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ABSTRACT

There are at present a large number of theoretical and
algorithmic results relating to one variable polynomial
matrices arising from one-dimensional multivariable systems.
In recent years many of the theoretical results have been
extended to two variable polynomial matrices arising from
two~-dimensional multivariable systems, such as delay-
differential or partial differential systems. However there
has been no major attempt to extend the aigorithmic results
associated with single variable polynomial matrices to two:
variable or multivariable polynomial matrices.

This thesis investigates further some of the extensions
of the algebra of one-dimensional multivariable systems to
two~dimensional multivariable systems. The main area of
interest is the equivalencé of a two variable polynomial
matrix with its Smith form over the ring RI[s,z].

The thesis then provides algorithmic extensions to two
variable polynomial system matrices. The algorithms
developed are for the equivalence of a two variable
polynomial matrix with its Smith form, the equivalence of a
two wvariable rational matrix with its Smith-McMillan form,
and the minimal realization of a two variable rational

transfer function matrix as a state~-space system matrix.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the problem and basic definitions

There are at present a large number of theoretical and
algorithmic'results relating to system matrices associated
with ordinary differential systems. In recent years many of
these theoretical results have been extended for the theory
of system matrices associated with delay-differential or
partial differential systems. However there has been no
major attempt to extend the algorithmic results associated
with single variable polynomial system matrices to two
variable or multivariable polynomial system matrices. This
thesis will cover the algorithmic extensions to two variable
polynomial system matrices whilst also attempting to design
the algorithms so that they can be more easily extended to
three or more variable polynomial system matrices,,if

required for future developments.

It will also be necessary to investigate some of the
algebraic extensions, particularly those relating to the
equivalence of two matrices over R[s,z]. This will be done

so that conditions can be found for the equivalence of a .



matrix with its Smith form over R[s,z], which would be

useful in the design of the algorithms.

At this stage it is appropriate to give a few
.preliminary definitions.
Firstly full definitions of the sSmith form over R{s],

Rls,z] and R(z)[s] dre given.

Definition 1.1l: Smith form over R[s]

The Smith form of a p x ¢ polynomial matrix K(s) over

R[s] is defined to be the p x q matrix

r [ B(s)i 0 ] i PRq
S(s) = $ E(s) i P=q
! E(s) i pP>q
0
Here
E(s) = diag [ ej(s} 1
where the ith invariant polynomial
ej(s) = dj(s) / dj-1(s) i=1,2,....,min(p,q);

and the determinantal divisor dj(s) is the greatest common
divisor of all the ith order minors of K(s), and dp is

defined to be 1. All of the non-zero determinantal divisors



,and invariant polynomials will be monic as polynomials in
Rl[s], that is the leading coefficient is 1.
Also the invariant polynomials ej(s) héve the
divisibility property, that is:
e1(s) | eats)| .... | epls)

where r = rank( X(s) ).

Definition 1.2: Smith form over R[(s,z] and R{z){s]

The Smith form of a p x 9 polynomial matrix K(s,z)

over R{s,z] is defined to be the p x g matrix:

[ E(s,z): 0 ] ; pP<q
S(s,z) = E(s,z) ; p=q
E(s,z) ; P>q
0
Here

E(s,z) = diag [ ej(s,z) }
where the diagonal elements of E(s,2z) are the invariant
polynomials over Ris,z] of K(s,z), given by |
ejls,z) = di(s,z) / dj.1(s,2) i=l,2,.00¢,
min (p.q).‘
where dp is defined to be 1 and the determinantal divisor

d;j (s,2) is the greatest common divisor of all the ith order



minors of K{s,z). All the non-zero determinantal divisors
and invariant polynomials will be taken to be monic over
R[s,z].

Also the invariant polynomials ej(s,z) have the

divisibility property, that is:
e1(s,2) | ea(s,z)| .... | er(s,2)
where r = rahk( K(s,z) ).

The Smith form, SS(s,z), over R(z)[s)] of the p x ¢
matrix K(s,z) has the same form as S{(s,z) above, but in this
case the invariant polynomials e®;j(s,z) are defined in terms
of determinantal divisors d%;(s,z) which are monic as
polynoﬁials in R(z)[s].

Similarly the Smith form S%2(s,z) over R(s)[z] can be

defined,

Next the definitions of eguivalence of two matrices

over the rings R[s], R[s,z], and R(z)[s] are given.

Definition 1,3: Equivalence of two matrices over R[s]

Two polynomial matrices Ki(s) and Kz(s) are
equivalent over R[s] if and only if there exist two
polynomial matrices M(s) and N(s) which are unimodular
over R[s], and such that

K1(s) = M(s) Ka(s) N(s).

M(s) and N(s) are unimodular over R[s] if the condition



det( M(s) ), det( N{s) Y€ R # 0

is true, that is M(s) and N(s) are non-singular for all s.

Definition l1.4: Equivalence of two matrices over R[s,z] or

R(z)[s]

Two polynomial matrices Kj(s,z) and Kjy(s,z) are
equivalent over R[s,z] if and only if there exist two
polynomial matrices‘ M(s,z) and N(s,z) which are unimodular
over R[s,z], such that

Ki(s,2) = M(s,z) Ka(s,z) N(s,z).
M(s,z) and N(s,é) are unimodular over R[s,z] if they are
non-singular for all values of the pair (s,z).

For equivalence over R(z)[s], it is required that

M(s,z) and N(s,z) are unimodular over R(z)[s], that is

det( M(s,z) ), det( N(s,z) ) € R(z) # 0.

These definitions are the basic ones to extend the
theory of system matrices over Rl[s] to system matrices over
Rls,z]. Other definitions which will prove useful in the
algebraic investigation and the algorithmic development will

also be stated here.



Definition 1.5: Degree of a polynomial over RI[ sl

A polynomial p(s) in R[s] can be expressed as the sum

r
p(s) =): ajst aj € R.

[ XY -]

where the integer r is the degree of p(s). Also p(s) is

monic over RIs] if a,=1.

Definition 1.6: Degree of a polynomial over R[s, z]

A polynomial p(s,z) in RIs,2] can be expressed as the

sum

T r
pis,z) = [ [ ajj sizd ajj e R.
L@ Jnb !
1

If (m,n) is one of the pairs (i,3) such that m+n is the
maximum value of i+j for which aij;éo, then m+n is the degree
of pl(s,z) over R[s,z). Also p(s,z) is monic over R[s,z] if
ampn=l. If there are more than one such pair , then for
uniqueness the one which has largest degree in s is chosen

as the leading term,



Definition 1.7: Degree of a polynomial over R{(z)[s]

A polynomial p{s,z) in R(z)[s] can be expressed as the

sum

r
p(s,2) = z:ai(z) sl aj(z) € R(z).
[£7-)
where the integer r is the degree of p(s,2) over R{(z)[sl].

p(s,2) is monic as a polynomial in R(z)[s] if a,(z)=1,

In one of the algorithms it is required to find the
polynomial of least degree over R{z}[s] in a matrix where
the elements are not necessarily monic, to-use as a pivot.
If two polynomials p(s,z) and q(s,z) have the same degree
over R(z)[s], that is

.
) ai(z) st aj(z) € R(z),

(R ]

p(s,2)

.
):bi{z) si bj (z) € R(z).

Ll

g(s,z)

Then an extra criterion for a better pivot is to choose
p{(s,z) if the degree of ap(z) is less than the degree of

by (2), since certainly q(s,z) could not divide p(s,z)
without involving rational terms in z as it has leading term

of higher degree in z than the leading term of p(s,z).



Definition 1.8: Existence of a division algorithm over R[s]

Given any two polynomials p3j(s) and p3(s) in R[s], with
deg( p1(s) ) > deg{ pa(s} ), there exist a unique pair of
polynomials g(s) and r(s) in R[s], such that

p1(s) = g(s) pa(s) + r(s),

and deg( r(s) ) < deg( pa(s) ). g(s) is the quotiént

polynomial and r(s) is the remainder polynomial.

Definition 1.9: Existence of a division algorithm over

R(z)[s]
Given any two polynomiéls pl(s;z) and pa(s,z) in
R(z)[s], with deg( plts;z) ) > deg( pa(s,2) ), there exist a
unique pair of polynomials q(s,z) and r(s,z) in R(2)[sl,

such that
p1(s,2) = q(s,z) pa(s,z) + r(s,z),

and deg( r(s,z) ) < deg( pa(s,2) ). g(s,2) is the quotient

polynomial and r(s,z) is the remainder polynomial.

However, a division algorithm over R(s,z] does not

exist, as the following example will show.



Example 1.1:

Consider the polynomials pj(s,z) = s2, and py(s,z) = 2
in R[s,2z]. Here deg( pi(s,z) ) > deg( pa(s,z} ). Let q(s,2)
and r(s,z) be polynomials in R[s,z] and consider the

egquation
s2 = ql(s,z) z + r(s,z). (1.1)

As it would be required that deg( r(s,z) ) < deg ( z ) =1,
then r(s,z) € R, Therefore the right hand side of (1.1) must
have a term in z, whereas the left hand side does nét.
Therefore g(s,z) and r(s,z) cannot be in R[s,z] and so there
does not exist a division algorithm over R[s,zl.

If q(s,2) and r(s,z) were polynomials in R(z)[s], then

q(s,z) = s2z71, r(s,z) = 0 would solve eguation (1.1).

One final result, which will be widely used throughout

the thesis, will also be given here.



Theorem 1.1l: Hilberts Nullstellensatz

{(Van der Waerden 1964)
Polynomials f3,....,fy € R{21,....,2gq] bhave no common

zeros if and only if the relationship
gy f1 + ... + gp fp =1
is valid in R[zl,.;..,zq].

Where g1,....,9n € R[zl,....,zq], and are non-unique.

This will be mainly used in the following context. A
necessary and sufficient condition that the polynomials
x(s,2) and y{s,2) have no common zeros over R[s,z] is thaf
there exist polynomials a(s,z) and b(s,z) over R[s,z] such

that

a(s,z) x(s,z2) + b(s,z) y(s,2) = 1.

10



1.2 Historical background of one variable polynomial system

matrices
One variable polynomial system matrices arise from

linear constant differential systems of the form

x(t)

A x(t)Y + B u(t) , (2.1)

y(t) C x(t) + D u(t) (2.2)

where A,B,C,D are constant matrices.
On taking Laplace transforms, assuming zero initial
conditions, these eqpations become:
(sI ~A) X =B1 (2.3)
¥y=CX+D1u (2.4)
which, when combined give the input-output mapping
y=(C(sI-a-ls+p)d (2.5)
where
G(s) =C (sI - A~ B +0D (2.6)

is the transfer function matrix.

This system can be represented by the state-space

11



T matrix

sI -A ; B (2.7)

P U |

P(s)

If the output equation (2.2) contained differential
termé of the control u(t), then we would have D = D(s) in
(2.4) and (2.7).

If the output equation (2.2) was independant of the
control u{t), then we would have D = 0 in (2.4) and (2.7).

More generally linear constant differential systems

may be represented by the polynomial system matrix

e L

] .
P(s) = T(s) E U(s) (2.8)
]

where, if the corresponding output equation is independant
of the control, W(s) = 0.

The polynomial system matrix (2.8) gives rise to the
transfer function matrix

G(s) = V(s) T-l(s) U(s) + W(s) (2.9)
It can be seen that the state-space form is a special

case of the polynomial matrix form. Therefore the polynomial

matrix form will be the one mainly considered here,

12



It can be shown (see, for example, Rosenbrock and
Storey 1970) that any polynomial matrix in R[s] is always
equivalent to its Smith form over R[s]. In fact the proof of
this result is constructive and is analogous to the
technique of Gaussian elimination for transforming a matrix
to diagonal form. As the method is constructive and could
form the basis of an algorithm it will be given in-full

here,

Consider the m x n polynomial matrix P(s),

P(s) P11 P12 +«++« Piln (2.10)

P21 P22 <.+« D2n

[ Pml Pm2 .-+« Pmn |

where the polynomials pj4 ="pij(s) are eiements in R{s].
Firstly a non-zero polynomial of least degree is
brought to position pj] by appropriate row and column
operations,
Then for each of the elements p12,....,P1n of the
pivotal row, in turn, the division algorithm is applied to

form

P1§ = P11 91j + r1j j = 2yu0u.,n

13



with ryj zero, or having degree less than the degree of pj;.
Then gy j times column 1 is subtracted from column j.
The same process is applied to the elements

P21s+---+.Pml ©f the pivotal column, in turn, so that

Pil1 = P11 9il1 + ri1 i=2,..../m

with rj; zero, or having degree less than the degree of pjj.
Then gj1 times row 1 is subtracted from row i.

' This procedure will leave elements rjj in the pivotal
row and rjj in the pivotal column. Now either all the rjy,
rij1 are zero, or an element of lower degree can be brought
to position pjj. This procedure is then repeated for the new
p11 and continued until all the rj4, rj; are zero.

If any of the ¢olumns 2,....,n now contains an element
which is not divisible by the leading element pjj, then this
column is added to the first column. Then the degree of the
leading element pjj can be reduced until the process will
finally terminate with the matrix Q(s) which is equivalent

over R[s] to P(s),

14



Q(s) = P1 0 .... 0 (2.11)
0 g22 «4vs Q2n
0 q32 a s e q3n

0 dm2 -... 9mn

where p; can be made to be monic over R[s] and is a factor
of all the remaining elements of Q.

If the above procedure is now repeated for the
“sub-matrix Q'(s) of Q(s),
Q'(s) = 922 4923 +e-- 92n (2.12)

q32 933 .--- 93n

Ldm2 9m3 +--+ 9mn J

and so on, then the Smith form of P(s) will be finally
obtained.
The algorithm may now be given formally in a structured

form.

Algorithm 2.l: Smith form of a one variable polynomial
matrix
(1) Let K be the initial polynomial matrix of dimension

mzx n.

15



(2)
(3)

(4)

(5) -
(6)

(7)
(8)

(9)
(10)

(11)
(12)
(13)
(14)
(15)
(16).

r=1,

Consider the sub-matrix of K which has its top left
hand corner at positipn (r,r). If all the elements are
zero goto 16, |

Find the position of the non-zero element with least
degree. Move it to position (r,r) by row and column
interéhange.

i=r+l, j=r+l, pivot=element K(r,r).

Consider column j. Divide element K(r,j) by pivot,
giving the quotient g. Subtract g times column r from
column j.

j=j+l. If j<n goto 6.

Consider row i. Divide element K(i,r) by pivot, giving
the quotient q. Subtract q times ro# r from row i.
i=i+l. If ifm goto 8.

If not all elements in the pivotal row and column are
zero goto 4. ”

k=r.

k=k+l. If 1>n goto 15.

If pivot divides all elements in column k goto 1l2.
Add column k to ¢olumn r. Gotd 4,

r=r+l. If r<min{(m,n) goto 3.

Stop.

16



A number of different algorithms have been developed
along the same lines as algorithm 2.1, with modifications.
Pace and Barnett (1974a) have produced the most efficient of
these algorithms, using a new version of the Euclidean
algorithm by Blankinship (1963) which calculates the
greatest common divisor of two polynomials, and a set of
multipliers for each of the rows and columns.

However, the Blankinship algorithm uses the division
algorithm to find the greatest common divisor. The approach
taken in this thesis is to overcome the lack of a division
algorithm over R{s,z] by extending algorithm 2,1 rather than

the method of Pace and Barnett.

Another canonical form to be considered later is the

Smith-McMillan form of a rational polynomial matrix.

Definition 2.1: Smith-McMiiian form of a matrix over R(s)

Consider a p x ¢ rational matrix K(s), where the
elements of K(s) are
njj(s) / dj4(s) i=l,....,p
‘ J=l;.e...:9
and nj4(s), djji(s)< RIsl.
The Smith-McMillan form of K(s) is defined to be the

matrix

17



([ E(s)i 0] ; p<q
M(S) = 4 E(s) , ; p=q
E(s) : pP>q

where E(s) = diag [ ej(s) / gj(s) 1,

and ej(s),gj(s) are relatively prime polynomials in R[s]

with the division property along the diagonal, that is
e1(s) | ea(s) ] ... | ep(s),

and gr(s) | ge-1(s) | .... |g1(s),

where r = rank( K(s) ).

Algorithms to find the Smith-McMillan form of a
rational matrix K(s) are based on the Smith form of a
related polynomial matrix (see, for example, Rosenbrock
1970). If the least common Aenominator d(s) of all the
elements of K(s) is-found, then K(s) can be expressed

R(s) = N(s) / d(s). ' (2.13)

If N(s) is now transformed into its Smith form, S(s), then

K(s) is equivalent over R[s] to the matrix M(s),

M(s) = s(s) / d(s). (2.14)

18



If any common factors between the numerator and denominator
of the elements of the leading diagonal of M(s) are
cancelled, then M(s) will be of the form of definition 2.1,

the Smith-McMillan form of XK{(s).

Finally, in this section, it is worth considering the
realization problem in R[s], that is given a transfer
function matrix G(s), construct a state-space system matrix

corresponding to G(s), of the form

sI - A B | (2.15)
-C ; D{s)
such that
G(s) =¢C (sI - &)~1 B + D(s). (2.16)

If G(s) is proper, that is G(s) tends to the zero matrix as

g tends to infinity, then D(s) = 0.
If the matrix A is of least dimensions, then the realization
is said to be minimal (see, for example, Barnett 1971). Also
it can be shown that a minimal realization over RI[s] is
always controllable and observable (Barnett 1971}.

Once again a number of computer algorithms have been
written, on the whole based on the method of Rosenbrock

(1970). One such algorithm is that of Munro and McLeod

19



(1971). This method involves the construction of an
observable state-space realization, and then removing any
input-decoupling zeros to give a minimal state-space
realization. This method is shown to be more efficient than
its predecessors, with a reduction of the order of 100:1 in
computation time.

However a more recent algorithm, Pace and Barnett
(1974b) is shown to be the most efficient of all. The
strategy of this method is slightly different to that of
Munro and_Mchod. A minimal polynomial realization is
firstly construéted and then this is transformed into a

minimal state-space realization. It is this difference which

makes the method more efficient.

20



1.3 Historical background of two variable polynomial system

matrices
Two variable polynomial system matrices can arise from
a number of different systems. One of the main ones is the

linear delay-differential system
x(t) = A(d) x(t) + B(d) u(t) (3.1)

y(t) C(d) x(t) + D(4) u(t) (3.2)

where @ is the delay operator
d x(t) = x(t-h)
for some fixed delay h.
Another system which also gives rise to a two variable

polynomial system matrix is the partial differential system
xe(t) = A(d) x(t) + B(d) u(t) : (3.3
y(t) = C(d) x{t) + D(d) u(t) (3.4)
where d is now the partial differential operator with
respect to the extra space variable T
d x(t) = xp(t),

If the Laplace transform is taken for either of these

systems the resulting equations are

21



i

( sI - A(z2) ) X = B(2) (3.5)

¥ =C(2) X + D(z) @ (3.6)
which, when combined, give the input-output mapping
Y= (C(z) ( sI -Aa(z) )"l B(z) +D(z) ) T (3.7)

where
G(s,z) = C(z) ( sI - A(z) )~1 B(z) + D(2) (3.8)
is the transfer function matrix.
This system can be represented by thé state-space
matrix over R[s,z],

L R o A e

P(s,z) = | sI - A(z) | B{(z) (3.9)
1
]

If the output equation, (3.2) or (3.4), contained
differential terms of the control u(t), then D = D(s,z).

If the output egquation, (3.2) or (3.4), is independant
of the control u(t), then D = 0.

More generally, these systems can be represented by the

polynomial system matrix over Ris,z],

22



P(s,z) = T(s,2)

U(s,2) (3.10)

- e o e -

]
i
]
]
1
! W(s,z)
where, if the corresponding output egquation is independant
of the control u(t), then W(s,z) = 0.

The polynomial system matrix (3.10) gives rise to the

transfer function matrix
G(s,z) = V(s,z) T1(s,2) U(s,z) + W(s,z)" (3.11)

It can be seen that if there is more than one delay,
say, the resulting system matrix will be over the ring
R[(s,z1r22¢/-++..,2r], Where 27,....,2, are the Laplace
variables of the r independant delays. Therefore when
considering the extension of results for R{(s] to results for
R{s,z], it would be useful to consider also the further
extension to RI{s,21,....,2¢].

However, as will now be shown, the extension of results
for R[s] to results for R[s,z] is not straightforward.
Indeed the extension is actually to the ring R(z){s), as
both R[s] and R(z)[s]l are principal ideal domains, whereas

the ring R[s,zl! is not.

Frost (1979) found a major difference between matrices

over R{s] and matrices over R[s,z]. For a matrix over R[s]
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it is certainly the case that if the determinantal divisor
dj(s) is removed from all the ith order minors, then the
remaining polynomials cannot be simultaneously zero for any
value of s. This result does not extend for matrices over
R[s,z], and so prompts the definition of zeros of a matrix

over R[s,z].

Definition 3.1l: Zeros of a matrix over Ris,z] (Frost 1979)

Given a matrix over R[s,z] it is possible that on
removal of the determinantal divisor dj(s,z) from all the
ith order minors of the matrix, the remaining polynomigls
can all be simultaneocusly zero for one or more values of the
pair (s,z). Such a value of (s,2) will be defined as an ith

order zero of the matrix over Ris,z].

Example 3.1: (Frost 1979)

Consider the matrix

- .
K(s,2) = s+2 0 2
0 s+z 0

| 0 0 S

which has determinantal divisors
di(s,z) =1, da(s,z) = s+z, d3(s,2) = s(s+z)2,

If the second order determinantal divisor dj{s,z) is removed
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from all the second order minors the following non-zero
polynomials remain:

(s+z), 2, s, S.
These are all simultaneously zero for the pair (0,0).

Therefore (0,0) is a second order zero of K(s,z).

This is a very important property and shows the need to
extend the property of zeros in R[s] to factors and zeros in
R{s,z]. Confusion must be avoided, as zeros in R([s] are

actually factors in R[s].

As shown in section 1.1 there exists the concept of
equivalence of matrices over R(z)[s] or R(s)[z]. For this
reason Morf et al (1977) have suggested a method to
transform a matrix K(s,z) to its Smith form over R[z][s].
This could be done by firstly transforming K(s,z) to its

Smith form over R(z)[s], théﬁ'is
M(s,z) K(s,z) N(s,z) = 85(s,z) (3.12)

where det( M(s,z) )}, det( N(s,z) ) € R(z), and the matrices
M(s,z), N(s,z), SS(s,z) are over the ring R(z)[s). If M(s,z)
and N(s,z) are now renormalized by multiplication by
diagonal matrices over R[z]l, such that M(s,z), N(s,z) are

now matrices over R[s,z] and det( M(s,z) ), det( N(s,z) )
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are in R[z], then the resulting Smith form S5'(s,z) would be
the Smith form of K(s,z) over R{zlIs]. This results in the

following theorem.

Theorem 3.1l: (Morf et al 1977)

Given any polynomial matrix K(s,z), there exist two
polynomial matrices M(s,z) and N(s,z) with
det( M(s,z) ), det( N{(s,z) ) € R[z]
such that the Smith form S8(s,z), of K(s,z) over RI[z]l[s] can

be obtained by
M(s,z) K(s,z) N(s,z) = 88(s,2).
The same result would apply over R[s][z]). However the
Smith forms over R[z][sl and R[sl[z] may be quite different

and neither may be the Smith form over R[s,zl.

Example 3.2

Consider the matrix

K(s,z) = s =-(1l+z)

-Z2 S

This has Smith form over R[z][s]
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$S(s,z) = | z+l1 0

0 (z+1) (s2-22(2+1))

and Smith form over RIs]{z]

SZ(s,z) = s 0

0 s(s2-22(z+1))

and the Smith form over RI[s,z] is

S(s,z) = 1l 0
0 82-22(z+1)

which shows that all thrée Smith forms are different.

Although the method of Morf et al would give an
equivalence over R{z][s], ifqpossible it would be more
desirable to obtain eguivalence over R{s,z]. As it is known
that equivalence over R[s,z] is not always possible, it
would be useful to find conditions on the matrix which are
necessary and sufficient for eguivalence over R[s,z] to its

Smith form.

Frost (1979) found that a transformation of equivalence

over R{s,z] will preserve the zeros of a matrix, whereas a
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transformation of equivalence over R(z)[s] need not do so.
As the Smith form of any matrix has no zeros, then the
invariance of zeros for equivalence over R[s,z] gives the

following result.

Theorem 3.2: (Frost 1979)

A necessary condition for the equivalence of a
polynomial matrix K(s,z) with its Smith form S(s,z) over

R{s,z] is that K{s,z) should have no zeros.

Frost and Storey (1978) initially thought that the
property of zeros of a matrix over R[s,2] is also a
sufficient condition for equivalence to its Smith form over
Rls,z]. However Lee and Zak (1981) are able to obtain a
necessary and sufficient condition for equivalence to its
Smith form over R{s,z] of a certain class of matrix., From
this they are‘able to producé a counter example to Frost and
Storeys result, To discuss their result it is first
necessary to define a cyclic vector, and a cyclic (or

non-derogatory) matrix.

Definition 3.2: A cyclic (or non-derogatory) matrix over

R{z]
An n x n matrix A(z) is said to be cyclic if there

exists a vector b(z) such that the matrix
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(b,Ab,....,Al"1b]

has full rank for all z. Such a vector b(z) for which this

holds is called a cyclic vector (Lee and Zak 1981).

Theorem 3.3: (Lee and Zak 1981)

Necéssary and sufficient conditions for the existence
of a cyclic vector b(z) ¢ RB[z], for a given matrix
A(z) € RD X N{z] are the following:

{i) The Smith form of the matrix [sI - A(z)] is

0

- = e e e e o ow o Eemw

|
| det( SI - A(z).)

that is, the degree in s of det( sI - A(3) ) is equal to the
degree in s of the minimal polynomial of A(z).

(ii) The matrices Sp(s,z) and [sI -~ A(z)] are egquivalent

over R[s,z].
As a consequence to this theorem, Lee and Zak provided

the following counter example to the result of Frost and

Storey (1978).
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Example 3.3: (Lee and Zak 1981)

Consider the matrix

P(s,z) = 5 -{1+z)

—22 b=

which has no zeros and is of the form [sI - A(z})}] where

A(z) = 0 1+z
-z2 0
Now
det[b,Ab] = det | b3 (1+z)bsy
by 22b1
= 22b32 - (l+z)by2 where b = [ by (2)

ba(z)

But z2b32 - (l+z)by2 £ R # 0 for any polynomials by,bs € R[z]
1 2 102

as it is not sign definite for values of z.

Therefore by theorem 3.3, P(s,z) is not equivalent to

its Smith form S(s,z),

S(s,z) = 1 0

0 s2-z2(1+42)
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over R[s,z] even though P(s,z) has no zeros.

Frost (1979) tried to construct an eguivalence
transformation to transform a matrix K(s,z), which has no
zeros, to its Smith form over R[s,z].

Firstly K(s,z) can be transformed by eguivalence over

R[s,z] to the form
e;(s,z) K'(s,z) (3.13)

where ej(s,2) is the first invariant polynomial of R(s,z),
and K'(s,z) is such that the (1,1)th and (1,2)th elements
have no common zeros. It can be seen, by theorem 1.1, that
two polynomials x(s,2),y(s,z) € R[s,z] have no common zeros
if and only if there exist polynomials a(s,z),b(s,z) eR[s,2]

such that
a(s,z) x(s,2) + b(s,z) y(s,2) =1 (3.14)

Now using this result a transformation of eguivalence over

R[s,z] can be constructed which brings K'(s,2z) to the form

-——— el - - a - - -

0

1! o (3.15)
Ky (s,z) |
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Continuing this process on Kj(s,z) will construct a
transformation of equivalence over R[s,z] which will

.transform K(s,z) into its Smith form.

However, as example 3,3 has shown, the property of
zeros is not a sufficient condition for equivalence over
Rls,z] . Therefore the point at which the method fails is
the assertion that it is always possible to transform K(s,z)
into ej(s,z)X'(s,2) where K'(s,2) has the (1l,1)th and

(1,2)th elements having no common zeros.

The final extension to be covered in this section, is
an algorithm for the greatest common divisor extraction from
two multivariable polynomials due to Bose (1976). This is
extremely useful because it finds the greatest common
divisor of polynomials in any number of variableé. This
method makes use of bigradients or subresultants (see, for
example, Barnett 1971).

Consider two polynomials £(pj,....,Pk) and

g(pPlss-+.+sPk) Written as

I

£(Plree-+sPk) = agp1® + a;p1® 1 + ... + ag (3.16)

g{Plre---sPk) = bop1™ + byp1™ L + ... + by (3.17)

where the aj,bj are polynomials in the variables
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{P2se++--sPk). The method works for primitive polynomials.
Therefore it is necessary to remove the content of each
polynomial (that is the greatest common divisor of the aj in
the case of £), by recursively using the method on the (k-1)
variables (p2,+...:Pk) qf firstly the polynomials ag,....,an
for the content of £, and then bgses..,bp for the content of

g.

This gives the result
ged(£,g)=[gecd( cont(f),cont(g) )llgcd( pp(£f),pplg) )] (3.18)

where cont(f) is the content of £, and pp(f) is the

primitive part of f£.
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1.4 Svnopsis of the thesis

The previous sections of this chapter have covered some
of the relevant work relating to polynomial system matrices.
However it is noticeable that there has been far less
extension of the algorithms developedrfor one variable
system matrices to two variable system matrices, than the

underlying algebra.

Chapter 2 attempts to extend some of the algebra to the
ring RIs,z]. This is done by considering the 2x2 polynomial

matrix over R[s,z] ,

x(s,2) y(s,2z) . (4.1)

uis,z) w(s,z)

The equivalence of this matrix to its known Smith form is
analysed in an attempt to find conditions under which the
equivalence exists, whilst at the same time investigating
the construction of the actual equivalence transformation.
However it is not possible to seperate the conditions for
the equivalence and the construction, Therefore there is
further investigation into the result of Lee and Zak given
in theorem 3.3.
The chapter then deals with the development of a

computer algorithm for the transformation of a matrix to its
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smith form over R[s,z], based on algorithm 2.1. There were
quite a few problems in constructing this algorithm, and
these will be fully discussed.

Because of these problems it was also worth trying to
compare this algorithm with one which finds the Smith form
by explicitly calculating the determinantal divisors of'the
matrix. It is then possible to compare computing times of
the two methods, to show whether it is more efficient to
calculate the determinantal divisors or to use the
equivalencé over Ris,zl.

To conclude chapter 2, an algorithm is developed which
will calculate the Smith-McMillan form of a rational
' polynomial matrix, using the previously developed Smith form
algorithm,

A number of examples will be given to show how the
algorithms perform on matrices chosen to illustrate various

difficulties.

Because it is not possible to f£find conditions for
equivalence over R[s,z] of a general matrix in chapter 2,
chapter 3 considers the concept of extended egquivalence of
Pugh and Shelton (1978). This is again applied to the
general 2x2 matrix, to investigate if the new approach will
prove more useful in finding the required conditions.

However this turns out to be just an alternative route to
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the same results as chapter 2, and the new approach gives no

other insights into the problem,

As it has not been possible to find necessary and
sﬁfficient conditions for the equivalence of a general
polynomial matrix to its Smith.form over R[s,z], chapter 4
considers the problem for a particular form of matrix, the

Roesser matrix. The Roesser matrix has the form

_ , -
sIn - ay 1 -ap | b1 (4.2)
S U S
- I, - a b
R I S T
] -C1 E -co ! d

and arises from a number of different systems. The matrix
{4.2) could be a special form of state-space matrix over
R[s,z] arising from delay-differential or partial
differential systems. Such matrices arise in the study of
two dimensional image processing systems (see, for example,
Kung et al 1977) and indeed arise naturally from the
approach suggested by Givone and Roesser (1972,1973) or
Fornasini and Marchesini (1975) for two-dimensional filters.
Mathematical induction is used to produce a sufficient
condition for equivalence of a certain class of Roesser
matrix of the form (4.2) to its Smith form over RIs,zl.

Although the method is tedious it is the only one known at
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the present time to find the sufficient condition.

To conclude chapter 4 a number of Roesser m;trices are
used as examples for testing the Smith form program.

Chapter 5 moves on to the topic of the realization of
two variable rational transfer function matrix to a
state-space system matrix over R[s,z]. The algorithm is
based on that developed by Pace and Barnett (1974b) for the
single variable realization. However, as Prost (1979) has
shown, a realization over R{s,z] may not always be both
controllable and observable. This is again due to the
property of zeros, in this case the fact that it may not be
possible to remove both input-decoupling and output-
decoupling zeros. Both the theoretical background and
algorithmic development of the realization will be covered

with examples to test the program.

Chapter 6 concludes the thesis, examining how
successful were the attempts to extend the algebra and the
algorithms to two variable system matrices. There are also
suggestions of areas for further research which may help to

resolve some of the outstanding problems.

All the work in the last five chapters is original

unless otherwise stated,
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CHAPTER 2

FURTHER EXTENSIONS OF THE THEORY, AND ALGORITHMS RELATING TO

TWO VARTIABLE POLYNOMIAL MATRICES

2.1 Introduction

From section 1.3 of the introduction it is clear that
the theoretical extension of the results for 1-D systems to
2-D systems has not been completed. This is certainly true
for results concerning equivalence of a generai two variable
polynomial matrix with its Smith form. Theorem 3.2 of
chapter 1 gives a necessary condition, but a corresponding
sufficiency condition has not been found.

' This chapter attemts to find a sufficiency condition by
examining a 2x2 general two variable matrix. If such a
condition was found the result could be extended to a m x n
two variable matrix bf mathematical induction. Following
this the result of Lee and Zak (1981), theorem 3.3 of
chapter 1, is extended for a more general matrix.

Finally in this chapter a number of algorithms are
developed for computing the Smith form and Smith-McMillan

form of two variable polynomial or rational matrices.
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2.2 Algebraic investigations into equivalence of a 2x2 two

variable polynomial matrix with its Smith form over

Rls,z]

To attempt to find the required sufficiency condition
for equivalence of a two variable polynomial matrix with its
Smith form over Rls,z] it would be useful firstly to
consider a 2x2 matrix without zeros, |

Consider the matrix A(s,z) , without zeros,

.A{s,z) = x(s,2) y(s,z) (2.1)

u(s,z) w(s,z)

It can be assumed that x(s,z),y(s,z),u(s,z), and w{(s,z)
. have no common factor and (as A(s,z) has no zeros) also no
common zeros. Therefore the Smith form of A(s,z) is the

matrix S(s,z),

S(s,z) = | 1 0 (2.2)

0 x(s,2) w(s,z) - y(s,2) u{(s,z)

To find the sufficiency condition it is assumed that
A(s,z) is egquivalent to S(s,z) over R[s,z]l. That is there
exist unimodular matrices M(s,z), N{(s,z) over R[s,z] such

that
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M(s,z) A(s,2z) N(s,z) = S(s,2) (2.3)
or

a. b X Yy e f = 1 0 (2.4)

c a u ) g h L 0 XwW-2y

where x = x(s8,2) etc, for ease of notation.

By solving the matrix equation, 2.4, it should be possible
to find sufficiency conditions for A(s,z) for equivalence
over R[s,z] to exist. Also it should be possible to give the

actual construction for the equivalence transformation.

In section 3 of the introduction it was shown that
Frost was able to construct a transformation of equivalence
if adjacent elements of the matrix had no common zeros.

For example if x(s,2z) aﬁd u(s,zi have no common zero,
then there exiét, by theorem 1.1 of chapter 1, polynomials

a(s,z) and b(s,z) over Rls,2l such that,
a(s,z) x(s,z) + b(s,z) u(s,z) =1, (2.5)

which gives the transformation of eguivalence over R[s,z],
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a b X y 1 -(ay+bw)

[
[

0 (2.6)

-u X u o w 0 1 0 Xw-uy
Therefore for this investigation it is also assumed

that any adjacent pair of polynomials of A(s,z) have common

zeros. That is the pairs
(x,v), (x,u), (u,w), (y,w) ' (2.7)

have common zeros.

Expanding (2.4) gives the four equations

e{ax+bu) + glay+bw) =1 (2.8)
f(ax+bu) + h(ay+bw) = 0 (2.9)
e(cx+du) + gl{cy+dw) = 0 (2.10)
f{cx+du) + h(cy+dw) = xw-uy _ {(2.11)

Also there are the unimodularity conditions on the

equivalence matrices M(s,z) and N(s,z), which give

ad - bc

[

kj € R# 0 (2.12)

(|

eh - fg = kp € R # 0 (2.13)

It can be seen that egquation (2.8) holds the key to the

transformation, because once there is a 1 in the top left
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hand corner of the matrix, the remaining transformation to
the Smith form is straightforward.

If (2.8) holds, that is
e(ax+bu) + g(ay+bw) =1
then the eguivalence transformation is,

a b X y e -(ay+bw) = 1 0
-~(eutgw) (ex+gy) u w g (ax+bu) 0 xw-uy
(2.14)
where the determinant of both the equivalence matrices is 1.
A few methods are now proposed which attempt to f£ind

the conditions under which (2.8) holds.

2.2.1 Method 1

The problem is to solverthe equation
e(ax+bu) + g(ay+bw) = 1 (2.1.1)
for polynomials a,b,e,g € R[s,z], for the given polynomials
X,u,y,w € R[s,z2].

By theorem 1.1 of chapter 1, (2.1.1) can be solved if

and only if the polynomials
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(ax+bu) , (ay+bw) | S (2.1.2)

have no coﬁmon zZeros.

To investigate this, consider the set of zeros
{ (s1,21) } of the polynomial (ax+bu), and examine the
polynomial (ay+bw) at these points to find conditions such

that (ay+bw) is not zero.

Let the set of pairs { (sj,z1) } be the zeros of

(ax+bu), that is
a] x1 +bpuy =20 (2.1.3)

where ay = als,z) etc.
{ (s1,271) }
The set { (s3,z3) } is non-empty, as from (2.7) x and u have
common zeros. .
Evaluating (ay+bw) at this set, it is assumed that

there is a subset { (sg,zq) } of { (s1,2z31) } for which
ag yop + bgwg =0 (2.1.4)
If necessary conditions can now be found for this subset to

be non-empty, then these will be conditions for the

polynomials (ax+bu) and (ay+bw) to have common zeros. From
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this it should be possible to find sufficient conditions for
which the polynomials (ax+bu) and (ay+bw) have no common

zeros and so solve equation (2.1.1).

| Firstly consider the case when x5 = 0, From equation
(2.1.3) we have
bg ug = 0 | (2.1.5)
which implies that bg = 0 and/or ug = 0.
If bg =0 , then (2.1.4) gives
| ag yo = 0 (2.1.6)
which implies - that yg =0 , as ag # 0 because a and b

have no common zeros. This gives the result.

Lemma 2.1.1

A sufficient condition for the polynomials (ax+bu) and
(ay+bw) to have common zeros is that the polynomials b,x,y

have common zeros.

Now consider wug = 0 in equation (2.1.5). To satisfy
(2.1.4) we require
ag yg + bg wp = 0 {(2.1.7)
at the common zeros of x and u.
To further investigate this, let yg = 0. This implies

bg =0 as x,y,u,w have no common zero. If yg # 0 , let

'l

) 0 from which we have the condition
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ag = 0 at the common zeros of x,u,w; (2.1.8)
Finally if yg # 0 and wp # 0 this gives the condition

ag yp + bg wg =0 (2.1.9
at the common zeros of x and u which are not zeros of y or

w. These can be combined to give the result.

Lemma 2.1.2

Sufficient conditions for the polynomials (ax+bu) and
(ay+bw) to have common zeros are the following:
(i) The polynomials b,x,u,y have common zeros.
(ii) The polynomials a,x,u,w have common zeros.
(iii)The polynomial (ay+bw) 1s zero at the set of points
which are common zeros of x and u, but not zeros of y

or w.

To complete this approach it is necessary to consider
the case when xg # 0 .
In this set if ug = 0 then from (2.1.3) ap = 0. Also
from (2.1.4) we have
bg wog = 0 (2.1.10)
which implies wg = 0 , as a and b have no common zero. This

gives the result
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Lemma 2.1.3

A sufficient condition for the polynomials (ax+bu) and
(ay+bw) to have common zeros is that ag = 0 at the common

zeros of v and w which are not zeros of x.

Again if we now consider xg # 0 and ug # 0 then

(2.1.3) gives

agp xg = - bg ug with ag # 0, bg # 0. (2.1.11)
(2.1.4) gives

ag yo +bgwg =0 (2.1.12)
now multiplying by xg ( # 0 ) gives

apg Xg Yo + bg xg wo = 0
which gives, from (2,1.11)

- bg up yo + bg %X¢9 wg = 0
or

" bg (xg wo - up yg) = 0 | (2.1.13)

and hence the result

Lemma 2.l1.4

A sufficient condition for the polynomials (ax+bu) and
(ay+bw) to have common zeros is that
X0 wo —~up yo =0
for some values of the set { (sqg,2¢9) } which are not zeros

of x or u,
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Combining lemmas 2.1.1, 2.1.2, 2.1.3, and 2.1.4 will

give the following theorem,

Thoerem 2.1.1

Ssufficient conditions for the polynomials {(ax+bu) and
(ay+bw) to have common zeros are the following:
(i) The polynomials a,u, and w have common zeros.
(ii) The polynomials b,x, and y have common zeros.
(iii)The polynomiél (ay+bw) is zero at the set of points
which are common zeros of x and u, but not zeros of y
or w.
{(iv) The polynomials (ax+bu) and (xw-uy) have common zeros
which are not zeros of x or u,.
A necessary condition for the polynomials (ax+bu) and
(ay+bw) to have common zeros is that one of the above four

conditions must hold.

Directly from theorem 2,1.1, the actual result required

can be found.
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Theorem 2.1.2

A sufficient condition for two polynomials (ax+bu) and
(ay+bw) to have no common zeros is that all of thelfollowing
conditions must hold:

(i) The polynomials a,u, and w have no common zero.

(ii) The polynomials b,x, and y have no common zero.

(iii)The polynomial (ay+bw) must be non-zero at the set of
points which are common zeros of x and u, but not zeros

of y or w.-

(iv) The polynomialé (ax+bu) and (xw-uy) have no cemmon

zeros which are not zeros of x or u.

It can be seen from the above theorem that conditions
(i) and (ii)_are the constructions for the polynomials a and
b. However from conditions (iii) and (iv) it is not possible
to find explicit conditions on x, y, u, and w for the
equivalence transformation to exist, or fufther construction
for the polynomials a and b of the transforming matrices.

Therefore it is necessary to consider an alternative

approach.
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2.2.2 Method 2

Again the problem is to solve the equation

elax + bu) + glay + bw) = 1 (2.2.1)

for polynomials a,b,e,g € R[s,z]. This eguation is solvable

if and only if the polynomials

(ax + bu) and {(ay + bw) (2.2.2)
have no common zeros for general polynomials a and b which
themselves have no common zero.

To investigate this consider the following proposition.

Proposition 2.2.1

For the polynomials (ax+bu) and (ay+bw) to have no
common zero then 7
either
(i) They are never egual, and so c¢annot have any common
value. |
or
(ii) If they are equal, at those points where they are equal

they are not zero.
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For the polynomials (ax+bu) and (ay+bw) never to be

equal it is necessary that
alx - y) +blu~-w) #0 (2.2.3)
for all values of (s,z), which immediately gives the result:

Lemma 2.2.1

A sufficient condition for the polynomials (ax+bu) and
(ay+bw) to have no common zero is that the polynomials (x-y)
and (u-w) have no common zero and then the polynomials a and
b are chosen such that

a{x = y) + b{u - w) = 1.

Now if the polynomials (x-y) and (u-w) have common
zeros then an analysis of the form used in method 1 is
required. Unfortunately this gives results which will not
explicitly determine whether a transformation of equivalence
exists. This analysis also gives rise to conditions (i) and
(ii) of theorem 2.1.2, showing consistency in the methods.

To illustrate this method consider the following

example.
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Example 2.2.1

For the matrix

S -(1l+z) (2.2.4)

-2 S

all adjacent pairs of polynomials have common zeros, but the
matrix has no zeros.

Here

(x - y} s+z+l (2.2.5)

~(s+2) (2.2.6)

(u - w)
and it can easily be seen that (x-y) and (u-w) have no
common zero, Choosing a =1, b = 1 gives

l.(s+z+l) + l.(=(s+2)) =1 : (2.2.7)

which gives the equivalence transformation

1 1 s —{z+l) 1 =(s=-z-1) | =1 0
s+z s+z+l -2 s =1 5—2 0 s2-z(z+l1)
(2.2.8)
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2.2.3 Method 3

This method considers equation (2.8) in a different

way, that is
(ae)x + (ag)y + (be)u + (bglw =1 (2.3.1)

As.x,y,u, and w have no common zero then there exist

polynomials k,l1,m,n € R[s,z] such that
kx + ly + mu + nw= 1, (2.3.2)

However this is true for many k,l,m,n. The problem now is to

find k,1,m,n which are factorizable such that

ae = k
ag =1 (2.3.3)
be = m
bg = n

However this problem is not definitive and would
require searching through all pbssible k,1l,m,n until one set
is found which is factorizable.

To illustrate this method consider the example.
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Example 2.3.1

Consider the matriz

S -(1l+2) (2.3.4)

-2 S

which has no zeros. Choosing

k=1,1==-1, m=1, n= -1 (2.3.5)
gives ,

l.(s) - 1.(-(1+2)) + 1.(-2) - 1.(s8) =1 (2.3.8)
and k,1l,m,n are factorizable giving |

a=1,b=1,e=1, g=-1 | (2.3.7)

which gives the equivalence transformation

1 1 s =(z+l1) 1 =(s=-2-1) =]1 0
s+2 s+z+l -z s -1 5=z 0 s2-z(z+l)
(2.3.8)
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2.2.4 Use of the resultant

Resultants are often used to determine whether two
specific polynomials have no common zeros. The method of
Bose (1976) to find the greatest common divisor of two
multivariable polynomials uses this property. It is to be
considered here whether resultants can be used to determine
if the general polynomials

-]

(ax + bu) and (ay + bw) ' (2.4.1)

have no common zeros., Here the polynomials x,u,y,w are

specified, and a and b are assumed to he of the form

m ]
a=} aj(z) st (2.4.2)
im0
1a] -
b =% by(z) sl (2.4.3)
J=O
however m and n are unknown.
To use the resultant for these polynomials, values of
m and n have to be assumed. The resultant will then produce
conditions on the aj(z) and bj(z) such that the polynomials
(ax+bu) and (ay+bw) have no common zeros. If it is not
possible to find conditions on the aj(z) and bj(z), then
alternative values of m and n have to be assumed. Therefore
this method is not conclusive, as all possible pairs (m,n)

may have to be considered.
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Example 2.4.1

Consider the matrix

A(s,2) = s -(1l+z)

It is required to find polynomials a and b such that the

polynomials
(as - bz} and (bhs - a{(l+z))

have no common zeros.

TLet a and b be of the form

m ' .
a=3 aj(z) si
Lul

b = ibj(z) sJ

J=O

Let m=n=20,

Now resultant ( (ag(z)s -bg(z)z) , (bg(z)s - ag(z)(l+z)) )

= det | ag(z) ~bg(z)z
bg(z) -ag(z) (1+z)

= —ag2(z)(1l+z) + bp2(z)z
£R#0 if ag(z) = 1, bgl(z) = 1.
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That is the polynomials (s-z) and (s-z-1) have no common

Zeros.

2.2.5 Some observations

To conclude this section some relevant observations are
made.

The only fully known statement about the problem is
that the matrix K(s,z) has no zeros, that is there exist

polynocmials k,l1,m,n € R[s,z], such that
kx + ly +mu + nw= 1, (2.5.1)

Refering back to theorem 2.1.2 we see that condition (i)
requires that the polynomials a,u, and w have no common
zeros, and condition (ii) requires that the polynomials b,x,

and y have no common zeros. If we choose a and b such that

a =kx + ly (2.5.2)

b =mna + nw _ (2.5.3)

then by eguation (2.5.1)

]
'—J

a + mu + nw (2.5.4)

b + kx + 1y

]
|

(2.5.5}
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which gives the result that a,u,w have no common zeros and

b,x,y have no common zeros. We also have the extra result

from (2.5.1), (2.5.2), (2.5.3) that |
a+b=1 (2.5.6)

Therefore if a = kx + my, b =1 - a it is necessary
only to consider conditions (iii) and (iv) of theorem 2.1.2

on the polynomials
(a{x - u) + u) and (a(y - w) + w) (2.5.7)

Use of these observations may assist in constructing a
transformation of equivalence for specific examples. However
for the general case these still do not give explicit
conditions.

In conclusion it is obvious that aﬁ alternative
necessary and sufficient condition to determine whether two
polynomials have common zeros is required. This would be
used in conjunction with Hilberts Nullstellensatz to

construct the transformation of equivalence.
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2.3 Extensions of the results of Lee and Zak (1981)

As shown in section 3 of chapter 1, Lee and Zak were

interested in matrices of the form
[ 8T - A(z) ] (3.1)
which has.Smith form
S ‘
I 0 (3.2)
1

The extension initially proposed here is for the

general 2x2 matrix

i
o
e

P(s,2) (3.3)

where t = t(s,z) & R{s,z] etc., and P(s,z) has Smith form

S(s,z) = 1 0 {(3.4)

0 tw=uv

It is possible to extend the definition of a matrix

being cyclic over R[z], to being cyclic over R[s,z].
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Definition 3.1

The matrix P(s,z) € RPXN[s,z] is cyclic over R[s,z] if

and only if there exists a vector b e RP{s,z] such that

det( [b,Ab,....,AN"1lb] ) e R # 0 (3.5)

The vector b is said to be a cyclic vector over R[s,z].

Therefore if the matrix P(s,z) of (3.3) is cyclic then

there exists

b=|by | € R2s,z] (3.6)
b2
such that
det( [b,Ab] ) = det by thby + ubjp =1 (3.7)

which gives the equation

bj2v + bibs(w-t) = bo2u = 1 (3.8)

From this it is possible to construct the eguivalence

matrices which will transform P(s,z) into its Smith form,
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~bo by t u by ubg-biw =11 0
~(bjv+baw) (ubst+bit) v W ba bjv-bat 0 tw-uv
(3.9}
with
det | -bs by =1 {3.10)
L —(bjv+bow) (ubg+bit)
det | by ubg=bjw| =1 - (3.11)
‘ | bs  bjv-bot
and
~-b2a b by wubj-biw | = 0 1 (3.12)
~(biv+bow) (ubp+bit) b2 bjv-bsot -1 t4w

In fact immediately from the matrix [b,Ab] it is
possible to £ind the similarity matrices to transform P(s,z)

into its companion form,

by tbytubs t u ubi+wby =(tbj+ub3) {= {0 =(tw-uv)
b vbjt+wby v oW -b2 ' by 1 t+w
| | (3.13)

where [b,Ab] and [b,Abl~l are the transforming matrices.
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However there seems to be some confusion whether cyclic
and non-derogatory are equivalent properties over R{s,z]. A
derogatory matrix is one for which the minimal polynomial is

of lower degree than the characteristic polynomial.

Example 3.1

Consider a general 2x2 two variable polynomial matrix

A(s;z) = x(s,z) y(s,2)

u(s,z) wi(s,z)

If A(s,z) is derogatory then it has a linear minimal

polynomial
A -a=0.
Therefore
x(s,z) y(s,z) - a(s,z) |1 0 =10 0].
u(s,z) w(s,z) 0 1l 0 0

For this to hold we have

u(s,z) = y(s,z) = 0,

It}

x(8,2) alis,z),
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wis,z) = a(s,z).
Therefore the only 2x2 derogatory matrices are of the form

al(s,z) 0

0o - a(s,z)

which is already in Smith form. Moreover the only 2x2

derogatory two variable matrix which has Smith form

1l 0
0 p(s,2)

is the identity matrix.
Therefore it must be the case that non-derogatory
matrices over R{s,z] are not necessarily similar to their

companion forms. This can be shown by the following example:

Example 3.2

Consider the matrix

A(s,z2) = ) -(z+1)
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From the previous result, this matrix is non-derogatory. It

has companion form

Cls,z) = 0 1
—(s2-22(z+1)) 2s

For A(s,z) to be similar to C(s,z), we must have

a b S -(z+l) | = 0 1 a b
c 4 ~-z2 s ' -(s2-2z2(z+1)) 2s c 4

where a = a(s,z) etc. This gives

as - bz2 = ¢

bs al(z+l) = 4

cs - dz2 = 2¢cs - a(s2-z2(z+1))

ds - c(z+l) = 2ds - b(s2-z2(z+1))

and for unimodularity of the transforming matrix
ad - bce R # 0.

Now

ad - bc = atbs ~ a(z+l)) = b(as ~ bz?)
= b2z2 - a2(z+1)
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ﬂ‘R # 0 because it is not sign definite.
Therefore A{s,z) is not similar to its companion form.
Obvicusly there is a difference between cyclic and
non-derogatory matrices over R[s,z). However it is still
possible to extend the result of Lee and Zak to R[s,z] using

definition 3.1.

Theorem 3.1

Consider the cyciic matrix P(s,2) over R[s,z],
P(s,z) = [pjj3l i,j=1,2,.00.,n

where pj4 € R[s,z], which has Smith form S(s,z) over RI[s,z],

S(s,z) = | Iny ! O O (3.14)
|

Then P(s,z) is equivalent over R[s,z] to S(s,z).

proof (similar to that for the result of Lee and Zak 1981)

If P(s,z) is cyclic, then there exists a matrix H(s,z)},
H(s,z) = [b,Ab,....,AD~1lp]

where b is the cyclic vector. Now P(s,z) is similar to its
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companion form C(s,z) with similarity matrix H(s,z),
H-l(s,z) P(s,z) H(s,2) = C(s,2).

It can be shown that C(s,z) is equivalent over RIs,z] to

S(s,2z), the Smith form of P(s,z). Therefore if P(s,2) is

cyclic over R[s,z] then it is equivalent to its Smith form

over R[s,z].
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2.4 Development of an algorithm to produce the Smith form

of a two variable polynomial matrix

As section 2 of éhapter 1 shows, there are a number of
methods for finding the Smith form of a one variable
polynomial matrix. This section extends algorithm 2,1 of
chapter 1 to transform a two variable polynomial matrix into
its Smith form.

As there does not exist a division algorithm over
Rls,z] it is necessary to design the Smith form algorithm to
change from egquivalence over R[s,z] to equivalence over
R(z)[(s] or R[z]lls] if required. The main problem area for
the algorithm is the actual Gaussian elimination. It was
noticed that choice of pivot was crucial, so that if a
"better" pivot is aﬁailable at any time it should be used.

Congsider the m X n polynomial matrix P(s,z),

P(s,z) = | P11 P12 .-+« DPln : (4.1)

P21 P22 ... P2n

[}
L[]
L]
[] ,
L]

L Pml Pm2 ---- Pmn J

where pjij = pij(s,z) € Rls,z].
Element pjj is the pivot. Firstly element pis is
divided by element py; as far as possible, that is until no

further division can be carried out without introducing
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rational terms in one of the variables. This will produce a

qguotient and remainder such that

P12 = 49p11 + r. (4.2)

Here r may not be of lower degree than pjj. Then q times
column 1 is subtracted from column 2. At this stage it is
checked if there is an element of lower degree than the
pivot. If there is, then it is moved to position (1,1)
becoming the new pivot and elimination is restarted.
Otherwise the next element on the pivotal row is considered
and the same procedure followed.l

This is carried out for the pivotal row and column
resulting in one of two situations. Either all the elements
of the pivotal row and column are zero, and so this stage of
the elimination has been successful. Or theré are some
elements on the pivotal row or ﬁolumn which are not zero,
and the present pivot cannot further divide any of these
elements over R[s,z], and a better pivot is not available.
If this is the case then the elimination must continue over
R(z)[s] or R[z][s].

If equivalence over R[s,z] is possible then this
technique is quite straightforward to implement. However for

equivalence over R(z)[s] a few problems arise.
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For a number of reasons it is necessary to change the
definition of monic over R(z)[s]. To make the pivot monic
under the usual definition would require division of a
column of the matrix by a polynomial in R{(z). The division
here would have to be complete, that is without a remainder.
If the algorithm used a notation for a polynomial in R(z)I[s]

of the form
p(s,z) = n{s,2) / d(z) (4.3)

where p(s,z) € R(z)[s], n(s,z) € Ris,z], d(z) € R[z], then
this would cause no problem., However the algorithm uses a
series expansion as its definition, that is for

p(s,z) € R{(z)([s]

r m
P(s,2) =) 5 ajj siz] (4.4)

20 Ja-}
For this definition, dividing by a polynomial in R(z) may
result in an infinite series expansion of the polynomial,
such that at any stage of the division there would always be
a remainder.

It was thought that if the pivot was made monic only

after the elimination was complete, with pivotal row and
column having all remaining elements zero, this problem

could be overcome. However this still affects the

68



equivalence matrices.

Another effect of dividing through by a polynomial in
R(z) with the notation (4.4) is that polynomial factors in
Rf{z! may be lost when the matrix is renormalized using the
method of Morf et al (1977) as described in section 3 of
chapter 1.

Therefore it was decided to change the definition of
monic over R(z)[s] to be that the coefficient of|the leading
term in s, is purely rational in z with leading term 1, that
is by dividing through by a monomial in z.

It is worth expanding on the idea of Morf et al for
renormalizing the equivalence over R(z)[s].

Consider the equivalence-of a matrix A(s,z) with its

Smith form Sg(s,2) over R(z)[s],

M(s,z} A(s,2) N(s,2) = Sg(s,z)} (4.5)
where M(s,z), N(s,z), Sg(s,z) are matrices over R(z)[s] and
M(s,z), N(s,z) are unimodular over R(z)[sl. Now if M(s,z)
and N(s,z) are renormalized by diagconal matrices over R[z]
so that

M'(s,2) A(s,z) N'(s,z) = Sg'(s,z) (4.6)

and M'(s,z),N'(s,2),Sg'(s,2) are now matrices over R[z][s]

69



with M'(s,z) and N'{s,2) unimodular over R[z][s]. Now
Sg(s,2z) is correct to within removed polynomial factors in
z, and Sg'(s,z) is correct to within added polynomial
factors in z of the actual Smith form, S{s,z), over R[s,z].

It can be seen that the new definition of monic over
R(z)[s] helps the renormalization, because the diagonal
matrices over R[z] need only have monomials in z as their
elenments.,

If the same procedure is repeated for equivalence over
R(s){z], and then renormalized to equivalence over R[s][z},
then the resulting Smith form S;'(s,z) will be correct to
within added polynomial factors in s of the actual Smith
form, S(s,z), over Rls,z].

Therefore it can be seen that the greatest common
| divisor of the corresponding elements of the Smith forms
Sg'(s,z) énd S,'(s,z) will give the actual Smith form over
Rls,zl].

So the strategy of the algorithm would be to use the
Gaussian elimination initially over RIs,z]. If it is not
possible to complete the equivalence over R[s,z], then
elimination will be continued over R(z)[s] to produce the
Smith form Sg(s,z). If required the equivalence will be
attempted over RIz,s] producing either the Smith form S(s,2z)
over R{z,s], or the Smith form S,;(s,z) over R(s){z]. If

Sg{s,z) and Sz(s,z) are found then these can be renormalized
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to Sg'(s,z) and S3'(s,2) and the greatest common divisor of
the elements faken to give the correct Smith form over
R[s,z].

A further extension of this would be to consider
equivalence over R[z][s] instead of egquivalence over
R(z)[s], when equivalence over R[s,z] is not possible. This
would remove the need to renormalize the matrices M(s,z) and
N(s,2). Equivalence over R[z][s] can be achieved by
multiplying rows and columns by suitable polynomials in R[z]
to ensure that division by £he pivot is always possible,

that is
k(z) p12(s,z) = qi(s,z) p11(s,z) + r{s,z) (4.7)

‘where pj1{(s,z), p12(s,2), q(s,z), ris,z) are in Rlzlis],
énd the degree in s of r(s,z) is less than the degreé in s
of p1i1(s.z). This will ensure that elimination will
terminate with all the elements of the pivotal row and
column being 2ero.

Use of equivalence over R[z][s] also removes the
problems of the definition of monic and of handling rational
terms in one of the wvariables, which makes the

implementation of the algorithm easier..
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2.5 Production of a computer program to implement the

algorithm

The choice of computing language to implement this
algorithm is very important. It has to be able to handle the
required representation of a polynomial matrix, that is an
array of arrays of real numbers. The language should be
capable of using recursion and conditional loops, as these
will form an important part of the algorithm. Therefore
ALGOL 68 was chosen as the most suitable language, as it is
extremely flexible and adaptable to a particular user's
réquirements.

In this section the various techniqﬁes and problems
associated with writing the program will be outlined. The
design of the algorithm and the production of a computer
program have been carried out hand in hand as care must be
taken to design an algorithm which will be relatively easy

to program and will run efficiently.
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2.5.1 Representation of a two variable polynomial matrix

The obvious way of representing a two variable
polynomial is by an array of coefficients. A polynomial

p(s,z) is represented by

0 LI j LI r_

pi{s,z) = PR voue (5.1.1)

“« " 00 * & 0P

Q=== M -=--0
Wommm- Mo X
Momees M omm - X
X o-m-- Mmoo K

LI A - &

where element (i,j) is the coefficient of slzi of p(s,z) and
g = maximum power of s
r = maximum power of z.
Algol 68 allows for any integer indexing of arrays, so that
in this case the constant term s020 is easily seen. Also if
it is required to have negative powers of one {or‘both)
variables then this can be easily implemented. As storage is
an important criterion in efficient programming, use will be
made of flexible arrays where the size of the array can
increase or decrease as required. Obviously this is a useful
property as in the elimination degrees of polynomials will
be decreasing, and hence it would bhe sensible to decrease

the array representation as well. To ensure that this is
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carried out; after operations on the polfnomial,-a small
procedure will remove rows and columns of zeros until there
is at least one non zero coefficient in the gth row and rth
column. This is operator % (see appendix). This compares
favourably with_other,lanéuages which require the maximum
dimensions of an arfay to be declared before use, which is
very expensive in stack size.

A polynomial matrix would be normally represented by an
array of polynomials, or more specifically as an array of
arrays of coefficients. However arrays of arrays cannot be
defined in Aléol 68. It would be possible to use four
dimensional arrays where element (i,3j,k,1l) would be the
coefficient of sKzl of the (i,j)th element of the polynomial
matrix. However this again would be inefficient in the use
of the stack. To overcome this problem, a slight change is
made in the definition of polynomials using the "structure"
mode in Algol 68, namely that a polynomial is now a
structure of an array of coefficients. As Algol 68 allows
the user to define his own modes, the following mode

declaration is used for a polynomial:
'mede! 'poly' = 'struct' ([0:0'flex',0:0'flex'] 'real' p),
and simply for an m x n polynomial matrix K,

[1:m,l:n] 'poly' K.
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2.5.2 Arithmetical operators

All the normal arithmetic operators +, - (both monadic
and diadic), *, / have to be defined for two variable
polynomials. The operators +, -, * are all defined fairly
éasily by operations on the coefficients of the polynomials.
They can be defined using the 'op' operator mode of Algol 68
as they use only one or two parameters.

However the division operator causes difficulties as a
division algorithm does not exist over Ris,z]. The operator
/ carries out normal long division either over R[s,z],
R{z)[s] or R[z]l[s] depending on whether a global logical
flag "rat" is set as true or false. It is useful to look
into the division operator in greater depth.

The division operator finds the leading term of both
polynomials and applies long division between them. Over
R[(s,z] the long division will continue until either the
remainder is of lower‘degreé than the divisor, or it is not
possible to continue the division without introducing
rational terms in one of the variables. It should be noted
that it may be necessary to re-dimension the array of
coefficients of either the remainder or the quotient. This
arises because although the degree over R[s,z] of the
remainder will be reduced, the degree in one of the
variables m?y increase, Over R{z}[s] it may be necessary to

re-dimension the quotient or remainder due to either
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increasing degree in z or the need for more rational terms
in z, Over R(z)[s] the division will terminate when the
degree in s of the remainder is less than the degree in s of
the divisor. However there is another case when division
must stop. Consider dividing the polynomial p; = s by

p2 = 2z+l. After one step of the division
s = (z-ls)(z+l) - z~1s (5.2.1)

that is q = z=ls, r = -z=1s. Now the degree in s of r is
greater than the degree in s of pjs. But it can be seen that
this division will never terminate as r will always have
greater degree than pj;. Therefore when it can be detected
that the division would never terminate, an extra criterion
for halting the division would be when the sum of the powers
of the leading term of r is less than the sum of the powers
of the leading term of ps. In (5.2.1) division would now
stop as the sum of the powers of the leading term of r =
=1+l = Q, and the sum of the powers of the leading term of
p2 = 1.

Division over R[z][s] follows the same lines as
division over R[s,z] except for the different definitions of

degree and leading term.
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2.5.3 ’Input-ouput

To run the program the data must bhe input in the

following format:

1) Two integers for the size of the matrix.

2) For each of the elements of the matrix, row by row,
Two integers for the degfees in s and z of the
element.

The array of real coefficients of that element.

Given the data in this form the program will construct
the required polynomial matrix ready for the elimination.

The form of the data output has been designed to give
the user all the relevant information while trying to keep
output volume to a minimum. When a polynomial matrix is
outpﬁt, the position of each element will be given followed
by its array of coefficients. Any zero elements will not be

printed to save on output volume.

Example 5,3.1

The following output

2,31

1.0 0.0 3.0 0.0
0.0 1.0 0.0 2.0
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indicates that the (2,3)th element of the matrix is the

polynomial

2623 + sz + 3z2 + 1.

The following information will be printed:

(i) The initial polynomial matrix.

(ii) For each transformation, whether over R[s,z], R[zlIs],
RIsllz], R(2)[s], or R(s){z]:
Both the equivalence matrices and their determinants.
The Smith form over the particular ring.
The actual matrix produét of the equivalence matrices
and the initial matrix.

(iii)Also for the rings R(z)[s] and R(s)[z]:
The renormalized Smith form.

(iv) If the equivalence was not completed over R[s,z]:

The calculated Smith form over R[s,z].

The determinants are printed as a check for
unimodularity over the various rings. The actual matrix
product is printed as a check that there has been no errors

in the calculation of the eguivalence matrices.
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2.5.4 The greatest common divisor procedure

The greatest common divisor method of Bose (1976) as
described in section 3 of chapter 1 is ideal for two
variable polynomials. Firstly it is necessary to extract the
content from each polynomial, leaving the primitive part.

Then
gedlf,g] = {gcdlcont(f),cont(g)]}{gedlipp(f),pp(g}]l} (5.4.1)

where cont(f) is the content of £, and pp(f) is the
primitive part of £, £ and g being the two polynomials under
consideration.

This would involve recursion to first of all extract

the contents of £ and g, and then find their greatest common

divisor,
If
f(s,z) = ag(z)sP + ,... + ap(2) (5.4.2)
g(s,2) = ba(z)sM + ,... + bpl2) (5.4.3)
then
cont(f) = gcdlag,....,apl (5.4.4)
cont(g) = gecdibg,se.s.,byl (5.4.5)
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The method has therefore to be programmed such that it
can f£find the greatest common divisor of polynomials in one
A
or two variables. It will also be necessary to consider

polynomials of the form
p(s,z) = cg(s)z? + .... + cph(s) (5.4.6)

Therefore when the procedure is called it has to decide
whether it is dealing with
(i) polynomials in two variables.

(ii) polynomials in s only.

{iii)pelynomials in 2z only.

This is important to ensure that further recursion is not
carried out, and the bigradient matrix is correctly
constructed,

In the method it is also necessary to evaluate the
determinants of two variable polynomial matrices. Normally
numerical technigues to evaluate determinants are based on
equivalence or similarity of the original matrix to a
triangular form. An example of this is of course Gaussian
elimination.

Obviously this is not appropriate for two variable
polynomial matrices. Therefore it is necessary to evaluate
the determinants from a basic definition, that is by

expansion along the first row of the matrix, and using
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recursion to evaluate the determinants of the corresponding
lower order minors,

It was found however that the method was very expensive
in terms of storage and computing time. To overcome this the
method of Blankinship (1963) was used for the greatest
common divisors of single variable polynomials when
required, this being called as a default from the main

recursive greatest common divisor routine of Bose (1976).
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2.6 An algorithm developed from the definition of the Smith

form

Because it is not always possible to find the
transformation of equivalence between a two variable
polynomial matrix and its Smith form over RI[s,z] it seems
desirable to investigate the development of an algorithm
which produces the Smith form directly from the
determinantal divisors of the original matrix.

Obviously this technique would be very time consuming
especially as the dimensions of the matrix increase. However
with the following ideas the method can be made quite
efficient,

To calculate the Smith form in this way it would seem
necessary to calculate all the determinants of the minors of
a given order, and then find their greatest common divisor.
From practice it is seen that, especially with the lower
order minors, the greatest common divisor is often unity. It
seems that it is only necessary to calculate the
determinants one by one until the greatest common divisor is
unity or all the minors have been considered.

However it was noticed that the calculation of the
deﬁerminants by expansion along the first row and recursion
for lower order determinants is itself very time consuming.
It was felt that the best way to overcomé this was to make

use of any previously calculated determinants of lower
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order. That is using expansion along the first row and a
"table lookup" technique to find the value of the
determinant of the corresponding lower order minor. This
removes the need to use recursion and so keeps the running
time down. However using this method requires all the
determinants of minors of a given order to be evaluated, but
tests show that there is still a definite saving in running
time, '
The "table lockup" technique requires a matrix, MINN,
of real numbers which correspond to the determinants, and
two matrices, RN and CN, the rows of which are the r-tuples
of the selected rows and columns of the rth order minors,
The ith row of RN and the jth row of CN correspond to the
rth order minor which has determinant stored in MINN(i,J).
From this it is possible to form RN1l, CNl, MINNl which
correspond to the (r+i)th order minors of the matrix.

A comparison of the computing times of this method and
the ones using the Gaussian elimination will be given for

various examples in the results section.
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2.7 The Smith-McMillan form algorithm

This section considers the production of the
Smith-McMillan form of a rational matrix. It is first

necessary to define the Smith-McMillan form over R[s,zl.

Definition 7.1

Consider a p x q rational matrix K(s,z) where the
elements of K(s,z) are
njj(s,z) / djj(s,z) i=1l,eeea,p (7.1)
| 3 =1,0004,9
and'nij(s,z), dij(s,z) € RIs,z].
The Smith-McMillan form of K(s,z) is defined to be the

matrix

([ E(s,2) } 01 ; pP<q
M(s,z) = 4 E(s,z) : P=q (7.2)
E(s,2) ; P>q
0

where E(s,z) = diagl ej(s,z) / gj(s,2z}) 1,
and ej(s,z), gj{s,2) are relatively prime polynomials in
Rls,z] with the divisibility property

e1(s,z) Iez(s,z)] cene | epts,2)

gr(s,z) | gr-1(s,2) | ... |91(s,2)
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where r = rank( K(s,z) ), and the ej(s,z) and gj(s,z) are
related as in equations 7.4 and 7.5. ;

The algorithm will follow along the same lines as those
outlined for single variable rational matrices described in
section 2 of the introduction.

Given a rational matrix K(s,z), firstly find the least
common denominator of the elements of K(s,z), say d(s,z) in

Rl[s,z]. Then form the matrix N(s,z) such that

Ri(s,z) = N(s,z) / d(s,z) (7.3)
where N(s,z) is a matrix over Ris,zl]l. Now calculate the
Smith form, S{s,z), of N(s,z) using the algorithm of section
4 (that is either by equivalence over R[s,z] or by the joint
equivalence over Rlzlls] and RI[s]{z]). The Smith-McMillan
form of K(s,z) is now the matrix

M(s,2) = S(s,z2) / d(s,z) (7.4)
If the polynomial d{(s,z) is now used such that

Sii(s,z) / d(s,z) = ei(s,z) / gj(s,z) (7.5)
where ej(s,z) and gj(s,2z) are relatively prime, then M(s,z)

is of the required form in definition 7.1.
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Because the Smith-McMillan form algorithm is an
extension of the Smith form algorithm it is quite
straightforward to implement as a computer program. However
because of the large number of times the greatest common

divisor routine is used it is very time consuming.
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2.8 Results

As a test of the algorithms a number of exaﬁples which
have arisen in the work of Frost (1%79) and Lee and Zak
(1981) are used, These are used because of the relevance to
the algebraic difficulties outlined earlier in this chapter.

Results will be given over the rings R(z)[s] and
R{z}[s] when required, comparing the two algorithms. A table
will alsoc be given of the computing times for the two main
algorithms and the algorithm based on the determinantal

divisors.
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Example 8.1 (Frost 1979)

Consider the 4x5 matrix K(s,z) which has no zeros:

k(s,2) = |s+l  2(sz+l) 0 z(s+1) z2
s sz+l =(8+l) (s+2) sz z2
0 s(s+1) s+l s(s+l) sz2(s+l)
[ s+l z(s+l)+l <=(s+l)(s+z) z(s+l) z2 R

This was found to be equivalent over RI[s,z] to its Smith

form
B T
S{s,z) = 1 0 0 0 0
0 1 0 0 0
0 b s+1 0 0
L 0 0 0 s(s+l) (s+2) 0

with equivalence matrices

M{s,z) = 1 0 0 0
-1 1 g 0

s2(s+1) ~s(s+1)2 1 0
-Lsz(s+l)(s+z)—l s(s+z) (s+1)2 s+z 1

88




N{s,z) = -z =2(s+l)-1
-l s+l
0 0
0 0
0 0

Example 8.2

Consider the 2x2 matrix K(s,z) which has no zeros:

Ri(s,z) = s s+z+1

SZ z

It was not possible to directly f£find the Smith form over

R[s,z]. Below are the various Smith forms formed by the

different eguivalences:

over R{(z)[s]

The Smith form was

0 s(s+z)

with equivalence matrices

-(s+l) (s+z)

(s+2) {s+1)2

-(s+2) (s+1)2

89

1

0

s (s+l)(s+2) -2
=S (s+2z) (s+1)2
-3
s(s+2) (s+1)2+1

0

z3
-z2
0
0
1




1 —z‘l(s+z) ’ 0 z~1

-Z s+z+1 1 sz-l(s+z-1)

over R[z][s]

The Smith form was

A 0

0 sz({s+z)

with eguivalence matrices

0 l r 0 "'l

z -(s+z+]1) 1 s

over R(s)[z]

The Smith form was

0 z{z+s)

with equivalence matrices

1 0 ' —s=l(z+s) s=l(z+s+1)

z(z+s-1) 1 1 -1
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over RIs]iz]

The Smith form was

s 0

0 zs(z+s)

with equivalence matrices

1 0 v 1 z+s+l

These, when combined, give the calculated Smith form over

R[S’Z] r

S(s,z) = 1l 0

0 sz(s+2)

Example 8.3 (Lee and Zak 1981)

Consider the 2x2 matrix K(s,z) which has no zeros:

It was not possible to find directly the Smith form over
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R[s,z]l. Below are the various Smith forms found by the

different eguivalences.

over R(z)[s]

The Smith form was

z=l(z+1) 0
0 z=l(z+1) (s2-22(z+1})

with egquivalence matrices

1 0 / 0 z=1l(z+1)

over R[z]lIs]

The Smith form was

z+1 0
0 (z+1) (82~22(2z+1))

with equivalence matrices

-3 -(z+l) -1 -5
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Qver

R{s)[z]

with

over

The Smith form was

1 0
0 2z2(z+l)-s2

equivalence matrices

1l 0 ' -s~1z
s~1l(s52-23) 1 -1

Risl[z]

with

The Smith form was

s 0
0 s(z2(z+1)=-s2)

equivalence matrices

1 0 ' 1 -(z+l1)
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These, when combined, give the calculated Smith form

over R[s,z],

S{s,z2) = 1 0

0 s2=-22(z+l)

Example 8.4 (Frost 1981)

Consider the 2x2 matrix K(s,z) which has no zeros:

K(s,z) = s -(z+1)

~-Z s
It was not possible to find directly the Smith form over
Rls,z]. Below are the various Smith forms found by the

different eguivalences.

over R{z)Is]

The Smith form was

-z~l(z+1) 0
0 z=l(z+1) (s2-2(z+1))

with equivalence matrices

94



1 0 , 0 z=l(z+1)

=1 z+1 -z=1 z=1lg

over R[z]Is]

The Smith form was

z+1 0
0 (z+1) (52=-z(z+1))

with equivalence matrices

1 0 ' 0 -(z+1)

-3 ~(z+l) =1 -3

over R(s)[z]

The Smith form was

1 0

0 z2(z+l)-s

with equivalence matrices

1 o| , |-s"lz =(z+l)
5-1(52_22) 1 -1 -5
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over RIs][z]

The Smith form was

s 0

0 s(z(z+l)-s2)
with equivalence matrices
1 0 r |1 -(z+1)
These, when combined, give the calculated Smith form
| over Rs,zl,

S(s,z) = 1l 0

0 s2-z(z+1)

note

By using the algebraic results shown earlier it is
possible to find the transforming matrices over R[s,zl,

these are:

1 1 , | 1 =(s=z-1)

s+2 s+2z+1 -1 S=2Z
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Example 8.5 (Frost 1979)

Consider the 3x3 matrix K(s,z) which has zeros:

- -

Ki(s,z) = s 0 0
0 sz+l 1

0 0 zZ

It was not possible to find directly the Smith form over

R[s,z]. Below are the various Smith forms found by the

different egquivalences.

over R(z)[s]

The Smith form was

- -
1 0 0
0 1 0

[ 0 0 zTls(sz+l)

with equivalence matrices

87

0 1 0 ' 0
z2 -z 1 0
| s2+1 -s z~ls | | 1

-z-1 z=l(gz+1)

-Z-l =]

z=1l(sz+l)  -s(sz+l) |



over R[z][s]

The Smith form was

1 0 0
0 z 0

0 0 sz(sz+l)

with equivalence matrices

0 l o ' 0o -1 -(sz+1)
z2 -z 1 0 -1 -S2
_~2{sz+l) sz -z |1 sz+l sz(sz+l)

over R(s)[z]

The Smith form was

1 0 9
0 1 0

L 0 0 s~lz(sz+D)

with equivalence matrices

0o 1 o! , lo ™1 0
1 0 0 0 0 -g-1
0 -z 1] 1 0 s7l(sz+l) |
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over R[s][z]

The Smith form was

1 0 0
0 S 0
0 0 sz(sz+l)

with equivalence matrices

— - - -
0 1 oy , 0 1 0
1 0 0 0 1 -1
 z(sz+l) =-sz s |1 =(sz+l) sz+l |

These, when combined, give the calculated Smith form

over R[s,z],
S(s,z2) = 1 0 0

0 0 sz (sz+l)
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Table 8.1
This table compares the computing times for the

different algorithms for the previous examples.

Algorithm 1 uses equivalence over Rfs,z] if possible. If it
is not then the matrix is transformed over the rings R(z)[s]
and R(s)[z], the Smith forms are then renormalized, and the

calculated Smith form over R[s,2z] found.

Algorithm 2 uses equivalence over R[s,zl if possible. If it
is not then the matrix is transformed over the rings R{z]l[s]

and R[s]l[z] and the calculated Smith form over RIs,z] found.

Algorithm 3 finds the Smith form over R[s,2z] directly from

the determinantal divisors of the matrix.

Ex 8.1 |Ex 8.2 |Ex 8.3 |Ex 8.4 | Ex 8.5
Algorithm 1 55 27 49 39 42
Algorithm 2 47 22 26 25 34
Algorithm 3 322 9 9 9 15

The values are the mill units (approx 1 sec) for running the

algorithms on the ICL 1904s.
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The results given in table 8.1 show that algorithm 2 is
the most efficient over the given examples, and is
consistently faster than algorithm 1. As the number of
minors in a matrix increases factoriélly with the size of
the matrix, algorithm 3 can be seen to be ineffective on all
but small matrices. In particular example 8.1 shows that
even for a 4x5 matrii algorithm 3 is 7 times slower than
algorithm' 2. Therefore it is shown that aigorithm 2 is the

~best algorithm.
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Example 8.6

Consider the 3x3 rational polynomial matrix

1/ (s+2) 1 1/(z+1)
0 2s/(s2-22) (z+3)/(s+2)
| s+z 0 (s~2)/(2+1) |

This can be rewritten

1 (z+1) (s~-2) (z+1) ({52~-22) (s2~22)
(z+1) (s2-22) 0 2(z+1) (z+3) (z+1) (s~2)
| (z41) (s+2) (s2-22) 0 (s+2z) (s2-22)

It was not possible to transform the new numerator matrix
directly to its Smith form over R[s,z]. The combined
equivalence over R{z][s] and R[s][z] was necessary. This

produces the correct Smith-McMillan form:

1/(z+1) (s2-22) 0 0
0 1/(s+z) 0
5 0 0 (s+z)[ (s+2) ((s-2) (22+42+3)-2)+2] ]
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Example 8.7

Consider the 3x3 rational polynomial matrix:

- 7]
1/z({sz+1) 0 1/sz(sz+l)
0 1/sz 1/sz(sz+l)

0 0 1/s(sz+l) |

This can be rewritten:

1/sz{sz+l) s 0 1

The new numerator matrix was directly transformed into its
correct Smith form over R[s,zl.

This produces the correct Smith-McMillan form:

1/sz (sz+1) 0 0
0 1/sz(sz+l) 0
B 0 0 1
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CHAPTER 3

THE CONCEPT OF EXTENDED EQUIVALENCE

3.1 Introduction

As it was not possible to bring the algebraic work of
section 2.2, for the equivalence of a matrix with its sSmith
form over R[s,z], to full completion it was decided to
‘attempt an alternative equivalence transformation, that of
extended equivalence. This is an equivalence of the form
discussed by Pugh and Shelton (1978) based on the work of
Fuhrmann (1977). The backgrpund to this concept is given in
section 3.2, The concept is then applied to a 2x2 matrix -
over R[s,z] to investigate if there are any advantages over

the usual equivalence transformation.
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3.2 Background to the concept of extended equivalence of

matrices over R[s]

In this section the results of Pugh and Shelton will be

summarized,

Definition 2.1

Two polynomial matrices Py(s), Pa(s) are said to be

extended equivalent if there exist matrices M(s), N(s) such

that
M(s) Py1(s) = Pa(s) N(s) (2.1)
and
M(s), Pa(s) are relatively left prime (2.2)
Py(s), N(s) are relatively right prime (2.3)

For this equivalence Pj(s) and Pj3(s) need not be of the
same size.

An important result of extended egquivalence is:

Lemma 2.1 (Pugh and Shelton 1978)

The matrices

- -

T(s)

-V(s)

U(s) ' (2.4)

Wis)

- -
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and

Iri-r | o i 0 (2.5)
_________ jm= = e s cadar e = —-—- ’
0 T(s) : u(s)
-—-----—--I-—--—-—-—-'—-----—--
o p=V(s) 1 W(s)

are extended equivalent. That is, trivial expansion (or

deflation) is an operation of extended equivalence.

The final result to complete the background is:

Lemma 2.2

If two matrices of the same size are eguivalent, then

they are extended equivalent.
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3.3 Implementation of extended equivalence for a 2x2 two

variable polynomial matrix

Consider the 2x2 two variable polynomial matrix

A(s,z2) = X (3.1)
u W

where x = x(s,2) ¢ R[s,2z] etc., which has Smith form

8(s,2z) = 1 0 - (3.2)
0 pi(s,z)

where p(s,2) = det( A(s,2) } = xw - uy.

It is now possible to illustrate lemma 2.2 for a 2x2

kS

matrix. Assume that the matrix A(s,z) is equivalent to

S(s,z) over R[s,z], that is there exist unimodular matrices

M(s,2), N(s,z) over R[s,z] such that

M(s,z) A(s,2) N(s,z) = 8(s,2) {3.3)
or

M(s,z) A(s,z) = S(s,z) Nj(s,2) (3.4)
where Nj(s,2) = N‘l(s,z).

(3.4) can be written in full as
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a b X yi = 1 0 e £ (3.5)
c d W 0 XW=-uy g h
where
a b e £
c 4 g h
are unimodular over R[s,z}, that is
ad - bc=kj € R#£0 (3.6)
eh - fg=kaoeR#O0 (3.7)
Consider now the last row of (3.5),
[e dal|l x vy = (xw -uy) [ g h1l (3.8)
u W

which demonstrates extended equivalence. It is now required
to prove that:
(i) [ ¢

d ], {xw - uy) are relatively left prime {(3.9)

(ii) X vl, 1l g h ] are relatively right prime (3.10)

u W
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Now [ ¢ d ], (xw - uy) are relatively left prime if

(xw —uy)gqy + [ ¢ dl1)] g1 ] =1 (3.11)

dq22

for some gy, 921, 922 € R[s,z], that is
cgp1 + dggzz + (Xw-uylgy = 1 (3.12)

which is the condition that the polynomials ¢, d, (xw-ﬁy)

have no common zeros, But from (3.6) ¢ and 4 have no common

Zeros, so (3.12) is satisfied. Therefore
[ c d ] and (xw-uy)

are relatively left prime.

Now

are relatively right prime if

931 432 x y |+ |aaa| g hl= |1 of.13

933  g34 u v q42 A
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for some q31, 932+, 933, 934, 941, 942 € R[s,z], that is

q31x + q32u
q31y + 932V
433X + q34u
33y + q34W

But as X V4 is
u  w

{3.5) we have

ax + bu - e = 0
ay + bw - £ =0
cx + du -~ g(xw-uy)
cy + dw - h{xw-uy)

+ q419
+ qq1h
+ q429
+ qg2b

equivalent to

Choose g31 = ah / kz
q32 = bh / k2

qa1 = ~£ / k3

I
o o

il i
o [ =)
»

(3.14)
(3.15)
(3.16)
(3.17)

from

(3.18)
(3.19)
(3.20)
(3.201)

then (3.14) is satisfied from (3.18) and (3.7), and (3.15)

is satisfied from (3.19),

Choose g33

q34 = -bg / k3

q42 = e/ k2

-ag / k3

then (3.17) is satisfied from (3.19) and (3.7), and (3.16)
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is satisfied from (3.18).

Therefore X Y and [ g

u w

h ] are relatively

right prime, and so extended equivalence is a necessary

condition for unimodular equivalence.

Consider now the proposition that the matrix

is extended equivalent to its Smith form,

0 Xw-uy

(3.22)

(3.23)

But, by trivial deflation the Smith form (3.23) is extended

equivalent to the polynomial
XW - uy.

Therefore we have

[ a b X ¥
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with the conditions of relative primeness,
(i) I[a b] and (xw-uy) are relatively left prime. (3.25)

(ii) §x y |and [e f1 are relatively right prime. (3.26)

u w

Now, expanding (3.24) gives

ax + bu e(xw - uy) (3.27)

ay + bw = £(xw - uy) ' . (3.28)
(3.27) multiplied by y, minus (3.28) multiplied by x gives
b(uy - wx) = (xw=-uy)(ey - £x)
which implies ]
b= fx - ey - _ ' (3.29)

a=ew - fu {3.30)

To satisfy (3.25), that is [a bl and (xw - uy) are

relatively left prime we require,

(xw —uy)qy + [ a bl]| g1 | =1 (3.31)

922
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for some gy, g921r 922 € Ri(s,z]. This may be written
(Xw - uy)qy + aqa) + bgpy =1
whichf fFom (3.29) and (3.30) gi&es
(xw-uy)qy + (ew-fulgy] + (fx-eylqgpy =1 (3.32)

that is (xw-uy), (ew=-fu), and (fx-ey) must have no common

Zeros.

To satisfy (3.26), we require

931 4932 x y| t+ |aga [[e £l =1 O (3.33)
0

933 934 uovw q42

for some q31, 932, 9337 934, A41s 942 € Rls,z]. This may be

written as the set of equations

q931%x *+ g3u + g41e = 1 (3.34)
q31y + 932w + 941£ = 0 (3.35)
g33%x + g34u + ggze = 0 | (3.36)
33y + a34w + q42f = 1. - (3.37)

Then by choosing
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q31 (@iw + gp2f)

Q32 = ~(q1y + g21f)
q33 = -(qiu + gsze)

934 = (@1x + qz18)

q41 (@o1w ~ da2V)

a2 = (gp2x ~ gpiu)

.

(3.34) and (3.37) will be satisfied from (3.32), and (3.35)

and (3.36) will be satisfied by cancellation.

Therefore the relative right primeness condition (3.26)
is satisfied by the relative left primeness condition
(3.25). 50 all that is required to be proved is that
equation (3.32) holds for.some dl. 921+ 922 € R[s,z].
The problem reduces to finding pol&nomials e, £ 1in
R[s,z] such that the polynomials |
(xw-uy), (ew-fu), (Ex-ey)

havé no common zeros. Then a and b are such that
a = ew~fu, b= fx-ey

and (3.24), (3.25), and (3.26) are all satisfied.

We note that this condition seems to be weaker than
.that of section 2.2 which requires that the polynomials

(fx-ey), (ew-fu)
have no common zeros. Obéiously if (fx-ey) and (ew-fu) have

no common zereos then (fx-ey}, (ew-fﬁ), and (xw-uy) have no
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common gzeros.
It is now worth investigating the existence of the
common zeros of |
(xw-uy), (ew-fu), (fx-ey).
Immediately it can be seen that it is necessary that
X, Y, U, W

have ng common zeros, that is the matrix

has no zeros.

Now consider the set of points { (sy,2z3) } the zeros of

(xw-uy), that is
X1wy - u1Y1; 0 . ' (3.38)

where x3 = x(s1,2]) etc.

Firstly consider the case when xj; = 0. It is now
required that either ejy; # 0 or ejwy - fjuy # 0 for the
polynomials (xw=-uy), (ew=fu), (fx=-ey) to have no common

zeros., From (3.38) either u; =0 or y) =0 or both.
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consider x1=0, y1=0

We require
eiw; - fju; # 0 (3.39)

Now if . uy = 0, then (3.39) implies e; # 0. If wy) =0
then (3.39) implies £; # 0.

consider x1=0, u3=0

We require
either ejy; # 0, or ejwy # 0 - (3.40)
This immediately implies that ey # 0.
Combining these will give the following result:
Lemma 3.1
Necessary conditions for the polynomials
(xw-uy), (ew-fu), (fx-ey)
to have no common zeros are

(i) The polynomials e, x, u have no common zeros.

(ii) The polynomials £, x, y, w have no common zeros.
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Now consider the case when x3 # 0.

consider X1#0, wi=0

We require

either fju; # 0, or £f1x3 - e1y1 # 0 (3.41)

x1#0, wi=0, uy=0

In this case it is required that
f1x] - e1y1 # 0. (3.42)

If y1 = 0, then (3.42) implies that f; # 0. If y1 # 0

then (3.42) implies that f1x] # ei1v1.

x1#0, w1=0, y1=0

Here it is requiréd that
either fjuy # 0, or £31x) # 0 (3.43)

which immediately implies that £ # 0.
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consider xy1#0, wy#0

From (3.38) this immediately iﬁplies uy # 0, yv1 # 0.

Now consider

f1x; - e1y1

Multiplying by uj gives

uyfix; - ujeryr = u1fix; - eixlwl from (3.38)

x1(£1u; - eywy)

which implies that if £1x; - ejy; = 0 then fju; - ejw; = 0.

Combining all these results gives:

Theorem 3.1

Necessary and sufficient conditions for the polynomials
(xw=-uy), (ew-fu), (fx-ey)
to have no common zeros are:
(i) The polynomials e, x, u Vhave no common ZzZeros,
(1i) The polynomials £, y, w have no common zeros.
(iii)}The polynomials'-(fx-ey), (xw-uy) have no common zeros

which are not zeros of x, y, u, or w.
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It is now seen that these conditions are exactly the
same as those of theorem 2.1.2 of chapter 2, and
unfortunately no stronger results have been obtained by

considering this alternative approach.
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CHAPTER 4

ROESSER MATRICES

4.1 Introduction

The previous chapters have considered two dimensional

system matrices of the form

U(s,z) (1.1)

However this chapter will consider a special form of

two dimensional system matrices, the Roesser matrix,

s, - a : -ap E by (1.2)
.......... I S
~-a3 ' 2In - ay r bo
----------- '--—-——-—-—'--— - —
B -c] I =<2 4 1

where a3, ajs, a3, a4, by, b2, ¢1, ¢2, and 4 are
.respectively nxn, nxp, pxn, pxp, nxl, pxl, mxn, mxp, and
mx]l matrices over R. These matrices are particular forms of
a state-space system matrix. Such matrices arise naturally
in the study of two dimensional systems (see, for example,
Kung et al 1977) particularaly from the approach suggested

for such systems by Givone and Roesser (1973) or Fornasini
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and Marchesini (1975).
Roesser's model, which seems to be the most general two
dimensional state-space model, can arise from considering

two dimensional filters or image processing. Here

x(i,9) = | xhdi, (1.3)

xV({i, )

where x is the local state, xI, an n-vector, is the

horizontal state, xV, a p-vector, is the vertical state and

xh(i+l, 9 | = |[a1  Ap xB(i,§) | + |By |uti,i)  (1.4)
xV(i,j+D) Az Ay xV(i,3) Bo
y(i,i» = [c; ¢l [xhdi, | + puci, i (1.5)

xV(i,j)'

for i,j 2 0, is the discrete time model of the system. By
taking (z,w) transforms a matrix of the form (1.2) will be
produced.

Matrices of the form (1.2) may also arise directly from
delay-differntial systems (see, for example, Zakian and

Williams 1973, or Frost 1979).

This chapter builds up results for equivalence of a
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Roesser matrix to its Smith form over R[s,z]. To accomplish
this the 2x2 and 3x3 Roesser matrices and other related
matrices will be studied. Then by using mathematical
induction on the indices 1, m, n, and p the results will be

extended to the (n+p+m)x(n+p+l) Roesser matrix (1l.2).
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4,2 The 2x2 and 3x3 Roesser matrices

- Bquivalence over R[s,z]

Lemma 2.1

The 2x2 matrix

P(s,z) = s-aj -ag

~a3  z-a4

- is equivalent to its Smith form over R[s,z] if and only if

it has no zeros.

proof

If P(s,z) has no zeros, then at least one of aj, a3z
must be non zero, say ajs. Then using as as a pivot, simple
row and column operations will transform P(s,z) into its

Smith form o .

1 0

0 (s - aj)¥(z - ay) - ajzaj
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Lemma 2.2

The 2x2 matrix

P(s,z) = s-aj z=-as

-a3  -ag

is equivalent to its Smith form over R[s,z] if and only if

it has no zeros.

proof

Similar to that for lemma 2.1.
Lemma 2.3
The 2x3 matrix

Pi(s,z) = s-aj z=aj b

-az -a4 by

is equivalent to its Smith form over R[s,2z] if and only if

it has no zeros.

proof

Similar to that for lemma 2.1.

123



Lemma 2.4

The 3x3 matrix

P(s,z) = s—-ajy

is equivalent to its Smith form over R[s,z] if and only if

it has no zeros.

proof

Assume P(s,2z) has no zeros.

Consider d # 0. Then using d as a pivot,

P(s,z) ~v 1l

0
z-ay'

_az '

0

_a3 L]

s-alf

(2.1)

Therfore, by lemma 2.1, P(s,z) is eguivalent to its Smith

form over R[s,z] if and only if it has no zeros.

Now consider

P(s,z) Ao 1

s~-ay'’

_cl L

z-ay'
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Therefore, by lemma 2.2, P(s,z) is equivalent to its Smith
form over R[s,z] if and only if it has no zeros.

Now consider d = 0, by = 0, by # 0, and so on, giving
the same result. Finally if 4, by, by, ¢1, c3 are all zero

then,

P(s,2) = s-ap ~asn 0

and immediately, by lemma 2.1, P(s,z) is equivalent to its

Smith form over R[s,z] if and only if it has no zeros,.

This has shown that the general 3x3 Roesser matrix is
equivalent to its Smith form over R[s,z] if and only if it
has no zeros. This result will be the initial con@ition used
for the method of mathematical induction in.the next

section.
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4,3 The general (n+p+m)x{n+p+l) Roesser matrix

Consider the (n+p+m)x(n+p+l) matrix

P(s,2) = | sIp-ay ! =ap | by (3.1)
e m e m e | m e — .- = —-—-—
-aj | : zIp-a4 ': by
- - —-—----'--”----—----ﬂ-ﬂ-
RS R -c2  , 4 ]

Lemma 2.4 proves that for n=p=m=1=1 the
matrix P(s,z) is equivalent to its Smith form over RIs,z] if
and only if it has no zeros. Therefore it would seem
reasonable to extend this result to that for general n, p,
m, 1 by the use of mathematical induction, in turn, on the
indices m, 1, n, and p.

To achieve this it will be necessary firstly to prove

certain intermediate results required in the main induction.

Lemma 3.1

The matrix
R(s,z} = [ P(s,z} 1 0]
is equivalent to its Smith form Sg(s,z) over R[s,z] if and

only if the matrix P(s,z) is equivalent to its Smith form

"~ Sp(s,2) over RI[s,z].
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Lemma 3.2

For all positive integers m, the (m+l)x3 matrix

is equivalent to its Smith form over RI[s,z] if and only if

it has no zeros,

proof: by induction on m.
By lemma 2.3 the result is true for m = 1.
Now assume that the result is true for m = k, that is any

matrix

which has no zeros, is equivalent to its Smith form over
Rls,z].

Now consider the matrix

(3.2)

pa 1 -
’ 1
R(s,z) = s-ay | z-az : b1 (3.3)
e U
-ay , =a4 1 b
....... .:.-.._-....-.!.--...._
. r] 1 2 1 r3
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where rj, ry, r3 € R and R(s,z) has no zeros.
Trivially adding a row of zeros will maintain equivalence
over RIs,z}, therefore assume that not all the rj are zero,

If r3 # 0, then using r3 as a pivot

- | , -
I
R(s,z) nv | 1 | 0 : 0 (3.4)
----- _'—.---—-———I-————-—-
0 1 s-a;' ! z-ap'
----- I-—---_—-'_------_
| 0 ¢ -az' o -ag'

which, by (3.3) (with by = by = 0) and lemma 3,1, is
equivalent to its Smith form over RIs,z] as R(s,z) has no

Zeros.

Now if r3 = 0, r; # 0, then using rj; as a pivot

- ' . -
R(s,2)n, | 1 | 0 E 0 (3.5)
----- *‘—--—---‘----—---
0 : -ay' \ by
aiih Sl e T
| 0 ! gjs+z-as' | by | .

If [ mag ¢ bz 1 has rank zero, then it can be reduced
by row and column operations to [ 0 : 0 ] leaving the two
polyncmials on the bottom row

gy 's+hyjz+ags"®™ , ggas+hoz+by! {3.6)

which, as R(s,z) has no zeros, must have no common zeros and
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so R{(s,z) can be further reduced to its Smith form.

If [ ~a4 ! by ] has rank 1 or 2 the reduction will
leave 1 or 2 constants on the diagonal which can be used to
further reduce R(s,z) to its Smith form.

Now if r3 =0, r] = 0, r2 # 0, then using rp as pivot

- . -
R(s,2) A, | 1L | O L0 (3.7)
BRI R R LI e p—
0 ! s-a; |} by
DS It L.
0 -az3 | bg_

which is equivalent to its Smith form over R{s,z], as it is
a single variable polynomial matrix.

Therefore R(s5,z) is equivalent to its Smith form over
R[=z,z], and so the result is true for m = k+l.

Therefore, by mathematical iﬁduction on m, the result

is true for all positive integer m.

Lemma 3.3

For all positive integers m and 1, the (m+l)x(1l+2)

matrix
1 1 1
' H
P(s,2) = s-a; 1 z=-aj E b1 1
T A o - ———
-a3 ; —a4 , b2 m
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is equivalent to its Smith form over RI[s,z] if and only if

it has no zeros.

proof: by induction on 1.
By lemma 3.2 the result is true for 1 = 1.
Now assume that the result is true for 1 = k, that is

for all integer m the matrix

1 1 k
P(s,z) = | s-a3 , z-az ! by | 1 | (3.8)
------ —l—--——--'-———-
~a3j E -ag ; bo m

which has no zefos, is equivalent to its Smith form over
Rlis,z].

Now consider the matrix

1 1 1 1
' ] '
R(s,2) = s-a; , 2z-az ; by ! 11 1 (3.9)
—u——-—|———-—-—’-u——-—i-—--—-
-ay | -ag + by \ ro m

where r1 e R, ry € R®, and R(s,z) has no zeros, Trivially a
column of zeros can be added and equivalence will be
maintained, therefore assume that at least on of the rj is
non zero,

If rp # 0, that is at least one element of rp is non
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zero,. then using this as a pivot,

B ; : ' ]
Rs,z2) v | 1 ! 0 | 0 . 0. (3.10)
..-_-..__.._.....-I--___..-_’--_---
o . s-ay' |, z-aj' : by
--__..l-.-__..-_.' ...............
[ 0oy -az' !t ~ag' |, by' _

which, by (3.8), is equivalent to its Smith form over
R(s,z]. |

Now if ry = 0, r; # 0, then by using r} as a pivot,

!
R(s,z) ny, 1 0

] - .
L 0, 0 (3.11)
I P : _____ 3 e - -
0 )} -a3 )} -ag | b2

which is a constant matrix and so can be further reduced to
an identity block matrix, the Smith form of R(s,z) over
Rls,z].

Therefore R(s,z) is equivalent to its Smith ?orm over
R[s,z], and so the result is true for 1 = k+l.

Therefore, by mathematical induction on 1, the result

is true for all positive integers m and 1.
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Lemma 3.4

For all positive integers m and 1, the (m+2)x(1l+l)

matrix
1 1
: -
P(s,z) = s-a; ! -a 1
z=-aj : -ay 1
....... N
1
L -cl ? -CZ - m

is equivalent to its Smith form over R[s,z] if and only if

it has no zeros.

proof

By considering the transpose of the matrix in lemma

After proving these intermediate results it is now
possible to apply the method of mathematical induction on

the general Roesser matrix (3.1).
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Lemma 3.5

For all positive integers m, the (m+2)x3 matrix

_ . | W
P(s,z) = s-a; 1 -ap I by 1
........ S
-aj : z-as : bs 1
....... e memmcedaen .
| 1 ! =c3 1+ d |m

is equivalent to its Smith form over R[s,z] if and only if

it has no zeros.

proof: by induction on m.
By lemma 2.4, the result is true for m = 1.

Assume that the result is true for m = k, that is any

matrix .
. : : ]
P(s,z) = s-a; | -az 1 by 1 (3.11)
"""" P R
-a3 | Z"'a4 ‘; 2 -
........ jmmmmmmmad e o]
. ~c1 -Cc9 | ] k

which has no zeros is equivalent to its Smith form over
R[Stzl .

Now consider the matrix
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B 1 ' 7
Ri(s,z) = s-a; . -ap : by 1l (3.12)
-...-..-—-'.-.---—-.1 _____ .
-as E z-ag 1 bz 1
—ey ey L d 7| k
....... [ S T
L 1 orp ) or3 |1

where rj, ry, r3 € R and R(s,z) has no zeros.
Trivially adding a row of zeros will maintain
equivalence, therefore assume that not all of the rj are

Zero,

If r3 # 0, then using r3 as a pivot

[~ ' t ] ‘
R(s,2) AL | 1 | 0 ' 0 (3.13)
----- l-—--—--—'—------
0 . s-a’ : -as!
T
0 ' -a3z' | z-ag'
..... U
L0 -1ty —ea'

which, from (3.12) and lemma 3.1, is equivalent to its Smith
form over RIs,zl.

Now if r3 = 0, ro # 0, then using rjp as pivot

' b
R(s,2)n, | 1 | 0 ' 0 (3.14)

ce e mgem——

0 + s-a;' 1 b3
_____ '—-—---—-'—-————

0 | z-az' | by
..... Pmemm = mmgeecman
.0, -me1' v 4
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which, from lemma 3.4, is equivalent to its Smith form over
R(s,z].

Finally if r3 =0, r = 0, r; # 0, then using r; as

pivot
R(s,z) A | 1 0 o (3.15)
_____ e e e e e -
0 : z-a4 | by
R TR
0 -as | by
..... R BN
L 0} ~c2 4

which is equivalent to its Smith form over Rls,z] as it is a
single variable polynomial matrix.

Therefore R(s,2z) is equivalent to its Smith form over
R[s,z] and so the result is true for m = k+l.

Therefore by mathematical induction on m the result is

true for all positive integers m.
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Lemma 3.6

For all positive integers m and 1, the (m+2)x(1+2)

matrix
1 1 1l
B . ) ]
P(s,z) = s~a; 1 =az , by 1
T
-aj : z-a4 | ba 1
_______ .:......-__....4..__....
L &4+ -2 + 4 | m

is equivalent to its Smith form over R[s,z] if and only if

it has no zeros.

proof: by induction on 1.

By lemma 3.5 the result is true for 1 = 1, and for all

nm.
Assume that the result is true for 1 = k, that is any
matrix
1 1 k _
P(s,z) = s=-ay | -aj E by 1 (3.16)
R
H s B L T

which has no zeros is equivalent to its Smith form over

R[(s,z] for all integer m.
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Consider the matrix

_ 1 1 k 1 _
R{(s,2) = s—-aj E -as E by 1+ r1 1 - (3.17)
________ N
-a3 |, 2z-~ay by | r»p 1
....... QY
| -1 -c3 + 4 | r3 | m

where rj1, rpe R, r3 e RM and R(s,z) has no zeros.
Trivially, adding a column of zeros will maintain

equivalence, therefore assume that not all the rj are zero.
If r3 # 0, that is at least one element of r3 is non

zero, then using that element as pivot

1 1 1 kK
R(S,2) A, --E_.i__-f)_ _l' 0 i 0 1 (3.18)
0 1 sa' 1 -ap' ! byt | 1
“o"-;-"-;;:":'"_z:a_;:":'"l-:z-'“ 1,
L0 T e T VT T me

which, from (3.16), is equivalent to its Smith form over'
Rls,z], as (3.16) is true for all positive integers m.

Noew if r3 =0, r3 # 0, then using rj as pivot
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. [~ N [] 1 ]
Ris,z2) n, | 1 i 0 ) 0 E 0 (3.19)
3 O e = = o = oo o o o Ao
0 : s-aj3' E z=ay' E by'
----- L
A R B -

which, from lemma 3.3, is equivalent to its Smith form over
R[S'z] -

Finally if r3 = 0, r; = 0, ro # 0, then using rj as

pivot
= ' ' ' -
Rs,2)n, | 1L 1+ O .+ 0 . 0 (3.20)
...... |...._____..+----.._:.___.._
0 , s-aj | -as | by
..... L
| ! T
L 0 -cp + =c2 , 4 |

which is equivalent to its Smith forﬁ over R{s,z] as it is a
single variable polynomial matrix.

Therefore R(s,z) is equivalent to its Smith form over
R[(s,z] and so the result is true for 1 = k+l.

Therefore by mathematical induction on 1, the result is

true for all positive integers m and 1.

Before continuing the induction process it is necessary
to give a few general results. It is also worth noting that
up to lemma 3.6 it has not been necessary to apply

conditions on the Smith form of the Roesser matrix. But for
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further progress some specilaization is required.

Lemma 3.7
If the m x n matrix P(s,z)-is equivalent to its Smith

form, Sp(s,z), over R[s,z] where

Sp(s,z) =| Ig ? 0 or Ig , 0
o ! 0 0 ! det( P(s,z) )

and if the matrix

(- o o - = -

where r(s,z) is a row vector and R(s,z) has Smith form,

SR(S ,Z) r
]
J
then R(s,2) is equivalent to Sr(s,z) over RI[s,z] if it has

no zZeros.
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proof
Consider the Smith forms Sp(s,z) and Sgr(s,z) to be

= !

Sps,2) =| Ig | O (3.21)
_____ e e
o 1 0

SR(s,2) =| Ig+1 5 0 (3.22)
_______ N
L0 L0

Now as P(s,z) is ‘equivalent to Sp(s,z) over R[s,z] then
there exist unimodular matrices M(s,z) and N(s,z) over

R[s,z] such that

M(s,z) P(s,2) N(s,z) = Sp(s,z) (3.23)
Therefore
I
M(s,2) ; 0 | R(s,z) N(s,z) = |[Sp(s,2) (3.24)
0 E 1 r'(s,z)

where R(s,z) has no zeros. Now
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wn
e )
_
(11}
-
(]
St
I
[
K
(=)

- l -
Al Ig oo 0 (3.25)
LI S Y .
0 | r"(s,z)
- em e o e - -
0 ! 0 .

as this has no zeros, then the elements of r"(s,z) must have
no common zeros, and so there exist polynomials
a1(s,z),....,anfq(s,z)

such that

ay(s,z) r"1(s,2) +....+ apgis,2) r"h.qls,2z) =1 (3.26)
and thus further equivalence will transform R(s,z) into its
Smith form Sg(s,z).

Similar arguments can be applied for the other cases,

and so prove the lemma.

Lemma 3.8

If the m x n matrix P(s,z) has Smith form Sp(s,z),

Sp(s,2) =| Ig ; O or Iq
0o 1 0 0 ! det( P{s,z) )
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and the {(m+l}) x n matrix R(s,z),

where r(s,z) is.a row vector, and R{s,z}) has Smith form

Sr(s,z2),

S IR A e e - e s e e T W EE A MW W e e ow W

A
1
0 or Iq : 0
1
]

and if R{s,z) has no zeros, then P(s,z) has no zeros.

proof: by contradiction.

Assume
[ i
0 1 0
B |
Sr(s,z) = --{‘!".'l.-.:..-__o.- (3.27)
| 0 ¢ 0

R(s,z) has no zeros and P(s,z) has an ith order zero (ilq).
Consider the (i+l)th order minors of R(s,z), they can

be expressed as linear combinations of the ith order minors
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of P(s,z), which are all simultaneously zero for some (s,z).
Therefore R(s,z) has an (i+l)th order zero, as the ith order
determinantal divisor is unity.

A similar argument can be applied for the other cases

and so prove the lemma.

Lemma 3.9

For all positive integers m, 1, and n the

(n+m+l)x(n+1+1) matrik

_ n 1 1 _
f )
P(s,z) = sIp-ay ! -as !} b n
_____________ - - -
i
- - [
B DR s B I
| -1 : =c2 1+ d ] m

0 (3.28)

i R

1
Sp(s,z) = | Ig 4 O or Iq

is equivalent to its Smith form over R[s,z] if and only if

it has no zeros.
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proof: by induction on n.
By lemma 3.6 the result is true for n = 1.
Agssume that the result is true for n = k, that is for

all positive integers m and 1 the matrix

_ k 1 1 _
1
I
P(s,z) = sIx-a) \ -az ! by k (3.29)

________ lm e e e e e e -

-aj i z-ay : bo 1
________ fmmmmemd oo
e : -C2 d | m

is equivalent to its Smith form over R[s,z] if and only if
it has no zeros and has Smith form of the form (3.28)}.

Now consider the matrix

ok 1 1 1
R(s,z) = | sIx-aj | -azj by E_ g1 k (3.30)
R N
-_..I‘El___:l___fc.z__:__d__._L.,__gE.._ "
]
N r] ' ro  ry3 o, s-al 1

where g3, r] € RK, g2, rp ¢ R, g3e R® and r3e R! and
R(s,z) has no zeros, and has Smith form of the form (3.28).
As (3.29) holds for all 1 it can be seen that R(s,z) is

of the form
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R(s,z) = P'(s,2) (3,31)

and, from lemma 3.7, P'(s,2) has no zeros and so is
equivalent to its Smith form, and so the result is true for
n = k+1.

Therefore, by mathematical induction on n, the result

is true for all positiﬁe integers m, 1, and n.

It is now possible to conclude this section with the
following result for the general (n+p+m)x{n+p+l) Roesser

matrix with a particular Smith form.

145



Theorem 3.1

For all positive integers m, 1, n, and p the

(n+p+m)x (n+p+l) matrix

r— N ] -
|
P(s,z) = sIn-aj : -aj : by
_________ e m e m e —m - —————
[
-a3 : zIp-ag 1 b2
________ e L
. -1 |} 2 4
which has Smith form Sp(s,z)
:
SP(S,Z) = Iq 0 or Iq : 0
---------------- ?-—--‘--‘-—--—--
1
!

is equivalent to its Smith form over RI[s,z] if and only if

it has no zeros,

proof: by induction on p.

Similar to that for lemma 3.9.
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4.4 Results

A number of Roesser type matrices were used to test the

algorithms, It was certainly found that although the initial
Roesser matrices seem simple in format, and have low degrees
of the elements, the required transforming matrices were far
from trivial. In some cases the degree of the elements and
the magnitude of the coefficients were large. This is due to
the fact that after the first iteration of the

transformation the matrix is no longer in simple form.
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Example 4.1

Consider the 4x5 Roesser matrix

s=5 1 4 1 2
2 s-3 0 1 3
1 1 z 1 4
| 0 2 0 z+5 1 ]

It was not possible to directly find the Smith form over
Ris,z].

The Smith form over R{z][s] was

1 0 0 0
0o 1 0 0
0 o0 1 0
0 0 0 24-5.45523-85.6422-37,092z+663.3

-

The Smith form over R[s](z] was

1 0 0 0
0o 1 0 0
0 0 1 0
[0 0 0 s%4-22.4752+198.552-786.1s+1136
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This gives the correct Smith form over R[s,z]

" -
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

L 0 0 0 1 0

Example 4.2

Consider the 6x5 Roesser matrix

4 3 0 ] 0
7 3 7 4 8
7 6 4 5 13
1 2 s+2 6 0
2 1 8 s=-1 5
.- 3 11 z+7 | )

It was not possible to directly find the Smith form over
Rls,z].

The Smith form over R[zl[s] was:
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i 1 0 o0 o0 0 ]
c 1 0 0 0
0 0 1 0 0
o 0 0 1 0
0 0 0 0 22-52,932+657.7
L 0 0 o0 0 0 ]

\

The Smith form over R[s][z] was:

1 0 0 O 0
0 1 0 o0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 s2+40.9s5-46.1
0 0 0 0 0

This gives the correct Smith form over R[s,z]

o

o o o o o M
o o o o - o
o o o - o

o o +H o o o
o =~ o o o o
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Example 4.3

Consider the 3x3 Roesser matrix

It was possible to find the correct Smith form over R[s,z],

1 0 0
0 1 0

0 0 sz2-8s~5z+68
The equivalence matrices over Ris,z] were

1 0 0
-2.5 - 0 1

-

| 0.035712-0.2857 1 -0.21432-0.2857 |

0 0 28
0.5 0.2143 s=5
| o -0.07143  -5s+25 |

151



Example 4.4

Consider the 4x3 Roesser matrix

s-5 2 6

1 z+2 2

0 5 1
O 0 1

It was possible to directly find the Smith form over RIs,z].

[~ =
o o H+H o
- o o

The equivalence matrices over R[s,z] were

1 0 0 0

-2.5 0 1 0
0 1 -0.2z-0.4 0.22z-1.6

-0.1786 0.1786s-0.8929 (-0.3571s2-0,07143s (0.03571sz
+0.17862+0.4286) -0.2857s

- +2.429)
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0 0 1
0.5 0.2143 0.03571s~0.1786

0 -0.07143 -0.1786s+0.8929

The results show that although the initial Roesser
matrices are simple in format, the transforming matrices may
be more complicated than expected.

Also the restriction on the Smith form for Lemma 3.9
and theorem 3.1 does not seem to be too strict, as the
examples show that a number of the Smith forms aré of the

form

4
]
0 or I ! 0

_____ Tl e T

0 0 I det( R{s,2) )

|
]
(=~
1
[

where R(s,z) is the initial Roesser matrix.
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CHAPTER 5

THE REALIZATION OF A'TWO VARIABLE RATIONAL TRANSFER FUNCTION

MATRIX

5.1 Introduction

In the introduction it was shown that a linear constant

differential system of the form

x(t) = A x(t) + B ult)

y(t) = C x(t) + D ult)

may be represented by the state-space system matrix

P(s) = sI - A

and has transfer function matrix

G(s) = C (sI - A)~L B + D

(1.1)

(1.2)

(1.3)

(1l.4)

However, if it is the transfer function matrix which is

known then a system matrix of the form (l1.3) is said to be a

state-space realization of the rational transfer function
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matrix G(s).

The realization is said to be minimal if the matrix A
is of least dimension satisfying (1.4), and the dimension of
A is called the order of the realization.

It can be shown (see, for example, Barnett 1971) that a
necessary and sufficient condition for minimality is that
the realization is controllable and observable. This ié of

course a very desirable system property.

In achieviﬁg the mihimal state-space realization there
are at present two main methods. Firstly there is that of
Rosenbrock (1967, 19705 which has been implemented by Munro
and McLéod (1971). Then there is the method of Pace and
Barnett {(1974b) which is shown to be the more efficient of
the two methods. Both these methods are discussed in the
next section.

In section 5.3 the method of Pace and Barnett is
extended to realize a transfer function matrix over R{s,z].
The property of minimality of the realization is discussed.
Also it is not always possible to obtain a state-space
realization over RI[s,z}, and the reasons for this are
discussed.

The algorithm which has been developed is then

implemented and tested with various transfer function
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matrices and the results analysed.
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5.2 The realization of a one variable transfer function

matrix

For one variable transfer function matrices it is
always possible to find a minimal, controllable and
observable state-space realization. However the two main
methods find the minimal realizations in different ways, and
indeed may produce different realizations as the minimal

realization is not unique,

5.2.1 The method of Rosenbrock (see, for example,

Munro and Mcleod 1971)
Given an m x 1 transfer function matrix G(s) which is

such that

where D(s) is a polyndmial matrix and Gp(s) is proper.
‘Let dj(s) be the monic least common denominator of the
ith row of Gp(s) so that Gp(s) can be expressed in terms of

its rows.

Gp(s) = h14(s) / d1(s) (2.1.2)

| hpy(s) / dp(s)
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for j=l'no.o'lo

The dj(s) and hjj(s) are

d;(s) = st + apg 91 g¥i-1l 4+ .. 4+ gl (2.1.3)

hjj(s) = hidpjy sTi-1 +. ..+ nidy (2.1.4)

Then a system matrix in state-space form‘giving rise to

G(s) is
gl : —
P(s) = slyi1-21 0 coes 0 : By (2.1.5)
0 SIrz-Az as ee 0 : Bz
1 ] : '
) ; : Vo
' ' ' 1o
1
0 0 as o0 SIrm-AIn : BIn
........................... L -
| -C1 -C2 e -Cm 1 D(s)
in which the Aj are companion matrices
A = 0 0....0 -aij (2.1.6)
l 0 s e e 0 —ail
R : :
| ' [l '
1 ] ] ]
= 0 0 aa e 0 -airl_l -

158



By = hily hi?o coee hilo (2.1.7)

hily hi2; .... hil
| niligoy Bi25y ... Bilgg ]
ci = 0 a9 & 0 (2.1'8)
' y o ef
. 0 - e 8 & 0 I e

where ej is the ith column of Ip.

This system is observable, but may have input-
decoupling zeros and therefore may not be controllable. So
the next stage is ﬁo remove the input-decoupling zeros, if
there are any, whilst preserving the transfer function
matrix. This will leave a minimal realization of the

transfer function matrix G(s).
This method has been successfully implemented by Munro

and McLeod but, as will be shown in the next section, it is

not the most efficient method.
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5.2.2 The method of Pace and Barnett (1974b)

The strategy of this method is to form an initial
controllable (or observable) polynomial realization. Then
the realization is made minimal, and finally expanded into

state-space form.
Consider an m x n transfer function matrix G(s),

G(s) = Gp(s) + W(s) (2.2.1)
where Gp(s) is proper and W(s) is a polynomial matrix. Now
by expressing Gp(s) in terms of its least common
denominators, then

G(s) = V(s) T-1(s) I, + W(s)
where the matrix T(s) is diagonal and consists of. the least
common denominators of the columns of Gp(s).

This gives the initial realization

P(s) = T(s) I, (2.2.2)

which is controllable as

[ T(s) | I, ]

160



\
has full rank for all s.

The next stage is to make the polynomial realization

observable, If

I

T(s) T3 (s) D(s) (2.2,.3)

[

Vis) Vils} D(s)

that is they have a greatest common right divisor D(s) then

G(s) = Vi(s) T1~l(s) I, + W(s) (2.2.4)

which implies that the system is observable since

has full rank for all s.

Therefore
:
P(s) = T1 (s} ' In ‘ (2.2.5)
___________ .
-Vi(s) | W{s)

is a minimal polynomial realization of G(s).
Finally by employing Rosenbrock's system matrix

formulation (Rosenbrock 1970) as described in the previous
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section, Pace and Barnett are able to reduce the polynomial
minimai realization to a state-space minimal realization in
a minimum of 6perations.

Pace and Barnett have given careful consideration to
the form of the matrices T(s), V(s) after each operation, so

that the method can be made as efficient as possible.

This method was successfully implemented by Pace and
Barnett, and in comparison with the other realization
algorithms, particularly that of Munro and McLeod (1971),

was proved to be the most efficient.
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5.3 The realization of a transfer function matrix

over R[s,z]

As the methad of Pace and Barnett is the most efficient
for the one variable realization problem, it was thought to
be a good basis for the two variable realization problen.
However, as has been shown in the previous chapters, the
algebraic extension from R{s] to R[s,z] is not complete.

One of the main problems again is the difference
between factors over R[s], and factors and zeros ovér Rls,z]
(see, for example, Frost 1979). Rosenbrock (1970) gives a
method for removing input (or output) decoupling zeros from
a system matrix over RI[s]. Frost (1979) has shown that this
method can be extended for the removal of input (or ouput)
decoupling factors over R[s,z]. Frost has also shown that it
is not always possible to remove both input-decoupling and
ouput-decoupling zeros. It is possible to remove all the
input~decoupling zeros or all the ouput-decoupling zeros.
But attemts to remove any further zeros may introduce
different zeros of the opposite kind, that is trying to
remove further input-decoupling zeros may introduce new
output-decoupling zeros. |

The implication of this is that the realization may not
always be controllable and observable, however it will
always be either controllable or observable. The concept of

minimality will be preserved in the sense that when a
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state-space realization is possible it can be made to be of
least dimension.

It is not always possible to produce a state-space
realization. If the least common denominator of all the
elements of the transfer function matrix G(s,zf is a
polynomial which is monic over R[s,z] but not monic over

R(z)[s], then if we consider a system matrix

L}
]

P(s,z) = sI-A(z) B(z) (3.1)
T

which has corresponding transfer function matrix

G'(s,2) = C(z) ( sI-A(z) )~1 B(z) + D(s,z) (3.2)
we note that det( sI-A(z) ) is a polynomial which is monic
over R{(z)[s], and so the least common denominator is monic

over R(z)[s]. Therefore it is not possible for G(s,z) to

have a state-space realization.
Each of the parts of the realization algorithm of Pace
and Barnett are now examined further, Given the transfer

function matrix G(s,z), writing this as

G(s,z) = Vis,z) T-1l(s,z) I, + W(s,2) (3.3)
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will yield the controllable polynomial realization of G(s,z)

over R[s,z]

- A wm e e e - e P

In (3.4)

e ————

It is now necessary to find, and remove the greatest common
right divisor of T(s,z) and V(s,z). To do this T(s,z) and

V(s,z) are adjoined to form the matrix

A(s,z) = T(s,2) . (3.5)

Then A(s,2) can be transformed by elementary row operations

only to the matrix

- (3.6)

where D(s,z) is upper triangular and is the greatest common
right divisor of T(s,z) and V(s,z). D(s,z) can be made to be

unique by further transformation such that

deg( djj(s,z) ) < deg( djj(s,z) ) B s L &

165



Thus

M(s,2) | T(s,2) = D(s,z) (3.7)
V(s,z) 0
or -
T(s,z) | = M~1(s,z) |D(s,z) (3.8)
Vis,z) 0
which gives
_ '
T(s,z) |=|T1(s,2) iX(s,z) D(s,z) (3.9)
Vi(s,z) Vl(s,z): Y(s,z) -0

with the obvious partitions. Therefore by consideration of
the inverse operations required to £ind D(s,z), the matrices

T1(s,2z} and Vj(s,z) are found such that

T{s,2) = Ti{s,2) D(s,2)

Vis,z) Vi(s,2) D{(s,2)

that is, Ty(s,z) and Vj(s,z) are relatively right prime.
However this does not imply observability, as although

T1(s,z) and Vy(s,z}) have no common right divisor, the matrix
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In (3.10)

will have ouput—decoupling zeros, and as Frost has shown
these may not be removable.

The greatest common divisor algorithm is very similar
to the Smith form algorithm, and so has the same problems.
The main problem is that it may not be possible to find the
greatest common right divisor over R[s,z] but only over
R(z}[s]. However the transforming matrix may be renormalized

in the following way. If

A{s,z) = M{(s,z) |D(s,z) (3.11)

where M(s,z) is unimodular over R(z)[s] and D(s,z) is upper
triangular. By considering the least common denominator of

the columns of M(s,2) we have
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A(s,z) = M(s,z) N(z) N~1(z) |D(s,2) (3.12)

and Mj)(s,z) = M(s,z) N(z) is now a matrix over R[s,z], not
ﬂecessarily unimodular over R{s,z]. If the least common
denominator of the ith column of M(s,z) is a factor of the
ith row of D(s,z), then N-l(z) D(s,z) is also a matrix
over RI[s,z] and the methed haé removed the greatest common
right divisor of T(s,z) and V(s,z) over Ris,zl.

The renormalization can be made possible if the
equivalence transformation of A(s,z) to D(s,z) is over
R[z]l[s] as shown in section 2.4 on the Smith form. This
requires multiplying the rows of A(s,z) by factors in R[z]
to achieve the equivalence over R[z][s]. These factors then
become the denominators of the inverse equivalence matrix,
as columns are divided by these factors.

In the Smith form algorithm to overcome the problem of
not being able to find the equivalence over R[s,z], the
Smith forms over R[z]Is] and R{s]l(z] were found. However
this technique cannot be applied to the greatest common
right divisor algorithm. This is because the point of
interest is not the greatest common right divisor but the
equivalence matrix which gives the relatively right prime
matrices T3(s,z) and Vi(s,z). The equivalence matrices over

R{z]l[s] and RIs]l[z] will be different, and although the
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correct greatest common right divisor could be found there
would be an added difficulty in calculating the correct
relatively right prime matrices Tj(s,z) and Vi(s,2z).

This now leaves, after removing the greatest common
right divisor over R{s,z] (R[z]l[s]), the controcllable (but

not necessarily observable) minimal polynomial realization

: |
P(s,z) = T1(s,2) | In (3.13)
|

On the removal of the greatest common right divisor,
T1(s,2z) is upper triangular. Now if the diagonal elements of
T1(s,2) are monic as polynomials over R{z){s] then it is

possible to find the state-gpace realization

B(z) (3.14)
Firstly elementary row operations, using the rows of

T1(s,z), are applied to ensure that all the elements in the

columns of the matrix

T1(s,2)} (3.15)

——— e a w E  oam -
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have degree in s lower than the degree in s of the

corresponding diagonal element, that is

degg( T2(s,2}34 ) < degg( Ta(s,2)55 )
i=1,....,3-1

degg (-Va(s,z)iy ) < degg( Ta(s,z)45 )
i=1l,..0.,m

where

|
Pi(s,z) =| Ta(s,2) | Bjls,z) (3.16)
’ 1
!
1

is the resulting realization.

By system equivalence, if there are any Ta(s,z)jj which
are constant then row and column i of Pj(s,z} can be
deleted. Then all the other Ta(s,2) 35, and the corresponding
Ta{s,z)jy and =-V3(s,z);4, can be expanded into companion
form blocks, see Pace and Barnett (1974b). This will result

in the realization

I
Ri(s,z) =| sI-A(z) | Bi(s,z) (3.17)

~C(z) 1 Dij(s,2)

Finally, using the diagonal elements of sI-A(z) as

pivots, Bj(s,z) can be transformed by equivalence to B(z),
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giving the state-space realization .

R(s,z) = sI-A(z) B(z) {(3.18)

such that
G(s,z) = C(z) ( sI-A(z) )~1 B(z) + D(s,2), (3.19)
as required.

It can be seen that if an observable realization is
required, then applying the above process on the transpose
of the transfer function matrix will give a re&lization‘
which when transposed will give the required observable

realization.
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5.4 Implementation of a two variable realization algorithm

Section 5.3 covered the development of an algorithm for
the realization of a two variable transfer function matrix.
This section is concerned with the implementation of this
algorithm in a computer program written in Algol 68.

One of the major components of the algorithm is the
greatest common right divisor algorithm. As already
mentioned this is very similar to the Smith form algorithm,
using Gaussian elimination on the rows only to transform the

adjoined matrix

T(s,2) (4.1)

D(s,z) | : (4.2)

As with the Smith form algorithm, if equivalence over R[s,z]
is not possible then the transformation will continue over
Rizl[s], which would involve multiplying rows of the matrix
by polynomials in R[{z] to allow the Gaussian elimination to
be successful.

However for the greatest common right divisor algorithm
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"it is the inverse eguivalence operations which are of
importance. If we consider a series of elementary row
operations on the matrix A(s,z) to transform it into the

matrix B(s,z) then we have
Rk....Rl A(S'Z) = B(S’Z) ' (4.3)

where Rj = Rj(s,z) which are unimodular over RI[s,z]

(R[z}[s]). Then
A(s,z) = I.Rj~1....R"1 B(3,2) . (4.4)

which can be considered as a series of column operations, in
the correct order, initially operating on the identity
matrix. Therefore at the ith stage of the transformation we

have

RiR A(s,z) = A'(s,2) (4.5)
or

A(s,z) = R-Ir;-1 ar(s,z) (4.6)
and so we must consider the ith inverse operation as a

column operation on the matrix R. The elementary row

operations over R[s,z] are:
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1. Interchange rows i and j of A(s,z).
2. Add a multiple, p(s,z), of row i to row j of A(s,z).

3. Multiply row i of A(s,z) by a constant ke R # 0.

If equivalence is over R[z][s] then an extra operation is

added:
4. Multiply row i of A(s,z) by a polynomial p(z)e R[2] £ 0

The corresponding inverse column operations over R[s,z]

(R[z]{s]) are:

1. Interchange columns i and j of R{(s,z).

2. Subtract a multiple, p(s,z), of column j from
column i of R(s,z).

3. Divide column i of R(s,z) by a constant k e R # 0.

4., Divide column i of R(s,z) by a polynomial

p(z) ¢ R[(z] # 0.

To fully implement these inverse operations a numerator
and denominator matrix representation is needed. The
denominator matrix is only required if the transformation is
cver R[z][s! which means that the inverse equivalence matrix
is over R(z)[s]. This representation will make the

calculation of the least common denominators easier. It is
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important however to ensure that the corresponding numerator
and denominator polynomials are relatively prime., This is
necessary to ensure that no unnecessary factors are added to .
the least common dénominator, as this would mean that the
corresponding column has a common factor after
renormalization. |

The greatest common right divisor routine can now

return the adjoined matrix

Ty (s,72) | ~ (4.7)

where Ty(s,z) and Vj(s,z) are the required relatively right
prime matrices over R[s,z] (or R[z][s]). It can be noted at
this point that there is no real loss in having primeness
over R[zlls] since a state-space realization would favour
the s variable, and sd.the realization is over R[z][s]. The
inability to find the transformation over R[s,z] is related
‘to the problem of zeros, as with the smith form algorithm.

In this case the zeros, if any, of the matrix

T(s,2) (4.8)

are the output-decoupling zeros of the system, the presence
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of which implies that the system is not observable.

The implementation of the realization algorithm itself

now becomes easier with the algorithm being split into the

various segments outlined in section 5.3, namely:

1.

Finding the least common denominators of the columns of
the transfer function matrix to give the initial

realization

G(s,2z) = V(s,z) T-l(s,2z) I, + W(s,2) (4.9)
The removal of the greatest common right divisor of the
matrices V(s,z) and T(s,z), leaving the relatively
right prime matrices T3j(s,z) and Vj(s,z) and the
minimal polynomial realization

G(s,z) = Vi(s,z) T;-l(s,2) I, + W(s,2) (4.10)

When possible the expansion of the minimal polynomial

realization into a minimal state-space realization,
G{s,z) = C{z) ( sI-A(z) )~1 B(z) + D(s,z) (4.11)

The implementation of the third stage, using elementary
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row and column operations and companion form expansion,

follows exactly the steps outlined in section 5.3.

There are a number of general points about the
implementation which are important. Throughout the algorithm
it is necessary to find the least common denominator of a
number of rational functions. This involves large use of the
greatest common divisor algorithm of Bose (1976). As
previously shown this algorithm is very costly in terms of
computing time and stack usage. Therefore it is necessary to
implement the greatest common divisor algorithm of
Blankinship (1963) which finds the greatest common divisor
of one variable polynomials. This can be implemented as a
default method to the Bose algorithm whenever single
variable polynomial greatest common divisors are required.
This has particular significance in the renogmalization of
the egquivalence matrix#in the.greatest common right divisor

algorithm, as the denominators are polynomials in R[z].

FPinally it is useful to check that the realization is
correct, that is the polynomial or state-space realization
found does correspond to the initial transfer function
matrix, This obviously involves inverting a two variable
polynomial matrix. As this is meant as a check, it is felt

that the best way to evaluate the inverse matrix is to
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calculate the determinant and the adjoint matrix.
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5.5 Results

As already mentioned the algorithm is quite costly in
time and stack usage. Also with the high overhead of
checking the realization, testing the algorithm was

restricted to "smaller" transfer function matrices.
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Example 5.1

Consider the transfer function matrix, split into its

proper and polynomial parts

z/s2 1/(s+2) 1/(z+1)
| 1/s22  1/(s-z) s/(s2+22)
S+z SZ 1

g2 z2 g

The correct polynomial realization was found

- | -
s2z 0 0 ol 0 0
{
0 s2-22 0 10 1 ¢
|
0 0 (s2+22) (z+1) 1 O 0 1
---------------------- & e e e, - - - —-
-z2 Z~3 -(s2+22) : s+z sz 1
. ]
| -1 —(s+2) -s(z+1) | s2 22, s |

However it was not possible to find a state-space

realization.
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Example 5.2

Consider the transfer function matrix, which is proper

B : .
1/(s+2) 0 s/ (s2-22)
0 (s+z+1) /(s2422+2) 0
| 3/(s-2) 1/(s+1) z/ (s2+22) _
The correct polynomial realization was found,
[~ ' 7]
s2-22 0 z2(z-g) : 1 0 0
0 (s+1) (s2+22+2) 0 o 1 0
0 0 (s2422)(s-2) ' 0 0 1
==s 0 sa(s%z) 10 0 0
0 ~(3+1) (5+2+1) 0 |0 0
| =3 (s+2) ~(s2+22+2) z(4z-5) : 0 0

Also it was possible to find the correct state-space

realization,
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s -1 0 0 0 0 0 0 i 0 0 0
-z2 s 0 0 0 23 22 0 ,1 0 o
0 0 s -1 0 0 0 0 E 0 0 0
0 0 0 s -l 0 0 0 i 0 0 0
0 0 =z2+2 z2+42 s+l 0 -1 0 E 0 1 0
0 0 0 0 6o s 0 0 )0 0 O
0 0 0 0 0 0 s -1 E 0 0 0
RS R A e A v S R
z =1 0 0 0 -z2 z -1 ,0 0 0
0 0 =(z+1) =(z+2) -1 0 0 0 E 0 0 0
| -3z =3 -(z+2) 0 -1 4z2 -z 0 i 0 0 0

The order of the state-space realization is 8.

Example 5.3

Consider the transfer function matrix, which. although

it is not proper is not split into proper and polynomial

parts,
1/(s-2) s+2
zZ+1 (s+2+1)/(s52422+2)
| 3/(s+2) 1/(s+1)
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The correct polynomial realization was found,

g2-32 0 § 1 0
0 (s+1)(s2+22+2) | 0 1
N "o sz |
-0 -(8+1) (s+2+1) E z+1 0
| 3(z-s) -(s2+2242) 1 .0 0

Also it was possible to find the correct state-space

realization,
[ , 1
s -1 0 0 0 . 0 0
-z2 s 0 0 0 E 1 0
0 0 s -1 0 E 0 0
0 0 0 s -1 i 0 0
00 2242 2242 s+l 0 1
-z -1 0 ) —6--_5-?-m"";é--
0 0 ~—(z+l) -(z+2) -1 ; z+l 0
(32 -3 =(22+2) 0 -1 ; 0 0 ]

The order of the state-space realization is 5.
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The algorithm successfully finds the polynomial and,
when possible, the state-space realizations. An added result
is that the algorithm will successfully sblit-a transfer
function matrix into its proper and polynomial parts, as

shown by example 5.3.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The thesis has extensively investigated the algebraic
extensions to the ring R[s,z] particularly for the 2x2 two
variable polynomial matrix. A number of different approaches
have been given to try to resolve the problem of egquivalence
of a general two variable poiynomial matrix with its Smith
form over RIs,zl. These approaches have been a direct
analysis of the equivalence transformation such that, if
possible, a constructive method for attaining the
equivalence may be-obtained. However this direct approach -
was not totally successful. A solution.to this problem may
be found by a deep investigation into abstract algebra and
the theory of rings and domains. This may supély necessary
and sufficient conditions for the equivalénce over R[s,z] to
exist.

As it was not possible to find the required
equivalence conditions for a general polynomial matrix over
R[s,z], more specialized matrices were considered. Firstly
‘the extension of the result of Lee and Zak (1981) found that
the concepts of a cyclic matrix and a non-derogatory matrix
over R{s,z] are not equivalent. This is a fundameﬁtal

difference, and again the actual reasons for the difference
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between the two concepts over R{s,z] may be found in the
theory of abstract algebra. However the result of Lee and
Zak does not provide a better constructive method than the
one developed, as it is as difficult to find a cyclic
vector,

The second specialization was to consider the Roesser
matrix. The approach was to directly consider the
equivalence transformation, and to use mathematical
induction to extend the result for a 3x3 Roesser matrix to
the general (n+p+m) x (n+p+l) Roesser matrix. Unfortunately
it was not possible to continue the direct algebraic
approach in the last stages of the induction without making
a special condition on the Smith form of the Roesser matrix.
The results show that this specialization is not too strict:

The problems epcountered in the algebraic
investigations were highlighted in the algorithmic
Aevelopment. The algorithms were designed to overcome the
problems of the algebraic extensions. The matrices chosen
proved a good test of the algorithms accuracy and
reliability. Checks within the algorithms proved that the
equivalence matrices found, correctly transformed the
initial matrix into the particular Smith form.

The Smith-McMillan form and realization algorithms were
also shown to be accurate by using checks withiﬁ the

algorithms,
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There is however the problem of running time for the
algorithms. An immediate problem is that the number of
multiplications to multiply two polynomials over R[s,z] is
the square of the multiplications to multiply two
polynomials over RI[s]. Also it is necessary to use
algorithms‘such as that of Bose (1976) for calculating the
greatest common divisor of two multivariable polynomials.
This is far more time consuming than the method of
Blankinship (1963). Added to this is the problem of not
being able to achieve the equivalence immediately.

There could be no real improvement to the algorithms in
this respect without major changes in the strategy of all
the algorithms, unless a new constructive method could be

found by resolving the algebraic problems.
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APPENDIX A

PROGRAM LISTINGS:

POLYNOMIAL OPERATORS OQVER R[s,z] OR R[z][s]
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t1:v 1¢RIVPOLVIFQST, Pc¢T1-'CLEAR!PosTx ' '
IpOLYIULITS
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PRE("PRE=KEULTIPLYING EULIVALENCE HATRIKP) PRE (™ --,34),

PRIKTPCGLVEX(PFET) ;.
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APPENDIX C

PROGRAM LISTINGS

THE SMITH FORM ALGORITHM FROM THE DEFINITION
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ret
rert EDET(EIGRADR)
tThent
- YRBEGLAY
'BOCLYAUNOITRUEY JECUALWTFALSEN Y
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pOLy DTRMY
"1F1 TUpBTEIGRAD=2
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(CHIVARCFACTORY ) :
DF(DFAC,FACTOR) ;
.; YHONIC'FACTOR
111 '
XFACTOR
IEND?:

;PRDC'QEAPFhCWHB=('I AN, RYL,TPINT S

c! ' ' R :
EVALUATES aLl THE COMRINATIONS OF R -ELEMeNTS FROM H  ELEMEWTS
IN A SET CrpER STARTING WITH (1,2,....7R) -

_ AND FIDISKING WITH (Neawt] -R+2..f...u)q

gt : :

PREGIN '

fINTINCOI e, RFACE1TCOUNT €, ﬁugHVg b

TFORTIITNIRIBIY  (KFALY TIHFS'r-rcnﬂ'TrMFS'c -!¢1))l

 NCOM«LCOM'/IRFAC;

CTaNCOMTI rRIVINTILIST 1CLEARYLIST

L4sRITINTICOM:

PEORTIITYOIRIDOY  On{11«]}



L157t1 JecOt}
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APPENDIX D

PROGRAM LISTINGS

POLYNOMIAL OPERATORS AND THE SMITH FORM ALGORITHM

OVER R{s,2] OR R(z)[s]
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'quLE!Jcsoz'AhD'r>=L1 AMDTRUNIBOY - :
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RUK®ITRUEY; .
‘FO«'L'FRCH'D?'BY'-1'TB'L?'WHILE|RUNTDO" _ -
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IREGINY o _gi‘lf‘ @ -  BT E AR
IPOLY Y AcAY, Rent; T R

lDEG'DA.DB SFACIOF(DA,A); DF(DB'B).
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- 1t2al13+bBr1]=20 Aho 3At2}¢DaI23>01112)..
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- LIFT  DIMx2 - _

'r'THEN'.‘ o '
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'END'
"ELSE!
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RLEAY IPRE( =7 34) 1PRS(" S:ARCH FUP SMITH EFORK cV=R R(satzi"):
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APPENDIX E

PROGRAM LISTINGS

THE SMITH MCMILLAN FORM ALGORITHM




REGINT
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Lt3)'DRCt" "+53) ;PRS("SEARCH TO Flrn THE SHITH ECRM OF THE NUMERATOR M2
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APPENDIX F
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THE REALIZATION ALGORITEM
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-'ELSE'
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ket YREALMee(pI0F PRED[I J!)tut13 utSJJF“ o
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Ygnoty o L 0
_RAT#'FALSE' o
LEORIRITOVORYIDO? N

TBEGINY ‘ .
_ . 'POLV'LCM*LCHC(DEED R).A. '
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