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Thus work 1s dedicated to the Land where I came from

Unfriendly, savage, bitter, hard.
Inaccessible and mysterious. Strong.

Whapped by the sun, abandoned in the sea.

I belong to her.
In her my roots are.

Once upon a time we recognized each other.
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Abstract

Soliton solutions of Einstein’s field equations for space-times with two non-null,
commuting Killing Vectors are exact solutions obtained using the solution-generating
technmiques that resemble the well-known Inverse Scattering Methods that have been
widely used 1n the solution of certain nonlinear p d e.’s such as Korteweg-de Vries,
Sine-Gordon, non-linear Schrédinger.

There exist two main soliton techniques in General Relativity. The Belinski~
Zakharov technique allows for purely gravitational solutions. The Alekseev tech-
nique allows for solutions of the Einstein—Maxwell equations. In both techniques,
solitons arise in connection with the poles of a certain so-called “dressing matrix”.

In this thesis we consider these techniques with respect to three aspects
I) Time—Shift problem in complex-pole solitons

Solitons of the ordinary p.d.e.’s retain their shape and velocity on interaction but
experience a characteristic time-shift. This effect is a clear result of the nonlinearity
in the equations. It is not clear whether or not gravitational solitons also experience
a similar behaviour.

In the hiterature there have been claims for the detection of such a behaviour. By
considering the Weber—-Wheeler-Bonnor solution, we have clarified that this effect
is also shared by nonsolitonic solutions of linear equations. Thus this apparent shift
must have some other physical explanation.

We have therefore turned to the analysis of a time-dependent nondiagonal soliton
solution, namely an exphcit 4-soliton solution, and we have shown that the two inner
solitons do not suffer any time-shift when colliding.

IT) Nature of the singularities in real-pole solitons

We have considered soliton solutions with real poles in the cosmological con-
text. It is well known that these solutions contain singularities on certain null
hypersurfaces Using a Kasner seed solution, we have discussed the nature of these
singularities with the following results:

e the soliton solution can not be extended up to the whole spacetime without
the appearance of thin sheets of null matter located along the null hypersurfaces, or
the introduction of a singular axis

e Matter-free extensions are admissible (i e. the singulanty 1s removable with a
coordinate transformation) but other singularities are introduced. We also discuss
a number of such extensions
III) Electromagnetic Solitons with real poles

It may be expected that soliton solutions of the Einstemm-Maxwell equations
should be equivalent to the purely gravitational ones, once the electromagnetic field
is let vanish. However, not all the vacuum soliton solutions can be obtained i this
way. Simple arguments show that the class of Alekseev’s vacuum solitons is smaller
than the Belinski-Zakharov’s.

In particular, we will consider the problem of introducing real-pole solitons in
the ambit of the Alekseev formalism. This is achieved by letting the dressing ma-
trix have real poles that are different from those of its inverse This possibility is
new in this context, as in the usual Alekseev technique the poles are taken fo be
complex-conjugate with each other. We also show that this procedure allows for the
generation of vacuum metrics only. Finally, at least in a few particular cases, we
also show that the solutions thus generated are identical to the BZ ones
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Chapter 1

Two Killing—Vector metrics: an
introduction

The Emstemn’ s theory of Gravitation, the theory of General Relativity, is based
upon the equations
1
R, - 3
Here, R, is the Ricci tensor constructed in terms of the metric g,, and R=R_, "
is the Ricci scalar. T, is the energy-momentum tensor. G 1s the gravitational
coupling constant. The energy-momentum tensor contains all the information about
the matter fields under consideration. The Ricci tensor contains all the (geometrical)
information about the spacetime

ds? = g,, dz"dz” (12)

Rg, =8rGT,

yll’

wr=12314 (1.1)

in which these matter fields exist.

The revolutionary content of these equations consists in that the spacetime 1s no
longer considered as a fixed frame upon which the matter fields act. Instead, there
exists a mutual interaction between spacetime and matter [1). Moreover, even if
T, were zero, there may exist non trivial solutions of the Einstein’s equations, thus
indicating that even a vacuum spacetime can have a rather complicated structure.

Due to the symmetry properties of the Ricci tensor, the Einstein’ s equations
(1.1) turn out to be 10 coupled nonlinear p.d.e.’s. Along with these, equations
describing the matter fields must also be considered. Evidently, the complexity of
the equations is such as to make it extremely difficult to obtain solutions, even in
the simpler case when the matter fields vanish. However, according to the physical
situation one 1s to describe, symmetries can be imposed which may result in a
simphfication of the equations.

1.1 Symmetries and Isometry Groups

In Riemannian spaces, the existence of symmetries can be expressed as follow [2, 3]:
let us suppose that — at each point z” — there exist a vector £* = £#(z") such that
the metric is invariant under translations along it. This mvariance 1s expressed by
the following equation:

9ol +9,8 ,+9,6,=0. (1.3)

1




PHYSICAL PROPERTIES
of
GRAVITATIONAL SOLITONS

by Salvatore Micciché

A Doctoral Thesis

Submitted in partial fulfilment of the requirements
for the award of

Doctor of Philosophy
of Loughborough University

September 1999

© by Salvatore Miccichd 1999



Certificate of Originality

This 1s to certify that I am responsible for the work submitted in this thesis, that the
original work is my own except as specified in acknowledgments or in footnotes, and
that neither the thesis nor the original work contained therein has been submitted
to this or any other institution for a higher degree.



Thas work s dedicated to the Land where I came from.

Unfriendly, savage, bitter, hard.
Inaccessible and mysterwous. Strong.
Whapped by the sun, abandoned in the sea.

I belong to her.
In her my roots are.

Once upon a time we recognized each other.




Keywords

N o os W

General Relativity
Einstein’s equations

Exact solutions
Gravitational Solitons
Inverse scattering technique
Alekseev’s method
Electrovacuum solitons

Time Shift

Real Poles




Abstract

Soliton solutions of Einstein’s field equations for space-times with two non-null,
commuting Killing Vectors are exact solutions obtained using the solution-generating
techniques that resemble the well-known Inverse Scattering Methods that have been
widely used in the solution of certain nonlinear p.d.e.’s such as Korteweg-de Vries,
Sine-Gordon, non-linear Schrodinger.

There exist two main soliton techniques in General Relativity. The Belinski-
Zakharov technique allows for purely gravitational solutions. The Alekseev tech-
nique allows for solutions of the Einstein-Maxwell equations. In both techniques,
solitons arise in connection with the poles of a certain so-called “dressing matrix”.

In this thesis we consider these techniques with respect to three aspects.

I} Time-Shift problem in complex-pole solitons

Solitons of the ordinary p.d e.’s retain their shape and velocity on interaction but
experience a characteristic time-shift. This effect is a clear result of the nonlinearity
in the equations. It is not clear whether or not gravitational solitons also experience
a similar behaviour.

In the literature there have been claims for the detection of such a behaviour. By
considering the Weber—Wheeler-Bonnor solution, we have clarified that this effect
is also shared by nonsolitonic solutions of linear equations. Thus this apparent shift
must have some other physical explanation.

‘We have therefore turned to the analysis of a time-dependent nondiagonal soliton
solution, namely an explicit 4-soliton solution, and we have shown that the two inner
sohtons do not suffer any time—shift when colliding.

IT) Nature of the singularities in real-pole solitons

We have considered soliton solutions with real poles in the cosmological con-
text. It 1s well known that these solutions contain singularities on certain null
hypersurfaces. Using a Kasner seed solution, we have discussed the nature of these
singularities with the following results:

e the soliton solution can not be extended up to the whole spacetime without
the appearance of thin sheets of null matter located along the null hypersurfaces, or
the introduction of a singular axis

o Matter-free extensions are admissible (1 e. the singularity is removable with a
coordmate transformation) but other singularities are introduced. We also discuss
a number of such extensions.

II1) Electromagnetic Solitons with real poles

It may be expected that soliton solutions of the Einstein-Maxwell equations
should be equivalent to the purely gravitational ones, once the electromagnetic field
18 let vanish. However, not all the vacuum soliton solutions can be obtained in this
way. Simple arguments show that the class of Alekseev’s vacuum solitons is smaller
than the Belinski-Zakharov’s.

In particular, we will consider the problem of introducing real-pole solitons in
the ambit of the Alekseev formalism This is achieved by letting the dressing ma-
trix have real poles that are different from those of its inverse. This possibility is
new in this context, as in the usual Alekseev technique the poles are taken to be
complex-conjugate with each other. We also show that this procedure allows for the
generation of vacuum metrics only. Finally, at least in a few particular cases, we
also show that the solutions thus generated are identical to the BZ ones.
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Chapter 1

Two Killing—Vector metrics: an
introduction

The Einstein’ s theory of Grawvitation, the theory of General Relativity, is based
upon the equations:

1y =1234. (1.1)

pe ?

1
RW—ERQW‘-‘—‘S'ITGT

Here, R, is the Ricci tensor constructed in terms of the metric g, and R= R, ¢**
1s the Ricer scalar. T, is the energy-momentum tensor. G is the gravitational
coupling constant. The energy-momentum tensor contains all the information about
the matter fields under consideration. The Ricci tensor contains all the (geometrical)
information about the spacetime

ds*=g,, dz"dz” (1.2)

in which these matter fields exist.

The revolutionary content of these equations consists in that the spacetime is no
longer considered as a fixed frame upon which the matter fields act. Instead, there
exists a mutual interaction between spacetime and matter [1]. Moreover, even if
T,, were zero, there may exist non trivial solutions of the Einstein’s equations, thus
indicating that even a vacuum spacetime can have a rather complicated structure.

Due to the symmetry properties of the Ricci tensor, the Einstemn’ s equations
(1.1) turn out to be 10 coupled nonlinear pde.’s Along with these, equations
describing the matter fields must also be considered. Evidently, the complexity of
the equations is such as to make it extremely difficult to obtain solutions, even in
the simpler case when the matter fields vanish. However, according to the physical
situation one is to describe, symmetries can be imposed which may result in a
simplification of the equations

1.1 Symmetries and Isometry Groups

In Riemannian spaces, the existence of symmetries can be expressed as follow [2, 3}:
let us suppose that — at each point ¥ — there exist a vector £* = &#*(z¥) such that
the metric 1s invariant under translations along it. This invariance 1s expressed by
the following equation:

g,uu,pgp + gpygp,p + g,upgp 73 = O . (1'3)

L}

1
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This is called the Killing’s equation. The vector £ is called the Killing vector.
As an example, if the Killing vector is in the form £* = (0,0,0, 1), the Killing
equation becomes:

a9,

e =0 (1.4)

which express the invariance along z*-direction in a form which is famuliar to every-
body.

By using the properties of the Ricci tensor, it can be shown that an N-dimensional
Riemannian space possesses at most (IV+1)}/N/2 linearly independent Killing vectors.
Thus, physical spacetimes for which N = 4, can admt at most 10 Killing vectors.
The full 10 Kalling vector symmetry can be found in flat spacetimes — i.e. spacetimes
for which all the Christoffel symbols are null.

The above transformations, associated with Killing vectors, and that preserve
the metric, are called Isometries (or Motions). They possess a Lie group structure:
the relevant group is called the Group of Isometry and indicated with G,, where r
18 the number of Killing vectors. The structure constants ,’; of the group are given
by:

0 0

5 Y 75 o

v Bk E;, = zl_‘;éz, 'l,J;k:l,"‘,T. (15)

Naturally, the structure constants are antisymmetrnc — i.e. f:j = - fj’i ~ and satisfy
- the Jacobi identity

i S+ fefa + fa £y = 0. (16)
After introducing the quantities

g = ¢ 2

e (1.7)

equation (1.5) assumes the familiar form

[gz ? 5]] = ftl_; ‘Ek . (]"8)

The £ ’s may be regarded as the generators of the group algebra

The Regions of Transitunty (or Transitunty Surfaces) are those regions of the
spacetime whose points can be carried into one another by the symmetry transfor-
mations of the group.

As an example, the Schwarzschild metric

-1
ds? = (1 - g) dr? — (1 — @) dt® + r*(d6® + sin? 8dg?) (1.9)

18 clearly invariant under rotations of a generic angle ¢ about the axis 8 = 0,7,
which means it admits the Killing vector 8,. The regions of transitivity are the
spheres r = const.

The spacetimes can be classified according to the kind of isometry group they
admit, ie. the number of Killing vectors, the form of the structure constants and
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the regions of transitivity: the problem of the classification of all the non-isomorphic
G., is a known and solved issue in the context of Group Theory.

For instance, there exist 9 non-1somorphic G, groups, the so-called Bianch: Mod-
els A simpler example 1s provided by the G, groups. In this case we have only two
Killing vectors &' and &' which can only give either:

.. &] =0, (1.10)

or

[£,,8)] =af +ek,. (1.11)

By possibly redefining the Killing vectors, one of the constants ¢, can always be let
vanish. In the first case we have an abelian G, group.

1.2 Symmetries of Physical interest

Many metrics of physical interest possess an high degree of symmetry.

The first metric ever discovered, the Schwarzschild Metric [4] — see (1.9) —is a
diagonal time-independent spherically-symmetric solution. It describes the exterior
field surrounding a star. As such, 1t possesses 4 Killing vectors:

& =sing J, +cosdceot 60, , =9,
§, =cos¢ 9, —singcot 89, , !5 =0, . (1.12a)

The Kerr Solution [5]

ds* =% (ﬁ_ll- dr? + dﬁz) + (r* + a®) sin® 8 d¢® — dt® + QEﬂ (asmn®@ de — dt)2

T =r>+4a%cos’d, A =72 —2Mr4a?, (1.13)

is a non-diagonal axisymmetric solution. It contains the Schwarzschild metric in the
limit when a vanishes. It describes the exterior field surrounding a rotating star. It
possesses 2 Killing vectors:

&= o, =9, (1.14)

Both the Schwarzschild and the Kerr metrics have been generalized to the case
when an electromagnetic field, generated by a pont-like charge e, is taken in account.
The Reissner-Nordstrom Metric [6, 7]

T 2r2

Af = (—5,0,0,0) , (1.15)

2 -1
ds? (1 _2M + G._) dr? — (1 - ¥ + G’ ) dt* + r2(d6? + sin® 8d¢?)

generalizes the Schwarzschild metric and the Kerr-Newman Metric [8, 1]

o2

ds2=z(%dr2+d92) wd —2a2¥%isin29d¢dt+

2 122 _ An2an?

+(a +74) EAa sin‘ 6 sin0 dg?

A =—e L [(dt), —asm?d dé}.| , 1.16a
[ E “* o

T=r’+a%cos’d, A=r’-2Mr+a®-é?, (1.16b)
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generalizes the Kerr metric.

The Robertson-Walker Metricis an isotropic spherically-symmetric time-dependent

solution of Enstein’s equations [2]:

ds® = —dt? + K(t)? (dX? + f(X)*(d6® + sin® 0d¢?)) (1.17a)
sinX for k=+1
f(X)=¢ X for k=0 . (1.17b)

sinhX for k=-1

Here, X is a space-like coordinate, r? = 2% 4 3% + 22 and & is a parameter both
related to the curvature of the spatial (cartesian) sector of the spacetime through-

1
ds® = —dt* + K(t)z-——w (dz? + dy? + d2?) . (1.18)

(1+kr

This metric possesses 6 Killing vectors [2]:

£, =sing 0, +cosgceot I, , (1.19a)
§,=cos¢ d, —singcotd 4, , (1.19b)
£&,=9,, (1.19¢)
£‘=[1—%nr2] 8, +%n:c(a:6,,+y6y+zaz), (1.19d)
55—[1—%51"2]6 —i——;—ny(ma +yd,+28,), (1.19)
g = [1—1;”2]8 +%nz(w3 +y8,+28,), (1.19f)

Of these, the first 3 Killing vectors take in account the symmetry under rotations —
ie. the spatial 1sotropy — and the others the symmetry under translations — i.e. the
homogeneity.

The class of Kanfowsk:-Sachs Metrics:

ds® = dt* - a®(t) dz® — b2(t) (d6? + sin? 0d¢?) (1.20)
possesses 4 Killing vectors:

£, =sm¢ J, +cospeot 80, , £, =4,,
£, =cos$ J, —smcot 0, , £,=0,. (1.21a)

These two classes of metrics are time-dependent — 1 e. none of the Killing vectors
is time-like — and have thus been considered as possible cosmological models [9,
10]. The Bianchi models mentioned above may also be considered for describing
cosmological models In fact, when all the Killing vectors £ are taken to be space-
like, these metrics can be put i the form

ds® = dt? — g, (t) (€2dz®) (&dz®) , a,b=1,23, ¢,7=1,23 (122)

The Robertson—Walker metrics provide Isotropic Spatially-Homogeneous Cosmo-
logical Models. In an attempt to provide more accurate cosmologies, one can release
the assumption of isotropy, i e the symmetry under rotations. This 1s partly done
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in the models based upon the Kantowski-Sachs metrics which, in fact, have only 4
Killing vectors. The Bianchi Models retain the sole symmetry under translations
and therefore may provide Spatially Homogeneous Anisotropic Cosmological Mod-
els. Further refinements in the construction of effective cosmological models lead
to the relaxation of the spatial homogeneity — Spatial Inhomogeneous Cosmologies
The simplest way to do that is to break the symmetry in one spatial direction only.
Therefore a symmetry under two Killing vectors is maintained.

Other than that, spacetimes with two Killing vectors may be considered 1n order
to describe the interaction between gravitational waves A typical line element,
describing a gravitational plane wave propagating in u-direction, is given by.

ds* =2du dv— eV (e¥coshW dz® —2sinh W dz dy+ e~ dy?) , (1.23a)

W= = (t—2), v=%(t+z), (1 23b)

V2

where U, V, W are functions depending of u only. These spacetimes admt a 5
Killing vector symmetry [11]

£ =0,, £,=90,, £.=90,, (1.24a)
£,=20,+P (u)d,+Nu)o,, & =yd,+P(u)d,+N(u)d,, (1.24b)
N(u) = f du e’ smh W | P (u) = / du V%Y cosh W. (1.24c)

When two such waves, propagating in u- and v-directions, come to interact, it is
reasonable to suppose that the resulting metric will retain only a two Killing vector
symmetry generated by § and £,. In fact, it can be expected that, after the
interaction, the metric will be still independent of = and .

In these two cases, the two Killing vectors are considered to be both spacelike.
As mentioned above -~ see the Kerr metric — situations with one space-like and one
time-like Killing vector are also possible.

The discussion put forward so far should make evident the wide variety of phys-
ical problems that may be described by considering spacetimes with a two Killing
vector symmetry — and of commuting Killing vectors in particular [10]. The next
section will be devoted to a presentation of the main features — such as line element
and field equations ~ of a spacetime with an abelian G, group of isometry.

1.3 The Abelian G, Spacetimes

The Line Element

Let us suppose that the 4-dimensional spacetime (1.2} admits an Abelian two-
dimensional group of isometries for which the two-dimensional transitivity surfaces
are not isotropic, 1 e. the spacetime admit the existence of two commuting Killing
vectors £ and £ acting orthogonally transitively.

The fact that the two £*’s commute with each other, implies that we can choose
coordinates so that they both are coordinate vector fields: £ = 6~.
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Under these assumptions, it can be shown that the spacetimes can be rewritten
as [51}:

ds® = —f n,, dztdz® — gﬂbd:z:“dxb , Nap = ( —OE (1J ) , (1.25a)
f=f(e.B), g,=9,p), z*=(@p), (1.25b)
detg,, =€ a?, e==+1, A=1,2, a=231, (1.25¢)

where the z*’s are 1gnorable coordinates
We will not give a proof of this result. It is a well known result whose derivation
can be found, for example, 1n [1].

Stationary Axisymmetric case

The stationary axisymmetric metrics are recovered from the above line element
with the choice:

e=—1, £, =9,, & =9,, (1.26)

It is then convenient to choose coordinates p and z such that o« = p and 8 = 2.

In general, a metric is said to be stafionary if it possesses a time-like Killing
vector. It is static if this also is hypersurface orthogonal. As examples, the Kerr
metric is stationary axisymmetric and the Schwarzschild, which is diagonal, is static
spherically symmetric.

The stationary axisymmetric spacetimes are usually rewritten in the form [13,
14]:

1
ds? = 7 [ 7 (do® +d2%) +p*dd?] — f (dt —wdg)’.. (1.27)
Under certain assumptions, it can be shown — again see [1], theorem 7.1.1 — that
the 2-planes orthogonal to the Killing vectors are integrable These assumptions are
satisfied in a wide range of spacetimes of physical interest. In particular, this is so
for asymptotically flat spacetimes, ie. v — 0, w —0, f — 1, as p — o0.

Cosmological case

The cosmological case is recovered from (1.25) with the choice:
€= +1 N 61 = 3: , £2 = ay y (1.28)

Here both &; and £, are spacehke A useful choice for @ and § is given by a = ¢
and # = z. However, alternative expressions are sometimes necessary as will be seen
below.

When € = 1, the above line element (1 25) can also be rewritten in the equivalent
form [11]:

ds? = 2e Mdudy — eV (%(d:c - wdy)? + xdy2) , (1.29)
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where z and y are ignorable coordinates and u and v are two arbitrary null coordi-
nates.

Cylindrically symmetric case

The Cylindrically symmetric metrics are recovered from (1.25) with the choice:
e=+1 ' 61 = az ’ 52 = 3¢ ’ (130)

Useful coordinates are @ = p and § =t.

The Field Equations

Let us consider the line element (1 29). With this, for the vacuum case, the Einstein’s
Field Equations (EFE) become [11]:

U = U, U, (131)
2U,, =U% + = O + wd) = 2U, M, (131b)
20, = U2 + 5 04 +ul) - 20, M, (1319
2M ==V Uy + =5 (0 X + 900,) (1:314)
2 X =Uu Xo + X, U, + % X X0 = o w,) (1.31e)
20, =V, + 0, Uy + = (s +0uX,) (131D

where ,u and » indicate differentiation with respect of u, v respectively. Notice that,
differently from [11], we put.

x = eV sechW , w = eV tghW . (1.32)

Consider a = e~V. Equation (1.31a) becomes a,, = 0 This immediately implies
that-

a=F(u)+G(v). (1.33)
The S coordinate — which is harmonically conjugate to a — will be defined as 8 =

G(v) ~ F(u).

A typical choice which we will consider throughout most of the thesis is:

a=%(u+v), ﬁz%(tf—-u), (do? —dB*) =2dudv. (1.34)

However, in chapter 5 different choices will be required.
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The class of Weyl metrics
Let us introduce the Weyl line element [2]

ds? = ¢~ di® + & (¥ (dp® + d2%) + p?dg?) . (1 35)

The Weyl metrics are static axisymmetric spacetimes. They are a particular case
of (1.25) in which the choice (1.26) has been made and the diagonal case only is
considered. With respect to (1.27), we have w = 0 and f = &?.

In this case, the vacuum field equations assume the simphfied form [2}:

Yo+ % 'ﬁb,p +. = 0, T =28 (¢i} + "p,zz) 3 Y:=2p "nb,p (/. (1-36)

The equation for 1 is the main equation we need to solve. Once we get a solution
for this, then it 1s straightforward to obtain a solution for +.

Actually, the equation for ¢ is the usual potential equation in flat space. One
might then think that, given a classical solution ¢ — Newtonian theory of Gravitation
— one might obtain a relativistic solution by solving the equation for v Comments
on this somehow misleading conjecture, have been considered 1n {2]

The class of Einstein—Rosen metrics

Let us introduce the Einstein—-Rosen line element:
ds? = 2 V)(d? — dp?) — (pPe Hdg? + et d2?) . (1.37)

The Einstein—-Rosen metrics are cylindrically symmetric spacetimes. They are a
particular case of (1.25) in which the choice (1.30) has been made and the diagonal
case only is considered.

In this case, the vacuum field equations assume the simplified form:

1
Yot D o=V =0 Y,=p (W2 +93), ve=2pv,9%:. (1.38)

The equation for ¥ is the mamn equation we need to solve. Once we get a solution
for ¢ then it is straightforward to obtain a solution for 4, much as in the previous
case

Metrics (1.35) and (1.37) have been written in a form such that the equation
for 9 is linear: actually 1t is the usual wave equation rewritten in the appropriate
coordinates. Having that, the general solution for 3 is a linear superposition of
Bessel functions J, and Y.

The Einstein-Rosen metrics can easily be converted to diagonal cosmological
metrics

ds? = f(dt2 - dZ2) - gudm2 - gzzdy2 » (139)
by performing the simple substitution of coordinates:

—Z . - (1.40)

pcy! - tcaam 1 tcy! cosm
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In fact, by rewriting the metric components as:

g, — e f 209 (1.41)
the line element (1.39) can be put in the form:
ds? = 209 (dt? — dZ?) — (e dz? + ¥ dy?) , (1.42)
whose relevant field equation is now:
1
Ve — Yoz + n Pe=0. (1.43)

Again, this equation is linear and therefore 1 enjoys the linear superposition prop-
erty.

1.4 Solution generating techniques

As mentioned above, the abelian G, spacetimes admut a set of equations which are
completely integrable. Over the years various attempts have been performed in
order to obtain solutions and to give a physical meaning to them.

Over the last two decades, a number of solution generating techniques have been
developed. A striking account of these is given in [12], from the voice (or, by the
pen) of the very authors.

On the other hand, a few solutions — whose construction was based on the intu-
ition of the researcher, rather than on a systematic approach to the equations — had
already been produced. In [15] a good review of the main results is given It is by
using one of these “naive” approaches, the compler trick, that the most important
Kerr-Newman metric [8] was discovered.

The crucial events that faciitated a systematic study of spacetimes with two
commuting Killing vectors were the discovery of the Ernst Equation and of the
Geroch Group.

The Ernst Equation

Stationary Axisymmetric case

Let us consider an axisymmetric line element in the form (1.27). In [16, 17] F.
Ernst has shown that the field equations for this line element are equivalent to the
existence of two potentials £ and & that satisfy the equations:
(Re€ + [BF) VIE= (VE+2B VD). VE, (1.44a)
(Re€+[®J}) V2B = (VE+2T VD) - VD, (1.44b)

where V = (a%, %).
The functions &€, ® are called the Ernst Potentials. The metric components are

related to these through the relations — see [3], formulae (17.31), (17 32), (17 33):
E=(f- |8+, (1.45a)

w, = _% (Coc+®® -BB ), +29,=08,-1,, (1.45b)

1 —_ — — —
v =2 % (Z EA+2B8)(E +228 )~ 3, «I{c) . (1 45¢)
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The function ® is a scalar potential related to one of the components of ® = {®,},
in terms of which the electromagnetic field F,, and the energy-momentum tensor
are defined:

P = = upe FP W = Fy + 1 F*, (1.46a)

Wy = —;— Epvpr W7, Veow™ =0, (1.46b)
1 .
T = 3 FXF,, ww=208% -8%9, &=>0,¢, (146c)

b

where €., is the completely antisymmetric Levi-Civita symbol It is assumed that
all the functions in the above equations depend upon p and z only.
As pointed out in [3], equations (1.44) are a set of elliptic differential equations.

Cosmological and Cylindrically Symmetric case

When considering the line element for cosmological or cylindrical symmetric space-
times in the form (1.29), it is also convenient to introduce the complex function —
see [11] formulae (16 19) and subsequent:

Z=(Xx+HH)+id. (147)
It can then be shown that the potentials Z and H satisfy:

(ReZ - |H]>) V2= (VZ-2HVH)-VZ, (148a)
(ReZ ~ |H[}) V*H = (V2 - 2HVH) - VH, (1 48b)
The pair of potentials £ and H are the cosmological analogue of the stationary

axisymmetric potentials £ and ®. The metric components x, w in {1.29) are obtained
from ¥ and & by way of the relations:

1-¢2 —
,f——iz—c(fb'c—zHch+zH'Hrc), a=vV1-12/1-(2, (1.49%)
1-72 . — —
we="%3 (@,—HH,+HH,), B=r1¢(, (1 49b)
1
= <. 1.49¢
x=oz (1.49¢)

In the vacuum case, the M function is then easily obtained by using the field equa-
tions (1 31) — see [11] for the electrovacuum case.
It may be noticed that the equations (1.48) are a set of hyperbolic differential equa-
fions.

Vacuum spacetimes of this class present an interesting property. Let us introduce
the complex function:

Z=x+1w, (1.50)

so that the line element (1.29) becomes [11]:

ds®* =2 du dv —2 e‘Uﬁ (de+eZdy) (dz—12dy) .  (151)
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The function Z is the so-called Ernst function — to be distinct from the Ernst
potential Z. It can be shown that the two main equations (1.31e) and (1.31f) take
the nicer form - see [11], formulae (11.4) to (11.8).

ReZ V3Z =2(VZ)*. (152)

This is nothing but the vacuum analogue of equations (1.48). Naturally, the Ernst
function Z and the Ernst potential Z are interrelated by means of equations (1 49)
— in the vacuum limit H = 0:
1-— 2
= — C @, ,
2

_1-—1?
Y 2‘2

w @, X=a (1.53)

b

T

Moreover, both Z and Z satisfy the same vacuum Ernst equation (1.52). Equations
(1 53) therefore represent an invariance transformation for (1.52). This is referred
to as the Neugebauer-Kramer Involution It is an auto-Backlund transformation for
the vacuum Ernst equation.

The Geroch Group K |

In {18], Geroch was able to give an algorithm for generating new vacuum solutions
from a known one. Originally, he dealt with the case when the metrics admit one
Killing vector. The new metric is given by [1].

. Asin?@
Guv = 0y, +25in8 £, vy + — N s (1.54a)
o = (cosd —wsinf)? + A?sin? 0 (1.54b)
v, =2a,cosf — (3, sinf . (1.54c)

@ is an arbitrary parameter such that 6 € [0,7] Unfortunately, the application of
a second such algorithm gives back the initial metric g , 1e. the iteration of the
procedure does not generate further solutions.

In [19], this method was generalized to the case when two Killing vectors may
exist, such as to generate a two-parameter family of solutions. Indeed, it has also
been proved [19] that an infinite dimensional group of transformations is generated
by repeatedly applying the transformation (1.54).

The extreme power of such a technique was confirmed when Hauser and Ernst
[33] discovered that all the asymptotically flat, stationary axisymmetric spacetimes
can be generated in this way by starting from the Minkowski metric, as conjectured
by Geroch himself. Furthermore, the Geroch’s hypothesis has been generalized by
N. R. Sigbatullin. He proved that arbitrary free gravitational, electromagnetic and
neutrino fields — admitting an abelian G, of isometries ~ can be obtained from a
Minkowski spacetime by means of some transformations which generalize the original
Geroch’s ones [59].

Solution Generating Techniques

Giving the Geroch set of transformations a group structure, enabled a number of
new techniques to be discovered
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¢ The Kinnersley—Chitre Transformations (KC)

In [20, 21], Kinnersley and Chitre used the Ernst equation to construct an
infinite hierarchy of potentials

F(t) = it"H,, , G(s,t) = i " sm N (1.55)

n=0 n,m=0

Here, £, s are complex parameters. F, G are 2 x 2 matrix functions analytic
in t, s. Starting from F', an axisymmetric solution can be uniquely produced
according to a certain procedure. F' satisfies certain partial differential equa-
tions the solution of which, requires that some initial conditions — at t = 0
— be given. To fix these initial conditions is tantamount to specifying some
known solution of Einstein’s equations, ie. a “seed” solution. Incidentally,
the matrix function F(t) is somehow related to the Ernst potentials.

Subsequently, they also showed mn [22] that the solutions thus obtained, pro-
vided a representation of the Geroch group.

The above procedure has been used in [23] to generate the so-called Kinnersley-
Chitre solutions.

o The Hoenselaers—Kinnersley—Xanthopoulos Transformations (HKX)

Starting from the KC transformations, Hoenselaers, Kinnersley and Xan-
thopoulos generated another set of transformations [24, 25, 26] — see also
Hoenselaers in [12].

After translating the HKX transformation in the language of the Ernst equa-
tion, these are shown [33] to generate all the asymptotically flat, stationary
axisymmetric spacetimes, when appled to a general Weyl metric. This had
already been conjectured in [24, 26].

The HKX transformation has been used in [27, 28] to generate a solution
representing two Kerr masses kept apart by their spin-spin interaction.

¢ The Hauser-Ernst (HE) Homogeneous Hilbert Problem (HHP)

In [29], Hauser and Ernst reformulated the KC (vacuum-to-vacuum) transfor-
mations in terms of a linear integral equation:

f(t)+.-1_ / ds— K(s) (f(s)+s7I) =0, (1.56a)

2 s—t

F(t) =T+t FO) Fy(t) (1.56b)

where F(t) is the usual KC function given in (1.55) and the Kernel function
K(s) is determined by the seed through the relations:

K(s)y=F,(s)7(s) F}s), t(s)e=ec—T, &= ( _01 (1J ) . 11.57a)

In [30], the construction was generalized to the electrovacuum case.

Subsequently, the same authors gave proof that the above linear integral equa-
tion can be solved by setting an HHP [31]. This result was generalized to the
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electrovacuum case 1 [32] A brief introduction of what an HHP is was given
in Hauser’s paper in [12].

Finally, we would like to quote the following sentence from [31] “.. Moreover,
our HHP appears to be a hnk between the group theoretical and the recent
soliton approaches to exact solution research, though the authors do not yet
understand the details of this hink” Details on the soliton techniques will be
introduced below.

An emphasis on the Ernst equations itself, rather than on its group properties, can
be recognized in the attempts at obtaining solutions by way of rewriting the relevant
equations in a more sumitable form, or by way of Bdcklund transformations.

¢ Harrison (HAR)

In 1978, Harrison [34] introduced a Bécklund transformation for the Ernst
Equation. This was done by considering its prolongation structure — see also
Harrison in [12] He also applied this technique to generate new solutions [35].

Invariance transformations for the Einstein-Maxwell equations had already
been considered by Harrison himself in [36] — see also theorem (30.5) in [3].

¢ Neugebauer—Kramer (NK)

In 1979 another Backlund transformation was introduced by Neugebauer [37,
38]. As an application, in [39] the important Kerr-NUT solution was given
— see also [3] formula (30.25) A generalization of the N = 2 Neugebauer
transformation has been given in [44]. Applications of [37, 38] can also be
found in [45, 46].

In 1969 the same authors [40, 41] had already introduced some invariance
transformations of Einstein-Maxwell equations — see [3], formulae (30.25) and
section 30.5. These transformations also contained, as particular case, some
previous result they had obtained in [42, 43] — see [3], theorem (30.9).

The attempt to solve the Ernst equation by way of Backlund transformations has
also had the mernt of opening the door to the use, in GR, of techniques already known
in the field of Integrable Systems: in particular, the inverse scattering techniques or
soliton techniques and the related formalisms. With these, a stronger emphasis is
given to the Enstein’s and Einstein-Maxwell’s equations.

¢ The Belinski-Zakharov soliton technique (BZ)

This is a solution-generating-technique that produces vacuum metrics [47, 48,
49]. Starting from some known solution — “seed” — the technique is based
on the construction of a so-called “dressing” matrix which 1s a meromorphic
function of an unphysical parameter that can subsequently be removed. It is
essentially modelled upon the usual inverse-scattering techniques for solving
nonlinear p.d e’s such as the Korteweg—de Vries or Sine-Gordon equation. By
analogy, the solutions thus generated are called “solitons”.

In [50] a generalization to the electrovacuum case is attempted.

A complete account of this technique will be given in chapter 2.
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o The Alekseev soliton technique (ALEK)

This technique generalizes the previous one to the case when an electromag-
netic field is also considered [51, 52, 53, 54]. A different linear-pair is con-
structed. Non-solitonic solutions of these — i e. solutions in which the dressing
matrix has not a meromorphic structure — have also been given in [55].

The previous construction has been generalized to the case in which a neutrino
field is also considered [56].

Finally, solutions of the hinear-pair have been shown to be equivalent to the
solutions of a certain linear integral equation in [57, 58].

A complete account of this technique will also be given in chapter 2

¢ The Sigbatullin soliton technique (SIGB)

Sigbatullin [60] has also introduced a generating technique for the Einstein-
Maxwell equations This has been reviewed 1n [61, 62] — see also [15].

This method has lately been applied [63, 64], [65] to get asymptotically flat
solutions representing the exterior field of a magnetized spinning mass.

As pointed out 1n [63, 66], the advantage of adopting Sigbatullin’s generating
technique, would consist in a more clear relation between the free parameters
entering the solution and their physical meaning.

As brief and mncomplete as it may be, this small account of solution-generating-
techniques cannot be finished without having mentioned the results obtained by
Bonnor and Ehlers These might be regarded as typical of that pioneering age
preceding the discover of Geroch group. They mainly are invariance transformations
of the field equations — see also [3], chap 30.

¢ Ehlers Transformations
In [67], Ehlers showed that, given a solution Z, of the Ernst equation, a new
one is given by [11]:

aZ, +1b
cZy, +1d

(158)

=1

where the constants a, b, ¢, d are the components of an SL{2,R) matrix M that
transforms the Killing vectors 9, and 3, of the line element (1.51) according

to:
(g:)HM(gZ) M = (33) (1.50)

The electrovacuum generahization was also provided — see theorem 30.3 in [12].
This transformation is a particular case of those given in [42].

¢ Bonnor Transformations

In [68], Bonnor showed how to generate magnetostatic solutions from electro-
| static ones (duality transformations) In [69] he also showed how to generate
static solution of Einstein-Maxwell equations starting from vacuum stationary
axisymmetric ones. The same solutions as 1n [69] were also considered in {70).
These are now referred to as the Bonnor-Melvin solutions.
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To conclude this short review, we also mention the solutions found by A. Tomimatsu
and H. Sato [71, 72] as representative of the pioneering era which ended with the
discover of the Geroch group.

Far from being exhaustive, the above summary rather reflects our personal taste
and knowledge — and ignorance. Once again, we refer to both [3] and [12] for a more
sound review.

We have tried to sketch a pattern from which the richness of the study of two
Killing vector spacetimes were evident. Richness that entails the several approaches
one might adopt in considering this sector of classical general relativity: from the
point of view of both physics and mathematics. For example, the development of
soliton techniques in GR — as well as of the Backlund transformation approach —
tells of the strong links with the theory of Integrable Systems, not to mention about
the group theory approach.

The existence of all the above techniques has posed the theoretical problem of
their interrelationship. Since the commuting two Killing vector spacetimes have this
underlying group structure — the Geroch group K — the different techniques might
correspond to different representations of the group. Naturally, one is interested
in understanding the actual way in which that occurs Moreover, each technique
allows for the generation of solutions that might be equivalent, although written in
different forms: again, 1t is important to understand the relationship between these
metric in order to avoid the reproduction of known results A complete account
of these topics is far beyond the scopes of these thesis Again, we refer to [3] and
[12], as well as the papers by Cosgrove [73, 74, 75}, Kramer [76] and Kitchingham
[77, 78).

In this thesis, we will only be interested in the solitonic techmques introduced
by V.A. Belinski and V.E. Zakharov, for the vacuum case, and by G.A. Alekseev
for the electrovacuum case.

1.5 Overview of the thesis

With regard to the problems addressed above, the equivalence between the HKX,
the HHP, the HAR and the BZ techmques has been demonstrated by Cosgrove n
(73, 75]). To give a flavour, the 4-soliton solution — with Minkowski seed - corresponds
to a double Harrison transformation, and the two soliton solution — again with
Minkowski seed — corresponds to Kerr metrics with or without horizons depending
on whether the poles in the dressing matrix are real or complex. The last result
had already been obtained mn [49], by simply rewrting the soliton metric in Boyer—
Lindquist coordinates. The interrelation with the Tomimatsu-Sato solutions has
been given in [79] and also in [80]. For instance, from this we quote. .. the fact
that the Tomumatsu-Sato solution with zero angular momentum and wnth arbitrary
integer distortion parameter is a particular case of the 2n-soliton static solution.”
The Alekseev technique, as anticipated above, generalizes the BZ to the elec-
trovacuum case. Alekseev himself showed in [51] that, when a Minkowski seed is
constdered, the 1-soliton solution corresponds to a Kerr-Newman metric without
horizons, and the 2-soliton solution “. describes the external field of two interact-
wng charged rotating masswe sources of Kerr—-Newman type”. Again, no horizon is
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visible.

The interrelation between the two techniques has been considered by quite a few
authors. The above comments suggest that a vacuum solution with one pole in the
Alekseev formalism is equivalent to a solution with two poles in Belinski-Zakharov’s.
For the simplest case of one vacuum ALEK- and two BZ-solitons, this conjecture
has been explicitly proven by P. Kordas in [15].

The above comment gives the opportunity of introducing one of the problems
we will deal with in this thesis

As a matter of fact, the BZ technique allows for the generation of metrics which
may have or may have not horizons. This possibility 1s ruled out in the Alekseev
formalism which, instead, allows only for solutions without horizons, even when the
vacuum limit is considered. We anticipate here that this 1s due to the fact that the
poles entering the meromorphic dressing matrix must be complex.

In chapter 6, we will show that it 1s possible to reformulate the Alekseev formal-
1sm in such a way as to permit real poles 1n the dressing matrix and therefore the
metric so generated might have horizons. However, we also show that this general-
ization can work only in the vacuum case. In this case the solutions thus produced
are equivalent to the BZ ones Electrovacuum solutions without horizons are still
the only electrovacuum solitons one 1s able to generate.

The problem of singularities will be also inspected with reference to another
1ssue. It is known that cosmological solitons have singularities along certain null
hypersurfaces. The nature of these has been studied in many papers: they are coor-
dinate singularities only and can therefore be removed by an appropriate coordinate
transformation. The resulting metric can subsequently be extended through the
singularity. Many examples of possible extensions have been given in the literature.

In chapter 5 we will consider this problem with the aim of giving extensions
that maintain a zero Ricc1 tensor The extensions are given by matching the (trans-
formed) soliton solution with appropriate metrics which, we show, must be different
from the seed

As mentioned above, soliton solutions without horizons are also admissible.
When considered in the cosmological context, these solutions represent waves gen-
erated at ¢ = 0 that propagate along a certain background given by the seed. This
interpretation offers the opportunity of studying the intimate nature of gravitational
solitons. Solitons of the usual nonlinear p.d.e.’s are characterized by a particular
behaviour under interaction: they pass through each other without suffering any
modification other than a small shift in the direction along which they propagate.

In chapter 4 we analyze whether or not gravitational solitons also display the
same effect. The answer is negative, thus confirming the fact that gravitational
solitons must be regarded as gravitational waves rather than solitons.

We will face these issues after having introduced the soliton techniques in chapter
2 and chapter 3. The first three chapters are therefore reviews of known techniques
However, chapters 4, 5 and 6 each contain original material which has been sepa-
rately published in [113, 114] and [135, 136, 148, 149].




Chapter 2

Soliton Generating Techniques

The aim of this chapter is to give a brief, though self-contained and complete,
introduction to solitons in GR 'We will mainly quote the known results established
in [48, 49], [51, 52, 53, 54] and reviewed in [81]. However, by doing so we will have
the opportumty to fix some notation convention and emphasize results that will be
used later on.

2.1 Solitons

The history of solitons dates back to one day on 1834 when a british gentleman in-
terested in naval design, Sir J. Scott Russel, noticed something unusual on the canal
between Edinburgh and Glasgow. He was walking along the river when he saw what
he called a “wave of translation” [82]. In his words: “... I was observing the motion
of a boat which was rapidly drawn along a narrow channel by a pair of horses, when
the boat suddenly stopped - not so the mass of water in the channel which it had put
wn motion, it accumulated round the prow of the vessel mn a state of wolent agita-
tion, then suddenly leaving it behind, rolled forward unth great velocity, assumang the
form of a large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued 1ts course along the channel apparently unthout change of form or
dimanution of speed. ...”. The wave observed by Scott Russel is usually referred to
as a “Solitary Wave”. This expression indicates a wave which propagates without
change of form and has some localized shape. Moreover, the speed 1s proportional
to the amplitude: the taller the faster.

The word “Soliton” was firstly used 1n the work of Zabusky and Kruskal in 1965
[83]. They used this word for a particular class of solitary waves, the peculiarity
of which consists in their behaviour when interacting with each other: they pass
through each other, the only modification being a small change in their phase. For
instance, if u(z,t) = u(z — vt) describes a soliton before its interaction, afterwards
it can be described by u(z — vt + ¢)

The above shift 15 a clear sign that we are considering solutions for nonlinear
equations In fact, solutions of linear equations do linearly superpose and therefore
phase shift effects can not be expected. Solitary waves are due to a very subtle
mechanism of compensation between the derivative (dispersion) and the nonlinear
terms 1n the equations of which they are solutions [82]. The fact that solitons retain
their own features even after having collided with other solitons may indicate that the

17
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energy they are carrying may be propagated in “localized stable packets and unthout
dispersion” [83]. As mentioned in [84], this issue 1s obviously of great importance in
physics [85, 86, 87, biology [88, 89] as well as for engineering applications [90, 91,
92, 93].

Finally, it must be emphasized that not all the nonlinear p.d.e.’s admitting soli-
tary wave solutions have soliton solutions as well. In some cases, it happens that two
colliding solitary waves after the collision slightly change their shape. This results
in the appearance of small oscillations that arise to balance the loss in energy due
to the modification of the solitary wave’s shape [83]

2.1.1 Inverse Scattering Approach
Inverse Scattering Problem

Given a certain differential operator L(z, 8,), with eigenfunctions v¥(x) and eigen-
values A:

Lij(z) = Ay(z), (2.1)

the Inverse Scattering Problem can be posed as follows: f we know the asymptotic
form of ¥ for all possible energues:

() “E a(k) e,
lal* + 16 = 1, (2.2)
"/)(-T) g—=00 e~z + b(k) etk ,

how can we reconstruct L(z,3,)?
For the Schrédinger equation

U (z) + Ulz) ¢(z) = A op(x), (23)

the problem is solved if one is able to find solutions for the Gelfand-Leviatan—
Marchenko equation:

K(@,2)+ G +2) = — f dy K(z,y) Gly+2) , (2.4a)
Gz)=F(z) + Y cl e, . (2.4b)
k
where: F(z) is the Fourier Transform of the spectral data b(k), c, are the analogue

of b(k) for the discrete spectrum and K(z, 2) is a two variable function in terms of
which U(z) may be defined as:

2,
Ulz) = -2 o K(z,z),__ .

Inverse Scattering Techniques and Soliton Solutions

Let us now see how an IST might be used to get solutions for nonhnear p d.e.’s.
Hereafter we will specialize our discussion to the Korteweg—de Vries equation:

ty — Butly + Uger = 0. (2.5)
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When using an IST, the starting point is the existence of some scattering data, at
least asymptotically. Thus, in order to apply an IST for solving KdV, we need a
mechanism to construct such “scattering data” for KdV.

Consider the KAV 1n the usual form (2.5). By performing the transformation -
Mwra Transformation

u = v+ v, (2.6)
1t becomes:
0
x

Therefore, if v is a solution of equation
vy — 602U, + Vg =0, (2.7)

then (2.6) generates solutions of KdV. Equation (2.7) is called “modified Korteweg-
de Vries” (mKdV). Equation (2.6} can be regarded as a Riccatr equation for v. It
can therefore be linearized by means of the further transformation

v=" /9 . (2.8)
With this, equation (2.6) reads:
Yoz, t) + ulz,t) ¥(z,t) = 0. (2.9)
Since KdV is invariant under transformations hke — Galilean Invariance
u(z,t) — A+ulz+6Xt,t), (2.10)
we can use this freedom to put (2 9) in the form:
Yue(z,t) + ulz,t) Plx,t) = A Y(x,t) . (2.11)

The Schrédinger-like equation (2.11), gives us a way to construct scattering data.
This 1s the first step of the procedure to obtain soliton solutions:

1. Let us suppose that we know u(z,t) at a certain time t =0
u(z,0) = f(z) . (2.12)

2. Solve (2.11) at ¢t = 0 to get an asymptotic (z = *o0) solution ¥y = ¥{z,0)
and Ao = A(0). This gives the imtial spectral data

3. Construct asymptotic 9(z,t) and A(¢) starting from o and Ao.
4. Use IST to obtain u(z,t).

Point 3) above is crucial: how can one have v¥(z,t) and A(t) from v and A\y?

Indeed, it is possible to construct a linear differential equation whose solutions are
P(z,t) and A(t) with 9, and A as imtial conditions Thus is called Time-Evolution
Egquation (TEE). For KdV, TEE can be obtained starting from:

2 @R - wR) = as, .19
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where B = 9 — u9 + 2(u — 2))¢p, We will see later how this equation can be
derived. It allows for the solutions — see [82] chapter 4.

A = o, b(k,t) = b(k,0) ", cat) = cn(0) et

Soliton Solutions are that particular class of solutions of the Gelfand-Leviatan—
Marchenko equation corresponding to discrete values of the spectral parameter A.

In conclusion, the key-points to use an IST to get solutions for KAV are:
1. an initial condition (IC).

2. the existence of two linear equations (EQ1,2). The first one (EQ1), together
with (IC), gives the scattering data at any fixed time, the latter (EQ2) gives
their time-evolution.

Comments

To better understand the previous mechanism, let us see how (2 13) can be derived.
Consider the time-independent Schrodinger equation (2 3) and differentiate with
respect to both x and ¢:

Let us define the quantity:
R = ¢ — w1t +2(u— 2\, . (2.15)
By using (2.14) 1t can be seen that R satisfies:
'{;% (¥ R — % Ry) = (A + s + 6uts + Ugas) - (2.16)
Let us now consider the pair of linear differential equations

Yor +(A+u)p =0, (2.17a)
% (e R — ¥ Ro) = (A + 1z + 6utty + Usgs) - (2.17D)

Equation (2.17b) reduces to (2.13) if the KdV is satisfied. As a result we have:

et Qbup=0, @ R-$R) =Ny, (219

therefore KdV is the compatibdity conditions for equations (2.18).

Summary

The mechanism to solve KdV (or any other nonlinear equation} by IST can be
generalized as follow:

o Consider a solution of the nonlinear equation at any fixed time o (IC).
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e Construct a Pair of Linear equations (EQ1, EQ2) whose compatibility condi-
tion is given by the nonlinear one (NLE).

o Solve EQL + IC to get the scattering data at #,.
¢ Solve EQ2 to determine the evolution of the scattering data at any £ > ;.

o Apply the IST (1e. solve the Gelfand-Leviatan-Marchenko linear integral
equation) to determine the solution of the nonlinear equation at any subse-
quent time,

Soliton solutions correspond to distinct poles in the complex plane of the spectral
parameter.

Solitons can also be obtained by considering different approaches to the solution
of the relevant equations: Béacklund and Darboux transformations as well as the Lax-
Pair approach, the Zakharov—Shabat approach and the AKNS formalism. Details of
these techniques can be found, for example, 1n [82, 83] and references therein. For a
short review focused to the introduction of these techniques in General Relativity,
we refer to the paper by Gurses in [12].

2.1.2 Solitons in General Relativity

Solitons in General Relativity are particular solutions of the Einstein Field Equa-
tions (EFE) for spacetimes with two Killing vectors. They are obtained by using a
technique that resembles those described above in the following ponts:

1. Instead of solving the Einstein’s nonlinear equations (EFE) we try to solve a
pair of linear differential equations (whose compatibility conditions are given
by EFE)

This is similar to the introduetion of a Lax-Pair.

2. These equations involve a “spectral” parameter A. Their unknown function
is a ¥(}) in terms of which the solution of NLE is given by simply algebraic
operations.

3. The function () has meromorphic structure (i.e. discrete simple poles) over
the complex plane A.

This recalls the fact that, for classical soliton solutions, A are eigenvalues
belonging to the discrete energy spectrum.

One more comment: the classical technique is a typical initial value problem:
we need (2.12) to obtain the relevant discrete spectrum. In GR, at least for the
techniques we will consider, the spectral problem is completely determined by the
structure of the linear pair. Nevertheless, to get a solution g, we will have to start
from a previously known g,, the so-called Seed Metric. For this occurrence, Soliton
Techniques in General Relativity are usually referred to as Dressing Techniques.
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2.2 The Belinski—Zakharov Technique

In this section we will introduce the key features of the Belinski-Zakharov soliton
technique, as introduced in two papers [48, 49] in 1978. This technique has been
reviewed in [81].

2.2.1 Matrix Form for the Equations

Let us consider the 2 Killing Vector spacetime (1.29) in the form:
ds? = 2™ dudv — g, dz® dz® a,b=1,2 (2.19)

The functions g, can be interpreted as the components of the following 2 x 2
matrix.

_af 1 —w a1 P +w? 4w
g_}'(—w x2+w2) g ~a_x( +w 1 (220)

with o = /detg = e~U. It is also convenient to introduce the following matrices:
A=-ag, -g! B =+ag,-g"! (2.21)

where ,u and ,» indicate differentiation with respect of u, v respectively. Explicitly
we have:

1 _ - — 1
( - ; X,u lj,u xz w,u w.u?
A=a . ,  (2.22a)
2—w W
\ B X T ey X ~ Ul P,
[(+ix, +U, + 5w, + Wy
B = a (2.22b)

2w 22 _ 1 W
\ -5 X A, x Xo T U, + 5w,

Proposition (2.2.1) Matrix Form for the Equations

With the above notation, Einstein’ s Field Equations became:

(1.31a)
(131} p» A, - B, =0, (2.23a)
(131f)
i
(1.31)) —» M, = _% + % - T A%, (2.23b)
, =
(1.31c) —» M, = ~Z + % - - —TrB?, (2 23¢)
(131d) » M, = —a; -‘3‘; - i TrA B. (2 23d)

Proof

The proof 1s trunal and therefore will not be gwen. Oqe.d.




CHAPTER 2. SOLITON GENERATING TECHNIQUES 23

Equation (2.23d) becomes the integrability condition for (2 23b) and (2 23c). Equa-
tion (2.23a) 1s the most important and, as we will see, is actually the equation we
maust solve. Equation (2.23b) and (2.23¢) can be easily (at least in principle!) solved,
once A and B have been found. Therefore, M is uniquely determined by g, up to
some integration constants ‘

Proposition (2.2.2) Integrability Condition

Equation (2 21) admit the following integrability condition:

a(A_u+Bm)+ {AAB]-a,A—a ,B = 0. (224)
Proof

The proof 1s ssmply done by inspection and by using the follounng 1dentities:

gl = —glg, g}, g'=-g'g, g". (2.25)

Oqed
As a result, the two equations we are interested in are:

(223a) » A, - B, =0,
(224) — a(A,+B,) + [AB] —a,A-a,B =0

2.2.2 A Linear-Pair formulation
Let us introduce the two operators

2 2A
/\_aa,ua,\, D2—61)+A+a

D, =8, - a, 8y, (2.26)

where A is an arbitrary (unphysical) parameter, hereafter referred to as the spectral
parameler.

Proposition (2.2.3) Property of D; and D,

The following implication is true:

[D,,D,] =0 ¢= a, =0. (2.27)

Proof

The proof follows immediately from the fact that:

(D1 Dz - Dz D1) = ﬁﬁl)a'"” 8,\. (228)

0 q.e.d.
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Proposition (2.2.4) Invariance under Rescaling

D, and D, are invariant under the following substitution:

A= XN = o? (229)

S

Proof

Let us suppose that D, acts upon o generic function f = f(a,3,)). When consid-
ering the transformation (2.29), the u-derwative and the A-derwatwe transform as
follows:

ax oN

a,+—a,+ 3_0.' a, BA, s BA — —é:\- 8” . (230)
Therefore D, becomes:
2 X
Dl - au - ' o a,u 3/\" ¥ (2 31)
whach proves the assertion. Oq.ed.

Proposition (2.2.5) A Linear-Pair formulation

Let us introduce the complex matrix function ¥ = ¥(u,v,\) and consider the
following matrix equations.

1 1
v D =
AT, , I YT a

D, U= BV, (2 32)

A —a

where a, A, B are given in (221). Then (223a) and (2.24) are the integrability
conditions for (2.32).

Proof
The wntegrability condition for the above linear pair 1s given by
D,(2.32.a) — D,(232.6)=0.

By using (2.27), and after some httle algebra, we have that this 1s equwvalent to
prove:

0= (—aﬂ, A-a,B+(AB-BA)+a(A,+ B_u))+,\ (A,-B,). (233)

This 15 satisfied for arbitrary X off both (2 23a) and (2.24) are satisfied. Therefore
the assertion 1s proved. Oqed

In this respect the system (2 32) is a Linear-Pair of equations for our non-linear-
equation (2.23a)
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Proposition (2.2.6) Form of the Solution

The matrix g, defined as:
g(u,v) = ¥(u,v,0),

is a solution for Einstein’ s equations (2.23).
Proof

Putting A =0 i (2.32) gwes g, = ~a ' Ag andg, =+ o~! B g, which are
dentecal to the definitzons (2 21) of A and B. 0O q.ed.

2.2.3 The Dressing Ansatz

The previous arguments tell us that, whenever we have a solution for ¥, then a
solution for Enstein’ s equations is automatically ensured see (2 34)., The problem
18 therefore that of finding such a solution ¥. The following construction gives one
possible way to construct it. We want to emphasize that, in principle, this is not
the only possible solution to (2.32).

Let us consider a known solution g, (u,v) of Emstein’ s equations. From this metric
we can derive A, and B, and therefore we can get a solution ¥, for the Linear Pair
(2 32} Hereafter g,(u,v) will be called Seed Metric

|Step 2.a - Dressing Ansatzl

We now look for a solution in the form:

Dressing

T(u,v,2) = S(u,v,A) ¥o(u,v,X). Ansatz

(2 35)

By substituting (2.35) into (2.32) we can see that such a solution exists, provided
that S satisfies:

Dl S(U,U,A) = A_i(; (A S-S Ao) , (2368.)

D, S(u,v,)) = /\-!-;a (BS-SB,). {2.36b)

Step 2.b - Reality of g

It may be noted that not all solutions of (2.36) are acceptable. In fact, we want g
to be real Thus we can only accept solutions such that:

S(u,v,)) = S(u,v,A), W(u,v,) = ¥(u,v,N). (2.37)
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Step 2.c - Symmetry of g

A necessary requirement for g is that g, = g, Consider the new matrix S’ defined
by
2 1
3
By using the invariance of D, and D, under the transformation (2.29), 1t can be
shown that S’ also satisfies (2.36), provided that g is symmetric. In fact, if this
is the case, then g (AT)™! g7! = A. This ensures — together with the invariance
of D, , under (2.29) — that S’ is a solution. As a result, we can be sure that g is
symmetric if there exists a scalar function h(u,v, A) such that:

S'(u,v,A) = h{u,v,A) S(u,v,]) . (2.39)

In general such a function will be different from 1. The correct expression for g will
then be given by:

S'(u,v,A) = g St(u,v, X) g7t N = ¢ (2.38)

g, = hMu,v,A) S(y,v, X) g, Su,v,)), (2 40a)
or
g, = Mu,v,}) S(u,v, ) g, Sy, v, X), (2 40b)
the two expressions being equivalent due to the fact that g, 1s symmetric by con-
struction

As suggested by (2 34) and (2.35), we might now want to put the new solution g,,
in the form:

B = S(uvv: 0) g - (2.41)

Therefore we must impose that the function h(u,v, ) satisfies the auxihary condi-
tion:

Alimoh(u,v,}\) S(u,v,N) = 1 (2.42)

By substituting (2 42) into (2.32) it 1s trivial to prove that (2.41) is a well defined
solution.

lStep 2d - detgl

Finally, we require that det g = 2. This implies a further condition upon S:
det |S(u,v,0)] = 1 (2.43)

The Physical Metric

Proposition (2.2.7) Rescaling Property for g

Any solution g of the linear pair (2.26) is defined up to a transformation:

1

g—g, = w00 g, (2.44)

where h(u,v,0) is a function of u, v only.
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Proof

Let us substitute (2.39) wmto (2.36). We have:
D, h(u,v,A) = 0, D, h{u,v,A) = 0. (2.45)

From the above equations it follows that:

8, h(u,v,0) = 0, Oy h(u,v,0) = 0. (2.46)
We can now consider the scaled metric:
= ! = S(u,v a_2) St(u, v, A) (2.47)
gsc - h(u,v,O) g b gsc - 1 ¥ A gO y Yy . .

Since the scaling does not break the matriz structure, we have that g,_ 1s symmetric,
Moreover, the new matrices A,, and B,, associated to g,, are gwen by

c

A, = A-oa(logh), I, B, = B-oa(logh),I. (2.48)

.1

By using (2.39) we have-
A = A, B. =B, (2.49)

o &

and therefore the mamn equation (2 23a) 15 satisfied. O q.ed.

Proposition (2.2.8) The physical metric

Given any solution g of the linear pair (2.26), it 1s possible to obtain a g,, with the
correct determinant by simply considering:

(8

gph:\/CTtgg-

(2.50)

Proof

The proof wmmediately follows from the previous assertion. In this case we have:

o
h = Jdeig (2 51)
O qed.

2.2.4 Simple Poles Ansatz

In order to explicitly construct a solution, we may now introduce some assumptions
about the pole structure of the S matrix in the complex plane X. By analogy with
the situation encountered in section 2.1, we can impose that both S and S~! have
singularities in A and that these are simple poles (i.e. assume that S and S~! have
meromorphic structure).
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The Structure of the Singularities

Proposition (2.2.9) Structure of the Singularities

Let us suppose that S is not invertible at a number n of points ux). Let us suppose
these to be simple poles for S~'. Then S has simple poles at:

1
K=o —, k=1,. .,n. 2.52
K] i (2.52)
Proof

Let us consider the relation (2.38). Since detg = detg,, we have:

1

det S*(\) = SN

(2.53)

The relation S S™! = I wnphes that det S = (det S™1)~1. Therefore (2 53) becomes:
detS*()) = det S™Y(a?/)). (2.54)

. Let us now suppose S be not wvertible mn A = pf). Consequently, det S(px1) = 0
and det S*(p]) = 0. Thus, det S™1{a?/uik)) = 0. This means that S~! has poles at
UK = o/ k. O qed.

From (2 37) it can also be deduced that poles in S are either real or occur 1n complex-
conjugate pairs. Consequently, for n complex pairs of poles, the general form of S
and S7! 1s given by.

= 1 R
S =1+ ;(A_MR{H + /\_mk]Rm), (2.553)
= 1 R
L | .
S + k§=1 ( Yo Wt g W ) (2.55b)

where the matrices Q] are related to the Rix’s through the condition § 8- = I

Proposition (2.2.10) Equations for the poles

The poles pjx) are solutions of the following equations.

2p4k) 214K
=0, —
Mk]’u + Mk] _ a a,u Mk].v Mk] + a

a, = 0. (2.56)

Proof

By substituting (2.55a) and (2.55b) wnto (2.36a) and (2 36b). We have:
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2) "
+ D, Ry +
kZl (A — e 1)2 b, T3 a . R kgl A — K] Rix
(2.57a)
P 2A = s 1 _
2 o P x5 % R"“Hk; N O B
1

1 i 1 _ .
A-a :Z:l A — 1K) (ARw — Ri A,) . (2.57b)

After equating (2.57a) and (2.57b) we have to impose that the second order pole
disappears, for the pole structure of the two members to be the same. This proves
the assertion. O q.ed.

It is worth mentioning that, due to condition (2.27), equations (2.56) satisfies the
integrability condition:

pe,, — R, = 0. (2 58)
Analogously for vx).
Proposition (2.2.11) Pole-Trajectories

The poles 4k} and vix] have the following explicit expression.

e = wr—8 £ /(uw—F)2~a?, (2.59a)
vk = wil—B F +/(w—B) — a? (2.59b)

Proof

FEquations (2 56) can be rewritten wn the form-

a, 1 4, o Lp, _fptay _
Vi 2yEn® T2 m (\/ﬁ) . (2:60a)
a,u ‘]; _l ,‘l‘,v= H—O —_
Vi 2\/‘# 2 VB (\/ﬁ) . (2.600)

H

where the mndez [x] has been dropped for stmplicity. By integrating both members of
both equations respectively in u and v one obtains:

p—a = 2pCu), p+o = 2./u D),

where C and D are arbitrary functions of u and v respectwely From this the fol-
lownng relations may be derwed:

pr=2u(2D? ~a)+a* =0, #2=2p(2C* +a)+a*=0.

They are only consistent of & = D*(v) — C*(u). Thas must be compared wnth (1 33),
thus yelding-
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C?(u) = % w-F, Du)= % w+G, (2.63)
12— 2w — ) +a? =0, (2.63b)

where the second equation 1s obtained by using that 3, harmornically conjugate to a,
can also be written wn the form: B =F — G.
The solution of the second equation above 1s clearly gwen by (2.59a). Oq.ed.

Proposition (2.2.12) On the structure of R and Qi

Rix and Q) must satisfy

detRiyy =0, det Q=0 . (2 64)
Proof

From the wentity S S™' = I evaluated at A = px], we have Ry S~1(uu) = 0.
These can be considered as a system of linear equations Therefore, in order to have
a solution, we have to impose that the determinant of Rix) vamshes. By smmalarly
evaluating the identity ot A = Ux], we can get a similar condition for Q). O g.e.d.

According to the above result, we can look for solutions such that Ry and Qix) are
in the form:

R, = nix, mi, , Qu, = PiH, qH, » (2.65a)
Rix] = niK Q@ mi , Qx = pK gy . (2.65b)

The Construction of Ry

Given a Seed metric g, we can (at least in principle) obtain ¥,. Having that, we
can introduce the matrix Mk = ¥, ~}(A = ujx]) that clearly satisfies the equations-

My, + y{k]l—a My A, = 0, My, + Iﬂﬁ M B, = 0. (2.66)
Proposition (2.2.13) The vectors mi
The 2-vectors mix] are given by:
mi) = KK -Mpy . (2.67)

where xx] is a completely arbitrary complex vector.

Proof

Equations (2 36) can be rewnitten as:

1 1

oA = (D9 S~ + S S A S (2.68a)
1

T o B = (Dz S) St + X‘i—a‘ S B, S-! (2.68b)
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We now require that the second member does not have second order poles. Then:

Ry A, S7'(uw) = 0, (2 69a)

-1
Ry, 87 (uw) + o

R B, S~ (upwp) = 0. (2 69b)

S-—l
Rew, 87 (pm) + P

From the wdentity S 87! = I we have Rjx] 8™ '(ux)) = 0 We can now rewnie
S~Yqw)) as S~ (r) = T QP . Therefore the previous condition now reeds:

my - Tiwy = 0. (2.70)
By substituting (2.65) and (2.70) wnto (2 69a) and (2 69b) we have:

[m{kl_,, + mi - Ao] - Ty =0, (2.712)

Mk —a

[In{k]_v + mix - Bo] - Ty = 0. (2.71b)

TORRe:

Notice that equations (2.71) have the same structure of equations (2.66). Therefore
the assertion 1s proved. Oqed.

Proposition (2.2.14) The vectors n

The 2-vectors nix) are given by:

2n

1

njy = ZM I ksl Nitla N = {Nwr,},  (2.72a)
k=1

[kl = =< a? N -my] N = mi-g,, (2.72b)

where the sum is now extended to both the pole-trajectories and thewr complex-
conjugate companions.

Proof

By substituting (2.55a) wnto (2.38) and putting A = K] = o?/), we have a set of
n equations for Rix:

i 1 1 ;
R g, - [I + > (V[k]_pm Ryl + Mk]_mj]Rb]) =0. (273)

=1

By using Rir) S~1(14x)) = 0 wnto (2.73) we have:

"~ M - &, - My ~mpy - g, W) __

— il + —_— = —mijk] . 2.74
2 v 2 il ¢ 8o, (2.74)
These are n equations for the n components nf),. The trick 1s now to renumber the
poles unthout distinguishing between pix) and fix) wn (2.55a). By wntroducing Tik,y) and
N defined above, equation (2 74) simplifies to Ef:l K] Deglnpl, = Nil,, which

proves the assertion. Oqed.
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Proposition (2.2.15) Determinant of the n-soliton solution

The determinant of the unscaled metric is given by:

2
detg = H ""{ a E et (2.75)

Proof

For the proof we refer to [49], where it 15 gwen by using the smart procedure of
adding one pole at a time. O q.e.d.

Proposition (2.2.16) The physical n-soliton solution

The physical metric describing an n-soliton solution is given by.

2n
1T | | 1 1
°"_£[1—a (9% T I kg Npl, Nmb) (2 76)

where N{k, and Ik, have been defined mn (2.72b) and pyx] are given by (2.59a) with
wik] arbitrary complex constants.

Proof

The proof sumply follows from the definitions (2.55a) and (2.34), along unth the
rescaling procedure earlier introduced. Oqed.

Alternatively one can use the following form given in [95]:

N
k] ~
a =H I,u; |(goab — I kgl Nk, N[,]b) , (2.77a)
=1
& Hix} )
Ny = g - g o= M e my L (2.
M = g-my, Ik T ] —¢ o mix - g, - mp) , (2.77b)

where now N = 2n and the definition for I' as been slightly modified.

The form for the n-soliton solution given above deserves a few remarks. The seed
metric g, enters this solution in a direct way and through ¥, in a more involved one
In particular, ¥, will be necessary for the construction of the myx] vectors However,
it must be recalled that, given any g,, it is not simple to obtain the corresponding
¥ . In fact, this involves the solution of some nonlinear equations. Nevertheless
many explicit expression are now known. We will consider them in chapter 3.

A second problem is given by the explicit manipulation of the algebraic expres-
sions in S{e, 3,)) According to the number of poles, we have to deal with N x N
matrices (namely the Ik,j) that need to be inverted. Even for a 4 x 4 matrix, this
may be not a simple task. In this respect, a sigmficant result has been achieved
by Alekseev [95], who managed to avoid finding inverses by rewriting the metric
components as the ratio of two determinants of N x N matrices. This result will
also be briefly sketched 1n chapter 3.
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2.3 The Alekseev Technique

This section 1s devoted to a presentation of the Alekseev technique [51, 52, 53, 54].
It involves 3 x 3 matrices rather than 2 x 2 as in the previous case.

2.3.1 Matrix Form for the Einstein-Maxwell Equations

Proposition (2.3.1) Duality Form of the Einstein’s Equations

Let us introduce:

* 1
K@y =Vuba = Vi &y, K™ ey = 3 €wvos K0y , (2.78a)

va(a) = K@) + 2 K*W(G) R wypo=12734, (2.78b)

where £# are the relevant Killing vectors. Let us suppose that there exist a self-dual
bivector S, (q) such that:

T &va = €upe V" 5%, (2.79)

where T, is the energy-matter tensor. Then the Emstein Field Equations are equiv-
alent to the existence of a bivector

Heu (@} = Qo @ + 4 (87G) Suv(a) (2.80)

which has the following properties:

1
pr(a) = ‘2’ €rvpo ﬂm(a) ) ke Vy HP"(a) =0 y (281&)
3 Huy@y st Hua) = Op Huw) — 0, Hyy - (2.81b)

Proposition (2.8.2) Duality Form of the Maxwell’s Equations

The electromagnetic field can be described by a bivector F,, and a potential O,
such that:
(i} the energy-momentum tensor is given by:

1 1
Tw = o (Fup Fo, — 5 Fpy F7 » (2.82)
(ii) The Maxwell Equations are given by:
Viutyy =0, V., " = 0. (2.83)

(iii) By introducing the dual variables F*,, = 3 €uvpe F?7 and wy,, = F, +1F*y,,

the Maxwell Equations can be put 1n the form:

Wy = %qua W, VWt =0, w, =289, —3890,. (284)

Notice the close similarity between equations (2.81) and (2.84).
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Proposition (2.3.8) Kinnersley Equations

Let us consider the line element (1.25), and introduce the matrices k., €,,, €a
defined by:

Gar = hi €s o €ab — Eab = (_01 é) ' a,b=1,2, (2853')

deth,? = ea?, €, = €8 = (_01 3) , A, B=1,2. (2.85b)

Then the equations (2.81) and (2.84) became.

8, Hpt = - % e h 8, HY, (2 86a)
BA (I)a=—% EAB h: 33 ‘I’c, (pa:q),u. ‘Ef;s (286b)
8, Ht =9, h — é e? O, h-2%°0, @,, (2.86c)

where the indices A, are raised and lowered by means of the matrix n,,, and the
indices o6 are lowered and raised by the matrix ¢q.

The usual electromagnetic vector field 4, = (0,0, Ay, A2) is related to ¢ = {®,}
through the relation: A, = Re®,. It is also appropriate to emphasize that the
function & must satisfy n42 9, a , = 0, which is equivalent to the known a,, =0

Proposition (2.3.4) Matrix Form for the Einstein-Maxwell Equations

The equations (2.86a) and (2.86b) are equivalent to:

2 9,U, + 53— e U, U, =0, (2 87a)
429, U, = 0. (2 87b)

The equation (2.86¢) is equivalent to

8 (G-4:18Q)=2(U0'a-auU,), (2.88a)
GU,=-4ieae’ QU,, (2.88b)
U, = 28, , Re(TtU,)= 0, (2 88c)
G = Gt, G»® =1, (2.88d)

where (3 is a function defined through 8, = €€, a,. Moreover:

0, H® 9, ®, —4h% 4 4 O PP —20°
U=\ _ - , G= . . (2.89)
209, HY 2%¢9, ®, —2Pb 1

and £ is a 3 X 3 matrix with all null entries, except for ,, =1 = -Q,,; 5 labels
the electromagnetic components — the third row and column — of all matrices.
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Proof

Let us consider U, and G n the form-

HE o, —4 b + 4% Qb —20°
., G= . . (2.90)
Xt v, —2 b 1
Let us substitute the above form of U, wnto (288a) We can obtain the relations:
(I)Aa, = 64 Dq , (2 91)
—48, (B + 4P +ifet) = —2(HP2+H, ). (292

The first relation defines one of the elements of the U, gqwen above. Let us now
substitute U, from (2.90) wnto (2 88b). After a lttle algebra we obtain:

X'=2%9, H, (2.93a)
Y, =2%9, &, (2.93b)
—4h* P, + 4P° PP, — 28°Y, = dr1eaer®d,, , (2 93c)

—4h* HSL + 493 Hb — 28°HD? = dicaer*H,.  (2.93d)

Relations (2.93a) and (2.93b) define two more elements of U,. By substituting
(2.93b) wnto (2.93¢) we get the other relation:

—4h* @, = d1ecael Py, . (2 94)
By substituting (2.93a) nto (2.93d) we get the relation:
b ac FT0

—4h* H, = 4r1eaef eH . (2.95)

It 15 worth noticing that (2.94) and (2.95) correspond to the first two Kinnersley
equations. This proves one first part of the assertion.

Let us now go back to (2.92). This equation gives wnformation on the hermitian part
of H A“’" only. Therefore there 1s still an arbitrariness on the anti-hermatian part.
We can use that to set:

H® = 8, (" — T +ifet)+y, e + 15,2, (2.96)

where 7y, 15 a real 3-vector and S, 15 a real matrix as well. Let us substitute (2.96)
wnto (2.94) After a hittle algebra we get the equation:

O bl +1B,6 — 8, (PuBp) + 7,8 + 15, = %ef he (8, h) +
1 1 - 1 1 b
+aef heB e — -a—eAB ke 8, (@, @) + EGAB RSy, €& + EEAB ht S,.. (2.97)
If we now use (2.95) wnto (2 97), we can obtain:

8, 8) T = e b (8, B,) B . (2.98)

R
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By substituting (2 98) wnto (2.97) and by wsolating 1its real and wmaginary parts, we
get the two equations:

_ 1 1
O by — 20, B + == —ef M foe — —e RS, (299)

A

® By, €. (2.100)

A

ﬁ-“‘eg + SAI; = o EAB hﬁ (aB hg) + = EAB h: , (33 ‘I?b) + o €

In order to solve the above equations let us make the ansatz.

1
T = - e hS Syl e, . (2101)
The condition on the determunant of g can be rewritien wn the form:
RER = —ea® (2 102)
(B B R + RSO, B) = —2¢€aa, 8], (2.103)

where the second relation has been obtained from the first by differentiating 1t By
substituting (2.101) and (2 102) wnto (2 100) we get the relation:

1 1
Bach = SR (O H) + el

R @, (3,P) . (2.104)
By substituting (2.101) wnto (2 99) we get the relation:
— 1
9y he = @, 9, B° — ~ e KB, € . (2 105)

Let us substitute (2.103) wnto (2.104). Wath the help of (2.105) we finally get the
important relation:

B, = —€e?a, (2.106)

A

At this stage H,®, defined in (2.96), reads:
Hlb = 9,1+ ZePh0, 1 — 2856, + 7,8 + éef v b2, (2.107)

From this and by using the above relations one can oblawn:

TtU, = 27,+0,Tth = 2v, + 28, (2.108)

We can always use the arbitrariness in the definstion of v and set

Re T'rU, =0 TTU, = 28, (2.109)

The expression for H,® will now be further simphfied to:
HE =8, 1 + i—ef RO, R — 289, 30 (2.110)
It 1s now truwnal to show that H Aﬂ =8, H®. In fact, the proof sumply comes from

substituting (2.110) wnto (2.87b).
Funally, equation (2 87a) will follow as a byproduct of this construction. [ q.ed.
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Proposition (2.8.5) Rank of U,

Condition (2 88b) is equivalent to:

rank U, = 1. (2.111)

Proof

The assertion follows from the previous proposition and by using the Kinnersley
equatzons gwen . (2 86). Oqed.

2.3.2 A Linear-Pair formulation

Let us consider the pair of linear equations given by:

1 w—p)s°7 +eaef
2% (w—p)2% - ea?
where ¥ is a matrix function depending upon the relevant coordinates o and
and upon the spectral parameter w. More details on the construction of this linear
pair are given in appendix A. Here we just emphasize that different spectral planes

are adopted in the Alekseev and BZ formalisms. This is expressed by labelling the
spectral parameters with different letters.

8, ¥=AFU, ¥, AF = (2 112)

Proposition (2.3.6) A linear-pair formulation

The solutions of (2 87) are equivalent to those of the linear system (2.112).
Proof

Let us consider (A.8):

42D A€ eABA C
( detAAB ) Uy + ( detX ) U, — U, U, =0. (2.113)

From (A.9b) we have.

€ABA ©
( 0 ) 8Us — 2 U, U, =0. (2.114)

By wnserting (A 9a) wnto (2.114) we have-

1
MU, + Fer? 8, U, — m—— e U, U, =0, (2.115)

where F has been defined in appendiz A. Clearly (2.115) 15 satisfied off:
ne 3 U, + ﬁ 42U, U, =0, A2 9, U, =0. (2.116)
That concludes the proof. Uqed.

Equations (2.88) can be rewritten — in terms of the matrices that enter the linear
system (2.112) — by introducing the matrix function W

W=_G+ 4:{w—-p3)Q. (2.117)
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Proposition (2.3.7) Properties of W

Condition (2 88d) is equivalent to

W = Wi, W =1, aﬂ=4zﬂ. (2 118)
ow
Proof
Thas trunally follows from (2.117) and (2.88d). Oqed
Proposition (2.3.8) Equation for W
Conditions (2.88a) and (2.88b) are equivalent to:
W + A7 (WU, — U W) =o0. (2.119)
This equation admits the following first integral:
WY = Kw), (2.120)

where K is an arbitrary hermitian matrix depending only upon w.

Proof

Let us consider (2.88a) and the antihermatian part of (2.88b):
(ULQ—QUA)z—%BA(G—AIzﬁQ), (2 121a)
GU, ~- UG =21cae’3, (G —-4:180). (2.121b)
Let us consider the quantity-
42 (w-0) (2121a) + (2121b) . (2.122)

By wntroducing the new function W defined (2.117), the above equation has the
simple form:

WU, - U'W = —-2w-p)d,W + 2icae’ 3, W. (2.123)
By considering (A.10), (A.12) and (2 112) we have:
W+ A (WU, - Ul W) =0. (2.124)
From (2.112) we also have:

U, = (A", 9, ot (2 125)

By mnserting (2.125) wnto (2.119) we have:
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A, (TWT) =0, (2 126)

that 1s
VWU = Kw). (2.127)
where K 1s a constant of integration O q.ed

Equation (2.112) implies that any ¥ is defined up to a transformation:
T ¥ =¥ Cw), (2.128)

where C(w) is a matrix depending only upon the spectral parameter w. This trans-
formation can not affect the final form of W, because this contains the (physical)
metric components through the relation (2.117). In fact, by using the above trans-
formation, (2.120) became:

TWT - Cuw) ¥WPTCw) = Cw) K(w) Clw) = Kw). (2.129)

As we shall see later on, this freedom can be used to make a suitable choice of the
matrix K(w)
It 1s now convenient to introduce the null coordinates associated with a and 5:

§E=0+7a, n=48-7a, (2.130)

where ) =z if ¢ = —1 and j = 1 if e = 1. In this new coordinate system, equations
(2.112) have the simpler form:

2(w—-§)0, ¥ =1U, ¥, 2(w—n)o, ¥ =U, V. (2.131)
In passing, notice that the equation (2.88c) yields:
=1, TU, = i. (2.132)

2.3.3 The Dressing Ansatz
Step 1

Let us consider a known solution g, {Seed Metric) of the Einstein-Maxwell field
equations. From this metric it is possible to obtain the two matrix functions Up,.
Rather than applying the definition given in (2.89), it is convenient to construct
G, as a first step and then use the equations (2.88a}, (2.88b) and (2.88¢) to get an
explicit expression for Up,. Given Uy,, it is then possible to solve the Linear pair
(2.112} to obtain ¥,. This procedure may be rather difficult since it involves the
solution of coupled nonlinear p.d e.’s.

[Step 2.a,

We now look for solutions of the form:

Dressing

‘I’(Q,ﬁ,ﬂ)) = S(a,ﬁ,'lU) ‘I,U(a’ﬁ’w) ’ Ansatz

(2.133)
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where S is a matrix to be determined. By substituting (2.133) into (2.112) we have:
9,8 = A” (U,S —SUy,) . (2.134)

Alternatively these equations might be rewritten in the £ and 7 coordinates intro-
duced above. We have:

2(w—¢)8,S=U, S-S Uy, 2w —1) 8,S=U, S—8 Uy, .(2.135)

Step 2.b

By performing the two limits for w — £ and w — 7 in (2.135) we have:
U, = S(w=¢6) Uy, ST w=¢), U, = S(w=n) Uy, S (w=rn), (2.136)

n

therefore:
TTU, =Tr Ug‘E , TrU, = Tr qu , (2.137a)
rank (U,) = rank (Uy,), rank (U,) = rank (U, ), (2.137b)

where the last step comes from S being mvertible Thus, if U, satisfies the conditions
(2.88¢c) and (2.111) the new matrix U satisfies them, too.

Remark.
From (2.120) and (2.133) we have:
viIW, ¥, = K (w), v iSTWS ¥, = Kw), (2.138)

Incidentally, notice that if we now assumed that K(w) = K, (w), the above relations
would yield:

Stws=w,. (2 139)

This 1s a simple relation whose importance will be 1llustrated in section 2 3 4 as well
as in chapter 6

The Physical Operators

Proposition (2.3.9) Limiting form of S

In the limit in which w — oo the matrix S assumes the form:

S=I+$R, lim R =bounded, R = lim w(S-1I). (2.140)

w—o0 w0

Proof
Notice that A,” — 0 as w — oo. Therefore, by using (2.134), we have:

lim3, S = 0. (2.141)
wW=—r00
From this relation we argue that S(w — oo) = const. By using the fact that ¥ 15
defined up to a transformation hke (2.151) we can always make this constant to be
the identity. Therefore, the general form of S s the one gwen n (2.140). O qed
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Proposition (2.3.10) The U, Matrix

The new matrix U, 1s given by
U, =0y, +2:0,R. (2.142)

Proof

Let us consider (2.134). By putting (2.140) wnto (2.134) we have:
R =wA’ U, - Uy) + A’ (U, R - RUp,). (2.143)

By using (2.112) we have:

. 1 .
J}_{EowAAB = —zéAB, JI_IEOAAB = 0. (2.144)
Therefore the thesis 1s proven. Oqed.

Proposition (2.3.11) The G Matrix

The new matrix G 1s given by:
G =G - 44RQ+RQ) + 430 (2.145)

where 3, € R is an arbitrary constant of integration.

Proof

Let us consider (2 88a) both for the seed and the new metric:

3, (G -4:18Q)=2(U'Q-0U,), (2.1462)
8, (G, —4:180) =2(U} 2 - QU ). (2.146b)

Let us substitute (2.142) wnto the above equations and consider thewr difference. We
obtamn:

2, (G-41802)=08,(G,~4:18Q) — 48, (QR + R'Q).(2.147)
By integrating the above equation we obtain:
G=G,—4 (QR+R' Q)+ const. (2.148)

In order to ensure that G = GI, this constant of wntegration can be chosen to be
4 12 3, 2, where 3, 15 yust a real number. Oqged.

It may be asked why a constant of integration is added to the 12 and 21 components
only. Surely the electromagnetic components do not necessitate such a constant:
in fact, the electromagnetic field F,, is defined in terms of the derivatives of ®°.
Therefore, adding a constant to ®* would not affect F,, at all. On the other hand,
the purely gravitational components 1 and 22 turn out to be real, regardless the
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actual form of R. Having that, a constant of integration 1s only needed in the
remaining 12 and 21 components.

Proposition (2.3.12) The W Matrix

The new matrix W is given by:

W =W, -4 (RQ +RIQ) + 45 0. (2.149)
Proof

This sumply came from the definition of W gwen wn (2 117). O q.ed.

Equation (2.120) implies that the formalism admits two arbitrary first integrals: in
fact 1t holds both for W associated to the new metric and for the W associated to
the seed ¥,. We are then left with the two arbitrary matrices K(w) and K (w):

UIW ¥ =K(w), W, ¥, =K, (w) . (2 150)
By using the fact that any ¥ 1s defined up to a transformation
¥ - U=WC(w), (2 151)

one can use this freedom to choose a suitable K {w). The choice that has been
considered by Alekseev is:

4 0 0O
K, = | 0 —4¢ 0| . (2.152)
0 0 1

This is not the only possible choice, but it is rather convement. We will clarify this
point later on n this chapter and also in chapter 6.

2.3.4 The Simple Pole Ansatz

In this section we study solutions obtained by making the ansatz that S and §-!
only have simple poles (ie. S, S~! have meromorphic structure) in the complex
plane w-

al N
= ! -1 _ 1
S_H; w o S _1+; —oQu. (2159

where N is the number of poles and R and Q] are two 3 X 3 matrices to be
determined through the condition S 871 =1.

Proposition (2.3.13) General form for Ry and Q]

The matrices Rix] and Q[x] must have the general form:

R = ni ® mipx, Qx = pK © g . (2.154)




CHAPTER 2. SOLITON GENERATING TECHNIQUES 43

Proof

The proof can easily be derwed from that gwen for the BZ solitons — see Proposition
(2.2.12). 0O qed.

Proposition (2.3.14) The vectors njx] and g

The 3-vectors njx) and qx] are given by:

Plk] mj) (

. (2.155)
wh) —vK]

N N
gy=—-> T'p my, nu=>» Ik ppl, Dal=

1=l 1=l
Proof

Let us consider the identity S S™1 = 1. By substituting (2.153) mnto 1t we have:

N

N
Y = Qo+ Z R

r=1

R Qu =0

Z (w - w[k]) w — )

k=1
Let us now consider the limit when w approaches wix). In order to avoid singularities
we must set:

N

1
R+ ) o R Q1 = 0. (2.156)

=1

By substituting (2.154) wn the above expression we finally get the equation:
N -
mix + Py E— q = 0. (2.157)
1

By considering the identity S™'S = I and the limat w — k), one can analogously
obtain the equation:

N
Pix] - Mj]
k] — P EE— = 0. 2.158
P 2wy = un nj) (2.158)
From these, 1t 1s then strawghtforward to prove the assertion. 0O q.ed.

Proposition (2.3.15} One first property of the poles

The poles in S and S~! do not depend upon o and 3.
Proof

Let us consider (2.134) written wn the form-

APU, =(8,S + AZSU,, ) s™. (2.159)
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By substituting (2.153) wnto (2.159) we have:

o a0, Wik -1
AU, Z -Rig S

(w — wiK)

R.[k] + AAB Rix) UUB) S_l,

where S™! 1s evaluated at wir]. The first member of the above equation does not
contain poles in wik). Therefore the same must happen at the second member. As a
result, we have to set:

O, uwk = 0, (3, Rl + A° Ry Up,) S7Hwm) = 0. (2 160)
Let us consider (2.134) written n the form:
AU, =-8(9,8"' - A8y, S). (2 161)
Anelogously, by considering the residue at the poles k] we must set:
d,u = 0, S(w) 0, QU — A Uo, Qm) = 0. (2.162)
The first equations wmn (2.160) and (2.162) prove the assertion. O qed.

Proposition (2.8.16) The vectors mi] and pi

The 3-vectors mix) and pik] are given by:
my = K- Yo wr) P = $o (ux) - 4 (2.163)
where kx| and x] are completely arbitrary constant vectors.
Proof
From the relations S S™! =1 and S™! 8 = I we can obtain:
Rig S7'(ww) = 0, S(um) Qu = 0. (2.164)
Let us set:
ST (wi) = N @My S(k) = P @Ti . (2.165)

The condition Rix] S~} (wik]) = 0 now reads mpx] - Nty = 0. As a result, the second
equation 1n (2.160) simplifies to:

8, mix) - Nig+A,” mix - Ny U, = 0. (2.166)

Analogously, the condition S(vk)) Q] = 0 now reads Tix) -pix] = 0. Therefore, the
second equation in (2.162) simplifies to:

3, Tix-pik — A,° Ug, Ti-pl = 0. (2.167)

By confronting (2.166) and (2.167) unth (2.112) — wnitten for the seed metric — we
have the assertion proved. Oqged.
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Proposition (2.3.17) A second property for the poles

Under the assumption that K = K,, we have that the poles in S and S~ must be
complex-conjugate to each other: vix] = wWik).

Proof

Let us consider the (2.139) wn the form:
S'TW = w, s, (2.168)

Let us substitute (2.153) wnto (2.168). We have:

1 1
t W =
W + E . Ry'W= W, + S " W, Qi .

Since Rix] and Q) have no poles, and since the structure of the singularities must
be the same wn the two members of the above equation, we have to conclude:

M = WK (2.169)

This concludes the proof. O q.ed.

Proposition (2.3.18}) Constraints on the free parameters

Under the assumption that K = K, we have that:
by =—-4 e K, (@) &y . (2.170)

Proof

Let us consider the (2.139) n the two equivalent forms:
W =8stTw, s, Wl=8W;lst, (2.171)

Let us substitute (2.153) wnto the second of equations (2.171). We have.

N
-1 _ wxr-1 w-1 f
wl=w:1 4 ; —— W, Ry + (2.172)
N
-1 -1 t
+;w (BmW + Zw wlk]R*’] W Rat),

where the a and B dependence has been dropped out. Let us now wmpose that the
second member has not singularities at w = wix]. Therefore we have:

N
_ 1 -
W, (wr)™! + Zm Ry Wo{wi)™ Ryt = 0. (2.173)
k=1
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Let us wnsert in the above equation the explicit expression for Ry, We are left unth:

N —
- my} - W, (wik)) ™! - i) _
my) - W, (wim) ™t + E wfkg—m)[m nK=0. (2.174)
k=1

By confronting this expression with (2.157) we have the assertion proved. [ q.e.d.

Up to this stage the vector &[] is completely arbitrary. It is trivial to notice that S
and 87! are invariant under the transformation:

KK — kK Gy — k, &n , (2 175)

where k, and k, are two arbitrary complex constants. In fact it can be seen that
under such a transformation we also have:

miK — k, myl, nE o kTUne, pe o— k Dk, qe — k7 qw . (2.176)
Therefore we can use this freedom to put:
ki = (1, KK , KK ), Gy = (1, 6., &1 ),  (2177)

where k%, k., £,x] and €] are completely arbitrary complex constants. However
for any arbitrary K, it 1s not ensured that condition (2.170) will automatically give
£ix] in the above form. However, this 1s so for the particular K (w) given in (2.152).



Chapter 3

Belinski—Zakharov Soliton
Solutions

In this chapter we intend to give an account of the soliton metrics that may be
explicitly constructed by applying the Belinski~Zakharov (BZ) generating techmque
described in chapter 2. In some case we will simply quote known solutions and
rewrite them 1n our notation In some other case we will derive again known solutions
by using the Alekseev’s determinant method [95].

As mentioned at the end of section 2.2 4, the BZ soliton technique does not
easily provide explicit solutions. This is mainly due to the I'"" in (2.76) To invert
this matrix is not a simple task and it is hard to get soliton solutions with more
than 4 poles. The problem has been partly solved by Alekseev [95], who managed
to rewrite each metric component 1n terms of the ratio of two determinants. This
considerably reduces the amount of computational work that has to be performed.
Surprisingly enough, we have not found any paper referring to it. We have seen a
similar approach only in [124].

Even more troublesome than this, there 1s also the problem of finding ¥, i.e
to solve explicitly the linear pair (2.32) for the seed. In this respect, we have found
the works of Kitchingham [77] and Letelier [94] invaluable.

In sections 3.1 and 3.2 we will briefly deal with these two problems. Subsequently,
sections 3 3, 3 4 and 3.5 will be devoted to the presentation of a few explicit soliton
solutions and their properties.

3.1 On the generating function ¥

As mentioned above, we will consider here the problem of finding the generating
function ¥, once a metric g, has been given. This is a crucial step in the construction
of the soliton solutions, because all the relevant quantities are constructed in terms
of the ¥, associated with the seed.

In [77] a number of explicit cases are investigated, both diagonal and not diago-
nal The analysis is carried out using the fact that the BZ inverse scattering tech-
nique 1s known to be explicitly related with the Kinnersley—Chitre transformations.
Actually, in [77, 78] the KC transformations are also extended from the stationary
axisymmetric case to the cosmological ones. Among the various results obtained,
the one relevant to us is the explcit form of ¥, for the Wainwright~Marshmann

47
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metric [96, 97, 98], which we will consider in the next section

In [99] Belinski and Francavigha show how to construct the ¥, generating func-
tion associated to a Bianchi II metric. The case of Bianchi I metrics is recovered as
a particular limit of this.

In [94] the diagonal case is considered 1n the cosmological and c¢ylindrically sym-
metric context: ¢ = 1. Given a general diagonal metric

a¢ 0
B = 0 a :_b ) (3'1)

where ¢ is a function of & and 3, it is shown that the associated generating function
¥, is given by [94].

(@ + 203+ 222 Y(a, 5, \) 0 ,
To= 0 @+ 236+ )} s | (3.2)

where Y (e, 8, A) fulfills the “initial condition” T(a, 3,0) = ¢{e, B) and satisfies the
equations:

0

(@d,-X0,+2X3,) logT=0a¢,, (3.3)
(€d,—18,) logT=0ag¢,. (3.4)

Of course, the function ¢ satisfies the equation:

S+ i— o=, =0. (3.5)

Moreover, 1t 1s shown that the linear superposition property enjoyed by those
solutions — equation (3 5) is linear — for the generating functions ¥, is expressed
as follow: if ¢ and ¢® are two solutions to (3.5), then the other new solution
¢ = h,¢ 4 h,¢? is generated by the function T = Tfl T;‘z.

¢=h ¢V +h¢? = T=ThTh (3.6)

This last property can be used to generate further functions for diagonal solu-
tions.

To conclude this section, it is worth mentioning that the problem of finding ¥,
also exists for the Alekseev solution generating technique. As far as we know, explicit
expressions of Alekseev’s W, are known for the Minkowski metric [51, 52, 53, 54],
the Kasner metric [128] and the Bianch: VI, metric {104]. We have found an explicit
expression for the Kasner metric ~ independently from [128] — which will be used in
chapter 6 We also have been involved in the search of the Alekseev’s ¥ associated
with the Bertotti-Robinson metric The relevant equations have been virtually
solved, but we have not been able to put them in a readable form.

Biblwography of Fules: [1, 34]
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3.2 The Alekseev Determinant Method

In this section we will consider the other problem highlighted in the introduction to
this chapter: that of having an efficient algorithm to explicitly construct the soliton
solutions.

Let us consider the BZ N-Soliton solution in the form given in (2.77b) It can
be rewritten as:

N N
k] 11 .
' gab = H%(goab - KaKbHab)’ Hab = K_E Z (nk’J]) INEk)NP)’ (3'7)
k=1 a

b kg=1

where K, are arbitrary functions. Let us introduce the matrix Gix,) defined by:

1 1 - S
Golel = KK, 70 =0 T, H,=Y Glkg.  (38)
a b ki=1
By using the determinant formula:
- n
det(1 + Glx,) = det Gl + det Gixg Z G ), (39)
rs=1
and by introducing the quantities:
11 . .
= N pr(®) -
0,, = det( e NOND + fwa), T=detlim, (3.10)
the metric coefficients can be rewritten as-
N
k] e,
g, = g? (G0, + Ko Ky = KK, =2) (3.11)

The functions K, can be appropriately chosen as to simplify the explicit calculations
ot the relevant determinants.

Hereafter we will give a few example of the determinants ©_, and T for solitons
solutions generated starting from a number of seeds. Cosmological and cylindrically
symmetric coordinates — ie. € =1 — will be considered.

In [95] the explicit formulae are given for the Minkowski seed case with € = —1,
a=pand f=1¢.

Bibliography of Files: [2]

3.2.1 Xasner Seed Metric

Let us introduce the Kasner metric:
a1—2q 0
g, = ( ) (312)

generated by the following ¥, [94]:

a? + 2200 + Z)/2-¢ 0
‘pg = ( ( 0 ) (ag+2Aﬁ+A2)1/2+q - (3.13)
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By using (3.12) as seed, and with the following choice of the arbitrary functions

K, =02, K, = a3t (3 14)

the determinants 1n (3.10) are given by:

%] o] +NK2E A2
T =det (A{k] A 4 ]q;[]k] :\\IU:_?D] ) , (3.15a)
B ok} ] +AkPT APt
©,, = det (A[k] Ap] i o =1 ; (3.15b)
6. = det[ Ap Ay FHITNGT NI — q A (1= d™ i) (3.15¢)
12 N A —1 T
ak] ol + AP Ay 2att
= B
0,, det( ] B N 0= , (3 15d)

wherez,5=1,...,N and:

AR = 2973 wy?I NytETY, B = 2072 wm?™E AyTiTY, (3.16a)
KK = 2% T ay K = o N - (3.16b)

It trivial to check that (3 15)’s, when specialized to the case ¢ = 1 (Minkowski
metric), are compatible with the formulae given in [95], appropriately converted to
the cosmological coordinates by the ansatz p — 1 a.

Bibliography of Files: (3]

3.2.2 Bianchi VI, Seed Metric
Let us introduce the Bianchi VI, metric [94]:

aet? 0
go = ( 0 o e—ﬂ ) 3 (3-17)

generated by the following ¥, [94):

_ (@228 + 22k A2 0
oo ( 0 (02 +2A8+ A2)2 e F-N2 | - (3.18)

In passing, it is worth noticing that this metric has been used as seed by Belinski
to generate his gravibreather solution — see [101, 102, 103, 104, 105] — and to study
possible topological properties of soliton solutions.

By using (3.17) as seed, and with the following choice of the arbitrary functions

K, =a? Q12 K,=a2 Q712 Q=¢, (319)
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the determinants in (3.10) are given by:

X X+ dxl di)
= det{ Ax , 3 20a
( W Apl = S ) (3 20a)
— Pk Pl + ax i)
0,, = det (A[k] Ap) i o1 ) , (3.20b)
XK Xs) + dr) 45 g
- -l 2
O,, = det (Am A ( AT qsm)), (3 20¢)
— Ykl ¢l + grl di
0,, = det (B[k] By N =1 ) , (3.20d)
where i,7=1,....,N and:
1 1 1
AR = e/ ¥ By = ———— 1/ Am e (3.1
H /2 Qwyik] VA H 20w,k At e (3:21a)
M = ﬁ e~ o = My e M g =M (3.21b)
1
Rolll = & A piK = o A (3.21c)

Notice that, in this particular case, the dk)’s are not constant.
Bibliography of Files: [4]

3.2.3 General Diagonal Seed Metric

Let consider the general diagonal metric already introduced in section 3 1:

a T(a, 5,0) 0
B, = ( 0 N m ) : (3.22)
generated by the following ¥, [94]:
(0% + 208+ A2)z T(a, B, A) 0
¥, = ( 0 (a2 + 228 + A\2)} ‘_—'r(a,lﬁ, 3 ) - (3:23)

By using (3 22) as a seed, and with the following choice of the arbitrary functions

K, = a'? T(a, 8,02, K, =o' T(a, 8,072, (3.24)
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the determinants in (3.10) are given by:

B By T TP
I1 — d t 1 -—._._..____ R .2

e (A[k] A 3T ( +an @l = )) (3-25a)
\
| CiH Chy) Tiky® Tps?

— det fnlic il 3.25b
1 0, e(A”A[’]AuAm (1+qk1a_ﬂ>uk1 i) TP ) »  (3.25b)
‘ B By Tix® T

e t ————— ____.____. —
: O,, =de (A[k] Ay) pT ) (1+CI1 dsl TP )
) T[} © )B] Ctixl Cin Ti) ) , (3.25¢)

B T Y2 1
©,, det(A[kl Amﬁ ( 1+ ax dil [»lr[o]zm SR )) y» (3.25d)

where we introduced the shortened notation Y] = T{(a, 8,0), T} = (e, 5, p]).
The grjs are just complex constants and the remaining functions appearing in the
above formulae are given by:

AT

Tie
The dr)’s are arbitrary complex constants. The limit ¢x} — O corresponds to the
diagonal metric limit.
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Ax =

T, Cikl = Nel Biel , pfel=a A .

3.2.4 Wainwright—Marshmann Seed Metric
Let us consider the Wainwright-Marshmann [96, 97, 98], [77, 119] metric:
ds® = t 38" (da® — dF?) — Vo (dx? + 2 W dz dy + (e + WHdy?),  (3.26)

where Wand n are functions of v = f—a only and the function n{a, §) is determined
by the equation: n' = W’2,
The relevant 2 x 2 metric is given by:

g = Vo (1}, a-EVW?) : (327)

It can be shown that the generating function ¥, reads [77, 119):

by 1/4 cosY 7 sinY
) Ny G S
° (K(a,ﬁ,/\)) WecosY —+/AsinY \/g(cosY+W\—}—xsmY) ’
(3.28)

where:

Y(0,8,)) = VE@BN I(0,8,)), K = A (3.299)

M 4+28 X +a?
W'(v)
1= [ R O
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Notice that (3.28) is slightly different from that given in [119], which, in turn, is
different from that in [77] 1
By using (3.27) as a seed, and with the following choice of the arbitrary functions

K, =a'*, K, =o**, (3 30)
the determinants in (3.10) are given by:

A[k]l’M )\[k]1/4

I'= det( Fy F) N —1

( cosYp cosYp (arl an + A2 dpt?) —

cosYi sinYp) (ax + an w2 Np'/%) —
sinYj cos Y (a1 + ay w2 a?) +

sinY( sinYp) (1 + ar an) AmY2 Ap?) ) )
(3.31a)

N~ V4 g~ 1/4
K A —1

o, =det( Fiy Fy) ( sinY) snYp (a8 @) + Y2 %) —

sinY@ cosYp (ayg + ai dy'/2 /%) —
cosY[ sinYp) (a + ay MuY2 ?) +

cosY( cosYy (1 + ad ai AwY? Xz'/2) ) )

(3 31b)

Mg Nt/

0, = det( Fiy) Fy) NE G —1

( cosY[ cosYp) (qu an + M2 MpY2) —

cos Y] smYpy) (e + ci AwY? AgM?) —
sinYH cosYp (@ + ax Xu'2 M%) +
sinY smYy (1 + dr ) dm? Ayt 2)) —
Fix Fp) ( cosY[y cosYp Gyl —
cosY[ sinYp) Gy oy —
smYk cosYp Gl ay +
sinY[) sinY( G dxl ) ) ), (3‘.310)

where 2,7 = 1,...., N and gk = a Ak. The free parameters g« are defined by the
relation x,[x = 21/2wk/? di and the other quantities are given by:

Fry=2"Y ™, Gy =W(a,8) £ ag™? Ve ) 3.32
) =W(a,B) o (3.32)
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In particular, formula (8a) in [119] corrects some misprints in formula (4.34) [77] However, for-
mula (8a) 1s not correct erther. The exponent of K in ¥,  is taken to be —1 This 1s wrong as may

be immediately checked by calculating the determinant and imposing that limy_p det ¥, = o?.
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3.3 On the properties of the Pole—Trajectories

The fundamental bricks which all soliton solutions are built from, are the pole-
trajectories (2 59):

pe = wikl—f £ {um—p)2—ca?.

They crucially determine the general properties of the solutions, It seems then
appropriate to spend a few lines to recall their properties.

3.3.1 The case of complex poles

Let us first consider the case when the pole-trajectories assume complex values, ie.
the constants wix} are complex:

WK = 2Z,[k] 2w k] - (3.33)

Hereafter we will consider again ¢ = 1. We will mainly consider « =t and 8 = Z.
However, some formulae will be given in terms of @ and 8, as they may also apply
to the cylindrically symmetric case.

The properties of pole-trajectories have been throughly investigated in [106]. We
will here mention the main results for the cosmological case only. Following [106],
the spacetime (t, Z) presents five regions of interest — figure (3.1):

1. Causal Region: |zx—Z| <t — oo
Light-Cone Region: |zx —Z| = |Z| =t — oo

Far Region: t << |z} —Z| &= Z — o0

= W

Initial Region: |z,x —z|,w ik, >>t — 0
5. Interaction Region- t ~ 2, Z ~ 0

With respect to the classification given in [106], we have also introduced the so-called
“Interaction Region” The importance of this will be evident in chapter 4.

ZL®

®

Figure 3.1: Spacetime regions of interest for cosmological soliton solutions with complex
poles. Here, a =t and 8 = Z.



CHAPTER 3. BELINSKI-ZAKHAROV SOLITON SOLUTIONS 55

For complex-conjugate poles, we can introduce the function ofx] defined by:

Hy = o /o] e (3 34)
Putting
4 = Wl + f;dk] —AF  p_ wd = c(;ﬂ[k] w')iy (3.35)
it can be seen that ofx} must satisfy the fourth degree equation:
1— 440 —2(1 +4B)o? — 44c® + 61 = 0. (3.36)
This can be factorised into the form
(1-2(4+C)o+0*)(1-2(A-C)o+*) =0, (3.37)

where C = v/1+ 2B + A%, It may be assumed that C' > 0 as the alternative sign
is included by interchanging the factors. Then, since 1+ B < C < 1 4+ A with the
equality occurring when w[x] = 0, it can be seen that A+C > 1, while (A-C)? < 1.
Thus the quartic has just two real solutions which arise from the first factor and are
given by:
0. =A+C—-/(A+C)P-1=A+C-V2VBF+ A2+ AC, (338a)
0, =A+C+(A+C2-1=A+C+V2VBF+ A2+ AC . (3.38D)

From these, it immediately follows that
o4y = 1/0'_. . (339)

The freedom in the choice of this sign mimics the one i (2.59).

As we shall see, these solutions are located in the ranges 0 < o_ < 1 and
1 < o, < oo. From this, 1t follows that the poles g% and vjx] are either always inside
the circle |\| = « or are always outside it.

The function ot

The explicit form of function ofk] 1s°

2 2 2 _ o2 2 212
oy = Yo a—: A | o 43 \/wo[k] - Ak (ot + 24P)

. wolk? + 2rf?
014 2

+ ajx]

b

2 _ 2 2 232
aw = \/ 14 g Wl — A | (ol + 20)

" — , 2K = 2z —f3 . (3.40)

It may also be checked that the a-derivative o) and the 3-derivative o'[x] are given
by:

82k] ofx] 1 — ofk] . 2 ol 2
, =- —=(1- , (341
a2 Hp 1+ o o o Hix (10w, (341a)
16 wolk?®  ofk®
a2 (l—om)?’
Of course, by using these expressions, one can obtain the higher order derivatives in
terms of ofx] and Hix].

oK =

Hy=(1-om)® + (3.41b)
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The function ¢
The function ¢{x] defined 1n (3.34) is given by:

2kl /0[] . WK /O]
= v 1 =2 . .
cos k] = 2 e T+ow’ sin ¢i] o T—ou (3.42)

Properties of o _[x]

Three are the main properties, enjoyed by o, [4], that we want emphasize here:
1 o,m2 2> 1.

2. o ¥ is a generally decreasing function.

3. 0,4 1s an even function.

oM 21

This property follows immediately from the two trivial equations:

1
o, lx Z0_lH , o,k = m .

I Generally decreasing function |

We wish to prove that for a fixed 8 = §, the resulting function & = o +[k]|ﬂ_ﬁ is a

decreasing function.

Let us consider the a-derivative of o, [x] From the o-derivative in (3.41a) and the
from o +[k]2 2 1 we can deduce that ¢,x] is a negative function.

The ensures us that ¢, is a monotonic and decreasing function (in the sense specified
above).

G 7 fixed

=1
t

Figure 3.2: General behaviour of the function 6,[x]. Here, a =t and § = Z.

| Even Function |

o, depends only upon 2(x)?, therefore it is symmetric under reflections along the axis
defined by 8 = z 1] (8 — —f if z,[x] = 0 as in figure (3.2)).
By considering the sign of the first ¢-derivative, we can see that.

g. <0 B <z,

gy >0 B>z,

thus the axis Z = z[#] is a general mimmum for the function
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1 soliton

Figure 3.3- Spacetime regions of mterest for cosmological soliton solutions with real poles

3.3.2 The case of real poles

When considering real pole sohtons, we must set wfx] € R 1n (2 59), ie. wy = 0.
This implies that the solution we are dealing with is not defined everywhere With
the help of figure (3.3) we will illustrate the various regions of the spacetime in
which the soliton solution holds. It may also be emphasized that for axisymmetric
spacetimes, where ¢ = —1, the pole-trajectories are everywhere well defined even in
the real pole case.

The null coordinates u, v in figure (3 3) are defined as:

a=—%(u+v), ﬁ.=%(v—u), B.=f—zp,  (343%)

v=% (a+8), u= % (a—B), do®—dB*=2dudv. (3.43b)
Region I is defined as:
B — z,k =2 +a, a>0. (3.44)

It is trivial to show that in this region /(8 — 2,[])? — o2 is real, so that the pole-
trajectory are well defined. In terms of null coordinates u, v this region is defined
by u <0, v> —u.

If we introduce the variable u = —|u| we get v > |u|, which shows as v is always
positive Finally, notice that in Region I the pole-trajectory gfk] assumes negative
values.

| Region II |

Region II is defined as:
B — zH < —a, a>0. (3.45)

It is trivial to show that mn this region /(3 — 2,%)2 — a2 is real, so that the pole-
trajectory are well defined. In terms of null coordinates u, v this region is defined
by v <0, u > —v.



CHAPTER 3. BELINSKI-ZAKHAROV SCLITON SOLUTIONS 58

If we introduce the variable v = —|v| we get u > |v|, which shows as u is always
positive. Finally, notice that in Region II the Pole-Trajectory ik assumes positive
values.

Region III is defined as:

~a € f— 2K < +o, a>0. (3 46)

In this region /(8 — z,x)? — o? is imaginary, and therefore the pole-trajectory is
not well defined. This rules out any possibility of constructing soliton solutions in
such a region. In terms of null coordinates u, v this region is defined by u > 0,
v > 0.

3.4 A few explicit BZ Soliton Solutions

It is now appropriate to give a few explicit solutions obtained by applying either the
BZ soliton technique as illustrated in section 2.2 or its modified version sketched in
section 3.2.

We will mostly consider known solutions. However, since we will use part of these
i subsequent chapters, it seems useful to show them here, in order to fix notations
and keep this work self-contained. Moreover, we will take the opportunity to see
the Alekseev’s determinant method at work.

3.4.1 BZ 1-Soliton Solution

Let us consider the Kasner metric (3 12) generated by the ¥, given in (3 13). We
also recall that, for the Kasner metric, the function f in (1.25) is given by [106, 81]:

fy=a0"T" (347)

With this seed, we wish to construct a solitor solution with one (real) pole in
cosmological coordinates The appropnate pole-trajectory can be written in the
form:

) = w -0 £ /(wn-B8)2-a?, w =2z, ER. (3.48)

We will consider the plus sign only. This solution is defined 1n the regions §—2z, > o
(Region I} and 8 — 2z, € —a (Region II) only The solution in Region I will take the
form:

2 e(dq-—l)ArcCosh(ﬂ—zo)/a
V(B —2)—a?

= al—2q e(4q—1)ArcCosh(,B-zo)/a

f=Aa

(1 +C[1]2 e4qArcCosh(}3—zD)/a) , (3493)

C'[1]2 +e(2—4q)ArcCosh(ﬁ—zo)/a
1+ C{1]2 e4qArcCosh(ﬁ—z0)/a !
e?qArcCosh(B-—zo)/a

9 = —2d1 V(B —2,)* - 1+ Q2 Ao B—z5)/a * (3-49¢)

g (3 49b)
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where f is defined up to an arbitrary constant. The constant ¢ is defined as
mj1] = (2z,)* d1]. The diagonal limit is obtained when d1] — 0, yielding:

a2
f =A e(4q-1)ArcCosh(,6-zO)/a, (3.503.)
NETAET:
9, = al—?q eArcCosh(ﬂ—zo)/a = al-2q _@ . (3 50b)

a
In this case, the expressions given in [106, 81] are recovered. We will consider again
this solution in chapter 5.
A 1 Soliton solution generated from Friedmann metrics was studied by Belinski
in [110]. Its relevance as cosmological model was discussed Also, 1 soliton solutions
with a Bianchi II seed have been considered in [39, 100].

Bibliography of Files (7]

3.4.2 BZ 2-Soliton Solution

Let us now consider the Kasner metric (3.12) as seed and generate the soliton so-
lution with two complex poles We will use the formulae given in 3 2.1 with d2
complex conjugate to ¢1]. Furthermore, we will stick to the simpler case in which
q1] is taken to be real. Therefore:

g =dy=ceR. (3.51)
The resulting metric is then given by.
N, N,
In = Du ) G2 = TSZ ! (3‘528’)
M, =222 (cos(2(1 +2q) @) + ¢sin (2(1 + 2¢) ) x (3.52b)

X (c cos (2(1 — 2q) #u) o™ (omy—1)% +

cos(24111) (¢ o +o11120)? — (¢ + oy™) (cPon)® + 011]2‘1)) \
N, = —ac(on)—1) o) x
x (cos(2 ¢1n) + 2sm(2 ¢py) — 1) (cos(2¢ ¢n)) + 2sin(2g @) x (3.52¢)
X ((0'[1] + %) (cos(241) — cos(4q ¢p) + 2smn(2¢1)) — 2sin(4g )+

ott] (o™ + 1) (cos(2(1 + 2q) ¢t + 2 sin(2(1 + 2g) ) — 1)) ,
D= ofy (011]4‘; + c4) (e2t(ﬂl} _ 1)2 glardi] +2c20[1]2q p2t(1+20 1] o,
x (—1+ cos(4g¢n) (o1 —1)* — o® + 201 cos(2411)) , (3 52d)

and the g,, component is obtained by using that det g = o?.

As it is, this metric is not very enlightening. However, it gives an opportunity to
see the Alekseev’ s determinant method at work. We will come back to this metric
when, in chapter 4, we will consider its limit ¢ = 1/2 — Minkowski seed. We will
also consider this solution in chapter 5

The diagonal limit is recovered when ¢ — 0 It is easy to check that it 15 in
agreement with the result we will give in section 3.4 4.

A 2 soliton solution with a Bianchi IT seed has been considered in [99, 100].

Bibliography of Files: [12]
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3.4.3 BZ 4-Soliton Solution

Let us now consider the Kasner metric (3.12) as seed and generate the soliton so-
lution with four complex poles. Again, we will use the formulae given in 3.2.1 with
dz} complex conjugate to 1] and ¢4) complex conjugate to g3).

We will firstly present a solution obtained by considering a Kasner type D metric
—1e. ¢ =0 - and by letting the arbitrary parameters be:

1
qq:@':—z, dl=dj=c, ceR. (3 53)

The resulting metric is given by:

1 o+ o —a S op3j? — onn)?
T1¥E T om o T2 =2 T2 “on o

9 . (354)

and the g,, component is obtained by using detg = o?. The particularly simple
form of this metric is due to the choice of the parameters made i (3 53).

We can now consider a Minkowski metric as seed by considering the special case
of Kasner with ¢ = 1/2. By using the same choice of parameters as in (3 53), we
can obtain the solution:

_ 2 o1} o3
gll - (1 +c ) 0[1]2 +020_[3]2 ’ (3.55&)
-1 - -1
4 = % 0 /o] O Vi (o3 =1) cosdfs] — /o7 (o111 —1) cos i) . (3.55b)

o) + c2oy3)?

and the g,, component is as usual obtained by using detg = o®. Again, the sim-
plicity of this solution is due to the choice (3.53).

In fact, the manner in which the parameters are chosen, crucially affects the
structure of the matrices — 4 x 4 matrices 1n this case — whose determinants give the
functions I" and ©,, in (3.15). To give a flavour, we may report the form of two of
these matrices for the metric (3.55):

E+N12 24X N7 1 1
X1*-1 A1l A2 -1
<2+N1 A2 c’+;\[2]2 1 1
].-‘[k,_)] = ){1] Tgl ! ){211—1 C_2+){3]2 C_2+){3] ){4] 1 F = det nk,_"], (3.563)
X3}°-1 N3] N4 -1
1 1 e 24)3] N4 A4
N3] A4 -1 N4]*-1
14c2 14e?
i e 0
142 1-{-2(!2 0 0
O,ks = | W 32]‘1 ’\[2]0_1 L4e-2 L4o-? , ©,, = det ©,,[x.1], (3.56b)
NP-1 X3 -1
0 0 14¢72 14e~2

¥ ST ¥

where the A% functions are as usual defined as ] = o Ajx]. Naturally, the presence
of 1’s and 0’s considerably simplifies the explicit calculations of the determinants.
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3.4.4 BZ N-Soliton Diagonal Solution

Let us consider a generic diagonal metric (3.22) generated by the ¥, given n (3.23).
With this seed, the soliton solution with N poles may be generated using the formulae
given 1n (3.25) Naturally, the higher the number of poles, the more cumbersome
the solution will be. However, if we are interested in the diagonal limit only, the
solution will enormously simplify.

For the case N = 2 by letting «,[x] = 0 in (3.25), we have:

o? ) o 1

In=0C o T , g = O P m . (3‘57)
For the case N = 4, by letting again «,j] = 0 in (3.25), we have:
a® o? p g2 3 e 1
gun=0a [l 2 s ) T[O] ) Goy = & P 2 m . (358)

Due to the linearity of the equations, this situation can obviously be generalized,
yielding to the solution with N poles:

N

a 9 1
g, = a T —_—, =a'—, 3.59
11 kgl Mk’] g!.l gn_ ( )
or in the alternative form:
o o
g, =ae, g, =aeV, V = log T} + Zlog (%) . (3.60)
k=1

In the case of Kasner seed, the solution takes the form.

(a4

. (361
Ry

N
gu=aevi gzzz-:.ae_v, V=—2qloga+Zlog
k=1

This solutions have been extensively reviewed in [81]. In particular, diagonal sohtons
over a background of plane waves — given by Siklos (Bianchi VI) metrics — have been
considered in [108].

Another application of these diagonal metrics has also been considered in [109}.
The property that diagonal solutions can be linearly superposed, has been used to
generalize the soliton construction as to include the case when the seed is not a
vacuum metric. Various examples, that may be relevant as cosmological models, are
discussed.
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3.4.5 BZ Degenerate N-Soliton Solution

In the diagonal case, due to the linearity of the main equations, the soliton solution
(3.60) can be generalized as follow [81]:

N
g, =ae gp,=ae’ V = h,log Tio)+ Z h,log (fk—]) (362)
k=1
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where the h,’s are real arbitrary constants.
In the case of a Kasner seed, we have [81]:

N
V=r (dloga+2hk log%), d = 2qh, . (3 63)
k=1

This situations would correspond to soliton solutions where the poles ] occur
h, times in the S matrx, i.e. they are h,-degenerate — although the h, are not
necessarily integers. The corresponding f coefficient may be obtained by considering
the appropriate limit in the general expression [81]. In particular we have:

N h(h+d-H) N
(d=H)?-1 k)Y oh b
f=o 2 H—(ﬁz_az)hg,g I G =)™, (3.64a)
=1 ", 11=1,1>2
N
H= Zhi ) B, =0 —wgx . (3.64b)

=1

Eventually, the generating function ¥, associated with solutions (3.62), can be
easily obtained by using formula (3 6). For the Kasner case (3 63), the corresponding
T(a, 8, ) is given by.

N
T =N +28)+ )70 T (s =2y . (3.65)
k=1

However, this approach cannot be extended to non-diagonal solutions, due the
essential nonlinearity in this case.
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3.4.6 BZ (1+ 1)-Soliton Solution

Let us now consider the soliton solution with one pole yjr} of degeneracy h and with
Kasner seced. The appropriate ¥, will be now given by (3.23) with the choice:

T = (A% + 20X +a?)*27 (i) =N 7P, (3.66)

Let us consider the above as a seed and construct a solution with one more soliton
tis]. The resulting metric will contain two solitons gjr) and gs). By applying the
usual formulae, we get the solution:

1oog 1 PN N 4 o (M) — el P e

- . (367
T TN AP N + 2B (N — Nl e (867a)
rh s2q+h—1 1 — 2k 2 _
gy = —att g NI e~ X O 1)’ (3.67h)
AsZ A Nsl™* + 2R (N — Na)) P Ns™

s2.\r2h 2h—2 2h =X 4hy, Aq
0, = M2 gt 2y TN s "+ @ Nr] =) ] . (3670)

AN NP 4 2R (M) —Nsl) 4 A

where ] = o Ns] and the ds)’s are arbitrary constants.
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This is an explicit illustration of the “add-one-by-one” procedure to construct
soliton solutions.
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Most of the solutions presented above are time-dependent solutions: ¢ = +1.
As an example of time-independent solutions, obtained by directly applying the BZ
technique — and other than the solutions given in [48, 49] — we wish to quote here
the paper by A. Tomimatzu [107]. The solutions presented in 1t may be supposed
to describe rotating black holes surrounded by matter.

3.5 A few more remarks on BZ Solitons

3.5.1 On the “Permutation Theorem” of Backlund trans-
formations

The Bianchi permutation theorem for a Backlund transformations states that the
solution obtained by applying two subsequent Backlund transformations to a seed
15 independent from the order in which these are considered [82].

In the context of solitons, the content of this theorem is schematically illustrated
in figure 3 4 (top)

Seed —= Solitona \

Seed-» Soliton a —= Soliton b

S equal to

eed
\ Seed—» Soliton b—w- Solitona

Seed—e Soliton b

Seed—» Solitona || Scluona-= Solitonc

1

Seed Sohton ¢ — Soliton d

\ Seed—= Soliton b

Figure 3 4: Schematic illustration of Bianchi’s “Permutation Theorem” (top) and of the
analogue theorem for Backlund transformations of the Ernst equation (bottom).

Soliton b—w- Soliton d

This theorem applies for Backlund transformations of equations such as KdV or
SG. Had this theorem be true for gravitational soliton, we would have expected that
the metric (3 67) — with A = 1 — be symmetric in[} and|s], i e. by interchanging the
two solitons. However this is not the case, as can be easily inspected.
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This is 1 agreement with a known result obtained by Neugebauer in [37] — see
also Neugebauer in [12] — where the analogue of the permutation theorem is given for
Backlund transformations of the Ernst equations — see figure (3.4) (bottom). Indeed,
Biacklund transformations may be regarded as one-to-many mappings. Therefore,
the relation that connect two solutions — obtained by applying to different transfor-
mations to the same seed — in not unique, in general.

Figure 3.5: Bécklund transformations are one-to-many mappings.

The real meaning of commutativity for Backlund transformations is that the inter-
section between the two shaded regions in figure (3.5) is different from zero. The
situation recalled 1n (3.4) (top) corresponds to the case when the intersection is
given by one element only.

3.5.2 On a possible interpretation of degenerate poles

Let us consider the 2-soliton solution in a Kasner background with real poles. Let
us consider the limit when the poles coincide (z,[1) = 2,[2), see figure (3 6))

W W

0 0
*~ ——o— — W s
# @ z, m @ Z,
0 0 o 0

Figure 3.6° Two real poles in the limt when they coincide.

A simple calculation shows that this hmit is well defined and it gives

3-2
(RP —» CP) _ ™

In (—ﬁ+ \/m 2!
(RP = OP) = o2-1(_g 4 /B7— a?). (3.68b)

922
Let us also consider the 2-soliton solution in a Kasner background with a pair
of complex poles, and consider the limit when the poles became real (w,1] = 0, see
figure (3.7)).

(3 68a)
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% W
z,+1w, z,+iw,
™
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Z-1w
0 o Z,-1W,

Figure 3.7: Two complex poles in the hmit when they became real,

Again, this limit 1s well defined and gives

3-2¢
(CCR) _ o

gy = Y/ YR (3 69a)
(COR) = 2! (—B+/B2—0?). (3.69b)

It may be checked by direct inspection that (3.68) and (3 69) are 1dentical and
they are exactly the metric corresponding to 1 pole with degeneracy h = 2 given in
(3.65). This illustrates the meaning associated with metrics containing degenerate
poles. This is confirmed by the analysis of M. Berg and M Bradley [111].
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Chapter 4

Time—Shift in Gravitational
Solitons

As emphasized in chapter 2 the behaviour under interaction is what makes solitons
different from solitary waves. The aim of this chapter is to analyze the interaction
between gravitational solitons and see whether or not they display the same time-
shift (T-S) effect as the solitons of ordinary nonlinear p.d.e.’s.

4.1 The Problem of Time—Shift

4.1.1 T-S in soliton/soliton interaction

The picture below, see figure (4.1), shows the interaction between two KdV solitons.

Figure 4.1: Time-Shift in the 2 soliton solution of KdV equation.

It describes two solitons travelling in the same direction but with the larger soliton
catching up and overtaking the smaller one. The shapes of the two solitons after
the interaction are unchanged with respect to their form before the interaction.
However, it is quite evident that the lines along which they move apart are shifted
with respect to their initial paths. The larger soliton has been shifted forwards, and
the smaller soliton backwards. Roughly speaking, this is what we call Time-Shift!
More seriously, let us consider the two soliton solution given in [83], formulae

66
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(1.4-13):
52
izt = %2 log f(z,t) , flz,t) =1+¢e" +e% 4 A4 eht% | (4.1a)
z

2
. =arx—at+d., A= (u) ; (4.1b)
[ a, +a,
where a, and ¢, are real arbitrary constants. Figure (4.1) is nothing but a 3-D plot
of this solution with parameters a, = 1.2, 4, =0, a, = 1.8, §, = 5.
By analyzing the asymptotic behaviour (¢ &~ 4o00) of this solution, it can be seen
that — see [83], formulae (1.4-16):

2
| .
u, (1) = ; 3 a? sechzi((‘)x + A¥F), ast— +oo (4.2a)
Af=logd, A7=0, Af=0, A7=logA, (4.2b)
Af — A} =+logA>0, AT —A7=-logA<0, (4.2

where each term of the sum in (4.2a) is the expression for the 1-soliton solution.
Thus, asymptotically, the 2-soliton solution is given by a “superposition” of two 1-
soliton solutions. It may be remarked that the phases A* of the solitons at t = +o00
are different from the phases A~ at ¢ = —oo. Consequently, the solitons after the
interaction travel along directions which are not the same as before but just parallel:
this is the T-S effect we are considering here. The above effect can be found also
in an N-soliton solution. The relevant formulae have been given in [83] — formulae
(4.3-18) and neighbouring.

4.1.2 T-S in soliton/non-soliton interaction

Further examples of T-S can be found by analyzing the interaction between solitons
and waves. The first to derive a solution describing the non-linear superposition of
a soliton and a wave was Wahlquist for the KdV equation [112]. He considered a
Biécklund transformation to a background of cnoidal waves. Figure (4.2) shows a
typical case, when the height of the soliton is comparable with that of the background

waves.

Figure 4.2: Examples of interaction of solitons and waves for the KdV equation. This
picture shows the interaction of a small soliton with the background waves.
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A phase-shift of the soliton and each wave is clearly visible. In figure (4.3) the
situation is considered when the soliton is much bigger than the waves. Notice also
the similarity between these pictures and that given in 4.1.

40

40

Figure 4.3: Examples of interaction of solitons and waves for the KdV equation. This
1

picture shows the interaction of a rather large soliton with the background waves. Different

ranges and viewpoints are shown for the same set of parameters.

The actual procedure given in [112] turns out to be rather involved. It has been
considerably simplified by Hoenselaers and the present author, for the Sine-Gordon
(SG) equation:

¢, — ¢, =sing . (4.3)

In [113, 114] a Bécklund transformation to a background of steady progressing waves
- i.e. functions of z —vt, v < ¢ - given in terms of Jacobi elliptic functions, has been
considered. By using the galilean invariance enjoyed by SG, the seed can be chosen
to be steady: this is tantamount to choosing a frame in which the waves are at
rest. That considerably simplifies the Riccati equations associated to the Béacklund
transformation. The final solution is again given in terms of Jacobi elliptic functions.
In figure (4.4) a few typical solutions are displayed.
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Figure 4.4: Examples of interaction of solitons and waves for the SG equation. These
solutions are obtained by way of a Backlund transformation.

These pictures clearly show how both the soliton and the background waves are
shifted when interacting. In passing, notice how the fourth picture — from the top
left corner and moving clockwise — shows multiple solitons. This is a particular case
in which some of the functions entering the solution become trigonometric.

Examples of T-S can also be obtained by generating solutions that apparently
have no relation with solitons. In fact, in [113, 114] solutions of SG are also generated
by way of a separation Ansatz: ¢(z,t) = a(z)/3(t). In figure (4.5) a few solutions
are displayed.

Figure 4.5: Examples of interaction of solitons and waves for the SG equation. These
solutions are obtained by way of a Separation Ansatz.

The T-S effect is clearly visible. Analogous results for the non-linear Schrodinger
equations have also been achieved although they have not yet been published.

4.1.3 T-S in Gravitational Solitons
Boyd—Centrella-Klasky Results

In [115] a 4-soliton diagonal solution with Kasner seed is considered. The solution
is given in cosmological coordinates (1.28). Any evidence for T-S is looked for when
the two inner solitons collide. The result is negative: the two solitons pass through
each other without any modification at all, see figure (4.6).
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60

40

20

g22

20 40

Figure 4.6: No Time Shift in the diagonal 4 soliton solution studied in [115]. The picture
on the left is seen from above the (t,Z) plane. The Z-derivative of log (g,, /go0,,) is plotted.

It must be emphasized that the metric under consideration is a diagonal one. In
particular it is nothing but the diagonal limit of (3.55) or, alternatively, the case
N = 4, of solution (3.61). Since these are solutions to a linear equation — equation
(1.44) — this negative result is not surprising: when interacting, the two solitons
linearly superpose. This argument also apply to diagonal soliton solutions with any
number of poles.

Dagotto—Gleiser—Nicasio Results

In [116] the 2-soliton solution obtained by using the Alekseev technique is considered.
It is a cylindrically symmetric non diagonal solution. Therefore the field equations
are truly non-linear. In this case, the soliton is considered to interact with itself as
it passes through — or is reflected from — the axis of symmetry.

As a first step, the authors solve (asymptotically) the geodesic equation associ-
ated with the soliton metric. In particular, they write the Christoffel symbols by
substituting for the metric coefficients their limit when u,v — oo, where u and v
are the relevant null coordinates. Consequently, they are able to find an explicit
expression for the velocity of a “geodesic” particle (i.e. a test particle like a photon)
- see formulae (18) to (23).

Their second step is to study the Weyl tensor coefficients and the electromagnetic
energy at null infinity — formulae (25) to (27) and (41) to (43). This simplification
enables them in giving an explicit expression for the maxima of these physical quan-
tities — formulae (47) and (48).

Finally, they consider two particles: the first travelling from —oo towards the
axis — ingoing particle — and the second travelling from the axis to +oc — outgoing
particle — both travelling unperturbed and along the maxima of the solitons as
previously found. These two particles meet the axis p = 0 at different times ¢; and
to. A T-S is claimed to be seen, as the proper time A7 measured between ¢; and ¢,
by an observer at rest on the axis.

In a second paper [117], the same authors apply the previous technique when the
metric is diagonal: i.e. it is an Einstein-Rosen one. Again a T-S is found. Clearly,
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this last result seems to contradict that of {115].
In [118), the same analysis is applied to the case of multisoliton metrics.

Cespedes—Verdaguer Results

In [119] a 4-Soliton non-diagonal Solution is analyzed. It has been generated by
considering the Wainwright-Marshmann metric (3.26). The function W is taken to
be:

H v < v,
W= H—A(I—COS(Z’F% ) Vp<U<U, . (4.4)
H v > vUp

This represents a pulse wave propagating into a Kasner background. Consequently,
the solution considered in [119] is supposed to describe the interaction between the
solitons and a pulse wave.

Among the results they obtain, the one relevant to us 1s a small T-S — that seems
observable in picture (3.c¢) in [119] — occurring when one of the solitons interacts with
the pulse. This is analytically proved in that the asymptotic behaviour of the two
pairs of solitons is not symmetric — formulae (19) in [119].

It is worth noticing here that the physical content in this metric is different
from that in [115, 116, 117]. In the last situations, sohtons freely propagate mnto a
Minkowski or Kasner background, and eventually interact only amongst themselves.
On the contrary, the one presented in [119] 15 an example for a soliton/non-soliton
interaction.

Bibliography of Files: [14]

4.2 The case of Weber—Wheeler—Bonnor Solution

In [135]) Gniffiths and the present author pointed out that the effect found in [116, 117]
can also be observed in the Weber—Wheeler-Bonnor (WWB) solution [120, 121]

4.2.1 The WWB Solution

Let us consider the Einstein-Rosen line element already considered in section 1.3:
ds? = XV dt? — dp?) ~ (pPe d¢? + et d2?) (4.5)

whose field equations where given in (1.38). We just recall that the equation for
is linear. As known, its solution is a (linear) superposition of Bessel functions J,
and Y,. The WWB solution is a particular case of these solutions, given by a linear
superposition of monochromatic waves with a cut-off in the frequency space.

Y=2 / dk e~ cos(kt) J,(kp) , (4.6)
0
which gives exphaitly.

o= Vi [(a? + p? — t2)2 + 4a2t2]1/2 tattp? - £ 1/2
(a2 + p% — £2)2 + 4082 ’

(4.7a)

o2 2a2p?[(a? + p? — £2)2 — 4a?t?) o —a?—¢2

Y=52 (1 [(a2 + p? — 12)2 + 402t2]2 (@ + % — )2 + 40%2]1/2) .(4.7b)
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Figure 4.7: This picture illustrates the character of the WWB pulse, particularly the fact
that the wave appears to be reflected before it meets the axis.

This solution describes an incoming and outgoing wave pulse. Its maxima are asymp-
totically given by:

a . B
t=4p— 7 outgoing wave, t=—p+ 7 ingoing wave, (4.8)
which seems to show that the incoming wave is reflected at p = \—‘/-‘5 ~ and not

at p = 0. This is the same effect that has been interpreted as a solitonic T-S in
(116, 117]. But, as the previous argument shows, this effect is also shared by non-
solitonic solutions of the standard wave equations in cylindrical polar coordinates.
Thus we can argue that this apparent shift must have another physical explanation.

4.2.2 The WWB Solution in Cosmological Coordinates

The above solution may be reinterpreted in Cosmological Coordinates simply by
making the substitutions p_, = ., t.,, = Z,,, in (4.7) and appropriately ex-

tending the coordinates domain to the full range (—oo, +00) as we pointed out in
chapter 1:

ds? = V(A2 — dZ?) — (e da? + P dy?) (4.9)

y ; ok . o~ 172
- (@ + ¢ — Z2)% + 402222 4 a? + 1% — 22\’
= ‘/5"( (@ + & — 27 + 42222 B

Once again we can work out the asymptotic expressions for the maxima of ¥

Z=4t— % outgoing wave, Z=—t+ % ingoing wave, (4.11)
which, as expected, shows a shift: in this case a delay.
The considerations we made in the cylindrical case can be repeated here: this is
a non-solitonic solution of a linear equation, thus this shift can not be interpreted
as a solitonic effect. Moreover, in this case we have a delay and not an advance as
typical for “classical” solitons.
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One more remark: in the limit when c is small, WWB may be considered as a weak
wave propagating on a Minkowski background (written in Kasner form):

ds? = dt* — dZ° — t*dz® — dy® .

By performing the following coordinate transformation:

1 T-X
t = by o= X2 Zi= L z==log —— = Y, 4.12
VIE- X, , m=jlg % ¥=Y, (412

the Minkowski metric becomes the usual one:
gt =i — g2 —dX* - dy= .

Notice that (4.12) is defined only in the region 7% > X?, equivalent to ¢t > 0.

Figure 4.8: WWB pulse in cartesian coordinates T, X, Y, Z. In this picture T' = 6a.

Going back to (4.10), we can observe that the wave surfaces t £ Z = k are now
mapped into null cones:

T = (Z=k) -X*=0. (4.13)

These represent cylindrical waves parallel to the Y axis, centered in (X = 0,7 = k),
however the waveform itself is not cylindrically symmetric — see figure (4.8).

If we would extend the solution (4.10) to the region 7% < X? (using the natural
extension of the 7', X coordinates), curvature singularities might appear when Z = 0
and T? = X? — a®. These singularities, however, can not be considered as the
“physical” source of the shift found in the “good” region T% > X2. Once again, the
ones we are dealing with are solutions of linear equations!
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4.3 Time-Shift in cosmological context

The discussion put forward so far seems to indicate that the debate about T-S in
gravitational solitons is still controversial — see [81], section 3.6.b. In this section we
will try to give meaning to the pictures below — figure (4.9) — as the gravitational
counterpart of the analogue picture in figure (4.1). We will here consider the time-
dependent case only.
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No Time-Shift Time-Shift
t

Z

Figure 4.9: Schematic illustration of T-S for cosmological soltons. The “interaction
region” is shaded, and there is an initial cosmological singularity at t = Q.

In this context, the problem of T-S can be posed 1n the following manner. Given
two metrics, one diagonal (for which EFE’s are linear) and one nondiagonal (for
which EFE’s are truly nonlinear), and both describing the interaction of two solitons,
do they show any difference?

As it is, this statement is still vague. It has the merit to indicate that some
information on a possible T-S must be looked for by comparing the diagonal and
non-diagonal case. However a few more comments are due:

e An 1deal situation would be that imn which one may consider some physical
quantity and study this both n the non-diagonal and diagonal case. We have
in mind the energy associated with the metric or the Weyl Tensor, better the
explicit components ¥, ¥, and ¥,. However, the first possibility is ruled out
in this context, since no acceptable definition of energy can be given. The
second possibility is theoretically welcome, but the explicit calculations are
far too lengthy and we have not been able to give a reasonably compact form
for the above Weyl tensor components.

o This situation can be overcome if the metric components themselves are con-
sidered. Naturally, the explicit form of the metric components is simpler than
those of the Weyl tensor. In addition g,,, g,, and g,, have the important prop-
erty of being respectively proportional to |&, |2, |€,]? and &, - £,, where £, and
€, are the Killing vectors given in chapter 1. However, it is only their deriva-
tives which describe the gravitational field, and even then not in an invariant
way.

o In figure (4.9) a schematic 4-soliton solution is pictured. In this case we have
two pairs of solitons generated at different space-like points at the cosmological
singularity ¢t = 0 As they start to propagate along the background, the two
external solitons travel apart unperturbed. Moreover, the two inner solitons
will interact at some instant ¢t = ¢, > 0 [133, 134].

The fact that the interaction occurs away from the cosmological singularity
prevents any possible mixing of effects due to mere interaction with others due
to the cosmological singularity itself (or the axis of symmetry in the cylindri-
cally symmetric context). This possibility is obviously ruled out if a simpler
two soliton solution is considered. In fact, in this case the two solitons were
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generated at the same pomnt (at ¢ = 0} and would freely propagate along the
background without ever interacting with each other. The 4-Soliton solution
is then the simplest case in which the soliton/soliton interaction can be con-
sidered.

The possibility of having any T-S or not, will be dictated by the asymptotic -
t — oo — behaviour of the metrics under consideration. In fact, if this is the same as
the diagonal metric, then obviously no T-S would appear — as in the metric discussed
in [115] - and that would correspond to the case shown in the left picture of figure
(4.9)

To conclude, we just observe that the physical interpretation of the solutions
we are going to study is that considered in [115], rather than that given in [116,
117]. This last case, in which the metrics are cylindrically symmetric, has been also
interpreted as describing the interaction between (solitonic) gravitational waves and
cosmic strings located on the axis of symmetry [122, 123, 124], [125, 126, 127, 128]
and [129, 130, 131].

4.4 Interaction between gravitational solitons

In this section we will investigate the T-S in solitons generated from particular di-
agonal seeds, namely Minkowski and Kasner. In the case of Minkowski seed, we
will therefore consider the interaction of solitons travelling on a “flat” background.
As suggested in section 4.2.2, by performing an appropriate coordinate transforma-
tion, these spacetimes my also be interpreted as cylindrical waves In the case of
Kasner seed, it may be noticed that the seed, for arbitrary parameters, is not even
asymptotically flat, and there exists an initial cosmological singularity.

The results described in this section should provide the gravitational counterpart
of the cases dealt with in section 4.1.1. This problem has also been analyzed 1n
(133, 134].

4.4.1 Solutions with Minkowski Seed

Let us consider a 4-soliton non-diagonal solution with complex poles propagating in
a Minkowski background. The most general 4-soliton solution (3.15) would contain
2 arbitrary complex parameters ¢1], ¢3] and four other real parameters 2,1, z,3],
w,f1], w,[3) that enter the solution through the expressions for the pole-trajectories.

Since the parameters 2.} always are in the combination z,n] —Z we can put,
without loss of generality, z,[3] = —z,[1). Moreover, to obtain an explicit solution we
make the assumptions: k,)1) € R, «,[3) € R In terms of the constants gx] defined in
(3.16), we have a1}, 3] € R. Furthermore we will set 31 = —1/a1], d11 = c.

With these, the solution is given by (3.55), with the obvious replacements o — ¢,
pg—Z.

ol o
=(1 s B
g =(1+¢) o112 + c2ap32 ’

Vou (o131 —1) cosdisl — /op {on)—1) cosdn
912 = 2c t A/o11] o3l o & o ( , (414b)

(4.14a)
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where ofk] are given by (3 40).

As we outlined in section 4.1 1 the T-S effect in the KdV equation can be shown
by analyzing the asymptotic behaviour (£ — 00) of the solution. This analysis is ac-
tually performed by looking at the maxima of the solitons in the relevant asymptotic
regions. Hereafter we will apply the same procedure to the gravitational solitons
[136]. As an example, we will firstly consider the 2-soliton case.

A preliminary step: the 2-Soliton non-diagonal Solution

Let us consider a 2-soliton non-diagonal solution. Now we only have one complex
parameter d1). With the simple choice di1} = m € R we get the solution shown in
(3.52). With ¢ = 1/2, and by considering o[ = o,y this simplifies to:

(2-sol) _ __ 2 .0 (2-s0l) _ _ o, 1] -1 o[ 4
In (1+m )m2 +o,n2 dm2 o, +1 m? +0'+[1]2'( 15)

By looking at its first Z-derivative, we can see that the maxima of g{?=** can
be given either by the same maxima of the diagonal solution or by the points where
0,11 = £ m. In order to see if these new maxima actually occur, let us preliminarily
consider the function o, [x. We recall here the properties we described in chapter 3

e o, (k] decays to 1 as t — o0, according to:

w,k)
t

oK ~=1+42 ast—o00.
¢ The function o, (% depends only upon zi2. That means it is symmetric under
reflections along the axis defined by Z = z[x].

e o [k is a generally decreasing function. With this expression we mean that for
a fixed Z = Z, the resulting function 6@ = o L is a decreasing function.
Z2=Z

From these considerations it can be pointed out that g,, has the new maxima only
if m? > 1. Moreover, we can also argue that these new maxima do not exist in the
Causal Region |2,[k] —Z| < t — co. In that, the maxima of the nondiagonal solution
coincide with those of the diagonal solution.
In order to study the g,, component, it is useful to consider the following function:
(2—s0l)
g,, = log ‘27 (4.16)
The §,, Z-derivative is given by:

2

~t _ y(2—-s0l—d) 20+[1]2 m
12° J11

_ 2

o,m2—1 m?2+o,0?

where a prime indicates a Z-derivative and g{*=%%-% is the (11) component of the
corresponding diagonal limit. Some simple algebra shows that, bemng o, (1] > 1, the
expression in round brackets never vanishes, so that _t};z = 0 only if g’g_”"’d) = (.
That means §,, and the diagonal component g?=%-9 have the same stationary
points. Of course, the same is true for g{2-2),

Since both g,, and g,, asymptotically have the same maxima of a diagonal metric,

no T-S can be expected
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Two possible 4-Soliton Solutions

The freedom in choosing the & in (3.40) allows us to have 4 solutions: of1) = 7,1,

op] = o, or ot] = o 1), of3) = o_[3) or ofi] = o_1], of3) = 0,3 or ofy] = o_[i],
op3] = a_[3]. Of course only the first two cases are of interest.
That being so, we can rewrite (4.14) in the two alternative forms:

o1l
g§t+>=(1+c2)i][2], g4h =g (L 2) F.,(,2),  (418)

+[3]
and

g = (1+ 2) o] o3 =, g0 =g§;r—)(t, Z)F,_(t,Z), (419)

4o, o3

where we introduced the two functions:

_ 4c o, n—1 o,l5—1
F.t.2)=-175 (zm S RS ) ; (4 20)
4e o.i—-1 o, —1
' (62) = —2 (a0 TSR e ). ()

Time-Shift in the 11 components
By introducing the quantities:

ol
Yir = —— Vo = 0,010,0 , (4.22)
++ 0,13 + +2 Yy
it can be shown that the first Z-derivatives of the metric components can be ex-
pressed as:
=My u POy © Y Tan
Lok e G T s A

(++)

(++
nw o =g

(4.23)

Equations (4.23) show that the maxima of the non diagonal metric components g{f*’

and g{#~’ can be given by:
1. the same maxima of the diagonal solution;
2. the pomnts where 7, =*cory, _ =z%c

Therefore, as a general feature, the non diagonal metrics may present the existence
of new stationary points 1n addition to those of the diagonal solutions.

Solution (4.19) seems to have a behaviour quite similar to the one encountered
for the 2-soliton non-diagonal solution By just using the same arguments — now
applied to the quantity v, — we can deduce that actually these new maxima exist
only if we choose ¢ > 1 and, anyway, can not exist in the Causal Region. Then
the picture is as follows. new maxima may appear when considering a non-diagonal
solution, however, for late times they will merge with those of the diagonal metric.
Thus the asymptotic behaviour of the solution is not modified with respect to the
diagonal case — see figure (4.10).
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Figure 4.10: The pictures show the ¢' “HH) component of the 4-Soliton Non-Diagonal
Solution, from two different viewpoints.

Solution (4.18) seems to have a richer structure: the considerations made in the
2-Soliton case cannot apply here and in fact v, , = & ¢ can be satisfied also when
¢ < 1. Nevertheless we still have that v,, — 1 as t — oo, which implies that
the previous equation can not be satisfied in the Causal Region. Once again, the
asymptotic behaviour of the solution is similar to that of the diagonal one — see
figure (4.11).

gll’

(++)

Figure 4.11: The pictures show the ¢’
Solution, from two different viewpoints.

component of the 4-Soliton Non-Diagonal

Time-Shift in the 12 components

The two functions F,, and F__ can be more properly rewritten as:

(2—s0l) (2—s0l) (2—s0l) (2—s0l)
F0)=tags - o8| B 2)=5gr + ot (429
gn (1] g (3] gn (1] gu (3]
where g2-9) is the 2-Soliton non-diagonal Solution presented in section 4.4.1. Having
that, gi3 " and g1’ become:
gt gt (gfi""”m B gifi"“"”m)‘ MR (yifﬁ""’”m + 953“"’”[31)_ (4.25)
S i ¢ B/ i A i 0 Bl
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Notice here how each function into the round brackets depends upon the variables

of only one couple of solitons, which shows that neither gz’ nor gi3~’ show any

T-S - see figure (4.12).

60

40

20

10

20 40 60 t

++)

., (right) component of the

Figure 4.12: The pictures show the g’(‘:‘) (left) and g’s
4-Soliton Non-Diagonal Solution.

Below we give pictures of the metric components themselves, rather than of their
derivatives.

20

Figure 4.13: From top left and clockwise, the pictures show the gﬁ"), gfj‘), gf;"‘” and

QE;H) component of the 4-soliton nondiagonal solution presented in section 4.4.1.

Bibliography of Files: [16, 17]
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4.4.2 Solutions with Kasner Seed: asymptotic behaviour

Much 1n the spirit of section 4.3, we want now to consider the asymptotic limit of
the soliton metrics generated from a general Kasner seed. We wish to generahze
the result of section 4.4.1 and check whether, even for a general Kasner seed, the
asymptotic behaviour of these is still driven by their diagonal limit.

Let us consider the formulae (3.15). They can obviously be rewritten as:

[=T det (1 + m—fﬂ%}—g& ) (4.268)
9,, =0 det (1 + Ffﬁi:%ﬁq—_f ), (4 26b)
0, =T det (1 T K ) (4.269
0,, = 69 det(l + AMT?'?%W ) (4.26d)

where '@ and /9 are the usual ' and ©,, 1n which dx] = 0. We also recall the
functions K,:

K, =t%1, K, =t/ (4.27)

Let us now consider equations (3.11). In particular, for the case under consider-
ation they become:

N
o =[5 ¢ (2—%&), (4.282)
k=1
N
K S
9, = % t (1 - %) (4.28b)
k=1
N K] o
9o =[42 g+ (2 - ?) . (4.25¢)

In the limit when ¢ — oo, the functions Ajx] approach 1. Therefore, in that limit,
from (4.26) we have:

I — @ 9, — 0¥, 0,, — ', 0,, — 0. (4.29)

By inserting these expressions into the (4.28)’s, 1t becomes evident that the soliton
metric approaches 1ts diagonal limit

4.5 Interaction of gravitational solitons and waves

In this section we will investigate the T-3 in solitons generated from the Wainwright—
Marshmann (W&M) seed already considered 1mn 3.24 — with @« = t and 8 = Z
This solution may be supposed to describe the interaction between solitons and
gravitational waves, thus providing the gravitational counterpart to the cases dealt
with in section 4 1.2.
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4.5.1 Asymptotic behaviour of Solutions with W&M Seed

The explicit form of the soliton solutions can be obtained by using the formulae
given in (3.31). However, they are not very enlightening and we will thus refrain
from giving them here. In figure (4.14) a solution with two complex poles is pictured.

‘\\ 0

Ol sty s 2 s tir ity s

10

Figure 4.14: The pictures show the g,, (left) and g,, (right) component of the 2-soliton
nondiagonal solution generated from a Wainwright-Marshmann seed. Different viewpoints
are considered. Here: H =1, A=1/2, w, = 0.1, uy, =1, u, = —1. Moreover, z, = —5 in
the two top pictures and z, = 0 (left), z, = +5 (right) in the lower ones.
These pictures seem to show that no T-S occurs when the gravitational wave inter-
acts with the soliton, thus giving a different result from that found in [119].

To support our claim, we will consider now the asymptotic limit -t — oo — of a
general N-soliton solution generated from a W&M metric as seed. The results we
will obtain apply to a generic N-soliton solution and to a general W (¢, Z) for which:

| Wi(t, Z)

In particular, this condition is fulfilled by the particular W - formula (4.4) - con-
sidered in [119].

We can now show that the asymptotic limit @ — oo of the above metrics is given
by the soliton solution with the same number of poles and with Kasner seed. The
Kasner parameter ¢ has to be set as ¢ = 1/4, yielding the following:

g =t ( i ) (4.31)

0. (4.30)

0t

Incidentally, this also is the limit W — 0 of the metric (3.27).
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Let us consider the N-soliton solution in Kasner seed given in section 3.2.1. It
can be rewritten as

- - 1+ Cql?] €, (\12 a /\ 2q
eﬁ) = det( F Fin Al 1/2+¢ Ml 1/2+4q ol ]Ah]qb/]\m[_ll b} . (4.322)

_1/24q Cabl Cabl+NL” ¢ Ay ¢

0l = det( Fy Fyy M~V )y

Al Apl—1
Cqls) 1
—_ Fq[ﬂ Fqb] /\m2q /\[111/2-'1 /\[J]1/2_q ), (4 32b)
29 )2 e
@ — det| F J1/2=a 3 1/2-q Call Cabl +A0° ¢ Ayl .
r et( all Fols) Al 77 Ayl i 1 , (4.32c)
where we remember that K; = al/27¢, K, = a!/?+? and:
Fpy = 2977 wt™ 2, m{O = 22 Ju? 7 e, pr =t Nx. (4.33)
By introducing the quantities:
_ sin Y[k] —clk] cosik] = .
dy = — Yutansmy L =W (cos Yk +cti sinikl) (434)
the expressions associated to the W&M metric given in (3.31) become:
= a v iy —ya L) di A g2
©,, =det 2 1] 1/4 /\[J] 1/4 3 4 35a
1/2 y, 1/2
_ Fra Bt a4 Mgt/ di) dsl +X 7 Al
O, det( Fl Fisl Au)’™ Al NI o] —1 +
— Fu Fy) di) —7 Ml |, (435b)
N2 MM Xt
s ) )+ M
T'=det{ Fp Eprg* Myt : 4 35¢
(ﬂ] Fy N o)1 (4 35¢)
where:
My) = (1 _ VA Wt Z )) . (4.36)
dp) Vi

It may then be noticed that (4.35a) and (4.35¢) are formally identical to (4 32a)
and (4.32c) in which ¢ = 1/4. Moreover, in the hmit when ¢ — oo, it may be
shown that Y|} approaches constant values — see appendix B for a detailed account.
Therefore, in that limit, the quantities djj and £, become constant. As a result, in
that limit, (4.35a), (4 35¢) and (4.32a) and (4.32c) may be let respectively coincide,
with an appropriate choice of parameters. We may then conclude that the (11)
component of the N-Soliton solution with W&M seed asymptotically approaches
the (11) component of the N-Sohton solution with Kasner ¢ = 1/4 seed.
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Had not it be for the factor My, (4.35b) would have been formally identical to
(4.32b). However, in the limit when ¢ — 00, we have that M — 1 and therefore,
in that limit, (4.35b) and (4.32b) may be let coincide, with an appropriate choice of
parameters. Again, the (12) component of the N-Soliton solution with W&M seed
asymptotically approaches the (12) component of the N-Soliton solution with Kasner

= 1/4 seed.

As shown in section 4.4.2, the asymptotic behaviour of a soliton solution with a
Kasner seed is in turn driven by its diagonal limit. Therefore, the asymptotic limit
of the soliton metrics with a W&M seed is dictated by the diagonal soliton solution
with the same number of poles and with a Kasner seed with ¢ = 1/4 It seems then
clear that a T-S effect can not be expected even in this case.

Bibliography of Files: [18]

4.6 Conclusion

The main issue which we have tried to demonstrate is that the soliton nondiagonal
metrics, in the causal region, tend to diagonality and, precisely for that, no Time-
Shift can be expected [136].

We have found it very useful to prove this by looking at the functions I and ©
from the Alekseev determinant method.

However, it is compulsory to quote here two major papers where the same 1ssue
was discussed, though not in the context of T-S: that by Belinski and Fargion [132)
and that by Carr and Verdaguer [106]. In [132] the asymptotic behaviour — in the
causal region — of a two soliton solution with Kasner seed was considered and 1n
[106] a generalization to the n-soliton case was provided. The results we have set
out in this chapter, while obtained using a different approach, confirm these and
extend them to the case when a nondiagonal seed is considered.

As we remarked in section 4.3, the problem of T-S for gravitational solitons 1s still
controversial, in particular papers [115] and [125, 116] seem to propose contrasting
results. It has also been pointed out in [81] — see section 3.6.b — that a possible
way out of this problem might consists in a careful analysis of the f coefficient
of the relevant metrics, which is also necessary for a complete description of any
spacetime However, if we forget about any general-relativity-implication and regard
these solutions as purely mathematical solutions to a given nonlinear p.d e, namely
the Ernst equation, the problem still persists.

The other proposal, also given in [81], of looking at T-S in a non-diagonal metric,
has seemed to us more sound. As explained in this chapter we have endeavoured to
investigate 1t, with the result that no T-S occurs for gravitational solitons interacting
with either gravitational solitons or gravitational waves.

We are aware that the analysis we have undertaken 1s not totally satisfactory,
in that it has considered the metric components themselves rather than any more
sound physical quantity as, possibly, the Weyl tensor. However, we trust that the
comments on that, made in section 4 3, were sufficiently explicatory

The question still remains of how and where the nonlinearity in the Einstein’s
equations shows up.
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Undoubtedly, the pictures we have given for the diagonal ~ see figure (4.6) —
and nondiagonal — see figure (4.13) — 4-soliton solution with Minkosk: seed display
some major differences. These are mainly concentrated in the interaction region
and consist in small bumps that appear in the proximity of the interaction point
and disappear for late times. These bumps are absent 1n the diagonal case. They
correspond to the additional stationary points of g+ and gf;"') that we found in
section 4.4 1. However, we showed that these new stationary points cannot occur in
the causal region. this is represented by the fact that the bumps are visible in the
interaction region only.

All our results seem to indicate that gravitational solitons behave as solitary
waves rather than true solitons.




Chapter 5

Real Pole Solitons and their
extensions

In this chapter we are interested in solutions obtained by using the Belinski-Zakharov
technique (BZ). In particular we will devote our attention to the time dependent case
in which the trajectory-poles g} are real [99, 100, 110, 105, 137, 138, 139, 140, 141,
142]. In this case the metric generated using BZ 1s defined only in particular regions
of the spacetime. Moreover, on the null hypersurfaces that border these regions, the
metric is singular. The nature of these singularties needs to be investigated. An
extension would only be possible if the singularity is removable

Usually such an extension is easily performed by attaching the soliton metric to
its seed [99, 100, 106]. One disadvantage of such an approach is that the Ricei tensor
develops 4-like singularities on the null hypersurfaces along which the matching is
performed [137, 141, 142]. This corresponds to the presence of sheets of null matter
along these hypersurfaces.

The purpose of this chapter is to look for a possible extension of the soliton
solutions without the occurrence of matter. In sections 5.1 and 5.2 we will introduce
the soliton solutions and show that the singularities are removable by simply a
coordinate transformation. In section 5.3 we will show how the matter-free and
singularity-free extensions can be realized. In section 5.4 we will consider a first
possible matter-free extension, following the lines pointed out in [137]. Moreover,
for the diagonal case, we will give a general nonsolitonic extension in section 5.5. In
section 5 6 we will consider another possible extension made by matching the soliton
solution with a plane gravitational wave (PGW) and discuss its physical relevance.
Finally, in section 5.7 we will draw our conclusions.

The basic results of this chapter have already been published [148].

5.1 Soliton solutions with Real Poles

Hereby we will refer to pole-trajectories (2 59) in which the plus sign has been
chosen. Having that, we will present soliton solutions built up using the Kasner
metric (3.12) as a seed.

f= 02';2_1/2 ) In = ol 1 9o = o't (5°1)

85
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5.1.1 Soliton solutions with Real Poles: the domain

In section 3 3 2 we have already discussed the various regions of the spacetime in
which soliton solutions with one real pole can be considered. In this section we want
to extend that discussion to the case when two real poles are considered. In figure
(5.1) the relevant regions are illustrated.

Hereafter we will set z,1] = —A and z,2] = +A, with A > 0 and A = /2 6.
The null coordinates u, v have already been introduced 1n (3 43):

2 soliton

Figure 5 1: Spacetime regions of interest for cosmological soliton solutions with two real
poles

: Region 1 |

Region I is defined as:

B+A>+a2f-AUB-A>—a. (5.2)

It is trivial to show that in this region /(8 — z,1)?> — o2 is real, so that Region I
contains the 1-soliton solution with pole pq1).

Also notice that in this region the pole y2) is not well defined. Moreover, the 1-soliton
solution with pole z41) also holds in Region IV: 1n fact in Region IV /(8 — z,i1)2 — a?
is still well defined.

In terms of null coordinates u, v this region 1s defined by

-8<ug9, >0, (5.3)

Notice that in Region I the Pole-Trajectory p41) assumes negative values.

Region II

Region II 15 defined as:
f-A<—a<f+A UB+ALa. (54)

It 15 trivial to show that in this region /(8 — z,21)? — o2 is real, so that Region II
contains the I-soliton solution with pole yf2).
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Also notice that in this region the pole pq1) is not defined. Moreover, the 1-soliton
solution with pole 42) also holds in Region V: in fact in Region V /(8 — z,[2))? — a2
is still well defined.
In terms of null coordinates u, v this region is defined by

-0<v<0O, uz 0, (5.5)
Notice that in Region II the Pole-Trajectory uf2) assumes positive values.
Region III

Region III is defined as:
a—-AZ2ZpUa-AZ2-3. (5 6)

It is trivial to show that in this region /(8 — 2,41)? — @2 is imaginary for both ¢ = 1
and ¢ = 2, so that Region III does not contain any soliton solution.
In terms of null coordinates #, v this region is defined by

u>0, v>0. (5.7)
Region IV 1s defined as:
B-AZ2+to, a>0. (5.8)

It 1s trivial to show that in this region /(8 — 2,})? — a? is real both for = 1 and
1 = 2, so that Region IV contains the 2-soliton solution.
In terms of null coordinates u, v this region is defined by

u< -9, v> —u. (59)
If we introduce the variable u = —|u| we get v > |u|, which shows as v 1s always

positive. Finally, notice that in Region IV the Pole-Trajectories y1) and g2 assume
negative values

| Region V

Region V 1s .deﬁned as:

B8+A<L —ao, a>0. (5.10)

It is trivial to show that in this region /(8 — z,1)? — o2 is real both for 1 = 1 and
1= 2, so that Region V contains the 2-soliton solution.
In terms of null coordmates u, v this region is defined by

v< -0, u>—v. (511)

If we introduce the variable v = —|u| we get u > |v], which shows as u is always
positive. Finally, notice that in Region V the Pole-Trajectories g1) and p2) assume
positive values.

Region VI
Region VI is defined as:
f—-AL—-a U J+A2aq, a>0. (5.12)

It is trivial to show that in this region /(8 — 2,1])2 — o2 is real for both 2 = 1 and
1 = 2, so that Region VI contains the 2-soliton solution. Also notice that in this
region the two 1-soliton solutions with pole pf1) and p2] are well defined.
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5.1.2 1-Soliton solution

The explicit form of the 1-soliton solution has already been given in section 3.4.1.
For convenience we repeat 1t here, with a slightly different notation:

-9 2¢?
o _ 2 @tg, o 29 ArcCoshZIs [ 40 40 o 4g ArcCoshZLe
= e 1 |2°7 z " + mie r], (5.13a)
zo[1]1+2q /ﬁ2 — a2 o !
Is 1
B8
- s
4q 4q 9 {44-2) ArcCosh-
_oq ArcCoshZlx 2% z (118 4 mZe t
gff) — al 2q e rcCos) oy D[] EL’- ) (5‘13b)
4g ArcCosh
214 z4e 4m2e
B
2g ArcCosh=Iz
(1) = ol+2g 2q 2q 2 2 e o 13
12 - 20[1] m a ﬁfﬂ - aI (5' c)

219 z 4 + m2e™? Arcomh% ,
where 3,, = 3, — z,[1. As we learnt in section 5.1.1, these 1-Soliton solutions are
defined only in Region I and Region II of the spacetime — see figure (3.3).

Strictly speaking, solution (5.13) holds in Region I only. The expressions in
Region II are the same but the signs of the expressions for the metric components
g,, must be changed: this takes into account the fact that the pole-trajectories are
respectively negative and positive in Region I and Region II. The constant A, may
be chosen in order to obtain a positive expression for f(D,

The diagonal limit — i.e. m — 0 — of the above metric 1s given by:

g2
7 -2 ArcCosh%l;-

(8
fO =44 22! ——L__¢ , (5.14a)
o VB, —af
8
e P (5.14b)

5.1.3 2-Soliton solution

The explicit form of the 2-soliton solution with Kasner seed has already been given
in section 3 4 2. Now we have to set z 2] = A = —z f1). As we learnt in section 5.1 1,
this 2-Soliton solution is defined only in Region IV, Region V and Region VI of the
spacetime — see figure (5.1).

The diagonal limit —ie ¢ — 0 - can be obtained from formulae in section 3 4 4
It can also be put 1 the form:

242-1/2
a
f(IV) — 24(4"1) AIV A4q_2 = ;V - > . (5 15&)
J(ﬁfv - A) - a{V (ﬁIV + A) - a_“/
-5 A
(1-29) ArcCosh 21 ™2 (1_2) ArcCosnrv i
€ w e v
X
- A 3
( ArcCosh =2 ArccosnPrv i)y 2
1—e v e v )
By, -2 8, +8)
_ (1-2q) ArcCosh—L¥—— (1-2¢) ArcCosh—L¥—
=aMe v e v (5.15b)

Again, solution (5.15) strictly holds only in Region IV, due to the fact the the
pole-trajectories assume different signs in the various regions of the spacetime.

Biblwography of Files: [19]
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5.2 On the Nature of the Singularities

5.2.1 1-Soliton Diagonal Solution: Metric Components
Let us firstly introduce in Region I null coordinates (u,,v,) defined as:

1 1
a, = E (u, +v,), B, = E (v, — u,), dsf = 2f(” du, dv, ~ gg)dx“d:cb,

and consider the boundary between regions I and III The singularity on the hyper-
surface &, = B, — z,1] 15 now replaced by the one on u, = 0. In the proximty of
this hypersurface the metric components (5.14) have the following behaviour:

— 0, O

| 1
! [,

Let us now consider the coordinate transformation:

9! finite as |u as |u,] — 0F.  (5.16)

(unvr) — (U,’U,), u, = —u",

1
(0, o) = (F0, 6D, oy = 7 (" +u),

o B
o)l [
FO=Taar 7 Gy~

Such a coordinate transformation removes the singularity in F(} provided n = 2.
In fact we have.

GO = 271244 (f57 4 u™?)? (v, — )72, (5 18a)
—5/242¢—¢q* 2 4 2g(g—1
7O _ 27%/2420-0" A n (u? - \f0)Y (v, — u)2le"D) y(-272. (5.18b)

AN VOr

Notice here that for n < 2 F is unbounded and for n > 2 1t vamshes on u = 0. On
the other hand, for n = 2, FO) becomes a constant. Thus a coordinate singularity
may only be avoided by putting n = 2. In the proximity of the line u = 0 (and with
n = 2) the above solutions behave like:

GW s 27174 120, F g 273/24200% 5 0"1420 4 o= 1/242%0°  (519)

Analogously we can remove the singularity in Region II by making the coordinate
transformation:

(UH,'U”) = (“uav)a Yy = _VQ,

(fUD, gﬁfn) s (FUD, G,(,{,I))’ - Buts = '1_2 (—v?—u,),

¢y =45 (uy, — v?), (5.20)
pun — |(U”,’U”)| f(II)’ I(urnvn)l = v,
|(u1n v) |(un W)
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giving the following metric components.
GUD = o~V2a (e —v)? (uy, ~v?)7%, (5.21a)

FUD _ 9-3/24%-a* 4 o ;=142 v+ /i) (u” ) . (5 21b)
I

5.2.2 1-Soliton Diagonal Solution: Weyl Tensor

The nature of the above singularities as coordinate singularities only, can be also
proved by inspecting the Weyl tensor components ¥,, ¥,, ¥, [141, 142] and the
Invariants f, and I, defined as [11]:

L=V ¥, +302, L=(0, 0, —02)0,. (5.22)

Let us concentrate on Region I, the situation in Region II being aina.logue. An explicit
calculation shows that on |u,| = 0 the Weyl Tensor Components, as ju,| — 0%, are
given by:

5/2—2q+4¢°
2 /2—2q+q q Zl —1-242 ’ \Ifgl) x 1

AI ! \' |u1| ‘

However, the Weyl tensor invariants I{” and 12(1) remain bounded as |u,| — 0*:

lIIgI) ~0, \Ifgn R — (5.23)

4, 42-4g
Ig’ ) o 3 9T %42 q————-zjzi 0;2'4"2 , (5.24a)
1
3 (9,2 3-6
_eos3a? @ (3¢°— 1) P78 _; oo
Iér) ry _919/2-69+3q e 0 Y] 3-6¢% (5.24b)
I
When performing the coordinate transformation u, = —u® - which remove the

singularity in f when n = 2 — the situation is as follows:
2(5/2—2q+q2) q 20[1]1_2q 1

o = g v y@-1/2 (5.25a)
; (/2 — \/v—zl);z-f: SIL—I -)—2 um)~2ale-1) ( (4¢ — 1)v, + 6gy/5; u™2 + 3u” ),
o0 2(5/:>—2q+cr:)l q 2% (5.25b)
!
2 _ —2-4
8 (un/2 -Ifu\;:—r)g E{::_Il u“)q—Qq(q—l) ( vr + 207 /2 4w ),
- 2(5/2—2q+q2)An g 2t~ 2 f (5.25¢)
!
) (U2 — ‘/U_E{)j::: E;)i%)—z u")~2ale-1) ( (4¢* — 1)u™ + 6¢,/T; u™? + 3v, )

By inspection, these expressions are all bounded on the null hypersurfaces u = 0%
when n = 2. In addition, the Weyl tensor invariants are bounded for any n. In
fact, the possible singularities coming only from ¥, and ¥,, we may notice that
¥, contains a term u>~™/2 and ¥, contains a term u(®~?/2, Since the invanants
contain ¥, and ¥, only in the combination ¥, ¥,, the two alternately divergent
factors cancel each other.
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5.2.3 2-Soliton Diagonal Solution

Even for the 2-soliton solution the singularities on the lines & = (3 —z,), 1= 1,2
are coordinate singularities only.

Let us now consider solution {5 15). In particular, after introducing null coor-
dinates u,, and v,, as stated in (3.43), we can introduce in Region IV the further
coordinate transformation:

(urw'va) — (u,v), U, =-0- u?, vy =+0 +V,
1 -
(f(IV)$ ng)) = (F(Iv): G!(iV))’ Uy = E (—'U2 +V),
1 - 526
Brv, = E (20 +v—u"), ( )
FUV) = |(’u’1v11_}1v)| (IV)’ I(u:wt_"w)l = 2,
[(u,¥)| (v, ¥}
which remove the singularity on o = 8 — z,[2:
= 2\3-2g
GUV) = ge-1/2 =) , 5.27a
H (u— V)2 (V247440 — 2 VuZ + 20 Vv +26) ( )
F(I‘V) - _ 2---27’/4+6q—(;fz AIV ot1-2 (l.l _ '\/‘7) (29-1) x
VvV
2, . 2 = 2(g+1)
><(u +V+40 -2 Vu? + 20 /v +20) « (5 27b)

(uvV — 20 + VuZ + 20 VN + 20)2
1

X .
(V+ 20 — Vu2 + 26 /v +26) (u2 +20 — Vu? + 20 /v +26)

Near the line u = 0 the above solutions behave as:

V2_ 2q

GUV)  9-1/2+q , 5 28a
1 v+4e—2\/§\/§\/V+29 ( )
FUV) oy _9-27/4460-0" 4 gta=T/2 ula-1) (5 28b)

y (V+ 40 — 2¢/2 /O /7 +28))X1+)
(v+20-v2vV0 Vi+20) (2VO — V2 i+20)

which shows that the singularity is removed.

Analogously we can remove the singularities in Region V and Region VI. Below
one can find summarized the transformations that remove the singularities in the
three regions where the 2-soliton solution 1s defined:

Reqion IV u,, = -0 —u? v, =+0+((v—c,)
Reqion V.. v, =40+ (u—g¢, ) v, = -0 —v? (5.29)
20 2 20 2

Regqion VI u,, =+0 — = (¢, —u)* v, =40 - r (e, —V)
I Ir
where ¢, and c,, are positive real constants. Now the line & = # — 2,[2) is mapped
on to u = 0 and the line @ = B ~ z,1) is mapped on to u = ¢,. Similarly the line
a = —f3+ z,1} 1s mapped on to v =0 and a = —f + 2,2 becomes v =c,,.
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5.2.4 Non-Diagonal Solitons
1-Soliton Solution

It may be checked by inspection that, on the null lines § = z,[1] +« and 8 = z,1] —«,
the non-diagonal metric (5 13) and its diagonal hmit (5.14) approaches the same
values but the replacement

m? + 219 2 Y
To211 gt

Alded) oy A (5 30)
is required Therefore we can follow the same procedure as for the diagonal case mn
order to remove the singularities mn (5.13).

2-Soliton Solution

When considering non-diagonal solutions, some extra care has to be used in doing
the matching. In fact, unlike in the 1-soliton case, the g,, coefficient does not vanish
on the null lines where the singularities are located. Therefore we have to match
the 2-soliton non-diagonal solutions with 1-soliton non-diagonal solutions as well
Moreover the parameters in the 1-soliton solutions have to be chosen in such a way
to ensure a continuous matching.

To give a flavour we anticipate that, if one were interested in continuously match-
ing the 2-soliton solution of region IV with a 1-soliton solution in region I, then:

m=2% 0% m

where m and m are the arbitrary parameters in the 2-soliton and 1-soliton solution
respectively.

5.2.5 Solitons with Degenerate Poles

It has already been clarified in section 3.5 that the limit when two real poles coin-
cides, is equivalent to the 1-soliton solution with degeneracy A = 2. Moreover this
solution also coincides with the limit in which two complex poles become real.

It is worth showing in here that in these cases, the singularities occurring on the
null lines are not removable by a coordinate transformation.

In fact, let us introduce null coordinates (u,, v,), according to (3.43), 1n the 1-
soliton solution with degeneracy h = 2 introduced in section 3.4.5 — formulae (3.68)
and (3.69). Having that, let us perform the further coordinate transformation:

(uy, v) = (u, v), u, = —lu"', v, = V",

(fa gab) = (F(I)) G,(,Ib))s oy = E (__un +Vm)’ (5.31)
1
ﬁla = _\/_—2— (vm + un)’
The metric components are now given by
—39/44+6q—¢° m __ , n\3/2—4q+2¢% ¢, nf2 _ . m/2\8q
) 2 A nm (v®—u") (u v/2)  (5.32)
O2-4¢ Y+l ym+1
3-2

G = gu-ije (S VT (5.33)

(un/2 — ymi2)4 -
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In order for F(} to be bounded, we should consider negative values for n and m,
which is not admissible.

Bibliography of Files: [20]

5.3 On the Extensions of Soliton Solutions

We are now left with the problem of extending the soliton solutions through the
(removed) singularity. In this section we will show how this can be done, both with
and without the occurrence of matter.

5.3.1 1-soliton solution

Hereafter we will consider mostly diagonal solutions In fact, we have already pointed
out in section 5.2 4 that, on the null-lines u = 0 and v = 0, the diagonal and
non-diagonal metrics coincide. Therefore, since we are interested in continuously
extending the soliton metrics, the results we will present below for the diagonal
metrics also apply for the non-diagonal ones.

Matter Extension

On the null lines o = %(8 — z,[:]) the metric coefficients approach the seed (Kasner)

Thus a possible extension from regions I and II to region III is to match the soliton

solutions with a Kasner metric itself [106]. Thus consider in region III the metric:
ds? = fUID(dg? — dg?,.) — gg”) dzodz® | (5.34a)

Ir 11l

nn _ . (482-1)/2 Inn _ ,1-28
f( )_agu 4 ! 951 )_aru !

g = o1+ (5 34b)

Hr
By introducing the null coordinates u,,, and v,,, defined as in (3.43), the metrics
(5.18) and (5.21) can be continuously matched with (5.34) by identifying:

v, =V, U, =Uu, (5.35a)

U, =U, V=V, §d=gq, (5.35Db)

and A, = 27420 5 y1=29, A = 27/4-2 , )'-%, A complete matching can therefore
be achieved with:

Region 1 a,=Z5 (~¥+v), fB,=2 W +v),
Reqion II oy =25 (u=v?), B, =5 (-v*-u), (5.36)

Reqion III  w,, = % (u+v), B, = 75 (v—u).

The spacetime can thus be described in terms of the coordinates u and v as described
n figure (5.2) The lines G, and §,, are given by u = —+/|v|. They describe the
cosmological singularity a = 0.
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u v

Region III

Region II Region

A e L

Figure 5 2: The picture shows the parametrization of the spacetime, containing a soliton
with one real pole, in terms of the coordinates u, v. These are the coordinates that remove
the singularities into the metric components of the soliton metric.

This simple result is anyway affected by the following problem: the u-derivative
of & on the line u' = 0 suffer a jump, as well as the v—derivative of o on the line
v=20:

da, =0 d,a,,=1 asu—0 (5.37a)
d,a,=0 d,a,, =1 asv— 0 (5.37b)

It may be recalled that discontinuities in the derivatives of o across a hypersurface in-

*duce nonzero components in the Ricci Tensor, and hence in the Energy-Momentum

Tensor. In this case, these are given by:
T, « FD [Z—] T, &« FUD [%] (5.38)

Thus a discontinuity as in (5.37) gives rise to an impulsive component in the Energy-
Momentun tensor corresponding to a thin sheet of null matter located on this hy-
persurface That has been explicitly described in [137, 141]. Moreover, with this
time orientation, the matter has negatwe encrgy density [142).

No-matter extension

As stated in section 1.3, the field equations imply that
a = F(u)+G(v) (5 39)

where F(u) and G(v) are two completely arbitrary functions of u and v respectively.
For the Kasner metrics of previous sections we have considered the choice F(u) =
u/v2 and G(v) = v/v2. However, this freedom can now be used to avoid the
occurrence of matter along the relevant hypersurfaces. Let us consider:

Region I a, =2 (- +v¥), B, =2 W+v?),
Region I o, =75 W-v), B, =5 (v-u?), (5.40)

Region I11 Q= % W+v), By, = 7 (v —u?) .
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In this case the u and v-derivatives of « across the lines u = 0 and v = 0 do not
suffer any discontinmty. The problem is therefore to find a solution in region III
compatible with the choice in (5.40), 1e which satisfy the EFE’s and is bounded
on the null line u = 0.

More clearly, the EFE’s associated with the line element (1.29) are given by [11]

a= —= (ae) +5), p= == (b))~ aw), (5.41a)
f= ‘;ib 5, S=—3(@th) ¥, S,=—L@+h¥,  (541b)
g, =a el 2(a+b) @, +,+2, =0. (5.41c)

Let us consider in Region III the coordinate transformation a(u) = ¢ u? and b(v) =
v2. Then the equations for S became:

__1 2 2) §2 _ 1 2, 2 52
S, = 4u£(su +v%) &° S, = s (eu*+v) @7 .  (542)
Of course there are three relevant cases, respectively associated to e = +1, e = 0
and € = —1.

In order for f to be bounded on the line u = 0 we must impose S = log u + o(u),
so that the first of equations (5.42) reads:

1=—%s(su2+v2) P2 asu—0, (5.43)

which admit solution only if € is not positive. Thus, the matter-free prescriptions
(5.40) cannot be satisfied.

The above argument can be generalized to the non-diagonal case The EFE’s in
this case are given by (see [11] eqn. (7.9) without electromagnetic field):

_a+b

b
5, =-22° [@ cot?W + W7], 5, =

[@3 cosh?W -+ Wf] . (544)

where ® and W are now defined by g,, = « €® coshW and g,, = a sinhW. The
terms in the square brackets being positive, the argument given previously is not
affected.

As a result, we cannot make a matter-free extension using the coordinates pre-
sented in (5.40), which matches two separate regions. Extensions can only be made
if, after having removed the singularity, we can attach to Region I any region, call
it A, defined by one of the two following:

1

1) Region A (e=-1) a= 71_2- (—u®+b(v)) B= 7 (b(v) +u?)
(5.45)
2) Reqion A (e=0) a= % b(v) 8= % b(v)

A similar extension is required from Region 1I, although both regions need not be
part of the same spacetime.




CHAPTER 5. REAL POLE SOLITONS AND THEIR EXTENSIONS 96

5.3.2 2-soliton solution

We are now interested in considering the possible extensions of the 2-soliton solution.

Matter extension

A matter extension is naturally achieved by matching the 2-soliton solution with the
1-Solitons in Regions I and IT and the Kasner metric in Region III. The appropriate
prescriptions — see figure (5.3) ~ are given by:

Reqion IV o) = —@ —u? ¥V) =40+ (v—c,)
D 20 2 (D)
Regton I oY) =40— = (¢, —u)* B =40+ (v—¢,)
I
Region III o™ =410+ (u~-¢,) WD =40+ (v—c,)
26 (5.46)
Region II o) =40+ (u—c¢,) bID = 46~ = (¢, —V)®
II
RegionV oY) =404+ (u—¢,) ) =@ —v?
2
Regon VI a¥D = 40 -2 029 (c; —u)? ¥VD =+0- 0—29 (e = v)?
I I

Region III

Region 11 Region I

Region V /> RegionlV
N Q//

Py \\_/ By

Figure 5.3: The picture shows the parametrization of the spacetime, contaimmng a soliton
with two real pole, in terms of the coordmnates u, v. These are the coordinates that remove
the singularities into the metric components of the soliton metric.

Clearly, the discontinuities in the derivatives of & across the boundaries of indicate
the presence of sheets of null matter on those hypersurfaces.
No-matter extension

Let us now consider the possibility of obtaining a matter-free extension. The dis-
cussion put forward m section 5.3.1 tells us how to perform a matter free extension
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between regions I and III. This is accommodated by the coordinate transformations
in (5 47b), (5.47c):

Regron 1v { %) =9 -v 47
egion VY =40+ (v— ¢ )? (5.47a)
20r 20w
(I) — e _ I — 2 _ I — s
Region I ar= c? (e =) 2 (e =) (5.47b)
W = +0 + (v ~c,)?
o) = 40+ (u—¢,)?
Region I1T { RO ((v 3 c;))2 (5.47¢)
aD =40+ (u—c,)?
Regwon 11 D = 40 — 2 ezrn (e, — V)2~ 2 e;”:: (c,, — V)it (5.47d)
C“,, cll
aV) =40+ (u—c, )?
Regqion V { V) — 0 — 52 ) (5 47e)
oD =40 - 297t (¢, - 281 (¢ _uye
Region VI ! 1 (5.47f)
6D = yo— 29T (o _ 22O % (0 _ ey
Ir c?f

In (5.47) we will assume s, and s,, to be arbitrary real numbers and:

2

rp=1- (—I)SI Wy w, = (_1)-814-1 ;IT2’

I

s;>2,  (5.48a)

rpy=1- (-1’1 w,, w,=(-1)"ut s; > 2.(5.48b)

s, —2

11

Notice that, with respect of the prescriptions given in (5 40), an extra term, propor-
tional to (¢, — u)®1, has been added to the expression for a‘?). Naturally, that does
not modify all the considerations made in section 5.3.1: the « derivatives across the
boundary between regions I and III are still continuous. The reason for including
such an extra term 1s that it might help in obtaining a matter-free extension be-
tween regions I and IV. Indeed, the relations in (5.48) provide the right parameters
such that o, and «,, continuously match across the hypersurface u = 0. However, it
must be noticed that the derivatives of o are not continuous across u = 0. Analogous
considerations obviously apply for the extensions made from Region V. This sheets
of null matter necessarily occur on the junctions between the 1-soliton and 2-soliton
region. As a result, the 2-soliton solution cannot admit a matter-free extension.
This result obviously generalizes to the N-Soliton solution.

Bibliography of Fules: [21, 22, 23, 24], [25, 26]

5.4 A soliton extension

The choice £ = —1 discussed 1n (5.45) has been firstly analyzed by Gleiser in [137],
although in that paper solitons were only generated from a Minkowski Seed Let us
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now consider;

RegionI a,= ‘/L— (—?+v?), B, = f (v +u?),
(5.49)
Region A a= 2 (—u*+v?), f= (V+ud),

where §3,, = # — z,[1. Notice here that even in Region A we have § > a: therefore
soliton solutions are well-defined in this region

It is now appropriate to consider the further coordinate transformation [137):

1
(U,V)H(T:p)a T=E(u+v), p= \/—(V—U)
(FO, G) = (KO, GD), o, =Vpr,
; (5 50)
ﬁu \/— ( +p )
w1 L [ww)] _
F (7, )] 5 (7, 0)]

Coordinates u and v are null-coordinates. For these solutions we have the remarkable
simplification: u = 72,
Soliton solutions (5.13) and (5 14) are well defined in Region I. For the diagonal

case, from (5.18) we have:

D - 9-1/242-¢ A,z (v—u)¥ (v — u?)%(e-1), (5.51a)

Gi{) = 2‘1"1/2 (u + V)2 (V2 _ u2)—2q, (5.51b)
F(I) — 2—1/’2-}-2&,‘|'+q2 AI 20[1]2q—1 72q(¢1+1) p2Q(q—1), (5'510)
GE{) — 21/2_q p2(1-—q) ,],.-—2q. (5.51d)

Notice that this solution suffers a singularity on 7 = 0. This is the usual cosmological—-
like singularity. It disappears in the case ¢ = 0, which 1s a Minkowski space generated
from a plane symmetric Kasner seed. The asymptotic behaviour of the Weyl tensor
components near the null line u = 0 1s given by:

2 -
25/2—2q+q 20[1]1 2q

v~ - v g (49° — 1) v24¢, (5.52a)
I
5/2-2g+q* 1-29
0 — 2 AU 7 et (5.52b)
A,
95/2-2¢+¢% 1-2¢
v~ — Y\ %ol 3q v (5.52¢)

I

Incidentally, notice that for ¢ = 0, the 1-soliton solution 1s just a (flat) Minkowski
spacetime.

Region A satisfies the condition 8 > a, and we can consider 1n it another soliton
solution, as pomnted out 1n [137]. Let us consider the non-diagonal solution (5.13) in
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which we now put 4, = —A,, a; = a and §,, = . Then we apply to this solution
the two successive transformations:

(a,8) — (u, v), u,v=0

(f, 90) o> (FW, G9), o= % (—u? ++2),
ﬁ = 3 (V2 + u2)’
(u, v) = (p, 7), T= \/% (v—u), (5.53)
_ i ( )
) ) p= 7 u+v),
(F, ) s (F9, G9), a=v2pr,
f= == (45

Notice that in the above definition p and * are interchanged with respect of (5.50).
The new metric coefficients are given by:

- - 2
9-1/2-2g+4q AA

A _

D 40D, 04 2 g ), (35t

2 . dg .2 4 4q A
= me T + 2% z [t q
G(ﬁ” = 21/2- m, 201112q P*2q T Az 4,0 4 O[4] f

ms 7+ 2% z )4 ple

: (5.54b)

é(ﬂ.) —_— 21/2+2q 29 .2q 29 (.02 - T2) 5.54
2 m, 0™ g7 T mi 4 + o4 z0[1]4q p4q' ( . C)

It is trivial to check that (5.54) matchs continuously with solution (5.51) provided
A, = A,(1+27 z™ m?). In this case, the Ricci tensor vamshes across the
junction, although there may occur impulsive components in the Weyl tensor [147).

1 Soliton
Region 4 v

> QI/Q
u 5

=

(=11

=4

=

Region I
1 Soliton
Singulanty

Figure 5 4: Matching of a 1-soliton solution with another soliton solution.

Finally, notice that solution (5.54) suffers a singularity on p = 0. This prevents
us extending this compound solution to other regions of the spacetime. In fact,
p = 0 corresponds to a smgular axis of symmetry, as is evident in the case when
g=0.
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5.4.1 A Physical Interpretation: impulsive spherical wave.

When the Seed is a plane symmetric (type D) Kasner metric (¢ = 0), a simple phys-
ical interpretation for the matter-extended solution can be given. Let us consider
now the non diagonal solution (5.13) and the coordinate transformation (5 40) By
itroducing the new coordinates p and 7 defined as:

1 1
= E (U +V), p=—= (V— U), (555)

as:

A 1+m? V2
1 _ A (= 2 _ 52
F il VE G}, T2 ™ (r°—p*), (5.56a)
\/2- \/§
GS{) = 1 T m2 (p2 + m2T2)’ Ggi) B -lm (T2 + m2p2). (5 56b)

A matter-extension may be achieved by matching the above solution with a Kasner
metric In terms of the (7, p) coordinates this 1s given by:

ds? =dr? —dp® — 72d2? — pPd¢?, zl =2, 2= ¢ (5.57)

I

8
[

After introducing the cartesian coordinates:
T =7 Cosh 2, Z = 7 Sinh z, X = p Cos ¢, Y =pSin ¢, (558)

it is clear that (5.57) 1s the region of the Minkowski spacetime ds? = dT? — dZ? —
dX?%— dY? for which |T| = |Z].

In this case it can be seen that the junction between the two regions, which is
the null hypersurface 7 = p, 1s an expanding sphere given by T2~ 22 - X2 — Y2 =
0. The solution therefore describes a gravitational wave with an exact spherical
wavefront propagating into a Minkowski background. The axis p = 0 is now an axis
of symmetry, so we do not need to consider the region p < 0.

It may also be observed that, by appropriately choosing A,, the metric (5.56)
may be rewritten in the form

o A 2

which is clearly simply a rotation of the flat metric (557), up to a rescaling of
the variables. Thus, the spacetime both inside and outside the spherical wavefront
is flat. The only possible nonzero components of the Weyl Tensor arise from the
discontinuities in the derivatives of the metric components across the wavefront.

The solution described above therefore represents an impulsive spherical wave
propagating in a Minkowski background. This is equivalent to the impulsive spher-
ical wave that was obtained in [143] using a “cut-and-paste” method.

It may also be observed that 7 = 0 1s simply a coordinate singulanty. It is
thus possible to add the Minkowski region in which 0 € T < |Z[, and then to
add the time-reverse of the solution for T" < 0 and 7 < 0. The global solution
then describes a contracting impulsive gravitational wave in Minkowski background
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which collapses to a point and then re-expands as an exact spherical impulsive wave.
The only singulanty occurs at the event at which the spherical wave has zero radius.

It may also be ponted out that a similar singularity-free solution — 1-soliton so-
lution generated from a Bianchi VI Seed — has been obtained in [105]. In that paper
the soliton perturbation is described as “erasing” the “cosmological” singularity that
occurs 1n the seed

Bibliography of Files [29, 30]

5.5 A General Diagonal Extension

Let us now devote our attention to a diagonal 1-Sohiton in Region A (m, — 0). In
this case the 1-soliton solution becomes:

9, =0 e+‘p(’°”, gy =@ e_qp(aot), Pl — _o g log & + ArcCosh %.

For simplicity we have dropped any index. Now ®(°) is solution for a linear equa-
tion Then the natural question is: does there exist any other solution which may
be linearly superposed to this one?

We can consider for our purposes another class of solutions presented in [145,
146, 147]. In these solutions ® assumes the form &4 = 3, ¢, of Hi(£), where
£ = 8/a. In terms of @ and & the EFE’s are given by:

R T LT ¥ 1 e 2 _ 2
f_zﬁe, Sa=—50 —5—(1 )@,  S=-ad, P +£P
(5.60)
g, =aet?, (1-€)H + 2k-1)§H — K H,.

For integer %k, all the solutions can be iteratively obtained starting from the Hj
solution and using the iterating formula

£
0@ = [ g Ha®). (5 61)

The f metric coefficient corresponding to the most general %) can be easily found
by using a procedure illustrated, for example, 1n [147] - formula (4.16).

It is important here to emphasize that all the $(4C)’s vanish on the lines . = + 8
(or £ = £1), which makes them suitable for our purposes. Thus, we can generalize
the extension (5.54) by considering the following solution:

Region I P4 = —2gloga, + ArcCosh i"" , (5.62a)
A
N
Region A @4 = —2gloga+ E c, o H,. (5.62b)
k=0

The choice of a and 8, we made in (5 49) forces us to choose the H, series generated
starting from H_ (¢) = ArcCosh (£), where £ > 1.
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By rewriting ®* in the form
A = Pleoh 4. pAC) | (5.63a)

N
30 = _2glog a + ArcCosh % , M =%"c o*H, (563b)
k=1

and substituting (5.63) into (5.60), we have that the function S in Region A — call
it S, — can now be split into three components S, = S® + 5@ + S} satisfying the
following equations:

M) — _ X sz L 1 oy calsady2
Sa 2 ((po, ) 2 a (1 g ) ((I)f ) ) (5 648’)
Sél) - — a @9) Qgsol) +€ ((I)Esol))2’ (5 64}))
SP =~ 5 (@Y — L (1~ %) () (5 64c)
5P =~ o 3G U4 4 ¢ (3112, (5 64d)
1
S = - a 80D 3 - ~ (1-¢?) ol Q19 (5.64e)

SO = — o (80D BUD) 1. U gliD) 1 2 £ 3D PUO,  (5.640)

The S component 1s obviously that associated with the bare ®4® and, as we
mentioned above, can be found in [146]:
=1
sO- -5 Lk

2k o
k=2

k=1
K(&)=> ¢ pk=nH H,_ +Q+&)H H, ] . (565b)
1=1

(5 65a)

The S® component is such that F() from (5.51) satisfies F = 1/(2/a) e=5™.
The S®) component is new Its evaluation can be performed in the general case
with the result:

S® =g+ Z d._ o* G (¢), S=c,loga, (5 66a)
k=0

G.(6)=2qH(¢) + % VE—1H/¢), d=c Yk>1,  (5.66b)
G,(€§) =log(¢? — 1) + 2¢ log(¢ ++/2-1), d, =g, (5.66¢)

Some restrictions have to be imposed to the coefficients ¢, in order to get bounded
expressions both in the metric components and in the Weyl tensor. By using only
the fact that all the H,(£) satisfy H,(1) = 0, we can see that S®(£) ~ 0 and
S®)(¢) ~ log(¢ — 1) as € — 1. That implies:

e 5P~ 1, e (e ~1)"% as £ 1. (5.67)

The f coefficient associated with (5 62b) 1s given by fM = F) =P ¢=59 4pq
therefore it is bounded only if ¢, = 0. This 15 the only restriction arising from the
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new component S®. Indeed, it is not a restriction, because we already knew [147]
that & > 1/2 in order to prevent the appearance of step terms in the Weyl tensor
components

Finally we mention that the solution presented here can be further generalized
by introducing [147]:

249 = [ 4(k) o* H,(¢) (568)
1/2

where now ¢(k) is a real function or the real variable k > 1/2. Being ¢(k) completely
undetermined, this form of ®C} provides quite a general form for the solution n
Region A.

Bibliography of Fules [31]

5.6 A Plane Wave Extension

The second extension we present here is that which originates from the choice e =0
discussed above. It is realized by attaching to the soliton region another one in
which o does not depend upon u.

o
u Region 4 &'y ,V
2 A
N D Plane Gravitational Wave &Y,
g Ly
5, Y 1=>
QOO(? 1 Soliton
%, Region A

Soliton Singularity

Figure 5.5: Matching of a 1-soliton solution with a Plane Gravitational Wave

Let us now consider:

ReqionI  a, = -—1—2- (i +b(v)), B, = L (b(v) + u?),

V2
1 1 (5.69)
Region A a= 7 b(v), g= 7 b(v),

where b(v) may assume the general form b(v) = v¥. In terms of these coordinates
the metric (5 14) becomes

2—3/2+2q—q2 AI k

- y1/2(k=2) (v"/2 _ u)4q (Vk _ u2)2q(q—1)’ (5.70a)

o)~
Gﬂ) = 9¢-1/2 (u+ v/ )2 (vF - u?)%, (5.70b)
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The asymptotic behaviour of the Weyl tensor components near the line u = 0 is
given by:
03/2-2g+4* 20[1]1-%

o)~ — y kg (4¢% — 1) v7ITRERE (5 713)
H
5/2~2g+q2 1-2
¥~ - 25/2-2a+0 5yt~ g vRIEe), (5.71b)
AI
7/2-2g+42 1-2
\I’y) o — 2 [2-2a4q Zy[1] 7 3 q k—l vl—k/2(3+4q2). (5710)
A,
Let us consider the diagonal metric:
dsi = 2¢ Madu dv — e7Va(etPada? + e~ 2ady?), (5.72)

in which all the coefficients depend only upon v. In order to continuously match
(5.72) with (5 70), we have to choose:

_ 1
$®,=—-2gklogv+qlog2, e UA:EV" , (5.73a)
eMa = 273HU-T g | gt yYA-2EHES) (5.73b)

The only non vanishing Weyl Tensor Component is:

1/2-2q+¢% 1-2¢
e At ICED I et (5.74)
which is continuously matchable with (5.71a) for any k. Finally, notice that (5.73)
suffer a singularity on v = 0, which prevents us from further extending this solution
to the whole spacetime The existence of this singularity is well known. It is the
tiume inverse of that which appears in the plane wave regions of colliding plane wave
spacetimes as described in [144] - see also [11], chapter 8.

Bibliography of Files: [32]

5.6.1 Reduction to the standard plane wave metric form

In order to show that solution (5.73) exists and to clarify its physical meaning, let
us now perform the coordinate transformation defined by:
2 273/2+2-4 4, k

§j=e M =T £ (1+40%) Tr=——_T =
d’U [ dV, v F Ve ] F k(l + 4q2) ! F 20[1]1—2(1

Now the metric (5.73) becomes:

_ _201-29) -
ds® =2 du db — (3.dz° + 5., di 5 =012 T it ghad. (5.75a
Fu g, aY), In 3
2
5, = 272 T~ 5iTed. (5.75b)

g
Let us now make this second coordmate transformation:
1 1 a b
T = —0°%X, y= 770y, u=R——_X2-—--—_,Y2,
vh NaA 2% 29
(5.76)
a= (1 — 2Q) _ (1 + 29.') N, = 2+q—1/2 f -2 a, N, = 2_q_1/2 I.; -2 b'

144277 14427 T
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Now the metric (5.75) becomes:

d? =2dR dv — (dX?+dY?) — H(®) (X - Y?) d#?, (5.77a)
o o 1 g(1-4¢%
H@) = 2 ek (5.77b)
Formulae (5 77) represents the standard line element for a plane gravitational wave
[11]. The function H(%) represents the Weyl tensor component ¥ , i.e. a gravi-
tational wave propagating in the negative-# direction. Moreover, in this case the
amplitude profile function H becomes unbounded as & — 0.

5.7 Conclusions

The discussion put forward so far, yields the conclusion that soliton solutions with
real poles represent only part of a complete spacetime. Some extensions introduce
the appearance of thin sheets of matter. According to the argument we gave in
section 5.3 1, there exists a large family of possible matter-free extensions. The
resulting spacetime is then a compound of two regions one of which contains the
soliton solution and the other may contain either another soliton — with, possibly,
different parameters — or a PGW, or a more general non-soliton solution.

The possible extensions can be characterized by their physical content as follows
region I contains two gravitational waves described by ¥, and ¥,. They may be
supposed to be both generated at the cosmological singularity &« = 0 The wave
described by ¥, propagates in the positive 3-direction. The wave described by ¥,
keeps propagating in the negative f-direction and will necessanly pass out of the
soliton region

The particular extension to the region beyond u = 0 will depend on the possible
¥, component 1n that region. If ¥, = 0 here, the extension is simply that of a
plane wave. If the soliton extension is taken, then a particular gravitational wave
will occur that propagates behind the junction, which forms a wavefront for this
component. A more general gravitational wave has also been given for the diagonal
case, in which it may also be noted that the initial component H, 1s just the 1-soliton
solution




Chapter 6

Real Pole solitons in the Alekseev
technique

The Alekseev soliton technique generates solutions of the Einstein-Maxwell equa-
tions. However, in the case in which the electromagnetic field vanishes, these elec-
tromagnetic solitons must be purely gravitational, and may be equivalent to those
that can be obtained using the Belinski-Zakharov technique.

It 1s known that the l-soliton solution in the Alekseev formalism is equivalent
to the 2-soliton solution in the BZ formalism [15], and that the 2-soliton solution in
the Alekseev formahsm is equivalent to the 4-soliton solution in the BZ formalism
[61]. No general expliait relation exists, as far as we know, for solutions with an
arbitrary number of poles, unless diagonal metrics are considered Moreover, the
above correspondences are true only when complex poles, in both the formalisms,
are chosen

Thas situation deserves a few comments:

e it is well known that the Alekseev techmque can not provide any solution when
N =1 and the poles wix] and Mk] = Wix] are real In fact, we would have a
vanishing denominator in (2.155).

e given a l-pole BZ-soliton it is not clear at all whether there 1s a corresponding
solution in the Alekseev formalism. Moreover, an N-pole BZ-soliton, with N
an odd number, does not seem to have any correspondence in the Alekseev
formalism.

In order to complete the picture, we might here outline another problem that we
have to deal with when interested in the relation between Alekseev’s and Belinski-
Zakharov’s solitons. Let us consider an N-pole diagonal vacuum-soliton in the Alek-
seev formalism and also suppose that all the poles are complex (N > 1). As men-
tioned above, it can be shown that this solution is equivalent to the 2N-complex
pole diagonal soliton in the BZ formalism. In the Alekseev formalism, the N-soliton
solution 1s obtained by introducing N poles 1n the dressing matrix S. However, an
additional NV distinct poles have to be introduced into S~1. In the BZ formalism,
all the 2N poles occur in the dressing matrix. This explains the apparent doubling
of poles.

Let us now consider the limit when all these poles become real. As we showed in
chapter 3 for the diagonal case, the limut does not correspond to real (simple)-pole
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BZ-solitons. We will have instead a N/2 soliton solution with real poles, each of
which have degeneracy h = 2.

This simple argument seems to show that the class of Alekseev’s vacuum-solitons
is smaller than that of Belinski-Zakharov. As far as we can understand, the problems
sketched above address two main questions:

1. is there a possible way to incorporate real-pole BZ-solitons within the frame-
work of the Alekseev technique?

2. is it possible to obtain solitons with an odd number of poles by using (a
modified version of) the Alekseev technique?

These are the questions we will try to answer in this chapter.

6.1 A Generalized Construction for Real Poles
solitons

Let us consider the Alekseev linear pair (2.112). As we showed in section 2.3, a new
solution for the EFE is given in terms of a previously-known solution by introducing
the Dressing Ansatz (2.133). Equations (2 153), (2.155) and (2.163) provide us with
an explicit N-poles solution for that.

In order to obtain {2.155) and (2.163), no assumption has been made on the
nature of the poles wix in S and 1) in S~1. We only assumed that they are simple.
However, in the Alekseev technique 1] and wix] are taken to be complex-conjugate
to each other.

It is very simple to trace back where this condition came from: 1t is simply related
to the fact that we assumed K(w) = K (w) in (2.138), (2.139) — see Proposition
(2.3.17) and Proposition (2 8.18). In fact, let us consider the matrix function W
defined as:

Kw) = ¥ W ¥, ) i
W =S8WS, Kw=%Wyg. (61
K,(w)=¥ W, ¥,,

Obviously, if we choose K = K, then W = W, and the above defimition cowncides
with (2.139). Let us now consider (6.1) rewritten in the form W S-! = St W. We
have:

N N
. 1 .
—— 4 t - -
W+ k_;;l p—— W Qr W + ,;=1 —— Ry W (6.2)

If K = K, then both W and W are linear in w. Therefore, in order to have the same
pole structure in both members of the above equation, we have to set W] = v¥]
However, if we relax that assumption, then W will no longer be linear in w and
then it may contamn poles. We might thus be able to retain wix] # vix).

In this section we will show that this second approach yields to a positive answer
to question 1 above.
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6.1.1 The 1-soliton case

Let us consider the dressing matrices (2.153) for a single real pole:

Se=T4—t R, ST = [ 4 2 Q, (6.3a)
R=n®@m, Q=p®q, wi, M €R,  wy#uvy, (6.3b)

w — w1 w ~ U]

where n, m, p, q are given in (2.155) and (2.163). In order to show that such a
solution can exist we will have to prove that the function K(w) defined above 1s a
function of the spectral parameter only.

Proposition (6.1.1) Pole structure for W

Let us consider S and S™! as in (6 3). Then W has at most simple poles.
Proof

Let us consider the w-derwative of W. By using the fact that W 1s linear in w, we
can conclude that 3, W may contain at most second order poles. Hence W may
have only first order poles. Oqed

Proposition (6.1.2) Pole structure for W-1

Let us consider S and 8™! as in (6.3). Then W~ has at most simple poles.
Proof

Let us consider (6.1) rewritten in the form:
Wlstw=871, (6.4)

The proposition 1s most easily proven by substituting (6.3) wnto (6.4) and by analyz-
ing the pole structure of the two members of the resulting equation. Oqged.

Proposition (6.1.8) Explicit expression for W

Let us consider S and S™! as in (6.3). Then W is given by.

1
w—w)

W =Wo 4 W),

(6.5)
WO = W, + 45, 2, w = W(uwn) R+ REW(uwpn) + 4RIQR.

Moreover, we also have Rt W(up)) R = 0
Proof
From (6.1) we have:

1

w — Wi

1
(w — w)?

W =W+ [PJW+WR]+ R'WR. (66)
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Being both W and W linear in w, we can write them as-
W = W(uy) + 42 (w — wiy) £, W, =W, (wn}) + 42 (w —wp) Q. (6.7)

By wnserting (6.7) wnto (6.6) we get:

W=w f ———RI'W :
+4 [R'Q + QR] + (= wt)? (wm) R+ (6.8)
1
t t
— [R Wium) + W(um) R + 4R'QR].
Finally, from (2.149) we have:
- 1
= - t
W=W,+48Q+ (w — wi)? R W(un) R + (6 9)
1
t t
+w—w[1] [R'W(uwn) + Wun) R + 4RI Q R|.
This and the result of the previous proposition prove the assertion. Oqged

In particular, the relation Rt W{w(y) R = 0 can be used to set constraints among
the various parameters entering the solutions we are going to build:

RIEW(uw) R=0 = a-W(up)-n = p-W(um) p. (6 10)

Proposition (6.1.4) An expression for 3,

Let us consider S and S™! as in (6.3). Then §, is given by:

B, = wij—v1) —Re (n, m,) +Im (<I>1 7 - ¢! @0) . (6.11)
Proof .

Let us consider (2.145) and the matrz element G,,. We have:
~4 A2+ 491 P2 = -4 h1? +401 D% — 41 (nym,+ T, + 4 f6,. (6.12)
By mmposing h'? = h12 we get the following relations for B,:
B,=Re (n-m)—Re (n, m,)+Im (@1 32— gl 6‘50) . (6.13)

Formulae (2.155) and (2.163) for the 1-soliton solution read

_ +w[1] —] ’ __w—uy m, (6.14)
m-p m-p
and thus it 1s easy to prove that
n-m=TrR = uwjyj—u1 . (6.15)

The assertion 1s therefore proven. Oqed.
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In fact, as argued in Proposition (2 3.11), B, is just a constant of integration. There-
fore, any solution may be considered only after imposing —1if posstble — that the r.h.s.
of equation (6.11) does not depend upon a and 8. Indeed, the electromagnetic com-
ponents ®* are determined by the 13 and 23 components of (2.145). Therefore,
whether this condition will be satisfied or not, strictly depends on the form of the
seed.

Proposition (6.1.5) An essential constraint

Let us consider S and 8~ as in (6.3). Then W must satisfy the constraint:

a~

W) -p=0. (6.16)

Proof

Let us now consider equation (6.2) for the case N = 1 and rewrite 1t in the form:

L WQ=wW4+ 2

R'w. (6 17)
w— My w— Uy

The bimat w — 1) wn both members of this equation s well defined only +f we impose
that W(ry) Q = 0. The assertion 1s therefore proven by considering the exphicit
form of Q. Oqed.

Proposition (6.1.6) W for the vacuum case

Let us consider S and S~ as in (6.3). Let us consider a vacuum seed metric. Let
us consider k, = £, = 0. Then W can be put in the form:

. w — uy .
W(zxz) = w— 'u)[l] (Wo(gxz) +4?’ (ﬁo - (w[l] —V[].])) Q(sz)) 3 (6-183:)

W,=W,=0, W,=1, (6.18b)

where (2x2) denotes the upper left 2 x 2 corner of the relevant matrices and number 5
labels the electromagnetic components — the third row and column — of all matrices.

Proof

With vy = £, = 0 and unth a vacuum seed, we have that n, = m, = 0 = p, = gq,.
Therefore the matrices R and Q are nonzero only in the upper left 2 x 2 components.
Thus the pole structure indicated in Proposition (6 1.1) apphes only to the upper left
2 x 2 components of W. Throughout this proof it will be understood that all the
equations are restricted to this upper left 2 x 2 corner.

The constraint i equation (6.16) will be satisfied of:

s w— U]
W = A B .19
w — W) (Aw+B), (6.19)

where the matrices A and B are independent of w. By comparing (6.19) with (6.9),
it can be seen that A and B are gwen by:

A=40, B =W, (w) + 42 (8, — (v —uy)) 2, (6 20)
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prowded that the follounng relation holds:

R! W(un) + W(uwp) R+4RIQ R =
(i) —v111) W (i) + 4 (wr) —n) (RY 2 + © R) — 42 (wiy —u)® ©2 . (6.21)

By wnserting (6.20) wnto (6 19), the assertion s proven Oqed

Proposition (6.1.7) K for the vacuum case

Let us consider S and S™' as in (6.3). Let us consider a vacuum seed metric. Let
us consider k, = £, = 0. Then, with the ansatz (6.18), we also have:

K W g K,=K, =0, K,=K

@2x2) w — w1 Oraxz) ? 033 *

(6 22)

Proof

This sumply follows from the previous proposition and by noticing that, mn the vac-
uwum case, 3, = wii] —Y1}. O q.e.d.

The matrix K defined in (6 22) is clearly a function of the spectral parameter w
only. Therefore, the existence of the tentative solution (6.3) is demonstrated in the
vacuum case for any arbitrary seed

The following two constraints
R! W(uw) R=0 (6.23)
and

R W(up) + W(wy) R+ 4RI QR =
(wi1 —v1) W (wp) + 42 (wp —v)) (R Q4+ Q R) — 42 (wp) —)? Q , (6.24)

appropriately restricted to the upper left 2 x 2 corner only, can be used to set
restrictions among the various parameters which enter the solution.

The ansatz (6.18) may be generalized to the electrovacuum case by simply as-
suming that A and B are full 3 x 3 matrices. However, a number of problems will
occur. In particular, an expression for W may be obtained by following the same
lines of the proof given for Proposition (6.1.6). With this, one might finally obtain:

w— ) K 44 w— ]
w—wy w — W

K= (8, ~ (w—u)) T Q@ (6 25)

In general, K as defined in (6.25) is not a function of w only, due to the presence of
the term proportional to \Ilz @ . Therefore, the electrovacuum soliton solution
with one real pole cannot normally exist. Nevertheless, there may exist special seeds
for which the second term 1 the (6.25) vanishes: this might permit the generation
of electrovacuum solitons with real poles.
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6.1.2 The N-soliton case

Let us now consider the N-soliton case:

N N
1 o 1
S=I+ g—l pr——— Ry, St =I+ ’?:1 P— Qix, (6 26a)

Ryl =nx@mi, Qx=preqx,  wk,vkxeER, wk#vw (626b)

where n{], mixj, p{}, ] are given in (2.155) and (2.163). Since we are interest in
vacuum solutions, we will consider vacuum seeds and will also set ,x = £, = 0.
This will result in n,x) = m,k) = p,ikl = g,lx] = 0.

Again, the proof of the existence of such a N-soliton vacuum solution 1s based
on a verification that 1 W ¥ is a function of the spectral parameter only, where:

N
W=W,-4RQ+RQ) + 440, R=) R,. (6.27)
k=1

Proposition (6.1.8) An essential constraint

Let us consider S and S™! as mn (6.26). Then W must satisfy the constraint:

W) - pu=0. (6.28)
Proof

The proof 1s easily giwven by considering, as in the 1-soliton case, the limit w — Yk
wn both members of equation (6.2). O q.ed.

Proposition (6.1.9) Property of §,

Let us consider S and S~! as in (6 26). Let us consider a vacuum seed Let us put
Kokl = £,x) = 0. Then {3, is given by:

N

B, = Z Wik] — Uk} . (6.29)
k=1
Proof

The proof goes along the same hines as in (6.11). We have only to keep in mind that
R. wnto (2.149) 15 now gwen by R = Y o, R Oq.ed

Following the same lines as in the 1-soliton case, we may introduce the function
W=StWS§,

W=W+41[RTQ+QR] +

N
1
t
’ ;—1 w — W [Ra! W(wm) + W(um) Rin| +

N
1 ¥
’ k,;z=1 (o —om)(w =gy o0 W) R . (6.30)




CHAPTER 6. REAL POLE SOLITONS IN THE ALEKSEEV TECHNIQUE 113

Again, 1t can be proved that W contains simple poles only. Therefore we will have:
R W(uwp) Ry = 0, Yk = 1,...N. (6.31)

These relations can be used to set constraints between the free parameters entering
the solution

Proposition (6.1.10) K for the vacuum case

Let us consider S and S~ as in (6.26). Let us consider a vacuum seed. Let us put
K,k = L1 = 0. Then the general expression for K(w) is given by:

N
w — UK
K(zxz) = H (,w _ 'w[k]) Ko(,_,(z) ) K, = Ko33 . (6'32)

k=1

Proof

A direct proof of this assertion would be unnecessarly cumbersome. It 1s better to
apply the following “add one-by-one” procedure.

Gwen the seed (and hence a certain K ), we can construct the 1-soliton solution
and obtain some:

_w— ]

K =
w — wli}

K, . (6.33)

1

We can now use this as a seed and dress it unth another soliton. As a result we wll

have another.
W g o X WM g (6.34)

w — w2 w— w)

2 w—uwp

This procedure can obuiously be iterated up to the Ny, soliton, yielding to the formula
gwen n (6 32). O q.ed.

The above proposition ensures that the tentative solution (6.26) can actually admt
a K matrix depending on the spectral parameter only. Therefore this concludes the
proof of existence for the vacuum N-soliton solution with real poles.

As pointed out above, formulae (6 31) provide a first set of constrants for the
free parameters entering the vacuum N-soliton solution. As for the 1 soliton case,
one can derive a second set of constraints, analogous to those given 1n (6 24). They
are most easily obtained by using the above procedure of adding one pole at a time.

6.2 Explicit 1-soliton Solutions

For a generic vacuum seed metric, the corresponding matrix function ¥, will have
the form:

T,y (w) ¥p,(w) 0
v, (w) =1 ¥, (w) U,(w) O . (6'35)
0 0 1
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To explicitly construct a general (electrovacuum) I-soliton solution we may put:
k= (1K, k), £=(1,4,4,), (6 36)

where the soliton suffix 1 has been suppressed. Then (2.155) and (2.163) take the
form:

m = (XO'-'_Y:):’%) ) p= (XJ’K’ES) ¥ (6 37&)
o
q=-0 ——-——--det%(z") m, n =g 38 %ol%) ,D"(z°) p,  (6.37)

where uf1] = 2, and 1] = z, + 4, with 2,4 € R, and the following quantities have
been introduced:

‘1122 (zo) — kz ‘IJ‘.’.’I (zo)
det ¥ (z,) ’

¥, (z,) -k, ‘I’n(zo)

X =
° det ¥ (2,) '

(6.382)

Y, =
XS = ‘I‘ll (ZD + 6) + £2 \IIIZ (ZO + 6) ) },6 = ‘1121 (ZO + 5) + €2 ‘I’22 (ZO + 6) H) (6‘38b)

D=X,X,-Y,Y,+x, £, det ¥ (z,) (6.38¢)

It is worth noticing here that each component of the vectors n and q is proportional
to 4. This confirms that a new solution can be obtained only if the poles in 8§ and
S-1 are distinct.

6.2.1 Minkowski Seed

Let us consider the particular case of the Minkowski seed metric, for which*

—t . 0 0
_ Ny
go=( 0 _(;2 ) = | e — 10 |. (6.39)

0 01

By using formulae (6.37), it can be shown that \Ifi Q ¥, does depend upon «a and 3.
Therefore this seed only permit the generation of vacuum solutions. We will present
here the vacuum soliton solution with one real pole.

We can therefore set x, = £, = 0. We can also choose 2z, = 0. By specializing
(6.37) to this seed, it can be shown that the constraints (6 23) and (6.24) give the
following restrictions on the parameters:

|K'2|2 =1, Iezl2 =1 (640)

Diagonal Case

To construct a diagonal solution, we can take.

K,=1, 6,=1. (6.41)
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With this, we obtain-

5+e(\/ﬁ2_ea2— \/(ﬂ—6)2—ea2)

g, =€ 5_6(\/62_502._ \/(ﬁ_5)2_6a2) ) (6.42a)
922=—a2—265(ﬁ_e ﬁ2——ea2)(ﬁ—6—e\/(ﬁ—é)z—eoﬂ) . (6 42b)

§—¢ (\/ﬁ2—ea2—\/([3—5)2—ea2)

It is worth mentioning that the parameter 3, has been set as 8, = — §, according
to the results in (6.11). It can also be confirmed that det g = ¢ a®. Moreover the
condition ¥'WW¥ = K(w) is fulfilled with

+ w@-g) o o
1 W = 0 e ( - 5) 0| (6.43)
; 0 0 1

which is in agreement with (6.22).
Let us now introduce the functions ,uf: and pf given by

pf=—-ft\/F—-ca?, pi=—(B-8)*=(B-02—co?, (6.44)

which are the pole-trajectories seen in chapter 3. With these, the above metric
(6 42) can be rewritten in the form:

A e a?
e =+1: gy = — 2= L L= , 6.45a
e R (6:452)
+ + = _ =af 2
e=-1: go=-SLfio s T (g
By = By — R, By

and the g,, components are easily obtained by using the condition det g = € o?.
It may immediately be observed that this solution 1s 1dentical to the BZ soliton
solution with two real poles and the same seed [106].

Non-diagonal Case

Let us consider the following parameters
k,=1, 6,=1. (6.46)
This choice generates a nondiagonal solution given by:

BP-Bs—eca®+/F2—ca?/(6—0)2—ea?

gu=_€52_55+52—ea2+\/ﬁ2—-602\/(ﬁ—5)2“‘6012’ (6.47a)
=5 VB2 —ea?(B—8) + B/(B-08)2—¢a? (6 47b)
12 ﬁ2—ﬂ5+62-—60’2+\/ﬁ2_6a2\/(ﬂ_6)2_ea2’

G = —0% — +2¢f(B-6) 8 +a & - . (6.47¢)

B2—-B6+8—eca?++/F—eca?/[B-6)2—ca
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It can again be confirmed that det g = € o and that the condition ¥'W¥ = K (w)
is fulfilled. Indeed, it 1s found that K(w) is identical to that for the diagonal case
(6 42) ~ see formula (6.43). This 1s mevitable from the fact that the formula (6.22)
does not contain the free parameters k{x} and €] — it only contains the parameter &
that appears in the poles.

Using the poles-trajectories (6.44), the above metric components can be rewritten
in the form:

(e —p7) (g — )
(wf — B2+ (uf — )2’
B —pr

(f —u P+ — )
The g,, component can be easily obtained by way of the usual condition det g = e a?.

gy = —2e¢ (6.48a)

9, =—2¢6 (6.48b)

6.2.2 Kasner type D Seed

Let us consider the particular case of the Kasner seed metric for which, when ¢ = 0,
we have:

+212 |, —R-ERJ' —ol/2 | R-;m 0
eal™ 0 ) )
8 = ( 0 alt2e y ‘I’o = —9l/2, kl E_E_Rt _21/2 kx B ;—zR+ 0 :
0 0 1

Rt=yB-w+a R =+f-w-a R=R*R . (6.49)

and construct the associated vacuum soliton solution with one real pole. We can
therefore set x, = £, = 0. We can also choose 2z, = 0. Furthermore, we will consider
the case ¢ = 0 only.

It may be firstly noticed that the matrix K, 1s now given by:

0 —322 kf 0
K,=| —32 kf 0 0 . (6 50)

0 0 1

This illustrates that the choice (2.152) is not necessary, and it is performed just
because it may result convenient in certain situations.

We have found difficult to find out the implications of (6.23) and (6 24) for this
particular seed. However a number of interesting features have been obtained. After
rewriting the arbitrary parameters 1n the form:

K, =M &1 | £, =Pe&’% (6.51)
equation (6 23), for this seed, reads:
2K a® (@2 —1) P-2(®-1) K2 P(8-6)°=0. (6.52)
It is therefore evident that we have to make the choice:
9, =0, g,w, . (6.53)

The second constraint has not been given a readable form. We have checked that
the choices M = 0 or 8, = 0 are admissible, but we have not been able to prove that
they are the only ones
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Diagonal Case

To construct a diagonal solution, we can take

k, =0, 2,=0. (6 54)
With this, we obtain:
1
gu=a(ﬁ_\/ﬁ2—ag) (ﬂ_6+ V(ﬁ_§)2_a2)’ (6553‘)

922 =§ (B+vVB+aB—a) (B-6—B-d+a/B-b6—a). (655b)

It is worth mentioning that the parameter G, has been set as §, = — §, according
to the results in (6.11). It can also be confirmed that detg = € a®. Moreover the
condition YW = K(w) is fulfilled with:

0 +320 K2 (1-2) o
UIWw = —39% kf (1 _ %) 0 0 , (6.56)
0 0 1

again in agreement with (6.22).
Using the poles-trajectories (6.44), the above metric components can be rewritten
in the form:

+,,—-

“1 uz 3 1
= = —, s = = ¥ . 6.57
gll o 922 “;hu; ( )

It may immediately be observed that this solution is identical to the BZ soliton
solution with two real poles and the same seed [106].

Non-diagonal Case

Let us consider the following parameters:
K, =1, L,=1. (6 58)
This choice generates a nondiagonal solution given by:

_ s YBTaVE—t-a-VE—avB-J+a

In=e VB+taJB-d—-a+B-a/F-d+a’ (6 59)
__sVB—aVB—b~a-Fra/I—i3%a

i = 5\/ﬁ+a\/ﬁ—6—-a+\/ﬁ—a\/ﬁ—6+a’ (6 59b)

g, =a _5\/ﬁ+a\/ﬁ—5—af—\/ﬁ—a\/ﬁ—6+a (6.59)

VB+avB-8-a+yf-ayB-8+a

It can again be confirmed that det g = € o and that the condition T'W¥ = K(w)
is fulfilled. Again, 1t 15 found that K({w) is 1dentical to that for the diagonal case
(6 56).

Bibliography of Files. (33, 34]
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6.3 Conclusions

Generally, the Alekseev N-soliton method for the construction of new solutions of the
Einstein-Maxwell equations requires the addition of N distinct poles in the inverse
of the scattering matrix. These are normally complex conjugate. In the vacuum
case, the method is supposed to be equivalent to that of Belinski and Zakharov
(with 2N poles) provided the poles occur as complex conjugate pairs.

The purpose of this chapter has been to modify the Alekseev inverse-scattering
method to permit the use of real poles. This has been attempted by introducing
distinct real poles in the inverse matrix. We have found that this construction is
successful 1n the vacuum case in which it has shown to be equivalent to the BZ
method with distinct real poles.

In principle, there might exist special seeds for which both ‘I’ﬁ W ¥, does not
depend on « and B and the r.h.s. of (6.11) is a constant. If this is so, then an
electrovacuum solution can be generated.




Chapter 7

Conclusions

In this thesis we have been involved with three main issues:

¢ Time-Shift

The problem was that of understanding whether or not gravitational solitons,
after interacting, still travel along the initial directions or are somehow shifted.
By analyzing the asymptotic behaviour (¢ — o0) of the soliton metrics, we
concluded that such a time-shift does not occur for gravitational sohitons, thus
making a strong difference with other soliton solutions, such as for KdV or SG
equations.

We also found that this effect similarly does not occur when the interaction
between solitons and gravitational waves 1n considered.

¢ Extensions of the real-pole BZ’s solitons

Given that soliton solutions may have singularities — along some null hyper-
surfaces — which are removable with a coordinate transformation, we were
interested in possible extensions of the transformed metric such that also the
Riccei tensor is everywhere singularity-free.

We have given a few examples of compound spacetimes that fulfill these re-
quirements, including all possible extensions for the diagonal case.

¢ Generation of the real-pole Alekseev’s solitons

The standard Alekseev formalism works perfectly when complex-pole solu-
tions are considered. In this case the machinery provides both vacuum and
electrovacuum solutions. However, problems occur when real poles solutions
are considered, because the generating procedure develops singularities that
prevent one from successfully produce solutions.

By modifying the pole-structure of the dressing matrix S and its inverse S72,
we were able to develop a machinery that generates real pole solitons. In
general, these solutions occur only for the vacuum case. For the electrovacuum
case, solutions can be generated only if the seed satisfies certain restrictions.

We have also clarified that the vacuum solutions correspond to the case of BZ
solitons with an even number of real poles.

119
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As far as we can see, this third issues is worth of further investigation. We can
summarize the work done in chapter 6 as follow. Given the dressing ansatz (2.133),
there are two main freedoms we are left with in order to produce solutions. One is
the nature of the poles in the dressing matrix S and its inverse. The second is the
pole structure of matrix K (2.120).

In the standard Alekseev technique, both the dressing matrix and its inverse have
meromorphic structure — i.e. they have just sumple poles — and the choice K = K
15 considered. This imphes that the poles in S and S~ must be complex conjugate
to each other. In chapter 6, we have kept the meromorphic structure of S and §-!
but we have tried to modify the form of K. As a result, one possible modification
— based upon the ansatz (6 18), and restricted to the upper left 2 x 2 corner of the
relevant matrices — was K = f(w) K,, with f a scalar function containing at most
simple poles. Such a modification allowed for the generation of real pole solitons in
the vacuum case. This ansatz can not be used to generate real pole electrovacuum
solitons unless very special seeds are considered

In principle, a more general ansatz might be considered. In fact, the constant
matrix K is only subject to the condition K = K, regardless the pole structure
of the dressing matrix S. Therefore it could be any linear superposition of twelve
hnearly independent hermitian matrices. The “windfall” of such an ansatz with
respect to S and S7! is — as yet — unknown.

A sound way-out to the problem of generating electrovacuum solutions with
real poles seems to be given by the linear integral equation introduced by Alekseev
himself in [57, 58] 1.

However, the Alekseev technique, even with the above generalization, still raises
a few other questions. We have already addressed these in the introduction to
chapter 6, namely: how can we generate solutions with an odd number of poles?

We believe that an answer to these questions strictly involves a rethink of the
nature of poles in the dressing matrix, i e. of the meromorphic structure of S and
S-1. We have tried, without success, the following;

N M
1 1
S=1 e | 1
+ :?:1 m——— Ry, S + k§=1 — Qu, M #N, (71a)

or the other :

N N

thus indicating that a more radical change is needed. Is the non-solitonic solution
given by Alekseev himself in [55] useful in this context? With some stretch of
imagination, we may say that the challenge finally results i trying to implement
half pole solitons within the Alekseev formalism.

The 1ssues considered in chapter 4 also need to be reconsidered in a wider context.
We have recently become aware that soliton solutions that do not suffer Time-Shift
can also be generated as solutions of the matrix-KdV equation [151] In particular,
2 % 2 matrix solutions can be constructed by using a dressing ansatz. The situation

1Private communication to J B Gniffiths, (september 1999)




CHAPTER 7. CONCLUSIONS 121

relevant to our discussion — no Time-Shift is observed — occurs when the dressing
matrix has a vanishing determinant. This seems very intriguing because in the
construction of gravitational soliton matrices with null determinant also appear —
namely the Rix) and Qjx] matrices. If this is a key fact or just a fortwitous occurrence
we do not know. However, we feel that this is worthy of further investigation
We suppose that in the context of matrix-KdV a physical quantity such as the
hamiltonian of the system might be introduced without theoretical inconsistences.
Therefore one might be able to inspect whether the energy associated with these
solitons can be propagated without dispersion or not.

Also, the problem of Time-Shift in GR should be considered in connection with
some results obtained by Veselov in [152]. In that paper, 1t was shown that “rational”
solitons of the Liouville equation do not suffer Time-Shift. The thing relevant to us is
that certain solutions of the Ernst equation may have rational form if an appropriate
system of coordinates is chosen.

In the context of stationary axisymmetric vacuum solutions, it is known that the
calculation of the Weyl Tensor — and 1ts components ¥, ¥, and ¥, — 1s simplified
due to the existence of some factorization property — see, for example [161, 162]
and references therein. As far as we know, no such a property has been locked
for in the context of the solutions we have discussed in chapter 4. Obviously, we
do not expect this factorization — 1if any — to take place in the same terms as m
[161, 162]. However, it scems auspicious that some research in this direction be
pursued. Any positive result would be of great importance even beyond the ambit
of the Time-Shift problem we are discussing here.

In chapter 1 we quoted a sentence from [31] about a possible link between the
soliton techniques and the group-like approach to the solution of the Einstein equa-
tions. Alekseev has proposed the linear integral equation [51, 58] as an alternative
formulation to his “dressing” soliton technique. The relations between this and the
HHP posed by Hauser and Ernst 1s surely another topic to be analyzed.

Also, the possibility of generating new solutions by solving the linear integral
equation, in the case when rational “monodromy data” are considered, might be
relevant to the issue of Time-Shift discussed above.

More ideas for future, possible research

A good job 1s such if some result is achieved But a better job is produced if these
results allow for new research to be performed.

Above we already introduced a few items worthy of additional investigation.
However, given the title of this section, we want to go even further And moreover
we will feel free of speaking languages typical of other fields of Physics.

o Any physicist knows that, if a new particle cannot be created, this is so either
because there is not enough energy or because symmetry considerations forbid
it. Having that in mind, and thinking of solitons as particles, which one 1s
the reason why the Alekseev formalism does not allow for the generation of
solutions with an odd number of poles? What 1s the intrinsic symmetry hidden
within the Alekseev formalism, such that a spare soliton is not allowed?
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o The solitons techniques are based upon the dressing ansatz that a new solution
is given by applying a certain operator to a seed metric. That reminds us
of the procedure usually used to build up a Fock space of free particles in
the second quantization scheme of relativistic quantum mechanics: given a
vacuum state, states with a given number of particle/antiparticles are bult
by repeatedly applying the relevant creation/destruction operators. This is
one of the basic bricks to construct a field theory. Thinking of the seed as
a vacuum state and thinking of the dressing matrix as a creation operator,
which one is the appropriate destruction operator? Is it then possible to write
(canonical) commutation/anticommutation relations between these? Which
one 1s the possible analogue of the antiparticle? Are the defimtions of soliton
and antisoliton introduced by Belinski in [101, 102, 104, 105] of any interest
for this problem?

The aim is that of introducing some sort of quantization procedure “naturally”
driven by the classical properties of the system [159, 160]. With the same aim,
an attempt to a possible quantization of spacetimes with two Killing vectors
has been made by D. Korotkin et al. in [153, 154, 155, 156, 157, 158]. There
the starting point is precisely given by the Belinski-Zakharov linear pair. The
procedure followed in these papers is obviously different from that sketched
above Nevertheless, we feel encouraged by the fact that the soliton technique
is considered as a starting point.

In a sense — again we require some stretch of imagination — this 1s not sur-
prising. In fact, the soliton techniques somehow provide a linearization of the
nonhnear problem posed by the Einstein equations. And indeed the quantum
systems must have an underlying linear structure, since the superposition of
states/particles must be allowed.

One more issue. If the solitonic metrics are to provide a Fock-like space —
in the sense described above — it means that an arbitrary state/metric must
be described by an appropriate “linear” combination of these. The classical
counterpart of this problem is posed as follows: do the soliton metrics represent
the whole Geroch group [156]7

o It is known that a relation exists between the Ernst equation and the o-models
equation — see Hoenselaers and Gurses in [12]. If so, how is this related to the
issue put forward above [163]?

It is very possible that a deeper nvestigation of these items would reveal them
to be meaningless. However, on a pure hypothetical basis, we feel entitled to pose
these questions

The two main approaches to Quantum Gravity (QG) may be outlined as follows
[164]: on one hand we have the “hep-th” physicist who thinks about QG as a
(string) theory beyond the Standard Model. On the other hand, we have the “gr-
qc” physicist whose attempts are devoted to a quantization of the spacetime, rather
than a quantization owver the spacetime. We wish to embrace this second point of
view since, as we recalled at page 1 of this thesis, the spacetime must no longer be
considered as a fixed frame.




Appendix A

Construction of Alekseev’s Linear
Pair

Let us consider the operator:

DA=aA+1>A3%, A=1,2, (A1)

where w is a complex parameter and P, is a numerical function depending upon z4
and w. The requirement that

2D, D, =0 (A.2)
implies:

Pa=—8,) (g—:) - (A3)

where A is an arbitrary function depending upon z4 and w.
Let us introduce the complex matrix function

¥ = ¥(z4,w), (A.4)
and consider the following matrix equation:
DA‘II=AAB U, ¥, (A.5)

where A 7 1s a function depending upon z4 and w and U, is a 3 x 3 complex matrix
depending only upon z4. By substituting (A.5) into (A.2) we have:

€A?U, U det A =e42D,D, . (A 6)
By substituting D, in the above expression, and using {A.5), we finally obtain:
42D, D, =€ (D, AS YU, + ¢4 A° (8, U,), (A.7)

where the fact that U, is independent of w has been used. A comparison of (A.6)
with (A.7) gives:

ABD A C ABA ©
(E@#) U, + (edeu'{ ) U, — er U, U, =0. (A.8)
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Clearly, the set of equations (A.1), (A.2) and (A.5), 1s equivalent to the set (A.2)
and (A.8). Moreover, P, is expressed by (A.3). With that, it is easy to verify that
the set (A 2} + (A.8) is also equivalent to:

A7 = 21 detA ("2 + F e4B), (A.9a)
eEDA° =0, (A.9b)
e*D, D, =0, (A.9¢)

where F is an arbitrary function depending upon z4 and w.
The solution of (A.9a) gives:

B _ 1 E}‘(SAB + EAB -1VE B B
A =g -7 (A7), = 21a(Fb, — €¢,’). (A10)
By considering (A.3), we have that the 3 equations in (A4.9) can be substituted by.

B _lEJ:JAB'}'EAB AB c _ _ aA -1
AP = o=, DA =0, Pa=-0,A(5) - (ALY

By substituting the first and third into the second of the above equations we have:
A=aF + 5. (A.12)

The freedom in the definition of A gives us the possibility of setting 8, A = 0,
therefore, from (A.3), we have P4, = 0. From (A.12} we have:

f:i-(,\—g). (A 13)
By substituting the above formula into (A.11) we have that (A.5) is equivalent to:

1 A\=f)56° + cae®
Oa¥=A’U, ¥, Ay T ()\--ﬁ32_ea2A

(A.14)



Appendix B

More remarks on the asymptotic
limit of the W-M metric

This appendix is devoted to a proof that the Y[’s asymptotically approach a con-
stant value, i.e. do not diverge.
The functions

Y= lm Y({\
b= lm ¥(})

have been defined in section 3.2.4 We recall here that.

A
V(@8 = VE@BN I8, K=y (B.1a)

W'(v)
V1-2v K(a,f,)) ’

It must be firstly noticed that, in the limit when A — g4, the function K {a, 5, A)
becomes just a complex constant. In particular:

I= | dv

(B.1b)

m K(a,8,)) = 2(z,1 +rw, )
A—i{y]

As a result, the asymptotic behaviour of Y| 15 entirely determined by that of I.
Moreover, the square root in the denominator of (B.1b) can never vanish
A little algebra shows that:

1
(2ol —v)? + wola?) /4
1
2 2y1/4
< (2,017 + w )Y f dv e W' (@)l

< (2l + w,2) /4
T

(e, B)] < (2o + woi) 4 f dv W (o)

f dv [W'(v)] . (B.2)

The last equation makes evident that, if W is a regular function, then I(a, 8) — and
therefore Y7 — are bounded.
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