2p together, we obtain

w2 = w2h + w2p = A2e
iξ + A∗2e

−iξ +

[
−f

′′′(ū)

6ν2
c

− iDχ′′(ū)

12Q(ū)ν3
c

]
A2

1e
2iξ

+

[
−f

′′′(ū)

6ν2
c

+
iDχ′′(ū)

12Q(ū)ν3
c

]
A∗21 e

−2iξ (4.77)

At order O(ε3), we find:

Q(ū)ν3
c (w3ξξξξ + w3ξξ) =

[
A1T − 2ν2

cQ(ū)A1 +

(
1

2
νcQ(ū)f ′′′′(ū)− 1

6

Q(ū)(f ′′′(ū))2

νc

+
1

12

D2(χ′′(ū))2

ν3
cQ(ū)

+
1

2
iDχ′′′(ū)− 1

4
i
Dχ′′(ū)f ′′′(ū)

ν2
c

−1

2
i
Dχ′′(ū)Q′(ū)

Q(ū)

)
A2

1A
∗
1

]
eiξ + c.c.+ ..., (4.78)

where c.c. denotes the complex conjugate of the first term. Also, on the right-hand,

there are terms proportional to e±2iξ and e±3iξ, which are lengthy and, therefore, are not

shown.

We note that eiξ and e−iξ span the null space of the linear operator on the left-hand side

of this equation (when this operator is considered on the space of periodic functions

of zero mean). Then, the Fredholm alternative solvability condition requires that the

right-hand side of this equation should be orthogonal to eiξ and e−iξ (with respect to

the usual inner product in the L2-space of complex-valued functions). This implies that

the coefficient of eiξ (or, equivalently, of e−iξ) should vanish. We, therefore, obtain the

following amplitude (or Stuart-Landau) equation:

dA1

dT
= 2ν2

cQ(ū)A1 −
(

1

2
νcQ(ū)f ′′′′(ū)− 1

6

Q(ū)(f ′′′(ū))2

νc
+

1

12

D2(χ′′(ū))2

ν3
cQ(ū)

+
1

2
iDχ′′′(ū)− 1

4
i
Dχ′′(ū)f ′′′(ū)

ν2
c

− 1

2
i
Dχ′′(ū)Q′(ū)

Q(ū)

)
A2

1A
∗
1. (4.79)

For brevity, let us denote the term in the round brackets in the latter equation by h =

h(ū, D). Then, we have

dA1

dT
= 2ν2

cQ(ū)A1 − h|A1|2A1. (4.80)

and also
dA∗1
dT

= 2ν2
cQ(ū)A∗1 − h∗|A1|2A∗1. (4.81)
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Multiplying (4.80) by A∗1 and adding (4.81) multiplied by A1, we find

A∗1
dA1

dT
+ A1

dA∗1
dT

= A∗1[2ν2
cQ(ū)A1 − h|A1|2A1]

+ A1[2ν2
cQ(ū)A∗1 − h∗|A1|2A∗1]

= 4ν2
cQ(ū)|A1|2 − 2 Re(h)|A1|4. (4.82)

Since A∗1(dA1/dT ) + A1(dA∗1/dT ) = d(A1A
∗
1)/dT = d(|A1|2)/dT , we obtain

d(|A1|2)

dT
=
(
4ν2

cQ(ū)− 2 Re(h)|A1|2
)
|A1|2, (4.83)

or, equivalently,
d(|A1|)
dT

=
(
2ν2

cQ(ū)− Re(h)|A1|2
)
|A1|. (4.84)

When Re(h) < 0, this ODE for |A1| has only one fixed point, namely, |A1| = 0.

Therefore, for Re(h) < 0 there do not exist small-amplitude sinusoidal solutions be-

yond the primary bifurcation point. This means that the primary bifurcation is sub-

critical in this case. On the other hand, when Re(h) > 0, ODE (4.84) for |A1| has

two fixed points, namely, an unstable fixed point |A1| = 0 and a stable fixed point

|A1| = (2ν2
cQ(ū)/Re(h))1/2. Therefore, for Re(h) > 0 there exists a small-amplitude

sinusoidal solutions beyond the primary bifurcation point whose amplitude is given by

|A1| =

√
2ν2

cQ(ū)

Re(h)
. (4.85)

This means that the primary bifurcation is supercritical when Re(h) > 0. Therefore,

we find that the change from supercritical to subcritical bifurcation happens when

Re(h) = 0, (4.86)

which for given ū determines the driving force Dc at which the change in the primary

bifurcation happens:

Dc = ±

√
2ν2

cQ
2(ū)(f ′′′(ū))2

(χ′′(ū))2
− 6ν4

cQ
2(ū)f ′′′′(ū)

(χ′′(ū))2
. (4.87)

We see that the primary bifurcation can change its nature as D varies only when the

expression under the square root is positive, which implies the following condition:

(f ′′′(ū))2 > 3ν2
c f
′′′′(ū) ≡ −3f ′′(ū)f ′′′′(ū). (4.88)
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(We remind that for the existence of the primary bifurcation the condition f ′′(ū) < 0

must also be satisfied.)

Let us now analyse the small-amplitude sinusoidal solution in more detail. Substituting

(4.85) in (4.80), we obtain

dA1

dT
= −2ν2

cQ(ū)Im(h)

Re(h)
iA1. (4.89)

This together with (4.85) implies that A1 for the small-amplitude sinusoidal solution is

given by

A1 =

√
2ν2

cQ(ū)

Re(h)
exp

[
−i
(

2ν2
cQ(ū)Im(h)

Re(h)
T + ϕ0

)]
, (4.90)

where ϕ0 is a constant. Thus, we find that

w = εA1e
iξ + c.c. +O(ε2)

= ε

√
2ν2

cQ(ū)

Re(h)
exp

[
i

(
ξ − 2ν2

cQ(ū)Im(h)

Re(h)
T

)
− iϕ0

]
+ c.c. +O(ε2). (4.91)

Using that ξ = (2π/L)x and T = ε2τ = ε2(2π/L)t, we find the following expression

for w in the original variables x and t:

w = ε

√
2ν2

cQ(ū)

Re(h)
exp

[
2πi

L

(
x− ε2 2ν2

cQ(ū)Im(h)

Re(h)
t

)
− iϕ0

]
+ c.c. +O(ε2). (4.92)

Thus, the speed of the small-amplitude sinusoidal wave in the frame moving at velocity

Dχ′(ū) is

c = ε2
2ν2

cQ(ū)Im(h)

Re(h)
. (4.93)

Since ε =
√
νc − ν =

√
2π(L−1

c − L−1) ∝
√
L− Lc (when L is near Lc), we obtain

that the wave amplitude scales as
√
L− Lc and the wave speed in the frame moving at

velocity Dχ′(ū) scales as L− Lc.

For the standard convective Cahn-Hilliard equation with scaling 1, equation (2.28), we

have

Q(ū) ≡ 1, h = 3νc − 6
ū2

νc
+

D2

12ν3
c

− 3iDū

2ν2
c

, (4.94)

where νc =
√

1− 3ū2. Therefore, the amplitude equation takes the form

dA1

dT
= 2ν2

cA1 −
(

3νc − 6
ū2

νc
+

D2

12ν3
c

− 3iDū

2ν2
c

)
A2

1A
∗
1, (4.95)
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and the condition for the change from supercritical to subcritical primary bifurcation

becomes

Re(h) = 3νc − 6
ū2

νc
+

D2

12ν3
c

= 0, (4.96)

which for given ū determines the values Dc of the driving force at which the change in

the nature of the primary bifurcation happens:

Dc = ±
√
−540ū4 + 288ū2 − 36. (4.97)

For example, for ū = 0.55, we find

Dc ≈ ±1.3064, (4.98)

which is consistent with the numerical results presented in Section 4.4.2. Also, note

that the expression under the square root in (4.97) is positive only when 1/
√

5 < |ū| <
1/
√

3, i.e., the driving force can switch the bifurcation from supercritical to subcriti-

cal only when 1/
√

5 < |ū| < 1/
√

3. If |ū| < 1/
√

5, the primary bifurcation will be

supercritical for any value of the driving force. We also remind that if |ū| > 1/
√

3,

there is no primary bifurcation and the uniform solution is linearly stable for any value

of the driving force. The graph showing the dependence of |Dc| on |ū| is shown in

Fig. 4.32. For the parameter values in the region below this graph, the primary bifur-

cation is subcritical. It can be easily found that the graph achieves its maximum point

at |ū| = 2/
√

15, and the maximum value is |Dmax
c | = 2

√
3/5 ≈ 1.55. Note that for

a fixed non-zero value of the driving force so that |D| < |Dmax
c |, there are two values

of |ū| where the primary bifurcation first changes from supercritical to subcritical (at

the smaller value of |ū|) and then back from subcritical to supercritical (at the larger

value of |ū|). Note that as D → 0, the smaller and the larger values of |u| at which the

nature of the primary bifurcation changes tend to 1/
√

5 and 1/
√

3, respectively. Since

the value 1/
√

3 corresponds to the point where the primary bifurcation disappears, we

conclude that for the standard Cahn-Hilliard equation, when D = 0, there is only one

value of |u| were the nature of the bifurcation changes, namely, 1/
√

5 ≈ 0.45. This is

consistent with the numerical results presented in Section 4.3.2.
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Figure 4.32: The solid line shows dependence of Dc (the magnitude of the driving force at
which the primary bifurcation changes from subcritical to supercritical) on the magnitude of
the mean concentration for the standard convective Cahn-Hilliard equation with scaling 1,
equation (2.28). The region to the right of the vertical dashed line is the region where the ho-
mogeneous solution is linearly stable. For the region below/above the solid line, the primary
bifurcation is subcritical/supercritical.

4.5.2 Weakly nonlinear analysis for the general convective Cahn-
Hilliard-type equation with scaling 2

In this section, we again analyse the primary bifurcation for the general convective

Cahn-Hilliard-type equation, but in the alternative scaling 2. The equation has the same

form as equation (4.45), but now it is given on the domain x ∈ [0, 2π], and we assume

that ϕ additionally depends on a parameter a in the following way:

ϕ(u, ux, a) = f(u, a) +
1

2
u2
x. (4.99)

By adding a small perturbation to a uniform solution ū, i.e. u(x, t) = ū + w(x, t), we

obtain the following equation for w(x, t):

wt = vwx −Dχ′(ū+ w)wx + [Q(ū+ w)(fu(ū+ w, a)− wxx)x]x. (4.100)

It can be easily found that the dispersion relation for this equation has the form

β(k) = ivk − iDχ′(ū)k −Q(ū)fuu(ū, a)k2 −Q(ū)k4, (4.101)
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from which we find that the velocity of the small-amplitude sinusoidal waves is

v = Dχ′(ū) (4.102)

and the primary bifurcation point ac is a solution of the equation

fuu(ū, ac) = −1. (4.103)

Substituting v = Dχ′(ū) in equation (4.100), we obtain

wt = Dχ′(ū)wx −Dχ′(ū+ w)wx −Q′(ū+ w)wxwxxx −Q(ū+ w)wxxxx

+Q′(ū+ w)fuu(ū+ w, a)w2
x +Q(ū+ w)fuuu(ū+ w, a)w2

x

+Q(ū+ w)fuu(ū+ w, a)wxx. (4.104)

Next, we assume that fuu(ū, a) is a monotonically decreasing function of a in the neigh-

bourhood of a = ac, and we write a = ac − ε2. We additionally rescale t = T/ε2 and

use the asymptotic expansion:

w = εw1 + ε2w2 + ε3w3 + · · · , (4.105)

where wk = wk(x, T ), k = 1, 2, . . . . Proceeding in the same way as in the previous

section, we find that the solution of the equation at order O(ε) is

w1 = A1e
ix + A∗1e

−ix, (4.106)

where A1 = A1(T ) where A1 is the amplitude of the unstable mode eix. The solution at

order O(ε2) is

w2 = A2e
ix + A∗2e

−ix +

[
−fuuu(ū, ac)

6
− iDχ′′(ū)

12Q(ū)

]
A2

1e
2ix

+

[
−fuuu(ū, ac)

6
+
iDχ′′(ū)

12Q(ū)

]
A∗21 e

−2ix. (4.107)
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Finally, the solvability condition at order O(ε3) results in the following amplitude equa-

tion for A1:

dA1

dT
= fuuu(ū, ac)Q(ū)A1−

(
1

2
Q(ū)fuuuu(ū, ac)−

1

6
Q(ū)f 2

uuu(ū, ac)+
1

12

D2(χ′′(ū))2

Q(ū)

+
1

2
iDχ′′′(ū)− 1

4
iDχ′′(ū)fuuu(ū, ac)−

1

2
i
Dχ′′(ū)Q′(ū)

Q(ū)

)
A2

1A
∗
1. (4.108)

Denoting the term in the round brackets by h = h(ū, D), we can rewrite this equation as

dA1

dT
= fuuu(ū, ac)Q(ū)A1 − h|A1|2A1. (4.109)

Then, in the same way as in the previous section, we can find that

d(|A1|)
dT

= (fuuu(ū, ac)Q(ū)− Re(h)|A1|2)|A1|. (4.110)

Assuming that fuuu(ū, ac) > 0 and Q(ū) > 0, we find that if Re(h) < 0, the only

fixed point of this ODE is |A1| = 0, i.e., the primary bifurcation is subcritical, and if

Re(h) > 0, there is another fixed point of this ODE,

|A1| =

√
fuuu(ū, ac)Q(ū)

Re(h)
, (4.111)

and the primary bifurcation is supercritical.

As in the previous section, for the supercritical case, we can find that the sinusoidal

travelling-wave solution is given by

A1 =

√
fuuu(ū, ac)Q(ū)

Re(h)
exp

[
−i
(
fuuu(ū, ac)Im(h)

Re(h)
T + ϕ0

)]
, (4.112)

and, therefore, the solution of (4.100) is given by

w = εA1e
ix + c.c. +O(ε2)

= ε

√
fuuu(ū, ac)Q(ū)

Re(h)
exp

[
i

(
x− ε2fuuu(ū, ac)Q(ū)Im(h)

Re(h)
t

)
− iϕ0

]
+ c.c. +O(ε2). (4.113)
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Figure 4.33: The solid line shows dependence of Dc (the magnitude of the driving force at
which the primary bifurcation changes from subcritical to supercritical) on the magnitude of
the mean concentration for the standard convective Cahn-Hilliard equation with scaling 2,
equation (2.48). For the region above/below the solid line, the primary bifurcation is subcriti-
cal/supercritical.

Thus, the speed of the small-amplitude sinusoidal wave is given by

c = ε2
fuuu(ū, ac)Q(ū)Im(h)

Re(h)
= (a− ac)

fuuu(ū, ac)Q(ū)Im(h)

Re(h)
(4.114)

For the standard convective Cahn-Hilliard equation with scaling 2, equation (2.48), we

have

Q(u) ≡ 1, χ(u) =
u2

2
, f(u, a) =

1

4
u4 − a

2
u2. (4.115)

Then the condition for the primary bifurcation (4.103) implies:

ac = 1 + 3ū2. (4.116)

Then we find that

h = 3− 6ū2 +
D2

12
− 3iDū

2
, (4.117)

and the condition for the switch from the supercritical to subcritical bifurcation be-

comes:

Re(h) = 3− 6ū2 +
D2

12
= 0, (4.118)
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which determines the value Dc of the driving force at which the change in the nature of

the primary bifurcation occurs:

|Dc| =
√

72ū2 − 36. (4.119)

The graph showing the dependence of |Dc| on |ū| is given if Fig. 4.33. For the parameter

values to the left of this graph, the primary bifurcation is subcritical, whereas to the right

of this graph, the primary bifurcation is supercritical. In particular, for the standard

Cahn-Hilliard equation, when D = 0, we obtain that the bifurcation is subcritical when

|ū| < 1/
√

2 and supercritical otherwise.

Finally, we note that weakly nonlinear analyses similar to the one presented here have

been conducted in the literature for a number of systems, for example, for modelling

the dynamics of self-oscillating fields (see Kuramoto [70]), for rupture of free films (see

Erneux and Davis [37] and also Thiele et al. [111], where a diffuse interface model cou-

pled to hydrodynamics was used and the transition between subcritical and supercritical

bifurcations was determined as a border between nucleation- and instability-dominated

dewetting), for liquid films on inclined heated plates (see Thiele and Knobloch [106],

Thiele et al. [109]), in the study of sliding drops (see Thiele et al. [110], where a bifur-

cation similar to that shown in Fig. 4.17(a) atD = Dc was also obtained; it is also worth

mentioning that Thiele et al. [110] showed that the convective Cahn-Hilliard equation

can be derived from a thin-film equation in a certain limit).



Chapter 5

Linear stability of inhomogeneous
solutions

5.1 Introduction

In this chapter, we study in detail the linear stability properties of the various possi-

ble spatially periodic traveling solutions of the convective Cahn-Hilliard equation. The

formulation of the linear stability problem for inhomogeneous solutions is done in Sec-

tion 5.2. The linear stability properties are studied by implementing the continuation of

both inhomogeneous solutions and their eigenvalues in the driving forceD, utilising the

continuation and bifurcation software Auto07p [31]. The details of the computational

procedure are explained in Section 5.3. We note that we actually implement three differ-

ent numerical procedures, one for D = 0 (which allows for one additional integration

of the equation for stationary solutions), see Section 5.3.1, one for D 6= 0 allowing for

the computation of real eigenvalues, see Section 5.3.2.1, and one more for D 6= 0 al-

lowing for the computation of complex eigenvalues, see Section 5.3.2.2. In addition, to

obtain a more complete picture, we construct branches of time-periodic solutions. The

numerical procedure for the computation of the branches of time-periodic solutions is

explained in Section 5.3.2.3. In Section 5.4, we present results for the linear stability of

two-droplet solutions and of the solutions of the side branches bifurcating from the 2-

mode primary branches (i.e., of broken-symmetry solutions). Moreover, we identify the

coarsening modes of the two-droplet solutions (i.e., translational and volume modes).

All this information is used to construct detailed stability diagrams in the (D,L)- and

(D, ū)-planes.

105



Chapter 5. Linear stability of inhomogeneous solutions 106

5.2 Linear stability problem for stationary and travel-

ling periodic solutions on finite and infinite domains

In this section, we formulate the linear stability problem for stationary (when the speed

is zero) and travelling (when the speed is non-zero) solutions of the convective Cahn-

Hilliard equation (2.28) with respect to small random perturbations in the finite and

infinite domains. Equation (2.28), written in the frame moving at velocity v is (see also

Section 4.2.1, equation (4.2))

ut − vux = −
[
Du2

2
+ (u− u3 + uxx)x

]
x

. (5.1)

As explained in Section 4.2.1, a stationary (when v = 0) or travelling (when v 6= 0)

solution u0(x) is a steady solution of this equation, i.e., a solution of

− vu′0 = −
[
Du2

0

2
+ (u0 − u3

0 + u′′0)′
]′
. (5.2)

We assume that u0(x) is a periodic function of period L.

To analyse the linear stability of the solution u0(x), we need to linearise the convective

Cahn-Hilliard equation (5.1) about this solution. To do this, we write

u = u0(x) + u1(x, t), (5.3)

where u1(x, t) is a small perturbation to the solution u0(x). If u1 grows (in some ap-

propriate norm, e.g., in the L2- or L∞-norm) as t increases, then u0(x) is unstable,

otherwise u0(x) is stable.

We substitute (5.3) in (5.1) and obtain the following linearised equation for u1, ignoring

the terms of order o(|u1|):

u1t =
[
vu1 −Du0u1 − ([1− 3u2

0]u1 + u1xx)x
]
x
, (5.4)

or, equivalently,

u1t = (−Du′0 + 6u′20 + 6u0u
′′
0)u1 + (v −Du0 + 12u0u

′
0)u1x

+(3u2
0 − 1)u1xx − u1xxxx. (5.5)
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This is a fourth-order linear differential equation which can be written as

u1t = L[u1], (5.6)

where L is a linear differential operator with non-constant coefficients (see, e.g., Egorov

and Shubin [34], Evans [38], Gustafsson et al. [52]) given by

L[f ] = [(v −Du0)f − ([1− 3u2
0]f + fxx)x]x

= (−Du′0 + 6u′20 + 6u0u
′′
0)f + (v −Du0 + 12u0u

′
0)fx

+(3u2
0 − 1)fxx − fxxxx. (5.7)

To analyse the linear stability, we write u1 = estη(x) and substitute it in equation (5.6).

The left-hand side becomes

u1t = sestη(x), (5.8)

while the right-hand side becomes

L[u1] = L[estη(x)] = estL[η(x)]. (5.9)

As a result, we obtain

s η(x) = L[η(x)], (5.10)

which is an eigenvalue problem for the operator L. So, s should belong to the spectrum

of L, denoted by σ(L). If part of the spectrum has positive real part then |ũ| grows as

t increases, i.e. the solution u0(x) is (spectrally) unstable. On the other hand, if all the

spectrum has negative real part then |ũ| → 0 as t increases, i.e. the solution u0(x) is

(spectrally) stable, see, e.g., Sandstede [92]. See Fig. 5.1 for a schematic representation

of these two cases.

If a linear differential operatorL is defined on a finite periodic domain, Lc, (which in our

case should be an integer multiple of L, i.e. Lc = nL for some n ∈ N), then the spec-

trum of such an operator typically consists of the point spectrum, i.e., of isolated eigen-

values of finite multiplicities. Numerically, the spectrum can be computed by adopting a

Fourier spectral method (see, for example, Boyd [11] and Trefethen [112]), where func-

tions are represented by truncated Fourier series, e.g., η(x) =
∑N

k=−N η̂ke
ikx. Then, the

eigenvalue problem (5.10) can be converted into a matrix eigenvalue problem

ŝ η̂ = L̂ η̂, (5.11)
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Figure 5.1: Two possible spectra of operator L shown as a solid (blue) curve in the complex
plane. The left figure corresponds to the linearly stable case, the right figure corresponds to
the linearly unstable case.

where η̂ is a vector consisting of the Fourier coefficients of η(x), L̂ is a matrix rep-

resentation of the operator L, and ŝ is an eigenvalue of this matrix, which is a numer-

ical approximation of an eigenvalue of the operator L. Any spurious eigenvalues are

eliminated and the accuracy of the computed spectrum is verified by recomputing the

spectrum for the increasing values of N .

On an infinite domain, the point spectrum of the operator L is empty and thus it con-

sists only of the essential spectrum (see, for example, Sandstede [92]). To analyse the

essential spectrum of the operator L on an infinite domain, we write

η(x) = eikxg(x), (5.12)

where k ∈ [−π/L, π/L] is the so-called Bloch wavenumber (see, for example, Mielke [79],

Tseluiko et al. [113]), and g(x) is a periodic function of the same period as u0(x). We

then find

s eikxg(x) = L[eikxg(x)]. (5.13)

After multiplying by e−ikx, we obtain

s g(x) = e−ikxL[eikxg(x)]. (5.14)

In equation (5.14), let us denote the right-hand side by Lk[g(x)]. So

Lk[g(x)] = e−ikxL[eikxg(x)]. (5.15)
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For the operator L given by equation (5.7), we obtain

Lk[g] = (−Du′0 + 6u′20 + 6u0u
′′
0)g + (v −Du0 + 12u0u

′
0)e−ikx(eikxg)x

+(3u2
0 − 1)e−ikx(eikxg)xx − e−ikx(eikxg)xxxx. (5.16)

Taking into account the fact that

e−ikx∂nx (eikxf(x)) = (∂x + ik)nf(x), (5.17)

for n ∈ N (which can be easily proved by induction), equation (5.16) takes the form

Lk[g] = (−Du′0 + 6u′20 + 6u0u
′′
0)g + (v −Du0 + 12u0u

′
0)(∂x + ik)g

+(3u2
0 − 1)(∂x + ik)2g − (∂x + ik)4g. (5.18)

By the Floquet-Bloch theory, the spectrum of the operator L is given by the union of

the spectra of all the operators Lk, i.e.,

σ(L) =
⋃

k∈[−π
L
, π
L

]

σ(Lk), (5.19)

where σ(Lk) is the spectrum of Lk. Numerically, the spectrum is approximated by

discretising the interval [−π/L, π/L] into a sufficiently large number of points kj ,

j = 1, 2, . . . , M + 1, (for example, we can choose kj = −π/L + 2π(j − 1)/(ML)),

and computing the spectra for each of the operators Lkj , j = 1, 2, . . . , M + 1 by the

Fourier spectral method discussed above (since each of the operators Lkj is defined on

a finite periodic domain of length L). By increasing M and N (i.e., the number of the

Fourier modes), the numerically computed spectrum will converge to σ(L). Numerical

codes for computation of the spectra along the lines discussed above are implemented

in Matlab.
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5.3 Numerical investigation of linear stability of station-

ary and travelling periodic solutions on finite do-

mains by continuation techniques

5.3.1 The case of the standard Cahn-Hilliard equation

In this section, we explain the numerical continuation procedure for computation of

stationary periodic solutions of the standard Cahn-Hilliard equation (2.11) along with

their eigenvalues, which allows to investigate the stability of such solutions. A steady

solution u0 of the standard Cahn-Hilliard equation satisfies

0 = −(u0 − u3
0 + u′′0)′′. (5.20)

Integrating this equation twice with respect to x, we find

0 = −(u0 − u3
0 + u′′0) + C1x+ C0, (5.21)

where C1 and C0 are the constants of integration. Due to periodicity of u0, we find that

C1 must be zero, i.e., we obtain

0 = −(u0 − u3
0 + u′′0) + C0. (5.22)

To investigate the stability of u0, we also need to linearise the equation and solve the

resulting eigenvalue problem given by eqution (5.5) with D = 0, i.e.,

u1t = (6u′20 + 6u0u
′′
0)u1 + 12u0u

′
0u1x + (3u2

0 − 1)u1xx − u1xxxx. (5.23)

By substituting u1 = estη(x) in equation (5.23), we obtain

s η = (6u′20 + 6u0u
′′
0)η + 12u0u

′
0η
′ + (3u2

0 − 1)η′′ − η′′′′, (5.24)

where as before s is the growth rate and η(x) is the eigenfunction.

We solve the second-order equation (5.22) for a steady solution u0 along with the fourth-

order equation (5.24) for the eigenfunction η(x) and the growth rate s by continuation

techniques using Auto07p [31]. We first write the two equations as a system of six first-

order autonomous ordinary differential equations on the interval [0, 1]. So we introduce
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the variables y1 = u0 − ū, y2 = u′0 and obtain from equation (5.22) the following

two-dimensional dynamical system:

ẏ1 = Ly2, (5.25)

ẏ2 = L[(y1 + ū)3 − (y1 + ū) + C0], (5.26)

where L is the physical domain size, and dots denote derivatives with respect to α ≡
x/L. We note that the fields y1(α) and y2(α) correspond to the correctly scaled physical

fields u0(Lα)− ū, u′0(Lα).

Further we introduce y3 = η, y4 = η′, y5 = η′′, y6 = η′′′ and rewrite equation (5.24) as

a four-dimensional dynamical system,

ẏ3 = Ly4, (5.27)

ẏ4 = Ly5, (5.28)

ẏ5 = Ly6, (5.29)

ẏ6 = L
[
− sy3 + (6y2

2 + 6[y1 + ū][(y1 + ū)3 − (y1 + ū) + C0])y3

+12(y1 + ū)y2y4 + (3[y1 + ū]2 − 1)y5

]
. (5.30)

Thus, the dimension of the system described by the variable NDIM in a Auto07p is 6.

The system of the equations is specified in the user-supplied subroutine FUNC. We

use periodic boundary conditions for all the variables yi meaning that the number of

the boundary conditions that is described by the variable NBC is 6. The boundary

conditions are specified in the user-supplied subroutine BCND and take form

yi(0) = yi(1), i = 1, . . . , 6. (5.31)

We also introduce an integral condition for mass conservation of the steady solution,∫ 1

0

y1dα = 0, (5.32)

an integral condition fixing the norm of the eigenfunction,∫ 1

0

y2
3dα = c, (5.33)

where c is a fixed positive constant, and computational pinning to break the translational

symmetry. So the number of the integral conditions that is described by the variable
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NINT is 3.

We remind that the number of the free parameters (i.e., the parameters that are allowed

to vary for the well-posedness of the continuations) is given by the formula

NBC +NINT −NDIM + 1, (5.34)

which for our problem turns out to be 4. So, if we choose one of the parameters as

the principal one, for example, the domain size, L, or the average value of the solution,

ū, then three more parameters must adapt in the continuation. We have only two other

parameters that can adapt, namely, the eigenvalue, s, and the parameter C0. Hence,

one more parameter is missing. This complication comes from the fact that equation

(5.22) corresponds to a Hamiltonian dynamical system. To break this, we introduce an

additional so-called unfolding parameter ε, and rewrite system (5.25), (5.26) as

ẏ1 = Ly2 − ε[(y1 + ū)3 − (y1 + ū) + C0], (5.35)

ẏ2 = L[(y1 + ū)3 − (y1 + ū) + C0]. (5.36)

A continuous family of periodic solutions to this system exists only for ε = 0, and the

solutions then are the same as those of (5.25), (5.26). Therefore, parameter ε can be used

as an additional parameter in the continuation, and it will stay at approximately zero

value during continuation runs. This technique is used, for example, in the Auto07p

tutorial ‘r3b’ [31], Aronson et al. [5] for a conservative system and is explained in

more detail, for example, in Doedel et al. [32], Muñoz-Almaraz et al. [81, 82]. This

techniques has also been used in Auto tutorials by Thiele et al. [107, 108].

5.3.2 The case of the convective Cahn-Hilliard equation

5.3.2.1 Real eigenvalue problem for the convective Cahn-Hilliard equation

In this section, we explain the numerical continuation procedure for computation of sta-

tionary and travelling periodic solutions of the convective Cahn-Hilliard equation (2.28)

along with their eigenvalues, and we will first discuss the real eigenvalues. Integrating

equation (5.2) for stationary and travelling solutions once, we obtain

0 = −
[
Du2

0

2
− (u0 − u3

0 + u′′0)′
]

+ vu0 − C0, (5.37)
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where C0 corresponds to the flux in the co-moving frame. Our goal is to solve this

equation along with the eigenvalue problem (5.10), which can be written as

s η = (−Du′0 + 6u′20 + 6u0u
′′
0)η+ (v−Du0 + 12u0u

′
0)η′+ (3u2

0− 1)η′′− η′′′′, (5.38)

where as before s is the growth rate and η(x) is the eigenfunction. Here, we will assume

that s is real.

To use Auto07p, we first write these equations as an autonomous system of seven first-

order ordinary differential equations on the interval [0, 1]. So we introduce the variables

y1 = u0 − ū, y2 = u′0, y3 = u′′0 and obtain from equation (5.37) the following three-

dimensional dynamical system:

ẏ1 = Ly2, (5.39)

ẏ2 = Ly3, (5.40)

ẏ3 = L[C0 + v(y1 + ū)−D(y1 + ū)2/2− y2 + 3(y1 + ū)2y2], (5.41)

where L is the physical domain size, and dots denote derivatives with respect to α ≡
x/L. Note that, the fields y1(α), y2(α) and y3(α) correspond to the correctly scaled

physical fields u0(Lα)− ū, u′0(Lα) and u′′0(Lα).

Further, we introduce the variables y4 = η, y5 = η′, y6 = η′′, y7 = η′′′ and rewrite

equation (5.38) as a fourth-order dynamical system:

ẏ4 = Ly5 (5.42)

ẏ5 = Ly6 (5.43)

ẏ6 = Ly7 (5.44)

ẏ7 = L
[
− sy4 + (−Dy2 + 6y2

2 + 6[y1 + ū]y3)y4

+(v −D[y1 + ū] + 12[y1 + ū]y2)y5 + (3[y1 + ū]2 − 1)y6

]
. (5.45)

Thus, in total we have NDIM = 7 equations. We use periodic boundary conditions

for all the variables yi:

yi(0) = yi(1), i = 1, . . . , 7, (5.46)
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so that NBC = 7, and an integral condition for mass conservation of u0,∫ 1

0

y1dα = 0, (5.47)

an integral condition fixing the norm of the eigenfunction,∫ 1

0

y2
4dα = c, (5.48)

where c is a positive constant, and computational pinning to break the translational

symmetry, so that NINT = 3.

The number of the free parameters is

NBC +NINT −NDIM + 1 = 4. (5.49)

Thus, when choosing, for example, the driving force, D, as the principal continuation

parameter, we additionally choose the eigenvalue, s, the flux, C0, and the velocity, v, as

the parameters that must adapt during the continuation.

5.3.2.2 Complex eigenvalue problem for the convective Cahn-Hilliard equation

In this section, we will discuss how to compute complex eigenvalues of the convective

Cahn-Hilliard equation by continuation techniques. Let us assume that an eigenvalue s

in (5.38) is a complex number. We write

s = sR + isI , (5.50)

where sR = Re(s) and sI = Im(s). The eigenfunction η then also has real and imagi-

nary parts, ηR and ηI , respectively, i.e.,

η = ηR + iηI . (5.51)

Multiplying (5.50) by (5.51), we obtain

s η = (sRηR − sIηI)︸ ︷︷ ︸
Re(s η)

+i (sRηI + sIηR)︸ ︷︷ ︸
Im(s η)

. (5.52)
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Then, we can easily find that the real part of equation (5.38) is

sRηR − sIηI = (−Du′0 + 6u′20 + 6u0u
′′
0)ηR + (v −Du0 + 12u0u

′
0)η′R

+(3u2
0 − 1)η′′R − η′′′′R , (5.53)

and the imaginary part of equation (5.38) is

sRηI + sIηR = (−Du′0 + 6u′20 + 6u0u
′′
0)ηI + (v −Du0 + 12u0u

′
0)η′I

+(3u2
0 − 1)η′′I − η′′′′I . (5.54)

Now, we have a third-order ordinary differential equation (5.37) for u0 that we have to

solve together with the fourth-order equations (5.53) and (5.54) for ηR and ηI .

To use Auto07p, we rewrite these equations as an autonomous system of eleven first-

order ordinary differential equations on the interval [0, 1]. So we introduce the variables

y1 = u0 − ū, y2 = u′0, y3 = u′′0 and obtain from equation (5.37) the same three-

dimensional dynamical system as in the previous section, i.e., equations (5.39)–(5.41).

Further we introduce the variables y4 = ηR, y5 = η′R, y6 = η′′R, y7 = η′′′R and y8 = ηI ,

y9 = ηI′ , y10 = η′′I , y11 = η′′′I , and rewrite equations (5.53) and (5.54) as

ẏ4 = Ly5 (5.55)

ẏ5 = Ly6 (5.56)

ẏ6 = Ly7 (5.57)

ẏ7 = L
[
− sRy4 + sIy8 + (−Dy2 + 6y2

2 + 6[y1 + ū]y3)y4

+(v −D[y1 + ū] + 12[y1 + ū]y2)y5 + (3[y1 + ū]2 − 1)y6

]
, (5.58)

ẏ8 = Ly9 (5.59)

ẏ9 = Ly10 (5.60)

ẏ10 = Ly11 (5.61)

ẏ11 = L
[
− sRy8 − sIy4 + (−Dy2 + 6y2

2 + 6[y1 + ū]y3)y8

+(v −D[y1 + ū] + 12[y1 + ū]y2)y9 + (3[y1 + ū]2 − 1)y10

]
. (5.62)
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Thus, in total we have NDIM = 11 equations. As before, we use periodic boundary

conditions for all the varialbes yi:

yi(0) = yi(1), i = 1, . . . , 11. (5.63)

Therefore, the number of boundary conditions is NBC = 11. We also use an integral

condition for mass conservation of u0,∫ 1

0

y1dα = 0, (5.64)

computational pinning to break the translational symmetry of u0, and an integral condi-

tion fixing the norm of the eigenfunction,∫ 1

0

(y2
4 + y2

8)dα = c. (5.65)

We note that an eigenfunction with a given norm multiplied by eiϕ is again an eigen-

function with the same norm. To break this invariance, we need to impose one more

condition. Numerically, this can be implemented by imposing computational pinning

for y8. As a result, the number of integral conditions is NINT = 4.

The number of the free parameters is

NBC +NINT −NDIM + 1 = 5. (5.66)

Thus, when choosing, for example, the driving force, D, as the principal continuation

parameter, we additionally choose the real and the imaginary parts of the eigenvalue, sR
and sI , repsectively, the flux, C0, and the velocity, v, as the parameters that must adapt

during the continuation. We also note that for initial guesses for complex eigenvalues,

we often use the Matlab numerical procedure described in Section 5.2.

5.3.2.3 Numerical computation of branches of time-periodic solutions

In this section, we discuss how continuation techniques can be used to compute, in

addition to branches of stationary and travelling periodic solutions, branches of time-

periodic solutions of the convective Cahn-Hilliard equations, see also Lin et al. [75] for

a more generalised discussion, and also Bordyugov and Engel [10], Köpf and Thiele

[67], Lin et al. [76], Pototsky et al. [90, 91] for the discussion of similar computational
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approaches. (We note here that time-periodic solutions do not exist for the standard

Cahn-Hilliard equation, since for such a solution the energy F [u] would also be periodic

in time, which is not possible as it is a Lyapunov functional and should be decaying in

time.) Introducing a generalised moving coordinate x → x − a(t) in equation (2.28),

we obtain

ut = ȧux −Duux − (u− u3 + uxx)xx = 0, (5.67)

where the dot denotes differentiation with respect to time. We assume here that the

speed of the moving frame, ȧ, is not necessarily a constant, but can vary in time. This

will allow us to compute not only stationary and travelling periodic solutions but also

time-periodic solutions. We consider this equation on a periodic domain of length L.

As usual, we impose the condition fixing the mean value of the solution over the spatial

period,
1

L

∫ L

0

u dx = ū. (5.68)

To break the translational symmetry due to periodic boundary conditions, we also im-

pose the following integral constraint:∫ L

0

u sin(nqx) dx = 0, (5.69)

where q = 2π/L and n is an integer.

Next, we represent u as a truncated Fourier series,

u(x, t) = û0(t) +
N∑
k=1

[û2k−1(t) cos(kqx) + û2k(t) sin(kqx)], (5.70)

where ûi’s are the Fourier coefficients of u and N is a sufficiently large integer. Note

that

û0 = ū, û2n = 0, (5.71)

due to conditions (5.68) and (5.69), respectively. Substituting (5.70) in (5.67), we obtain

the following dynamical system for the Fourier coefficients:

dûi
dt

= Ni(û0, . . . , û2N), i = 1, . . . , 2n− 1, 2n+ 1, . . . , 2N, (5.72)

where Ni’s are nonlinear functions of all the Fourier coefficients. Note that in our

numerical implementation, given the Fourier coefficients û0, . . . , û2N , we use the in-

verse fast Fourier transform to obtain a numerical approximation of u and to compute
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the right-hand side of (5.67). After that, we can apply the fast Fourier transform to the

right-hand side of (5.67) to obtainNi(û0, . . . , û2N), i = 1, . . . , 2n−1, 2n+1, . . . , 2N .

Multiplying equation (5.67) by sin(nqx) and integrating over the domain, we find that

the speed, ȧ, should satisfy

ȧ =

∫ L
0

[Duux + (u− u3 + uxx)xx] sin(nqx) dx∫ L
0
ux sin(nqx) dx

. (5.73)

Stationary and travelling periodic solutions of (2.28) correspond to steady-state solu-

tions of (5.72), where the speed is given by (5.73) and is a constant. By using Auto07p

[31] together with FFTW3 package [1, 39] and performing a continuation with respect

to the domain size, L, or the driving force D, or the mean value of the solution, ū, we

can obtain branches of stationary and travelling periodic solutions, which are identical

to the branches computed by the methods discussed in the previous sections. In addition

to branch points that may appear on the solution branches and that correspond to bifur-

cations to side branches, our formulation allows for the detection of Hopf-bifurcation

points where time-periodic solutions bifurcate. By starting from these bifurcation points

and switching branches, we can compute such secondary branches of time-periodic so-

lutions, see, for example, Auto tutorial ‘abc’ [31] for the computation of time-periodic

solutions from Hopf bifurcations. Note that for time-periodic solutions the wave speed

is not a constant anymore, but is a time-periodic function and is fully determined by the

solution through formula (5.73). Having computed a time-periodic solutions, we can

obtain the speed, ȧ, and then we can transform the solution back to the original frame

of reference.

5.4 Linear stability and coarsening of two double-in-

terface (droplet) solutions

In Chapter 4, we discussed numerical computation of single- and double-interface so-

lutions of the standard (D = 0) and convective (D 6= 0) Cahn-Hilliard equations.

However, as discussed in Section 2.3, for the standard Cahn-Hilliard equation, it is

known that the dynamics, after the initial stage of evolution from a homogeneous state

towards a superposition of large-amplitude structures of a typical length scale that is

mainly determined by the initial perturbation and the length scale of the most unstable
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mode, evolves towards large-amplitude structures of larger length scales, i.e., coarsen-

ing takes place. This is due to the fact that the structures of the smaller length scale are

unstable to perturbations of larger length scales, the so-called coarsening modes (see,

e.g., [102]). Thus, the coarsening process can happen in several stages, namely, the

structures that are obtained after the initial stage of evolution coarsen to structures of

larger spatial length scales, which in turn coarsen to structures of even larger spatial

length scales, and so on, until a stable structure of the system size is obtained. This pro-

cess was demonstrated in time-dependent simulations from a random initial condition

in Section 2.3. In the following Sections, we analyse in detail the coarsening of two-

droplet solutions of the standard and convective Cahn-Hilliard equations by performing

the linear stability study of such solutions.

5.4.1 The case of the standard Cahn-Hilliard equation

First, we note that branches of two-droplet solutions (when n = 2) for the standard

Cahn-Hilliard equation can be obtained from the n = 1 branches (that were discussed

in Chapter 4) by multiplying the solution period for the latter branches by n = 2. Our

calculations show, that there are no side branches for the standard Cahn-Hilliard equa-

tion, and, therefore, there is actually no need in recomputing the primary branches. We

only need to analyse the stability of two-droplet solutions. First, we note that zero is al-

ways an eigenvalue of the linearised problem with the eigenfunction given by u′0(x), and

it is associated with the translational invariance of the equation. The emergence of the

various coarsening mechanisms can then be explained by the following consideration

(see also Thiele et al. [102, 104]). Each of the two-droplet solutions can be considered

as a superposition of four fronts (two kink and two anti-kink solutions). Each of these

solutions, when considered individually, has a zero eigenvalue with the eigenfunction

given by the derivative of the solution (due to the translational invariance). When the

fronts are superimposed, the corresponding eigenfunctions are also superimposed (with

small corrections). For a single droplet, the superimposed eigenfunctions result in two

qualitatively different cases: either both fronts are shifted in the same direction (which

results in the overall translation of the droplet) or the fronts are shifted in the oppo-

site directions (which results in the decrease or increase of the volume of the droplet).

Schematic representations are shown in Figs. 5.2(a) and (b). For a pair of droplets on

a periodic domain, only the three (up to the positive or negative sign) possible combi-

nations corresponding to the overall mass conservation should be considered. One of
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Figure 5.2: Shown are symmetry modes for one-droplet solutions. Panel (a) represents the
translational mode and panel (b) represent the volume mode. The solid lines correspond to
the solutions u0(x). The dotted lines correspond to the eigenfunctions u1(x). The dashed
lines correspond to the solution u0(x) superimposed with eigenfunction u1(x) multiplied by a
small coefficient ε, i.e., U(x) = u0(x) + εu1(x). The arrows indicate the directions where the
fronts of the droplets shift after the eigenfunctions are added.
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Figure 5.3: Shown are symmetry modes for two-droplet solutions. Panel (a) represents the
translational mode and panel (b) represent the volume mode. The solid lines correspond to
the solutions u0(x). The dotted lines correspond to the eigenfunctions u1(x). The dashed
lines correspond to the solution u0(x) superimposed with eigenfunction u1(x) multiplied by a
small coefficient ε, i.e., U(x) = u0(x) + εu1(x). The arrows indicate the directions where the
fronts of the droplets shift after the eigenfunctions are added.

these combinations will result in the overall translation of both droplets in the same di-

rection, and it must correspond to the zero eigenvalue. The other two will correspond to

two coarsening modes, namely, the translational and volume modes, see schematic rep-

resentations in Figs. 5.3(a) and (b). The arrows in these figures indicate the directions

in which the fronts are shifted when the eigenfunctions are added. As can be seen in

these figures, for the translational mode the droplets move towards each other, and for

the volume mode the volume of one of the droplets decreases while the volume of the

other one increases. The eigenvalues for these modes correspond to the perturbed zero

eigenvalue. The larger the separation distances between the fronts are the closer to zero

these eigenvalues should be. It is also interesting to note that the translational/volume
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Figure 5.4: The dependence on the domain size L of the dominant eigenvalues s of two-
droplet solutions of the standard Cahn-Hilliard equation (2.28), when D = 0, for the case
when ū = 0.4. The thin solid lines correspond to two positive eigenvalues, and the thick solid
line shows the dominant negative eigenvalue.
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Figure 5.5: Shown are symmetry modes for two-droplet solutions of the standard Cahn-
Hilliard equation (2.28), when D = 0, for the case when ū = 0.4 and L = 40. Panel (a)
corresponds to the dominant coarsening mode (which turns out to be the translational mode)
and panel (b) corresponds to the other coarsening mode (which turns out to be the volume
mode). The solid lines correspond to the solutions u0(x). The dotted lines correspond to the
eigenfunctions u1(x). The dashed lines correspond to the solution u0(x) superimposed with
eigenfunction u1(x) multiplied by a small coefficient ε, i.e., U(x) = u0(x) + εu1(x). The
arrows indicate the directions where the fronts of the droplets shift after the eigenfunctions are
added.
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Figure 5.6: The dependence on the domain size L of the positive eigenvalues s corresponding
to coarsening modes of two-droplet solutions of the standard Cahn-Hilliard equation (2.28),
when D = 0, for the case when ū = 0.55. The black solid lines correspond to the upper
branch of solutions, and the red dashed lines correspond to the lower branch of solutions that
bifurcates subcritically from the homogenous solution.

mode for a two-droplet solution turns out to be the volume/translational mode for the

corresponding two holes.

The calculations confirm that for a two-droplet solution there are additionally two pos-

itive eigenvalues close to zero. The dependence of the positive eigenvalues (thin solid

line) and the first negative eigenvalue (thick solid line) on the domain size is shown

in Fig. 5.4 for ū = 0.4. We can see that the two eigenvalues annihilate in a saddle-

node bifurcation at the linear stability threshold for the homogeneous solution. The

eigenfunctions u1 corresponding to the largest and the smallest positive eigenvalues are

shown in Figs. 5.5(a) and (b), respectively, by blue dotted lines for L = 40. The black

solid lines in these figures show the two-droplet solutions, u0, and the red dashed lines

show the two-droplet solutions superimposed with the eigenfunctions, U = u0 + εu1

for sufficiently small ε. We can observe that the perturbed profiles again look like two-

droplet solutions. However, the fronts of the solutions are shifted. The arrows indicate

in which direction the fronts are shifted. In Fig. 5.5(a), we can observe that for each

of the droplets both fronts are shifted in the same direction. This results in one droplet

moving to the left and the other one moving to the right, i.e., we obtain coarsening by
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Figure 5.7: Shown are symmetry modes for the upper branch of two-droplet solutions of
the standard Cahn-Hilliard equation (2.28), when D = 0, for the case when ū = 0.55 and
L = 40. Panel (a) corresponds to the dominant coarsening mode (which turns out to be the
translational mode) and panel (b) corresponds to the other coarsening mode (which turns out
to be the volume mode). The solid lines correspond to the solutions u0(x). The dotted lines
correspond to the eigenfunctions u1(x). The dashed lines correspond to the solution u0(x)
superimposed with eigenfunction u1(x) multiplied by a small coefficient ε, i.e., U(x) =
u0(x) + εu1(x). The arrows indicate the directions where the fronts of the droplets shift after
the eigenfunctions are added.
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Figure 5.8: Shown are symmetry modes for two-droplet solutions of the standard Cahn-
Hilliard equation (2.28), when D = 0, for the case when ū = −0.4 and L = 40. Panel (a)
corresponds to the dominant coarsening mode (which turns out to be the volume mode) and
panel (b) corresponds to the other coarsening mode (which turns out to be the translational
mode). The solid lines correspond to the solutions u0(x). The dotted lines correspond to the
eigenfunctions u1(x). The dashed lines correspond to the solution u0(x) superimposed with
eigenfunction u1(x) multiplied by a small coefficient ε, i.e., U(x) = u0(x) + εu1(x). The
arrows indicate the directions where the fronts of the droplets shift after the eigenfunctions are
added.
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translation and the corresponding eigenfunction is the translational mode. In Fig. 5.5(b),

we can observe that for each of the droplets both fronts are shifted in the opposite di-

rections. This results in the fact that the volume of one of the droplet is decreasing

and the volume of the other one increasing, i.e., we obtain coarsening by the volume

transfer from one of the droplets to the other one and the corresponding eigenfunction

is the volume mode. For ū = 0.4, we see that the dominant mode (corresponding to the

largest positive eigenvalue) is the translational one. The coarsening due to the transla-

tional mode is demonstrated in time-dependent simulations for ū = 0.4 in Fig. 2.8(a) in

Section 2.3.

The results for ū = 0.55 are additionally shown in Figs. 5.6 and 5.7. Note that for this

value of ū the primary bifurcation is subcritical and there exists a range of L values

for which there exist two solutions, see Fig. 4.5. The solutions of smaller norm (lower

brach) are linearly unstable even for n = 1. The solutions of larger norm (upper branch)

are linearly stable for n = 1 but become unstable to coarsening modes for n = 2.

Fig. 5.6 shows the dependence of the positive eigenvalues corresponding to coarsening

modes, where the black solid lines correspond to the upper branch of solutions and the

red dashed lines correspond to the lower branch of solutions. The eigenfunctions u1

corresponding to the largest and the smallest positive eigenvalues for the upper branch

of solutions are shown in Figs. 5.7(a) and (b), respectively, by blue dotted lines along

with the solution profiles (black solid lines) and the perturbed solutions profiles (red

dashed lines) for L = 40. As for ū = 0.55, we can observe that the dominant coarsening

mode is translational and the other mode is the volume mode.

Next, let us point out that if u0 is a steady solution of the standard Cahn-Hilliard equa-

tion for a particular value of ū, then−u0 is again a steady solution of the standard Cahn-

Hilliard equation for the mean value equal to−ū. More interestingly, from equation 5.7,

it can be noticed that the linearised operator does not change. Thus, the eigenvalues and

the eigenfunctions will be exactly the same as for the mean value equal to ū. Therefore,

for example for ū = −0.4, the eigenvalues are also given by Fig. 5.4. We again obtain

two coarsening modes (which are exactly the same as for ū = 0.4). However, when the

steady solutions are superimposed with the eigenfunctions, as shown in Fig. 5.8, we can

observe that the roles of the coarsening modes are interchanged, namely, the dominant

mode is now the volume mode and the other mode is now translational. The coarsening

due to the volume mode is demonstrated in time-dependent simulations for ū = −0.4

in Fig. 2.8(b) in Section 2.3.
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5.4.2 The case of the convective Cahn-Hilliard equation

In this section, we study in detail how the introduction of the driving force affects two-

droplet solutions of the Cahn-Hilliard equation, namely, we consider two-droplet so-

lutions of equation (2.28) with D 6= 0. We compute both primary branches and side

branches of symmetry-broken solutions along with branches of time-periodic solutions,

and we discuss linear stability of primary and side branches and construct linear stability

diagrams in the (D,L)- and (D, ū)-planes.

5.4.2.1 Symmetry breaking

First, we compute by continuation branches of two-droplet solutions in dependence of

the driving force D for several fixed values of the domain size, L, and fixed values of ū.

Note that branches of two-droplet solutions (when n = 2) can in fact be obtained from

the n = 1 branches (that were discussed in Chapter 4) by multiplying the solution period

for the latter branches by n = 2. We call the resulting solution branches 2-mode primary

branches. Solutions on such branches have discrete internal translational symmetry. So-

lution branches bifurcating from these primary branches in secondary bifurcations will

be called secondary solution branches. Notice that the secondary bifurcations should

break the discrete symmetry of solutions (otherwise, if side branches with a discrete

internal translational symmetry existed, they would also appear in the calculations pre-

sented in Chapter 4). Thus, secondary bifurcations result in a larger spatial period and,

hence, if stable, are associated with coarsening of the pattern. However, we emphasise

here that at least for D <
√

2 (as discussed in Chapter 3) for a two-droplet solution

given on a domain of certain length there exists a one-droplet solution of the period

equal to that domain length, and true coarsening would correspond to evolution towards

such a droplet solution. For completeness of the bifurcation diagrams, we also include

branches of such one-droplet (i.e., 1-mode) solutions.

Figs. 5.9–5.23 show the results of the calculations for several values of L and for

ū = 0.4 and 0.55. In the bifurcation diagrams, we use black solid lines to show the

2-mode primary branches (that are identical to the n = 1 primary branches, only

the domain sizes L have twice the values of those for n = 1 branches). The sec-

ondary branches are shown by dashed lines, and the dotted lines show the time-periodic

branches. The bifurcation points to secondary branches are indicated by red circles, the
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Figure 5.9: The bifurcation diagrams of the one- and two-droplet (n = 1 and n = 2) solu-
tions of the convective Cahn-Hilliard equation (2.28) for the case ū = 0.4 with (a) L = 22,
(b) L = 25, (c) L = 30 and (d) L = 35. Shown is the dependence of the norm ‖δu0‖ (mul-
tiplied by D for presentational purposes) on the driving force D. The (blue) thick solid lines
show the 1-mode branches, the thin solid lines show the 2-mode primary branches, the dashed
lines show the secondary branches, the thick dotted lines show the time-periodic branches bi-
furcating from the 1-mode branches and the thin dotted lines show the time-periodic branches
bifurcating from the 2-mode primary branches. The red circles indicate pitchfork bifurcations
to side branches on the 2-mode primary branches, the black triangles indicate Hopf bifur-
cations to time-periodic solutions from the 1-mode branches and the red triangles indicate
Hopf bifurcations to time-periodic solutions from the 2-mode primary branches. In panel (c),
we also show a 3-mode branch of solutions by a thick dashed line to which the branches of
time-periodic solutions bifurcating from the 1-mode branch apparently tend.

red solid squares indicate saddle-node bifurcations, and the red solid triangles indicate

Hopf bifurcations to time-periodic branches. In addition, (blue) thick solid lines show

the branches of one-droplet solutions of the period equal to the domain length L. The

black solid squares indicate saddle-node bifurcations on these 1-mode branches and the

black solid triangles indicate Hopf bifurcations to time-periodic branches on the 1-mode

branches. The thick dotted lines show such branches of time-periodic solutions.

Figs. 5.9(a)–(d) show bifurcation diagrams for ū = 0.4 and L = 22, 25, 30 and 35, re-

spectively. We can see that the primary branches do not have saddle nodes and continue
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Figure 5.10: Solution profiles from the 2-mode primary and secondary branches for ū = 0.4
when D = 3 and (a) L = 22, (b) L = 25, (c) L = 30 and (d) L = 35, see Figs. 5.9(a)-(d).
The different solutions are explained in the legends. Note that in panel (b) there are three dif-
ferent solutions from the first secondary branch at D = 3 shown by the dotted, dashed and
dot-dashed lines. These solutions are shown in the order of decreasing norm ‖δu‖, i.e. the
dotted line corresponds to the solution with the largest norm and the dot-dashed line corre-
sponds to the solution with the smallest norm.

towards infinite D, in agreement with the results presented in Chapter 4. We can also

observe in Figs. 5.9(a) and (b) that for L = 22 and 25 there are two bifurcation points

on the 2-mode primary branch, and the secondary branches that start at these bifurca-

tion points do not reconnect to the primary branch but also continue towards infinite D.

Figs. 5.9(b) and (c) have one Hopf bifurcation each on the 2-mode primary branches,

and the time-periodic branches starting at these bifurcation points extend large values of

D. Figs. 5.9(c) and (d) show that for L = 30 and 35 there are four and five bifurcation

points on the 2-mode primary branches, respectively. Some of the secondary branches

that start at these points reach large values of D and may continue to infinity, whereas

secondary branches starting at other bifurcation points reconnect to the primary branch.

In particular, the secondary branches starting at bifurcation points 1 and 2 in Fig. 5.9(c)

and the secondary branches starting at bifurcation points 1, 2 and 3 in Fig. 5.9(d) go

off to infinity, while bifurcation points 3 and 4 in Fig. 5.9(c) and bifurcation points 4

and 5 in Fig. 5.9(d) are connected to each other by secondary branches. As regards the
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Figure 5.11: Time evolution over one period of time of the time-periodic solution for ū =
0.4, L = 25 when D = 3 (see Fig. 5.10(b)).

1-mode branches (blue thick solid line), we find that in panes (a) and (b), there exist

one Hopf bifurcation on each of the branches. The time-periodic branch emanating

at the Hopf bifurcation in panel (a) terminates on the secondary branch (apparently in

a homoclinic bifurcation) emanating from the second bifurcation point on the 2-mode

primary branch. The time-periodic branch emanating at the Hopf bifurcation in panel

(b) extends to large values of D. In panel (c), we can see that there are two Hopf bifur-

cation points on the 1-mode branch. Our numerical results indicate that these branches

possibly terminate on the 3-mode branch (show by the thick dashed line in the inset)

in homoclinic bifurcation, although should mention that we had numerical difficulties

in continuing these branches beyond certain points and we not able to approach the

3-mode branch sufficiently closely. In panel (d), we observe that there are three Hopf

bifurcation points on the 1-mode branch, and the time-periodic branches starting at these

bifurcation points extend to large values of D.

Figs. 5.10(a)–(d) show selected solution profiles for ū = 0.4 when D = 3 for L = 22,

25, 30 and 35, respectively (see the corresponding panels of Fig. 5.9). We exclude the

solution profiles for the 1-mode branches. Note that at L = 25, there are three different

solutions on the first secondary branch that correspond to D = 3. These solutions are

shown by the dotted, dashed and dot-dashed lines and are ordered in the decreasing

norm ‖δu0‖, i.e., the dotted line corresponds to the solution with the largest norm and

the dot-dashed line corresponds to the solution with the smallest norm. In general, we
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Figure 5.12: Time evolution over one period of time of the time-periodic solution for ū =
0.4, L = 30 when D = 12 (see Fig. 5.10(c)).

Figure 5.13: Time evolution over one period of time of the time-periodic solution for ū =
0.4, L = 30 when D = 17 (see Fig. 5.10(c)).
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can observe that the solutions of the secondary branches that are located closer to the

primary branch have profiles that are closer to the profiles of the solutions of the primary

branch.

Time evolution over one period of time of several time-periodic solutions from the

time-periodic branches bifurcating from the 2-mode primary branches presented in

Figs. 5.10(b) and (c) are shown in Figs. 5.11–5.13. In particular, Fig. 5.11 shows the

time-periodic solution corresponding to Fig. 5.10(b) for ū = 0.4, L = 25 when D = 3.

We can see that the solution looks like a superposition of two droplets (a smaller one

and a bigger one) periodically exchanging mass. Figs. 5.12 and 5.13 shows the time

periodic solutions corresponding to Fig. 5.10(c) for ū = 0.4, L = 30 when D = 12

and 17, respectively. We can see that for the smaller value of D, the solution again

looks like a superposition of two droplets periodically exchanging mass. However, now

the larger droplet starts to resemble a superposition of two smaller ones. For the larger

value of D, the solution now looks rather like a superposition of three smaller droplets

continuously exchanging mass.

Figs. 5.14(a) and (b) show bifurcation diagrams for ū = 0.55 and L = 35 and 50, re-

spectively. For the larger value of L the 2-mode primary branch has a pair of saddle

nodes, while for the smaller value of L it has only one saddle node. We can observe

in Fig. 5.14(a) that for L = 35 there are four bifurcation points and one saddle-node

bifurcation on the 2-mode primary branch. The secondary branches that start at these

bifurcation points reconnect to the 2-mode primary branch. Also, we denote the upper

and the lower parts of the primary branch by letters (a) and (b), respectively. We can

observe that points 1 and 2 on the upper part are connected to points 4 and 3, respec-

tively on the lower part. As regards the 1-mode branch (blue thick solid line), we find

two saddle-nodes, but there are no other bifurcation points. Fig. 5.14(b) shows that for

L = 50 there are five bifurcation points and two saddle-node bifurcations on the 2-mode

primary branch. Some of the secondary branches that start at these points reach large

values of D and may continue to infinity, whereas secondary branches starting at other

bifurcation points reconnect to the primary branch. We call the upper part of the primary

branch (up to the first saddle node) part (a), the part connecting the two saddle nodes

part (b), and the lower part (starting from the second saddle node) part (c). We find
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Figure 5.14: The bifurcation diagrams of the one- and two-droplet (n = 1 and n = 2)
solutions of the convective Cahn-Hilliard equation (2.28) for the case ū = 0.55 with (a)
L = 35 and (b) L = 50. Shown is the dependence of the norm ‖δu0‖ (multiplied by D for
presentational purposes) on the driving force D. The (blue) thick solid lines show the 1-mode
branches, the thin solid lines show the 2-mode primary branches, the dashed lines show the
secondary branches, the thick dotted lines show the time-periodic branches bifurcating from
the 1-mode branches, and the thin dotted lines show the time-periodic branches bifurcating
from the 2-mode branchs. The red circles indicate pitchfork bifurcations to side branches on
the 2-mode primary branches, the black squares indicate the saddle-node bifurcations on the
1-mode branches, the red squares indicate the saddle-node bifurcations on the 2-mode pri-
mary branches, the black triangles indicate Hopf bifurcations to branches of time-periodic
solutions bifurcating from the 1-mode branches, the red triangles indicate Hopf bifurcations to
branches of time-periodic solutions bifurcating from the 2-mode primary branches. In panel
(a), the upper and lower parts of the primary branch are denoted by letters a and b, respec-
tively.
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Figure 5.15: Zooms of the time-periodic branches shown in Fig. 5.14(b) and starting from
point I and II (panels (a) and (b), respectively). The red triangles indicate Hopf bifurca-
tions. The red diamonds 1 and 2 in panel (a) correspond to time-periodic solutions shown in
Figs. 5.20 and 5.21, respectively. The red diamonds 1 and 2 in panel (b) correspond to time-
periodic solutions shown in Figs. 5.22 and 5.23, respectively. The inset in panel (b) shows
the zoom of the time-periodic branch near the homoclinic bifurcation and shows a snaking
behaviour of the branch.
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Figure 5.16: A plot of the period over D − Dc of the solution on the time-periodic branch
originating from point II in Fig. 5.14(b) and also shown in Fig. 5.15(b) on a semi-log scale.
Here Dc is the value of the driving force, D, corresponding to the homoclinic bifurcation.
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Figure 5.17: Schematic representation of the branches in Fig. 5.14(b) (excluding the 1-mode
branch and the branch of time-periodic solutions emanating from the 1-mode branch). The
line styles are the same as in Fig. 5.14(b). As in Fig. 5.14(b), the red circles show the bifurca-
tion points to side branches, red triangles show Hopf bifurcation points to branches of time-
periodic solutions, red squares on the primary branch indicate saddle-nodes and, additionally,
red stars indicate homoclinic bifurcations. Note that only the homoclinic bifurcations on the
secondary branches are shown and the other bifurcation points on the secondary branches are
not given in this schematic figure.
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Figure 5.18: Solution profiles from the 2-mode primary (black solid lines) and secondary
(red dashed lines) branches for ū = 0.55 and L = 35 at D = 0.4 and 1.3 (top and bottom
panels, respectively). The left and right panels correspond to the upper and lower parts of the
branches, respectively.

that the secondary branch starting at bifurcation point 1 on part (a) continues to infinity,

while bifurcation point 2 on part (a) is connected to point 5 on part (b), and bifurcation

point 3 on part (a) is connected to point 4 on part (b). For L = 50, we additionally find

that there are two Hopf bifurcations on the 2-mode primary branch, denoted by sym-

bols I and II. It is interesting to note that these bifurcation points are not connected to

each other by a time-periodic branch, and the time-periodic branches that emerge from

these points do not extend to large values of D. Instead, these time-periodic branches

are connected to side branches (the dashed blue and red branches, respectively). This

is confirmed in Figs. 5.15(a) and (b) for the time-periodic branches starting at points I

and II, respectively. Moreover, the inset in Fig. 5.15(b) indicates a possible exponential

snaking behaviour of the time-periodic branch – one saddle-node is clearly visible, and

one more can be obtained by another zoom; however, to clearly determine if there is

a snaking behaviour, higher accuracy of calculations is need, and this is left as a topic

for future investigation. Interestingly, the approach to the side branches is through ho-

moclinic bifurcations. This is confirmed for the branch starting at point II in Fig. 5.16
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Figure 5.19: Solution profiles from the 2-mode primary and secondary branches for ū = 0.55
and L = 50 at D = 1.75 and 1.3 (top and bottom panels, respectively), see Fig. 5.14(b).
Panel (a) corresponds to the solution of part (a) of the primary branch (black solid line) and
the solutions of the parts of the side branches passing in the vicinity of part (a) and originating
from points 1, 2 and 3 (red dashed, green dotted and blue dot-dashed lines, respectively).
Panel (b) corresponds to the solution of part (b) of the primary branch (black solid line) and
the solutions of the parts of the side branches passing in the vicinity of part (b) and originating
from points 1 and 2 (red dashed and green dotted lines, respectively). Panel (c) corresponds to
the solution of part (c) of the primary branch (black solid line) and the solution of the part of
the side branche passing in the vicinity of part (c) and originating from points 1 (red dashed
line).

showing the dependence of the time-period of the solution over D−Dc, where Dc is an

estimated value of D at which the side branch is reached. This dependence is shown on

a semi-log scale and it indicates that the period scales as | log(D−Dc)|, indicating that

the bifurcation is homoclinic, see Strogatz [99]. We conjecture that the time-periodic

branch starting at point I results from a Takens-Bogdanov-type codimension-2 bifurca-

tion at the pitchfork bifurcation point 3 (we note that for the usual Takens-Bogdanov

bifurcation the time-periodic branch emerges from a saddle-node bifurcation, not from

a pitchfork bifurcation, see, for example, Kuznetsov [71]). Similarly, the time-periodic

branch starting at point II results from such a codimension-2 bifurcation, but at pitch-

fork bifurcation that has been moved to larger values of D (or to infinity). For better

understanding of the various branches of solutions presented in Fig. 5.14(b), a schematic
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Figure 5.20: Time evolution over one period of time of the time-periodic solution for ū =
0.55 and L = 50 corresponding to point 1 shown in Fig. 5.15(a).

Figure 5.21: Time evolution over one period of time of the time-periodic solution for ū =
0.55 and L = 50 corresponding to point 2 shown in Fig. 5.15(a).
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Figure 5.22: Time evolution over one period of time of the time-periodic solution for ū =
0.55 and L = 50 corresponding to point 1 shown in Fig. 5.15(b).

Figure 5.23: Time evolution over one period of time of the time-periodic solution for ū =
0.55 and L = 50 corresponding to point 2 shown in Fig. 5.15(b).
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representation of these various branches is shown in Fig. 5.17 (excluding the 1-mode

branch and the time periodic branch bifurcating from this branch). In Fig. 5.14(b), we

additionally observe that the 1-mode branch (blue thick solid line) has two saddle-node

bifurcations and one Hopf bifurcation. The branch of time-periodic solutions starting at

this bifurcation point is connected to the first side branch (red dashed line) at a homo-

clinic bifurcation. (see the inset) at D ≈ 31.15.

Figs. 5.18(a)–(d) show solution profiles for ū = 0.55 and L = 35 for D = 0.4 and

D = 1.3 (top and bottom panels, respectively), see Fig. 5.14(a). (We exclude the

solution profiles for the 1-mode branches.) Note that for this value of L, each of the

branches has upper and lower parts. The solution profiles that correspond to the upper

parts of the branches are show in the left panels of Fig. 5.18, whereas the solutions that

correspond to the lower parts of the branches are shown in the right panels of Fig. 5.18.

Figs. 5.19(a)–(c) show the solution profiles for ū = 0.55, L = 50 and D = 1.75 (see

Fig. 5.14(b)). (We exclude the solution profiles for the 1-mode branches.) Panel (a)

corresponds to the profiles of part (a) of the primary branch (black solid line) and the

side branches starting at points 1, 2 and 3 in Fig. 5.14(b) and passing in the vicinity of

part (a) of the primary branch (red dashed, green dotted and blue dot-dashed lines, re-

spectively). Panel (b) corresponds to the profiles of part (b) of the primary branch (black

solid line) and the side branches starting at points 1 and 2 and passing in the vicinity

of part (b) of the primary branch (red dashed and green dotted lines, respectively). Fi-

nally, panel (c) corresponds to the profiles of part (c) of the primary branch (black solid

line) and the side branch starting at point 1 and passing in the vicinity of part (c) of the

primary branch (red dashed line). In general, we can observe that the solutions of the

secondary branches that are located closer to the primary branch have profiles that are

closer to the profile of the solution of the primary branch.

Figs. 5.20–5.23 show the time evolution of over one period of time of several time-

periodic solutions from the time-periodic branches bifurcating from the 2-mode primary

branches presented in Fig. 5.14(b) and also in Figs. 5.15(a) and (b) for ū = 0.55, and

L = 50. Figs. 5.20 and 5.21 correspond to points 1 and 2, respectively, shown by red

diamonds in Fig. 5.15(a). We can see in Fig. 5.20 that the solution looks like a superpo-

sition of two droplets (a smaller one and a larger one) periodically exchanging mass. In

Fig. 5.21, we can see that as the homoclinic bifurcation is approached, the solution still

looks like a superposition of a smaller and a larger droplet. However, now the mass-

exchange events happen over relatively short time intervals and for most of the time the

solution looks like a quasi-steady superposition of two droplets. Similar observations
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Figure 5.24: The dependence of the real parts of the dominant eigenvalues s on the driving
force D along the 1-mode primary branch when L = 22, 25, 30 and 35 (panels (a), (b), (c)
and (d), respectively) at ū = 0.4 (Fig. 5.9). The solid lines correspond to the eigenvalues with
zero imaginary part. The dashed lines correspond to the eigenvalues with non-zero imaginary
part. The black triangles indicate Hopf bifurcations to branches of time-periodic solutions.

hold for the solutions presented in Figs. 5.22 and 5.23 that correspond to points 1 and 2,

respectively, shown by red diamonds in Fig. 5.15(b). Strictly speaking, we can see that

after each mass-exchange event the order of the smaller and the larger droplets swaps,

so it would be more precise to state that the time-periodic branch approaches two sta-

tionary solutions at the same time, i.e., a ‘heteroclinic’ bifurcation is approached. We

note, however, that due to periodic boundary conditions we can identify any solutions

that can be obtained from each other by a translation, and since the two statinonary

solutions that are approached by the time-periodic branch are obtained from each other

by such a translation, we can still justify the use of the term ‘homoclinic’ bifurcation.
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Figure 5.25: The dependence of the real parts of the dominant eigenvalues s on the driv-
ing force D along the 1-mode primary branch when L = 35 and 50 (panels (a) and (b),
respectively) at ū = 0.55 (Fig. 5.14). The solid lines correspond to the eigenvalues with zero
imaginary part. The dashed lines correspond to the eigenvalues with non-zero imaginary part.
The black squares indicate the saddle-node bifurcations and the black triangles indicate Hopf
bifurcations to branches of time-periodic solutions.

5.4.2.2 Linear stability of 1-mode branches

Figs. 5.24 and 5.25 show the real parts of the dominant eigenvalues along the 1-mode

primary branches presented in Figs. 5.9 and 5.14, respectively. The solid lines cor-

respond to the real eigenvalues. The dashed lines correspond to the eigenvalues with

non-zero imaginary parts. The black solid triangles correspond to the Hopf bifurcations

to time-periodic solutions.

Figs. 5.24(a)–(d) correspond to L = 22, 25, 30 and 35, respectively, at ū = 0.4 (see

Figs. 5.9 (a), (b), (c) and (d), respectively). In Figs. 5.24(a) and (b), we see that for

L = 22 and 25 there is one Hopf bifurcation and there are stable intervals for 1-mode

solutions for D . 12.39 and D . 12.05, respectively. In Fig. 5.24(c), we can see that

for L = 30 there are two Hopf bifurcations, and there is a stable interval for 1-mode

solutions for D . 7.28. In Fig. 5.24(d), we can see that for L = 35 there are three Hopf

bifurcations, and there is a stable interval for 1-mode solutions for D . 5.23.

Figs. 5.25(a) and (b) correspond to L = 35 and 50, respectively, at ū = 0.55 (see

Figs. 5.14 (a) and (b), respectively). In Fig. 5.25(a), we see that for L = 35 there are two

saddle-node bifurcations and there are no Hopf bifurcations. Also, part of the branch is

unstable for D between 2.18 and 2.36, but there are stable solutions for all the values of

D. In Fig. 5.25(b), we can see that for L = 50 there are two saddle-node bifurcations

(at D ≈ 2.57 and D ≈ 2.67) and there is one Hopf bifurcation at D ≈ 7.13, so that

there are stable 1-mode solutions for D . 7.13. We generally observe that sufficiently
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Figure 5.26: The dependence of the real parts of the dominant eigenvalues s on the driving
force D along the 2-mode primary branch when L = 22, 25, 30 and 35 (panels (a), (b), (c)
and (d), respectively) at ū = 0.4 (Fig. 5.9). The solid lines correspond to the eigenvalues with
zero imaginary part. The dashed lines correspond to the eigenvalues with non-zero imaginary
part. The red circles indicate pitchfork bifurcations to side branches and the red triangles
indicate Hopf bifurcations to branches of time-periodic solutions.

strong driving destabilises 1-mode solutions, although for ū = 0.55 and L = 35 we find

that there is only a bounded instability interval.

5.4.2.3 Linear stability of 2-mode primary branches and coarsening

Figs. 5.26 and 5.36 show the real parts of the dominant eigenvalues along the 2-mode

primary branches presented in Figs. 5.9 and 5.14, respectively. The solid lines cor-

respond to the real eigenvalues. The dashed lines correspond to the eigenvalues with

non-zero imaginary parts. The solid red circles correspond to the bifurcation points to

secondary branches, the solid red squares correspond the saddle-node bifurcations, and

the solid red triangles correspond to the Hopf bifurcations to time-periodic solutions.
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Figure 5.27: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the pe-
riodic domain of length L = 22 for ū = 0.4 and D = 0.3, with the initial condition
u(x, 0) = ū − 0.1 cos(2πx/L). Panel (a) shows the time evolution of the solution for
t ∈ [0, 1500] in a frame moving at velocity 0.026 (for presentational purposes). Panel (b)
shows the time evolution of the energy of the solution. Panel (c) shows the time evolution of
the norm of the solution. Note that for this value of D the 2-mode solution is unstable with
respect to coarsening, see Fig. 5.26(a).
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Figure 5.28: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 22 for ū = 0.4 and D = 3, with the initial condition
u(x, 0) = ū − 0.1 cos(2πx/L). Panel (a) shows the time evolution of the solution for
t ∈ [0, 1500] in a frame moving at velocity 1.05 (for presentational purposes). Panel (b)
shows the time evolution of the energy of the solution. Panel (c) shows the time evolution
of the norm of the solution. Note that for this value of D the 2-mode solution is stable with
respect to coarsening, see Fig. 5.26(a).
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Figs. 5.26(a)–(d) correspond to L = 22, 25, 30 and 35, respectively, at ū = 0.4 (see

Figs. 5.9 (a), (b), (c) and (d), respectively). In Fig. 5.26(a), we see that for L = 22

there are two bifurcation points to side branches, there are no Hopf bifurcations and

there is a stable interval for D & 2.24. Interestingly, this means that coarsening can

be prevented by sufficiently strong driving force. This effect is demonstrated in time-

dependent simulations (obtained by using the spectral method described in Section 2.5)

shown in Figs. 5.27 and 5.28 that show the results for ū = 0.4, L = 22 and D = 0.3

and 3, respectively. The initial condition for the simulations was chosen to be

u(x, 0) = ū− 0.1 cos(2πx/L). (5.74)

Panels (a) of the figures show the time evolution of the solution for t changing from 0 to

1500. Panels (b) shows the time evolution of the energies of the solutions. (We use the

same energy functional F [u] here as for the standard Cahn-Hilliard equation, although

it should be pointed out that for D 6= 0 this functional is not anymore a Lyapunov

functional and should not necessarily be minimised in the time evolution.) Panels (c)

show the time evolution of the norms of the solutions. We can observe that forD = 0.3,

the solution initially evolves into a two-droplet travelling-wave solution that at t ≈ 850

starts to coarsen and transforms into a stable single-droplet solution moving at a slower

speed (a single-droplet solution is linearly stable for this value of D, see Fig. 5.24(a)).

However, for stronger driving, when D = 3.0, we can observe that the solution evolves

into a two-droplet solution and remains bimodal during the course of the evolution,

i.e., coarsening does not happen. This is in agreement with the theoretical prediction

indicating that the bimodal solutions become linearly stable for D & 2.24. (We note

that for D = 3.0 the 1-mode solution is also linearly stable. So the long-time dynamics

of solutions depends on an initial conditions.)

The most unstable eigenmode u1 superimposed with the primary 2-mode solution u0

is shown in Fig. 5.29 for ū = 0.4 and L = 22. The black solid lines in this figure

shows the two-droplet solutions, u0, the blue dotted line show the eigenmode u1 and

the red dashed line shows the two-droplet solution superimposed with the eigenmode,

U = u0 + εu1 for sufficiently small ε. The arrows indicate the directions in which the

fronts are shifted (in the same way as in Figs. 5.5, 5.7 and 5.8 for the standard Cahn-

Hilliard equation). Panels (a) and (b) correspond to D = 0.1 and 0.5, respectively.



Chapter 5. Linear stability of inhomogeneous solutions 143

0 0.2 0.4 0.6 0.8 1
x/L

-2

-1

0

1

2

u 0-u

u0
Uu1

(a)
0 0.2 0.4 0.6 0.8 1

x/L

-2

-1

0

1

2

u 0-u

u0
Uu1

(b)

Figure 5.29: Shown are the most unstable eigenfunctions for two-droplet solutions at ū = 0.4
and L = 22. Panel (a) represents the translational mode for D = 0.1 and panel (b) repre-
sent the volume mode for D = 0.5. The solid lines correspond to the solutions u0(x).The
dotted lines correspond to the eigenfunctions u1(x). The dashed lines correspond to the solu-
tions u0(x) superimposed with eigenfunction u1(x) multiplied by a small coefficient ε, i.e.,
U(x) = u0(x) + εu1(x). The arrows indicate the directions where the fronts of the droplets
shift after the eigenfunctions are added.

An interesting observation is that for, the smaller value of D, the most unstable mode

appears to be translational (in agreement with the D = 0 case), whereas for larger

values of D the mode seems to change into a volume mode.

Fig. 5.26(b) shows that for L = 25 there two pitchfork bifurcation points to side

branches, one Hopf bifurcation to a branch of time-periodic solutions, and there is

a stable interval between the second bifurcation point to a side branch and the Hopf

bifurcation point, i.e., between D ≈ 1.41 and D ≈ 2.21. The observations are cor-

roborated by the time-dependent simulations shown in Figs. 5.30, 5.31 and 5.32 for

ū = 0.4, L = 25 and D = 0.3, 2 and 5, respectively. The initial conditions are

u(x, 0) = ū− 0.1 cos(2πx/L) for Figs. 5.30, 5.31 and u(x, 0) = ū− 0.1 cos(2πx/L) +

0.001 cos(πx/L). It can be observed that for D = 0.3, the solution initially evolves

into a two-droplet solution, but around t = 1500 the droplets coarsen and a one-droplet

solution is obtained (a single-droplet solution is linearly stable for this value of D, see

Fig. 5.24(b)). In contrast, for D = 3, a two-droplet solution remains stable during

the course of evolution, which agrees with the theoretical prediction (a single-droplet

solution is also linearly stable for this value of D, see Fig. 5.24(b), so the long-time

evolution of the solutions should depend on initial conditions). For D = 5, the solution

again initially tends to evolve into a two-droplet solution. But as is evident from the

energy and norm plots, around t = 150, the droplets start to oscillate, and the solu-

tion eventually evolves into a time-periodic state resembling two droplets periodically

exchanging mass. We note that a single-droplet solution is also linearly stable for this

value of D, see Fig. 5.24(b). So we expect that different initial conditions can lead to
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Figure 5.30: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the pe-
riodic domain of length L = 25 for ū = 0.4 and D = 0.3, with the initial condition
u(x, 0) = ū − 0.1 cos(2πx/L). Panel (a) shows the time evolution of the solution for
t ∈ [0, 2200] in a frame moving at velocity 0.02 (for presentational purposes). Panel (b)
shows the time evolution of the energy of the solution. Panel (c) shows the time evolution of
the norm of the solution. Note that for this value of D the 2-mode solution is unstable with
respect to coarsening, see Fig. 5.26(b).
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Figure 5.31: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 25 for ū = 0.4 and D = 2, with the initial condition
u(x, 0) = ū − 0.1 cos(2πx/L). Panel (a) shows the time evolution of the solution for
t ∈ [0, 2200] in a frame moving at velocity 0.555 (for presentational purposes). Panel (b)
shows the time evolution of the energy of the solution. Panel (c) shows the time evolution
of the norm of the solution. Note that for this value of D the 2-mode solution is stable with
respect to coarsening, see Fig. 5.26(b).
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Figure 5.32: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 25 for ū = 0.4 and D = 5, with the initial condition
u(x, 0) = ū − 0.1 cos(2πx/L) + 0.001 cos(πx/L). Panel (a) shows the time evolution of
the solution for t ∈ [0, 600] in a frame moving at velocity 1.86 (for presentational purposes).
Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows the time evo-
lution of the norm of the solution. Note that for this value of D the 2-mode solution Hopf is
unstable with respect to coarsening, see Fig. 5.26(b).
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Figure 5.33: Shown are the most unstable eigenfunctions for two-droplet solutions at ū =
0.4 and L = 25. Panel (a) represents the translational mode for D = 0.005 and panel (b)
represent the volume mode for D = 0.1. The solid lines correspond to the solutions u0(x).
The dotted lines correspond to the eigenfunctions u1(x). The dashed lines correspond to the
solutions u0(x) superimposed with eigenfunction u1(x) multiplied by a small coefficient ε,
i.e., U(x) = u0(x) + εu1(x). The arrows indicate the directions where the fronts of the
droplets shift after the eigenfunctions are added.
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Figure 5.34: Shown are the most unstable eigenfunctions for two-droplet solutions at ū =
0.4 and L = 30. Panels (a) and (b) represent volume modes for D = 0.1 and D = 1.8,
respectively. The solid lines correspond to the solutions u0(x). The dotted lines correspond to
the eigenfunctions u1(x). The dashed lines correspond to the solutions u0(x) superimposed
with eigenfunction u1(x) multiplied by a small coefficient ε, i.e., U(x) = u0(x)+εu1(x). The
arrows indicate the directions where the fronts of the droplets shift after the eigenfunctions are
added.
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Figure 5.35: Shown are the most unstable eigenfunctions for two-droplet solutions at ū =
0.4 and L = 35. Panels (a) and (b) represent volume modes for D = 0.1 and D = 9,
respectively. The solid lines correspond to the solutions u0(x). The dotted lines correspond to
the eigenfunctions u1(x). The dashed lines correspond to the solutions u0(x) superimposed
with eigenfunction u1(x) multiplied by a small coefficient ε, i.e., U(x) = u0(x)+εu1(x). The
arrows indicate the directions where the fronts of the droplets shift after the eigenfunctions are
added.
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time-periodic solutions or travelling single-droplet solutions. Fig. 5.33 shows the most

unstable eigenmode u1 superimposed with the primary 2-mode solution u0 for ū = 0.4

and L = 25. Panels (a) and (b) correspond to D = 0.005 and 0.1. As for the case of

L = 22 we observe that for, the smaller value of D, the most unstable mode appears to

be translational (in agreement with the D = 0 case), whereas for larger values of D the

mode seems to change into a volume mode.

Fig. 5.26(c) shows that for L = 30 there are four pitchfork bifurcation points to side

branches, one Hopf bifurcation and there is a stable interval between two of the bifur-

cation points, i.e., between D ≈ 1.003 and D ≈ 1.845. As for the cases of L = 22 and

L = 25, time-dependent simulations support the theoretical predictions, and we have

decided not to show such simulations here. Fig. 5.34 shows the most unstable eigen-

mode u1 superimposed with the primary 2-mode solution u0 for ū = 0.4 and L = 30.

Panels (a) and (b) correspond to D = 0.1 and 1.8. These two values are from two

different instability regions and are separated by a stability regions. In both cases, we

observe that the modes seems to be volume modes.

In Fig. 5.26(d), we can see that for L = 35 there are five pitchfork bifurcation points to

side branches and no Hopf bifurcations. We also see that there are two stable intervals

in D, namely, 0.82 ≤ D ≤ 1.23 and 2.32 ≤ D ≤ 8.28. As for the cases of L = 22

and L = 25, time-dependent simulations support the theoretical predictions, and we

have decided not to show such simulations here. Fig. 5.35 shows the most unstable

eigenmode u1 superimposed with the primary 2-mode solution u0 for ū = 0.4 and

L = 35. Panels (a) and (b) correspond to D = 0.1 and 9. As for the previous case, we

observe that both modes seem to be volume modes.

Figs. 5.36(a) and (b) correspond to L = 35 and 50, respectively, at ū = 0.55 (see

Figs. 5.14 (a) and (b), respectively). In Fig. 5.36(a), the solid and dashed lines corre-

spond to the real and complex (having non-zero imaginary parts) eigenvalues, respec-

tively, for part a (the upper part) of the bifurcation curve shown in Fig. 5.14(a). However,

we additionally introduce the dot-dashed lines that correspond to the real eigenvalues

for part b (the lower part) of the bifurcation curve shown in Fig. 5.14(a). Note that

for part b there are no eigenvalues with non-zero imaginary parts. Also, note that the

green dot-dashed line corresponds to the unstable eigenvalue that is inherited from the

1-mode primary branch (that is unstable). We can see in Fig. 5.36(a) that for L = 35

there are four pitchfork bifurcations to side branches, two for part a and two for part
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Figure 5.36: The dependence of the real parts of the dominant eigenvalues s on the driving
force D along the 2-mode primary branch when L = 35 and 50 (panels (a) and (b), respec-
tively) at ū = 0.55 (Fig. 5.14). In panel (a), the solid lines correspond to the eigenvalues with
zero imaginary part for part a (the upper part) of the bifurcation diagram and the dot-dashed
lines correspond to the eigenvalues with zero imaginary part for part b (the lower part) of the
bifurcation diagram. The dashed lines correspond to the eigenvalues with non-zero imagi-
nary part. In panel (b), the solid lines correspond to the eigenvalues with zero imaginary part.
The dashed lines correspond to the eigenvalues with non-zero imaginary part. The red cir-
cles indicate pitchfork bifurcations to side branches, the red squares indicate the saddle-node
bifurcations, and the red triangles indicate Hopf bifurcations to branches of time-periodic
solutions.

b. In addition, there is one saddle-node bifurcation and there are no Hopf bifurcations.

Also, we note that there are no stable intervals at any value of D. Fig. 5.37 shows the

unstable symmetry-breaking eigenmodes u1 superimposed with the primary 2-mode

solutions u0 for ū = 0.55 and L = 35 at D = 0.05. Panels (a) and (b) correspond to

two unstable symmetry breaking modes for part b (lower part) of the bifurcation curve

shown in Fig. 5.14(a). Note that for the lower part of the bifurcation diagram there is

always one unstable symmetry breaking mode that is shown in panel (a) at D = 0.05

(and it turns out to be a translational mode for this value of D). For the lower part

of the bifurcation diagram, there is also another symmetry-breaking mode that remains

unstable up to D ≈ 0.18. Note that this mode is stabilised for 0.18 . D . 1.25 and

becomes unstable again for D & 1.25. It is shown in panel (b) at D = 0.05 (it turns out

to be a volume mode). We also note that for the lower part of the bifurcation diagram

shown in Fig. 5.14(a) there is an unstable symmetry-preserving mode (shown by the

green dot-dashed line), but it is less unstable than the symmetry breaking mode shown

in Fig. 5.37(a). Panel (c) of Fig. 5.37 shows the unstable symmetry breaking mode for

part a (the upper part) of the bifurcation diagram shown in Fig. 5.14(a). This mode

appears to be a volume mode.

Fig. 5.36(b) shows that for L = 50 there five bifurcation points to side branches, two
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Figure 5.37: Shown are unstable symmetry-breaking modes for two-droplet solutions at
ū = 0.55 and L = 35 at D = 0.05. Panels (a) and (b) represent the modes for part b
(the lower part) of the bifurcation diagram shown in Fig. 5.14(a) (with the mode shown in
panel (a) being more unstable). Panel (c) represents the mode for part a (the upper part) of the
bifurcation diagram shown in Fig. 5.14(a). The solid lines correspond to the solutions u0(x).
The dotted lines correspond to the eigenfunctions u1(x). The dashed lines correspond to the
solutions u0(x) superimposed with eigenfunction u1(x) multiplied by a small coefficient ε,
i.e., U(x) = u0(x) + εu1(x). The arrows indicate the directions where the fronts of the
droplets shift after the eigenfunctions are added.
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Figure 5.38: Shown are symmetry modes for two-droplet solutions at ū = 0.55 and L = 50.
Panels (a) and (b) represent volume mode for D = 0.05 and D = 1, respectively. The solid
lines correspond to the solutions u0(x). The dotted lines correspond to the eigenfunctions
u1(x). The dashed lines correspond to the solution U(x) superimposed with eigenfunction
u1(x) multiplied by a small coefficient ε. The arrows indicate the directions where the fronts
of the droplets shift after a the eigenfunctions are added.
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Figure 5.39: The real parts of the dominant eigenvalues s along the n = 2 secondary branch
when L = 22 at ū = 0.4 (Fig. 5.9(a)). Panel (a) corresponds to the first secondary branch
in Fig. 5.9(a) starting at D ≈ 0.06 (see the red dashed line), while panel (b) corresponds to
the second secondary branch in Fig. 5.9(a) starting at D ≈ 2.24 (see the green dashed line).
The solid lines correspond to the eigenvalues with zero imaginary part. The dashed lines
correspond to the eigenvalues with non-zero imaginary part.

saddle-node bifurcation and two Hopf bifurcations. Also, we note that there are two sta-

ble intervals on part a (the upper part) of the bifurcation diagram shown in Fig. 5.14(b),

namely, 0.72 . D . 0.90 and 1.21 . D . 1.76. Part c (the middle part of the bi-

furcation diagram) is unstable, and there is a stable interval on part c (the lower part)

of the bifurcation diagram, namely, D & 2.15. Fig. 5.38 shows the most unstable

symmetry-breaking eigenmodes u1 superimposed with the primary 2-mode solutions

u0 for ū = 0.55 and L = 50 at D = 0.05 and D = 1 (panels (a) and (b), respectively).

Note that both panels correspond to the upper part of the bifurcation diagram shown in

Fig. 5.14(b). In both cases, we can observe that the symmetry-breaking modes appear

to be volume modes. We note that time-dependent simulations support the theoretical

predictions following from Fig. 5.36(a) and (b), and we have decided not to show such

simulations here.

5.4.2.4 Linear stability of secondary branches

In this section, we analyse the linear stability of the secondary branches. Figs. 5.39–

5.52 show the real parts of the dominant eigenvalues s along the secondary branches

presented in Figs. 5.9 and 5.14. As before, the solid lines correspond to real eigenvalues

(i.e., eigenvalues with zero imaginary parts), the dashed lines correspond to eigenvalues

with non-zero imaginary parts, the solid red squares represent saddle-node bifurcations,

and the solid red triangles represent Hopf bifurcations.
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Figure 5.40: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 22 for ū = 0.4 and D = 3, with the initial condition
u(x, 0) = ū − 0.1 cos(πx/L). Panel (a) shows the time evolution of the solution for
t ∈ [0, 1500] in a frame moving at velocity 0.625 (for presentational purposes). Panel (b)
shows the time evolution of the energy of the solution. Panel (c) shows the time evolution of
the norm of the solution.
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Figure 5.41: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the pe-
riodic domain of length L = 22 for ū = 0.4 and D = 3, with the initial condition equal to
ū superimposed with a small-amplitude random noise. Panel (a) shows the time evolution of
the solution for t ∈ [0, 1500] in a frame moving at velocity 1.05 (for presentational purposes).
Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows the time
evolution of the norm of the solution.
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Figs. 5.39(a) and (b) correspond to L = 22 at ū = 0.4 (see Fig. 5.9 (a)). Panel (a)

corresponds to the first secondary branch shown by the red dashed line in Fig. 5.9(a),

while panel (b) corresponds to the second secondary branch shown by the green dashed

line in Fig. 5.9(a). We can observe that for both secondary branches there is at least one

eigenvalue with a positive real part for all the values of the driving force, D, i.e., both

branches are unstable for all D values. Taking into account the fact that the 2-mode

primary branch is also unstable for D . 2.24 (see Fig. 5.26(a)), we can conclude that in

a time evolution, a solution will not evolve into either a solution of the 2-mode primary

branch or a solution of the secondary branch. In fact, for these values of D the solution

eventually evolves into a single-droplet solution of period L = 22, and this is confirmed

in the time-dependent simulations presented in Fig. 5.27. For D & 2.24, the solution of

the 2-mode primary branch is linearly stable, and this is confirmed in the time-dependent

simulations presented in Fig. 5.28. We note, however, that a single-droplet solution

of period L = 22 also turns out to be linearly stable for D = 3.0, and so for some

initial conditions the solution may evolve into a single-droplet solution. An example

of such a time-dependent simulation is given in Fig. 5.40, where the initial condition is

u(x, 0) = ū − 0.1 cos(πx/L). It can be observed that after an initial transient period,

the solution evolves into a single-droplet solution. Note, however, that for a uniform

solution on the domain of length L = 22, the growth rate of a 1-mode disturbance

of period L = 22 is 0.036, while the growth rate for a 2-mode disturbance (i.e., a

disturbance of period L = 11) is 0.063 (with the higher modes being stable). Therefore,

in time-dependent simulations with the initial condition equal to ū = 0.4 superimposed

with a small random noise, we expect the long-time dynamics to converge to a 2-mode

solution. This is confirmed in the time-dependent simulation given in Fig. 5.41. It is

interesting to note that, although the energy of the one-droplet turns out to be lower

than the energy on the two-droplet solution, the two-droplet solution is still selected in

time dependent simulations and does not coarsen. As expected, “energy” is not a good

measure for out-of-equilibrium solutions.

Figs. 5.42(a) and (b) correspond to L = 25 at ū = 0.4 (see Fig. 5.9 (b)). Panel (a) corre-

sponds to the first secondary branch shown by the red dashed line in Fig. 5.9(b), while

panel (b) corresponds to the second secondary branch shown by the green dashed line

in Fig. 5.9(b). For the first secondary branch, there are two saddle-node bifurcations,

while for the second secondary branch there are no saddle-node bifurcations. Also, in
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Figure 5.42: The real parts of the dominant eigenvalues s along the n = 2 secondary branch
when L = 25 at ū = 0.4 (Fig. 5.9(b)). Panel (a) corresponds to the first secondary branch
in Fig. 5.9(b) starting D ≈ 0.019 (see the red dashed line), while panel (b) corresponds
to second secondary branch in Fig. 5.9(b) starting D ≈ 1.41 (see the green dashed line).
The solid lines correspond to the eigenvalues with zero imaginary part. The dashed lines
correspond to the eigenvalues with non-zero imaginary part. The solid red squares represent
the saddle-node bifurcations and the solid red triangles represent the Hopf bifurcations.
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Figure 5.43: The real parts of the dominant eigenvalues s along the n = 2 secondary branch
when L = 30 at ū = 0.4 (Fig. 5.9(c)). Panel (a) corresponds to the first secondary branch
starting D ≈ 0.0032 (see the red dashed line), while panel (b) corresponds to second sec-
ondary branch starting D ≈ 1.003 (see the green dashed line). Panel (c) corresponds to the
third secondary branch starting at D ≈ 1.85 and terminating at D ≈ 10.63. The solid lines
correspond to the eigenvalues with zero imaginary part. The dashed lines correspond to the
eigenvalues with non-zero imaginary part. The solid red squares represent the saddle-node
bifurcations and the solid red triangles represent the Hopf bifurcations.
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Figure 5.44: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 30 for ū = 0.4 and D = 5, with the initial condition
u(x, 0) = ū − 0.1 cos(2πx/L) + 0.001 cos(πx/L). Panel (a) shows the time evolution of
the solution for t ∈ [0, 600] in a frame moving at velocity 1.765 (for presentational purposes).
Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows the time
evolution of the norm of the solution.

Fig. 5.42(a) can we see that two eigenvalues with non-zero real parts cross the imag-

inary axis. Therefore, there are two Hopf bifurcation on the first secondary branch,

while Fig. 5.42(b) implies that there are no Hopf bifurcations on the second secondary

branch. In addition, we can observe that for both secondary branches there is at least

one eigenvalue with a positive real part for all the values of the driving force, D. There-

fore, as for L = 22, both branches are unstable for all D values. So, in a time evolution,

a solution will not evolve into a solution of the secondary branch. Instead, it can evolve

into a 2-mode solution (if D belongs to the stable interval), or a single-mode solution,

or a time-periodic solution – such time evolutions are shown in Figs. 5.30–5.32.

Fig. 5.43 corresponds to L = 30 at ū = 0.4 (see Fig. 5.9(c)). Panels (a), (b) and (c)

correspond to the first, second and third secondary branches shown by the red, green

and blue dashed lines, respectively, in Fig. 5.9(c). The first and the second secondary
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Figure 5.45: The real parts of the dominant eigenvalues s along the n = 2 secondary branch
when L = 35 at ū = 0.4 (Fig. 5.9(d)). Panel (a) corresponds to the first secondary branch
starting D ≈ 0.0006 (see the red dashed line), while panel (b) corresponds to second sec-
ondary branch starting D ≈ 0.82 (see the green dashed line). Panel (c) corresponds to the
third secondary branch starting D ≈ 1.23 (see the blue dashed line). Panel (d) corresponds to
the fourth secondary branch between D ≈ 2.32 and D ≈ 8.28 (see the yellow dashed line).
The solid lines correspond to the eigenvalues with zero imaginary part. The dashed lines cor-
respond to the eigenvalues with non-zero imaginary part. The solid red triangles represent the
Hopf bifurcations.

branches go off to infinity and appear to be linearly unstable for all D values. There

are no saddle nodes or Hopf bifurcations on these branches. The third side branch does

not go off to infinity. Instead, it is reconnected to the 2-mode primary branch (at point

4 in Fig. 5.9(c)). In addition, this branch exhibits a saddle-node bifurcation and has

one Hopf bifurcation to time-periodic solutions. Interestingly, we can observe that the

part of this branch connecting point 3 (in Fig. 5.9(c)), for which D = 1.845, to the

saddle-node, for which D = 13.238, appears to be linearly stable. This means that in

a time-dependent simulation a numerical solution may evolve into a symmetry-broken

solution of this secondary branch. An example of such a time-dependent solution is

shown in Fig. 5.44 where D = 5 and the initial condition is chosen to be u(x, 0) =

ū − 0.1 cos(2πx/L) + 0.001 cos(πx/L). It can be observed that the solution initially

tends to evolve into a symmetric 2-mode solution (up to approximately t = 70), but
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Figure 5.46: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 35 for ū = 0.4 and D = 1, with the initial condition
u(x, 0) = ū + 0.001 cos(2πx/L) + 0.001 cos(πx/L). Panel (a) shows the time evolution
of the solution for t ∈ [0, 1000] in a frame moving at velocity 0.13 (for presentational pur-
poses). Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows the
time evolution of the norm of the solution.
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Figure 5.47: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 35 for ū = 0.4 and D = 2, with the initial condition
u(x, 0) = ū + 0.001 cos(2πx/L) + 0.001 cos(πx/L). Panel (a) shows the time evolution
of the solution for t ∈ [0, 1000] in a frame moving at velocity 0.371 (for presentational pur-
poses). Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows the
time evolution of the norm of the solution.
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Figure 5.48: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 35 for ū = 0.4 and D = 3, with the initial condition
u(x, 0) = ū + 0.01 cos(2πx/L). Panel (a) shows the time evolution of the solution for
t ∈ [0, 1000] in a frame moving at velocity 0.748 (for presentational purposes). Panel (b)
shows the time evolution of the energy of the solution. Panel (c) shows the time evolution of
the norm of the solution.
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Figure 5.49: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 35 for ū = 0.4 and D = 3, with the initial condition
u(x, 0) = ū+ 0.01 cos(2π(x+ 2)/L) + 0.01 cos(π(x+ 2)/L). Panel (a) shows the time evo-
lution of the solution for t ∈ [0, 1000] in a frame moving at velocity 0.761 (for presentational
purposes). Panel (b) shows the time evolution of the energy of the solution. Panel (c) shows
the time evolution of the norm of the solution.
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Figure 5.50: Numerical solution of the convective Cahn-Hilliard equation (2.28) on the
periodic domain of length L = 35 for ū = 0.4 and D = 3, with the initial condition
u(x, 0) = ū + 0.01 cos(3π(x − 3)/L). Panel (a) shows the time evolution of the solution
for t ∈ [0, 1000] in a frame moving at velocity 1.026 (for presentational purposes). Panel (b)
shows the time evolution of the energy of the solution. Panel (c) shows the time evolution of
the norm of the solution.

then the symmetry of the solution breaks, and the solution evolves (through oscillations

of a decaying amplitude) into a symmetry-broken solution consisting of two droplets of

different sizes.

Fig. 5.45 corresponds to L = 35 at ū = 0.4 (see Fig. 5.9(d)). Panels (a), (b), (c) and (d)

correspond to the first, second, third and fourth secondary branches shown by the red,

green, blue and yellow dashed lines, respectively, in Fig. 5.9(d). Figs. 5.45(a) and (c)

have two and one Hopf bifurcations, respectively, while there are no Hopf bifurcations

in Figs. 5.45(b) and (d). Figs. 5.45 (a), (b) and (d) imply that there are no stable intervals

for the first, second and fourth secondary branches, while Fig. 5.45(c) implies that there

is a stable interval for the third secondary branch between D ≈ 1.23 and D ≈ 5.26.

Taking into account the fact that for the 2-mode primary branch the stable intervals are

0.82 . D . 1.23 and 2.32 . D . 8.28, we can conclude that for D ∈ (0.82, 1.23) a 2-

mode solution is stable, for D ∈ (1.23, 2.32) a symmetry-broken solution is stable, for

D ∈ (2.32, 5.26) both a 2-mode solution and a symmetry-broken solution are stable, for

D ∈ (5.26, 8.28) a 2-mode solution is stable. Of course, there may exist other branches

of solutions that are stable for these values of D, e.g., solutions of the 1-mode primary
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Figure 5.51: The real parts of the dominant eigenvalues s along the n = 2 secondary branch
when L = 35 at ū = 0.55 (Fig. 5.14(a)). Panel (a) corresponds to the first secondary branch
between D ≈ 0.0007 and D ≈ 0.18 (see the red dashed line). Panel (b) corresponds to the
second secondary branch between D ≈ 1.01 and D ≈ 1.25 (see the green dashed line).
The solid lines correspond to the eigenvalues with zero imaginary part. The dashed lines
correspond to the eigenvalues with non-zero imaginary part. The solid red squares represent
the saddle-node bifurcations.

branch with L = 35 are stable for D . 7.28, or there may exist some time-periodic

solutions (or even quasi-periodic or chaotic solutions). For relatively large values of L

there can also exist n-mode branches with n > 2 (see, e.g., Fig. 5.9), and there can of

course also exist other symmetry-broken solutions bifurcating from n-mode branches

with n > 2. For example, for L = 35, the first four modes are linearly unstable for

ū = 0.4, and, therefore, in time-dependent simulations we may also observe 3- and

4-mode solutions. For other values of D, neither a 1-mode nor 2-mode nor a symmetry-

broken solution are stable. Then, a time-dependent solution can evolve, for example,

into a time-periodic solution or a multi-mode solution (or a quasi-periodic or chaotic

solution).

Some of these predictions are confirmed in the time-dependent simulations presented in

Figs. 5.46–5.50 for ū = 0.55 and L = 35 and for various values of D and various initial

conditions. Fig. 5.46 corresponds to D = 1 for which we expect a 2-mode solution

to be stable. Indeed, choosing u(x, 0) = ū + 0.001 cos(2πx/L) + 0.001 cos(πx/L),

we can observe the time-dependent solution evolves into an apparently stable 2-mode

solution. Fig. 5.47 corresponds to D = 2 for which a symmetry-broken solution is sta-

ble. Indeed, choosing the same initial condition as for Fig. 5.46, we observe the time-

dependent solution evolves into a symmetry-broken solution consisting of two droplets

of different sizes. Figs. 5.48, 5.49 and 5.50 correspond to D = 3 with the initial con-

ditions u(x, 0) = ū + 0.01 cos(2πx/L), u(x, 0) = ū + 0.01 cos(2π(x + 2)/L) and
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Figure 5.52: The real parts of the dominant eigenvalues s along the n = 2 secondary branch
when L = 50 at ū = 0.55 (Fig. 5.14(b)). Panel (a) corresponds to the first secondary branch
starting D ≈ 0.72 (see the red dashed line). Panel (b) corresponds to the second secondary
branch between D ≈ 0.90 and D ≈ 1.68 (see the green dashed line). Panel (c) corresponds to
the third secondary branch between D ≈ 1.21 and D ≈ 1.94 (see the blue dashed line). Panel
(d) shows a zoom of panel (c) around the region of the saddle-node bifurcation. The solid
lines correspond to the eigenvalues with zero imaginary part. The dashed lines correspond to
the eigenvalues with non-zero imaginary part. The solid red squares represent the saddle-node
bifurcations and the solid red triangles represent the Hopf bifurcations.

u(x, 0) = ū+ 0.01 cos(3π(x− 3)/L), respectively. For this value of D, we expect both

a 2-mode solution and a symmetry-broken solution to be stable. Indeed, the results pre-

sented in Fig. 5.48 indicate that the solution converges to a 2-mode solution, whereas

the results presented in Fig. 5.49 indicate that the solution evolves into a symmetry-

broken solution consisting of two droplets of different sizes. It is interesting to note that

there may exist other stable solutions, and, in particular, for the initial condition chosen

for Fig. 5.50, we observe that the solution evolves into a 3-mode solution (that appears

to be stable, at least in the time interval presented in Fig. 5.50). In this thesis, we do not

investigate in detail branches of n-mode solutions with n > 2.

Figs. 5.51(a) and (b) correspond to L = 35 at ū = 0.55 (see Fig. 5.14 (a)). Panel (a)

corresponds to the first secondary branch shown by the red dashed line in Fig. 5.14(a),

while panel (b) corresponds to the second secondary branch shown by the green dashed
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line in Fig. 5.14(a). In Figs. 5.51(a) and (b), looking at the real parts of eigenval-

ues of the secondary branches, we can see that for both branches there are no branch

points, no Hopf bifurcations, and there are no stable intervals. These observations can

be corroborated by time-dependent simulations, however, we decided not to present

such calculations here, as the results agree with the expectations.

Figs. 5.52(a), (b) and (c) correspond to L = 50 at ū = 0.55 (see Fig. 5.14(b)). Panels

(a), (b) and (c) correspond to the first, second and third secondary branches shown by

the red, green and blue dashed lines, respectively, in Fig. 5.14(b). Panel (d) additionally

shows a zoom of panel (c) around the region of the saddle-node bifurcation. There are

two saddle-node bifurcation on the first secondary branch and one saddle-node bifurca-

tion on the second and the third secondary branches. In Figs. 5.52(a) and (c), we can

see that both for the first and the third branches there are no branch points and no Hopf

bifurcations, and there are no stable intervals, while Fig. 5.52(b) shows that the second

branch has one Hopf bifurcation and there is a stable interval between D ≈ 0.90 and

D ≈ 1.68. Taking into account the fact that for the 2-mode primary branch the stable in-

tervals are 0.72 . D . 0.90 and D & 2.12, we can conclude that for D ∈ (0.72, 0.90)

a 2-mode solution is stable, for D ∈ (0.9, 1.68) a symmetry-broken solution is stable,

for D ∈ (1.68, 2.12) both a 2-mode solution and a symmetry-broken solution are sta-

ble, for D & 2.12 a 2-mode solution is stable. For other values of D, neither a 2-mode

solution nor a symmetry-broken solution are stable. Then, as also discussed above for

other cases, a time-dependent solution can, for example, evolve into a one-droplet so-

lution (that is stable for D . 7.13), a time-periodic or multi-mode or quasi-periodic

or chaotic solution. These observations can be corroborated by time-dependent simu-

lations, however, we decided not to present such calculations here, as the results agree

with the expectations and are generally qualitatively similar to the already presented

time-dependent simulations.

5.4.2.5 Regions of linear stability of 2-mode solutions in the (D,L)- and (D, ū)-
planes.

In the previous Section, we have found that the driving force can have an interesting and

non-trivial effect on coarsening behaviour, namely, we found that for a fixed value of ū,

there can exist stability intervals for the driving force D, i.e., a carefully chosen driving

force can be used to prevent coarsening. We also found that there can exist intervals for

the driving force D, where solutions evolve into time-periodic solutions that resemble
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Figure 5.53: Loci of the bifurcation points on the 2-mode primary branch in the (D,L)-plane
for ū = 0.4. The solid lines correspond to the real eigenvalues (having zero imaginary parts).
The dashed lines correspond to the eigenvalues with non-zero imaginary parts. The regions
filled with yellow colour indicate linear stability regions. The instability types in various in-
stability regions are indicated by letters S (to indicate the regions of existence of other stable
steady solutions), O (to indicate the regions of existence of stable oscillatory solutions) and
M (to indicate the regions of existence of stable steady and oscillatory solutions, i.e., stable
solutions of mixed type).

superpositions of two droplets of different sizes that periodically exchange mass. In

this Section, we construct bifurcation diagrams showing the locations of the bifurcation

points on the 2-mode primary branches and obtain the stability regions (i.e., the regions

where coarsening is prevented) in the (D,L)- and (D, ū)-planes. The solid lines in the

diagrams will correspond to the real eigenvalues (having zero imaginary parts). The

dashed lines will correspond to the eigenvalues with non-zero imaginary parts.

Fig. 5.53 shows the loci of the bifurcation points on the 2-mode primary branch in the

(D,L)-plane for ū = 0.4. The dotted lines correspond to L = 22, 25, 30 and 35.

These are the values that were chosen in Figs. 5.9 and 5.26, so the dotted lines make

the comparison with these figures easier. As expected, for L = 22 we have two bi-

furcation points to secondary branches. For L = 25 we have two bifurcation points

to secondary branches and one Hopf bifurcation to a time-periodic branch. Also, for
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Figure 5.54: Loci of the bifurcation points on the 2-mode primary branch in the (D, ū)-plane
for L = 25. The solid lines correspond to the real eigenvalues (having zero imaginary parts).
The dashed lines correspond to the eigenvalues with non-zero imaginary parts. The regions
filled with yellow colour indicate linear stability regions. The instability types in various in-
stability regions are indicated by letters S (to indicate the regions of existence of other stable
steady solutions), O (to indicate the regions of existence of stable oscillatory solutions) and
M (to indicate the regions of existence of stable steady and oscillatory solutions, i.e., stable
solutions of mixed type).

L = 30 we have four bifurcation points to secondary branches and one Hopf bifurca-

tion to a time-periodic branch. Finally, for L = 35 we have five bifurcation points to

secondary branches. We can now clearly see how the various bifurcation points move

as either D or L changes, and we can also obtain stability regions, which are shown by

yellow colour in the diagram. In this diagram and in the other diagrams in this Section,

the instability types in various instability regions are indicated by letters S (to indicate

the regions of existence of other stable steady solutions), O (to indicate the regions of

existence of stable oscillatory solutions) and M (to indicate the regions of existence of

stable steady and oscillatory solutions, i.e., stable solutions of mixed type).

Fig. 5.54 shows the loci of the bifurcation points on the 2-mode primary branch in the

(D, ū)-plane for L = 25. The dotted line corresponds to ū = 0.4. Note we can have

various numbers of bifurcation points to side branches and time-periodic solutions for

smaller values of ū. However, for larger value of ū, we first loose bifurcations to time-

periodic solutions, and then, we loose bifurcations to side branches.
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Figure 5.55: Loci of the bifurcation points on the 2-mode primary branch in the (D,L)-plane
for ū = 0.55. The solid lines correspond to the real eigenvalues (having zero imaginary parts).
The dashed lines correspond to the eigenvalues with non-zero imaginary parts. The regions
filled with yellow colour indicate linear stability regions. Panels (a) and (b) correspond to
the values of L that are less than Lc = 41.32. For these values of L, the primary branch
has a single saddle-node bifurcation (when D is used as the principle bifurcation parameter,
see Fig. 5.14(a)), and consists of two parts, the upper one and the lower one, that we denote
by parts (a) and (b) in Fig. 5.14(a). Panels (a) and (b) correspond to parts (a) and (b) of the
primary branch, respectively. Panels (c), (d) and (e) correspond to the values of L that are
greater than Lc = 41.32. For these values of L, the primary branch has two saddle-node
bifurcations (when D is used as the principle bifurcation parameter, see Fig. 5.14(b)), and
consists of three parts, the upper one, the middle one, connecting the two saddle-nodes, and
the lower one, starting from the second saddle-node and extending to infinity. These parts of
the primary branch were denoted by parts (a), (b) and (c) in Fig. 5.14(d), and panels (c), (d)
and (e) correspond these parts, respectively. The instability types in various instability regions
are indicated by letters S (to indicate the regions of existence of other stable steady solutions),
O (to indicate the regions of existence of stable oscillatory solutions) and M (to indicate the
regions of existence of stable steady and oscillatory solutions, i.e., stable solutions of mixed
type).
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Figure 5.56: Loci of bifurcation points on the n = 2 primary branch in the (D, ū)-plane for
L = 35. The solid lines correspond to the eigenvalues with zero imaginary part. The letter S
in the instability regions indicates the existence of other stable steady solutions.

Fig. 5.55 shows the loci of the bifurcation points on the 2-mode primary branch in the

(D,L)-plane for ū = 0.55. We have split this figure in several parts. Panels (a) and (b)

show correspond to L < Lc ≈ 41.32. For these values of L, the primary branch has

one saddle-node bifurcation, when D is used as the principle bifurcation parameter, see

Fig. 5.14(a), and the branch returns to D = 0. Thus, the bifurcation branch consists of

two parts, the upper and lower parts, that we denote by parts (a) and (b), respectively,

in Fig. 5.14(a). Panels (a) and (b) of Fig. 5.55 correspond to parts (a) and (b) of the

primary branch, respectively. Panels (c), (d) and (e) correspond to L > Lc ≈ 41.32.

For these values of L, the primary branch has a pair of saddle-node bifurcations, when

D is used as the principle bifurcation parameter, see Fig. 5.14(b), and consists of three

parts, the upper one denoted by letter (a), the middle one (connecting the two saddle-

nodes) denoted by letter (b), and the lower one (starting from the second saddle-node

and extending to infinity) denoted by letter (c). Panels (c), (d) and (e) of Fig. 5.55

correspond these parts (a), (b) and (c), respectively.

Fig. 5.56 shows the loci of the bifurcation points on the 2-mode primary branch in the

(D, ū)-plane for L = 35. The dotted lines correspond to ū = 0.4 and 0.55. Note that

the thick solid line in this figure show the locations of the saddle-node bifurcations.

We note that for ū = 0.4 we have five bifurcation points, while for ū = 0.55 we have
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four bifurcation points and one saddle-node bifurcation, in agreement with Fig. 5.26(d).

Note also that the line showing the locations of the saddle-node bifurcations seems to

emerge from one of the branches showing the location of a bifurcation point (see the

inset in the figure). This is in agreement with the theoretical consideration presented

in Sect. 4.5. For the given domain size L for a 2-mode solution, we can find the value

ūc of ū at which the spatially-uniform solution changes its stability and a single-mode

non-uniform solution emerges. This value is given by the formula

ūc =

√
1− k2

3
, (5.75)

where k = 4π/L (the wavenumber is equal to 4π/L but not to 2π/L, since the value of

L that we consider corresponds to a 2-mode solution). For this value of ū, we can then

find the value Dc by formula (4.97) which gives the value of the driving force at which

the nature of the primary bifurcation changes (between subcritical and supercritical).

Thus, we expect (and, in fact, observe in our numerical results, that we decided not to

show here) that when L is fixed and D is used as the principal continuation parameter,

we will find that for ū > ūc the primary branch has a single saddle-node bifurcation and

returns to D = 0, for ū = ūc, the primary branch has a single saddle-node bifurcation

but it does not return to D = 0, but instead hits the D axis at D = Dc. For ū is

increased slightly beyond ūc, there appears one more saddle-node bifurcation out of

point (Dc, uc), and the branch now extend to infinity. For L = 35, we find that k =

0.3590, ūc = 0.5389 and Dc = 1.4480. This is in agreement with the results presented

in Fig. 5.56 (see the inset showing point (1.4480,0.5389) by a black circle – it appears

that the branch showing the locations of saddle-node bifurcations appears exactly from

this point).

We note that for a more complete picture, it would be of benefit to indicate more

precisely which non-2-mode solutions (e.g., droplet-mode, symmetry-broken or time-

periodic solutions) are stable in the various regions where 2-mode solutions are unsta-

ble. However, we do not present such a ‘morphological phase diagram’ in the present

thesis and leave this as a topic for future investigation.



Chapter 6

Two-dimensional solutions of the
standard and convective Cahn-Hilliard
equations

6.1 Introduction

In this chapter, we present some preliminary computations of bifurcation diagrams for

single- and double-droplet solutions (or rather single- and double-hole solution for ū >

0) for the following two-dimensional convective Cahn-Hilliard equation:

ut = −Duux −∇2(u− u3 +∇2u) (6.1)

on a domain (x, y) ∈ [−Lx, Lx] × [−Ly, Ly] that is periodic both in the x- and y-

direction. Note that for D = 0, we obtain the two-dimensional standard Cahn-Hilliard

equation. For the computations, we use a numerical continuation procedure imple-

mented in the continuation and bifurcation package Matcont [28] for Matlab. The

details of the computational procedure are explained in Section 6.2. The case of the

standard Cahn-Hilliard equation (D = 0) is analysed in Section 6.3 and the case of

the convective Cahn-Hilliard equation is analysed in Section 6.4. We start the compu-

tations on a domain that is narrow in the y-direction and from neutrally stable small-

amplitude sinusoidal waves in the x-direction, and perform first continuations in the

domain-size parameter Lx (that is the half-domain size in the x-direction). This leads to

167
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one-dimensional droplet/hole solutions. We then perform continuation in the domain-

size parameter Ly (that is the half-domain size in the y-direction) obtaining bifurcations

to side branches of two-dimensional droplet/hole solutions. We can then extend these

droplet/hole solutions periodically either in the x- or y-direction and study the effect

of driving on such double-droplet/hole solutions. In the present thesis, we restrict our

attention to double-droplet/hole solutions extended in the x-direction. We additionally

compute side branches of symmetry-broken solutions. We note that our numerical con-

tinuation code is capable of computing branches of time-periodic solutions. However,

for two-dimensional equations, computation of branches of time-periodic solutions is

time-consuming, and therefore this is left for future investigation. We also note that

none of the computed branches of double-droplet/hole solutions extends to infinity in

D. This means that there may exist additional branches of solutions that we have not

computed yet. This is as well left as a topic for future investigation. In the future, we

also plan to perform time-dependent simulations to verify the theoretical predictions

and to better understand the behaviour of the solutions of two-dimensional standard and

convective Cahn-Hilliard equations.

6.2 Numerical procedure

In this section, we discuss how continuation techniques can be used to compute branches

of stationary and travelling periodic solutions and branches of time-periodic solutions of

the two-dimensional standard (D = 0) and convective (D 6= 0) Cahn-Hilliard equations

(6.1). Introducing a generalised moving coordinate x→ x− a(t) in equation (6.1), we

obtain

ut = ȧux −Duux −∇2(u− u3 +∇2u), (6.2)

where the dot denotes differentiation with respect to time. As in Section 5.3.2.3, we

assume that the speed of the moving frame, ȧ, is not necessarily a constant, but can

vary in time. This will allow us to compute not only stationary and travelling peri-

odic solutions but also time-periodic solutions. We consider this equation on a domain

(x, y) ∈ [−Lx, Lx]× [−Ly, Ly] that is periodic both in the x- and y-direction.

Solution u can be represented by the following Fourier series:

u =
∑

kx,ky∈Z

ûky ,kx(t) exp(ikxqxx+ ikyqyy), (6.3)
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where qx = π/Lx, qy = π/Ly. Also, since u is a real-valued function, the Fourier

coefficients satisfy û−ky ,−kx = (ûky ,kx)
∗, where the asterisk denotes complex conjuga-

tion. Therefore, from all the Fourier coefficients only those with kx ∈ Z and ky > 0

and those with kx ≥ 0 and ky = 0 are independent. The remaining coefficients can be

obtained by complex conjugations.

As usual, we impose the condition fixing the mean value of the solution over the domain,

1

4LxLy

∫ Ly

−Ly

∫ Lx

−Lx
u dxdy = ū. (6.4)

To break the translational symmetry due to periodic boundary conditions in the x- and

y-directions, we can impose, for example, the following integral constraints:∫ Ly

−Ly

∫ Lx

−Lx
u sin(nxqxx) dxdy = 0,

∫ Ly

−Ly

∫ Lx

−Lx
u sin(nyqyy) dxdy = 0, (6.5)

where nx and ny are some chosen positive integers. These conditions are equivalent to

requiring that

Im(û0,nx) = 0, Im(ûny ,0) = 0, (6.6)

where Im is used to denote imaginary parts.

Next, we truncate the Fourier series for u so that kx = −Mx,−Mx + 1, . . . , Mx and

ky = −My,−My + 1, . . . , My for sufficiently large integers Mx and My and substitute

in (6.2) obtaining a dynamical system for the real and imaginary parts of the Fourier

coefficients ûky ,kx with

(kx, ky) ∈
(
{−Mx, . . . , Mx} × {1, . . . , My}

)
∪
(
{0, . . . , Mx} × {0}

)
. (6.7)

Note that due to (6.4)

û0,0 = (2Mx + 1)(2My + 1)ū, (6.8)

and also that Im(û0,nx) = Im(ûny ,0) = 0. Thus, it can be easily verified that we obtain

a system of (2Mx + 1)(2My + 1)− 3 ODEs.

Note that since Im(û0,nx) = 0, we obtain d
(
Im(û0,nx)

)
/dt = 0, and, thus, the right-

hand side of the equation for d
(
Im(û0,nx)

)
/dt can be used to express the speed ȧ(t).
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In our numerical implementation, we use fast Fourier transforms to obtain the right-

hand sides for the dynamical system for the real and imaginary parts of the Fourier

coefficients. Stationary and travelling periodic solutions of (6.1) correspond to steady-

state solutions of the dynamical system. We use the Matlab package Matcont [28] to

perform continuation with respect to the domain-size parameter in the x-direction, Lx,

or the domain-size parameter in the y-direction, Ly, (note that Lx and Ly are actu-

ally half-domain sizes in the corresponding directions, as the computational domain is

[−Lx, Lx]× [−Ly, Ly]), or the driving force D, or the mean value of the solution, ū. We

can obtain branches of stationary and travelling periodic solutions. In addition to branch

points that may appear on the solution branches and that correspond to bifurcations to

side branches, our formulation allows for the detection of Hopf bifurcation points that

correspond bifurcations to time-periodic solutions. The computation of branches of

time-periodic solutions for two-dimensional equations is quite time-consuming, and,

therefore, in the present thesis we have not computed such branches. This is left as a

topic for future investigation.

6.3 The case of the standard Cahn-Hilliard equation

In this section, we compute solutions to the standard Cahn-Hilliard equation, when

D = 0, for the case when the average value of the solution is ū = 0.4 and 0.55. The

steady solutions u0 are characterised by the norm

‖δu0‖ =

√
1

4LxLy

∫ Ly

−Ly

∫ Lx

−Lx
u2

0 dxdy. (6.9)

We use the half-domain size in the x-direction, Lx, as the control parameter. To initiate

the continuation procedure, we choose a sufficiently small Ly (the half-domain size in

the y-direction) and a small amplitude sinusoidal wave of a cutoff wavelength Lc in the

x-direction that is obtained from the linear stability analysis discussed in Section 3.2,

i.e.,

Lx = Lc/2 =
π

kc
, where kc =

√
1− 3ū2. (6.10)

For the case when ū = 0.4, we find Lc ≈ 4.357. By choosing this value of Lc, we

can obtain one-dimensional solutions that we characterise as one-hole solutions (rather
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Figure 6.1: (a) The bifurcation diagram of one-dimensional (without y-dependence) steady
solutions of the two-dimensional standard Cahn-Hilliard equation (6.1), when D = 0, for
the case when ū = 0.4, showing the dependence of the norm ‖δu0‖ on the domain-size
parameter Lx (that is the half-domain size in the x-direction) (cf. Fig. 4.3(a)). The dotted
line corresponds to the value

√
1− ū2 ≈ 0.9165 towards which the norm converges as Lx

increases. The inset gives a zoom at small values of Lx. The red squares correspond to Lx =
5.5, 6.25, 7.5 and 8.75 and the corresponding solution profiles u0(x, y) are shown in panels
(b), (c), (d) and (e), respectively.
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Figure 6.2: (a) The bifurcation diagram of one-hole steady solutions of the two-dimensional
standard Cahn-Hilliard equation (6.1), when D = 0, for the case when ū = 0.4, showing the
dependence of the norm ‖δu0‖ on the domain-size parameter Ly (that is the half-domain size
in the y-direction) when Lx = 5.5. The black dashed line corresponds to one-dimensional
solutions without dependence on y, starting from the solution shown in Fig. 6.1(b). The circle
on this line shows a bifurcation point to a side branch of fully two-dimensional solutions that
is shown by the red solid line. The diamond shows the point at which the branch terminates
and the corresponding solution profile is shown in panel (c). The square corresponds to the
point where Ly = 5.5 (and, therefore, Lx = Ly). The corresponding solution profile is shown
in panel (b).
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than one-droplet solutions) – as we will see later, for ū > 0 it is more appropriate to

characterise such solutions as hole solutions rather than droplet solutions.

Fig. 6.1 shows the results of the calculations for ū = 0.4, where panel (a) shows the

bifurcation diagram and panels (b-e) show solution profiles u0(x, y) for the values of

the half-domain size in the x-direction Lx = 5.5, 6.25, 7.5 and 8.75. In Fig. 6.1(a), the

dependence of the norm ‖δu0‖ on the half-domain size in the x-direction, Lx, is shown.

The branch of spatially non-uniform solutions bifurcates supercritically from the ho-

mogeneous branch at Lx = Lc/2. We can see that the norm increases monotonically

and tends to 0.9165 as Lx increases, in the same way as in Fig. 4.3(a). The dotted line

corresponds to the value
√

1− ū2 ≈ 0.9165, and we can see that the norm approaches

this value as L increases, in agreement with (4.35).

After performing the continuation with respect to Lx, we next perform continuation

with respect to Ly starting from solutions corresponding to Lx = 5.5, 6.25, 7.5 and 8.75.

The corresponding results are shown in Figs. 6.2, 6.3, 6.4 and 6.5. Panels (a) in these

figures show the bifurcation diagrams where the norm ‖δu0‖ is plotted over Ly. The

(black) dashed lines correspond to one-dimensional solutions without dependence on y.

For all such branches, we find bifurcation points (shown by blue circles) from which

branches of two-dimensional solutions emanate. Such branches are shown by (red)

solid lines. Interestingly, all these branches terminate at points (shown with diamonds)

which correspond to one-dimensional solutions without x-dependence (we note that for

solutions without x-dependence, the convective term vanishes, so these solutions are,

in fact, one-dimensional solutions of the standard Cahn-Hilliard equation). So, these

branches connect y-translation-invariant branches of solutions to x-translation-invariant

branches of solutions, but the solutions on the branches themselves have none of these

translational symmetries. We note that similar branches of solution have been found

by Bribesh [14] in the study of free-surface films of binary liquid mixtures for the case

of flat films without energetic bias. Apparently, these points belong to branches of

such one-dimensional solutions, which are not shown in the bifurcation diagrams. The

solution profiles corresponding to these points are shown in Figs. 6.2(b), 6.3(d), 6.4(d)

and 6.5(d) for Lx = 5.5, 6.25, 7.5 and 8.75, respectively. The squares in the bifurcation

diagrams correspond to points where Lx = Ly. For Lx = 5.5, we find that there exists

only one such solution, shown in Figs. 6.2(a). However, for Lx = 6.25, 7.5 and 8.75,

there exist two such solutions for each Lx. Such solutions are indicated by symbols 1

and 2 in the bifurcation diagrams, and the corresponding solution profiles are shown

in panels (b) and (c) of Figs. 6.3, 6.4 and 6.5, respectively. We can observe that the
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Figure 6.3: (a) The bifurcation diagram of one-hole steady solutions of the two-dimensional
standard Cahn-Hilliard equation (6.1), when D = 0, for the case when ū = 0.4, showing the
dependence of the norm ‖δu0‖ on the domain-size parameter Ly (that is the half-domain size
in the y-direction) when Lx = 6.25. The black dashed line corresponds to one-dimensional
solutions without dependence on y, starting from the solution shown in Fig. 6.1(c). The circle
on this line (see the inset) shows a bifurcation point to a side branch of fully two-dimensional
solutions that is shown by the red solid line. The diamond (see the inset) shows the point at
which the branch terminates and the corresponding solution profile is shown in panel (d).
Squares 1 and 2 corresponds to the points where Ly = 6.25 (and, therefore, Lx = Ly). The
corresponding solution profiles are shown in panels (b) and (c).
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solution profiles shown in Figs. 6.3(b), 6.4(c) and 6.5(c), for Lx = 6.25, 7.5 and 8.75,

respectively, are one-hole solutions. We will use the points that correspond to these

solution profiles to start continuation in the driving force parameter D, which will be

discussed in Section 6.4.

The results analogous to those given in Figs. 6.1–6.5 but for ū = 0.55 are presented

in Figs. 6.6–6.8. Fig. 6.6 corresponds to continuation with respect to Lx from a small-

amplitude sinusoidal wave of a cutoff wavelength that is Lc ≈ 5.33 for ū = 0.55.

Fig. 6.6(a) shows the dependence of the norm ‖δu0‖ on Lx, and we can see that the

branch of spatially non-uniform solutions bifurcates subcritically from Lx = Lc/2, as

expected for this value of ū (see Fig. 4.5(a)). The dotted line corresponds to the value
√

1− ū2 ≈ 0.8352, and we can see that the branch tends to this value, as expected (see

the discussion of Fig. 4.5(a)). Panels (b) and (c) show the solution profiles for Lx =

8.75, were panel (b) corresponds to the solution on the lower part of the bifurcation

diagram (point 1 in the inset of Fig. 6.6(a)) and panel (c) corresponds to the solution on

the upper part of the bifurcation diagram (point 2 in the inset of Fig. 6.6(a)). Panel (d)

show the solution profile for Lx = 12.5 (which corresponds to point 3 in the inset of

Fig. 6.6(a)).

The results of continuation with respect toLy starting from solutions given in Figs. 6.6(c)

and (d) are presented in Figs. 6.7 and 6.8 that correspond to Lx = 8.75 and 12.5, respec-

tively. As in Figs. 6.2–6.5 corresponding to ū = 0.4, panels (a) show the bifurcation

diagrams where the norm ‖δu0‖ is plotted over Ly. The (black) dashed lines correspond

to one-dimensional solutions without dependence on y, and (red) solid lines correspond

to side branches of two-dimensional solutions (the bifurcation points are shown by cir-

cles). As for ū = 0.4, these branches terminate at points (shown with diamonds) which

correspond to one-dimensional solutions without x-dependence. So, as for ū = 0.4,

these branches connect y-translation-invariant branches of solutions to x-translation-

invariant branches of solutions, but the solutions on the branches themselves have none

of these translational symmetries. The solution profiles corresponding to the points at

which the branches terminate are shown in Figs. 6.7(c) and 6.8(d) for Lx = 8.75 and

12.5, respectively. The squares in the bifurcation diagrams correspond to points where

Lx = Ly. For Lx = 8.75, we find that there exists only one such solution, shown in

Figs. 6.7(a). However, for Lx = 12.5, there exist two such solutions for each Lx. Such
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Figure 6.4: (a) The bifurcation diagram of one-hole steady solutions of the two-dimensional
standard Cahn-Hilliard equation (6.1), when D = 0, for the case when ū = 0.4, showing the
dependence of the norm ‖δu0‖ on the domain-size parameter Ly (that is the half-domain size
in the y-direction) when Lx = 7.5. The black dashed line corresponds to one-dimensional
solutions without dependence on y, starting from the solution shown in Fig. 6.1(d). The circle
on this line shows a bifurcation point to a side branch of fully two-dimensional solutions that
is shown by the red solid line. The diamond shows the point at which the branch terminates
and the corresponding solution profile is shown in panel (d). Squares 1 and 2 corresponds to
the points where Ly = 7.5 (and, therefore, Lx = Ly). The corresponding solution profiles are
shown in panels (b) and (c).
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Figure 6.5: (a) The bifurcation diagram of one-hole steady solutions of the two-dimensional
standard Cahn-Hilliard equation (6.1), when D = 0, for the case when ū = 0.4, showing the
dependence of the norm ‖δu0‖ on the domain-size parameter Ly (that is the half-domain size
in the y-direction) when Lx = 8.75. The black dashed line corresponds to one-dimensional
solutions without dependence on y, starting from the solution shown in Fig. 6.1(e). The circle
on this line shows a bifurcation point to a side branch of fully two-dimensional solutions that
is shown by the red solid line. The diamond shows the point at which the branch terminates
and the corresponding solution profile is shown in panel (d). Squares 1 and 2 corresponds to
the points where Ly = 8.75 (and, therefore, Lx = Ly). The corresponding solution profiles
are shown in panels (b) and (c).
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Figure 6.6: (a) The bifurcation diagram of one-dimensional (without y-dependence) steady
solutions of the two-dimensional standard Cahn-Hilliard equation (6.1), when D = 0, for
the case when ū = 0.55, showing the dependence of the norm ‖δu0‖ on the domain-size pa-
rameter Lx (that is the half-domain size in the x-direction) (cf. Fig. 4.5(a)). The dotted line
corresponds to the value

√
1− ū2 ≈ 0.8352 towards which the norm converges as Lx in-

creases. The inset gives a zoom at small values of Lx. The red squares 1 and 2 correspond to
Lx = 8.75 and the red square 3 corresponds to 12.5. The solution profiles u0(x, y) corre-
sponding to the red squares 1, 2 and 3 are shown in panels (b), (c) and (d), respectively.
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Figure 6.7: (a) The bifurcation diagram of one-hole steady solutions of the two-dimensional
standard Cahn-Hilliard equation (6.1), when D = 0, for the case when ū = 0.55, showing the
dependence of the norm ‖δu0‖ on the domain-size parameter Ly (that is the half-domain size
in the y-direction) when Lx = 8.75. The black dashed line corresponds to one-dimensional
solutions without dependence on y, starting from the solution shown in Fig. 6.6(c). The circle
on this line shows a bifurcation point to a side branch of fully two-dimensional solutions that
is shown by the red solid line. The diamond shows the point at which the branch terminates
and the corresponding solution profile is shown in panel (c). The square corresponds to the
point where Ly = 8.75 (and, therefore, Lx = Ly). The corresponding solution profile is
shown in panel (b).
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Figure 6.8: (a) The bifurcation diagram of one-hole steady solutions of the two-dimensional
standard Cahn-Hilliard equation (6.1), when D = 0, for the case when ū = 0.55, showing the
dependence of the norm ‖δu0‖ on the domain-size parameter Ly (that is the half-domain size
in the y-direction) when Lx = 12.5. The black dashed line corresponds to one-dimensional
solutions without dependence on y, starting from the solution shown in Fig. 6.6(d). The circle
on this line shows a bifurcation point to a side branch of fully two-dimensional solutions that
is shown by the red solid line. The diamond shows the point at which the branch terminates
and the corresponding solution profile is shown in panel (d). Squares 1 and 2 corresponds to
the points where Ly = 12.5 (and, therefore, Lx = Ly). The corresponding solution profiles
are shown in panels (b) and (c).
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solutions are indicated by symbols 1 and 2 in the bifurcation diagram, Fig. 6.8(a), and

the corresponding solution profiles are shown in panels (b) and (c) of Fig. 6.8. We can

observe that the solution profile shown in Fig. 6.8(c) is a one-hole solution. We will use

the point corresponding to this solution profile to start continuation in the driving force

parameter D. This will be discussed in Section 6.4.

6.4 The case of the convective Cahn-Hilliard equation

In this section, we present some preliminary results on the effect of the driving force on

the one-hole solutions computed in the previous section.

First, we consider the case of ū = 0.4 and take the one-hole solutions presented in

Figs. 6.2(b), 6.3(b), 6.4(c), 6.5(c) that correspond to Lx = Ly = 5.5, 6.25, 7.5 and

8.75, respectively, and extend them periodically in the x-direction to obtain two-hole

solutions on the domain [−2Lx, 2Lx] × [−Ly, Ly]. We then perform continuation with

respect to the driving force parameter D.

In Fig. 6.9(a), the dependence of the norm ‖δu0‖ on the driving force parameter D is

shown for Lx = Ly = 5.5. The black solid line shows the branch of solutions with

discrete translational symmetry in the x-direction. The red circles on this branch in-

dicate bifurcation points to branches of symmetry-broken solutions, and the (blue and

red) dashed lines emanating from these points show these side branches of symmetry-

broken solutions. The blue squares show the points at which these branches terminate.

The solution profile shown in panel (b) corresponds to the point at which the primary

branch terminates. The solution profile shown in panel (c) corresponds to the point at

which the side branch emanating from the first bifurcation point terminates. Apparently,

these solution profiles are one-dimensional without x-dependence, and the profiles are

exactly the same and belong to the same horizontal line of such one-dimensional so-

lutions. This branch is shown by the dot-dashed horizontal line. The solution profile

shown in panel (d) corresponds to the point at which the side branch emanating from

the second bifurcation point terminates. Apparently, this solution is one-dimensional

without y-dependence, and it belongs to a branch of such one-dimensional one-droplet

solutions. This branch was already computed in Fig. 5.9(a) (see the thick blue line), and

part of this branch is shown in Fig. 6.9(a) by a non-horizontal (pink) dot-dashed line.

Fig. 6.10 shows solution profiles from all of the branches in Fig. 6.9(a) that correspond
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Figure 6.9: (a) The bifurcation diagram of two-hole solutions of the two-dimensional convec-
tive Cahn-Hilliard equation (6.1), for the case when ū = 0.4 and Lx = Ly = 5.5, showing the
dependence of the norm ‖δu0‖ on the driving force parameter D. The solid line corresponds
to the primary branch of solutions with discrete translational symmetry in the x-direction.
The dashed lines show side branches of symmetry-broken solutions. The red circles indicate
pitchfork bifurcations to the side branches. The blue squares show the points at which the
branches terminate, and the profiles corresponding to these points are shown in panels (b),
(c) and (d) for the primary and the first and second side branches, respectively, on the domain
[−2Lx, 2Lx] × [−Ly, Ly]. In addition, the horizontal dot-dashed line shows the branch of
one-dimensional solutions without x-dependence on which the primary branch (black solid
line) and the first side branch (blue dashed line) terminate. The other (pink) dot-dashed line
shows the branch of one-dimensional (without y-dependence) one-droplet solutions on which
the second side branch (red dashed line) terminates. The vertical dotted line corresponds to
D = 1.3. Points 1–5 on the primary and side branches correspond to D = 1.3, and the
corresponding solution profiles are shown in Figs. 6.10(a)–(e), respectively.
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Figure 6.10: Solution profiles of the two-dimensional convective Cahn-Hilliard equation
(6.1) shown on the domain [−2Lx, 2Lx]× [−Ly, Ly], for the case when ū = 0.4, Lx = Ly =
5.5 and D = 1.3. Panels (a)–(e) correspond to points 1–5, respectively, in the bifurcation
diagram shown in Fig. 6.9(a).
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Figure 6.11: (a) The bifurcation diagram of two-hole solutions of the two-dimensional con-
vective Cahn-Hilliard equation (6.1), for the case when ū = 0.4 and Lx = Ly = 6.25,
showing the dependence of the norm ‖δu0‖ on the driving force parameter D. The solid line
corresponds to the primary branch of solutions with discrete translational symmetry in the x-
direction. The dashed line shows a side branch of symmetry-broken solutions and it connects
two pitchfork bifurcations on the primary branch (shown by the red circles). The vertical dot-
ted line corresponds to D = 1.1. Points 1–4 on the branches correspond to D = 1.1 and
the corresponding solution profiles are shown in panels (b)–(e), respectively, on the domain
[−2Lx, 2Lx]× [−Ly, Ly].

to D = 1.3 (see a vertical dotted line in Fig. 6.9(a)). Panels (a)–(e) show the solution

profiles corresponding to points 1–5, respectively, indicated in Fig. 6.9(a).
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In Fig. 6.11(a), the dependence of the norm ‖δu0‖ on the driving force parameter D

is shown for ū = 0.4 and Lx = Ly = 6.25. The black solid line shows the branch

of solutions with discrete translational symmetry in the x-direction. This branch starts

at D = 0, but then has a turning point (saddle-node) and returns to D = 0. The red

circles on this branch indicate bifurcation points, and we find that there is a single side

branch of symmetry-broken solutions that connects these two points shown by the blue

dashed line. Apparently, the there are certain transitions in the bifurcation diagrams are

involved as Lx, Ly vary from 5.5 to 6.25. However, we do not investigate this further

in this thesis. Panels (b)–(e) show the solution profiles corresponding to points 1–4,

respectively, indicated in Fig. 6.11(a) for D = 1.1.

In Fig. 6.12(a), the dependence of the norm ‖δu0‖ on the driving force parameter D

is shown for ū = 0.4 and Lx = Ly = 7.5. The black solid line shows the branch of

solutions with discrete translational symmetry in the x-direction. This branch starts at

D = 0, but then has a turning point (saddle-node) and returns to D = 0. The red circles

on this branch indicate bifurcation points, and, as for the case of Lx = Ly = 6.25,

we find that there is a single side branch of symmetry-broken solutions that connects

these two points shown by the red dashed line. Panels (b)–(e) show the solution profiles

corresponding to points 1–4, respectively, indicated in Fig. 6.12(a) for D = 0.85.

In Fig. 6.13(a), the dependence of the norm ‖δu0‖ on the driving force parameter D is

shown for ū = 0.4 and Lx = Ly = 8.75. The black solid line shows the branch of

solutions with discrete translational symmetry in the x-direction. This branch starts at

D = 0, but then has a turning point (saddle-node) and returns to D = 0. The red circles

on this branch indicate bifurcation points, and, as for the cases of Lx = Ly = 6.25 and

Lx = Ly = 8.75, we find that there is a single side branch of symmetry-broken solutions

that connects these two points shown by the red dashed line. Panels (b)–(e) show the

solution profiles corresponding to points 1–4, respectively, indicated in Fig. 6.13(a) for

D = 0.85.

Next, we consider the case of ū = 0.55 and take the one-hole solutions presented in

Figs. 6.7(b) and 6.8(b) that correspond to Lx = Ly = 8.75 and 12.5, respectively, and

extend them periodically in the x-direction to obtain two-hole solutions, and perform

continuation with respect to the driving force parameter D.
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Figure 6.12: (a) The bifurcation diagram of two-hole solutions of the two-dimensional con-
vective Cahn-Hilliard equation (6.1), for the case when ū = 0.4 and Lx = Ly = 7.5,
showing the dependence of the norm ‖δu0‖ on the driving force parameter D. The solid line
corresponds to the primary branch of solutions with discrete translational symmetry in the x-
direction. The dashed line shows a side branch of symmetry-broken solutions and it connects
two pitchfork bifurcations on the primary branch (shown by the blue circles). The vertical
dotted line corresponds to D = 0.85. Points 1–4 on the branches correspond to D = 0.85 and
the corresponding solution profiles are shown in panels (b)–(e), respectively, on the domain
[−2Lx, 2Lx]× [−Ly, Ly].
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Figure 6.13: (a) The bifurcation diagram of two-hole solutions of the two-dimensional con-
vective Cahn-Hilliard equation (6.1), for the case when ū = 0.4 and Lx = Ly = 8.75,
showing the dependence of the norm ‖δu0‖ on the driving force parameter D. The solid line
corresponds to the primary branch of solutions with discrete translational symmetry in the x-
direction. The dashed line shows a side branch of symmetry-broken solutions and it connects
two pitchfork bifurcations on the primary branch (shown by the blue circles). The vertical
dotted line corresponds to D = 0.75. Points 1–4 on the branches correspond to D = 0.85 and
the corresponding solution profiles are shown in panels (b)–(e), respectively, on the domain
[−2Lx, 2Lx]× [−Ly, Ly].



Chapter 6. 2D solutions of the standard and convective Cahn-Hilliard equations 188

(a)
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

D

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68
‖δ
u
0
‖

1
2

4

3

(b)

Figure 6.14: (a) The bifurcation diagram of two-hole solutions of the two-dimensional con-
vective Cahn-Hilliard equation (6.1), for the case when ū = 0.55 and Lx = Ly = 8.75,
showing the dependence of the norm ‖δu0‖ on the driving force parameter D. The solid line
corresponds to the primary branch of solutions with discrete translational symmetry in the x-
direction. The blue square shows the point at which this branches terminates, and the profile
corresponding to this point is shown in panel (b) on the domain [−2Lx, 2Lx] × [−Ly, Ly].
The dashed line shows a side branch of symmetry-broken solutions that starts at a pitchfork
bifurcation on the primary branch shown by the red circle and continues to D = 0. In addi-
tion, the horizontal dot-dashed line shows the branch of one-dimensional solutions without
x-dependence on which the primary branch (black solid line) terminates. The vertical dotted
line corresponds to D = 1.7. Points 1–4 on the branches correspond to D = 1.7 and the
corresponding solution profiles are shown in Figs. 6.15(a)–(d), respectively.
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Figure 6.15: Solution profiles of the two-dimensional convective Cahn-Hilliard equation
(6.1) shown on the domain [−2Lx, 2Lx]×[−Ly, Ly], for the case when ū = 0.55, Lx = Ly =
8.75 and D = 1.7. Panels (a)–(d) correspond to points 1–4, respectively, in the bifurcation
diagram shown in Fig. 6.14(a).

In Fig. 6.14(a), the dependence of the norm ‖δu0‖ on the driving force parameter D is

shown for ū = 0.55 and Lx = Ly = 8.75. The black solid line shows the branch of

solutions with discrete translational symmetry in the x-direction, and it terminates at a

point (shown by a blue square) that corresponds to a one-dimensional solution without

x-dependence shown in Fig. 6.14(b). This point belongs to a branch of such solutions

without x-dependence shown by the horizontal dot-dashed line. The red circle on the

primary branch indicates the bifurcation point to a side branch of symmetry-broken

solutions shown by the red dashed line. This branch has a turning point (saddle-node)

at goes to D = 0. Panels (b)–(e) show the solution profiles corresponding to points

1–4, respectively, indicated in Fig. 6.14(a) for D = 1.7. We note that it may seem from

Fig. 6.14(a) that the primary branch (black solid line) terminates at a point that belongs

to the the side branch (red dashed line). However, it has been verified that this is not the

case.

In Fig. 6.16(a), the dependence of the norm ‖δu0‖ on the driving force parameter D is

shown for ū = 0.55 and Lx = Ly = 12.5. The black solid line shows the branch of

solutions with discrete translational symmetry in the x-direction. This branch starts at
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Figure 6.16: (a) The bifurcation diagram of two-hole solutions of the two-dimensional con-
vective Cahn-Hilliard equation (6.1), for the case when ū = 0.55 and Lx = Ly = 12.5,
showing the dependence of the norm ‖δu0‖ on the driving force parameter D. The solid line
corresponds to the primary branch of solutions with discrete translational symmetry in the
x-direction. The dashed lines show side branches of symmetry-broken solutions that start at
pitchfork bifurcation on the primary branch (shown by the red circles). The vertical dotted
lines correspond to D = 0.4 and 0.9. Points 1–4 on the branches correspond to D = 0.4
and the corresponding solution profiles are shown in panels (b)–(e), respectively. Points I–IV
on the branches correspond to D = 0.9 and the corresponding solution profiles are shown in
Figs. 6.17(a)–(d), respectively, on the domain [−2Lx, 2Lx]× [−Ly, Ly].
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Figure 6.17: Solution profiles of the two-dimensional convective Cahn-Hilliard equation
(6.1) show on the domain [−2Lx, 2Lx]× [−Ly, Ly], for the case when ū = 0.55, Lx = Ly =
12.5 and D = 0.9. Panels (a)–(d) correspond to points I–IV, respectively, in the bifurcation
diagram shown in Fig. 6.16(a).

D = 0, but then has a turning point (saddle-node) and returns to D = 0. The red circles

on this branch indicate the bifurcation points to a side branches of symmetry-broken

solutions. For these values of Lx and Ly, we find that there are four bifurcation points

and pairs of them are connected by side branches shown by the (red and blue) dashed

line. Panels (b)–(e) show the solution profiles corresponding to points 1–4 indicated on

all the branches in Fig. 6.16(a) for D = 0.4. Additional profiles from the main branch

and one of the side branches that correspond to points I–IV for D = 0.9 in Fig. 6.16(a)

are shown in Figs. 6.17(a)–(d), respectively.



Chapter 7

Conclusion and outlook

In the present thesis, we have analysed the effect of the driving force on the solutions

of the convective Cahn-Hilliard equation. We first introduced in Chapter 2 the standard

Cahn-Hilliard equation in a general gradient-dynamics formulation involving a gen-

eral free-energy functional, and we reviewed some of the important concepts and ideas

for this equation. Namely, we showed that the free-energy functional is a Lyapunov

functional so that the dynamics aims to minimise it, we discussed stability of homo-

geneous solutions and introduced the concepts of spinodal and binodal lines, and we

discussed the two mechanisms of coarsening for the standard Cahn-Hilliard equation

– coarsening due to volume and translational modes. We then introduced the convec-

tive Cahn-Hilliard equation. After that, we reviewed the numerical techniques used in

the thesis, namely, time-dependent solution by Fourier spectral methods and numerical

continuation and bifurcation techniques.

Next, in Chapter 3, we discussed in detail both temporal and spatial linear stabil-

ity analyses of homogenous solutions of the one-dimensional standard and convective

Cahn-Hilliard equations. We also discussed the connection of the spatial linear stabil-

ity analysis to the existence of single- and double-interface solutions (i.e., fronts and

droplets/holes) of the standard and convective Cahn-Hilliard equations. An interesting

observation was that for the driving force parameter D in the interval [0,
√

2/3) the

“horizontal” parts of the fronts and droplets/holes are expected to be monotonic, for

D ∈ (
√

2/3,
√

2) we expect to observe oscillations on top of the “horizontal” parts of

the fronts and droplets/holes. For D >
√

2 we do not expect to see “true” droplet/hole

solutions. Instead, we expect to observe, for example, positive/negative-pulse solutions.

In addition, for D ∈ (2
√

2/3,
√

2), “horizontal” parts of front- or droplet/hole-solutions

192
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are linearly unstable, and thus, we expect the solutions on large spatial domains to

break up into smaller structures. All these observation have been confirmed by time-

dependent computations.

Next, in Chapter 4, we presented the results of numerical continuation of single- and

double-interface solutions (i.e., fronts and droplets/holes). We first discussed the results

of numerical continuation with respect to the domain size L for the standard Cahn-

Hilliard equation for several values of the mean solution thickness ū and showed that

for smaller values of ū the primary bifurcation from the branch of homogeneous so-

lutions is supercritical, whereas at some value of ū the primary bifurcation changes to

subcritical. (The value of ū at which this change happens can be found by the weakly

nonlinear analysis, and such analysis was given at the end of Chapter 4 for the convec-

tive Cahn-Hilliard equation in a general form.) At some even larger value of ū (that, in

fact, can be found by the linear stability analysis), the primary bifurcation disappears,

and beyond a certain value of the domain size, we obtain a coexistence of linearly stable

homogeneous and inhomogeneous solutions and a linearly unstable inhomogeneous so-

lution. After that, we analysed how the driving force affects inhomogeneous solutions

of the Cahn-Hilliard equation. For smaller values of ū, we found that when continu-

ation is performed in the driving force parameter D, branches of solutions extend to

infinity for all sufficiently large values of the domain size. Whereas for larger values

of ū the branches of solutions exhibit saddle-nodes and return to D = 0 if L is suf-

ficiently small. For larger values of L, the branches exhibit an additional saddle-node

and extend to infinity. The transition from one type of the bifurcation diagram to the

other type of the bifurcation diagram happens at L = Lc, where Lc is the wavelength

of a small-amplitude neutrally stable sinusoidal wave. For this value of L, the branch

of solutions terminates at the horizontal axis at D = Dc, where Dc can be found by

the weakly nonlinear analysis. So, for L > Lc (but not too large), there is a range of

D values for which we obtain coexistence of two different stable spatially inhomoge-

neous solutions and one unstable inhomogeneous solution. For even larger values of L,

the saddle-nodes annihilate each other, and the branches extend to infinity. Also, if ū

becomes sufficiently large, the branches of inhomogeneous solutions exhibit a saddle-

node and return to D = 0 for all sufficiently large values of L. In Chapter 4, we also

analysed the effect of driving on single-interface solutions (i.e., kinks and anti-kinks).

As expected from theoretical considerations, kink solutions only exist for D <
√

2,

unlike anti-kink solutions. However, for a fixed value of L, numerical continuation in

D shows that the branch of “kink” solutions extends to infinity exhibiting a sharp tran-

sition around D =
√

2, indicating that the branch of kink solutions is connected to a



Chapter 7. Conclusion and outlook 194

branch of other-type solutions for each sufficiently large value of the domain size L.

In Chapter 5, we studied in detail the linear stability properties of the various possible

spatially periodic traveling solutions of the convective Cahn-Hilliard equation. For this,

we implemented numerical procedures for continuation of inhomogeneous solutions

along with real and non-real eigenvalues. To obtain more complete bifurcation dia-

grams, we also implemented a numerical procedure for continuation of time-periodic

solutions. Our primary interest was in the study of the stability of double-droplet/hole

solutions, and coarsening of such solutions in particular. In the absence of the driving

force, two-droplet/hole solutions have two positive (unstable) eigenvalues that corre-

spond to two coarsening modes – volume and translational modes. For the volume

mode, the corresponding eigenfunction tends to increase the volume of one of the

droplets and decrease the volume of the other one. For the translational mode, the corre-

sponding eigenfunction tends shift both droplets in the opposite directions, so that they

move towards each other. When driving is introduced, we found that one of the coarsen-

ing modes is stabilised at relatively small values of D. In addition, our results indicate

that the type of a coarsening mode can change as D increases. We also found that there

may be intervals in the driving force D, where there are no unstable eigenvalues, and,

therefore, driving can be used to prevent coarsening. We, in addition, computed side

branches of symmetry-broken solutions and analysed the stability of such solutions. We

also computed branches of time-periodic solutions. Finally, in Chapter 5, we presented

detailed stability diagrams in the (D,L)- and (D, ū)-planes. The predictions from the

numerical continuation results have been confirmed by time-dependent simulations for

the convective Cahn-Hilliard equation.

In the final Chapter 6, we presented some preliminary results on the computation of

solutions of the two-dimensional standard and convective Cahn-Hilliard equations. To

compute such solutions, we developed a numerical continuation procedure based on

the Fourier spectral representation of the equation. We first computed one-dimensional

solutions for the standard Cahn-Hilliard equation with no y-dependence, by consid-

ering a narrow domain in the y-direction (so that Ly is small, where Ly denotes the

half-domain size in the y-direction) and by performing a numerical continuation in the

half-domain size parameter, Lx, starting from a neutrally stable small-amplitude wave

in the x-direction. We then performed continuation in the parameter Ly for several val-

ues of Lx obtaining bifurcations to side branches of fully two-dimensional solutions.

This allowed us to compute fully two-dimensional solutions for the standard Cahn-

Hilliard equation, which for positive values of ū turned out to be one-hole solutions
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rather than one-droplet solutions (we would obtain one-droplet solutions for negative

values of ū). Our next aim was to analyse the effect of driving on such solutions, and

the effect on coarsening of such solutions in particular. In the present thesis, we only

provided some preliminary results on the effect of driving on coarsening of fully two-

dimensional two-hole solutions that are obtained by periodically extending one-hole

solutions in the x-direction. In the future, it would be interesting to analyse how the

coarsening of fully two-dimensional droplet/hole solutions depends on the co-location

of the droplets/holes in space. We found that for the case of fully two-dimensional

double-hole solutions that are obtained by periodically extending one-hole solutions in

the x-direction, all the computed branches of solutions (both of solutions with a discrete

translational symmetry in the x-direction and of symmetry-broken solutions) either ter-

minate at some positive values of D (on some other branches of solutions, for example,

branches of solutions without x- or y-dependence) or exhibit turning points and return

back to D = 0. Although our numerical continuation procedure is capable of com-

puting branches of fully two-dimensional time-periodic solutions, computation of such

branches is time-consuming, and, therefore, this is left as topic for future investiga-

tion. We can conclude that the bifurcation diagrams for the two-dimensional convective

Cahn-Hilliard equation that we have computed are not complete yet, and detailed under-

standing of the behaviour of solutions for larger values of D is still missing. Moreover,

in the present thesis, we have not analysed yet the stability of the various computed

branches for the two-dimensional convective Cahn-Hilliard equation. This is also left

as a topic for future research. In the future, it would also be of benefit to perform time-

dependent simulations for the full two-dimensional convective Cahn-Hilliard equation

in order to verify the theoretical predictions and to better understand the effect of driving

on two-dimensional solutions. Finally, in the future, it will be of interest to undertake

similar studies for related equations, such as, for example, the Kuramoto-Sivashinsky

equation and various thin-film models.
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