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Summary 

In this thesis the method of Zubov for obtaining domains 

of attraction for systems of autonomous ordinary differential 

equations is investigated. 
The necessary theorems of continuity, existence and 

uniqueness along with Zubov and Lyapunov theorems are listed 
• 

in Chapter 1 as a starting point. 
In Chapter 2 a survey of previous work in using Zubov's 

method or of calculating domains of attraction is attempted. 
The proulems of each particular way of doing this are 
considered, as is some useful background work on numerical 

compu ta tion. 
The theory of solution of Zuoov's equation is the subject 

of Chapter 3. Necessary restrictions on the relationship 

of ~(~) to f(~) are derived, and SODe reslllts on the use of 
V as the independent variable cU'e also obtained. 

'fhe :me-d.i.menclional Zubov equation i;; ,'n O.D.E. 8.nc! hence 
a special case. This special case is ~ne 3ubject of 

Chapter 4 in which Cl rough asymptotic analyr.'is is shown to 
provide estima~es of the domain of attraction. 

In Chapter 5 the Zuoov e~lation is treated as a P.D.E. 
requir1.nr; solution for values of V. The many problems of 

ob~aining the contour V = 00 or V = 1 are investi£:ated and 

some ideas are given on how to ~et around them. 
Cnapter 6 contains the algorithm for sol·.'ing the 6ubov 

eClUation on cnaracteristics wi th initialisation from a point 
near the boun6ary. Much flexibility is incorporated into 

this algorithm to suit particular systems. 
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Chapter 1 

Introduction 

1. Discussion 
• 

The concept of stability has been present in mathematics 

1 • 

for '1 number of years. Throughout history the question of 

whether certain situations are stable has arisen. For example, 

the "ball-in..,a-bowl" situation is known to be staole as the 
ball always accelerates towards the position of least potential 

energy, while if the bowl is- turned upside down then we have 
an unstaule situation. So it has always been a matter of 

concern whether an equilibrium is returned to after suffering 
a small displacement. 

These practical experiments have led to the mathematical 

definitions of stability and to the methods and theorems 
involved in determination firstly of the stability of an 
e'luilibrium and secondly of the magnitude and type of displacement­
which can be permitted. Towards the end of last century the 
Russian mathematician A.M.Lyapunov developed the functions 

which bear his name and the' associated theorems to determine 

s,tabili ty •. Since the last war V. I.Zubov, another itussian-­

mathematician, took the analysis further and tied stability 

in with the solution of a partial differential equation. 
CT'his thesis is mainly concerned with solving this equation 
to Qbtain stability regions. 

2. Notation 
x 

x(t) or ~(t) 

f(~, t) 

f(~) 
x(t,x , t ), 
- -0 0 i( t) 

x T 

is a vector of the form 

x n 
are functions of a scalar variable t. 
is a function of x and t. 
is Cl function of x alone. 

is a function which depends on the 'initial conditions 

is the time derivative of ~(t). 

is the transpose of ~. i.e. 

,·6, Iq;;".: s04?g4H6if-



112£11 

° 
A 

AT 

A(t) 

>AA) , 

I AI 
I 

D .,. (.f) 
V (x) m-

2. 

is the Euclidean norm given by 112£11 =(i-Xi 2)~ 
is 
OT 

.is 

is 

the origin in n-dimensional 

= (0,0, ••• ,0) 

a matrix of the form 

the transpose of A 
I 

, , 

A 1 , 1 

A2 1 , 

A· 
11., 1 

A1 1 , 
A1,2 

A 1,n 

space. 

A1,2 

A2 2 , 

A n,2 

A2,·1 . 

AZ,2 . 

A' 
2,n 

l .;: I 

A1 n , 
A2,n 

A n, 

A n,1 

A n,2 

_ A 
n,n 

is a matrix whose elements Ai . (t) are functions of. fe. 
, J 

are the eigenvalues of A. i=1,2, •• ,n. 

is the determinant of:!. 

is the matrix 11 1 .. 9l 
LO .~ 

is the matrix satisfying AA;" 1 = A-1A = I if I AI ;. 0. 

is all of a Euclidean n-dimensional space. 

is an open domain in Rn. i.e. D ~ Rn. 

is the boundary of the closure of D. 

is a domain depending on the function £(2£), (Later 

defined as the Domain of Attraction) 

is a domain depending on £(2£, t) where t ~ "I e 

is a function of 2£ which is homogeneous of degree m. 

is the vector ·OV 

~x1 

aV 

1l~2 

W 
~ n 

is another name for "dV(x, t) - - . 
~2£ 



3. Definition of 11otion Terms 

Definition 1.3.1 
'rhe system equations are denoted by 

• x = f(x, t) 1 .3.1 

where x is the.vector of system variables and f is a vector 

of functions of x and t which need not be continuous or 

differentiable. 
System 1.3.1 is the general equation describing all forms 

of motion. ~egardless of how many dimensions there are in 
" 

vector~. For example a system of numero.us interacting 

particles of gas in an enclosed space can be written in the 
form 1.3.1. 
Theorem 1.3.1 

The ordinary differential equation given 
f(X(n).x(n-1) •••••••• x(1).x.t) = 0 where x(n) 

may be expressed in the form 1.3.1. 
Proof 

Define the system variables as 

x 1 = x 

= dx 
dt 

d n - 1 
xn = x 

dtn- 1 
Now solving 1.3.2 in terms of x(n) gives 

x(n) = g(x(n-1) •••••• ,x(1).x.t). 

The system equations now become 

x 1 = x 2 

x 2 = x3 

• x = x n-1 n 
• 
xn = g(xn.xn_1.···'x2.x1.t) 

which is in the form 1.3.01. End of proof. 

1 .3.2 

'l'he system 1.3.1 mayor may not have a unique solution 

or even a solution at all. There are several references 

3. 



from which theorems on existence and uniqueness may be 

obtained such as Brauer and Nohel (1), Sanchez (2), Coddington 

and Levinson (3) and Lefschetz (4). 
Two theorems will be quoted heI'e without proof after so:ne 

definitions. 
Definition 1.3.2 

f(x,t) satisfies a Lipschitz condition with respect ~o - - . 
~, for ~ E D, some ,-~O, if there exists ~ constant L such 

that 

Ilf(~1't) - f(~2,t)ll ~ 
for all ~1 ,~;~ E D ... t ~ 'Y. 

Defini tion 1. '3.3 

4 • 

f(:::.,t) is said to be conti.nuons in x if t,iven ~? 0 there 

exists 5) ) 0 such that for "-ny ~1' ~2 E D such that 11 Z:1 - "'211 < c 
then 11 fJ~1' t) - !J~'2' t) 11 <: ~_ 
Definition 1.3.4 

An inte~ral curve of 1.3.1 is given by 

~ = ~(t'~o,to) 
where ~ = x at t = ~ and x(t,x ,t ) satisfies 1.3.1 i,dentically, -0 0 --00 
'r~corem 1."3.2 

If ,u~-,t) i,s continuous in~,t an:) 3atisfies a Lipschitz 
-

c~ll1rli!:i,()n iil D,:;ben passin',; throu'T,h any point ~o E D, to ~ '[-

there exists an lntet,ral curve ~ = ~(t'~o,to) for t > to 
which uay be extended to the houndarv of J. 

1'heorer.J 1.3.3 
If £l~,t) is continuous and satisfies a Lipshitz candition 

for ~ in some oomain D and i1' .?So E D, to)' 'r ana .?S1 (t,.?So' to)' 
!2(t'~0,to) are two exact solutions of 1.5.1 such that 

.?S1(to:~o,to) = '?s2(to ,'?s0,to ) = .?So then.?S1 = !2 as long as 
, -
: ~1' .?S2 ,F. D. 

1.-').1 is thE: General equation but frequently system 

motion is determined only by its present state and not by 
time. This is known as the autonomous case. 
Definition 1.3.5 

If the system e'luations may be written as 
• 
x = £(.?S) 1.3.3 

then the system is autonomous. 



Theorem 1.3.4 
If x = x(t,x ,t ) is the unique solution of 1.3.3 then 

- - -0 0 

x(t-t 1,x ,t -t1) =' x(t,x ,t ) providing 
- -0 0 - -0 0 

!(to'!o,toJ - !(to-t1 '!0,to-t 1 ). i.e. x is only dependent 

on t - to. 
As we are concerned with critical poin~we need to 

establish what cn! tical '. ., points are. 

Definition 1.3.6 
A critical point !' of system 1.3.1 is a solution of the 

equation 

f(x' t) 2' 0 for all t ?; ", --' 1.3.4 
for some ., ;; 0 

5. 

and similarly a critical point x' of system 1.3.3 is a solution 

of the equation 

£(!') = Q. 
If x' is a critical point then we may define a new set 

of variables by 

x = x - !'. 1.3.5 
Substituting 1.3.5 into 1.3.1 defines the new system of. 

equations 
! = £( X + !', t) 1.3.6 

Now by reference to 1.3.5 we can see that! = Q is a critical 
point of 1.3.6. 'rhus any critical point can be translated 
to the origin by a simple transformation. It will be assumed 
throughout this thesis that the origin is a critical point 

and that it is the stability of the origin which is in question. 

i.e. £(Q,t) = 0 1.3.7 
for all t } T 

Definition 1.3.7 
for some 1" ~ o. 

The linear part of £(2S, t) is denoted by the vector A( t)2S 
where A(t) is a matrix and 1.3.1 becomes 

• 
x = A(t)2S + g(!,t) 1.3.8 

where g(!,t) can only be expanded in terms of powers of x 
greater than one if at all. In the autonomous case A(t) 
becomes the constant matrix A. 

Not~ also that ,,'" the origin is a critical point that in 1.3.8 
g(Q, t) Q 

for all t .;:: 'r, some '1' ~ O. 



6. 

4. Stabili ty 

Having uonsidered the definition of the system equations 

anJ subsequent integral curves of motion, we now wish ~o define 

the stability of the origin. 

Def ini t ion 1.4.1 

The origin of 1.3.1 is stable if 1.-5.7 holds and if 

there exists f'" ~ 0 such that for all f > 0, to >-- '1' there 

exists a <;)(t o' z:) such that 

112::011<~ !?1I2::(t,2::o,to)11 < E 1.4.1 
for all t ? to' 
Def inU ion 1. 4.2 

The origin of 1.3.1 is quasi-asymptotically stable if 

there exists 'Y~O and 'i)'" > 0 such that for all to ~ 'Y 

112::011 < ';;"''-~)li:,II2::( t, 2::0 , to )11 = O. 
Definition 1.'1.3t~ 

1 .4.2 

The origin of 1.3.1 is asymptotically stable if it is 
stable and quasi-asy~ptotically stable. 

Definition 1.4.4 
Tne origin of 1.3.1 is unstable if for all to '/,. 'Y there 

exis ts r> 0 such that for eveL'y 'ii ';> 0 there is an initial point 

x with Ilx 11 < S and the solution x(t,x ,t ) is such that -0 -0 ,) - -0 0 

11 x(t,x ,t )1'1' >, f ' . for some t ::S' t <: 00. 
- -0 0 ' 0' 

Definition 1.4.5 

The origin of 1.3.1 is asymptotically stable in the whole 
or strictly asymPLoLically stable if 1.4.1 and 1.4.2 holu 

for unbounded <;; (t ,t' ) and C' "'. , 0 () 

The above five definitions form the basis of determination 

whether the origin is Btabl~. Now if the origin is not strictly 
aBymptoticil.ll~' stable we need to def,ine the region of Rn for 
which it i3 asymptotically stable • 

. Definition 1.4.6 

Providing the origin 
'then ,for 1"'~, 0, D (f) is 

x 

of 1.3.1 is asymptotically stable 
the domain of attraction of the ' 

origin 

curves 
origin 

01' 1.3.1 where for allt', '>,1"', x' E D(f) the -integral o -0 'r-

x(t,x ,t ) 
- '-0 0 

as t ..,. ""'. 
satisfying 1.3.1 identically tend -to the" ,,-



For the autonolDous case 1.3.3 the D.O.A.-given by D(£) 

iSB fixed subset of Rn as the integral curves are not 

time-depen(] ent. 
The stability of the or1g1n may als6 be investigated 

7. 

u~ing 1.3.8 •. As w~ ~re concerned with the stability of the 

origin undei small displacoments it is apparent from definition 

1. 3.7 tha t th~ m~ t;r i.x A (t) is important. However the c'utonomous 

linectr .part matri'x A is !:1Uch easier to consi(ler . 

. Theorem 1.4.1 
1.1.3 

\,'/here S(3) may he eX1Xtnded .i.n 110\'l0rS of ~ grer·~.ter t:l;"ln one, 

then the origin is as,ymptotically st.'3.ble if all the eigenvalues 

'A~(A) of A have nef;~tive real parts. 

Definition 1~~.7 
If" the -eigenvalues-'>-,(A) of A have negative real parts 

then A is et stability matrix. 

Theorem 1.~. 2_ 

If A is a matrix as in 1.4.3 the origin is unstable if 

there exists some \ .. JAJ for which the real pare is positive. 
Definition 1.4.8 
If all the eigenvalues ).,,( A) of A have nega ti ve real parts 

or there exists a )..:(A} with -positi-ve real part. the matrix A 

is said to have significant stability. 

If the stability of the matrix A is not significant then 

further information about the stability o~ the origin of 

1.4.3 can only be obtained by considering the higher terms 

g(!) • 

Definition 1.4.9 

Sr' ~Sr are the sets given by 

and 
S = r 

CS S = r 

1! : 11 !II ~ r1 
t! : 1i!11 =r~ 

'rhe sets Sr' 'i; SI' are used extensively in later chapters. 
Definition 1.4.10 

SrC!'). ~Sr(!') are the sets given by 

Sr(~') =~! 
'iiSrl~') = [! 

II! - !' 11 .:; r j 
11! - !' 11 = r} . 



5. Positive Definite FUnc"ions 
Before proceeding to the tneorems of Lyapunov upon which 

Zubov's equation is based, i" is necessary to introduce and 

define the concept of positive definite functions. 

DeUni hon 1.5.1 

The scalar function V(~) is positive definite in sume 
region D of Rn containing tne origin if 

.V(Q) = 0 

V(~) > 0 for' all x E D, x ~ O. - --
Negative definite functions are defined similarly. 

Definition 1.5.2 
The function VC!) is positive semi-definite in some 

region D if 

V(Q) = 0 

V(~) >, 0 for all x .E D. 
Definition 1.5.3 

8. 

, V(!) is strictly posi ti ve definite if D = Rn. 1. e. VC!) > 0 

for all ~ ERn, ! pQ, and V(Q) = O. 

Definition 1.5.4 
VC!) is radially unbounded if as 

11 ! 11 -'>' ()O then Y (!) - <>D. 

, Positive .defini te function~s .p:lay an important part in 
Lyapunov theory. However for 'time-dependent systems we need 

to use the function V(!,t) where there are analogous definitions 
to those above. 

Definition 1.5.5 
The scalar function V(!, t) is posi ti ve definite in .,a 

region D of Rn containing the origin if there exists ~ ~5 
and a positive definite function W(!) such that 

Vt!,t) ~ W(!) for ~ € D, t? '1". 

V(Q,t) = 0 for t ~ 'I'. 

Definition 1.5.6 
v(~,t)· is positive semi-d.efinite in D i.f there exists T~ 0 

such that 

V(!,t) ~ 0 for all ! E D, t ~ 'Y. 

V(Q, t) - 0 for all t ); '" 
The definitions of strictly positive definite and. radially 

unbounded follol-I in the same way. 
Definition 1.5.7 

V(!,t) is decrescent if there exists ~ao and a posi"ive 
defini te function id(!) s'.lch that 

-W(x) ~ V(x,~) $ W(x) - - -
for a1 1 ~ E D, t ? '1". 



8.0.. 

Frequently the positive definite functions considered 

in this thesis will be quadratic functions. i.e. functions 
2 in which all terms are of xi" i = 1, ... n,or xixj,i,j. = 1, •• 1'\ 

Such functions may be expressed in matrix form as 

V(~) = xTB x 1 .5. 1 
Definition 1.5.8 

The matrix B in 1.5.1 is a positive definite matrix if 

~TB x ). 0 for all ~ Co Rn, x t 2. 
For purposes of knowing whether B is a positive definite 

matrix, the following theorem is useful. 

Theorem 1.5.1 
The matrix B is a positive definite matrix if and only 

if [Bi[>O i=1, .... n 

where Bi is an i x i matrix taken from the upper left corner 

of B. 
This is Sylvester's theorem and can be found in 

Rosenbrock and Storey(6) or Barnett and Storey (5). 
The quadratic expression 1.5.1 is a special case of a 

general series expansion of V(~). \Ye may denote V(~) by 

V(~) = L .vm(~) 
where V (x) is a polynomial of 

m -
series expressions as 1.5.2 can 
under certain conditions. 

.. 
homogeneous degree m. 

be positive definite 

1.5.2 
Such 

functions 

If the range of m is known the question of whether an 

expression like 1.5.2 is positive definite usually depends 
on V (x) where s is the lowest value of m used. Theorems on 

s -
such series expansions form part of Chapter 3. 
Theorem 1.5.2 

V(~) is··decrescent if it may be written as 

Vex) =L V (x). 
- m=1 m-

The proof of this theorem may be found in Hahn (7). 
Theorem 1.5.3 

The total derivative of V(~,t) with respect to time is 
given by 

~
n • 

+ X. dV 
~ -

i=1 oXi 

V(~, t) = 1 ·5.3 

providing the partial derivatives in 1.5.3 exist. It can be 
shown that if the partial derivatives in 1.5.3 exist and are 

continuous and V(~,t) is positive definite and decreeoent 



9. 

then V(~, t) ~ Vs (~, t) for some even s :<: 0, x near the origin. 

6·. Lyapunov functions 
The theorems of Lyapunov and his second method are quite· 

well known. They are quoted here w1 them t proof as they are 
fundamental to Zubov's method. La Salle and Lefschetz (13), 

Barbashin (9), Kahn (10) contain all the back~round and proofs. 

Theorem 1.6.1 
The origin of 1.3.1 is stable if there exists a function 

V(~, t) and some f.." 0, 'Y >,. ° such that V(~, t) is .. positive 
definite and V(~,t) is negative semi-definite for all x E SE' 
t >, .f'. 

Theorem 1·.6.2 
The origin of 1.3.1 is asymptotically stable if there 

exists vC~,t) and some £>0, 'Y~o such that VC~,t) is positive 
definite and decrescent and V(~,t) is negative definite for all 

2S E· Sf' t ~ .'. 
Theorem 1.6.3 

The origin of 1.3.1 is asymptotically stable if there 

exists V(~, t) and some ~ 70, 'y ~ ° such tha t VC~, t) is posi ti ve 
~efinite and decrescent and VC~,t) is negative semi-definite 

and Vt°2S, t )./= O.on any non-tri vial- trajec tory of 1.3.1, 2S E SE' t ."7, r. 
itlheorem 1.6.4 - - . 

The origin of 1.3.1 is unstable if there e:dsts l' ~ ° and 

a decrescent function V(~,t) with V(~,t) negative definite and 
such that V c: 0 at coome ~ E Se far all (> 0, t >,. 1'. 

These four theorems give local information about the 

stability of the origin of .1.3.1. We are concerned in this 
thesis to obtain regions within which stability i? assured. 

For thicl purpose we reCJ.uire the next two theorems: 
Theorem 1.6.5 

The origin of 1.3.1 is asymptotically stable 

if there exists a V·(~, t) such that 
a) VCl>,t) is strictly positive definite 
b) V(~, t) is strictly negative definite 
c) V(~,t) is decrescent 
d) V(~,t) is radially unbounded. 

Theorem 1 .6.6 

in the whole 

The origin of 1.3.1 is asymptotically stable in a region 

D of Rn if there exists a function V(~,t) in D,'1~O such that 

a) V(2S,t) is positive definite for ~ E D,t ~ ~ 
b) -0- C2S, t) is negative semi-definite for 2S E D, t );'Y. 
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c) V(~,t) of 0 on any non-trivial trajectoey in D. 

d) VV(x,t) ~ 0 in D except at x = O. - - -
e) The bOl1ndary 'D of D is given by V(~,t) = P for some p. 
Now that we have these theorems we may define certain 

terms for later use. 

Def'inition 1.6.1 
A function v.(~,t) which is positive definite in a 

neighbourhood of the origin and is such that V(~,t) is 
negative semi-definite is a Lyapunov function. 

Definition 1.6.2 
* Denote as p (t,V) the largest value of p for which theorem 

1.6.6 holds. 
Definition 1.6.3 

* Denote as R (t,V) the domain in theorem 1.6.6 bounded 

* by V(~,t) = p (t,V). i.e. the largest domain obtainable for 

this V(~,t) and t(~,t). 
Defini Hon 1.6.4 

* The region R <t,V) is known as the region of asymptotic 
stability given by this V(~,t) for system 1.3.1. This region 

" is abbreviated fr9m now on to R.A.S •• 

The system given by 1.4.3 where the linear part of f(~) 

is isolated as A~ may also be considered. Then the stability 
of the origin of 1.4.3 may be investigated by choice of ; 
Lyapunov function such as 

Vt~) = ~TB ~. 1.6.1 
The stability of the origin of 

• x = Ax 1.6.2 
may be determined by a Lyapunov .function such as 1,6.1 and 

.the stability ()f the origin of 1.4.3 is also determined providing 
A has significant stability. This gives us 
Theorem 1.6.7 

The origin of 1.6.2 is stable if there exists a unique 

positive definite symmetric matrix B which is the solution 

of ATB + BA = -C 

for any symmetric positive definite matrix C. 

TYie"function 1. f).1 is the Lyapunov function. 

Finally we need a theorem which is important especially 

where considering methods of constructing Lyapunov functions 
* in such a way that R (f,V) converges to D(f). - -



Theorem 1.6.8 

If the origin of 1.3.1 is asymptotically stable then .,. 
R (f,V) is given by .,. 

V(x,t) ~ p (f,V) .,. -
where p (f,V) is the largest value of p such 

V(2£, t) >- p for all 2£ such that vex, t) .,. -
Since we know that R (f,V) ~ D(f) then 

D(f) is bounded ~hen so is ~"'(f'V), while if 
unbounded for any V(2£,t) then so is DCf). 

that 

= O • 
we see that if .,. 
R (f,V) is 

We may also define p'(f,V) as the smallest value of p 

such that VC2£, t) ~ p for 2£ such that V(2£, t) =. 0 if such a 
p' Cf, V) exists. 
Theorem 1.6.9 

If p'lf,V) exists then 

D(f) C R'(f,V) 
where RI (f,V) is given by 

x : V(2£,t) ~ pl(f,V) 

where V(2£,t) ~ .p'(f,V) for x such that V(2£,t) = o. 

7. Theorems of Zubov 
~aaving_introduced the basis of Lyapunov theory we now 

proceed to the theorems and method of Zubov for actually 
obtaining Lyapunov functions to find domains of attraction. 
Zubov I s approach is to ensure that V(2£) is nega ti ve -definite 

11 . 

and then solve the resulting equation for V(2£). In this section 

no reference to time-dependent systems is considered as the 

the theory has been developed on such systems where the 
behaviour is dependent only on the position 2£ in Rn. 

The equation which is solved may be written 

V(2£) = -~(2£)(1 - dV(2£» 

simply as 

1 .7.1 

where ~(2£) is any positive definite function and d = 0 or 1. 
From theorem 1.5.3 the total derivative V(~) is replaced 

by a sum of partial derivatives giving 
n 

~--

L fi (2£) ~V(2£) = - ~(2£) (1 - dV(2£)). 1.7.2 

i=1 

The equation given by d = 1 is known as Zubov's regular equation 

and when d = 0 we have Zubov's-modified equation. 
'l'he main theorem of Zubov can now be quoted (11), (12). 
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Theorem 1.7.1 
A necessary and sufficient condition for the orlgln of 

;f 

1.3.3 to be asymptotically stable and R(!,V) to be the D.G.A. 
is the existence of two functions V(~),I1(~) which satiSi'y:l.17d. 

identically and the following properties: 

a) V(~) is 
, "* positive definite in Rl!,V). 

b) 11(~) is ~ositive definite and continuous in R~ 
c) For d 

For d 

= 1, V{lO < 1, x E R"{!,V) and V(~) = 1, ~ C~R'(!,\J) 
= 0, V(~) < """, X E RoOt!, V) and V(~) = OOJ ~ I! SR"(!,\!) 

n 

L' fil~) .2Y.(~) = -11,(~)(1 + 11!1I2)!(1 - dV(.l£») 
i=1 <lxi 1.7.3 

or V(x(t)) = -11(x(t))(1 + - ,-
It is relatively straightforward to prove this theorem 

given V(x),I1(x) by checking that theorem 1.6.6 is satisfied. - ,-
It requires some extra details to confirm that 

• RC!, v) = D(£). 

Proving tha t V(~), "'(~) exist given an asymptotically stable 
origin of' '1. 3.3 is more difficult and Zu bov bases it on actual 
construction of V (-.l£) ,I1,(.l£). The proof oL this important theorem 
can be found in Zubov's book (12). 

More details will be considered about the construction 

of V(.l£) and ,,~!) in sections 2.2 and 3.6 as V(~) with the 
properties of theorem 1.7.1 does not necessarily exist for 

all "(x). , -
Theorem 1.7.2 

,If !(~) is bounded then theorem 1.7.1 holds with 1.7.3 
replaced by 

n 
~ f i (!) .~ (!) = -11(!)( 1 - dV(~)) 
i= 1 oXi 

1.7.4 

Proof 

> 0 Since .tI(x)(1 + ,-
x " 0 

while ",(Q~(1 +- 11 ! 11 2)~ = 0 

then we may re-wri te 11,(~)( 1 + 11 !II 2) t as 11 (~~ and 11(!) has 
the same properties as the function l1(x) used in theorem ,-
1.7.1. '.vhile if f(x) is unbounded as x·_x' for some x, <S Rn 

then .o,(.l£)( 1 + II!II 2)~ is discontinu~us ~s ! ---'> ~'. 
End of proof. 



From now on 1.7.4 is the equation."hich will be referred 

to as Zubov's equation and several results will be established 

using the regular equation ~d = 1) all or wnich have an·· 

analogous result for d = O. 
Definition 1.7.1 

G( A) is the set 

GO, ) = {2S, V(2S,) < 'A}. 
Theorem 1.7.3 

For x <f DCO we have 

for d = 0 

d = 1 

Proof 

o " V~2S,) <- 00. 

o ."" V(2S,) <: 1 • 

Putting d = in 1.7.1 and integratin8_with ~espect to 

time we have -' 
T 

V(2S,(t» = 1 - (1 - V(2S,o»exp( Jo~(2S,(t'»dt'). 
Rearranging 1.7.5 gives 

V(2S,o) = 1 - (1 - V(2S,(t»exp(-~~(2S,(t'»dt'). 
Now let t- 00 in 1.7.6 F;iving 

V(2S,o) = 1 - exp(- .,(,"'p(2S,(t) )dt). 

Now if 2S,0 f,.Q then ~~'~(2S,(t»dt > 
-Hence V(-x )< 1- while-if x " 0 then 

-0 -0 -

;:~(2S,(t»dt = 0 giving V(2S,o)' = O. 

o. 
2S,(t) '" o and 

The proof for .d = 0 is by the transformation 

W(x) = -10g(1 - V{x» - -
which when substituted intd 1.7.1 gives 

1~(2S,) = -.0 (2S,l. 

End of proof. 

1. 7.5 

1.7.6 

1. 7.7 

1.7.8 

For the remainder of this section the notation of 1.7.7, 

1.7.8 is used. i.e. d = 1 givesV(x) as the solution of 
, -

n 
~ L(x) 'QV (x) = -~(~)(1 --V(~» 
.c"__ 1 - oX -
i=1 i 

and d = 0 gives W(x) as the solution of 

n 
;;:- fi (~) ?JW (~) = -Pt~). 
~ oXi 

Theorem 1.7.4 

1.7.9 

1.7.10 

For)'" E (0,1) for d = 1 or >- E (0,00) ford = 0 

then G( >--) are bounded domains. 

\ 
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'Theorem 1.7.5 
For each p(2$.) then if V(2$.) exists then the equations 

V(2$.) = P form a non-intersecting set of curves in Rn. 

Theorem 1. '7 • 6 

The trajectories x(t,x ,t ) of 
- -0 0 

i = .f(2$.) 
which tend to the'origin cross the contours Vl2$.) = ponce 

and once only. 
Theorem 1.7.7 

If ).., "'- )..., then G( )...,) c G( >-J. 
Theorem 1.7.!:l 

D(£} = G(1) for cl = 1 

and Dl.f) = G\,)o) for d = O. 
Theorem 1.7.9 

The limiting values of Vl2$.) as x 

lim Vex) = v( ~ ) for all 1 €: 

x-J -
Theorem 1.7.10 

-'> } is 

D(£} • 

given by 

The curve V(2$.) = 1 or W(2$.) = 00 is an integral curve 

of 1.3.3. 

-

Theorem 1.7.11 
The limiting 

lirn Vex) = 1 
2$.~1 -

values of V(!.) as 2$. --':> ~ isgi ven by 

for x t'E: D(.f), S E 'b D(£}. 

Theorem 1.7.12 
For each p(2$.) then if V(2$.),W\2$.) exist satisfying theorem 

1.7.1 they are unique. 
'I'heorem 1.7. 13 

The origin of 1.3.3 is asymptotically stable in the whole 
if W(2$.) < 00 or V(2$.) <. 1 for all 2$. E Rn. 

'rheorem 1.7.14 
W(2$.(t» = 

t 
111(2$.0) - ..( p(2$.(t'»dt' 

and V(2$.(t» = 1 - ~1 - Vex » exp <jtp\x(t'»dt') 
-0 0 -

forx .:: D(f). 
-0 -

Theorem 1.7.15 
~ 

W(2$.o) = i p(2$.(t»dt 

and Vex ) = 1 - exp 
-0 

'i'heorems 1.7.3 
1.7.1 and 1.7.2 and 

( -l~(2$.(t»dt) 
to 1.7.15 are 
all depend on 

all a consequence of theorems 

V(2$.) actually existing 

14. 



which is not necessarily true for all ~(~) as will be seen 

in later chapters. However if f\~) has a linear part and 

~(~) has a quadratic part we can obtain the quadratic 

approximation to Vex). 

"Theorem 1.7.16 
If A~ is the linear part of l(~) and ~TC ~ is the 

quadratic part OL ~(~) then the quadratic approximation to 
T 

V(~) is given by x B x where 
T - -

A B + BA = -c 
has a unique solution for B. 

This theorem introduces the subject of approximations 

to tne actual y(~). Zubov proposed a construction procedure 

based on substitution of 1.5.2 into 1.7.9 or 1.7.10. It is 
assumed that ~(~), l(~) may be expanded as 

co 

l(~) ;, L1m(~) 1.7.11 

1.7.12 
~."-

Then we may write the unknown functions V(~), 'Il(~) as 
00 

V(~) = L Vm (~) 
ro"''J.. 

'II(~) = > ~ . \'Im (~). 
1.7.13 

-- ~ 

In 1.7. 11, 1.7. 1 '2~'- 1. 7 • 1 3 1m(~)'. i6m(~), Vm(~)' \'Im(~) 

contain only terms whose total ho.mo.geneous powers are m. 

Substituting 1.7.11, 1.7.12, 1.7.13 into 1.7.9, 1.7.10 ~ives 

00 

(1 - d>V (x») 
~ m-

...... ~ 2. 

1.7.14 
The actual details of 1.7.14 are considered in Chapter 

·2 but if solved systematically for V (x), m = 2,3 •••••• , 
m -

we obtain a succession of approximations to V. (:~) given by 
• 

v(N)(~) =)Vmt~). 1.7.15 

There are some results associated with the series 

construction procedure which are a consequence of theorems 

1.6.6, 1.6.8, 1.6.9 and definitions 1.6.2, 1.6.3, 1.6.4. 
Theorem 1.7.17 

15. 

The curve V(N)(~) = P*(l,V(N) is wholly in 

Theorem 1.7.18 

If D(l) is bounded then so are all VGN)(~) = 

D(D. N =2,3 •••. 

* (N) 
p (D V ) • 



Theorem 1.7.19 
If any V(Nj(~) = p~(!,V(N» is unbounded then so i~ U(!). 

Theorems 1.7.17, 1.7.18, 1.7.19 now suggest the following 

definitions: 

Definition 1.7.2 
RN(~'!) is the R.A.S. indicated by v(N)(~) for a 

particular tS(x) •. 
Le. RN(,s,f) : (~ : V(N)(~) ~ P*(f,v(N») 

n 

where 2=>i(~) oV (~) = -tS(~)(l - dV(~» 
6,.0:1 ~x. 

(N) 1 
qnd V (~) is given by 1.7.14 and 1,7.15. 

Definition 1.7.3 

Rc(tS,f) is the set given by 

X -c R (IJ-f) - > V(N)(x)' t· '1---. ~ c ,_ _ lS a convergen serles as " -7~ 

Definition 1.7.4 
R(tS,f) is the set given by 

R(~,f) = lim RN(tS,!). 
N~"'" 

8. Methods of_Solution of P.U.E.s 

This thesis is mainly concerned with the-solution of 

1.7.2 to try to find the contour V = CD or V = 1. There 

1G 

are standard methods for solving partial differential equations. 
of this type and the background of such methods is given here. 

The usual analytic method of solving 1.7.2 is by 

characteristics and the auxiliary equations. It is shown 
in Sneddon (13): 
Theorem 1.8.1 

The auxiliary equations of 1.7.2 are given by 
dX1 dX 2 = = 

fl(~) f2(~) 

and 

Theorem 1.8.2 

. . . . . . . . . . = 
dx 

n 

f (x) 
n -

The solutions of 1.8.1 are given by 

for i = l, •• ,n 

\"here c i are arbi trary. 

= c. 
1 

-dV 
= 

p(~)( 1 - dV) 

1.8.1 



Sneddon (1'3) gives three methods of solving 1.8.1. The first 

method is to try to spot functions Pi(~'V), i = 1, •• ,n, R(~,V) 

such that 

>n 
i=1 

f.tx)P.(x,V) - C(~)(1 - dV)R(~,V) = 0 
1. - 1.-

and P.(x,V) = ~U(2S.V) 
1. - '<lx. 

• 1. i = 1, ••• ,n. 

R (~. V) = "OU(2S. V) 
W 

then u(2S,V) = c 

is a solution of 1.8.1. 
Thei second method involves finding func tions Pi (2S, V). 

P.'(x.V) i = 1 •••• ,n. R(_x,V), R'(_x,V) such that 
1. - , 

n ;;--
i=1 

P.(x,V)dx.+ R(x,V)dV 
l - .. -

. n 

~ Pi(~,V)fi(2S) - R(2S,V)~(~)(1 - dV) 
i=1 

and 

n . > 1- Pi'(~,V)dx;+ R'(2S,V)dV 
1.= ~ _____________________________________ = dW'(x,V) 

n 

~ Pi '(2S,V)fi (2S) - R'(2S,V)~(~)(1 - dV) 
i=1 c 

where dW; dW' are exact derivatives of 2S, V. 
For then W(~,V) = W'(2S,V) + c 
is the required relationship which yields a solution. 

The third method is to eliminate certain variables if 

this is possible. This is particularly applicable to the 

2-dime~sional version of 1.8.1 which is given. by 

dx = dy ~~-=d~V~~~WT 
f(x,y) g(x,y) = -6(x,y)(1-- dV) . 1.8.2 

The first equation in 1.8.2 gives a relationship between 

·x and y which is an O.D.E. and we denote its solution by 

y = t (c 1,x) 1.8.3 
where c 1 is an arbirary constant. Substituting for y from 

17. 
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1.,8.3 into-the first and third terms of 1.8.2 gives a similar 

relationship between x and V. 

The method of characteristics and the auxiliary equation 

is applicable if we require to obtain the characteristics. 

However, we are interested in the boundary of the D.O.A. 

18. 

and we cannot necessarily obtain that from the characteristics. 

Equation 1.8.1 and 1.8.2 are useful equations to use for a 
numerical method as shown in Chapter G. 

Numerical solutions of a P.D.E. such as 1.7.2 can be 

done by varirnls methods. The simplest first order P.D.E. 
VJhichis considered is given by 

\u ' a ~u 
ot + ~ = O. 1.8.4 

Various methods exist for solving such equations. First, 

we define u(mh,nk) as the value of u at x = mh, t = nk and 
u~ as the computed value at this point. Then difference 

schemes usually attempt to compute u~+1 given u~, u~_1' u~+1' 
n+1 um_1 or any nei~hbouring values required to make up the 

scheme. 
Such methods 
a) u n + 1 =' (1 

m 
where /" = k/h • 

i-nclude: 

_/>a)un + reaun 1 m m- 1.8.5 

b) u~+1 = (1 _/>2a2)u~ -~a(1 -rea)u~+1 +,.0 at 1 +pa)u~_1 
2 2" 

known as the 
, n+1 

c) urn 

Lax-Wend6ff formula (14). 
( ) n n+1 

= 1 + L'> a u - f\ au 1 r m r m--

1 .8.6 

1.8.7 

Equation 1.7.2 has variable coefficients and methods 
have to be adapted to this situation. \'le use the notation 

L',xu~ u~+1 
n = - u m 

l\u~ = u~+1 _ un 
m 

'V un = un un 
x m m m-1 

'VtU~ = un n-1 - u m m 

Then if we solve 
~u a(x,t) (Ju 

0 1.8.8 .t + 'SX= 
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then two difference schemes which maintain their accuracy 

when applied to 1.8.8 as well as 1.B.4'are 

) n+1 = (1 .:... .oan+t (b + V ) a urn /- m x x 
2""""" 

+,,<> 2 (an +t b an+t V + an+t \7 an+t /::,. ) )un 
4 m x m X m x m x m 

1.8.9 

the Lax-Wendroff formula, 
b) (1 fpan +t (!::. + V ) )un+1 = (1 

m x x m 
--;r 

1.8.10 

the Crank-Nicolson formula, 
. n 
where am = a(mh,nk). 

The origin of finite difference schemes such as 1.8.5, 

1.8.6, 1.8.7, 1.8.9, 1.8.10 usually lies in truncating an 
infirute theoretical series. Taylor series is one such method 

where we know that 
u(mh,(.n+1)k) = exp(k ~ ) u(mh,nk). 

at 
1.8.11 

_Subs.titutin8 from 1.8.8 into 1.8.11 and expressing the 
exponential in terms of -its -power s,eries, we may truncate 
the series and obtain a difference formula. 

'i'he situation becomes more complicated when we considp.r 

an equation such as 

dU _ alx,y,t) ou 
ot - ~x 

+ b(x,y,t) '<Iu 
W 

1.8.12' 

n+1 An implicit method for finding u is the 18 point A.D.l. m1 ,m
2 

1~ 

method by l1itchell and Gourlay (15) which when a,b are constants 
becomes 

value of u at x = 
When a,b are 

m1h 1 , y = m2h 2 , t = 
dependent on x,y,t 

1.8.13 

1.8.13 becomes 



ZO. 

In choosing a finite difference method various consideratiol 

have to be taken into account, such as initial conditions, 
accuracy, stability. The more pOints covered by a difference 

formula, the more need to be specified to start computation 
going. 1.8.5 requires for example U

O to be given so that . m 
u~ may be computed for n > O. Now if u~ , m = M1, •• ,MZ) 
are -given then by systematic application of 1.8.5 we may 

compute un for n '> 0 and m ,,; MZ' m ~ M1 + n and computation 
m M-M 

stops when uMZ 1 is obtained • 
. Z 

Accuracy is determined by the local truncation error. 
This is obtained by substituting the actual values~f u(mh,nk) 
into the 
Error by 

L(mh,nk) 

difference formula. Denoting the Local Truncation 
L(mh,nk) we write down for the scheme 1.8.6 

= u(mh,(n+1)k) - (1 _/,ZaZ)u(mh,nk) +"oa\1 -pa)u«m+1)t\)"~ 
"2 

- ,,() a (1 +"oa) u ( (m - 1) h, nk). 
'2 

1.8.14 

By means of expressing u(mh,(n + 1)k), u«m - 1)h,(n + 1)k) 

in terms of u(mh,nk) and derivatives of u at x = mh, t = nk 

by ~aylor series, and cancelling out terms using 1.8.4 we 
obtain that 

L(mh,nk) = Olk3 ) + U(h3) 
Thus we see that 1.8.6 is a second order method. 

Stability is considered by the method of Von Neumann (16) 
where the computed values of u are subtracted from the actual 
values. A formula such as 1.8.6 is taken from the corresponding 
formula 1.8.14 and using the notation 

e~ = u(mh,nk) - u: 
we obtain 

L(mh,nk) = e~+1 - (1 - pZa2)e~ +/.>a(1 -pa)e~+1 -~a(1 + l'a)e~;!.1 
2 2 

The error is then assumed to have a Fourier series 

distribution which we write as 

and then we see that errors tend to die 
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away. 
Finite element methods are also applicable but are not 

considered in this thesis. 
It is a simple matter of extending solution of 1.8.8 
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or 1.8.12 to solving 1.7.2 and this is the subject of Chapter 5. 

9. Motivation and Contents 
''rhe methoil of Zu bov for onta i ning L,yapunov functions 

has been tested on various systems by various authors. It 
is a reversal of the ~yapunov theory in that instead of 

selecting V(~) and then considering the behaviour.of V(~) 
to determine stability, the Zubov method selects v(~) and 
then considers the behaviour of V(x). Also instead of finding . -
R(f,V) as a re!\ion of asymptotic stability, the Zubovapproach 

determines D(f) if V(~) can be found. 
The basic question then is one of determining V(~) given 

V(~) and the system equations 

i=f(~). 1.9.1 
Determi~ation of V(~) is from a partial differential equation 

- - - - -

1.7.2 which in general is not easy to solve analytically. 
The method Zubov suggested of using power series to build 
up partial sums has been implemented by such authors as 

}lc1rgolis and Vogt, Yu and Vongsuriya, De Sarker and Rao. In 

each case they have found non-uniform convergence to the 

actual D.O.A •• 
So can we really say that the Zubov approach is useful 

for general systems? This thesis attempts to solve 1.7.2 
by various methods and tries to find some way or ways by which 

we can establish the usefulness of Zubov's method when applied 
to systems of equations • 

.in Chapter 2 the backr;routld material is all collected 
together. A comparison of previous work in various fields 

together with some comments is presented there. The main 

method is the series construction which is dealt with in 
great detail in two dimensions; It is noticeable that examples 

covered in the literature deal only with systems with linear 
parts .' x = A~ + g(~) 

and functions 6(~) with quadratic 

6(~) = xTC ~ + h(~). 
It is shown in Chapter 2 that this 

parts 

1.9.3 
case is straight-forward 



but that situations other than 1.9.2 and 1.9.3 mayor may 

not be soluble by series construction. 
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The Lie series method is also considered where the equation 

1.9.1 and 

V(~) = -~(~)(1 - dV) 
are integrated simultaneously with respect to time by Taylor 

series. PossiblEl transformations and vector methods are 

also looked into and all such methods of solving 1.7.2 have 
their disadvantages. For background purposes some methods 

are given on obtaining D.O.A.s and obtaining Lyapunov functions. 
Two methods of solving 1.7.2 suggested themselves 

during this research. One method is to' treat , 1 ~ 7:.2 as.: any>· other 

partial differential equation and apply numerical techniques 
for solving it, while the other method was to solve 1.8.1 
numerically. In the course of the research certain types 
of behaviour of the solutions of 1.7.2 and 1.8.1 v{ere 

experienced. Such behaviour can be explained by theory and 
Chapter 3 sets out to establish this theory which is concerned 

with the relative behaviour of f(~j, ~(~) and.V(~) to each 

other •. 
Such rel~ tions-hips - have on the whole_been. overlooked 

when solving the 6ubov equation on the basis that if 1.9.2 
and 1.9.3 hold then 1.7.2 can be solved to give Vex) and 
hence the D.O.A. is established. For systems not possessing li­

nea:il' parts more care is needed. Zubov warns that "if for 
any reason whatever we kno\~ the rate of decrease of solutions 

~(t) of 1.9.1 then p(~) can always be chosen". 

In Chapter 3 the required relationships between f(~), 

~(~), V(~J are established by reference to their behaviour 

as ~--=> Q. '1'he "asymptotic degree" of a function at the origin 
is defined and we show that if thR behaviour of f(~) is known 

then 6(~) can be chosen by reference to this definitiom. 
The one-dimensional Zubov equation is diffRrent from 

other cases as it becdmes an O.D.E. and may be integrated 

directly with respect to x. 'l'ne system trajectories either 
tend to or away from the origin and finding the D.O.A. is 

reduced to seeking a value of x which is on the boundary. 

It is worth a special chapter as methods applicable to O.D.E.s 



can be used. Cha.pter 4 covers this case and an asymptotic 

analysis is ca.rried out at the boundary of the D.O.A. which 

serves to answer the question of what value of V to attain 

in order to guarantee a. predetermined accuracy for computation 

of the boundary point. 
'fhe two methods mentioned earlier of solving 1.7.2 and 

1.8.1 are the sU'bject of Chapters 5 and 6.- The method of 

finite differences in Chapter 5 although relatively easy to 
carry out does run into some problems which stem directly 
from the fact that the P.D.E. 1.7.2 has variable coefficients. 

A combination of various factors all of which are considered 
analytic~lly make it very difficult to obtain good estimates 

of D(f) for general systems. Possible variations of the 
method near certain problem areas are studied in an attempt 

to compute D.O.A.s. 

In Chapter 6 the equation 1.8.1 forms the basis of 

numerical computation. It is shown that solving 1.8.1 from 

points ~o near the boundary of the D.O.A. is inherently more 
stable than beginning at 

V(Q) = 0 

and computing-outwards from the-origin. This method takes 
account of the particular properties of Vl~) especially its 

positive definiteness for asymptotically stable systems. 

Solving for V < 0 has some interesting results from which 

we can establish an estimate of D(f). 

23 



Chapter 2 

other ~lethods 

1. Introduction 
We require at this stage a chapter presenting other 

work done in this field and related subjects. A number of 

authors have considered the Zubov equation and attempted 
its solution, uSlially by the series construction proposed 

by Zubov. 
Five specific methods of tackling the problem are given 
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a section each, and any other methods are collected in sections 

7 and 8. The series method in section 2 is the most well-known 
method associated with the Zubov equation and most widely 

used. Host examples on which this method has been tried 
are found to have linear parts. i.e. 

~ = A,2£ + g(,2£) 

where 11 g(,2£)1I -- 0 as ,2£ - Q. 

11,2£ 11 
The series method can still be solved for systems without 

. linear parts but needs some care. 
The Lie series method in section 3 has also been studied, 

but this reduces to Taylor series and relies on complete 
differentiability of 

~ = £<.~) 
with respect to time. 

Rodden's. method in section 6 was something of a milestone 

in stability theory but being a numerical method it does 
require care to be taken over accuracy and stability of 

computation. In section 7 the other ideas stemming from 

Lyapunov functions are considered, while in section 8 note 
is made of obtaining D.O.A.s without ever referi.ng. to ,s(x), 

. -

2. Series Method 

The series solution of the Zubov equation was first 
pu t forward by Zubov himself. (12). Since then a number of 

authors such as Hewit (17), Rodden (18), r'largolis and Vogt 
(19), De Sarker and Hao (20), Yu and Vongsuriya (21) have 

attempted to use the methods to obtain approximations to 

• 



• 7"'''' 

D.O.A.s of various examples, some well-behaved and some not 

so well-behaved. They have claimed improvements on other 

methods of estimation although this is done by selecting 

the "best" domain from a non-uniform procedure. Ferguson 

(22) generalises the constl~ction to higher order tensors. 

For the system of equations 

i = f(~) 

25. 

the method relies upon f(~) possessing a power series expansion 

which we denote as 

fi(~) =~ L···· ... :L 
m=1 m1+m 2+ ... +mn =m 

2 .. 2.1 

If we chose p(~) in such a way that it also possesses a 

power series expansion 
0<> 

p(~) = L1·· ..... L m m x22 •...• xnn 
m=2 m1+m 2+ ••• +mn=m. 2.2.2 

then we may construct V(~) in the same form 

2.2.3 
We now substitute 2.2.1, 2.2.2, 2.2.3 into the Zubov 

equation 
n 
~ i. dV = -p(1 - dV) L-_ 1.-
i=1 "d x i 

to obtain the unknown coefficients A(m1 , ••• ,mn ). 

2.2.4 

In (17) Hewit expands 2.2.4 into individual terms to 

demonstrate how involved the computation becomes. Other 

authors do not actually write ou~ the full set of equations 

for A(m 1, ••• ,mn ) and usually concentrate on 2 or at most 

3 dimensions. An attempt will be. made to generalise the 

2-(limensional series construction and establiSh a theoL·em 
on the lowest degrees of f, g, p. 

Let the 2-dimensional system be 
• x = f(x,y) . 
Y = g(x,y) 

and let us denote f,g,p,V as 

f(x,y) =f )mfm kXkym-k 
m=s k=O ' 

2.2.5 

2.2.6 



~-------

"'" m 

g(x,y) ~ L k m-k 
=L- g kX Y 

m=s k=O m, 

oo m 

~(x,y) =LL ~ k m-k 
m,kx y 

m=q k=O 
~ m 

o V(x,y) =LL
o 

V k m-k 
kX y 

m=3 k=O m, 

In 2.2.6, 2.2.7 s is such that 

s 2 2 > (fs,k + gs,k) > O. 
k=O 

and in 2.2.~ q is such that 
q 

~=O ~ q, k 
2 

> 0 . 

2.2.7 

2.2.8 

2.2.9 

2.2.10 

2.2.11 

Since V(x,y) is the unknown function it is considered 
to have powers of x, y of degree ? 2 in order that it may 

be positive definite. 
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Substituting 2.2.6 to 2.2.9 and 2.2.5 into the 2,..dimension-lol 

version~~f ,? 2.4 gives 00" 0 

(~ ). .f xkym-k)( 2::::" I::: kV xk- 1ym-k) 
~'i.o-.~.i' m,k -k ok oo~~ ' .. ~ m,l<. ok k 1 

+ (Z .>..;; gm,kx ym- )( ~<, Z:~m-~)Vm, kX ym- - ) 

( ~ '\"'- .I. k m-k)( ~ ~ k m-k 
+ L L.. Pm k X y 1 - d L.. L....-V m k X y ) 

...... t ~ .. <> , ..... "', "~u ' 

2.2.12 

o 

providing that 
the terms 'oV, 

)x 

V(X,y) 6atisfies conditions (23) in which 
~V exist and are expressible in the above 
"':jy 

form. 

We need to isolate homogeneous powers of x,y in 2.2.12. 
Hence we re-arrange 2.2.12 to obtain 

0<> • ..,_., r lYl-r 

r.~,: (o~ fr,iXiyr-i)(~(j+1)Vm_r+1,j+1xjym-r-j) 



Now we may state and prove a theorem pertaining to solution 

of 2.2.13. 

Theorem 2.2.1 

In the construction procedure 2.2.13, q ~ s + 1. 

Proof 
The construGtion procedure to obtain V(x,y) is carried 

',out by comparing coefficients of like terms in 2.2.13. Now 
suppose q <S s. We may then single out homogeneous terms 

of degree q from 2.2.13 which gives 
q 

') P kxkyq-k _ O. 2.2.14 
k=O q, 

Since 2.2.14 is an identity in x and y the only solution 

is that 

"k=O, k=O, ••• ,q, q, 
and this contradicts the definition of q by the restriction 

2.2.11 which thus contradicts the assumption q ~ s. 

End of proof. 

This theorem has implications on the choice of 6. it 

is stated by 11argolis and Vogt.(19) and elsewhere that for 

~rbitrary choice of' p, V can be determined in series' form 

by this method. Margolis and Vogt only consider systems 

in which s = 1 and then by reference to theorem 2.2.1 we 

require q ~ 2. and any posi ti ve definite " may. be used. But 
clearly we see that if s '", 2 then solution by construction 

2.2.13 breaks down for any p with a quadratic part. However 

nearly all problems which arise are concerned with systems 

that possess linear parts. Let us consider the example 
x = _x3 _ Xy2 + x(x2 + y2)2 

• 2 3 2 ') 2 
y = -x y - y + y(x + y-) 

If we try as a Lyapunov function 

V(x,y) = x2 + y2 

2.2.15 

and differentiate with respect to system 2.2.15 we obtain 

v = x ~V y 'aV 
- + -
~x "'y 

= 
2 

- x 

Hence V(x,y.) = 1 is tangential to V(x,y) = 0 and the D.O.A. 

of 2.2.15 is given by x2 + y2 < 1. tlowever if we solve 

2.2.12 for this example using 
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---- --

p(x,y) = ax2 + bxy + cy2 

we obtain 

2.2.16 

From 2.2.16 we see that the terms of lowest homogeneous degree 

are 
ax2 + bxy + cy2 = O. 

Hence we require a = b = c = 0 and .6(x,y) must be chosen 
without a quadratic part. It seems to be accepted that any 
posi ti ve definite p(x, y) satisfies the- Zubov theorems, but 

it has been demonstrated that for systems without linear 

parts that this is not the case. The theory in Chapter 3 

invest.tgates further the relationship between the lowest 
degree terms of f,g,.6,V. 
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Now suppose q> s + 1. Taking the terms with homogeneous 
degree s + 1 in 2.2.13 we obtain 

( ~ i S-i) ( ~ ) 
<_fs,ix Y . V2 ,1 Y +2V2,2x 
,'0 , 

+(L· gs,iXiyS-i)(2V2,OY + V2,1 x ) -
~ ~ 0 

the 

Now it is possible that if 
s 

:> ·gs ixiyS-i = 
I "" 0 , 

solution of 2.2.17 becomes 
o 

o 2.2.17 

with V2 0 undetermined. HO'.1ever it is l.ikely that the s + 2 , 
simultanerJUs equations generated by 2.2.17 in 3.unknowns 
will have the trivial solution 

V2 0 = V2 1 = V2 2 = 0 , , , 
as its unique solution. 

Hence if q ~ s + 1 then'V(x,y) mayor may not possess 

a quadratic part. Hence there is no loss of generality in 
writing p(x,y) as 



- ---- - ------~~~----

where the lower terms of IJ(x.y) may be ;,;,?ro. i.e. restriction 

2.2.11 no longer holds. but s is still defined according to 

2.2.6, 2.2.7 and restriction 2.2.10. 
ThetLili. !tflll~ra+' . .".e may compute the series' solution for 

V(x.y) from 2.2.13 including the possibility that V might 
not possess a quadratic part. 

Re-a>:'ranging 2.2.13 to further group like terms together 

we obtain 
0<> 'fI~, I' " ~.-
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?,~, .~ ~~ ~. Q ((j +1 )fr. i V m-r+1. j +1 +(m-r-j + 1 )gr. i Vm- r +1 • j )x
i

+ j ym-i-0 
+ ~ \' /J xkym-k 
L-L- m,k 

2.2.18 

2.2.18 is an identity in (x.y) and we may now equate 
terms of the sawe homogeneous degree and this gives 
M~I r ('1'1-,-

~~, ?,o?o « j +1) f r , i Vm_r +.1 • hi + (m:-r- j +1 )gr. i V m-r+1 • j )x
i 

+ jym-i-j 

~ . .J. k m-k 
+ 2-_. Pm.kx y 

",. 0 

_{d~f-~.J. ,v .x i +1 m-i- j } _ L L-L_ Pr.). m-r.J y 0, m* s+1, 2.2.19 
- r-:s., t:>.., lOo Q 

where the term t·} is zero if d = 0 or if m = s+1.s+2. 
The e~pression 2.2.19 is seen to be a sum of powers of 

homogeneous degree m with coefficients which are linear in 
the unknown elements 

V ' . u, J u = 2 ••••• m-s+1 

j = 0 ••••• u 

For each m we may compute V j = m-s+1. j , 

having previously computed 

V, u = 2 ••••• m-s u, J 
j=o, ... ,u. 

The terms in 2.2.19 are terms in xkym-k 

m ::;, s + 1. 

O, .. ,m-s+1) 

k = 0, ... , m.· 

hence we see that '2.2.19 -rp-presents m+1 linear equations in 

the m-s+2 unknowns V l' j = 0, •••• m-s+1. m-s+ • J' 
'Ne can represent these equations in matrix form 



cy: = ~ 2.2.20 

where C is a matrix of m+1 rows and m-s+2 columns, y: is an 

m-s+2 vector, ~ is an m+1 vector. It remains to fill in 

the elements of 2.2.20. 

v = Vm- s + 1,0 

V m-s+1,1 

v . 
m-s+1,m-s 

V m-s+1,m-s+1 
'ro obtain the elements of C we need to isolate from 

2.2.19 the coefficients of xkym-k k = O, ••• ,m which 

contain V l' j = 0, ••. ,m-s+1. Denote these 
rn-s+ , J k -k 

coefficients by C(x ym ). 

There are foul!.' cases: 

a) if 0 ~ k ~ min(m-s,s) 
~ 

( k m-k) L' ( . ) . . ) C x y = (J+1 f k' V 1 j 1+~m-s-J+1)g k' V l' --' s, -J m-s+ , + s, -J m-s+ ,J 
_ _ j ... o 

b) if s ~ k ,,; m-s 
~ 

C(xkym-,k) =)---«j+1)f k' V l' 1+(rn-s-j+1)g k' V 1') 
:'.k-. s, -J m-s+ ,.1+ s, -J m-s+ , J 

c) if m-s ~ k .;:;; s 
2.2.21 

..... -$ 

C~xk.ym-k) = ~'«J'+;)f k .V . +(m-s-J'+1)g .v .) 
~-' s, -J m-s+1,J+1 s,k-J m-s+1,J 
J '- 0 

d) if max(m-s,s) ~ k ,;;; m 
M_' 

C(xkym-k) = ~ «j+1)f k' V 1 j 1+(m-s-j+1)g k' V 1') 
?-- s, -J m-s+ , + s, -J m-s+ , J 
J 0; \.:-.t 

From 2.2.21 we can define the element Ck 1 . 1 as the + , J+ 
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coefficient of V l' rn-s+ ,J in C(xk,ym-k). The matrix C is written 

as in fig. 1. 



5 1 • 

(m-s+1)g 0 s, 

(m-s+1)g 1 s, 

o +f 0 s, 

(m-s)g O+f 1 s, s, 
i '"'-

" 
"-

I 
I 
I 

g O+(m-s)f 1 s, s, (m-s+1)f A 
S,V 

I 
(m-s+1)g s,s 

(m-s)g + 0 s,s ,'"'-

I I I 

I 
, i 

,~ 

~ ) 
g +(m-s)f (m-s+1)f s, S-I S, ss, 5-1 

I 

1- '/ 
~ + 0 (m-s+1)f os,s . s,.s 

---~ 

l"ig. 1. I 

Finally we may group all the known quantities' of 2.2.19 
I 

into the vector~. bk+1 is the known terms in the coefficient 
k m-k " of x y We do not need to express bk+1 in form 2.2.21 

as this is not necessaty forcofuphtation; ·It is' sufficient 

to wdte down the known parts of 2.2.19 which are 
p\-' r ...... -r 

{~-\-~-«')' (' i+j m-i-' -LL <"- J+1 f.V l' 1+ m-r-J+1)g.V 1 .)x y L 

~("S'.j.l i.,;;~ ~ r,:l.:m-r+ ,J+ r,l. m-r+ ,J 

-<:- /J xkym-k + [d \-' f--~ /J . V .xi+jym-i-Jl 
L m,k L L.L r,i m-r,J J 
"'-:... - r';;S~1 ~;:o i- u -

where [.} = 0 if m = s + 1 and [. J = 0 if d = 0 or 
m = s+1,s+2. 

2.2.20'has a ',unique solution if s = 1. If s > 1 there 

are more equations than u'nknowns, but this does not necessarily 
lead to contradictions; 
Theorem 2.2.2 

If C i.s an m x n matrix of rank r then 

Cv = b 1 ' 2.2.22 
has a consistent solution v if and only if (C,~) the matrix 

I 

formed by putting G an4 ~ side by 'side also has rank r. 
The proof of this:theorem is found in Heading (24). , 
'fheorem 2.2.2 reqliires the rank of C and, (C,~) to be 

the, same. C is an m+1by m-s+2 matrix, and (C,~) is an m+1 



3;:> • 

by m-s+3 matrix. 
Now if the system equations are given by 

• 
~ = A~ + g(~) 

where 11 g(~)11 -- 0 as x _ 0 

and if A Il~lla stlibili ty matrix then we may refer to Appendix 

A to see that when m = 2,s = 1 the 3 x 3 matrix C has a non-zero 

determinant, hence 2.2.22 has a unique solution. 

Consider the example 
x = _x3 

y = _y3 

which is obviously asymptotically stable in the whole. 
If we use 

then the equation 2.2.20 becomes for m = 4,s = 3 
-2 0 0 [V"j -1 

0 -1 U V2 1 0 
= , 

0 0 0 V2 2 0 , 
0 -1 0 0 

0 0 -2_! -1 

The solution of 2.2.24 becomes 

-~~:~~ - ~ 
V2 2 -! 

,- , -- -
~f we replace 2.2.23 by However 
p(x,y) = x4 + x 2y2 + y4 

then there is no solution for V2 ,0,V 2,1,VZ,2' 

Now consider the slightly different example 
• 3 2 x = -x - xy 
• 2 3 y = -x y - Y 

which is also asymptotically stable in the whole. 
No'"" let 

+ 
p(x,y' = ~ I> k 4-k 

4, kX Y 
then 2.2.20 becomes K"'o 

-2 0 0 V2 0 -1'1 4 ,0 , 
0 -2 0 V2 1 -<6 4 ,1 , = 

-2 0 -2 _V2, ~ -P4',2 
0 -2 0 -P4,3 0 0 -2 

-°4,4 

2.2.23 

2.2.24 

2.2.25 
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For 2.2.25 to have a solution we see that 

64 ,0 + 15 4,4 = .11 4,2 

P 4,1 .64 ,3 
2.2.26 

= 

is necessary. Then 

V2 0 t.64,o I -, 
V • ~.6 4, 1 or ~.64,3 2.2.27 2, 1 
V2,~ ~64,4 I 

-:.1 

From 2.2.26, 2.2.27 we see that if .6(x,y) is positive 

definite then V(x,y) is also positive definite. 
These examples show that if s > 1 then the series 

construction may still: be valid but not for every choice of 

positive definite .6. 
11; is perhaps a matter of further research whether a 

particular asymptotically stable system will yield to the 
construction for all p or just some .6 or none. i.e. given 

.!(~) what class of .6(2S) will yield a series constru'ction for 

V(~)? Also in view of these examples, it is pertinent to 

ask whether all the series construction can be carried out 
or whether it may break down at some order. It was only shown' 
tha t th~ quadra tic pa~t -e~i;ts in these' exa!TIpies. 

It is already known that the series construction where 
it can be carried out yields Lyapunov functions which indicate 

R.iI.S.s which are inferior and do not necessarily converge 

to the D.O.A .. Also the method does require f(x,y), g(x,y) 

to have a reasonably well-behaved series expansion. 

3. Lie Series Method 
3.1 Introduction 

The Lie series method was developed by Burnand and Sarlos 

.( 25) and basically involves compu ta tion of a series which 
reduces to no more than the Taylor series'of the R.H.S. of 

2.3. 1 
• 

.f(~) x = 
• 

2.3.2 

The authors develop a theory for the Lie series in their 
paper and then Kormanik and Li (26) also use the Lie series 

-.6 (~) V = 



to generate boundary points and fit a continuous curve to 

them. 
3.2 Method 

The method used is based on defining the operator D as 

D Q~(x.V)~ - - -'<I~ 
+W(x.V)) 

- ),V 
2.3.3 

If we consider the system to be in n-dimensions we may write 

2.3.3 as 

+ \'I(x.V») 
- W 

and the system_2.3.1 and 2.3.2 may be written as 

x.=f.(x) 
11-

i=1, ••. ,n 

V = -JS(~) 

2.).4 

2.3.5 

2.3.6 

Now we can consider the application of the operator D. 

From 2.3.4 we see that 

and 

Dx. = 9. (x. V) 
11-

DV = '.V(~.V) 

i=1, ... ,n 2.3.7 

2.3.8 

Now the authors define 9 i i" = 1 ••••• n and W in such_a 

way that D becomes the time derivative. For if D becomes 

the time derivative then the result of Taylors theorem gives 

xi(t) 

Vet) 

i = 1, ••• ,n 2.3.9 

2.3.10 
It is easily seen that D becomes the time derivative 

by comparing 2.3.5 with 2.3.7 and 2.3.6 with 2.3.8 giving 

9.(x.V) = f.(x) 
1 - 1 -

W(2£. V) == -~\2£) 

i = 1, •.. ,n 2.3.11 

2.3.12 
With D defined by 2.3.4. 2.3.11. 2.3.12 we now have the 

system equations in the form 

= f. (x) 
1 -

i = 1,.,n 

= -~(~) 
'The following results hold for the operator D. 

2.3.13 

2.3.14 



Theorem 2.3.1 

a) D(x
i 

+ Xj ) = DXi + 

I)) D(cxi ) = cDxi 

Dx. 
J 

i = 1, ••• ,n 

i,j = 1, ••• ,n 2.3.15 

2.3.16 

c) Dlx.x.) =(x.)(Dx.) 
~ J J ~ 

where xi could be replaced 

+ (xi )(DX j ) 

by V in any 

i,j = 1, .•• ,n 2~3.17 
of a),b),c) above. 

Proof 
'rhe proofs are straightforward and will be given for 

part c) only. From 2.3.4, 2.3;11, 2.3.12 we obtain 

" 
D(x.x.) =~ f (x)~ (x.x.) - 6(X)d(X.X.) ~J L_ m-- ~J -~v ~J 

M<, 6Xm ~v 

Now d (x.x j ) = x., 6 (x. x.) = xi' 
~~ J TJC:"~J 

~ J 

6 (x.x.).= 0 for m ~ i,j, m = 1, ••• ,n 
,- ~ J "xm 

Therefore D(x,x
J
.) = x.f.(x) + x.f.(x) 

~ J~- ~J-' 
2.3.18 

\1e see from substitution of 2.3.13 into 2.3.18 that we obtain 

2.3.17. End of proof. 
Having def"ined D so as to obtain the time derivative, 

we are now able to use 2.3.9, .2.3.1Q to ogUin trajectories 

of ~(t) in state space and corresponding values of the 
Lyapunov function V(t) given ~(o) and V(O). To do this 

2.3.9 and 2.3.10 must be expanded in power series form 
'" 

=Li..!Qlm xi(O) 
"","0 m! 

i = 1, ••• ,n 2.3.19 

00 

V(t) = ~i..!Qlm V(O)_ 
"':::0 m! 

2.3.20 

2".3,19 and 2.3.20 form a power series in t whose coefficients 
are respectively 

i = 1, .•• ,n 2.3.21 

The terms 2.3.21 and 2.3.22 are computed recursively 
by differentiating 2.3.13 and 2.3.14 giving 

"35. 
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Dmx. (0) = Dm- 1 f. (x ( 0) ) i= 1 , ••• ,n 2.3.23 
~ ~ -

DffiV(O) = _Dm- 1,s(.!(0) ) 2.3.24 

The R.H.S.s of 2.3.23 and 2.3.24 are obtained in terms 

of DjXi(O) and Djv~O) j = 0, ••• ,m-1 by using the expressions 
i = 1, ••• ,n . 

in theorem 2.3.1. 
Thus we see that given .!(O), V(O) we may compute .!(t), 

Vet) by the power series 2.3.19, 2.3.20 whose coefficients 
we previously compute by 2.3.23, 2.3.24 and the expressions 

2.3.15, 2.3.16, 2.3.17. 
It can be noted that this method is simply taking the 

Taylor series expansions of solutions of 2.3.1 and 2.3.2. 

We clearly cannot use 2S.( 0) = Q t·or since !(Q) = Q we see 
that ITID.!(O) = Q, m ~ O. The authors use the initial conditions 

V(O) = 0 

11 !(O)II ,,; E" for small E, 2.3.25 
and compute 2.3.19, 2,3.20 to give .!(t), vet) for negative 

time to trace out trajectories towards the boundary of the 
D.O.A.. When 

-

Vet) :> p 
for some p, a boundary point has been defined. The process 

is carried out fox various initial conditions anrt a set of 

boundary points are obtained. 
3.3 Curve Fitting 

Kormanik and 1i (26) use the above method to generate 
N1 boundary points .!(m) m = 1, ••• ,N1 • They then use an 

algorithm of Ho and Kashyap (27) to find a polynomial of 

degree 2q homogeneous in powers of x., close to the points 
.!(m) m = 1, ••• ,N1• It is baSiC~IIY an attempt to define 
a computed domain in terms of a closed set F(x) ~ 0 

where F(.!) = f:: F. (.!) - 2.3.27 
J"'~ J 

where Fj (.!) is homogeneous in the xi of degree j, rather 
than in terms of a set of points. 

First of all a new set of points "inside" the first set 

is picked and defined as .!(m) m = N1+1, ••• ,N
1

+N
2

• See 

fig, 2. Then a matrix A is set up with M columns and N1+N2 
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rows. The elements of A are formed by evaluating the 

expression 2.3.27 term by term. F(~) has M terms of the form 
n 

P1 P2 P h ~ / 2 2 3 28 x 1 x2 ••••• xnn were L- Pi "" q •• 

'l'hese terms are evaluated' in an arbi trary fixed order 

and the element A .' is the value of the jth expression .rn, J ) 
2.3.28 at the point ~lm. The first N1 rows are computed 

by evaluating 2.3.28 for all admissible p. i = 1, ••• ,n 

at the point ~(m) m = 1, •• ,N 1• The rem~ining rows are 

computed similarly but the signs are reversed. 
The algorithm then goes through an iteration procedure 

given by 

:r(N) = A~'(N) -.:2.(N) 
~(N+1) = ~(N) +.P A ~ (:r(N) + 1:r(N)1 ) 

:2.(N+1) = :2.(N) +-'" (i(N) + I :r(N)! ) 

o </' "" 1 

for N ~ 0 
starting from :2.(0) > Q but arbitrary, and arbitrary 0 < /' -'S '1 

~(O) = A# :2.(0). 

If at some stage.:r(N) ~ Q then the algorithm ceases. 
The M elements of ~ (N) correspond to the M columns of A 

and-hence to- the M- eipressiCms 2.3.28: These are the 

coefficients of the terms given by 2.3.28 in F(~). 

If at some stage y(N) -'S Q with at least one element 
negative then the two sets of points cannot be separated 

by a polynomial of degree 2q, and a polynomial of degree 
2q + '2 must be .tried. 
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• computed boundary points 

o "interior points" 



3.4 Hahn Example 

Consider the system 

x = -x + 2x2y 
• y = -y 
V : _2(x 2 + y2) 

in two dimensions. 

38. 

2.3.29 

_ Using the auxiliary equation method of section~ o~ ~Ch~p~e~_~ 
I~.nd separating the vClriables we, obtain as one solution of 

2.3.29a,b 

From 

x = ay where a = 
1 +ay2 

2.3.29b another solution 
-t y = y e o 

x o \ 

Y (1-x Y ) o 0 0 
is given by 

Substituting 2.3.31 into 2.3.30 gives 

2.3.30 

2.3.31 

x e-t 
x = 0 2.3.32 

1-x y (1_e-2t ) o 0 

finally substituting 2.3.31 and 2.3.32 in 2.3.29c and 
integrating we obtain 

x2i1_e- 2t )' 2?t 
V=Vo 0' ~yoU-e-~f 

1-x y (1_e-2t ) o 0 

where Xo = x(O), Yo = y(O), Vo: V(O). 

2.3.31, 2.3.32, 2.3.33 are the analytic solutions x(t), 

y(t),V(t) of 2.3.29 given any xo'Yo'Vo at t = O. It may 
be noted that if x ,y ,V satisfy 

o 0 0 2 

, then 

Vo : y~ + xo 

1-x Y o 0 

Vet) = y(t)2 + x(t)2 

1-x(t)y(t) 
• 

If we take the initial conditions given by 2.3.25 then 
2.3.31 and 2.3.32 represent the correct trajectory through 

(x ,y ) while since V only depends on x,y and not on V, then o 0 
Vet) differs from the Lyapunov function 

V : y2 x 2 
+--1-xy 

by a constant term which is equal to 2 x~ 
Y + 0 o -~-

1-x Y o 0 

• 



'rhe power series expansion for xl t), y(t), 

by 2.3.19 becomes 

where a = 

y(t) 

xC,»~ 

1-x Y o 0 

,.~ ~ 0 
00 =a" (_t)m 
L-. m! 
"":0 

b = xoYo 

1-x y o 0 

3.5 Results and conclusions 

t .: 0 

given 

2.3.34 

The series given by 2.3.34 were computed up to ~ = 39. 

39. 

Fig. 8 shows the results of using various x,y in the initial o 0 
conditions. The trajectories given by 2.3.30 are also shown 
for comparison. The boundary of the D.O.A. is given by 

xy = 1 
and the Taylor series 

2.3.35 
solution truncated at the terms 'in t 39 

diverges from the analytical solution some distance from 

2.3.35. 
An investigation was also carried out into the effects 

of truncating the series at different powers. The series 
N-1 was truncated at t for N= 30,40,50,70, x = 0·01, Y = 0·01 o 0 

and the trajectories computed are shown in fig. 9 with the 

analytical curve representing N = 00. .Fig. 10 shows the 

same analysis for N = 30,40,50,60,70 and x = 0·01, Y = 0·005. o 0 
It is observed from figs. 9,10. that the error in the 

trajectories as a result of truncation is not consistently 

one way. From 2.3.34b we see that as t --'> - = 
N-1 ~ . i N-1 

x(t) ~ a(-t) L(-b) (2i+1) 
(N-1)! "0 

For N = 38,50,70 we have x(t) ~= 
while for N = 40,60 we have x(t)~ -~_ 

It seems that the authors go to a great deal of trouble 

to work out a method that is just a Taylor series expansion. 
Also the expansion of the R.H.S.s of 2.3.23, 2.3.24 become 

infeasible for all except certain "well-behaved" functions. 

Any function containing non-integer powers of Xi i = 1, ••• ,n 



cannot be computed by this method unless the non-integer 

terms have a power series expansion themselves. 
The results above and in figs. 8.9.10 suggest that even 

for 70 terms of 2.3.19. 2.3.20 it is difficult to maintain 
accuracy until a boundary point can be computed and in some 

cases the computed point will be outside the D.O.A. as shown 

by figs. 9.10 for N = 30.50.70. Shields(28) notes that 
computing 2.3.20 as well as 2.3.19 provides a boundary 
condition 2.3.26 which is arbitrary. We can actually arrange 

for V(3.) =p at any 3. ~ DCO. 3.';' Q. and for any p > o. 
Theorem 2.3.2 

If Vl~). ~(~) satisfy the modified Zubov equation 

" ~ fi(~)~ (~) = -p(~) 
L_. <lXi 

(.:.. I 

and the conditions of theorem 1.7.1 then by solving the 
similar Zubov equation 

-P1 ~(~) 
V(~1 ) 

2.5. )6 

for V 1 (~) given any ~1 E DCO. ~1';'.Q and any P1 > 0 then 

Proof 

By theorem 1.7.15 

V(~1) = J~(~\t»)dt 
where 3.(0) = ~1. 

o 

From 2.3.37 and 2.3.38 we see that 

V1(~1) =~ f~(~(t))dt 
V(~1) 0 

2.3.37· 

Hence we see that V1 (~) is the solution of the Zubov eqIB. tion 

with p(~) replaced by P1P~~). End of proof. 

V(~1) 
The curve-fitting method also has its' drawbacks. Even 

supposing the points ~(m) are conservative approximations 
to the boundary 
the set x(m). m 

in the D.O.A •. 

of the D.O.A .• it may be difficult to find 

= N1+1 ••••• N1+N Z• to guarantee that they are 

40. 
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o " interior 
points" 

, ',boundary of D.O.A. , 0 
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Fig~ 3 

Consider the situation of fig. 3. The points marked 
x(1),x l2 ) are computed by Lie series, while the "interior" 

;oint~ ~(3), ~(4) are outside the boundary of the D.O.A .• The 

method must break down in this situation since any F(~) = 0 

obtained by the Ho and Kashyap algorithm contravenes the 

boundary. It all comes down to the question of what is meant 
by an "interior" point. The only safe way to obtClin ~(m), 
m = N1+1, •.• ,N 1+ N2, is to use 2.3.19 and 2.3.20 computing 
the boundary point from the criteriori 2.3.26 but taking a 

point with V < P as an "interior" point • 

~ 

0_" -

o 

\ 
\ 

\ 

..... ,_.-.!.x 
-0 I 

,-

Fig. 4 

<> I 

... 
'. '--..JJ.O.A. boundary 

'. 
~ ",.p8Iynornial fit , 

• ~l( 

o \. 

I -
Now consider the situation of fig. 4. The boundary . 

and "interior" points are assumed correct, but still there 

is no guarantee of getting a curve to fit which does not 

contravene the boundary. Taking the suggestion of fitting 

a polynomial of degree 2q to i-ts natural limit suggests that 

we might as well connect the boundary pOints by a piecewise 
linear path. 

41 • 



4. Transformations 
Suppose we are given the system equations 

~ = £(2£) 2.4.1 

then the question arises as to whether it is possible to 
transform the variables of 2.4.1 in such a way tha.t the D.O.A. 

boundary becomes· more obvious. 

We will consider the 2-dimensional system 

x = f(x,y) 
• g(x,y) y = 

2.4.2 

What we are now looking for is a substitution 
y = h(x,u) 2.4.3 

which when substituted into 2.4.2 gives system equations 

," 

in x,u, which do not affect the asymptotic stability properties 

of 2.4.2. 
Differentiating 2.4.3 with respect to time and using 

the ch~in rule gives 

Y = ~h\x,u)x 
oX 

+ dh(x,u)~ 
dU 

Substituting 2.4.2 and 2.4.3 into 2.4.4 we have 

g(x,h(x,ti» = "oh(x,u) f(x,h(x,u)<) + ()h(x,u)~ 
QX }u 

2.4.4 

By this means we have now transformed the system equations 

2.4.2 into the new system 

• 
X = f(x, h(x,u) 

~ .. g(x,h(x,u» ~JHx,u) f(x,h(x,u» 
~"x 

dh(x,u) 2.4.5 
~u 

To ~consider ho"", such a transformation could facilitate 
estimating the D.O.A. we consider two examples: 

• 
x = -x 

Y = -x _ y + Y\X 2+ y2, 

If we consider the transformation 

y = h(x,u) = ~ ju2-_--x-2-

then 2.4.5 becomes 

x = -xC 1 -
• u = -u( 1 

2.4.6 

2.4.7 



2.4.6 and 2.4.7 immediately yield the solution for the D.O.A. 

-1 < u < 1. 

If we use the transformation 

instead the 
y = +J u - x

2 

corresponding system 

x ~ -xC 1 - u) :!.J u 

~ = -2u(1 - u) 

equations become 

2 
- x 

2.4.8 

2.4.9 

2.4.9 suggests that the D.O.A. is given by u < 1 but 

we observe that the transformation 2.4.8 does not exist in 

real numbers for u < O. However every point of the (x,y) 

plane has a unique non-negative value of u and we need only 
consider u ~ 0 and we see that the D.O.A. is given by 
o ,,; u < 1. 

Consider also the Hahn example 
• 2x2y x = -x + 

y = -y 2.4.10 

The obvious transformation of u = xy yields 
• x = -x + 2xu 
• 

].l = -2u (1 - u) 
from which we see that the D.O.A. in the (x,u) plane is given 
by u < 1. 

the (x,u) 
However it must be recognised that the origin of 

plane is the y-axis of the (x,y) plane under the 

transformation u = xy and we have established xy < 1 is the 
D.O.A. of the set x = O. By inspection of 2.4.10 we see that 

x = 0 is an invariant set, and the theory of the stability 

45. 

of such sets is a slight departure from this thesis, It is 
mentioned as one of the problems incurred by this type of 
transformation to be included in a section covering possibilities 
of solving Zubov's equation in this way. 

There are two ways of proceeding generally from 2.4.5. 
The first is to assume that f and g possess only integral 

powers of x and y. In this case we may attempt to define 
the general transformation as 

y = h(x,u) =~~ a kxkum-~ 2.4.11 
'"' ~ rn, 

\'le also assume 2.4.11 is diffentiable term by term in u and 

x and that f,g may be· \.Jri tten in power series form 
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OQ ,., 

f(x,y) = ;;-Lf kxkym-k 
...... "" ~., 0 rn, 

, ) ~~ k m-k 
g~x,y = b~gm,kx y 

2.4.12 

Substituting 2.4.11 and 2.4.12 into 2.4.5 gives 

• 
u = 

,- ~ ( , )a i r-i-1 /,!.. r-l ,x U 
--;:-- -.- r, 1 

2.4.13 

The range of rii has not been included as it becomes 

whatever range is needed for a particular f,g. It is reasonable 
to require that 2.4.13 is independent of x and hence the ratio 

of the coefficients of xm in numerator and denominator 
should be a function of u alone which is the same for all 

m. The examples considered and the transformations given 
can be verified using 2.4.13. 

The second way of proceeding from 2.4.5 would be as in 
2.4.8 where the transfprmation used makes u a Lyapunov 

function of x and y. Since the region u < 0 is undefined 

and the origin is the only point in the (x,y) plane satisfying 

u = 0 we are concerned with knowing regions in which u is 
negative and is going to stay negative for all t ~ O. This 

* is equivalent to finding the region R (f,u) of theorem 1.6.6 
and definition 1.6.4. 

For transformation 2.4.8 and general system 2.4.2, 2.4.5 
becomes 

f(x, :!:.J u_x 2) 
. 
x = 

2xftx,:!:. j u_x 2 ) :!:. 2 j u_x 2 g(x,:!:.) u_x 2 ) • 1;1- = 

Another possibility for a transformation could arise 
by considering the Zubov equation 

n 

2.4.14 
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Since we know that the orLgLn of a stable system satisfies 

VtQ) = 0 and that V(~) > 0 for ~ F Q, 2!: (. D(!) and V(2!:) = co 
for x E SDt!), d = 0, then we may consider the transformation 

~I <.~) '" 1 

V(2!:) 
The transfor~tion 2.4.15 should reveal that 

WI.Q) = <=> 

and W(2!:) = 0 for 2!: E 'bD~f}. 

2.4.15 

Differentiating 2.4.15 with respect to time gives 

~l2!:) = -W(2!:)2 t(2!:) 2.4.16 
Combining 2.4.14 and 2.4.16 we obtain the correspondin~ P.D.E. 

for \'/ in terms of x as 

~ _ fi (~) ~~, (2!:) = t\(2!:)W(~)(W(~) - d) 
l'::- t 0 1 

2.4.17 

We may apply the series method to 2.4.17 as in section 2. 
We assume that we have a 2-dimensional system Iyith f,g,p 
given by 2.2.6, 2.2.7, 2.2.8 and that 

00 ,... 

( ) ~ ~ .. k m-k 
V/ x,y = /_ L- Wm k X y 

I""I=-'- "'-0 , 
Substituting 2.2.6, 2.2.7, 2.2.8 and 2.4.18 

an equation similar to 2.2.12. 

2.4.1tl 

into 2.4.17 gives 

Equating the lowest homogeneous powers of x,y we see that 

if d = 0 01' d = 1, r < 0 

r=s-q-1 
while if d = 1, r>- 0 

q = s - 1. 

2.4.19 

2.4.20 
2.4.20 is difficult to achieve if s = 1 as p(x,y) will not 

then be posi ti ve definite. Ho,yever since we require w( 0; v) = <X:> 

we see thRt r < 0 is necessary. From 2.4.19 wc then immediately 
see that 

s '" q 
which is consistent with Zubov's method. 

There is, however, some difficulty with definition of 
2.4.18 for negative m.-A .simple example shows this from 
Davidson and Cowan (29). 
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• x = -y 
• + x2y Y = x - Y 

USing-.6(x,y) x2 2 d 0 the lowest powers in 2.4.17 = + y , = 

become 
-~ -~ 

( ) '" k-1 -2-k) -y t L kW_ 2,kx - y + (x-y)(~W_2 k(_2_k)xky-3-k) 
"'''' 0 t "-"'"0 -2. -2-

( 2 2)1~"'\'J i+j-4-i-j) 
= x +y '-?-?- ~_2,iW_2,jX y 2.4.21 

L"'oJ=-'O 

Clearly from 2.4.21 we cannot let the summation for k be 

confined to k = 0,-1,-2. However we can let k increase from 
o to 00 and then from -0<> to -2 and write down each equation. 

These become ~ 

(-Y)(~kW_2 kxk-1y-2-k) + (x-y)(~(-2-k)W_2 kXky- 3-k) 
1>.·'0 , 00:) k. "'-=0 ' 

=(x2+ y2)(~(~W_2 jW_2 k_,)xky-2-k) 2.4.22 
""'''' j ~ Q ' ,J 

and simiBrly for negative k. The series generated by 2.4.22 

assuming W_2 ,0= 1 gives 

_ 2x3 _ 5x4 
-3 -4 + •••••• ), 

y y 

It is apparent that the series cQnstruction has too many 
problems to be feasible. 

The method of solution using the auxiliary equations 
is no more helpful. The corresponding equation to 1.8.2 
for 1,V(X,y) is 

dx 
= 

dy 
= 

dW 2.4.23 
f(x,y) g(x,y) .6(x,y)W(W-d) 

It can be seen that 2.4.23 is no better than 1.8.2 by comparing 
the terms in V and W respectively. If d = 0 then 

1 
= -V = .. JdV 

while if d = 1 then 

f dW = log(l - ~) = log(l - V) = -f1~~ . 
W(\V-1) 

Hence we obtain V and 1/ as the same function of x,y. 
W 
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Having attempted certain transformations which suggested 

themselves from the nature of the problem, it has become 

obvious that transformations, if they are any use at all, 

are only useful by using certain transformations with certain 

examples. This is equivalent to deciding what the D.O.A. is 
• 

and fitting till: lrans1'ormatioIl arouna it. 

5. The Vector Method 

Infante and Clark (30) in their paper considered that 
the second method of Lyapunov was essentially geometric in 

nature and that geometric techniques should therefore be 
used to generate a Lyapunov function and hence obtain the 
D.O.A.. They refer to theorem 1.6.3 noting that if V(~) 
can be found satisfying this theorem then the origin of 

~ = f(~) 
is asymptotically stable. The method is developed in 2 

dimensions. We denote the system equations as 
x = f(x,y) . 
y = g(x,y) 

Then sufficient conditions for the existence of a time 
independent integral of 2.5.1 

are given by 

d f(x,y) 
oX 

h(x,y) = p 

+ 2..gtx,y) = 0 
"'ay 

2.5.1 

2.5.2 

However most systems do not satisfy 2.5.3. A class of 
systems which do satisfy 2.5.3 are given by 

• x = y 

y = g(x,y) 
where JLg(x,y) = O •. 

-ay 

2.5.4 

47. 

It is system 2.5.4 that we consider to develop the method 
on, without the assumption that ~ = O. 

aY 
Suppose now the system 2.5.4 is slightly modified so 

that we have a system satisfying 2.5.3. The system which 
achieves this is given by 



i = y - J\g(x' ,y)dx' 
o 'ay 

y = g(x,y). 

2.5.5 

Thus the system 2.5.5 possesses a time independent integral. 

However, the system 2.5.5 does not necessarily have the same 

properties as 2.5.4. Thus we have to modify 2.5.5 further 
to try to preserve the essential properties of 2.5.4. We 
obtain 

• :J-

X = Y - f ~(x',y)dx' + f 1(x,y) 
o ay 

y = g(x,y) + gl(x,y) 

where ''()f1 (x,y) '+ '~1 (x,y) 
OX ','6y 

= O. 

2.5.6 

2.5.7 

48. 

The final step of the method is to investigate the 

characteristic vectors of the systems 2.5.4 and 2.5.6. However 

we do this in three dimensions and so introduce z as a 
variable the axis of which is perpendicular to the (x,y) 

plane. As we only have a two-dimensional system we add the 
third system equation as 

Z = 0 

restricting initial conditions to 

z(O) = o. 

2.5.8 

Then we may write 2.5.4 and 2.5.6 together with 2.).8 in 
vector form 

• 
zl 

and 
Y2 - t"'dg (x2'Y2)dX2 

o ~Y2 
g(x2'Y2) + gl(x2'Y2) 

o 

are respectively the solutions 



of 2.5.4, 2.5.8 and 2.5.6, 2.5.8. The vector W given by 
• 

'.~ = 
x 

is a vector which is perpendicular to the (x,y) plane and we 

denote Q, a signed number, as the magnitude of ~ expressed 
" in the convention that W is positive for ! in the direction 

of increasing z. (fie. 5) 

\ 

\ 

Fig. 5 

The basis of the method is thus to choose f 1,g1 In such 
a ~ay that the solutions 2.5.2 of 2.5.6 form closed 

concentric curves round the origin '.'Ihich makes h(x,y) a 
Lyapunov function. 

Now if the origin of 2.5.4 is asymptotically stable 

then we know by theorem 1.7.6 that trajectories of 2.5.4 
cross curves 2.5.2 and hence cross trajectories of 2.5.6 

toward the direction of decreasing h(x,y). (Fig. 6). This 

means thatAby careful choice of f 1(x,y), gl(x,y) we may 
establish IV to be positive semi-definite in a neighbourhood 

" of the origin. Thus by investigating h(x,y) and IV we obtain 
an R.A.S. given by 

h(x,y) < p'. 

49. 



Fig. 6 
To illustrate the method we consider the equations . 

x = Y 
Y = -x + x3 - ey 

The modified system becomes 

x = y + ex + f
1
(x,y) 

y = -x + x3 ~ ey + g1(x,y) 

" Then the cross product magnitude W becomes 

2.5.9 

50. 

" 2 2 2 2 ( ) W = ex (1-x ) + e xy + x(1-x )f1 x,y + eyf1(x,y) + yg1(x,YJ 

2.5.10 
" We have to find f 1 ,g1 satisfying 2.5.7 and such that W i~ 

,positive semi-definite in a region of the origin. 

This can be achieved by removing the xy terms 

f1 (x,y) = 0 

2 g1 (x,y) = -e x. 
Substituting 2.5.11 in~o 2.5.10 gives 

" 2 2 W = ex (1 - x ) 
and the integral of 2.5.9 is 

" 

2.5.11 

Since the extreme values of x which allow W ~ 0 are x = +1 
we see that the R.A.S. is given by 

x 2«1+e)2 _ x2 ) + 2exy + y2 < 
~ 

Alternatively we may choose 

1 + 2e 2 . 
2 



f 1(x,y) = 0 

g1(x,y) = _e 2x - ex3 

giving an R.A.S of 
x 2(t 1+e 2) _ x 2(1_e)) + 2exy + y2 

'2 
< 1+e+2e2• 

2 

Several pOints occur about this method: 

a) As the authors state they cannot make an algorithm out 

51. 

of the method as the choice of f1 and g1 is made by inspection. 
b) Since the method relies on inspection it can only be done 

on systems that can be so inspected, and the D.O.A.s of which 

can easily be obtained by other methods. 

c) Presumably the condition 2.5.3 is sufficient for there 
to exist closed curves of the form.2.5.2. After all, systems 

2.5.1 possess an integral which 
£:i _ g(x,y) • 
dx - nx,yy 

l-largolis and Vogt (19) mention 
V(x,y) the system 

x =dV(x,y) 
'Oy 

y = -clV(X,y) 
~x 

is the solution of 

that given a Lyapunov function 

2.5.12 

has as its solution the curves V(x,y) = p. System 2.5.12 
does satisfy 2.5.3. 

d) The systems on which the method is developed are of the 

form 2.5.4 which is only a subset of 2.5.1. 
e) There is no generalisation to higher orders that can easily 
be seen. 

f) There is no guarantee that the system 2.5.6 will have 

similar properties to 2.5.4 even when f 1 ,g1 are chosen. 
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6. Rodden's Method 
Of significant importance in a catalogue of methods of 

determining, regions of asymptotic stability is Rodden's 

method (18). The method he proposed is a computational method 

of determining R.h.S.s of ~iven Lyapunov functions which 

have been chosen' or worked out by some method such as those 

of Zubov (11), Ingwerson (31). Szego (32)(33). 
The basis of the 

.* 
method is to use theorem 1.6.8 to find 

p (i,V) such that 

for all x such that 

v<.~) = 0 

where the system equatIons are given by 

i = it2!J 
f(Q) = Q. 

2.6.1 

2.6.2 

The stability of the origin is immediately indicated 
by checking that theorem 1.6.3 is satisfied 

i.e. V(Q) = 0 

VC!) > 0 ! ;, 0 

VC!) E; 0 

for all x € Sf for some ~ ';> O. 

tlaving satisfied the conditions required for this choice 

of VC!) to indicate that the origin of 2.6.2 is asymptotically 
stable we may now proceed to determine the region of asymptotic 
stabili ty. 

There are three stages to this method: 
a) Find !(1) such that V(!(1» = 0 

b) Track along 2.6.1 to find !(2) such that 

V(!(2» ~ vC!) 

for all! satisfying 2.6.1, ! E SI(!(2» for some E' O. 
c) Trace out the boundary of the R.A.S. given by 

V(x) = V(x(2» . 2.6.3 - - . 
Stage a) is comparatively simple to carry out compared 

wi th stages b), c). 'l'he latter require us to keep on a 

pre-defined curve and to keep adjusting for any errors m~de 

in tracking, while the former searches for any point satisfying 
2.6.1. Providing we define a reasonably logical"' method for 



stage a) we have a lot of freedom for choice of large 

step-sizes and changes of direction. 

The systematic method for stage a) is required to be 
such that the point x(1) will be found no matter where it is. 

'.rhat is, we must not confine 
there may n~t be such a 

. of Rn our search to one reglon 

when point in this region but there 

may be elsewhere. 
Rodden does this by means of a spiral which he does not 

actually define but Hewit (17) does. First of all we select 
a plane in 2 dimensions containing th8 origin.· A 2-dimensional 

plane in an n-dimensional space requires n-2 linear 

relationships between the variables x 1, ••• ,xn ,given by 

AlS '" Q 2.6.4 
where A is an n-2 by n matrix, and x is the vector of system 

variables. If we replace lS by B~ where B is an n x n matrix 
satisfying 

AB = (I,Q,Q) 

and ~ is ~ new set of variables, then we have the 
2-dimensional plane in ~ given by 

AB~ = Q. 

2.6.5 

2.6.6 
(I,Q,Q) is the matrix formed' from an n-2 by n-2 unit matrix 
with 2 extra columns of zeroes. 
i . e. 

(1,Q,Q) = o 
o 

o 
From 2.6.6 we see that such a transformation gives the plane 
formed by setting 

Yi = 0 i = 1, .•• ,n-2 
and allowing y 1'y to vary freely. The matrix equation n- n 
2.6.5 represents n sets of linear equations each represented 
by n-2 equations in the n unknowns B. . 

1, J 
each i = 1, .•. ,n. 

j = 1, •.• , n for 

Rodden illustrates the method in 2 dimensions. Now 
that it has been shown that by simple linear transformations 

of the variables that a plane through the origin is e";uivalent 



to a plane in which n-2 variables are held to zero and the 

other 2 allowed to vary freely, we may illustrate stage a) 

in 2 dimensions. 
We define a series of pOints in the (x,y) plane in 2 

dimensions by (x~,ym) where 

1) (xo,yo) = (r,O) 

ii) x2+l=(rm)2 m=0,1, ••• , m m 

iii) (x 1'y 1) is where the strai~ht line tangential to m+ m+ . 
2 x + l = (rm)2 passing through (xm'Ym) intersects the curve 

2 2 
x + .Y = (r(rn+1»2. m = 0,1. ..• 

It may be shown (Appendix B) that this definition is 

equivalent to 

i) (xo,yo) = (r,O) 

= xm - y j2m+1 m-­
m 2.6.7 

Corresponding to each (xm'Ym) there is a Vm'Vm given by 

V m = V ( xm ' Y m) . 

Vm = V(xm,ym)· 
The series Vm is checked so long as Vm < 0. 

When we have found N such that 

then a process 

given by 

° .,.. >- < 1 

VN < ° 
VN+1 > 0 

of interval halving along 

x = xN + ~(xN+1 - xN) 

Y = YN + )...(YN+1 - YN} 

the straight 

2.6.8 

line 

is carried out until (x(1),y(1» is found to pre~determined 
accuracy. This completes stage a). 

Rodden does not actually mention how the 2-dimensional 

plane of the spiral curve is selected 1 ... hen we are solving 

a system in 3 or more dimensions. Clearly the point !(1) 
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in n dimensions depends on which plqne is chosen. Rodden 

chooses the expanding spiral series 2.6.7 with 2 dimensions 
in mind so that if V > 0 anywhere in this plane then ~\ 1) 

will be found. The problem in higher dimensions is that 

V is not necessarily strictly negative definite but it can 

be negative definite when constrained to a particular plane. 
'{odd en I s OI~n third order example shows this problem. 

Consider the system given by Ingwerson (31 ) . 
• x 1 = x2 

x2 = x3 2.6.9 

x3 = -x1 - 2x2 - 2x3 - x3 
1 

Ingwerson dp.rived the Lyapunov function 

2 2 2 4 3 
V(~) = 2x1 + 2x1x2 + 6x2 + 4x2x3 + x3 + x 1 + 2x1x2 
which has a time-derivative with respect to the system 2.6.9 

• 2 2 
V(~) = -6(1 - x 1 )x2 2.6.10 

Now clearly from 2.6.10 V\~) is negative semi-definite for all 
x where 

~ E [ ~ : x 1 = O} 

and a value of Ndefined by 2.6.8 will n6t be obtained when 

the spiral search is carried out in the (x2,x3 ) plane for 
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x 1 = U. Rodden says that if the plane 2.6.4 does not intersect 
V = 0 then a new plane is chosen. This raises two questions: 

1) BOI, far does the spiral go before deciding that a 
new plane should be chosen? 

2) Is there a systematic approach to choosing new flRnes 
. such that if V is not strictly negative definite then ~ 1) 
will be found? 

The obvious answer to question 1) is to confine the spiral 

search to SR for some large R~ This is equivalent to finding 
a stability region given by R (f,V) n SR. The answer to 
question 2) lies in constructing a linear combination of 

fixed planes. It can be shown that .in general (Appendix C) 

given any ~ '" Rn: that! satisfies 

2.6.11 



for some )..."\.,> ..... , >-n., where A.x = 0, i = 1, ••• ,n-1, are 
~- -

planes in n dimensions as given by 2.6.4. Any systematic 

method of selecting different planes will in some way be 
related to variation of~. , i = 1, ••• ,n-1. Even then the , 
set of (},." ..... , _., \.n.,) such that 2.6.11 intersects 2.6.1 

may be missed out nue to )...., , i = 1, ••• , n-1 possibly being 
varied in steps which are too large. 

Given that x(1) has been found we now reg~ire to proceed 

along 2.6.1 to find a point where v(~) is minimised. So we 
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have to find which direction to proceed along the n-1 dimensiona 
surface 2.6.1 so that vC!) is decreased at the greatest rate. 

The gradients of V(~) and VC!) are respectively the vectors 

'!V(x), VV(x). From fig. 7 \~e see that the correct direction 
to s;arch f~r x(2) is opposite to component'YV(~) on the 

V(~) = 0 surface. Thus we proceed in the direction of the 
vector H where 

!i(~) = (11 ~ ~II -II~ tll )I~ ~II 2.6.12 

.---' 

]<'ig. 7 

Now gi"ven any pOint! on 2.6.1 we take the next point 
to be x' where 

~' = ! + li(~) ds 

where ds is a fixed 

exactly. To return 

Illi(!)11 
step-size. 

t.o 2.6.1 we 

~' will not satisfy 2.6.1 
iterate by step search and 

interval halving along the line given by 

~ =~' + A\7V(~') 2.6.13 
where ->-. is of the same sign as V(~')' until we find x" 

satisfying 2.6.1 and 2.6.13. The danger is that 2.6.1 and 



2.6.13 may not intersect but since 

II~" - ~'II ~ O(ds
2

) as ds-'70 
this is unlikely. The procedure to find x" from x is repeated 

until we find x such that the vector H has changed direction. - . -
This is done by testing the scalar product of li(!) and li(~"). 

in the unlikely event that the step-size is large enough 

for the minimum to be missed by the scalar product test, we 
hope to approach the minimum point by another path. 

Once we have ~, ~" such that 

li(~).li(~") < 0 2.6.14 
then the step-size ds may be reduced typically to one-third 

of its previous value until the desired accuracy is achieved. 

Redden alters .ds in a different way. He takes 

ds = Illi(~)11 

II:;(~)II 
the ith c"mponent of dH is given by 

ds 

( dli(~) 
) i 

= ( 17~('). W jj(x) ) dx, 
ds d xi .:-.l 

11 V' li(~) 11 ds 
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This seems unecessarily complicated when compared to 

simple ratio reduction of ds each time we find ~, ~" satisfying 
2.6.14. 

Rodden has noted the problems which can occur when x(2) 

lies on a saddle pOint of vt~). i.e. ~v(~) = Q. He selects 
the alternative surface to 2.6.1 given by 

V(~) = - £: 2.6.15 

for some small f . He searches for the points of tangency 

of 2.6.15 with V(~) = p. As Hewit notes this again seems 
unecessary as we are only interested in the direction of 

li(~) and this always pOints to the minimum. Stage b) is now 
complete. 

St~ge c) has a repeat of the problems of stage a) in 3 
or more cHmensions. 'fo trace out 2.6.3 in more than 2 

dimensions involves using partic~lar planes in which we find 

curves satisfying 2.6.3 which we can somehow "piece" together 



.-- _. --.--

to obtain' a ficture of the complete R.A.S.. . 
Given x 2) we may trace 2.6.3 in a plane containing 

'2) -
x\ . However if we require other plane intersections of 

Rn we have to track onto them first. A systematic method 

of building up a picture of 2.6.3 would be carried out in a 

similar way to that used in stage a) given by 2.6.11. 

Since 2.6.3 is built up using planes we consider again 

the 2-dimensional situation. We suppose that we have a pOint 

tx,y) on V(x,y) = p where p is given, and we wish to find the 

next point tx',y') in a similar way to that used in stage b). 
The difference in stage c) is that we cannot determine a 

vector such as H(~) to indicate which direction~' lies as 
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we wane to trace out the whole of an \n-1)-dimensional surface. 

This is why we consider 2 dimensions only where we are 

constrained to look for x, in a particular direction. 

Hodden uses a second order method to find (x',y') this 
time. 

x, = x + dx ds + 1 d 2x (ds)2 
ds "2 ds2 2.6.16 

y' =. y + .£:l ds + 1 d2 _ £...X (ds)2 
ds 2 ds2 

~Using the geometric properties of a fit such as 2.6.16 for 

small ds we obtain 
dx -'W 
ds = ..M..... 

11 "7VII 2.6.17 

.£:l 
ds 

and 
d2x 

ds 2 

where R 

~ 

= 

= 

oV 
~ 

11 ''nil 
.11 
1_~ 

R IIv-v,lI 
"cv 

= 1 "O;¥ 

It IIvv 11 
= II\lvll 

d 2V 

ds 2 

2.6.18 

2.6.19 



and = + 2 'd2v (dX) (!!:l) 
~x)y ds ds 

2.6.20 

Substituting 2.6.17 into 2.6.20 then 2.6.20 into 2.6.19, 

2.6.~9 into 2.6.18 and finally 2.6.17, 2.6.18 into 2.6.16 

gives (x',y'). 
(x',y') will not lie on V(x,y) = p and so a search 

identical to 2.6.13 is carried out along 

x = x' + >-- ~V(x' ,y' J 
oX 

y = y" + >-- dV(x' ,y') 
)y 

to find (x",y") satisfying V(x",y") = p. 
It is interesting that a second order method is used 

in stage c) and not for a similar process in stage b). The 

same method 2.6.16 to 2.6.20 could just as well be applied 

to stage b). If we consider the plane selected by some means 
for stage c) we see that the vector 

[ii- i, p,rp,ndi'ular to [;~] • 

Now in stage b) and equation 2.6.12 we see also that !i(2S) 
is perpendicular to 'V V(2S). Hence we may define a plane 

P2S as the plane containing both !i(2S) and \lV(2S) for any 2S. 
Then by identifying p! in such a way that 2.6.16 to 2.6.20 

can be evaluated we have a new 2S' and then we may use 2.6.13 

to find 2S". The only difference in the use of the second 
order method for each stage is that P~.changes for each step. 

It seems that the extra computation required to compute 

2S' using a second order method is not justified anyway. High 

order accuracy numerical methods are needed dmly where there 
is no back-up computation. But in this case we always iterate 

to get back on to either V(2S) = 0 or V(~) = P and the accuracy 

of obtaining x' is more readily improved by reducing ds than 
by computing extra terms. 

5'::l. 
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It seems on the whole that this method is more readily 

applied to 2 dimensions than higher orders. But in 2 dimension 

it seems better to evaluate r such that 
Vtr cos g,r sin Y) = P 2.6.21 

for various g then compute VCr cos 9,r sin 9) adjusting p 
according to whether 2.6.21 intersects VCr cos 9,r sin 9) = o. 

In this way we are assured of progressing systematically, 

while in Rodden's method we first try to find a point which 
may not exist and even if it does then is outside the R.A.S •• 

7. other Lyapunov Methods 
Other methods of constructing Lyapunov functions than 

by Zubov's method should be briefly mentioned. 

Firstly, Ingwerson~s method (31). rhis method relies 

on the principle that if 

i = f(~) = A~ + g(~) 2.7.1 

where 11 g(~)1I --7 0 as ~ __ Q 

iiKf 
then A = J(O) 

where J(~) is the Jacobean matrix of f(~). So a Lyapunov 
function using the matrix J(~) will indicate stability of 

the origin. We recall by theorem 1.6.7 that the origin of 
• 
x = Ax 

is asymptotically stable if and only if there exist positive 
definite matrices B,C such that 

ATB + BA = -C, 2.7.2 
The method of Ingwerson for obtaining a Lyapunov function 
for 2.7.1 is to solve the corresponding matrix equation 

2.7.3 
for a posi ti ve defini te B{~}'.gi ven a posi ti ve definite variable 

matrix C(2S). 'vie may also recall that when 2.7.2 is solved 
we obtain a Lyapunov function 

V(~) = ~TB ~ 
in which case d V(~) 

=2B. 

2.7.4 

2.7.5 
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We see from 2.1.4, 2.1.5 that if we can find B(!) from 

2.1.3 then we might hope to obtain a Lyapunov function by 

setting 

'}v(~) 
2.1.6 

However the matrix H(~) may not be the second derivative of 
a scalar function vC!) with respect to~. Clearly if there 
is such a V(~) satisfying' 2.1.6 then by positive definiteness 

of B(x) we see that VC!) is also :' positive definite near 
the origin. 

To ensure that B(~) satisfies 2.1.6 for some V(~) we need 
the condition 

ilB(x) .. ___ -_l,J 
= 

2.1.1 

for i,.i,k = l, ••• ,n 
i J, j, i -J It. 

2.1.1 c'm be fT,uaranteed by setting to ze ('0 all variables other 

than xi,x j in the element B(!)i,j i,j = 1, ••• ,n. 

Havin~ carrl.ed out that operation on B(!) it is 

a matter of integrating 2.7.6 twice to obtain VC!). 
double integration to obtain VC!) from B(!) does not 

just 

The 
actually 

require 2.1.7 to be satisfied first, but clearly since we 

have a positi~e de.finite matrix B(!) then it helps considerably 

if B(~) is an exact second derivative in obtaining a V(~) 

· .... hich is itself posi ti ve definite. 

Schultz and Gibson (41) consider the system 

i = A(.!) ~ 2.1.8 
where A(~) is in companion form with variable coefficients 

0 1 0 - - - - o 
A(~) = 0 1 0 - - ··0 

'. , , 
.... , 

" 
.. 

, .... '. . 0 
I , 

o 0 - 0 1 

al(~) a2(~)--- - ant!). 
Now they set up a matrix B(~) with certain restrictions 
given by 
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E (x) = 2. 
n,n - 2.7.9 

B .. (x) > 0 and functions of xl.' 
1,1 -

i=1, ... ,n. 

Bi,j(~) are functions of x 1 , ••• ,xn_1 

The matrix B is ysed to assign 

OV(x) = B(~) ~ 
)~ -

~V where 
~~ 

i -J j. 

2.7.10 

The restrictions 2.7.9 on Bt~) are to increase the possibility 

of V(~) being positive definite near the origin. To fully 

determine the elements of B(~) certain other processes need 

to be carried out. 

First we require that V(~) is negative definite. 

This is done by investigating V(~) using 2.7.10 and 2.7.8 

which becomes 

2.7.11 

Secondly we must ensure that 2.7.10 gives an exact gradient 
of a scalar function V(~). The required condition is. that 

curl ;\V(~) = 0 
~~ 2.7.12 

~ith restrictions 2.7.9, 2.7.11 and 2.7.12 on B(~) we may 

determine B(~) and hence by line tntegration of 2.7.10 we 

obt'lin V(~). This method has been generalised to solve 

non-eo:npanion systems in Schultz (-18). 

The method of Szego (32), (33) ic; similar ';0 Zubtlv's 

method. He discovered that the origin of 
• 
x = 

is asymptotically stable within 

* 0<. (~) ~ 'iI 
if there exist V(~), t5(~), P(V) such 

a) V(Q) = o. 
b) .6 (~) is positive de.finite on 
c) V(~) = f\~) TdV(~) = -t5(~) 

.~~ fCVY 

2.7.13 

2.7.1-1 
that 

trajectories of 2.7.13. 



----- -------

d) 

e) 

v 

I r· ( t ) d t < 00. 
~ , 

<>< (x) = JF(t)dt "> 0 for ~ sGtisfying 2.7.14 
- 0 

It can be seen that f.l (V) - 1 converts Szego' s method into 

Zubov' f; method •. 

8. Non-Lyapunov Methods 
Finally, in this chapter, a mention should be made of 

o,ther mcthods of finding regions of asymptotic stabilij;y 

or of integrating the system equations. 

Davidson and Cowan (29) use a type of Lyapunov function 

for their method, but one in which the boundary of the D.O.A. 

is ~iven by 

Vt~) ~ o. 
Their method is ;;;ost applicable to limit cycle systems where 

the function Vt~) is defined by 

V(~) =11 ~(t)11 -11 ~(t - t')1I 2.8.1 

vhere ~\t - t') ~ c~(t) for some scalar cons:tant c. 
This poses the immediate problem of how to decide what ·t' 

is. Davidson and Cowan integrate 

i = .f\~) 2.8.2 

by' the fourth order Runf,e-Ku:;ta me thGld using nega ti ve time. 

Now in 2 dimensions it is relatively easy to decide when the 

origin has been completely encircled. This can be done by 

usin.'!, polar co-ordinates and terminating compu tation when 
g~g +21T. 

o 
However in ) or more dimensions the system trajectories are 

1-dimensional curves in n-dimensional space and a lot of 

computer logic :rIUSt be required to determine whether or not 

a complete rota~ion has.been achieved, and even then this 
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only establishes a 1-dimensional section of an (n-1)-dirnensional 

boundary. When the D.O.A. of 2.H.2 is not a limit-cycle 

Davidson and Cowan still use the function V\~) given by 2.8.1 

but with t' fixed. This leads to problems when conSidering 

examples with trajectories which may tend to diverge from 

the origin initially but are asymptotically stable. The 

Hahn example is characteristic of this 



• 2 x = -x + 2x y 2.8.3 

'rhe solutions 

• y = -y 

of 2.8.3 are given Dy 

x(t) 

y(t) 

= x e o 
-t 

( -2t) 1-x y 1-e -o 0 

= Y e o 
-t 

If we let the initial point be chosen on the line y = x and 

so write 

Xo = _~~, = a 
and then let u = e ' where t' is fixed we see that V(2S) = 0 

when 

a 2 = 1 -:;: (r-u)t 2.8.4 

1-u 
Fig. 11 shows the relationship between a and't' for negative 

t'. Clearly the more negative the value of t' chosen the 
greater the value of a and for t' <c -~log 2 then V(a,a) < 0 

for all a. The f,Emeral formula for any (xo ' y 0) corresponding 
to 2.8.4 is ~iven by 

~ r2 = 1 i (~ COS~92 )t 
\1-u Sln 9 

'~in 9 cos 9(1-u) 

x =r cos 9, y = r sin 9. 
o ~ 

For u > 1/sin 9 we see that VCr cos 9,r sin Q) < 0 
for all r and we see that Davidson and 0owan's method is 

really applicable in this form. 

Texter (34) in his paper gives 3 methods of finding 

not 

an initial point on the boundary of the D.O.A .• The first of 
these transforms the Zubov equation to polar co-ordinates 
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and solves it numerically. This is the subject of an extensive 
study in Chapter 5. His second suggestion is to inspect the 

system equations which when it can be done is always better 

than any computation. 

The third way Texter gives is that of integrating the 
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system equations from an initial point 

25:(0) = c~o 

for various c to obtain the maximum c for which the trajectories 

are stable. This is similar to Davidson and Cowan's method 

except that Texter does not say specifically how he decides 

Iyhether a trajectory is stable, and indeed neither author 
says how w~ alter x if we do not find a point on the boundary 

-0 

of the D.O.A •• 
Once a point cx has been found on the boundary of the 

-0 

D.O.A. the second part of Texter's algorithm is integration 

of the system trajectories from this initial pOint. He uses 
the Euler method of solving the O.D.E. given by (35) 

i.Y 
dx = 

which in step form is 

~) 
~) 2.8.5 

2.8.6 

Euler's method is only first order accurate and O.D.E.s can 

he solved by much more accurate methods. Also to integrate 
the system traj ec tories fOl· pOGi ti ve t means that if the origin 
is stable the boundary is unstable and computation of the 

boundary will diverge from it as errors accu:nula te. 
Finally it can be seen from 2.8.5 and 2.8.6 that the 

criticism of Davidson and Cowan's method that it is not 

applicable to higher orders is just as valid here. 

The previous two methods have each involved to some 
exten·t nume!'ical compu ta tion of the system e:l.ua tions ei ther 

for 25: as a function of t or for relationships between the 

Xi's i = 1, •.. ,n. The methods require fixed step-sizes 
for either t or one of the x.'s. 

1 
However Fox (36) proposes that O.D.E.s such as 2.8.2 

should be solved using characteristics. Characteristics 

were introduced in section 8 of Chapter 1 and as was 

mentioned there we are not specifically interested in any 

characteristic curves in this thesis except the one which forms 
the boundary of the D.U.A •• 

But Davidson and Cowan's idea of computing the system 



equations for negative time opens up ~nother possibility. 

If we choose initial conditions ~iven by 

11 ~II = z 2.8.7 
and then integrate numerically along the characteristics 

we should obtain a family of curves the envelope of which . . 
is the D.O.A.. Kormanik and Li (26) used this idea with 

Taylor series but here we consider finite difference , 

approximations along the characteristics as suggested by 

Fox. 
Suppose we have the system of equations 

x.=f.(x) i=1, ... ,n 
]. ]. -

then the characteristics are given by 

dXn = •.......• = f (X) 
n- 2.tj.8 

Likewise we may consider the characteristics of a P.D.E. 
such as the Zubov equation 

n 

> -fi(£)~~ .. = -IH£)(1 - dV). 
(::.. I 1 

2.8.9 

The characteristics of 2.8.9 are given by 1.8.1 which is 

reproduced 
dX1 

f 1 (£) 

here 

= •••••••• = 
dXn 

f (xl 
n -

= 

2.8.10 
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If we solve 2.8.8 from initiHl conditions 2.8.7 we should 

obtain the desired family of curves. If we solve 2.8.10 
instead w~ should also obtain the variation of V along each 
characteristic. Theoretically we could integrate 2.8.10 

until V reaches a certain prescribed value as advocated by . 
Kormanik and Li, but to illustrate the method we consider 

2.8.8 only and in 3 dimensions. 
The characteristics of a 3-dimensional system may be 

written 

dx _ d Y . _ :-:Td::.:Z",::-",=,"," 
= gtx,y, z) = w(x,y, z) 2.8.11 f(x,y,zl 
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Fox proposes that 2.8.11 is converted into the 2 equations 

w(x,y,z)dx = f(x,y,z)dz 

g(x,y,z)dx = f(x,y,z)dy 2.8.12 

or any other 2 similar equations from 2.R.11. He then uses 
the Tr?pezium rule of numerical integration which when applied 

to 2.8.12 gives 

i(w(xi'Yi,zi) + w(x,y,Z»lX-Xi ) 
= iCflxi'Yi,zi) + f(x,y,z»(z-zi) 

t(g(xi'Yi,zi) + g(x,y,z»(x-xi ) 
2.8.13 

= j(rlxi'Yi,zi) + f(x,y,z»(y-Yi) 

1 = 0,1, •.• 
We see that 2.8.13 represents two 

in terms of x.,Y.,z. which is the last 
~ ~ ~ 

the chal'acter:-istic. Now we may select 

let x = xi+1 or y = Yi+1 or z = z1+1. 

eouations for x,y,z 

point calculated on 
anyone of x,y,z and 

By solving 2.8.13 we 

then obtain Yi+1,zi+1 for a chosen x1+1 and likewise for 

any other way round. This has the advantage over methods 

which fix say.x i +1 which have difficulties when 

dx "'" ° dy 
or dx 'X- 0. 

dz 
'de have no way of knowing beforehand which way a characteristic 

will go in the (x,y,z) space and we may prefer to choose 

x y z subJ'ect to a condition limiting the line i+1' i+1' i+1 
displacement such as 

(xi +1- x1 )2 + lYi+1-Yi)2 + 

i=0,1,2 .••• 
Fox's method is simple to apply but if the. system equations 

can be integrated numerically in this way, it is possible 
to use much more accurate methods than the trapezium rule. 



9. Conclusions and Other Possibilities 
Various work on solving Zubov's equation or of obtaining 

Lyapunov functions and corresponding ref,ions of stability, 
and some other ways of findin~ D.O.A.s have all been presented 

here. This is nbt an exhaustive list of work done in these 

and relative fields but they serve as background material 

for developing other techniques of solving the Zubov equation. 

The Zubov methods examined have had some difficulties 

particularly of non-convergence and it is hoped to overcome 
these problems in later chapters. 

Other possibilities for solving the Zubov equation may 
include: 

a) Transforming it to an O.D.E. using Green's functions. 

b) Using variational techniques to determine contours 
of v(~). 

c) Using the analytic solution of 
!. = A~ + g(~)' 

eiven by x(t) = !!>(t)~o +<t (t)L),(-S)g(~(S))dS 
where ;:h (t)x is a solution of 0 . :t -0 

~ = A~ such tha t ~ (0) = I 

2.9.1 

and maybe some iteration for the integral part of 2.9.1. 

68. 
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Chapter 3 

Theory of Solution of Zubov's Equation. 

1.Introduction. 
Computation of D.O.A.s by using numerical integration 

techniques on ths Zubov equation will be attempted in the 

three chapters following this one. The theoretical basis 
of such computation is analysed here. In this chapter the 

definitions use,1 for later work are made. Some interesting 

new results rin the Zubov equation are also presented. 

it seems to be generally accepted that if the Zubov 

equation 

i..,.. I 

dV (x) = -6(x)(1 - dV(x)) 
dX

i 
- - -

'5. 1 .1 

can be solved for a positive definite 6(~) then the D.O.A. 
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will be obtained by setting V = 1 or V = 00. In this chapter 

it is shown that 6(~) cannot always be freely chosen and 

even that [(~) may be such that the D.O.A. cannot be obtained 

for any .6(~). 
In section 2 some definitions are §et out followed by 

further theorems on positive definite functions to supplement 

those in section 5 of Chapter 1. In section '5 we take a 
look at the relationship of the Zubov equation in polar 

co-ordinates to the re~tangular co-ordi.n'lte version 3.1; 1. 
Section 4 gives some interesting 
are symmetric about the origin. 

solving P.D.E.s by the auxiliary 

results on systems which 

In section 5 the method of 

equation or characteristics 
method is inve:>tigated as a con~ept in order to throw light 
on the relationship between x, V, 6, t. In section 6 we 

consider the choice of 6~x) and whether some 6(x) are not 
. - -
admissible as far as theorem 1.7.1 is concerned. Section 7 
covers the situations where the {,ubov equation may be soluble 

but the D.O.A. not .indicated by the corresponding .Lyapunov 
fllnction. 



2.Degree of functions 

In Chapter 1 some definitions on positive definite 

functions were given. These definitions mainly concentrated 

on the general properties of such functions. 'rneorem -1.5.1 

was concerned wi~h a particular class of functions, namely 

quadratic functions. Following theorem 1.5.3 it was stated 

that a positive definit e decrescent-- function could be 

approximated by its lowest order terms near the origin. 

We now attempt to define and establish some results on this 

subject. 

Definition 3.2.1 
~he asymptotic degree p(f) of an n~dimensional continuous 

function on an n-dimensional vector space is such that 

as x-O - -

7U. 

along a general continuous path 

and is finite for all paths and 

r in Rn where c( r ) exists_ 

non-zero for at least one path. 

For example suppose '"e define the .function f(2S) in 2 
dimensions by 

Then 

f(2S) 

IIf(2S) 11 

1/ 2SII
P C.O 

= 

By inspection of 3.2.2 as 2S~Q we see that 

which gives a 

for paths r 

p(f) -= 1 

limit -11 f(2S) 11 

112S 11 
which approach 

x 2 
= tan Q. x . 

1 

-cos Q 

the origin along 

3.2.1 

3.2.2 

3.2.3 
3.2.4 

3.2.3 and 5.2.4 satisfy the conditions aT definition 3.2.1 
for the system 3.2.1. 

Definition 3.2.2 

The asymptotic degree P(V) of a scalar continuous function 
V(2S) on an n-dimensional vector space is such that 



v <'25) 
c( r ) as ~ ~ Q 

11 ~IIP(V) 
and x varies along a t',<meral continuous path r in Rn where 

c( r) exists and is finite for all paths and non-zero for 

at least one patR. 
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Now we need to show that these definitions are consistent. 

The next two theorems establish that. 

Theorem 3.2.1 
pet) = min(P(f1),P(f2),···,P(fn )) 

where £(~)T = (f1(2~),f2C~), ••• ,fn(~))' 
Proof 

Let p(f j) = s j 

P(f) = s 

j ::::::: 1, ••. ,n 

and suppose there exists in contradiction to the·theorem a 

j such that Sj < s. 
We use the definition of the Euclidean norm of £(~) 

which is 

3.2.5 

Dividing 

3.2.6 

By definition 3.2.2 we know that 

f "tx) 1-

1I~IISj 
where c(") exists and 
non-zero for some r 
non-zero. 

Hence f "(x) 
.....1....:= 

11 ~rr s 

• 

----'> C ( I' ) as x"~O 

is finite for all continuous rand 
Let r' be a path for "dhich c(r') is 

as x"~O along r' Now if Sj < s then we see that the limit 

aS~'2S"-,;>Q of 3.2;7 is infinite and so also is the limit of 

3.2.6 infinite upon substituting 3.2.7 into 3.2.6. Hence we 

have established by definition 3.2.1 that 
pet) ;,. s 



where s> Sj for some j = 1 ••••• n. 
Now suppose also in contradiction to the theorem that s < si' 

i = 1, ••. ,n. 
This time 

f. (x) 
1 -

11 ~II s 

= fi (~) hll si-s _ c( I' )1I~llsi-s 

II~II Si 

3.2.8 

as ~'--Q along any' continuous path I' . Now if si "> s then 

we see that the limit as x - 0 of 3.2.tJ is zero for all paths 

I' in Rn. Substituting 3.2.8 into 3.2.6 and letting ~--Q 
we see that 

11 f(~)11 .~ 0 

11~lls 
as ~.,.- Q 

along any continuous path r 
definition 3.2.1 that 

p(f) f. s 

where s < s .• i = 1 ••••• n. 
1 

Now we ha~e established by 

Having eliminated all other possibilities we are left 
with the result 

s = min(s1.s2 ••.•• sn). 
End of proof. 

Theorem 3.2.2 

p(f) and P(V) are unique for a particular f(~) or V(~). 
Proof 

Suppose in contradiction that there exist s1.82 both 
s'1tisfying definition 3.2.2 for v(~) • 

i.e. v(~) 
--"> 

II~II s1 

c 1 (r ) as X~O 

and V(~) 
--;. c 2(r') as ~~Q 

11~lls2 
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and i varies along a general continuous path r in Rn. c 1(f'). 

c 2( r) both exist and are finite and each is non-zero for 
some r Without 102s of generality we may assume that 

s1 > s2' 

= V~~%sl s1-
s

2 ~ c 1 (r )II~II s1-s 2 3.2.9 

II~ 



and i,; finite, and s, ':> s2 we see Now since c,(r) exists 

th~t the limit of 3.2.9 r' as x --,. 0 is zet:o f-r any con-l,inuous \ 

Le. V(~) 
--:> 0 as x~O' 

11 ~lls2 
Hence by definit~on 3.2.2 we have shown that 

\'\::I) pC!> .;, s 2' 

This shows that the assumption that s, and s2 are different 

is false. 
For the vector function 

i = 1 , ••• ,n, are each unique 

theorem 3.2.', so is P(f) • 

f(~) we 

then by 

End of 

see that 

de.finition 

proof. 

since p(f i)' 
3.2.2 and 

With these definitions and theorems we may consider the 

properties of a positive definite function near the origin. 

Future analys~s is made easier if ,we can evaluate p(g), p(V) 

by considering only straight line paths. In that case we 

could replace ~ by (r,~), 11 ~II by rand c( r) by c(.§.) in 
definitions 3.2.1 and 3.2.2. l1e thus require to prove that 

if we considered only straight line paths in definitions 

3.2.' and-3.2.2 p(!>, P(V) would be unaltered. 

This result needs proving in two stages, the first of 

which is on the 2-dimensional version • 

.theorem 3.2.3 

VD:LQ) 
-::J'[i7) 

r 

c ( G ) as r ---"" 0 3.2.10 

in two dimensions along any line of constant G where (r,G) 

is the polar co-ordinate location of the point ~, c(9) exists 
and is .finite for all 9 and is non-zero for at least one 9. 
Proof 

Suppose first that c(9) is infinite or non-existent for 

some G. Then since straight line paths are a subset of all 

possible paths then we see that 3.2.10 contradicts definition 

3.2.2. 

Now suppose that c(G) = 0 for all Q. However we know by 

definition 3.2.2 that there is a path r' for which 

:1 f ! ) ) -'> C ( r") .;, 0 as r ~ 0 
l' V r 

3.2.1' 

7"5. 



~.-

7t\. 

and (r,9) varies along r'. Since r' is continuous we may 

write r' as ,a relationship between the variables in a p'arametric 

form r = r(z) 

9 = 9(z) 3.2.12 

where z varies c6ntinuously along r' and r(z),8(z) are 

continuous with respect to z, i'md r(z)~O as z-z' where 
z, may be finite or infinite. Now if as r --'" 0 we have from 

3.2.12 the result 9-""8' then we may use~a result of continuous 

functions such as in Rudin (4·9) which implies that 

c(r') -c(9') as 8~9'. 3.2.13 

Hence comparing 3.2.11 and 3.2.13 we see that c(8') ~ 0 which 

is a contradiction. 

Finally let us suppose.again that c(e) = 0 for all 9 and 
r' is given by 3.2.11, 3.2.12 but 8 ha" no limit as r __ O 

in 3.2.12. 

However since the path 3.2.12 tends to the origin we 

see that 9(z) exists and is continuous for all rtz) as r(z,)..".O. 

Hence there exiBts a 8' such that for all' > 0 there 
exist z, E such that E ",. <;; and 

r(z) = 1: 

e( z) = 9' +2rn-w 3.2.14 

where m is an integer. 

3.2.14 indicates not only that (r(z),8(z» is on the 

path given by 5.2.12 but also that by reference to Appendix D 

(r(z),9') is the same point in R2 as (r(z), 9(z». So we may 

define an infinite sequence zj,r
j 

such that 
r. = r(z.) -0 as j ___ oo 

J J 
and (r., 9' ) 

J 
lies on the path 3.2.12. 

Now we have a contradiction since by theorem 4.2 of Rudin (49) 
we see that 

V(r j ,9') ---"" c(p.') ~ 0 as j....,. 00 

.. p( V) 
r. 

as the sequence ~ r j' 9') lies on r' while 

V(r,i,9') _-"> c(9') = 0 as;j ~ 00 

p( V) 
rj 



as'the sequence (r j .9') lies on the straight line g = 9'. 

Hence there exists 9' such that c(9') F O. 

End of proof. 

Theorem 3.2.4 

V(r.:?) 

rP(V) 
c (:?) as r __ 0 

along any line of constant:? where (r.:?,) is the polar 
co-ordinate location of the point ~ E Rn. c(~) exists and is 

finite for all 9 and is non-zero for at least one :?. 

Proof 
As with theorem 3.2.3 we see that c(:?) cannot be infinite 

or non-existent. 
To prove that 9' exists such that c(:?') is non-zero we 

use induction. Wc suppose that c(9) = 0 for all paths 

constrained such that Yk = 9'~. k = 1 ••••• i. for some values 
of 9le but there exists a path r' constrained only such that 
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9k = 9le k = 1 ••••• i-1 on which c(M is non-zero. i = 1 ..... n-1. 
AS in theorem 3.2.3 we may write the "path r' in the form 
r = -r( z-) 

:? ~ :? (z,) 
and establish similarly that there exists a 91 
all') ') 0 there exist z. E: such that E.: <;; and 

r( z) = ~ 

9k (z) = 9le k = 1 ••••• i-1 
9. (z) = 9! +1.m,"lr 
~ ~ ~ 

3 • 2. 1 5 

such that for 

where mi is an integer. 

zj.r j such that 

\'le again define an infinite sequence 

r j '" r( z j) -- 0 as j""" ..,., 

and(r~.2) lies on the path 3.2.15 with 9k = 
By theorem 4.2 of ~udin (49) we see that 

V( r .• 9) 
_~J_- --..,. c(r')f,Oasj __ oo 

9' k k:;:: 1, ••• ,i. 

rl(v) 
with 9k = 9le • 

on r' while 
It = 1 ••••• i. as the sequence (r .• 9) lies 

J -
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/ 

c ( r ) = 0 as j _ 00 

, 
J 

Theorem 3.2.5 . 
If V(~) is given by a series expansion 

0<> 

V(~) = L Vm(~) 3.2.16 
-i"'" _s ~. 

where the terms of V (x) are homogeneous of degree m,- tneri p(V) =- 5~ m-
Proof 

To prove this theorem we need to change 3.2.16 into polar 

co-ordj.nate ·form. The generalisen transformation of x into , -
(r,2) is shown in Appendix D where the basic equations are 

x 1 = r cos, Q 1 

i = 2, ••• , n-1 

x 
n = r sin Q1········· sin g 2 sin Q 1· ·n-_ n-

3.2.17. 

Since all terms in V (x) are homogeneous terms of total power rn -
m we see that each term in V (x) becomes a function of 9 

m -
multiplied by m 

r • 

Le. Vm(~) =. rm ~ .. (g) m = s"s+1, .•• 3.2.18 
Substituting 3.2.18 into 3.2.16 gives 

~ 

~ m"" V(r,!Z) = L r 1tJJ",(~). 3.2.19 
Now dividing 3':2.19 by 11 ~II s or equi vfilen tly by. r S we obtain 

the result 



00 

= ) rm-s@",(Sl). 3.2.20 
M::S 

Now we may fix Sl and let r~O in 3.2.20 giving 

V(r,Sl) 
~ ® (g) + 0lr) as r-..O. 

r S • 5 -
3.2.21 

Since @< (~) , 0 (by definition of s) 'Ne see that there 

exists some g' for which ®S<~') f, O. By definition 3.2.2 

and theorem 3.2.4 we see from 3.2.21 that 

P(V) = s. 

,;<;nd of proof. 

Theorem 3.2.6 

V(~) is positive definite in an SE ,neighbourhood of the 

origin for some f > 0 if 

V(2S) = L Vm(~) 3.2.22 
'" .::;S 

where the terms of V (x) are homogeneous of total degree m 
m -

and where s ~ 2 and s even and V (x) is positive definite. s -
Vex) is not positiv~ definite if s odd or s ~ O. 

Proof 

'fhe'proof isbaserl· on equation 3.2,21.- First let s be 

odd and let g' be such that ®,(~') ;,. o. Denote by 2S' any 

point where 

x, :::: (r g') - ,- 3.2.23 

and let g" x" be such that -' 
x" :::: (r,Sl") 

3.2.24 

Now if @l(~') < 0 then by 3.2.21 we see that for some £>0 

and every r "'- t, V(r,,2')'< O. While if CB, (,2') > 0 then 

similarly for all r < ~ we know that V(r,,2') > O. Now since 

s is odd we know that 

V (-x) = -V (x) -5.2.25 s - s -
for all 2SERn. Hence by putting m = s in 3.2.18 we see that 

3.2.25 implies that 

®s(,2") = -8M,2') 

where ,2', ~" are related by 3.2.23, 3.2.24. So if ®J(~') > 0 

then @S(gll) < 0 and "Ie may finn some E >0 such that for all - \ 

r < t we have V(r,,2'~)< O. Hence we have proved for s odd 
" 

that there are points ~ in every neighbourhood of the origin 
\ 

where V(2S) < o. " 
. ' 
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• 
Now if s ~ 0 then by 3.2.21 we see that V(~) becomes 

infinite at the origin if r":""O along,a line 2 = 9' where 

(3,(2') f, O. Hmce VCQ) f, 0 and by definition 1.5.1 this 

means th~t VC!) is not positive d~finite. 
Finally if s even and s'?, 2 then we know that 

Vs (-,2!)= Vs C2S)' 
Now if there exists g' such that ®s(2,') < 0 then by 3.2.21 
and letting r _ 0 we see a.'!,ain that there exists E." 0 such 
that V(r,9') < 0 for' all r <:: f:. While if V Cx) is positive s -
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definite then by putting m = s in 3.2.18 we see that @sC2,» 0 . . 
for all 2 and then by 3.2.21 we see that for every 2 there 
exists an E(§) > 0 such that r < Z C2,) implies V(r,2,) > O. 

Since 
hence 

by Appendix D we have 0 ~ 91 < 2~, i = 1, •.• ,n-1 and 
9 has only a finite range. This implies that since 
> 0 for illl e· there exists 'C' such that 0 <:: ~. <:: E: (9) - -

for all e. Hence we kriow that for all r C E' and for all 9 
we have 

V(r,2,) > 0 
Le. there exists a neighbourhood SE' of the origin in which 
V(!) is positive def,ini te. ,]<;nd of p,roof> 

Theorem 3.2.6 only applies to such V(2S) which admit a 
continuous series expansion in integral powers of xi' i = 1,._.,n 

given by 3.2.22. The situation for a general function V(2S) 
is not the same. For example we may see that the function 

V(2S).= il2S11 3.2.26 
is positive definite in the whole while 

p( V) = 1. 

3.2.26 does not admit a single series expansion in x 
of the form 3.2.22 for all! ina neighbourhood of the origin. 

The only thing whicb can be said in the more general 

case is that F~V»O otherwise by oefinition 3.2.2 we see 
that V(Q) /. 0 if PCV) ~ O. 

We now prove a theorem which will be useful in the chapter 
on the one-dimensional Zubov equation, which is the 

one-dimensional version of theorem 3.2.6. 
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~heorem 3.2.7 

V(x) is a positive definite scalar function of the scalar 

variable x in a neighbourhood of x = 0 if 
00 

V(x) = LVmxm 
3.2.27 

"'<$ ( ) where s ~ 2 and s even and V "> o. V x is not positive definite s " 
if s odd or s ~ G. 

Proof 

We may write 3.2.27 ""as 
V(x) = xS~Vmxm-s 

""::$ 

Then as x~o 

V(x) _~ Vs + o(x) 3.2.20 

X
s 

'lie therefore see from 3.2.28 that if s "?- ;> and s even and Vs> 0 
that V(x) is positive definite by using the same argument as 

in theorem 3.2.6. 

Vlhile if s,,;O then V(O) F 0 an(t if s odd then from 3.2.28 

we know that either V(x) <0 or V(-x) < 0 for x in some neifihbourhoo'!" 

of x = 0 and hence in either case V(x) is not positive definite. 
End of proof. 

3. Polar Co-ordinate Zubov Equation 

The theory in section 2 relied heavily on polar co-ordinates 
and in Chapter 5 the Zubov equation will be solved numerically 

in polar co-ordinate form. This section therefore investigates 
the relationship between rectangular and polar co-ordinates as 
applied to the Zubov equation. 

We are seeking to transform the Zubov equation 
n 

~ f i (~) oV (~) = -~l~){ 1 - dV(~)) 
,"", dX" " 1 

into the form 
"-I 

F(r,2.)dV(r,2.) + 2-Gi(r,!?)OV(r,2.) = -~ (r,2.)( 1 -dV(r,2.)) 
"Or ,., "09 i 3.3.1 

by the transformation ).2.17. Using the result of Appendix 
E we see that in two dimensions 

'oV = cos 9 dV - sin 9 cl'l 
"6 X ~r ~ ~ ... --r 1 3.3.2 ';)V = sin 9 'aV + cos 9 ~V 
l>X 2 Ir r "d9 



From 3.3.2 we can obtain the terms of 3.3.1 and these are 

F(r,Q) = cos 9'f 1 (r cos Q,r sin g) + sin A f 2(r cos A,r sin 

G(r,Q) =- -sin A f 1 (r cos A,r sin A) + cos A f 2(r cos A,r sin 
r r 

3.3.3 

Now we may establi3h a theorem connecting P(F), peG) with 

P(f1 ), P(f2 )· 

Theorem 3.3.1 " 
P(F) ~ min(P(f1 ),P(f2» 
peG) ? min(P(f 1),P(f2» - 1 

Proof 

Let P(f1 ) ~ s1 

P(f2) ~ s2 

P(F) ~ sF 3.3.5 

peG) ~ sl} 

and suppose that s1 ~ s2. Now from 3.3.3 

so. 

A) 

g) . 

F(r,A) ; cris~f1(i cos A,~ sin-Q)~ sin A f 2(r cos A,rsin A) 

and 

G(r,Q) 

r S 2- 1 
-sin A f 1(r cos 9,r sin g) 

r S2 

3.3.6 

cos 
'+ 

A f 2(r cos A,r sin 

r S 2 

3.3.7 

Writing 

we have 
~.3.6, 3.3.7 in terms of the ,limi t of each function 

F(r,~) (rs F-s 2) ~ cos A f 1(r cos A,r sin 9)(rs 1-s 2) 
, s 

r F r
S 1 

+ sin g f 2(r cos Q,r sin g) 

S S +1 r
S2) 3.3.S 

~(r,Q) (r"G- 2 )~ -sin 9 f 1(r cos A,r sin A)(rs 1-s 2 

rSG r S 1 

+ cos A f 2(r cos A,r sin A) 

r
S 2 3.3.9 

Q) 
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Now using theorem 3.2.3 and definition 3.2.2 .and letting 

r->O in 3.3.8, 3.3.9 we observe that 

F(r,G) (rs F-s 2) 
rSP 

( ) s -s ( ) cos Q c1 9 r 1 2 + sin G c 2 y 

G(r,G) (rsG-s 2+ i ) . 
- - -'> -s~n 

rSG 
G c 1(Q)rs 1-s 2 + cos 9 c 2(G) 

3.3.10 

3.3.11 

as r -0 with G constant. Since we assume s1 ? s2 then the 

right hand sides of 3.3.10 and 3.3.11 are finite as r~O for 

all Q. 

Now let Q' be such that 

F(r,G') ~ cF(G') fo 0 
rSF 

as r--O along Q = Q'. 
Substituting 9 = G' into 3.3.10 immediately shows that if 

sF< s2 is assumed then the left hand side of 3.3.10 is infini~e 
as r->O along G = Q' which contradicts the finiteness of the \; 

R.H.S. Jor all Q. Hence if s1:;" s2 then sF:;' 8 2 , Vie may 

prove similarly that ~if 8 2 ~ _ s 1 tnen sF? s 1 • 

i.e. sF ? min(s1,s2) 3.3.12 
We may similarly prove using 3.3.11 that .'. 

sG ~ min(s1' s 2) - 1. 3.3.13 
Substitutin~ 3.3.5 into 3.3.1?, 3.3.13 yields the result 

3.3.4. End of proof • . 
If we now consider the situation for example in 

4-dimensional systems then using Appendix E again we have 

'dV = cns G1)V sin "10V 
~x1 ~r r iJQ

1 

'dV sinG1cos Q28V + cos 9 1cos 82 dV 
)x2 = ()r r dQ

1 

rain Q1sin 

uV = sin G1sin G2sin 
6X4 

3.3.14 

- sin Q2 ), V 
r sin '"1 i\Q 2 

3.3.15 

3.3.16 



Substituting 3.3.14 to 3.3.17 into 3.3.1 gives 

F(r,i)=cos 9,f1+sin 9 1cos Q2f 2+sin 9 1sin'92cos g3 f 3 

+ sin g1si~ Q2sin 93f4 

G1(r,i)~sin 9 1f 1+cos g1cos 9 2f 2+cos 9 1sin 92cos 93f 3 
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G2(r,i J=(-sin 

G3(r,i)=(-sin 

92f 2+cos 

93f3+cOS 

+ cos 

9 2cos 93f3+cOS 

9
3

f 4)/r sin 9 1 

9 1sin92sin 93f 4)/r 

G2sin 93f 4)/r sin9 1 

sin 9 2 3.3.18 

Let p(f} =.S, then using theorem ~.2.1 and analysing the limics 

of 3.3.18 as r _0 we establisn that 

P(F) >- s 

p( lZ 1 ) ~ s 1 

P({}2) >-. s - 1 

P(G3 ) >- s - 1 
providing that sin 9 1 sin 92 ~ O. The situation which arises 

if sin q1 sin 92 = 0 is more interesting. However the . 
singularities in 5.3.1 caused by this are removed'by multiplying 
3.3.1 by sin 91 sin 9 2 •. We gan do this sin6e we know V has 

no singularities except on the boundary of the D.O.A •• Now 
if we let sift 91 §O in the revised 3.3.1 we. obtain the. 
relationship 

(-sin
2
9 2f 2+cos 9 2sin 9 2cos 93

f 3 + cos 92sin g2 s1n 93f4)~~ /r 
2 

+(-sin 93
f 3 + cos 93f4}o~ /r = 0 3.3.19 

'0"'3 
The relationship 3.3.19 holds for any (r,92,93 ) and is 

independent of ~. (r,i). Consideration of 3.2.17 .shows why 
this is the case. If we let sin 9 1 = 0 in 3.2.17 we see that 

x is constrained to lie on the line 

x 1 = r 

x 2 = x3 = x4 = o. 
Hence all pOints on sin 9 1 = 0 are'eq~ivalent for any given 

r>O and sInce r may be cancelled from 3.3.19 we see that for 
. 

different values of 92 ,93 3.3.19 expresses the same relationship 

in an inf ini t e .lUmber of ways. 

Likewise when sin 92 = 0 we have 

(-sin 93f 3 + cos 93f4)~~ /r = 0 3:3.20 

As before we. see that points.~ith the same r,g1 satisTying 

,sin 9 2 = 0 are equivalent since sin g2 = 0 becomes 



X 1 = r cos 9 1 

x 2 = r sin 9 1 

x3 = x 4 = O. 
Hence V is independent of 9

3 
as 3.3.20 shows. 

\ve may therefore conclude that since the singulari ties 
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in 3.3.1B constr~in a 3-dimensional subspace of (r,9 1 ,Q2,Q3) 

onto a 1 or 2 dimensional subspace of (x
1
,x2 ,xy x 4) these 

singularities are regular or removable (def. see Burkill (50». 

Thus we see that we may evaluate P(F),P(G1 ),P(G2 ),P(G
3

) by 

considering their behaviour as r ~ 0, by uHing 3.3.1 if 

sin Q1sin Q2 fi 0 and 3.3.19 or 3.3.20 if sin Q1 = 0 or sin g2 = 0 

We may now summarize the general n-dimensional result 

in two theorems. 

Theorem 3.3.2 

P(F)·~ pC£) 
Proof 

From Append ix E we .!W.v~_,the general 

F(r,~) = cos Q1!,1(r,~)+ 2=(lT sin 9.)cos 
_ 4.."''- )"'1 J 

+( 11 sin 9}fn(r,~). 
I,et p(f) = s 1"<' 

r(F) = s2 

resul t 

9. f. (r,Q) 
1. 1. -

3.3.21 

3.3.22 

3 • .3 • 23 

Now suppose in contradiction that s1 > s2. Dividing 3.3.22 by 

r S 2 
,..-. to· 1 

= cos Q1 f 1(r,2) + L( n sin Qj)cos 9 i f i (r,2) 
l ::!L j ,,:. I 

3.3.24. 

Now we consider the behaviour of :5.3.24 as r·---.O by investigating 

each term, re-~riting 

f.lr,9) = f.(r,g) (rs 1-s 2) 
1. - 1.-

3.3.25 

Now by theorem 3.2.1 we have 

P(f) ~ sl 3.3.26 

and substituting 3.3.26 into 3.3.·25 and lettingr.."O gives 

f1 (r,~) = fi (r,~) (rP(f i )-S2) -l>-

rS2 rPlfi) 0 

since s1 > s2' i = 1,2, ... ,n, for all g. 



Hence f i (r,£!) ---"? 0 as r--'O'O for all 9. 

r S 2 

Substituting 3.3.27 into 3.3.24 show~ that 

F(r,S!.) 

rP2 
---'" 0 as r -"" 0 for all g. 

3.3.27 

3.3.28 

3.3.28 show" that P(F) F s2 contradicting 3.3.23. Hence the 

assumption s 1> s2was incorrect and by definition 3.3.23 of 

s1,s2 we see that 3.3.21 holds. End of ?roof. 
We may similarly establish the corresponding result for 

G.(r,g), i = 1, ••• ,n-1. 
l -

Theorem 3.3.3 
p(G.) ~ P(f) .;. 1 

l -
The proof of theorem 3.3.3 is exactly as for theorem 

3.3.2 providing 9 does not satisfy 
n-:t -

,Llsin gi = 0 3.3.29 
It has been snown that when 3.3.29 holds, (r,S!.) is constrained 

onto a subspace of Rn on which a slightly different version 
of 3.3.1 holds. The asymptotic behaviour of G.(r,9) may be 

. l -

considered by_ letting r---..O in 3.3. t or the corresP'2nding ~ 
version if 3.3.29 holds. The algebra is not carried out 

here as it is similar to that in theorem 3.3.2. 
The result of theorem 3.3.1 will now be illustrated by 

examples. Consider the example of Davies (16) 
x = 6y _ 2y2 

y = -10x - Y + 4x2 + 2xy + 4y2 

By definition 3.2.1 we see that 

P<'f} = 1. 
The Zubov equation becomes 

3.3.30 

(6y - 2y2)~V + (-10x - Y + 4x2 + 2xy + 1y2)dV = -6(x,y)(1 - dV). 
ox", Y 3 • 3 • 31 

'fransforming 3.3.31 into the polar co-ordinate system (r,g) . 
we obtain 

F(r,g) = -4r sin 9 cos 9 - r sin2g + 4r2sin 9 

G(r,g) = -10cos 2g - sin 9 cos 9 ~ 6sin2g + 4r:~os 9 + 2r sin Q. 



Thus we se.e by letting r--"O that 
P(F) = 1. peG) = 0 

and theorem 3.3.1 is satisfied with e~uality. 

However consider the example 
• 2 . 
x = y + x 

y "= -x + 3y3 

We obtain for this example 

F(r.g) = r 2cos3g + 3r3sin4g 
G(r.g) = -1 - rcos2gsin g + 3r2sin3g cos g. 

This time we see 

p(£) = 1. P(F) = 2. PtG) = 0 

------.", 
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3.3.32 

which satisfie3 theorem 3.3.1 with one equality and one inequali~~ 

Some results on the situation where theorems 3.3.1. 3.3.2. 

3.3.3 are satisfied either with equ'llity or inequality are 

covered in the next section. 
Let us look at what equation 3.3.1 means. gquation 3.3.1 

is the Zubov equation corresponding to a system in polar 

co-ordinates given by 

r = F(r.!i) 
Qi =Gi (r .•. !i).i =1 ••••• n-1 

Now we require a theorem on P(!). 
Theorem 3.3.4 

3.3.33 

• For the origin of x = £(~) to be a critical point we 
require p(£) > O. 
Proof 

By definition 3.2.1 we know that 

1I£t~)11 

II~II PC£) 
- c ( r ) as ~-'7 Q 3.3.34 

,-"here x varies along a continuous path r in Rn where cC r ) 
exists and is finite for all r and non-zero for some r . 
Let r' be a path such that cCr") I- 0 and letting 2£-Q. r = r' 
in 3.3.34 we see that if pCO ~ 0 then 11£(2£)11+ 0 ~s 2£~Q. 
and by definition 1.3.6 the origin is not a critical pOint. 

Hence if the origin is a critical point then P(I) > O. 
End of proof. 

USing theorems 3.3.2. 3.3.3 3.3.4 together we see 

P(F)?O. P(Gi ) ~ -1. i = 1 •••• ,n-1. 

The origin 2£ = Q. of rectangular co-ordinates carresponds 

to r = 0 in polar co-ordinates. This is. in effect. another 
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transformation similar to those rliscussed in section 2.4. As 
was stated there, the stability of invariant sets is more 

complicated than simple analysis of the origin. 
It will be noted system 3.3.33 has similarities with 

both one-dimensional systems and Lyapunov theory. Although 

~ is dependent op rand Q we are looking specifically to see 

if r· ..... O given r = r , Q = Q at t = O. Alae it may be observed 
o - -0 

that 

v<:~J = 112£ 11 = r 
is a candidate for a Lyapunov function, and if we can find 

a region containing the origin in which ~ is negative definite 
and r is positive definite then stability is assured. 

4. Symmetric Systems 

Examples '5.3.30 and 3.3.32 showed that theorems 3.3.1, 
and by implication theorems 3.3:2, 3.3.3 also, may be satisfied 
with equality or inequality. Now we attempt to define 
conditions in which the inequalities are strict. Looking 
back at section '5 we see that the inequalities·.in'theorem 
3.3.1 are st;ict )f the R.H.S.s--of 3.3.6 or i.6.7 tend to 

zero as r~O for all Q. It :is difficult in general to tell 

what restrictions on f 1 , f2 may give 

P(F) > P(f
1
,f

2
) 

or peG) >P(f1'f2 ) - 1. 

However we can investigate certain situations if f 1 ,f2 have 

a series exp~nsion similar to 3.2.19. By theorems 3.2.1 and 
3.2.5 we may write down 

f
1
(r,Q) 

f 2 (r,Q) 
where P(f 1 ,f

2
) = s 

= 

= 

and ei ther (@, (g) =1= 0 

or i§ , (g) * O. 

~ 

I:'rm @,.,(Q) 
..... ,..s m for ~JQ) 
("" .. .!: 

Now we can establish in two dimensions 

Theorem 3.4.1 

3.4. 1 

Given that P(f 1,f2 ) = sand f 1,f2 arc expressible by 
3 •. 4.1' then P(F) > P(f1'f2 ) if and only if 



cos 9 ®s (9) + sin 9 ®s(9) == 0 for all Q. 

Likewise peG) "> P(f1,f2) - 1 if and only if 

-sin 9 @s(g) + cos 9 ®s(9) == 0 for all 9. 

Proof 

Substituting 3.4.1 into 3.3.3 gives 

F(r,g) = COB 

3.4.2 

3.4.3 

".. "'" 3.4.4 
+ cos G Lrm- 1 1\@",(91.-

s-1 "'·s . . 
G(r,9) = -sin 9 ~rm-1 @)~ (9) 

Dividinf!, the equatio;;s3.4.4 by r S 

F(r,Q) = cos 9 ~s(9) + sin ~ 
s 

and r respectlvely glves 

@);Ul) + OCr) 

r 

G(r,Q) = -sin G @,(9) + cos 9 <5>,(9) + OCr). 
s-1 r 

Now if P(F) > 

F(r-,9) = 

r S 

for all g. 

s then 

F(r
t
9) 

r PF) 

3.4.6 implies that as r~O in 3.4.5 we must have 

cos 9 @M9) + sin \:I @,(9) -= 0 

3.4.5 

3.4.6 

while conversely if 3~4.7 is true then by letting r-,>O in 

3.4.5 gives 

F(r,9) ----'0- 0 as r-O for all Q. 

r S 

Hence P(r) f- s and since by theorem 3.3.1 P(f) ~ s then we 
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see that P(f) > s. This proves the theorem for P(F) and the 

proof for peG) is identical using the second enuation of 3.4.5. 

End of proof. 

Now let us consider in detail the functions @),(9) and 

~5(g). Since 3.4.1 is obtained by collecting together 

homogeneous terms in lx,y) to the power m = s,s+1, ••• ,we may 

write down s 
@,(9) = L:f .cosjg sins-jg 

~::;.o s. J 

®,(9) = 1:ogs,jCOSjg sins-jg 
3.4.8 

Substituting 3.4.8 into 3.4.2 and 3.4.3 we see that for 

P(F) > P(f1 ,f2 ) we require 



- -"--- -"~-~ 

1::l8. 

s 

cos Q ~f _cos j ::) 
. s, J 

f9r all Q. ,.0 

sins-jQ _ 0 

3.4.9 
Likewis~ peG) > P(f 1,f

2
) - 1 if 

-sin Q~f _cosjg sins-jQ + cos 
• ~Q S, J 

for all' Q. 

and only if gtg _cosjg 
"" s, J 1 ::.0 

sins-jg _ 0 

3.4.10 

3.4.9 and 3.4.1O·are identities in Q \vhich -require that all 
coefficients of separate terms are zero. Hence the conditions 
of theorem 3.4.1 arc met respectively if and only if 

gs,o = 0 

gs, j + f s,j-1 = 0 j = 1 , • • • , s 3.~.11 

f = 0 s s , " 
and f 0 = s,O 

-f s, j + gs,j-1 = 0 j = 1 , ••• , s 3.4.12 

gs s = 0 , 
3.4.11 and 3.4.12 represent the-coriditions~nder which the 

inequalities of theorem 3.3.1 are strict in 2-dimensional 

systems for any s. THere are obvious generalisations into 
higher order systems although the al~ebra is complicated. 
However as "in -practice most systems _ have linear par"ts" 

we may consider the system in n dimensions 

3.4.13 
where g(~) is in some sense »small" in comparison to Ax as 

~-Q". 
For the systsm "3. ~. n we see tlta t since the linear terms 

dominate near the origin for non-trivial A we have 
p(f) = 1 

Hence by theorem 3.3.2 and ."3.3.3 we see that 
P(F) ~ 1 

P(Gi ) ~ 0 

i = 1, .•. , n-1 

3.4.14 

and some results may be established to decide when the 

inequalities in 3.4.14;·are strict. One such will be stated 
here. 

Theorem 3.4.2 

A necessary and sufficient condition that P(F) > 1 where 
f(~) is given by 3.4.13 is that 

A + AT = G. " 3.4.15 
" Proof 



Wri ting out"). 4. n in full <;,i ves 
o 

f. (X) = ~ A .. x. + gi(X) 
1- 4--1,JJ -

3.4.16 
J .., I 

i = 1, •.. ,n. 
Now we may substitute the transformation 3.2.17 into 3.4.16 

and then substitute 3.4.16 into 3.3.22. \1e obtain . . 
n.'1 t-, 

2 -
F(r,2) = A1 1cOS 9 1+ oos 9 1 L(A1 i+ Ai 1)( 11 sin 9 k )cos 9 i 

, l~2.J'\-I" "'=_ 

+;_~s o~.1 (A 1 ,<_.~n, 1 )( IT ~~~ 9 k ) 

<2 > Ai ,j\1T sin 9tH ftsin 9j{)cos 9 i cos 9 j 
l -- "l. I '"'L ... " I . l< .... I 

r 

n -I • '·1 ,,-. 

+~(Ai,'n+ An,iHnsin 9k H-I-lsin 9k)cos 9 i 
~ .. 2 ,,_, ,.:.:.. .. .. , 

+ An,nC~n-sin 9]{)2 + OCr). 
1<.:=. 

3.4.17 

If A satisfies 3.4.15 then the linear terms of 3.4.17 are zero 

and 

F(r,2J 
- 0 as r-.;.O for all 9. 

r 

and here P(F) > 
_F(r,2) 

-

1 • While 

Ft r ,:!) 
r PtF ) . 

conversely if P(F» 1 then 

(rP(F)-1) ---'>' 0 as r~O for all 9 
r 

and the linear terms of 3.4.17 must vanish identically. :-lence 

we require 

A .. + A .. = 0 
l,J J,l . 

i,j .~ 1, ... ,n 

i.e. A + AT = O. End of proof. 

j~quation 3.1.15 shows that A is not a stability matrix. 

This is easily seen by recognising that if 
T 

V(~) = ~ ~ 
is tried as a Lyapunov function of the system 

x = A x - -
t1,en Vt~) = 0 results. Stability matrices cannot therefore 

give P(F) > pCO 
but ey.amples such as the Hahn systr;m.show that P(G) > P<,~) - 1 

is possible. 

These results may seem of academic interest here but the 

asymptotic degree P(F),P(G.), i = 1, ... ,n-1, P(f) etc. become 
1 -

important in later sections when solving the Zubov equation 

and in Chapter 5 when radial grid methods are considered which 

are affected by the hehav·iour of F, Gp i = 1, ••• ,n, i 
the origin. 

near 

8'). 
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5. Concepts of Parameterisation 
In section 8 of Chapter 1 mention was made of the auxiliary 

equation of a partial differential e~uation and the 
characteristics. Reference was again made to this.in.section 

8 of Chapter 2 in connection with Fox's method of numerical 
solu tion of a P. D·. E.. In this section we investigate the 

connection between t and V creatp.d by the function ~(2S). \1e 
may reproduce 2.8.8 and 2.8.10 

dX 1 dX 2 
= 

= 

f 2 (2S) 
dX 2 

f2(~) 

= ••••••• = 

- -- .......... -
f (x) 

n -
dX

n 

fn~2S) 
= 

3.5.1 

-dV 3.5.2 

,6(2S) (1-dV) 

From "3.5.2 we see' that we may construct a new set of ordinary 
differential equations given by 

dX r -f i (2S) 
dV = 95(~·)(1-dV)· 3.5.3 

The equations 3.5.3 may be compared to the original system 

e9uations given by 

f. (x). 
~ - 3.5.4 

dt 
The system 3.5.4 yields the .. solution xi(t) given xi(O).i = 1 •••• n. 
while from 3.5.3 we may obtllin either analytically or numerically 

the solutions x.(V) given x.(V ) •. i = 1 ••••• ~. 
~ ~ 0 

Comparison of 3.5.1 and 3.5.2 shows that the trajectories 

x.(t) and x.tV). i = 1 ••••• n. are the same ;or both systems 
~ ~ 

in the n-dimensional state space. but they have a different 
relationship with their respective independent variable. 

We can see from this comparison that there is not actually 
much difference between the system e'l.uations 3.5.4 and the 
Zubov P.D.E. 

r~ __ fi(2S) W(2S) = - ~(2S)(1 - dV(2S» 3.5.5 
~., 'OX i 

The'. presence of the term ~ (2S)( 1 - dV(2S» simply gives the 

trajectories a parametric representation in t~rms of a new 
independent variable. Considering the Zubov equation is always 

studied in the form 3.5.5 with one dependent variable V and n 



independent variables xi' i = 1, •.• ,n, this is turning the 

whole problem upside down! 
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'.'le can see that any transformation of independent variables 

is possible by inultiwing the R.H.S. of 3.5.~ by a fixed 
function of ,2£ and the independent variable. Suppose we consider 

the simple equat~on 
T = 1 3.5.6 

where 'rC~) is considered as a function of x similar to V<,~). 

Now by using the chain rule of differentiation given in theorem 

1.5.3 we obtain a formula similar to 3.5.5 
n > 'f i (,2£) dT(,2£) 

~:o, 'Qx i 

= 1 3.5.7 

emphasising again the similarity in relationship oetween ,2£(t) 

and ~lY) since the solution of 3.5.6 is T = t. 
The ~uestion that remains however is what happens to ,2£(Vj 

as V varies. We know for asymptotically stable systems that 
x(t) _ 0 as t- 00 providing x E D(f). We also know that if 
- - -0 -
we can find positive nefinite functions V(,2£), ~(:~) satisfying 
3.5.5 then the origin is asymptotically stable by theorem 
1.7.1. In this case we know ,1;h9-t !(V)~~Qas V~Owhere V 

decreasp.s -from V' -to zero. 
o 

But we do not know that such a Lyapunov function V(,2£) 

necessarily exists given ~(x). Indeed, since the transformation 

of the independent variable t to the independent variable V 
in 3.5.3 can take (m any f0rm we see that S9me functions 95(,2£) 

ann d will transform ';'5.4 into a system wit" similar properties 
to 3.5.4. 

We have alreany observed that 

95(!) = -1, d = 0 

yields the P.D.E. 3.5.7 and leaves system 3.5.4 unchange~. 
So what conditions are required on 6(!) ann d such that 3.5.3 
will be a system such that !(V)-">O as V~O? 

The Zubov theory requires firstly that pe!) be positive 
definite so 3.5.7 is not admissible. Hut not just any positive 
definite function ~(!) will do. 

Consider the example: 
• -x(x 2 + y2) x = 
• I 2 i) 3.5.8 
y = -y\x + 

System 3.5.8 is asymptotically stable for. all (x,y) ~ R2. 



Now if we use 
eI(x,y) = x2 

+ i 
d = 0 

and substitute 3.5.8, 3.5.9 into 3.5.3 we obtain 

clx 
dV i= X 

1:£ = Y dV 

3.5.10 

3.5.10 represents a system for x(V),y(V) which is stable for 
all (x,y) as V~~ The solution of 3.5.10 bein8 given by 

xlV) 

( V-V Y V) = yoe 0 

proves that (x(O),y(O» I to,O) unless txo'yo} = (0,0,. 
The reason for this behaviour is that the origin is still a 
critical point of the transformed system 3.5.10 and solutions 
can only tend to critical points as t ~ ~ 00 providing the 

solutions' are well defined. 
Now suppose 3.5.10 is replaced by the system 

dx -x~ x ~ 0 
dV = ("::x~it~ x~.; 0 

£.Y. ~ -y~ y ~ 0 
d V "-(_y)'Zy';;O 

The solution of 3.5.11 for (xo'Yo) ~ (0,0) is 

-2(x~- xt) = V -v o 0 

." t -2ty~- yo) = V -Vo· 

Now if Xo = y we see that 
°x(V + 2xt) =0 r';. 

o 0 

y( V 0 + 2Y!) = U 
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and solutions of 3.').11 reach the origin for finite V. In this 

case the origin is a critical point of 3.5.11 but the system 
does not satisfy a Lipschitz condition near the origin and by 

theorem 1.3.3 the solution at the origin is not necessarily 

unique. This brings us to the theorem on choice of ~(~). 

'l'heorem 3.5.1 
For the Zu DOV equation to be so11l ble for an asymptotically 

s.table system 3.5.4 to yield a posi ti ve definite function V (~) 

it is'necessary that the system 3.5.3 does not satisfy a 

Lipschi tz condition· for all x C S£and all E <:: b for some 'S > O. 

.' 
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Proof 
Suppose for contradiction that the origin of system 3.5.3 

lies in a region for which 3.5.3 does satisfy a Lipschitz 

condition. 

i.e. f<'~) 

~(~) (1-dV) 

3.5.12 

for some fixed L and all (~'.Y:) E: Se for E > O. Now by theorems 

1.3.2, 1.3.3 we know that there exists a unique solution ~(V) 

of system 3.5.3 passing through an initial point 

~(Vo) = ~o 3.5.13 
providing ~o E Se and for fiS long as x( V) E SE. Hence there 

exists a unique solution ~(V) such that 

~(O) = Q. 3.5.14 
Now since we assume that the origin is a critical point of 

3.5.4 and also that ~(~) is positive definite we can say 

.!(Q) = 0 

~(Q) = O. 
There are three possibilities for the behaviour of 

.!(~) 
as x --,," 0 : 

~(~H 1-dV)· 

1) If I flx) -'> cP as ~ ---"> Q th~n it does not satisfy 

_ ~(~)( 1-dV) 
a Lipschitz condition. 

ii) If f(~) ~ o as x-... O then we may put y.. = Q in 3.5.12 
~(~)( 1-dV) 

thus 

Now from 3.5.3 we see that a solution satisfying the initial 

condition 3.5.14 is given by 

~(V) :; Q. 
By theorem 1.3.3, 3.5.15 

xCV ) = 0 
- 0 -

3.5.15 
is the unique solution passing through 

-5.5.16 
for any finite Vo. This proves that we cannot obtain a solution 

of 3.5.3 such that ~o ~ Q which passes through the origin. 
iii) If f() 

-~- cCf') ;, 0 as ~--Q and x varies along 
~(~)( 1-dV) 

a continuous path (' in Rn, then we see tllat in this case a 

solution xlV) of 3.5.3 with initial conditions 3.5.13 passing 

, 



through the origin satisfies 
limdx(V) = c( r ) f, 0 
V-.ocW 

and hence there exists a £ >0 such that for - b '" V < 0 then 
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11 :~(V)II;'O' Let xi be a component of,2S such that I :~i(V)1 ;, O. 

Then we uee that'since 
v . 

xi (V) = xi (0) + J dx i (V' ) dV' 
o dV 

then I'Ihile -';;< V < '0 we have ei ther 

xi(V) < xi(O) 
or xi (V) ). xi (0). 

3.5.17 

Now if 
3.5.17 

we assume that x.(O) = 0 we immediately observe from 
. l. 

that for -~.:: V < 0, ,2S(V) f, Q. Hence we have found 

a point x in the neighbourhood of the origin where V < 0 and 

if < 0, ann by theorem 1.6.4 this indicates that the .origin of 

3.5.4 is unstable which is a contradiction. 
Having covered all_cases where the Lipschitz condition 

holds and founn that V(,2S) is not a Lyapunov function then we 
have proved that to obtain a Lyapunov function then the Lipschi tz- . 

'condi tibncannot hold. End of proof. 
~ubov himself (12) states that not all ~l,2S) are admissible 

to be chosen so that the conditions of theorem 1.7.1 may be 
satisfied. He refers to the "rate of decrease" of solutions 

of 3.5.4 observing that if for any reason whatever the rate of 

decrease of ,2Slt) is known then p(,2S) may be chosen ann he gives 
examples covering variolls rates of decrease of ,2S(t) showing 
how ~(,2S) can be chosen. In this section and the next it is 

shown that choice of 6(,2S) can be made by considering f(,2S) 
ra'ther than ,2Sl t) which if we knew would render the Zubov 
equation unnecessary. 

Zubov's result on choice of p(,2S) is: 

'l'heorem 3.5.2 

If the origin of 3.5.4 is asymptotically stable and if 

pl,2S) satisfies the conditions of theorem 1.7.1 and also 

J:~6(,2S( t) )dt < 00 

given _x(O) = x , 
-0 

then for this p(,2S), a V(,2S) can be found satisfying theorem 1.7.1. 
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It remains to show here that theorem 3.5.1 implies theorem 

3.5.2. 
Theorem 3.5.} 

If the origin of 3.5.4 is asymptotically stable and the 

system 3.5.3 satisfies a Lipschitz condition then 
t 

lim f~(~(tl»dt. = 00 
t . ..=.,.oe> • 

Proof 0 

3.5.18 

It has been shown that if 3.5.3 satisfies a Lipschitz 
condi tion then either the origin is unstable, which we ·discount, 

or that 3.5.15 is tne unique solution of 3.5.3 passing through 

3.:,.16. 
However if we consider the relationship between V and t . 

8iven by 
v = -(; 

we see that V iel then given by (" 

V(~(t» = V -[tl(x(tl»dt. 3.5.19 
o 0 -

.. which since I'I(~) is positive defini te means that V(2£( t») is 
a monotonic decreasing function of t along the system trajectories· 

But we know that no finite V exists such that 2£~V) = O. Hence 

lim V(x(t» = - 00 3.5.20 
t~~-~ -

Now by rearranging 3.5.19 and letting t....". 00 using 3.5.;:>0 we 

see that 3.5.18 occurs. End of proof. 

Before considering the Zubov equation in terms of definition 

3.2.1, 3.2.2 we shall state a theorem establishing what the 
Lipschitz condition means in terms of the definitions. 
Theorem 3.5.4 : 

A function £(2£) for which £(Q) = Q satisfies a Lipschitz 
condition in a region D containin~ the origin if and only if 

Pl£) ~ 1. 3.5.21 
Proof 

This is similar to the ~roof of theorem 3.5.1. In that 
proof the three cases of the .behaviour of a function as ~~Q 

were considered. The case £(2£) - 00 and £(2£) - £( r ) f,2 are 
discounted as the origin is a critical point of £(2£). 

The Lipschitz condition can be written as 

11£(2£) - £(Z) 11 ~. L 112£ - Z 11 3.5.22 
for sOlne fixed L and all (2£,Z)€ D. Hence substit~ting Z = 0 
into 3.5.22 gives 

3.5.23 



. Mow suppose by contradiction that P(.£} < 1. 'de divide "3.5.23 

by II~IIP(£) which gives 

11£(~)11 ,,; L 11 ~ll1-P(£) 
II~IIP(£) 

Now letting ~.- 2 along any continuous path r' in D shows that 

11 £(?')II 
11 ~IIPt.£) .---'1> 0 as ~-~Q 

96, 

if p(.£} .< 1. This contradicts definition 3.2.1 and so P(£) ... 1. 

Now suppose we are given p(£) ~ 1. This means by definition 

3.2.1 that 

II£(~)II 
II~I) p(.£} 

.- c(r) as x· .... o 3.5.24 

along any continuous path rand c( r) exists and is finite 
.l(-

for all f' and is non-zero for at least one r. Let c be the 

supremum of c( f') over all r ;AD. Then from 3.5.24 we have 

11£(~)ll ~ c *11~IIPt£) 3.5.25 
as ~ __ 2, x <' D. Now by 3.5.21 we have 

1I~IIP(.t} ~ II~II 3.5.26 
for all x in some neighbourhood. of the orig-in.· Combining· - - - ~ - ---

3.5.25 and 3.5.26 we have ar~ived at the Lipschitz condition 

for a neighbourhood of the origin. End of proof. 

6. Admissible ~l~) 

Now we have established by an example and a theorem that 

not all positive definite functions p(~) satisfy theorem 

1.7.1 for a given f(x),we may study this problem using definition 

3.2.1, 3.2.2. We must assume that we may solve the Zubov 

equation in the·form 3.1.1 or at least attempt to solve it 

ann hence that the partial derivatives 'dV(x} , .i=1, •.. ,n, exist. 
dX.-Theorem 3.6.1 1 

P(£} + P(~~} ~ min (plp),P(d~V)} 3.6.1 
providing ~V exIsts. 

. dX 
Proof -

Let P(£} + P(~~) = s. 3.6.2 

Dividing the Zubov equation by 11~lls gives 



3.6.3 
= 

11 ~I s 
Now we consider the lim.i t of each term on the L.H. S. as ,3:~Q 

along a continuous path r in Kn. By definition 3.2.2 WA may 

state that 
f, (x) 
~ -P' f) .--,> c! t r) as x......,. 0 3.6 • <1 

11 ~II \ i ~ --

and x varies along a continuous path f' in Rn. Itlso 

'Ov(x) 
-ox,-

~ o,V 

11 ~IIPt <lxi ! 
3.6.5 

* where ci(l') and Cj(r). i:::1, •.• ,n, 

some r 
Axist and are finite 

and each is non-zero for 

By theorem. 3.2.1 we have the inequalities 

PU i ) ~ peo 
P('e,v ) ~ p('dV) 

Tx, r 'dx 
~ -

No'," by 3.6.2 we see that 

f, (x)"dV(x) f. (x) 
~ - -- ~ -'llx i = 

11 ~lls 11~IIP(f) 
while from 3.6.6 we see 

f, (x)ilV(x) 
~ - ,--

that 
f, (x) 
~ -

~xi = 

11 ~lls 11~IIP(fi 

i = 1, •.• ,n. 

. 'OV(x) 
~.-

~ 

II~f(~i) 

3.6.6 

Usin,';5.6.6 and :5.6.4, 

f i (~)'~V (~) 

3.6.5 upon letting ~""""Q we see that 

oXi is finite 

,11~lls . 
Refer~ng back to 5.6.3 we see that 

, -,5(~) (1 - dV(~») is finite as 2S ~ Q . 3.6.7 

H:,mce '3.6.~~[:dicates that P(-O(1 - dV» >, s. 

97. 



Now .if T'(d) < s then we see that 

.0(2:.) = 
.0(2:.) 112:.llp(~)-s 

3.6~8 
112:.11 1'( ~) 

~ 00 as 2:.-Q 
11~ls 

along a path r I for which 

~(2:.) 
II2:.HP(~) -- c( r ') F O. 

Substituting 3.6.8 into 3.6.7 leads to a contradiction in 

limits as 2:.-----Q. 
Hence 1'(.0) ~ s and we may similarly prove that F(dpV)>- s. 

'1'his shows that 

min (p(6),p(dcV) ~ s 3.6.9 
and substituting 3.6.2 tnto 3.6.9 gives the result 3.6.1. 
End of proof. 
Theorem 3.6.2 

.. min (P(fi ) + pl;~.) ) ~ 3A.n (p(p),p(d~V» 
1=1, •• n 1 

Proof 
Let . min (1'( f i) + 

1=1, •• ,n 

iJv 1'(-) ) 
":Ix. 

,~ 

Then using. the. relationships 

P(f.) + p(<lV ) 
~ dXi 

i = 1, .•• ,n 

= s 

s 

instead of 3.6.6 the proof becomes exactly as for theorem 

3.6.1. End of proof. 
':le note by examples that these inequalities in theorems 

3.6.1, 3.6.2 can be strict. Consider the example 
x = _x3 
• 3.6.10 Y = -y 

Then if we use ~(x,y) = 2x4 + 4y4 

d = 0 

3.6.11 

and then substitute 3.6.10, 3.6.11 into 3.1.1 we may solve 
3.1.1 to obtain the anilytic solution 

V( ) 2, if ~ x,y = x + y • 
Hence for this example 

PC£} = 1 

p('H) = 1 
)2:. 

P(~) = 4 

p(d6V) = 0<> 
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which satisfies theorem 3.6.1 with strict inequality, although 

p(f i) + P(~~ ) = 4 i = 1, 2~ 
i 

and theorem 3.6.2 is satisfied with equality. 

Now consider the example 
~ = _ 2y3 

• y ~ x. 
Then if we solve the equation 

_ 2y3'"QV 
ax 

we obtain the 

V(x,y) = 

+ x'oV = 0 
)y 

analytic solution 
x2 + y4. 

Hence we have satisfied theol.·em 3.6.? witil 
mill (P(f.) + P(~V» = 4 
. 1 2 1 ox.· 1= , 1 

min (P(~),P(d,lV»)= """-
However the result 3.6.13. 3.6.14 show that 

2 4 x + y = p . 

3.6.12 

3.6.13 

3.6.14 

are trajectories of the system and hence that 3.6.12 is not 
an asymptotically stable system. It is later shown that 
asymptotically stable systems for which the series construction 
is possible satisfy theorem 3.6.2.with equality. 

Theorem 5.6.3 

min (p(,l),P(d,lV») = P(~) 3.6.15 
if VtQ) = O. 

Proof 

We assume that system 3.5.4 is asymptotically stable 

and p(2S) , V(,~) are such that theorem 1.7.1 is satisfied. 

Now we consider ~~:~JVl2!) fmd observe that as E-'1Q 

~(x)Vtx) 

IIE~P(V)+P(~)-- c~( \' } cv(r ) 

as x varies along Cl continuous path r in Rn. 

Now we also know that 

P\E)V(E) 

I/~Wtav) 
Re-arranging ).6.16 gives 

,l(E)V(~) _ I!S(E)V\E) 

11 EIIP~3)+!'(v) 112£llg(~V) 

. -

3.6.16 



Now if f" be such that c/JV( f") ;, 0 then letting 2£-'" Q along 

r' in 3.6.17 leads to a contradiction if p(,6V) < P(/J) + P(V) 

as. the left hand side becomes infinite contradicting 3.6.16. 

Hence 

p(iJV) '>, Pt/J) + p(V,. 

The initial condition V(O) = 0 implies p(V) > o. . -
Since P(V) > o then this yields the ·resul t 

p(/JV) '> P(/J) • 

Now if d ", 1 we see that P(d~V} = P(cV) '> p(II) vlhile if d = 
we see that P(d,6V) = ex;, '.> Ptp J which establishes that 

P(dCV) > p(p) 

and result 3.6.15 is proved. 'End of proof. 

1Uu 

0 

The relationship pf P(V) 

Theorem 3.6.4 

and p('d V) is of obvious interest,. 
-2S 

p(V) ",; P(~) + 1 3.6.18 

providing that the partial derivatives of V exist and are 

continuous in a neighbourhood of the origin and V(Q) = 0 

and lim 'dV .x F 0 on any path f" for which 11 'oV 11 
2S-'"Q 62S il~_c(\") I- o. 

~),Y 
jl~n(';)2S) 

Proof 

The existence and continuity of the partial derivatives 

a v , i = 1, .•• , n, are sufficient to enable us to call on the 
6xi 

resul t of the Mean Value Theorem for partial deri va ti ves (51). 

which gives 
n 

V(2£ + yJ = V(2S) +>~!. (2S + XX) Yi 
-.- 1 

l ~ I 

3.6.19 

for some '>-. where 0 <">- <. 1. Now since V(,Q) = 0 substi tu ting 

x = Q into 3.6.19 gives 
n 

'dv VCr) =) dX. (,>-,y:) Yi 3.6.20 
-.- 1 
,~, 

Now let us define 

p(V) = s1 

IN 
P()2£) = s2 

and suppose s1 > s2 + 1. 

3.6.21 

Expressing 3.6.20 in vector form and dividing by IIrlls1 gives 



3.6.22 

We may rear::ange the R.H.S. of 3.6.22 to give 

Vl:i) = >--s211:i1182+1-s1 ~t)., :i) ~ 3.6.23 

11 :ill
s1 

. 11 \:ill
s2 

11 :ill 
Now choose :i'-"> Q on a path r' for which 

II~( \ :i)11 
11 \:ill s2 

--." C ( r ') " O. 

Then since 0 < ).. -<. 1 we see that letting :i~ Q on r' in 3.6.23 

gives V(:i) 

/I:ir 1 
~ ~ contradicti~g the definition 3.6.21. 

This contradictlon gives s1 .,; s2 + 1 and hence 3.6.18. 

End of proof. 
Now that we have some theorems relating PC!), p(V), ~(~) 

we can establish that for Lyapunov functions to exist for an 

asymp"toti_caI:!.y stable !3ystem whieh areohi;ained from the 
Zubov equation that there is a constraint on ~(~). 

Theorem 3.6.5 
If ~(~), V(~) exist satisfying the conditions of theorem 

1.7.1 and if the restrictions of theorem 3.6.4 are satisfied 
then 

P(,5) '> P(f) - 1. 3.6.24 
Alternatively there are no v(~), ,5(~) satisfying theorem 
1.7.1 where 

p(~) ~ PC!) - 1. 

Proof 

Since the Zubov equation requires v(~) and its partial 
derivatives at the origin to be continuous so that a solution 

exists then we may use theorem 3. (,.4 which' together with the 
initial conditions gives 

3.6.25 

Then putting 3.6.25 into the result 3.6.1 of theorem 3.6.1 we 
obtain 

PC!) - 1 < min (p(tS) ,P(dtSV». 3.6.26 

1 v 1 



Finally using theorem 3.6.3 and substituting 3.6.15 into 

3.6.26 leaves us with the relationship 3.6.24. 

End of proof. 
To see that theorem 3.6.5 is the strongest restriction 

available we may consider 

i = -sign(x) Ixl3-s 

where s > O. U;ing ~(x) = 
equation 

-sign(x) Ixl3-s dV(x) 
dx 

the one-dimensional example 
3.6.27 

2 x , d = 0 we may solve the Zubov 

2 
= -x 

to obtain the analytic solution 

Vex) = ills 
s 

For all s >0 3.6.28 shows 

at':. the origin and we have 
p(V) = s 

p(.I5) = 2 

pU) = 3-s 

3.6.28 

that 3.6.27 is asymptotically stable 
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The result of theorem 3.6.5 could be arrived at another way., 

Theorem 3.5.1 requires that system 3.5.3 does not satisfy a 
Lipschi tz condition in.a neighbourhood of the origin, an d 

theorem 3.5.4 shows tnat this requires 
P(! ) -< 1 

~(l-dV) 

which implies that 
p(i) < 1'(6) + 1 - . 

NOVl s.inc'2 a lot of the Zubqv construction is based on constructil1j 
a series solution of a P.D.~. and therefore requiring !(~) and 
~(x) to have a power series in integral powers of x., i = 1, ••• ,n 
~ l 

we can estahlish the corresponding relationships for the series 

construction. 11e have seen in theorem 2.2.1 that the powers 

of the lowest degree terms in !(~), '(~) are constrained to 
satisfy a relationship similar to,~.6.24. 'lie now formally 

state th~s relationship in terms of definitions 3.2.1, 3.2.2. 
Theorem 3.6.6, 

If !(~), ~(~) have a power series expansion of the form 

2.2.1, 2.2.2 with lowest powers si' i=1, ••• ,n,and q respectively 

then the Zubov partial differential eQuation can only yield 

a positive definite V(~) in some neighbourhood of the origin 
for asymptot,ically stable systems providing 

1'(.15) >, PC£) + 1 3.6.29 
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where PtP} : q 

P(I) : min (s1,.·.,sn'. 

Proof 
It has been shown in section 2 of Chapter 2 that since 

S : min~s1""'s ) implies the n-dimensional version n _ of 2.2.10, 

by recourse to theorem 2.2.1 we see that 

q ~. min (s l' •• , sn) + 1 
From theorem 3.2.5 we see that 

p(s6) : q 

P(fi ): si i: 1, ••• ,n. 
By theorem 3.2.1 we see that 

P(I) : min (P(f1 ),P{f2), ••• ,P(fn » 
Substituting 3.6.31, 3.6.32 into 3.6.30 
End of proof. 

'i'heorem 3.6.7 

3.6.30 

3.6.31 

3.6.32 
leaves us with 3.6.29 • 

If I(~), s6(~) have series const~uction8 as 2.2.1, 2.2.2 
and the system 3.5.4 is asymptotically stable at the origin then 

min {PU.}· + P(~Vx ): P(,tl) 3.6.33 
. 1 ~ " i 1.= , •• ,n 

··Proof 

Using 3.6.32 we may re-write 2.2.1 with the range of m 

in f.(x) from s to ~ where p(l) : s. Now suppose that 3.6.33 
~ -

is not true. Then oy theorems 3.6.2, 3.6.3 we see that 

min (P(f.) + P(~~.» < p(~i 3.6.34 
i=1, .• ,n 1 .1 

3.6. 3~· implies by theorem 3.2.5 that in the series construction 
2.2.12 t~e L.tI.S. of 3.1.1 has lowest homogeneous terms of 

total power min{(Ptfi) + P(~~.» '.vhile .6~~)( 1 - dV~~» does 
not. Now we solve another equation 

3.6.35 

'rhe same min(P(f.) + P(~V » can still 
1. oXi 

be the lowest degree terms in the left hand side of 3.6.35. 
Hence it is possible to find \~(~) such that the dominant terms 

of W(~) in a neighbourhood of the origin are the same as those 

of V(~). That is, we may write 

V(~) : W(~) + u(~j 

where u(2!.) is "small" in comparison to V,W. If VC!) is positive 

deHnite in a neighbournood of the origin then WC.?!:) is also 

positive definite near the origin. But from 3.6:35 and theorem 



1.5.3 we observe that 

~lt2!:) = 0 

and so wl2!:) = p are the system trajectories showing that the 

origin of 3.5.4 cannot be asymptotically stable. Thus 3.6.34 

is a false assumption and we are left with 3.6.33. 

End of proof. 

7. Admissible f(x) 
Consider the one-dimensional example . ~ 

x=-x(1-x)~ forx<1. 3.7.1 

3.7.1 is asymptotically stable in the region (-00,1). Now 

let us solve the Zubov equation in the form 

-x(1 - x)~ dV(x) = -x~ 
dx 

3.7.2 

The analytic solution of 3.7.2 is found by integration 

to be 
Vex) = 4 4(1 - x)1~ - 2X(~ - x)~. 

3' 3' 
3.7.3 

Thus we see that, although 3.7.3 is a Lyapunov function 
establishing the asymptotic stability ot: the origin of -5.7 •. 1, 

- - -

the boundary of the D.O.A. is not given by V =00 •. Admitt-edly 
x = 1 is the boundary of definition of f(x) and hence of Vex), 
but we can define any system which satisfies 3.7.1 for x < 1 
and another relationship for x> 1 with 8.S many derivatives 
as required continuous at x = 1. Then Vex) will also have 

similar properties and satisfy 3.7.3 for x <1 and some other 
solution for x>1. 
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This result appears to contradict theorems 1.7.1 and 1.7.3 

but in fact it does not. The reason for this can be seen by 

looking at the solution of 3.7.1. The solution of 3.7.1 when 
integrated is given by 

x(t) = 4ae t 

(ae t +1)2 
where a is arbitrary •. 

Now we see that x(t) = 1 for all t also satisfies 3.7.1. 
Hence there are two solutions 

x( t) = 1 

x(t) = 4e t 

(e t +1)2 

each satisfying 3.7.1 and the initial condition x(O) = 1. 



Hence x = 1 may also be in the D.O.A. and if f(!) is defined 
for x >1 such that x_1+ in finite time for x(O»1 then all 

space may be in the D.O.f... This phenomenon Qccurs because 

the R.H.S. of 3.7.1 does not satisfy a Lipschitz condition 

in every neighbourhood of x = 1. This is also the condition 

that 3.7.1 has a.unique solution. The Zubov theory assumes 

~ = fl!) 3.7.4 
satisfies conditions that guarantee existence and uniqueness 
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of the solutions !(t) given an initial !o for 
if the solutions of 3.7.4 are not unique then 
bn",how,we define D.O.A.s for such systems. 

t = O. Clearly 
the-:D.'O.A; depends 

Comparison of 3.7.2 and 3.7.3 says something about Lyapunov 

functions for such systems. \'le can see that as x·-1-, dVJx)--,<>a 
dx . ' 

while V(X)-">4/ • 
"$ 

We see that Vex) does not satisfy a Lipschitz 

condition near x = 1 and that this means an infinite gradient 
dV(x) does not necessarily mean that Vex} is infinite. 
dx 
Theorem 3.7.1 

Given that the one-dimens.ional Zubov equation 
.f(x)~dV(x) =~-.t\(x)(1 ... dV(x» 3.7.5 

dx 
yields a positive definite Vex) in a neighbourhood of the origin 

for some positive definite .t\(x) then a sufficient condition 

tha t V = (:» for d = 0 or V = 1 for d = 1 indicates the boundary 

of DCf) is that f(x) satisfies a Lipschitz condition in the 
neighbourhood of x, where 

f(x')=O 
and x' IZ'OD(r}. 

Proof 

3.7.6 

Suppose that f(x) does satisfy a Lipschitz condition in 
x in a neighbourhood of x .. x I. Keference to definition 
1.3.2 shows that 

If(x) - f(y)1 ~ Llx - yl 3.7.7 
for all x,yE S£(x ' ) for some L. E )- U. 

Now substituting y = x, in 3.7.7 and using 3.7.6 we obtain 

1 f (x) 1 ~ L Ix - x' 11 . 7 • 8 
for all x C S~(Xl) some £ 7 O. 

By integrating 3.7.5 we find the solution of the Zubov equation 
given V= 0 at x = 0 is 



~ 

vex) = - i ffi~ du ( d = 0) 

or loG< 1 - Vex)) = 11~~j du (d = 1). 
Now suppose we fix x and consider V(y) -

if x' > 0 or y E (x',x) if x'< O. 

Vex) where y e (x,~') 

Since this gives 
l 

V(y) = Vex) .-1 6~u) du 
;c f u) 

or 10g(1 - v(y» = log(l - Vex») 

(d = 0) 

+ S~1 ~{~j du 

).7.9 

(d = 1 ) 

We now concentrate on the integrals in 3.7.9 and suppose that 

x,y E Se(x') so that 3.7.7 holds. Since x,y e (O,x') or 
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x,y € (x',O) then we may assume that feu) is of constant sign 

for u E (x,y) and since ~(u) is positive definite then f(u)/~(u) 

is of constant sign for u E (x,y). H~nce 

11)~f~j du I = I;~~~j, Idul. 3.7.10 
Substituting 3.7.8 into 3.7.10 we obtain 

3.7.11 

An appropriate transformation of variab'le in 3.7.11 then shows 

that as Y'-rx' 

~ 
, ( ,Q(u) Idul ~ "'" 
j." I f(U)1 

and hence the integrals of 3.7.9 also become infinite showing 
that V- 0<> for d = 0 or V~l for d = 1. End of proof. 

The converse of theorem 3.7.1 is an interesting question. 
Clearly by theorem 1.3.3 we know that if the Lipschitz condition 

3.7.~ does not hold the solution of the one-dimensional system 

i = f(x) 3.7.12 
is not necessarily unique and so its boundary is not necessarily 
gi ven by '3.7.6. Hut one wonders whether a system 3.7.12 which 

~ have a uniqu'e solution in a neighbourhood of SE(x') for 
some i > 0 but does not satisfy a Lipschi tz condi tion in this 
neighbourhood can lead to a solution of its corresponding -

Zubov equation in accordance with theorem 1.7.3. 
Corresponding results for 2 or more dim~nsions are difficult 

to obtain but it is l.i.kely again that if the solution of 3.7.4 
is not unique then the boundary of the D.O.A. is not indicated 
by V = DO or V = 1. 



8. Conclusions 
Most authors, ~/hen solving the Zubov partial differential 

equation, have concentrated on systems with linear parts and 

on ~(~) with quadratic parts. In such cases there is no 

problem with obtaining Lyapunov functions which if they are 

in closed form intlicate stability and obtain the D.O.A. in 

full. 
In this chapter we have looked into examples where 

difficulties arise and have shown that the whole concept of 

Lyapunov functions and the Zubov equation can be put onto a 
sound theoretical footing. ln later chapters the equation 

is solved numerically in various ways and the theory of this 

chapter explains the behaviour of numerical solutions. 

It would appear that although theorem 1.7.1 holds for 

systems with unique solutions there may be care needed in 

obtaining Pt~) and vt~). 

/ 
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Chapter 4 

The One-Dimensional Zubov Equation 

1. Introduction' 
In this chapter we look exclusively at Zubov's equation 

applied to one-dimensional systems. 'rha t is, we consider 

systems defined by the differential 'equation 

x(t) = f(x(t» 4.1.1 
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The Lyapunov function Vex) is used to test 'the stability 

of 4.1.1 and the chain rule expansion of theorem 1.5.3 becomes 

V(x) = xt t)lY 4.1. 2 
"'a. x 

Since V is only dependent on x the partial derivative )V is 
"dx 

the same as the total derivative dV. Now if we let 
dX 

Vex) = -p(x)(l - dV(x» 4.1.3 
and substitute 4.1.1 and 4.1.3 into 4.1.2 we obtain Zubov's 

,equation in·one-dimension 

f(x)dV = -,O(x)(l - dV(x)>. 4.1 .4 
dx 

Equation 4.1.4 may be solved analytically by seri.es method 
Oi' separation of '!ariables or by numerical methods in ordinary 

differential equations. 
~he one-dimensional Zubov equation is entirely different 

from the version in 2 or more dimensions in that 4.1.4 can be 

expressed explicitly for V(x). There 'is also much more knowledge 
about numerical computation 'of O. i).E.s than there is about 

P.lJ.E.s, and it is much easier to deal with just one independent 
variable than, "'Iith 2 or more. ivhat we are lookirig for is the 

v = ~ or V = 1 contour, and in the one-dimensional case we need 
only proceed to vary x until we find the contour, whereas in 

higher orders we have the extra problem of deciding how to 

alter the independent variables to obtain a point on the contour 
V = Vo>, V = 1 and to trace the complete contour. 

Therefore techniques are studied and developed in tnis 
chapter thClt cannot be applied to higher orders. The techniques 
considered for higher orders in later chapters are applicable 

to the one-dimensional case, but its relative simplicity renders 



Iil ::sect,tons '2 to 5 an analytical look at 4.1.4 is taken 

with consideration of conditions for asymptotic stability and 

the choice of ~(x) and the method of series solution,together 

with the question oJ; convergence of series and convergence of 

R.A.S.s. Sections 7 -10 deal with numerical computation of 

4.1.4 bearing in.mind problems of computational st~bility and 

accuracy. Other work in this field is the subject of section 

6 and the clmpter is concluded ,,,i th ez:arnples ang conclusions. 

? Asymptotic Stability in One Dimension 

In order to consider the analytic solution of 4.1.4 we 

need to establish the behav.iour of f(x), p(x) as x is small 
or as x increases. 'lie already know that p(x) 1fl\1st be positive 

definite and continuous so that 

~(O) = 0 

~(x) > 0 for x ~ 0 

by definition 1.5.1. 

4.2. 1 

Also since the origin is defined to be a critical point 
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of 4.1.1 we know :that:r(O) = O •. To see what, happens tof(x)_ 

for x f. 0 in a neighbourhood of the origin we need the following 
theorems in which we assume that f(x) and x(t) are continuous 

in their ref;pecti ve arGUments. 
Theorem 4.2.1 

Suppose x = f(x) 

f(O) = 0 

4.2.2 

4.2.3 
then the system 4.2.2, 4.2.3 is asymptotically stable at the 

origin if and only if there exists x1<O, x 2 > 0 such that 
for x 1 ~ x, < 0 then f(x) '> 6 
and for 0 <: X ~ x2 then f(x) < O. 

Proof 

Suppose firstly that x 1,x 2 exist satisfying the second 
half of theorem 4.2.1. We then prove that this ensures 4.2.2 
to be asymptotically stable at the origin. 

Consider an ini tial pOint x such that x 1 <: x <: 0 o - 0 

x(t) be the solutifln of 4.2.2 such that xtG) = xo' Now 
integrating i(t) with respect to t we see that 

anel let 

by 

xl t) = x o 
(t. 

+J.X(t')dt'. 4.2.4 
Substituting 4.2.2 into 4.2.4 gives 



t 

xtt) = x + Iftx(t'»dt' 4.2.5 o )0 
NO\~ wc know that f(x ) > O. Therefore providing x ana fare 

o 
continuous in t and x respectively then there exists t'(xo ) 

such that for t < t, then f(x(t)) > O. 

Hence for t < t' we see from ~.2.5 that 

x(iI) >xo. 4.2.6 

Since 4.2.6 is true for any xo ' x 1 ';;; xb < 0 we may say that 

since 

xtt + ~t) 
thenx(t +'Ot) 

t>~( 

= Xlt) + JC f(x(t'»dt' 
/ 

> x ( t) whil e C;; t <: t' (x) • Hence x(t) 

increasing function of t while x 1 !'; x( t) < O. 

We have shown that either 
a) x(t) -0 in finite or infinite time or 

b} x(t) ~x3 <:: O. 

is an 
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But b) cannot be true as f l x3 ) > 0 and there exists t'(x3 ) 

such that 

x(t) > x3 for t <: t' (x3 ) given x(O) = x
3

• 
Hence we know that x(t) either reaches the oric;in in finite 

time or infinite time given x(u) .= Xo 
may prove similarly that x(t) tends to 

where x1 !!' Xo < O. 'tie 
the origin in finite or 

infini te time given x( O} = Xo I.here 0 <: Xo .,;;: x 2• This shows 
that x~O from either side of the origin ,md that 4.2.2 is 

asymptotically stable. 

In fact the solutions of x(t) of 4.2.2 givs~ x(O) = xo ' 

x 1 ~ Xo ,.;- x2 ' can only reach the origin in infinite time 
providing 4.2.2 satisfies the conditions of theorems 1.3.2 and 
1.3.3 for existence ana uniqueness of solutions. 

For suppose there exists T such that 

x(T) = 0 given x(O) = xo ' x 1 ~ Xo <:: 0 

or 0 <: Xo ~ x2 • 
~ow from 4.2.2. and 4.2.3 we see that 

x(t) =: 0 

4.2.7 

4.2.8 

is a solution of ~.2.2. Comparing 4.2.7 and 4.2.8 we may 
i~nediately notice that the system 4.2.2 with time reversed 
antl the ini ti:.tl condition x( T) = 0 does not haye a unique 

solution. Hence if the solution is unique then the origin is 
not reached in finite time by any non-trivial trajectory. This 

completes tne first half of the proof. 



Now suppose 4.2.2 is asymptotically stable. Then there 

exists a D.O.A. ~al,a2) where a 1 ~ 0, a Z '> 0 and either or 
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both of a 1 or a 2 may be infinite. Let x 1,x2 be any points such 

that 

a 1 <:: Xl < U 4.2.9 
o < x 2 < a 2• 

We show that x 1 ,x 2 s~tisfy the second half of theorem 4.2.1 

by contradiction. 
Suppose 

1f fex ) = 0 o 

there exists Xo such that Xl .,;: Xo < 0 and f{xo ) ~ 0, 

then by integration with respect to t we see that 
~. 

x( t) = x + I ~(t I )dt I. 
0. .0 

From 4.2.2 we see that x(O) = 0 and hence x(t) = Xo for all 

t > u. In this case Xo is Hot within the lJ.O.A. and cOlltradicts 

the definition of a 1" 
While if f( xo ) < 0 then by continuity of x and f tilere 

exist b1 ,b2 with b 1 < Xo < b2 where f(x) < 0 for XE(b 1,b 2). 
Then by the same integration procedure as used pr<?viousJJy we 

see that x(t) is a decreasing function of t while Q1 < x(t) < b2• 

But if f(xo ) > 0 I"hen Xo < b 1 we have x(t) is an increasing 
function oL t while_x(t) < 1J 1 "- _Thjs showsthat b1 is the limit 

of x(t) as t·~ "'" again contradicting the definition of al. 

\'le have thus proved that there cannot eX.ist xo', Xl';;; xo<O, 
such that f(x ) ~ 0 if 4.2.2 is asymptotically stable. It can o , 
be proved identically that for x 2 in 4.2.9, there does not exist 

x o' 0 < Xo ~ x 2 such that f(X o ) ~ O. This proves that x 1,x2 
given in 4.2.9 satisfy the conditions of theorem 4.2.1 and 
completes the proof. 

Usi.ng theorem 4.2.1 and equation 4.2.1 we now know that 
for x > 0 in a neighbou['hooa of the origin 

.6(x) < 0 
f{X) 

and for x <0 in a neighbourhood of the origin 

~~~~ )'0. 

4.2.10 

4.2.11 

Now let us integrate 4.1.4 by the method of separation of 

variables. This gives 

l~XV = -~f~~dX . 4.2.12 

In a neighbourhood of the origin Vex) is small. Hence if we 
consider dx>O, x > 0 and using 4.2.10 we obtain dV>O. 



Similarly if dx ~ 0, x < 0 reference to 4.2.11 r;i ves d V > O. 
Hence Vex) >0 given V(O) .= O. Hence Vex) is positive definite 

in a neighbourhood of the origin. 
Integrating 4.2.12 with respect to each element gives 

4.2.13 

4.2.14 

ifd=1. 
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We are now ready to consider the effect on Vex) of differen~ 

l'I (x) • 

3. Theory of Different p 
To consider the effect· on 4.1.4, 4.2.13, 4.2.14 of 

different [unctions .I5(x) we consider the example 

using 

• 3 2) x = -x (1 - x . 
The D.O.A. of 4.3.1 is (-1,1). 

Let. l'I(x) = x 2
, d = 0 

and substitute 4.3.1, 4.3.2 into 4.1.4 gives 
dV 1 
dx = x(1_x2) 

. The solution of 4.3.3 becomes 

V = log( )1_:2 ) 

1 .. 3.1 

4.3.2 

where c is an arbi trary constant. the .i.ni tial cond i tions we 

have are given by V = 0 at x = O. However as x-'OO in 4.3.4, 
V -.,. - = for any finite c. 

To confirm this we can. consider 4.1.1 and 4.1.4 as hlo 
parametric representations for x in terms of t or V. 
These are 

from 4.1.1 

from 4.1.4 

dx = f(x) 
dt 

dx 
dV 

Since f(O) = 0 ~e know within the D.O.A. that 
x··..- 0 as .:t ~ 00 • 

Letting d = 0 in 4·."5.5 we see that if 
r(xl -~O as x-~O 
PTXi 

4.3.5 



x(V) has the same properties as Xl.t) and x-e>O as V- -""". 
Example 4.3.1, 4.3.2 and its analytic solution 4.3.4 confirms 

that this happens. 

This is the one-dimensional version of theorem 3.6.6 
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which insists" that di"or the Zuhov equation to be soluble for V(xj 

where 

P(!) 
• 

~ p(JI) - 1 
xl'( f) f(x) ~ 

I!l(x) ~ xPtJl ) as x ---l> 0 4.3.6 
or as definition 3.2.2 where P(f), Pl.tlJ arc integers, and ftx),· 
tI(x) have a series expansion in a neighbourhood of the origin. 
To consider the situation where f(x), p(x) do not necessarily 

have power series expansions 

theorem 3.6.5 which requires 
Clearly ~.3.1, 4.3.2 do 

function V(x) exists. 

in integral 

P(f) < p(tI) 

powers of x, we need 

+ 1. 4.3.7 
not satisfy 4.3.7 and no Lyapunov 

If the Zubov equation can be solved to give a Lyapunov 
function V(x) satisfying theorem 1.7.1 then we know that 

V(x} = 1 or V(x) =00 will indicate the boundary of the D.O.A. 

providing that such a boundary is well-rlefined, whiCh requires 
:the condi"tions Clf theorem 3.7.1 • 

.Lt has been shown here that not all positfve definite 

continuous functions are admissible to be used as p(x). 

4. Series Method 

The series construction of Zubov's equation has been 

documented partioularly in 2 dimensions where staightforward 
inter;ration of 4.2.13 or"4.2.14 is not possible. It is not 

always possible in one dimension even to directly integrate 

the Zubov equation and the series construction is mentioned 
here for that reason. 

I'/e assume that f(x), I!l(x}, V(x) have powe:::- series expansions . .., 
f(x) = > f xm 4.4.1 

-;:;;-;sIll -
p(X) = L tJ xm 4.4.2 

,...,..,... III 
-~ m 

V(x) = L Vmx 4.~.3 
~.r 

where f tI V F O. 4.4.4 s q r 
Now we may substitute 4.4.1, 4.4.2, 4.4.3 into 4.1.4 with the 

assumption that V(x) is differentiable term by term. This givec 



~ 00 .00 0-.:> 

(~fmxmH ~~~mVmxm-1) _ -(~'i,5mxm)(1-dI~VmXm). 4.4.5 

Now we wish to equate like terms in the identity 4.4.5. 

Each side of the identity 4.4.5 has a lm"est degree of x. 
. s+r..;.1 The L.H.S. of 4.4.5 contains terms 1n x and above, while 

the R.H.S. contains terms in x q and above if r<>O, and terms 

in x q+r and abov~ if r ~ 0. However since we require V(O) ~ ° 
we see that r > O. 

Hence we have that if s+r-1 < q then 

since r F 0 contradicts the definition of 

to 4.4.4. 

rf V ~ 0 which s r 
s,r given by 4.4.1 

Also if s+r-1 > q then,5 ~O which contradicts the q 
definition of q. 

Therefore we have established that given the expansions 
for f(x), ,5(x) in 4.4.1, 4.4.2 that the power series for V(x) 
is defined as 4.4.3 with 

r ~ q - s + 1 4.4.6 
Now it has been shown in·.theorem 3.2.7 that for .tI(x) to be 
positive definite we require q integer and even and Pq~ O. 

Now we equate the lowest powlirs of x in 4.4.5 to obtain 

<.9.-~.+1)fsVq_s+1 ~-l'1q. _ 4.4.7 

1H 

Now if 4.1.1 is asymptotically stable then the solution of 

Zubov's equation will yield a positive definite V(x). That is, 
we would obtain r even integer and Vc'>O. Also i!f such r,Vr 
are obtained we know that 4.1.1 ia apymptotically stable at the 
origin. ~his leads tu 

Theorem 4.4.1 

If ~ ~ f(x), f(O) ~ 0, 4.4.8 
and V ~ -p(x)(1-dV) 

where l'1(x) is positive definite in the I"hole and continuous 
and V~x) is positive definite in a neighbourhood of the origin, 
and if f(xj, p(x), V(x) have series expansions as in 4.4.1 to 

4,4.3 with s odd integer and fs -< 0 then 4.4.8 is asymptotically 
stable. 

Proof 

If p(x) is p.d. then q is an even integer and I'1q > 0. 

Hence by 4.4.6, we see that if.s is an odd integer then r is an 

even integer •.. Also since VlO) ~ 0 we know that r > ° and thus 

by 4.4.6 q-6+1 > O·also. Therefore if s is odd and fs< u then 



1 1 ~ 

by 4.4·.7 we see thRt Vq_s +1 > 0 and so by theorem 3.2.7 and 
theorems of Lyapunov we prove that 4.1.1 is asymptotically 

the 

stable. End of proof. 
Now having established rand Vr we want to systematically 

establish Vm for m ?r. Substituting for r from ~.4.6 into 

4 • .1,.5 gives"". 00 ~ 

OfmXm)( 2 mvmxm- 1) - -( 2 - pmxm )(1-d ') . Vmxm). 4.4.9 
.... ~S" M:,.-S ... , t""'::'V f'" ::<z,-St' 

Expanding the products in 4.4.9 gives 
<>0 '"' 0<> 

)\jf.V.xi +j - 1 := _~~ xm + 
'.- -(-- 1. J L m 
I. =s J :''l--.~ + I f""\~4 

00 00 • • 

dLZ piVjxl.+~ 
L"',. J'"CY-S-+' 

4.4.10 

Collecting coefficients of terms in xm in 4·.4.10 we obtain 
000 ",-5+1 

L (LjV/m_ j +1}x
m ~ 

f""~" ,:;.cv-s •. \ 

Since 4.4.11 
satisfied by 
of m 

X • This 

is an equation which should ue identically 

Vex) given by 4.4.3 we may equate coefficients 
gives 

a) for q ~ m .:;; 2q-s 
,..-5 .. 1 

2:=jV j f m_ j +1 = 
j Hl-' ,-s ... j 

b) for 2q-s+1 G m 

- .15 m 4.4.12 

,... - S t' 

2 jY/m-j+1 = - 4.4.13 
j :;1--5~ I 

4:4.12 and 4.4.13 form Vm' m = q-s+1, 
q-s+2, .•.. 

From 4.4.)2 and 4.4.13 we see thRt given 

Vj for j = q-s+1, ..... ,m-s 
4.4.12 or 4.4.13 may then be used to 
re-writing 4.4.12, 4.4.13 explicitly 

a) for m = 'l 

compute V l' Hence m-s+ 
in terms of V 1 we obtain m-s+ 

V = -Pg 
q-s+1 (q-s+t)f 

s 
b) for q+1 ~. m !S: 2q-s 

V = -?lm 
lO-s+1 (m-s+1)f 

s 
c) for 2q-s+1 ~ m -.6 

V _ m 
m-s+1 - (m-s+1)f s 

", -$ 

;--_1~_\. jV.f . 1 
(rn-s+1)f L-. J m-J+ 

S j:;1o-'i .. , 

4.4.14 

4.4.15 

- 1 ~jV.f. + d t;- .15 .':\1-
(m-s+1 )f L J m-J ... 1 (m-s+1 )f. m-J J 

s J~"-S.I j';'tr'":f .. , 

4.4.16 
The final modification to simplify 4.4.14 to 4.4.16 is to 

express them in terms of Vm explicitly rather than V 
m-s ~ 1. 



Hence the final form is given by 

a) for m = q-s+1 

v = -tl q 
q-s+1 (q-s+1 )f

s 
b) for q-s+2 ,; m ~. 2q-2s+1 

'" '1 

Vm = -~m+s-1 
mfs 

- 1 ~ jV.f . 
mr-~ J m-J+s 

s 1 ::~-5f1 
c' for 2q-2s+2 ~ m 

-.t\m+s-1 "'-, r"-+S -'tt'" 

Vm = 1 L:·V.f . + dLtl ·1 V . 
mfs iiir .J J m-J+s mf m+s-J- J 

s 1 -o;.'\..-~ •. S 1 ::,,-J' .. , 

Equations 4.4.17 to 4.4.19 form the recurrence 

from which we compute the series 4.4.3 for V(x). 

5. Convergence of Series 

4.4.18 

4.4.19 

relation 

Equations 4.4.17 to 4.4.19 can in theory be solved for 
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m = q-s+1, q-s+2, ••• ,~ and the full series for V(x) obtained. 

However unless the coefficients Vm' m ~ q-s+1, can be recognised 
as being from a series which has a defined infinite sum, we 

have the problem of convergence of the series. 
When computing the value of a series expansion by an 

algorithm suchasA. 4.17 --to 4.4.19, somewhere the series has 

to be truncated. This is usually done when 

I V mxml <:: E 4. 5. 1 
for some E.;;. 0 and for each particular value of x considered. 

But sometimes Vm can be quite high before 4.5.1 is satisfied, 
as an example shows. 

Consider 

x = -x + x3 4.5.2 
The D.O.A. of 4.5.2 is given by x E (-1,1). 

Using .t\(x) = x 2 + x4 + x6 and d = U the Zubov equation 
4.1.4.becomes 

dV x2+x4+x6 
dx = 3 

x-x 
4.5.3 

The solution of 4.5.3 given V(O) = 0 becomes 
.V(x) = _x 2 - x4 - 2 10g(1-x2). 4.5.4 

It 2 

The region of convergence Rc(.t\,f) of 4.5.4 is also given by 
x E (-1,1). 



The series expansion of V(x) is given as 

V(x) = x2 + x4 + 2~~2n • 
"2 2" 2 .. ~,n 

Fig. 14 shows plots of V(2N)(x) where 

V(2')tx) = ~2 + ~4 + 2~~2n 
,2 ~ 2"'3n 

plotted as'V( 2N) (,x) versus N for various x. 

However V(U'99999) = 15'2 while V(80)(0'99999) = 5'0 and 
this is because VHO = 0'0375 and shows that convergence is 

very slow. 
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This problem can be avoided with extra computation by 

acceleration techniques. Details of such are found in Shanks (37) 
Now any truncation such as 4.5.5 is a Lyapunov function 

in its own right and computing x to obtain when V(N)(x) = 1 or 
V~N) (x) = c><> where 

I ' N V,N)(x) = ~- V xm 
L--. m 4.5.6 

is not valid. BY-'iheorem1.6.8 we re'luire to compute p such 
that V(N)(x) = p is tangential to y(N)(x) = O. 

Therefore given V(N) (x) by 4\,.5 •• 6 having computed 

coefficients Vm by 4.4.17 to 4.4.1,\we need to obtain 
\ 

and then- the boundary of the D.O.A. j,s gi ven- by ei~theI' 

y(il) (x) = 0 

or V(N,(X) = 1 or """ 4.5.7 
whichever value of x is closer to the origin. 

From 4.4.1 and 4.5.6 using 4.1.2 we may obtain v(N)(x) as 
"'" '" 

V\N}(X) = (LJmxm)( ~mVmXm-1). 4.5.8 
n -:. S ,., .. 'V··s • \ 

Hence y(N)(xJ = 0 if either factor of 4.5.8 is zero. 

When ~ f xm = 0 then x is et critical point of x = f(x) L-_ m 
and the ori"gin is the only critical point which is inside 

the D.O.A.. Hence we arc looking for x such that 

'\V(N)(x) = O. 
)x 

4.5.9 

As an alternative approach to finding zeroes of 4.5.8 we may 
expand 4.5.8 exactly as in 4.4.9 to obtaih 

C)Q._ ~N~ ,,",-s •• ) 00 eo ~("'J ""'-"'j 

L. \ ,2 jVjfm_j+1)xm = - L~mxm + d > ( L ,sm_jVj)xm 

M"''Y J-:'~-Sfl ,.., .. " ,.. .. lJ,.-s •• j'-,,_\.' 

in which providing N ~ min(m-s+1,m-q) then terms in xm disappear 

by the relationships 4.4.12 and 4.4.13. Given a general V(N)(x) 
4.5.9 is the easiest equation to analyse. 



__ ~c ..• _.+ __ _ 

Non-uniformity of convergence of x satisfying 4.5.7 may 

be seen by another example. Let us consider the example 
i = -1 + e-x 4.5.10 

which has a D.O.A. given by x E (- OOJ oa) 

Let us denote the value of x> 0 satisfying 4.5.7 for any 

given N as xN• Hence x N is defined as 

x ~ 0 Wllere x E [x:V(i~) (x) = u or V(N) (x) = "'" for d 

or V(H)(X) = 
. -x)2 Using i(x) = (-1 + e , d = 0 

and substituting 4.5.11, 4.5.10 in 4.1.4 gives 

dV = 1 _ e-x 4.5.12 
dx 

The analytical solution of 
V~x) = e-x + 

4.5.12 given V(O) = 0 becomes 

x - 1. 4.5.13 

Substituting 4.5.10, 4.5.11 and d = 0 into 4.4.~ and solving 

for Vex) by 4.4.17 to 4.4.19 gives the full series form 
"" 

vex) = L (-:-~)i. 
~ =- 1.. ~. 

Thus we are looking for x such that 
~(-Jni = <>0 4.5.14 
_/- i! 

or ~ (::?S) i-1 = 0 4.5. 15 
L-(i-1)! 
i..~ ").. 

. Clearly there is no finite x satisfying 4.5.14. Now it 

is shown in Appendix F that if N is even 4.'5.15 has one zero 

x = 0, while if N is odd there are two zeroes which are x = 0 

and the series tX3'x5,x7' ••.. } where xN satisfies 4.5.15 
which increases uniformly. 
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By definitions 1.7.2, 1.7.3, 1.7.4 we see that for 4.5.10, 
4.5.11 R2N (P,f) = (-00-,00) 

with R2N_ 1(,s,f) = (-~,x2N_1) 4.5.16' 

and hence R(p, f) = (-00,00) 

which is the same as D(f). However convergence of RN~R is 
certainly not uniform. 

and 
The 
The 

Let us consider a~gain2~xample 4.5.2, this time using d = 1 

Pm(x) =2 x J. 4.5.17 
region of stabili t -·'indicated by RN(Pm' f) is quite interestinr 
Zubov enuation becomes 

(_x+x3 )dV(X) = -0...;;;"'- x 2j )( 1-V(x)). 
dx L 

j So I 

4.5.18 



For m = 1 the solution of 4.5.18 becomes 

Vex) = x
2 

therefore V(N)(x) = x 2, N·~ 2. 

and y(N)(x) = 2x(-x+x3 ), N >.. 2. 

4.5.19 

4.5.20 

Therefore the region of stability indicated by 4.5.19, 4.5.20 

is given by (-1,!) for all N ~ 2 and this is also ~he D.O.A. 

of 4.5.2. Hence RN(P1'f) = R(P1,f) = D(f) [or f given by 

4,5.2, P1 given by 4.5.17. 
For m = 2 the2s01ution of 4.5.18 is 
Vex) = 1 - eX (1 - l)~ 4.5.21 

V = 1 at X = .:,1 while y(N)(x) = 0 at X = +1 or when x = xN and 

dV(N)(x ) = o. 4.5.22 
dx N 

1 1 C) 

The zeroes xN of 4.5.22 satisfy the relations xN> xN+1 ' xN> 1, 
N ? 2. The rapid convergence of the series xN is seen from 

the fact that Ix 22- 1'01 < 10-5 Hence the region RN(P2,f) 

is bounded by f = 0 and just as for m = 1, RN = R = D. 

But for m = 3 
2 3 (2x2 + x4 ) VeX) = 1 - (1-x-) e ~ 4.5.23 

and the zeroes xN of dV(N)(x) = 0 are such that IxNI· <: 1. for 
Ox· 

N ~ 10. The series xN is plotted against N in fig. 15. Hence 

RN~~3,f) = (-1,1), N < 10, but RN(P3,f) C (-1,1" N ~ 10, 

while as N-O, RN(P3,f)-(-1,1). 
In this case we have shown that although R(P3,f) = D(f) 

using higher order expressions for Ptx) and more terms in the 

series expansion of Vex) is inferior to the easier more 

manipulable lower orders. 

This situation of non~~niformity of convergence occurs 

throughout various attempts to compute the series expansion 

of Vex) from Zubov's method in one and more dimensions. 

The non-uniformity is still a matter of conjecture. 

Shields and Storey (3~) conjecture that if Rc(~,f) C Dtf) 

then non-uniformity occurs in the sense that there exist m1,m2 
such that m1 > m2 
while eithar R (p,f) C R (~,f) m1 m 
or by some measure of region ~size" 

4.5.24 

that R is "less than" 11 • 
ffi1 -i:n

2 
Zubov (12) claims that RN(P,f) ---,,>D(f) ·as N .... ooif 

D(f) ~ Rc(p,f) but even then convergence is not necessarily 
uniform. 



The examJJle 4.5.10 showed this. For this example D(f) 

is all-space while the region of convergence of 4.5.13 Rc C0,f) 

'is also all-space. ' .. Ihile from 4.5.16 we see that R.- D but 

not uniformly.' 
Example 4.5.2 with 0 given by 4,5.1:7 showed that it is 

possible to achif-ve the situation where 

DU) C Rc(o,f). 4.5.25 
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For each function 4.5.19, 4.5.21 oJ:' 4.5.23 we see that Rc (0m,f) 

is all-space, while convergence ,of RN(03 ,f) to (-1,1) was not 

uniform in the sense of 4.5.24 but that it is uniform in the 

sense that for large N the set R(0,f) - RN(0,f) diminished 
uniformly to the null set. 

It can be proved that for the modified Zubov· equation(d=O) 
situation 4.5.25 is never possible while claarly for d = 1 the 

example 4.5.2 shows that 4.5.25 is possible. 
Theorem 4.5.1 

If i = f(x) 

and Vex) = -~(x) 
then Rd(~,f) = (-r,r) 4.5.26 
whe!e~r = min,(-a,b) 
where D(f) = (a, b) and either ofa or b may be infinite. 
Proof 

The Zubov equation 4.1.4 becomes for d = 0 

~~ = -1f~~' 4.5.27 
Now if D(f) = (a, b) then, by assumptions of uniqueness 

of 4.1.1 such as theorem 3.7.1, a and b are either infinite 

or critical points of f(x). Therefore we may write the series 
expansion 4.4.1 down as 

f(x) = (1 _ ~)nl (1 _ x)n2 
a b 

g(x) 4.5.28 

where xg(x) < 0 for x E (a,b), x ~ 0 and g(X} has a power series 
expansion 

"" 
g(x) = L: ~xm 

and where n 1,n2 are pogitive integers and the 

b = Cl> are covered by the expression 4.5.28. 
Substituting 4.5.28 into 4.5.27 gives 

£Y = -@(x) 
dx (1_~)nl (1-2~)n2,_:g(x) 

a b 

case a = -00 or 

4.5.29 



Now since by theorem 1;7.1 ,!lex) is taken to be positive 

definite then by definition 1.5.1 we know that 1-x/a and 

1-x/b are not factors of .o(x). So we may expand 4.5.29 in 

partial fractions form 

-~(x) 

n, 

+~ 
~I( )m 1-x 

a 

Now by multiplication of 4.5.30 by (1_x)n1(1_x)n2 g(x) amd 
a b 

letting x 

- ,!lea) 

= a we obtain 
= d (1 - a)n2 

n 1 b 

Similarly we have 

g(a) • 

-~(b) = e (1 - b)n1 g(b). 
n 

Hence by definftion 3-f g(x) in 4.5.28 and of .o(x) we see that 
d ~ 0, e ~ O. Hence dV contains a term in 1 and 

n 1 n 2 dx 

1 and when 4.5.29 is integrated V(x) 
( 1_x)n2 

b 
contaj.ns at least term in 1 or log( 1-x/a) and a term 

(1_1S)n 1-1 
a 

in 1 or log( 1-x/b). These terms have a region of 
( 1_x)n2-1 

b 
convergence ~iven (a,-a) and (-b,b) respectively, proving 
that Rc(P,f) is given by 4.5.26 and that 

Rc(.o,f) C D(f). 
This ends the proof. 

6. Other AI~orithms 

The one-dimensional form of Zubov's equation is rerl.lly 
sufficiently simple a problem to solve that other methods 

which are significantly difterent from the series construction 
or from numericnl integration of an O.D.E. are difficult to 

find. Other methods for solving Zubov's equation in hie;her 

dimensions were the subject of Chapter 2 and their application 

to one dimension will be consider~d' .. here. 

The Lie series method (25), (26) simply involves the 
compu tation of xC t), V( t). from the 1'aylor series expansions 
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""" 
x(t) = ~x(m){O) t m 

Vet) = ~ v(m)~O) tm 4.6.1 
"".:0 m! 

where x(m)(O), v(m)(O) are computed from the recursive relationship 

x\m)(O) = 2-x (m-1)(j)\ 
dt t30 4.6.2 

t=o 
m = 1,2, ... 

H~ 4.1.1 and 4.1.} the ~.H.S.s of 4.6.2 may be computed 

and 4.6.2 becomes 

x(m) (0) = dm- 1 

d t m- 1 

m:: 1,2, ... 

m-1 -d 
dtm- 1 

f(x( tn I 
t=O 

~(x(t»(1 - dV(x(t» 

4.6.3 

t=o 

Having computed the coefficients in ~.6.1 by 4.6.3 we 

then let t become neGative in 4.6.1 using the relation x(O) = + f 

V(O) = O. By this means we obtain x(t)-x' where e.ither 
x' = + 00 or f(x') = 0 and V(t)--';' O;·1,~p·roviding x' s-atisfies 

the conditions of theorem 3.7.1 to guarantee uniqueness of 

solutions in every neighbourhood of x'. The question has to 

be asked,whether it is necessary to cornpute Vet) at all since 

if x' is finite we could just as easily terminate computation 
when 

Ix(t+St) - x(t)1 «: 
where St is the time 

The method Troch 

( for some .E '7 0 

interval used to compute x(t) from 4.6.1. 

(39) uses to integrate 4.1.1 and 4.1.3 
by analogue computer along system trajectories, and the method 

of Davi(l.:;on and Cowan (29) to integrate 4.1'.1 and test whether 

a cycle of the origin is stable or not are 'not applicable as 

the system trajectories become trivial in one dimension. 
Texter's (34) thoughts on polar co-ordinate systems is likewise 

trivial in one dimension, as no change in co-ordinates significantL~ 
affects 4.1.1 and 4.1.3. 

Thus we have found that 4.1.3 is solved either by power 

series for Vex) or by numerical integration or possibly by 

Taylor series if 4.6.3 can be differentiated. But other methods 

1lsed for 2 or more dimensions become similar to those three , 
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methods when solving the simpler one-dimensional problem. 

7: Numerical Methods 
In this section we consider solution of ~.1.4 by numer.i.cal 

methods. 
dV 
Ox = 

If we write 4.1.4. as 
• 

-p(xH 1-dV) 
xl 4.7. 1 

~e obtain an O.D.E. for dV in terms of V and x. For these 
dx 

equations there is a variety of publications on their solution, 

for example (52), (53), (54), (55). What is proposed in the 
rext three sections is a method which takes into account the 

properties of 4.7.1. 
First of all we require to know something of the behaviour 

of ~(x)/f(x) and V(x) as x·-'7x' where 
f(x') =0. 4.7.2 

Integrating 4.7.1 with respect to x we obtain 
""-

for d = 0 Vex) = v~x )- I 95(x) dx 
o .J~x) 

for d = 1 Vex) = 
Ilsix)dX. 

1 - (l-V-(x »e .1TX) o 

4.7.3 

Now it is known that if f ~~X)dX has a singularity at 
, x) 

x' then x' must be a zero of f(x) or a singularity of ~(x). 

The converse is not true as seen by the example 

~(x) = Ix/t 

f(x) = -Ixl t 11-xl ~sign(x)sign( 1-x) 4.7.4 
This example serves to illustrate how ~/f has a singularity 

as x_1 but Vex) is finite. 

Using d = () and substituting 4.7.4 into 4.7.3 gives for 

O"'x~1 
. ~ 

Vex) = -2(1-x)~ + 2 
which is finite as x_l 

in the Zubov theory unless 

as x --"x', f(x)';:':; Ix-x'l P 

4.7.5 
This phenomenon does not happen 

where P < 1. 

Theorem 3.7.1 confirms that V(x).-., 00 as x_x' only if P.,l 

in 4.7.6. Generally P ~ 1 in 4.7.6 but this is not always 

the case, However in integrating 4.7.1 we shall need to 
evaluate 4.7.1 near x' and the computation becomes unstable. 
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'1'0 overcome this we intra.duce a system of turning 4.7.1 "upside 

down" and integrating for x in terms of V. Then as 

x ·-">x'. 2(X) ---'70 
tx) 

and as V increases computation of x is stable. 

Definition 4.7.1 
If x' is gi~en by 

f(x') = 0 
then r(f.x') is defined Lo be such that 

f(x) . 
Ix-x'l P(f.x') 

cCf.x' ) as x--,>x, 

and Ixl ~ Ix, • c(f.x') finite. non-zero. 
Definition 4.7.1 is the one-dimensional equivalent of 

definitions 3.2.1. 3.2.2 considered at x = x' instead of at 

the origin. 

If Pt f. x') <. 1 then as seen for the example 4.7.4 when 
solved for vtx) given by 4.7.5 that Vex) does not necessarily 

become infitlite when x -'>- x'. But by theorems 1.3.3. 3.5.4 
the solution of 4.1.1 is not necessarily unique and this case 
is therefore not considered. We assume as up to now that 

P(f.x') ~ 1. 

8. Numerical Algorithm 

To see what is meant by instability of computation of 

4.7.1 we consider integration of 4.7.1 for fixed steps in x. 

Let xn ~e defined by xn = nh. n = 1.2.... with Vn defined 
as the computed value of V(x). If x' is finite where x' 

n 
satisfies 4.7.2 then for some n we find the situation where 

xn <: x' s: xn+1' Numerical integr:ation of Vn+1 leads to a 
breakdown caused by evaluating dV near a singularity and by 

dx 
integrating 4.7.1 for the same step-size h when V increases 
much more rapidly than x. 

A numerical method for integrating 4.7.1 to give V in 

terms of x would have to include some means of altering the 

step-size h when dV became large to ensure that for given 
dx 

xnwe may define hn and xn+1 such that 



and x ~ x', n+1 - n = 1,2 •.• 

W~ propose to overcome this problem by re-writing 4.7.1 as 

dx -f~X) 
QV = ~(x)( -dV) • 4.8.1 

Then we may allow. V to increase to 00 or 1 without restriction 

and x cannot go outside the boundary of the D.O.A •• 
Symbolically we may write 4.7.1 and 4.8.1 as 

dV = F(x,V) 
dX _I 
dx = F(x,V) 
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whered¥ represents any function of 2 variables. It is reasonable 
. . 

to compute 4.7.1 when dV < 1 and to compute 4.8.1 
dx 

For when dV < 1 we fix the step-size for x and we 
dX 

for dV ? 1. 
dx 

have 

4.8.2 

Likewise if we compute 4.8.1 for flV "7 1 and fix the step-size ox 
in V we have 

x 1-x<V 1-V, n+ n n+ n 4.8.3 

·-Tnese-jjounas on thelildependent-var'ia:bITglven -bY 4~.8-;-2 

and 4.8.3 ensure that the computation is stable. 

To actually integrate 4.7.1 and 4.8.1 numerically there 
are a number of methods to choose from (52), (53}, (54), (55). 
The standard Fourth Order Runge-Kutta method (55) has a lot 

of advantages in terms of accuracy, function evaluation, 

initial conditions, and is used here to illustrate the algorithm. 

'.Ve may now define the .steps of the algorithm for d = 0 and x 
positive. 

1) Let x = 0, V = 0 be the initial conditions. o 0 
2) Fix h and define xn = nh. 

3) For· increasing n compute Vn recursively from 4.7.1 by 
the fourth order Runge-Kutta method 

Vn+1 = Vn + ~(k1 +2k2 + ?k3 +k4) 

where k1 = -~(xn)/f(xJ 

k? = -~(xn+h/2)/f(xn+h/2) 

k3 = -~(xn+h/2)/f(xn+h/2) 
-

k4 = -~(xn +h)/ f(xn +h) • 



4 ) Test each time step 3) is computed to see if dV';31. 
dx 

'l'his may be done approximately by checking to see if k_4. ~ 1 • 

and define N as the value where dV ~,1 occurs. rx 
5) Fix p and let V 1 = V + P for n = N.N+1 •••• n+ n 

6) For increasing n compute x recursively from 4.8.1 
• n 

by the fourth order Runge-Kutta method 

x 1 = x + .J;!tk1 + 2k2 +:,2k", +, k4) n+ n b -' 
n=N.N+1 •••• 

where k1 = -f(xn )/0(xn ) 

-flx +~.)Ii(x +~1) ,n 2 , nT k2 = 

-f(Xn+~2)/P(xn+~2) 

k4 = -f(x +Pk3)/Plx +Pk3 ) • n n . 

k .. = 
) 
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7) If I xn+ 1- xn1 .<:: ':I for some n and a pre-determined S 
then 'the method is terminated. otherwise 6) is repeated. 

v 

AV 
- =1 
~. 

x 

Fig. 12 

The algorithm is illustrated in fig. 12 where the curve 

of V(x) is typicaJ, of Lyapunov functions for d = O. Fig. 12 

shows th:e initial compu ta tion where x increases in fixed 
,increments. then when increments of V become too large the 

changeover occurs to limit the increments of V and compute 
x which approaches x'. 

These two sections have covered how to integrate 4.7.1 

numerically for increasing x. but clearly the method for 

negative x is identical to that for positive x. 

\vhen d = 1 the steps of the algori thm are similar. 
Differences occur in step 4) where' the changeover. point is 

. - - -- ----.----~--~~-~~...,==.="'."".=~=== 



given by 

1 dV ? 1 
~ 1-V) dx 

and in step 5) where Vn , n = N,N+1, •.. , must be a sequence 

approaching 1 such as , for example, 

V 1 = (1 -)...)V + >-. n+ . n 
n=N,N+1, ... 

9. Convergence of Numerical Methods 
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Having provided, in the two previous sections, a numerical 

algori thm for integrating 4.1.4 we are nO\~ interested in the 
behaviour of x as V.- 00 or 1. Let us assume that d = 0 and 

that we are interested in the behaviour ot" x"as n becomes 
large in steps 5), 6), 7) of the algorithm. 

Fig.13 

, . 

I 
--.J ____ v-:::Vn _

1 

- 1- -1'- -

~ -:..:1"+1 
... ",::r,. 

Fig. 13 is a close-up ot" fig. 12 in the region of x = x'. 
By analysising fig. 13 we hope to be able to answer the basic 
question of convergence: 

Does there exist an n and a computed V . n such th11-t we 

ensure that IXn - xII <: '2 
establish a sequence nk SUCh 

given E ? 

for some given E? Also can 

tha t I x
nk 

- x I I < E k for some 

NOW we define Sn' Eri as ShOwn in fig. 13 as 

<0 n = xn + 1 . - xn 

E = x' - x n n+1 

we 



'rhe curve Vex) in fig. 13 is obtained by connecting the . 
data pOints x , V for n = N,N+1, •... 

n n 
define the functions S(p,V) and E(p,V) 

pOints similarly to 4.9.2 by 

~(p,V) = x(V+p) - xCV) 

E (p, V) = xi - x(V+p). 

'But clearly we may 

in between the data 

4.9.3 
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Now by the Mean Value Theorem (40) for continuous functions 

we know that 
<;;(p,V) = 

p 

where 0 < )... < 1 • 

dx(V + ';>..p) 
dV 

4.9.4 

We may obtain another expression similar to 4.9.4 by 

considering Taylor series. The series is given by 
xCV + p) ~ epDx(V) 

where D == d 
dV 

• 

Now using the definition of the operator ~ 

.lIxlV) = xCV + p) - x(V) 
we see that 

(1 +!::::.)xlV) = epDx(V). 

Thu8we have from 4.9.6 a 

pD == log (1 +!::::.). 

-

functional relationship 

4.9.5 

4.9.7 
Now if we expand 4.9.7 by the power' series expansion of the 

log function, we obtain . 
=( /:>.)l 

P dx (V) = (-)":- i ) X (V) • 4.9.8 
dV Go l"/ 

4.9.8 obviously cannot be computed in' full but approximations 

to dx may be obtained by truncation of the series in 4.9.8. 
dV 

The first two approximations are thus given by 

dx( V) 
= 

~(p, V) 
dV p 

4.9.9 

p dx(V) 
= 3 <;;~PIVl - El~I2IV+I2) 

dV 2 
and 4.9.10 

where 4.9.5 and 4.9.3 have been used to replace x's by ~'s. 

For the remainder of the analysis we have to decide which 
approximate'formula to use out of 4.9.10, 4.9.9,some other 

trunca ti on of 4.9.8 or 4.9.4 with fixed ';>.. • we shall use 

4.9.4 which upon integrating with respect to V becomes 

f'b (p, V I ) d V I = [px (V + A p 11 + C 1 4 .9. 11 

';ihere c 1 is the arbitrary constant. 



The constant c 1 is eliminated by the condition that 

x('1)-x l 

as '1_ 00. 

substituting 4.9.12 into 4.9.11 gives 

.( 'b(p, V I) dV I = IJX (VI + \.p ~~ . 

4.9.12 

4.9. n 

However by equati.on 4.9.3 we see that 4.9.15 may be simplified 

to become 
pE (p, V + (A -1)p) = r-::c.p, V' )dV'. 4.9.14 

Now by reference to 4.9.3 we establish that 

';;(p,V) + E(P,V) = E(p,V-p). 4.9.15 
Substituting for f in terms of ~ from 4.9.14 into 4.9.15 gives 

v~("~)p 

. pS(p,V) = I ~(p,V')dV·. 4.9.16 
v ··>'r 

The solution of the delay-differential equation 4.9.16 is not 
unique and depends on the initial conditions which must be 
specified functionally over a range of V. 'Nork on numerica.l 

solutions of such equations can be found in references such as 

(56), (57), (58), (59). 
From computed examples it seems that S(p,V) usually 

takes the form 
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~~ o_~·~_. __ ·'b(CP,Vo)_=a{p) __ eb(p)Vc - .... ------------. - ~--4_;9.·17--~ --~~ 

where b(p) is negative so that S(p,V)-'>"O as V_=. 

Substituting 4.9.17 into 4.9.16 and differentiating 4.9.16 
with respect to V gives 

pa(p)b(p) eb(p)V = a(p)(eb(p)(V+( 1->-)p) _ eb(p) (V-'>..p». 

4.9.18 
4.9.18 is a relationship between a(p), b(p) and p which simplift eE 
to b(p)p = e(1-~)b(p)p _ e-~b(p)~ 4.9.19 

It is noticeable that 
function b(p)p and in 

b(p)p = O. 

4.9.19 is an equation only of the one 

fact the only solution of 4.9.19 is 

4.9.20 
.A similar analysis of 4.9.10 yields the corresponding 

equation to 4.9.19 
2b(p)p(1+eb (P)P) = 3(1_e-2b (p)p) _ eb(p)p + e-b(p)p 

4.9.21 
which also has 4.9.20 as its only solution. 4.9.19 and 4.9.21 

each shOl' that the analysis of fig. 13 is only accurate as p-O. 

To ootain £(p,V~ we substitute 4.9.17 into 4.9.14 and 
simplify which gives 

£ (p, V) = -a (t) e b (p)( V + ( 1- ~) p) 
b P)P. 

4.9.22 
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There is an analytical explanation for ohe observed results 

4.9.17 and 4.9.2~ as shown in the next section. In computation 

uf ~(p,V), E (p,V) we will not know the value of x'. However 

we may compute the numbers a(p), b(p) by definition 4.9.17 

and then substitu'te into 4.9.22 to give E(p,v). 

10. Asymptotic Analysis 
The results 4.9.17 and 4.9.22 will be obtained in a 

different way here and will be generalised in this section. 
For this we need a more general definition of the asymptotic 

behaviour of a function f(x) than given by definition 3.2.2 

or by 4.3.6 when considering various 0(X). 

Such a definition is ~iven by definition 4.7.1 and we 
shall investigate the solution of 4.8.1 in the neighbourhood 

S~(x') of x' for small E > 0 where ~ is chosen so that certain 
assumptions can be made. 

Now re-arranging 4.8.1 gives 

(1 - dV) dx = -fix) 
dV iITXY 

-4.10.1 

and since we know that 0(X) is positive definite and continuous 
-~--then~ ,~-- - -p (-x , "1' -'>" 0- -for x kf. o. -- , --~-- - ". -4~;-10~-2- ,'-, 

. Hence using definition 4.7.1 and 4;10.2 we see that as x~x' 

f(x) ~ 
Plx>(x-x'JP(f,X

I
) 

where 0 <IC(f,xl)l< =. 

c(f,x' ) 

0(X' ) 

4.10.3 

Therefore substituting 4.10.1 into 4.10.3 we arrive at 
the asymptotic relationship between x and V given by 

. (1-dV)dx 
dV 

Ix-x'l PCf ,x') 

where 0 <lc(f,x l )1 < cP. 

-c(f,x' ) 

0(X I) 

For the following asymptotic analysis we concentrate on 
x, '> 0 and x _x~. The procedure is similar for x' < O. We 
then solve 

{1-dV)dx = a
1
(x' _ x)s 

dV 
4.10.4 

where s = P(f,x'}, 

instead of 4.10.1. 
and integrating by 

d = 0 

a 1 = -.Q1f,x') 
~), 

With.a1,s fixed we may readily solve 4.10.4 

separation of variables method gives for 
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1 for s > 1 
= (s_1)(x l _x)s-1: 4.10.5 

a 1V = -log(x'-x) + c 1 for s = 1 
and similarly for d = 1 with aV replaced by -alog(1-V) where 

c 1 is a~"a~bitrary constant. The initial conditions for finding 

c 1 given by V = co·or 1 when x = x' are not helpful. l:SUt 

since we are consJdering x near x, and V large or near 1, we 

may take c 1 = 0 without loss of generality. Equation 4.10~5a 

holds for s < 1 also but as seen in section 7 by 4.7.6 and by 
section 7 of Chapter 3, the Lyapunov function and Zubov theory 

breaks down if s <: 1. 4.10.5 confirms this and we may summarise 

in the theorem: 
Theorem 4.10. 1 

If P(f,x') <: 1 then solution of 4.1.4 yields Vex) where 

vex) does not approach 00 for d = 0 or approach 1 for d = 1 
and the Zubov nonstruction is no longer applicable since the 

D.O.A. is not indicated by V = 00 or V = 1. 
The justification for this asymptotic analysis may be 

found in Murray (41) or Wasow (42). 'I'heorem 4.10.1 is simply 

theorem 3.7.1 re~written usine definition 4.7.1 and theorem 

3.5.4. 
Having established theorem 4.10.1 for d = 0 or 1 we now 

take d = 0 to compare the results 4.10.5 with the analysis of 

fig. 13. The results of letting d = 1 may be similarly derived. 

HavinG obtained 4.10.5 we now see that we have obtained 
an expression for £. (p, V). Substituting 4.9.3 into 4.10.5 gives 

a 1(v+p) = 1 

(s-1 )'E(p, V)s-1 

or . a 1(v+p) = -log E(p,V) + c 1 for s = 1. 

4.10.6 may be re-arranged to give £(p,V) 

( ( 1 1 
E P,V) = (s-1Ha

1
(v+p)-c

1
» I s_1 

c( V) e(c,-a1 (v+p») or .::. p, = 

4.10.6 

explicitly as 

for s > 1 
4.10.7 

i"or s. = 1. 

The actual value of c 1 depends on the solution of 4.1.4 
for Vex). This analysis only holds for 

4.10.8 

and we cannot tell how tne solution of 4.1U.1 behaves outside 
the region given by 4.10.8. 
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The equation 4.10.7b is of the form obtained in 4.9.22 
and for most examples the solutions x, of f(x) = 0 are obtained 

from linear factors (x - x') ~nd hence s = 1. The expressions 

4.9.17, 4.9.22 and 4.10.7b will be verified by examples. 

Investigation of 4.10.7b shows that b(p) of 4.9.22 is 
independent of p as might be expected rrom the definition 

of E(p,V), ~(p;V). Further comparison of ~.9.22 and 4.10.7b 

yields tne relationships 

b(p) - -a, 
a(p) _ a

1
peC 1- alP 

showing that as p ---;.0 a(p) is asymptotically linear with respect 

to p as might also be expected from the definitions of ~ (p, V), 

'i;(p,V). 
11. Examples 

Examp~e .H.1 -.12 
x=-ax-ex 4.11.1 
Th.i.s example due to Lehnigk .. l43) nas a varying D.O.A. 

depending on the value of a. It was sho',m in (43) that for 
0"'" a O:::(2e)-i that there are three critical points of 4.11.1 

of which the origin is one and the other two are negg,tive, 
while for a< 0 4.11.1 is unstable at the origin and for a '> (2e)~·J. 
there is only one critical point which is the origin. In 

fig. 16 the magnitude of the negative critical points is 
plotted against a, showing that at a = (2e)-i the roots coincide. 

Figs. 17, 18 show plots of solutions of 4.11.1 for x(t) for 

various a 'llhich have been obtained by the fourth order Runge-KutiP­
method. 

Using ~(x) = x2 and d ~ 0 the Zubov equation has been 
solved and the analysis of sections 9 and 10 investigated. 

Figs. 19, 20, 21 show the results of plotting log <; (p, V), 
log£(p,V) against V for various a,p. They are seen to be 

, 
straight lines and the relationships are: 

Fig. 19 a = 0·)6, p = 0·25 
~(p,V) = 0·023e-0·408V 

E(p,V) = 0·2077e-0·408V 

Fig. 20 a = 0·36, p = 0.75 
~(p,V) = 0.073e-0·408V 

~(p,V) = 0·19ge-0·408V 

4.11.2 

4.11.3 



Fig. 21 a = O' 4, p = O' 25 
~(p,V) = 0·0093e-0.2031V 

E(p,V) = 0·1776e-0·2031V 
4.11.4 

E~uation 4.10.7b showed that in the expression 4.9.17 

and 4.9.22 b(p) is independent of p, and 4.11.2, 4.11.3 

confirm that this' is true. It is also observed that the 

approximate relationship a(p) ~ p is verified by 4.1 1.2, 

4.11.3 and the definition of ~(PIV) given in 4.9.17. 
Example 11.2 

x = -x(1 - x) 4.11.5 
The D. 0 • A. 0 f 4. 11 • 5 is g i v en by (- 00 , 1) • 
Using ~(x) = x 2 , d = 0 the Zubov equation is solved by the 

algori thm and figs. 22, 23 show the plots of log'?; (p, V) and 
log ~(p,V) against V. The relationships are: 

Fig. 22 P = 015 ~(p,V) = 0.2421 e- 1' 00V 

£(p,V) = 0'3665 ,e- 1•OOV 

Fig. 23 p = 1'0 <';(p,V) = 0'2926 

£(p, V) = 0'1719 

For this example 4.1.1 becomes 

dV 
dx = 

x 
1-x 

the solution of which is 

-0'982V e 

-0'982V e 

4.11.6 

4.11.7 

vex) = -x - log(1-x). 4.11.8 
l1e are interested in the behaviour of 4.11.8 for x near 1. 
Therefore if we let x--..,1 in 4.11.8 we obtain 

V 0;:::: -1 - log( 1-x) 
which upon solution for x becomes 

1 - xCV) ~ e- 1- V. 

From 4.11. c:, we obtain the theoretical .resul ts 

4.11.10 
E (p, V) -1-V .:::::: e • 

13'5. 

The numerical resul ts 4.11.6, 4. 'j 1 .7 bear reasci.nahle comparisons 
with 4.11.10. 
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12. Conclusions 
In this chapter the one-dimensional Zubov equation has 

been looked at in a way in which higher orders can never be 

seen. This is because we have no freeClGm to choose which 

way we go out from the origin other than whether x is negative 

or positive. In.higher dimensions the boundary of tne D.O.A. 
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is not simply obtained by investigating tae zeroes of a function 

f(x) as it can be in one dimension. In thlS sense the extra­

function ~(x) is not really necessary as it transforms the 

O.D.E. 4.1.1 into another O.D.E. 4.1.4. 
In a lot of cases it is indeed simpler to compute solutions 

of f(x) = 0 to obtain the D.O.A •• Various root finding methods 
exist which alter x in a systematic way to try to obtain x'. 
Such ~ethods may be either divergent or go past x' withput 

spotting it. There is no possibility of missing the boundary 
when using methods \~hich solve 4.1.4 as a differential_ equation 

letting V- 00 or 1. 
The advantage -of the Zubov equation here .is that we do 

not start from an initial point x = Xo at t = 0 and try to 
see if we reach the origin, but instead let V~oo or 1 and try 

to see if we reach x = x,. The same situation is achieved here 

however by solving 4.1.1 and letting t~-oo. 1'he function !2i(x) 

is but a transformation which may help to-make numerical 

computation easier if wisely chosen. 

Given that the one-dimensional case is difterent from 
the normal ~ubov P.D.E., and has less advantages over solving 

4.1.1 than its higher order counterpart, we have seen that in 

renmrn 'we are able to obtain a greater analysis of what happens 
to x and V at the boundary of the D.O.A •• The question posed 
in section 9 by 4.9.1 now has an easy answer. We simply look 

for functions b(P,V) and E:(p,V) such as 4.9.17, 4.9.22 and 
for more general s by 4.10.7a. Then once we obtain the relationE 

with actual numbers such as those in 4.11.2, 4.11.3, 4.11.4, 
4.11.6, 4.11.7 we can immed.Lately say that we know what value 
of V to reach to obtain 

-~(p, V) < lO-n for some n. 4.12.1 
It must be stressed that x I is unknown and tha't the 

relationship for 'i)(p,V) is worked out first and then ~(p,V) 

is obtained by substituting the results obtained from 4.9.17 
into 4.9.22~before solving 4.12.1 for V. 



Finally, figs. 19 to 25 show that log~(p,V) flattens 

out at about log E(p,V) = -11 which is a limit o( accuracy 

of the computer used. This does suggest that using a computer 

will never actually enable us to compute x' as V -- 00. But 

x' should be obtained from the definition of f (p, v) instead 

once "/,(p,V) is ootained as a function of V. 
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Chapter 5 

Finite Difference Methods 

. 1. Introduction 
In this chapter a look is made at solving Zubov's partial 

differential equation by straightforward numerical techniques 

for computing values of V on a grid system in x1 '· •• ,xn • 
Zubov's equation in n dimensions is given by 

" L fi (2£}_3V (2£) = - P(2£){ 1 - dV(~» 
oXi 

5. 1 .1 

i. ~, 

d = 1 for the where regular equation and d = 0 for the modified 

Zubov equation, and f. are given by the state space equations 
~ 

x.=f.(x) 
~ ~ - 5.1. 2 

i = 1, •.. ,n 

and p is positive definite in x 1 ' ••• ,xn • 
The pa:rtial derivatives in 5.1.1 may be replaced by 

approximate difference fOrJllulae involving values of V on a 
grid, and the step-sizes of each independent variable. Various 
problems are encountered by this method and section 2 investigates 
tne -method ~ A -fundarnemtal pr615lem of sucnaCrect-anguiar~grrd - -~­

is that the only initial condition is given by 

V(O,O, ••• ,0) = o. 5.1.3 
Sneddon shows (13} that a P.D.E. in n dimensions needs 

initial conditions to be specified on an (n-1)-dimensional 
subspace. The necessary form of initial conditions is specified 

as V = H1(2£) on H2(!) = O. Hence 5.1.3 is only sufficient 
as initial conditions if n = 1 where 5.1.1 becomes an O.D.E. 
and Chapter 4 has fully covered this case. 

However polar co-ordinate grids overcome the problem of 
initial conditions, as the theory in section 3 shows. In 

section 4 various difference formulae for the polar co-ordinate 
grids are derived, followed in section 5 by a comparison on 

the basis of errors, stability and convergence. Section 6 
looks 'into reducing the Zubov equation to a set of 0.D.2.s 

along different radial lines. Sections 7 and 8 go into the 

problems encountered by such meth?ds, and then section 9 sets 

out to define ~he optimum method for a general class of systems. 
Sections 4 to 9 are centred on the 2-dimensional case, but 

this method is much more easily applicable to higher orders 



than is the method of Chapter 6. 
A number of examples are investigated in section 11 

covering all aspects of the chapter, and conclusions dra\m 

in section 12. 

2. Rectang~lar G~id Methods 
G1ven a system 5.1.2 from which we obtain Zubov's P.D.E. 

5.1.1 we want to solve 5.1.1 e;i ven posi ti ve definite I> in 
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x 1' •••• xn and initial conditions 5.1.3 for V. The required 
stability condition is that V is positive definite in x1 •••• xn 
in a neighbourhood of the origin. in which case V = l(for d = 1) 
or V = co (for d = 0) are the contours which define the boundary 
of the D.O.A •• 

To solve 5.1.1 
( j . ) 

we can set up a rectangular grid system 

xi ~ = 

i = 1 ..... n 

j. = - 00 to + """ 
~ 

5.2.1 

and denote the analytical (true) value of V at the grid' point 
, 

5.2.1 as 

V(j1h1······j~hn) 
and the computed value of V as 

'··5.2.2' 

V.. . 5 2 3 J1· J2····· Jn· •• 
The partial derivatives in 5.1~1 may be expressed in terms 

of the grid values 5.2.3 and the step-sizes hi' i = 1 ••••• n. 
by, for example • 

. ?lV (j1hl ..... jnhn) ~ 
)X

i 
(V.. . . 1 j . 

J 1·J2···· Ji_1· J i+ • i+~···'Jn' 

V j 1 • j 2' ..... J i -1' j i -1 • j i + 1 •••• j n ) / 2h, 

5.2.4 
There are other formulae which are more accurate than 

5.2.4. but involve more computation as well. 

Let us look at 5.1.1 to 5.1.3. 5.2.1 to 5 •. 2.4 in 2 dimension~1" 
re-writing 5.1.2 as 

5.1.1 as 

f(x.y)ilV(x.y) 
'"<1 x 

• 
: = f(x.y) '} 
y = g(x.y) 

+ g(x.y)0V(x.y) = -!>(x.y)(l - dV(x.y» 
~ 

d = 0.1. 

5.2.5 



-- - - -- .-' 

\'/ e denote the grid 

x = m mh 

y = n nk 

m = - 00 to + 00 

n = - 00 to + 00. 

5.2.1 by 

5.2.6 

There are many ways in which oV, dY can be replaced by 
• )j( "/,y 

values of V on the grid, but to illustrate the metnou we use 

the simplest possible which is to write 
, n n 

dV(mh,nk) ~ Vm - Vm_1 "dx , h 5.2.7 
oV(mh,nk) ~. Vn _ Vn- 1 
?,y ~ m k m 

where v~ is the computed value of V at x = mh, Y = nk. 
The known functions f,g,p may bp. evaluated at the grid 

point 5.2.6 and we write 

f~ = f(mh,nk) 

g~ = g(mh,nk) 

p~ = ,t\(mh,nk). 

Substitution of 5.2.7, 5.2.8 

formula connecting Vn l' Vn, m- m 
fnCVn _ Vn )+ n(yn _ Vn-1) 
'm m m-1 gm tn m 
11 'k 
as shown in fig. 24. 

nk A 'R -. 

C 
,n-1)k -

(n-2)k -

5.2.8 

into 5.2.5 gives us a difference 
vn- 1 

m 

5.2.9 

(m-2)h(m_1)hmh (m+1)h 

li'ig. 24 

13b 
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If any two values of Y are known at A, B or C the third point 

may be computed by the difference f,ormula 5.2.9. However 

we have only one value which is given as an initial condition 

which is 
yO = o. 5. 2. 10 

o 
In order to use 5.2.9 we require a systematic method 

where at each pOlnt we may calculate V at B knowing its value 

at A,C or any other way round. 

If we are given the values 
n VM n = - <>0 to + cv 

n n n-1 
then by using 5.2.9 to comoute Y 1 from Ym' Y we may compute 

~ m- m 
systematically' for m < M. A different difference formula 

would ue required:to compute V~ for m > M. 

Similarly if we are given the values 
yN m = _ 00 to + = 

m 
then by using 5.2.9 to compute yn-1 from vn , vn 1 we may compute m m m-
systematically V~ for n < N. Again a dirferent difference 

formula would be required to compute v~ for n ',;> N. 
However if we are given 

n 
V~I n=-<!.O to + 00 

and ---yN 
m 

m = ---'00 to • -00· 

5.2.11 

then we may compute V~ for all m,n using 5.2.9 in various ways. 

Since 5.2.10 is the given initial condition it seems 
reasonable to assume initial condttions on yn and VO for all o m 
m,n. How we obtain such initial conditions is another matter 

which will be discussed later. 

Re-writing 5.2.9 

n ( n n 
Ym = tofmVm_1 + 

(;ofn + gn 
m m 

where p = k/h. 

in terms of yn we obtain . m 
gn yn-1 _ k.6n) 

m m m 

2.1. Initial Conditions Consideration 

5.2.12 

Equation 5.2.12 was used to compute values of Y on a grid 

system for the Hahn equation 
• 2 
x = - x + 2x y 
• y = - y 

with ~(x,y) = 2x2 + 2y2 

and with initial conditions 

computation of V~ for m,n ~ 

5.2.13 

5.2.14 
specified on yn, yO, 

o m m,n >- 0, 
o was carried out. 



The analytic solution of 5.2.5 given 5.2.13, 5.2.14 is 

V( ) Y2 + x 2 x,y = 
1-xy 

5.2.15 

Hence initial conditions were set up as 
vn =·n2k2 
o 5.2.16 

VO .= m2h 2• m 
Fig. 34 shows the computed contours of V = 0'4,1,2,4 picked 
off the grid values, and compares the~ with the analytical 

contours given by 5.2.15. h = k = 0'1, d = 0 was used for 
fig. 34 while h = k = 0'01 for fig. 35 enabled the analytic 

contours to be reproduced to the accuracy of drawing on paper. 

Normally, however, 5.2.15 is not known (we would not need 
any computation if it was known) and there is no justification 
for choosing the initial conditions 5.2.16 r~ther chan any 

other possible conditions. Other initial conditions were 
looked at to see what difference this made to the results. 

Also sho'"rn on 

or 

Eg. 35 are the 

V(x,O) = ~~ J 
V(O,y) = y 

V~ = m
4

n
4 1 

vn 
= n4k4 

o • 

resulcs of putting 

5.2.17 

Fig. 36 shows the contours of V = 0~4,1,2,4 for the initial 
conditions 

. 2 4 
V(x,O) = (x +x )/2 
v(O,y) = (y2+y4)/2. 5.2.18 

For each of 5.2.17,5.2.18 we see that. the solution or 
computation although inaccurate on the axes are "correct" 
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again for x,y ? 0'1. It seems that the method is highly stable 
and reauces errui's quickly. 

C6nsider the system 
~ = -2x _ 2y4 
• 
y = -y. 

Using p(x,y) = 4x 2 + 2y2 the 
(-2x - 2y4rW _ yW = 

"Ox oy 

5.2.19 
Zubov equation becomes 

~ ,2 
- 4x - 2y . 5.2.20 

The solution of 5.2.20 usin!.'; the initial condition v(O,O) = ° 
becomes 
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V( ) X 2 + y2 x,y = +t 5.2.21 

5.2.21 indicates that 5.2.19 is asymptotically stable everyw~ere. 

The initial conditions were set up first as 

which are 
shows the 

Vn 
= n2k 2 , n = 0,1 ••. o 

Vo 
= m. 

2h2 m , m = 0, 1 ••• 

correct on the x-axis but not 
results of computation by use 

5.2.22 

on the y-axis. Fig. 37 
of 5.2.12. 

The results are inaccurate near the y-axis and errors 
take longer to die away than the Hahn equation. However the 

inaccuracy dies out in the region of stability of the method. 

Fig.38 shows the same results with the initial conditions 

given by 

vn 
= 3n2k2 + 

0 4 
Vo 

= 3m2h 2 
+ m 

4 
which are now incorrect on both axes. As fig. 38 shows, the 

errors are quickly eliminated near the x-axis, but take longer 
near the y-axis. 

~2.2.~ Choice of Initial C6ndi ti-ons~ 

'/le. have seen in su bsection 2.1 tna t the difference formula 

is stable in the sense that errors in the initial conditions 
are quickly eliminated. This enables us to choose the initial 
conaitions subject only to the condition 

V(x,O) > 0, x;, ° 
V(O,y) > 0, y ~ ° 
V(O,O) = 0. 

It raises a8ain the questions referred to earlier in this section 
of how we do in fact choose the initial conditions to be as 
accurate as possible. 

The obvious choice for the initial conditions are lowest 
degree terms in the series expansion of V(x,y). 

and theorem 3.2.5 we see that if P(f) = s, p(g) 
then p(V) = q-s+1. 

From 2.2.13 
= s, p( 1» = q 

The lowest degree terms jn V(x,y) are given by 
'}...:!_ot' 

( ) ~-- m q-s+1-m 
Vq_s + 1 x,y = ~ Vq_s +1,mx y. 5.2.23 

From 5.2.23 we see that a logical choice of initial conditions 
is given by 



V( 0) = V x q - s+1 
x, q-s+1,q-s+1 

V(o,y) = V yq-s+1 5.2.24 
q-s+1,0 

For the system 5.2.13, 5.2.14 the initial cnnditions 5.2.24 

become the conditions given by 5.2.16. 

2.3 V = Co Contour 

Figs. 34 - 38 were constructed by picking the contours 
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out of a grid of numbers. Such a process is reasohably ac~urate 
for the contours constructed, but problems do arise when we 

try to obtain V = 00. For large V the numbers generated 

increase rapidly with respect to x or y and any interpolation 

method becomes inaccurate at some x or y. 

If we are looking for the contour V = P we locate jt 

somewhere between grid points with the property 

V~ < p }' 

V~"'1 > P 
5.2.25 

and V
n 

<: p } m 

V
n > m ... 1 p , 

5.2.26 

Hence as p increases we Gee that interpolation between 

tne grTd pOint-s 5;2.25, 5-; 2. 26 to obtain vg+c = PI- ° <5. c-~ 1" 
n and V = p, 0 ~ c ,,;;: 1, becomes' inaccura te 'and also if 
m+c 1 n n n+ , Vm <: p and Vm+1 or Vm are outs1.de the contour V = ""'then 

the property 5.2.25, 5.2.26 will not necessarily hold. Hence 

we see that for sufficiently large p it is impossible to 

pick grid points with the properties 5.2.25, 5.2.26 such that 
1 n n+1 n n both r , V or both V , V 1 are still inside the D.O.A •• m m rn m+ 
However it can be seen from 5.2.15 that when x or y 

increases so that xy > 1 then V(x,y) becomes negative. So in 

order to locate the contour V =00 we look at the grid values 

to see where V ceases to increase, but suddenly it becomes 
discontinuous in x or y. 

'r~e shaded area, in fig. 35 and the V = 0<> curve in fig. 36 

represent the boundary of continuou,s results on the grid 

system for example 5.2.13, 5.2.14 with initial conditions 

5.2.17 and 5.2.18 respectively. There is no appreciable 

difference between them. 

Closer investigation of 5.2.12 shows why the discontinuity 

curve is as on figs. 35,36. From 5.2.12 we expect computation 

to become unstable if the denominator is small. \fuen the 



denomina tor of 5.2.12 is small -the equation 5.2.9 becomes a 

relationship between V~_1 and v~-1 with terms in V~ cancelling 

out. Hence a small denominator in 5.2.12 should correspond 

to a small numerator also. H6wever:'truncation errors in the 
computation mean that this is not so, and the computation 
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becomes unstable in the nei~hbournood of zeroes of the denominat~ 
• 

of 5.2.12. 
i.e. Instability must occur in the neighbuurhood of 

n n .[n /Dfm + gm - dkPm = O. 

For system-5.2.13, 5.2.14 and d = 0 we obtain 

/O(-x + 2x2y) - Y = 0 
which becomes 

y = .--ox 
z,ox2_1 

5.2.27 

5.2.28 

The.family of curves 5.2.28 for various ~ are shown 

on fig. 39. The curves of discontinuity on figs. 35, 36 are 
clearly a combination of the instability of small coefficients 

along 5.2.28 and the correct discontinuity in V as given by 

5.2.15. 

Thus /0 = ~ was used by setting h = 0'01, k'= 0'005 
ahd using 5-;2.12-'to compute V~ m,n- '>-- 0 once more~ 'Fig.- 40 ~ 
shows the results with initial conditions given by 5.2.16 ann 
a noticeable improvement is achieved in the region x ~ (1,2'5). 

Not however noticeable enough to recommend reducing,/O lower 

as this means increasing h and causing errors or reducing k 

and incr'2asing computation. 

In Chapter 4 the difficulty of picking contours of V 

from a grid was overcome by reversing the Zubov equation to 
com~ute x as V increased in discrete steps. This approach 
was also considered for th,e 2-dimensional case, as was a general 
look at how the step-sizes for x and y could be altered as V 
became large. No detail~d method was produced since there 
are problems of interpolation in each dimension unless the 

step-size alteration was global. 

i.e. If the grid 5.2.6 becomes 

Yn = Yn-1 + kn 
xm = xm_1 + hm 

where hm,kn ann m,n = 1,2 ••• ,00 

5.2.12 becomes 
are varying step-sizes, then 



{r.nfnyn + gn Vn- 1 _ 
= v-m m m-1 m m 

(~nfn n dk ~n) 
v~cl m + gm - nPm 

= k n , 
h~ 

rn, n a; 1,2, •• . 0-:::- .. 

Any grid involving changing step-sizes such that hm ,kn 

vary with'; y, x invbl ves compl icated int erpolation and value 

storage problems as well as the difficulty of working out 

from V when the step-sizes should be changed. 

2.4. stability 
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An important aspect in nume~ical computation is stability. 
Would we expect errors to be propogated and increase or die 
away? The classic method of analysising stability is by 

frequency response. lMitchell (16». An initial error of 

sinusoidal form is assumed and, using 5.2.9 or whichever method 
is prefered, the magnitude of the propogated error indicates 
stabili ty if less" than'·one. 

We denote tne Local Truncation Error (L.T.E.) of the 
method 5.2.9 by L~ where 

L~= pf(mh, njc)(V(mh, nk)-Y«m-1 )h,llk») +g(mh, nk) (V(mh, nk)-V(lI\h, (n-1 )1'-))_ 

+kp (mh, nk)( 1-d V(mh ,nk» 5.2.29 
while from 5.2.9 we have 
nfn(Vn_Vn ). ~n(Vn_Vn-1) + k~n(1_dVn) = O. /- m m m-1 Om \ m m Pm m 5.2.30 

If we denote 

e~ = V~ - V(mn,nk) 5.2.31 
then we may subtract 5.2.30 from 5.2.29 using 5.2.8 and 5.2.31 
to obtain 

5.2.32 

'lIe may disregard the L.H.S. of 5.2.~2 as L~_ 0 as h,k~O. 
We nuw assume a sinusoidal input 

e~ = eiI.M.nk .5.2.33 

for some u.,_ and assume a similar uutput for e~ magnified and 
denoted as 

5.2.34 

'Amei\M.(n-1 )k) 

5.2.35 



Cancelling 

~fn( '>.. -1 ) m 

~-leiu~nk from 5.2.35 we obtain 

+ gn '>..( 1-e -1 u<k) _ kd~n '>.. = O. 
m m 

Solving 5.2.36 for ~ we obtain 
.;ofn 

>- = m, 1 
()Ofn+gn_gne-l~K_kdpn) 

m m m m 

5.2.36 

5.2.37 

Now if 1·>--1':',1 fo'r all ~ we see that any sinusoidal error 

input will be stable, and hence any initial error distribution 

for which a Fourier Series exists will be stable. 

Hence we require from 5.2.37 

( pfn)2 ,:;. (.pfn+gn_kd~n_gncos \M.k)2 ... (gnmsin luk): 
m m m m m 5.2.38 

Therefore 

2g~(/Jf~+g~-kd~~)(1-Coscu.k) + kd6~(kd6~-2;<>f~) ~ O. 5.2.39 

5.2.39 is required to be true for all ~. 
Hence either gn( pfn ... gn_kdpn) ~ 0 

m m m m 

and kdP~(kd6~-2pf~) ~ 0 

or 

and 

5.2.40 

5.2.41 

5.2.39 or 5.2.40 and 5.2.41 are the required conditions 

for stability given an initial distribution of the errors 

on x = 0 by a combination of errors given by 5.2.33. We also 

need the stability as y increases given initial errors on 

y = O. The analysis is exactly the same as above with 5.2.34 

re!)laced by 
n ,n iw..mh 

e = "e m , 

gn replaced by ~fn and vice versa in 5.2.38 to 5.2.41. m m 
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However, 5.2.40 and 5.2.41 are the conditions for stability 
for increasing x. Tf 5.2.9 is solved for decreasing x, then 

putting 5.2.34 into 5.2.32 as before means that we now need 

I 'A I ? 1 for C!11 W •• · Hence the stability conditions for 

decreasing x given initial errors on x = 0 are the same as 

for increasing x but with inequalities reversed. Similarly 

for decreasing y. 

~hus if we are given the initial conditions 5.2.11 with 

M = N = 0 we may use 5.2.9 to compute V~ and then use conditions 

5.2.40, 5.2.41 and correspondinF, conditions for decreasing x, 
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and for y, to see in which regions the initial errors 

en 
0 

= 
Vn _ 

0 
V(O,nk) 

0 Vo V(mh,O) em = -m 
will die a'.,ay. 

For the Hahn equations we have seen the stabili ty of 
5.2.9 given the lncorrect initial conditions 5.2.17 and 5.2.18. 

Let us formally compute the regions in which ~e expect computation 
to be stable. 

If we substitute d = 0 into 5.2.39 simplification may 
be made and the stability conditions become dependent only 
on f,g,!", : 

For increaSing x: g(;Of+g) ~ 0 

For decreasing x: g( I"'f+g) s 0 

For increasing y:pf(pf+g) ~ 0 

For decreas.i.ng y: pf( pf+g) ~ O. 

Substituting f,g,~ from 5.2.13, 5.2.14 
we obtain the regions shown in fig. 25 

5.2.42 
5.2.43 

5.2.44 

5.2.45 
into 5.2.42 - 5.2.45 
(,,0 =1). 
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25 

--::: region of stabj li ty 
of x 

!lil region of stability 
of y 

Fig. 25 illustrates that when 5.2.9 is used to compute V: 
from V

n 
1 and V

n
-

1 
in the positive quadrant that computation In- m 

is stabl~ up the line given by xy =~. ~he lines of 

disconb.nuity in figs. 35, 36, 40 are seen to be' quite close 



to xy =~. Computation of other quadrants using 5.2.9 in 
different ways cannot guarantee stability in a neighbourhood 

of the origin. 
However it is more likely that to compu~e results in 

n 
other quadrants 5.2.9 would still be used to compute Vm 

from Vn l' Vn- 1 given the definition 5.2.6 of xm'Yn by simply 
m- m • 

making h or k negative. Stability in the four quadrants is 

then determined by considering the conditions for increasing 
x and increasing y with p either positive or negative in 

alternate quadrants. 
Putting f,g,p from 5.2.13, 5.2.14 into 5.2.42 and 5.2.44 
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wi th ,P = +1 .in the first and third quadrants, and p = -1 in 

the second and fourth quadrants, we obtain the stability regions 

of fig. 26. 1hus we see that using 5.2.9 in the form 5.2.12 
is highly stable and that initial conditions can be chosen 
arbi trarily without unduly affectinrr, computation of the bOllndary 

of the D.O.A., as shown in sub-section 2.1. 

E\~:::=;::::;-':r" =-=j-- - ! ~ -: 
i 

, 
I I 

I 
I I , , 

I i 
, • • I" I 
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H----:---i':-'--l,H--~ ,-- + I I" f - T _ .. _. .. I· ! I 

ili£~+:; ")~Lw,jTn- t-7frf--- ·t 
-L-- I 'l\ill' ....lit. . ... ,. I . - . -, . I ? r. ! I I •• 1 1 -r-t :-::. ; .. -'--
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Fig. 26 
- region of stability of x 

,,': 1\ region of stability of y 
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For the system 5.2.19 the stability regions may be evaluated 

to be given by 5.2.42, 5.2.44 in the positive quadrant •. From 

5.2.19 we see that f ~ 0, g ~ ° in the first quadrant. 
Hence the stability condition in both x and y becomes 

pf+g = -2,Px - 2py4 - Y ~ 0. 5.2.46 

1(ence we need x ? _y4 - Y/2p. 
5.2.46 shows that' this method is stable for system 5.2.19 in 

the first quadrant. 
'rhe explanation of the fact that the errors in the initial 

conditions took longer to die away near the y-axis can be found 

by investigation of g,~ and the initial conditions. Near the 
y-axis the following approximations hold: 

yn _ yn-1 ~ 2nk2 5.2.47 
m m 

(follows from the initial conditions 5.2.22) 

~~ .~ 2n2k~ 5.2.48 
:')ubstituting 5.2.47, 5.2.48 into 5.2.9 yields another approximation 

5.2.49 

Fig, 37,38 shows that 5.2.49 holds near the y-aXiS and 
that the errors die out but not as quic}:ly as the errors 

caused by initial conditions on the x-axis. 

Comparison of 5.2.27 and 5.2.40, 5.2.41 indicates that 
the boundary of stability of the numerical method and the 
line of instability caused by the denominator of 5.2.12 being 
small can often be the same. The next example shows that 

where instability of the method occurs first, that the results 

quickly become inaccnrate even when the initial conditions 
are correct. 

Now consider the system 
x = -x ~ y • x(x2 

Y = -x _ y + y(x 2 

Solving the Zubov equation using d = 1, p(x,y) = 2x2 + 2y2 

we obtain 
Ytx,y) = x 2 + y2. 

By reference to 5.2.40, 5.2.41 we see that the stability 
region in the first quadrant is given by 

r2 ~ c + s 
s 

and r ;(, k+/ k 2+(.oc+s)«1+,P)c + (1-p)s) 

/'c + S 5.2.50 

and r ;(, k,+j k 2 + 4,P2c (c-s) or r ~ k- j'-k-2c-· -+-4-,P-2-
c
-(-c---s-) 

2'p c 2f>c 
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A combina"tion of the equations 5.2.50 is ShOWIl on fig. 41 

along with "the attempts to compute V~ uslng h = 0'01, k = 0'005 

and equation 5.2.12 with the ini"tial conditions 5.2.16. It 
can be seen that even when the initial conditions a.i:e correc i; 

the results will be highly inaccurate if the method used with 

the system is unstable. 

2.5! Conclusion 
The method of solution of 5 .• 1.1 in 2 dimensions by a 

numedcal difference formula has certain problems. 

The obvious problem is that of initial conditions. However 

it is seen that it is possible to choose a method such that 

errors in initial conditions and errors in computation should 

be swamped. Tndeed, the method 5.2.9 gives rise to stability 

conditions 5.2.39 or 5.2.40, 5.2.41. 
Obtaining the boundary of the D.O.A. is more difficult. 

Figs. 25. 26 indicate that for the Rahn e~uation the stability 
region is inside the boundary and the computed results of 

fi.gs. 35, 36, 40 show this. The reason for this is that when 

5.2.27 is satisfied the coefficient of V~ is small and a way 

of avoidin8 this has to be added to the method. 

3. Theory of P.D.E.s 
In section 1 it was noted that for a P.U.E. in n dimensions 

such as 5.1.1 to have a .. unique. solution, initial conditions 

need to be specified on an (n-1)-dimensional subspace. However 
if the initial conditions are specjfied on characteristics 

of the system, as they are for the Zubov e1uation, then initial 

conditions in (n-1) dimensions are not necessary. ~his will 
be proved here and then it will be shown that initial condition 
problems encountered in section 2 are overcome by conversion 
to polar co-ordinates. 

Theorem 5.3.1 

n 
A P.D.E. 

~fi(!.)dV (!.) = -tS(x)(1 - dV(x» 
i.<=1 ~x'. - -

with initial conditions given by 

5.3.1 

xi c x i (t 1 , ••• ,t
j
) i = 1, •.• ,n 5.3.2 

V = V (t i ' ... , t~) 



which do not lie on the system characteristics. where 

are freedom parameters, has a unique solution if and 

j = n-1. 
Proof 
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t 1,··,t. . J 
only if 

It has been noted by theorem 1.8.1 that 5.3.1 may be 

transformed in'to e. set of O.D.E.s representing the characteL'istic 

equations: 

dX i 
(i = 1, •• ,n) dV 5.3.3 = 

f i (.!) -6(.!) (1-dV(.!)) 
Also by theorem 1.8.2 the solution,.of 5.3.3 is given by 

u.(X,V) = C. l. - l. 5.3.4 

i = 1, ••• , n. 
Equations 5.3.4 are the characteristics of system 5.3.1. 

The general solution then becomes 

W(u 1, ••• ,un ) = O. 5.3.5 
To determine the function W we need to use the constants c i 
in 5.3.5 rather than u i • When ':/ is found in terms of c i ' 

reference to 5.3.4 immediately gives W in terms of u i • 

First suppose ·.the initial conditions are as given in 

5.3.2 but on a j-dimensional hyperspace. 

i.e. Initially Xi = x i (t 1,···,t j ) 5.3.6 

V =V(t1 ; ... ,t
j

) 

where j may be any non-negative integer. Since 5.3.4 is true 

for the initial conditions, we may substitute 5.3.6 in 5.3.4 
giving 

u.(x(t
1

, ... ,t.),V(t
1

, .. ·,t.)) = cl.' 
l. - J J 5.3.7 

i = 1, ••• ,ne 
Since the initial conditions 5.3.2 do not identically 

lie on any system characteristic then 5.3.7 represents n 

equations from which we need to eliminate the j parameters 

to obtain a relationship between the c i ' i'= 1, ••. ,n of the 

form 5.3.5. 

If j. < n then el.iminating t 1, ••• , tj 

n-j relations between c 1 , ••• ,cn ' Hence if 
is not unique. 

from 5.3.7 gives 

J < n-1 the solution 

If j ? n then t 1 , ••• , t'j cannot all be eliminated. Hence 

we see that j = n-1 is necessary. For sufficiency we see that 

if j = n-1 then upon eliminatinq of t 1 •· •••• t n_1 from 5.3.7 we 

left with one equation connecting all the c
i 

.and using 5.3.4 are 



we see that this becomes the unique solution. End of proof. 

Theorem 5.3.2 
l'he initial conditions 5.3.2 may De replaced by the 

initial conditions 

xi ~ x i (t1,· .. ,t j ) 

V .~ V (t" ••• ,t.) 
J. 

i ~ 1 , ••• ,n 

j "" n-1 
5.3.8 

where the system 5.3.8 lies identically on n-j-1 separate 

characteristics of the system 5.3.1. 

Proof 
If the system 5.3.8' ',lies identically on n-j.,.1 

characteristics of the system then we may subseitute 5.3.6 

ineo 5.3.4. n-j-1 equations of the form 5.3.7 will vanish 
identically leaving j+1 equations from which we eliminate 

the j parameters t 1, ••• ,e j • The remainder of the proof is 
as for eheorem.5.3.1. End of proof. 

It may be, however, that the initial conditions 5.3.8 

when s]lbstituted inLo the characteristics 5.3.4 produce the 

result that 2 or more characteristics 5.3.4 become tne same, 
or dependent. In this case we have identities which when 

elimina"eJ give other relationships between t 1 , ••• ,t. 
. J 

and 

c 1, ••• ,cn • ~hen we have 
~1heorem 5.3.3 

If the initial conditions 5.3.8 lie identically on 
n-j+k-1 characteristics of 5.3.1 where k such characteristics 

are the same as or derendent on some of the n-j-1 other 
characteristics also satisfied by 5.3.8 the solution of 5.3.1 
is again unique. 

Alternatively when t~e initial conditions 5.3.8 are 
substituted into the characteristics 5.3.4 we find that one 

or more characteristic may become indeterminate. In this· 
si tua tion less characteristics are sa t.isf ied identically, but 
when singulari ties ar" removed we are left with the correct 
number of identities. This gives 

Theorem 5.3.4 
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If the initial conditions 5.3.8 lie identically on n-j-k-1 

characteristics of 5.3.1 and cause k different singularities 

in other characteristics which when eliminated result in k 

further characteristics which are identical or dependent then 

the solution of 5.3.1 is again unique. 

These theorems may be illustrated by some examples. 
Consider first the system 



x = -x + y ~ 

y = -x - y + 

The auxiliary equations 5.3.3 become 
dx ily dV 

_x+y+x(x2+y2) = _x_y+y(x 2+y2) = _2(x 2+y2) 5.3.9 

By conversion to polar co-ordinates the independent solutions 
• 

of 5.3.9 may De found and are 
2 2 1-x -y 
-V = cl 

(x2+y2)e-2tan- y/x 
2 2 = c 2 -

1-x -y 

5.3.10 

5.3.11 

The initial conditions 5.1.3 may De written parametrically as 

x=O,y=O,V=O. 5.3.12 

5.3.12 is a set of equations in ° dimens'ions while theorem 
5.3.1 requires initial conditions in 1 dimension. 

Substituting 5.3.12 into 5.3.10, 5.3.11 gives 

c 1 = 1 5.3.13 
c 2 = 0. 
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The result in 5.3.13 sa~isfies identically the characteristic 

given by x = 0, y = 0 i.e. c 2 = ° in 5.3.11. Thus we see that 
the initial conuitions 5.3.12 sati~fj ideh~'ically one 

characteristic of the system 5.3.9 and theorem 5.3.2 is satisfied 

by j = 0, n = 2. The solution is given ay 
2 -v 1-x-y = e . 

The Hahn system 5.2.13, ~.2.14 is a gooa system to consider 
these theorems on. The auxiliary equations 5.3.3 become 

dx 
= 

The solutions of 
x 

y( 1-xy) 

V + x - y2 
y 

= 

= 

2:L 
-y 

5.3.14 

c 1 

c 2 

= dV 

are 

_2(x 2+/) 

the surfaces 
5.3.14 

5.3.15 

5.3.16 

Substituting 5.3.12 into 5.3.15 and 5.3.16 gives c
1
,c 2 

indeterminate. If 5.3.15, 5.3.16 are transformed such that 
x/y is eliminated between them and then 5.3.12 suhstituted 
we obtain'the relation which leads to the analytiC 
solution 

V = y2 + 
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Vie can see that the initial condit,ions 5.3.12 give no 

fr·eedom parameters. Le. j = ° in theorems 5.3.1,5.3.2,5.3.3, 
'5.-5.4. t00W 5.3.12 lies on both characteristics of 5.3.111 and 

the conditions oC theorem 5.3.1 are not satisfied. Lilce'"ise 

theorem 5.5.2 is not satisfied as 5.3.12 results in 5.3.15 and 
5."3.16 being indeterminate. However theorem 5."3.4 is satiGfied 

by j = 0, n = 2, and k =.1. When 5.3.12 is substituted into 

5.3.15, 5.~>.16 ::h'e two ch:.racteristics are indeterminate and 
the Singularity caused by consideration of x/y at (0,0) may 
be eliminated to leave one relationship between c 1 and c 2 • 

'rhe example illustrates what must in fact happen to all 

systems where the origin is asymptotically stable. It turns 

out that since f i (i=1, ••. ,n) are not functions of V that from 
').3.3 we may obtain n-l relations of the form 5.3.7 which do ./ 

not depend on V and one which does depend on V. The n-1 equationS 
are independent of ~ and V and are the system trajectories 
given by 

U i (x 1 ' ••• , xn) = c i i = 1, •••• n-l 
with un (X 1' ••• 'Xn 'V) = cn • 
Since the system trajectories all tend towards the origin we 
see that 

u i (0 ••.. • 0) = c i i = 1 ••••• n-1 
are identically sa"tisfied. There are i.n fact n-l singulari ties 
or identities which when eliminated Similarly to tha"t in 5.3.10. 

5.3.11 or 5."3.15. 5.:5.16 lead to one equation in cif i=1 •••.• n, 
after substituting Xi = 0. V = 0. i=l, ••• ,n. ~ence in the 
terms of theorem ')."3.4 the Zubov e'luatton 5.3.1 satisifes 

j = 0, k = n-1 and a unique solution of 5."3.1 exists. 

Hence a unique soluti~n of the Zubov equation 5.3.1 exists 
fo:r sy:3tc:~s where the orip;in is a critical point by eliminating 
s.ingularities in the general solution of 5.3.3 at the origin. 

3.1. Numerical Splution 

However to solve 5.3.1 numerically on a grin system is 
another ::latter. The usual method is to compute the solution 

of V c:t x~ji) = jihi for some 1·~ i "" n Given values of V 
at x~Ji-1)= (ji-1)hi, 1",," i::S: ·n. However to begin computation 

wc ncen initial conditions of V on x~Mi)= M'h. for 1 Si",," n, 
l l l 

5.3.17 



5.3.17 is an (n-1-)-dimensional hyperspace in the variables 

xi' i = 1, ••• ,n, i f j. This is in accordance with theorem 
5.3.1 and by solving 5.3.1 there is no let-out from this 
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problem afforded by singularit1es except by means of solving 

numerically along the characLeristic lines. This is the method 

used by Ji'ox (36) which was considered in Cnapter 2. This method 
• 

computes the characteristics S (x,y) and the value of· V along 
them. Since all the characteristics converge to the origin 
we see that the initial conditions 5.1.3 are sufficient for 

Fox's method. 

Since the initial conditions given by 5.1.3 are zero­

dimensional and we require (n-1)-dimensional conditions then 
we need to transform the independent variables such that the 

corresponding initial condition iD 5.,;3 in the new variables 
is (n-1 ;-dimensional. 

The polar co-ordinate system given by 3.2.17 is such 
a system. 

x 1 = r cos 9
1 

x_ = l. 
r sin 9 1 ••••••• sin Q. 1 cos 

1-
9i , i = 2, ••. ,n-1 

5.3.18 
x = r sin G 1 •••••••• sin 9 1 • n n-
The initial condition 5.1.3 becomes 

V(O,9 1,··.,Qn_1) = ° 5.3.19 
~hich is (n-1)-dimensional. In _the notation of theorem 5.3.1 
we obtain the characteristic solutions 

u i (r,Q1,···,9n_1,V) = c i 
i :::: 1, ••• ,n 

with initial conditions as 

r = ° 
Q_ = t. 

l. 1 

V = 0 

i = 1, ••• , n-1 

which are in the form 5.3.2. 

5.3.20 

Now by the chain 

-"<Iv = ~W ilx;i 
~r ,{.--6x -"<Ir· 

~le of partial derivatives we know that 

Now 

\ -~ , J 
'dv =')-?JV dX j .~ .-,---~x. ~. 

l. 1~1 J 1 
from 5.3.18 we may 

i :::: 1, ••. ,n-1.. 5.3.21 

obtain the partial derivatives 
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~x" j = 1 , ••• , n 
"OrJ 

and ""0 x" j. 1, ... ,n-1 = 
"OQ~ j = 1, ..• ,n. 

1 

Thus 5.3.21 represents n linear equations of~V, aV (i=1, ••• ,n~1) 
"Or ~" 

in terms of"dV (j = 1, ••• ,n). These equations may1 be inverted 
u" 

to ob"tain ~V ~xplicitly and then by substituting in 5.~.1 .. \ve 
~j 

obtain a polar co-ordinate P.D.~ •. ,,-, 
F(r,Q1, .. ,Q 1)Ov(r,Q1, .. ,Q 1) +~G"(r,g1, .. ,Qn 1)~V(r,Q1, .. ,Q ,) n- ~ n- ~ 1 - ..... r. n-

o r I. s I <)'01 • 
1 

= - p (r, El 1 ' .. , 9n_1 )( 1-d V (r, 9 1 ' .. , 9n_ 1 »" 5 • 3 • 2 2 

The actual equations 5.3.21 and their inversion are carried 

out in Appendix E. It is eq~ation 5.3.22 and the initial 
condition 5.3.19 which form the basis of the numerical method 
in the rest of this chapter. 

4. Radial Methods 

Having transformed 5.3.1 into 5.3.22 by meana of 5.3.18 
we nO'.v require to set up a grid system to solve 5.3.22 nume.n·ie,alIJ 
From here on we consider the 2-dimensional version of 5.3.1, 
5.3.22 which become 

f(x,y)~V + g(X,Y)dV = -p(x,y)(1-dV(x,y» 
"~x 'rY 

x = r cos 9 
y = r sin 

G(r,9)oV 
<'9 

9 

= -f(r,9)(1-dV(r,9». 

5.4.1 

5.4.2 

Differentiating 5.4.1 with respect to r,9 to obtain the "3X, dX, 
"dr )9 

and substituting into 5.4.2 we obtain 

F(r,9) = fer cos 9, r sin 9)cos 9 + g(r cos g,r sin Q)sin 9 

5.4.3 
G(r,9) =(g(r cos 9,r sin Q)cos 9 - fer cos 9,r sin g)sin 9)/r 

with ~(r,9) = per cos Q,r sin 9). 

Various methods may be used to solve 5.4.2 but three are 
.outlined here. 

The grid 
grid 5.2.1. 

First we require some notation. 

is set up in the same manner as the rectangular 

. 



r = mh m 

gn = nk 
where k = 2w' n = 1, ••• ,N 

W-
m >/0'. 

The analytic solution of 5.4.2 

Y(mh,nk) 

and the computed value of Y by 
yn m '?- 0, n = , , ••• , N m 

4.1 Shield~t Method 

5.4.4 

is denoted by 

5.4.5 

Tne method Buggested by Shields (28) approximates the 
partial 

)"Y .r 
"Ov 
-og 

Y 

derivatives by 

~ 1(yn+1+yn _yn+1_yn) 
2n m+1 m+1 m m 

~ .l(yn+1_yn +yn+1_yn) 
~k m+1 m+1 m m 

Q< .l(yn+1 +yn +yn+1 +yn) 
4 m+1 m+1 m m· 

Substituting 5.4.6 into 5.4~2 and rearranging gives 

(F+hG-hdg; )yn+~ + (F-hG-hd!P:)yn 1 
k -z- m+ k -2- m+ 

,,: (F-hG:hd~~ )yn-f1 +( F+hG+hd~ )V
m
n ~ 2h,'f. 

k -2- m k-Z-

5.~.6 

5.4.7 

For [. = 'I, ... ,N the equation 5.4.7 represents a set of linear , 
equations for values of Y on r = (m+1)h Given values on r = mh 
and known functions F,G,S[ • 

A matrix ec!uation may be set up 

AmYm+1 = ~m 5.4.8 
where the nth'~ element of Ym+1 is Y~+1' The solution of 5.4.8 
at each stage provides values of Y on concentric circles. 

4.2 Explicit Nethod 

Shields' method is seen to be implicit. This is nota 

drawback to computation of Y~+1' n = 1, •.. ,N, but should 
computational instability' affect the value of Y~+1 for any 
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n then this instability is transmitted to Y~+1 ,for all n = 1, •• N 

i.e. instability affects the computation of whole circles. 

'I'o overcome ,th'e problem we need an explicit method given by 



, ::;7 • 

• 
Substituting 5.4.9 into 5. 4.2.gives 
(F-bhd~ )Vm

n +1 = _hG«1_a)Vn +1_(1+a)Vn- 1) 
2k m m 

+( Ji'-ahG+( 1-b)hd~ )Vn -h~. 
j{ m 

5.~.10 

5.4.10 is an explicit method in fact not as accurate as 5.4.7. 

Thus we need to obtain a more accurate method. 

4.3 Second Order Method 
To develop methods of higher order accuracy we may start 

from the Taylor series expansion given by 

V( (m+1 )h, nk) = exp(hfr:) V(mh, nk). 5.4.11 

The exponential series in 5.4.11 may be t~uncated and for 

this method we truncate after the second order term and the 
method becomes 

= (1 + h~r + h 2 "'i 
2 '~r2 

5.4.12 

In order to approximate~ for the terms in 5.4.12 we need to 

reClrrange 5.4.2 
~V -G dV 
-Or = F 6Q 

to become 

~(1-dV) F . 

Let us denote the computed value 
~Vn 

m with corresponding notation 
"or 
lifri ting 

_Gn 
an = m m 

Fn 
m 

bn 
m = 

~n 
m 

Fn 
m 

5.4.13 

of );V at r = mh, Q = nk as 
ilr 

for oV and for F,G,Ji, V. 
~ 

5.4.14 

and substituting 5.4.14 into 5.4.13 and setting x = mh, y = nk 
we see that 



5.4.15 
= 

Now we may differentiate 5.4.15 with respect to r again and so 
compute iJEVn , m 

--~-
"Or 

= _dan~Vn 
m rn 

'~ 1Q 

= .:)a~ dV~ 
'''r ""OQ 

dbnt 1_dVn ) dbn dVn 
- m m.j. m-m 
~ ')r 5.4.16 

next 
Substituting 5.4.15 and 5.4.16 into 5.4.12 gives the 
stage of setting up the method: 

= Vn +(_hbn+h2(_)bn _dbnb n + andOn))(1_dVn) 
rn, m 2 m m m m m m 

V -W 

( n 2(. n n n + -ha +h -~a -2da b 
._.~ 2 ,--!!! ID rn 

~r" '-." 
+ a~ )a~) )cl"~ 

-"W 1T 

5.4.17 

n ..... ',2V The equation 5.4.17 expresses Vm+1 in terms of V,.:!1. " 
'~Q' )Q2 

on the circle r = mh, and known terms. The only approximation 
so far has been truncation of the ~aylor series. If we can 
now approximate all the partial derivatives in 5.4.17 by grid 

values of the corresponuillg functions combined in such a way 

that the accuracy will be maintained then we have a second 
order method. 

The centr'al difference formula for a first derivative 

has second order accuracy, so we may write 

'dvn Vn+1 - Vn- 1 
m ~ m m 

-W 2k 5.4.18 

db~ bn - bn 
~ m+1 m-1 ~ 

.. r 2h 

and similarly for the others. 
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The second derivative term in 5.4.17 is written as 

Substituting 5.4.18 and 5.4.19 into 5.4.17 gives the difference 

scheme. Some simplification can be achieved by writing 

En = hbn 
m m 

A~ = ha~ 
){ 

The final version of the difference scheme becomes 

vn = Vn+(_Bn+Bn _Bn _dBnBn+AnBn+1_AnBn-1)(1_dVn) 
m+1 m m m-1 m+1 m m m m m m m """"4 -4- -2- -4- -4-

+(_An+An _An _dAnnn+AnAn+1_AnAn-1)(Vn+1_Vn-1) 
m m-1 m+1 m m m m m m m m 

"2 8 8 -r- -8- """'El 

+ AnAn(yn+1_2·Vn+yn-1). 
m m m m m 

-2-

5. Comparison of Radial Methods 

5.4.20 

5.4.21 

The radial methods given by 5.4.7, 5.4.10, 5.4.21 all 

serve as numerical routines for integrating 5.4.2 but the 
question i.s raised as to whether one method is better than 

another, ~nd if so, why. 

5.1 Initial Conditions 

All the methods given in section 4 provide means of 

computing V on r = (m+1)h given V on r = mho Thus sufficient 

initial conditions to start computation are given by Y~ = 0, 
n = 1, •.• ,N, providing there are no problems caused by evaluatrng 

F,G, ~ near the origin. We know that at r = 0, F = ~ = ° 
by pu tt.i.ng r = ° into 5.4.3. G is not necessarily small for 
small r but we must not attempt to evaluate 5.4.7, 5.4.10, 

5.4.21 such that the coefficients of the L.H.S. are zero or 

terms on the R.H.S. become large. To see how putting m = ° 
into 5.4.7, 5.4.10, 5.4.21 affects the coefficients of Vn 

m+1 ' 
1/~ we need to consider the behaviour of F, G, g; as r_ 0. 

We mak~ use of definitions 3.2.1, 3.2.2 and associated 

results on the asymptotic properties of functions near the 





l;~ ' •• l_ .t~ 'J'; r_ I; •. 

I-'"' I S'> -. 

C~OMMENT~ \\ 

"A1EME",~ FORTRAN STATEMENT ~: c 
'T~UMBEA S _, ...."!,o. ~ 
10 III 0 0 11 0 0 0 0 0 III 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 moo 0 0 0 DtI..n 0 0 0 
':) I I I I I ! I 13 11 11 Il 11 IS Ii !I 11 191111 17 /J )1 )1 n J) 11 It 11 11 11 II II Jj I1 Jlll 11 11 It 11 n H l\ li HilI! 1111 SI \J SI li S. j1 \1 \~I 61 11 Il II iI II ~ iI 11 11 U 11 1l ,. \~, ... ,l' 11 11 1111 

I11 I I I I I I I I I I 11 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I ');>1 I I I I I I I I I I I I i'i"TII I, 
- 'tl - '" l"~~ 

1:1111111111111111111111111111111111111111111111111111 ~1111*11111111111111l 11111 -
- r-:--- S> 

3:133333333333133333333333333333333333333333333333333 3 3~3 3 3 3~3 3 3 3 3 3 3 3 3 3 33 3l>3 333 
')\ 

4:44444444444444444444444444444444444444444444444444 4 4 4~4 44'4')4 4 4 4 4 4 4~4 4 ~4 441 ~ 

5:5555155555555555155555555555555555555555555555; 5 5 5 555 5 ~ ~ 5 Q 55 5 ~ \81 5~'~~ 555 

6:666 666666666666666666666666 6 6 6 6 6 6 6 6 6 6 6 6 666666666666 6 6 6 6 6 6 6 u.o 6 6 6 ~~, 6 6 U!:6 666 
I N 

111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I, \ 1 1 1 1 1 1 1 1 1 1 1 1 1 , 1 1 1 1 

8:1888888888881888888888888888"888888888888888888888 8 8 8 8 88 8 8 8 898 8 8~8~ 8j)o.l 
I • I ~ 'C. .......\) 

919999999999999999999 9 9 9 9 9 99999999999999999999999999999999 j 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 f9 9 9 999 
1 1 J , \ I I I ! ID 11 1~~lrllnl;,~',ol1 I1 1I 1')1 111111 11111111 lllB I1 Jl11 J4 JS Ji JIl! J! 11 I' H 11 H li" i! 111' 10 \1 51 IJ Si SI 111111 S, 1I 1'" IJ il is'' iJ I! 51 :1'1 11 J) 11 1\ 'I 'I I! 11 U <J 



orlgln. Now from theorems 3.2.1, 3.6.5 we know that 

pep) "> min(p(f),P(g~-1 5.5.1 
By reference to 5.4.3 and theorems 3.3.1, 3.4.1 we see 

that fl)r general f,g 

P(F) = min(P(f),P(g) 
p(G) = min(P~f),P(g»-1 

F(g;) = p(ti) 

5.5.2 

except in particular systems where lower degree terms in 5.4.3 

cancel out. The Hahn example is one system in which 

pcf) = 1 

peg) = 1 
pep) 1 5.5.3 = 
peG) = 2 

but in general equation 5.5.2 is true. 
By reference to theorem 3.4.1 we see that 5.5.2 is true 

except in certain circumstances where significant terms vanish 

identically. Generally speaking we must assume that 5.5.2 
is true although other possibilities must also be'mentioned. 

Thus we s~e from 5.5.1 and 5.5.2 that as r~O 5.4.7 
asymptotically-becomes_ 

'Ilhich is quite stable for computational purposes. Terms in 

5.4.7 are evaluated at r = (m+t)h, Q = (n+t)k and so putting 

160. 

m = 0 into 5.4.7 is no ,problem. If such a situation as 5.5.3 
arises then it is easily seen from 5.4.7 that there is a similar 

asymptotic relationship to 5.5.4. 
Consideration of 5.4.10 using 5.5.1 and 5.5.2, however, 

shows that as r --"> 0 there will be pl'oblems caused by G/F or 

r./s:; be,:oming large. The known terms are evaluated at r = (m+c)h, 

9 = nk and we see that for m = 0 c should be as large as possible. 

Hence in general letting m = 0 in 5.4.10 is unstable except 
in examples such as the Rahn system. 

Consideration of 5.4.21 is a difficult task. USing the 
definitions 5.4.14 and 5.4.20 we see that in general peA) = -1, . 

P(B»--l. USing an assumption that P(V) >- 0 we may possibly 

eliminate certain terms of 5.4.21 when m = 0, leaving instabilE y 

caused by such terms as A~B~+1 and clearly we cannot in general 
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5.4.21 use 5.4.21 with m = O. 'lie need, in fact, m ~ 2 to 

and this means using 5.4.7 or 5.4.10 to get y~ and 
n 

use 
n 

Y 2' n= 1 , ••• N, 

or by setting initial conditions to Y2. 

5.2 Computation 

As has already been noted 5.4.7 is an implicit method. 

Let us consider the situation at r = mh where the r = mh circle 

is wholly inside the D.O.A., but r = (m+1)h is not. See fig. 27. 

Fi~. 27 

Assuming no error in computation of Y~ and the method 

used is accurate then Y~+1 will in some '.vay, by being unstable, 
indicate that the boundary has been crossed. Now if r = (m+1)h, 

9 = (n+1)k is inside the P.O.A., computation of v~:~ by 5.4.7 

knowing v~"'1 will cause instability in Y~:~ also. In fact 
for any V~+1 that is unstable, continuous use of 5.4.7 will 

make ~ll Y~+1' n = 1, ••• ,N, unstable. Thus the largest computed 
R.ll.S. that can be obtained by 5.4.7 is the largest circle 
wholly inside the D.O.A •• 

Methods 5.4.10 and 5.4.21 
unstable for some m,n it does 

for all n = 1, ••• ,N. Ilowever 

are explicit and if yn 1 is . m+ 
not affect computation of Vn 1 
Yn. d t n-9+ m+1 ~s use 0 compute Vm+2 ' 
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V~+2' v~:J and instability will spread to these points unless 

we can find a way of keepinG useful information only and not 

using unstable values of V in further computation. That is 

the subject of section 8. 

5.3 Errors 

Fach method.has associated with it a Local Truncation 

Error. The order of this error is the factor influencing 

accuracy of computation. Let us consider the error. of method 

5.4.10 taken at the point of evaluation of F,G,g;. i.e. at 

r = (m+c)h, 9 = nk. 

The Local Truncation !';rror is obtained by 'inserting into 

the numerical method the correct values. Thus we obtain 

L( r, g) =- (F-bhd 1> )~+c V« m+1)h, nk) 
... 

-(F-ahG+(1-b)hdg,»n V(mh,nk) 5.5.5 k m+c 

+hG«1-a)V(mh,(n+1)k)-(1+a)V(mh,(n-1)k))+ hg>n 2K m+c. 

'lie now obtain L«m+c)h,nk) !J.v sll\Jstituting for V«m+1)h,nk), 

V(mh,nk), V(mh,(n+1)k), V(mh,~n-1)k) in 5.5.5 in terms of 

16" 

V, and partial derivatives of V with respect. to r,g at r = (m+c)h 

9 = nk. 'ro save space the subscripts m+c and n will be dropped. 

Hence we obtain 

L 'EE' (F-bhdSli )(V+( 1-c)hJV 

3r 

+(1_c)2h2 )2V +(1_c)3 h3 ~V 
2 ":Ir2 6 ar3 

+ •••• ) 

+(-F+ahG-(1-b)hd1> ) (V-ch'OV 
k ')r 

+ •••• ) 

) 

• • • 

c 2h 2k:; -;V _c 3h3k3 ~6v + •••• 

12 ilr2)g3 36 )r3)g3 

I 



) 

+h g>. 

c 2h 2k3 ~5V + c3h3k3 )6V_ ..•• 

12 dr~g3 36 or3 "() g3 

5.5.6 

Collecting together terms in 5.5.6 and using 5.4.2 for some 
cancellation we obtain the 10cal Truncation Error as 

L .;;;; 

163 

c 2h 3 G "d3 y 
- 2- -or2';)9 

5.5.1 

Thus we see that the explicit method 5.4.10 is first order. 

There is no comblnation of a,b,c that eliminates second order 

terms in 5.5.7. However if we locally aS3ign 
a = 0 

b = c = 

FiPv + G "cl2y 
5.5.8 

":lr2 ()~g 

thp.n we nave a second order method. Some means of obtaining 

Lhe derivatives in 5.5.8 to sufficiellt accuracy is needed. 
The Local Truncation Errors of the other methods are 

obtained in exactly the same way. 
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Shields' method: 

+ h 2G 'Q3V _ h2d~ '1iv + k2Fd3V+k 2U 'd3Y_k 2dl()2V) 
'IIr'6f/3'- "il Q3 "ilQ2 dr~Q "ilr2 

+Olh4+ k4). 

Second Order method: 
L = h3--03V + k3A'63V +O(k4 + h4 ). 

6' ~3 dQ3 

Thus we see that both 5.4.7 and 5.4.21 are second order 

methods and are therefore more accurate than the Explicit 

method 5.~.10. The Second Order method is the one that is 
explicit and second order but requires arbitrary initial 

conditions. 

5.4 Convergence 
The Courant-Fr1~drichs-Lewy (44) condition applies to 

explicit difference methods such as 5.4.10, 5.4.21. If we 
write down a general scheme for V on r = (m+1)h in terms of 
V on r = mh and known functions as 

,"", ~.)~ 

n 
, Vm-\-1 = W(r,G,h,k) + ~W, (r,G,h,k)vj 

~J-n m 5.5.9 
then 
by: 

j ~"-l, 
the C_F-L condition for convergence of the method is given 

C-F-L condition 
If the characteristic curve of 5.4.2 passing through 

r = (m+1)h, G = nk intersects r = mh at 8' then convergence 
takes place if 

(n- j 1)k ,,;: G' ~ (n+j2)k 
where j1,j2are as in 5.5.9. 

For the two explicit schemes n 
5.~.10 and 5.4.21 Vm+1 is 

n+1 n n-1 computed from Viri ,Vm' Vm • 
, " 'The C-F-L condition quite 

Hence in this case j1 = 
simply requires the 

characteristic through r = (m+1)h, G = nk to intersect r = mh 

within the range of pOints used in computation of V~+1' 'rhus for 
~~4.~9,'.504.21'.'i,e require the characteristic to be as in fig. 

28 but not as in fig. 29. 
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Consider 
Q = (n+ \.)k. 

the point 

Hence the 

A on fig. 28 which is given by r = mh, 

condition for convergence becomes 

-1 ,,;; >",,;,1. Now 
grid "closes up" 

dr ern·· 

we 
and 

~ 

let 
we 

-h 
5JC 

h, k_ 0 while h/k is constant. The 
see that 

·5.5.10 

where dr is the gradient of the characteristic. But the 
charac~~ristic of 5.4.2 is given by 

dr = F 
dQ IT • 

5.5.11 

Hence letting h,k~O with h/k constant and combining 5.5.10 

a,nd 5.5.11 we see that 

>.. I'\< -M 
KF. 

Thus in order to satisfy the C~F-L condition of convergence 
we require 

Thus we have now imposed an upper bound on h or a 

on k to guarantee convergence of 5.4.10, 5.4.21. 

5.5 Stability 

5.5.1<' 
lower bound 

An important basis of comparison between methods is 

stability. An accurate method is of little use if the errors 



which occur are magnified and the results become unstable. 

But if errors die away then a less accurate method may be 

mo:r-e acceptable. 
The analysis is by the sinusoidal input method exactly 

as in sub-sec~ion 2.4·and the corresponding versions of 5.2.32 

for the methods 5.4.7, 5.4.10, 5.4.21 are 

Shields' metnod:. 
Ln=(F+hG-hd~ )en+1

1 + (F-hG-hdp )en 1 
m . k"2: m+ K""2 m+ 

Explicit method: 

-(F+hG+hd ~ )en 
k2 m' 

) n+1 - (F-hG+hd g: e --.,. m 
k '" . 

5.5.13 

f6b 

Ln= (F-bhd 1> )em
n+1 - (F-ahG+( 1-b)hd~ )en +hG( (1_a)en +1_( 1+a)en- 1) 

m k m 2k m m. 

Second Order method: 

n n ( n n n n n e 1-e +d -Bm+B 1-B 1-dB B m+ m m- m+ m m 

( n n 
- -A +A 1 m m-

28 

"4 "4 -cz 

5.5.14 

)e~ 

5.5.15 

Unlike in the rectangular grid ~ethod we only require 
stability in one dimension. Computation in the,~':'direction 

is periodic and Von-Neumann stability only gives .. informaiion 
on the basis t!iat computation is continued indefinitely. Thus 

we need to substitute the vecsion of 'en in 5.2.34 into 5.5.13 , 
ill 

5.5.14, 5.5.15 to obtain '>- in each case: 
Shields' method:. . 

(F-hr.. +hdg; )e~w.k +(F+hG +hdl') 
?-~ = k ""2. k Z- 5.5.16 

(F+hG -hd ~) ei"" k (F hG -hd1) . 
k 2 + ~K 2 

Explicit me.thod: 

(F - ahG + (1-b)hdp) _ hG«1_a)e i w..k _ (1+a)ei w.k) 
~= J{ ~ 

(F - bhdg;) 5.5.17 



+ A~A:{CBS wk - 1), 5.5.18 

From 5.5.16, 5.5.17, 5.5.18 we are able to obtain regions 

where the magnitude of '>-~ is less than one for all UA.. 

The procedure for Shields' method is comparitively simple 

and in fact 

I \~I ~ 1 when either d = 0 or F ~ O. 5.5.19 

The Explicit method takes a little more analysing. 

Taking the modulus of >- from 5.5.17 we obtain for d = 0 

(F - ahG(1-cosu.,k»2 + (hGsinI.Mk)2 :s F2. 5.5.20 
]{" le 
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5.5.20 is a quadratic function of cosl.uk for -1 ,,; cos ",k ,,; 1. 

The coefficient of cos
2

IMk is ~l~lZ) 2 - \h~)? Since we assume 

that in "the approximatio~ of ~ Given by 5.4.9 that lal,,; 1 

then we have an inverted parabola for 5.5.20 with one maximum 

value. However we may note that if coslMk = 1 then 5.5.20 is 

satisfied as an equality.. Hence we reqliire the value of 

cos "'k which maximises the L.H.S. of 5.5.20 to be such that 

cos \l..lk >-. 1. 

Hence we obtain 

G(hG - aF).;,; 0 5.5.21 
le 

as the condition for stability of the explicit method for 

d = O. If d = 1 analysis becomes much harder so we only 

consider the symmetric version of 5.4.9 given by a = O. 
In this case we require 

(1-2b)hdS; + 2.F' .;,; -hG? 
k 2P . 

5.5.22 

For the Second Order metnod we simplify 5.5.18 to become denoted 

as 

'>- = u cos u< k + w + iz sin Ulk. 

Then~.'lf 1) u
2 > 2 and uw ~ 0 then we neeu 2 1 , z (u+w) ~ 

u 2 < 2 and >. 2 2 or z uw .... z - u 
11) u 2 > 2 and uw,,;. 0 need. 

2 1 , z then we (u-w) ~ 

or u 2 < z2 and 2 ;. uw ~ u _ 



iii) u 2 < z2 and u 2_z 2 ~ uw ~ z2_u 2 then we need 
w2 + z 2 _ u 2w2 ~ 1. 

2 2 u -z 
From the above analysis we see that unlike the situation 

of constant coef1"icient differential equations it is not 

always easy to analyse stability when the coefficients of·,the . 
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equation are variable. The parameters in 5.4.10 can be chosen 
with :'.5.21 or 5.5'.22 in mind but only for a particular F,G,g. • 

5.6 Discussion 

It is clear that there is no one numeI'ical method which 
will solve all problems it has to tackle' in the simplest and 

quickest way. There are many more methods than those discussed 
in this section, but the three that nave been covered serve 

to show the comp~risons that can be made. 

Each method has its strengths and its drawbacks. The 
Shields' method is second order, s"able everywhere if d = u 
and has no difficulties with initial conditions. Yet it is 
implicit and can only obtain circles completely contained in 
the D.O.A •• 

The Explicit method is explicit and does not have problems 

with initial conditions unless c is small, but is only first 

order unless a = 0 and b,c are locally determined, and imposes 
conditions on h,k for convergence and stability. 

The Second Urder method is second order and explicit, 

but canno" be computed near the origin and also puts bounds 
on h,k for convergence and stability. 

The best combination is probably to use Shields' method 

until the D.O.A~ is breached, then one of the other two methods 

depending on which happens "0 be less restrictive on choice 

of h,k, preferably maintaining second order accuracy. 

6. Radial Runge-Kutta Method 

Runge-Kutta methods are known to possess certain advantages 

over otn~r,', , difference formulae. They are one-step methods 

and yet can achieve greater accuracy than anyone-step 

difference formula. Their arawback is heavy calls on function 
evaluation. 

Up to now we still only have a method \1hich computes 



Vn at r = mh, Q = nk, n = 1, ••• ,N, K = ~/N, and we still 
m 

have to try to obtain the contour V = 00 or V = 1 from the 

grid values. Therefore it is a logical suggestion that if 
the variation of V with respect to Q can be replaced by a 
difference formula, then we may reduce 5.4.2 to a system of 

O.D.E.s to obtain 
Vn(r), n ='i1', ••• ,N~ 5.6.1 

where Vn(r) is the computed function of V with respect to 

r on Q = nk. 

Hence let us approximate in 5.4.2 for dV by 
)Q 

a V ~ Vn+1 (r) - Vn_ 1 (r) • 
~Q ~ 2k 

5.6.2 

Also we denote known functions similarly to 5.6.1 and write 

Fn(r) = F(r,nk) 

Gn(r) = G(r,nk) 

1'n(r) = ~(r,nk) n= 1, •.• ,N. 

5.6.3 

Substituting 5.6.1, 5.6.2, 5.6.3 in 5.4.2 we obtain the 
required set ofO.D.E.s 

5.6.4 is a 
the nature 

-li ( r )( V -1 (r) - V 1 (r» -1 ( r )( 1 - d V (r~)) n n+ n- . n n 

"2i{ n = 1, •.• ,N. 5.6.4 

set of N simultaneous differential equations and 

of the solution depends on the functions F,G,P • 
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The analytic solution of 5.6.4 involves a complementary function 

and a particular integral. The complementary function takes 
the form 

C.:B'. = exp { Id <liner) dr} 
. Fn(r! 

and it is difficult to obtain for all but the simplest systems. 
Equation 5.6.4 may be written in matrix form 

VI (r) = A(r) VCr) + b(r) 5.6.5 - --
where the ele'1ents of A(r) 

An,n(.c) = d In(r) , 
Fn{r) 

An ,n+1(r) = -Gn(r) 

A, 1<r) n,n-

2kl"n(r) 

= 'Gn(r) 
2kFn (r) 

are given by 

n = 1, ••• ,N 
• 

n = 1,."., N-1 " 

n=2, ... ,N. 



AN 1(r) = -GN(r) , 
2kFN(r) 

A1 N(r) = 01 (r) , 
2kF 1 (r) 

wi th all other elements zero and 
• 

b (r) = -p (r) n n, n=1, ... ,N. 
Fn(r) 

5.6.5 also has a vector solution for VCr) in terms of a 

complem",ntary func"{;ion, eXPLiA(r)dr} Yo provided A(r) and 

S-A(r)dr commute, and a particular solution. 
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Numerical solution of 5.6.4 may take place by a.ny numerical 

method which includes the methods in section 4. 

To solve 5.6.4 oy Run5e-Kutta methods we denote 5.6.4 
in the form 

V~(r) = H(r,Vn_1(r),Vn(r),Vn+1(r») 5.6.6 
The Fourth Order Runge-Kutta method applied to 5.6.6 

becomes using the notation of 5.4.4, 5.4.5 

rW+ 1 
V m+1 

where kn 
1 

kn 
2 

kn 
3 

kn 
4 

= 

= 

= 

= 

= 

= 

rm ... h 

vn 
(n n n rn + ~ kl + 2k2 + -2k3 

H( - Vn- 1 Vn Vn+1) 
rm' m ' rn' m 

H( h Vn-1 hkn-1 vn hkn Vn+1 hkn+1) rm + _, rn + 1 ' m + l' m + 1 
2 """2 """2 ~ 

H(r +h Vn- 1+hkn- 1 Vn+hkn Vn+1+hkn+1) 
m -' m 2' m 2' m 2 

2 -2- ~ ~ 

H( r +h, Vn- 1 +hkn
3

- 1 , Vn +hkn
3

, Vn ..-1 +hkn3+1 ) m m m m 

5.6.7 ma.y be solved systematically: 

5.6.7 

. n 
a) Given rm and Vm, n = 1, .•. ,N, we calculate k n , n = 1, ••. ,N. 

1 . 
o)Next compute k~, n = 1, ••• ,N 

n and k
4

, n = 1, ... ,N. 

n followed by k3 , n = 1, ••• ,N, 

n n n n n n 
C) Fromk1'L,k2, k3 , k 4, V/h' n= 1, ••. ,N, we compute Vm+1' 

Initial conditions would seem to present a problem upon 

considering 5.6.4 at r = O. However since we know that (0,0) 
is a local minimum of V(x,y) then we see that 

V~(O) = 0 

Vn(O) = O. 5.6.8 



Substituting 5.6.8 we see that H(O,O,O,O) = 0. So now we 

may consider the result of putting m = ° into 5.6.7: 

r 1 = h 

yn = h(kn ... 2k~ + 2kn + k~) 1 b 1 3 
kn 

= H(O,O,O,O) = ° 1 

kn 
2 = H(h/2,t3,O,O) = - Pn(h/2). 

Fn (h/2) 
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'l'hllS we see th"t 5.6.8 is sufficien"t ini"{;ial conditions 

to solve 5.6.7 given the definition 5.6.6 and expression 5.6.4. 
The major drawback to 5.6.7 is however the problem of 

instability approaching Y = 1 or Y = 00. In sub-section 5.2 

we encountered the problem that computation of V~+1 depended 
on y~-1, Y~. y~+1 and that if anyone of those had encountered 

instability, then Y~+1 would be unstable whether inside the 
D.O.A. or not •. The situation in 5.6.7 is even worse. Not 

n d n-1 n n+1 1 t· only does Y 1 depen on Y , Y , Y but on eva ua ~on of 
m+ m m m 1 n n+1 

Hat otheL' points as well. If any of kl!--, k., k. , i = 1,2,3,4 
n ~ ~ ~ 

are large and unstable then so must Vm+1 be. 

7. Small Coefficients 

The comparison of--radial methods in section 5 was carried 

out on the basis of the classical numerical analysis results 

for stability, convergence and accuracy. There is, however, 

one problem which occurs when we solve a P.D.E. 5.4.2 with 
variable coefficients. This is the problem encountered in 
sub-section 2.3 which occurs when the denominators in the 

difference formula become small. It was noted in sub-section 
2.3 that when the denominators are small that the corresponding 

numerators should be small also, but due to errors in 
computation that this does not happen. 

The Shields' method 5.4.7 has problems when the coefficients 
n+1 n 

of Vrn+1 or of Vm+1 are zero or small. However pc.'oviding that 
not both coefficients are zero there is not too much difficulty. 

for 

Let us suppose that 
(F + hG - hd'p)n'i~ = 0. 

K z- m+-" 

Settin~ n = n' in 5.4.7 gives a 
Vn in terms of yn+1 and yn a d m+1 m m n 

5.7.1 

relationship explicitly 

knmm functions. 



Letting n ~ n'~ 1 in 5.4.7 then enables 
n n-1 n from vm+1' Vm ' Vm and known functions. 

to compute successively 

n' n'-1 1 VN N-1 n' +1 
Ym+1' Vm+1"", Vm+1 ' m+1' Ym+1,··, Ym+1 

n-1 computation of Vm+'1 
5.4:7 is then used 

provining n' as defined by 5.7.1 is unique and 

(F - hG­
k 

o for any n ~ 1, ••• ,N. 

Likewise if there exists an n' for which 

(F - hG _ hdlP )n'+~ 
k ---2--- m+t ~ o 

then 5.4.7 may be used to compute successively 

n' 
, ••• ,Vm+ 1 • 

5.7.2 
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A particular difficulty arises when 5.7.1 and 5.7.2 are satisffud 

for different values of n'. 

Suppose that 
(F+hG-hd!li)n1 +~ ~O 

k "2 m + ~ 

and 

(1' - hG -
k 

where n2 .:.' ni < N. 

= 0 

Since 5.7.3 is true we may compute 

V~+1' j ~ ni, ni - 1, ••• ,n2 + 2,n2 +1 
and since 5.7.4 is true we :nay compute 

j ~ n 2' + 1, n 2' + 2 '1' , ••• ,n1 - ,n1 

5.7.4 

and the two sets of values will not agree exactly due to 

accumulated errors in computation. It is reasonable in this 
case to compute both sets and take their average values for 
yj . '1 ' m ... 1' J = n2 + , ••• , n 1 • 

The Explicit method 5.4.10 is much simpler tu analyse. 

Specifically the small coefficient problem occurs when the 

L.H.S. of 5.4.10 is small. 
i.e. when 

F -1!.hdP ~ o. 5.7.5 
.For the modified Zubov equation (d = 0) 5.7.5 becomes 

f(r,g) = o. 5.7.6 

To consider the type of effect which 5.7.6 can cause let us 

consider the example 



• 2 
x = -6x - 7y + y 

4 
2 5.7.7 y = x + y + x 

Using 5.7.7 in 5.4.3 we see that 
F(r,G) = sin Gcos Q(sin Q+cos Q)r2+(sin2G-3sin gcos Q~6cos2Q)r 

= O. 5.7.8 

Fig. 12 shows thf g~aph of 5.7.8 in the (x,y) plane and fig. 
43 shows r as a function of Q. Both roots of 5.7.8 are zero 

when 
sin2g - 3sin G cos 9 - 6cos 29 = 0 5.7.9 

i.e. g ~ 77°, 126°, 257°, 306°. 

Hence given initial conditions for v~, n = 1, ••• ,N, then 

computation of V~+1' n = 1, ••• ,N, should show irregularities 
at values of n where nk = G and g satisfies 5.7.9. 

computation was attempted with initial conditions V~O = (20~~ 
n = 1, ••• ,100, h = 0·0125. Computation of V~j' n = 1, ••• ,100, 

21 J) 71 showedir-regularities given by V21 = 0·14, V21 = 0·40, V21 = 0·09) 

V~~ =-0·12 corresponding to r = 0·2625, G = 75·6°, 126°,255·6°, 
306 0 in accordance with 5.7.9. 

Three methods were attempted to overcome the effects of 

5.7.6. 

a) To compute F~:~ . n+1 
+ Fm+c in the L.H.S. of 5.4.10 instead of 
2 

n F ,n = 1, ••. ,N, giving the method m+c 

(F-1+F+1 -bhdll)Vn 1=_hG«(1_a)Vn +1_(1+a)Vn- 1) 
2 m+ 2k m m 

+(F-ahG+(1-b)hdp )V~ - ht. 5.7.10 
k 

b) As 5.7.10 except replacing ~'~+c by F~:>F~:! on the n..H.::>. 

of 5.7.10 as well to preserve accuracy. 
c) Using 5.4.10 as usual providing 

F
n 

F
n > 0 m m+1 

Where 5.7.11 is violatea we know that 

Fn = 0 for some 0 m+c 
and we fix c = 0 if 

c = 1 if 

2 

5.7.11 



Conventional 

Mod. a) 

Mod. b) 
~l")d. c) 

-
0·14 

0·12 

0·13 

0·14 

Fig. 30 

V35 
21 

0·40 

0·20 

Q·23 

0·40 

0·09 

0·08 

0·09 
0~09 

V85 
21 

-0·12 

-0·29 

-0·38 

-0· 12 

The results are summarised in fig. 30 and it is noted 

that none of the modifications shows any improvement. This 

is only to be expected as further investigation of fig .-(4) 
shows. As r~-() the curves F = 0 appc'oach the origin along 
lines of constant G. Hence the function F+1+ F-1 can also 

2 

become small which rules out modifications a), b), 'and also 

if F~+c is small for some 0 ~ c ~ 1 then little improvement 
is obtained by varying c. 
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It can be observed however that the regular Zubov equation 

(d = 1) does not suffer from this problem. Providing r ';> 0 

then b can be varied to avoid 5.7.5 being satisfied. 

It has been shown that G/F becomes large as r --'7 0 in 
--5.4. 1 O.~- Here~wehave -found - another reason for ch'odsing -ini tiiil 

conditions away from the origin. 

Investigation of 5.4.21 shows that the Second Order method 

suffers from this type of instability when tne terms on the 

R.H.S. become large. From the definitions 5.4.14, 5.4.20 

we see that zeroes of F are again where we get instability. 

However we not only require Fn ~ 0, n = 1, ••• ,N, but also 
n n n-1 n+1jl , 

we need Fm_ 1, Fm+1' Fm ,Fm to be non-zero. ~h~s means 
that instahility occurs where the curve F(r,9) '= 0 passes 

between the points at which F(r,9) is being evaluated at in 
5.4.21 as drawn in fig. 31. 

I , 
(m+1)h 

, 
I 

ruh \' 

\ 
\ 

(m-1)h 
\ 

,F '" o 

(n+1 k nk (n-1 )k 

Fig. 31 



8. Computation of V = Cl'> Contour 
Vp to now methods have been developed in which values 

of V are ccmput"d on a grid system in rand Q. ':ihat we are 
really interested in is to campute the contour V = ~ • So we 
require some means of outaining this contour which will be 

more accurate than just picking values from a grid. Three 

ideas for improving the method are given here. 

8.1 Keeping Useful Data 

....... ..., --. / -
B,wndary of D.G.i\. "'" "-// 

- - ~/'< 

(n+l )k 

(11-1)k 

- -
"-

, "',\,\ \ . 
\ ' 

\ \ \ 
\ \ . 

1!'ig. 32 
, . h \m+l)h rn 
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The Explicit method and the Second Orler method both 

compute the value of V at A. from values of V at B,C,D. However. 
the point B is outside the boundary of the D.O.A. and the 
computed value ",111 indicate that B is outside the region in 
which the results are continuous. 

But if a discontinuity occured in computation of V~+1 
. then by either 5.4.10 or 5.4.21 there must also be a discontinuit:: 

in computation of Vn 1 although A is inside the D.O.A •• m+ 
The Hahn system 5.2.13. 5.2.14 shows up this problem 

qui te well. The boundary of the D.O.A. of 5.2.13 is given 

by xy = 1. Solution of 5.2.13. 5.2.14 is attempted with 

N = 100. h = 0'0125. The line Q = 3,6 0 corresponds to n = 1 
and the bOlmdary 01' the D.O.A. is satisfied 
by Q = 3.6 0

, r = 3'99 whilst when 
o 

Q = 7!2, r = 2'84. 
Hence computation of V~ for rn = 226, •••• 319 involves using 
data of points outside the boundary of the D.e.A •• Fig. 44 
shows a plot of V~ - V(rnh.nk) against r alonG lines of constant 
G. The er~or on g = 3.6 0 is seen to oscillate and in fact 

oscillates smoothly for r ~ 3·1 due to the effect of computing 
A rrom B in fig. 32. 



(m+2)h 
." 

~ 

",A~ 
\m+1)h 

(n+2)k (n+1jk A nk 
(n-2)k mh 

Fi~. 33 

The method to be used is shown in fig. 33. Computation of 

y~+1 has been found to be outside the region of continuity. 

So to compute y~:1 and y~:1 from correct data we need to find 
yn-c 1 and yn+c 2 which are within the region of continuity m+1 . m+1 
and 0 ~ c 1 ~ 1, 0 ~c2';;;1. 

Step 1). Compute yn+~ = ~(Vn + yn+1) 
m m m 

'yn-~ = ~(Vn + yn-1) 
m m m • 5.8.1 
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These are A B in fig. 33. 
Step 2). Compute yn-~1 from yn-~, yn-1, yn-

1
1 by Shields' method 

~ mt m m m+ 
d ..11+2 1'" yn+~ yn+1 Vn+1 "1 1 'th" t ' an ·:·L. 1" . rom , , 1 s~m~ ar y w~ '" s. ep-s~ze m+ m. m m+ 

set. to. be .negaJive •. 

After this V~:1 is c~mputed, from vn+~ yn+1 
m+1' m+1' 

n-1 . n+! n-~ 
for Vm+2' and then Vm+2' Vm+2 are computed by step 2) above. 

By this method we compute values of 
n-c n+c the D.O.A. then so are Y 1, V 2 . m m 

V such that if yn is inside m 
where 0 ~ c 1 ~ 1, 

n Then Vm+1 can always be computed from 5.4.10 

using step-size k' in 9 given by 

n-c and Vm+11 can be computed from 5.4.10 if c 1 = 1 and 5.4.7 if 

c 1 < 1, similarly for V~:~2. 

1:ne only remaining item is to decide when (mh,nk) is 

outside the continuous region. This is bound to be slightly 

subjective but from a CO!',putational point of view some suggestbon, 

are 

a) yn 
m+1 < '.In 

m 

c) Vn 
m+1 < yn 

m 

or yn 
m+1 > p 



c) yn 
m+1 < 0 

or yn > p m+1 

d) yn 
m+1 < 0, 

where p is large and positive when d = 0 and p is slightly 

less than 1'0 wh~n d = 1. 

8.2 Tangential Accuracy 
The grid system 5.4.4 takes no account 01" the fact that 

grid points become more widely spaced out as r increases. 
To get round this the grid could be made denser by doubling 

N at a suitable value uf r. It is suggested that if r > h/k 

then k is halved and the inoermediate points are first obtained 
oy 

y~+~ = y~+1 + v~ 
2 

5.8.2 

The computation of intermediate points by 5.8.1 or 5.8.2 is 

of second order accuracy and so does not reduce the accurapy 
of the method, but may introduce extra computer errors caused 
by more computation. 

8.3 Radial Step-size Change 
If we find that y~ is inside the region of continuity 

but y~+1 is not (n=1, ••• ,N) it is reasonable to try to reduce 
the value of h. The suggested criterion is that when 

< \~~)g = nk < 

the step-size hn for this particular n should be given by 

h n = h s = 0,1, ••• 
'2s+1 

where h is the original step-size used to begin computation 
and n = 1, ••• ,N. This method suffers from problems of storage 

or necessary data to compute Y at all grid points. 

9. Definition of Optimum Nethod 

l~uch has been written in previous sections on the three 

methods given in section 4. Now we can put the relative merits 

of the methods and their modi1"ications together and suggest 

the best scheme for computing D.O.A.s from a general 5.4.2. 



Sections 5,7,8 have shown up several areas of comparison 

bet~een the methods and problems that occur with their use. 

The optimum method is clearly going to be one in which the 

three methods are possibly all used with switching taking 

place upon satisfaction of certain criteria. 
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',o/e have seen that Shields' method is most easily applicab:e 

using the initial conditions 
'l.n = 0, n = 1, ••• , N • 5 • 9. 1 o 

Also we know that if d = 0 Shields' method is stable everywhere 

and is convergent. ~herefore it is best to use Shields' method 

as much as possible. We could use it 

n = 1, ... ,N, is computed which is not 

until a circle vn, 
m 

continuous from the 

previous circle. However since it can be difficult to decide 
which circle has breached the region of eontinuity, this is 
not recommended. It is better to stop before there is any 

doubt and we recommend stopping when 

V = 10 

is breached by a circle r = mho 
There is no theoretical basis for 5.9.2 but this has been 

found to be a good value of V which terminates computation 

not too close to the overflow line, but near enough to justify 
not using Shields' method. The best value of V to use depends 

on the scaling of F, G, l' . 
After this we must switch to an explicit method. The 

Second Order method has all the advantages of accuracy, while 

for convergence and computation there is nothing to choose. 

The problem of small coefficients given <'y F(r,9) = 0 affects 
both methods. The only possible disadvantage of the Second 

Order method may be stability. The Von-Neumann amplification 
factor must be checked on r = mh ~nd if it becomes large then 

we must revert to the Explicit method. 

If d = 1 we may need to term~nate Shields' method earlier 

than by 5.9.2 since it is only stable if F ~ O. Shields' 
method is most difficult to deal with when coefficients become 
small,. while the 

b to ensure that 

Explicit method has a' facility for changing 

F-bhdlf, O. 

Thus ·.'/e can write down the steps of the best algorithm. 
All the values given are empirical and are suggested on the 
baSis of experience. As already mentioned values of V depend 
on·scal.i.nr.;s of F, G,;P • 



-------- ---

a) Use d = 1. (Zubov's regular equation). 
b) Use Shields' method with the initial conditions 5.9.1. 

c) Terminate Shields' method at either 

i) V = 0'99, 

or ii) F + hG- hQ.l 
k 2 

or F - hG - hdilibecome "small" in the 
k "'2 

sense that they b"ecome less than 0'1 in magnitude of the other 

coefficients of 5.4.7, 
iii) the stability region F ~ 0 is breached. 

d) Then use the Second Order method providing either 

i) \~ does not become too "large" in the sense of being 
more than twice that of the Explicit method, 

ii) F is not "small" in the sense of c)ii) such that 

coefficients of 5.~.21 exceed 10. 
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e) Otherwise use Explicit method with adjustment of b to ensure 

F - bhd1 is not "small". Within the region 0 "" b ~ 1, F - bhd~ 

shoulrt be as large as possible. 
£) The method of keeping useful data in sub-section 8.1 should 

always be used to obtain the boundary accurately. 
g) For converr,ence of the Second Order or Explicit methods 

a check must be made to ensure that 

h 

reducing h .if necessary. 
h) The method of section 8.2 and 8.3 are not recommended as 

they involve extra computation, but are available if such 

accuracy of computation of the boundary is desired. 

10. Higher Orders 

Radial me_hods of solving Zubov's equation are particularly 

amenable to extension to higher order systems. 

Consider the polar co-ordinate system 5.3.18, and the 
initial conditions given by 5.3.19 or 5.3.20. Zubov's equation 
then takes the form 5.3.22 1'0-1 

F(r,G 1,··,Gn 1)';Jv(r,G1,··,G 1) +~G.(r,G1,··,G 1)'dV(r,G1,··,G '\ - :;:- n- L 1 . n- - n-\) or ,,' )G. 
~ . 1 

= -~(r,G1,··,Gn_1)(1 - dV(r,G 1 •••• Gn_1 )) 5.10.1 

To illustrate how the methods are applicable to 5.10.1 "(e 

consider 4 dimensions for ease of notation. For Shields' method 

the corr8sponding 4-dimensional finite difference approximations 
become 



1 (yj+l,k+1,1+1+y j+1,k+1,1 
TIh m+1 m+1 

+yj,k+1,1+" +yj,k+1,1 
m+1 m+1 

_v j +1,k+1,1+1_y j+1,k+1,1 
m m 

_yj,k+1 11+1 _yj,k+1,1 
m m 

+yj+1,k,1+1 
m+1 

+yj,k,1+1. 
m+1 

_yj+1, k, 1+1 
m 

_yj,k,1+1 
m 

and similarly for '~y,"dY -0 y , y. 
"W1 6G 2 ' 'b9

3 

+yj+',k,l 
m+1 

+yj,k,l 
. m+1 

_V j + 1 ,k,1 
m 

_yj,k,l ) 
m 

5.10.2 

Substitution of 5.10.2 and corresponding terms for 
-!)Y ilV, ilY , Y into 5.10:1 then' gives an implicit formula 
'09 1 ' ~y? '093 
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for e points on the sphere r = (m+1)h in terms of known formulae 

ann 8 points on the circle r = mho 
There are N1N2N3 such equations for fixed m and they 

may be solved by standard routines for solvin'; linear equations 

t . Vj,k,l 
o f,lve m+1 ' j = 1, ••• ,N 1,k = 1, ••• ,N2 , 1 = 1, ••• ,N). 

'fhe other two methods are much simpler however, since 
they are explicit. 'rhe 'A-dimensional, version of 5.4.10 is 

obtained by writing down the 4-dirnensional equations for 5.4.9 

'oy ::~ (y j , k, 1_ Y j , k, 1 ) /h 
or ~ m+1 m· . 

)y "'«1-a )yj+1,k,1 +2a vj,k,1_'1+a )yj-1,k,1 )/2k
1 -- <~ 1 m 1 m \ 1 m 

'O Y 1 

'oy "'«1-a )yj,k+1,1 ... 2a yj,k,l_(l+a )yj,k-1,1 )/2k 
--'" 2m 2m 2m 2 092 

il y :'::: ( (1-a ) V j , k, 1 + 1 
-- 3 m "<Ig

3 

+2a
3Ymj , k, 1. _( 1+a )yj, k, 1-1 ),LZk 

3 m . 3 

y .;:t: byj,k,l + (1_b)yj,k,1 
m+1 m 

with known terms 

r = (m+c)h, 9 1 = 
evaluated at 

2". k, 

N2 
., The Second Order method is relatively difficult to evaluate 

in 4 dimensions. 5.4.12 stays the same except for notation 

of y, while 5.4.13,5.4.14,5.4.15 have obvious generalisations 

to higher orders. The procedure carried out in 5.4.16 to 
obtain 5.4.17 is still quite straightforward but involves 



~~"=,~ ~. ---

extra terms. The approximations 5.4.18 are replaced by n 

approximations of the same form, and the approximation 5.4.19 

has to be considered by reference to 5.4.1('i and 5.4.17. The 

last term of 5.4.17 becomes 
:3 :3 

'\-~ h2 a~,k,l a~,k,l iVj,k,l 
L -2' 1 1 ,m 1 2 ,m m 

i, <, ;:;;, "'09. '09. 
11 12 

becomes Hence 5.4.19 

i\2Vj, k, 1 Vj+1,k+1,l +Vj,k,l _vj+1,k,1 _V j ,k+1,1 
m r;:;::. m m m m 

and similarly for 

and similarly for 

4k1k2 
"(,2vj, k, 1 

" m 

"09;093 

vj+1,k,l _2v j ,k,1 +Vj-1,k,1 
m m m 

• 

The other features of this method such as finding the 

V = Do contour as described in section 8 are also applicable 

to higher orders but the algebra is too involved to write 

down here. 

As an example we consider a generalisation of the Hahn 

system into 3 dimensions given by 

x = -x + 3x2yz 
• y = -y 5.10.3 
• 
z = -z 

181. 

the D.O.A. of 5.10.3 is given by xyz < 1. The series construcUo~ 
of Zubov's equation yields the solution of 

as being 

V(x,y,z) 2 2 = y + z 

Now if we try 

V(x,y,z) 2 2 = y + z 
where u = xyz 

+ 

2 22 = -2(x +y +z ') 

00 M 

x2LlTI(~t~)} (xyz)m 
,..., ~ 0 

+ x 2s(u) 

5.10.~ 

5.10.5 



in 5.10.4 we obtain the differential equation 

ds 2~ 1-3u~s 2 0 '5.10.6 + - ~ 

du 3u( 1-u) 3u( 1-u) 
The solution of 5.10.6 as far as can be obtained is 

u 2/\ 1_u)4/3S~ ~ J ~~u f/3 duo 

• 
Solution of 5.10.4 was attempted numerically in polar 

co-ordinates using the 3-dimensional version of the Explicit 

method which is 

(F-bhd~ )V~:~ ~ -~1(1-a1)v!+1,j - (1+a1)V;-1,j) 

_hG
2

«1_a
2

1
)v i ,j+1 _ (1+a

2
)v i ,j-1) 

2k m r.1 
2 

+(F-a 1hG 1 -

~ 
a 2hG;e+ (1-b)hdj )V!' j - h!P 

k2 
where known terms are evaluated at r ~ (m+c)h, 0 ~c ~ 1, 

g1 ~ ik1, g2 ~ jk2, i ~ 1, ... ,N1, j ~ 1, ••• ,N 2• 

The method of keeping useful data was used, and this 
remains 2-dimensional even in higher orders. For example, 

if v!:~ _ is accepted as indicating a point inside ~h~ D.O.A. 
bu" V~:~+1 is not, then we compute such terms as v~:~+~ 

using the Shields' methud 

(J<'+~2-~ )V;:~+). +(F-~2-~ )V;:~ 
2 2 

~(J<'-hG2+hd£)Vi, j+). +(F+hG 2+hd §}Vi , j - 2hl 
-\k -2- m )j{ --z m 

2 2 

_-1 ~ >-.-,( 1, and similarly for v!+ I-,j. 

Tne results are shown in fig. 45 in the form of a (g1,g2) 
plane with V ~ 2'0 contours superimposed for different values 

of r. Although computation was perfoxmed for 0 S g1' g2 ~ 2~ 
there is a lot of symmetry as can be seen from the polar 
co-ordinate transformations 

x ~ r cos g1 

yl~ r Sin g1 cos g2 5.10.7 

z ~ r sin G1 
sin g2 • 

Comparing 5.10.7 and the-analytic solution 5.10.5 we see that 
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V(r,G 1,G2 ) = V(r,G 1, ,,-+G2) 

V(r,G 1,G 2 ) - V(r,211-G1,GZ) 
which is why fig. 45 has been plotted for 0 ~ G1, G2 ~ or. 

We may further establish the relationships 

V(r,G1'G2) - vCr, IT-G1,Tr-~2) 

V(r,G 1,G 2) '- V(r,G 1, IT/2-G2) 

which can be seen on fig. 45. 
Tt has been shown that radial methods can be extended 

to higher orders where the principle is still that v on 

r = (m+1)h is computed from V on r = mho 

11. vxamp!es 

Example 11.1 
x = -6x _ 7y + y2 
Y = 4x + y + x 2 

This system is actually the system 
• 2 
x = -6x + y + y 

y = y + x 2 

transformed to its stable critical pOint at (2,-4). 

1 S3 

Using ~(x,y) = 2x2 + 2yZ, d = O. Solution of the Zubov 
equation by series method yields the quadratic part of V(x,y) as 

2 2 V2(x,y) = (39x + 62xy + 107y )/110. 
The Explicit method was used to solve the Zubov 

2 2 2 (-6x - 7y + Y -) ~V + (4x + y + x ) dV = -2x -
~ )y 

equa tion 
2y2 5.11.1 

using the step-sizes h = 0'0125, k = ~/50, system parameters 

a = 0, b = ~, c = ~ and inicial conditions 
V~ = (mh)2 for. m = 0 anJ m = 20. 

It ba3 alreCldy been shown in section 7 that computation of 

5.11.1 by the Explicit method breaks down on the curves 5.7.8 
which are shown graphically on figs. 42, 43. 

Solution of 5.11.1 was also attempted using the Second 
Order method, using the same step-size and initial conditions. 

With the consideration of where instability will occur shown 

in fig. 31 we would expect the same points on r = 21h to be 

affected as in fig. 30, but also neighbouring points. The 
values obtained are 
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y20 = 0'33. y21 = -0·62. 21 21 V22 
21 = 0'58. y23 

21 = 0'01 

. y3~ -0'59. 35 1 • 37. y36 -0'30 = Y21 = = 21 21 

V70 
21 = 0'13. V71 

21 = -0'30 72 V21 = O· 47. y73 
21 = -0·q6 

y 84 
21 = 0'33. '18 , 

21 = -0·67. V86 
21 = 0'35 

while 0'04 ~. 
n .:;: 0'09 for n 1 ••••• 100 but not any :)f the Y21 = 

above. 

Exam121e 11 .2 
• x(x 2 i) x = -x + y + + 
• y(x 2 2, 5.11.2 Y = -x - y + + y . 

Usin~ p(x.y) 2(x2 2 d 1 5.11.3 = ... y ). = 

the analytic solution of the Zubov equation 
22~ 22 22 (-X+y+x(x +y »)oV~ (-x-y+y(x +y »oV = -2(x +y )(1-y) 

llx ay 
5.11.4 

is given by 

V(x.y) = x 2 + y2 5.11.5 
which indicates that 

2 2 x + Y = 1. 
the boundary of the D.O.A. is given by 

5.11.6 
Soluti.on of 5.11.4 was attempted by the Explicit method and 
the step-sizes 

h = 0·0125. 0'01. 0'005 
k="/50 5.11.7 

parameters a = O. b = .~, c = ?r and the initial conditions 
n 

'f = O. n = 1, ••• , 100. 5. 11 .8 o 
'fhe re'ml ts from the grid points indicated that on r = mh, 

n . ( )2 Vm = mh , n = 1 ••••• 100, m = 1,2 •.•• to at least 4 decimal 
places. An alternative to 5.11.3 was then used as in Shields 
(28 ) 

2 2 p(x,y) = 10x + Y 5~11.9 

Figs. 46.47 show the results of computing the contours using 

the Explicit method and the method of keeping useful data 

in sub-section 8.1. The criterion for rejecting data was 

or 

Vn < 
m+l 

Vn 
m+l > 

n 
Ym 

P. 5.11.10 

The q step-size was as 5.11.7 and the initial conditions as 

5.11.8. Various h.p were used in the computation. Fig. 46 

shows contours given by p = 0·9. 0·95 and h. = 0.0125. Other 



values of h \'/ere used with no significant difference in the 

results. 5.11.10 was then replaced by the criterion 

vn < m+1 
which resulted in the 

vn 5.11.11 m 
three contours shown in fig. 46 for 

h = 0'0125, 0'025, 0'05. The contours resemble 5.11.6 but 
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by reference to 5.11.5 we Gee that criterion 5.11.11 is nm~herf> 
satisfied by the'analytic function 5.11.5. The reason that 

we obtain a contour which resembles 5.11.6 lies in the old 
problem of instability caused by small coefficients. 

Substitution of F,b,h,d,~ for this example into 5.7.5 

gives 
-r + r j 

- hr2(9 cos 2Q +1) = 0 
2' 

when 5.11.9 is 
-r + r3 -

used and 
2 hr = 0 

5.11.12 

5.11.13 

where 5.11.3 is used. Solving 5.11.12 and 5.11.13 explicitly 
for r gives respectively 

r - h(1+9 cos 2Q) i (1 + h2 (1 5.11.14 
4 2 ~ 

and r= h + (1 + h ) • 
'2 - '4 

Substituting h = 0'0125 into 5'11'14 and letting O~ Q ~ 2~ 

. we see that 
1'0031 ,;;;; r ..,;, 1'0317. 5.11.15 

Hence in the band given by 5.11.15 \~e expect computation to 

break down ana criterion 5.11.11 satisfied. 
In fig. 47 we see results of using criterion 5.11.10 

wi th h = U' 0 125, P = o· 9, o· 95, o· 98, o· 99, o· 995, l' O. Fig. 
48 shows tha same contours of r varying with Q. The areas 

where the Von-Neumann amplification factor given by 5.5.17 

is less than one in magnitude were computed and shown in 
figs. 47,48. The areas are given by 5.5.22 and for this example 
becomes 

-125 --,., 
8W-

which is all space except for the enclosed areas marked on 

figs. 47,48. It can be seen that 'the contour V = 1'0 on 
fig. 48 is more aCCUj:a te for those Q where the line Q = nk 

passes througn the area of computational stability. 

ne Gourant-Friedrichs-Lewy condition for convergence 
of c ompu ta ti on given by 5 .. 5.12 becomes for this exampl e 



r - r3 ~ h. 
k 

5.11.16 

For h = 0'0125, k = IT/50, 5.11.16 gives 0'2079 ~ r ~ 0'8797. 
An attempt '."Ias made to compare the contours V = 1·0 obtained 

using criterion 5.11.10 with p = 1 and letting h,k_O such 

that h/k is constant. 
Fig. 49 shows the result for h/k = 5/8-n- .' 'l'he results 
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show that the contours do not converge to 5.11.6 as h, k~ 1]. 

Convergence might be expected if the initial conditions were 

given on r"> 0'2079 as V~ = i,2H (G) whe.re mh"> 0'2079 and the 

quadratic part of V(x,y) is given by V2(r cos G,r sin G) = r 2H(G) 

Fig. 50 is a plot of r against G for the contour V = 1 using 
criterion 5.11.10 and' the initial condition 

V~ = (C'25)2(3.875 COS 2g + 2.25 sin Q cos 9 + 1.625 Sin2g) 

where mh ~ 0'25, 9 = nk, with h/k kept.constant as before. 
As seen from 5.11.13 convergence does not occur for r "> 0'8797. 

Fig. 5t shows a plot using 5.11.8 as the initial conditions 
fixing k = -rr /50 and lettinG h _ 0, which has the effect of 

enlarzing the reGion of r for which 5.11.16 holds. Convergence 
does seem to take place in this case." 

Fig. 52 is produced by a simple variation of the optimum 
method using Shields' method to obtain whole circles until 

a circle touched the contour V = 0'98 after which the Explicit 
method was used. 

Example 11.3 
x = 6y- 2y2 

Y = -10x - Y + 4x 2 
+ 2xy + 4y2 

System 5.11.17 has a D.O.A. given by 
(x _ ~)2 + y2 < 1. 

Solution of the Zubov equation was attempted using 
~(x,y) =2(x2 + y2). 

5.11.17 

The problem oj instability when the 1.I1.S. of 5.4.10 is small 
occurs ···:hen 5.7.6 is satisfied. 

For 5.11. 17 we have 
fer cos G,r sin g) = 6rs _ 2r2s2, 

( ) ' 22 2 22 g r cos G,r sin 9 = -10rc-rs+4r c +2r sc+4r s , 
where s = sin G, c = cos G. 

Then from 5.4.3 we have 
F(r,G) = -4rsc - rs2 + 4r2s = 0 5.11.18 



The solution of 5.11.18 is r = O. r = cos Q + sin Q/4. sin Q = O. 
Hence we would expect the instauility in computation given 

the initial conditions V~ = O. n = 1 ••••• 100. and step-sizes 

h = 0~0125. k = IT/50 to occur when 
Q = n-rr 
,,-1 5.11.19 or '" = n lr- tan 4. 

Figs. 53.54 show the contours pruauced by the Explicit me thud 
for V = 5·0. 10·0 respectively and various h. It appears 

tnat criterion 5,11.10 is satisfied for small r in the region 

of Q given by 5.11.19. 
'[-his example was also tried 

variation of b to avoid 5.7.5. 

uning d = 1 to consi~er 
The system used was to consider 

the product F~+c(F~+c- h~~+c). Similarly to 5.7.11. a constant 
b was used if this product waD positive but otherwise either 
b = 0 or b = 1 according to '.~hich re suI ted in a larger magni tucE 

of Fn - bh~ n • However since p(F') = 1. 'P(~), =2 and h = 0·010 m+c m+c 

the presence of the extra term bhdg? in 5.7.5 made little 
difference near the origin. 

Example 11 .4 . 
x = y . 
• 2 
Y = -x +)J(x -1)y 

a Van d0r Pol system. 

Using ~(x.y) = x 2 2 
+ Y • d = 0 

the solution of the Zubov equation 
y''OV + (-x+J-' {x 2_1 )y)"'oV = _(x2 + l) 
'dx oy 

was attempted in various ways. The Explicit method was used 

but computational instability was discovered in a neighbourhood 

of the origin. The initial conditions used wer~ V~ = O. 

n = 1 ••••• 100. with step-sizes h = 0·0125. k =~/50 and 
computation parameters a = O. b = c = ! and criterion for 

discontinuity as 5.11.11. The resulting discontinuity line 
passed through the origin and was asymptotic to the x-axis. 

This is explained by looking at the coefficient of V~+1 in 
5.4.10 which is zero when 

,u {r2cos 2
Q - 1)r sin2

Q = o. 5.11.20 

An a:ttempt was also made by using Shields' method until a 
circle erossed the contour V ~ 5·0 then reverting to the 

Explici t method. Fig. 55 shows the discontinuity line by 
criterion 5.11.11 and it also touches the circle where the 



change over took place in the vicinity of x =- 1 which is also 

a solution of 5.11.20. Fig.56 shows the contour Y = 2,3,5 
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and the discontinuity line when solving throughout by Shields' 

method. 'l'he discontinuity line was determined by applying 

criterion 5.11.11 to the grid print-out. 

Finally the regular Zubov equation (d-= 1) was solved 

similarly by charlgil~g methods at Y = 0·98. Fig. 57 shows the 

discontinuity line. Variation of b to avoid the problem of 

small coefficients Vias attempted and fig. 57 shows an improvement 

in the vicinity of x = 1, Y = 1·3. 
Example 11.5 . 

x = -x + y 
• y = -x - y 

2 2 Using ~(x,y) = x + y , d = 0 

the Zubov equation is satisfied by 
Y(x,y) = x 2 + y2 

2 

5.11.21 

5.11.22 

Thus we see that 5.11.21 is asymptotically stable in the whole. 

The radial Zubov equation 5.4.2 becomes for 5.11.21, 5.11.22 
2 

= - r • -r "'cV 5. 11 • 23 
'Or 

5.11.23 may be solved by the Explicit method using a = 0, 

b = ~, c = t and the general finite difference formula is 
given by 
_ryn = 

m+1 
h (Vn +1 
2k m 

5.11.24 

where r = (m+"!r)h. 5.1_1.24 is independenL of Q and so we may 
say trta t 

Y1 = y2 = _VN-
m m •••••• - me 

Substituting r = (m+t)h and 5.11.25 into 5.11.24 

-(m+~)hV~+1 = -(m+t)hV~ _ (m+~)2h3 
5.11.26 simplifies to yn 1 = Vn + (m+t)h2 • m+ m 
The diffel.-ence equation 5.11.27 nas a solution 

Vn = m2h 2 1 N n= , ••• ,. 
m Z-

gives 

5.11 .25 

5. 11 • 26 

5.11.27 

5. 11 • 28 

It is interesting to compare the Yon-Neumann stability 
regions for the Shields' and Explicit methods. we know from 

5.5.19 that the Shields' method is stable everywhere if d = 0 

and the results do indeed yield 5.11.28. The Explicit method 

wi th a = 0, d = 0 yields I \~I ~ 1 everywhere. The re suI ts 

of computation start diverginG from the solution 5.11.28 at 
about r = 0·55. 



The reason for this divergence is that while 5.11.24 is 

a formula which is independent of Q, the computer pL'ogram 
does not explicitly work out 5.11.24. Fur a given r,Q the 

program works out F(r,Q), G(r,Q) by the formulae 5.4.3. 

Substituting from 5.11.21 into 5.4.3 we obtain 

r'(r,G) -= (-rc + rs)c + (-rc - rs)s 
G(r,Q) := «(-rc - rs)c - (-rc + rs)s)/r. 5.11.29 
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'i'he computed values of F(r,Q), G(r,Q) are approximately -r and 

-1 respectively but round off errors occur in computing 5.11.29. 

It is thede errors which become magnified by an unstable method 

of computation. 
Example 11.6 

x = -x + y + 
2 x 

• y = -y + xy 

If '~I/ e try 

V(x,y) = x 2 
+ / 

as a Lyapunov function for 5.11.30 we obtain 
i(x,y) = _2x2 + 2xy _ 2y2 + 2x~ + 2xy2. 

Computation of the Zubov equation 

5.11.30 

(-x+Y+X 2)6V + (-y+xy))V = _2(x2_xy+y2) 5.11.31 
~ ')y-

was thus attempted using the Explicit method together with 

the method of keeping useful data. The parameters used were 

the usual ones and fig. 58 shows computed contours V = 2,5,10 

and the curve F = 0 and the boundary of the D.O.A.. ~he problem 

here is instability. Substituting a = 0 into 5.5.21 shows that 

the method is nowhere stable and significantly the results 
become unstable in the quadrant nearest the boundary. i.e. 
where V increases most rapidly. 

rig. 59 shows the discontinuity line when 5.11. 31' is solved 
using Shields' method changing over at V = 2·0. Fig. 60 shows 
the results of solving the re~llar equation 
(_x~y~x2)clV + (-Y+XY)'dV = _2(x2_xy+y2)(1_V) 

IX ay 
changing methods at V = 0·98. The extra computational stability 

achieved over the modified equation 5.11.31 by considering 

when V reaches a finIte limit can be observed. 

Example 11.7 
• 2 
x = -x + 2x y 

y = -y 5.11.32 
This example due to Hahn (10) has been much lised to illustrate 

certain pOints in this and other chapters. It has the advantage 



of possessing a well-known D.O.A. boundary given by xy = 1 
which indicates that the D.O.A. is unbounded. The Shields' 

method of solution of the Zubov equation was accurate until 

about r = 1·3. 
The Expl.i ci t method was used to solve the Zubov equation 

<_x+2x2y)oV - YdV = _2(x 2+y2)(1_dV) 5.11.33 
'Ox ay 
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incorporating the method of keeping useful data to obtain 
c0nservative estimates of contours. The criterion for terminatir 
computation was 

Vn <::. 0 m.1 

Vn 
m+1 > p. 5.11.34 

The step-sizes were h = 0·0125, k = "/50 and system parameters 
given by a = 0, b = ~, c = ~ and the initial conditions 

n V = 0, n = 1, ••• , 100. 5. 11 .35 o 
5.11.32 satisfies the conditions of theorem 3.4.1 and from 

5.5.3 we see that as r~O, GIF tends to 0 also. So there 
is no problem with the initial conditions 5.11.35. 

Fig. 61 shows the curves obtained for p = 2, p = 3. 

Apart from grid scatter (the grid points are a conservative 
~ 

estimate) the curves are accurate. Fig. 62 sh:'Jws the curves 

obtained for p = 5, 10 and fig: 63 likewise for p =10,25. 

The curves obta i.ned become ragged when criterion 5.11.34 is 
satisfied by the first part of 5.11.34. 'rhat is, computation 

has become inaccurate and unstable. As seen in section 5 by 

equation 5.5.21 when d = 0, a = 0 the Sxplicit method is 
nowhere stable. 

Fig. 64 shows the attempt to solve 5.11.33 given d = 1, 

p = 0·95. 'I'his is again accurate to the resolution of the' 

grid pOints, but when p = 0·99 as shown on fig. 65 the ragged 
effect can again be seen. 

Figs. 66,67 are more promising. They sho',r the attempt 

to compute 5.11.33 using d = 0, P = 10,25 and the criterion 

Vn 
m+1 

Vn 
m+1 

comparing 

y2 + 

> p 

them with the analytical curves given by 

= p. 
1 xy 

The stabilitc' analysis for d = 1 1s rather interesting. The 
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Von-Neumann amplification factor is less than unity when 5.5.22 

is satisfied. In this case b = t and the areas of computational 

stability are given by 
_1+2r2 Bin 9 cos3g 

2r sin4g cos4g 
-h 
2k2 

Le. 2r2sin 9 cos3g + hrsin4g co~4g - 1 ~ 0 

1:<:2 

For 5.11.36 certain deductions may be made 

5.11.36 

a) If cos 9 = 0 or sin 9 = ° then 5.11.36 is true. 

0) If sin 9 cos 9 > ° then 5.11.36 becomes 

r ~ -h sin3g cos 9 .f (h2sin 7g COS
5g/1c1\ + 8) t 

4K2 16 sin 9 cos3g . 

When sin 9 = cos 9 = 1//2, h = 0·0125, k =""/50 we have 

r ",,1-2301. 
c) If sin 9 COG 9 < ° and if h >-. 21 ·69971c2 then there are 

certain values of cos g, sin 8 such that 5.11.36 is not 

satisfied for r in the neighbourhood of 

r = -hsin3g cos 9 
4k2 

~ith 5.11.32 an attempt was made to see if toere was any 
difference in computation DY varying /! rather than p in 5.11.33, 

5.11.34. 5.11.33 was solved with./! ..:'eplaced by 
/!(u,x,y) = ~(x2 + y2) 5.11.37 

and computation of V = P wi"th u = 2 corresponds exactly to 

computation of V = 2 with u. = 4/p. This can be proved by 

defining V(u,x,y) as the solution of the Zubov e~lation using 

5.11.37 / 

Veu,x,y;) = - i!6(u,x,y)dt' + V(u,xo'yo). 5.11.38 
Substituting 5.11.37 into 5.11.3~ gives 

V ( u ,·x , y) = V ( u , x 0 ' y 0) - u i (x ( t ' ) 2 + Y ( t • ) 2) d t ~ 5 • 11 • 3 9 

x(t), yet) aie independent of u. Hence putting u = 2 in 5.11.39 
gives 

V(2,x,y) = 
Elimin'1,ting the 

V(u,x,y) = 

i t ? 
V(2,xo 'yo) - 2 0 (x(t')- + y(t,)2)dt: 5.11 .40 
integral from 5.11.39, 5.11.40 gives 

V(u,x ,y ) -u!2(V(2,xo 'y ) - V(2,x,y)) o 0 0 • 

5. 1 1.41 

5.11.1\1 is true for all xo'Yo. Hence letting xo = 0, Yo = ° 
and observing V(u,O,O) = ° we obtain 

V ( 11, x, y) = ~ V ( 2, x, ,Y l. 5. 11 .42 
2 

Dence we see that V(2,x,y) = p,V(u,x,y) = 2, are e~livalent 
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if u = 4/p. 
By reference to 5.4.10 we see that each term in computation 

is linear in V or l' and that V~ has t~e s~me proc,erties of 

V(u,x,y). 
Figs, 68, 69, 70 show computation of the Zubov equation 

with d = n, p = 2 with u,= 10,5,3,2,4/3,4/5,2/5,4/25, and are 
exactly the same 'as obtained by u = 2, P = 2/5,4/5,4/3,2,3,5,10,~ 

5.11.33 was also computed by the Second Order method. 

Figs. 71,72,73 show a comparison between the Explicit method 

and the Second Order method by plotting V(mh,nk) - V~ against 

G for m = 96, 104, 120 respectively. ~he improvement in accuracy 
is clearly seen. Fig. 74 shows the contours obtained by the 

Second Order method. 

The radial Runge-Kutta methods considered in section 6 

were also tried. The boundary of continuous results (fig. 75) 
is inferior to that obtained by finite differences and bears 
out the points made in section 6 about the stability of computation. 

12. Conclusions 
In this chapter an investigation has been made into 

solving 2ubov's equation by treating 5.1.1 as a P,D.B. and 

a1lproximating the partial derivatives. Various problems have 
been encountered along the way and each in turn has been 

overcome, culminatinr, in the definition of t~e optimum way of 

cOr<lbi,ning the three methods considered. '!'he biggest problem 
by a long way is that caused by computing values of V near 

curves on which certain crucial coefficients are zero, or 

certain terms become infinite. '!'he regular Zubov method (d = 1 in 
5.1.1) must be used to avoid this problem. 

Instability, inaccuracy and lack of convergence all need 

to be taken care of in this type of method, and we have found 
that computation can easily fall short of the true boundary of 

the D.G,A. for anyone of these reasons. This method is much 
simpler than that of Chapter 6 although it is not as good at 
finding the boundary of the D.ll,A •• 
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Chapter 6 

Solution on Characteristics 

1. Introduction 
In previous chapters we have seen that various methods 

of solving Zubov's ~quation have been considered, and each 

have had problems of some variety. '1'he series construction 

and the Lie series procedure each had convergence problems, 

while numerical methods have problems of stability and accuracy. 

In this ~hapter a numerical method is presented which overcomes 
the stability problems by computing solutions in a different 

way. We do not suggest that this method cannot -be imf)roved 
upon, and further possibilities are considered later in the 

chapter. 
Previously considered methods attempt to use the given 

ini tial concli tions for Lyapunov functions 

V(Q) = 0 6. 1 .1 

or some close approximation to it. However when computing 
the Zubov equation 

T 

f(~)oV = - p(~)(1 - dV(~)) 6.1.2 
"dx 

from the i~itial conditions 6.1.1 to try to obtain the contour 
where V = Do or V = 1 it has been seen that the computation 

becomes unstable especially on a grid where neighbouring 

values of V(x) are large near the boundary of the D.O.A., and 

the accuracy of the numerical methods is not so good. 
In this chapter we develop a method of computing which 

is initiated nea:!:' the boundary of the D.O.A .. The method then 
~omputes trajectories which either tend to the origin or away 

from it, depending on where the computation is initiated. The 
problems of numerical instability are largely eliminated. 

To illustrate this particular type of situation we consider 

the numerical. computation "f the quantity Yn which satisfies 

Yn+1 - 10· 1Yn + Yn-1 = -1'35n 

n = 1,2,3,4 6.1.3 

Yo = 0, Y5 = 0·8333. 
"Fox and Mayers (45) solve 6.1.3 in t\~O ways, one of which is 

unstable and the other is stable. The unstable method involves 

computing two series while the stable method for this problem 

invol yes s Imul taneOllS equations. There are other examples of 



this phenomenon, but this one illustrates the point. 
I 

First of all, in section 2, justification of this method 
I 

of computation is attempted. The details of the algorithm 

193 

I are ext>lained in sections 3 to 7 and the actual computer program 

is explained in section 8. J 
This algorithm is developed in 2 dimension~nd in section 

9 the possibilitj of applying it to higher orders is considered 
althou0h generalisation is not as easy as with finite difference 

methods. 
'l'he chapter is concluded with various examples in section 

10 to show how far the algorithm is developed, and then there 

are conclusions and further possibilities in section 11. 

2. Justification 
The algorithm presented in this chapter is different 

from other methods and reCl.uires some justification. There 
are seven areas where justification for this method can be made. 
2.1 D.O.A. Inside a Bounaed Set 

The methods based on series ideas compute stability 
regions which are bounded but the D.O.A.may be unbounded. 
The grid methods also have a problem when trying to compute 

unbounded D.G.A.s in that we have to decide when to soop 
computation. 

In ei the:c method we have a problem of deciding when we 

nave computed the D.O.A. to sufficient accuracy, particularly 

if the D.O.A. is unbounded. In this chapter no attempt is 

made to com;:ute complete D.O.A.s. 'rhe stability regions indicate, 

by this method are an approximation to SR n D(f) where 

SR=f~: 1~1~lt}. 6.2.1 
There are examples for which the D.D.A.s are much further 

from the origin on one side than the other, but the indicated 
regions of asymptotic stability are nearly circular. The example 

• x = y 
•. 2 
Y = -x(1 + y) - y(1 - Y ) 

from Shields (28) is such a case. 'J'he R.A.S.s computed by 

Shields fall short of the D.D.A. dlle to the boundary being 

much closer to the origin on one side than the ·other side. 

However in this chapter, the algorithm used computes 
stability rf!gions inside a bounded region and does not have 
this convergence problem. 



2.2 Convergence and Conservativeness 

The alGorithm is conservative in that any points outside 

the D.D.A. will not be taken to be inside it. However it is 

still the c'ase that some areas inside the n.D.A. -,.'rill he 
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outside the R.A.S. computed. However letting certain parameters 

of this algori.thTT) approach zero or infinity wiIl:l enable the 

boundary of the ~.O.A. to be approached arbitrarily by the 
compu I;ed R.A.S •• In particular by letting step-sizes and 

accuracy parameters of numerical computation become zero, 

and the computed boundary to be obtained on V = P w'lere p 

becomes large. 

Por convergence we shall consider the Hahn example 

x = -x + 2x2y 
• y = -y 

Using ~(x,y) = 2x2 + 2y2 
6.2.2 

6.2.3 
and d = 0, the analytical solution of the Zubov equation is 
given 2 2 ' 

by V(x,y) = y + x /(1-xy) showing th~t the D.O.A. is 
gi ven by xy <. 1 • 6.2.4 
However the series construction gives 

N-' 
V(2N)(x,y) =y2_+ xZ(XY)~6.2.5 

The region of convergence Rc(~,f) bT'6.2.5 is in fact 

I xyl < 1 G • 2 • 6 

and if Rc(~,f) CD(!) then a conjecture of Shields and Storey 
(38) sug~ests that RN(~,f) does not converge uniformly to 

D(f) .:loS N -,",eo. Shields (28) shows that the regions R2N(~,f) 

indicated by the Lyapunov functions 6.2.5 with 0,£ given by 

6.2.3 and 6.2.2 respectively lie inside 6.2.6 for even Nand 
increase slowly for odd N. 

Numerical methods, however, have no such problems as 

convprgence depends on being able to makp. the algorithm 

parameters small or large as appropriate, which may be achieved 

up to the limits of computer capability. 

2.3 Arbitrary SR 

Attempts to compute unbounded D.O.A.s accurately have 

been seen to be possibly a difficult task from aspects such 

as the shape of the D.O.A. and convergence. However it is 

unnecessJ.ry to determine the whole boundary of an unbounded 

D.O.A., since in practical situations the inItial conditions 

will oe within a finite domain on which we can place a bOlmd. 



Certain physical limitations mean that the Lnitial conditions 

must be constrained to some extent and so there must exist 
an upper bound for R jn 6.2.1 beyond which we would not he 

interested because such initial conditions will not arise. 

~his bounded value is different for each problem, and while 

having justified computation of SR n D(!) rather than D(!) 
we can make R arbitrarily large (subject again to computer 

limitations). 

2.4 Efficiency' and Speed 

This algorithm is relatively quick and straightforward 
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to carry out as it is systematic in effectively reducing a 

2-dimensional proulem to two inter-linked one-dimensional 
problems. The grid methods of ChapLer 4 are simpler to compute 
if values of V are required. But to attain the same accuracy 

as this algorithm, the grid methods become very complicated 
to actually locate the boundary of the D.D.A .• In concentrating 

oncharacterist.ics in this chapter we do not encounter the 

problem of deciding where the boundary intersects with a grid. 

2.5 Stability 
\1e have already seen in Chapter 4 "that instability caused 

--- by- t~ry-ilig-to~bbta-fn th-e--c-ont-ou-r'--V- =~oa - ~rriay--he-- ·ov-erc-orne -by~ -~---~~-

~ackling the problem from the other direction. A similar 

technique is used here. 
It was noted in Chapter 5 that to obtain the contour 

v = p we have 
vn <. -< \{n+1 

m p m 

to try to find grid 

and vn <. p <. Vn 
m m+1 

points such that 

whilst hoping that neither 

«m+1)h,2 n-n) or (mh,2-rr(n+1)) are outside the D.D.A .. It is 
-N-' N 

much more stable to select a point (ro,go) or (xo'yo) ana 
compute in such a way as to decide whether (xo'yo) is inside 
the D.O.A. or not. 

2.6 Ghoice of p(x,y) 

We may write down the system equations as 

dx = f(x,y) 
dt 

*=g(x,y) 

and also write down the Zubov equation in the form 

dV = -.o(x,y)(1 - dV). 
at 

6.2.7 

'£he method of this chapter is based on solving the equations 



dx = -f(X,)~ 
<IV ,S(x,y1-dV) 6.2.8 

£:L = -f(x'T~ t.v -~ x,y 1 dV). 
Now it may be possible to choose I!l(x,y) in SUCH a way as to 

make solution of fi.2.8 significantly easier than 6.2.7. This 

in fact will seldom be possible, but consider the example 
.' 3 2 
x = -x - xy 
• 2 3 6.2.9 
y = -x y - y 

using p(x,y) = x 2 + y2 6.2.10 

we find that the corresponding version of 6.2.8 becomes 

dx = x 
'dii 
£.y = Y 
dV 

which is much easier to solve. However we may notice that 
for example 6.2.9, 6.2.1.0 pef) = peg) = 3, pep) = 2 "'ihich 

. by theorem 3.6.5 means that V(x,y) is not a Lyapunov function. 

2.7 Finite Computation 
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. The question arises that if the method is based on· 
characteristics then why not compute the solutions of 6.2.7 and 

___ ~forget_alJ.~about~V{x,.y-)?--The-answer-l-ies~-in-4he-fact~-that- ' .. - ----­

x(t), y(t)-O as t..,..<>o. This means that it is possible to 
decide that a point (x ,y) E D(f,g) because the char~eristics 

o 0 
through (xo'yo) appear to be approaching the origin if computation 

Is terminated Cl. t some condition such as t = T or ,,~(t)Ii .c 'E: 

for some ~. > 0, although they might eventually be found to 

be unstable as t~ ~. Vice-versa we may mistakenly decide 

{xo'Yo) 4 Def,g) as characteristics through (xo'Yo) initially 
do not approach the origin and computation is terminated when 

t = 'I or 11 ~II > R for some large R. 

However the use of V overcomes this problem since xCV) ,y(V).-~o 
as V_O, and x(V),y(V) become complex for V < O. These 

properties of x(V),y(V) enable us to decide on limited computation 

whether (xo'Yo) e D(f,g) or not. 

3. Numerical Integration 

'Che system equa tlrlllS in 'm dimensions are given by 
• 
x = .f(~) 

or in scalar form as 

X. = f. (x) 
~ ~ - 6.3.1 



i = 1,2, ..• ,rn. 
We assume that the origin is a critical point when we consider 

the stability of the origin 

Le.E(O) = 0 
~ -

i == 1,2, ••• ,m. 

It. was noted in theorem 1.8.1 that Zubov's equation 

V = -~(~)(1 - dV) 

d = 0 or 1 

6.3.2 

6.3.3 

may be solved by converting 6.3.3 to the auxiliary equations 
given by . 

dX 1 . = 

f1 (~) 
•••• = 

d = 

dXm 
f (x) m -
o or 1. 

-dV 
= 

d(~)(1-dV) 6.3.4 

Simple re-arrangement of 6.3.4 gives a new system of equations 

= 
-f.(x) 

l -

Mx)( 1-dV) - e 
i = 1, ••• , m, d = 0 or 1. 

, 
6.3.5 

Hence we see thateby including the denominator of 6.3.5 in the 

R.H.S. we have converted a syscem 6.3.1 of O.D.E.s for xi 
in. terms of.t.into __ asystem (,.3.5 for xi in terms of V. We. 
wish to consider the differences between 6.3.1 and 6.3.5. 

Suppose che origin of 6.3.1 is stable and the initial 

conditions xi(O), i = 1,2, ... ,m, lie witnin the Doundaryof 

. the D.O.A. 'l'hat is (~(O)) E DCO where D is tne domain of 
actraction for given £. Then a.::cording to definition 1.4.6 
the solutions x.(t), i = 1,2, .•. ,m, of 6.3.1 approach the 

l 

origin as t~ 00. Let us denote the solutions of 6.3.5 by 

xi(V), i = 1,2, ... ,m. The m terms on the L.H.S·. of ti.3.A are 
the same as.would be obtained from 6.3.1 by eliminating t. 
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This shows tha t the traj ectories followed hy x. ('1), i = 1, ••• , m, 
l 

are the same as those traversed by x.(t), i = 1, ••• ,m. It 
l 

remains to consider the variation of xi(V) with resect to V. 

NO\~ by reference to theorem 3 • 6.5 we know that providing 
F(Il) > pen - 1 and the origin is asymptotically stable then 

the Lyapunov function V(~) which by theorem 1.7.12 is ·the 
unique solution of 6.1.2 is positive definUe in the D.n.A •• 

That is 

V(?S.) > 0 for~' <2 DC!), ~ /0- Q. 

V(Q) = o. 
6.3.6 
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Also we refer to theorem 1.7.6 which says that system trajectories 

X
i

'- t), i = 1, ••• ,m, cross contours V(2£) = P once only as t-""" 

and that'these contours are crossed with V decreasing for 

an asymptotically stable system. Since we have already seen 

that the trajectories x.(V) are the same as those of xi(t), 
.1 

i = 1, ••• ,m, then we see that the trajectories xi(V) cross 

the contours V(~~ = P once only for decreasing V. 
Hence for an asymptotically stable system xi (V) -'" 0 as 

V decreases. £Ut Dy 6.3.6 V(Q) = 0 and hence Xi(O) = O. 

'I'hus we have shown that Xi (V)- 0 as V-O+. The question 

arises as to what nappens when V <: 0 as 6.3.6 holds for all 

2£ in a neighbournood of the origin? V(2£) and Xi(V), i = 1, ••• ,m, 

are contlnuous functions and must be continuous as V passes 

from positive to negative. 

The contour given by 

V(2£) = p 6.3.7 
may be solved for 2£ given p < O. By theorem 1.7.9 we know 

that V is a continuous function of x. This implies that given - , 
V2 in a neighbourhood of V1 then there exists 2£2 in a 

neighbourhood of 2£1 where 

----.-~-,'-. ,----- '(1-=-'l{2£lL ~ 
V? = V(2£2) 

for small 'i; '> 0, wh",re Iv 2 -: V 11 <:) , providing that 2£ exists 
for such V. Now in the field of real numbers we see for p 

small and negative ther(e is nb 2£ in the neighbourhood of 2£ = 0 

satisfying 6.3.7. However when we consider, the complex 

numbers there is such x satisfying 6.3.7 in a neighbourhood 

of ,the origin for p < O. It is a fundamental property of 

complex numbers that except for singulari ties where 11 x 11_ "" 
as V -'>V 1 or 2£ is indeterminate then 2£ is continuous in V 

and can be evaluated from a known function. The origin is 

not a Singularity as 2£(0) = Q is quite well-defined and so 
x is continuous in V for negative V as well as for positive V. 

Integrating 6.3.5 with respect to V gives 
. v 

Xi (V) = Xi (V 0) 1 fi (2£) dV 6.3.8 
v thx)( i-dV) 

<> -

i = 1, ••• ,m. 

In this algoritnm we are interested in evaluating 6.3.8 for 

decreasing V. Substituting V = V - P in 6.3.8 gives 
xi(Vo- p) = x.(V ) 1VO-Pfi(~) dV 

1 0 v ~(2£)(1-dV) 6.3.9 
i = 1, •.• ,m. 0 



Now we have seen that if Vo > p then 
continuous with respect to Vo ' while 

is complex and continuous in Vo. 

is real and 

then xi(Vo- p) 

However we are concerned with numerical integration of 

19':1. 

6.3.5 or 6.3.8. This may be done by any of the finite difference, 

Runge-Kutta or other schemes (52), (53), (54), (55) but the 
results of numerical computation of real functions are always 

real. '.'[hen Vo <: p then integrating 6.3.5 numerically for 

decreas ing V requires evaluation of the :L H.S. of 6.3.5 when 
~ is in a neighbourhood of the orlgln. The results of such 
computation are the subject of the next section. 

4. Il'heory of Negative V 

For consideration of numerical integration of 6."3.5 we 
shall confine ourselves to 2 dimensions, where we write the 

system equations as 

i = f(x;y) 
y = g(x,y) 

and ZUDOV'S equation as 

_~ 'if = -.tI(x,;),)( 1 - dV) 

d = 0,1. 

Suustituting 6.4.1, 6.4.2, 6.4.3 

die = -f~X,y~ 
dV ~(x,y ~1- V) 

Qy = -g~x y) crv 06(x,y (1-dV) 

into 6.3.5 we obtain 

6.4.1 
6.4.2 

6.4.3 

6.4.4 

6.4.5 
6.4.4 and 6.4.5 are the equatIons we require to solve for 
decreasing V from the Initial conditIons 

Xo = x(Vo ) 

Yo = y(Vo ) 

6.4.6 

6.4.7 
Let h be the step-size in V used in the numerIcal computation 
and define_ Q(j) as the computed value of xCV - jh) with the 
initial condition ~(O) = x = xCV) and simi~arlY for y(j), 
"(0) 0 0 
V J , j = 1,2, ••• , n, nh = p. 

In section ~ we saw that xCV - jh), y(Vo- jh) are real 
~CO) ,,(0)0 

for Vo- jh;::' 0. Hence x J , Y J will be computed as 

approximations to x(Vo- jh), y(Vo- jh) to the order of accuracy 

of the method used, while V - jh > 0. o 
Now using theorem 3.2.1 and theorem 3.6.5 as appl-ied to 

6.4.1 to 6.4.3 we have 



p(~) > P(f,g) - 1 
p(f) ~ p(f,g) 

peg) >- P(f,g) 
6.4.8 

with equality in at least one of the equations 6.4.8; flp 
and g/p are indeterminate at the origiri, but 6.4.8 implies 
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that system 6.4.4, 6.4.5 does not satisfy a Lipschitz condition 
• 

for (x,y) lE Se for all E > 0 and so 6.4.4, 6.4.5 do not 
necessarily have unique solutions in S", for all t '7 O. If 

flp and g/r!J tend to finite limits along some trajectory then 
x(V),y(V) are continuous and the solutions ~(j),y(j), j = 1, •. ,n, 
will appear reasonably smooth. This case is not considered 

as r/J(x,y) may be chosen such ~hat f/p or g/r/J,become infinite 
at the origin. This is no great restriction as theorem 3.6.6 
shows that problems for which the Zubov series construction 

is possible guarantees the above requirement. It will be seen 
that the analysis of integration can still hold it f/d, g/6 
remain finite as (x,y)"_(O,O) but requires more care in 
distinguishing stable and unstable systems. 

'.-le now consider the stage of integration when V passes 

from positive t.o negativ-e. 
Let j be such that 

Define 
V = jh + e 

o. 
x ,y." such that e e 

where 0 .,; e < h. 

xe = x(Vo- jh) = x(e) 

. y = y(V -. jh) = y(e) e 0 

6.4.9 

6.4.10 

6.4.11 
Let us assume that no truncation 

first j stages of integration. 
i.e. ~(j) = x 

errors have loccurr.ed in the 
I c- 4"'-

e 

Y
"(j) 

= Ye 

~(j) = e. 

We are interested in the (j+1)th step where ~(j+1) = 
. . l\(j+1) l\(j+1) To ~llustrate the behav~our of x , y we look at 

e - h ...:: O. 

Euler's method specifically. Applied to 6.4.4, "6.4.5 this become 

~(j+1) = ~(j) + hf(~(j) ~(j» 
p(~(j),~(j')(1-dt(J)) 6.4.12 



~(j+1) = ~(j) 6.4.13 

"V(j+1) = I\v(j) - h. 6.4.14 

Now as e "~O, xe~o and Ye~ O. Hence either f~xe,Ye) 

p(xe'Ye ) 
or g(xe,ye ) ~±Oo or both as e --';> 0 by the assumption 

.6(x e 'Ye ) 
on choice of .6(x,y). 

Hence we see by letting ~(j)t~(j)-o in 6.4.12,6.4.13 
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1\("1) 1\("1) that either x J+ ~±~ or y J+~ or both. By reference 

to equation 6.4.9 and the definition of ~ and e, we see that 
as V varies the computation of ~(n),~(n will have discontinuitHs 
[o"cc~rn;ing for such V for which e = O. ". " _._ 0 

~hroughout thi~ section it has been assumed that 6.4.1, 

6.4.2 1s a stable system and that (xo'yo) € D(f,g). If however 

(x ,y ) ,.t O(f,g) "or D(f.,g) does not exist then trajectories o 0 i 
xCV), y(V) will not approach the origin. Since .6(x,y) ~ 0 

" ~or I\~~)Y) I\tn~' then there will be no such discontinui ties 
In x , y • "" " _ 

Havin;; shol4n that the computed values ~(n), ~(n) of 

x(Vo- p), y(Vo- p), (nh = p), I.ill be discontinuOUB" when 

Vo = jh, 1 ~ j ~ n-1, we consider instead variation of (xo,yo)' 

For each (xo'yo) there will be a "corresponding Vo (6:4.6,6.4.7) 
but V

R 
will not generally be known. However the behaviour 

of Q( ~ ~(n) as (xo,yo) vary can be analysed to establish 
V o. 

For this algorithm we consider (xo'Yo) varying along 
a radial line from the origin. 

\"/e write x = o 

\~here g is 

For given 

to obtain 

Yo = 
fixed and 

where nll = p. 

rocDs g 
rosin g 
ro is allowed to be variable. 

6.4.4, 6.4.5 may be integrated numerically 

approximations to x(Vo- p), y(V o- p) 

],et us dei"ine 
( ) II (I\x(n),y"(n))\\ W ro,Q,h,p = 6.4.15 

It is the ~ariation of W with ~espect to r for fixed g,h,p 
" 0 

tnat we analyse. We have shown that if (r,g) € D(f,g) and 

VD < p" then for varying r 0 (hence for varying V 0) W is expected 
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to have discontinuities corresponding to Vc= jh for the Euler 

method and to any Vo requiring computation of the R.H.S. of 

6.4.4, 6.4.5 for small (x,y) for other methods. Since f/~, g/~ 

are never a'~tually computed at the origin, these theoretical 
discontinuities become high frequency oscillations in practice. 

IN 

~ 
c) 

", " ' ,,'\ ,,,,,,, Discontinuous region 

Fig. 76 

R 
b) 

d) 

.Figs. 76a,b show typical variation of W for a system with 

asymptotically stable origin but for which there exists ... 
(ro,g) such that 

" " xo = rocos g 

~ 

and V = p. o 
If 6.4.4, 6.4.5 could be integrated without error this would 
give 



"(n) xCV - p) = 0 x = 
A tn) 0 
y = y(V - p) = 0 

A 0 
and '.'I(ro,G,h, p) .= O. 
However numerical integration without error cannot be done 

and we have to try to obtain ~o numerically. That is the 

subject of the next section • 
• 

Fig. 76c shows the variation of W for a system where the 

origin is asymptotically stable in the whole and p is chosen 

. large enough so that Vo <]l within the ranse of ro chosen. 
Pie;. 76d shows the smooth variation for an unstable system. 

"(') "(') Note: if r = 0 then x J , Y J should be computed to be at o 
zero for all j-~ n, as f(O,O) = 0, g(O,O) = O. But as would 
be expected if f/~ or g/~ become infinite 

observe that \'f(r ,G,h,p)''''' 00 as ro~O. o . 
f/~, g/0 are finite expressions for (x;y) 

at the origin we 
If in c{rtain cases. 

<=' Se for all ~ '> 0, 

W(ro,G,h,p) remains 
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then fig. 76d is slightly amended so that 

finite also. Likewise the discontinuous regions of fig. 76a,b,c 

are amended to indicate smooth variation of ;"/ with respect 

to ro. 
Before we leave this se6tion a note should bemade.of the 

possible analysis of 'the behaviou; of \'/ ':lith 

The system trajectories of 6.4.1, 6.4.2 

S(x,y) = c 

respect to ro. 
are given by 

6.4.16 
where c is arbitrary. 

g~ven by solutions of 
Also the Lyapunov function V(x,y) is 

6.4.3 with V(O,o) = O. 
Substituting V 

o = V(rocos G, rosin G) into 6.4.9 we obtain 
v(rocos G, rosin G) = jh + e, 

o "" e < h. 
Also from tile definitions 6.4.10,6.4.11 

e = V(xe'Ye)' 
~'rom 6.4.16 we have 

6.4.17 

6.4.18 

S(rocos G, rosin g) = c 6.4.19 
and S (x e' Ye) = c. 6.4. 20 . 
Equations 6.4.17 to 6.4.20 repL'esent 4 equations for c,e,xe'Ye 
in terms of G,h,ro • 

Hence for fixed G,h we see that c,e,xe'Ye may be obtained 

as .functiolls of r o ' then reference to 6.4.12, 6.4.13 or the 
corresponding equations for a different numerical method 
will yield information about ~(j+1), ~(j+1) and hence ~(n), 
~(n) and \'1. 



4.1 ExamEle 
Consider the Hahn system 

• 2x2y x = -x + 

y = -y 
Solving Zubov's equation with d = 0, ~(x,y) 

2 2 we obtain V(x,y) = y + x 
1-xy 

as the analytic solution. 

The system trajectories are given by 

~ = 
dx 

which has a solution x 
y( 1-:-xy) = c. 

6.4.21 

6.4.22 
2 2 

= 2(x + y ) 

6.4.23 

to 6.4.20 become for this example 

= jh + e 
Q cos Q 

O";;-e..::h 6.4.24 

= c 

sin g(1-r~Sin 9 cos g) 

= c b.4.25 

Ye( 1-xeYe) 
The equations 6.4.4, 6.4.5 for this example become 

dx = x:2 2X\ 
dV 2x + 2y 6.4.26 

~ = 6.t,.27 
aV 

The behaviour of the system close to the orIgIn was 

investigated. For h = 0·25, c = 5, 6.4.24 and 6,1.25 were 

solved to obtain x,y for different e. Then from 6.4.26, e e . 
6.4.21 C!le Fourth Order Runge-l:utta method was used to obtain 

( °1) ,,(°1) "(0) "(0) ~ J+ ,y J+ fiven x J = x , Y J = y. Fig. 88 shows the 
,.. ° 1) 1·1 r.( ° l)e~( °+1) 11 e plot of sif,n x J+ (x J+ ,y J ) against e. It is 

noticeable that there are 3 distinct breakpoints, and these 
are predictable by the method used. 

The definition of the Fourth Order Ruge-Kutta method for 
a system 
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is ~(j+1) = 

where 

= F(~( j) +hl{( j) /2, 
- - -1 

V(j)+ h/2) 

= F(~(j)+hk(j)/2, ~(j)+ h/2) 
- - -2 

6.4.28 

= F(~(j)+hk(j) - - -3' 
'V(j)+ h) 

j = 0, •.. ,n-1. 
Applying 6.4.28 to 6.4.26, 6.4.27 the bL'eakpoints must occur 
wnere anyone of 6.4.28 becomes large, and this explains the 
nil,ture of the fig. 88. 

Another point of interest is the'!J.uestlon of whether we 
"(') ~(,) ~(, 1) "(' 1) can tie down regions of x J , Y J such that x J+ ,y J+ 

are of opposite sign. That is, for the Euler method given by 

6.~.12, 6.~.13 we are interested to find (x,y) such that 
x ~(x,y) = -h f(x,y) 6.4.29 

and (x,y) such that 

y ~(x,y) = -h g(x,y) 6.4.30 
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Substituting 6.-4.21, 6-.4.22,6.4.23 into 6.4.29, 6.4.30 and 
re-arranging we obtain that ~(j+1) changes sign when (~(j),y(j» 
satisfy 

~ (' 1) and y J+ changes sign when 

x2 + y2 = h/2 
!:I 

~,y2 + 

?ig. 77 

satisfy 

2 x 
1=xy 

x 2 + 

x 2 + 

~ 

= h 

hxy + y 

y2=h/2 
,,(j+1 ) 
x 

6.4.31 

6.4.32 

x 
2 h/2 = 

changes sign 

Hi " (' 1) 
Y J+ chan~es sign o 



Fig. 77 shows the regions given by 6.4.31 and 6.4.32. Also 

shown is the contour V(x,y) = h which shows that Euler's 

method is not accurate. 
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~he final point to note is that sihce we know that if 
1\(") 1\(") ,,(" 1) f\(" 1)\ (x J ,y J ) is in a neighbourhood of the nri~in then (x J+ ,y J' J 

is liable to be a long way from the origin. 'Nood if (~(j+1)J(j+1~ 
11("+1) /1.("+1)' ' are such that tx J ,y J ) E D(f,g) then further c0m~utation 

to obtain ~(n), ~(n) and W proceeds along the system trajectory 

given by 
"(' 1) "(' 1) Sex y) = sex J+ ,y J+ ). 

1\('1~"("1) 1 Howevec' if (x J + ,y J + ) 'f DU, f) then computation proceeds 
. along an unstable trajectory and ~ n), j(n), W will be smoo'tft 

with respect to ro. 
Thus the point of interest concerns whether 

1\.(" 1) "(' 1) (x J+ ,y J+ ) E D(f,g). 

For the Hahn example tl,e D.O.A. is given by 6.2.4. Using 
the Euler methofl 6.4.12,6.4.13 and the f,g given by 6.~.21, 
6.4.22 we require 

"(j+1)"(j+1) < 1 x y 

i.e. xy(x2+y2+hxy_h/2)(x2+y2_h/2) < (x 2+y2)2 6.4.33 
where (x,y) represent .(~(j),~(j))~ 

Fig. 89 represents 6.4.33 for h = 0'1. The region given 

by 6.4.33 is well wi'thin those given by 6.4.31 or 6.4.52. 
Thus we see that the regions of ro such that (~(n),~(n)) lies 

outside tl.e v.O.A. form a small proportion of the total varia'tion 

of ro. 

1\ 
5. Computation of rO" 

The previous section showed how given a fixed ro,Q,h,p we 
can integrate 6.4.4, 6.4.5 for n steps, where nh = p to obtain 
"(n) "(n) I\(n) . ~(n) x ,y , V where v = V - P then definin~ W(ro,Q,h,p) . 0 

by 6.4.15 we can get a picture of the behaviour of W with 

respect to r as outlined in fig. 76. Now we have to obtain 
" 0 ro(Q,h,p) as the computed value of ro where Vo = P, hence 
if the computation was precise 

~(n) =·x(V _ p) = 0 

pen) = y(V
o

_ p) = 0 
" 0 ','/(ro ,9,h,p) = o. 6.5.1 
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If W were plotted against ro as in fig. 76 it should be possible 

to pick out ~o' and so we require an efficient algorithm for 

picking out £.0 from the compu ted values of '.'l. 
1\ 

l"rom 6.5.1 we expect that w(ro,Q,h,P)~O as h---,.O '.if the 
numerical method of obtaining W converges to the true value. 

Now since WCro,Q,h,p) '> ° for Vo - p '7 ° (by 6.3.9) but 

'.V(ro,Q,h,p) is d'iscontinuous for Vo- p -< 0, and ">" ° (by 6.4.15: 
we see that£' is a local mi.nimum of Iv ( r ,Q, h, p). In the 
00' 

discontinuous regions of fig. 76a,b,c there will be many local 

minima. ~o(Q,h,P) is therefore defined as 

~ 0 ( 9 , h, p) = max roE t r 0 : "O'lI(r ,9,h,p) = O}. 6.5.2 
tro 0 . 

The definition 6.5.2 is the 

from computell I',(r ,9,h,p). o 

r-riterion used to establish ~o 
'.'le start by computing W(R,9,h,p) 

where R is as in 6.2.1, then compuce W for decreasing r until 
- 0 

W increases again. The 

obtain ~o accurately. 

Stage I 

second stage is to interval halve to 

Fix R and ~r as input parameters. 

From computation of 6.4.4, 6.4.5 by method 6.4.12, 6.4.13 or 
otherwise and' thedefini tion 6'.4.15 we obtain 

W(R - i~r,9,h,p) for i =-1,0,1,2, ••• ,1 

terminati.ng the procedure when 

VI(R - I~r,9,h,p) ~ 'tI(R - (I-1)~r,9,h,p). 6.5.3 

Then we define a minimal system to consist of rl,r ,r where _ m u 
':I(rl ,9,h,p) ? W(rm,9,h,p) 

'd(ru ,9,h,p) >-: '.'l(rm,9,n,p). 

From the terminating criterion 6.5.3 we see that 

ru 
r m 
r 1 

= 
= 
= 

R - (I-2)~r 

R - (I-1)~r 

R - !"ir 
providing I ? 1. If 6.5.3 is true fo::- 1 = 0 

Le. '!l(rr,9,h,p) '>, W(R + 'i>r,9,h,p) 

then rm,r l are defined as in 6.5.4 but with 

ru = R + C;; r + £. 

Also we define 

I'll = '.1(rl ,9,h, p) 
\'1 = \'l(rm,9,h, p) m 
W = W(ru ,9,h,p) u 

with ~} r = Co Hr defined by 6.5.5. " u u 

6.5.4 

6.5.5 

6.5.6 
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Definition 6.5.1 
A minimal system of W with respect to ro is defined by 

6.5.6 where 

6.5.7 
\'1u ~ VIm' 

At the end of Stage I we have tracked lti for decreasing 

ro until a minimum point has been reached and in Stage 11 an 
interval halving procedure finds ~o to a specified accuracy. 
Stage II 

Given a minimal system with the properties of 6.5.7 the 
purpose is now to find anotner system with the same properties 
but closer together and to continue doing so until 

ru - r l <: £ 6.).8 

where E is input as a sp~cified accuracy. 
Define r - r + r o - m u 

2 

20S. 

There are three possible si tua tions depending on the value of \v: 

a) If W(r ,G,h,p) ? W (fig.7S) then we know that rm does not 
'. 0 u 1\ 
Dossess the required property of r 0... The new sys tern is defined 

as r l = r , r = r , r = r (taken from a store of previously o m u u 
used r). The process is repeated from 6.5.9. 

~ 0 w 
~ 
I 

I 

w,.. 

I I 

'--__ ....L __ '-L-I..-L..._ r L-__ --'-__ '--':L_.J-~ r_ 

("\ (I"\, IQ rU. ""I. r',., (a r" 
Fig. IS Fig. 79 

b) IfW(ro,Q,h,p).~ Wm (fig. 79) then the new minimal system 

is defined as r l = r ,r = r ,r = r. The process is also m m 0 u u 
repeated from 6.5.9. 

c) If \Ym <: Iv(ro,G,h,p) < Wu (fig. SO) then we can define a 

new system as r 1 = rI' rm = r m, ru = roe 
W 

~ 
W", I 

, 

1,.1", 

L-____ -J ____ --'--Jl~~~r 

r 
P' ".0 I l'lg. " 

1"""" ""0 r", 



However the minimum 

we must check this. 

and then put ro = r l 

point ~ could lie between r l and rand 
o m 

Hence we define the new system as above 

~here are now two possible cases: 

i) If \'/(r o,9,h,p) ~ Wm then the new system is defined 

as r l = rI' rm = To' ru= rm' 
or· ii) If '!I(ro,9,h,p) > Wm then the new system is defined as 

r l = r o ' rm = r m, ru = ru' 
Now t.he process is repeated from 6.5.9. 
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After each case a),b),c) criterion 6.5.8 is checked before 

ro is re-defined by 6.5.9. If 6.5.8 is satisfied then the 
~ 

cClrnputation is ended and rm has the property of rQ defined 
by 6.5.2. 

Having computed ~o we require to decide whether we have 
a stable or unstable system, and where the boundary of the 

fI 
u.O.A.actually is. ro is an approximation to a point on the 
cClntour V = p, and p must be chosen to be such that the contour 
v = P is close enough to the contour V = 00 or V = 1 • This . 
may be achieved by iteration on p • 

. There are two possible situations that can occur: 
.. ) ~ 

" r o(9,h,p) -< R 6.5.10 
or b) ro(G,h,p) ~ R. 6.5.11 
It 6.5.11 is true then the situations are as shown in 1'igs.76b,c,11 

The first two a~e stable cases while fig. 76d is unstable. The 

deciding.factor.is that,in:,:·fig~.76b,c computation of fo meets 

the dIscontinuous region. It is almost certain (though not 
completely) that during computaLion a "false" minimum arose. 

That is, case a) of Stage IT ol:curred when a min.unum ?oint 
had tu be rejected. Thus if 6.5.11 is true, an unstable system 

is one in which case a) of Stage 11 never occu~s. 
:-. if 6.5.10 is'true then the situa'tions are as shown in 

figs. 76a,d. As before an unstable system never gives rise 
to case a) of stage 11. But a stable system almost always 

will give rise to case a). 

'rhus, in summary, we see that if case a) of Stage 11 

does not arise then the system is almost certainly unstable. 
Otherwise it is stable and either ~o < H or the boundary of 
the v.O.A. is outside the R~circle. 

The small possibilities of error in stability depend on 



210. 

Sr. The larger ~r is set to, the less J.ikely a mistake becomes 

as R - I~r is well inside the discontinuous regions of fi~. 76 
for a stable system. Another approach not investigated here 

may be to replace Stage I by a system involving computing 

W(i~r,Q,h,p) i = 1,2, •.. ,1 6.5.12 

terminating when it can be recoGnised that W is continuous 

with respect to i or \'Ihen i<;;r > R. 

Nention P.1USt be made of what may happen when f/p and gip 
do not become infinite at the origin. w(ro,G,h,p) is a-contd.nuf)u~ 

function of ro in this case but since we are looking for ro 
to satisfy 6.5.1 then we may still use the definiti:m 6.5.2. 

An unstable system could be picked by recognising that for a 

stable system \,1(~o,G,h, p) ?G ° while for an unstable system 
\'l(~ ,Q,h,p) is finite but not small. A criterion sllch as 

o ~ 
W(ro,Q,h,p) 

could possibly be used to 

< VI o 
~ecide stability. 

6.5.13 

It is recognised that this algorithm is designed to 
compute boundaries of the D.O.A.s of stable syste:ns and not 
necessarlly to inaicate stability or instability. but as seen 

here and later the likelihood of stability beiner, computed 
incorrectly is small and can be made arbitrarily small. 

. " Having obtained ro(G,h,p) for r;iven Q,h,p wo have other 
parameters to r.lanipulate still and possible variations in 
h,p are the subject of the next section. 

6. Variation of h,p 

" In section 5 ro(Q,rl,p) was obtained according to the 
definition 6.5.2 for fixed 9,h,p. In this section we attempt 
to outline how h,p may be varied to ootain the boundary point 
more accurately. 

It has be,m noticed that different h yield different· 
" ~ values for ro' Now we require ro to b~ a conservative estimate 

of the boundary point, so it is a reasonable iaea to have some 

" means of varying h so that we are sure that (r ,g) E D(f). 
o -

Na1<1ng h small reduces the errors involved in the numerical 
method but increases the opportunities for instability when 

t . " ( j) " ( j) th .. h ~ compu lng x ,y near e orlgln. As -0, ro increases 

Since a greater range of ro will involve computation near the 
origin. 



To explain this, suppose 
~(j)2 + y(j)2 

<; small 

that toe spherical 
< <;2 

region 
6.6.1 
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defines in some \'/ay a region where computation of 6J.4, 6.4.5 

yields bnstabie results. i.e. R.H.S. of 6.4.4, 6.L.5 are large. 

Also suppose that r is such that V = p. 
~ 0 0 . 

Numerical integration 

of 6.4.4, 6.4.5 fo~lows a trajectory which hopefully gives 
i(n) = 0, j(n) = 0 if the inte~ration is accurate enough. 
However (~(n-1),~(n-1)) is the cru~ial point. If (~(n-1),~(n-1)) 
is inside th~ domain given by 6,6.1 t~en computation of 
(~(n),y(n)) from (~(n-1),~(n-1)) is unstable. If there are 

( ~(n-1) ~(n-1)) (~(n-1) ~(n-1) no errors up to computation of x ') and x ,y 
is outside the ~-circle then (~(n),~(n) should be close to 

h .. (lI(n-1) r.(n-1)) t e orlgln. But as h ~O,n -'> "'" and hence x ,y tends 
to (~(n),y(n)) and hence (~(n-1),~(n-1)) must for some h ~ 0 

lie inside the ~ -circle, and hence (~(n) ,yen)) could be some 

distance from the origin. 1his analysis shows that as h~ 0 

the region of discontinuity of fig. 76 becomes larger and 
" . ro increases. 

Now as h gets large errors occur in computation which 

also make W(ro,Q,h,p) less predictable for R greater range of 
" r. Hence r increases as h '_ 0 and as h·-.... <>0. Hence there 

00" 
exists a minimum.of ro(Q,h,P) -:Jith respect to h. 

There are therefore :3 possible basic ways to vary h in 
the ale;orithm: 

1\ 
a) Fix h an(1 compute ro(Q,h,p). 
b) Increase n (n=p/h) until 

I~o(~,p/n,p) - ~0(G,p/n+1, p)1 < f. 
c) Vary h to find the minimum of ~ "/ith respect to h. o 
How there is no reason why h should be constant. ':le have 

already seen that small h near the origin is undesirable. 
'rherefore the best ~ystem incorporates variable step-sizes. 

·The. method used in this algorithm is to compute 

fo(Q'h'~~j) by the analysis of section 5 of the behaviour of 

w(ro,~Lll,L. Pj) · . .,ith respect to ro' It is the vector.s hol2 
where ),', 

hT = (h 1 , ••• ,hr ) 
and iT = (P1, ... ,Pi) 6.6.2 

which are varied. Computation of VI involves computing 
("(n) f\(n) 
x ,y' ) by 6.1\.15 and the numerical integration of 6.4.4, 

6.4.5 by a method such as 6.4.12, 6.4.13, 6.4:14 or otherwise 



is carried out by varying the step-sizes using 6.6.2. 

6.A.1~ is replaced by 
V\k i ) ='V(k i -1) _ h. 

~ 

, 

k
i 

= 1, •.. , n i 
n i = p/h i 

= ~(~~+kj-1)_ h
j 

where k. 
J 

n. 
J 
j 

= 

= 
= 

1, ••. ,n j 

Pj/h j 
i-1,i-2, ... ,1. 

From 6.6.3, 6.6.4 we see th~t 
n = ~n. 

b J 
L-p='\p. 

L- J 
(J') ,-" '.1e now denote h by 

. <'i) 'f (h h ) . 1 . !!: ::::: 1' ••• ' j' J:::: , ••• ,1. 
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i.e. 

6.6."5 

6.6.4 

6.6.5 

The steps of the method involve varying h j , j = 1, •.. ,i, 

havinG been given p and hence a certain iiistribution 0 satisfying 

6.6.5. The steps are as follows: 

i) Given P1 compute ~0(Q,h1'P1) varying h1 according to any 
of the rules a),b),c). Denote the value of h1 chosen as the 

-lE­

optimum by one of these rules as h 1• 
* ii) Given p rh , m = 1, ••. ,j-1, anii for given p. compute 

1\ (.)~m m J 
r (Q, h J, p) where 

o - m 
I"'~' (j)T lE- * 

h = (h1 , ••. ,h. 1,h.) 6.6.6 
- J- J 

varying h. according to any of the rules a),b),c) to find the 
J * optimum denoted as h., j = ~, ••• ,i. 

J * Thus we obta~n a series of optimal step-sizes hj,j = 1, .• i, 
where ~ (g, h (j) ,",)-p ) is the best obt?inable r such that 

o - --m 0(.) 
(r ,g) is a point-o~ the contour v = ~ P with h J as 6.6.6 

o L m -
and varying h

j
• ,...-<-, 

For the methods given in sections 3,4,5,6 we have obtained 
* 1\ • 

r (g,p) as the optimal value of r (Q,h,p) where h is varied 
o - -

as above a~cording to the definitions of optimality given in 

a),b),c). 
* ~ i.e. r (G,p) = optimum ro(G,g,p) with-_Tes-pect to,_h 6.6.7 

l5iven p., j = 1, ••• ,i. 
. *T J lE- * * Def.lne be = (h1, ••• ,h i ) where h j , j = 1, •.• ,i, is the optimum 

value of h .• 
,. J * 

'i'hen r (-Q,p) = ro(G,g,p). 



~omputation of the D.O.A. 
* Sections 3,4,5,6 have shcwn how we have obtained r (Q,p) ., 

for a particular value of Q and of p, where r 

by reference to tile definition 6.6.7, methods 

section'6, the definitions 6.5.2 and 6.4.15. 

is obtained 

a),b),c) of 

DeTine J(Q) as follows: 
• 

J(Q) = 0 if the discontinuous L'egion of fig. 76 not encountered. 

J(Q) = 1 if tne: discontinuous region of fig. 76 were enco",ntered. 

6.7.1 

It was stated in section 5 tnat if a stable system is being 

investigated the disC!l"cntinuous regions will be identified 

by the locat~on of other minima of W than ~o as given by the 

definition 6.5.2. But it is possible, particularly if <;r is 

small, that other minima may not be encountered and J(Q) = 0 

will result by 6.7.1. Clearly by reference to fig. 76d we see 

that for small 'br only ·one minimum of i'l is located. Hence if 

an unstable system is investigated J = 0 results. If a stable 

system is looked at then J = 1 is most likely but J = 0 is 

possible. 

To establish instability we need to compute J(Q) for 

various Qand then if J(Q) = 0 for all Q then the system is 

unstable, while if J(Q) = 1 for any Q then the system is stable . 
. ;r 

Using J(Q) and r (G.p) we are ready to compute the boundary 
of theJ.O.A .. 

Fix Go.Q· and ~Q as input pa;ametprs. Qo is the first 

value of Q for which we compute rand J. ~G is the accuracy 
"" -)E- " to which we co~pute Q where Q is given hy r (Q,p) = R. q' is 

is the increment step for Q. 
/\ 

~he steps for obtaining Q are as follows: 
Stage I 

.:+ 
1) If J(eJ = 1 and r (@o,p) < R 6.7.2 

we have established stability and a boundary point inside the 
" R-circle. ':le put Q = Q o ' 

2) Otherwise compute 

until either 
.:+ 

i)r (Q +IQ'.p) < R o 
and some J(Qo+iQ') = 1. i = 1 ••.• ,1 

or ii) IQ' ~ 2~ 

in which case ·the syste:n i.s unstable if 
J(Qo+ iQ') = 0 for all i = 1,2, •••• 1 

or stable in SR otherwisp.. 

6.7.3 
6.7.4 

6.7.5 



3) Given that from 6.7.3 the system is stable: 
and the boundary is outside the R-circle for Q = 8 + (1-1)8' o 
nut inside for 8 = 8 + 18', we interval halve to determine 
(\ 0 
8 where 

* " r (8,p) < R 6.7.6 
* ~ but r (8-S?,p) '> R. 

At the completion of Stage I we either have 
a) an unstable system indicated by 6.7.5, 

or b) a system which is stable in the R-circle indicated 

by the negative of 6.7.5, 
'k" " or c) a b0undary point (r (Q,p),Q) on the contour V = p, 

obtained by 6.7.2 or 6.7.6. 
If a), b) exist then there is no further compu ta tion 

necessary, so let us assume c) is the situation reached. 

" " We now re-define 8 = Q where g is given by 6.7.2 or 6.7.5. 
Given r"(G,p) and g and Vo = p the next step is to integrate 

equations 6.4.4, 6.4.5 for increasing V as this will tri\ck 

closer to the boundary. 
Stage II 

Hence given 
~(o) = r*(~,p) cos 9 
;(0) = r*(S,p) sin ~ 6.7.7 
v(o) = p 
"(0) " 8 = G 

we integrate 6.4.4, 6.4.5 numerically with fixed step-size h' 
computing f(j), g(j), ~(j), y(j), j = 1,2, •.• until one of 

three criteria is satisfied: 
either i) ~(j)2 + ~(j)2 ') R 6.7.8 

(boundary has left R-circle) 
or il) \g(j) - 801'/,2'1'1 6.7.9 

(boundary is completely traced) 

2H, 

or iii) computation of the boundary has gone on long enough­
usually determined by 

~(j) ') pt 6.7.10 

for SOr.le pt. 

At the end of Stage 11 we have one of these 3 situations. 

If ii) is true then the boundary is traced and there is no 

fur LheL' compu ta tion necessary. F'or the other si tua tions define 
8 1 = g( j). 1,'/e now have the sil;uation illustrated in fig. 81 



Fig. 81 

Q 
o 

or a mirror image of it. ~o proceed from here we must repeat 

.Stage I again using G1 in rules 11,2),3) and equations 6.7.2, 

6.7.3, 6.7.5 instead of g. But we do not re-define g the 
o " 0 seconr. time around. Using G we again proceed through Stage 11 

for a second time and we arrive at one of the situations in 

figs. 82 or 83. 

g 

-r~~ 
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-,,- " 
+trstgn(G-G o ) 

"'ig.fl2 

If the situation is as in fig. 82 then the whole process 

is repeated until either 6.7.4 or 6.7.9 is satisfied, at 

which time the boundary of the D.O.A. is computed inside SR. 

The situation of fig. 8} is unusual but could theoretical;J.'Y 
~ 

happen. The boundary has been obtained for g ~ 9 ~ G (or 
".c 0 '" g - G ~ Go as thp. case may be) but for G near to \:I or Go 
trajectories obtained by stage 11 tend to return to the 



already known region. 
" 9 1 = 9 

The procedure from here is to define 

and 9 = 9 + 
° 

~ 

as in fig. 
2 

83. 

and 
of 

i.e. G is taken 
• 

we try to find a 

Go' 

+ sign 
~ 

(9 - G ) .,. 

° 
6.7.11 

1\ 
halfway between the G 

" ° 
and G radials 

new 9 by stage I using 6.7.11 instead 

~y repeated analysing of which of the criteria of Stage I 
or stage 11 are satisfied an1 which situations occur between 

that of figs. 82 and 83 we may obtain the entire boundary 

of the D.O.A. inside SR' 
This process when all put together in a computation 

algorithm is sufficient 00 aefine computation of the ooundary 

of the D.O.A. inside SR providing a method of obtaining 
* r (G,p) is availaole for each G,p. 

The case of where f/~ and g/~ are finite at the origin 
is not considered as mentioned in section 4 because we tend 
to find that differential equations with non-unique solutions 
arise. nut the algorithm could be amended by replacing 6.7.1 
by a definition such as 

J(Y} * ,. 
= 0 i1' W(r (9,p),G,h ,p) 

J(G) * = 1 if '.-J(r (G, p) ,G,h 
as sug~ested in 6.5.13. 
7.1 Illustration 

* ,p) 

> \'10 

< '11 
° 

To illustrate the methods of this section we use the 

system 6.4.21, 6.4.22 anu its solution 6.4.23. The D.O.A. 
is given by 6.2.4. If we put into the algorithm the fixed 

parameters of thii section G.= 0°, G' = 30°, ~G = 5°, with 
R = )'0 the reoml ts go as follows: 
1 ) 00 * G = Go = r > R. 

2) 30° 
;< 

G = Q +9' = r = 1· 4686 <. R. 
0 

3) 15 0 * G = r = 1· 8595 <. R. 
4) 7)..0 * Q = " r = 2, 4149 < [\ . 
5) 3~o * G = .r '> R. 
Thu3 we find that G = HO to an ar.curacy of 5°. 

0 

The extension is plotted (fig. 84) until (x,y) 1 
" ',~e re tu !.'n to find a new G 

6) 9 = 113 ° .. 
r > R. 
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7) 143 ° 8 = 
8) 173° 8 = 
9) 203 0 

10)8 = Woo 

11 ) 8 = 1 f30~ 0 

1 ;:»~ = 1840 

" = .,. 

'?I-
r "> R. 

* r :> R. 

* r = 1·5920 <. R. 
* r = "'·3598 < R. 
* r > R. 
* r > R. 

Thus 82 = 188° to an accuracy of 5°. 
The extension is plotted until 6.7.8 

" 
is satis.fied at aCn ) = 

\'le look 
13) 8 = 
14) 8 = 
15) 9 = 
16 ) e = 
17) 8 = 
18) 8 = 
19) 8 = 

for a 

293 0 

323 0 

353 0 

383 0 

new 8 
* r ') R. 

* r > R. 
* r '> R. 
* r = 1· 5920 < R. 

368
0 

r* = 2·3498 < R. 
'. 360~0 r '> fl. 

364 0 
, r* > R. 

Thus 82 = 368° to an accuracy of 5°. 

But 82- 80 > 360° and so the whole boundary has been plotted. 

14 

3 

l!'ig. 84 

.?17 



8. Algorithm Details 
8.1 Main Program 

The main program has 12 parameters which are specified 

by the user on a aata card for each run.' The first card 

must contain a single integer which represents the number of 
times the ale;orithm is'Lo run. Then for each run there is 

one card: ~ith 12 numbers on it followed by one or 

more cards with 3 numbers. Listecl below is a list of the 

12 parameters with computer name and tne name used in the 

development of the theory. 
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Name 
R 

Description 
Radius of spherical domain SR' 

Com;JU ter 1 abel 

RtI 
Sr 

u '( 

q J 
h' 

d 

Decrement of ro in Stage I of section 5. 
The accuracy 6f calculation o·r the minimal 
set to give ~ . o 
Initial value of Q in degrees. 

~ 
i\cc:lracy of computation of Q. 

Increase or decrease in Q. , 
},Clrameters to he used in variation of I> 
or variation of r;g or anything else. 
5'ixed step-s.ize for cOlTIln.i.iing the boun~ary 

of the D~O.A •• 

Control para1Jeter to decide if regular or 

modified Zubov equation. 

RINCRI"l 

E'BSILON' 

;lTHETHI"l 

DEI, TA 1 

DELTA2 
U 

Q 

HEX 

I'lV 

i tlumber of different step-sizes in computation JM 

of V = 9. 
:"rint-out rate of the bonndary cur'le. NJEX 

After this we re'luire j cards with these parameters listed. 
Name Description Comouter label 

Change in V over lV'1ic'1 step-size is 

Number of steps during integration 
i.e. h j = Pj/n(j) 

s 
n(j) Increment in numbers of steps. o j,J = 1,2, .•• ,i. 

h j • V!/J(J) 

NSTART(J) 

NCiltJ) 

The variation of the step-sizes discussed in section 6 

is done by fixing Pj and during integratlon f~om V to V-Pj 
we alter nj where, 



'['he 

7. 
main program does all the manipulation of sections 6 and 

" Subrnutine CONTIN is called to calculate r (Q,h,p), J(Q) 
o -

given G,h,p. The main pl'orr,ram carries out t;1e manipulation 
* * of the step-sizes to compute r (g,p). From r (9,p) and .T(G) 

21,] 

the analysis of section 7 is carried out to obtain the boundary 

of the n.D.A. callinrr, subroutine EXTEND to perform the 

integration. 

Given h , m'= 1 •.• ,j-1, the method of varying h. depends 

on the value~ of n~j~, n~j). There are three cases fgr obtainin0 
* h., j = 1, •.. ,i, which correspond to the) susgested ways of 
J,. 

obtaining h. in section 6. 

a) If ~~j) = 0 then h; = p. 

~ s 

fixed. 

b) If n(j) = 1 then we obtain a sequence h~k) letting 
o (k) J 

h. = h. ,k = 1,2,... j 6.8.1 
J. J ,,(. k) ~ 

successively in 6.6.6 obtaining ro(8,h J, 'L-Prn) where we 
den6te (j k) ~ * (k) .~~' 

h ' = (h1, •.. ,h
j

_1,h
j

· ), J = 1,2, •. ,i 
6.8.2 

'The sequence 

where (1) 
nj = 

(2k+ 1 ) 
nj 

n (2k) = 
J 

defined by 

Dj!n(k) , k = 1,2, ... 
J 

n(j) 
s 

= n ( 2k) + 1, k = 1, 2, •.• 
J 

(2k-1) (j) nj +ns ,k=1,2, •.. 

Let us denote for brevity 
J . 

~(k) = ~ (8 h(j,k) '\ p ) 
o (k) 0 '- '~ m 

considering only h j as variable. 'Then we define . 

where 

h~ = h~2k ... 1) 

1;~2k+1~ _ ;~2k~ < £ 

6.8.3 

6.8.4 

6.8.5 

.c) If n(j) > 1 then we a~ain define a seQuence using o .~ -
the notation of 6.8.1 and 6.8.2) 

This time the sequence h;k is defined by 

where 

h~k) = 
J Pj/ n~k), 

J 

n~ 1) 
J 

= n(j) 
s 

k = 1 , 2, ••. 



Using 
6.fl.5 

( 2k+ 1 ) 
nj 

n~2k) 
J 

the notation of 
holds for some 

~ (k+ 1 ) 
r o· 
,,( k":1 ) 
ro 

(2k) =n j + 1, k= 1,2, ... 

= nj2k-1) + n (j), k = 1,2, ... 
o .l<-

6.8.3 we again define h j by 6.8.4 if 
k. However if k is found such that 

> ,,( k) 
ro 

> "(k) ro 
6.8.6 

then we have obta.i.ned a minimal set according to definition 
.l<-

6.5.1 and an interval halving process establishes h j where 

* h. = p./ * 
J J n. 

a smaller ~ 
o 

* * than nj + 1 or nj - 1, j = 1, ... ,i. 

~he rule a) is used when no optimization is required. 
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Rules b),c) are safer in that they requi.re ~ (G,h,p) to satisfy o -
either 6.8.5 or 6.8.6. The steps of method c) have built in 
protect ton for any calculation of 'ro which may be in error 

due to the particular ~o satisfying the definition 6.5.2 for 
gi ven ~. ,"'or small E there is more calculation involved 

to obtain ~o but more accuracy also. Method c) rejects 
inconsistent results for ~o along the way. 

* When h j is calculated accOr~ing to these rules then hj+1 
may be varied and so on. ~"'hen h., j = 1, ... , i, are all fixed 

* J then r (~,p) has been computed as 
.,.. * 

r (G,p) = r (~,h ,p) 
* * * 0 -where h = (h 1, ••• ,h i ) the vector of optimum step-sizes. 

8.2 S~hro'ltine CONTIN 
Subroutine C\:,NTIN' is called by the main program to obtain 

1\ 
ro(9,~,p) and J(Q). It has 14 arguments of which 12 are sent 
b~r the main ,lrogram and 2 are returned. 

R!i1, RH!CRiIl, EBS ILON, NV, U, Q are taken direct from the 
. input list .i.n section 8; 1. ALPHA represents the value of 9 

in radians and AH}'LA is 9 in degrees for pur,'oses of print-out. 

The remaining 4 input parameters are associated with 
step-size alteration as follows: 

VN 
r·1 

~epresents Pj , j = 1: ... ,i; * * (k) 
~s an :rray represent~ng (n1,n2, •.• ,flj_1,nj ) 

where hm = Pm/ * '. ID =. 1 , •.• , j-1 , 

and h~K) is un~~termined. 

s 



NLIFT repreJents n\k), k = 1,2, •.. 
J 

JV represents j. 

The subroutine computes ~o(8'2'P) by the method of section 5 

in which a minimum of W(r ,8,h,p) wit:i respect to ro js found. 
o -

Suhroutine RUNKUT is called to perform the integration of 

6.4.~, 6.4.5 and compute W(r ',8,h,p) given rand CONTIN 
• ~ 0 - 0 

manipulates r to obtain r (G,h.p). ':!hen CONTIN is finished 
o ~ 0-

RNIN rp.pre3ents r (G,h,p) and JC is J(g). 
o -

8.3 Subroutine RUNKUT 

Subroutine RUNKUT is called by CON1'IN to inte.r:;rate 6.4.4, 
6.4.5 and calculate W(r ,8,h,p). The intel~ration is carried o -
out by the !?ourth Order Runce-Kutta method but any other 

numerical method may be substi t',~ted for this method. There 

are 9 inputs and 1 output to this subroutine. 

1 ) RR is the value of ro' 
2) TT is 8 in rad ians, same as A:r,P!lA in CON~IN. 

3) RH is the vector * * * (k) (h1,hi,···,h. 1,h. ), k 1 , 2, ... 
• ;1- h) = 

4) NN is the vector (n1,n2, .. ·,nj_1,nj ). 
5) JJ represents .j. 

-.L 
6) SS is the value of d.2 Pm' 
7) HH is the value of d-;::;' 

8) UU the system parameteL·s. 

9) QQ the system parameters. 

The outpu't is DD which L'epresents ','I(r ,G, h, p). o -

8.4 Subroutine EXTZND 

221. 

Subroutine EXTEND is called by tne main program to integrate 

6. 1,.4, 6.4.5 for increasing V to trace out the boun-:iary of 

the D.O~A •. Tt ~as 13 arguments. 

1) R 1 is the same as RO in the inpu t list. 
" 2) TH is the value of 8 in 6.7.7. 

3) ~T represents 8
0

, 

4) AT1 represents 8 1, 

'. 5) R~ represents r (G,p). 

6) VU the system parameters. 

7) QN the system ~arameters. 
8) VN represents p. 

9) n:! represents d. 

10) '11 

11) H 
'.~here W = 1 for G incre:tsing and W = -1 for G decreasir::; 

represents h' in the input list - same as HEX. 

12) NJ is the same as NJEX in the input list. 



";1-.'-0-", _ 

13) JB is a control variable to note the past history of 

W to Gee if the ba~ktracking of fig. 83 occurs. 

8.5 Specification of f, g, 6 
f,g,p are specified in 

in the form -f(x f) 
;nx,y~ 1-dV) 

subroutines :\U:n<1JT and EITElTJ 

ana -g(x ft . is(x,y~ -dV) 
The function 

argumen"ts aLe X,y,S,U,Q where X,Y are the variables, U,Q are 

the parameters to enable us·to vary ~ or f,g and S ~ dV. 

'3. Higher Orders 

222 

Hention should be made here of t.he possible extension of 

this algorithm to systems of higher orders. The numerical 

integration theory developed in section 3 has been worked out 

in m dimensions and is readily applicable .to m > 2. The theory 

of negative V also general.ises to m dimensions as the system 

trajectories are still given by xl.' (V) for l.' ~ 1, ... ,m. 

It is when wc consider the variation of the initial 

point x in m dimensions that further thought is ~equired. 
-0 

'lie again consider 'TariatiDn of x along a radial line given 
-0 

by (r ,9) where 9 is a fixed (m-1)-~imensional vector 
o - -

9
T ~ (~1,···,Q 1) - m-

and (r ,9) are isiITen by o -
x 1 ~.rocos 9 1 
xi ~ rosin 9 1 sin 9 2····sin Qi_1 cOS ~1 6.9.1 

i ~ 2, ••• , m-1 

xm ~ rosin Q1 sin 9 2 ····sin Qm-1 

The set SR is defined in m diriensions by 

~ 2 2 2 2 'z 
SR ~ L ~ : x 1 + x 2 + ... +xm <: R 5. 6.9.2 

Hence the function ;.'l(r ,Q,h,p) can still be compu';ed for fixed 
o -

9,h,p and varying r to obtain the function ~ (8,h,p) 
- 0 0 -
defined by 6.5.2. Likewise the methods of Section 6 for 

varying h and changing h during integration may be carried out 
'* to give r (§.,p). 

* Up to computation of r (2"p) for given !t,p "the method 

is the same, but the method of section 7 for varying scalar 

9 is not directly applicable to vector Q. There is certainly 

scope for further development of this algorithm to work out 

how to vary 2 to cover all dimensions. 

A further difficulty is that the computation of 6.4.4, 
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6.4.5 for increasing V with.step-size h' also yields 

one-dimensional characteristic curves and cannot be generalised. 

It seems likely that to vary 2 usefully would involve 

varyi.ng 8 i for some i while keeping the others fixed, then 
* computing r (2,p) and then integraUm: 6.01.4, 6.4.5 for 

increasing V would give a system of neighbouring curves 
which would defi:le a grid in (m-2) dimensions for the boundary 
of the D.O.A •• 

Such a grid system would be, for example, given by 
~(j,k) S(j,k) ~(j,k) where the initial conditions are , - , -

~(O,k) = r*(2(O,k),p) 

SCO,k) = (2~k, Q2,Q3, ••• ,g~) 
N 

k = 1,2, ... ,N 

Q! constants i = 2, ••• ,m. 
1 

i.e. variation of 9 is carr.ied out only on one component, Q 1 
in this case. 

·Then, by referencine Stage II of tracing the boundary 
in section 7 we compute, by 
in 2 dimensions, the poin~ 

;(j,k), ~(j,k), &(j,k) 

given ~(m,k) ~(m,k) ~(m,k) 
'- ,-

m = 0,1, ... ,j-1, 
j = 1,2, .. . 

the same numerical methods used 

The quantities in 6.9.3 are related hy their components 
as gi.ven by 6.9.1. The trajectories given by 6.9.3 for fixed 

k and varying j would again be terminated by 6.7.8, 6.7.10 
or by a sli~htly amended version of 6.7.9 ~iven by 

I~(j,k) _ g<o,k)1 '>, 21T 
1\ 1. k) 1 1\ (. k) 

where Q~J, is the first component of 9 J, • 

The boundary of the D.O.A. may be built up by this grid 
cethod along characteristics by taking N large enough so that 
absolute differences 

113.~(j,k) __ ~x(j,k-1)11 k -- 1,2, ..• ,N 

are of the same order of magnitude as 

11£(j,k) - ~(j-1,k)11 j = 1,2, ... 

However to know whether all of Srr yfiere SR is 
has been coverer! could be qu.i te c-6mplica ted • 

./ 
/ 

tii'Ten by 6.9.2 
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10. Examples 

Example 10.1 
2 x = -x + y + x 

y=-y+xy 5.10.1 
This example f,:,-o:;J Texter (34) has an unbounded D.O.A.. The 

whole (x,y) planA. is divided into two parts by the boundary 

of the D.O.A •• It will be noticed that 

x + Y = 1 6.10.2 
is a solution of 6.10.1 and it can be sho\·m that 6.10.2 is 

the boundary of the D.O.A. for x < 1, y"> O. ~his is achieved 

by studying the direction field of the trajectories by 
considering (~,y) at any point in the (x,y) plane . 

Considerini 6.10.1 we see 
2 

y = x - x 

• that x = 0 at 

6.10.3 
while y = 0 at y = 0 or x = 1. 6.10.4 . 
Thus divicling the (x,y) plane into regions '.1h8re x ~_nd y are 

positive and nesative separateri by 6.10.3 and 6.10.4 we obtain 

the sketch of the direction field shown in fig. a5. From 
fig. 85 it is immediately apparent that the points in the 
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region x < 1, Y :> 0 are stable if they cross 6.10.3 and unstable 
if they cross x = 1. Points on.6.10.2 tend towards x = 1, 

Y = 0 and therefore 6.10.2 is the boundary in this part of the 
plane. 

The region x <; 1 , Y <; 0 is seen to be stable while the 
region x ';> 1 , y> 0 is unstable. To consider the remaining 
region x '> 1 , y< 0 we return to 6.10.2 'and notice that this 
line is unstable and hence the region x + y > 1, x > 1, Y ~ 0 

is not in the D.O.A.. 1'he remaininG region giveYl by 

x + y <::: 1, x "> 1, Y < 0 is inconclusive by inspection of fig. 

85. Thus we have the situation of fig. 86. 



----~ .. ~- .. -.~---

11 
-11 
-1' -11 

Stable 

E'ig. 86 

Unstable 

11 

inconclusive 

The example was tested on the algorithm with the inputs given 

by R = 3'0 

~r = 0'4 

~ = 0'0001 

9 = 30'0 
0 

<;'g = 5'0 

G' = 30'0 

h' ~ 0'2 6.10.5 

d = 0 
i = 1 

<fJ = <'5'0 
n - ~O 
~ 1 ) no = () 

The results are shown on fig. 90 for ~(x,y) = x2 + y2 and 

are in accordance with fig. 86. 

Exam;;le 10.2 
• 
x = -2x + Y + 
• 
y = -x - 2y + 

x 2/B + 3xy/8 T y2/16 

3x2/8 + xy/16 + 3y2/4 

This particular example was chosen so that the 10'" order 
terms of the series solution would be fairly simple. '1'he low 

order terms become 

V2(x,y) = x2/4 + y2/4 

V
3

(x,y) = x 2Y/16 + y3/ 16 
2 2 ::::: x ... y • ",here ,6(x,y) 

22:) 

'rhe parameters used were as in 6.10.5 except for h' = 0'01. 

Various ,6 were used which were 
~(x,y) , q(x2 + y2) 

with q = 1'0, 1'1, 1'2, ••• ,1'8. 

The results are all very similar and are only shown on 

fi3. 91 for q = 1'0. The boundary is shown where it lies 

inside 33 '0 but it seems that a greater value of R should have 
been used. 



Example 10.3 
• 
:It = -x + 
• 
y = -x -

~ 2 
Y + xtx'" + y ) 

2 2 
Y + y(x + y ) 6.10.6 

This example from Shields t25) has a well-kno·,m :J.O.A. 

wi th a boun::ary ;;ivcn by x2 + y2 = 1. It is interestin~ to 

consider the behaviour of the parametric representation of 
this exam~le for·x(V), yCv) as well as x(t), yet). First let 
UR convert 6.10.6 to polar co-ordinates, which gives 
r cos R - r g sin Q = -r cos G + r sin G + r3cos G 6.10.7 

r sin Q + r Q cos G = -r sin G - r cos G + r3 sin G. 

From (; .10.7 we obtain the differential equations 
r = -r + r3 
g = -1 

the solutions of which 

r2Ct) = r~ 
r2+C1_r2)e2t 6.10.8 

o 0 

g(t) = G - t 
o 

where r(t) = r o ' G(t) = Go at t - O. 
From 6.10.8 we sec that the trajectories spiral round the 
oriJl;in as t -.~ QC> but are stable if r < 1, NOI-! we investigate 

- 0 

the representation obtained by considering %V' ~ wher" 

,,2) 
" . 

v __ q(x2 + 

Dividing 6.10.6 by 6.10.9 we obtain 

dx 

dV 

!.!.Y 
dV 

(Jr---, in polar 

dr cos 8 -
<IV 
dr sin Q + 
dV 

r 

r 

co-:).!:-dinate form 

dG sin 8 = (r cos Q -o:v 
d8 DOS Q = (r cos G + 
(IV 

r 

r 

The solutions of 6.10.10 are given by 

r2(V) = 1- k e-2V 
1 q -2V 

q 

) . 

sin Q 

sin Q 

6.10.9 

r3cos Q)/qr2 

6.10.10 

r 3Sifi 8)/qr2 

6.10.11 

226 



The arbitrary constants in 6.10.11 are removed by the initial 

condition 

r(V) = 0, 9(V) = Go when if = o. 
The trajector!2~ are thus ~iven by 

r 2 (V) = 1 - e -q 

. 2 2 
9(V) = 90 + ~IOg(r?(1-ro») 

r;(1_r2 ) 

where reV) = r when G(V) = 9 • o. 0 

fj.10.12 

6.10.12 correspond very well to the series construction of 

V(x,y) in the form 
00 n 

-,' k n-k V(x,y) =L.L- an,kx y 
('\ -::"l. k<:.o 

6.10.13 

and substituting 6.10.13 into 6.10.9 using 6.10.6 gives the 

solution 

a k n, = .9. 
n (k 2)! n/2 - k/2)! 

if k,n are both even and a k = 0 otherwise. n, 
00 n 

Hence V(x,y) = L L ~n 
I\::r, "":coo 

"'" 2 
==.9. (x + 

2n 
n~. 

-c (xkyn-k) 2 
n k 

2)n y • 

fherefore the closed form of V is given by 

V(x,y) = .9. 10g( 1 ) 
2 2 2 1-x -y 

6.10.12a and 6.10.14 are the same expression. 

6.10.14 
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This analysis shows an example of the behaviour of xCV), 
y(v) and how it is related to x(t), yet) and aiso how beneficiAl. 
it is t.o compute trajectories which reach the origin after 

finite computation. 

The parameters used in the computation are as in' 6.10.5. 

Fig. 92 shows all the points obtained for various attempts 

at computation for various values of h'. The trajectories 

n~ar the boundary 01' the n.O.A. circle the origin very rap;tdly 

as V increases. 
~ An analysi9 of results for r was attempted to see what 

o " effect 9,h,q have. The algorithm computed r at El = 30°, 15 0 , 
o . 0 0 

7& , 3~ before ~lotting the.boundary and these points we~e 

looked ~t. In accordance with 6.10.12a or 6.10.14 9 had 

• 



---- --------

h 
negli~ible effect on r. h had 
vary. inrr n(1) n(1) butOthe most os' 0 

h 
some effect on ro seen 
significant effect was 

by 

caused 
~ 

by the variation of q. Fig. 93 shows the variation of ro 
against q at 9 = 300

, n(1t = 40, n(1) = O. ~his shows, in s 0 
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general, a trend of ~o~ 1 as q increases which is in contradict: 

to 5.11.42 of example 11.7 of Chapter 5 where it was shown 
• • 2 2 . 

that when V = -q(x + y ) then the contour V ., P is nearer 

to the origin as q increases. However it does show that since 

clx, Si. decrease in magnitude as q increases, that computational 
dV dV 

accuracy.' is better preserved for smaller flp, gip. 
Example 10.4 

Uncoupled systems were also looked at. 

The system 

is stable in 
the system 

• x = -x + 
• y = -y + 

the whole 

• x = -2x + 
• y = -2y + 

2 3x3 2x -
2 3 3 2y - Y 

and the algorithm showed this. But 

has a D.D.A-. given by x <: 1, Y <: 1. This example was computed 

before the variation of 9 developed .in secti::m 7 was introduced. 

Even so, fig. 94 shows the boundary is be.in?; traced towards 

the critical point (1,1) though not enough points were actually 

printed out. 

Example 10.5 
• 
x = y 
• 2 Y = -x - f1 (x - 1)y 6.10.15 

This example is the well-known van DeL' Pul equation with a 

known bounded il.O.A. for y <: O. Various interestinc; results 

';Jere obtained from this example .. The parar:1eters used were 

the usual ones given '1y 6.10.5 unless otherwise stated. 

p(x) = x 2 
+ / 

was used, and ~ =-0'5,-1·0,-1'5,-2'0,-2·5,-3'0,-4'0 substituted 

in 6.10.15. The results are shown graphically in figs. 95 

to 101 and show the correct pattern of thc D.D.A. for changing 

j'. The convention is that crosses and circles represent 

computat.ion of ~ (g,h;'p) and crosses are from the boundary o -
print-ou t. 

There are some points which occur due to the variation 



of 'd(r ,G,h,p) with\(:espectto ro being of the form in fi~. 81. 
o - .~. 

Fig. 87 
(' o 
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/I 
Iri these circumstances ro = r~ may be evaluated satisfying 

the definition 6.5.2. But also we see that from 6.7.1 J(G) = 0 

and these pOints are neglected. As mentioned 

this problem is resolved simply by increasing 

in section 5 

~r or possibly 

by using the alternative system 6.5.12. 

95 - 99 it is noticed that such incorrect 
rejected due to J(G) = 0 and the boundary 

a correct point with J = 1 is obtained. 
'The "reverse-time" example 

• x = -y 
• 2 
y=x"'jJ(x -1)y. 

However in fir;s. 
. /I 

values of ro are 
is computed when 

was also c0nsidered. The algorithm ~howed this example·' 

to be unst:l.ble sinc,-~ J(G) = 0 for all G used to cO:Jpute , 
r o(g,!2,p)· 
'~xarnpl e 10.6 

x = -6x + y + / 

y = .Y + x 2 6.10.16 

6.10.16 has two critical points at (0,0) and l(i,~-4). 

Cons.idecation of the 1 in ear parts of 6.10.16 shows that the 

origin is unstable but the other critical point is stable. 

It i.s therefore best for computation to translate 6.10.16 

to its stable critical point and it becomes 
x = -6x - 7y + y2 
Y ~ 4x +y + x 2 6.10.17 

The D.O.A. of 6.10.17 is unbounded but consists of a 
region around the origin and a narrow corridor which is 

unboumieu. in the :third quadrant of the (x,y) plane. For this 
example :l = (3·0 was chosen and h' = 0··02, 'SG = 1

0 , otherwise 



as 6.10.5. 'l'he results are 
2 p(x,y) = q(x 

with q = 1,1i . 

obtained using 
+ y2) 

. They are very impressive as shO\'m in figs. 102, 103 

respectively for obtaining the region 38 •0 n D(f,g). 

F.xample 10;7 
x = 6y _ 2y2 

if = -10x - 2y + 4K2 + 2xy + 4l 
This example from Davies (46) has a D.O.A. given by 

2 2 
(x -~) + y = 1. 

Using p(x,y) = q(x 2 + y2) 

and the parameter values of 6.10.5 except for h' = o·or, the 
boundary was computed for various q. Fig. 104 shows the 
boundary for q = 1·8 • 

.Elxar:!ple 10.8 
• x = -xC 1 

2 
- x 
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y = -y( 1 2 
- x 6.10.18 

6.10.18 has a D~O.A. given by 
2 2 < 1 x + Y , 6.10.19 

but it is also noticeable from 6.10.18 that the entire boundary 
of the D.O.A. is a critical point of 6.10.18. The trajectories 

of 6.10.18 are lines of constant 9 ,,"hich tend towards the 
ori.gin if 6.10.19 is satisfied. Hence any attempt to compute 

the boundary once ~o(e'h'p) is established vfill not result 
in increasing or decreasing 8. The results gave ~o(9,h,p) 
at var~ous g, p = 25·0, h = 25/40, and we find ~o slightly 

less than 1 each time and .the trajectories are traced out 
giving constant g, and r~1. 
Fxample 10.9 

• 
y = -y 

This example by Hahn (10) Has been much used in the development 

of tlle theory in this thesis. It remains to show here how 
accurately the algorithm actually obtains its D.O.A •• 

The input parameters used are exactly as in 6.10.5 and 
.., 2 

/J(x,y) = 2XL + 2y 

The results are shown for the first quadrant only in fig.105 

as they ar8 symmetric witn respecc to a rotation thro~gh 180°. 



11. Conclusions 
In this chapter there has been developed "l[,at seems to be 

the method which best combines tne safety of conservativeness 
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of the estimate with accuracy of computation •. The series method 

guarantees a conservative estimate absolutely but after some 

difficult algebra. The algebra involved in this·nethod is 

that needed to i~tegrate 6.4.4, ·6.4.5 and the most difficult 

Hem is. evaluation of f/p and gip. 
The finite difference r.lethods are much simpler than this 

method but have been seen to suffer fro:;] instability of various 

kinds which result in inferior R.A.S.s ano some of the problems 

cannot be overcome py reducing the grid so that the step-sizes 

tend to zero. 

This method does not guarantee absolutely a conservative 

but accurate estimate of the D.O.A. since the computation 

of i-o could conceivabljy pick out the wrong minirmm of 

W(r,G,h,p). However we do claim that if ~r is large ,£-)00 

then the correct value is obtained i.llth(mgh as ':;r becomes 

large, f _ 0 the computation inevitably increases. Likewise 

the boundary is obtained more accurately as h', ~g -.." O. l'li th 

the 'ralues 'of So-r, E. , h', <;;8 used so .f8.r the -results have been- --
" accurate enough in that correct ro is nearly always obtained. 

It may be a poc;sibility of further research to find a. way to 

be sure of this other than by letting the input parameters 

in section B.1 become'zero or large respectively. The method 

of setting n~j) > 1 and optimising ~o with respect to h does 

~ave inclllrled in it a facility for rejecting incorrect results 

" by testing whether the graph of ro(G,h,p)iS smooth with respect 
to h or not • 

. The algorithm developed here is not pe.r fect and does not 

calculate exact D.O.A.s for every example known. There .1s 

still room for improvement: 

1) Maybe a better definition of 

2) Maybe a waj of testing if Vo 
other th8.n using W(r,G,h,p). 

3) Maybe ~o should be obtained 
other than lines of constant G. 

4) There are many places where 

incorporated to satisfy the user of 

results. 

1\ 
rot han 6. 5 .2 • 
< p from the integration· 

by considering curves 

iteration could be 

convergence to the correct 
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Appendix A 

Theorem 

If the system equations are given by 

y = A2,1 x + A2,2Y + g2(x,y) 

where A = [A1 , 1 . A1,~ 

A2 , 1 A2,~ 

is a stability mat:'ix and where 

g1(x,y), g2(x,y) have power series expans_ions of ho::wgeneous 
degree 2 and above then the series construction for V(x,y) 

from Zubov's e~uation 
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(A 1 1x + A1 2Y + g1 (x,y) )'oV(x,y) + (A2 ,l x + A? ?y + g2(x,y) )dV 
" 0 x -, -- ay 

= -p(x,y)(l - dV(x,y» A.1 

contains a unique quadratic part providinG .6(x,y) has a series 

expansion of homoeeneous degree 2 and above. 
Proof 

\" e may write p(x,y), V(x,y) in the form 

p(x,y) 2 2 Q(x,y) = q2,OY + q2,1 xy + q2,2x + 
A.2 

V(x,y) 2 
+V 2,1 xy + V2 2x 2 + W(x,y) = V2,OY , 

where Q(x,y), '11(x,y) have terms of degree 3 or greater. 

Substituting A.2 into A.1 we may then isolate the quadratic 
terms which are the lowest powers of x,y _in A.1. 

(A 1 ,1 x + A1,2Y)(V~,1Y + 2V2 ,2x ) 

+ (A 2,l x + A2,2Y)(2V2,OY + V 2 , 1x ) == -q2,oy2- Q2,1 xy - q2,2X2 

A.3 
A. -5 represents an identity in x and y. Hence the terms in 

2 2 x ,xy,y must each be zero givip.g:the- relationships 

A V 1,2 2,1 = ,..q2,0 

A1 1 V2 1 , , = -q2,1 A.4 

2A 1 1 V 2 2 + A 2 1 V2 1 " - , , = -Q2,2 

W~iting A.4 in matrix form 



2A2 2 A1 2 0 V 2,:() -q2 0 , , , 
2A 2• 1 A1 1 +A2 2 2A1 2 V2 1 -q2 1 A.5 , , , , , 

0 A2 1 2A1 1 V 2,f2 -q2,2 , , 

For A.5 to yield a unique solution it is necessary that the 

determinant of the matrix in A.5 is non-zero. So we need the 
result 

(A 1 1 + A2 2)(A1 1A2 2 - A1 2A2 1) ~ o. , , " " 
A.6 
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Now we need the properties of a stability matrix. By definition 

1.4.7 this means the eigenvalues of A have negative real 
parts. The eigenvalues of A satisfy 

~ .. (A 1,1+A2,2)'>'+ A1,1 A2,2 - A1,2A2,1 = 0 A.7 

A.7 for '>- gi vers~ ____ ,, _________ _ 

(A 1,1+A2,2) .:!.J (A 1,1+A2,2)2- 4(A 1,1 A2,2-A1,2A2,1) 

Solving 

).. = 
2 

There are two cases depending on the sign of the discriminant 
2 

6. = (A 1 1 +A2 2) - 4(A 1 1A2 2-A1 2A2 1): 
" "" a) If~ A <0 then we have 

A1,1 A2,2-A1,2A2,1 > (A1,1+A2,2)o/4>-- 0 

and the real parts are (A 1 1+ A2 2)/2 thus showing that , , 
A1,1+ A2,2 < 0 for a stability matrix. 

b) If 6. > 0 the roots are both real and since they must be 
negative we have 

A1 ,1 + A2,2 < 0 
and. 2 

6. «A1,1+ A2,2) • 

Both cases when put together satisfy· equation A.6. Hence 

A.1 has a unique solution for V2 ,0' V2,1' V2,2. 
End·of proof. 



Appendix B 

'fheorem 

Given (xm'Ym) satisfying 

2 2 2 2 
xm + Ym = r m 

then the straight line through (xm'Ym) tangential to 
x2 + y2 = r2m2 
• 

passes through the circle 
x2 + y2 = r2(m+1)2 

at (xm+ 1,ym+1 ) where 

xm+1 = xm 
Ym(2m+1)~ 

Ym+1 = Ym + 
xml~m+1)~ 

m 

Proof. 

B.1 

B.2 

B.3 

B.4 

The straight line through (xm'Ym) tangential to B.2 is 
given by 

Now using B.4 we see 

xm+1xm + Ym+1Ym = x; 

that 
- x Y (2m+1)~ + 

m m 
m 

B.5 

from B.4 we have 
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which 

x;+1 

B.5. Also 

+ Y;(2m+1) 
2 

+ y2 + 2x Y (2m+1)~ 
m m m 

m m 

m2 

Therefore x;+1 + Y;+1 = lX; + y~)(m+1)2 
m2 

m 

B.6 

Substituting B.1 into B.6 gives the result that (xm+1·'Ym+1) 
satisfies B.3. End of proof. 
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Appendix C 

Theorem 
Let A. x = 0 , i = 1, •• , n-i , C. 1 

~- -
be n-i independent planes in Rn containing the origin. The 

constants ~i' i = i, ••• ,n-i,can always be found such that 
any point x lE Rn satisfies 

\1Ai~ + \2A2!: + ••• + \n-iAn_i~ = O. C.2 

Proof 
Writing C.2 in the form 

0-1 

<"-\.A.)x = 0 
4--~~-,., C.3 

we see that C.2 is a set of n-2 linear equations. If we fix 
x we see that C.3 consists of n-2 equations in the unknowns 

).,i' i = i, •.• ,n-i. NOli if we fix )..n-1 where we a~sume 

An_1~ ~ Q we have 
n-2 

(~\.A.)X = - \ iA 1x L...-. 1. ~ - n- n- -' 
~ ,-I 

C.4 
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C.4 is a set of n-2 equations in the unknowns '>-.i' i = i, •.• ,n-2, 
which can, by the definition of independence of the planes 

C.i, be solved uniquely. If An_i~ = Q then we may put 

o\. '" 0,1 =-1; ... ;n~2iand- >-n-i =1. Hence~we may find~ 

\i' i = 1, ••• ,n-i such that a particular ~ satisfies C.2. 
End of proof. 



Appendix D 
The generaliser1 t ["ansforma tion for rec"tangular co-ordinates 

x1' ••• ,xn to polar co-ordinates r,G 1, •.• ,9n_:1, is .given: by 

x1tr,2) = r cos G1 

xi (r,2) = r sin G1 ••••••• sin Gi_1cos Gi 
i~2, ••. ,n-1 

xn(r,2) = r sin G1 •••.••• sin Gn_ 2sin Gn_1 
T 

where G = (G 1,···,G 1). - n-
Some results follow immediately from D.1. 
" n 2 2 
1)~x.(r,G) =r 

L-- ~ -
i '" I 

D.1 

2) xi(r,~) = ~i(r,~ + 2-rr1. j ) for all i,j = 1, ••• ,n, where 

the jth element of !j is 1 and all the others are zero. 

23( 



Appendix E 

Theorem 

n The Zubov equation in rectangular co-ordinates 

L fi (2!)oV (~) = -.6(~)( 1-dV(~)) E.1 
, =, ~xi . 

is transformed to the Zubov equation in polar co-ordinates 
1"\--1 

F(r,£)OV{r,~) + L Gi (r,£)'oV(r,2) = -6(r,£)( 1-dV(r,2)) 
or '" 'aG, E.2 , ~ . 1 

by the transformation D.1. 'I'he connection between the terms 

of E.1 and E.2 is gi ve_n by n-I 
r"I ·'1 .h' 

F(r,~) = c 1f1 + ~< ,IT Sj)ckfk + <IT Sj)fn 
I':~)..· .I:::' n-l l~' 

rG 1 (r,£) = -s1 f 1 + c 1c 2f 2 +L C1(TI'Sj)Ck f k 
"e) J:l. 

L • I 

E.3 
n -I 

+ c 1<lT S j )fn ,2 L 

E.4 r{TI Sj )G i (r,£) = 

I ' , 

E.5 
n-.} :::1' 2, ... , n-3. 

r(TIs,)G 2{r,Q) = 
J n- -

-S f + C C f + c s f 
n-2 n-2 n-2 n-1 n-1 n-2 n-1 n 

J ,; I 

n-" 
r<~sj)Gn_1(r,£) = -sn_1 f n_1 + c n_ 1f n 

, • 1 

wheret'Sj = sin Gj~cj:" cos Gj for n '>/ 4. 

Proof 

USing the chain rule of differentiation we have 
n 

,ilY = ~dY ilxk 
'Or " .. JXk 'Or 

"oV = L" . ''dV d X k i 
~ ~ ~ = 1, ••• , n-1. 
o"i K .. uXk""'i 

E.6 
E.'? 

E.8 

E.9 

Using the transformation D.1 and differentiating with respect 

to rand Gi gives 

()X
1 = ~ "Or ~1 E.10 

'Ox. 
~. I (TI Sj)Ci 

-1 = ilr i = 2, •.. , n-1. E.11 
J $<' 

dX .-1 
''hl=n = (TT Sj) E.12 

OXi 
) -;, i. 

- -r(JTs.) 
oG i ' J 

, :- I 

i = '1, ••• , n-1. E.13 

'~X2 
~1 = rc 1c 2 E.14 

-Ox. ' -I 

agl = rC 1 ( JTSj )c i 1 
i = ~ •••• , n-1. E.15 

14 
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'ox n-' 
rC 1 (IT s,) E.16 a-gn = 

1 ' J 
. )..:11 

dX. ,-l. 

~~ = r(TIs.)c, 1c . i = 3, ... ,n-1. E.17 
l-1 ' J l- l. 

pi i-I 
'OX, 

rC-IT Sj )ck( 11 Sj )c i i = 4, ••• , n-1 .. ogl = E.18 k J~' 1-= k.., k = 2, ..• ,i-2 .. 
'<l x 

,-, 
1>-1 

oQn = r(lTs,)ck~lTs,) k = 2, ... ,n-2. "&.19 
k ,J J 

,:::. J j,; 10. .. , 

oX n-l. 

-n = r( TT s.)c 1 E.20 oQ
n

_
1 ' J n-

1 ~ I 

'"Ox. 0 i = 1 , ••• , n-2 • E.21 -wl = 
. k 

k = i+1, ... ,n-1. 

Substituting E.10 to E.21 into E.8 and E.9 gives a set of 

linear equations for '.lV, 'dv , k = 1, ••• ,n-1, in terms of 
ilr 'OQk ~, 

'~xi' i = 1, ••• , n. These may be inverted to establish aV 
oXi 

in terms of'OV, ~V to give 
dr oQk 

= c~'Ov - ~1dV 
oX1 dr r oQ1 

'aV = 
'OX 2 

)V = + c1s2c3dV + 

r ¥S1 
, -, (11' s .)c ."6v 
, J l'h= 
1 :: I 

.-1 '-1 ~-., 
+ c 1(lT s ,)C.dv +~ck(lTs.)c.)V 

- J l....", L-- ~ l-
r j.... oQ1 k- r -'f=I- ilQ 

-, (]ISj) k 
J:;' I 

E.22 

E.23 

E.24 

+ c i _1ci "<Iv Si 6V i = 4, ••• ,n-1. E.25 Ten Sj )'OQi_1 r ( ft Sj )-eQi n_, 
'dv = (11'." l;', ),'Ilv + c 1 (lTn!,"s,)')V + ~l. ck ( ITs,) '?JV + C 1 ilv 

i" J Or r i., J ~1 L- r 1:_,+1 J ')Qk ~-::-,,- ~ 
. Ka (nSj) r(lTSj) n-1 

') ~I ~;:I 

E.26 

"()X
n 

Substituting E.22 to E.26 into E.1 we may collect together the' 

the terms in "<Iv and ~V , i = 1, ••• ,n-1, using E.2 to establish 
~r ¥Si 

the results E.3 to E.7. End of proof. 

The results for n = 2,3 are similarly proved but limits and 
variation of subscripts are less complicated than those above. 
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F.1 

Theorem 
1) For even n, Yn(x) possesses just one zero xn in x'> 0 

and x ~ n n > 

Yn(x) > 0 for x < x n, F.2 

F.3 

2) For odd n, Yn(x) > 0 for all x ';> O. 

Proof 

The proof is by induction. We assume that for even n, 

Y 2(x) satisfies part 1) of the theorem. n-

Now 

Now from F.1 we know that 

n-1 x 
( n-1 ) ! 

n-1 x 
( n-1 ) ! 

') 0 for x ') 0 and from F. 2 we see that 

F.4 

Yn_2(x) ') 0 for 0 < x < xn_2 F.5 

and hence by F.4 Yn- 1 (x) > 0 for 0 < x < ='n-2' F.6 

23'} 

Differentiating F.1 with respect to x we obtain the relationship 

and from F.3 we see that 

Y~_1(x) ') 0 f or x ') x 2 • n-
Hence upon integrating F.8 with respect to x 

( ) n-1 
Yn- 1 x) '> Yn-1 (xn _2 = xn_2 '> 0 

(n-1 ) ! 

for x '> x 2' n-

we see 

F.7 

F.S 
that 

F.g 

Combining F.6 and F.9 we have proved that. Y 1(x) '> 0 for n-
x '> O. ~o prove the theorem for Yn(x) also we require the 

relation 

Yn(x) = Yn_2 (x) n-1 + x 
tn-1)! 

n - x nr • F.10 

For 0 ..::: x < x 2 n-
observe that 

we know F.5 holds and since x 2 <:: n we n-

n-1 n > 0 x - x F. 11 
(n-1)! nl 

for 0 ..::: x <:: X 2' n-



Hence from F.5 and F.11 we see that substitution in F.10 

shows that 
F.12 

Also from F.10 

F.13 
.Yn(x) "Yn_2(x) < 0 for x > n. 

Hence Yn(x) has at least one zero in xn_2 < x < n. 

We have to prove there is only one zero. For this we take 

another version of F.7 

F .14 

From F.8 we know that Y 1(x) is an increasing function for n-
x > xn_2• Hence F.14 shows that Y~(x) has at most one zero 

for x > x 2' If there existed more than one x such .that n-
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y (x) = 0, x 2 < x <: n, there would exist at least two values' n n-
of x for which Y~(x) = O. Hence there is only one zero of 
Y (x) for x 2 <: x < n and by F.12 and F.13 there is only one 

n n-. 
zero of Yn(x) for x ~ O. To complete the theorem we need 
to show that 

satisfies the theorem. 
for x '> 2. Al though x2 
and xn < n for n '> 2. 

= x -

Now 

'" 2 

2 x 
2 

Y2(x) ') 0 
we see by 

This completes tne proof. 

for 0 < x < 2 and Y2(x) <. 0 

F.13 that Y4(4) = Y2(4)< 0 
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Conclusions 
Throughout this thesis the emphasis has been on how to 

solve the Zubov equation, whether it can be solved, and whether 

the results of solution are meaningful. The Zubov equation 
is extremely useful in theory on account of its providing a 

Lyapunov function which indicates the complete D.O.A •• The 

trouble ha~ always been deeply rooted in being able to obtain 
• 

this function either analytically or numerically. This has 

led to the series construction which is well known as having 
problems of convergence of the R.A.S.s to the D.O.A •• The 

numerical construction attempted by Shields (28) was found 
in that work to break down. However, the main results are 
based on numerical construction pL"ocedures and an in-depth 
look at the problems and ways around them has been attempted. 

It has been shown that when the Zubov eCluation is tackled in 

a stable manner it is possible to obtain an algorithm which 
gives estimates of the D.O.A •• 

An attempt to compare methods of solution of Zubov's 
eCluation and finding D.O.A.s has been made in Chapter 2. This 
has served to bring together the methods and problems before 
procp.edi.ng to solve the Zubov equation in a numeri.cfll way. 

~rhe series construction is the most popular method for 

obtaining approximations to V(~} and DC£). Its problems include 

those of non-unifurm convergence, complicated equations and 
even possible brea]<.~O\m of the construction. Usual examples 

on which the series method is based are ones in which f(~) 

has a linear part ando(~) has a quadratic part, as well as 

both .f and IS having a series expansion. The series construction 
then has no problems as far as obtaining v(N)(~) is concerned. 

It has been found by several authors to give non-uniformly 
convergent R.A.S.s. Even when a v(N)(x) is found the 

* -difficulties of finding p (f,V) analytically are immense. 

The series constrllction for systems without linear parts is 
found to be not necessarily absolutely determined. Examples 

showed that some ~ enable v: to be determined and not others 

in'this case. A possible topic for research is to consider 
the relationship of ~ to f such that V(~) can be obtained in 
series [arm. 
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The I,i.e series method has slightly different but similar 

proolems. It, too, is seen to indicate non-uniformly convergent 
f\.A.3.s, and it has a bigger rlrawback than the series constructio 

For, whereas the series method is at least conservative, the 

Lie serie:l construction does not guarantee this. Any tl'uncation 

of a series such as the Lie series .involves a Local Truncation 

Error. This error increases with:lut li~it as t becomes large 
and ne~ative and there is no equ-1valent restriction to V = 0 

hold ins the computation back. 
renders the method hazardous. 

instability is to reverse the 

This computational instability 
The only answer to computational 

whole problem and compute from 
the unstable end. The other obvious drawback to Lie series 

is the r~liability on complete differentiability of f(~). 

Transformations represented a possible field of study 

to find s:llutions in terms of other variables which may simplify 
the problem. 'lie have yet to find a transformation which helps 
in any way in genera:l. 

The geometric view of Lyapunov's second method is an 
interesting pos.si bili ty. Infante and Clark do not directly 

. ~ 

use Zubov's approach out obtain the quantity W as the magnitude 
_ of a vector W which is akin to setting V as -6. However the 

" W so obtained is not in general strictly PG§itive definite. 

It may be a research topic to modify this method round to 
" Zubov's approach by arranging for W to be strictly pos~tive 

definite. 

Rod'len's compu ta tional algorithm has a lot 0 [ advantages 

in its incorporating iteration to track along c~rves. It 
seems to present possible proulems, thoue;hnot insurmoun"table 

ones, in higher orders. 

Davidson and Cowan.and Texter each attempted to define a 

way of deciding if a trajectory was stable. They are not 

generalisable to 3 ur more dimensions, and even in two dlmensionE 
require subjective decisions on trajectories \·,hicn are not in 
D.O.A.s bounded by limit cycles. 

At the end of all these comparisons and studies, which 
are admittedly not a complete comparison covering all aspects,it 

seemed that the Zubov equation still required a method of 

solution which is convegent, accurate, conservative. Obtaining 
* R (f,V) for given f and V would seem to be best done by Rodden, 

but as yet we still require to obtain D(f) rather than RN(~,f). 



by Zubov's method. 

The numerical results in Chapters 4,5,6 form the important 

part of this thesis. In the course of computation certain 

aspects of the theory of the Zubov equation came to light 

which seem to be hitherto unconsidered. As mentioned previously, 

the Zubov equation has a unique solution if f has a linear 

part and ~ has a ,quadratic part but not necessarily otherwise. 

In Chapter 3 the question of which ~ enable the Zubov 

equation to be solved given f seems to have been answered. 

Zubov himself states that ~ 'must be chosen relative to the 

rate of decrease of ~(t). However the rate of decrease of 

~(t) is fundamentally tied in with the behaviour of f(~) near 

the origin. Since we do not need the Zubov eC1uation if we 

ean obtain ~(t) we can see that inspection of f(!) is the 

more lo~ical way to go to choose ~(!). The result of theorem 
3.6.5 tics down the choice ahsolutely except in the exce9tional 

circum~~tances wh.ich are mentioned in theo.rem 3.6.4. No example 

has been met satisfying tnis exceptional pr0gerty but it may 

be Cl matter for future research to investie;ate whether such 

cases can happen and what happens to the Zubov construction 

H "-hey do. 

'Ehe author"s definition of asymptotic degree is probably 

not new but acts as a very useful tool in this theory. One 

thing that maybe could be 3. difficulty in cnoosing 6(x) by 

this method is that of actually obtaining PCf). It has been 

shown that only radial lines need be eonsidered but no mention 

is made of how to ~o about choosing radial lines to establish 

the asymptotic degree of a function. It is felt that this is 

a field of its own and only the actual resul.t is of relevance 

to this thesis. 

The one-dimensional Zubov equation is altogether simp}er 

to solve as it becomes an O.D.E •• Correspondingly the system 

eqll'l.tion can also be directly integrated and the one-dip,ensional 

Zubov equation is found to possess no gre:'.t ad.vantages over 

findine; x(t). The results of finding x as t ...... -ooor as V_ ... "" 

are '1uch the '·larne and 6(x) can only possihly make co:nputin;; 

a little ~asier. The later chapters show enormous advantages 

in finrlLn[; !..(V) rather than !(t) but these do not apply to 

onc dimension. Theorem 4.~.1 explained that the sign of i 
is the only thing that matters and to finll thc sign of clx 

dV 



instead is no reul improvement. 
'The si8nificunt result of Chapter 4 is the asy-mptot,ic 

8.n8.11'5is near the cri tilal point x, F O. Tnis again can be 

done in terms of either t or V, but shows how successive 

comruted values of x(t) or x(V) can be used to obtain an 
estimate for x, based on the theoretical known behaviour of 

x(t) or xCV) when f(x) can be approximated near x'. It is 
based on recognising the pattern of the computed x's as being 
from a theoretical differential equation which the actual' 

D.E. approximates near the singularity. Such recognition has 

to be slightly subjective but results have snown that the 
pattern is often quite obVious. 

No detail has been gone into about wnether the estimate 

of x' is always conservative and here, too, is a topiC for 
further work, but we may De able to iterate on estimates of 
x, from different values of V and ~(p,V) to see what happens, 

although for the examples considered the estimate of x, is 

almost constant after a certain point. 

In vhapter 5 the finite difference methods have been 
extensively considered. Shields (28) consideration of the 
finite difference scheme was found to oe disappointing and 

there is a fairly obvious reason why. Namely that implicit 
mechods cannot obtain values of V on any Circle where V is 
infinite. Thus other finice difference shemes have been 
considered and moulded in vario'us ways to try cO establish a 

method wnich will indicate when v = 00. 

2/111 

Unfortunatel.y there is a jungle of problems to hack through 

to get to the boundary of D(!). First, it may not be possible 
to get off the ground at all unless init~al conditions are 

chosen arbitrarily. The more accurate the method ,chosen the 
greater seems to be the 
implicit schemes. There 

problem near the origin, except for 
seems little doubt that an implicit 

scheme such as the Shields! ~'lethod is the best way to begin 

computation. 

The need to revert to an explicit method as successive 
computation of V on concentric circles approaches the boundary 

is clearly seen. Also clearly seen is the necessity of a 

method su~b as that in section 5.8 for guaranteein~ that all 
points used in trle difference scheme a'l"e ar.tually within the 
9.0.A .. 
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:!av Lng nrlilped t!le method around the obvious problems 

there arc the hidden ones of accuracy, conver~ence and stability. 

'~Ileoretical results have been established for the~e properties 

and the method becomes considerably comrlicated to take them 
j,n' [) accou.nt. At this stage it seems that all considered 

methods have 3tI'en~ths and weaknesses anr! it is difficult 

to decide which to.use especially if only the grid numbers 

are known. An "optimum" has been sug'~P'Gted which can probably 

be considerably improved. 
Finally in this method is the one'problem which seems to 

sabotage the explicit schemes considered. 'l'his is caused by 

zero coefficients of the P.D.E. being solved. This is a 
difficult problem to get around which must involve a fundamental 

re-think of order of computation. The philosophy of computing 
all pOints on a circle is a good one, but in the case of 

explicit methods is bound to involve the coefficient of the 

unknolAn term beinf, clepenclent on F and possibly ~ as vlell. 
It ;nay be necessary if such methods are to be pursl-led to think 
how the computatjon could be done in a different order so, 
the coe1'fic; ent of the unknown term is never sr'lall. 

I:r, has been realised already that the only '.'lay to co:npute 

problems which ate basically unstable is to turn them around. 
'i';lis ,is what the algorithm of Chapter 6 does. An attempt has 

been made to compute fcom a point near the boundary to determine 

if it is inside the D.O.A. or not. Texter,and Davidson and 
Cowan do this, but they use t as the independent variable. 

This is where the use of V to compute ~(V) rather than ~(t) or 

vel!) has the advantar;e. Determination of the behaViour of a 
trajectory with time is to some extent subjective as ~(t)~ 0 

as t..", 00. tlowever it has been shown "that ~(V)-'" 0 as V~ 0 
providing that ~ is chosen correctly and the "finiteness" of 

computation seems to be a great help. Thus from limited 
computation we see that it can be determined whether an initial 

point is inside the D.O.A. or not. It then remains to vary 
thit initial point and to play around with step-sizes, accuracy 

parameters etc., to obtain the complete D.O.A •• 

This alIToritnm goes some way to satisfying the need for 

an algori"tnm wnich finds D.O.A.s accurately and shows that 

the Zubov equation can be used to find'good estimates of D(f). 
It can still be improved and some suggestions were made at the 
end of Chapter 6. 



In conclusion it has been shown that the Zubov approach, 

although not in its original form, can lead to a method of 

finding accurate R.A.S.s. The approach of computing ~(V) 

246 

which has come out of this thesis is a different parameterisation 

and could be arrived at without reference to the Zubov equation. 
But the basic theory of Lyapunov and Zubov provided a great 

help in devising a parameterisation which is useful. 
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('0 TO 38 

42 tF(HF(I)-O."1INHl43.44.44 
43 nMINH=RF(ll 

'R~\INH"RS(ll 
32·'F(RINCR~INUS·E8SILON)215,216.2'6 

21S ,f(RINCK-E8SILON)3~.~8,~R . 
216 1"1+1 
'- RINCRMINU5:H1NCRHINU~/2.n 

, PS(I)"RIHN-R1NCRMINII!; 
cALL RUNKUT(RS(I).~LPHAIH,M.JV.DV.MV.U.Q;RF(I" 
tF(RFCI)-OMINl45.38.~8 

45' RI11 NH!'Rt\l N 
nl"lNHcDHIN 
pHINcRS(I) 
nMINcRF(ll 
RINCR=RINCRHINUS 
(;0 TO 313 

44 RINCRI-1IIIUS=HINCR 
pHINcRMIN~ 
1)1"1 NcOH I NH 
QHINH=RO+RINCRO+ESSILON 
.I C:: 1 
nO 47 LI.7"1.1,1 , 
tFJRSCL47)-RMIN)47,47.4R 

48 ,f(RSCL47l-RMINH)49.47)47 
49 RI~INHcRS(L47) 

M1=L4" 
47 CONTINUE 

nM I NH=IH (M1) 
R I tl C R c RH I N H - R M I N 
('0 TO 3<1 

39 xMIN=RMIN*COSCALpHA) 
vMIN::RMIN*SINCALPHA) 

r. LENGTH 

w R , lE ( 2 • 5 U l A HP LA. V V • l( M IN. V M 1 N , DIll N , I • N L 1FT. J C 
prTURN 
~NI) 

. I·'· -
~UBHOIJTINE RUNKUT(RR.TT.HH.NN.JJ.SS.MM.UU.QQ,OO) 
nlMENSlllN HH(4l.NNC~), . 
~ Cx.v. S .u.Q)cX* Cl .O-l(~X-V*V) I (2. o*<x*x+y*V)' I <1 .o-S) 
G C X • V , S • U. Q ) cV * <1 • 0 -l( • X - v * v ) I C 2 . 0 * ( x *)( + v * v , ) I <1 • 0 ~ S ) 
~NcS~ . 
xO::COSCTT)"RR 
vQ::s I N (TT l "RR 
xN=XO 
vN::VO 
nO 33 LB::1.JJ,1 
t.8=JJ+1-L·S3 
IlH::HH (U!) ""11 
nO 3 L3=1,NNCL8l.1 
p11=F(XN.VN.sN,Uu.Qai 
p12~GC)(N.VN;~N.UU.Qyi 

x::XN+HHCL8'*p11/2.0 
V=VN+HHCL~l*p12/2.0 
~=SN+DH/2.0 

r 

.. ; 



p2'=FCX,y,Siuu,Qo) 
p22=GCX,y,S;UU,QQ) 
x=XN+HHCI.8).pZ1/2.0 
Y=YN+HH(LH).PZ2/2.0 
p3'=FCX,y,S~UU,UQ) 
p32=GCX,y,S,UU,QO) 
X=XN+HHCL8).p31 

. v=YN+HH <t!!)*P32 
~N"SN.OH 
~4'=FCX,y,S",UU'QQ) ~ 
p42"GCX,V,SN,UU,QQ) I -
XN=XN+HH(L!!).CP1'~l.O*P?'+2.0.P3'+P4')/6.0 
V~=YN+HH(L!!)*CP12+2.n·D?2+2.0.P~2+P42)/6.0 

·3 r,ONT I NUE 
33 r.ONTINUE 

nD=saRT(XN*XN+VN*yNI 
gETURN 
F. IJ [l 

~U8ROUT(NE EXTENOCR, .TH.4T'AT"Ro,UN;ON;VN,MN.WtH,NJ~J8i 
FCX,Y,S,u,QI=X*(,.o-v*X-V*YI/CZ·0*CX*X+Y*Y»/C1·0-S) 
r, C x , Y , S , 1)1 Q) = V * (, • 0 - v * X - Y * V I / (l . 0 * ( X * X + V. V) ) I c, • 0'" S ) 

6 FORMAT('HO'2x,1~Hx-cnORnINATE,13x,'2HY-COORDINATE"4X;'OHVALUE OF 
, V " 3 X , 5 HA/I G LE) . ..... . '.-

8 FOR M A T C 1 H , E 1 ) • 8 , 1 0 x • E 1 ~ • 8 , 1 0 X , E 1 5 , 8 '; 1 0 X , F 8 • 4 • 1 0 X , F 4 ; 1 ) 
~RITEC2,6) . . 
~N"VN·Mtj 

. -·-nH"H*MN 
,41 p)=3.14,~g26538 

VO=VN 
xN=coscr~)*~o 
vN=SINCIH)*RO 
.1 =0 
.1 D= J B 
VTF.·~T= (VN+50. 0-1 . O.~lN) I (1 .0+MN*I.9 .0) 

214 rF'CJ-~J)'~O,151,'5' 
, 51 

. , 
.1 =0 
'FCXN)202.~03,2U' 

202 ~IXN=-1.0 
r,O TO 204 

203 ~) X I1 =1 . ,) . 
204 rFCYNj21)S,106,206 
~05 ~IYN=-1·0 

r,O TO 2?7 I 
206 ~IVN=1.1J I 
20 7 ~ ETA = A TAN ( Y N / X top + (1 • n _ S r V N • ( , ~ 6 ~ ~qT iN'".i 2 • 0 ) • P I 
231 r'(ABS(BF.TA-TH)-PI)2~l,?32,233 
233 rF(BETA-TH)234,l34'2~~ 
234RETA=BETA+l·O·PI 

r,O TO 231 
235 RETA=BETA-l.O*PI 

r,0 TO 231 
232 TERA=BETA*1RO.O/PI I 

WRITEC2,g)XN,VN,VO,TFBA.w 
r,O T0(314,514,314.J1~;3'6),JD 

314 rFC<BETA-TH)*W+1.0E:-10n,7,318,31a 
31 7 W = -1. 0 • 'J 



r;0 TO(3iRd19,319),JI') 
318 JD=4 
315 TH=BETA 

,f«TEBA-AT)*W- 560.0)167.165.16S. 
319 .10=5 
316 TH=BETA 

,FC(TEBA~AT1)·W)'67,'65.'65 
,67 ,fCXN*XN+YN*yN-R1*R1 )16';.165,165 
,66 TfCVO';;VnST)150.,65.,65 
.1 50 .1;: J + 1 

VO=VO+H 
p1 1=Fe XI;.YN.SN,UN,QNl 

'p12=GeXN,YN;SN,UN,QN) 
x=XN+H*P1 1/ Z.O 
v=VN+I1*p,2/2.0 
~=SN+DH/Z.O 
pZ1=FeX.y,S~UN,QN) 
p22=G(X,V,S.UN,QN) 
x=XN+H*P2 1/ z.O 
V=YN+H*PZU 2.0 
p31;:FeX.V,S~UN,QN) 
p32=GeX.v.S,IJN,QN) 
y=XN+H*p31 
v::VN+H*P.~2 
~N=SN+I)H 

p41=F<X.V. SN.U!'4.QN) . 
p42=GeX.V,SN,UN,QN)· : 
)(N=XN+H.(Pl1+2.0*P21+2.h~P31+p41)/6'0 
VN=V N+H*CP1 2+2.0.P22+2·r*P32+ P4 2)/6.0 
TFCSN+DH-U.999~99)214,1~8,168 . 

168 H=H/10.0 
nH·;:DH t1 0. 0 
r.0 TO 214 

165 rONTINUl 

, LENGTH 

I1ETURN 
FI·; D 

635, NA~E EXTENn 

TIUN - NO ERROR~ 

Y XPCK 1?K 

e2 2AM) 
,M CDRM) 

97211 

SEr. DCHALL 
SECi rONT I N 

TIME 19/17/38 





1 




