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ABSTRACT 

Mathematical Modelling Processes: 

Implications for Teaching and Learning 

by K H Oke 

CAMET 

(Centre for Advancement of Mathematical Education in Technology) 

. Loughborough University of Technology 

The principal aim of the project has been to investigate 

formulation-solution processes and the extent to which 

these processes lead to better guidance and understanding 

of teaching, learning, and assessment in mathematical 

modelling. The following main activities have been carried 

out in support of this aim: the development of case 

studies of the mathematical modelling approaches that may 

be used in the solution of practical problems; the design 

of teaching and learning experiments carried out mainly 

with undergraduates with some knowledge of physics and 

teachers on an MSc course in mathematical education; the 

theoretical development of formulation-solution processes 

by means of a concept matrix and a reYationship level 

graph; the analysis of a selection of students' modelling 

attempts; an investigation of assessment methods and the 

implications of the theoretical development of formulation

solut ion processes· for these methods. " 

The case studies were based on possible modelling approaches 

to practical problems which are connected in some way with 

every-day reality. These studies were used in seventeen 



experiments with students working in a genuine educational 

environment under the usual time constraints. Most of the 

students involved had little or no modelling experience. 

Results have shown that students have a common set of 

difficulties, and a set of learning heuristics has been 

devised in an attempt to overcome these. 

The theoretical development of formulation-solution processes 

has identified the following main characteristics in early 

model development: distribution of features from global 

(difficult to quantify) to specific (easily quantified) 

concepts; basic relationships are often generated as 

solution proceeds; relationships can occur in either 

general or specific forms; general progress is gauged by 

relationship 'level'; most variables and constants are 

generated with relationships; partitioning a problem into 

sub-problems may be possible initially, but such break-down 

into distinct parts is often only possible after having 

seen a pattern of linkages in a relationship level graph. 

Finally, the implications for assessment methods are 

examined, and suggestions for further research investigations 

are made. 

Key words: Mathematical Modelling, Models, Formulation 

Processes, Problem Solving, Real Problems, 

Concept Matrix 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Mathematical modelling, as with all forms of modelling, is 

concerned with representations of reality. Its main purpose 

is to shed light, by mathematical means, on the myriad problems 

which confront us in science, engineering, economics, business 

and many other aspects of the world around us. It involves 

recognition of a problem, its formulation into mathematical terms, 

solving the resulting mathematical equations, and, finally, the 

interpretation of the mathematical solution in the context of the 

original problem. In short, mathematical modelling is about the 

creative activities involved in using mathematics to gain a better 

understanding of the problems of the real world. 

The usefulness of mathematics has long been an important justi

fication for the teaching of the subject, but, because of the 

complexity of the real world, most applications of mathematics 

have proved difficult to teach. The traditional approach has 

been to simplify any real practical problem and to offer students 

a simpler world to consider. In effect, the traditional 'applied 

mathematics' approach has been to present a problem 'on-a-plate' 

ready for immediate mathematical treatment without any of the 

difficulties of translating the original problem into mathe

matical form. Once a solution was obtained, it was either deemed 

to be correct or incorrect. Even if correct, no demands were 

placed on students to interpret the solution, to test its useful

ness or in what sense was it useful. 

, 
In recent years there has been a growing realisation that the 

traditional approach has been inappropriate in providing a mathe

mathical training for industry and commerce. McLone (1973) in 
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his report 'The training of mathematicians' was amongst the 

first to identify the need for change. In a survey of employers 

of graduate mathematicians, he found that whilst the young 

graduate was technically competent at solving mathematical 

equations if they were provided in a form ready for solution, 

the graduate was at a loss if, instead, only the original 

practical problem was posed. Furthermore, that graduates having 

obtained a solution were then unable to communicate their results 

to a non-mathematical specialist, for example an engineer, and 

consequently the solution proved to be of little value and was 

allowed to collect dust. 

The modelling approach to the teaching of applied mathematics 

differs from the traditional approach in that is always begins, 

and ends, in the real world situations that are modelled. There 

is no unique way in tackling a real problem and several papers 

and books illustrate the various attempts that have been made to 

develop a common approach to modelling and ways of teaching 

modelling. In simple terms, the activities of mathematical 

modelling are now quite widely accepted as consisting of the 

stages of: 

Formulation: 

Solution: 

Interpretation: 

Validation: 

Identification of a problem (or 

problems) relating to a real situation, 

and then posing the problem(s) in 

mathematical form. 

Attempts to solve the resulting 

mathematical equations. 

Relating the mathematical solution to 

the original problem context. 

Checking the predictive or other uses 

of the model against a fairly wide range 

of circumstances in the original context. 

Data is often provided for this purpose 

or observation and experimentation is 

involved. 
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Very little research has been carried out into identifying the 

~ssential ingredients of each stage and the way these stages 

interact, either iteratively or otherwise. What little has been 

reported in th~ literature shows that problem solving research has 

provided the strongest initial guidance. The processes involved 

are usually portrayed.~n a flow-diagram, or similar representation, 

implying linea~ Br linear with looping sequencing of stages. Only 

iecently, drawing on the still pioneering work of systems analysis 

(in information processing), have non-linear approaches been 

suggested, and then only in the very broadest of terms. 

Closely coupled with the problem of gaining a deeper understanding 

of modelling processes is the problem of how to teach modelling. 

Examples of initial attempts at developing a methodology of 

teaching at a variety of levels (mainly sixth form and under

graduate) are reported in the literature. Naturally enough, in 

these early days, descriptions of experiences gained in teaching 

modelling cover a broad canvas, but each identifies the 

formulation stage as the most difficult one to come to grips with 

for both student and lecturer alike. It would appear that this 

is the most creative part of modelling; most seem able, after a 

little practice, to identify variables but the real difficulty 

comes in. selecting key variables and in considering relationships 

which connect these variables. 

Since an initial attempt at finding a mathematical solution will 

depend very largely on an initial formulation then the formulation

solution interface poses a particular challenge. Although it is 

recognised in the literature that the linkage between formulation 

and solution is highly oscillatory, little or no known work has 

been published on the details of the linkage which could help the 

student in modelling. 

The author of this thesis first gained an interest in mathe

matical modelling in the early 1970's by working with a colleague, 

P B Taylor, on stock control problems in the field of operational 

research. The work was aimed at developing more realistic stock 

control models which were both accurate over a wide range of 

parameter values, as well as being easy to implement in a variety 
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of management contexts. Soon after this work was completed, the 

author became involved in several pieces of consultancy work in 

engineering fields - mainly heat exchange processes and thermal 

stressing. The latter was a more natural development in view of 

a background training in mathematics, physics, and in particular, 

numerical analysis. Throughout this period, in the mid-1970's, 

the author, at the Polytechnic of the South Bank, developed a, 

two-year part-time M.Sc. degree course in Mathematical Education 

for graduate teachers of mathematics in secondary schools and 

colleges of further education. The course has been running since 

1977 and the author has supervised ten dissertation projects in 

mathematical modelling so far. This course is the only one of its 

kind in the public sector of higher education, although there are 

now a few broadly similar courses in universities. The first M.Sc. 

course in mathe~atical education in the UK was developed by 

Professor A C Bajpai at Loughborough University of Technology in 

the early 1970's. The Loughborough course distinguishes itself, 

inter alia, as being the first at postgraduate level to include 

an option in mathematical modelling. The South Bank course 

identifies with mathematical modelling more strongly by making it 

a major compulsory component in highlighting its importance as a 

link between mathematics and education. 

Subsequently, the author has also been devising and teaching on 

modelling courses for undergraduates, mainly in the physics and 

engineering areas. This information is provided in order to 

indicate the ,breadth of personal interest involved. 

1.2 Purpose and Scope of the Research Project 

The main purpose of this research is to investigate formulation

solution processes in mathematical modelling and th'e extent to which 

knowledge of these processes leads to better guidance and under

standing of teaching, learning, and assessment. Chapter 2 discusses 

the background to the growth of interest in mathematical modelling, 

and Chapter 3 identifies some of the most recent and significant 

research which is related to this project. Both Chapters 2 and 3 

are intended 'to provide a perspective to Chapter 4 which provides 

full details of the rationale and philosophy of approach to this 

research project. 
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In order to be able to carry out such a project, the following main 
activities were chosen: 

1 The development of case studies of the mathematical 

modelling approaches that may be used in the 

solution of practical problems. 

2 The design of teaching and learning experiments 

with students, largely in higher education, working 

under genuine conditions of the classroom and work

shop. 

3 The development of two theoretical constructs: 

A concept matrix 

A relationship level graph 

which are used in the analysis of formulation

solution processes. 

4 The study of various assessment modes and the 

construction of marking schemes. 

Although a study of the formulation-solution interface is 

fundamental in investigating mathematical modelling, it is 

stressed that it is not possible to separate this entirely 

from the other stages of modellin~. Consequently, most of the 

case studies (introduced in Chapter 5) also involve the 

important interpretation and validation stages. 

1 All the investigations have been carried out using ~eter

ministic' and ~nalyticar approaches. Most of the case 

studies are based on problems in the areas of physical 

sciences and engineering rather than in the social and 

organisational sciences. The purpose of the case studies 

was to provide a set of problems with sufficient modelling 

potential for students in the teaching and learning 

experiments. The case studies were based on the following 

design features: 
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Motivation 

Each problem is practical and is connected in some way 

with every-day reality (e.g. central-heating of a house). 

Level of difficulty 

Each problem has sufficient scope for simple initial 

approaches to give good insights, and also for the more 

advanced students in modelling to produce more compre

hensive solutions. 

Scope 

Each cast study provides an opportunity for formulation

solution, interpretation, and as often as possible, 

validation. 

Content 

Each case study has a problem'statement and possible model 

development. Sometimes data is provided, on other occasions 

students are encouraged to ask for data. 

Duration of modelling exercise 

Most case st~dies are appropriate for short-duration intro

ductory work or for extended project development. 

2 The overall approach to the teaching and learning experiments 

is summarised in Chapter 4 where the key interactions between 

lecturer (teacher) and modeller (student) are illustrated. 

The case studies referred to earlier were used in studies 

of seventeen different groups of students, and details of 

the investigations are provided in Chapter 6. The purpose 

of the teaching and learning experiments was essentially 

three-fold: 

(i) To determine the level of difficulty of modelling 

problems for different student types. 
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(ii) To observe how students tackle modelling activities 

under a variety of working conditions: 

Interactive (working with lecturer) 

Group ('short' and 'long' duration) 

Individual work 

or, Combination of above. 

(iii) To develop learning heuristics for the student 

inexperienced in modelling. 

The experiments were carried out mainly with undergraduates 

with mathematics, physics/engineerini backgrounds and with 

teachers on the M.Sc. course in mathematical education. Some 

common difficulties of students in 'short' to 'medium' duration 

modelling activities are identified, and a set of learning 

heuristics designed to help overcome some of these difficulties 

is developed. Student opinion has also been canvassed on the 

usefulness of the heuristics; as experience is gained, some 

heuristics are considered to be more useful than is considered 

to be the case by untrained students in modelling. 

3 In' order to try and understand more fully the highly 

complex processes involved in formulation-solution, the 

main focus of this project, two theoretical constructs 

have been devised: a concept matrix (CM), and a relation

ship level graph (RLG). The ideas involved are introduced in 

Chapter 4 and they.are developed fully .in Chapter 7. The CM 

is designed to show which features, or concepts, are used 

in different stages. The matrix is also intended to provide 

information on the type of each concept. Since the features 

which arise in the development of a mathematical model are 

extremely varied, both in clarity and in complexity, it was 

considered to be inappropriate to develop a simple hierarchy. 

The RLG is designed to show that mathematical solution and 

formulation are interwoven; additional ideas on the nature 

of the problem are generated as a mathematical solution is 

developed. Initial, and more or less obvious simple 
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relationships are denoted by the level 0 (zero). 

Mathematics is shown to be based on level 0 and is used 

to derive level 1, 2 ... relationships as well as prompt 

the need for further level 0 types. A selection of the 

teaching and learning experiments referred to earlier 

is analysed by means of the CM and RLG, and the following 

main points are identifiedand illustrated in each case: 

Distribution of features 

Basic relationship generation 

Forms of relationships 

Relationship 'level' as goal seeking (measure 

of progress made) 

Generation of variables and constants 

Sub-problem identification 

The extent to which this new work is in agreement with 

some published ideas, and the extent to which it disagrees 

with some developments is also examined. 

4 Finally, the implications of the work on formulation

solution processes for assessment are studied in Chapter 8. 

Comparisons are made between written examinations and 

course-work modes of assessment, as well as informal 

(impression) marking and the use of formal marking schemes. 

A credit list of modelling attributes which is based on 

the work of Chapter 7 has been devised, and its use in 

contributing towards the assessment of both examination 

papers and course-work assignments is illustrated. 

1.3 Summary 

This chapter has briefly described the background, purpose, and 

scope of the project. A more comprehensive discussion which 

overviews published developments on the nature of models, 

modelling methodologies, and recent interests in the teaching 

of mathematical modelling in schools, polytechnics and 
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universities is provided in Chapter 2. Some of the most 

recent significant research which is related to this project 

is identified in Chapter 3; problem solving and modelling 

processes and the way in which such processes underpin the 

development of teaching and learning styles is examined. 

The contents of Chapters 2 and 3 are also intended to provide 

a wider perspective as well as identify key research needs in 

the development of mathematical modelling. One of the main 

research needs, which is adopted as a focus for this thesis, 

is for a better understanding of the complex linkages which 

exist between formulation and solution of a practical problem. 

The investigations that have been carried out in this connection 

together with the development of new theoretical ideas are 

introduced in Chapter 4. 

Case studies consisting of possible modelling approaches to 

nine practical problems are provided in Chapter 5. The case 

studies have been used in seventeen experiments with students 

and details are reported in Chapter 6. The theoretical ideas 

of a concept matrix (CM), and of a 

(RLG), are developed in Chapter 7. 

of students' attempts at modelling 

relationship level graph 

An analysis of a selection 

using the CM and RLG has 

provided new insights into formulation-solution processes. 

The work of Chapter 7 in its support for the learning heuristics 

developed in Chapter 6 is also examined. and the implications 

for assessment are developed and illustrated in Chapter 8. 

Conclusions and suggestions for further research are provided 

in Chapter 9. 
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CHAPTER 2 

BACKGROUND AND OVERVIEW 

2.1 Introduction 

Since the earliest records began, we see abundant evidence 

of models. In this sense, the term model is all-embracing. 

It is a man-made pattern, concrete or abstract, which attempts 

to represent some aspect of reality. Concrete or tangible 

models may be as varied as a statue of Venus, a train set, or 

a model aircraft in a wind-tunnel. Abstract models, on the 

other hand, may cover representation of the mind in psychology, 

the structure of a molecule in chemistry, or the mathematical 

equations governing the spread of a rumour. These patterns, 

or models, are manifestations of man's endeavour to under

stand the diverse and confusing matters which make up the 

universe. 

Mathematics has had a profound influence on man's understanding 

of what is gOing on around him. It has also been, and 

continues to be, an invaluable aid in predicting and guiding 

our actions. The contribution that mathematics has made to 

physics from the time of Aristotle to present-day is well 

recognised. The influence physics has had on mathematics is 

equally well recognised. So intimate, in fact, have mathematics 

and physics become, that the phrase abstract model could 

easily be taken to mean mathematical model or physics model. 

Newton's inverse square law of gravitation is a good illustration 
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(law being interpreted as a universally accepted model). The 

relationship 

F -

where F is the force of attraction experienced by two bodies 

of masses m1 and m2 separated by a distance r, and G is the 

gravitational constant, is certainly mathematical and represents 

an aspect of reality. It is, therefore, a mathematical model. 

The relationship also expresses a physical phenomenon, and 

so could be termed a 'physical model~ However, Newton made 

great leaps in physics concepts in arriving at his model. 

French (1971) recounts how Newton, in about 1666, generalised 

the idea of a falling body to "explain" the movement of the 

moon about the earth, and how he pegan to think of the 

earth's gravity as extending out as far as the moon's orbit. 

Newton then imagined the sun's gravity extending out to the 

orbits of the planets in the same way. It is generally felt 

today, and certainly by the author, that a mathematician 

would use physics models asa starting point, and then apply 

mathematical techniques to construct a mathematical model. 

The deeper physics insights, and the task of carrying out 

laboratory experiments in data collection, 

carried out by the mathematical modeller. 

are not normally 

Very often in 

mathematical modelling, simplifying assumptions are made just 

to get started in the construction of a model. See Oke (1981a), 

for instance, in the design of pick-up arms in attempts to 

minimise sound distortion in a record-player. These 

simplifying assumptions can, on further investigation, be 

shown to have little or no physics basis. Yet, the mathematical 

model produced, though crude, can provide valuable insights 

into an overall process. A lofty and profound parallel is 

Einstein's modification to Newton's gravitational law. 

More recently, in the historical perspective, mathematics 

has made major contributions to subjects other than physics, 



-12-

and engineering. Economics, medicine, biology, organisational

sciences, and many others have increasingly been influenced 

by a mathematical approach. Perhaps the biggest influence 

felt is in the field of applications of operational research 

(OR). Statistics has, of course, also made enormous 

contributions, but may be included under the general 

of OR_ as far as modelling methodology is concerned. 

heading 

The 

applications of OR, and the development of the theory and 

methods involved received tremendous impetus from the challenge 

of logistics problems in the second world war, Rivett (1980). 

Perhaps because of the particularly difficult challenge posed 

by problems where cause-and-effect are much less well under

stood than in the physical sciences, the methodological 

issues of modelling are better established in OR, Oke (1979). 

High on the list of contributions to the methodology of 

modelling in OR are Ackoff (1962) and with Sasieni in 1967, 

Morris (1967), White (1975), and Rivett (1980). Nearly all 

these methodologies stem from the original six stages of 

Ackoff (1962): 

1 Formulating the problem 

2 Constructing the model 

3 Testing the model 

4 Deriving the solution 

5 Testing and controlling the solution 

6 Implementing the solution 

It should be pOinted out at this stage, that the discussion 

started with the concept of a model, whereas we are now 

considering the processes of modelling. This is a most 

important distinction. Up until about ten years ago, most 

textbooks, and papers in journals, concentrated very little 

on the constructing of a model (Ackoff's phase 2) and spent 

most of their time on deriving the solution (Ackoff's phase 4). 
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Rarely, if ever,· was consideration given to the other phases 

of the modelling activity (processes of modelling). The 

most difficult phase, formulating the problem (Ackoff's 

phase 1), was barely mentioned or touched upon. This is 

hardly surprising, as will be shown later, since· the formu

lation stage and particularly the formulation/solution inter

face are the most difficult to achieve. Making sense of a 

practical problem and then making appropriate assumptions 

which lead to a set of tractable mathematical equations is 

a highly intuitive process (see Morris (1967) for example). 

It is axiomatic in this thesis that everyone should possess 

some knowledge of mathematics, no matter how little, and that 

everyone should be able to apply their mathematical knowledge 

to the solution of practical problems. This aim is certainly 

reflected in the Cockcroft report: Mathematics Counts (1982), 

where, inter alia, the foreword states: 

The Committee's findings point to the need for 

teachers to devote more time to the use of 

mathematics in applications taken from real life. 

Long before the Cockcroft report, of course, most have agreed 

on the importance of being able to apply mathematics to the 

solution of real-life problems. With the rapidly increasing 

needs of commerce, industry, surveying and navigation, 

numerous schools and academies in the USA and Europe were 

established during the eighteenth century to provide formal 

and practical training in mathematics and science (Howson, 

Kei tel & Kilpatrick (1981». Numerous curriculum changes 

naturally have taken place since then, and in recent times 

one has seen the development of the 'New-Math' approach, 

inspired by the work of the Bourbaki group. Howson, Keitel, 

and Kilpatrick provide an excellent account of these develop

ments and refer to the impressive impact of Dieudonn~ (1959) 

in the early stages. The 'New-Math' approaches, however, 

relate mainly to the teaching of pure mathematics. The 

School Mathematics Project (SMP), which was firmly established 

at the University of Southampton under the directorship of 

Dr Bryan Thwaites in 1972, is perhaps one of the largest and 
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best known developments in the UK. The SMP concentrates 

mainly on the unifying aspects of pure mathematics, with some 

consideration of applications. 

The end of the 1960's and the beginning of the 1970's saw a 

revival of interest in teaching the applications of mathematics. 

Although the importance of applying mathematics has long since 

been acknowledged, there was a great concern with the way 

applied mathematics was being taught. One of the first note-

worthy figures to express this concern openly was H o Pollak 

(1968, 1969 )~ He recommends an open-ended approach: 

"Here is a situation. Think about it." 

Rather than the narrow or closed approach of: 

"Here is a problem. Solve it." 

or 

"Here is a theorem. Prove it.1I 

Pollak suggests mathematical modelling as an instructive 

method of teaching, where the formulation of the problem is 

emphasised. 

In the UK much concern was beginning to be shown on the nature 

of traditional applied mathematics courses in higher education. 

The content was dry and usually amounted to formal courses 

in mechanics and hydrodynamics where artificial assumptions 

were made. The problems bore little or no resemblance to 

genuine practical problems, and they were posed ready for 

immediate solution. No formulation of a real problem was 

needed. It is perhaps not surprising that there has been a 

decline in numbers of students taking GCE 'A' levels in 

applied mathematics since about 1970 (Ford & Hall (1970». 

Clearly, a re-appraisal of the position was called for. 

Apart from Pollak, who first aired his views at the Colloquium 

on 'How to Teach Mathematics So As To Be Useful', held in 
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Utrecht in 1967, Freudenthal and others also expounded the 

view that mathematics and real-life situations should be 

treated together in teaching. In 1969, Ormell (1969) started 

the School's Council project 'Mathematics Applicable'. The 

project, intended for the non-specialist mathematician in 

the sixth form, led to the development of problems based on 

'Selected, Simplified, Projective' (SSP) applications of 

mathematics, although formulation stages are omitted. Bajpai, 

Director of the Centre for Advancement of Mathematical 

Education in Technology at the University of Technology, 

Loughborough, founded the International Journal of Mathematical· 

Education in Science and Technology in 1970. The contribution 

that Bajpai has made by the establishment of such a journal, 

the first of its kind, in providing a forum for the wider 

debate of mathematical education and for the development of 

mathematical modelling in particular constitutes a major 

landmark. Bajpaiwas one of the first noteworthy figures to 

identify the importance of a modelling approach, and 'mathe

matical models arising from real situations' was emphasised 

in the 'Aims and Scope' of the first issue of the Journal 

(and continues to be emphasised in current issues). Ford & 
Hall (1970) were amongst the first to make an important 

contribution in the first issue of the Journal where they 

develop the case for mathematical model building as a unifying 

theme for applied mathematics. Margaret Brown (1972) reports 

on the attempts of the Chelsea Centre for Science Education 

in drawing up 'real' problems for teachers and sixth formers 

alike. Bajpai, Mustoe and Walker (1974, 1975, 1976) made a 

significant contribution to university teaching of mathematics 

by developing a modelling approach in the teaching of mathe

matics to engineers. James in a paper entitled 'How should 

the mathematical training of an engineering undergraduate be 

conducted?' to be published in the International >Journal of 

Mathematical Education in Science and Technology, makes out 

a strong case for the inclusion of mathematical modelling in 

the engineering curriculum. James, who has made considerable 

contributions to the teaching of both mathematicians and 

engineers, argues his case in view of the increasingly complex 
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systems and computer technology that the modern engineer is 

being asked to tackle. The work of Burkhardt (1978, 1979, 

1981), has made a significant contribution in identifying 

the processes and skills involved in teaching mathematical 

modelling in schools and other institutions. Burghes (1980) 

recommends a modelling approach and illustrates it with several 

problems for sixth form use. The Spode Group (1981-1983), 

under the guidance of Burghes, have published three books 

containing 'real' problems with solutions suitable for middle 

school to sixth form. A major course on mathematical modelling 

for teachers has been presented by the author's team since 

1977: (Oke (1980, 1984», as part of an MSc degree in mathe

matical education. This course concentrates on modelling 

problems for teachers and their students, as well as on the 

development of a greater understanding of the processes 

involved. 

McLone (1973) in the conclusions of his report on 'The training 

of mathematicians' emphasises the importance of mathematicians 

being able to formulate real problems into mathematical terms 

and subsequently being able to express the results of mathe

matical analysis in a form readily understood by non-mathe

maticians. Andrews & McLone (1976) edited one of the first 

books which provided a collection of mathematical models 

covering a wide area of applications. Recently McLone edited 

with Howson a book on a wide variety of practical problems 

~anging from the elementary applications of mathematics in 

nursing to quite advanced industrial problems: Howson and 

McLone (1983). The book is designed to appeal to sixth formers 

and undergraduates. James, McDonald and Huntley created the 

National Mathematical Modelling Workshop in 1978, whereby a 

number of contributors from polytechnics and universities 

developed case studies in mathematical modelling suitable 

for undergraduates. These case studies have now been, or 

are about to be, published: James & McDonald (1981), James & 
Huntley (to be published). In 1980 a special workshop on 

mathematical modelling was organised by Bradley, Gibson and 

Cross which culminated in the publication of leading contri

butors' models, their development, and workshop participants' 
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efforts in attempting to construct these models from scratch: 

Bradley, Gibson, Cross (1981). 

Mathematical Modelling activities are increasingly taking 

place in a number of countries and Kapur (1982) provides an 

outline of the breadth of the interests involved. Kapur 

mentions, amongst other things, that at the fourth International 

Congr'ess on Mathematics Education (ICME) held in 1980, at 

least four sessions were devoted to mathematical modelling. 

A whole section, which was chaired by Professor A C Bajpai, 

was devoted to mathematical modelling at the college and 

university level at the fifth ICME held in Adelaide, Australia, 

in August 1984. 

In the late 1970's a number of new journals on mathematical 

modelling had started to appear, but most of these are .aimed 

at the professional modeller who is tackling complex problems. 

Such journals, for example 'Mathematical Modelling' (published 

by Pergamon Press) or 'Applied Mathematical Modelling' 

(published by Butterworth Scientific) may provide some 

inspiration for simplified problems but generally they are 

not appropriate for undergraduates. 

So, there has been a tremendous burst of activity in the 

development of' mathematical modelling. Although numerous 

workers and their activities since 1970 have been briefly 

mentioned, many more have in fact reported the results of 

their experiments on teaching modelling. However, in spite 

of this tremendous burst of enthusiasm, modelling in the 

classroom has taken place in a very short time span, namely 

some thirteen or fourteen years. The time span is short in 

the sense that a very different mode of thinking and operating 

in problem solving is being considered, compared wi th the 
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teaching and learning styles of traditional applied mathematics. 

It is not surprising, therefore, that there is a paucity of 

research into the complex processes involved in modelling: 

Burkhardt (t979); Treilibs (1979); Burkhardt (1981). Such 

research needs to be done however, in order to guide the 

teacher and student alike; the demands placed on both are 

considerable, as the processes involved are creative -

particularly at the formulation/solution interface, Oke & 

Bajpai (1982). 

The following sections of this chapter detail the major 

developments to date in mathematical modelling - both from 

an expert point of view (modelling in industry, commerce, 

research institution) and teachers'/students' points of view. 

It is the intention that such a review of current and past 

work should help to explain and provide an appropriate 

perspective to the research carried out by the author and 

reported on in later chapters. 

2.2 The Nature of Mathematical Models 

The essential characteristics of a mathematical model depend 

upon the purposes to which it will be used. The characteristics 

are also highly dependent on the aspects of a problem which 

the model is supposed to represent. Although attempts at 

providing a general definition of a model, as well as the 

provision of a list of model types is helpful, it is f~lt 

that a description of the processes of constructing and testing 

a model is the most illuminative. Consequently, this section 

will be relatively brief, leaving to subsequent sections of 

this chapter discussions on the nature of modelling to date. 

Definitions of a model are numerous and varied. Ackoff (1962), 

for instance states that models are 

... representations of states, objects, and events. 

They are idealized in the sense that they are less 

complicated than reality and hence easier to use 

for research purposes. 
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He is actually referring to scientific models, but implies 

that his definition applies equally well to mathematical 

models, the latter being symbolic and involving equations. 

The following are further examples on the definition of a 

model: 

. .. the model is a set of logical relation-

ships, either qualitative or quantitative, which 

will link together the relevant features of the 

reality with which we are concerned. 

(Rivett (1972» 

... the repr~sentation of our so-called 'real 

world' in mathematical terms so that we may gain 

a more precise understanding of its significant 

properties, and which ... (might) ... allow some 

form of prediction of future events. 

(Andrews & McLone (1976» 

... an abstract, simplified, mathematical 

construct related to a part of reality and 

created for a particular purpose. 

(Bender (1978» 

A mathematical model is a collection of statements 

about a set of variables from which the truth 

or falsity of other statements can be deduced. 

(White (1975» 

Mathematical modelling is such a widely encompassing activity 

that precise definitions which cover all aspects are extremely 

difficult, if not impossible, to provide. However, all the 

above definitions, with the exception of White's, refer to 

a mathematical model as being some representation of reality. 

Ackoff and Bender also emphasise that a model is a simplification 

of reality. For the purposes of this study, the following 

definition of a mathematical model will be adopted: 
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A simplified and solvable mathematical represen

tation of an aspect of a practical problem. 

This definition emphasises that a model is an imperfect 

reflection of some aspect of the real world in the following 

ways: 

(a) Simplification ignores some details 

(b) Mathematical representation 'forces' a particular kind 

of abstraction 

(c) To make the mathematics solvable (tractable) further 

simplifications, or distortions of the 'truth' are 

often required 

The phrase 'practical problem' has been used in preference to 

'reality' to indicate a more homely and thus familiar set of 

experiences for teachers and students to concentrate on when 

applying mathematics. .Topical problems, such as those found 

in alternative technology for instance, often provide better 

motivation for learning modelling rather than highly complex 

and abstruse situations: Burghes, Huntley, McDonald (1982); 

Burkhardt (1979, 1981); Oke (1983). 

Operational research workers have carried out most of the 

work to date on the classification of model types. Often 

quoted in management science is the work of Ackoff and Rivett 

(1963). They have devised a classification system according 

to the form and content of problem areas in OR, rather than 

concentrate on solution techniques: 

1 Queueing 

2 Inventory 

3 Allocation 

4 Scheduling and routing 

5 Replacement and maintenance 
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6 Search 

7 Completion 

Ackoff and Sasieni (1967) on the other hand have concentrated 

on a classification according to the difficulty of formulating 

structure: 

1 Logical structure apparent, easy to solve 

2 General structure apparent, not easy to symbolise 

3 General structure not apparent, data analysis required 

4 Experimentation needed to isolate effects of variables 

5 Experimentation not possible, hypotheses formed 

Clearly, a parallel to Ackoff's and Rivett's classification 

in traditional applied mathematics could be obtained by 

distinguishing the following problem areas: 

1 Mechanics 

2 Hydrostatics 

3 Hydrodynamics 

4 Electromagnetics 

5 Thermodynamics 

This list, however, looks very much like traditional syllabus 

headings and could equally well apply to physics. Little is 

indicated of the nature of models or of the processes of 

constructing a model. 

Ackoff's .and Sasieni's list is much more general and applies 

not only to problems in the OR, or social/organisational 

sciences, but to problems in the physical sCiences/engineering, 

life and medical sciences. Examples of these model types 

illustrating the difficulties of formulating structure can 

be found in many books and journals, for example in Andrews & 

hlcLone (1976); Bender (1978); Bradley, Gibson, Cross (1981); 



-22-

Burghes, Huntley, McDonald (1982); James & McDonald (1981); 

Haberman (1977). It should be understood, though, that 

they provide little guidance on how to actually set about 

the formulation of problems in mathematical terms. There 

are one or two noteworthy exceptions, however, and these 

will be dealt with later. 

An important distinction to make is between deterministic 

and stochastic models. Deterministic models are those where 

the variables are definite and not random. Stochastic models 

contain random or probabilistic variables. For example, in 

the investigation of speed-wobble in motorcycles, the 

returning couple about the steering-axis is related to the 

moment of inertia arid angular acceleration of the wheel and 

forks (Oke (1981)). There is no doubt (apart from accuracy 

of measurement) about the values of the variables (angular 

acceleration, etc), and so the mathematical equations define 

a deterministic model. On the other hand, models which 

represent arrival times of patients at a doctor's surgery 

for instance are best mOdelled stochastically, using an 

appropriate probability distribution for inter-arrival times. 

Very often only a qualitative solution is sought to a 

practical problem. In fact, at a given initial stage, it 

is sometimes the only solution possible for the mOdeller. 

The approach is to make observations and codify them by 

constructing a table and/or fitting them to a 'sensible' 

graph form. The type of model so formed is called descriptive 

(Burkhardt (1979)) and relates closely to types (3) and (4) 

of the Ackoff-Sasieni classification. The technique of 

drawing a graph and/or producing an empirical formula as 

part of a modelling strategy has also been reported in 

Bajpai et al (1974, 1975). 

Models of the type governed by some form of equation or 

equations are referred to by Burkhardt (1979) as analytical. 

They may, therefore, be either deterministic or stochastic. 
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All the reported modelling activities carried out by the 

author involve the construction of analytical and deterministic 

models.(Oke 1979, 1981a, 1981b, 1984a). Furthermore, the models 

arise from concentrating on problems in the physical sciences 

and technology. This may seem unduly restrictive, however 

the approaches used can be extended to a wide range of 

activities outside the well-defined areas of physics and 

engineering. For example, putting a shot in golf (Burghes 

(1981)), athletics events (The Journal of Sports Sciences 

(1983)) (in particular, pole vaulting (Sheridan (1980) and 

in a later chapter of this thesis), in biology and medicine 

(Burley (1979), and in many other instances mathematics and 

physics can be used to solve real problems. 

2.3 Review of Modelling Methodologies 

It is essential to provide a set of guide-lines on mathematical 

modelling processes in order that mathematics may be effectively 

applied to the solution of practical problems. Attempts to 

encapsulate the essential features of the stages or 'spectrum 

of activities' that actually take place when a real-life 

problem is being solved have resulted in the development of 

various methodologies. They range from descriptions of the 

modelling processes used by professional modellers in 

industry and commerce to detailed guidance for teachers and 

students. 

The subject of mathematical modelling as an academic discipline 

is new as has been indicated earlier in this chapter. The 

evolving character of the subject, however, has much in' 

common with other new disciplines. In order to develop a 

methodology one first has to observe the activities of 

modellers in various practical situations. There are a 

number of difficulties experienced here, and research workers 

are still endeavouring to devise more effective techniques. 

Morris (1967) has this to say when referring to the intuitive 

ways in which management scientists arrive at their mOdels: 
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The term "intuitive" refers here to thinking 

which the subject (management scientist) is 

unable or unwilling to verbalize. Indeed, really 

effective experienced persons in any field 

typically operate in a largely intuitive manner 

and view with impatience attempts to make their 

methods explicit. 

This observational difficulty is not new of course, and is 

experienced by researchers in the fields of education, 

sociology, psychology, and more recently in the fields of 

systems analysis and computerised expert systems. Efforts to 

overcome the problem include getting the subject to 'talk 

through' his/her experiences (in spite of Morris' statement), 

a-posteriori analysis or reflection on what one has done after 

having solved a problem, and independent 'unobtrusive' obser

vation and recording of perceived details whilst the modeller 

is actually working. Morris' methodology in common with many 

others is based largely on a-posteriori or reflective" analysis. 
, 

The modelling methodologies developed to date are based on the 

traditional approaches used in science. An early example of 

this is by Ackoff (1962) and with Sasieni (1967) mentioned 

in section 2.1. It is basically linear and sequential in 

nature, although he acknowledges that the processes are 

usually cyclic and the steps are overlapping. The scientific, 

or linear paradigm, has naturally been adopted in other fields 

of study in attempts to make 'order out of chaos'. There is a 

gradually emerging view, however, that complex processes can 

with advantage be understood by non-linear approaches. In 

the field of systems analysis Checkland (1975) is concerned 

with the inadequacy of the science paradigm when applied to 

living systems and particularly human activity systems. 

Checkland recommends a holistic, or Gestalt approach, 'because 

systems are more than the addition of their individual parts'. 

In the field of curriculum design, some innovators hold a 

non-linear view of mathematics itself, as approached by the 

learner. Howson, Keitel and Kilpatrick (1981), whilst pOinting 

out that there is insufficient evidence either to disprove or 
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to substantiate the claims of the 'non-linearists', have this 

to say about learning mathematics; 

Elaborate flow-diagrams are often supplied to which 

materials conform. Yet is this a valid model of 

mathematical learning? Is mathematics analogous 

to climbing a tree (first a common trunk, then a 

variety of branches to be tackled in a directed 

manner), or to solving a monster jigsaw puzzle 

(building isolated groups of pieces and then 

combining these by means of well-chosen links to 

form even bigger aggregates)? 

There is merit in both the linear and non-linear approaches 

in studying complex processes. Clements (1982) suggests 

that students could initially be introduced to a linear 

methodology, and then as they gain maturity and experience 

in their modelling studies they could be given a more complex 

description. However, there are no details provided by 

Clements, or by anyone else, which give a deeper understanding 

specifically related to mathematical modelling processes. 

One of the best 'non-linear' guides to date seems to come 

largely from very general descriptions by systems analysts. 

In a later chapter a linear/non-linear methodology, which is 

new, is developed. In the meantime, the main features of 

linear approaches will be discussed. 

Morris (1967), appears to be one of the first professional 

modellers to attempt to articulate what actually happens in 

the modelling process. From his experiences, he offers some 

specific hypotheses for the guidance of the inexperienced 

modeller: 

1 Factor the system problem into simpler problems 

2 Establish a clear statement of the deductive objectives 

3 Seek analogies 
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4 Consider a_ specific numerical instance of the problem 

5 Establish some symbols 

6 Write down the obvious 

7 If a tractable model is obtained, enrich it. Otherwise 

simplify 

All of the above would seem to be relevant to teaching, and 

in this connection, Morris provides a useful list of actions 

to carry out if simplification, phases (1) or (7), is 

necessary: 

Simplify by: 

making variables into constants 

eliminating variables 

using linear relations 

adding stronger assumptions and restrictions 

suppressing randomness 

The latter, 'suppressing randomness' would not apply to a 

deterministic problem.' However, this suppression could 

convert a difficult stochastic problem to a more manageable 

deterministic one. Enrichment, on the other hand, could 

involve the opposite of some of the actions, eg, turning 

constants into variables. 

Rivett (1972, 1980) has provided a flow-chart of the model

building process as shown in Figure 1. 

Rivett's description is very general and therefore has less 

to offer to the inexperienced modeller. Stages A to H 

correspond roughly to Ackoff's phases (1) to (3), with the 

added component of testing the objectives of the original 

problem. Both Ackoff and Rivett have testing stages, and 

Ackoff's final stage (6) 'Implementing the solution' corresponds 
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o 

Fig 1 

The model-building process (Rivett, 1972 and 1980) 

to Rivett's 'Action'. In a teaching situation it is rarely 

possible to introduce the implementation stage, since there 

is little opportunity to tryout a model in industry or 

commerce. Note that neither Ackoff nor Rivett suggest, unlike 

Morris, how to develop the actual mathematical equations in 

the formulation stage. 

White (1980) in his book 'Decision Methodology', discusses 

several other modelling methodologies in addition to Ackoff's. 

Chief amongst these are Tocher's (1961), which is very 

similar to Ackoff's five stages, and Bonder's (1970). Bonder 

divides the modelling process into qualitative and quantitative 

stages which correspond, in general terms, to Burkhardt's 

descriptive and analytical model types respectively as 

mentioned in section 2.2. Several publications to date, for 

example Collier (1982), discuss mathematical modelling 



-2&-

strategies for the professional in a number of different 

application areas. These methodologies all tend to be in 

very general terms and stem largely from the OR methodologies 

discussed earlier. 

Methodologies more closely related to educational requirements 

have also benefitted from OR approaches. However, the 

structure of modelling strategies appropriate to teaching and 

learning situations naturally emphasise these aspects. 

Bajpai, et al (1974, 1975) were amongst the first in the early 

1970's to draw attention to the benefits to be gained from 

a modelling approach in teaching. Although this work concerns 

the teaching of mathematics to undergraduate engineers, much 

of the methodology is relevant to the teaching of mathematical 

modelling in general. The methodology is represented in a 

block diagram as shown in Figure 2. 

An important feature appears in Figure 2, namely an inner 

loop regarding simplification. If the mathematics involved 

in the construction of the model is too difficult to solve, 

either because of the time available or because of the 

complexity of the equations (or both), then it is necessary 

to make simplifying assumptions. This emphasis on simplification 

was first mentioned in the earlier description of Morris' 

methodology. It is not mentioned by Rivett. Another important 

feature in Figure 2 is the outer loop corresponding to 

improving or changing the mathematical model. Rivett also 

has this loop and it contains boxes A, H, J and E as shown 

in Figure 1. The loop is travelled round successively until 

a mathematical solution is obtained which accords sufficiently 

well with observation (data obtained by measurement). 

Burkhardt (1979, 1981) describes mathematical modelling 

processes, called problem solving processes by him, by 

referring to a flow-chart as shown in Figure 3. 
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Fig 2 

Methodology of Bajpai, et aJ (1974, 1975) 
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'" . 
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No SIMPLIFY 
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No 
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Fig 3 

Problem Solving Processes (Burkhardt, 1979 and 1981) 
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Burkhardt has the inner 'simplify' loop and the outer 'improve' 

loop that occurs in Bajpai's block diagram (Figure 2). The 

'formulate' box in Figure 3 corresponds approximately to 

boxes 2-5 (counting from the top) in Figure 2. Burkhardt 

represents formulation in more detail as shown in Figure 4. 
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In thinking about a new problem Burkhardt claims that we 

always start from our prejudices, which are rough analytical 

models. He goes on to say: 

We regard this as self-evident, since the decision 

on what observations to make from the myriad 

possibilities needs a mOdel to guide it. 

Burkhardt (1981) 

Burkhardt highlights important activities associated with 

the formulation stage in analytical modelling, based on the 

work of Treilibs (1979): 

Generation of variables 

Selection of variables 

Generation of relationships 

Selection of relati'onships 

Identification of specific questions to be answered 

Both Burkhar.dt and Treilibs point out that the relative 

importance and difficulty of these activities is not well 

understood, although it seems likely that the generation of 

useful relationships is one of the most demanding. This is 

a vital matter and is pursued in detail later on in this 

thesis. 

Several other authors have published methodologies of modelling, 

but in the main they are either variants of established OR 

approaches or broad canvas descriptions which emphasise the 

movement from reality to mathematics (formulation) and back 

again (interpretation/validation/implementation). 
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2.4 Review of the Teaching of Mathematical Modelling 

In section 2.1 reference was made to the large number of 

teaching experiments in modelling that have been carried 

out in the last ten years or so. All this activity has 

taken place in spite of the processes of modelling being 

ill-understood and relevant teaching skills still being in 

their infancy. These experiments have been carried out with 

students in school and at uni versi ty, and they range in size 

from the endeavours of individuals to, occasionally, fUII

scale projects. Apart from treating simpler modelling 

exercises in school compared with university, there seems 

to be a consensus view that most students experience the 

same set of difficulties, particularly in the formulation 

stage. It is not surprising, therefore, that some experi

ments ignore this difficult stage altogether. 

One of the largest projects, both in funding and the numbers 

of students involved, is USMES (Unified Sciences and Mathe

matics for Elementary Schools) formed in 1970 and based in 

Boston, USA, directed by Earle Lomon of MIT (Lomon (1980); 

Burkhardt (1981)). It is an interdisciplinary project that 

challenges students aged 6-11 to solve real problems from 

their school and community environment. In this way it aims 

to develop the cognitive strategies of problem solving and 

decision making in the students and to provide a possible 

bridge between the abstractions of the school curriculum and 

the world of the (young) student. As Lomon (1980) reports 

on the founding of USMES, the work of Gagn~ (1965) on 

cognitive strategies provided valuable guidance in the con

struction of their aims. The project is organised as a 

series of 26 "challenges" which students can tackle in any 

order. The level to which the students take each challenge 

and the investigations they pursue vary according to the 

abilities and interests of the students. The challenges 
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include problems such as: 

1 Find ways of making bicycle riding a safe and 

convenient way to travel 

2 How can we improve the daily class schedule? 

3 Find ways of influencing rules and the 

decision-making process in the school 

The method of presentation of each challenge is highly inter

active with the teacher guiding and structuring classroom 

discussion. Extensive measuring exercises are carried out 

by the students in data collection and so the emphasis is 

very much on descriptive rather than analytical modelling. 

Lomon reports favourably on students gaining problem-solving 

skills after having been exposed to the USMES approach. 

Although the emphasis on such skills is largely on data 

collection and interpretation, opportunities for imple

mentation are encouraged (eg, informing a school principal 

what pencils and erasers to purchase). The latter activity, 

as mentioned in section 2.3, is very difficult to arrange 

for students in higher education due to the more complex 

models involved and the difficulty in getting industrial 

and commercial firms to tryout experiments. 

At the undergraduate level, UMAP (Undergraduate Mathematics 

and its Applications Project) formed in 1976 and based in 

Newton, MA, in the USA (directed by Ross L Finney) provides 

valuable source material for modelling covering a very wide 

range of applications. UMAP produces modules which are 

contributed by lecturers in colleges and universities, each 

being reviewed, revised, and field~tested before being 

published by Birkhauser Boston, Inc. By and large the 

modules are lesson-length booklets or units from which 
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students 'may learn professional applications of mathe

matics and statistics to such fields as biomedical 

sciences, business, economics, food management, American 

politics, harvesting, international relations, numerical 

methods, computer science, seismology, and traffic control'. 

The modules are intended to supplement existing courses and 

texts~ and some present mathematical or statistical topics 

as theory rather than as applications. It is difficult to 

do justice by providing examples of some of the hundreds 

of modules that have now been produced, but titles of 

just a few chosen at random are: 

1 The Relationship Between Directional Heading 

of An Automobile and Steering Wheel Deflection. 

(Know what assumptions lead to the equation that 

relates Set) (compass heading) and ~(t) (steering 

wheel deflection) and how the equation is derived. 

Find automobile headings for given wheel 

deflection functions and initial conditions.) 

2 The Digestive Process of Sheep. 

(This unit introduces a mathematical model for 

the digestive processes of sheep. The. model 

involves simple differential equations. There 

is a discussion of the assumptions of the model, 

support for its validity, and conclusions which 

can be drawn.) 

3 Algorithms for Finding Zeros of Functions. 

(Understanding of standard bisection, secant 

and Newton-Raphson root finding methods, and 

appreciation of their strong points and 

limitations. Introduction to more recent root 

finding methods.) 
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Example 1 provides an interesting application of mathe

matics without attempting to get the student very involved 

with initial formulation of the problem. Example 2 is 

a good example of a modelling approach where the student 

is encouraged to formulate (with guidance). Example 3 

is an example without applications being mentioned (but 

very' well done, nevertheless). 

Although UMAP does not emphasise a modelling approach in 

most modules, there are so many well developed applications 

that experienced lecturers in modelling could well avail 

themselves of the units involved. 

The earliest major attempt to introduce modelling in 

schools in the UK was made by Ormell in the creation of 

the School's Council project 'Mathematics Applicable' 

in 1969. It consists of a series of texts (The School's 

Council (1975 - 1978», which aim to teach the skills of 

'applied mathematics' in a modelling context. The 

material is designed for the non-specialist sixth 

former and examinations at AO level have recently been 

set by the University of London on behalf of several 

examination boards (Ormell (1983». The applied mathe

matics skills are developed in the course of solving 

problems arising from concrete situations. The problems 

are often of a whimsical kind, eg, is 3-D knitting 

worth learning? Was the 'Star of Bethlehem' a possible 

phenomenon?, rather than of a more realistic kind. The 

texts of problems make no pretence of taking the student 

through the complete modelling process. Problems are 

well-defined, and the formulation stage only requires 

students to construct equations from clearly defined 

statements. Interpretation of mathematical solutions 

is required although no part is played by 
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validation. Each of the texts concentrates on a particular 

topic and the development of mathematics (eg linear functions, 

exponential growth) is exemplified by modelling problems. 

Mathematics Applicable has been adopted by many schools 

since 1970, and it has made a significant contribution to 

making mathematics more meaningful and interesting to school 

students. A review of the project and of SSP(Selective, 

Simplified, Projective) applications of mathematics can be 

found in an article by Ormell (1980). 

Burkhardt, Director of the Shell Centre for Mathematical 

Education at the University of Nottingham, and his team have 

made a number of valuable contributions to the teaching of 

mathematical modelling mainly at school level. The first 

publication to detail this work is the project report "The 

Real World and Mathematics" (Burkhardt (1978», now up-dated 

and available in book form (1981). These publications survey 

the work done at school level in mathematical modelling, 

provide many examples of models, and include suggestions for 

a methodology of modelling (see section 2.3 of this chapter) 

as well as approaches that can be used in the classroom. 

The range of activities- formulation, solution, interpretation, 

validation - is covered in the modelling approaches. Burkhardt 

has also devised a classification of interest level of 

problems, denoted by the acronym ABCDE, Burkhardt (1981): 

Action problems are those whose answers may 

directly affect decisions in our everyday lives 

'How can I fit in my homework with the TV 

and going out?' 

Believable problems are those that we can 

recognise as Action problems either for our

selves in the future or for someone we care 

about. 

'Should I get a job at 18 or go to college?' 
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Curious problems are those which intrigue us 

either because the phenomenon being studied is 

itself intriguing or because the analysis is. 

'Why are there two high tides each day?' 

Dubious problems are there simply to provide 

exercise in mathematical technique. 

'See any traditional mathematics exam paper' 

Educational problems are a rather special category -

they are essentially'Dubious' but make an important 

point of mathematical (or physical or economic) 

principle so clearly and beautifully that no-one 

would want to get rid of them. 

'If I invested 1p at 5% compound interest in 

512AD, what is it worth now?' 

In facing up to the challenge of finding problems at various 

interest levels that could be used for modelling in the class

room, Burkhardt has set up a scheme called PAMELA (Problems 

in Applied Mathematics from Everyday Life Applications). 

Teachers are invited to contribute to a list of problems by 

providing information on a problem area such as title, short 

description of problem situation, and occasionally provide 

a mathematical model in their analysis. 

get an up-to-date copy of the list. 

In return, teachers 

Burkhardt and his team have developed a 'Starter Pack' for 

those teachers who wish to tryout modelling experiments with 

their students. The material is provided by the Shell Centre, 

and concentrates on providing guidance for the teacher by 

including detailed notes on how the gradual development of 

solutions to problems may be achieved. The pack is based on 

the experiences of a number of enthusiastic teachers as well 

as on the research work of Treilibs (1979). 
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By abstracting Burkhardt's (1978, 1981) observations on 

teaching styles in the classroom, the following list of 

points emerges: 

1 No widely established methods of teaching mathematical 

modelling exist 

2 Only mathematics very well absorbed is usable in modelling 

exercises (eg, arithmetic and simple algebra for GCE AIL 

students) 

3 Problem situation must be simple (far simpler than if 

model is provided by the teacher) 

4 Students left to carry out most of the modelling activities 

themselves - teacher provides minimum support (eg, help 

in creative ideas) 

5 List initial student suggestions on blackboard - encourage 

class to 'thin-down' list before attempting solution 

6 Formulation seems easier if class split into groups rather 

than left to work individually (unlike solution stage). 

Group size a matter of judgement 

7 'Crunch' point reached, after initial stages of formulation, 

in generating relations. Needs teacher guidance, then 

leave students to solve mathematically. 

8 Assessment of modelling skills not well developed 

Several items in the above list are mentioned in one form or 

another by a number of authors in reports on their experiences 

of teaching modelling in schools, colleges, polytechnics and 

universities. Burkhardt, like many others, has pOinted out 

that teaching modelling is not easy. Certainly, in the initial 

stages, an inexperienced teacher finds the less-structured 

student-centred classroom activities quite difficult. However, 

as with modelling itself or any other creative activity, 

experience gradually instils confidence, and there is a growing 
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number of teachers in schools and in higher education who 

are trying out modelling experiments of their own design. 

The Open University started to introduce mathematical 

modelling components in 1975 by developing some topics in 

mathematics and illustrating them in simple but realistic 

applications. This approach, led by Penrose (1978), was 

presented in the foundation course M101. The course has 

had several up-dates since 1975, and the Open University 

has also produced other courses which include units on 

modelling. The second level course, TM281 'Modelling by 

Mathematics', was introduced in 1977. The emphasis of the 

course is on those aspects of mathematical modelling which 

require the ability to interpret well-posed problem state

ments (with hints on formulation) in mathematical terms 

and, subsequently, to show competence in techniques in 

acquiring a solution. Some challenging opportunities are 

also provided in the interpretation of a solution. Since 

the course is examined by a fixed-time three hour examination 

paper, the harder parts of formulation are not assessed. 

However, the course does present some refreshingly good 

ideas of the applications of mathematics and thus represents 

a significant improvement on the usual 'applications

oriented' approach. In 1980 the course PME 233, Units 5-9 

was published, Open University (1980). This course, entitled 

'Mathematics Across the Curriculum', is a second-level 

'Post Experience Mathematics/Education' course. The approach 

builds on the experience of USMES and considers the nature 

of real problem solving and how this may be introduced to 

the curriculum. Unlike USMES, however, a list of problems 

is not provided and the teacher is urged to find his/her, 

own in consultation with their students (middle secondary 

school). The solution to a problem is considered best as 

an extended project, each student taking several weeks to 

complete an assignment. In 1982 the Open University produced 

the course MST 204, an inter-faculty second-level unit in 

Mathematics, Science and Technology. Half this latter 

course consists of a development of mathematical methods 
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and the other half is on mathematical modelling. The 

approaches recommended are based on the work of Penrose, 

which is very similar to the methodology of Burkhardt. 

Berry and O'Shea (1982), who wrote the project guide for 

MST 204, report on the assessment procedures that are being 

used in grading student performances in modelling exercises. 

An early report on the effectiveness of these procedures, 

resulting from the first batch of students' attempts on 

this course, is reported by Berry and Le Masurier (1984). 

These two articles and the paper by Hall (1984), are amongst 

the more important recent reports on assessment of students' 

efforts on modelling exercises. They highlight the 

difficulties in applying a formal marking scheme, and compare 

this with 'impression' marking. The problem of assessing· 

teacher's attempts in modelling on an MSc course in Mathe

matical Education is reported by Oke (1980). 
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Burghes has made significant contributions to the teaching 

of mathematical modelling at school and undergraduate levels 

as well as designing short courses for teachers. He has 

suggested problems that could be presented at school level; 

for example: 

Depot location (analysis and mechanical analogue) 

Drug concentration (differential equation on dosage) 

Planetary motion (curve fitting of data) 

(Burghes (1980» 

These seem pretty difficult for all except the most able 

sixth former, and recently Burghes has led a team which has 

produced simpler problems for middle school average ability 

students as well as some more manageable problems for the 

sixth form: The Spode Group books (1981-1983). In further

ance of the provision of problems which can be tackled in a 

modelling way, he established the Journal of Mathematical 

Modelling for Teachers with Read (Open University) in 1978; 

this has now been superceded by the Institute of Mathematics 

and Its Applications Journal of Teaching Mathematics and Its 

Applications. Examples of Burghes' earlier work on mathe

matical modelling f,or. t.eachers can be seen in the short course 

notes given by Cranfield Institute of Technology, Burghes 

(1980). In the latter notes, however, the models suggested 

for the school teacher's students tend to be for the most 

able in the sixth form. His work with undergraduates has 

been reported in Burghes and Huntley (1982). In this 

publication he describes with Huntley their experiences of 

teaching modelling on several courses in higher education. 

Some of the points made on teaching methods are very similar 

to Burkhardt's observations and, in ~articular, a list of 

DO's and DONT's is provided as guidance for the teacher: 

DO 

1 Use 'real world' problems extensively 
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2 Design all problems so that a definite answer is 

required 

3 Choose problems which have an intrinsic interest 

for everyone 

4 Encourage work in small groups and accept group 

reports 

5 Encourage discussion and communication 

DON'T 

6 Expect your students to use relatively new mathe

matical ideas 

7 Try to teach mathematics and modelling at the same 

time 

8 Use fixed time examination in assessment 

9 Interfere too much, too soon 

10 Impose your solution on the class 

Several other authors have also reported on their experiences 

of teaching mathematical modelling to undergraduates and 

HND students and the details relate mainly to the types of 

problems set and the modes of project working. Some note

worthy examples may be found in: McLone (1979), Clements 

(1978), Oke & Bajpai (1982), Burley & Trowbridge (1984), 

Gadian, Hudson, 0' Carroll & Williams (1984). Further discussion 

and analysis of work done in higher education, coupled with 

comparisons of recent research into related problem solving 

strategies, is left to later chapters. 

2.5 Summary and Conclusions 

Mathematical modelling as carried out by scientists has been 

in existence since antiquity. However, not until the more 

theoretical aspects of economics were founded in the nineteenth 
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century, and the full-scale developments of operational 

research methods since the second-world war, have attempts 

been made to understand more fully what amounts to a highly 

intuitive and creative activity. Operational research workers, 

in particular, have attempted not only to classify 'real

world' problems and models of them, but they have also striven 

to analyse what activities are actually carried out in the 

construction and testing of such models.'; 

Serious interest in the teaching of mathematical modelling 

first came into evidence in the late 1960's in attempts to 

make applied mathematics more meaningful and realistic. Much 

initial inspiration on the processes of modelling was gained 

from operational research methodologies. The extent to which 

methodologies of modelling are helpful in teaching is still 

an open question and subject to further research. It would' 

certainly appear, however, that many mathematical educators 

would acknowledge the value of some aspects of a 'model' of 

modelling (meta-model or methodology) in that it provides 

some guide lines for the teacher and student alike. This 

is not to suggest that students should first be taught 

methodological issues and then be exposed to solving real

problems, on the contrary, but that a judicious introduction 

to formal aspects of procedure might help in the students' 

appreciation of modelling as experience and maturity are 

gradually gained. There is certainly a need for a better 

understanding of the processes involved, especially in the 

early stages of formulation (of the practical problem into 

mathematical terms) and solution (of the resulting mathematical 

equations). Following on from this, there is then the need 

for a 'bank' of problems and skilled teacher guidance to 

provide, as far as possible, graduated exercises in modelling 

that build-up student confidence and expertise. As mentioned 

in section 2.4, Burkhardt has started a collection of problems, 

PAMELA, for school level; the Spode group, under the 

direction of Burghes, have published problems with possible 

solutions for middle to upper school students. In higher 

education, the two volumes of case studies - James & McDonald 
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(1981), James & Huntley (to be published) make a contribution for 

undergraduates and HND students. 

In section 2.2, a working definition of mathematical model 

is proposed: 

A simplified and solvable mathematical representation 

of an aspect of a practical problem 

The reasons for this choice of definition are explained; 

it is broad enough to encompass a wide range of problems and 

yet it is specifically designed to cater for educational use 

(teaching and learning) in that it emphasises: simplification 

(both of the problem and of the mathematics) and solvability 

(it must be possible to find a mathematical solution or 

solut,ions). The definition would seem to be appropriate at 

all levels, from school to higher education, although it does 

emphasise analytical models rather than descriptive or 

empirical models (Burkhardt's terms). Also mentioned in 2.2 

is that the investigations into teaching and learning in 

this thesis will concentrate mainly on analytical and deter

ministic models which arise from problems in the physical 

sciences and technological applications areas. The results 

of such investigations, however, have wider reaching 

implications and apply to some aspects of problem solving 

strategies generally. 

In section 2.3 a survey of the leading methodologies of 

modelling is made. These methodologies represent the processes 

of modelling either as a linear sequence of activities as 

shown in Figure 5; or, the processes are represented by a 

linear sequence with looping, as shown in Figure 6. 

Both Figures 5 and 6 are simplifications of the actual 

methodologies and are intended to show overall features only. 

For details see, for example, Figures l(Rivett), 2(Bajpai, 

et al), 3(Burkhardt). Burkhardt and Treilibs have further 

analysed the formulation/solution activities and these are 

portrayed in Figure 4. 
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FORMULATE 

SOLVE 

INTERPRET 

VALIDATE 

Fig 5 

Processes of Modelling: Linear Sequence 
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Fig 6 

Processes of Modelling: Linear Seguence with Looping 
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elements (1982) drawing on the work of systems analysts has 

suggested that modelling processes might better be portrayed 

as non-linear or holistic. Neither he, nor any other author 

to date however, has developed a non-linear methodology for 

mathematical modelling. Oke (1984) has reported on initial 

studies in this connection though'.and further developments, 

with important implications for teaching are reported later 

on in this thesis. 

In section 2.4 a review has been made of some of the leading 

projects and individual efforts on investigations and 

experiments in teaching mathematical modelling. Activities 

have taken place at all levels from school to establishments 

in hieher education. Inevitably there are different emphases 

placed in these experiments, notably in US1ffiS and the work 

of Ormell in that of neglecting formulation of a practical 

problem. The emphasis in these projects is in finding the 

mathematical solution, perhaps empirical,to a well-defined 

problem. Most authors, however, emphasise the importance of 

students carrying out all the four stages: formulation, 

solution, interpretation, and (some at least of) validation. 

The work of USMES and Ormell also have the distinguishing 

feature of using modelling activities as a means of introducing 

a new mathematical topic (the Open University course M 101 

is also similar in this sense). Whereas most would strongly 

advise against this, pointing out that modelling is difficult 

enough anyway, and so there is a considerable risk· of confusing 

students by introducing new mathematical ideas at the same 

time. This no doubt goes a long way in explaining why USMES 

and Ormell, for example, omit the difficult formulation stage 

in their work. 

Most reported work, however, does show a common consensus on' 

the following points in connection with the teaching and 

learning of mathematical modelling: 

1 Need of problems for modelling exercises 

2 Formulation stage is most difficult, particularly in the 

generation of mathematical relationships 
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3 Once students have got started, work is best done in groups 

4 Assessment of modelling attempts is very difficult 

Burkhardt with his PAMELA list, Burghes with his Spode books, 

and James & McDonald and Huntley with their 'Case Studies' 

books, have made a valuable start to (1). Burkhardt and 

Treilibs are probably the best known for work on formulation 

processes (2). Practically all authors agree with (3), 

although the initial value of interactive teaching is also 

emphasised by some, eg, in Burkhardt (1981); Oke (1984). All 

agree with (4), and it is still an open question as to whether 

'impression' marking or formal marking scheme, or a combination 

of both, is best. 

To sum up, much more research needs to be done in developing 

an understanding of modelling processes in general, and in 

formulation processes in particular, .that will provide help 

and guidance to both teachers and students. In the next and 

subsequent chapters this identified research need will be 

more fully investigated. Reference will be made to related 

research in problem solving processes as well as the develop

ment of a more detailed analysis on teaching and learning 

mathematical modelling - covering experiments to date in 

addition to proposals for the future. 



-50-

CHAPTER 3 

RELATED RESEARCH 

3.1 Introduction 

As pointed out in the last chapter, the teaching of mathe

matical modelling and of problem soving generally is still in 

the very early stages of development. In the last decade 

enthusiastic teachers, who have some experience of modelling 

themselves, have tried out various classroom experiments on 

tackling realistic problems. In order for mathematical 

modelling to have a wider impact on the curriculum more needs 

to be done for the majority of teachers and students. Attempts 

are currently being made in several directions and they may be 

briefly described as relating to: 

1 Teaching styles 

2 Learning styles 

3 Assessment methods 

4 Modelling processes 

Naturally, these endeavours are being carried out concurrently, 

with different emphases being placed by various investigators. 

In order to make significant progress from the present 'state

of-the-art' a considerable amount of work needs to be carried 

out in each of 1 - 4. However, at the time of writing, hardly 

any research has been done. Some would argue that progress will 

best be made by using intuitive approaches in the classroom, 

whilst others would ar~ue the case for the development of a ,. . 



-51-

greater understanding of modelling processes. The author 

adopts a compromise position. In order to make mathematical 

modelling activities more widely available to institutions 

at all levels, it is proposed that a fuller understanding of 

modelling processes as related to the classroom is a valuable 

way forward. The aim, then, is to try and understand better 

what actually happens when a simplified but realistic problem 

is solved by mathematical means, and to use this understanding 

as a basis to developing modelling skills in students. 

What little research has been carried out in mathematical 

modelling has been in the field of processes. Approaches 

compare with, and draw their inspiration from research in 

problem solving (not necessarily in mathematics) .. As pointed 

out in the last chapter, the processes involved are usually 

portrayed in a flow-diagram im9lying linear or linear with 

looping sequencing of stages. Only recently, drawing on the 

still pioneering work of systems analysis (in information 

processing), have non-linear approaches been suggested. 

Whilst there is very little reported research in modelling, 

there is a fairly large body of work done on problem solving 

(in its widest sense). 

Both problem-solving and mathematical modelling are concerned 

with the study of creative processes. There is, therefore, 

bound to be much in common between the two approaches. The 

chief difference between problem solving and modelling can be 

found in the types of problems being tackled. In the former 

case, attention is focused on the methods used to find a 

mathematical solution of a well-defined and specific problem. 

Whereas, in the case of modelling, one seeks to make sense and 

gain a better understanding of an often ill-defined practical 

problem. Once the practi6al 9roblem is better understood, 

then a mathematical solution, which helps in this understanding, 

can be developed. There is usually only one or at most two 

correct solutions to a 'problem solving' exercise, whereas in 

'modelling' there is no such thing as a 'correct' solution; 

there are only 'good' or 'bad' solutions. The whole set of 

activities, then, in problem-solving tend to be much more 



-52-

structured than in modelling. It is, therefore, often easier 

to get a sense of direction in which to proceed in problem

solving than in modelling. Two simple problem statements, by 

way of example, serve partly to highlight these differences: 

Problem-solving problem 

.The length of the perimeter of a right triangle 

is 60 inches and the length of the altitude 

perpendicular to 

Find the sides. 

the hypotenuse is 12 inches. 

Polya (1957) 

Mathematical modelling problem 

Discuss the basic design features of a bicycle gear 

system. Try to formulate in your answer, in mathe

matical and physical terms, the speed ranges for 

each gear, and the number of gears for a given 

bicycle. 

The difference in question styles is striking. The first is 

well-posed and it is quite clear what the final answer should 

look like. The modelling problem is typically vaguely posed, 

and one has to determine firstly what are the specific mathe

matical problems to be solved. 

What problem-solving and modelling have in common, however, are 

certain aspects of the formulation stage. Althou~h formulation 

is an even more complex process in modelling than in problem 

solving, there are nevertheless similarities; in both 

activities, the identification of variables and constants is 

needed as well as the construction of mathematical relationships 

which connect these. It is well known that students; at all 

levels, find these activities difficult. Problem solving 

research has, over a number of years, attempted to identify the -

skills required for carrying out such processes, as well as 

attempting to devise heuristics which help in skill acquisition. 
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In the next sections, the results of the main problem-solving 

and modelling research activities which are related to this 

thesis are presented. Problem-solving research covers a very 

wide area, not often concentrating on mathematics, and conse

quently less space will be devoted to these aspects than to 

modelling processes. 

3.2 Problem-solving processes 

In order to solve a problem one must be able to explore, 

manipulate and search for features of the problem area that 

will provide the desired outcome. Polya (1957) in his famed 

'How to Solve It' has suggested certain procedures and maxims 

to facilitate the acquisition of problem-solving skills in 

mathematics. It is generally recognised that these procedures 

seldom provide infallible guidance but, approached from a 

practical teacher-oriented standpoint, they may help by givinJ 

the solver a general course of action to take. Polya, like many 

others, calls these procedures and maxims heuristics. 

Heuristics may be taken to mean imperfect but useful knowledge 

employed in many reasoning tasks such as plausible inference, 

discovery, and so on, where precise knowledge is lacking. This 

definition of heuristics is a little broader than Polya's but 

it does seem to fit most researchers' use of the term. Polya 

has outlined four phases in problem solving: 

1 Understanding the Problem 

What is the ~nknown? What are the data? 

What is the condition? 

2 Devising a Plan 

Do you know a related problem? Look at the unknown. 

Here is a problem related to yours and solved before, 

could you use it? 

3 Carrying out the Plan 

Carry out your plan of the solution and check each step. 
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4 Looking back 

Examine the solution obtained. 

Can you check the ar~ument? 

Can you derive the result differently? 

Hatfield (1976) would refer to Polya's four phases collectively 

as a. 'planning heuristic', whereas the four headings are them

selves heuristics. The prompts provided under each heading may 

be viewed as the most detailed of Polya's heuristics. So, in 

a sense, one has a hierarchy of heuristics. This notion of a 

hierarchy has a parallel in the development of concepts in 

general, see for example Skemp (1979). 

Perhaps the most crucial phases are (2) and (3). Phase (2) may 

be compared with Morris' 'Seek analogies' referred to in 2.3 

(Chapter 2). Phase (3) involves the execution of the plan of 

attack. If it does not complete the solution to the problem but 

only reduces the difference between the data and that which is 

sought, then only a partial solution is obtained. Even so, the 

problem is closer to solution. With partial solutions, Polya 

recommends either returning to phase (1), or lookin~ at what 

is required and then 'work backwards'. The former is looping, 

whereas the latter amounts to a 'means-end' heuristic (find a 

means of closing the gap between where you are and where you 

should be). 

Recent studies in problem-solving have looked at the twin 

issues of how it is learned and how it can be taught. 

Unfortunately, there is little evidence to indicate that this 

area is being studied systematically. Few investigations follow 

on from previous research. Kilpatrick (1969) has reviewed 

studies on various aspects of problem-solving which were conductec 

in the period 1963-1969. He discovered that investigations were 

being carried.out in the following areas: 

1 Problem solving ability 

2 Problem solvinr; tasks 

3 Problem solvinp; !lrocesses 

4 Instructional programmes. 
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Most of the work in (1) concentrates on the translation skills 

required where sentences of posed questions are written in 

mathematical notation. In (2), investigators asked subjects 

to choose between problem alternatives, and in one study it 

was found that students generally preferred problems that were 

closely related to their interests and experiences. Kilpatrick 

notes that mathematical problems are seldom used in the pursuit 

of (-3); however, some valuable work has been carried out in 

more recent times and this is discussed later. Instructional 

programmes, (4), have concentrated on heuristic methods. In 

one experiment the subjects were taught to use one of three 

kinds of heuristic related to two theorem-proving tasks: 

Task specific heuristic (applicable to the 

training task only) 

Me'ans-end heuristic (' bridge the gap') 

General planning heuristic (similar to Polya's) 

From the results of the experiment it was su~~ested that: 

(a) Task-specific heuristics did not facilitate 

performance on the training tasks; in fact, the 

more general heuristic was found to be more 

effective than the others in several tasks 

(b') The planning heuristic was superior to the others 

on the dissimilar transfer task 

(c) From significant interactions, general heuristics 

learned in the first training task were practised 

on the second task, thereby facilitating transfer. 

Hatfield (1976) has also reviewed several studies. One study 

revealed that achievement in mathematics had a large effect on 

successful mathematical Droblem solvinR ability, although the 

use of heuristic strategies did have some relation to this 

ability not accounted for by mathematics attainment. 
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Gagne (1966) identifies problem-solving processes as a 

linear sequence of stages. His development follows from 

attempts to investigate the intervening processes between 

'stimulus' (posed problem) and 'response' (action taken). 

His four stages are: 

1 Recall of subordinate rules 

2 Search and selection 

3 Combining subordinate rules 

4 Verification 

Treilibs (1979) has constructed a table comparing problem 

solving processes (based on Gagne's work) with modelling 

stages. It is a useful comparison to make, although Treilibs 

admits that "the problem solving processes have been 'forced' 

under the same headings as the modelling processes". Essentially, 

the table may be summarised as shown on the following page: 



Problem solving 

(As per Gagne (1966) 
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Recall of Subordinate Rules 

Search and Selection 

I 
Combining Subordinate Rules 

-- - - - - - -- .. 
; Provisional Rule ~ 
, ________ __ J 

Verification 

( Solution Rule) 

Mathematical Modelling . 

As per Burkhardt (1978) 

Formulation 

Solution 

Interpretation 

Validation 

Table 1: Comparison of problem solving and modelling 

(Treilibs, 1979) 
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Table 1 is based on 'The Flowchart Phases' of Treilib's table. 

Gagne's recall of subordinate rules depends on the store of 

previously learned rules and will be more successful if the 

solver has a good memory. Search and selection requires the 

solver to distinguish relevant from irrelevant aspects of the 

problem. Combining subordinate rules is a difficult process, 

for only certain combinations will lead to a successful 

solution. Verification requires the solver to try specific 

numerical instances in his solution as a checking procedure. 

Although Table 1 provides useful insights into problem solving 

processes, it does seem to relate only to those mathematical 

modelling exercises which are themselves based on well

structured and well-posed practical problems. As mentioned 

earlier in Section 3.1, mathematical modelling activities are 

usually based on tackling realistic, and by their very. nature, 

ill-Dosed problems. 

Most researchers agree that prior experience in both problem

solving activities and in particular content areas is a very 

important ingredient for success. This also applies to mathe

matical modelling, and hence the need for more problems which 

provide practice in any given application domain. One of the 

chief difficulties in providing such problems is in graduating 

them in order of level of sophistication, particularly in 

modelling. 

3.3 Mathematical modelling processes 

To the extent that modelling processes are similar to problem

solving, the points discussed in the last section are relevant 

to both types of activity. The chief differences appear in the 

formulation and validation stages, the former presenting the 

greater conceptual challenge in modelling. With regard to the 

validation stage, data is required. In problem-solving 

sufficient data is usually provided in the problem statement, 

whereas the modeller has often to collect his/her own. In 

higher education, especially, data is either provided to save 
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time - in which case the modelling exercise is made somewhat 

easier, or for project work, students are expected to search 

for and collect their own. This section concentrates on 

formulation processes. 

What little has been done has either been clasely related to problem

solving processes, e~ Burkhardt (1978, 1979, 1981), Treilibs 

(1979), or has been tackled from a broad methodological point 

of view, ego Clements (1982). 

Figures 3 and 4 in Chapter 2 show Burkhardt's modelling and 

formulation processes in flowchart form. The dangers of over

simplification of this method of portrayal are emphasised by 

Burkhardt and, in particular, he points out that the highly 

oscillatory nature of the formulation and solution stages is 

hidden. However, even with this caveat, one is still left with 

the impression that the processes are carried out one after 

another (linear seguencing) or are topologically equivalent 

(linear with looping). Thus, in the case of formulation (F) and 

solution (S), we have the following representations: 

F 

Figure 7: Formulation/Solution: Linear sequence 

"'"' 



-60-

+ 
F 

+ 
S topolof,ically 

Figure 8: Formulation/Solution: Linear sequence with 

looping and topological equivalence 

No research has been reported on a possible non-linear approach 

which shows more realistically the links between formulation and 

solution. Such an approach would require a suitable breakdown 

of both formulation and solution stages into smaller components, 

with a corresponding .develol)ment of the complex linkages jOining 

these smaller components. 

Burkhardt has, however, identified some key features of 

formulation which could serve as the 'smaller components'. From 

Figure 4, Chapter 2, these features are: 

Generate ideas on the empirical sftuation 

Identify mathematical variables 

Guess some relations 

These features are prescriptive and so may be viewed as heuristics. 

They relate to analytical rather than descriotive modelling, 

which is relevant to the investigations carried out in this 

• 
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thesis. Treilibs has provided a further breakdown of 

formulation and refers to his list as a set of skills: 

GV: generating variables 

SV: selecting variables 

Q: identifying the specific questions 

GR: ~enerating relationships 

SR: selecting relationships 

Treilibs devised a set of tests, for each skill, and a set of 

problems on modelling skills generally, and administered these 

to a group of sixth formers who had no previous experience of 

modelling but who had above average ability in mathematics 

(predicted grade A or B potential at GCE 'A' level). In order 

for these tests to be carried out under controlled conditions, 

it was found necessary to restrict testing to well-defined 

problems that could be tackled by students working under 

examination conditions. Treilibs did not have the opportunity 

of pursuing more realistic and more complicated and time

consuming project type problems (the latter being more usual 

in higher education). He found that 'conventional' mathematics 

ability correlated significantly with scores on the character

istics tests on Q and SR only. SV was found to correlate 

significantly with neither modelling ability (as measured by 

a screening test) nor ability in mathematics. 

What is additionally required is a better understanding of what 

may be termed the 'reality-mathematics interface', especially 

for the more complicated modelling exercises that are carried 

out in higher education. Many authors have addressed themselves 

in' general terms to the problems of translating genuinely 

practical situations into more precise terms (not necessarily 

only mathematical), but hardly any have related this translation 

in such a way that gives a deeger understanding of formulating 

and solving the ensuing mathematics. These matters are very 

difficult to identify and so analysis of the activities involved 

is consequently even more difficult. Morris (1967), as discussed 

in Chapter 2, was one of the early authors to provide significant 

guidance in this connection. More recently, for example, Rubin 
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(1982), and Oke and Bajpai (1982), report on their experiences 

of teaching model formulation to undergraduates. 

Rubin suggests the following v,eneral procedure, abbreviated 

here, as an aid in the initial stages of formulation ('system 

realisation'): 

1 Identify the three basic components of the modelling 

problem: information, questions, evaluation criteria 

2 Formulate the objectives 

3 Make a list of variables used in the statement of the 

objective 

4 Determine types of information required. Introduce 

new variables if necessary 

5 Identify components which variables describe 

6 Simulate phenomenon in a diagram. Add new 

variables if necessary 

7 Continuation of step (6) 

8 Examine list of variables for inconsistencies and 

redundancies 

9 Remove inconsistencies and redundancies 

10 Eliminate inconsistent or redundant interactions. 

Having carried out the ten initial steps of formulation, Rubin 

then suggests various types of manipulation, similar to Morris' 

list, as a ~relude to mathematical solution, eg: makin~ 

variables into constants. Rubin does not comment on student 

feed-back on these procedures, and one suspects that it is 

impossible to carry out the steps in the order suggested. For 

example in step (8), althougb some inconsistencies might be 

spotted early on, it is highly unlikely that redundancies will 

be identified - these are usually only noticed at the solution 

stage (Oke and Bajpai (1982)). However, Rubin's list does give 
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a flavour of the sort of difficulties that are encountered in 

trying to analyse complex formulation processes that are 

encountered in higher education. 

Oke and Bajpai (1982) emphasise the teaching aspects of 

problem formulation based on their experiences of teaching 

undergraduates in physics and engineering. They emphasise 

the importance of building up gradually in formulation, 

particularly with students previously inexperienced in modelling. 

They present typical lecturer/student interactive responses to 

the following range of activities: perceptions of real problem 

(breakdown into simpler problems if necessary); abstraction of 

perceptions (level of detail keptto a minimum, simplifying 

assumptions made); obtain initially only a crude representation. 

They report that students, like professional modellers, are able 

to see what are relevant variables only once a solution is 

obtained (the mathematics helps to 'eliminate'). They also 

report, that even the crudest of formulations and solutions 

often provide valuable insights to the original problem, and, 

in turn, provide further guidance on how to proceed to a more 

complicated formulation and solution. 

Clements (1982) suggestsan alternative to linear sequencing, or 

linear sequencing with looping, in developing a framework of 

modelling processes. His development relates to the whole range 

of modelling activities, and draws its inspiration from the 

system movement and Checkland's (1975) 'soft' system methodology. 

Although his discussion is in very general terms, it does offer 

some insight into systems approaches in tackling complex 

processes that could be helpful in providing a better under

standing of the formulation/solution interface in mathematical 

modelling. The emphasis is on holistic rather than reductionist 

approaches. The former relates to viewing a system as a whole, 

even if one does not understand each of the component parts. 

Reductionist approaches, on the other hand, refer to the 

scientific paradigm where each component is reduced to the 

simplest level of understanding before any analysis is performed. 

Systems methodologies, however, do not conflict with the 

scientific approach, but complement it. As Checkland says: 
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Hence there is an incentive to examine alternative 

paradigms to those of natural science, while 

continuing to build on the scientific bedrock: 

rationality applied to the findings of experience. 

Clements quotes Checkland again in refer.ring to the distinctive, 

and non-linear, features of the systems approach: 

... although the methodology is most easily described 

as a sequence of phases, it is not necessary to move 

from phase 1 to phase 7: what is important is the 

content of the individual phases and the relationship 

between them. With that pattern established, the 

good systems thinker will use them in any order, will 

iterate freguently, and may well work simultaneously 

on more than one phase. 

(my underlining) 

So, Checkland is discussing a much more complex linkage of 

phases (or stages) than is suggested in the usual descriptions 

of modelling processes. Since the formulation/solution inter

face is the most difficult aspect of modelling, it would seem 

that this systems approach could lead to better understanding. 

This is taken up further in later chapters of this thesis. 

3.4 Teaching, learning and assessment 

As pointed out in Chapter 2, there are no widely established 

methods of teaching and assessing mathematical modelling 

activities. Learning styles, and factors affecting them, are 

also little understood although some guidance may be obtained 

from work done in problem solving experiments as indicated· in 

section 3.2. Even the latter, though, relate only to the 

simplest modelling problems that are well-posed. 

Teaching and learning styles are closely connected butthe 

chief difference between them is that the lecturer or teacher 

plays a much less active part in the latter. In iearning 

situations, students work either individually or in groups 
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with a minimum of teacher guidance. Treilibs (1979), in 

experiments on group and individual working of modelling 

problems, found no evidence to support the notion that group 

performance is superior to that of individuals. He points 

out, however, that his use of ad hoc groups of students was 

a contributory factor; the student sample was obtained from 

several schools, and there was insufficient time for significant 

social relationships to develop, which in turn could have led 

to more natural and co-operative groupings. Problem-solving 

research generally points to the benefits of group working, 

although a number of disadvantages are also pointed out. For 

example, there is a difficulty if a group individual has a 

strong sense of direction and wishes to pursue a particular 

solution path, whilst other members of the group still wish 

to consider the possibility of a number of alternatives. The 

resolution of resulting tensions requires maturity and 

experience of group working. 

Several authors in higher education recommend group working, 

see for instance Burghes and Huntley (1982), whilst others, 

for example Burkhardt (1981), Oke (1984), recommend a mixture 

of interactive teaching and group work. Certainly for 

inexperienced students, there seems much to commend the 'inter

active' approach initially in order to get students started 

on a modelling problem. The teacher/lecturer lists initial 

suggestions on the blackboard, guides sensitively in creating 

one or two mathematical relationships (Burkhardt's crunch 

point) and then leaves students to continue working in groups. 

At the more detailed stages of a solution, however, it is 

often found that individuals are best left to work alone. As 

experience increases, extensive modelling projects are often 

set, particularly in higher education. These projects are 

often undertaken by groups, rather than by individuals, and 

it is left to each group to organise its mode of working. 

Irrespective of teaching and learning styles, students 

inexperienced in modelling all tend to suffer with a common 

set of difficulties. Many authors have reported on some of 
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these, see for example Treilibs (1979), McLone (1979), 

Burkhardt (1979), James and Wilson (1983), Berry and Le Masurier 

(1984) amongst others. Some of these key difficulties are: 

General lack of confidence 

Loathness to simplify 

Lack of skills in approximating and estimating 

Inability to generate mathematical relationships 

Knowing when to stop 

Weakness in report writing 

With skilled guidance from the teacher and as students gain 

experience, some of these problems are gradually overcome. 

One way of overcoming students' difficulties is to provide a 

sufficient number of graded modelling exercises for them to 

carry out before setting, say, an end-of-term project. As 

mentioned in Chapter 2, there are beginning to appear a few 

published papers and books which make a contribution in this 

connection. The Spode group books (1981-1983) provide a number 

of modelling problems with hints for teachers at secondary 

school level. Books containing case studies in modelling 

aimed at undergraduates are also appearing; for example, 

Volumes 1 and 2 of the National Mathematical Modelling Workshop, 

James & McDonald (1981); James & Huntley (1984), and the 

North-East England Polytechnics' publication, Bradley, Gibson 

& Cross (1981). These publications are to be distinguished 

from those that only present models, for example Andrews & 

McLone (1976), in that hints for the lecturer are provided in 

James & McDonald (1981); James & Huntley (1984), and actual 

individuals' attempts at modelling some problems are provided 

in Bradley, Gibson ,r. Cross (1981). However, these latest' 

publications make no attempt to grade the modelling problems 

in order of difficulty. Most of the problems presented ~ould 

be suitable for extended project work, perhaps taking several 

weeks to complete. It should be mentioned though, that with 

" 
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less ambitious aims being incorporated, many of these case 

studies could be modified for use in introductory modelling 

sessions appropriate for the classroom. 

Finally, there remains the question of assessment. Although 

most would agree that mathematical modelling is a much more 

complex activity than solving the traditionally well-defined 

mathematics problem, nevertheless some form of assessment 

is needed. Without such grading, it is difficult for students 

and others to gain an impression of their modelling performance. 

After all, other subjects are assessed in all types of courses, 

and so it would seem unrealistic to refuse to assess students 

in mathematical modelling. Furthermore, colleagues in other 

fields, such as fine art, manage somehow to form an opinion 

and attribute some mark or grade in accordance with that 

opinion. So, it may be argued, it should be possible to assess 

mathematical modelling. 

The three main forms of assessment relate to: 

Homework/Course-work (small assignment) 

Project (major assignment) 

Written examination (formal, fixed-time) 

Most authors agree that a formal written examination is the 

most inappropriate method. Occasionally it has to be used, 

see for instance the comments of Burley & Trowbridge (1984), 

in view of the large number (fifty or sixty) of students 

involved. With large numbers of students, staff resources 

usually do not stretch to the much more time-consuming process 

of reading and marking the more appropriate project type of 

assignment. 

The marking of projects (small or large) is difficult because 

of knowing what criteria to use. Such criteria depend largely 

on one's understanding of the modelling process and on what 

students find most difficult in this process. Berry and O'Shea 

(1982) report on their experiences of assessing the mathematical 
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modelling project set in the Open University's MST 204 unit. 

This unit was presented to students for the first time in 

1982, and it is the results for this year which are analysed 

by Berry and O'Shea, with some further discussion presented 

by Berry and Le Masurier (1984). The modelling project is 

a compulsory part of the course (unit) and occupies the students 

for about 40 hours of their time. The project is marked in 

two stages: the first, after 20 hours of work spread over 

two weeks, is where the student should have chosen a topic 

and written approximately one thousand words on the formulation 

stage. An abbreviated form of the marking scheme used is 

shown in Table 2. 

Your task Marks 

1 Provide a statement of the problem 5 

2 State variables and si[J]))lifying assurrptions 5 

3 Outline model to be used 5 

4 Explain the mathematical formulation 5 

Total marks 20 

Table 2 

First Stage Assessment of Modelling Project in OD Course MST 204 

(Berry and O'Shea, 1982) 

The second stage of assessment, required the production of a 

final report based on an additional 20 hours of work spread 

over two weeks. An abbreviated form of the marking scheme is 

shown in Table 3. '. 
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Main section headings Marks 

Abstract 5 

Formulation 5 

Initial model 30 

Data 10 

Revisions to the model 20 

Conclusions 5 

Presentation 5 

Total marks 80 

Table 3 

Second Stage Assessment of Modelling Project in OV Course MST 204 

(Berry and O'Shea, 1982) 

Thus, the first stage represents one fifth (20 marks) of the 

total assessment. It should be noted how few marks (5) are 

awarded to 'formulation' in the second stage, in view of the 

difficulties associated with this. However, if one combines 

'initial model' marks with those for 'formulation', then one 

obtains 35 possible marks of the total. Relatively few marks 

(10) are given to 'data', sincethe experience of the OV with 

other projects has shown 'that students in difficulty may 

attempt to accumulate marks by amassing vast amounts of data'. 

A relatively high mark (20) is given to 'revisions to the 

model', thus encouraging students to be critical of their 

first attempts and to make some improvements. Berry and O'Shea 

report favourably on the consistency of project markers, 

quoting in one instance the set of marks out of 80 that were 

produced by 12 tutors on one student'S project. The mean 

score, in this instance, was 55 with a standard deviation. of 

5.8, although caution is advised on statistical interpretation. 
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Berry and O'Shea's article is one of the most detailed 

recently published on assessment procedures in modelling. 

Their marking scheme represents an additive model, like most 

marking schemes, but Hall (1984) suggests that a product 

model of marking might be more realistic and also provide a 

more uniform method of marking different individual projects. 

He illustrates his method by referring to three main components 

in assessment, representing students' skills in modellin~: 

Content 

Presentation 

Drive 

He provides a detailed list of sub-skills under each heading, 

and then proposes that a marking model should be both 

homogeneous and produce a zero condition. By homogeneous, is 

meant that if each component is given the same mark, as a 

fraction of the maximum for that component, then the total 

should be the same fraction of 100%. The zero condition 

means that if any component is given a zero mark·, then the 

total should be zero; Hall argues, that no credit should be 

given if a vital component of modelling (content, presentation, 

or drive) is absent or is very badly done. The additive model 

and the product model are both shown to be homogeneous, ·where

as only the product model has the property imposed by the 

zero condition. If marks x, y, z expressed as percentages 

are awarded respectively to each of the components, then 

according to the additive model the project mark will be 

and according to the product model: 
(n 1+n 2 +n 3 ) 

P = 

where nI' n2 , n3 are respectively the weights attached to 

each of the components. 
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So, Hall is definitely recommending strict standards according 

to a formal marking scheme in forming an assessment of modelling 

projects. In this connection, he further recommends that 

'double-blind' marking is used (two markers neither of whom 

has seen the other's marks; mark each project). Several 

authors would seriously question the advocacy of formal 

marking, and would rather argue for 'impression marking'; 

for example, Burghes & Huntley (1982) recommend 'marking by 

interview' where groups of students discuss their report with 

a lecturer and a mark is jointly agreed. Berry & Le Masurier 

(1984) have even found that 'impression marking' has led to 

marks rarely differing by about 5 or 8 out of a total of 100 

from those marks obtained by rigidly applying a marking scheme. 

It would appear that formal markers use some judgement by 

increasing the marks that they would originally have given 

to a section in order to make the total agree with theit 

overall impression. 

3.5 Summary and Conclusions 

The last sections have reported on some of the most significant 

recent research and other investigations that have been 

carried out concerning the teaching styles, learning modes 

and assessment methods used in mathematical modelling. In 

order to be more effective in each of these areas, a research 

need has been identified which investigates more fully the 

processes of modelling and, in particular, the complex nature 

of the formulation/solution interface. 

Sections 3.2 and 3.3 discuss problem solving and modelling 

processes, highlighting common features as well as differences. 

Both processes are creative and consequently what can be learnt 

in the one will also be of some relevance to the other. 

Formulation has been identified as the most difficult stage 

to carry out and the possibility of investigating the complex 

linkages between formulation and solution stages has been 

mentioned, drawing on the work of Burkhardt and Treilibs who 
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have broken formulation down to smaller steps, and Clements 

who suggests a 'soft systems' approach generally in modelling. 

Most of the reported research relates to problem-solving or 

the rather better posed, and hence more structured, modelling 

problems. In higher education, modelling problems tend to be 

more complicated and so the difficulties of analysing processes 

are even more pronounced. 

In section 3.4, concerning teaching and learning styles, the 

two main approaches of interactive teaching and group working, 

or a combination of both, have been identified. Some of the 

key difficulties experienced by students have also been 

mentioned, and'it is still an open question as to how best to 

remove or alleviate these difficulties. Clearly more needs to 

be done on investigations on various teaching and learning 

methods for all levels of student. Some research questions 

have been identified in this connection, and they relate to 

the construction of heuristic methods and of graduated modelling 

material suitable for classroom/workshop activities. Under

pinning these requirements is the need for a better under

standing of modelling processes, both in the sense of how an 

experienced mathematical modeller solves practical problems 

and how less experienced students tackle such activities. 

Without such additional understanding, assessment methods 

will also largely remain a matter of informed guesswork. 

Not surprisingly then, even less has been published on the 

assessment of mathematical modelling. Some authors are against 

any form of marking and grading, relying instead on the 

informal opinions of lecturers. Others recommend 'impression' 

marking only, with a grade letter indicating performance, 

whilst a few strongly suggest that a formal marking scheme 

should be used with a detailed break-down showing how marks 

are awarded for each section of a report. The protagonists 

of formal marking make out their case for fear of undue bias 

affecting the final assessment if only impression methods are 

used. Yet, in one reported case, namely that of Berry & 
Le Masurier, marks formed by overall impression were very 
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close most of the time to those marks obtained by following 

a marking scheme. There is, thus, a need for more reported 

experiences of modelling teachers in this connection before 

a more balanced view may be formed. 
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CHAPTER 4 

AIMS AND SCOPE OF THE RESEARCH PROJECT 

4.1 Introduction 

The principal aim of the project is to investigate formulation

solution processes in mathematical modelling. The extent to 

which these processes lead to better guidance and understanding 

of teaching, learning and assessment in mathematical modelling 

is also investigated. 

In order to be able to carry out such investigations, the 

,following main activities were chosen: 

1 The development of case studies of the mathematical 

modelling approaches used in the solution of practical 

problems 

2 The development of courses in mathematical modelling for 

students at a variety of levels 

3 The design of teaching and learning experiments 

4 The study of various assessment modes and the construction 

of marking schemes 

Case studies and ~eaching experiments related to these have 

been carried out with students at a variety of levels, namely: 
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Undergraduates, mainly engineers and physicists 

Postgraduates, mainly teachers attending an MSc course 

in mathematical education 

Secondary school students with MSc teachers 

A secondary aim, but a very important one, is to investigate 

to what extent the activities outlined in (1) - (4) above are 

affected by student type. In particular,how general 

maturity, intelligence, and level of attainment in mathematics 

affects modelling abilit~. Two main experiments have been 

carried out in this connection; the first concerned one case 

stud~, namely 'Minimisation of sound~istortion in a record-

. player' , being presented to one sample in each of the student 

categories (i) - (iii). The second experiment involved an 

analysis of formulation-solution processes of a variety of 

case studies presented to secondary school students, under

graduates, and others, in an attempt to find common features. 

All the investigations have been carried out using deter

ministic and analytical modelling problems. Most of the case 

studies are based on problems involving applications of 

mathematics in the areas of the physical sciences and 

engineering. This is so largely because of author interest 

and experience, yet, as pointed out in Chapter 2, very little 

attention to mathematical modelling has been paid in these 

areas. Most attention has focused on operational research 

applications in the social and organisational sciences. 

However; for the purposes of carrying out investigations with 

secondary school students, certain organisational problems, 

as well as some problems in athletics, have also been presented. 

Although the study of formulation-solution processes is 

fundamental in investigating mathematical modelling, it is 

stressed that a fuller understanding can only be gained by 

conSidering modelling as covering a whole range of complex 

activities. Consequently, most of the case studies considered 

in this thesis also involve the important interpretation and 
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validation stages of a model. Just as it has been argued in 

Chapters2 and 3 that formulation and solution activities are 

so interwoven that they should be treated holistically, so 

it may be argued that all stages in mathematical modelling 

should be viewed as a single whole. 

Mathematical modelling in education is still in its pioneering 

stages and little is known of the relevant parameters which 

are involved in its processes. Consequently, teaching mathe

matical modelling is still in its early experimental stages. 

Any investigation in this area of work must therefore choose 

a balance between focusing on certain features and providing 

a broad portrayal. The philosophy of approach in this thesis 

is an attempt to achieve such a balance. The focal point is 

a study of formulation-solution processes, and the broad 

portrayal is provided by a description of the observations 

from experiments on how such processes are related to teaching, 

learning and assessment in mathematical modelling. The scope 

of the project is therefore limited by being primarily 

concerned with description and interpretation rather than by 

measurement and prediction. The theoretical analysis of the 

complex linkages between formulation and solution is deemed 

to be the most important and creative part of the project. 

The teaching experiments were conducted under genuine working 

conditions in the classroom, .withthe usual constraints of 

fixed-time periods in operation. The students involved were 

either taking mathematical modelling as part of the curriculum 

of their course, or were introduced to modelling by a specially 

constructed series of lessons, lectures or workshops. The 

difficulties of observation involved in teaching and learning 

situations were mentioned in Chapter 2, for example see 

Morris' (1967) account ofa subject's refusal or inability to 

verbalize v.hat the person is doing. Such difficulties and attempts 

to over60me them are discussed in later chapters. 
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4.2 The Development of Case Studies 

In an endeavour to provide modelling approaches to practical 

problems a set of case studies was developed and used in the 

investigations. The case studies cover the following problems:" 

1 U-tube accelerometer (Oke & Bajpai (1982)) 

2 Modelling the heating of a baby's milk bottle (Oke (1979)) 

3 Speed-wobble in motorcycles (Oke (1981)) 

4 Minimisation of sound distortion in a record-player 

(Oke (1981)) 

5 Windmill power (Oke (1983)) 

6 Pole-vaulting (Sheridan (1980)) 

7 Central-heating (Oke, Internal Report) 

Several of the above problems have been tackled by students 

at all levels. Additional case studies were also devised for 

work with secondary school students: 

8 Evacuation of a school (Wilson (1983)) 

9 Motorway and 'A' road travel costs (Wilson (1983)) 

By referring to secondary school students by S, to undergraduates 

by U, and to postgraduates by P, the following table shows 

which case studies were used with which type of student: 
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Student type 

S U P 

1 I I 
2 I 
3 I I 

Case 4 I I I 

Studies 5 I I 
6 I I S: Secondary school 

7 I I 
U: Undergraduate 

8 I 
9 I P: Postgraduate 

Table 4: Modelling case studies used with different types 

of student 

The numbers used in Table 4 identify the case studies listed 

earlier. 

Secondary school students were either in the fourth, fifth 

or sixth forms covering a wide range of ability from potential 

CSE grade 4 to GCE A/L grade A or B. The undergraduates were 

all in the second year of degree courses with strong mathe-

matics and physics/engineering components. The postgraduates 

were largely those graduate secondary school teachers following 

a two-year part-time MSc (CNAA) course in mathematical education 

at the Polytechnic of the South Bank. However, several work

shops were also arranged with the AIMEC* Project group of graduate 

teachers from India at the University of Technology, Loughborough. 

One case study, as mentioned in section 4.1, was presented to 

a sample of students of each of the three categories (4: Minimi

sation of sound distortion in a record player); in the case of 

the secondary school students, this case study was presented 

by O'Hare (1980). 

4.3 The Development of Courses 

The major development concerns the construction of the mathe

matical modelling component, one of four, in the part-time 

MSc course in mathematical education referred to above, and 

* (All India Mathematics Education at CAMET) 



-79-

also in Chapters 2 and 3. The author is team leader of a 

group of three which teach on this course, and the structure 

and content of the modelling component, together with teaching, 

learning and assessment methods have been reported in Oke 

(1980, 1984b). The first year of the course concentrates on 

the development of fairly elementary models, covering a wide 

range of applications in the physical sciences, life sciences 

and social/organisational sciences. The second year concentrates 

on methodological issues in modelling and on the teaching of 

modelling to students at a level familiar to the teachers. 

Several assessment modes have been experimented with on this 

course and details are provided in a later chapter. 

One of the MSc students, Jones (1980), designed a short course 

on modelling for undergraduates on an engineering product 

design degree. Brief details of the design are also provided 

in a later chapter. 

The author has supervised nine mathematical modelling projects 

on the MSc course, and three of them, namely Sheridan (1980), 

O'Hare (1980), and Wilson (1983), were specifically designed 

to investigate aspects of teaching modelling in a secondary 

school which provide further evidence for this thesis. 

4.4 Teaching and Learning Experiments 

This section is closely related to section 4.2 on the develop

ment of case studies and to the following section 4.5 on 

formulation-solution processes. The design of case studies 

is based on requirements for teaching and learning in the 

classroom and modelling workshop, and formulation-solution 

processes affect teaching, learning and assessment styles. 

The key areas investigated, and ·their mutual interactions, 

may be summarised as shown in the influence diagram in 

Figure 9. 
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Complexity 

PROBLEM 
(Case Study) 

MODELLER 

Lecturer guidance, 
mode of working 

Influence diagram of problem and modeller 
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The two foci in Figure 9 are 'PROBLEM (Case Study)' and 

'MODELLER', and the connection between them is indicated by 

the arrow from the former to the latter. Features influencing 

'PROBLEM' and 'MODELLER' are also shown with one-direction 

arrows. The use of one-direction arrows is to emphasise what 

is affected and by what, although two-direction arrows could 

be used in some instances; for example, when the (student) 

modeller simplifies his/her assumptions and subsequent mathe

matics, this has implications for the problem. So, an arrow 

from 'MODELLER' to 'PROBLEM' could also be drawn in to indicate 

this two-way interaction. 

The teaching and learning modes which have been observed are 

shown by the 'Lecturer guidance, mode of working' and 'MODELLER' 

link in Figure 9. Further details of this link are shown in 

Figure 10. 

- max. 

Figure 10: 

Group 
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I 
t 
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Influence diagram on teaching and learning. modes 
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Figure 10 is intended to show the different roles played by 

the lecturer in various teaching, learning modes. The roles 

played in this investigation may be summarised as follows, 

referring to Figure 10: 

1 Presenter of modelling problems 

Lecturer interacting with students: lecturer and students 

start developing a model together. 

2 Consultant 

Lecturer poses practical problem, students model it. 

Lecturer guides, providing a few hints if students get 

stuck, in short duration group work. The very minimum 

or no hints are provided, and lecturer acts only as 

'expert' (eg, engineer) asking group to model and provide 

mathematical solution in long duration group work. Group 

size: usually four students. Several groups formed from 

one class. 

3 Assessor 

Lecturer evaluates individual homeworks, group course

works, projects, and examination papers (if set). 

In the investigations, the author acted as unobtrusively as 

possible during group working and maintained a log. During 

interactive teaching experiments, audio and audio-visual 

recordings were made. In some cases, physical apparatus or 

"a film was shown as part of the presentation of a practical 

problem. 

4.5 Formulation-Solution Processes 

In an attempt to gain a fuller understanding of the complex 

nature of formulation-solution processes, two theoretical 

ideas were developed: 
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1 Concept matrix (CM) 

2 Relationship level graph (RLG) 

The concept matrix (1) arises from analyses of modelling 

activities and is designed to show which features, or concepts, 

are used in different modelling. stages. The matrix is also 

intended to provide information on the type of each concept. 

Since the features or concepts which arise in the development 

of a mathematical model are extremely varied, both in clarity 

and in complexity, it was considered inappropriate to attempt 

to develop a simple hierarchy of concepts as discussed, for 

example, by Skemp (1979). Initial attempts at classifying 

concepts by their relevance to the model were abandoned, 

since relevance only becomes clear in. an .a posteriori sense, 

that is after the model has been constructed and interpreted. 

The matrix finally adopted is two-dimensional and is repre~ 

sented in Figure 11. 

L 

Complexity 
level M 

L: low 
M: medium 
H: high 

H 

Specificity level 

A I G 

Figure 11: Concept matrix 

A: atomic 
I: intermediate 
G: global 

Later chapters show that initial formulation takes place by 

identifying features that tend to fit at or near the bottom 

right-hand corner of the matrix. Early, and subsequent, 
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solution activities involve features tending towards the 

upper left-hand corner of the matrix. 'Global' features tend 

to be those that are only broadly related to the problem in 

hand, whereas 'atomic' features are those in the most simple 

form, eg, variables, constants, which are immediately amenable 

to mathematical treatment. A 'high' complexity level denotes 

a feature, that may be highly specific to the problem, which 

may not be easily quantified. 

fairly easy quantification. 

'Low' complexity level indicates 

The relationship level graph (2) was developed to show which 

relationships were formed and at what stage in the complete 

formulation-solution activities. Initial, and more or less 

obvious simple relationships are denoted by the level 0 (zero). 

These relationships, although usually mathematical in nature, 

require no mathematical solution techniques to derive or form; 

they are mathematical representations of one variable and its 

dependence on another or others, written down from an initial 

understanding of the problem. This initial understanding, 

which might well arise from inspired guessing, is often 

related to knowledge of a non-mathematical type, eg, of physics, 

biology, or medicine, depending on the problem. Usually one, 

two, or at most three, of level 0 relationships need to be 

formed in order to be able to use mathematical techniques 

to form new relationships. 

deduced mathematically from 

The first simple relationships 

level 0 types are then referred 

to as level 1 types. After further mathematical solution 

work, and frequently the need of forming another level 0 

relationship, level 2 types may be derived, and so on. Many 

modelling problems carried out by undergraduates, and others, 

reach a very significant stage by the time levels 6-8 are 

reached. Quite often an acceptable solution is obtained 

without further improvement being required. A typical graph 

showing relationship levels and their generation is shown in 

Figure 12. 
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The number in each circle indicates the order in which each 

relationship is formed. A glance at Figure 12 shows that there 

is no particular order in which relationships are formed. but 

that level ·numbers O. 1. 2 •...• indicate overall progress from 

starting a model (relationship (1). (2) and level 0) to finish 

(relationship (16). level 5). Note also. that not all relation

ships gen~rated are used in obtaining a final solution; for 

instance. relationships (10) and (11). level 2. are not used in 

obtaining (16). One of the most important features illustrated 

in a relationship level graph. is that the mathematical solution 

stage is intimately interwoven with the formulation stage; mathe

matical techniques are themselves used in the generation of 

relationships. Most of the reported literature emphasises the 

need to formulate (generate features and relationships) before 

attempting a mathematical solution. although Burkhardt (1981). 

Treilibs (1979). and others have made the point that movement 

between formulation and solution is highly oscillatory. The 

relationship level graph shows. however. that formulation-solution 

processes are more complicated than a linear sequence of steps 

followed by oscillations. The numerical ordering in the circles 

shows an almost random order of events in some instances. whilst 

the generation of some relationships. ego (15) in Figure 12. take 

place simultaneously working at a variety of levels «5). level 2. 

(9) and (14). level 3). The latter phenomenon is a clear illust

ration of Checkland's (1975) reference to the distinctive and non

linear nature of the systems approach mentioned in section 3.3 in 

Chapter 3. It should be pointed out. however. that this non

linear interpretation of modelling is new. as to the author's best 

knowledge. there are no published detailed accounts of such 

processes in either 'systems' or in 'mathematical modelling'. 

In later chapters, students' attempts at modelling selected 

problems will be analysed in terms of the concept matrix and 

relationship level graph. It should be emphasised. however, that 

it is the relationship level graph (RLG) that provides the deeper 

insights into modelling processes. The RLG is more 'dynamic' 

that the concept matrix (CM) in that it illustrates progress 

through relationship generation towards some goal. The CM is 

essentially only an aid in classifying features that are 

identified in a model development. 
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The implications of this new analysis for teaching, learning 

and assessment in mathematical modelling are quite fundamental. 

For instance, one form of guidance for the student modeller 

is to get started as soon as possible with mathematical 

techniques, since the mathematical mode of working will help 

in focusing on the original practical problem and also help 

in the identification of new features and the formation of 

new relationships. In the case of assessment, it could be 

recommended that formulation and solutions are lumped together, 

and not treated separately, for the purposes of marking. 

4.6 Summary and Conclusions 

The principal aim of the project is to investigate formulation

solution processes in mathematical modelling. The extent to 

which these processes lead to better guidance and understanding 

of teaching, learning and assessment in mathematical modelling 

is also investigated. 

The philosophy of approach is to achieve a balance between 

focusing on certain features and providing a wider perspective. 

The focal point is the theoretical development of formulation

solution processes by means of: 

A concept matrix 

A relationship level graph 

The wider perspective is provided by description and inter

pretation of various teaching and learning experiments based 

on selected case studies of the mathematical modelling 

activities involved in the solution of deterministic and 

analytical practical problems. The theoretical analisis of 

the complex linkages between formulation and solution is 

deemed to be the most important and creative part of the project. 

In view of the early 'state-of-the-art' stage of mathematical 

modelling in education, it was felt to be inappropriate to 

carry out any statistical analysis on the parameters identified' 
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in the teaching and learning experiments. Consequently, in 

the spirit of 'illuminative evaluation', see Parlett and 

Hamilton (1977) for example, the observations of students 

modelling in real working conditions are based on complex 

situations in which little or no attempt is made to control, 

manipulate, or eliminate factors pertaining to the classroom 

or workshop. Notwithstanding the latter comment, the author 

has been able to choose in his capacity as a lecturer, 

how a modelling session would progress: 

(i) Interactively with students 

(ii) Students working in groups 

(iii) Students working individually 

or (iv) A combination of the above. 
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CHAPTER 5 

THE CASE STUDIES 

5.1 Choice and Design 

This chapter presents a selection of practical problems and 

possible modelling approaches. The emphasis is on the problem 

and a mathematical model of it, rather than on the modelling 

processes themselves. Observations and analysis of some of 

the problems tackled in a variety of teaching and learning 

environments is left to subsequent chapters. In view of the 

fairly large number of case studies involved, namely nine, 

only abbreviated modelling solutions are presented. Key features 

of initial formulation-solution activities are emphasised, 

and details of interpretation and validation are included 

where appropriate. The modelling approaches used have been 

devised by the author, with the exception of two case studies 

which were developed by an MSc teacher, Wilson (1983), for a 

dissertation under the author's supervision. One other case 

study was initially developed by Sheridan (1980), also under 

the author's supervision for an MSc, but this has subsequently 

been extended by the author. Several of the case studies have 

been published in their entirety, details already having been 

mentioned in section 4.2 of chapter 4. Since most of the 

students who have tackled the problems have some physics back

ground, most of the case studies involve problems in the 

physical sciences and technology areas. Each model produced 

is deterministic and analytical. 
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The development of the case studies was based on the following. 

design features: 

1 Motivation 

Each problem, as far as possible, is practical and is 

connected in some way with every-day reality. Thus, it 

is hoped that students have some intrinsic interest in 

the background to a problem. 

2 Level of difficulty 

This is largely determined by the students '. background, 

level of maturity, and previous experience of modelling. 

Each problem has sufficient scope for simple approaches 

to give good insights, and also for the more advanced 

students to produce more sophisticated solutions. 

3 Scope 

Each case study provides an opportunity for formulation

solution, interpretation, and as often as possible, validation, 

Most case studies also provide the opportunity for sub

problem identification (breaking down into smaller and 

related problems). Treatment is often hierarchical, ie, 

the end of one .sub-model leads naturally to the beginning 

of another sub-model, or is linked in the sense that one 

sub-model is related to another but not following end-on. 

4 Content 

Each case study has a problem statement and model development. 

Sometimes data is provided, on other occasions students 

are encouraged to ask for data (which is then provided 

as far as possible in the form they want). Some case studies 

have 'follow-up' questions which e.ither test understanding 

of a given model, or ask for extensions, or pose slightly 

different problems to be modelled from scratch. 
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5 Duration of modelling exercise 

Most case studies involve problems which are appropriate 

for modelling in either of the following modes: 

(a) Interactive class work (- 1 hr duration) 

(b) Short duration group work (- 1 hr duration) 

Cc) Long duration group work (- min. 3 hrs duration) 

(d) Extended project (- 2/3 months in own time) 

(See section 4.4, chapter 4, and subsequent chapters on 

teaching and learning.) 

5.2 U-Tube Accelerometer 

This is a simple problem and was first posed by Crank (1962) 

and again by D'Inverno & McLone (1977), although neither of 

these offer a solution. The initial formulation-solution 

experiences with undergraduates by Oke were reported in Oke & 
Bajpai (1982). The problem is simple in the sense that it is 

well-defined, requires only the minimum of physics, and only 

the most trivial mathematics is needed for an initial solution. 

It is one of the first problems presented to students for 

these very reasons, and yet it still seems to be quite a 

challenge to the uninitiated in modelling. 

Problem statement 

A U-tube accelerometer is fitted with its vertical limbs fore 

and aft in a car. The U-tube is partly filled with a liquid, 

and a graduated scale is provided to measure the difference 

in levels of the fluid as the car accelerates. Consider 

the design features of the accelerometer for various con

ditions. 



-92-

Accelerating car 

ll-
L 

~ 0 
'l. 
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I.:: t-
f-:" 

V-tube accelerometer 

Fig 13 V-tube accelerometer 

Model construction 

Assumptions 

1 V-tube of uniform circular x-section (bore: radius r) 

2 Car does not jerk, therefore uniform acceleration (a) 

3 Limbs of V-tube are vertical, with one horizontal tube 

joining them: distance between vertical limbs = t. Vertical 

difference in fluid heights =h 

4 Intensity due to gravity: g (assumed constant) 

5 Density of fluid constant: p 
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6 Surface tension unimportant 

7 Viscosity of fluid unimportant 

8 Fluid is incompressible 

9 Car accelerates on horizontal surface 

a(( 

-
- ~-=-.,..-,::::--:::-,~-".:-;-'-":' 

~-''':::.-'':~-:--

k t )1 

Fig 14 

density of fluid, p 

Uniform circular 
X-section of radius r 

Variables identified for U-tube accelerometer 

Accelerating pressure of fluid in horizontal limb is balanced 

by the pressure due to the vertical difference in levels of 

the fluid, hence 

ie, 

hence 

mass of fluid in horizontal limb 
x-section area 

= weight of fluid of ht. h 
x-sect ion area 

x a 
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Note that neither r nor p appear in the expression for the 

acceleration 'a'. Relevance of variables in early formulation 

is often shown in modelling to be unfounded; the mathematics 

determines relevance by elimination or otherwise. 

A further implicit assumption relates to the end-points in the 

measurement of i. It is assumed that i» r, and consequently 

the precise locations of the end-points become unnecessary. 

This model has natural extensions which show: 

(a) The limb connecting the vertical limbs need not be 

horizontal 

(b) The vertical limbs need not be vertical, but difference 

_ in fluid levels must be measured vertically 

(c) The x-section need not be circular, although for practical 

purposes it should be uniform in shape 

Follow-up problems 

1 Consider problem where horizontal limb has a different 

uniform x-sectional area to the vertical limbs 

2 Consider fluid initially (a = 0) with fluid of different 

density in horizontal limb to that in the vertical limbs 

3 How- does analysis in (1) & (2) affect sensitivity of 

instrument? (Consider an old Ford Escort versus a Porsche) 

5.3 Modelling the Heating of a Baby's Milk Bottle 

The inspiration for this development came from a suggestion by 

Pollak (1968). The treatment consists of four models developed 

hierarchically and full details may be found in Oke (1979). 

The intention is to provide an opportunity to model a heat-
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exchanger problem, which is typical of problems with a definite thene. It. is 

homely, everyone feels that they can understand easily what 

is involved, although some may argue that it borders on the 

whimsical. A related problem in the home concerns the heating 

of a hot water cylinder. 

Problem statement 

Imagine a sleepy parent removing a baby's milk bottle, full of 

milk, from a refrigerator, placing it in a saucepan of water 

and preparing to heat the milk to a comfortable temperature. 

The saucepan would be heated by either a gas or electric ring. 

How much water should there be in order that the milk is heated 

as quickly as possible? 

Baby's 
bottle /' ,/ " 

,~ 

/ /' 

/// 
--saucepan / / 

/' 
,~ 

/ 

" / 
~ milk/ 

~ . 
./ --~. --~ ---

water / 
/' 

,/ /' 
wa tgr 

, /" 

/ 
/ 

/ /' 

i i T T Heat input 

Fig 15 

Simplified illustration of a baby's bottle being heated in a 

saucepan containing water 

The author, with the help of Mr Jones of the School of Physics 

at the Polytechnic of the South Bank, carried out a series of 

experiments in order to collect data for validation purposes. 

Complete results from these experiments may be found in Oke 

(1979). When the case study is presented to students, either 

they ask for data or if time is short, data is provided. 
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Simple model 

The first approach consists of treating the system (bottle, 

milk, saucepan, water) in a lumped fashion. Thus, the system 

requires heating energy to raise its temperature to a certain 

point (eg, blood temperature). The time required to heat the 

system is simply obtained by dividing the heating energy required 

by the rate of heat input from the gas or electric ring. 

The heating energy required = thermal capacity of system 
x temperature rise 

Thermal capacity = sum of thermal capacities of bottle, milk, 
saucepan and water 

The major assumption made here is of instantaneous transfer of 

heat from the water to the bottle to the milk. Other assumptions 

are also implied, and to keep the working as simple as possible 

these assumptions are: 

Assumptions 

1 The water in the saucepan does not boil 

2 Rate of heat input to saucepan (m kW) is constant 

3 Milk and water are well stirred 

4 Both milk and water have specific heats of 4.2 kJ k -1 g. 

5 Both milk and water have densities of 1000 kg m -3 

6 The initial temperatures of the milk,bottle, water and 

saucepan are the same (eo °C) 

K-1 

7 The bottle and saucepan are both circular cylinders (cross

sectional areas 'a' and A m2 respectively) 

8 There is no heat loss to surroundings 

9 There is an instantaneous transfer of heat from the water 

to the bottle to the milk. This implies that the bottle 

material is a perfect conductor (infinite thermal conductivity 

Hence, ew = em for all t, where ew and em are respectively 

the temperatures of the water and milk at any instant of 

time t (in seconds). 
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Let the height of water in the saucepan be H and the height of 

milk be h (it is further assumed that the bottle is full of 

milk) . 

Since thermal capacity = specific heat x mass, and in view of 

assumptions (4) and (5) : 

Thermal capacity of water = H(A - a) x 1000 x 4.2 kJ K-1 

Thermal capacity of milk = ha x 1000 x 4.2 kJ K-1 

Let thermal capacities of saucepan and bottle be cl and c2 

respectively, then total thermal capacity C of system is given 

by: 

C ~ cl + c 2 + 4200[H(A. ~ a) + ha] kJ K-1 

(= 9 = 9) is the final temperature of the w m 
then the heat required to reach this temperature is 

Heat required = C (9 f - 9
0

) kJ 

system, 

given by: 

Since the heat input is at the constant rate of m kW (m kJ s-l), 

then the time t (in seconds) required to increase the temperature 

of the system from 9
0 

°c to Sf °c is given by 

ie, 

t = c (S 
f 

t = {cl + c 2 + 4200[H(A - a) + ha]} (Sf - So)/m 

For a given saucepan, bottle, quantity of milk and final 

temperature Sf' t is clearly linearly dependent on H. The 

time is a minimum for this model when H is just sufficiently 

large to prevent boiling. The problem of estimating this 

critical value of H is left to a later model. 

Validation of simple model 

Using the data from the original paper, Oke (1979), one obtains 

t = 50(1 + 40H) 

A few values of t for corresponding H are shown in Table 5. 
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Table 5 

t(s) 

150 

250 

350 

Heating times of the system for various heights of water 

The predicted heating times for various values of H are all 

approximately half the observed experimental values. For 

instance, when H = 50 mm, the experimental value for t is 

310 seconds (compared with 150 seconds from Table 5). This 

discrepancy is hardly surprising in view of the crude assumptions 

made in the development of the model. However, even this simple 

model has valuable uses. Since extra time will be needed for 

the heat from the water to conduct through the wall of the 

bottle (not to mention heat loss), then the calculated times 

in Table 5 all represent lower bounds for the actual heating 

times.; One has, therefore, measures of the right order of 

magnitude which can be used in checking more sophisticated 

models. It should also be noted that for the values of H 

considered, namely 50, 100, 150 mm, that the water did not boil 

in the experiments carried out - thus satisfying assumption (1); 

in fact, the water was observed to start boiling for H ~ 30 mm 

before the milk reached blood temperature (taken to be 35 °C). 

Modelling Heat Losses 

An attempt is made to model the heat loss from the exposed 

curved cylindrical surface (ie, above water) of the bottle (see 

Figure 15). 

Assumptions 

1 Assumptions (1) - (7) and (9) of Simple model 

2 The heat loss from the top (teat end) of the bottle· is 

negligible 
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3 The heat losses from the water and saucepan are negligible 

4 The temperature of the air above the water can be approxi

mated by a linear function 

Assumption (3) can easily be accommodated by measuring the heat 

input to the system by timing a certain rise of temperature of 

a measured amount of water in the saucepan (without the milk 

bottle). The heat input so calculated from these experimental 

observations will thus largely be net of heat loss from the 

water and the saucepan. 

The chief difficulty with this model is knowing how to find 

the temperature of the air above the water in the saucepan (air 

convection currents that develop as the water heats up are 

very complex). Assumption (4) leads to a simple linear expression 

for the temperature of the air, and by subtracting this from:. 

the temperature of the water (and hence of the system), Newton's 

law of cooling is used for the exposed curved cylindrical part 

of the bottle. The simple model is then modified accordingly 

by calculating a new net heat gained ... Calculated values for 

heating times for H = 50, 100, 150 mm are about 10% higher 

than for the simple model. Consequently the heat loss model 

was abandoned. 

Taking into account the thermal conductivity of the bottle 

Here good progress is made with predicted heating times agreeing 

with experimental values to within ±15%. The assumptions made 

are (1) - (8) of the simple model. Two differential equations 

arise from considerations of the net rate at which the water 

is heated (input from gas or electric ring less heat conducted 

through bottle to milk), and the rate at which the milk heats 

up. 

Thus, rate of flow of heat into the bottle and milk is given by 

y.A 
s = - (a - a ) 

d w m 
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The net rate of flow of heat into the saucepan and water is 

given by 

de 
[cl + 4200H(A - a)] w 

dt = m 

where e ,e are the temperatures of the milk and water ,:_ m w 
respectively at time t, K is the thermal conductivity of the 

material of the bottle (eg of plastic), As is the curved 

cylindrical surface area of the bottle immersed in water. These 

two differential equations are simply solved, by substituting 

one into the other as they are uncoupled, to find em and ew' 

By choosing a final temperature for the milk (em = 350 C), the 

time taken to reach this temperature can be found; also, to 

make sure that the water does not boil, e can be calculated 
w 

for this value of time. These calculations require the Newton-

Raphson rule, which fortunately is rapidly converging given 

the crude starting values for times from the simple model. 

Taking into account the thermal conductivity of the bottle and 

the possibility of having the water boiling 

The solution strategy is to find the heating times for various 

H (it turns out that H ~ 30 mm for boiling water before the 

milk has reached 350 C) for the water to boil and then the 

additional time for the milk to reach 350 C. The calculations 

predict an optimum H (- 22 mm) for minimum time for milk to 

reach 350 C; however, this optimum cannot be realised in practice, 

because with so little water in the saucepan it tends to 'boil 

away' quite rapidly with risk of burning the bottle. However, 

for H ~ 20 mm, the calculated total heating times again agree 

with experimental values to within ±15%. 

5.3 Speed-Wobble in Motorcycles 

The inspiration for this problem was gained from an article 

by Pickering and Burley (1977). The complete modelling treat

ment may be found in Oke (1981). 

) 
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Problem statement 

Maby of us have experienced wobbling of the front wheel, felt 

through the handle-bar, of a motorcycle (or of an ordinary 

bicycle) when travelling at certain speeds. What causes this 

wobble, or oscillation, of the steered wheel? 

(Note: The above paragraph could serve as the complete problem 

statement, although the following additional background infor

mation and data (if asked for) is considered helpful to a 

slightly less than familiar situation.) 

The wobbling phenomenon is not confined to motorcycles and 

bicycles but it is also known to occur in the front wheels of 

cars, supermarket or tea trolleys., and in aircraft nose wheels. 

These wide-ranging situations all have something in common, 

namely that the steered wheel is designed as a castor. A 

castor is defined as a steered rolling wheel, whose point of 

contact with the ground lies behind the point of intersection 

of the steering axis and the ground. Figure 16 illustrates 

the basic configuration of two typical castors (not drawn to 

scale) . 

SUPERMARKET 
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Steering 
axis 
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MOTORCYCLE 
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k )1 
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I~ "I 
Trail 

Fig 16 

Two typical castors 
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For motorcycles, the tyre of the steered wheel and also the 

suspension in the front forks will obviously affect steering 

stability. Consequently there will not be hard (point) contact 

between the wheel and ground. The area of the 'contact patch' 

depends on tyre pressure, forward speed of the motorcycle, and 

whether the cycle is banking on a bend. The flexibility of 

the tyre also permits lateral movement of the wheel without 

slipping. 

It has been found in practice that the front wheel, even in the 

'wheel-locked' case (ie, brakes jammed on hard), can in the case 

of motorcycles oscillate with a frequency somewhere in the range 

of 6-8 Hz. In stable cases (which hopefully form the vast 

majority~), these oscillations rapidly decay to zero. 

The problem, then, is to formulate a model which explains some 

or all of these observations. 

Data 

Typical motorcycle values, for front wheel oscillations of 

6~8 Hz are: 

-1 Speed of motorcycle = 30 ms 

Moment of inertia of wheel about steering axis = 0.27 kg m2 

Trail = 0.12 m 

Coefficient of friction between wheel and ground = 1 

Normal reaction between wheel and ground = 700 N 

-1 Angular velocity of front wheel about steering axis = ±12 rad s 

when wheel not turned, ie,when turning angle is O. 

Model construction 

The problem as it stands is quite complex. It seems necessary 

to make a number of simplifying assumptions in order to define 

a conceptually easier problem. It is to be hoped that the 

~asier problem' will lead to some manageable mathematics, and 

that some deductions can be made which will provide useful 

insights to the original situation of motorcycles. 
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Clearly, it would be easier to consider a supermarket trolley 

castor, which has a tyreless wheel and a rigid vertical 

steering axis. Gyroscopic couples can then be ignored as well 

as tyre flexibility and suspension in the steering axis. As a 

tyre less wheel is now being considered, hard (point) contact 

with the ground might be assumed also. In practice, however. 

even with a tyreless wheel, some frictional resistance is felt 

when the wheel is steered; this is mainly due to resistance 

at the small, but finite, area of contact between the wheel and 

the ground. A smaller resistance, which will be ignored, is 

due to a frictional torque in the steering column bearings. 

For this much simplified problem, consideration must now be 

given to a representation of the frictional forces acting at 

the point of contact of the wheel with the ground. It seems 

reasonable toe.assume that there can be (must be?) side-slip 

when the wheel oscillates; that is to say, that for the wheel 

to oscillate about its steering axis, there will be a tendency 

for the instantaneous point of contact with the ground to slip 

in a direction perpendicular to the plane of the wheel. 

Limiting friction would operate and a fri'ctional force (F = \lR) 

would act in a direction opposing motion. The following 

assumptions concerning friction are therefore made: 

1 Simple Coulomb friction applies, with frictional force \lR 

proportional to normal reaction R, with ~ the dynamical 

coefficient of friction 

2 This Coulomb friction applies irrespective of the forward 

speed v of the castor 

3 Coulomb friction applies both when the wheel is locked and 

when the wheel is rolling 

4 The direction of the frictional force, \lR, is directly 

opposite to the direction of motion of the contact point 

of the castor with the ground 

A further assumption is that the forward speed v is constant. 
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Figure 17 shows the basic geometry of a plan view of a vertical 

steering axis castor. 

v cos e 

1 Directio" 

v 

J;. 
Steering 
axis 

e 

of motion 

I 
I 

Instantaneous direction 
in which castor is 
pointing 

~,I / Le (Velocity of B 
y" relative to A) 

B\ 
Point of contact 
with ground 

Fig 17 

Plan view of vertical steering axis castor 

The velocity of B relative to A, namely Le, would be zero if 

no oscillations took place (since e would then be zero; also 

e would be zero, incidently). The velocity of B relative to 

the ground depends on whether the wheel is locked (brakes jammed 

on hard in the case of a motorcycle) or whether the wheel is 

rolling. Both cases are considered in Oke (1981). Since a 

vertical steering axis castor is now being considered, which 
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therefore has no brakes, the rolling wheel case is investigated. 

Since the wheel is rolling, the velocity of B relative to the 

ground in the direction of BA is zero; however, the velocity 

of B relative to the groundin a direction perpendicular to BA 

will be .Le + a component of v in this direction, namely v sin a. 
The frictional force ~R acting at B will therefore be in the 

opposite direction to Le + v sin a, as shown in Figure 18. 

A 

L 

~R (Frictional force) 

i 

I 
! 

Fig 18 

Le + v sin a 
(Velocity of B relative 
to ground) 

Velocity of B relative to the ground and frictional force 

acting at B, wheel rolling 

Referring to Figures 17 and 18, and taking moments about A, 

one obtains the following equation of motion for small oscil

lations: 

le - - ~RL, Le + va > 0 
= + ~RL, La + va < 0 

where a is written for sin a, I is the moment of inertia of 

the wheel and attachments about the steering axis. This is a 

second-order nonlinear differential equation and needs numerical 
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techniques to solve it. The solution turns out to be 

oscillatory with a finite number of cycles, and then S decays 

exponentially to zero (no slide-slip in this motion). Using 

the data given in the problem statement leads to Smax = 0.2 rad 

and a frequency range for oscillations of 7-13 Hz which 

compares well with the experimental values of 6-8 Hz (no doubt 

fortuitously in view of the simplicity of the model). 

A number of follow-up questions are provided in Oke (1981) 

which relate to the mathematical development of the model. 

One of the questions, however, tests basic understanding by 

asking for a different (but related) modelling approach to be 

adopted: 

Investigate whether it is possible or not for a castor 

to oscillate if there is no side-slip. What assumptions 

will you make about the frictional force acting at the 

point of contact of the castor with the ground? Are 

the predictions made by your model realistic? 

Analysis. shows, in the case of the follow-up question above, 

that for no side-slip, LS + v sin 8 = O. Therefore no 

frictional force acts at B, and straightforward integration 

leads to 

8 = 8 exp(- vt/L) o 

where 8
0 

is the value of 8 when t. (time) = O. This is an 

exponential· decay, and hence oscillations are not possible. 

This situation also prevails after the last cycle where 

oscillations (with side-slip) have taken place. 

The mathematics involved in the whole development requires 

two integrations (simple analytical) to obtain 8 from the 

equation of motion, and a simple numerical procedure of 'binary 

chopping' to find the times when L8 + vS < 0 and Le + v8 > O. 
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5.5 Minimisation of Sound Distortion in a Record Player 

A comprehensive modelling treatment of this problem may be found 

in Oke (1981). 

Problem statement 

We are concerned with the shape and size of a pick-up arm and 

its proximity to the turntable in our efforts to minimise sound 

distortion. We will, therefore, disregard other factors which 

affect quality in the reproduction of sound, eg, stylus 

characteristics, tracking weight, dynamics of pick-up arm, etc. 

The most common discs today are 12" in diameter and run at 

3~ r.p.m. with laterally recorded groove(wave form of signal 

'horizontal' and transverse to the groove. 

The two most common types of pick-up arm in use are straight 

arms and off-set arms. In the case of the latter, the arm has 

a bend in it or the cartridge is aligned towards the centre of 

the turntable in relation to the line of the arm. 

Data that might be found useful 

The distance from the centre of the disc to the innermost part 

of the groove is typically 1.875", and to the outermost part 

5.75" for a 12" diam. 3~ r.p.m disc. 

Typical length for pick-up arm is about 8" and cannot be much 

larger in view of the desirability of keeping the record playing 

deck to within reasonably compact dimensions. 

The best range of hearing for an individual is 20 - 20,000 Hz; 

middle - C on a piano is 256 Hz. 

Maximum signal amplitude is typically 0.002". 

A simplified representation is shown in Figure 19. 



-108-

o 

Typical 
recording groove 

Fig 19 

ar 

Cartridg 

Stylus 

\ 
Turntable 

Simplified illustration of pick-up arm and turntable 

Model construction 

There is quite a lot of scope with this problem for developing 

a number of different approaches, each of which provide good 

ideas for further and more complicated developments. 

The first simple approach is to consider a straight arm pick-up; 

the off-set arm follows on without much further difficulty. 

Next stage is to treat the recordin~ groove as a system of 

concentric circles, concentrate on the basic geometry and ignore 

for the time being the precise form of the recorded signal. 

Referring to one particular circle of radius r, as shown in 

Figure 20, the initial model evolves quite naturally. By 

drawing a number of circles of various radii on a scale diagram, 

and using L - 8", one sees that in general the pick-up arm is 
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D 

Fig 20 
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Geometry of straight pick-up arm in relation to recording groove 

not tangential to most circles. The angle between the arm and 

the tangent at the point of contact with the stylus is denoted 

by a.· Assuming that no distortion occurs when a = 0, then a 

reasonable first solution to the problem is to try and mini

mise a throughout playing time, ie, for r2 ~ r ~ rI' where rl 

and r2 are the radii of the outer and inner grooves respectively. 

Scale drawing shows that if the stylus is 'underhung' (short

fall of stylus at centre of turntable), a can be reduced for 

some trial values of r. So D, the distance of pivot from 

centre of turntable, is given by D = L + d, where d is the 

underhang. For an off-set arm, 'overhang' minimises a. 
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Applying the cosine rule enables one to obtain a relationship 

between r, d, L and a: 

(L + d)2 = L2 + r2 - 2Lr sin a 

leading to 

sin a 

A reasonable upper bound for d (from scale diagram) is 0.3", 

and taking 

r = 2L 

r = r. = r = 1.875" mln 2 ' 

0.1172, d 
- = 0.1600, r 

One is thus encouraged to write 

a 

L = 8": 

0.0030 

as a good approximation. The sketch graph shown in Figure 21 

illustrates how a varies with r for given Land d. It is e~ident 

that a will be kept as small as possible in numerical value 

throughout the range r2 ~ r ~ r1 if the maximum values of lal 
which occur when r = r2 and when r = r1, are set equal to 

each other. Thus, 

r~ = - ( 

or 

For a 12" disc, r2 = 1.875", r1 = 5.75", L = 8" and so d 

is calculated. to be 0.67", and the maximum numerical value 

of a is given by: 

r 1 d 5.75 0.67 0.24 rad a = 2L = ---r6 - 5.70 = r 1 

ie, a = 13.90 
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Graph of a against r for an underhung straight arm pick-up 

The value of 0.67" seems intuitively to be rather a high value 

for d (underhang) and this is ·confirmed when a more detailed 

analysis involving the nature of the distorted signal is under

taken. However, a good start has already been made in the 

modelling of the problem and this encourages one to continue. 

In Oke (1981) a sine wave signal and its distorted wave form 

(a f 0) is analysed. The distorted form is interpreted as 

the original sine-wave as fundamental with harmonics super

imposed. The ratio of the amplitude of the first harmonic to 

the amplitude of the fundamental provides a measure of distortion. 

With this analysis, it is discovered that what should be mini

mised over the range r2 ~ r ~ r1 is the function air rather 

, than a. In this case, using the same values as before for a 

12" disc, d is calculated to be 0.40", a much more realistic 

value than the value of 0.67" calculated by optimising a. 
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The analysis for an arm with an off-set angle of B follows 

quite naturally, where sound distortion is obtained by studying 

the function (a - B)/r. The optimum case leads to a 'overhang' 

of 0.57", an off-set of 23.30 and maximum sound distortion of 

one-fifth of the corresponding value for straight arms. 

5.6 Windmill Power 

The modelling treatment in this case study involves a novel 

momentum approach when considering the effects of air striking 

the blades of a windmill. Comprehensive details may be found 

in Oke (1983) and subsequently a number of wind-tunnel experi

ments have been carried out for validation purposes. 

Problem statement 

The building and testing of a flat-bladed windmill is just one 

step in many in trying to understand how windmills work. The 

mathematics and physics for flat blades (stationary or moving) 

is expected to be simpler than for conventional blades with 

aerofoil cross section ('flat' or twisted). Surprisingly 

enough, the design of windmills is still largely an empirical 

process. Is it possible to find a simple mathematical model 

which will greatly simplify the design of windmills? What 

quantities are likely to be involved in determining the power 

developed by the windmill, for example, in the generation of 

electricity? 

Figure 22 illustrates a simple horizontal axis, two flat

bladed windmill. Once set, the pitch of the blades remains 

fixed whilst the windmill is working. To alter the pitch, the 

blades must be made stationary again before allowing the wind 

to rotate them. Figure 23 shows the pitch angle for one blade. 
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Model construction 

The approach briefly described here follows from the analogy 

of a water jet being directed on to a flat sheet of metal. 

So one of the first things to calculate is the force acting 

on a blade due to the momentum change of the air impinging 

upon it. The problem may be split up into the following parts: 

(a) Force on a fixed blade 

(b) Torque produced by a fixed blade about horizontal axis 

(c) Force on a moving blade . 

(d) Torque produced by a moving blade about horizontal axis 

(e) Power produced = Torque x Angular velocity 

The following quantities are likely to be involved: 

Surface area of blades 

Blade angle (pitch) 

Speed of wind 

Rotational speed 

Mass of blades 

Friction in bearings 

Mechanical load on windmill (eg due to electric generator) 

Density of air 

In order to keep the development as simple as possible, the 

following major assumptions are made: 

(i) The windmill blades are smooth 

(ii) The air hitting the blades has no viscosity 

(iii) The mass of the blades and the horizontal shaft may be 

neglected 

(iv) The speed of the wind is constant 
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From assumptions (i) and (ii), one notes that the air is 

assumed to strike a blade and then move off along the blade 

surface without causing a tangential frictional force. 

Force on a fixed blade 

Force, by Newton's second law, is considered to be the rate of 

change of momentum of the air at the blade surface. 

/~-- -~-

"... I 

,.,:- - - -r- - -'7- - - -
I 
1 

density p 

Blade 
(area A) 

---3-> , I 
--+--~ Normal force 

wind normal, 
to blade I 

1 .... "'-
- - 1-;;-<' - ---

1/ 

-?-
Shaft axis 

v ~I 

(Distance travelled by wind in one second) 

Fig 24. 

Element of air moving with speed v; pitch angle zero; blade 

fixed 

Referring to Figure 24, which shows an element of air moving 

with speed v, the mass flow-rate of air,m, is given by 

m = pAy 

Normal force on blade due to air impinging normally upon it 

is given by 

d d· 2 ( momentum) = -- (mv) = mv = pAy dt dt 

where v is constant (assumption (iv». 
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Fig 25 

Velocity diagram; pitch angle e; blade fixed, plan view 

Referring to Figures 23 and 25, a result is now derived for 

the normal force on a fixed blade with non-zero pitch angle 8. 

Since the blade is assumed to be smooth and that the 'spent' 

air moves off tangentially along the blade surface (with speed 

v sin e), the normal force is given by 

d 
dt (momentum) 

d = dt(mv cos e) = mv cos e 

where v and 8 are both constant. Since the mass flow-rate, m, 

is given by 

. 
m = pAv cos 8 

where A is the blade area, one obtains 

for the normal force, and its component F perpendicular to 

the windmill shaft is given by 

F = pAv 2 cos 2 e sin e 
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See Figure 26. Note that F is the force producing motion, and 

is identically zero for e = 00 and e = 900
; this fits 

surprisingly well with the known behaviour of windmills, in 

spite of the somewhat unrealistic air-flow pattern adopted for 

this early stage of the modelling. 

Fig 26 

Force component F acting on a fixed blade 

In contrast with the flow pattern of this model, an aerofoil 

approach incorporating the Kutta-Joukowski law would have 

suggested 

F = 71pAv 2 cos e for e ... 71/2 

However, this latter approach is inappropriate for windmill 

blades. This is because the pitch angle e for real windmills 

is often as little as 40
• On the other hand, the pitch angle 

for ,an aircraft wing or the sail of a close-hauled dinghy often 

approaches 900
, ie, with a small 'angle-of-attack'. 

To determine the starting torque T on a windmill blade, it is 

necessary to divide the blade into elementary areas; integration 

over the whole area gives 

T = !ALpv 2 cos 2 e sin e 

where L is the length of a blade. In experiments carried out 

by the author, and Mr A L Jones of the Polytechnic of the South 
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Bank, the calculated torques consistently predicted maximum 

'starting torques' as measured experimentally with wind-speed 

range 25.3 ~ v ~ 33.3 ms- 1 The calculated torques agreed 

with the measured ones to within 12%, although the calculated 

pitch angle for maximum torque is 35.30 compared with the 

experimental value of 47.50
. 

The rest of the model development entails determining the 

velocity of oncoming air relative to the front surface and 

the effect of the air on the rear surface of a moving blade. 

A modified expression for the torque is now obtained and the 

power delivered by the windmill is given by power = torque x 

angular velocity. Comparison of calculated power values with 

experimental results is still in its early stages, but there 

is an indication that more modelling needs to be done on the 

effects of,the air on the rear surface of a blade. 

The case study has follow-up questions which can be found in 

Oke (1983). For example, how does stress vary along the 

length of a blade? 

5.7 Pole-Vaulting 

This case study was first presented by Sheridan (1980), a 

teacher supervised by the author for the dissertation of the 

MSc (CNAA) in Mathematical Education. The modelling treatment 

has subsequently been extended by the author. 

Problem statement 

The pole vault is an event which requires the athlete to clear 

a high bar with the aid of a pole. Prior to the 1960's the 

pole was made of tubular metal (main constituent steel or alloy), 

but subsequent technological advances have seen the adoption 

of hollow fibre-glass poles by club and international calibre 

athletes. 



-----~---

-119-

The technique employed in vaulting clear of the bar is one of 

the most complex in track and field athletics; for the 

vaulter initiates a rotational moment about the base of the 

pole and sets in motion what appear to be two pendulums - one 

is the pole and the other is the athlete who rotates about his 

hands. See Figure 27. 

The rules of the competition recognise the winner as that man 

who clears the greatest height (without 'pole-climbing') before 

he records three consecutive failures (ie, dislodges the bar 

from the upright on three successive vaults) regardless of 

the height at which any such failure occurs. 

Attempt to identify those features of the event which characterize 

good pole vaulting. 

Data 

The following data for a typical pole-vaulter (fibre-glass 

pole) may (or may not) be useful. All quantities quoted are 

approximate. 

Height of bar above horizontal ground = 5 m 

Time taken from take-off to landing = 2.5 s 

Time taken from take-off to pole release = 1.5 s 

Horizontal distance from take-off point to bar = 4.5 m 

Length of pole = 4 m 

Mass of pole = 3 kg 

Sprint speed with pole 
(World class sprinters 

g = 9.8 ms -1 

-1 
= 9 ms 
= 10.3 ms-1 ) 

Height of centre of mass of sprinter above ground at take-off = 1 m 



) 

Fig.27 

Various stages of a fibre-glass pole vault viewed at right angles to the direction of motion; 

scaled sketches from closed-loop film 
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Model construction 

Clearly, a comprehensive approach using mechanics will be very 

complicated indeed. Useful insights can in fact be gained by 

considering only very simple models. The approaches adopted 

here are based on considerations of: 

(a) . Energy 

(b) Kinematics 

Energy 

The major assumption to be made is that the athlete converts 

all his kinetic energy developed in the approach run to 

potential energy gained in raising his centre of mass sufficient 

to clear the bar. This assumption, together with some 

secondary ones, are listed below: 

1 The pole moves in a vertical plane in the direction of 

the vaulter's approach run 

2 The lowest point of the vaulter's body relative to the 

pole at the instant of release is sufficiently high to 

allow clearance of the bar 

3 The pole does not knock the bar off its stands 

4 The combined mass of the pole and vaulter is considered 

to act through the top end of the pole 

5 The vaulter's kinetic energy developed in the approach run 

is used solely in raising his centre of gravity 

From the above assumptions, 

2mv2 = mgh 

where m is the combined mass of vaulter and pole, v is the 

approach speed at take-off, and h is the final height of the 

vaulter's centre of mass (hopefully at least equal to the bar 

height). Consequently, h is given by 
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which is independent of both the mass of the pole and of the 

vaulter. 

If the height of the vaulter's centre of mass above the ground 

at take-off is 'c', then the final height above the ground of 

the centre of mass is given by 

v 2 
h+c=-+c 2g 

From assumption (2), and from Fig 27, one assumes that the 

rotation of the vaulter at the bar is such that no further 

increase in height is involved. Consequently, using the data 

provided in the_problem statement: 

9 2 
h + c = 2 x 9.8 + 1 = 5.1 m 

A fortuitous result, given the crudity of approach, since a 

typical bar height from the data provided is 5 m. 

Kinematics 

The simple approaches outlined are based on treating the vaulter 

as a projectile (without wind resistance), or on running a 

closed-loop film for the purposes of sketching the displacement 

of the vaulter's centre of gravity and velocity components. 

Projectile treatment produces graphs as shown in Figure 28. 

The vertical distance risen by the vaulter is denoted by y 

after having travelled a horizontal distance x. Corresponding 

velocity components are denoted by y and x. 

From a closed-loop film the corresponding graphs are shown in 

Fig 29. 

Clearly the projectile model bears little resemblance to the 

closed-loop film sketches. A least-squares cubic fit to the 

first of the graphs shown in Figure 29 could provide some 

information on where the athlete should position himself 

relative to the pole at various stages of a vault. 
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Displacement of vaulter, with velocity components, using 

a projectile model 
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Displacement of vaulter, with velocity components, from 

closed-loop film 
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5.8 Central-heating 

Problem statement 

In using a central heating system in a house, which is the 

best strategy for minimising heating costs: 

(a) Let house cool down naturally, central heating switched 

off when warmth not required 

(b) Set thermostat to a certain value so that house cools 

less when warmth not required 

Strategy required for any 24-hour period in winter. 

Model construction 

To simplify the problem it is assumed that there is only one 

warmth period, during the day, and that there is only one 

cooling period, during the night, throughout any 24-hour 

interval. Furthermore, a very rapid response is assumed, so 

that the instant the C-H boiler (central heating boiler) 

lights up, the heat it generates is immediately imparted to 

the house via the radiators. 

The problem may be viewed from three main aspects: 

(i) Heat required during the day to maintain a steady 

temperature 

(ii) Heat lost from house during cooling at night 

(iii) Heat required to raise temperature reached at night to 

steady temperature required during the day 

A sketch diagram, shown in Figure 30, is useful in illustrating 

temperature variations of the house throughout a 24-hour 

period. For convenience, time (t) has as origin the instant 

the C-H system is switched-off at the start of cooling (eg at 

11.00 pm). 
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Temperature variations in house over 24-hour period 

Referring to Figure 30, the symbols have the following meanings: 

6 i temperature inside house at any time t 

6r required steady temperature at day-time 

6 c temperature reached at night with strategy (b). t4~t~tlb 

6min lowest temperature reached at night with strategy (a). 
t=t1a 

outside temperature (assumed constant) (all temperatures 
in oC) 

Note also that at time t = t 4 , strategy (b) is being used where 

thermostat is set at temperature 6c . At times t = t 1a and 

t = t 1b , the thermostat is set at temperature 6r for strategies 

(a) and (b) tespectively. It is assumed that the required day 

temperature, with either strategy, is 6r for the time interval 

t2 ~ t ~ t3· 
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At this stage, a clear insight into the problem has already 

been gained. The difference in heating costs is due to the 

difference in the amounts of heat required as follows: 

Strategy (a): Heat required to raise temperature from 6min to 

6 c in time (t1b - t 1a ) 

Strategy (b): Heat required to maintain temperature of 6 c in 

time (t1b - t 4 ) 

The difference in heating costs can then be calculated, in 

principle, for various e c and an optimum policy decided. 

It is further assumed that only two thermostat settings are 

required for each strategy: er (eg, 6So
C) for both, emin 

(eg, 550 C) for (a) and e c (eg, 620
C) for (b). ec or emin are 

set at time t3 (eg, 11.00 pm), and er is set at time t 1a 
(eg, 6.45 am) for strategy (a) or at time t 1b (eg, 7.15 am) 

for strategy (b). The progranuner clock will be set for continuous 

running - the thermostat settings determining the times t 4 , 

t 1a , t 1b given e c ' t 2 , t3. So, in practice, a householder 

will need to know t 1a or t 1b only, in addition to thermostat 

settings. 

To find the times t 4 , t 1a and t 1b , cooling and heating of the 

house needs to be investigated. For cooling, Newton's law of 

cooling is assumed: 

de i 
T crt = - K(e i - 6

0
) 

and by simple integration this leads to 

t4 = i { [ 
6 

= :: l} In r 
e c 

( 1 ) 

and 

1 
{ In [ 6 - e 

J} t 1a 
r 0 = A e min - e 

0 

(2) 
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where T is the thermal capacity of the house, and K is a 

lumped constant for heat loss through walls, windows, and roof. 

A = K/T. 

For heating up in the interval t 1a ~ t ~ t 1b , one has 

d8i 
T dt = HG 

and integrating 

- K( 8. - e ) 
l. 0 

= 1 [B -A8min J 
t 1a A In _ B A8 c (3) 

where B = (HG + K8c )/T, and HG is the rate at which the 

radiators impart heat to the house. Also, 

1 = A In 
B - A 8min ] 

B - A8 
r 

(4 ) 

For given HG, K and T, A and B can be calculated and then 

substituted into (2) and (4); the latter are then solved 

iteratively for t 1a and 8min , since t2 and er are chosen for 

a given household. t 1a and 8min are then subsituted into (3) 

and t 1b is found. 

Hence, difference in amounts of heat required when comparing 

strategy (a) with strategy (b) is given by: 

where t4 is obtained from (1). 

If £e is the cost of heating per kilojoule, and t is measured 

in seconds, then multiplying expression (5) by C will provide 

the cost difference in pounds sterling. 

In order to validate this model, several experiments with 

various thermostat settings e c would need to be carried out. 

In addition, further information would be required on outside 

temperature 80 (easily obtained), HG, K and T (not so e~sily 
obtained) . 
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5.9 Evacuation of a School 

This problem was devised and presented by Wilson (1983), a 

teacher supervised by the autho"r for the dissertation of the 

MSc (CNAA) in Mathematical Education. 

Problem statement 

This model is designed to provide insight into the phenomenon 

of crowding during the evacuation of a building (here a school) 

and to provide some means whereby we might be able to predict 

how this could be prevented or minimised. It will thus be 

required to predict the fastest, safe evacuation time having 

taken into account the number of exists available (here two). 

(The problem relates to a particular building, namely 'Neave 

Comprehensive School', although the study adopted may be 

generalised to cover other types of building). 

Within Neave school there exists two exits" which serve the 

major proportion of the classes in the building in the event 

of an emergency such as a fire. There is on occasion 

considerable confusion at a particular juncture point as a 

result of crowding. The problem is to examine whether by 

ordering the exits of the children firstly from the classroom 

and then from the building, bearing in mind time and direction, 

we might arrive at a sensible procedure which would help to 

eliminate confusion yet lead to the evacuation of the building 

in the minimum possible time and thus reduce the risk of 

danger. Observation shows that children take less time to 

travel the distance between classes than it takes an average 

class to evacuate a classroom. Thus before all the children 

from one particular class have left a room, others from an 

adjoining class begin entering their exit space. The problem 

is heightened when several streams of children combine at a 

particular point. Thus a certain time must elapse before the 

children are allowed to begin their exit in order to allow 

for those before, ie, nearer to the exit, to have left their 

room. 
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Model construction 

Wilson (1983) lists sixteen assumptions, some of the chief 

ones (based on observations) are as follows: 

The best means of evacuating a building is by way of an 

orderly procession 

No matter where an emergency occurs, all children will be 

moving out of the building 

The children will travel at a constant speed along the corridors 

The children will leave the classroom at a constant rate c 

The emergency will not affect the routes or the exits that 

the children take 

Stairs will not affect the flow of children, and a distance 

can be assigned to stairs 

The best means of ensuring an orderly procession and avoiding 

crowding is to introduce a time delay into following classes 

A good start can be made by simply considering a row of i + 1 

classes shown in the simplified diagram in Figure 31. 

Direction of flow 
Dl < D2 Di ;< ~ ~ ~ " >-- ---

Exit NI N2 N. Ni + 1 1 

Class 1 Class 2 Class i Class 
i + 1 

'--__ ---"'--___ '- _____ '-___ .l--. __ ---J. 

Fig 31 

Children evacuating a row of i + 1 classes 

Thus, I. = D1·/S and tl.' = N./c, where I. is the time taken for 
1 1 1 

children to travel the distance Di between classes i and i + 1, 

s is the (assumed constant) speed that the children travel 

along the corridor in an orderly manner, ti is the time for Ni 
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children to leave class i in an orderly manner at the rate of 

c children per second. 

Now observation shows that 1i 

assumptions) and consequently 

is introduced: 

D. Nl.' 
t . l. ( 

< i' l.e, S < c one of the 

a time delay d i for class i + 1 

d. = l. 

N. l. 
C 

D. l. 
S 

Consequently, the instant class i + 1 starts to leave classroom 

i + 1 is d i seconds after class i have started to evacuate 

class i. This should ensure no crowding in the corridor and 

hence produce an orderly flow. 

Using data obtained from observation for just two classes: 

c ~ 2, N = 24, hence t1 = 12 seconds 

4 -1 
s = "3 ms hence 11 = 6 seconds 

=> d 1 = 6 seconds. Thus a time delay of 6 seconds is 

introduced to class 2 (which seems reasonable) 

Generalising to i + 1 classes leaving from one exit, the total 

evacuation time T is given by: 

Ni +1 i [ N. D. J i D. D~ 
T = + L .....J. _ J + L J+ 

c j=1 c s j=1 s s 

where time for children to leav.e class i + 1 is Ni+l/c, delay 

time for class i + 1 is given by 

I [~-~l 
j=1 c s 

time taken for last child to walk total distance from class i + 1 

to class 1 is 

and 

exit 

i D. 
L .....J. 

j=1 s 

time taken 

is D~/s. 
i+1 

T = L 
j=1 

to walk the final distance D t from class 1 to the 

The expression for T clearly simplifies to 

N. D, 
J + ~ 

c s 

To check the reasonableness of the result so far, consider t€n 

classes all with 24 pupils, all Bm between the doors and class 1 

being 20 m from the exit. Then the total evacuation time T is 

given by 
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24 + ~ = 135 seconds 
""2 4/3 

--------

This result was closely confirmed by actual observation 

(140 seconds). 

So the modelling activity thus far has already provided valuable 

insights into the original problem, by considering a single row 

of classrooms with just one exit. Wilson (1983) provides a 

topological map of the location of ten classrooms in part of 

his school, which shows the location of two exits and the 

distances involved between classes and the exits. By considering 

a natural generalisation of the early approach to the two exits, 

and by calculating the evacuation times depending on which 

classes use which exit, a minimum overall time is found to 

evacuate the building as well as the ordering of classes using 

each exit to achieve this minimum. 

5.10 Motorway and 'A' Road Travel Costs 

This problem and its modelling development was also first 

presented by Wilson (1983). 

Problem statement 

It is often said that it is better to travel by a motorway 

than by a normal road even if it does require travelling a 

greater distance. A large trucking company have asked you to 

invest·iga te this with a view to re-examining their existing 

routes. The company provides the following basic data in the 

first instance: 

1 A map of Britain containing the main towns that the company 

deliver to, and the routes available to these towns, 

differentiating between motorway and A-route. (Wilson (1983) 

provides a map of England and Wales. The sketch map shown 
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in Figure 32 shows only the South of England, and is 

provided to show a sample of the level of detail involved). 

2 The main depot is in London 

3 The hourly cost of a truck, excluding petrol consumption, 

has been calculated at £30 

"4 The average speed of a truck on the motorway is 50 mph, on 

an A-route it is 35 mph 

5 Petrol consumption on a motorway is 12 mpg, on an A-route 

it is 15 mpg 

6 Cost of petrol £1.60 per gallon 

The company have requested that, if possible, you provide some 

means whereby they might predict how a change in data would 

affect their choice of routes. Further, they point out that 

at this stage they have only provided you with the main delivery 

points from London. They allow of course delivery between 

depots, and any further information that could be discovered 

concerning this would be greatly appreciated. 

__ ....... M27 

_ Motorways 

---- Proposed motorways 

'0 100 km A routes 

Fig 32 

Sketch map of part of Southern England 
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Model construction 

The cost of travel on a given journey may be viewed.as 

(cost per mile) x number of miles. The (cost per mile) will 

depend on fixed costs (assumption (3)) and petrol consumed on 

the journey. 

From the data provided, one can rapidly get a feel for the 

calculations needed. Thus, considering a motorway journey for 

instance: 

Distance per hour on motorway = 50 miles 

Petrol used per hour 50 = 12 gallons 

Cost of petrol per hour 50 = 12 x 1.60 = £6.70 

Total cost per hour = 30 + 6. ·70 = £36.70 

Hence, total cost per mile 

Similarly for an A-route: 

Total cost per mile ~ £0.96 

= 36.70 ~ £0.73 
50 

Clearly, it will be cheaper_to travel on the motorway if the 

distance by motorway is less than 0.96/0.73 = 1.31 times the 

alternative distance by A-route. 

Again, based on the data provided, one can choose the most 

economic routes and cost them accordingly. For example", 

consider the two possible routes from London to Exeter: 

London to Exeter 

M4 followed by M5: 300 km Alternative 1 

M3 followed by A30: 85 km + 178 km: Alternative 2 
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Equating motorway mileage with A-route mileage one need only 

compare 

215 km with 178 km 

so 1.31 x 178 = 233.2 > 215 

and consequently it is more economical to choose alternative 1. 

Note from the map, from which the above distances have been 

obtained by scaling, that alternative 1 will also be the best 

start for a route to either Plymouth or Penzance. 

The costs for the two routes, London to Exeter, are easily 

obtained as follows: 

Al ternati ve 1: 

Alternative 2: 

Now ~ km = 1 mile 

300 km = ~ x 300 = 187.5 miles 

Cost per mile on motorway = £0.73 

Total cost = 187.5 x 0.73 = £137.00 

Total cost = ~ x 85 x 0.73 + ~ x 178 x 0.96 

= £145.60 

Hence, saving of £8.60~ 6%. 

So, using the data provided, minimum cost routes may be found 

and a minimum cost matrix constructed. If the company were to 

use this cost matrix, then overall minimum costs should be 

obtained - the company may however decide to reject some or all 

of the proposed routes due to considerations (eg, driver fatigue, 

etc) not originally provided. 

If the company bought a new fleet of trucks, then new data would 

be needed to cost the routes. In which case it would be 

advantageous to work out general expressions for the costs per 

mile: 

Let hourly cost (fixed) = £h 

petrol consumption = g mpg 

average speed = s mph 

cost of petrol = £p per gallon 
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Then cost per mile = c = [ ~ + h )/S 
=I!.+~ 

g s 

Letting the subscript m apply to the motorway, and a to the 

A-route, the difference in costs/mile, D, is given by: 

D = - c=[...E...+ 
m ga 

This saving can now be related to the extra mileage which could 

be covered on a motorway compared with the mileage on an A-route 

for an equivalent cost. Thus extra mileage on motorway per 

mile on A-route, E, is given by: 

h[ 
1 1 ) + p ( 

1 
c - c sa s ga a m m E = = c h. +...E... m 

sm gm 

By way of illustration, one can again use the data provided: 

E 
30 [ ;5 - 5~ 1 + 1.6[ 

30 + 1. 6 
50 12 

0.31 miles 

Thus, for every mile on an A-route the company can afford to 

travel 1.31 miles on a motorway, a result deduced arithmetically 

earlier on. 
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CHAPTER 6 

TEACHING AND LEARNING EXPERIMENTS 

6.1 Introduction 

This chapter concentrates on the teaching and learning styles 

involved with students on a variety of courses from school to 

postgraduate level. Most of the results reported are based· 

on observations of students who are taking mathematical 

modelling as a normal part of their course. However, a 

significant number of observations are also based on trial 

lessons and workshops where mathematical modelling is an 

entirely new experience for the students involved. Most of 

the work has been done with physical sCiences/engineering 

undergraduates and graduate mathematics teachers attending 

the part-time MSc degree course in mathematical education at 

the Polytechnic of the South Bank. Where experiments have 

been carried out at school level, they were designed and 

tried out in the classroom by MSc teachers as part of their 

dissertation under the author:s supervision. 

The overall approach is summarised in Figures 9 and 10 in 

Chapter 4, where the key interactions between lecturer (teacher) 

and modeller (student) are illustrated. A total of seventeen 

different groups of students have been observed and a log has 

been kept or a transcription has been made of an audio recording 

of each experiment. The nin~ case studies presented in 

Chapter 5 have been used, and Table 4 in Chapter 4 indicates 

which have been presented to whith level of student group. 
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The purpose of these investigations is essentially three-fold: 

(a) To determine the level of difficulty of modelling problems 

for different student types 

(b) To observe how students tackle modelling activities under 

a variety of working conditions: 

Interactive (working with lecturer) 

Group ('short' and 'long' duration) 

Individual work 

or, Combination of above 

(c) To develop learning heuristics for the student inexperienced 

in modelling 

To a large extent (a), (b) and (c) are interrelated. The level 

of difficulty of modelling problems is investigated by inter

preting the following considerations based on observation of 

all seventeen different groups of students: 

(i) Previous experience of modelling 

(ii) Mathematics ability 

(iii) General maturity of student (school, HE) 

(iv) Extent of teacher/lecturer interaction - considerable 

in the case of school students whose basic mathematical 

skills are lacking 

(v) Amount of information provided in problem statement 

(vi) How well-posed the problem is 

(vii) How much time is available to tackle a given problem 

Put another way, a problem statement in itself does not 

determine the level of difficulty of a modelling problem. For 

instance, the statement 'determine how to evacuate a building 

in the event of a fire' could be treated as a modelling problem 

for 12-year olds, for undergraduates, or for specialists in 
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operational research. The way any group of individuals tackles 

the problem helps to set standards (of difficulty) for that 

group. Of course, there are natural bounds to this approach. 

If, for example, the problem statement is 'design and cost a 

nuclear reactor (of a given type) to produce 50 megawatts of 

electricity', then only a team of the most highly experienced 

and specialist personnel could 'solve the problem'. Published 

literature on mathematical modelling does not take this into 

account. 

In order to illustrate in more detail the above points and 

also to identify students' strengths and weaknesses in modelling, 

the following case studies and modes of presentation to various 

groups is developed more fully with samples of logs and tran--

scripts. Table 6 summaris.es the experiments involved. 

Case study 

Modelling the heating 

of a baby's milk bottle 

Speed-wobble in 

motorcycles (castors) 

Minimisation of sound 

distortion in record 

player 

Evacuation of a school 

Type of student Mode of working 

MSc Math. Ed. Group work 

MSc Math. Ed. Group work 

BSc 2 Appd. Physics Interactive 

CSE 4th form Interactive 

BSc 2 Appd. Physics Group work 

Polymodel 3 (Postgrad)Group work 

GCE A/L Vlth form 

Table 6 

Interactive/ 
group work 

Teaching and learning experiments reported in detail 

Finally, a set of learning heuristics has been devised and 

an attempt has been made to gauge the usefulness of this. 

Observations of students working on problems as well as 

canvassing student opinion on the early stages of modelling, 

particularly in the initial formulation-solution stages, have 

contributed to the construction of each heuristic. 
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6.2 Level of Difficulty of Modelling Problems 

The results of each of the seventeen experiments in which the 

nine case studies (modelling problems) were used were analysed 

according to the following format: 

Course, or type of student 

Mathematics background of student 

General knowledge of problem area 

(eg, specific topics in physics) 

Previous experience of modelling 

(usually little or none) 

How well-posed is problem? 

(eg, is sub-problem identification involved?) 

Amount of information in problem statement 

(eg, how much background information is provided? any data 

provided?) 

How was problem tackled? 

time available (eg, 1 hr/wk for 3 wks) 

time spent in between 'sessions' 

interactive or group or combination 

extent of lecturer intervention 

Student performance 

(eg, how far do they get with problem? 

chief difficulties experienced?) 

Each experiment is reported on briefly in this section, 

concentrating on key- features only. More detailed observation 

notes and discussion is left to a sample of experiments covered 

in subsequent sections. 
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In the case of interactive experiments, or where a significant 

amount of discussion took place with the lecturer (author) 

during group working, an audio recording and transcript was 

made. In the case of group experiments the author kept a 

diary and notes on key observations, and the students were 

asked to keep a careful log of all their work and to include 

this in a group report. Copies of all the transcripts, diaries, 

and reports have been kept by the author for reference. The 

observation notes and further discussions Which are presented 

in this and subsequent sections, and Chapter 7, are summarised 

from the author's transcripts and diaries and from students' 

group reports. 

Where the author was asked by students for some help with the 

physics background to a problem, the" author (depending on the 

nature of the question asked) acted as a reference text-book 

on physics, or helped students answer their own questions by 

modelling the physics involved by encouraging intuitive 

approaches. At no time did the author provide a physics law 

or other information that was in a form specific to the problem 

being modelled; the interpretation of the physics in a form 

appropriate to the model development of the students at any 

given stage was left to the students. 

--- ----
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V-tube accelerometer 

Two experiments were involved: one with MSc Math. Ed. teachers 

(all graduates of mathematics or have taken mathematics as a 

major component of a first degree, twenty in class of whom 

about half had studied physics to at' .least GCE AIL standard), 

the other with fifteen BSc 2 Applied Physics undergraduates 

(all ,of whom have studied both mathematics and physics for at 

least a year beyond GCE AIL). Neither group of students had 

any previous experience of modelling. Both groups were 

presented with a well-posed problem statement, without data, 

as given in section 5.2 of Chapter 5. The problem was treated 

interactively - author modelling with students for one hour 

(each group). The students in each group were required to 

find an expression for acceleration in terms of the difference 

in fluid levels and to interpret this for use in different 

cars - one week later their efforts were discussed in class. 

With my suggestion, some students tried different shapes for 

the V-tube (differing radii of limbs, incli'ned limbs) and also 

the effect of initially having the horizontal limb filled with 

a liquid of density different to that in the vertical limbs. 

Student performance 

Most students were able to derive a = gh/£. Some derived 

this by considering the analogous problem of a bowl of water 

and the angle of the free surface to the horizontal.- this also 

helped in answering problems about the shape of the V-tube 

(radii of limbs irrelevant). The general difference between 

the two groups was that the BSc 2 physics students were quicker 

in listing many possible factors but both groups initially made 

the mistake of considering weights and forces rather than 

pressure in their arguments. MSc teachers were better at 

extending the model to include liquids of two different 

densities. Both groups needed some help from me, initially, 

in considering realistic accelerations for cars - 'mini' to 

'porsche'. Both groups agreed that mathematics was needed, 

albeit very simple in this case, to see that density of a 

uniform liquid was irrelevant. Some MSc students had difficulty 
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in deciding on the 'start' and 

length of the horizontal limb. 

'end-point' for measuring the 

Those students in the MSc 

group with very little physics background appreciated some 

help from me - intuitive approaches were suggested and they 

generally responded well once a bowl of water was mentioned 

(by one of their colleagues). For future problems either I 

acted as a physics text-book ('state law if needed', not, 

how to use a law in problem) or teachers asked more knowledgeable 

colleagues. This problem was the first tackled by modelling 

by each group as part of a one-term session on modelling. 

Modelling the heating of a baby's milk bottle 

The experiment considered here is reported on in more detail 

in a subsequent section of this chapter. The problem has been 

presented both inte'racti vely and for student group work with 

MSc Math. Ed. teachers. The class who tackled the problem 

interactively made initial progress more rapidly than did the 

class who worked in groups (of four teachers in each, on 

average). The group experiment is concentrated on here. The 

class of twenty-two teachers, who had eight weeks previous 

experience of interactive and group modelling in a one-term's 

course, were split into five groups (of their own choosing). 

Most teachers had GCE AIL background in physics (somewhat 

rusty in several cases). The groups were presented with a 

broadly posed statement of the problem, without data, as given 

in section 5.3 of Chapter 5. I acted as a physics text-book 

and tried to avoid giving any hints. I told the groups that 

if they wanted any data, then they should specify precisely 

what it was they needed - I would then endeavour to provide 

it in a form as near to their requirements as possible. The 

groups had one hour followed by a week (in their own time, 

where there was little opportunity unfortunately for group 

working) followed by an additional hour working together as 

groups. 
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Student performance 

Some initial clarifications were needed - some groups wanted 

to change the problem (eg, put lid on saucepan, design an 

insulated container with immersion heater). Many features 

were listed initially (in spite of my advice) and requests 

for data were made, in some instances, before any clear ideas 

were formed about how to proceed. I suggested a simplification 

for all groups: temperatures of milk, saucepan, bottle, water, 

all initially the same (cold 'fridge:). Some groups considered 

heat loss, and others tried to incorporate the time taken for 

heat to conduct through the bottle wall. I suggested at the 

end of the first hour that they concentrate on some simpler 

approach - heat required, rate of heat supplied, hence heating 

time - by working on a lumped mass system with instantaneous 

heat transfer. . Some groups, in the following week, had 

managed this simplification with the deduction that minimum 

heating time is achieved with no water in the saucepan - hence 

burnt bottle. No group appreciated that they now had a lower

bound to heating time. In the second hour (second week), I 

was frequently asked for data - in the case of one group, 

where they asked for the rate of heat input from a gas or 

electric ring, I gave them the quantities involved in heating 

a given volume of water in a saucepan in a given time for a 

150 C to 350 C temperature rise; the group wanted to know the 

answer for rate of heat-input and not have to calculate it 

(with heat loss from ring and saucepan automatically taken 

into account with my data. The group didn't realise this.). 

Speed-wobble in motorcycles 

Two experiments were involved, which are reported in more 

detail in ~ subsequent section of this chapter. One experiment 

involved a group activity with MSc Math. Ed. (the same class 

who had attempted the baby's milk bottle problem) - again one 

hour per week for two weeks. The other experiment involved a 

BSc 2 Applied Physics class taught interactively for 1~ hrs 

only. The undergraduate physicists had previously had two 

introductory modelling sessions in previous weeks. Both classes 
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were presented with a fairly well-posed problem statement, 

without data, as given by the full statement in section 5.4 

of Chapter 5. I acted as a physics text-book and tried to 

avoid giving any hints to the MSc groups. The purpose of the 

interactive work with BSc 2 physicists was introductory, some 

students continuing with their work in their own time on a 

voluntary basis. 

Student performance 

The main difference between the BSc 2 physicists and the MSc 

Math. Ed. teachers was that the former wanted to concentrate 

on the design of motorcycles - forks, suspension, etc, and was 

not too keen on getting down to some mathematics. However, the 

physicists did start to concentrate on a simple castor after 

about an hour, with my prompting, and generally made some 

progress in what was after all a very short time. I advised 

the ~llic groups.to consider a vertical axis castor from the 

outset and that I had some data related to motorcycles if they 

wanted it.- they had to specify exactly what was wanted, however. 

The MSc groups spent most of their first hour concentrating 

on the rolling (no braking) castor and what was happening to 

the point of contact on the ground. Moment of inertia about 

the steering axis was identified as important, but I had to 

suggest that the effect of the motorcyclist would be to modify 

the value for inertia - he/she 

damping effect in view of the 

observed ("thought experiment 

bicycle with speed-wobble"). 

would, in effect, have no 

high frequency of oscillations 

- imagine riding an ordinary 

Towards the end of the first 

hour, some groups had arrived at a SHM solution involving a 

force acting in the opposite sense to v (direction of motion 

of s~eering-axis). No group had carefully considered the 

direction of motion of the point of contact of the castor with 

the ground (see Figure 18, Chapter 5). Consequently, groups 

had difficulty relating their frictional force with normal 

reaction. I intervened at this stage by clarifying matters 

about rolling wheels in general - no slipping, rolling and with

out oscillations. The following week, all groups were clear 

about the point of contact of an oscilla~ing castor, but SHM 

solutions still prevailed. 
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Minimisation of sound distortion in a record player 

Three main experiments were carried out: one by O'Hare (1980) 

interactively with an average ability fourth form at school, 

one by group work with a BSc 2 Applied Physics class (the same. 

one that tried earlier the speed-wobble problem), and one by a 

postgraduate group of academic and industrial mathematicians 

working on a group basis at the Polymodel 3 workshop, Oke (1981). 

Apart from the BSc physics groups who had very little modelling 

experience, the participants in the other two experiments had 

no previous experience of modelling. The school class spent 

a total of 4! hours on the problem, spread over four inter

active sessions. The BSc physicists spent two weeks, with 

intervening "own time", at the rate of 3 hours per week. The 

Polymodel 3 group consisted of two polytechnic mathematics 

lecturers and two mathematicians from industry (recently 

graduated) and spent a total of 5 hours on the problem, spread 

over an afternoon - "own time"·in the evening - and the first 

part of the following morning. The interactive experiment 

with the school fourth formers started with the teacher showing 

the students how a pick-up arm was approximately tangential to 

the recording groove with an actual record player. The BSc 

physics and Polymodel groups were both given a quite well-posed 

problem statement with data as in section 5.5 of Chapter 5; 

the lecturer, in both cases, role-played as an engineering 

designer - trying to avoid giving hints. 

Student performance 

The three experiments are reported in more detail in a sub

sequent section of this chapter. The key difference between 

the three very different student types, quite predictably, was 

that the school students required much more help from the 

teacher. O'Hare skillfully drew out as many suggestions as 

possible from the students, but even when tangents were appreciated 

he had to show them how to draw scale-diagrams. The BSc groups 

made good progress, one of them starting on signal analysis 

in simple terms, once design problems had been cleared up. 

Some advice had to be given, though, it getting most groups 
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off many scaled-diagrams - they had to be urged to do some 

maths. (even the cosine rule). Polymodel 3 made the best 

initial progress recognising 'underhang' as an improvement 

and 'overhang' a worsening of distortion for the straight arm 

case; they needed some help, however, in distinguishing 

parameters from variables. 

Windmill power 

This case study was presented interactively to two classes: 

BSc 2 Engineering Product Design (South Bank), and BSc 2 

Engineering Mathematics (Loughborough University). Neither 

class had any previous modelling experience. The engineering 

design students studied some mathematics and physics in the 

first year of their course (mainly of GCE OIL entry in both 

subjects). The Loughborough students, mainly of GCE AIL entry 

in both mathematics and physics, had studied mathematics, 

physics, and engineering science in their first year. Both 

classes were presented with a physical model (but not wind

tunnel demonstration) similar to that shown in Figure 22, 

Chapter 5, together with the broadly-posed problem statement 

as in section 5.6. Both experiments were of short duration 

and intended only as introductory to modelling. BSc Eng. 

Prod. Des. spent two one-hour sessions, and BSc Eng. Maths. 

spent one two-hour session (with break) on the problem. 

Student performance 

The interactive treatment concentrated mainly on getting to 

grips with the problem and developing some simplified approaches. 

In both cases, Eng. Design and Eng. Maths., attention was 

focussed on a fixed blade with qualitative discussion on moving 

blades. Both classes were able to identify many features 

(velocity of wind, area of blades, angular velocity of blades, ... ) 

but (both) had difficulty in seeing how the power developed 

depended on the load on the windmill (eg, mechanical input 

needed to drive an electric generator). At my suggestion in 

each case, students thought out what would happen if no loading 

was applied (apart from frictional couples in the shaft bearings). 
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Some form of 'back-resistance' of air due to high-speed 

rotation of blades was arrived at - I then suggested applying 

a brake to the shaft and this helped to clarify matters 

regarding torque and power (all students knew that power = 
torque x angular velocity). Regarding the initial, and most 

time-consuming, initial formulation stages, students were 

prompted to consider a fixed blade (none suggested this). The 

eng. design students, with weaker maths and physics backgrounds, 

wanted to discuss design features such as strength of materials 

used (especially the blades). Both classes needed help with 

a simple approach to finding the force acting on a blade -

although the eng. maths. group soon found F = pAv 2 for fluid 

impinging normally on a flat sheet. The eng. design group 

were encouraged to try °a dimensional argument - force and 

velocity in dimensional terms led to Fav 2 • For a blade with 

non-zero pitch angle, there were again difficulties with boih 

groups - physical intuition seemed to be lacking (1 suggested 

that they imagine running a wet finger across the width of the 

blade - this helped considerably by getting them off the idea 

of 'pellets' of air). The final expression derived by most 

members in each class, although much more readily with the 

eng. maths. students, was the starting torque for the windmill. 

Pole-vaulting 

Two experiments were carried out: one with a school upper 

sixth form taking both GCE AIL pure mathematics and applied 

mathematics as separate subjects, by Sheridan (1980) starting 

off interactively and then splitting the class up into groups. 

The other experiment was with a postgraduate class of Indian 

school and college teachers on a group basis; these teachers 

were attending an AIMEC course at Loughborough University on 

a one-year leave of absence programme. Neither class had any 

modelling experience. The sixth formers each had GCE OIL 

physics as background, and the AIMEC teachers each had at least 

GCE AIL or equivalent in physics. Both classes were presented 

with a broadly-posed problem statement with data and 'match

stick' diagram as in section 5.7 in Chapter 5. Additionally, 
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both classes were shown a closed-loop film of a pole vaulter 

in action. The sixth formers worked over two 1, hr periods, 

in groups but with frequent teacher interventions, and the 

AIMEC 'class' worked in groups with minimum intervention over 

a 2 hr period (with a small break). 

Student performance 

Both classes were able to identify many features - although 

the sixth formers were more vague than the AIMEC participants. 

The AIMEC groups quickly got involved with several velocity 

and force considerations but found difficulty in simplifying. 

The sixth formers needed frequent help, but once this was 

given ('gentle' hints), they worked quite well in groups. Both 

classes appreciated t·he closed-loop film - it generated 

considerable interest. An analogy with a long jumper was used 

with the sixth formers to help them understand better the initial 

flight path of the vaulter. The brighter sixth formers were 

better at 'guessing' relationships, .one of them producing 

,Iw2 = mgh leading to v 2 /2g for the height reached. At the 

teacher's suggestion, two sixth formers arrived at a graph of 

the form shown for the flight path in the top sketch in 

Figure 29, Chapter 5. The AIMEC groups had effectively much 

less time in which to work on the problem, and eventually 

conservation of energy of the vaulter was suggested as a (gross) 

simplification. One AlMEC group wanted to incorporate bending 

beam theory for the pole - I suggested they 'guess' a reason

able relationship for the restoring force on the vaulter in 

terms of the displacement of the bent pole from a straight line. 

This led to some interesting further development, but was 

eventually abandoned due to shortage of time. 

Central-heating 

• 
Two experiments were involved with this case-study. One with 

a BSc 2 Applied Physics class, who had only one previous 

introductory session on modelling, and the other with a MSc 

Math. Ed. class who had two introductory modelling sessions. 

Both experiments were carried out interactively, each lasting 
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one hour. The purpose was to investigate early formulation

solution stages. Each class was presented with a brief but 

fairly well-posed problem statement as in section 5.8, Chapter 5. 

Approximately one third of the MSc group had at least GCE AIL 
physics as background, the rest about GCE OIL in physics. 

Student performance 

After initial discussion with each class, it was agreed that 

only one warmth period and only one cooling down period would 

be considered in any 24-hour interval. Both the BSc physicists 

and the MSc classes had some initial difficulties in identifying 

simplified aspects of the problem and I suggested that they 

concentrated on the warmth period during the day. Further 

prompting was required to work on the simplification of 

'heat in = heat out' on a lumped system for the steady day

time temperature required; the physicists were even more 

concerned than the MSc teachers on separate components of the. 

system - boiler, radiator, different thermal conductivities 

for walls, windows, roof. Eventually, both classes got to 

grips with 'lumping' variables (overall heat loss factor, etc) 

and arrived at an expression (in various forms) for 

heat loss = heat gained. 

An interesting experiment was carried out however by the author 

and a small group of MSc teachers, by working independently, 

in seeing how long it would take to get a 'solution' as far 

as that developed in section 5.8, Chapter 5. It took the author 

a total of six hours (one two-hour, and one four-hour attempt). 

The MSc group spent about three hours of their private time 

and considered cooling at night as well as heating up in the 

early morning, but had not related their results in such a way 

that any clear conclusions could be drawn. 

Evacuation of a school 

This experiment was carried out by Wilson (1983) with a small 

lower sixth form consisting of six students preparing for the 

GCE AIL in mathematics. The results are reported in more detail 
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in a subsequent section of this chapter. The students had no 

previous experience of modelling. The students were initially 

given the following broad and imprecise statement: 

After a recent fire-drill at your school the head

master expressed some concern about ·the crowding and 

confusion that resulted in the corridors and the 

excessive time taken to evacuate the building. As a 

result he has asked the sixth year if they could come 

up with some suggestions as to how to improve the 

situation. 

The students worked alternately: interactively, and as a single 

group on the problem,for a total of seven hours in six sessions 

spread over a three-week period. 

Student performance 

In view of the imprecise, or ill-posed, problem statement, 

teacher-student discussion started with identifying particular 

questions (time to evacuate a classroom for example). After 

the interactive start, students were left to work in a group 

and were free to leave the classroom to take any measurements 

they may want. Students were also invited to work in between 

sessions as homework. Students quickly identified and (from 

their own observations, guided by the teacher) obtained 

estimates to evacuate a typical class and the time taken to 

walk from one classroom to another (it having been suggested 

that they concentrate on one exit initially). The students 

took some time in appreciating that a 'time delay' could be 

introduced to stagger class exit times in order to·produce a 

smooth and orderly flow. Students preferred to work in 

arithmetic rather than algebraically, and frequently werit into 

the corridor to check their work. Eventually, after a little 

help with sigma notation (which they had not used before), 

the students arrived at an algebraic expression for the total 

evacuation time of n classes, all in one row, using one exit. 

Measurements taken were used to interpret their results. The 

teacher led the group finally by considering a topological map 

of ten classrooms and two exits of part of the school. 
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Motorway and 'A' road travel costs 

This experiment was also carried out by Wilson (1983) with the 

same lower sixth form group. However, the sessions were 

carried out on a (single) group basis with the teacher role

playing as a company consultant. A total time of six hours 

was spent in five sessions over a two-week period 0which 

followed straight on from the 'Evacuation of a school' problem). 

A quite well-posed and detailed problem statement as in 

section 5.10, Chapter 5 was handed out. 

Student performance 

Initially discussion took place with the_teacher on clarification 

of the problem ('jamming' in towns could be assumed to be 

taken into account when 

for average speeds, for 

referring 

example). 

to the company's figures 

Students soon identified 

that costings were required, although they preferred to work 

on several routes (distances taken from the map) which had 

either 'A' routes or motorways but initially they were loathe 

to consider a combination. Generally the students still 

preferred to work with actual routes arithmetically, even 

after some of them had derived algebraic expressions. 

Although most students arrived arithmetically at the savings 

per mile on a motorway, and several had an algebraic expression 

for this, no one stated a maximum distance that would be 

travelled before an A road became more economic. Consequently, 

the students had difficulty in arriving at a strategy that 

could help the transport firm cost any route - with a combination 

of motorway and A road travelling. 
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6.3 Modelling the heating of a baby's milk bottle 

As pointed out in section 6.2 the discussion centres on 

observations of an MSc Math. Ed. class working for two one

hour sessions (separated by a week) in five groups. The 

physics background of each group is as follows: 

Group- 1 

Group 2 

Group 3 

Group 4 

Group 5 

4 members, 3 of whom with GCE AIL physics 

4 members, 2 of whom with GCE AIL physics 

4 members, 3 of whom with GCE AIL physics 

4 members, 1 of whom with GCE AIL physics 

4 members, 4 of whom with GCE AIL physics - out of 

which, 2 had taken extra physics in their 

degree 

All the MSc Math. Ed. class are teachers (mainly in secondary 

school, but occasionally in FE) who either have a degree in 

mathematics or have a degree in which mathematics is a major 

subject. The teachers chose their own grouping after I had 

suggested no more than four per group. This was the first 

group modelling experience for them after eight weeks part-

time of introductory modelling - interactive and individual 

'homeworks'. Each group was asked to keep a record of working 

consisting of initial thoughts, lecturer hints (if any), data 

requested (from lecturer), 'scr.p' working, and any conclusions 

reached. In view of the shortage of time involved, only one 

or two initial models with interpretation was expected. The 

overall performance of the groups is reported on in section 6.2. 

Before group work commenced, a brief refresher was provided 

on SI units of heat (kJ, kW, °c , oK), together with the ideas 

of specific heat and thermal capacity (for the benefit of the 

'non-physicists' in the class, these concepts were introduced 

intuitively - eg, large block of material needs more heat than 

small block of same material for a given temperature rise). 

At the end of the first hour (first week), all groups felt they 

needed a refresher on thermal conductivity ('how long will 

heat take to pass through bottle to reach milk?') and also on 
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heat losses (Newton's law of cooling was intuitively developed). 

No hints were provided on how to use these concepts, although 

I suggested that before using them they might like to consider 

a simple lumped system (instantaneous heat transfer throughout 

all components in the system); this suggestion was made 

becuase each group had difficulty in simplifying their original 

ideas. Each group worked co-operatively together, except 

Group 3; in the case of the latter, especially in the second 

hour (second week), members disagreed on the way forward and 

continued on an individual basis - this occasional difficulty 

with group working was first discussed in section 3.4, 

Chapter 3. 

The following descriptions of performance of groups 1 and 4 

are provided to give samples of the modelling activities 

carried out in the time available (2 hrs). Group 1 is chosen 

because it is one of the best attempts (3 out of 4 members 

with GCE AIL physics background, albeit 'rusty') and group 4 

is also ·chosen because it has only one member with comparable 

physics background. The descriptions are based on group 

reports (rough work - unpolished and including initial thoughts) 

as well as my own observations. 

Group 1 

Symbols clearly defined and assumptions initially made are 

clear. Water assumed not to boil, although there is some 

uncertainty here. After hint (treat as lumped system), mathe

matical expression is written down: heat lost by water = 
heat gained by milk and bottle. The expression does not 

involve time and seems to relate to a different 

that ot placing the bottle in pre-heated water. 

problem, namely 

Some attempt 

is made at finding heat lost from the system but areas involved 

are not clear. Thermal conductivity of bottle considered but 

soon dropped. Many factors now considered and there is general 

Eventually 'drifting' - losing sight of simple objectives. 

they get back to the lumped system and introduce rate at wh·ich 

gas (or electric ring) supplies heat and arrive at a general 

expression for time in terms of height of water in saucepan. 
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Data requested at end of first hour: specific heats, densities, 

temperatures of water and milk ('treat milk like water' - hint). 

No numerical values for time were calculated, although an 

expression showing linear dependence of time with height of 

water was derived; the group were not impressed with this 

latter expression and were unable to interpret its usefulness 

in providing a lower bound for heating time. They had made a 

good start to the problem, by eventually reaching a simplifi

cation, but were unable to proceed further in the time available. 

Group 4 

Symbols generally not def.ined, although one can guess their 

meaning. Initial assumptions are clear (including pouring 

the milk straight into the saucepan - different problem, but 

soon discarded). After my hint (to all groups after one hour), 

the group soon derived an expression for the lumped system in 

terms of the mass of water and other variables (consistent 

with their assumptions): 

de = Q 
dt m s + m s 

w w m m 

where de dt = rate of temperature rise of system 

Q = heat needed by system 

m . 
. m· masses of water and milk respectively 

s : 
m 

specific heats of water and milk respectively 

The group wanted to maximise ~~ and noted that other 

remaining constant, the value for mw should be zero. 

realised that this would lead to a burnt bottle, but 

things 

They 

did not 

appreciate 
de I d" dt ea lng 

that they would have obtained an upper bound for 

to a lower bound for heating time. Private individual 

time plus the second hour of group time concentrated on 

attempting to model heat losses. This led to a sensible 

differential equation based on heat supplied = lumped system 

gain + heat lost; some initial attempt was made to solve this 

differential equation, but (although mathematically consistent) 

a very general result was obtained and then dropped. No 
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attempt was made to take thermal conductivity into consideration. 

No request for data was made. 

Conclusions 

Overall, the groups were more appreciative of the necessity 

to simplify than they were eight weeks previously when they. 

had no modelling experience. However, they still had considerable 

difficulty in making simplifications without my help (eg treat 

as lumped system). Having obtained a lumped-system result, 

which I thought was initially very useful, the groups were 

unable to interpret it - or, at best, realised that no water 

in the saucepan would burn the bottle. No realisation· of lower 

bound for heating time was apparent. Some initially good 

attempts at modelling heat losses led to solutions which were 

very general - no attempts were made to check if constants 

introduced were measurable (in principle at least). It would 

appear that 'lumping' has the disadvantage of making 'un-lumping' 

difficult once a solution has been obtained. Generally, the 

groups had little difficulty in identifying many features and 

found that by expressing their ideas (no matter how 'half

baked') mathematically, they could more easily see what 

variables and constants they additionally required at any stage. 

For instance, even if only incomplete relationships are consi

dered, mathematical expressions for them help to complete the 

sought after relationship. 

There was no discernible difference between group performance 

that could easily be accounted for by differences in physics 

background; group 4 performance was one of the best organised 

in that it had a better sense of direction and kept to initial 

objectives without wandering, yet members had very little 

GCE AIL or equivalent in physics background knowledge. 
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6.4 Speed-wobble in motorcycles 

The main experiment reported on is based on observations of 

the same MSc Math. Ed. class working in groups of four who 

had just completed the baby's milk bottle problem. The same 

grouping took place and each group was asked to keep a log of 

its progress. The time allocated was the same as for the baby's 

milk bottle problem, namely two hours for group time (one hour 

per week for two weeks) with intervening individual time. The 

overall performance of the groups is reported on in section 6.2. 

Before the groups started working, brief revision was provided 

on the basic friction law F ~ ~R, and the result le = couple 

acting on a rigid body was intuitively developed. Most teachers 

seemed to know these results anyway. It was suggested at the 

outset that a vertical-axis castor with solid wheel should be 

considered. The groups as a whole found this problem difficult 

and towards the end of the first hour I chose to help them 

visualise better what was happening with a rolling wheel with

out slipping and initially without oscillations. I then showed 

the class how to find the velocity of the point of contact of 

the castor with the ground, and this then enabled them to 

obtain the correct direction of the frictional force. At 

the end of the first hour, then, 

Figures 17 and 18 of Chapter 5. 

is described below. 

Group 1 

all groups understood 

Each of the group's attempts 

Unlike with the baby's milk bottle problem, this group made 

less progress. Some initial considerations were mentioned, 

eg, 'wobble - to do with C of G'; 'suspect - larger the trail, 

greater the wobble'; 'friction causes wobble'. A muddled 

force diagram involving mass (of what is unclear), 'pushing 

force' (acting on what is unclear), friction and reaction 

acting at point of contact of wheel with the ground is shown. 

Friction force is in direction opposing motion of steering axis. 

Angular momentum (factors involved not defined), and moment 



-158-

of inertia (again vague) are considered, but no mathematical 

relationship was written down. Not even after my intervention 

with the whole class on motion of point of contact was any 

further progress made. 

Group 2 

Symbols poorly defined, 

the equation re = -Fr 

on the steering axis in 

if at all. After initial considerations, 

is written down; F is a force acting 

its direction of motion, r is the 

radius of the wheel, r is not defined. Clearly, the equation 

is nonsense. Variations of rij = -Fr are tried and a SHM 

equation is derived, but which 

in the context of the problem. 

unfortunately is meaningless 

No further progress was made 

even after my intervention regarding point of contact. 

Group 3 

Most symbols are defined, although the axis about which the 

moment of inertia relates is not mentioned. The equation of 

motion considered initially is 

mT 2 e = - F sin B.T s 

where T is trail, Fs is a frictional force in a direction opposing 

motion of the steering axis, m is the mass of the wheel, e is 

the angular displacement of the plane of the wheel from the 

direction of motion of the steering wheel (ie, e is the same 

as that shown in Figures 17 and 18 of Chapter 5). Although 

incorrect, since Fs at the point of contact is in the wrong 

direction Q;,ld r i- mT2,the equation shows·some intuitive 

understanding. A SHM solution is then derived using Fs = ~W, 

W weight (of castor), ~ c.0efficient of friction. No inter

pretation of this solution is provided. After my intervention 

on motion of point of contact, some elaborate attempts were 

made by considering accelerations and their components. The 

working is muddled and very difficult to follow. 
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Group 4 

Factors assumed to affect the castor are clearly stated, eg, 

'trail', 'velocity', 'material of castor', 'surfaces in contact 

- frictional forces'. The initial equation considered is 

F sin e.x = -le 

where x is trail, F is friction (direction not clear), I is 

moment of inertia (axis not specified), e is angular displace

ment from forward motion of steering axis. A SHM solution is 

derived. After my intervention about the motion of the point 

of contact, the following almost correct (ie, consistent with 

assumptions) equation of motion is considered: 

F.L = le 

where F (fri'ct ion force) is in the correct direction (Figure 18, 

Chapter 5), L is trail - but pity about the minus sign missing. 

The attempt finishes with: 

'integrate: JFLdt = ' 

Writing F = ~R, this could have led somewhere. This report 

was the most readable and clear of all the groups. 

Group 5 

The only group to get the moment of inertia 'lA' correctly 

defined to be about the steering axis (A in a plan sketch). 

The equation of motion considered is 

where e is angular displacement from forward motion of steering 

axis, F is friction in a direction opposite to the motion of 

the steering axis, 1 is the trail. A SHM solution is obtained, 

which the group could not interpret. After my intervention 

on the point of contact, no further progress was made. 
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Conclusions 

In spite of the good physics background of the teachers, each 

group found this to be a particularly difficult problem. 

Conceptually the hardest part is understanding how the pOint 

of contact of the wheel moves, assuming limiting friction, in 

relation to the forward motion of the steering axis. It is 

surprising, therefore, that once this had been developed by 

myself at the end of the first hour, that practically no 

further progress was made. Apart from group 5, groupswere 

vague about moments of inertia - even to the extent about which 

axis to refer to. No requests for data were made. Most groups 

quickly settled for the security of SHM, and seemed to lack 

experience of any other possible type of oscillatory problems. 

The problem might better be presented as the culmination of 

a set of graded problems starting, perhaps, with a problem on 

a supermarket trolley castor that did not suffer with 'wobble' 

(eg, how is 'ease' of steering affected by design?). 

6.5 Minimisation of sound distortion in a record player 

As mentioned in section 6.2, three experiments were carried 

out with this problem with the following type of participant: 

Average ability 4th form, secondary school (O'Hare, 1980) 

BSc 2 Applied Physics (South Bank Polytechnic) 

Polymodel 3,postgraduate (Oke, 1981a) 

The results of these experiments, taken from observation notes 

and student reports, are presented below under separate headings. 
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Average ability 4th form, secondary school 

The class spent a total of 4i hours on the problem, spread 

over four interactive sessions. 

After initial discussion on record players in general, most 

students owning or having access to one in their homes, the 

teacher (O'Hare) asked the class if the design of the pick-up 

arm might affect distortion ('quality of sound being affected'). 

Apart from noting that the arm should be balanced, no suggestions 

were forthcoming. After pointing out that some arms are 

straight and some 'bent', the teacher drew some sketches on 

the blackboard as illustrations (choosing a circle to represent 

a typical part of the recording groove). At this juncture, 

several students saw that the arm should be tangential to the 

groove at the point of contact with the stylus; this was 

accepted as the problem to consider (the teacher did not 

suggest, nor did any student, that the speed of the recording 

groove might be important). The problem as perceived was 

reinforced at the next lesson by the teacher demonstrating 

with a school record player how an (offset) arm approximated 

to a tangent to each groove at the stylus. The teacher then 

asked the students if they thought straight arm pick-ups would 

be unsatisfactory. One student suggested that although they 

would not be as good, straight arm pickups must give reason

able reproduction as they are still in use. When questioned 

on how 'good' straight arms were, several students suggested 

that they could measure how near the arm was to the tangent 

at the stylus. The teacher found that he had to translate 

the problem into finding the angle between the (straight) 

pickup arm and the tangent to the groove (ie, measure tracking 

angle). Scale-diagrams were then drawn using a straight arm 

of initial_length of 20 cm (- 8" as per data in section 5.5, 

Chapter 5) and measurements using a protractor were taken of 

the tracking angle at the inner and outermost circles of the 

recording groove. The students needed help initially in 
J 

scaling their measurements correctly, and also needed some 

revision on how to draw a tangent to a circle from an external 

point (arm pivot). Student averages for these tracking angles 
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were found to be 130 and 200 respectively for the inner and 

outer grooves - no underhang being suggested. Further 

discussion with the students led to the suggestion of trying 

lengths of 15, 25 and 30 cm. for the arm, effectively amounting 

to underhang and overhang measurements (pivot point remaining 

fixed) - this suggestion was, in fact, eventually made by the 

teacher. 

Scale drawings were also made by using different arm lengths 

without underhang, and the students soon noticed that the 

longer the arm the smaller tracking angles became. It required 

some more help from the teacher, in view of inaccuracies in 

scale-drawings, to see that underhang produced more useful 

answers. The 'students readily appreciated that having a very 

long arm (without underhang) would be impracticable however, 

and this helped in their persistence with the underhang 

diagrams. Eventually, some students (for homework) found a 

reasonable value for underhang (- 2 cm) and noted (correctly) 

that this occurred when tracking angles were equal in size at 

the inner and outer grooves~ 

Generally, the students found the problem difficult but 

interesting (they had no previous modelling experience apart 

from an introductory session on the location of a school). 

They considered it a good way of learning constructions, but 

found that their interest was waning towards the end of the 

exercise. The teacher had hoped for more student suggestions 

in directing the modelling activity, but perhaps because of 

the problem being conceptually difficult or due to the lack of 

modelling experience of the students (or both), the teacher 

found that he had to take the lead most of the time. 

BSc 2 Applied Physics (South Bank Polytechnic) 

In section 6.2 it is pointed out that the students worked on 

this problem in groups, spending 3 hours (2 sessions: 2 hours, 

1 hour respectively) per week over a two-week period with 

intervening "own time".. Four groups were formed by the students 
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themselves, each consisting of four members (except group 2), 

and the author was assisted by two other members of staff who 

observed group working: 

Group 1 4 members, observed by author 

Group 2 5 members, observed by Mr Wright 

Group 3 4 members, observed by author 

Group 4 4 members, observed by Mr Jones 

All observers agreed to provide no hints if possible, but if 

any hints or clarifications were given then a note of these 

was to be made. The author also observed all four groups on 

several occasions. 

Before group work started, the author spent one hour with the 

class discussing general points and clarifying certain matters. 

This work was assessed and the marks counted towards the end 

of session profile for the course. Details of the assessment 

are discussed in Chapter 8. 

In the initial clarifying discussion with the class it was 

pointed out that students would be required to keep a careful 

log, including rough work, and that the staff involved would 

act as engineering designers who would not be able to help 

much with physics and certainly not with any mathematics. 

Students asked many design questions (typically of physicists 

and engineers) regarding type of discs used, quality of 

apparatus, type of recording head, type of stylus, nature of 

recording groove. I reminded the class that the problem 

concerned the geometrical shape and size of the pickup arm in 

an effort to reduce noise distortion and that they should 

concentrate on that (as an 'engineering designer' I pointed 

out that I had other experts working on the other aspects of 

the problem, eg, balancing the arm). Considerable discussion 

then followed on the nature of the recorded signal. We all 

eventually agreed on the approach that, whether mono or stereo, 

the signal was picked up transversely (perpendicular to the 
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recording groove and in the plane of the record). I left the 

students to consider whether or not the width of the groove 

was important. All groups were initially advised to draw a 

few scale diagrams, using the data provided in the problem 

statement (see section 5.5, Chapter'5) in order to get a better 

'feel' for the problem. 

Each group started by continuing their attention on design 

features, eg, Is arm rigid? Shape of stylus? Depth and width 

of groove relevant? It was agreed amongst the observers to 

encourage each group to concentrate on basic geometry (but 

details left to students to decide). All groups took approxi

mately 1-2 hours (out of a total of 6 hours) to identify tracking 

angle and the need to minimise this in some way; the tracking 

angle was usually taken as that angle between a radius (normal) 

and a straight line segment moved by the stylus as it transversed 

across grooves - this is the same angle between the arm (straight) 

and a tangent, but initially this was not considered. Group 2 

had the greatest difficulties; angles were measured between 

circular arcs (loci of stylus) and radii (tangential to such 

arcs); later on clarifications of the tracking angle were 

made, and an initial assumption was made in setting this angle 

to zero half-way across the disc (record); some elaborate 

trigonometry then followed, introducing many variables, and 

then the group got stuck in trying to find a solution -

observer help was needed in suggesting some simplifications. 

Groups 1, 3, 4 made better progress, with some exceptionally 

good insights shown in signal distortion by group 4. By 

considering a sinusoidal signal, the latter group were able 

to recognise the advance and retard effect when tracking angle 

was non-zero. Group 4 wrote the distorted signal in the form 

y = A sin(wt + ~), where y = A sin wt was the original signal. 

By considering the stylus, on a magnified portion gleaned from 

a scale drawing, moving in a non-perpendicular direction to 

the recording groove, they were able to get an expression for 

~ . 

Although most groups considered the possibility of tracking 

angle a (and occasionally off-set angle for a bent arm) changing 



-165-

sign: +, 0, -, throughout the duration of playing a record, 

this approach was soon dropped. Group 3 obtained a triangle, 

similar to Figure 20 in section 5.5, Chapter 5, which was con

sistent with their assumptions, and then applied the cosine 

rule - wrongly (forgetful of GCE OIL mathematics?). Group 1 

applied the cosine rule correctly and then made a careless 

mistake in its interpretation. 

Having initially made the suggestion of drawing a few scale 

diagrams, groups (except group 4) had to be encouraged to carry 

out some mathematics. Left to their own devices, scaled 

diagrams would seem to lead to empirical solutions only. 

The observers of the groups decided to withdraw for two sessions 

because students kept asking for confirmation about their 

ideas. However, even with group 4, it was decided to 'visit' 

the groups regularly until the end of the two-week period in 

order to 'nudge along' and break fixations and mental blockages. 

As mentioned earlier, group 2 became quite frustrated with 

their trigonometry and some guidance seemed necessary. Overall 

though, the opinion of the observers was that the students 

who had practically no previous modelling experience had 

achieved quite a lot in the time available. The students 

found the problem very interesting and were anxious to know 

our views of their performance. 

Polymodel 3, postgraduate 

As mentioned in section 6.2, this group consisted of two 

polytechnic lecturers in mathematics and two recently graduated 

mathematicians in industry. The group spent a total of five 

hours tackling the problem (an afternoon and the follpwing 

morning). A full report of the group's performance may be 

found in Oke (1981), Pentech Press. No member of the group 

had specialist knowledge of the problem and none had any 

previous modelling experience. The author played the part of 

an engineering designer, as with the BSc Applied Physicists 

reported previously, with the intention of providing no help 

beyond being a source of technical information and practical 

(design) advice. Each group member had GCE AIL in physics or 

equivalent background. 
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Instead of initiating discussion, I invited the group to 

'interrogate' me on background information. So, in this way, 

just under an. hour was spent going through the nature of a 

sound recording, how such a recording was made, and what were 

the design constraints involved in an average record player. 

The group soon decided that it would concentrate on a straight 

pickup arm rather than the bent or off-set type. The geometrical 

aspects of the problem were then soon identified, and the 

length of the arm (a), the distance of the pivot of the arm to 

the centre of the turn-table (i), the radius (r) of a typical 

groove, the tracking angle (~), and a couple of other angles 

were considered as important. ·A triangle was drawn showing 

these quantities (essentially the same as that shown in 

Figure 20 in section 5.5, Chapter 5) and the cosine rule 

was used (correctly) to obtain. 

i 2 - r2 +. a 2 - 2ar sin ~ 

ie, sin 
r a 2 _ i 2 

~ - 2a + 2ar 

The group wished to minimise ~ (and hence sin ~) in some way. 

They had considerable difficulty in deciding what to hold 

constant and what to allow to vary. Eventually, it was 

decided to draw a sketch graph of sin $ against a; this 

implies that i and r would be kept constant, but i depends on 

a (which is varying) and when a disc is played, r must vary. 

Approximately one hour was spent on this, ·drawing various 

graphs for different I and r. I felt that some help was needed 

at this stage, and so I discussed with the group the various 

quantities involved and suggested that it might be easier if 

they considered sketching a graph of sin ~ against r (for given 

a and I). I further reminded the group that a (arm length) 

could not be much different from i (design considerations). 

This intervention seems to have been the catalyst required, 

for the group quickly made progress by sketching two graphs 

as shown in Figure 33. 
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overhang 
ra: outer radius 

rb: inner radius 

---~~~,----?L-----~ ____________________ ~r 
r a 

a< £ underhang 

Fig 33 

Graph of sin ~ against r: Polymodel 3 group 

Underhang (a < £) was readily identified and an optimum 

condition for sin ~, and. hence a (arm length), was derived by 

setting 

The group easily obtained the result for underhang, very 

similar to that obtained in section 5.5, Chapter 5. 

The group then went on to consider the mechanisms by which 

distortion is introduced at the pickup, rather than be satisfied 

with merely a geometric result. A few sketches of the situation 

where the stylus was not tracking the groove in a perpendicular 

manner (~ f 0) convinced the group that while tracking a signal 

the stylus would also move backwards and forwards, advancing 

some parts of the signal and retarding others. The group then 

embarked on the task of quantifying this advance and retard 

effect for a pure sine wave signal, but in the time remaining 

were unable to make much progress. 

Conclusions 

The three experimental groups worked hard and seemed to enjoy 

the problem. The 4th formers needed most help, in spite of 

the problem form eventually agreed with their teacher being 
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well-structured. A lack of modelling experience coupled with 

weak mathematics ability were contributing factors to the 

difficulties found by the students. Although progress was 

made with the (restricted) problem, it is doubtful if further 

work would have produced much more in view of the waning 

interest of the students after 4! hours. 

The BSc 2 Applied Physics students and the Polymodel 3 group 

both made considerable progress towards obtaining results 

which could be of practical use. However, in both experiments 

it was found necessary to intervene occasionally in order to 

prevent frustration setting in or to prevent wasteful activities 

(in terms of time) from obscuring the objectives of the problem. 

In both cases, participants were quite happy to expend 

considerable effort on tabulation (using the data and derived 

intermediate results) and drawing diagrams and graphs. 

Considerable initial difficulty was experienced, even with 

the Polymodel 3 group, in distinguishing between variables 

which could be controlled (eg, arm length) and those which 

could not (eg, radius of recording groove). Physically these 

things are obvious, but the mathematical interpretation of 

them seems to be more subtle. It is felt that if the BSc and 

Polymodel groups had more time, then once over their initial 

hurdles, they would have made more progress with the problem. 

6.6 Evacuation of a school 

This experiment, as pointed out in section 6.2, was carried 

out by Wilson (1983) with a small lower sixth form consisting 

of six students preparing for the GCE AIL in mathematics. 

The class spent a total of seven hours on the problem, in 

six sessions spread over a three-week period. The class either 

worked interactively with the teacher, or alone as a single 

group, or on an individual basis. The students had no previous 

experience of modelling. 
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The session started interactively with the broadly specified 

problem statement as given in section 6.2. Wilson wrote on 

the blackboard: 

'What is the question/problem?' 

In answer came the student replies: 

"Why is there crowding? - What causes delay?" 

"How.can we shorten evacuation time?" 

These questions were written on the blackboard. 

to this, ideas began to emerge very quickly: 

Students "Let's take each class separately" 

In response 

"We've got to find out how long it takes 

to get out of a classroom" 

"How many children in a class?" 

Discussion amongst the students led to the suggestion of 

taking a maximum number of 30 students in a class. The class 

was then asked to continue working as a group, being encouraged 

to take any measurements or record any information that they 

wanted. The second session started by the students reporting 

that they had found the time to cover the longest routes 

(along corridors) and had identified a bottleneck (confusion 

point) on the main stairway - all based on observation. They 

were, however, unclear on how to make use of this information; 

the teacher asked the class what they were trying to achieve, 

and after some brief discussion the students said they would 

like to find out how long it would take to evacuate a classroom. 

The students then timed how long it took for five of them to 

exit in single file: 4 seconds for 5 to exit, leading to 

24 seconds for 30 students (student deduction). One student 

suggested T = i N for time (T) of evacuation for N students. 

The class quickly agreed on T = iN + ~ for the time to 

evacuate a class and then walk a distance d at speed s - the 

latter being measured. One of the students suggested a 'delay 

time' : 
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"You've got 24 seconds for this one. Then you've 

got to find the time it takes to travel from their 

class to this one and take it off 24 seconds" 

However, this was not pursued further at this stage. Instead, 

the students wanted to introduce the time taken to descend 

the stairs - they had difficulty however in deciding on the 

'distance down the stairs'. The teacher suggested that the 

speed down the stairs would be the same as that along corridors 

(s) in an orderly flow - hence diagonal distance (measured) 

divided by s would provide the required time. 

In subsequent sessions, after much pacing up and down in the 

corridors and many arithmetical calculations, the students 

decided on double rather than single file flow (still orderly) 
2 2 leading to T = -gN for one class and T = -gN + (x - I)D for 

x classes where D is 

time to realise that 

delay time. The 

they had already 

students took a long 

in effect found D (= ~) -. s 
still more extensive arithmetical calculation.was carried out. 

Once the teacher had introduced sigma notation, the students 

were able to derive the following expression for total 

evacuation time for x classes: 

DR, 
T = - + s 

x 
I 

i=l 

x-I 
I 

i=l 

where DR,/S is the time for the last pair to walk from the 

door of the last class to the (single) exit. The expression 

was tested in practice, with the cooperation of other teachers, 

for 3 classes in a given corridor. 

Finally, the teacher presented a topological map to cover 

classes that are not all in one corridor and which showed two 

exits. Considerable time was spent pouring over the map and 

the teacher had to intervene by suggesting that the time taken 

by each class to a bottleneck was first calculated. Eventually, 

after much further arithmetical calculation and teacher 

guidance in encouraging the students to write out their ideas 

algebraically, each class was assigned an exit for minimum 

evacuation time. 
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The students are reported as having enjoyed the modelling 

activities and they felt that, in spite of frequent teacher 

guidance, they had achieved significant results by themselves. 

6.7 Learning heuristics 

In an attempt to help inexperienced students in modelling, in 

the spirit of offering general guidance and in the hope of 

providing some confidence in what is an unfamiliar activity, 

a.list of heuristics ('rules of thumb') was devised. The 

construction of the heuristics was based on published literature 

in problem solving and mathematical modelling (c.f. Chapter 3), 

and on the results of the teaching and learning experiments 

reported in earlier sections of this chapter. Some aspects 

of the heuristics, and their implications for learning modelling, 

are developed further in the next chapter on formulation

solution processes. 

The number of heuristics in the list has been kept deliberately 

low. The reasons for this are: 

(a) Too many considerations' serve only to confuse when 

considering anyone problem 

(b) A large list would tend to make each heuristic 

highly specialised and so dependent on a specific 

problem being considered 

Reason ;( a) is almost synonymous with one of the heuristics: 

'Don't write a vast list of features'. Reason (b) implies 

that each heuristic is couched in fairly broad terms in the 

hope that it has general applicability and is, therefore, not 

heavily problem dependent. 

The list, which aims to cover most initial stages of the 

modelling activity is as follows: 
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Establish a clear statement of objectives 

State obvious or natural objectives - but try and be fairly 

precise 

Don't write a vast list of features 

A large list of everything you can think of only serves to 

confuse. However, do write down any features considered 

important - then decide which to consider in detail 

Simplify 

Build up very gradually. 

Make guesses, make assumptions, add restrictions. 

Lump components (attributes) together and treat as single 

component or if original highly complex, break-down into 

simpler problems and treat each separately 

Get started with maths, as soon as possible 

Identify a few variables, parameters, constants. 

Write down one or two obvious mathematical relationships. 

Keep mathematics as simple as possible. 

Carry out some mathematics on initial relationships 

This itself generates more variables, constants and relation

ships 

Got a solution yet? 

If relationships so far do not satisfy objectives then 

create more obvious mathematical relationships and combine 

(mathematically) with those you already have 

Know when to stop 

Do not seek perfection. A mathematical model is only an 

approximation to reality. There are no right or wrong 

answers, only good or bad 
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Interpret your solution 

Use common-sense. 

Test for self-consistency (ie, no mathematical or logical 

mistakes, insert a few reasonable looking numerical values). 

Validate your solution 

Use known data to test model's ability to predict or verify 

over a wide range 

If stuck 

Observe practical situation if possible or carry out a 

'thought experiment' and imagine what is happening. 

Plot measured values, form empirical relationships 

Have frequent rests 

The modelling activity is difficult - it is a creative and 

intuitive act (even for quite simple models using only 

elementary mathematics). Do not spend more than about one 

hour at a time when starting a new problem 

The order in which the heuristics have been listed is not 

necessarily the order in which they may be recommended for use. 

The results of the teaching and learning experiments reported 

in this chapter, together with the ideas developed in 

Chapters 3, 4 and 7, show that modellers (experienced as well 

as inexperienced) move forwards, recap, then move forwards 

again often carrying out several modelling activities 

simultaneously. However, the main intention of the heuristics 

is to provide some sort of guidance for the inexperienced when 

a new problem is starting to be tackled. In which case, the 

first few .heuristics might with advantage be carried out in 

the order listed (eg, down to 'Carry out some mathematics on 

initial relationships'). 

In an attempt to gauge student opinion of the usefulness of 

the heuristics as initial guidance in modelling, a questionnaire 

containing the list was issued. Students were asked to rank 

the usefulness of each heuristic according to the following 
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numerical scale: 

Essential Very useful Useful Not very useful Useless 

1 2 3 4 5 

In addition, students were invited to make comments: 

Any comments? For example, what helpful advice would 

you give to someone trying out a modelling activity for 

the first time? Can you add to the list of heuristics? 

Would you like to delete any heuristics? Are the 

statements explaining what is meant by each heuristic 

clear? 

Several undergraduate and MSc Math. Ed. classes, including 

some of the groups who took part in the teaching and learning 

experiments reported earlier, were issued with the questionnaire. 

The list of heuristics was in each case handed out at the 

start of a modelling session of a new problem and students 

were requested to complete the questionnaire after the problem 

had been tackled and not during the modelling activities 

taking place. Depending on the way in which students worked, 

either group or individual replies were collected. Since 

this investigation was basically exploratory, an experimental 

design with control groups with consequent statistical analysis 

was considered inappropriate. Instead, general students' 

views were sought. 

For each class, the average rank for each heuristic was 

calculated (see examples in the case of MSc Math. Ed. shown 

in Tables 7, 8 and 9). Overall, students found the heuristics 

useful as measured by the grand average rank for all eleven 

heuristics (2.6). A rank of 3 for any heuristic is considered 

as critical. There is considerable variation amongst individuals 

and groups of individuals in the ranking value given to each 

heuristic, but the most popular (useful) heuristics are chosen 

by most as the following: 
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Establish a clear statement of objectives 

Simplify 

Get started with maths as soon as possible 

Generally, the least useful heuristic was found to be: 

Don't write a vast list of features 

No new heuristics were suggested by students but a number of 

varied and general comments were made. The most important 

general comment, that was made by several classes both 

undergraduate and MSc, was that given more time they could 

concentrate more in interpretation and validation and hence 

would probably give those heuristics concerned with these 

aspects a better (lower) ranking value. This latter point 

is borne out in Table 9, where teachers who had completed the 

first year of the MSc in modelling and who had also completed. 

a course-work (average time spent: 52 hours) have had much 

more opportunity and experience in modelling. Table 9 shows 

average ranks of 1.7 and 1.5 for interpretation and validation 

respectively. 

The rankings given in Tables 7 and 8 refer to those given by 

the MSc Math. Ed. teachers who had tackled problems on a 

group basis as reported in sections 6.3 and 6.4. The average 

rank per group has not changed significantly from one problem 

to the next, except in the case of group 2: Table 7, average 

rank is 1.8; Table 8, average rank is 3.8. The latter value 

(3.8) is high due to the fact that group 2 made little progress 

with the problem (in the time available) on 'speed-wobble in 

motorcycles'; the last six heuristics are given the value 

of5 ('useless'). Group 2 may, of course, have made more 

progress with the problem given more help from the author and 

also more time in which to work. On the other hand, the 

problem may not have sufficiently interested this group 

(observation suggests this) and consequently they 'threw in 

the towel' at an early stage. 
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Heuristic Groups Average 

1 2 3 4 5 

Establish a clear ... 1 1 3 1 1 1.4* 

Don't-write a ... 5 3 2 3 3 3.2 

Simplify .. 2 1 2 1 3 1. 8* 

Get started ... 3 1/2 2 2 2 2.1* 

Carry out ... 4 1/2 2 3 1 2.3* 

Got a ... 3 2/3 5 3 5 3.7 

Know when ... 4 3 4 3 5 3.8 

Interpret ... 2 2 2 2 2 2.0* 

Validate ... 3 1 4 3 2 2.6* 

If stuck ... 3 1 3 3 3 2.6* 

Have frequent ... 1 2 1 2 1 1. 4* 

Average 2.8 1.8 2.7 2.4 2.5 B 
* Denotes most useful (score less than 3) 

Table 7 

MSc Math. Ed. rankings after Eroblem 'Modelling the heating 

of a baby's milk bottle' 
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Heuristic Groups Average 

1 2 3 4 5 

Establish a clear ... 1 1 4 1 2 1.8* 

Don't wr.i te a ... 3 2 2 3 3 2.6* 

Simplify 1/2 3 4 1 2 2.3* 

Get started ... 1 2 1 1 2 1.4* 

Carry out ... 3 4 1 2 3 2.6* 

Got a ... 5 5 3 3 4 4.0 

Know when ... 4 5 2 3 3 3.4 

Interpret ... 2 5 4 3 4 3 .. 6 

Validate ... 2 5 5 2 2 3.2 

If stuck .... 1 5 5 4 1 3.2 

Have frequent .. '. 1 5 2 2 1 2.2 

Average 2.2 3.8 2.3 2.3 2.5 6 
* Denotes most useful (score less than 3) 

Table 8 

MSc Math. Ed. rankings after problem 'Speed-wobble in motorcycles' 
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Heuristic Teachers Average 

A B C D E F 

Establish a clear ... 3 4 2 2 3 1 2.5* 

Don't write a ... 5 1 4 3 3 2 3.0 

Simplify 1 1 2 2 2 2 1. 7* 

Get started ... 3 1 2 1 2 2 1.8* 

Carry out ... 3 3 2 2 2 1 2.2* 

Got a ... 3 3 3 2 1 2 2.3* 

Know when ... 1 3 5 2 1 1 2.2* 

Interpret ... 2 1 3 1 1 2 1. 7* 

Validate ... 2 2 1 1 2 1 1. 5* 

If stuck ... 2 3 4 2 2 1 2.3* 

Have frequent ... 1 3 5 2 3 4 3.0 

Average 2.4 2.3 3.0 1.8 2.0 1.7 6 
* Denotes most useful ( score less than 3) 

Table 9 

MSc Math. Ed. rankin~s! more eX2erienced in modellin~, general 

o2inions 
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6.8 Summary and Conclusions 

This chapter has concentrated on teaching and learning 

experiments mainly with undergraduates with mathematics, 

physics/engineering backgrounds, with teachers on the MSc in 

Mathematical Education course, and on occasions with secondary 

school students. It was stated at the outset that the 

purposes of the investigations were essentially: 

Ca) To determine the level of difficulty of modelling problems 

Cb) To observe how students tackle modelling activities under 

a variety of working conditions 

Cc) To develop learning heuristics 

It has been found that Ca), Cb) and Cc) are largely inter

related. The level of difficulty of a modelling problem is 

determined by how students are enabled to work and what are 

the lecturer's expectations of them in the time available. 

Student performance is governed by the extent of lecturer 

guidance, both specific to the problem in hand as well as 

in general Ceg, provision of heuristics). 

All the experiments considered in this chapter have been 

concerned with studetits who have little or no modelling 

experience. Fu~th~rmore, all experiments have been based on 

short to medium duration activities, that is students spending 

time ranging from one hour to ten hours on a given problem. 

Long duration project type work is usually given to students 

who have some experience of modelling, and the assessment of 

such projects in the case of MSc Math. Ed. teachers is left 

to Chapter 8. 

Section 6.2 reports on the observation of seventeen experiments 

based on che nine case studies presented in Chapter 5. Each 

experiment provides information on the following: 

Course, or type of scudent 

Mathematics background of student 
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General knowledge of problem area 

Previous experience of modelling 

How well-posed the problem is 

Amount of information in problem statement 

How problem was tackled 

Student performance 

Further details are provided for a sub-set of experiments in 

sections 6.3 - 6.6. 

Level of difficulty of modelling problems 

The emphasis throughout, in the time available to the students, 

was in providing an opportunity to concentrate on ,the initial 

formulation-solution activities of modelling. In order for 

these activities to be meaningful, interpretation and some 

crude validation was also carried out. Since most of the 

problems were based on applications areas in the physical 

sciences, the two fundamental challenges for the students were: 

Ca) The ability to recognise the basic physical ideas 

inherent in the problem 

Cb) The ability to interpret the physical ideas in a 

mathematical form amenable to some initial analysis 

Most of the students had at least GCE AIL physics as background 

knowledge, although this was somewhat 'rusty' in the case of 

some MSc Math. Ed. teachers. Once the difficulty of recognising 

what sort of physics was involved, and this itself was 

encouraged by 'guessing' and the development of intuitive 

ideas, the difficulties experienced were observed to be 

essentially the same for each problem - even also in the cases 

of the 'non-physics' problems: 'Evacuation of a school' and 

'Motorway and 'A' road travel costs'. These 'common' difficulties, 

which are exemplified in sections 6.2 - 6.6, may be summarised 

as below: 
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Students' difficulties in short to medium duration modelling 

activities 

- Tendency to want to work on problem other than that posed 

- Variables and constants: which to choose as dependent, 

independent, parameters (particular difficulty for school 

students) 

- Relationships and variables: level of detail (too much 

detail leads to confusion, too little or excessive 'lumping' 

leads to general mathematical solutions which are difficult 

to interpret) 

- Tendency to: keep listing features, draw many diagrams/ 

graphs, carry out large amounts of computation rather than 

use analytical techniques (even elementary ones). School 

students particularly prefer arithmetic to algebraic or 

other methods 

- Lack of confidence in making simplifications - 'bears no 

resemblance to reality'. Even when simplifications are 

made, difficulties are experienced in interpreting mathematical 

solutions arising from them 

- Tendency to drift and lose sight of objectives. Fixations 

formed (unwilling to try other more fruitful paths) 

Not all the above difficulties are experienced in each case 

although they do tend to occur quite often. Experience in 

modelling does help to overcome the extent of the difficulties, 

as mentioned in one of the earlier sections of this chapter 

in the case of the second year teachers on the MSc in Mathe

matical Education. However, it appears that even experienced 

modellers continue to find s'ome of the difficulties. As 

experience is gained, confidence in perservering with a problem 

leads to a better chance of reaching meaningful solutions. 
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In choosing the case studies for the teaching and learning 

experiments, it is true to say with hindsight that the author 

of this thesis did not appreciate fully the potential diffi

culties of some of the modelling exercises involved, eg: 

'Speed-wobble in motorcycles'. Tpe reasons for choosing such 

problems largely arose from the following considerations: 

(i) Apart from the organisational problems 

presented by Wilson at sixth form level, 

all the students had a good background 

in physics (usually at least to GCE 

'A' level). 

(ii) The applications areas; namely those 

involving some knowledge and appreciation 

of physics, partly arose from the work of 

providing modelling opportunities for 

undergraduates in applied physics and 

engineering which the author teaches at 

South Bank. 

(iii) In order to provide a broad spectrum of 

experience in modelling, it was decided 

at the outset to' provide problems 

involving physics to the teachers on the 

M.Sc. course ~n mathematical education 

(at South Bank) in addition to problems 

in the life sciences, and the social and 

organisational sciences. Neither external 

examiners nor the students (teachers) ha·ve 

objected to physics-based problems to date, 

although more help with initial concepts , 
has been requested (in the form of physics 

background sheets). 
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In order to make the physics-based 

problems as widely appealing as possible, 

two main themes have been chosen: mechanics 

(including fluid flow) and heat transfer. 

The physics needed to make good progress 

is illustrated in each case in Chapter 5 

and it is at most GCE 'A' level. The more 

specialised areas of optics, electrical 

circuits and electronics have been avoided, 

again with the intention of reaching as 

potentially wide an audience as possible. 

In the short time that was available for the experiments, it 

is the considered view of the author that the students involved 

had made good progress and had gained significantly in confidence 

as a result of most of the modelling exercises. As reported in 

section 6.7, the teachers on the M.Sc. course themselves felt 

that they had gained in knowledge and ability in modelling from 

following the one year programme on modelling. The teachers 

also felt that experience with the more difficult modelling 

problems was necessary for their development. 

An important deduction can be made from the above discussion, 

namely that for students inexperienced in modelling, the level 

to be expected of another subject (eg: physics) should be 

considerably lower in a modelling context than that gained by 

formal study. This is well recognised in the case of mathe

matics knowledge, that the amount of mathematics one should 

expect to be used in a modelling exercise will be several 

(2 or 3) years below that gained on more formal courses. 
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Teaching/learning styles 

The experiments reported on in sections 6.3 - 6.6 cover the 

two basic styles: 

Interactive 

Group 

It has been observed that the interactive approach is suitable 

for modelling activities that are being tackled for the first 

time, especially in the case of school students, but that 

group work enables students to gain confidence and ability 

once the first one or two interactive sessions have been 

experienced. It has also been illustrated that lecturer 

intervention is needed at certain key points in order to 

prevent 'frustration', 'fixation', and other difficulties from 

taking over. Lecturer help and guidance is needed no matter 

what mode or style is followed and once it has taken place, 

it is important not to reduce the overall sense of achievement 

of the students. 

Although two basic styles have been emphasised, the experiments 

have also illustrated variations and combinations of these 

styles: 

Start -+- Interactive (start modelling with lecturer) 

t 
Group work 

t 
Individual work (eg, 'homework') 

Start -.- Group work 

t 
Individual work 

~ 
Individual . Group 
assessment assessment 
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Research generally has shown (see section 3.4, Chapter 3) 

that work done in groups is useful in the early stages of 

feature identification, but that the solution stage is best 

done on an individual basis. This has been confirmed in the 

experiments conducted by the author, and furthermore that 

much of the formulation of a problem is still being carried 

out at the solution stage. Generation of relationships, working 

on these mathematically and so generating further relationships 

seems to be achieved by individual momentum and is thus better 

carried on outside the (original) group context. There is no 

research recommending group size, where group working is 

carried out, but 'judgement of the author and of others is 

that 4 seems to be optimum; fewer implies lack of flow of 

initial ideas, more than 4 can lead to organisational problems 

and consequent splitting into sub-groups. 

Learning heuristics 

A set of heuristics has been devised in an attempt to provide 

some 'rules-of-thumb' for the student inexperienced in 

modelling. The heuristics are described together with student 

opinion in section 6.7. The most popular (useful) heuristics 

were deemed to be: 

Establish a clear statement of the objectives 

Simplify 

Get started with maths as soon as possible 

The choice of the last heuristic chosen needs a word or two 

of explanation in view of the fact that one of the key 

difficulties experienced by students. is a reluctance to use 

even elementary analytical methods. Lecturer guidance is 

often needed in order to prevent seemingly endless computation, 

graph/diagram drawing, by suggesting that an elementary piece 

of algebra (trigonometry, etc) can not only tie up loose-ends 

but can actually predict for a whole range of values what is 

happening. Possibly as a result of such emphasis being given, 

students realise the benefits of the advice given and so give 
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a high priority to this type of action. The more experienced 

modellers in MSc 2 have also given this heuristic a good (Iow) 

ranking and have shown a marked improvement in this respect. 

The most unpopular heuristic, with experienced and inexperienced 

alike is: 

Don't write a vast list of features 

Possibly the explanation accompanying this heuristic should 

be changed to: 

Do write down any features considered important and 

then decide which to consider in detail 

which is now almost identical to the form used as one piece 

of advice given to students of the Open University, Berry and 

O'Shea (1982). 

Observations on how relationships are formed, and how the 

formulation and solution stages are related is investigated 

in the next chapter. 
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CHAPTER 7 

FORMULATION - SOLUTION PROCESSES 

7.1 Introduction 

As pOinted out in section 3.3, Chapter 3, mathematical 

modelling processes are usually portrayed as a linear 

sequence or linear sequence with looping. The limitations 

of this portrayal have been examined and in order to try 

and understand more fully the highly complex processes 

involved in formulation - solution activities, two 

theoretical constructs have been devised., These two 

constructs, namely a concept matrix and relationship level 

graph, were first introduced in section 4.5, Chapter 4. 

The next section of this chapter defines and illustrates in 

detail the nature of the jdeas involved. 

Subsequent sections of this chapter analyse students' attempts 

at modelling in short to medium duration activities in a 

selection of experiments taken from Chapter 6. The analyses 

are based on notes of the author's observations and students' 

logs. 

The implications for teaching and learning mathematical 

modelling are discussed as well as the implications for 

assessing students' attempts'. 

7.2 Concept matrix and relationship level graph 

Figures 11 and 12 in Chapter 4 show the general form of a 

concept matrix and of a relationship level, graph. 

The purpose of the concept matrix is to show the nature of 

the features or ideas involved ranging from the initial 
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thoughts on a problem to the final stages of solution and 

interpretation. As explained in Chapter 4, the notion of 

relevance of features is not considered as this can only be 

determined once a solution is obtained. All key considerations 

as a model is being developed are entered in the matrix, their 

position being determined by how specific they appear to be 

(specificity level) and by their complexity (complexity level). 

These features or considerations are defined to be those state

ments, sketches and diagrams that consist of: 

Questions 

Assumptions 

Variables and constants 

Relationships between variables and constants. 

The relationship level graph is designed to show that mathe

matical solution and formulation are interwoven; additional 

ideas on the nature of the problem are generated as a mathe

matical solution is developed. Initial understanding of the 

problem leads to simple relationships based .. on knowledge, 

guessing or both on the background to the problem. These 

first relationships are defined to be at level 0 (zero). The 

relationships deduced mathematically from level 0 are defined 

to be at level 1. Since several relationships each at a 

variety of levels are often used simultaneously to derive any 

new relationship, then the level of the latter is defined to 

be at one more than the highest level of the preceding. 

Relationships are numbered in the order in which they are 

generated. Thus, for any relationship numbered n, meaning it 

is the nth generated, its level is defined to be i where it 

is deri ved from relationships of level .e. and .e. ~ i -1; i ~ 1. 

For example, referring to Figure 12 in Chapter 4, relationship 

15 is derived from relationship 5 at level 2 and relationships 

9 and 14 both at level 3; relationship 15 is therefore defined 

to be at level 4. In this example, i=4 and £,=2, 3 respectively. 

Although relationships are generated in no discernible order, 

relationship level gives a good indication of how a solution 

(with formulation) is proceeding; relationship level therefore 

provides a linear sequence as a guide to goal seeking from a 

randomly generated set of relationships. 
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The main link between the concept matrix and relationship 

level graph is in showing how and where relationships are 

generated amongst all the other features that are identified. 

Early, but by no means all, formulation stages indicate that 

the more global and complex features are identified. Towards 

the 'solution' of a problem (or sub-problem), features tend to 

be more specific and less complex; the latter usually implies 

that features are more readily quantified and hence amenable 

to mathematical treatment. 

The relationship level graph (RLG) has the greater potential 

for illustrating the structure of a model development rather 

than the concept matrix (CM). RLG shows how formulation and 

solution are interwoven and, in particular, shows how model 

development is achieved by the linked generation of relation

ships. CM is intended mainly as an aid in classifying features 

that are identified. 

In order to exemplify the characteristics discussed above, 

an analysis of the author's attempts at tackling the central

heating problem will now be provided. The problem was presented 

in section 5.8, Chapter 5, although it was in 'polished' form. 

In order to illustrate as closely and as accurately as possible 

what happened in the author's first crude attempts (of six hours 

duration: first 'stab' 2 hours, second 'stab' 4 hours), the 

list below shows the features considered in the order in which 

they occurred. All 'blind~alleys' (eg: solutiori paths dropped 

at intermediate stages) and 'groping around' (what relationships 

to use, or derive, to do what and next?) are included. 

Central-Heating Problem 

Author's initial modelling attempts 

Feature list in order of occurrence: 

Feature 

Thermal capacity of system(house) (T) 

Heat generated by boiler and radiators 

Internal temperature of house (e.) 
1 

Order of Occurrence 

A 

B 

C 
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External temperature (6 ) D o 
Heat loss is involved E 

Cost of heating (per unit volume?) F 

Sub-problem: Cost of maintaining a particular G 
temperature 

Areas of walls, roof, windows H 

Assume steady-state: heat loss = heat gained I 

Relationship 1 J 

HG = heat generated/unit time 

Relationship 2 

Relationship 3 

Transient effects: heating up 

Relationship 4 

Relationship 5 

Relationship 6 

Relationship 7 

Assumption: one warmth period, 

one cooling down period 

in any 24 hours 

Diagram showing 

(See Figure 30, 

6. variations 
~ 

Chapter 5) 

with t (time) 

Assumption: Rapid response of C-H system 

Relationship 8 

Relationship 9 

Relationship 10 

Relationship 11 

Relationship 12 

Relationship 13 

Relationship 14 

Relationship 15 

Relationship 16 

Relationship 17 

Relationship 18 

Relationship 19 

Relationship 20 

Relationship 21 

Relationship 22 

Relationship 23 

K 

L 

M 

N 

o 
p 

Q 

R 

S 

T 

U 

V 

W 

X 

Y 

Z 

AA 

BB 
CC 

DD 

EE 

FF 

GG 

HH 

II 

JJ 

KK 
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Relationship List 

(Numbering refers to relationship numbers above) 

Relationship 

level 0 
AI< 

H9. = Cl (e i - eO) = K(e i - eo) 

(heat loss) 

level 0 HG - H9. = 0 (steady temperature: 

heat gained = heat loss) 

2"'3 Jp = £NKC(e i - eo) (cost) 

level 0 

level 0 

1 & 4.,.6 

6"'7 

1 & 3"'8 

level 0 

8 & 9"'10 

6.,.11 

level 0 

Tde
i 
~ = HG - K(e i eo) (heating up) 

-K(e. l. 

t = 1 9.n 
A 

e ) 
o 

- Ae l 
- Ae. I l. -

(cooling down) 

Heat loss = heat generated (night 

temperature e . > e . ) 
c ml.n 

= K(e 
c 

Heat generated = HG(t 1b - t 1a ) 

(temperature allowed to fall to emin ) 

Difference in costs = 
£C(RHS of 8 - RHS of 9) 

1 1- B - Ae min l 
t 1b - t 1a = A 9.n B - Ae 

- c -

Heat gained by house = TCe c - e . ) ml.n 

No 

1 . 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 



-192-

t4 1 
= - in r 0 5+13 A 

[8 -6 ] 
6 -6 13 

13+14 

13+15 

13+16 

13+17 

14 & 17+18 

12 & 18+19 

c 0 

6. = (6 r - 6
0

) 
-At e 

1 

1 [6 r - 60 
t 1a = in 6. A 6 

m1n -

6 = (6 -6 )e-At4 + 
c r 0 

Heat gained by house 

= T(6 c - 8min ) 

+ 60 

0 ] 
6 

0 

= H
G
(t

1b 
- t )+(6 - 6 ) [T(e-At1b_e-At1a) 

la r 0 

11 & 17 & 19+20 

14 

15 

16 

17 

18 

T(6 - (8 - 6 )e-At1a-6): RHS of 19 20 c r 0 0 

8 & 13 & 20+21 

20"22 

Solve for t 1a , t 1b 

Difference in heating amounts for 

given 6c 

10 & 21 & 22+23 

Difference in costs in terms of 6c 

21 

22 

23 
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Specificity level (SL) 

A 

(A) (c) (0) (8) (JI) (K) (L2) 

(M3) (04) (PS) (Q6) (R7) (VB) 

(W9) (xlO) (YII) (ZI2) (AAI3) 

(BBI4) (CetS) (0016) (EEI7) 

(FFIB) (GGI9) (8820) 

(II21) (JJ22) (KK23) 

L: lcm 

M: medium 

H: high 

I 

(E) (F) (I) (N) (S) (U) 

(G) 

A: atomic 

I: intermediate 

G: global 

G 

Figure 34: Coneent matrix: Central heatjng problem· 

Author'S initial modelling attempts 

Complexity 

level (CL) 



Heat loss > 

I 
I 

Steady State ~ (21)-"+-- -_~(S) ) (1 )f------i!-----+)-+----

Hea t gene ra ted --t (9i)--\"'""'--t---+--t------I 

Heating up ) (~)~-~~~H7~ 
: ~1~)------;---~~~ ______ ~ 
I 

Cooling down -7 (5 )--7> -( 13) ) ( 1 ) 
I 
I 
I 
I , . ~+ 

1~) 
tS)---( 9)~)-(2 )-7'--(2 ) 

/ 

:~I 

I ..... 
c.o 

'" I 

) 

Heat gained-->(lPr-----------~--~------_+----~ 
by house 

I 

I 
o 1 2 3 4 

.' 

5 

Difference in 

I heating costs for 

2
J) given Bc 4 '--l)--( 2 ),;;....J 
I 

6 7 RELATIONSHIP 
LEVEL 

Figure 35: Relationship level graph: Central-heating problem: Author's initial modelling attempts 
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It should be noted that: 

1) Features, including relationships, are listed in the 

order in which they occurred in the model development. 

2) A separate relationship list is provided to indicate 

for each relationship: 

(i) 

(ii) 

Its form 

/ 

Other relationships from which it is derived, 

eg: 8 & 9 "'10 implies that relationships 8 & 9 

are used to derive relationship 10. 

3) The concept matrix shows each member of the features list. 

Where let ter (s) and a number appear together then the 

feature is a relationship, eg: (HH20) means that feature 

HH is relationship 20. 

4) The relationship level graph shows all relationships from 

the list. Note that relationships 1, 2, 9, 4, 5, 12 are 

each at level 0; these relationships require no mathe

matical derivation and depend. solely on interpretation 

of the problem statement and associated basic physics. 

Relationships at level 1 and above are de.rived mathematicall9 

eg: relationship 3 is derived from relationship 2(level 0) 

and hence relationship 3 is at level 1. Intermediate mathe

matical detail in deriving a relationship is not shown. 

5) An element of subjectivity is inevitably involved in the 

construction of the concept matrix and the relationship 

level graph, particularly in the former. However, a 

number of colleagues have constructed both for this 

problem and close agreement has been observed in each case. 

The points, numbered 1-5 above, are general and refer to the 

essential characterisitcs of an analysis of any modelling 

attempt using a concept matrix and relationship level graph, 

no matter what the original problem. The following are 
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interpretations of Figures 34 and 35 and thus relate 

specifically to the author's initial attempts at modelling the 

central-heating problem. However, several of the interpre

tations have a wider significance for modelling processes in 

general and these are examined as they arise. 

I Distribution of features in concept matrix 

Most of the features, even the ones identified initially, 

tend to be highly specific to the problem and also tend 

to be the most easily quantified (at least in principle). 

Hence the cluster of features in the top left hand corner 

and the sparsity of features in the other squares of the 

concept matrix. It is the sparsity in the other squares 

that is the most noteworthy characteristic, since 

relationships are defined in general to fit in the top 

left hand corner. 

The M.Sc !.lath. Ed. group which also attempted this problem 

(see section 6.2, Chapter 6) had most of their initial features 

in the bottom right hand corner and middle square of the 

concept matrix. As reported in Chapter 6, the M.Sc group 

(inexperienced in modelling, and with only 3 hours at most 

spent on the problem) made less progress than the author. 

The latter who has considerable experience both of modelling 

industrial problems as well as those problems used in teaching 

in higher education, showed a stronger sense of direction at 

the outset as to be expected. 

II Generation of variables and constants 

Variables and constants are largely generated as relation

ships are formed. An analysis of the features list shows 

that out of 15 symbols (variables and constants) generated, 

only 3 (6., 6 , T) were thought of before relationships 
1. 0 

were formed. An additional 5 symbols were introduced in 

level 0 relationships, an additional 3 symbols at level 1, 

and the final 4 at level 2; the last symbol to be introduced 
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is amin , which occurs in relationship 11. Symbols 

such as A and B which were introduced solely for 

mathematical convenience are not included. 

As to be expected, towards the end of goal seeking (higher 

relationship levels), symbols of prime importance to the 

problem are no longer generated. 

III Level 0 relationships 

The hardest part in getting started with any modelling 

problem is the formation of the first level 0 relation

ships. In this case, relationships 1 and 2 provide the 

starting point. Experience in modelling as well as in 

the problem class (elementary heat exchange) appear to 

be important factors which lead to improvement. As the 

solution progresses, however, additional insights are 

gained and these 'prompt' the need for further inform

ation. Hence the generation of relationships 4, 5, 9 

and 12 each at level O. Mathematics (solution) has 

helped in the intuitive (level 0) understanding of the 

posed problem. 

IV Formation of relationships at levels 1, 2, 

Relationships are often generated by working simultaneously 

at a variety of levels, eg: relationship 19 (level 4) 

from 18 (level 3) and 12 (level 0). Note that not all 

relationships generated at a given level are subsequently 

used, eg: relationships 7, 15, 16 (all at level 2) make 

no contribution to the 'solution' (relationship 23), and 

therefore are redundant. 

V Sub-problem identification 

The relationship level graph is partitioned into two 

distinct regions as far as relationship 19(1evel 4); 

the upper region starts with relationships 1, 2, 9, 4 

and the lower region starts with relationships 5 and 12, 

all at level O. Not until relationship 20 (level 5) is 
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reached is a link formed between the two regions. The 

upper concentrates mainly on heating up and the lower 

mainly on cooling down of the house. Each region there

fore represents the development of a sub-problem where 

the two sub-problems are combined at relationship 20. 

The author was totally unaware whilst modelling that 

these two sub-problems were in fact being tackled; it 

felt like working on one problem only. 

With some problems however, it is not only possible to 

identify sub-problems at the outset, but it is quite clear 

that the problem can be broken down into very distinct parts. 

For example, with the record player problem (see section 5.5, 

Chapter 5 and an analysis of students', attempts of this in a 

later section of this chapter) it is clear before any mathe

matics is attempted that the following are key sub-problems: 

(a) Minimisation of sound distortion from a 

purely geometrical approach 

(b) Minimisation of sound distortion from a 

signal analysis approach 

A further break-down occurs by considering straight and off

set pick-up arms separately. 

In the case of the central-heating problem it was decided to 

'polish up' and produce a simpler solution. The two chief 

guides used in the production of the 'polished' solution 

were obtained from IV and V above, namely: 

IV Avoid redundancy 

V Concentrate on the sub-problems of cooling 

down and heating up at the outset 

The 'solution', namely getting an expression for the difference 

in heating costs in terms of 8 (the 'tick-over' warmer night c 

temperature 8 r >8 c > 8 min ) is provided in section 5.8, Chapter 5. 
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Only ten relationships are generated in the new solution, 

where the starting point consists of: 

Cooling down, relationship 5 level 0 

Heating up, relationship 4 level 0 

from the original attempt (see Figure 35). The new relation

ship list and level graph are shown in Appendix lA. 

7.3 Analysis of case studies 

A selection of students' attempts at modelling various problems 

is now analysed in terms of the concept matrix and relationship 

level graph. Since the experiments involved, as reported in 

Chapter 6, are of'short to medium duration and also because 

the students referred to have little or no modelling experience, 

the relationship level graphs are considerably less developed 

than the one illustrated in Figure 35 in section 7.2. For the 

same reasons, fewer features appear in each concept matrix. 

For comparison purposes, the author's 'polished' modelling 

approaches are analysed where appropriate and the details are 

provided in appendices. 

7.3.1 Modelling the heating of a baby's milk bottle 

The following is an analysis of the M.Sc Math. Ed. group 1 

attempts at tackling this problem. Observations and reports 

of the students (teachers) taking part are to be found in 

sections 6.2 and 6.3 of Chapter 6. 
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Baby's milk bottle problem 

M.Sc Math. Ed. group 1 attempts 

Feature list in order of occurrence 

Feature Order of Occurrence 

What temperature must milk reach 

(35 0 C) 

Temperature of milk from 'fridge 

(lOoC) 

Better to overheat milk and let it 

cool - especially as baby may take a 

while to drink it? 

Rate of heating: Heat water 

extremely quickly or bring heat up 

gradually? 

Material bottle is made of 

Copper based pan or otherwise 

No heat convection in milk or water 

Relationship 1 

Relationship 2 

Relationship 3 

'Heat lost to surroundings is negligible 

Relationship 4 

Relationship 5 

Relationship 6 

Relationship 7 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

o 
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Relationship 8 

Relationship 9 

Relationship 10 

Relationship 11 

Bottle will slow down heat 

transfer from water to milk 

Heat from system will be lost 

to surroundings 

Heat input in fact is not constant as 

ring starts from room temperature and 

builds up to constant temperature 

Air above milk in bottle? 

p 

Q 

R 

s 

T 

u 

v 

w 



-202-

Relationship list 

(Numbering refers to relationship numbers above) 

Relationship No. 

level 0 

level 0 

level 0 

level 0 

level 0 

m x 'c (B
f 

- 10) 
m m 

(Heat lost by water = Heat gained by milk 

and bottle) 

dQ dB 
ut = - mc dt 

kst 
mc 

t Cl m xCX(Bf - 10) 

~Aass = volume x density 

Heat capacity = mass x specific heat 

Total heat capacity of system = 
1: capacities 

5&6&7-;.8 Total heat capacity 

8-;.9 

level 0 

9&10"'11 

= 

Heat gained by system in reaching 35 0 e 
from 100 e = 25 x right hand side of 8 

Heat supplied = Heat gained = wt 

t = 
right hand side of 9 

w 

(time to heat system) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 



----------
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Specificity level 

A I G 

(A) (B) (Hl)( 12)(J3) (lA) (M5)(N6)(07) (RIO) 

(P8)(Q9)(Sll) 

L 

(V) (E) (F)(G)(K) (U)(W) Com-
plexit~ 

Level 

M 

(C)(D)(T) 

H 

Figure 36: Concept matrix: 

Heating of a baby's milk bottle: 

M.Sc Math. Ed. group 1 
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( ) 

I 
I 

l Not po~ed problem 
! 
I 

(~) <y) 
! i i 
I I , 
i 
I 
I 
I , 

(4) , 

I 

i I 
Mass _~) (5) I 

- volume'density l~ I Ti~s:~mbeat 

Heat capacity _---}) (~) (S)----l_-(9)-.,..--(11)J 
= mass x sp . h t I 

Total heat capacity (7). 
= E capacities • 

l , 
J 

I Head supplied __ --., (10 
= Heat gained I 

RELATIONSHIP 
LEVEL 

I , , 
o 

I 

1 

Figure 37: Relationship level graph: 

2 

Heating of a baby's milk bottle: 

M.Sc Math. Ed. group 1 

3 



-205-

For comparison purposes in this case an analysis of M.Sc Math Ed. 

group 4 is shown in Appendix lB. 

In each case the concept matrices, shown in Figure 36 for 

group 1 and in appendix 1B for group 4, indicate an early 

concentration on specifics. However, as reported in 

sections 6.2 and 6.3, Chapter 6, the teachers' initial 

reactions were to look at general features and even in some 

instances to want to change the problem into quite a different 

one. Groups logs omit such features in spite of the author 

asking for their inclusion. In the next sub-section, 7.3.2 

on the record player problem, general discussion with the 

author took place before groups worked on their own (B.Sc 2 

Applied Physics), and a concept ~atrix showing the features 

that arose in such a discussion is presented. 

Although relationships are generally placed in the (L, A) 

position (top left hand corner of a concept matrix), it should 

be noted that for group 1, relationships 5, 6, 7 and 10 have 

been placed in the (L, I) position; for group 4 only one 

relationship (No. 1) is in the (L, I) position. The reason for 

such placements is that the relationships concerned, eg: 

relationship 5, group 1: 

Mass = Volume x density 

are of general applicability, and thus do not relate solely 

('specifically') to the problem - hence they are I (intermediate); 

however, the relationships involve features or concepts which 

are easily quantified (eg: mass = 0.2 kg, volume =200 ml = 
3 -3 0.0002 m , density = 1000 kg m ) and so they are of L (low) 

complexity level. It is interesting to note that group 1 

generated more relationships in the (L, I) position than group 4; 

the latter may consciously or sub-consciously have done the same 

and then wrote the relationship down in a form most specific to 

the problem. 

Referring to the relationship level graphs, Figure 37 for group 1 

and appendix 1B for group 4, the following points emerge: 
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1 Ignoring heat loss and treating the milk bottle 

as a perfect conductor, group 1 reached 

relationship 11, level 3; a comparable stage of 

development is reached by group 4 in relationship 

4 (level 1) and 5 (level 0). Group 4 continue to 

model heat losses as far as relationship 12 

(level 2). Group 4 has made more progress with 

the problem than group 1 and has. done so with 

less intermediate mathematical working (as 

measured by relationship level). 

2 Apart from considering a different (not posed) 

problem (water heated then bottle immersed), 

group 1 have concentrated on one sub-problem. 

Group 4 have worked on two sub-problems, with 

linkage at relationship 7 (level 1); their log 

does not show awareness of sub-problem identifi

cation at the outset. 

3 Some relationships are different forms of the same 

key idea, but in order to distinguish the forms 

each is given a different relationship number. 

For example, for group 4, relationships 2 and 3 

(both at level 0) express the same idea: 'rate of 

heat input = mass x specific heat x rate of 

temperature rise.' Relationship 2 refers to milk 

only in the saucepan, whereas relationship 3 

refers to water and milk in the saucepan - hence 

the distinction. 

Minimisation of sound distortion in a record player 

The following analysis refers to the B.Sc 2 Applied Physics 

groups of students tackling this problem. Reports on the 

observations of the students taking part are to be found in 

sections 6.2 and 6.5 of Chapter 6. 
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As explained in Chapter 6, an hour was spent with the class 

on 'clarifying' discussion before students were split into 

groups. The purpose of this preliminary discussion was to 

ensure that students were quite clear on what was expected 

of them over a two-week period of modelling the problem. 

The discussion took the form of the students asking the 

author questions, often quite general in nature, and direct 

answers were only provided if technical or design matters 

were queried. No direct advice was given on the physics of 

the problem. A features list for this part of the activity 

is now provided, together with a concept matrix (Figure 38). 

The broader nature of the features identified is shown and 

a selection of features is used to show how lecturer-student 

interactions took place. The list and concept matrix are 

based on a transcript of an audio recording made. 
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Minimisation of sound distortion in a Record Player 

B.Sc.2 Appd Physics: Class discus'sion 

Feature list in order of occurrence 

Feature 

Are we considering the usual 

polyvinyl discs or laser discs? 

Disc in vertical plane? 

Quality of apparatus? 

Geometry of recording groove? 

Information from side of groove? 

Arm is pivoted, stylus movement on 

circular arc 

Position of pivot of arm important? 

Nature of recorded signal? 

Maximum signal amplitude? 

Consider different types of cartridge? 

Do we need to consider the method of 

translating the initial mechanical signal? 

Is flutter (bouncing up and down) involved? 

Is sound distortion noise or not true 

representation of sound? 

Signal on disc is true 

Transverse force on stylus negligible? 

Keep stylus rigid with arm 

Representation of signal - single line 

or with width (double line) 

Order of occurrence 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

o 

P 

Q 
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Specificity level 

A I 

(1) (F) (G) 

, 

(D) (0) (P) 

(N) (E)(H)(K)(L)(M) 

(Q) 

(B) 

(A) 

(C) (J) 

G 

Complexity 

Level 

Figure 38: Concept matrix: Minimisation of sound distortion 

in a record player: 

B.Sc 2 Appd. Physics, preliminary class 

discussion. 
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In order to give an indication of the way in which the 

features arose in the preliminary discussion, the following 

examples taken from the transcript are provided. 

Feature C 

Student A 

Lecturer: 

Student B 

Lecturer: 

Feature D 

Student C 

Lecturer: 

"What quality apparatus are you considering? 

Economic considerations are important in the 

design." 

"Yes, they are important." 

"I think that costings only come into the last 

stages of design." 

"I would have thought that the economics of the 

design would have come in at an early stage. 

However, I would have thought that my problem 

statement did not emphasize economic considerations 

(see section 5.5, Chapter 5). So you may choose 

to design an expensive apparatus, or you may decide 

that the problem is pretty tough and not worry 

about money considerations. You may consider that 

any analysis or investigation applies to both cheap 

and expensive equipment." 

"Are we to determine the geometry of the recording 

groove?" 

"The pick-up arm and stylus are picking up 

sideways movements, not vertical movements." 

(Sketch drawn of a typical signal on the blackboard). 



Feature G 

Student B 

Lecturer: 

Feature 0 

Student D 

Lecturer: 
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"Is it a major assumption, the position of the 

pivot of the arm?" 

"Well, I will interpret that as a question to 

me as a design engineer and say that the position 

of the pivot is due to marketing considerations. 

(Brief discussion clarifying position of pivot -

not much space left on deck for pivot other than 

corner.) However, you may decide that there are 

such overriding advantages putting the pivot some

where else - it is up to you, to purSue this if 

you wish with supporting mathematics and physics." 

"Is the transverse force of the stylus in the groove 

negligible?" 

"I think our discussion so far should guide y.ou. 

Imagine the signal as being a little trough dug 

into the surface of the record, which enables the 

diamond stylus to sit in and be forced to wobble 

about as the groove passes beneath it. Once you 

see that you may realise that the transverse force 

may not be of much interest to you." 

As far as possible the lecturer (author) has avoided imposing 

any solution paths on the students and has also avoided giving 

hints away. 

the students 

The main purpose of the experiment was to leave 

to work by themselves in groups. 

The concept matrix in Figure 38 shows that. most early features 

identified by the students tend to be more general than those 

reported in their logs; the latter, as with the M.Sc Math. Ed. 

groups,tend to concentrate more on specific ideas that can be 

more readi·ly symbolised and/or quantified. It is interesting 

to note that in spite of the problem statement and its 
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associated sketch diagram (section 5.5, Chapter 5) that 

features A and B should arise; perhaps these G (global) 

features were considered as an 'opening shot' just to get 

one's concentration started.· 

The analysis of group 4 is now. considered. For comparison 

purposes, group 1. is also. analysed and. details are .. to be. 

found in Appendix 1C ... The author's 'polished' .. approach is 

detai led in Appendix ID.. For the sake . of brevity., features 

lists and their subsets (relationship lists) are omitted, but 

key character..istics are clearly identified. 

(C)«Hl)) (.J3)(L5) 

(M6» (N7)(08)(P9) 

(Q10)(Rll) 

(I2) 

-

Figure 39: 

Specificity level 

(A)(B)(E)(G) «K4» 

(D) (F) 
Coupl 
Level 

exity 

( » denotes 

Concept matrix: Minimisation of sound 

distortion in a record player: 

B.Sc 2 Appd. Physics, Group 4. 

level o 
lonships relat' 
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As is quite common then, the features recorded in the students' 

group logs tend to concentrate on more specific and more 

readily symbolised/quantified ideas. Thus, the concept matrices 

shown in Figure 39 (group 4) and in appendix. 1C (group 1) have 

features (apart from relationships) clustering towards the top 

left hand corner in each case. However, group 1 has identified 

some more global and less easily quantified ideas at an early 

s·tage, viz: 

Feature A How is signal produced? 

Feature C Type of cartridge used? 

Feature D Balance mechanism of arm? 

A little later on, but just before the first relationships 

(level 0) are generated, there is feature H: 

Feature H Centripetal forces in bringing arm to 

centre of disc? 

The latter could have led to a quite different problem 

involving sources of sound distortion not covered.in the 

problem statement. The author dissuaded the group (1) from 

spending much time on these aspects. 

Referring to the relationship level graphs, Figure 40 for group 

4, appendix 1C for group 1, and appendix ID for the author's 

'polished' approach, the following points can be made: 

I All three graphs show how few initial relationships 

(level 0 type) are used to tackle the problem, 

this is so even in the case of the author's more 

extensive treatment (although 'polishing' does tend 

to eliminate some relationships - see section 7.2). 

This is one of the characteristics of a conceptually 

harder problem where it is important to start with 

relationships in a form amenable to quite rapid 

mathematical development. 
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2 Closely coupled with 1 above is the observation 

that quite a high relationship level is reached 

before a definite deduction or 'solution' is 

obtained. This implies that quite a few 

mathematical deductive steps (as measured by 

relationship level) have to be carried out in 

the formulation-solution process for this type 

of problem. 

3 Apart from the author, where three distinct sub

problems were recognised at the outset (with a 
I 

single link between them: relationships 3,.16, 

23), groups 1 and 4 have concentrated on one 

sub-problem: 

group 1 

group 4 

geometrical approach 

signal analysis 

Both groups have also concentrated on the straight 

arm pick-up. 

Group 1, relationships 5-9 are comparable in 

development to the author' s relationships' '1-6. 

Group 1 has however made some (uncorrected) 

algebraic slips. 

Although the details are not provided, Polymodel 3 group has 

a similar development to B.Sc Appd. Physics, group 1. However, 

in the case of Polymodel 3,;the participants had a much clearer 

idea of the effects of 'underhang' (improvement) and 'overhang' 

(worsening) in the straight arm case as the sketch graph in 

Figure 33, Chapter 6, shows. 
, 

4 In the case of group 1, the relationship level graph 

has two di'stinct regions: the upper showing scale

diagram i~d graph development, the lower showing the 

cosine rule application. The group log shows that the 

students were attempting to confirm some measurements 

from their diagrams by mathematical deductive means 
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(cosine rule and its interpretation). Apart from 

algebraic slips, the students were able to get close 

agreement between their measured and calculated 

values. 

The latter, point 4, is an illustration of intermediate 

validation that can be carried out in model development. It 

has the virtue of providing more confidence in what is a quite 

difficult analytical modelling exercise. However, the student 

log shows that a better overall appreciation of the problem is 

gained from the deductive part (cosine rule) rather that relying 

on the scaled diagram measurements (descriptive modelling). 

7.3.3 Speed-wobble in motorcycles 

The analysis refers to M.Sc Math. Ed. group 4 tackling this 

problem. Reports on the observations of students (teachers) 

taking part are to be found in sections 6.2 and 6.4 of 

Chapter 6. 

As pOinted out in Chapter 6, the M.Sc groups involved are the 

same as those who tackled the baby's milk bottle problem. 

All five groups found the castor problem very difficult, and 

only group 4 made any progress beyond consiqering SHM approaches 

once a hint had been given (on the motion of the point of 

contact of the castor). It is for this reason that an analysis 

of group 4 only is provided. 

The problem is included in this chapter in order to show how 

only a few features and a low final relationship level are 

needed to gain very good insights into a well-posed and well

structured real situation. Getting star.ted wi th the problem 

is difficult, but once started only relatively little mathe

matics is subsequently required to find 'solutions'. The 

author's 'polished' approach is represented by a relationship 

level graph, presented in Appendix lE. 
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Speed-wobble in motorcycles 

M.Sc Math. Ed. g'roup 4 attempts 

Feature list in order of occurrence 

Feature 

Shape of castor 

Level and material of ground 

Material of castor 

Direction of forces 

Velocity of castor 

Amount (area) of castor in contact 
with the ground 

Weight immediately above point 
of contact 

Pushing force returns castor 
to path's direction 

Moment of inertia 

Inertial force causing wobble 

Friction 

Relationship 1 

Relationship 2 

Relationship 3 

Relationship 4 

Relationship 5 

Order of Occurrence 

A 

B· 

c 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

o 

P 
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Relationshi~ list 

(Numbering refers to relationship numbers above) 

Relationship No. 

level 0 

1+2 

level 0 

.4+5 

F sin e.x = -18 

(x is trail, F is friction -
direction not clear, I is moment 

of inertia (axis not speci fied) , 

e is angular displacement of castor 

from forward motion of steering axis) 

e /0/ = a cos -
I 

Hint: Diagrams showing motion of 

point of contact of castor 

with ground 

F.L = 18 

(L is trail) 

f F. L dt = 

1 

2 

3 

4 

5 
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Specificity level 
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Figure 41: Concept matrix: Speed-wobble in motorcycles: 

M.Sc Math. Ed. group 4 
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Fjgure 42: Relationship level graph: Speed-wobble in 

motorcycles: M.Se Unth. Ed. group 4 
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The concept matrix in Figure 41 shows that initial features 

are less specific and less easily quantified, apart from 

feature E. Features G, I, K even though they are most 

specific and are easily symbolised/quantified, are presented 

in the group 4 log as verbal statements (often only one word 

long) and are not identified as variables or constants in 

symbolic form. Not until relationships are generated are 

variables introduced; this is a slightly extreme, but never

theless quite common observation on variable/constant 

generation. In other words, variable/constant generation cannot 

be divorced from relationship generation; this is in contra

distinction to the approach of Treilibs (1979) (see section 3.3, 

Chapter 3). 

Referring to the relationship level graphs in Figure 42 for 

M.Sc Math. Ed. group 4, and in appendix lE for the author's 

'polished' approach, the following points emerge: 

1 Both graphs show only two relationships (level 0 

This type) that are used in tackling the problem. 

characteristic, namely that very few starting 

relationships are used in the modelling, is shared 

by the record player approaches as typical of a 

class of conceptually harder problems. Note that 

relationship 3 in Figure 42 has been included to 

show the significant effect of the lecturer's hint; 

it could be strictly argued that this relationship 

should have been included at level 0 in appendix lE, 

but it would have added little to the latter in view 

of the more extensive structure portrayed. 

2 Unlike the record player problem, a low final 

relationship level produces Significant results. 

Apart from the numerical solution which would be 

required for predicting a range of numerical values 

for B (angular displacement of plane of castor wheel) 

and for ~ (angular velocity), for validation purposes, 

very little deductive mathematics is used. 
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3 M.Sc Math. Ed. group 4's relationships 3 (hint), 

4, and 5 are comparable in development with the 

author's relationships 1, 3, and 4. Writing 

F = ~R and carrying out the integration, group 4's . 
relationship 5 would have led to le = ~RL.t + 

constant; a further integration would have led to 

a result for e. Apart from the sign of F (group 4 

now have the correct direction), these results are 

comparable with the author's relationships 3 and 4. 

It should be noted that the author's relationships 

5, 6, and 7 are modifications to 1, 3 and 4 for the 

purposes of generating a numerical solution: they 

do not therefore contribute to the formulation of 

the problem. 

4 The author's 'polished' solution shows two sub

problems: exponential decay, and oscillations. The 

author did not recognise the two sub-problems at the 

outset, having initially concentrated on oscillations 

only - the possibility of the oscillations terminating 

and subsequent motion decaying exponentially was 

arrived at after having carried out some mathematics. 

The exponential decay implies that the point of 

contact cannot slide in a direction perpendicular 

to the plane of the castor; a modeller with better 

physical intuition might have realised this at the 

outset. 

Because of the tight structure and fewer possibilities for 

modelling approaches, this problem is better placed before 

students with more experience of this type of study. As pointed 

out in Chapter 6, a graded approach of setting lead-up problems 

which encouraged students to model the motion of the point of 

contact of the castor with the ground would have made the 

approach easier. 
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7.3.4 Evacuation of a school 

The analysis, with only very slight modifications, is based 

on the work of Wilson (1983). Reports on the interactive 

experiment with sixth formers are to be found in sections 6.2 

and 6.6. of Chapter 6. 

Wilson was asked to construct a concept matrix and relationship 

level graph of his students' responses in order to test: 

(a) His ability to carry out such constructions 

(b) The usefulness of such constructions for 

analysing an organisational problem (although 

still analytical and deterministic). 

It certainly seems that Wilson had no difficulty with either 

construction, although he mentions the inevitable element of 

subjectivity involved. He even entered features (other than 

relationships) on an extended relationship level graph, although 

this is a much more subjective exercise and is not pursued here. 

The author also constructed both the concept matrix and 

relationship level graph based on features identified in the 

transcript of an audio recording made by Wilson. Both 

representations are in very close agreement with those of 

Wilson. 

For the sake of brevity, only Wilson's relationship list and 

graph (the latter with very minor corrections) are provided in 

this section, although some key characteristics of the concept 

matrix are also identified. 
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Evacuation of a school (Wilson, 1983) 

Lower sixth form mathematics students 

Relationship list (See section 6.6, Chapter 6) 

Relationship 

level 0 

level 0 

1 & 2+3 

level 0 

1 & 2+6 

= 

(Time to evacuate one class) 

= 

(Time for any student to walk 

distance d1 at speed sI) 

T 
4 d 

=T1 +T2 ="5 N +s 

(addition of times) 

= 
d 2 

s2 

(Relating stairs to distance and speed) 

'.I' = 

Delay time (for second class) 
4 d1 

= "5 N - S 

Delay time (for second class in position x) 

No. 

1 

2 

3 

4 

5 

6 

7 



5 & 7 .... 8 

6->-10 

10 .... 11 

9 & 11-'12 

T = 
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~ N + (x - l)D 
5 

(Time for last person to exit second 

class in position x, double-file) 

T = 
D 

~N + (x - l)D + ---1. 
5 s 

D,t 
(-- = time for last pair to walk to s 

Delay 

file) 

= ~N 
5 

Delay 

n-1 
= I 

i=l 

T = 

single exit) 

time (for second class, double-

- --s 

time for nth class 

(2 d·1 -N.-2. 
\5 1 s) 

D,t n n-1 d. 

I 2 I 1 
-- + "5 N. s S 1 i=l i = 1 

8 

9 

10 

11 

12 
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one class 

Time to walk a 
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RELATIONSHIP 
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~ 4) 
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0 

. ~ 
\. \ I 

" 
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!\ 
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I ; I I i 
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'Figure 43: Relationship level graph: Evacuation of a school: Lower sixth form students 

(Wilson, 1983) 
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The concept matrix, Wilson (1983), shows that most features 

are concentrated in the (L,A) and(M,A) positions; that is, 

most are in the most easily equantifiedjsymbolised and highly 

specific posi tion: (L, A), or are in the less easi ly. qliani tfied/ 

symbolised but still highly specific position: (M,A). The 

author would have put some of the latter into the (L,I)position. 

Because Wilson entered the features from his transcript, rather 

than asking students to keep a log and then abstracting details 

from this, more less well-defined and global features will have 

been recorded. Even with the sixth formers, variables/constants 

were not identified until relationships were generated: for 

example, T and N in relationship 1. 

Referring to the relationship level graph shown in Figure 43, 

the following key points emerge: 

1 In view of the importance of relationship 6, 

referring to the ordering concept of a time

delay to avoid 'bottle-necks', it might be 

better placed at level O. It tends not to 

depend or be directly derived from relation

ships 1 and 2. 

2 Two sub-problems have been developed: 

relationships 1-5: Time (to evacuate and travel 
corridor) 

relationships 6-12: Order (avoidance of bottle
necks or orderly flow) 

There are two linkage points at: 

relationship 6 (although this is weak, see 

1 above) 

relationship 8 

Neither Wilson nor the students had recognised 

these aspects (sub-problems) at the outset. 

The nature of the linkage also illustrates that 

sub-problems are not necessarily hierarchically 

developed, ie: one following another. 
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3 As the relationship list shows, smaller steps have 

been taken by the sixth formers in the development of 

the model than would be expected by undergraduates. 

Consequently, rather more relationships have been 

generated to reach the stage of time to evacuate. 

However, the relationship level graph has been useful 

in portraying the formulation-solution strategy adopted 

by the students. Some frequently occurring characteris

tics in modelling, eg: simultaneity of working, are 

illustrated. 

7.4 Summary and Conclusions 

Two theoretical constructs, namely a concept matrix and a 

relationship level graph, have been devised and used in the 

analysis of formulation and solution processes in a range of 

problems. The analyses in the preceding sections 'have illus~ 

trated the complex nature of the processes involved and have 

shown that formulation and solution are intimately interwoven. 

The relationship level graph, in particular, has shown that 

much of the modelling process is non-linear in nature and that 

several activities are often carried out by working at a variety 

of stages simultaneously. The relationship level graph has 

provided the most powerful tool in the analysis by illustrating 

the dynamic nature of modelling through relationship generation. 

The concept matrix has been a useful aid in classifying features 

in model development. The emphasis throughout has been on 

students who are inexperienced in modelling and who have in 

general had only a short time in which to tackle the problems 

involved. 

The following are the main points that have emerged from the 

previous sections: 

1 Distribution of features 

Relevance of features at any stage is not considered 

since this is only known when a 'soluti6n' is obtained. 

In other words, from the modeller's point of view, 

relevance is determined only in an a posteriorj sense 

rather than a priori. 



(L,I)type 

(L,A)type 

-228-

There is no discernible order in which features 

are recognised although there is a general move

ment from the bottom right hand corner of the 

concept matrix in early stages to the top left 

hand corner in the later stages (onset of 

solution). This general movement is to be 

expected, since a mathematical solution will 

generally require more specific (A) as well as 

more easily quantified/symbolised concepts (L) 

to operate on. 

2 Basic relationships are often generated as 

solution proceeds 

Level 0 relationships (those basic relationships 

which are not derived mathematically)are needed 

before any mathematics can be carried out. 

However, in order to reach any significant 

solution stage, further level o relationships 

are often required. The mathematical solution 

itself helps with further understanding and hence 

formulation of the problem by prompting such 

relationships. 

3 Relationships can occur in various forms 

Relationships can occur in various forms throughout 

their generation: 

(General: 

l' 
l 

f Speci fic: 

1 

that is they are applicable to a wide 

range of situations and not just to the 

problem in hand. 

that is those relationships which are 

written in a form directly related to 

the problem. Minor variations of the 

same form occur as the solution develops. 
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4 Relationship level as goal seeking 

As with features generally, relationships often 

occur in no discernible order. However, a measure 

of the general progress made in finding a 

solution is provided by relationship level. 

Those students who have a strong sense of direction 

and make good progress, reach a certain solution 

stage at a lower'relationship level. However, this 

can only be judged by comparing a relationship level 

graph with another where the sub-problems identified 

are roughly the same. For example, a judgement can 

be made by comparing groups of the same class and/or 

with a lecturer's approach. 

5 Most variables and constants are generated with 

relationships 

Very few variables and constants are identified, at 

least in symbolic form, before the first relationships 

are formed. As mathematical deductions are made in 

the generation of relationships, so variables and 

constants are more naturally introduced. 

6 Sub-problem identification 

It is difficult to find a general rule regarding the 

recognition of sub-problems. Sometimes sub-problems 

are identified at the outset, ie: before any relation

ships are generated; this may be referred to as 

a priori recognition. On other occasions, sub-problems 

are only recognised by partitions formed in the 

relationship level graph; this may be referred to as 

a posteriori recognition. In the latter case, sub

problems are connected by numerous linkages and are 

certainly not developed hierarchically or 'end-on'. 

'Polished' solutions, for example what one normally 

expects students to produce in a written report for 

assessment, may be produced by avoiding redundancy 
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(relationships not used in original 'crude' 

approach) and by presenting sub-problems as 

a priori (in either case). 

There are certain disadvantages or defects with the analysis of 

formulation-solution processes that has been carried out. The 

creative leap that is required in the formation of the first 

level 0 relationships to get the solution started has not been 

investigated. Clearly this is a very difficult matter and all 

that can be said for the present is that students improve, as 

with modelling expertise generally, with more practice; it also 

seems very important for students to gain practice by modelling 

a particular class of problems where common features arise. 

The strength or importance of relationships, apart from the 

basic or level 0 type, has also not been investigated. Deeper 

insights into the direction or main thrust of formulation and 

solution would no doubt accrue if such strengths could be defined. 

In spite of the defects of the analysis, however, there are some 

important implications for teaching, learning and assessment in 

mathematical modelling. The work of this chapter supports the 

choice of learning heuristics that is presented in section 6.7, 

Chapter 6, in particular: 

Establish a clear statement of objectives 

See 1 and 6 of this section. Encourage students to keep 

a log of all rough work done and to include initial 

'vague' thinking; from this initial work, it is easier to 

get some reasonable objectives on how far to go, ie: what 

type of solution or solutions are being sought. Do not 

insist on initial partitioning of problem, ie: identificatio: 

of sub-problems; the partitioning might well evolve naturally 

at a later stage ~f the formulation-solution process). 

Don't write a vast list of features 

With experience, students appreciate the virtue of this 

heuristic (see section 6.7, Chapter 6). 1, 2 and fi of 

this section show that features are identified as the 

solution is developed. 
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Simplify 

Start with the simplest ideas to get level 0 

relationships (crudest assumptions made). 

Get started with mathematics as soon as possible 

Don't try and discover all the basic (starting) 

relationships at the outset. 

solution will prompt the need 

Proceeding with a 

for additional 

information (level 0 relationships). See 1, 2 

and 5 of this section. 

Carry out some mathematics on initial relationships 

See 1, 2, and 5 of this section. 

With regard to assessment, the work of this chapter, together 

with Chapter 6, would indicate that more time would have to be 

granted to students in order to carry out more modelling of the 

problem (furtherance of solution and some validation). 

Additional time would also have to be provided for the writing 

of reports. 

Chapter 6), 

Only one class reported on in this chapter (and 

namely B.Sc 2 Applied Physics on the record player 

problem, was assessed; additional time of one week was provided 

for the students in which to write up their reports (including 

their log). This assessment together with the assessment of 

extended modelling course-works of the M.Sc Math. Ed. groups is 

discussed in the next chapter. The work of Chapters 6 and 7 

which illustrate some key processes in modelling provide a guide 

to expectation of student performance working under various 

conditions; a fairer judgement of students' efforts at modelling 

should now be possible. 
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CHAPTER 8 

ASSESSMENT METHODS 

8.1 Introduction 

This chapter deals briefly with the implications of the last 

chapter on Formulation-Solution Processes for assessment as 

well as some additional considerations based on the author's 

experience of assessing courses in mathematical modelling at 

the Polytechnic of the South Bank. 

As pointed out in section 3.4, Chapter 3, the three main forms 

of assessment are: 

Homework/Course-work (small/medium assignment) 

Project/Dissertation (major assignment) 

Written examination (formal, fixed time) 

The terms used to define an assessment form are somewhat flexi

ble, and so a brief explanation of each regarding this investi

gation is now provided. Homework is meant to indicate an 

extension of class work on a modelling problem, eg, carrying 

out some initial mathematics on expressions (relations) so 

far identified. In view of the small range of modelling 

activities carried out for homework it is considered inappropriate 

to award marks or other grading for such work. Instead, 

informal comments and guidance (if necessary) are all that 

is given by the lecturer. Course-work on the other hand is 

intended to provide an opportunity for students to carry out 
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a fairly extensive range of modelling activities; depending 

on the nature of the problem and the course of which modelling 

is a part, students may be expected to spend in time anything 

from about 12 hours (eg, BSc 2 Appd. Physics on record player 

problem, see Chapters 6'and 7) to 40 hours (eg, O.V. students 

on MST 204, see Chapter 3) or even 52 hours (average time for 

MSc Math. Ed., see later) in carrying out an investigation 

and writing up a report. The awarding of marks or other 

grading for course-work is considered to be most appropriate 

by many, if not by all. Project is sometimes used as an alter

native term to course-work, but in this discussion it is used 

only to refer to a major assignment such as a dissertation 

(eg, for the MSc Math. Ed.). Assessment of a dissertation is 

not considered in this chapter. Written examination, as 

pointed out in Chapter 3, is considered to be the most 

inappropriate form of assessment of mathematical modelling 

activities. It may consist entirely of unseen questions, or 

it may consist of seen questions (handed out a few days or 

more before the examination is due to start), or a combination. 

A later section o~ this chapter discusses written examinations 

in modelling with examples of questions set· for the MSc Math. 

Ed. 

The two main forms of assessment discussed in this chapter are: 

Written examinations (section 8.2) 

Course-work (section 8.3) 

in the senses defined earlier. 

Associated with any assessment form are the issues of formal 

and informal grading (the latter is sometimes referred to as 

impression marking). As discussed in section 3.4, Chapter 3, 

there are arguments for and against each method of grading. 

These issues are taken up again in the subsequent sections of 

this chapter, but suffice it to say at this juncture that 

although there are strong arguments in favour of informal 

grading (even for externally assessed assignments), a formal 
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marking scheme which awards marks for each of well-defined 

attributes or sections of a student's modelling attempt may 

be commended for the lecturer inexperienced in the teaching 

and assessment of mathematical modelling. 

Some key considerations which guide assessment, no matter in 

which form or whether a formal marking scheme is used, are 

indicated by the findings of Chapter 7 on formulation-solution 

processes. 

As pointed out in Chapter 7, it is the relationship level graph 

(RLG) rather than the concept matrix (CM) that has provided the 

deeper insights into modelling processes. Consequently, the 

results of analysing formulation-solution processes using RLG 

are the most relevant in providing guidance for assessment. 

The RLG has shown that formulation and solution are intimately 

interwoven (carrying out some mathematics prompts the need for 

further understanding of the problem - generation of further 

level 0 relationships). So, formulation and solution may best 

be marked together. Analysis, using RLG, of students attempts 

at modelling has shown that although 'interpretation' and 

'validation' are often an integral part of 'formulation-solution', 

they can be more naturally separated out for marking. The RLG 

has also shown, through demonstrating relationship generation 

and the possible evolution of sub-problems, that model develop

ment and improvement take place nacurally; consequently, it is un

reasonable to insist on students in all cases to make a 

separate development of models in a hierarchical sense. Both 

the CM and RLG show that simplifying assumptions, relationships, 

variables and constants are generated naturally with the develop

ment of a model(s), and so it is artificial to ask for a list of 

such items in t6e initial part of a report - such items could only 

be listed with hindsight and out of their natural context. The 

latter point is not encouraging lack of clarity, on the contrary, 

students should be encouraged cO identify most clearly any 

assumptions and variables they create as they develop their model(s 
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The above points may be summarised as follows: 

1 Formulation and solution are intimately interwoven, 

even ~P 'polished' model developments, and so are best 

treated as a single entity 

2 Interpretation and validation can be more easily 

separated out for marking. A warning must be issued even 

here, though, since these latter activities are a vital 

part of the modelling process and are themselves often 

integrated with formulation-solution activities 

3 Improvement of the model can take place in natural 

development and so it is unreasonable to insist on 

separate treatment 

4 Sub-problems are often only identified with hindsight, 

consequently it is unreasonable to ask for separate 

treatment of each 

5 Simplifying assumptions, relationships, variables and 

constants are generated naturally with model development. 

Consequently it is artificial to ask for a list of such 

items at the outset 

Additional considerations bearing in mind pointsl - 5 above 

which are taken into account in assessment are the following: 

Credit to be given for: 

A Interpretation of problem including clear statements 

of initial objectives 

B Generation of relationships consistent with initial 

objectives 
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C Technical competence in mathematics in generating 

additional relationships 

D Rational simplifications making clear any assumptions 

made 

E Recognition of a solution - ability to interpret and 

validate. Checking for logical errors 

F Conclusions and general discussion - awareness of 

strengths and weaknesses of model development, suggestions 

for further work 

G Overall presentation - ability to communicate clearly in 

written form; clear diagrams and sketches 

In the subsequent sections the fundamental points made earlier 

will be embodied in discussions on assessment of examination 

papers and of course-work assignments. Additional considerations 

specific to a group of students as well as the form of assess

ment will also be identified. 

8.2 Written examinations 

This section refers to written examinations in mathematical 

modelling and, in particular, illustrates with examples of 

questions set in the MSc Math. Ed. final year (second year) 

assessment. 

The MSc Math. Ed., the only course of its kind in the public 

sector of higher education, started running in 1977. The 

course is intended ~ainly for secondary school teachers and 

college of further education lecturers who have a degree or 

equivalent qualification in mathematics. The structure of 

the mathematical modelling component of the course is briefly 

outlined in section 4.3, Chapter 4; more extensive reporting 
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on the running of the course may be found in Oke (1980, 1984). 

Reports on a selection of modelling activities with a year 1 

class are provided in Chapters 6 and 7. 

The examination paper, which is taken at the end of year 2, is 

of three hours duration. The paper consists of two sections; 

Three questions are to be attempted (1 hour per question), 

with ~ question only selected from Section A. 

Section A (Seen one week before examination) 

Three questions, each stating a practical problem, to be 

modelled from scratch. Only initial approaches are 

expected, but they must include some mathematics and inter-

pretation. One question is based on a problem in the 

social and organisational area, one on physics/engineering 

area, and one on life sciences/biology. 

Example (Physics/engineering area) 

Modern office blocks, particularly of the high rise type, 

have large glazed areas on the outside to permit entry 

of as much natural light as possible. By concentrating 

on the forces involved on an individual glass unit or 

pane, try to identify some key design features. Is there 

an optimum pane size, and if so, does double glazing 

affect this? In your development, consider simple models 

and make clear any assumptions you feel are necessary. 

(June 1983 paper) 

Section B (Unseen) 

Approximately 5 or 6 questions, each based on general 

modelling and/or pedagogic issues. Essay type answers 

expected. 

Example 

Make out a case for teaching mathematical modelling, 

indicating clearly the level and background of the students 

involved. Refer to relevant "articles as far as possible. 

(June 1983 paper) 
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Further examples of questions set may be found in Appendix 2A 

where the complete June 1982 and June 1983 examination papers 

appear. 

In order to provide an indication of the extent of the initial 

modelling development that is expected in response to a 

Section A type question, the following outlines a possible 

approach to the office block glazing problem above: 

Office block glazing (Section A, June 1983) 

Outline notes on possible approach: 

Consider single-glazing. Size of glass-pane is limited by 

risk of glass breakage; pane needs to be as large as possible 

to allow maximum amount of light entry - too many panes over 

a large area will involve loss of light entry due to area 

of supporting frames. Consequently, there appears to be an 

optimum size for a given pane. 

Key methods by which pane is assumed to break: 

(a) Wind causing flexure 

(b) By crushing under own weight 

(c) Thermal cracking - pane not allowed to expand (or contract) 

in frame 

With a well-designed frame, it can be assumed that (c) will 

not occur. Before (b) takes place, whole side of high-rise 

office-block would consist of single pane of glass: Wind 

forces causing flexure, as in (a), seem to be the single most 

important cause of breakage (ignoring accidents). 
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Flexure due to wind forces: 

supporting frame 

I 

wind 

glass pane stressed inwards 

Assuming frame is rigid on all four sides of pane, then 

problem reduces to 2-D stress type (assuming small displacements). 

If wind speed is v, then d~(mv) = mv = (pAv)v = pAv 2 can be 

assumed from Newton's second law to be force (normal on pane 

of area A). (m = pAv is flow-rate of wind, p is density of 

air). This approach would provide simplified boundary conditions. 

By solving the biharmonic stress equation, maximum stresses 

can be found (near centre of pane). The design would involve 

knowledge of maximum possible wind speed v (over the year, 

in a given location), so that maximum stress is much less 

(50% less?) than breaking (yield?) stress of glass involved. 

Hence size of pane. For double glazing, air is trapped 

between 2 panes of glass and would be partly compressed -

this might strengthen structure and hence permit a larger unit 

for given wind speed; stressing of inner pane would also 

have to be taken ~nto account. 

So far, the mathematics that would be involved would be fairly 

complicated and beyond expectation in the time allowed (one 

week to prepare modelling approach, and one hour in the 

examination in which to write out the development). So, it 

is wise to consider an even cruder approach in order to get 

some upper-bound for stress at the middle of the pane. 
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Crude model 

Consider a single-pane of glass, rigidly supported along upper 

and lower edges only, then problem reduces to one in ID: 

wind 

rigid support 

, , , 

/ 
I 

• 
• , 

rigid support 

wind ~ 

wind ) 

T (tension) 

air 
"'"':::----------';~ force 

I 
I 

~ W (weight) 
resultant 
force on 
element T+dT 

Maximum stress (at mid-point) would be greater than for 2-D 

model and hence would be an upper-bound. Solution follows 

from elementary beam theory, using resultant of air force and 

weight for external loading. 

NB If an approach along the lines of the above development 

were followed, then some attempt at solving the beam problem 

identified above would be expected. 

Full credit would be given for a comparable development. 
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Section A (one question) and Section B (two questions) are 

allocated equal marks by informal (impression) marking. It 

was decided by the marking team at South Bank (the author and 

two colleagues) that formal marking was inappropriate in view 

of the possibly wide variation in approaches that could be 

adopted in tackling anyone question. For example, the outline 

approach provided above (the author's) represents mainly 

initial formulation, with reasons, of a crude model; little 

mathematics is used or intended (elementary beam theory and 

solution of a differential equation is the most expected). 

Consequently most credit, for a comparable development, would 

have to be given to initial arguments of the type used above 

in creating a specific problem to be solved. On the other 

hand, a student may decide (this actually happened in one 

case in 1983) that only the briefest (half-page) discussion 

would suffice, and then proceed with a solution with some 

numerical values (from a text-book) being inserted. Credit 

would, in the latter case, concentrate on solution and inter

pretation. As a measure of the standards set for the course, 

the approach which has been outlined together with some 

solution and interpretation of the elemental beam would attract 

full marks (33); without the latter solution, a mark of two

thirds of the total would be awarded (22). Section B questions· 

are marked as essays,where content, presentation, relevance, 

and clarity in communication are given credit. 

Clearly, it is not reasonable to expect an extensive modelling 

development for a Section A question. In fact, all that is 

insisted upon are points A, B, D and G with some attention 

paid to the remaining from the credit list provided in 

section 8.1. 

Eximination papers for the years 1979 - 1980 had the same 

structure except that Section A was unseen. The poor standards 

achieved in Section A pursuaded the teaching team to adopt a 

'seen' approach from 1981 onwards, which resulted in consider

able improvements in student performance. However, in view 

of the realistic expectation of few modelling activities being 

carried out in the time available and under the stress 



-242-

conditions of a formal fixed-time examination, it has now been 

decided to discontinue with this mode of assessment from 1985 

onwards. The reason for the inclusion of a written examination 

paper in the first place was an attempt to balance the assess

ment modes .. in what was a completely new experience (running an 

MSc Math. Ed.) both for the South Bank Polytechnic and for the 

CNAA. 

Mathematical Modelling is also assessed by course-work on the 

MSc and this mode will be the main mode of assessment in 1985 

and subsequent years. The next section discusses course-work 

assignments, with illustrations of the assignments involved 

with the MSc and BSc Applied Physics courses at South Bank. 

8.3 Course-work assignments 

8.3.1 MSc Math. Ed. 

In the case of MSc Math. Ed., one course-work assignment is 

set towards the end of year 1. Originally, two assignments 

were set, but largely due to a policy of reducing the overall 

number of assessments on the course in all subjects, a con

cession had to be made in mathematical modelling. 

This assignment consists of each student (teacher) finding 

their own problem, in any area they wish, and developing a 

mathematical model relating to this problem. Teachers are 

expected to define the learning aims appropriate to a level 

of student with which they are familiar, and to provide self

assessment questions for their students - these questions may 

test understanding of the developed model as well as test ability 

to extend or model a similar situation. Originally this course

work was assessed according to the following formal marking 

scheme: 
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Statement of problem. To include how the 

problem was identified in the first place 

Learning aims (broad and specific teaching 

aims, including level of students for whom 

material might be wholly or partially 

appropriate) 

Construction of model 

Analysis of model (including validation) 

Discussion (general and conclusions) 

Self-assessment question(s) (for intended 

students) 

% 

10 

10 

) 50 

20 

10 

Total roo 

Assessments (1), (3), (4) and (5) would be appropriate to 

any modelling exercise, whereas (2) and (6) are specifically 

relevant to the teachers on the MSc course. Note that whether 

formal marking is used or informal (impression) marking is 

used, the above serves as a useful check-list. Note also, 

that in view of the comments made in section 8.1, a further 

break-down of modelling activities is avoided although points 

A - G do provide an additional overall guide. As the teaching 

team gained experience in marking course-works, impression 

marking has taken over. This approach is further supported 

since teachers have considerable choice in how they present 

their work, and because of the completely free choice they 

have in the problem (which they find) to model. 
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The whole matter of assessment, regarding both examination 

papers and course-work assignments, has been discussed at 

length on the 'Advisory Committee for Mathematical Education' 

(South Bank), chaired by Professor A C Bajpai. The committee 

agreed that mathematical modelling would be more appropriately 

assessed by course-work rather than by formal fixed-time 

examination. The external examiners of the M.Sc. course have 

agreed that whilst a formal marking scheme for course-work can 

be of value, the most important criterion for judging a 

particular piece of work is based on knowledge of standards 

that have been developed as a result of running the course over 

several years. These 'standards' are established by 'impression' 

marking whereby the internal examiner, in final concurrence with 

the external examiner(s), arrives at a final mark (grade) by 

appraising the overall quality of a piece of course-work using 

points A - G as guidance. 

A list of titles giving an indication of the wide range of 

problems that have been considered by teachers is provided 

in Appendix 2B for the years 1980 and 1983. Course-works have 

been found on average over the years to take 52 hours to 

complete; this is considered to be quite extensive, and the 

teachers carry out the work in their own time during the latter 
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part of the summer term. Staff are available for consultation. 

throughout most of the period, but no help is provided with 

details. 

Teachers are asked to find their own problem and to develop a 

modelling approach comparable in extent to some samples 

provided in the earlier part of the course. In other words, 

although a thoroughly competent development is expected, any 

attempts at elaborate mathematics and/or attempts at introducing 

an abundance of detail into an analysis is discouraged. Credit 

is given for a development that is consistent with the learning 

aims that must be identified at the beginning of each report. 

On the whole, teachers produce work within the reasonable 

perspectives outlined here, however there are one or two 

exceptions where quite voluminous and over-ambitious reports 

have been presented; in the latter cases, excessive enthusiasm 

had led to attempts to study a problem in a manner which is 

much more appropriate to a team of professional modellers with 

much more time available. In the other extreme, some reports 

contain a large amount of descriptive material with little 

mathematical content and consequently the benefits of modelling 

are barely achieved. 

In order to give an indication of standards reached by teachers 

in their modelling course-work, the author's comments on 

three reports selected from the 1983 group (titles in Appendix 

2B) are provided in Appendix 2C. The three reports and the 

reasons for their selection are: (Pass mark 50%) 

1 The Shower Problem 

Assessment: Highest mark awarded (for 1983) 

Grade A (75%) 

To illustrate the strengths and weaknesses of a well

developed modelling approach which is also very well 

presented 
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2 Heating and Heat Loss for a Domestic Immersion Heater 

Assessment: Grade B- (62%) 

To illustrate an over-ambitious piece of work with masses 

of detail and presented in a complicated and unclear 

manner 

3 Recreational Carrying Capacity 

Assessment: Grade E (35%). Lowest mark awarded. 

Fail 

To illustrate a report with a large amount of descriptive 

material with virtually no mathematics involved 

It is very important for students in their development of 

mathematical modelling skills to receive comments on their 

assessed work in order that they may improve on their weak

nesses. A balance between encouragement and criticism is 

required, especially with part-time students where there is 

inevitably less contact between lecturing staff and students 

(teachers) than is the case with full-time students. The 

comments in Appendix 2C illustrate the author's attempts at 

achieving such a balance. Significant or major criticism 

is intended to be positive, and so suggested alternative 

approaches are indicated in the comments. For example, in 

connection with report 2 mentioned earlier, an alternative 

layout is suggested in order to make the presentation clear 

and easier to follow. In the case of report 3, some suggestions 

are made on how to focus on specific aspects of the problem 

chosen and on how a modelling development could take place 

based on these aspects. 

8.3.2 BSc Applied Physics 

In contrast to the extensive course-work that is expected of 

the MSc Math. Ed. teachers, taking an average of 52 hours' and 

where a problem has first to be found, course-work on mathematical 



-247-

modelling takes approximately 12 - 15 hours in the BSc Appd. 

Physics. A problem, or set of problems, is presented to the 

physicists in the form of a problem statement (see Chapter 5). 

Mathematical modelling was first introduced on the BSc Appd. 

Physics degree four years ago. At present it is taken only 

in the second year of the course, but it is planned to include 

modelling in the first year as well from 1985 onwards. The 

subject forms a compulsory part of the curriculum and it is 

assessed; marks contribute towards the final part I of the 

degree. 

The course-work assignment consists of a practical problem 

that is presented to the class which is then split into groups; 

the groups then work for two weeks (3 hours per week) as part 

of their normal course where contact may be made with a 

lecturer. At the end of the two-week period, students have 

an additional week in which to write up group reports in their 

own time. The mode of working in class time is illustrated 

in Chapters 6 and 7 where the record player problem is considered. 

In order to illustrate the assessment of this type of assign-

ment, the groups referred to above who 

player problem will now be considered. 

scheme was adhered to on this occasion 

worked on the record 

A' formal marking 

as follows: 

Group report to be in following format 

1 Problem statement (see section 5.5, Chapter 5) 

2 Report on class discussion (see sections 6.2 and 6.5, 

Chapter 6; section 7.3.2" Chapter 7) 

3 Log consisting of minute by minute group development of 

model(s). This must be an honest and accurate record 

of what actually happened 

4 Report consisting of model(s) with interpretation of 

results based on 3 above 

5 Conclusions 
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6 References if any 

.Marks awarded as follows: % 

Overall presentation 20 

Log (Section 3 above) 30 

Main report (Section 4 above) 40 

Conclusions (Section 5 above) 10 

Total 100 

The decision to assess each group, rather than individuals, 

seemed to be a natural one since groups worked together as 

teams. The disadvantage of assessing in this manner, however, 

is that the less able or less hard working get the same 

credit as the stronger members of their group. Little discord 

was observed on the latter point, although each group did 

tend to produce a leader. Most reports show evidence of a 

genuinely co-operative effort, at least to the extent of 

sharing the writing of sections amongst group members. 

It was decidE,!d to assess according to ·a· formal marking scheme 

by triple-blind marking; one marker was the author, another 

was a moderately experienced lecturer in modelling (and its 

assessment), and the third marker was relatively inexperienced 

in modelling. The final mark awarded was an average of the 

three markers. As pOinted out in Chapter 6, three members of 

staff ·observed the groups working in class time and made 

observation notes; these three staff are the same ones 

referred to above who independently· marked each report. The 

marks produced are shown in Table 10. Also shown in Table 10 

is the maximum relative discrepancy (MRD) between markers, 

where 

MRD = Numerical value of maximum difference between markers 
+ Average mark 

(For example, marks for presentation for group 1 are respectively 

13, 15, 14. Hence MRD = 2/14 = 0.14 (approx» 
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GROUP 1 GROUP 2 GROUP 3 GROUP 4 

PRESENTATION 13 11 11 16 

(max. 20) 15 (0.14) 13 (0.17) 16 (0.35) 12 (0.28) 

14 12 16 15 

LOG 20 16 19 23 

(max. 30) 18 (0.11) 18 (0.17) 20 (0.05) 21 (0.09) 

19 19 20 21 

REPORT 27 16 24 35 

(max. 40) 22 (0.20) 18 (0.12) 24 (0.08) 35 (0.15) 

27 18 26 30 

CONCLUS IONS 5 4 6 3 

(max. 10) 8 (0.45) 5 (0.40) 3 (0.60) 4 (0.50) 

7 6 6 5 

TOTAL 65 47 60 77 

63 (0.06) 54 (0.15) 63 (0.13) 72 (0.08) 

67 55 68 71 

AVERAGE 65% 52% 64% 74% TOTAL 

First number in each box: author's mark 

Second 

Third 

.. 

.. 
.. 
.. 

.. .. 

.. .. moderately experienced marker 

relatively inexperienced marker 

Number in brackets in each box: maximum relative discrepancy 
between markers 

Table 10 

BSc2 Appd. Physics course-work group marks: Minimisation of 

sound distortion in a record player 
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The table shows no consistent difference between the total 

marks given in any group across the groups,in fact there is 

surprisingly close agreement. However, there are more signifi

cant (although still not consistent) differences in the marks 

given to each section as shown by the higher MRD values. The 

most striking differences occur for marks awarded to the 

conclusions section; these differences (highest MRD is for 

group 3) will not contribute much to the total marks, however, 

since this section can at most contribute.10 out of 100 in 

weighting. No doubt the overall close agreement between the 

markers can be explained by the fact that all three were 

closely involved with the observation of the groups. 

Note that more pronounced differences in marking might have 

been predicted in view of there being no break-down in marks 

for the main report section, where the model(s) development 

takes place. That such close agreement amongst the markers 

(highest MRD is 0.20 for group 1) has been achieved is another 

instance of support for informal (impression) marking. 

8.4 Summary and conclusions 

This chapter covers general points for guidance in the assess

ment of mathematical modelling assignments. The two main 

forms of assignment considered are written examinations and 

course-work. Illustrations of the points have been made by 

referring to the assessment methods used in the MSc Math. Ed. 

and BSc Appd. Physics courses offered at the South Bank 

Polytechnic. 

The overall implications of Chapter 7 for assessment as well 

as the presentation of a credit guidance list are covered in 

section 8.1. 
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A subset of modelling activities is all that can be expected 

in a formal written examination and consequently this form 

of assessment is not recommended. The limited scope for 

assessing modelling in this manner is illustrated in the case 

of the MSc Math. Ed. in section 8.2. 

By contrast, the less stressful mode of course-work, where 

much more time is made available, is considered to be a most 

appropriate form for assessment. Examples of marking schemes 

used in assessing modelling assignments in the MSc Math. Ed. 

and BSc Appd. Physics courses are provided in section 8.3. 

Irrespective of the marking schemes considered, all pOints 

in section 8.1 are expected to be covered for full credit to 

be given .. A case for informal (impression) marking is made, 

where the assessor has an eye for attributes in the credit 

list appearing in some form or other in a course-work report. 

Formal marking schemes may best be used by inexperienced 

lecturers, although even then a large element of judgement 

is needed in attributing marks to any section. Close agree

ment is often achieved between several markers, even where 

a vaguely defined section is part of the marking scheme; 

this is illustrated in section 8.3.2 in the marking of the 

record player problem. Such close agreement may well be due 

to lecturers (markers) being closely involved in observing 

students modelling a particular problem or may be due to 

lecturers working closely together as a team over several 

years (as in the case with the MSc Math. Ed.). 
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CHAPTER 9 

CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER RESEARCH 

9.1 Summary of the Research Investigations 

The growth of interest in the teaching of mathematical 

modelling since the late 1960's was identified and reviewed 

in Chapter 2. For the purposes of the subsequent investi

gations, a working definition of mathematical model was 

proposed (see section 2.2): 

A simplified and solvable mathematical representation 

of an aspect of a practical problem. 

The reasons for this choice of definition are explained. The 

definition is broad enough.to cover both deterministic and 

stochastic models, although it emphasises analytical rather 

than descriptive or empirical models. 

Some of the most recent and significant research which is 

related to this thesis is reported on in Chapter 3. Teaching 

styles, .learning modes, and assessment methods have been 

identified as well as the research need for a fuller investi

gation of the formulation-solution interface. Regarding the 

latter, although the flow-chart and similar representations 

of modelling processes provide a valuable overall guide, the 

suggestions of Clements (1982) based on the systems work of 

Checkland (1975) most closely relate to the non-linear and 

holistic approach adopted in this thesis. 



-253-

The work mentioned above provides the back-drop to the main 

aims and scope of the research project which are delineated 

in Chapter 4. The pr>io>c>ipaTainiofthe>proJe>ct has> been to 

investi gate >formulation>-soTution proces>ses>an>dthe extent to 

which these processes lead to better guidance and understanding 

of teaching, learning, and assessment in mathematical modelling. 

The following activities have been carried out in support of 

this aim: 

The development of case studies of the mathematical 

modelling approaches that may be used in the 

solution of practical problems 

The design of teaching and learning experiments 

carried out mainly with undergraduates and teachers> 

on an M.Sc course in mathematical education. 

The theoretical development of formulation-solution 

processes by means of: 

A concept matrix (CM) 

A relationship level graph (RLG) 

The analysis of a selection of student's modelling» 

attempts using CM and RLG 

The implications of the theoretical development 

of formulation-solution processes for assessment 

The development of case studies 

In Chapter 5, nine practical problems with outlines of possible 

modelling approaches have been presented. Each approach is 

deterministic and analytical, and most of the problems require 

some background knowledge of physics (at approximately GCE 'A' 

level). 
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The case studies were based on the following design features: 

Motivation 

Level of difficulty 

Scope 

Content 

Duration of modelling exercise 

Details of these design features may be found. in section 5.1. 

The appropriateness of the design features is tested in 

Chapter 6 on teaching and learning experiments with further 

analysis on students' attempts in Chapter 7. 

The design of teaching and learning experiments 

Reports on the observation of seventeen experiments based on 

the nine case studies presented in Chapter 5 are gi·ven in 

Chapter 6. The experiments mainly involved undergraduates 

with mathematics, physics/engineering backgrounds, with 

teachers on the M.Sc in Mathematical Education, and 

occasionally with secondary school students. All the students 

involved had little or no modelling experience. All the 

experiments were based on short to medium duration activit1es, 

that is students spending time ranging from one hour to ten 

hours on a given problem. Long duration project-type work is 

usually given to students who have some experience of modelling 

and the assessment of such projects is covered in Chapter 8. 

The main findings on students' difficulties which are exemplified 

in sections 6.2-6.6, are as follows: 

- Tendency to want to work on problem other 

than posed 

- Variables and constants: which to choose as 

dependent, independent, parameters (particular 

difficulty for school students) 

- Relationship and variables: level of detail 

(too much detail leads to confusion, tool little 

or excessive 'lumping' leads to general mathe-
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- matical solutions which are difficult to 

interpret) 

- Tendency to: keep listing features, draw 

many diagrams/graphs, carry out large 

amounts of computation rather than use 

analytical techniques (even elementary 

ones). School students particularly prefer 

arithmetic to algebraic or other methods 

(this has also been found by Treilibs (1979» 

- Lack of confidence in making simplifications. 

Even when simplifications are made, difficulties 

are experienced in interpreting mathematical 

solutions arising from. them 

- Tendency to drift and lose sight of objectives. 

Fixations formed (unwilling to try other more 

frui tful paths). 

The experiments reported in sections 6.3-6.6.cover the two 

basic teaching/learning styles: interactive and group, or a 

combination. It has been observed that the interactive 

approach is suitable for modelling activities that are being 

tackled for the first time, especially in the case of school 

students, but that group work enables students to gain 

confidence and ability once the first one or two interactive 

sessions have been experienced. It has also been illustrated 

that lecturer intervention is needed at certain key points 

in order to prevent 'frustration', 'fixation', and other 

difficulties from taking over. Research generally has shown 

(see section 3.4, Chapter 3) that work done in groups is useful 

in the early stages of feature identification, but that the 

solution stage is best carried out on an individual basis. 

This has been confirmed by the experiments conducted in 

Chapter 6, and furthermore that much of the formulation of a 

problem is still being carried out at the solution stage. 

There is no research recommending group size, where group 

working is carried out, but that judgement of the author and 

others is that 4 seems to be optimum. 
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A set of learning heuristics has been devised in an attempt 

to provide some 'rules-of-thumb' for the student inexperienced 

in modelling. The heuristics, which are described with 

student opinion in section 6.7, may briefly be listed as: 

1 Establish a clear statement of objectives 

2 Don't write a vast list of features 

3 Simplify 

4 Get started with maths as soon as possible 

5 Carry out some mathematics on initial relationships 

6 Got a solution yet? 

7 Know when to stop 

8 Interpret your solution 

9 Validate your solution 

10 If stuck 

11 Have frequent rests 

The most popular (useful) heuristics were deemed to be 1, 3, 

and 4, whilst the least useful was 2. The description of 2 

has now been modified to a form almost identical to that used 

at the Open University, Bert<y and O'Shea (1982). 

The theoretical development of formulation - solution 

processes 

In order to gain a fuller understanding of formulation and 

solution together with the complex linkages between them, two 

theoretical ideas were developed: 

Concept matrix (CM) 

Relationship level graph (RLG) 

The ideas are introduced in section 4.5, Chapter 4 and are 

developed fully in Chapter 7. 

Section 7.2 defines and illustrates in detail the ideas in 

the construction of both CM and RLG. Sections 7.3.1-7.3.4 

analyse, in terms of CM and RLG, the results of students'· 

attempts at modelling from a selection of experiments 

reported in Chapter 6. 
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The analysis has shown that formulation-solution processes 

are not merely highly oscillatory, see section 3.3 of 

Chapter 3, but that they are largely non-linear in nature 

and that several activities are often carried out by working 

at a variety of stages simultaneously •. The most powerful 

tool in providing insightsinto mod~lling processes is 

the RLG rather than the CM; the latter is mainly an aid 

in classifying features in a model development. The main 

findings of the analyses, which can be found in more 

detail in section 7.4, may be briefly summarised as 

follows: 

1 . Distribution of features 

Although there is no discernible order in which 

features of a problem are recognised, there is a 

general movement whilst modelling from the 

(global)/(difficult to quantify) to the 

(highly specific)/(easily quantified) concepts. 

2 Basic relationships are often generated as 

solution proceeds 

Apart from the initial relationships which are 

needed to get started (which are based on the 

first understanding of a problem and are not 

derived mathematically), the mathematical solution 

as it progresses often prompts the need for more 

initial relationships. 

3 Relationships can occur in various forms 

Relationships occur in two basic forms throughout 

their generation: 

General: Applicable to a wide range of problems 

and not just to the problem in hand. 

Specific: Related directly to a specific problem. 
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4 Relationship level as goal seeking 

As with features generally, relationships often 

occur in no discernible order but a measure of 

the general progress made in finding a solution 

is provided by relationship level. 

5 Most variables and constants are generated 

with relationships 

Very few variables and constants are identified 

at the outset, instead they appear naturally as 

the solution progresses. 

6 Sub-problem identification 

Partioning a problem into sub-problems may be 

possible initially, but such break-down into 

distinct parts is often only possible after 

having seen a pattern of linkages in a RLG. 

The work of this chapter in its support for the choice of the 

learning heuristics discussed earlier, is also detailed in 

section 7.4. 

The two chief weaknesses of the analysis have been identified 

as its inability to: 

Explain how the initial relationship to get the 

solution started are obtained (creative leap) 

Describe the strength or importance of 

relationships (apart from initial ones). 

However, in spite of these weaknesses, the CM and RLG 

(particularly the latter) have shown considerable insights 

into the modelling process and are capable of being used in 

the. analysis of a variety of different students' attempts 

at modelling (from school to HE). 
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An investigation of assessment methods 

Implications of the theoretical analysis on formulation

solution processes for assessment of mathematical modelling are 

examined in section 8.1, Chapter 8. These implications may be 

briefly summarised as. follows: 

1 Treat formulation and solution as a single entity 

2 Interpretation and validation can be more easily 

separated out for marking 

3 Model improvement evolves naturally, difficult to 

mark sections (models) separately 

4 Don't insist on separate treatment of sub-problems 

5 Don't insist on lists of assumptions, relationships, 

and variables at outset. 

These implications follow naturally and logically from the main 

findings of the analysis of formulation-solution processes 

listed earlier (and found in detail in section 7.4, Chapter 7). 

Consistent with this list of implications is a credit list which 

may be used as an overall guide in assessment. The credit list, 

details of which may be found in section 8.1, is further based 

on the experience of the author and colleagues at South Bank 

Polytechnic. Briefly summarised the list is: 

Credit to be given for: 

A Initial interpretation of problem 

B Generation of relationships consistent with 

initial objectives 

C Technical competence in mathematics 

D Rational simplifications based on assumptions 

E Recognition of a solution 

F Conclusions - awareness of strengths/weaknesses of 

model development 

G Overall presentation - clear communication. 
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Examples of assessment of examination papers and of course

works are provided in sections 8.3.1-8.3.2. Along with others, 

examination papers are considered to be an inappropriate form 

for assessing mathematical modelling since only a sub-set of 

activities can be expected even with 'seen' questions. 

A discussion on informal (impression) and. formal marking shows 

that informal marking, bearing in mind the implications and 

credit lists earlier, is preferred. For the inexperienced 

lecturer, formal marking may have a place. In the experience 

of the author it is beneficial to students to discuss how 

credit will be given, in general terms (c.f. lists), and to 

provide detailed comments .on a course-work assignment after 

grading. The latter points form an integral part of the 

teaching of modelling. 

9.2 Suggestions. for Further Research 

The case study problems in Chapter 5, upon which subsequent 

work covered in Chapters 6-8 has been based, require some 

acquaintance with physics (except 'Evacuation of a school' 

and 'Motorway versus A-Road travel costs'). In particular, 

the physics involved has either been mechanics (including 

elementary fluids) or simple heat transfer; the record 

player problem additionally benefits from a familiarity with 

waves. These case studies have been devised for students 

who have approximately GCE 'A' level background knowledge in 

physics. Consequently, although the applications areas are 

diverse, the case studies have two main themes: mechanics 

and heat. It has been observed by the author, that if two 

or more modelling problems with the same theme are presented 

to students, not necessarily successively, then students 

improve in modelling by benefitting from the implicit analogies. 

Consequently the following suggestions for further research: 
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To gauge the improvement in modelling skills 

by presenting practical problems based on a 

common theme (eg: h.eat-transfer). How many 

problems per theme and how many themes should 

be tackled for a given curriculum1 

Closely related to the above suggestion is the question of 

grading modelling activities in order of difficulty. This was 

first raised in sections 3.2 and 3.4, Chapter 3. Level of 

difficulty of a given problem has been extensively illustrated 

in Chapter 6 by reporting on student performance; further 

analysis of the difficulties experienced by students is 

illustrated in Chapter 7. One of the most difficult problems 

was found to be 'speed-wobble-in motorcycles'- (sections 6.2 and 

6.4, Chapter 6 and section 7.3.3, Chapter 7). In the 

'conclusions' part of section 6.4, it was suggested that the 

speed-wobble problem might better have been presented as the 

culmination of a set of graded problems starting with a rolling 

wheel which did not wobble. Having identified the need for 

graded problems, there is the danger that a carefully constructed 

sequence of problems would remove most of the initial formulation 

of the final problem. However, this does seem to warrant further 

research in this direction. 

2 

GRADED 

MODELLING 

PROBLEMS 

To develop problems graded in difficulty in a 

given application domain (theme). 

To investigate any resulting improvement in 

modelling skills, eg: ability to develop one's 

own graded development for a given problem. 

Heuristics were first discussed in section 3.2, Chapter 3, in 

the context of more highly structtired problem-solving processes. 

These heuristics are largely posed in' 'general form, see. for 

example the discussions on Polya (1957), Kilpatrick (1969), and 

Gagne (1966) (section 3.2). In the case of mathematical modelling 
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processes (less well structured), although the term 'heuristics' 

is not used, one learns of the noteworthy work of Morris (1967), 

Bajpai et al (1974, 1975), and Burkhardt (1979, 1981) (all 

discussed in section 2.3, Chapter 2) each of whom in ·effect 

consider heuristics or 'guidance for students' in detailed 

form. The heuristics presented in Chapter 6, based on the work 

mentioned above in addition to the new work of this thesis, are 

also in detai.led form. Examples of general heuristics are: 

Devise a plan, Carry out the plan, Look back, Polya. (1957); 

examples of more detailed heuristics are: Simplify, Get started 

with mathematics as soon as possible, Carry out some mathematics 

on initial relationships (see section 6.7, Chapter 6). Neither 

the general nor the more detailed heuristics are 'task-specific' 

(eg: use Newton's second law of motion when considering 

momentum changes of air impinging on a windmill blade). The 

reason why task-specific heuristics are not devised, especially 

in modelling, is because they would constitute very strong 

hints for a given task (problem) and thereby largely destroy 

students' opportunities to learn for themselves. However, given 

the difficulty of modelling, especially for inexperienced 

students, a case may be made for further development of learning 

heuristics. 

3 

LEARNING 

HEURISTICS 

To investigate the possibilities of further 

development of learning heuristics for mathe

matical modelling. In particular, to 

investigate the level of detail needed in 

each heuristic for a range of problems. 

As pointed out in section 7.4, Chapter 7 and in section 9.1 

of this chapter, two important aspects of the analysiS on 

formulation-solution process, namely inItial relationship 

formation (before any mathematics is carried out), and strength 

or importance of each relationship, need further attention. 

The first of these aspects may properly fall into a field of 

psychological research on problem solving although no known 
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work relates very closely to this (see Chapter 3). An 

investigation into the second aspect, on the strength or 

importance of each. relationship (apart from level 0 types which 

are fundamental), may lead to more efficient and easier model 

development. 

·4 To investigate those factors affecting the 

(BEFORE MATHS) creation of initial relationships before any 

RELATIONSHIP mathematics is carried out 

CREATION 

STRENGTH OF 

RELATIONSHIPS 

To investigate the strength or importance of 

each relationship and the implications for 

the linkages between each. 

The evolution of assessment methods in mathematical modelling is 

inevitably even more in its infancy than the development of 

teaching and learning styles. A better understanding of 

modelling processes is an aid to developing assessment criteria, 

as is exemplified in Chapter 8, but the issue of how much weight 

'should be attached to each criterion is still open. How 

important each criterion is considered to be depends, inter alia, 

on the problem being modelled and the flexibility allowed in 

students' presentations. The implications of the research on 

formulation-solution processes (Chapter 7) for assessment, 

which are provided in Chapter 8 and in abbreviated form in 

section 9.1. of this chapter, would strongly indicate however 

that there should be a change in emphasis in student present

ation. For example, referring to Berry and O'Shea (1982) and 

Table 2 in section 3.4, Chapter 3, students are asked to state 

variables and assumptions in thefirs·t· s·ta:ge of their modelling 

development. The research in this thesis has shown that such 

items occur with the development of a model and so are most 

naturally presented as they occur. , 
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The extent to which. attributes occur in any given modelling 

development depends, as pointed out earlier, on the problem 

being tackled and on the particular presentation being asked 

for. Illustrations of a broad or general way in which 

presentation of a model development may be made are provided 

in sections 8.3.1-8.3.2 in Chapter 8, where a natural 

flexibility is incorporated. These illustrations are not 

totally dissimilar to other assessment specifications, even 

Berry and.O'Shea's, and it would seem that further work here 

would be beneficiaL Given a broad and hence flexible frame

work in which students may present their work then leaves the 

lecturer to use his/her judgement in making an overall 

assessment using the credit list (sections 8.1 and. 9.1). 

6 

ASSESSMENT 

METHODS 

To investigate further: possible course-work 

presentation frameworks and the ways these 

affect student opportunities to gain credit 

according to the list of attributes provided 

in section 8.1, Chapter 8. In particular, 

whether formal or.informal (impression) 

marking is used, the feasibility of attaching 

a weight to each attribute to be tested. 

9.3 Wider Implications 

The research has centred mainly upon analytical and determin

istic modelling of problems requiring a background knowledge, 

or at least an intuitive understanding, of physics. Two 

problems, 'evacuation of a school' and 'motorway versus A road 

travel costs', which are organisational in nature have also 

successfully been analysed in terms of a concept matrix and 

relationship level graph. There appears to be no reason why 

analytical and deterministic modelling of any problem, no 

matter in which application area, cannot be analysed by the 

same means. The findings of the analysis of Chapter 7. should 

still apply to a very broad range of problems whether in the 

physical sciences and technology, the life -sciences, or in the 
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social and organisational sciences. The question that 

remains is whether or not the analysis applies to stochastic 

modelling, or even more broadly to empirical modelling. Some 

of the difficulties experienced in the latter.are certainly 

in common with the types of problems considered in this 

thesis, eg: postulating the first relationships. One is 

thus encouraged to believe that much of the research carried 

out in this thesis is relevant also to a much wider class of 

modelling activities, although this remains to be tested. 

The connection between problem-solving and mathematical 

modelling has been examined in Chapter 3. It would appear that 

much of the work reported on in Chapters 6 and 7 would also be 

applicable to the more highly structured and well-posed 

problems involved. For example, that carrying out some mathe

matics itself prompts the need for 'further information' 

(level 0 relationships) at an intermediate juncture would 

certainly seem to be true for problem-solving. Once again, 

this conjecture needs to be tested. The implications for 

solving mathematical problems in general would be considerable 

if the analysis could be shown to relate to problem-solving 

processes in a wide range of activities that arise in various 

topics, eg: algebra, discrete mathematics, and analysis. 

At the higher and less detailed level of methodologies, the 

analysis of formulation-solution processes would seem to offer 

some scope for guidance in systems design in a wide range of 

human activity systems. The philosophy of approach has a 

bearing on Checkland's (1975) work which, in turn, has 

implications for the design of computer systems which operate 

in a social and organisational environment. In the field of 

expert systems (part of the fifth generation computing 

developme~t), in particular 'Intelligent Knowledge Based 

Systems' (IKBS) research, the Alvey Report (1982) identifies 

the need to develop understanding of human concept formation, 

reasoning and use of heuristics. The work of Chapters 6 and 

7 would appear to have some bearing here, and possibly could 

make a contribution to the design of an expert system·as an 

aid in the teaching of mathematical modelling. 
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APPENDICES 

1 Concept Matrices and Relationship LeveT Graphs 

lA Central-heating problem (author's 'polished' 

modelling approach) 

1B Baby's milk bottle problem (M.Sc Math. Ed. group 4) 

1C Minimisation of sound distortion in a record player 

(B.Sc 2 Appd. Physics, group 1) 

1D Minimisation of sound distortion in a record player 

(author's 'polished' modelling approach) 

lE Speed-wobble in motorcycles (author's 'polished' 

approach) 

2 Assessment used in M.Sc Math. Ed 

2A M. Sc Math. Ed., Year 2 Final examination papers 

in Mathematical Modelling. June 1982 and June 1983 

2B M.Sc Math. Ed., Mathematical Modelling Course-work 

tit les. 1980 and 1983. 

2C M.Sc Math. Ed., Assessment comments on Mathematical 

Modelling Course-works. 1983. 



-276-

APPENDIX lA 

Central-heating problem 

(author's 'polished' modelling approach) 

Relationship list in order of occurrence 

Relationship 

level 0 

level 0 

4+5 

4-+6 

3 & 6+7 

Td6 i = 
dt 

= 

= 

-K(6. - 6 ) 
1. 0 

1 in 
A 

H - K(6. - 6 ) G .1. 0 

= 

= 
1 
A IT

-
in 

B 

Solve 3 & 6 iteratively for t 1a 

No. 

1 

*(5, level 0) 

2 
*(13, level 1) 

3 
*(15, level 2) 

4 
*(4, level 0) 

5 
*(11, level 2) 

6 

7 



3 & 6+8 
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Solve 3 & 6 iteratively for B 
min 

5· & 7 & 8+9 Solve for t 1b 

2 & 7 & 9+10 Difference in costs in terms of Bc 

8 

9 

10 

*(23, level 7) 

*Figures in brackets refer to original modelling approach 

(See Figure 35, Chapter 5). 

Relationships level graph 

, I 
Cooling down -----7>',,(1) , (2) 

(sub-problem) ' '\ I 

Heating up 
(sub-problem) 

i I 
; I 
: I . (I~ i 

I\~: 

i 
I 
i 

\ 

I 
! 

I (6)' ~9)-r) -(10) 

RSLATIONSHIP 
LEVEL 

I I·! I 
! ; I 
, I 

I 
i I 

012 3 

i 
Sub-problems 

linked 

4 

B 
c 
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APPENDIX 1B 

Baby's milk bottle problem (M.Sc Math. Ed. group 4) 

Feature list in order of occurrence 

Feature 

Range of temperature required 

Temperature of bottle from 'fridge 

Shape and material of saucepan 

Material of bottle 

Specific heats of milk (srn) and 

of water (s ) 
w 

Consider milk only in saucepan 

Relationship 1 

Relationship 2 

So for a fixed mm (mass of milk) there is 
, 

a fixed time (for heating) 

Saucepan has· also to be heated but remains 

constant throughout problem 

Relationship 3 

Relationship 4 

Heat provided by stove = heat needed for 

heating water plus heat lost to outside 

Relationship 5 

Relationship 6 

Relationship 7 

What areas to include in heat loss 

calculation? 

Relationship 8 

Relationship 9 

Relationship 10 

Relationship 11 

Relationship 12 

Order of occurrence 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

o 
P 

Q 

R 

S 

T 

U 

V 
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Relationship list 

(numbering refers to relationship numbers above) 

Relationship 

level 0 

level 0 

level 0 

heat 
time 

temp = mass x sp.ht x trme 

Q = m S m m 
de 
dt (milk only in saucepan) 

(rate of heat input = mass x sp. ht. 

x rate of temperature rise) 

Q = (m s w w 

(water surrounding bottle with milk) 

Q de 
dt m s + m s 

w w m m 

as m"'O w 

Heat loss considerations: 

level 0 

level 0 

mass of liquid 
22· 

= [TrR H+rrr (h-H)] P 

Newton's law of cooling: 

rate of ~eat loss = k(e-e ) 

/' ~ 
depends on temp. of air 
area exposed 
to air 

No. 

1 

2 

3 

4 

5 

6 



1 & 5 & 6+7 

level 0 

level 0 

10+11 

7+12 
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d8 Q = s(XH + ~) dt + k(8-8
a

) 

Area exposed to air (A) 

= 2nRH + nR
2 

+ 2nr(h-H) 

dA 
dH = 2n(R-r) 

Volume of water 
2 2 

= (nR - nr )H 

dV 
dH = 2 2 

n(R - r ) 

Q' _ k8 = Le-kt 

(Q' = 

7 

8 

9 

10 

11 

12 
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Concept matrix 

Specificitv level 

A r G 

(B)(E) (H2)(K3) (A)(G1)(I)(Q) 

(L4)(N5)(06)(P7) 

L (R8)(S9)(TIO)(Ull) 

(V12) 

Complexi ty 

Level 
(\1) (C)(D)(F)(J) 

M 

H 



heat 
time 
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Relationship level graph 

[ 
l 

= mass x sp. ht x t~mp --4} (1) 
t1me 

! 
I 
i 
! rate of heating 

(milk only) Rate of temperature 
rise with no heat 

rate of heating 
(water surrounding 
bottle with milk) 

, loss 

(J )-__ -J) /'1 
) I ' 

[ , 

Rate of heating 
with heat loss 

mass of liquid ----->.., (5) ;( 

I ~(~)~)~(12) 
i ./ i 

Newton's law of cooling (6)/' i 
--~) I . 

! 

Area exposed to air 

i 

-------"17 (~) 
I 

Volume of water 

! 
.; 

_____ ~, (10) (11'1) , I-r-
i 

RELATIONSHIP 
LEVEL 

I 
! 

o 1 2 

Heat 
loss 



L 

M 

H 

-283-

APPENDIX lC 

Minimisation" of sound distortion in a re"cord player 

(B.Sc 2 Appd. Physics, group 1) 

Specificity level 

A I G 

(F)( G)( I ) « J 1 » (K2 ) (E) 

( L3 )( M 4 ) « N 5 »( 06 ) 

(P7 )(Q8)( R9) 

(B) (D) 

(A) (H) (C) 

«» denotes level 0 relationships 

Concept matrix 

Complexity 

level 



Relationship level graph 

Scaled diagram I 
showing variation )(1) > (2) 

of tracking angle ~ I 
wi th radius I I 

! I 

I d}.---4 
i 
I 
i 
I 

(4) 

I 
I 

Cosine rule applied 

to triangle 

p
2

=L2 +R2_2LRsinA 

---? (5) ) )) (7) )' 

I 
-I 

; 
i 

! 
I 

(P = dist. of pivot to centre 

of record, 
J 

0 
R = rad. of groove, 

I 
I 

1 2 

Scaled 

3 4 

L = arm length, RELATIONSHIP LEVEL 

A = tracking angle). 

! 
I 
! , 
I 

I 
idi agrams / graphs 

i 
i 

" "' 
Maximum value for 

tracking angle (A) 

when A optimised 

I 
IV 
00 
01> 
I 



Minimisation of sound distortion in a record player (Author's 'polished' rrodelling approach) 

Cosine rule applied! I 
to triangle: ~ I i 
(L+d)2 = L2

+r2-2Lrsinci (14(24-(34(4~(54(64- Un 
(undertlang) I' I" I I i 

I 1 

Sketch graph of 
distorted signal 

I I 
I ' 

I' I I 

(9)'\, 

l 
! 

I 
r r 

rhan =~ 

r 
! 
i 

! 

Straight ann, 
ge<Jlretrical 
conSiderations 
only 

'\1 I I ' Underhang Straight ann, with I I I ) 

(11)...r( 12*( 13f+.( 14i~( 15

i
H-( 1~( 1 

Cosine rule 
applied to 
triangle: 

, , 1\ 
___ ~'(20)+(2i)+(22) I ) i (2 

7' , I I ' 
(L-d)2 = L2 + 
(overnang) 

APPENDIX ID 

2 
r -2Lrsin Cl 

! , 

o 1 2 3 

i 

\ 

I , 
I 
I 

3 5 6 

RELATICNSHIP LEVEL 

7 

B-(18 B-( 19)~ T r 1 
2 

r 2
2 

signal analysis 

I I I L(r1~r2) 
i~ 

)-r(2t~}+(21)-r(2r)" I overnang 

I I (29)..c' 

I I l/\ off-s~t 
I "il+(T ~,",,1" 

8 9 10 11 

off-set ann 
with Signal 
analysis 

I 

'" 00 

"" I 
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APPENDIX lE 

Speed-wobble in motorcicTe·s (author·'s· 'p·oTished' approach) 

Relationship list in order of occurrence 

Relationship 

level 0 

level 0 

2 & 3"'4 

3 & 7-+5 

4 & 7 ... 6 

1-+7 

la = -\lRLe:' 

where e: = sign (L S+ v sina) 

(see section 5.4. Chapter 5) 

initial conditions: 

a = 

= 

. 
a 

\lRLe: 
-r-

= t = 

a = \lRLe: (t-t
o

)2 + w (t-t ) + a 
- ~ 0 0 0 

. 
a = \lRLe: (t-t )2 + W 

r r r 

a = \lRL £ (t-t )2 + w (t-t )+ a 
-2Ir r r r r 

= = 

. 
La + va = 0 

(no side-slip condition leading to 
exponential decay) 

No. 

1 

2 

3 

4 

5 

6 

7 

8 
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8+9 a = 

. 
a = 

I /r-i 

1/~) ) (9)~9 
I : 
!! • 

Equation of motion ---7(1) ) (7) ) (5) ~ 

le = -~RL£ !~:X 
i (3) 

, \~ 
'"Hi.' COOditio",--->JL,· (4) , 
6 = 6

0
, 

8 = w 
0 

I 
t = to 

I 

! 
I 

RELATIONSHIP 0 1 2 
LEVEL 

~ 
(6 ) 

3 

9 

10 

Exponential 
decay 

Oscillations 
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APPENDIX 2A 

MSc Math. Ed. 

Year 2, Final examination papers in Mathematical Modelling 

June 1982 and June 1983 
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Polytechnic of the South Bank 
Faculty of Science & Engineering 
Department of Mathematical Sciences and Computing 

NO 179 

MSc IN MATHEMATICAL EDUCATION 1981/82 

Year 11 Examination for Part-Time students 

MATHEMATICAL MODELLING (Part seen paper) 

Attempt ONE question from Section A (seen) 
and TWO questions from Section B (unseen). 

The use of electronic pocket calculators is 
allowed in the examination. 

SECTION A (seen questions) 

Wednesday 16 June 1982 
1.3Opm to 4.~O pm 

A local authority is concerned iD control a dangerous road T-junction, an 

"accident black spot", by means of traffic lights. The authority is· seeking 

advice on the mode of operation and the phasing of the traffic lights. 

Consider and discuss the process of model development in order to assist the 

authority in its decisions. Concentrate on the consultation, data collection, 

assumptions and validation aspects of the model rather than its computer 

implementation. 

Sugar diabetes is a metabolic disorder. The body cannot burn off excess sugar 

and so too much sugar builds up in the blood. To diagnose ita patient fasts 

overnight, rJ?Ports to hospital the following morning and the con:: entration of 

sugar in his blood is measured. He then drinks some glucose ve::y quickly and 

the concentration is measured every half hour for three or four hours. 

Model th~ level G of glucose in .the blood al'ld use it to estimate a ''pe:dod'' 

that L~dicates iiabetes. 

cor.tinued .•. 
1 



Sc IN MATEEMATICAL EDUCATION - MATHEMATICAL MODELLING - continued ••. 
(Part seen paper) -290-

he sketch below shows part of a main pipe circuit, through which fluid is pumped. 

he pump should ideally produce a constant flow rate at a constant pressure, but 

,n practice the pressure (and hence the flow rate) varies to some extent. The 

lurpose of the valve is to prevent pressure build-up above the required value; 

lince the pipe diameters in the main circuit and to the valve" are equal, the 

)ressures in all parts of the system may be assumed equal at any instant of time. 

MfllN t-IRCu IT 

/~-------~----------~ 
______ ~~~~---~--~------~----~----------------------------~ r~~I~ 

PuMP 

A possible valve design is, shown below: 

~~~----------------------~-------------------------~fLOW 
Si<f\I<Il'iCr (MCIff\&LE) "1Ii"' 

Try to identify ~he features involved and attempt to construct a simple 

mathematical model which could serve as a design aid for the valve. 

2 



-291-
MSc IN MATHEMATICAL EDUCATION - MATHEMATICAL MODELLING (Unseen questions) continued. 

(Part seen paper) 

SECTION B (Unseen Questions) 

Mathematical Modelling may be described as an activity covering the 

following four stages: 

Formulation 

Solution 

Interpretation 

Validation. 

Discuss the nature of each of these stages, showing how (if at all) each 

stage is linked with the others. 

Are there any additional stages that you would like to include for a fuller 

description of the modelling process ? 

Reference should be made to ~ Studies of Mathematical Modelling. Eds, 

James and McDonald, 1981. as well as other relevant texts and papers. 

Discuss critically the article ·~thematical Modelling: A Unifying Theme for 

Applications of Mathematics" by D N Burghes. Bull.D1'.A. li. 8/9 1981. 

To what extent does this article: 

(a) Illuminate the modelling process. and 

(b) Provide material that could be used (possibly modified) for teaching 

modelling? 

Compare and contrast ·~thematics by Modelling" and "Modelling by Mathematics" 

in pedagogical terms. 

continued •..•.• 

3 
.. :-. 



-<:~<:-

MSc IN MATHEMATICAL EDUCATION - MATHEMATICAL MODELLING (Unseen questions)continued. 

The treatment of Linear Programming in most textbooks begins by the statement of 

a "Standard" problem and moves rapidly to a detailed description of its solution 

by the Simplex method. Discuss, with examples, how some genuine modelling activity 

can be introduced into the treatment of L.P. 

Discuss the Mal. thusian model of population growth and 00001 with reference to more 

recent models why it is unsatisfactory as a model of national population growth. 

Discuss what Richard Levins means by robust and non-robust theorems. Would you 

consider M.Hay1s discussion on the relationships among various types of population 

models to be relevant? 

4 
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Polytechnic of the South Bank 
Faculty of Science & Engineering 
Department of Mathematical Sciences and Computing 

MSc DEGREE IN MATHEMATICAL EDUCATION 

NOMCD/004 

1982-83 

Year 11 Final Examination for Part-Time Students Mcnday 13 l.me 1983 
1. 30 - 4.30 pm. 

MATHEMATICAL MDDELLING (PART SEEN PAPER) 

Attempt ONE question from Section A (seen) 
and TWO questions from Secticn 8 (unseen) 

The use' of electronic pocket calculators is 
allowed in the examinaticn. 

SECTION A (seen) 

An Urban District Council has many winding country roads which are cnly wide enough 

for a single vehicle. They are investigating a policy of providing "passing places" 

whereby if two vehicles approach each other one can wait in the passing place until 

the other passes. Passing places are difficult and costly to arrange since they 

require negotiation with and payment to landowners. 

Develop, as fully as you can, a mathematical model to assist the council with 

formulating a policy. 

Modern office blocks, particularly of the high-rise type, have large glazed areas 

on the outside to permit entry of as much natural light as possible. By concentratin~ 

on the forces involved on an individual glass unit or pane, try to identify some key 

design features. Is there an optimum pane size, and if so, does double glazing 

affect this? In your development, consider simple models and make clear any 

assumptions you feel are necessary. 

con td ... 

1 



~ 

MSc DEGREE IN MATHEMATICAL EDUCATION- MATHEMATICAL MODELLING (PART SEEN PAPERj _ 

ccntd. 

In the human bloodstream potassium ions (K~are constantly moving into and out of 

the red blood cells; ie the surfaces of the red blood cells are permeable to K~ 

ions, Ions move from the plasma into the red cells ,at a certain rate, while other 

ions within the cells move out into the plasma at a certain rate. It is required 

to determine these two rates (ie of the permeability of the cells' surfaces to K+ 

ions in both directions). A technique to achieve this works as follows: 

A fixed quantity S of radioactive K42 + ions is introduced into the blood. 

Initially, all these ions are in the plasma. The amount P(t) remaining in the plasma 

'at various subsequent times is determined by taking blood plasma samples and 

measuring the radioactivity caused by the presence of the K42+ isotope ions. 

Establish a mathematical model that will enable the required permeabilities to be 

determined from the raw data collected. Be completely explicit about what assumpticns 

you make. The following data might be of help to you: 

t(min) 0 500 1000 1500 2000 

P(t)(mg) 5.00 2.96 2.01 1.49 1.14 

2 

2500 3000 3500 4000 4500 5000 

1.01 0.97 0.92 0.B7 0.B5 0.85 

contd •.• 
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MSc DEGREE IN MATHEMATICAL EDUCATION - MATHEMATICAL MODELLING (PART SEEN PAPER) 

contd •• 

SECTION B 

Discuss critically the activities involved in the formulation stage of 

mathematical modelling. To what extent is it possible to categorize identified 

features? Illustrate points made by choosing relevant examples. 

Fig I r---~~-------------' 

q--

blood ('Waste product~ 

memtlrane 

dialysate. 

, 
v 

Fig I shows a schematic diagram of a dialyser. r1ake a mathematical model of the 

action of this machine and obtain an expression for or relating to the clearance. 

State clearly any assumptions you make. 

Answer parts (a) and (b) below paying particular attention to pedagogical aspects. 

(a) Define a situation for which both an analytical and a simulation model can be 

devised outlining hriefly the stages that are involved in the modelling process 

in each case. 

(b) Use your example in (a), among others, to compare and contrast analytical and 

simulation modelling. 

To what extent has the development of modelling in the Life Sciences been 

influenced by the original discipline (if not a Life Science) of its major 

contributors. 'You may if you wish refer specifically to population dynamics. 

Make out a case for teaching mathematical modelling, indicating clearly the 

level and background of the students involved. Refer to relevant articles as faI' 

as possible. 

3 
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APPENDIX 2B 

MSc Math. Ed, 

Mathematical Modelling Course-work Titles 

1980 

Two Secretaries, Five Solicitors (office organisation) 

Rent or Buy Television 

Traffic Flow at Roundabouts 

Parking a Car 

Petrol Purchase - Company Car (Private versus Business usage) 

Lottery Tickets 

Travel Time to School 

Rocket-Satellite System 

Size and Position of Advertisement Signs 

Vehicle Braking 

Costs of Journeys to Work 

Discounts on Sales of Goods 

Squash Service 

Costing in Book Publication 

Hire or Buy a Car 

Petrol Filling Station Trade - Monte-Carlo methods 

Water Wheel and Impulse Turbine 
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1983 

Maps (Size and scale to cover a given country) 

The Tennis Service 

Some Aspects of Fielding a Cricket Ball 

Street Lighting 

Heating and Heat Loss for a Domestic Immersion Heater 

Clothes Budget 

Investigations into the Problems of Screen Display for a 

Computerised Flight Simulator 

The Shower Problem (flow of hot and cold water) 

Recreational Carrying Capacity 

The Dividing Society (Investment in Friendly Society) 
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APPENDIX 2C 

MSc Math. Ed. 1983 

Assessment Comments on Mathematical Modelling Course-Work 

1 The Shower Problem (Grade A: 75%) 

Presentation - diagrams, etc, exemplary 

Pp 1-34 

Pp 7-8 

Identical in both Teacher's and Pupil's texts, so I 

will refer to page Nos. in Teacher's text throughout. 

(By the way, self-assessment question starts on 

p.31 and not 39 in Pupil Text) 

I take it that you assume your 2nd yr GCE AIL students 

know little or no physics. By the 'method of 

mixtures' your 3.1.1 would be: 

(Temperature mhTh + mcTc 
of water : T = mh , mc' mass flow-rates of hot 

and cold water respectively 
from mh + mc 
shower) 

From your diagram on p 8, we could have for velocity v: 

(energy conservation) 

mh = p x area x vh = pAh ,!2gdh for hot water. 

Similarly for cold. 

So T = (Ah ,!2gdh + ... )/( ... ) and thus T depends on Id 
and not d. (Assumes uniform flow). 

Interesting to see that you start considering flow

rates for the first time on p 15. 

My only experience of temperature surge is when my 

wife uses hot water in the kitchen and I freeze in 

the shower! This seems more understandable somehow 

than your problem. 
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Flow-rates at shower head - is there a 'bottle-neck' 

somewhere? 

But your measurements show total flow

rate is less than sum', of separate flow

rates. So what's wrong? 

Ex 12 and solution on p 27. I don't understand. 

3.19 Expression for flow-rate of cold water into 

shower head according to 3.18? 

It would be useful to remind the reader where you 

get these numerical quantities from. 

Self-assessment question. Good,but taken after the 

exercises (no doubt your intention). 

General Comments 

A splendidly presented piece of work which highlights several 

features of the modelling activity. Nice build-up of ideas 

and exercises interspersed in development (with solutions). 

I agree that the flows in the shower head are not satisfactorily 

explained physically (I also found your development a little 

confusing in places). Generally, a first class effort. 

2 Heating and Heat Loss for a Domestic Immersion Heater 

(Grade B- : 62%) 

I dare not think how long this project took you to complete 

(100 hours?). Very ambitious piece of work, to put it mildly. 

" aimed at students in the last year of the sixth 

form ... " 

" ... particularly appropriate for engineering, 

students in further education ... ". 

••• J 
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I suppose that, given great enthusiasm, a very 

bright student on an honours degree might approximate 

what you have done in something like one term's work. 

Pp 5-11 Good. There is plenty of material here for the sixth 

Models 1, former/undergraduate. You then get rapidly very 

2 complicated. 

Pp 11-48 It would have been helpful to have seen a table of 

your model(s) development, including main conclusions. 

As it stands, your report is jolly hard work to 

read - masses of detail, masses of mathematics. 

Morris: "enrich gradually". 

A few simple sentences, rather 

would have helped the reader. 

written: 

than discursive descriptions, 

For example, ~ could be 

The calculations 

fall from 650 C to 

7) show that for a temperature 

cooling time is very large for 

thick insulation: 

Insulation thickness 

7.5 cm 

2.5 cm 

Cooling time 

24 hours 

8i hours 

This assumes no 'draw-off', ie, water not used. 

Validation proved difficult for the following reasons: 

1 Difficulty in isolating heater electrically from other 

apparatus in use 

2 Difficulty in measuring water temperature without 

disturbing domestic use ('draw-off') 

3 Variability of temperature of surroundings 

4 Thermostat temperature setting inaccurate 

Pp 33-44 Best placed in an appendix (mathema.tical and arithmetical 

detail not central to model development) 
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Pp 51-55 Some very good points made, particularly under the 

heading of 'General Observations'. However, even 

Morris (often quoted in the report) would not attempt 

so much as you have. 

General Comments 

You have obviously worked extremely hard on this course-work. 

Enthusiasm shown is astonishing. 

However, I think that you have confused modelling for the 

professional with modelling for the teacher. Even the 

professional would attempt less than you have; he would 

concentrate on a narrower range of objectives. The professional 

team leader would draw together the work of several individuals. 

In future, aim for something more modest (like the modelling 

activities so far introduced on the MSc course). Also, try 

and present your work with a few sentences, keep detail to a 

minimum, and use tabular and diagrammatic representation. 

You must have learnt an enormous amount from this exercise -

you have yourself pOinted out how difficult it is to validate 

a model. Average values are usually all one has to play with -

don't despair, they still provide valuable insights. 

Finally, I would like to commend you most highly for taking 

such an earnest interest in this aSSignment .. 

3 Recreational Carrying Capacity (Grade E: 35%) 

~ General aims. " ... for both students of mathematics 

and town and country planning." Level of students 

in both cases? Undergraduate? 

~ Diagrammatic map. Of .what site? Scale? Imagined 

typical layout of park? 
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E-Z Weighting numbers according to percentages not clear, 

eg, square C: 11% of picnicers = 38 - 48? Should 

be 11 surely? 

Last para. "There are· therefore 55 spaces in the car 

park, ... " Where does the '55' come from? 

You refer to the term 'model'. Mathematical model? 

(and Mathematical models have mathematical solutions of 

elsewhere)some kind (eg, solution of equations - analytically 

or graphically). There is no mathematics yet - you 

still seem to be formulating the problem at the 

initial stages (identifying features, but no mathe

matical relationships yet). 

A modelling exercise at this juncture could be to try and 

predict the rate of a particular type of degradation with 

visitor numbers, eg, wearing down of grass to earth? You 

would need some data though (ask a friendly gardener?). How 

long for grass to re-grow? Factors involved: type of grass, 

wet/dry season, slope (people slip), .... 

For given grass, perhaps something like the following is 

reasonable: 

No. of 
people 
(walking) 

constant (N, say) 

~---+-----4-----+-----;. time (weeks) 
2 4 6 



Grass 
loss 

100% 

G 
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:~ no grass left 
- - -- _~_~~I~-------------

For given N 

Grass loss measured 
as total area of earth 
patches divided by 
sample area. 

+------r------~------~--------~~t 

G 

2 4 6 time, weeks 

i 
chronic condition (footpaths) 

S<::trething like G = A(1--e -kt); A, k>O 

--::::=========== N4 , . N3 
__ -------------N2 __ -------~1 

i 
N increasing 

t 

Choose a simple more specific problem 

to model 

Self-assessment question for your students. Terribly 

broad. How to model? 

General Comments 

You have, in effect, produced a report on the difficulties of 

controlling and maintaining large recreational areas. You 

have highlighted the difficulties of management, covering a 

wide range of features. As you say in your report, a large 

simulation program (as carried out in the USA for example) is 

one attempt at handling such a large and complex problem. You 
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are obviously very interested in this field of investigation, 

but unfortunately you have not been able to identify specific 

problems which 'you might have modelled mathematically in the 

time you had available. My suggestion of grass loss is the 

sort of 'simple' model you might have tried (other 'simple' 

examples have been presented on the MSc). 

In future, try something very specific. Given more time (in 

another context) you could obtain data for validation. 



'\ 


