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Summary

In this thesis the method of Zubov for obtaining domains
of attraction for systems of autonomous ordinary differential
-equations is investigated. '

The necessary theorems of continuity, existence and
uniqueness along with Zubov and Lyapunov theorems are listed
in Chapter 1 as é starting point,

In Chapter 2 a survey of previous work in using Zubov's
method or of calculating domains of attraction is attempted.
The problems of each particular way of doing this are
considerea, as is some useful background work on numerical
computation. -

The theory of solution of Zuoov's equation is the subject
of Chapter 3. UNecessary restrictions on the relationship
of #(x) to f(x) are derived, and some results on the use of
V as the independent variable are also obtained. -

The one-dimensional Zubov equation is an 0.D.E. and hence
a special case. This special case is tne subject of
Chapter 4 in which a rough asymptotic analysis is shown to
provide estimates of the domain of attraction.

© 1In Chapter 5 the Zupov equation is treated as a P.D.E.
requiring solution for values of V., The many problems of
obtaining the contour V = o or V = 1 are investigated and
some ideas are given on how to cet around tﬁem.

Chapter & contains the algorithm for solving the Zubvov
equation on characteristics with initialisation from a point
near the bounaary. Much flexibility is incorporated into
this algorithm to suit particular systems.
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Chapter 1

Introduction . N

1. Discussion
The concept of stability has been present in mathematics

for A number of years. Throughout history the question of
whether certain situations are stable has arisen. For example,
the "ball-inwa-bowl" situation is known to be stavle as the
ball always'accelerates towards the position of least potential
energy, while if the bowl is- turned upside down then we have
an unstable situation. So it has always been a matter of
concern whéther an equilibrium is returned to after suffering
a small displacement. | _

These practical experiments have led to the mathematical
definitions of stavility and to the methods and theorems
involved in determination firstly of the stability of an _
equilibrium and secondly of the magnitude and type of displacement
which can be permitted. Towadrds the end of last century the
Russian mathematician A.M.Lyapunov developed the functions
Which bear his name and the associated theorems to determine
stability, Since. the last war V.I.Zubov, another Russian .
mathematician, took the analysis further and tied stability
in with the solution of a partial differential equation.
This thesis is mainly concerned with solving this equation

to abtain stability regions.

2. Notation

X is a vector of the form |x,
X5
' X
. L
x(t) or x(t) are functions of a scalar variable t.
f(x,t) is a function of x and t.
£(x) is a function of x alone.
g(t,go,to). is a function which depends on the-initial conditions
x(t) is the time derivative of x{t).
T . [11)
X is the transpose of x. i.e. 11 = (x1,..;,xn).
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is the Euclidean norm given by

is the origin in n-dimensional

= (0,0y44.,0)

is a matrix of the form A

is the transpose of A
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is a matrix whose elements A
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is the determinant of:4.
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space,

i=1,2,..,n.
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1ir|a] Ao

ig all of a Euclidean n-dimensional space.

. e s n . n
is an open domain in R*, i.e. D &€ R,

is the boundary of the closure of D.

is a domain depending on
defined as the Domain of
is a domain depending on
is a function of x which

is the vector _31_

3y

v
WX,

av
an

-

is another name for

dV(x,t),
X

the function f(x). (later
Attraction)
f(x,t) where t > 7.

is homogeneous of degree m,




3, Definition of Motion Terms
Definition 1.3.1
The system equations are denoted by

x = f(x,t) 131
where x is the vector of system variables and f is a vector
of functions of x and t which need not be continuous or
differentiable.

System 1.3.{ is the general equation describing all forms
of motion,ﬁregardless of how many dimensions there are in
vector x, For example a system of numerous interacting
particles of gas in an enclosed space can be written in the
form 1.3.1. -

Theorem 1,3%.1

The ordinary differential equation given by

f(x(n),x(n_T),......,x(1 ,X,t) = 0 where x " g% 1.3.2
‘may be expressed in the form 1.3.1. at™
Proof

: Define the system'variables as

X, =X

X, = dXx

2 ——

. dt

X = dn_1x
n

{n) .

Now solving 1.3.2 in terms of x gives

x(n) = g(x(n'1),.....,x(T),x,t).

The system equations now become

X1 7 X%
X, = Xz
x1‘1-1 = xn
x =

| n g(xn,xn_1,...,x2,x1,t)
which is in the form 1.3,.1. End of proof.
The system 1.3.1 may or may not have a unique solution
or even a solution at all. There are several references



from which theorems on existence and uniqueness may be
obtained such as Brauer and Nohel (1), Sanchez (2), Coddington
and Levinson (3) and Lefschetz (4).
Two theorems will be quoted here without proof after sone
definitions.
Definition 1.3.2

f(x,t) satisfies a Lipschitz condition with respect to
x, for x € D, some 7% 0, if there exists a constant L such

that

| £(xq0t) = LG t)|| < Lffxq - x5
for all x4,x, € D, t > 7.
Definition 1.3.3

f{x,t) is said to be continunus in if given € » U there

X
exists % » 0 such that for any Xqs Xy €D
then ||£(x,,t) - £(x,.8)]| < «.

Definition 1.3.4

An intepral curve of 1,%.1 is given by

such that”g1 - ;QH < 5

x = x{t,x,,t,)
where x = x_ at t = t_ and 5(t’£o’to) satisfies 1,3.1 identically.
Theorem 1.%,2

I flx,t) is continuous in x,t and satisfies a Lipschitz
condition in D, then passine throush any point io € ﬁ; to_gi}?"
there exists an integral curve X = E(t’io’to) for t > to
which may be extended to the boundarv of D.

Theoren 1.5.3

It f(x,t) is continuous and satisfies a Lipshitz candition
for x in some domain D and it X, ¢ D, t % 7 ana 51(t,§0,t0),
x,(t,x,, %, ) are fwo exact solutions of 1.3.1 such that

§1(t0:§0,t0) = 52(to’£o'to) = X, then x, = X, as long as

o

:2(.1, ?_('2 K- D.

1.3.1 is the peneral equation but freguently system
motion is determined only by its present state and not by
time, This is known as the autonomous case.

Definition 1.3.5
If the éystem equations may be written as
x = £(x) 1.3.3
then the system is autonomous,




Theorem 1.3.4 _
If x = x(t,x_,t,) is the unique solution of 1.3.3 then

z(t—t1,§o,to-t1) = 5(t,£0,t0) providing

g(to,go,to) = x(t_-ty,x ,t -t;). i.e. x is only dependent
on t - to.

As we are concerned with critical - points we need to
establish what cpiti¢al: - points are.

Definition 1.3%.6

A critical point x' of system 1.3.1 is a solution of the

equation
f(x',t) = 0 forall t > T . 1.3.4
for some T 2 O
and similarly a critical point x' of system 1.3.3 is a solution
of the equation
£(x') = 0.
If x* is a critical point then we may define a new set
of variables by
X=x-x' 1.5.5
Substituting 1.3.5 into 1.3.1 defines the new system of
eguations
X = £(x + x*,t) 1.3.6
Now by reference to 1.3.5 we can see that X = 0 is a critical
point of 1.3.6, Thus any critical point can be translated
to the origin by a simple transformation. It will be assumed
throughout this thesis that the origin is a critical point
and that it is the stability of the origin which is in question.
i.e. f(0,t) = 0 1.3.7
for all t > 7T for some 7 2> 0.
Definition 1.3.7
the linear part of f(x,t) is denoted by the vector A(t)x
where A(t) is a matrix and 1.3.1 becomes
i = A(t)x + g(x,t) A 1.3.8
where g(;,t) can only be expanded in terms of powers of x
greater than one if at all. In the autonomous case A(t)
becomes the constant matrix A.

Nots alsc %that ag the origin is a critical point that in 1.3.8
g(0,t) = 0 |
for all t 2> v, some 7 > O,



[
¥

4. Stability
Having considered the definition of the system equations

and subsequent integral curves of motion, we now wish to define
the stability of the origin.
Definition 1.4.1

The origin of 1.3.1 is stable if 1.%,7 holds and if
there exists T 2 0 such that for allg > 0O, to > v there
exists a %(to,zg) such that

||£o”<‘g m>||§(t’_}so’to)l| < & T.4.1
" for all t Z-to.

Definition 1.4.2

The origin of 1,%.1 is quasi-asymptotically stable if
there exists v %0 and " >0 such that for all ty 2y

”:-"EO” 4‘%#‘___‘;11}1’1 H?_(_(t,zc_o,to)n = 0. 1.4.2
Definition 1.4.3 ¢~

The origin of 1.3.1 is asymptotically stable if it is

stable and quasi-asymptotically stable.
Definition 1.4.4 ,
Tne origin of 1.3.1 is unstable if for all to‘z ~+ there
exists € > 0 such that for every % >0 there is an initial point
x. with “§OH < § and the solution x(%,x,,t ) is such that
“ﬁ(t,ﬂo,tonl > £ c for some t_ < -t < o=
Definition 1.4.5
The origin of 1.3.1 is asymptotically stable in the whole .
or strictly asymptolically stable if 1,4,1 and 1.4.2 hold
for unbounded %(to,i' ) and S",
The above five definitions form the basis of determination

whether the origin is stable. Now if the origin is not strictly
asymptotically stable we need to define the region of R™ for
which it is asymptotically stable. '

Definition 1.4.6
= & . . . e e

Providing the origin of 1,3.1 is asymptotically stable
. ) » P . Fy : t -,
thep for 7 %0, D_{f) is the'domaln of attraction of the
origin of 1.3.1 where for all Tty ¥V, X, € Dﬁii) thé -integral
curves x(t,x ,t) satisfying 1.3.1 identically tend-to the
origin as t - oo, -J




For the autonomous case 1.%.3 the D.C.A. given by D(ﬁ)
is-a fixed subset of R as the integral curves are not
"time-dependent.
The stability of the origin may also be investipgated
using 1.,3.8. .As we nre concerned with the stability of the
origin under small displacements it is apparent f{rom definition
1.32.7 that the matrix A(t) is important. However the autonomous
linear part matrix A is much easier to consider.
Theorem 1.4.1
1% = Ax + g(x) 1.4.5

where g(g) may he expanded in vowars of x grewter than one,
‘then the origin is asymptotically stable if all the eigenvalues

M(A) of A have nerative real parts.

Definition 1;4.7

If the eigenvalues (A} of A have negative real parts
then A is a gtability matrix,
Theoren 1.4.2. ) * :

If A is a matrix as in 1.4.3 the origin is unstable if

~ there exists some M:.(A) for which the real part is positive,
Definition 1.4.8
If all the eigenvalues N\ (A) of A have negative real parts

' or there exists a :(A) with positive real part.the matrix A
is said to have significant stability.

If the stability of the matrix A is not significant then
further information about the stability of the origin of
14403 can only be obtained by considering the higher terms

glx)e )
Definition 1.4.9

S %Sr are the sets given by
Sp = 1% : x| <r]
and REM px 2 x| =t}
The sets S, SSr are used extensively in later chapters.
Definition 1.4.10
Sr(ﬁ'), SSr(g') are the sets given by
' o 1y .
s.(x') =3

SS,(x') =}

1=

- x|
I

B

I



5., Positive Definite Functions

Before proceeding to the tneorems of Lyapunov upon which
Zubov's equation is based, it is necessary to introduce and’
define the cdncept of posiftive definite functions.

Detinition 1.5.1
The scalar function V{(x) is positive definite in sume

region D of R® containing tne origin if
N(0) =0
V(x) > 0 for all x € b, x £ O,
Negative definite functions are defined similarly.
Definition 1.5,2
The function.V(g) is positive semi-definite in some

region D if
v(0) = 0
V(x) 2 0 for all x € D.
Definition 1.5.3
_ V(x) is strictly positive definite if D= R", i.e. V(x)> O
for all x € R®, x # 0, and V(0) = O.
‘Definition 1.5.4 '
V(x) is radially unbounded if as

x| — < ~ then V(x) — o=o.
- Positive .definite functiions play an important part in
Lyapunov theory. However for ‘time-dependent systems we need
to use the function V(x,t) where there are analogous definitions
to those above. '
Definition 1,5.5
The scalar function V(x,t) is positive definite in.a

region D of R™ containing the origin if there exists ¥ %0
and a positive definite function W(x) such that

Vix,t) 2 W(x) for x € D, t 7,

v{0,t) = 0  for t» .

M w

Definition 1.5.6
V(E,t)-is positive semi-definite in D if there exists T2 0
such that .
’ Vix,t) » O for all x €
V(0,t) = O for all t >
The definitions of strictly positive definite and radially

D, t »m
.

unbounded follow in the same way.
Definition 1.5.7
V(x,t) is decrescent if there exists T»0 and a positive

definite function ¥(x) such that
-d(x) € Vix,t) < W(x)
for a11 =« € D,t > T



Frequently the positive definite functions considered
in this thesis will be quadratic functions. i.e. functions

in which all terms are of xiz- , i=1,,.,n0r Xixj,i.j.= 1y

Such functions may be expressed in matrix form as
V(x) = x'B x
Definition 1.5.8
The matrix B in 1.5.1 is a positive definite matrix if
x'B x >0 for all x ¢ R, x £ 0.

For purposes of knowing whether B is a positive definite

1.5.1

matrix, the following theorem is useful,
. Theorem 1.5,1

The matrix B is a positive definite matrix if and only
if lBil>O i=1...,n
where Bi is an i x i matrix taken from the upper left corner
of B.

This is Sylvester's theorem and can be found in

Rosenbrock and Storey(6) or Barnett and Storey (5).
The quadratic expression 1.5.1 is a special case of a
general series expansion of V{x). We may denote V(x) by

V(x) = > V() R O IT

where Vm(z) is a polynomial of homogeneous degree‘m. Such
series expressions as 1.5,2 can be positive definite functions
under certain conditions.
If the range of m is known the question of whether an

expression like 1.5.2 is positive definite usually depends
on V_(x) where s is the lowest value of m used. Theorems on
such series expansions form part of Chapter 3.
Theorem 1.5.2

V(x) is-decrescent if it may be written as

O

V(x) =2 V().

The proof of this theorem may be found in Hahn (7).
Theorem 1.5.3
The total derivative of V(x,t) with respect to time is

given by

. n_, .
V(E,t) = 'Q_K +§ X4 v 1.5.3
ot 1= mxi

providing the partial derivatives in 1.5.3 exist. It can be
shown that if the partial derivatives in 1.5.3 exist and are
continuous and V(x,t) is positive definite and decregeent



then V(x,t) ﬁfvs(ﬁ,t\ for some even 8 > 0, X near the origin.

6. Lyapunov functions

- The theorems of Lyapunov and his second method are qQuite-
well known. They are quoted here without oroof as they are
fundamental to Zubov's method. La Salle and Lefschetz (8),
Barbashin (9), Hahn (10) contain all the background and proofs.
Theorem 1.6,1 .

The origin of 1.3.1 is stable if there exists a functlon
V(x,t) and some £> 0,7 % 0 such that V(x,t) is - positive
definite and ﬁ(z,t) is negative semi-definite for all x € S,

t 2T
Theorem 1.6.2 : -,

The origin of 1.%.1 is asymptotically stable if {there
exists V(x,t) and some £ ¥0, T30 such that V(x,t) is positive
definite and decrescent and ﬁ(g,t) is negative definite for all
X € S5.,t 2T, '

Theorem 1.6.3

The origin of 1.%.1 is asymptotically stable if there
exists V(x, t) and some £v0, ¥ % 0 such that Vix, t)} is positive
definite and decrescent and V(x t) is nezative semi-definite
and V(x t) :}é 0 .on any non-trivial trajec tory of 1.3 1, x€5,t%m
$heorem 1.6.4 o

The origin of 1.3.1 is unstable if thers exists T: 0 and

a decrescent function V(x,t) with ﬁ(ﬁ,t) nerative definite and
. for all €»0,% % ¥
These four theorems give local information about the

such that V < 0 at some x € 3

stability of the origin of 1.,3.1. We are concerned in thié
thesis to obtain regions within which stability is assured.
For this purpose we require the next‘two theorems:
Theoren 1.6,5

The origin of 1.%,1 is asymptotically stable in the whole
if there exists a V(x,t) such that

a) V(x,t) is strictly positive definite

b) V(x,t) is strictly negative definite

c) V(E;t) is decrescent

d) V(x,t) is radially unbounded.
Theorem 1.6.6

Thé‘origin of 1.3.1 is asymptotically stable in a region
D of R" if there exists a function V{x,t) in D,7» 0 such that

a) V(x,t) is positive definite for x € D,%t » ™

b) V(x,t) is negative semi-definite for X €D,t »v




10,

c) Vix,t) 7é 0 on any non-trivial trajectory in D.

d) vv(x,t) # O in D except at x = Q.

e) The boundary 6D of D is given by V(x,t) = p for some p.

Now that we have these theorems we may define certain
terms for later use.
Definition 1.6.1

A function V(x,t) which is positive definite in a
neighbourhood of the origin and is such that ﬁ(g,t) is

negative semi-definite is a Lyapunov function.
Definition 1.6.2
*
Denote as p (£,V) the largest value of p for which theorem

1.6.6 holds.
Definition 1.6.3
Denote as R*(E,V) the domain in theorem 1.6.6 bounded

by V(x,t) = p (£,V). i.e. the largest domain obtainable for
this V(x,t) and f(x,t).
Definition 1.6.4

The region R*(E,V) is khown as the region of asymptotic

stability given by this V(x t) for system 1.3.1. This region
- 1s abbreviated from now on to R.A.S..

The system given by 1.4.3 where the linear part of f£{x)
is isolated as Ax may also be considered. Then the stability
of the origin of 1.4.3 may be investigated by choice of -
Lyapunov function such as

V(ix) = ETB X. 1.6.1
The stability of the origin of
i = Ax 1.6.2

may be deltermined by a Lyapunov function such as 1,6.1 and
the stability of the origin of 1.4.3 is also determined prbviding
A has significant stability. This gives us
Theorem 1,6,7
The origin of 1.6.2 is stable if there exists a unique

positive definite symmetric matrix B which is the solution

of ATB + BA = -C

for any symmetric positive definite matrix C.
The-function 1.6.1 is the Lyapunov function.
Finally we need a theorem which is important especially
where considering methods of constructing Lyapunov functlons
in such a way that R (f V) converges to D(f).



1.

Theorem 1,6.8

If the origin of 1.3.1 is asymptotlcally stable then
R (£,V) is given by

V(xt) < pY(E,Y)

where p (f V) is the largest value of p such that

V(x,t) > p for all x such that V(x t) = 0,

Since we know that R (f V) € D(f) then we see that if
D(£) is bounded then so is R (£,V), while if R (f,V) is
unbounded for any V(x,t) then so is D(f).

We may also define p'(f,V) as the smallest value of p
such that V(x,t) < p for X such that V(x,t) = 0 if such a
p'(f,V) exists. - -
Theorem ‘1.6.9
If p'(f,V) exists then
D(f) < R'(f£,V)
where R*(f,V) is given by
x : Vix,t) < p'(f,v)
where V(x,t) < .p'(f,V) for x such that ﬁ(z,t)

7. Theorems of Zubov

-Having,introducedwtheibasis of Lyapunov theory we now
proceed to the theorems and method of Zubov for actually -
obtaining Lyapunov functions to find domains of attraction.
Zubov's approach is to ensure that V(x) is negative definite
and then solve the resulting equation for V(z). In this section
no reference to time«dependent systems is considered as the
the theory has been developed on such systems where the
behaviour is dependent only on the position X in R",

The equation which is solved may be written simply as

V(x) = =A(x)(1 - av(x)) . 1.7.1

where ¢(x) is any positive definite function and d = 0 or 1.

From theorem 1.5.3 the total derivative V(;) is replacgd

by a sum of partial derivatives giving

n—— N .
> ) W) = - 40 - av(x))., 1.7.2

1 is known as Zubov's regular equation

The equation given by d
and when d = O we have Zubov's modified equation.
fhe main theorem of Zubov can now be quoted (11),{12).
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Theorem 1.7.1

A necessary and sufficient condition for the origin of
1.%3.3 to be asymptotically stable and ﬁ?;,v) to be the D.C.A.
is the existence of two functions V(x),4{x) which satisfy 1J7.3,
identically and the following properties:

a) V(x) is positive definite in ﬁig,v).

b) #(x) is positive definite and continuous in R

¢) Ford =1, V{ix) < 1, x € (_ V) and V(x) = 1, x €SR(f,V

For d = 0, V(x) < *, x € R(£,V) and V(x) = o=, x ¢ §R(£,V)

i

E £2) W) = 400+ | 2] DO - avx)
3% 1.7.3

or \?(E(t)) = ()1 | £]] DFO - avix(e)),

It is relatively straightforward to prove this theorem
given V(x),8(x) by checking that theorem 1.6.6 is satisfied.
It requires some extra details to confirm that

R(£,V) = D(Z).
Proving that V(x),4(x) exist given an asymptotically stable
origin of 1.3.3 is more difficult and Zubov bases it on actual
'*construction-of'VCEJ,q(g); The proof of_ this important theorem
can be found in Zubov's book (12).

More details will be considered about the construction
of V(x) and #{x) in sections 2.2 and 3.6 as V(x) with the
properties of theorem 1.7.1 does not necessarily exist for
all 4(x).

Theorem 1,7.2 .

If f(x) is bounded then theorem 1.7.1 holds with 1.7.3

replaced by

Z £,{x) S_‘_{ (x) = -4(x)(1 - dv(x)) 1.7.4

Proof
Since A(x)(1 + || g“ 2)'3- >0

X #0
while 4(0)(1 + | fl 2y%
then we may re-write é(x)(1 + ||f|| 2)% as $(xJ) and 4(x) has
the same properties as the function d(x) used in theorem
1.7.1. While if f(x) 18 unbounded as x—sx' for some x' & rM
then 4(&)(1 + H f” is discontinuous as X —» Xx'.
End of proof,



From now on 1.7.4 is the equation which will be referred
to as Zubov's equation and several results will be established
using the regular equation (d = 1) all of wnich have an.
analogous result for d = O,

Definition 1.7.1

G{X) is the set .

G(x) = { x:Vv(x) <X}

Theorem 1.7.3
For x € D(f) we have

for d = O 0 < Vix) < eo.
d =1 0 Vix) < 1.
Proof

Putting d = 1 in 1.7.1 and integrating.with respect to
time we have ' '

V(x(1)) = 1 = (1 = Vg Mexp( [ Alx(£))at?),  1.7.5
Rearranging 1.7.5 gives
V(x,) = 1= (1 = V(x(t))exp(=[8(x(t" })at"), 1.7.6

Now let t —= ©° in 1.7.6 giving
V(x,) = 1 - exp(- [ A(x(t))at).
Now if x_  # O then [TA(x(2))at > o.
‘Hence V(x_ } < 1 while if.x . = 0 then x(t) = 0 and

[?(g(t))dt = O giving v(go)' = 0. '
The proof for d = O is by the transformation

W(x) = -log(1 - V{x)) _ 1.7.7
which when substituted into 1.7.1 gives
W(x) = -B(x). ' 1.7.8

End of proof.
For the remainder of this section the notation of 1.7.7,
1.7.8 is used. i,e. d = 1 gives V(x) as the solution of

n .
> £ (x) 3 (x) = -4(x)(1 - V(x)) : 1.7.9
i=1 3%y

and d = 0 gives W(x) as the solution of

n
< ivsl = = =/ :
i=1 3X3 - |

Theorem 1.7.4
For M\ € (0,1) ford =1or M € (0,¢ ) ford =0
then G( X\ ) are bounded domains.
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Theorem 1.7.5

For each #(x) then if V{x) exists then the equations
V(x) = p form a non-intersecting set of curves in R",
Theorem 1.7.6

The trajectories x(t,x ,t, ) of

x = £(x)

which tend to the‘origin cross the contours V(x) = p once

and once only,
Theorem 1,7.7

If > < % then 6(%) < G(X).
Theorem 1,7.8

D(f) G(1) for d
and D(f) Gyee) for a
Theorem 1.7.9

The limiting values of V{X) as X — § is given by

lim V(x) = V(S ) for all § e D(f).
X-=3
Theorem 1.7.10

The curve V(x) = 1 or W(x)
of 1.5.3.
Theorem 1.7.11

The limiting values of V(x) as x~» § is given by - -

lim V(x) = 1 for x € D(f), { « §D(f).
X3 -

Theorem 1,7.12

For each #(x) then if V(x),W(x) exist satisfying theorem
1.7.1 they are unique.
Theorem 1.7,13

The origin of 1.3.3 is asymptotically stable in. the whole
if W(x) < @ or V(x) < 1 for all x < RM. '
Theorem 1.7.14 '

Wix(t))
and V(x{(t))
for x, € D(f).
Theorem 1.7.15

W(xg) = [ A(x(t))at

[z
and V(x.) = 1 = exp ( - [ (x(t))at)

Theorems 1.7.3 to 1.7.15 are all a consequence of theorems
1.7.1 and 1.7.2 and all depend on V(x) actually existing

H
]

1
0.

1

> jis an integral curve

W(x,) - fotﬁ(_)g(t'))dt' |
1 1= V(x)) exp ([ A{x(t'))at!)
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which is not necessarily true for all ﬁ(z) as will be seen
in later chapters. MYowever if f(x) has a linear part and
6(x) has a quadratic part we can obtain the quadratic
approximation to V(x).
Theorem 1.7.16

If Ax is the linear part of f£(x) and ETG X is the

quadratic part of #(x) then the quadratic approximation to
V(x) is given by xTB x where

A B + BA = -C
has a unique solution for B.

This theorem introduces the subject ot approximations
to the actual V(E)' Zubov proposed a construction procedure
based -on substitution of 1.5.2 into 1.7.9 or 1.7.10. It is
assumed that #(x), f(x) may be expanded as

£(x) => £(x)- 1.7.11
o=
g(x) =N 4 (x) 1,7.12
Then we may write the unknown functions V(x), W(x) as
V(x) => ¥ (x) ‘ :
= 4w : 1.7.13

| W(x) - ELm W (x) o -
In 1.7.%1, 1.7. 1?“1 7.13 £ (x), (x), vm(g),'wm(gj

contain only terms whose total homogeneous powers are m,
Substituting 1.7.%1, 1.7.12, 1.7.13 into 1.7.9, 1.7.10 gives

SIS @S Wt | - S8 ) (1 - v, (0))

cE Mz Mo Bxi L”-l
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1.7.14‘
_ The actual details of 1.7.14 are considered in Chapter
2 but if solved systematically for Vm(g) , M= 2,30 0000,

we obtain a succession of approximations to V (x) given by
N
vy =S v ix), 1.7.15

There are some results associated with the series
construction procedure which are a consequence of theorems
1.6.6, 1.6.8, 1.6.9 and definitions 1.6.2, 1.6.3, 1.6.4,
Theorem 1.7.17

The curve V( )(x) = p (f V(N)) is wholly in D(f). N =2,3....
Theorem 1.7.18 (N)

*
If D(f) is bounded then so are all VCN)(x) =p (£, Vv ).



Theorem 1.7.19
If any V(NJ(E) = p*(g,V(N)) is unbounded then so is D(f).
Theorems 1.7.17, 1.7.18, 1.7.19 now suggest the following
definitions:
Definition 1.7.2
RN(ﬁ,i) is the R.A.S. indicated by V(N)(g) for a

particular A(x).’
iee. Ry, 8) = (x : VWN(x) < (e, vy
where ST ¢ (x) 3Y (x) = -6(x)(1 - aV(x))

=t RX.
and V(N)(E) is givén by 1.7.14 and 1,7.15.
Definition 1.7.3
Rc(é,i) is the set given by _
X e'—ﬁgfgji) == V(N)(E) is a convergent series as N —» oo,
Definition 1.7.4
R(A,f) is the set given by

R(4,£) = lim Ry(4,£).

N> oo

8. Methods of. Solution of P.D.E.S
This thesis is mainly concerned with thé solution of
1,7.2 to try to find the contour V = o or V = 1, There

are standard methods for solving partial differential equations
of this type and the background of such methods is given here.
The usual analytic method of solving 1.7.2 is by .
characteristies and the auxiliary equations. It is shown
in Sneddon (13):
Theorem 1.8.1
The auxiliary equations of 1.7.2 are given by

dx1 dx2 - . dx z -4av
- . = - = * e s s e oo = _"'2— =TT —
£,(x) £,(x) ' £, (x) A{x)(1- - av)
and 1.8.1

Theorem 1,8.2
The solutions of 1.8.1 are given by

ui(x1.-...,xn,V) = Ci

for i = 1,..yn

where c; are arbitrary.

16
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Sneddon (13%) gives three methods of solving 1.8.1., The first
‘method is to try to spot functions Pi(E,V), i =1,..,n, R{(x,V)
such that :

Zii: £ (x)P (x,V) = B(x)(1 - dV)R(x,V) = O
i=1

and P.{x,V) = 2U(x,V)
mlxi i = 1’.’.‘n.
R (x,V) = 2U(x,V)
W

then u(x,V) = ¢
is a solution of 1.8.1. .

The second method involves finding functions Pi(E,V),
P.'"(x,V), i = 1,...n, R(x,V), R'(x,V) such that

Pi(E,V)dxi+ R(x,V)av
1= ) ) = de_X-.V)

and

I o
> Pit(x,V)dx;+ R'(x,V)av ‘
= dw'(x,V)

> - PV - R DA - av)
1=71-

- where dW, dW' are exact derivatives of x, V.
For then W(x,V) = W'(x,V) + ¢

is the required relationship which yields a solution.

The third method is to eliminate certain variables if
this is possible. This ig particularly applicable to the
2-dimensional version of 1.8.1 which is given by

dx _ _ _.4d _ av ] '
Ty © EeST © Sy (=) 1.8.2

The first equation in 1.8.2 gives a relationship between
-x and y which is an 0.D.E. and we denote its solution by
y = ¥ (cq,x) 1.8.3
where ¢, is an arbirary constant. Substituting for y from
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1.8.3 into-the first and third terms of 1.8.2 gives a similar
relationship between x and V. '

The method of characteristics and the auxiliary equation
is applicable if we require to obtain the characteristics.,
However, we are interested in the boundary of the‘D.O.A.
and we cannot necessarily obtain that from the characteristics.
Equation 1,8.1 and 1.8.2 are useful equations to use for a
numerical method as shown in Chapter 6.

Numerical solutions of a P.D.E. such as 1.7.2 can be
done by various methods. The simplest first order P.D.E.
which is considered is given by |

AW, adu
35 owx < @ 1.8.4

Various methods exist for solving such equations. First,

we define u(mh,nk) as the value of u at x = mh, t = nk and

ug as the computed value at this point. Then difference

schemes usually attempt to compute u;+1 given uz n

ul u
' "m=1' “m+1°?

ugil or any neighbouring values required to make up the
scheme.
Such methods include: - )
n+1 n n - DR i
a) u = (1 -,oa)um +oau 4 1.8.5
where » = k/h . ' ,
n+t 2.2y.n n n
b) wtt = (1 - %% ul -/922(1 ~oa)u, +oal +paduy
1.8.6
known as the Lax-Wendff formula (14).
SO < B n n+1
c)u = (1 +,oa)um - pau ", 1.8.7

Equation 1.7.2 has variable coefficients and methods
have to be adapted to this situation. We use the notation

n n n
A oul = -
x'm um+1 um
A.un - un+1 _ un
t''m T Ym m
n n n
V.u' = -
X'm Un um-1
V n= n_ n-1
tum um um

Then if we solve

3u a(x,t) du _
—S-_Ei- ’ -B—E—O 1.8.8



19

then two difference schemes which maintain their accuracy
when applied to 1.8.8 as well as 1.8.4 are
n+1 _ : n+% '
a) ul*t = (12 eal" (A V)
2

2
+ +3 n+% n+: n+% n
’(;—(a!nll Axam Vx +ag anm Ax))um

. . - 10819
the Lax-Wendroff formula,
b) (1 +pag+é(AX +Vx))ufnl+1 = (1 -:-/Jag+%(£§x +Vx))u3
4 4

1.8.10
the Crank-Nicolson formula,
‘where ag = a{mh,nk)._

The origin of finite difference schemes such as 1.8.5,
1.8.6, 1.8.7, 1.8,9, 1.8,10 usually lies in truncating an
infinte theoretical series. Taylor series is one such method
where we know that

u{mh, (n+1)k) = exp(h%% ) u(mh, nk) : 1.8,11

_.Substituting from 1.8.8 into 1.8.11 and expressing the
exponential in terms of its power sgries, we may truncate
the series and obtain a difference formula. |
The situation becomes more complicated when we consider

an equation such as i

du _ alx,y,t) du _ blx,y,t) du ©1.8.12

3t dX Y
An implicit method for finﬂing ug:jmz is the 18 point A.D.I.
method by Mitchell and Gourlay (15) which when a2,b are constants
becomes

(1= 2b(A & T N1 -pa(By +\1x)u;§:jm2
4

SRREU O PRLURFILIC PR S

1.8.13

1My

7
J = = n
where A, = k/h,, 2, = k/h,, where u m,,m, is the computed

value of u at x = m1h1, y = m2h2, t = nk.
When a,b are dependent on x,y,t 1.2.13 becomes
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2 m1,m 1,111

2
S B (A TN eyl n** (D o+ T D

m1,m 4 ,m 1,m2.

In choosing a finite difference method various consideratior
have to be taken into account, such as initial conditions,
accuracy, stability. The more points covered by a difference
formula, the more need to be specified to start computation
going. 1.8.5 requires for example ug to be given so that
ug may be computed for n > 0. Now if u; s M = qu--:M23
are given then by systematic application of 1.8.5 we may
compute u; fﬁr E > 0 and m < M2' m = M1 + n and computation
stops when uMg 1 is obtained.

Accuracy is determined by the local truncation error.
This is obtained by substituting the actual values of u(mh,nk)
into the difference formula., Denoting the Local Truncation

Error by L{mh,nk) we write down for the scheme 1.8.6

L{mh,nk) = u(mh,(n+1)k) - (1 - ,o a )u(mh nk) +oafl -/oa)u((m+1)hn

7
-0a(1 +,0a)u((m - 1)h,nk). 1.8.14
- .

By means of expressing u(mh,(n + 1)), u((m - 1)h,{(n + 1)k)
in terms of u(mh,nk) and derivatives of u at x = mh, t = nk
by Taylor series, and cancelling out terms using 1.8.4 we
obtain that
L{mh,nk) = O(k>) + 0{h°)
Thus we see that 1,8.6 is a second order method.
Stability is considered by the method of Von Neumann {16}
where the computed values of u are subtracted from the actual
values. A formula such as 1.8.6 is taken from the corresponding
formula 1.8.14 and using the notation
n

n
e, = u(mh,nk) - u

we obtain

1 .
L(mh,nk)} = e$+ - (1 = ;?az)eg +[%§(1 -,oa)eE+1 -A%§(1 + pa)e$§1

The error is then assumed to ﬁave a Fourier series
distribution which we write as

n n_ iuwmh
e L

- . e _
and then if |N\] 31 for all w we see that errors tend to die

p



21

away.

Finite element methods are also applicable but are not
considered in this thesis.

it is a simple matter of extending solution of 1.8.8
or 1.8.12 to solving 1.7.2 and this is the subject of Chapter 5.

9, Motivation and Contents

The method of Zubov for ohtaining Tyapunov functions.
has been tested on various systems by various authors. It
is a reversal of the Lyapunov theory in that instead of
selecting V(x) and then considering the behaviour of V(x)
to determine étability, the Zubov method selects Vi{x) and
then considers the behaviour'of V(g). Also instead of finding
ék;,v) as a region of asymptotic stability, the Zubov approach
determines D(f) if V(x) can be found.

The basic question then is one of determining V(x) given
V(x) and the system equations

x = £(x). - 1.9.1
Determination of V(x) is from a partial differential equation
1.7.2 whicﬁ_iﬁ”géﬁeral'is-not easy to solve analytically.
The method Zubov suggested of using ﬁowef series to- build
up partial sums has been implemented by such authors as
Margolis and Vogt, Yu and Vongsuriya, De Sarker and Rao, In
each case they have found non-uniform convergence to the
actual D.0.A..

So can we really say that the Zubov apprrach is useful
for general systems? This thesis attempts to solve 1.7.2
by various methods and tries to find some way or ways by which
we can establish the usefulness of Zubov's method when applied
to systems of eguations. ‘

in Chapter 2 the backgrousd material is all collected
together., A comparison of previous work in various fields
together with some comments is presented there. The main
method is the series construction which.is dealt with in
great detail in two dimensions. It is noticeable that examples
covered in the literature deal only with systems with linear
parts .

x = Ax + g(x) 1.9.2

and functions #(x) with quadratic parts

$(x) = x'C x + h(x). 1.9.3
It is shown in Chapter 2 that this case is straight forward

iiiiiiiiii::::-___
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but that situations other than 1.2.2 and 1.9.3 may or may
not be soluble by series construction.

The Lie series method is also considered where the equation
1.9.1 and

T(x) = -(x)(1 - av)

are integrated simultaneously with respect to time by Taylor
series. Possible transformations and vector methods are
also looked into and all such methods of salving 1.7.2 have
their disadvantages. For background purposes some methods
are given on obtaining D.0O.A.s and obtaining Lyapunov functions,

Two methods of solving 1.7.2 suggested themselves _
during this research. One method is to:treat.1.,7.2 as any other
partial differential equation and apply numerical techniques
for solving it, while the other method was to solve 1.8.1
numerically. In the course of the research certain types
of behaviour of the solutions of 1,7.2 and 1.8.%1 were
experienced. Such behaviour can be explained by theory and
Chapter 3 sets out to establish this theory which is concerned
with the relative behaviour of f(x), #(x) and V(x) to each
- other. o .

Such relatiﬁnéhips'HaVé'on’the*whole,been,ovequoked
when solving the Zubov equation on the basis that if 1;9;2
and 1,9.% hold then 1.7.2 can be solved to give V(x) and
hence the D.0.A. is established, For systems not possessing li-
meal parts more care is needed. 7Zubov warns that "if for
any reason whatever we know the rate of decrease of solutions
x(t) of 1.9.1 then #4(x) can always be chosen".

In Chapter % the required relationships between f(;),
6{x), V(x, are established by reference to their behaviour
as x-—> 0. ‘''he "asymptotic degree” of a function at the origin
is defined and we show that if the behaviour of f(x) is known
then A(x) can be chosen by reference to this definitiom.

The one~dimensional Zubov equation is different from
other cases as it becomes an 0.D.E. and may be integrated
directly with respect to x. ‘he system trajectories either
tend to or away from the origin and finding the D.0.A. is
reduced to seeking a value of x which is on the boundary.
It is worth a special chapter as methods applicable to O0.D.E.s



can be used. Chapter 4 covers this case and an asymptotic
analysis is carried out at the boundary of tne D,0.A. which
gserves to answer the question of what value of V to attain

in order to guarantee a predetermined accuracy for computation
of the boundary point. | '

The two methods mentioned earlier of solving 1.7.2 and
1.8.1 are the subject of Chapters 5 and 6. The method of
finite differences in Chapter 5 although relatively easy to
carry out does run into some problems which stem directly
from the fact that the P.D.E. 1,7.2 has variable coefficients.
A combination of various factors all of which are considered
analytically make it very difficult to obtain good estimates
of D(f) for general systems. Possible variations of the
method near certain problem areas are studied in an attempt
to compute D.0.A.s,

In Chapter 6 the equation 1.8.1 forms the basis of
numerical computation. It is shown that solving 1.8.1 from
points X, near the boundary of the D.0.A. is inherently more
stable than beginning at

. V@) =0
and computing-oﬁfwdrds'from'the“origin. This method takes
account of the parficular properties of V(E) especially its
positive definiteness for asymptotically stable systems.
Solving for V <« O has some interesting results from which
we can establish an estimate of D(f).
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Chapter 2

Other Methods

1, Introducfion

We require at this stage a chapter presentiag other
work done in this field and related subjects. A number of
authors have considered the Zubov equation and attempted
its solution, usually by the series construction propsséd
by Zubov,

Five specific methods of tackling the problem are given
a section each, and any other methods are collected in sections
7 and 8. The series method in section 2 is the most well-known
method associated with the Zubov equation and most widely
used, Most examples on which this method has been tried
are found to have linear parts., i.e.

x = Ax + g(x)

where ”g(_}_c_)” —=0 as x> 0.

X

The series method can still be solved for systems without

linear parts but needs some care.

7 The Lie Seéries method -in section 3 has also been studied,
but this reduces to Taylor series and relies on complete’
differentiability of
x = £(x)
with respect to time.

Rodden's method in section 6 was something of a milestone
in stability theory but being a numerical method it does
require care to be taken over accuracy and stability of
computation, In section 7 the other ideas stemming from
Lyapunov functions are considered, while in section 8 note
is made of obtaining D.0.A.s without ever refering to 4(x),
Vix).

2. Series Method

The series solution of the Zubov equation was first
put forward by Zubov himself (12), Since then a number of
authors such as Hewit (17), Rodden (18), Margolis and Vogt
(19), De Sarker and Rao (20), Yu and Vongsuriya (21) have
attempted to use the methods to obtain approximations to
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D.0.A.s of various examples, sSome well-behaved and some not
so well-behaved. They have claimed imvprovements on other
methods of estimation although this is done by selecting
the "best" domain from a non-uniform procedure. Ferguson
{22) generalises the construction to higher order tensors.
For the system of equations
x = £(x)
the method relies upon f£(x) possessing a power series expansion

which we denote as

f,(x) =§z:j§:: ------- Ei: Fi(m1,..,mn)x?1 x22.;...xnmn

= Mo+, .. +Mm_=
m=1 m,+m mn

2 2.2.1

If we chose #(x) in such a way that it also possesses a
power series expansion

B(x) ==:£:j;g:--- s E;: Q(m1...,mn)xT1 x22.....xzn

m=2 My +O+, oM =M 2.2.2
then we may construct V(x) in the same form
o
' =N N E m, ,m m
V(x) —.4;,2i_ RNy A(mi'ff’mn)x11 x22.....xnn
=2 My Hlp+. oMy =m 2,203

We now substitute 2.2.1, 2.2.2, 2.2.3 into the Zubov

equation
n
E x, 3 = —g(1 - av) ' 2.244
-1 X
i=1 9Ky

).
n
In (17) Hewit expands 2.2.4 into individual terms to

to obtain the unknown coefficients A(m1,...,m

demonstrate how involved the computation becomes, Other
authors do not actually writé out the full set of equations
for A(m1,...,mn) and usually concentrate on 2 or at most
3 dimensions. An attempt will be made to generalise the
2-limensional series construction and establish a theorem
on the lowest degrees of f, g, #.
Let the 2-dimensional system be

x = f(x,y)

y = glx,y) 2.2.5
and let us denote f,g,4,V as '

£(x,¥) = _ Efifm'kxkym"k 2.2.6

m=s k=0

it
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oo m

: k. m-k R . -
g(x,y) = > gn X Y 2.2.7 :
m=8 k=0 ’
hamid m
-k
By) =2 2 b X" 2.2.8
m=q k=0 i
oo m
V(x,y) Z § v kxkym'k 2.2.9
m=2 k=0 ' -

In 2.2.6, 2.2.7 s is such that

2 2
> (£ " v 8g ) > O 2.2.10
k=0

and in 2.2.8 q is such that
: 2
> > 0, 2.2.11
“E;F)Aq'k

Since V(x,y) is the unknown function it is considered
to have powers of x,y of degree 2 2 in order that it may
be positive definite.

Substituting 2.2.6 to 2.2.9 and 2.2.5 into the 2-dimensioml
version of 2,2.4 gives

-1 m-k.
(> }_-mkxy k)(Z;kv Ty,

LN o

o
Al

+(T"ngk mk)(> Z_(m—k)v XYY o200

n.ru O oy

+(2_ ﬁmkk"’k)U—dZ/ v kxkym_k) = o

~y ’

providing that V(x,y) satisfies conditions (23) in which

the terms 3V, IV exist and are expre551ble in the above
XY
form.
We need to isolate homogeneous powers of x,y in 2,2.12,

lience we re-arrange 2.2, 1? to obtain

S-S r i j. m=r-j
ﬁi:%gz(,gg fr )(Ez:(3+1)vm r+1 j+1x ¥ )
A ige- -r-j
tlgm (28X Y l’(‘Y(m‘"’“?"”’Vm 1~+1,j"j3’IP 9
= k_m-k
:d% ¢ fm"’k: ' xty™T 1)(‘”: y"TTy =0, 0 2.2.13
LA ;f— r,i% m-r 3 y *er
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Now we may state and prove a theorem pertaining to solution
of 2.2.13.
Theorem 2.2.1 . _

In the construction procedure 2.2.13, g =s + 1.

Proof

' The construction procedure to obtain V(x,y) is carried
- out by comparing coefficients of like terms in 2.2,13. Now
‘suppose q € S. We may then single out homogeneous terms

of degree q from 2.2.13 which gives
q

> b XK = o 2.2.14
k=0 K

Since 2.2.14 is an identity in x and y the only solution
is that .
éq,k =0, K =0,..00Q,
and this contradicts the definition of g by the restriction
2.2.11 which thus contradicts the assumption q < s.
End of proof.

This theorem has implications on the choice of g. ¥t
is stated by Margolis and Vogt (19) and elsewhere that for
éfgitiary choice of 4, 'V can be determined in series form
by this method. Margolis anﬂ Vogt only consider systems
in which s = 1 and then by reference to theorem 2.2.1 we
require q 2 2 and any positive definite # may be used. But
clearly we see that if s 2 2 then solution by construction
2.2.13 breaks down for any 4 with a guadratic part. However
nearly all problems which arise are concerned with systems
that possess linear parts. Let us consider the example

% = —x3 _ xy2 . x(x2 + y2)2

. 2 2
y = -x"y - v o+ y(x2 + y?%)2

2.2.15
If we try as a Lyapunov function
Vix,y) = x° + y?

and differentiate with respect to system 2.2.15 we obtain

Vo= x . y I = _2(x% + y2)2(1 - x2 - yEL
X Ny
Hence V(x,y) = 1 is tangential to ?(x,y) = 0 and the D.0.A.

of 2.2.15 is given by x2 + yz < 1, dowever if we solve

2.2.12 for this example using
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A(x,y) = ax® + bxy + cy2
we obtain

(-x7—-xy +x(x + yz)z)(zzk xk_1ym'k)

“’t
+(-x y - ¥+ yix2r 322 Z_ }:(m-k)v m, k xkym'k"1)
+(ax2+ bxy + cy f(1 - zg:jEI:ﬂn,kx fn“k) = 0, 2.2.16

% keo
From 2.2.16 we see that the terms of lowest homogeneous degree
are

. ax2 + bxy + cy2 =

Hence we require a = b = ¢ = 0 and g(x,y) must be chosen
without a quadratic part. It seems to be accepted that any
positive definite #(x,y) satisfies the Zubov theorems, but
it has been demonstrated that for systems without linear
parts that this is not the case. The theory in Chapter 3
investigates further the relationship beitween the lowest
degree terms of f,g,6,V.

Now suppose q > s + 1. Taking the terms with homogeneous
degree s + 1 in 2.2.13 we obtain
(:f:f ixl 5- l)(V % +2V2 2x)

.

' i s-i _
+(Z Bg, X Y TIN@Y, oy + ¥, x) = O 2.2.17

Now it is possible that if

s
S—1 o
S 8, lxly = 0

the solution of 2.2.17 becomes

v =Y =0

2,1 2,2

with V2 0 undetermined. However it is likely that the s + 2
¥

simultaneous equations generated by 2.2.17 in 3 unknowns

will have the trivial solution

Vo0 = V2,1 = V2,0

as its unique solution.

= 0

Hence if @ > s + 1 then V(x,y) may or may not possess
a quadratic part. Hence there is no loss of generality in
writing g(x,y) as



29.

A(x,7) =iiém kx“&‘““k'

where the lower terms of d(x,y) may be wero. 1i.e., restriction
2.2.11 no longer holds, but s is still defined according to
2.2.6, 2.2,7 and restriction 2.2,10.
Theti-in general -we may compute.the series solution for
V{x,y) from 2.2.13 including the possibility that V might
not possess a quadratic part.
Re-arranging 2.2.13 to further group like terms together

we obtain

ZV? > AL 3V ra, j+1+(m-r-j+1)gr,ivm_r+1,j)xi+jym"’0

»ulo

- k m-k

*Zz\_ B XY
'_'._,.g__ F‘\_J. l+j m—l—' _ ' .

d\ ZZ Br, i Vm-r, ¥ =z 0 : 2.2.18
e .3 F2ger LZQ }E0

2.2.18 is an identity in (x,y) and we may now equate
terms of the sawe homogeneous degree and this gives

i+j M~i=j
T;“ j;* j>-_((3+1)f1." i m-r+1 3+1+(m r-3+1)gr i mwr+1 3) Y

reg LED 30

+ S_ ém kym-—k

- i+1 m~1 3] = A
{dg\_y be Voo, % Z 0, mys+l, 2.2.19

=%« +¥ 0 )= o

where the term {'-}. ' is gero if @ = 0 or if' m = s+1,3+2,
The expression 2.2.19 is seen to be a sum of powers of
homogeneous degree m with coefficients which are linear in
the unknown elements
.Vu,j U = 2y.00,ym=8+1
23 = Oy4ueayu m > s + 1,

For each m we may compute V = Oyeu,m-s+t,

| m-s+1,3j’ J
having previously computed

Vu'j 1% = 2,-|o’m_s
J = O'll.’u.
. k. m-k .
The terms in 2.2.19 are terms in x'y k= 0,4s.,m.
hence we see that 2.2.19 rppresenss m+1 linear equations in
the m-s+2 unknowns Vm—s+1,j- J=0,...,m-3+1,

We can represent these equations in matrix form
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Cv =D ' 2.2.20
where C is a matrix of m+1 rows and m-s+2 columns, v is an
m-s+2 vector, b is an m+1 vector. It remains to fill in
the elements of 2.2.20.

X= Vm-s+1,0

Vm-s+1,1

Vm—é+1,m-s

Lvm—s+1,m*s+1
To obtain the elements of C we need to isolate from
2.2.19 the coefficients of xk m-k k = 0,eu.ym which

contain V J =0,...,m=8+1, TDenote these

m-s+1,] e k)

coefficients by C(x y
There are four cases:
a) if 0 € k <€ min(m-s,s)

C(xkym'k) ;;*

i¥e

b)'ifssksms

((J+1)fs Ko JVm_S+1 jertim=s=3+igy Vo cu1,3)

k m=k <
.C(x 2%—((J+1)fs k-Jvm*s+1 ]+1+(m—s J+1)gs k-JVm*S+1sj)
j= K-S
k m-k .
C{xTy" 7) = > (()+1)fs k=3 mes a1, o1t (MmS=I)E, Vo o 5)
a) if max(m—s s) k € m
k, <
m=-k .
C( ) = }Z_Cj((J""I)fS k—jvm-—s+1,j+1+(m's-a+1)gs,k—jvm—sﬂ,j)
From 2.2.21 welcan define the element C as the

k+1, j+1
coefficient of L j in C(xk,ym-k). The matrix C is written
L\

as in fig. 1.



. - ( )
(m-s+1)g 1 (m=-s)g ,O+f 1 ~ - \ y
l | ~ ~ _ N
| ! ~ 0 +(m-s)f ,0
1 \ "
| | Yo a(mes)t. . (mes+1)f
g +(m-s M-S+
l . | O ,1 0‘
| | ! | z
(m- s+1)gs 5 (m s)gs’s_1 fs,s l ‘ '
. S~
| (m-s)gg, s+ O T~ | i
i ///’—“\\\\ ~ ~ l ]
:l ’ \ . ~ - - gS S+I(m s)f s,s (m"S+1 )fs’s_‘
|
| . ~
; / e + 0 (m-s+1)f

‘/ ‘:"S,S ' S,S_l

FPig. 1.
Finally we may gr?up all the known quantities’ of 2,2.19
into the vector b. b, ., is the known terms in the coefficient
of xkym k. We do not need to express bk+1‘in form 2.2.21
" as this is not neecessaty for computation: ~It is sufficient
to wriEe ngn the known parts of 2.2.19 which are
= z::-é;.(/ ((J+1)fr 1Im—r+1 j+1 (m-r—3+1)gr i m—r+1,3)xl+3ym_l-;

TrEge Lo )F e
l+J m-i-=}
zzidr i m-r, 3 y -T

= k. m-k
- Fa XY
e — raz S4-l .

where { '} = Q0 ifm =9 + 1 and [ ] =0 if d = 0 or

2.2.20 ‘has a zunique solution if s = 1, If s > 1 there
are more equations than unknowns, but this does not necessarily
lead to contradictions:
Theorem 2,2,2 |
If C is an m x n matrix of rank r then
Cy = b C2.2.22
has a consistent solut%on'g if and only if (C,b) the matrix

- formed by putting C anq b side by 'side also has rank r.
The proof of this.theorem is found in Heading (24).
Theorem 2,2,2 reqdires the rank of C and (C,b) to be
the same. C is an m+1 by m-s+2 matrix, and (C,b) is an m+1



by m-3+3 matrix.
Now if the system equations are given by
x = Ax + g(x)
where ]lg(zﬂ! —>» Oas x — 0
2] . . |
and if A 1s a stability matrix then we may refer to Appendix
A to see that when m = 2,8 = 1 the 3 x 3 matrix C has a non-zero

determinant, hence 2.2.22 has a unique solution.

Consider the example
X = -x°
yo= -y

which is obviously asymptotically stable in the whole.
If we use

Alx,y) = xt + y* 2.2.23
then the equation 2.2.20 becomes for m = 4,s =
-2 0 0 v2,0 -1
0 -1 U V2 1 _ 0
’ B 2.2.24
0 0 0 V2’2 0
o -1 0 0
0 0 -2 =1
The solution of 2.2.24 becomes
Vo0 = |2
V2’1 0
V2,2 B
However if we replace 2,2.23 by
B(x,y) = xt + x%y? 4yt
then there is no solution for V2’O,V2'1, 2,2°
Now consider the slightly different example
X = —x3 - Xy
. 2
Yy ==Xy - YB
which is also asymptotically stable in the whole.
Now let
q-.
By = > B, XMytE
]
then 2.2.20 becomes K=o
- = . = — .
=2 001V, ~$4,0
0 -2 0 ‘.1’2’1 - =541
"‘2 _2 H'V2’2_ bl 4"2 2.2-25
o =2 0 -
0 0 =2 _54’3
- - | 4)‘&_
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For 2.2.25 to have a solution we see that

P00 " Faa ” Fae 2.2.26
4,0 = Pa,3
is necessary. Then
- B 7
Vz of = |2%P4,0
72,1 38,4 or 3, 5 2.2.27
_V2’ E ._Qddf o4 —'—i

From 2.2l26, 2.2.27. we see that if g(x,y) is positive -
definite then V(x,y) is also positive definite.

these examples show that if s > 1 then the series
construction may still be valid but not for every ch01ce of
positive definite #.

It is perhaps a matter of further research whether a
particular asymptotically stable system will yield to the'
construction for all 4 or just some # or none. i.e. given
f(x) what class of g(x) will yield a series construction for
V(x)? Also in view of these examples, it is peftinent to
ask whether all the series construction can be carried out
or whether it may break down at some order. It was only shown’
that the quadratic part “exists in these examples. )

It is already known that the series construction where
it can be carried out yields Lyapunov functions which indicate
R.A.S.s which are inferior and do not necessarily converge
to the D.0.A.. Also the method does require f(x,y), g(x,y)
to have a reasonably well-behaved series expansion.

3, Lie Series Method
3.1 Introduction

The Lie seriesrmethod was developed by Burnand and Sarlos
"~ .(25) and basically involves computétion of a series which
reduces to no more than the Taylor series 'of the R.H.S., of

}.( =_i:(£) . 2-301

V = -é(z) . 20302
The authors develop a theory for the Lie series in their
paper and then Kormanik and Li (26) also use the Lie series
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to generate boundary points and fit a continuous curve to
~them,
3.2 Method

The method used is based on defining the operator D as

b = Q?(K,V)E_ + W(x,V)_ . 2.3.3
e X 3V

If we consider the system to be in n-dimensions we may write
2.3.3 as

D EFE::Qi(E'V)ﬁL- + W(x,V)) 2.3.4
Lt Bxi - ".Sv‘
and the system.2.3.1 and 2.3.2 may be written as
).Ci = ficﬁ) i = 1,...,1’1 2-3-5
Vo= -A(x) 2.3.6

Now we can consider the application of the operator D.
From 2.3.4 we see that

DXi = gi(E,V) i = 1,-..,1’1 2.5.7
and DV = W(x,V) 2.3.8
Now the authors define @, i =1,e.e,n and W in such a

way that D becomes the time derivative. For if D becomes
the time derivative then the result of Taylors theorem gives .

xi(t) = ethi(O) i =1,ceuyn 2.%.9

v(t) = e*Pv(0) 2.3.10
It is easily seen that D becomes the time derivative
by comparing 2.3.5 with 2.3.7 and 2.3.6 with 2.3.8 giving

0,(x,V) = £ (x) i=1,...,n 2.3.11

W(x,V) = -gix) 2.3.12
With D defined by 2.3.4, 2.3.11, 2.3.12 we now have the
system equations in the form

1

DV = —ﬁ(&) 2-3-14
The following results hold for the operator D.

DX. = fi(é) i = 1,"n 2'3.13



Theorem 2.3.1

a) D(xi + Xj) = Dx, + ij i, = 1,00e,n 2.3.15

B) D(cx;) = ebxy i = 1,00.,n 2.3.16

c) Dix;X. ) -(x )(Dx } o+ (x. )(Dxa) i, = 1,c00,n 2.3.17
where x; could be replaced by V in any of a),b),c) above.
Proof ' \

The proofs are straightforward and will be given for
part ¢) only. From 2.3.4, 2.3.11, 2.3.12 we obtain

D(x, ) -7 (02 xxy) - 8(x)2 (x;%y)
N 3 ( = 3 ) o= x.,
ow Bxl X. xj) X, x:'( i xJ) X,

3 (xixj‘).= O form#i,j, - m=1,...yn

\xm

Therefore D(xixj) = xjfi(g) + xifj(g)_ 2.3.18

We see from substitution of 2.3.13 into 2.3.,18 that we obtain
2.3.17. End of proof.

Having defined D so as to obtain the time derivative,
~we are now able.to use 2.3.9, .2.3.10 to obtain trajectories
of g(t) in state space and corresponding values of the
Lyapunov function V(t) given x(0) and V(0). To do this
2.3.9 and 2,3.10 must be expanded in power series form

x(t)-Z(tD) x(0) i=1,..0n 2.3.19

me o

V(t) E;:(tD] v(0) 2.3,20

J“"Q
i

243319 and 2,3.20 form a power series in t whose coefficients
are respectively

. (0)  i=1,...,n 2.3.21
mi
411
D V(0O e
“ET( ) | 2.3.22
‘the terms 2.3.21 and 2.3.22 are computed recursively

by differentiating 2.3.13 and 2.3%.14 giving
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"%, (0) = D" '£. (x(0)) 1= t,...,m 2.3.23

Py (0) = -D™ '4(x(0)) 2.3.24
The R.H.S.s of 2,.,3.23 and 2.3.24 are obtained in terms

of Djxi(o) and DjV{O) j Oy..esM=1 by using the expressions
i

1’...,n

non

in theorem 2.3.1: _
Thus we see that given x(0), V(0) we may compute x(t),
V(t) by the power series 2.3.19, 2.3.20 whose coefficients
we previously compute by 2.3.23, 2.3.24 and the expressions
2.3.15, 2.3.16, 2.3%.17.
It can be noted that this method is simply taking the
Taylor series expansions of solutions of 2.3.1 and 2.3.2.
We clearly cannot use x(0) = O for since £(0) = 0 we see
that D™x(0) = 0, m > 0. The authors use the initial conditions
v(0)} =0
| 5(0)” < & for small g, 2.%.25
and compute 2.3.19, 2,3.20 to give x(t), V(t) for negative

time to trace out trajectories towards the boundary of the
D.0.A.. When

v(¢) > p T 2,3.26 -
for some p; a boundary point has been defined. The process
is carried out for various initial conditions and a set of
boundary points are obtained.
3.3 Curve Fitting

Kormanik and Li (26) use the above method to generate
(m m = 1....,N1. They then use an
algorithm of Ho and Kashyap (27) to find a polynomial of

N, boundary points x

degree 2q homogeneous in powers of Xss close to the points

x(m) m = 1,...,N1. It is basically an attempt to define

a computed domain in terms of a closed set F(x) € O
where F(x) = iFj(_JE) 2.3.27
where Fj(z) is homogeneous in the x, of degree j, rather
than in terms of a set of points.

First of all a new set of points "inside" the first set
is picked and defined as g(m) m = Ni+1,...,N, +N,. See

fig, 2. Then a matrix A is set up with M columns and N1+N2



rows. The elements of A are formed by evaluating the
expression 2.3.27 term by term. P(x) has M terms of the form

x?1xg2.....xgn where E:: 1 < 2q 2.%.28

These terms are evaluatéd in an arbitrary fixed order
and the element A_ ., is the value of the jth expression
2.3.28 at the poin% E(m). The first N, rows are computed
by evaluating 2.3.28 for all admissible p, i = 1,...,n

at the point g(m) m=1,..,N The remaining rows are

computed similarly but the sig;S are reversed. ]
The algorithm then goes through an iteration procedure
given by
- x(N) = Aw(N) - b(N)
w(N+1) =w(N) +x» A#(y_(N) + lx(N)l ) 0 < ,» < 1
b(N+1) = b(N) +» (¥(N) + |x(N}| )
for N 2 O
starting from b(0) > 0O but arbitrary, and arbitrary 0 < »~ £ '1
w (0) = A% b(0). _ |
If at some stage y(N) 2 0O then the algorithm ceases.
The M elements of % (N) correspond to the M columns of A
and hence to the M eXpressions 2.3.28. These are the
coefficients of the terms given by 2.3.28 in P(x).
If at some stage y(N) < 0 with at least one element
negative then the two sets of points cannot be separated
. by a polynomial of degree 2q, and a polynomial of degree
2q +'2 must be tried.

A .
« computed boundary points
S g e "interior points" '
L W o ‘\\ _\\
/O O\K ‘-.F(l(') = Oo
b ! \
—— s
{ ° >
x° o\x
\ \ _
{ N >
e o \%
\
\ ]
NO [}
lk\ s 0/)(
N o P
N e %
LS

Fig., 2
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3.4 Hahn Example
Consider the system

X = =X + 2x2y
y = -y 2.3.29
7= -2(x? + y9) '

in two dimensions, o |

Using the auxiliary equation method of section|8 of Chap@eg'l
separating the variables we.obtain as one solution of
2.3.29a,b

X = ay where a = X0 2.3.30
2
1+ay yo(1-xoyo)
From 2.3.29b another solution is given by
y = yoe—t 2.3.31
Substituting 2.3.%1 into 2.3.30 gives
x o=t -
X = &) 2.3032

=2t
1-x y (1-e"°")

finally substituting 2.3.31 and 2.3.32 in 2.3.29c and
integrating we obtain

- ~2tj_

oy, - :
© =0t
1-x0yo(1—e )

where X = x(0), Yo = y(0), V= V(0).

2.3.31, 2.%.32, 2.3.33 are the analytic solutions x(t),
y(t),V(t) of 2.3.29 given any Xg1 Y1V, 2t £ = 0. It may
be noted that if xo,yO,Vo satisfy

- yA(1-e7h) 23,33

2
_ .2 X
vo =¥y 2
1_Xoyo
. then V(t) = y(t)2 + x(t)2 .

1-x(t)y(t)

If we take the initial conditions given by 2.3.25 then
2.%.31 and 2.3.32 represent the correct trajectory through
(xo,yo) while since V only depends on x,y and not on V, then
V(t) differs from the Lyapunov function

V = y2 + x2
1-xy 5
by a constant term which is equal to yg + %o .
1-x ¥y

oo
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The power series expansion for x(t), y(t), . given
by 2.3.19 becomes

i m
= -t
y(t) yojg:i_a%_
x(%) = >- ) (_>_(-b)i(21+1)m) 2.3.%4
where a = xo b ; xoyo .
] .
-X_y 1—x0y0

3.5 Results and conclusions

The series given by 2.3.34 were computed up to m = 39.
Fig. 8 shows the results of using various X 1Y, in the initial
conditions. The trajectories given by 2.3.30 are also shown
for comparison. The boundary of the D.0.A. is given by

xy =1 _ 2.3.35

and the Taylor series solution truncated at the terms in t39
diverges from the analytical solution some distance from
2.3.35,

An investigation was also carried out into the effects
of truncating the series at different powers. The series 7
N1 for N = 30,40,50,70, x_ = 0:01, y_ = 0-01
and the trajectories computed are shown in fig. 9 with the

was truncated at t

analytical curve representing N =oc, Fig. 10 shows the

same analysis for N = 30,40,50,60,70 and X, = 0+01, Yo = 0-005.
It is observed from figs. 9,10 that the error in the

trajectories as a result of truncation is not consistently

one way. From 2.3.%4b we see that as t — — o=

x(t) = a(-t) ‘1§fj(-6)i(21+1)N‘1
(N-1)! T=o
For N = 30,50,70 we have x(t) —» oo
while for N = 40,60 we have x{t) - - o.

It seems that the authors go to a great deal - of trouble
to work out a method that is just a Taylor series expansion.
Also the expansion of the R.H.S.s of 2.3.23, 2.3.24 becone
infeasible for all except certain "well-~behaved" functions.
Any function containing non-integer powers of xi i=1,..0,1n



cannot be computed by this method unless the non-integer
terms have a power series expansion themselves.

The results above and in figs. 8,9,10 suggest that even
for 70 terms of 2.3.19, 2.3.20 it is difficult to maintain
accuracy until a boundary point can be computed and in some
cases the computed point will be outside the D,0.A. as shown
by figs. 9,10 for N = 30,50,70. Shields(28) notes that
computing 2.3.20 as well as 2.3.19 provides a boundary
condition 2.3.26 which is arbitrary. We can actually arrange
for V(x) =.p at any x € D(f), x # 0, and for any p > O.
Theorem 2.3,2 :

If vix), #(x) satisfy the modified Zubov equation

£ AV (x) = -4(x)
— 3%y

|

and the conditions of theorem 1.7.1 then by solving the
similar Zubov egquation

> (e L P ) 2.3.36
L oEy Bxi V‘£1j ,
for V1(§) given any x, € D(f), X, # 0 and any p, > O then
Proof '
By theorem 1,7.15
vixq) =f° g{x{t))dt 2.3.%8

where x(0) = x,

From 2,3.37 and 2.%.38 we see that

oo
Vilxy) =21 [ dx(e))at
Vix,) ”°
Hence we see that V1(§) is the solution of the Zubov eqm tion
with #(x) replaced by p1é\§) . PEnd of proof.

Vix,)
The curve-fitting method also has its drawbacks., Even
supposing the points x M) are conservative aprroximations
to the boundary of the D.0O.A., it may be difficult to find
the set i(m)’ m = N1+1,...,N1+N?, to guarantee that they are
in the D.0.A..

40.
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Consider the situation of fig. 3. The points marked
1 . . . . .
E( )’£(2) are computed by Lie series, while the "interior"

points §(3), 5(4) are outside the boundary of the D.C.a.. The
method must break down in this situation since any F(x) = 0
obtained by the Ho and Kashyap algorithm contravenes the
boundary. It all comes down to the question of what is meant
by an "interior" point. The only safe way to obtain E(m)’

m = N1+1,...,N1+ NZ' is to use 2.3%.19 and 2.3%.20 computing
the boundary point from the criterion 2.3%.26 but taking a
point with V « p as an "interior" point,

A
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Now consider the situation of fig. 4. The boundary
and "interior" ﬁoints are assumed correct, but still there
is no guarantee of getting a curve to fit which does not
contravene the boundary. Taking the suggestion of fitting
a polynomial of degree 2q to iLts natural limit suggests that

we might as well connect the boundary points by a piecewise
linear path. '



4. Transformations

Suppose we are given the system equations

x = £(x) 2.4.1
then the question arises as to whether it is possible to
transform the variables of 2.4.1 in such a way that the D.O.A,

boundary becomes*more obvious,

We will consider the 2-dimensional system <
x = f(x,y) _ 0.4.2
y = g(x,¥)

What we are now looking for is a substitution

y = hi{x,u) 2.4.3
which when substituted into 2.4.2 gives system equations
in x,u, which do not affect the asymptotic stability properties
of 2.4.2.
_ Differentiating 2.4.3 with respect to time and using
the chain rule gives

¥ = dhix,u)x + dh(x,u)u | 2.4.4
3X au

Substituting 2.4.2 and 2.4.3 into 2.4.4 we have

g(xrh(x;d)) = ;éﬂ(x’u) f(x,h(x.u)o + _QQ(X-u)ﬁ
A3X [

By this means we have now transformed the system equations
2.4.2 into the new system

i = f(x,h(xvu))

bEoglnn(on) - W) pignxu))
dhix,u) 2.4.5
33U

To.consider how such a transformation could fécilitate
estimating the D.0O.A. we consider two examples:

X = =X + Y + x(x2+ y2)

2 2.
Yy ==Xy +ylX +y
If we consider the transformation

y = hix,u) = + ul. x2 2.4.6
then 2.4.5 becomes
X = =x(1 = u2) + uz- x2 2.4.7

u = ~u(1 - u2)
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2.4.6 and 2.4.7 immediately yield the solution for the D.O.A.

If we use the transformation

y =+ u - x° 2.4.8

instead the corresponding system equations become

x = ~x(1 -u) x/u - x2 2.4.9

a = =2u(1 = u)
2.4.9 suggests that the D.0.,A. is given by u < 1 but

i

we observe that the transformation 2.4.8 does not exist in
real numbers for u < 0, However every point of the (x,y)
plane has a unique non-negative value of u and we need only
consider u > 0 and we see that the D.0.A. is given by
0 € u <« 1,

Consider also the Hahn example

x -X + 2x2y

i

. Y ==y 2.4.10
The obvious transformation of u = xy yields

X = =X + 2xu
a o= =2u(1 = u)
from which we see that the D.0.A. in the (x,u) plane is given

by u < 1, However it must be recognised that the origin of
the (x,u) plane is the y-axis of the (x,y) plane under the
transformation u = xy and we have established xy < 1 is the
D.0.A. of the set x = 0. By inspection of 2.4.10 we see that
‘X = 0 is an invariant set, and the theory of the stability
of such sets is a slight departure from this thesis, It is
mentioned as one of the problems incurred by this type of
transformation to be included in a section covering possibilities
of solving Zubov's equation in this way.

There are two ways of proceeding generally from 2.4.5.
The first is to assume that f and g possess only integral
powers of x and y. 1In this case we may attempt to define
the general transformation as

y = hix,u) = E‘ S a kxkum—% 2.4.11
£ Y L .
We also assume 2.4.11 is diffentiable term by term in u and
x and that f,g may be written in power series form
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£(x,y) = S—Zf XK

S 2.4.12

g(x,y) -Zng kx y" e

Substituting 2.4.11 and 2.4. 12 into 2. 4.5 gives

ag _~ ——
S DD I kxk<§; 2 _a, K
- ;—.— T\Z_; fm’kxk( ZZ a. x* r-l)m-k}{ Z, Zla , xl"1ur-ﬂ
N Z_ (r_i)ar’ixlur—l~1 2.4-13

The range of r,i has not been included as it becomes
whatever range is needed for a particular f,g. It is reasoconable
to require that 2.4.13 is independent of x and hence the ratio
of the coefficients of x™ in numerator and denominator
should be a function of u alone which is the same for all
m, The examples considered and the transformations given
can be verified using 2.4.13.

The second way of proceeding from 2,.4.5 would be as in
2.4.8 where the transformation used makes u a Lyapunov
function of x and y. Since the region u < 0 is undefined
and the origin is the only point in the (x,y).plane satisfying
u = O we are concerned with knowing regions in which u is
negative and is going to stay negative for all t > 0. This
is equivalent to finding the region R*(i,u) of theorem 1.6.6
and definition 1.6.4. ,

For transformation 2.4.8 and general system 2.4.2, 2.4.5

becomes

X = f{x,+ u—x2)

ﬁ- 2xf(x-+J u-x ) +2Ju P(x,\/u-x )

Another possibility for a transformation could arise

by considering the Zubov equation

‘Tn_fi(y_\k_\;_.(z) = =-B(x)(1 - av(x)), 2.4.14
L 1
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Since we know that the origin of a stable system satisfies
V(0) = O and that V(x) > 0 for x #Q, x € D(£) and V(x) = o
for x € 5D(f), d = 0, then we may consider the transformation

Wix) = _1 2.4.15
o V(x)
The transform tion 2.4.15 should reveal that
W{0) = oo
and W(x) = 0 for x € $D\f).

Differentiating 2.4.15 with respect to time gives

Wix) = -W(zg)2 V(x) 2.4.16
Combining 2.4.14 and 2.4.16 we obtain the correspondineg P.u.E.
for W in terms of x as

~

PREARET

RAX

_4

v (x)

i

p(OW(x) (W(x) - @) 2.4.17
— ‘ |

We may apply the series method to 2.4.17 as in section 2.
We assume that we have a 2-dimensional system with f,g,4
given by 2.2.6, 2.2.7, 2.2.8 and that

W(x,y) = ST_YT_ W xkym -k 2.4,18

e '"'0 ’

Substituting 2.2.6, 2.2.7, 2.2.8 and 2.4.18 into 2.4.17 gives
an equation similar to 2.2.12. '
Equating the lowest homogeneous powers of x,y we see that

ifd=00rd=1, r<20

r=s8-9q-=-1 ' 2.4.19
while if d =1, r 2 0

qQ=8-1, 2.4.20

2.4.20 is difficult to achieve if s = 1 as 6(x,y)_wi11 not
then be positive definite., However since we require W{0,u)= oo
we see that r < O is necessary. From 2.4.19 we then immediately
see that )
s < q

which is consistent with Zubov's method.

. There is, however, some difficulty with definition of
2.4.18 for negative m.-A .simple example shows this from
pavidson and Cowan (29).
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-y
y=x-y+xy
Using A(x,y) = X% + y2, d = 0 the lowest powers in 2.4.17
become
k 1 -2-k -k
~y)(§:kw 2,1 ) + (x—y)(Zw 2 (=20 Sy
i+3 —4 -i-3
(X +y ) E;:E:_”_z lw—? j ) 2.4.21

izo )=o

Cleariy from 2.4.21 we cannot let the summation for k be
confined to k = 0,-1,=-2, However we can let k increase from
0 to e and then from -—-ecetpo -2 and write down each equation,
These become

(-9) (3 wi_y o1y (x-y)(j{j( 2N _y 1y TI7)

46,

=(x%+ y )(E{fcziiw 2, Moz e XY 2.4.22

1= o

and simil rly for negative k. The series generated by 2.4.22
assuming W = 1 gi '
ssuming -2,0 gives

W oo (x,y) =1 (1 + x - x2 - 2%x° = Rx4
-2 " — = e —_— .__._.{..-_.._);

2 - 2 3 4

y y 2y y y

It is apparent that the series construction has too many
problems to be feasible. '

The method of solution using the auxiliary equatioﬁs
is no more helpful. The corresponding equation to 1.8.2
for W(x,y) is

~d8x_ _ _dy @ _ dw 2.4,23
f(x,y) g{x,y) - B(x,y)W(W-d)

It can be seen that 2.4.23 is no better than 1.8.2 by compari
the terms in V and W réspectively. If d = 0 then

g—g':--‘l— =-V::a.fdv
W W

while if 4 = 1 then

aw 1 av
——— = log(1 - z) = log(t - V) = - .
W(w-1) o8 W °8 1-v

Hence we obtain V and 1/ as the same function of x,y.
W

ng
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Having attempted certain transformations which suggested
themselves from the nature of the problem, it has become
obvious that transformations, if they are any use at all,
are only useful by using certain transformations with certain
examples. This is equivalent to deciding what the D.O.A. is

and fitting the itransformation around it.

5. The Vector Method
Infante and Clark (30) in their paper considered that
the second method of Lyapunov was essentially geometric in

nature and that geometric techniques should therefore be
used to generate a Lyapunov function and hence obtain the
D.0.A.. They refer to theorem 1.6.3 noting that if V(x)
can be found satisfying this theorem then the origin of

x = £(x)
is asymptotically stable, The method is developed iﬁ 2
dimensions. We denote the system equations as

x = £(x,y)

y = elx,y) 2.5.1
Then sufficient conditions for the existence of a time

X

independent integral of 2.5.1

n{x,y) =p 2.5.2
are given by '
D f(x,y) + dglx,y) =0 2.5.3
X dy .

However most systems do not satisfy 2.5.3. A class of
systems which do satisfy 2.5.3 are given by

X =Y .
& = g(x’Y) ’ 2-5.4
where dg(x,y) = 0.

DYy
It is system 2.5.4 that we consider to develop the method
on, without the assumption that dg = 0, '
Y
Suppose now the system 2,5.4 is slightly modified so
that we have a system satisfying 2.5.3, The system which
achieves this is given by
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™
i

: r s
;gg(x',y)dx'
e }y 2-5.5

y = g{x,y).
Thus the system 2.5.5 possesses a time independent integral,
However, the system 2.5.%5 does not necessarily have the same
properties as 2.5.4. Thus we have to modify 2.5.5 further
to try to preserve the essential properties of 2.5.4. We -

H

obtain
X =y - [ ex,y)axt + £(x,y)
o QY 2.5.6
v = g(x,5) + g,(x,y)
where of (2,y) | . RE(x,¥) -_
Sl + :ay1 ’ = 0. 2.5.7

The final step of the method is to investigate the
characteristic vectors of the systems 2.5.4 and 2,5.6. However
we do this in three dimensions and so introduce z as a

variable the axis of which is perpendicular to the (x,y)

plane. As we only have a two-dimensional system we add the
third system equation as

z =0 2.5.8
restricting initial conditions to
%z(0) = 0.

Then we may write 2.5.4 and 2.5.6 together with 2.5.8 in
vector form

— ' i

x| = Y
¥y g(x4s¥,)
z 0
'z, [ —%§ (x3,y5)dx) + £4(x57,)
Vo g(xg,yz) +28,(x5,5,)
2

- —_ T -
where (x1,y1,21) ’ (Xz,y2,32) are respectively the solutions
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of 2.5.4, 2,5.8 and 2.5.6, 2.5.8. The vector W given by

X X
w o= | G

Y * | ¥2

_Z1_ 22‘

is a vector which is perpendicular to the (x,y) plane and we
denote Q a gigned number, as the magnitude of W expressed
in the convention that w is positive for W in the direction
of increasing z. (fig. 5)

Bl 8 }
R
/ W
~ ~7 Vs Y ./
™~ W ™~ Rd
~ ~ 7 -Q_’-\A
’ / \&L
V) -7 ~
2 /! e . - - ~ . ~
e ~
. . -
4
A 1
\
Fig. 5

The basis of the method is thus to choose f1,g1 in such
a way that the solutions 2.5.2 of 2.5.6 form closed
concentric curves round the origin which makes h(x,y) a
Lyapunov function.

Now if the origin of 2.5.4 is asymptotically stable
then we know by theorem 1.7.6 that trajectories of 2.5.4
¢ross curves 2.5.2 and hence cross trajectories of 2.5.6
toward the direction of decreasing h(x,y). (Fig., 6). This
means that by careful choice of f (x,y), g1(x y) we may
establish w to be positive semi- deflnlte in a nelghbourhood
of the origin. Thus by investigating h(x,y) and W we obtain
an R.A.S. given by

h(x,y) < p'.
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To illustrate the method we consider the equations
X =y
. 3 .
¥ = =X + X~ - ey
The modified system becomes

X =y + ex + £1(x,) 2.5.9

Y = =X + 0 - ey + §1(x,y)
Then the cross product magnitude W becomes

A
W = ex2(1-x2) + ezxy + x(1-x2)f1(x,y) + eyf1(x,y) + yg1(x,y)
, - ©2,5.10 -
. [aY
We have to find f,,g, satisfying 2.5,7 and such that W is
+positive semi-definite in a region of the origin.
This can be achieved by removing the xy terms
f,{x,y) =0 2.5.11
2
g1(x,y) = -e“x.
Substituting 2.5.11 into 2.5.10 gives
p 2 2
W= ex“(1 - x%)
and the integral of 2.5,9 is

h(x,y) = x2((1+e)2 - 52) + 2exy + y2.
2

A
Since the extreme values of x which allow W » O are x = #1
we see that the R.A.S. is given by
2 2 2. :
x“((1+e)“ = % )+ 2exy + y2 < T + 2e2,
2

Alternatively we may choose
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f,‘(X,Y) =02 5
g4(x,¥y) = -e"x - ex
giving an R.A.S of
2 2 2 2 2
x“((1+e°) - x“(1-e)) + 2exy + y° < 1+e+2e”.
2 2

Several points occur about this method:
a) As the authors state they cannot make an algorithm out
0of the method as the choice of f1 and 84 is made by inspection.
b) Since the method relies on inspection it can only be done
on systems that can be so inspected, and the D.0.A.s of which
can easily be obtained by other methods,
c) Presumably the condition 2.5.3 is sufficient for there
to exist closed curves of the form.2.5.2. After all, systems
2.5.1 possess an integral which is the solution of

Qx-a{.&.l}-
dx - f{x,y

Margolis and Vogt (19) mention that given a Lyapunov function
V(x,y) the system

X = ‘B_V(X|Y)

W - - 2.5.12
.‘./ = ﬂ(X:Y)

WX

has as its solution the curves V{(x,y) = p. System 2.5.12

does safisfy 2.5.3.

d) The systems on which the method is developed are of the
form 2.5.4 which is only a subset of 2.5.1.

e) There is no generalisation to higher orders that can easily
be seen. |

f) There is no guarantee that the system 2.5.6 will have
similar properties to 2.5.4 even when f1,g‘1 are chosen.
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6. Rodden's Method
0f significant importance in a catalogue of methods of

determining . regions of asymptotic stability is Rodden's
method (18). The method he proposed is a computational method
of determining R.hA.S.8 of given Lyapunov functions which
have been chosen* or worked out by some method such as those
of Zubov (11), Ingwerson (31). Szego (32)(33).

The basis of ‘the method is to use theorem 1.6.8 to find
p*(g,V) such that

V(x) > p (£,V)

for all x such that

T(x) =0 | 2.6.1
where the system equations are given by

x = £(x)

f(g) = _O_. ) 2.6-2

The stability of the origin is immediately indicated
by checking that theorem 1.6.3 is satisfied
i.e. V(0) =0
V(x) >0 x40
Wx)s 0
for all x € S, for some € > O,

Having satisfied the conditions required for this choice
of V(x) to indicate that the origin of 2.6.2 is asymptotically
stable we may now proceed to determine the region of asymptotic
stability. ' -

There are three stages to this method:

a) Find x'") such that ¥(x{") = o
b} Track along 2.6.1 to find 5(2) such that

V(z(z)) € v{x) :
for all x satisfying 2.6,1, x € Sz(g(g)) for some € 7 0.
c) Trace out the boundary of the R.A.S. given by

vix) = vix{?)y | 2.6.3
Stage a) is comparatively simple to carry out compared
with stages b), c). ‘“The latter require us to keep on a
pre-defined curve and to keep adjusting for any errors made
in tracking, while the former searches for any point satisfying
2.6.,1. Providing we define a reasonably logical method for



53.

stage a) we have a lot of freedom for choice of large
~ step-sizes and changes of direction.

The systematic method for stage a) is required to be
such that the point 5(1) will be found no matter where 1t is,
That is, we must not confine our search to one region of R™
when there may net be such a point in this region but there
may be elsewhere,

Rodden does this by means of a spiral which he does not
actually define but Hewit (17) does. First of all we select
a plane in 2 dimensions containing the origin. - A 2-dimensional
plane in an n-dimensional space requires n-2 linear
relationships between the variables x1,...,xn.given by

Ax = O 2.6.4
where A is an n-2 by n matrix, and x is the vector of system
variables. 1If we replace X by By where B is an n x n matrix
satisfying

AB = (I,0,0) ‘ | 2.6.5
and y is 2 new set of variables, then we have the
2-dimensional plane in y given by

ABy = 0. o 2.6.6
(1,0,0) is the matrix formed from an n-2 by n-2 unit matrix
with 2 extra columns of zervroes.

i.e.

(1,0,0) = |1 0 0
L O3
(::> 10 0]

From 2.6.6 we see that such a transformation gives the plane

formed by setting
y; =0 i=1,00.,n=2 |
and allowing Yp-1'Yn to vary freely. The matrix equation
2.6.5 represents n sets of linear equations each represented
by n-2 eaquations in the n unknowns Bi,j jg=1,...,n for
each 1 = 1,...,n.

Rodden illustrates the method in 2 dimensions. Now
that it has been shown that by simple linear transformations

‘of the variables that a plane through the origin is euivalent
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to a plane in which n-2 variables are held to zero and the
other 2 allowed to vary freely, we may illustrate stage a)
in 2 dimensions.

We define a series of points in the (x,y) plane in 2
dimensions by (xﬁ,ym) where

i) (x,p¥,) = (r,0)

- L. 2 2

ii) xi * Yy = (rm) m=0,1,..

iii) (xm+1,ym+1) is where the staight line tangential to
X% + y2 = (rm)2 passing through (xm,ym) intersects the curve

x2 + y% = (r(we1))?. m = 0,1....
It may be shown (Appendix B) that this definition is

equivalent to
i) (xosyo) = (r,0)

ii) X o1 = Xp = me2$+1 0 6.7

d

=y + X _JZ2m+

¥y
m+1 m m -

Correspondihg to each (xﬁ,ym) there is a Vm,Vh given by

Vm = V\xm!ym)'
. Vo, = V(xm,ym). .
The series Vm is checked so long as le< 0.
When we have found N such that
vy <0
. , 2.6.8
Vier > O
then a process of interval halving along the straight 1line
given by
x = xg o+ Nxg,y = xy)
y = yN + )‘-(yN+1 - yN)
0 < XN <1

(1)

accuracy. This completes stage a).

is carried out until (x ,y(1)) is found to pre-determined

Rodden does not actually mention how the 2-dimensional
plane of the spiral curve is selected when we are solving

(1)

a system in 3 or more dimensions. Clearly the point x
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in n dimensions depends on which plane is chosen. Rodden
chooses the expanding spiral series 2.6.7 with 2 dimensions
in mind so that if V > O anywhere in this plane then 5(1)
will be found. The problem in higher dimensions is that
V is not necessarily strictly negative definite but it can
be negative definite when constrained to a particular plane.

Rodden's own third order example shows this problem.
Consider the system given by lngwerson (31)

%y = %,

X, = X 2:6.9

3
Xz = ~X, — 2X, = 2X, = x3
3 1 2 3 1
Ingwerson derived the ILyapunov function

V(ix) = 2x$ *2X,X, 4 6x§ + Axo%g 4 x% + x? + 2x?x2

which has a time-derivative with respect to the system 2.6.9
T(x) = -6(1 - x7)x5 2.6.10

pr clearly from 2.6.10 vkz) is negative semi-definite for all
X where

and a value of N .defined by 2.6.8 will nét be obtained when

x € 1 X i oxy = O}

the spitral search is carried out in the (x2,x3) plane for
xy = 0. Rodden says that if the plane 2.b.4 does not intersect
V = 0 then a new plane is chosen. This raises two questions:
1; How far does the spiral go before deciding that a
new plane should be chosen? '
2) Is there a systematic approach to choosing new ?1anes
“such that if V is not strictly negative definite then x
will be found?
The obvious answer to question 1) is to confine the spiral
search to SR for some large R This is equivalent to finding
a stability region given by R (£,V) n Sp+ The answer to
question 2) lies in constructing a linear combination of
fixed planes. It can be shown that in general (Appendix C)
given any x € R that x satisfies

MAGE + RMAX ¢ L N LA x =0 2.6.11
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for some N,>%as -2 Na-, where Aié =0, i =1,,..,n=1, are
planes in n dimensions as given by 2.6.4. Any systematic
method of selecting different planes will in some way be
related to variation of \., i = 1,...,n=1. Even then the .
set of (Noy-v-. 0 -- >\..,) such that 2.6.11 intersects 2.6.1
may be missed out due to N , 1 = 1,...,n-1 possibly being
varied in steps which are too large.

Given that 5(1) has been found we now regquire to proceed
along 2.6.1 to find a point where V(g) is minimised. So we
have to find which direction to proceed along the n-1 dimensiona
surface 2,6.1 so that V(x) is decreased at the greatest rate.
The gradients of V(x) and ?(5) are respectively the vectors
‘UV(E),‘VV(E). From fig. 7 we see that the correct direction
to search for x 2) ig opposite to componentVV(x) on the
V(x) = O surface. Thus we proceed in the direction of the
vector H where

—

E(z)=(‘7" VV) -
RN vll it

2.6,12

Now gifen any point x on 2,6.,1 we take the next point
to be x' where
x' =x + H(x) ds

| 5(x)]
where ds is a fixed step-size. x' will not satisfy 2.6.1
exactly. To return to 2.6.1 we iterate by step search and
interval halving along the line given by
x = x' + NUV(x") 2.6.13

where —A is of the same sign as V(E')f until we find x"
satisfying 2.6.1 and 2.6.13. The danger is that 2.6.1 and



2.6.,13% may not intersect but since

|1§“ - E'” = 0(ds2) as ds —0

this is unlikely. The procedure to find x" from x is repeated

until we find x such that the vector H has changed direction.
This is done by %esting the scalar product of H(x) and H(x").

In the unlikely event that the step-size is large enough
for the minimum to be missed by the scalar product test, we
hope to appreach the minimum point by another path.

Once we have x, x" such that

H(x).H(x") < O 2.6.14

then the step-size ds may be reduced typically to one-third
of its previous value until the desired accuracy is achieved.
Rodiien alters ds in a different way. e takes

ds H(x)“
dﬁ_(_},t,)’
T3
the ith c¢~mponent of dH is given by
(d_fj(z) . (vEGp). WEE
a5 )i ) 2X; | sl

l -
| v E()| ds

- ‘This seems unecessarily complicated when compared to
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simple ratio reduction of ds each time we find x, x" satisfying

2.6.,14.,

Rodden has noted the problems which can occur when £(2)
lies on a saddle point of V(x). i.e. YV(x) = Q0. He selects
the alternative surface to 2.6.1 given by

V(x) = -¢ 2.6.15
for some small & . He searches for the points of tangency
of 2.6.15 with V(x) = p. As Hewit notes this again seems
unecessary as we are only interested in the direction of
H(x) and this always points to the minimum. Stage b) is now
complete.

Stage c¢) has a repeat of the problems of stage a) in 3
or more dimensions. To trace out 2.6.3 in more than 2
dimensions involves using particular planes in which we find

curves satisfying 2.6.3 which we can somehow “piece® together
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to obtain a picture of the complete R.A.S..

2) we may trace 2.6.3 in a plane containing

Given Xx
E(Z)_ However if we require other plane intersections of
R" we have to track onto them first. A systematic method
of building up & picture of 2.6.% would be carried out in a
similar way to that used in stage a) given by 2.6.11.

Since 2.6.% is built up using planes we consider again
the 2-dimensional situation, We suppose that we have a point
(x,y) on V(x,y) = p where p is given, and we wish to find the
next point (x',y') in a similar way to that used in stage b).
The difference in stage ¢) is that we cannot détermine a
vector such as H(x) to indicate which direction x' lies as
we want to trace out the whole of an (n-1)-dimensional surface.
This is why we consider 2 dimensions only where we are
constrained to look for x' in a particular direction.

Rodden uses a second order method to find (x',y') this

time.
x' =x + dx ds + 1 QEE (ds)2
ds 2 ds2 2.6.16
y' =y +dy ds + 1 d% (as)?
ds 2 d82

“Using the geometric properties of a fit such as 2.6.16 for
small ds we obtain '

PRV
ds L
|| - 2.6.17
¥V
dy -_ _3x
ds = VY]]
and RN
dx _ 1 3ax
as®  R|vyll
5 ?I 2.6.18
dy .1 2y,
s B INadl
where R = |§%%ﬂ 2.6,19



2
' 2 2 ) 2
and d°V  _ 7V{dx Py c %Y /ay) 2.6.20
— = .-7(—31 + 2_X(d_x)(<_ix] P O 6.
ds ox IxVy \ds/ \ds Vy° \ds

Substituting 2.6.17 into 2.6.20 then 2.6.20 into 2.6.19,
2.6.19 into 2.6.18 and finally 2.6.17, 2.6.18 into 2.6.16
gives (x',y').

(x*,y') will not lie on V(x,y) = p and so a search
identical to 2.6.13 is carried out along

x = x' + ZV(x',y')
X

y o=y W ulx,y)
oy
to find (x",y") satisfying V(x",y") = p.
I{ is interesting that a second order method is used
in stage ¢) and not for a similar process in stage b). The
same method 2.6.16 to 2.6.20 could just as well be applied
to stage b). If we consider the plane selected by some means
for stage c) we see that the vector

dx | is perpendicular to |3V

ds 9X

dy NAN
| ds | Y .

Now in stage b) and equation 2.6.12 we see also that H(x)
is perpendiculaf to ‘V?{E). Hence we may define a plane
Px as the plane containing both H(x) and 'V?{E) for any x.
Then by identifying rx in such a way that 2.6.16 to 2.6.20
can be evaluated we have a new x' and then we may use 2.6,13
to find x". The only différence in the use of the second
order method for each stage is that Px changes for each step.
It seems that the extra computation required to compute
x' using a second order method is not justified anyway. High
order accuracy numerical methods are needed énly where there
is no back-up computation., But in this case we always iterate
to get back on to either ?(5) = 0 or¥ V(x) = p and the accuracy
of obtaining x' is more readily improved by reducing ds than
by computing extra terms.

5Y.
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It seems on the whole that this method is more readily
applied to 2 dimensions than higher orders. But in 2 dimension
it seems better to evaluate r such that

V(r cos @,r s8in &} = p 2.6.21
for various © then compute V(r cos ©,r sin ©) adjusting p
according to whether 2.6.21 intersects V(r cos 8,r sin 8) = 0.
In this way we are assured of progressing systematically,
while in Rodden's method we first try to find a point which
may not exist and even if it does then is outside the R.A.S..

7. Other Lyapunov Methods

Other methods of constructing Lyapunov functions than
by Zubov's method should be briefly mentioned.

Firstly, Ingwerson's method (31). 'This method relies
on the principle that if ‘

x = £(x) = Ax + g(x) 2.7.1

where ||g(£)” —> O as x-=0

120

then A = J(Q)
where J(x) is the Jacobean matrix of f£(x). So a Lyapunov
function using the matrix J(x) will indicate stability of
the origin. We recall by theorem 1.6.7 that the origin of

X = Ax
is asymptotically stable if and only if there exist positive
definite matrices B,C such that

ATB + BA = -C. 2.7.2
The method of Ingwerson for obtaining a Lyapunov function
for 2.7.1 is to solve the corresponding matrix equation

J(x)TB(x) + B(x)I(x) = -C(x) 2.7.3
for a positive definite B{x} given a positive definite variable
matrix C(x). We may also recall that when 2.7.2 is solved
we obtain a Lyapunov function
V(§) = xIp X 2.7.4
¥V(

5)*

3yx°

in which case

=2Bn 207.5
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W@e see from 2.7.4, 2.7.5 that if we can find B(x) from
2.7.3 then we might hope to obtain a Lyapunov function by
setting

BZV(z)

B 5 =.B(£) 2.7-6
X

However the matrix B(x) may not be the second derivative of
a scalar function V(x) with respect to x. Clearly if there
is such a V(x) satisfying 2.7.6 then by positive definiteness
of B(x) we see that V(x) is also » positive definite near
the origin.

To ensure that B(x) satisfies 2.7.6 for some V{x) we need
the condition

Bxk ) )xj
for i,j,k = 1,...,n
i#j, i# k.

2.7.7_can be guaranteed by setting to zero all variables other
than XX in the element B(E)i

2-7-7

3 i4J = 1,4ee,ne
Havin7 carried out that operation on 3(x) it is just

a matter of integrating 2.7.6 twice to obtain V(x). The

double integration to obtain V{x) from B{(x) does nnt actually

require 2.7.7 to be satisfied first, but clearly since we

have a positive definite matrix B(x) then it helps considerably

if B(x) is an exact second derivative in obtaining a V(x)

which is itself positive definite.

Schultz and Gibson (47) consider the system

x = A(x) x 2.7.8
where A(x) is in companion form with variable coefficients
0 1 0------ 0
Alx) =| v 5y g 0
| ! ‘\ \\\\ :
i . ~ -
1 ~ ,
' ‘\ , h ~
|i ! N 0
0 0- - - .0
1a;(x) ag(x)--- - a (x)

Now they set up a matrix B{(x) with certain restrictions
given by



B, o(x) = 2.
! 2.7.9
By i(§)> 0 and functions of x; 1i=1,...,n.
Bi’j(ﬁ) are functions of Xy,...,X i A o3.
The matrix B is used to assign 3V where
X
W(x) = B(x) x 2.7.10

3%

The restrictions 2.7.9 on B(x) are to increase the possibility

of V(x) being positive definite near the origin. To.fully
determine the elements of B(x)} certain other processes need
to be carried out.

First we require that V(E) is negative definite.
This is done by investigating V(x) using 2.7.10 and 2.7.8
which becomes

7(x) = x"B(x) A(x) x < O. 2.7.11
Secondly we must ensure that 2.7.10 gives an exact gradient
of a scalar function V(x). The required condition is that

curl dV(x) _
hi_ “'Q_ 2-7.12

With restrictions 2.7.9, 2.7.11 and 2.7.12 on B(x) we may
determine B(x) and hence by line integration of 2,7.10 we
obtain V(x). This method has been generalised to solve
non-companion systems in Schultz (48).

The method of Szego (%32), (33) is similar ‘o Zubdv's
method. He discovered that the origin of

x = £(x) 2.7.13
is asymptotically stahle within

ax*(g) < S . 2.7.14
if there exist V(x),#(x), £(V) such that
a) v(0) = 0.
b) A(x) is positive definite on trajectories of 2.7.13.
¢) V(x) = £(x)73W(x) = -4(x)

Y T

62.
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.
a) [ R(0)at < o -
e) = (x) = _fp(t)dt > 0 for x satisfying 2.7.14

il

It can be seen that B (V)

1 converts Szego's method into
Zubov's method.. ‘

8. Non-Lyapunov-Methods

Finally, in this chapter, a mention should be made of
other mecthods of finding regions of asymptotic stability
or of integrating the system equations.
Davidson and Cowan (29) use a type of Lyapunov function

for their method, but one in which the boundary of the D.C.A.
is given by

Vix) = O.
Their method is wost applicable to limit cycle systems where
the function V(x) is defined by

Viz) = ||x(8)]] - |fx(t = t")] 2.8.1
were x{t - t') = cx(t) for some scalar consiant c.
This poses the immediate problem of how to decide what t'
is. Davidson and Cowan integrate

x = fix) 2.8.2
by- the fourth order Runge-Kutta methed using negative time,
Now in 2 dimensions it is relatively easy to decide when the
origin has been completely encircled., This can be done by
usingz polar co-ordinates and terminating computation when

8 =93, 12w,
However in % or more dimensions the system trajectories are
1-dimensional curves in n-dimensional space and a lot of
computer logic must be required to determine whether or not
a complete rotation has been achieved, and even then this
only establishes a 1-dimensional section of an {n-1)-dimensional
boundary. ‘hen the D.0.A. of 2.8.2 is not a limit-cycle
Davidson and Cowan still use the function V{(x} given by 2.8.1
but with t' fixed. This leads to problems when considering
examples with trajectories which may tend to diverge from
the origin initially but are asymptotically stable. The
Hahn example is characteristic of this
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. 2
X = ~X + 2x7y 2.8.3
y = -y
The solutions of 2.8.% are given Dy
x(t) = xoe"t
' -2t
1-xoyo(1—e )
y(t) = yoe't.
If we let the initial point be chosen on the line y = x and
so write
X =y_ =a
o 2%
and then let u = e~ “° where t' is fixed we see that V(x) = O
when ~
2 1T (522 .
a = Tu 2.8.4
1-u

Pig. 11 shows the relationship between a and t' for negative
t'. Clearly the more negative the value of t' chosen the
greater the value of a and for t' < -#log 2 then V(a,a) < 0
for all a. The general formula for-any:(xo,yo) corresponding
to 2.8.4 is given by
5 13 (u c0s°0 )%
r = 1-u 8in°o

‘$in 6 cos 8{1-u)

X =r cos 8, y. . =r sin @,

For u > 1/sin“8 we see that V(r cos 8,r sin 8) < 0
for all r and we see that Davidson and Cowan's method is not

really applicable in this form.

Texter (34) in his paper gives 3 methods of finding
an initial point on the boundary of the D.0.A.. The first of
these transforms the Zubov equation to polar co-ordinates '
and solves it numerically. This is the subject of an extensive
study in Chapter 5. His second suggestion is to inspect the
system equations which when it can be done is always better
than any computation.

The third way Texter gives is that of integrating the
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system eqguations firom an initial point

x(0) = ex

for various ¢ to obtain the maximum c¢ for which the trajectories
are stable., This is similar to Davidson and Cowan's method
except that Texter does not say specifically how he decides
whether a trajectory is stable, and indeed neither author
says how we alter X, if we do not find a point on the boundary
of the D.0.A..
Once a point cx has been found on the boundary of the
D.0.A. the second part of Texter's algorithm is integration
of the system trajectories from this initial point. He uses
the Euler method of solving the 0.D.E. given by (353)
_ %% 57 i,y; 2.8.5
which in step form is
- ox g(xp,y,)
Yme1 = Y *
m’ym) 2.8.6
m=0,1,... '

f(x

X = X + 3X,

Euler's method is only first ordér accurate and 0.D.E.s can
ve solved by much more accurate methods. Also to integrate
the system trajectories for positive t means that if the origin
is stable the boundary is unstable and computation of the
boundary will diverge from it as errors accwaulate.

Finally it can be seen from 2.,8.5 and 2.8.6 that the
criticism of Davidson and Cowan's method that it is not
~applicable to higher orders is just as valid here.

The previous two methods have each involved to some
extent numerical computation of the system enuations either
for x as- a function of t or for relationships between the
xi's i=1,...,n. The methods reguire fixed step-sizes
for either t or one of the xi's.

However Fox (36) proposes that 0.D.E.s such as 2.8.2
should be solved using characteristics. Characteristics
were introduced in section 8 of Chapter 1 and as was
mentioned there we are not specifically interested in any
characteristic curves in this thesis except the one which forms
the boundary of the D.U.A.. |

But Davidson and Cowan's idea of computing the system
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equations for negative time opens up another possibility.

If we choose initial conditions given by
' =~ 2.8.
%o = = 7

and then integrate numerically along the characteristics
we should obtain a family of curves the envelope of which
is the D.0.A.. Xormanik and Li (26) used this idea with
Taylor series but here we consider finite difference .
approximations along the characteristics as suggested by
Fox.

Suppose we have the system of equations

ii = fi(gj i =1,e..,n

then the characteristics are given by

dx1 dx2 _ dxn

f1(2(-) = 1_2(5) N N N A fn 2{_) 2.6.8

Likewise we may consider the characteristics of a P.D.E,
such as the Zubov equation )

n

g—.,—,'fi(g(")%‘fi = -A(x)(1 - av). 2.8.9

The characteristics of 2.8.9 are given by 1.8.1 which is
reproduced here

dx dx dx

1 _ 2 _ n _ -4V
f1(_)_(_“) = f2l_)_(.j = e ergeses— nt_T}g = d(gg)(.‘_dv) .

2.8.10

If we solve 2.8.8 from initial conditions 2.8.7 we should
obtain the desired family of curves, If we solve 2.8,10
instead we should also obtain the variation of V along each
characteristic. Theoretically we could integrate 2.8,10
until V reaches a certain prescribed value as advocated by
Kermanik and Li, but to illustrate the method we consider
2.8.8 only and in 3 dimensions.

The characteristics of a 3-dimensional system may be
written

dx _ . dy e _ 4z
f(x,y,2)  elx,¥,2) = wix,v,2) . 2.6.11
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Fox proposes that 2.8.11 is converted into the 2 equations
w(x,y,z)dx = f(x,y,2z)dz
g(x,y,z)dx = f(x,y,2z)dy 2.8.12
or any other 2 similar equations from 2.8.11., He then uses

the Trapezium rule of numerical integration which when applied
to 2.8.12 gives
2(w(x,,y024) + W(X.y,é))(X-xi)

= 3(f{x;,y;,2;) + £(x,5,2))(z~2;)

g(xy,y5024) + 8(x,y,2)) (x=x,) 2.8.13

= é(f(xllylyzl) + f(X:y’z))(}'“yl)

i=0’1"ll

We see that 2.8.13 represents two ecuations for x,y,%2
in terms of Xi1Y;02y which is the last point calculated on
the characteristic. Now we may select any one of x,y,2z and
let x = Xi41 OT Y = ¥y,q OT 2 = 24 . By solving 2.8.13 we

_then obtain Yietr %141 for a chosen X441 and likewise for
any other way round. This has the advantage over methods
which fix saY X5, 4 which have difficulties when

dx = 0

dy

or dax o~ 0.

dz
We have no way of knowing beforehand which way a characteristie
will go in the (x,y,z) space and we may prefer to choose

X5 01055410 %5 41 subject to a condition limiting the line
displacement such as
(x; 4= xi)2 + Yy
i =0,1,2....
Fox's method is simple to apply but if the. system equations
can be integrated numerically in this way, it is possible

2 2 2
1417Y3)7 * (2= 25)° < e

to use much more accurate methods than the trapezium rule.



9. Conclusions and Other Possibilities
Various work on solving Zubov's equation or of obtaining

Lyapunov functions and corresponding regions of stability,
and some other ways of finding D.O.A.s have all been presented
here. This is nbt an exhaustive list of work done in these
and relative fields but they serve as background material
for developing other techniques of solving the Zubov equation,
The Zubov methods examined have had some difficulties
particularly of non-convergence and it is hoped to overcome
these problems in later chapters.
Other possibilities for solving the Zubov equation may
inciude:
a) Transforming it to an 0.D.E. using Green's functions.
b) Using variational techniques to determine contours
of V(x).
¢) Using the analytic solution of
_ x = Ax + g(x) -
given by x(t) = §.(t)£o +§(t)£k§_(—s)g(g(s))ds 2.9.1
is a solution of . -
' _;'5 = Ax such that §(O) =1
and maybe some iteration for the integral part of 2.9.1.

where i (t)gO
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Chapter 3

Theory of Solution of Zubov's Eguation.

1.Introduction.
Computation of D.0O.A.s by using numerical integration

techniques on the Zubov equation will be attempted in the
three chapters following this one. The theoretical basis
of such computation is ahalysed here. In this chapter the
definitions used for later work are made. Some interestiing
new results on the Zubov equation are also presented.

1t seems to be generally accented that if the Zubov

egaquation

n

£.(x) dV (x) = -4(x)(1 - av(x)) 5.1.1

e LR
can be solved for a positive definite A(x) then the D.0.A.
will be obtained by setting V=1 or V =, In this chapter
it is shown that #(x) cannot always be freely chosen and
even that f(x) may be such that the D,0.A. cannot be obtained
for any A(x). '

InisectithZ some definitions are 5et out followed by
further theorems on positive definite functions to supplement
those in section 5 of Chapter 1. In section 3 we take a
look at the relationship of the Zubov equation in polar
co-ordinates to the rectangular co-erdinate version 3.1.1,
Section 4 gives some interesting results on systems which
are symmetric about the origin. 1In section 5 the method of
solving P.D.E.s by the auxiliary equation or characteristics
method is investigated as a concept in order to throw light
on the relationship between x, V, #, t. In section 6 we
consider the choice of Brx) ahd whether some A(x) are not
admissible as far as theorem 1.7.1 is concerned. Section 7
covers the situations where the Zubov equation may be soluble
but the D.0.A. not indicated by the corresponding Lyapunov

function.
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2.Decree of Functions
In Chapter 1 some definitions on positive definite

functions were given. These definitions mainly concentrated
on the general properties of such functions. Theorem 1.5.1
was concerned with a particular class of functions, namely
quadratic functions. Following theorem 1.5.3 it was stated
that a positive definite decrescent” function could be
approximated by its lowest order terms near the origin.
We now attempt to define and establish some results on this
subject.
Definition 3.2.1

The asymptotic degree P(i) of an n—dimenéional continuous

function on an n-dimensional vector space is such that

(B3]
e T o e

along a general continuous path [ in R"™ where e¢{l ) exists.
and is finite for all paths and non-zero for at least one path,
For example suppose we define the function f(x) in 2
dimensions by

f{x) = x, + xg
x?xg + x? 3.2.1
men 2@ (a2 +6AE + kD)D)
e (2 + x2)PL)/2 3.2.2

By inspection of 3.2.2 as x—>0 we see that

P(£)= 1 ’ 3-2-3
which gives a limit .|l£(5)u-—»cos Q 3.2.4

(B3

for paths T which approach the origin along

X, = tan 9.
3.2.3 and 3,2.4 satisfy the conditions of definition 3.2.1
for the system 3.2.1.
Definition 3.2.2
The asymptotic degree P(V) of a scalar continuous function

V(x) on an n-dimensional vector space is such that .




V(x)
ET
and x varies along a general continuous path U in R" where
c{ ") exists and is finite for all paths and non-zero for

e(M) as x—=0

at least one path.

1.

Now we need to show that these definitions are consistent.

The next two theorems establish that.
Theorem 3,2.1

where £(x)7 = (£,(x),2,(x),..., £, (x)).
Proof
Let P(fj)

1}

Sj j=1,...,1’1

P(f) 8
and suppose there exists in contradiction t6 the theorem a
} such that sj < s.

We use the definition of the Buclidean norm of f£(x)

which is

| £ix)]|= cifim?)% | 5.2.5
Dividing 3.2.5 by “;”S‘éives

lz@ . (e 2\ % 3.2.6

e (0 )

By definition 3.2.2 we know that

fliz)

(Elhe

where ¢({") exists and is finite for all continuous ©° and

—> c([) as x—=0

non-zero for some 1" . Let (" be a path for which c¢("') is
non-zero.

Hence £1£§) - f'(z)lliﬂsj-s . c(r')wzlsjws
Ef® [EifbE: 3,2.7

as x>0 along V' . Now if sy <8 then we see that the limit-

asrx~>0 of 3.2:7 is infinite and so also is the limit of

3.2.6 infinite upon substituting 3.2.7 into 3.2.6. Hence we

have established by definition 3.2,1 that
P(f) # s



where s > sj for some j = 1,...,n.
Now suppose also in contradiction to the theorem that s < S5
i= 1'0..,nl

This time

£.(x) = £;(x) | )°17° — c(r‘)“_agnsi’.s 3.2.8
[E S F{he

as x—=0 along any’continuous path {7 . Now if 84 > s then

we see that the limit as x>0 of 3.2.8 is zero for all paths
™ in R". Substituting 3.2.8 into 3.2.6 and letting x>0
we see that ’

NZ2 o o as X—=0
[E
along any continuous path "' . Now we have estabvlished by
definition %.2.1 that
P(f) # s
where s < 84, i =1,¢ca,n. ‘
Having eliminated all other possibilities we are left
with the result
, s = min(s1,32,...,sn).
Znd of proof,.
Theorem 3.2,2 _ _
P(f) and P(V, are unique for a particular f£(x) or V(x).

Proof
Suppose in contradiction that there exist 8458, both
satisfying definition 3.2,2 for V(x).

i.e,. V(ﬁ) —_— 01“——:) as x->0

[l ® 1
and v(x)
| ]|°2

and % varies along a general continuous path ' in R". c1(P ),

—> ¢, (") as x>0

cz(f‘) both exist and are finite and each is non-zero for
some {" . Without loss of generality we may assume that
8, > Soe
now V(®) ol P1T? e (Mg 7172 529
S —
||ﬂ] 2 ”5” ]




Now since 01(F ) exists and is finite, and s, > s, we see

5.

that the limit of 3.2.9 as x->0 is zero f-r any continuous ' .

i.e. V(x)
| x||”2
Hence by definitjon 3.2.2 we have shown that

W P(£) # Spe

This shows that the assumption that =P and s, are different

—> (0 as 1{_—99°

ig false.

For the vector function f(x) we see that since P(fi),
i=1,...,n, are each unique then by definition 3.2.2 and
theorem 3.2.1, so is P(f). End of proof.

With these definitions and theorems we may consider the
properties of a positive definite function near the origin.
Future analysis is made easier if we can evaluate P(ﬁ), P(V)
by considering'only straight line paths., In that case we
could replace x by (r,Q),||5” by r and c¢{ ™) by ¢{(8) in
definitions 3.2.1 and 3.2.2. We thus require to prove that
if we considered only straight line paths in definitions
3.2.1 and "3.2.2 P(f), P(V; would be unaltered. _

This result needs proving in two stages, the first of
which is on the 2-dimensional version.

Theorem 3,2.3%

vgrze) —>» ¢(8) asr —0 3.2.10
oF V) ' .

in two dimensions along any line of constant © where (r,8)

is the polar co-ordinate location of the point x, c(8) exists
and is finite for all © and is non-zero for at least one O.

Suppose first that c(@) is infinite or non-existent for
some ©. Then since straight line paths are a subset of all
possible paths then we see that 3.2.10 contradicts definition
3.2.,2.

Now suppose that c(6) = 0 for all 8. However we know by
definition 3.2.2 that there is a path U"' for which

V(r,8) —> (") £0 as r—0 3.,2.11

PV :

r
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and (r,8) varies along "’ . Since '’ is continuous we may
write ' as .a relationship between the variables in a parametric

I

form T I‘(Z)

6 = 8(z) 3,2.12
where z varies céntinuously along T and r(2z),8(z) are

1l

continuous with respect to 2z, and r(z)—>0 as z-—=z' where
z' may be finite or infinite. Now if as r-—=0 we have from
3.2.12 the result 6 —98' then we may use-2 result of continuous
functions such as in Rudin (49) which implies that
c{’) —>c(0') as 8-—=06', 3,2.,13
Hence comparing 3.2.11 and 3.2.13 we see that c(9') # O which
is a contradiction.
Finally let us suppose again that c(8) = O for all & and
' is given by 3.,2.11, 3.2.12 but 6 has no limit as T~ 0
in 3.2.12,
However since the path 3.2.12 tends to the origin we
see that 6(z) exists and is continuous for all ri(z) as r(z)-—=0,
Hence there exists a 8' such that for all § > O there
exist z, £ such that £ <§ and
r(z) £
8(z) 8! +2mW 3.2.14
where m is an integer,
3,2.14 indicates not only that (r(z),8(z)) is on the
path given by 3.2.12 but also that by reference to Appendix D

It

i

(r(z),8') is the same point in R? as (r(z), 8(z)). So we may
define an infinite sequence zj,r. such that -

T, = r(zj) —> 0 as j —» oo
and (rj,Q') lies on the path 3.2,12,
Now we have a contradiction since by theorem 4.2 of Rudin (49)
we see that

V(r.,8")

""HJT_T" —> (") £ 0as j—= oo
. POV

as the sequence irj,Q') lies on T while
V(r.,e')

—> ¢(8') =0 as|j — oo
P{V)

g
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as*the sequence (rj,e') lies on the straight line 6 = 9%,
Hence there exists 8' such that c(8') #£ 0.

End of proof.

Theorem 3.2.4
v(r,Q)

erVj

along any line of constant © where (r,8) is the polar

—s> ¢{9) as -0

co-ordinate location of the point x € R™, c(9) exists and is
finite for all 8 and is non-zZero for at least one 8.
Proof

As with theorem %.2.3 we see that c¢(9) cannot be infinite
or non-~existent.

To prove that 8' exists such that ¢(8') is non-zero we
use induction. We suppose that ¢(8) = 0 for all paths
constrained such that 9, = oF,

of 8] but there exists a path ™’ constrained only such that

Gk = 9& k=1,...,i=1 on which c({") is non-zero. i = 1,...,n-1.

k=1,...,1, for some values

As in theorem 3.2.3 we may write the path M’ in the form
I‘:"I‘(Z') ] : 3,2.15
8 = 8(z)
and establish similarly that there exists a 9{ such that for
all % > 0 there exist z, £ such that & < and

r(z) = ¢

gk(z) =ef{ k= 1'.00’1_1
— '

Qi(z) = 9} +Zm,T

where m, is an integer., Ve again define an infinite segquence
zj,rj such that
r. =r{(z,)—> 0 as j-—= o
and(rj,g) lies on the path 3.2.15 with 6, = Gﬁ K = 1,000,i,
By theorem 4.2 of Rudin (49) we see that
V(r.,9)

rjﬁ(v)
with 6, = 6}, k=1,...,i, as the sequence (rj,g) lies
on ' while

~— (V') A 0Das j—= oo
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V(r.,8) ‘ - ‘ . ,
ﬂ_§%v7 —_— e(r) =0 as jJ — oo o/
r. :
J
where 8, = Qi, k=1%,...,1 as the sequence (rj,g) lies in the
region constrained such that Gk = 9&, K = 1,c00,1s This

contradiction praoves that if there exists a path ' constrained
such that 8, = 8} , k = ?,...,i~1, on which c(r’) £ 0 then
there also exists " constrained on Qk = Qi, K = 1y000yi,:0n
which £(r”) # 0. Therefore if there exists a path r  in R"
on which c¢( ™ ) # O then there exists a path I on 8, =.8} such
that c(0C ) # O and by successive induction there exists a path
' constrained on 9, =8}, k = 1,...,n~1, such that &(r‘) # O.
Since " is the line 8 = 8' we see that c(8') # O. &nd of proof.
By thedorem 3.2.4 we may concentrate on-straight line -
paths through the origin in order to evaluate P(V), P(f).
This is useful in the next theorem:
Theorem 5.2.5 .
If V(x) is given by a series expansion

v(x) =va(£) 5,2.16

R 1 S

where the terms of v (x) are homogeneous of degree m, then P(V) =7

Proof .

To prove this theorem we need to change 3.2.16 into polar
co~ordinate -form., The generalised transformation of x into
(r,g) is shown in Appendix D where the basic equations are

f

x1 T cos,Q1

xi = 7 8in 91......sin 91-1 cos Qi'
i = 2,...,‘0-1 . 3-2.17
xn = 1 3in 91... ..... sin 9n—2 sin Qn—1'

Since all terms in Vm(i) are homogeneous terms of total perr
m we see that each term in V_(x) becomes a function of 8
multiplied by ™.

ice. Vo (x) = ¢ Qﬂﬂﬁ) m= s,8+1,... 3.2.18
Substituting 3,2.18 into 3.2.16 gives :
v(r,8) => r"@_(8). 3.2.19

Now dividing 5?3.19 by “5“8 or equivalently by. r° we obtain
the result ‘
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(443
Vir,8) D ™SQ@ (a). 3.2.20
8 T mes " '
r -
Now we may fix 8 and let r-»0 in 3.2.20 giving
V(I‘,Q) o v
3 —> ®.(9) + O(r) as T— 0, 3,2.21
r -

Since @), (9) #‘0 (by definition of s) we see that there
exists some 8' for which ®,(8') # 0. By definition 3.2.2
and theorem 3.2.4 we see from 3,2.21 that
P(V) = s.
®nd of proof.
Theorem 3.2.6
V(x) is positive definite in an S, neighbourhood of the

origin for some £ >0 if
v(x) =

> v (x) 3,2.22

where the terﬁ? of Vm(E) are homeogenecus of total degree m
and where s > 2 and s even and Vs(z) is positive definite.
V(x) is not positive definite if s odd or s < O.
Proof

The- proof is -based-on equation 3:2:21. First let s be
odd and let @' be such that ({),(8') # 0. Denote by x' any
point where

x' = (r,8") 3.2.23
. and let 8", x" be such that

l(-n = (I‘,_Q")

x" = -x', 3.2.24

Now if (@5(9')-< 0 then by 3.2.21 we see that for some £ >0
and every r<g, V(r,8')< 0, While if C)S(g') > 0 then
similarly for all r < & we know that V(r,8') > 0. Now since
s is odd we know that

VS(-E) = _VS(E) 3.2.25
for all Ensﬁn. Hence by putting m = s in 3.2.18 we see that
3,2.25 implies that

@s(gt') = = @s(g')
where 9', 8" are related by 3.2.23, 3.2.,24. So if (8,(8')> 0
then @S(_G_J") < 0 and we may find some £ >0 such that for all
r < & we have V(r,é{)<fo. Hence we have proved for s odd
that there are points\z‘in every neighbourhood of the origin

Y

where V(x) < 0. R
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Now if s < 0O then by 3.2.21 we éee that.V(ﬁ) becomes
infinite at the origin if r-»0 along-a line § = 8' where
®,(9') £ 0. Hence V(0) # O and by definition 1.5.1 this
means that V(x) is not positive deéfinite.

Finally if s even and s 22 then we know that

v (=x)= Vv (x).

Now if there exists 8' such that (W(8') < O then by 3.2.21
and letting r—=0 we dee again that there exists &€ > (O such
that V(r,8')< 0 for all r< €. While if V (x) is positive
definite then by putting m = s in 3.2.18 we see that (ZL(@) > 0
for all 8 and then by 3.2.21 we see ‘that for every 8 there
exists an £(9)>0 such that r < £(@) implies V(r,8) > O.

Since by Appendix D we have 0 € §, < 2w, i = 1,...,n-1 and

hence @ has only a finite range. iThis implies that since
£(9) > 0 for all & there exists €' such that 0 < ¢ ‘zéi(Q)
for all 8. Hence we kriow that for all T < £’ and for all §
we have
v(r,8) >0
i.e. there exists a neighbourhood S, of the origln in which
'V(E) “is positive defdnite. _ xnd of proof. )

Theorem 3.2.6 only applies to such V(x) which admit a
continuous series expansion in integral powers of X i = Ty emeynl
given by 3.2.22. The situation for a general function V{(x)
is not the same. For example we may see that the function

V(x).= l|§” 3.2.26
is positive definite in the whole while
(V) = |

3.2.26 does not admit a single series expansion in x
of the form 3.2.22 for all x in a neighbourhood of the origin.

The oﬁly thing which ¢éan be said in the more general
case is that E(V) >0 otherwise by aefinition 3.2.2 we see
that V(0) £ 0 if P(V) <

We now prove a theorem which will be useful in the chapter
on the one-dimensional Zubov equation, which is the
one-dimensional version of theorem 3.2.6.
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Theorem 3,2,7
V(x) is a positive definite scalar function of the scalar

variable x in a neighbourhood of x = O if
| V(x) =;mem , 3.2.2?
where s 2 2 and 8 even and VS>-O._ V(x) is not positive definite
if s ocdd or s = Q.
Proof |
We may write 3.2.27_as

_ .S m-s
Then as x—=0

V(x) —5 Vg + 0(x) 3.2.28

5
We therefore see from 3.2.28 that if s > 2 and s even and Vs> 0
that V(x) is positive definite by using the same argument as
in theorem 3.2,6.

While if s<0 then V(0) # O and if s odd then from 3.2.28

we know that either V(x) <0 or V(-x) < 0 for x in some neighbourheod
of x = 0 and hence in either case V(x) is not positive definite.
End of proof.

3., Polar Co~ordinate Zubov Eauation

The theory in section 2 relied heavily on polar co-ordinates
and in Chapter 5 the Zubov equation will be solved numerically
in polar co-ordinate form. This section therefore investigates
the relationship between rectangular and polar co-ordinates as
applied to the Zubov equation,

We are seeking to transform the Zubov equation

Zfi(z)%(;) - A (1 - aV(x))

L

into the form '
F(r.g)%(r.g) +zGi(r,9)_§lfr,9_) = -¢ (r,8)(1 -av(r,9))

N °3 3,31
by the transformation 3.2.17. Using the result of Appendix
E we see that in two dimensions

QY = cos 6 AV « sin © g%

SX —r——— W
¥ w0 3.3.2

v sin 6 ¥V + cos 9 DV

}x2 3T r 36



Prom 5.3.2 we can obtain the terms of 3.3.1 and these are
F(r,8) = cos 8 °f,(r cos 8,r sin 8) + sin 9 f2(r cos 9,r sin @)

G(r,9)= ~-sin © f1(r cos @,r sin ©) + cos O f2(r cos 8,r sin &)
T T

3.3.3
Now we may establish a theorem connecting P(F), P(G) with
P(f1), P(fz).
Theorem 5.3.1 .
P(F) > min(P(f,),P(£f,))

P(G) > min(P(f,),P(f,)) - 1 ' o 334
Proof |
Let P(f1) = s,
P(f5) = 8,
P = oy 3.3.5
P(G) = s,

and suppose that s, » s,. Now from 3.3.3

F(r,8) ; cds”é‘f1(f cos @,r sin 9), sin 9 f2(r cos. 8,T sin 9)

ro2 r2 . . r°2

and . | 3.3.6

G{r,8) -sin © f1(r cos 9,r sin Q) cos 8 f2(r cos O, r sin 8
= e

TSE—T rS2 ' )

. 3.3.7
Writing 3.3.6, 3.3.7 in terms of the limit of each function
we have

F(r,8) (r°FS2)

cos 8 f1(r cos 9, sin 8)(r°17%2)

TSP ' ro1

+ sin 9 f2(r cos 9,r sin 8)

S

1

2 3.3.8
_52)

r Z
G(r,9) (rSG'32+1) ~sin @ £,(r cos @,r sin 0) (31

rsG rs1

+ cos © fz(r cos 6,T sin 8)

r92 3,3.9

80.

.

)



Mow using theorem 3.2.3 and definition 3.2.2 and letting
r—0 in 3.3.8, 3.3.9 we observe that

Sp—S -
F(r,8) (r”F 72) —= cos 9 c,(8)r®1 52 4+ sin 9 c,(8)
) ! 2
ST ‘ . 3.3.10

Sp=S,+1
g . 8) (r’G™72 )_9 —-5in 6 ¢ (Q)r 1752 + cos 6 ¢ (9)
r3G 3371

as r -0 with 9 constant. Since we assume Sy P 52 then the

right hand sides of %.3.10 and 3.3.11 are finite as r-»0 for
all o,

Now let ' be such that

Fgrs,e') —= cp(8') £0

r°F

as r—0 along 6 = 9°',
Substituting 8 = 8' into 3.3.10 immediately shows that if
Sp< S, is assumed then the left hand side of 3.3.10 is lnfinit@
as r—>0 along 6 = ®' which contradicts the finiteness of the %
R.H.S. for all 6. Hence if s )

1 2
" prove similarly that. if S, 2 P s1 tnen Sp 2 Sy

then Sp 2 Sy. We may

i.e. sp 2 m1n(s1,s2) 3.3.12

We may similarly prove using 3 3.11 that
S 2 m1n(s1,52) -1, _ 3.3,13

Substitutineg 3.3.5 intoe 3.3%3.12, 3.3.13 yields the result
3.3.4. End of proof.

If we now consider the situation for example in :
4-dimensional systems then using Appendix E again we have
Y _ cns 9, 3 -~ sin 9 12¥

Ny 5S¢ =1 },9 3.3.14
i_i . sin 8,cos 8, %i + cos 0 cos 2%_3 _ sin © N
2 . T 1 r sin 91'392
3.3.15
W = si si i
N sin 8,sin &,c0s 953V+cos 9,sin 8,cos QBBV +COS 6.C0S gq
3)(3 ‘E T }Q 2 }..Y.
rsin 91 'BQZ
-s8in 8,
3 ek 3.5.16
rsin 6,51n § '353'
W = sin 8,sin @,sin Q’BV+cos 8,5in8,sin 6 Ew+cos 8,8in 9. ?N
ﬁbx4 "Br T 4ﬁ391 r sin 9, ?92
: + cos ©, Y. 3.3007

£ 500, 500 8,0,



82.

Substituting 3.%.14 to 3.3.17 into 3.3.1 gives
F(r,Q)=cos @4f,+sin 9,cos 92f2+sin 8,sin®,co0s 93f3
+ sin 9131n‘9231n 93f4
G1(r,§)=esin 8,f,+cos 8,cos 8,f,+cos 8,sin 8,cos 3 3
. + cos 8,8in.8,sin 93 4)/r
G,(r,8)=(-sin 8,f,+cos §,cos B5f5+cos 9,sin Oy £f,)/r sind,

GB(r,§)=(-sin 93f3+cos 93f4)/r sin 8, sin 6, 3.%.18

Let P(f) = s, then using theorem 3.2.1 and analysing the limizs
of 3.,3.18 as r - 0 we establisn that

P(F) > s
P(G1)>,s-1
P(G,) > 8 = 1
P(G3) > s - 1

providing that sin 6, sin 9, £ 0. The situation which arises

if sin &, sin 92'= 0 is more interesting. However the

1 )
gingularities in %.3.1 caused by this are removed by multiplying
3.3.1 by sin 8, sin @,.  We wan do this since we know V has
no singularities except on the boundary of the D.0.A.. Now
if we let sin 8, = 0 in the revised 3.3.1 we obtain the
relationship

2
(-sin 8,f,+cos 8,8in 8,cos 93f3 + cos 6,sin @,sin 93f4)av /r

N 2
+(~sin 9j 5 + COS Q )BV /r - . 3.3.19

The relationship 3.3. 19 holds for any (r,92,9 } and is
independent of & (r,0). Consideration of 3.2.17 shows why

this is the case, If we let sin 8, = 0 in 3.2.1? we see that

1
x is constrained to lie on the line

X.1=I'

Xy = Xz = X, = 0.
Hence all points on sin 91

0 are‘eqyivalent for any given
r> 0 and since r may be cancelled from 3.%.19 we éee that for
different values of 92,93 3.3.19 expresses the same relationship
in an infinite uumber of ways.

Likewise when sin 8, = 0 we have

2
(-sin 85f5 + cos O,f 4)53 /r =0 3.3.20

As before we see that p01nts_31th the same r,@1 satisfying

.81n 6, = 0 are equivalent since sin 85 = 0 becomes



83.

x1 = T COS 91
Xy = r sin 91
x3 = x4 = 0.

Hence V is independent of 93 as 3%.3,20 shows.
We may therefore conclude that since the singularities
in %.3.18 constrain a 3-dimensional subspace of (r, 91,92,9 )
onto a 1 or 2 dimensional subspace of (x1,x2, 5,xA) these
singularities are regular or removable (def. see Burkill (50Q)).
Thus we see that we may evaluate P(F),P(G1),P(G2),P(G3) by
considering their behaviour as r — 0, by using 3.3.1 if
sin 8,sin 9, # 0 and 3.3.19 or 3.3.20 if sin 9,
We may now summarize the general n-dimensional result

= 0 or sin 92 = 0
in two theorems.
Theorem 3.3,2 :

P(F) 2 P(£) ‘ 3.3.21
Proof '

From Appendix E we have the general result
F(r,8) = cos 8 (r,@) :E:(TT-Sln Q. )cos CH f. (r,Q)

1__
I
=1

sin @ )f (r, 9) ~3.3.22
s1 B -7 T T 3,3.23
52
Now suppose in contradiction that S1)>82. Dividing 3.3.22 by
r°2 i
F(r,g) = cos 8,f (r 8) +§£j(_1‘51n 8. )cos 9,f, (r 9)

Let P(f)

S R
r-2 rS2 e r32
*'(I,I—Sin Qj)f__(f_:i) . 3.3.24.
T S2

Now we consider the behaviour of 3.3.24 as r—(Q by investigating
each term, re-writing

£,(r,8) = f.(r,8) (r®17%2) 3.3.25
r°2 r31
Now by theorem 3.2.1 we have
P(fi) >, 81 ' 3.3.26

and substituting 3.3.26 into 3.3.25 and letting. r=0 gives
£,(r,8) = £,(r,0) (F{f1)-57)
—
—— T 0
r32 rP(fi)

Since s1'> Byy 1 = 14,2y0.4yn, for all 9.
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Hence ?i(r’g) —» 0 as r—0 for all 8. 3.%,27
8
r2
Substituting 3.3.27 into 3.3.24 shows that
| F(r,8) | |
—> 0 as r—0 for all 8. 3.3.28
P2

3.3.28 shows that P(F) # 8, contradicting 3.3.23. Hence the
assumption s, > s, was incorrect and by definition 3.3.25 of
5118, we see that 3.3.21 holds. End of proof.

We may similarly establish the corresponding result for
G.(r,8), i = 1,...,n-1. '
Theorem 3,3,3

P(Gi) > P(f) - 1

The proof of theorem 3.3.3 is exactly as for theorem

3.3.2 providing 3 does not satisfy
Jlsin e, =0 3.3.29

It has been shown that when 3.3.29 holds, (r,8) is constrained
onto a subspace of R" on which a slightly different version
of 3.3.1 holds. The asymptotic behaviour of Gi(r,g) may be
considered by letting r—=0 in 3.%.1 or the corresponding
version if 3.3.29 holds. The algebra is not carried out
here as it is similar to that in theorem %.3.2.

The result of theorem 3.3.1 will now be illustrated by
examples. Consider the example of Davies (46)

X = 6y - 2y2
:;r = =-10x - y + 4x2 + 2Xy + 4,}’2 3'3,'30

[

By definition 3.2.1 we see that
P(f) = 1.
The Zubov equation becomes
(6y - 2y2)§£ + (=10x -y + 4x° + 2Xy + 4y2)31 = ~4(x,y){1 - av),
oX | °y ' 3.3,31
Transforming 3.3.31 into the polar co-ordinate system (r,8)
we obtain

F(r,@) = —4r sin 8 cos © - r sin°@ + 4rlsin 6

G(r,8) = —10c0529 - sin 8 cos 9 - 6sin29 + 4ricos 8 + ?2r sin Q.
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Thus we see by letting r-»0 that
P(F) =1, P(G) =0
and theorem 3.3.1 is satisfied with equality.
However consider the example
ey x 3 3.3.32
y = -x + 3y
We obtain for this example
®r,8) = r2c0539 + 31‘3

G{r,8) = -1 =~ rcos?8sin 6 + 3r251n39 cos 8.

sin49 -

This time we see 1

P(f) =1, P(F) = 2, P(G) = O
which satisfies theorem 3.3.1 with one equality and one inequality
Some results on the situation where theorems 3.3.1, 3.3.2,
3.3.3 are satisfied either with equality or inequality are
covered in the next section.

Let us look at what equation 3,3.1 means. ¥Nquation 3.3.1
is the Zubov equation correspondinz to a system in polar
co~ordinates given by

r = F(r,0) .
N 8; =6,(r8) . i=1,..0,n1 L 3.3.33
Now we require a theorem on P(f).
Theorem 3,3.4

For the origin of x = f(x) to be a critical point we

require P(f) > O.

Proof
By definition 3.2.1 we know that
£x))|
“ “P £) ~= ¢(rC ) as x>0 - 3.3.34
X (£ ‘

where x varies along a continuous path U in R™ where c(r )
exists and is finite for all " and non~zero for some I .
Let T’ be a path such that c(f) # O and letting x—0, " = '
in 3.3.34 we see that if P(f) € O then HQ(E)H-jk-O as x->0
and by definition 1.3.6 the origin is not a critical point.
Hence if the origin is a critical point then P(f) > O.
¥nd of proof. '

Using theorems 3.3.2, 3.3.3 3.3.4 together we see

P(F) 2 0, P(Gi) 2 -1, i=1,...4n-1,

The origin x = 0 of rectangular co-ordinates cerresponds
to r = 0 in polar co-ordinates. This is, in effect, another



transformation similar to those discussed in section 2.4. As
was stated there, the stability of invariant sets is more
complicated than simple analysis of the origin.

" It will be noted system 3.3.33 has similarities with
both one-dimensional systems and Lyapunov theory. Although
T is dependent opn r and 8 we are looking specifically to see

if =0 given r = T e = 90 at t = 0. Algc it may be observed
that ’ '
W@ = x|

is a candidate for a Lyapunov function, and if we can find
a region containing the origin in which T is negative def 1n1te
and r is positive definite then stability is assured

4., Symmetric Systems
Examples 3.3.30 and 3.3.32 showed that theorems %.3.1,
and by implication theorems 3.3.2, 3.3.3 also, may be satisfied

with equality or inequality. Now we attempt to define
conditions in which the inequalities are strict. Looking
back at section j we see that the 1nequallties Jdn theorem
' 3.3.1 are strict if the R.H.S.s of 3.3.6 or 3.6.7 tend to
zero as r-»0 for all 9. It.is difficult in general to tell
what restrictions on f1, f2 may give
P(F) > P(f1,f2)
or P(G) > 'P(f1,f2) - 1.
However we can investigate certain situations if f1,f2 have
a series expansion similar to 3.2.19. By theorems 3.2.1 and
3.2.5 we may write down
£,(r,0) = Yr @, .(9)
£,(r,9) >— @,.(6) , 30401
where P(f1,f2) = 5 mes
and either @ (8) # 0
or @,(8) # o.
Now we can establish in two dimensions
Theorem 3.4.1
Given that P(f1,f2) = s and f,,f, arc expressible by
3.4.7 then P(F) > P(f,,f,) if and only if

]
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cos 8 &) (8) + sin 6 (H)(8) = 0 for all o, 3.4,2
Iikewise P(G) > P(f1,f2) - 1 if and only if

~sin 8 @P,(8) + cos 8 (H)(9) = 0O for all 8, 3.4.3
Proof

Substituting %.4.1 into 3.3.3 ﬂlves

F(1,8) = cos ngjr <Ebm(9) + sin Qzl_r ®)..(9)

mz=3

M=s 3 A. 4
G({r,8) = -sin QZrm-1 .. (9) + OS5 QZrm 1 @.(9). -

Mes
Dividing the equatlons 3 4.4 by r> and r° -1 respectively gives

F(r,3) = cos 8 @,(8) + sin & &9 (8) + o(r)

r 3.4.5
G(r,8) = -sin 68 &,(8) + cos 6 (i) (8) + o(r).
rs-‘l
Now if P(F) > s then
E(e,0) | F(r,0) (rP(F)-S) ~—~ 0 as r—0 3.4.6
e P )
for all 8.
3.4.6 implies that as r-0 in 3.4.5 we must have
cos 8 &P (0) + sin v @ (8) =0 3.4.7

~ while conversely if 3.4.7 is true then by letting r—0 in
3-4-5 giVes
P(r,0)

g
r

Hence P(f) # s and since by theorem 3.3.1 P(f) > s then we
see that P(f) > s. This proves the theorem for P(F) and the
proof for P(G) is identical using the second ecuation of 3.4.5.

—> 0 as r-—>0 for all @.

End of proof,

Now let us consider in detail the functions ®D,(8) and
©9.(8). Since 3.4.1 is obtained by collecting together
homogeneous terms in (x,y) to the power m = s,s+1,...,we may

write down
@, (9) jg:f cosJG sin®Je '
S» . 3.4.8

(9 (8) = j;:gs JCOSJQ sin®"Jg

e

Substituting 3.4.8 into 3.4,2 and 3.4.7 we see that for
P(F) > P(f1,f2) we require



’ s
cos ng:fs JcosJ sin®7 90 + sin Gzz:g .cos’9 sin®"Jg =

heo =0 S’J

for all 8. 5.4.9

Likewise P(6) > P(f,,f,) - 1 if and only if

~sin GZfS JcosJQ sa.ns Jo + cos eZg cosJG sin"Jg = 0
Y ' wo
for all @, . : 3.4.10

3,4.9 and %,4.10+are identities in 8 which require that all

coefficients of separate terms are zero. Hence the conditions

of theorem 3.4.1 are met respectively if and only if

gs,O 0
gs’j + fs,j-1 = () J=1,00.,8 3.4.11
. fg,s =0
an f = 0
2 g YL J = 1y eue,s 34,12

Sy gs,j-1 -
Bs,5 = 0
3.4.11 and 3.4, 12 represent the conditions .under which the
lnequalltles of theorem 3.3.1 are strict in 2-dimensional
systems for any s. THere are obvious generalisations into
higher order systems although the algebra is complicated.
However as-in-practice most systems_have linear parts-

we may consider the system in n dimensions

x = f(x) = Ax + g(x) 3.4.13
where 5(5) is in some sense "small' in comparison to Ax as

EE.—*;.(_)_ .

For the system 3.4.1% we see thab since the linear terms

dominate near the origin for non-trivial A we have

p(£) =
Hence by theorem 3.3.2 and 3.3.3 we see that

P(¥) 2 1

P(G;) 2 0 3.4.14

i=1,...,n-1

and some results may be established to decide when the
inequalities in 3.4.14..are strict. One such will be stated
here,

Theorem 3,4.2

A necessary and sufficient condition that P(F) > 1 where

f(x) is given by 3.4.13 is that

A.-O-AT:G. A . 3,4.15

" Proof

88.

0
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Writing out %.4.13% in full gives

n

fi(£) = g Ai,jxj + gi(ﬁ) 3.4.16

b=
i=1"ll’n.

Now we may substitute the transformation 3.2.17 into 3.4.16
and then substitute 3.4.16 1nto 3.3.22. We obtaln

P(r,8) = A, 1003291+ cos 6, E \A it Ag 1)(17—sin Qk)cos 8
—— l\-l LT
T
+cos 91(A1 n+ An 1)L-rr51n ek)

et 7

+/’ ;TMAl J(.F[Sin Qk)( rT51n Qk)cos 9, cos_Qj.

[

+21H\A1.n n, l)(]1.51n By ) sin © )cos 9
A, ntﬂr‘Sln gk) + 0(r), L 3,417

If A satisfies 3. 4 15 then the linear terms of 3.4.17 are zero
and
?(r,8)

—> 0 as r-»0 for all 8.
r

and here P(F) > 1. While conversely if P(F)> 1 then

F(r,8) N F(r,@) ( P(F) 1) —> () as r—=0 for all O
T = P(F) I o a

and the linear terms of 3.4.17 must vahish identically. Hence
we require

A .. ¥ 0
A ’J AJ!I .
...’n

i
1, =1
S i.e. A+ AT = 0,
®quation 3.4.15 shows that A is not a Stdbillty matrix.

End of proof.

This is easily seen by recognising that if

V(x) = x'x
is tried as a Lyapunov function of the system

X =Ax
then ﬁ(é) = 0 resulis. Stability matrices cannot therefore
give PL(F) > P(£)
put examples such as the Hahn system.show that P(G) > P(?) - 1
is possible. ' B

These results may seem of academic interest here but the

asymptotic degree P(F),P(Gi), i=1...,n-1, P(f) etc. become
important in later sections when solving the Zubov equation
#nd in Chapter 5 when radial grid methods are considered which
are affected by the hehaviour of F, Gi’ i =1,00e,n, '§ near

the origin.
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5. Concepts of Parameterisation

In section 8 of Chapter 1 mention was made of the auxiliary
equation of a partial differential equation and the
characteristics. HReference was azain made to this.in section
8 of Chapter 2 in connection with Fox's method of numerical
solution of a P.D.E.. In this section we investigate the.
connection between t and V created by the function 4(x). We
may reproduce 2.8.8 and 2.8.10

dx1 _ dx2 } ) dxn 35,1
£q(x) £,(%) £,(x)

dx, i dx, i i} dx, i -dv  3.5.2
£q(x) £,{x) £,(X) 6(x)(1-4V)

From 3.5.2 we see that we may construct a new set of ordinary
differential equations given by

de ) —fi(ﬁ) .

dv p(x) (1-dv) 3.5.3

The equations 3.5.3 may be compared to the originél system

equations given by
' ax;"' o R - - .
1. (0. 3.5.4
at *
The system 3.5.4 yields the solution xi(t) given xi(O),i = 1,...0.

while from %.5.3 we may obtéin either analytically or numerically
the solutions xi(V) given xi(Vo),‘i‘= 1y eeeylta -
Comparison of 3.5.1 and 3.5.2 shows that the trajectories
xi(t) and xi(V), i=1,...,n, are the same ‘or both systems
in the n-dimensional state space, bBut they have a different
relationship with their respective independent variable.
We can see from this comparison that there is not actually
mach difference between the system equations 3.5.4 and the
Zubov P.D.E. ’ |

}ijfi(é) IV(x) = = d(x)(1 - av(x)) 3.5.5
Y bxi

The' presence of the term 4(x)(1 - aV(x)) simply gives the
trajectories a parametric representation in terms of a new
independent variable. Considering the Zubov equation is always
studied in the form 3.5.5 with one dependent variable V and n
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independent variables Xy i=1,...yn, this is turning the
whole problem upside down!

We can see that any transformation of independent variables
is possible by multipgying the R.H.S. of 3.5.4 by a fixed
function of x and the independent variable. Suppose we consider
the simple equation

o= 1 3.5.6
where T(x) is considered as a function of x similar to V(x).
Now by using the chain rule of differentiation given in theorem
1.5.35 we obtfin a formula similar to 3.5.5

> f(x) 30(x) = 1 3.5.7
e %,

emphasising again the similarity in relationship between x(t)
and x{V) since the solution of 3.5.6 is T = t.

The nuestion that remains however is what happens to x(V)
as V varies. We know for asymptotically stable systems that
x(t)—=0 as t— o providing X, € D(;). We also know that if
we can find positive definite functions V(x), #(x) satisfying
3.5.5 then the origin is asymptotically stable by theorem
1.7.1. 1In this case we know that x(V)->.0 as V—>0. where V
decreases from ﬁswté zero. ’

But we do not know that such a Lyapunov function V(x)
necessarily exists given A(x). Indeed, since the transformation
of the independent variable t to the independent variable V
in 3.5.3 can take on any form we see that seme functions #(x) )
and d will transform 5.5.4 into a system with similar properties
to 3.5.4.

We have already observed that

gix) = -1, d =0
yields the P.D.E. 3.5.7 and leaves system 3.5.4 unchanged.

So what conditions are required on d(z) and d such that 3.5,3
will be a system such that x(¥}—=>0 as V—=07?

The Zubov theory recuires firstly that é(z) be positive
definite so 3.5.7 is not admissible. But not just any positive
definite function £(x) will do.

Consider the example:

X = -x(x2 + y2)
- { 2 ? 305.8
y = =yix°" + y%)

System 3.5.8 is asymptotically stable for all (x,y) € H2.
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Now if we use
2 2

d(x,y) = x" + y~ 3.5.9
d =0
and substitute 3.5.8, 3.5.9 into 3.5.3 we obtain
.ﬂl 3.5.10
av = Y

%.5.10 represents a system for x(V),y(V) which is stable for

all (x,y) as V-»-o= , The solution of %.%.10 being given by
x(V) V-vo
y(V) = y.e .

proves that {x(0),y(0)) # (0,0) unless \xo,yo) = (0,0,.

The reason for this behaviour is that the origin is still a

X,
V—VO

critical point of the transformed system 3.5.10 and solutions
can only tend to critical points as t-s +o providing the
solutions are well defined,

' Now suppose 3.5.10 is replaced by the system

dx _ =X x 20 e
e N ‘_-(:xsévx;'o
dy =-y% y20 3.5
v (-y1® y<0
The solution of 3.5.11 for (x Yo ) > (0,0) is
—2(x?— xg) =V =V
—2(y - yg) =V -V,

Now if X, = ¥, we see tgat
x(V + ?X') =0

| y(i, + ?v%)
and solutions of 3 5.11 reach the_origin for finite V. 1In this’
case the origin is a critical point of 3.5.11 but the system
does not satisfy a Lipschitz condition near the origin and by
theorem 1.3.% the solution at the origin is not necessarily
unique. This brings us to the theorem on choice of ¢(5).
Theorem 3.5,1

For the Zupov equation to be soluble for an aéymptotically
stable system 3.5.4 to yield a positive definite function V(x)
it is-necessary that the system 3.5.3 does not satisfy a

Lipschitz condition for all x € S,and all £ < § for some $ > O.
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Proof

Suppose for contradiction that the origin of system 3.5.3
lies in a region for which 3.5.3 does satisfy a Lipschitz
condition.

i.e.

£(x) I 16 < Ifjx - yf 3.5.12
B(x)(1-av) .  A(y)(1-4av) -

for some fixed L and all (x,y) € S, for &€ >0. lNow by theorems
1.%3:2, 1.35.3 we know that there exists a nunique solution x(V)

of system 3.5.3 passing through an initial point

x(V,) = x, 3.5.13
providing x € S and for as long as x(V) € S.. Hence there
exists a unique solution x(V) such that

x(0). = 0. ‘ 3.5.14
Now since we assume that the origin is a critical point of
3.5.4 and also that #(x) is positive definite we can say

£(0) = 0

$(0) = O.
There are three possibilities for the behaviour of
£(x)

#(x)(1=av)

i) 1If £ix)
g(x)(1-av)
a Lipschitz condition,.
ii) If £(x)

g(x)(1-av)

thus giving

as x>0 :

-> o as X >0 then it does not satisfy

—> 0 as x>0 then we may put y = 0 in 3,5.12

£(x) |
Sl IR PR
g(x)(1-av)

Now from 3.5.3 we see that a solution satisfying the initial

condition 3.5.14 is given by

x(V) = 0. ' 3.5.15
By theorem 1.3.3, 3.5.15 is the unique solution passing through
E(VO) =0 3.5.16

for any finite Vo. This proves that we cannot obtain a solution

of 3,5.3 such that x # 0 which passes through the origin.

iii) If £(x)
g(x)(1-av)

a continuous path ' in Rn, then we see that in this case a

—> (") # 0 as x—=0 and x varies along

solution x(V} of 3.5.3 with initial cénditions 3.5.13 passing
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through the origin satisfies

1imdx(V) = (") # 0
V=037

and hence there exists a $>0 such that for —% <V <0 then

| dx(V) Let x, be a component of x such that dx; (V)| > 0.
av ' av
Then we uee that‘since ,
- t '
xigv) = x;(0) +,( dx, (V*)av
o dV

then while -$<V <0 we have either

x. (V) < x.(0)

i i 3.5.17

or xi(V).> xi(O),

Now if we assume that xi(O) = 0 we immediately observe from
3.5.17 that for -%< Vv <0, x(V) # 0. Hence we have found

a point x in the neighbourhood of the origin where V<0 and

¥ < 0, and by theorem 1.6.4 this indicates that the origin of
3.5.4 is unstable which is a contradiction.

Having covered all.cases where the Lipschitz condition
holds and found that V(x) is not a Lyapunov function then we
have proved that to obtaln a Lyapunov function then -the Lipschitz’

condition cannot hold tnd of proof.

Zubov hlmself (12) states that not all plx) are adm1581b1e
to be chosen so that the conditions of theorem 1.7.1 may he
satisfied. He refers to the "rate of decrease" of solutions
of 3.5.4 observing that if for any reason whatever the rate of
decrease of x(t) is known then @{x) may be chosen and he gives
examples covering various rates of decrease of E(t) showing
how #(x) can be chosen. In this section and the next it is
shown that choice of 4(x) can be made by considering f(x)
rather than x(t) which if we knew would render the Zubov
equation unnecessary. .

Zubov's result on choice of #(x) is:
'Theorem 3.5.2
If the origin of 3.5.4 is asymptotically stable and if

#{x) satisfies the conditions of theorem 1.7.1 and also

j,é(g(t})dt < oo
given x(0) = X,
then for this é\z), a Vix) can be found satisfying theorem 1.7.1.
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1+ remains to show here that theorem 3.5.1 implies theorem

3.5.2.
Theorem 3.5.3
If the origin of 3.5.4 is asymptotically stable and the
system 3.5.3 satisfies a Lipschitz condition then )
t . -
lim Jﬁﬁ(ﬁ(t'))dt‘ = oo 3.5.18
Lo .
Prooft
It has been shown that if 3.5.3 satisfies a Lipschitz

condition then either the origin is unstable, which we ‘discount,

or that 3.5.15 is tne unique solution of 3.5.3 passing through
3.5.160 .
However if we consider the relationship between V and t

éiven by
V= -8
we see that V id then given by :
v(x(t)) = fﬁxx\t'))dt' 3.5.19

_which since p{(x) is p051tive definite means that V(x{(t)) is
a monotonic decreasing function of t along the system trajectories
But we know that no finite V exists such that x{V) = 0. Hence

1im V(x(t)) = - o= _ L - 3.5.20

oo - -

Now by rearranginc 3 5 19 and letting t-» oo using 3.5.20 we
see that 3.5.18 occurs. End of proof.

Before considering the Zubov equation in terms of definition
3.2.1, 3.2.2 we shall state a theorem establishing what the
Lipschitz condition means in terms of the definitions.

Theorem 3,5.4 ' _

A function f(x) for which £(0) = O satisfies a Lipschitz
condition in a region D containing the origin if and only if
P(E) 2 1. ‘ 3.5.21
Proof ‘

This is similar to the proof of theorem 3.,5.1. In that
proof the three cases of the behaviour of a function as X-50
were considered. The case f(x) - ecand £(x) ~— ¢(r ) # 0 are
discounted as the origin is a critical point of £(x).
The Lipschitz condition can be written as

|£(x) - 2| < 1] x - x| 3.5.22
for some fixed L and all (x,y)€ D. Hence substituting y =
into 3.5.22 gives

ol <2 .

3.5.23
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' Xow suppose by contradiction that P(£)<1. We divide 3.5.23
by "gup(g) which gives

“£(§”| < L‘l§“1—P(£)

) P4

Now letting x-> 0 along any continuous path ' in D shows that

Izl
=
if P(f) < 1. This contradicts definition 3.2.1 and so P(f}%= 1.
Now suppose we are given P(f) > 1. This means by definition
3.2.1 that

— 0 as x-=0

| £¢x)
1) L)

along any continuous path ' and c( ) exists and is flnlte

c(r) as x=Q 3.5.24

for all " and is non-zero for at least onefl . Let c be the
supremum of (') over all T D, Then from 3.5.24 we have

le|| < o llx L) 3.5.25
as X -0, x ¢ D. Now by 3.5.21 we have
=) % < 3.5.26

for all x in some nelphbourhood of the origin.- Combining -
3.5.25 and 3.5.26 we have arrived at the Lipschitz condition
for a neighbourhood of the origin. End of proof. '

6. Admissible g(x)

Now we have established by an example and a theorem that
not all positive definite functions #(x) satisfy theorem
1.7.1 for a given f(x),we may study this problem using definition
5.2.1, 3.2.2, We -must assume that we may solve the Zubov
equation in the form 3%.1.1 or at least attempt to solve it
and hence that the partial derivatives ¥V(x) , i=1,...,n, exist,

Theorem 5 .61 _éxi
P(f) + P(g- < min (P(g),P(ddV)) 3.6.1
providing 2V exists.
. X
Proof -
Tet P(£) + P(Y) -
—— }E} = S' 3.6.2

Dividing the Zubov equation by HEHS gives
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j‘“ £, (03 (x) “A(x)(1 - av(x)) 3.6.%

- \xi .- =

I [Ei

Now we consider the limit of each term on the L.H.S. as x-0

along a continuous path " in R™. By definition 3.2.2 we may
state that

£,(x)
———13(1, ) — Cj'_( l_') as ]_(_-—"79 3.6.4
T | i
and x varies along a continuous path © in R, Also
2 (x)
*
Xy —> ¢;(M") as x>0 ‘ 3.6.5

||-’-‘-||1)k3{;¥1-2 .
where c¢!(f) and ci(r'), i=1,...,n, exist and are finite
and each is non-zero for some " .

By theorem 3.2.1 we have the inequalities
P(f) % P(f)

p(2 R (Y ) i=1,...,n. 3.6.6
Now by 3.6.2 we see that
fi(z)%‘%iﬁ) - - =- - f£.(x) %‘i_iz) o
—_— oV
E (IR FAS TS
while from 3,6.6 we see that
£ (x)d £, W
X)¢x§X) . _ 1(£) ﬁ( x) ‘)a\ (B(f )- P(f) P(—-) P(BVU
Bk PR RF LS .

Using 3.6.6 and 3.6.4, 3.6.5 upon lettlng x—~0 we see that

£, (203 (x)

®Xi is finite as x-0.

8

X

Refering back to 3%.6.% we see that
-A(x)(1 - av(x))

is finite as x— 0. 3.6.7

s
X
Hance 3.6.# indicates that P(-¢(1 - av)) » s



Now if P(d) < s them we see that

Ale) . Alx) )||5”P(é)-s as X — 0 3.6.8
— _(B‘P —ar OO SoA - Y e
(R , 1=
along a path "’ for which
#(x)

“_Xﬁp(é) ""’C(P') ?é 0.

Substituting 3.6.8 into 3.6.7 leads to a contradiction in
limits as x 0.

Hence P(4) 3 s and we may similarly prove that F(déV)> s.
This shows that

min (P(A),P(ddV)) 3 s : 3.6.9
énd substituting 3.6.2 into 3.6.9 gives the result 3.6.1.
End of proof.
Theorem 3.6.2 . . .
“min (P(£,) + P(2L ) ) < min (P(4),P(adV))

i

i=1,aon
Proof 3
~ Let min (P(fi) + P(S¥')) = 3
i=1’oo,n i

Then using the relationships

p(r) + 2 ) >
i=1...yn 1
instead of 3.6.6 the proof becomes exactly as for theorem

3.6.1. End of proof.
We note by examples that these inegualities in theorems
3.6.1, 3.6.2 can be strict. Consider the example

X = —x°
. ‘ 6.1
| v = -y \ 3.6.10
Then if we use g(x,y) = 2x4 + 4y4 3.6.11

. d =0
and then substitute 3.6.10, 3.6.11 into 3.1.1 we may solve
3.1.1 to obtain the analytic solution
V(X!Y) = X2 +‘,Y4. :

Hence for this example

P(f) = 1
ordV
P(gg) = 1
P(B) = 4

P{dgV) = oo
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which satisfies theorem 3.6.1 with strict inequality, although
AV .
P(fi) + P(ggi) = 4 i=1,2,

and theorem 3.6.2 is satisfied with equality.

Now consider the example
y b

x = -2y 3.6.12
i o= x
Then if we solve the'equation
“2y3§¥ ¥ x%% =0 S 3.6.13
we obtain the analytic solution
V(x,y) = x% + y. 3.6,14

Hence we have satiﬁfied theorem %3.6.2 witun
min (P(f ) + g )
i=1,2 i
min (P(4),P(dgV))= o=-

However the result 3.6.13, 3.6.14 show that

%2 4 y4 =p .

are trajectories of the system and hence that 3.6.12 is not

an asymptotically stable system. It is later shown that
asymptotically stable systems for which the series construction
is possible satisfy theorem 3.6.2.with equality.

Theorem 3.6.3

min (P(4),P(dgV)) = P(4) ' 3.6.15
if V(0) = O.
Proof

We assume that system 3.5.4 is asymptotically stable
and #(x), V(x) are such that theorem 1.7.1 is satisfied.
Now we consider #(x)V(x) and observe that as x-—0

p{x)IV(x) _ ) o
N BUTT+504) cd(F );cV\P ) . | 3.6.16
as x varies along a continuous path ™ in Re.
Now we also know that
gix)V(x)
—C (M) as x—= 0.
e
Re—arranglnr 5. 6 16 gives

|i£”P\5T4P(V) “EHEE¢V}
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Now if T’ be such that ¢ (F) # O then letting x—> 0 along
r’ in 3.6.17 leads to a contradiction if P(4V) < P(4) + P(V)
as the left hand side becomes infinite contradicting 3.6.16.
Hence

P(pV) % P() + P(V,.
The initial condition V{Q) = O implies P{(v) > O.
Since P(V) > O then this yields the result

P(6V) > P(4).
Now if 4 = 1 we see that P(agV) = P(AV) > P(4) while if d = O
we see that P(dAV) = oo > P(p) which establishes that

P(dagv) > P(p)
and result 3.6.15 is proved. "End of proof.

lThe relationship of P(V) and P(%%) is of obvious interest.
Theorem 3.6.4 -

p(v) < Py + 1 T 3.6.18
< 3X .
providing that the partial derivatives of V exist and are
continuous in a neighbourhood of the origin and V(Q) = O

and 1im 3V .x # O on any path 7’ for which “3¥“
x>0 3% AN so(T) £ o,

—— Vr——

L : L “éﬁ€%§)

Proof
The existénce and continuity of the paftial derivatives
¥V, i=1,...,n, are sufficient to enanle us to call on the
}xi ' )
result of the Mean Value Theorem for partial derivatives (é1l
which gives
"
Y(ﬂ +¥) = v(x) +§E;%%i(§ + Wy) ¥Yi 3.6.19
[ |
for some %\ where 0 < )\ < 1. WNow since V(O}= O substituting
x = 0 into 3.6.19 gives ' '

n
'é. .
v =S S Oy vy | 3.6.20
Tar T
Now let us define '
P(V) = 8,
WV . 3.6.21
PSx! = %

and suppose §q > 8, + 1.

Expressing 3.6.20 in vector form and dividing by ”X”S1 gives
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Ny, )
v(y) %k\x}.x 3.6.22

lgiFr e
We may rearrange the K.H.S. of 3.6.22 to give
viy) _ )-\52"1“32”'31 %”‘l)'x 3.6.23
| 2™ ' (RS b
Now choose y—=0 on a path ' for which
‘%(\1)H o)
—_— s e(P') £ 0,
Il Sl

Then since 0 < X\ <« 1 we see that letting y-»0 on ™ in 3.6.23
gives V(y)

Bk

This contradiction gives sy € é2 + 1 and hence 3.6,18.

—» oo contradicting the definition 3.6.21.

End of proof.

Now that we have some theorems relating P(f), p(V), P(4)
we can establish that for Lyapunov functions to exist for an
~asymptotically stable system which are ohtained from the
Zubov equation that there is a constraint on £(x). -
Theorem 3.6.5

If A(x), V(x) exist satisfying the conditions of theorem

1.7.1 and if the restrictions of theorem 3.6.4 are satisfied
then

P(4) > P(f) - 1. 3.6,24
Alternatively there are no V(x), #(x) satisfying theorem
1.7.1 where

P(4) = P(£) - 1.
Proof

Since the Zubov equation requires V(x) and its partial
derivatives at the origin to be continuous so that a solution
exists then we may use theorem 3.5.4 which together with the
initial conditions gives ’

PE) > -1 3.6.25

Then putting 3.6.25 into the result 3.6.1 of theorem 3.6.1 we
obtain ’

P(£) - 1 < min (P(8),P(d8V)), ' 3.6.26
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Finally using theorem 3.6.3 and substituting 3.6.15 into
3.6.26 leaves us with the relationship 3.6.24,
End of proof. '

To see that theorem 3.6.5 is the dtrongest restriction
available we may consider the one~dimensional example

x = —-sign(x) |x]3"S _ 3.6.27
where. s > 0. Uéihg g{x) = x2, d = 0 we may solve the Zubov
equation ' _ ‘

~sign(x) [x[a*s av(x) = —x2

dx

to obtain the analytic solution

vix) = Ix|° 3.6.28
X |

For all s >0 3.6.28 shows that 3.6.27 is asymptotically stable
at the origin and we have

P(V) = s
P(4) = 2
P(f) = 3-8

The result of theorem 3.6.5 could be arrived at another way.
Theorem 3.5.1 requires that system 3.5.3 does not satisfy a
~Lipschitz condition in . a neighbourhood of the origin, and - -
theorem %.,5.4 shows tnat this requires

p( Ly 21

Bf1—de
which implies that
P(£) < P(d) + 1
now sincz a lot of the Zubov construction is based on constructing
a series solution of a P.D.,E. and therefore requiring f(x) and

g(x) to have a power series in integral powers of x,, i = 1,...,n

R
we can establish the corresponding relationships fo; the series
construction. We have seen in theorem 2.2.1 that the powers

of the lowest degree terms in f(x), A(x) are constrained to
satisfy a relationship similar to.3.6.24. WYWe now formally
state this relationship in terms of definitions 3.2.1, 3.2.2.
Theorem 3.6.6,

If £(x), #(x) have a power series expansion of the form

2.2.1, 2.2.2 with lowest powers Si» i=1,...,n,and q respectively
then the Zubov partial differential equation can only yield

a positive definite V(x) in some neighbourhood of the origin

for asymptotically stable systems providing

P(4) » P(£) + 1 _ . 3.6.29
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where P(F) = q
P(E) =min (81,.--’sn)n
Proof

It has been shown in section 2 of Chapter 2 that since

8 = min\s1,...,sn) implies the n-dimensional version of 2.2.10,

by recourse to theorem 2.2.1 we see that

a » min (51,..,sn) + 1 %.6.30
From theorem 3%.2.5 we see that
P(4) = a 3,6.%1

P(fi)=s; 1 =1,...,n,
By theorem 3.2.1 we see that
P(f) = min (P(f1),P{f2),...,P(fn)) 3.6.32
Substituting 3.6.31, 3.6.,32 into 3.6.30 leaves us with 3.6.29 ,
End of proof. i
Theorem 3.6.7

If £f(x), #(x} have series constructions as 2.2.1, 2.2.2
and the system 3.5.4 is asymptotically stable at the origin then
min  (B(f;) + P(IL )) = B(6) 3.6.33

i=1,..,n i
“Proof - - - - =

Using 3.6.32 we may re-write 2.2.1 with the range of m

in fi(ﬁ) from s to o= where P(f) = s, Now suppose that 3.6.33
is not true. Then by theorems 3.6.2, 3.6.% we see that

min (p(£,) + Pd%%_))‘< P(4; 3.6.34

i=1,..,n i -
3.6.34 implies by theorem 3.2.5 that in the series construction
2.2,12 the L.H.S., of 3.1.1 has lowest homogeneous terms of
total power min((P(fi) + P(%%_)) while A\x)(1 - dVix)) does
not., Now we solve another equétion

f.(x)3W(x) =0 3.6.35
>_ il =, |

The same téfés of total power min(P(fi) + P(%%i)) can still
be the lowest degree terms in the left hand side of 3.6.35.
Hence it is possible to find w(g) such that the dominant terms
of W{x) in a neighbourhood of the origin are the same as those
of V(x). that is, we may write

V{x) = w(x) + u(x)
where u(x) is "small" in comparison to V,W. If v{x) is positive
definite in a neighbournood of the origin then W{x}) is also

positive definite near the origin. But from 3,6.35 and theorem
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1.5.3 we obserﬁe that

Wix) = 0
and so W{x) = p are the system trajectories showing that the
origin of 3.5.4 cannot be asymptotically stable. Thus 3.6.34
is a false assumption and we are left with 3.6.33.
End of proof. '

7. Admissible f£{x)
Consider the one-dimensional example

X = =x(1 = x)% for x < 1, 3.7.1

3.7.1 is asymptotically stable in the region (-oo,1). Now

let us solve the Zubov equation in the form
2

x(1 - x)? av(x) = —x? 3.7.2
dx
The analytic solution of 3.7.2 is found by integration
to be

Vix) =4 - 4(1 - x)1% - 2x(; - x)%. 3,7.3
3 3 '

Thus we see that, although 3.7.3 is a Lyapunov function

. establishing the asymptotic stability of the origin of 3.7.1,

the boundary of the D.0.A. is not given by V =%°, Admittedly
x = 1 is the boundary of definition of f(x) and hence of v(x),
but we can define any system which satisfies 3.7.1 for x<1
and another relationship for x> 1 with as many derivatives

as required continuous at x = 1. Then V{x) will also have
similar properties and satisfy 3.7.3 for x <1 and some other
solution for x >1.

This result appears to contradiet theorems 1,7.1 and 1.7.3
but in fact it does not. The reason for this can be seen by
looking at the solution of 3.7.1. The solution of 3.7.1 when
integrated is given by =

x(t) = _ 4ae’

(aet+1)?
where a is arbitrary. -

Now we see that x(t) = 1 for all t also satisfies 3%.7.1%.
Hence there are two solutions

x(t) = 1
~ x(t) = :flre‘t
(et+1)§

each satisfying 3.7.1 and the initial condition x(0Q) = 1.



Hence X = 1 may also be in the D,0.A, and if f(x) is defined

for x > 1 such that x—>1+ in finite time for x{(0)>1 then 2ll

space may be in the D.O.A.. This phenomenon occurs because

the R.H.S. of 3.7.1 does not satisfy a Lipschitz condition

in every neighbourhood of x = 1. This is also the condition

that 3.7.%1 has a.unique solution. The Zubov theory assumes

x = £(x) 3.7.4

satisfies conditions that guarantee existence and uniqueness

of the solutions x(t) given an initial x, for t = 0. Clearly

if the solutions of 3.7.4 are not unique then the D,0.A. depends

onhow.we define D.0O.A.s for such systems,

Comparison of 3.7.2 and 3,7.3 says something about Lyavunov

functions for such systems., We can see that as x-»1-, QEUX)_,cc,

x .

while V(x)—54/3. We see that V(x) does not satisfy a Lipschitz

condition near x = 1 and tha% this means an infinite gradient

dV(x) does not necessarily mean that V(x) is infinite.
dx

Theorem 3.7.1
Given that the one-dimensional Zubov equation
,.f(x);%!(x) = -p(x)(1 = dv(x)) . _ . . 3.7.5
X

yields a positive definite V(x} in a neighbourhood of the origin

for some positive definite g(x) then a sufficient condition
that V =ofor d = 0 or V=1 for d = 1 indicates the boundary
of D{(f) is that f(x) satisfies a Lipschitz condition in the
neighbourhood of x' where
' f{x') =0 3.7.6
and x' € SD(f).
Froof )
Suppose that f(x) does satisfy a Lipschitz condition in

X in a neighbourhood of x = x'. Keference to definition
1.3.2 shows that

If(x} - f(y)| & L|x - yl . - 3.7.7
for all x,y€ S,.{(x'} for some L, £ > 0.
Now substituting y = x* in 3.7.7 and using 3.7.6 we obtain

|f(x)| < L[x - x1 3.7.8
for all x € Sc(x') some € 7 0.
By integrating 3.7.5 we find the solution of the Zubov equation
given V = 0 at x = 0 is
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V(x) = ij%%%g du (a=0)
or log(1 - V(x)) -_j’—%—% du (a = 1).

Now suppose we fix x and consider V(y) - V(x) where y € (K x')

if x*'>0o0r y € (x',x) if x'< 0.

gives

v(x). - _%_) du

or log(1 - V(y)) =

Since this
V(y) =

log(1 - V(x)) +j ff—}—}au

(a = 5.7.9

(@ =1)

We now concentrate on the integrals in 3.7.9 and suppose that

X,y € Sc(x') so that 3.7.7 holds.

Since x,y € (0,x') or

x,y € (x',0) then we may assume that f(u) is of constant sign

for u € (x,y) and since g{u) is positive definite then f(u}/A(u)

is of constant sign for u € (x,y).

3
u)
faf\u du

Substituting 3.7.8

3
ééu;
J;f u Qu

An appropriate transformation of

~that as y—»x'
é(u)
SEEALY

-and hence the integrals of 3.7.9

that V—> ¢ for @ = 0 or V->1 for

|du| —= oo

The converse of theorem 3.7.

Clearly by theorem 1.3.3 we know
3.7.7 does not hold the solution
f(x)

is not necessarily unique and so

X =
given by %.7.6. But one wonders
daoes have a unigue solution in a
some £ > 0 but does not satisfy a

=J£:%%%ﬁ |du|f

into 3.7.10 we obtain

Ry

Hence

3.7.10

3.7-‘11

variable in 3.7.11 then shows

also become infinite showing

d = 1. End of proof.

1 is an interesting question,

that if the Lipschitz condition

of the one-diménsional system
5.7.12

its boundary is not necessarily

whether a system 3.7;12 which

neighbourhood of Sg(x') for

Lipschitz condition in this

neighbourhood can lead to a solution of its corresponding
Zubov equation in accordance with theorem 1.,7.3.

~ Corresponding results for 2
to obtain but it is likely again

is not unique then the boundary of the D.0O.A.

or more dimgnsions are difficult
that if the solution of 3.7.4

is not indicated
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8. Conclusions
Most authors, when solving the Zubov partial differential

. equation, have concentrated on systems with linear parts and
on #(x) with quadratic parts. In such cases there is no
problem with obtaining Lyapunov functions which if they are
in closed form indicate stability and obtain the D.0O.A. in
fuil.

In this chapter we have looked into examples where
difficulties arise and have shown that the whole concept of
Lyapunov functions and the Zubov equation can be put onto a
sound theoretical footing. 1in later chapters the equation
is solved numerically in various ways and the theory of this
chapter explains the behaviour of numerical sclutions.

It would appear that although theorem 1.7.1 holds for
systems with unique solutions there may be care needed in
obtaining £(x) and V(x).
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Chapter 4

The One-~Dimensional Zubov Equation

1. Introduction
In this chapter we look exclusively at Zubov's equation

applied to one-dimensional systems. That is, we consider
systems defined by the djifferential equation
x(t) = £(x(%)) , 40101
The Lyapunov function V{(x) is used to test the stability
of 4.,1.1 and the chain rule expansion of theorem 1.5.3 becomes

Vix) = i{tﬁﬁg 4.1,2
Ax
Since V is only dependent on x the partial derivative JV is
: 3X
the same as the total derivative dV. Now if we lct
dax
V(x) = =4(x){(1 -~ av(x)) C4.1.3

and substitute 4.1.1 and 4.1.3 into 4.1.2 we obtain Zubov's

-equation in-one-dimension - - L

£(x)aV = -p(x)(1 - av(x)). 4.1.4
dx

Equation 4.1.4 may be solved analytically by series method
or separation of variables or by numerical methods in ordinary
differential equations.

‘The one-dimensional Zubov equation is entirely different
from the version in 2 or more dimensions in that 4,1.4 can be
expressed explicitly for V(x). There is also much more knowledge
about numerical computation of 0.D.E.s than there is about
P.D.%.s8, and it is much easier to deal with just one independent
variable than with 2 or more. What we are lookirig for is the
V=eoor V=1 contour, and in the one-dimensional case we need
only proceed to vary x until we find the contour, whereas in
higher orders we.nave_tne extra problem of deciding how to
alter the independent variables to obtain a point on the contour .
V=2, V=1and to trace the complete contour.

Therefore techniques are studied and developed in thnis
chapter that cannot be applied to higher orders. The techniques
considered for higher orders in later chapters are applicable
0 the one-dimensional case, but its relative simplicity renders

SLL(L\ MP.LLD(\_S wAnQ QSS“"'}.
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-

In:sections 2 to 5 an analytical look at 4.1.4 is taken
with consideﬁation of conditions for asymptotic sﬁability and
the choice of A(x) and the method of series solution,together
- with the question of convergence of series and convergence of

R.A.S.s. Sections 7 =10 deal with numerical computation of
4.1.4 bearing in.mind problems of computational stability and
accuracy. Other work in this field is the subject of section
6 and the chapter is concluded with examples and conclusions.

2. Asymptotic Stability in One Dimension

In order to consider the analytic solution of 4.1.4 we
need to establish the behawiour of f(x), A(x) as x is small
or as x increases. We already know that A(x) must be positive
definite and continuous so that
(0} =0 4.2.1
p{x) >0 for x #£0
by definition 1.5.1.
Also since the origin is defined to be a critical point
of 4.1.1 we know that f(0) = 0.  To see what happens to f{x). _ .
for x # 0 in a neighbourhood of the origin we need the following
theorems in which we assume that f(x) and x{(t) are continuous
in their respective arpguments.
Theorem 4.2.1
Suppose X = f(x) 4,2.2
£(0) = 0 4.2.3
then the system 4.2.2, 4.2.3 is asymptotically stable at the
< 0, Xy > 0 such that

]

origin if and only if there exists x

for X, € X < O then f(x) > 0

and for 0 < x <« X5 then f(x) < 0.

1

Proof
Suppose firstly that X41X5 exist satisfying the second
half of theorem 4,2.1. We then prove that this ensures 4.2.2
to be asymptotically stable at the origin,
Consider an initial point X, such that Xy € X, < 0 and let
x(t) be the solution of 4,2.2 such that x(0) =

Xoe Now by
integrating x(t) with respect to t we see that

: t,
x(t) = x_ +fx(t-)dt'_ 4.2.4
Substituting 4.2.2 into 4.2.4 gives '
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¢
x(t) = Xo * J:f(x(t'))dt' _ 4.2.5
Now we know that f(xo) > 0. Therefore providing x and f are
continuous in t and x respectively then there exists t‘(xo)
such that for t < t' then f{x(t)) > O.
' Hence for t+ < t' we see from 41.2.5 that
x(8) > x_. | 4.2.6
Since 4.2.6 is true for any Xoy Xy S X < 0 we may say that
since . €456
x(t + St) = xtt; + f £(x(tr))at’
“then x(t + $t) > x(t) while St < t'(x). Hence x(t} is an
increasing function of t while x, < x(t)< O.
We have shown that either
a) x(t) 0 in finite or infinite time or
b} x(t)-—9X3<< o.
_ But b) cannot be true as f\xB) > 0 and there exists t'(XB)
such that
x(t) > X5 for t < t'(xB) given x(0) = XS.
llence we know that x(t) either reaches the origin in finite
~time or infinite time given x{v) := X, where Xq € X, < 0. We.
may prove similarly that x{t} tends to the. origin in finite or
infinite time given x(0, = X, where 0 < x_ < X,. This shows
that x—=0 from either side of the origin and that 4.2.2 is
asymptotically stable.
In fact the solutions of x(t) of 4.2.2 given x(0) = X
Xq < X, < X5, can only reach the origin in infinite time
providing 4.2.2 satisfies the conditions of theorems 1.3.2 and
1.5.3 for existence and uniqueness of solutions.
For suppose there exists T such that
' 0 4.2.7

x(T) = O given x{0) = x_, Xy € X, <
or O < Xy € X5

0
jwow from 4.2.2 and 4.2.3 we see that

x(t) = 0 ) 4.2.8
is a solution of 4.2.2, Comparing 4.2.7 and 4.2.8 we.may
immediately notice that the system 4.2.2 with time reversed
and the initinl condition x{T) = O does not have a unique
solution. Hence if the solution is unique then the origin is
not reached in finite time by any non-trivial trajectory. This
completes tne first half of the proof.



Now suppose 4.2.2 is asymptotically stable. Then there
exists a D.0.A. (a1,a2) where a, < 0, a, > 0 and either or

hoth of &, or a, may be infinite. Let X415 %o be any points such
that

a; € %X, < U 4,2.9

0 .< X, < a2.

Ve show that XX, satisfy the second half of theorem 4.2.1

by contradiction, .
Suppose there exists xo such that X, < xo-c 0 and f{xo) < 0,

1f f(xo) = 0 then by integrgtion with respect to t we see that

14
x(t) = X, +_£.§(t')dt'.
From 4.2.2 we see that x(0) = 0 and hence x(t) = X for all
t > uU. 1In this c¢ase X, is not witnin the v.0.4., and coutradicts
the definition of ay.

While if f(xo) < G then by continuity of x and f tunere
exist by,b, with b, < x_ < b, where f(x) < O for xé?(b1,b2).
Then by the same integration procedure as used previously we
see that x(t) is a decreasing function of t while b, < x(t) < b,.

But if f(xo) > 0 when x_ < b, we have x(t) is an increasing
function of .t while x(t) < b11_‘mh;s;spows;t@a§ b1 is the 1limit
of x(t) as t > oo again contradicting the definition of a,.

We have thus proved that there cannot exist X Xy < x0<:0,
such that f(xo) < 0 if 4.2.2 is asymptotically stable. It can
be proved identically that for X, in 4.2.9, there does not exist
o? 0 < x, < x, such that f(xo)'> O. This proves that x,,x
given in 4.2.9 satisfy the conditions of theorem 4.2.71 and

o ,
‘completes the proof.

Using theorem 4.2.1 and equation 4.2.1 we now know that
for x > O in a neighbourhood of the origin

ééx; < 0 4,2.10
f(x .

and for x<0 in a neighbourhood of the origin

X >0, 4.2.11
fix
Now let us integrate 4.1.4 by the method of separation of
variables, This gives
av -plx)dx
In a neighbourhood of the origin V(x) is small. Hence if we
consider dx >0, x > 0 and using 4.2.10 we obtain dv >0,



Similarly if dx ¥ 0, x<0 reference to 4.2,11 gives dV >0.
Hence V(x) >0 given V(0) = 0. Hence V(x) is positive definite
in a neighbourhood of the origin.

Integrating 4.2.12 with respect to each element gives
j» 4

= X :
V = VO - J:uf X dx 4.2.13
if 4 = 0, or :

~log(1-¥) = -log(1-v,) - | HHax 4.2.14
if d = 1. . :

We are now ready to consider the effect on V(x) of different

g(x).

3. Theory of Different g
To ronsider the effect on 4.1.4, 4.2.13, 4.2.14 of using
different functions #(x) we consider the example

_ X = —x3(1 - x2)_ ' . A3
The D.0.A. of 4.3.1 is (~1,1).
Let A(x) = x2, d =0 4.%.2
and substitute 4.3.1, 4.3.2 into 4.1.4 gives
- av 1 : : - - o
— —1 "::"""_—' - 4"37.3
dx x(1-x2)

. The solution of 4.3.3 becomes

vV = log(%z:) "+ C 4.3.4
1-x

where ¢ is an arbitrary constant. The initial conditions we
have are given by V = 0 at x = 0. However as x—0 in 4,3%.4,
¥V — —<for any finite c,. '

To confirm this we can consider 4.1.1 and 4.1.4 as two
parametric representations for x in terms of t or V.
These are

from 4.1.1 dx = f{x)
at

from 4.1.4 dx  _ -f(x) ‘ 4.3.5
av T Ax)i=avy

Since f(0) = O ‘we know within the D.0.A. that
X—0 as t —» o=,
Letting d = 0 in 4.%.5 we see that if

f(x) —0 as x—>0
X)
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x(V) has the same properties as x{t) and x-—=0 as V—> — oo,
Example 4.3.1, 4.3.2 and its analytic solution 4.3.4 confirms
that this happens.

This is the one-dimensional version of theorem 3.6.6
which insiste- that for the Zuhov equation to be soluble for Vi(x)

| P(f) < P(f) - 1
where f(é) 2 xP(f)
Cpx) = xP(ﬁ) as x—>0 - 4.3.6

or as definition 3.2.2 where P(f), PL§) arc integers, and f(x), -
f(x) have a series expansion in a neighbpurhood of the origin.
To consider the situation where f(x), #(x) do not necessarily
have power series expansions in integral powers of X, we need
theorem 3.6.5 which requires P(f) < P(g) + 1. 4.3.7

Clearly 4.3.1, 4.3.2 do not satisfy 4.3.7 and no Lyapunov
function V{(x) exists.

If the Zubov equation can be solved to give a Lyapunov
function V(x) satisfying theorem 1.7.1 then we know that
V(x) = 1 or V(x) =o0 will indicate the boundary of the D.0.A.
providing that such a boundary is well-defined, which requires
the conditions of theorem 3.7.1.

it has been shown here that not all positive definite -
continuous functions are admissible to be used as g(x).

4. Series Method
The series construction of Zubov's. equation has been

documented partioularly in 2 dimensions where staightforward
integration of 4.2.13 or-4.2.14 is not possible. It is not
always possible in one dimension -even to directly integrate
the Zuhov equation and the series construction is mentioned
here for that reason. ’

We assume that f(x), #(x), V¥(x) have power series expansions.

£f(x) =5 fmxm 4.4.1
mz=35
pix) = 2o x" 4.4.2
Lk 2
. - m
ka) = 'ﬂz‘r me . 4'-4.3
where fséqu £ 0. 4.4.4

Now we may substitute 4.4.1, 4.4.2, 4.4.3 into:4.1.4 with the
assumption that V(x) is differentiable term by term. This giver



( EZ:fmxm)(:£:nwi§m"1) = —(;i;émxm)(1-d§;;mem1 4.4.5

Now we wish to eaquaté like terms in the identity 4.4.5.
Fach side of the identity 4.4.5 has & lowest degree of x.

The L.H.5. of 4.4.5 contains terms in Xs+r+1 and above; while
the R.H.S. contains terms in x% and above if r =0, and terms
in x*T
we see that r > 0.

Hence we have that if s+r;1 < g then rfSVr = O which
since r £ O contradicts the definition of s,r given by 4.4.,1
to 4,4.4.

Also if s+r-1 > g then éq = 0 which contradicts the
definition of q.

Therefore we have established that given the expansions
for f(x), A(x) in 4.4.1, 4.4.2 that the power series for V(x)
is defined as 4.4.3 with

r=4g-38+ 1 £.4.6
Now it has been shown in.theorem 3.2.7 that for g{x) to be
positive definite we require q integer and even and éq> 0.
Now we equate the lowest powers of x in 4.4.5 to obtain

eIV o = Ee o AT

Now if 4.1.1 is asymptotically stable then the solution of

and above if r € 0., However since we reguire V(0) = O

Zubov's equation will yield a positive definite V(x). That is,

we would obtain r even integer and V. >0. Also if such r,Vr

are obtained we know that 4.1.1 ia asymptotically stable at the

origin. This leads to
Theorem 4.4.1
1f x = £(x), £(0) = 0, ' 4.4.8
and ¥ = -f(x)(1-4av)
where 4(x) is positive definite in the whole and continuous

and V(x) is positive definite in a neighhourhood of the origin,

and if f(xj, A(x), V(x) have series expansions as in 4.4.1 to

4.4.3 with s odd integer and fs-< 0 then 4.4.8 is asymptotically

stable.
Proof
If A(x) is p.d. then g is an even integer and ¢q> g,

Hence by 4.4.6, we see that if s is an odd integer then r is an
even integer. . Also since V{(0) = O we know that r > 0 and thus
by 4.4.6 g-g+1 > 0 'also. Therefore if s is odd and fs< 0 then
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by 4.4.7 we see that Vq_s+1 > 0 and so by theorem 3.2.7 and the
theorems of Lyapunov we prove that 4.1.1 is asymptotically
stable. End of proof.

Now having established r and Vr we want to systematically

establish V. for m > r. Substituting for r from 4.4.6 into

m
4405 givesﬁ. .

- -1
() £ xS wv x"T) = > 5 xm)(1c1>__V x™), 4.4.9
mg -Q.SM -q,s
Expanding the products in 4.4.9 gives
._(f—wf\’x“'qu- dx + d gSVx 4.4.10
& s 2

Collecting coefficients of terms in x™ in 4.,4.10 we obtain

m-Sa M-

Z_(Zav fo e = ->—é aaS (S b V"

AR s e 4.4.11

Since 4.4.11 is an equation which should be identically
satisfied by V(x) given by 4.4.3 we may eguate coefficients
of x", ‘This gives

a) for g € m < 2g-s o ~

m—SH

E ngfm j+1 = - ﬁm . 4.4.12
PGSt
b) for 2q-s+1 < m
-5 4
. - .
/i__ ,‘]Vme jo1 B+ d>— ém_a ; - 4.4.13

4.4. 12 and 4.4,13 form the ba31§ for generating Vm, m = q-s+1,
Q-5+24 4 ees
From 4.4.12 and 4.4,13 we see that given
Vj for j = q-s+1,,....,m=5 :
4.4.12 or 4.4.13 may then be used to compute V

mes+1° Hence
re-writing 4.4.12, 4.4.13 explicitly in terms of Vm_s+1 we obtair
a) form = q 4
v = -
q-s+1 ra:gz%y?; 4.4.14
b) for q+1 < m < 2qg-s
V - -ﬁm V 4-4-15
m-s+1 TE:ETTTTE (E:;:?SET‘ZL_ J m—J+1
=20 -S4
¢) for 2g-s+t = m 4 1 .
- m Jv AV
Vm—s+1 (m-s+1)fS (m—s+1)f 25:? J m-3+1 Em-S+1) ;g:f m=3 "
3EgE 0 I
4.4.16

The final modification to simplify 4.4.14 to 4.4.16 is to

express them in terms of V explicitly rather than Vm St
ad= 1 o ]
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Hence the final form is given by
a) for m = q-s+1
-8

v =
q-s+1 (mﬁs— 4.4.17

b) for g-s+2 € m < 2q-2s+1

_ _é m - )
Vm = m+s-1 - 1 E Jijm_j+s 4.4,18
mf mf £
. 3 . 3 Vs a
c) for 2q-2s5+2 € m
..ﬁ M- mas _T/.é
Vv = m+s-1 1 3v.f + d E . 4V 4.4,19
m o - mf’jg:; jTm=j+s — m+s~j=1"j}
S S ] =450 5 i:?-—!-u

Equations 4.4.17 to 4.4.19 form the recurrence relation
from which we compute the series 4.4.3 for V(x).

5. Convergence of Series

Equations 4.4.17 to 4.4.19 can in theory be solved for
m = Q-5+1, Q-8+2,...,0° and the full series for V(x) obtained.
However unless the coefficients Vm' m » gq-s+1, can be recognised
as being from a series which has a defined infinite sum, we
have the problem of convergence of the series,

When comﬁuting the value of a series expansion by an
algorithm such as4.4.,17 ‘to 4.4.19, somewhere  the series has
to be truncated. This is usually done when

| lv <™ < ¢ 4.5.1
for some & > O and for each particular value of x considered.
But sometimes Vm can be quite high before 4.5.1 is satisfied,
as an example shows,

Consider .
-X + x3 4,5,2
The D.0.A. of 4.5.2 is given by x € (~1,1).

Using 4(x)
4.1.4.becomes

av _ x2+x4+x6
ax -~ _;:;?——‘ 4.5.3

The solution of 4.5.3 given V(0)

V(x) = —x° - x4 - 3 log(i-x
& 2
The region of convergence Rc(ﬁ,f) of 4.5.4 is also given by
x € (~-1,1). '

X

I

x2 + x4 + X and d4d = U the Zubov equation

= O becomes
2. 4.5.4
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The series expansion of V(x) is given as

2 2 2'\:3n y
P {2W)
ig. 14 shows plots of V (x) where
(2W) _ .2 o2n
v {x) = % + x + 35 4.5.5

plotted as" V(ZN)(X) versus N for various x.
However V(U+99999) = 152 while V'89)(0+99999) = 5.0 and
this is because v&O = 0+0375 and shows that convergence is
very slow,
This vroblem can be avoided with extra computation by
acceleratiéon techniques. Details of such are found in Shanks (37)
Now any truncation such as 4.5.5 is a Lyapun?ﬁ)functlon

in its own right and computing x to obtain when V {x) =1 or
V\h)(x) = ©° where

vid(yy o f{:_v x® 4.5.6
is not valid. Bf’tﬁeorem 1.6.8 we require to compute p such
that V(N)(x) = p is tangential to V(N)(x)

Therefore given V(N)(x) by 4,5.6 having computed the
coefficients V_ by 4.4.17 to 4.4.13 we need to obtain V( )(X)
and then the boundary of the D.0.A. is given by either

V(N?(x) 0
or V(N)(X) = 1 or = 4.5.7
whichever value of x is cleoser to the origin.

From 4.4.,1 and 4.5.6 uSIng 4.1.2 we may obtain v( )(x) as
V\Nj(x) = (2__f x )(Eg:-mv X 1 . 4,5.8

R
Hence V( )(%2 =0 1F either factor of 4.5.8 is zero.
When jg:j f x = 0 then x is a critical point of X = f{x)

and the origin is the only critical point which is inside
the D.0.A.. Hence we are looking for x such that

Wl (x) = o. 4.5.9

X
As an alternative approach to finding zeroes of 4.5.8 we may
expangwﬁ 5. B)exactly as in 4 4,9 to obtain

3 s n=Se min [Ny t'\"y)

STOS sy o
PNV L TO L E B + 4 2 ¢ E::.”m-ava
™me=4q, y=q -5+ maq ’ﬂb -Sa , G 34

in which providing N & min{m-s+1,m-q) then terms in x™ disappeaf
by the relationships 4.4.12 and 4.4.15. Given a general V(N)(x)
4.5.9 is the easiest equation to analyse.
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Non-uniformity of convergence of x satisfying 4.5.7 may
be seen by another example. Let us consider the example
' x = -1 + e X% 4.,5,10
which has a D,0.A. given by x € (..0o o)
Let us denote the value of x > O satistying 4.5.7 for any
given N as Xye Hence Xy is defined as

i
e

= min x, x>0 wnere x_é[x:?(w)(x) = U or y\N )(x\ z=es for d

' V(N)\x) = 1 ror d
Using #(x) = (-1 + e*x)Z’ d =0 4.5.11
and substituting 4.5.11, 4.5.10 in 4.1,4 gives

XN

av =1 - e~ 4.5.12
dx

The analytical solution of 4.5.12 given V(0) = O becOmes
Vix) = e + x = 1. 4.5.13

Substituting 4.5.10, 4.5.11 and @ = 0 into 4.4.5 and solving
for V{x) by 4.4.17 to 4.4.19 gives the full series form
[ =)

V(x) = Z(;gi.

Thus we are 1ook1nﬂ for ¥ such that

Z{::(I?) o ) - 4.5.14

LT
N

or §j——(~xgl_1 = 0. 4.5.15

- Clearly there is no finite x satisfying 4.5.14. ©Now it

is shown in Appendix F that if N is even 4.5.15 has one zero
X = 0, while if N is odd there are two zeroes which are x = 0
and the series {xs,x5,x7,....} where Xy satisfies 4.5.15
which increases uniformly.

By definitions 1.7.2, 1.7.3, 1.7.4 we see that for 4.5.10,

4.5.11 Rog(Bs£)} = (=, o0) .
" with RZN_1(é,f) = (_°°’X2N—1) 4.5.16 -
and hence R(B,f) = (-oo,o=).

which is the same as D(f). However convergence of Ry—™ R is
certainly not uniform. ]
Let us consider again example 4.5.2, this time using d = 1

and A _(x) -% 2J C4.5.17
The region of stability 'indicated by RN(ﬁm,f) is quite interestins
The Zubov enuatlon hecomes

(=x+x )dV(x) - -6 xFH-v). 4.5.18

jﬁl
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For m = 1 the solution of 4.5.18 becomes

V(x) = x° 4.5.19
therefore V(N)(x) = x2, N = 2.
and ﬁ(N)(x) = 2x(-x+x3), N 2 2. 4.5.20

Therefore the region of stability indicated by 4.5.19, 4.5.20
is given by {(-1,1) for all N > 2 and this is also the D.0O.A.
of 4.5.2. Hence.RN(é1,f) = R(ﬁ1,f) = D(f) for f given by
4,5.2, é1 given by 4.5.17.

For m = 2 thezsolution of 4.5.18 is

V(x) =1 - e (1 - 03 4.5.21
V =12at x = +1 while ?(N)(x) = 0 at x = +1 or when x = Xy and

Q(N)(xN) = 0. 4.5.22

dx
The zeroes Xy of 4.5.22 satisfy the relations Xy > Xy,q0 Xy > 1,

N > 2. The rapid convergence of the series Xy is seen from
the fact that |x22- 1.0 < 10-5. Hence the region RN(ﬁ2,f)
is bounded by £ = 0 and just as for m = 1, Ry = R = D.
But form = 3
V(ix) =1 - (1-x

2.3 (2x° + x) 4.5.23
) e Pl ]

and the zeroes Xy of dV(N)(x) = 0 are such that IXN|< 1. for
X

N 2 10. The series Xy 1s plotted against N in fig. 15. Hence
RNSdB,f) = (-1,1), N <10, but RN(ﬁB,f) < (-1,15, N = 10,
while as N—Q, RN(bB,f)-—a(-1,1).

In this case we have shown that although R(é3,f) = D(f)
using higher order expressions for g{x) and more terms in the
series expansion of V(x) is inferior to the easier more
manipuiable lower orders.,

This situation of non-uniformity of convergence occurs
throughout various attempts to compute the series expansion
of V(x) from Zubov's method ih one and more dimensions.

The non-uniformity is still a matter of conjecture.
Shields and Storey (38) conjecture that if R, (4,f) < D(f)
then non-uniformity occurs in the sense that there exist M, , .,

such that m, > m,
while either Rm1(ﬁ,f) < Ry (p,f) 4.5.24

or by some measure of region asize" that Rm is "less than" Rm .
1 2
Zubov (12) claims that RN(é,f) ~—>» D{f) as N> if

D)y € Rc(ﬁ,f) but even then convergence is not necessarily

uniform.
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The example 4.5.10 showed this. For this example D(f)
is all-space while the region of convergence of 4.%.13 Rc(é,f)
"is also all-space. While from 4.5.16 we see that R,—> D but

net uniformly.” .
Example 4.5.2 with § given by 4,5.17 showed that it is

possible to achipgve the situation where

D(f) < Rc(é,f). 4.5.25
For each function 4.5.19, 4.5.21 or 4.5.23 we see that Rc(ém,f)
is all-space, while convergence -of RN(éS,f) to (-1,1) was not
uniform in the sense of 4.%.24 but that it is uniform in the
sense that for large N the set R(#,f) - RN(é,f) diminished
uniformly to the null set.

It can be proved that for the modified Zubov eauation(d=0)
situation 4.5.25 is never possible while clearly for 4 = 1 the
example 4.5.2 shows that 4.5.25 is p0581b1e.

Theorem 4 5.1

If x = f(x)
and V(x) = -4(x)
then Rd(d f) = (~r,T) 4.5.26

~where r = min (-a b)
where D(f) = (a b) and either of a or b may be infinite.

Proof
The Zubov equation 4.1.4 becomes for d = 0
dv = -pix
Ix flx 4,5.27

Now if D(f) = (a, b) then, by assumptions of uniqueness
of 4.1.1 such as theorem 3.7.1, a and b are either infinite
or critical points of f(x). Therefore we may write the series
expansion 4.4.1 down as

f(x) = (1 - x)™ (1 - x)™2 g(x) 4.5.28
a b
where xg(x) < ¢ for x € (a,b), x # 0 and g(x) has a power series
expansion o
g0 =S 6 A" |
and where n,,n, are pd¥itive integers and the case a = -eo or

b = o are covered by the expression 4.5.28.
Substituting 4.5.28 into 4.5.27 gives
av = -#(x) 4.5.29

D (o) ™M) 2 a(x)
a b
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Now since by theorem 1.;7.1 #(x) is taken to be positive
definite then by definition 1.5.1 we know that 1-x/a and
1~x/b are not factors of g(x). So we may expand 4.5.29 in

partial fractions form toggive n, ay
-4(x) E ‘cmxm + g1(x) igi-dm + S e

-n n = e g(x) == m e m

(1-x)"1(1-x) "2, g(x) (1-x) (1-x)

a b a b
4.5.30

Now by multiplication of 4.5.30 by (1~§)n1(1—5)n2 g(x) and

a b

letting x = a we obtain
—$(a) = a_ (1 - a)"2 gla).
, n1 b

[l

Similarly we have
.
C—4(6) = e (1 - 0™ g(b).
Hence by definStion Bf g{x) in 4.5.28 and of #(x) we see that
d £ 0, e £ 0. Hence dV contains a term in 1 and
ny ny dax n
(1-x)"1

1 and when 4.5.29 is integrated V(x) a
(1-x)"2

b

contains at least term in 1 or log(1-x/a) and a term
n,-1 .
(1=x)"1
a
in 1 or log(t-x/b). These terms have a region of
(1__1(-)!12—1
b
convergence given (a,-a) and (-b,b) respectively, proving
that Rc(ﬂ,f) is given by 4.5.26 and that

This ends the proof.

6., Other Alworithms
The one-dimensional form of Zubov:s equation is really

sufficiently simple a problem to solve that other methods
which are significantly different from the series construction
or from numerical integration of an 0.D.E. are difficult to
find. Other methods for solving Zubov's eguation in higher
dimensions were the subject of Chapter 2 and their application -
to one dimension will be considered’ . - nere.

The Lie series method (25), (26) simply involves the
computation of x(t), V(t) from the Taylor series expansions
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x(m)(O) £
oo mi 4,6.1
V(t) = :E::v(m)(o) ™

\"/\g

x(t)

where x(m)(o) V(m)(u) are computed from the recursive relationship

x(m’(O) = d x x{m= 1)(33)
dt t=0 4.6.2
V(m)(O) _ %zv(m—1)(t) s

m=1 2,---
BY 4.1.1 and 4.1.3 the n.H.S.s of 4.6.2 may be computedl
and 4.6.2 becomes

P 0) = a™ 1 r(x(t))

Cat™! £=0

4.6.3.

v (0) = —a™ ' g(x())(1 - av(x(t))
at™ £=0

Having computed the coefficients in 4.6.1 by 4.6.3 we
then let t become negative in 4.6.1 using the relation x(0) = * F
. V(0) = 0. By this means we obtain x(t)~"x' where either '
X' = + oo oOr f(x ) = 0 and V(t)-—*ﬁ;3 or 1, prOVLdlnv x' satisfies
the conditions of theorem 3.7.1 to guarantee uniqueness of
solutions in every neighbourhood of x'. The question has to
be asked, whether it is necessary to compute V(t) at all since
if x' is finite we could just as eésily terminate computation
when

|x(t+st) - x(t)] < € for some .£% 0

where %t is the time interval used to compute x(t) from 4.6.1.

The method Troch (39) uses to integrate 4.1.1 and 4.1.3
by analogue computer along system trajectories, and the method
of Davidson and Cowan (29) to integrate 4.7.1 and test whether
a cycle of the origin is stable or not are 'not applicable as
the system trajectories become trivial in one dimension.
Texter's (34) thoughts on polar co-ordinate systems is likewise
trivial in one dimension, as no change in co-ordinates significantgj
affects 4.1.1 and 4.1.3.

Thus we have found that 4.1.3 is solved either by power
series for V(x) or by numerical integration or possibly by
Taylor series if 4.6.3 can be differentiated. But other methods

nsed for 2 or more Qimensions become similar to those three



methods when solving the simpler one-dim=snsional problem.

7. Numerical Methods
In this section we consider solution of 4.1.4 by numerical

methods. If we write 4,1.4. as

av  _ -g(x)(1-dV)
Qv -gLgsay .

we obtain an 0.D.E. for dV in terms of V and x. For these
dx

equations there is a variety of publications on their solution,
for example (52), (53), (54), (55). What is proposed in the
e xt three sections is a method which takes into account the
properties of 4.7.1.

First of all we require to know something of the behaviour
of #(x)/f(x) and V{(x) as x—=»x' where

f(x') = O. 4.,7.2

Integrating 4.7.1 with respect to x we obtain

for d = 0 V(x) = Vix )- f_g_) dx 4.7.3
Jfux)

I
U

x)dx.

. [84x)
for d = 1 V(x) - (1—?{x0))e s (X )

Now it is known that ifk_f“éix)dx has a singularity at

x' then x' must be a zero of f(x)} or a singularity of #(x).
The converse 1is not true as seen by the example

B(x) |XI

f(x) -|x\%|1-x|%sign(x)sign(1-x) ~ 4.7.4

This example serves to illustrate how 4/f has a singularity
as x —=1_ but ¥(x) is finite.

Using d = 0 and substituting 4.7.4 into 4.7.3 gives for
0 £ x =1 )

V(x) = -2(1—x)% + 2 4,7.5
which is finite as x-—>1_, This phenomenon does not happen

in the Zubov theory unless

as x -—»x', f(x) = |x-x'|P where P < 1, 4.7.6
Theorem 3,7.1 confirms that V(x) — eo as x—»X' only if P32 1
in 4.7.6., Generally P > 1 in 4.7.6 but this is not always
the case, lMowever in integrating 4.7.1 we shall need to
evaluate 4,.7.1 near x' and the computation becomes unstable.



To overcome this we introduce a system of turning 4.7.1 "upside
down" and integrating for x in terms of V. Then as
X —=x', f(x) —= 0
(x)

and as V increases computation of x is stable.
Definition 4.7.1

If x' is given by

f{x') =0

then TF(f,x') is defined io be such that

f(x) _ — = cff,x') as x—x'
_ |P f,x!

and |x| < jx} , c(f,x') finite, non-zero.

Definition 4.7.1 is the one-dimensional equivalent of
definitions 3.2.1, 3.2.2 considered at x = x' instead of at
the origin.

If P{f,x') <1 then as seen for the example 4.7.4 when
solved for V(x) given by 4.7.5 that V{(x) does not necessarily
become infintte when x—-=x'. But by theorems 1.3.3, 3.5.4
the solution of 4.,1.,1 is not necessarily unique and this case
is therefore not considered. We assume as up to now that
P(f,x'); > 1.

8., Numerical Algsorithm

To see what is meant by instability of computation of
4,7.1 we consider integration of 4.7.1 for fixed steps in x.

Let X, ve defined by x_ = nh, n = 1,2,... with Vn defined

n
as the computed value of V(xn). If x' is finite where x!
satisfies 4.7.2 then for some n we find the situation where

X < X' = x
n

nel Numerical integration of Vn+1 leads to a
breakdown caused by evaluating dV near a singularity and by
: dx

integrating 4.7.1 for the same step-size h when V increases
much more rapidly than x.

A numerical method for integrating 4.7.1 to give V in
terms of x would have to include some means of altering the

step-size h when dV became large to ensure that for given
dx

X, we may define hn and X4 such that
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Xne1 = *p T By
and X 4 < x', n=1,2...
wWe propose to overcome this problem by re-wrltlng 4,7.1 as
dx -f(x) . © 4.8.1
TG 0=avy) )

Then we may allow.V to increase to oo or 1 without restriction
and x cannot go outside the boundary of the D.0O.A..
Symbolically we may write 4.7.1 and 4.8.1%1 as

av = F(x,V)
dx -
= F(x,V)

whered¥ represents any function of 2 variables. It is reasonable
to compute 4 7.1 when dV < 1 and to compute 4.8.1 for av 1.

dx ax
For when dV < 1 we fix the step-size for x and we have
dx ‘

Likewise if we compute 4.8,1 for &V > 1 and fix the step-size

in V we have

- Xn - V hand V - ’ ) 4-8.3

X
n+1 n

n+
~ Thesé bounds on the indépendent variable given by 4,8,2 ~ = ==
and 4.8.3 ensure that the computation is stable. -
To actually integrate 4,7.1 and 4.8.1 numerically there
are a number of methods to choose from (52), (53), (54), (55).
" The sﬁandard Fourth Order Runge-Kutta method (55) has a lot
of advantages in terms of accuracy, function evaluation,
initial conditions, and is used here to illustrate the algorithm.
We may now define the steps of the algorithm for d = O and x
positive. ‘
1) Let ¥, = 0, V, = 0 be the initial conditions.
2) FPix h and define X, = nh, |
3) For increasing n compute Vn recursively from 4.7.%1 by
the fourth order Runge~Kutta method

Vier =V, + %(k1 +2k, + ?_k.j +k4)
where k, = -ﬁ(xn)/f(xﬁ
ky = —d(xn+h/2)/f{xn+h/2)
k, = -é(xn+h/2)/f£xn+h/2)

~
PN
I

= —ﬁ(xn+h)/f(xn+ﬁ).



4) Test each time step 3) is computed to see if dV >1.
dx

this may be done approximately by checking to see if k4lz 1,
and define N as the value where dV >».1 occurs, -
X

5) Fix p and 1et.Vn =V +p forn=NN+1,...

+1
6) For increasing n compute x Tecursively from 4.8.1
by the fourth order Runge-Kutta method

Xpe1 = X ¥ E(k1 + 2k2 +&2k3 +‘k4)
n ="N,N+1,...
where k1 = ~f(Xn)/ﬁ(Xn)
K. =

~£(x_+pk, )/Hd(x_+pk,)
27 T e n §_1
ke = —f\xn+§£2)/é(xn+g52)
.k4 = :f(xn+pk3)/ﬁ\xn+pk3)
7) If lxn+1-
then the method is terminated, otherwise 6) is repeated.

Y

xﬂi < S for some n and a pre-determined

N4

1

The algorithm is illustrated in fig. 12 where the curve
of V(x) is typical of Lyapunov functions for d = 0. Fig. 12
shows the initial computation where x increases in fixed
increments, then when increments of V become too large the
changeover occurs to limit the incremenis of V and compute
¥ which approaches x'.

These two sections have covered how to integrate 4.7.1
numerically for increasing x, but clearly the method for
negative x is identical to that for positive x.

When d = 1 the steps of the algorithm are similar.
Differences occur in step 4) where the bhangeover_point is

126 .
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given by

av 3 1
_T_VT dx

and in step 5) where Vn, n = N,N+1,..., must be a sequence
approaching 1 such as , for example,

Ve (1->\)V * X
n = N,N+1,...

9, Convergence of Numerical Methods

Having provided, in the two previous sections, a numerical
algorithm for integrating 4.1.4 we are now interested in the
behaviour of x as V- o0 0or 1, Let us assume that d = O and
that we are interested in the behaviour of x as n becomes
large in steps 5), 6), 7) of the algorithm.

Fig.13

e

L ozdne =2,

K=, %=’

Fig. 13 is a close-up of fig. 12 in the region of x = x',
By analysising fig. 13 we hope to be able to answer the basic
question of convergence:

Does there exist an n and a computed V such that we
ensure that |xn - x'|.< ¢ for some given E ? Also can we

establish a sequence n, such that | - x'|.< g for some
given & ? 4.9.1
Now we define Sn, Eh_as shown in fig. 13 as
®n = *ne1 T %y C 4.9.2
€ = x' - x

n n+1
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Phe curve V(x) in fig. 13 is obtained by connecting the
data points x , V for n = N,N+1,... . But clearly we may
define the functions &(p,V) and £(p,V) in between the data
points similarly to 4.9.? by

2(p,V) = x(V+p) - x(V)

C(p,V) = x! - x(V+p).
Now by the Mean Value Theorem (40) for continuous functions
we know that

S{p,V) = dx(V+2p) 4.9.4
AT g

where 0 < X<1,

We may obtain another expression similar to 4.9.4 by

4.9.3

h

considering Taylor series. The series is given by
x(V + p) = ePPx(v) '

where D=d_ .
av

Now using the definition of the operator A

Ax(V) = x(V + p) - x(v) - 4,9.5
we see that |

(1 + Ax(v) = ePlx(v).  i.9.6
Thus we have from 4.9.6 a functional ‘relationship

pD = log(1 + D). 4.9.7

Now if we expand 4.9.7 by the power series expansion of the
log function, we obtain '

p dx(V) = { 3--(—r—l ) x(V). 4.9.8
av

4.9.8 obviously cannot be computed in full but approximations

to g§ may be obtained by truncation of the series in 4,9.8.
3

The first two approximations are thus given by

dx(V) _ %(p,V) 4.9.9
dv - - P

and p dx(V) _ 3 S{(p,V) - §(p,V+p) 4.9.10
av 2 _

where 4,9.5 and 4.9.% have been used to replace x's by 's.

For the remainder of the analysis we have to decide which
approximate-formula to use out of 4.9.10, 4.9.9,some other
truncation of 4.9.8 or 4.9.4 with fixed ™\ . We shall use
4.9.4 which upon integrating with respect to V becomes

fg(ptv')dv' = E)X(V+ )\pz—J + 01 4.9.11

where c, is the arbitrary constant.
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The constant e, is eliminated by fhe condition that
X(V)""—"'X' - 4.9-12
as V— oo.

Substituting 4.9.12 into 4.9.11 gives

oo —_

[, vavt = [ox(v'e S|y 4.9.13
However by equation 4,9,3 we see that 4.9.13 may be simplified
to become -

pe(mv4-(x4)m==_£upﬂ'mva 4.9.14
Now by reference to 4,9.3 we establish that

°(p,V) + €(p,V) = &(p,V-p). 4.9.15
Substituting for E\}Pbtifms of $ from 4,9.14 into 4.9.15 gives

p%(p,V) = —Li; S{p,v')avr, 4.9.16

The solution of the delay-differential equation 4.9.16 is not
unique and depends on the initial conditions which must Dbe
specified functionally over a range of V. Work on numerical
solutions of such equations can be found in references such as .
(56), (57), (58), (59). ,
From computed examples it seems that S(p,V) usually
takes the form '
e Gl P V)= _a.(,p,),,ell(-l?)l_..... e e e e e
where b(p) is negative so that S(p,V)->0 as V—»oo.
Substituting 4.9.17 into 4.9.16 and differentiating 4.9.16
with respect to V gives :
pa(p)b(p) SP(RIV _ a(p)(eb(P)(V+(1~X)P) - eb(P)(V-\P)L
_ 4.9.,18
4.9.18 is a relationship between a(p), b{p) and p which simplifl es
to  b(p)p = eC1=NP(PID _ =>o(p)p 4.9.19
It is noticeable that 4.9.19 is an equation only of the one
function b(p)p and in fact the only solution of 4.9.19 is
b(p)p = O. | 4.9.20
A similar analysis of 4.9.10 yields the corresponding
equation to 4.9.19
2b(p)p(1+eP(PIPy = 3(1_o~?P(P)Py _ b(P)P . -b(P)D
: 4.9.21
which also has 4,9.20 as its only solution. 4.9.,19 and 4,9.21
each show that the analysis of fig., 13 is only accurate as p—0.

To ootain E£(p,V) we substitute 4.9.17 into 4.,9.14 and
simplify which gives

€(p,V) = —abgF!eb(p)(v+(1_-?‘)p) 4.9.22
bJ)P. '
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There is an analytical explanétion for the observed results
4.9.17 and 4.9.27 as shown in the next section. In computation
of S(p,V), £(p,V) we will not know the value of x'. However
we may compute the numbers a(p), b(p) by definition 4.9.17
and then substitute into 4.9.22 to give E£(p,V).

10. Asymptotic Analysis
. The results 4.9.17 and 4.9.22 will be obtained in a
different way here and will be generalised in ihis section,

For this we need a more general definition of the asymptotic
-behaviour of a function f(x) than given by definition 3.2.2
or by 4,3.6 when considerfing various #4(x}. '

Such a definition is given by definition 4.7.1 and we
shall investigate the solution of 4.8.1 in the neighbourhood
S.(x') of x' for small £ > 0 where £ is chosen so that certain
assumptions can be made,

Now re-arranging 4.8.1 gives

(1 - av) dx = -f(x S 4,10.1
av X .
and since we know that g(x) is positive definite and continuous
© o ceethen—s o e - BN Do0-—For Xt A O = v ¢ e s QR
-Hence using definition 4.7.1 and 4.10.2 we see that as x—Xx'
f{x) — c(f,x') 4.10.3
d(X)1X~X'IP(f’x') g(x"') | |

where 0 -<|c(f,x')|<? o<,
Therefore substituting 4.10.1 into 4.10.3 we arrive at
the asymptotic relationship between x and V given by

‘(1_dv)g% ' ~c(f,x")
) d — .
[x-xq P{T,x") (xt)

where O <|c(f,x’)|< =
For the following asymptotic analysis we concentrate on
x' > 0 and x —>x'. The procedure is similar for x' < 0. We
then solve '
(1-av)dx = a,(x' - x)° . 4.10.4
av ‘

where s = P(f,x'), a, = -c(f x')
: x'), .

instead of 4.10.1. With:a1,s fixed we may readily solve 4.10.4

and integrating by separation of variables method gives for

d =0
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1
a,V = . +C for s > 1

! (s=1)(x'=x)%" 1" ! 4.10.5
a,V = ~log(x'-x) + c, for s = 1

and similarly for d = 1 with aV replaced by -alog(1-V) where
Cy is an.arbitrary constant. The initial conditions tor finding
Cy given by V =oo.0or 1 when x = x' are not helpful. But
since we are considering x near x' and V large or near 1, we
may take ¢, = 0 without loss of generality. Equation 4.10.5a
holds for s < 1 also but as seen in section 7 by 4.7.6 and by
section 7 of Chapter 3%, the Lyapunov function and Zubov theory
breaks down if s << 1., 4,10,5 confirms this and we may summarise
in the theorem:
Theorem 4,10.1

If P(f,x') << 1 then solution of 4.1.4 yields V(x) where
V(x) does not approach oo for d = 0 or approach 1 for d = 1

and the Zubov construction is no longer applicable since the
D.0.A. is not indicated by V =oo or V = 1,

The justification for this agymptotic analysis may be
found in Murray (41) or Wasow (42), Theorem 4.10,1 is simply
theorem 3.7.1 re-written using definition 4.7.1 and theorem
o __Having estébiished theorem 4,10,1 for d = O or 1 we now
take d = O to compare the results 4,10.5 with the analysis of
fig. 13. The results of letting d = 1 may be similarly derived,

Having obtained 4.10.5 we now see that we have obtained

" an expression for £ (p,V). Substituting 4.9.3 into 4.10.5 gives

a1(V+p) = 1
(5-1)€(p, V)"

or 'a1(V+p) = -log €(p,V) + c, for s = 1,

+ ¢, for s >1
4.10.6

4.10,6 may be re-arranged to give £(p,V) explicitly as

_ 1 1
£ V) = (earE e, /et for 5>
4.10.7

or £(p,V) = e{®1=31(V+p)) for s = 1.
rthe actual value of c, depends on the solution of 4.1.4
for V(x). This analysis only holds for

I1 - x l << 1 4.10.8
xl

and we cannot tell how tne solution of 4.10.1 behaves outside
the region given by 4.10.8. '
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The equation 4.10.7b is of the form obtained in 4.9.22
and for most examples the solutions x' of f(x) = O are obtained
from linear factors (x - x') and hence s = 1. The expressions
4,9,17, 4.9.22 and 4.10.7b will be verified by examples.
Investigation of 4.10.7b shows that b(p) of 4.9.22 is
independent of p as might be expected from the definition
of £(p,V), $(p,V). Purther comparison of 4.,9,22 and 4.10.7b
yields the relationships

’ b(p) = -a'-l

a(p) = a,pe“1”
showing that as p—~>0 a(p) is asymptotically linear with respect
to p as might also be expected from the definitions of ¢ {(p,¥),

S (p,V).
11, Examples

asp

Examp%e I 1y I _12
X = ~ax - e X : 4.11 .1
This example due to Lehnigk. (43) nas a varying D.0.A.
depending on the value of a. It was shown in (43) that for
0 <a <:(2e)“% that there are three critical points of 4.11,1
of whlch the orlgln is one and the other two are negative,
whllp for a<0 4.11.1 is unstable at the origin and for a >(2¢)
there is only one critical point which is the origin. In

.'/J_

fig. 16 the magnitude of the negative critical points is
plotted against a, showing that at a = (2{3)-‘]‘t the roots coincide.
Figs. 17, 18 show plots of solutions of 4.11.1 for x(t) for
various a which have been obtained by the fourth order Runge-Kutt-
method.

Using é(x) = x%2 and 4 = © the Zubov equation has been
solved and the analysis of sections 9 and 10 investigated.
Figs. 19, 20, 21 show the results of plotting 1og S(p,V),
log £(p,V) against V for various a,p. They are seen to be
stréight lines and the relationships are:
Fig, 19 a = 0+%6, p = 0-25

$(p,V) = 0-023¢"0"408V

E(p,V)

4,11.2

0+2077e=-0-408V

Fig. 20 a =036, p = 0+75

£(p,V)

-0~ 4.11.3
0+ 199¢=0"408V |

it
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Pig. 21 a =04, p=0°25
$S(p,V) = 0:0093e~072031V

4.11.4
£(p,V) = 0-1776¢~ 02031V

Equation 4,10.7b showed that in the expression 4.9.17
and 4.9.22 b(p) is independent of p, and 4.11.2, 4.11.3
confirm that this'is true. It is also observed that the
approximate relationship a(p) = p is verified by 4.11.2,
4.11.3 and the definition of $(p;V) given in 4.9.17.
Examgle'11.2
; x = =x{1 - x) 4.11.5
The D.0.A. of 4.11,5 is given by (-co,1). ,
Using #(x) = xz, d =0 the Zubov equation is solved by the
algorithm and figs. 22, 23 show the plots of log S(p,¥) and

log 2(p,V) against V. The relationships are:

Fig. 22 p = 0%5 S(p,V) = 0+2421 e~ 1°00V
—1.OOV 4‘11-6
£(p,V) = 0-3665 e
Fig. 23 p =10 $(p,V) = 0-2926 0982V
. 4.11.7
£(p,V) = 01719 o—0r982v
For this example 4.7.1 becomes
av _ x
dx =~ 1-x

the solution of which is

V(x) = -x - log(1-x). 4.11.8
We are interested in the behaviour of 4.11.8 for x near 1,
Therefore if we let x—1 in 4.11.8 we obtain

Ve -1 - log(1-x)
which upon solution for x becomes

1 - x(v) = e~ 1=V 4.11.9
From 4.11.% we obtain the theoretical .results
' F o =1=V -p
3(p,V) = e (1 - e™) 4.11.10

£(p,V) = eV,

The numerical results 4.11,6, 4.i1.7 bear reasonable comparisons
with 4.11.10.
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12. Conclusions
In this chapter the one-dimensional Zubov equation has

been looked at in a way in which higher orders can never he

seen. This is because we have no freedom to choose which

way we go out from the origin other than whether x is negative
or positive. In higher dimensions the boundary of tne D.0.A.

is not simply obtained by investigating tue zeroes of a function
f(x) as it can be in one dimension. In this sense the extra-
function #(x) is not really necessary as it transforms the
0.D.E. 4.7.1 into another 0.D.E. 4.1.4.

In 2 lot of cases it is indeed simpler to compute solutions
of f{x) = O to obtain the D.0.A.. Various root finding methods
exist which alter x in a systematic way to try to obtain x'.
Such methods may be either divergent or go past x' without
spotting it. There is no possibility of missing the boundary
when using methods which solve 4.1.4 as a differential. equation
letting V-—= o= or 1,

The advantage of the Zubov equation here is that we do
not start from an initial point x = x_at t = 0 and try to

. o
~see if we reach the origin, but instead let V—s<e or 1-and try

to see if we reach x = x'. The same situation is achieved here
however by solving 4.1.1 and letting t—=-o. The function ¢#(x)
is but a transformation which may help to -make numerical
computation easier if wisely chosen.
Given that the one-dimensional case is different from

the normal Zubov P.D.E.: and has less advantages over solving
4.1.1 than its higher order counterpart, we have seen that in
return we are able to obtain a greaier analysis of what happens
to x and V at the boundary of the D,0.A.. The question posed
in section 9 by 4.9.1 now has an easy answer, We simply look
for functioms G (p,V) and £(p,V) such as 4.9,17, 4.9.22 and
for more general s by 4.10.7a. Then once we obtain the relations
with actual numbers such as those in 4.11.2, 4,11,3, 4.11.4,
4.11.6, 4.11.7 we can immediately say that we know what value
of V to reach to obtain

"&(p,V) < 10™™ for some n. 4.12.1

It must be stressed that x' is unknown and that the

' rélationship for $(p,V) is worked out first and then & (p,V)
is obtained by substituting the results obtained from 4.9.17
into 4.9.22"before solving 4.12.1 for V.
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Finally, figs. 19 to 2% show that log €{p,V) flattens
out at about log £€{p,V) = =11 which is a 1imit of accuracy
of the computer used., This does suggest that using a computer
will never actually enable us to compute X' as V—oeo, But
x' should be obtained from the definition of ¢ (p,V) instead
once %{p,V) is obtained as a function of V.
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Chapter 5

Finite Difference Methods

"1, Introduction .
In this chapter a look is made at solving Zubov's partial
differential equation by straightforward numerical techniques

for computing values of V on a grid system in XypeoesX e
Zubov's equation in n dimensions is given by

jz: £, (x)av (x) = - #(x)(1 - av(x)) 5.1

L=t .
where d = 1 for the regular equation and 4 = O for the modified

Zubov equation, and fi are given by the state space equations

-

x. = £ {x) 5.1.2
i it=

i = 1,...,11

-

and £ is positive definite in XqsooesXy

The partial derlvatlves in 5.1.1 may be replaced by
approximate difference formulae involving values of V on a
grid, and the step-sizes of each independent variable. Various
problems are encountered by this method and section 2 investigates
is that the only initial condition is given by

v(0,0,...,0) = O. ‘ 5.1.3

Sneddon shows (13) that a P.D.E. in n dimensions needs
initial conditions to be specified on an (n-1)-dimensional
subspace. The necessary form of initial conditions is specified
as V = H, {x) on 2(x) = 0, Hence 5.1.3 is only sufficient
as 1n1t1a1 conditions if n = 1 where 5.1.1 becomes an O.D.E.
and Chapter 4 has fully covered this case.

However polar co~-ordinate grids overcome the problem of
initial conditiohs, as the theory in section 3 shows. 1In
section 4 various difference formulae for the polar co-ordinate
grids are derived, followed in section 5 by a comparison on
the basis of errors, stability and convergence, Section 6
looks into reducing the Zubov equation to a set of 0.D.E.s
along different radial lines. Sections 7 and 8 go into the
problems encountered by such methods, and then section 9 sets
out to define Fhe optimum method for a general class of systems,
Sections 4 to 9 are centred on the 2-dimensional case, but
this method is much more easily applicable to higher orders
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than is the method of Chapter 6.
A number of examples are investigated in section 11
covering all aspects of the chapter, and conclusions drawn

in section 12.

?. Rectangular Grid Methods
Given a system 5.1.,2 from which we obtain Zubov's P.D.E.

5.1.1 we want to solve 5.1.1 given positive definite g in
XqresesXy and initial conditions 5.1.3 for V. The required

- stability condition is that V is positive definite in XqseegXy

in a neighbourhood of the origin, in which case V = 1(for 4 = 1)
or V = oo (for @ = 0) are the contours which define the boundary
of the D.0.A..

To solve 5.1.1 we can set up a rectangular grid system
(3.) _ .

x; 91 = Jihi 5.2.1

i=1’|¢-’n

jiz-—oa tO + o

and denote the analytical (true) value of V at the grid: point

5.2,1 as

CV(3qRgae e, dgh)) i 502,20
and the computed value of V as
V. . .
31:32!--"Jn- He2.3

The partial derivatives in 5.1.1 may be expressed in terms
of the grid values 5.2.3 and the step-sizes hi' i=1,0.4yn,
by, for example,
OV (j,hiyeee,j ) o (V. . : . , .
-i;i J1fys 'In n) ( J1y329--s31_1,31+1v31+qsm-;Jn'
-V, . i . . .
Jyrdoreerdi_qr ji'1in+1'--an)/2hl
5.2.4
There are other formulae which are more accurate than
5.2.4, but involve more computation as well.
Let us look at 5.,1,1 to 5.1.3, 5.,2.1 t0 5.2.4 in 2 dimensions,
re-writing 5.1.2 as

x f(X.y)}

il

y = g(x,y)
5.1.1 as :
f(X.YI%%(X.y) + g(X.y)gg(X.y) = -8(x,y)(1 - dV(x,y)) 5.2.5

d = 0,1.
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. We denote the grid 5.2.1 by

X, = mh ,

Yo = nk 5.2.6
m= =00 %0 + oo
n = -0ooto + 0.

There are many ways in which 3V, 3V can be replaced by
% 3y

values of V on the grid, but to illustrate the metnod we use
the simplest possible which is to write

3V(mh, nk) ., vg - Vo4
3% ~h : . 5.2.7
W (mh,nk) 5 V2 - vﬁ“’
¥ B

where Vn is the computed value of V at x = mh, y = nk,.

The known functions f,g, $ may be evaluated at the grid
peint 5.2.6 and we write
P = f{mh,nk)

m
gy = g(mh,nk) - 5.2.8
éﬁ = A(mh,nk).

Substitution of 5.2. 7;’5.2.8 into 5.2.5 gives us a difference .

formula connecting Vm 1 V;, V$-1
n . n-1 _ 4n n
fm(vm - Vm,1) + gm(vm -V, = _ém(1 - de) 5.2.9

h X
as shown in fig. 24,

(~ v )k
nk - A B
. C.
Wn=-1)k ; -
(n-2)k
(m=2)h;

(m- 1)h (m+1)h
Pig, 24
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If any two values of V are known at A, B or C the third point
may be computed by the difference formula 5.2.9. However
we have only one value which is given as an initial condition
which is '
Vo=0. . 5.2,10
, In‘order to use 5.2.9 we require a systematic method
where at each point we may calculate V at B knowing its value
at A,C or any other way round.
If we are given the values

Vﬁ n

then by using 5.2.9 to compute V;_1 from Vg,

= - o0 to + oo
vl e may compute
systematically for m< M, A different difference formula
would be required ' to compute Vg for m > M.

Similarly if we are given the values

Vg ms=- oo to + oo

then by using 5.2.9 to compute V$"1 from Vg, v;_1 we may compute
systematically V tor n <« N. Again a different difference
formula would be requlred to compute V for n > N.

ilowever if we are given

n —

and _"Vg' m=~ & to + o5

then we may compute Vg for all m,n using 5.2.9 in various ways,
Since 5.2.10 is the given initial condition it seems
reasonable to assume initial conditions on Vg and V; for all
m,n. How we obtain such initial conditions is another matter
which will be discussed later.
Re—writing 5.2.9 in terms of V;Awe obtain

v 1 n
(/Ofm m=1 T gm m - kﬁm) ' 5.2.12

n
(/Ofm + gm - dkém)
where ,© = k/h.

2.1. Initial Conditions Consideration

Equation 5.2,12 was used to compute values of V on a grid
system for the Hahn equation

X = =X + 2x2y
: - 5.2.13
Yy =-%
. L2 2 : '
with d{x,y) = 2x° + 2y 5.2.14
and with initial conditions specified on V V;, m,n > 0,

computation of V for m,n > 0 was carried out.
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The analytiec solution of 5.2.5 given 5.2.13, 5.2.14 is

V(x,y) = y2 v x2 ] | ' 5.2.15
EES7 -
Hence initial conditions were set up as
v o= 2k2 .
o~ " 5.2.16
) 2,2
Vm-= mh-,

Fig. 34 shows the computed contours of V = 0+4,1,2,4 picked
off the grid values, and compares them with the analytical
contours given by 5.2.15., h =k = 01, d = O was used for
fig. 34 while h = k¥ = 0-01 for fig. 35 enabled the analytic
contours to be reproduced'to the accuracy of drawing on paper.

Normally, however, 5.2.15 is not known (we would not need
any computation if it was known) and there is no justification
for choosing the initial conditions 5.2,%6 rather than any
other possible conditions. Other initial conditions were
looked at to see what difference this made to the results.
Also shown on fig. 35 are the results of putting

v(x,0) = x* }

v(o,y) =y S
- e AP } S e

m .

n _ 4.4

Vo = nk .

Frg. 36 shows the contours of V = Of4,1,2,4 for the initial
conditions

V(x,O) (x2+x4)/2 _
v(o,y) = (y2+yh)/e. - 5.2.18
For each of 5.2.17, 9.2.18 we see that the solution ot

computation although inaccurate on the axes are'ﬂcorrecb"
again for x,y 2 O+1. It seems that the method is highly stable
and reauces errours quickly.

Consider the system

X = =Z2X - 2y4
¥ = -y. | 5.2.19
Using #(x,y) = 4x2 + 2y2 the Zubov equation becomes
(=2x - 2yW _ 3 = - 4x° - 2y° 5.2.20

X Y
The solution of 5.2.20 using the initial condition V(0,0) = 0O

becomes
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Vix,y) = x° + y° - 2%14 + 58 5.2.,21

5.2.21 indicates that 5.2.19 is asymptotically stable everywaere.

The initial conditions were set up first as
n 2

VO = 1N k2, n = 0’1.1-
o 5 p ) 5.2.22
vm = m h » m = 0,1..0

which are correct on the x-axis but not on the y-axis. Fig. 37
shows the results of computation by use of 5,2.12.

The results are ineccurate near the y-axis and errors
take longer to die away than the Hahn equation. However the
inaccuracy dies out in the region of stability of the method.
Fig.38 shows the same results with the initial conditions

given by
vE = 302k + ot
o) 7
Vg = 3m2h2 + m4h4
.\

which are now incorrect on both axés. As fig. 38 shows, the
errors are quickly eliminated near the x-axis, but take longer
near the y-axis. |

2.2, Choice of Initial Conditions CoT T o B -

We have seen in subsection 2.1 that the difference formula
is stable in the sense that errors in the initial condifions
are quickly eliminated. This enables us to choose the initial
conaitions subject only to tne condition

vix,0) >0, x#£0
“V(0,y) >0, y#0
v(0,0) = 0.
It raises'again the questions referred to earlier in this section
of how we do in fact choose the initial conditions to be as
accurate as possible.

The obvious choice for the initial conditions are lowest
degree terms in the series expansion of V(x,y). From 2.2.13
and theorem 3.2.5 we see that if P(f) = s, P(g) =s, P(F) = q
then P(V) = g-s+1.

The lowest degree terms in V(x,y) are given by

q, -5

- m _gq~s+t-m
(X’Y) £ Vq_s+1’mx y N 5.2,23

From 5.2.23 we see that a logical choice of initial conditions
is given by

Vq—s+1
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v q—s¥1
n~-s+1,q-s+1 :
gq-s+1 5.2.24

V(x,0) =

V(O’Y) = vq-s+1 ,Oy
For the system 5.2.13%, 5.2.14 the initial conditions 5.2.24
become the conditions given by 5.2.16.

2.3 ¥V = o Contour

Figs, 34 - 38 were constructed by picking the contours
out of a grid of numbers. Such a process is reasohably acnurate
for the contours constructed, but problems do arise when we
try to obtain V = c=, For large V the numbers generated
increase rapidly with respect to x or y and any interpolation
method becomes inaccurate at some X or y.

If we are 1ooking for the contour V = p we locate it
somewhere between grid points with the property ' ‘

Vi < P .
;I:_+1 } 5.2.25
v >p
m

and V; < D
n 5.2.26
Vm+1‘>p

Hence as p increases we see that interpolation between
the grid points 5.2.25, 5.2.26 "to obtain vg*c = p;r0 € c-= 1,
and Vg+c =p, O €c <1, becomes inaccurate ‘and also if
n _. o) n+1
Vp < Pand V., or V,

the property 5.2.25, 5.2.26 will not necessarily hold. Hence

are outside the contour V = o then

we see that for sufficiently larze p it is impossible to
pick grid points with the properties 5.2.25, 5.2.26 such that
both vg, v$+1 or both vg, v$+1 arc still inside the D.0.A..

However it can be seen from 5.2.15 that when x or y
increases so that xy > 1 then V(x,y) becomes negative. So in
order to locate the contour V =0 we look at the grid values
to see whére V ceases to increase, but suddenly it becomes
discontinuous in x or y.

The shaded area in fig. 35 and the V = o= curve in fig. 36
represent the boundary of continuous results on the grid
system for example 5.2.13, 5.2.14 with initial conditions
5.2.17 and 5.2.18 respectively. There is ﬂo appreciable
difference between them.

Closer investigation of 5.2.12 shows why the discontinuity
curve i8 as on figs., 35,36. From 5.2.12 we expect computation
to become unstable if the denominator is small. When the
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denominator of 5.2.12 is small the equation 5.2.9 becomes a
relationship between V$_1 and V;‘1 with terms in Vg cancelling
out. Hence a small denominator in 5.2.12 should correspond
to 2 small numerator also. However: truncation errors in the
computation mean that this is not so, and the computation
becomes unstable in the neighbourhood of zeroes of the denominater
of 5.2.12. '

i.e. Instability must occur in the neighovurhood of

n

n n _ ,
ofT + gl - akD = O, 5.2.27

For system 5.2.13, 5.2.14 and d = O we obtain
AO(~x + 2x2y) -y=0
which becomes
Yy = _/_._EZ:____ . 5.2.28
20x" =1

The .family of curves 5.2.28 for various _o are shown
on fig. 39. The curves of discontinuity on figs. 35, 36 are
clearly a combination of the instability of small coefficients
along 5.2.28 and the correct discontinuity in V as given by
5.2.15. '

Thus .~ = # was used by setting h = 001, k'= 0:005
and using 5.2.12 to compute VE “~myn 2 0 once more. -Fig. 40 ---
shows the results with initial conditions given by 5.2.16 and
a noticeable improvement is achieved in the region x € (1,2+5).
Not however noticeable enoﬁgn to recommend reducing o lower
as this means increasing h and causing errors or reducing k
and incr:asing computation.

In Chapter 4 the difficulty of picking contours of V
from a grid was overcome by reversing the Zubov eguation to
compute x as V increased in discrete steps. This approach
was also considered for the 2-dimensional case, as was a general
look at how the step-sizes for x and y could be altered as V
became large. No detailed method was produced since there
are problems of interpolation in each dimension unless the
step-size alteration was global.

i.e. If the grid 5.2.6 becomes

Yp = Yp-q + Ky

X =X

m m-1 * hm

where hm,kn and myn = 1,2,..,c° are varying step-sizes, then
5.2.12 becomes



144,

n _ ;. n.n.n
Vo © mfmvm-1
nc.n n n
Pyl * 8 - dk,éy)

L] n —
where 0O = Eﬂ
hy
Any grid involving changing step-sizes such that hm ’kn

vary with' y,x invblves complicated interpolation and value

storage problems as well as the difficulty of working out

from V when the step~-sizes should be changed.

+ g;v§“1 - knég)

’ m,n = 1,2, ..,.09,

2.4, Stability

An important aspect in numerical computation is stability.
Would we expect errors to be propogated and increase or die
away? The classic method of amalysising stability is by
frequency response, (Mitchell (16)). An initial error of
sinuscoidal form is assumed and, using 5.2.9 or whichever method
is prefered, the magnitude of the propogated error indicates
stability if less- than--one.

We denote tne Local 'runcation Error (L.T.E.)} of the
method 5.2.9 by L where

L) = of(mh,nk)(V(mh,nk)-V((m=1)h,nk))+g(mh,nk)(V(mh,nk)-V(mh, (n=1}6))

+'kﬁ(mh,nk)(1-dV(mh,nk)) 5.2.29
while from 5.2.9 we have
SOLD(VESYD ) gﬁ(v;-vg'1) + kpo(1-av0) = o, 5.2.30
" If we denote
el = Vo - V{mn,nk) ' 5.2.31

then we may subtract 5.2.30 from 5.2.29 using 5.2.8 and 5.2.31
to obtain '
L; =/9f$(e2—eg_1) + gg(eg—e;"1) - kddg ;. 5¢2.32
We may disregard the L.H.S. of 5.2.%2 as Lg—arO as h,k— 0.
We now assume a sinusoidal input

eg = eiuknk .5.2.33
for some w. and assume a similar vutput for eg magnified and

denoted as

m
Substitﬁt%ng 5.2.%4 into 9.2.32 we obtain
/ng( \n iwnk }W_1elunk ) + gg()? olwnk )Telux(n-1)k)

~kag? yogiuwenk _ g 5.2.35

en = >\meimnk’ 5.2034’
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Cancelling E\'1eiuknk from 5.2.35 we obtain
PBON-1) + g M- )~ xagi N\ = 0. 5.2.36

Solving 5.2.3%36 for N we obﬁain
S - Atn 5.2.37
= ——
(/Of$+g$-gge lw“’—kdﬂfg)

Now if |$J «1 for all w we see that any sinusoidal error
input will be stable, and hence any initial error distribution
for which a Fourier Series exists will be stable.

Hence we require from 5.2.37

(/ng)z < (j)fg+gg-kd¢5;—ggcos wk)? o (gpsin wk)? 5.2.38
Therefore

28 ( AL +gn-kdf) (1-cos wik) + kddp(kdbr-2,0£1) > 0. 5.2.39

5.2.39 is reguired to be true for all wi,
Hence either gg(/bf;+g;—kdﬁg)f> 0 5.2, 40

and n n n
kdﬁm(kdﬁm-2,ofm) > 0

n n_n_ ny .
or gg(/of§+gm kdim) ; 0 ) 541
and (2gm-kdgsm)(2,ofm+2gm—1cdp5m) > 0.

5.2.39 or 5.2.40 and 5.2.471 are the required conditions
for stability given an initial distribution of the errors
on x = 0 by a combination of errors given by 5.2.33. We also
need the stability as y increases given initial errors on
y = 0. The analysis is exactly the same as above with 5.2.3%4
renlaced by _

eg - \nelu-umh'
gg replaced by ,ofg and vice versa in 5.2.38 to 5.2.41.

However, 5.2.40 and 5.2.41 are the conditions for stability
for increasing x. 7Tf 5.2.9 is solved for decreasing x, then
putting 5.2.34 into 5.2.32 as before means that we now need

|§J 2 1 for all v+« ., Hence the stability conditions for
decreasing x given initial errors on x = Q0 are the same as
for increasing x but with inequalities reversed. Similarly
for decreasing y.

Thus if we are given the initial conditions 5.2.11 with
M =N=0 we may use 5.2.9 to compute V; and then use conditions
5.2.40, 5.2.41 and corresponding conditions for decreasing x,
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and for y, to see in which regions the initial errors

o on
e, =V, V{0, nk)
0

m

vg - V(mh,0)
will die away. )

- For the Hahn equations we have seer the stability of
5.2.9 1ven the ‘incorrect initial conditions 5.2.17 and 5.2.18.
Let us formally compute the regions in which we expect computatien
to be stable.

If we substitute d = 0 into 5.2.39 simplification may

be made and the stability conditiohs become dependent only
on f‘,g,/o :

For increasing x: g(of+g) > 0 5.2.42
For decreasing x: g(of+g) < 0O 5.2.47%
For increasing y: pof( of+g) >0 5.2.44
For decreasing y: of( of+g) < 0, 5¢2.45

Substituting f,g,4 from 5.2.13, 5.2.14 into 5.2.42 - 5.2.45
we obtain the regions shown in fig. 25 (L0 =1).

1y —— region of stability
SRR D of x

region of stability
of w

Flg. 25 111ustrates that when 5.2.9 is used to compute V

from Vm " and V -1 in the positive quadrant that computatlon
is stable up the line given by xy = &. The lines of
discontinuity in figs. 35, 36, 40 are seen to be quite close



to xy = . Computation of other gquadranis using 5.2.9 in
different ways cannot guarantee stability in a neighbourhood
of the origin.
However it is more likely that to compute results in
other quadrants 5.2.9 would still be used %o cpmpute VE
from Vo_., v given the definition 5.2.6 of X;,y, by simply
making h or k negative, Stability in the four quadrants is -
then determined by considering thé conditions for increasing
X and incfeasing y with © either positive or negative in
alternate quadrants. |
Putting f,g,4 from 5.2.13, 5.2.14 into 5.2.42 and 5.2.44
with , = 41 in the first and third quadrants, and o = -1 in
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the second and fourth quadrants, we obtain the stability regions

of fig. 26. Thus we see that using 5.2.9 in the form 5.2.12
is highly stable and that initial conditions can be chosen

arbitrarily without unduly affectins computation of the boundary

of the D.0O.A., as shown in sub-section 2.1.

Fig. 26
— region of stability of x

11, region of stability of y
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For the system 5.2.19 the stability regions may be evaluated
to be given by 5.2.42, 5.2.44 in the positive guadrant. From
5.2.19 we see that f « 0, g € 0 in the first quadrant.

Hence the stability condition in both x and y becomes

ofrg = «20x - 2,oy4 -y < 0. 5.2.46
Wence we need x 2 --y/L - y/2m.
5.2.46 shows that this method is stable for system 5.2.19 in
the first quadrant. -

The explanation of the fact that the errors in the initial
conditions took longer to die away near the y-axis can be found
by investigation of g,d4 and the initial conditions. Near the
y-axis the following approximations hold:

vy onk® 5.2.47
(follows from the initial conditions 5.2.22)
g2 = 2n%Kd . 5.2.48
Substituting 5.2.47, 5.2.48 into 5.2.9 yields another approximation
n n
Ve - VD Lm0 5.2.49

Fig, 37,38 shows that 5.2.49 holds near the y-axis and
that the errors die out but not aslquickly as the errors
caused by initial conditions on the x-axis.

Comparison of 5.2.27 and 5.2.40, 5.2.41 indicates that
the boundary of stability of the numerical method and the
line of instability caused by the denominator of 5.2.12 being
small can often be the same, The next example shows that
where instability of the method occurs first, that the results
quickly become inaccurate even when the initial conditions
are correct,

Now consider the system

X = =X +y + x(x2 + y2)
. 2 2
y = =x -y + y(x" +y7).

Solving the Zubov equation using d = 1, A(x,y) = 2x2 + 2y2

we obtain
Vix,y) = x° + y2.
By reference to 5.2.40, 5.2.41 we see that the stability
region in the first quadrant is given by

2
r g c + s
: s

and r kf/ k2+(,oc+s)((1+/0)c +‘(1—p)5)
AC + 8 5.2.5C

and T g k_+fk2 + 4pfc(e=8)  or 1y ) /k2 + 450(cms)
2pe 2pe
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A combination of the equations 5.2.50 is shown on fig. 41

along with the attempts to compute V; using h = 001, k¥ = 0-005
and equation 5.2.12 with the initial conditions 5.2.16. It

can be seen that even when the initial conditions aie correcs
ithe results will be highly inaccurate if the method used with
the system is unstable,

2.5. _Conclusion

The method of solution of 5.1.1 in 2 dimensions by a
numerical difference formula has certain problems.

The obvious problém is that of initial conditions. WHowever
it is seen that it is possible to choose a method such that
errors in initial conditions and errors in computation should
be swamped. Tndeed, the method 5.2.9 gives rise to stability
conditions 5.2.39 or 5.2.40, 5.2.41.

Obtaining the boundary of the D.0.A. is more difficult.
Figs, 25, 26 indicate that for the Hahn equation the stability
region is inside the boundary and the computed results of
figs. 35, 36, 40 show this. The reason for this is that when
5.2.27 is satisfied the coefficient of VI is small and a way
of avoiding this has to be added to the method.

3, Theory of P.D.E.s
In section 1 it was noted that for a P.D.E. in n dimensions

such as 5.1.1 to have a.unique. s8olution, initial conditions
need to be specified on an (n-1)-dimensional subspace. However
if the initial conditions are specified on characteristics
of the system, as they are for the Zubov ejuation, then initial
conditions in (n-~1) dimensions are not necessary, This will
be proved here and then it will be shown that initial condition
problems encountered in section 2 are overcome by conversion
to polar co-ordinates.
Theorem 5.3%.1

‘A P.D.E.

Zfi(z.)g_; (x) = -8(x)(1 - av(x)) 5.5. 1

with initial 6onditions given by

X; = xi(t1,...,t3) i=1,..0n 5.3.2
Vo= V(E e ty) |



which do not lie on the system characteristics, where t],..,tj
are freedom parameters, has a unique solution if and only if
j = n=1.

Proof

It has been noted by theorem 1.8.1 that 5.3.1 may Dbe
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transformed into @ set of 0.D.E.s representing the characteristic

equations:
dxi (l = 1,.-,!1) ' - av 5.3.3
£, (x) ~4(x) (1-av(x))

Also by theorem 1.8.2 the solutioni.of 5.3.35 is given by

ui(z,v) = c,

i 5.3.4
i=1,...,n0.
Equations 5.3%.4 are the characteristics of system 5.3.1.
The general solution then becomes
w(u1,...,un) = 0, 5.3.5
To determine the function W we need to use the constants cy
in 5,3.5 rather than u; . when ¥ is found in terms of Ci»
reference to 5.3.4 immediately gives W in terms of Uje
First suppose ‘the initial conditions are as given in
5.3.2 but on a j-dimensional hyperspace.

i.e. Initially x; = x;(t5,.00sty) 5.3.6

Vo=V (B ty)

where j may be any non-negative integer. Since 5.3.4 is true .

for the initial conditions, we may substitute 5.3.6 in 5.%.4
giving
ui(g(t1,...,tj),V(t1,...,tj)) = Cy 5.3.7
i=1’uoo’n.
Since the initial conditions 5.3.2 do not identically

lie on any system characteristic then 5.3.7 represents n
equations from which we need to eliminate the j parameters
to obtain a relationship between the Cjr 1= 1y¢es.,n of the
form 5.3.5,

If j.< n then eliminating t1,...,tj from 5.3.7 gives

n-j relations between CyseeesC . Hence if j < n-1 the solution

is not unigue.
If J 2 n then 1:1,...,’5__;i cannot all be eliminated. Hence
we see that j = n-1 is necessary. For sufficiency we see that

if J = n-1 then upon elimination of Tireeayt from 5.3.7 we

n-1

are left with one equation connecting all the cy

.and using 5.3.4
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we see that this becomes the unique solution. End of proof.

Theorem 5.3.2
The initial conditions 5.3.2 may be replaced by the

initial conditions

Xi =Xi(t1,..-,tj) i = 1,...,1’1

vV =V (t1,...,tj) i € n=1

5.3.8

where the system 5.3,8 liesidentitcally on n-j-1 separate
characteristics of the system 5.3.1.
Proof

If the system 5.3%3.8 lies identically on n-j-1
characteristics of the system then we may substitute 5.3.6
into 5.3.4. n=j=1 equations of the form 5.3.7 will vanish
identically leaving j+1 equations from which we eliminate
the j parameters t1,...,tj. The remainder of the proof is
as for theorem.5.3.1. End of proof.

It may be, however, that the initial conditions 5.3.8
when substituted inio the characteristics 5.3.4 prodﬁce the
result that 2 or more characteristics 5.3.4 become the same,
or dependent. In this case we have identities which when
eliminated give other relationships bvetween t1,...,t. and

J

CyresesCye Then we have

Theorem 5.3.3

If the initial conditions 5.3.8 lie identically on
n-j+k-1 characteristics of 5.3.1 where k such characteristics
are the same as or dependent on some of the n-j-1 other
characteristics also satisfied>by 5.3.8 the solution of 5.3.1
is again unique.

Alternatively when the initial conditions 5.3.8 are
substituted into the characteristics 5.3.4 we find that one
or more characteristic may become indeterminate, In this-
gsituation less characteristics are satisfied identically,‘but
when singularities are removed we are left with the correct
number of identities. This gives
Theorem 5.3.4

If the initial conditions 5.3%.8 lie identically on n-j-k-1

characteristics of 5.3.1 and cause k different singularitieés
in other characteristics which when eliminated result in k
further characteristics which are identical or dependent then
the solution of 5.3.1 is again unique.

These theorems may be illustrated by some examples.
Consider first the svstem '
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]
o

-X +y % x(x2 + yz)

X =
v o= -x -y + y(x% « y°).
The auxiliary equations 5.3.3 become
dx - dy - _ng_
—x+y+x(x2+y2) —x—y+y(x2+y2) =2(x“+y°) 5.3.9

By conversion to polar co-ordinates the independent solutions
of 5.3.9 may pe found and are

1—x2— 2
= = C1 . 5.3.10
2 5. —2tan” 'y/x
(eyfyes?m VX 5.3.11
X2y’ 2-

The initial conditions 5.1.% may pe written parametrically as
Xx =0, y=0, V=0, _ 5.3.12
5.3.12 is a set of equations in 0 dimensions while Lheorem
5.3.1 requires initial conditions in 1 dimension.
Substituting 5.3.12 into 5.3.10, 5.3.11 gives
¢y =1 5.3.13
Cp, = O.
The result in 5,3.13 satisfies identically the characteristic
: 5 = 0 in 5.3.11. Thus we see that
the initial conuitions 5.3.12 satisfy identically one

given by x = 0, vy = 0 i,e. ¢

characteristic of the system 5.3.9 and theorem 5,3.2 is satisfied
by J =0, n =2, The solution is given vy
p) -V
t=x-y = e .
The Hahn system 5.2.13, 5.2.14 is a good system 1o consider

these theorems on., The auxiliary equations 5.3.3 become

_4ax - dy = av
5 = =
—X+2x7y —Y ~2(x2+y§) 5.3.14
The snlutions of 5.3,.,14 are the surfaces
X
Y(1—XY) - C1 . 503-15
V+x- y2 = C, 5.3.16
Y

Substituting 5.3.12 into 5.3.15 and 5.3.16 gives CysCh
indeterminate. If 5.3.15, 5.3.16 are transformed such that
x/y is eliminated between them and then 5.%.12 suhstituted

we obtain' the relation cy = Cy which leads to the analytic

1
solution
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We can see that the initial conditions 5.3.12 give no
freedom parameters. i.e. j = 0 in theorems 5.3.1, 5.3.2, 5.3.3,
5,%5.,4. Wow 5.3.12 lies on both characteristics of 5.3.14 and
the conditions of theorem 5.3.1 are not satisfied., Likewise
theorem 5.%.2 1s not satisfied as 5.3.12 results in 5.3.15 and
5.%.16 being indeterminate. However theorem 5.3.4 is satiscfied
by j =0, n=2, and k = 1. t\hen 5.3.12 is substituted into
5.%.15, 5.%,16 the two characteristics are indeterminate and
the singularity caused by consideration of x/y at (0,0) may
be eliminated to leave one relationship between c, and Coe

The example illustrates what must in fact happen to all
systems where the origin is asymptotically stable. It turns
out that since fi (i=1,...,n) are not functions of V that from
2.3.3 we may obtain n-1 relations of the form 5.3.7 which do -
not depend on V and one which does depend on V. The n-1 equafion5
are independent of 4 and V and are the system trajectories
given by

ui(x1,---,xn) = ci i = 1,ooo,n_1

‘\'fith un(X,l,...,Xn,V) =

n
Since the system trajectories all tend towards the origin we

see that

ui(O,...,O) = c; i=1,.4.,n=1
are identically satisfied. There are in fact n-1 singularities
or identities which when eliminated similarly to that in 5.3.1C,
5.3.11 or 5.3.15, 5.3.16 lead to one equation in Cys i=1,...,n,
after substituting X; = 0, V=0, i=1,...,n. Hence in the

terms of theorem %.%.4 the Zubov egquation 5.3.1 satisifes

j =0, k = n-1 and a vnique sslution of 5.3.1 exists.

Hence a unique selution of the Zubov eguation 5.3%,1 exists
for systems where the origin is a critical point by eliminating
singularities in the general solution of 5.3.3 at the origin.

3.1, Numerical Solution

However to solve 5.3.1 numerically on a grid system is
another matter. The usual method is to compute the solution
of V¥ at xgji) = jihi for some 1€ 1 €« n given values of V
at x§31‘1)= (ji_1)hi, 1< i=<n. However to begin computation
we need initial conditions of V on xgmi)z Hihi for 1< i < n,
some M., 5.%3.17
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5.3.17 is an (n-1)-dimensional hyperspace in the variables

Xyp 1= 1,000,m, i # j. This is in accordance with theorem
5.3.1 and by solving 5.3.1 there is no let-out from this

problem afforded by singularities except by means of solving
numerically along the characieristic lines. This is the method
used by Fox (36)'which was considered in Chapter 2. This method
computes the characteristics {(x,y) and the value of V along
them. Since all the characteristics converge to the origin

we see that the initial conditions 5.1.3 are sufficient for
Fox's method.

Since the initial conditions given by 5.1.3 are zero-
dimensional and we require {(n-1)-dimensional conditions then
we need to transform the independent variables such that the
corresponding initial condition  5.1:3 in the new variables
is (n-1:-dimensional.

The polar co-ordinate system given by 3.2.17 is such
a system.

Xy =T cos G1

xi r sin 91.......31n 91_1

2y00.yn=-1
5.3.18

cos 8., i
i

X = P. s e 8 0 s e ka8 i
n r sin 91 sin ©

n-1°

The initial condition 5.1.3% becomes

V(O,91,...,9n_1) = 0 5.3.19
which is (n-1)-dimensional. In the notation of theorem 5.3.1
we obtain the characteristic solutions

ui(r;91,...,9 V) = ¢y

n-t?
) i=1,-..,n
with initial conditions as

r =0 :
gi = ti i = 1,...,1‘1—1 5-3.20
V=20

which are in the form 5.3%.2.

Now by the chain rule of partial derivatives we know that
ST dx,

Y ——-'S—n A Ix, i=1,...,n~1. 21
.Eﬁi “)——T}—x-j -S—g-g H ? 5.3.

Now from 5.3.18 we may obtain the partial derivatives
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DX jJ=1ye.0yn
T

and '}_lc-. i: 1,...,1‘1—1
}gg j=1’n-l,n.

Thus 5.3.21 represents n linear equations of ¥, 3V {i=1,...,n=1)
: T '55i
in terms of 3V (j = 1,...,n). These equations may be inverted

X
to obtain v éxplicitly and then by substituting in 5.3.1.we
X .
obtain a polar co-ordinate P.D.E..

A=l

IR R (CLIPPRL AR +§Z:Gi(r,91,..,Gn_1)%%$r,91,..,9 )

n.’\
(e

= -3 (r,9,,..,0,_)(1-aV(r,8,,..,0__)), 5.3.22

The actual equations 5.3.21 and their inversion are car;ied
out in Appendix E. It is equation 5.3.22 and the initial
condition 5.3.19 which form the basis of the numerical method
in the rest of this chapter.

4. Radial Methods
Having transformed 5.3.1 into 5.3.22 by means of 5.3.18

we now require to set up a grid system to solve 5.3.22 ﬁumeiiaalb

From here on we consider the 2-dimensional version of 5.3.1,

5.3.22 which become
flx,yYIV + g(x,y)dV

-6(x,y)(1-dV(x,y))

¥X vy
X=I‘COSQ 5.4.1
y =r sin 0
P(r,8)dV + 6(r,8)W = -3 (r,0)(1-dV(r,0)} Sed.2
ar 20
Differentiating 5.4.1 with respect to r,6 to obtain the 3x, 3x,
. : dr 6
%I;'By and substituting into 5.4.2 we obtain
r 9
F(r,8) = f(r cos @, r sin B)cos © + g(r cos 8,r sin @)sin &
5.4.3

G(r,0) =(g{r cos 9,r sin 8)cos & - f{r cos 8,r sin 9)sin 8)/r

with @(r,@) = f(r cos B,r sin 9).
Various methods may be used to solve 5.4.2 but three are
.outlined here. First we require some notation.

The grid is set up in the same manner as the rectangular
grid 5.2.1.
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r, = mh
Gn = nk
where k = 27 n = 1,...,N 5.4.4
N
m > 0.
The analytic solution of 5,4.2 is denoted by
V(mh,nk) .
and the computed value of V by _
V; /O’ n"’ 1’.-.|N 5.4.5

4.1 Shields' Method
Ine method suggested by Shields (28) approx1mates the

partial derivatives by

W~ 1yyn+t, on n+1 .n
T E(Vm+1 *Yoe1 Vm ~Va )
v

b " V1’1+‘l Vn

n+1 .n
208 ﬁ’zk( m+1 Vme1 ' Vi ) 5.4.6

V oo 1(V n+1

n
m+1+vm+1+V +le

Substituting 5.4.6 into 5.4.2 and rearranging gives

(F+£q-hd§» yyn+]

ohq ot (F-nG-ndd)v:
X "2

m+1

k
= n+1 - o= _ - T _ ) _ 5.4-7
= (F~hG+hdd )v + (F+hG+had (v - 2nd. T
k —Z k 2
For n = i,...,N the equation %.4.7 represents a set of linear

equations for values of V on r = {m+1)h given values on r = mh
and known functions F,G,d .

A matrix enuation may be set up

where the nth. element of V Vo1 is Vm+1. The solution of 5.4.8

at each stage provides values of V on concentric circles.

4,2 Explicit Method

Shields' method is seen to be implicit. This is not a
drawback to computation of v e’ n=1,...,N, but should
computational instability affect the value of Vm+1 for any
n then this instability is transmitted to V2+1.for all n = 1,.,N

i.e. instability affects the computation of whole circles.

To overcome the problem we need an explicit method given by
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‘ n n
H g Vm+1-vm
T I ~—

n+1 n n-1
~ (1-a)Vm +2an-(1+a)Vm 5.4.9

v

V =~ bvl

n
m+1+(1_b)vm

Substituting 5.4.5 into 5. 4.2,gives
n - n+1 n-1
(P-bhd® )V 4 = -1_21%((1-a)vm -(1+a)V ")

+(F-ahG+(1-b)hdd )vg -hd®. 5+4.10
X

5.4.10 is an explicit method in fact not as accurate as 5.4.7.
Thus we need %o obtain a more accurate method.

4.3 Second Order Method
To develop methods of higher order accuracy we may start

from the Taylor series expansion given by
V((m+1)n,nk) = exp(hgy) V{(mh,nk). 5.4.11

The exponential series in 5.4.11 may be truncated and for
this method we truncate after the second order term and the
method becomes

={(1+n&+n° ¥ ) V2 5.4.12

In order to approximate. for the terms in 5.4.12 we need to
rearrange 5.4.2 to become

W _ -G AV 9 (1-av), 5.4.13
2r - ¥ T F
Let us denote the computed value of 3V at r = mh, © = nk as
~on ar
vm with corresponding notation for ¥V and for F,G,&,V.
ST Y
Writing
: n
ag = -Em
P
" 5.4.14
n _ 2
bm = _%
Fin

and substituting 5.4.14 into 5.4.13 and setting x = mh, y = nk
we see that



n n yn n n
Wy -an Wi - pp(i-avp), 5.4.15
N T \0 \
Now we may differentiate 5.4.15 with respect to r again and so
compute _}Evg

Nl
}:‘)v; LEV ) )KHXV - bp(1-av ))
RYS \r Ny \r Ry
Nal WR O WR(1-av?) ;oae Wt &l R
St 36 T ST EYIY 5.4.16
DNal Wr_D(1-dvh)+(dbi-aty )(-ap Wi~ bp(1-avp))
Br \G 2T 35 35_

Substituting 5.4.15 and 5.4.16 into 5.4.12 gives the
next stage of setting up the method:

LAY me-(—hbmtl%_(-\‘sbm ~db b "+ amBDm))U-de)
¥a . 35
+(-ha$+%z(4532~2da;bg + a;'hag))'Bv; | 544,17
Y I v v -
2nn . 2.n
+h Snln 3 Ym L
2 202

The equation 5.4.17 expresses V2+1 in terms of v, dV VY

39? \92

on the cirecle r = mh, and known terms. The'only approximation
so far has been truncation of the Taylor series. If we can
now approximate all the partial derivatives in 5.4.17 by grid
values of the correspondiug functions combined in such a way
that the accuracy will be maintained then we have a second
order method.

The central difference formula for a first derivative
has second order accuracy, SO we may write '

n n+1 n-1
ﬁwm N Vm - Vm

Y 2k 5.4.18
~a T n n

)bm o bm+1 B bm—1

ar 2h

and similarly for the others.
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The second derivative term in 5.4.17 is written as

2.1 n+1 n n-1
\ Vm ~ Vm o 2Vm + Vm . 5.4.19

Ng° x°

Substituting 5.4.18 and 5.4.19 into 5.4.17 gives the difference
scheme. Some simplification can be achieved by writing

n _ n
bm = hbm
5.4.20
n _ n
Am = ham
k
The final version of the difference scheme becomes
n _ n,n+t g 1
vm+1 v +( -B +Bm 1 B dBran AmBm Am m )(1 dV )
4 4 2 4 4
n .n n,n+1 A0 n-1 n+1 n—1
+(_fm+ﬁm-1_Am+1-dA Bm AmAm ~Adn )(V Vin )
2 8 8 2 B 8
+ A n(vn+1 2Vn+vn—1). . 5.4.21
m nm .
2

5 Comparlson of Radial Methods o

The radial methods given by 5.4.7, 5.4.10, 5.4.21 all
serve as numerical routines for integrating 5.4.2 but the
guestion is raised as to whether one method is better than
another, 2nd if so, why.

5.1 Initial Conditions

All the methods given in section 4 provide means of
computing V on r = (m+1)h given V on r = mh, Thus sufficient
initial conditions to start computation are given by Vg = 0,
n=1,...,N, providing there are no problems caused by evaluating
F,G6, & near the origin. We know that at r =0, F=3 =0
by pﬁtting r = 0 into 5.4.%3. G is not necessarily small for
small r but we must not attempt to evaluate 5.4.7, 5.4.10,

5.4.21 such that the coefficients of the L.H.S. are zero or
terms on the R.H.S5. become large. To see how putting m = O
into 5.4.7, 5.4.10, 5.4.21 affects the coefficients of V;+1’
Vg we need to consider the behaviour of G, P as r-=0.

We make use of definitions 3.2.1, 3.2.2 and associated

results on the asymptotic properties of functions near the
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origin. Now from theorems 3.2.1, 3.6.5 we know that
P(4) > min(P(f),P(g)-1 . 5¢5.1
By veference to 5.4.3 and theorems 3.7.1, 3.4.1 we see

that [or general f,g

P(F) = min(P(f),P(g))
P(G¢) = min(P(£),P(g))-1 5.5.2
F(3) = P(6)

except in particular systems where lower degree terms in 5.4.3

cancel out. The Hahn example is one system in which

P(f) = 1
P(g) = 1 |
P(F) = 1 5.543
P(G) = 2

but in general equation 5.5.2 is true.

By reference to theorem 3.4.1 we see that 5.5.2 is true
except in certain circumstances where significant terms vanish
identically. Generally speaking we must assume that 5.5.2
is true although other possihilities must also be mentioned.

Thus we see from 5.5.1 and 5.5.2 that as r—0 5.4.7
- asymptotically -becomes . :

n+1 n n+1 n - ) I
metl = Vgt ¥ -V + V 5.5.4

v m+ 1 m m

which is quite stable for computational purposes. Terms in
5.4,7 are evaluated at r = (m+%)h, 6 = (n+4)k and so putting

m =0 into 5.4.7 is no problem. If such a situation as 5.5.3
arises -then it is easily seen from 5.4.7 that there is a similar
asymptotic relationship to 5.5.4.

Consideration of 5.4.10 using 5.5.1 and 5.5.2, however,
shows that as r—»>0 there will be problems caused by G/F or
/% be:oming large. The known terms are evaluated at r = (m+c)h,
8 = nk and we see that for m = O ¢ should be as large as possible.
Hence in general lztting m = O in 5.4.10 is unstable except _
in examples such as the Hahn system.

Consideration of 5.4.2%1 is a difficult task., Using the
definitions 5.4.14 and 5.4.20 we see that in general P(A) = =1, «
P(B) »-=1. Using an assumption that P(V) > 0O we may possibly
eliminate certain terms of 5.4.21 when m = O, leaving instabilit y
Rn+1

0

caused by such terms as Ag and clearly we cannot in generdl
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use 5.4.21 with m = 0. We need, in fact, m > 2 to use 5.4.21
and this means using 5.4.7 or 5.4.10 to get V? and Vg, n=1,...N,
or by setting initial conditions to V;.

5.2 Computation

As has already been noted 5.4.7 is an implicit method.
Let us consider the situation at r = mh where the r = mh circle
is wholly inside the D.0.A., but r (m+1)h is not. See fig. 27.

i

” A_Q
[N
- o & .
~ . * 2
. @ <
~ ~ N 3(//f o
~ ~— '~ ~ /
——--_._\-_‘__“_‘_-*‘--_‘
T —.< _ __D.0.A. boundary
rzml r=me)l
>
Pig, 27

Assuming no error in computation of V; and the method
used is accurate then V$+1 will in some way, by being unstabie,
indicate that the boundary has been crossed. Now if r = (m+1)h,
6 = (n+1)k is inside the P,0.A., computation of V7*! by 5,4.7
knowing V$+1 will cause instability in V;:] also. In fact
for any V3+1 that is unstable, continuous use of 5.4.7 will
make ?11 V$+1, n=1,...,N, unstable. Thus the largest computed
R..:.5. that can be obtained by 5.4.7 is the largest circle
wholly inside the D.0.A..

Methods 5.4.10 and 5.4.21 are explicit and if V;H is
unstable for some m,n it does not affect computation of Vn+

1

. n . -
for all n = 1,...,N. tHowever Vm+1 is used to compute V;+2,
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n n+1

v Vm+2

m42? and instability will spread to these points unless

we can find a way of keeping useful information only and not
using unstable values of V in further computation. 7that is
the subject of section 8.

5.3 Errors

¥ach method .has associated with it a Local Truncation
Lrror. The order of this error is the factor influencing
accuracy of computation. Let us consider the error of method
5.4.10 taken at the point of evaluation of F,G,$ . i.e. at

= (m+c)h, 8 = nk.

The Local Truncation Irror is obtained by ‘inserting into
the numerical method the correct values, Thus we obtain
L(r,8) = (F—bhd§2)$+cV((m+1\h,nk)

-(F-ggg«»u-b)hd@ )40V (mh, 1K) 5.5.5

+Q%((1—a)V(mh y(n+1k)-(1+a)V(mh, (n-1)k) ) + h§§m+c
“We now obtain L((m+c)h,nk) by snbstituting for V{(m+1)h,nk),
v{mh,nk), V{mh,(n+1)k), v(mh,{n-1)k) in 5.5.5 in terms of
'V, and partial derivatives of V-with respect-to r,8 at r = (m+c)h
8 = nk, To save space the subscripts m+c and n will be dropped.
Hence we obtain
L = (P-bhd 3 )(V+(1- c)hw +(1-¢)%n2 WV +(1=c)°h’ DV +....)

dr 2 Sl 6 3

+(-F+ahG~{1-b)hdd )(V-chdV + c2h2 Y - c3n3 ¥y teaon)
k S 2 2 6 Nr

+(1-2)B6(V=omd. +g 2h? W%y - In? Pys.....
K % o2 w6

SKO —chk YV +c°h%k 39V = ¢ohdk YW +.....
Y- Wede 2 g 6 Nr 2

+k° Y —onk® PV + ¢ZnK? RISl G A

2 2we? 4 we® 12 wee?

" VY —enid W+ AT YV =210 ¥ s,
6 W 6 I\e> 12 3r2%° 36 we’




—(142)hG(V~chV +c%h2 %Y ¢’V +.....
X 3p 2 P 6
—k}i +chk¥?V-czh?k §3V + cBth 34V —resees
W6 OdIMNe .2 w6 e
k2P~ enk® ¥V + o%n%k® WY - Ok v 4L
2 W’ 273wW’ 4 el 12 e’
SO XY+ chie Wy - 20 Wy o+ IndKd Bv-....
6 %° 6 W 12 W 36 oo’

=)
+hd

Collecting together terms in 5.5.6 and using 5.4.2 for some

5.5.6

cancellation we obtain the liocal Truncation Error as

L = ((1=220)h°F ¥V + (c-b)h%d IV -ch?6 ¥V —ankG V)

2 '\fg Sr _ NS 2 - \Qz
+((1=3c+3c2)NOF DV +(=c?(1=b)=b(1-c)2In2aF Y°V + c®n’c BV
6 BrB 2 ”BrZ 2 e
+ach®kG DV + hk ¢ 2V ) + o(ht+ ¥ 5.5.7
K %1"392 6 -303

Thus we see that the explicit method 5.4.10 is first order.
There is no combination of a,b,c that eliminates second order
terms in 5.5.7. However if we locally assign

a =0
b=rc-= %F'EEE
' 2
5 or 5 5.5.8
POV + GYV
Yl ING

then we nave a second order method. Some means of obtaining
the derivatives in 5.5.8 to sufficient accuracy is needed.

The Local Truncation Errors of the other methods are
obtained in exactly the same way.
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Shields' method:

h(h%8 Vv + 16 WYY - n2aF 2V + KPrVVaps DPur®aF ¥%Y)

4 3"&3 re Xﬁ Wf@ZB oo N2
ot kh.

=
fj

Second Order method:
L = ROV + KA Y +0(x*+ nhy,
6 3;3 g

Thus we see that both 5.4.7 and 5.4.21 are second order
methods and are therefore more accurate than the Explicit
method 5.4.10, The Second Order method is the one that is
explicit and second order but requires arbitrary initial

conditions.

5.4 Convergence

The Courant-Prigdrichs-Lewy (44) condition applies to
explicit difference methods such as 5.4.10, 5.4.21. If we
write down a general scheme for Von r = (m+1)h in terms of

V on r = mh and known functions as

LR T

. J
Vo,q = W(r,0,h,k) + E le_n(r.G,n.k)Vm . 5.5.9
Jen-),

then the C-F-L condition for convergence of the method is given
by:
C-F-1 condition
If the characteristic curve of 5.4.2 passing through
r = {m+1)h, & = nk intersects r = mh at 2' then con&ergence

takes place if
(n=j)k € 68' < (n+j,)k
where j1,32are as in 5.5.9.
For the two explicit schemes 5.4.10 and 5.4.21 VO . is

computed from Vn+1, Vo, yo-1
: m m?* 'm

"The C-F-L condition quite simply requires the
characteristic through r = (m+1)h, 8 = nk to intersect r = mh

. Hence in this case j1 = j2= 1.

within the range of points used in computation of V$+1. Thus for
5+4.10, 5.4,214%¢ require the characteristic to be as in fig,
28 but not as in fig, 29,
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Consider the point A on fig. 28 which is given by r = mh,
6 = (n+ Y )k. Hence the condition for convergence becomes
-1 < 2«1, Now we let h,k— 0 while h/k is constant. The
grid "closes up" and we see that
S~ 5 : - 5.5.10
where dr is the gradient of the characteristic. But the
characl8ristic of 5.4.2 is given by
dr = F 5.5.11
do G’ .
Hence letting h,k—~0 with h/k constant and combining 5.5.10
and 5,5.11 we see that
N « -h@
kF.
Thus in order to satisfy the C=F-L condition of convergence
we require :
R < g-" 5.5.12
Thus we have now imposed an upper bound on h or a lower bound
on k to guarantee convergence of 5.4.10, 5.4.21,

5.5 Stability
An important basis of comparison between methods is
stability. An accurate method is of little use if the errors
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which ocecur are magnified and the results become unstable.
But if errors die away then a less accurate method may be
more acceptable,
The analysis is by the sinusoidal input method exactly
as in sub-section 2.4-and the corresponding versions of 5.2.32
for the methods 5.4.7, 5.4.10, 5.4.21 are
Shields' method:.

—(F+nG-hd§ )en+1 + (F-hG-hd & )e> . - (F-h(}+hd§)en+1
X 2 m X 77
~(F+hG+hd § ) | 5.5.13
X 7 m
Explicit method:
L= (F-blruit@)efm}+1 - (F-ahG+(1-b)hadP )eg +_11%((1—a)e (1+a)en 1y
k 2 )
5.5.14
Second Order method:
_ n n Npn _,npn+i_  npn-i
L em+1 e +d( Bm+Bm 1 Bm+1-dBmBm +AmBIn Am o )
' . -
n n n n_n n,n+1 n,n-1 n+i n-1
_('Am A1 "£m+1_dAmBm Hobn o Al )(em “Cm )
2 8 8 2 8 8
ABAR (P Tu2eReel ™), - 5.5.15
"-T

Unlike in the rectangular grid method we only reﬁuire
stability in one dimension. Computation in the .®~direction
is periodic and Von-Neumann stability only gives . . information
on the basis that computation is continued indefinitely. Thus
we need to substitute the version of'e; in 5.2.34 into 5.5.13 ,
5.5.14, 5.5.15 to obtain N in each case:
Shields' method:

(F-h +hd P )e +(F+nG +hd§)
Ny 5 K 2 k7 5.5.16
(Fend -gg_‘i) et ™ ¥ L(Fohg -ggj) -
Lxplicit method: X
fwi (1+a)eiu*k)

n (F - ﬂ};_q + (1-b)hd P ) - %%((1-8.)8

(F - bhdd) 5.5.17
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Second Order method:

n _ n Nph nn+i ,n.n-1
Xm =1 - a(~-B" +Bm ; Bm+1 -dB_BY +A B T -A B ")

T T 2 4 4 ]
< s n n nen ,n,n+1 . n,n-
+2i sinwk{-AP +Am 1 Am+1—dAmBm+AmAm -4 K )
2 8 8 2 8 8
+ ArnnAE(cos wk - 1), 5.5.18

Prom 5.5.16, 5.5.17, 5.5.18 we are able to obtain regions
where the magnitude of \An is less than one for all w o,
The procedure for Shlelds' method is comparltively simple
and in fact
I\m’ < 1 when either d = 0 or F < O, 5.5.19

The Explicit method takes a littYe more analySlng.
Taking the modulus of N from 5.5.17 we obtain for d = O

(F - ahG(1—cosmk)) + (p_gsinmk) < Pe, 5.5.20
k k

5.5.20 is a quadratic function of coswk for -1 € coswk < 1.
The coefficient of cos®wk is &ahu)z - @E)E. Since we assume

that in the approximation of ?bi zgiven by 5.4.9 that la|
[
thén we have an inverted ‘parabola for 5. 5 20 w1th one maximum

value, However we may note that if coswk = 1 then 5.5.20 is
satisfied as an equality. Hence we require the value of

cos vk which maximises the L.IH.S. of 5.5.20 to be such that

-~ coswk 2 1, ’ |

Hence we obtain

G(p_}(i ~aF)=< 0 5.95.21

as the condition for stability of the explicit method for

d = 0. If d =1 analysis becomes much harder so we only

consider the symmetric version of 5.4.9 given by a = O.

In this case we requlre

(1-2b)hdd + 2F = =h G- ' 5.5.22
W | |

For the Second Order method we simplify 5.5.18 to become dencted

as

™ =u coswmk +w + ig sinwk,
2. 2

Then»if i) u® > 2 and uw > 0 then we neea (u+w)> < 1,
or u2< z2 and uw 222-u2
1i) u?> 2° and uwg 0O then we need (u-w)2 € T»
or u?< g2 and uw €wl. £
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iii) u? < 22 anad u2—22 € uw £ 2?-1% then we need
w2 + 22 - u2w2 < 1.
N -

- From the above analysis we see that unlike the situation
of constant coefficient differential equations it is not
always easy to analyse stability when the coefficients ofwthe
equation are vafiable. The parameters in 5.4.10 can be chosen
with 5.5.21 or 5.9.22 in mind but only for a particular ¥,G,% .

5.6 Discussion

It is clear that there is no one numerical method which
will solve all problems it has to tackle in the simplest and
quickest way. There are many more methods than those discussed
in this section, but the three that nave been covered serve
to show the comparisons that can be made.

Each method has its strengths and its drawbacks., The
Shields' method is second order, stable everywhere if d = 0
and has no difficultiesa with initial conditions., Yet it is
implicit and can only obtain circles completely contained in
the D.OC.A..

The Explicit method is explicit and does not have problems -
with initial conditions unless ¢ is small, but is only first
order unless a = 0 and b,c are locally determined, and imposes
conditions on h,k for convergence amd stability.

The Second UOrder method is second order and explicit,
but cannot be computed near the origin and also puts bounds
on h,k for convergence and stability.

The best combination is probably to use Shields' method
until the D.CG.A, is breached, then ovne of the other two methods
depending on which happens to be less restrictive on choice
of h,k, preferably maintaining second order accuracy.

6. Radial Runge-Kutta Method

Runge-Kutta methods are known to possess certain advantages

over pther - . difference formulae. They are one-step methods
and yet can achieve greater accuracy than any one-step
difference formula. Their drawback is heavy calls on function
evaluation.

Up to now we still only have a method which computes
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vg at r =mh, @ =nk, n=1,...,N, K = 2«/N, and we still
have to try to obtain the contour V =ce or V = 1 from the
grid values. Therefore it is a logical suggestion that if
the variation of V with respect to © can be replaced by a
difference formula, then we may reduce 5.4.2 to a system of
0.D.E.s to obtain

v (r), n =i1,...,N, 5.6.1
where Vn(r) is the computed function of V with respect to
r on 8 = nk.

Hence let us approximate in 5.4.2 for 3V by

RY:]
¥V Vpe(x) =V _4(x) . 5.6.2
9 2k
Also we denote known functions similarly to 5.6.1 and write
Fn(r) = F(r,nk)
Gn(r) = ¢(r,nk) 5.6.3
&_n(r) = §(r,nk) n=1,...,N,

Substituting 5.6.1, 5.6.2, 5.6.% in 5.4.2 we obtain the
required set of 0.D.E.s

F (r)vi(r) = -6 (r)(V .,(r) - Vn_f(r))-{§rgxﬂ(1 - av_(r)) e
7k

n=1,...,N 5.6.4
5.6.4 is a set of N simultaneous differential equations and

the nature of the solution depends on the functions F,G,9P .

- The analytic solution of 5.6.4 involves a complementary function
and a particular integral. The complementary function takes

the form

C.¥. = exp{J’d@n(r) dr}
. F (T)

and it is difficult to obtain for all but the simplest systems.
Equation 5.6.4 may be written in matrix form
vi(r) = A(r) ¥(r) + b(r) 5.6.5
where the elenents of A(r) are given by
An,n(r) =dB () ,

(D

n = 1 L I N
e -
A = -
n,n+1(r) Gn(r) ns=1,...,N8=1
Zan(r) |
An;n_1(r) = G-n(I‘) n= 2,...,N.

2 Tr)
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Ay, q(r) = =Gylr)

2kFN(r)

Gy (T)
2kF, (1)

with all other elements zero and

bn(r) = _én(r) , N =1,...,N,
n(ri
5.6.5 also has a vector solution for V(r) in terms of a * . .

complementary function, exp[jﬂA(r)dr ¥, provided A(r) and

Ay nir)

-

_YA(r)dr commute, and a particular solution.

Numerical solution of 5.6.4 may take place by any numerical
method which includes the methods in section 4.

To solve 5.6.4 Dy Runge-Kutta methods we denote 5.6.4
in the form '

vi(r) = 8(x,V__ (1), V (), V , () 5.6.6
The Fourth Order Runge-Kutta method applied to 5.6.6
becomes using the notation of 5.4.4, 5.4.5
9+1 = r% + h
Vmer = Voo h(k + 2k + 2K + Kj)
Z 3 4
. =1 1
where ki = H(r ,vp™ ',V Vo)
K5 = H(r+h, VI e vk, v k)
2 7 =z —z 5.6.7
G = (e 4, VO Tend™ Y v, v L)
2 p 5 7
n _ n-1 n-1 n+1 n+1
Ky = H(z+h, Vi~ +hky Vo hk3,V +hkg ")

5.6.7 may be solved systematically:
a) Given r, and Vg n=1...,N, we calculate kn’ no=T,..,N,
b)Next compute k2, n=1%,...,8 followed by kj, n = 1,...,N,
and kq n=1,...,N.
n

n n
c) From k1,bk2, k3, k4, Vﬁ, n=1,...,N we compute Vm+1

Initial conditions would seem to present a problem upon
considering 5.6.4 at r = 0. However since we know that (0,0)
is a local minimum of V(x,y) then we see that

'
vi(0) =0
v (0) = 0. 5.6.8

I

1t



Substituting 5.5.8 we see that H(0,0,0,0)} = O,

may consider the result of putting m = O into 5.6.7:

Ty
I
vy
n
K

n
k,

Thus we see

= h

li

2
H(0,0,0,0) =

0

3 * Ky

%(kﬁ1 + kB 4 ookf 4 kU

H(h/2,0,0,0) = -& (h/2)

F(n/2)

S0 now we
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that $5.6.8 is sufficient initvial conditions

to solve 5.6.,7 given the definition 5.6.6 and expression 5.6.4.

The major drawback to
instability approaching V

5.6.7 is however the problem of

= 1 or V =co, In sub-section 5.2

we encountered the problem that computation of Vn +1 depended

on V ~1

1nstab1
D.0.A.
only do

H at other points as well.

n n+1
? Vm ] Vm

. n
lity, then Vm+1

or not. The situation in 5.6.7 is even worse,
Vn*1 but on evaluation of

es V m+1

and that if any one of those had encountered

would he unstable whether inside the

depend on V , yh

m* m
If any of X7, X, K+,

are large and unstable then so must Vm 1 be.

7. Smal

1 Coefficients

Not

1,2,3,4

The comparison of “radial methods in Section 5 was carried

out on the basis of the classical numerical analysis results

for stability, convergence and accuracy. There is, however,

one problem which occurs when we solve a P.D.E.

variabl

e coefficients.

5.4.2 with

This is the problem encountered in

sub-section 2.3 which occurs when the denominators in the

difference formula become small.

It was noted in sub-section

2.3 that when the denominators are small that the corresponding

numerators should be small also, but due to errors in

computation that this does not happen.
The Shields' method 5.4.7 has problems when the coefficients

n+1
of Vm+1

or of a Z T .
Vm+1 re zZero or small

However providing that

not both coefficients are zero there is not too much difficulty.

Let us suppose that
n'+%
(F + g_l(z} - hdﬁ)m+%

Se
for V

=O-

5.7.1

tting n = n' in 5.4.7 gives a relationship explicitly

+1 in terms of V

n+1

and VE and known functions.

A



n-1
n m+1
» and ¥nown functions. 5.4.7 is then used

Letting n = n'= 1 in 5.4.7 then enables computation of V
n n-1

from Vm+1, Vm

to compute successively

nt'-1 1 N N-1 n'+1
m+1""'vm+1’vm+1’vm+1'"'vm+1

providing n' as defined by 5.7.1 is unique and

v

m+1’v

(F - hG'-IMYQ)n+% # 0 for any n = 1,...,N,
k P
Likewise if there exists an n' for which

(F-ne - na@)ni® o ' 5.7.2

k 2
then 5.4.7 may be used to compute successively
1 t 1
v +1,Vn +2,...,VN v v .

m+1 m+1 m+1 * 'm+1 *°°°! ‘m+1

A particular difficulty arises when 5.7.1 and 5.7.2 are satisfied
for different values of n'.
Suppose that

(F + hG - ha® )™ * 2 Lo | 5.73
kK T2 mo+ %

and 3

(F - hG - had )?2 * .
B -hgR) 2, =0 , 5.7.4

where né <'n% < N. _
Since 5.7.3 is true we may compute

Vi+1, j-= n%, n; - 1,...,né + Z,né + 1
and since 5.7.4 is true we may compute

v

Y J=mny+ 1, n}+2

2 ,ooo’n,"—‘l,n%

and the two sets of values will not agree exactly due to
accumulated errors in computation. It is reasonable in this
case to compute both sets and take their average values for

3
Vm-l-1’

J =nj + 1,...,n4.
The Explicit method 5.4.10 is much simpler tu analyse.
Specifically the small coefficient problem occurs when the
L.H.S. of 5.4.10 is small.

i.e. when

F-bhd®d = 0. 5.7.5
For the modified Zubov equation (d = 0) 5.7.5 becomes
F(r.’g) = O. : 5'7-6

To consider the type of effect which 5.7.6 can cause let us
consider the example
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-6x - Ty + y2

]

X

y
Using 5.7.7 in 5.4.3 we see that
F(r,8) sin 8cos 6(sin 8+cos Q)r2+(sin2e—381n Bcos 9$6cosze)r
= 0. 5.7.8
Fig. 42 shows the graph of 5.7.8 in the (x,y) plane and fig.
43 shows r as a function of 3. Both roots of 5.7.8 are zero

]

when

sin29 - 33in © cos 8 - 600529 = 0 5.7.9
i.e. 8 &= 77°, 126°, 257°, 306°.
Hence given initial conditions for Vg, n=1,...,N, then
computation of V w0 = 1,+...,N, should show irregularities
at values of n where nk = & and © satisfies 5.7.9.

Computation was attempted with initial conditions V = (20h)
n=1.,..,100, h = 0:0125, Computation of v n = 1,...,100
showed irregularities given by V%} = (0+14, Vgé 0+40, Vg; = 0+09,

g? =-0+12 corresponding to r = 02625, @ 75 60, 1260,255-60,
306° in accordance with 5.7.9.

Three methods were attempted to overcome the effects of

5.7.6.

a) To compute FI~ b, ot

n4C mee 10 the L.H.S, of 5.4.10 instead of

n

Fnsc?
m+c

n=1,.,..,N, giving the method

(FL+*) —ona $)VD 1 =-nG((1-a)vE* - (14a)v2" ")
L2 2%

2
+(F-ahG+(1—b)hd§;)V$ - h¥, 5.7.10
k
s =1 n+i .
b) As 5.7.10 except replacing bm+c by F L +F, .. on the R.H.s.
2
of 5.7.10 as well to preserve accuracy.
¢c) Using 5.4.10 as usual providing
Where 5.7.11 is violatea we know that
n
Fm+c = 0 for some O <€ c;s 1 .
and we fix ¢ = 0 if |Fp| > |Fp,q|

c

! |Fm+1| ; |
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21 35 71 85
Voy V53 \EX Vol
Conventional O+14 0+40 0«09 =-0-12
Mod. a) 0+12 0«20 0-08 -0+29
Mod. b) 013 Q+23 0+09 ~0+38
Mad., ¢) 0-14 0+40 0+09 -0+12
'Fig. 30

The results are summarised in fig. 30 and it is noted
that none of the modifications shows any improvement. This
is only to be expected as further investigation of fig.J%}
shows, As r--=0 the curves F = 0 approach the origin along
lines of constant 5. lence the function F+15 F-j
become small which rules out modifications a), b}, and also

can also

if Fg+c is small for some O € ¢ £ 1 then little improvement
is obtained by varying c.

It can be observed however that the regular Zubov eguation
(@ = 1) does not suffer from this problem. Providing r >0
then b can be varied to avoid 5.7.5 being satisffed.

It has been shown that G/F becomes large as r— 0 in
“5.4.10. Here we have found another reason for choosing initial
conditions away from the origin,

Investigation of 5.4.21 shows that the Second Order method
suffers from this type of instability when tne terms on the
R.H.S. become large. From the definitions 5.4.14, 5.4.20
we see that zeroes of F are again where we get instability.
However we not only require F* #£ 0, n = 1,...,N, but also

we need F£_1, o Fn'1, F'*' o0 be non-zero. This means

m+1? m m
that instability occurs where the curve F(r,8) = 0 passes
between the points at which F(r,8) is being evaluated at in

5.4.21 as drawn in fig. 31,

(m+1)hl T

mh L

tm~1)h 1.

(n+1)k nk (n-1)k
Pig., 31
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8. Computation of V =< (ontour

Up to now methodé have been developed in which values
of V are ccmputed on a grid system in r and 8. What we are
really interested in is to compute the contour V =< . 50 we

require some means of obtaining this contour which will be
more accurate than just picking values from a grid. Three
ideas for improving the method are given here.

8.1 Keeping Useful Data

Boundary of D.Q.4.

(n-1)k \
Fig, 352
The Explicit method and the Second Order method both
compute the value of V at A from values of ¥ at B,C,D. However,
the point B is outside the boundary of the D.0.A. and the
computed value will indicate that B is outside the region in

Wh \m+1)h

which the results are continuous.
But if a discontinuity occured in computation of Vn+1
-then by either 5.4.10 or 5.4.21 there must also be dlscontinuit;
in computation of V;+1 although A is inside the D,0.A,..

The Hahn system 5.2.13, 5.2.14 shows up this problem
guite well., The boundary of the D.0O.A. of 5.2.13 is given
by xy = 1. Solution of 5.2,13, 5.2.14 is attempted with
N =100, h = 0-0125, The line & = 346° corresponds to n = 1
and the boundary ot the D.0.A. is satisfied
by 8 = 3:6°, r = 3.99 yhilst when

0 = 7:2% r = 2.84,

Hence computation of V; for m = 228,...,319 involves using
data of points outside the boundary of the D.C.A.. Fig. 44
shows a plot of V; -~ V{(mh,nk) against r along lines of constant
8. The ermor on © = 3+6° is seen to oscillate and in tact
oscillates smoothly for r <€ 3+1 due to the effect of computing
A from B in fig. 32.
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mh

The method to be used is shown in fig. 33. Computation of

yh has been found to be outside the region of continuity.

m+1 n-1 n+1
So to compute V__, and V-
V21f1‘uand V3:$2 which are within the regilon of continuity

and O s cy < 1, 0 < Cs < 1.

from correct data we need to find

n+% _ n n+1
Step 1). Compute Vg, - = %(Vm + Vo )

RO Ll | 5.8. 1
These are AiB in fig. 33.
Step 2). Compute V2™% from yi=2 yn-1 =1 o oields' method
3 LS L B+ m m+1
and;vg:1"-rfom.~ Vm , Vm , Vm+1 similarly with 6 step-size
set_to. be _negative.
n+1 .

= vn¥$"vn41' vn+2=

8 éomputed-ffom ‘and similarly~ -

for Vg:;, and then'Vg:%, VEI% are computed by step 2) above,

‘By this method we compute values of V such that if V; is inside
the D.0.A. then so are VI °1, V2*®2 where 0 <c, £ 1,

0 5'02 %< 1, Then Vg+1 can always be computed from 5.4.10
using step-size k' in 6 given by

k! =(c1+ c, )k

: 2 _
and Vﬁ:?1 can be computed from 5.4.10 if ¢, = 1 and 5.4.7 if
c, < 1, similarly for V;:?2.

Tne only remaining item is to decide when (mh,nk) is
~outside the continuous region. This is bound to be slightly
subjective but from a computational point of view some suggestbonsg

are
n .n )
2) Vm+1 < {m
n R,
®) Vm+‘1 < Vm

n :
or Vm+1 > P
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where p is large and positive wnen d = 0 and p is slightly
less than 1+0 when d = 1,

8,2 Tangential Accuracy

The grid system 5.4.4 takes no account of the fact that
grid points become more widely spaced out as r increases.

To zet round this the grid could be made denser by doubling
N at a suitable value of r. It is suggested that if r % h/k
then k i8 halved and the intermediate points are first obtained
A

vn+% -yttt L yn 5.8,2

m m m i

2

The computation of intermediate points by 5.8.1 or 5.8.2 is
of second order accuracy and so does not reduce the accuragy
of the method, but may introduce extra computer errors caused

by more computation.

8.3 Radial Step-size Change

If we find that VD is inside the region of continuity

but V;+1 is not (n=1,...,N) it is reasonable to try to Feduce
the value of h, The suggested criterion is that when
25 < )_g) < S*
Mg = nk
the step-size hn for this particular n should be given by
h =h 520,1'000
2s+1

where h is the original step-siée used to begin computation
and n = 1,...,N. This method suffers from problems of storage
of necessary data to compute V at all grid points.

9, Definition of Optimum Method

Much has been written in previous sections on the three
methods given in section 4. Now we can put the relative merits
of the methods and their moditications together and suggest
the best scheme for computing D.0.A.s from a general 5.4.2.
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Sections 5,7,8 have shown up several areas of comparison
between the methods and problems that occur with their use.
The optimum method is clearly zoing to be one in which the
three methods are possibly all used with switching taking
place upon satisfaction of certain criteria.

We have seen that Shields' method is most easily applicabkE
using the initial conditions

¥o=0, 1= 1,...,N ' 5.9.1
Also we know that if d = 0 Shields' method is stable everywhere
and is convergent. Therefore it is best to use Shields' method
as much as possible. We could use it until a circle Vg,
n=1,...,N, is computed which is not continuous from the
previous c¢ircle. However since it can be difficult to decide
which circle has breached the region of continuity, this is
not recommended. It is better to stop before there is any
doubt and we recommend stopping when

V = 10 5.9.2
is breached by a circle v = mh.

There is no theoretical basis for 5.9.2 but this has been
found to be a good value of V which terminates computation
net too close to the overflow line, but near enough to justify
not using Shields' method. The best value of V to use depends
on the scaling of F,G, % .

After this we must switch to an explicit method. The
Second Order method has all the advantages of accuracy, while
for convergence and computation there is nothing to choose.
The problem of small coefficients given by F(r,8) = 0 affects
both methods. The only possible disadvantage of the Second
Order method may be stability. The Von-Neumann amplification
factor must be checked on r = mh a2nd if it becomes large then
we must revert to the Explicit method.

If 4 = 1 we may need to term'nate Shields' mebhod earlier
than by 5.9.2 since it is only stable if F € 0. Shields’
method is most difficult to deal with when coefficients become
small, while the Explicit method has a facility for changing
b to ensure that F - bhd§ # O.

Thus we can write down the steps of the best algorithm.
A11 the values given are empirical and are suggested on the
basis of experience. As already mentioned values of V depend
on scalings of F,G,d .
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a) Use d = 1. (Zubov's regular equation}.
b) Use Shields' method with the initial conditions 5.9.1.
¢) Terminate Shields' method at either

l) VvV = 0'99,
or ii) F + hG- hd§ or F - hG ~ hddvecome "small® in the
kK 2 XK 2

sense that they become less than O0-1 in magnitude of the other
coefficients of 5.4.7,
iii) the stability region F € 0 is breached.
d) Then use the Second Order method providing either
i) \$ does not become too "large" in the sense of bheing
more than twice that of the Explicit method,
ii} F is not "small" in the sense of c)ii) such that
coefficients of 5.4.21 exceed 10, .
e) Otherwise use Explicit method with adjustment of b to ensure
® - bhd$ is not "small®. Within the region 0 < b< 1, * - bhd?
should be as large as possible.
f) The method of keeping useful data in sub-section 8.1 should
always be used to obtain the boundary accurately.
g) Tor convergence of the Second Order or Explicit methods
a check must be made to ensure that
h < k|§
G
reducing h if necessary.

h) The method of section 8.2 and 8.3 are not recommended as
they involve extra computation, but are available if such
accuracy of computation of the boundary is desired.

10, Higher Orders

Radial methods of solving Zubov's equation are particularly
amenable to extension to higher order systems.

Consider the polar co-ordinate system 5.3.18, and the
initial conditions given by 5.%.19 or 5.%.20. Zubov's equation

then takes the form 5.3,22 n-y
F(I‘,Q1,-.,Qn_1)")_V(I',91,..,Qn_1) +ZGi(r,g1’oo’gn_«l)élr_(r,g_lgaa,gnd)
B Y ' }Qi
= -®(r,0,,..,6,_)(1 - av(r,9,,..,6,__,)) 5.10.1

To illustrate how the methods are applicable to 5.10.1 we
consider 4 dimensions for ease of notation. For Shields' method

the corresponding 4-dimensional finite difference approximations
become
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VY o 1o dF1, ke, 141 et ke, j+1,k,1+1 j+i,k,1
3T h(vm+1' SR S , Vo Vo

+Vj,k+1,l+'|
m+1

RPREAPE'Sh P ER TN B2 IS S5 IS SRS EL IS 0 R RS R O
m m m m

i k1,1 3, K, 141 jyk,1
+V%l1 ’ Y A A

Jok+1,1+14 Jek+1,1 _ydik, 141 _ydik,1
=vy' ! —Vm’ ! Vm’ Ve )

5.10.2

and similarly for d, J}Y¥ YV, V.
L
| 36, 6, W85
Substitution of 5.10.2 and corresponding terms for

W W, ¥V, V into 5.10:1 then-gives an implicit formula
O, g, WO

1 4 >
for & points on the sphere r

(m+1)h in terms of known formulae
and 8 points on the circle r = mh,.

~ There are N1N2N3 such equations for fixed m and they
may be solved by standard routines for solvint lLinear equations

j, K, 1 .
V;;jl_:_al, » J =1,o--,N1’k=1,-o"N2, 1=1,-..,N30

The other two methods are much simpler however, since
they are explicit. The “4-dimensional version of 5.4.10 is

obtained by writing down the 4-dimensional eqﬁatidﬁs for %.4.9 .

to give

- i,k i, k, 1
W oz (udoloydilodyy
?r

YYD FE IS '35 | i k,1 j=1,%k,1
_% c({(1=a, V™ 1P 422 Vor ™ Ta (14, )V 70T )/ 2k,
A '

Il

. 5 1 ] 3 —

B o (1=, VKL Lon vl (g yydi kTl 0
'bgz

’B P - j!k’1+1 jvk’l - j,k,l—1

'Sg = ((1 a3)Vm +2a3Vm T (1+a3)Vm _)l2k3

>

ol kyl '
VoA pvirit 4 (1-b)VYe

,1

with known terms evaluated at

r = (m+c)h, 0, =273, 6, = 210k, 6; = 2wl
1 N1 » V2 —NE—' 3 _

! The Second Order method is relatively difficult to evaluate

in 4 dimensions, 5.4.12 stays the same except for notation

of Vv, while 5.4.13, 5.4.14, 5.4.15 have obvious generalisations

to higher orders. The procedure carried out in 5.4.16 to

obtain 5.4.17 is still quite straightforward but involves
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extra terms. The approximations 5.4.18 are replaced by n
approximations of the same form, and the approximation 5.4.19
has to be considered by reference to 5.4.15 and 5.4.17. The
1ast term of 5 4 17 becomes

3 3 k,1 203, k,1

‘L '}9. -bg. *
! . 1,771,
lignce 5.4.19 becomes
'§2V%’k'1 ~ v£+1,k+,1,1 +Vﬁjl,k,l ”V£+1,k,l —Vg’k+1'1
2699, 4xy¥;
and similarly for “gvé'k'l }Fvgykyl
, -
6.0, RLAY
and
2uds k1 J+1,k,1 Jok,1 =1,k 1
\hv a4 vm T _2vm’ ’ +Vm ’
\QQ k%
and similarly for 'B2V%’k'l “fvg'k'l
’
\Gg \Q%

The other features of this method such as finding the
V = o= contour as described in section 8 are alsc applicable
to higher orders but the algebra is too involved to write
down here,

As an example we consider a generalisation of the Hahn
system into 3 dimensions given by

X = -X + 3x2yz
y = -y 5.10.3
z = -z

the D.0O.As of 5.10.3 is given by xyz < 1. The series constructon
of Zubov's equation yields the solution of

(—x+3x2sz§l ~yov — zov

2y
X oy 3z

= —2(x +j +Z 510,41

as being

Vix,y,z) = Y2 v 20 s xzzg:j{1113i:g ] (xyz)"

Now if we try
V(x,y,2) = y° + 2° + x°s(u) 5.10.5
where u = xyz
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in 5.10.4 we obtain the differential equation

ds , 200-3w)s _ __ 2 © 5,10.6
du 3u{1-u) Zu{1-u)
The solution of 5.10.6 as far as can be obtained is

u2/3(1_u)4/35___ gf@i)1/3 du.
-3 u

Solution of 5.10,4 was attempted numerically in polar
co~ordinates using the 3-dimensional version of the Explicit
method which is

i3 , i+1,] cod=1,
(P-bhd @ )V 3y = —%%1((1—3.1)\![11 0o~ (rag) vy 1 d)

1,j*1)

1. . .
-p_ggc(1-a2)v;'3” - (1+a,)v}

2k2
. i,
+(F-a ht, - a,hG,+ (1-b)hd§)vm' -hd
Xy ko |
where known terms are evaluated at r

Il

(m+c)h, 0 £ c¢c < 1,
G.«I =ik1’ 92= jkz' i= 1,-..,N1, j =1,...,N2.

The method of keeping useful data was used, and this

i, j+»

but V;1%+1 is not, then we compute such terms as Vm+1

using the Shields' methoud
. - i, J+ _ _ i,
(r+§§2 hd § )v 23" +(F %;22 dBIV_2 Y
2 2

2

- * i j >\ - ’ i j

=(¥=nG,+hdB)Vi* I L(F4nG,+nd §)vi*d - 2nd
Sl Sk 2 °

-1 € 2\< 1, and similarly for Vé+‘\’3.

The results are shown in fig. 45 in the form of a €G1,92)
plane with V = 2.0 contours superimposed for different values
of r. Although computation was performed for O < 94y 65 € 2
there is a lot of symmetrv as can be seen from the polar
co-ordinate transformations

X =TI CoS 91
y'= T sin 8, cos &, | 5.10.7
Z = I sin 8, sin 92.

Comparing 5.10.7 and the analytic solution 5.10.5 we see that

iiiiiiiiiiiii======-__,




V(r,91,92) = V(r,91,1r+92]

V(r,91,92) = V(r,21r-91,92)
which is why fig. 45 has been plotted for O < &,, 8, < T,
We may further estahlish the relationships

V(r,91,92) = V(r, 77-6 Tr-gz)

1’
V(r,91,92) = v(r.91,1T/2—9
which can be seen on fig, 45.
Tt has been shown that radial methods can be extendgd

5)

to higher orders where the principle is still that V on
r = (m+1)h is computed from V on r = mh.

11, %xamples

Example 11,1

X = -6x - Ty + y2
. 2
Yy =4Xx +y + X
This system is actually the system
= -6X + y + yz‘

X

o=y x?

transformed to its stable critical point at (2,-4).

Using #(x,y) = 2x° + 2y2, d = 0, Solution of the Zubov

equation by series method yields the quadratic part of V(x,y) as
Vz(x,y) = (39x2 + 62xy + 107y2)/110.

The Explicit method was used to solve the Zubov equation

(-6x -~ Ty + yz)j%X + (4x + y + x2)'zi = —2x2 - 2y2 5.11.1

X Y
using the step-sizes h = 0:0125, k = w/50, system parameters

a=0, b=2%, ¢ =% and initvial conditions

Vg = (mh)2 form = 0 and m = 20,
It has already been shown in section 7 that computation of
5.11.1 by the Explicit method breaks down on the curves 5.7.8
which are shown graphically on figs. 42, 43.

Solution of 5.11,1 was also attempted using the Second
Order method, using the same step-size and initial conditions.
With the consideration of where instability will occur shown
in fig. 31 we would expect the same points on r = 21h to be
affected as in fig. 30, but also neighbouring points. The
values obtained are
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20 21 . 22 _ .. 23 A,
v39 - 0-33, v2l = 062, v32 - 0e58, V5 = 0-0f
# 34 35 —— '] l 36 =3 — L]
v21 = ""O'ng V21 = 1 37. V21 = 0 30

70 71 _ _q. 72 _ 5. 3 - o
V21 = 0+13, V21 = =0-+30 V21 = 047, V21 0 QG

84 . TR 86 _ ..
v21 =0 33; "21 = =0 67! v21 = 0 35

' while 0°04 < vg1 < 0+09 for n

1y+44,100 but not any of the
above.
xample 11,2

. 2 2
X ==X +y + x{(x™ +y%)
2y

J=ox—y+yx? ey 5.11.2
Using #(x,y) = 2(x° « y2), d = 1 5.11.3
the analytic solution of the Zubov equation

(—x+y+x(x2+y2)i§E+ (—x-y+y(x2+y2))BV = —2(x2+y2)(1—V) 5.11.4

X 3y
is given‘by
Vix,y) = x° + y2 5¢11.5
which indicates that the boundary of the D.0.A. is given by
2 2 : |
xT +y =1, 5.11.6

Solution of 5.11.4 was attempted by the Explicit method and
the step-sizes

h = 00125, 0+01, 0-005

i

parameters a = 0, b = %, ¢ = % and the initial conditions
Ve =0, mn=1,...,100, 5.11.8

The re%ults from the grid points indicated that on r = mh,

Vg = (mh)z, n = 1,.00,100, m = 1,2,... to at least 4 decimal
places. An alternative to 5.1].3 was then used as in Shields
(28)

B(x,y) = 10x° + y2. 5.11.9
Figs. 46,47 show the results of computine the contours using
the ®xplicit method and the method of keeping useful data
in sub-section 8.1, The criterion for rejecting data was

n n
Vm+1 < Vp
n
or Vm+1 > p. 5.11.10

The 9 step-size was as 5.11.7 and the initial conditions as
5.11.8. Various h,p were used in the computation. Fig. 46
shows contours given by p = 0+9, 0+¢95 and h = 0.0125. Other

m
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values of h were used with no significant difference in the
results. 5.11.10 was then replaced by the criterion
v v 5.11.11

which resulted in the three contours shown in fig. 46 for
h = 0+0125, 0+025, 0+05. The contours resemble 5.11.6 but
by reference to $5.11.5 we see that criterion 5.11.11 is nowhere
satisfied by the analytic function 5.11.5. The reason that
we obtain a contour which resembles 5.11.6 lies in the old
problem of instability caused by small coefficients.

Substitution of F,b,h,d, % for this example into 5.7.5

gives

3 2

—r + 10 - hr(9 cos®e +1) = 0 5.11.12
3
when 5.11.9 is used and
—r +1° - hr® = 0 5.11.13

where 5,11.3 is used. Solving 5.11.12 and 5.11.13 explicitly
for r gives respectively

r = h(1+9 coszg) + (1 + h2(1 +9 00829)2 )é 5.11.14
16

4
and r=h + (1 + ﬁz)ﬁ.
5 T 7}

Substituting h = 0+0125 into 5+11+14 and letting 0 € 8 < 2w
. we see that

10031 < r < 1-0317. 5.11.15
Hence in the band given by 5.11.15 we expect computation to
break down anda criterion 5,11.11 satisfied.

In fig. 47 we see results of using criterion 5.11.10
with h = 00125, p = 0+, 0-95, 0-98, 0-99, 0-995, 1+0. Fig.
48 shows the same contours of r varying with 6. The areas
where the Von-Neumann amplification factor given by 5.5.17
is less than one in magnitude were computed and shown in
figs. 47,48. The areas are given by 5.5.22 and for this example
becomes

(-1 + rz)r3(9 0052 o +1) & =125

g
which is all space except for the enclosed areas marked on
figs. 47,48. It can be seen that the contour V = 1+0 on
fig. 48 is more accurate for those © where the line 8 = nk
passes through the area of computational stability.

The Courant-Friedrichs-Lewy condition for convergence
of computation given by 5.5.12 becomes for this example
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3

r-r > 5.11.16

~hs

For h = 0-0125, k = /50, 5.11.16 gives 0-2079 € r € 0-8797.
An attempt was made to compare the contours V = 1+0 obtained
using criterion 5.11.10 with p = 1 and letting h,k-» 0 such
that h/k is constant.

Pig. 49 shows the result for h/k = 5/8% . The results
show that the contours do not converge to 5.11.6 as h,k-——= 0,
Convergence micht be expected if the initial conditions were
given on r > 0+2079 as VE = rZH(G) where mh > 02079 and the
quadratic part of V(x,y) is given by V2(r cos 8,r sin 8) = rZH(Q)
Fig. 50 is a plot of r against © for the contour V = 1 using
criterion 5.11,10 and the initial condition
V2 = (0425)%(3.875 cos®® + 2.25 sin § cos & + 1.625 sine)
where mh = 0+25, 0 = nk, with h/k kept.constant as before.
As seen from 5.11.13 convergence does not occur tor r » C+8797,

FPig. 51 shows a plot using 5.11.8 as the initial conditions
fixing k =7/50 and letting h—=0, which has the effect of
enlarging the region of r for which 5.11.16 holds. Convergence
does seem to take place in this case.w

Fig. 52 is produced by a simple variation of the optimum
method using Shields' method to obtain whole circles until
a circle touched the contour V = 0+98 after which the Explicit
method was used.
Example 11,3

6y - 2y2

-10x - y + 4x2 + 2Xy + 4y2
System 5.11.17 has a D.0.,A. given by
(x - %) + y2 <1,
Solution of the Zubov equatlon was attempted using
g(x,y) = 2(x +y ) .
The problem of instability when the L.H.S. of 5.4.10 is small
occurs when 5.,7.6 is satisfied.

For 5.,11.17 we have

5.11.17

X
y

f(r zos ©,r 5in @) = 6rs - 2r282,

g(r cos 8,r sin 6) = ;1Orcwrs+4r202+2rzsc+4r2s2,

cos 9.
Then from 5.4.% we have
F(r,8) = ~4rsc - rs2 + 4rzs = 0, 5.11.18

where s = sin 8, c
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The solution of 5.,11.18 is r = 0, r = cos 6 + sin 8/4, sin @ = {.
Hence we would expect the instability in computation given

the initial conditions Vg =0, n=1y...,100, and step-sizes

h = 0:0125, k = W/50 to occur when

8 = nw
or 8 =nw- tan_14.

Figs. 53,54 show the contours proauced by the Explicit methud
for V = 5+0, 100 respectively and various h. It appears
tnat criterion 5.11.10 is satisfied for small r in the region
of @ given by 5.11.19.

This example was also tried using d = 1 to consider
variation of b to avoid 5.7.5. The system used was to consider
the product F$+C(F$+c- h§§$+c). 3imilarly to 5.7.11, a constant
b was used if this product was positive but otherwise either
b =0 or b = 1 according to which resulted in a larger magnitud

. n ; n . —
of F .. - vh$ nece However since P(F) = 1, P($) =2 and h = 0-0135

the presence of the extra term bhd® in 5.7.5 made little
difference near the origin.
Example 11,4

5.11.19

X =y

3.( = =X +)J(x2-1)y

a Van der Pol system,
Using #(x,y) = x2 + yz,\d =0

the solution of the Zubov eguation
YW + (xep (x"=1)y VW = <(x° + ¥
X Ny

2)

was attempted in various ways. The Explicit method was used
but computational instability was discovered in a neighbourhood
of the origin. The initial conditions used were Vg = 0,

N = 1,404,100, with step-sizes h = 0:0125, k =w/50 and
computation parameters a = 0, b = ¢ = 4 and criterion for
discontinuity as 5.11.11., The resulting discontinuity line
passed through the origin and was asymptotic to the x-axis.
This is explained by looking at the coefficient of VO , in
5.4.10 which is zero when

» (1205 2

8 - 1)r sin“g = 0. 5.11.20
An attempt was also made by using Shields' method until a
circle crossed the contour V = 5+0 then reverting to the
Explicit method., Fig. 55 shows the discontinuity line by

criterion 5.11.11 and it also touches the cirecle where the
R
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changeover took place in the vicinity of x = 1 which is also
a solution of 5.11.20., Fig.56 shows the contour V = 2,3,5
and the discontinuity lihe when solving throughout by Shields'
method. The discontinﬁity line was determined by applying
criterion 5.,11.11 to the grid print-out.

Finally the regular Zubov equation (d = 1) was solved
similarly by changing methods at V = 0+98., Fig. 57 shows the
discontinuity line. Variation of b to avoid the problem of
small coefficients was attempted and fig. 57 shows an imprévement
in the wvieinity of x =1, ¥y = 1+3,

Example 11:5

X = =X + ¥

y=-x -y 5,11.21
Using #(x,y) = x° + yz, d =0 5.11.22
the Zubov equation is satisfied by

2 2
V(x,y) = x~ + vy
2

Thus we see that 5.11,21 is asymptotically stable in the whole.
The radial Zubov equation 5.4.2 becomes for 5.11.21, 5.11.22
- - = - rd, 5.11.23
6
5.11.25 may be solved by the Explicit method using a = 0O,

b =%, ¢ = % and the general finite difference formula is

given by
n 1 -1 2
—rVo ., = hk(v;* - v2T) - rvo - hr 5.11.24
where r = (m+4)h. 5,11.24 is independent of & and so we may
say that '
1 _ g2 _ _gN
Vm_vm_---c-o*'vmo 5011025
Substituting r = (m+%)h and 5.11.25 into 5.11.,24 gives
—(m+é)hV:l:+1 = -(m+%)hvg - (m+%s;)2h3 5.11.26
. o 2
5.11.26 simplifies to VI , = vg + (m+3)n°. , 5.11.27
The difference equation 5,11.27 nas a solution
n 2.2
Vo =mh™ n=1,..,,N. 5711.28

It is interesting to compare the Von-Neumann stability
regions for the Shields' and Explicit methods. we know from
5.5.19 that the Shields' method is stable everywhere if d = O
and the results do indeed yield 5.11.28. The Explicit method
with a = 0, d = 0 yields |W.|y1 everywhere. The results
of computation start diverging from the solution 5.11.28 at
about r = (Q-55, | '
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The reason for this divergence is that while 5.11.23 is
a formula which is independent of 8, the computer program '
does not explicitly work out 5.11.24. ror a given r,8 the
program works out F(r,8), G(r,9) by the formulae 5.4.3.
Substituting from 5.11.21 into 5.4.3 we obtain

#{r,8) = (-rc + rs)c + (-rc - rs)s

G(r,8) = ((~rc - rs)c - (~rc + rs)s)/r. 5.11.29
The computed values of F(r,8), G(r,0) are approximately -r and
-1 respectively but round off errors occur in computing 5.11.29.
It is these errors which become magnified by an unstable method
of computation.
Example 11,6

2
-X + ¥y + X

Sl e
I}

-y + Xy 5.11.30

s
I

If we try

V(x,y) = x° + y2

as a Lyapunov function for 5.11.30 we obtain

V(x,y) = —2x° 4 2xy - 2y2 + 250 4 2xy2.
Computation of the Zubov equation
(—x+y+x2)?N + (-y+xy) W = -2(x2—xy+y2) 5.11.31
- ™ v

was thus attempted using fhé Expliéit method together with
the method of keeping useful data, The parameters used were
the usual ones and fig. 58 shows computed contours V = 2,5,10
and the curve F = 0 and the boundary of the D.C.A.. The problem
here is instability. OSubstituting a = 0 into 5.5.21 shows that
the method is nowhere stable and significantly the results
become unstable in the quadrant nearest the boundary. i.e.
where V increases most rapidly.

Fig. 59 shows the discontinuity line when 5.11.31 is solved
using Shields' method changing over at V = 2.0, Fig. 60 shows
the results of solving the regrlar equation

(-X+y*x2)§l ¢ (cy+xy)W = —2(x°-xy+y?) (1-V)
X R

changing methods at V = 0:98. The extra computational stability

achieved over the modified equation 5.11.31 by considering

when V reaches a finite limit can be observed,

Example 11.7

X

¥ o= -y , 5,11.32
This example due to Hahn (10) has been much used to illustrate

-X + 2x2y

certain points in this and other chapters. It has the advantage



of possessing a well-known D.0O.A. boundary given by xy = 1
which indicates that the D.0.A. is unbounded. The Shields'
method of solution of the Zubov equation was accurate until
about r = 13,

The Fxplicit method was used to solve the Zubov equation
(~x+2x°y VI ~ I = —2(x%+y°) (1-dV) | 5,11.33

x ¥

incorporating the method of keeping useful data to obtain

cnnservative estimates of contours., The criterion for terminatir
computation was

n

Vm!1 < 0

7 5.11.34
m+1 = P. * *

The step-sizes were h = 00125, k = /50 and system parameters
given by a = 0, b = %, ¢ = 4 and the initial conditions

Vi =0, n=1,...,100. 5.11.35
5.11.32 satisfies the conditions of theorem 3.4.1 and from
5.5.3 we see that as r-—=0, G/F tends to O also. So there

is no problem with the initial conditions 5.11.35,

Fig. 61 shows the curves obtained for » = 2, p = 3.
Apart from grid scatter (the grid points are a conservative
estimate) the curves are acéuraté. Fig. 62 shows the curves
obtained for p = 5, 10 and fig. 63 likewise for p =10,25.

The curves obtained become ragged when criterion 5.11.%4 is
satisfied by the first part of 5.11.34. That is, computation
- has become inaccurate and unstable. As sesn in section 5 by
equation 5.5.21 when d = 0, a = 0 the Ixplicit methdd is
nowhere stable. _

Fig, 64 shows the attempt to solve 5.11.33 given d = 1,
p = 0+95. This is again accurate to the resolution of the
grid points, but when p = 0+99 as shown on fig; 65 the ragged
effect can again be seen.

Figs. 66,67 are more promising. They show the attempt
to compute 5.11.%3 using d = 0, p= 10,25 and the c¢riterion

n
vm+1
n
Vm+1
comparing them with the analytical curves given by

Y2 + x2 = P.
1-xy

< yi
m

> p

The stability aralysis for d = 1 is rather interesting. The



Von-Neumann amplification factor is less than unity when 5.5,22
is satisfied., In this case b = 4 and the areas of computational

stability are given by
3

—1+2r2 sin 8 cos” 8 < -h
2r sin49 cos49 .2k2
i.e. 2r°sin 8 ¢0s 9 + hrsin’o cos?s - 1 < 0 5.11.36
- %
‘ k

For 5.11.36 certain deductions may be made
a) If cos 8 = 0 or sin 6 = O then 5.11.36 is true.
b) If sin & cos & > O then 5.11.36 becomes
r <« -h sin> (hzsin79 cosSQ/k4 + 8 )%
4K2 16 sin © 00839
When sin © = cos 8 = 14/2, h = 0-0125, k =/50 we have
r = 1+2301,
c} If sin 8 cos @ <0 and if h 2v21-6997k2 then there are
certain values of cos 9, sin 8 such that 5.11,36 is not

0 cos O

|+‘J

satisfied for r in the neighbourhood of
r = —hsinBG cos 9
4x°
With 5.11.32 an attempt was made to see if there was any

~difference in computationh by varying ¢ rather than p in 5.11.33,
5.11.34, 5.11.33 was solved with.d replaced by _
plu,x,y) = y(x2 + y2) 5.11.37
and computation of V = p with u = 2 corresponds exactly to
computation of V = 2 with u = 4/p. This can be proved by
defining V(u,x,y) as the solution of the Zubov equation using
5.11.37 p
V(u,x,¥) = —JZé(u,x,y)dt' + V(u,xo,yo)_ 5.11.38
Substituting 5.11.37 into 5.11.38 gives
V{u,x,y) = V(u,xo,yo) - u_J:(x(t‘)2 + y(t')z)dt[ 5.11.39
x(t), y(t) are independent of u. Hence putting u = 2 in 5.11.39
gives ¢
V(2,%x,y) = V(Z,xo,yo) - 2f°(x(t')2 + y(t‘)2)dt: 5.11.40
Eliminating the integral from 5.11,39, 5.11.40 gives
V{u,x,y) = V(u,x_,y, ) -u/2(v(2,x_,y, ) - V(2,x,y))

5.11.41

5.11.41 is true for all Xp1 Yoo Hence letting Xg =0, ¥y,=0
and observing V{(u,0,0) = 0 we obtain

V(u,x,y) = %V(2,X,.‘/). - 5.11.42

Uence we see that V(2,x,y) = p, V(u,x,y) = 2, are equivalent
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if u = 4/p.

By reference to 5.4.10 we see that each term in computation
is linear in V or & and that Vg has the same pronerties of
V(u,x,y)-.

Figs, 68, 69, 70 show computation of the Zubov equation
with ¢ = 0, p = 2 with u = 10,5,3,2,4/3,4/5,2/5,4/25, and are
exactiy the same 'as obtained by u = 2, p = 2/5,4/5,4/3,2,%3,5,10,¢

5.11.33 was also computed by the Second Order method.
Figs. 71,72,73 show a comparison between the Explicit method
and the Second Order method by plotting V(mh,nk) - Vz against
& form = 96, 104, 120 respectively. The improvement in accuracy
is clearly seen. Fig. 74 shows the contours obtained by the
Second Order method. '

The radial Runge-Kutta methods considered in section 6
were also tried. ‘The boundary of continuous results (fig.75)
is inferior to that obtained by finite differences and bears
out the points made in section 6 about the stability of computation,

12. Conclusions

In this chaptver an. investigation has been made into
solving Zubov's equation by treating 5.1.1 as a P.D.F. and
approximating the partial derivatives. Various problems have
been encountered along the way and each in turn has been
overcome, culminating in the definition of the optimum way of
combining the three methods considered. The biggest problem
by a long way is that caused by computing values of V near
curves on which certain crucial coefficients are zero, or
certain terms become infinite. The regular Zubov method (d = 1 in
5.1.1) must be used to avoid this problem,

Instability, inaccuracy and lack of convergence all need
to be taken care of in this type of method, and we have found
that computation can easily fall short of the true boundary of
the D.0.A. for any one of these reasons. This method is ruch
simpler than that of Chapter 6 although it is not as good at
finding the boundary of the D.0.A., ‘

4
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Chapter 6

Solution on Charatteristics

1. Introduction
In previous chapters we have seen that various methods

of solving Zubov*s cquation have been considered, and each
have had problems of some variety. The series construction

and the Lie series procedure each had convergence problems,
while numerical methods have problems of stability and accuracy.
In this chapter a numerical method is presented which overcomes
the stability problems by computing solutions in a different
way. We do not suggest that this method cannot ‘be improved
upon, and further possibilities are considered later in the
chapter.

. Previously considered methods attempt to use the given
initial conditions for Lyapunov functions

v(p) = O S 6.1

or some close dpproximatioh to it. However when computing
the Zubov equation

A
£(x)3v = - A(x)(1 - dV(x)) . L 6.1.2
X :
from the initial conditions 5.1,1 to try to obtain the contour

where V = &© or V = 1 it has been seen that the computation
becomes unstable especially on a grid where neighbouring
values of V(x) are large near the boundary of the D.0.A., and
the accuracy of the numerical methods is not so good.

In this chapter we develop a method of computing which
is initiated nea> the boundary of the D.0.A.. The method then
computes trajectories which either tend %o the origin or away
from it, depending on where the computation is initiated. The
problems of numerical instability are larzely eliminated.

To illustrate this particular type of situation we consider
the numerical computation »f the quantity In which satisfies

Ypetr = 1021y, + ¥y 4 = =155

n=1,2,3,4 6.1.3
Yo = 0, yg = 0-8333.
Pox and Mayers (45) solve 6.1.3 in two ways, one of which is
unstable and the other is stable. The unstable method involves
computing two series while the stable method for this problem

involves simultaneous equations. There are other examples of
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this phenomenon, but this one illustrates the point,

First of all, in section 2, justification of *;chis method
of computation is attempted. The details of the algorithm
are explained in sections 3 to 7 and the actual computer program
is explained in section 8.

This algorithm is developed in 2 dimensions/and in section
9 the possibility of applying it to higher orders is considered
although generalisation is not as easy as with finite difference
methods.

The chapter is concluded with various examples in section
10 to show how far the algorithm is developed, and then there
are conclusinns and further possibilities in section 11,

2. Justification
The algorithm presented in this chapter is different

from other methods and requires some justification. There
are seven areas where justification for this metnod can be made.
2.1 D.0.A, Inside a Bounded Set

The methods based on series ideas compute stability

regions which are bounded but the D.0.A.may be unbounded.
The grid methods also have a problem when trying to compute
unbounded D.C.A.s in that we have 4o decide when to stop
computation.

In either method we have a problem of deciding when we
nave computed the D.O.A. to sufficient accuracy, particularly
if the D.0.A. is unbounded. In this chapter no attempt is
made to compute eomplete D.O.A.s. The stability regions indicate:
by this method are an approximation %o S5p 0 D(f) where

Spo= 1 x i |x| < 'n}_ 6.2.1

There are examples for which the D.0.A.s are much further
from the origin on one side than the other, but the indicated
regions of asymptotic stability are nearly circular. The example

X =Y

y o= -x(1 +y) - y(1 - 59
from 3hields (28) is such a case. The R.A.3.s computed by
Shields fall short of the D.0.A. due to the boundary being
much closer to the origin on one side than the other side.

However in this chapter, the algorithm used computes

stability regions inside a bounded region and does not have
this convergence problem,
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2.2 Converpgence and Conservativeness

The algorithm is conservative in that any points outside
the D.C.A. will not be taken to be inside it. However it is
still the case that some areas inside the D.0.A. will be
outside the R.A.S. computed. However letting certain parameters
of this algorithm approach zero or infinity will enable the
boundary of the D.C.A. to be approached arbitrarily by the
compubted R.A.S.. In particular by letting step-sizes and

accuracy parameters of numerical computation become zero,
‘and the computed boundary to be obtained on V = p where p
becomes large.

For convergence we shall consider the Hahn example

% = -x + 2x°y
& :—y ) 6-2.2
Using p(x,y) = 2x° + 2y2 ' 6.2.3

and d = 0, the analytical solution of the Zubov equation is
given by V(x,y) = y2+ xz/(1—xy)'showing that the D.O.A. is
given by xy < 1. 65.2.4
However the series construction gives

N

eyt 0y ='y2‘+xzz(xy')i_ - g5 -

The region of convergence Rc(ﬁ,i) bT°6.2.5 is in fact

|xy1< 1 0.2.6
and if Rc(ﬁ,g) < D(£f) then a conjecture of Shields and Storey
(33) sugrests that RN(ﬁ,i) does notv converge uniformly to
D(f) as N —=w%o, Shields (28) shows that the regions R2N(é,£)
indicated by the Lyapunov functions 6.2.5 with #,f given by
6.2.3 and 6.2.2 respectively lie inside 6.2.6 for even N and
increase slowly for odd N.

Numerical methods, however, have no such problems as
converpgence depends on being able to make the algorithm
parameters small or large as appropriate, which may be achieved
up to the limits of computer capability. .

2.% Arbitrary SR

Attempts to compute unbounded D.0.A.s accurately have
been seen to be possibly a difficult task from aspeects such
as the shape of the D.0.A. and convergence. However it is
unnecessary io determine the whole boundary of an unbounded
' D.0.A., since in practical situations the initial conditions
'will pe within a finite domain on which we can place a bound.
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Certain‘physical limitations mean that the initial conditions
must be constrained to some extent and so there must exist
an upper bound for R in 6.2,1 beyond which we would not he
interested because such initial conditions wlll not arise.
This bounded value is different for each problem, and while
having justified computation of Sg 0 D(£) rather than D(f)

we can make R arbitrarily large (subject again to computer
limitations). |

2.4 Efficiénéy and Speed

This algorithm is relatively quick and straightforward
to carry out as it is systematic in effectively reducing a
2-aimensional problem to two inter-linked one-dimensional
problems. The grid methods of Chaptlter 4 are simpler to compute
if values of V are required. But to attain the same accuracy
as this algorithm, the grid methods become very complicated
to actually locate the boundary of the D.CLA.. In concentrating
on characteristics in this chapter we do not encounter the
problem of deciding where the boundary intersects with a grid.

2.5 Stability
We have already seen in Chapter 4 that instability caused

tackling the problem from the other direction. A similar

'technique is used here,

It was noted in Chapter 5 *that to obtain the contour
V = p we have to try to find grid points such that

n SN+ n n . . .
Vp <P <V, and V < p <V _, whilst hoping that neither

((m+1)h,2 wn) or (mh,2w (n+1)) are outside the D,0.A.. 1t is
: N . _ .

much more stable to select a point (rO,GO) or (xo,yo) ana
compute in such a way as to decide whether (xo,yo) is inside
the D.0.A. or not. '

2.6 Choice of A{x,v)
We may write down the system equations as
Q_X_ = f(xly)
dt

dy - g{x,y) 6.2.7

and also‘write down the Zubov equation in the form
dvV = -A(x,y)(1 - av),
'd"-E L

The method of this chapter is based on solving the equations
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dx = —f(x,*? )

av X,y {1=-d 6.2.8
dy = -elx |
v B(x,y)(T=av).

Now it may be possible to choose g#(x,y) in sucn a way as to
make solution of 6.2.8 significantly easier than 6.2.7. This
in fact will seldom be possible, but consider the example

X = -x° - xy2
* 2 ! f.2.
. yo= X%y -y | 03

using p(x,y) = x° + y2 6.2.10
we find that the corresponding version of 6,2.8 becomes

dx = x

dv

dy = v

av

which is much easier to solve. However we may notice that
for example 6.2.9, 6.2.10 P(f) = P{g) =3, P(4) = 2 which
by theorem 3.6.5 means that V(x,y) is not a Lyapunov function,

2.7 Finite Computation

The question arises that if the method is based on.
characteristics then why not compute the solutions of 6.2.7 and
. . forget_all_about_V(x,y)? -The-answerlies—in-the-fact-that— - - --=-
x{t), y(t)-—=0 as t= e, This means that it is possible to
decide that a point (xo,yé) € D(f,g) because the charateristics
through (xo,yo) appear to be approaching the origin if computation
is terminated at some condition such as t = T or ”E(t)” < €
for some & » 0, although they might eventually be found to
be unstable as t—=> v , Vice-versa we may mistakenly decide
{xo,yo) <¢ D(f,g) as characteristics through (xo,yo) initially
do not approach the origin and computation is terminated when
t =T or ,l;“ >R for some large R.

However the use of V overcomes this problem since x(V),y{(V).-—o0
as V—=0, and x(V),y(V) become complex for V< 0. These )
properties of x(V),y(V) enable us to decide on limited computation
whether (xo,yo) e D(f,g) or not.

3. Numerical Integration

The system equations in'm dimensions are given by

x = £(x)
or in scalar form as



i= 1,2,...,1'11.

We assume that the origin is a critical point when we consider

the stability of the origin
i.e.f{(g) = 0

6.3.2
1 =1,2,00.,m,
It was noted in theorem 1.8.1 that Zubov's equation
Vo= -g{x)(1 - av) 6.3.3
d =0 or1 ‘
may be solved by converting 6.3.3 to the auxiliary equations
given by -
dx, ._ = dxm . —4av
T w F{x)(1=dV) 6.3.4
d =0 or 1. ) .
Simple re-arrangement of 6.3.4 gives a new system of equations
ax; o -1, (x) | ) 6.3.5
av AR (T=4V)

i=1,.,..,my d =0 or 1,
Hence we see thate%y including the denominator of 6.3.5 in the
R.H.S5. we have converted a system 6.3.1 of O.D.E.s for X5
.in terms of .t _into _a system 6.3.5 for xi_in_terms,of,vj We
wish to consider the differences between 6.3.1 and 6.3,5.
Suppose the origin of 6.3.1 is stable and the initial
conditions xi(O), i=1,2,s0.,m, lie witnin the boundary of
+the D.0.A. That is (x(0)) € D(f) where D is the domain of
attraction for given f. Then according to definition 1.4.6
the solutions xi(t), i=1,2,.0.,m of 6.3.1 approach the
origin as t-=» oo, TLet us denote the solutions of 6.3.5 by
xi(V), i=1,2,...,m. The m terms on the L.H.3. of 6.3.4 are
the same as.would be obtained from 6.3.1 by eliminating t.
This shows that the trajectories followed hy xi(v), i=1,4..,m,
are the same as those traversed by xi(t), i=1,...,m. It
remains to consider the variation of xi(V) with resect to V.
Now by reference to theorem 3.6.5 we know that providing
P(6) > P(f) - 1 and the origin is asymptotically stable then
the Lyapunov function V(x) which by theorem 1.7.12 is the
unique solution of 6.1.2 is positive definite in the D,0.A.,.
That is
V(x) » 0 for x € D(f), x # Q. 6.3.6
v(0) = O.
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Also we refer to theorem 1.7.6 which says that system trajectories
xi(t), i=1,...,m cross contours V(x) = p once only as t-—><o
and that these contours are crossed with V decreasing for
an asymptotically stable system. Since we have already seen
that the trajectories x, (V) are the same as those of x, (t),
i=1,...,m then we see that the trajectories X, (V) cross
the contours V(x) = p once only for decreasing V

ence for an asymptotically stable system xi(V)~ﬁ»O as
V decreases. Put by 6.3.6 V(0) = O and hence x;(0) = O.
"hus we have shown that xi(V)—4>O as V—>0+, The question
arises as to what nappens when V <0 as 6.3.6 holds for all
X in a neighbournood of the origin? V(x) and xi(V), i=1,.e.,m,
are continuous functions and must be continuous as V passes
from positive to negative.

The contour given by

V(x) = p 6.3.7
may be solved for x given p < 0. By theorem 1.7.9 we know -
that V is a continuous function of x.  This implies that given
V2 in a neighbourhcod of V, then there exists X5 in a
neighbourhood of X, where
V= V(X)L e
v, = V(x,) _

for small § > 0, where |V, - V)] < § , providing that x exists
for such V. Now in the field of real numbers we see for p

small and negative there is né x in the neighbourhood of x = O

satisfying 6.3.7 . However when we consider the complex
numbers there is such x satisfying 6.3.7 in a neighbourhood
of the origin for p< 0, It is a fundamental property of
complex nwnbers that except for singularities where ”x||~aoo
as V—évv1 or x is indeterminate then x is continuous in V
and can be evaluated from a known function. The origin is
not a singularity as x(0) = 0 is quite well-defined 2nd so
x is continuous in V for negative V as well as for positive V.
Integrating 6.3.5 W1th respect to V gives :
x, (V) = x (V) f £ (x) v ' 6.5.8
m
i=1,0..,m,

In this algoritnm we are interested in evaluating 6.3.8 for
decreasing V., Substituting V = Vo= D in 6.3.8 gives

%1 {Vom 2 = (o) -Jrvﬁzf)é:}dV)dv 6
x){1- «3.9

= ’c-o,m.
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Now we have seen that if V_ > p then xi(Vo— p) is real and
continuous with respect to VO, while if VO<: p then xi(VO- p)
is complex and continuous in Vo.

However we are concerned with numerical integration of
6.3.5 or 6,3.8. This may be done by any of the finite difference,
Runge-Xutta or other schemes (52), (53), (54), (55) but the
results of numerical computation of real functions are always
real. ¥When V_ < p then integrating 6.3.5 numerically for
decreasing V requires evaluation of the R.H.S. of 6.3.5 when
x is in a neighbourhood of the origin. The results of such
computation are the subject of the next section.

4. ™heory of Negative V

For consideration of numerical integration of 6.3.5 we
shall confine ourselves to 2 dimensions, where we write the

system equations as

x = £(x;y) 6.4.1
y = g(x,¥) : beda2
and Zuoov's equation as
V= A, (0 - av) o 6.4.3
d = 0,1,

Suostituting 6.4.1, 6.4.2, 6.4,3 into 6.3.5 we obtain
_g_is = -f X 604-4‘
dv Bix,y;\1—%vi

—g{x

d
H% (x,y)(1-dv 6.4.5
6.4.4 and 6.4.5 are the equations we require to solve for

decreasing V from the initial conditions

yo = y_(vo) 6'4.7
Let h be the step-size in V used in the numerical computation
and define. Q(J) as the computed value of x(V - jh) with the

initial condition x(o) = X = x(V ) and SLmllarly for y J

§03), 5 - 1,2,...,n, mn = ;.

In section 3 we saw that x(V - jh), y(V - jh) are real
for V- jh > 0. Hence x(3) (3) will be computed as
approximations to x(VO- Jh), y(VO— jh) to the order of accuracy
of the method used, while Vo= Jh > 0,

Now using theorem 3.2. 1 and theorem 5.6.5 as applied to

6.4.,1 to 6.4.3 we have
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P(4) > P(f,g) - 1
P(f) > P(f,g) 6.4.8
P(g) > P(f,g) _
with equality in at least one of the equations 6.4.8. f/8
and g/é are indeterminate at the origin, but 6.4.8 implies
that system 6.4.4, 6.4.,5 does not satisfy a Lipschitz condition
for (x,y) € 5, fér all € » 0 and so 6.4.4, 6.4.5 do not
necessarily have unique solutions in S¢ for all € > 0. If
f/¢6 and g/4 tend to finite limits along some(tgaj?cgory then
j’,ﬁj ’

will appear reasonably smooth. This case is not considered

x(V),y(V) are continuous and the solutions X 3= 1,..,n,
as #(x,y) may be chosen such that £/d or g/d become infinite
at the origin. This is no great restriction as theorem 3.6.6
shhows that problems for which the Zubov series construction
is possible guarantees the above requirement. It will be seen
that the analysis of integration can still hold if f/4, g/&
remain finite as (x,y)—(0,0) but requires more care in
distinguishing stable and unstable systems.

e now consider the stage of integration when V passes
from positive to negative.

Let j be such that T T o -

V,=Jdh + e where O € e <h, 6.4.9
Define xe,j; such that
Xy = x{(V - jh) = x(e) ' 6.4.10
" Ve = ¥(Vy= jh) = y(e) 6.4.11
Let us assume that no truncation errors haveﬁoééﬁfredin"the
first j stages of integration. -
N3
i J) -
i.e. x( ) = X,
ald)
y =Y
A .
73— o,

" . . . A(i+1) '

de are interested in the (j+1)th step where V =e~h<0,
To illustrate the behaviour of §(3+1 , §(3+1) we look at

Euler's method specifically. Applied to 6.4.4, 6.4,.5 this become

M) Al hf(Q(sz§(j))

(%' 97,4197y (1-a¥1I7y 6.4.12 |

R Partakighiy

-1@«
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i) A(3 AT,
ﬁ(?{(J),y(J))(‘]—dV(J;
'V\(j+1) = G(j) - h. 6-4‘14—
Now as e —>0, x —>o0 and y_ —> 0. Hience either f(xe,ye)
, A(xgr¥g)
or g(xe,ye) ke or hoth as e —=>0 by the assumption

p(x,,y,)
on choice of A(x,y).
lience we see by letting x(J) 5(3) —> 0 in 6.4.12, 6.4.13
that either Q(J 1)—;1eo ar y(3+l;gp or both. By reference

to equation 6.4.9 and the definition of g and e, we see that

as V varies the computation of X(n)’gfn will have discontinuitits

@ccurfingfor such V for which e = O.

Throughout thls section it has been assumed that 6.4.1
6.4,2 is a stable system and that (x_,y )} € D(f,g). If however
(x o' Yo ) ¢ D{f,z) or D(f,g) does not Elet then trajectories
Y(V), y(V) will not approach the origin, Since g(x,y) # 0O
for (XSY) # 0, then there will be no such discontinuities

1n7§(n ;'§(n).“

ﬂ(n) o

x(V - p), y(V,- p), (nh = p), will be dlscontlnuous' when

Having shown tha% the computed values ﬁ( )

Vo = Jhy ! <ZJ " n-1, we consider instead variation of (xo,jo)
For each (xo,y ) there will be a -corresponding Vo (6.4.6,6.4.7)
but V w111 not generally be known. However the behaviour

of Q( g(n) as (xo,yo) vary can be analysed to establish

v
O-

For this algorithm we consider (xo,yo) varying along
a radial line from the origin.

We write X, = r,cos e
yO = r, sin o]
where 8 is fixed and r, is allowed to be variable.
For given X 1Yy yh,p 6.4.4, 6.4.5 may be integrated numerically
2(n) £(n)

to obtain x as approximations to x(VO— p)y y(V = p)
where nh = p.
Let us define
W(r .8,h,p) = “(n(n) A(n\)H 6.4.15
It is the Varlatlon of W with respect to r, for fixed 6,h,p
that we analyse. We have shown that if (r,9) € D(f,g) and

v

¥, < p then for varying r, (hence for varying V ) W is expected



tn have discontinuities corresponding to V = jh for the Euler
method -and to any VO requiring computation of the R.H.S. of
6.4.4, 6.4.5 for small (x,y) for other methods. 3ince f/é, g/¢
are never actually computed at the origin, these theoretical
discontinuities become high frequency oscillations in practice.

P R R B
a) b)

k

A

§b¢§ Discontinuous region
Fig. 76

¥

d)

Figs. 76a,b show typical variation of W for a system with
asymptotically stable origin but for which there exists
(r ,0) such that
o )

A
X =7
o 0cos o
A t\,e
=T 8
yo o3in
a v
an = Pa
o P

If 6.4.4, 6.4.5
give

could be integrated without error this would




&(n) = x(VO— p) =0
A(n)
y =y(V~p) =0
A
and W(ro,g,h,p) = 0.

However numerical integration without error cannot be done
and we have to try to obtain %O numerically., That is the
subject of the next section.

Fig. T6c sho@s the variation of W for a system where the
origin is asymptoticaily stable in the whole and p is chosen
_large enough so that VO < p within the ranzge of T chosen.
Fig. 7564 shows the smooth variation for an unstable system,
Note: if r, = 0O then Q(j), 9(3) should be computed to be at
zero for all j.< n, as £(0,0) = 0, g(0,0) = 0. But as would
be expected if f/f or g/f become infinite at the origin we
observe that w(ro,Q,h,p)_v e as r —0. If in cértain cases.
t/4, g/4 are finite expressions for (x,y) € 8, for all € > O,
then fig. 764 is sligﬁtly amended so that W(ro,e,h,p) remains
finite also. Iikewise the discontinuous regions of fig. 76a,b
are amended to indicate smooth variation of W with respect
to T,

Before we leave this section a note should be made_of the
‘possible analysis of the behaviour of 4 with respect to r,.

The system trajectories of 6.4.1, 6.4.2 are given by

S(x,y) = ¢ 6.4.15
where ¢ is arbitrary. Also the Lyapunov function V(x,y) is
given by solutions of 6.4.3 with V(0,0) = 0.

203.

s C

Substituting V_ = V(r cos 8, r_sin ©) into 6.4,9 we obtain

V(rocos 8, r_sin 8) = jh + e, 5.4.17
0= e < h. _
Also from the definitions 6.4.10,6.4.11

e = V(xe,ye). 6.4.18
From 6.4.16 we have
S(rocos Q, résin 6) = ¢ 6.4.19
and S(xe,ye) = c, 6.4.20 "

Equations 6.4,17 to 6.4.20 represent 4 equations for CyreyXy Y,
in terms of Q,h,ro.

Hence for fixed 6,h we see tnat Cy8y Xy Y, may be ohtained
as .functions of r,» then reference to 6.4.12, 6.4.13 or the
corresponding equations for a different numerical method

(n),

LS .
will yield information about x(3+1), §(3+1) and hence i

A
y(n) and W,



4.1 Example
Consider the Hahn system

x = —x + 2x%y : 6.4.21
& = -y 6.4.22
Solving Zubov's equation with 4@ = 0, £(x,y) = 2(x2+ yz)
we obtain V(x,y) = y2 + x° 6.4.23
T=xy

as the analytic solution.
The system trajectories are given by

a9 - _¥

dx x—2x2y
which has a solution > S = ¢
y(1=xy] )
Hence the equations 6.4.17 to 6.4.20 become for this example
2 2 r20032@
rosin g + o] = jh + e
o 1-r2sin 8 cos ©
2 X °
Yo * e. = e D<e<h 5.4.24
1—xeye
cos 8 : ' = C
sin Q(1—r§sin 8 cos 9)
- Ko = o | b.4.25
Yo l1-X,¥)
The equations 6.4.4, 6.,4.5 for this example become
2
dx X - 2X :
av 2){2+ Zy% 6.4.26
a - . 6.2,27
av 2X "+ 2y

The behaviour of the system close to the origin was
investigated. For h = 0+25, ¢ = 5, 6.4.24 and 6.4,25 were
solved to obtain X1 g for different e. Then from 6.4,26,

6.4.27 tne Fourth Order Runge-hZutta method was used to obtain

h(j+1) A(j+1) iven Q(J) 3 Ver Fig. 88 shows the
plot of sign x%3+1)‘|(h(3+1) “(3+1))“ against e. It is
noticeable that there are 3 distinct breakpoints, and these
are predictable by the method used.

The definition of the Fourth Order Ruge-Ku%tta method for

a system

204
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ax

av _ _ .
is Q(J+1) g(j)'+ h(Egj) + 2Eéj) + 25%3) + EgJ))

= E(E’V)

where Egj) = E(%(j)’a(j))
Egj) = E(g(j)+nggj)/2' %(j)+ h/2)
(j) = E(%(j)+hkgj)/2! %(J)+ h/2) 6.4.28

kga) - p @D, Y,

J = 0yee.,n=-1,
Applying 6.4.28 to 6.4.26, 6.4.27 the breakpoints must occur
wnere any one of 6.4.28 becomes large, and this explains the
nature of the fig., 88.

Another point of interest is the Qquestion of whether we
can tie down regions of %(j) (3) such that x(3+1) h(j+1)
are of opposite sign. That is, for the Tuler method given by
6.4.12, 6.4.13 we are interested to find (x,y) such that

x #(x,y) = -h £(x,y) 6.4.29
and (x,y) such that
y 8(x,¥) = -h g(x,y) ' 6.4.30
Substituting 6.4.21, 6.4.22, 6.4.23 into 6.4.29, 6.4.30 and
re-arranging we obtain that %( +1) changes sign when (x(J),h(j))
satisfy
ae x° + hxy + y2 = h/? . 6.4.31
and y(3+1) changes sign when (Q(J),Q(J)) satisfy
%% 4 y2 = h/2 6.4.32
KN
Q__,.yz + xg_ = h
—Xy
N
=

>
2

129@__d_%_~.x2 + hxy +y~ =h/2
Sy 2 h/2

.-::'\, X +y=
g‘__,////// — h(j+1) i
— X changes sign
(i

? (3+1)

changes sign

Fig. 717
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Fig. 77 shows the regions given by 6.4.31 and 6.,4.32. Also
shown is the contour V(x,y) = h which shows that Euler's
method is not accurate.

The final point to note is that sihce we know that if
(2(3),9(3)) is in a neighbourhood of the origin then (§(j+1),§(j“b
is liable to be a long way from the origin. Now if (§(3+1),§(j+1v
are such that (Q(j+1),§(j+1)) € D(f,g) then further combutation
to obtain Q(n), %(n) and W proceeds along the system trajectory
given by _ .

. S_(xsyz = s(x(3+1) 503+1)y,
However if ()c(J+1 ,y(3+1)) % D(f,g) then computation proceeds
"along an unstable trajectory and ;fn)’ ;(n)’ W will be smooth
with respect to T,- ,
np s Thus @he point of interest concerns whether .
(X(a+1),§(a+1)) € B(f,g).

For the Hahn example tle D.0.A., is given by 6.2.4. Using
" the Euler method 6.4.12, 6.4.13 and the f,g given by 6.4.21,
6.4.22 we require

x(3+1)§ i) < 1
i.e. xy(x2+y2+hxy-h/2)(x2+ 2-h/2) < (x2fy?)2 . 6.4.33
where (x,y) représent (x'9),5'3)y.

Fig. 89 represents 6.4.33 for h = 0+1., The region given
by 6.4.3% 1is well within those given by 6.4.31 or o.4.32.

Thus we see that the regions of r_ such that (%) A0y 5504
outside lie D,C.,A. form a small proportion of the total variation

of r .
o}

5. Computation of %d

The previous section showed how given a fixed rO,Q,h,p we
can integrate 6.4.4, 6.4.5 for n steps, where nh = p to obtain
A(n) a(n) 8H(n) . M) _ NI
X 7,y y v where = V, - p then defining H(rO,Q,h,p)
by 6.4.15 we can get a picture of the behaviour of W with
respect to r, as outlined in fig., 76, Now we have to obtain

A
ro(g,h,p) as the computed value of r_  where V_ = p, hence

o)
if the computation was precise
Nn)d
X =-x(V_~ p)
A(n) o :
y = yV,-p) =
Wi :
ﬂ(ro’g,h,p) = 0, 6.5.1

ool
o O
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If W were plotted against r, as in fig. 76 it should be possible
to pick out ?0, and so we require an efficient algorithm for
picking out r from the computed values of W,

From 6.5. 1 we expect that w(r 9,h,p)—= 0 as h— 0 :if the
numerical method of obtaining W converges to the true value.
Now since W(r_,6,h,p) > 0 for V_ - p » O (by 6.3.9) but
d(ro,e h,p) 1s discontinuous for V - p=<0, and ¥ > 0 (by 6.4.15]
we see that r is a local minimum of W(ro,g h,p). In the
dlscontlnuous regions of fig., T76a,b,c¢ there will be many local
minima. ?o(g,h,p) is therefore defined as

A .
ro(g!hyp) = max rg < { T, :-%¥(rovgvhvp) = 0}.

The definition 6.5.2 is the criterion used to establish £,
from computed w(ro,e,h,p). We start by computing W(R,9,h,p)
where R is as in 6.2,1, then compute W for decreasing r, until
W increases again. The second stage is to interval halve to
obtain %o accurately.
Stage I
Fix R and St as input parameters.
From computation of 6.4.4, 6.4.5 by method 6.4.12, 6.4.13 or
_ otherwise and the definition 6.4.15 we obtain - . '
W(R - i%r,9,h,p) for i =-1,0,1,2,..4,1
terminating the procedure when
W(R - 1%r,0,h,p) = W(R - (I-1)%1r,9,h,D), . 6.5.3
Then we define a minimal system to consist of T1sTpe Ty where
W(ry,8,n,p) > W(r_,6,n,p)

J(r 8,h,p) > U(r ,8,n,p).
fFrom the terminating crlterlon 6.5.3 we see that
r, = R - (I-2)%r
r =R - (I-1)S%r : 6.5.4
r, =R - t3r
providing I 2> 1. If 6.5.3 is true for 1 =20

i.e. W(R,0,h,p) > W(R + $r,0,h,p)
then r»Ty are defined as in 6.5.4 but witn

r, =R +%r + €, 6.5.5
Also we define

wl = W(rl,O,h,p)

wm = w(rm,g,h,p) 6.5.6

Wu = w(ru,Q,h,p)

with ¥ = & if r, defined by 6.5.5.
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Definition 6.5.1
A minimal system of W with respect to r, is defined by
$.5.6 where

I‘CI‘{I‘

1
LTS 6.5.7
Wu > \-’m

At the end of Stage I we have tracked W for decreasing
T, until a minimum point has been reached and in Stage II an
interval halving procedure finds %O to a specified accuracy.
Stage II

Given a minimal system with the properties of 6.5.7 the
purpose is now to find another system with the same properties _'

but closer together and to continue doing so until

r,-Tr] <& 6.5.8
where & is input as a specified accuracy.
Define r_ = r_ + r, and compute w(ro,e,h,p)_ 6.5.9
2

There are three possible situations depending on the value of W:
a) If w(r ,8,h,p) > W (fig 78) then we know that r does not
possess the requlred property of r « The new system 1s deflned
as rl =T ot Tm = Tyr Ty = T (taken from a store of prev1ously
uss&hro) The process is repeate%ﬂfrom 6.3;9.

rd

'f
|
I
|
. fm To Tu

Fig. 79

b} If H(r »9,h,p) < W (fig. 79) then the new minimal system
is deflned as ry =T, rp =T, r, =7r,. The process is also

1 m m o' "u
repeated from 6.5.9,

¢) If W < w(r_,0,h,p) < W, (fig. 80) then we can define a

new system as rl = rl’ rm = rm, ru = ro‘
W
T
A
. W,
*
W i
i
|
[}
| > r
" Yoo o "u

Pig. 80
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However the minimum point %0 could lie between T and T and
we must check this. Hence we define the new system as above
and then put r_ = ry + T,
2.
There are now two possible cases:

L4

o]

i) If W(r,,0,h,p) < wﬁ then the new system is defined

r.=7T_.
o' Tu m
or. ii) If w(ro,g,h,p) > W then the new system is defined as

as ry =Ty, T = T

Ty = Tor Ty = T Ty

Now the process is repeated from 6.5.9.

=T _.
u

After each case a),b),c) criterion 6.5.8 is checked before
r, is re-defined by 6.5.9. 1If 6.5.8 is satisfief then the
computation is ended and 4 S has the property of r defined
by 6.5.2.

Having computed %o we require to decide whether we have
a stable or unstable system, and where the boundary of the
D,0.A.actually is. %0 is an approximation to a point on the
contour V = p, and p must be chosen to be such that the contour
V = p is close enough to the contoﬁr V=92 or V =1, This
may be achieved by iteration on D. )
..... - 'There are two possible situations that can occur: .
~ &) r(eh,p) <R 6.5.10
or b} r_(8,h,p) » R. 6.5.11
If 6.5.11 is true then the situations are as shown in rigs.76b,c,d
The first two aie stable cases while fig. 764 is unstable. The
deciding factor .is that_in fige.76b,c computation of 30 meets
the discontinuous region. It is almost certain {though not
completely) that during computation a "false" minimum arose.
That is, case a) of Stage II occurred when a minimum point
had tu be rejected. Thus if 6.5.11 is true, an unstable system
is one in which case a) of Stage II never occuis.

1f 6.5.10 is true then the situations are as shown in
figs. 76a,d. As before an unstable system never gives rise
to case a) of Stage II. But a stable system almost always
will give rise to case a), _

Thus, in summary, we see that if case a) of Stage II
does not arise then the system is almost certainly unstable.
Otherwise it is stable and either ?0 < R or the boundary of
the v.0.A. is outside the R=circle.

The small possibilities of error in stability depend on
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$r. The larger Sr is set to, the less likely a mistake becomes
as R - ISr is well inside the discontinuous regions of fim. 76
for a stable system. Another approach not investigated here
may be to replace Stage I by a system involving computing

W(i%r,9,h,p) i=1,2,...,1 £.5.12
terminating when it can be recognised that W is continuous
with respect to i or when iSr > R. |

Mention must be made of what may happen when f£/4 and g/4
do not become infinite at the origin. w(rO,Q,h,p) is a-contdinueus
funetion of r, in this case but since we are looking for T,
to satisfy 6.5.1 then we may still use the definition 6.5.2.
An unstable system could be picked by recognising that for a
stable system W(%O,Q,h,p) > 0 while for an unstable system
w(?o,g,h,p) is finite but not small. A criterion such as

‘.‘J(?‘O,Q,h,p) < WO 6.5.13
could possibly pe used to decide stability.

It is recoynised that this algorithm is designed to
compute boundaries of the D.0.A.s of stable systems and not
necessarily to inaicate stability or instability, but as seen
here and later the likelihood of stability being computed
incorrectly is small and can be made arbitrarily small.

Having obtained ;O(Q,h,p) for miven 6,h,p wa have other
parameters to manipulate still and possible variations in
h,p are the subject of the next section.

6, Variation of h,p

In section 5 go(e,h,p) was obtained according to the
definition 6.5.2 for fixed 6,h,p., In this section we attempt
to outline how h,p may be varied to obtain the boundary point
more accurately.

It has been noticed that different h yield different-
vaiues for %o' Now we require %0 to be a conservative estimate
of the boundary point, so it is a reasonable iaea to have some
means of varying h so that we are sure that (%O,Q) € D(L).
Making h small reduces the errors invoived in the numerical
method but increases the opportunities for instability when

n(3) 403

. ., A
computing x near the origin. As h —0, ro increases

since a greater range of T, will involve computation near the
origin.
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T¢ explain this, suppose that tne spherical region
;(3)2 + 9(;])2 < %2 6.6.1
% small
defines in some way a region where computation of 6.4.4, 6.4.5
yields unstable results. i.e. R.H.S. of 6.4.4, 6.4.5 are large.
Also suppose that T, is such that VO = p., HNumerical integration
of 6.4.4, 6.4.5 follows a trajectory which hopefully gives

A ‘ A
(n) = (n) = 0 if the intewration is accurate enough

f(r-1) A(n_1)) is the crucial point. If (h n=1) h(n-1))

However (x
is inside the domain given by 6,6.1 then computation of

(h(n) h(n)) from (x(n"1) n(n_1)) is unstable. If there are

no errors up to computation of (x(n'1) A(n_1)) and (x(n"1) Mn-1)
is outside the $-circle then (x(n A(n } should be close to

the orlgln. But as h —=»0,n —> e and hence (x(n 1) ?(n 1)) tends
to (x h(n ) and hence (x(n_ ),3(“ 1)) must for some h > O

lie 1n31de'uuaS -circle, and hence (v(n) h(n)) could be some
distance from the origin. This analysis shows that as h-—> 0

the region of discontinuity of fig. 76 becomes larger and

?o increases.

Mow as h gets large errors occur in computation which
also make w(r ,Q,h,p) less predictable for a greater range of
Ty Hence r increaoes as h—=0 and as h—= == . Hence there
ex;sts a mlnlmnm of r (Q h,p) with respect to h.

There are therefore % possible basic ways to vary h in
the algorithm:

a) ¥ix h and compute QO(Q,h,p).

b} Increase n (n=p/h) unLil

|%,(8,0/n,p) - £ (8,p/n+1, p)| < €.

¢) Vary h to find the mznlmum of r with respect to h.

How there is no reason why h ohould be constant. We have
already seen that small h near the origin is undesirable.
Therefore the best system incorporates variable step-sizes.

The .method used in this algorithm is to compute

(Q h Ei:pJ) by the analysis of section 5 of the behaviour of
d(r ,QL_,Ezip } with respect to r_. It is the vectorsh,p

where 3= T
l h = (h1,.-o,hi-)

T
(P1,4.¢,pi) 6.6.2

and )3
which are varied. Computation of W involves computing
(“(n) h(n)) by 6.

il

.15 and the numerical integration of 6.4.4,
5.4.5 by a method such as 6.4,12, 6.4.,13, 6.4.14 or otherwise
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is carried out by varying the step-sizes using 6.56.2., i.e.

6.4.14 is replaced by

V) L 01 -
- by K = ey 65.6.%
n. = p./h.
; : i Pi/ 04
h A
DRI SRR 664
M Mz
where kj = 1,...,nj
. = p./h;
"1 TR
jo= i=1,i-2,...,1.

From 6.6.%, 6.6.4 we see that

22: J 6.6.5

J
We now denote h(J by

2T (hyyeenshy), 3=ty i

The steps of the method involve varying hj’ j=1,...,1,

havinz been given p and hence a certain distribution p satisfying

6.6.5. The steps are as follows:

i) Given p, compute %o(Q,h1,p1) varying h, according to any
of the rules a),b),c). Denote the value of h, chosen as the
optimum by one of these rules as h1.

11) Given p_ hm, m=1,...,j-1, and for given P; compute

r (8, h(J E;jpm) where

TR (h:,...,h;_1,hj) ' 6.6.6
varying hj according*to any of the rules a),b),c) to find the
optimum denoted as hJ J = 2,00e,1.

Thus we obtajin a series of optimal step-sizes h yJ = 1,41,
where r (9 h(a) jf“p ) is the best obtainable T, sucg that
(rO,G) 1s a pownt on the contour V-—Ei:p with h(J) as 6.6.6
and varying h.

For the methods given in sectlons 3 4,5,6 we have obtained
T (9,p) as the optimal value of r (Q,E,p) where h is varied
as above acrcording to the deflnltlons of optimality given in
a),b),cl. .

i.e. r (8,p) = optimum rO(Q,Q,p) with respect to.h  6.6.7
given p., j = 1y00a,1,

. *TJ

Define h (h
value of h..

5 w ™ ) *
Tnen » (g p) = r,(8,h,p),

* - ¥
1,...,hi) where hj , 3= 1,...,1, is the optimum
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7, Computation of the D.0O.A.
Sections 3,4,5,6 have shocwn how we have obtalned T (9 D)

for a particular value of @ and of p, where r is obtained
by reference to tue definition 6.6.7, methods a),b),c) of
section’'6, the definitions 6.5.2 and 6.4.15.

Detine J(8) as follows:

J(8) = 0 if the discontinuous region of fig. 76 not encountered.

J(8) = 1 if the discontinuous region of fig. 76 were encountered,
6.7.1

It was stated in section 5 that if a stable system is being

investigated the disscvatinuous regions will pe identified

by the location of other minima of W than r as given by the

definition 6.5.2. But it is possible, partlcularly if Sr is

small, that other minima may not be encountered and J(8) =

will result by 6.7.1. Clearly by reference to fig. 764 we see

that for small Sr only one minimum of W is located. Hence if

an unstable system is investigated J = O results, If a stable

system is looked at then J = 1 is most likely but § = 0 is

possible. .

To establish instability we need to compute J(©) for
various 8 and then if J(6) =0 for all & then the system is
unstable, while 1f J(B) = 1 for any 9 then the system is stable.
Using J{8) and r (Q,p) we are ready to compute the boundary
of the 2.0.A.

Fix 8 ,9‘ and %8 as input parametprs. 8, is the first
value of O for whlch we compute r and J. %6 is the accuracy
to which we compute Q where 9 is given hy r*(g,p) = R, @' is
is the increment step for &.

, T™e steps for obtaining 8 are as follows:
Stage I

1) T£ J(§) = 1 and r (8,,p) < R 6.7.2
we have established stability and a boundary point inside the
R-circle, We put % = 90.

2) Otherwise compute r*(90+19',p) and J(90+19'),i =1,2,..,1
until either

i)r*(90+19',p) < R

. and some J(90+19') =1, i=1,...,1I 6.7.3

or ii) IB' = 2+ 6.7.4
in which case the system is unstable if

J(90+ ig') = 0 for all i =1,2,...,1 5.7.5

or stable in SR otherwise,
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3) Given that from 6.7.3 the system is stable & ..
and the boundary is outside the R-circle for 8 = &  + (1-1)9"
Eut inside for 9 = 90 + I0', we interval halve to dete:mine
8 where
r*(a,p) < R 6.7.6
Cbut r(8-56,p) > R.
At the completion of Stage I we either have
a) an unstable system indicated by 6.7.5,
or b)) a system which is stable in the R-circle indicated
by the negative of 6.7.5,
or c¢) a boundary point (r*(g,p),a) on the contour V = p,
obtained by 6.7.2 or 6.7.6. '
If a),b) exist then there is no further computation
necessary, so let us assume c) is the situation reached.
We now re-define 8 _ = B where 3 is given by 6.7.2 or 6.7.5.
Given r (8,p) and & and V, = p the next step is to integrate
equations 6.4.4, 6.4.5 for increasing ¥ as this will track
closer to the boundary.

Stage 11
Hence given
;(O) = r*(g,p) cos 5
iég; = r*(g,p) sin @ ' 6.7.7
Loy X
e e

we integrate 6.4.4, 6.4.5 numerically with fixed step-size h'!
. ndt s X
commting £04), (3 £(3) 403

three criteria is satisfied:

j=1,2,... until one of

h - .
either 1) x(J)z + §(3)2 > R 6.7.8
(Poundary has left R-circle)
{ = )

(boundary is completely traced)
or iii) computation of the boundary has gone on long enough-
usually ditgrmined by
V(J) > p! ' 6.7.10
for some p'.
At the end of Stage II we have one of these 3 situations.
If ii) is true then the boundary is traced and there is no
furbhffigomputation necessary. for the other situations define
6, =89/,

1 We now have the situation illustrated in fig. 81
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Fig. 81

or a mirror image of it. To proceed from here we must repeat
Stage I again using 6, in rules 1),2),3) and equations 6.7.2,
6.?.3, 6.7.5 instead of Q . But we do not re-define GO the
second time around. USLng 9 we again proceed through 3tage II
- for a second time and we arrive at one of the situations in
figs. 82 or 83.

S 4

DA
/
!
/

1 9, 3 ‘(-ga*_é_)
= A
+vsign(9—90)

™ig.82 Pie, .83

If the situation is as in fig. 82 then the whole process
is repeated until either 6.7.4 or 6.7.9 is satisfied, at
which time the boundary of the D.0.A., is computed inside SR‘

The situation of fig. 8% is unusual but could theoretically
Eappen. The bnundary has been obtained for 9, £ 8% <9 (or
8 <9 5590 as the case may be) but for & near to % or 6
trajectories obtained by Stage II tend to return to the

o]
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already known region. The procedure from here is to define
n
e, =6
n A
and 6 =6 +0 + sign (0 - QO) iy 6.7.11
2

as in fig. 83.

i.e. 6 is taken halfway between tihe @ and g radials
and we try to find a new Q by stage 1 u51ng 6.7.11 instead
of QO. .
2y repeated analysing of which of the criteria of Stage I
or Stage 11 are satisfied and which situations occur between
that of figs. 82 and 83 we may obtain the entire boundary
of the D.0.A. inside SR'

This process when all put together in a computation
algorithm is sufficient to define computation of the voundary
of the D.0C.A. inside SR providing a method of obtaining
T (Q,p) is availavle for each ©,Dp.

The case of where f/4 and g/4 are finite at the origin
is not considered as mentioned in section 4 because we tend
to find that different¢ial equations with non-unique solutions
arise, But the algorithm could be amended by replacing 6.7.1
by a definition such as

J(9) = 0 it W(r (8,p),8,h ,p) > W,

J(e) =1 if W(r*(g,p),G,h*,p) < W
as suggested in 6.5.13,
7.1 Illustration

To illustrate the methods of this section we use the
system 6,4.21, 6.4.22 and its solution 6.4.23. The D.0.A.
is pgiven by 6.2.4. 1If we put into the algorithm the fixed

parameters of this section 6,= 0°, &' = 30°, g6 = 5%, with
R = 30 the results go as follows:

1) 0 =6, =0° r > R.

2 8 = 0_+6" = 30° r' = 1.4686 < R.

3) 6 = 15° r’ = 1:8595 < R.

2) 8 = 73° r o= 2:4149 < Q. .

5) 9 = 32° r > R.

Thuz we find that 9 = 7%0 to an ancuracy of 59,

The extension is plotted (fig. 84) until (x,y) # Sp at 6, & 83
¥e return to find a new 9
6) 8 = 1130 > R



7) 8 =
8) 6 =
9) & =
10)0 =
11)6 =
12)8 =
Thus e,

143°
173°
203°
183°

1803°

184°

*> R,
> R.

r
T
T 1o

i

*x %k %

Tr
r

*

> R.
r > R.

*

5920 << R,

€+5598 < R.

= 188° to an accuracy of 5°,

The extension is plotted until 6.7.8 is satisfied at aln) _ 2563,
We loock for a new 6
13) § = 293° r S R,
14) 6 = 323° r’ > R.
15) 9 = 3530 r > R,
16) 6 = 383° r’ = 1-5920 < R.
17) o = 368° r’ = 2.3498 < R,
18) 6 = 560%° r' > n.
19) 6 = 364° rT > R,
Thus 92 = 368° to an accuracy of 5°,
But 92- Qo > 360° and so the whole boundary has been plotted,
4C rste)
2

16

3

4,17

5,19

e

14
3

Fig. 84
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8. Algorithm Details
8.1 Main Program

The main program has 12 parameters which are specified
by the user on a aata card for each run.  The first card

mst contain a single integer which renresents the number of
times the alporithm is io run. Then for each run there is
one - - ': card: with 12 numbers on it followed by one or
more cards with % numbers. Listed below is a list of the

12 parameters with computer name and tne name used in the
developmnenl of the theory.

Hame Description Computer label
R Radius of spherical domain Sg. RD
Sr Decrement of r  in Stage I of section 5. RINCRY
€ The accuracy of calculation of the minimal EBSILON
set to give ?0.
8, Initial value of 8§ in degrefs. ATHETHS
e Accuracy of computation of 9. DELTA1
e increase or decrease in 6. DELTAZ
u rfarameters to be used in variation of % U
q_fh or variation of f,g or anythlnrr else. - Q
h' Hixed qtep—dx,e for computing the boundary HEX -
of the D.Q.A..
d Control parameter to decide if regular or My

modified Zubov eguation.

i Mumber of different step-sizes in computation JIM
of ¥ = b,
rrint-out rate of the boundary curve. NJ#X

After this we require i cards with these parameters listed.

Name Description Computer label
p? Change in V over which step-size is hj' vo(J)
nSJ) Number of steps during integration -NSTART(J)

i.e. h. =
:J/ (:J)
(3) Increment in numbers of sSteps. NQ(J)

Jed = 1,2, 0041
The variation of the step-sizes discussed in section 6
is done by fixing pj and during integration from V to V--pj
we alter nj where
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The main program does all the manipulation of sections 6 and

7. Subroutine CONTIMN is called to calculate T (9 h,p), J(8)
given &,h,p. The main program carries out tne manlpulatlon

of the step-sizes to compute r*(Q,p). Prom r*(Q,p) and J1(98)
the analysis of section 7 is carried out to obtain the boundary
of the D.0.A. calling subroutine EXTEND to perform the
integration. '

Given hm, me = 13... 1, the method of varying hj depends

1 JT
on the values of néJ ’ néJ). There are three cases for obtaining
»*
hj’ J=1,...,1, which correspond to the % suzgested ways of
*
obtaining h. in section 6.

a) If nga) = 0 then hJ = P

_T%T fixed.
n

8
b) If néJ) = 1 then we obtain a sequence hgk) letting
h, = hgk), kK =1,2,... 6.8.1

i :
successively in 6.6.6 obtaining 90(9 h(J k) E p ) where we
. . * ~moe
denéte E(J’k) h(k)\ j - 1,2,..,i

= (hy,... 05
J- 6.8.2

The seguence hgk) is defined by
(k)
J

pj/n(k) y K =1,2,...

where p(17 _ (J)

n(2k+1) (2P) + 1 . k = 1,2’._.

J "3
2k 2k~1 j
ng ) = ng ) + néa), k =1,2,...

Let us denote for brevity

3
Agk) = (9 h(J’k),EE:pm) 65.8.3
considering only hg ) as variable. Then we define
nt = n(2k1) 6.8.4

j
?§2k+1) - £g2kﬁ < £ 6.8.5

where

c) If nga) > 1 then we again define a sequence using
the notation of 6.8.1 and 6.8.,2
. . k
This time the sequence hj is defined by

(k) _
hj = pj/n(k)v k=1,2,...
J

A0 2l

where
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ngzk+1) = ngzk) + 1, k=1,2,...
(2k)
n
J
Using the notation of 6.8.3 we agaln deflne hJ by 6.8.4 if
6.83.5 holds for some k. However if kX is found such that
“(k+1) S n(k)
“(k 1) S %(k) - 6.8.6

To ‘
then we have obtained a mlnlmal set according to definition

52}("1) (J) k = 1.2

,_.,o--

*
6.5.1 and an interval halving process establishes hj where
h*
37 Pigx
* B * * ) )
and nj gives a smaller o than nj + 1 or nj -1, J = 1,e..,1.

The rule a) is used when no optimization is required.
Rules b),c) are safer in that they require %O(G,Q,p) to satisfy
either 6.8.5 or 6.8.6, The steps of method c) have built in
protection for any calculation of %o which may be in error
due to the particular %0 satisfying the definition 6.5.2 for
given £ , Tor small £ there is more calculation involved
to obtain Qo but more accuracy also. Method ¢) rejects
inconsistenﬁ results for %0 aléng the way. |

When hj is calculated accordlnﬂ to these rules then hJ+1
may be varied and so on, When hJ J=1,..4,1i, are all fixed
then r (Q p) has been computed as

N *r (Q,pl = ro(Q,E , )
where h = (h,,...,h;) the vector of optimum step-sizes.

8.2 Subrouatine CONTIN

Subroutine CUNTIN  is called by the main program to obtain
(AN
ro(a,_,p) and J(@). 1t has 14 arguments of which 12 are sent

by the main prosram and 2 are returned.
R@, RINCRO, EBSILON, MV, U, Q are taken direct from the
“input list in section 8.1. ALPHA represents the value of 9
in radians and AHFIA is © in degrees for purposes of print-out.
The remaining 4 input parameters are associated with
step-size alteration as follows:
VN represents p. ‘, j = 1,...,i
M is an array gepresentlng (n Nayeuu,ny n(k))
1oy e ey g0

where h = pm/ x 0o W=, 000,01,

n
and hg ) is undgtermined.
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NLIFT represents ngk), K = 1,2,...

Jv represents j.
The sudbroutine computes %O(Q,E,p) by the method of section 5
in which a minimum of w(ro,g,g,p) witlh respect to r  js found.
Subroutine RUNKUT is called to perform the integration of
6.4.4, 6.4.5 and compute w(r 9,h, p) given r_ and CONTIN
manipulates r, to obtain r (9 h, p}. ‘When CONTIN is finished

RMIN represents T (Q h,p) and JC is J(9).

8.3 Subroutine RUNKUT

Subroutine RUNKUT is called by COMYIN to intesrate 6.4.4,
6.4.5 and calculate w(ro,G,n,p). The intesration is carried
out by the Fourth Order Runge-¥Kutta method but any other
numerical method may be substitnted for this method. There

are 9 inputs and 1 output to this subroutine.
1} RR is the value of fo'
2) T is 9 in radians, same as ALPHA in GONTIN.
3) HH is the vector (h1 ha,..., : 1,hék)) P
4) NN is the vector (ny,ng,...,ny_ 1,n3k Ye
5) JJ represen's j. ,
6) SS is the value of djfmpm.
7) MM is the value of ar=
8) UU the system parameters,
9) QQ the system parameters.
The output is DD which represents W(ro,g,g,p).

8.4 Subroutine EXTIND

Subroutine EXTEND is called by tne main program to integrate
6.4.4, 6.4.5 for increasing V to trace out the boundary of
the D.C.A.. Tt was 13 arguments.

1) Rt is the same as RO in tre input list.

2) TH is the value of % in 6.7.7.

3) AT represents 9,

4) AT1 represents 8.
5) R# represents rf(Q,p).

&€} UN the system parameters.

7} QN the system parameters.

8) VN represents p.

9) MY represents d. ,

10} 7 where W = 1 for @ increasing and W = -1 for © decreasiTB

11) H represents h' in the input list - same as HEX.

12) NJ is the same as NJE{ in the input list,
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13) JB is a control variable to note the past history of
W to see if the backtracking of fig. 85 occurs.

8.5 Specification of f, g, &
f,g,f are specified in subroutines RUNKUT and EXTEND

in thne form —f!xj%z anda -g{x,y) .  The function
X,y ) (1=dV p(x,y)(1-dV)

arguments are %,Y,5,U,Q where X,Y are the variables, U,Q are

the parameters to enable us-to vary 4 or f,g and 5 = av.

9, Higher Orders
Mention should be made here of the possible extension of
this algorithm to systems of higher orders. The numerical

integration theory developed in section 3 has been worked out
in m dimensions and is readily applicable to m > 2, The theory
of negative V also generalises to m dimensions as the system

trajectories are still given by xi(V) for 1 = 1,...,m.

It is when we consider the variation of the initial
point x  in m dimensions that further thought is fequired.
We again consider variatipn of X along a radial line given
by (ro,g) where 8 is a fixed (m-1)-dimensional vector

T
9 = (31’.¢.'Qm_1)
and (ro,g} are iziven by
Xy =T COS 91
X; = r,sin 9, sin 6,....sin 6, _,co0s Gi ' 6.9.1
i = 2’.'.'m"1
X, = rosin 81 sin 92....sin Qm—1
The set SR is defined in m dimensions by
_ . L2 2 2 2
Sp = { XD X] 4 Xy teeatx < R } 6.9.

Hence the function M(r S h,p) can still be comgu ed for fixed
9,h,p and varying r_ to obtain the function r (8,h,p)
defined by 6.5.2. Likewise the methods of sectlon 6 for
varying h and changing h during integration may be carried out
to give r (9 p).

Up to computation of r*(g,p) for given 6,p the method
is the same, but the method of seetion 7 for varying scalar
© is not directly applicable to vector 6. There is certainly
scope for further'development of this algorithm to work out
how to vary 9 to cover all dimensions.
A further difficulty is that the computation of 6.4.4,



6.4.5 for increasing V with.step-size h' also yields
one-dimensional characteristic curves and cannot be generalised.
It seems likely that %to vary 8 usefully would involve

varying 9 for some i while keeping tne others fixed, then
comvutln* r (Q p) and then integrating 6.4.4, 6.4.5 for
increasing V would give a system of neighbouring curves

which would define a grid in (m-2) dimensions for the boundary
of the D.O0.A..

Such a grid system would be, for example, given by

h A
A(J,k) (J,k) (J k) where the initial conditions are
“(0 k) (O k)

= r (Q ,p)
é(o'k) = ( Trk g Q%,___’qv)
N

¥k =1,2,...,N
Qi constants i = 2,...,0,.
i.e. variation of 5 is carried out only on one component, 91
in this case. '

‘Then, by referencing Stage II of tracing the boundary
in section 7 we compute, by the same numerical methods used
in 2 dimensions, the point

20 805,%)  1(5,%)
given g(m,k)' g(m,k)’ %(m,k)

6.9.%

M= 0,1,00e,j=1,
i=1,2,... ,

The-quantities in 6.9.3 are related by their components
as given'by 6.9.1. The trajectories given by 6.9.3 for fixed
k and varying j would again be terminated by 6.7.8, 6.7.10
or by a slightly amended version of 6.7.9 rciven by

300 g0 5 .
where 51j’k) is the first component of 9(3 k)

e boundary of the D.0.A. may be built up by this grid
method along characteristics by taking N large enough so that
absolute differences

||3(3'k) - 2(3'k“1)” K = 1,2,...,N
are of the same order of magnitude as

||X(J,k) h(j—1.k)||

However to know whether all of Sgéyﬁere 5p is given by 6.9.2

j=12,...

has been covered could be quit%/

/

mplicated.



10. Examples
Example 10.1

X =

v =
This example from

=y + Xy

-X + Yy + X

224

5.10.1

Texter (34) has an unbounded D.0.A.. The

whole (x,y) plana is divided into two parts by the boundary

of the D.O.A,. It
X +y =1

will be noticed that

6.10.2

is a solution of 6.10.1 and it can be shown that 6.10.2 is

the boundary of the D.O.A. for x <1, y > 0.

T™is is achieved

by studying the direction field of the trajectories by

considering (x,y) at any point in the (x,y) plane.

=3

L, 7
=t

> /,/:7

> ////

=

e -

\j :_'L-'J?

s

L4

|

. \\
N

XAy :i

Considering 6.10.1 we see that x =

2

y =X - X

while & =0 at y =0o0or x =

1.

¢
_Z/.
O at

6£.10.3
6£.10.4

Thus dividinz the (x,y) plane into regions where x 2nd & are

positive and nezative separated by 6.10.3 and 6.10.4 we obtain

the sketch of the direction field shown in fig. 85.

From

fig. 8% it is immediately apparent that the points in the
region x <1, y > 0 are stable if they cross 6.10.3 and unstable

if they cross x = 1.

L5 —

y =
plane,.

Points on 6,.,10.2 tend towards x = 1,
0 and therefore 6.10.,2 is the boundary in this part of the

The region x < 1, y <« 0 is seen to be stable while the

region x » 1, y > 0 is unstable.

To consider the remaining

region x > 1, y <« 0 we return to 6,10.2 and notice that this

line is unstable and hence the region x +y > 1, x >1, y< O

is not in the D.O.A..

The remaining region given by

X +y <1, x 1, y< 0 is inconclusive by inspection of fig.

85.

Thus we have the situation of fig. 86.
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Unstable

TR

inconclusive
Pig. 86

The example was tested on the algorithm with the inputs given

by R =30

ﬁr = 04
£ = 00001
90 = 30+0
%9 = 50
S' = 300
ht = Q0«2
d =0
i=1
p, = ?5+0
n£1j - 40
A1) L
N,

The results are shown on fig. 90 for g(x,y) = x% 4

)

are in accordance with fig. 86.

Exam.;le 10.2

.
x

Y

terms of the series solution would be fairly simple;

= =2X + y + x°/8 + 3xy/8 - y2/16
= =X - 2y + 3x2/8 + xy/16 + 3y2/4
This particular example was chosen so that the low order

order terms become

V2(X9Y) = X2/4 + y2/4
VB(X,y\ = xzy/16 + y3/16
where #A(x,y) = x2 + y2.

The parameters used were as in 5.10.5 except for h'
Various # were used which were

B(x,y) = a(x® + y9)

with q = 1-0, 1+

1,

1

.2’100,1-8A-

.10.5

y2 and

The low

ey

= 0-01.

The results are all very similar and are only shown on
i-0.

fig. 91 for q =
inside 5,
been used.

The boundary is shown where it lies

3.0 but it seems that a greater value of R should have
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FExample 10.3

e -X + ¥y + x(x“ + y2)
y =X -y + y(xZ + y°) 6.10,6
This example from Shields (28) has a well-known D.0.A.

with a boundary given by x2 + y2 = 1. It is interesting to

consider the behaviour of the parametric representation of
this example for x(V), y{(V) as well as x(t), y(t). Pirst let
us convert 6.10,.6 to polar co-ordinates, which gives

rcos 8 -7 0 sin 8 = -r cos @ + r sin 6 + rscos 6 6.10.7
r sin® +r 9 cos 8 = -r sin @ - r cos 0 + rBSin Q.
From 6.,10,7 we obtain the differential equations
fo=o-r 41
6 = -1
the solutions of which
2 r2
r (t) = 0 )
r§+(1ar§)e2t 5.10.8
0(t) =6, -t
where r(t) = L 8(t) = 8, at t = O.

Trom 6.10.8 we sec that the trajectories spiral round the

origin as t - « but are stable if r < 1. How we investigate

the representation obtained by considering dx, %% wher=

av
vV = —q(x2 + 32)- 6.,10.9
Dividing 6.10.6 by 6.10.9 we obtain

ax . xey-x(x®e y2)
av a(x%+ v°)

2

dy = xy=y (x2+ y°)
2 2
av g(x=+ y°)

fr-in polar co-ordinate form

dr cos 6 - r d0 sin 8 = (r cos & -  sin 8 - r2cos 8)/gre
dr sin 8 + r d0 cos 9 = (r cos © + r sin 9 - r3sin 9)/qr2
av av
The solutions of 6.10.10 are given by

(V) = 1 - ke 5

-
20(V) + k, = log[1 - ke 9 6.10.11
: =




The arbitrary constants in 6.10.11 are removed by the initial
condition

(V) = 0, (V) = 6, when V = 0.

The trajectoriﬁﬁ are thus given by

(V) =1-¢e &

o(V) = 8, + ¥log/r°(1-r5)
: | r2(1-r%) £.10.12
where r(V) = r, when e(v) = 9,

6.10.12 correspond very well to the series construction of
V{x,y) in the form
kK n—k
Vi(x,y) _2d 2 an WX Y 6.10.13

A H=-o

and substituting 6.10.13 into 6.10.9 using 6.10.6 gives the

solution
a =q (n/2)!
n,k & ()/2)H(0/Z = 5727
if k,n are both even and a = 0 otherwise.
kK n=k.2
Hence V(x,y) = (X )
’ Zﬂ,, Zm%n %K

=S g (x%+ yym,
frgeny 2n

herefore the closed form of V is given by .

V(x,y) = g log( 1 6.10.14
6.10.12a and 6,10.14 are the same expression. )

This analysis shows an example of the behaviour of x(V),
y(V) and how it is related to x(t), y(t) and also how beneficidl.
it is to compute trajectories which reach the origin after
finite computation.

The parameters used in the computation are as in 6.10.5.
Fig. 92 shows all the points obtained for various attempts
at computation for various values of h'. The trajectories
near the boundary of the D.0.A. circle the origin very rapidly
as V increases.

An analysis of results for %o was attempted to see what
effect ©,h,q have. The algorithm computed T  at 6 = 30°, 15°
7%°, 3%° vefore plotting the boundary and these points were
looked at., 1In accordance with 6.10.12a or 6.10.14 6 had
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A
neglisible effect on r . h had some effect on %o seen by
21), né1) but the most significant effect was caused
A

by the variation of q. Pig. 93 shows the variation of r

varying n

apainst q at @ = 300, né1? = 40, ng1) = 0. This shows, gn
general, a trend of %O—a 1 as q increases which ig in contradict:
to $.11.42 of example 11.7 of Chapter 5 where it was shown

that when V = -q(x2 + y2) then the contour V = p is nearer

to the origin as q increases. However it does show that since

dx, dy decrease in magnitude as ¢ increases, tnat computational
dv

=T

accuracy:is better preserved for smaller f£/4, g/#.
Example 10.4
Uncoupled systems were also looked at.

The system . o 3
X = =X + 2x° -~ 3%
. ) . 3

1}

y =-y +2y =3y
is stable in the whole and the algorithm showed this., But

the system

i -2X 3x2 - x3
’ 3

2
y = =2y + 3y -y
has a D.0O.A. given by x <1, y < 1. This example was computed

It

il

before the variation of 8 developed in section 7 was introduced.
Bven so, fig. 94 shows the boundary is beingz traced towards

the critical point (1,1) though not enough points were actually
printed out.

Example 10.5

X =y
& -X -/J(x2 - 1)y 6.10.15

This example is the well-iknown van Der Pul equation with a

known bounded D.0.,A, for p < 0. Various interesting results
vere obtained from this example.. The parameters used were

-

the usual ones given hy 6.10.5 unless otherwise stated.

$(x) = x° + y° .
was used, and M =-0+5,-1+0,-1+5,-2+0,-2-5,-3+C,—4°0 substituted
in 6.10.15, The results are shown graphically in figs. 95
to 101 and show the correct pattern of the D.0O.4. for changing
M. The convention is that crosses and circles represent
computation of %O(G,E;p) and crosses are from the boundary
print-out,.

There are some points which occur due to the variation
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of W(rO,Q,ﬁ,p) with{respect to r, being of the form in fig. 87,

I‘\

N\

\

§<QS Discon%igggggn

v

-

A
v, r

Fig. 87

In these ¢
the definition
and these point
this problem is
by using the al
95 - 99 it is n
rejected due to
a correct point

- The "rever

X

Y
was also consid
to be unstable
A
r (8,h, D).
Txample 10.6

X

Yy
6.10.16 has two

Consideration o
orizin is unsta
It is therefore
to iis stable ¢

X

Y
The D.0O.A.

ircumstances %0 = ré may be evaluated satisfying
5.5.2. But also we see that from 6.7.1 J(8) =0
s are neglected, As mentioned in section 5
resolved simply by increasing Sr or possibly
ternative system 6.,5.12, However in figs.
oticed that such incorrect values of %o are

J(8) = 0 and the boundary is computed when

with J = 1 is obtained.

se~time" example:

= -y

x + p(x° - Dy

ered. The algorithm showed this example :

since J(8) = 0 for all © used to compute

-6X + y + y2

Sy o4 x 6.10.16

critical points at (0,0) and [(2,-4).

f the linear parts of 6.10.16 shows that the
ble but the other ecritical point is stable.
best for computation to translate 6.10.16

ritical point and it becomes '

-6x - Ty + y2 :
2 6.10,17

= 4X + ¥y + X
ot 6.10.17 is unbounded but consists of a

region around the origin and a narrow corridor which is

unbounded in th

example R = 8+0

e third quadrant of the (x,y) plane. For this

was chosen and h' = 0+02, %6 = 10, otherwise
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as 6,10.5. ‘the results are obtained using
f(x,y) = alx® + y°)
with q = 1,1%.
- They are very impressive as shown in figs. 102, 103
respectively for obtaining the region Sg.0 N p(f,g).
Fxample 10.7

X = 6y - 2y2
& -10x - 2y + 4x2 + 2Xy + 4y2
This example from Davies (46) has a D.0.A. given by
2 2
{(x = %)" +y~ =1,

: 2 2
Using A(x,y) = a(x™ + y7)
and the parameter values of 6.10.5 except for h' = 007, the

U

boundary was computed for various gq. Fig. 104 shows the
boundary for q = 1+8.
Bxample 10.8

x = -x(1 - x° - y2)

v o= —y(1 = x° = 39 6.10.18
6.10.18 has a D.,0.A. given by

x° + y° <1, © 6.10.19

but it is also noticeable from 6,10.18 that the entire boundary
of the D.O.A. is a critical point of 6.10.18. The trajectories
of 6.10.18 are lines of constant 8 which tend towards the
origin if 6.10.19 is satisfied, Hence any attempt tc compute
the bhoundary once %O(e,g,p) is established will not result

in increasing or decreasing 8. The results gave %O(Q,h,p)

at various ©, p = 25+0, h = 25/40, and we find T, slightly

less than 1 each time and the *trajectories are traced out
giving constant 6, and r =1.

Pxample 10.9

= =X + 2x2y

:_y .
This example by Hahn (10) has been much used in the development

e e

of tne theory in this thesis. It remains to show here how
accurately the algorithm actually obtains its D.C.A..

The input parameters used are exactly as in 6.10.5 and

F(x,¥) = 2x° + 2y2-

The results are shown for the first quadrant only in fig,105
as they are symmetric witn respect to a rotation through 180°.
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11, Conclusions

In this chapter there has been developed what seems to be
the method which best combines tne safety of conservativeness
of the estimate with accuracy of computation.  The series method

- guarantees a conservative estimate absolutely but after some
difficult algebra. The algebra involved in this method is
that needed to integrate 6.4.4, 6.4.5 and the most difficult
item is evaluation of f/d and g/fb.

The finite difference methods are much simpler than this
method but have been seen to suffer from instability of various
¥inds which result in inferior R.A.S.s and some of the problems
cannot be overcome by reducing the grid so that the step-sizes
tend to zero. .

This method does not guarantee absolutely a conservative
but accurate estimate of the D.0.A. since the computation
of %o could conceivably:y pick out the wrong minimum of
w(r,9,h,p). However we do claim that if Sr is large ,£=>0
then the correct value is obtained although as Sr becomes
large, €-= 0 the computation inevitably increases. Likewise
the boundary is obtained more accurately as h',58~=0. With
the values:of‘%r, £, n',56 used so far the -results have been---
accurate enough in that correct %o is nearly always obtained.
It may be a possibility of further research to find a way to
be sure of this other than by letting the input parameters
in section 8.1 become zero or large respectifely. The method
of setting néj) > 1 and optimising %O with respect to h does
nave included in it a facility for rejecting incorrect resultis
by testing whether the graph of %O(Q,h,p)is smooth with respect
to h or not.

. Tne algorithm developed here is not psrfect and does not
calculate exact D.0.A.s for every example known, There 1s
still room for improvement:

1) Haybe a better definition of T_ than 5.5.2. -

2) Maybe a wa¥y of testing if V, < p from the integration
other than using W(r,8,h,p). '

) Maybe %O should be ohtained by considering curves
other than lines of constant 9.

4) There are many places where iteration could be
incorporated to satisfy the user of convergence to the correct
resulté. '
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Appendix A

Theorem

If the system equations are given by

.
X

Il

Ay gx + Ay oY+ g(x,)

y = A2,1x + A2,2y + gg(x,y)

where A =| A 1.0 is a stability matrix and where
?

Ao Boo

g1(x,y), gz(x,y) have power series expansions of honogeneous
degree 2 and above then the series construction for V(x,y)
from Zubov's enuation o
(A1,1X + A1’2y + g1(x,y))}1(x,y) + (Az "R A2 °f + g2(X,Y))§E
VX d ! 2y
= —p(x,y)(1 = av(x,y)) A1

contains a unique quadratic part providing A(x,y) has a series
expansion of homogeneous degree 2 and above.
Proof

We may write p(x,y), V(x,y) in the form

RN - 2 S 2
BOXy) = dp ¥+ dy 4% + Ay X7+ Qx,¥)

V(x,y) 2

5 A.2
vz’oy + V2’1xy + V2’2X + W(x,y)

u

where Q(x,y), W(x,y) have terms of degree 3 or greater.
Substituting A.2 into A.1 we may then iselate the quadratic
terms which are the lowest powers of x,v in A.1.

( 3

‘A1,1x + A1’2y)(V2,1y + 2V2’2x,

+ (Aq 2

_ e
X Ay oY)V, oy bV, XD = —qp g¥T- Gy gXY = Qp X
' A3
A.3 represents an identity in x and y. Hence the terms in

xz,xy,y2 must each be zero giving: the relationships

i - 1 = um
A, oV0,0 2 oY g =%
Ay Vo, + 28y oVo 5+ 28y (Vo g ¥ By oVy g = -0y 4 A4
2h vV a
172,20 2,1V2 1 = -2,2

Weiting A.4 in matrix form
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_ —TP .
2hy > Ay 2 0 11Vz2)o -9 0
2Ry 4 Ag gthy o 2A4 otV g —dp 1 A.5
L_O R A1) V2,p | ~92,2
— e g —

For A.5 to yield a unique solution it is necessary that the
determinant of the matrix in A.5 is non-zero. So we need the

result _
(A g+ Ay ) Ay 4Ry 5 = Ay SR, 4) £ 0, A.6

Now we need the properties of a stability matrix., By definition
1.4.7 this means the eigenvalues of A have negative real
varts. The eigenvalues of A satisfy

2 .

xN - (A1’1+A2'2))\+ A1'1A2,2 - A1,2A2,1 =0 A7
Solving A.7 for » gives
2

(A4, 125 o) i‘j(A1,1+A2,2) = 4(Ay Ay omAy oAy )

-

2

There are two cases depending on the sign of the discriminant
2
A= Ay y+hy )7 4(Ay 4A, oAy HA, L)
a) If- A < 0. then we have e
3 -
Ay ahp, oAy oho g > (B y#Ay 5)4 % 0
and the real parts are (A1 Ry 2)/2 thus showing that
4 ]
A + A < 0O for a stability matrix.
1,17 %2,2 ,

b) If A > 0 the roots are both real and since they must be
negative we have

A + A < 0

| 1,1 2,2
and 2 2
A7 <(Ay 4+ 4, 5)%
Both cases when put together satisfy equation A.6. Hence
A.1Ahas a unique solution for VZ,O’ V2,1, V2’2.
End of proof.



Appendix B

Theorem
Given (xm,ym) satisfying

2 2 2 2 _
Xp ¥ ¥p=1Tnm B.1

then the straight line through (xm,ym) tangential to
2 2 2.2

X" +y =rm B.2
passes through the circle
. x2 + y2 = rz(m+1)2 B.3
at (xm+1,ym+1) where ,
x .4 =% Y (2m+1)
m % B-4’
x_(2m+1
m .
Proof.
The straight line through (xm,ym) tangential to B.2 is
given by .
. 2 2 ,
XX 4 YYo= Xp o+ Y. ; B.5

Now using B.4 we see that

X * Ype1¥p = x2 - X Vo (2m+1)é + y + X Vo (2m+1)%

m+1 m
m - ) . m

which means (xm+1,ym+iy'éatisfies B.Y., Also from B.4 we have

2 2 2 2 S 2
Xme1 T Ymat 5 Xp T 2mem(2m+1)4‘* + yp(2me1) + yo o+ meym(2m+1)%
——— -
m m m
2
+ Xm(2m+1).
m
Therefore X2 , + yo., = (x + (m+1)
m+1 * Ymet T y B.6
m2
Substituting B.1 into B.6 gives the result that (x_ .,y _.4)

satisfies B.3, End of proof.
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Appendix C
Theorem
Let A;x =0 , 1 =1,,.,n-1, C.1

be n-1 1ndependent planes in R containing the origin. The
constants \i' i=1,...,n=-1,can always be found such that
any point x € R" satisfies

NAX + XA 4ol N 0. C.2

n-thno1% = 2
Proof
Writing C.2 in the form
-

(Z\lAl)E = Q C.3

we see that C.2 is a set of n-2 linear equations. If we fix
x we see that C.3 consists of n-2 equations in the unknowns

iy 1 = 1,4.0,n=1, nNow if we fix %\

where we assume
i n-1 :

An 1% £ 0 we have
(Z\-Ai)z& = = N_qh qX. C.4

C.4 is a set of n-2 equations in the unknowns 5&} i=1,...,n=2,
which can, by the definition . of independence of the planes

C.1, be solved uniquely. If A 1% = 0 then we may put

W 20, 1=1,...50=2, and ‘)n j = 1. Hence-we may find- --

\i’ i =1,...,n=-1 such that a particular x satisfies C.Z2.

End of proof,



Appendix D

The generalised transformation for rectangular co-ordinates
Xy onepXy to polar co-ordinates r,91,...,9n_4,is;given;by

x1(r,9) = r COS 91
xi(r:E) =T Sln'91.......81n 8;_qC0s 64 D. 1
i = 2,...,1’1-1
x,(r,8) = r sin Byeseue.o8in O _,5in 8,
T
where 8~ = (© ""’gn-‘l)‘

Some results follow immediately from D.1.

Eij (r,@)

2) x. (r 9) = x, (r 8 + 21rI ) for all i,j = 1,+..,n, where

the jtnh element of IJ is 1 and all the others are zero.



Appendix E
Theorem
~ The Zubov equation in rectangular co-ordinates
£ (xR (x) = -4(x)(1-dV(x)) E.1

= X
t = i :
is transformed to the Zubov equation in polar co-ordinates

F(r, Q)W(r 9) +ZG (r,8)(r,8) = -é(r,0)(1-aV(r,8))

=T 6, E.2

by the transformatlon D.1. ‘“the connection between the terms

of E.1 and E.2 lS glven by

F({r,9) = c,fy E;:( (Ts )ck fe + (WTPS )f E.?

G, (r,8) = -8, 1, e c2f2 + c (17‘5 )ckfk + C (_r-s )f
- 1

RS

K=
L- et E. 4
Ii_r[sj)Gi(r,g) = -5, f; +clcl+1 541 E c. ( r[s )ck K
§= noy e
+ci(]quj)fn E.5
i = 2,0000e3 i
(1T = -
r\‘. Sj)Gn~2(r’g) Sn—2fn--2 * Cn—2cn—1fn-1 * cn-ZSn—1fn
- | E.6
r(ir‘sj)Gn_1(r,9) = ﬁsn—1fn~1 + cn—1fn , BE.7
where sj = 5in Qj, Cj = CO0S Gj for n » 4. T
Proof .

Using the chain rule of differentiation we have

'BV = 'BV VX

< ﬁkﬁk | E.8

D =TI D

<5 ﬁilé-k i=1,,00,n=1, E.9
i Koz k i

Using the transformation D.1 and differentiating with respect

to r and Qi gives

%1 ) E.10
3%§i = (irfsj)ci i=2,...,n-1, B 11
E‘—%‘cn - (—:ﬁs ) E.12
%is—r(ﬂs) i=1,,..,n-1, o | 513
X

'?g'i = I'C1(‘1_lrsj)ci i= 3,..-,1’1-1. E|15

237
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%‘;=1‘° (ﬁ—s) E.16

B e(fepees Lo, o

%}l( = r(ﬁs )ck(ﬂs Je;, i=4,...,n-1. £ 18
3z Ky k = 2,,00,1=2.

‘%’g"ﬁ = I'(Tl_s )Ckrﬂ;"s ) K = 2,004,0=2, £.19

%E_T r(HSj)cn—1 E.20

%}i = O' _ | i = Tyeouyn-2, E.21

k = i+1,...,0=1,

Substituting E.10 to E.21 into E.8 and E.9 gives a set of
linear equations for 3V, ¥V, k = 1,...,n-1, in terms of

S V6,
Y
¥y 1 = 1,...,n. These may be inverted to establish JV
‘oxi
in terms of ¥V, X to give
[ 39,
W = ¢, OV - 5,9V
W = s,c BV + c4e 'bV - 8,3V ' E.23 B
W, T =8, rs%z
W = 545,05 W + c1s2033V + czc W - s W EB.24
}xB dr T %@;“_ Sﬁz 1'5132'$3
. -1
AV = 's.c.§V+c S. c§V+ Y
A = ([ spe ("|T o2t +5 e k‘l[_‘ e
i ey k=2 JT ) -hgk
Y Cia%i 3w - 5y I i=4,...,n0-1, E.25
r(33| 530, _ 11'(Tr s.)30, |
fa1 Y= LERY i
'§V=(”’Ts)\‘.’+c( s)3V+\— (Tl— Y} IV + ¢
S —— 1 ‘-‘k =k} —~ Y I’l—1 BV
'an -TT Sﬁ1 L——r %:r_l_-)gk LE ‘535

Substituting E.22 to E.26 into E.1 we may collect together the

the terms in 3 and W , i = 1,...,n-1, using E.2 to establish
T ;
1

the results E.3 to E.7. End of proof.
The results for n = 2,3 are similarly proved but limits and
variation of subscripts are less complicated than those above.
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Appendix F

: _ (=x)?
Define Yn(x) = "EE:.TT F.1

Theorem
1)} For even n, Yn(x) possesses just one zero x_ in x>0

and xn £ n .
y Yn(x)?> 0 for x < x, F.2

Y (x) < 0 for x > x_ F.3

2) Por odd n, Yn(x) > 0 for all x ¥ O.
Proof

The proof is by induction. We assume that for even n,
Yn—Z(X) satisfies part 1) of the theorem.

Now from F.1 we know that

n-1

Yn-1(x) = Xn-Z(X) + nf . F.4
Now xn—1 » 0 for x> 0 and from F.2 we see that
Th=T)! -
Yn—E(X) > 0 for 0 < x <X, 5 7.5

and hence by F.¢ Y 1(x) » Ofor 0< x <x

o= n-2"- F.6 ,‘

Differentiating ¥.1 with respect to x we obtain the relationship

Y1 o(x) =1 - Y ,(x) F.7
and from F.3? we see that .
‘ .
Yn_1(x) > 0 for x> X, o F.3
Hence upon integrating F.8 with respect to x we see that
: n-1 .
Yn—1(x‘ > Yn—1(xn—2) = Xp2 > o0 F.9
(n-1)t
for x % X0

Combining F.6 and F.9 we have proved that Yn_1(x) > 0 for
x ¥ 0. To prove the theorem for Yh(x) also we require the

relation
-1 n
Y (x) =Y x) + x° - . F.10
R T -

For 0 < x < X,-2 Wwe know F.5 holds and since X,_p <N We
observe that

S e F.11

for O € x < xn—2'
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Hence from ¥.5 and F.11 we see that substitution in F.10
shows that
. Yn(x).> 0 for 0 < x <X, oo
Also from F,10

= <
Yn(n) Yn_z(n) 0

.Yn(x) < Yn_z(x) < 0 for x > n.
Hence Yn(x) has at least one zero in x__, < x < n.
We have to prove there is only one zero. For this we take
another version of F.7
' - -
x) =1 =Y L (x). F.14

From F.8 we know that Yn_1(x) is an increasing function for
X > X, _,. Hence F.14 shows that Yﬁ(x) has at most one zero
for x > xn_é. If there existed more than one x such that
Yn(x) = 0,
of x for which Yﬁ(x) = 0, Hence there is only one zero of
Yn(x) for x, , < x <n and by F.12 and F.13 there is only one
zero of Yn(x) for x > 0. To complete the theorem we need

to show that '

xn_2~< Xx < n, there would exist at least two values-

2
T
satisiies the ﬁheorem. Now Y,(x) » O for O < x <2 and Yg(i) <0
for x > 2, Although x, = 2 we see by F.13 that Y4(4) - Y2(4)< 0
and an< n forn > 2.

2

This completes tnhe proof.
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Conclusions
Throughout this thesis the emphasis has been on how to
solve the Zubov equation, whether it can be solved, and whether
the results of solution are meaningful. The Zubov equation
is extremely useful in theory on account of its providing a

Lyapunov function which indicates the complete D.0.A.. The
trouble has alwayq been deeﬁly rooted in being able to obtain
this function either analytically or numerically. This has
led to the series construction which is well known as having
problems of convergence of the R.A.S.s to the D.0.a.. The
numerical construction attemptéd by Shields (28) was found
in that work to break down. Hdwever, the main results are
based on numerical construction procedures and an in-depth
look at the problems and ways around them has been attempted.
It has been shown that when the Zubov equation is tackled in
-a stable manner it is possible to obtain an algorithm which
gives estimates of the D,0.A.. ‘ _ '

An attempt to compare methods of solution of Zubov's
“equation and finding D.0.A.s has been made in Chapter 2. This
has served to bring together the methods and problems before
proceeding to solve the Zubov equation in & numerical way.

~ The series construction is the most popular method for
obtaining approximations to V(x) and D(f). Its problems include
those of non-uniform convergence, complicated equations and
even possible breaxdown of‘the construction. Usual examples
on which the series method is based are ones in which f£(x)
has a linear part and ¢(x) has a quadratic part, as well as
hoth f and é having a series expansion. The series construction
then has no problems as far as obtaining V(N)(E) is concerned.
It has been found by several authors to give non-uniformly
(N)(E) is found the
difficulties of finding p*(g,v) analytically are immense,

convergent R.A.5.s8. Even when a V¥

The series construction for systems without linear parts is
found to be not necessarily absolutely determined. Examples
showed that some # enable V¥V to be determined and not others
in this case. A possible topic for research is to consider
the relationship of § to f such that V(x) can be obtained in

series f{orm.
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The Lie series method has slightly different but similar
problems. It, too, is seen to indicate non-uniformly convergent
R.A.5.s, and it has a bigger drawback than the series constructio
For, whereas the series method is at least conservative, the
Lie series construction does not guarantee this. Any truncation
of a series such as the Lie series involves a Local Truncatibn
Trror. This error increases without limit as t becomes large
and nerative and there is no equivalent restriction to V = O
holdins the computation back. This computational instability
renders the method hazardous., The only answer to computational
instability is to reverse the whole problem and compute from
the unstable end. The other obvious drawback to Lie series
is the reliability on complete differentiability of f(x).

Transformations represented a possible field of study
to find sslutions in terms of other variables which may simplify
the problem. We have yet to find a transformation which helps
in any way in general. '

The geometric view of Lyapunov's second method is an
interesting possibility. Infante and Clark do not directly
use Zubov's approach but obtain the quantity ﬁ as the magnitude
_of a vector W which is akin to setting V as -g. However the
% so obtained is not in general strictly pesitive definite.

It may be a research topic to modify this method round to
Zubov's approach by arranging for % to be strictly pogitive
definite.

Rodden's computational algorithm has a lot of advantages
in its incorporating iteration to track along curves. 1t
seems to present possible prouvlems, though not insurmountable
ones, in higher orders.

Davidson and Cowan.and Texter each attempted to define a
way of deciding if a trajectory was stavle. They are not
generalisable to 3 ur more dimensions, and even in two dimensions
require subjective decisions on trajectories which are not in
D.0.A.s bounded by limit cycles.

At the end of all these comparisons and studies, which
are admittedly not a complete comparison covering all aspects,it
sdeemed that the Zubov equation still required a method of
sglution which is convegent, accurate, conservative. Obtaining
R (£,V) for given f and V would seem to be best done by Rodden,
but as yet we still require to obtain D(f) rather than RN(d,g).

P o e
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by Zubov's method.
The numerical results in Chapters 4,5,6 form the important
part of this thesis. In the course of computation certain
aspects of the theory of the Zubov equation came to light
which seem to be hitherto unconsidered. As mentioned previously,
the Zubov equation has a unique solution if f has a linear
part and 4 has a .quadratic part but not necessarily otherwise.
In Chapter 3 the question of which # enable the Zubov
equation to be solved given f seems to have been answered,
Zubov himself states that § must be chosen relative to the
rate of decrease of E(t)- However the rate of decrease of
x(t) is fundamentally tied in with the behaviour of f£(x) near
the origin. Since we do not need the Zubov equation if we
can obtain X(t) we can see that inspection of i(g) is the
more lorical way to go to choosé d(g). The result of theorem
3.6.,5 ties down the choice absolutely except in the excentional
circumstances which are mentioned in theorem 3,6.4, HNo exanpl e
has been met satisfying tnis exceptional oproperty but it may
be a matter for future research to investigate whether such
cases can happen and what happens to the Zubov construction
if they do, ‘
|  The author's definition of asymptotic degree is probably
not new but acts as a very usetul tool in this theory. One
thing that maybe could be a difficulty in cnoosing (%) by
this method is that of actually obtaining P(f). It has been
shown that only radial lines need be 6onsidered but no mention
is made of how tn go about choosing radial lines to establish
the asymptotic degree of a function. It is felt that this is
a field of its own and only the actual result is of relevance
to this thesis.
The one-dimensional Zubov equation is altogether simpler
to solve as it becomes an 0.D.E.. Correspondingly the system
equation can also be directly integrated and the one-dimensional
Zubov egquation is found to possess no great advantages over
finding x(t). The results of finding x as t— -®or as V- + e
are much the same and #(x) can only possibly make computing
a little ensier. The 1later chapters show enormous advantages
in finding x(V) rather than x(t) but these do not apply to
one dimension. Theorem 4,2.1 explained that the sign of X
is the only thing that matters and to find the sign of d

———

X
dv
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instead is no real improvement.

The significant result of Chapter 4 is the asymptotic
analysis near the gritiml point x' # O. This again can he
done in terms of either % or V, but shows how successive
computed values of x{t) or x(V) can be used to obtain an
estimate for x' based on the theoretical known behaviour of
x(t) or x(V) when f(x) can be approximated near x'. It is
based on recognising the pattern of the computed x's as being
from a theoretical differential equation which the actual’
D.E. approximates near the singularity. Such recognition has
to be slightly subjective but results have shown that the
pattern is often quite obvious.

No detail has been gone into about whether the estimate
of x* is always conservative and here, too, is a teopic for
further work, but we may bve able to iterate on estimates of
x' from different values of V and_S(P.V) to see what happens,
although for the examples considered the estimate of x' is
almost constant after a certain point.

In Chapter 5 the finite difference methods have been
extensively considered. Shields (28) consideration of the
finite difference scheme was found to pe disappointing and
there is a fairly obvious reason why. Namely that impiicit-
methods cannot obtain values of V on any circle where V is
infinite. Thus other finite difference shemes have been
considered and moulded in various ways to try to establish a
metnod which will indicate when v = <o,

Unfortunately there is a jungle of problems to hack through
to get to the boundary of D(f). First, it may not be possible
to get off the ground at all unless initial conditions are
chosen arbitrarily. The more accurate the method chosen the
greater seems to be the problem near the origin, except for
implicit schemes., There seems little doubt that an implicit
scheme such as the Shields' Method is the best way to begin
computation.

The need to revert to an explicit method as successive
computation of V on concentric circles approaches the boundary
is clearly seen., Also clearly seen is the necessity of a
method suzh as that in section 5.8 for guaranteeins that all
points used in the difference scheme are actually within the %
D.C.AL.
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aving shaped the method around the obvious problems
there are the hidden ones of accuracy, convergence and stability.
Theoretical results have been established for these properties
and the method becomes considerably complicated to take them
in‘o account. At this stage it seems that all considered
methiods have strengths and weaknesses and it is difficult
to decide which to.use especially if-only the grid numbers
are known. An "optimum" has been sugrested which can probably
be considerably improved. _

Finally in this method is the one problem which seems to
sabotage the explicit schemes considered. This is caused by
zero coefficients of the P.D.E. being solved., This is a
difficult prodlem to get around which must involve a fundamental
re-think of order of computation. The philosophy of computing
all points on a circle is a good one, but in the case of
explicit methods is bound to involve the coefficient of the
unknouwn term being dependent on F and possibly EE as well.

It may bhe necessary if such methods are to be pursued to think
how the computation could be done in a different order so
the coefficient of the unknown term is never small, _

It has heen realised already that the only way to compute
problems which are hasically unstable is to turn them aroﬁnd.
is is what the algorithm of Chapter 6 does. An attempt has
been made to compute from a point near the boundary to determine
if it is inside the D.0.A. or not. Texter,and Davidson and
Cowan do this, but they use t as the independent variable.

This is where the use of V to compute x{V) rather than x(t) or
7(x) has the advantage. Determination of the behaviour of a
trajectory with time is to some extent subjective as x(t)—=> 0
as t-» oo . However it has been shown that x(V)—> 0 as V=0
providing that § is chosen correctly and the "finiteness" of
computation seems to be a great help. Thus from limited
computation we see that it can be determined whether an initial
point is inside the D.0.A. or not, It then remains to vary
that initial peoint and to play around with step-sizes, accuracy
parameters etc., to obtain the compnlete D.0.A..

This algoritnm goes some way to satisfying the need for
an algoritnm which finds D.0.A.s accurately and shows that
the Zubov equation can be used to fimd.good estimates of D(;)f

It can still be improved and some suggestions were made at the
end of Chapter 6.
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In conclusion it has been shown that the Zubov approach,
although not in its original form, can lead to a method of
finding accurate R,A.S.s. The approach of computing x(V)
which has come out of this thesis is a different parameterisation
and could be arrived at without reference to the Zubov equation.
But the basic theory of Lyapunov and Zubov provided a great
help in devising a parameterisation which is useful,
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1)

s

RSITY COMPUTER CENTRE GENRGE 2L MK4[ STREAM B

\L,MA,pW4582

50
00

i

|

ON Bv HXFAT MK 68  DATE 13/02/79 TIME

nUMp ON (ED,PROGRAM ySER)
WORK (ED.WURKFILEUSER)
RUN

PROGRAM (PROG)
. tOMPRESS INTEGER AND LOGICAL
&AINDUT 1.5=CR0

MASTER DCHALL

SEND TO cE@.SEMICOMPUSER.Axx§3_._.

19/16/33

RUN ON 13/02/73 AY

NIMENSION NPUT(200) .ERMINC200) it ¢h) VO (4) NSTART (4)% NO (4) NSPUR (1

10).9n(20a)
166 FORMAT(1p)
1 FORMAT(YFQ.g.31 ()

7 FORMAT(IHO,TOHRADIVUS = ,F?.4,3x,10HDELTA 'R =
1= LF7.6,3X10M1STY ANGLE ,F7.2,3X,10HANG. ACC,

S 7. oF?.Z)

yF7.4,3X,10HERSTLON
yFTi273x,10MANG, 1IN

59 FORMAT(THW +3HMU ,F3.2,3¢,3HaV ¢F5.2,3X,10HSTEP S1ZE iF7.4.3Kg11H7:

1y NUMBER +11,3X:9HEQUATION ,14,3X,18HND,

owINT OUT RATE ,12)

153 ¢ORMAT(FN.U,10.1p)
4 FORMATC(IH 120X+ TSHINEREMENT 0OF v
T154INCREMENT STEP ,1 )

OF STEP SIZES .14,3X,15M

+F7.6,3X,V4HSTARTING STEP ,I13,3X.

57 pORMATCIHO3X SHTHET A, SY,TQHVALUE OF V., 8X,9HINITIAL XT14X,9HINITT
1 V11X, 16HEINAL DISTANCE3X,ZHITERATION/ X, T9HSTEP NUMBER,3X,1HJ

136 (ORMAT(IH +BHUNSTABLE)
' pl=3 1435926538
READ(Y ,140)UN X y
n0 152 L1538=1+JN,1

READ(1,1IRO,RINCROEBSTION,ATETHQ, DFLT41JDELTAZrU QTHEX MV, M, NJ

JC=0 = ,
JE=0 ' '
JB=1 |
w=1.0 N

J

WRITE(2,7)RO,RINCRO,FBSILON,ATETHO,DELTAY,DELTAZ

WRITEC2,57 U, QeHEX L9532 . MV, M, NJEX

ATETH=ATYETHO
nO 181 L187=1,JM,1

4 READ(1:1553VO(L181) NSTART(LI81),NOCL1B1)
MRITECZ, 4V LL181) , neTATCL1B1) ,NO(L181)



181 cONTINUE
JD1S=1
~30 WRITE(Z, 573
THETASATETH+pPI/180,0
vvz=0 0 .
JC=0" . . N
n0 147 L167=1,4H,1 -
vVsvvevo(Lla?7)
TNPUTC1)=q
FRMIN(Y)=1,0E+60
IanFMAK=1.UE+60
TIFFMAX=Y ,VE+60
*A=0
K=2
NPUT(2)=NSTART(LI4T)
12 rALL CORTIN(RO,RINCRN,THETA, ATETH:EBSILON VOCL147) MV N, NPUT(K).L1
L7, U, @ ERMINCKY 1 JC)
© tFCERMIN(K)=ERMIN(K~- 1)0rNPUT(K)-NPUT(K =1))«TIFEMAX)25726,24
25 s)+4
NSPUR(‘)-NPUTCKJ
KJS=0
74 k=SK+KJS
TF(NQCLILTI=1)65,65,119
63 NPUT(K)=NPUT (K~ KJS)+NSTanT([1£7)*
0 10 13%
119 NPUT(K)=NPUT(K=K)S)+NOC1147)
135 yF(NPUT(K)=250)12,21 ;21
24 YFINO(LI&’)=1)54,10,70
52 nMax2=NpuT(K)
gMax2sExMIN(K) ‘ -
60 1O 21
i 10 rFCABSCERMINCK)~ERMIN(K- 1))-EBS[L0N)52 52,72
70 TF(ERMIN(K)- FRMIN(K-1)&FRSIION)b2.11 11
72 nlFFMAX=TIFEMAX
. TIEFMAX=ABS (CERMIN(K=T)=FRMINCKII/ (NPUT(K)=NPUT (K= 1))0:BSIL0N)
o opds=E1 .
a0 10 74
124 v=Ke
MPUT(K)=NMAX2*NUCL147)
- 0 TO 1¢
11 NMAX1zNPUT(K=2)
 NMAX2= NéuT(K 1)
NMAX3ENPUT(K)
FMAX1=ERMIN(K=2)
FMAX2=ERMIN(K=1)
FMAX3SERMIN(K)-
LT SE-T-
" HMAXZ=2
60 T0(13,14), JMAX1
6O T0<21.18>, MAx2
=K+
" -NMIp= (NHAK1+NHAK2)IZ
TF(J)460£6'103
103 NMIDI=NHTD . -
NMID2=NMEID* .
n0 37 L37=1,NMID-NMAYT ,
n0 26 L26%1,4,1
tF(NMID] = NSPUR(L26))?o.?7.26
26 rONTINUE
NPUT (Ky=NMIDI
60 TO 154
27 1F(NMIDZ-NMAX2)120,58,55

el

- b D
N7



120 nO 79 L79=1,44%
- _IF(NMlDd-NSPUH(L?9))?9 30.79
© 79 cONTINUE .
“ L NPUT(K)=nMID2
. 6U TO Y04
<80 NMIDYI=NHIDY -y
B NMTD2=NM1D2+1
.37 cONTINUVE
60 10 55
46 NPUT(K)=NB1D
104 cALL CONTIN(RO,RINCKS, THETA,ATETH,EBSLLON, VOtL14?).MV N/NPUTC(KY, L
47 ,U,Q ERMINCKY,JC)
IF{[RM1N(k) EMAK1+(NPUT(!)-NMAX1}*DIFFHAX}35|34:3k
35 J=J+9
.NSPUR(J):NPUT(KJ
¥EK =1
0 10 62
55 JMAx1=1
¥EK=1
60 TN 67 ' '
© 36 yF (ERMIN (K)- EMAAZ EBqILnN)1S 15,16
15 NMAX3I=NHAXZ - '
EMAX3ISEMAAL
NMAX2=NpPUT(K)
FMAXZ:ERMIN(K)
123 1p(NMAX:-NYAX1-1)89, 39 a0
. 8% aMAX1=st
GO TO 1¢1
90 JMax1=2 :
121 JF{NMAXS=NMAX2=1301,94,07
P19 aMAx2=9 :
0 TO 17
97 aMAXx2=2
L TO 17 ‘ ..
A 16 [F(ERMIN(K)=EMAXT1-EBSILNANY2,2,5 L
2 TIFFMAXS (EMAXT=ERMINTKIV/ (NPUTC(KY=NMAXT1)I+ERST L ON
TFCEMAXZ-ERMIN(K) # (NMAX2=NPUT(KI)*TIFFUAX)498,107i907"
168 asdeq .
NSPUR(J)elMaAx2
TFCERMLU(K)~EMAXI=EBLILNNY109 109,110
109 NHAX?BNPUT(K)
FMAX2RERMIN(K)
0 TO 123
110 nIFFMAX=TIFFMAX )
O TTFFMAX=(ERIBIN(K)Y=EMAXZ Y/ (NMAXS- NPUT(K))#FBSIION
NHAXY=NpPUT (KDY
EMAX1sERMIN(K) . .
133 NMAK2=NMAXS \
FMAX2=EMAXS
NMAX3=Tu0UY
M3s0
O 111 L111=1,XK.1
TFENPUTCLITT1 )Y ~NMAXSY 192,911,111
112 TF(NPUT(LIT1)-NMAXZ)111.911,1193
113 uMAX3=NpPyT{L111)
. mM3=L111
111 cONTINUE
TFEM3)124:124, 1&5
125 FMAX3=ERMIN(MS)
© - TF(EMAX=EMAXZ-ERSTLONY123,123,132 )
$32- DIFFMAX=TIFFMAX T '
TIlpeMAX=(EMAX2-EMAXSY/ (NMAXZ=NMaX2)+ERSILON '

-t



NMAXTeNHMaAXZ

CEMAX1zEHAXZ

60 10O 133

107 pIFFMAX=TIFFEMAX
NMAX1=NPT (K)
FMAX)=ERMIN({K)
TE(NMAXZ2-NMAXT~1)092,92,42

92 JMax1=1
62 60 TOC(17,18),iMAx2
18 k=K+9

NH!D=<NMAXZ+HHAKS)/2
1FeJ)Y67,67¢1105
105 NMyp1=NHpD .
NMID2ENIITD*
n0 64 L64=) ,NMID=NMAXZ,1
n0 65 Lh5=1iJl1
1 F(NMIDI=NSPURCLES))IK5.16¢65
65 rONTINUE
NPUT¢(K)=NMIDY
60 TO 146
66 TF(NMIDZ~NMAX3)126,84.8¢
126 nU 8& 8‘. 1 J 1
TF(NMIDZ= NSPUR(LB&))R&.RS-B&
84 rONTINUE
NPUT(K)Y=NMIDD
) w0 TO 146
-85 NMIDtT=NHIDT =1
NHTID2=NMTID2+1
64 ONTINUE
67 NPUT(K)=NMID
106 tALL CO4TINCRQ, RINCRn.THFTA ArETH.EBthDN VOCLAS7) JMVINNPUT O L
4L U, QB RMLNCIC ) o ) e -
1F(EnMIN(KJ-FMAX1+(unurcx)-~MAx y«DI1FFMAX) 78,7777
78 j=4+1 :
NSPUR¢JIY=NPUT(K)
K== _
a0 TO 17
86 yMax2=1
K3K=1
60 1O 17
77 1F(ERMTIH(K) - EMAX?+FB§ILHN)1O 20,20
19 pnlFFMAX=(EMAXT=EMAX2Y/ (NMAX 2~ NM«x1)+rss1Lo~
NMAXYSNHAXZ
FHAX1SEMAXE : \
NHAXPENROT (KD - ‘
FMAX2=FEgMINCK)
e TO 123
20 NitAX3=NPUT () .
FMAX3EE ,MIN(K) g
TFONMAXS . NYAX2-1)96,%6,17 ‘
06 MAxX2E=1
0 TO 17
5 nMax2=NHAX]
FMAX2=EMAXT
CONMAXZENPUT(K) , ' -~ -
FMAXZcERMIN(K) _ o
NMaAX1ee1 00 -
nt 9 | 9=1.K,1 . )
, TF(NPUT (I I LNMAXI) D, 94 20 L
2e 1F(NPUT(LI)-NMAX2)25,7,2 "
23 wMAxENpNT(L9) N -
MZ2=L0 ' L S S .




9 rONTINUE
FMAXT=ERMIN (M2)
NM==100
Mhz=( )
nl 127 L1¢7=1,K.1 _ . .
PFONPUT(LT127)=NN)Y127,127,428 o -
T 428 tF(NPUT(t127)-NMAx1)129 127,427 T
129 NM=NPUT(L127)
MhzL127 -
127 rgNTINUE : L
1F(MLY130.130,13, '
130 plpFpmMAX=1.0p+60
60 TO0 123 ’ ‘ : -
;131,nIFFMAx=cERMIN(Ma)-EMAx1)I¢NMAX1-NM)+Ea§fL0N___-
. ¢ 10 123 -
: 21 N(L147y=NMAXD ; ..
" b7 rONTINUE ’
) 1F(JEY2174217,218
217 JE=yc
218 6U TOC(171:172),4p15
171 1F(EMAXZ-RO)173,185,183
73 gTH=ATETH"™ ”*DEL[AE
. Jbrss=2

]

. 60 10 176
172 1F(EMAXZ- R0)1?6,17f 1?7 -
176 TH=ATETH
FHMAXZ=ENAXE
Fegci15a,134,1758
134 1D1s=q ‘
183 TE((ATETH- ATETH0>-H 360 0)174, 182,182
182 0O T0(301-501-3U2)fla
302 ATETHO=SATETHY A
ATeTHISATETH2=W*340, 0 .
ATETHSATETHY _ : - .
WE=y
yB=2
0 1D 17¢ -
301 ]F(JE').1.5$‘I184!152 ,
184 yYRITE(2,13%) \
60 10 15?2
177 RTH=ATETH
ATETH=STH ' /
175 1F(ABS(STH-RTH)~DELTA1)178,178,179 |
179 ATETHS(RTH+STH) /2.0
GU T0 34
A74 ATETH=ATETHYUsDELTAZ -
60 TOo 30
178 60 10(303:504,305y,48
303 1F((ATETH~ATETHOY#W=340_0)320,152,152
304 VTF((ATETH=ATETH ) wW=364.0)480,152/952
305 TF(CATETH=ATETHp)#W- Ibo n)180.3p2/3¢2
320 ATETHQ=ATETH
180 ATETH2SATETH
Wl =t
Jbrs=1
THETAZATETHPI /180, 0 . L
rALL EXTFND(nO.THETA.ATFTNQ ATETHY ,FMAX27U,Q/VV MV, W1 s HEX, NJEx.Jt,:
ATETH=THETAwq8p, 0/P1 : N
0 TO(306:507,3VR)rJR
308 1F(w*u1)30? 309,310
309 nTETﬂ}:ATETHZ
: 60 10 3119

-



310 ATETH0=ATETHZ Ww360_ 0
311 ATETHS (ATETHOOATETH1¢Hi16O n)/e2.o
ATETHZ2=ATETH
1 FCABSC(ATETY Y- ATETHn)tu~360 0)- nELTA1)152.152 30
306  B=z?2
W=l
v ATETHOSATETH?
© 60 T0 312
307 TFWaWt)315, x13.31z
313 ,48=3
ATETHA=ATETH?
. 60 To 311
312 1F(ATETH=ATETHU) «W-360.0)225,152,152
225 ATETHA=ATETH
ATETHeATETH4W*DETAZ
60 10 30
152 cONTINUE
_FND

, LENGTm 2030, MAME DCHALL

l_,',
SURROUTINE CONTINCRD, agncao,ALvHA.AHpLA.EBSILON-VN MV M NL!FT Jvn
1,Q,RMIN,JC)
) NIMENSTON RS€200),RF€200) 1V (6 1ML H(L) ‘
50 FORMAT(IH +F8, ,:Sx-FB|ﬁ5§x,E15 R,BX,E15.8,8x,E13.8,5x713,10x%,13,7
1,11) : '
vV=0.0 .
_ MOJvysNLIET. .
v CavY=svy T
nQ 60 Lo0= 1!JVI1
yVavvev(ed)
L6 e~y (Lbng) /M(LE)
60 rONTINUE
byzyy*My
1=2
PMIN=1.0E*60
~ ‘95(1)—RU+RINFR0*EBSIL0NIZ 0
“wfF (11 0E*60
25(2)YsRORINCRO
56 cALL RUNKUT(RS(1), ALphA HeMedVy DV.MV;U, Q7 RE(1Y)

e S

1F(RF(1)-DMIN)SS, 36,16

53 nMINH=DMIN
pMINzZREC(T)
1=+ ]
RS (1)eRS (1-1)=RINCRO o . -
60 T0 5h .

36 aMIN=RS(1-1)
RMINHERS(I=2)
RINCR=RMIHNH-pMIN
RINCRMIHUSSRMIN=-RS (|

38 CONTINUYE, |

TFCRINCR_EBSTILONIZZ, 80,40

40 pINCRERINCR/2,0
1F(1-200y56,39,39

56 121494
RS{IY=RMINSRINCR ﬁ _

AR IRY RUNKUTCRSCL) (ALBHA M M, Dy Dy e My iy QiRFCT))
TF(RFE(I)~-DMIN)GY 42,802 .

41 eMIN=RS (1)

i
-



nMIN=RF (1)
RINCRMINUSSRINCR
0 TO 33 -
L2 tF(RE(1I)-DMINHIGS, 44,44
43 nMINHERF (1)
aHINHERS (1)
32 TFCRINCRMINUS-EBGTILONYI215,216,216
215 1F(RINCR-EBSILONY3Y,%8,38 -
216 151+4
.. T~ RINCRMINUSERINCRMINUSR/2.0 .
L RSCIYERMIN-RINCRMINUS
e CALL RUNKUT(RSCLY,ALPHA!HsM.JV DV, MY, U, Q RECTY)
. 1FCRF(1)=-DMIN)GI,38,38
65 RMINHSRMIN _ .
AMINM=DMIN -
. pHIN=RS (1) . -
: pMIN=RF (1) -
" RINCR=RIMCRMINUS
a0 TO 33
46 RINCRMINUSSRINCR
' RMINzRMInNH
AMIN=DMINH
QMINHER(G4RINCRO+EBS]LON
J1C=1
n0 47 L47=1,1,1
tF(Rs(L47>-RMlN>a?.a7 Aa
48 TF(RSCLA7I=RMINHYALD 47 /47
b9 pHUINHsRS(LLTY
Mizb4?
47 roNTINUE
NMINHERF(MY)
RINCR=RMINH=RM|N
60 1O 38
39 YMIN=RMIN*COS(ALPHA)
YMINZRMIN*SINCALPHA)
WRITE(Z2,5U)ANPLA, VYV, XMIN,YMIN,DMIN, 1 NLIFT,JC
~ebTURN
END

N

, LENGTH 624, NAME CONTIN

sUBROUTINE RUNKUT(RR.{T.uH.NN.JJ.ss.MH.uU.QQ.oo)
NTHENSTUN HE(L)  NNCay, _
F(X-YaSrUlQ)=K*(1.U-HrX-Y‘Y)f(Z.n*(KtX+Y*Y))I(1-Q'S)
GOXaY S UrQ)sY o OmyeXavay) /(2 0% (XeXeY*Y))/ (1.0=5)
sNz5§

x0=CnS(TT)*RR
vO=SIN(TT) *RR

xNz=Xgp

vyNz2Y0

n0 33 L33=21,)000
LBeJye1. 33 .
nHeHH (LEY * 4

nO 3 L3I=1/NNCLE) 1 .
P14=F (XN, YN, gN,Uy,Qq)
PI12=g (XN, YN, SN, Uy, Quy
XEXN4HH (LB *p11/2.0
VEVYNLHH (LB wP12/2 .0
a=gN+DH/2.0



P2A=F (X YeS,yurQQ)
P22=G(X,¥:S,UU,QNy
X=XN+HH (1L8)»p21/2 .0
VEYN+HH (1L.B)»p22/2 .0
P31=p(X,v/STUU,QQ)
; 932=G(xvY'SJUUOQQ)
A=XN+HH (1.8)«p3Y
© VEYN+HH (1.B)+p32
© QNeSN+DH
PLY=p(X,¥rSH,UUsQQ)
phR2eG{X,veSN, UL OQ)
XN= xN¢HH<LB)*<Pi14e D*P2142 0*P31+4PL1)Y/6,0
vyHzYNeRH(LB) 2 (P12+2, n-n>2+2 0*P42+P4L2)Y76.,0
3 CONTINUE
33 fUNTINUE
nh= SORT(XN*KN*YN*YN)
RETURN
END

s LENGTH 496, NAME  RUNKUT

9. -

SUBROUTINE EXTEND(RY 4 TH. AT AT/ R/ UNTQNFVN ,MN, W/H:NJYJB)
r(x.v.s.u-0)=X*(1.o-w*x-v*V)l(z.og(x*X+Y*V))I(1.o-s)
GOXeY S @)Y e () OmyeXayry)/ (2 Or(XeXeYrY))/(1.0=8)
6'r0RnAT(tH0w2xc1£Hx cnORntNATE-13x.12HY COORDINATE. 14X710HVALUE OF
Ve13X,SHANGLE) .
8 FORMAT(IH (E15,8,10%x,E15.8, 10X;F15 8“10x,F8 10X, F40 Y1)

WRITE(Z,6) ’

SNeVN#*MK

=D HEY*MN — -

149 pl=3. 1¢,R9d6538
vO=vN
XN=COS(TH)*Rp
vN=zSIN(THI*R]
1=0
JDzJR
CVTEST=(YN*50.0"Y . eMN) /(4. 0¢MN*4D . 0)
24 IF(J-NJ)150 151,151
131 u=p
TECXNY2D2 203,203
202 <IxN=z=~1 0
. 60 TH 204
203 sIxn=1.,0'
204 1FeyNY205,206,206
202 slyN=~1.,

CaQ 1O 207 '
206 stvynN=1.0 _ . _ o
207 RETA=ATANCYRN/XN) 4 (1. 08 1yNe(1.0,8TXNY/2.0)aP]
231 1F(ABS(RETA-TH)=-p)2%2,732,233
233 TF(BETA-TH)234,234,2%¢%

234 RETA=BETA+2, pePl
¢0 To 234
235 RETA BETA“Z2 0Pl
a0 TO 231
232 rEBA=BETA*180,0/p]
WRITE(2,B)XN,YN/VO,TFBA W
GO T0(3140314,314,513i316),40
314 TF((BETA-TH)wW¢l E=-40)347,318,3¢8
317 w=-1.0%V

-



60 TO(318+549,319)440
318 D=4
15 YH=BETA
TFCCTEBA=AT Y wy=360.0%167.965,165.
319 D=5
316 TH=BETA .
TFC(TEBA=ATIy*W)167,1965,165
167 1F(XN*XN+YN¥YN~Rq4¥R1)164,165,165
166 TF(VvgrVTEST)150,465,465
4150 =049
visv0s+y
P19=F (X1, YN, SN/ UN, gN)
P12=G (XN, YNISN,UN,QN)Y
- XEXN+H*pq1/2 0
vEVYN+Hwp12/2.0
SESN+DH/2.0 )
pel=f(X,Y+STUN,QN)
P22=6G(X,veS,UN,GN}
X=XN+u*P21/2_ 0
YEYN+H*p22/2 0
P31=FL{X,YeSTUN,QN)
p32=G(X,¥rS,UNQN)
YEXNsH*p 31
vEYN+y*p3e
SN=SN+DH
pa1=F{(X,¥Y 5K, UN/QN)
pL2=G(X,YeSN,UN/QN) ;
¥N=XN+H*(P11+Z.UtPZ1*2.%&931+P41)/b.n
" yNzYNeHa(P1242,0sP22¢2_ NaP32¢P42Y/6.0
. TF(SN+DH=U,9999993216,148,148
168 W=H/10,0
.- pHEpHIIG.U
a0 10 214
165 cONTINUE
RETURN
END

-

, LENGTH 635, NAME EXTEND

FINISH

TON = NO ERRORS

65 RUCKETS USED

r XPLK ¢pK DATE 13102779 TIME 19/17/38
22AM)
A {DRM)
9728
SEg DCHALL

SEG CONTIN












