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Abstract

Proposed designs for Very Large Floating Structures motivate us to understand water-wave
propagation through arrays of hundreds, or possibly thousands, of floating structures. The
water-wave problems we study are each formulated under the usual conditions of linear wave
theory. We study the frequency-domain problem of water-wave propagation through a periodi-
cally arranged array of structures, which are solved using a variety of methods.

In the first instance we solve the problem for a periodically arranged infinite array using the
method of matched asymptotic expansions for both shallow and deep water; the structures are
assumed to be small relative to the wavelength and the array periodicity, and may be fixed or
float freely.

We then solve the same infinite array problem using a numerical approach, namely the
Rayleigh-Ritz method, for fixed cylinders in water of finite depth and deep water. No limiting
assumptions on the size of the structures relative to other length scales need to be made using
this method. Whilst we aren’t afforded the luxury of explicit approximations to the solutions, we
are able to compute diagrams that can be used to aid an investigation into negative refraction.

Finally we solve the water-wave problem for a so-called strip array (that is, an array that
extends to infinity in one horizontal direction, but is finite in the other), which allows us to
consider the transmission and reflection properties of a water-wave incident on the structures.
The problem is solved using the method of multiple scales, under the assumption that the
evolution of waves in a horizontal direction occurs on a slower scale than the other time scales
that are present, and the method of matched asymptotic expansions using the same assumptions

as for the infinite array case.
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Introduction

In recent years there has been a growing interest in the interaction of time-harmonic water
waves with very large arrays of fixed or floating structures. This is motivated, for example,
by the practical problems of so-called Very Large Floating Structures [I] supported by regular
arrangements of floating elements, and arrays of wave power devices [2]. This thesis investigates
the water / structure interaction under the theory of linear water waves as described in [3], 4].
The structure of this theory allows us to decompose the wave motion into a scattering problem
(where the structures are held fixed) and radiation problem (where each structure is forced to
move in the absence of an incident wave): this leads us to consider the two problems separately.

The study of waves through arrays of structures has a long history in the context of water
waves, and an extensive review is given in [5], where it is acknowledged that arrays consisting
of a small amount of structures can be handled by relatively straightforward extensions of the
methods used for single structures. This however, becomes computationally expensive for large
arrays and so we look to other methods to describe very large arrays. For arrays of modest size
there are well established techniques for the calculation of hydrodynamic interactions: vertical
cylinders extending throughout the depth (equivalent to an acoustics problem) is looked at
in [6], (their method involves using a plane wave expansion at each cylinder and then linking the
expansions together using addition theorems); whilst the work contained in [7] can, in principle,
deal with arbitrary array configurations and cater for structures of almost any shape. This work
has been further developed in [§], where small arrays are grouped together to form a larger
array; in this way the scattering and radiation characteristics of an array for 5120 cylinders was
computed.

For larger arrays, properties such as periodicity are exploited; for example, the application of
the methods given in [7] to wave scattering by either an infinite or semi-infinite line of periodically
arranged structures is described in [9) [10]. Line arrays are also looked at in [I1], 12} 13]. Very
large arrays consisting of many infinite periodic line arrays stacked together can be treated by

an extension of these methods [14, 15, [I6]. An alternative is to use asymptotic methods based



Introduction

on the assumption that individual structures are small compared to other length scales in the
problem [17, [I8]. In problems of the interaction of water waves with large but finite arrays,
quantities of interest include the reflection and transmission properties of the array [15 [17] and
the responses of individual elements to wave forcing [I8]. Another way of gaining insight into
what happens inside large arrays is to consider arrays that extend to infinity in both horizontal
directions, as is done in [19].

In much of this literature interest is focussed on the appearance of band gaps, that is fre-
quency ranges for which wave propagation through an infinite medium is not possible. We
use band diagrams (plots of the wave frequency against a phase vector associated with the
waves under investigation) to graphically show what is happening. In the water-wave prob-
lem, and specifically for fixed vertical cylinders that extend throughout the water depth, the
band-gap structure has been studied in [20] using approximate and numerical techniques, in [21]
using multiple-scattering techniques, and in [19] using asymptotic methods. The study of wave
propagation through lattices has a long history in many research fields other than water waves
including acoustics and electromagnetism, and an extensive survey of the literature can be found
in [22]. The phenomenon of negative refraction — which can be exploited to make superlenses
that can refocus a point disturbance on the opposite side of a rectangular slab of material — has
been observed both experimentally and theoretically in many contexts including water waves [23]
and acoustics [24]. Observation of negative refraction requires an understanding of the band
gaps that the material under investigation exhibits [25].

The plan of this thesis is as follows. We introduce the standard linear water wave theory that
is used throughout the thesis in Chapter |1} Following the work contained within [26], [3] and
[4], we derive the governing equations for a fluid that is inviscid and incompressible and where
the fluid motion is assumed to be irrotational, as well as deriving the equation of motion for a
constrained body. We present the form that time-harmonic solutions take as well as discussing
the decomposition of the velocity potential into a scattering and radiation problem. We also
show how to deal with problems where the depth is constant. Three different mathematical
problems are considered in chapters and [l Each problem is formulated by quoting the
relevant governing equations and concepts discussed in the first chapter. For the main part
the three problems are essentially self-contained and hence can each be read and appreciated
on their own, without resort to the other two chapters (and consequently there is significant
repetition at the beginning of each chapter to formulate the problem under investigation).

In Chapter[2] solutions for truncated structures arranged in an array that extends to infinity
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in both horizontal directions are obtained by the method of matched asymptotic expansions with
the principle assumptions that the wavelength is much larger than a characteristic dimension
of the structure, and that the separation distance between structures is of the same order of
magnitude as the wavelength. This last assumption allows expressions to be obtained for the
width of local band gaps, in contrast to homogenisation schemes (for example, [27]) that are
valid only for frequencies below those for which band gaps appear in these problems. The
assumptions adopted correspond to those made in previous work on two-dimensional problems
in acoustics [19] 28] and elasticity [29]. Here, additional simplifying assumptions are made on the
depth of the fluid and two cases are considered. First of all, the water is assumed to be shallow
so that the depth is much smaller than the wavelength, and secondly the water is assumed to
be infinitely deep. In part, these cases are investigated as explicit approximations are relatively
easy to obtain. However, it is anticipated that the results for deep water are qualitatively similar
to those that would be obtained for water whose depth is of the same order of the wavelength,
but is large relative to the dimensions of the structure. By solving the problem asymptotically,
the principle aim here is to obtain simple expressions that show explicitly how the frequency of
waves with specified wavenumber and propagation direction is affected by the geometry of the
structure and the lattice, and by the stiffness of the moorings in the case of a floating structure.
For simplicity, we consider only vertically axisymmetric structures constrained to move in the
vertical direction. Our asymptotic methods also allow us to describe explicitly the appearance
of local band gaps, and hence see how they are affected by various physical parameters.

A numerical approach to the problem is used in Chapter |3 Here we solve the same infinite
array problem for truncated cylinders using the Rayleigh-Ritz method by extending the work
of [20]. Using this method allows us to get exact solutions for what is essentially the same
problem explored in Chapter [2| without having to make an assumption that the structures are
small compared to the wavelength, or indeed that the periodicity of the array is of the same
order of magnitude as the wavelength. The purpose of this chapter is twofold: to complement
and extend the asymptotic approach of the previous chapter. The asymptotic work is not helpful
enough to investigate negative refraction. (The asymptotic method used in Chapter yields local
approximations in wavenumber space, and hence cannot be straightforwardly used to construct
complete band diagrams; the results from the Rayleigh-Ritz method can be used to construct
full band diagrams allowing us to investigate the conditions required for negative refraction.)
We look at finite depth (where of course it is possible to specify parameters corresponding to

the shallow water asymptotic solutions) and deep water.
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In Chapter [ we study water-wave propagation through arrays of structures arranged in
a two dimensional array stretching to infinity in one horizontal direction but of finite width
in the other — we call this a strip array — using the method of multiple scales and matched
asymptotic expansions. By having the array wide enough (in the horizontal direction that is
of finite length), we expect there to be a clear analogy between the solutions found here and
those within Chapter [2} in the same sense, the solutions inside the strip array are perturbations
from the plane waves that exist in the absence of any structures. By introducing a slow scale
to consider alongside the fast scales, we essentially homogenise a complex geometry — the strip
array of structures — to a simpler one; the slow scale describes how the waves change as they
propagate through the array of cylinders. By looking at a strip array (where it makes sense to
talk of an incident wave), we can look at what happens to waves whose frequencies fall within the
band gaps that were found in Chapter 2} as per [30, page 53], adding an edge to an infinite array
will allow us to sustain an evanescent mode. Within this chapter we look at both shallow water
and the deep water limit (alongside water of finite depth), which is an extension to the work
found within [I7] and [I8] respectively; in both cases we build upon and make more explicit their
work by formalising the approach to the method of multiple scales. This is done by considering
a full composite solution and using matched asymptotic expansions between inner and outer
solutions in one cell, as was done in [31], chapter 4]; in particular, we find that we are able to

use the inner solutions from the infinite array solutions, as found in Chapter



Chapter 1

Standard linear wave theory

1.1 Introduction

The formulation of the equations governing the flow of a fluid and its interaction with constrained
bodies has been completed following the work of a selection of authors; Crapper [26] as well as
Linton and Mclver [3] provided the grounding for the fluid equations, whilst Mei [4] demonstrated
the derivation of the equations of motion for a constrained body. Courtesy of Linton and Mclver,
this chapter is concluded by looking at the form that the velocity potential may take under
certain conditions: the form of the velocity potential in the case of time-harmonic motion; the
decomposition of a water-wave problem into a scattering and radiation problem; and the form

of the velocity potential in water of constant depth.

1.2 Fluid equations

We begin by deriving the equation of continuity. Let us assume that the fluid under consideration
is incompressible, that is that the density p is constant. Consider a closed surface S, fixed in
space, with the fluid moving through it. Concentrating our attention on a small segment of the
surface, with area d.S, we note that in time 0t a volume of dS(u - n)dt should flow through,
where wu is the fluid velocity and n is the outward unit normal vector to S. Since the fluid is
incompressible the total flow through .S must vanish, i.e. the inflow is balanced by the outflow.

This means, around the whole surface, we have

/u«ndSzO. (1.2.1)
S

10



1.2 Fluid equations

Applying the divergence theorem we find
/ V-udV =0, (1.2.2)
v

where V is the volume of the fluid enclosed by S. For this to be true for any volume this must

mean that
V-u=0, (1.2.3)

which is the equation of continuity.

Now let us assume that the fluid is irrotational. Mathematically this is expressed as
Vxu=0, (1.2.4)
which means that u can be written as the gradient of a velocity potential ®
u=Vao. (1.2.5)
Subsitution of this result back into the equation of continuity yields Laplace’s equation
V20 = 0. (1.2.6)

Because we have assumed that the fluid is irrotational (and will eventually be considering
structures present in the fluid) we must make a third assumption on the fluid, that being that
the fluid’s flow is inviscid. This means that the force on the fluid inside S due to the fluid
outside S is purely a pressure, normal to S, denoted —PndS, where n is the normal vector
pointing out of S. The other force acting is due to gravity, which we can write as gpdV, acting
on an element of volume dV with g being the acceleration due to gravity times a unit vector
pointing vertically downwards. Applying Newton’s second law of motion to the fluid inside S in
the direction of a general fixed unit vector I we thus have

lDu

-pdV:—/Pl-ndS+/l-gpdV (1.2.7)
v Dt 5 v

where D /Dt is the material derivative: that is the rate of change moving with the fluid, measured

in fixed coordinates. Using the divergence theorem and recalling that [ is a constant we see that

11



1.2 Fluid equations

this expression is equivalent to

Du 1
. (2= 4+-VP—_g)| dV =0 1.2.8
/Vp (Dt+p g) , (1.2.8)

which we note holds for any volume V' and any direction [, so that

Du 1
— =—-VP 1.2.9
for VPt (1.2.9)

holds throughout the fluid. This is Euler’s equation of motion, and from it we derive Bernoulli’s
equation. For a general function f the chain rule for partial differentiation gives

Df _9f  0fDx  0fDy  of D:

= - 1.2.1
Dt ot Ox Dt OyDt 0z Dt’ ( 0)

but, since Dx/Dt, Dy/Dt and Dz/Dt are simply the components of the vector velocity u (z

points vertically upwards in our chosen coordinate system), we can rewrite it as

Df _of
=L . 1.2.11
Dt o TVt (1.2.11)
or, when applied to the velocity,
Du  Ou
— = — . . 1.2.12
DL = Bt +u-Vu ( )

Recalling that the velocity can be written as the gradient of a velocity potential & and using
results from vector calculus we thus have

Du 0

1 2
B = 5(V®) + 5V Ve [P =V x (V x VO). (1.2.13)

But, since ® was introduced under the assumption that flow is irrotational, the last term disap-

pears and using Euler’s equation of motion (1.2.9)) yields

0 1 1
—(V®)+ -V |V® > +-VP - g=0. 1.2.14
5 (Ve + 5V [V + g ( )
But since g = —gVz, where g is the magnitude of g, this can be written as
o 1 P
— - | VO +— =0. 1.2.15
V(G gl veral g (1.2.15)

12



1.2 Fluid equations

Finally, integrating gives the Bernoulli equation,

ob 1 P
4+ 2| VD PP+ = 1.2.1
875+2|V | +p+gz 0 ( 6)

where we have put the arbitrary function of time that arises because of the integration to zero.

(By redefining ® we get the function of time to cancel).

1.2.1 Boundary conditions on the free surface of the fluid
1.2.1.1 The kinematic condition

A kinematic condition matches the normal component of the velocity of the fluid with that of
the particles surrounding it. Let us start by finding the kinematic condition on the free surface.
Consider a new closed surface Sy in the fluid, this time moving with the fluid. The same particles
always form the surface and fluid originally inside Sys remains there. Let S(z,y, z,t) = 0 be the

equation of the surface Sy; then as x, y, z and t vary for each particle on Sjp; we have

DS

Ps_y 1.2.17
Dr ( )

for any surface Sjp; which we may choose. Let Sjs be the free surface, which we will define as

z = n(z,y,t) so that our equation for Sy, is
S =n(x,y,t) —z=0. (1.2.18)

Using (|1.2.11)) to rewrite (1.2.17]) for our newly defined Sy, we have

on Dz
Z . -~ = 1.2.1
ot +u-Vn Dt 0 ( 9)

or, in component form,

gy 020y  00on 9D

il -0 _ 7= — 1.2.2
ot T oror Tagay " ox O FT @) (1.2.20)

which we call the kinematic free surface condition.

1.2.1.2 The dynamic condition

The so called dynamic condition applies on the free surface and is derived by assuming there

is no motion in the air and that pressure there is constant, which we can take to be zero for

13



1.3  Equations of motion for a constrained floating body

simplicity. Hence from Bernoulli’s equation we have

0v 1
5 + 3 | VO ]2 +gn=0 on z=n(x,y,t). (1.2.21)

1.2.2 The kinematic condition on the bed

When the velocity acting normal to the fluid is prescribed, it is more useful to give the kinematic
condition in the form that we do here. We note that when there is an impermeable sea (or river)
bed with local fluid depth h(zx,y), there must be no flow normal to the bed (so that the normal
velocity must be zero), hence giving us a bed condition of

00

o= 0 on z=—h(x,y), (1.2.22)

where n is a coordinate measured normal to the bed.

1.2.3 The linearised equations

By requiring that the amplitude of the fluid motion is small compared with the wavelength
throughout the domain, we can apply the free surface boundary conditions on z = 0 and neglect

products, giving us

an 09
el el = 1.2.2
5% = 95 on 2z2=0 ( 3)
d
and %—t +gn=20 on z =0, (1.2.24)

as the kinematic and dynamic condition respectively. Differentiating ([1.2.24)) with respect to ¢
and substituting in (|1.2.23)) generates

0%d 0P
= = 1.2.2
52 —I—Qaz 0 on z=0, ( 5)

the linearized free surface condition for ®.

1.3 Equations of motion for a constrained floating body

As in the case of the boundary conditions on the fluid surface there are kinematic and dynamic
conditions on the wetted body surface, S¢o. Specifically we're interested in so called heave
motion, that is motion parallel to the vertical z-axis only, and so after initially considering 6

modes of movement we restrict our attention appropriately.

14



1.3  Equations of motion for a constrained floating body

1.3.1 The kinematic condition

Let the instantaneous position of S¢ be described by z = f(x,y,t) so that S¢ = f(x,y,t)—z = 0.

Following the same logic as the kinematic condition for the free surface we have

L) B
Oz Oz + 8y ay T ot Oz on Z—f(fE,y,t), (131)

which is the kinematic condition on S¢ which we now need to linearize. Expanding f in powers
of the perturbation parameter ¢ = kA (k is the wavenumber and A typically describes the
amplitude of the wave, so that kA is its non-dimensional steepness: by considering kA to be

small we are considering a small amplitude motion of an oscillating body) yields
= f(O)(xvy) + Ef(l)(‘r’yvt) + 62f(1)(l’,y,t) +oey (132)

where f(©) (z,y) corresponds to the rest position of S¢, denoted Sg) ). Similarly, we can expand

the velocity potential (but we don’t require a rest position to be built into this expansion)
®=edV) + 2@ ... (1.3.3)
Now, to the first order ([1.3.1)) becomes

oM £ 4 o) (0 4 fU =00 on 2= Oz y). (1.3.4)

z

We know f(© and so we need to find f(V) so that we can write ft(l). Let the centre of rotation

of the rigid body be @, which has moving coordinate
Xt)=XO 4+ exW)y+ XA (@) +... with X = (X,Y,2). (1.3.5)

X ) is the rest position of Q, independent of ¢. (Note that @ need not coincide with the centre of
mass of the body). Denote the coordinate system fixed with the body & (such that & = & when
the body is at rest). Denote the angular displacement of the body as 60(1)(75) (with components
ea, € and ey about axes parallel to z, y and z respectively).

The two coordinate systems are related to the first order by

z==24¢XY +00 x (- X))+ 0(). (1.3.6)
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1.3  Equations of motion for a constrained floating body

Rearranging and rewriting in component form we thus have

i=x—e XV 4 8(z—Z2O0) -~y —vO), (1.3.7a)
J=y— €YD 4 ~@—X0)—a(z - 20, (1.3.7b)
f=z—eZW +a(y—-Y®) - gz - xO, (1.3.7c)

Now, by definition, & = = when the body is at rest, therefore from z = f(©) (z,y) we must have

s = Oz, ). (1.3.8)

Putting (|1.3.7al - [1.3.7¢) into (1.3.8) and using a Taylor series expansion yields

2= fO,y) +e {—féo) [X(l) +B8(z—=20) —y(y - Y(O))}
))

|

+ [ZU) Faly—YO) Bz - X(O))} } . (1.3.9)

— ;0) {y(l) +y(z = XO) — q(z— 20

Comparing (|1.3.9) with (1.3.2)) we see that f(!) can be equated with the curly brackets of (1.3.9)

and so differentiating with respect to ¢ yields

1 = {10 [X0 4 Bz = 20) —uly - YO))
—f0 [V + (e = XO) — a2 - 20)]

+ [Zt(l) oy —YO) — Byz — X(O))] } _ (1.3.10)

Putting (1.3.10)) into ([1.3.4]) yields the first-order kinematic condition. This rather cumbersome

expression can be written more neatly as

e
on

—xW . oM. {(w ~xO) « n} , (1.3.11)

where

(=1/2)

"o [1 (1) + (fZSO)ﬂ (70, —5.1) (1.3.12)

is the unit normal pointing out of the fluid and into the body.
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1.3  Equations of motion for a constrained floating body

1.3.2 The dynamic condition: conservation of linear momentum

Let M be the mass of the entire floating body (part of which may be above the free surface)

and x¢(t) be the position of the centre of mass. Conservation of linear momentum requires that

Ma“(t)y = || PrndS - Mges +F, (1.3.13)
Sc

where P is the magnitude of the pressure on the wetted body surface S¢, the second term is
the effect on the body due to gravity and the third term denotes a constraining force from any

external support. F can be expanded as a static and a dynamic part:
F(t) =FO + FD(t) + - - (1.3.14)
Equation applies to x¢(t) so that
x¢ = F° te [X(l) +0W x (z° — X(‘J))} +0(e?), (1.3.15)
and so the left hand side of can be written as
Mac(t)y = eM [X{) + 61 x (2° = X0)| +0(e). (1.3.16)

Now we will deal with the right hand side of (|1.3.13]). We make use of the linearized Bernoulli

equation

P=—pgf —ep®) +0(2) (1.3.17)
to write the first term as
J] (—pgf - epfbgl)) n dS = —pg J] fmdS—e If p@il)n dS + O(e?) (1.3.18)
Sc Sc Sg))

where Séo ) is an approximation of So. We must now consider the first term — the buoyancy

term — of (|1.3.18]). We have

—pg jf fnz dS = —pg ff (f(o) + ef(l)) dxdy (1.3.19)
Sc Sa

(where ng is the component of the normal in the z-direction) as the vertical component, because
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1.3  Equations of motion for a constrained floating body

on the instantaneous body surface S¢
n dS = (—fy, — fy, 1)dady

and the domain of integration S¢c may be replaced by the part of the water surface cut out by
Sc, that is S4. Observe that S differs from its equilibrium counterpart 51(4) by O(e) and since
f© =0 in the equilibrium free surface (because z = 0 on the free surface and the body is at

rest / in equilibrium), the surface S4 may be replaced by Sgo) with an error of order O(€?). So

(1.3.19)) becomes

—pg ff fns dS = —pg JI FOdzdy — €pg ff D dzdy, (1.3.20)

$© $©

where, of course, f(1) is known (from the derivation of the kinematic condition). Now note that

using partial integration we have

[[ £ dady = 7{ [f(o)r+ dy, (1.3.21)

X —
5O

where I is the edge of S (O), that is the water line, and x4 and x_ refer to points on I' intersected

by a line of constant y. Now, since f(© = 0 on T the right hand side of ((1.3.21)) vanishes;

similarly HS@) flgo)d:cdy = 0 so that finally we have from (|1.3.19
A

—pyg H fns dS = —pg H FOdzdy
Sc

s¢)

~evg || {Z(l) +aly = YY) —pa - X(O))] dady (1.3.22)
s

Combining (|1.3.16]) and (|1.3.18]) with (1.3.13]) yields

eM [ X[ +6l)) x (a¢ - XO)]
_ _pgf“ V4 efV)nds

—e jj p®n dS — Mges + FO + FV (1) + O(e2). (1.3.23)
S
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1.4 Form of solutions

At the zeroth order, upon substituting (|1.3.22)) we have for the third component
Mg =pgv® + F, (1.3.24)

which is just Archimedes’ Law with V(©) = HS(O) f©dzdy being the submerged volume. At
A

order O(e) the third component of the linearized momentum equation is

M [ 28 + auly = Y0) = Bu(x — X0
=—p fj <I>£1)n3 dS + Fgl)(t) —pg [15404 ~I{'B+ Z(I)A(O)} (1.3.25)

)
SC

where A© is the area of 5540), I = HS(O) (z — X)) dzdy and I3 = HS(0> (y — YO)dzdy. This
A A

third component represents motion in the heave direction.

1.4 Form of solutions

For the main part of this thesis, we will be assuming that the fluid motion is time-harmonic (in
chapter [, where we use the method of multiple scales, we assume that it is the fast-time motion
that is time-harmonic), where the frequency is prescribed. For radian frequency w, we remove

time from the problem by writing

B(x,y, 2,t) = Re{(x, y, 2)e "}, (14.1)

where ¢ is a complex-valued potential. Substitution of (1.4.1]) into (1.2.6) shows that ¢ also

satisfies Laplace’s equation,
Vip = 0. (1.4.2)

In terms of ¢ the linearised free surface condition is found to be

99

5 =K¢ on z=0, (1.4.3)
where K = w?/g, with bed condition
g—z =0 on z=—h(zy). (1.4.4)
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1.4 Form of solutions

Finally we observe that ¢ must also satisfy boundary conditions on any structures that are
being considered as part of a problem (which we have just looked at in the previous section) as
well as a radiation condition, which states that radiated and scattered waves propagate outwards,

away from the structure.

1.4.1 Decomposing the velocity potential

A problem can be decomposed into a scattering problem (where the structure is held fixed)
and a radiation problem (where the structure is forced to oscillate in the absence of an incident
wave). The solution to a scattering problem maybe decomposed into an incident wave train and
the waves caused by diffraction. We now look at how one would attempt to solve a problem by
decoupling it.

Consider a typical floating object problem, where the object has been restricted to move in

the direction of the z-axis only. The governing equation of motion for the heave direction of the

structure is written, from (|1.3.25)), as

M [U3<1>] = —p [[ ®ing dS +F5(t) — pg24, (1.4.5)

t
s

where Uél) is the velocity of the structure in the z-direction. We remove time from the problem,

as just discussed, by writing
Us = Ref{uze “'}; & = Re{ge “!};  Z =Re{Ce “'}; F3=Re{Fe ™}  (1.4.6)
and adjusting the governing equations for ® accordingly so that (|1.4.5) becomes

(Me? = pgAyus +w?p ([ & ng dS —iwF =0. (1.4.7)
sy

By the linear superposition principle, the solutions of two linear problems can be added together

to calculate a total solution to both problems and so we may write

¢ = ¢g + uzdr, (1.4.8)

where ¢g is the part of the solution that is scattered and ¢ is the part of the solution that is
radiated. Note that us is included here so that we may work with unit velocity in the radiation

potential. Recall from the previous section that Fs originates from constraining forces that may
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1.4 Form of solutions

arise. An idealised force of this nature, in the direction of the Z-axis, will have the form

F3 = —kZ — \Us, (1.4.9)
where & is a spring constant, and A is a damping constant. Because ( = —u3/iw we have
K
F = —Uus — )\’LL3. (1.4.10)
iw

Putting (1.4.8) and (1.4.10]) into (|1.4.7) we thus find

(Mw? — pgA)us + w?p H ¢ps n3 dS
s

+ uzw?p [[ ¢r ng dS —iwF = 0. (1.4.11)
59

Some of the literature re-writes this expression using the exciting force

X3 =iwp ff o5 n3 dS, (1.4.12)
S

as well as the added mass and the damping coefficient

azs = pRej qu ns ds (1.4.13)
S

b3z = pwlm ff or ng dS (1.4.14)

s

respectively, leaving us with
9 i i\ .

pgA+ Kk —w” | ass+ —bss+ — + M || usg = —iwXs. (1.4.15)

w w

Now to find ¢ we note that the field equations ([1.4.241.4.4]) can each be written both in terms of
¢s and ¢r. To solve for ¢pg we take the appropriate field equations with the scattering boundary

condition

9¢s
on

=0 on the scatterer’s surface. (1.4.16)

whilst to solve for ¢ we take the kinematic condition as derived in the previous section (except
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1.4 Form of solutions

now we are looking at movement of unit velocity in the z direction only) to write

9or _

Then we can put our two expressions for ¢g and ¢g into ((1.4.11) and solve for ug leaving us
with, finally, the solution for ¢ as given in (|1.4.8].
1.4.2 Removing the depth dependence

The governing equations for a fluid of constant depth (assuming time-harmonic motion) are as
given by (|1.4.2H1.4.4)), except that the bed condition is applied on z = —h, where h is a constant.
We can solve (1.4.2]) by separating the variables in Cartesian coordiates. Introducing ¢ as a

function of z and y and H as a function of z we write

(z,y,2) = p(z,y)H(2).

Substituting this into the governing equations yields

H" A A
—= = Prz TP i the fluid, (1.4.18a)
H =0 on z=—h, (1.4.18b)
H =KH on z=0, (1.4.18c¢)

where the dependence on x, y and z have been dropped for ease of notation and ’ denotes the
derivative of a function with respect to its argument. In order for (|1.4.18a)) to be true, both
sides must be equal to a constant, which we will label —k2. The ordinary differential equation

for H is then
H" —k*H =0, (1.4.19)

which, when solved with ((1.4.18b)), gives

z

H = cosh k:h(h

+1) (1.4.20)

where the constant has been ignored. Putting ¢ = $H back into (1.4.2), we see that ¢ satisfies
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1.4 Form of solutions

the Helmholtz equation
Vi + k2o =0. (1.4.21)

Furthermore, taking ¢ = ¢H with (|1.4.20)) substituted in, and expanding in terms of the pa-
rameter kh and equating powers of kh we see that the Helmholtz equation governs flow only at

leading orders; beyond that a z dependence is brought back in.
By using (|1.4.20)) with the free surface condition (|1.4.18¢)) we find the relation

K = ktanhkh, (1.4.22)

which is most commonly known as the dispersion relation. This dispersion allows the free

surface condition to also be expanded in powers of kh, and hence once can observe that, to

96
leading orders, the free surface condition is taken to be 9 _ 0on z=0.

0z
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Chapter 2

Infinite array: method of matched

asymptotic expansions

Note: this chapter is based on the publication [32]

2.1 Introduction

The frequency-domain problem of water-wave propagation through a periodically arranged in-
finite array of structures is solved using the method of matched asymptotic expansions for both
shallow and deep water. Solutions are obtained under the principle assumptions that the wave-
length is much larger than a characteristic dimension of the structure, and that the separation
distance between structures is of the same order of magnitude as the wavelength. This last
assumption allows expressions to be obtained for the width of local band gaps, in contrast to
homogenisation schemes (for example [27]) that are valid only for frequencies below those for
which band gaps appear in these problems. The assumptions adopted correspond to those made
in previous work on two-dimensional problems in acoustics [19, 28] and elasticity [29]. Here,
additional simplifying assumptions are made on the depth of the fluid and two cases are con-
sidered. First of all, the water is assumed to be shallow so that the depth is much smaller than
the wavelength, and secondly the water is assumed to be infinitely deep. In part, these cases are
investigated as explicit approximations are relatively easy to obtain. However, it is anticipated
that the results for deep wave are qualitatively similar to those that would be obtained for water
whose depth is of the same order of the wavelength, but is large relative to the dimensions of

the structure.
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2.1 Introduction

—2a——|

— Q, —

(b)

Figure 2.1 (a) Coordinate systems on z = 0, and (b) a vertical section of the fluid domain for a

surface-piercing circular cylinder.

The problems studied here may be solved using numerical methods, for example by using a
boundary-element method based on a periodic Green’s function, or by using multiple-scattering
techniques. However, the principle aim here is to obtain simple expressions that show explicitly
how the frequency of waves with specified wavenumber and propagation direction is affected
by the geometry of the structure and the lattice, and by the stiffness of the moorings in the
case of a floating structure. For simplicity, we consider only vertically axisymmetric structures
constrained to move in the vertical direction. Our asymptotic methods also allow us to describe
explicitly the appearance of local band gaps, and hence see how they are affected by various
physical parameters. Our method yields local approximations in wave-number space, and hence
cannot be straightforwardly used to construct complete band diagrams. The reader is referred
to the introduction of this thesis for details of a wider range of references that look at arrays.

The plan of this chapter is as follows. The problem is formulated in §[2:2] and the matching
and the non-dimensionalisation of the equations are both discussed. The detailed matching is
described for both fixed and floating structures in § for shallow water, and in § for deep
water. The relation between the problems for fixed and floating structures is discussed in §

and a selection of explicit results for the frequencies of propagating waves are presented and

discussed in § [2.6]
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2.2 Formulation

2.2 Formulation

Vertically axisymmetric structures C; with wetted surfaces S¢; are distributed uniformly on an
infinite horizontal lattice A in water of depth h; the length scale for the lattice periodicity is
denoted by L. A horizontal plane is illustrated in figure for the particular case of a square
lattice. We use Cartesian coordinates (x,y, z), with z directed vertically upwards and origin O in
the mean free surface at a chosen lattice point. Global polar coordinates (r,#) in the horizontal
plane are also used. Associated with each cylinder are local horizontal polar coordinates (r;, 6;)
with origin O; (so that dropping the j indicates use of the global coordinates) located, relative

to O, at the lattice points given by the lattice vectors
Rj =niaj + neas, mni,N9 € 7,

for given linearly independent vectors a1 and as.

All structures in the lattice are identical, and when held fixed may be either surface-piercing
or bottom-mounted. In the case that the structures are allowed to float freely, they are assumed
to be surface piercing and moored using identical systems of springs and dampers. Some of
the numerical results presented later are for the particular case of a lattice of truncated vertical
cylinders in shallow water, and the notations used for this geometry are illustrated in figure[2.1b
If surface-piercing, cylinder j occupies r; < a, —d < z < 0, and we define [ = h —d to be the gap
between the ocean bed and the bottom of the cylinder. For bottom-mounted circular cylinders,
the wetted height is still denoted by d and [ is the gap between the free surface and the top of
the cylinder. More generally, a is used to denote the characteristic size of the structure, which,
for a surface-piercing structure, is specifically chosen as the radius of the water-plane area.

The fluid is assumed to be inviscid and incompressible and the fluid motion to be irrotational.
The linearised theory of water waves is used throughout so that time-harmonic motions with
angular frequency w may be described by a velocity potential Re[¢(x, y, 2) e 7“!], where ¢ is time.

For all lattice vectors R, solutions are sought that satisfy the so-called Bloch condition
o(r+ Ry) = e Fog(r), (2:2.1)

where r = (z,y)7, and B = (q1,¢2)", q1,¢2 € R, is a prescribed vector. The Bloch condition
prescribes a phase relationship between the potential values at equivalent points in different cells
of the lattice. Given a 3, we seek the frequencies w that allow non-trivial solutions for ¢.

In addition to the Bloch condition, the complex-valued potential ¢ satisfies the usual equa-
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2.2 Formulation

tions of the linearised theory of water waves [4, Chapter 8]. Thus,

V2 =0 within the fluid domain D, (2.2.2)
and the linearised condition

06 w?

— — —¢ =0 on the free surface Sp (2.2.3)

0z g

(g is the acceleration due to gravity) and, for water of constant finite depth,

9¢

5 = 0 on the bed Sp, (2.2.4)
while for deep water we require that
IVo| =0 as z— —oo. (2.2.5)

Here we restrict attention to vertically axisymmetric structures that are either fixed, or con-
strained to move in the vertical (heave) direction. Hence, on the surface Sc of the particular

structure C located at the chosen origin of coordinates

0
87:3 = usns, (2.2.6)

where u3 is the complex amplitude of the structure’s vertical velocity, and the coordinate n is
measured normal to S¢ and directed out of the fluid (ng is the component of the unit normal in

the z direction). The equation of motion for the structure C' (assumed to be surface-piercing) is
[ 207 4w — 2 _ 2
w’M +iwX — (pgma® + k)] ug = —pw ¢ngds, (2.2.7)
Sc

where M is the mass, p is the fluid density, x and A are respectively the spring and damper
constants for the moorings, and s is surface area. The boundary condition and equation of
motion for other structures in the lattice are recovered by adjusting the phase of each structure’s

velocity to ensure that the Bloch condition (2.2.1)) is satisfied.
In the absence of structures, the Bloch condition (2.2.1)), together with (2.2.2)) and (2.2.3]) as
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2.2 Formulation

well as the appropriate bed condition, are satisfied by plane waves

BT cosh k(z+ h) for finite-depth water;
bg(r) = (2.2.8)

2T
elBaTehz for deep water,

where the wavenumber k is the positive real root of the dispersion relation w? = gk tanh kh,
B, =B+ Ky, (2.2.9)

and each K, = 2m(m1by+mabs), for mi, my € Z with ¢ representing each ordered pair (my, m2),
is a reciprocal lattice vector [30, Appendix B]. The vectors {by, by} satisfy alb; = 4;; for
1,7 = 1,2, so that KqTRj = 27p, p € Z, for any lattice vector R;. The forms 1' satisfy

Laplace’s equation (2.2.2)) provided
k* = 53 where (3, = |B,]. (2.2.10)

For a given 3 there may be multiple vectors 3, that yield the same |3,| and the number of such
vectors is denoted by ). The solutions described later are perturbations of the above quasi-
periodic plane waves that exist in the absence of the structures: we will be choosing a frequency
and perturbing from the frequencies associated with no structures.

Solutions in the presence of scatterers are obtained by the method of matched asymptotic
expansions under the assumption that a characteristic length scale b for the flow around the
structure is much smaller than the wavelength 27/k, so that ¢ = kb < 1. In addition, it
is assumed that the wavelength is of the same order of magnitude as the cell size L so that
kL = ord(1). (Here, we follow [33] and use ord to denote ‘strict order’ so that, for example,
kL = ord(1) as € — 0 does not allow kL to be vanishingly small in the limit.) To facilitate
the solution, the fluid domain is split into many inner regions surrounding each structure to
distances r; < k=1, and an outer region at distances rj > b, where b is a length scale for
the inner region (the length b will be chosen differently for the shallow and deep water cases).
Because of the Bloch condition , it is sufficient to match between the outer region and
the inner region containing the global origin O. In particular, the outer expansion of the inner
solution is matched with the inner expansion of the outer solution using the formal matching
principle that is described in [34]. The inner solution ¢ up to terms in ¢l is denoted go(l),

(t,m)

and ¢ is its expansion up to €” after it is written in terms of the outer coordinates kr.

Similarly, the outer solution’s inner expansion qg up to terms in €™ is denoted gzg(m) and qg(mvl)
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2.3 Shallow water

is its expansion up to € after it is written in terms of the inner coordinate r/b. Matching is
enforced by requiring é(m’l) = (™) for each m and [ when both asymptotic forms are expressed
in terms of the same coordinates.

It is convenient to introduce non-dimensional quantities based on the length scale b, chosen
differently for shallow and deep water. Thus, for a wave of amplitude A, all lengths are scaled

by b and other non-dimensional quantities are defined according to the transformations
.A b2
¢ — gfﬂi uz — Awuz, M — pb®M, X\ — &)\, K — pgb’k. (2.2.11)
w w

In particular, this results in a boundary condition

2
b
gj\bf = %u;mg on Sc, (2.2.12)
and an equation of motion
w?b )
7M +iA—-(W+EkK)|uzg=— ff ¢n3dS, (2.2.13)
Sc

where N = n/b, S = s/b*> and the non-dimensional water-plane area W = ma®/b*>. We have
chosen the scalings to study, in particular, the case when the mooring terms are of the same order
of magnitude as the hydrostatic spring. It should be noted that the scaled damping A implicitly
depends upon the frequency, but, nevertheless, it is assumed that A = ord(1) as e — 0. For
both shallow and deep water, three problems are considered: the scattering problem in which
the structures are held fixed (ugz = 0), the radiation problem in which the structures are forced
to oscillate with velocities consistent with the Bloch condition (the cylinders are not in phase;
the motions of different cylinders have a phase difference consistent with the Bloch condition),

and the freely-floating problem in which the structures are free to move in the vertical direction.

2.3 Shallow water

In this section the length scale b for the inner regions, introduced in § is chosen as the
water depth h, and it is assumed that ¢ = kh < 1 so that the water is shallow relative to
the wavelength. The characteristic size a of each structure is taken to be of the same order of
magnitude as the depth, but much smaller than the cell size, so that in addition to the previously
stated assumption kL = ord(1), we have a/h = ord(1) and ka < 1 as € — 0. The vertical length

scale for variations in ¢ is h throughout the fluid domain. However, in the inner regions the
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2.3 Shallow water

horizontal length scale is h, while in the outer region it is k~!. Thus, in terms of the original

dimensional coordinates, suitable scaled inner region coordinates are
X=ua/h, Y=y/h, Z==z/h, R=rj/h,

and the inner potential is (X, Y, Z; €) = ¢(z,y, z), while suitable scaled outer region coordinates
are

¥ =kx, y=ky, Z=z/h, r;-:k:rj,

and the outer potential is ¢(z/,y/, Z;€) = d(z, y, 2).

2.3.1 The scattering problem

We now consider the solution to the scattering problem in which each structure is held fixed. In
the outer region the motion is wave like and, to the level of approximation considered here, the

depth dependence may be separated so that the scattering potential
bs(a' Y, Z) = du(a’,y) coshe(Z + 1), (2.3.1)
where ¢ (2,y) solves the Helmholtz equation
V2 + oy =0, (2.3.2)
and V2 is the horizontal Laplacian in outer coordinates.

2.3.1.1 Outer solution to leading order

Because of the shallow-water assumption, at leading order in the outer region the solution is
independent of Z and is governed by the Bloch condition and the Helmholtz equation (2.3.2)),
and hence may be constructed using the formalism given for the acoustic problem in [19]. Fun-

damental solutions of (2.3.2)) that also satisfy the Bloch condition are

Gn(rla 9) = Z eiﬁTRjHr(Ll) (T;)einej7 n € Z, (233)
RjGA
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2.3 Shallow water

where ) R;eA denotes a sum over the entire lattice. The required general solution of equa-

tion (2.3.2)) has the form

- Z AnGr(r,0), (2.3.4)
n
where ) indicates that the summation is over all integers n. By Graf’s addition theorem [35],

Gn(r',0) = m9+z "oy dp(r)e??, (2.3.5)

where HT(LI) and J, denote respectively Hankel and Bessel functions, and the lattice sums

on=3 " BHDKR), nel (2.3.6)
R;eA
(the prime indicates that R; = 0 is omitted from the sum, and «; is the angle from the z axis to
R; measured in the anti-clockwise sense). The functions G, extend the solution for scattering
by a single structure by weighting outgoing waves with the factor B R o account for phase
differences within the lattice.
For a chosen f3; (see equation , the lattice sums have the form

(1)

Q
Z “";2 =+ ot (2.3.7)

(consider [36, equation 3.16] for — in the notation found there — kr close to f,,r), where 0'( )

(2)

and o0y, are analytic functions of £ within some neighbourhoods of k = +/3,. Solutions in the

presence of structures are found by perturbing k£ away from these values. Note that

1 gin+1 el7q

y A e
= A (2.3.8)

g

(A is an area of a single cell, which would cancel with L? for a square cell, but is kept for

generality and consistency with other literature) for angles 7, defined through

COS PT,
By = By €pg = ( p q) (2.3.9)

sin p7y
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2.3 Shallow water

As in [19], we write
(k* — B2)L* = €A, (2.3.10)

where A, = ord(1) as € — 0 (the appearance of €2 in equation (2.3.10)) can be demonstrated as
part of the matching, but for simplicity it is included here from the outset). To avoid € appearing

in any denominator, we now define
gn(1,0) = EGn(r',0) = gV (', 0) + €22 (¢, 0) (2.3.11)

where [19, equation 23]

Q ;W
(1) On,q 7“ cos(0—7q)
A0 = (13 R , (2312)

which is a combination of plane waves propagating in the directions 74, ¢ = 1,2,...Q. The
leading-order outer solution is expressed in terms of the phased singular solutions (2.3.11)) so
that

=> a5 g, 0), (2.3.13)
n
for constants a3, which has an inner expansion (in terms of inner coordinates)
2(0,1) s 2 Unt)z T (cost
) — n ) :
dg ) = an(-1)"> A [1 +ieRe], (sin&)] . (2.3.14)

This shows that the primary effect of the outer solution is to ‘drive’ a flow past each of the

cylinders.
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2.3 Shallow water

2.3.1.2 Inner solution to leading order

The complete inner problem is

Vips =0 in D, (2.3.15a)
a%gpgze(tanhe)ws on Sp, (2.3.15b)
%(pszo on Sp, (2.3.15¢)
8?\]905:0 on Sc, (2.3.15d)

where D; denotes the fluid domain within the inner region, and N is the inner normal coordinate
directed out of the fluid. To facilitate the construction of the inner solution we introduce inner

eigenfunctions of the form

cosnb
sin nd

Fo(R,0,7) = [R" + xn(R, Z)]< ) n=1,23 ..., (2.3.16)

which are harmonic throughout the inner region, have zero normal derivative on Sp U Sp U S¢

and, because of the assumption that the structure is vertically axisymmetric, have the property
Xn(R,Z) ~D,R™" as R — oo, (2.3.17)

where ©,, is a constant determined by the shape of the structures.

The form of q@éo’l) in equation ([2.3.14]) suggests an inner development of the form

1
oW = o + ef. (2.3.18)

(Formally, we should allow for possible intermediate terms in both the inner and outer solutions;
for example, a term should be included here between ngS and ep?. However, such terms would
not affect the final results and hence are omitted to simplify the presentation.) The leading-order
inner solution is harmonic, satisfies homogeneous boundary conditions and, in order to match

with the outer solution, tends to a constant as R — oo; thus
05 =C5, (2.3.19)

for some constant Cj. The term 7 is also an eigenfunction of the inner problem satisfying a
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2.3 Shallow water

zero normal derivative on Z = 0, and to match with qgg)’l) it is required that

o8 = CF + (BT R+ xu(R. 2))] ( 9) , (2.3.20)

sin 6

for a scalar constant C’f and vector constant Els and, hence, the outer expansion of the inner

solution required to match with (2.3.14]) is

(10) _ -8 S\T 5 ((cOS 0
oV =CF + e«(EY)'R <Sin9> : (2.3.21)

2.3.1.3 Leading order matching

When expressed in terms of the outer coordinates, the most singular term at ord(e?) in the outer

1) .

expansion of ¢g’ is in 1/r’, and thus there can be no terms more singular than this at ord(e?)

in the outer solution so that

ad =0 for |n|>2. (2.3.22)

(1,0) ¢(0 1)

Application of the matching principle pg™" = then gives

cs=Y aS(-1y" EQ: Thg (2.3.23)
s A 3.

n=-—1 q=1

and

Q
. "N O,
(BY) =i ) an(-)" ) e, (2.3.24)
q

At this point there are insufficient equations to determine the unknowns, namely C’g , a° and

n

Ef , and hence we must continue to a higher order.

2.3.1.4 Outer solution continued

Bearing in mind the Z dependence in the outer form ([2.3.1)), we continue the outer solution to €

as

1
6P =3 of [(1 + %é(z + 1)2> gl (', 0) + 4D (', 0)
n=-1 (2.3.25)

—i—ez g M 0) +622cngn . 0),
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2.3 Shallow water

for new constants by and c¢. With the aid of equations ([2.3.8) and (2.3.22)), this has an inner

expansion (again, ignoring possible intermediate terms)

Q (1)

22) n 0', cos 6 _1 2p2 2 2} T cos 20
Z ay ¢ (=1)"y A [1+16Relq <sm9> (ER = ER e (o

n=-—1 q=1

2% ) eR
N

(2.3.26)

2.3.1.5 Inner solution continued and final matching

The inner expansion ([2.3.26)) suggests that the inner region solution should be continued as

90(52) = CF 4 eof + loge sy + 205 (2.3.27)
where 7 is given in equation (2.3.20)) and, in order to match with the outer solution, 3, = C),
a constant. The inner region problem for cpg is more complex than for lower order inner-region
problems because the free surface condition is no longer homogeneous; the complete problem

for 3 is

V%S‘ =0 in D, (2.3.284)

)

ﬁpg‘ =0 on Sp, (2.3.28¢)

)

angag =0 on Sc. (2.3.28d)
We construct the solution by writing

05 = P34+ O3, (2.3.29)
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2.3 Shallow water

where

1 2
054 =Cf [Z +3 (22 — Rﬂ (2.3.30)

is a particular solution of equations (2.3.28a)—(2.3.28d), and the governing equations for 55 are

Vipep =0 in D, (2.3.31a)
8%9053:0 on Sp, (2.3.31b)
ﬁmB:o on Spg, (2.3.31c)
G?V@gB:_gV@gA on Sc. (2.3.31d)

According to equation (2.3.31d|), the problem for gogB involves a non-zero flow across S¢ and

hence there must be a corresponding non-zero flow to infinity in the inner region. To describe this

flow we introduce a particular solution Q(R, 6, Z) of equations (2.3.31a))—(2.3.31d) that satisfies

Q(R,0,7) = BsylogR+0(1) as R — oo. (2.3.32)

To determine 3250 we use the result that for a potential ¢ that is harmonic throughout a region

D with a boundary 9D, then

9% 45—, (2.3.33)
e

Equation (2.3.33)) applied to ¢ = Q) and with D = D;, the inner region of the fluid domain,
yields

1 o)
S _ S
By =5 Jf S P2ads (2.3.34)
C

The last integral is evaluated by a further application of equation ([2.3.33]), but with D taken as

the interior of the structure, and this gives

1
B = —WCS 2.3.35
20 m 0> ( )
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2.3 Shallow water

where W is the non-dimensional water-plane area; for a surface-piercing structure W = ma?/h?,

otherwise W = 0. With inner eigenfunctions included as required to match with equation ([2.3.26)),

(2.3.36)

sin 0

2
v cos 8
w5p = QUR,0,Z) + Co+ Y _(E5,)" [R” + xu(R, Z)] (

v=1
The outer expansion of the inner solution is therefore

2,2 _ cos 0
P2 = Cf + e [Cf+(Ef)T (R+D,R™) (Sme)] +€*log e C5)

1 R? 2
+ €2 {Cﬁq [Z +3 (22 — 2)] + Byylog R+ Cy + > (E5,)"R”

v=1

(2,2) _ 2(2,2)

and application of the matching principle @™ = ¢¢*™ gives, in particular,
2i
BS — g5
20 = %0
and
g 2
D1(EY)" = —[aa(1, =) — ar(1,1)]
It follows from equations ([2.3.35)) and (2.3.38|) that
iWw
ag = —ITCOS,

and then, by defining

s — L Wy
A T

+ 21”}31(Ef)T61q] . ¢=1,2,...,Q,

) } (2.3.37)

(2.3.38)

(2.3.39)

(2.3.40)

(2.3.41)

and using equation ([2.3.8)), equations ([2.3.23|) and (2.3.24)) may be written as respectively

and

(2.3.42)

(2.3.43)
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2.3 Shallow water

Post multiplying (2.3.43) by e1,, p=1,2,...,Q, and combining the result with (2.3.42) to form
UpS we get, with the aid of equation ([2.3.9)),

Q 2

L
Z [5qup T (27D cos(tg — 1p) — W) Ugf =0, p=12,...Q. (2.3.44)
q=1

Given a Bloch wave vector 3, equation (|2.3.44)) is an eigenvalue problem for the allowable values
of the wavenumber k, which appears in each A,; see equation (2.3.10)).

2.3.2 The radiation problem

In the radiation problem the structure S¢ is forced to oscillate with a unit velocity and other
structures oscillate with velocities consistent with the Bloch condition. In non-dimensional

coordinates, the complete problem for the inner region is

Vippr =0 in D; (2.3.45a)

8%(,03 = ¢(tanhe) pgp on Sp, (2.3.45b)
;ZQDR =0 on Sp, (2.3.45¢)

a?vcpg =ng on Sc. (2.3.45d)

The presence of a non-homogeneous boundary condition on the structure means it is more
natural for the inner region solution to guide the form of the solution. The non-homogeneity
is at ord(1) and leads to a source-like term in the inner solution at ord(1l), which must be
matched with a similar term in the outer solution contained within the outer function 982) (r',0)

introduced in equation ([2.3.11). Because of the accompanying term g(()l)(r’ ,0)/€?, this means

that the inner solution actually begins with a term in 1/€2.

2.3.2.1 Outer solution

The outer solution for the radiation problem is constructed in a very similar way to that for the

scattering problem. Thus, the outer radiation potential is
br(@' ', Z) = (', y) coshe(Z + 1). (2.3.46)
where ¢ (a',y) satisfies the Bloch condition (2.2.1)) and the two-dimensional Helmholtz equa-

tion (2.3.2)). In terms of the fundamental solutions introduced in equation (2.3.11)), and guided
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2.3 Shallow water

by the structure of the scattering solution (so that some details of the matching are omitted)
and the fact that, as noted above, the leading-order inner solution contains terms at ord(1/€?),

the outer solution up to terms of ord(1) is written
R

o9 =3 {tg [(1 - %ez(z—i- 1)2> B, 0) + € (2)(7”’,«9)] oo gV, 0) + ﬁP(r’,H)}

n

— Z { (“ + L + o %af(Z + 1)2) oD, 0) + alfg® (1, 9)} 7 (2.3.47)

where af, b® and ¢! are constants which are determined as part of the matching process. A

similar argument to that used in the scattering solution gives
a =0 for |n|>2. (2.3.48)

The inner expansion of this outer solution is

e =t o (2.3.49)
e, ()] - ek S ot ()]

B s T 2 1q By un N T
+zn:cn(—1) mZ::l A, +5(Z+1) gla (1) q; A

2.3.2.2 Inner solution

The inner expansion ([2.3.49)) of the outer solution requires an inner solution in the form

©0) _ 1 1
PR 29002 + 8001 + log e p(n + ©0 (2.3.50)
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2.3 Shallow water

where goORZ and goé% are both constants which we denote by C(% and C’é% respectively and cpé%l has

the same form as cpf as given in ([2.3.20). The problem for <p depends on gooz and is

Viplt=0 in D, (2.3.51a)
0
8Z§00 002 on SF, (2351b)
0
0
8—N<,pg‘ =n3 on Sc. (2.3.51d)
We construct a solution by writing
0t = b + Pbs, (2.3.52)
where
R2
oty = Ch [Z + = <22 5 )] (2.3.53)

is a particular solution of equations ([2.3.51al)—(2.3.51c]). Similar arguments to those used for the

construction of cpr in equation (|2.3.36|) give

v cos vl
v = R, 0,7) + Cff + Z: E{)" R + xu(R, Z)] (Sin ,,9> : (2.3.54)
where now
Q(R,0,7) = BltlogR+0(1) as R — oo (2.3.55)
and
1
Bft=_—w(cf-1). (2.3.56)
27
The outer expansion of gog) is
cos 6
‘ngo {002}+ {001+(E DT [R+D1R7 <Sm0>}+logeBé%

(2.3.57)
R? 2 0
+cl [Z + <22 - 2)] +Bfllog R+ C} + Y (EE) R (C.OSV ) .

sin 0
v=1
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2.3 Shallow water

2.3.2.3 Matching

00) _ q;gg,o)

Application of the matching principle cpg% gives, in particular,

1 Q 1)
n On,
Ci=>Y_ af(-1) ZA—‘I (2.3.58)
n=-—1 qg=1 q
2i . .
Di(Er))" = — [af(1,-0) — o' (1, )], (2.3.59)
1 o 1)
(Ef)" =1 af(-1)" ) AL’qqequ, (2.3.60)
n—=— q=1
R g2
By = ag —. (2.3.61)
Y
By defining
1
Ugt = = [2B3 +2i01(Bf) er], ¢=1.2....Q, (2:3.62)
q

equations (2.3.58) and (2.3.60) may be written as

R nL? < R
Clh=— » vl (2.3.63)
q=1
(ER Z el (2.3.64)
=1

Post multiplying (2.3.64) by e, for p = 1,2,...Q, and combining the result with (2.3.63) to
form Uf we get, with the aid of (2.3.56)),

Q 12
w

E [5qup + = (21D cos(ry —7p) — W) | UF = ——, p=1,2,...,Q, (2.3.65)
T

q=1

which determines the Uf when 3 and k are given.

2.3.3 Freely-floating structures

Under the shallow-water approximation

Wi Wwih

g g

=€ [1+0(®)] as e=kh—0 (2.3.66)
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2.3 Shallow water

and, to a first approximation, the frequency is proportional to the wavenumber. For a freely-

floating structure the first approximation to the body boundary condition (2.2.12)) is

0
%ZGQ’LLgng on Sc, (2.3.67)

where for this problem we drop the superscript R. This modifies equation ([2.3.56)) to

1

Bo == %W (002 - EZU3) s (2368)
and hence the system ([2.3.65)) becomes
Q 2 2
L W
3 [5qu,, + = (27D cos(r — ) = W)| Uy = — ;“3, p=12....Q.  (2.3.69)
q=1

The leading order inner region solution is

C
o) = ~02

ol (2.3.70)

which, by an application of equation (2.3.33) over the interior of S¢, gives a leading-order
approximation to the integral term in the equation of motion (2.2.13))

ﬂ @n ds = @ ﬂ 2248 = @W (2.3.71)

Thus, dropping the inertia term, which is of ord(e?) relative to the hydrostatic and mooring

terms, from equation (2.2.13]) the solution for ug is

LW XQ: U (2.3.72)
s = AW +k —1i)) ! o

q=1

and therefore equation (2.3.69]) becomes

L? W(k —i))
Z |:5qu17 =+ Z (27’['@1 COS(’Tq — Tp) — M)] Uq = 0, p= ]_7 2, ey Q (2373)

q=1

As in the scattering problem, this is an eigenvalue problem to determine the allowable values
of k. Notice that allowing the spring to be infinitely stiff is equivalent to holding the structures
still, and in the limit as kK — oo the scattering solution is recovered from equation ([2.3.73]).
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2.4 Deep water

2.4 Deep water

In this section the water is assumed to be infinitely deep so that the wavenumber k = w?/g. We
assume that the structures are surface piercing and that each structure has a characteristic size
a and a water-plane area ma®. The length scale b introduced in § is taken to be a, and it
is assumed to be much smaller than the wavelength 27/k so that € = ka < 1. As before, the
wavelength is assumed to be of the same magnitude as the cell size L, so that kL = ord(1) as
e — 0, and hence a/L < 1. In the inner region the motion takes place on the length scale a,
but in the outer region the motion takes place on the length scale k~!. Hence suitable inner

coordinates are

X:.’E/CL, Y:z/a7 Z:,Z/CL7 R:rj/a,

and the inner region potential p(X,Y, Z, €) = ¢(x,y, z), while suitable outer coordinates are
* =kx, v =ky, 2 =kz, 7“; = kr;j,

and the outer potential ¢(z/,1/,2,€) = ¢(x,y,z). Spherical coordinates with origin at O are
used; these are denoted by (R,1,0) = (R,cos”'(Z/R),6) for the inner region, and (7,1, 0) =

(7, cos~1(2'/7),0) for the outer region.

2.4.1 The scattering problem
2.4.1.1 Outer solution to leading order

We first consider the scattering problem in which the structures are held fixed. The outer
solution is constructed with the aid of so-called multipole solutions of the Laplace equation that
satisfy the free-surface condition, and that are singular at an origin in the free surface. From
[3, equation B.75], after scaling and taking the limit as the submergence tends to zero, suitable

multipoles are

1 [P (cos) (=)™ ][OOLL+1
+
0

in Ay
Pmn (17, 2) = 92 (7)m+1 | w—1

( ] ume“Z/Jn(,ur’) dul, Z<0, m>n>0,
m—n)!

where P! denotes the associated Legendre function of the first kind, J,, denotes a Bessel function
of the first kind and f denotes an integration path passing beneath the pole. (The factor of

one half is introduced to compensate for the fact that in the limit of zero submergence two
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2.4 Deep water

singularities meet on the free surface.) For later use we note that [3, equation B.74],

o = Ly S S [
qboo(r,z)—f—i—m;)p!Pp(cosw) pzo( 1)p8V{V!Pv(cosw)}V:p. (2.4.2)

From [3, equation B.63],

pr —1)n [ :
?}(ﬁif}):(; )n)l/ pr Ty () dpy <0, m=n>0, (243)
—i ),

so that the right-hand side of equation ([2.4.1)) may be rewritten as a single integral term. Moving
the path of integration on to the positive imaginary axis, and using properties of Hankel functions

(in particular [35], equation 9.6.4]), we obtain

d;mn = Kmn("",7 Z,) + %WI ez/H7(ll) (T/) (244)

where we have picked up a residue from the pole (given by the second term) and

2(—1)m/?
w(m —n)!

o0 I/m—l—l
/ 1 (veosvz' + sinvz') Ky (vr') dv (m —n) even;
0 14

K (r', ) =

2(_1)(m+n+1)/2 0 m ) , )
/ (veosvz' +sinvz') Kp(vr')dv  (m —n) odd.
0

w(m —mn)! 241

(2.4.5)

Here HT(,,I) denotes the Hankel function of the first kind, and K,, denotes the modified Bessel
function of the second kind.

For the outer region problem, the Bloch condition is satisfied by combining solutions (ngn
that are singular at the lattice points using an appropriate phase function. To this end we define

the functions

Gmn(r/a 0, Z,) = Z eiBTRj $m|n| (’I“;-, Z/)einej, (2‘4‘6)
R]'EA

which are analogous to those in equation (2.3.3]). After splitting off the term corresponding to
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R; = 0 and using the decomposition ([2.4.4)), together with Graf’s addition theorem, we get

~ . ! 2T . . .
Gmn(T'ﬁ, Z/) _ ¢m\n|(rla Z/)em6' + Z elﬁ R; Km|n|(7'§7 Z/)em€]
R;cA

(—1)m , ' (2.4.7)
+ =[] ‘n‘)!wiez én Z(—l)”_pan,pl]p(r')elpe.
P
for
1 n > 0;
&n =
(=)™ n<0
Note that the &, originates from the fact that
7Y (') n>0

gY@ =

g n g (V)
(=D)"Hy (") n<O.
There are two lattice sums in ; the first of the two sums has no singularities as a function
of k (see appendix , while the second, involving o,,—,, is very similar to that appearing in
the shallow-water solution.

As before we will use the ansatz

(k% — B2)L* = €A, (2.4.8)

with A, = ord(1) as e — 0, and this is appropriate for most of the deep-water results presented
here. However, as discussed later in section it does not cover all possible cases. With the

aid of equation ([2.4.8), we may write

A . ;. .
Gmn("Ja 0, Z/) = ¢m\n|(rlv Z/)ean + Z GIBTRj Km\n|(7d;7 Z,)emGj

RjEA
(-1 2oy ) ’ (249
.7 n— n—p,q IAPN!
+ mme &n ;(_1) 8 ; K T Jp(r')e?”,
and it is again convenient to define
Grn (11,0, 2) = EGrn(r',0,2') = g (.0, 2") + 292 (+',0, '), (2.4.10)
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where gr(;})z contains the terms in 0'7(117()1, and gfqu)l all other terms. Note that, from equation [35,

equation 9.1.41],

Q) (.1 / (_1)m ! < 07(1121 ir’ cos(60—7¢)
Gan (17,0, 2") = ————mie” {(—1)" A gir cos(0=Tq) (2.4.11)
(m — [n])! 23,

which is a combination of deep-water plane waves.

The leading order outer region solution is written as
Z a9l (1,0, 2), (2.4.12)

where 2, =322 >, and this has an inner expansion

Q (1)
m+” . Ong cosf
Z amn T ’)!ﬁnm 1 A—q [1 + eRcos1) + ieR sin 1 elq <sin¢9>] . (2.4.13)
q:
2.4.1.2 Inner solution
The complete inner problem is
Vips =0 in D, (2.4.14a)
0
57%5 = cps on Sp, (2.4.14Db)
Vol -0 as Z — —oo, (2.4.14c¢)
0
The form of ggg)’l) in equation ([2.4.13)) suggests an inner solution
1
oW = o + egb (2.4.15)

(as before, possible intermediate terms are omitted to simplify the presentation). Substitution
of ([2.4.15)) into the inner problem shows that gog and cpf are each harmonic functions satisfying

the following:

0 0

5790 =0 on Sp, SnP =0 on Se, (2.4.16)
O =8 on Sk ef=0 on Se. (2.4.17)
YA 1 0 ) ON 1
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2.4 Deep water
To match with the outer region, it is necessary to take
o5 =C5, (2.4.18)
and
of = O+ CB(Z + xo) + (BT [R sinp (ggj g) " Xl} (2.4.19)

where Cﬁq , Cls and Ef are constants, Cﬁq Z is a particular solution introduced to satisfy the

non-homogeneous free-surface condition for cpf , and xo and x; are harmonic functions that

satisfy
0 0 07
7 X0 =0 on Sr, GNO= Ty = s on Sc, (2.4.20)
0 0 0 |5 . cos
97X = 0 on Sp, INXL T TaN |:RSIH1/J <sin9)] on Sc. (2.4.21)

Furthermore, using [37, § 2.9], as R — oo

B@g sinvy (cos 6
X0 ~ 5 and x; ~M 72 <sin9>’ (2.4.22)

for some constant B@g and matrix M that are determined by the shape of the structures.

To calculate the constant Bg we consider the flow due to the potential xo and equate the
flux out of the body surface S¢, to the flux out of the half sphere S, at the outer ‘boundary’
of the inner region. The flux out of S¢ is found by applying equation to the interior of

the structure to get

- B?VXO a4 =~ [[(~n3)ds = [[(-nz)ds =, (2.4.23)
Sp Sp w

where the non-dimensional water-plane area W = 7 (in this calculation, it is important to note
that N is directed into S¢ so that, for consistency, ns is negative on W). The flux out of the

outer boundary of the inner region is

R—00

27 8 BS
H 8NXOdS— lim //2/ [ } 2sinyydf dy) = —27 B (2.4.24)
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and hence
(2.4.25)

When expressed in terms of the outer coordinates, the most singular term at ord(e?) in
(1)

the outer expansion of ¢g’ is in 1/7. Thus, there can be no terms more singular than this at

ord(e?) in the outer solution and, taking in to account the singular terms in émn as shown in

equation (2.4.1]), this gives
aS =0 for m#0. (2.4.26)

The outer expansion of the inner solution

~ cos
U0 = CF + € {COSZ + (ES)T Rsin <SM>} (2.4.27)

which when matched with qg(so’l), given in equation ([2.4.13|), yields

Q Q
05 —asmiS L0a g8 AL Z (2.4.28)
g=1 14 q=1

2.4.1.3 Outer solution continued and final matching

The outer region solution is continued as

¢S = 000 {g(()O) (T 0 z ) te g(()()) 7’ 9 Z } + EZ bmngmn r 797 Z/) + 62 Z CTSnnggzl(r/7 97 Z/)

m,n
(2.4.29)
and then, from equation (2.4.2)), this has an inner expansion
7(21) S (1) cos €
¢ = = agy mz [1+6RCOS¢+1eRsmwelq <sin9>] + I3
(2.4.30)

Because of the properties of xg and x; as R — 0o, we have an inner solution outer expansion

1 ~ cos 6
oD =5 + e {cf +Cf <Z - 21%) + (BY)" Rsiny (me)} (2.4.31)
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and the matching principle g @1 - d)s yields, in particular,

1
asy = —50(39, (2.4.32)
equations (2.4.28]) and (2.4.32)) give
}Q: ! (2.4.33)
A, 271'LQ7
q=1

this is similar in form to [28] equation (35)], where acoustic wave propagation through a lattice

of Dirichlet scatterers is considered. To unify the deep- and shallow-water cases we define

US S 47TL2 1

=% A, ¢=1,2,...0, (2.4.34)

(the precise form of this substitution is chosen for consistency with the radiation problem that

follows) to obtain

Q 2

2L
) [ T ]qu':o, p=12...0Q, (2.4.35)
g=1

as the eigenvalue relation to determine the allowable values of k.

2.4.2 The radiation problem

With a unit vertical velocity applied to S¢, the complete inner problem is

Vippr=0 in Dj, (2.4.36a)

0

97 PR =€PR o0 Sk, (2.4.36b)
0

87N(pR =n3g Oon Sc, (2436C)
[Vor| =0 as Z — —c. (2.4.36d)

Asin § the non-homogeneity in the body boundary condition gives a source-like term in

the inner solution at ord(1) that here behaves like 1/R = ¢/7, as R — oo. This must be matched

with a similar term in the outer solution contained within an outer function eg(()%) (r',0,2") and,
(1)

because of the accompanying term gy, (r/, 0) /€, this means that the inner solution begins with a

term in 1/€ (see also a similar solution for open water in [38, § 7.1]). Thus the inner and outer
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2.4 Deep water

solutions are written respectively as
oD = 190031 +of, (2.4.37)
and
o) = faoo (g(()o + 283 ) + Z bl gtl) + EZcmngmn, (2.4.38)

where once again we have been guided by the solution to the scattering problem, and possible
intermediate terms are omitted as they would not contribute to the results obtained. The above

outer solution has an inner expansion

Q 1)
1,0) cos 0 €
(]5§2 aoo mz_: 0.9 <1 + 16Rsm¢elq ( 9> + eZ> + 7
a (2.4.39)
( m+n 0(1)
+ Z b, pr Z =4
m,n ( q=1 Aq

The inner harmonic function <pé%1 satisfies homogeneous boundary conditions, must match
with a constant, and hence is itself a constant that is here denoted by Cﬁ. The problem for goOR

is then

Vil =0 in D (2.4.40a)
0
0
8—ng§ =n3 on Sg, (2.4.40¢)
IVell| =0 as Z — —oc. (2.4.40d)

To match with the outer solution the appropriate form for this inner solution is

0
o=l Oz ) xo+ BE [Rsinw (g ) 4] (244

where xo and x; are the functions introduced in equations (2.4.20) and ([2.4.21]), respectively.
The term in Z on the right-hand side of equation (2.4.41]) satisfies the non-homogeneous condi-

tion on Sp, while the second term in yg satisfies the non-homogeneous condition on S¢. This
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2.4 Deep water

inner solution has an outer expansion

0,1 1 1 - cos b
PO — Ecﬁ +cft+clz - (ch - 1)ﬁ + (BT Rsiny <Sin9) . (2.4.42)
. . (0,1) _ 2(1,0)
The matching principle " = ¢" gives, in particular,
Q ;W
g, A L?
oft = aé%mq 1 A: = —alt = Y Z A (2.4.43)
and
1
alt = —5(0(?1 1), (2.4.44)
so that with
AnL? 1
UF = —afy—— 1A ¢=1,2,...Q, (2.4.45)
equations (2.4.43)) and (2.4.44)) give
Q 2 2
27TL 2L
Z[ ]Uq =-=1 p=12...Q (2.4.46)

q=1

as the equation to determine the Uf.

2.4.3 Freely-floating structures

For deep water w?b/g = w?a/g = €, so that the wavenumber is proportional to the frequency

squared, and for a freely-floating structure the body boundary condition (2.2.12)) is

0
a—;\’}:eu;gng on Sc, (2.4.47)

where for this problem we again drop the superscript R. This modifies equation (2.4.44)) to

1
apo = —5(001 — 6U3) (2.4.48)
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2.5 Structure of the problems

and so that the system ([2.4.46]) becomes

Q 2 2
2mL 2rL
S [5quq - ”] U= —"Zcus, p=1,2,...Q. (2.4.49)
p A A
The leading order inner solution is
C
Yo1 = 751, (2.4.50)

and hence, to leading order, the solution of the equation of motion (2.2.13)) is

Q
W
ug =y U, (2.4.51)

e(W + Kk —iA) =
where now the non-dimensional water-plane area is W = w. Thus, from equation ([2.4.49)), the
eigenvalue problem for freely-floating structures in deep water is
2nL? Kk —iA

Z[aqup— Y R ra——Y U, =0, p=12,...Q. (2.4.52)

q=1

Again, taking the spring to be infinitely stiff recovers the scattering solution.

2.5 Structure of the problems

In each of the shallow- and deep-water cases the solutions obtained have the following structures.

For the scattering problems, there are homogeneous systems
Ak; U =0 (2.5.1)

and, given a Bloch vector 3, non-trivial solutions for U® are possible for wavenumbers k satis-

fying

det A(k; B) = 0; (2.5.2)

the set of such wavenumbers is denoted by {13. For the radiation problems the systems have the

form

A(k; BU" = 515 (2.5.3)
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2.5 Structure of the problems

for some constant s1, where A(k; 3) is the matrix that appears in the scattering equation (2.5.1)),
and j is the vector of ones with length Q. For fixed 3, non-trivial solutions for the vector U®

are certainly possible for wavenumbers k satisfying
detA(k; B) # 0, (2.5.4)

that is for £ ¢ Qg. For a k € Qg, solutions for U R are possible provided the orthogonality

condition

UHT5 = EQ: U =0 (2.5.5)
q=1

is satisfied [39, p. 224], where U is any solution of equation for the chosen k. Thus, when
it exists, the solution to the radiation problem for k € 23 is not unique as any combination of the
available scattering solutions may be added to it. Detailed examination of the inner solutions
shows that the condition is equivalent to there being zero vertical force on each structure
in the scattering problem. This is not purely a property of the present solution obtained using
asymptotic methods. If the exact radiation potential ¢% is assumed to exist for a k € 13, then
an application of Green’s theorem to ¢ and the exact scattering potential ¢° over a single cell

of the lattice yields

[ ¢°ngas =o, (2.5.6)

Sc

which again states that the vertical force on the structure due to the scattering potential is zero,
and provides a necessary condition for the existence of the radiation potential when k € 3.

In the case of freely-floating structures, there is a homogeneous system of the form
(A(k;B) +52d) U = 0 (2.5.7)

for some constant s, where again A(k;3) is the matrix that appears in the scattering equa-
tion (2.5.1), and J is the @ x @ matrix of ones. For given B3, non-trivial solutions for U are

possible only for wavenumbers k satisfying
det (A(k; B) + s2d) =0, (2.5.8)

and the set of such wavenumbers is denoted Qg. In general, if k € Qﬁ then k ¢ (g, so that, apart
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2.6 Results

Figure 2.2 Position of poles in wavenumber (or, equivalently, frequency) space for a square lattice
with cell side L for @ =1 (— — —) and @ = 2 (——): the abscissae is the modulus of 8 = (¢1,¢2) along
the edges of the first irreducible Brillouin zone so that I'X corresponds to ¢; L € [0, 7] and ¢2L = 0, X M
corresponds to gL € [0, 7] and ¢1 L = 0, and MT corresponds to ¢1L = g2 L € [0, 7].

from possible special cases, allowing the cylinders to float freely changes the wavenumbers of
the waves that may propagate through the lattice. The special cases arise when equation
is satisfied so that also J U?® = 0; the solution to the scattering problem then solves the freely-
floating problem as well, but with no motion of the structures as there is no vertical force acting
upon them. A similar situation arises in [40], where wave trapping by a structure in open water

is investigated (a trapped wave is a free oscillation of an infinite fluid that has finite energy).

2.6 Results

We present here results for both shallow water and deep water and, throughout, the non-
dimensional wavenumber kL is used as a frequency parameter.

The poles of the lattice sums represent the plane-wave solutions given in that exist
in the absence of structures. For a square array of cell side L and a wave vector B = (q1,q2),

these plane waves have wavenumbers

kL = /(1L + 27m1)2 + (oL + 27mo)2,  my,ma € Z, (2.6.1)

and these solutions are shown in figure along the edges of the irreducible part of the first
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Brillouin zone [30, p. 36]; thus, the abscissa is the modulus of BL and T'X corresponds to
q1L € [0,7] and g2L = 0, XM corresponds to goL € [0,7] and ¢1 L = 7, and MT corresponds
to 1L = g2 L € [0, 7]. It is possible to get formulas for any part of the Brillouin zone. However,
for consistency with standard practice, we focus our attention on the edges of the Brillouin
zone under the assumption that the extreme values of the frequency occur there for each band
(we hence acknowledge that maxima and minima can occur away from the Brillouin edge).
All numerical results presented here are for a square array of cell side L. For any given wave
vector BL, the solutions with a structure present are perturbations of the values of kL given
by equation . Recall that we assume kL = ord(1) and so it is acceptable to consider
perturbation of the modes illustrated in figure 2.2] It should be noted that when either ¢; L or
¢2L is a (non-zero) integer multiple of 7 there are no single-mode solutions. For example, with
s,t € Z and q1 = sm, taking m; =t or m; = —t — s both yield the same kL unless s =t =0. A

similar argument applies to fixed goL = sm.

2.6.1 Perturbation of a single plane wave
2.6.1.1 Shallow water

First of all, solutions that are perturbations of a single plane wave are discussed; such plane
waves correspond to the dashed lines in figure From equation (2.3.44)), the shallow-water

solution for a fixed structure yields

h2 -1/2

Note that h?/A = €2/k?A = ord(e?) as € — 0 as, by assumption, k?A = ord(1). The non-
dimensional water-plane area W = ma?/h? for a surface-piercing structure, but W = 0 other-
wise. For the case of a truncated vertical cylinder of radius a and height d < h, the dipole
coefficient D € [0,a%/h?]. When the cylinder extends throughout the depth, ®; = a?/h? and
equation reduces to [19] equation 60|, that is

2= iy {1+ ”AZ}

For a truncated circular cylinder, the variation of the dipole coefficient ©; with the submerged
cylinder length d/h is shown in figure (the method of computation for ©; is described in
Appendix [A.2} because of the identical leading-order inner boundary conditions on the free

surface and bed, 01 is the same for bottom-mounted and surface-piercing cylinders of the same
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d/h

Figure 2.3 Variation of the dipole coefficient ©; with the depth of submergence d/h for
a/h=08 (——),a/h=09 (———-),a/h=1("----- ).

radius and height). It is notable that for a surface-piercing structure the sign of the term in
round brackets in equation changes sign when ®1 = W/2m = a?/2h?, so that the presence
of a long cylinder decreases the frequency of a wave with given Bloch wavenumber 5y, while
a short cylinder increases the frequency. For a submerged structure, for which W = 0, the
frequency is always decreased by the presence of the structures.

For a freely-floating structure in shallow water, let us first consider no damping in the
moorings so that A = 0. In this case, equation gives the single mode solution

2 2 —-1/2
kL_BlL{lJer <27r©1—W+ W )} (2.6.3)

W+ k

so that for a freely-floating structure (W # 0) with zero damping and mooring stiffness x > 0,
the frequencies of propagating waves are reduced when compared with those for a fixed structure

as given in equation (2.6.2)). For X\ # 0, the single mode solution is

h2 W2 1/2
L=kKLS1+— (2 — S E—— 2.6.4
051 k { +A<7T©1 W+W+H—i)\>} ( 6 )
and expansion in h?/A = ord(e) yields
h? W2W + Kk +iA)
L=kL{1l+ — (27D — 2 2.6.
b1 { +2A<7r591 W+ [T )—1-0(6)}, (2.6.5)

which shows explicitly that, for a fixed frequency, damping in the moorings gives a wavenumber
with a positive imaginary part correctly corresponding to decay of the wave amplitude with

distance. The decay rate depends on a number of parameters, including the water-plane area
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and the spring stiffness.

2.6.1.2 Deep water

For fixed surface-piercing structures in deep water with @ = 1 we have that

(2.6.6)

so that, in contrast to shallow water, the wave frequency is always increased by the presence of
the structure. The equivalent result for freely-floating structures in deep water without damping

is

2 —1/2
2ma’k )} , (2.6.7)

kL:ﬁlL{l_A@th

showing again that allowing the structures to float decreases the frequencies of propagating
modes when compared with those for a fixed structure. In the absence of moorings (x = 0),
within the constraints of this long-wave approximation the structure ‘rides the waves’ and there

is no change in frequency.

2.6.2 Perturbation of two plane waves
2.6.2.1 Shallow water

The emergence of localised band gaps when structures are introduced can be demonstrated
explicitly by the present theory for () = 2 when, in the absence of damping, the shallow water
solution for a freely-floating structure in equation ([2.3.73|) yields

L? L?
Al + Z [27'('@1 — WH] K [277@1 COS(Tl — 7'2) - WH]
det L2 L2 = 0, (268)
X [271’@1 COS(Tl - TQ) — Wn] AQ + X [271'@1 - W,.i]

where W,, = Wk/(W + k). By the definitions of A; and Ay, this is a quadratic polynomial in
the frequency parameter k2. To illustrate the main ideas we consider first the neighbourhood of

the point (¢1L,q2L, kL) = (m,0,m) for which

BiL=(q1L,0)" and ByoL = (1L —2m,0)", (2.6.9)
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Figure 2.4 Perturbation of two plane waves for fixed surface-piercing cylinders in shallow water for
L/h = 20: (a) kL vs. uL for d/h = 0.8 with a/h =08 (——) ,a/h=09 (- ——-),a/h=1(----- );
(b) kL vs. ¢1 L for a/h =1 with d/h =0.8 (——), d/h =07 (———),d/h =06 (------ ).
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20: (a) kL vs. 1 L for fixed d/h = 0.8 with a/h =08 (——) ,a/h=09 (———),a/h=1(------ ) and
(b) kL vs. ¢1 L for a/h =1 with d/h = 0.8 (——), d/h=0.7 (—— =), d/h =06 (------ ).
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so that the propagation directions are 71 = 0 and 7 = 7. (Note: there is nothing special about
choosing this region, we are free to choose any region, as long as we are mindful that choosing

a frequency too high could violate our small parameter assumptions.) In the limit as ¢t L — =

equation (2.6.8)) gives the two positive roots

™ ™
1 F4nh2D /AT /T — 212 W, JA

kL (2.6.10)

(For a fixed circular cylinder extending throughout the depth, so that W, = W = wa?/h? and
D1 = a?/h?, these roots reduce to those in [I9, equation (69)] when the latter is amended to
reflect the circular, rather than elliptical, cylinder used here.) The difference between the roots
in equation shows the appearance of a local band gap as the structures’ size a/h, and
hence ®; and W, increase from zero; this is illustrated for the square array of cell side L
in figure for fixed surface-piercing cylinders, and in figure for fixed bottom-mounted
cylinders. Interestingly, since the only parameter that contains information about the length of
the cylinders is ©1, these results show that only the lower edge of the band gap is affected by the
depth of submergence. On the other hand, only the upper edge of the band gap is affected by
whether the structure is surface piercing or bottom mounted, and by allowing it to float freely.
When a surface-piercing structure is allowed to float freely, the frequency at the upper edge of
the band gap is reduced (because W,, < W for k > 0), which is consistent with the single mode
solutions discussed in the previous subsection, while the lower gap edge is unaffected; this is
shown graphically in figure [2.6

We now consider circumstances under which the orthogonality condition may be
satisfied for the shallow-water solutions. Let us consider the case when A, = A for Q = 2

(corresponding to identical vectors 3,) so that, from (2.5.1]), we have the eigenvalue equation
MU® = AU® (2.6.11)

for a symmetric matrix M that has entries

L2
miy =meg = ——r 27D — W]
] (2.6.12)
Mz = Ma] = 7 27D cos(1 — 12) — W]

One of the eigenvalues of the matrix M is A = mj; + mi2 and the corresponding eigenvector

is (1, —1)7, so that in this case the orthogonality condition is satisfied and the scattering and
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Figure 2.6 Perturbation of two plane waves for freely-floating surface-piercing cylinders in shallow
water for L/h =20, d/h =08 and a/h =1: kL vs. qLfork =1 (—), k=2 (———), k=4 (------ ).

radiation solutions both exist. The second eigenvalue is A = mi; — mio with corresponding
eigenvector (1,1)7 so that, in this case, the orthogonality condition is not satisfied and the
radiation solution does not exist. To illustrate this consider the specific point in wavenumber
space for which (¢1L,q2L) = (m,0) and kL lies in a neighbourhood of w. Here, from the
first eigenvalue we obtain kL = 7/ \/m (considering only positive roots) for which
both the scattering and radiation solutions both exist, whilst for the second eigenvalue kL =
T/ \/m and only the scattering solution exists. These values of kL are just the band
gap boundaries given in , when amended for the scattering problem.

2.6.2.2 Deep water

For deep water, equation (2.4.52) with Q = 2 once more gives a quadratic polynomial in k2.
Again considering the neighbourhood of the point (g1 L, goL, kL) = (7,0, ) and taking the limit

as q1 L — m, we find the positive roots are

™

V1 —4ra?k/(m + r)A’

kL =, (2.6.13)

showing that only the upper edge of the band gap is affected as the water-plane radius increases
from zero, and by allowing the structure to move. These explicit analytical results are illustrated
graphically for a fixed structure in figure and for a freely-floating structure in figure

We now consider the implications of the orthogonality condition for the existence of
deep-water radiation solutions. Again we take A; = A for ¢ = 1,...,Q so that equation
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yields
JU® = AN'U? (2.6.14)

for A’ = (A/27L?)A. The Q x Q matrix of ones J has (Q — 1) eigenvalues equal to zero, and one
eigenvalue equal to Q. A zero eigenvalue is potentially problematic as, when adopting the ansatz
in equation , we make the assumption that each Ay = ord(1) as e — 0. In fact, for these
zero eigenvalues obtained from equation (2.4.8), a modified ansatz (k? — Bg)LQ = e3A, leads to
non-zero eigenvalues; in other words the changes to the values of kL made by introducing the
structures are of ord(e?) rather than of ord(e?); further details are available in the appendix (see
§[A.3).

We now continue with the examination of the orthogonality condition . For a zero
eigenvalue, from any row of the eigenvalue problem (2.6.14)) j7U® = 0 so that the orthogonality
condition is always satisfied for solutions associated with the eigenvalues equal to zero. To
understand the case A’ = @, we consider first the eigenvector equation we have from A’ = 0,

namely
JTUS =i +u3 +...ud =0. (2.6.15)

This is the equation of a (@) —1)-dimensional hyperplane in @-dimensional space, with a normal j.
For a symmetric matrix, such as J, the eigenvectors corresponding to distinct eigenvalues are
orthogonal. Thus, 7 is parallel to the eigenvectors associated with the simple eigenvalue A’ = @,
so that j7U® # 0, and the orthogonality condition is not satisfied.

The conclusion from the above is that the scattering and radiation solutions may coexist
when A’ = 0, but the radiation solution does not exist when A’ = Q. To illustrate this we again
consider (q1L, g2L) = (7,0) and kL ~ 7, so that A; = Ay = (k?L?—7?)/(k?a®) = A. For A =0,
kL = 7 (considering only positive roots) and the scattering and radiation solutions may coexist,
whilst for the second eigenvalue A = (27L%/A)Q = 4wL?/A we obtain kL = 7/(1 — 4ma?/A)
and the radiation solution does not exist. As in the shallow-water case above, these values of kL

are just the band gap boundaries given in (2.6.13)), when amended for the scattering problem.

2.6.2.3 Evanescent modes

As discussed in [30, p. 52], evanescent modes that decay as they propagate correspond to a

complex wave vector B and exist for frequencies within a band gap, even in the absence of
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Figure 2.7 Perturbation of two plane waves for surface-piercing structures in deep water: kL vs. q1 L
for (a) a fixed structure of radius a/L =0.04 (——), a/L=0.045 (———), a/L=0.05 (------ ); (b)
freely-floating structures for a/L = 0.05 with K =1 (——), k=2 (—— ), k=4 (------ ).

damping on the motion of the structure. To illustrate this we once again consider a neighbour-
hood of (1L, q2L, kL) = (m,0,7) and put (¢1L,qL) = (7 +iv,0). Within the band gap, the
quantity v is the damping rate with distance of the evanescent mode. For the shallow-water

case, equation (2.6.8)) then gives a quadratic in v2, namely

vt 4+ byv? + ¢, =0, (2.6.16)
where
by = (ap + aw)(kL)*> + 272, ¢, = apaw (kL)' — 7*(ap + aw)(kL)? + 74, (2.6.17)
4h? 2h?
ap=1+ "D, and ay=1- =W (2.6.18)

The band gap corresponds to real v which requires ¢, < 0; the edges of the gap are at ¢, =0
and solving this equation for kL reproduces the values in equation (2.6.10]). As frequency varies
across the gap, v? increases from zero at the lower edge, to a maximum at the mid point, and

then reduces to reach zero again at the upper edge of the gap.
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2.6.2.4 Structure of the two-mode solutions

As can be seen in figure 2.2] the number of solutions is conserved as wavenumber space is
traversed. For example, we see that the two mode solution at (q1L, g2 L, kL) = (m,0,7) branches
in to two single mode solutions as ¢ L decreases towards zero (with g2 L = 0, i.e. in the region
I'X of figure but one double mode solution as ¢aL increases towards = (with ¢; L = 7).
For this same region in wavenumber space, when cylinders are present we can use the present
approximations to demonstrate how the solutions are preserved as the wavenumber space is
traversed; without loss of generality, we focus our attention on the scattering solutions. For the
lowest single mode in I'X, (my,mg) = (0,0), and for the next (upper) single mode (mq,ms) =

(—1,0). In the shallow-water case this gives

(%L)Q:{th(zw@l—w)},

(kL)%Owe’r‘ A
(2.6.19)
L —2m)? h?
upper

On the other hand, in a neighbourhood of the double pole solution at (¢1 L, g2 L, kL) = (7,0, 7),
i.e. when 8L = (q1L,0)T and B4L = (¢1L — 27,0)T, there are two positive roots (denoted ki
and k) which, when expanded in terms of h?/A = ord(e?), yield

(nL)?* W (2r —qL)?(2r0 + W)* bt
Gpp = @=L - i —al) TR -
(L —2m)? h? (q1L)%(27D1 + W)? ht -
(B I L = S S e R

Clearly, these are equivalent to the single pole solutions in equation (2.6.19)) up to ord(h?/A), but
at ord(h*/A?) the expansions fail as ¢; L — 7 (or equivalently become a better approximation
to the single mode solutions as ¢; L moves away from 7 towards zero). Formally, the two-pole
solution is valid only within a neighbourhood of (q1L,q2L) = (,0) such that (k? — fé’g)L2 =
O(e?), where A, = ord(1); see equation . However, equation shows that the
two-pole solution works well throughout T'X (which is surprising because we perturbed at a

single point). The same phenomena is observed with the two-pole deep-water solution. For
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example, the expansions in a?/A of the equivalent two-pole deep water solutions are

2 2 2 4
(L) o™ m(q1L) LA
k% A (71' - qlL) A2 ( )
2.6.21
(L —2m)* 1 o aj ~m(-q L+ 2m)? at
k2 A (r—qiL) A2

which, on truncation, recover the equivalent one-mode solutions that follow from equation .

We can also see explicitly how the cylinders’ radius affects a two pole solution over an
extended region of wavenumber space. Consider the lowest bold line (i.e. where ) = 2) within
I'X in figure For this two pole solution (mi,mg) = (0,1) and (m1,m2) = (0,—1) to give

the wave vectors
BiL = (q1L,2n)" and ByL = (L, —2m)7T. (2.6.22)

Equation (2.3.44) yields a quartic polynomial (in k) and, in the case of circular cylinders ex-

tending throughout the depth, the two positive roots are

(q1L)* + 4n*
kL = = (kL )jower 2.6.23
V@L)2 + 472(1 + 4ra2/A) (RL) (2:6.23)

and

_ (L)% + 4n? _
M T o A L T a2 2 yd) e (2.6.24)

The gap between these curves depend on the radius of the cylinder and is

m[127% — (q1 L)% a® <a4>
kL)upper — (KL )1ower = —+ 0| — as L—0. 2.6.25
(kL) upper — (KL )1 (L2 + 472 A A? a/ ( )

This shows explicitly that the introduction of the cylinder splits the two-mode solution in to

two separated modes that do not cross.
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Chapter 3

Infinite array: the Rayleigh-Ritz
method

3.1 Introduction

This chapter is concerned with solving numerically the problem of water-wave propagation
through both surface-piercing and bottom-mounted truncated cylinders arranged on an infinite
array in water of finite depth, and surface-piercing truncated cylinders arranged on an infinite
array in deep water. The motivation for doing so is twofold: to complement the asymptotic
approach of chapter [2|and to extend the work found there. We now note that, to investigate all
angle negative refraction (AANR), we need complete band diagrams, which were not straight-
forward to produce using the asymptotic work. Furthermore, we will see later that we require
a complete band gap (among other conditions which are difficult to explain here) around the
whole Brillouin zone — rather than just a localised one — for negative refraction to occur; such
a band gap requires large radii, typically large enough to possibly violate the assumptions we
made in obtaining asymptotic solutions. Negative refraction hence serves as a motivation for
presenting complete band diagrams for cylinders that extend throughout the depth, as well as
truncated cylinders.

The numerical method we will be employing is the Rayleigh-Ritz method. The method
allows us to solve an eigenvalue problem by replacing a continuous system with a system of a
finite number of degrees of freedom for which the eigenvalues can be found numerically. The
theory here follows the approach given in Duff & Naylor [41] and Linton & Meclver [3], albeit that
we generalise the theory to allow easy incorporation of a Bloch condition. We are able to show

that minimising a function subject to a particular constraint is equivalent to solving water-wave
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3.2 Problem formulation

problems: (i) we can show equivalence between minimising a function subject to a particular
constraint and the calculation of eigenvalues of the negative Laplacian corresponds to solving
a constant depth water-wave problem; (ii) by changing the constraint, we then show that the
resulting minimising problem is equivalent to the calculation of eigenvalues where they appear
instead in one of the boundary conditions, corresponding to solving the water-wave problem
for truncated cylinders. This provides us with a method for allowing us to consider the case of
truncated circular cylinders.

The plan of this chapter is as follows. The problem is formulated in and the theory of
variational methods is introduced in whilst the general eigenvalue problems are established
in (the work for cylinders extending throughout the depth is an account of the work found
n [20]) before being solved numerically. Finally, a selection of explicit results, as well as a
discussion about the convergence of the method and comparison with the asymptotic work
found in chapter [2] is given in As part of the results we look at negative refraction and
explain its link to a material’s complete band gap (we expand the results of [20] by linking
a discussion on negative refraction to the complete band diagrams for cylinders that extend
throughout the depth). As far as we can see, this link has not been explained explicitly in the
current literature. This link motivates the drawing of complete band diagrams to search for
complete band gaps in the case of truncated cylinders. The reader that is reading this thesis
from beginning to end is reminded that it was the author’s intention that the chapters were,
for the most part, self-contained and there is hence a lot of repetition between the problem

formulation found here and that used in Chapter

3.2 Problem formulation

Vertically axisymmetric structures C; with wetted surfaces S¢; are distributed uniformly on an
infinite horizontal lattice A in water of depth h; the length scale for the lattice periodicity is
denoted by L. A horizontal plane is illustrated in figure for the particular case of a square
lattice. We use Cartesian coordinates (z,y, z), with z directed vertically upwards and origin O in
the mean free surface at a chosen lattice point. Global polar coordinates (r,6) in the horizontal
plane are also used. Associated with each cylinder are local horizontal polar coordinates (7, 6;)
with origin O; (so that dropping the j indicates use of the global coordinates) located, relative

to O, at the lattice points given by the lattice vectors

R; = nia1 +n2az2, ni1,n2 €7,
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d
—2a——| |

(b)

Figure 3.1 (a) Coordinate systems on z = 0, and (b) a vertical section of the fluid domain for a

surface-piercing circular cylinder.

for given linearly independent vectors a; and as.

All structures in the lattice are identical, and when held fixed may be either surface piercing
or bottom mounted. Some of the numerical results presented later are for the particular case of a
lattice of truncated vertical cylinders in shallow water, and the notations used for this geometry
are illustrated in figure If surface piercing, cylinder j occupies r; < a, —d < z < 0,
and we define [ = h — d to be the gap between the ocean bed and the bottom of the cylinder.
For bottom-mounted circular cylinders, the wetted height is still denoted by d and [ is the gap
between the free surface and the top of the cylinder. More generally, a is used to denote the
characteristic size of the structure which, for a surface-piercing structure, is specifically chosen
as the radius of the water-plane area.

The fluid is assumed to be inviscid and incompressible and the fluid motion to be irrotational.
The linearised theory of water waves is used throughout so that time-harmonic motions with
angular frequency w may be described by a velocity potential Re[¢(x, y, 2) e “!], where ¢ is time.

For all lattice vectors R, solutions are sought that satisfy the so-called Bloch condition
o(r+ Ry) = ¥ Fag(r), (3.2.1)

where » = (z,9)7, and 8 = (¢1,92)7, q1,¢2 € R, is a prescribed vector. The Bloch condition
prescribes a phase relationship between the potential values at equivalent points in different

cells of the lattice. Given a 3, we seek the frequencies w that allow non-trivial solutions for ¢.

67



3.2 Problem formulation

For consistency with [20], W and L is the dimensional width and length of a single cell of a
rectangular lattice: for a square lattice take W/L = 1. For this geometry, the Bloch condition

implies the four independent conditions

¢(1/27 Y, Z) = eiq1L¢(_1/2) Y, Z),

lyl < o+
0 : 0 — 2L’
- — ol =
a:,Sqﬁ(l/??y,zr) e &Tcﬁ( 1/2,y,2),
(3.2.2)
¢(x,W/2L,z) = eiQQqu(ac, —W/2L, z),
<
ol < 2.

0 oo, O
— olG2L _
8y¢(x, W/2L,z) =e ayqb(x, W/2L, z),

which are valid in a chosen fundamental cell of the array. Once ¢ is established in the funda-
mental cell, provides the extension to the other cells. Hence it is sufficient to consider just
one cell of the array by solving (in the fundamental cell) the field equation with the free surface
condition and boundary conditions to enforce no flow through the cylinders’ walls and the bed.

In addition to the Bloch condition, the complex-valued potential ¢ satisfies the usual equa-

tions of the linearised theory of water waves [4, Chapter 8]. Thus
V2 =0 within the fluid domain D, (3.2.3)

and the linearised condition

o 2
£ — %gb =0 on the free surface Sg (3.2.4)

(g is the acceleration due to gravity) and, for water of constant finite depth

gf =0 on the bed Sp, (3.2.5)
while for deep water we require that
IVo| =0 as z— —oo. (3.2.6)

Here we restrict attention to vertically axisymmetric structures that are fixed. Hence, on the
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3.2 Problem formulation

surface S¢ of the particular structure C located at the chosen origin of coordinates

06

5 =0 (3.2.7)

where the coordinate n is measured normal to S and directed out of the fluid.
In the absence of structures, the Bloch condition (3.2.1)), together with (3.2.4) and the

appropriate bed condition, are satisfied by plane waves

Ba™ cosh k(z+ h) for finite-depth water,
¢q(r) = (3.2.8)

T
eBaTek? for deep water,

where the wavenumber k is the positive real root of the dispersion relation w? = gk tanh kh,

ﬂmn =B+ K, (329)

and each K,,, = 2w(mb; + nbs), for m,n € 7Z, is a reciprocal lattice vector [30, Appendix B].
(Note that, unlike in the other chapters of this thesis, we do not use ¢ to represent each ordered
pair of integers (m,n) for the reason being that some of the expressions contained later in this
chapter are actually easier to interpret by showing explicitly the two components that make up
each 3,,,.) The vectors {by, bs} satisfy al b; = &;; for i,j = 1,2, so that K. R, = 27p, p € Z,
for any lattice vector R;. The forms satisfy Laplace’s equation provided

K =By where B = |8yl (3.2.10)

For a given B there may be multiple vectors 3,,, that yield the same |83,,,,| and the number of
such vectors is denoted by Q.

We use the non-dimensional coordinates
o' =z/L, Y =y/L, 2 =z/L, r;=r;/L.

and, for a wave of amplitude A, a non-dimensional velocity potential is defined according to the

transformation

¢ — Z=¢. (3.2.11)
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3.3 Theory of variational methods for eigenvalue problems

3.3 Theory of variational methods for eigenvalue problems

The full variational method is discussed to demonstrate the recovery of a water-wave problem
for constant depth. We then briefly describe the variational method for the water-wave problem
for truncated cylinders, before looking at the Rayleigh-Ritz method which can be used to obtain
approximations for the resulting eigenvalue problems. The theory given here is generalised to
complex-valued potentials to allow easy incorporation of the Bloch condition. We include within
this theory section a description of a comparison principle which is used to calculate appropriate

bounds for our solutions.

3.3.1 Eigenvalues for the negative Laplacian and the recovery of the constant

depth water-wave problem

Consider the problem of minimising a functional
E(v) = ﬂ IVol? dV = ﬂ Vv Vo* dV (3.3.1)
D D

for a trial function v (the superscript asterisk denotes the complex conjugate), required to have
piecewise continuous first derivatives and be continuous in the two-dimensional domain D, with
boundary S+ Sy (Sy is taken to be the cell walls, S is everything else making up the boundary

of D), subject to the constraint
Hw) = [[ o] av = [[vvr av =1 (3.3.2)
D D
(which is included to omit the trivial solution). For later use we define

E(v,w) = ff Vv Vw* dV and (3.3.3)
D

H(v,w) = H vw* dv. (3.3.4)
D
The theory of Lagrange multipliers indicates we should look for the minimum of
E(v) — M(v) = H Vo2 — A2 dV (3.3.5)
D

for Lagrange multiplier A. Suppose the minimum of this function is at v = vg, and let us perturb

a small distance from this point by writing v = vg + evy for € < 1 where vy and vy must both
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3.3 Theory of variational methods for eigenvalue problems

also satisfy the Bloch condition (as it is not a natural condition — more on this meaning of a

natural condition shortly). Since vy is a minimum, the inequality

E(v) — MH(v) > E(vo) — AH(vo) (3.3.6)
must hold. Note that
EW) = E(vo + evy) = E(vo) + € [E(vo, v1) + E(v1,v0)] + €2E(v1) (3.3.7)
and
H(v) = H(vo + ev1) = H(vo) + € [H(vg, v1) + H(v1,v0)] + €2H (v1). (3.3.8)

Substituting these into the inequality above yields the relationship

e{E(vo,v1) + E* (v, v1) — A [H(vo,v1) + H* (vo,v1)]} + €2 [E(v1) — AH(v1)]

(3.3.9)
= gRe (€ (vo,v1) — AH(vg, v1)] + €2 [E(v1) — AH(v1)] > 0.
Lemma 1 For every vy and v1 we have that
Re [5(2)0,2)1) — )\H(Uo, Ul)] = 0. (3310)

Proof We perform a proof by contradiction. By assuming that
Re [E(vo, v1) — AH(vo, v1)]

is greater than and less than zero respectively, we arrive at a contradiction in each case:

e For Re[E(vo,v1) — AH(vg,v1)] > 0, let us choose € < 0 such that the magnitude of the
second term in (3.3.9)) is smaller than the magnitude of the first; in order for (3.3.9) to be

true one must have Re [€(vg, v1) — AH(vo, v1)] < 0, which is a contradiction;

e For Re[€(vo,v1) — AH(vg,v1)] < 0, let us choose € > 0 such that the magnitude of the
second term in (3.3.9)) is smaller than the magnitude of the first; in order for (3.3.9) to be

true one must have Re [€(vg, v1) — AH(vo,v1)] > 0, which is a contradiction;
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3.3 Theory of variational methods for eigenvalue problems

and the truth of the lemma is established.

Lemma [T} is equivalent to writing

Re | [{ Vuo - Voi = dvge} dV | =0, (3.3.11)
D
From Green’s first identity, we know that
H Vol - Vg dV = — H Vi3 dV +/ ViV - n dS (3.3.12)
D D S+Sy

for a normal n pointing out of D which, when substituted into ([3.3.11), yields

Re

— [ (V2vo + Awo) vi av +/ ViV em dS| =0 (3.3.13)
D S+Sy
where it is noted that
W/2L B, 1 1 9
¥ ndS= —1)— —— |l —-= — —
fivmemas= [ g (=g) ot (=g) + g

_|_/1/2 (_1)& _K * _K _{_2 K * K d
e oy \"Ten) T\ P Tar) Tay™\Mer) T\ Mar)

(3.3.14)

DN | =
<
~_
[S4
— %
7 N\
N —
<
~_
ISH
<

By using equation (3.2.2) we see that the integrals on opposite cell walls cancel so that the
complete integral over Sy vanishes by the Bloch condition (making it a necessary condition).

At the minimum point, that is when v = vy, we must have that all coefficients of v are zero, i.e.

Vi +Mp=0 in D, (3.3.15)
d
% =0 on &. (3.3.16)

This is to say that a minimum vy of £(v) subject to the constraint H(v) is equivalent to
finding an eigenfunction ¢ = vy, with an associated eigenvalue k? = \, of the negative Laplacian
in a domain D with a zero Neumann condition on the boundary S. Note that this boundary

condition is known as a natural one, so called because it is satisfied through the choice of & (v)

and H(v).
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3.3 Theory of variational methods for eigenvalue problems

3.3.2 [Eigenvalues appearing in one of the boundary conditions and the re-

covery of the water-wave problem for truncated cylinders

The variational method is given in outline to demonstrate the recovery of the water-wave problem

for truncated cylinders. Consider the problem of minimising the function

= |[[ Ive? av = [[| Vv vo* av (3.3.17)
e av=

for a trial function v, required to have piecewise first derivatives in a volume D, with boundary
Sy +Sp+S (where Sy, Sp and S represents the cell walls, free surface and everything else that

bounds D respectively), subject to the constraint

- jf |v|2 dV = ff v* dV = 1. (3.3.18)
SF Sp

so that
E(v,w) = jf Vv .Vw* dV and (3.3.19)
D

w) = jf vw* dV. (3.3.20)
SF

We look for a minimum using the method of Lagrange multipliers, for Lagrange multiplier A. Like
we did previously, by considering a perturbation away from the minimum (so that v = vy + €vy),
applying Lemma [1| to the resultant inequality and then using Green’s first identity yields the

result
- JI[ U1v21)0 dV + Jj Vg - n dS + jj v1Vug +n dS — A ff v1vg dS =0 (3.3.21)
D 5% Sk s

(where the integrals across the cell walls Sy vanish by the Bloch condition, which again is an

essential condition rather than a natural one) which is equivalent to

- Hf Vi dV + ﬂ ”1* dS + H <8v0 - Avo) vy dS =0, (3.3.22)
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3.3 Theory of variational methods for eigenvalue problems

At a minimum point, we must have that any coefficients of v; are equal to zero; that is that

Vi =0 in D, (3.3.23)
d
% —Avyy=0 on Sp, (3.3.24)
% =0 on S (3.3.25)

For an infinite array problem, the trial function vy will need to be defined so that the Bloch

condition is satisfied on the walls of the cell.

3.3.3 The Rayleigh-Ritz method

The Rayleigh quotient is defined as

R(v) = ; (3.3.26)

the problem of minimising £(v) subject to the constraint H(v) using the method of Lagrange
multipliers is equivalent to minimising the Rayleigh quotient. The maximum-minimum principle
is applied to find the eigenvalues A\; < Ao, ..., of the infinite-dimensional system defined through

the Rayleigh quotient:

The maximum-minimum principle: Let p1, po, ..., lin,... denote the successive minimum

values of the Rayleigh quotient R, subject for n > 1 to the n — 1 orthogonal constraints

H(vi,u) =0, H(ve,u)=0, ..., H(vp—1,u)=0 (3.3.27)

defined by a given sequence of functions vi,va,...,vp—1,.... Then
1 = A1, g2 < Aoy ooeey iy < An, ... (3.3.28)
with equality in these relations up to A, only if vi = u1,v9 = U, ..., Vn_1 = Un_1, wWhere the u

are the eigenfunctions and the \p the corresponding eigenvalues.

This principle says that, when we apply the Rayleigh-Ritz numerical method, we are given
upper bounds for the eigenvalues. As per [3] §8.2.3] strengthening the conditions in a minimum
problem (by imposing conditions additional to the natural boundary condition for example)

does not diminish the minimum. Conversely weakening the conditions does not increase the
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3.3 Theory of variational methods for eigenvalue problems

minimum. The Rayleigh-Ritz method numerically approximates the eigenvalues by replacing
the continuous system by a system of a finite number of degrees of freedom for which the
eigenvalues can be found by solving a polynomial equation; that is, it provides us with a way of
creating the trial function v.

We begin by writing v as
v = Zakfk, (3329)
k=1

for undetermined coefficients a; and basis functions fj, defined over the domain of the system,
that are chosen by inspection or otherwise (we will use plane waves that exist in the absence of
structures as a guide) to be as good approximations to the eigenfunctions as we can find. By
analogy with the full variational problem, we shall try to find the minimum of the Rayleigh quo-
tient R (which is now a function of the n variables aj). This minimum value will be taken as the
approximate eigenvalue; the minimising process will also yield approximate eigenfunctions. As
already mentioned, minimising the Rayleigh quotient is equivalent to the Lagrangian multiplier
problem of finding the minimum of £(v) — AH(v).

From our chosen form of u© we have that

E(v) - =" war[E(fr, i) — AH(fi )] (3.3.30)

k=1

By defining two n x n matrices E (with elements ey = E£(f, fi) = ei) and H (with elements

hir = H(fx, f1) = hix) we must hence minimise
5( ) Z €Ll — Ahkl akal (3.3.31)

Differentiating with respect to a; and equating the result to zero yields

n

Z (ekl — Ahkl) a; = 0 for k= 1, N % (3.3.32)
k,l=1
Denoting by a the column vector with components aj,...,a, allows us to rewrite the last
expression in matrix form
Ea = AHa (3.3.33)
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3.3 Theory of variational methods for eigenvalue problems

which is a generalised eigenvalue problem.

For sets of functions fi, ..., f, that are orthogonal to each other with respect to the constraint
H, the matrix H will be the unit matrix so that Ea = Aa and then the vectors satisfying
will be the eigenvectors and the values of A the eigenvalues of the matrix E. When H is not unit
we premultiply both sides of by the inverse of H, that is E_l, so that E_lga = Aa; we
then call the vectors a eigenvectors of E with respect to H (and similarly for eigenvalues). In

either case for H, the eigenvalue problem may now be solved using standard numerical techniques.

If the approximate eigenvalues are arranged in increasing order so that
A <Ay <o <A, (3.3.34)

then they are upper bounds for the eigenvalue of the original infinite-dimensional system prob-

lem, i.e.
AM <A, A<Ay o, A< (3.3.35)

3.3.3.1 Comparison Principle

A comparison principle, described in [42] § 3.7], can be used to obtain simple bounds for the
problem. We adapt the proof for the principle contained within [42] to allow for the fact that our
potentials are complex. The comparison principle states if, after an appropriate transition of the
liquid domains in question then, under the assumption that the principle holds, each (calculation
of the upper bound for the) eigenvalue corresponding to the original domain will be bounded
by an eigenvalue corresponding to the new domain. Furthermore, we note that the eigenvalues
increase with the mass of fluid (and hence provide an upper bound for the upper bound of the
eigenvalues corresponding to the original domain); conversely the eigenvalues decrease (providing
a lower bound for the upper bound of the eigenvalues) as the liquid is decreased.

Before proving the comparison principle, we begin by introducing the first comparison the-
orem as given in [42] § 1.6], which states that if A}, (and respectively A,) denotes the nth
eigenvalue of two eigenvalue problems P’ (and respectively P) with admissible spaces (which for
us, amounts to the eigenvalues problems being such that the free surfaces have been chosen to

coincide) and with Rayleigh quotients R and R’ satisfying

R(v) > R/ (v), (3.3.36)
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3.3 Theory of variational methods for eigenvalue problems

then we have
Ap > )\’n. (3.3.37)

We now prove the comparison principle for the geometry of a cell of our array. We adapt
ever so slightly the proof given in [42], § 3.7] because our velocity potentials are complex, which
modifies the details found there. We wish to show that for a domain of fluid D’ contained within
another domain D (where the free surface remains the same for both domains), the eigenvalues
associated with the water-wave problem defined in D’ are less than or equal to the eigenvalues
associated with the water-wave problem defined in D. We recall that the surface of the volume
of fluid D is S+ Sy + 5. The reduced domain D’ has defining surface Sg+.5{, +.5’ (so that the
free surfaces for each domain are the same) and is defined such that D C D’. The mathematical
water-wave problems — the need to solve the fluid equation, the free surface condition, the
bed condition and the no flow condition through the cylinders and walls (which we later see is
deduced from the Bloch condition) — in each domain are denoted by P and P’. The respective

Rayleigh quotients are

fywuﬁ AV IDHWU}\Z dv
!j P ds !j P ds

Here f is defined on SF while v (or v}) is the corresponding harmonic lifting; that is, for a given

R(f) = and R'(f) =

(3.3.38)

f, vg (or v}) solves the Laplace equation in D (or D’) subject to the boundary condition vy = f
(or v} = f) on S, together with the appropriate conditions on the structure, bed and cell walls
(f, vy and v} are each complex). In this form for a Rayleigh quotient, the trial functions are
defined over the free surface rather than the fluid domain. This is useful for the proof of the
comparison principle but not for the computations of the eigenvalues.

Let us show that R(vf) > R'(v}). Since the denominators of R and R’ are identical the

comparison is equivalent to showing that

I= flﬂ Vos? dV - jpﬂ Vo, [* av > o. (3.3.39)
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We can write I as

1= {[[ 150 av + [[[ (\vva - yvu}|2) v (3.3.40)
oo

D\D

By using the identity
|a|2 — |b|2 =la — b|2 + 2Re{b(a™ — b")} (3.3.41)

where |a]?> = a - a*, with a = Vs and b = VU}, we obtain

I = JII ’vayz dV + jfj ‘va — VUH2 dVv + QIIJ V?)} . (va _ Vv}) dv, (3.3.42)
D\D/ D it

the first two terms of which are positive. We will now show that the last term is equal to zero,
which will complete the proof.

Define (dv)* to be the difference between two velocity potentials which are equal on the free
surface (so that 6v = 0 on Sp). Multiplying the field equation (for problem P’) by (dv)* and
integrating through the volume yields

{[f 72 6v)* av =o. (3.3.43)
D/
The Laplacian is the divergence of the gradient so that we have
{[[ v+ (v vy av =0, (3.3.44)
D/
and after applying a vector calculus identity and the divergence theorem we are left with
{[ 60y vvy - m ds + [[[ Vo - V(ov)* dV =0, (3.3.45)
S’ D!
The integrand of the first term is equivalent to (51})*(81}} /On) and it is hence easy to see that

the first term must be equal to zero (by definition (dv)* = 0 on Sr and the boundary conditions

make the integrals disappear everywhere else). We are hence left with
{[J vop - V(5v)* av = 0. (3.3.46)
’Dl

Choosing (6v)* = vy — v} (satisfying the definition of (6v)* being the difference of two velocity
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potentials which are equal on the free surface) shows that the last term of (3.3.42) is equal
to zero, thus concluding that I > 0. According to the first comparison theorem, if A/ (and
respectively \,) denotes the nth eigenvalue of the problem P’ (and respectively P), then we

have

An >N, (3.3.47)

3.4 Obtaining the generalised eigenvalue problems

This subsection is split into two parts; we treat the problem of cylinders that extend throughout
the whole depth separate from truncated cylinders; this is because the depth dependence may

be removed from the former and thus the eigenvalue problem is different.

3.4.1 Cylinders extending throughout the depth

We give here an account of the problem solved in Mclver [20]. For cylinders extending throughout
the depth, there is no gap between their base and the ocean bed so that [ = 0. For water of
constant depth h, the water-wave problem (3.2.3)-(3.2.7) reduces to the Helmholtz equation

with a condition on a particular body,

Vip+k’¢p=0 in D (3.4.1)
% =0 on S¢, (3.4.2)

where k is the real positive root of the dispersion relation K = k tanh kh for frequency parameter
K = w?/g, as well as the Bloch condition (3.2.2).

Consider the trial function

P
vV = Z Amnei(ﬁL+Kan).rla (343)

m,n=—P

which is chosen to satisfy the Bloch condition (the body condition is a natural condition and need

not be incorporated) for constants A,,,. The Rayleigh quotient, as given in (3.3.26|) for (3.3.1)

and (3.3.2) in original coordinates, leads to the generalised eigenvalue problem
P

Z (eklmn — AL2hklmn) Gmn =0 for kl=-P,...,P (3.4.4)

m,n=—P
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for non-dimensional eigenvalues AL?. By the theory laid out in §3.3.1, v is equivalent to the
velocity potential ¢ for the water-wave problem for cylinders extending throughout the depth;

the square root of the eigenvalues AL? are equivalent to the non-dimensional wavenumber kL

so that k = v/A. We note that

Pkimn = ff MBLAK L) i BLAKmn L) 1" ! (3.4.5)
D
€klmn = Clhklmrw (346)
where
L L
Ci = (@1 L +27k) (1 L + 2mm) + | 2L + 27TZW gL + QFHW , (3.4.7)

are the elements of matrices H and E respectively (when calculating the quantities £(v,v*) and
H(v,v*) the complex conjugate of v comes from the definition of the inner product; see [3,

equation (8.61,8.62)]). We have that
Rkimn = Jf (K L=KmnL)r" g0 fj el (Kri L—=KmnL)-r" 7.0
SV SC’
W/L 1 a/L p27m
= / / / ei(Kle—Kan)'(x”y’)T dx’dy' _/ / / (KL Kmn L) 19001 (3.4.8)
0 0 0 0
= Il — [2.

The calculation for Iy when k # m and [ # n is non-trivial, and we give its calculation here

as an aside. When k # m and [ # n we have

a/L  p2m ,
I2 = / / el(Kle—Kan)“r‘ T’d@dr’
0 0

a/L 21
— / / ol E kimn L] cos(0=Tkimn) 1/ 40y’
0 0

where Ty, is the angle (K L — K, L) makes with z-axis and

L2

|Kklan’ = 27T\/(]€ — m)2 +(1— n)Qﬁ

From [35] equation 9.1.41], the integral over 6 only exists for Jy, and so

a/L
I :/ 27 Jo(| K gimn L|r") r'dr’.
0
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3.4 Obtaining the generalised eigenvalue problems

for the Bessel function of the first kind and order zero Jy. Following a change of variables

pP= ‘Kklan’r/

‘Kklanla/L 27T
I :/ T Jo(p) pdp,
2 0 |Kk;lan|2 0([)) pap

and then using [35, equation 9.1.30] we thus have

2T a

Jo=— ——"" =
> [ KpmnL| L

a
Ji (‘Kklan|Z> :
for the Bessel function of the first kind and order one .J; (upon changing back to our original

coordinates).

The integrals are thus given as

0 ;k#mandl+#n

I = (3.4.9)
44
T sk=mandl=n

and

2

Rt £ (K ) ik m and 12

L={ |HKrmll (3.4.10)
ma?
~I7 ik=mand [ =n.
We conclude this subsection by reminding the reader of the notation,

ektmn = C1(I1 — I2), (3.4.11)
himn, = T — 1o, (3.4.12)

which is pointed out for ease of comparison with the next sections.

3.4.2 Truncated circular cylinders

We now build a depth dependent function into the trial solutions in order to obtain the eigenvalue
problems for truncated cylinders. The depth dependence, and indeed the boundaries of the
integrals across the cylinders, are kept general for succinct presentation. Once the exact nature
of the matrices are established, we specify the depth dependence (which is different for deep water

and water of finite depth) and the boundaries of the integral across the cylinders (different for
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3.4 Obtaining the generalised eigenvalue problems

surface-piercing and bottom-mounted structures).

Consider the trial function

p
v = Z Apin D (2 (77) (3.4.13)

m,n=—P
P .
= Z Amann(Z/)el(ﬁL+Kan)‘Tl7 (3414)

m,n=—P

for as yet unspecified vertical functions D, (2’), which is chosen to satisfy the Bloch condition
(the body condition is a natural condition and need not be incorporated) for constants A,,.

We recall that

BrnLl = |8 + K| = \/(qlL +27m)? + (g2 L + 2nnL/W)2.

The Rayleigh quotient, as given in (3.3.26]) for (3.3.1) and (3.3.2)) in original coordinates, leads

to the generalised eigenvalue problem

P
> (erimn — ALhgimn) Amn =0 for k,l=—P,..., P (3.4.15)
m,n=—P
for non-dimensional eigenvalues AL. By the theory laid out in v is hence equivalent to the
velocity potential ¢ for the water-wave problem for truncated cylinders; comparing the natural
condition which arises from the variational method with the free surface condition generates the

relationship between AL and kL:

AL = kL tanh kh. (3.4.16)
We note that
htmn = [[ Dit(0)612(r") D}y (0005, (1) s’ (3.4.17)
Sk
_ / * / d / d * / 4 * ’ d /
Cklmn = ﬂ C1 Dy (2") Dy (27) + @Dk,(z )@Dmn(z )| Prr(r") P (") dV, (3.4.18)
1%

where V' is the volume of the cell, Sg is the free surface and

L L
Cy = (L +27k) (g1 L 4 2mm) + (qu + 27TZW> (qu + 27rnW> , (3.4.19)
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3.5 Results

are the elements of matrices H and E respectively. Using the definitions of I; and I3 introduced

in §3.4.1] we hence have

and
0 / / d / d / /
erimn = 11 C1 Dt (2") Din (27) + FDM(Z ) == Dmn(2')| dz
—h/L z dz
(3.4.21)

SU ! ! d ! d ! !
— I . C1Dyi(2") Dinn (') + @Dkl(z )@Dmn(z )| dz'.

For water of finite depth, we choose

cosh[BmnL(z' + h/L)]
cosh(Bmnh)

Do (2') = (3.4.22)

and in the calculation of exj,, we integrate through the structure’s lower and upper integral
bounds Sy, = —h/L and Sy = —(h/L — d/L) for bottom-mounted cylinders or S;, = —d/L and

Su = 0 for surface-piercing cylinders. For deep water, we choose
Dy () = Pmnl? (3.4.23)

and in the calculation of ey, from equation (3.4.21]) we calculate the first integral in the limit
h/L — oo, whilst the second integral is calculated between the structure’s lower and upper

integral bounds Sy, = —d/L and Sy = 0.

3.5 Results

The work contained within this results section is essentially split into three parts; (i) a discussion
about the convergence of the current Rayleigh-Ritz solutions, including a demonstration of how
the numerical solutions found here compare with the approximate asymptotic solutions obtained
in chapter (ii) calculation of localised band gaps, presented alongside a quantitative and
qualitative comparison of the band gaps obtained numerically with those found asymptotically;
(iii) an investigation into the phenomenon of all angle negative refraction (AANR) and hence a
presentation of complete band diagrams: the investigation into AANR requires that we produce
complete band gap diagrams, something which we were unable to do using the asymptotic

methods of the previous chapter.
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3.5 Results

For the benefit of quick identification of the results being presented in the figures and tables of
this section, we introduce the notation FDBM (finite-depth water, bottom-mounted cylinders),
FDSP (finite-depth water, surface-piercing cylinders) and DW (surface-piercing cylinders in deep

water).

3.5.1 Convergence

We discuss the convergence of the Rayleigh-Ritz solutions for each of the three cases under
consideration: (i) bottom-mounted and (ii) surface-piercing truncated cylinders in water of finite
depth and (iii) truncated cylinders in deep water. The approach of discussing the convergence of
the three cases is to begin by presenting tables of values for each case to show how the solutions
converge as the truncation parameter IV is increased, then we apply the comparison principle and
finally demonstrate the agreement of the numerical solutions here with the previous asymptotic
results and in particular show how the asymptotic results start to disagree as the wavenumber
(non-dimensionalised by the cylinders’ radii) ka grows beyond the restrictions of the assumptions

made in obtaining the asymptotic solutions.

3.5.1.1 Finite depth: bottom-mounted truncated cylinders

Table shows the upper bounds calculated for the first two eigenvalues at the point 8L =
(97/10,0)7 in the case of short (that is, d/h = 0.2) bottom-mounted truncated cylinders. At
least 14 significant figures, which is more than is being displayed in the table, is obtained with
N = 2 for radii of a/L = 0.05 (same order of magnitude as the radii used in the asymptotic work)
or a wider radii of a/L = 0.2 (radii that probably violates the assumptions of the asymptotic
work). Clearly this is a very good level of convergence, but the same cannot be said for taller
cylinders. Table shows the upper bounds calculated for the first two eigenvalues at the point
BL = (97/10,0)7 for when d/h = 0.9. Here N = 2 is sufficient for at least four significant
figures, but even with N = 12 we have still not reached the level of convergence obtained with
N = 2 for the short cylinders. Furthermore, the radii seems to have little effect on the speed
of convergence implying that it is the cylinders’ length that is the important variable in these
calculations. Physically, this is because longer cylinders disturb the free surface (where most of
the fluid motion happens) more than the shorter cylinders.

For bottom-mounted truncated cylinders in water of finite depth, a lower bound is created
by considering an empty cell with depth equal to the gap for the original solution that we are

attempting to bound (i.e. removing fluid from the original domain). An upper bound is provided
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N a/L AL

2 0.050 2.80749361764 3.44877240724
4 0.050 2.80749361764 3.44877240724
2 0.200 2.80427596862 3.44726474230
40200 2.80427596862 3.44726474230

3.5 Results

Table 3.1 FDBM short: Eigenvalues AL for wave propagation through a square array of short (d/h =
0.2) bottom-mounted cylinders in water of finite depth (h/L = 1).

N a/L AL

2 0.050 2.79509653256 3.43520231075
4 0.050 2.79509215260 3.43518889113
6 0.050 2.79509196780 3.43518825987
8 0.050 2.79509196188 3.43518823659
10 0.050 2.79509196177 3.43518823600
12 0.050 2.79509196177 3.43518823599
2 0200 2.59521236105 3.21637048083
40200 259520294254 3.21606336956
6 0.200 2.59520258367 3.21606010131
8 0.200 2.59520256547 3.21606004666
10 0.200 2.59520256479  3.21606004553
12 0.200 2.59520256477  3.21606004547

Table 3.2 FDBM long: Eigenvalues AL for wave propagation through a square array of long (d/h =
0.9) bottom-mounted cylinders in water of finite depth (h/L = 1).

by considering an empty cell with the depth equal to the original depth (i.e. adding fluid to the
original domain). As an example, lower and upper bounds at the point 3L = (97/10,0)7 are
contained within table for a typical solution (i.e. a solution which we are trying to bound).
The upper bound from the comparison principle is close to the upper bounds for the eigenvalues
obtained as the cylinders get thinner (this is to be expected, given that the upper bound here
is calculated by considering radii equal to zero, which is mathematically equivalent to infinitely
thin cylinders). The calculated lower bound is, however, nowhere near the eigenvalues calculated
for radii of a/L = 0.5, which is the largest radii that the geometry of the problem allows for.
(Radii of a/L = 0.5 is chosen for illustrative purposes only: one should note that cylinders of
this radii would be taking up an entire cell of the lattice — in the case of cylinders extending
throughout the depth — or essentially describing a platform — in the case of truncated cylinders —

and would hence no longer be describing the water-wave problem we set out to solve). However,
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3.5 Results

Description h/L d/L a/L AL

Lower bound 0.1 N/A 0 0.778794465 1.148849427
Typical solution (thin cylinders) 1 0.9 0.05 2.795096533 3.435202311
Typical solution (wide cyldiners) 1 0.9 0.5 1.536830783 2.070015413
Upper bound 1 N/A 0 2.807707918 3.448873128

Table 3.3 FDBM: Lower and upper bounds for eigenvalues AL calculated using the comparison prin-

ciple, along with typical solutions, for bottom-mounted cylinders in water of finite depth.

kL
0.87

0.6 R ‘ °

0 o1 02 03 0.4
a/L

Figure 3.2 FDBM: Comparison of the asymptotic approximations ( ) with the numerical solu-

tions (* - ) for bottom-mounted cylinders in water of finite depth (h/L = 0.05 and d/h = 0.8).

fortunately table demonstrates that the convergence of the upper bounds for the eigenvalues
(as calculated using the Rayleigh-Ritz method) for wide bottom-mounted truncated circular
cylinders in water of finite depth is good enough that an application of the comparison principle
is not necessary to make further comment about the reliability of the results obtained.

Figures [3.2] shows a comparison of the current numerical solutions with the approximations
obtained using the method of matched asymptotic expansions (MAE) for bottom-mounted cylin-
ders in water of finite depth at the point BL = (97/10,0)7. The asymptotic work assumed
water of shallow depth so, for this reason, the depth we use in our numerical calculations is
h/L = 0.05. Recall that the MAE solutions were obtained under the assumption that — among
others — a/L < 1 and kL = ord(1). Increasing a/L (so that, for fixed kL, ka increases) too
much will violate the MAE assumptions meaning we would expect the asymptotic solutions to

cease to agree with the numerical results (which, of course, have been calculated without making
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N a/L dJL AL

2 005 02 281370237 3.456117993
4005 02 2813212619 3.455529271
6 005 0.2 2812801759 3.455019076
8 005 0.2 2812468392 3.454602032
10 0.05 0.2 2812197723 3.454263596
12 005 02 2811972411 3.453983094
2 02 02 2742732854 3.690081574
402 02 2718540105 3.662469469
6 02 02 2711379388 3.647983754
8 02 02 2709513799 3.640841262
10 02 02 270857744  3.637897079
1202 0.2 2706882165 3.636710581
2 005 0.9 2806586895 3.449365785
4005 0.9 2806091424 3.448769629
6 005 0.9 2805676678 3.448257252
8 005 0.9 2805339939 3.447838366
10 0.05 0.9 2805066402 3.44749836
12005 0.9 280483863 3.447216561
2 02 0.9 2604512281 3.598144953
402 09 2569022738 3.580969025
6 02 0.9 2550532702 3.572496405
8 02 0.9 2538945395 3.567478035
10 0.2 0.9 2530895416 3.564197628
1202 0.9 2524806959 3.561958362

3.5 Results

Table 3.4 FDSP: Eigenvalues AL for wave propagation through a square array of short and long
surface-piercing cylinders in water of finite depth (h/L = 1).

assumptions on the size of a/L). Sure enough figure demonstrates a reasonable agreement
in the MAE solutions for ka up to approximately 0.65 (corresponding to, say, a/L ~ 0.28 and
kL = 0.747 for the lower branch or a/L =~ 0.2 and kL = 1.047 for the upper branch).

3.5.1.2 Finite depth: surface-piercing truncated cylinders

Table shows a particularly poor convergence of the upper bounds for the eigenvalues calcu-
lated using the Rayleigh-Ritz method for surface-piercing truncated cylinders in water of finite
depth. (At least, the convergence is poor when compared to the quick convergence for bottom-
mounted cylinders). We gain no more than a couple of significant figures of agreement as the
truncation level is increased up to N = 12, seemingly regardless of whether we are considering

thin, wide, short or tall cylinders. That said, convergence to two significant figures for AL
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3.5 Results

Description d/L a/L AL

Lower bound 1 0.05 2.806490197 3.449329909
Typical solution 0.9 0.05 2.806586895 3.449365785
Upper bound 0 0.05 2.828057249 3.475207933

Table 3.5 FDSP: Lower and upper bounds for eigenvalues AL calculated using the comparison prin-
ciple, along with a typical solution, for surface-piercing cylinders (a/L = 0.05) in water of finite depth
(h/L=1)

provides us with solutions for kL — upon using equation — that are reasonable enough
for the scale of the plots contained within this results section. Figure [3.3] shows a compari-
son of the current numerical solutions with the approximations found using MAE at the point
BL = (97/10,0)T. A reasonable agreement between the numerical solutions and the MAE so-
lutions is demonstrated for ka up to approximately 0.4 (corresponding to, say, a/L ~ 0.14 and
kL = 0.887 for the lower branch or a/L =~ 0.12 and kL ~ 1.17 for the upper branch).

Lower and upper bounds calculated using the comparison principle are given in table for
surface-piercing cylinders in water of finite depth. Bearing in mind that the free surface cannot
be changed when applying the comparison principle, we are unable to amend the radii of the
cylinders to obtain the bounds. The bounds, however, can be obtained by adding fluid to or
removing fluid from the domain which in turn is done by changing the length of the cylinders. We
calculate the lower bound by extending the cylinder’s length throughout the depth (i.e. remove
fluid from the domain) and calculate the upper bound by setting the length of the cylinder to
zero (i.e. adding fluid to the domain).

In comparing the results obtained for bottom-mounted and surface-piercing cylinders, we
note that for bottom-mounted cylinders the MAE expansions seem to be closer to the numerical
results for a higher value of ka. One would expect that a bottom-mounted cylinder would affect
a plane wave less than one which pierces the free surface, because most of the fluid motion
happens on the free surface. With a much simpler free surface for bottom-mounted structures,
there is less approximating taking place in the solutions arising from MAE (see equation
and note that the term in W disappears for bottom-mounted cylinders). We should therefore
not be surprised by the apparent greater agreement of the MAE solutions for bottom-mounted
cylinders. Furthermore, for the bottom-mounted cylinders, the calculations are much easier
because I2, given in equation , reduces to zero on the free surface when the cylinders

aren’t piercing the free surface and hence the calculation of Ay, is simplified.
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Figure 3.3 FDSP: Comparison of the asymptotic approximations (
(+ + +) for surface-piercing cylinders in water of finite depth (h/L = 0.05 and d/h = 0.9).

) with the numerical solutions

3.5.1.3 Deep water

Again, due to the nature of the more complicated free surface for surface-piercing structures, the
upper bounds for the eigenvalues calculated using the Rayleigh-Ritz method do not converge as
quickly as the bottom-mounted cylinders in water of finite depth, as is demonstrated in table[3.6]
Table shows the lower and upper bounds calculated using the comparison principle (fluid
is removed from the domain by extending the length of the cylinder to infinity in its limit and
fluid is added to the domain by reducing the length of the cylinder to a disc on the free surface,
providing a lower and upper bound respectively). Figure shows the comparison between the
MAE and numeric results at the point 8L = (97/10,0)T. Reasonable agreement is demonstrated
for ka up to approximately 0.2 (corresponding to, say, a/L =~ 0.08 and kL =~ 0.97 for the lower
branch or a/L ~ 0.06 and kL ~ 1.17 for the upper branch).

3.5.2 Comparison with asymptotic local band gaps

Figures and [3.6] show how a localised band gap depends on the radii and length of cylinders
for bottom-mounted and surface-piercing cylinders respectively. The parameters — and area of
focus, i.e. around the point (kL,q1L,qL) = (m,7,0) — have all been chosen so that a direct
comparison with the band gaps presented in chapter [2|is possible. Qualitatively, on comparing
the solutions here with their counterparts obtained using MAE (see figures and we see

the same behaviour: a band gap is introduced (and widens) as a/h increases from 0; only the
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N a/L dJL AL = kL

2 0.05 0.05 2843014242 3.475137071
4005 005 284263031 3.474626339
6 005 005 2842303572 3.474207223
8 0.05 0.05 2.842029431 3.473850664
10 0.05 0.05 2.841803102 3.473552434
12 0.05 0.05 284161362 3.473300432
2 02 005 2961565049 3.81530871
4 02 005 29575804  3.80619052
6 02 005 2954150137 3.801401641
8 0.2 005 2952387549 3.798945297
10 0.2 0.05 295100335 3.796872605
1202 0.05 2950083918 3.795553418
2 005 09 2826370353  3.4562405
4005 09 2825875223 3.455644688
6 005 09 2825460609 3.455132562
8 005 09 2825123982  3.4547139
10 0.05 0.9 2.824850588 3.454374111
12 0.05 0.9 2824622995 3.454092527
2 02 09 262729939 3.602667943
402 09 2592173054 3.585784808
6 02 09 2574024597 3.577495782
8 02 09 2562728227 3.572605094
10 0.2 0.9 2554928836 3.569420496
1202 0.9 2548928379 3.567080263

3.5 Results

Table 3.6 DW: Eigenvalues AL = kL at BL = (97/10,0)” for wave propagation through a square
array of long bottom-mounted truncated circular cylinders (height d/h = 0.2,0.9, radii a/L) in water of
finite depth.

lower edge is affected by the length of the cylinder d/L; only the upper edge is affected by
whether the cylinders are surface piercing or bottom mounted. One can, however, notice small
discrepancies (that we will shortly explain) between the local band gap calculated numerically
and the local band gap approximated using MAE: the numerical results do not seem to agree
with the asymptotic solutions in these somewhat zoomed-in ranges (when, say, compared to the
range used in figure of kL. For example, the lower branch of figure for a/h = 1 approx-
imately passes through (¢1 L, kL) = (m,0.9937); the solutions obtained using MAE suggest the
equivalent result is approximately (¢q1L, kL) = (m,0.9887). As stated, this discrepancy can how-
ever be explained: around this point, € = kh ~ 7/20 = 0.16, whilst the difference between the

asymptotic and numerical solutions is approximately 0.0057 € (€2, €3), which is approximately
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3.5 Results

Description d/L AL =kL

Lower bound oo 2.826232648  3.45618596
Typical solution 1 2.826310872  3.456213305
Typical solution 0.9 2.826370353  3.4562405

Typical solution 0.05 2.843014242 3.475137071
Upper bound 0 2.847896173 3.482154942

Table 3.7 DW: Lower and upper bounds for eigenvalues AL = kL calculated using the comparison

principle, along with typical solutions, for truncated cylinders (a/L = 0.05) in deep water.

1.4r7

1.27

KL
- L
0.87 T T T T T
0 01 0.2
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Figure 3.4 DW: Comparison of the asymptotic approximations (
(+ + - ) for truncated cylinders (d/L = 0.05) in deep water.

) with the numerical solutions

the size of higher order terms that were not included within the approximate solutions.

Further, it is evident from the results presented in figure that the agreement between
the numerical and asymptotic results start to improve as we move further away from the point
(kL,q1L,q2L) = (m,7,0). The asymptotic solutions are perturbations from the no-cylinder case
represented by the poles of the lattice sums; larger perturbations are occurring at the point
(kL,q1L,q2L) = (m,m,0) (i.e. more is happening, a band gap is being introduced).

Figure shows how a localised band gap depends on the radii and length of cylinders in the
case of surface piercing cylinders in deep water. Again the parameters — and area of focus, i.e.
around the point (kL,q1L,q2L) = (m,m,0) — have all been chosen so that a direct comparison
with the band gaps presented in chapter [2] is possible. We should note that a/L represents

the characteristic size of the structures for the asymptotic solutions; we were not specifically
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Figure 3.5 FDSP: Two plane waves for surface-piercing cylinders in water of finite depth for h/L =
0.05: (a) kL vs. ¢1L for fixed d/h = 0.8 with a/h =08 (——) , a/h =09 (———), a/h=1(------ )
and (b) kL vs. u L for a/h =1 with d/h =08 (——), d/h =07 (———),d/h =06 (------ ).

looking at cylinders there and the current numerical results allow us to see the effect the depth of
submergence of the cylinder has on the solutions (see figure|3.8b)). For a reasonable comparison
between the asymptotic and numerical solutions, the results shown here have for the most part
been generated using d/L to be approximately 2a/L (only approximately, because naturally we
wish to only vary one parameter to study its affect on the band gap).

Whilst the upper edge of the band gap behaves in the same way (that is, the frequency
increases as a/L increases) for the numerical and asymptotic (see figure solutions, the
numerical solutions here demonstrate that there is a point on the lower branch of the band gap
where the curves of varying radii cross. As d/L is decreased through d/L = 0.05 (ﬁgure, the
crossing point where the frequencies coincide for varying radii moves closer towards ¢; L = 7, so
that for d/L = 0 (representing infinitesimal discs on the free surface and shown in figure
we have that there is no crossing point. Having no crossing point is the behaviour that was
demonstrated by the asymptotic solutions in figure In obtaining the asymptotic solutions
of chapter [2] we assumed that the depth of submergence was small compared to the deep water
and could therefore be neglected. It therefore makes sense that the discs on the free surface here

correspond to the structures investigated in the asymptotic work.
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Figure 3.6 FDBM: Two plane waves for bottom-mounted cylinders in water of finite depth for h/L =
0.05: (a) kL vs. g1 L for fixed d/h = 0.8 with a/h =08 (——), a/h=09 (———-), a/h=1(------ )

and (b) kL vs. ¢ L for a/h =1 with d/h = 0.8 (——), d/h =0.7 (- ——), d/h = 0.6 (
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Figure 3.7 FDBM: Comparison (as ¢ L varies) of the asymptotic approximations (

0.84r1

0.88r

0.921
gL

0.967

) with the

numerical solutions (+ + * ) for bottom-mounted cylinders in water of finite depth (h/L = 0.05, a/h =1

and d/h = 0.8) using truncation parameter N = 6.
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Figure 3.8 DW: Two plane waves for surface-piercing cylinders in deep water: (a) kL vs. q; L for

fixed d/L = 0.1 with a/L = 0.04 (——) , a/L = 0.045 (— — ), a/L = 0.05 (
for a/L = 0.05 with d/L = 0.01 (——), d/L =0.05 (— — —), d/L = 0.6 (------ :

1.02x —— 1.021 —
1.017- 777 1.01x- N
kL e e

0.997+

) and (b) kL vs. 1L

0.997+

0.987 T 0.987 T
0.987 0.997 n 0.987 0.997 bid
Gl ol
(a) (b)
Figure 3.9 Two plane waves for (a) surface-piercing cylinders in deep water showing kL wvs. q1 L
for fixed d/L = 0.05 with /L =0.04 (——) , a/L =10.045 (———), a/L=0.05 (------ ) and (b) hori-

zontal discs lying on the free surface showing kL wvs. ¢1 L for fixed d/L = 0 with o/L =0.04 (——) ,
a/L=0.045 (———),a/L=0.05(----- ).
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3.5.3 Negative refraction and complete band diagrams

It has been noted elsewhere in this thesis that an advantage of the numerical approach used
in this chapter over the asymptotic work of chapter [2| is the ability to construct what we call
complete band diagrams (that is, a diagram that shows the frequency around the whole edge of
the reduced Brillouin zone; the asymptotic work — whilst giving us the ability to write explicit
approximations — only realistically afforded us the ability to create localised band diagrams). To
observe the phenomenon of negative refraction — which has been observed in different contexts
such as water-waves [23] and acoustics [24] — a complete band diagram is useful to understand
the band gaps that the material under investigation exhibits [25].

Waves undergo refraction when they pass through the boundary separating one medium from
another. Usually the refracted wave lies on the opposite side of the surface normal to that which
the incident wave lies on; we refer to such refraction as positive refraction. However negative
refraction has been observed both theoretically [43] [44] and experimentally [45, 46]. Negative
refraction occurs when the incident and the refracted wave both lie on the same side of the
surface normal. All angle negative refraction (AANR) is when all incident angles are negatively
refracted. As part of the presentation of our numerical results, we will be considering the
geometry of the strip array required to observe AANR. Alongside the complete band diagrams,
we use the corresponding so called constant frequency contours (CFCs) (a contour plot showing
the frequencies for all wave vectors inside the Brillouin zone, i.e. not just its boundary) to
produce schematic diagrams which indicate how an incident wave is refracted.

The approach of this subsection is to begin by describing qualitatively (i.e. for a general,
unspecified geometry of structures) how the complete band diagrams and corresponding CFCs
are used to construct schematic diagrams to determine how an incident wave is refracted: the two
schematic diagrams we give as examples show both positive and negative refraction respectively.
Once this process has been explained, we will be in a position to start focusing on particular
structural geometries and we begin by looking at cylinders that extend throughout the depth:
we give a detailed analysis of the geometric conditions required for AANR. We see that (among
other conditions) one necessary condition for negative refraction is that a complete band gap
is required (i.e. that is to say that there must exist a range of frequencies that never occur
around the whole edge of the Brillouin zone). This in turn motivates us to search for complete
band gaps in the case of truncated cylinders in water of finite depth: we present complete band

diagrams showing whether or not a complete band gap exists.
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3.5.3.1 Band diagrams, constant frequency contour plots and schematic diagrams

The point of this sub-subsection is not to quantify any results just yet: it is simply to explain the
process of using a band diagram and its corresponding CFCs to produce the schematic diagrams
that, in turn, allow for an easy representation of what happens to a given wave incident on an
array of structures. We don’t specify the geometry of the structures (i.e. for the purposes of
this discussion, it is not important whether the cylinders extend throughout the depth or are
truncated), all we say is that the band gap diagram and subsequent CFCs correspond to an

array of structures which exhibits AANR (for some frequencies).
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Figure 3.10 Orientation of the strip array; an incident wave acting on the left edge of the array in
the direction of (z,y) = (1,0) — i.e. the same direction as phase vectors lying on the I'’X boundary in the

first Brillouin zone — is non-normal to the array.

For consistency with other authors, we choose to have the open water / strip array surface
interface (i.e. left edge of the array, as viewed from above) lying at an angle of 7/4 radians (in
an anti-clockwise direction) from the y-axis so that the surface interface between the open water
and the edge of the strip array lies perpendicular to MT', as in figure Orientating the strip

array in this way means that by choosing an incident wave which propagates in the direction
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of the I'’X Brillouin boundary (as we will do for ease of presentation), it will be incident on
the array’s left edge at a non-normal angle. For a given incident wave direction, we seek to
understand the conditions required for AANR.

To understand negative refraction, one needs to be able to make use of CFCs. The idea
is to choose a frequency that corresponds to an incident wave in open water and a refracted
wave inside the array. We will demonstrate how refraction moves from positive to negative as
the frequency changes. We begin by choosing a fixed wavenumber kL = kLj; this value of
kL corresponds to the two phase vectors ,BL{ (in open water) and ﬁLf (inside the strip array).
Figure [3.11a]shows the CFC diagram for open water, whilst [3.11D|shows the CFC diagram inside
the array. For each chosen value of kL, we draw schematically the directions of the refracted
wave and, more specifically, whether it has been positively or negatively refracted.

Let us give a step-by-step account of the method described in [30, Ch. 10] and [23], which
describes how to draw the CFC for kL as given in figure

1 For our chosen frequency kL, superimpose the (black) contour for the incident medium (open
water) and the (red) contours for the transmitted medium (inside the array) onto the same

axes;
2 Mark on the incident wave BL1;

3 Draw a line (green, dashed) that goes through BL{ and is perpendicular to the surface interface

(between open water and the strip array);

4 The place(s) where this (green, dashed) line intersects the (red) contours for inside the strip
array determines the refracted wave(s) BLY; the refracted waves act perpendicular to the (red)
contour and in the direction of increasing frequency. Note that although the red contours may
be intersected in more than one place, it may not correspond to distinct refracted waves; it
might, for example, violate boundary conditions for example that the only incoming wave is
the incident wave or it might be an equivalent wave that has already been accounted for in a

different Brillioun zone.

Thus figure corresponds to positive refraction. For a wavenumber fixed at position kL,
with corresponding phase vectors BL4 and [5’L*29 , we employ the same methods to create another
diagram as shown in figure which corresponds to negative refraction.

The value of kL where the ‘jump’ from positive refraction to negative refraction occurs is

important to us, because it gives a range of frequencies for which negative refraction may occur.
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(C) Positive refraction from kL, = 7/2 (d) Negative refraction from kL, = 77/10

Figure 3.11 Constant frequency contours for (a) open water and (b) inside an array, with selected con-
tours highlighted. The constant frequency contours for open water and inside an array are superimposed
onto the same set of axes for (c) kL, = 7/2 and (d) kLy = 77/10 in (c) and (d)
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The minimum of this range is the value of kL for which BL = (m,0)” (which coincides with
the lower branch of the local band gap) and has a maximum of the value of kL for which
BL = (m, ) (which coincides with the lowest branch of the global band gap for the geometry
under consideration). Below this frequency, CFCs are centred on the I' point and above it CFCs

are centred at the M point; this has been demonstrated in [23] and [25], for example.

3.5.3.2 Cylinders extending throughout the depth

It is thus evident that an investigation of negative refraction becomes an investigation of how
the contours behave. This sub-subsection looks at the behaviour of the contours for the specific
case of cylinders extending throughout the depth and how the radii of the cylinders affect the
contours.

As we have seen, when we introduce cylinders, we are able to choose frequencies such that
the contour corresponding to the refracted wave (inside the array) is centred on M. However, it
is evident that simply introducing cylinders (by increasing a/L from zero) so that there exists
contours centred on M is not enough to show that a wave has been negatively refracted: the
line that goes through BL! and is perpendicular to the surface interface (the green dashed line
in the schematic diagrams) must at least meet a refracted wave contour. If it doesn’t meet (as
in figure then that means that we are in a localised band gap (for fixed g2 L = 0) and the
incident wave does not propagate through the array.

Figure demonstrates that for smaller cylinders, where a/L = 0.15, there is no such
negative refraction for our chosen incident wave. We need to choose a high enough frequency
(close to kL = =, corresponding to an incident wave BL! = (gL, 0) for q; L also close to 7) to
ensure that the refracted wavenumber lies inside X M on the band diagram shown in figure
As is shown in figure we have chosen a frequency large enough such that the associated
contour is centred on M. However, the schematic diagrams shown in figure demonstrates
that the contours do not indicate negative refraction: this is because, for our incident wave
in the direction of (1,0)7, the line going through the incident wave and acting perpendicular
to the surface interface does not go through the corresponding contour for the incident wave.
However, when a/L = 0.35, it is becomes apparent that we can select demonstrate negative
refraction as shown in figure figure [3.13a] shows the band diagram, figure [3.13D] shows
the refracted contours with a chosen frequency highlighted, which is then used to create the
schematic diagram shown in figure

Other than giving us contours large enough, there are other — perhaps more subtle — changes
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(a) Band diagram for cylinders of width a/L = 0.15 (
open water).

kL
(b) Frequency contours for inside the array, with
kL = 0.927 highlighted.
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Janda/L =0 (------ ) (ie.

(C) Schematic diagram showing frequency contours
at kL = 0.927 for outside (black) and inside (red)
the array.

Figure 3.12 Frequency diagrams for cylinders of radii a/L = 0.15, which extend throughout the

depth.
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(a) Band diagram for cylinders of width a/L = 0.35 (
open water).

Janda/L =0 (------ ) (ie.
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(b) Frequency contours for inside the array, with (C) Schematic diagram showing frequency contours
kL = 0.77 highlighted. at kL = 0.77 for outside (black) and inside (red) the
array.

Figure 3.13 Frequency diagrams for cylinders of radii a/L = 0.35, which extend throughout the
depth.
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in the geometry that using wider cylinders affords us. Comparing the refracted contours between

figures [3.12b| and [3.13b| one sees that they go from being concave (for narrow cylinders) to

convex (for wider cylinders). Furthermore, comparing the band gap diagrams in figures
and we see that there is not a complete band gap for the narrow cylinders, but there is for
the wider cylinders. By complete band gap we mean there are a range of frequencies that never
occur around the whole edge of the Brillouin zone. Thus we have conjectured that there are
three conditions for AANR, namely (i) a complete band gap exists; (ii) the contours associated
with the refracted wave are convex, which ensures the refracted wave is pointing in the correct
direction; (iii) the contours associated with the refracted wave need to be large enough. It just
so happens that as the cylinders become sufficiently large, these three conditions are more easily
satisfied.

We must point out that we’ve said nothing about looking at incident waves acting in a differ-
ent direction for our chosen frequency and whether or not they give rise to negative refraction:
the point of this exercise has been to understand how the occurrence of AANR is related to
a given incident wave, and to hence motivate us to look at complete band gaps. The current
literature does not appear to have made this relationship between the complete band gap and

negative refraction as explicit as this.

3.5.3.3 Truncated cylinders

The relationship between negative refraction and complete band gaps is what motivates us to
search for complete band gaps for truncated cylinders. Figure shows a complete band gap
for the case of surface-piercing structures in water of finite depth: figure shows the band
gap being introduced for approximately a/h = 0.3 when the length of the cylinders is fixed to
d/h = 0.8, whilst figure shows that changing the length of the cylinders whilst keeping
the radii fixed at a/h = 0.35 does not have such a big effect to whether or not the band gap
is present. Figure |3.15] suggests that there are no complete band gaps for the case of bottom-
mounted cylinders. In both figures presented there, we have chosen the length of cylinders to
be long to make their presence largest: in figure increasing the cylinders’ radii up to the
maximum mathematically allowed (a/L = 0.5) doesn’t introduce a complete band gap, whilst
figure [3.15b] demonstrates that there is still no complete band gap for bottom-mounted cylinders

with the largest possible radii in shallow water (so that a/h = 10).
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O I I
r X M r

(a) kL vs. BL for fixed d/h = 0.8 and h/L = 1 with a/h=0.25 (——),
a/h=03(---),a/h =035 (- ).

OF X M r

(b) kL ws. BL for fixed a/h = 0.35 and h/L = 1 with d/h=0.9 (—),
d/h=07(—-),d/h=04 (- ).

Figure 3.14 Complete band diagrams for surface-piercing cylinders in water of finite depth.
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(a) kL wvs. BL for fixed d/h = 0.9 and h/L = 1 with a/h=0.3(—),
a/h=04 (——-),a/h=05(----- ).
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r X M r

(b) kL wvs. BL for the first four eigenvalues for fixed a/L = 0.5, h/L = 0.05 and
d/h=0.9 ( ).

Figure 3.15 Complete band diagrams for bottom-mounted cylinders in water of finite depth.

104



Chapter 4

Strip array: methods of matched
asymptotic expansions & multiple

scales

4.1 Introduction

We consider here water-wave propagation through structures arranged in a two-dimensional
array stretching to infinity in one horizontal direction but of finite width in the other — we call
this a strip array — using the method of multiple scales and matched asymptotic expansions.
By having the array wide enough (in the horizontal direction that is of finite length), we expect
there to be a clear analogy between the solutions found here with the infinite array problem:;
in the same sense, the solutions inside the strip array are perturbations from the plane waves
that exist in the absence of any structures. By introducing a slow scale to consider with the
fast scales we essentially homogenise a complex geometry - the strip array of structures - to a
simpler one; the slow scale describes how the waves change as they propagate through the array
of cylinders (we would expect, for example, the waves to only gradually loose their amplitude
as it moved through the array). In the infinite array work, we were able to find localised band
gaps and hence determine the frequencies of waves which were allowed to exist in an array of
structures. Now that we are looking at a strip array (where it makes sense to talk of an incident
wave) we can consider what happens when we give an incident wave a frequency that falls within
these band gaps: as per [30, page 53], adding an edge to an infinite array will allow us to sustain
an evanescent mode. Our results will be presented alongside the results from our infinite array

solutions, so we can see the relationship between the solutions.
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We look first at the case of shallow water by extending the methods found in [I7], although we
consider truncated cylinders rather than cylinders extending throughout the depth of the water
allowing us also to look at the radiation problem as well as freely floating cylinders. Before
considering the deep water limit an account is also given here of the finite depth case, which
was solved in [I8] (where the scattering and radiation problems for small structures on the free
surface was considered), although we adjust their scalings so that we can consider what happens
in the deep water limit. In both cases we build upon and make more explicit the work completed
in [I7] and [18] to formalise their approach to the method of multiple scales by considering a full
composite solution and using matched asymptotic expansions between inner and outer solutions
in one cell, as was done in [31, chapter 4]; in particular, we find that we are able to use the inner
solutions from the infinite array solutions, as found in chapter |2l The reader that is reading this
thesis from beginning to end is reminded that it was the author’s intention that the chapters
were, for the most part, self-contained and there is hence a lot of repetition between the problem

formulation found here and that used in chapters [2] and [3]

4.2 Formulation

Vertically axisymmetric structures C; with wetted surfaces Sc; are distributed uniformly on a
horizontal lattice A that is infinite in one horizontal direction but of finite width s in the other
direction (illustrated in figure for the particular case of a square lattice) in water of depth
h; the length scale for the lattice periodicity is denoted by L. All structures in the lattice are
identical and are moored using identical systems of springs and dampers. We use Cartesian
coordinates (x,y, z), with z directed vertically upwards and origin O in the mean free surface
at a chosen lattice point. Global polar coordinates (r,6) in the horizontal plane are also used.
Associated with each cylinder are local horizontal polar coordinates (r;,6;) with origin O; (so
that dropping the j subscript indicates the use of global coordinates) located, relative to O, at

the lattice points given by the lattice vectors
Rj =niaj + neas, mni,N9 € 7,

for given linearly independent vectors a; and as.
The fluid is assumed to be inviscid and incompressible and the fluid motion to be irrotational.
The linearised theory of water waves is used throughout so that time-harmonic motions with

angular frequency w may be described by a velocity potential Re[¢(x,y, 2) e7“!], where ¢ is time.
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Figure 4.1 (a) Coordinate systems on z = 0, and (b) a vertical section of the fluid domain for a

surface-piercing circular cylinder.

For all lattice vectors R, solutions are sought that satisfy the so-called Bloch condition
6(r+ Ry) = Fag(r), (4.2.1)

where » = (z,9)7, and 8 = (q1,92)7, q1,¢2 € R, is a prescribed vector. The Bloch condition
prescribes a phase relationship between the potential values at equivalent points in different cells
of the lattice. Given a (3, we seek the frequencies w that allow non-trivial solutions for ¢.

In addition to the Bloch condition, the complex-valued potential ® satisfies the usual equa-

tions of the linearised theory of water waves [4, Chapter 8]. Thus

V2@ =0 within the fluid D, (4.2.2)
and the linearised condition
0?® 0d
Erl + 95, = 0 on the free surface Sp (4.2.3)

(g is the acceleration due to gravity). For water of constant finite depth

o
?3 =0 on the bed Sp, (4.2.4)
2
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while for deep water we require that
IV®| -0 as z— —oc. (4.2.5)

Here we restrict attention to vertically axisymmetric structures that are either fixed, or con-
strained to move in the vertical (heave) direction. Hence, on the surface Sc of the particular

structure C located at the chosen origin of coordinates

0
£ = usns, (4.2.6)

(the relationship between ® and ¢ will be explained explicitly — and differently — for the shallow
and finite depth / deep-water problems within the relevant sections of this chapter: for now we
just need note that ¢ is the time-independent part of ®) where u3 is the complex amplitude of
the structure’s vertical velocity, and the coordinate n is measured normal to S¢ and directed
out of the fluid (ng is the component of the unit normal in the z direction). The equation of

motion for the structure C' (assumed to be surface piercing) is
2 . 2 _ 2
(WM +iwX — (pgma® + k)] ug = —pw ff ¢ngds, (4.2.7)
Sc

where M is the mass, p is the fluid density, x and A are respectively the spring and damper
constants for the moorings, and s is surface area. The boundary condition and equation of
motion for other structures in the lattice are recovered by adjusting the phase of each structure’s
velocity to ensure that the Bloch condition is satisfied.

In the absence of structures, the Bloch condition , together with and the

appropriate bed condition, are satisfied by plane waves

BT cosh k(z+ h) for finite-depth water,
Pq(r) = (4.2.8)

A for deep water,
where the wavenumber k is the positive real root of the dispersion relation w? = gk tanh kh,
B, =B+ Ky, (4.2.9)

and each K, = 2m(m1by+mabs), for mi, my € Z with ¢ representing each ordered pair (my, ma),

is a reciprocal lattice vector [30, Appendix B]. The vectors {bj, by} satisfy alb; = 4;; for
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1,7 = 1,2, so that KgRj = 27p, p € Z, for any lattice vector R;. The forms 1' satisfy
Laplace’s equation (4.2.2)) provided

k*=p; where g =B, (4.2.10)

For a given 3 there may be multiple vectors 3, that yield the same |3,| (which we denote as f3,
and take to mean the unperturbed wavenumber) and the number of such vectors is denoted by
(). The solutions described later are perturbations of the above quasi-periodic plane waves that
exist in the absence of the structures.

Solutions in the presence of structures are obtained by using the method of multiple scales
and matched asymptotic expansions under the assumption that a characteristic length scale b
for the flow around the structure is much smaller than the wavelength 27 /k, so that e = kb < 1.
In addition, it is assumed that the wavelength is of the same order of magnitude as the cell
size L so that kL = ord(1). (Here, we follow [33] and use ord to denote ‘strict order’ so that,
for example, kL = ord(1) as ¢ — 0 does not allow kL to be vanishingly small in the limit.)
To facilitate the solution, the fluid domain is split into many inner regions surrounding each
structure to distances r; < k!, and an outer region at distances rj > b, where b is a length
scale for the inner region (the length b will be chosen differently for the shallow and deep
water cases). Because of the Bloch condition , it is sufficient to match between the outer
region and the inner region containing the global origin O. In particular, the outer expansion
of the inner solution is matched with the inner expansion of the outer solution using the formal
matching principle that is described in [34]. The inner solution ¢ up to terms in ¢! is denoted
go(l), and (p(l’m) is its expansion up to €™ after it is written in terms of the outer coordinates kr.
Similarly, the outer solution’s inner expansion qg up to terms in €" is denoted gzg(m) and qg(mvl)
is its expansion up to € after it is written in terms of the inner coordinate r/b. Matching is
enforced by requiring é(m’l) = (™) for each m and [ when both asymptotic forms are expressed
in terms of the same coordinates.

It is convenient to introduce non-dimensional quantities based on the length scale b, chosen
differently for shallow and deep water. Thus, for a wave of amplitude A, all lengths are scaled
by b and other non-dimensional quantities are defined according to the transformations

pgb*

b = %qﬁ, ug = Awug, M= o8 M, A= PN k= pgb?. (4.2.11)
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In particular, this results in a boundary condition

2
% = wgbu;),ng on Sc, (4.2.12)
and an equation of motion
w3b .
=M A= (W ) g = [ #nsas, (4.2.13)
Sc

where N = n/b, S = s/b*> and the non-dimensional water-plane area W = ma?/b?>. We have
chosen the scalings to study, in particular, the case when the mooring terms are of the same
order of magnitude as the hydrostatic spring. It should be noted that the scaled damping A
implicitly depends upon the frequency but, nevertheless, it is assumed that A = ord(1) as € — 0.
For both shallow and deep water, three problems are considered: the scattering problem in which
the structures are held fixed (ug = 0), the radiation problem in which the structures are forced
to oscillate with velocities consistent with the Bloch condition, and the free-floating problem in

which the structures are free to move in the vertical direction.

4.3 Shallow water

We look for solutions as k — /3 and the length scale b introduced in § [£.2]is chosen to be b = h,
and it is assumed that € = kh < 1. Each cylinder’s radius a is taken to be much smaller than
the wavelength, so that also ka < 1, and a/h, d/h and kL are all assumed to be ord(1) as
e — 0, a notation borrowed from (and defined in) [33]. The vertical length scale for variations
in ¢ is h throughout the fluid domain. However, in the inner regions the horizontal length scale
is h, while in the outer region it is 3~!. Thus, in terms of the original dimensional coordinates,

suitable scaled inner region coordinates are
X=ua/h, Y=y/h, Z==z/h, R=r;/h,

and the inner potential is (X, Y, Z; €) = ¢(z,y, z), while suitable scaled outer region coordinates

are

w/:ﬂx, y/:Bya Z:Z/ha ’f‘;:ﬂT‘j,

and the outer potential is (Z)(I‘, Y, Zy€) = ¢(x,y, z). For the purposes of generating numerical

results, we use a specific geometry for the structures: cylinder j occupies 7; < a, —d < z <0,
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and we define [ = h—d to be the gap between the ocean bed and the bottom of the cylinder. For
the scattering problem, as well as looking at truncated surface-piercing cylinders, we also look at
bottom-mounted circular cylinders; in this case cylinder j occupies r; < a, —1 < z < —d, so that
d is the gap between the free surface and the top of the cylinder and we define d to be the gap.
For Bh < 1, we expect our solutions to satisfy the dispersion relation w? = gftanh h ~ gB%h

and so it is appropriate to choose

t'=B\ght

as our non-dimensional fast-time quantity. It is known (for example, see [3]) that the scattered
wave — and hence a radiated wave, since it is just a variation of a scattered wave — from a single
cylinder is ord(e?), so that the combined effect is ord(1) when the number of cylinders present

is ord(1/€?). This suggests that we also need to define slow scale coordinates

to describe the evolution of waves as they propagate through the array. We assume that the

fast motion of the waves is time harmonic by writing
& = Re [@(x’, v, Z:X,Y, T)e—it’] (4.3.1)

so that fast-time is separated out of the problem (the slow variation in space takes place as we
move horizontally across the array: there is no slow vertical motion, thus (4.3.1]) is independent

of the slow vertical coordinate). Hence we note that our differential operators become

9 9 2 0 o 0? , 0 0 A
ox' " o' ¢ 26" 55 % 4.3.2
O:U/ — a$/ +€ aX 9 8x/ 2 — 8;1;’ p) + 2e ax/ aX + O(E ), ( 3 )

where the relationship between 1y’ and Y follows similarly so that we also have
Vi =V 4+2°V.V, (4.3.3)

=2 = . . . . .
where V' and V? are the horizontal Laplacians in outer region fast coordinates and slow coor-

dinates respectively. Furthermore we have

— € —=. (4.3.4)
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4.3.1 The scattering problem
4.3.1.1 Outer problem

The outer region problem is stated as

9*P

272 i . .
eV o+ 977 = 0 in the fluid, (4.3.5a)
9’ 0%
2
€ 5 + 7= 0 for Z=0 and |r|> a, (4.3.5b)
d
ZZ =0 on Z=-1 (4.3.5¢)

Using the form for ® given in (4.3.1]) generates the multiple scales problem of

2 (2 2% .o\ S azqgs - . .
€ (V + 2e°V V)gb + 572 =0 in the fluid, (4.3.6a)
X 19 278 19
€ <—¢>S - 216288‘2 + 64%;; ) + ‘?fz =0 for Z=0 and |r|>a, (4.3.6b)
9¢°
57 = 0 on Z=-1 (4.3.6¢)

Motivated by the infinite array solution, where our outer solutions were constructed from

fundamental solutions of the form g, = g7(11) + 6297(3), consider the ansatz

6% =9 + €295 + €95,

Going forward, we drop the superscript S from our velocity potentials. Substituting this ansatz

into the system (4.3.6) yields

2 ~
8622@50 —0 in the fluid, (4.3.72)
aazg?)o =0 for Z=0 and |r|>a, (4.3.7Db)
9 =0 on Z=-1, 4.3.7¢
o0z

112



4.3  Shallow water

2 ~ — ~
6822@ — V¢ in the fluid, (4.3.8a)
a%dsg —¢y for Z=0 and Ir| > a, (4.3.8b)
8%&2 =0 on Z=-1, (4.3.8¢)
0? - —9- o~
@(@1 = -V ¢ — 2V :V¢y in the fluid, (4,3_9a)
9 - - d -
504 = v = 4.3.
8Z¢4 G2 + 218T<z52 for Z=0 and |r|>aq, (4.3.9b)
83qu4 =0 on Z=-1 (4.3.9¢)

From (4.3.7)) we can show that b0 does not depend on Z and by using this fact in conjunction
with the system of equations 1| we show that ¢ satisfies

Vdo+do=0 (4.3.10)

everywhere (i.e. the scaled Helmholtz equation encompasses information about the free surface
and bed as well as throughout the domain). Using this result with system of equations (4.3.9))

shows that <2>2 satisfies

Vo +q3——1<£ —2V-V¢ —2iiq3 (4.3.11)
2 2= —3% 0 a7 %0 -0

everywhere.

4.3.1.2 Inner problem

The complete inner region problem is stated as

Vigd + 827(1) =0 in the fluid, (4.3.12a)
072

6222;? + gi =0 for Z=0 and |r|>a, (4.3.12b)
22 =0 on Z=-1, (4.3.12¢)
2 -0 o se (4.3.124)
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where V% r is the horizontal Laplacian in inner region coordinates. For fast wave motion that is
time-harmonic we use

® = Re [ﬁ (X,Y,7: X,Y, T)e_it/}

to obtain a multiple scales problem of

2 (72 2 <\ S &*¢° . .
€ <VIR +2e°Vig- V) ©” + 977 = 0 in the fluid, (4.3.13a)
= <—cp5 - 2162(?;;;9 + 64§$j> + (?;PZS =0 for Z=0 and |r|> a, (4.3.13b)
%«pZS =0 on Z=-1, (4.3.13c)
88(']05 =0 on Sc. (4.3.13d)

For a leading order inner region solution expanded like
0%~ pf +ep? 4. .. (4.3.14)

(motivated by the form of the envelope equations used to describe the outer region) we note
that slow-time does not appear in the inner region governing equations up to (and including)
those that are ord(e), and consequently the inner region solutions that we require are the same
as those found for the infinite array.

4.3.1.3 Envelope equations

The so-called envelope equations describe the slow scale dynamics as the waves move through

the array. To derive them we consider a separable solution

Q
do = Ag(X,Y, T)y(w,y, 2) (4.3.15)
q=1

and apply Green’s identity in one primary cell, as in [17], where
be(x,y, 2) = D(2/h)ePi™ = D(Z)ePa RiclBi/0)7; (4.3.16)

for
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4.3  Shallow water

Although we earlier stated (;50 is independent of depth we note that, whilst the 1), introduced
here seems to contradict that statement, v, is actually independent of depth to leading order
because D(Z) = 1 at leading order. The concept of the multiple scales solution that we will
develop is that we’ve chosen the v,’s such that they are valid at the point in wave frequency
space that we are perturbing from; the A,’s pick up the perturbations from that point in the
case where cylinders are present.

We construct a composite function to describe the fluid in the entire primary cell (which
includes the inner and outer regions) where the truncation of the expansions of the inner and
outer solutions are chosen (we use here the same notation as [34] for describing the matching
principle) so that we have enough equations when matching between the two for the unknowns.
Such a composite function is taken as (chosen with the benefit of hindsight: it is used now for

ease of presentation)
¢° = o + o) — (1Y) (4.3.17)

where the inner region’s outer expansion is subtracted to avoid double counting the intermediate
region that is shared between both fields, as was done in [31] (this was not done in [17]). Applying
Green'’s identity to ¢© and ¢ over the primary cell (the superscript asterisk denotes the complex

conjugate) yields

jjf{¢cvzwg_wzvz¢c} do H {¢>C o a¢ } s

in dimensional coordinates, where V' is the volume of the cell, defined by the boundary surface
0V'; the surface OV consists of the free surface S, the structures’ wetted surface S¢, the vertical
surfaces Sy that bound one cell and the bed Sg. By definition we have Vzw;‘ = 0, and the surface
integrals on Sp and Sy disappear by the bed condition and the Bloch condition respectively.

Writing everything in terms of the appropriate coordinates we hence have
o * 2% (¢
[ )} o

. (4.3.18)
= [[{# 58 iz e { il | as

where it is noted that ¢¢ = ¢1) on the structure whilst dv’ and dS are used to represent the

surface integral in terms of outer and inner coordinates respectively and N is the normal in
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4.3  Shallow water

inner coordinates. Let us introduce the notation I‘S;, I fl, If and ng to represent the different

integrals in equation (4.3.18]), so that we have
=12+ (15 - 1)), (4.3.19)

Dealing with the volume integral in eqn (4.4.19) first, and denoting the inner region horizontal

Laplacian V? R, we have that

=[] i (9 g ) w1 (Vi ) (o) —10)
- —m{wq (o9 )84} v

by the governing field equation in the inner region. Substituting for (), using the governing

(4.3.20)

equations (4.3.10) and (4.3.11]) and truncating at leading order yields

I~ 2¢t fff {1/)2? . %qﬁo} dv’. (4.3.21)
v

Using (4.3.15) with p as the dummy index, noting that Vi, = i(,@g /B)p and @Ap depends on

the slow coordinates only, we thus have

Q QT
I§ =2ty 171” Ay [{[ vy dv' (4.3.22)
p=1 Vv
Using [17, appendix A] and the definition of the reciprocal lattice vector, the integral over V is
1. 1
{[[ vy dv/ ~ ielwﬂ R~ Ry)5  B2A° = 0B A7 (4.3.23)
%

where $2A¢ is the non-dimensional area of one lattice cell (82A¢ = B2L? for a square lattice

with sides L; note that A€ is equivalent to A in [I7, equation A6]). Thus

146q B2AC-VA, for q=1,....Q. (4.3.24)

Iy ~
Ve

We now turn our attention to the integral on the free surface. Note that

a/l/)zlk — 62w*
q

— 4.3.2
0Z |, (4.3.25)

Z=0
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4.3  Shallow water

and so we thus have

n * * a¢(4)
" SIJ {¢(4)62¢q 2=0 ~ z=0 07 } “
* 0w (4.3.26)
+y {(*"(1) o)l i, g (40 e >} €as

where the second integral has been written in terms of inner region coordinates. The second
integral is zero at leading order; for its first component, (<p(1) - g0(1’4)) appears at O(e*) and

so only the leading order is required thus (cp(l) — g0(174)) = 0 and for its second component

0

0z
truncating at leading order we thus have

H{ (2 4 ¢°>} ds’. (4.3.27)

Using (4.3.15)) with p as the dummy variable yields

( M _ g0(1’4)> = 0. By using the free surface conditions acting on éo, ggg, and $4 before

Q
0A i 04,
- 4 /4 * ! 4 2 gc
F o~ —2ie E Yty ds' = BeAC— (4.3.28)
= oT SJ‘FI T’

(the integral is similar to that calculated above as part of the volume integral — although Py is
now being evaluated on Z = 0) where we have, again, been forced to take p = q.

For the integral across the structure, we note when the structures are held fixed IbS = 0.
To calculate the integral I f we re-apply Green’s identity. Substituting the form of ¢() into I [19
yields

jf C§ + e?) % ds,
(4.3.29)

_ S
= Ial + Ia2

where Cf and the form of ¢° are known from the patching solutions. Note that we have
introduced the notation I o and I (;92 to represent the two parts of the integral I, We begin by
evaluating [ &91- As a consequence of the divergence theorem we have that the integral of the

normal derivative of a function across and into a structure’s boundary is zero (provided that
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4.3  Shallow water

function is harmonic within the region), that is to say that

oy oLlip
H as =[] 55 (4.3.30)
Sw
for the surface that the structure cuts on the free surface Sy,. We thus have that
q l iBTR; 2
H an 5= H ~ et e W (4.3.31)
for the non-dimensional water plane area W so that
15 = 2eiﬁqTRjEZCgW (4.3.32)
To evaluate I2, we note that, in inner region coordinates,
1/); - D* (Z)e—iﬁgRje—ieR cos(0—Tq)
- (4.3.33)
= Qe_lﬁq Ri[1 —ieRcos( — 7,)] + O(€?)
so that
oy € _igrgp. OX
—4 — 7B R 2 4 O(e? 4.3.34
aN 2% ey o) (4.3.34)
for x = Rcos(6 — 7). From (4.3.29), we thus have
15~ Coitim, H 50X (4.3.35)
1 aN . .

Consider the function x = Rcos(f — 74) and apply Green’s identity in the inner region only to

the two functions gof and x to give

S [ 2 0’ o2 0’ S g/ IR
IJJ 1 <V1R + 8Z2> X—X (VIR + a7 ) ¥t dv

:ffcpsaix 8901 dS+J:[ g O0x 8901 " (4.3.36)
Sc

LoN PI9R ~

where Sy, defines the cylinder that is the inner region boundary and it is noted that the surface
integrals on the free surface and bed each disappear. By definition of x and the governing fluid
equation on go*lg the volume integral on the left hand side disappears, and by the body condition

in the inner region for gols the second component of the integral across the body disappears, so
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4.3  Shallow water

that

[[ ¢ gj\éf H 1522 8% ds (4.3.37)

which is equivalent to stating

x D1 cos

S

ﬂ @V 53 dS = — lim H cs + ( R) <Sm0> cos(f — 74) dS
c

R%oo

+ lim ffC’l +RCOS(9—Tq) (ES) ( 2;) (2?1?3) a5

R—>oo

(4.3.38)

where it is noted that the summations contained within gpl have disappeared as R — co. Hence

we have that

2 .
5 ~ —%eﬂﬂqTRj {2@1 (ES)" (Cf’s T‘I> } (4.3.39)

SN Tq

We thus have, finally, from (|4.3.29))

: 2
s _ 1 -iBlR; 2 Ta . s\T (cosTy
I = ge Pitte {Wh2 + 27D, (E7) sin 7, (4.3.40)
Note that the integral across the structure can be calculated directly (i.e. without reapplying
Green’s identity) for the case of a truncated cylinder, which has been done as an exercise and is
contained within the appendix.

Matching the inner expansion of the outer region solution

. Q
¢§(071) - _% Z Apeiﬁz?RJ' [1+ieRcos(0 — 7))

”;l (4.3.41)
1 i8TR, . 7 (cosf
T ZlApe iR En) g
p:
with the outer expansion of the inner region solution
10 = C§ +eR (EF)" (Z?;g) (4.3.42)
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4.3  Shallow water

gives the values of the constants to be

. Q
CO — _5 ZApe ﬁp R; (4343)
p=1
s_ 1 - i8] R; T
E :52Apelﬁp i(erp)T. (4.3.44)
p=1

Putting each of our calculations back into Green’s identity (4.3.19)), and multiplying through by
2/(iB%A°), yields

. Q
ey D094, =— ﬁ S{W —2mDiele t 4, for ¢=1,...,Q.  (4.3.45)
p=1

where it is noted that by the definition of the reciprocal lattice vector e By RigiBy Rj — 1,
Comparison with Li and Mei [17] Dimensionalising our envelope equations as given in
(4.3.45)) by transforming our operators for this section as

1
7

. 1~
a7 " 3 A and V — BVQD, (4.3.46)

where Vsp is the Laplacian in two-dimensional space coordinate (in original coordinates) yields

. Q
04, wpl - iTw a?
—2 4 L .VA, =- 262AC€2 pEZI {h2 — 2@161Tp61q} A, for ¢g=1,...,Q. (4.3.47)

For cylinders extending throughout the depth we have ®; = a?/h?, whilst w/3 ~ \/gh is the

waves’ group velocity in shallow water to leading order. Using these values results in

94, B

.@Aq _*ﬂ“gAcZ{l 2elpelq}A for g=1,...,Q (4.3.48)

which is precisely [I7, equation 44] for the group speed in shallow water v/gh.

Recovery of infinite array solution The infinite array leading order solution is

~ 7TL2 @ B
d) = F Z qulT COS(G_Tq), (4349)
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4.3  Shallow water

(Note that in this chapter we use A° to represent the area of a lattice cell and so we amend the
infinite array solutions throughout —i.e. for deep water too — accordingly) whilst the strip array

solution has been found using the leading order solution

. Q . Q
3= <_;) oY AP = L S A, (4.3.50)
q=1 q=1
meaning that we need to use U, = —(i/2) A, when comparing the solutions which, whilst making

no difference to the recovery of the scattering solution, is accounted for here for completeness.

Let us hence consider amplitudes of the form

T2
A%, 7.1y = 2T

Upe T (4.3.51)

for constants Ups . Amplitudes that do not vary with space are equivalent to the waves found in

the infinite array problem. Having considered the fast-time dependence in
® =Re [&(w',y’, Z: XY, T)e_i”t] ,

we have that the time dependence found in the infinite array solutions is related to the strip array

time dependence via e % = ¢ Wle=iT When used with the applicable dispersion relations,

this becomes
eflk\/ght = eflﬁx/ghteflﬂT

so that, when everything is put in terms of ¢/, we have non dimensional frequency

g =1+ €0 (4.3.52)
and so
_(k=p)(1/B)
Q= G (4.3.53)

Using the constant form of A,, as given in (4.3.51), with this relationship between € and £ in

the envelope equations yields

Q
Z (W — 2w©1e?pelq] ap for ¢g=1,...,Q. (4.3.54)
p=1

(k-5)(/8) 1
(Bh)E " 25
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4.3  Shallow water

The infinite array scattering solution (in shallow water) was found to be

( - /83) S L2 S T
W ZU —27T©161q81p] =0 for p= 1’,,,,Q (4355)

Taking k — 3 so that 8 = 3, in this solution (and dividing through by 282L?) yields

Q
W@f = ﬁ;ACZ (W —21D1ef e, US for ¢=1,...,Q (4.3.56)
p=1

giving agreement with the strip array solution when there is no spatial variation.

4.3.1.4 Obtaining system of equations for solving numerically

Consider a strip of truncated circular cylinders occupying 0 < 2/ < s and y' = +oo. Without
loss of generality, we define a forward going wave to have a positive z-component with an angle
measured relative to the positive z-axis of 0 < 71 < 7/2, so that any backward propagating
waves will have an angle lying between (7/2, 7] with a negative z-component. We require that
the width Bs of the array be of strict order 1/€? so that the array is wide enough for resonance

to be observed, and hence write that S = ¢2s. Note that inside the array the envelope equations

(4.3.45) hold, whilst outside the array they reduce to

IBq <
87T + 3 VA, =0 for ¢=1,...,Q. (4.3.57)

For the leading order outer solution

¢0_2A (XY T)0yw.9.2) (1358

we denote the constants differently, depending on whether we are inside or outside the strip.

Thus

Ay ;X<O
Ag=14 A4, ;0<X <88, (4.3.59)
At i8S <X

so that the incident wave, with wavenumber 3, takes the form

Al_ (X’ }A/’ T) _ Aoei[lCX cos 71 +ICY sin T1—QT) (4.3.60)
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4.3  Shallow water

for a prescribed amplitude Ay with detuning wavenumber ¢2/C and detuning frequency €2(2. For
our non-dimensional problem, the detuning frequency and wavenumber are equivalent.
The Bloch condition dictates the form that the solutions take in the ¥ direction (the direction

of which the array is infinite) and we thus consider solutions of the form

A7 (X,Y,T) By (X )
AX Y, T) | = A0 | By(X) |eK¥sinn-01] (4.3.61)
AF (XY, T) Bf(X)

and furthermore (from (4.3.58)), use continuity of the velocity potential and the derivative of
velocity potential to show that we only) require continuity of the velocity potential (and hence
amplitudes) at the boundary points X=0and X = BS so that

B, (0) = B,(0), (4.3.62)

By(8S) = By (BS). (4.3.63)

Further boundary conditions are obtained by noting that for X < 0 the only forward propagating
wave is the incident wave, whilst for X > S there are no backward propagating waves. When
cos T > 0 we have a forward propagating wave, whilst when cos7; < 0 we have a backward

propagating wave. Thus our boundary conditions are

B, =0 foranyq=2,...,Q such that cos7, >0 (4.3.64)

B;‘ =0 forany ¢=1,...,Q such that cos7; <0. (4.3.65)

Outside the strip, we use (4.3.61)) with (4.3.57) to give

dB¥ -1 —sinTsinTgy)

L =ik BE f =1,... 4.3.66
o ST o g=1..0 (4.3.66)

which has a general solution of the form
BE(X) = bFeeX (4.3.67)

for
K, = IC(l —siny sian).

COS Tq
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Inside the strip, we use (4.3.61f) with (4.3.45]) to give

. Q
dB i 1 . . 1
dX'q :ﬁ2AC - BQAC/C(l —sinT sinty) By — 5 2 [W — 2#@161261(1] B, (4.3.68)
for g =1,...,Q. In matrix form this is
By By
d . s
e =F (4.3.69)
Bq Bq
where ES is a @ X () matrix with entries
s 1L s 824K (1~ sinmsing) — = (W + 270€]] ) 4.3.70
B _W@ ij ( 75111’7’1811172)75( + 2191 ej;€e1; (4.3.70)
for the Kronecker delta function d;;.
4.3.2 The radiation problem
4.3.2.1 Outer and inner problems
The outer problem is stated as
2726+ 22 0 in the fluid (4.3.71a)
¢ - .3.
072 ’
*® 0P
€2 5z Tz —0 for Z=0 and Ir| > a, (4.3.71b)
0P

and, as with the scattering problem — for fast wave motion that is time-harmonic, that is

® = Re |¢°(X,Y, Z; XY, T)e_it’] — we consider a separable solution of the form

Q
Oy =D Ag(X, Y, T)py(,y, 2) (4.3.72)
q=1

with 1, as defined previously. In the outer region, the ansatz
.1 . . .
=300 +00 + 07

is motivated by the infinite array solution. The slow-time equations in the fluid and on the free

surface and bed for qg(%, g%OR and (Z)§ all correspond respectively with the problems for ¢3§ , qgg and
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¢5 as given in systems ([£.3.7)-([.3.9) (it is the matching with the inner region solution — which
depends on the body condition — that distinguishes the outer region between the scattering and
radiation problems).

The complete inner region problem is stated as

>*®

Vip® + 572 =0 in the fluid, (4.3.73a)
20 d

€Qgt’2 + gZ =0 for Z=0 and |r|>a, (4.3.73b)
P

gZ =0 on Z=-1, (4.3.73¢)

as well as a body condition, which in inner region coordinates (derived directly from that given

in the problem formulation section) is

87go_w2a 9

= "us = 2y 4.3.74
a7 g 3 3 ( )
For the radiation problem we force a structure to move with velocity

Cug = (X, Y, T)e (w/BVah) GiB" R,

for non-dimensional complex amplitude of the structure’s vertical velocity W(X , f’, T') which has
been forced to evolve on the slow scales as waves move across the strip array. Expanding the
complex amplitude of the structure’s vertical velocity in powers of €2, the body condition for

the radiation problem hence becomes

o . -
aiz _ J6TR, <7O(X,Y,T) + (X, YV, T) +) on  Sp;. (4.3.75)

For an inner region ansatz of
1 1
YR = §¢(@+E¢0Rl+logeg0§0+<pg+... (4.3.76)
we thus have a homogeneous body condition for cpég, cpé%l and goo% and
ool ipTR,
- j 4.3.77
07 € 70 ( )

after dropping the dependence of the ’s on (X Y. T ) for ease of notation. We note that slow-

time does not appear in the inner region governing equations up to (and including) those that
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are ord(1), and consequently the inner region solutions that we require are the same as those
found for the infinite array. Going forward in this section, we will drop the R subscript from

the velocity potential.

4.3.2.2 Envelope equations

We apply Green’s identity to the composite function (chosen with the benefit of hindsight: it is

used now for ease of presentation)
¢° = ¢ + o0 — 0 (4.3.78)

(The truncation of the expansions of the inner and outer solutions are chosen so that we have

enough equations when matching between the two for the unknowns) and b, to obtain
=1+ &k - 1. (4.3.79)

with each integral notation following from the previous section; recall that I® is the contri-
bution from the integral over ¢(©) (05 /ON) and I {t is the contribution from the integral over
by (0 JON) (which was equal to zero for the scattering problem). The arguments for evalu-
ating the integrals I‘I}, 1 }I? and [ g' follow straightforwardly from those of the scattering problem,
albeit that the terms appear at different orders of €, due to the different ansatz under consider-
ation here. Similarly to the scattering problem, we note that slow-time does not appear in the
inner region governing equations up to (and including) those that are strictly of order ¢, and
consequently the leading order inner region solutions are the same as those found for the infinite

array. We thus have

i~ ;62%’52140 . %Aq for g=1,...,Q. (4.3.80)
i 0A
IR~ —%GQﬁzAca—Tq (4.3.81)
i _igrg. T (COST,
IR~ —emPa Ry {WCR — 2in®D; (B} ( ) q)} 4.3.82
2 02 ( 1) sin 7 ( )
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Matching the inner expansion of the outer region solution

. Q :
R . 1
=20 — _% E :Apelﬂij [62 - éRcos(Q — Tp)}

pgl (4.3.83)
i pTr, |1 1 7 (cosf
=5 2 A [2 - cRlew) (me)]
p=1
with the outer expansion of the inner region solution
1 1 T (cosf
—1,-2) _ R R
gives the values of the constants to be
COQ = —5 ZApelﬂp J (4385)

p—l

Ef = —*ZA e ep) . (4.3.86)

Furthermore, for circular cylinders with base .S; and sides S5, we have that

H% YA ds H%W a5
BTR, /a/h/% Ry RAOAR + 0 (4.3.87)

W.

i
2
i
2

Putting each of our calculations back into Green’s identity (4.3.79)) and multiplying through by
2/(iB2 A°), yields

67T+F VAq:—WpZ:l{W—27T®161pelq}Ap—M"Y@ for q = 1,...,@.

(4.3.88)

Recovery of infinite array solution Comparing the infinite array leading order solution
with the strip array leading order solution, we see that we need to consider amplitudes of the
form

A XV, T) = QTZL Ufe 0T
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for constants Uf. Using this form of A, with vo = e 7" and equation (4.3.53) inside the
envelope equations (4.3.88]) yields

Q
k— 1 1 W
WU;% :252AC Z [W — 271@16{(16117] Uf RS for ¢=1,...,Q. (4.3.89)

q=1

The infinite array radiation solution in shallow water was found to be

Q
G ALT ro 1y
iU G S W = 2ne e UF = -
q=1

. p=1,...,Q (4.3.90)

Taking k — 3 so that 8 = 3, (and dividing through by 232L?) in this solution yields

Q
Z [W — 27‘(’@16%;261(]] Uf
p=1

W
23202’

(k= B)(1/8) 1

(Bh)? 7 7 2B24¢ ¢g=1,...,Q  (4.3.91)

giving agreement with the strip array solution when there is no spatial variance.

4.3.3 Freely-floating structures

The non-dimensional freely floating body condition is

6 .
PFr — 2

27 on Spj, (4.3.92)

where we drop the superscript R for this section. The structures are not being forced to move
with a velocity that is slowly evolving across the array, hence there is no slow-time evolution
built into the freely floating condition; they are instead moving with a velocity that depends on
the slow evolution of the waves themselves and so their (slow scale) movement is picked up from
the slow evolution of the waves (i.e. the Apeiﬁl? Rjs); for this reason we don’t include the phase
difference within the body boundary condition.

The equation of motion

. Q
; Co2 W 1 W i AT
A S S S—— N WO 4.3.
U3 62 ‘1]+:‘€—1)\ 62‘17+I€—i)\2pz:1 pe P ( 393)

after matching (-2 with (23(72,71). The application of Green’s identity to the composite
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function ¢. and 1, in one cell is represented by the expression

Iy =Ip+é (I, - 1), (4.3.94)
which is defined in the obvious way, as per the formulation in the radiation solution, where

IF = %e_iﬁg RiWeud (4.3.95)

(note that in the calculation for If in the radiation problem, the phase factor "B Ri cancelled
with the phase factor ¢ B from the body condition).
Amending (4.3.88]) appropriately means that the application of Green’s identity in one cell

thus yields

—21D1ef ey | Ap (4.3.96)

e e g =
T VAT om e 2 (W aoin

24, B PG Wk —iN)
oA > |

p=1
The discussion found in §4.3.1.4] also applies here. Following the same discussion and meth-

ods, the differential equation for the shallow water freely-floating problem, in matrix form, is

J B B
=< : =F : (4.3.97)
Bq Bq
where F is a @ x @ matrix with entries
i 1 . . . 1/ W(k—1iA)
FZ“ :Wm 52]52A IC(l — S1n 71 S1n Ti) — 5 <I/I/v—|—/{/—1)\ — 27T©16{q61p>:| (4398)

for the Kronecker delta function d;;. The boundary conditions, regarding left- and right-going
waves applies here also.

Recovery of infinite array solution Considering wave amplitudes of the form

2miL?
Ac

AN(X,Y,T) = Upe T

for constants U, for the reasons outlined previously inside the envelope equations (4.3.96)) yields

Q .
(k=5 Q/B), _ 1 3 [W(“—IA) —orDielen| Uy g=1,....Q.  (4.3.99)

(Bh)2 T BRAc Wk —i
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The infinite array freely-floating solution was found to be

(k* — py)L?

Q .
L? W (k —i))
e U, = EE [M - 2w®16{qelp] U, p=12,...Q. (4.3.100)

q=1

Taking k — 8 so that 8 = 3, (and dividing through by $2L?) in this solution yields

Q .

k—p) 1 W (K —iX

( <§2§2/5)Uq:ﬂwz}{wfﬁi&‘z”@w?pelq} Up, p=12,...Q.  (43.101)
p:

giving agreement with the strip array solution when there is no spatial variation.

4.4 Finite depth and the deep water limit

The work in this section is effectively an account of the solution given in [18], where it is assumed
that the size of the structures present are very small when compared with the depth of the water.
We also wish to consider small structures relative to the depth, but we on the other hand wish
to consider structures in deep water, that is in the limit as the water’s depth grows infinitely
large. Therefore the work in this section is presented up to the point of obtaining the envelope
equations (for both the scattering and radiation problems) in terms of the wave frequency w
(i.e. without using the dispersion relation). Only once these have been obtained do we use the
finite depth dispersion relation in order to recover the solutions found in [I8] before continuing
on our way with using the deep water dispersion relation in order that we may find solutions
that are comparable to our infinite array work. We only consider the deep water case for the
freely-floating solution.

We look for solutions as £ — (3 and the length scale b introduced in § is chosen to be
b = a and, for deep water, the unperturbed wavenumber is 3 = w?/g. We assume that the size
of each structure is characterised by a length a that is much smaller than the wavelength 27/,
that is e = fa < 1, and that a/h and BL are ord(1) so that a/L < 1. In the inner region the
motion takes place on the length scale a, but in the outer region the motion takes place on the

length scale f~!. Hence suitable inner coordinates are

X=zfa, Y =2z2/a, Z=2z2/a, R=r1j/a, (4.4.1)
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4.4  Finite depth and the deep water limit

and the inner region potential is (X, Y, Z, €) = ¢(z,y, z), while suitable outer coordinates are
! ! ! !/
v =px, y=py =z =0z 1r;=00r;

and the potential is d;(:v’,y’, 2/, €) = ¢(x,y,z). Spherical coordinates centred on the origin O
are also used; these are denoted by (R,%,60) = (R,cos ' (Z/R),0) for the inner region, and
(7,9, 0) = (¥, cos~1(z/7), 0) for the outer region. For Ba < 1, we expect our solutions to satisfy
the dispersion relation w? = ¢ tanh Sh and so it is convenient to introduce a non-dimensional

fast-time quantity

' =+/Byg t.

We also need to define slow scale coordinates

to describe the evolution of waves as they propagate through the array. We assume that the

fast motion of the waves is time harmonic by writing
® =Re |p(z',y, Z; X, Y, T)e W/ VB (4.4.2)

so that fast-time is separated out of the problem. Hence, we note that our differential operators

become
i N i + €2 9 . 0 — 0’ + 262i 0 + 0(54) (4 4 3)
ox' = Oz’ oxX = 0x'?2 9z 2 oz’ 9X ’ o

where the relationship between 3’ and Y follows similarly so that we also have
V25V 4282V -V + €402 (4.4.4)

where V is the horizontal Laplacian in slow coordinates and V is the horizontal Laplacian in

outer region coordinates. Furthermore we have

o  , 0 2 02
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4.4  Finite depth and the deep water limit

4.4.1 The scattering problem
4.4.1.1 Outer problem

The outer region problem is stated as

2
= ®
Vi 4+ % —0 in the fluid, (4.4.62)
20 09
gt’Q + gz’ =0 for 2’=0 and |r|> a, (4.4.6b)

as well as, for water of finite depth a bed condition

0P
@ =0 on Z/ = —].7 (447)
while for deep water we require
[V®| -0 as 2 — —oo. (4.4.8)

(We note now that when we come to applying Green’s identity in a single cell, the surface
integral across the bottom of the cell — whether we are considering finite depth or deep water —
is zero. For this reason, and to avoid repetition, from this point onwards we omit stating the
finite depth bed and deep water condition each time we state an outer problem).
Using the form of ® given in generates the multiple scales problem of
92 (ng
022
(—“’2&5 g @ 99° 643%5) 4 9%
By V/Bg OT oT? 0z

(ﬁQ +22V .V + e4§2) o+ =0 in the fluid, (4.4.9a)

=0 for Z=0 and |r|>aq, (4.4.9b)

Motivated by the infinite array solution, where our outer solutions were constructed from fun-
(1) 2 (2)

damental solutions of the form gy, = gmn + € gmn, consider the ansatz

6% = 0f + 705 + ..

Going forward, we drop the superscript S from our outer velocity potentials. Substituting this
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4.4  Finite depth and the deep water limit

into the system (4.4.9) yields

~ 2 ’
Voo + %jﬁ —0 in the fluid,
2
882’% - :—ﬁqﬁg =0 for 2/=0 and |r|>a,

24 ) .
00 32, 9V -dy in the fluid,
82’2
, i i
- P2 — 2i w_0%o | 9b0¢ 0 for 2/=0 and |r|>a.

59" Bg or g 07

4.4.1.2 Inner problem

The complete inner region problem is stated as

1 0%®
V2. + EQZZQ — 0 in the fluid,
20 P
Egt’2 +Z—Z:0 for Z=0 and |r|> a,
0P
aiN =0 on SC.

For fast wave motion that is time-harmonic we use
® = Re [gos (X,Y, Z; X,V,T)e i@/ Vo)t

to obtain a multiple scales problem of

. 52
2 (v%R 2V, - v) o+ 3782 —0 in the fluid,
2 0p | 4 0%\ | O
—p — 2ie? 4 =0 for Z=
e( © — 2ie 8T+68T2 +aZ 0 for 0 and |r|>a,
%:O on Sc.

For a leading order inner region solution expanded like

@S:gog—i-e«pf—i-...

(4.4.10a)

(4.4.10b)

(4.4.11a)

(4.4.11D)

(4.4.12a)

(4.4.12D)

(4.4.12¢)

(4.4.13a)

(4.4.13b)

(4.4.13c)

(4.4.14)
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4.4  Finite depth and the deep water limit

(motivated by the form of the envelope equations used to describe the outer region) we note
that slow-time does not appear in the inner region governing equations up to (and including)
those that are ord(e), and consequently the inner region solutions that we require are the same

as those found for the infinite array.

4.4.1.3 Envelope equations

The so called envelope equations describe the slow scale dynamics as the waves move through

the array. To derive them we consider a separable solution

by = ZQ: A(X, Y, Typg(al,y, 2), (4.4.15)
g=1
for
be(e',y',2) = —%@D(Z’)eiﬂ%ei(ﬁg/ A (4.4.16)
where
D(z’) — M

cosh Sh

Note that we’ve chosen the 1),’s such that they are valid at the point in wavenumber space
we are perturbing from; the A,’s pick up the perturbations from that point in the case where
cylinders are present.

We formalise the solution given in [I§] by constructing a composite function to describe the
fluid in the entire primary cell (which includes the inner and outer region) where the truncation
of the expansions of the inner and outer solutions are chosen so that we have the correct order
of equations when applying Green’s identity. Such a composite function is taken as (chosen with

the benefit of hindsight: it is used now for ease of presentation)
¢° = @ 4 O — H0.2) (4.4.17)

where the inner region’s outer expansion is included to avoid double counting the intermediate
region that is shared between both fields. Applying Green’s identity to ¢ and ¢y over the

primary cell (the superscript asterisk denotes that the complex conjugate has been taken) yields

I v ey o [ {or %2
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4.4  Finite depth and the deep water limit

in dimensional coordinates, where V' is the volume of the cell, defined by the boundary surface
OV'; the surface JV consists of the free surface Sg, the cylinders wetted surface S¢, the vertical
surfaces Sy that describe one cell and the bed Sp. By definition we have V%ZJJ = 0, and the
surface integrals on Sp and Sy disappear by the deep water condition and the Bloch condition
respectively. Writing everything in terms of the appropriate coordinates, and using the scattering

boundary condition on the inner region solution we hence have

_Hf{ ( alQ)d)c} (4.4.18)
I R ey [ I e

where it is noted that ¢¢ = go(l) on the structure and dS' is used to represent the surface integral

in terms of inner region coordinates and N is the normal in inner region coordinates. Let us
introduce the notation I{?, 1 g, I9 and Il;g to represent the different integrals in (4.4.18)) so that

we have
I =T0 +e(I? + 1)) (4.4.19)

to represent the application of Green’s identity in one cell.
Dealing with the volume integral in eqn (4.4.19) first, and denoting the inner region horizontal

Laplacian V§ R, we have that

= [ {5 (70 ) i (T ) (250 o
- _fjf {% ( g /2> é(z)} dv’

by the governing field equation in the inner region. Substituting for ¢, using the governing

(4.4.20)

field equations and then truncating at leading order yields

Q
1§ ~2 [ (wﬁ- %O) ' =26 [[[Quiv -9 (S Agy | pas q=1,....Q
\% \% q=1

(4.4.21)

Using (4.4.15) with p as the dummy index, noting that Vi, = i(B,/8)1p and @Ap depends on
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4.4  Finite depth and the deep water limit

the slow coordinates only, we thus have

0

I{? ~ 2ie? ﬁg,B2AC {

T Q
thDQ( ) d I]ﬁp Z% o a=1,....Q (4.4.22)

where 32A°¢ is the non-dimensional area of one lattice cell (32A4¢ = B2L? for a square lattice);
it comes from the horizontal component of the volume integral as demonstrated in [I7]; the
Kronecker delta function that appears in said calculation forces p = ¢. The integral through the

depth is calculated as

0 1 Bh
D*(2') d2' = = tanh 8h |1 4.4.23
—Bh (') dz g van b [ * sinh(Bh) cosh(Bh)} ( )
We now turn our attention to the integral on the free surface. Note that
Oy
D'(Z) v} (4.4.24)
0z z'=0 ! 2'=0
where
D) = sinh( + Sh)| - h Bh (4.4.25)
o  coshBh |._, o
in the outer region but (for calculating I later) note that
D'(eZ) = EM = etanh Sh (4.4.26)
70 cosh Bh 70
in the inner region. By definition, we have
Joooe |
IF_H{ il TV
10
o) O (0,2) / * S (0) (0,2) 2
+H{( ) Deai| | oy (A0 - e00) | cas
q = 17 MR Q7
(4.4.27)

where the second integral has been written in terms of inner region coordinates. The second

integral is zero, because ¢ — p(%2) = 0. By using the free surface conditions acting on quSO and
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4.4  Finite depth and the deep water limit

(132 we obtain

gB OT

Using (4.4.15)) with p as the dummy variable yields

(21 QWW&Z’“) } ds', qg=1,...,0. (4.4.28)
=0

VB3 04,
I ~ —9i¢ 2 B2Ac q= 1’ . ’Q (4429)
or’
(the integral is similar to that calculated above as part of the volume integral — although v, is
now being evaluated on 2’ = 0) where we have, again, been forced to take p = q.
For the integral across the structure, we note that for the scattering problem I° = 0. By

definition we have that

HCS %4 45 for g=1,...,0, (4.4.30)

where (0 = Cﬁq to leading order. As a consequence of the divergence theorem we know that
the integral of the normal derivative of a function across and into a structure’s boundary is zero,

that is to say that

ﬂ o 45 = JT

= ﬂ (4.4.31)
~ LﬁgD’(eZ) e 1Ba Ry
w Z=0
forq=1,...,Q, where Sy is the surface that the structure cuts on the free surface and W is the

(non-dimensional) water plane area. For a circular cylinder with a radius non-dimensionalised

by a we have W = 7 giving

I *{fig tanh Bh e PiBirCS  g=1,...,Q. (4.4.32)

| Z

Matching the outer region solution’s inner expansion gZA)(QO), written in terms of dummy
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4.4  Finite depth and the deep water limit

variable p, with the inner region solution’s outer expansion (p(o,o) yields

: Q
v/ Bg i8TR;
OS - _ iB 4.
G 5D A (4.4.33)
p=1
so that
Q
IJ ~er ) A, (4.4.34)
p=1
where it is noted that by the definition of the reciprocal lattice vector e By RigiBy Ry — 1.

Putting each of our calculations back into Green’s identity (4.4.19)), and multiplying through by
w/(2iBA°) yields

04, Bh ﬂT N imw B
\/FaT t3 (1+ sinh(5h) cosh(ﬂh)) I5; VA = - ﬂzACZ P =L Qo (3435)

Comparison with Garnaud and Mei [18] Putting our envelope equations as given in
(4.4.35) back into dimensional form by transforming our operators

1 1
-5

8 ~ 1

9 15,
oT 25"

where Vayp is the Laplacian in two-dimensional space coordinate in original coordinates, we

obtain

8A ﬂT ~ imw a?
+Cy,—L 3 +VapAg =— = ACEAP, g=1,...,Q. (4.4.37)

This is analogous to [I8, equation (4.17)] for their group speed [I8, equation (3.8)]

W 28h
C=135 (1 * smhmh)) |

Deep water envelope equations for the scattering problem We continue going forward

with this scattering solution under the deep water assumption, that is that Sh — oo, so that

w? = gf so that from (4.4.35)

04, 1B8; o,  ir ZQ:

— f =1,...,0Q. 4.4.
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4.4  Finite depth and the deep water limit

The discussion found in §4.3.1.4] also applies here. Following the same discussion and meth-

ods, the differential equation for the deep water scattering problem, in matrix form, is

By By
d . s .
i B : (4.4.39)
Bq Bq
where ES is a Q x (Q matrix with entries
i 1
SR [61;82A°K(2 — sin ry sin 7;) — 7] (4.4.40)

W B2A¢ cos T

for the Kronecker delta function d;;. The boundary conditions, regarding left- and right-going

waves applies here also.

Recovery of infinite array solution The infinite array leading order solution is
~ Q .
¢ = Uy 0=7a), (4.4.41)
q=1

whilst the strip array solution has been found using the leading order solution

. Q Q
qg _ <_ \/@l> eZI ZAqeiﬂ;r — —iezl ZAqeiﬁgr (4.4'42)
w
qg=1 q=1

meaning that we need to use U, = —iA, when comparing the solutions which, whilst making no
difference to the recovery of the scattering solution, is accounted for here for completeness.

Let us hence consider amplitudes of the form
A(X,Y,T) = iUy e (4.4.43)

for constants U];9 (i.e. amplitudes that do not vary over space). Having considered the fast-time
dependence in ® = Re g%(a:’ L Z ;X ,Y,T Je ! we have that the time dependence found in
—iwt = fiwtefiQT'

the infinite array solutions is related to the strip array time dependence via e e

When used with the applicable dispersion relations, this becomes

e—h/kgt = e—n/ﬁgte—lQT
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4.4  Finite depth and the deep water limit

so that, when everything is put in terms of ¢/, we have non dimensional frequency

k

3= 14 €20 (4.4.44)
so that k/B8 = 1+ 2¢2Q + €102 and so
k—p5)(1/25
O~ ((5)@()2/) (1.4.45)

Using the form of A,, as given in (4.4.43)), with this relationship between €2 and k in the envelope
equations (4.4.38) yields

(k=B)(1/8) s _ 7

——U, (4.4.46)

(Ba)? a 52AcZU&g:07 g=1,...,Q.
D

=1

The infinite array scattering solution in deep water was found to be

(k? — B2)L2
(ka)?

Q
w2
U - T Y og=0, p=1,...,Q (4.4.47)
q=1

Taking k — /3 so that 3 = 3, in the infinite array solution (and dividing through by 82L?) yields

Q

kE—pB)(1

( (ga))(Q /5) U(f N /BQWAC Zl ULE’S' =0, ¢=1...,Q (4.4.48)
p=

giving agreement with the strip array solution when there is no spatial variation.

4.4.2 The radiation problem
4.4.2.1 Inner and outer problems

The outer region problem is stated as

0P

Vo + 552 =0 in the fluid, (4.4.49a)
0?® 00
Tl + E e 0 for 2/=0 and |r|> a, (4.4.49b)

as well as, for water of finite depth a bed condition

0P

2 0 onsp (4.4.50)
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4.4  Finite depth and the deep water limit

while for deep water we require
[V®| -0 as 2 — —oc. (4.4.51)

As with the scattering problem — for fast wave motion that is time-harmonic, that is ® =

Re [@S(X, Y, Z: XY, T)e_i(w/‘/@)t/} — we consider a separable solution of the form

Q
O =D Ag(X, Y, T)y(,y, 2) (4.4.52)
qg=1

with 1, as defined previously. In the outer region, the ansatz
1. . .
¢:;¢§1+6¢{3+e3¢§+...

is motivated by the infinite array solution. The slow-time equations in the fluid and on the free

surface (as well as either the bed or deep water condition) for (ﬁoRl and qgfi correspond respectively

with the problems for <ZA>§ and ¢35 as given in the systems of equations (£.4.10) and (£.4.11)); As

with the shallow water problem, it is the matching with the inner region solution — which depends
on the body condition — that distinguishes the outer region between the scattering and radiation
problems.

The complete inner region problem is

5 1 0°® _ ‘
Vir® + 2977 = 0 in the fluid, (4.4.53a)
20 0P
eé((;/z + ZZ =0 for Z=0 and |r|>aq, (4.4.53b)

as well as a body condition, which in inner region coordinates (derived directly from that given

in the problem formulation section) is

2
99 = wll,g = eug tanh Sh (4.4.54)
07 g

For the radiation problem we force a structure to move with velocity
e tanh Shus = V(X’ f/, T)e—i(w/\/@)t'eiBTRj

for non-dimensional complex amplitude of the structure’s vertical velocity 'y(X , f/, T') which will

evolve on the slow scales as waves move across the strip array. Expanding the complex amplitude
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4.4  Finite depth and the deep water limit

of the structure’s vertical velocity in powers of €2, the body condition for the radiation problem

hence becomes

R o o o
9P _ BT R <7O(X, V. T) + (X, V. T) + .. ) on  Sg;, (4.4.55)
for both the arbitrary depth and deep water case. For an inner region ansatz of

1
@R = ggoézl + sooR (4.4.56)

the body condition for the radiation problem becomes

o1

= 4.4.
97 0 (4.4.57a)
?9? = e iy (4.4.57b)

after dropping the dependence of the ’s on (X Y, T') for ease of notation. We note that slow-
time does not appear in the inner region governing equations up to (and including) those that
are ord(1), and consequently the inner region solutions that we require are the same as those
found for the infinite array. Going forward in this section, we will drop the R subscript from

the velocity potential.

4.4.2.2 Envelope equations

We apply Green’s identity to the composite function (chosen with the benefit of hindsight: it is

used now for ease of presentation)
¢ = 6V 4 o0 _ 0 (4.4.58)

(The truncation of the expansions of the inner and outer solutions are chosen so that on applying
Green’s identity, we have all of the required leading order terms of the solutions for each of the

integrals) and ¢ to obtain
I} =18 4 (IR - 1. (4.4.59)

where the notation is used to represent the same components of the integrals we are required to
calculate. The arguments for evaluating the integrals I‘};, 1 11?% and [ g follow straight forwardly

from those of the scattering problem, albeit that the terms appear at different orders of €, due
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4.4  Finite depth and the deep water limit

to the different ansatz under consideration here. Similarly to the scattering problem, we note
that slow-time does not appear in the inner region governing equations up to (and including)
those that are ord(1), and consequently the leading order inner region solutions are the same as

those found for the deep water infinite array. We thus have

IF ~ieB2A° (1 + Bh by i@A (4.4.60)
V= sinh(Bh) cosh(5h) ) B q -
VB9 2 4044
IR~ —9i 73 A (4.4.61)
R
IR~ \{d@etanhﬁh e 1P qTRm% (4.4.62)

with each being defined for ¢ =1,...,Q.

7_1)

Matching the outer region solution’s inner expansion q@%{l , written in terms of dummy

variable p, with the inner region solution’s outer expansion @%_1’_1) yields
ck iVﬁng:A i8] R; 4.4.63
— P
01 w p€ (4.4.63)
p=1
so that
Q
IFend A, (4.4.64)
p=1
where it is noted that by the definition of the reciprocal lattice vector e By RigiBy Ry — 1.

Furthermore, for circular cylinders with bases S; (note that dp(0) JON = 0 on the cylinders’
sides) that have been scaled by their radii a, we have that

3(p(0)
=1
) aja  p2m
21\/ ge_lquRj/ / P Rin RAGAR (4.4.65)
w 0 0
_ivPg
w

T™0-

Putting each of our calculations back into Green’s identity (4.4.59)), and multiplying through by
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4.4  Finite depth and the deep water limit

w/(2iBA°) yields

04, w Bh ﬁT S imw @ 1\/7
VBT + g < +smh(,8h)cosh(ﬁh)> VA= Tomae ;AP " (4.4.66)

qg=1,...,Q.
Comparison with Garnaud and Mei [18] Putting our envelope equations as given in

(4.4.66)) back into dimensional form by transforming our operators as done in the recovery of

the Garnaud and Mei scattering solution, we obtain

Q
,BT ~ inw a®
Cgﬂ - VapA, = — T Z e . og=1,...,0. (4.4.67)
On comparing our body condition (4.4.55)) with [I8, equation (5.4c)] we see that the amplitude
of our velocity 7y is related to their amplitude of displacement ¢y through vy = —i(w/+v/B9)<o
and hence these envelope equations are analogous to [I8], equation (4.17)] for their group speed

Cy given in [I8, equation (3.8)].

Deep water envelope equations for the radiation problem We continue going forward

with this solution for the radiation problem under the deep water assumption, that is that

Bh — 00, so that w? = g8 so that from (4.4.66))

. Q
04, 187 - ir
04y 1Py oy __ T A ~1....0. 4.4.68
or T35 V4, 25PAC pEl p—i0], ¢=1,...,Q ( )

Recovery of infinite array solution Comparing the infinite array leading order solution
with the strip array leading order solution, we see that we need to consider amplitudes of the

form

Ap(X,Y,T) = iU[te T

for constants Uf. Using this form of A, with vg = e T and equation (4.4.45) inside the
envelope equations (4.4.68) yields

Q

k—B)(1/8
WUf—ﬂ;ACZ;Uf——B;AC, g=1,...,Q. (4.4.69)
=
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4.4  Finite depth and the deep water limit

The infinite array solution to the radiation problem (in deep water) was found to be

Q

(k2 _/BqQ)‘L2 R T R 27r

(kTUP - Ac§:12Uq =-4 P=1...Q (4.4.70)
q:

Taking k — /3 so that 3 = B, in the infinite array solution (and dividing through by 82L?) yields

Q

k —
WU’;{_BJACZUfz_ﬁzc’ ¢=1,...,Q (4.4.71)

p=1

giving agreement with the strip array solution when there is no spatial variation.

4.4.3 Freely-floating structures

We consider only the case of deep water in this section and hence Sh — oo means that w? = Sg.

The non-dimensional freely floating body condition is

Oy ;
8—Z:eu§ on Spj. (4.4.72)

where for this problem we again drop the subscript R. The equation of motion

Q

. Cor W 1 W 3T .
j_ v - NT AGBR 4.4.
R e 6”,+H_Mp§:1 pei% (4.4.73)

after matching (-1 with é(*l’*l). The application of Green’s identity to the composite

function ¢, and 1y in one cell is represented by the expression
Iy =Ip+é (I, - 1), (4.4.74)
which is defined in the obvious way, as per the formulation in the radiation solution, where
I, = ireule P B (4.4.75)

(note that in the calculation for If in the radiation problem, the phase factor e B Ri cancelled
with the phase factor PR from the body condition).

Amending (4.4.66)) appropriately means that the application of Green’s identity in one cell

145



4.4  Finite depth and the deep water limit

thus yields

. . Q
0A, 1BqT S . im K —1iA _
AR I vy i D SR

(4.4.76)

The discussion found in also applies here. Following the same discussion and meth-
ods, the differential equation for the shallow water freely-floating problem, in matrix form, is
By By
Bq Bq

d
dX
where F is a () X @ matrix with entries

i
- B2AccosT

(k —iN)7

F’L” - 7
J W+ k —1A

6iiB2AK(1 — sin 7y sinT;) — (4.4.78)

for the Kronecker delta function ¢;;. The boundary conditions, regarding left- and right-going

waves applies here also.

Recovery of infinite array solution Considering wave amplitudes of the form
A(X,Y,T) = iU,e T

for constants U, for the reasons outlined previously inside the envelope equations yields

. Q

k— 1 —iA

WUq - BQﬂ-AC Wli K.Jli i\ Z Up) qg=1,..., Q. (4.4.79)
p=1

The infinite array freely-floating solution (in deep water) was found to be

(k* — 53)L2U B 2rL? zQ: K —1iA
(ka)? P p24c T+ Kk —1i\

q=1

U, p=12...Q. (4.4.80)

Taking k — 3 so that 8 = 3, and dividing through by 2L? in this solution yields

. Q
WU— T R_IAiAZUp’ g=1,2,...Q. (4.4.81)
p=1

(Ba)? 7" BRACT Ak —

giving agreement with the strip array solution when there is no spatial variation.
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4.5 Results and discussion

The approach we take is to choose an area of the unperturbed dispersion diagram (i.e. the
relationship between k2 and 32 when no cylinders are present) to perturb from (by introducing
cylinders). We present the strip array solutions for the same phase vector 5L (and other physical
parameters) that were used in the infinite array solutions. Comparing the strip array solutions

with the infinite array solutions by using the relationship

g =1+ €20 (4.5.1)

\/g =1+€Q (4.5.2)

for deep water allows for a deeper understanding. The unperturbed dispersion relations for our

for shallow water and

region of interest is shown in figure [4.2 Having presented diagrams for two plane waves to
correspond with the results in chapter [2| for shallow water and deep water, we then consider
briefly results for three plane waves alongside the corresponding infinite array results, allowing
us to illustrate the relationship between infinite arrays and strip arrays for more than two plane
waves.

Ultimately, for each set of results, we are interested in the wave intensities at the entry point
(reflected waves) and the exit point (transmitted waves) of the strip array for an incident wave
of prescribed amplitude. We wish to see how the radii of the cylinders, the width of the array
and the depth of submergence of the cylinders effects the wave intensities for the scattering and
freely floating problems. The number of waves present in a solution - including the incident
wave - is determined by our location in figure ; our results are organised into the number of

waves present, and then the nature of these waves.

4.5.1 Two plane waves

At the point (kL,q1L,q2L) = (mw,7,0), we have

51L = (71',0) and BQL = (_7770)

which are chosen to represent an incident and backward scattered wave respectively.

We expect the band gaps calculated in Chapter [2] to define the frequencies for which the
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4.5 Results and discussion

Figure 4.2 Position of poles in wavenumber (or, equivalently, frequency) space for a square lattice
with cell side L for @ =1 (— — —) and @ = 2 (——): the abscissae is the modulus of 8 = (¢1, ¢2) along
the edges of the first irreducible Brillouin zone so that I'X corresponds to ¢; L € [0, 7] and goL = 0, X M
corresponds to gL € [0, 7] and ¢1 L = 0, and MT corresponds to ¢1L = g2 L € [0, 7].

incident wave cannot propagate through the strip array giving total (or near total) reflection
and hence no transmitted waves. We begin this subsection by giving a detailed analysis of the
first set of results. Figures and shows the transmitted and reflected wave intensities on
the edge of a strip array (of width 58S = 15, corresponding to approximately 50 cylinders) for
various radii a/h in the case of fixed truncated cylinders. It is apparent that the infinite array
solutions demonstrated in figure served as a very good indication as to what to expect for
the strip array; inside the band gaps the wave intensity of the incident wave, evaluated at the
exit point of the array, |B(S)| is zero whilst the wave intensity of the backward scattered wave
|B2(0)| is increased for the same frequencies. This indeed confirms that there are frequency
parameters kL for which the incident wave cannot propagate through the array and hence is
totally reflected.

We have complete qualitative agreement with the infinite array results for each set of results
here. In the case of surface-piercing fixed truncated cylinders in shallow water, we have shown
in figure that the band gap widens as the radii a/h is increased but only one side of the
band gap’s boundary (namely that associated with kL < ) is affected by changing the depth of
submergence d/h of the cylinders. Figure confirms that only the lower edge of the band gap
is affected by changing the radii or the depth of submergence when the cylinders are made to

be bottom mounted. For freely floating cylinders in shallow water (see figure , we see that

148



4.5 Results and discussion

only the upper edge of the band gap is affected by the radii of the cylinders. In the case of deep
water, figure [£.6] also agrees with the infinite array solutions: only the upper edge of the band
gap is affected as the water-plane radius increases from zero, and by allowing the structure to

move.

4.5.2 Three plane waves

In order that we can analyse three plane waves, we need to find points of three solutions in figure
such points are found at noticeably higher values of kL and consequently it must be noted
that at such points we are possibly violating the assumption that Sh is small (e.g. at the three-
mode point found at SL = 57/2 when h/L = 0.05 we have fh = 0.39). We hence proceed on the
understanding that the results described here are illustrative. At (kL,q1L,q2L) = (57/2,7/2,0)

we have the phase vectors
B,L=3m0) ; ByL=(—m2m) ; PBsL=(—m —2m)

which are chosen to represent an incident wave that propagates forwards, and two scattered
waves both propagating backwards. Figure [f.7a] shows the direction of the three phase vectors
at this point, whilst figure is the infinite array solution for cylinders of various radii a/h
that are fixed to the ocean bed.

Strengths of three wave intensities on the edge of the array for various slow frequencies (2
are shown in figures and we look at the effect of increasing the radii a/h in figure
for a fixed array width, and then look at varying the width of the array S for a fixed radii a/h
in figure Again, there is clear evidence that there are wave-numbers (e.g. approximately
247m > kL < 2.537 for a/h = 1, S = 240 — corresponding to approximately 50 cylinders) for
which the incident wave cannot get through the array; i.e. nothing is transmitted and we have
total reflection that is that the wave intensities of the backward propagating waves B2(0) and
Bs(0) are at their maximum value, whilst for values of kL outside this range more of the incident
wave is transmitted at the exit point of the array but less is reflected at the entry point. We
observe that for larger radii, akin to the infinite array band results, the range of kL for which
the incident wave cannot propagate is narrowed.

Figure [4.9] indicates that for larger array widths 8S the band gap becomes better defined.
This is what one might suspect, because a wider array is becoming more like the infinite array
that we considered in Chapter

The infinite array solution for these phase vectors, demonstrated graphically in did not
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Figure 4.3 Perturbation of two plane waves for fixed surface-piercing cylinders in shallow water (array
width is approx. 50 cylinders) for L/h = 20: (a)&(c) kL vs. L for d/h = 0.8 with a/h =0.8 (——) ,
a/h=1(----- ) for comparison with figure 2.4a} (b)&(d) kL vs. q1 L for a/h = 1 with d/h = 0.8 (—),

d/h=06 (- ) for comparison with figure
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Figure 4.4 Perturbation of two plane waves for fixed bottom-mounted cylinders in shallow wa-
ter (array width is approx. 75 cylinders) for L/h = 20: (a)&(c) kL vs. 1L for d/h = 0.8 with
a/h=08 (——),a/h=1(----- ) for comparison with figure (b)&(d) kL vs. g1 L for a/h =1
with d/h =0.8 (——), d/h =06 (------ ) for comparison with figure
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Figure 4.5 Perturbation of two plane waves for freely-floating surface-piercing cylinders in shallow
water (array width is approx. 50 cylinders) for L/h = 20, d/h = 0.8 and a/h = 1: kL vs. ¢;L for
k=1(——),k=4(--- ) for comparison with figure

suggest that there are localised bandgaps in the neighbourhood of (kL, g1 L, g2 L) = (57/2,7/2,0).
However the infinite array solution did tell us that only backward propagating waves may exist
in the approximate wave-number range of 2.477 < kL < 2.537 (the group speed, given by the
negative gradient dw/0t, implies that the direction of energy propagation is in the negative x

direction), which is exactly what we have observed here.
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Figure 4.6 Perturbation of two plane waves for surface-piercing structures in deep water (array
width is approx. 100 cylinders): kL vs. ¢1L for (a)&(c) a fixed structure of radius a/L = 0.04 (——) ,
a/L=0.05(----- ) for comparison with figure (b)&(d) freely-floating structures for a/L = 0.05

withk =1(——), k=4 (- ) for comparison with figure [2.7b}
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Figure 4.7 At (kL,q1L,q2L) = (57/2,7/2,0) we have (a) an incident wave and two backward prop-

agating waves; (b) the solution for an infinite array for cylinders fixed to the ocean bed for a/h = 1.
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Figure 4.9 Backward, backward propagation for cylinders fixed to the bed in shallow water for

8BS =120 (———) and BS =240 (------ ), corresponding to approximately 25 and 50 cylinders respec-
tively, with a/h = 1: (a) Transmission coefficient |B;(S)|; (b) Reflection coefficient |B2(0)]; (c) Reflection
coefficient |B3(0)]
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4.5 Results and discussion

4.5.3 Structure of the solutions

The link that we have established between the infinite array perturbations and the strip array
perturbations from the solutions that exist in the case of no cylinders can be made more definite

when we consider the structure of the solutions. Let us recall that the strip array solution is

(4.5.3)

where v, are the eigenvectors with associated eigenvalues A, for the matrix ES ; this matrix
£S describes the perturbations from the unperturbed point in the case of no cylinders (i.e.
where the 1,’s are valid), and thus we can deduce the relationship between this Es and the
infinite array solutions which describe a perturbation from the same point. At the three mode
point previously under investigation, i.e. at (kL,q1L,q2L) = (57/2,7/2,0), let us consider what
happens as kL is increased from kL = 57/2. As kL is increased we obtain two values of ¢; L
less that 7/2 and one greater than m/2; this corresponds to ES having two negative imaginary
eigenvalues and one positive imaginary eigenvalue. For a sufficient decrease in kL, this situation

is reversed.
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Chapter 5

Conclusion

Approximate methods have been used to show how the frequency, and hence the speed, of a
wave of given length and direction is changed by the presence of a periodic lattice of structures
that may be fixed, or allowed to float freely. Different water depths have been considered.

We began by considering the case of an array that was infinite in two horizontal directions,
and solved the water-wave problem using the method of matched asymptotic expansions. Two
particular approximations have been studied. One approximation is valid for shallow water and
the other for deep water, but in both cases the structure is assumed to be small relative to the
wavelength, and the wavelength is taken to be of a similar magnitude to the array periodicity.
For a given wave vector, wave propagation is possible only at discrete frequencies which may
be isolated (Q = 1), or close to one or more other frequencies that arise from the splitting of
degeneracies (@ > 1). For @ = 1, the shallow-water theory for fixed, surface-piercing circular
cylinders shows that the primary effect is to reduce the frequency, relative to that in the absence
of structures, when the cylinder is longer than a certain length, but to increase the frequency
when it is shorter than that length. However, for a submerged structure the frequency is always
decreased. In deep water, the presence of a fixed compact, surface-piercing structure always leads
to an increase in frequency. In both deep and shallow water, allowing the structure to float freely
with a positive mooring stiffness decreases the frequency of wave propagation compared to that
when the structure is fixed. For ) > 1 the theory allows, in particular, explicit formulae to be
obtained for the width of local band gaps. One feature of these solutions is that one edge of the
band gap can be unaffected by changes in the geometrical and mooring parameters.

The Rayleigh-Ritz method was used to solve the same infinite array problem for fixed cylin-
ders, but of course the problem could be solved without having to make assumptions on the

length scales involved. Furthermore the method afforded us the ability to compute complete
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band diagrams which we have been able to use to aid an investigation into negative refraction
which, in turn, motivated a search for complete band gaps. We have been able to reproduce
the localised band gap diagrams which were found using the asymptotic methods, where good
agreement was observed between the two different approaches of solutions. In the case of deep
water, the best agreement was observed when the length of the cylinders was reduced to zero
(representing a disc on the free surface).

Finally, we looked at the water-wave problem for a strip array (that is, where the array
stretches to infinity in only one horizontal direction), which was solved using a combination of
the method of multiple scales and the method of matched asymptotic expansions. Considering
a strip array allowed us to consider the properties of the transmitted and reflected waves for a
given incident wave, and in particular how the transmitted and reflected waves were affected for
different physical parameters. A correspondence was made between the band gaps found for the
infinite array problem and the complete reflection (and hence zero transmission) for the strip
array problem.

An obvious extension is to consider other modes of motion. The general theory laid out in
the first chapter allows for six degrees of freedom, but we have only considered heave throughout.
Whilst it may be that the algebra becomes cumbersome, multiple interacting modes could be
looked at. A further possible extension of this work, motivated by the real life application of
Very Large Floating Structures, is to introduce a platform between the floating structures, that
is to link the structures together so that complete modules of structures may be considered.

Some progress has been made in [47], where structures are linked together in clusters.

159



Appendix A

Infinite array

A.1 Convergence of a lattice sum

We consider here the convergence of certain lattice sums. For simplicity in the presentation, we
consider only a rectangular lattice and that part A™ of the lattice that lies in the first quadrant
(similar arguments apply to the other three quadrants). For a rectangular lattice, each lattice
point is readily identified with a pair (p,q) € Z x Z so that, for some F(r;) = f(p,q), a lattice

sum

/

Y Fr) =Y fpq), (A.1.1)

Rj eAt

where the last summmation is over all non-negative integer pairs excluding p = ¢ = 0. If for all
(z,y) in the first quadrant R, f(z,y) > 0 and f(z,y) > f(&,n) whenever £ > = and 1 > y then,
by the integral test for double series [48, § 32],

/
Z f(p,q) converges <— ff f(z,y) dx dy converges. (A.1.2)
P.q R

We now consider the convergence of the specific lattice sum

!/

Sin =y BRI (), 2 k) + Iy (ry, 2 k)] %, m > >0, (A.1.3)
Rj€A+
where
0 ymt2 cos vz
I (r, 23 k) :/0 WKn(W’) dv (A.1.4)
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A2 Calculation of shallow water inner region dipole coefficient

and

o ymtlginyz

I, (r, 2 k) = k:/o WKn(Vr) dv. (A.1.5)
When extended to the complete lattice A, the sum S,,, is proportional to the lattice sum

appearing in equation (2.4.7)), with the latter written in dimensional coordinates so as to display

explicitly the dependence on k. The series S,,, is absolutely convergent provided
/ /
Spm = > (s zk)| and Sh, = > |I(rjz:k)| (A.1.6)

RjeA+ RjeA+

both converge. Choose a kg > 0, then for k& > kg

. o ymE2 [ (vr) ~

say, which exists provided m + 3 > n. From the properties of the modified Bessel function K,

T (r) is a monotonically decreasing function of r and from [49, equation 5.2.28]

T Dmn
L (1) ~ mi3 88 T 00 (A.1.8)

for some constant D,,,. Thus, for the required range m > n > 0, the conditions of the integral
test for double series are satisfied and S§,,, converges for all k > ko > 0 (and hence S¢,,, has no
singularities as a function of k except possibly at £ = 0). A similar argument applies to S;,,

because

0 ,m QK )
|15, (r, 2 k)| < k:|z/ 2 —|—k2 dv = k| z| T (7). (A.1.9)

A.2 Calculation of shallow water inner region dipole coefficient

A patching method is used here to determine the dipole coefficient ©1 needed in the shallow-
water solution for a truncated circular cylinder of non-dimensional radius a/h and height d/h.
(By patching we mean equating solutions at a shared boundary — this is in contrast to matching,
where we mean equating solutions within a shared region.) The method follows that used in
[50] for the problem of wave radiation by a truncated circular cylinder. Here we treat the case
of a surface-piercing cylinder, the dipole coeflicient takes the same value for a bottom-mounted

cylinder of the same height.
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A2 Calculation of shallow water inner region dipole coefficient

The aim is to determine the asymptotic form as R — oo of the inner region eigenfunction Fj
defined in equation (2.3.16)). The solution is effected by further dividing the inner region into
two smaller regions: an exterior region in R > a/h, and an interior region in R < a/h that lies

beneath the cylinder when the cylinder is surface piercing. The interior problem is

V2P0 =0 in the fluid, (A.2.1)
0 s

aZgof“ =0 onZ=-1, (A.2.2)
% SO -0  onZ=—d/n (A.2.3)

and the appropriate form for the desired eigenfunction is

5 Li(anR) cosf
= (E))T Z W€ jllana/h) cosan(Z + 1)] <sin6’> (A.2.4)

where the €5’s are to be found, a,, = nwh/l, and €, is the Neumann symbol defined by € = 1

and €, = 2 for n > 1. The exterior problem is

V207 =0 in the fluid, (A.2.5)
88Z f(e) =0 onZ =0, (A.2.6)
aaz S —0 onZ=-1, (A.2.7)
0 C

aR¥1 = 0 on R=a/hand Z € (—d/h,0) (A.2.8)

for which the appropriate general solution is

g Ki(nmR)

S(e) _ (pS\T
o1 = (BY)T |(R+DR™ +Z®”Klmra/h)

cos|nr(Z +1)] (Zfﬁﬁ) L (A29)

where Ef and the ©3’s are the constants to be found.

Continuity of ¢} across R = a/h for —1 < Z < —d/h gives

a h > S . > S
ot @15 + nzz:l@n cos[nm(Z +1)] = nzz:oen(’:n cos[an(Z + 1)], (A.2.10)

and then multiplication by cos|a,,(Z + 1)] and integration over Z € (—1, —d/h) yields

[ [a h s gl _
(5m()ﬁ |:h +©1a:| +nzz:1©ncmn Q:mh m = 0,1,2,..., (A211)
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A2 Calculation of shallow water inner region dipole coefficient

where
l/h, m =n = 0;
—d/h
Con = / cos (2 + 1) cosnn(Z +1)dZ = S 1/2h, m/n =1/h;
-1
_1\m i
(=1)"n7 sm(mrl/h)’ otherwise.
(w2~ a3,)
(A.2.12)

Continuity of 97 /OR across R = a/h for —1 < Z < —d/h and the body boundary condition
on R=a/h for —d/h < Z < 0 give

h2
1-91— 2 + Z@nqn cos[nm(Z + 1)]

Zencnpn coslon(Z 4+ 1)], Z e (—1,—d/h);
(A.2.13)

0, Z € (—d/h,0),
where

1 Ii(ana/h)

. K{(nmwa/h)
Pn = T (ama/h)

d qp,=nr—t—"~
e n mrKl(mTa/h)7

n>1, (A.2.14)
are introduced for convenience of notation (note that p} = h/a whilst ¢} isn’t defined). Multi-
plication by cos[mn(Z + 1)] and integration over Z € (—1,0) yields

h? Qsz

- 301 = m =0, (A.2.15)

Sqk = Zeneﬁp;cnm, m=1,2,3,.... (A.2.16)

Solution of (A.2.16) for D5 and substitution of the result, along with (A.2.15), into (A.2.11)
yields

= h
Z [ 2en pn nlm} ¢ = 6o (Z + ©1> form=0,1,2,..., (A.2.17)
n=0 a
where
>\ CmsCn
= (A.2.18)

s=1 s
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A3 Alternative deep water solution (changing the ansatz)

which may be solved by truncation.

A.3 Alternative deep water solution (changing the ansatz)

The zero eigenvalue obtained in §[2.6.2.2]is potentially problematic as, when adopting the ansatz
in equation (2.4.8]), we make the assumption that each A, = ord(1) as e — 0. Let us modify the

ansatz to
(k* = B)L* = A, (A.3.1)

with A, = ord(1) as e — 0. What follows is only a slight and straightforward adaption of the
work that is contained within § With the aid of equation (A.3.1)), we may write

/
Gmn(rl) 97 Z,) = $m|n|(7ﬂlv Z,)eine + Z eiﬂTRjK |n|(r z )em9

RjEA
(A.3.2)
(_1)m . 2 n—p < Uﬁbl—)p q (2) I Lipf
+mﬂ'le &n Zp:(_l) ;@Aq—i_an—p Jp(r)e?”,
and it is again convenient to define
Gmn(17,0,2') = ECn (1,0, 2) = gr(,}bzl(r’, 0,2') + eggg%(r’,ﬁ, 2, (A.3.3)
where g%% contains the terms in 07(11,%, and gffw)l all other terms. We recall that
m Q (1)
(1) N _ (_1) . 1) On,g _ir' cos(0—4) A.3.4
gmn(r ,9,2) (m o ‘n‘)!ﬂ—le gn( ) g Aq € ) ( 3 )

which is a combination of deep-water plane waves. The outer region solution is written as

Zamn [ g (0 z)+egg,%)l (r,0,2") } +Z{Ebmn+6 cmn—kegbgm}g%%(r',t?, 2.

(A.3.5)
The form of the inner solution was given in § as
1
gofg) =5 + ep? (A.3.6)

(where possible intermediate terms are omitted to simplify the presentation). A zero eigenvalue
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A3 Alternative deep water solution (changing the ansatz)

found when using the original ansatz corresponds to C@g = 0, so that the inner solutions for the

new ansatz become

0o =C5=0 (A.3.7)
and
of = CF + C5(Z + x0) + (BY)" [R sin ) (‘;flj g) + xl} : (A.3.8)
where we recall that as R — oo
X0 ~ lj:?q and x; ~ MSIRIIf <Z?§g> ) (A.3.9)

for a constant By and a matrix M that is determined by the shape of the structures. The outer

expansion of the inner solution is given as

By - 0 i 9
oY = +e{cf +C8 <(Z+ }g) + (BS)T [Rsmd) <COS ) M <COS ﬂ }

sin 0 = R2 \sin#

(A.3.10)

When expressed in terms of the outer coordinates, the most singular term at ord(e®) in the

outer expansion of go(Sl) is in 1/#2. Thus, there can be no terms more singular than this at

ord(e?) in the outer solution and, taking into account the singular terms in émn as shown in

equation (2.4.1)), this gives
a> =0 for m>1 (A.3.11)

meaning that the inner expansion of the outer solution is

Q
NCRV L1 s 1S DS D ogs
o =iy A, [U((),;aoo - 05,3“10 + Uigall B U(—l)vqal’—l}
g=1 "1

: [1 +elcost) +ieRsinde], (COS 9)} (A.3.12)

sin 0

S . .
3(%0 , ST s siny 5 g siny Z s
+e€ |:~ + a10¢10 — 01 —=;¢ — a7 _4 e +€ b
2 D2 N 2.1,2 mn
eR R €<y p——

where ¢,, is the outer expansion of qﬁgl that is not actually needed as it has nothing to match

within the inner region (we expect €3¢y, to take the form €3 PP (cos) /72 = e cos)/R? for which
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A3 Alternative deep water solution (changing the ansatz)

there is nothing for it to match with in the inner region)
An application of the matching principle ‘PS = qb gives, among other relationships

(including that C§, a5, and af, all equal zero)

1 1
g=1
—afy (1) — a7 4 (1,-1)" = (EY)"M (A.3.13b)

and, to unify the deep- and shallow- water cases we define

i

Uy = A—[ de'™a}) — e Tea? ] (A.3.14)
q
to obtain
Q 2
4r L
> [%A + elqulp Ui =0, p=12,...Q. (A.3.15)

q=1

as the eigenvalue relation to determine the allowable values of k.
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Appendix B

Strip array

B.1 Shallow water scattering problem: direct calculation of body

integral
Here we calculate directly the integral across the structure for the shallow water scattering
problem for use in applying Green’s identity in one lattice cell. (In the main body of text, this
integral was found by reapplying Green’s identity in the near field; this direct calculation is

included for verification of the method used in the main body of text).

Denoting the base of the cylinder as S; and the sides S we have
Is = J]go q dSNF 4 ﬂ" q dSNF (B.1.1)

where the superscript (i) and (e) denote the near field interior and exterior solutions respectively.

We note that, in near field coordinates,

1/}; — D(z)ei,@qTRjefieR cos(0—Tq)

o 27 4102 . (B.1.2)
~ —%e’ﬁqTRj [1 + 6(;)] [1 —ieRcos(§ — 74) + 562R2 cos?(6 — 7,
so that
o, i igTR. . 2 2 3
SR = 53¢ " [—iecos( — 74) + € Rcos* (0 — 74)] + O(€’) (B.1.3)

*

Since —< is strictly of order €2, we only require the leading order constant of ¢V to calculate

0Z
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B.1  Shallow water scattering problem: direct calculation of body integral

the integral over S

Ig = ff q dSNF o f (1)(e q dSNF

12

- 5e Wil [ sz + 1) dsNT

+ [ ¢ [~iecos(0 — 1) + 2R cos* (0 — 7,)] dSNT (B.1.4)
— _ LBiR ) e f [ o cos(9 — ;) dSNT

[[ c§Reos? (0~ 7,) as™T + {[ C5(Z +1) as™T

So S1

where only the constant C’@q is needed from ¢M(©) in the second integral. Denoting each of
the three surface integrals I, I and I, respectively, let us first calculate I,. To do so, let us
consider the function y = Rcos(f — 7;) and apply Green’s identity in the near field only to the

two functions (M€ and y to give

ffjsﬁ <VNF + 6(9;2> (VNF + 88222> PO

o Hp (e o a (1)(e)
— W) 29X 9% NF 4 (_ M) 9X 9% NF
[Je 9oy —xgy 4D [T gy ds

Soo

(B.1.5)

where it is noted that the surface integrals on the free surface and bed each disappear, S, defines
the cylinder that is the near field boundary and the factor of (—1) is included to account for the
fact that Green’s identity has the normal pointing into the region. (Our normal is defined to be
pointing out of the fluid, i.e. in the opposite direction). By definition of x and the governing
fluid equation on ¢(M(€) the volume integral on the left hand side disappears, and by the body
condition on p(1)(€) the second component of the integral on the body disappears leaving us with

O_IISO X dSNF+fj X dSNF _ jf (D)(e) ZX 5‘)( g;’;( e dsNF (B.1.6)

-1,
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B.1  Shallow water scattering problem: direct calculation of body integral

By definition of x the integral over S; disappears so that we have

1)(e)
Ia = jf aX g; dSNF
. S
= lim H {00 +e(ES)T (R %) (ZTS?) } cos(0 — 1) dSNT (B.1.7)
D5\ [cosb
—Rh_lir;ofjcos — 74)Re (ES) < R(2)> (sin@) dshNt

where it is noted that the summations contained within gp(l)(e) disappear as R — co. We thus

2
I, = hm/ / {CO
R—oo

have

( ) <Zi)§ g) } cos(d — 7,) RdOdZ

(B.1.8)
S S COS T,
= 27Dy (El) (sin TZ)
The surface integrals I, and I, are easily computed as
2 a d a®
I, = CO —cos?(0 —1,) —dOdZ = 27700 ;
—d/h h hh
(B.1.9)
a/h 2w 1 a2
1. —/ C Rd@dR— thWCO
Hence, from (B.1.4)) we have
iBTR .~S [\ T [ COST,
Ig ~ —2e i€ 71'{—21@0 (E7) (SmTZ> hzco} (B.1.10)

Putting each of our calculations back into Green’s identity yields

04,

1’6q52Ac VA _762A68T

i iT . T
25 §ef3ng {h26’0 21@§(Ef) elq} for ¢g=1,...,Q.

(B.1.11)
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