

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

LOUGHBOROUGH 1

UNIVERSITY OF TECHNOLOGY I
I LIBRARY
I AUTHOR/FILING TITLE

:rol-ti'ISoc-.1 ::U.s.
---------------------------~------------------

--~ ---
ACCESSION/COPY NO.

0 '+" U'O~ 'l. 0 I '2, ----------------- --------------------------------- .
VOL. NO. CLASS MARK

11111111111

Coprimeness
• ID

Multidimensional System Theory

and

Symbolic Computation

by

DeanS. Johnson

A doctoral thesis submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy of the Loughborough Univer­

sity of Technology, March 1993.

0

© Dean S. Johnson, 1993.

Loughborough University
of Technology Library

Date 'J---"11-
Class

Ace. O"tuo'i? u t 3 No.

Acknowledgements
I would like to express my sincere gratitude to my supervisors Dr. A. Clive Pugh and

Professor Gaynor E. Taylor for their expert support and enoouragement during my

three years of research into this thesis, without whom this work would not have been

possible. I would also like to extend this gratitude to Professor C. Storey in his role

as director of research.

My sincere thanks also extends to those who assisted in the proof reading of this thesis

and on a more personal note to all my family and friends for their moral support.

This work was made possible by the financial support of the Science and Engineering

Research Council.

iii

Contents
Certificate of Originality ... ii

Acknowledgements .. iii

Contents .. iv

Abstract .. 1

Glossary of Notation ... 3

PART ONE:

Chapter 1:

Preliminary Mathematics ... 9

1.1 Introduction ... 9

1.2 Preliminary Definitions ... 11

1.3 Some Non-Euclidean Consequences 15

1.4 Scalar Polynomials 18

1.5 Coprimeness of Polynomial Matrices 21

Chapter 2:

Matrix Fraction Descriptions ... 27

2.1 Introduction 27

2.2 2-D Matrix Fraction Descriptions .. 30

2.3 n-D Matrix Fraction Descriptions 48

2.4 Conclusions . .. 68

Chapter 3:

Equivalence of Polynomial Matrices ... 69

3.1 Introduction .. 69

3.2 Some Aspects of Equivalence of 1-D Systems 72

3.3 Equivalence of 2-D Polynomial Matrices 85

3.4 Equivalence of n-D Polynomial Matrices 108

3.5 Linear Differentia/ Multi pass Processes 117

3.6 Conclusions 128

PART TWO:

Chapter 4:

Mathematical Basis ... 132

4.1 Introduction . .. 132

4.2 Program Motivation ... 134

4.3 Forma/ Definitions . .. 137

4.4 Theoretical Algorithms .. 142

4.5 Discussion of the Algorithms . .. 150

iv

Contents v

4o6 Conclusions 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o o 0 0 0 0 0 0 0 o o o o o o o o o o o 0 0 o 156

Chapter 5:
MAPLE: A Symbolic Manipulator o o o o o o o 0 0 0 0 0 o 0 0 o o o o o o o 0 0 0 0 0 0 0 0 o o o o o o o o o o 0 0 0 o o 157

5o1 Introduction o o o 0 0 0 o 0 o o o o o o o o o o o o o 0 0 0 o 0 o o o o o o o o o 157

5o2 Conventions o o o 0 0 0 0 0 0 o 0 o o o o o o o o o o 0 0 0 0 o o o o o o o o o o 0 0 0 o o o o o o o o o o o 0 o o o o o 0 o o o 159

5o3 Statements o o o o 0 0 0 0 0 0 0 0 o o o o o o o o o o 0 0 0 o o o o o o o o o o o o 0 0 o o o o o o o o o o o o o o o o o 0 o o o 160

5.4 Expressions o o o o 0 0 0 0 0 0 0 0 0 0 o 0 o o o o o o 0 0 0 0 0 0 0 0 0 o o o o o o o o 0 0 0 0 0 0 0 o o o o o o o o o o o 0 0 o 161

505 Procedure Definition 0 0 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 0 0 0 o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o 0 0 0 165

506 The MAPLE Library of Functions .. 0 0 0 0 00 0 0 0 0 o o o o o 0 0 0 0 0 0 0 0 0 00 0 0 o o o o o 0 0 o168

5o 7 Implementation of the Algorithms 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o 0 0 0 178

Chapter 6:
Code Documentation o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o 0 0 0 180

6o1 Introduction o o o 0 00 0 0 0 0 0 00 0 00 0 o 00 o 0 0 0 0 0 0 0 0 0 0 o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o 0 0 0 180

602 The GCD contromng Procedures 00 00 o 00 00 00 o 0 0 0 00 o 00 o o 00 o 00 o o 00 00 .. 182

603 The Primitive Factorisation Procedures o o o o o o o o 0 o 0 0 0 0 0 0 0 o o o o o o o o o o 0 0 0 0 0 o188

6o4 The Modified Hermite Procedures 0 0 0 0 0 0 0 0 0 0 0 o o 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o 0 0 0 207

Chapter 7:
Evaluation and Concluding Discussion o o o 0 0 0 0 0 0 00 0 0 o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 00 o 0 0 0 225

701 Introduction o o o 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o 0 0 0 225

7o2 Test Examples 0 o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o 227

7o3 CPU Time Considerations 00 0 0 00 00 0 .. 00 00 0 00 00 0 00 0 00 00 .. 0 00 00 00 .. 00 251

7.4 Further Discussion 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o o 253

7o5 Application to Coprime MFD 0 00 00 0 00 .. 00 0 00 00 00 0 0 00 0 00 0 .. 0 .. 0 00 0 00 00 .. 257

7o6 Conclusions 0 .. 0 00 0 0 0 0 .. 0 0 0 00 0 0 0 0 o 0 0 00 0 0 0 0 00 00 0 0 0 0 0 0 0 264

References 0 0 0 0 0 0 0 o o o o 0 o o o o o o o o o o o 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o o o o o 267

Appendix 1: Index of Definitions 00 0 0 0 0 0 00 0 0 0 0 0 00 o o o .. 0 o 0 0 0 0 00 0 0 0 0 0 00 0 0 o 0 00 o 0273

Appendix 2: Index of Theorems 00 o 00 o 00 00 o 00 o o 00 00 00 .. 0 00 o o 00 o 00 .. o .. 00 0 00 o 0274

Appendix 3: Index of Examples 0 o 0 o 276

Appendix 4: Index of Algorithms and Lemmas 00 o o 00 00 0 0 o 0 00 .. 00 o 00 o o o 277

Appendix 5: Index of Procedures 0 0 0 0 00 0 0 0 0 o 00 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o .. o o o 278

Appendix 6: Publications 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 o o o o o o o o o o 279

Abstract

During the last twenty years the theory of linear algebraic and high-order differential

equation systems has been greatly researched. Two commonly used types of system

description are the so-called matrix fraction description (MFD) and the Rosenbrock

system matrix (RSM); these are defined by polynomial matrices in one indeterminate.

Many of the system's physical properties are encoded as algebraic properties of these

polynomial matrices. The theory is well developed and the structure of such systems

is well understood. Analogues of these 1-D realisations can be set up for many

dimensional systems resulting in polynomial matrices in many indeterminates. The

scarcity of detailed algebraic results for such matrices has limited the understanding

of such systems.

1

Abstract 2

Part one of this thesis considers some of the theoretical results for one indeterminate

polynomial matrices in a many indeterminate framework. The structure of coprime

MFDs pertaining to a system is investigated by considering the internal structure,

e.g. invariant polynomials, and also the external structure, e.g. coprime representa­

tion, of the constituent matrices. Interestingly, the type of coprime MFD for a 2-D

system does not depend on the realisation but is a property of the transfer function

matrix. The invariant properties, such as zero structure, of the alternative RSM

realisations are investigated via transformation methods. In particular, polynomial

transformation~ induce an equivalence relation on least order RSMs.

Part two is concerned with the symbolic computation of the greatest common divisor

of two polynomial matrices in two in determinates using the MAPLE software. This is

an important problem since the reduction of two 2-D polynomial matrices to coprime

form (essential to the formation of a MFD) cannot be obtained with 1-D manipulation

methods. Two basic features that makes MAPLE most suited to this type of problem

is the ability to manipulate and simplify expressions involving unevaluated elements.

The algorithms used are based upon certain theoretical suggestions which have pre­

viously occurred in the literature. Through the implementation of these algorithms

certain weaknesses of both the theoretical method and the version of MAPLE used

are demonstrated. Alternative methods to overcome these weaknesses are suggested.

Glossary of Notation
Fa field;

lR the field of real numbers (lR\{0} denotes the real numbers excluding zero);

IC the field of complex numbers;

F[z1] the ring of polynomials in the single indeterminateJ z1 with coefficients in the

field F;

F(zt) the field of rational polynomials in the single indeterminates z1 with coefficients

in the field F;

F[z1 , z2] the ring of polynomials in the two indeterminates z1, z2 with coefficients in

the field F;

F(z1)[z2] the ring of polynomials in the indeterminate z2 with coefficients in the field

F(zt)i

F[z1, z2 , ••• , Zn] the ring of polynomials in the n indeterminates z1, z2 , •.. , Zn with

coefficients in the field F;

F(z11 ••• , z,_1 , zi+l• ... , zn)[z,] the ring of polynomials in the indeterminate Z; with

coefficients in the field F(z1, ••. , z,_ 1, zi+I• ... , zn), i.e. the coefficients are rational

functions in the indeterminates z1, ••• , z,_ 1, zi+1 , ••• , Zni

IMI or det(M) the determinant of the matrix M;

M-1 the inverse of the matrix M;

JP the pth order identity matrix;

p(zf) a scalar polynomial independent of z;;

(;) the number of combinations of n selecting r at a time;

alb the scalar polynomial a divides the scalar polynomial b;

8(M) the McMillan degree of the matrix M;

deg .. (a) the degree in z, of the scalar polynomial a;

8r.(M) the ith row degree of the matrix M.

3

PART ONE

Coprimeness
• m

Multidimensional

System

Theory

Preface

During the last thirty years the theory of polynomial matrices has been extensively

used in the investigation of dynamical control systems. This theory has developed

from the theory of matrices, e.g. Gantmakher [1] and MacDuffee [2], and from the

theory of modem algebra, e.g. van der Waerden [3], Bocher [4] and [5]-[11].

Initially research was directed towards those systems generating polynomial matrices

in one indeterminate, [12], [13], [14]. More recently the importance of multidimen­

sional systems has been recognised [15], [16] due to the application to, for exam­

ple, delay-differential systems, image processing, signal processing, partial differential

equations and meteorology. The mathematical investigation of such systems requires

5

Preface 6

the study of polynomial matrices in many indeterminates, i.e. matrices with scalar

polynomials in many indeterminates as its elements. The analysis of such matrices is

more difficult than its 1-D counterpart due to the complexity of the underlying poly­
nomial ring structure, i.e. the polynomial ring to which the matrix elements belong.

For example, the division algorithm is extensively used in the manipulation of 1-D

matrices, however, the ring IR[z1, z2] is not Euclidean and therefore a division algo­

rithm does not exist. Furthermore, the basic entities used to manipulate 1-D matrices

are the elementary operations, which are equivalent to pre- and post-multiplication

by a unimodular matrix; however, for matrices in two or more indeterminates the

elementary operations do not fully define the class of unimodular matrices.

In addition to the fundamental differences between one- and two-indeterminate poly­

nomial rings there are fundamental differences between two and higher dimensioned

polynomial rings. Thus the analysis used to investigate the structure of 2-D poly­

nomial matrices can not always be used for n-D polynomial matrices (n ~ 3). This

difference of many-indeterminate polynomial rings is fundamental to the definition of

coprimeness (the alternative terminology "relative primeness" is commonly used in

1-D matrix theory). In fact, for n-indeterminate polynomial matrices there are two

distinct definitions of coprimeness if n = 2 and three distinct definitions for n > 2.
One interpretation of this difference can be attributed to 2-D polynomials defining

algebraic curves and 3-D polynomials defining algebraic surfaces [17]-[23]. Further

evidence of the difference between two- and higher-dimensional polynomial rings is

provided by Hutchins [24] in terms of primary-ideals. Thus multidimensional systems

are considered in two parts: 2-D and n-D for n ~ 3.

The starting point of the analysis conducted in this thesis is the transfer function

matrix arising from the input-output description of a system. The elements of such

matrices are rational polynomials in a number of indeterminates. Two commonly used

forms of describing the transfer function matrix are the matrix fraction description

(MFD) and the Rosenbrock system matrix (RSM or system matrix). Many of the

system's physical properties are encoded as algebraic properties of the polynomial

matrices upon which these descriptions are based. For matrices in one indeterminate

the theory is well developed and the structure of such systems is well understood.

However, for matrices in more than one indeterminate the situation is less clear. It is

the intention of Part One of this thesis to consider, in a mathematical context, some

properties of the many-indeterminate polynomial matrices arising from the MFD

(Chapter 2) and RSM (Chapter 3). Thus minimal consideration is given to the

practical application of the derived results.

r--

Preface 7

A MFD comprises of two polynomial matrices: a denominator and a numerator. The

main results pertaining to MFDs are two-fold. Firstly, internal results relating the

invariant polynomials of a class of coprime MFDs. In particular, it is shown that for

the class of MFDs considered the denominator matrices of a transfer function ma­

trix essentially possess the same invariant polynomial structure. This property also

extends to the invariant polynomials of the numerator matrices. Secondly, external

results concerning the type of coprime MFD possessed by a particular transfer func­

tion matrix are considered. More specifically, given one coprime MFD of a transfer

function matrix it is possible to deduce the type of coprimeness possessed by all other

MFDs with the same transfer function matrix.

The RSM forms a partitioned polynomial matrix and is a more general way of de­

scribing the transfer function matrix. Chapter 3 begins by addressing the problem

of preserving the finite and infinite zero structure of RSMs polynomial in one inde­

terminate and gives a number of conditions for the absence of infinite zeros. Next,

a number of transformations of many indeterminate system matrices are defined. In

particular, the three notions of coprimeness are used to define three types of trans­

formation. The extent to which each transformation defines an equivalence relation

is investigated together with the invariant properties of each transformation. In 1-

D system theory a fundamental type of system realisation is the least order system

matrix. Here the interpretation of coprimeness is used to define a type of least order

realisation for many-indeterminate system matrices. Finally the chapter concludes

by considering a specific type of 2-D system, the linear differential multi pass process,

in terms of the zeros of the system matrix and the formation of a least order system

matrix.

The illustration of these results has proved to be difficult. In particular, it is difficult

to prove that a matrix is factor coprime, without additionally being minor coprime.

Thus standard examples derived in the literature together with some new examples

are used to demonstrate the results. In theory it is easy to construct a coprime matrix

by extracting a greatest common divisor (GCD); however, for matrices in more than

one indeterminate the practical procedure for obtaining this GCD is not obvious.

This is due to the absence of a division algorithm and the presence of unimodular

matrices that are not defined by elementary operations. Thus the techniques used

for 1-D matrices are not appropriate. Certain theoretical suggestions made in the

literature are used in Part Two to compute a GCD of 2-D polynomial matrices using

a symbolic manipulator, MAPLE. The ability of a symbolic manipulator to express

I

-------- -·· ·--

Preface 8

and simplify calculations in abstract algebraic entities, such as polynomials, facilitates

this process.

Note: Where work is not referenced or attributed to another person or persons the

work is original. This particulaly applies to the proofs of the theorems: to the best

of the author's knowledge a proof is original whenever it is not referenced.

1.1 Introduction

Chapter 1

Preliminary

Mathematics

The basic entity that is used when considering a system realisation such as a matrix

fraction description (MFD) or a Rosenbrock system matrix is a polynomial matrix.

It is the purpose of this first chapter to introduce some preliminary concepts and

definitions required for the analysis of multidimensional systems using polynomial

matrices.

The chapter begins by giving some definitions for general matrices, followed by a

discussion about Euclidean rings and the consequence of F[z1, z2 , ••• , zn] being non­

Euclidean, where F is a field. Finally, the concept of coprimeness of scalar and matrix

9

1.1 Introduction 10

polynomials is considered. In particular, the single notion of relative primeness' for

matrices polynomial in one indeterminate is seen to generalise to three different no­

tions for matrices with three or more indeterminates. The characterisations of relative

primeness given by Rosenbrock [12] are related to the three notions of ooprimeness

by oonsidering their definitions.

1 The term "relative primeness" is taken from 1-D scalar polynomial theory and used by

Rosenbrock {12] to describe a similar property for polynomial matrices in one indeter­

minate. However, for polynomial matrices in two and more indeterminates "coprime"

has been adopted in the literature (and in this thesis) as the accepted terminology,

possibly due to the different definitions that arise from these higher dimensioned ma­

trices and the ensuing cumbersome terminology, e.g. factor (left) coprime as opposed

to relatively factor (left) prime or some permutation of these words.

-- ·----

1.2 Preliminary Definitions 11

1.2 Preliminary Definitions
A polynomial matrix, A(z), of size p x q (written Apxq(z)) is defined to be an array

of polynomials a;;(z) E F[z] with prows and q columns fori= 1,2, ... ,p and

j = 1, 2, ... , q where z is a set of in determinates and F is the coefficient ring, typically

lR or IC. The number of indeterminates represented by z defines the dimension of

the polynomial and hence the dimension of the polynomial matrix2 • The matrix

is additionally described as being square if the number of rows and the number of

columns are equal; the case of a differing number of rows and columns is described

as being rectangular. Thus ann dimensional (n-D) polynomial matrix M(z) of size

p x q is represented by

M(z) =

m 11 (z) m 12 (z)

m21 (z) m22 (z)
(1)

where (z) = (z1 ,z2 , ... ,zn) and m;; E F[z1,z2 , ... ,zn] fori= 1,2, ... ,p and j =

1,2, ... ,q.

Definition 1.1: (Principal Diagonal)

The principal diagonal of a polynomial matrix, Apxq(z) is defined to be the elements

that lie in positions (i, i) fori= 1, 2, ... , min(p, q). o

Definition 1.2: (Diagonal Polynomial Matrix)

A diagonal polynomial matrix, Apxq(z), is defined as a matrix with all non-zero ele­

ments appearing on the principal diagonal. o

Thus a p x q rectangular diagonal polynomial matrix has rows of zeros lying in posi­

tions q + 1 top if p > q or columns of zeros lying in positions p + 1 to q if p < q.

The unit matrix JP is a p x p square diagonal matrix with p rows and columns with

1 's on the principal diagonal and zeros in all other positions.

A less restricted form of polynomial matrix than the diagonal polynomial matrix is

a triangular matrix.

2 In some texts the size of a matrix is described as its dimension, here the dimension of

a polynomial matrix represents the number of indeterminates and the size represents

the number of rows and columns.

1.2 Preliminary Definitions 12

Definition 1.3: (Upper Triangular Polynomial Matrix)

An upper triangular polynomial matrix, Hpxq(z) is defined as having all elements

below the principal diagonal identically zero, i.e.

h11 (z) h12 (z) h1q(z)

0 h22 (z) h2q(z)

H(z) = 0 0 hqq(z) if p?:,q (2)

0 0 0

0 0 0

h11 (z) hl2(z) h1p(z) hlq(z)

0 h22(z) h2p(z) h2q(z)
H(z) = if p<q (3)

0 0 hpp(z) hpq(z)
0

Similarly a lower triangular polynomial matrix possesses zero elements above the

principal diagonal.

Definition 1.4: (Minor) .

A minor of order r of a polynomial matrix Mpxq(z) is the determinant of the polyno­

mial matrix formed by selecting r rows and r columns of M(z), where r ::; min(p, q).

In particular the minor denoted by M~::~:·::::,j, is formed by selecting rows i 1, i 2 , ••• , ir

andcolumnsj1,j2 , ••• ,jr. 0

Note: For a matrix with prows and q columns there are
p! q!

r!(p- r)! r!(q- r)!

minors of order r.

The high-order minors of a matrix Mpxq(z) are defined to be the minors of order

min(p, q). Thus if p::; q the high-order minor~med by selecting every row of M(z)

together with p columns. Hence for a matrix with prows and q columns, with p::; q,

there are
q!

p!(q- p)!

high-order minors.

1.2 Preliminary Definitions 13

Definition 1.5: (Unimodular Polynomial Matrix)

The polynomial matrix Upxp(z) with elements in F[z] is said to be unimodular over

the ring F[z] if the elements of u-1(z) are polynomial over the ring F[z], where

u-1(z) denotes the inverse of the matrix U(z). D

Equivalently, a unimodular matrix in F[z] may be defined as a matrix with a deter­

minant that is a unit of the coefficient ring F, i.e. an element ofF with multiplicative

inverse also in F. For example, a unimodular matrix U(z) over the ring IR[z1,z2,

... ,zn] has constant determinant; and over IR(zJ)[z2] has determinant in IR(z1), i.e. a

rational function in the indeterminate z1. The formal definition of a unimodular

matrix, U(z), includes the ring structure to which it applies; when it is omitted the

statement [U(z)[=constant is understood.

A subclass of unimodular matrices over a polynomial ring are the elementary matrices.

These are defined as the matrices effecting the elementary operations, given by:

Definition 1.6: (Elementary Row Operations)

Let Apxq(z) be a polynomial matrix with elements in F[z]. Each of the following

operations define an elementary row opemtion on the matrix A(z). These operations

are effected by pre-multiplication by the matrices E 1, E2 , E3:

(i) Multiply row i of A(z) by a E F;

i p

1 1 0 0

El= i 0 a ... 0 (4)

p 0 0 1

such that [E1(z)[=a E F and [Ej1(z)[= a- 1 E F;

(ii) addition of row i with row j, multiplied by a(z) E F[z];
i J p

1 1 0 0 0

i 0 1 0 0

E2 = (5)

j 0 a(z) 1 0

p 0 0 0 ... 1

-------------------~----~

1.2 Preliminary Definitions 14

thus JE2(z)J = 1 E F and JE:j1 (z)l = 1-1 E F;

(iii) permutation of rows i and j;

i j p

1 1 0 0 0

i 0 0 1 0

Ea= (6)

j 0 1 0 0

p 0 0 0 1

thus IE3 (z)J = 1 E F and IE31(z)J = 1-1 E F. 0

The column operations are defined similarly and the elementary matrices effecting

the operations are defined to be post-multiplicative q x q unimodular matrices of the

same form given in Definition 1.6.

For general rings F[z1, z2 , ••• , zn] with n 2:: 2 not all unimodular matrices can be

formed as a product of elementary matrices. This fact emanates from the absence of

a division algorithm. To illustrate this consider the following example due to Sebek

[25].

Example 1.1: Consider the 2-D scalar equation

(1- z1z2)x(z1,z2) + zfy(z1,z2) = 1

where x(z1, z2), y(z1, z2) are unknown polynomials in the two indcterminates (z1, z2).
This equation has a solution since

(1-z1z2 zn(1 +~1z2 -z?)=(1 0).
z2 1- z1z2

U(z1, z2)

Now JU(z1, z2) I = 1 thus U(z1, z2) is a unimodular matrix in JR[z1, z2]. However, there

are no elementary operations that may be performed on (1- z1z2 z?) to produce

the solution (1 0) as z~ does not divide any term of 1- z1z2• Hence U(z1, z2) can

not be factored as a product of elementary matrices. Matrices of this form are termed

secondary matrices. 0

Some further consequences of the ring F[z1, z2 , ••• , zn] being non-Euclidean are dis­

cussed in the following section.

1.3 Some Non-Euclidean Consequences 15

1.3 Some Non-Euclidean Consequences
The existence of a division algorithm for Euclidean polynomial rings, such as IR[zJ],

forms the basis for the algorithmic derivation of many canonical forms, such as the

1-D Smith form [26] and the solution of 1-D polynomial equations [27]. Any polyno­

mial ring can be considered as a sub ring of a larger ring which possesses a division

algorithm. The process of achieving this larger, or generolised, ring is to favour one

of the indeterminates and to consider elements of the ring to be polynomial in this

indeterminate with coefficients rational in the others. For example, consider the ring

IR[z1, z2, ... , zn] to be a sub ring of the Euclidean ring IR(z1, z2 , ... , Zn_1)[zn]i the de­

gree condition of the division algorithm is then defined with respect to Zn, i.e. suppose

that a(z),b(z) E IR[z1,z2, ... ,zn] with the degree in zn of a(z) (denoted by deg • .(a))

greater than deg •• (b), thus

a(z) = q(z)b(z) + r(z) (7)

where q(z), r(z) E !R(z1, z2, ... , zn_1)[zn] and deg • .(r) < deg • .(b). The polynomial

situation may be recovered by multiplying the equation (7) by a polynomial n E

IR[z1,z2 , ••• ,zn-di this process in known as renormalisation. Thus a type of division

algorithm is defined for non-Euclidean rings.

The process described above allows the solution of certain matrix equations [28]­
[32] and also the derivation of 2-D canonical forms required for the algorithmic

determination of the greatest common divisor of 2-D polynomial matrices [32], [33]­

[35] (this is the subject of Part Two).

One further consequence of a ring not possessing a division algorithm is the algorith­

mic derivation of the Smith form. Recall, for the Euclidean ring IR[zd, the Smith form

SA (z1) of a polynomial matrix Apxq(z1) can be formed by pre- and post-multiplication

by unimodular matrices, i.e.

Furthermore, since the polynomial ring IR[zd is Euclidean, all unimodular matrices

are products of elementary matrices; thus the Smith form can be derived by a series

of row and column operations. (The algorithmic derivation of the Smith form is

often taken to be the definition of the Smith form.) However, this is not possible for

many-indeterminate polynomial matrices [36], [37]. To demonstrate this consider the

following example.

1.3 Some Non-Euclidean Consequences 16

Example 1.2: Let the 2-D polynomial matrix A(z1,z2) with elements in IR[z1,z2] be

defined by

A(z1, z2) = (~
thus the determinantal divisors are

and the invariant polynomials are given by

~)

Suppose that SA (z1, z2) can be derived by pre- and post-multiplication by unimodular

matrices, U(z1,z2) and V(z1,z2). Thus

Write this equation in the form

(: :) (~ ~J = G z~zJ (: ~)
where ad- be = c1, eh - f g = c2 and c1, ~ E R Thus the constituent equations are

given by

cz1 = z1z2g

dz2 = z1z2h

(8)

(9)

(10)

(11)

Substituting (8) and (9) into eh - f g = ~ it is seen that there does not exist poly­

nomials a(z1, z2), b(z1, z2), h(z1, z2), g(z1, z2) such that

for all zl> z2• For example, a contradiction is obtained by considering the case for

0

Thus an alternative definition is formulated via determinantal divisors and invariant

polynomials:

1.3 Some Non-Euclidcan Consequences 17

Definition 1.7: (Determinantal Divisors)

The i xi determinantal divisor, D;(z), of a polynomial matrix Apxq(z) is defined as

a greatest common divisor (GCD) of the determinanJ;,of the i x i minors of A(z). o

Definition 1.8: (Invariant Polynomials)

The invariant polynomials, t;(z), of a polynomial matrix A,x 9 (z) are defined to be

the polynomials given by

D;(z)
t;(z) = D. ()

•-1 z
for i=1,2, ... ,min(p,q) and D0 =1. 0

Note: The polynomial t 1(z) is often refered to as the first invariant polynomial and

fmin{p,q)(z) is often refered to as the last invariant polynomial.

Definition 1.9: (Smith Form)

The Smith form, Spxq(z), of a polynomial matrix Apxq(z) is defined as:

(i) if p ?:: q
t 1(z) 0 0

0 t2 (z) 0

S(z) = 0 0 t9 (z)

0 0 0

0 0 0

(ii) if p < q
Et (z) 0 0 0 0

S(z) =
0 t 2(z) 0 0 0

0 0 tp(z) 0 0

where ti(z) is the ith invariant polynomial of the matrix A(z). 0

Note: A greatest common divisor is only unique modulo a multiplicative constant,

hence the determinantal divisors and invariant polynomials are only unique polyno­

mials modulo a multiplicative constant. Consequently the Smith form is only unique

modulo a multiplicative constant diagonal matrix.

Lemma 1.1: The Smith form of a polynomial matrix is a polynomial matrix.

Proof: The proof is contained in [12]. 0

1.4 Scalar Polynomials 18

1.4 Scalar Polynomials
As a preamble to the following section concerning polynomial matrices it is advanta­

geous to briefly study the coprimeness of scalar polynomials and the types of singu­

larities possessed by polynomials in many indeterminates. The ideas developed here

will be seen to relate to the polynomial matrix case.

Recall that a set of polynomials in one indeterminate, a 1(z1),a2(z1), ... ,ak(z1), are
described as being relatively prime if they possess no value z[01 E IC such that a 1 (z[01),

a2(z[01), ... , ak(z[01) are not all identically zero. If, however, such a value exists the

polynomial z1 - z[01 is a factor of all the polynomials in the set.

This is not the situation for polynomials in more than one indeterminate. To illustrate

this consider the following example.

Example 1.3: Let the two polynomials a(z1, z2), b(z1 , z2) be defined ·by

Thus there exists a value of the pair (z1,z2) such that a(z1,z2) = 0, b(z1,z2) = 0,
namely (z1,z2) = (0,0). However, the two polynomials do not possess a common

polynomial factor because z1 and z2 are independent. 0

Thus for scalar polynomials in more than one indeterminate the following definitions

will be used.

Definition 1.10: (Factor Coprime Polynomials)

A set of scalar polynomials, a 1(z),a2(z), ... ,ak(z), is said to be factor coprime if

there does not exist a polynomial g(z), which is a common divisor of a1 (z), a 2(z), ... ,
ak(z). o

Definition 1.11: (Zero Coprime Polynomials)

A set of scalar polynomials, a1 (z), a 2(z), ... , ak(z), is said to be zero coprime if there

does not exist a value z of the indeterminates (z1, z2 , ••• , zn) such that the polynomials

a1 (z), a 2 (z), ... , ak(z) are identically zero. 0

Note: Zero eo prime polynomials are a subset of factor coprime polynomials.

Note: The process of determining the coprimeness of two scalar polynomials is given,

amongst others, in [38], [39].

A fundamental result for polynomials is the Hilbert's Nullstellensatz, derived from

the theory of polynomial ideals [3].

1.4 Scalar Polynomials 19

Lemma 1.2: (Hilbert's Nullstellensatz)

If f is a polynomial in F[z1, z2, ••• , zn], which vanishes at all zeros common to the

polynomials ! 1, ! 2, ••• , fr then

is valid for some integer p and a1,a2 , ••• ,arE F[z1,z2 , ••• ,zn] (and conversely).

Proof: The proof is given in [3]. 0

The form of Hilbert's Nullstellensatz which plays an important role in multidimen­

sional system theory is the case when the polynomials f 1, f2 , ••• , fr do not possess!/~

any common zeros:

Corollary: If f 1, f 2 , ••• , fr E F[z1, z2, ••. , zn] do not possess any common zeros then

Proof: The proof is a special case of the above lemma. Clearly if the polynomials

f1, J2, ••. , fr do not have any common zeros then they possess the same common zeros

as the polynomial '1 '. Hence the corollary is proved.

Consider now a ratio, f(z), of two polynomials a(z) and b(z) where

!() = a(z)
z b(z)

This is called a polynomial fraction or more commonly a mtional polynomial.

additionally described as being irreducible if a(z) and b(z) are factor coprime.

0

(12)

It is

The

singularities of f(z) occur when b(z) = 0: these have two classifications given by the

following definition.

Definition 1.12: (Polynomial Non-Essential Singularities)

The singularities of the irreducible rational polynomial f(z)

are said to be

!() = a(z)
z b(z)

1.4 Scalar Polynomials 20

(i) non-essential singularities of the first kind if b(z) = 0 and a(z) =f 0;

(ii) non-essential singularities of the second kind if b(z) = 0 and a(z) = 0. 0

Thus it has been seen that scalar polynomials in more than one indeterminate possess

two types of coprimeness and also two types of non-essential singularities. The precise

algebraic definition of these terms for polynomials in many indeterminates may be

found in [17].

To conclude this section on scalar polynomials a result is given relating the division

of polynomials modulo a factor coprime set of polynomials. This well known result

[5] is fundamental to a number of results, in particular the MFD Structure Theorem

of Chapter 2 (Theorem 2.5 and 2.12); therefore the main ideas of the proof are given.

Theorem 1.1: Let a, bE JR[z1, z2 , ••• , znl and suppose that

aJa;b for i=1,2, ... ,m

where a 1, a 2 , ••• , am are a factor coprime set of polynomials in JR[z1, z2 , ••• , Zn] and

xJy denotes x divides y. Then aJb.

Proof: JR[z1, z2 , ••• , zn] is a unique factorisation domain, therefore all elements of

JR[z1, z2, ••• , zn] can be decomposed as a product of powers of irreducible elements.

Write
r 1 r 2 TJc

a= P1 P2 · · ·Pk

where p1, p2 , .•. ,Pk are the irreducible factors of a. Then

pj'Ja;b for i=1,2, ... ,m, j=1,2, ... ,k

and clearly

either piJa; for i=1,2, ... ,m, j=1,2, ... ,k

or Pi Jb for j = 1, 2, ... , k.

Since a 1, a 2 , .•• , am are factor coprime there exists no irreducible element, q E JR[z1,

z2 , ••• , zn], such that qJa; fori = 1, 2, ... , m, i.e. the irreducible factorisations of a; for

i = 1, 2, ... , m in JR[z1, z2 , ••• , zn] contain neither q nor one of its associates. Thus no

P; for j = 1, 2, ... , k, the irreducible factors of a in lR[z1, z2 , ••• , zn], can be a divisor

of a; for i = 1, 2, ... , m. Hence

P;lb =* p;r'Ja;~ for i=1,2, ... ,m j=1,2, ... ,k
Pi

Thus repeating the same argument for j = 1, 2, ... , k the theorem is proved. 0

1.5 Coprimeness of Polynomial Matrices 21

1.5 Coprimeness of Polynomial Matrices
In 1-D system theory a polynomial matrix with rank degeneracies may be viewed as

a product of two polynomial matrices, one with full rank and the other containing

the rank degeneracies. The former of these matrices is termed, by Rosenbrock [12], a

relatively prime matrix and the latter a greatest common divisor. The definition of a

relatively prime matrix yields the following equivalent characterisations [12].

Theorem 1.2: The polynomial matrix Apxq(z1) with p :::; q is said to be relatively

(left) prime if and only if any one of the foiiowing equivalent conditions is satisfied.

(a) The rank of A(z1) is p for ail z1 E C.

(b) The Smith form of A(z1) is [IPIO(q-p)xpl·
(c) There exists a polynomial matrix X(q-p)xq(z1) such that the Smith form of

the square polynomial matrix [AT(z1)IXT(z1)f is lp+q·

(d) There exists a relatively (right) prime matrix Xqxp(z1) such that

D

Similar characterisations exist for the relatively (right) prime matrix Apxq(z1) with

p?. q.

If these characterisations are considered in a many-dimensional framework it is im­

mediately apparent that there exists more than one notion of relative primeness.

Consider the matrix

B(z1, z2) = (z1 z2)

The characterisation (a) above suggests that B(z1, z2) is not relatively prime because

z1 = z2 = 0 is a rank degeneracy, however, the Smith form (Definition 1.9) of B(z1,

z2) is [110] suggesting that B(z1, z2) is relatively prime. Similar analysis of character­

isations (c) and (d) also form contradicting statements.

In fact, there are three different notions of relative primeness for n-D polynomial

matrices [40], termed factor coprime, minor coprime and zero coprime.

Definition 1.13: (Matrix Coprimeness)

Let Apxq(z) be an-D polynomial matrix with p:::; q. Then

(i) A(z) is factor {left) coprime if all factorisations

A(z) = Q(z)A*(z)

where Q(z) and A;xq(z) are polynomial matrices such that Q(z) is unimod­

ular, i.e. all left matrix divisors of A(z) are unimodular.

1.5 Coprimeness of Polynomial Matrices 22

(ii) A(z) is minor (left) coprime if all the p x p minors of A(z) form a factor

coprime set of polynomials, i.e. have no polynomial factor.

(iii) A(z) is zero (left) coprime if there exists no n-tuple z which is a zero of all

the p x p minors of A(z). o

Note: A matrix A,xq(z) with p ;:::: q is defined to be factor /minor /zero (right) cop rime

if AT(z) is factor/minor/zero (left) coprime respectively.

A polynomial matrix, Apxq(z), can be partitioned to form two matrices, i.e. for p ~ q

(13)

where A1 (z) has size px rand A2(z) has size px (q-r) for some r such that 0 ~ r ~ q.

In this case, if A(z) possesses a form of coprimeness the pair A1 (z), A2(z) is said to

form a coprime pair with the same type of coprimeness. For example, if A(z) is a zero

(left) coprime matrix then A1(z), A2(z) (defined by (13)) form a zero (left) coprime

pair. Similarly, a right coprime matrix can be partitioned by its rows to form a right

coprime pair.

It is evident from the above definitions and Theorem 1.2 that factor, minor and zero

coprimeness are equivalent for the case n = 1. The following theorem due to Youla

and Gnavi [40] formally establishes this fact together with other equivalencies for

certain types of polynomial matrix.

Theorem 1.3: (Coprimeness Equivalence)

(i) For n = 1 the three definitions of coprimeness are the same.

(ii) For n = 2 minor and factor coprime are equivalent and zero coprime is a

different notion.

(iii) For n > 2 none of the definitions are equivalent.

(iv) For any n zero coprime '* minor coprime '* factor coprime. 0

A consequence of this theorem is that zero coprime matrices may be considered to be

a subset of minor coprime matrices, which in turn may be considered to be a subset

of factor coprime matrices. Thus if

Sfaetar denotes the set of factor coprime matrices;

Sminar denotes the set of minor coprime matrices;

szero denotes the set of zero coprime matrices;

1.5 Coprimeness of Polynomial Matrices 23

then
Szero C Bminor C Sfactor for n 2: 3;

Szero C Bminor = Sfactor for n=2;

szero = sminor = sfactor for n=l.

Note: Throughout this thesis the most specific type of coprimeness will be used to

describe the coprimeness of a matrix, unless otherwise stated. For example, if A(z!>

z2) is zero coprime it will not, in general, be referred to as a minor coprime matrix.

Note: When matrices in two indeterminates are discussed the terms zero coprime

and minor coprime will be used to describe the two notions of coprimeness. For ma­

trices in one indeterminate the Rosenbrock [12] terminology will be used, i.e. relative

primeness, or occasionally zero coprimeness.

Two of the three notions of coprimeness can be characterised by necessary and suf­

ficient conditions [40]. These characterisations are often referred to as the Bezout

identities for zero and minor coprimeness and are fundamental to many results given

in subsequent chapters.

Theorem 1.4: (Bezout Identities)

The two polynomial matrices Amxp(z) and Bmxq(z) with p + q 2: m 2: 1 are:

(i) zero (left) coprime if and only if there exist two polynomial matrices Xpxm(z)

and Yqxm(z) such that

A(z)X(z) + B(z)Y(z) =!m (14)

(ii) minor (left) coprime if and only if there exist p x m polynomial matrices

X 1(z), X2(z), ... , Xn(z) and qxm polynomial matrices Y1 (z), Y2(z), ... , Yn(z)

such that
A(z)X1(z) + B(z)Y1(z) = 'l/!1(z'f.)Im

A(z)X2 (z) + B(z)Y2(z) = 'l/!2 (z~)Im
(15)

where '1/J;(zf) is a polynomial in then- 1 indeterminates z1, ... , Z;_ 1, zi+ 1, • •• ,

~· D

Using the above two theorems and the definitions of coprimeness it is possible to

interpret the equivalent forms for 1-D coprimeness, given in Theorem 1.2, in an n-D

framework.

------- - ----------

1.5 Coprimeness of Polynomial Matrices 24

Firstly consider the case of a polynomial matrix, Apxq(z1, z2), in two indeterminates.

Thus the notions of factor coprimeness and minor coprimeness are equivalent, i.e. the

terms "factor" and "minor" are interchangeable: as noted above, to avoid confusion

the term "minor" will always be used when discussing 2-D polynomial matrices, such

that all matrix divisors are unimodular and hence the high-order minors are factor

coprime. The definition of a 1-D relatively prime matrix corresponds to the definition

of a 2-D minor coprime matrix.

The case of left coprimeness, i.e. p $ q, will be considered as the case of right eo­

primeness follows in an analogous way by considering the matrix AT(z1, z2).

(a) A factor coprime set of polynomials, a 1 (z1, z2), a 2 (z1, z2), ••• , ak(z1, z2), does

not possess a common polynomial factor of all the elements, by definition, but

this does not guarantee the absence of a pair (z[01, z~01) such that all a,(z[01, z~01)
are non-zero, see Section 1.4. The high-order minors of the coprime matrix

A(z1 , z2) are necessarily factor coprime, however, this does not guarantee zero

coprimeness of the high-order minors, i.e. there may exist a pair (z[01, z~01) such

that all of the high-order minors are identically zero. Hence the rank of A(z)

is less than p for such a pair.

In view of the above discussion the matrix A(z) is zero (left) coprime if the

rank of A(z) is p for all z1, z2 E C.

(b) The Smith form of a polynomial matrix, Apxq(z1,z2), is defined as a diagonal

matrix Spxq(z) formed by the invariant polynomials of A(z), Definition 1.9.

For any type of 2-D coprime polynomial matrix the high-order minors are

factor coprime, thus the last invariant polynomial is a constant, taken to be

1. By the divisibility property of the invariant polynomials all other invariant

polynomials may also be taken to be 1. Hence the Smith form of a minor or

zero (left) coprime matrix is [IPIO(q-p)xp]·

(c) Suppose that there exists a polynomial matrix X(q-p)xp(z) such that

() (
Apxq(z))

Fqxq Z =)
X(q-p)xp(z

has Smith form Iq. Hence det F(z) = 1 and expanding det F(z) using Laplace

expansion on the first p rows an equation of the form

j

is obtained where, for 1 $ j 1 < j 2 < · · · < Jp $ q,

01,2!'"oP. = (-1)2:f~, (i+j;)
Jt,J2, ... ,Jp

1.5 Coprimeness of Polynomial Matrices 25

and .F};~;~;::.,;. denotes the minor obtained by deleting rows 1, 2, ... , p and

columns j 1 ,j2, ... ,jP. Thus if the high-order minors F};~;;·;::.,;. of A(z) possess

a zero, a contradiction is obtained. Therefore A(z) is zero (left) coprime.

Conversely, if A(z) is zero coprime by the completion theorem3
, there ex­

ists a polynomial matrix X(q-p)xq(z) such that [AT(z)jXT(z)] is unimodular.

Therefore it has Smith form Iq.

(d) By Theorem 1.4 a Bezout identity, having right-hand-side as an appropriately

sized identity matrix, exists if and only if A(z) is zero (left) coprime. However,

by Theorem 1.4, it is possible to modify the definition of a Bezout identity to

provide necessary and sufficient conditions for minor coprimeness. In effect,

the statements that form the Bezout identity are two 1-D Bezout identities

formed firstly with respect to F(z2)[zd and secondly with respect to F(z1)[z2]

together with renormalisation to recover the polynomial situation.

Consider now the general case for any n 2: 3. All three definitions of coprimeness

are not equivalent, therefore for each statement there are three possibilities, either

factor, minor or zero coprime. By using the same arguments as above, the 2-D

statements hold for n-D matrices, except for the definition of a 1-D relatively prime

matrix, which corresponds to a factor coprime matrix in n-D (Definition 1.13(i)).

Thus in summary, (a) corresponds to a statement of zero coprimeness, (b) corresponds

to a statement of minor coprimeness (and therefore zero coprimeness by Theorem

1.3(iv)), (c) corresponds to a statement of zero coprimeness and finally (d), with

unit matrix as the right-hand-side, corresponds to zero coprimeness. The Bezout

identity for minor coprimeness can be interpreted similarly to the 2-D interpretation,

namely a 1-D Bezout identity over n generalised rings F(z1, ••• , z;_ 1, zi+1, ••• , Zn)[z;]

fori= 1, 2, ... , n, followed by renormalisation. However, it has not been established

whether a type of Bezout identity exists for factor coprime matrices. Indeed there is

evidence in Chapter 2 that if a Bezout identity does exist for factor coprime matrices

it does not explicitly involve a unit matrix on the right-hand-side.

To close this preliminary chapter consider fractions of polynomial matrices and the

definition of singularities. A ratio of polynomial matrices can not be defined simply

3 This theorem was originally proved by two authors working independently in 1976,

Quillen {41} and Suslin {42} and applied specifically using purely matrix theoretic

arguments in {43}. A new and simple proof is given to this result in Theorem 2.3 and

also a generalisation to minor coprimeness in Theorem 2.4.

1.5 Coprimeness of Polynomial Matrices 26

as a ratio of scalar polynomials due to the non-commutivity of matrices. The de­

nominator scalar polynomial of a ratio of scalar polynomials can be viewed as the

multiplicative inverse of a scalar polynomial, i.e. b-1(z) in (12). A polynomial matrix

denominator can be defined as the inverse of a polynomial matrix: thus defining a

left denominator, by multiplication on the left, and a right denominator, by multi­

plication on the right. Suppose Gpxq(z) is a matrix containing rational polynomial

elements (called a mtional polynomial matrix), then G(z) may be written as

G(z) = N1 (z)Dj" 1(z)

= D21(z)N2(z)

(16)

(17)

where N1(z), N2(z) are p x q polynomial matrices, D 1(z) is a q x q polynomial matrix

and D2(z) is a p x p polynomial matrix. If, additionally, the pairs D1(z), N1(z) and

D2(z), N2 (z) do not have any common matrix divisors, respectively right and left,

the matrix fractions may be viewed as being irreducible in some sense. In this case

the following definitions are accepted as defining the non-essential singularities.

Definition 1.14: (Matrix Non-Essential Singularities)

The singularities of the irreducible matrix fraction (16) are said to be

(i) non-essential singularities of the first kind if ID1(z)l = 0 and the matrix

possesses full rank;

(ii) non-essential singularities of the second kind if ID1(z)l = 0 and the matrix

does not possess full rank. 0

Note: Similar statements can be made about a left fraction D2(z), N2(z) by consid­

ering (D2 N2).

Matrix fractions as defined by (16) and (17) are defined more fully and results con­

cerning the coprimeness conditions that exist between the pair of matrices is the

subject of Chapter 2.

2.1 Introduction

Chapter 2

Matrix
Fraction

Descriptions

The purpose of this chapter is to consider the matrix fraction description (MFD) of

two- and n-dimensional systems. The matrix fraction description has been extensively

employed in the past as a simple way of realising a one dimensional (1-D) system,

given its transfer function matrix [14]. The process of forming a matrix fraction

description arises from a generalisation of the representation of scalar systems in which

the transfer function is a ratio of polynomials in a single indeterminate, see Chapter

1. These 1-D transfer functions are said to be reducible or irreducible depending on

whether or not the two polynomials have a common polynomial factor (i.e. whether or

27

2.1 Introduction 28

not they are relatively prime). Thus a reducible transfer function can be transformed

into an irreducible fraction of polynomials, by cancelling the common polynomial

factor between the numerator and denominator polynomials. This process of forming

an irreducible denominator and numerator may similarly be extended to a rational

matrix to define a coprime matrix fraction description.

The first difficulty in generalising the polynomial fraction for 1-D scalar systems to

1-D matrix systems is the representation of a matrix ratio. The matrix equivalent of

polynomial division is imperspicuous due to the non-commutivity of matrix multipli­

cation, since division is the inverse of scalar multiplication. Thus the denominator of

a matrix fraction description, expressed as the inverse of a polynomial matrix, may

be multiplied on either the left or on the right of the numerator matrix: this defines

two types of matrix fraction description, namely the left MFD and the right MFD,

respectively. This representation overcomes the problem of matrix division but intro­

duces a new difficulty of determining whether a particular matrix fraction description

can be described as being reducible or irreducible. The solution to this problem lies

in polynomial matrix theory and the notion of coprimeness (or relative primeness).

For 1-D and 2-D matrix fraction descriptions the determination of coprimeness is well

defined and relatively simple theoretical procedures exist, e.g. by computing the high­

order minors of the augmented matrix comprising the numerator and denominator

matrices or by computing the Hermite form. However, for matrices in more than two

indeterminates the notion of factor coprimeness can not be determined in this way.

It is theoretically possible to determine whether two matrices are factor coprime but

practically it is complicated and difficult. This difficulty has resulted in a limited

number of factor coprime examples being available to demonstrate results obtained.

Even if it is known that the numerator and denominator matrices are not coprime

the process of computing the common matrix factor is not a trivial matter. For 1-

D matrices elementary operations may be employed to deliver the required matrix

factor {the greatest common divisor), but this is not the case for matrices in more

than one indeterminate. This is due to the underlying ring structure of the matrix

elements. The ring JR[zd is Euclidean and thus a division algorithm is defined, and all

unimodular matrices can be written as a product of elementary matrices. The ring

JR[z1, z2] is non-Euclidean resulting in non-elementary unimodular matrices, called

secondary matrices [5], being required to form a basis for unimodular decomposition.

A complicated process does exist for the computation of the greatest common divisor

of matrices with elements in two indeterminates [33], [34] and is the subject of Part

2.1 Introduction 29

two of this thesis, but for matrices with elements in more than two indeterminates

the process is simply not evident.

Finally, before discussing matrix fraction descriptions in detail, one further point

should be made concerning the computational feasibility of such descriptions. In the

previous paragraph the question of coprimeness (and its determination) between a

numerator and denominator matrix has been briefly addressed but the computational

process has not been discussed. The precise details regarding the computational pro­

cedure will be given later in the chapter. It suffices to say that for every rational

matrix in many indeterminates not only does there exist a numerator and denomi­

nator matrix constituting a matrix fraction description, but there also exist- matrix

fraction descriptions with conditions of coprimeness holding between the numerator

and denominator matrices. The types of coprimeness that exist between the matrices

is a main consideration of this exposition and will be given particular attention. One

other result worthy of mention at this stage is the generalisation of the so called 2-D

MFD Theorem [34] (which establishes a relation between the determinants of the

denominator matrices of two indeterminate matrix fraction descriptions); here it is

shown that the relation not only extends to the invariant polynomials of the denomi­

nator matrices but also to the invariant polynomials of the numerator matrices. This

result is also valid for a certain class of matrix fraction descriptions in more than two

in determinates.

Matrix fraction descriptions in more than one indeterminate are considered in two

separate sections: the first considers the case of two indeterminates and the second

more than two indeterminates. This division is made because the two cases are

essentially different due to the splitting of the notion of coprimeness (Definition 1.13

and Theorem 1.3).

2.2 2-D Matrix Fraction Descriptions 30

2.2 2-D Matrix Fraction Descriptions
Matrix fraction descriptions of 2-D rational matrices involve polynomial numerator

and denominator matrices with elements that are polynomial in two indeterminates,

i.e. 1R[z1, z2].

Definition 2.1: (General MFD)

A general MFD of a 2-D rational matrix Gpxq(z1, z2) is given by

G(z1,z2) = Dj"" 1(z1,z2)N1(z1,z2) left MFD (18)

= N2(z1 , z2)D21(z1, z2) right MFD (19)

where N1 (z1, z2), N2(z1, z2), D1 (z1, z2) and D2(z1, z2) are polynomial matrices. 0

This definition of a matrix fraction description may be restricted further by insisting

that the numerator and denominator matrices are coprime. However, for polynomial

matrices in two in determinates there is not only one definition of coprimeness, as

indicated by Chapter 1, but two (minor and zero). This defines two types of coprime

matrix fraction description.

Definition 2.2: (Coprime MFD)

The factorisation of the rational matrix Gpxq(z1, z2) given by

G(z1 ,z2) = D-1(z1,z2)N(z1,z2),

where Dpxp(z1 , z2) and Npxq(z1, z2) are polynomial matrices, is described as a:

(i) minor {left) coprime MFD if D(z1,z2) and N(z1 , z2) are minor (left) coprime

matrices;

(ii) zero {left) coprime MFD if D(z1, z2) and N(z1, z2) are zero (left) coprime

matrices.

Right factorisation may similarly be defined by transposition of G(z" z2). o

Note: The term coprime MFD will be used to denote a matrix fraction description

in which the numerator and denominator matrices are either minor coprime or zero

coprime.

The first question arising from the definition concerns the existence of such coprime

matrix fraction descriptions.

Theorem 2.1: For every rational matrix Gpxq(z1,z2), in two indeterminates, there

exists a coprime MFD.
Proof: The proof is constructive and is given as the following algorithm.

2.2 2-D Matrix Fraction Descriptions 31

Algorithm 2.1: (Coprime MFD Algorithm)

Let Gpxq(z1, z2) be a rational matrix in the two indeterminates z1, z2•

1. Form d1(z1,z2), the least common denominator of the ith row of Gpxq(z1, z2),

fori=1,2, ... ,p.

2. Construct the diagonal matrix Dpxp(z1, z2),

d1(z1,z2) 0

0 d2(z1,z2)

0 0

0
0

3. Form the polynomial matrix Npxq(zl> z2) = Dpxp(z1, z2)Gpxq(z1, z2).

4. Compute Q(z1,z2), the greatest common (left) divisor of D(z1,z2) and N(z1,

z2), i.e. compute Q(z1, z2) such that

G(z1, z2) = D-1(z1, z2)N(z1 , z2)

- -1 -1 -
= (D(z1,z2) Q (z1, z2))(Q(z1, z2)N(z1, z2))

= fJ(z1,z2)-
1N(z1,z2)

is a minor (left) coprime MFD. Additionally fJ(z1,z2), N(z1,z2) may also be

zero (left) coprime, depending on the nature of G(z1, z2). D

Steps 1-3 are easily computed. However, as mentioned in the introduction, thecal­

culation of the greatest common divisor of 2-D polynomial matrices is not a trivial

matter. Part Two details a computer program to calculate automatically this greatest

common divisor.

To illustrate the algorithm the left and right coprime matrix fraction descriptions of

a 2-D rational matrix are given in the following example.

Example 2.1: Consider forming the left MFD of the rational matrix G(z1 , z2)

2.2 2-D Matrix Fraction Descriptions 32

By Step 2.

M1,2,a _ z z2
1,2,3 - 1 2

M1,2,a 2
1,2,5 = Z1Z2

MJ,2,3 = -z3
1,3,5 2

M 1,2,3 _ z2z2
2,3,4- 1 2

MJ,2,3 _ z2z
2,4,5 - 1 2

0

M1,2,3 _ z2z
1,2,4 - 1 2

M1,2,3 _ z2z
1,4,5 - 1 2

A greatest common divisor of the high-order minors is z2 , therefore M is not coprime.

A greatest common divisor of D(z1,z2), N(z1,z2) is given by

Q(•u'ol ~ (:

1

;) zi

1

Thus the (left) coprime MFD is given by

a«,,,)~ fr'(,,,,,)JV(,., ,) ~ (:
0 f(1 -z2 0

0 z 2 z 1 ,,)
ZJ -ZJ Z1 z 2 - z1

The high-order minors of [D(z1, z2) N(z1, z2)] are given by the high-order minors of

M divided by the determinant of Q(z1,z2), i.e. -z2. Therefore D(z1,z2), N(z1,z2)

forms a minor (left) coprime matrix fraction description.

The right coprime MFD may be calculated by using the above procedure on QT(z1,

2.2 2-D Matrix Fraction Descriptions 33

The high-order minors of the compound matrix M= [D N] are given by

M:·~= z 1z2 M:·~= z1z2 (z2 + 1)
• •

M 1,2 2
45 = z, •

Therefore D(z1,z2), N(z1, z2) form a minor coprime pair and the right coprime MFD

is given by

D

Thus by using Algorithm 2.1 a left and a right minor coprime MFD has been formed.

This is the type of coprimeness that is expected from the algorithm since only the

greatest common divisor is removed from both the numerator and denominator ma­

trices: thus constructing a minor coprime pair of matrices. Two interesting points

arise from this example:

1. both the left and right MFD have the same type of coprimeness;

2. there does not exist a zero coprime MFD of the rational matrix G(z1 , z2)

in Example 2.1 by using this algorithm. Only unimodular factors can be

removed from a minor coprime pair, which does not aJter the coprimeness of

the two matrices.

Therefore two questions arising from these observations are

1. Is the type of coprimeness for all MFDs invariant?

2. Is there a process by which zero coprime MFDs can be formed for all 2-D

rational matrices?

These questions will be addressed in the following section.

2.2 2-D Matrix Fraction Descriptions 34

2.2.1 Coprime Invariance of 2-D MFDs

The answer to the first question posed above is provided by the following theorem

and its corollaries.

Theorem 2.2: If the 2-D rational matrix Gpxq(z1, z2) possesses one MFD which is

zero coprime then every cop rime MFD of G(z1, z2) is zero coprime.

Proof: Without loss of generality suppose G(z1, z2) has a zero (left) coprime MFD.

Let
(20)

be the zero (left) coprime MFD, i.e. D 1(z1,z2), N1(z1,z2) are zero (left) coprime.

Suppose that G(z1,z2) has a minor (right) coprime MFD, which is not additionally

zero coprime, given by

(21)

By the Bezout identities, Theorem 1.4, there exist polynomial matrices X(z 1, z2),

Y(z1, z2) such that
(22)

and polynomial matrices X; (z1, z2), Y;(z1 , z2) and polynomials 1/J; (z;) for i = 1, 2, such

that

X;N2 + Y;D2 = '1/J,(z;)Iq. (23)

Thus (20)-(23) may be written as

(24)

i = 1,2. (25)

Then from (24)

IU.IIVI = '1/;'f(z;) for i = 1, 2. (26)

Hence lVI f 0 and so V(z1 , z2) is non-singular. Further, the condition (26) fori= 1,

indicates that IV I is polynomial in z1 alone, while the same equation for i = 2 shows

that lVI is polynomial in z2 alone. Consequently lVI is constant and so V(z1,z2) is

unimodular.

2.2 2-D Matrix Fraction Descriptions 35

has at least two linearly dependent columns, thus IV (z~, z~) I = 0 contradicting the

unimodularity of V. Therefore D2(z1, z2), N2(z1, z2) are zero (right) coprime.

Thus if one left coprime MFD is zero coprime then all right coprime MFDs are zero

coprime. The above arguments may then be repeated for one of these right coprime

MFDs (which is necessarily zero coprime) to deduce that all left coprime MFDs are

zero coprime.

Hence if one coprime MFD of G(z1, z2) is zero coprime then every coprime MFD of

G(z1 , z2) is zero coprime. D

Corollary 1: If G(z1, z2) has one MFD which is zero cop rime then there does not

exist a minor coprime MFD, which is not simultaneously zero coprime.

Proof: This is a restatement of the theorem. D

Corollary 2: If G(z1, z2) has one MFD which is minor cop rime but not zero cop rime

then there does not exist/ a zero coprime MFD.

Proof: This follows from the theorem because if there exists a zero coprime MFD

the above theorem ensures that all MFDs are zero coprime. D

The theorem and its corollaries indicate that the MFDs of a given G(z1, z2) are all of

the same coprimeness type. Thus either G(z1 , z2) has all its MFDs of the zero coprime

type or else they are all of the minor eo prime type, without being zero cop rime. These

findings are confirmed by the following example.

Example 2.2:

The high-order minors of M = [D N] are given by

M'·2- 0 2,4-

M'·2 -0 1,3-

M'·2- -z2 2,3- 2

M 1,2
3,4 = z,z2

~)

2.2 2-D Matrix Fraction Descriptions 36

Therefore D-1(z1,z2)N(z1,z2) is a minor (left) coprime MFD of G(z1,z2). If it is

additionally possible to form a zero (left) coprime MFD then there exists Q(z1 , z2)

such that

[D(z1,z2) N(z11 z2)] = Q(z1,z2) [D(z1,z2) N(z1,z2)]

and D(z1, z2), N(z1, z2) are zero (left) coprime. However, D(z1, z2), N(z1, z2) are

minor (left) coprime, therefore all left matrix divisors are unimodular, i.e. Q(z11 z2)

is unimodular. Thus D(z1, z2), N(z11 z2) possess the same notion of coprimeness as

D(z1, z2), N(z1 , z2), i.e minor (left) coprimeness. Hence there does not exist a zero

(left) coprime MFD of G(z1, z2). 0

It has been previously noted, following Algorithm 2.1, that in constructing one MFD

of a given rational matrix G(z1, z2) only minor coprimeness can be ensured. Whether

a MFD is, in addition, zero coprime is seen to be a property of G(z1, z2) itself rather

than of the particular representation of G(z1, z2). Thus Algorithm 2.1, which in theory

ensures minor coprime representations, practically delivers zero coprime representa­

tions when appropriate.

This theorehf .. ~ay be employed to give a new and simple proof of the polynomial

matrix form of the Completion Theorem [43] and [72].

Theorem 2.3: (Completion Theorem)

The two polynomial matrices Dpxp(z1,z2), Npxq(z1,z2) may be incorporated as the

first prows of a (p + q) x (p + q) unimodular matrix if and only if D(z1, z2), N(z1,

z2) are zero (left) cop rime.

Proof: Firstly assume that D(z1, z2), N(z1, z2) are zero (left) coprime and without

loss of generality D(z1, z2) is invertible. By the above theorem there exist zero (right)

coprime polynomial matrices D~xq(z1 , z2), N;xq(z1 , z2) such that

D-1(z1, z2)N(z1, z2) = N'(z1, z2)D'- 1(z 1, z2)

and by the Bezout identity

Thus

D(z1 , z2)X(z1 , z2) + N(z1, z2)Y(z1, z2) = JP

X'(z1,z2)D'(zl>z2) + Y'(z1,z2)N'(z1,z2) = lq.

(~' ;,) (~ -;') = (; ~)
where W = X'Y- Y'X. Define the polynomial matrices U(z) and V(z1,z2) by

U = (-~' ;,) , V = (~ -;') .

2.2 2-D Matrix Fraction Descriptions 37

Then

JUIIVI = 1

Conversely, assume that there exist polynomial matrices X (z1, z2), Y(z1, z2) such that

U(z1, z2) is unimodular, where

U=(~ ~)·
Now suppose that there exist (z\0

), z~0)) such that the high-order minors of

(D(z\0), z~0>), N(z\0), z~0)))

are all identically equal to zero. Therefore JU(z\0>,z~0))1 = 0 and a contradiction is

obtained. D

Thus a zero (left) cop rime matrix pair may be characterised by row bordering to

a unimodular matrix and conversely. This fact has already been noted in Chapter

1 during the discussion of Rosenbrock's relative primeness conditions, Theorem 1.2,

and the relation to coprimeness in many indeterminates, Section 1.5. The matrix

theoretic proof of this theorem has been previously provided by Zak et a/ [43] but

the fact that if one MFD of a rational 2-D polynomial matrix is zero coprime then

all MFDs are zero coprime is not made, which is central to the proof. Therefore the

proof given here is more rigorous and complete than that given by Zak et al.

The natural extension to this is to consider the situation for a minor coprime pair of

matrices. By comparison with the zero coprime case and the nature of the Bezout

identity it is expected that more than one row bordering statement characterises

minor (left) coprimeness. Thus the following statement can be proved.

Theorem 2.4: The polynomial matrix pair Dpxp(z1, z2), Npxq(z1 , z2) are minor (left)

coprime if and only if there exist polynomial matrices X;(z1 , z2), Y;(z1, z2) fori = 1, 2

such that the determinants of the (p + q) x (p + q) matrices U1 (z1, z2) and U2(z1 , z2)

are polynomial in z1 alone and z2 alone, respectively, where

() _ (D(z1, z2) N(z1, z2)) 'or
U; z1,z2 - •·

X;(z1,z2) Y;(z1,z2)
i = 1,2.

Proof: Firstly, assume that D(z1, z2), N(z1 , z2) are minor (left) coprime and with

out loss of generality D(z1, z2) is non-singular. Therefore by the corollary to Theorem

2.2 2-D Matrix Fraction Descriptions 38

2.2 there exist minor (right) coprime polynomial matrices D~xq(z1 , z2), N;xq(z11 z2)

such that

D-1(z1,z2)N(z1,z2) = N'(z1,z2)D'- 1(z,,z2)

and by the Bezout identities

D(z1,z2)X,(z11 z2) + N(z1,z2)Y;(z1,z2) = 1/i;(z,)I,

Wf(z1, z2)D'(z11 z2) + Zf(z1 , z2)N'(z1, z2) = 1/!;(z,)Iq.

fori= 1, 2 and where 1/J,(z,), 1/i;(z,) are polynomials in Z; fori= 1, 2. Thus

(
D N) (X· -N') (1/i·(z.)l 0) -z: w; v: D' = ' ~

11

1/!,(z,)Iq

where J, = WfY;- z:x, for i = 1, 2. Define, fori = 1, 2, the polynomial matrices

u,(z,,z2), V;(z,,z2)

_ (x, -N') v,_
• y, D' •

Thus

for i = 1, 2. Therefore the determinants of U1 (z1 , z2) and U2(z1, z2) are polynomial in

z1 alone and z2 alone, respectively.

Conversely, suppose that there exist polynomial matrices X,(z1,z2), Y;(z 1,z2) fori=

1, 2 such that the determinants of IU,(z1, z2)1 = a,(z;), where a,(z;) are polynomials

in z1 alone and z2 alone, respectively, and

U-= (D N). . x, Y;

Assume that D(z1,z2), N(z1,z2) are not minor (left) coprime therefore there exist

polynomial matrices Q(z1,z2), D'(z1,z2) and N'(z1,z2) such that

(
D N) (Q 0) (D' N')
X, Y; = 0 I X, Y; .

Taking determinants of this equation and using the premise yields

I
D' N'l IQI X; Y; = a;(z;) for i = 1,2.

Therefore IQ(z1 , z2)1 is a constant, i.e. Q(z1, z2) is a unimodular matrix, contradicting

the fact that D(z1,z2), N(z1,z2) are not minor (left) coprime. Hence the result is

obtained. D

By comparison with the third characterisation of 1-D relative primeness (Theorem

1.2) Theorem 2.4 provides a generalised Completion Theorem for minor coprimeness.

2.2 2-D Matrix Fraction Descriptions 39

Note: The characterisations of zero and minor coprimeness provided by Theorems

2.3 and 2.4 reflect the form of the Bezout identities. Thus reinforcing the theoretical

importance of the Bezout identities, noted in Chapter 1.

2.2.2 2-D MFD Structure Theorem

In the previous section the external structure of matrix fraction descriptions has been

investigated by considering the types of coprime MFD that exist for any 2-D rational

matrix. Now the internal structure of the matrix fraction description is investigated.

It is well known [32]-[34], [44] that the determinants of the denominator matrices

of matrix fraction descriptions, of the same 2-D rational matrix, are equal modulo a

multiplicative constant: this is often known as the 2-D MFD Theorem. In fact it is

not generally recognised that this property is shared by all the invariant polynomials

of not only the denominator matrices but also the numerator matrices: the proof of

this statement is the main subject of this section and constitutes one of the main

results of this thesis.

Before proving the this result recall:

Lemma 2.1: (2-D MFD Theorem)

Let Gpxq(z1, z2) be a rational matrix with MFDs defined by

G(z1, z2) = Dj"1 N1 = N2D21 (27)

where D1(z1,z2), N 1(z1 ,z2) are minor (left) coprime and D2 (z1,z2), N2(z1,z2) are

minor (right) coprime. Then

det D1 = const x det D2 · (28)

Proof: The proof is contained in [33]. D

The following theorem describes more deeply the structure of not only the denomina­

tor matrices but also the numerator matrices between given matrix fraction descrip­

tions.

'

2.2 2-D Matrix Fraction Descriptions 40

Theorem 2.5: (2-D MFD Structure Theorem)

Let Gpxq(z1, z2) be a rational matrix and have a MFD defined by

G(z1, z2) = N1 (z1, z2)Dj'1(z1, z2)

= D2 1 (z1, z2)N2 (z1, z2)
(29)

where N1(z1,z2), D 1(z1,z2) are minor (right) coprime and N2(z1,z2), D 2(z1,z2) are

minor (left) coprime.

(i) Let d[11 (z1,z2),dk11(z1,z2), ... ,d~11 (z1 ,z2) denote the invariant polynomials of

the q x q polynomial matrix D1 (z1, z2) and d[21(z1 , ~), dk21(z1, z2), ... , d~l(z1 ,
z2) denote the invariant polynomials of p x p polynomial matrix D2(z1, z2)

then

d[l) _ d[2) r • _ ()
q-;-C; p-i 10f ~-0,1, ... ,maxp-1,q-1

where d}'l = 1, d}21 = 1 for j < 1 and C; E lR\{0}.

(ii) The pxq polynomial matrices N1 (z1, z2) and N2(z1, z2) have identical invariant

polynomials, modulo a non-zero constant factor.

Proof: Since N1(z1,z2), D1(z1,z2) are minor (right) coprime and N2(z1,z2), D2(z1,

z2) are minor (left) coprime there exist polynomial matrices X;(z1, z2), Y;(z1, z2),

w,(z,, z2) and z,(z,, z2) fori= 1, 2 of appropriate dimensions such that

X,D1 + Y;N1 = '1/J;(z;)Iq}
for i=1,2

N2Z; + D2 W; = if>; (z;)Ip

where '1/J;(z;) and if>;(z;) are polynomials. From (29) and (30) it follows that

(30)

[
X; Y;] [D 1 Z;] = ['1/J;(z;)Iq J,] (31)
N2 -D2 N1 -W; 0 if>;(z;)Iv

where J; = X;Z;- Y;W;. Now take i = 1 and replace [_'i:,,] with [~]. Then (31)

gives

[
X 1 Y1] [D 1 0] = ['1/;1 ! 9 Y1] •

N2 -D2 N 1 lv 0 -D2

(32)

For any matrix Q let Q~:::::·~: denote the k x h submatrix formed from rows i1 , ••• , ik

and columns j 1, ••• ,jh. Consider the following (q + k) x (q + k) submatrix formed

from (32)

Oqxk] = ['1/J,Iq
l . . 0 p Jt , ... ,JJc kxq

(33)

B

2.2 2-D Matrix Fraction Descriptions 41

Take determinants of both sides and use the Cauchy-Binet Theorem [28] and (33) to

show that

(34)

Now the form of B indicates that any factor of B of the type occurring in the left­

hand-side of (34), for which { q + j;, ... q + j d is not a subset of { 11, ••• , lq+k} is zero.

Thus all the non-zero minors of B which occur in the left-hand-side of (34) contain

the rows q + j 1, ... , q + ik· Such a factor is then expressible via Laplace expansion in

terms of minors of N1 and D1• The smallest minor of D1 occurring in this Laplace

expansion is of order q + k- p. Therefore if g)!l(z1 , z2) for i = 1, ... , q denotes the

greatest common divisor of the i x i minors D1, it follows that

J!J l·'·qiD ;,, ... ,;.1
9q+k-p o/1 2 iJ, ...)jk (35)

where g~1k-p = 1 if q + k - p ~ 0.

If then gj21(z1 , z2) fori= 1, ... ,p denotes the greatest common divisor of the i xi

minors D2 , it follows from (35) and the fact that i 1 , ••• , ik and j 1, ••. ,jk are arbitrary

that
(!J l·'·q (2] 9q+k-p 'I/J9k . (36)

On the other hand if we take i = 2 then the same argument shows that

g~1k-p 11/J~g~l k = 1, ... , p. (37)

Statements (36) and (37) then imply, by Theorem 1.1, since 1/;1 , 1/;2 are factor coprime

or, on writing k = p- j,

J!J I 121 9q-j 9p-j>

k = 1, ... ,p

j = 0, ... , max(p- 1, q- 1)

where, if necessary, gy1 = 1, gJ21 = 1 for j < 1.

Now in (31) replace [X; Y;] with [Iq 0] to give

(38)

(39)

The same argument surrounding (32) may now be used in the case of (39) to show

that

g~~jlg~~j> j = 0, ... , max(p- 1, q- 1).

Statements (38) and (40) then yield, modulo a constant non-zero factor,

g~~j(z1 , z2) = g~2~j(z1 , z2), j = 0, ... , max(p- 1, q- 1)

(40)

(41)

- ----- --------

2.2 2-D Matrix Fraction Descriptions 42

Now gl11(z1,z2), g~l(z1 ,z2) are the determinantal divisors of D 1(z1,z2), D2(z1,z2)

respectively, and so from the relationship between the determinantal divisors and

their invariant polynomials the result (i) follows.

In the case of the numerators N1 (z1, z2) and N2 (z1, z2) the argument presented above

will carry through with some minor modifications. Specifically, in the case p :S q for

example, the equation corresponding to (32), fori= 1, is

[~: -~J [~: ~] = [~~~9 ~: :::::::::] (42)

where the constant matrix Eqxp is the unit matrix JP with q- p zero rows to form

a q x p matrix and 11, ••. , lP correspond to the columns of the matrices N2 and X 1

selected by multiplication by E. The analogue of (33) is obtained by selecting rows

i~o i2 , ••• , ik from the second block row and columns j 1 ,j2 , .•. ,jk from the second

block column. By considering all combinations of the rows of Ej.,j,, ... ,j, and the form

of the second matrix on the right-hand-side of (42), i.e the only non-zero minors

are those involving rows j 1,j2 , ••• ,jk of the first block row, it is seen by taking all

1 :S i1 < i2 < · · · < ik :S p and 1 :S j 1 < j 2 < · · · < jk :S q that

hr1 1~rh~1

where h~l, h~J are the greatest common divisors of the k x k order minors of N 1(z1,

z2), N2(z1, z2) respectively. Also by considering i = 2

h~~~~~h~l.

Therefore, by similar reasoning surrounding (38)

h111 lh~1 for k = 1, ... , p.

Now the equation corresponding to (39) is

[
0 E] [D1 Z1] = [NI 1, , ... ,l. W ~11,1,P ... ,1.]

N2 -D2 NI -WI 0 'I'

where E and 11, ••• ,lP are defined in (42). Thus the result

h~1 1hr1 for k = 1, ... ,p

is obtained by a similar discussion to that following (42). Therefore

hr1 = ckh~1 for k = 1, ... ,p

where ck E lR\{0} fork= 1, ... ,p and (ii) is established. 0

It is thus seen from the above that all minor coprime MFDs of a given rational

matrix G(z1, z2) are such that they have identical numerator invariant polynomials

and identical denominator non-unit invariant polynomials.

2.2 2-D Matrix Fraction Descriptions 43

The well known 2-D MFD Theorem (Lemma 2.1) may now be readily shown as a

particular case of the 2-D Structure Theorem as follows.

Corollary 1: The determinants of the denominator matrices in (29) are equal modulo

a multiplicative constant.

Proof: From the proof of the theorem it has been shown in (41) that the determinan­

tal divisors of the denominator matrices are equal modulo a multiplicative constant,

in particular

(43)

Since D 1(z1,z2) and D2(z1,z2) are q x q and p x p polynomial matrices respectively

the greatest common divisor of the qth and pth order minors, respectively, are the

determinants of D 1(z1, z2) and D2(z1, z2). D

This theorem also demonstrates the necessity part of Theorem 2.4.

Corollary 2: Defining Gpxq(z1 , z2) as in (29) with the Bezout identities (30) and

also
u. = • •

[
X y;]

' N2 -D2
for i = 1, 2. (44)

Then

IV;I=l;r/>f where k;,l;ElR\{0} for i=l,2.

(45)

where J; = X;Z;- Y;W;. Now replace [-t,] with U,J to give

[
X; Y;] [DI 0] = ['1/Jilq Y1].
N2 -D2 NI JP 0 -D2

(46)

Now take determinants of both sides to give

but by Corollary 1IDd = kjD2I, thus IU;I = k;'l/1? for some k; E lR\{0} and i = 1,2.

Similarly IV; I= l;c/>f for some l; E lR\ {0} and i = 1, 2. D

2.2 2-D Matrix Fraction Descriptions 44

Corollary 3: Suppose that two polynomial matrices P1 (z1, z2), P2(z1, z2), with sizes

p1 x q1 and p2 x q2 respectively and p1 - q1 = p2 - q2, are related by a polynomial

equation of the form

S1 (zi> z2)Piz1, z2) = P1 (z1, z2)S2(z1, z2)

where S1(z1,z2), S2(zl>z2) are p1 x p2, q1 x q2 polynomial matrices and S1(z1,z2),

P1 (z1, z2) are minor (left) coprime, S2(z1, z2), P2(z1, z2) are minor (right) coprime.

(i) Let d\11(z1, z2), d~1 (z1 , z2), ... , d~l(z1 , z2), where q = min(p1, q1), denote the in­

variant polynomials of the polynomial matrix P1 (z1, z2) and d\21 (z1, z2), d~21 (z!>

z2), ... , dj?l(z1, z2), where q = min(p2, q2) denote the invariant polynomials of

the polynomial matrix P2(z1, z2) then

d~1L = c;d~~i for i = 0, 1, ... , ma.x(p- 1, q- 1)

where d)11 = 1, d)21 = 1 for j < 1 and c; E IR\ {0}.

(ii) Let e\11 (z1, z2), e~11(z1 , z2), ... , e~11 (z1 , z2), where r = min(p1 ,p2), denote the in­

variant polynomials of the polynomial matrix S1 (z1, z2) and e\21(zi> z2), e~
21(z1 ,

z2), ... ,e!21(z1,z2), where t = min(q1,q2) denote the invariant polynomials of

the polynomial matrix S2 (z1,z2) then

[I) - [2) c . - 0 1 (1 1) er-i - C;et-i !Of l - , , ... , max r - 1 t -

where e)11 = 1, e)21 = 1 for j < 1 and e; E IR\{0}.

Proof: The proof follows analogously to part (ii) of the theorem. Thus by the Bezout

identities there exist polynomial matrices X;(z1,z2), Y;(z1,z2), W;(z 1,z2), Z;(z1,z2)

for i = 1, 2 such that

S1X; + P1Y; = '1/J;(z;)Ip,

W;P2 + Z;S2 = rP;(z;)Iq,

where '1/J;(z;) and rP;(z;) are polynomials. Thus

for i = 1, 2

[
W; -Z;] [P2 X;]= [rP;(z;)Iq,
SI PI -S2 Y; 0

(47)

where J; = W;X;- Z;Y;. The proof follows analogously to Part (ii) of the theorem

by systematic substitution of X;(z1,z2), Y;(z1,z2), W;(z1,z2), Z;(z1,z2) by the zero

matrix and E, as defined in the theorem, fori= 1,2. 0

The above theorem can also be interpreted in terms of the Smith forms of the numer­

ator and denominator matrices. By definition the Smith form is a polynomial matrix

with the invariant polynomials on the principle diagonal and zeros everywhere else.

2.2 2-D Matrix Fraction Descriptions 45

Thus in (29) if p ~ q and the q x q denominator D1 (z1, z2) has invariant polynomials

d[IJ () d[IJ () d[IJ () h S . h r • I z1,z2 , 2 z1,z2 , ... , q z1,z2 t e m1t 10rm IS

d\11 (z1, z2) 0
0 d~11 (z1 ,z2)

0 0

0

0
(48)

and using the theorem the Smith form of the p x p denominator matrix D2(z1, z2) is

1 p-q p

1 1 0 0 0 0 0

0 1 0 0 0 0

p-q 0 0 1 0 0 0 (49)
0 0 0 [I[() 0 0 cldl zl, z2

0 0 0 0 c2d~IJ(zl, z2) 0

p 0 0 0 0 0 [I[() cqdq z1, z2

where the first p- q are unit invariant polynomials and c, E IR\ { 0} for i = 1, 2, ... , q.

Similarly if the invariant polynomials of the p x q numerator matrix N1 (z1, z2) are

111() [I[() [![() h S · h r f N () · n1 z1, z2 , n2 z1, z2 , ... , nq z1, z2 t e m1t torm o 2 z1, z2 IS

k1 n\11 (z1, z2) 0 0

0 k2n~11(z1 , z2) 0

0

0

0

0

0

0 0

where k; E IR\ {0} for i = 1, 2, ... , q. To demonstrate this equivalence of Smith form

consider the following example.

Example 2.3: Consider the rational matrix G(z1, z2) given in Example 2.1

2.2 2-D Matrix Fraction Descriptions

0)-1
z,

46

(50)

(51)

The Smith forms of D1(z1,z2), D2(z1,z2), N 1(z1,z2), N2(z1,z2) (viz, Sv,(z1,z2),

Sv,(z1, z2), SN, (z1, z2), SN,(z1, z2), respectively) are given by

Sv,(z,,z2)=C
0

) Sv,(z1,z2)= (~ ~ ~)
0 z,z2 0 0 -z,z2

SN, (,., ,,) ~ (: ;) SN,(,., ~) ~ (: ;)

Hence the theorem is demonstrated. D

Note: Theorem 2.5 only considers the case when both the left and right matrix

fraction descriptions are minor coprime, but in light of the previous section if one

coprime MFD is minor coprime then all coprime MFDs are minor coprime. Also the

theorem does not explicitly state the result if the MFDs are zero coprime, however,

zero coprimeness is a stronger statement of coprimeness than minor coprimeness thus

it is contained in the definition of minor coprimeness. For these reasons the MFDs

(29) of Theorem 2.5 could be described as any coprime MFDs and the theorem is still

valid.

The MFD structural result, presented as Theorem 2.5, also holds for coprime 1-D

matrix fraction descriptions, because all definitions of coprimeness are equivalent

when n = 1. The result is restated here to demonstrate that the 1-D result is a

specific case of the more general 2-D theory.

Theorem 2.6: (1-D MFD Structure Theorem)

Let G,xq(z1) be a rational matrix and have a MFD defined by

G(z1) = N1 (zdDi 1 (z1)

= D2 1(z1)N2(z1)
(52)

where N 1(z1), D1(z1) are 1-D (right) coprime and N2 (z1), D2(z1) are 1-D (left) eo-

prime.

2.2 2-D Matrix Fraction Descriptions 47

(i) Let d\1l(z1), d~1l(z 1), ••• , d~1l(z 1) denote the invariant polynomials of the q x q

polynomial matrix D 1(z1) and d\21(z 1),d~21(z 1), ... ,d)?l(z1) denote the invari­

ant polynomials ofp x p polynomial matrix D2 (z1) then

d~1~; = e;d~~; for i = 0, 1, ... , max(p- 1,q- 1)

where d}'l = 1, d}21 = 1 for j < 1 and e; E lR\{0}.
(ii) The p x q polynomial matrices N1 (z1) and N2(z1) have identical invariant

polynomials, modulo a non-zero constant factor. D

2.3 n-D Matrix Fraction Descriptions 48

2.3 n-D Matrix Fraction Descriptions
It has been seen in the previous section how results for matrix fraction descriptions

in one indeterminate are transformed into complicated and important results for 2-D

MFDs. For example, the single definition of 1-D coprimeness renders Theorem 2.2 as

an obvious statement, however, its importance within a 2-D framework is self evident:

by eliminating the possibility of mixed coprimeness statements the coprimeness of one

MFD determines the coprimeness of all other MFDs.

The situation of matrix fraction descriptions in an arbitrary number of indeterminates

(generally assumed greater than two, unless stated) is more complicated. The 2-D

results only partially carry over to the general case. These results are discussed below.

The definition of a general MFD is equivalent to Definition 2.1 with n indeterminates,

i.e (z1, z2) is replaced by (z) where (z) = (z 1, z2 , ••• , zn). However, for polynomial

matrices in n indeterminates there are three definitions of coprimeness, thus defining

three types of coprime MFD. Explicitly:

Definition 2.3: (Coprime MFD)

The factorisation of the rational matrix Gpxq(z) given by

G(z) = D- 1(z)N(z),

where Dpxp(z) and Npxq(z) are polynomial matrices, is described as a:

(i) factor {left) coprime MFD if D(z) and N(z) are factor (left) coprime matrices;

(ii) minor (left) coprime MFD if D(z) and N(z) are minor (left) coprime matrices;

(iii) zero (left) coprime MFD if D(z) and N(z) are zero (left) coprime matrices.

Right factorisation may similarly be defined by transposition of G(z). D

Note: The term coprime MFD will be used in its more general sense to mean a

matrix fraction description with numerator and denominator that are factor, minor

or zero cop rime. In certain circumstances this term will be used with the qualification

of the number of indeterminates, i.e. n-D coprime MFD.

Earlier it was proved (Theorem 2.1) that every 2-D rational matrix possesses a 2-D eo­

prime MFD via a constructive algorithm. The generalisation of this theorem is trivial

since the algorithm does not depend on the number of indeterminates, therefore the

same algorithm may be employed to calculate n-D coprime MFDs. Unfortunately the

practical implication of this algorithm is not so easily generalised. The formation of a

matrix fraction description, that is not necessarily eo prime (Steps 1 to 3), is straight

2.3 n-D Matrix Fraction Descriptions 49

forward, however, the calculation of a greatest common divisor to form a coprime

MFD is difficult; it is not even known whether an algorithm exists to systematically

calculate this form.

2.3.1 Coprime Invariance of n-D MFDs

For matrix fraction descriptions in two indeterminates the type of coprimeness is a

property of the rational matrix (Theorem 2.2) and does not depend on the MFD.

The results for the general n-D case are split into two parts. Firstly it is shown that

all left factorisations of a rational matrix possess the same type of coprimeness and

consequently, by transposition, all right factorisations of a rational matrix possess

the same type of coprimeness. Secondly it is shown that the type of coprimeness

possessed by all left factorisations does not necessarily determine the coprimeness

type of all right factorisations and vice versa.

Theorem 2.7: Any two left coprime MFDs of the same rational matrix Gpxq(z) in

n indeterminates have the same type of coprimeness.

Proof: This theorem will be proved by showing that any two left coprime MFDs can

not be of different coprimeness. Thus it is required to prove

(i) if a zero (left) coprime MFD exists, then does not exist either a minor (left)

coprime or a factor (left) coprime MFD,

(ii) if a minor (left) coprime MFD exists, then a factor (left) coprime MFD does

not exist.

(i) It is required to prove that if there exists a zero (left) coprime MFD then there

does not exist a minor (left) coprime MFD. Suppose that

Gpxq(z) = D!1(z)N1(z)
(53)

= D21(z)N2(z)

where D1 (z), N 1 (z) are either minor (left) coprime or factor (left) coprime and D2(z),

N2(z) are zero (left) coprime. Now from the Bezout identities (Theorem 1.4) there

exist polynomial matrices X (z), Y (z) such that

D2X + N2Y =JP.

Now substitute N2 = D2D!1 N1 from (53) into (54) to obtain

D2X + D2D!1N 1Y =I

DIX + NlY = DtD2 1
.

(54)

(55)

2.3 n-D Matrix Fraction Descriptions 50

The left-hand-side of (55) is polynomial, therefore the right-hand-side of (55) is also

polynomial, i.e. D1D2 1 = E(z), a polynomial matrix. Thus

N 1 = EN2

But D1 , N 1 are either minor (left) coprime or factor (left) coprime, therefore E is

unimodular. But (55) gives a zero coprime Bezout identity

D1XE-1 + N1YE- 1
=JP

hence D1, N1 are zero (left) coprime.

Thus (i) is proved.

(ii) It is required to prove that if there exists a minor (left) coprime MFD then there

does not exist a factor (left) coprime MFD. Suppose that

Gpxq(z) = Dj1(z)N1(z)

= D2 1(z)N2(z)
(56)

where D1(z), N 1(z) are factor (left) coprime and D2 (z), N2(z) are minor (left) eo­

prime. Now from the Bezout identities (Theorem 1.4) there exist polynomial matrices

X;(z), Y;(z) fori= 1,2, ... ,n such that

(57)

where 1/l;(zf) is a polynomial in the n-1 indeterminates z1, .•• , z;_ 1, zi+1 , 00., Zn. Now

substitute N2 = D2Dj1 N1 from (56) into (57) to obtain fori= 1, 2, ... , n

D2X; + D2Dj1 N1 Y; = 1/IJ
=:- D1X; + N1Y; = 1/I;D1D21

(58)

(59)

Now the elements of D1D2 1 are not rational, as the elements of the matrices of

the left-hand-side of (59) are not rational and the 1/1; are a factor coprime set for

i = 1, 2, ... , n, i.e. if one element of D 1 D2 1 is rational, n(z1 , z2)/d(z1, z2) say, then

the dll/1; fori= 1, 2, oo., n, thus by Theorem 1.1 d(z1, z2) is a constant.

Thus there are two possibilities for the form of D 1D:; 1
•

(a) D1D2 1 = E 1(z), a non-unimodular polynomial matrix or

(b) D1D2 1 = U(z), a unimodular matrix.

If (a) holds then D1 = E1D2 and from (56) N1 = E 1D2D2 1 N2 = E1N2 hence D1, N1

are not factor (left) coprime as they both have a polynomial factor E 1•

If (b) holds then D1D21 = U(z) and D1, N1 possess a minor coprime Bezout identity

D 1X;U- 1 + N1 y;u-1 = 1/IJ

2.3 n-D Matrix Fraction Descriptions 51

and therefore can not be factor (left) coprime.

Thus (ii) is proved. 0

Corollary 1: If one left MFD of the rational matrix G,xq(z) is

(i) zero (left) coprime then all coprime left MFDs are zero (left) coprime,

(ii) minor (left) coprime then all coprime left MFDs are minor (left) coprime,

(iii) factor (left) coprime then all coprime left MFDs are factor (left) coprime.

Proof: This is a restatement of the above theorem. 0

The same statements can be made for right factorisations.

Corollary 2: Suppose that D!1(z)N1(z), D2 1(z)N2(z) are minor (left) coprime

MFDs of G,xq(z). Then there exists a unimodular matrix U(z) such that

(60)

Proof: From part (i) (a) and (b) of the theorem it has been deduced that D1D21

is unimodular. Therefore there exists a unimodular matrix U(z) = D1D21 such that

D1(z) = U(z)D2(z) and N 1(z) = U(z)D2(z). 0

This corollary also holds for zero coprime factorisations due to the inclusion of zero

coprimeness in minor coprimeness (see Theorem 1.3). However, it is not true that all

factor (left) coprime MFDs are linked by a unimodular matrix as in Corollary 2 of

Theorem 2. 7. To prove this consider the following theorem by Lin [45].

Theorem 2.8: Suppose that Gpxq(z) has the following MFDs

G(z) = N 1 (z)D! 1(z)

= D21(z)N2(z)
(61)

where D1(z), N 1(z) are factor (right) coprime and D2(z), N2(z) are minor (left)

coprime. Then there exists a right MFD ofG(z) = N(z)b- 1(z) such that D f D1U

and N f N 1U for any polynomial matrix, not just unimodular, U(z).

Proof: The proof is detailed in [45]. 0

This theorem provides the first indication that the type of coprime MFD possessed by

an-D rational matrix is not unique. A further indication is provided by the following

example due to Levy [34].

1

,---------------- --

2.3 n-D Matrix Fraction Descriptions 52

Example 2.4: Let

then

G(z1,z2,z3)=(z1)-
1 (z2 z3)=(z2 z3)(~

The high-order minors of the left MFD are

and the high-order minors of the right MFD are

0)-1
Zt

Thus the left MFD is minor (left) coprime. However, it is shown by Levy [34] that all

polynomial matrix right divisors are unimodular; therefore the right MFD is factor

(right) coprime.

By Theorem 2.7 all left factorisations of G(z1,z2) are necessarily minor (left) coprime

and all right factorisations are necessarily factor (right) coprime. Therefore a minor

(right) coprime MFD does not exist. D

The case of a rational matrix possessing a zero (left) coprime MFD and a factor (right)

coprime MFD is theoretically feasible since zero coprimeness is contained in minor

coprimeness but an example has proved elusive to find. Further theoretical evidence

for the existence of such a combination of coprimeness types is provided later by the

introduction of the notion of generating polynomials. These are discussed after the

following theorem relating the two remaining types of coprimeness for opposite sided

MFDs of a rational matrix.

Theorem 2.9: If the rational matrix G(z) has one minor coprime factorisation then

there does not exist a zero coprime factorisation and conversely if G(z) has one zero

coprime factorisation then there does not exist a minor coprime factorisation.

Proof: The proof of this theorem follows in a manner analogous to that of Theorem

2.2 and the ensuing corollaries. Therefore only a sketch of the proof is given here.

Firstly suppose that G(z) possess1a zero (left) coprime MFD defined by

and suppose that there exists a minor (right) coprime MFD defined by

G(z) = N2 (z)D2 1(z)

(62)

(63)

2.3 n-D Matrix Fraction Descriptions 53

The Bezout identities now give

DIX+NIY=lp

X;D2 + Y;N2 = 1/J;(zf)/9 for i = 1, 2, ... , n

(64)

(65)

where X(z), Y(z) and X;(z), Y;(z) for i = 1, 2, ... , n are polynomial matrices and

1/J;(zf) are polynomials in the n-1 indeterminates z1, • •• ,z;_ 1,zi+1, ••• ,zn·

From these Bezout identities (64), (65) and equations (62), (63) a matrix equation

corresponding to (24) of Theorem 2.2 may be set up and the discussion following this

equation establishes that if one MFD of G(z) is zero coprime then there does not exist

a minor coprime MFD of G(z). The converse is proved by Corollary 2 of Theorem

2.~ 0

In light of these results it is not possible to prove the Completion Theorem for n-D

polynomial matrices using matrix theoretic arguments similar to Theorems 2.3 and

2.4. This is due to the coprimeness type of, say, a right MFD given the coprimeness of

a left MFD, i.e. if a left MFD of a rational n-D polynomial matrix G(z) is zero (left)

coprime then a right MFD may be either zero or factor (right) coprime. However, it

is possible to provide sufficient conditions for zero and minor coprimeness similar to

those derived for 2-D polynomial matrices (Theorems 2.3 and 2.4).

Lemma 2.2: Suppose that two polynomial matrices Dvxv(z) and Npxq(z) can be

incorporated as the first prows of a unimodular matrix U(z). Then D(z), N(z) are

zero (left) coprime.

Proof: The proof follows in an analogous way to the second part of Theorem 2.3. 0

Considering the sufficiency proof of Theorem 2.4, i.e. all polynomial matrix factors

are unimodular, it might be expected that a sufficiency characterisation for factor

coprimeness can be derived. However, on closer inspection the result is seen to hold

for minor coprimeness by using Laplace expansion. Therefore the following result is

obtained.

Lemma 2.3: Let Dpxp(z) and Npxq(z) be polynomial matrices and suppose that

there exist polynomial matrices X;(z), Y;(z) fori= 1, 2, ... , n such that

U(z) = (D(z) N(z)) for
, X;(z) Y;(z) i=1,2, ... ,n

and jU;(z)j = a;(zf) fori = 1, 2, ... , n, where a;(zf) are polynomials in then- 1
indeterminates z1, ••• , Z;_ 1, zi+1, .•. , zn. Then D(z), N(z) form a minor (left) coprime

pair.

2.3 n-D Matrix Fraction Descriptions 54

Proof: Suppose that there exist polynomial matrices X;(z), Y;(z) fori= 1, 2, ... , n
such that the determinants of U;(z) possess the properties defined by the theorem

hypothesis. Using Laplace expansion on the first prows of IU;I fori= 1, 2, ... , n the

following equations are obtained.
m

L u;(z)u;(z) = a;(zi) for i = 1, 2, ... , n
j=l

where u;(z), i = 1, ... ,m, are the high-order minors of (D N) and uji)(z) are the

minors obtained from U;(z) fori= 1, 2, ... , n by deleting the rows and columns used

in forming the minor u;(z). Let g(z) be the greatest common divisor of the high-order

minors of D(z), N(z). Then

g(z)ia;(zi) for i = 1, 2, ... , n

Since the a;(zf) form a factor coprime set of polynomials, Theorem 1.1 proves that

g(z) is a constant, i.e. the high-order minors of D(z), N(z) are factor coprime. There­

fore D(z), N(z) form a minor (left) coprime pair of matrices. 0

The concept of generating polynomials is now introduced. These were first defined

by Lin [45] to investigate the structure of n-D matrix fraction descriptions.

Definition 2.4: (Generating Polynomials)

Let Apxq(z) be a full rank polynomial matrix in the n indeterminates z1 , z2 , ••• , z,..
Suppose that r = min(p, q); then denote the determinants of the r x r minors by

a1 (z), a2(z), ... , a~(z) where (3 = (m~((p, q))) (66)
mm p,q

i.e. the number of combinations of max(p, q) taken min(p, q) at a time. Denote the

greatest common divisor of these polynomials by g(z), then

a;(z) = g(z)b;(z), i = 1,2, ... ,(3. (67)

The b1(z), ... , b~(z) are called the generating polynomials of A(z). 0

Suppose that a rational matrix Gpxq(z) has MFDs, not necessarily coprime, defined

by
G(z) = N1 (z)D]' 1(z)

= D21(z)N2(z)
(68)

Then the generating polynomials of the right MFD are defined to be the generating

polynomials of the matrix A1 (z)

(69)

2.3 n-D Matrix Fraction Descriptions 55

and the generating polynomials of the left MFD are defined to be the generating

polynomials of the matrix A2(z)

(70)

If a matrix fraction description is minor or zero coprime, by definition the high-order

minors form a factor coprime set, and so the generating polynomials may be taken

to be these polynomials.

The following two theorems relate the generating polynomials of two, not necessarily

coprime, MFD of the same rational matrix.

Theorem 2.10: Let Gpxq(z) be a rational matrix with two left MFDs defined by

G(z) = Dj"1(z)N1(z)
(71)

Denote the generating polynomials of Dj" 1(z)N1 (z) by b\11, b~1 1, ... , bg1 and the gener­

ating polynomials of D2 1(z)N2 (z) by b\21, b~21, ... , b~l, where fJ = (';;.~:~::?). Then

i=1,2, ... ,fJ, forsome kER. (72)

Proof: The proof is detailed in [45]. D

Thus left MFDs have essentially unique generating polynomials. The same theorem

may be applied to right MFDs with the same result being deduced. But can the

generating polynomials of a left MFD and a right MFD, of the same rational matrix,

be linked in a similar manner? The following theorem gives the answer.

Theorem 2.11: Let Gpxq(z) be an n-D rational matrix with a general/eft and right

MFD defined by
G(z) = N 1 (z)Dj" 1(z)

= D2 1(z)N2(z).
(73)

Denote the generating polynomials of N1 (z)Dj"1 (z) by b\11, b~1 1, ... , bg1 and the gener­

ating polynomials of D2 1(z)N2(z) by b\21, b~l, ... , b~1 , where fJ = ('::.~::;::?). Then

bi!J = kb-121 . 1 2 fJ
t t ' 1, = ' ' ... ' (74)

where li!21 are obtained by reordering b\21, b~21, ... , b~l, with b\21 = l.i\21, and k E JR.

Proof: The proof is detailed in [45]. D

To illustrate the equivalence of the generating polynomials of matrix fraction descrip­

tions consider the following example.

2.3 n-D Matrix Fraction Descriptions 56

Example 2.5: From Example 2.1 the rational matrix G(z1, z2)

(

Z1 Z2 + 1)
zl + z2 z2

z2 zl
z1

1 , z2
admits three matrix fraction descriptions, one minor (right) coprime, one minor (left)

coprime and one non-coprime respectively given by (75), (76) and (77).

)

-I (
0 0 z1

z1z2 0 z 1 (z1 + z2)

0 z2 Z1

The high-order minors of the augmented matrices

are given by:

M 1(z1,z2) = [Df(z1,z2) Nf(z1,z2W
M2(z1,z2) = [D2(z1,z2) N2(z1,z2)]

M2(z1,z2) = [D2(z1,z2) N2(z1,z2)]

For the minor (right) coprime MFD
M 1,2

1 1,2 = Z1Z2 M 1 ::~ = z1z2(z2 + 1)
M 1,5 M 1,4 2

1 1,2 = Z2

M 2,3 2 1 1,2 = -z1z2

M 2,5 2
1 1,2 = -zl

M 3,5 2
1 1,2 = -zl

1 1,2 = Z1Z2

M1 i·~ = -zl (zl + z2) ,

M 4,5 2
I I 2 = Z1 ,

(75)

(76)

(77)

These polynomials are factor coprime and may therefore be taken to be the generating

polynomials.

For the minor (left) coprime MFD

M 1,2,3- 2
2135--z2

''

M 1,2,3 2
2 234 = Z1Z2

''
M 1,2,3 _ z2

2 2,4,5- 1

2.3 n-D Matrix Fraction Descriptions 57

M 1,2,3- 2
2 12 4 - Zt

''

M 1,2,3 2
2 14 5 = Zt

''

Again these polynomials are factor ooprime and may therefore be taken to be the

generating polynomials.

For the left non-ooprime MFD

M- 1,2,3- 3
2 13 5- -z2

''

M- 1,2,3 2
2 12 4 = Z1 Z2

''

M- 1,2,3 2
2 145 = Z1Z2

''
M- 1,2,3 2(+ 1)

2235=Z1Z2Z2
''

These polynomial have greatest common polynomial divisor z2, therefore the gener­

ating polynomials may be taken to be the high-order minors divided by z2 to give

identical generating polynomials to M2(z1,z2). Thus Theorem 2.10 is demonstrated

with all k's identically equal to one.

To illustrate Theorem 2.11 consider the generating polynomials of M1(z1,z2) and

M2(z1, z2). Thus
M t,2,3 _ M 1,2

2 1,2,3 - 1 1,2
M t,2,3 _ M 2,5

2 1,2,4 - 1 1,2

M t,2,3 _ M t,5
2 1,2,5 - 1 1,2

M t,2,3 _ M 2,4
2 1,3,4 - I 1,2

M t,2,3 _ M t,4
2 1,3,5 - - 1 1,2

M t,2,3 =-M 3,5
2 1,4,5 1 1,2

M t,2,3 =-M 2,3
2 2,3,4 1 1,2

M t,2,3 _ M t,3
2 2,3,5 - 1 1,2

M t,2,3 _ M 4,5
2 2,4,5 - 1 1,2

M t,2,3 _ M 3,4
2 3,4,5 - 1 1,2

0

Applying Theorem 2.11 to a 2-D rational matrix Theorem 2.2 may be derived in the

following manner.

2.3 n-D Matrix Fraction Descriptions 58

Suppose that the 2-D rational matrix Gpxq(z1 , z2) has a left coprime MFD defined by

(78)

Then D(z1, z2), N(z1, z2) are either minor (left) coprime or zero (left) coprime, hence

the generating polynomials may be taken as the high-order minors of A(z1, z2) =

[D(z1, z2) N(z1 , z2)]. By Theorems 2.10 and 2.11 these generating polynomials define

the generating polynomials of all other MFDs. Thus all coprime MFDs possess the

same zero set and hence possess the same type of coprimeness.

The proof of Theorem 2.11 requires polynomial matrices with elements in JR[z1 , z2 ,

... , zn] to be considered as elements of the more generalised ring JR(z1 , .•. , z,_1, zi+1,

... , zn) [z;] and the argument repeated fori = 1, 2, ... , n. On the other hand the proof

of Theorem 2.2 uses only polynomial arguments in the ring JR[z1 , z2 , ••• , Zn] and the

Bezout identities (Theorem 1.4). Thus the proof of Theorem 2.2 is seen to be a more

direct and simple argument.

In the same way Theorem 2.9 can also be derived for n-D MFDs using Theorem 2.11,

but once again the proof of Theorem 2.9 is more direct and simple. Also Theorems

2.10 and 2.11 do not reveal the full invariance of same sided MFDs proved in Theorem

2. 7 for the following reasons.

Consider a factor (left) coprime MFD then the generating polynomials are defined

to be a set of cop rime polynomials derived from the high-order minors. In general

it is not possible to recreate the high-order minors with only the knowledge of the

generating polynomials, thus it is not possible to prove that all other left coprime

MFDs are also factor coprime as demonstrated by Theorem 2.7.

As mentioned earlier an example for a zero (left) coprime MFD and a factor (right)

coprime MFD of the same n-D rational matrix has proved elusive. A theoretical

justification for the existence of such a combination of coprime MFDs can be derived

using the notion of generating polynomials. Suppose that there exists a factor (right)

coprime MFD with generating polynomials a1 (z), a2(z), ... , a13 (z). It has already been

seen that if these generating polynomials are factor coprime, but not zero coprime, a

minor (left) coprime MFD can be formed as in Example 2.5. Thus if these generating

polynomials are additionally zero eo prime a zero (left) coprime MFD is theoretically

feasible.

----------- ---- -

2.3 n-D Matrix Fraction Descriptions 59

2.3.2 Coprime n-D MFD Examples

Below are detailed four examples of coprime matrix fraction descriptions to demon­

strate the results obtained in the previous section. The following table summarises

these results by division into three categories

Right MFD
Zero Minor Factor

LM
Zero ./)(?_Jf

e F
f Minor)(./ ./
tD Factor ?-* ./ ./

./ Factorisations of these types are possible for a specific rational matrix and an

example has been presented.

X Factorisations of these types are theoretically impossible: thus no example

exists.

*? Factorisations of this type are theoretically possible but no example is given.

Figure 2.1 Summary of Examples

Example 2.6: (Factor Right/Minor Left) From Example 2.4 the rational matrix

Zz za
G(zi,Zz,Za) = (zl zl)

has a factor (right) coprime MFD and a minor (left) coprime MFD given by

D

where

2.3 n-D Matrix Fraction Descriptions 60

f 1 = z~- z1za

f 2 = z2za- z~

fa= zi- z~z2
=> f?- fda = z, (zf- 3z~z2za + z,z~ + z~)

d

F = (f2 f,)
fa f2

admits no polynomial decomposition F = F1F2 such that neither F 1(z1,z2,za) nor
F2(z1,z2, za) are non-unimodular, i.e. for any polynomial factorisation F = F1F2
either F1 or F2 is a unimodular matrix.

Now suppose that M2 is not factor (right) coprime, i.e. there exists a polynomial

matrix D(z1, z2 , za) such that

[
F(z1,z2,za)] _ [A(z1,z2,za)] D() - z.,~,~

z1I2 B(z1,z2,za)

where A(z1,z2 ,za), B(z1,z2,za) are polynomial matrices. Thus F = AD and by

the previous paragraph either A or D is unimodular, but D can not be unimodular
otherwise M2 is factor (right) coprime, therefore suppose that A is unimodular. Thus

det D = z1 d where d is as defined earlier.

Now
det(z1I2) = det B det D

z~=bxz1 d

=> z, = bd

=> dlz1

This is obviously false hence M2 is factor (right) coprime.

By similar argument M1 is also factor (left) coprime. Thus showing that a rational

matrix can have a factor (left) coprime MFD and a factor (right) coprime MFD. 0

2.3 n-D Matrix Fraction Descriptions 61

Example 2.8: (Minor Right/Minor Left) Let

The high-order minors of the compound matrices

are given by
M 1,2 2 11,2 = z,
M 1,2

11,4 = z,z3
M 1,2 12,4=-z,

M2=

M 1,2 2
212 = z,

'
M 1,4

212 = z,z3
'

M 2,4
212 = -z,

'

z, 0

0 z,

z2 1

1 z3

Thus both M1 and M2 are minor coprime, as the high-order minors do not have a

factor but if (z1, z2, z3) = (0, 1, 1) all the high-order minors are zero.

Therefore the left MFD is minor (left) coprime and the right MFD is minor (right)

coprime. D

Example 2.9: (Zero Left/Zero Right) Let

(~ ~) G= ~~
z,

= (~ 0 r' (z2
z, 1 ~)

= (~2 ~) (~ or' z,

The high-order minors of the compound matrices

z, 0

M,=(~ 0 z2 ~)
0 z,

1
M2=

1 z, z2
1 0

2.3 n-D Matrix Fraction Descriptions 62

are given by
M 1,2 2

11,2 = Z1

M 1,2 0
11,4 =

M 1,2
12,4 = -z1

M 1,2
113 = Z1

'
M 1,2

123=-zlz2
'

M 1,2 1
134 =-

'

M 1,2 2
2 I 2 = Z1

'
M 1,4 0

212 =
'

M 2,4
212 = -zl

'

M 1,3
2 12 = Z1

'
M 2,3

212=-Z1Z2
'

M 3,4 1
212 =-

'

Thus both M1 and M2 are zero coprime, as one of the minors is a constant.

Therefore the left MFD is zero (left) coprime and the right MFD is zero (right)

coprime. 0

2.3.3 n-D MFD Structure Theorem

Recall the equivalence possessed by the invariant polynomials of all coprime matrix

fraction descriptions of a 2-D rational matrix, Theorem 2.5. In light of the results for

coprime invariance of n-D MFDs it would seem improbable that the 2-D Structure

Theorem (Theorem 2.5) holds for all n-D coprime MFDs. This fact is supported by

the following example.

Example 2.10: Recall Example 2.4 with MFDs of the rational matrix G(z1 , z2 , z3)

defined by

G(z1,Z2,z3) = (? ?) = (zt)-1 (z2 z3) = (z2 z3) (z
1 0)-I

I I 0 z1

The two denominator matrices have determinants z1 and zr; thus demonstrating

Corollary 1 of Theorem 2.5 does not hold for n-D factor coprime MFDs. 0

However, by examining the proof of Theorem 2.5 it would seem to suggest that if both

the left and right cop rime MFDs possess some type of Bezout identity the theorem

holds. In fact, if both MFDs are either minor or zero coprime the 2-D MFD Structure

Theorem holds for n-D MFDs.

Theorem 2.12: (n-D MFD Structure Theorem)

Let Gpxq(z) be an-D rational matrix and have a left and right MFD defined by

G(z) = N1 (z)Di 1(z)

= D2 1(z)N2(z)
(79)

where N1 (z), D1 (z) are minor (right) coprime and N2(z), D2(z) are minor (left)

cop rime.

2.3 n-D Matrix Fraction Descriptions 63

(i) Let d~1 1(z),d~11(z),oo. ,d~11(z) denote the invariant polynomials of the q x q

polynomial matrix D1(z) and d~21(z),d~l(z), 00. ,£Ll?1(z) denote the invariant

polynomials of p x p polynomial matrix D2 (z) then

d1~i = c;d12~; for i = 0, 1, oo., max(p- 1, q- 1)

where d}'i = 1, d}21 = 1 for j < 1 and C; E lR\{0}.

(ii) The p x q polynomial matrices N 1 (z) and N2(z) have identical invariant poly­

nomials, modulo a non-zero constant factor.

Proof: The proof is analogous to that for two indeterminates. Thus it suffices to set

up the equation (81), below, from which a similar argument following (30) of Theorem

2.5 completes the proof.

From the Bezout identities there exist polynomial matrices X;(z), Y;(z), W;(z) and

Z;(z) fori= 1,2,. 00 ,n of appropriate dimensions such that

X;D1 + Y;N1 = 1/J;(z,cc)l9 }

N2Z; + D2 W; = 4;;(z;)JP
for i = 1, 2, 00 • , n. (80)

where 1/J;(zf) and 4;;(zf) are polynomials in the n- 1 indeterminates z1,. 00, z;_ 1, zi+1,

... , zn. From (79) and (80) it follows that

[
X; Y;] [D1 Z;] = [1/J;(zi)I9 J;] (81)
N2 -D2 N1 -W; 0 4;;(zf)IP

where J; = X;Z;- Y;W;. 0

The following corollaries follow directly from the proofs of the 2-D MFD Structure

Theorem corollaries (Theorem 2.5), therefore the proofs are not given.

Corollary 1: The determinant of the denominator matrices in (79) are equal modulo

a multiplicative constant. 0

Corollary 2: Let N1(z), D1(z) be minor (right) coprime and N2(z), D2(z) be minor

(left) coprime then define Gpxq(z) as in (79) and

U·= [X; Y;] V:= [D1 Z;]
' N2 -D2 ' N1 -W;

for i= 1,2,oo.,n. (82)

Then

IVil=l;<t>;' where k;,l; ElR\{0} for i= 1,2,oo.,n. 0

2.3 n-D Matrix Fraction Descriptions 64

Corollary 3: Express Gpxq(z) as in (79). Let SN,(z), SN,(z), SD,(z), SD,(z) be the

Smith forms of N 1(z), N2(z), D1(z), D2(z), respectively. Then

(a) the Smith forms of the numerators are related by

SN, = CSN,

where Cpxp = diag(c1 ,~,00. ,Cp) with C; E lR\{0} fori= 1,2, oo• ,p.

(b) the Smith forms of the denominators are related by

where

(i) if p > q

where Eqxq = diag(e1, e2 , 00., eq) with e; E lR\ {0} fori= 1, 2,. 00, q;

0

Corollary 4: If the n-D Structure Theorem does not hold then G(z) has at least a

one-sided factor coprime MFD.

Proof: By the generalisation of Theorem 2.1 to n-D rational matrices there exist a

left and a right coprime MFD for any rational matrix. In particular, let G(z) possess

a left coprime MFD D! 1N1 and a right coprime MFD N2 D21
. If N 1(z), D 1(z) are

and N2(z), D2 (z) are not factor (right) coprime then the n-D Structure Theorem

holds. Therefore, either N1(z), D 1(z) are factor (left) coprime or N2(z), D2 (z) are

factor (right) coprime. 0

The proof of Theorem 2.12 and Example 2.10 provide some information about the

possible form of a Bezout identity for n-D factor coprime matrices. Theorem 2.10 does

not necessarily hold if either the left or right MFD is factor coprime, as demonstrated

by Example 2.10. However, this is not necessarily true for all factor coprime MFDs,

as demonstrated by considering the numerator and denominator matrices in Example

2.7, i.e. the denominators both have Smith form given by

2.3 n-D Matrix Fraction Descriptions 65

and the numerators both have Smith form given by

G z1(zf- 3z~z2~3 + z1 z~ + z~))
Theorem 2.12 is dependent on the coprimeness of the determinants of the right-hand­

side of the Bezout identity. The right-hand-side of the minor coprime Bezout identity,

(Theorem 1.4(ii))

A(z)X;(z) + B(z)Y;(z) = '1/J;(zi)IP for i=1,2, ... ,n

has determinants given by '1/Jf(zi) fori= 1, 2, ... , nand since each '1/Jf(zi) is indepen­

dent of z; these polynomials are factor coprime. Thus if a Bezout identity exists for

factor cop rime matrices the determinants of the right-hand-side can not be cop rime,

otherwise Theorem 2.12 can be proved.

Two further restrictions on a possible form of the factor coprime Bezout identity are

provided by Theorem 1.3. Firstly for n = 1 the Bezout identity must deliver the 1-D

Bezout identity, i.e.

A(z)X(z) + B(z)Y(z) =I

and secondly it must contain, as a special case, the Bezout identities for n-D minor

coprime and zero coprime matrices. Thus n equations, at least, are necessary to

define a Bezout identity for factor coprimeness.

For any pair of matrices with the same number of rows Apxq(z), Bpxr(z) it is possible

to form the Smith form over the ring 1R(z1, ... , Z;_ 1, z;+1, .•• , zn) [z;] fori = 1, 2, ... , n.
This defines n matrices. Clearly, if A(z), B(z) are minor (left) coprime each of the

Smith forms is the identity matrix with extra columns of zeros to form a matrix with

the same size as M(z) = [A(z) B(z)]. The ring of polynomials 1R(z1, ..• ,z,_1,z;+1,

... , zn)[z;] contains a division algorithm, therefore there exist U;(z), V;(z), unimodular

matrices in this ring, with elements rational in z1 , ... , Z;_1, Z;+1, ... , Zn and polynomial

in Z; and sizes p x p and (q + r) x (q + r) such that

U;[AB]V;=[IPO] for i=1,2, ... ,n

Thus

or equivalently

AX, +BY; = I for i = 1, 2, ... , n

Now by multiplying through by a polynomial in z1, ... , z,_ 1, zi+1 , ... , zn '1/J;(zf), X;
and Y; possess no rational elements. Thus the Bezout identity is formed.

2.3 n-D Matrix Fraction Descriptions 66

Thus for any matrix pair Apxq(z), Bpxr(z) it is possible to form

[A B]v; = ?,b;(zf)U;- 1S; for i = 1,2, ... ,n (83)

where Vj(z) is a (q + r) x p polynomial matrix over JR[z1, z2, ... , zn], U; is a poly­

nomial matrix over JR(z1, .•• , z;_1 , zi+1, • •• , Zn) [z;], ?,b; (zf) is a polynomial over 1R[z1,

... , z;_1, Z;+1, ••. , zn] and S; (z) is a diagonal square matrix with the invariant poly­

nomials of [A B] over 1R(z1, ••• , Z;_1 , zi+1, ... , zn)[z;]. The ultimate question now is

"under what necessary and sufficient conditions does the equation (83) define factor

(left) coprimeness?". This is an open research problem.

It may be conjectured that necessary and sufficient conditions for factor (left) eo­

primeness is that there exist polynomial matrices X;(z), Y;(z) with elements in JR[z1,

z2, ... , zn] such that

A(z)X;(z) + B(z)Y;(z) = ?,b;(zf)S;(z) for i = 1, 2, ... , n (84)

where ?,b;(zf) E JR[z1, ..• 1 Z;_ 1,zi+1, ••• ,zn] and S;(z) is defined as in (83). However,

this conjecture is false, as demonstrated by the following example.

Example 2.11: The factor (left) coprime matrix (Example 2.5)

(~
has Smith forms

s1 = G ~J , S2 = s3 = G ~)
over 1R(z2, z3)[zd, 1R(z1, z3)[z2] and JR(z1, z2)[z3] respectively. It is possible to form

(84) over JR(z1,z3)[z2] and 1R(z1,z2)[z3], i.e.

(
Z1 0 Z2) (~ ~) = z1 (1 0)
0 z1 z3 0 0

0 1

However, it is not possible to form (84) over JR(z2 , z3) [zd as indicated by the following

discussion.

Suppose that there exists a polynomial matrix

2.3 n-D Matrix Fraction Descriptions 67

such that

where a,b,c,d,e,j E JR(z1,z2,z3]. The constituent equations of (85) are

az1 + ez2 = 1/!,
bz1 +fz2 =0

cz1 + ez3 = 0

dz1 + fz3 = z1'1/!1

Now from equations (86) and (88), i.e. z3(86)- z2(88)

z1 (az3 - cz2) = 'l/!;z3

thus z111/!;(z2 , z3), which is a contradiction.

(85)

(86)

(87)

(88)

(89)

0

--------------- -----------------------------~-

2.4 Conclusions 68

2.4 Conclusions
In this chapter the matrix fraction descriptions of 2-D and n-D rational matrices

have been considered. The more general results for n-D matrices have complicated

theorem statements due to the complexity of polynomial matrices in more than two

indeterminates. However, when these theorems are considered in the less general case

of n = 2 they become more compact.

In particular, the MFD Structure Theorem (Theorem 2.12) only holds for minor

or zero coprime MFDs and not for factor coprime MFDs. When this theorem is

considered for the less general case of n = 2 the definitions of factor and minor

coprimeness are coincident, thus the theorem holds for every type of coprimeness.

The same situation arises when considering the types of coprimeness possessed by

opposite sided MFDs: for n 2:: 3 it is possible for a rational matrix to possess different

types of coprimeness for a left and a right MFD; this is not the case for n = 2.

3.1 Introduction

Chapter 3

Equivalence of

Polynomial

Matrices

This chapter will investigate the properties of certain types of equivalence that exist

between classes of matrices. Two of the most fundamental requirements for the

equivalence of two system-representations is the same input-output behaviour and

the invariance of the system matrix zero structure.

The invariance of the input-output behaviour is guaranteed by the equality of the

transfer function matrices. This type of equivalence has been extensively researched

for 1-D systems. Rosenbrock [12] introduces two types of equivalence, namely strict

69

3.1 Introduction 70

system equivalence and system equivalence. The latter is an algorithmically based

necessary and sufficient condition for invariant input-output behaviour, whilst the

former is a sufficient closed matrix form condition, which may be shown to be a special

case of system equivalence. Subsequently, Pugh et al [46] have provided a closed

matrix form representation of system equivalence known as extended strict system

equivalence which is based on rational rectangular transforming matrices. The special

case of strict system equivalence is based on square polynomial transforming matrices.

Further studies of this transformation are contained in [47]-[52]. The purpose of this

work is to consider some of the 1-D ideas in a more general n-D framework and

to propose generalised definitions that will facilitate a deeper understanding of the

structure of n-D system matrices.

The important notion of least order for 1-D systems, defined as the relative primeness

of the T, U and T, V matrix pairs, is fundamental to the existence of strict system

equivalence between two system matrices. The evidence from the previous chapter

provides an indication of the nature of the problem inherent in defining an equivalent

definition for least order n-D system matrices and the subsequent analogue of strict

system equivalence. This will be addressed later.

The second fundamental requirement for equivalence, mentioned above, is the invari­

ance of the system matrix zero structure. The problem of determining the conditions

under which the finite zeros remain invariant has been much studied and many con­

ditions have been provided, including the one presented here. The generalised theory

arises from a desire to analyse the point at infinity on the same basis as the finite

points, this has been studied in [51], [53]-[59]. To establish the invariance of finite

and infinite zero structure under the recently defined full equivalence [60] a compli­

cated lemma is required; here a simplified proof is given and a link made to conditions

proposed by Zhang [61] which guarantee the non-existence of infinite zeros.

The chapter is composed of four main sections all linked by the general theme of

equivalence of polynomial matrices. In the first, Section 3.2, the invariance of finite

and infinite zeros [62], [63] is investigated and a link made with recent work which

guarantees the absence of infinite zeros.

Polynomial transformations of 2-D systems are the subject of Section 3.3; addressing

the problem of invariant properties of system matrices. A generalised definition of

least order, based on coprimeness, is considered and a 2-D analogue of extended strict

3.1 Introduction 71

system equivalence is proposed. In Section 3.4 polynomial transformations of n-D sys­

tems matrices are considered. In particular three types of polynomial transformation

can be immediately formulated and the extent to which these transformations define

equivalence relations is investigated. In the final section, 3.5, a specific type of 2-D
system is considered in terms of the existence of zeros and a least order realisation,

as defined for general 2-D systems in Section 3.3.

3.2 Some Aspects of Equivalence of 1-D Systems 72

3.2 Some Aspects of Equivalence of 1-D Systems

3.2.1 Some Conditions Guaranteeing Identical Zero Structure
In the conventional theory of linear systems and in the context of polynomial models,
the following equivalence transformation plays a fundamental role [50), [52).

Consider the set '.j3(m, £) of (r +m) x (r + £) polynomial matrices where r is any
integer greater than max(-m,-£).

Definition 3.1: (Extended Unimodular Equivalence)
Let T;(s) E '.]3(m,£) fori= 1,2 be polynomial matrices in the single indeterminate
s, i.e. r; ~ max(-m,-£) fori= 1,2. Then T1(s), T2(s) are said to be extended
unimodular equivalent if there exist polynomial matrices M (s), N (s) such that

(90)

or equivalently

[M(s) T2(s)) [~~~~)] = 0 (91)

where the compound matrices

[
T1(s)]
-N(s)

(92)

have full normal rank and no finite zeros. 0

Note: The rank and zero condition on the compound matrices (92) is equivalent to
the matrices in the first compound matrix being relatively (left) prime and those in
the second matrix being relatively (right) prime.

The basic result concerning this transformation and the reason for its importance is
the following.

Lemma 3.1: Let T;(s) E '.j3(m,£) fori= 1,2 then T1(s), T2(s) are extended uni­
modular equivalent if and only if they have the same finite zero structure.

Proof: See [50), [52). 0

In the generalised theory of linear systems it is necessary that the point at infinity
is treated on the same basis as the finite points of the complex plane IC. It is clear

therefore that in this context, extended unimodular equivalence will not play such a
fundamental role since its complete and independent invariants relate solely to the
finite zero structure. Accordingly some further restriction of the action of extended
unimodular equivalence will be required in order to obtain a transformation relevant
to the generalised theory. The following definition has been proposed [56), [60) [64),
[65).

3.2 Some Aspects of Equivalence of 1-D Systems 73

Definition 3.2: (Fhll Equivalence)

Let 'Ij(s) E '.j:J(m,C), fori= 1,2. Then T1(s), T2(s) are said to be fully equivalent if

there exist polynomial matrices M (s), N (s) such that

=0

where the compound matrices (92)

(i) have full normal rank;

(ii) have no finite nor infinite zeros;

(iii) satisfy the McMillan degree conditions given by

8 ([T
1
(s)]) = 8(T1(s))

-N(s)

where 8(·) denotes the McMillan Degree of(-) [12], [66].

(93)

(94)

0

The unexpected thing about this definition is the requirement for a condition such as

(iii). However, it is quite easy to construct examples to demonstrate that in order to

simultaneously preserve both the finite and infinite zero structures the conditions (i)

and (ii) are not sufficient. The following example from [64] demonstrates this.

Example 3.1: Consider

c ~ 1 s; 1) G ;) = G ~) (s ~ 1 s2

8
; 1) (9S)

'----v----~~ ~~---v----~

M(s) T1(s) T2(s) N(s)

Consider first the compound matrix [M(s) T2 (s)], i.e.

c ~ 1 s; 1 ~ ~) . (96)

The Smith form is given by

G ~ ~ ~)
therefore (96) has full normal rank and no finite zeros. The Smith-McMillan form

[12] of (96) with s = 1 /w is

(~ 0 0 0)
0 .!. 0 0

w

3.2 Some Aspects of Equivalence of 1-D Systems 74

which demonstrates the absence of infinite zeros. Secondly, the compound matrix

1 s

[T1{s)] = 0 1
{97)

-N(s) s-1 s2 + 1

s s2

has Smith form
1 0

0 1

0 0

0 0

and Smith-McMillan form with w = 1/ s
I 0 ;;;;
0 1

0 0

0 0

Demonstrating that {97) has full normal rank, no finite zeros and no infinite zeros.

Therefore {96) and {97) satisfy conditions (i) and {ii). However, T1{s), T2{s) do not

have the same infinite zero structure, as demonstrated by the following discussion.

The infinite zeros of T1 (s), T2{s) are given by considering the Smith-McMillan forms

of T1 (~), T2 {~). These are respectively given by

Sr, = (~ ~), Sr, = C ~).
Therefore T1{s) has an infinite zero of degree 1 and T2{s) does not possess any infinite

zeros.

Notice that
8([M(s) T2(s)]) = 2 # 0 = 8(T2 (s))

o([~~~~)]) = 2 # 1 = 8{T1(s))

and so the McMillan degree conditions (iii) are not satisfied. 0

The sufficiency of the three conditions (i) - (iii) in this respect has been established in

[64], although the proof is somewhat dependent on a complicated lemma. A previously

unpublished simpler proof is given here reproduced from [57]. Recall that the least

order, v(G), of a rational matrix G(s) is its total number of finite poles, while the

McMillan degree of G(s), denoted 8(G), is its total number of finite and infinite poles.

3.2 Some Aspects of Equivalence of 1-D Systems 75

Theorem 3.1: IfT;(s) E <;p(m, e), fori= 1,2 are fully equivalent, then they possess

identical finite and infinite zero structures.

Proof: Suppose T;(s) (i = 1,2) are fully equivalent, then from conditions (i) and

(ii) of Definition 3.2, they are clearly extended unimodular equivalent and so by

Lemma 3.1 have identical finite zero structures.

Let

(98)

T1 (~) = N1(w)D!1(w)

be two relatively prime factorisations. Since T2(s) is polynomial it has no finite poles,

only infinite ones. Thus T2 (~) only has poles at w = 0, and so

(99)

Further since (98) are relatively prime factorisations it follows that

(100)

Now suppose that

[M(~) T2 (~)] = D2 1
(w)[N21(w) N22(w)]

[
T, (~) l = [Nu(w)l D!I(w)

-N (~) N12(w)

(101)

are relatively prime factorisations, then

= 8 ([M(s) T2(s)J)

(102)

by condition (iii) of Definition 3.2. It follows therefore from (99) and (102) that

(103)

and hence from (101) that

(104)

3.2 Some Aspects of Equivalence of 1-D Systems 76

is a prime factorisation ofT2 (~). Thus N22 (w) is a numerator ofT2 (;!;),and its zero

structure at w = 0 is the infinite zero structure of T2 (s).

In an entirely analogous manner it may be established that N11 (w) of (101) is a

numerator of T1 (-t;), and that its zero structure at w = 0 represents the infinite zero

structure of T1 (s).

Substitute (101) into (93) to give, by pre- and post-multiplication by D2 (w), D1 (w)

respectively,

(105)

and by condition (ii) of Definition 2, the compound matrices (92) have no infinite

zeros. Accordingly the compound matrices in (105) have full rank at w = 0. Addi­

tionally they also have full rank for every other finite value of w, since the compound

matrices (92) have no finite zeros. Consequently in (105)

[

N 11 (w)l
[N21 (w) N22(w)]; (106)

NI2(w)
have full normal rank and no finite zeros. It thus follows that (105) is a statement of

extended unimodular equivalence between N22(w) and N11 (w), which therefore have

identical finite zero structures, and specifically have identical zero structures at w = 0.

Hence T1(s), T2 (s) have identical infinite zero structures. 0

Thus from this theorem the matrices T1 (s), T2 (s) in Example 3.1 can not be connected

by a transformation of full equivalence, since they do not have the same infinite zero

structure. However, if the roles of the matrices in Example 3.1 are interchanged,

i.e. T1(s), T2 (s) are the transforming matrices and M(s), N(s) are the transformed

matrices, all three conditions of Definition 3.2 are satisfied, since 8(M(s)) = 2 =
8(N(s)) and the conditions (i) and (ii) are satisfied by the discussion above. Thus

ensuring the same finite and infinite zero structure of M(s) and N(s). This is now

directly established.

The matrices M(s), N(s) have Smith form

G s(s: 1))
therefore they have the same finite zero structure. The matrices M(s), N(s) for

s = 1/w have Smith-McMillan form SM, SN (respectively) given by

SM = (~ I~w) SN = (i' w ~ J
w

3.2 Some Aspects of Equivalence of 1-D Systems 77

Therefore the infinite zero structure is also the same, i.e. they do not have any infinite

zeros.

The McMillan degree seems an unexpected condition in the definition of full equiva­

lence but as has already been seen, Example 3.1 and Theorem 3.1, that it is sufficient

to guarantee the equivalence of the finite and infinite zero structure. It is thus in­

structive to note the precise interpretation of this condition in terms of mappings

recently derived by Pugh et. al. [67]. This is as follows.

The McMillan degree condition

8 ([:~:~]) = 8(T1(s)) (107)

may be interpreted as the necessary and sufficient conditions which guarantee that

~~ (t) = N(p)~(t) (108)

is a formal mapping (in the sense of being a many to one relation) from the set Xu of

all solutions ~(t) of the differential equation

corresponding to all possible initial conditions of ~(t) and its k- 1 derivatives, onto

another set Xu·

Thus if the matrix

(109)

satisfies the McMillan degree condition

and

u = 8(T1 (s)) < ([TNI((ss)) l)
(a) has no finite zeros then the strictly proper part of the inverse map of (108) is

uniquely determined;

(b) has no infinite zeros then the polynomial part of the inverse map of (108) is

uniquely determined.

Therefore the mapping (108) is injective if the matrix (109) has no infinite and no

finite zeros.

3.2 Some Aspects of Equivalence of 1-D Systems 78

3.2.2 Conditions For The Absence Of Infinite Zeros.

In a recent paper, Zhang (61] has developed a necessary and sufficient condition for

the absence of infinite zeros in a polynomial matrix. The oondition is interesting in

the oontext of the previous section not least for the fact that it has a clear connection

with the McMillan degree conditions which arise in the definition of full equivalence.

It is clear from the proof of Theorem 3.1 that the McMillan degree oonditions en­

sure that the matrix relationship (91), through which the finite zero structures are

explicitly related, has oontained within itself a readily derivable relationship (106)

connecting the infinite zero structures. In these terms it is not surprising therefore

that a form of the McMillan degree conditions (iii) of Definition 3.2 arise quite natu­
rally in the work of Zhang (61] ooncerning the absence of infinite zeros in a polynomial

matrix. To establish this connection the following lemma is required.

Lemma 3.2: Let T(s) E 'lJ(m, £) have full normal rank and let p = min(m, £). Then

T(s) has no finite (respectively infinite) zeros if and only if there is a p x p minor of

T(s) with degree zero (respectively 8(T(s))).

Proof: The case of the finite zeros is of course extremely well-known, while the case

of the infinite zeros was originally established in (62]. 0

To establish this connection let T(s) E 'lJ(m, £), with m :::; £ and let V(s) be any

m x m unimodular matrix such that

T(s) = V(s) T(s), (110)

where T(s) is row proper (13]. Let 8r,O denote the i-th row degree of the indicated

matrix then:

·Theorem 3.2: With the above notation write (110) in the form

[T(s) V(s)] [-I] - 0
T(s) -

(lll)

Then (111) defines a transformation of full equivalence if and only if

(112)

Proof: Assume that (111) is indeed a transformation of full equivalence. In particular

the McMillan degree conditions which apply to this transformation give, in relation

to the oompound matrix [T(s) V(s)],

8([T(s) V(s)]) = 8(T(s)). (113)

3.2 Some Aspects of Equivalence of 1-D Systems 79

Since T(s) is row proper it follows that

(114)

Conversely assume that (112) holds and consider the compound matrix

(115)

Clearly this has full normal rank and no finite zeros because of the unit matrix I.

Further the McMillan degree condition in respect of this matrix is obviously satisfied.

Finally any minor of T(s) with degree 8(T(s)) can be enlarged to an eX e minor of

the same degree by including complementary rows from the unit matrix I. Hence,

since the McMillan degree of (115) is 8(T(s)) and there exists an eX e minor of this

degree in (115), it follows, by Lemma 3.2, that the compound matrix (115) has no

infinite zeros.

Consider now the compound matrix

[T(s) V(s)]. (116)

Clearly this has full normal rank and no finite zeros since V(s) is unirnodular.

Now the condition (112) implies that

(117)

and since T(s) is row proper it follows therefore that [T(s) V(s)] is row proper.

Thus
m

8([T(s) V(s)]) = 2:: 8r,([T(s) V(s)]) (118)
i=l

and
m

(119)
i=l

It follows immediately from (117), (118), (119) that [T(s) V(s)] satisfies the required

McMillan degree condition i.e.

8([T(s) V(s)]) = 8(T(s)). (120)

Further since [T(s) V(s)] is row proper, it possesses an m x m minor with degree

8([T(s) V(s)]), and so (116) has no infinite zeros by Lemma 3.2. 0

An immediate consequence of the above result is

3.2 Some Aspects of Equivalence of 1-D Systems 80

Corollary: In the notation of Theorem 3.2, T(s) has no infinite zeros if (112) holds.

Proof: Clearly if (112) holds then by Theorem 3.2, (111) is a transformation of

full equivalence between T(s) and T(s). Hence by Theorem 3.1, T(s) and T(s) have

identical finite and infinite zero structures. However, T(s) is row proper and so

possesses no infinite zeros. Hence T(s) has no infinite zeros. 0

It is clear from Theorem 3.2 and its Corollary that the row degree condition (112) is

simply the McMillan degree condition of full equivalence in the context of the specific

relationship (110). It follows therefore that Zhang's condition (112) is the mechanism

which establishes that the given polynomial matrix T(s) is fully equivalent to a row

proper matrix T(s). Since such a matrix possesses no infinite zeros, it follows that

T(s) has this property. In this manner, therefore, it is seen that the problem of

determining conditions under which a polynomial matrix has no infinite zeros may

be viewed as a special case of the more general problem answered by Theorem 3.2.

One other point to be noted is that the condition (112) is not only sufficient for the

absence of infinite zeros as the Corollary has shown, but also necessary, as Zhang

[61] has established. The necessity of (112) for the absence of infinite zeros does not

emerge in the Corollary because it has not as yet proved possible to establish full

equivalence as a necessary condition in Theorem 3.1.

The requirement that a polynomial matrix possesses no infinite zeros is important

in linear systems theory in areas such as composite system studies [68], system in­

vertibility and minimality of system descriptions, besides its specific relevance to the

transformation of full equivalence. It is therefore appropriate here to note that several

equivalent conditions guaranteeing the absence of infinite zeros have been established.

Thus for example it has been shown in [55] that T(s) will possess no infinite zeros if

and only if it has at least one p x p minor with degree 8(T(s)). On the other hand it

has been noted in [69] that an equivalent condition based on the ranks of two Toeplitz

matrices formed from T(s) (viewed as a matrix polynomial). Accordingly let

(121)

be an m x i polynomial matrix of rank p and define the Toeplitz matrices T':';, with

constant elements as

3.2 Some Aspects of Equivalence of 1-D Systems 81

Tn Tn-1 Ti+1 T;

0 Tn 7i+2 'li+t

T::t = (122)

0 0 Tn Tn-1

0 0 0 Tn

Theorem 3.3: The polynomial matrix T(s) of (121) possesses no infinite zeros if

and only if one of the fo//owing equivalent conditions is satisfied:

(i) there exists a p x p minor ofT(s) with degree 8(T(s));

(ii) the rank of T(f' is equal to the rank ofT~ + p; (123)

Additiona//y if p =m then the following are mutually equivalent to (i) and (ii),

(iii) for any unimodular matrix V(s) such that T(s) in (110) is row proper

o.,(V(s)) :s; o.,(T(s)); (124)

(iv) T(s) has a proper right inverse.

Proof: The condition (i) is a consequence of the degree structure of the minors of

T(s) described in [55], while condition (ii) has recently been established in [69]. The

conditions (iii) and (iv) are derived in [61]. D

The above conditions are each necessary and sufficient for the absence of infinite

zeros in the polynomial matrix T(s), however from a practical point of view some

will be simpler to check than others. In this respect it has been noted in [61 J that

the condition (iii) is the simplest to evaluate. However, in view of the simplicity of

forming the matrix polynomial (121) associated with T(s), and the associated Toeplitz

matrices T(f'(T), T~ (T), the condition (123) must be oomputationally simpler still,

as has been noted in [55].

3.2.3 1-D System Matrices

A particular case of the set of matrices '+!(m,£) is the Rosenbrock system matrix,

P(r+l)x(r+m) (s)

P(s) = (T(s) U(s))
-V(s) W(s)

3.2 Some Aspects of Equivalence of 1-D Systems 82

where Trxr(s), Urxe(s), Vmxr(s) and Wmxe(s) are polynomial matrices, arising from

a transfer function matrix, G (s), representation of

G(s) = V(s)T-i (s)U(s) + W(s).

A basic requirement for the equivalence of two system matrices is that they possess

the same input-output behaviour. This requirement translates to mean that the two

system matrices possess the same transfer function matrix and is called input- output

equivalence.

Many types of equivalence transformations have been defined for 1-D systems, for

example, [38], [40], [42], [70], [71]. Two basic types of equivalence were originally

defined by Rosenbrock [12] for system matrices. The first, strict system equivalence,

is characterised by a closed matrix form, whereby two system realisations Pi (s), P2 (s)

are said to be strictly system equivalent if they are related by an equation of the form

(
M(s)
X(s)

0) (T2(s) U2(s)) (N(s) Y(s)) = (Ti(s) Ui(s)) (125)
Im -V2(s) W2 (s) 0 le -Vi(s) Wi(s)

where the two system matrices have sizes (r +m) x (r + £) and Mrxr(s), Nrxr(s)

are unimodular polynomial matrices and Xmxr(s), Yrxe(s) are polynomial matrices.

This is only a sufficient condition for input-output equivalence because two system

matrices may have the same transfer function matrix but have different sizes. For

example, the transfer function matrix G(s) = 1/s may be realised as

However, strict system equivalence is a necessary and sufficient condition for two

least order system matrices to be input-output equivalent. (Note a least order system

matrix is defined to have no decoupling zeros or equivalently the matrices T(s), U(s)

are relatively (left) prime and T(s), V(s) are relatively (right) prime.)

The second type, system equivalence, is a necessary and sufficient condition for input­

output equivalence based on elementary operations over the field F(s), i.e. rational

functions in s. Two system matrices Pi (s), P2(s) are said to be system equivalent

if one can be obtained from the other by performing the following operations any

number of (finite) times and in any order.

(a) Multiply any one of the first r rows (respectively columns) by a rational

function not identically zero;

3.2 Some Aspects of Equivalence of 1-D Systems 83

(b) Add a multiple, by a rational function, of any one of the first r rows (respec­

tively columns) to any other row (respectively column);

(c) Interchange any two among the first r rows (respectively columns);

(d) Add a row and column to P to form

(
1 Oi x(r+l)) (126)

O(r+m)xi P(s)

or if the matrix has the form (126) delete the first row and first column.

The operation (d) allows system matrices of different sizes to be equivalent, thus

overcoming the problem encountered with strict system equivalence. However, the

transformation is no-longer polynomial. Thus the closed matrix form [46] of system

equivalence is based on rational transforming matrices, i.e. two system matrices Pi (s),

P2(s) are realisations of the same transfer function matrix G(s) if and only if there

exist rational matrices Qi(s), Q2 (s), Ri(s), R2 (s) such that

It has already been noted that Rosenbrock system matrices are contained in the set

q:J(m, e) necessary for the invariance of the finite and infinite zero structure under full

equivalence, Definition 3.2. Thus the polynomial transformation of full equivalence

between system matrices with the same transfer function G(s) can be formulated as:

Definition 3.3: (Full System Equivalence)

Let P;(s) for i = 1, 2 be two system matrices with transfer function matrix G(s).

Then Pi(s), P2(s) are said to be fully system equivalent if there exist polynomial

matrices Qi(s), Q2(s), Ri(s), ~(s) such that

(
Qi(s) 0) (T2(s) U2(s)) = (Ti(s) Ui(s)) (Q2(s) ~(s))
Ri (s) I - V:z(s) W2 (s) -Vi (s) Wi (s) 0 I

where the compound matrices

3.2 Some Aspects of Equivalence of 1-D Systems 84

(i) have full normal rank

(ii) have no finite nor infinite zeros

(iii) satisfy the McMillan degree conditions

where b(-) denotes the McMillan Degree of(·). 0

Thus by starting with the most basic form of equivalence for system matrices, namely

input-output equivalence, further restrictions may be placed on the constituent ma­

trices of the closed matrix form to preserve various properties of the system matri­

ces. The following two sections, Sections 3.3 and 3.4, investigate transformations of

many-indeterminate polynomial matrices and the properties of the system matrices

that remain invariant. In particular the notion of least order is investigated using a

generalisation of the relative prime definition for 1-D least order system matrices.

3.3 Equivalence of 2-D Polynomial Matrices 85

3.3 Equivalence of 2-D Polynomial Matrices
As noted above, a fundamental requirement for the equivalence of two system reali­

sations is that they possess the same input-output behaviour, i.e. the two realisations

have the same transfer function matrix. The Rosenbrock system matrix (RSM or sys­

tem matrix) for 2-D systems can be defined in an analogous manner to 1-D systems:

(127)

where Trxr(z1, z2), Urxe(z1, z2), Vmxr(z1, z2) and W mxe(z1, z2) are polynomial matri­

ces, arising from a transfer function matrix, G(z1, z2), representation of

(128)

Thus the notion of equivalent input-output behaviour may be defined as:

Definition 3.4: (Input-output Equivalence)

Two system matrices P1(z1,z2), P2 (z1,z2) with sizes (r1 +m) x (r1 +t') and (r2 +

m) x (r2 + t') respectively are said to be input-output equivalent if

(129)

i.e. if their transfer function matrices, defined by (128), are equal. D

By analogy with 1-D systems the transformations of strict system equivalence and

system equivalence may be defined. Now the transforming matrices are polynomial in

two indeterminates. The initial point of investigation is the necessary and sufficient

conditions for input-output equivalence. In 1-D system theory an exact characteri­

sation is provided, in a closed matrix form, by Pugh [46]. This characterisation also

holds for 2-D systems theory, as the following result demonstrates.

(130)

are realisations of the same transfer function matrix G(z1, z2) if and only if there exist

rational matrices Q1(z1,z2), Q2(z1,z2), R1(z1,z2), R2(z1,z2) such that

(
Q 1 (z1, z2) 0) (T2(z1, z2) U2(z1, z2))

Ri(zi,Zz) !m -Vz(zi,zz) Wz(zi,Zz)

= (T1(z1,z2) U1(z1,z2)) (Q2(zi,zz) Rz(zl,zz)) (
131

)
-V1(z1,z2) W1(z1,z2) 0 le

3.3 Equivalence of 2-D Polynomial Matrices 86

Proof: Suppose there exist rational matrices Q1(z1,z2), Q2(z1,z2), R 1(z1,z2), ~(z1 ,

z2) such that (131) holds. Note that the constituent equations of (131) are

Q,T2 = T, Q2

Q1U2=T1 ~+U1

R,T2- V2 =-V, Q2

R,U2 + W2 =-V, R2 + W,

(132)

(133)

(134)

(135)

Now consider the transfer function matrices associated with P1 (z1, z2), P2(z1, z2)

G2(z1,z2) = V2T2-
1U2 + W2

= (R,T2 + v, Q2) r2-' U2 + W2

= n,u2 + W2 + v, Q2T2- 1 U2

= -v, ~ + w, + v, Q2T2-' U2

=-V, R2 + W1 + V1 r,- 1 Q1U2

= - v, ~ + w, + v, r,-' (T1 ~ + u,)
= W1 + V1 r,- 1 U1 = G1(z1,z2).

Thus P1 (z1, z2), P2(z1, z2) are input-output equivalent.

from (134)

from (135)

from (132)

from (133)

Conversely suppose that P1(z1,z2), P2(z1, z2) are input-output equivalent then,

G1 (z1, z2) = G2(z1, z2)

=> v, T!' u, + w, = V2 T2-
1 U2 + W2. (136)

Hence for an arbitrary r2 x r 1 rational matrix Q1(z1, z2) the following is true

lr, 0

(~'
0 Jr,

v, r,-' ~~ + w,)
0 V2 T2-' U2 + W2

(137) =0.
[m 0 -Q, 0

0 -le

Now the matrix r.-1 0 0 0 2
v2 r2-' [m 0 0

(138)
0 0 T, u,
0 0 0 le

is an invertible rational matrix with inverse

T2 0 0 0

-V2 [m 0 0
(139)

0 0 r-' r-'u I - I I

0 0 0 le

3.3 Equivalence of 2-D Polynomial Matrices 87

Thus post-multiplying the first matrix in (137) by (138), and pre-multiplying the

second matrix in (137) by (139), (137) reduces to the form

Finally pre-multiplying (140) by

and post-multiplying (140) by

reduces (140) to the form

i.e.

= (T2 U2) (r1-
1
Q1

-V2 W2 o
which is of the form (131), as required.

0

V2 r 2-
1 U2 + W2

Ti1 U1

-It

u2

=0.

w2
T1- 1 U~-r1- 1Q1T2- 1U2

-I

r- 1 Q r- 1 u. r- 1 u) I I I 2- I I

I

(140)

=0

(141)

0

It should be noted that the transformation (131) is based on rational transforming

matrices and describes the basic connection between two system matrices which give

rise to the same transfer function matrix. The further conditions which should be

imposed on these system matrices to ensure that the transformation (131) is based

on polynomial matrices are not known, and in fact are not even known in the case

of polynomial matrices in a single indeterminate. Whatever conditions are necessary

to ensure a polynomial connection of the form (131) they are likely to be much more

restrictive than their counterparts in single indeterminate polynomial matrix theory.

3.3 Equivalence of 2-D Polynomial Matrices 88

3.3.1 Least Order

Recall (Rosenbrock [12]) that in conventional multi variable systems theory a principal

result is that two least order polynomial realisations of a given transfer function matrix

are related by strict system equivalence (equation (131)), where least order is defined

by the absence of input and output decoupling zeros or, equivalently, the pair T(s),

U(s) are relatively (left) prime and the pair T(s), V(s) are relatively (right) prime.

In two dimensional systems theory the term "least order" might most reasonably be

attributed to

(142)

minor (right) coprime but as will be seen this turns out to be unsatisfactory in the

definition of least order (in the sense of having similar properties to 1-D least order,

namely a necessary and sufficient condition for a polynomial equivalence relation to

exist between two system matrices of the same system). Later an alternative definition

for least order will be introduced; thus to distinguish the two types of least order the

type defined by (142) and the minor coprime conditions on the pairs T(z1 , z2), U(z1 ,

z2) and T(z1,z2), V(z 1,z2) will be called {minor) least order. The term least order

will be reserved for later use. Clearly it would be inappropriate to define least order

using zero coprimeness as this would exclude a large class of system matrices that

contain non-essential singularities of the second kind. For example G(z1, z2) = z1fz2

always possesses the non-essential singularity of the second kind (0, 0) and any system

matrix realisation of G(z1, z2) will need to reflect this. However, all systems possess a

"(minor) least order" realisation: consider a system matrix realisation of the transfer

function matrix G(z1, z2)

P()
_ (T(z1 , z2) z1, z2 -

- V(z1, z2)
(143)

and compute matrices Q1 (z1 , z2) and Q2 (z1, z2), using the greatest common divisor

algorithm of Part Two, such that

P(z,,z
2

) = (Q1(z1,z2) 0) (T_(z 1,z2) ~(z1 ,z2)) (Q 1(z1,z2) 0) (144)
0 I -V(z1,z2) W(z1,z2) 0 I

where T(z1,z2), [/(z1,z2) are minor (left) coprime and T(z1,z2), V(z1,z2) are minor

(right) coprime; thus defining a (minor) least order system matrix. Consider then the

following example.

3.3 Equivalence of 2-D Polynomial Matrices 89

Example 3.2: The system matrices

P1(z1,z2) = (-(z:~- 1) ~) }

()
- (z~ (z,- 1)) (145)

p2 z,,z2 -
-z1 0

are both (minor) least order system matrices corresponding to the transfer function

G(z
1

, z
2

) = z, (z,; 1). (146)
z2

By Theorem 3.4, P1(z1,z2) and P2 (z1,z2) will be related as in (131) through rational

transforming matrices. Thus

(
q1(z1,z2) 0) (z~ z1) = (z~ (z1 -1)) (q2(z,,z2) r2Cz1,,z2))
r1(z1,z2) 1 -(z1-1) 0 -z1 0 0

(147)

for rational functions q;(z1 ,z2) and r;(z1 ,z2) fori= 1,2. Now the equation (1,2) of

(147) is

(148)

It follows from Hilbert Nullstellensatz, Lemma 1.2, that (148) does not have a poly­

nomial solution for q1(z1,z2) and r1(z1,z2). Thus a polynomial connection does not

exist between P1 (z1, z2) and P2(z1, z2) of the form (147).

Interchanging the roles of P1 (z1, z2) and P2(z1, z2) in (147), the transformation (131)

becomes

(
q1(z1,z2) 0) (z~ (z1 -1)) = (z~ z1) (q2(z,,z2) r2Cz1,,z2))
r 1(z1,z2) 1 -z1 0 -(z1 -1) 0 0

P2(z1, z2)

and the (1 ,2) equation

q1 (z1 - 1) = zi + z1

demonstrates as before that there does not exist a polynomial transformation of the

type (131).

Thus although P1 (z1, z2) and P2(z1, z2) are both (minor) least order realisations of the

same transfer function matrix, there is no polynomial based transformation connect­

ing them. In particular, there does not exist constants q1, q2 such that a polynomial

transformation of the form (131) required for strict system equivalence. 0

It follows from the above example that the classicai1-D multi variable result, that least

order (in the 1-D sense) realisations are strictly system equivalent, will not generalise

3.3 Equivalence of 2-D Polynomial Matrices 90

to two dimensional (minor) least order systems. Moreover, there does not necessarily

even exist a polynomial transformation of the form (131). However, it is possible to

establish the nature of this polynomial transformation when it does exist.

Theorem 3.5: If two (minor) least order system matrices Fj(z1, z2) fori= 1, 2 are

related by a polynomial form of the relationship

(
Q1(z1, z2) 0) (T2(z1, z2) U2(z1, z2))
R1(z1,z2) Im -V2(z1,z2) W2(z1,z2)

= (T1(z1,z2) U1(z1,z2)) (Q2(zl,z2) R2(z1,z2)) (149)
-V1(z1,z2) W1(zi>z2) 0 le

then Q1 (z1 , z2), T1 (z1, z2) are minor (left) coprime and Q2(z1 , z2), T2(z1, z2) are minor

(right) coprime.

Proof: The relationship (149) may be written in the form

T2 u2

=0. (150)

The (1 ,2) block equation yields

(151)

in which T1, U1 are minor (left) coprime. Therefore by Bczout identities, Theorem

1.4, there exist X;, f; for i = 1, 2 such that

T1X; + U1'Y; = 1/>;(z;)I for i = 1, 2

for scalar polynomials 1/>;(z;). This Bezout identity and equation (151) yield the

equation

demonstrating that T1, Q1 are minor (left) coprime.

The (2,1) block equation of (150) yields

V2 = R1T2 + V1Q2. (152)

Now V2 , T2 are minor (right) coprime and so by the Bezout identities, Theorem 1.4,

there exist polynomial matrices X;(z1, z2), Yj(z1, z2) for i = 1, 2 such that

X;T2 + YjV2 = <P;(z;)I for i = 1, 2.

Pre-multiplying (152) by Yj and substituting from (153) for Yj V2 gives

</>;(z;)l- X;T2 = YjR1T2 + YjV1Q2

(153)

I

I

3.3 Equivalence of 2-D Polynomial Matrices 91

=? (Y;R1 + X;)T2 + Y;V1Q2 = <i>;(z;)I for i = 1, 2.

Thus T2 , Q2 are minor (right) coprime. 0

Note: Some conditions of (minor) least order are redundant in the proof of Theorem
3.5. Namely, the minor (right) coprime condition on T1, V1 and the minor (left)
coprime condition on T2 , U2.

Consider now an alternative form of "least order" by imposing a stronger form of
coprimeness on the T, V part of the system matrix. However, this form will be seen

to be sufficiently general that every transfer function matrix can be realised in such

away.

Definition 3.5: (Least Order)
A two dimensional polynomial system matrix P(z1 , z2) of the form (142) will be said
to be least order if T(z1, z2) and U(z1, z2) are minor (left) coprime and T(z1, z2) and
V(z 1,z2) are zero (right) coprime. 0

The definition expresses an intention to realise the non-essential singularities of the
second kind of the transfer function matrix so that they always occur in the [T(z1,

z2) U(z1, z2)] part of the system matrix. Note that G(z1, z2) always possesses least
order realisations of this type since any left (necessarily minor) coprime MFD gives
rise to a system matrix which is least order in the above sense. For example suppose
that G(z1, z2) possess a minor (left) coprime MFD defined by G(z1 , z2) = D- 1(z1,

z2)N(z1,z2) then G(z1,z2) may be realised as the system matrix given by

()
_ (D(z1,z2) N(z1,z2))

G z1 ,z2 - I
0

(154)

thus the pair D(z1, z2), N(z1, z2) are minor (left) coprime by construction and the
pair D(zi> z2), I are necessarily zero coprime (det I= 1).

There is, of course, no particular necessity to handle the non-essential singularities
of the second kind in this manner; they could equally be taken to be realised in the
[T(zi>z2)T - V(z1,z2)TJT part of the system matrix. The important point at issue,
seems to be that it is necessary to agree at the outset of the investigation exactly
how these singularities of G(z1, z2) are to be realised within the system matrix and

Definition 3.5 takes one such view.

Despite this, it has still not proved possible to establish that any two least order
realisations of G(z1, z2) are related by a polynomial form of the relationship (141).
However, it is possible to establish the nature of this polynomial connection when it
exists.

3.3 Equivalence of 2-D Polynomial Matrices 92

Theorem 3.6: If two least order system matrices P;(z1, z2) for i = 1, 2 are related

by a polynomial form of the relationship

(
Q1(z1,z2) 0) (T2(z1,z2) U2(z1,z2))
R1(z1,z2) Im -V2(z1,z2) W2(z1,z2)

= (T1(z1,z2) U1(z1,z2)) (Q2(zi,z2) R2(z1,z2)) (155)
-V1(z1,z2) W 1(zi>z2) 0 le

then Q1(z1,z2), T1(z1,z2) are zero (left) coprime and Q2(z1,z2), T2(z1,z2) are zero

(right) coprime.

Proof: The relationship (155) may be written in the form

T2 u2

=0. (156)

0 -I

The (1 ,2) block equation yields

(157)

in which T1, U1 are minor (left) coprime. Therefore by Bezout identities, Theorem

1.4, there exist 5(;, Y; for i = 1, 2 such that

T1Xi+U1Y;=1Mzi)I for i=1,2

for scalar polynomials 1/Ji(zi)· This Bezout identity and equation (157) yield the

equation

demonstrating the T1 , Q 1 are minor (left) coprime.

The (2,1) block equation yields

(158)

Now V2 , T2 are zero (right) coprime and so by the Bezout identity there exist poly­

nomial matrices X(z1 , z2), Y(z1, z2) such that

(159)

Pre-multiplying (158) by Y and substituting from (159) for YV2 gives

3.3 Equivalence of 2-D Polynomial Matrices 93

Thus T2 , Q2 are zero (right) coprime.

Now from the (1,1) equation of (156)

QIT2 = TIQ2

and so

(160)

are coprime MFDs. By Theorem 2.2 the fractions in (160) must be of the same

coprimeness type and since T2, Q2 are zero (right) coprime, it follows that T1, Q 1 are

zero (left) cop rime. 0

The following theorem relates some coprimeness interconnections between the con­

stituent matrices of (155).

Theorem 3. 7: If two system matrices P;(z1 , z2) fori= 1, 2 are related by a polyno­

mial form of the relationship

then

(
Q1(z1,z2) 0) (T2(z1,z2) U2 (z1,z2))

RI(zl,z2) /m -V2(zl,z2) W2(zl,z2)

= (T1(z1,z2) U1(zl>z2)) (Q2(zl,z2) R2(z1,z2)) (161)

-VI (zl> z2) wl (zl' z2) 0 le

(i) Q 1 (z1, z2), T1 (z1, z2) are minor (left) coprime ifT1 (z1, z2), U1 (z1, z2) are minor

(left) coprime;

(ii) Q1(z1,z2), T1(z1,z2) are zero (left) coprime ifT1(z1,z2), U1(z1,z2) are zero

(left) coprime;

(iii) Q2(z1, z2), T2(z1, z2) are minor (right) coprime ifT2(z1, z2), \!2(z1, z2) are mi­

nor (right) coprime;

(iv) Q2(z1,z2), T2(z1,z2) are zero (right) coprime ifT2(z1,z2), V2(z1,z2) are zero

(right) coprime.

Proof: (i) Suppose that T1, U1 are minor (left) coprime. Then by the Bezout identi­

ties there exist polynomial matrices X;(z1, z2), Y;(z1, z2) and scalar polynomials '1/J;(z;)

for i = 1, 2 such that

and using the (1,2) equation of (161)

T1(X;-T1~Y;)+Q1 (U2Y;)='l/JJ for i=1,2.

Thus Q 1, T1 are minor (left) coprime.

3.3 Equivalence of 2-D Polynomial Matrices 94

(ii) The proof follows analogously to (i) by considering 1/;1(z1) = 1.

(iii) T2 , V2 are minor (right) coprime. Then by the Bezout identities there exist

polynomial matrices W1(z1,z2), Y;(z1,z2) and scalar polynomials </>1(z1) fori= 1,2

such that

and using the (2,1) equation of (161)

(W1 + Z1R1m + (Z1 VdQ2 = <M for i = 1, 2.

Thus the result is established.

(iv) The proof follows analogously to (iii) by considering rP.{z1) = 1. 0

Polynomial transformations of the type (161) are considered more fully in the follow­

ing section.

3.3.2 Polynomial Transformations

In the previous section it was established that any two system matrix realisations of

the same system are related by a closed form matrix relationship (131) in which the

transforming matrices are, in general, rational. This was seen to be a necessary and

sufficient condition for the system matrices to be input-output equivalent. Moreover if

this relationship was polynomial and the system matrices were least order, in the sense

of Definition 3.5, the T-blocks were shown to possess a zero coprimeness condition

with the Q-blocks.

In this section the above form of relationship will be further developed for system

matrices that are not necessarily least order. In fact it will be shown that under

certain coprimeness conditions the polynomial form of the relationship (155) is an

equivalence relation. Before undertaking this task some new terminology needs to be

introduced.

Definition 3.6: (Zero Equivalence)

Let T1 (zl> z2), T2(z1 , z2) be two polynomial matrices. If an equation of the form

(162)

exists where T1(z1,z2), Q1(z1,z2) are zero (left) coprime and T2(z1,z2), Q2(z1,z2)

are zero (right) coprime then T2(z1,z2) is said to be zero equivalent to T1(z1,z2).

3.3 Equivalence of 2-D Polynomial Matrices 95

Furthermore if two polynomial system matrices P1(z1,z2), P2 (z1,z2) are related by

an equation of the form

S1 (z1, z2)

(163)

where S1(z1,z2), P1(z1,z2) are zero (left) coprime and S2(z1,z2), P2(z1,z2) are zero

(right) coprime then P2(z1 , z2) is said to be zero system equivalent to P1 (z1, z2). o

Definition 3.7: (Minor Equivalence)

Let T1 (z1 , z2), T2(z1, z2) be two polynomial matrices. If an equation of the form

(164)

exists where T1 (z1, z2), Q 1 (z1, z2) are minor (left) coprime and T2(z1, z2), Q2(z1, z2)

are minor (right) coprime then T2(z 1, z2) is said to be minor equivalent to T1 (z1, z2).

Furthermore if two polynomial system matrices P1(z 1,z2), P2(z 1,z2) are related by

an equation of the form

S1(z1,z2) P2(z1,z2)

(165)

where 8 1 (z 1, z2), P1 (z1, z2) are minor (left) coprime and S2(z1, z2), P2(z 1, z2) are minor

(right) coprime then P2(z1 , z2) is said to be minor system equivalent to P1 (z1 , z2). 0

The first result is an interesting property relating system equivalence and the equiv­

alence between the T-blocks of the system matrices.

Theorem 3.8: Let the two system matrices P1 (z 1, z2), P2(z1, z2) be related by a

transformation of the form

(166)

where

--- --------- -- -----------------------

3.3 Equivalence of 2-D Polynomial Matrices 96

Then

(a) P1(z 1,z2), S 1(z1,z2) are minor (left) coprime if and only ifT1(z1,z2), Q1(z 1,

z2) are minor (left) coprime.

(b) P1 (z1 , z2), S 1 (z1, z2) are zero (left) coprime if and only ifT1 (z1 , z2), Q 1 (z1 , z2)

are zero (left) eo prime.

Similar statements may be formulated for the pairs P2(z1, z2), S2(z1 , z2) and T2(z1,

z2), Q2(z1, z2).

Proof:

(a) Firstly assume that Q 1(z1,z2) and T1(z 1,z2) are minor (left) coprime. Thus

by the Bezout identities there exist polynomial matrices X(z1,z2), Y(z1,z2)

such that

where 4>;(z;) is a polynomial in z;. Consider the matrix equation

(Q1 0) (X 0) (T1 U1) (y 0)
R, Im V,Y- R,X 4>Jm + -V, W, 0 0 = 4>Jr,+m

(168)

for i = 1, 2 which is a Bezout identity for minor (left) coprimeness and guar­

antees that S1 and P1 are minor (left) coprime. Hence the "if" part is proved.

Conversely, assume that S1 and P1 are minor (left) coprime. Thus there exist

polynomial matrices X;i(z1,z2), Y;i(z1, z2) for i,j = 1, 2 such that

(~: ~:) (~:: ~::) + (_T~l ~J (~: ~:) = Mr,+m
fori= 1, 2. Now the (1,1) equation gives

Q1Xn + T1Yn + U1Y21 = 4>Jr,

and from the (1,2) equation of (165) Q1U2 = T1~ + U1 which gives

Q,Xn + T,Yn + (Q,U2- T,~)Y21 = 4>Jr,
Q,(Xn + U2Y:n) +T,(Y"- ~Y21) = 4>Jr,·

(169)

(170)

(171)

(172)

Thus Q 1(z1,z2) and T1(z 1,z2) are minor (left) coprime. Hence the "only if"

part is proved.

(b) By setting 4>; = 1 fori= 1, 2 in equations (167)-(172) the result is proved. 0

Thus the equivalence of the system matrix transformation induces the same equiva­

lence transformation on the T-blocks of the system matrix and vice versa.

3.3 Equivalence of 2-D Polynomial Matrices 97

Theorem 3.9: The relation of zero equivalence (162) is an equivalence relation.

Proof: It is required to prove that the relation (162) is reflexive, transitive and

symmetric.

Let T1(z1,z2) and T2(z1,z2) be two polynomial matrices, respectively of sizes p x q

and r x s with p-q = r-s. Let Q1(z1, z2) and Q2(z1, z2) be two polynomial matrices

such that

with Q1, T1 zero (right) coprime and Q2 , T2 zero (left) coprime.

1. Reflexivity: Let T1 = T2 in (173). Then p =rand q = s. If Q1 = Iq and

Q2 = Ir then

IrT, = T2Ie

and since det I= 1 T1, Ir are zero (left) coprime and T2 , Iq are zero (right)

coprime reflexivity is proved.

2. Transitivity: Suppose that

Q2T1 = T2Q1

Q2T2 = T3Q1

with the usual coprime conditions. From (174)

Q2(Q2T1) = Q2(T2Q1)

= T3Q,Q,.

(174)

(175)

Thus it is required to prove that Q2Q2 , T3 are zero (left) coprime and that

Q1Q1, T1 are zero (right) coprime. From the coprime conditions and the

Bezout identities there exist X1, X2 , Y1 and Y2 such that

Q2X1 + T2Y1 =I

Q2X2 + T3Y2 =I.

Pre-multiplying (176) by Q2 and using (175) gives

Q2Q2X1 + Q2T2Y1 = i:J2

Q2Q2X1 + T3Q1 Yi = Q2·

Now post-multiply by X2 and use (177) to give

Q2Q2X1X2 + T3Q1 Y1X2 =I- T3Y2

and rearrange to give

(176)

(177)

3.3 Equivalence of 2-D Polynomial Matrices 98

Thus Q2Q2 and T3 are zero (left) coprime. In the same way it can be proved

that Q1Q1 and T2 are zero (right) coprime.

3. Symmetry: Write the coprimeness conditions as

Then

where J = Y1X 2 + X1Y2 • Now pre-multiply (181) by (Ir
-J

(
Q2 T2) (X 2 T,) (lr 0)
Y1 X 1 Y2 -Q1 = 0 It
~~~v-~~ 

A B 

(178) 

(179) 

(180) 

(181) 

0
) so that 

It 

(182) 

where X 1 = X 1 - JT2 and Y1 = Y1 - JQ 2 • Since A(r+q)x(p+s) and B(p+s)x(r+q) 

are square, the same size and are polynomial inverses of each other they must 

be unimodular and j6' commute, to give 

The constituent equations are 

X2Q2 + T,Y, = Im 

X 2T2 + T1X1 = 0 

Y2Q2 + (-QdY, = 0 

Y2T2 + ( -Q1)X1 = I,. 

(183) 

(184) 

(185) 

(186) 

(187) 

Thus from (184) X 2 , T1 are zero (left) coprime and from (187) -X1, T2 are 

zero (right) coprime. Also from (185) 

thus the relation is symmetrical. 



3.3 Equivalence of 2-D Polynomial Matrices 99 

Hence the relation is reflexive, symmetric and transitive, i.e. an equivalence relation, 

and the theorem is proved. D 

It has been proved in Theorem 3.8 that the coprimeness on the T-blocks is synony­

mous with the coprimeness on the system matrices. Thus, in light of the previous 

theorem, if two system matrices are zero system equivalent the T-blocks are related 

by a true equivalence relation, the natural extension to consider is whether zero sys­

tem equivalence also defines a true equivalence relation. The answer is provided by 

the following theorem. Notice that the previous theorem guarantees the coprimeness 

conditions for each of the three relations (reflexivity, transitivity and symmetry). In 

addition the specific structure of the transforming matrices of zero system equivalence 

must be preserved. 

Theorem 3.10: Zero system equivalence is an equivalence relation. 

Proof: Let P1(z1,z2) and P2(z1,z2) be two polynomial system matrices of sizes 

(r; +m) x (r; +£)fori= 1,2. Also let S 1(z1,z2) and S2(z1,z2) be polynomial 

matrices of the form given above so that 

(188) 

where S1(z1,z2 ), P1(z1,z2) are zero (left) coprime and S2(z1,z2), P2(z1,z2) are zero 

(right) coprime. 

1. Reflexivity: Let P1 = P2 and let Q1 = Ir,, Q2 = Ir,l> R1 = 0, ~ = 0 then 

P1 = P2 and the coprime conditions hold since det I = 1. 

2. 'fransitivity: Suppose that P2 is zero system equivalent to P1 and that P1 is 

zero system equivalent to P3, i.e. 

SIP2 = P!S2 

S1P1 = P3S2 

(189) 

(190) 

with the usual coprime conditions. Then from Theorem 3.9 it is known that 

P3 and P2 are connected by an equation of the form 

S1S1P2 = P3S2S2 

with the zero equivalence coprime conditions. To show that the relation, in 

systems terms, is also transitive the transforming matrices, s!sl and s2s2, 

must have the correct structure. Let 

S1 = (~1 O) and S2 = (Q2 R2
) 

R1 Im 0 le 



3.3 Equivalence of 2-D Polynomial Matrices 100 

Thus the relation is transitive. 
3. Symmetry: Write equation (188) in the form 

(Q, o)(T2 U2) (T' u,)(Q2 ~) 
R 1 Im -V2 W2 = -V1 W1 0 Im 
~ .._;_.....:;v-.....:...;-'._,_., 

s, P2 P, S2 

and the constituent equations are 

Q1T2 = T1Q2 

Q,U2 = T1~ + U1 

R1T2- V2 = -V,Q2 

R1U2 + W2 =-V,~+ W,. 

(191) 

(192) 

(193) 

(194) 

(195) 

Now since S1, P1 are zero (left) coprime then Q1 , T1 are also zero (left) 
coprime, similarly zero (right) coprime conditions for the pairs S2, P2 and Q2, 

T2. Thus there exist X1, X 2, Y1 and Y2 such that 

Q1X1 +T1Y1 =I., 
X2Q2 + Y2T2 =I., 

(196) 

(197) 

and from these two Bezout identities the Bezout identities for the system 

matrices may be deduced 

(
Q, o)( x, o)+(T1 u,)(Y1 o)=(I., o) 
R1 /m V1Y1 - R1X 1 lm -V1 W1 0 0 0 lm 

~'-~~-v~~.....:...;..- ~ 

S1 X1 P1 Yj 

(199) 

Thus from the equations (191), (198) and (199) 

( ~: _:t) ( ;; _P;J = C·'t I.~H) (200) 

where]= Y;X1 - X2Y1• Now Post-multiply (200) by ( I_ 
0

) to obtain 
-J I 

( ~ 1J ( ~: _P~) = Crt I.,:J (201) 

A B 



3.3 Equivalence of 2-D Polynomial Matrices 101 

where X1 = X1 - P2] and Y1 = Y1 + N]. Since A(r+q)x(v+s) and B<v+s)x(r+q) 

are square, the same size and are polynomial inverses of each other they must 

be unimodular and so commute, to give 

( ~: _:~) ( ~ _jJ = ( \+P lr,:J , (202) 

B A 
Thus the (1 ,2) equation gives 

XI PI= P2X2 

and it is known Theorem 3.9 that the correct coprime conditions hold, hence 

all that is required to prove is that the transforming matrices have the correct 

structure, namely that of S1 and S2• It is immediately obvious that X2 has 

~) 
.xi P2 

( 
X1 - T2 (1';X1 - X 2Yd 0 ) 

= ViYiRiXi + V2(Y2X1X2Yd lm 

= (~: /:). 

Thus it has been shown that the relation is reflexive, transitive and symmetric hence 

it is an equivalence relation. D 

As a consequence of this theorem if P2(z1, z2) is zero system equivalent to P1 (z1, z2) 

then P1(z1,z2) is also zero system equivalent to P2(z1,z2). Hence it is not necessary 

to specify an order of the two matrices that are related by the transformation of zero 

system equivalence; it is equally valid to say that P1 (z1, z2 ), P2(z1, z2 ) are zero system 

equivalent. Equally the same is true for zero equivalence. This property does not 

hold for minor equivalence and minor system equivalence as the transformations are 

not symmetric due to the nature of the Bezout identity. However, the properties of 

reflexivity and transitivity are valid for these transformations: the proofs follow in 



3.3 Equivalence of 2-D Polynomial Matrices 102 

an analogous manner to those for zero equivalence, Theorem 3.9, and zero system 

equivalence, Theorem 3.10. The property of minor system equivalence not being 

symmetric can be shown by considering the following example. 

Example 3.3: Consider the two system matrices 

with transfer function 
Zf 

G(z1,z2) =­
z2 

(203) 

(204) 

P2(z1,z2) is minor system equivalent to P1(z1,z2), as demonstrated by the equation 

(205) 

Each pair of matrices corresponding to the Definition 3. 7 have non-zero high-order 

minors -z1, z2 , -zf and zf thus defining minor coprimeness of the transforming and 

transformed matrices. 

Conversely consider interchanging the roles of P1 (z1, z2 ), P2 (z1, z2 ) to give 

G: ~) ( ~21 ~) = (~~I ~) ( ~ ~2 ) (206) 

It is immediately obvious, from Hilbert Nullstellensatz, that a polynomial solution 

does not exist for q1(z1,z2), q2(z1,z2), r1(z1,z2) and r2(z1,z2) by inspecting the (2,1) 

equation of (206): 

D 

In fact, this example provides some information about when a polynomial transfor­

mation of the form (161) exists. Consider the zeros of the matrix pairs T, U (input 

zeros) and T, V (output zeros) of the system matrices (203) and (204). The matrix 

P1 (z1, z2) does not have any output zeros and the input zeros given by 

(0, 0), (0, 0). 

The matrix P2 (z1, z2 ) has (0,0) as an input and output zero. Notice that the set of 

input zeros of P2 (z1, z2) are contained in the set of input zeros of P1(z1, z2) and the 



3.3 Equivalence of 2-D Polynomial Matrices 103 

set of output zeros of P1(z1,z2) are contained in the set of output zeros of P2(z1,z2); 
and P2(z1,z2) is minor system equivalent to P1(z1,z2). However, a polynomial trans­

formation does not exist when the roles of P1(z1,z2) and P2(z1,z2) are interchanged. 

Thus it may be conjectured that for a polynomial form of the transformation 

(
Q1(z1,z2) 0) ( T2(z1,z2) U2(z1,z2)) 
R1 (z1, z2) I m - V2(z,, z2) W2(z,, z2) 

= ( T1(z1,z2) U1(z1,z2)) (Q2(z,,z2) R2(z,,z2)) 
- V1 (z" z2) W 1 (z" z2) 0 le 

to exist the set of zeros of T2(z1,z2), U2(z1,z2) are contained in the set of zeros of 

T1(z1,z2), U1(z1,z2) and the set of zeros ofT1(z1,z2), V1(z1,z2) are contained in the 

set of zeros ofT2(z1,z2), V2(z1,z2). 

The previous two theorems indicate that zero system equivalence is the 2-D system 

theory equivalent of extended strict system equivalence for I-D system theory. This 

fact may be further enhanced by considering some properties of extended strict system 

equivalence. Pugh et al [52] have proved that extended strict system equivalence 

preserves, the transfer function matrix, the set of system poles, the set of system 

zeros and all sets of decoupling zeros. Analogous results for zero system equivalence 

may be derived by making use of the 2-D MFD Structure Theorem, Theorem 2.5. 

However, as will be seen, some of these properties are also possessed by minor system 

equivalence. Thus an equivalence relation is not necessary for the invariance of certain 

fundamental system properties. 

Theorem 3.11: The transformations of minor system equivalence (I65) and zero 

system equivalence (I63) preserve 

(i) the transfer function matrix; 

(ii) the invariant polynomials ofT1(z1,z2), T2 (z1,z2); 

(iii) the invariant polynomials of P1 (z1, z2), P2(z1, z2); 
(iv) the invariant polynomials of the pair T; (z1, z2), U;(z1, z2) for i = I, 2; 

(v) the invariant polynomials of the pair T; (z1, z2), V; (z1, z2) for i = I, 2. 

Proof: The theorem needs only to be proved for minor system equivalence as zero 

system equivalence is a subset of minor system equivalence. 

(i) This proved by Theorem 3.4. 

(ii) Consider two system matrices P1(z1,z2), P2(z1, z2) with P2(z1, z2) being minor 

system equivalent to P1 (z1 , z2) thus there exist S1 (z1, z2), S2(z1, z2) such that 

(207) 



3.3 Equivalence of 2-D Polynomial Matrices 104 

where 81 (z1, z2), P1 (z1 , z2 ) are minor (left) coprime and S2(z1 , z2 ), P2(z1 , z2 ) 

are minor (right) coprime with 

Thus the constituent equations are 

QIT2 = TIQ2 

QIU2 = Tl~ + Ul 

R1T2- V2 = -V1Q2 

R1U2 + W2 =-lit~+ W1 

(209) 

(210) 

(211) 

(212) 

By Theorem 3.5 equation (209) possesJ'the coprimeness conditions given 

by Q1(z1,z2), T1(z1,z2) minor (left) coprime and Q2(z1,z2), T2(z1,z2) mi­

nor (right) coprime and may be written as a minor coprime matrix fraction 

description 

(213) 

Thus by the 2-D MFD Structure Theorem, Theorem 2.5, T1(z1,z2 ) and T2(z1, 

z2) possess the same invariant polynomials modulo a multiplicative constant. 

(iii) The result is obtained using a similar argument to (ii) and Corollary 3 of 

Theorem 2.5. 

(iv) Consider the (1,1) and (1,2) equations of (207) in the form 

Ql ( T2 U2) = ( T1 UJ) ( Q2 (~' z2) R2(z;' z2)) (214) 

and using Corollary 3 of Theorem 2.5 the result is established. 

(v) In an analogous way to (iv), using (1,1) and (2,1) equations of (207) in the 

form 

(215) 

the result is established. 0 

However, the coprimeness of the T, U and T, V pairs can only be preserved under 

zero system equivalence, due to the relation being a true equivalence relation: 



-----·--

3.3 Equivalence of 2-D Polynomial Matrices 105 

Theorem 3.12: Zero system equivalence (163) preserves the coprimeness of the 

pairsT;(z1,z2), U;(z1,z2) and thepairsT;(z1,z2), V;(z1,z2) fori= 1,2 oftwosystem 

matrices P1(z1,z2), P2(z1,z2). 

tion of zero system equivalence then there exist polynomial matrix equations of the 

form 

(216) 

and by the symmetry of the relation 

( Q
1 0 ) ( T1 U1 ) ( T2 

Jl, [m -Vj W, = -V2 
(217) 

where Q1 (z1, z2), T1 (z1, z2) and Q1 (z1, z2), T2(z1 , z2) are zero (left) coprime and Q 2(z1, 

z2), T 2(z1, z2) and Q 2(z1, z2), T 2(z1 , z2) are zero (right) coprime. The constituent 

equations of (216) are 

Q1T2 = T1Q2 (218) 

Q 1U2 = T1R2 + U1 (219) 

R1T2- V2 = -V,Q2 (220) 

R1U2 +W2 =-V1R2 +W1 (221) 

and the constituent equations of (217) are 

Q,T, = T2Q2 

Q1U1 = T2R2 + U2 

R1T1 - V1 = -\12Q2 

R.,u, + w, = -V2~ + W2 

(222) 

(223) 

(224) 

(225) 

Assume that T1 (z1, z2), U1 (z1, z2 ) are minor (left) coprime, thus by the Bezout iden­

tities 

T1X+U1Y="if;;l for i=1,2 

Q1X +T2Y =I. 

Thus pre-multiplying (226) by Q1 and using (222) and (223) gives 

T2Q2X + (T2R2 + U2)Y = 1/J,Q1 

Collecting terms in T2 and post multiplying by X, using (227) gives 

T2(Q2X + ~Y)X + U2Y X= 1/J;(I- T2Y) 

(226) 

(227) 

(228) 

(229) 



3.3 Equivalence of 2-D Polynomial Matrices 106 

Rearranging (229) gives the required equation for T2 , U2 to be minor (left) coprime. 

The converse may be proved in an analogous manner. 

Similarly T1, V1 are minor (right) coprime if and only if T2 , V2 are minor (right) 

coprime. 

The result for zero coprimeness holds by putting '1/.J; = 1 in (226), (228) and (229). 0 

Thus it has been seen that even though minor system equivalence is not a true equiva­

lence relation, the fundamental properties of transfer function matrix, invariant poly­

nomials of the T-blocks and the whole system matrix are preserved, and the invariant 

polynomials of the T, U and T, V pairs remain invariant, but to prove the invariance 

of the coprimeness of these pairs the property of symmetry is required. 

To close this section consider the results of the previous 5 theorems in relation to 

the transformation that exists between the two types of least order system matrices 

defined in Section 3.3.1. 

Theorem 3.13: If P1 (z1, z2), P2(z1, z2) are two (minor) least order system matrices 

related by a polynomial transformation 

(
Q1(z1,z2) 0) ( T2(z1,z2 ) 

Rl(zl,z2) /m -V2(zl,z2) 

= ( T1(z1,z2) U1(z1,z2)) (Q2 (z1,z2 ) 

-V1(z1,z2) W1(zl,z2) 0 
(230) 

then P2(z1,z2) is minor system equivalent to P1(z1,z2). 

Proof: Theorem 3.5 has established that if P1(z1,z2), P2(z1,z2) are (minor) least or­

der system matrices and they possess the polynomial transformation (230) then Q1 (z1, 

z2), T1(z1,z2) are minor (left) coprime and Q2(z1,z2), T2(z1,z2) are minor (right) eo­

prime. Thus by Theorem 3.8 the coprimeness on the (1, 1) block equation of (230) is 

synonymous with the coprimeness of the polynomial transformation (230). Therefore 

D 

Theorem 3.14: If P1(z1,z2), P2(z1,z2) are two least order system matrices related 

by a polynomial transformation 

(
Q1(z1,z2) 0) ( T2(z1,z2) U2(z1,z2)) 
R1(z1,z2) /m -V2(z1,z2) W2(z1,z2) 

= ( T1(z1,z2) U1(z1,z2)) (Q2(zl,z2) R2(z1,z2)) (
231

) 
-V1(z1,z2) W1(z1,z2) 0 le 



3.3 Equivalence of 2-D Polynomial Matrices 107 

then P1(z1,z2), P2(z1,z2) are zero system equivalent. 

Proof: Theorem 3.6 has established that P1(z1, z2), P2(z1 , z2) are least order system 

matrices and possess the polynomial transformation (231) then Q1(z1,z2), T1(z1,z2) 

are zero (left) coprime and Q2(z1, z2), T2 (z" z2) are zero (right) coprime. Thus by 

Theorem 3.8 the coprimeness on the (1,1) block equation of (231) is synonymous 

with the coprimeness of the polynomial transformation (231). Therefore (231) is a 

transformation of zero system equivalence. D 

From the results derived in this section it has been seen that although the definition 

of (minor) least order in which the pairs T, U and T, V are both minor coprime 

was previously discounted as unsatisafactory, as a definition of least order, the only 

real difference existing between (minor) least order and least order is that the former 

allows the system matrices to be related by a true equivalence relation (zero system 

equivalence). However, for many of the properties studied in this section it is not 

necessary for the polynomial transformation to be an equivalence relation. 

Unfortunately it has not proved possible to define a 2-D least order matrix so that 

it has similar properties to a 1-D least order matrix. Namely a necessary and suffi­

cient condition for the existence of a polynomial transformation between two system 

matrices representing the same system, i.e. to be input-ouput equivalent. 



3.4 Equivalence of n-D Polynomial Matrices 108 

3.4 Equivalence of n-D Polynomial Matrices 
In the previous section (3.3) the relation existing between two system matrices, that 

are input-output equivalent, has been considered and links made with the definition of 

extended strict system equivalence. In this section the results for 2-D system matrices 

will be considered in an n-D framework. The system matrix now has the form 

P(z) = ( T(z) U(z) ) . 
-V(z) W(z) 

(232) 

In many-indeterminate system theory the types of possible coprime matrices increases 

to three, namely zero, minor and factor; thus the definitions put forward in the 

previous section are sometimes not obviously generalised to many dimensions. For 

2-D systems the n-D definitions of minor and factor coprimeness are equivalent; thus 

some definitions using minor coprimeness may be replaced by factor coprimeness, 

which is a less restrictive condition because a Bezout identity does not exist for this 

type of coprimeness. 

In view of the three notions of coprimeness consider again the types of transformations 

that may be defined using these three notions. The definitions of zero equivalence, 

zero system equivalence, minor equivalence and minor system equivalence are defined 

by Definitions 3.6 and 3. 7 but now a third type, factor equivalence and factor system 

equivalence, may also be given. 

Definition 3.8: (Factor Equivalence) 

Let T1 (z), T2 (z) be two polynomial matrices. If an equation of the form 

(233) 

exists where T1(z), Q1(z) are factor (left) coprime and T2(z), Q2(z) are factor (right) 

coprime then T2 (z) is said to be factor equivalent to T1 (z). Furthermore if two 

polynomial system matrices P1 (z), P2(z) are related by an equation of the form 

S1(z) 

flz(z)) 
le 

{234) 

where 8 1 (z), P1 (z) are factor (right) coprime and S2(z), P2 (z) are factor (left) coprime 

then P2(z) is said to be factor system equivalent to P1 (z). 0 



3.4 Equivalence of n-D Polynomial Matrices 109 

The analogue of Theorem 3.8 may be defined, but the proof is not a trivial generali­

sation of the 2-D result. 

Theorem 3.15: Let the two system matrices P1(z), P2 (z) be related by a transfor­

mation of the form 

(235) 

where 

Then 

(a) P1 (z), S 1 (z) are factor (left) coprime if and only if T1 (z), Q 1 (z) are factor 

(left) coprime; 

(b) P1(z), S 1(z) are minor (left) coprime if and only ifT1(z), Q 1(z) are minor 

(left) cop rime; 

(c) P1 (z), S 1 (z) are zero (left) coprime if and only if T1 (z), Q 1 (z) are zero (left) 

coprime. 

Similar statements may be formulated for the pairs P2(z), S2(z) and T2(z), Q2(z). 

Proof: 

(a) Assume that T1, Q1 are factor (left) coprime, then any common (left) factor 

of T1 and Q1 is unimodular, i.e. an n-D polynomial matrix with non-zero 

constant determinant. Now suppose on the contrary that P1, S 1 are not 

factor (left) coprime. Let D be a greatest common (left) divisor of P1 and S1 

then IDI f constant, i.e. 

(
Du D12 ) ( Au A12 A 13 A 14 ) = ( Q 1 0 T1 U1 ) (236) 
D21 D22 A21 A22 A23 A24 R, I -V, W, 

D 

Thus from the (1 ,2) and (2,2) equations 

DuA 12 + D12A22 = 0 

D21A12 + D22A22 =I 

hence from (238) A12 and A22 are zero (right) coprime. By Theorem 2.3 

there exist polynomial matrices N1(z) and N2 (z) such that 

(237) 

(238) 



3.4 Equivalence ofn-D Polynomial Matrices 110 

is unimodular. Let [! be the unimodular matrix 

- (N1 A12 ) ( I 0
1

) 
U = N 2 A22 - D21 N 1 - D22N2 

= ( N 1 - A12 (D21 N 1 + D22 N 2) A12) 
N2 - A22 (D21 N1 + D22N2) A22 

DuA12 + D12A22) 
D2,A12 + D22A22 

(239) 

where Du= DuN1 + D12N2. Thus from (239) ID11 1 = IDI x IUI where IUI 
is a non-zero constant. Thus (236) can be written as 

( Du 0) (~" ~~2 ~~3 ~'4) = (Q, 0 T, U,) 
0 I A21 A22 A23 A24 R1 I -V1 W 1 

where 

( 
~n ~~2 ~~3 ~~4) = [!-' (An A12 A,3 A,4) 
A21 A22 A23 A24 A21 A22 A23 A24 

is a polynomial matrix. Hence [Q11Td = D11 [ii11 1Ad. Thus T1 , Q1 are not 

factor (left) coprime, which is a contradiction to the assumption. Hence P1, 

81 are factor (left) coprime. 

Conversely, assume that P1, 81 are factor (left) coprime and suppose that T1, 

Q1 are not factor (left) coprime. Thus there exists an n-D polynomial matrix 

D with IDI =I constant such that [T1IQ1] = D[T1IC;IJ]. Now 

Thus 

I 0 0 -:-U2 I 0 0 U2 I 0 0 0 

010 0 010 0 0100 

0 0 I 

0 0 0 

-
~ 0 0 I -R2 0 0 I 0 

I 000 I OOOI 

I 0 0 -U2 

0 I 0 0 

0 0 I R2 

0 0 0 I 

I o o U2 
0 I 0 0 

0 0 I -R2 

0 0 0 I 



3.4 Equivalence of n-D Polynomial Matrices 111 

I 0 

= ( DQi 0 DTi 

Wi- Ri~2- ViRJ 

0 I 

Ri I -Vi 0 0 

0 0 

=(~ 0) (Qi 0 Ti 

Wi- Ri~2 - ViRJ I Ri I -Vi 

=(~ 0) (Qi 0 Ti Qiu2-1'i~). 
I Ri I -Vi wi 

But this gives a contradiction as 

I ~ ~I = IDI #constant. 

Hence Ti and Qi are factor (left) coprime. 

(b) The proof is analogous to Theorem 3.8 (a). 

(c) The proof is analogous to Theorem 3.8 (b). 

Theorem 3.16: The relation of 

(i) zero equivalence is reflexive, transitive and symmetric; 

(ii) minor equivalence is reflexive and transitive; 

(iii) factor equivalence is reflexive. 

Proof: 

(i) The proof is analogous to Theorem 3.9. 

0 u2 
0 0 

I -R2 
0 I 
I 0 0 u2 
0 I 0 0 

0 0 I -~ 

0 0 0 I 

D 

(ii) Let Ti (z) and T2(z) be two polynomial matrices, respectively of sizes p x q 

and r x s with p- q = r- s. Let Qi (z) and Q2 (z) be two polynomial matrices 

such that 

(240) 

with Qi (z), Ti (z) minor (right) coprime and Q2 (z), T2 (z) minor (left) coprime. 

Reflexivity: Let Ti - T2 in (240). Then p = r and q = s. If Qi = Iq and 

Q2 = Ir then 

IrTi = T2It 

and since detl = 1 Ti, Ir are zero (left) coprime and T2 , Iq are zero (right) 

coprime they are also minor coprime. 

Transitivity: Suppose that 

Q2Ti = T2Qi 

Q2T2 = T3Qi 

(241) 

(242) 



3.4 Equivalence ofn-D Polynomial Matrices 112 

with the usual minor equivalence coprime conditions. From (241) 

Q2(Q2T1) = Q2(T2Q1) 

= T3Q1Q1. (243) 

Thus it is required to prove that Q2Q2 , T3 are minor (left) eo prime and that 

Q1Q1, T1 are minor (right) coprime. From the coprime conditions and the 

B , t 'd t't' th · t x<tl x<2l y<Il d y<2l " · 1 2 eh ezou 1 en 1 1es ere ex1s i , i , i an i 10r z = , , ... , n su 

that 

Q2X?l + T2Y;Pl = 'l/J;(zi)I 

CJ2x?' + T3YP' = r/>;(zf)I 

(244) 

(245) 

where '1/J;(zf), r/>;(zf) are polynomials independent of z;. ?re-multiplying (244) 

by Q2 and using (243) gives 

- (1) - (1) -
Q2Q2X; + Q2T2Y; = 'l/J;(zf)Q2 
- (I) - (I) -
Q2Q2X + T3Q1 Yj = 'l/J;(zf)Q2. 

Now post-multiply by x?l and use (245) to give 

CJ2Q2xP' x?' + T3Qtr;<1l x?l = '1/J;(zf)(r/>;(zf)I- T3Yj<2l) 

and rearrange to give 

Q2Q2(X(1) x?l) + T3(Q 1 r;<tl x?l + 'l/J;(zf)Yj<2l) = '1/J;(zf)r/>;(zf)I. 

Thus Q2Q2 and T3 are minor (left) coprime. In the same way it can be proved 

that Q1Q 1 and T2 are minor (right) coprime. 

(iii) Let the matrices defined in (241) have the properties Q 1(z), T1(z) factor 

(right) coprime and Q2(z), T2(z) factor (left) coprime. Reflexivity follows as 

in (ii) above. D 

From Example 3.3 the relations of minor and factor equivalence can not be symmetric. 

The transitivity of factor equivalence is unlikely due to the non-existence of a Bezout 

identity. Following a similar analysis to the proof of the transitive property of minor 

equivalence equations (241 ), (242) hold with factor coprime conditions. Thus in 

equation (243) T1, Q1 are factor (right) coprime but this does provide information 

about the coprimeness of T1 and Q1Q1, similarly for Q2Q2 and T3. 

The two previous theorems may now be used to derive the types of relation that exist 

between the system equivalence relations. 



3.4 Equivalence of n-D Polynomial Matrices 113 

Corollary: The relation of 

(i) zero system equivalence is reflexive, transitive and symmetric; 

(ii) minor system equivalence is reflexive and transitive but not symmetric; 

(iii) factor system equivalence is reflexive but not symmetric. 

Proof: The proof follows in a manner analagous to the proofs of Theorem 3.10, 3.16 

and the counter-example Example 3.3. D 

Again the transitivity of factor system equivalence is doubtful for the same reasons 

derived for factor equivalence, above. 

Theorem 3.11, concerning some invariant properties of minor and zero system equiv­

alence, holds for the n-D case with analogous proofs using the n-D MFD Structure 

Theorem (Theorem 2.12). However, the majority of the results can not be proved 

for factor system equivalence due to Theorem 2.12 not being valid for factor coprime 

MFDs and the reliance of the proof on the existence of a Bezout Identity. 

Theorem 3.17: The transformations of minor system equivalence and zero system 

equivalence preserves 

(i) the transfer function matrix; 

(ii) the invariant polynomials ofT1(z), T2(z); 

(iii) the invariant polynomials of P1 (z), P2(z); 

(iv) the invariant polynomials of the pair T;(z), U;(z) fori= 1, 2; 

(v) the invariant polynomials of the pair T;(z), V;(z) fori= 1,2. 

Proof: The proof is analogous to Theorem 3.11. D 

Theorem 3.10, concerning the invariance of certain coprime conditions on the con­

stituent matrices of the system matrix, also hold for the n-D case. However, the 

theorem statement is not as elegant as for the 2-D case. This arises from the third 

notion of coprimeness, factor coprimeness, not possessing a Bezout identity. 

Theorem 3.18: Let the system matrices P1(z) and P2(z) defined by 

T; £ 

fj(z) = r; ( T;(z) U;(z) ) for i = 1, 2 (246) 
m -V;(z) W;(z) 

be zero system equivalent. Then 

(a) T1(z), U1(z) are zero (left) coprime if and only ifT2(z), U2(z) are zero (right) 

coprime; 



3.4 Equivalence ofn-D Polynomial Matrices 114 

(b) T1(z), U1(z) are minor (left) coprime if and only ifT2(z), U2 (z) are minor 

(right) coprime; 

(c) T1 (z), V1 (z) are zero (right) coprime if and only ifT2 (z), V2(z) are zero (right) 

cop rime; 

(d) T1(z), V1(z) are minor (right) coprime if and only i£T2 (z), V2(z) are minor 

(right) coprime. 

Proof: The proof is analogous to Theorem 3.12. 0 

Finally consider the definition of least order (Definition 3.5) and the polynomial 

transformation connecting least order system matrices in n-D systems theory. It does 

not seem appropriate to adopt Definition 3.5, where the T, U matrices of the system 

matrix are zero (left) coprime and T, V are minor (right) coprime due to the notion 

of factor coprimeness. Minor coprimeness was adopted in the definition of least order 

for 2-D system matrices because by considering the matrix fraction description every 

transfer function matrix G(z1, z2) could be realised as such. For n-D systems minor 

coprime MFDs can not be guaranteed in general. However, factor coprimeness for 

n-D systems fulfils the role of minor coprimeness for 2-D systems in this instance. 

Thus a natural extension to Definition 3.5 for least order seems to be the following. 

Definition 3.9: (Least Order) 

An-D polynomial system matrix P(z) of the form (246) will be said to be least order 

if the pair T(z), U(z) are factor (left) coprime and the pair T(z), V(z) are zero (right) 

cop rime. 0 

Equally least order could be defined in which T(z) and U(z) are zero (left) coprime and 

T(z) and V(z) are factor (right) coprime. Once again the important point seems to be 

that it is necessary to agree at the outset exactly how the non-essential singularities 

of the second kind are to be realised. However, it is not possible to deduce that if two 

least order system matrices are related by a polynomial transformation of the form 

(230) then they are zero system equivalent. Thus Theorem 3.6 becomes the weaker 

statement: 



3.4 Equivalence ofn-D Polynomial Matrices 115 

Theorem 3.19: If two least order system matrices (Definition 3.9) P;(z) fori = 1, 2 

are related by a polynomial form of the relationship 

( 
Q1 (z) 0 ) ( T2(z) U2(z) ) = ( T1 (z) U, (z) ) ( Q2(z) R2(z)) (247) 
R 1(z) lm -V2(z) W2(z) -Y;(z) W1(z) 0 le 

then Q1(z), T1(z) are factor (left) coprime and Q2(z), T2(z) are zero (right) coprime. 

Proof: The {1,2) equation of (247) is 

u, =QP2 -T,~ {248) 

Suppose that Q1 (z), T1 (z) are not factor {left) coprime then there exists a non­

unimodular polynomial matrix D(z) such that [Q1 Td = D[Q1 Td for polynomial 

matrices Q1{z), T1(z). Thus {248) gives 

U1 = D(QP2 - T1R2) 

i.e. D(z) is a common left divisor of T1(z), U1(z). This is a contradiction because 

the system matrix P1 (z) has the property of least order and therefore T1 (z), U1 (z) 

do not have any non-unimodular polynomial divisors. Thus Q 1(z), T1(z) are factor 

(left) coprime. 

It may now be proved analogously to Theorem 3.6 that Q2(z), T2(z) are zero (right) 

coprime. 0 

Consider now an alternative definition of a least order system matrix P(z) such that 

T(z), U(z) are factor (left) coprime and T(z), V(z) are minor (right) coprime. This 

clearly is a more general type of system matrix than the least order system matrix 

defined in Definition 3.9, since zero coprimeness is contained as a proper subset of 

minor coprimeness (see Theorem 1.3); in fact, if the number of in determinates is two 

this alternative definition is (minor) least order. Therefore it is expected that the 

coprimeness conditions induced on a polynomial transformation of the type {247) are 

less restrictive than in the least order case. Hence the following theorem may be 

stated. 

Theorem 3.20: If two system matrices P1(z), P2(z) are related by a polynomial 

transformation of the form 

(Q1(z) 0) ( T2(z) U2(z)) = ( T1(z) U1(z)) (Q2(z) R2(z)) 
R1 (z) !m - V2(z) W2(z) - V1 (z) W1 (z) 0 le 

whereT;(z), V;(z) are minor (right) coprimefori= 1,2 then Q1(z), T1(z) are factor 

(left) coprime and Q2(z), T2(z) are minor (right) coprime. 



3.4 Equivalence of n-D Polynomial Matrices 116 

Proof: The factor coprimeness ofT1(z1,z2), U1(z1,z2) is proved analogously to The­

orem 3.19 and the minor coprimeness of Q2(z), T2(z) follows from Theorem 3.5. D 

Thus n-D least order system matrices are not related by minor or zero equivalence 

whenever a polynomial form of the transformation (248) exists. 



3.5 Linear Differential MuJtipass Processes 117 

3.5 Linear Differential Multipass Processes 
One of the major considerations for the equivalence of system matrices is the invari­

ance of the zeros possessed by that system. In this section the zeros of a particular 

type of 2-D system are investigated, known as linear differential multipass processes. 

Also the feasibility of constructing a least order system matrix, in the sense of Defi­

nition 3.5, is considered. 

3.5.1 Non-Unit Memory Multipass Processes 

A general multipass process is a dynamic system, possibly non-linear, with a repeti­

tive, or recursive, action with interaction between successive passes, which may have 

differing lengths. A subclass of these multipass processes are those with linear dy­

namics and constant pass length, a. A number of examples are known [73] to satisfy 

these conditions, e.g. a type of long-wall coal cutting, [74]. Formally the pass profile 

(output vector) Yk(t), 0 ~ t ~a (t is the distance variable along each pass), gener­

ated during the kth pass acts as a forcing function on and hence contributes to the 

dynamics of the next output vector Yk+l (t) 0 ~ t ~ a k ~ 0. If information from a 

number of previous passes contributes to the current pass the process is known as a 

linear differential non-unit memory multipass process. 

Two parameters are required to specify each of the system variables thus the transfer 

function arising from such a system will be a polynomial matrix in two indetermi­

nates. One 'dimension' is discrete representing the pass number, k, and the second 

'dimension' is continuous representing the 'distance' along each pass, t. The defining 

state-space model [73], [75] has the form 

M 

xk+l (t) = Axk+l (t) + Buk+l (t) + 2:: B1_) vk+l-j (t) 
j=l 

(249) 
M 

yk+l(t) = cxk+l(t) + DoUk+l + L DjYk+l-j(t) 
j=l 

where the input Xk+l(t) E lRn, the output Yk+l(t) E lRm, the control Uk+l(t) E lR£ for 

0 ~ t ~ a, the initial conditions Xk+l (0) = dk+l for k ~ 0 and M is the number of 

previous passes contributing to the current pass. 

The well known transformations of 'z' and 'Laplace' can be generalised and applied 

to the multipass process to define the following [76]. 



3.5 Linear Differential Multipass Processes 118 

The 'z-transform' with respect to the pass number and the Laplace or 's-transform' 

with respect to the along the pass variable t of the series xk+l(t), yk+l(t), uk+l(t) 

are defined by 

X(s, z) = .CX1 (t) + z- 1.CX2 (t) + z-2.CX3(t) + · · · 

Y(s, z) = .CY1 (t) + z-1.CY2(t) + z-2 .CY:J(t) + · · · 

U(s, z) = .CU1 (t) + z- 1£U2 (t) + z- 2 .CU3(t) + · · · 

where .C denotes the Laplace transform with respect to t. 

Note: The indeterminate z may be viewed as a backward shift operator and therefore 

only appears with negative powers. The expressions X(s, z), Y(s, z), U(s, z) are thus 

polynomial in z-1. 

Applying these transforms to the differential equations (249) the input-output de­

scription becomes 

Y(s, z) = G(s, z)U(s, z) 

where Y(s, z) is the output vector, G(s, z) is the transfer function matrix and U(s, z) 

is the input vector. The transfer function G(s, z) is defined by 

where 

and 

G(s,z) =(Im- D(z)r
1c{si"- A- B(z)(Im- D(z)r

1cr1 

X { B + B(z) (I m - D(z)) -I D0 } + (I m- D(z)) -I D0 

M 

D(z) = L Djz-j E lRmxm[z- 1], 

j=l 

A E JR"xn, 

M 

B(z) = L Bj_ 1z-j E lRnxm[z- 1] 

j=l 

(250) 

It is now shown, Theorem 3.21, that this transfer function matrix G(s, z) can be 

written as a product of polynomial matrices, one polynomial in s and z- 1 and the 

other polynomial in s only. To prove this first recall the general matrix identities: 



3.5 Linear Differential Multipass Processes 119 

Lemma 3.3: Let the matrices X and y be of sizes m X e and e X m. Then 

(i) Im +X(Ie- YX)- 1Y = Um- XY)- 1
, 

(ii) (XY)- 1 = y-' x- 1 if m= e. 

Proof: 

(i) 

(ii) 

Um- XY)(Im +X (le- Y Xt 1Y) 

= Im +X (le- YX)- 1Y- XY- XYX(Ie- Y X)- 1Y 

= I m+ X[(Ie- Y X)- 1 
- le- Y X (le- Y X)- 1]Y 

=I m+ X[(Ie- Y X)(Ie- Y Xt 1 
- Ie]Y 

(XY)(Y- 1 x-1) = X(YY- 1)x-1 

=XI x-I m 

=xx-' 
D 

Using the above identities an equivalent form of the transfer function matrix can be 

derived, as noted in [76]. However, the derivation of this alternative form does not 

appear to be available in the literature; it is given here: 

Theorem 3.21: 

( 

M )-1 
G(s, z) = !m-~ G;(s)z-i G0 (s) 

where 
Go(s) = C(sln- At1 B + D0 E !Rmxl(s) 

G;(s) = C(sln- At' B;-t + D; for 1 5: j 5: ME !Rmxm(s) 

Proof: 

From (250) 

l [ l ] -1 
G(s, z) =(lm- D(z) r C sin- A- B(z) (!m- D(z) r C 

x [ B + B(z) (!m - D(z) r' D0 ] + (!m - D(z)) -I D0 



3.5 Linear Differentia/ Mu/tipass Processes 120 

Remove (sin- Ar1 from the first square bracket 

=(Im- D(z)) -I c[In- (sin- Ar1 B(z) (I m- D(z)) -I C] -I (sin- A)- 1 

X y 

x [s+B(z)(Im-D(z)r
1

Do] + (Im-D(z)r
1

Do 

Using Lemma 3.3 (i) with X, Y as shown 

=(Im-D(z)r
1

c 

x {In+ (sin- A)-1 [In- B(z) (I m - D(z) r 1 
C (sin - A)-r

1 

xB(z) (I m- D(z) r 1 C} (sin- A)-1 [s + B(z) (I m- D(z) r 1 
D0 ] 

+(Im-D(z))-
1

D0 

Recombine (sin- A)-1 into the first square bracket to give 

=(Im- D(z)r C In+ sin- A- B(z)(Im- D(z)r C I { [ 1 ]-1 

xB(z)(Im- D(z)r
1 C} (sin- Ar1 

[ B + B(z) (I m- D(z) r 1 

D0 ] 

+ (I m- D(z)) -I D0 

Multiplying out the brackets gives 

=(Im- D(z)) -I C (sin- A)- 1 B(z) (I m- D(z)) -I D0 

+ (I m- D(z) r 1 
C (sin- A)-1 B 

+ (Im- D(z)r
1

c [sin- A- B(z)(Im- D(z)r
1cr 

x B(z) (I m- D(z)) -I C (sin- A)- 1 B(z) (I m- D(z)) -
1
D0 

+ (Im- D(z)r
1c [sin- A- B(z)(Im- D(z)r

1cr 
X B(z) (I m- D(z) rl c (sin- A)-I B 

+ (Im- D(z)r
1

Do 



3.5 Linear Differential Multipass Processes 121 

Rewrite, combining first and third terms 

=(Im- D(z)) -I D0 + (I m- D(z)) -I C (sin- Ar1 B 

I [ 1 ] -I + (Im-D(z)r C sin-A-B(z)(Im-D(z)r C 

x B(z)(Im- D(z)r
1

c (sin- A)-1B 

+(Im-D(z)r C sin-A-B(z)(Im-D(z)r C I { [ 1 ] -I 

xB(z)(Im- D(z)r
1
C+In} (sin- A)-1B(z)(Im- D(z)r

1

D0 

Remove a factor of [sin- A- B(z) (I m - D(z)) -I CJ- 1 from curly bracket 

=(Im- D(z)) -I Do+ (Im- D(z)) -I C (sin- A)-I B 

+ (Im- D(z)r
1

c [sin- A- B(z)(Im- D(z)r
1

cr
1 

x B(z) (I m- D(z) r1 

C (sin- A)-1 B 

+ (Im- D(z)r
1

c [sin- A- s(z)(Im- D(z)r
1

cr
1 

x { B(z)(Im- D(z)r
1

C+sin- A- B(z)(Im- D(z)r
1
C} 

X (si;,- A)-1 B(z) (I m- D(z)) -I D0 

Combining curly bracket terms gives sin - A which then cancels with (sin- A)-1 

=(Im- D(z)r
1

Do + (Im- D(z)r
1
c (sin- Ar1B 

+ (Im- D(z)fc [sin- A- B(z)(Im- D(z)r
1Cr1 

x B(z) (I m- D(z)) -I C (sin- Ar1 B 

+ (Im- D(z)r
1

c [sin- A- B(z)(Im- D(z)fcr 

x (sin- Ar1B(z)(Im- D(z)r
1

Do 



3.5 Linear Differential Multipass Processes 122 

Combine terms to give a factor of C (sin - A)-1 B + D0 

=(Im-D(z)f
1 [c (s!n-Af 1B+Do] 

I [ 1 ] -1 
+(Im-D(z)r C sln-A-B(z)(Im-D(z)r C 

x B(z)(Im- D(z) r' [c (sin- A)-1 B +Do] 

Remove a factor of (sin- A)-1 

=(Im-D(z)f
1 [c (s!n-A)- 1B+Do] 

+ (I m- D(z)) -I C (sin- A)-I [In- B(z) (I m- D(z)) -I C 

X y 

x B(z)(Im- D(z)f
1 [c (sin- A)-1B+Do] 

y 

Use Lemma 3.3 (i) to obtain 

(sin- A)-1]-I 
X 

=(Im-D(z)f
1 

{!m+ [Im-C (s!n-A)- 1B(z)(Im-D(z)rT'-Im} 

x [c (sin- Af1B +Do] 

(251) 

where 

Go(s) = C(s!n- At1 B + D0 E lRmxe(s) (252) 

Gi(s) = C(s!n- At1 Bj-1 + Di for 1 ::; j ::; ME lRmxm(s) (253) 

D 

From this form of the transfer function matrix the linear differential non-unit multi-

pass process can be represented as an interconnection of subsystems shown in Figure 

3.1. 



3.5 Linear Differential Multipass Processes 123 

U (s,z) + Y(s,z) 

Figure 3.1 

Also from the form of the transfer functions of these subsystems, (252), (253) each 

possesses a state-space realisation, given by 

(
si-A B) (si-A Bi-') l~j~M 
-C D0 ' -C Di 

In addition to this, from (250) the transfer function matrix G(s, z) admits a polyno­

mial state-space system matrix realisation over JR(z)[s] 

where 

(
sin-A B) 

P(s, z) = -C [J 

A= A+ B(z)(Im- D(z)r'c 

B = B+ B(z)(Im- D(z)r
1

Do 

c= (Im-D(z)r'c 

[J = (Im- D(z) r' Do 

3.5.2 Unit Memory Multipass Processes 
If only the previous pass has an influence on the current pass, i.e. M = 1, the process 

is described as a linear differential unit memory multi pass process. Thus the transfer 

function matrix is given by 

(254) 



.3.5 Linear Differential Multipass Processes 124 

where 

Now write 

Go(s) = C(sln- A)- 1 B + D0 E lRmxl(s) 

G1(s) = C(sl,- A)- 1 B0 + D 1 E JRmxm(s) 

G1(s) = N(s)D- 1(s) E JRmxm(s) 

Go(s) = D- 1(s)N(s) E JRmxe(s) 

where N, Dare (zero) right coprime and N, Dare (zero) left coprime (the coprimeness 

type is described as 'zero' because the matrices are polynomial in one indeterminate 

and therefore all three definitions of coprimeness are equivalent, see Theorem 1.3). 

Then G(s, z) may be written 

G(s, z) = D(s) [D(s)- z-1 N(sJr1 
D- 1(s)N(s) 

= D(s) [D(s) (D(s)- z-1N(s))t
1 
N(s) 

Thus the system matrix over JR[s, z- 1] is a (m+m) x (m+e) polynomial matrix given 

by 

( ) = (D(s) [D(s)_-z- 1N(s)] N(s)) (255) 
p s,z -D(s) 0 

In this case the zeros of the system matrix, P( s, z), can be characterised: completely 

for the output matrix pair D(s) [D(s)- z-1fv(s)], D(s) and partially for the input 

matrix pair D(s) [D(s)- z- 1fv(s)), N(s). Also conditions may be derived such that 

the system matrix P(s, z-1) is least order in the sense of Definition 3.5, i.e. the output 

pair are zero (right) coprime and the input pair are minor (left) coprime. This is the 

subject of what follows. 

Firstly consider the output zeros, which are formally defined as: 

Definition 3.10: (Output Zeros) 
The output zeros of a system matrix 

( 
T(s,z) 

P(s,z) = ( ) -V s,z 
U(s,z)) 
W(s,z) 

are defined to be the values (s, z) E C x C that causes the following matrix to not 

have full rank 

( 
T(s,z) ) 

-V(s,z) 
0 

Thus for the unit memory multi pass process the output zeros are defined as the values 

of (s, z) E C x C such that 

( 
D(s) [D(s)_- z- 1 N(s))) 

-D(s) 
does not have full rank. Thus the following result may be derived. 

(256) 



3.5 Linear Differential Multipass Processes 125 

Lemma 3.4: The matrix (256) does not have full rank whenever 

does not have full rank. 

( 
-z-1 J?(s)N(s)) 

D(s) 

Proof: Pre-multiply (255) by the unimodular matrix (I m D(s)) to obtain 
0 lm 

(
I m D(s)) ( D(s) [D(s)_- z-1 N(s)]) = ( -z-1 

D_(s)N(s)) 
0 Im -D(s) -D(s) 

and the result is obtained. 0 

Thus from this result for any z- 1 the 's'-part of the zeros for z- 1 =f 0 of (255) are the 

zeros of 

( 
D(~)N(s)) . 

D(s) 
(257) 

Let Q(s) be a greatest common right divisor of D(s)N(s), D(s) then 

( 
D(~)N(s)) = ( ~(s)) Q(s) (258) 

D(s) D(s) 

where N(s), D(s) are m x m polynomial matrices, i.e. the zeros of (257) correspond 

to the values of s for which IQ(s)l = 0. Thus these zeros are removable and are 

attributable to the realisation and not to the transfer function matrix. 

The only other type of zeros of (255) are those such that z- 1 = 0. Thus the non­

removable output zeros of (255) are given by the set 

(259) 

where D(s) is defined by (258). These are the non-essential singularities of the second 

kind of (255) since (255) does not have full rank and 

ID(s)IID(s)Q(s)- z- 1 N(s)Q(s)l = 0. 

It is now possible to state a condition for the unit memory multipass process to 

possess a least order realisation, in the sense of Definition 3.5. 

Theorem 3.22: A least order realisation of (254) is derivable from (2.56) using 1-D 

techniques if D(s) of (258) is a unimodular matrix. 

Proof: A system matrix realisation is least order if the input pair are minor (left) 

coprime and the output pair are zero (right) coprime. A system matrix realisation in 

which both the input and output pairs are minor coprime is achieved by extracting 



3.5 Linear Differentia/ Mu/tipass Processes 126 

the greatest common divisors of the input and output pair, i.e. for the unit memory 

multipass process (254) let Q(s) be a greatest common (right) divisor of the output 

pair so that 
P(s, z) = ( D(s) -_z-

1 
N(s) N(s)) ( Q(s) 0) 

-D(s) 0 0 I 

and let R(s) be a greatest common divisor of D(s)- z-1 N(s), N(s), i.e. 

(D(s)- z-1N(s) N(s)) = R(s) (Nt(s,z) N') 

Thus 

(
R(s) 

P(s,z)= 
0 

0) (N'~s,z) N') (Q(s) 
I -D(s) 0 0 

0) I . 

P'(s, z) 

If D(s) is a unimodular matrix the output pair possesses a constant high-order minor 

therefore D(s), N'(s, z) are zero (right) coprime. 0 

However, if D(s) is not unimodular then it may be possible to apply constant output 

feedback around G1 (s) to remove these non-essential singularities of the second kind, 

i.e. use feedback around G 1 ( s) to create a unimodular fJ ( s) so that the new system 

matrix is least order. Effectively applying feedback to achieve a least order system 

matrix relocates the non-essential singularities to infinity [68]. 

Due to the structure of the system matrix, P(s, z), it is not possible to explicitly 

characterise the input zeros of the unit memory process. However, if m ::; £ then it 

is possible give a set of values for which the zeros are a subset, thus narrowing the 

possible candidates to a finite set. This condition is not unrealistic since in practice 

m ::; £means that there are not more outputs than inputs, which can always be made 

true (if there are more outputs than inputs then it can be shown that some of the 

outputs are dependent on others, i.e. there are only the same number of independent 

outputs as there are inputs). 

Definition 3.11: (Input Zeros) 

The input zeros of a system matrix, 

p s z -( ) ( 
T(s,z) 

' - -V(s,z) 
U(s,z)) 
W(s,z) 

are defined to be the values ( s, z) E C x C that causes the following matrix to lose 

rank 

(T(s,z) U(s,z)) 0 



3.5 Linear Differential Multipass Processes 127 

Clearly a necessary condition for (259) to not possess any zeros is that N(s) has full 
rank for all s E C. A necessary condition for (s, z) being a zero of (259) is that it 

is simultaneously a zero of the two constituent matrices D(s)[D(s) - z-1 N(s)] and 

N(s) but this does not guarantee it being a zero of the compound matrix (259). Thus 
a set of candidate zeros for (259) may be derived by characterising the set of values 
of (s, z) that are simultaneous zeros of D(s)[LJ(s)- z- 1 N(s)] and N(s). 

Theorem 3.23: Suppose that m ::; e. Let fl;nput be the set of input zeros of the 

transfer function for the unit memory process described above. Then 

where 

fl;nput <::;; na u u n,, 

n •. = {(s;,z()1
) I S; E Ab, ID(s;)- z() 1N(s;)l = o} 

na = {(so, z-1
) I N(so) E Aa} 

Aa = {s0 E IC I N(s0 ) has less than full rank and ID(s0 )1 = 0} 

Ab= {s0 E IC I N(s0 ) has less than full rank and ID(s0)1 =f 0} 

Proof: The input zeros of the unit memory process are defined to be the values of 
(s0 , z0

1
) E IC x IC such that 

[ D(s0) [D(s0)- z01 N(s0)] N(s0)] (260) 

does not have full rank. This occurs at the values for which N(s0 ) does not have full 

rank, i.e. the values of the set AN 

AN= {s0 E IC I N(s0) has less than full rank}. 

Additionally for (260) to lose rank ID(s0)IID(s0)- z- 1N(s0)1 = 0 for s0 E AN thus 

ID(s0 )1 = o or ID(s;)- z() 1 N(s;)l = o 
Thus the sets of values which are necessary for (260) to lose rank are 

n,, = {(s;,z() 1
) I S; E Ab, ID(s;)- z() 1N(s;)l = o} 

where 

na = {(so, z- 1
) I N(so) E Aa} 

Aa = { s0 E IC I N(s0) has less than full rank and ID(s0) I = 0} 

Ab= { s0 E IC I N(s0 ) has less than full rank and ID(s0) I =f 0} 

D 

From the above discussion it has been seen that the output zeros of a system matrix 
representation of the transfer function G(s, z) of the unit memory multi pass process 
can be characterised more fully than the input zeros. Thus existence conditions may 

be given for a least order system matrix, in the sense of Definition 3.5. 



3.6 Conclusions 128 

3.6 Conclusions 
In this chapter the questions of equivalence of polynomial matrices have been indi­

vidually addressed for 1-D systems (Section 3.2), 2-D systems (Section 3.3) and n-D 

systems (Section 3.4). The first of these concentrated on the finite and infinite zero 

structure of system matrices. The relation of full equivalence was proved to preserve 

both the finite and infinite zero structure of two system matrices. The definition of 

full equivalence contained a restriction on the McMillan degrees of certain matrices 

which has recently appeared in the work of Zhang [61] to guarantee the absence of 

infinite zeros. 

The results for 2-D systems considered two types of relations, termed zero equivalence 

and minor equivalence; these were then evaluated in terms of invariant properties. 

The former was seen to be a true equivalence relation that preserves the transfer 

function matrix, the invariant polynomials of the T, U and T, V pair, the invariant 

polynomials of the system matrices and also the invariant polynomials of the T -blocks. 

Additionally, the copri.meness of the T, U and T, V pairs is also invariant under zero 

equivalence. Minor equivalence does not enjoy such a wealth of invariant properties 

forgoing the invariance of the coprimeness on the T, U and T, V pairs for a weaker 

condition on the polynomial transformation. 

The results obtained for 2-D systems are then considered in an n-D framework. Now 

the number of definitions for coprime matrices is increased from two to three. Thus 

three definitions of equivalence may be defined. In particular, least order matrices 

were defined by factor coprimeness of the T, U pair and zero coprimeness of the T, 

V pair. If two of these least order matrices possess a polynomial relationship, that 

preserves the transfer function matrix, then the relationship was seen to be one of 

zero system equivalence, moreover, if the T, V pair were minor (right) coprime the 

underlying transformation is one of minor system equivalence. 

Finally a specific type of 2-D system is considered in terms of the zeros possessed by 

that system and conditions are given for the existence of a least order system matrix 

realisation. 



PART Two 

A MAPLE Program 

for the 

Symbolic Computation 

of the 

Greatest Common Divisor 

of 

Polynomial Matrices 
• m 

1\vo Indeterminates 



Preface 

The second part of this thesis is devoted to the symbolic computation of the greatest 

common divisor (GCD) of polynomial matrices in two indeterminates. The motiva­

tion for such a procedure is evident by considering the complexity of performing the 

coprirne MFD Algorithm (Algorithm 2.1) for seemingly simple examples, see Example 

4.1. The program is based on certain theoretical ideas suggested in the literature but 

the practicalities of these ideas have not been considered. It is the intention of this 

program is to transform these ideas into a working automatic procedure. 

The calculation of a 2-D GCD is more complex than its single indeterminate coun­

terpart due to the nature of the ring structure to which the elements of the matrices 

130 



Preface 131 

belong, i.e. F[z1, z2]. The procedure to determine the GCD of single indeterminate 

polynomial matrices is based on elementary operations to create, in effect, factors in 

the rows or columns, [13], [77]; this is possible because the underlying ring structure 

is Euclidean. A similar procedure fails for two indeterminate polynomial matrices 

because a division algorithm does not exist. A further hindrance is provided by some 

unimodular matrices not being formed as a product of elementary matrices. Thus 

the techniques used in the 1-D case are insufficient to calculate 2-D matrix GCDs. 

The algorithms are implemented using the MAPLE symbolic manipulation package. 

This software has the ability to leave the elements of a computation unevaluated and 

to perform algebraic simplification on such expressions. This feature makes MAPLE 

particularly suitable for the representation of data structures involving polynomials. 

Another advantage of a symbolic language is the similarity of notation to the abstract 

algebraic representation. Thus the resulting code closely resembles the theoretical al­

gorithms. This is further enhanced by the procedural nature of the language. The 

form of a procedural language, such as that possessed by MAPLE, also allows pro­

grams to be built up in small stand-alone segments. These segments may be tested 

before being linked in the main controlling procedure, thus potential problems may 

be identified at an early stage. 

The documentation is ordered as follows: 

Chapter 4 introduces the theoretical background to the algorithms and discusses the 

modifications made to the original ideas required for automatic implementation. 

Chapter 5 introduces the MAPLE symbolic manipulation software package by defin­

ing the features used in the program documentation. 

Chapter 6 documents the MAPLE code that carries out the calculation of the great­

est common divisor of polynomial matrices in two in determinates. 

Chapter 7 presents the examples used to test the program and also some points that 

arise from these examples. 



4.1 Introduction 

Chapter 4 

Mathematical 
Basis 

The object of this chapter is to set out the theoretical ideas used to formulate the pro­

cedure to compute the greatest common divisor of 2-D polynomial matrices. These 

ideas give rise to an algorithm which is based on two canonical forms for 2-D poly­

nomial matrices, namely the 2-D primitive form and the 2-D Hermite form [33], [1]. 

The first is a generalisation of the primitive form for a 2-D scalar polynomial and the 

second is a generalisation of the Hermite form for 1-D polynomial matrices. 

The algorithmic basis for the above canonical forms are elementary operations over a 

Euclidean ring; thus the notion of a division algorithm is required. This is achieved 

132 



4.1 Introduction 133 

by performing computations over a generalised ring, namely F(z1)[z2] or F(z2)[zd, 

resulting in expressions with rational terms in one of the indeterminates. The poly­

nomial situation is recovered by multiplying the expression by a polynomial to cancel 

the rational parts; this is known as renormalisation. The algorithm is then said to 

have been performed over F[zd[z2] or F[z2][zd, respectively. 

The algorithms in this chapter are defined over the ring F[z1] [z2] and, wherever ap­

propriate, the process of division algorithm and renormalisation are combined to form 

the pseudo-division algorithm; this avoids rational polynomials being formed during 

the computation. 

The main theoretical contribution contained in this chapter is the defintion and al­

gorithmic determinatation of the Hermite form for a rectangular polynomial matrix 

that does not have full rank. This appears to have been overlooked in the literature 

and more importantly causes the primitive factorisation algorithm to fail in some in­

stances. One other theoretical contribution is the derivation of a simple coprimeness 

test based on the 2-D Hermite form. 



4.2 Program Motivation 134 

4.2 Program Motivation 
The motivation for this program lies with the complexity of computing a greatest 

common divisor. The absence of a division algorithm in the ring F[z1 , z2] further 

complicates the procedure as the techniques used for computing the greatest common 

divisor of 1-D polynomial matrices are not sufficient in the 2-D case. In particular, 

in F[z1 , z2] there exist unimodular matrices that can not be expressed as a product 

of elementary matrices [25]. Therefore some polynomial factors can not be computed 

using elementary operations alone over F[z1, z2], i.e. 

(a) Multiplication of any row by an element of F. 

(b) Addition of any row with any other row, multiplied by an element of F[z1 , z2]. 

(c) Permutation of any two rows. 

For these reasons it is impractical to compute a GCD by hand, even for matrices with 

a small number of rows and columns, using a symbolic manipulator interactively. To 

illustrate these difficulties consider the following example. 

Example 4.1: Compute the greatest common right divisor of the matrix A(z1, z2) 

formed by 

By considering the way A(z1, z2) has been formed, the greatest common right divisor 

has determinant 1 + z1• To mimic the procedure used for 1-D polynomial matrices 

the elementary operations over F[z1,z2] are used to form the factor 1 + z1 common 

to all elements in one column. The purpose of this example is to show that this is 

not possible. 

Firstly, consider column operations on A(z1, z2). It is required to form a factor z1 + 1 

in one of the elements of the first row, since the second row will a! ways possess this 

factor. This may be attempted in two ways: 

1. Add a polynomial multiple, say a(z1,z2), of column 1 to column 2. Therefore 

the (1,1) element is 

a(z1, z2)(1 - z1z2) - z~ = b(z1, z2)(1 + z 1) 



4.2 Program Motivation 135 

for some polynomial b(z1, z2). Rearranging this equation gives 

a(z1, z2)(1- z1z2 )-:- b(z1, z2)(1 + z1) = z~ 

If z1 = -1 and z2 = -1 then 

a(z1,z2) x 0- b(z1,z2 ) x 0 = 12
• 

Therefore there exists no elementary column operation of this type to give 

the required form. 

2. Add a polynomial multiple, say a(z1, z2), of column 2 to column 1. Therefore 

the (1,2) element is 

a(z1, z2)z~ + b(z1 , z2)(1 + z1) = 1- z1Zz 

for some polynomial b(z1, z2). Put z1 = -1 and z2 = 0 then 

a(z1, z2) x 0 + b(z1, z2 ) x 0 = 1. 

Therefore there exists no elementary column operation of this type to give 

the required form. 

Secondly, consider elementary row operations to form a factor 1 + z 1 in the first row 

of A(z1, z2). Again this may be performed in two ways. 

1. Add a polynomial multiple, say a(z1,z2), of row 1 to row 2. Therefore the 

(1,1) element is 

a(z1, z2)(1- z1z2) + b(zi> z2)(1 + z1) = (1 + zdzf 

for some b(z1 , z2). Put z1 = -1 then 

a(z1,z2)(1 + z2) = 0 

but if a(z1 , z2) = 0 the elementary operation does not alter the elements of 

the matrix. Therefore there exists no elementary row operation of this type 

to give the required form. 

2. Add a polynomial multiple, say a(z1, z2), of row 2 to row 1. Therefore the 

(1,2) element is 

a(z1, z2)zf(1 + z1) + b(z1, z2)(1 + z1) = 1- z1z2 

for some b(z1,z2 ). Put z1 = -1 and then 

a(z1, z2) x 0 + b(z1 , z2) x 0 = 1 + z2 • 

Therefore there exists no elementary row operation of this type to give the 

required form. 



----------------------

4.2 Program Motivation 136 

From the above discussion it has been seen that the polynomial matrix right factor 

can not be extracted by elementary operations alone. This is due to the matrix U(z1, 

z2), which is termed a secondary matrix, and the fact that F[z1, z2] does not possess 

a division algorithm. D 

From the above example it is obvious that not all polynomial matrix factors can be 

computed using elementary operations over the ring F[z1, z2] and secondary opera­

tions are required (this is achieved by pre- or post-multiplication by matrices similar 

to U(z1,z2 ), which can not be expressed as a product of elementary matrices). The 

formation of these secondary operations is not obvious and therefore an alternative 

procedure is required. The solution is provided by Part Two of this thesis together 

with the code necessary to compute the greatest common divisor using the symbolic 

manipulator MAPLE. 



4.3 Formal Definitions 137 

4.3 Formal Definitions 
Before discussing the actual algorithms it is necessary to define formally the canonical 

forms used and the precise definition of the problem. 

Definition 4.1: (Greatest Common Right Divisor) 

Let Apxm(z1,z2) and Bqxm(z1,z2) be two polynomial matrices. Then Qmxm(z1,z2) is 

said to be a greatest common right divisor (GCRD) of A(z1 , z2), B(z1, z2) if Q(z1, z2) 

is a right divisor of A(z1,z2), B(z1,z2) and any other right divisor R(z1,z2) is also a 

right divisor of Q(z1, z2), i.e. 

Q(z1, z2) = E(z1, z2)R(z1, z2) 

where E(z1, z2) is a polynomial matrix. 0 

Note: A greatest common left divisor (GCLD) can be defined similarly by transposi­

tion. Also a greatest common left or right divisor is only unique modulo a right or left 

unimodular matrix, respectively. Therefore if Q1 (z1 , z2) and Q2(z1, z2) are two great­

est common right divisors of the same polynomial matrix there exists a unimodular 

matrix U(z1, z2) such that 

(261) 

Suppose that Q(z1 , z2) is a GCRD of the two polynomial matrices A(z1, z2) and B(z1, 

z2), as defined in the above definition, then 

(
A(z1,z2)) = (~(z1 ,z2)) Q(z,,z

2
) 

B(z1, z2) B(z1, z2) 
(262) 

where A(z1, z2), B(z1, z2) are minor (right) coprime polynomial matrices. 

The precise definition of the problem solved by the documented program that follows 

is: 

Given two polynomial matrices, A(z1, z2) 

and B(z1, z2), in two indeterminates, z1 

and z2 • Determine the greatest common 
divisor and also the coprime pair of matri­
ces that result from extmcting this greatest 
common divisor. 

The basic operations governing the formation of the canonical forms are the elemen­

tary row and column operations performed over a generalised ring. This allows the 

definition of a division algorithm and consequently the definition of a pseudo-division 

algorithm: 



--------------------------- -------------- -

4 . .1 Formal Definitions 

Definition 4.2: (Pseudo-division Algorithm over F[z1][z2]) 

138 

Suppose that a(z1, z2) and b(z1, z2) are polynomials in the two indeterminates z1 and 

z2, the pseudo-remainder, r(z1,z2), and pseudo-quotient, q(z1,z2), over F[zJ][z2] are 

given by 

where deg.,(b) > deg,,(r) and m(z1), the pseudo-multiplier, is a polynomial in z1• 

This form is not unique but can be made so modulo a multiplicative constant, by 

insisting that m(z1) is of lowest degree possible such that q(z1 , z2) and r(z1, z2) are 

polynomial. 0 

Definition 4.3: (Elementary Row Operations over F[zJ][z2]) 

(a) Multiplication of any row by an element of F[zJ]. 

(b) Addition of any row with any other row, multiplied by an element of F[z1 , z2]. 

(c) Permutation of any two rows. 0 

The elementary column operations may be similarly formulated. 

The matrices effecting the elementary row operations are unimodular in F[z1][z2], 

i.e. the determinants are elements of F[z1]. These matrices are termed elementary 

matrices over F[zd [z2] and are formally defined in Definition 4.4. 

Definition 4.4: (Elementary Matrices over F[z1][z2]) 

The elementary matrices that effect the elementary row operations in Definition 4.3 

on a m x n polynomial matrix are given by pre-multiplication by: 

(a) Multiplication of row i by a E F[zd 

1 i m 

1 1 0 0 

El= z 0 a ... 0 (263) 

m 0 0 1 

where lEd =a E F[zJ]. 



4o3 Formal Definitions 139 

(b) Addition to row j with b E F[z1, z2] times row io 
1 i j m 

1 1 0 0 0 

i 0 1 0 0 
(264) 

j 0 b 1 0 

m 0 0 0 00 0 1 

where IE2 1 = 1 E F[ztlo 
(c) Permutation of rows i and jo 

1 z j m 

1 1 0 0 0 

i 0 0 1 0 

E3= (265) 

J 0 1 0 0 

m 0 0 0 000 1 

where IE3 1 = 1 E F[ztlo 

The elementary matrices effecting the column operations are n x n post-multiplicative 

matrices of the form E1, E2 , E3 o 

Definition 4o5: (2-D Hermite Form over F[zt][z2]) 

The 2-D upper triangular Hermite form of the polynomial matrix A(z1, z2), of size 

m x n, is 
hll hl2 hln 
0 h22 h2n 

H(z1,z2) = 0 0 hnn if m?'=n (266) 

0 0 0 

0 0 0 

hll hl2 hlm hln 

H(z1,z2) = 
0 h22 h2m h2n 

if m<n (267) 

0 0 hmm hmn 



4.3 Formal Definitions 140 

where the column degree condition 

deg,, (h;;) > deg,, (hi;) for j =I i 

is satisfied. 0 

The above 2-D Hermite form may be formed solely by elementary row operations 

over F[zd[z2], so that there exists a pre-multiplicative polynomial matrix Umxm(z1, 

z2) such that IU(z1,z2)1 E F[z1]; this can be seen by considering the 2-D Hermite 

algorithm later, Algorithm 4.1. An equivalent definition may be formed by using. 

elementary column operations to derive the 2-D lower triangular Hermite form: 

h11 0 0 

h21 h22 0 

H(z1,z2) = 
hnl hn2 hnn 

if m?_n (268) 

hm! hm2 hmn 

hu 0 0 0 0 

H(z1,z2) = 
h21 h22 0 0 0 

(269) if m<n 

hml hm2 hmm 0 0 

where the row degree condition 

deg., (h;;) > deg., (h;i) for j#i (270) 

is satisfied. Thus there exists a post-multiplicative polynomial matrix Vnxn(z1, z2) 

with IV(z1, z2)1 E F[zd that derives the 2-D lower triangular Hermite form. 

Definition 4.6: (Primitive Matrix over F[zd [z2]) 

Let A(z1, z2) be a full rank m x n polynomial matrix. Then A(z1, z2) is said to be 

a primitive matrix with respect to F[zd [z2] if the r x r minors of A(z1, z2) have no 

common divisors that are polynomial in z1 only, where r = min(m, n). o 

Note: When F is algebraically closed this definition reduces to the statement that 

A(z1, z2) is said to be primitive if A(z\0
), z2 ) has full rank for all fixed z\0

) E F. These 

values of z1 are said to be the primitive roots of the matrix A(z1, z2) over F[zd [z2]. 

In general matrices are not primitive with respect to a particular ring but contain 

primitive roots. However, it is always possible to factorise a non-primitive matrix into 



4.3 Formal Definitions 141 

a primitive part and a primitive factor; the theoretical proof is contained in [33]. To 

define this more explicitly consider the polynomial matrix Amxn(z1,z2) with m::; n 
and let the content of the polynomials formed by the m x m minors be c(z1, z2). This 

polynomial may be factored into two parts, one solely in z1 and the other by the 

remainder, i.e. c(zl> z2) = c(zJ)c*(z1, z2). The primitive roots are defined by the zeros 

of c(z1) and the primitive factor is defined by the matrix A(z1, z2 ) such that 

IA(zJ, z2)l = c(zJ) 

and 
A(z1,z2) = A(z1,z2)A*(z1,z2 ). 

By definition the matrix is A*(z1 , z2 ) is primitive over F[zd[z2]. 

Note: If m<:: n the primitive matrix and factor are defined by 

A(z1,z2) = A*(z1,z2)A(z1,z2) 

(271) 

(272) 

where IA(z1, z2)1 is defined to be the polynomial content in z1 of then x n minors of 

A(z1, z2). Thus if A(z1, z2) is a square polynomial matrix the primitive factor may be 

extracted on the left or on the right. 



4.4 Theoretical Algorithms 142 

4.4 Theoretical Algorithms 

4.4.1 Introduction 

The basis of the algorithms are derived from theoretical ideas put forward by Morf 

et al (33] and contained in Levy (34]. However, the form of the algorithms presented 

in the above two works do not lend themselves to direct implementation. Certain 

modifications have been made to facilitate the automation. It is assumed in the 

literature that the well known process of forming the Hermite form of a full rank 

matrix can be directly applied to form the Hermite form of a matrix that does not 

possess full rank. However, this is not the case. In fact the formal definition and 

algorithmic determination are not trivial generalisations of the full rank case. These 

are given in Section 4.4.3. 

As discussed in the introduction to this chapter it is necessary to favour one of the in­

determinates when performing the algorithms. Clearly here there is a choice between 

the two indeterminates z1 and z2• It may seem that the choice is quite arbitrary but 

the physical interpretation of the problem may suggest that one indeterminate is more 

appropriate than the other. Even in the abstract mathematical context considered 

here, there is a sometimes a 'better' choice. This is demonstrated by the amount 

of time taken to compute the test examples in Chapter 7, although it is almost im" 

possible to determine the 'better' choice by inspection. In general the definition of 

the algorithms will be given over the ring F(zd(z2], i.e. polynomials in z2 with coeffi­

cients in F[zd where F denotes a field; usually this will be lR but at certain points in 

the algorithms it is necessary to use the algebraic closure of this ring, IC, e.g. in the 

calculation of the primitive roots. 

4.4.2 2-D Hermite Form 

The Hermite form is well defined for polynomial matrices in one indeterminate (1] and 

is considered a standard canonical form for such matrices. The object in this section is 

to define a similar type of canonical form for 2-D polynomial matrices. The derivation 

is arrived at by favouring one of the indeterminates and then using the pseudo-division 

algorithm, Definition 4.2, and the elementary operations, Definition 4.3. Thus when 

the 2-D Hermite form is calculated over F[zd[z2] the degree condition of the pseudo­

division algorithm is defined with respect to z2 • Clearly the 2-D Hermite form of a 

polynomial matrix will not necessarily be the same when derived over F[zd[z2] and 

F[z2][zd. 



4.4 Theoretical Algorithms 143 

Algorithm 4.1: (2-D Hermite Form over F[zt][z2]) 

Let A(z1 ,z2 ) be an m x n full rank polynomial matrix. The upper triangular 2-D 

Hermite form is derived using elementary row operations in the following way. 

Step 1: The first column of A(z1, z2) may be assumed to contain a non-zero element, 

otherwise A(z1, z2) is not full rank. Amongst the non-zero elements of the first column 

choose one with the lowest degree, in z2 , and by means of row permutations bring it 

to the (1,1) position to form the matrix Ai1l(z1,z2) with elements al}l(z1,z2). 

Step 2: Using the pseudo-division algorithm, Definition 4.2, compute mJ\I(z1), 

]I] ( ) d J!J ( ) c . - 2 3 eh h Qu z1,z2 an ril z1,z2 , .or t- , , ... ,m, su t at 

mJ~I (z1)ag1 (z1, z2) = a (!I (z1, z2)qJ:l(z1, z2) + rJ:l (z1, z2) for i = 2, 3, ... , m 

where 

Step 3: Replace row i by subtracting mgl(z1) times row i from qJ:1(z1, z2) times row 

1 fori = 2, 3, ... , m, i.e. 

for {
i.:2,3, ... ,m 
J- 1,2, ... ,n 

Step 4: Repeat steps 1-3 until all elements below the first are identically zero. Call 

this matrix B(z1, z2). This is achieved in a finite number of steps equal to or less 

than the degree in z2 of a (!I (z1, z2). 

Step 5: Using the element b22 (z1, z2) apply Steps 1-4 on rows 3, 4, ... , m of the 

second column of B(z1, z2). Repeat this procedure on subsequent columns until an 

upper triangular matrix is formed. The matrix now has the form: 

hu h12 htn 
0 h22 h2n 

H(z1, z2) = 0 0 /inn if m~n (273) 

0 0 0 

0 0 0 

hu li12 him htn 

H(z1, z2) = 
0 li22 h2m h2n 

(274) if m<n 

0 0 hmm hmn 



4.4 Theoretical Algorithms 144 

Step 6: If h22 is non-zero add polynomial multiples in z1 and z2 of row 2 to multiples 

in z1 of row 1 to reduce the degree, in z2 , of h12 (z1,z2) below that of h22 (z1, z2) (if 
the degree of h22 (z1, z2) in z2 is zero then h12 (z1, z2) becomes identically equal to 

zero). In the same way h33 (z1 , z2) can be used to make the degrees, in z2 , of h 13 (z1 , 

z2) and h23 (z1,z2) less than that of h33 (z1 ,z2), without changing the degree in z2 of 
the element h12 (z1 , z2). By continuing this procedure for all the columns the upper 

triangular 2-D Hermite form over F[zd[z2) is derived (Definition 4.5). D 

Note: If the matrix has full rank and the number of rows is greater than the number 

of columns, all of the elements on the principal diagonal are non-zero, for if h;; (z1, 

z2) = 0, for some i, then by the form of (273) every n x n order minor is zero; 

contradicting the full rank property. 

All the operations employed in forming the above 2-D Hermite form over F[zd[z2) 

can be effected by elementary matrices in F[zd[z2) thus the 2-D Hermite form, H(z1, 

z2) defined in Definition 4.5, is related to the original matrix A(z1, z2) by an equation 

of the form 
(275) 

4.4.3 Modified 1-D Hcrmite Form 
The motivation for a modified 1-D Hermite form is provided by the primitive factori­
sation algorithm, where the Hermite form of a 1-D matrix with less than full rank 
is required with the last row identically zero. The Hermite form only ensures that a 
number of rows, equal to the rank of the matrix, are independent, since A(z1) and its 
Hermite form H(z1) are related by an equation of the form 

A(zd = U(z1)H(z1) 

where JUI E F. Thus the rank of A(z1) is equal to the rank of H(z1). However, the 

form of the Hermite algorithm does not provide information about the location of the 

independent rows. 

The modified Hermite algorithm is formed by ensuring each new row is independent 

of the previous rows. Therefore the dependent rows occur as the last rows and as a 
consequence of the Hermite structure these last rows are guaranteed to be identically 

zero. This is achieved by effectively ignoring a column in which a pivot element can 
not be found. 

The algorithm is stated for 1-D polynomial matrices, which is the form required in 
the primitive factorisation algorithm; the generalisation to 2-D follows in a similar 
manner to the generalisation of the Hermite form to the 2cD Hermite form. 



4.4 Theoretical Algorithms 145 

Algorithm 4.2: (Upper Triangular Modified Hermite Algorithm) 

To compute the upper triangular modified Hermite form of a matrix A(z1) with m 

rows and n columns: 

Step 1: If the first column is non-zero search the non-zero elements for the one 

with lowest degree in z1• Then by means of an elementary row permutation bring 

this element to the (1,1) position called the pivot element. Now use elementary row 

operations and the pseudo-division algorithm to reduce the degree in z1 of all elements 

below the pivot element to be less than the degree of the pivot element. Continue 

this procedure until all elements below the pivot are zero. 

If the first column is zero then ignore this column and move onto the second column. 

Assign one to a counter called pivotzeros, which counts the number of zero pivot 

elements encountered so far. 

Step 2: For column 1 < i ::; n, search the elements below and including the element 

in position i - pivotzeros for the one with lowest degree in z1 and by means of a row 

permutation bring this row to the pivotal position, i.e. position (i- pivotzeros, i). 
Now use elementary row operations and the pseudo-division algorithm to reduce the 

degree in z1 of all elements of column i in rows i- pivotzeros + 1 to m. Continue this 

procedure until all elements below the pivot position are zero. 

If a non-zero pivot element can not be found, i.e. all the elements below and including 

the pivot element are zero, increase the counter pivotzeros by one and continue to the 

next column. 

Step 3: By means of elementary row operations, starting with the first non-zero 

element in row two, reduce the degree of the element in row one to below that of the 

element in row two. Continue this procedure for each of the first non-zero elements 

in each row. D 

Note: If the matrix Amxn(z1), with m 2': n, has full rank the algorithms for the 1-D 

modified Hermite form and the 1-D Hermite form coincide since the only possible 

non-zero high-order minor is formed by the product of the elements on the principle 

diagonal; if this minor is zero the matrix does not possess full rank. Thus the two 

algorithms deliver the same result, modulo a unimodular matrix. However, the two 

algorithms are not necessarily equivalent for matrices with more columns than zeros, 

i.e. m < n, since the minor involving the principal diagonal is not the only possible 

non-zero high-order minor. 



4.4 Theoretical Algorithms 146 

Since the upper triangular modified Hermite form is constructed using elementary 

operations alone there exists a unimodular matrix U(z1) such that the matrix A(z1) 

and its modified Hermite form, H(z1), are linked by an equation of the form 

Hmxn(zi) = Umxm(zi)Amxn(zi) 

Therefore A(z1) and H(z1) have the same rank. 

(276) 

When discussing the procedure code to form the modified Hermite form, H(z1) of 

A(z1), it is necessary to use the terms pseudo-principal diagonal and quasi-principal 

diagonal these are defined as: 

Definition 4.7: (Pseudo-principal Diagonal) 

The pseudo-principal diagonal of the upper triangular modified Hermite form, Hmxn• 

contains r = rank A elements and is defined as the elements: 

(i) The first element is the first non-zero element in the first row; 

(ii) The i + lth element, fori= 1, ... , min(m, n)- 1 is given by the element in 

position (i + 1,j + 1) where the element in position (i,j) is the first non-zero 

element in row i. o 

Definition 4.8: (Quasi-principal Diagonal) 

The quasi-principal diagonal of the upper triangular modified Hermite form, Hmxn• 

contains r = rank (A) elements and is defined as the elements occupying the first 

non-zero position in each row. o 

4.4.4 2-D Primitive Factorisation 

The algorithm to factorise a non-primitive matrix into a primitive part and a primitive 

factor, as defined by Definition 4.6, is derived by a procedure similar to that provided 

by the proof to the primitive factorisation theorem [34]. In fact this proof, which is 

also given in [33], fails for a certain class of matrices. However, by the procedure 

developed here and the proof given in [34] the theorem holds for all matrices. The 

justification is provided in Section 4.4. 

Theorem 4.1: (Left Primitive Factorisation Theorem over F[zJ][z2]) 

Let R(z1, z2) be a given m x n full rank 2-D polynomial matrix, where m ::; n, then 

there exists a unique R(z1, z2) (modulo a right unimodular matrix) and a unique 

R*(z1, z2) (modulo a left unimodular matrix) with 

IR(zi, z2)l = r(zi) 



4.4 Theoretical Algorithms 147 

where r(z1) is the content in z1 of the greatest common divisor of the high-order 

minors of R(z1,z2) and R'(z1,z2) is primitive with respect to F[z1][z2] such that 

R(zl> z2) = R(zl> z2)R'(z1, z2). 

R(z1, z2) is called the primitive factor of R(z1, z2) and R' (z1, z2) the primitive matrix 

of R(z1, z2). o 

Note: The content in z1 of a polynomial A(z1, z2) is the gcd of a0(z1), a1 (zJ), ... 

, ak(z1), ••• where 

a(z1, z2) = a0(z1) + a1 (z1)z2 + · · · + ak(z1 )z~ + · · · 
or equivalently the factors of a(z1, z2) solely in z1. 

Algorithm 4.3: (Left Primitive Factorisation over F[zd[z2]) 

Let Rmxn(z1, z2) be a full rank polynomial matrix. The left primitive factorisation is 

given by the following three steps. 

Step 1: Find all the primitive roots z[iJ, which make R(z[il, z2 ) not full rank. This 

is achieved by factorising the greatest common divisor, g(z1, z2), of the high-order 

minors of R(z1, z2) into g(z1) and g'(z1, z2) such that g(z1) contains all the factors 

solely in z1 and 

g(z1, z2 ) = g(z1)g' (z1 , z2 ) 

i.e. g(z1) is the content in z1 of g(z1, z2). The primitive roots are given by the solution 

to the equation 

Step 2: Since R(z[iJ, z2 ) has not full rank, the (upper triangular) modified Hermite 

form of R(z(il, z2 ) has its last row identically equal to zero4 • Thus it is possible to find 

a unimodular matrix V1(z2 ) such that, where the matrix X is a (m- 1) x n matrix, 

V1(z2)R(z[I1,z2) = ( 0 0 ~ 0 0 ) 

where X is a m- 1 by n polynomial matrix, i.e. 

1 0 0 0 

0 1 0 0 

V1(z2)R(z1,z2) = R1(z1,z2 ) 

0 0 1 0 

0 0 0 (Ij z1 - z1 

4 The original proof [33], [34] uses the 1-D upper triangular form, which is only valid 

for full rank matrices. 



4.4 Theoretical Algorithms 148 

for some R1 ( z1, z2 ), or 

1 0 0 0 

0 1 0 0 

R(z1, z2) = V1-
1(z2) R1(z1,z2) = A1(z1,z2)R1(z1,z2). 

0 0 1 0 

0 0 0 Ill 
Zt- Zt 

Step 3: Continue the procedure of Step 2 for all primitive roots z(iJ fori = 2, 3, ... , k, 

where k is the number of primitive roots, using the matrix R,_1 (zl> z2) in each case. 

A final result of the form 

is obtained where 

R(z1,z2) = A 1A2 ... AkR*(z1,z2) = RR* 
~ 

R(z1, z2) 

k 

IRI = IAdiA2I· · ·IAkl =IT (zi- z[iJ) = r(zi) 
i=l 

0 

Note: The elementary operations used in forming the primitive factorisation are over 

the ring F[z2]. Therefore the matrices V;(z2 ), that effect the modified Hermite form 

are unimodular over F[z2] and hence det V;(z2) =constant. 

4.4.5 GCD Algorithm 

The following is an algorithm to calculate the greatest common right divisor (GCRD) 

using the canonical forms of 2-D Hermite form and 2-D primitive matrix (Definitions 

4.5 and 4.6) over the ring F[zt][z2]. (The algorithm can be performed over the ring 

F[z2][zt].) The GCRDs derived over F[zt][z2] and F[z2][zt] are both GCRDs over the 

ring F[z1, z2] and therefore are linked by a unimodular matrix. This is demonstrated 

by the test examples in Chapter 7. The validity of the algorithm is provided in [34]. 

Algorithm 4.4: (GCRD Algorithm over F[zt][z2]) 

The greatest common right divisor of the polynomial matrices Apxm(z1, z2), Bqxm(z1, 

z2), with m~ p + q, is given by: 

(277) 



4.4 Theoretical Algorithms 149 

with M* being primitive in F[zd[z2] and 1Ra(z1,z2)1 E F[zd. 

(278) 

M*(z1 , z2 ) M*(z1 , z2 ) 

with M*(z1,z2) being primitive in F[z2][z1] and IR1(z1,z2)1 E F[z2J· 

(279) 

where IU(z1, z2)1 E F[zd and R(z1, z2) is the upper triangular square matrix as defined 

by (6) over F[z1][z2]. 

Step 4: Form the left primitive factorisation of R(z1, z2 ) over F[zd[z2], giving 

(280) 

where IRI E F[z1] is the primitive factor and R*(z1,z2) is primitive over F[zd[z2]. 

Step 5: The greatest common right divisor, D(z1, z2 ), of A(z1 , z2) and B(z1 , z2 ) is 

given by 

(281) 

where R*(z1 , z2 ), R1 (z1 , z2) and R0 (z1 , z2 ) are defined respectively by (280), (278) and 

~7~. 0 

The algorithm is dependent on the requirement that A(z1, z2 ) and B(z1 , z2) are matri­

ces for which p+q <m due to the row-column condition of the 2-D primitive form. In 

practice (the formation of a coprime matrix fraction description, see Section 7.5) the 

GCD is required of two matrices, one of which is square. Therefore the row-column 

criterion will be satisfied. 

The greatest common left divisor of two matrices, with more columns than rows, may 

be calculated using the above algorithm on the transposed pair AT(z1, z2) and BT(z1, 

z2)· 



4.5 Discussion of the Algorithms 150 

4.5 Discussion of the Algorithms 
The main discussion of the algorithms concerns the use of the modified Hermite algo­

rithm. It is important to distinguish between the two types of Hermite algorithm used 

in the derivation of the greatest common divisor, namely the 2-D Hermite form and 

the 1-D modified Hermite form; although, in essence, the algorithms are equivalent. 

The situation is further complicated by the need to compute the 1-D Hermite form of 

a rectangular matrix with less than full rank (called a singular rectangular matrix). 

4.5.1 Motivation for the Modified Hermite Algorithm 

The original proof to the primitive factorisation theorem, [33], is set out as a con­

structive algorithm. This algorithm fails for a certain class of matrices. The problem 

arises from the assumption that the last row of the 1-D Hermite form, defined anal­

ogously to Algorithm 4.1, of a singular matrix is identically equal to zero; this is not 

always the case. To demonstrate this consider the following example. 

Example 4.2: Consider the left primitive factorisation over F[zd[z2] of the matrix 

R(z1, z2), 

The high-order minors are 

Thus the primitive roots are the zeros of the polynomial p(z1) - z?, i.e. z1 = 0. 

Consider the primitive root z1 = 0. The matrix R(O, z2 ) is given by 

R(O, z2) = ( :: :: :: ::) . 
z2 z2 z2 +1 z2 

The original 1-D Hermite form (as defined in Algorithm 4.1 where F[zd is replaced 

by the field F) is given by pre-multiplication by V1 (z2) where 

V1(z2) = (

1 ~1z2 ~ -;

2

) 

-1 0 1 

to give 

(282) 



4.5 Discussion of the Algorithms 151 

which does not possess the last row identically zero. However, a row permutation will 

bring the matrix to the correct form for continuation with the primitive factorisation 

algorithm but corrupts the Hermite form. The general situation can be easily rectified 

by a slight modification to the Hermite algorithm by ignoring the column that contains 

a zero in the pivotal position, i.e. the modified Hermite algorithm. 

Thus in the above example the first column may be treated as normal by using 

element (1,1) to reduce the elements (2,1) and (3,1) to zero. Now the second column 

has a zero in the pivotal position (2,2), therefore use column 3 as the next column; 

the pivotal position is (2,3). The 1 in position (3,3) is now moved to this pivotal 

position. Thus the modified Hermite algorithm delivers the correct form for the 

primitive factorisation algorithm, i.e. 

( ~ ~ ~ ~). 
0 0 0 0 

The matrix R(z1, z2) can now be factored as 

R(z,,z2)= (~ ~ 1:2z2) (~ ~ ~) (~2 Z2:z, z2-1z,z2 ;O:). 
1 1 z2 0 0 z1 0 0 1 

~------~------~ 

0 

The existence of an identically zero last row, as demonstrated in this example, may 

be proved for any singular matrix. Moreover if a matrix Amxn with m ::; n has rank 

r the last m- r rows are identically zero. This is formally derived by the following 

theorem. 

Theorem 4.2: The upper triangular modified Hermite form of a polynomial matrix 

Amxn (z1) with m ::; n and rank m - 1 has the last row identically zero. 

Proof: The operations used to derive the upper triangular modified Hermite form 

may be expressed as elementary matrices over the ring F[zd, thus there exists a 

polynomial matrix U (z1) such that 

H(z1) = U(z1)A(z1) (283) 

where H(z1) is the Hermite form of A(z1) over F[zd and JU(ztll E F. Therefore the 

high-order minors of H(z1) and A(z1) are identical modulo a multiplicative element 

ofF, the base field. Thus the ranks of A(z1) and H(z1) are identical, namely m- 1. 



4.5 Discussion of the Algorithms 152 

This may be interpreted as H(z1) possessing m- 1 linearly independent rows. By 

construction the first m - 1 rows are linearly independent, thus row m is linearly 

dependent on rows 1 to m - 1. 

It is now required to show that row m is identically equal to zero. By the modified 

Hermite algorithm, Algorithm 4.2, the elements of row m in columns 1 to m - 1 + 
pivotzeros are zero. But any non-zero linear combination of rows 1 to m - 1 would 

contradict the first m - 1 + pivotzeros elements of row m being zero. Therefore row 

m is identically zero. 0 

Corollary 1: The Modified Hermite form of a matrix Amxn(z1) with m ::=; n and 

rank r has rows r + 1 to m identically zero. 

Proof: This follows by extending the argument of the previous theorem. D 

4.5.2 Alternative to the Modified Hermite Algorithm 

An alternative method exists for defining a Hermite form of a singular matrix. When 

a non-zero pivot element can not be found consider permuting the columns so that 

a non-zero element is located in the current column, which may then be used as 

the pivot. The consequence of this action is to re-order the columns of the original 

matrix, which may easily be recovered by re-permuting the relevant columns once the 

Hermite form has fulfilled its purpose in the primitive algorithm. This 'alternative 

Hermite algorithm' more closely reflects the non-singular definition, in one sense, as 

all the elements on the principal diagonal are non-zero but requires pre- and post­

multiplication by unimodular matrices, which defeats the purpose of the Hermite 

form, i.e. a canonical form using only row or column operations. Thus the modified 

Hermite algorithm defined above seems to be the more natural generalisation to 

singular rectangular matrices. 

4.5.3 2-D Hermite Form as a Coprimeness Test 

An interesting property of the 2-D Hermite form is its use as a simple coprimeness 

test. After the completion of Step 3 it may be applied as a termination condition 

for the algorithm. If the matrices A*, B* are coprime (either minor or zero) Step 

4 may be waived, thereby increasing the efficiency of the algorithm and, due to the 

simplicity of the test the efficiency of the algorithm is not impaired by the extra step, 

if the matrices are not coprime. 



4.5 Discussion of the Algorithms 153 

Theorem 4.3: (2-D Hermite Coprime Test) 

Let Mmxn(z) be a polynomial matrix with m 2:: nand suppose that M(z1, z2) has no 

right divisor with determinant solely in z1 or solely in z2 • If the 2-D Hermite form 

of M(z1, z2) over F[z.][z2] is a polynomial matrix solely in z1, M(z1 , z2) is a right 

coprime matrix. 

Proof: Since M(z1, z2) has no right divisors with determinant solely in z1 or z2 the 

only type of right divisors are those with determinant polynomial in both z1 and z2 

or a constant, i.e. a unimodular matrix (in which case M(z1, z2) is a right coprime 
matrix). . 

Suppose that Dnxn is a right divisor of M(z1, z2) with determinant polynomial in 

both z1 and z2 , i.e. 
M(z1,z2) = M'(z1,z2)D(z1,z2). 

By computing the 2-D Hermite form of M(z1, z2) over F[z.][z2] there exists a poly­

nomial matrix U ( z1 , z2) such that 

(~: ~:) (~J = ( R~xm) 
where U1 (z1, z2), U2(z1, z2), U3(z .. z2), U4(z1, z2) form a suitable partition of U(z1, z2) 
and M1(z1,z2), M2(z1,z2) also form a suitable partition of M(z1,z2). Additionally, 

R(z1,z2) is in Hermite form with respect to IR[z.][z2] and IU(z1,z2)1 E IR[z.J. 

Assume that R(z1,z2) is a polynomial matrix with elements solely in z1. Then 

U1M1 + U2M2 = R 

U3M1 + U4M2 = 0. 

thus 

Hence R(z1, z2) has a right divisor, D, i.e. 

R= R'D 

=} IRI = IR'IIDI. 

Now IDI is polynomial in z1 and z2 but IR(z1, z2)1 is polynomial in z1 only. Therefore 

there does not exist a D(z .. z2) such that ID(z1, z2)1 is polynomial in z1 and z2. Hence 

D(z1, z2) must have a determinant that is a constant, i.e. D(z1, z2) is unimodular, thus 

M(z1 , z2) is a coprime matrix. D 



4.5 Discussion of the Algorithms 154 

This result is very efficient and computationally easy to apply. From Steps 1 and 2 of 

the GCRD algorithm over F[zd[z2] the determinant condition of the right divisors is 

guaranteed. Thus after completion of Step 3 the matrix Rnxn (z1, z2) may be inspected 

for elements in z2; this is a particularly easy procedure in MAPLE. If the resulting 

Hermite form possesses the form of the theorem Step 4 of the GCRD algorithm is 

redundant and may be omitted. If the Hermite form does possess both indeterminates 

then the simplicity of the test ensures minimal loss of efficiency. 

4.5.4 GCD Modification 

The main difference between the theoretical basis for the GCD algorithm presented 

in [33], [34] and the practical algorithm, given in Section 4.3, is the addition of Step 

2. The advantage of this addition is that it allows the use of a particularly simple 

termination test using the Hermite form, as derived above. 

One further advantage of including Step 2 is to reduce the complexity of the polyno­

mial matrix before performing the 2-D Hermite form (over F[zJ][z2]). The indication 

from test examples is that the degree in z1 of the polynomial elements of the Hermite 

form quickly increases due to the nature of the pseudo-division algorithm. Therefore 

it is computationally more desirable to perform the 2-D Hermite algorithm on a ma­

trix with as little complexity as possible, i.e. with polynomial elements as small as 

possible, since it is the Hermite procedure that has the most influence on the efficiency 

of the program, see Chapter 7. 

The form of the GCD Algorithm suggests that the polynomial matrix factors of a 2-D 

matrix form three sets, characterised by the determinant of the matrix factor. These 

sets may be defined as: 

S1 = {a1 : a1 E F[z1]} 

S2 = {a2 : ~ E F[z2]} 

S' = {a' : a' E F[z1, z2] and is not divisible by an element of F[zd or F[z2]} 

Step 1 of the GCRD Algorithm, Algorithm 4.4, computes the factors with determi­

nants that lie in S1 and Step 2 computes the factors with determinants that lie in 

S2• At this stage of the algorithm the matrix M*(z1, z2) is primitive with respect to 

both z1 and z2 • In performing the second primitive factorisation, factors in z1 are not 

reintroduced because the primitive factorisation algorithm is achieved by elementary 

operations in a Euclidean ring, therefore the determinant of the elementary matrices 

are constants. 



4.5 Discussion of the Algorithms 155 

The factors that remain have determinants in S'. Their removal is achieved by a 

generalisation of the 1-D technique to compute the GCD of a 1-D polynomial matrix, 

namely the Hermite form [13]. However, the 2-D Hermite form can not be derived 

by rank preserving operations alone and therefore does not necessarily preserve the 

primitiveness with respect to the ring F[z1] [z2] (in Step 3 of Algorithm 4.4). Thus Step 

4 is necessary to restore the primitiveness with respect to F[z1][z2]. The primitiveness 

with respect to F[z2][zJ] is guaranteed by the form of the Hermite Algorithm, since 

all operations are unimodular in z2 • 

The three types of polynomial factors that exist for a particular 2-D polynomial matrix 

can be determined at the outset of the algorithm. Consider the matrix Amxn(z1 , z2) 

with m 2:: n and high-order minors denoted by a;(z1, z2). The greatest common 

divisor of these polynomials, g(z1, z2), is the determinant of the greatest common 

right divisor (modulo a multiplicative constant). Therefore g(z1, z2) may be uniquely 

factorised (modulo a multiplicative constant) such that 

g(z1, z2) = 9! (zl, z2)g2(z1, z2)g' (zl, Z2) 

where g1(z1) E 81, g2(z2) E 82 and g'(z1,z2) E S' define the three types of factor. 



4.6 Conclusions 156 

4.6 Conclusions 
In this chapter the mathematical basis has been given to determine the greatest 

common divisor of a 2-D polynomial matrix. The complexity of the problem arises 

from the absence of a division algorithm in the ring F[z1, z2], to which the elements 

of the matrices belong. Therefore 1-D techniques alone are not sufficient. 

The algorithms presented here are improved versions of the original theoretical ideas 

by [33], [34] on two levels. Firstly, a theoretical deficiency due to the vague defini­

tion of the Hermite form for singular rectangular matrices has been fully explored 

and corrected. Secondly, modifications have been made to assist in the practical 

implementation of the algorithms. 

The most notable modification is the inclusion of Step 2 in Algorithm 4.4. This 

was motivated by efficiency considerations on two accounts. Firstly, by reducing 

the complexity of the matrix before the 2-D Hermite is computed thus potentially 

reducing the degrees of the polynomial elements in the Hermite form and secondly 

a particularly simple and efficient termination condition may be applied to prevent 

unnecessary calculations being performed. 



Chapter 5 

MAPLE: 
A Symbolic 

Manipulator 

5.1 Introduction 
MAPLE is a symbolic manipulation language developed by the University of Wa­

terloo, Canada. The language possesses two basic features that make it particularly 

appropriate for the implementation of the algorithms presented in the previous chap­

ter, namely the ability to leave the elements of a computation unevaluated and the 

subsequent simplification of such elements. Thus polynomials are stored as algebraic 

entities, not as an array of coefficients. The basic system, or kernel, is written in terms 

of macros that are translated by a macro processor (Margay) into versions of the C 

157 



5.1 Introduction 158 

programming language on various operating systems. The algorithms are encoded 

using MAPLE version 4.3 on a SUN2/280S with a UNIX operating system. 

MAPLE may be used in two different ways: either interactively or non-interactively. 

The former is mainly used for short computations or writing procedures and the latter 

for executing a sequence of time consuming procedures. The set of commands that 

occurs between the invocation of MAPLE and the quitting of MAPLE is termed a 

MAPLE session, thus a session may be interactive or non-interactive. 

The MAPLE software contains many predefined functions that are stored as two main 

types; automatically loaded functions available upon invocation of MAPLE and func­

tions that have to be manually loaded from one of the library packages, containing 

a collection of related functions. In particular, the linear algebra package, linalg, 

contains a collection of functions to manipulate matrices, used extensively in this 

program. Another example of a predefined function extensively used in the imple­

mentation of the algorithms is the pseudo-division algorithm, Definition 4.2. Other 

types of 'basic' algebraic operations are also predefined functions such as polynomial 

factorisation and equation solving. 

The user communicates with the kernel by executing commands in a session using 

MAPLE's own high-level language, which is particularly suitable for describing alge­

braic algorithms, such as those detailed in the previous chapter, due to the procedural 

programming nature of the language. Each algorithm is broken into small stand-alone 

segments. These are then linked by a controlling procedure to execute the steps of 

the algorithm. Using this type of programming the code may be organised in such a 

way that the controlling procedure reads analogously to the theoretical algorithm. 

Procedural programming such as that described above is the main method adopted 

to implement the GCRD algorithm. The code for each procedure is created in a text 

file and then read into a MAPLE session as required. A procedure remains defined 

in a MAPLE session until either the session is terminated, by quitting MAPLE, or 

redefined by reassigning the procedure name. Thus it is only necessary to read-in a 

procedure once during a session. 

The purpose of this chapter is to introduce some of the terminology of MAPLE 

required for the understanding of the documentation and also some of the conventions 

used in the following chapters. 



,5.2 Conventions 159 

5.2 Conventions 
(1) In the program documentation that follows a MAPLE expression is set in 

typewriter font. This will avoid confusion when discussing MAPLE com­

mands within the text of a paragraph. 

(2) Single quotes " ' " and back quotes " ' " are part of the language syntax, 

thus they are set in typewriter font to distinguish them from the punctuation 

marks of single quote " ' " and back quote " ' ". 
(3) The statement separators in MAPLE are 

(i) semi-colon ";" 

(ii) colon ":" 

The distinction is that the latter prevents the preceding statement being 

printed during an interactive session. Notice that the statement separators are 

set in typewriter font, since they form part of a MAPLE expression. Every 

statement in MAPLE must be followed by a statement separator, hence every 

line ends with either a colon or semi-colon. These are not to be confused with 

the grammatical punctuation marks of ";" and ":" used in the text. 

(4) The object enclosed between "[" and "]" denotes an insertion of the specified 

object. Specifically, 

(a) [stat] is replaced by a statement sequence; 

(b) [expr] is replaced by an expression; 

(c) [string] is replaced by a collection of elements from the character set; 

(d) [indet] is replaced by an unassigned name, i.e. an indeterminate; 

(e) [name] is replaced by a string of elements from the character set 

If the object is post-fixed by "scq" a sequence of the specified object is the 

replacement. For fuller definitions of the above objects and the character set 

see the MAPLE reference manual [78]. 



5.3 Statements 160 

5.3 Statements 
There are eight types of statement in MAPLE five of which are used in the documen­
tation. These are described below. 

1. Assignment: Takes the form of 
[name]: =[expression]; 

and associates a name with the value of an expression. 
2. Read: Takes the form of 

read [expression]; 

and causes a file to be read into the maple expression. The [expression] must 
evaluate to a name of a file. 

3. Save: Takes the form of 
save [expression]; 

and saves the current session into a file. The [expression] must evaluate to a 
name which specifies a file. If the file already exists it is overwritten. 

4. Selection: The selection statement takes one of the following forms 
if [expr] then [statseq] fi; 
if [expr] then [statseq] else [statseq] fi; 
if [expr] then [statseq] elif [expr] then [statseq] fi; 
if [expr] then [statseq] elif [expr] then [statseq] else [statseq] 
fi; 

and 'elif [expr] then [statseq]' may be repeated any number of times to 
yield a valid selection statement. The 'elif [expr] then [statseq]' construct 
has the meaning 'else if [expr] then [statseq] ', but the latter form requires 
a closing 'fi' for each opening 'if'. 

5. Repetition: The syntax takes the form of 
for [name] from [expr] by [expr] to [expr] while [expr] do [statseq] 
od; 

where any of 'for [name]', 'from [expr]', 'by [expr]', 'to [expr]' or 'while 
[expr]' may be omitted. If the 'from [expr]' or 'by [expr]' is omitted the 
default value 1 is used. If 'to [expr]' or 'while [expr]' is present the cor­
responding tests for termination are checked for at the beginning of each 

iteration. 
There are two other loop constructs: break and next. 

break: exits from the innermost repetition statement within which 
it occurs. Execution then proceeds with the first statement following 
the repetition statement. 
next: exits from the current [statseq] and proceeds with the next 
iteration of the repetition statement. 



5.4 Expressions 161 

5.4 Expressions 
Expressions are the fundamental entities in the MAPLE language. The various types 

that are used for this program are set out below. 

5.4.1 Names and Strings 
A name in MAPLE has a value which may be any expression or, if no value has 

been assigned to it, it stands for itself. A name is usually a [string], which in its 

simplest form is a letter followed by zero or more letters, digits and underscores (with 

a maximum length of 495 characters). Lowercase and uppercase letters are distinct, 

also the underscore is a valid character. There are 30 reserved words, which are not 

normally available, and names beginning with an underscore are used by the system 

for global variables. 

Another way to form a [string] is to enclose a sequence of characters in back quotes. 

(To allow the back quote to be used as a character two consecutive back quotes 

appearing after the opening of a string in back quotes are parsed as an enclosed back 

quote.) A reserved word enclosed in back quotes becomes a valid string, distinct 

from the usage of the reserved word as a token. The back quotes do not themselves 

become part of the string and are striped away when input into MAPLE. By using 

back quotes it is possible to use a newline as a valid character within a string. (This 

is not recommended.) If a name is too long to fit onto one line it may be continued 

on the next line by placing a backslash before the <RETURN> . This makes the 

newline character transparent. 

A more general type of [name] may be formed by using the concatenation operator 

in one of the following forms. 

[name] . [natural integer] 

[name] . [string] 

[name] . ( [expression] ) 

The concatenation operator is a binary operator which requires a [name] as the left 

operand. Its right operand is evaluated and con catenated to the left operand. If the 

right operand evaluates to an integer or a string then the result of the concatenation 

is a name. As an example if n has the value 4 then p. n evaluates to the name p4, 

while if n has no value p. n evaluates to pn. 

Yet another form of name is the indexed name which has the form 

[name] [ [expression sequence] ]. 



5.4 Expressions 162 

Note that since an indexed name is itself a valid name, there can be a succession of 

subscripts. The use of the indexed name b [1] does not imply that b is an array, as 

is true in other languages. It is not necessary that b has an array value, however, if b 

does evaluate to an array or table, b [1] is the element of the array or table selected 

by 1. The assignment of a value to an indexed name will implicitly create a table. 

5.4.2 Sets and Lists 

A set is an expression of the form 

{ [expression sequence] } 

and a list is an expression of the form 

[ [expression sequence] ] 

Note that the [expression sequence] may be empty so that the empty set { } and 

the empty list [ ] are valid. The difference between a set and a list is that a set is an 

unordered sequence of expressions, with duplicates removed, while a list retains the 

order of the expressions. 

5.4.3 Ranges 

A range is specified via the ellipsis operator: 

[expression] .. [expression] 

the operator here can be specified as two or more consecutive periods. To convert a 

range into an expression sequence, the $ operator may be applied. For example 

1 .. 5 yields 1 .. 5 

$ 1..5 yields 1, 2, 3, 4, 5 

The [range] construct can also be used in combination with the concatenation oper­

ator to form an [expression sequence]. 



5A Expressions 163 

5.4.4 Selection Operation: 
There are two alternative ways to select components from an aggregate object. The 

first is by using square brackets: 

[name] [ [expression sequence] ] 

where [name] must evaluate to one of the following: 
name, table, array, list, set, expression sequence 

and the second is to use the op function: 
op( [expression sequence],[name] ) 

where [name] must evaluate to one of the following: 
list, set. 

If [name] evaluates to an unassigned name, then [name] [[expression sequenceDJ is 

an indexed name. If [name] evaluates to an array or table, the selection operation 
is an indexing operation. If [name] evaluates to a list, set or expression sequence, 
[expression sequence] must evaluate to an integer, range or null. 

5.4.5 Procedures 
The procedure definition takes the form of 

proc ( [nameseq] ) local [nameseq]; 
options [ nameseq] ; 

[statseq] 
end 

where the 'local [nameseq] ; ' part and the 'options [nameseq];' part may be omit­
ted. A procedure is then invoked by 

[name] ([expression sequence]); 

For the semantics of procedure definition see Section 5.5 below. 

5.4.6 Arrays and Tables 
This type of construct is the most frequently used in this program as it is the type of 
data structure in which the elements of a matrix are stored. The matrix 

(
all a12) 

a2,1 a2,2 

is represented by 
array( [ [all ,a 12], [a21 ,a22 ] ] ) ; 

However, this construct is much more general since it can have any number of dimen­
sions, not just two as for matrix representation, see [78]. 



5.4 Expressions 164 

5.4.7 Unevaluated Expressions 

An expression that is enclosed within a pair of single quotes is called an unevaiuated 

expression. The effect of evaluating a quoted expression is to strip off one level of 

quotes, so that in some instances it is useful to use nested levels of quotes. Note the 

difference between 'evaluation' and 'simplification'. For example 

x:='2+3'; 

will cause the value 5 to be assigned to the name x. The evaluator simply strips 

off the quotes but it is the simplifier that transforms the expression 2 + 3 into the 

constant 5. 

A special case of 'unevaluation' arises when a name which may have been assigned a 

value needs to be unassigned, so that subsequently the name stands for itself. This 

is achieved by assigning the quoted name to itself. For example 

x := 'x'; 

assigns the name x to the name x, so that if it previously had been assigned a value 

it will now stand for itself. 



5 .• 5 Procedure Definition 165 

5.5 Procedure Definition 
The procedure definition takes the form of 

proc ( [nameseq] ) local [nameseq]; 

options [nameseq]; 

[statseq] 

end 

where the [nameseq] enclosed in proc( ) are the formal parameters. The 'local 

[nameseq];' part and the 'options [nameseq];' part may be omitted. A procedure is 

invoked by 

[name] ( [expression sequence]); 

The [expression sequence] is called the actual parameters of the invocation. When 

a procedure is invoked the statements in [statseq] are executed sequentially. The 

value of a procedure invocation is the value of the last statement in [statseq] that is 

executed. 

The keywords 'proc' and 'end' may be viewed as brackets which specify that the 

[statseq] is to remain unevaluated when the procedure definition is evaluated as an 

expression. 

5.5.1 Parameter Passing 

The semantics of parameter passing are as follows. Suppose the procedure invocation 

is of the form 

First, name, is evaluated and suppose that it evaluates to a procedure definition with 

formal parameters 

Next the actual parameters expr1, ..• , exprn are evaluated in order from left to right. 

Then every occurrence of param; in the [statseq] which makes up the body of the 

procedure is substituted by the value of the corresponding actual parameter expr;. 

It is possible for the number of actual parameters to be either greater than or less 

than the number of formal parameters specified. If there are too few parameters a 

semantic error will occur only if the corresponding formal parameter is referenced 

during execution. The case where there are more actual parameters than formal 

parameters is fully legitimate. 



5.5 Procedure Definition 166 

There are three special names that MAPLE understands within a procedure body. 

(i) args is the expression sequence of actual parameters with which the procedure 

was invoked. Thus args [i] evaluates to the ith actual parameter; 

(ii) nargs is the number of actual parameters that the procedure was invoked 

with; 

(iii) procname is the procedure name. 

5.5.2 Local Variables 

The mechanism for introducing local variables into a MAPLE procedure is to use 

the local part of the procedure definition. It must appear immediately after the 

parentheses enclosing the formal parameters. The syntax is 

local [nameseq]; 

where the names appearing in [nameseq] are the local variables of the procedure. 

5.5.3 Explicit Returns 

The most common way of returning from a procedure invocation is when execution 

falls through the end of the [statseq]. The value of the procedure invocation is the 

value of the last statement executed. 

An explicit return occurs via the special function 

RETURN ( [exprseq] ) ; 

This function call causes an immediate return from the procedure and the value of the 

procedure invocation is the value of the [exprseq] given as the argument to RETURN. 

A particular form of explicit return is often used as a fail return, in the sense that 

the computation can not be carried out and it is desired to return the unevaluated 

invocations as the result. For this purpose two special names mentioned earlier are 

used as follows: 

RETURN( 'procname ( args ) ' ) ; 

note the use of single quotes (not back quotes), so that the name is only evaluated 

when the procedure is returned from and not during the procedure, otherwise the 

procedure would invoke itself infinitely many times. 



5.5 Procedure Definition 167 

5.5.4 Reading and Saving Procedures 

The procedures are stored in text files corresponding to the name of the procedure. 

A file containing MAPLE expressions is read into a MAPLE session with the syntax 

read [name]; 

where [name] evaluates to a file name that contains a procedure. Once the procedure 

is error free it is desirable to save it in 'MAPLE internal format' so that whenever it 

is read into a MAPLE session the reading is fast. The method for saving a procedure 

in internal format is by ending the filename in the characters '.m'. For example, 

suppose a file named 'deg' contains a procedure definition, this procedure is read into 

a MAPLE session and saved in internal format via 

read deg; 

save 'deg.m' ; 

the procedure can then be read into any MAPLE session via 

read 'deg.m' ; 

Note: filenames involving characters such as '/' or '.' must be enclosed in back 

quotes so that they are interpreted properly as [name]s 



5.6 The MAPLE Library of Functions 168 

5.6 The MAPLE Library of Functions 
MAPLE provides an extensive library of predefined functions. Some of the most 

commonly used are present upon invocation and others may be loaded when required. 

For ease of identification the library of functions is divided into packages, examples of 

these packages include powseries for formal power series, orthopoly for orthogonal 

polynomials, numtheory for number theory and the most extensively used package in 

this program linalg for linear algebra and matrix manipulation. 

The predefined functions used in the program are documented below, together with 

the syntax as used in the program. Other uses of the functions below may be available, 

for a description of these and a fuller discussion of each function see the MAPLE 

reference manual [78]. The functions that have been used fall into four categories. 

Firstly, the standard library functions that are present at invocation; secondly, the 

linalg functions for matrix manipulation; thirdly, the combinat functions for forming 

combinations of a list; and finally the miscellaneous functions. 

5.6.1 Standard Library Functions 

break - break from a recursive procedure. 

see section 5.3. 

convert ([name], list); -convert to a list. 

Converts the elements of [name] to a list, where [name] is one of the following 

data types 

table, vector, expression. 

convertC[name], set); -convert to a set. 

Converts the elements of [name] to a set, where [name] is one of the following 

data types 

table, array, expression. 

convert ([expression], '*') ; - convert to a product. 

Converts the ops of [expression] to a product. Thus if [expression] evaluates 

to a list of elements the above function returns a single object formed by 

multiplying the elements of the list together. 



5.6 The MAPLE Library of Functions 169 

copy (a) ; - create a duplicate array or table. 

Parameter: a - a table or array. 

The purpose of the copy function is to create a duplicate table or array, which 

may then be altered without affecting the original table or array. If a does 

not evaluate to a table or array a is returned. If a [name] is assigned to a 

table or array without using copy the elements of the original table or array 

are altered whenever the elements of [name] are altered. For example if the 

statements 

s := table(); 

t := s; 

are executed both t and s evaluate to the same table structure. 

degree(p,x); -degree of a polynomial. 

Parameters: p - an expression in the indeterminate( s) x, 

x - an indeterminate or a set or list of indeterminate( s). 

Computes the degree of p in the given in determinates. The result is either a 

positive or negative integer if pis polynomial, or FAIL if it is not polynomial 

in the indeterminate( s) x. 

If x is a set of indeterminates the total degree in the set of indeterminates is 

computed. If xis not specified degree (p, indets (p)) is understood. 

divide (a, b, 'q') ; - exact polynomial division. 

Parameters: a, b - polynomials with rational number coefficients, 

q - (optional) an unevaluated name. 

Checks if the polynomial a divides the polynomial b over the rational numbers. 

If so, true is returned, otherwise false. 

If the division is successful and there is a third argument 'q', the value of 

the quotient is assigned to q. In the case of unsuccessful division the name q 

will not be affected. 

ERROR([exprseq]); -error return from a procedure. 

A call to the ERROR function causes an immediate return to the point where the 

current procedure was invoked. The error message [exprseq] is then printed. 

expand([expr]); -expand an expression. 

Parameter: [expr] - an algebraic expression. 

The function expands [expr] so that products are distributed over sums for 

all polynomials. 



5.6 The MAPLE Library of Functions 170 

factor C[expr]); - factor a multivariate polynomial. 

Parameter: [expr] - an algebraic expression. 

Computes the factorisation of a multivariate polynomial with integer or ra­

tional coefficients. 

gcd(a,b); -greatest common divisor. 

Parameters: a, b - multivariate polynomials over the rationals. 

Computes the greatest common divisor of two polynomials with rational oo­

efficients. 

has(/ ,x); - test for specified subexpression. 

Parameters: /, x - expressions. 

If the expression f contains the expression x, the result of the function is 

true. Otherwise the result is false. 

indets C[expr]); - indeterminates of an expression. 

Parameter: [expr] - an algebraic expression. 

Computes the set of indeterminates of the expression [expr]. 

lcoeff (p ,x); -leading coefficient of a multivariate polynomial. 

Parameters: p- multivariate polynomial, 

x - (optional) indeterminate or list or set of indeterrninates. 

Computes the leading coefficient of p in the indeterminate or in determinates 

x. If x is not specified the default value is indets (p). 

max (x1, x2 , ••• , Xn) ; - maximum of numbers. 

Parameters: x 1,x2, •.. ,Xn- numbers. 

Computes the maximum of the numbers x1, x2 , ••• , x,.. 

min(x1,x2 , ••• ,xn); -minimum of numbers. 

Parameters: x 1 , x2 , .•• , x,. - numbers. 

Computes the minimum of the numbers x 1,x2 , ••• ,xn. 

nargs - number of arguments. 

Computes the number of actual parameters with which the procedure was 

invoked. 



5.6 The MAPLE Library of Functions 171 

nops C[expr]); - number of operands. 

Parameter: [expr] - any expression. 
Computes the number of components of an expression. If [expr] is a list or 

set then nops returns the number of elements of the set or list. If [expr] is 

a product or sum, nops returns the number of operands in the product or 

summation. 

op(i ,e); } 
op(i . . j ,e); - extract operands. 

op(e); 

Parameters: i, j - integers, 
e - any expression. 

Extracts the components of an expression. In the first form the ith component 

is extracted from e. In the second form components i to j are extracted 

from e and in the third form all components are extracted, i.e. op (e) = 
op(l. .nops(e) ,e). 

'procname(args)' -procedure name and actual arguments. 

A construct used in conjunction with RETURN, see Section 5.5.3. 

radsimp([expr]); -simplify expressions containing radicals. 

Radicals are expressions to a fractional power, e.g. 2113
. The function radsimp 

simplifies radicals contained in [expr]. 

RETURN([expression sequence]); -return from a procedure. 

A special function that forces immediate return from the procedure. The 

value of the procedure is the value of the [expression sequence]. The null 

expression sequence is perfectly valid. A particular form of return is the fail 

return, formed in conjunction with 'procname(args) ',see Section 5.5.3. 

solve([eqn], [indets]); -solve equations. 

Parameters: [eqn] - an equation or set of equations, 

[indets] - an indeterminate or set of indeterminates. 

Solve an equation or set of equations in the given indeterminate(s) [indets]. 

The solution is returned as an expression sequence. If an expression [expr] is 

supplied as one of the actual parameters the equation [expr]=O is understood. 

If [indets] is not specified then indets C[eqn]) is understood. 



5.6 The MAPLE Library of Functions 172 

If the equation, to be solved, is a high order polynomial the solve function 

will express the result as RootDf C[eqn]) and not evaluate the result fully. To 

obtain the full set of roots evaluated as exact numbers (radical notation) the 

construct 

all values (solve C[eqn], [indets])); 

must be given. The construct 

evalf (solve C[eqn], [indets])); 

obtains the numbers in decimal notation. 

sprem(a,b,x, 'm', 'q');- sparse pseudo-remainder. 

Parameters: a, b- multivariate polynomials in the variable x, 

x - indeterminate, 

m, q- (optional) unevaluated names. 

the function returns the pseudo-remainder r such that 

ma=bq+r 

where degree(r,x)<degree(b,x) and q is the pseudo-quotient. The multi­

plier m is the smallest possible power of lcoeff (b, x) such that the division 

process does not introduce fractions into q and r. 

subs (s1 , s2 , ••. , s,.., [expr]) - substitute subexpressions into an expression. 

Parameters: s1, s2, ••• , s,.. - equations or sets or lists of equations, 

[expr] - any expression. 

Returns an expression resulting from substituting s1, s2 , ••• , s,.. into [expr]. 

The substitutions are performed sequentially starting with s 1, if one of the 

subexpressions is a set or list the substitutions are performed simultaneously. 

Only subexpressions in [expr] that correspond to an operand of a MAPLE 

object are matched. This is called syntactical substitution. 

type([expr], '+');-check for summation. 

Parameter: [expr] - any expression. 

The function returns true if [expr] is a summation, otherwise false is re­

turned. 

Note that x2 + y + xy is of type '+' but (x + y)(x2 + xy) is not. 



5.6 The MAPLE Library of Functions 173 

type ([expr], '*'); - check for product. 

Parameter: [expr] - any expression. 

The function returns true if [expr] is a product, otherwise false is returned. 

Note that (x + y)(x2 + xy) is of type '*' but x2 + y + xy is not. 

type ([expr] ,numeric); - check for number. 

Parameter: [expr] - any expression. 

The function returns true if [expr] is numeric, i.e. an integer, fraction or 

floating point number, otherwise false is returned. 

type ([expr] ,polynom, [indet], [domain]) ; - check for polynomial. 

Parameters: [expr] - any expression, 

[indet] - an indeterminate or a set or list of in determinates, 

[domain] - the coefficient domain. 

The function returns true if [expr] is a polynomial in the given indetermi­

nate(s) [indet], otherwise false is returned. 

5.6.2 The linalg Package for Linear Algebra 

The linalg package contains functions for the computation of matrices and associated 
be. 

properties. These functioifhave to~oaded as required by using one of the following 

constructs. 

(i) The long form notation: 

linalg[[function]l ([arguments]); 

this form must be used whenever there is a conflict of function name between 

a package function name and another function in a MAPLE session. 

(ii) The short form notation: 

[function] ([arguments]); 

where the construct wi th(linalg, [function]); has been executed before the 

function is invoked. Alternatively, all the linalg functions may be loaded 

via 

with(linalg); 

The package contains a total of 57 functions. Those functions called in the program 

are detailed below in the context they are used. 



5.6 The MAPLE Library of Functions 17 4 

coldim(A); -column dimension of a matrix. 

Parameter: A - a matrix. 

The result of this function is an integer oorresponding to the number of 

columns in the matrix A. 

det CA) ; - determinant of a matrix. 

Parameter: A - a square matrix. 

The determinant of a square matrix is computed by either minor expansion or 

Gauss elimination. If the matrix is sparse minor expansion is used, otherwise 

a oombination of both methods are used. 

inverse CA) ; - inverse of a square matrix. 

Parameter: A - a square matrix. 

Computes the inverse of a square matrix, if the matrix is non-singular, oth­

erwise an error occurs. The method for computation is Cramer's rule for 

matrices of dimension less than or equal to 4 by 4 and sparse matrices, or by 

applying the operations of Gauss-Jordan elimination to a unit matrix of the 

same size, for matrices greater than 4 by 4. 

multiply(A,B); -matrix multiplication. 

Parameter: A, B- matrices. 

The matrix product of A and B is oomputed if the matrices are compatible, i.e. 

coldim(A)=rowdim(B). The result is a matrix with dimensions rowdim(A) 

by coldim(B). An alternative function is available for matrix multiplication, 

which may also be used for other computations with matrices. The function 

syntax is 

evalm(A &* B); 

however, the number of arguments is not restricted to two and can be any 

matrix expression, see evalm. 

rank (A) ; - rank of a matrix. 

Parameter: A - a matrix. 

The rank of the matrix A is computed by performing Gauss elimination on 

the rows of A. 



5.6 The MAPLE Library of Functions 175 

submatrix (A, [rows], [cols]) ; - extract a sub matrix from a matrix. 

Parameters: A - a matrix, 

[rows]- a list or range of rows, 

[cols]- a list or range of columns. 

The result of this function is a sub matrix of A whose ( i,j)th element is the 

element in the row given by the ith component of [rows] and column given 

by the jth component of [cols]. 

swaprow(A,r1 ,r2) -swap two rows in a matrix. 

Parameters: A - a matrix, 

r 1, r 2 - integers denoting two different rows. 

The result is a matrix whose entries are the same as the matrix A except that 

rows r1 and r 2 are interchanged. 

transpose (A) - transpose of a matrix. 

Parameter: A - a matrix. 

The result of this function is the transpose of the matrix A, i.e. element (i,j) 

becomes element (j,i) of the resulting matrix. 

5.6.3 The combinat package for combinations 

This package of functions computes the combinations and permutations of a group 

of data structures. Only two of the functions are used, these are listed below. The 

functions must first be loaded in a similar way to the linalg functions before they 

can be used, i.e. by either 

(i) loading all the functions in the combinat package via 

wi th(combinat); 

or (ii) loading the individual function [function] via 

wi th(combinat, [function]); 

or (iii) if there is a conflict of function name the long form notation must be 

used 

combinat [[function]] C[args]); 

which requires no preloading. 



5.6 The MAPLE Library of FUnctions 176 

combinations (n, m) ; - count the number of combinations 

Parameters: n - a list of objects or a natural number, 

m- integer. 

If n is a list the result is the number of combinations of the elements of n 

taken m at a time. 

If n is a natural number the result is the number of combinations of selecting 

m integers from the first n natural numbers. 

combine(n,m) -construct the combinations of a list. 

Parameters: n - a list of objects or a natural number, 

m- integer. 

If n is a list, then combine returns a list of the combinations of the elements 

of n taken m at a time. 

If n is a natural number, this is equivalent to using the list of the first n 

natural numbers. 

5.6.4 Miscellaneous Functions 

The functions occurring in this package are extensions of the standard library func­

tions but do not fit into any large group that has its own library. Only two of these 

functions are used. 

allvalues([exprD)- evaluate RootOf's and return all possible values. 

Parameter: [exprD - any expression or table, list, or set of expressions. 

The return from this function is the evaluation of expressions containing 

RootDfs. Typically, a RootOf represents more than one value. Thus ex­

pressions involving RootDf's will generally evaluate to more than one value 

or expression. The function all values will return all such values (or expres­

sions) generated by the combinations of different values of the Root Of's, in 

an expression sequence. 

This function must be loaded with 

readlib(allvalues); 

before it can be used. 



5.6 The MAPLE Library of Functions 177 

evalm([matrix expression]) - matrix evaluation. 

Parameter: [matrix expression] - an expression involving matrices. 

This function gives an alternative to the linalg function multiply for eval­

uating matrices. The syntax for this function is more concise than for the 

equivalent result using the linalg package, as more than two matrices may 

be contained in the matrix expression. 

Matrix operations are non-commutative thus the character & must precede 

any operation symbol. For example, to multiply the three matrices A, B and 

C either the linalg construct multiply(A,multiply(B ,C)) or the more 

concise notation 

evalm(A &* B &* C) 
may be used. Note that a space must precede and succeed &*. The function 

must also be loaded via 

readlib(evalm); 



5. 7 Implementation of the Algorithms 178 

5. 7 Implementation of the Algorithms 
The algorithms described in the previous chapter are implemented in three main 

blocks corresponding to the three algorithms, modified Hermite, primitive factorisa­

tion and greatest common right divisor. The procedures that effect these algorithms 

are shiftherm, lprimfac and gcrd, respectively. Each of the procedures requires at 

least two actual parameters with a third being optional. The first of these parameters 

is a matrix, the second is the favoured indeterminate and the third optional parameter 

is an unevaluated name that is assigned during the procedure: in the case of 

(a) gcrd the coprime matrix resulting from the extraction of the greatest common 

right divisor, 

(b) lprimfac the primitive factor with determinant polynomial solely in the spec­

ified determinant; 

(c) shiftherm the unimodular matrix effecting the elementary operations. 

Note: The duals of these procedures, namely the greatest common left divisor (for 

matrices with more columns than rows), the lower triangular modified Hermite form 

and right primitive factorisation are obtained by transposing the result returned when 

using the transpose of the specified matrix as the actual parameter. For example the 

greatest common left divisor of the matrix Amxn> with m ::0 n, is computed by 
applying the gcrd procedure with matrix argument AT and then transposing the 

result returned from the procedure. 

It is not necessary to define a separate procedure to calculate the 2-D Hermite algo­

rithm (Algorithm 4.1) since by the discussion following Algorithm 4.2, the Hermite 

algorithm and modified Hermite algorithm are coincident for full rank matrices. This 

property is due to the row and column configuration of the matrix. Also by the design 

of the procedure the total number of indeterminates is not important provided that 

at least one exists. Therefore the procedure can be used to calculate both the 1-D 

Hermite form and the 2-D Hermite form for both full rank and singular matrices. 

Two further points need to be emphasised regarding the displaying and storing of 

matrices as two dimensional arrays. An array in MAPLE is stored as a special form 

of the object table with specified dimensions indexed by an integer range. The 

elements of a matrix A are displayed with the function op(A); not by executing A; 
(the way of displaying the 'value' of a name) which returns the value A. Also if a 

[name] is assigned to another [name] that evaluates to a table or an array without 

using the function copy both [name]s evaluate to the same table structure, thus 

by changing the value of one of the elements of one [name] the value contained in 



5. 7 Implementation of the Algorithms 179 

the corresponding position of the other [nameD is also altered. To avoid this copy 

creates a duplicate table with elements equivalent at the time of execution only and 

subsequent reassignments are not reflected in both table structures. 



6.1 Introduction 

..... 

Chapter 6 

Code 
Documentation 

The code is organised into three main sections corresponding to the three major 

algorithms presented in Chapter 4, namely the greatest common divisor algorithm, 

the primitive factorisation algorithm and the modified Hermite algorithm. The first 

contains the controlling procedure for the calculation of the greatest common left 

divisor and the greatest common right divisor of a matrix. The second contains the 

procedures necessary for the calculation of the left and right primitive factorisations 

and the third contains the modified Hermite procedures. Some of the procedures are 

180 



6.1 Introduction 181 

common to all three sections and are only documented once in either the second or 

third section. 

Within each section the documentation of each procedure contains two parts. Firstly 

a description of the user interface and secondly the actual procedure code, together 

with a line-by-line discussion of the procedure. 

Since many procedures have been defined to encode the algorithms a hierarchical 

system of folders and files has been employed to store these procedures. When the 
program is to be used, all of these procedures must be loaded into a MAPLE session. 

The most efficient method of achieving this is to load the internal MAPLE format of 

the procedures in one block. The following four steps details such a method. 

1. Start a new MAPLE session, maple; 
2. read in the individual procedures into this MAPLE session; 

3. save this file in internal format, e.g. using save 'all. m';; 

4. quit MAPLE using quit. 

However, if the definition of one procedure is altered the above process must be 

repeated so that the changes are reflected in the internal format file. 



6.2 The GCD controlling Procedures 182 

6.2 The GCD controlling Procedures 
The two procedures that calculate the greatest common left and right divisor of 

a matrix are documented below. A greatest common left divisor is calculated by 

invoking the greatest common right divisor procedure on the transpose of the matrix; 

the transpose of this result is then the greatest common left divisor. 

Two modifications have been made to the GCRD Algorithm given in Chapter 4 to 

improve efficiency. The first is a test for coprimeness that is dependent on the matrix 

being primitive with respect to both indeterminates and possessing a 2-D Hermite 

form void of one indeterminate, see Theorem 4.3. The test is applied after Step 3, 

at which stage the primitive factorisation has been performed with respect to both 

indeterminates (Steps 1 and 2) and the 2-D Hermite form has been derived (Step 

3). This test is particularly easy to implement due to the simplicity of the criterion: 

scanning the elements of the 2-D Hermite form to check for the absence of one of the 

indeterminates. The predefined functions in MAPLE further enhance the simplicity 

of the test due to the functions convert and indets. The former is used to convert 

the elements of the matrix to a set, i.e. a list of the elements with duplicates removed, 

and the latter computes the number of indeterminates contained the set. Therefore if 

the number of indeterminates is not equal to two the algorithm may be terminated. 

Then the result of the GCD procedure is the product of the primitive factors obtained 

in Steps 1 and 2. In this case one evaluation of the primitive factorisation is avoided. 

The second efficiency modification occurs after the calculation of the 2-D Hermite 

form and before the second primitive factorisation. Through practical experience it 

was discovered that when the 2-D Hermite form is calculated the degree of the non­

favoured indeterminate rapidly increases, therefore introducing many primitive roots. 

The purpose of Step 4 of the GCRD Algorithm is to remove these primitive roots. 

However, due to the triangular nature of the 2-D Hermite form some primitive roots 

occur as obvious factors of the individual rows. These primitive roots are removed 

before performing the primitive factorisation by scanning each row in turn for factors 

purely in the non-favoured indeterminate (recall that the primitive roots are defined 

by the zeros of 1-D polynomials). This process is beneficial to the procedure since 

the primitive factorisation procedure removes the primitive roots one by one. To 

illustrate this consider the following example. 



6.2 The GCD controlling Procedures 183 

Example 6.1: Suppose after Step 3 of the GCRD Algorithm the matrix M is 

( y~x :yy) x ~ y) 
x+y 2 

The 2-D Hermite form over JR.[y][x] is computed by executing shiftherm(M ,x); 

resulting in the matrix 

(
x+y-y2 -xy 0) 

H= 0 1-y 

0 0 

Therefore the primitive roots are given by the solutions to the equation 

y = 1,1 

However, by performing the row scanning procedure above, both of these primitive 

roots are seen to be factors of the rows 

H= ( 1 ~y 1~y ~) (x~y x~y) 
0 0 1 0 0 

Thus by removing these factors the primitive factorisation is unnecessary. D 

The above two modification have been incorporated to improve the efficiency of the 

program. The two modifications actually decrease the efficiency of the program when 

either the 2-D Hermite form is polynomial in both indeterminates or when there exist 

no factors in the rows, of the type described above. However, the potential increase 

in efficiency from these two processes greatly outweighs the actual loss of efficiency if 

either or both of the above situations occur. 

6.2.1 The geld Procedure 

The Function: 

Syntax: gcld(A,x, 'U'); 

Parameters: A - a matrix in two indeterminates, 

x - an indeterminate of the matrix A, 

U - (optional) an unevaluated name. 

The function requires at least two arguments, the first argument is a two dimensional 

array (or matrix) in two unevaluated names (indeterminates), the second is one of 

the indeterminates. The third optional argument returns the result of extracting 

the greatest common left divisor from the original matrix, i.e. a factor (left) coprime 



6.2 The GCD controlling Procedures 184 

matrix. The result of the function is the greatest common left divisor of the matrix 

A. 

If the greatest common left divisor of two matrices Amxp and Bmxq is required the 

argument to the function is the augmented matrix [A B]. 

If z1 and z2 are the indeterminates of the matrix A and z1 is specified as the indeter­

minate, the procedure operates over the ring JR[z2][z1], although the algebraic closure 
of the ring (IC[z2][zd) may be used during the primitive factorisation. 

Procedure Code: 
1 gcld:=proc(A,var,U) 
2 local D,V; 
3 if nargs>2 then D:=gerd(transpose(A),var,'V');U:=transpose(V) 

4 else D:=gerd(transpose(A),var) 

5 fi; 

6 D:=transpose(D); 
7 op(D) 

8 end; 
Formal Parameters: 

A - a two dimensional array in two indeterminates; 
var - the favoured indeterminate; 

U- a place holder for the factor coprime matrix that results from extracting the 

greatest common left divisor from A. 

Local Variables: 
D - the result of the procedure; 
V - the transpose of the factor coprime matrix obtained from extracting the great-

est common left divisor from the matrix A. 

Line 1 defines geld as the name of the procedure. 
Line 2 declares the local variables of the procedure. 

Lines 3-5 calls the procedure gerd with the same number of actual parameters as 
geld. The first parameter is the transpose of the first matrix in the proce­
dure invocation and the second is the indeterminate specified in the func­

tion invocation. Thus the matrix U is only calculated if it is specified in 

the procedure invocation. 

Line 6 transposes the result of the gerd procedure to obtain the greatest common 
left divisor of the matrix A. 

Line 7 returns the elements of the matrix D as the value of the procedure. 

Line 8 terminates the procedure. 



------------------------ - ---

6.2.2 The gcrd Procedure 

The Function: 
Syntax: gcrd(A,x, •U•); 

6.2 The GCD controlling Procedures 185 

Parameters: A - a matrix in two indeterminates, 

x - an indeterminate of the matrix A, 

U - (optional) an unevaluated name. 

The function requires at least two arguments, the first is a two dimensional array 

(or matrix) in two unevaluated names (indeterminates), the second is one of the 

indeterminates. The third optional argument returns the result of extracting the 

greatest common right divisor from the original matrix, i.e. a factor (right) coprime 

matrix. The result of the function is the greatest common right divisor of the matrix 

A. 

Notice that only one matrix is given as the argument, if the greatest common right 

divisor of two matrices Apxm and Bqxm is required the argument to the function is 

the augmented matrix ( ~ ) . 

If z1 and z2 are the indeterminates of the matrix A and z1 is specified as the indeter­

minate the function works over the ring lR[z2J[zJ], although the algebraic closure of 

the ring (IC[z2j[z1]) may be used during the primitive factorisation. 

Procedure Code: 
1 gcrd:=proc(A,var,U) 
2 local m,rdim,cdim,varl,D,H,M,R,RO,Rl; 

3 varl:=otherindet(A,var); 

4 M:=rprimfac(A,var, 'RO'); 

5 M:=rprimfac(M,varl, 'Rl'); 
6 H:=shiftherm(M,var); 

7 if nops(indets(convert(op(H),set)))<>2 then D:=evalm(Rl &* RO) 

8 

9 

if nargs>2 then U:=multiply(A & inverse(D)) fi; 

RETURN(op(D)) 

10 fi; 

11 rdim:=rowdim(H); 
12 cdim: =col dim (H) ; 

13 m:=min(rdim,cdim); 
14 H: =rowfactors (H, varl) 

15 R:=submatrix(H,l .. m,l .. m); 



6.2 The GCD controlling Procedures 186 

16 D:=evalm(lprimfac(R,var1) &* R1 &* RO); 

17 if nargs>2 then U:=multiply(A,inverse(D)) fi; 

18 op(D); 

19 end; 

Formal Parameters: 

A - a two dimensional array in two indeterminates; 

var - the favoured indeterminate; 

U - a place holder for the factor coprime matrix that results from extracting the 

greatest common right divisor from A. 

Local Variables: 

m- the smallest of the number of rows and number of columns of A; 

D - the greatest common right divisor of A; 

H- the 2-D Hermite form of A with respect to JR[var1][var]; 

M- the right primitive factorisation of A with respect to, firstly JR[var][var1] and 

secondly JR[var1 ][var]; 

R- the square part of the 2-D Hermite form of A; 

RO - the primitive factor of A with respect to JR[var][var1 ]; 

R1- the primitive factor of A with respect to JR[var1][var] when RO has been re-

moved; 

rdim - the number of rows of A; 

cdim- the number of columns of A; 

var1 - the non-favoured indeterminate of A. 

Line 1 defines gcrd as the procedure with formal parameters A, var, U. 

Line 2 defines the variables local to this procedure. 

Line 3 assigns var1 as the non-favoured indeterminate of A, by using the procedure 

otherindet. 

Line 4 assigns the local variable M as the right primitive matrix of A with respect to 

the ring JR[var][var1] and sets RO as the primitive factor that is extracted on 

the right over this ring. 

Line 5 assigns the local variable M as the right primitive matrix of M with respect to 

the ring JR[var1][var] and sets R1 as the primitive factor that is extracted on 

the right over this ring. 

Line 6 assigns the local variable Has the 2-D Hermite form of M with respect to the 

ring JR[var1][var] using the modified Hermite algorithm. This is equivalent 

to the 2-D .Hermite algorithm by the discussion in Chapter 4. 

Lines 7-10 decides if H is a matrix in two indeterminates, if it is not the procedure 

terminates on line 8 with the greatest common right divisor being returned 



----------------·----

6.2 The GCD controlling Procedures 187 

(see Chapter 4 for the theory behind this decision). If a third actual 

parameter occurs in the calling sequence U is assigned the factor coprime 

matrix that results from extracting the greatest common right divisor 

from A. 

Line 11 assigns the local variable rdim the number of rows in the matrix H, which is 

the 2-D Hermite form of M. 

Line 12 assigns the local variable cdim the number of columns in the matrix H. 

Line 13 assigns the local variable m as the smallest of the number of rows and the 

number of columns in H. 

Line 14 uses the rowf actors procedure to extract any factors from the rows of H that 

are purely polynomial in the indeterminate varl. This reduces the amount of 

work performed by the lprimfac procedure by reducing any obvious factors 

in H; thus making the procedure more efficient. 

Line 15 assigns R as the top square submatrix of the 2-D Hermite form of M. 

Line 16 assigns D as the greatest right common divisor of A by multiplying together 

the left primitive form of R, over JR[varl][var], and the right primitive factors 

Rl, RO computed in lines 4-5. 

Line 17 decides if the number of actual parameters with which the procedure was 

called is greater than two, if this is true the local variable U is assigned the 

factor (right) coprime matrix resulting from the extraction of the greatest 

common right divisor from A. 

Line 18 returns the elements of D as the value of the procedure. As the last statement 

line of the prooedure, the value of this statement is the value of the procedure 

(unless the explicit return was executed earlier). 

Line 19 indicates the termination of the procedure. 

Note: When an array or table is returned as the value of a procedure, the construct 

op([array or table]) must be used so that the actual components of the array or table 

are returned and not the name [array or table]. 



6.3 The Primitive Factorisation Procedures 188 

6.3 The Primitive Factorisation Procedures 
There are two controlling procedures for the primitive factorisation of a matrix. One 

is the right primitive factorisation and the other is the left primitive factorisation. 

These two procedures are documented first, with the procedures that are called by 

these procedures documented, in alphabetical order, subsequently. 

Only one main procedure is required to compute the left and right primitive factori­

sation. To compute the right primitive factorisation, firstly the matrix is transposed 

and secondly the left primitive factorisation is calculated which returns the transpose 

of the required primitive matrix. Thus the right primitive factorisation procedure 

only has to perform transposition. This is similar to the greatest common left and 

right divisor situation described earlier. 

6.3.1 The rprimfac Procedure 

The Function: 

Syntax: rprimfac (A ,x, 'R'); 

Parameters: A - a matrix in two indeterminates, 

x - an indeterminate of the matrix A, 

R- (optional) an unevaluated name. 

The result of the function is the right primitive part of the matrix A with respect to 

IR[x][y], where y is the non-favoured indeterminate, see Chapter 4 for the definition 

of a primitive matrix. The primitive factor, R, may be obtained by supplying a third 

actual parameter in the function invocation. 

If the matrix A(x, y) is the first parameter, x is the second and 'R' the third, 

i.e. rprimfac(A,x, 'R'); the result of the procedure is the primitive matrix A* 

over IR[x][y] such that 

A= A*R 

and R is the primitive factor with the property IRI E IR[x]. 

Procedure Code: 

1 rprimfac:=proc(A,var,R) 

2 local Q,S; 

3 Q: =1 primf ac (transpose (A) , var, 'S ') ; 

4 if nargs>2 then R:=transpose(S) fi; 

5 Q:=transpose(Q); 

6 op(Q) 



----------------------------------------------------------------------------------- --

6.3 The Primitive Factorisation Procedures 189 

7 end; 

Formal Parameters: 

A - a two dimensional array in two indeterminates; 

var - the favoured indeterminate; 

R - a place holder for the right primitive factor. 

Local Variables: 

Q - initially the transpose of the right primitive form of A and subsequently the 

result of the procedure; 

S - the transpose of the right primitive factor of A. 

Line 1 defines rprimfac as the procedure with formal parameters A, var and R. 

Line 2 defines the variables Q and S as local variables. 

Line 3 assigns Q as the left primitive form and S as the left primitive factor of the 

transpose of A. 

Line 4 decides if the number of actual parameters in the function call is greater 

than two, if so R is assigned the transpose of the left primitive factor of the 

transpose of A. 

Line 5 Q is reassigned as the transpose of itself. 

Line 6 is the value of the procedure, as it is the last statement in the procedure. 

Line 7 terminates the procedure. 

6.3.2 The lprimfac Procedure 

The Function: 

Syntax: lprimfac (A ,x, 'R'); 

Parameters: A - a matrix in two indeterminates, 

x - an indeterminate of the matrix A, 

R- (optional) an unevaluated name. 

The result of the function is the left primitive part of the matrix A with respect to the 

ring IR[x][y] where y is the non-favoured indeterminate. If a third actual parameter 

is present it is assigned the left primitive factor of the matrix A. 

Procedure Code: 

1 lprimfac:=proc(A,var,R) 

2 local i,j,s,row,rdim,cdim,varl,B,C,M,Q,U; 

3 

4 

5 

6 

rdim:=rowdim(A); 

cdim:=coldim(A); 

M:=copy(A); 

Q:=unitmx(rdim); 



6.3 The Primitive Factorisation Procedures 190 

7 s:=primroots(M,var); 

8 varl:=otherindet(M,var); 

9 for i to nops(s) do 

10 B:=subs(var=s[i],op(M)); 

11 B:=emxc(B); 

12 shiftherm(B,varl,'U'); 

13 M:=multiply(U,M); 

14 row:=factorow(M,var,s[i]); 

15 C:=unitmx(rdim); 

16 C[row,row] :=var-s[i]; 

17 for j to cdim do 

18 M[row,j] :=simplify(evalc(M[row,j]/(var-s[i]))) 

19 od; 

20 Q:=evalm(Q &+ inverse(U) &*C) 

21 od; 

22 Q:=emxc(Q); 

23 if nargs>2 then R:=copy(Q) fi; 

24 emxc (M) 

25 end; 

Formal Parameters: 

A - a two dimensional array in two indeterminates; 

var - the favoured indeterminate; 

R - a place holder for the right primitive factor. 

Local Variables: 

i - index of iteration; 

j - index of iteration; 

s - the list of primitive roots of A in the indeterminate var; 

row - an integer denoting the row number of the modified Hermite form that contains 

the factor var-s [i]; 

rdim - the number of rows in A; 

cdim - the number of columns in A; 

varl - the non-favoured indeterminate of A; 

B - the matrix that is obtained from substituting a primitive root for the indeter­

minate var; 

C - the multiplying matrix that contains the factor var-s [i] for each of the 

primitive roots, i.e. the diagonal matrix in Algorithm 4.3 Step 2; 



6.3 The Primitive Factorisation Procedures 191 

M - used to store the results of intermediate steps in the procedure. 

Q- stores the primitive factor, i.e. the matrix A1A2 ••• A; at each iteration (see 

Algorithm 4.3 for the definition of A;); 

U - the unimodular matrix over JR.[var] that effects the modified Hermite form, see 

Algorithm 4.2. 

Line 1 defines lprimfac as the procedure with formal parameters A, var and R. 

Line 2 declares the local variables as listed above. 

Line 3 assigns the local variable rdim the number of rows in the matrix A. 

Line 4 assigns the local variable cdim the number of columns in the matrix A. 

Line 5 assigns M as a copy of A, see Chapter 5 for the reason for using copy. 

Line 6 assigns Q as the unit matrix with dimension rdim x rdim. 

Line 7 assigns s as the list of primitive roots of the matrix M in the indeterminate 

var. 

Line 8 assigns var1 as the non-favoured indeterminate of the matrix A. 

Line 9 sets the repetition statement so that each of the primitive roots is extracted 

from A. 

Line 10 substitutes a primitive root for the indeterminate var in the components of 

M. Notice that in the function invocation op (M) is used and not M, because 

the substitution is required in the components of M and not in the name M. 

Line 11 uses the function emxc to simplify the components of B and reassigns B as 

this simplified matrix. 

Line 12 computes the modified Hermite form of B over IC[var1]. The complex num­

bers have to be used in this instance because some of the primitive roots 

may be complex. Here it is not the modified Hermite form that is required 

but the multiplying matrix, U, that effects the modified Hermite form; thus 

the Hermite form is not assigned a name. 

Line 13 reassigns M as U, as defined in line 12, multiplied by M calculated earlier 

(if i=1 M is the matrix A otherwise it is the matrix A with primitive roots 

s [1] ... s [i -1] removed). 

Line 14 assigns row as the row number in M that contains the factor var-s [i]. 

Lines 15-16 assigns C as the unit matrix, dimension rdim x rdim, with the '1' in 

position (row,row)replaced the factor var-s [i]. 

Lines 17-19 divides the factor var-s [i] from each term in row row and reassigns M 

as the result. 

Line 20 assigns Q as the product of the primitive factors, i.e. A1 A2 ••• A; in the 

Algorithm 4.3. 



6.3 The Primitive Factorisation Procedures 192 

Line 21 terminates the repetition statement on line 9. 

Line 22 simplifies each component of the primitive factor matrix Q. The simplification 

is performed after all the primitive factors have been multiplied together in 

the repetition statement in an attempt to use as little CPU time as possible, 

because a call to emxc simplifies each term sequentially using evalc (a total 

number of rdim x cdim evaluations). 

Line 23 assigns R a copy of the matrix Q if lprimfac has more than two formal 
parameters, i.e. lprimfac was invoked with more than two arguments. 

Line 24 is the last statement in the procedure, thus the procedure takes the value of 

this last statement, which evaluates to the primitive part of the matrix A. 

The function call emxc is used in this line so that the elements of the matrix 

M containing complex coefficients are expressed in the form a+ I b. 

Line 25 terminates the procedure. 

6.3.3 The factorow Procedure 

The Function: 

Syntax: factorow(A,x,r); 

Parameters: A- a matrix, 

x - an unevaluated name contained in the matrix A, 

r - an algebraic number. 

The result of the procedure is an integer denoting the row in which all elements are 

divisible by the polynomial x- r. 

Procedure Code: 
1 factorow:=proc(A,var,root) 

2 local i,Z,rdim,row; 

3 rdim:=rowdim(A); 

4 row:=O; 
5 Z:=subs:=(var=root,op(A)); 

6 for i from rdim by -1 to 1 do 

7 if zerow(A,i)=false and zerow(Z,i)=true then 

8 RETURN(i) 

9 fi 

10 od; 

11 row 

12 end; 

Formal Parameters: 



6.3 The Primitive Factorisation Procedures 193 

A - a two dimensional array; 

var - an unevaluated name representing an indeterminate of A, 

root - an algebraic number. 

Local Variables: 

i - an iteration index; 

Z - a simplified polynomial with complex coefficients; 

rdim - an integer denoting the number of rows in A; 

row - an integer denoting the row number with the factor poly; 

Line 1 defines factorow as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 assigns the number of rows in A to rdim. 

Line 4 assigns zero to row. 

Line 5 assigns Z the matrix A with all occurrences of the name var with the number 

root. 

Lines 6-10 Searches for the row of Z in which the polynomial var-root is a factor of 

all the elements in the row with the corresponding row in the matrix A is 

non-zero, so that var-root is a true factor. The search starts with the 

last row of the matrix because in the primitive factorisation procedure 

lprimfac the last row contains the factor var-root. The condition that 

the corresponding row of A is non-zero is required in case the matrix A 

does not have full rank. The result of the procedure is the row number 

that contains the factor var-root. 

Line 11 terminates the procedure. 

6.3.4 The gcdminors Procedure 

The Function: 

Syntax: gcdminors (A) ; 

Parameter: A- a matrix. 

The procedure calculates the greatest common divisor of all the high-order minors of 

the matrix A. 

Procedure Code: 

1 gcdminors:=proc(A) 

2 local m,g; 

3 m:=highorderminors(A); 

4 g:=gcdn(m) 

5 end; 



6.3 The Primitive Factorisation Procedures 194 

Formal Parameters: 

A - a two dimensional array. 

Local Variables: 

m - the high-order minors of the matrix A; 

g- the greatest common divisor of the high-order minors of A. 

Line 1 defines gcdminors as the procedure name. 

Line 2 declares the local variables of the procedure. 
Line 3 assigns m the value of the procedure highorderminors, which calculates the 

high-order minors of the matrix A. 

Line 4 assigns g the value of the procedure gcdn, which calculates the greatest com­

mon divisor of a list or set of polynomials. This is the value of the procedure 

as it is the last statement in the procedure. 

Line 5 terminates the procedure. 

6.3.5 The gcdn Procedure 

The FUnction: 
Syntax: gcdn(m); 

Parameter: m - a set or list of polynomials. 

The result of the function is the greatest common divisor of the elements of the list 

or set m. 

Procedure Code: 

1 gcdn:=proc(m) 

2 local g,i; 

3 g:=op(l,m); 

4 for i from 2 to nops (m) do 

5 g:=gcd(g,op(i,m)) 

6 od; 

7 g 

8 end; 

Formal Parameters: 

m - a set or list of polynomials. 

Local Variables: 

g - the greatest common divisor of the first i elements; 

i - iteration index. 
Line 1 defines gcdn as the name of the procedure. 

Line 2 declares the local variables of the procedure. 



6.3 The Primitive Factorisation Procedures 195 

Line 3 assigns g as the first element of m. 

Line 4 defines the repetition statement so that all the elementsof the set or list m are 

accessed. 

Line 5 assigns gas the greatest common divisor of g and the ith element of m. 

Line 6 terminates the repetition statement. 

Line 7 returns g as the value of the procedure. 

Line 8 terminates the procedure. 

6.3.6 The highorderminors Procedure 

The Function: 

Syntax: highorderminors (A) ; 

Parameter: A- a matrix. 

The result of the procedure is a set of polynomials that represent the high-order 

minors of the matrix A, i.e. the p x p minors of Apxq where p 2:: q. 

Procedure Code: 

1 highorderminors:=proc(A) 

2 local i,j,n,p,q,P,Q,M; 

3 p:=rowdim(A); 

4 q:=coldim(A); 

5 n:=min(p,q); 

6 P:=combine(p,n); 

7 Q:=combine(q,n); 

8 for i to op(P) do 

9 for j to op(Q) do 

10 M[i,j] :=det(submatrix(A,P[i] ,Q[j])) 

11 od; 

12 od; 

13 M:=convert(M,set); 

14 M; 

15 end; 

Formal Parameters: 

A - a matrix. 

Local Variables: 

i - iteration index; 

j - iteration index; 



6.3 The Primitive Factorisation Procedures 196 

n - the minimum of the number of rows and the number of columns of the matrix 

A· 
' 

p - the number of rows of the matrix A; 

q - the number of columns of the matrix A; 

P - the list of the ways of choosing n from the first p natural numbers; 

Q - the list of the ways of chosing n from the first q natural numbers; 

M - the high-order minors of the matrix A. 

Line 1 defines highorderminors as the name of the procedure. 

Line 2 declares the local variables of the procedure. 

Line 3 assigns p the number of rows of the matrix A. 

Line 4 assigns q the number of columns of the matrix A. 

Line 5 assigns n the minimum of the number of rows and the number of columns of 

the matrix A. 

Line 6 assigns to P the list of all combinations of chosing n of the first p natural 

numbers. 

Line 7 assigns to Q the list of all combinations of chosing n of the first q natural 

numbers. 

Line 8 defines the repetition statement so that all elements of the list P are accessed. 

Line 9 defines the repetition statement so that all elements of the list Q are accessed. 

Line 10 assigns to M [i, j] the determinant of the submatrix formed by taking the 

rows as specified by the ith element of the list P and the columns as specified 

by the jth element of the list Q. Note that one of these lists will consist of 

exactly one term because n is either p or q. Thus all the high-order minors 

are calculated. 

Line 11 terminates the repetition statement for accessing the elements of Q. 

Line 12 terminates the repetition statement for accessing the elements of P. 

Line 13 converts the elements of the table M to a set. Thus eliminating any dupli-

cates. 

Line 14 returns M as the value of the procedure. 

Line 15 terminates the procedure. 



6.3 The Primitive Factorisation Procedures 197 

6.3.7 The otherindet Procedure 

The Function: 

Syntax: otherindet CA, x) ; 

Parameters: A - a matrix in two indeterminates, 

x - an indeterminate of the matrix A. 

The matrix A must have two indeterminates, one of which is x. The result of the 

procedure is then the other indeterminate. 

Procedure Code: 

1 otherindet:=proc(A,var) 

2 local i,j ,s; 

3 s:=convert(A,set); 

4 i:=indets(s); 

5 if nops(i)<>2 then RETURN('procname(args)') fi; 

6 

7 

for j to 2 do 

if i[j]<>var then RETURN(i[j]) fi; 

8 od 

9 end; 

Formal Parameters: 

A - a two dimensional array; 

var - an unevaluated name. 

Local Variables: 

i - a set containing the indeterminates of the matrix A; 

j - an iteration index; 

s - a set of the elements of the matrix A. 

Line 1 defines the procedure name as otherindet. 

Line 2 declares the local variables. 

Line 3 converts the elements of the two dimensional array A to a set and assigns the 

result to s. The data structure set is used so that duplicates are removed 

from the set. 

Line 4 the set of unevaluated names in the set s are assigned to i. 

Line 5 if the number of indeterminates of the set s is not equal to two then the 

procedure name and the arguments with which it was called are returned as 

the value of the procedure. In effect this is an error return. 

Line 6 defines the repetition statement that scans both elements of the set i. 



6.3 The Primitive Factorisation Procedures 198 

Line 7 if the jth element of the set i is not the indeterminate specified the value of 

the procedure is the value of this element, i.e. the other indeterminate of the 

matrix A. 

Line 8 terminates the repetition statement. 

Line 9 terminates the procedure. 

6.3.8 The primroots Procedure 

The Function: 

Syntax: primroots(A,x); 

Parameters: A - a matrix in the indeterminate x, 
x - an indeterminate of the matrix A. 

The result of the procedure is a list of values of the indeterminate x that correspond 

to the primitive roots of the matrix A. 

Procedure Code: 

1 primroots:=proc(A,var) 

2 local i,m,n,p,q,r,s,v; 

3 p:=rowdim(A); 

4 q:=coldim(A); 

5 n:=rank(A); 

6 if min(p,q)<>n then ERROR fi; 

7 m:=gcdminors(A); 

8 v:=varfacl(m,var); 

9 if v=[] then RETURN ([]) else RETURN(roots(v,var)) fi 

10 end; 

Formal Parameters: 

A - a two dimensional array; 

var - an unevaluated name. 

Local Variables: 

m- a polynomial denoting the greatest common divisor of the high-order minors 

of A; 

n - the rank of the matrix A; 

p - the number of rows in A; 

q - the number of columns in A; 

v - a list of polynomials over the ring C[var], i.e. polynomials in the indeterminate 

var with coefficients over the complex field. 

Line 1 defines the name of the procedure as primroots. 



6.3 The Primitive Factorisation Procedures 199 

Line 2 declares the local variables. 

Line 3 assigns p the number of rows in A. 

Line 4 assigns q the number of columns in A. 

Line 5 assigns n the rank of A. 

Line 6 if the matrix A does not have full rank then an error is returned. 

Line 7 assigns m as the greatest common divisor of the high-order minors of the 

matrix A. 

Line 8 assigns to v a list of factors of m that are in the ring IC[var]. 

Line 9 if the list v is empty, the empty list is returned as the value of the procedure. 

Otherwise the value of the procedure is a list of numbers that are the roots 

of the polynomials contained in the list v. 

Line 10 terminates the procedure. 

6.3.9 The roots Procedure 

The Function: 

Syntax: roots (a ,x); 

Parameters: a - a set, list, table or array of polynomials, 

x - an indeterminate. 

The result of the function is a list of roots of the polynomials contained in the ex­

pression a. 

Procedure Code: 

1 roots:=proc(f,var) 

2 local i,u,v,w; 

3 u:=convert(f,list); 

4 for i to nops(u) do 

5 v[i]:=solve(u[i],var) 

6 od; 

7 v:=convert(v,list); 

8 for i to nops(v) do 

9 if type(v[i] ,RootOf)=true 

10 then w[i] :=allvalues(v[i]) 

11 else w[i]:=v[i] 

12 fi; 

13 od; 

14 convert (w ,list); 

15 end; 



6.3 The Primitive Factorisation Procedures 200 

Formal Parameters: 

f - a data structure of the type set, list, table or array; 

var- an unevaluated name. 

Local Variables: 

i - iteration index; 

u - the elements of f converted to a list; 

v - a list of roots to the elements of u; 

w - the result of the procedure - a list of numbers. 

Line 1 defines roots as the name of the procedure. 

Line 2 declares the local variables of the procedure. 

Line 3 converts the elements of f to a list and assigns the result to u. 

Line 4 defines the repetition statement that accesses all the elements in the list u. 

Line 5 assigns the ith element of v as the roots of the polynomial u [i]. 

Line 6 terminates the repetition statement. 

Line 7 converts v to a list. This is necessary because there may be more than one root 

of the polynomials contained in u, thus some elements of v may be a sequence 

of numbers. The construct convert ( v ,list) assigns one expression to each 

element of v. 

Line 8 defines the repetition statement to access all of the elements of the list v. 

Line 9 tests the ith element ofv for the data structure RootOf. The result of solve 

may sometimes be of this type when the polynomial has a high order or 

the solution involves complicated algebraic numbers. The numbers become 

complicated because solve returns exact numbers, i.e. expressed as fractional 

powers of integers. 

Line 10 w [i] is assigned the solution when RootOf is fully evaluated to numeric 

values. Thus the solution may be a sequence of numbers. 

Line 11 assigns w [i] the value of v [i] if v [i] is not of the data structure RootOf, 

i.e. a number. 

Line 12 terminates the conditional statement. 

Line 13 terminates the repetition statement. 

Line 14 returns a list of all the values contained by the name w. The construct 

convert is used for the same reason as described on line 7. 

Line 15 terminates the procedure. 



6.3 The Primitive Factorisation Procedures 201 

6.3.10 The rowfactors Procedure 

The Function: 

Syntax: rowfactors (H ,x); 

Parameters: H-a matrix, 

x - an indeterminate. 

The result of the function is a matrix with any factors common to a row, purely in 

the indeterminate x, removed. Each row is scanned individually for factors purely in 

the given indeterminate, these are removed by dividing each of the terms in that row 

by the factor. 

Procedure Code: 

1 rowfactors:=proc(A,var) 

2 local c,i,j,m,rdim,cdim,B; 

3 rdim:=rowdim(A); 

4 cdim:=coldim(A); 

5 B:=copy(A); 

6 for i to rdim do 

7 if zerow(B,i)=true then next fi; 

8 for j to cdim do 

9 if B[i,j]<>O then m[j] :=B[i,j] fi 

10 od; 

11 m:=convert(m,set); 

12 m:=gcdn(m); 

13 c:=content(m); 

14 m:=primpart(m); 

15 m:=convert(varfacl(m,var),list); 

16 if m=[] then m:=1 

17 elif nops(m)>1 then m:=convert(m,'*') else m:=m[1] fi; 

18 m:=m*c; 

19 
20 

for j to cdim do 

if B[i,j]<>O then B[i,j]:=sirnplify (B[i,j]/m) fi 

21 od 

22 od; 

23 op(B) 

24 end; 

Formal Parameters: 



A - a two dimensional array; 

var - an unevaluated name. 

Local Variables: 

c - a constant; 

i - index of iteration; 

j - index of iteration; 

6.3 The Primitive Factorisation Procedures 202 

m - the gcd of each row of the matrix A; 

rdim - the number of rows in A; 

cdim - the number of columns in A; 

B - the result of the procedure. 
Line 1 defines rowfactors as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 assigns rdim as the number of rows in A. 
Line 4 assigns cdim as the number of columns in A. 
Line 5 assigns B as a copy of A. The matrix B is then only altered if a factor is removed 

from one of the rows. 

Line 6 defines the repetition statement to access each of the rows. 

Line 7 test for the current row having only zeros as its elements. If the test is true 

then the next iteration is carried out. 
Line 8 defines the repetition statement so that all the elements within each row are 

accessed. 

Line 9 tests for the current element being non-zero. If the test is true then the ( i,j )th 

element is added to a one dimensional table of previous non-zero elements in 

row i. 

Line 10 terminates the repetition statement. 

Line 11 converts the table of non-zero elements to a set. Thus unassigned elements 

and duplicates are removed form the table m. 

Line 12 extracts the greatest common divisor of the non-zero elements in row i. 

Line 13 assigns to c a multiplicative constant present in the greatest common divisor. 

This value has to be stored separately because only pure polynomials are 

returned from varfac1 and not constants. It is not entirely necessary to 

extract a constant from the non-zero elements of each row but it does prevent 

large constants building up within the elements. 

Line 14 reassigns m as the primitive part of the polynomial m calculated in line 12, 

i.e. the polynomial obtained by dividing by the result of the previous line. 

Line 15 returns, as a list, those factors within the greatest common divisor that are 

polynomial in the indeterminate var. 



6.3 The Primitive Factorisation Procedures 203 

Line 16 tests for m being empty, in which case the row idoes not possess any polyno­

mial factors. If the test is true the procedure moves to the next iteration. 

Line 17 tests for more than one factor in the list m. If the test is true the list is 

transformed into a product of the terms, thus recombin~ all the factors 

of the greatest common divisor polynomial purely in the indeterminate var. 

Otherwise m is assigned the only factor of the list. 

Line 18 multiplies the polynomial factor by the constant extracted from the greatest 

common divisor of the elements of row i. 

Line 19 defines the repetition statement to access all the elements in row i. 

Line 20 tests for non-zero elements in row i. If the test is true the element is divided 

by the polynomial factor. 

Line 21 terminates the repetition statement. 

Line 22 terminates the row repetition statement. 

Line 23 returns the matrix with the row factors removed. 

Line 24 terminates the procedure. 

6.3.11 The varfac1 Procedure 

The Function: 

Syntax: varfac1 (p,x); 

Parameters: p- a polynomial, 

x - an indeterminate of the polynomial p. 

The result of the function is a list of polynomial factors of p that are polynomial in 

the indeterminate x only. The function factors the polynomial p and then tests each 

factor for the required form. 

Procedure Code: 

1 varfac1:=proc(poly,var) 

2 local i,p,r,j; 

3 r:=factor(poly); 

4 if type (r, '*')=true then 

5 elif type(r,polynom,var,numeric)=true and type(r,numeric)=false 

6 then RETURN([r]) else RETURN([]) 

7 fi; 

8 j:=O; 
9 p:=[]; 

10 for i to nops(r) do 

11 if type(op(i,r),polynom,var,numeric)=true 



6.3 The Primitive Factorisation Procedures 204 

12 and type(op(i,r),numeric)=false 

13 then j :=j+1;p[j] :=op(i,r) 

14 fi 

15 od; 

16 if p=[] then RETURN(p) else RETURN(op(p)) fi 

17 end; 

Formal Parameters: 

poly - a polynomial; 

var - an unevaluated name. 

Local Variables: 

i - iteration index; 

j - an integer; 

p - the polynomial factors in the indeterminate var; 

r- the factors of the polynomial poly. 

Line 1 defines varfac1 as the name of the procedure. 

Line 2 declares the local variables of the procedure. 

Line 3 assigns r the product of the factors of poly. 

Line 4 tests for r to be a product of terms if this is false then lines 5-7 are executed 

otherwise line 8 is the next line. If r contains only one factor its type is not 

'*' thus only that one term is tested for the required form. If r is of the form 

'*' then each factor is tested separately. 

Line 5 tests for the single factor r to be polynomial in the indeterminate var with co­

efficients that are numbers, i.e. not polynomials in any other indeterminates, 

and is not purely a number. 

Line 6 if the test on line 5 is true then r is returned as the value of the function. 

Otherwise poly contains no factor of the required form and the empty list is 

returned. 

Line 7 terminates the conditional statement. 

Line 8 assigns zero to j. 

Line 9 assigns p the empty list. 

Line 10 defines the repetition statement to access each factor of the polynomial r. 

Lines 11-12 tests for the ith factor of r to be polynomial in the indeterminate var 

with coefficients that are numbers, i.e. not polynomials in any other 

indeterminates, and is not purely a number. 

Line 13 if the test on lines 11-12 is true then the counter j is incremented by one 

and the j th element of p is assigned the ith factor of r. 



6.3 The Primitive Factorisation Procedures 205 

Line 14 terminates the conditional statement. 

Line 15 terminates the repetition statement. 

Line 16 if there exist$ no factors of r that are of the required form the empty list is 

returned as the value of the procedure. Otherwise the elements of the list p 

are returned as the value of the procedure. 

Line 17 terminates the procedure. 

6.3.12 The zerow Procedure 

The Function: 

Syntax: zerow (A, i) ; 

Parameters: A- a matrix, 

i - an integer. 

The result of the procedure is true if row i has zero as every element in the row and 

false otherwise. 

Procedure Code: 

1 zerow:=proc(A,row) 

2 local i; 

3 for i to coldim(A) do 

4 if radsimp(A[row,i])<>O then RETURN(false) fi 

5 od; 

6 RETURN(true) 

7 end; 

Formal Parameters: 

A - a two dimensional array; 

row - an integer. 

Local Variables: 

i - an iteration index. 

Line 1 defines zerow as the name of the procedure. 

Line 2 declares the local variables of the procedure. 

Line 3 defines the repetition statement to scan each element of row row in the matrix 

A. 
Line 4 if element (row,i) of A is non-zero then then the value of the procedure is 

false and the procedure is terminated. The function radsimp is used to 

simplify radicals that occur in the matrix elements. Or\ e. 
Line 5 terminates the repetition statement. The column index is increased by Land 

~ the next element is tested. 



6.3 The Primitive Factorisation Procedures 206 

Line 6 returns the value true. This statement is only executed if all the elements in 

row row are zero, i.e. RETURN (false) has not been executed on line 4. 

Line 7 terminates the procedure. 



6.4 The Modified Hermite Procedures 207 

6.4 The Modified Hermite Procedures 
This set of procedures is used in two different ways. The first is for singular matrices 

in one indeterminate, invoked in the primitive factorisation procedures; the second is 

for the 2-D Hermite form of a full rank matrix, in Step 4 of the GCD Algorithm. The 

procedures can be used in this way for the following three reasons. 

1. The latter is polynomial in two indeterminates whilst the former is polynomial 

in only one indeterminate. However, the MAPLE procedure only requires one 

of the indeterminates to be explicitly specified, therefore the matrix argument 

in the procedure may contain any number of unevaluated names (indetermi­

nates) in its elements. 

2. The latter performs the triangularisation using the pseudo-division algorithm 

and the elementary operations over a generalised polynomial ring, such as 

F[zd [z2] whilst the former uses the division algorithm and elementary opera­

tions over a Euclidean ring, such as F[z2]. These differences do not affect the 

MAPLE procedure because the division algorithm over a Euclidean ring is a 

special case of the pseudo-division algorithm and the elementary operations 

are effectively equivalent (in the first case the coefficient field is taken to be 

F[z1] and in the second to be F). 
3. By the discussion in Chapter 4 the modified Hermite algorithm and the 2-D 

Hermite algorithm are equivalent for full rank matrices, irrespective of the 

number of indeterminates. 

For these reasons, only one MAPLE procedure is required to compute both the 2-D 

Hermite form and the modified Hermite form. 

The name used in the MAPLE procedure to compute the modified Hermite form 

is shiftherm for which two parameters are necessary. The first is a matrix and 

the second an indeterminate of the matrix. A third parameter may also be specified, 

which is assigned the elementary operations used to effect the modified Hermite form. 

This third parameter is necessary for the primitive factorisation procedure. The two 

matrices are stored at each stage of the shiftherm procedure as a list; this allows 

both matrices to be passed between procedures as one parameter. Initially the pair 

consists of the matrix argument and the unit matrix, of appropriate dimensions. Thus 

the elementary operations used to derive the modified Ilermite form are stored by 

performing the same operations on the unit matrix. 

One further feature of the modified Hermite MAPLE procedure concerns the repre­

sentation of complex numbers, a+Ib. These may be introduced in the calculation of 



6.4 The Modified Hermite Procedures 208 

the primitive factorisation. This causes problems in some of the predefined functions 

because I is not treated on the same basis as other unevaluated names due to the 

property that I 2 = -1. For example, the predefined function to calculate the rank 

of a matrix, rank, returns an error message when the elements of the matrix involve 

complex coefficients. Therefore a new procedure, Rank, has been defined to calculate 

the rank of a matrix based on minor expansion, i.e. the rank of a matrix, r, is de­

fined to be the largest integer such that there exists a non-zero rth order minor but 

all r + lth order minors are zero. To overcome the seemingly unpredictable prop­

erties of complex numbers, I is substituted for the unevaluated name compl and is 

subsequently treated as an indeterminate. However, this does not increase the com­

plexity of the algorithm since rational expressions in compl are permitted. When the 

desired modified Hermite form has been computed the unevaluated name compl is 

substituted for the complex number I and each element of the matrix is brought to 

standard complex number notation (a+ Ib) by using the complex number simplifier, 

evalc; thus the rational expressions in compl are eliminated. 

By using the pseudo-division algorithm and elementary operations the upper trian­

gular modified Hermite procedure is derived by firstly reducing the matrix to upper 

triangular form (gaussredS) and then forcing the column properness condition. For 

singular matrices the definitions of upper triangular and column properness have to 

be modified to accommodate the zero pivotal columns, i.e. columns in which a pivot 

element failed to be located. Recall that the positions occupied by the first non-zero 

element in each row is termed the quasi-principal diagonal. A quasi-upper triangu­

lar matrix is then defined to be the matrix with elements that are zero below the 

quasi-principal diagonal and the quasi-column degree condition is defined by the ele­

ments on the quasi-principal diagonal having degree greater than any other element 

in the column. Therefore the zero pivotal columns are effectively ignored both in the 

derivation of the upper triangular form and also in the column properness condition. 

The code that effects the computation is described below. 



6.4 The Modified Ilermite Procedures 209 

6.4.1 The shiftherm Procedure 

The Function: 

Syntax: shiftherm(A,x ,U); 

Parameters: A - a matrix in at least one indeterminate, 

x - an indeterminate of the matrix A, 

U- (optional) an unevaluated name. 

The result of the function is the modified Hermite form over F[x], where the coefficient 

field F may be polynomial. If a third actual parameter is specified it is assigned the 

elementary operations stored as a matrix. 

Procedure Code: 

1 shiftherm:=proc(A,var,U) 

2 local compl,mx; 

3 mx:=[subs(I=compl,op(A)),unitmx(rowdim(A))]; 

4 mx:=gaussredS(mx,var); 

5 

6 

mx:=colredS(mx,var); 

if nargs>2 then U:=emxc(subs(compl=I,mx[2])) fi; 

7 emxc(subs(compl=I,mx[1])) 

8 end; 

Formal Parameters: 

A - a two dimensional array in at least one unevaluated name; 

var - an unevaluated name of A; 

U - an unevaluated name. 

Local Variables: 

compl - an unevaluated name used to substitute for the complex number I; 

mx - a list that contains A as its first element and the elementary operations matrix 

as its second. 

Line 1 defines shiftherm as the name of the procedure. 

Line 2 declares the local variables of the procedure. 

Line 3 assigns to the name mx a list of two matrices. The first matrix is A, with 

the complex number I substituted for the unevaluated name compl, and the 

second matrix is the unit matrix with the same number of rows as possessed 

by A, this will become the elementary operations matrix. 

Line 4 mx is reassigned as a list with two elements, which are the result of the pro­

cedure gaussredS. 

Line 5 mx is reassigned the result of the procedure colredS. 



6.4 The Modified Hermite Procedures 210 

Line 6 assigns to U the elementary operations matrix, with unevaluated name compl 

substituted for the complex number I and then simplified by using the proce­

dure emxc, so that any complex numbers contained in U are brought to their 

simplest form. 

Line 7 the result of the procedure is the matrix obtained as the first element of the 

list mx, with the unevaluated name compl substituted for the complex number 

I and simplified using the procedure emxc. 

Line 8 terminates the procedure. 

6.4.2 The gaussredS Procedure 

The Function: 

Syntax: gaussredS(a,x); 

Parameters: a - a list with two matrix elements, 

x - an indeterminate of the first element of a. 

The two matrices contained in the list a are, firstly, the matrix that is to be reduced 

and, secondly, the matrix that is to contain the elementary operations. The result of 

the procedure is a list with two matrix elements. The first of which is quasi-upper 

triangular and the second is a matrix that stores the elementary operations. 

Procedure Code: 

1 gaussredS:=proc(mx,var) 

2 local j,cdim,rdim,MX,rk,shift; 

3 MX:=copy(mx); 

4 rdim: =rowdim (MX [ 1] ) ; 

5 cdim:=coldim(MX[1]); 

6 rk: =Rank (MX [ 1]) ; 

7 shift:=O; 

8 for j to max(cdim,rdim) do 

9 

10 

11 

if rk-shift<j then break fi; 

if upperS(MX[1],j,j+shift-1)=true then shift:=shift-1 fi; 

while upperS(MX[1],j,j+shift)=false do 

12 MX:=initialpivotS(MX,var,j ,j+shift,rdim); 

13 MX:=lowerzerosS(MX,var,j ,j+shift,rdim) 

14 od 

15 od; 

16 MX 

17 end; 



6.4 The Modified Hermite Procedures 211 

Formal Parameters: 

mx - a two element list of matrices; 

var - an indeterminate of the first element of mx. 

Local Variables: 

j - an index of iteration; 

rk - the rank of mx [1]; 

cdim- the number of columns of mx [1]; 

rdim- the number of rows of mx [1]; 

shift- a negative number with modulus the number of zeros on the pseudo-principal 

diagonal (Chapter 4); 

MX - the intermediate results of the procedure. 

Line 1 defines gauss redS as the name of the procedure. 

Line 2 declares the local variables of the procedure. 

Line 3 assigns MX as a copy of mx. 

Line 4 assigns rdim the number of rows of the first element of the list MX. 

Line 5 assigns cdim the number of columns of the first element of the list MX. 

Line 6 assigns the rank of the matrix mx [1] to rk. 

Line 7 assigns shift the number 0. Initially the number of elements on the pseudo­

principal diagonal is zero. 

Line 8 defines the repetition statement. The index j accesses each column until 

either the iteration terminates by exhausting all the iterates or the break on 

line 8 is executed. 

Line 9 a break is executed if the number of rows plus the number of zeros on the 

pseudo-principal diagonal exceeds the column index there it is not necessary 

to continue and a break is executed to exit from the iterative statement. 

Line 10 determines if all the elements below and on the pseudo-diagonal are zero. If 

this is true the counter shift is decreased by one ( decrementation is used 

because the counter shift is a negative number). 

Lines 11-14 executes the two statements on lines 12-132 until all the elements below 

the pseudo-principal diagonal are zero. Line 12 finds a suitable pivot 

and line 12 reduces the degree, in var, of all the elements below the 

quasi-principal diagonal. 

Line 15 increments j by one and continues with the next iteration. 

Line 16 returns the list of matrices as the result to the procedure. 

Line 17 terminates the procedure. 



6.4 The Modified Hermite Procedures 212 

6.4.3 The initialpivotS procedure 

The Function: 

Syntax: initialpivotS(a,x,c,k,r); 

Parameters: a- a list of two matrices, say [A, V], 

x- an indeterminate of the matrix A, 

c- a column number of the matrix A, 

k - an integer denoting a row of the matrix A, 
r - an integer denoting the number of rows in A. 

The procedure scans column c from rows k tor, inclusive, for the element with lowest 

degree in the indeterminate x and then swaps that row with row k. The matrix V 

contains the elementary operations. 

Procedure Code: 

1 initialpivotS:=proc(mx,var,col,k,rdim) 

2 local i,row,testelem,pivot,M,V; 

3 M :=copy (mx [1]); 

4 V: =copy (mx [2]); 

5 row:=O; 

6 for i from k to rdim do 

7 testelem:=deg(M[i,col],var); 

8 if row=O and testelem<>-1 then 

9 pivot: =testelem; 

10 row:=i; 

11 fi; 

12 if testelem>=O and testelem<pivot then 

13 pivot: =testelem; 

14 row:=i; 

15 fi; 

16 od; 

17 if row>k then 

18 M:=swaprow(M,row,k); 

19 V:=swaprow(V,row,k) 

20 fi; 

21 [op (M) , op (V)] 

22 end; 

Formal Parameters: 



mx - a list of two matrices; 

var - an unevaluated name; 

col - an integer; 

k - an integer; 

rdim - an integer. 

Local Variables: 

i - an index of iteration; 

6.4 The Modified Hermite Procedures 213 

row - an integer denoting the row number of the row containing the element with 

least degree in v ar. 

testelem - an integer denoting the degree of the element under test at the current itera­

tion. 

pivot - an integer denoting the least degree in var of the elements scanned. 

M - part of the result of the procedure; it has the element in column col with least 

degree, in var, in the pivotal position. 

V - the elementary operation of swapping the rows. 

Line 1 defines initialpivotS as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 assigns M the first matrix in the list mx. 

Line 4 assigns V the second matrix in the list mx. 

Line 5 assigns row the integer zero. 

Line 6 defines the repetition statement to scan the rows k to rdim of column col. 

Line 7 assigns testelem the degree of the polynomial in position (i,col) with respect 

to the indeterminate var. 

Line 8 tests for row being zero, i.e. no pivot element has been found, and the element 

being tested is non-zero. If the tests are both true then line 9 is the next line 

otherwise the statements from line 12 are executed. 

Line 9 pivot is assigned the value of the variable testelem. 

Line 10 row is assigned the integer corresponding to the row number of the current 

test element. 

Line 11 terminates the conditional statement. 

Line 12 tests for the current test element being non-zero and smaller than the current 

pivot value. 

Line 13 pivot is assigned the value of the variable testelem. 

Line 14 row is assigned the integer corresponding to the row number of the current 

test element. 

Line 15 terminates the conditional statement. 



6A The Modified Hermite Procedures 214 

Line 16 terminates the repetition statement and increments the iteration index by 

one, thus using the next element in the column as the test element. 

Lines 17-20 if a pivot element has been found that does not lie in the pivotal posi­

tion an elementary operation is used to effect a row permutation. The 

operation is stored in the matrix V. 
Line 21 returns the list of the matrices M and V as the value of the procedure. 

Line 22 terminates the procedure. · 

6.4.4 The lowerzerosS Procedure 

The Function: 

Syntax: lowerzerosS(a,x,j,k,r); 

Parameters: a- a list of two matrices [A, V], 

x - an indeterminate of the matrix A, 

j - an integer denoting a column of the matrix A, 

k - an integer denoting a row of the matrix A, 
r - an integer denoting the number of rows in A. 

The procedure performs elementary operations on the matrix A to reduce the degree, 

in x, of all the elements below the kth element in column j to below the degree, in 

x, of the element in position (k,j). The elementary operations used to reduce the 
matrix A are also applied to the matrix V, the elementary operations matrix. 

Procedure Code: 

1 lowerzerosS:=proc(mx,var,j,k,rdim) 

2 local i,m,q,M,V; 

3 M: =copy (mx [1]) ; 

4 V: =copy (mx [2]) ; 

5 for i from k+1 to rdim do 

6 if deg(M[k,j] ,var)<=deg(M[i,j],var) then 

7 sprem(M[i,j],M[k,j],var, 'm', 'q'); 

8 M:=addrowm(M,k,i,m,q); 

9 V:=addrowm(V,k,i,m,q) 

10 fi 

11 od; 

12 [op(M),op(V)] 

13 end; 

Formal Parameters: 

mx - a list containing two matrix elements; 



var - an unevaluated name; 

j - an integer; 

k - an integer; 

rdim - an integer. 

Local Variables: 

i - an index of iteration; 

6.4 The Modified Hermite Procedures 215 

m - the multiplier m in the pseudo-division algorithm; 

q - the pseudo-quotient in the pseudo-division algorithm; 

M - the first matrix element of the list a; 

V - the second matrix element of the list a. 

Line 1 defines lowerzerosS as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 assigns to M the first element of the list mx. 

Line 4 assigns to V the second element of the list mx. 

Line 5 defines the repetition statement so that each element below the quasi-principal 

diagonal is accessed. 

Line 6 compares the degrees, in var, of the test element (in position (i,j)) and the 

pivot element (in position (k,j)). If the latter is less than the former the 

degree of the former is reduced to below that of the pivot (using the following 

three lines). 

Line 7 performs the pseudo-division algorithm between the pivot element and the 

test element. The multiplier m is assigned to m and the pseudo-quotient q is 

assigned to q. 

Line 8 reassigns row i of M as m times row k minus q times row i. 

Line 9 reassigns row i of V as m times row k minus q times row i. Thus storing the 

elementary operation in the matrix V. 

Line 10 terminates the conditional statement. 

Line 11 terminates the repetition statement and increments the index i by one. Lines 

6-10 are executed for each valid i until i exceeds rdim. 

Line 12 the value of the procedure is the two element list consisting of the matrix M 

and the matrix V. 

Line 13 terminates the procedure. 



6.4.5 The colredS Procedure 

The Function: 

Syntax: colredS(a,x); 

6.4 The Modified Hermite Procedures 216 

Parameters: a - a list of two matrices, 

x - an indeterminate of the matrices in a. 

The first matrix in the list a is a pseudo-upper triangular matrix and the second 

matrix is a store for the ensuing elementary operations. The result of the procedure 

is a quasi-upper triangular matrix with the elements on the quasi-principal diagonal 

having greatest degree, in x, in their column. 

Procedure Code: 

1 colredS:=proc(mx,var) 

2 local i,j,m,q,rk,dega,degb,rdim,cdim,shift,M,V; 

3 M:=copy(mx[1]); 

4 V:=copy(mx[2]); 

5 rdim:=rowdim(M); 

6 cdim:=coldim(M); 

7 rk:=rank(M); 

8 shift:=O; 

9 for j from 1 to max(rdim,cdim) do 

10 

11 

12 

13 

if rk-shift<j then break fi; 

if M[j+shift,j]=O then shift:=shift-1 fi; 

for i from j-1+shift by -1 to 1 do 

dega:=deg(M[i,j] ,var); 

14 degb:=deg(M[j+shift,j] ,var); 

15 if dega>=O and degb>=O and degb<=dega then 

16 sprem(M[i,j] ,M[j+shift,j] ,var, 'm', 'q'); 

17 M:=addrowm(M,j+shift,i,m,q); 

18 V:=addrowm(V,j+shift,i,m,q) 

19 fi 

20 od 

21 od; 

22 RETURN(op(M),op(V)) 

23 end; 

Formal Parameters: 

mx - a two element list of two dimensional arrays; 



var - an unevaluated name. 
Local Variables: 

i - an index of iteration; 

j - an index of iteration; 

6.4 The Modified Hermite Procedures 217 

m - the multiplier m in the pseudo-division algorithm; 

q - the pseudo-quotient in the pseudo-division algorithm; 

rk - the rank of the matrix A; 

dega - an integer denoting the degree of a polynomial in the indeterminate var; 

degb - an integer denoting the degree of a polynomial in the indeterminate var. 

cdim - an integer denoting the number of columns in M; 

rdim - an integer denoting the number of rows in M; 

shift - an integer denoting the number of zeros on the pseudo-principal diagonal; 

M - the first matrix element of the list a; 

V - the second matrix element of the list a. 

Line 1 defines colredS as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 assigns M as a copy of the first element of the list mx. 

Line 4 assigns V as a copy of the second element of the list mx. 

Line 5 assigns rdim the number of rows of M. 
Line 6 assigns cdim the number of columns of M. 

Line 7 assigns rk as the rank of the matrix A. 

Line 8 assigns the counter shift to zero. 

Line 9 defines the repetition statement so that each column of M is accessed. 

Line 10 a break is executed if the number of rows plus the number of zeros on the 

pseudo-principal diagonal exceeds the column index then it is not neces­

sary to proceed further and a break is executed to exit from the iterative 

statement. 

Line 11 determines if the pseudo-diagonal element is zero. If this is true the counter 

shift is decreased by one ( decrementation is used because the counter shift 

is a negative number). 

Line 12 defines the repetition statement that controls the row number of the element 

to be degree reduced. The degree reduction is carried out by starting with 

the element just above the quasi-principal diagonal and then proceeds with 
subsequently higher ones until the first row is reached. 

Line 13 dega is assigned the value of the degree, in the indeterminate var, (as defined 

by deg and not the standard library function degree) of the element to be 

degree reduced. 



6.4 The Modified Hermite Procedures 218 

Line 14 degb is assigned the value of the degree, in the indeterminate var, (as defined 

by deg and not the standard library function degree) of the clement on the 

quasi-principal diagonal. 

Line 15 If the two elements defined in lines 13-14 are both non-zero and the degree 

of the off quasi-principal diagonal element is greater than or equal to the 

degree of the quasi-principal diagonal element the pseudo-division algorithm 

is performed. Then an elementary operation is performed to reduce the 

degree of the off quasi-principal diagonal element. 

Line 16 computes the pseudo-quotient, q, and the polynomial multiplier, m, as de­

fined by the pseudo-division algorithm. 

Line 17 performs the elementary operation of redefining row i as m row i minus q 

row j +shift. This reduces the degree of the off quasi-principal diagonal 

element (and also alters other elements in row i). 

Line 18 performs the same elementary operation on the matrix V: thus storing the 

elementary operations as a matrix. 

Line 19 terminates the pseudo-division algorithm for valid polynomials as defined in 

line 14. 

Line 20 terminates the inner repetition statement and causes the next iteration to 

begin, i.e. the row number is reduced by one, and the process defined by 

lines 15-19 is repeated if the polynomials are of the form defined by line 15. 

Line 21 terminates the outer repetition statement and causes the procedure to move 

to the next column, so that the degree reduction may be performed on that 

column. In this way all of the columns are degree reduced. 

Line 22 the elements of the two matrices are returned as a list. 

Line 23 terminates the procedure. 

6.4.6 The addrowm Procedure 

The Function: 

Syntax: addrowm(A,r1 ,r2 ,m,q); 

Parameters: A - a matrix in two in determinates, 

r 1 - a row number of the matrix A, 

r 2 - a row number of the matrix A, 

m- a polynomial, 

q - a polynomial 

Performs the elementary operation of subtracting q times row r 1 from m times r 2 and 

puts the result in row r 2 of A. 



6.4 The Modified Hcrmite Procedures 219 

Procedure Code: 

1 addrowm:=proc(A,r1,r2,m,q) 

2 local k,M; 

3 M:=copy(A); 

4 for k to coldim(M) do 

5 M[r2,k] :=expand(m*M[r2,k]-q*M[r1,k]) 

6 od; 

7 op(M) 

8 end; 

Formal Parameters: 

A - a two dimensional array in two unevaluated names; 

rl - an integer; 

r2 - an integer; 

m - a polynomial in the indeterminates of A; 

q - a polynomial in the indeterminates of A. 

Local Variables: 

k - an index of iteration. 

M - the result of the procedure. 

Line 1 defines addrowm as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 assigns M as a copy of A, so that when M is altered A is not also altered. 

Line 4 defines a repetition statement to access every element in a row. 

Line 5 assigns the kth element of row r2 as the polynomial obtained when q times the 

kth element of row rl is subtracted from m times the kth element of row r2. 

The function expand is used so that like terms are combined and expressions 

that evaluate to zero assigned the value zero 

Line 6 terminates the repetition statement and increments k by 1. The loop is re­

peated until k=coldim(M). 

Line 7 returns the elements of M as the value of the procedure. 

Line 8 terminates the procedure. 



6.4.7 The deg Procedure 

The Function: 
Syntax: deg(a,x); 

Parameters: a - a polynomial, 

6.4 The Modified Hermite Procedures 220 

x - an indeterminate. 

The result of the procedure is the degree of the polynomial a in the indeterminate x. 
If a is the zero polynomial the value is -1; if a does not contain the indeterminate x 

(and is non-zero) the value is zero. 

Note that the degree of the zero polynomial is usually given the value minus infinity 
( -oo) but here this function is only used for pure polynomials and not rational 

polynomials so that any negative number could be used: all that is required is that 
for the degree of the zero polynomial to be less than the degree of any other expression. 

Procedure Code: 

1 deg:=proc(a,var) 
2 local d; 
3 if a=O then d:=-1; RETURN(d) fi; 

4 if degree(a,var)=FAIL then d:=O else d:=degree(a,var) fi; 

5 d 
6 end; 

Formal Parameters: 

a - an expression; 
var - an indeterminate or set or list of indeterminates. 

Local Variables: 

d - an integer; the result of the procedure. 
Line 1 defines deg as the name of the procedure. 
Line 2 declares the local variables. 
Line 3 decides if the expression a is zero; if so then -1 is returned as the value of the 

procedure via the explicit return function. 

Line 4 decides if the expression a contains the indeterminate(s) var. If this is true d 
is assigned the value of the degree of the expression a in the indeterminate(s) 

var. If not the value zero is assigned to d. Note that the zero expression also 

returns FAIL from the function degree but if the expression is zero this line 
is never executed, thus there is no danger of the zero expression being given 

the degree value zero. 
Line 5 the value of d is returned as the value of the procedure. 

Line 6 terminates the procedure. 



6.4.8 The emxc Procedure 

The Function: 

Syntax: emxc (A) ; 

Parameters: A- a matrix. 

6.4 The Modified Hermite Procedures 221 

The result of the function is the matrix A in which all elements are expressed in the 

form a + Ib, where a and b may be zero, numeric or polynomial. Thus the matrix A 

is simplified over the complex field. 

Procedure Code: 

1 emxc:=proc(A) 

2 local i,j,rdim,cdim,B; 

3 cdim:=coldim(A); 

4 rdim:=rowdim(A); 

5 B: =array(!.. rdim,l. . cdim); 

6 for i to rdim do 

7 for j to cdim do 

8 B[i,j] :=evalc(A[i,j]) 

9 od 

10 od; 

11 op(B) 

12 end; 

Formal Parameters: 

A - a two dimensional array. 

Local Variables: 

i - an index of iteration; 

j - an index of iteration; 

cdim - an integer denoting the number of columns in M; 

rdim - an integer denoting the number of rows in M; 

B - a two dimensional array that contains the result of the simplified form of the 

matrix A. 

Line 1 defines the name of the procedure as emxc. 

Line 2 declares the local variables. 

Line 3 assigns rdim the number of rows of A. 

Line 4 assigns cdim the number of columns of A. 

Line 5 declares B as a two dimensional array with rdim rows and cdim columns. This 

declaration is necessary otherwise B would have the data type table and a 



6.4 The Modified Ilermite Procedures 222 

. two dimensional table is not recognised as a matrix, unlike a two dimensional 

array. An alternative to declaring B as an array would be to let MAPLE treat 

it as a table and then convert it to an array using convert (B, array). 

Line 6 defines the repetition statement so that all rows of the matrix A are accessed. 

Line 7 defines the repetition statement so that all columns of the matrix A are ac­

cessed. 
Line 8 evaluates element (i,j) over the complex field, i.e. expresses each element in 

the form a+ I b. 
Line 9 terminates the column repetition statement. 

Line 10 terminates the row repetition statement. 

Line 11 returns the elements of B as the result of the procedure. 

Line 12 terminates the procedure. 

6.4.9 The uni tmx Procedure 

The Function: 

Syntax: uni tmx ( n) ; 

Parameter: n - an integer. 

The result of the function is a matrix with ones along the principal diagonal and zeros 

in all other positions, i.e the unit matrix with n rows and columns. 

Procedure Code: 

1 unitmx:=proc(n) 

2 local i,j ,E; 

3 E:=array(1 .. n,1 .. n); 

4 

5 

6 

7 

for i to n do 

for j to n do 

if i=j then E[i,j]:=1 else E[i,j] :=0 fi 

od 

8 od; 

9 op(E) 

10 end; 

Formal Parameters: 

n - an integer. 

Local Variables: 

i - an index of iteration; 

j - an index of iteration; 

E - a two dimensional array. 



6.4 The Modified Hermite Procedures 223 

Line 1 defines uni tmx as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 declares E as a two dimensional array of dimension nxn, i.e. a matrix with n 

rows and n columns. 

Line 4 defines the repetition statement to access each row in turn from 1 to n. 

Line 5 defines the repetition statement to access each column in turn form 1 to n. 

Line 6 assigns 1 to those elements on the principal diagonal, i.e. row number equal 

to the column number, and zero is assigned to all other elements. 

Line 7 terminates the repetition statement on line 5. Increments the column index 

j by one and returns the procedure to line 6. 

Line 8 terminates the repetition statement on line 4. Increments the row i index by 

one and returns the procedure to line 5. 

Line 9 returns the elements of the array E as the value of the procedure. 

Line 10 terminates the procedure. 

6.4.10 The upperS Procedure 

The Function: 

Syntax: upperS(A,j ,k); 

Parameters: A- a matrix, 

j - a column number of the matrix A, 

k - a row number of the matrix A. 

The result of the function is true if all the elements in column j below row k are 

zero. 

Procedure Code: 

1 upperS:=proc(A,j,k) 

2 local i; 

3 for i from k+1 to rowdim(A) do 

4 if A[i,j]<>O then RETURN(false) fi 

5 od; 

6 RETURN(true) 

7 end; 

Formal Parameters: 

A - a two dimensional array; 

j - an integer; 

k - an integer. 

Local Variables: 



6.4 The Modified Ilermite Procedures 224 

i - an index of iteration. 

Line 1 defines upperS as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 defines the repetition statement that accesses each of the elements in position 

(k+1,j) to (m,j), where m is the number of rows in A. 

Line 4 tests each element in turn. If it is non-zero false is returned immediately. 

Line 5 terminates the repetition statement. The row index is incremented by one so 

that the next element in the list can tested. 

Line 6 the value of the procedure is true if all of the elements tested are zero. The 

explicit return is not accessed if all the elements are zero in the repetition 

statement. 

Line 7 terminates the procedure. 



7.1 Introduction 

Chapter 7 

Evaluation 
and 

Concluding Discussion 

The purpose of this final chapter is to evaluate the MAPLE procedures detailed in 

the previous chapter. This is achieved by testing the program for a range of examples. 

The examples have been constructed in such a way as to test each procedure as fully 

as possible, by knowing the factorisation of each matrix at the outset. Thus the 

examples may seem slightly artificial in the context of control systems. The starting 

point for each example is a coprime matrix to which polynomial matrix factors are 

multiplied, each possessing a different property; thus the factorisation is known at the 

outset and therefore the types of factors that should be the result of each procedure 

225 



7.1 Introduction 226 

step. For example, suppose that a coprime matrix is multiplied by a polynomial 

matrix factor with its determinant polynomial in one indeterminate; therefore by 

favouring this indeterminate the factor is calculated in Step 1 of the algorithm (Line 

4 of the procedure code). In addition to this final evaluation of the program, each 

procedure was individually tested at the time of construction. 

The motivation for the program was the impracticability of performing manually the 

GCD Algorithm due to the types of factor possessed by matrices in two indetermi­

nates. A further motivation is demonstrated by considering the amount of time taken 

for each of the calculations. Seemingly simple examples take many seconds of CPU 

time to be calculated. This is further investigated in Section 7.3. 

As a result of the testing of the program it was found that certain examples caused 

an error to occur. The reasons for these failures are investigated and certain remedies 

are proposed. 



7.2 Test Examples 227 

7.2 Test Examples 
The examples documented are considered in four main sets. The first set considers 

matrices with low dimensions, i.e. 3 x 2, to demonstrate the range of different factors 

that a matrix can possess. The second set considers three square polynomial matrices, 

one each of the types described in Section 4.5.4. These are multiplied together in all 

six combinations and then pre-multiplied by a coprime matrix to form six non-square 

polynomial matrices with non-trivial greatest common divisor. The GCD program is 

then used on each of the matrices with respect to the two indeterminates in turn, and 

the results compared. The third set of examples more fully demonstrates the flow of 

the program by considering two matrices and displaying arguments for each program 

statement and the results returned. Finally the fourth set demonstrates the program 

for larger dimensioned matrices. However, these are limited by the power and storage 

capacity of the host computer. 

Example 7.1: Consider a matrix with one factor constructed by 

The high-order minors are x(x- y2
), x(1- y), x(y- x). Thus B1 is primitive over 

R[y][x] but not primitive over R[x][y]. 

To calculate the greatest common right divisor of B 1 either of the indeterminates 

may be specified in the function call. Firstly consider performing the calculation by 

favouring the x indeterminate, i.e. the command gcrd (B1 , x, 'Ux ') ; 

Thus var :=x and varl :=y. The first call to rprimfac on line 4 performs the prim­

itive factorisation B1 =A= M x RO over R[var][varl], i.e. over R[x][y], and since B1 

is not primitive over this ring RO is returned as a non-unit matrix containing the 

primitive factor of B1• 

RO = G ~) ( 

x+y -1) 
M= xy+x -y 

x+ 1 -1 



7.2 Test Examples 228 

The second call to rprimfac on line 5 performs the primitive factorisation of M over 

JR[var1J[var], i.e. over JR[y][x], but M (calculated on line 4) is primitive over this ring, 

thus R1 is returned as the unit matrix. 

R1 = G ~) ( 

x+y -1) 
M= xy+x -y 

x+ 1 -1 

Next the shiftherm procedure is performed on the matrix M (the result from line 5) 

to give 

(

-y3 +y 0 ) 
H= 0 -1-y 

0 0 

and therefore the test for coprimeness performed in lines 7-10 terminates the proce-

dure returning R1 x RO as the result. Thus Dx =gcrd CB1 ,x, 'Ux'); yields 

By design, this example is primitive over JR[y][x] but is not primitive over JR[x][y]; thus 

testing the two possible outcomes of the primitive factorisation procedure, namely 

a non-unimodular polynomial matrix when the matrix argument is not primitive 

(rprimfacCB1 ,x, 'RO'); on line 4) or tlie unit matrix when the matrix argument is 

primitive (rprimfac CB1 ,y, 'R1 '); on line 5). After the two primitive factorisations 

have been performed the resulting matrix M is primitive with respect to both indeter­

minates. In addition to this the matrix M, computed on line 5, is coprime; thus the 

expressions on lines 7-10 terminate the procedure and deliver the greatest common 

right divisor as the result. 

Consider now favouring the y indeterminate. It is clear from the form of the GCRD 

Algorithm that the result will be identical to the result obtained by favouring x. In 

effect by favouring y Steps 1 and 2 are interchanged and since one of these steps 

returns the unit matrix the product of R1 and RO is commutative. Hence 



7.2 Test Examples 229 

u.-y-

0 

Example 7.2: Consider the matrix B2 with primitive factors over both JR[x][y] and 

JR[y][x], defined by 

B,~ (: n (~ :)(: :) 
(

xy+y+1 y+1) 
= xy2 +y+x x+y 

xy+2 2 

For this matrix the primitive factorisation procedure delivers non-unit matrices to 

both invocations: 

M :=rprimfac (B2 ,x, 'RO •); yields 

RO= c ~) M=(:~:~:~ ~~) 
xy+2 -y 

M:=rprimfac(M,y, 'Rl'); yields 

Rl = c ~) (

xy+y+1 -1) 
M = xy2 +X + y -y 

xy + 2 -1 

The third step of the algorithm computes the modified Hermite form. This is achieved 

by the procedure shiftherm: 

H:=shiftherm(M,x); yields 

( 

-y5 + y4 - y3 + y 

H= 0 
0 



7.2 Test Examples 230 

The number of indeterminates in this expression is one, therefore the coprimeness 

test on lines 7-10 terminates the procedure and the greatest common right divisor D 

is delivered by 

D:=evalm(Rl & * RO); yielding 

D= G :y) 
and the coprime matrix resulting from removing this greatest common divisor is given 

by 

op(U,); yielding 

(

xy+y+1 -1) 
U, = xy2 + x + y -y 

xy + 2 -1 

Favouring the y indeterminate interchanges Steps 1 and 2 of the GCRD Algorithm 

and the result is exactly the same as the result obtained by favouring x, i.e. 

yields 

Dy= G x1J 

(

xy+y+1 -1) 
Uy = xy2 + x + y -y 

xy+2 -1 

However, the product of the matrices Rl and RO is non-commutative and by examining 

the individual steps of the procedure it is seen that the result is obtained in an entirely 

different manner: 

M: =rprimfac (B2 ,y, 'RO'); yields 

RO= (~ ~) ( 

xy+y+ 1 -x) 
M= xy2 + x + y -xy 

xy+2 -x 

M:=rprimfac(M,y,'Rl'); yields 

Rl = G ~) 
(

xy+y+1 -1) 
M = xy2 + X + y -y 

xy + 2 -1 



7.2 Test Examples 231 

H:=shiftherm(M,y); yields 

H= 

-1- x + 17x2 + 32x3 -101x4 

-326x5 + 95x6 + 1430x7 + 1465x8 

-2150x9 - 6067x10 - 3142x11 

+6384x12 + 11979x13 + 6148x14 

-5144x15 - 10582x16 - 7126x17 

-716x18 + 2818 + x19 + 2819x20 

+151lx21 + 523x22 + 118x23 

0 

0 

0 

-1 - x + 7x2 + 13x3 

-7x4 
- 37x5 

- 32x6 

+4x7 + 26x8 + 20x9 + 7x10 

0 

This example also demonstrates the assertion made in Section 6.2 that the degree in 

the non-favoured indeterminate rapidly increases when performing the 2-D Hermite 

form. Thus demonstrating the necessity of the rowfactors procedure, although the 

procedure is not invoked here because the coprimeness test terminates the procedure. 

0 

Example 7.3: Consider the matrix B3 that is primitive with respect to both inde­

terminates formed by 

Hence the GCRD Algorithm delivers unit matrices from the primitive factorisa­

tions in Steps 1 and 2 (lines 4 and 5 of the gcrd code) but the test for coprime­

ness will fail so that lines 11-19 are executed. Explicitly the intermediate results of 

gcrd (B3 , x, 'Ux') ; are: 

M:=rprimfac (B3 ,x, 'RO'); yields 

RO = G ~) ( 

x+2y y) 
M= xy+y2 +x x 

x+y+1 1 



7.2 Test Examples 232 

M:=rprimfac(M,y, 'Rl '); yields 

Rl = G ~) ( 

x+2y y) 
M= xy+y2+x x 

x+y+1 1 

H:=shiftherm(M,x); yields 

(

2y-y2-y3 

H= 0 

0 

H:=rowfactors(H,y); yields 

H=(-1 -1) 
0 x+y 

Therefore the greatest common right divisor is 

(-1 -1 ) (1 0) (1 0) (-1 -1 ) 
0 x+y 0 1 0 1 = 0 x+y 

and 

( 

-x-2y -1) 
Ux = -xy - y2 - x -y 

-X- y-1 -1 

To verify the result compute the greatest common right divisor with respect to y, 

i.e. gcrd (B3 , y, 'Ux') ; . The intermediate results are: 

M:=rprimfac(B3 ,y, 'RO'); yields 

RO= G ~) ( x+2y ~) M= xy+y2 +x 

x+y+1 

M:=rprimfac(M,x, 'Rl'); yields 

Rl = (~ ~) 
( x+2y n M= xy+y2+x 

x+y+1 

H:=shiftherm(M,y); yields 



7.2 Test Examples 233 

H= 

262144x5 - 851968x6 + 1081344x7 

-696320x8 + 250880x9 

-51456x10 + 5632x11 
- 256x12 

0 

262144x5
- 851968x6 + 1081344x7 

-696320x8 + 250880x9 

-51456x10 + 5632x11 - 256x12 

- 256x3 + 384x4 - 144x5 + 16x6 

-256x2y + 384x3y- 144x4y + 16x5 y 

0 0 

H:=rowfactors(H,x); yields 

(

-1 -1 ) 
0 x+y 
0 0 

Therefore the greatest common right divisor over the ring JR[x][y] is given by 

As expected the results of the right primitive factorisation procedures on lines 4 and 5 

are equivalent, because the matrix B3 is primitive over both JR[x][y] and JR[y][x]. The 

results of the shiftherm procedure demonstrates the inequality of the 2-D Hermite 

form and also the necessity of removing factors common to each element of a particular 

row before computing the left primitive factorisation on line 16. 

Example 7.4: Consider the matrix B4 with complex and real primitive roots. 

( 

x2 +x+1+y 
yx2 +xy+x+y 

x2 +x+1 

Thus the primitive roots over JR[x][y] are 

x = -1 + iv3, -1 - i v3 

0 



7.2 Test Examples 234 

and over JR[y][x] are 

y= -1 

Consider firstly favouring x the results of the intermediate steps are: 

rprimfac (B4 , x, 'RO'); yields 

rprimfac(M,y,'R1'); yields 

(
-y -1 y2 ) 

R1-
- x+1 -(-l+y)(x+1) ( 

x2 +x+1+y 

M = x2y + xy + x + y 

x2 +x+2 

Therefore result of the command gcrd(B4 ,x ,Ux); is 

(
1 y+1 ) 
0 (y+1)(x2 +x+1) 

( 

x2+x+1+y -1) 
Ux = x 2y + xy +X + y -y 

x2+x+2 -1 

Secondly favouring y gives: 

rprimfac(B4 ,y, 'RO'); yields 

RO= (~ y~J 

rprimfac(M,x, 'R1'); yields 

shiftherm(M, y); yields 

( 

-x1 - 2x6 
- 6x5 

- 4x4 
- 5x3 + 6x2 + 4x + 8 

H= 0 

0 

-1) -y 

-1 



7.2 Test Examples 235 

Therefore the result to gcrd(B4 ,y, 'Uy'); is 

(
1 y+1 ) 
0 (x2 + x + 1)(1 + y) 

( 

x
2
+x+1+y -1) 

Uy = x2y + xy + y + x -y 

x2+x+2 -1 

Thus the routine can deal with matrices possessing complex roots. D 

The following example has been presented in the introduction to Chapter 4 to demon­

strate the motivation for the GCD program. It is reconstructed here to show that 

the secondary matrices do not cause the program to fail. 

Example 7.5: Consider the matrix, B5 , formed by 

( ~ ~) (1 0 ) (1-xy 
1 x+ 1 x2 

1 0 

y2 ) 
1 +xy 

The primitive root of B5 is given by x = -1 therefore line 4 of the gcrd procedure 

(with x favoured) effectively delivers the greatest common right divisor, as the ma­

trix B5 does not possess primitive roots in the y indeterminate and the shiftherm 

procedure delivers a matrix independent of x. Thus gcrd(B5 ,x,Ux); yields 

(
-y- 1 y2 ) 

x + 1 -(y- 1)(x + 1) 

( 

y - xy2 - 1 + xy2 - y -y3 ) 

Ux = -x3 - x2 + x3y + 2x2y + x + 1 + xy x2y2 + xy2 + xy + y + 1 

-1 + xy + y- xy2 - y2 -y3 

Also gcrdCB5 ,y,UY); yields 

(
-y-1 

x+1 
y2 ) 

-(y- 1)(x + 1) 



7.2 Test Examples 236 

Example 7.6: As a further example involving this secondary matrix consider the 
matrix B6 that is primitive over both JR[x][y] and JR[y][x] 

B,~ G ~) (';· :) c~ ... 17"') 

( 

x+2y-2xy2 -2y3+y ) 
= xy - x2y2 + y2 - y3x + x- yx2 + x3 -y3x - y4 - xy2 + x2 + yx 

x - x2y + y- xy2 + 1 - xy + x2 -xy2 - y3 
- y2 + 1 + xy 

Here the results obtained by favouring first x and secondly y are not the same. 

However, since they are both greatest common right divisors they are linked by a 
unimodular matrix V. 

u = y 

( 
-2x2 -1 

-8y-8x 

~ _ !!1l + xy2 + ya 
2 22 2 2 

~ - ~ - ll:. + y3x - x 2 2 2 
_x' + Jt + ~ 

E._!_i+xy~-1 
2 2 2 

-2x2 + 2y3 + v; 
and the connection is given by 

1-2y2 
) 

8y+8x 
-(2y'-1)' 

x2y2 - x2 16 ~ - ~ 
8 16 + 16 8 

+~ - lC= - Jt - .JL + lC. 
:EJ16_ ~ 8 ~ ~ rl6- i6 
16 16 + 8 8 8 

U:_.!. !!ll_lC. + 16 16 + 16 8 

2x
2 -1) 

8y+8x 
x2 _ x2y2 + :;Jl. _ JC. _ ...l.. 
8 x4 _ \ 3112 _4 ~ 8 ~16 

8 8 8 + 8 
-~ + 3x' _ iEJ1. + ~ _ .JL _ lC_ 

8 x3 16 £.u. 16 x2 16 x2y:~l6 16 
8-8+8-8 

_E. + ~ + 3x _ .JL _ .!_ _ JC. 
8 16 16 16 16 16 

(
-2x

2 -1 2x
2 -1) (-1 ::~~~)(2y2 +1 

-8y-8x Sy + Sx = 0 1 -8y-8x 
-...;.._--.,..-~ 

l-2y2 
) 

8y+8x 

V 

D 

The following example demonstrates that the order in which the factors are multiplied 
together affects the form in which the result is given, but the results are all related 
by unimodular matrices. 



7.2 Test Examples 237 

Example 7.7: Consider the matrices formed from the following 

Thus there are six ways of combining the factors 

( 

x2y + 2xy2 + y3 + xy + y2 + y 

C1 = A0A1A2A3 = x 2y2 + y3x + yx2 + xy2 + x2 + xy + x 

x2y + xy2 + xy + y2 + x + y + 1 

( 

2x2y + 2xy2 + xy + y2 + y 

Ca = A0A2A1Aa = x2y2 + y3x + x 3 + x2 + yx2 + xy2 + xy + x 

x2y + xy2 + xy + x + x 2 + y + 1 

( 

2x2y + 2xy2 + xy + y 

c4 = AoA2A3A! = x2y2 + y3x + x 3 + x2 + yx2 + xy2 +X 

x2y + xy2 + xy + x + x 2 + 1 

( 

x2y + 2xy2 + y2 + y 

c6 = AoAaAI A2 = x2y2 + y3x + yx2 + yx2 + xy +X 

x2y + xy2 + xy + y + 1 

D 1(x) =gcrd(C1 ,x,U1(x)); yields 

(
y2+y+l+xy+x 

D!(x) = (x + y)yx ~) 

7) 

~) 



(

y 

u!(x) = ~ 

D 1(y) =gcrd(C1 ,y,U1(y)); yields 

( 
-x- 1-y-y2-xy 

Dt( l = Y -(x+y)xy 

u!(y) = (=~ =~) 
-1 -1 

D2(x) =gcrd(C2 ,x, U2(x)); yields 

D - (y2+y+1+xy 01) 
2(x) - (x + y)yx 

u,,., ~ G ;) 
D 2(y) =gcrd(C2,y,U2(y)); yields 

(
-y2-y-1-xy 

D2(y) = (x + y)xy 

( 
-y y11) 

u2(y) = -x 
-1 

Da(x) =gcrd(C3 ,x, Ua(x)); yields 

7.2 Test Examples 238 

Da = ( y + 1 + x
2 

+ xy + x 
0
1 ) 

(x) (x + y)yx 

u,.,{ D 
Da(y) =gcrd(C3 ,y,U3(y)); yields 

( 
-x2-x- 1-y-xy 

Da(y) = -(x + y)xy 



(

-y 

Ua(y) = -x 
-1 

7.2 Test Examples 239 

-1) 
-y 

-1 

_ ( -xy-x - 1 -1 ) 
D5(x) - 1 2 -x -y 1-y-x 

( 
-x-2y+1 ~1) 

u5(x) = -xy-x-y2 + y 
-x-y 

(
-x-1-xy 

D5(y) = -(x + y)xy ~1) 

(

-y 

u5(y) = -x 
-1 

-1) -y 

-1 

D6(x) =gcrd(C6,x,U6(x)); yields 

D (xy+y+1 
0
1) 

6(x) (x + y)yx 



7.2 Test Examples 240 

-1 ) 
x-1+y 

( 

-x-2y+ 1 -1) 
u6(y) = -xy-x-y2 + y -y 

-x-y -1 

The GCDs computed with respect to x and with respect to y above are linked by 

unimodular matrices in a similar way to Example 7.6: 

Di(x) = U;D;(y) for i = 1,2,3,4,5,6 

where - (-1 0 ) UJ-
0 -1 

- ( -1 0) U2-
0 1 

- (-1 0 ) Ua-
0 -1 

- (-1 0) u4-
0 1 

Us= ( 
1 

x-1+y 

u6 = ( 
-1 

1-x-y 

The following two extended examples show the precise details of the greatest common 

divisor procedures by displaying the parameters at each of the notable points in the 

procedures. Thus demonstrating the flow of the program as executed by the MAPLE 

kernel. 

Example 7.8: The first of the extended examples demonstrates the geld and the 

shiftherm procedures. The major intermediate results of the procedure are given 

together with the intermediate results of the of the shiftherm procedure. The first 



7.2 Test Examples 241 

two primitive factorisations are redundant as the matrix does not contain any primi­

tive factors in x or y. Thus it is the shiftherm procedure that performs most of the 

calculations and to a lesser degree the lprimfac procedure. 

D,= (
x+y 

1 

= (x+y 
1+y 

gcld(D1 ,x, 'U'); yields 

-+enter geld args = D1 , x, U 

-+ enter transpose args = D1 

+- exit transpose 

0)(1 y 1) 
1 y X 1 

y(x+y) x+
2 

y) 
x+y 

( 

x+y 

Df := y(x+y) 

x+y 

-+ enter gcrd args = Df, x, U 

-+ enter otherindet args = D[, x 
+- exit otherindet 

var1 := y 

-+ enter rprimfac args = D[, x, RO 

+- exit rprimf ac 

-+ enter rprimf ac args = M, y, R1 

+- exit rprimfac 

( 

x+y 1 ) 
M:= y(x+y) x+y 

x+y 2 



R1 := G ~) 
--+ enter shiftherm args = M, x 

mx := y(x+y) 
[( 

x+y 

x+y 

--+ enter gaussredS args = mx, x 
<-- exit gaussredS 

w+· mx:= ~ 
l+y) 
1~y 

( I -1 

-y+y2 -xy+x 

--+ enter colredS args = mx, x 
<-- exit colredS 

[ c·-i-xy 
I ~y) M:= 0 

0 

( 2 -1 

-y+y2 -xy+x 

<-- exit shiftherm 

0 

0 

1- 2y +y2 

0 

0 

1- 2y +y2 

(

x+y- y2 -xy 

Ii:= 0 

0 

--+ enter rowdim args = H 

<-- exit rowdim 

--+ enter coldim args = H 

<-- exit coldim 

rdim := 3 

7.2 Test Examples 242 

-y'+)+xyJ l 

-y-1 ) l 
-y3 + y}+ xy- x 



--+ enter rowfactors args = H, y 

+- exit rowfactors 

cdim := 2 

m:=2 

(

-x-y 0) 
H:= 0 1 

0 0 

--+ enter submatrix args = H, 1 ... 2, 1 ... 2 

+- exit submatrix 

(
-x-y 

R:= 0 ~) 
--+ enter lprimfac args = R, y 

+- exit lprimfac 

(
-x-y 

Rprim := O 

--+ enter evalm args = ~im, R1, RO 

+- exit evalm 

~) 

(
-x-y 0) D·-.- 0 1 

+- exit gcrd 

--+ enter transpose args = U 
+- exit transpose 

U:= -y x+y 
(

-1 l+y) 
-1 2 

(

-X -y 0) 
D:= 

0 1 

(

-1 

U:= -y 

-1 

l+y) 
x+y 

2 

7.2 Test Examples 243 



( 
-1 

U·-.- 1 +y 

-+ enter transpose args = D 

+-- exit transpose 

-y 
x+y 

(
-x-y 0) 

D:= 
0 1 

+-- exit geld 

7.2 Test Examples 244 

0 

Example 7.9: The second of the extended examples principally demonstrates the 

lprimfac and the shiftherm procedures. The matrix has one primitive factor in y, 

thus the first primitive factorisation with respect to x does not extract any factors. 

However the second primitive factorisation, with respect to y, does extract a factor. 

When the shiftherm procedure is performed it is discovered that the coprime test is 

true, thereby terminating the procedure. 

c ') (xy; 1 ~y) D2= y X 

1 1 

( "Y+y+ I -y) 
- xy2 +x +y -y2 

xy+ 2 -y 

gcrd(D2 ,x, •U•); yields 

-+ enter gcrd args = D2 , x, U 

-+ enter otherindet args = D2 , x 

+-- exit otherindet 

var1 := y 

-+ enter rprimf ac args = D2 , x, RO 

+-- exit rprimfac 



7.2 Test Examples 245 

( 

xy+y+ 1 -y) 
M := xy2 + x + y -y2 

xy+2 -y 

RO:= G ~) 
-+ enter rprimf ac args = D2 , y, R1 

-+ enter transpose args = D2 

<-- exit transpose 

Df := ( xy + y + 1 

-y 

-+ enter lprimfac args = Df, y, S 
-+ enter row-dim args = Df 
<-- exit row-dim 

rdim := 2 

-+ enter coldim args = Df 
<-- exit coldim 

-+ enter copy args = Df 
<-- exit copy 

cdim := 3 

M:= (xy+y+ 1 xy2 +x+y 
-y -y2 

-+ enter uni tmx args = 2 

<-- exit unitmx 

Q:= G ~) 
-+ enter primroots args = M, y 

<-- exit primroots 

-+ enter otherindet args = M, y 

<-- exit otherindet 

s := [0] 

xy+2) 
-y 

xy+2) 
-y 



varl := x 

--+ enter subs args = M, y=O 
<- exit subs 

B:=C 
X 

~) 0 

--+ enter emxc args = B 
<- exit emxc 

B:=C 
X 

~) 0 

--+ enter shiftherm args = B, X, u 
<- exit shif therm 

B:= G ~ ~) 

U:= G ~) 
--+ enter multiply args = U, M 

<- exit multiply 

M:= (xy+y+ 1 
-y 

--+ enter factorow args = M, y 

<- exit factor 

row:= 2 

--+ enter uni tmx args = 2 

<- exit unitmx 

c := (~ ~) 
C:=G ~) 

--+ enter evalm args = Q, u-'. c 
<- exit evalm 

7.2 Test Examples 246 

xy+2) 
-y 



-+ enter emxc args = Q 

<- exit emxc 

<- exit lprimfac 

7.2 Test Examples 247 

Q := (~ ~) 

Q:= c ~) 
Q:= (xy+y+1 xy

2
+x+y 

-1 -y 
xy+2) 

-1 

-+ enter transpose args = Q 

+-- exit transpose 

R := (~ ~) 

(

xy+y+1 -1) 
Q := xy2 + x + y -y 

xy + 2 -1 

+-- exit rprimfac 

(

xy+y+1 

M:= xy2 +x+y 

xy+2 

-+ enter shiftherm args = M, x 

+-- exit shiftherm 

-1) -y 
-1 

H'{Y J~y) 
-+ enter indets args = op(H) 

+-- exit indets 

indets = y 

(

xy+y+1 

U := xy2 +x+y 

xy+2 

-1) -y 
-1 



7.2 Test Examples 248 

+- exit gcrd 

D 

The examples upto this point have demonstrated the important features of the proce­

dures but have been relatively simple. This has been necessary so that the examples 

can easily be checked, by hand, and also for conciseness. The following examples are 

slightly larger matrices. However, the power and capacity of the host computer has 

prevented larger examples being tested. 

Example 7.10: Consider the 5 x 4 matrix defined by 

1 0 0 0 
X 0 0 0 

0 1 0 0 
1 y+2 0 0 

Fl= 0 1 1 0 
1 1 x+y 0 

0 0 0 1 
1 1 1 1 

1 0 1 1 (-x 0 
1 y+2 0 0 i:..J IO<iJ 

0 0) ls f.tr?w 

2 y+3 x+y 0 1reA /"tl<> 
- 4-tfA 1-ft.l 1 1 1 1 

x+2 2 x+y+1 1 .!.(,'{,.. t-OW 

gcrd(F1 ,x, 'Ux '); yields 

1 y+2 0 0 

-2- 2y xy + 2x- 4y- 3- y2 -y- xy- y2 
- x 0 

1 1 1 1 

2(x + y)(y + 2) (x + y)(y + 2)(y + 3) (x + y)(y + 2)y 0 

-(2y2 + 6y + 3)x y(y + 2) 0 1 + y 

1 0 0 0 

Ux = 4x + 2xy -y- 1 0 -1 

0 0 1 0 

x-1-4xy-2xy2 y2+y-1 1 y 

gcrd (F1 , y, 'Uy ') ; yields 
I ly + 1. + lx lxy + lx2 0 8 8 4 8 8 8 
I ly + 1 + lx lxy + ly + lx + lx2 0 2 4 4 4 4 4 4 4 

1 1 1 1 

0 /6x(x + y) 1
1
6x(x + y)(x- 2) 0 



7.2 Test Examples 249 

-24x 8x 0 16 

8 -16x 4x 0 16 

U= y -16x 4+4x 0 16 D 

0 0 1 0 

-24x- 8 8x+4 1 16 

Example 7.11: Consider the matrix F2 formed by 

1 0 0 0 
x+3 1 1 1 

0 1 0 0 
0 y 1 1 

F2= 0 1 1 0 
x2 +y 0 0 1 

0 0 0 1 
0 0 0 x2 

1 0 1 1 

x+3 1 1 1 

0 y 1 1 

- 0 y 1+x2+y 2 

0 0 0 x2 

x+3 1 1+x2+y 2+x2 

gcrd(F2,x, 'Ux '); yields 
I 0 ly + lxy + lx2 + lx 0 6 3 6 6 3 

-1 I -~y- ~xy- ~x- ~x2 0 -2 
1 1 1 1 

0 0 - 2~ (x + y)x(x + 2) 0 

6x 0 0 24 

-18- 12x -2x-4 0 -24 

u = X -24 -12x -2x-6 0 -24 

0 0 1 0 

6x- 6 -2 1 24 

gcrd(F2,y,'Uy'); yields 
I 0 ly + lxy + lx2 + lx 0 6 3 6 6 3 

1 I iiy + lxy + iix + lx2 0 2 2 2 2 2 
1 1 1 1 

0 0 2~ (x + y)x(x + 2) 0 

6x 0 0 -24 

-18- 12x 2x+4 0 24 

U= y -24 -12x 2x+6 0 24 D 

0 0 1 0 

6x- 6 2 1 -24 



7.2 Test Examples 250 

It may be argued that these are not large matrices, but to perform the GCD algorithm 

manually with matrices of this size is very time consuming. 



7.3 CPU Time Considerations 251 

7.3 CPU Time Considerations 
It has been seen in the previous section that the documented program delivers the 

expected results. It is the purpose of this section to consider the time taken for such 

calculations, expressed in the number of seconds used by the CPU (Central Processing 

Unit). 

It is instructive to consider the examples in three sets, due to the similarity of di­

mensions. Firstly the matrices B 1, B2 , ••• , B6, secondly matrices C1, C2 , ••• , C6 and 

thirdly matrices FI> F2• Arguably the first two sets may be compared together but 

the second set is composed from the same three matrix factors. To compare the 

times more reliably a number of calculations were performed and the average taken: 

typically the calculations were performed twenty times. 

The times recorded for the B1, B2 , ••• , B6 are as follows. 

A gcrd(A,x,'Ux'); gcrd(A,y, 'Uy'); 

Bl 7.33 6.00 
B2 9.70 9.82 
B3 8.83 10.48 
B4 19.50 20.57 
Bs 7.33 8.03 
Bs 49.23 52.43 

Figure 7.2: CPU time in seconds 

To explain the results consider the GCRD Algorithm and the number of steps in which 

the procedures perform the calculations. Thus comparing B 1 and B2 • The former 

only possess one primitive root with respect to one indeterminate and the second 

possesses primitive roots in both indeterminates therefore as expected the results for 

B2 take longer than those for B 1• The calculations for matrix B3 are performed in 

the shiftherm and rowf actors procedures therefore comparing the times with B1 

and B2 is fairly meaningless. The matrix B4 not only contains primitive roots in both 

indeterminates but some are complex thereby explaining the increased time taken. 

A seemingly surprising result is obtained by considering the time taken for the cal­

culations using matrices B5 and B6• Both of these possess a secondary matrix but 

the time taken for B6 is almost seven times as long as the time taken for B5 . This 

discrepancy can be explained by considering the 2-D Hermite form: for B5 shiftherm 

delivers a matrix with polynomial elements with degrees less than ten, however, for 

B6 the elements have degree upto twenty-five and additionally have six digit integer 

coefficients. Therefore the extra time is used in computing the 2-D Hermite form. 



7.3 CPU Time Considerations 252 

From the above discussion it appears that the most time consuming process is the 

computation of the 2-D Hermite form. The reason for this is that the degrees of the 

polynomial elements of the matrix in the 2-D Hermite procedure are relatively large 

compared to the degrees in other procedures. Therefore the number of elementary 

operations and invocations of the pseudo-division algorithm is relatively high. 

The second set of examples are derived by multiplying a coprime matrix, A0 , by three 

factors corresponding to the three types of matrix factor discussed in Section 4.5.4 

(GCD modifications). 

A gcrd(A,x, 'U,'); gcrd(A,y, 'Uy'); 

cl 15.39 15.29 
C2 14.90 16.24 
c3 14.75 15.48 
c4 15.81 15.04 
Cs 19.81 15.51 
c6 14.60 39.20 

Figure 7.3: CPU time in seconds 

Thus in the first four cases the time taken for each calculation is similar, but it is 

more efficient to perform the calculation with respect to y in the fifth matrix, C5 • A 

more marked difference is seen between the calculation of C6 firstly with respect to 

x and secondly with respect toy (the latter takes over twice as long to perform the 

calculation). By examining the individual steps of the procedure it is discovered that 

the 2-D Hermite procedure delivers a matrix with polynomial elements upto degree 

37 and containing nine digit integer coefficients; the highest polynomial degree in 

the other 2-D Hermite forms is seven (in C5 with respect to x) with single digit 

coefficients. 

Thus once again the 2-D Hermite form accounts for the increased time taken. 

Finally the timestaken for the larger examples are· 
A gcrd(A,x, 'Ux'); gcrd (A, y, 'Uy ') ; 

Ft 44.98 42.17 
F2 43.8 46.88 

Figure 7.4: CPU time in seconds 

Thus, although the matrices have more elements than those considered in Figures 7.2 

and 7.3, the time taken to compute the GCDs are not overwhelmingly different. This 

is because of the relatively simple nature of the matrix structure. However, more 

complicated examples have been prohibited by the power and storage capacity of the 

host machine. 



7.4 FUrther Discussion 253 

7.4 Further Discussion 
In the previous section numerous examples of matrices with various sizes have been 

tested and a greatest common divisor has been returned as the result of the procedure. 

However, the picture is not yet complete. Consider computing the greatest common 

right divisor of the matrix, A(x,y), via gcrd(A,x); where 

(

xay + xy + y + 1 ~1) 
A= x4 +x2 +2x 

x3 +x+y+1 

The result of this command is the error message: 

error in sprem, invalid arguments to divide 

The reason for this failure can be traced to the simplification rules used by MAPLE 

to simplify radicals, i.e. rational powers of expressions. The problem is hi-lighted 

by considering the polynomial a(x) = x3 + x + 1. The zeros of this polynomial, as 

calculated by MAPLE using the command: 

solve(a=O,x); 

are 

(284) 

- 1 [(1 y'31)~ (1 y'31)~ ((1 y'31)~ (1 y'31)~). ] 52 = 2 2 - 6v3 + 2 + 6y'3 + 2 + 6y'3 - 2 - 6v3 zv3 ' 
(285) 

- 1 [(1 y'31)~ (1 y'31)~ ((1 y'31)~ (1 y'31)*). ] 53 = 2 2 - 6y'3 + 2 + 6y'3 - 2 + 6y'3 - 2 - 6y'3 zv3 ' 
(286) 

However, when these roots are substituted into the polynomial a and 

simplify(a,radical); 

is executed MAPLE delivers the following result 

-1 [(3v3- v31)~(3v3 + J31)~6bt + (3v3- v31)~(3v3 + v31)~6ht] 
2 1 1 1 

2 x a•6• + 2J3(3va- v31)' + 2v3(ava + vai)• 
(287) 

This expression is in fact zero, but not recognised as such by MAPLE. The crucial 

result appears to be the difference of two squares when raised to a fractional power, 

i.e. 
1 1 2 2 1 

(a+b)>(a-b)> =(a-b)' (288) 



7.4 Further Discussion 

using this result in (288) the following factored form is derived 

Now 

( ( -4)~6~3k + 2y'3) [(3y'3- y'31)~ + (3y'3 + y'31) ~ l 
2 X 3~6~ 

1 1 1 1 l ~~ ~ 
(-4)•6•3• = (-24)•(y'3)• = -(v1728)• = -v 1728• = -y'12 = -2y'3 

Thus the first bracket in (289) is zero. Hence the expression (287) is zero. 

254 

(289) 

(290) 

The failure of MAPLE to simplify expressions of this kind causes the primitive fac­

torisation algorithm to fail when calculating the modified Hermite form of the matrix, 

formed by substitution of an indeterminate by its primitive root. In particular the 

last row of the modified Hermite form does not become identically equal to zero using 

MAPLE's simplification rules and indeed may cause division by zero if all elements 

are evaluated fully. 

Clearly the primitive factorisation procedure needs to be modified so that examples 

involving complicated primitive roots such as those described above do not fail to be 

computed. 

One solution to this problem may be achieved by replacing the polynomial by a 

product of its linear factors. Consider this procedure in the context of the above 

discussion. 

The roots of a(x) = x3 + x + 1 are given by 8 1, 82 , 8 3 as given in (284)-(286), 

thus every occurrence of x3 + x + 1 could be replaced by its linear factorisation 

(x- 8 1)(x- 82)(x- 8 3). This could be achieved by the following. 

a:=x-3+x+1; 

s:=solve(a=O,x); 

M:=simplify(op(A),{a=(x-s[l])*(x-s[2])*(x-s[3])}); 

where A is the matrix in which the substitution is to be made, op is used to indicate 

that it is the operands, i.e. the elements, of A that are to have the substitution 

performed on and not the name A. M then contains the all occurrences of a replaced 

by its linear factorisation. 

This process can be achieved in general for the polynomial poly by the procedure 

linearfac below. 

linearfac:=proc(poly) 

local s,m; 



s:=solve(poly); 
m:=map(proc(x,y) ;y-x end, 

[s], 

op(indets(poly))); 

convert(m, '* ') 
end; 

Thus returning to the above polynomial xa + x + 1 

linearfac(x"3+x+1); 

delivers 

7.4 Further Discussion 255 

where s 1, s2 , sa are given by (284)-(286). Occurrences of the polynomial xa + x + 1 

are replaced by the linear factorisation (x- s 1)(x- s2)(x- sa) by executing the 

commands: 

a:=x"3+x+1; 

simplify(A,{a=linearfac(a)}); 

However, this solution does not rectify the problem for all cases because the poly­

nomial that defines the primitive roots is not necessarily present as a factor of the 

matrix elements. Consider forming the left primitive factorisation of the matrix 

C(x,y)=(xay x+1) 
-y 1 

over the ring IR[x][y]. The determinant of the matrix is given by 

det C(x, y) = xay + (x + 1)y = y(xa + x + 1) 

Therefore the primitive roots are given by the solution to the equation 

(xa+x+1)=0 

i.e. the three numbers given by (284)-(286). Thus the primitive roots are defined by 

the zeros of the polynomial xa + x + 1. However, the procedure described above does 

not have any effect on the elements of the matrix since x3 + x + 1 does not occur 

within any of the matrix elements. 

Thus the procedure of replacing the primitive factor defining polynomial by its lin­

ear factorisation has limited benefits but does allow the greatest common divisor of 

a larger class of matrices to be computed. A longer term solution is provided by 

extracting the primitive factor defining polynomials without computing the roots of 



7.4 Further Discussion 256 

the polynomial. Additionally, a procedure of this type would remove the necessity 

of using complex numbers when deriving the primitive factorisation. The theoretical 

existence of such a procedure is provided by [35]. 

The philosophy of the procedure is to remove the irreducible factors of the primitive 

root-defining-polynomial one at a time by working with the matrix modulo the prim­

itive factors and performing a similar type of reduction as described in the primitive 

factorisation algorithm. Therefore the coefficient field of the polynomials does not 

have to be algebraically closed. For example, if the coefficient field of the polynomial 

matrix elements is the reals, i.e. the matrix elements belong to JR[z1, z2], all calcula­

tions may be performed using only real numbers. The process used here is to calculate 

all the primitive roots and then to remove them one at a time; thus some of these 

roots may involve complex numbers. As it has been noted complex numbers appear 

to be slightly unpredicable when used in predefined functions in the linalg pack­

age. If the primitive roots of a matrix are all real the two algorithms are essentially 

identical. 

Thus the algorithm of Guiver and Bose [35] has addressed the problem of using com­

plex numbers but by requiring the polynomial to be expressed in terms of irreducible 

factors it does not address the real problem of radical expressions, i.e. terms to a 

fractional power. Therefore it is believed that the additional effort involved in the 

coding of this algorithm is not justified. 



7.5 Application to Coprime MFD 257 

7.5 Application to Coprime MFD 
Recall the definition of a matrix fraction description (MFD) and the method of for­

mation as proposed in Chapter 2. Suppose that Gpxq(z1, z2) is a matrix with rational 

elements in the two indeterminates z1 and z2• A matrix fraction description is given 

by 

G(z1,z2) = Dj1(z1,z2)N1(z1,z2) 

= N2(z1,z2)D21(z1,z2) 

left MFD 

right MFD 

(291) 

(292) 

where N1 (zl> z2), N2(z1, z2), D1 (z1, z2) and D2(z1, z2) are polynomial matrices with 

dimensions p x q, p x q, p x p and q x q, respectively. 

A coprime MFD is defined by insisting that the polynomial matrices in (291) and 

(292) form a coprime pair; thus defining two types of coprime MFD corresponding to 

the two notions of coprimeness, namely minor or zero coprime. Explicitly D1(z1,z2), 

N1 (z1 , z2) are said to form a minor (left) coprime MFD (zero (left) coprime MFD) of 

G(z1, z2) if 

G(z1,z2) = Dj1(z1,z2)N1(z1,z2) 

and additionally D1 (z 1, z2), N1 (z1, z2) form a minor (left) coprime (zero (left) coprime) 

pair of matrices. Similar statements can be made for coprime right MFDs by insisting 

that D2(z1, z2), N2(z1, z2) form a minor (right) coprime (zero (right) coprime) pair of 

matrices. 

The process by which a left coprime MFD can be formed is given by the procedure 

detailed in Algorithm 2.1 and by incorporating the program documented in Chapter 

6, the following is obtained. 

Algorithm 7.1: (Left coprime MFD) 

Let Gpxq(z1, z2) be the matrix defined by 

9u(zl,z2) 9t2(z,,z2) 

921 (z,, z2) 922(Zt, z2) 

g,q(Zt, z2) 

92q(zl, z2) 

where the elements 9;;(z1, z2) for i = 1, 2, ... , p and j = 1, 2, ... , q are rational func­

tions in the two indeterminates z1 and z2• 

Step 1: Form d;(z1, z2), the least common denominator of the ith row of Gpxq(z1, 

z2), fori= 1,2, ... ,p. 



7.5 Application to Coprime MFD 258 

Step 2: Construct the diagonal matrix Dpxp(z1, z2), 

d1(z1,z2) 0 

0 d2(z1,z2) 

0 0 

0 

0 

Step 4: Define the matrix A(z1, z2) by augmenting the matrices D(z1, z2) and N(z1, 

z2) as derived in Steps 2 and 3. Thus 

Step 5: Compute the greatest common left divisor, Q(z1, z2), by executing the 

command 

gcld(A,var, 'U'); 

where var is either z1 or z2• 

Step 6: The cop rime MFD is given by a suitable partition of the matrix U, i.e. define 

D(z1, z2) as the first p columns of U and fir(z1, z2) as the last q columns of U. Then 

D(z1 , z2) and fir(z1 , z2) form a coprime pair of matrices and by construction 

Then 

G(z1, z2) = D-1(z1, z2)N(z1, z2) 

= (D(z1, z2 )-
1Q-1 (z1, z2)) ( Q(z1, z2)fir(z1, z2)) 

Thus by construction D(z1, z2), N(z1, z2) necessarily form a minor (left) coprime MFD 

of G(z1, z2). Additionally, by Theorem 2.2, D(z1, z2), N(z1 , z2) may also be zero (left) 

coprime, depending on the nature of G(z1, z2). 0 

The following example illustrates the algorithm defined above. 



7.5 Application to Coprime MFD 259 

Example 7.12: Consider forming the left coprime MFD of the rational matrix G(z1, 

z2) defined by 

Step 1: The least common denominators are given by 

Step 3: The polynomial matrix N(z1, z2) = D(z1, z2)G(z1, z2) is therefore defined 

by 

Step 5: The result of the MAPLE statement geld CA ,x, 'U') ; is 

G 7 :) 
Step 6: By partitioning the matrix U(z1, z2) the coprime MFD is given by 

D 

Algorithm 7.1 may be automated in MAPLE by defining the procedure lmfd. 



7.5 Application to Coprime MFD 260 

The Function: 

Syntax: lmfd(G ,x, 'D'); 

Parameters: G - a two dimensional array, 

x - an unevaluated name, 

D - a place holder for the denominator matrix. 

The matrix G is a rational polynomial matrix in two in determinates, one of which is 

x. The result of the function is the numerator matrix of a coprime MFD of G. The 

denominator matrix is returned in D. Thus G = D-1 N, where N is the result of the 

function. 

Procedure Code: 

8 lmfd:=proc(G,var,D) 

9 local i,j,d,n,s,rdim,cdim,M,N,U; 

10 rdim:=rowdim(G); 

11 cdim:=coldim(G); 

12 d:=array(diagonal,1 .. rdim,1 .. rdim); 

13 for i to rdim do 

14 for j to cdim do 

15 s[j] :=denom(G[i,j]) 

16 od; 

17 s:=convert(s,set); 

18 d[i,i]:=lcm(op(s)); 

19 od; 

20 n:=multiply(d,G); 

21 M:=array(l .. rdim,1 .. rdim+cdim); 

22 for i to rdim do 

23 

24 

for j to rdim+cdim do 

if j<=rdim then M[i,j] :=d[i,j] else 

25 M[i,j]:=n[i,j-rdim] fi 

26 od 

27 od; 

28 if gcdminors(M)=1 then D:=copy(d); RETURN(op(n)) fi; 

29 gcld(M,var,'U'); 

30 D:=submatrix(U,1 .. rdim,1 .. rdim); 

31 N:=submatrix(U,1 .. rdim,rdim+l .. rdim+cdim) 

32 end; 



Formal Parameters: 

G - a two dimensional array; 

var - an unevaluated name; 

7.5 Application to Coprime MFD 261 

D - a place holder to store the denominator matrix. 

Local Variables: 

i - an index of iteration; 

j - an index of iteration; 

d - a two dimensional array, containing the non-coprime denominator matrix; 

n - a two dimensional array, containing the non-coprime numerator matrix; 

s - a one dimensional array, containing the denominator of a particular row of G; 

rdim - the number of rows in G; 

cdim - the number of columns in G; 

M - a two dimensional array, containing the augmented matrices d and n; 

N - the coprime numerator matrix; 

U- the coprime matrix resulting from the geld procedure. 

Line 1 defines the lmfd as the procedure name. 

Line 2 declares the local variables. 

Line 3 assigns rdim the number of rows in G. 

Line 4 assigns cdim the number of columns in G. 

Line 5 assigns d as a square matrix with elements not on the principal diagonal 

identically zero. 

Lines 6-12 Commutes the least common denominator of each row of G by finding the 

lowest common multiple of the denominators, expressed as a set, s. 

Line 13 assigns n as the polynomial matrix resulting from the multiplication of d by 

G. 
Line 14 assigns M as a two dimensional array with rdim rows and rdim+cdim columns. 

Lines 15-20 assigns the two dimensional array M formed by augmenting the matrix n 

to d. 

Line 21 decides if the matrix M is coprime; if so this matrix is returned as the de­

nominator and numerator matrices. 

Line 22 computes the greatest common left divisor of the matrix M with respect to 

var and assigns U as the coprime matrix resulting from extracting the GCD. 

Lines 23-24 assigns D and N as the denominator and numerator matrices respectively, 

with the numerator matrix being the result of the procedure. 

Line 25 terminates the procedure. 



7.5 Application to Coprime MFD 262 

A right coprime MFD may be calculated by transposing the matrix G and then 

performing a left MFD, using lmfd. The right coprime MFD is the transpose of the 

result obtained from the lmfd procedure. This may be defined as: 

The Function: 

Syntax: rmfd(G,x,'D'); 

Parameters: G - a two dimensional array, 

x - an unevaluated name, 
D - a place holder for the denominator matrix. 

The matrix G is a rational polynomial matrix in two indeterminates, one of which is 

x. The result of the function is the numerator matrix of a coprime MFD of G. The 

denominator matrix is returned in D. Thus G = N D-1
, where N is the result of the 

function. 

Procedure Code: 

rmfd:=proc(G,var,D) 

local H,N; 
H:=transpose(G); 

N:=lmfd(H,var,D); 

D:=transpose(D); 

N:=transpose(N) 

end; 

Formal Parameters: 

G - a two dimensional array; 

var - an unevaluated name; 
D - a place holder to store the denominator matrix. 

Local Variables: 

H - the transpose of the matrix G; 

N - the numerator matrix of the MFD. 

Line 1 defines rmfd as the name of the procedure. 

Line 2 declares the local variables. 

Line 3 transposes the matrix G. 

Line 4 assigns N as the numerator matrix of the left MFD of H. 

Line 5 transposes the denominator matrix of the left coprime MFD. 

Line 6 transposes the numerator matrix computed in line 4: this is the result of the 

procedure. 

Line 7 terminates the procedure. 



7.5 Application to Coprime MFD 263 

Thus using this on the above example 

lmfd(G,x,'D'); yields 

0 



7.6 Conclusions 264 

7.6 Conclusions 
In Part Two of this thesis a program has been documented that automatically calcu­

lates the greatest common divisor of a polynomial matrix. This program is based on 

certain theoretical ideas by [33], [34]. However, the algorithms as described within 

those works are unsuitable for implementation into an algebraic manipulation lan­

guage for two reasons. Firstly, the algorithms are fundamentally theoretically de­

ficient and secondly practical considerations suggest modifications to increase the 

efficiency of the procedure. 

The one major efficiency improvement is the test for coprimeness after the 2-D Her­

mite formation. A test for coprimeness at an.earlier stage is prohibited by the number 

of calculations that are necessary. The evidence provided by the examples demon­

strate that the formation of the 2-D Hermite form would result in an efficiency loss 

due to the necessary number of elementary operations and use of the pseudo-division 

algorithm. This is attributable to the high degrees of the polynomial elements in the 

2-D Hermite form. The alternative method of checking for a coprime matrix by com­

puting the high-order minors is equally prohibitive due to the number of calculations 

required in computing a number of determinants and then checking for factors of the 

polynomials so formed. 

Thus the program can only be made more efficient by improving the individual proce­

dures that constitute the GCRD algorithm, namely the modified Hermite procedure 

and the primitive factorisation procedure, and also the procedures contained there-in. 

From the evidence provided by the examples it is an improvement in the speed of the 

2-D Hermite form that would contribute the most to an improvement in the overall 

program. However, the speed of the 2-D Hermite form is governed almost exclusively 

by the speed that elementary operations can be performed and the calculation of the 

pseudo-division algorithm. The procedure that effects these calculations are prede­

fined MAPLE procedures. Thus an increase in efficiency of the 2-D Hermite form can 

only be achieved by rewriting the predefined procedures in MAPLE. 

The main theoretical contributions of this work are two fold. The first contribution is 

the rigorous definition via a constructive algorithm of the Hermite form of a matrix 

that does not have full rank. This seems to have been overlooked in the literature and 

certainly not accounted for in the original formulation ideas [33], [34]. The second 

contribution is the development of a simple and efficient coprimeness test arising from 

the 2-D Hermite form. Of course, these theoretical contributions are in addition to 



7.6 Conclusions 265 

the major practical contribution of forming the GCD of a 2-D polynomial matrix: a 

process that is very lengthy and complicated to apply without the aid of a symbolic 

manipulator or some other method of manipulating 2-D polynomial matrices. One 

of the main applications of this program is to the realisation of transfer function 

matrices to form coprime MFDs. The automatic procedure for achieving these MFDs 

has been given in Section 7.5. 

It has been seen from the test examples presented in Section 7.2 that the program is 

limited by the nature of the primitive roots possessed by the matrices. The program 

fails to complete the automatic procedure due to the type of numbers contained in the 

calculations, namely integers to fractional powers (termed radicals). These numbers 

arise from a need to work with exact numbers; the rounding errors introduced by 

decimal notation are clearly unacceptable in this type of computation. However, the 

size of the matrices are limited by the power storage capacity of the host computer. 

The solution to the failure of the primitive factorisation procedure problem is not 

entirely clear, but by considering the MAPLE internal representation of polynomial 

roots either additional rules need to be defined in order to deal with examples of 

the type detailed in Section 7.4 or the radicals must be expressed in an alternative 

form. MAPLE provides a data structure called RootOf which is used for the internal 

representation of algebraic numbers, i.e. solutions of polynomials. For example, the 

internal representation of the solutions to x3 + x + 1 = 0 are 

Root0f(_Z3+_Z+1) 

The actual algebraic number representation of these results is obtained by using 

the function allvalues: as used by the roots procedure. The simplification rules 

of MAPLE are defined to recognise RootOf expressions thus the type of problems 

encountered in the simplification of expressions involving radicals would not arise. 

However, it does introduce the problem of working with expressions that contain 

RootOf. 

It is the author's belief that the solution to this problem lies with using the RootOf 

notation and not with a new procedure to calculate the primitive factorisation. Al­

though improvements in efficiency may be gained by a new procedure. 

As a final note to this program documentation a reference is made to an alternative 

symbolic manipulator called Mathematica. In light of the problems encountered 

in MAPLE one of the first considerations to be made when selecting a symbolic 



7.6 Conclusions 266 

manipulator for the calculation of a greatest common divisor is the computation 

and representation of polynomial roots. As demonstrated above MAPLE can not 

always simplify expressions involving radicals, such as those given in Section 7.4. 

This problem is not encountered when using Mathematica. For example the roots of 

the polynomial x 3 + x + 1 are s1, s2, s3 as given by (284)-(286). The Mathematica 

command to compute these roots is given by 

Solve[x"3+x+1==0,x] 

If subsequently these roots are substituted into the polynomial and the expression 

simplified using the command Simplify the result is zero. 

Thus Mathematica appears to be the better symbolic manipulator for producing the 

primitive factorisation of a polynomial matrix. However, the procedure code used 

to implement the algorithms in MAPLE is not directly transferable to Mathematica 

due to the two packages using different programming languages. Perhaps the best 

short term answer is to perform the GCD calculations in MAPLE and then pass 

the resulting matrix to Mathematica for simplification at the relevant stage of the 

primitive factorisation procedure. If Mathematica is installed in a UNIX environment 

it possesses the capability of calling external programs that exist within the UNIX 

environment. Thus the MAPLE procedures may be called from Mathematica. 

A more economical and efficient solution is to translate the MAPLE code into Math­

ematica code using a translation program. This is theoretically possible because the 

C programming language is the basis of both the MAPLE and Mathematica kernels. 

If such a translator is not available the last resort is to recode the algorithms in 

Matbematica's programming language. 

Thus recommendations for future work is three-fold. Firstly to link Mathematica and 

MAPLE in a UNIX environment. Secondly, to encode the algorithms in Mathematica 

either by translating the MAPLE program or by rewriting the code. Thirdly, to 

modify the MAPLE program documented here using the RootDf notation. 



References 
[1] Gantmakher, F.R., Theory of Matrices, Chelsea Publishing Company: New York, 

1959. 

[2] MacDuffee, C.C., The Theory of Matrices, Chelsea Publishing Company: New 

York, 1946. 

[3] van der Waerden, B., Modern Algebra, Fredrick Ungar, 1953. 

[4] Bocher, M., Introduction to Higher Algebra, Macmillan: New York, 1907. 

[5] Hungerford, T.W., Algebra, Holt Rinehart and Winston, 1974. 

[6] Birkhoff, G., MacLane, S., A Survey of Modern Algebra, Macmillan: New York, 

1941. 

[7] Albert, A.A., Modern Higher Algebra, University of Chicago, 1937. 

[8] MacDuffee, C. C., Introduction to Abstract Algebra, New York: Wiley, 1940. 

[9] Atiyah, M.F., MacDonald, !.G., Introduction to Commutative Algebra, Reading, 

Mass.:Addison-Wesley, 1969. 

[10] Zariski, 0., Samuel, P., Commutative Algebra, 2 Volumes, New York: Springer­

Verlag, 1976. 

[11] Sontag, E.D., "Linear systems over commutative rings: A survey", Richerche di 

Automatica, Vol. 7, No. 1, pp1-34, 1976. 

[12] Rosenbrock, H. H., State-space and Multivariable Theory, Nelson, 1970. 

[13] Wolovic:h, W.A., Linear Multi variable Systems, New York: Springer-Verlag, 1974. 

[14] Kailath, T., Linear Systems, Englewood Cliffs, N.J., Prentice Hall, 1980. 

[15] Bose, N.K., "New results and techniques in multidimensional problems", Journal 

of Franklin Institute, Vol. 301, No. 1,2, pp83-101, 1976. 

[16] Bose, N.K., "Problems and progress in multidimensional systems theory", Pro­

ceedings of l.E.E.E., Vol. 65, No. 6, pp824-840, 1977. 

[17] Osgood, W.F., Topics in the Theory of Functions of Several Complex Variables, 

Dover publications, 1966. 

267 



References 268 

[18] Walker, R.J., Algebraic Curves, Dover Publications, 1950. 

[19] Fulton, W., Algebraic Curves, W.A. 13enjamin: New York, Inc., 1969. 

[20] Hodge, W.V.D., Pedoe, D., Methods of Algebraic Geometry, 3 Volumes, Cam­

bridge University Press: Cambridge, England, 1947. 

[21] Shafarevich, l.R., Basic Algebraic Geometry, Springer-Verlag: Berlin, 1974. 

[22] Lefschetz, S. Algebraic Geometry, Princeton University Press: Princeton, N.J, 

1963. 

[23] Coolidge, J.L., Algebraic Plane Curves, Oxford, 1931. 

[24] Hutchins, H. C., Examples of Commutative Rings, Polygonal Publishing House: 

N.J., 1981. 

[25] Sebek, M., "One more counter-example in n-D systems theory-Unimodular ma­

trices versus elementary operations", IEEE Transactions on Automatic Control, 

Vol. 33, No. 5, pp502-503, May 1988. 

[26] Rosenbrock, H.H., Storey, C., Mathematics of Dynamical Systems, Nelson, 1970. 

[27] Kucera, V. Discrete Linear Control, .John Wilcy & Sons: Prague, 1979. 

[28] Sebek, M, "n-D polynomial matrix equations, IEEE Transactions on Automatic 

Control, Vol. 33, No. 5, pp499-502, May 1988. 

[29] Sebek, M., "2-D Polynomial Equations", Kybernetica, Vol. 19, No. 3, 1983 

[30] Kaczorek, T., "Algorithm for solving 2-D polynomial matrix equations", Bull. 

Pol. Acad. Sci., Vol. 31, pp51-57, 1983 

[31] Kaczorek, T., "Polynomial matrix equations in two indeterminates", Bull. Pol. 

Acad. Sci., Vol. 30, pp39-44, 1982 

[32] Kaczorek, T. Two dimensional linear systems, Springer-Verlag: Berlin, 1985 

[33] Morf, M., Levy, B.C., Kung, S-Y., "New results in 2-D system theory, Part I: 2-

D polynomial matrices, factorisation and corpimeness", Proceedings of l.E.E.E., 

Vol. 65, No. 6, pp861-872, June 1977. 



References 269 

[34] Levy, B. C., "2-D polynomial and rational matrices and theor applications for the 

modelling of 2-D dynamical systems", Technical Report Number M735-11, Ph.D. 

Thesis, Stanford Univeristy, 1981. 

[35] J.P. Guiver and N.K. Bose, "Polynomial matrix primitive factorisation over ar­

bitrary coefficient field and related results", IEEE Trans. Circuits and Systems, 

Vol. CAS-29, No. 10, Oct. 1982. 

[36] Frost, M. G., Storey, C., "Equivalence of a matrix over JR[s, z] with its Smith 

form", International Journal of Control, Vol. 28, No. 5, pp665-671, 1978. 

[37] Frost, M. G., Storey, C., "Equivalence of matrices over IR[s, z]: Counter-example", 

International Journal of Control, Vol. 34, No. 6, pp1225-1226, 1981. 

[38] Bose, N.K., "A criterion to determine if two multivariable polynomials are rela­

tively prime", Proceedings of the I.E.E.E., Vol. 60, No. 1, pp134-135, Jan. 1972. 

[39] Emre, E., Huseyin, 0., "Relative primeness of multivariate polynomials", I.E. E. E. 

Transactions on Circuits and Systems, Vol. 22, p56, 1975. 

[40] Youla, D. C., Gnavi, G., "Notes on n dimensional systems", IEEE Transactions 

on Circuits and Systems, Vol. CAS-26, No. 2, pp105-111, 1979. 

[41] Quillen, D., "Projective modules over a polynomial ring", Invent. Math., Vol. 36, 

pp167-171, 1976 

[42] Suslin, A.A., "Projective modules over a polynomial ring are free", Dokl. A dad. 

Nauk. S.S.S.R., Vol. 229, 1976. (English translation-Soviet Math. Dokl., MR 57, 

No. 9685, Vol. 17, ppll60-1164, 1976). 

[43] Zak, S.H., Lee, E.B., "The simplified derivation of the completion theorem to 

a unimodular matrix over IR[z1, z2]", IEEE Transactions on Automatic Control, 

Vol. AC-30, No. 2, pp161-162. \ 'l!?.S 

[44] Nobuyama, E., Shin, S., Okubo, S., Kitamori, T., "Bezout identities and common 

minors zeros of 2-D polynomial matrices and applications to time-delay systems", 

International Journal of Control, Vol. 52, No. 6, pp1311-1326, 1990. 

[45] Lin, Z., "On Matrix Fraction Descriptions of Multivariable Linear n-D Systems", 

I.E.E.E. Transactions on Circuits and Systems, Vol. 35, No. 10, pp1317-1322, 

1988. 



References 270 

(46] Pugh, A.C., Hayton, G.E., Walker, A.B., "System matrix characterisation of 

input-output equivalence", International Journal of Control, Vol. 51, No. 6, 

pp1319-1326, 1990. 

(47] Fuhrmann, P.A., "On strict system equivalence and similarity", International 

Journal of Control, Vol. 25, No. 1, pp5-10, 1977. 

(48] Morf, M., "Extended system and transfer function matrices and system equiva­

lence definition", in Proceedings of the 1977 IEEE Conference on Decision and 

Control, New Orleans, pp795-800, 1977. 

(49] Pernebo, L., "Notes on strict system equivalence", International Journal of Con­

trol, Vol. 25, No. 1, pp21-38, 1977. 

(50] Pugh, A.C., Shelton, A.K. "On a new definition of strict system equivalence", 

International Journal of Control, Vol. 27, pp657-672, 1978. 

(51] Rosenbrock, H.H., "Structural properties of linear dynamical systems", Interna­

tional Journal of Control, Vol. 20, pp191-202, 1974. 

(52] Smith, M. C., "Matrix fractions and strict system equivalence", International 

Journal of Control, Vol. 34, pp869-883, 1981. 

(53] Verghese, G.C., "Infinite frequency behaviour in generalised dynamical systems", 

Ph.D. dissertation, Stanford University, California, U.S.A., 1978 

(54] Luenberger, D. G., "Time-invariant descriptor systems", Automatica, Vol. 14, 

No. 3, pp473-480, 1978. 

(55] Bosgra, O.H., van der Weiden, A.J.J., "Realisations in generalised state-space 

form for polynomial system matrices and the definition of poles, zeros and de­

coupling zeros at infinity, International Journal of Control, Vol. 33, pp393-411, 

1981 

(56] Hayton, G.E., Walker, A.B., Pugh, A. C., "Matrix pencil equivalents of a general 

polynomial matrix", International Journal of Control, Vol. 49, pp1979-1987, 1989. 

(57] Pugh, A. C., Ratcliff, "The infinite zeros of a rational matrix", Report CT5, Math­

ematics Department, Plymouth Polytechnic, Plymouth, U.K., 1979. 



References 271 

[58] Pugh, A. C., Hayton, G.E., Fretwcll, P., "On transformations of matrix pencils and 

implications in linear systems theory", International Journal of Control, Vol. 45, 

pp529-548, 1987. 

[59] Jones, E.R.LL., "The general pole placement problem in singular systems", Ph. D., 

Thesis, Loughborough University of Technology, Leicestershire, U.K., 1991. 

[60] Hayton, G.E., Walker, A. B., Pugh, A.C., "A unification of system transforma­

tions", Proceedings ACC-88, Atlanta Georgia, Vol. 1, pp47-48, 1988 

[61] Zhang, S-Y, "Generalised proper inverse of polynomial matrices and the existence 

of infinite decoupling zeros", IEEE Transactions on Automatic Control, AC-34, 

pp743-745. lttS'"ct 

[62] Pugh, A. C., Ratcliffe, P.A., "On the zeros and poles of a rational matrix", Inter­

national Journal of Control, Vol. 30, No. 2, pp213-226, 1979. 

[63] Pugh, A. C., Ratcliffe, P.A., "Infinite frequency interpretations of minimal bases", 

International Journal of Control, Vol. 32, No. 4, pp581-588, 1980. 

[64] Hayton, G.E., Pugh, A.C., Fretwell, P., "Infinite elementary divisors of a matrix 

polynomial and implications", International Journal of Control, Vol. 47, No. 1, 

pp53-64 ' 1988. 

[65] Pugh, A.C. Hayton, G.E., "Transformation issues in linear system theory", Pro­

ceedings MTNS-89 I t.l S<l. 
' 

[66] Pugh, A. C., "The McMillan degree of a polynomial system matrix", International 

Journal of Control, Vol. 24, No. 1, pp129-135, 1976. 

[67] Pugh, A.C., Karampetakis, N.P., Vardularkis, A.I.G., Hayton, G.E., "A fun­

damental notion of equivalence for linear multi variable systems", Mathematical 

Sciences Report A153, Loughborough University of Technology, Leics, LEll 3TU, 

1992. 

[68] Pugh, A. C., "The occurrence of non-properness in closed-loop systems and some 

implications", Tzafestas, S.G., Multivariable Control, 43-63, Rei del Publishing 

Company, 1984. 

[69] Pugh, A.C., Jones, E.R.LL., Demianczuk, 0., Hayton, G.E., "Infinite frequency 

structure and a certain Laurent expansion", International Journal of Control, 

Vol. 50, pp1793-1805. I 'l8'\ 



References 272 

[70] Anderson, B.D.O., Coppel, W.A., Cullen, D.J., "Strong system equivalence I", 

Journal of the Australian Mathematical Society, Ser. 1327, pp194-222, 1985. 

[71] Coppel, W.A., Cullen, D.J., "Strong system equivalence I!'', Journal of the Aus­

tralian Mathematical Society, Ser. 827, pp223-237, 1985. 

[72] Youla, D. C., Pickel, P.F., "The Quillen-Suslin theorem and structure of n-D el­

ementary polynomial matrices", IEEE 'fransactions on Circuits and Systems, 

Vol. CAS-31, No. 6, pp513-517, 1984. 

[73] Edwards, J.B., Owens, D.H., Analysis and Control of Multipass Processes, New 

York: Wiley. 

[74] Rogers, E., Owens, D. H., "Modelling and stability analysis for a class of industrial 

repetitive processes", International Journal of Control, Vol. 52, No. 2, pp265-278, 

1990. 

[75] Owens, D.H., "Stability of multipass processes", Proceeding of the Institute of 

Electrical Engineers, Part D, Vol. 124, pp1079-1082, 1977. 

[76] Rogers, E., Owens, D.l-1., "2-D transfer functions and stability tests for differential 

non-unit memory linear multi pass processes", International Journal of Control, 

Vol. 50, No. 2, pp651-666, 1989. 

[77] Solak, M.K., "A note on the Wolovich method of extraction of the GCD of 

two polynomial matrices", I.E. E. E. 'fransactions on Automatic Control, Vol. 30, 

No. 10, pp1032-1033, 1985. 

[78] B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan and S.M. Watt, MA­

PLE Reference Manual, 5th Edition, WATCOM Publications Limited, Waterloo, 

Canada, March 1988. 



Appendix 1 

Index of Definitions 
Definition 1.1 (Principal Diagonal) ............................................. 11 

Definition 1.2 (Diagonal Polynomial Matrix) ................................... 11 

Definition 1.3 (Upper Triangular Polynomial Matrix) ........................... 12 

Definition 1.4 (Minor) ......................................................... 12 

Definition 1.5 (Unimodular Polynomial Matrix) ................................ 13 

Definition 1.6 (Elementary Row Operations) ................................... 13 

Definition 1. 7 (Determinantal Divisors) ......................................... 17 

Definition 1.8 (Invariant Polynomials) .......................................... 17 

Definition 1.9 (Smith Form) ................................................... 17 

Definition 1.10 (Factor Coprime Polynomials) .................................. 18 

Definition 1.11 (Zero Coprime Polynomials) .................................... 18 

Definition 1.12 (Polynomial Non-Essential Singularities) ........................ 19 

Definition 1.13 (Matrix Coprimeness) .......................................... 21 

Definition 1.14 (Matrix Non-Essential Singularities) ............................ 26 

Definition 2.1 (General MFD) .................................................. 30 

Definition 2.2 (Coprime MFD) ................................................. 30 

Definition 2.3 (Coprime MFD) ................................................. 48 

Definition 2.4 (Generating Polynomials) ........................................ 54 

Definition 3.1 (Extended Unimodular Equivalence) ............................. 72 
Definition 3.2 (Full Equivalence) ............................................... 73 

Definition 3.3 (Full System Equivalence) ....................................... 83 

Definition 3.4 (Input-output Equivalence) ...................................... 85 

Definition 3.5 (Least Order) ................................................... 91 

Definition 3.6 (Zero Equivalence) ............................................... 94 

Definition 3.7 (Minor Equivalence) ............................................. 95 

Definition 3.8 (Factor Equivalence) ............................................ 108 

Definition 3.9 (Least Order) .................................................. 114 

Definition 3.10 (Output Zeros) ................................................ 124 

Definition 3.11 (Input Zeros) .................................................. 126 

Definition 4.1 (Greatest Common Right Divisor) .............................. 137 

Definition 4.2 (Pseudo-division Algorithm over F[zd[z2]) •••..•....•....••••.•• 138 

Definition 4.3 (Elementary Row Operations over F[zd [z2]) ••.•...•••••••••••••• 138 

Definition 4.4 (Elementary Matrices over F[zd [z2]) .•.••••••••••.•••••••••••••• 138 

Definition 4.5 (2-D Hermite Form over F[zd[z2]) .•.•.••••••••.•.•••••••••••••• 139 

Definition 4.6 (Primitive Matrix over F[zt][z2]) •••••••••••••••••••••••••••••••• 140 

Definition 4.7 (Pseudo-principal Diagonal) .................................... 146 

Definition 4.8 (Quasi-principal Diagonal) ...................................... 146 

273 



Appendix 2 

Index of Theorems 
Theorem 1.1 ................................................................... 20 

Theorem 1.2 ................................................................... 21 

Theorem 1.3 (Coprimeness Equivalence) ........................................ 22 

Theorem 1.4 (Bezout Identities) ................................................ 23 

Theorem 2.1 ................................................................... 30 

Theorem 2.2 ................................................................... 33 

Theorem 2.3 (Completion Theorem) ........................................... 36 

Theorem 2.4 ................................................................... 37 

Theorem 2.5 (2-D MFD Structure Theorem) ................................... 40 

Theorem 2.6 (1-D MFD Structure Theorem) ................................... 46 

Theorem 2. 7 ................................................................... 49 

Theorem 2.8 ................................................................... 51 

Theorem 2.9 ................................................................... 52 

Theorem 2.10 .................................................................. 55 

Theorem 2.11 .................................................................. 55 

Theorem 2.12 (n-D MFD Structure Theorem) .................................. 62 

Theorem 3.1 ................................................................... 75 

Theorem 3.2 ................................................................... 78 

Theorem 3.3 ................................................................... 81 

Theorem 3.4 ................................................................... 85 

Theorem 3.5 ................................................................... 90 

Theorem 3.6 ................................................................... 92 

Theorem 3. 7 ................................................................... 93 

Theorem 3.8 ................................................................... 95 

Theorem 3.9 ................................................................... 97 

Theorem 3.10 .................................................................. 99 

Theorem 3.11 ................................................................. 103 

Theorem 3.12 ................................................................. 105 

Theorem 3.13 ................................................................. 106 

Theorem 3.14 ................................................................. 106 

Theorem 3.15 ................................................................. 109 

Theorem 3.16 ................................................................. 111 

Theorem 3.17 ................................................................. 113 

Theorem 3.18 ................................................................. 113 

Theorem 3.19 ................................................................. 115 

274 



Appendix 2: Index of Theorems 275 

Theorem 3.20 ................................................................. 115 

Theorem 3.21 ................................................................. 119 

Theorem 3.22 ................................................................. 125 

Theorem 3.23 ................................................................. 127 

Theorem 4.1 (Left Primitive Factorisation Theorem over F[zd[z2]) •••••••.••••• 146 

Theorem 4.2 .................................................................. 151 

Theorem 4.3 (2-D Hermite Coprime Test) ..................................... 153 



Appendix 3 

Index of Examples 
Example 1.1. ................................................................... 14 

Example 1.2 .................................................................... 16 

Example 1.3 .................................................................... 18 

Example 2.1. ................................................................... 31 

Example 2.2 .................................................................... 35 

Example 2.3 ................................................................... .45 

Example 2.4 .................................................................... 52 

Example 2.5 .................................................................... 56 

Example 2.6 .................................................................... 59 

Example 2.7 .................................................................... 59 

Example 2.8 .................................................................... 61 

Example 2.9 .................................................................... 61 

Example 2.10 .................................................................. 62 

Example 2.11 .................................................................. 66 

Example 3.1. ................................................................... 73 

Example 3.2 .................................................................... 88 

Example 3.3 .................................................................. 102 

Example 4.1 .................................................................. 134 

Example 4.2 .................................................................. 150 

Example 6.1 .................................................................. 183 

Example 7.1 .................................................................. 227 

Example 7.2 .................................................................. 229 

Example 7.3 .................................................................. 231 

Example 7.4 .................................................................. 233 

Example 7.5 .................................................................. 235 

Example 7.6 .................................................................. 236 

Example 7. 7 .................................................................. 237 

Example 7.8 .................................................................. 240 

Example 7.9 .................................................................. 244 

Example 7.10 ................................................................. 248 

Example 7.11 ................................................................. 249 

Example 7.12 ................................................................. 259 

276 



Appendix 4 

Index of Algorithms and Lemmas 
Lemma 1.1 ..................................................................... 17 

Lemma 1.2 (Hilbert's Nullstellensatz) .......................................... 19 

Algorithm 2.1 (Coprime MFD Algorithm) ...................................... 31 

Lemma 2.1 (2-D MFD Theorem) ............................................... 39 

Lemma 2.2 ..................................................................... 53 

Lemma 2.3 ..................................................................... 53 

Lemma 3.1 ..................................................................... 72 

Lemma 3.2 ..................................................................... 78 

Lemma 3.3 .................................................................... 119 

Lemma 3.4 .................................................................... 125 

Algorithm 4.1 (2-D Hermite Form over F[zd[z2]) ...•.•••••.••.••••••.••.••..•• 143 

Algorithm 4.2 (Upper Triangular Modified Hermite Algorithm) ................ 145 

Algorithm 4.3 (Left Primitive Factorisation over F[zd[z2]) •••••••••••.••••••••• 147 

Algorithm 4.4 (GCRD Algorithm over F[zd [z2]) .......•.•••••••••••••••••••••• 148 

Algorithm 7.1 (Left coprime MFD) ........................................... 257 

277 



Appendix 5 

Index of Procedures 
addrowm ...................................................................... 218 

colredS ...................................................................... 216 

deg ........................................................................... 220 

emxc .......................................................................... 221 

factoroY ..................................................................... 192 

gaussredS .................................................................... 210 

gcdminors .................................................................... 193 

gcdn .......................................................................... 194 

geld .......................................................................... 184 

gcrd .......................................................................... 185 

highorderminors ............................................................. 195 

initialpivotS ............................................................... 212 

loYerzerosS .................................................................. 214 

lprimfac ..................................................................... 189 

otherindet ................................................................... 197 

primroots .................................................................... 198 

roots ......................................................................... 199 

roYf actors ................................................................... 201 

rprimfac ..................................................................... 188 

shiftherm .................................................................... 209 

unitmx ....................................................................... 222 

upperS ....................................................................... 223 

varfac1 ...................................................................... 203 

zerow ......................................................................... 205 

278 



--------------------------------------

Appendix 6 

Publications 

1. D.S. Johnson, A. C. Pugh and G.E. Hayton, "On the structure of polynomial 

models of 2-D systems", Proceedings of the Tenth lASTED International Symposium 

on Modelling, Identification and Control, Innsbruck Austria, February 1991, 

pp231-234. ISBN:0-88986-182-x. 

2. D.S. Johnson, A. C. Pugh and G.E. Hayton, "Symbolic computation of the 

greatest common divisor of polynomial matrices in two indeterminates", 

Proceedings of the Eleventh lASTED International Conference on Modelling, 

Identification and Control, Innsbruck Austria, February 1992, pp124-125. 

ISBN :3-7153-0002-7. 

3. D.S. Johnson, A.C. Pugh and G.E. Hayton, "On n-D matrix fraction 

descriptions", Proceedings ACC-'92, Vol. 1, pp357-358, June 1992. 

4. A. C. Pugh, D.S. Johnson and G.E. Hayton, "On conditions guaranteeing two 

polynomial matrices possess identical zero structures", IEEE Transactions on 

Automatic Control, Vol. 37, No. 9, pp1383-6, September 1992. 

5. A.C. Pugh, D.S. Johnson, G.E. Hayton, "2-D system structure and 

applications", IFAC Workshop on System Structure and Control, Prague, September 

3-5, 1992. 

6. D.S. Johnson, A. C. Pugh and G.E. Hayton, "Symbolic computation of the 

greatest common divisor of 2-D polynomial matrices", !MA C-MCI'92, Control: 

Modelling, Computation, Information, UMIST, England, September 2-4, 

1992. 

279 






