

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Non-coherent Fault Tree
Analysis

By

Sally Chdstian Beeson

A Doctoral Thesis
submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

September 2002

0 by Sally Christian Beeson, 2002

Abstract

The aim of this thesis is to extend the current techniques available for the analysis of

non-coherent fault trees. At present importance analysis of non-coherent systems is

extremely limited. The majority of measures of importance that have been developed

can only be used to analyse coherent fault trees. If these measures are used to

analyse non-coherent fault trees the results obtained are inaccurate and misleading.
Extensions for seven of the most commonly used measures of importance have been

proposed to enable accurate analysis of non-coherent systems.

The Binary Decision Diagram technique has been shown to provide an accurate and
efficient means of analysing coherent fault trees. The application of this technique for

the qualitative analysis of non-coherent fault trees has demonstrated the gains to be

made in terms of efficiency and accuracy. Procedures for quantifying a non-coherent
fault tree using this technique have been developed; these techniques enable

significantly more efficient and accurate analysis than the conventional techniques for

Fault Tree Analysis.

Although the Binary Decision Diagram technique provides an efficient and accurate
means of analysing coherent and non-coherent fault trees, large trees with many
repeated events cannot always be analysed exactly. In such circumstances partial
analysis must be performed if any conclusions regarding system safety and reliability

are to be drawn. Culling techniques employed in conjuncfion with the Binary Decision

Diagram method have been developed for the partial analysis of both coherent and
non-coherent fault trees.

i

Acknowledgments

Firstly I would like to thank my supervisor Professor John Andrews for his invaluable

help, guidance, and friendship over the past three years.

Thanks are also extended to the staff in the mathematics department, who have

helped me at various stages throughout my research. Particular thanks to Lisa for her

efforts in proof-reading this thesis.

I am also very grateful to my family and friends for their support and encouragement

throughout this work.

A huge thank-you to Karen who has kept me motivated and has always been around
to discuss any problems or new ideas over a cup of tea.

My final thanks go to Robert for his love, support and understanding - thanks Babe!

ii

Contents

1. Introduction

1.1 An Introduction to Risk and Reliability Assessment 1

1.2 An Introduction to Fault Tree Analysis 2

1.2.1 The Analysis Procedure 4

1.2.1.1 Importance Analysis 5

1.3 Structure Functions 5

1.3.1 Definition of Coherency 6

1.4 An Introduction to The Binary Decision Diagram Technique 7

1.5 Current Urnitations 7

1.6 Objectives 8

2. Fault Tree Analysis of Coherent Fault Trees

2.1 Introduction 9

2.2 Qualitative Analysis 9

2.2.1 Introduction 9

2.2.2 Obtaining the Minimal Cut Sets of a Coherent Fault Tree 11

2.2.2.1 Boolean Algebraic Laws 11

2.2.2.2 The Top-down Approach 12

2.3 Quantitative Analysis 14

2.3.1 Introduction 14

2.3.2 Component Quantification 14

2.3.3 Calculating the Top Event Probability 16

2.3.3.1 The Structure Function Method 16

2.3.3.2 Shannon's Theorem for Calculating the Top

Event Probability 17

2.3.3.3 The Inclusion-Exclusion Expansion Method 18

2.3.3.4 Approximate Methods 20

2.3.4 The Unconditional Failure Intensity 21

2.4 Evaluating the Fault Tree Methodology 26

2.5 Summary 27

iii

3. The Binary Decision Diagram Method for the Analysis of Coherent

Fault Trees

3.1 Introduction 28

3.2 An Introduction to Binary Decision Diagrams 29
3.3 The Conversion Process 30

3.3.1 Choosing a Variable Ordering Scheme 30
3.3.2 The Logic Function Method 30
3.3.3 The If-Then-Else Method 33

3.3.3.1 The Conversion Procedure 34
3.4 Qualitative Analysis 36

3.4.1 Minimising the SFBDD 37
3.5 Quantitative Analysis 39

3.5.1 Calculating the System Unavailability 39
3.5.2 Calculating the Unconditional Failure Intensity 41

3.6 Summary 44

Fault Tree Analysis of Non-coherent Fault Trees
4.1 Introduction 46
4.2 The Use of NOT Logic 46
4.3 Qualitative Analysis 50

4.3.1 Introduction 50
4.3.2 Identifying the Prime Implicant Sets of a Non-coherent

Fault Tree 51

4.3.3 Obtaining a Coherent Approximation 54

4.4 Quantitative Analysis 55
4.4.1 Calculating the System Unavailability 56
4.4.2 Calculating the Unconditional Failure Intensity 57

4.4.2.1 Inagaki and Henleys Method 57
4.4.2.2 Becker and Camadnopolous' Method 60

4.5 Summary 61

The Binary Decision Diagram Method for the Analysis of Non-

coherent Fault Tress

5.1 Introduction 63
5.2 Computing the SFBI)D 64
5.3 Qualitative Analysis 66

5.3.1 Obtaining a Coherent Approximation 66

iv

5.3.2 Exact Qualitative Analysis 67
5.3.2.1 Rauzy and Dutuits Meta-products Method 68
5.3.2.2 An Alternative Method for Identifying the

Prime Implicant Sets 73
5.3.2.2.1 Computing the Consensus

Binary Decision Diagram 74
5.3.2.2.2 Minimising the Consensus

Binary Decision Diagram 77
5.4 Quantitative Analysis 80

5.4.1 Calculating the System Unavailability 81
5.4.1.1 Calculating the System Unavailability from

the SFBDD 81
5.4.1.2 Calculating the System Unavailability from

the Consensus Binary Decision Diagram 82
5.5 A Comparison of the Two Methods 82
5.6 Summary 84

6. Importance Analysis of Coherent Fault Trees

6.1 Introduction 86
6.2 Deterministic Measures of Importance 86
6.3 Probabilistic Measures of Importance 87

6.3.1 Measures for Assessing Component Importance 88
6.3.1.1 Birnbaum's Measure of Component Reliability

Importance 88
6.3.1.2 The Component Criticality Measure 89
6.3.1.3 Fussell-Vesely's Measure of Component

Importance 89
6.3.1.4 Measures of Initiator and Enabler Importance 90

6.3.1.4.1 Barlow and Proschan's Measure of
Component Initiator Importance 91

6.3.1.4.2 Lambert's Measure of Component
Enabler Importance 91

6.3.2 Measures for Assessing Cut Set Importance 98
6.3.2.1 Fussell-Vesely's Measure of Cut Set Importance 98
6.3.2.2 Barlow and Proschan's Meaure of Cut Set

Importance 98
6.4 Methods for Calculating Measures of Importance 102

V

6.4.1 The Fault Tree Analysis Technique 102
6.4.2 The Binary Decision Diagram Method 107

6.4.2.1 Calculating Birnbaum's Measure of Importance
from the SFBDD 107

6.4.2.2 Calculating Fussell-Vesely's Measure of
Component Importance from the SFBDD 108

6.4.2.3 Calculating the Enabler Measure of Importance
from the SFBDD 109
6.4.2.3.1 Calculating the Probability of these

Paths from the SFBDD 110
6.4.2.4 Calculating Fussell-Vesely's Measure of

Importance 120
6.4.2.5 Calculating The Measure of Cut Set Frequency

Importance 120
6.5 Importance Analysis a Worked Example 121
6.6 Summary 123

7. Importance Analysis of Non-coherent Fault Trees

7.1 Introduction 124
7.2 Coherent Approximations 124
7.3 Jackson's Extension of Birnbaum's Measure of Component

Reliability Importance 127
7.4 The Concept of Component Relevancy / Irrelevancy 128
7.5 An Alternative Extension of Birnbaum's Measure of Component

Reliability Importance for the Analysis of Non-coherent Systems 129
7.5.1 The Expected Number of System Failures 132

7.6 Deriving Other Measures of Component Importance 133
7.6.1 The Component Criticality Measure 133
7.6.2 Fussell-Veselys Measure of Component Importance 134
7.6.3 Barlow and Proschan's Measure of Initiator Importance 135
7.6.4 The modified Measure of Enabler Importance 136

7.7 Extending Measures of Minimal Cut Set Importance 138
7.7.1 Fussell-Vesely's Measure of Cut Set Importance 139
7.7.2 The Measure of Cut Set Frequency importance 139

7.8 Methods for Calculating Measures of Importance 141
7.8.1 The Fault Tree Analysis Technique 141
7.8.2 The Binary Decision Diagram Method 148

vi

7.8.2.1 Calculating Birnbaum's Measure of failure and
repair Importance 149

7.8.2.1.1 The SFBDD Technique 150
7.8.2.1.2 The Consensus Binary Decision

Diagram Technique 154
7.8.2.2 Calculating the Enabler Failure and Repair

Importance 159
7.8.2.2.1 The Consensus Binary Decision

Diagram Technique 159
7.8.2.3. Calculating the Measures of Prime Implicant

Set Importance 172
7.8.2.3.1 Calculating The Extended Fussell-

Vesely Measure of Prime Implicant
Set importance 173

7.8.2.3.2 CalculatingThe Measure of Prime
Implicant Set Frequency
Importance 173

7.9 Importance Analysis a Worked Example 173
7.10 Summary 176

8. Culling Techniques for Coherent Fault Tree Analysis

8.1 Introduction 177
8.2 Culling Techniques for Conventional Fault Tree Analysis

Methods 178
8.2.1 Culling Minimal Cut Sets Above a Given Order 179
8.2.2 Culling Minimal Cut Sets Below a Given Probabilistic

Value 181
8.2.3 Culling Minimal Cut Sets Below a Given Frequency 185

8.3 Culling Techniques for The Binary Decision Diagram Method 188
8.3.1 Rauzy's Technique for Computing an Order Culled

Binary Decision Diagram 188
8.3.2 Rauzy's Technique for Computing a probability Culled

Binary Decision Diagram 195
8.3.3 Beeson and Andrew's Technique for Computing a

Frequency Culled Binary Decision Diagram 200
8.4 Analysing the Culled Binary Decision Diagram 207
8.5 Summary 208

vii

9. Reduction and Culling Techniques for Non-coherent Fault Tree

Analysis
9.1 Introduction 210

9.2 Reduction Techniques for Conventional Fault Tree Analysis 211

9.3 Reduction Techniques for The Binary Decision Diagram Method 212

9.4 Culling Techniques for Conventional Fault Tree Analysis
Methods 212
9.4.1 Culling Prime Implicant Sets Above a Given Order 212
9.4.2 Culling Prime Implicant Sets Below a Given Probability 215

9.4.3 Culling Prime Implicant Sets Below a Given Frequency 217

9.5 Culling Techniques for The Binary Decision Diagram Method 220

9.5.1 Rauzy and Dutuit's Order Culling Technique for the
Meta-products Binary Decision Diagram 220

9.5.2 The Probability or Frequency Culling Technique for the
Meta-products Binary Decision Diagram 225

9.6 Summary 232

10. Conclusions and Future Work
10.1 Summary of Work 234

10.1.1 Qualitative and Quantitative Analysis of Non-

coherent Systems 234

10.1.2 Importance Analysis of Non-coherent

Systems 235

10.1.3 Reduction and Culling Techniques for the

Partial Analysis of Non-coherent Systems 237

10.2 Conclusions 238

10.3 Future Work 239

10.3.1 Calculating the Enabler Measure of Failure

and Repair Importance from the SFBDD 239

10.3.2 Extending Other Measures of Importance 239

10.3.3 Reduction of Non-coherent Fault Trees 239

References

Appendix I Minimisation Procedure

Appendix 11 Fault Tree Structures

viii

Nomenclature

A(t) Availability function

C Consequence of an event
Ci Minimal cut set i

Cn I Minimal cut set i, of order n

f(t) Failure probability density function (p. d. f)

F(t) System unreliability function

fMIN Frequency culling value

g(t) Repair Function p. d. f

Gi(q) Criticality function for event i (Birnbaum's measure of importance)

G, Cq) Jackson's proposed extension for Birnbaum's measure of importance

Gcq Cq) Probability that the components contained in cut set CP are critical to the
I

system failure

%,)Lq) Correction term for Gcr, Cq)
II

G jF
Cq) Component failure criticality

G, ý Cq) Component repair criticality

Gi, jCq) Probability system is in a working state such that components i and j are

failure critical
GkILq) Probability system is in a working state such that component i is failure

critical and component j is repair critical
G-Ij Uq Probability system is in a working state such that component i is repair

critical and component j is failure critical
Probability system is in a working state such that components i and j are

repair critical
Gmkj Uq Probability system is in a working state such that components i and j are

failure critical and the failure of either 1 or j is sufficient to cause system
failure

Gmý,
j
Cq) Probability system is in a working state such that component i is failure

critical and component j is repair critical and the failure of i or the repair of

alone is sufficient to cause system failure

ix

,,
Uq Probability system is in a working state such that component i is repair GMv

j

critical and component j is failure critical and the repair of i or the failure of j

alone is sufficient to cause system failure
Gmi., Cq) Probability system is in a working state such that components 1 and j is r

repair critical and the repair of either i or j alone is sufficient to cause
system failure

h(t) Conditional failure rate
Ici Component criticality measure

IF ci Component failure criticality measure

III ci Component repair cribcality measure

Fussell-Vesely's measure of component importance

IF FVI Fussell-Vesely's measure of component failure importance

iR Fussell-Vesely's measure of component repair importance N
1FV(Ci) Fussell-veselys measure of cut set importance
'FV(Ei) Fussell-Vesely's measure of prime implicant set importance

n IF (Ci Measure of cut set frequency importance

IF (E Measure of prime implicant set frequency importance

; Ni Barlow and Proschan's measure of Initiator importance

IF INi Component initiator failure importance

iR
INI Component initiator repair importance

IEI Component enabler importance

IF El Component failure enabler importance

ill
El Component repair enabler importance

Ii ((P) Birnbaum's structure measure of importance

kmAx Culling order
L Ordered list of basic events
n Number of components in a system; all nodes encoding event 1 in a BDD
n. Number of minimal cut sets in a system
np Number of prime implicant sets in a system

x

P2 Meta-products structure encoding prime implicant sets for which x is

irrelevant

Pi Meta-products structure encoding prime implicant sets for which x is failure

relevant
PO Meta-products structure encoding prime implicant sets for which x is repair

relevant
P Probability

P(Cj) Probability of existence of minimal cut set i

P(Eý) Probability of existence of prime implicant sets i

P(E)j) Probability of occurrence of minimal cut set I

Prx, Probability of the path section from the root vertex to the node)ý in the

BIDD

Pol Probability of the path section from the one branch of a node encoding Y. to
Xj

a terminal one node in the BDD

Poo. Probability of the path section from the zero branch of a node encoding);. X1
to a terminal zero node in the BDD

pol Probability from the one branch of node)q. to the node)q, excluding the Xi-Xj

probability of node)q

Poo Probability from the zero branch of node Y4 to the node)q excluding the
N Xj

probability of)q
POIC Probability of the path section from the I branch of node)ý- to a terminal 1

Xi

node via only one or zero branches of non-terminal nodes (excluding the

probability of x,)

poo. r. Probability of the path section from the 0 branch of the node Y, to a terminal
X!

I node via only one or zero branches of non-terminal nodes (excluding the

probability of Y,)

Probability of the path section from the consensus branch of the node); - to POCXI

a terminal I node via only one or zero branches of non-terminal nodes
(excluding the probability of x,)

poc Probability from the consensus branch of node Y, to the node)q excluding)q Xj

the probability of X-

xi

pi(t) Component availability
PMIN Probability culling value

PXi Probability of basic events encoded in the path from the root vertex to the

current node x,
Om,, j

(t) Modified unavailability function for component i and

Q Md. -
Modified unavailability function fro minimal cut set Cj'

Q, r(t) System unavailability function (failure probability)
qi(t) Component unavailability (failure probability)
qc, Minimal cut set unavailability
R Risk
R(t) Reliability function
T1.1 Failure relevance or irrelevance of component 1
Ti-O Repair relevance or irrelevance of component I
TW-- Irrelevance of component i

W, O(t) System unconditional failure intensity

W#) Component unconditional failure intensity

Wci Minimal cut set unconditional failure intensity
Wsys(O. t) Expected number of failures during the interval (0,1)

vi(t) Component unconditional repair intensity

A Binary indictor variable for component states
Z(g) Probability of the paths from the root node to a terminal 1 node that do not

pass through a node encoding xi
A Conditional failure rate
p Conditional repair rate

n Ej Prime implicant set i of order n

pi(-x) Binary indicator function for each minimal cut set

(P Ux Structure function

(PI Failure criticality function

(Pr I Repair criticality function

xii

Chapter 1: Introduction

1.1 An Introduction to Risk and Reliability Assessment

Risk is an inherent element of all industrial processes. Accidents such as Piper

Alpha, Bhopal and Chernobyl, which resulted in massive loss of human life,
demonstrate the need to eliminate hazards as far as possible. It is for this reason that

risk and reliability assessment has become an integral part of the safety regulations
for many industries.

Quantitative reliability assessment became a major interest during the Second World

War, when work was carded out to improve the reliability of the German missile

systems. Since this time numerous techniques for assessing the risk and reliability of

hazardous systems have been developed to meet the needs of industries such as

the nuclear industry and the offshore industry.

Reliability assessment techniques are concerned with calculating the probability or
frequency of system failure. There are a number of measures that can be used to

quantify system failure, including the system reliability, availability, the unconditional
failure intensity and the conditional failure intensity.

The reliability of a system, R(t), is defined as the probability that the system operates

without failure for a stated period of time under specified conditions. The unreliability

of a system, F(t), is defined as the probability that the system has failed at least once
in the interval [O, Q given that it was working at t--O. Since reliability is probabilistic:

F(t)+R(t)=l

The system availability, A(t), is defined as the fraction of total time that a system is

able to perform its required function. The unavailability of a system, Qsys(t), is the

complement of the system availability and is defined as the probability that the

system is in a failed state at time t. Again since availability is probabilistic:

A(t)+Qsys(t)=l

1

The unavailability of a system is a relevant measure when system failure can be

tolerated. For hazardous industries, system failure may be catastrophic and in such
cases system unreliability should be assessed as opposed to system unavailability.
The unconditional failure intensity, w(t), is defined as the probability that a system
fails per unit time at t given that it was working at time t=O.

The conditional failure rate, Jk(t), is defined as the probability that a system fails per

unit time at t given that it was working at time t and time 0.

Reliability assessments are often performed as part of a quantified risk analysis. The
risk associated with a given incident, R, can be defined quantitatively as the product
of the consequence associated With the incident, C, and the probability or frequency

of the incident, P.
R=C-P

Although the consequence of an incident is generally measured in terms of the

number of fatalities, the techniques for modelling the outcome of this incident are
industry dependent. However, reliability assessment techniques, which evaluate the

probability or frequency of an incident, are standard across all industries. Many such
techniques have been developed; the most widely used of these is Fault Tree
Analysis (FTA), which will be considered in more detail in section 1.2.

Once the risk of an incident has been quantified it must be decided if it is
macceptable" or whether the risk is too high and so improvements should be made to
the system reliability or the consequences mitigated. It is important to note that

although the risk of a hazardous event can be reduced, usually it can never be

eliminated completely, regardless of the money invested in its improvement.

1.2 An introduction to Fault Tree Analysis

FTA is a well-known and widely used deductive technique - developed by Watson in
the early 1960's. This technique can be used to assess the reliability of a wide variety
of systems. The first stage of FTA is to identify the mode of system failure to be

analysed. There may be a number of different modes of system failure; if this is the

case a separate fault tree must be constructed and analysed for each mode
identified.

2

A fault tree diagram expresses the causes of a particular mode of system failure also
known as the top event. The top event of the fault tree is developed by branches

leading to sub-events; these sub-events are then continually refined until the
branches are terminated with component failure (or repair) modes.

The events in the fault tree are connected by logical operators (called gates)
according to the underlying logic of the system. The three fundamental gate types

used in the fault tree are the AND gate, the OR gate and the NOT gate. Although

other gate types exist such as the XOR gate and the VOTE gate, these must be

expressed in terms of the AND, the OR and the NOT gate before analysis can be

performed. The commonly used gate and event types are given in tablesI. 1 and 1.2

respecbvely.
Gate Symbol Gate Type Causal Relation

AND gate
Output occurs if all input

events occur simultaneously

OR gate

Output event occurs if at
least one of the input events

occur
Output occurs if the input

NOT gate
I does not.

Table 1.1: The Three Funclamental Uate 5yMbOlS

Event Symbol Meaning of Symbol
Intermediate event further developed by

a gate
0 Basic event

i ame i. z: i ne uommon tvent -jymt)ois

An example fault tree is given in Figure 1.1. The top gate is an AND gate which
means that both of the inputs to this gate must occur for the top event to occur. Gate
GI and G2 are both OR gates thus only 1 of the inputs to this gate is required to

occur to cause the output event. The AND gate, the OR gate and the NOT gate
combine events in exactly the same way as the Boolean operations of 'union',
'intersection' and 'complementation'

3

A fault tree can be classified as coherent or non-coherent according to its underlying
logic. If during fault tree construction the failure logic is restricted to the use of the

AND gate and the OR gate the fault tree is said to be coherent. If however, the NOT

gate is used or directly implied by the XOR gate the resulting fault tree can be non-

coherent. The definition of coherency will be considered in more detail in section
1.3.1.

1.2.1 The Analysis Procedure

FTA can be split into two stages, the first is qualitative analysis and the second is

quantitative analysis. Qualitative analysis involves the identification of all the possible
causes of system failure. For coherent fault trees each possible cause of system
failure is known as a minimal cut set. When dealing with a non-coherent fault tree the

causes of system failure are defined by the concept of prime implicant sets.

Quantitative analysis involves the quantification of various parameters relating to the

system availability and reliability. The main parameters calculated during

quantification are the system unavailability, the unconditional failure intensity and the

expected number of system failures in a given interval. Another key part of the

quantification process is analysing component and minimal cut set (or prime
implicant set) importance.

4

Figure 1-1: Simple Fault Tree Diagram

1.2.1.1 Importance Analysis

When assessing a system, its performance is dependent on that of its components.
Some of the system components will play a more significant role in causing or

contributing to system failures than others. Importance measures can be used to

numerically rank the contribution of each component or basic event according to the

susceptibility of the system to the occurrence of this event

Birnbaum introduced the concept of importance and developed a measure of

component reliability 1969 [1]. This measure is denoted by GiCq) and is defined as

the probability that the system is in a critical state at time t for component i, i. e., the

system will fail if component i fails. An expression for this measure is given below:
GiCq)= Qsys (Ii, q)-Qsys(oi, g)

Where Qsys (Ij, q) is the probability the system has failed and component i is failed

and Qsys (0j, q) is the probability the system has failed and component i is working.

This field has since received a great deal of attention and a variety of measures have

now been developed for assessing both component and minimal cut set importance.

Birnbaum's measure provides the foundation for a number of these measures.

1.3 Structure Functions

A binary system can exist in only one of two states, either a working or a failed state.
The system is composed of components that must also exist in either a failed or
working state. A binary indicator variable xi is associated with component i where:

xi =1 Component fails

xi =0 Component works

Since the system state can be defined in terms of the its component states it is

possible to define a function, (p(x), to express the system state as follows:

(p(x) = 1, if the system is failed

TCx) = 0, if the system is working

Where X ý-- (XI, X2 xn) is a vector of all n component states and (p(x) is known as

the structure function.

5

1.3.1 Definition of Coherency

Fault tree structures can be categorised as either coherent or non-coherent. If during

fault tree construction the failure logic is restricted to the use of the AND gate and the
OR gate the fault tree is said to be coherent If however, the NOT gate is used or
directly implied, the fault tree can be non-coherent. A more precise definition of
coherency can be obtained by considering the structure function of the fault tree [2].

A fault tree is coherent if its structure function, qý(x), complies with the definition of

coherency given by the properties of relevance and monotonicity. The first condition

requires that each component is relevant, this means that each component

contributes to the system state.

qp(li, A) #, P(Oi, X) For some x

The second condition requires the structure function of the fault tree to be

monotonically increasing, i. e. non-decreasing.

(p(li, X) >- q)(0i, g) vi

Where:

(P(li,?!) = (P(xl. ---, Xý-lAXI+I, ---, Xn)

(P(Pi'20 -, 'ý 9(Xi, ---, xi-l'o, Xl+l Xn)

The structure function of a fault tree is monotonically increasing (non-decreasing) if

as the state of a component deteriorates the system state either remains the same or
also deteriorates. The three possibilities are shown in figure 1.2.

ID

1

0

Xi

cp
1

0

cp
1

0

X1 X1

Figure 1.2: Non-decreasing Structure Functions

6

A structure function of a non-coherent system is shown in figure 1.3. This system is

non-coherent for component i, hence the system is in a failed state when component
i works and it is restored to a working state when component i fails.

I

0

0
Figure 1.3: Non-coherent Structure function

1.4 An Introduction to The Binary Decision Diagram Method

An alternative technique for analysing fault trees is the Binary Decision Diagram
(BDD) method, which was introduced by Rauzy in 1993 [3,4,5]. Conventional FTA
techniques can be computationally intensive and sometimes inaccurate. The BDD

method has been shown to enable extremely efficient qualitative analysis and
accurate quantitative analysis of coherent fault trees. A further advantage of this
technique is that the minimal cut sets are not required for quantification.

The first stage of this method is to convert the fault tree diagram to a BDD, known as
the SFBDD because it encodes the structure function of the system. This BDD can
be used to quantify the system exactly and efficiently. However, the SFBDD must be

minimised before the minimal cut sets of the fault tree can be identified.

1.5 Cuffent Limitations

Whilst numerous measures of importance have been developed for analysing
component and minimal cut set importance, the majority of these measures are

strictly for the analysis of coherent fault trees. If these measures are employed to

analyse non-coherent fault trees the results can be misleading and inaccurate.

The Binary decision diagram technique has been shown to enable extremely efficient
and accurate analysis of coherent fault trees. More recently Rauzy and Dutuit

extended this technique to enable full qualitative analysis of non-coherent fault tree

7

structures [6,7]. Although this technique is significantly more efficient that

conventional FTA techniques, it is necessary to compute two separate BDD's to

identify the prime implicant sets exactly. Furthermore for complex fault trees it is not

always possible to obtain a full list of prime implicant sets. To overcome this problem
Rauzy developed a technique, which can be used to cull the prime implicant sets

above a given order [15]. However, at present there are no techniques for culling the

prime implicant sets according to their frequency or probability.

Although the system unavailability of a non-coherent fault tree can be calculated
using the BDD technique, further quantification is not possible at present. Hence

conventional FTA techniques must be employed making approximations unavoidable
even for moderate sized trees

1.6 Objectives

The aim of this thesis is to further develop the current techniques available for the

analysis of non-coherent fault trees. There are three main areas for consideration;
importance analysis, efficient qualitative and quantitative analysis and culling
techniques for partial analysis. Specific objectives for each of these areas are given
below:

Importance Analysis:
Modify LamberCs measure of enabler importance and Barlow and
Proschan's measure of cut set frequency importance such that they are

consistent with the definitions provided.
Develop suitable measures for assessing the component and prime
implicant set importance of non-coherent fault trees.

Qualitative and Quantitative Analysis
Develop an alternative technique for qualitative analysis using the BDD

method.
Develop efficient techniques for quantification using the BDD technique.

Culling Techniques
Develop efficient techniques for culling the prime implicant sets of a non-

coherent fault tree according to their probability or frequency.

8

Chapter 2: Conventional Techniques for Coherent Fault Tree Analysis

2.1 Introduction

Risk and reliability assessment has become an increasingly important part of
analysing and improving system safety. Numerous techniques for assessing system
reliability have been developed since the Second World War, one such technique is
Fault Tree Analysis (FTA).

FTA is a well known and widely used deductive technique conceived by Watson in

the early 1960's to enable reliability assessment of a variety of systems. A fault tree

provides a complete description of all the possible causes of a particular system
failure mode in terms of the contributions of component failures. The system failure

mode is also known as the top event, and appears at the top of the fault tree. This

event is then continually developed into sub-events to show the possible causes of
system failure until basic component failure events are encountered.

FTA can be split into two stages. The first stage is qualitative analysis, which aims to
identify the causal relationships between the system components. The second stage
is quantitative analysis, which aims to quantify various system parameters relating to
its reliability and availability.

This chapter considers in detail the two stages of FTA of coherent fault trees. The
technique will then be evaluated, highlighting its advantages and disadvantages.

2.2 Qualitative Analysis

2.2.1 Introduction

Qualitative analysis involves the identification of all the possible causes of system
failure. System failure can usually occur in several unique ways, each possible cause
of system failure is referred to as a system failure mode and will involve the failure of
individual components or combinations of components. Failure modes can be
defined by the concept of a cut set, where a cut set is a collection of basic events
such that if they all occur the top event also occurs.

9

Fault trees for industrial systems are generally very large with thousands of cut sets.
However, it is only the minimal cut sets that are of interest. A cut set is said to be

minimal if the combinations of basic events are necessary and sufficient to produce
system failure, i. e. if any one basic event is removed from a minimal cut set the top
event will not occur.

A minimal cut set is the smallest combination of component failures, which, if they all
occur will cause the top event to occur.

The order of a minimal cut set is determined by the number of components within the

set, for example a one-component minimal cut set is said to be first order and a two-
component minimal cut set is said to be second order. Generally the lower order
minimal cut sets contribute most to system failure.

The top event, T, can be expressed in terms of its minimal cut sets as follows:

T=C, +C2 +----+Cri (2.1)

Where Cl, i=l
...... n, are the minimal cut sets and Y represents the logical OR

operator. Each cut set consists of one or more basic events, thus a general Wh -order
cut set can be expressed as follows:

Cl "I *X2* *Xk (2.2)

Where X,, l=j k, are basic component failures and V represents the logical AND

operator.

Consider the following logic expression of the top event, T:

T=B+A. C+A-D+C. D. E

There are four minimal cut sets, one first order, 1113) two second order, IA, C)and
(A, D) and one third order, JQD, E).

10

2.2.2 Obtaining the Minimal Cut Sets of a Coherent Fault Tree

2.2.2.1 Boolean Algebraic Laws

Traditionally the minimal cut sets of a coherent fault tree are obtained by converting a
logic expression for the top event into disjunctive normal form, also known as minimal
sum-of-products form. The logic expression is usually obtained using either a top-
down or bottom-up approach, and then Boolean algebra laws are used to remove

any redundancies in the expression leaving it in the required minimal form. The

Boolean algebra laws used for coherent fault trees are given below.

1. Commutative laws:
A+B=B+A
A-B=B-A

Associative laws:
(A+B)+C=A+(B+C)

(A-B). C=A-(B-C)

3. Dist(ibutive laws-

A+(B-C)=(A+B)-(A+C)
A-(B+C)=A-B+A-C

4. Identities:
A+O=A A+I=l
A-0=0 A-I=A

5. Idempotent Laws:

A+A=A
A-A=A

Absorption laws:

A+A. B=A
A-(A+B)=A

11

2.2.2.2 The Top-Down Approach

The top-down approach is commonly used to obtain the minimal cut sets of a

coherent fault tree, by developing a Boolean expression for the top-event completely
in terms of basic component failures. This approach starts with the top gate and

expands each gate by substituting in the inputs that lie directly below it. This process
is repeated until the expression has only basic component failures. The Boolean

reduction laws introduced above are also applied where possible to simplify the

expression.

The basic gate types that occur in a coherent fault tree are the AND gate and the OR

gate, which are equivalent to the intersection and union operations of Set Theory.

The minimal cut sets of the fault tree in Figure 2.1 can be obtained using the top-

down approach as follows.

Figure 2.1: Fault Tree Diagram

12

Starting with the top gate which is an AND gate with two inputs G1 and G2 the

following expression is obtained:

Top=GI-G2

G1 and G2 can be expressed as follows:

GI=G3+d

G2=b+c

Hence Top becomes:

Top = (G3 + dXb + c)

Expanding this expression gives:

Top= G3-b+G3. c+b. d+c-d

Expanding G3 = G4 -a Top becomes:

Top= G4. a b+G4. a c+b-d+c-d

Expanding G4 =c+e results in the follomfing expression:

Top= (c+e)a. b+(c+e)a. c+b. d+c. d

Expanding this gives the following expression:

Top= a. b. c+a. b. e+a. c-c+a-c. e+b. d+c. d

Finally simplifying this expression using the Boolean reduction laws, A-A=A and
A+A-B=A the logic expression given in equation (2.3) is obtained for the top

event.
Top= a b. e+b. d +a c+c-d (2.3)

The minimal cut sets can be extracted from the minimal disjunctive normal form given
in equation (2.3). There are four minimal cut sets for this example:

la, b, e), lb, d), ý, c), (c, d)

13

2.3 Quantitative Analysis

2.3.1 Introduction

Quantitative analysis involves quantification of the system availability and reliability
parameters and analysis of component and/or minimal cut set importance.

Component and minimal cut set importance will not be considered in this chapter
instead they will be the focus of chapters six and seven.

The traditional methodology used for quantitative analysis is known as "Kinetic Tree

Theory" and was developed by Vesely [8]. This methodology enables time-
dependent analysis of the reliability characteristics of a system and forms the basis

for the majority of commercial fault tree packages. Although the development of
Kinetic Tree Theory saw a major advancement in the field of reliability analysis, it

does have its limitations; even for moderate sized problems approximations are
unavoidable.

2.3.2 Component Quantification

Before considering quantification of system parameters it is important to introduce

the various parameters relating to component performance. These parameters are

expressed in terms of the components failure probability and need to be evaluated
before the system can be quantified. The failure and repair time distributions for each

component can be assumed to have the density functions, f(t) and g(t). Component

performance for repairable components can be measured in terms of the

unconditional repair and failure intensifies and the conditional repair and failure

intensities.

The unconditional failure intensity, w(t), is defined as the probability per unit time that

a component fails at time t given that it was working at t=O.

The unconditional repair intensity, v(t), is defined as the probability that a failed

component is repaired per unit time at t given that it worked at t--O.

14

Andrews and Moss [9] derived integral equations whose solution yields the

unconditional failure intensity and the unconditional repair intensity. The equations

will not be derived, just stated, but a detailed explanation can be found in Andrews

and Moss.
t

W(t) =f (t) + ff (t - U)v(u)du

t0
(2.4)

V(t) =
fg(t

- U)w(u)du
0

The conditional failure rate, A(t), is defined as the probability that a component fails

per unit time at t given that it was working at time t and at t--O.

The conditional repair rate, p(t), is defined as the probability that a component is

repaired per unit time t given that it failed at time t and was working at t--O.

The difference between the unconditional failure (repair) intensity and the conditional
failure (repair) rate is that the former is the failure (repair) rate based on the whole

population whereas the latter is based only on those components working (failed) at
time t.

The integral equations given in equation (2.4) can be solved using either Laplace

transforms or numerical methods depending on the distributions defining f(t) and g(t).
Once they have been solved and the unconditional failure and repair intensities are
known, the component unavailability q(t) can be calculated. This is defined as the

probability that the component is in a failed state at time t and is calculated as
follows:

t

q(t)= ýw(u)-v(u)ýu (2.5)
0

If a component has failure and repair density functions of, f(t)=, \e-" and

g(t)=pe--P', respectively, then Laplace transforms can be used to calculate the

component unavailability to give:

q(t) = -1- (1 - exp[- Q\ + pýD (2.6)
A+p

15

2.3.3 Calculating the Top Event Probability

Calculating the top event probability, also known as, the system unavailability is a

fundamental part of the quantification process. Three calculation procedures will be

considered below in sections 2.3.3.1-2.3.3.3. Each procedure requires the

identification of all the minimal cut sets during qualitative analysis for an exact

calculation of the top event probability.

When calculating the top event probability for large fault trees approximations are

often unavoidable for two reasons; firstly, it is not always possible to determine a full

list of minimal cut sets due to the computational inefficiency of qualitative analysis.
Secondly, the number of terms required to calculate the top event probability is

dependent on the number of minimal cut sets. It is not possible to evaluate all of

these terms for fault trees with a large number of minimal cut sets. These

approximation methods are discussed in section 2.3.3.4.

2.3.3.1 The Structure Function Method

One method for calculating the top event probability uses the structure function,

which was introduced in chapter one. Since the structure function, (p(x), defines the

state of the system it is also possible to express the structure function in terms of an

indicator function pi for the minimal cut sets, Ci, 1=n:

(2.7)

If all the minimal cut sets are independent the probability of the top event can be

obtained by taking the expectation of the structure function:

Q Sys
(t) = E[(p(x)] (2.8)

In this case, E[(P(jx] = 4p[E(x)], however, when the minimal cut sets are not

independent, E[(P(-x)]: A (P[E(x)] - To calculate the top event probability exactly the

structure function must be fully expanded and reduced using the Idempotent law,

xjxj = xi, before the expectation is taken.

16

To demonstrate how this approach is used to calculate the top event probability,

consider the following Boolean expression for the top event.

Top= ab+bc+ac (2.9)

From equation (2.7) the structure function can be expressed as follows:

(P(X-) 7'-- 1- (1
- XaXb Xl

- XbXr. Xl
- XaXc)

Expanding the brackets and applying the Idempotent law gives the following result:

(P(X-) " XaXb + XbXc + xaxc - 2xaXbXc

Supposing the probability of occurrence for each component is 0.1, the top event

probability is obtained by taking the expectation of the structure function as follows:

Qsys(t)= E[(P(x)] = E[X. Xb]+E[XbXc I +E[xxcl-2-E[X. XbXc I

Qsys(t)= 0.01 +0.01+0.01-0.002 = 0.028

This method is not an efficient means of calculating the top event probability when

there are dependencies between the minimal cut sets. An alternative approach,

which employs Shannon's theorem, will be considered in section 2.3.3.2.

2.3.3.2 Shannon's Theorem for Calculating the Top Event Probability

Shannon's theorem states:
A Boolean Function, f Cx), where, A` (XIv X2P ... fxn) can be expressed as:

f (-x) = xif (ii, 1) + Xif (oi, 2ý) (2.10)

Where:

X1 =1-xi
f(li, j) = f(x,,..., xý-j11, xi+j,..., Xn)

f(0!
-!

)--'! f(Xl,
---, Xi-l, O, Xi+l, ---, Xn)

f(li, X) and f(Oi, j) are the residues of f(x)

17

Shannon's theorem [10] can be employed to calculate the top event probability of
fault trees Wth repeated events more efficiently than the method considered in the

previous section.

From equation (2.8):

Q Sys (t) = E[(p(x)]

Now lefting qj = E(xj) and using Shannon's expansion in equation (2.10):

Qsys(t)= qjEý(lj, q)j+(1-qj)Eý(0j, q)j (2.11)

The expectation cannot be taken until there are no powers of indicator variables in

the residues. Thus Shannon's expansion is used to expand the structure function

with respect to the most repeated event until all powers of indicator variables in the

residues are eliminated.

To demonstrate how this method is applied, consider the structure function for the

top event, Top, given by equation (2.9):

(P UX
-"2 1- (I

- XaXb X1
- XbXc Xl

- XaXc)

This expression contains repeated events, so Shannon's theorem is used to pivot the

structure function. Firstly pivoting for event x.:

(P(X-)-2 Xa[1-(1-XbX1-XbXC X'
-XC)1+(1-Xa

X'
-(1-XbXC)]

There is still a repeated event, xb, in the first term:

9(-X) -": Xa K (1) + (1
- Xb XXC)] + (1

- Xa XXbXc 1

Now substituting in probabilities for each event, P(X,) ý- P(Xb)-ý P(Xc) ý-- 0-1 , gives:

Qsys(t)= 0.1[0.1 + 0.9 x 0.11+ 0.9 x (0-1 x 0.1) = 0.0028

2.3.3.3 The Inclusion-Exclusion Expansion Method

The inclusion-exclusion expansion is commonly used to calculate the top event

probability. One advantage of this approach is that it produces the correct result for

18

trees with repeated events, provided the assumption that basic events are
independent is appropriate.

Consider a fault tree with n minimal cut sets, Cj, i =t...... n. The top event exists if at

least one minimal cut set exists:
n

Top= C, +C2 +---+Cri =
UCi (2.12)

W

The top event probability is calculated as follows:

Qsys (t) = P(cl (2.13) u P(cl + C2 + --- + Cn)
W

This result is expanded below:

nn ý-l
ZPA)-fal: p , rlC, +.. '+(-lr-IP(Cl rIC2 n ... I-'

Cn) QSYS (t)'
W 1=2 1=1

(2.14)

This is known as the inclusion-exclusion expansion and if it is evaluated fully for any
coherent fault tree it generates the exact top event probability.

To illustrate how the top event probability is calculated using the inclusion-exclusion

expansion, consider again the expression for the top event given in equation (2.9).
The top event probability, Osys is given below:

Osys (t) = P(TOP) = P(a -b+b-c+a- c)

Expanding this using the inclusion-exclusion expansion gives:
Qsys (t) = qaqb + qbqc + qaqc - qaqbqc - qaqbqc - qaqbqc + qaqbqc

Now suppose each basic event has probability of occurrence of 0.1, then the top

event probability is:

QSYS (t) = (0. f+ (0. JY + (0. lf -
(0. lr -

(0.1)3
-

(0.1) 3+ (0.1? = 0.0028

19

Although this approach generates an exact result, as shown by this simple example
the evaluation of each term in the inclusion-exclusion expansion can be extremely
computationally intensive even for moderate sized trees. For fault trees with
hundreds or even thousands of minimal cut sets, full evaluation of this expansion is
beyond the capabilities of even the most powerful computers. Consequently

approximations that produce acceptably accurate results are essential.

2.3.3.4 Approximate Methods

In practise approximate methods for calculating the top event probability are

unavoidable. Three of the main approximate methods for calculating the top event

probability are considered below, these are: the Rare Event Approximation, the lower

bound approximation and the Minimal Cut Set Upper Bound.

The Rare Event Approximation

The Rare Event Approximation is the simplest approximation that can be obtained for
the top event probability. This approximation consists of just the first term of the
inclusion-exclusion expansion and is an upper bound for the top event probability:

Qsys(t)-r. ZPA)
i=l

The name Rare Event Approximation is given to this upper bound because it is only
accurate if component failure events are rare.

Note: If Qsys (t) is truncated with an odd number of terms, an upper bound for the

top event probability will always be obtained.

Lower Bounds for the Top Event Probability

If the inclusion-exclusion expansion is truncated with an even number of terms a
lower bound for the top event probability is obtained. The more terms that are

evaluated the more accurate the approximation will be. One possible lower bound for

20

the top event probability is calculated by truncating the inclusion-exclusion formula

after two terms:

P(C 1n Ci):!; Q SYS (t) i)-I: zp (2.16)
W 62 j=l

The Minimal Cut Set Upper Bound

The Minimal Cut Set Upper Bound is a more accurate upper bound than the Rare
Event Approximation. In fact if all the minimal cut sets are independent the Minimal
Cut Set Upper Bound calculates the exact top event probability. This upper bound is
derived as follows:

System failure exists if at least one minimal cut sets exists:
P(system failure)= P(at least one minimal cut set exists)

n
P(Systemfailure): 51-rjP(no minimal cut set exists)

W
Thus:

Q Sys
(t), 1 -1"1

[1
-p(c,)l (2.17)

W

The main disadvantage with all of these approximations is that they are only accurate
when basic event failures are rare.

2.3.4 The Unconditional Failure Intensity

Another important system parameter to calculate during quantification is the
unconditional failure intensity, wsys(t). Since, having determined wsys(t) the

expected number of system failures in a given interval can be calculated by
integrating wsys(t). The unconditional failure intensity is defined as the probability
that a system fails per unit time at t given that it was working at t--O. The top event will
occur between t and t+ dt provided none of the minimal cut sets exists at t and one
or more of the minimal cut sets occurs in the interval, [t t+ dt). It is possible for more

21

than one minimal cut set to occur in the small time element dt, because a basic

event can be common to more than one minimal cut set.

n
Wsys (týt = P[AU Bi

61

n
Where, A is the event that none of the minimal cut sets exist at time t, A= nui 61 n
And, ui denotes the i th minimal cut set does not exist at time t. And, UE)j is the event

W

that one or more minimal cut sets occur in the interval, ft t+ dt).

Given P An =I- P(A) equation (2.18) can be expressed as follows:

wsys(t)dt = P[Qeil- P[ei] (2.19)

Considering the two terms of equation (2.19) separately. The first terrn represents the

contribution from the occurrence of one or more minimal cut sets and will be denoted

by, w(sly)s(t). The second term is a correction term representing the contribution of

minimal cut sets occurring whilst other minimal cut sets already exist, it will be

denoted by, w (2) (t). Equation (2.19) becomes: SYS

w SYS
(týt

=w Sys
Ot - wsys Ot (2.20)

The first term, the occurrence of at least one minimal cut set can be expanded using
the inclusion-exclusion expansion:

nn
w(1) (t)dt = SYS

W 42 J-1

(2.21)

n
Where, j: P(Gj) is the sum of probabilities that minimal cut set 1 fails in the interval

1=1
[t t+ dt).

22

Since dt is a small time element only one basic event can occur in the interval
[tt+dt). Hence, the occurrence of more than one minimal cut set in the interval

[tt+dt) must be the result of the failure of a component common to all the failed

minimal cut sets. In general if k is the number of common components in the m

minimal cut sets:

If k=O

P[Ol (102 1-1 t-ý 19in Iý0

If k>O

P[el n 02 n ... n eml = WA(LBI,..., Bk)dtl-IQA(B)

Where IIQA(B) is the product of the probabilities of the component failures that

exist in at least one of the m minimal cut sets but that are not common to them all.

And WA(tBj,... 'Bk)
is the failure intensity for a set, which consists of k common

components.

The second term, which represents the contribution of minimal cut sets occurring
whilst other minimal cut sets already exist, can also be expanded by the inclusion-

exclusion expansion.

w (2) (týt = EP(Bi r)T)-ZYP(Oj nE)j rl; k)+... + -'P(E), ri ... On nT) SYS
(7 V

W 62 j--l

(2.22)

n
Since U ui each term in equation (2.22) can be expanded again, a general term

1=1

from this equation is:

... n em P(F. el rj ... rjOM nui PI el r, I
ki n

. J: E P(O' r-'... r-, OM n -UI nul)+... IQ J-1

+ (- 1r P(61 r) ... r)Om oul t.)U2 r) u,,

(2.23)

Where 01 denotes the occurrence of minimal cut set i in the interval [tt+dt) and

u, denotes the existence of minimal cut set i at t.

23

The general termP(ej,, **, em, uj, *IUk
)

denotes the probability that minimal cut sets 1

to k exist at time t and minimal cut sets I to m occur in the interval [tt + dt). Thus the

general term given in equation (2.23) can be expressed as follows:

P(O, n ... nem nul n ... nUjýwB(tBI, B2 B, ýtrIQ13Cq)

(2.24)

Where w, 3(tB,, B2, ---, Br) is the failure intensity for a set of all component failures,

which are common to all of the minimal cut sets E)1,192,..., E)m but not in sets

Ul, U2,. '., Uk. And rjQB(B) is the product of the probabilities of component failures,

which exist in any minimal, cut set u, together with component failures that exist in

one or more of the minimal cut sets OItO2, -. -, 6m but are not common to them all.

The expected number of system failures in time t, which is denoted by, Wsys (0, t)

can be calculated by evaluating the integral of the system unconditional failure
intensity over the specified time interval.

t
wsys(o, t)= fWSYS(u* (2.25)

0

To illustrate how the unconditional failure intensity and the expected number of
system failures are calculated, consider a fault tree with three minimal cut sets,
ja, bj, jIb, cXa, cj. Table 2.1 summarises the failure probabilities and the unconditional

failure intensities of the basic events.

Basic Event Failure Probability Unconditional Failure

Intensity

A 0.01 6x 10-5

B 0.01 5X 10-4

C 0.01 _7 3x 10-3

Table 2.1: Component Failure Probabilities and Unconditional Failure Intensities

24

Firstly the minimal cut set parameters are calculated. The unconditional failure

intensity of a minimal cut set C, is calculated as follows:

nn
wc, =J: wjrlqi (2.26)

JA ! =i
ý. I*j

Also, the probability that a minimal cut set exists at time t is calculated using equation
(2.27):

n
qc = rjqi

61
(2.27)

The follovving results are obtained for the three minimal cut sets, ý% b), 1b, cHa, c):

WC, Waqb + Wbqa qc, = qaqb

WC2 Wbqc + wcqb qC2 = qbqc

WC3 Waqc + wcqa qC3 = qaqc

Calculabng w(S'Y)S(t):

33 ý-l
w (1)

Sys
(t)dt P(8j) - P(Oi r) ej

61 1=2 j--l

)+ p(ol '") E)2 rl 03)

Given: -W"-

33
IP(Oi)=2, wc, dt =

(Waqb +Wbqa +Wbqc +wcqb +waqc +wcqaýt

ý--l I-ml

3W
q, + wcqaqb I: I: P(E)ir"laj)"'ý(Wbqaqc+Waqb

1=2 J=l

P(el ("' 02 t" (W =0

Hence:

WO) SYS
(t)=Wa(qb

+qc -qbq.)+Wb(qa +qc -qaqc)+wc(q. +qb -qaqb)

Now calculating w
(2) (t):
SYS

w (2)
3n

; ý)_
3Wp0i

no ; K)+ P(e
, Sys

Z P(E)i zz (jI
t-l()2 rl()3 nT)

1-1 62 j--l

25

Given:

3
2: P(Oi r); K)=(2waqbqc +2Wbqaqc +2wcqaqbýt
i--l

3 1-1
1: 2: P(ol n Oj r); ý)

=(w. qbqc + Wbqaqc + wcqaqb
i=2 j=l

P(E)l () ()2 (-1 E) 30

Hence:

w (2)
aqbqc SYS w +Wbqaqc +wcqaqb

Thus from equabon (2-20):

Wsys(t)ý'-Wa(qb +qc -2qbqc)+Wb(qa +qc -2qaqc)+wc(qa +qb -2qaqb)

Substituting in the failure probabilities and unconclitional failure intensifies of the

basic events given in table 2.1, the follom(ing result is obtained for the unconditional
failure intensity.

wsys(t)=7.07xlO-s

Having calculated the unconditional failure intensity the expected number of system
failures in a given time period, say one year (8760 hours) can be calculated as
follows.

8760
Wsys(0,8760)= fwsys(t)dt=(7.07xlO-')x8760=0.619

0

2.4 Evaluating the Fault Tree Methodology

FTA has both advantages and disadvantages. The main advantage of the technique
is that it assesses each mode of system failure systematically producing a fault tree,

which yields a complete diagrammatic description of the particular system failure

mode. Having obtained the fault tree, both qualitative and quantitative analysis can
be performed. This enables the analyst to identify the exact causes of system failure
(minimal cut sets), and then calculate the probability of occurrence and the frequency

of system failure.

26

However, a major disadvantage of this technique is that it can be inefficient, even the

most powerful computers may not be able to obtain all the minimal cut sets,

especially for large trees with repeated events. Culling techniques can be employed
to overcome this problem but they in turn have the disadvantage of producing only a

partial list of minimal cut sets. This leads to problems in quantification, since the

minimal cut sets are required to quantify the system. If approximate methods are
employed during quantification, results can be misleading and inaccurate unless
component failures are rare.

An alternative technique known, as the Binary Decision Diagram technique has been
developed to overcome the deficiencies of FTA. This technique has been found to be

more efficient in terms of qualitative analysis, and also enables exact quantification of
the system parameters. This technique will be the focus of chapters three and five.

2.5 Summary

Whilst FTA is a systematic technique for the analysis of a particular mode of system
failure, the procedures for both qualitative and quantitative analysis are inefficient,

making approximations unavoidable. These approximations can be inaccurate. The
Binary Decision Diagram technique offers an alternative means of qualitative and

quantitative analysis, which has been found to be more efficient and exact.

27

Chapter 3: The Binary Decision Diagram Method for the Analysis of
Coherent Fault Trees

3.1 Introduction

FTA is an extremely useful technique for assessing the risk and reliability of a wide
variety of systems. However, as highlighted in chapter two the conventional
techniques for FTA have major limitations in terms of both efficiency and accuracy,

making them cumbersome even for moderate sized fault trees.

Refinements to these techniques have resulted in improvements to the efficiency and

accuracy, but it seems unlikely that any further developments will result in significant
improvements. More recently attention has focused on an alternative technique

called the Binary Decision Diagram (BDD) method. Rauzy first introduced this

technique for the purposes of reliability analysis in 1993 [3]. It has been shown to be

extremely efficient in terms of qualitative analysis and accurate in terms of
quantitative analysis, eliminating the need for approximations.

The BDD technique first converts the fault tree diagram into a BDD format, known as
the SFBDD because it encodes the structure function of the fault tree. Both

qualitative and quantitative analysis can be performed using the SFBDD. The fault

tree to BDD conversion process itself is both straightforward and efficient, however,

the technique does have two main disadvantages.

The first is that it is necessary to choose a variable ordering for the conversion
process. This variable ordering determines the size of SFBDD obtained, and the size
of the SFBDD is critical to the efficiency of both stages of analysis. The second major
disadvantage is that the BDD method cannot always be used to analyse a fault tree

exactly, because computing a SFBDD can be unmanageable for extremely large fault
trees. Rauzy has developed techniques for computing a culled SFBDD, which can be

used to perform partial analysis. These techniques will be considered in chapter
eight.

28

3.2 An Introduction to Binary Decision Diagrams

A BDD is a directed acyclic graph. Thus all paths through the BDD are directed in

one straight route from the top node known as the Root Vertex through Non-

Terminal Vertices until a Terminal Vertex is reached. All paths terminate in one of
two states, 1, corresponding to system failure or, 0, corresponding to the system
functioning. Non-terminal vertices represent system components and are connected
to other vertices by branches. Each non-terminal vertex has a one branch,

corresponding to component failure and a zero branch corresponding to the

component functioning.

All the paths through the SFBDD terminating in aI state represent a cut set of the

fault tree. Figure 3.1 highlights the features of a SFBDD introduced here.

Root Vertex

FF 00 a

II 0

1"ll

FI

F 0

al I Vertex

F14

0

IV

b0F
-tc

0

F2 Non-terminal
I Vertex

c

10

Terminal I vertex
0

Terminal 0
vertex

Figure 3.1: A General SFBDD

Notice that node F2 is shared by the zero branch of node FO and the zero branch of

node Fl, this is known as sub-node sharing and is an important feature of BDD's

since it can help to reduce the size of the BDD.

29

3.3 The Conversion Process

The BDD technique requires the fault tree to be converted to a SFBDD; there are two

main methods for this conversion process. The first method requires knowledge of

the logic function and is considered in section 3.3.2. The second method, which is

the preferred of the two for computer implementation, employs an If-Then-Else

technique and is considered in section 3.3.3. Each of these methods requires a

variable ordering scheme to be chosen for the conversion process to proceed.

3.3.1 Choosing a Variable Ordering Scheme

The construction process begins with choosing a variable ordering scheme. The

chosen scheme determines the size of the resulting SFBDD, which in turn has an

impact on both qualitative and quantitative analysis; the smaller (more minimal) the

SFBDD, the more efficient the analysis. A *good" ordering scheme can produce a

minimal or near minimal SFBDD, however a *bad" ordering scheme can result in an

extremely large non-minimal SFBDD or at worst it may not be possible to produce a

SFBDD at all in which case either a culling technique must be employed or an

alternative means of analysis must be found. It is for this reason that choosing a

variable ordering scheme is such a critical part of the conversion process.

Many ordering schemes have been developed including the "Top-Down" approach,

and the Tepth first7 approach. However, there is no universal ordering scheme that

produces a minimal SFBDD for all fault trees. Attention is now focused on choosing
the "besr ordering scheme from a number of possible schemes; Bartlett & Andrews

[11] demonstrated that neural networks can be used with success to predict a "good"

orde(ing scheme.

3.3.2 The Logic Function Method

This method for computing the SFBDD requires knowledge of the logic function of

the fault tree. Then the conversion process involves substituting the value of one

(component fails) and then zero (component working) for each vertex in the SFBDD

according to the chosen variable ordering scheme, and simplifying the result where

possible using the Boolean algebra laws introduced in chapter two. To illustrate this

method consider a fault tree which has the logic function given below.

Top = abd+cd+ce

30

Assuming the variable ordering, a<b<c<d<e, which means that variable a is

considered first in the conversion process followed by variable b, then c and so on

until all the variables have been considered.

Thus beginning with variable a and assigning the value one to this variable within the
logic function the Boolean equation representing the one branch of this vertex is
obtained.

Top(I., x) = bd + cd + ce

The zero branch for this vertex is obtained by assigning the value zero to variable a
within the logic function.

Top(O., x) = cd + ce

This process is repeated for each variable in turn according to the ordering scheme

Figure 3.2: SFBDD Obtained Using the Logic Function Method

31

adopted. The resulting SFBDD is shown in figure 3.2.

The SFBDD in figure 3.2 is quite large and it can be seen that there are equivalent

nodes within the structure. Friedman and Supowit [12], proposed two collapsing

operations that can be used to reduce the size of the BDD.

1. If the two sons of a node A are equivalent, then delete node A and direct

all of its incoming edges to its left son.
2. If nodes A and B are equivalent, then delete node B and direct all of its

incoming edges to A.

Applying Friedman and Supowits second collapsing operation and removing the
intermediate logic functions results in the simplified SFBDD shown in figure 3.3 from

wfýich seven cut sets are identified:

b, c, d), (a, b, c, e), [a, b, d), (a, c, dj, * c, e), (c, d), 1c, e)

Figure 3.3: Simplified SFBDD

Obtaining the minimal cut sets from the SFBDD will be considered in detail in section
3.4. Although the logic function method for computing the SFBDD is quite
straightforward to apply manually, it is not a particularly efficient means of obtaining
the SFBDD and it is not easy to implement on a computer.

32

3.3.3 The If-Then-Else Method

Rauzy developed the If-Then-Else (ite) method for computing a SFBDD in 1993. This

method has the advantage of producing a SFBDD, which encodes Shannon's
formula, i. e. If f(x) is the Boolean function for the top event of the fault tree, then by

pivoting about any variable xi, Shannon's theorem states:

(-x)= x if, +-x if2

Where, f, and f2 are Boolean functions.

This is represented by the Ro structure given in equation (3.1):

fte(xi. fl, f2) (3.1)

Where, xi represents a variable and f, and f2 represent logic functions. This ilto

structure is interpreted as follows:

If xi fails then consider the logic function f,

else consider the logic function f2.

Thus in the BDD, f, forms the logic function for the one branch of xj and f2 forms

the logic function for the zero branch of xi. Figure 3.4 shows the diagram that

represents this ito structure.

Figure 3A ite structure for ite(xj, fjf2)

33

3.3.3.1 The Conversion Procedure

Once a variable ordering scheme has been selected the fto procedure outlined below
is applied to compute a SFBDD.

1. Assign each basic event xi in the fault tree an He structure, ite(xi, 10).

2. Modify the fault tree structure so that each gate has only two inputs.
3. Consider each gate in a bottorn-up fashion.
4. If the two gate inputs are J and H such that:

J= ite(x, Fj F2) H= ite(y, G1, G2)

Then the following rules are applied:

- If x<y, J<op>H=ite(xFl<op>KF2<op>H)

- If x=y, J<op>H=ite(x, Fl<op>GIF2<op>G2)

These rules are used in conjunction with the following identities:
I<op>H=H if<op>isanANDgate
O<op>H=O if<op>isanANDgate
I<op>H=l if < op > is an OR gate
O<op>H=H if < op > is an OR gate

Where < op > describes the Boolean operation of the logic gates of the

fault tree. For an AND gate < op > is the dot product (.) and for an OR

gate < op > is the sum symbol (+).

To illustrate the ite procedure, consider the fault tree shown in figure 3.5.

Figure 3.5: Fault Tree Diagram

34

Assuming a Depth first variable orde(ing a<b<c:

Assigning each variable an ito structure:

a= ite(a. 0)
b= ke(b. 0)

c= ite(c. 0)

Now, computing the ite structure of gate Gl:

Gl =a +b
Gl = ite(a, 1,0)+ ite(b, 1,0)

GI = ite(a, [I + ite(b, 1, O)l [0
+ ite(b, I O)D

GI = ite(a, 1, ite(b, t 0)) Since I+H=l

Finally dealing With the top gate, Top:

Top = Gl -c
Top = ite(a, I ite(b, 1 0))- ite(c, 1 0)

Top=ite(a, [I. ite(c, I 0)1[ite(b, I 0)-ite(c, I O)D

The one branch for a is simple:

1- ite(c, 1 0) = ite(c, 1 0) Since 1-H =H

But the zero branch of a needs to be further developed:

it44 I 0)-it4cý I 0)=it44[l-ite(qjo)], [O-fte(qAO)p
Since 1. H=H and O. H=O

= it4bý it4c, 1 0) 0)

Thus the ite structure for the fault tree shown in figure 3.5 is given in equation (3.2):

ite(a, ite(c, 1 0) ite(b, ite(c, 1 010)) (3.2)

The resulting SFBDD is shown in figure 3.6, two cut sets are identified:
(a, C), (b, c)

35

Figure 3.6: SFBDD Obtained for the Fault Tree in Figure 3.5

Although this conversion process is straightforward and easy to implement, for

extremely large fault trees it is not always possible to compute a SFBDD. If a SFBDD

cannot be computed, the fault tree cannot be analysed exactly and a culling
technique must be employed to compute a culled SFBDD.

Until recently there was no way of using the BDD technique to perform approximate

analysis, this discouraged the majority of industries from using the BDD technique.

Whilst conventional techniques for FTA are not as efficient or accurate as the BDD

method, they always produce at least a partial list of minimal cut sets and thus

enable approximate quantification.

However, Rauzy developed techniques for computing a culled SFBDD, from which a

partial list of minimal cut sets can be identified and the system can be quantified

approximately. These techniques will be considered in detail in chapter eight.

3.4 Qualitative Analysis

During qualitative analysis all of the minimal cut sets of the fault tree are identified,

where a minimal cut set is defined as a necessary and sufficient combination of
component failures that will cause the system to fail.

Although qualitative analysis can be performed directly on the SFBDD, it is only

possible to identify the minimal cut sets exactly if the SFBDD is minimal. If the
SFBDD is non-minimal, redundancies will exist in the cut sets identified. The Boolean

algebra laws introduced in chapter two can be applied to eliminate any redundancies,

36

but this can be quite computationally intensive. Rauzy [3] has developed a more
efficient means of identifying the minimal cut sets, which involves modifying the
SFBDD structure so that it encodes only the minimal cut sets of the fault tree. This
process is called minimising the SFBDD.

3.4.1 Minimising the SFBDD

Rauzy developed an algorithm, which can be used to minimise the SFBDD. This

algorithm modifies the structure of the SFBDD so that all redundancies are
eliminated. The resulting BDD encodes the minimal cut sets of the fault tree exactly.

This algorithm is applied to every node in the SFBDD, for a general node the

algorithm states:

If the output of a node is represented by the function F, where, F= ite(xGH),
let 6 be a minimal solution of G, which is not a minimal solution of H, then

the intersection of 6 and x will be a minimal solution of F given by
Fmin = (61 n x. The set of all minimal solutions of F, SOlinin (F) will also include

the minimal solutions of H(SOI,,, in(H)) so:

SO1MinF = [16) r) X] IJ [sOlmin (H)]

There are essentially three stages to minimising F= ite(xGH):

1. Identify the minimal solution of G, Grnin -
2. lclentifý the minimal solution of H, Hmin -
3. Remove all minimal solutions of Gmin that are also solutions of Hmin

without(Gmin, Hmin)-

The third stage of the algorithm is crucial since, if a minimal solution of H, say y is
retained on the one branch as a minimal solution of G it will result in a non-minimal
combination y. x. To enable the minimisation procedure to be coded Rauzy

developed two algorithms called 'minsol' and 'without. 'Minsol' computes the minimal
solution of a node and calls Iwithour to compute 6, i. e. the minimal solutions of G
that are not minimal solutions of H. These algorithms are outlined in appendix (1).

37

Once the SFBDD has been minimised the minimal cut sets can be identified through

just one pass of the minimised BDD. Every path through the minimised BDD that

terminates in a1 (failed) state represents a minimal cut set. Each path begins at the

root vertex and proceeds through the BDD until a terminal vertex is reached. Only

those vertices that lie on the one branch on the way to a terminal I vertex are
included in the minimal cut set.

To illustrate how the minimisation procedure is applied consider the SFBDD shown in

figure 3.7.

on

Figure 3.7: Non-minimal BDD

Considering the nodes in a top-down order. For the root vertex node FO, the one
branch leads to node FI that corresponds to G. Since the solutions of node FI are

minimal, the minimal solutions of G are b and c. The zero branch of FO

corresponding to H leads to node F2. Again the solubons of F2 are already minimal,
thus the minimal solution of H is c.

The solution c is a minimal solution of both G and H. If it is retained on the one
branch of FO it will result in a non-minimal combination. Therefore all paths that
include the solution c are removed from Fl. This is done by removing F2 from the

zero branch of F1 and replacing it with a terminal 0 vertex. This procedure is

repeated for all the nodes in the SFBDD. In this case the SFBDD has been

minimised and the minimised BDD is given in figure 3.8, two minimal cut sets are
identified from this BDD:

* b), fc)

38

3.5 Quantitative Analysis

The BDD method does not require knowledge of the minimal cut sets to perform

quantitative analysis and it also eliminates the need to evaluate lengthy series

expansions. As such it provides an extremely efficient and accurate means of

quantification. Andrews and Sinnamon developed procedures for quantifying the

system exactly using the SFBDD [13]. The minimised BDD cannot be used for

quantification since the minimisation process changes the logic function of the

SFBDD to encode only the minimal cut sets. The procedures for calculating both the

system unavailability and the unconditional failure intensity will be considered in

sections 3.5.1 and 3.5.2 respectively.

3.5.1 Calculating the System Unavailability

The BDD method converts the fault tree diagram into a structure that encodes the

structure function in the form of Shannon's decomposition; hence it is possible to

calculate the system unavailability directly from this BDD.

The system unavailability is defined as the probability that the system is in a failed

state at time t and it can be calculated by taking the expectation of the structure
function for the top event, F(x). The structure function can be expressed according to

Shannon's decomposition as shown in equation (3.3):

F UXý- XiFI(XlvX2, -, Xý-IAXI+I, ... Xn)+XiF2(XlvX29 ... 'Xi-l,
O. Xl+l, ---Xn)

(3.3)

39

Figure 3.8: Minimised BDD

Thus by taking the expectation of equation (3.3), the top event probability is obtained:

Qsys(t)=E[xi]. E[FICX)]+Erxi]. E[F2 UX] (3.4)

Consider a general SFBDD, each of the terminal one paths through the SFBDD

represent combinations of component failure states and component working states
that result in system failure. Since these paths are mutually exclusive, (disjoint), the

top event probability can be obtained by summing the probabilities of all the disjoint

paths through the SFBDD. Each disjoint path begins at the root vertex and
terminates in a failed (1) state. The path includes all working and failed component

states encountered.

To illustrate how the top event probability is calculated consider the SFBDD in figure

3.9, the disjoint paths though the SFBDD are:

Ja, b, c, eJýb, -c, dJýS, c, dJ ý5,
c, afj ýc, djýc, afj

The top event probability is obtained by summing the probabilities of the disjoint

paths:

Q Sys (t) = P(abce + ab-cd + aý: d + aý: -cif + ;: d + aca)
=qaqbqcqe +qaqb(I-qcýd +qa(I-qb)qcqd +qa(l-qbýc(I-qdýf

+(1-qaýcqd +(I-qaý, ,
(1 - qd)qf

Where qj denotes the unavailability of component 1.

40

Figure 3.9: SFBDD

3.5.2 Calculating the Unconditional Failure Intensity

The unconditional failure intensity, wsys (t) is defined as the probability per unit time

that the system fails at time t and is a key quantitative measure. Having calculated
the unconditional failure intensity it is possible to calculate the expected number of

system failures in a given interval [O, t) by integrating w sys (t) over, 0 to t

The unconditional failure intensity can be expressed in terms of the criticality
function:

M
wsys(t)=2: GjCqýj(t) (3.5)

W

Where, wi(t) is the failure intensity for component i and Gjýq) is the criticality

function for component i.

The criticality function is defined as the probability that the system is in a critical state
for component i such that the system will fail if component i fails.

Gi Uq = Qsys (li, q)- Osys (01, q) (3.6)

The two terms on the right hand side of equation (3.6) can be calculated from the
SFBDD, and the calculation procedure is more efficient using the SFBDD than the
fault tree since only one pass of this BDD is required as opposed to two passes of
the fault tree.

Sinnamon and Andrews [13] developed a procedure for calculating the criticality
function using the SFBDD. This procedure is outlined below:

n
Prx, Cq)-pol

.
cq)+ zcq) (3.7) SYS

(I
Xi

ki
n

Qsys (0i,
q) = 1: Prx, Cq). PoO Cq)+ ZCq) (3.8)

W
Xi

Where:

Prx, ýq) is the probability of the path section from the root vertex to node xj.

Pol, Cq) is the probability of the path section from the one branch of node x, to a 4

41

tenninal I node (excluding the probability of xj).

Poo., Cq) is the probability of the path section from the zero branch of the node x, to a

terminal 1 node (excluding the probability of xi).

ZLq) is the probability of the paths from the root node to a terminal 1 node not

passing the node for variable xj.

Hence the criticality function is expressed as follows:

Pri C q Gi Cq qýol Cq)-poO Cq)] (3.9)
N X1

To illustrate how this procedure is applied in practise to calculate both the criticality
function and the unconditional failure intensity consider the SFBDD shown in figure
3.10.

Fl

Firstly the connections between the nodes are recorded in an ite table as shown in

table 3.1.

Node Variable 1 Branch 0 Branch

Fl a F2 F3

F2 b 1 0

F3 b F4 0

F4 c 0

Table 3.1: Its Table

42

Figure 3.10: SFBDD

The second stage is to calculate each of the terms in equation (3.9). The first term,

Pr., (q) is the probability of the path from the root vertex to node xj, which is

calculated by evaluating the probability of the path from the root vertex up to but not
including the node xj. Table 3.2 records Pr), Cq) for each node in the BDD.

Node P r.,, ýq) Comments

FI 1 Root vertex itself

F2 qa F2 reached through the I branch of FI

F3 1-qa F3 reached through the 0 branch of FI

F4 (1-qa)qb F4 reached through the 0 branch of FI

followed by the one branch of F3

Table 3.2: Prx, Cq) for each node in the BDD

Pol Cq) is calculated by summing the probability of all the paths from the selected Xi

node, x, along the one branch to a terminal I vertex, excluding the probability of the

selected node. Table 3.3 records Pol. Cq) for each node.

Node Po'xi Cq) Comments

1 branch of F1 passes to F2 and the I branch of F1 qb
F2 passes to a terminal 1 vertex

F2 1 1 branch of F2 passes to a terminal 1 vertex
I branch of F3 passes to R and the 1 branch of F3 qc

R passes to a terminal I vertex
F4 1 1 branch of F4 passes to a terminal I vertex

Table 3.3: Pol. Cq) for each node

Similarly Poox Cq) is calculated by summing the probability of all paths from the
4

selected node, x, along the zero branch to a terminal 1 vertex, excluding the

probability of the selected node. Table 3.4 records Poo Cq) for each node. Xi

43

Node PoOxI Cq) Comments

F1 qbqc
0 branch of F1 passes through the I branch of F3

and then the 1 branch of R

F2 0 No terminal 1 paths from the 0 branch of F2

F3 0 No terminal I paths from the 0 branch of F3

R 0 No terminal I paths from the 0 branch of R

Table 3.4: Poo Cq) for each node X4

The criticality function for each variable can be calculated by summing the

contribution of nodes of the same variable. Thus using equation (3.9) and the results

shown in tables 3.2,3.3 and 3A

GaLq)-�-, 1 *[(qb)-(qbqc)]
Gbýq)=qa .

[1-0]+(1-qa)*[qc
-0]

Gc ýq)
= (1 - qa)qb , [l - 0]

Simplifying:
GaCq)= qb(1 - qc)

Gb Cq)
= q. + qc - q. qc

Gc Cq)
= (i - qa ýb

The final stage is to substitute these measures into equation (3.5) to obtain w Sys
(t):

wsys (t) = qb (I - qc)wa + (qa + qc - qaqc)Wb + (I - qa)qbWC

3.6 Summary

The BDD method developed for the purposes of fault tree analysis by Rauzy in 1993

has provided a significant improvement in terms of both accuracy and efficiency.
Qualitative analysis is performed without the need for the numerous expansions,

comparisons and reductions of conventional FTA techniques. Quantitative analysis

can be performed without the knowledge of the minimal cut sets and eliminates the

need to evaluate lengthy series expansions.

44

However, this method does have two main disadvantages. The first is that a variable
ordering scheme must be chosen for the basic events of the fault tree in order to

compute a SFBDD, and the second is that for extremely large fault trees it is not
always possible to compute the SFBDD exactly.

The variable ordering scheme is critical, because it determines the size of the

SFBDD; if a "bad" ordering scheme is chosen it may result in an extremely large non-

minimal SFBDD which will make both qualitative and quantitative analysis inefficient.

In more serious cases it may not be possible to compute a SFBDD at all due to huge

processing and computer memory requirements.

There is no universal ordering scheme that produces a minimal SFBDD for every
fault tree. Attention is now focused on choosing the "best" ordering scheme for a
particular fault tree from a number of different schemes.

The second major disadvantage of the BDD method is that for extremely large fault

trees it is not always possible to compute, a SFBDD. Until recently there were no
techniques for using the BDD method to perform partial analysis. Hence if the

SFBDD could not computed exactly, the analysis produced nothing and an

alternative technique had to be employed to start the analysis from scratch. This

discourages the use of the BDD method as a generic way of solving fault trees.

However, Rauzy developed techniques that can be used to compute a culled
SFBDD. The culled SFBDD can then be used to perform approximate qualitative and

quantitative analysis. Rauzy's culling techniques are significantly more efficient that

the conventional FTA culling technique and will be considered in chapter eight.

45

Chapter 4: Fault Tree Analysis of Non-coherent Fault Trees

4.1 Introduction

The three main gate types encountered during FTA are the AND gate, the OR gate, and
the NOT gate. Generally the use of the NOT gate is discouraged since a fault tree can
be non-coherent if the NOT gate is used or directly implied (e. g. XOR). In a non-

coherent system, component failure states and component working states can contribute
to system failure [2]. This may be considered philosophically to be a poor system design

when functioning components can contribute to system failure. Furthermore, from a

practical viewpoint NOT logic increases the complexity of analysis and in many cases

provides little additional information about the system and its effectiveness.

Afthough the use of NOT logic is often discouraged, Andrews [14] demonstrated that in

the case of multi-tasking systems NOT logic is essential if successful and meaningful

analysis is to be performed. This is also true for event tree analysis in which the

consideration of success states is an integral feature of the technique [15]. Hence it will
be essential to consider NOT logic and be able to analyse the resulting non-coherent

fault trees accurately and efficiently.

Chapters two and three have focused on techniques for the analysis of coherent fault

tree structures. When dealing with non-coherent fault tree structures additional work is

required to perform exact qualitative and quantitative analysis. This chapter will consider
the conventional techniques for analysing non-coherent fault tree structures.

4.2 The Use of NOT Logic

This section will illustrate that under certain circumstances the use of NOT logic during
fault tree construction is essential for meaningful and accurate analysis. Consider the

simplified gas detection system shown in figure 4.1.

46

Procesa--,
isolabon

Figure 4.11: Simplified Gas Detection System

This is a multitasking system With two gas sensors, D1 and D2 that are used to detect

leakage in a confined space. The detectors send signals along individual cables to the

computer logic control unit, LU. If the LU receives a signal that there is a gas leak from

any sensor, three functions must be performed.

Process shut down: de-energise relay RI
Inform the operator of the leak by a lamp and siren labelled L
Remove the power supply to affected areas: de-energise relay R2

The system is considered failed if it does not perform one or more of the three functions

given a leak occurs. There are seven possible failure states for this system, which are

outlined in table 4.1. Although each state represents system failure, some states are

more severe than others. For example, outcome three is particularly undesirable since
the operator is informed of the gas release and thus believes that everything is fine but

the process has not shut down and the power has not been isolated.

47

Failure

State

Operator

Informed

Process

Shut-down

Power

Isolation

I W W F

2 W F W

3 W F F

4 F W W

5 F W F

6 F F W

7 F F F

Table 4.1: The Seven Possible Failure States of the Gas Detection System in Figure 4.1

If a Fault Tree Analysis is performed avoiding the use of NOT logic the fault tree shown
in figure 4.2 is obtained.

Figure 4.2: Fault Tree Obtained from a Coherent Assessment of the Gas Detection

System

Three minimal cut sets can be identiW from this fault tree:
jRjR2), fDjD2), jLUj

48

Although this fault tree has been constructed in a logical manner it is inaccurate since,
accounting for the conditions that the operator is informed, then either DI and LU or D2

and LU must be working, thus minimal cut sets two and three would not cause outcome
three. Consequently quantification of this fault tree will result in a substantial
overestimate of the probability of outcome three. For a correct assessment of this

outcome it is essential to use NOT logic during fault tree construction so that the working

part of the system is taken into account. The non-coherent fault tree shown in figure 4.3
is obtained from a non-coherent assessment of outcome three.

(TOP)

Shutdown supply not
fails (G2) Isolated

not
lnfbrmed

No Signal [I ýSign-al

w from W
J(Fý)

L L

L No Signal
from LU

Detector

Dl I(D2

Figure 4.3: Non-coherent Fault Tree Obtained from a Non-coherent Assessment of the
Gas Detection System

49

Working in a top-down fashion the following logic expression is obtained:
Top = Gl - G2. G3

Developing G1, G2 and GI

Gl=L+LU+DI-N

=C- EUG -
(D-1

+ 62-)

G2=RI+LU+Dl. D2

G3=R2+LU+Dl. D2

Substituting in for Gl, G2 and G3, Top becomes:

Top =
ýL

- CU- -
(D-1 + U2-))- (RI + LU + DI - D2). (R2 + LU + Dl - D2)

=[-[U--RI-R2-
r6l+U2-)

The coherent approximation is RI - R2 thus the inclusion of NOT logic has successfully

removed the inappropriate failure combinations and will enable accurate quantitative

analysis. Thus whilst NOT logic can increase the complexity of analysis, in the case of

multitasking systems the use of NOT logic is essential. The method used to obtain the

prime Implicant sets is explained in detail in section 4.3.1.

4.3 Qualitative Analysis

4.3.1 Introduction

During qualitative analysis all the possible causes of system failure are identified. For

coherent fault trees each possible cause of system failure is called a minimal cut set; a
combination of component failures that are both necessary and sufficient to cause
system failure. In the case of non-coherent fault trees both component failed states and
component working states can contribute to system failure. Hence each possible cause
of system failure is called a prime implicant set and is a combination of component
failure states and component working states that are both necessary and sufficient to

cause the system to be in the failed state.

50

4.3.2. Identifying the Prime Implicants Sets of a Non-coherent Fault Tree

To identify the prime implicant sets of a non-coherent fault tree it is first necessary to

ensure that the fault tree structure contains only AND gates and OR gates, i. e. any NOT

gates need to be removed. De-Morgan's laws outlined in equation (4.1) can be used to

push the NOT logic down the fault tree to complement the basic events.
rA-+B)=; k-9, rA--B)=; k+g

To illustrate this process consider again the non-coherent fault tree in figure 4.3:

Operator
infonned

not
irnfbffned

L
Dý =--ý ý: L) ý No signal No Signal

from III Pushing the NOT gate from W
down the tree results in
the OR gate being
converted to an AND
gate and both input
m negated No ignalrnts

being r7No imgr w from LU from LU m
w LU

DI)(D2) (DO (D2

51

opemtor 1 Operator
ktformed 11 Informed

=#
Signal Signal

from W from LU

tEinally

the AND gate Next to OR gate is
converted to an Is converted to an
AND gate and Its OR gate and Its two
inputs negated Inputs are negated

0 ig

w
CU

from
from

Q D1 Ql!)

Figure 4.4: Diagram ShovAng how the NOT Logic is Pushed Down the Fault Tree

The application of De-Morgan's laws to the fault tree in figure 4.3 results in an equivalent
fault tree that contains only AND and OR gates, see figure 4.5.

operator Shutdown Su P-P
"Y

Inforvied
II

fails
II

I No Signal I (R2) No Signal I
fraim LU

Q-
from LU

S 'na'
fromLu

. w.. nu QVI lu Imm, 1(Lu II
ftm

ý

D1 (D (ýI UD2

Figure 4.5: The Equivalent Non-coherent Fault Tree Obtained for the Fault Tree in
Figure 4.3

52

Once all of the NOT gates have been eliminated, the same top-down approach applied
to coherent fault trees is applied to produce the failure modes of the modified non-

coherent fault tree. To illustrate this consider the non-coherent fault tree in figure 4.6.

Figure 4.6: Non-coherent Fault Tree Structure

Working in a top-down fashion the following logic expression is obtained for the Top event:
Top=GI+G2

Substituting in for, GI =a-b and G2 =a-c, the logic expression for Top becomes:

Top=a. b+a. c

Two prime implicant sets, *bjýcj have been identified. However, this is not a

complete list of prime implicant sets. In fact if both component b and component c are in

a failed state then the system will be in a failed state regardless of the state of

component a. Hence a third prime implicant set, 1b, c) can be identified by applying the

consensus law given in equation (4.2):

AX+AY=AX+AY+XY (4.2)

The follovving expression is obtained for the top gate of the fault tree in figure 4.6:

Top =a b+ a c+b-c

To identify a full list of prime implicant sets directly from the fault tree, an expression for

the top event is obtained using a Top-Down approach. Then the consensus theorem is

applied exhaustively to pairs of prime implicant sets involving a normal and negated
literal. Whilst this technique can be applied to simple fault trees with ease, for larger
trees it may not be possible to identify the prime implicant sets exactly.

53

4.3.3. Obtaining a Coherent Approximation

Conventional techniques for analysing non-coherent fault trees are more computationally
intensive than those for analysing coherent fault trees. Hence it is not always possible to

perform exact analysis of non-coherent fault trees. In such cases a coherent

approximation can be obtained during qualitative analysis. This involves identifying only
the positive parts of the prime implicant sets (i. e. failing), known as the minimal P-cuts of
the fault tree. The minimal p-cuts can then be used to quantify the system approximately

using the conventional FTA techniques outlined in chapter two.

To obtain a full list of minimal p-cuts a traditional top-down or bottom-up approach is

applied to the fault tree to obtain an expression for the top gate in terms of the system

components as usual, but all negated literals are ignored. To illustrate this procedure

consider the fault tree in figure 4.7.

54

Figure 4.7. Non-coherent Fault Tree Structure

Developing an expression for G1, by evaluating, G4 and G5:

G5 =f-g-h

G4 = G5 +d=f-g-h+d

GI = G4 -a= (f -g-h+ d) -a =a-f-g-h+a-d

Developing an expression for G2:

G2=a. b. c=b-c a is removed from this expression

Developing an expression for G3, by evaluating G6, G7 and G8:

G7=b. e
G8 =e-f-g-h
G6 = G7 + G8 =b-e+e-f-g-h

G3=G6-ý=G6=b-e+e-f -g-h d is removed from this expression

Finally developing an expression for the top gate, Top:

Top =a -f -g-h +a d+b. c+b. e+e-f -g-h

Five minimal p-cuts are identified for the fault tree in figure 4.7:

(afgh), (adl, (bc), (be), (efgh)

For large fault trees this technique can significantly reduce the work required to analyse

quantify the system. Furthermore, provided the reliability of component is high the

approximation obtained vAll be reasonably accurate.

4.4 Quantitative Analysis

Quantification of a non-coherent fault tree cannot be achieved using the quantification
methods for coherent fault trees introduced in chapter two, since they do not take into

account the working states that contribute to system failure. This section will consider
how the system unavailability and the unconditional failure intensity of a non-coherent
fault tree are calculated.

55

4.4.1 Calculating the System Unavailability

In chapter two, the inclusion-exclusion method for calculating the system unavailability

was introduced. Inagaki and Henley [16] modified this method to enable the calculation

of the system unavailability of non-coherent fault trees. Inagaki and Henley's calculation

procedure is given in equation (4.3):

nn 1-1
OSYS(t)= EP(F-I)-ZZP(El

I-Irj)+---+(-IrP(El nE2 n ... n En)
1=1 1=2 J=l

(4.3)

Where, P(cj) denotes the probability that prime implicant set i exists at time t, this

probability is calculated as follows:

P(El)=flq'i(t) (4.4)
J-1

Where, q
qj (t) if a= I i. e. j appears

and pj =1 -qj
Ipj

(t) if a= 0 Le. -j appears

Thus, q4 represents the probabilities of the literals, (normal or negated) contained in

any one of the prime implicant sets. These products of prime implicant sets are such that

conflicting literals, x, - XI =0 and P(cj) = 0, and all redundancies are eliminated from

these products using the Idempotent law, xi - x, = xi. And, np denotes the number of

basic events in a given prime implicant set.

This procedure enables the exact system unavailability to be calculated. However, the

calculation can be unmanageable even for moderate sized fault trees so it may be

necessary to terminate the modified inclusion-exclusion expansion to obtain an
approximate value for the system unavailability. One possible upper bound is given in

equation (4.5).

n
QSyS(t)-15 P(EI) (4.5)

56

This upper bound is equivalent to the Rare Event Approximation given in equation
(2.10). Although the Rare Event Approximation can be a good approximation for

coherent systems provided that component failure events are rare. It is not possible to

give any guide to how accurate this bound is for non-coherent systems, but it is not
unusual for it to be greater than unity.

An alternative and more commonly used means of approximating the system

unavailability is to obtain a coherent approximation for qualitative analysis as illustrated

in section 4.3.3 and use this to calculate the rare event approximation or the Minimal Cut

Set Upper Bound considered in chapter two.

4A. 2 Calculating the Unconditional Failure Intensity

The unconditional failure intensity was first introduced in chapter one and is defined as
the probability that a system fails per unit time at t, given that it was working at t=0.

This section will consider two methods that have been developed for calculating the

unconditional failure intensity of a non-coherent fault tree. The first method, developed
by Inagaki and Henley in 1980 [16] relies on knowiedge of the prime implicant sets and
is considered in section 4.4.2.1. The second method developed by Becker and
Camarinopoulos [17] is an extension of the identity given in equation 3.5 and will be

considered in section 4.4.2.2.

4.4.2.1 Inagaki and Henley's Method

Henley and Inagaki extended the procedure for calculating the unconditional failure
intensity that was introduced in chapter two for use with non-coherent fault trees. This

calculation procedure is outlined below.

The top event occurs in interval, [t, t+ dt), if and only if no prime implicant sets exist at

time t and at least one prime implicant set occurs in the interval [tt + dt). Thus:

57

w Sys
(t)dt =P eil - PJB

n
E),

Iu 9

ki (4.6)

=Wl (týt_W2 (týt
Sys Sys

n
Where, B =- UF-j and Ej is the event that prime implicant set I exists at time t. And Gi is

61

defined as the event that prime implicant set 1 occurs at time t per unit time.

P(e) =ý zcd(t)]ftqcl(t)
J=l 1=1

I*j

Where, q ck =
qk W if ak =1

zaj =
vjj

(t) if aj =I
a is set to I if the literal exists in its

fPk(t)

if ak ='00 (t) if a! =0

normal form and 0 if the literal is negated. wj(t) Is the unconditional failure Intensity of

componentj and vi(t) is the unconditional repair intensity of componentj.

The first term in equation (4.6) is the probability that one or more prime implicant sets

occurs in the interval [tt+dt). Hence this term can be expanded using the inclusion-

exclusion expansion as follows:

PI
n,

=nnw UZ PIOI I- ZE Pýj rl Oj J+
--- + (7 Irl P(Ol rl e2.. ri On)

1=1

I

1=1 1=2 J-1

(4.7)

The second term of equation (4.6) is the probability that one or more prime implicant

sets occurs in the interval [tt+dt) given that one or more prime implicant sets already

exists. Thus it can also be expanded using the inclusion-exclusion expansion as follows:

PI
n

,In_n
ý-I

BLJ =j: P[19jnBj EEPýinl)jnBl+***+(-lrP(8ln62--nBnnB)
1=1 1-1 1=2 ý-I

(4.8)

58

To illustrate how this method is applied in practise consider again the fault tree in figure

4.6 which has three prime implicant sets, ja, b), ý, cjjbx).

Calculating w(l) SYS
(t):

33W
WO) SyS(t)dt=

jP(8j-ZZP(8j I'Iej)+P(Oi f-l()2 r-1133) (4.9)
W 62 j-1

Given:
33

2ý'p(ol)=2ýwCidt=
(w.

qb +wbq. +v. qc +wcqa +Wbqc +wcqbýt

3W
EEP(()i noJ): '--(Wbqaqc +wc-qaqbýt
62 J=l

P(Ol r) 02 r) 03) ý0

Hence:

WO) (t)=wa(qb)+Va(qc)+Wb(qa +qc -qaqc)+wcýqa +qb -qaqb) SYS

Now calculafing w
(2) (t) : SYS

w (2) (t)=P BU0i SYS

)=
P(O, n B) + p(02 ri B) + P(O3 n B) - P(O, r) 02 n B)

Kel n 03 n B) - P(82 r) 133 n B) + P(el r'ý e2 r)133 r) B)

(4.10)
And:

P(191 nB)=P(Ol nEl)+P(el nlE2)+P(el ný3)-P(el r"Cl r"CO

- P(Ol r) cl r) E3)- P(81 r" E2 f) E3)+ P(el r) El r) E2 r) E3)

=O+O+WaqbCic -0-0-0+0

Expanding and evaluating each of the remaining terms in equation (4.10) gives:
P(02 r-i B) == vaqbqr

P(03 ri B) = wcqaqb + Wb qaqc

59

P(el rl 62 r-) B) =0

P(Ol n e3 r) B) =0

P02 t-I 83 rl E3) '"0
Nel n ()2 r-I e3 n B) =0

From equation (4.6):

wsys(t)dt",: (wa(qb -qbqc)+Va(qc -qbqc)+Wb(qa +qc -qaqc --qaqc)
+ wc

ýqa
+ qb -

-qaqb
- qaqb

))dt

Simplifying this expression gives:

wsys (t) = wqb qc + vaqc qb + Wbqa + wc qa

From this simple example it is clear that calculating the unconditional failure intensity is a
time consuming and exhaustive process. Approximations are unavoidable for large fault

trees with many repeated events. Vesely identified a possible approximation for the

unconditional failure intensity, which is given in equation (4.11). This approximation

produces an accurate upper bound for wy, (t) provided component failures are rare.

wsys(t): ýWlsys(t)

4.4.2.2 Becker and Camarinopoulos' Method

For a coherent system the unconditional failure intensity can be expressed as the

probability that the system is in a critical state for one or more components at time t, and
one of those critical components fails in the interval [t, t+dt). Hence it Is possible to

express the unconditional failure intensity for a coherent fault tree as follows:

n
w Sys

ot Gj(qývjdt (4.12)

Where, G, Uq=Qsys(lj, q)-Qsys(0j, q)

60

For non-coherent systems, components can be both failure and repair critical, hence

equation (4.12) cannot be used to calculate the unconditional failure intensity for non-

coherent systems. To extend equation (4.12) Becker and Camarinopoulos defined two

types of system criticality functions:

Failure Criticality Function: System is working when component 1 is working
and failed when component I is failed.

f
(PI ýQSYS(ii, sxl-QSYS(oi, s)) (4.13)

2. Repair Criticality Function: System is working when component I is failed and
failed when component i is working.

r. =Q s (PI sy
(0j, qXI-Qsys(I,, q)) (4.14)

From this Becker and Camarinopoulos extended equation (4.12) as follows:

nn
wsys (týt If widt + 4pi'vidt (4.15) TI

However, this method is only applicable when Qsys(II, q) and Qsys(01, q) are

independent. Consequently it is not possible to use this method to calculate wy, (t)dt for

the majority of non-coherent systems.

4.5 Summary

The use of NOT logic during fault tree construction can add to the complexity of analysis

and in many cases provide little additional information. However, Andrews demonstrated

that NOT logic can be essential for meaningful and accurate analysis of certain systems.
Consequently it is essential to be able to analyse non-coherent fault trees accurately.

Conventional techniques for analysing coherent fault trees have been extended for the

purposes of non-coherent fault tree analysis. However NOT logic increases the

complexity of the analysis, and it is not always possible to analyse even moderate sized
trees exactly. Although a coherent approximation can be used to reduce the work

61

required to analyse a system, the techniques employed are still computationally
intensive and they only produce a list of minimal p-cuts rather than prime implicant sets.

Although the fault tree diagram provides a useful description of the system being

analysed, an alternative technique for both qualitative and quantitative analysis is

required to improve efficiency and accuracy of non-coherent FTA. Rauzy and Dutuit

have extended the BDD method introduced in chapter three to enable full qualitative

analysis of non-coherent fault trees and Andrews has developed a procedure for

calculating the top event probability from the SFBDD. These techniques will be the focus

of chapter five.

62

Chapter 5: The Binary Decision Diagram Method for the Analysis of Non-
coherent Fault Trees

5.1 Introduction

It is useful to be able to analyse non-coherent fault trees when they are encountered.
Conventional techniques for FTA can be used to perform both qualitative and

quantitative analysis of non-coherent fault trees. However, they can be problematical

and approximations are unavoidable even for moderate sized trees.

The BDD method for analysing coherent fault trees introduced in chapter three is

more efficient and accurate than conventional FTA methods. In order to utilise the

BDD methodology the fault tree is converted to the SFBDD, from which exact

qualitative and quantitative analysis is performed. Although the SFBDD of a non-

coherent fault tree can be used to calculate the system unavailability exactly [141,

other system parameters such as the unconditional failure intensity and the expected

number of system failures in a given interval, required for a system assessment had

not previously been obtained from the SFBDD. This will be considered in detail in

chapter seven.

It is not possible to identify the prime implicant sets directly from the SFBDD; this

requires further work. Two methods for identifying the prime implicant sets will be

considered. The first of these methods was developed by Rauzy and Dutuit and
involves computing what is known as the meta-products BDD from which the prime
implicant sets can be identified [4,6,71. The second method was developed as part of
this research project, which encodes the Consensus BDD directly from the fault tree.

Although the BDD method is more efficient and accurate than conventional FTA

techniques performed by Kinetic Tree Theory it has a major disadvantage. Namely

that a variable ordering scheme must be chosen for the conversion process.

63

5.2 Computing the SFBDD

The SFBDD for a non-coherent fault tree is computed using the same fto procedure
introduced in chapter three, section 3.3.3.1. The only additional rule required is the

Ito structure for negated events, which is introduced below. Notice that the one and

zero branches have been switched compared to the ite expression for the positive
literal.

x= ite(x, 0,1)

To illustrate how the SFBDD is computed consider the non-coherent fault tree in
figure 5.11:

Figure 5.1: Non-coherent Fault Tree Structure

Beginning by assuming a variable ordering b<a<c:

Assigning each basic event in the fault tree an ite structure:

a= ite(a, 10)

a= ite(a, 0,1)
b= ite(b, 1,0)
c= ite(c, ý 0)

Considering the gates in a bottorn-up fashion according to rules and identities
introduced in section 3.3.3.1, beginning with gate GI:
G1 =a -b
G1 = ite(a, 10) - ite(b, 10)

64

Gl = ite(b, [l - ke(g t 0)1, [0 - ite(a, t 0)])

Gl = ite(b, ite(a, % 0) 0)

Now dealing with gate G2:

G2=a. c
G2 = ite(a, 0,1) - Re(c, t 0)
G2 = ite(a, [0

- ite(c, 1,0)], [l - Re(c, 1,0)D
G2 = ite(a, 0, fte(c, 10»

Since I. H=Hand O. H=O

Since I. H=Hand O. H=O

Finally dealing with the Top gate, Top:

Top=GI+G2
Top = ite(b, ite(a, 10), 0) + ite(a, 0, ite(c, 10))
Top = ite(b, [tte(a, 10) + ite(a, 0, ite(c, 10))], [0 + ite(a, 0, ite(c, I 0))D

Top = ite(b, ite(a, [I + 0], (0 + ite(c, I O)D, ite(a, 0, ite(c, 10)))
Since O+H=H

= ite(b, ite(a, I ite(c, 10)), ite(a, 0, ite(c, 10)))

The He structure computed for the fault tree shown in figure 5.1 is given in equation
(5.1) and the SFBDD is shown in figure 5.2.

ite(b, ite(a, 1, ite(c, 1,0», ite(a, 0, ke(c, 1,0») (5.1)

C4

Figure 5.2: SFBDD for Fault Tree in Figure 5.1

65

5.3 Qualitative Analysis

Whilst the SFBDD does encode the structure function of the fault tree its minimal
form can only be used to obtain a coherent approximation for qualitative analysis, this

will be considered in section 5.3.1. Additional work is required to identify the prime
implicant sets. Rauzy -and Dutuit developed a technique to identify the prime
implicant sets, which involves computing another BDD known as the meta-products
BDD from the SFBDD [4,5,6,7]. This technique will be the focus of section 5.3.2.1. A

new alternative technique, which computes what is known as the Consensus BDD

has also been developed which may possess some advantages to the meta-products
BDD, this technique will be considered in section 5.3.2.2.

5.3.1 Obtaining a Coherent Approximation

The SFBDD of a non-coherent fault tree can be used to obtain a coherent
approximation for qualitative analysis. This involves identifying only the positive parts
of the prime implicant sets known as the minimal p-cuts. In order to identify the

minimal p-cuts, the SFBDD obtained for the non-coherent fault tree is treated in the

same way as a BDD from a coherent fault tree. Hence it is first necessary to

minimise the SFBDD removing any solutions on the one branch of a node that are
also solutions on the zero branch of the node, thus eliminating any redundancies
from the SFBDD to produce a minimal BDD. A full list of minimal p-cuts is then

obtained by tracing the terminal one paths through the minimised BDD.

Consider the non-coherent fault tree given in figure 5.1, which has three prime
implicant sets, (ab), tac), (be). The SF13DD given in figure 5.2 is non-minimal and
thus must be minimised before the minimal p-cuts can be identified exactly. If R is

retained on the zero branch of node F2 it will result in the non-minimal combination
bc. Hence the zero branch of F2 is terminated with a zero resulting in the minimised
BDD shown in figure 5.3.

66

Now tracing all the terminal one paths through the minimised BDD in figure 5.3 and
disregarding all the negated variables in these paths the following coherent

approximation is obtained:

lab), (c).

5.3.2 Exact Qualitative Analysis

Although a coherent approximation for qualitative analysis may be sufficient in some

cases, knowledge of the prime implicant sets can be extremely valuable for two main

reasons. Firstly, it can help to develop a repair schedule for failed components if a

system cannot be taken off line for repair. Secondly, it can highlight where safety

systems should be incorporated into the system in order to Prevent hazardous

events.

To illustrate this consider a system, which has three components A, B and C.
Suppose that one failure state for the system is represented by the prime implicant

set
ý137C)

and that if this failure state occurs it results in a serious hazard.

Knowledge of this prime implicant set would be valuable. Firstly if components A, B

and C were in a failed state, it would be evident from the prime implicant set that

component C should not be repaired until either component A or B had been

repaired. Hence unnecessary system failures could be avoided. Secondly the analyst
would realise that by incorporating a safety system into the system, which causes
component C to fail if components A, and B were both in a failed state, the

occurrence of hazardous events would be avoided.

67

Figure 5.3: Minimised BDD

5.3.2.1 Rauzy and Dutuit's. Meta-products Method

The SFBDD cannot be used directly to produce the complete list of prime implicant

sets of a non-coherent fault tree. To understand why this is consider a general

component x in a non-coherent fault tree. Component x can either contribute to a

particular failure mode in its failed state, working state or be excluded from the failure

mode. In the first two of these situations x is said to be relevant, in the third case it is

irrelevant to the system state. If x is relevant then it can be either failure relevant (x

appears in the prime implicant set) or repair relevant (x appears in the prime
implicant set).

Now consider a general node in the SFBDD for a non-coherent fault tree

representing component x. The one branch of this node corresponds to the failure of

x; hence x is either failure relevant or irrelevant. Similarly, the zero branch

corresponds to the functioning of x and so x is either repair relevant or irrelevant. It is
impossible to distinguish between the two cases for each branch and consequently
the prime implicant sets cannot be identified from the SFBDD.

In order to overcome this problem Rauzy and Dutuit developed an altemative
notation that associates two variables with every component x. The first variable is

P,, which denotes relevancy and the second is S., which denotes the type of

relevancy, i. e. failure relevant or repair relevant This notation enables the meta-

products of a system to be encoded. Where a meta-product, MP(Tr), is the

intersection of all the system components according to their relevancy to the system

state and Tr represents the prime implicant set encoded in meta-product MP(w).

(P, A S,) if X CE TT

MP(Tr)
(PX

A
iý.)

if X IE Tr

Px if neither x nor -x belongs to 7t

Rauzy proposed a method for calculating the meta-products BDD of a fault tree from
the SFBDD. The meta-products BDD is always minimal, thus it encodes the prime
implicant sets exactly. Rauzy and Dutuit developed a procedure called MPPI that

coverts the SFBDD into the meta-products BDD. It is then possible to identify the

prime implicant sets from this BDD by eliminating all the irrelevant components in the
meta-products. The algorithm for computing the meta-products BDD from the SFBDD
is applied in a top-down fashion, beginning with the root vertex of the SFBDD. It is

outlined below.

68

MPPI

Given a node with ite structure:

fte(xi, fI fo)

The meta-products structure for this node is denoted by:

PI[ite(xj, fI fO), Q

Note: L denotes the ordered list of all basic events except for those that appear on
the current path from the root node to the node under consideration.

PI[ite(xi, fj fO), L] is evaluated according to the follovAng rules:

- If x, is the first basic event in L:

PI[ite(xi, f 1, f 0), L] = ite(P),, ite(S),, Pj PO), P2)

Where:

P2=Pl[fl. fO, Cl

Pl PI[fj C]. F2-

PO PlIfO, C]. P72

And:

L=xi, xi., Xn

U=)(4+1 X+2s vXn

If xi is not the first basic event in L, i. e. L= xj-xj+l----, Xn such that I>j:

PI[ite(xi, f1 f0), L] = ite(P., j, 0, PI[ite(y. ft f0), eD

These rules are applied in conjunction with the follovving identities:

PI[O, L] =0
PI[I, x- L] = ite(Px, 0, Pl[J LD

In order to obtain the meta-products structure of the root vertex, ite(x, fIf 0), denoted

by Pl[ite(x, fj f 0). Q the following three calculations must be performed:

- The calculation of P2, which encodes the prime implicant sets for which x. is;

irrelevant.

- The calculation of P1, which encodes the prime implicant sets for which x is

failure relevant

- The calculation of PO, which encodes the prime implicant sets for which x is

repair relevant.

69

To calculate P2 it is first necessary to obtain the basic ite structure of f2=fI- fO

where fl and fO represent the one and zero branches of the root vertex respectively.
Next the meta-products structure of f2, denoted by PI[fZ Q must be computed,

where L represents the ordered list of basic events, xi, ---, Xn that have not yet been

considered in the conversion process. If Q is a terminal node the conversion process
can be performed immediately as follows:

- lf f2=0, PI[f2, L] =0

- lf f2=1, PI[fZ L] = ite(P.,
4,0,

ke(Px
41,0,...,

ite(Px�, 0,1»)

If however Q is not terminal, MPPI calls itself to compute the meta-products structure

of f2, before continuing the calculation of PI[ite(xi, fj f 0), L] at the previous level. The

recursive nature of MPPI means that nodes for which f2 is terminal will necessarily
be evaluated first.

The same procedure is implemented for calculating the meta-products structure of fj

and fO, denoted by PI[fj Q and Pl[fo, L] respectively. In order to ensure that the

meta-products BDD is minimal, the meta-products structure obtained for fI and fO is

ANDED with P72. This eliminates any minimal solutions from Pl[fj L] and Pl[fO, L]

that are also minimal solutions of P2 and thus produces a minimal meta-products
BDD.

The calculations of P1 and PO for each node are performed together With the

calculation for P2 so that only one depth first traversal of the SFBDD is required to

compute the meta-products BDD.

To illustrate how this algorithm is applied in practice consider the SFBDD in figure
5.2, which has the following ite structure.

ite(b, ite(a, I ite(c, 10)), ite(a, 0, ite(c, 10)))

To encode the meta-products BDD the meta-products structure must be computed
for this ite structure:

PI[ite(b, ite(a, % ite(c, % 0», ite(a, 0, ite(c, 10») bac] = ke(Pb, ite(Sb, Pt PO) P2)

70

Where:

P2 PI[tte(a, ite(c, 0» - ite(a, 0, ite(c, t 0» , ac]

Pl PI[ite(a, ite(c, 0» , ac] - P72

PO PI[ite(a. 0, ite(c, 10»
, ac] -

F2

Evaluating P2

P2 =P I[de(a, ý fte(c, 10» - Ke(a, 0, Ke(c, 10» , ac]
= PI[ite(a, 0, ite(c, to» , ac]

= ite(P., ite(S., Pl -1 PO- 1), P2.1)

= Ke(P., Ke(S., 0, ke(P., ite(S., 1,0) o», 0)

Where:

P2.1 = PI[0 - ke(c, 1,0) , c]
= Pllo cl
=o

Pl. 1=PI[0 C]. P2.1

=O. 1

=0

PO. 1=PI[Ite(C, 1,0), c]-ii2-. l

= ite(pc, ite(Sc' 10). 0) -1

,'t
0), 0) ite(Pc, ite(sr

Evaluating Pl

Pl = PI[de(a, 1, ke(c, 1,0» , ac] - F2-

= ite(P., ite(S�, Pl. 2, PO. 2), P2.2)-P72
ite(P., ite(S., ite(Pc, 0,1) 0), ite(Pr

.,
ite(sc 1,0), 0» - ite(P., ite(S., 1, ite(Pr ite(S ., 0,1), 1»,

ite(P., ite(S., ite(P., 0,1), 0), ite(P,
�l. 0), 0» ite(S ,

Where:

P2.2 = PI[I - fte(c, 1,0) , c]
=P l[ite(c, 10) , c]

ite(Pc, ite(Sc
..

1,0), 0)

Pl. 2=PI[l C]. P2.2
= ite(P, 0,1) - ite(P, � ite(S., 0,1), 1)

= ite(p" 0,1)

71

PO. 2 = PI[ite(c, 1,0) , c] -
P72-. 2

= ite(P., ite(S., 1,0), 0). ite(P., ite(S., 0,1), 1)

= ite(P., ite(S., 0,0), 0)
=0

Evaluating PO

PO = Pl[ge(a, 0, Re(c, 1,0» ac]-P2
= ite(P., ke(S., 0, ke(Pc, ite(Sc, 1,0), 0», 0). ite(Pa, ite(Sa, 1- ite(Pc, ite(Sc, 0,1), 1», 1)

= Ke(P., Ke(S., 0, Ke(Pc, ite(Sc, 0,0), 0». 0)

= ite(Pa, ite(sa, 0,0), 0)

=0

Hence the ite structure of the meta-products BDD for the SFBDD in figure 5.2 is

given in equation (5.2):

.,
Re(Sc, tOý0))O), ite(P., ite(Sa, O, ite(Pc

.,
ite(Sc, 10)0))O)) lte(Pb . ite(Sb 9 ite(Pa 1 ite(Sa, ite(Pc 0011)0) ite(Pc

(5.2)

The corresponding meta-products BDD is given in figure 5A

Figure 5A Meta-products BDD Computed from the SFBDD Given in Figure 5.2

72

From the meta-products BIDD shown in figure 5.4, it is possible to obtain the meta-

products, by tracing the terminal one paths through the BDD, the prime implicant sets
are subsequently identified from the mate-products as shown below.

Pb ASb Apa ASa Aýic =ab

Pb signifies that component b is relevant and Sb signifies that component b is failure

relevant. Component a is also failure relevant Finally Oc signifies that component c

is irrelevant. Hence the prime implicant set ab is obtained from this meta-product.
Interpreting the remaining two meta-products in the same way gives:

Pb ASb APa APC A8C =bc
i5b

A Pa A
ýýa

A PC A SC 22 aC

5.3.2.2 An Alternative Method for Identifying the Prime Implicant Sets

As part of this research project an alternative method has been developed for

qualitative analysis of non-coherent fault trees using the BDD technique. This method

produces a Consensus BDD directly from the fault tree. It is known as the Consensus

BDD because the method used to compute this BDD employs the consensus
theorem, (introduced in chapter four) in order to encode the 'hidden" prime implicant

sets.

A three-way ite structure is used to distinguish not only between relevant and
Irrelevant components but also to distinguish between the type of relevancy, i. e.
failure relevant and repair relevant. The fto structure for a general component x is an
ordered quadruple given below:

T=ite(x, fl, fO, f2)

Where the first component is the variable of the node and each node in the

Consensus BDD has three branches. Thus for a general node given in figure 5.5, the

one branch encodes prime implicant sets for which component x is failure relevant,
the zero branch encodes prime implicant sets for which x is repair relevant, and the

consensus branch encodes prime implicant sets for which component x is irrelevant.

73

one
Ax

'AConsensus

fl II fo II f2

Figure 5.5: Three-way ite Structure

The ite structure shown in figure 5.5 is interpreted as follows:

If x is failure relevant then consider function f,

Else if x is repair relevant then consider function fo

Else consider function f2.

6.4.2.2.1 Computing the Consensus BDD

The conversion process for computing the Consensus BDD is similar to that for

computing the SFBDD. Before the conversion process can proceed the basic events
of the fault tree must be ordered. The conversion process is outlined below:

I. Assign each basic event x in the fault tree an ite structure, x= ite(x, %0).

2. Modify the fault tree structure so that each gate has only two inputs.
3. By the application of De Morgan's laws push any NOT gates down through the

fault tree structure until it reaches a basic event level.
4. Consider each gate in a bottom-up fashion.
5. If the two gate inputs are J and I such that

J= ite(x, Fl, FO, F2) I= ite(y, H 1. HO, H2)

Then the folloviring rules are applied:

If x<y, J< op >I= ite(x, Kl, KO, [Kl - KOD

Where, KI Fl < op >I and KO = FO < op > 1, and Kl - KO represents

the consensus of KI and KO

- If x=y. J< op >I= ite(x, Ll, LO, [Ll - LOD
Where, Ll = Fl < op > Hl and LO = FO < op > HO, and Ll - LO
represents the consensus of Ll and LO.

74

These rules are used in conjunction with the following identities:

- 1<op>H=H O<op>H=O if<op>isandANDgate

- I<op>H=l O<op>H=H if<op>isandORgate

Within each ite calculation an additional consensus calculation is performed to

ensure all the hidden prime implicant sets are encoded in the BDD obtained. This

operation calculates the product of the one and the zero branch of each node and
thus identifies the consensus of each node.

To demonstrate how this procedure is employed consider the non-coherent fault tree
in figure 5.1:

Assuming a variable ordering b<a<c

Assigning each variable an ite, structure:

a= ite(a, 1,0,0) c= ite(c, 1,0,0)

a=ite(a, 0,1,0) b=ite(b, 1,0,0)

Computing the ite structure of each gate in the fault tree, beginning with gate G2:

G2=a. b

= ite(aAO, O) - ite(b, tQO)

= ite(b, fl, fO, fl - fO)

Where:

fl I- fte(a, 1,0,0) = ite(a, 1,0,0)

fO 0-ite(a, 1,0,0) =0

fl - fO = ite(a, 1,0,0) -0=0

Hence the final ite, structure for gate G2 is given below.

ite(b, ite(a, 1,0,0), O, O)

75

Dealing with gate GI:

Gl=a. c
= ite(a, 0,1,0) - ite(c, 10,0)

= ite(a, fl, fO, fl - fO)

Where:

fl 0- ite(c, 1.0.0) =0

fO 1- ite(c, 1,0,0) = ite(c, 1,0,0)

fl - fO =0- ite(c, 1.0,0) =0

Hence the final ite structure for gate G2 is given below:

ite(a, O, ite(c, 1,0,0), O)

Finally Dealing with the top gate, Top:

Top=GI+G2

= ite(b, ite(a, IO, OP, O) + ite(a, O, ite(c, 1,0,0)0)

= ite(b, fl, fO, fI- fO)

Where:

fl =ite(a, 1,0,0)+ite(a, o, ite(c, 1,0,0), 0)
fO=O+fte(a, O, Re(c, 1,0,0), O)=ite(a, o, ite(c, 1,0,0), O)

Evaluating fl:

fl =ite(a, fl. MO. 1. fl. I- fo. I)

Where:

fl. 1=1+0=1

fO. I =O+Ite(c, 1,0,0)=ite(c, 1,0,0)

fl. l. fO. l = 1-ite(c, 1,0,0)

Evaluating fI-fO:

fl -fO = ite(a, l, fte(c, 1,0,0), ite(c, 1,0,0))-fte(a. o, ite(c, 1,0,0), O)

= ite(a, fl. 2, fO. 2, fl. 2 - fO. 2)

76

Where:

fl. 2=1-0 =0
fO. 2=ite(c, 1,0,0). ite(c, 1,0,0) = ite(c, 1,0,0)

fl. 2 40.2 =0 -ite(c, 1,0,0) =0

The final ite structure obtained for the fault tree in figure 5.1 is given below:

ite(b, (ite(a, l, ite(c, 1,0,0), Re(c, 1,0,0)), ite(a, O, ite(c, 1,0,0). O), ite(a, ite(c, 1,0,0), 0))

Figure 5.6 given the Consensus BDD obtained for the fault tree given in figure 5.1:

Fl

Figure 5.6: Consensus BDD for Fauft Tree Shown in Figure 5.1

5.4.2.2.2 Minimising the Consensus Binary Decision Diagram

Once the consensus ite structure of the top event has been computed, there is no
guarantee that the resulting Consensus BDD Will be minimal, i. e. produce the prime
implicant sets exactly. Although the form of the Consensus BDD generated initially

needs to be retained for quantitative analysis, in order to perform qualitative analysis
a minimisation procedure needs to be implemented.

The Consensus BDD can be used to obtain a list of implicant sets then; the Boolean
Reduction Laws introduced in chapter two can be applied to these implicant sets to

77

produce a list of prime implicant sets. However, this is an inefficient means of

obtaining the prime implicant sets. Instead a procedure that minimises the BDD itself,

similar to the procedure developed by Rauzy for minimising the SFBDD [3) can be

used to create a new minimal BDD that encodes the prime implicant sets exactly.

The procedure is applied to each node in the Consensus BDD. For a general node
the procedure states:

Given an output of a node represented by the function F, where
F= ite(x, G, H, 1). The set of all minimal solutions of F will include the

minimal solutions of G and H that are not minimal solutions of I and

also all minimal solutions of 1. Let 6 be a minimal solution of G

which is not a minimal solution of 1, then the intersection of 6 and x

will be a minimal solution of F given by, Fmin = (6) ri x. Similarly let

y be a minimal solution of H which is not a minimal solution of 1,

then the intersection of y and x will be a minimal solution of F,

given by, F,, in = (yln-x. Finally if the set of all minimal solutions of

H, is given by, (SOIrnin(H)):

sOlminF = [16)f-lxlu I(Ylr"ýIu [SOlinin(H)l

There are essentially five stages to minimising IF = ite(x, GK I):

1. lclentifý the minimal solution of G, Grnin -
2. Identify the minimal solution of H, HmIn *
3. Identify the minimal solution of 1,1 j,,.
4. Remove all minimal solutions of Grnin that are also solutions of Imin

without(Gminlimin)-

5. Remove all minimal solutions of HmIn that are also solutions of Irnin
9

without(Hminsimin)-

Stages 4 and 5 of the procedure are critical since, if a minimal solution of 1, say y is

retained on the either the one branch as a minimal solution of G or on the zero
branch as a minimal solution of H, it will result In a non-minimal combination y-x, or

y-x respectively. This minimisation procedure is an extension of Rauzy's method for

minimising the SFBDD hence the algorithms 'minsol' and 'without were modified in

78

order to produce a working code to minimise a given consensus BDD. 'Minsol'

computes the minimal solution of a node and calls 'without' to compute 6 and y, i. e.

the minimal solutions of G and H that are not minimal solutions of 1. These algorithms

are outlined in appendix (1).

To illustrate this procedure consider the Consensus BDD given in figure 5.6. The

nodes are considered in a top down fashion, starting with the top node. The minimal

solutions of the one branch of a node are computed first, then the minimal solutions

of the zero branch and then the minimal solutions of the consensus branch are

obtained. Finally all solutions that exist on either the one or zero branch of a node
that also exist on the consensus branch of the node are removed from the one or

zero branch and replaced with zero.

If a node is terminal then it is automatically minimal. If however, it is non-terminal the

new node must be minimised before the minimisation of the current node can be

completed.

Table 5.1 records the one, zero and consensus branches of each node in the

Consensus BDD and the modified one and zero branches that are obtained as part

of the minimisation process. Two modifications are made to the Consensus BDD.

Firstly both the zero branch and the consensus branch of node F1 point to

node F4. Thus if F4 is retained on the one branch of node F1 it will results in

non-minimal combinations. Hence it is replaced with a 0.

- Secondly the zero branch and the consensus branch of node F2 both point to

node F3. Hence to remove redundant implicant sets the zero branch of node
F2 is replaced with 0.

Node One Branch Zero Branch
Consensus

Branch

Modified

one branch

Modified zero
branch

Fl F2 F3 F3 F2 0
F2 1

F3 0 F4 0 0 F4
F4 0 0 0 0 1 0

Table 5.1: The Node Connections for the Consensus BDD in Figure 5.6

79

The Consensus BDD in figure 5.6 has now been minimised and minimal BDD is

shown in figure 5.7.

Figure 5.7: Minimised BEID Obtained from the Consensus BDD in Figure 5.6

It is then possible to obtain a full list of prime implicant sets by tracing all the terminal

one paths through the minimised BDD:

{ab), {ac), {bc)

5.4 Quantitative Analysis

One of the major advantages of the BDD method is that unlike conventional Fault

Tree Analysis techniques it does not require knowledge of the prime implicant sets
(minimal cut sets in the case of coherent fault trees) for quantification. It is possible
to use the SFBDD or the Consensus BDD to perform full and exact quantitative
analysis. The procedures for calculating both the system unavailability from the
SFBDD and the Consensus BDD will be considered in sections 5.4.1.1 and 5.4.1.2

respectively. The calculation procedures for the most commonly used measures of
importance and the unconditional failure intensity will be the focus of chapter seven.

80

5.4.1 Calculating the System Unavailability

The system unavailability is defined as the probability that the system is in a failed

state at time t. Conventional Fault Tree Analysis techniques for calculating the

system unavailability are lengthy and inefficient. The BDD technique enables more

efficient and accurate quantification of the system unavailability. Techniques for

calculating the system unavailability from the SFBDD and the Consensus BDD will

be considered in sections 5.4.1.1 and 5.4.1.2 respectively.

5.4.1.1 Calculating the System Unavailability from the SFBDD

The SFBDD for a non-coherent fault tree encodes Shannon's decomposition. Hence,

as Andrews [14] demonstrated the calculation procedure introduced in chapter three

section 3.5.1 for calculating the top event probability from the SFBDD can be

employed for non-coherent fault trees. Thus the top event probability for a non-

coherent fault tree is obtained by summing the probabilities of the disjoint paths

through the SFBDD.

To illustrate this consider the SFBDD shown in figure 5.2 This SFBDD has been

computed for the non-coherent fault tree in figure 5.1. Three prime implicant sets can
be identified from this fault tree:

ý, b), ý, cjjb, c)

Thus using the inclusion-exclusion expansion introduced in chapter three the

expression in equation (5.3) is obtained for the top event probability.
Osys(t)=qaqb +(I -q.

)qc +qbqc -qaqbqc -(I -qa)qbqc =qaqb +(I -q.
)qc

(5.3)

There are two disjoint paths through the SFBDD shown in figure 5.2, ab and ac.
Thus given that the top event probability is obtained by summing the probability of

each disjoint path, the following expression is obtained:

Qsys (t) = qaqb + (1 - qa ýc

81

This agrees With the expression derived by the Fault Tree Analysis method, and is a
far more efficient means of calculating the top event probability since it eliminates
both the need to identify the prime implicants sets and evaluate the many terms of
the inclusion-exclusion expansion.

5.4.1.2 Calculating the System Unavailability using the Consensus Binary
Decision Diagram

The SFBDD is encoded Within the Consensus BDD. If all the consensus branches

are removed from the Consensus BDD the SFBDD for the fault tree is obtained.
Hence, the system unavailability can be calculated directly from the Consensus BDD,

by summing the probability of all the terminal one paths through the BDD that only
pass through the one or zero branches of non-terminal nodes.

To illustrate this technique consider the Consensus BDD given in figure 5.6. There

are three terminal one paths through the BDD (since paths passing through

consensus branches of non-terminal nodes are ignored). The three paths are: ba,

bac and &a-c, by taking the sum of the probability of these paths the following

expression for the system unavailability is obtained:

Qsys (t) = qbqa + qbPaqc +Pa Pbqc = qaqb + (I - qa ýc

5.5 A Comparison of the Two Methods

To test the efficiency of Rauzy and Dutuits method and the Consensus method, 20

example non-coherent fault trees of varying complexity were analysed using MPPI (a

computational method for constructing and analysing the SFBDD and meta-products
BDD) and Consensus (a computational method for constructing and analysing the
Consensus BDD) and the results were compared. A top-down, left-right ordering of
the basic events was used for both methods. Both of the codes run on a Sun

workstation and the execution time is given in hours, minutes and seconds. The

execution times include the computation of all BDD's required for both qualitative and
quantitative analysis and the time taken for the analysis itself. Table 5.2 records the
results.

82

Fault
Tree

No. of
Gates

No. of Basic
Event

No. of Prime
Implicant Sets

Time Taken
for Meta-

products

Time Taken for
Consensus

Lisa 102 63 105 736 6 hrs 38 mins N/A

LisaII06 153 207 953 8 hrs 12 mins NIA

Dre1058 13 41 1805 12 hrs 7 mins N/A

Bpfsw02 19 40 249 4 hrs 21 mins 10hrs 49 min$
Bpfeg03 24 63 387 7 hrs 9 mins NIA

Nakashi 22 15 68 2 hrs 14 mins 3 hrs 39 mins

Lisabl 3 25 30 153 5 hrs 26 mins 7 hrs 19 mins

Lisal 18 42 77 948 12 hrs 8 mins N/A

Lisal 17 90 147 337 6 hrs 27 mins N/A

Lisab15 53 98 496 8 hrs 33 mins 9 hrs 13 mins
Jdtree5 12 20 7 13 seconds 4 seconds
Jdtree3 12 21 18 14 seconds 3 seconds

Lisab56 13 17 10 23 seconds 4 seconds

Sjdtree 18 15 36 7 seconds 7 seconds
Lisa 103 6 9 15 4 seconds 3 seconds
Fatram2 6 9 11 4 seconds 4 seconds

Rando15 7
'

11 10 4 seconds 3 seconds

Rando83 17 21 9 5 seconds 4 seconds

Rand146 11 21 6 5 seconds 7 seconds
Rand117 12 17 1 3 seconds 4 seconds

Table 5.2: Results for Analysing Non-coherent Fault Trees using Rauzys Meta-

products Method and the Consensus Method

The results in table 5.2 demonstrate that whilst for the smaller less complex fault

trees (from jdtree-randl 17) there was little difference in the perforrnance of the two

techniques. For the large more complex fault trees (from lisal02-lisabl5) the meta-

products technique was significantly more efficient than the consensus technique. In

fact the consensus technique was unable to analyse six out of the ten more complex
fault trees in a reasonable time. The time taken to analyse the remaining four fault

trees is significantly greater than that taken by the meta-products technique.

83

The Consensus method for the analysis of non-coherent fault trees only has one
node for each basic event with three branches denoting failure relevance, repair
relevance and irrelevance. Rauzy and Duituits method assigns two variables to each
basic event, the first denotes relevance and the second denotes the type of
relevance. Thus the most significant difference between the two methods is the

structure of the diagram used. However, the Consensus method has the
disadvantage of requiring a minimisation process to be applied to the Consensus
BDD computed, in order to encode the prime implicant sets exactly. This

minimisation process can be lengthy for larger fault trees since it requires both the

one and zero branch of each node to be compared to the consensus branch and
reduced where redundancies exist.

5.6 Summary

The BDD method for the analysis of non-coherent fault trees can be more efficient
and accurate than conventional techniques for non-coherent FTA especially when
dealing with large fault trees with many repeated events. Full qualitative analysis can
be performed using the BDD technique and the system unavailability can be

calculated without knowledge of the prime implicant sets and there are no lengthy

series expansions to evaluate. The calculation of importance measures using the

BDD technique will be considered in detail in chapter seven.

Knowledge of the prime implicant sets can be of value to the analyst for planning
repair schedules and deciding where to incorporate safety systems. It is not possible
to identify the prime implicant sets from the SFBDD directly, since no distinction is

made between component, failure relevance, repair relevance and irrelevance. Two

main methods for identifying the prime implicant sets using the BDD technique have
been considered in this chapter. The first method developed by Rauzy and Dutuit

requires the SFBDD to be converted to the meta-products BDD that encodes the
prime implicant sets exactly. The second method converts the fault tree directly to a
Consensus BDD, which is then minimised to encode the prime implicant sets exactly.

A comparison of the two methods revealed that although for moderate sized fault
trees there is little difference in efficiency. For larger fault trees the meta-products
technique is significantly more efficient than the consensus technique. The main
disadvantage with the consensus technique is that a minimisation procedure has to
be applied to the consensus BDD to identify a full list of prime implicant sets.

84

Although the BDD method for the analysis of non-coherent fault trees has

advantages in terms of efficiency and accuracy over FTA, it suffers the same

shortfalls as the BDD method for the analysis of coherent fault trees. Namely a

variable ordering scheme must be chosen for the basic events of the fault tree in

order to compute a SFBDD.

85

Chapter 6: Importance Analysis of Coherent Fault Trees

6.1 Introduction

When assessing a system, its performance is dependent on that of its components.
Certain components will play a more significant role in causing or contributing to

system failure than others. Birnbaum first introduced this concept of importance in
1969 [11, highlighting the value of numerically ranking the contribution of each
component or basic event to reflect the susceptibility of the system to the occurrence
of this event. Measures of importance assign a value between 0 and 1 to each
component (or minimal cut set) with I signifying the highest level of contribution.

Importance analysis is now a key part of the quantification process, which enables
the analyst to rank the contribution each component makes to system failure. The

weakest areas of the system can be identified thus highlighting the modifications that

will best improve the system reliability.

Measures of importance can be categorised as either deterministic or probabilistic.
Numerous measures of importance have been developed for assessing the different

roles a component failure can play in the deterioration of the system state. All

measures of importance provide particular information about the system and its

components. Hence it is critical to firstly choose suitable measures of importance

according to the objectives of the analysis and secondly to understand how the

results should be interpreted. This chapter will firstly introduce some of the most

commonly used measures of importance and illustrate two calculation procedures for

these measures. Finally an example will be used to illustrate how the measures of
importance introduced are calculated and the results are interpreted.

6.2 Deterministic Measures of Importance -

Deterministic measures of importance also known as structural measures of
importance assess the importance of components and or minimal cut sets without
taking into account the reliability of components. These measures are useful early on
in the design phase because information concerning the failure probability of
components tends to be limited at this time.

86

Birnbaum introduced a measure of structural importance, which enables the

researcher to identify the proportion of critical vector states that exist for each
component

No. of critical states for component i (6.1) II(q))
Total no. of states for the (n -1) remaining components

To illustrate how this measure is calculated consider a system with three minimal cut

sets, AB, BC, AC, the structural importance of component A will be calculated. Firstly

all the possible states for components B and C are identified. Then those states for

which component A is critical are identified. Table 6.1 records the results.

States for Components b and c Critical State for Component a
B, C) No

B, ýý) Yes

C) Yes

No

Tabie 6.1: system titates

Then using equation (6.1) the follo%(ing result is obtained for the structure importance

of component a:

la (q»= 2=1
42

Although deterministic measures of importance can be of use, probabilistic measures
of importance are generally preferred because they provide more valuable
information.

6.3 Probabilistic Measures of Importance

Probabilistic measures of importance are far more useful than deterministic

measures in practical reliability problems. This is because they take component
failure probabilities and intensities into account and thus provide more detailed
information about the system and its components. There are two types of
probabilistic measures, those for assessing component importance and those for

assessing minimal cut set importance.

87

Probabilistic measures can be further categorised as either measures concerned with
system unreliability (contflbuting to the failure frequency) or measures concerned
with system unavailability (contributing to the failure probability). There is a clear and
important distinction between reliability and availability, which was, explained in

chapter 1 section 1.1.

6.3.1 Measures for Assessing Component Importance

In a system, some components will contribute to system failure more than others. In

order to improve the reliability of the system, those components most likely to

contribute to system failure must be identified. Numerous measures of importance
have been developed for assessing component importance, five of the most
commonly used measures will be considered in detail below.

6.3.1.1 Birnbaum's Measure of Component Reliability Importance

Birnbaum introduced the concept of importance and a probabilistic measure of

component reliability importance in 1969 [1]. This measure is denoted by GjCq) and

is defined as the probability that component i is critical to system failure. Thus, the

system is in a working state such that the failure of component i causes it to fail. An

expression for this measure is given in equation (6.2):

Gjýq)= Osys(li, q)-QsyS(Oi, q) (6.2)

Where, Qsys is the system unavailability function and Qsys(Ij. q) is the probability

that the system fails with component I failed and 0 sys
(01, q) is the probability that the

system fails with component i working.

Given that Qsys is linear in each qj, equation (6.2) can be expressed as follows:

G, Cq)= ýOsys(t) (6.3)

88

In addition to providing a measure of importance in its own right, this measure also
forms the basis for a number of other measures of importance, including the Measure

of Component Criticality, Barlow and Proschan's measure of component initiator
importance [18] and Lambert's measure of component enabler importance [19].
These measures will now be considered.

6.3.1.2 The Component Criticality Measure

This measure is defined as the probability that component I is critical to the system
and i has failed, weighted by the system unavailability at time t. An expression for this

measure is given in equation (6.4).

lei =
GiCqýi(t)
QSYS (t)

(6.4)

This measure takes into account the failure probability of component 1, unlike
Birnbaum's measure, and as such can provide additional information regarding how

likely component i is to actually be in a failed state when the system is failed.

6.3.1.3 Fussell-Vesely's Measure of Component Importance

Fussell-Vesely's measure is concerned with the contribution component failures

make to system failure [20]. The measure is defined as the probability that the failure

of component i contributes to system failure and is numerically similar to the

Component Criticality Measure:

P UCk

W
JOCK

Q SYS W (6.5)

89

6.3.1.4 Measure of Initiator and Enabler Importance

The measures introduced previously have not been concerned with the order in

which the basic events fail. Although these measures can be useful for assessing
importance, in certain circumstances the order in which basic events fail it is of vital
importance to the occurrence of system failure. One circumstance when order of
failure is of great importance is during the assessment of safety protection systems. If

a hazardous event occurs whilst the safety system is failed the outcome would be a

serious/dangerous system failure. If however, the hazardous event were to occur

prior to the failure of the safety system then the appropriate action would have been

taken to shutdown the system and thus prevent a dangerous system failure. This

situation can be modelled by considering the component failures as either Initiating

or enabling events, and is illustrated more clearly in figure 6.1.

Critical system state

Occurrence of
enabling event
Safety system

inartiva

to ti time
Figure 6.1: Initiating Event Window

In this diagram the safety system is inactive between to and ti. During this time the

safety systems cannot respond to a hazardous event and therefore the system is in a
critical state due to the occurrence of an enabling event. If the initiating event occurs
within the interval (to, ti) it will result in a dangerous system failure. If however, it

occurs outside of this interval the safety system will respond as designed. Hence the

order of component failures is clearly of importance. The formal definitions for
initiating and enabling events are given below:

Initiating events perturb system variables placing a demand on control/protection
systems to respond.

Enabling events are inactive control/protective systems, which permit initiating events
to cause the top event.

Barlow and Proschan developed a measure to assess component initiator
importance in 1974, and Lambert developed a measure of component enabler
importance in 1975. Both these measures are considered separately below.

90

6.3.1.4.1 Barlow and Proschan's Measure of Component Initiator Importance

This measure is concerned With the failure of components acting as initiating events.
If components are to be initiators then their occurrence must coincide with system
failure. Barlow and Proschan's measure [18] calculates the probability that

component i causes system failure in the interval [O, t), an expression for this

measure is given in equation (6.6).

t
fG, ýqývi(uýu

11h4 =0 wsys (0, t)
(6.6)

Where, wi(t) and Wsys(Ot) are the unconditional failure intensity of component 1

and the expected number of system failures in a given interval respectively.

It is important to realise that not all components can act as initiators. For example,

safety systems are passive, and can only contribute to system failure, not directly

cause it. Hence Barlow and Proschan's measure will not be suitable for assessing
the importance of passive components.

6.3.1.4.2 Lambert's Measure of Component Enabler Importance

Lambert introduced the measure of enabler importance in 1975 [19], which is defined

as the probability that the failure of component i allows the system failure in the
interval [O, t) caused by the failure of another component j occurring. Lambert's

expression for this measure is given in equation (6.7):
t
gQsys(lilj, E)-QSYS(liOJ, 3)bi(u)wi(uýu
0

'EI ij
wsys (0. t)

(6.7)

Where, i is the enabler and j is the initiator.

This expression does not exactly specify the probability that component 1 contributes
to system failure in a given interval when another component, j causes system
failure. It is an approximation because it does not take into account the separate
roles of components i and j in causing or contributing to system failure. For

91

component i to enable system failure by the failure of component j, i and j must occur
in at least one minimal cut set together and it must be the existence of one such
minimal cut set that causes the system failure.

To illustrate this, consider the following example with four minimal cut sets:

fabe, def, bg, dh)

The Boolean expression for the top event and the system unavailability function are
given below:

T=abe+def +bg+dh

Qsys (t) = qqbqe + qdq. qf + qbqg + qdqh - qaqbqdqeqf - qaqbqeqg - qaqbqdqeqh

-qbqdqeqfqg -qdqeqfqh -qbqdqgqh +qaqbqdqeqfqg +qaqbqdqeqgqh
+qaqbqdq. qfqh +qbqdqeqfqgqh -qaqbqdqeqfqgqh

Consider the situation where d is an enabler and e is an initiator, then, for d to act as

an enabler and contribute to system failure when it is e that actually causes system
failure, they must occur in the same minimal cut set. This is minimal cut set 2, Idef).

Therefore, f must fail and cut sets 1,3 and 4 must not exist, if minimal cut set 2 is to

cause system failure. This means that either b works or a works from minimal cut set
1, and g works or b works to prevent minimal cut set 3 and h works to prevent

minimal cut set 4. Thus the required circumstances are:

f and ab and bg and h

f+ýa+6)-ýb+j)-5=f-5-Cb+a-g)

Taking the probabifity of this expression gives:

P[f-ý. ýb+-a-j)j=qf
+(1-qhll - qaqb - qbqg + qaqbqg

]

Using this probability, the correct expression can be obtained for the enabler
measure of importance for component d when component e initiates system failure.

t
f[qf qh qaqb - qbqg + q, qbq,

1,
jw, du

'Ar-d,
o -- wsys(O, t)

92

Where, 'AE,,, is the actual enabler probability, the probability calculated using

Lambert's formula is:

t
SYS

(ldl.,
q(u))- QSYS (ld, Oe, q(u$d(U)We(U* fQ

IE(te
WSYS(o, t)

t
qhiqaqb(1-qg)+qf (1-qaqb

-qbqg +qaqbqg)ld(u)ýve(uýu
ftl

-

. t: (te -

WSYS(Olt)

The two results differ. Notice that Lambert's measure has the extra terms:

qh jqaqb
- qaqbqg j= qaqb (I -%

Xi
- qn)

These occur because Lambert has failed to account for the fact that the components
i and j can occur separately in failure combinations and consequently have an effect

on system state individually as well as a jointly, Lambert has accounted for the

independent role of the initiator but not the enabler.

The required probability is the probability that components I and j are critical to

system state at time t and component i has failed and component j fails at time t all

weighted by the expected number of system failures.

In order to calculate the required probability firstly the criticality of component i and j

must be calculated and then a correction term which eliminates the separate

contributions of i and j is required. The criticality of i and j is the probability that

component i and j are critical to system state, i. e. the system is in a state at time t

such that the failure of components I and j would cause system failure.

The probability that component i is critical to the system state at time t is calculated

as follows:

Gi Cq) = Qsys (li. q(t))- Qsys (01,9(t))

Where, Osys (lj, ýt)) is the probability that the system is in a failed state at time t and

I is failed and Qsys(01,9(t)) is the probability that the system is in a failed state at

time t and i is working.

93

Since Qsys(t) is linear in qi(t) this can be re-written as follows.

GiCq)= 4'Qsys(t)
aqi(t)

Hence the probability that components i and j are critical to the system state, GkjCq),

can be obtained by extending this definition of criticality. Firstly the notation must be

extended.

Let Osys(11,1j, q(t)) be the probability that the system is in a failed state with

components i and j failed. Then Qsys (1j, Oj, q(t)) is the probability that the system is in

a failed state with component i failed and component j working. Then the probability
that components 1 and j are critical to the system at time t can be expressed as
follows:

GkjLq)= Qsys(111,11jq(t))- Qsys(IjOj. q(t))- Qsys(Oj, Ij, q(t))+ Qsys(Oi, Oj. g(t))

(6.8)

This is because Qsys(Ij, Ij, S(t)) represents the probability that the system is in a

failed state and components 1 and j are failed. In order to eliminate the individual

contributions of components i and j, (i. e. if they are contained separately in minimal

cut sets they make an individual contribution to system failure.) the probability that

the system is failed when I is failed and j is working and the probability that the

system is failed when i is working and j is failed are subtracted. Finally because this

subtraction results in an underestimation the probability that the system is in a failed

state and components i and j are working must be added.

Since Qsys (t) is linear in qj (t) and qj (t) equation (6.8) can be re-written as follows.

Gj, j
Cq)

20
SY. S (t) (6.9)

N, Dqj

Although GkjCq) represents the probability that components I and j are critical to the

systems state, it does not always produce the required probability, since the separate
effects of I and j result in redundant combinations in the system unavailability
function. This is illustrated by three examples below.

94

Example 1

T=abc+bd+cf

Q. r(t)=qaqbq, +qbqd+qcqrq. qbqA, rq. qbqcqf-qbqcqdqf+q. qbqcqdqf

Let Cl=abc, C2=bd, C3=cf. Then considering the role of component a as initiator and

component b as enabler:

Result obtained for GLj ýq):

a2QSYS (t)
qcqd -q, qf +q. qdqf

49qa'3qb

Correct result for Gkj Cq):

c fails and d works and f works

P(c. 5. i)=qc(1-qd
-qf +qdqf)=qc -qcqd -qc*qf +qcqdqf

Notice the two results agree, this is because component a occurs only in minimal cut
set C, along with component b. Hence none of the terms in the system unavailability
function involving both a and b represent the separate contributions of the failure of
components a and b. However, this is not always the case as will be illustrated by the
following examples.

Example 2

T=abc+ad+bf

Q. y. (t)=q. qbq, +q. qd+qbqrq. qbq, -q. qbq, qd qrqqbqdq&q. qbqcqdqf

Let C, =abc, C2ýad, C3=bf. Then considering the role of component a as initiator and

component b as enabler:

Result obtained for Gkj ýq):

02Q SYS
(t)

= qc - qcqd - q, Oqaoqb qf -qdqf+qcqdqf

95

Correct result for Gjj Cq):

c fails and d works and f works

P(c-ýJ)=qc (I
-qd -qf +qdqf)= qc -qcqd -qcqf +qcqdqf

Notice the additional terM -qdqf appears in the obtained result for GIjCq). This

additional term is the result of the probability of the combined failure Of C2 and C3

which represents the separate contribution of the failure of components a and b to

system failure. Since, if C2 and C3 are both failed, then both a and b have failed,

however, because they are not contained together in either C2 or C3, they are not

acting in an initiator / enabler sense.

Example 3

T=ab+ac+bd+ce

%ý, (t)=q, qb +q, q, +q q +q, q, 7qq q -q, q,, q. -qbq ,bdq, -q, qb bd cqdq,,

Let C, =ab, C2=ac, C3=bd, C4=ce. Then considering the role of component a as
initiator and component b as enabler

Result obtained for Gkj Cq):

=1-q, -qd 'ONaOqb

Correct result for Gkj ýq):

c works and d works

Pýc-ý)=(1-qcXj-qd)'ýj-qc -qd +qcqd

The obtained result is missing the term +qcqd. This term represe
'
nts the contribution of

the failure of minimal cut sets C1, C2 and C3. However this contribution is eliminated
by the contribution of the failure of minimal cut sets C2 and C3. If C2 and C3 have both

failed then although both a and b are failed, they are not acting in an initiator /

enabler sense. Whereas if C1, C2 and C3 have all failed a and b are failed and since

they are both contained in C, they are acting in an initiator / enabler sense.

The last two examples illustrate the need to apply a correction term to Gjj Lq) in order

to eliminate the separate contributions of components i and

96

The correction term to be applied to GýjCq) can be derived to take into account the

separate effects of components i and j on the system state. It can be defined as the

probability that the system is in a critical state for component I and j, such that the
failure of either i or j alone would be sufficient to cause the system to fail. In order to

calculate the correction term a modified unavailability function, Qm,, j
(t) is required,

this considers all minimal cut sets of the system apart from those containing both i

and j.

np
Omw(t)" UNCK) (6.10)

k-1
irlj'ECK

The probability that components i and j are critical to the system state such that the
failure of either i or j alone would be sufficient to cause the system to fail is calculated

as follows.

a 2Q
P4,1

(t)
Gt4.1 Cq)

=- aqiaqj

Thus the enabler importance of component i when component j causes system
failure is given in equation (6.12):

ýKj ýq)- Gmi', ýq)ýi (u)wj (uýu

lEkj - wsys (0, t)
(6.12)

The total enabler importance of component i is the sum of the enabler importance of i

when component j initiates system failure for, j=I...... n j# i and is given in equation
(6.13).

ý ýGU ýq)- GKj ýq)ýi (u)wj (u)du

IEýj =
rAl

wsys (o. t)
(6.13)

97

6.5.2 Measures for Assessing Cut Set Importance

The measures introduced above are suitable for analysing component importance. It

can also be useful to rank cut set importance in order to ldentifý the cut set most
likely to contribute to system failure. Two measures for analysing cut set importance

will be considered in the following sections.

6.3.2.1 Fussell-Vesely's Measure of Cut Set Importance

In 1974 Fussell and Vesely developed a measure of importance to assess cut set

importance [20]. The measure is defined as the probability that a cut set C,

contributes to system failure:

'FV(Ci)=
P(cl)

(6.14) -Q
SYS

fil

6.3.2.2 Barlow and Proschan's Measure of Cut Set Importance

In 1975 Barlow and Proschan developed a measure of cut set importance, which

they defined as the probability that the failure of cut set Cn 1 coincides with the failure

of the system failure, i. e. that cut set Cn I actually causes system failure. The following

expression was developed for this measure:

Cn_(, i IB--P (Cip)
= F,

'ftP
ii. 0 llqjwidt (6.15)

lec 0 jecp-(q I

Where:

Ji, OCn_ 1 01
,
ý) represents the probability that component 1 is critical at time t.

rlqjwidt represents the probability that component i fails at time t and the
jeq4l)

remaining components in cut set Cn have failed by time t. I
Cn I represents cut set i of order n.

Barlow and Proschan suggested that the product of these two probabilities gives the
probability that component i causes system failure. Thus by summing over

98

ieC, " (which corresponds to all the mutually exclusive ways that Cj' can fail) the

probability that cut set Cn I causes system failure is obtained. However, this measure
does not always give the required result, to illustrate this consider the following

example.
T=ab+ac

9(-x), 2 Xa (xb + Xc - Xb Xr.)

Consider the first cut set, ab, Barlow and Proschan's measure considers each

component in the cut set separately:
tt

18-p (ab)
=

ftP(la, ObvýýbWadt+ fq)(IbvOalýýaWbdt

00 (6.16)
tt

=
Fqcqbwadt

+
fo

- qaWbdt
00

Now the correct result vAll be calculated. Each component Will be dealt With

separately.

Component a: The cut set ab is critical for component a if, b is failed and c works
thus the probability that the failure of component a causes cut set ab and the system
to fail is given below:

P(b . c). w. = qb qcw.

Component b: The cut set ab is critical for component b if a is failed and c works,
similarly the probability that the failure of component b causes the cut set ab and the

system to fail is given below:

P(a -
-C)'Wb

= qa qcWb

Notice that the expression obtained for the probability that component b causes
system failure by Barlow and Proschan's measure does not give the correct
probability.

This is because the term does not give the probability that component 1 is critical
unless all the cut sets in the system are independent. An explanation of how the
required probability can be obtained is given below.

99

The probability that cut set Cin causes system failure can be obtained by summing
the probability that the failure of each component in the cut set coincides with the

failure of cut set CP and the failure of the system.

Each component in the cut set C' could cause the failure of Cn 11 and the system

failure by failing in the interval [t, t+dt), provided that all the other components in CP

have failed prior to time t, and no other cut sets exist at time t. Thus by summing the

contribution for each component in CP the probability that cut set Cn causes system

failure is obtained.

The first stage is to calculate the probability that cut set Cn is Ci I rit cal to the system

state. The probability that the components contained in cut set Cl' are critical to the

system failure, such that the failure of all n components in Cn would cause the failure

of Cn 1 and the system is expressed as follows:

Gcp Cq)
= (6.17)

aq, n

II.

Cn

However, this does not always give the required probability exactly. This is because

some of the terms in Qsys(t), can represent the separate contirubtions of the

components contained within the cut set Cn I. This Will be illustrated by means of a

worked example.
T=abc+acd+be

Qsys(t)=qj&q, +q. q, ýqd , qd+qbq. -q. qbqr -q. qbqq. -q. qbqCqdq. + q. qbqc; qdqo

Suppose the importance of cut set abc is being derived. Then, cut set abc is only
critical to the system state if the other two cut sets acd and be do not already exist.
Thus abc is critical provided component d works and component e works. The

expected probability that cut set abc is critical to the system is given below:

P(cut set abc cribcal)=pdp. = I -qd-q. +qdq.

The probability obtained from equation (6.17) is given below
3

ý,
(t)

,l
ýq) sys -1-qd -qe Gt. b, r -qe -qdqe +qdqe =i-qd

, oqaoqboqc

100

Notice that the expression obtained from equation (6.17) is missing the term +qdq.,
this is because it is eliminated by the redundant combinations of the failure of cut
sets 2 and 3. If both of these cut sets have failed, then components a, b and c are in

a failed state and thus recorded as part of the solution for G(ab%-.)(q). However, it is

only those combinations involving cut set abc that are of interest

To eliminate these redundant combinations a correction term must be applied to

Gk)Lq). Firstly a modified system unavailability function is formed for cut set C, P,

this function is denoted by, Q MC'- :

n"
Qm, =up (6.18)

Then this function is differentiated with respect to all components in cut set Cin to

eliminate any redundant combinations included in Gýn)Cq).
I

Thus for the above example the following modified system unavailability function is

obtained for the cut set abc:

Qmfabc) = qaqcqd + qbqq - qaqbqcqdqe

a3QM(abc) (t)

= -qdqo M fabc)
Cq)

ý'- -jFq
a aq b aq c

Now subtracting the result obtained for Gmf. bc)
Uq from the result obtained for

Gf. bc)(q) the correct probability is obtained:

G j,, bc)
Cq)-G

M(abc)
Cq)= I- qd - qe + qdqe

Once the probability that cut set Cin is critical has been obtained it is multiplied by the

probability that cut set component j=l,.., n ,j#1 contained in Cj' are failed at time t

and component I fails in the interval It, t+dt). This is summed over IE Cn giving the

probability that cut set Cj" causes system failure.

(Cn)= 2:
'm

GCn -G
rlqj(t)wi(t)dt (6.19) IB-P 1 mcn

lEci 1

101

6.4 Methods for Calculating Measures of Importance

Two methods for calculating the various measures of importance outlined above will
be considered in sections 6.4.1 and 6.4.2. The first method employs conventional
FTA techniques and the second is concerned with calculating the measures directly
from the SFBDD.

6.4.1 Fault Tree Analysis Technique

Measures of importance can be calculated during quantitative Fault Tree Analysis,
the calculation procedures rely on knowledge of the minimal cut sets of the fault tree

and tend to involve evaluating lengthy series expansions. To illustrate the Fault Tree
Analysis techniques for calculating the seven measures of importance introduced

above consider the fault tree diagram in figure 6.2.

This fault tree consists of a 2-out-of-three-3 vote gate and has three minimal cut sets:

Cl={AB), C2={AC), C3={BC)

The first stage is to obtain an expression for the system unavailability, using the
inclusion-exclusion expansion given in equation 2.14:

Qsys (t) = qAq, 3 + qAqc + q, 3qc - 2qAq, 3qc

From equation (6.3), an expression for Birnbaum's measure of component reliability
importance can be obtained for each component as follows:

20 GA Cq)
=0 -5ys = qB + qc - 2qBqc

OqA

102

Figure 6.2: Fault Tree Diagram

GB Cq)
=9QSYS = qA + qc - 2qAqc

OqB

Gc Cq)
=

OQSYS
= qA + q13 - 2qAq, 3 aqc

Now expressions for the system unconditional failure intensity and thus the expected
number of system failures in a given interval can be obtained:

n
wSyS(t)=j: GlCqýl

1--i
(qB + qc - 2qBqC)6VA + (qA + qC - 2qAqC)WB

+(qA +qB -2qAqB)6VC

t

w(o, t)= fWSYS(u*
0

From equation (6.4) and Birnbaum's measure of component reliability importance

expressions for the Criticality measure can be obtained for each component:

ICA = QSYS =
(q,

3 + qC - 2q, 3qc)qA
QSYS

Ic = Qsys =
(qA +qc -2qAqcý13

IB QSYS

I
Gc Cqýc (qA + qB - 2qA qB)qC

cc QSYS QSYS

Fussell-Vesely's measure of importance is calculated for component I by considering
only those minimal cut sets containing component 1. From equation (6.5) and
knowledge of the three minimal cut sets, expressions for Fussell-Vesely's measure of
component importance are obtained as follows:

3
P UCk

k-I

_AeCK
qAqB + qAqc - qAq, 3qc

asys Ti osys

103

3
p ucx

k-I
IFVB =. -E36CK

qAq, 3 + q, 3qc - qAq, 3qc
Q Sys

W QSYS

3
p uck

k=l
CIECK qAqc +qlgqc -qAq, 3qc

0 sysTtT OSYS

Barlow and Proschan's measure of initiator importance is calculated from equation
(6.6), and the results obtained for Birnbaum's measure:

tt
fG

A
Cq)6V

A dt f(qB + qc - 2q, 3qc
ýNAdt

IINA =0 W(O, t)
0

W(O, t)

tt
fGs Cqýv

a dt f(qA +qc -2qAqc)WE3dt

1IN13 ý0 W(O. t)
0

W(O, t)

tt
fGcCq)wcdt f(qA +qI3 -2qAq, 3)wcdt

'INC =0 W(O-t)
0

W(O, t)

The procedure for calculating the component enabler importance is quite involved

and will only be illustrated for component A.

t jKj ýq)- Gej ýq)ýi (t)wj (u)du

'Eý.
1 wsys (0, t)

Firstly the contribution of A as an enabler when B is the initiator will be calculated.
From equation (6.9):

GA, B
(q)

= OqAOqB = OqAoqS
[qAqB +qAqc +qBqc -2qAq, 3qc]=1-2qc

104

The modified system unavailability function for components A and B is obtained as
follows:

3
QMA,

13(t)=
UP(CK)=qAqr+qBqc-qAqBqc
k=l

MBOCK

Hence:

Gm q)=
2B (t)

D2
_

[qAqc
+qBqc -qAqBqc]= -qc A, 13

C
OqAaqB OqANB

Now evaluating the contribution of A as the enabler when component C is the
initiator.

GA, C
Cq)

= OqAoqC = OqAoqC
[qAqB + qAqc + q, 3qc - 2qAq, 3qc

I=1- 2%

The modified system unavailability function for components A and C is given below.
3

QMA,
C(t)"':

UP(CK)=qAq,
3+qBqc-qAqBqc

k-I
AnCOCK

Thus:

02QMA,
C

t) a2 GMA,
c q- OqAOqC = OqAOqC

[qAqs + qBqc - qAqBqc -qB

From equation (6.13) the following expression is obtained for the enabler importance

of component A.
t
f(i

- qc ýAWB + qB ýAWC

IEA 0
W(O, t)

Expressions for the enabler importance of components B and C are obtained in the

same way:
t
P- qc

ý13wA + qA ýBWC

IEB =0 W(O, t)

t
P-

qB ýCWA + qA ýCWB

lE
C`0 W(O. t)

105

Next expressions for the Fussell-Vesely measure of cut set importance for each
minimal cut set JABIIACIIBC) are obtained from equation (6.14):

IFV (Cl) =
qAql3

Q SYS
(t)

lFV (C2 qAqc
Q SYS

(il

IFV (C3)= qBqc
Q SYS

cil

Finally expressions for the modified Barlow and Proshcan measure of cut set
importance is obtained for each minimal cut set from equation (6.19). The process
will be outlined for cut set CI=AB:

Firstly an expression for G(AB)Cq):

2
GJABI Cq)

=
O'Qsys T=I- 2qc

OqAo%

Then an expression for the modified unavailability function for C, is obtained, from

which an expression for Gm,
AB)

Cq) is obtained:

QM(AB) (t) = qAqc + q, 3qc - qAqaqc

02QM
fabl

(t)
G hýAB)

oq=
- OqAoq, 3

= -qc

Finally from equation (6.19) the following expression is obtained for the importance of

C2: cut set I

I
(C2)= t

qc ýBWAdu +t qcýAWBdu B-P IP-
Yl

-
00

Repeating this process the following results are obtained for cut sets C2 and C2: 23

l
(C2)= tt

B-P 2
f(I

- q13 ýCWAdu + f(I - q13 ýAftdu

00

'
(C2) tt

B-P 3=
f(I

- qA ýCWBdu + f(I - qA ýBwcdu
00

106

6.4.2 The Binary Decision Diagram Method

For coherent fault trees it is possible to use the SFBDD to exactly calculate all of the

measures of importance introduced above except the modified measure of cut set
frequency importance which must be approximated. The BIDD method enables exact
and efficient calculation of the measures of importance eliminating firstly the
intermediate stage of identifying the minimal cut sets and secondly the evaluation of
lengthy series expansions. The procedure for calculating Birnbaum's measure
developed by Sinnamon and Andrews [13] was introduced briefly in chapter three it

will be considered in greater detail below.

6.4.2.1 Calculating Birnbaum's Measure of Importance from the SFBDD

Birnbaum's measure of component reliability importance is expressed as follows:

GlCq)= Osys(lijq- Qsys(Oi, q) (6.20)

The first term of equation (6.20), Qsys(li, jq, can be calculated from the SFBDD by

substituting qi =11 and calculating the probability of the disjoint paths through the

SFBDD, i. e. repeating the system unavailability calculations. Osys (01, q) is calculated

in the same way except qj is set to 0. There are three different path types:

Paths including a failed state of component 1.

Paths including a working state of component 1.

Paths not including component 1.

The following expressions can be obtained for Osys (Ij, q) and Osys (01, q):

QSYS(li, jq= 1: (Prx, oq. Polx Cq))+Z(q) (6.21)
Paths In

category (1)

QSYS(Oi, q)=
(P

r.,, Cq)
-Po0

Cq)) +Z Cq) (6.22)
Paths In

category (ii)

Where:

Prx, Cq) is the probability of the path section from the root vertex to node x,

Po'xi Cq) is the probability of the path section from the one branch of node x, to a

terminal 1 node (excluding the probability of xi)

107

Poo, Oq is the probability of the path section from the zero branch of the node x, to a X1

terminal 1 node (excluding the probability of x1)
Z Lq) is the probability of the paths from the root node to a terminal 1 node not

passing the node for variable xj

Hence from equations (6.20)-(6.22):

n
Gi ýq)

=1 Prx, ýq ýq)-Po" ýj
lýOxi xi

(6.23)
41

Re-running the system failure probability calculations is an inefficient means of
calculating Gi Uq. The efficiency can be improved by calculating each term in

equation (6.23) during the initial pass of the SFBDD to obtain the system
unavailability as illustrated in chapter three.

Having calculated the top event probability and Birnbaum's measure of importance
for each component it is possible to calculate the unconditional failure intensity and
the expected number of system failures in a given interval. Then all the quantities
required for calculating the Measure of Component Criticality and Barlow and
Proschan's measure of initiator importance are known. The procedure for calculating
Birnbaum's measure of importance was illustrated in detail in chapter three.

6.4.2.2 Calculating Fussell-Vesely's Measure of Component Importance from

the SFBDD

The calculation procedure for the Fussell-Vesely measure of importance is quite
involved since both the minimal BDD and the SFBDD must be used during the
procedure. Firstly the minimal BDD is searched to identify the number of times each
variable is encountered in a minimal cut set. If the basic event occurs in one minimal
cut set Fussell-Vesely's measure of component importance is calculated as follows:

IN "2
NO

(6.24)
Q SYS

(t)

Otherwise equation (6.25) and the SFBDD are used:

, qx, Pr(xjýol(xj) F

IFVI ý--
x, nodes

QSYS
(6.25)

108

6.4.2.3 Calculating the Enabler Measure of Importance from the SFBDD

The modified measure of enabler importance can be calculated exactly from the
SFBDD, Gkj Uq can be calculated by extending the calculation procedure for Gi Uq

developed by Andrews and Sinnamon, which was considered in section 6.4.2.1. An

expression for Gkj Uq is given in equation (6.26).

Gkjýq)= QSyS(ljlj, S(t))- Qsys(11,0j, it))- Qsys(01, lj, g(t))+ QSyS(01,0j. S(t))

(6.26)

Qsys (1j, 1j, q(t)) can be calculated by substituting qj =I and q, =I and re-running the

system failure probability calculations. Similarly by substituting q, =I and q, = 0, and

re-running the system failure calculations Qsys (Ij, 0,, jt)) can be calculated.

Repeating this process it is possible to calculate all of the terms in equation (6.26).

However, this does not provide a very efficient means of calculating GLj Uq. It is

possible to calculate Gkj Uq through just one pass of the SFBDD. The procedure for

calculating this probability is derived below.

There are nine paths types through the SFBDD for components I and J:
Paths passing through the one branch of a node x, and the one branch of

a node);.
Paths passing through the one branch of a node)q and the zero branch of

a node Yj.

Paths passing through the zero branch of a node)q and the one branch of

a node)q.
(iv) Paths passing through the zero branch of a node); - and the zero branch of

a node Y1.

(V) Paths only passing through the one branch of a node xi.

(vi) Paths only passing through the zero branch of a node xi.

(Vii) Paths only passing through the one branch of a node)q.

(Viii) Paths only passing through the zero branch of a node

(ix) Paths not passing through a node Y4 orN,.

109

To calculate Qsys(Ij, 1j, q(t)) qj and q. are set to one then the system unavailability

function is evaluated. Thus to calculate this probability from the SFBDD, qi and cb are
set to 1. Since qj=qj=1, I-qi=l-q=O, thus any paths passing through the zero branch

of a node A or xj have a probability of zero. Hence, only those paths passing through
the one branch of a node Y, and)q, or just)q-, or)ý or neither need to be evaluated to

obtain an expression for Qsys(Ii, ij, q(t)):

Qsys (lilj, S(t))= P(paths tYpe (i))- P(paths type (v))

- P(paths type (vii)) + P(paths type (ix))

Similar expressions are obtained for the other terms in equation (6.26):

Q Sys
(11,0j, q(t)) P(paths type (ii)) - P(paths type (v))

P(paths type (viii)) + P(paths type (ix))

Qsys (01, lj, g(t))= P(paths type (iii))- P(paths type (vi))

- P(paths type (vii)) + P(paths type (ix))

Qsys(Oi. Oj, g(t))= P(paths type (iv))- P(paths type (vi))

- P(paths type (viii)) + P(paths type (ix))

From equation (6.26) the following expression is obtained for Gkj Uq:

Gl, jCq)= P(paths type (i))- P(paths type (ii))-P(paths type (iii))+ P(paths type (iv))

(6.27)

From this it is clear that when calculating Gkj Uq from the SFBDD, it is only those

paths types that pass through nodes representing both component i and component
that are of interest, i. e. paths types (i)-(iv) from the list given above.

6.4.2.3.1 Calculating the Probability of these Paths from the SFBDD

Supposing that component 1 is before component j in the order scheme, I<J, then the

probability of each of these paths can be calculated from the SFBDD as follows:

Paths of type (i): the probability preceding node xi, multiplied by the probability from
the one branch of node x, to the node)q (excluding the probability of A), multiplied by

110

the probability from the one branch of x, to a terminal I node (excluding the

probability of xj).

P(paths of type (i)) = prx, - pol pol (6.28) Xj-Xj Xj
Where:

PrX, is the probability preceding node Y4.

pol is the probability from the one branch of node A. to the node)q, Xi X1

excluding the probability of node Y4.

pol is the probability from the one branch of node)q to a terminal I node. Xj

Paths of type (ii): the probability preceding node Y'., multiplied by the probability from
the one branch of node Y, to Yj (excluding the probability of Y,), multiplied by the
probability from the zero branch of ý to a terminal one node (excluding the probability
of)q).

0 P(paths of type (ii)) = pr), - pol Poxi Xi xi

Where:

(6.29)

Poo is the probability from the zero branch of node xj to a terminal one X1

node.

Paths of type (iii): the probability preceding node xy, multiplied by the probability from
the zero branch of node x, to x, (excluding the probability of A.), multiplied by the
probability from the one branch of xj to a terminal I node (excluding the probability of
)0.

01 P(paths of type (ili)) = prl - pox,
_x, - pox,

Where:

(6.30)

Poo -
is the probability from the zero branch of node Y, to the node)4 Xj

excluding the probability of Y,.

Paths of type (iv): the probability preceding node)q, multiplied by the probability from
the zero branch of)q to)q (excluding the probability of x,), multiplied by the probability
from the zero branch of)q to a terminal 1 node (excluding the probability of Yj).

P(paths of type (iv)) = prx, - poo 0 (6.31) XI-Xi *Poxj

ill

Thus the following expression is obtained for GkjCq):

GkjCq)=prxl. [pol_x,.
pol -pol POO -POO , pol + Poo , POO Xi xi)q-xj X1 XI-Xi Xi Xi-Xi xi

I

(6.32)

It is possible to calculate, prx, , pal _,
poo _, pal , and poo through just one Y4 Xi)q X1 xi X1

pass of the SFBDD. Beginning at the root vertex of the SFBDD, a depth first traversal

of the tree structure is performed. At each node N. it is possible to record the

probability preceding this node, prx,. Furthermore since it is possible track whether

on the one or zero branch of all nodes preceding xj, it is possible to record the
probability from either the one or zero branch of all previous nodes yq to the current

node)q, i. e., pol
_ and poo Finally the probability from the one and zero N Xi Xi-Xj *

branches of the current node)q to a terminal one node, pol , and poo can be Xi Xi

recorded in the same way that it is recorded for calculating Gi Cq).

To illustrate this calculation procedure consider the SFBDD given in figure 6.3.

xa

Ilb

xf 1fx. 1 L'
x

1, Eýl

II no
Figure 6.3: SFBDD

Suppose node xh is being dealt with, at this point three nodes have been passed
through:

the one branch of node x.
the one branch of node xc,
the zero branch of node xf

112

Given that the probability preceding each node is recorded as the node is

encountered, prx,,, prxc, prxf and pr are known. Xh

Thus since the current path passes through the one branch of nodes x, and x, to xh,

pol and pol can be calculated as follows. ýCa-Xh XC-xh

po 1 Prx,,
Xa-xh prx, - qx,

I Prxh
POXC-Xh

prx, - qxý

Also, since the current path passes through the zero branch of node xf to node xh,

Poo can be calculated as follows: Xf-Xh

pr
po 0-. h

Xf-Nh prxf -(I - qxf

To calculate the correction term, N,, Cq), a modified system unavailability function

QM. j
Cq) is formed. This modified function is formed by considering only a partial list

of the minimal cut sets. All those minimal cut sets involving both i and j are ignored.
Since the SFBDD obtained for the system encodes the full list of minimal cut sets it
does not encode the modified system unavailability function. Thus to calculate
Gmkj Cq) a new SFBDD which only encodes the partial list of minimal cut sets must be

computed. This modified BDD encodes the structure function of the modified system

and thus both Lq) and Gp4,, Lq) can be calculated directly from this tree structure.

Although the structure function method outlined in chapter three can be used to

compute the modified SFBDD, this is not an efficient means of computation. Rauzys
He procedure also outlined in chapter three would enable the modified SFBDD to be

calculated efficiently. In order to use this procedure, a fault tree must be developed
for the modified system. The fault tree structure will always take the same form. The
top gate will be an OR gate with all gate inputs, the number of gate inputs will be

equal to the number of minimal cut sets being considered in the modified system.
Each gate input to the top gate will be an AND gate, with it inputs being the basic

events of each minimal cut set.

113

Once the fault tree structure has been obtained the fto procedure is applied to

compute the modified SFBDD. It is then possible to calculate GpA. q) using e
ý,
C th

method outlined previously for calculating GkjCq). This technique for calculating the

modified enabler measure of importance will now be illustrated by means of a worked
example. Consider the fault tree in figure 6A

Assigning the ordering a<b<c<d<f to the basic events in the fault tree the
SFBDD shown in figure 6.5 is obtained.

Figure 6.5: SFBDD for the Fault Tree in Figure 6.4

114

Figure 6.4: Coherent Fault Tree

The enabler importance of component a, when component b acts as an initiator will
be calculated. Firstly Ga, bCq) will be calculated from the SFBDD in figure 6.5. Table

6.2 Records the results for pry4, pol
_xj ,

poo
_x, v po I, and poo for each node in the

Xi Xi Xi Xi

SFBDD shown in figure 6.5.

Node Variable Prx, POI xi-xj POO XI-Xj POI XI POO Xi

POIFI-F2

1 POFI-F3 POOFi-F7 1

FI a 1 1 POF1-F4 2'-- PC 0 POFI-F8 I
q, +pqd

qt
+p, pdqf+qd

I POFI-F5 ý PcPd

I POFt-F6

I POF2-F3

F2 b q,
POFI2-F4 =PC

0 POF2--F6
q, +Pcqd+PcPdqf qd

I POF2-F5 PcPd

0 PoF3--F4
F3 c q. pdqf

POF3--F5 Pd

F4 d q. pc 0 POF4-F5 qf

F5 f q. pcpd 1 0
F6 d q. 1 0

F7 b Pa POF7-F8 qf 0

F8 f P. - 1 0

Table 6.2: Results for prx, , pol
_xj # Poo -,

pol , and poc) for each Node in the
N X1 xj Xi Xi

SFBDD in Figure 6.2.

The enabler importance of component a when it is component b that actually causes
systems failure is calculated using equation (6.33) and the results given in table 6.2.

t ýGa,
b

ýq)- G Ma. b
ýq)ba (U)Wb (*U

, Ea, bi = wsys (0, t)
(6.33)

115

From the SFBDD in figure 6.5 three paths of type (i), one of type (ii) and one of type
three (iii) for components a and b can be identified, each paths is shown below.

Paths of Mm (i)

bb

Path of tA* (H) Path of Mm (iii)

Figure 6.6: Paths of Type (i), (ii) and (iii) through the SFBDD in Figure 6.5 for
Components a and b

From equations (6.29ý(6.31) and figure 6.65, the following probabilities are obtained
for the three paths:

P(paths of type (i)) = 1: pr, - pol), * Pol
paths of

Y4_xj xj

type Q)

=1.1. qc +1.1. pcqd +1*1*PcPdqf
= qc + pcqd + PCPdqf

P(paths of type (ii)) = prxi - po 1
_x ,

Poo X1 i xi
=1.1. qd

= qd

P(paths of type (iii)) = prx, - poo _-. pol xi XI Xi
=1-1-qf
= qf

116

From equation (6.32) the follovving result is obtained for Ga, b
(q):

Ga, bCq)=qc +pcqd +PcPdqf -qd -qf

To calculate the correction term the minimal cut sets, {ad) and {bf) are considered.
The fault tree shown in figure 6.7 is constructed for this system.

The basic events in the fault tree are ordered as follows, a<b<d<f and the
SFBDD shown in figure 6.8 is obtained:

117

Figure 6.7: Modified Fault Tree Diagram

Figure 6.8: The SFBDD for the Fault Tree in Figure 6.7

101 To calculate G M8, b
Cq) pr.,, , poxi_xi I Poxi-XI I po , and poo for each node in the Y4 N

SFBDD shown in figure 6.8 are recorded in table 6.3.

Node Variable Prx, pol 34-Xj POO Xi-XJ POI xf Poo)(i

PoF1-F2

pol Fl-F3

0 POFI--F6
qd+Pdqf

FI a
I =

Poo F1--F7 +qd
qf

PoFI-F4 Pd

POI F1--F5

POI F2-F3
POF02-F5

F2 b q. 1 POF2-F4 Pd qd+qf qd

I POF2-FS

F3 d 1 0 POF3-F4 I Pd

F4 f Pd 1 0

F5 d I 1 0

F6 b POI =I F6-f7 qf 0

F7 f 1 0

Table 6.3: Results for pr,,, pol
_,

poo
_xj 1 pol , and poOx for each Node in the

N X1 X1 X1 X1

SFBDD in Figure 6.8.

To calculate G 14,1
Cq) the paths of type (i), type (ii), type (Iii) and type (iv) for

components a and b are identified from the modified SFBDD in figure 6.7. Then

equation (6.34) is used to calculate GpA, l
Cq).

GpAj Cq) - P(paths of type (i)) - P(paths of type (ii)) - (6.34)
P(paths of type (iii)) + P(paths of type (iv))

From the modified SFBDD in figure 6.8 two paths of type (1), one path of type (ii) and

one paths of type (iii) are identified. Each paths is shown below:

118

Paths of type

bb

f

Path of type (ii) Path of type (iii)

Figure 6.9: Path Types through the Modified SFBDD in Figure 6.8 for Components a
and b

Thus from equations (6.29)-(6.31) and figure 6.9 the following probabilities are
obtained for the three paths:

P(paths of type (1)) = 1: prx, - pol _,
pol

paths of
N X1 Xi

" V)

=1.1-qd +1'1*Pdqf
= qd + Pdqf

P(paths of type (ii)) = prx, - pol * Poo XI-Xj Xi
=1.1. qd

= qd

P(paths of type (iii)) = pr.,, 4 - poo I
XI-xi * Pox,

1.1. qf
qf

119

From equation (6.33) the follovving result is obtained for G Ma, b
Cq):

Ma, b
Lq) = qd + Pdqf - qd - qf

Thus from equation the following expression is obtained for the enabler importance of
component a when component b causes system failure.

tt

.
qd - qr f[Gýlýq)-Gm, ýq)ýi(u)wj(uýu ýqc-qr qf + qcqdqf baWbdu

. rU wsys (o. t) wsys (o. t)
This simple example has demonstrated that the calculation procedure for the

modified measure of enabler importance is quite involved. Furthermore this

procedure must be applied to every pair of components in the fault tree.

6.4.2.4 Calculating Fussell-Vesely's Measure of Cut Set Importance

To calculate this measure knowledge of the minimal cut sets is essential. Thus the

minimal BDD is tracked to identify each minimal cut set. The probability of this cut set
is calculated and then divided by the value obtained for the system unavailability.

6.4.2.5 Calculating The Measure of Cut Set Frequency Importance

The procedure for calculating this measure exactly from the SFBDD is CPU intensive

and not a practical proposition. Thus it will not be considered in detail here. An

alternative measure for assessing the importance of a cut set Cin in causing system

n failure is to calculate the expected number of system failures caused by cut set C,

and divide this by the total number of expected system failures In a given Interval.
tnn
fZwjrlqidu

0 j--1 1-1
j(Cn)= lol

1 WSYS (0- t)
(6.35)

The expected number of system failures can be calculated directly from this SFBDD

and each minimal cut set can be identified from the minimal BDD and subsequently
quantified, provided the failure probability and frequency of each system component
is known.

120

6.5 Importance Analysis a Worked Example

Prior to performing analysis it is essential to consider the aims of the analysis so that

appropriate measures of importance can be chosen to analyse the importance of the

components and the minimal cut sets of the system. It is also critical to interpret the

results obtained correctly. Different measures assess different 'types' of importance

thus different components could be ranked as 'most important' for different

measures. In this section an importance analysis will be performed on a simple

system and the results will be interpreted.

Consider again the fault tree shown in figure 6.2. Table 6.4 summarises the

conditional failure rate, A, and the failure probability, q, for each component. From

this the unconditional failure intensity of each component has been calculated using
the formulae given in equation (6.36). These component parameters are used to

quantify the expressions obtained for the five different measures of component
importance and the two measures of cut set importance considered in sections 6.4.1

and 6.4.2. The results are given in tables 6.5 and 6.6.

A(til - q(t)] (6.36)

Component Failure Rate

A(t)

Failure Probability

q(t)

Failure Intensity

W(t)

A 1.0 X 10-3 1.0 X 10-2 9.9 X 10-4

B I. OXIO-4 2.0 x 10-2 9.998XIO-5

c 5.0 x 10-6 2.5 x 10-4 4.99875 x 10 -6

Table 6A Summary of Component Parameters

nent A B C Component

Ranked I

Birnbaum 2.03 x 10-2 1.03 x 10-2 2.96 x 10-2 C

Criticality 0.976 0.988 3.57 x 10-2 B

Fussell-Vesely 0.976 0.988 3.59 x 10-2 B

Initiator 0.945 4.83 x 10-2 6.98 x 10-3 A

Enabl 4.94 x 10-2 0.938 1.1500-2 B

Table 6.5: Results for the Various Measures of Component Importance

121

Minimal Cut Set Fussell-Vesely's
Importance

Barlow & Proshcan's
Modified Importance

AB 0.9643 0.18215

AC 1.205 x 10-2 2.554 x 10-3

BC 2.41 x 10-2 1.084 x 10-3

Table 6.6: Results for Measures of Cut Set Importance

The five measures of component importance were calculated for each component
and the highest ranked component is recorded in the far right column of table 6.5.
Notice that it is not always the same component that is ranked as "most important"
for the different measures, i. e. Birnbaum's measure ranks component C as the most
important, whereas component B is ranked highest for the Criticality Measure of
importance. To interpret the results it is important to understand the definition of each
measure.

From the results for Birnbaum's measure of importance it can be -seen that the

system is most likely to be in a working yet critical state for component C. Thus it can
be concluded that if the system performance is considered inadequate extra
resources should be allocated to reduce the existence of the necessary and sufficient
conditions that make component C critical to the system state. Thus the availability of
component A and B should be improved.

The results from both the Measure of Component Criticality and Fussell-Vesely's

measure of component importance confirm this conclusion since although
component B ranks highest for these measures. There is little difference between the
measures for components A and B. It is also be seen from these measures that there
is little need at present to improve the availability of component C since it is
extremely unlikely to be in a failed state when the system is failed.

The initiator measure of importance indicates that it is component A that is most likely
to actually cause the system to go from a working to a failed state. Component C is
least likely to cause the system to fail and there is a slim chance that component B

will actually cause the system to fail. However, by considering the results for the

enabler importance it is clear that component B is most likely to enable another
component to act as an initiator causing system failure. From this it is clear that the

most likely cause of system failure is the existence of minimal cut set AB where B

122

acts as an enabler and A acts as the initiator. This conclusion is confirmed by the
results from Fussell-Veselys measure of cut set importance and the measure of cut
set frequency importance recorded in table 6.6.

Therefore, if resources are to be allocated to improve the system, efforts should be
concentrated on either reducing the failure rate of A or the unavailability of B.

6.6 Summary

Importance analysis is an essential part of the quantification process enabling the

analyst to identify the weakest areas of the system and then make informed

decisions about how the system can be improved. Numerous measures of
importance have been developed and they can be categorised as either deterministic

or probabilistic. Probabilistic measures tend to provide more valuable information
because they take account of the component failure probabilities.

Probabilistic measures fail into one of two categories, those suitable for assessing
system unreliability and those for assessing system unavailability. It is vitally
important to understand the definition of each measure of importance and be able to

choose suitable measures for analysis. It is also important to interpret the results
correctly if any real value is to be gained from the analysis.

The measures of importance introduced in this chapter can be calculated using one
of two methods. They can be calculated directly from the fault tree or they can be

calculated from the SFBDD. Fault Tree Analysis requires knowledge of all the

minimal cut sets if exact results are to be obtained during quantification. The

quantification procedures for calculating the measures of importance are also
complex and CPU intensive and thus can be inefficient. The BDD method provides a
more efficient and exact means of calculating the measures of importance,

significantly reducing the need to employ approximations that are often unavoidable
when conventional FTA techniques are employed.

123

Chapter 7: Importance Analysis of Non-coherent Fault Trees

7.1 Introduction

An importance analysis is a valuable part of the quantification process, which helps the

analyst to identify the weakest areas of the system and thus make informed decisions

about resource allocation for system improvement. This field has received a great deal

of attention over the last 30 years and numerous measures of importance have been

developed. However, importance analysis of non-coherent fault trees is extremely limited

since the majority of the measures that have been developed are strictly for the analysis

of coherent fault trees.

If these measures are used to analyse non-coherent fault trees the results are generally
inaccurate and misleading. Chapters four and five highlighted that non-coherent fault

trees can occur and accurate importance analysis is required. In 1983 Jackson [21]

developed extensions for some of the most commonly used measures of importance,

however, these extensions are inconsistent.

This chapter will introduce an extension for Birnbaum's measure of component reliability
importance and demonstrate how this can be used to extend a number of other

measures based on Birnbaum's measure 122]. Other commonly used measures of

component and cut set importance will also be extended for use with non-coherent

systems [23]. These include, the Fussel-Vesely measure of component importance, the

modified measure of enabler importance, Fussell-Vesely's measure of cut set
importance and the measure of cut set frequency importance.

7.2 Coherent Approximations

The majority of importance measures that have been developed over the last 30 years
have been developed specifically for the analysis of coherent systems and therefore

rank component failures. If these measures are used to analyse a non-coherent system,
the results are inaccurate and little value is gained from the analysis. To illustrate this

consider the non-coherent system with three prime implicant sets:

(a, c), {b, ý), (a, b)

124

The follovAng expression is obtained for the system unavailability function:

Qsys (t): -- qaqc + qb -q,:)+qaqb -qaq q, -qaq q, bb

q. qc + qb qbqý

Birnbaum's measure of component reliability importance is calculated for each

component as follows:

GiCq); -- Qsys (ii, q)- Qsys(Oi. q) (7.1)

Hence:

G. Cq)
= qc

GbCq)=I-qc

Gc Cq)
= qa - qb

Importance measures assign components a numerical value between 0 and 1, however

the result obtained for component c would be negative if, q3 < qb, and thus no

conclusions can be drawn about the importance of this component.

Birnbaum's measure calculates the probability that the system is in a critical state for

component 1 at time t. In a non-coherent system, a component can be failure critical,

GF i
Oq or repair critical, G, ý 0q, because system failure can be caused not only by

component failure but also by component repair.

One way of obtaining Birnbaum's measure of importance for the above example Is to

consider component criticalityby an exhaustive tabular approach. Consider a system
with n components: the system state can then be expressed in terms of the component
states. It is possible to determine whether a component is critical to system failure given
the states of the remaining (n-1) components. There are 2" possible states of the other
(n-1) components. By identifying the critical situations for component I and summing
their probability of occurrence it is possible to calculate the probability that component I
is critical to system failure.

125

Thus for the above example table 7.1 identifies the critical states for each of the three

components, table 7.2 records the sum of the critical situations for each event and the

probability that each event is critical to system failure. The probability is calculated using
the component unavailabilities assigned by Jackson [21], which are given below:

q 9.90099 X 10-3, qb -2
, = 3.84615 x 10 qc = 1.52534 x 10-2

State

of a

State

of b

Is c
Critical

State

of a

State

of c

Is b

Critical

State

of b

State

of c

Is a
Critical

w w No w W Yes (F) W w No

w F Yes (R) W F No w F Yes (F)

F W Yes (F) F W Yes (F) F w No

F F No F F No F F Yes (F)

Table 7.1: Possible and Critical States for the Events

Event Sum of critical Situations Expected Result Ranking

a Pbq, +qbqc 0.152534 2

b Papc+q, pc 0.84747 1

c qaPb 0.00952 4

c p, qb 0.03808 3

Table 7.2: Expected Results for Component Criticality

These results demonstrate that although Birnbaum's measure calculates the Importance

of components a and b correctly, it does not obtain the correct result for component c.
Consequently, Birnbaum's measure of importance is not suitable for the analysis of non-

coherent systems. Furthermore, any other measures based on Birnbaum's measure of
importance including, the Measure of Component Criticality, Barlow and Proschan's

measure of initiator importance and the modified measure of enabler importance will not
be suitable for the analysis of non-coherent systems either.

126

7.3 Jackson's Extension of Birnbaum's Measure of Component Reliability
Importance

In 1983 Jackson [21] developed an extension of Birnbaum's measure and then used this
to extend a number of others measures based on Birnbaum's measure. Jackson's

proposed extension of Birnbaum's measure is given below.

G* Cq)
= lQsys (Ii, q)- Qsys (Oi, Sl (7.2)

It is unclear exactly how this measure should be interpreted, equation (7.2) suggests

only one calculation per component, however, in a worked example, Jackson actually
ranks component failure importance and component repair importance separately. To
demonstrate the problems encountered with Jackson's proposed extension, consider

again the non-coherent system with three prime implicant sets {ab), (bc), (b c).

The component unavailabilities assigned by Jackson are given below and the results

Jackson obtained for Gj (q) are given in table 7.3 (where the component reliability

=I-qi):

qa =9. googgxlo-3, qb =3.84615xlO-2, qc =1.52534xlO-2

Event Jackson's Results Ranking

a 5.665 x 10-3 4

b 8.105 x 10-3 3

c 9.575 X 10-3 2

c 3.839xlO-2 I

Table 7.3: The Results Obtained by Jackson

Comparing Jackson's results in table 7.3 to those given in table 7.2 it Is clear that not
only does Jackson's extension calculate component criticality Incorrectly but that It also
ranks the components incorrectly. Hence it can be concluded that Jackson's extension Is

not conceptually equivalent.

127

7.4 The concept of Component Relevancy/ Iffelevancy

When analysing non-coherent fault trees, both component failed states and component

working states can contribute to system failure. A component can be either relevant to

the system state or irrelevant to the system state. If a component is relevant to the

system state, it can be either failure relevant or repair relevant. Component I is said to be

failure relevant if the system is in a critical state such that the failure of component I

would cause the system to fail. Similarly component I is said to be repair relevant if the

system is in a critical state such that the repair of component 1 would cause system
failure. Finally component I is said to be irrelevant if Its state has no bearing on the state

of the system.

Expressions for the failure relevance and irrelevance of a component can be obtained
from the Boolean expression for the top event. Consider the Boolean expression for the

top event Top given in equation (7.3).

Top= ab+id+ce+bd (7.3)

An expression for the failure relevance or irrelevance of component a denoted by,

ToPa-1, can be obtained by substituting the value 1 for component a into equation (7.3).

Top. =, =b+ ce + bd

=b+ ce

Similarly an expression for the repair relevance or irrelevance of component a denoted
by, Topa--O, can be obtained by substituting the value 0 for component a into equation

(7.3).

Topa-0 =d+ ce + bd

=d+ce

An expression for the irrelevance of component a, denoted by, Top,..
-.

Is obtained by

taking the product of ToPaýl and Top. A, see figure 7.1.

ToPa-'-' = ToPaýl - Topa4

= (b + ceXd + ce)
= bd + ce

128

aa

-P

a-a
Figure 7.1: Component Irrelevance

In general an expression for the failure relevance or irrelevance of component I, To.,, is

obtained by setting component i=1 and evaluating the structure function (p x

Tý--l =(P(Xl, ---, Xw, l, Xj+lr ... 1 Xn) (7.4)

Similarly an expression for the repair relevance or irrelevance of component 1, Tp. 0, is

obtained by setting component i=O and evaluating the structure function q)(x):

Ti=o ý-- 9(xi xw, Q x1+1 Xn) (7.5)

Finally an expression for the irrelevance of component 1, TI...., is obtained by removing all

minimal cut sets containing either, i or I from the structure function 4V(x):

Tw-- (7.6)

7.5 An Alternative Extension of Birnbaum's Measure of Component Reliability
Importance

Birnbaum's measure of component reliability importance (defined as the probability that

component 1 is critical to system failure) is a fundamental probabilistic measure of
importance. Many other measures of importance are based on this measure. Birnbaum
developed this measure for the analysis of coherent systems only. It is calculated from

the system unavailability function, Q, y,
(t), which is obtained using the exclusion-

inclusion principle and Boolean reduction laws. Gi (q, can be evaluated from equation

(7.1), since Qsys (t) is linear in each qj can be expressed as:

GiCq)= aa SYS (7.7)
aqi

129

Birnbaum's measure for coherent systems is central to so many other measures of
importance hence, its extension to enable analysis of non-coherent systems needs to

provide a consistent foundation to then derive these measures for non-coherent

analysis.

Birnbaum's measure calculates the probability that component i is critical to the system

state. When dealing with a coherent system, system failure can only be caused by

component failure. Hence a component in a coherent system can only be failure

critical. However, when dealing with a non-coherent system, system failure can be

caused not only by component failure referred to as event 1, but also by component

repair referred to as event I, thus a component in a non-coherent system can be
failure critical or repair critical. These two criticalities must be considered separately
since component 1 can exist in only one state at any time [22].

The probability required is the probability that component 1 is critical to system failure,

R which can be expressed as the probability that component I is repair critical, G, Cq)or the

F
probability that component 1 is failure critical , G, Cq).

R FC) GI(q)=Gl Cq)+Gi q (7.8)

An expression for the system unavailability function can be obtained from Henley and
Inagaki's calculation procedure outlined in chapter four. Component I is failure critical if

the system is working but will fail if component I fails. Thus the probability that

component I is failure critical is the probability that the system Is In a working state such
that the failure of component I causes at least one prime implicant set containing event I
to occur. This probability is calculated by obtaining the probability that at least one prime
implicant set containing event I exists at time t and then dividing this probability by the

unavailability of component I.

To calculate this probability it is first helpful to re-express the system unavailability as
three distinct terms as follows:

Qsys (t) = q, PqA] + pi Pr[B] + PqC] (7.9)

130

The three terms of this equation represent those products involving the failure of
component i those products involving the repair of I and those products for which
component i is irrelevant respectively.

Now the probability that component i is failure critical is calculated as follows:

GF I
Cq)

= Pr[A] (7.10)

Similarly the probability that component 1 is repair critical is the probability that the

system is in a working state such that the repair of component i causes at least one

prime implicant set containing event i to occur. This is calculated as follows:

GR I
Cq)= Pr[B] (7.11)

The top event can only exist at time t if at least one prime implicant set exists at time t.
Hence, the failure and repair criticality can be calculated separately by differentiating the

system unavailability function, Qsys (t) with respect to qj and p, respectively.

GF Cq)= 09 SYS
(t)

(7.12)
oqj

GIR Cq)
=

22 Sys (t) (7.13)
ON

Consider the non-coherent system introduced above, the Boolean expression for the top

event is given below:

T =ab+ ac+bc-

As before component availability is denoted by p, and component unavailability is

denoted by qj for i=a, b, c. An expression for the system unavailability has already been

calculated and is shown below.

QSYS (t) = qaqb + qaqc + qbPc - qaqbqc - qaqbPc

131

Now the proposed extension can be used to calculate the repair and the failure
importance of any component. The failure importance for component c can be calculated
from equation (7.12).

GF c
Cq)

= qa - qaqb = qaPb (7.14)

Similarly the repair importance for component c can be calculated from equation (7.13).

r- qaqb
.
Cq)=

qb GR= qbPa

Hence from equation (7.8):

,
Lq) = Paqb + qaPb Gr

The result obtained using the proposed equations is the same as the results obtained in

section 7.2, table 7.2. Hence the proposed extension calculates the probability that

component I is critical to system failure.

7.5.1 The Expected Number of System Failures

The expression for calculating the expected number of system failures, W,,, (O, t) when
analysis is coherent, can be given in terms of Birnbaum's measure of component
reliability importance.

WSYS (0, t) -n Glýq)wi(U)du (7.16)
0 1-1

Where, wi(t) denotes the component unconditional failure intensity and ne denotes the
total number of system components.

The identity in equation (7.16) can be extended to non-coherent systerns as follows:

F Wsys(O, t)=
tGi Cqývl(u)+tGIF'Cqýl(u) u (7.17)

o 1-1 1-1
Where, vi(t) denotes the component unconditional repair intensity.

132

The first term on the right hand side of equation (7.17) calculates the number of
occurrences of system failure due to the failure of component i in a given interval. The

second term calculates the number of occurrences of system failure due to the repair of
component i in a given interval.

7.6 Deriving Other Measures of Component Importance

Birnbaum's measure of importance forms the basis for a number of other measures of
component importance, including the measure of component criticality, Barlow and
Proschan's measure of initiator importance and the modified measure of enabler
importance [23]. It is possible to derive these measures of importance for non-coherent
analysis using the extension of Birnbaum's measure developed in section 7.4.

Since components in a non-coherent system can be failure and repair critical it will be

necessary to derive an expression for both the failure and repair importance of a
component 1 for each measure.

7.6.1 The Component Criticality Measure

For coherent systems this measure is defined as the probability that component 1 is

critical to the system and 1 has failed weighted by the system unavailability. Hence the

criticality measure of failure importance can be defined as the probability that component
1 is failure critical to the system and i has failed weighted by the system unavailability:

F
iF G, qi (7.18) "- QSYS(t)

Similarly the criticality measure of component repair importance Is defined as the

probability that component I Is success (repair) critical to the system and is in a working
state, weighted by the system unavailability.

R
IR G, P,
cl Q Sys W

133

The total criticality measure of importance is obtained by summing the failure and repair

contribufions:
ICI = IF + IR (7.20) C, Ci

7.6.2 FU3sell-Vesely's Measure of Component Importance

For coherent systems the Fussell-Vesely measure of component importance [20] is

concerned with component failures contributing to system failure. The measure is

defined as the probability that the failure of component i contributes to system failure. An

expression for the Fussell-Vesely measure is given in equation (7.21).

np
PI UCk

k-l
JECK

IN ", ---Q-SYSTtT

This measure can also be extended for non-coherent analysis. The Fussell-Vesely
failure importance is defined as the probability that the failed state of component 1

contributes to system failure, an expression for this is given in equation (7.22).

np
PI ýCý

kI
iF -kCK (7.22)
FM ý--

Sys tT
Similarly the Fussell-Vesely repair importance is defined as the probability that the

working state of component 1 contributes to system failure weighted by the system
unavailability, an expression for this is given in equation (7.23).

134

np
PI Ycý

kI

iR
iECK

asys
(7.23)

FVI =

7.6.3 Barlow and Proschan's Measure of Initiator Importance

For non-coherent systems the failure or repair of a component could act as an initiator

causing system failure. The initiator failure importance is defined as the probability that

the failure of component i causes system failure in the interval [Ot). An expression for

the initiator failure importance is given in equation (7.24):

t
fGFý)W, (U)dU

iq

iF =0 (7.24)
1h4 wsys (0, t)

The initiator repair importance is defined as the probability that the repair of component I

causes the system to fail in the interval [03).

t
fiGiR ýqýi (U)du

IR =O (7.25) 1h4 WSYS(Olt)
Where, v1(t) is the unconditional repair intensity of component 1.

The full initiator importance of component I is obtained by summing the repair and failure
Initiator importance of I:

I =IF +IR IN ItA (7.26)

135

7.6.4 The Modified Measure of Enabler Importance

To obtain this measure it is necessary to consider the role of both component failure and
working states in the system. The failure of component i could result in component j
being either failure or repair critical. Thus the probability required for the failure enabler
importance of component i when j causes system failure is:

The probability that component i fails leaving the system failure

critical for component j and j fails, or that component 1 fails leaving the

system repair critical for component j and j is repaired. Weighted by

the expected number of system failures in the interval [0, t).

The probability that components i and j are failure critical at time t, and the probability
that i is failure critical and j is repair critical at time t are calculated as follows:

Gi, jCq)=
02QSYS (t)

(7.27) -Fql-i (twilij

Gjj Cq) a2QSYS (t)
(7.28)

aqjjTt)Eý-j(t)

Both criticalities require a correction term to ensure that the separate role of component
failures and repairs are eliminated. The first correction term must calculate the

probability that 1 and j are failure critical to the system such that the failure of I or j alone
would be sufficient to cause system failure. Similarly the second correction term should
calculate the probability that component I is failure critical and component j Is repair
critical such that the failure of 1 or the repair of j alone would be sufficient to cause
system failure. These corrections terrns, are given below:

Gt4.
j
Cq)

=
a2Qt4, l

(t)
(7.29)

aq i
(t)5)q Mit

Gmý, Cq)=
a2a M4 1

(t)
(7.30)

aq I
(t)Fp Tjtý

Where, Qp4,, (t) is the modified system unavailability function for I and j such that:

136

np
QAtj(t)ý UP(CK) (7.31)

k-I
NOCK
I 'FCK
JGECK

And, Qjý-
'i

(t) is the modified system unavailability function for i and j such that:

np
UP(CK) (7.32)
k=l

Vý OCK
IOCK
19CK

Hence the failure enabler importance of component 1 when component j initiates system
failure is given in equation (7.36).

t ýf[Gkjýq)-GtA., ýq)ýiwj +[G(-,
ýq)-Ghý-, ýq)]qivj]du 1

IF =0 (7.33)
Etj wsys(Ot)

The total failure enabler importance of component i is given in equation (7.34):

ýGki ýq)- GM� ýq)ýiwjdu +2tG- q)- G ýq)]qivjdu

-t'
1,1 lýT

0 120
IF

iA
1 (7.34)

Ei WSYS (01 t)

The probability required for the repair enabler importance of component I when

component j causes system failure is:

The probability that component i has been repaired leaving the

system failure critical for component j and component j fails, or
that component i has been repaired leaving the system repair

critical for component j and component j is repaired.

By similar arguments to those used above to derive the failure enabler Importance, the

repair enabler importance of component I when component j causes system failure is

calculated as follows.

137

t

iR =

ýIG-�, ýq)-Gw-,., ýq)]piwj +
[Gi.

-jýq)-G M -1-T
ýq)]pivj]du

(7.35) Eij wsys (0, t)

And the total repair enabler importance for component is given in equation (7.36):

ýG-
q)- Gw q

ýpjwjdu
+Kt G-j, -j

Oq- Gv-- q
ýpjvjdu

)
(q) (q)

Q
Cq

-I
0

IR El

, 10 rA
(7.36)

W-Sys (0,0

Where:

G -,. j
Cq)

=
a2Q SYS (t)

api(tT)q-j- to
Is the probability that component I is repair critical and

component j is failure critical at time t.

G -I, j
Cq)= a2QSYS (t) Is the probability that components 1 and j are repair critical

at time t.

Gj (q)
=

a2Q MTj
(t)

"T -Op-, (t7 q Mjt Is the probability that component I is repair critical and j is

failure critical such the repair of I or the failure of j alone is

sufficient to cause system failure.

a2Q M- GM TIT
Cq) II

(t)

(t) Fp Tit Is the probability that component 1 is repair critical and j is

repair critical such the repair of 1 or j alone is sufficient to

cause system failure.

7.7 Extending Measures of Minimal Cut Set Importance

Two measures of cut set importance were introduced in chapter six, the first developed
by Fussell and Vesely enables the importance of each cut set to be calculated in terms

of its contribution to system failure. The second measure initially developed by Barlow

138

and Proschan, but modified by Beeson and Andrews enables the frequency importance

of each cut set to be calculated. Both of these measures will be extended to enable
importance analysis of the prime implicant sets of a non-coherent system.

7.7.1 Fussell-Vesely's Measure of Cut Set Importance

In 1974 Fussell and Vesely developed a measure of importance to assess cut set
importance. The measure is defined as the probability that a cut set C, contributes to

system failure. This measure can be extended to enable the analysis of prime implicant

set importance, by considering the probability that prime implicant set Elcontributes to

the system failure:

'FV (EI) (7.37)

7.7.2 The Measure of Cut Set Frequency Importance

The measure of cut set frequency importance developed in chapter six calculates the

probability that a minimal cut set Cn causes system failure. This measure is extended for I
use With non-coherent systems by considering the probability that a prime implicant set

n pn is a prime implicant set of order n. The prime El causes system failure, where,

En implicant set I can cause system failure in n ways, since each component in El" could

act as an initiator causing the prime implicant set and the system to fail. Furthermore for

the failure of Ein to cause system failure no other prime implicant set can exist at time t.

Hence the frequency importance of Cn is calculated by taking the sum for all k6 Cn of II

the probability that the system is in a critical state for en , and all component states in Ein

except k exist at time t multiplied by the probability that component k is failed if it occurs

as a normal literal in en, or repaired if it occurs as a negated literal in En in the interval

[t, t+dt).

139

The first stage is to calculate the probability that prime implicant set n is critical to the Ei

system state. The probability that the components contained in en I are critical to the

system state, such that the failure (if normal literals) or repair (if negated literals) of all n

components in EP would cause the failure of en and the system is expressed as follows: Ii

q= q En0
aq ak n

(7.38)
1

lkern

Where: qIk =
fqk (t) if ak I,

a is set to I if the literal exists in its normal form and 0 if
Pk (t) if ak 0

the literal is negated.

As with the coherent measure this does not always give the required probability and a

correction term must be applied to Gn Uq to eliminate the separate contributions of the
El

elements contained in rn .1. First a modified system unavailability function must be formed

for Cn, QM

nc
QM

EP
=UPEJ

I J--l
jol

(7.39)

n to give Then this function is differentiated with respect to all elements contained in rl

the required correction term, Gm
En

Cq).
I

anQ Mn (t)
Gm

n
Cq)= .1n (7.40)

EI aqok

IkeEn

I

Once the probability that El' is critical has been obtained it is multiplied by the probability

that components, j=l,.., n , J# k, are failed or repaired at time t and component k fails (if it

occurs as a normal literal) or is repaired (if it occurs as a negated literal) in the interval

[t, t+dt). This is summed over jC rn giving the probability that prime implicant set

n El causes system failure.

140

ýG

�
ýq)- Gm

n
oq]

- llq"k -z"idu 109
Ei jecn k. En_jü 2 11

Where:

zai =
J(t) if aj =1

a is set to 1 if the literal exists in its normal form and 0 if the literal
Vi(t) if aj =0

is negated. wj(t) is the unconditional failure intensity of component] and vj(t) is the

unconditional repair intensity of component

7.8 Methods for Calculating Measures of Importance

Conventional fault tree techniques for calculating the measures of importance outlined
above will be illustrated in section 7.8.1. Then techniques for calculating these measures
using either the SFBDD or the consensus BDD will be developed in section 7.8.2.

7.8.1 The Fault Tree Analysis Techniques

Measures of importance can be calculated during quantitative Fault Tree Analysis, the

calculation procedures rely on knowledge of the prime implicant sets of the fault tree and
tend to involve evaluating lengthy series expansions. To illustrate the Fault Tree
Analysis techniques for calculating the seven measures of importance introduced above
consider the fault tree diagram in figure 7.2.

Figure 7.2: Non-Coherent Fault Tree Diagram

141

This non-coherent fault tree has three prime implicant sets:

(a, b), fa-, c), (b, c)

The first stage is to obtain an expression for the system unavailability. Inagaki and
Henley's method considered in chapter four is used to obtain an expression for the

system unavailability.
Qsys (t) = qaqb + Paqc + qbqc - qaqbq, - pqbq,

From equations, (7.12) and (7.13), expressions for Birnbaum's measure of component
failure and repair importance can be obtained for each component as follows:

GF Cq)
=

OQSYS
= qb - qbqr = qbPc a aq.

GF b
Cq)

= -o-Q54s-yS = qa + qc - qaqc - Paqc = qa
b

GF
c

Cq)
=--

Msys
= pa + qc - qlqc - paqc = Pa eq,:

P'.
G. RCq)= O! QýS--Ys

= qc -qbqc = qcPb

R Ys
bcq)ýOQS OPb

R
c

Cq)
=

OQ Sys
ape

Now expressions for the system unconditional failure intensity and thus the expected

number of system failures in a given interval can be obtained:

nnR Cqýj
wsys (t) = Gi Cqýj

+ZG,
W

= qbPcWA + Pbqva + qaw, 3 + PaWC

t
w(o. t)= fw

Sys
(U)d u

0

From equations, (7.18) and (7.19), and the results for Birnbaum's measure of
component failure and repair importance, expressions for the failure and repair criticality
measure can be obtained for each component:

142

4. .-

IF =
GaF Cqý.

=
qbPcqa

Ca 6sys Qsys

IF =
GbFC4b

=
qqb

Cb ZYSY.
S Q. Sys

G rF IF =.
Cqýc

=
p. qc

cc -a-s-ys Q Sys

_
GaRCqýa

iR Cq)-
=

PbqcPa
Ca QSYS QSYS

R Cq
iR Cq)-

,
Gb qýb

=0 Cb -Q
SYS

G, R. Cq
iR Cq)

-- . cc QSYS

Fussell-Vesely's measure of failure importance is calculated for component i by

considering only those prime implicant sets that containing the normal literal 1. From

equation (7.22) and knowledge of the three prime implicant sets, expressions for

Fussell-Vesely's measure of failure component importance are obtained as follows:

3
P UCk

k-I
IF . _aeCK

qqb
FVa Qsys (t) Qsys

3
P UCk

k-I
iF =- _br-CK

qaqb +qbqc -qaqbqc
FVb Qsys(t)- QSYS

3
P UCk

k-I
iF = -CECK =Paq,

+qbqc-Paqbqc
FVC Q SYS

T QSYS

The following expressions are obtained for Fussel-Vesel)(s measure of repair
importance from equation (7.23) and knowledge of the prime implicant sets:

3
P UCk

k-I

IR -arzCK
paqc

FVgl Qsys 7t Q Sys

143

3
P UCk

k-I

IR ýýCK
Rlh QSYS Ti

3
P UCk

k-I

iR = ýCIECK 0
FVC QSYS (t)

Barlow and Proschan's measures of initiator failure and repair importance are calculated
from equations (7.24) and (7.25), and the results obtained for Birnbaum's measure of
failure and repair importance:

tt
fGaF (q>adu fqbpcwadu

iF =0=0 INa WsYS (0 , t) -W-S-y STO , Tt
tt
fGF

b
ýqývbdu fqaWbdu

iF =0= 0---
- lNb WSYS(01-t)- WSYSýo, 3t

tt
fGaR (qýa fpbq,

v, du

iR ýq)= 0-
--

0
INa

wsysýotl -w-syTso, *Tt
t
f ýGbR

ýqý
b du

iR Cq)= 0 INb wsys (0- t) -0

tt
fGF

c
(qývcdu fpawcdu

IF =00 INC

wsys (o. ty ý -ws-ysTo. il

t
fGR

c
Cqýcdu

R Cq)= 0=
INC WSYS(o, t)

The procedures for calculating the component failure and repair enabler importance are
quite involved and will only be illustrated for component a.

The failure enabler importance of a component i is obtained by considering the role of
the failure of component i in enabling the failure or repair of another component j to act
as an initiator causing system failure.

The failure of component a can only allow the failure of component b to act as an
initiator. To calculate the failure enabler importance of component a both, Ga, býq) and

G Ma, b
Cq) must be calculated.

144

)=22Q , Ga, bCq
SYS =J-qc OqaOqb

To calculate G Ma, b
Cq) the modified system unavailability function for a and b, Qmab

must be obtained:
np

QMa,
b(t)ý-

UP(CK)=qbq.

k-1
ar)b"CK
afECK
SACK

Then the follovving result can be obtained for GM,, b
Cq):

G Ma, b

a2QM
a, b

OqaNb

Then from equation (7.34) the following expression is obtained for the failure enabler
importance of component a.

t
gl-

qc (U)b
a

WN
b

(* U

iF =0 Ea, b wsys (0, t)

The repair enabler importance of component a is obtained in a similar way. The repair of
component a can only allow the failure of component c to act as an initiator. To calculate
the repair enabler importance of component a both GjcLq) and Ge Lq) must be

calculated.

G;,
c
Cq)

=
O-P a olq c

=I-qb

To calculate Gm-. Cq) the modified system unavailability function for a and b, Qm-, must
a, 0.

be obtained:

145

np
QMa-,

c(t)ý
UP(CK)=qbqc

k-I
am'ECK
UCK
ZVCK

-G
Cq)

==0 ma, C apaaq,

Then from equation (7.36) the follomring expression is obtained for the repair enabler
importance of component a. -

t
91-

qbýa(uývc(u)du
IR- =0 Ea, c wsys F, tT--

Expressions for the failure and repair enabler importance of components b and c are
obtained in the same way from equations (7.34) and (7.36):

t
(1 - (u»qb(u)w, (u)du f q,

IIN F=0 iR ýq)
=0 wsys Uo, 3t INb

t

qb (U)ý f(1
-, (U)va (U)du

iF =0 IR ýq)= 0 INC wsys (0, t) INC

Now expressions for the extended measure of Fussell-Vesely's prime implicant set
importance are obtained from equation (7.37):

'FV (El)= q. qb
Q SYS

(il

IFV(F-2)ý paqc
Q SYS

cil

qbqc 'FV(C3)
Q SYS

(t)

146

Finally expressions for the frequency importance of each prime implicant set will be

obtained. Beginning with prime implicant set, (ab). From equation (7.38) an expression

for Gtab)Cq) is obtained:

Gfab) Cq)
= OqaOqb =I-qc

To calculate the correction term, an expression for the modified system unavailability

function, QM[, b) is formed using equation (7.39):

paqc +qbqc -Paq qc QMfab) (t)' b

Then from the expression for QM(ab) the correction term, GM(, b)
Cq)

, is calculated:

M(ab)
CS)

-

02Q k4fab)
(t)

=0
NaOqb

Finally from equation (7.41) and the results obtained for Gjab)Lq) and GMfab)Lq) the

follom(ing result is obtained for the frequency importance of prime implicant set (ab).

tt

IF(labl)= ftl-qcýbwadu+ f(I-qc)qaWbdu

00

This process is then repeated for prime implicant set (a c). From equation (7.38) an

expression for Gý,)ýq) is obtained:

apaaqc =1-qb

To calculate the correction term, an expression for the modified system unavailability
function, Qm,

.)is formed using equation (7.39):

()Mr
.)

(t) = qaqb + qbqc - qaqbqc

Then from the expression for Qmý
ac,

the correction term, Gmý
.,,

Cq), is calculated:

147

Finally expressions for the frequency importance of each prime implicant set will be

obtained. Beginning with prime implicant set, lab). From equation (7.38) an expression
for G[ab)Cq) is obtained:

Gfab) Cq)
= OqaOqb =I-qc

To calculate the correction term, an expression for the modified system unavailability
function, QM[, b) is formed using equation (7.39):

QMfab) (t) ý Paqc + qb qc -Paqb qc

Then from the expression for QM(ab) the correction term, GM(ab) Cq)' is calculated:

M(ab)
Cq)

=
C12a Mfab)

(t)

OqaNb

Finally from equation (7.41) and the results obtained for G(ab)Cq) and G M[abj
Cq) the

following result is obtained for the frequency importance of prime implicant set (ab).
tt

IF(labl)= f(l-qc)qbwadu+ f(I-qc)qaWbdu

00

This process is then repeated for prime implicant set (a c). From equation (7.38) an

expression for Gp,)Lq) is obtained:

apaoqc =J-qb

To calculate the correction term, an expression for the modified system unavailability
function, Qmý

,)is formed using equation (7.39):

Qmý, I(t)=qaqb +qbqc -qlqbqc

Then from the expression for Qmý,) the correction term, Gmý
i. c)Cq),

is calculated:

147

a2QMt. I ,
(t)

Gmý.)Cq)= t-) =0 ap. aqr

Finally from equation (7.41) and the results obtained for Gý,)ýq) and Gmý
r ')

Cq) the

follovAng result is obtained for the frequency importance of prime implicant set (a c).
t

IF$Cj)-= f(I-qbýcVadu+ f(i-q4awcdu

00

Finally if this process is repeated for prime implicant set (bc) the follovving expression is

obtained for the frequency importance:

IF (fbc)) =0

Notice that the result for prime implicant set (bcj is 0, this is because if both b and c are
failed the system is automatically failed hence the prime implicant set Ibc) cannot

actually cause system failure.

7.8.2 The Binary Decision Diagram Method

For non-coherent fault trees it is possible to use either the SFBDD or the consensus
BDD to calculate all of the measures of importance introduced above exactly except for

the modified measure of enabler importance and the measure of prime implicant set
frequency importance both of which must be approximated. The BDD method enables

exact and efficient calculation of the measures of importance eliminating both the
intermediate stage of identifying the prime implicant sets and the need to evaluate
lengthy series expansions.

The procedures for calculating Birnbaum's measure of component failure and repair
importance and the enabler measure of failure and repair importance, which were
developed as part of this research project will be Introduced and illustrated by means of
a worked example.

148

7.8.2.1 Calculating Birnbaum's Measure of Failure and Repair Importance

Expressions for calculating Birnbaum's measure of component failure and repair
importance are given below:

GiFCq)=
OQSYS(t)

aqj

GR i
Cq)= aQsys(t)

api

The failure importance of component I is defined as the probability that the system is in a

working, yet critical state, such that the failure of component I would cause the system to
fail. Thus from the definition of component relevancefirrelevance given in section 7.4, it
is possible to define Birnbaum's measure of component failure importance as the

probability that component 1 is failure relevant to the system state:

GF I
Cq)

= E(Tý., E[Tw-. (7.42)

Where, E[Toj] is the probability that component I is either failure relevant, or irrelevant to
the state of the system, and E[Tw..] is the probability that component I is irrelevant to the

state of the system.
Similarly, Birnbaum's measure of component repair Importance can be defined as the

probability that component I is repair relevant to the system state:

-
]-E[Ti.,

-,
] (7.43) G Cq)

=E [TI-0

Where, E[T*o] is the probability that component I Is either repair relevant or Irrelevant to
the system state.

These alternative expressions enable the efficient calculation of Birnbaum's measure of
component failure and repair importance from either the SFBDD or the Consensus BDD.
Once Birnbaum's measure has been calculated for each component It Is possible to

calculate, the failure and repair criticality measure, the failure and repair Initiator
importance and the unconditional failure intensity and thus the expected number of
system failures in a given interval by means of simple substitution.

149

7.8.2.1.1 The SFBDD Technique

It is possible to calculate E[Tý.,] and E[T"] directly from the SFBDD, the procedure for

calculating these probabilities is outlined below:

I E[Tý.,] FPr,, Cq). Poxf Cq) (7.44)

XI

0 E[T" Pr, Lq)- Poxi Cq) (7.45)
xi

Where:

Prx, Cq) is the probability of the path section from the root vertex to node xj.

Po1xj (q) is the probability of the path section from the one branch of node x, to a

terminal I node (excluding the probability of xi).

PoOxI Cq) is the probability of the path section from the zero branch of the node x,

to a terminal I node (excluding the probability of xj).

Although, E[Tw-.] can be calculated by taking the expectation of the product of Tp., and

T", E[TW_-]=E[Tý. j-TW]. This is an inefficient means of calculating E[TW_.]. An

alternative technique can be employed which involves computing an intermediate BIDD
for each node from which E[TI.,

-] can be efficiently calculated. The Intermediate BDD

for each node is obtained by ANDing the one and zero branches of the node. An

expression for E[T,..
-.

] is then calculated by multiplying the probability preceding the

node in the SFBDD by the probability of the sum of all the terminal one paths through
the intermediate BDD. To illustrate this technique consider again the non-coherent fault
tree in figure 7.2, if the ordering, b<a< cis adopted the SFBDD shown in figure 7.3 is

obtained:

150

04

Firstly it is necessary to record the connections between the nodes in an Ite table as

shown in table 7.4.

Node Variable I Branch 0 Branch

FI b F2 F3

F2 a 1 F4

F3 a 0 F4

R c 1 0

Table 7A Ito Table

The second stage is to calculate each of the terms in equations (7.44) and (7.45). The

first term, Pr), Cq) is the probability of the path from the root vertex to node xj, which is

calculated by evaluating the probability of the path from the root vertex up to but not
including the node xj. Table 7.5 records Prx, Cq) for each node in the BDD.

Node Prx, ýq) Comments

FI I Root vertex itself

F2 qb F2 reached through the 1 branch of FI

F3 Pb F3 reached through the 0 branch of F1

F4 p3qb +PaPb

F4 reached through the I branch of FI

followed by the 0 branch of F2 & through the 0

branch of FI followed by the zero branch of F3

Table 7.5: Prx, Cq) for each Node in the SFBDD in Figure 7.3

151

Figure 7.3: SFBDD

The. Po, ' Cq) term is calculated by summing the probability of all the paths from the
r,

selected node, x, along the one branch to a terminal 1 vertex, excluding the probability

of the selected node. Table 7.6 records Pol Cq) for each node. X1

Node Po'xj Cq) Comments

F1 qa + paqc

1 branch of F1 passes to F2 the 1 branch of F2

passes to a terminal 1 vertex and the 0 branch

passes to F4

F2 I I branch of F2 passes to a terminal I vertex
F3 0 No terminal I paths from I branch of F3

F4 I I branch of F4 passes to a terminal I vertex

Table 7.6: Pol (q) for each Node in the SFBDD in Figure 7.3
Xi

Similarly Poo Cq) is calculated by summing the probability of all paths from the selected X1

node, x, along the zero branch to a terminal 1 vertex, excluding the probability of the

0 selected node. Table 7.7 records Pox, Cq) for each node.

Node PoOx, Oq Comments

F1 paqc 0 branch of F1 passes through the 0 branch of F3 & the I branch of R

F2 qc 0 branch of F2 passes through the I branch of R

F3 qc 0 branch of F3 passes through the I branch of R

R 0-7 No terminal 1 paths from the 0 branch of F4

Table 7.7: PoxO, Cq) for each Node in the SFBDD in Figure 7.3

Finally E[Tw-.] must be calculated for each of the nodes In the SFBDD. The calculation
procedure requires some addition work. An intermediate BDD must be calculated for

each node xi. The probability of the sum of the disjoint paths through this Intermediate
BDD is calculated and multiplied by the probability preceding the node)ý to give E[TW. '].
The intermediate BIDD Is computed by ANDing the one and zero branches of a node.
Each of the nodes in the SFBDD in figure 7.3 will be considered below.

152

Dealing with node F1

F2. F3 = ite(a, j ite(c, 1,0)) - ite(a, O, lte(c, 1,0))

= ite(a, [1 - 01 fite(c, 10) - ite(c. 10)D
= ite(a, O, ite(c, 1,0))

The resulting BDD is shown in figure 7.4:

Figure 7A Intermediate BDD Obtained for Node Fl from the SFBDD in Figure 7.3

There is one terminal one path through this BDD, ac, the probability of this path is: paqc

Dealing with node F2

1- F4 =I- ite(c, 10)

= ite(c, 1,0)

The resulting BDD is shown in figure 7.5:

1/Ø\o

Ji Jo

Figure 7.5: Intermediate BDD Obtained for Node F2 from the SFBDD In Figure 7.3

There is one terminal one path through this BDD, c, the probability of this path Is q,.

Dealing with node F3

F4 -00- ite(c, 10)
0

The probability of this is 0.

153

Dealing with node R

The probability of this is 0.

1-0=0

Table 7.8 Summaries the results obtained for E[Tý. -,
J, E[Tj., O-]and E[Tw-.] using the

results from tables 7.5,7.6 and 7.7 and equations (7.44) and (7.45).

Node Vadable E FTIE-
-
-.
r
I- E[Two. E[T,,..]

F1 b qa +Paqc Paqc paqc

F2 a qb qbqc qbqc

F3 a 0 Pbqc 0
[-F4-

c paqb +PaPb 0 0

Table 7.8: Summary of the Results Obtained for E[TW1.], E[T,.. O.] and E[T,.. -.]

From the results in table 7.8 and equations, (7.42) and (7.43) the failure and repair
importance of each component is obtained as follows:

GaFCq)=qb -qbqc +0-0
GF

b
Cq)

q. - paqc + paqc

GF
e

oq Paqb + PaPb

GR a
Cq)

=qq, - qbq, q, -0 b,, +Pb

GR Cq)
= paqc - paqc b

R Cq)
=0-0 Gc

Simplifying:

GF. Cq)=qbP,. GaRCq)ýPbq,

GF Cq)
22 qGR bab

Cq)= 0

G FCq)= RCq)=o
c Pa Gc

7.8.2.1.2 The Consensus Binary Decision Diagram Technique

It is possible to calculate, E[To. 1], E[TKI and E[Tw-,] directly from the Consensus BDD.

The procedure for calculating the repair and failure criticality of a component I from the

Consensus BDD is outlined below:

154

E[Tk.,] = ZPrýcl ýq)-Poýcýq) (7.46)
ri

E[Tý-a Pr., Cq
- Poo, c Cq) (7.47)

X1
xi

Pr.,, Cq)-Poc Cq) (7.48)
xi

xi
Where:

Prxi Lq) is the probability of the path section from the root vertex to node x,.

Pol, c Cq) is the probability of the path section from the one branch of node x, to a xi
terminal 1 node via only one or zero branches of non-terminal nodes (excluding

the probability of Yq).

Poo: c (q) is the probability of the path section from the zero branch of the node Y4
X1

to a terminal I node via only one or zero branches of non-terminal nodes
(excluding the probability of xi).

PoC, -
Cq) is the probability of the path section from the consensus branch of the

node Y4 to a terminal I node via only one or zero branches of non-terminal nodes
(excluding the probability of Yq).

Hence the failure and repair criticality of component I are expressed as follows:

Fc
q
IP

o 1, Cq)
-Por,

Cq)] (7.49) G, Cq) Prxi C
xi X1

Xi

R
qiPoox; c Cq)- Poxi Cq)] GI (q) Pr), C (7.50)

xi

To illustrate how this procedure is applied in practise to calculate both the failure and
repair Importance of components and also the unconditional failure Intensity, consider
the Consensus BDD obtained earlier and shown below.

iss

Fl

Figure 7.6: Consensus BDD

Firsfly the connections between the nodes are recorded in table 7.9.

Node Variable I Branch 0 Branch
Consensus

Branch
F1 b F2 F3 F3
F2 a I F4 R
F3 a 0 R 0
R C 1 0 0

Table 7.9: Ite table

The second stage is to calculate each of the terms in equations, (7.49) and (7.50). The
first term, Prx, Lq) is the probability of the path from the root vertex to node Y4, which is

calculated by evaluating the probability of the path from the root vertex up to but not
including the node xi. Note any paths passing through a consensus branch of a non-
terminal node are excluded. Table 7.10 records Pr,, Lq) for each node in the BDD.

156

Node Prx, ýq) Comments

F1 1 Root vertex itself

F2 qb F2 reached through the I branch of F1

F3 Pb F3 reached through the 0 branch of F1

F4 reached through the 1 branch of F1

followed by the 0 branch of F2 and through the
F4 Paqb +PaPb

0 branch of F1 followed by the zero branch of
F3

Table 7.10: Pr.,, Cq) for each Node in the Consensus BDD in Figure 7.6

P tc
ox, Cq) is calculated by summing the probability of all the paths from the selected node,

x, along the one branch to a terminal I vertex, excluding the probability of the selected

node. Again any paths passing through a consensus branch of a non-terminal node are
%C excluded. Table 7.11 records Pox, Cq) for each node.

Node Potc (q)
Xj

Comments

F1 qa +paqc

1 branch of F1 passes to F2 the I branch of F2

passes to a terminal I vertex and the 0 branch

passes to R

F2 1 1 branch of F2 passes to a terminal I vertex
F3 0 No terminal I paths from I branch of F3

F4 I I branch of F4 passes to a terminal 1 vertex

Table 7.11: Polc Lq) for each Node in the Consensus BDD in Figure 7.6
X1

Similarly Poo: ' Cq) is calculated by summing the probability of all paths from the selected X1

node, Y4 along the zero branch to a terminal I vertex, excluding the probability of the

selected node. Only paths passing through one or zero branches of non-terminal nodes

are included in the calculation. Table 7.12 records PoO, c Lq) for each node. X1

157

Node O, C fX Poý,
I

kq) Comments

F1 Paqc
0 branch of F1 passes through the 0 branch of F3

and then the I branch of R

F2 qc 0 branch of F2 passes through the I branch of R

F3 qc 0 branch of F3 passes through the 1 branch of F4

R 0 No terminal I paths from the 0 branch R -Rý

Table 7.12: POO'c Cq) for each Node in the Consensus BDD in Figure 7.6
xi

Finally Por- Oq is calculated by summing the probability of all paths from the selected X,

node , Y, along the consensus branch to a terminal I vertex, excluding the probability of
the selected node. Only paths passing through one or zero branches of non-terminal

nodes are included in the calculation. Table 7.13 records Por; Cq) for each node.

Node Pox' Cq)
X1 Comments

Consensus branch of F1 passes through the 0
F1 plqc

branch of F3 and then the I branch of F4

Consensus branch of F2 passes through the 1
F2 qc

branch of node R

F3 0 No terminal 1 paths from the 0 branch of F3

R 0 No terminal 1 paths from the 0 branch of R

Table 7.13: PoO. (q) for each Node in the Consensus BDD In Figure 7.6
X1

The failure and repair importance for each component can be calculated by summing the

contributions of nodes of the same component. Thus using equations, (7.49) and (7.50)

and the results shown in tables, 7.10,7.11,7.12 and 7.13:

G. Fýq)=qb. [1-qcl+Pb[0-0] GaRýq)=qb[qC-qC]+Pb[qC-01

GF+ paqc - paqr R ýq).
m b

ýq)
-' 1* [qa Gb ýgqc

- paqc
F Gc ýq)

= ýaqb + PaPb)'[l - 01 GR ýq)
= ýa qc + PePb XO

- 01 c

158

Simplifying:

GFR a
ýq)

= qb PC Ga ýq)
= Pbqc

%FR ýq)
= q. Gb w= 0

G Fo R q =O Cq =pa GC uq

Having calculated the top event probability and Birnbaum's measure of failure and repair
importance for each component it is possible to calculate the unconditional failure
intensity and the expected number of system failures in a given interval. Then all the

quantities required for calculating the Measure of Component failure and repair Criticality

and Barlow and Proschan's, measure of initiator failure and repair importance are known.

7.8.2.2 Calculating the Measure of Enabler Failure and Repair Importance

It is not possible to calculate the measure of failure and repair enabler importance
directly from the SFBDD. This is because the inclusion of NOT logic makes the

calculation procedure complex and time consuming, and thus it Is not a practical
proposition. However, an approximation can be obtained by calculating the coherent
measure outlined in chapter six. This will give an indication of the significance of each
component in contributing to system failure. The consensus BDD on the other hand
[ends itself to quantification and a procedure has been developed to calculate the

enabler failure and repair importance.

7.8.2.2.1 The Consensus Binary Decision Diagram Technique

To calculate the enabler failure importance of component I when component j actually
causes system failure, the following quantifies must be calculated, G14(q), G tT

(q),

GrA-'j Uq and G&ý -j
(q. The techniques for calculating each of these quantities from the

consensus BDD will be outlined in detail. The technique developed for calculating
Birnbaum's measure of failure and repair importance is extended.

159

GiF Cq) represents the probability that component i is critical to the system state at time t,

such that the failure of component 1 would cause system failure. GIjCq), represents the

probability that components i and j are critical to the system state, such that the failure of

both i and j would cause system failure. G, FCq), can be represented as follows:

Cq)
= E[Tkl E[Tk.

-.

This notation can be extended to GkjCq) as follows:

Gi, jCq)= E[Tý-1,1.11 - E[Tb.,,,..
-.

] - E[Tý----11-11 + E[Tw-.,,..
-.

] (7.52)

The first term of equation (7.52), E[T,, j. 1] represents the probability that component is

either failure relevant or irrelevant and component j is either failure relevant or irrelevant.

The combinations in this term can be split into four distinct groups; those that represent
the probability that:

i) 1 and j are failure relevant
ii) i is failure relevant and j is irrelevant

iii) i is irrelevant and j is failure relevant
iv) i and j are irrelevant

This can be represented in a more concise form shown below:

= P((i FR). o FR))+P((i FR)-OIR))+P((ilR). o FR))+P((ilR). OIR))

(7.53)
Where, FIR denotes failure relevant and IR denotes irrelevant.

Similar expressions can be obtained for the second, third and fourth term of equation
(7.52). The second term of equation (7.52) represents the probability that component I Is

either failure relevant or irrelevant and component j is irrelevant.

E[Tb.,,..
-.

] = P((i FR)- 0 IR))+ P((l IR)- 0 IR)) (7.54)

Similarly, the third term of equation (7.52) represents the probability that component I Is
irrelevant and component j is either failure relevant or irrelevant.

E[Tw-.. k. l I= P((i I R) -0 FR)) + P((i I R) -01 R)) (7.55)

160

Finally, the fourth term of equation (7.52) represents the probability that components I

and j are irrelevant.

= P((l IR)- 0 IR)) (7.56)

Hence from equations (7.53)-(7.56) it can be seen that, GqCq), represents the probability

that components i and j are failure relevant to the system state:
Gjj qU=P((iFR). OFR))+P((iFR)-OIR))+P((ilR). OFR))+P((ilR). OIR))-P((iFR)-OiR))

-P((ilR). OIR))-P((ilR). OFR))-P(CiIR). OIR))+P((ilR). OIR))

GLjCq)=P((iFR)-OFR))

(7.57)
Each of the terms in equation (7.52) can be calculated from just one pass of the

consensus BDD, The first term in this equation, E[TI. 1,1.1] is calculated by taking the sum

of the probabilities of paths through the consensus BDD that pass through the one
branch of a node Y, and the one branch of a node)q, but do not pass through the

consensus branch of any nodes. These will be known as paths of type (i).

The second term is calculated by taking the sum of the probabilities of paths through the

consensus BDD that pass through the one branch of a node A and the consensus
branch of a node Yj, but which do not pass through the consensus branch of any other
nodes. These will be known as paths of type (ii).

The third and fourth terms in equation (7.52) are calculated by taking the sum the

probabilities of paths of type (iii) and (lv) respectively. Where, paths of type (iii) are paths
through the consensus BDD that pass through the consensus branch of a node x, and
the one branch of a node xj, but which do not pass through the consensus branch of any
others nodes. Finally paths of type (iv) are paths through the consensus BDD that pass
through the consensus branch of a node x, and the consensus branch of a node xj, but
do not pass through the consensus branch of any other nodes. The probability of each
path type is calculated from the consensus BDD as follows:

161

The probability of paths of type (i) are calculated as follows:

E[Tý-I'I. j P(paths of type (i)) = prx, - pol POI XI-Xj * Xj (7.58)

Where:

pr), is the probability preceding node xj.

POI XI-Xj
is the probability from the one branch of node Y4 to the node)q, excluding

the probability of node xi.
I Poxj is the probability from the one branch of node xj to a terminal one node.

And, any paths passing through the consensus branch of a node are excluded from
the calculation.

The probability of paths of type (ii) is calculated as follows:

E[Tý. 1j., -] = P(paths of type (ii)) = pr.,, - polxi- - po" (7.59)
Xi Xi

Where:

poc is the probability from the consensus branch of node)q to a terminal one Xi

node.
And, any paths passing through the consensus branch of a node not representing
component j are excluded from the calculation.

The probability of paths of type (iii) is calculated using equation (7.60):

E[Tw-., j-l
]= P(paths of type (iii)) = prx, - poc

_* pol (7.60)
X1 X1 xj

Where:

C POXI-Xj is the probability from the consensus branch of node x, to the node x,

excluding the probability of xi.

And, any paths passing through the consensus branch of a node not representing
component i are excluded from the calculation.

Finally the probability of paths of type (iv) can be calculated using equation (7.61):

P(paths of type (iv)) = pr.,, - po-
_. j -

po' (7.61)
Xi xj

162

Where, any paths passing through the consensus branch of a node not representing
component i or j are excluded from the calculation.

Thus the following expression is obtained for GIjCq):

Pol - GL, Cq)= I: prx, -polx XI
I: Prx. Polx, -,, -Pocx

paths
i-xi

paths
I Xi

Of of

(7.62)
- F'Prx' -P()X, -X, Po, + I: Prx, PC), -X, Po, c

paths
xj

paths
X1 xj

of of twe
OV)

It is possible to derive a similar result for calculating Gý-, Cq) from the consensus BDD.

Gi, TCq) represents the probability that component I is failure critical to the system state

and component j is repair critical to the system state. The notation introduced for

FR calculating, G, Cq) and G, Cq) using the BDD technique can be used to form the

following expression for G, -,
Cq).

GCj Lq) = E[T,. ýH I- E[Tjjj=w-, I- E[Tw-q-0 I+ E[Tw-,, jw-j] (7.63)

The first term in equation (7.63) E[Tj. 14.0] represents the probability that component I is

failure relevant or irrelevant and component j is repair relevant or irrelevant. This

probability is calculated from the consensus BDD by summing the probabilities of those

paths through the consensus BDD that pass through the one branch of a node Y4 and the

zero branch of a node)q, and does not pass through the consensus branch of any node.
These paths will be known as paths of type (v). Hence the following expression is

obtained for calculating E[Tbtj. 0] from the consensus BDD:

E[T,
-I, j-o

]=2: P(Paths of type (v)) = pr., - pol . Poo (7.64)
paths

xi-xj X1

of Ia
(11

Where:

Poo is the probability from the zero branch of node)q to a terminal one node. Xi

163

Similar expressions are obtained for calculate the second, third and fourth term in

equation (7.63). The second term represents the probability that component i is failure

relevant or irrelevant and component j is irrelevant. This term is calculated by summing
the probabilities of the paths of type (vi) through the consensus BDD.

J: P(Pathsof type (vi))= pr.,, -pol _*
POC (7.65)

paths
N Xi Xi

of type
NO

Where, a path of type (vi) is a path that passes through the one branch of a node x, and
the consensus branch of a node)ý, but which does not pass through the consensus
branch of any other node.
The third term of equation (7.63) represents the probability that component I is irrelevant

and component j is either repair relevant or irrelevant. It is calculated from the consensus
BIDD by taking the sum of the probabilities of all those paths passing through the

consensus branch of a node Y4 and the zero branch of a node)q, but which do not pass
through the consensus branch of any other node. These paths will be called type (vii):

1: P(Paths of type (vii)) = pr,,, - por, - Poo (7.66)
paths

xl-xj xj

Of ty
Ojir

Where:

Poe is the probability from the consensus branch of node); to a terminal one xi-xj

node.

Finally the fourth term of equation (7.63) denotes the probability that components I and

are irrelevant to the system state. This probability has already been calculated above:

. j_. -.
P(paths of type (iv)) = prxi - poc - POC (7.67) E[TL,,

-. xi-xj XI
The following expression is obtained for calculating G,, -,

Cq) from the consensus E3DD.

10 G, -jCq)= Fprýq -poxi poxi
paths

Ofr
V) V)

-I Pr., -PoOx Poo., +

paths
of ty,

mr

E Prx, - Poli - Poc,
paths

of type
NO

Epr,,
-Po' -Po.)q X1

paths
of ty

ovF*

(7.68)

164

To calculate the correction terms, Gj, ý,
Cq) and Gm

ýT
Cq) two modified system

unavailability functions, QM,, Cq) and GA, Cq) are formed. QA, Cq) is formed by

considering only a partial list of the prime implicant sets. All those prime implicant sets
involving both i and j are ignored. Since the consensus BDD obtained for the system

encodes the full list of the structure function of the fault tree it does not encode the

modified system unavailability function. Thus to calculate GFA, Cq), a new consensus

BDD which only encodes the modified structure function must be computed. Both

Qmkj Cq) and G,, q can be calculated directly from this tree structure.
,7U

The ite procedure for calculating the consensus BDD for a non--qoherent fault tree is

used to calculate the modified consensus BDD. In order to use this procedure, a fault
tree must be developed for the modified system. The fault tree structure will always take
the same form. The top gate will be an OR gate with all gate inputs, the number of gate
Inputs will be equal to the number of prime implicant sets being considered In the

modified system. Each gate input to the top gate Will be an AND gate, with it inputs being

the basic events of each prime implicant set.

Once the fault tree structure has been obtained the Ite procedure is applied to compute
the modified consensus BDD. It is then possible to calculate G,, j

Cq) using the method

outlined previously for calculating Gkj Cq).

GýAjCq)= F
, prxi-polxl-xj-poxlj-

FPrxi.
polx,

-x
-Poc

paths paths
j xj

of
(ý)pe

of Mpo

, pr -poO - POO - Eprx. -poO - Pol +F
paths

I xi-xj Xi
paths

X1 xj-xj xj

of(ty of type
,,,

Fe N)

(7.69)

The same procedure is then employed to calculate G Cq), except this time all those

prime implicant sets involving both i andTare ignored and the formula for calculating

GCj Cq) is used to caicuiate Gm
kj

Cq).

165

j
0q= Eprxi-pol -Poo - FPrxj-PO' -POO - Ghk -I xi X1 xf xf

paths paths
of e of type Alp NO (7.70)
2: Prx, -Poo - Po* + Y. Prx, Por. Poe XI X1 X1 X1

paths paths
of type of type

(Vii) OV)

The technique for calculating the modified enabler measure of importance will now be

illustrated by means of a worked example. Consider the fault tree in figure 7.7.,

Figure 7.7: Non-coherent Fault Tree Diagram

Five prime implicant sets can be identified from the fault tree in figure 7.6:

{ab), ja c), {bc), {ad), {cd)

Firstly the consensus BDD for the fault tree must be computed, if the basic events are

assigned the ordering, a<b<c<d the follovAng consensus BDD is obtained:

166

Figure7.8: Consensus BDD Obtained for the Non-coherent Fault Tree in Figure 7.7

The failure enabler importance of component a, when component b acts as an initiator

vWill be calculated. Note, that since 6 does not appear in the prime implicant sets the

repair Of component b cannot act as an initiator, hence it is not necessary to calculate,
either, G. ýCq) or Gm 4

Lq).

Firstly Gajý Uq must be calculated, from the consensus BDD in figure 7.8, thus paths

which match one of the four types outlined above are identified from this BDD. From the
consensus BDD in figure 7.8 it is clear that there is one path of type (i), one path of type
(ii) one of type (iii) and one of type (iv) for components a and b. Each path is shown
below.

167

c

d

Path of type Path of type (ii)

a

Path of type (iii) Path of type (iv)

Figure 7.9: Paths of Type (1), (11) and (iji) through the Consensus BDD in Figure 7.8 for

Components a and b

Thus from equations (7.58-7.61) the following probabilities are obtained for the four

paths shown in figure 7.9:

P(path of type (1» 2: pr. � - Pol * Pol
of

A-XI Xi

P(Path of tjpe (ii» = pr. . Pol PO c
jq Xi XI Xi

=1-1. qd

= qd

168

P(path of type (iii» = pr� - poc _»
Pol n Xi Xi

=1.1. qc
=qc

c P(paths of type (iv)) = pr,,, - poc Poxj mi-xi

=1.1. qcqd
= qcqd

From equation (7.62) the following result Is obtained for GO CO

G,. b
Uq=J-qc -qd +qcqd

To calculate the correction term all of the prime implicant sets except jab) are

considered. The fault tree shown in figure 7.10 is constructed for this system.

The Consensus BDD shown in figure 7.11 is obtained when the basic events are
assigned the ordering: a<b<c<d

169

Figure 7.10: Modified Fault Tree Diagram

Figure 7.11: Modified Consensus BDD

To calculate Gm,
a. b

Uq the paths of type (i), (ii), (iii) and (iv) are identified from the

modified consensus BDD in figure 7.11. Two paths of bipe (i), two paths of type (Ii), one
path of type (iii) and one path of type (iv) are identified from this BDD, each path is
shown in figure 7.12.

170

a
�C

Path of tyW (iii)

a a I I

Paths of " (N) Path of type Vv)

Figure 7.12: Path Types (i)-(iv) Identified from the Modified Consensus BDD in Figure

7.11

Thus from equations (7.58-7.61) the following probabilities are obtained for the six paths

shown in figure 7.12:

P(paths of type Ci)) = 1: pr,,. pol pol)ri-xj Xi
paft of
"(0

. 1.1. qc +1-1-pc -qd
qc + p, , qd

171

Paths of type (i)

P(path of tc ype (ii)) = pr.,, - po PO lq-xj Xi

=1-1. qc -qd +1*1'Pc -qd
= qcqd +pcqd

P(Path of type Ciii)) = pr,, - po- pol R Xi
=1.1-qc
=qc

P(paths of type Civ)) = pr.,, - poO _, pol: Xi Xi Xi
=1.1. q,; qd
= qcqd

From equation (7.69) the follovving result is obtained for GMab Cq):

Gm., b
Cq) =0

Thus from equation (7.33) the following expression is obtained for the enabler failure
importance of component a when component b causes system failure.

t * hL> oq- Gmab Uqbawb
+

[G
q

,F
azU-GM., jýq)]qavbjdu

Ea, b wsys (o. t)

t
91

- qc - qd - qqd baWbdu

0
wsys (0- t)

7.8.2.3 Calculating the Measures of Prime implicant set Importance

A Procedure for calculating the Extended Fussell-Vesely measure of prime implicant set
importance exactly using either the consensus BDD or a combination of the SFBDD and
the meta-products BDD is outlined in section 7.8.3.1. A procedure for calculating an
approximation of the measure of frequency importance of a prime implicant set is also
Proposed in section 7.8.3.2.

172

7.8.2.3.1 Calculating The Extended Fussell-Vesely Measure of Prime Implicant

Set Importance

It is not possible to calculate the extended Fussell-Vesely Measure of Prime Implicant

set importance directly from the SFBDD or the consensus BDD. This measure requires
knowledge of the prime implicant sets of the fault tree, hence, either the minimised
consensus BDD or the meta-products BDD must be computed. Then, either the

consensus BDD or the meta-products BDD is tracked to identify each prime implicant

set The probability of this implicant set is calculated and then divided by the value
obtained for the system unavailability.

7.8Z3.2 Calculating The Measure of PrirnG Implicant Set Frequency Importance

It is not possible to calculate the frequency importance of a prime implicant set from

either the SFBDD or the consensus BIDD exactly. This is because the inclusion of NOT
logic makes the calculation of this measure using the BDD technique complex and time-

consuming. Thus the approximation for minimal cut set importance outlined in chapter
six can be extended for use with prime implicant sets. The frequency of the prime
implicant set rn is calculated: I

tnn
AllqllzlIkdu (7.71) 'F(En)-

! Z,
(

Knowledge of the prime implicant sets, the failure probabilities and failure and repair
frequencies of each system component are essential to calculate this measure.

7.9 Importance Analysis a Worked Example

Chapter six highlighted that it is essential to consider the aims of the sensitivity analysis
so that appropriate measures of importance can be chosen to analyse the importance of
the components and the minimal cut sets of the system. The analyst must also have a
clear understanding of each of the measures used, to ensure that the results obtained
are interpreted correctly. To illustrate this the simple fault tree given in figure 7.2 will be
analysed and the results will be interpreted.

173

Table 7.14 summarises the conditional failure rate, and the unconditional failure and
repair rates for each component These component parameters are used to quantify the
expressions obtained for the five different measures of component importance and the
extended Fussell-Vesely measure of cut set and the frequency measure of prime
implicant set importance in section 7.8.1. The results are given in tables 7.15 and 7.16.

Component Failure Rate

A(t)
Failure Probability

q(t)

Failure Intensity

W(t)

Repair Intensity

V(t)

a 1.0 x 10-3 I. OXIO-2 9.9 X 10-4 6.7xlO-3

b I. OXIO-4 2.0 x 10-4

I
9.998 x 10-5 8.9xlO-4

I
c 5. OXIO-6 2.5 x 10-5 1 4.99875 x 10-4 4.5xlO-4 I

Table 7.14 Summary of Component Parameters

omponent
asu7,

n
Ms

%U easur a a b c Component
Ranked Ist

Birnbaum 2.0 x 10-4 2.45 x 10-5 1.0 x 10-2 0.99 c

Criticality 7.5 x 10-2 0.925 7.5 x 10-2 0.925 a and c
Fussell-
Vesely 7.5 x 10-2 0.925 7.5 x 10-2 0.925 a and c

Initiator 3.99 x 10-4 3.37 x 10-4 2.01 x 10-3 0.997 c

Enabler 2.01 x 10-3 T 0.996 3.99 X10-4 3.37 x 10-4 a

Table 7.15: Results for the Various Measures of Component Importance

Prime Implicant

Set

Fussell-Vesely's

Importance

Frequency

Importance

ab 7.5 x 10-2 2.4 x 10-3

0.925 0.9974

bc 1.87xlO-4 0

Table 7.16: Results for the Measures of Prime Implicant Set Importance

174

The five measures of component failure and repair importance were calculated for each
component and the highest ranked component is recorded in the far light column of
table 7.15. Notice, as In chapter six, that it is not always the same component that is
ranked as Omost important7 for the different measures, i. e. Birnbaum's measure ranks
the failure of component c as the most important whereas the repair of component a is
ranked highest for the enabler measure of importance. To interpret the results it is
important to understand the definition of each measure.

From the results for Birnbaum's measure of importance it can be seen that the system is
most likely to be In a working yet critical state for component c. Thus it could be
concluded that if the system performance is considered inadequate extra resources
should be allocated to reduce the existence of the necessary and sufficient conditions
that make component c failure critical to the system state. Thus the reliability of b should
be improved. It could also be concluded that a safety system should be incorporated to
fail component a if component c is in a failed state. This would prevent prime implicant

set ac causing system failure.

The results from both the Measure of Component failure and repair Criticality and
Fussell-Vesely's measure of failure and repair importance are identical. The failure of
component c and the repair of component a are ranked highest Thus the previous
conclusions are confirmed, but they can be further extended. If resources were to be
allocated to improve the system availability efforts should be made to:

Improve the reliability of component c.
Reduce the existence of the necessary and sufficient conditions for component c
to be failure critical
Reduce the existence of the necessary and sufficient conditions for component a
to be repair critical.
Implement a safety system to fail component a if component c is in a failed state.

The initiator measure of importance indicates that it is the failure of component c that is
Most likely to actually cause the system to go from a working to a failed state. By
considering the results for the enabler importance it is clear that the repair of component
a is most likely to enable another component (more than likely component c) to act as an
initiator causing system failure. From this it is clear that the most likely cause of system

175

failure is the existence of minimal cut set ac where the working state of component a
acts as an enabler and the failure of component c acts as the initiator. This conclusion is

confirmed by the results for both the extended Fussell-Vesely measure of prime
implicant set importance and the frequency measure of prime implicant set importance,

recorded in table 7.16.

If resources are to be allocated to improve the system efforts should be concentrated on
improving the reliability of component c, and implementing a safety system to prevent

the existence of the prime implicant set ac. The failure of components a and b are least
likely to cause or contribute to system failure, thus do not need attention at present.

7.10 Summary

Until now Importance analysis of non-coherent systems has been extremely limited. If
the measures developed for the analysis of coherent systems are used to analyse non-
coherent systems the results obtained are inaccurate and misleading. This chapter has
derived an extension of Birnbaum's measure of component reliability importance by

considering both the failure and repair criticality of each component This extension was
then employed to extend the measure of component criticality and Barlow and
Proschan's measure of initiator importance.

Extensions for the modified measure of enabler importance and the two measures of cut
set importance introduced in chapter six have also been derived, enabling accurate
importance analysis of non-coherent systems.
Conventional Fault Tree Analysis techniques for calculating these measures are
inefficient. Hence, procedures have been developed for calculating the majority of these
measures using either the SFBDD or the consensus BDD. These calculation procedures
are extremely efficient in comparison to the conventional FTA techniques, eliminating the
need for approximations during quantification.

Finally a worked example has been used to highlight the need to (I) choose the
Importance measures used carefully according to the aims of the analysis and (ii)
interpret the results obtained correctly in order to draw meaningful conclusions from the
anatysis.

176

Chapter 8: Culling Techniques for Coherent Fault Tree Analysis

8.1 Introduction

With conventional techniques it is not always possible to identify a full list of minimal
cut sets or to quantify the system exactly. especially for large fault trees with many
repeated events. Even the most powerful computers cannot cope with the intensive

analysis in a realistic time. Although the Binary Decision Diagram technique enables
more efficient analysis, it can still prove too intensive for extremely large fault trees.

Under such circumstances it is necessary to analyse the fault tree approximately,
rather than not at all. Culling techniques have been developed for conventional Fault
Tree Analysis techniques, and more recently Rauzy developed a technique to cull the
SFBDD in order to enable partial qualitative and quantitative analysis of coherent
fault trees [4].

If only a partial list of minimal cut sets can be identified, then it would be desirable to
identify those minimal cut sets that are most likely to contribute to system failure.

Given that lower order minimal cut sets are generally more likely to contribute to

system failure it intuitively makes sense to cull any minimal cut sets above a given
order, kmAx.

Whilst generally the lower the order of a minimal cut set the more likely it is to

contribute to system failure. There are cases when some higher order minimal cut
sets are more significant than those of a lower order. Thus if the minimal cut sets are
culled according to their order, some significant combinations may be ignored. An

alternative culling technique that can be used to identify the most significant minimal
cut sets is the probabilistic or frequency technique, which culls any combinations with
a probabilistic value or frequency Wow a pre-set limit, PMIN, WMIN-

Techniques have been developed to enable the minimal cut sets to be culled
according to either their order or probability of e)dstence for both conventional FTA
methods and the BDD method.

177

The culling techniques for conventional FTA are concerned with identifying a partial
list of minimal cut sets, from which approximations can be obtained for the system
parameters including the system unavailability, the unconditional failure intensity and
various measures of importance. These culling techniques can be used in

conjunction with the conventional top-down and bottom-up methods for identifying
the minimal cut sets of the fault tree.

The culling techniques for the BDD method are concerned With computing a culled
SFBDD from which a partial list of minimal cut sets can be identified, and parbal
quantification can be performed. This chapter will consider these culling techniques
in detail and illustrate how they are implemented by means of worked examples.

8.2 Culling Techniques for Conventional Fault Tree Analysis Methods

The three culling techniques developed for use with the conventional FTA methods
are employed to obtain a culled Boolean expression for the top event, from which a
Partial list of minimal cut sets can be identified and approximations can be obtained
during quantification.

The first culling technique Produces a partial list of minimal cut sets according to a
Pre-set order. For example if the pre-set order of culling is four all minimal cut sets of
order four or below are identified, and any minimal cut sets exceeding this order are
eliminated as they are encountered in the development of the Boolean expression.

The second culling technique also produces a partial list of minimal cut sets, but it

does this according to a pre-set probabilistic value, PMIN. For example, if

PWN`ýIX`10-3only those minimal cut sets with a probabilistic value of UIO-Z and

above are identified, any minimal cut sets that have a probabilistic value below

JXIO-3 are disregarded as they are encountered. This culling technique can only be

employed if the component failure probabilities are known.

The final culling technique again produces a partial list of minimal cut sets, but this
time according to a pre-set frequency, fwN. This technique is similar to the
Probabilistic culling technique.

178

8.2.1 Culling Minirnal Cut Sets Above a Given Order

The first stage of this culling technique is to set the order at which the minimal cut

sets will be culled. Then the top-down or bottom-up approach is used to identify a
partial list of minimal cut sets according to this pre-set culling order. At each stage of
developing the Boolean expression for the top event, combinations that exceed the

culling order are eliminated. Hence the final expression obtained for the top event
only contains the minimal cut sets up to and incJuding the pre-set culling order. To

Blustrate this technique consider the fault tree given in figure 8.1. The minimal cut
sets of order three and below will be identified.

179

Figure 8.1: Fauft Tree Diagram

A Boolean expression for the top event will be obtained using the bottom-up

approach, from which all minimal cut sets of order three and below can be identified.

Beginning by developing an expression for gate GI, by dealing with gates, G15, G14,
G7 G6 and G4:

G15=e. k
G14=GI5+j=e-k+j
G7=G14-f =(e. k+j). f =e. f. k+f-j
G6=G7+a=e. f. k+f j+a
G4=b+g

From this the following expression is obtained for gate GI:

Gl=G6-G4
The combinations b. e. f -k and e-f -g-k are

= (e -f-k+f-j+ aXb + g)

=b-f-j+a-b+f-g-j+a-g eliminated from the Boolean expression for gate

GI because they exceed the culling order

Now obtaining an expression for gate G2 by dealing with gates, G16 and GS:

G5=b. e
G16=G5+d=b. e+d

From these expressions an expression for gate G2 is obtained:

G2 = G16-c =b. c. e+c-d

An expression for gate G9 is obtained by developing gates, G 13, G 12, G 11 and G 10:

G13=c+m
Gll=b-c-h
G12 = G13-i = (c+m).! = c.! +i. m
G10 = GI I +G12 =c.! +i. m+b-c-h

The following expression is then obtained for gate G9:

G9 GI 0-f
The combination b-c-h-f is eliminated from (c -i+i-m+b-c- h). f

=C-f-i+f.!. m the Boolean expression for gate G9 since it

exceeds the culling order.

180

_,
ý Finally the following Boolean expression is obtained for the top gate, Top:

Top=GI+G2+G9 (8.1)

=b. f -j+f g. j+a. b+a. g+b. c. e+c. d+f I. m+c. f .1

Eight minimal cut sets are identified from equation (8.1):

{bel, {fgjl, {ab), {ag), {bce), {cdl, {fim), {cfil

Once a partial list of minimal cut sets has been obtained, it is possible to use these to

quantify the system approximately using the conventional FTA techniques outlined in

chapter two.

8.2.2 Culling Minimal Cut Sets Below a Given Probabilistic Value

The first stage of this culling technique is to set the probabilistic value according to

which the minimal cut sets will be culled. Then the top-down or bottom-up approach
is used to identify a partial list of minimal cut sets. As the Boolean expression for the
top event is developed, any combinations that have a probabilistic value below the

pre-set value are eliminated from the expression. The final expression obtained for

the top event only contains the minimal cut sets with a probabilistic value above the

pre-set probabilistic value. Component failure probabilities are essential to employ
this technique.

To illustrate this technique consider the fault tree given in figure 8.2. The probabilistic

culling limit will be set to Ix 10-7, thus any minimal cut sets with a probabilistic value
below this culling limit will be eliminated from the Boolean expression for the top

event. The component failure probabilities for each component in this example are
given in table 8.1.

181

Component Failure PrObability

q(t)

Failure Frequency

W(t)
---------- a Ix 10-2 1XIO-1

b 2.5 x 10-4 2x 10-4

------c

ý

2x10-3 4.5 x 10-3

------ d 6.5 x 10-2 2.3 x 10-2

e 5x 10-3 5X 10-3

2xIO-2 6.5 x 10-2

11 x 10-2 X, 0-2 3x 10-3

j. c,,,,, ýrw ,f +hm rnrnnnnian+ Poib em I "-. - -.. --. -i-- .---. -f- -- --.. . -. - ý.. -

182

Figure 8.2: Fault Tree Diagram

Beginning by developing an expression for G1 by evaluating, G3, G4 and G6:
G6 =b-e
P(b) - P(e) =

(2.5
x 10-4 X5 X 10-3 The probability of this combination Is higher

= 1.25 x 10-7 than the culling limit of Ix 10-7.

G4=a+d

p(a) =Ix 10-2 The probabilities of both of these combinations

P(d) = 6.5 x 10-2 are higher than the culling limit.

G3 = G6+c =b. e+c

P(b - e) = 1.25 x 10-7 The probabilities of both of these combinations

P(c) =2x 10-3 are higher than the culling limit.

Now an expression can be obtained for gate G I:

GI G3-G4 = (b. e+cXa+d)= a b. e+b. d. e +a -c +a -d

P(a -b- e) =
(I

x 10-2 11.25
x 10-7)

= 1.25 x 10-9

P(b -d- e) =
(6.5

x 10-2XI. 25 x 10-7)

= 8.125 x 10-9

p(a. C) =
(1

X 10-2 X2
x 10-3

=2x 10-5

P(a - d) =
(1

x 10-2 16.5
x 10-2)

= 1.3 x 10-4

The probability of the combinations, a-b-e and b-d-e are below the probabilistic

culling limit, Ix 10-7, hence they are eliminated from the expression for gate GI, the
culled expression for this gate is given below:

Gl=a. c+a. d

Now developing an expression for gate G8:

G8=a. g

183

P(a - g) =
(1

X 10-2 X,
X 10-2

)

=1X 10-4

The probability of this combination is higher

than the culling limit.

By evaluating gates G5 and G7 it is possible to obtain an expression for gate G2:

G7 =c-g

P(c - g) =
(2

X 10-3 X,
X10-2 The probability of this combination is higher

=2x 10-5 than the culling limit

G5=G7+f =c. g+f

P(C-9) = 2x10-5 The probabilities of both of these combinations

P(f) =2x 10-5 are higher than the culling limit

From these results the following expression Is obtained for gate G2:

G2 = G5 -b= (c -g+ f) -b=b-c-g+b-f

P(b -c- g) =
(2.5

x 10-4 X2 X 10-5

=5X 10-9

P(b - f) =
(2.5

x 10-4 ý2
X 10-2

=5x 10'9 +5x 10-6

The probability of combination b-c-g is below the culling limit; hence it Is eliminated

from the expression for gate G2, the final expression for gate G2 is given below:

G2 = b-f

Finally an expression for the top event is obtained:

Top =Gl+G2+G8 =a. c+a-d+a. g+b. f

The probability of all of the combinations in the Boolean expression for the top event

are higher than the culling limit of IxI O-T. Hence no further culling Is required, the
final Boolean expression for the top event is given below:

Top= a. c+a. d+a. g+b. f (8.2)

184

Four minimal cut sets are identified from equation (8.2):

(ac), {ad), {ag), {bf)

The minimal cut sets identified can be used to quantify the system approximately.
The conventional quantification techniques outlined in chapter two are employed in

exactly the same way.

8.2.3 Culling Minimal Cut Sets Below a Given Frequency

This culling technique is very similar to the probabilistic culling procedure outlined in

section 8.2.2; the only difference is that the minimal cut sets are culled according to a
pre-set frequency rather than probability. Once again the frequency value must be

set according to which the minimal cut sets will be culled. Then the top-down or
bottom-up approach is used to identify a partial list of minimal cut sets. As the
Boolean expression for the top event Is developed, any combinations that have a
frequency below the pre-set value are eliminated from the expression. The final

expression obtained for the top event only contains the minimal cut sets with a
frequency above the pre-set frequency value. Component failure probabilities and
frequencies are essential to employ this technique.

To illustrate this technique consider again the fault tree given in figure 8.2. The

frequency culling limit will be set to 5x1O-7, thus any minimal cut sets with a
frequency below this culling limit will be eliminated from the Boolean expression for
the top event. The component failure probabilities and frequencies for each
component In this example are given in table 8.1.

Beginning by developing an expression for GI by evaluating, G3, G4 and G6:

G6 =b. e

qbw, + qeWb =
(2.5

X 10-4 X3
X 10-3)+ (1

X 10-2 X2
x 10-4)

qbw, + q, wb = 7.5 x 10-7 +2x 10'6 The probability of this combination Is

qbw, + qeWb = 2.75 x 10"8 higher than the culling limit of 5x 10-7.

185

G4=a+d

a =1XIO-5

Wd = 2.3 x 10-2

The frequencies of these combinations

are higher than the culling limit.

G3 = G6+c =b. e+c

qbWe+qeWb = 2.75 x 10-6

WC =4.5 x 10-3

The frequencies of these combinations

are higher than the culling limit.

Now an expression can be obtained for gate Gl:

Gl = G3-G4 = (b. e+cXa+d)= a b. e+b. d. e +a c+ a -d

qaqbWe + qaqeWb + qbqewa =
(I

x 10-2X2.5 x 10-4X5x 10--11)+ (1
x 10-2X5X 10-3X2x 10-5)

+
(2.5

x 10-4
X5

X 10-3
X1

X 10-5)

=1.025xlO-g

qbqdWo + qbqeWd + qdqewb -�ý
ý. 5 x 10-4 X6.5

x 10-2 X' 5x 10--6)+ (2.5
x 10-4 X5

x 104 X2.3
x 10-2)

+
(6.5

x 10-2
X5

X 10-3
X2

X 10-5)

= 3.533 x 10-8

q, w. + qw. =
(1

x 10-2 X4.5
x 10-3)+ (2

x 10-3 Xl
x 10-5)

= 4.52 x 10-5

qcWd + qdWc (2
X 10-3 X2.3

x 10-2)+ (6.5
x 10-2X4.5 x 10-3)

3.39 x 10-4

The frequency of the combinations a-b-e and b-d-e are below the culling limit,

5x1O-7 hence they are eliminated from the expression for gate G1, the culled
expression for this gate is given below.

Gl=a. c+a. d

Now developing an expression for gate G8:

G8=a. g

qawg +qgwa =
(I

xlo-2X3XIO-3)+
(I

xlo-2Xlxlo-S)

186

qaW9 + qgw, =3x 10-5 +1x 10-7

q, wg + qgw, = 3.01 x 10-5

The frequency of this combination is

higher than the culling limit.

By evaluating gates G5 and G7 it is possible to obtained an expression for gate G2:

G7 = c-g

qcW9 + qgwc =
(2

X 10-3 X3
X 10-3)+

(1
x 10-2 X4.5

x 10-3)

qcW9 + qgwc =6x 10-6 + 4.5 x 10-5

qcW9 + qgwc = 5.1 x 10-5

G5=G7+f =c. g+f

qcw g+ qgwc = 5.1 x 10-5

wf =6.5xlO-2

The frequency of this combination is

higher than the culling limit

The frequencies of these combinations

are higher than the culling limit

From these results the following expression is obtained for gate G2:

G2 = G5-b = (C-g+f)-b = b. c-g+b-f

qbqcwg +qbqgwc +qcqgWb ý
(2.5xIO-4X2xlO-3X3xIO-3)+(2.5xIO-4XlxlO-2X4.5xlO-3ý

+
(2X 10-3XIX 10-2X2X 10-5)

= 1.315 xlO-8
qbWf + qf Wb ý

(2.5
x 10-4 X6.5

x 10-2)+ (2
x 10-2 XWO-S)

= 1.665 x 10-5

The frequency of combination b-c-g Is below the culling limit; hence It Is eliminated
from the expression for gate G2, the final expression for gate G2 is given below.

G2=b-f

Finally an expression for the top event is obtained:
Top= GI+G2+G8 =a -c +a -d +a g+b-t

The frequency of all of the combinations in the Boolean expression for the top event

are higher than the culling limit of 5x 10-7. Hence no further culling Is required the
final Boolean expression for the top event is given below:

Top= a. c+a. d+a. g+b. f (8.3)

187

Four minimal cut sets are identified from equation (8.3):

{ac), {ad), {ag), {bf)

8.3 Culling Techniques for the Binary Decision Diagram Method

Rauzy [4] developed two techniques that can be used to produce a culled BDD,

which encodes a partial list of minimal cut sets. The first technique Is concerned with

culling any minimal cut sets above a given order, kmAx. The second technique

produces a list of minimal cut sets with a probabilistic value k PMIN. These culling
techniques employ a modified form the Ito procedure introduced in chapter three,

and will be considered in detail in sections 8.3.1 and 8.3.2. An alternative technique
has been developed as part of the research for this thesis, which can be used to

compute a frequency culled BDD. This will be considered in section 8.3.3.

8.3.1 Rauzy's Technique for Computing an Order Culled Binary Decision

Diagram

It is first necessary to set the culling limit, kmAx. If kmAx is set to four, then cut sets up
to and including order four will be encoded in the BDD. Any paths through the BDD

that encode cut sets exceeding order four are terminated with a terminal 0 vertex.

Once kmAx has been set and the system components have been assigned an
ordering, the culled BDD can be computed. The procedure for computing the SFBDD

that is outlined in chapter three is modified to ensure that any cut sets exceeding kmAx

are culled. The modified procedure is outlined below,

1. Assign each basic event x, in the fault tree an ito structure, ite(xl, 10).

2. Modify the fault tree structure so that each gate has only two Inputs.
3. Consider each gate in a bottom-up fashion.
4. If the two gate Inputs are J and H such that:

J= ite(x, Fj 172) H= ite(y, Gj G2)

To compute J<op>H the same rules are applied as outlined In chapter three.
However an additional check is required before the relevant rule is applied to ensura
that the culling limit will not be exceeded by a new calculation.

188

The variable k
X) tracks the number of basic events encoded in a particular path from

the root vertex down to and including the node Y,.

If kxl <kmAx then a new calculation can be performed on the one branch, if however

k
XI ý. ' kmAx then the culling limit has been reached, thus the one branch of node)4

must be terminated by a terminal 0 vertex. When dealing with the zero branch of

node Y,, component i itself is not included in the path, hence, if k
x, -1 <kmAx then a

new calculation can be performed on the zero branch, but if k
x, -I ýe- kmAx the zero

branch of node)q is terminated. The algorithm for computing J<op>H for a culled
BDD is outlined in figure 8.3.

Computing J<op> H
if(x<y)

if(kx, <kmAx)

J<op>H=ite(x, Fl <op>H, FO<op>H)

else if(k N ; -t kmAx and k
x, -I

<kmAx)

J<op>H=ite(x, O, FO<op>H)

else if(k
N-Ik

kmAx)

J<op>H=O

else if(x=y)

if(k
N

<kmAx)

J<op>H=ite(x, Fl <op>GI, FO<op>GO)

else if(k N ý. ' kmAx and k.
4-

1 <kmAx)

J<op>H=ite(x, O, FO<op>GO)

else if(k N-I
ý-' kmAx)

J<op>H=O

Figure 8.3: The Algorithm for Computing J<op>H for an Order Culled BDD

189

These rules are applied in conjunction with the four identities outlined in chapter
three. Although the identities, 0-H=0 and I+H=I can be applied directly during

the computation process, since they reduce to terminal I or 0 vertices. The remaining
identities, I-H=H and 0+H=H can increase the number of basic events encoded
in the paths through the BDD. Hence additional work is required to ensure that the

culling limit is not exceeded when these Identities are applied.

Suppose that the result of the one branch of node A is of the form, I-H, which would

usually reduce to H. This identity cannot be employed directly, since if H is encoded

on the one branch of node x4, it could lead to cut sets, which exceed the culling limit

being encoded. Thus before H can be encoded it must be checked and where

necessary modified to ensure only cut sets within the culling limit are encoded.

The value kx, records the number of basic events encoded in the path from the root

vertex down to and including the node Y4, and kH represents the maximum number of

basic events encoded in the paths through H. If kxl +KH exceeds kmAx, then, If H Is

retained as a solution on the one branch of node Y4 it will result In cut sets which

exceed the culling order being encoded. In such cases further processing Is required
to check through H for any paths which when combined with the path preceding node

Y4 encodes cut sets that exceed the culling limit. Any such paths are terminated by a
terminal 0 vertex. Once H has been fully modified the resulting Ito structure is taken

as the solution to the one branch of node Y4.

Similarly when dealing with this type of calculation on the zero branch of node xi,

checks must be made to ensure that kx, -1 +1ý4:!; kmAx. If kx, -I +Iqi>kmAx, H cannot

be encoded exactly. Again further processing Is required to modify H such that It
does not encode any paths that exceed the culling limit, 4w.

The same procedure is employed when the result of a one or zero branch is of the
form O+H. The algorithm for implementing the four Identities is outlined In figure 8.4.

190

Employing the four identities for the

one branch of a node

if(<Op>=AND)

if(i=l)

if(k N +kH: 5 kmAx)

J. H=H

else if(k N +kH > kmAx)

check and modify H

else ifa=O)
J-H=O

else if(<op>=OR)
ifpi)

J+H=l

else ifG=O)
If(k N

+I(H: 5 kmAx)

J+H=H

else if(kxl +kH"k#AAX)

check and
modify H

Employing the four identities for the

zero branch of a node

if(<op>=AND)
if(i=l)

if(k N-I +kH: 5 kMAX)

J. H=H

else if(k
Xi -I +km>kmAx)

check and modify H

else ifa=O)
J-H=O

else if(<op>=OR)
ifa=l)

J+H=1

else ifa=O)

if(k
Xi -I +kH tý kmAx)

J+H=H

else if(k
X1 -I +kH>kmAx)

check and
modify H

Figure 8.4: The Algorithm for Implementing the Four Identities for Computing an
Order Culled BDD

To illustrate this technique consider the fault tree in figure 8.5. The culling limit, kMAX

will be set to two. Thus any paths encoding cut sets of order three or above will be

terminated by a terminal 0 vertex.

191

Beginning with gate G3:
G3 = ite(bt0) - ite(ct0)
G3 = ite(b, 11 - ite(c, t0)], [0 - ite(c, t0»)

Evaluating the one branch of equation (8.4) k
'4b =I and 14j= 1:

I- ite(c, tO) = ite(c, tO)

(8.4)

lk
Xb +kH: ý. kmAx 1-H-HI

Evaluating the zero branch of equation (8.4) k
Mb -I=0 and kH= 1:

0- ite(c, 10) =0 FO MH-=-0-11

Therefore the final expression for G3 is given belomr
G3=ite(b, ite(c, 1,0), O)

Now dealing with gate G2:
G2=G3+ite(e, 1,0) (8.5)
G2 = ite(b, ite(c, 1,0), O) + ite(e, 1,0)
G2 = ite(b, [ite(c, 1,0)+ ite(e, 1,0), [O + ite(e, 1,0ý)

192

Figure 8.5: Fault Tree Diagram

Evaluating the one branch of equation (8.5) k
Xb : 21 and kH=I:

ite(c, ýO) + ite(e, 1,0) = ite(c, [I + ite(e, 1,0)1, [0 + fte(e, 1,0)]) (8.6)

In equation (8.6) the one branch is of the form 1+H, which reduces to 1. The zero

branch of this equation is of the form O+H since kx, -1+ kH :9 kmAx this reduces to H

as normal.

Evaluating the zero branch of equation (8.5) k
Xb -I=0 and kH= 1:

0+ ite(e, 1,0) = fte(e, 1,0) Ik
Xb -1 +k1j: 5 kmAx 1-H=HI

The final its structure for gate G2 is given below:

G2=ite(b, ite(c, l, ite(e, 1,0)), ite(e, 1,0))

Now evaluating gate GI:
G1= G2 - ite(d, 1,0)
G1 = ite(b, ite(c, l, ite(e, 1,0)), ite(e, 1,0))- ite(d, 1,0) (8.7)

= ite(b, [ite(c, l, ite(e, 1,0)). ite(d, 1,0)], [ite(e, 1,0). ite(d, 1,0)])

Evaluating the one branch of equation (8.7) k Xb -ý 1 and kH
-"4

1:

ite(c, l, fte(e, 1,0)). ite(d, 1,0)
ite(c, [I - ite(d, 1,0)1[ite(e, 1,0). ite(d, I, O)b

(8.8)

In equation (8.8), kx, =2 and KH = 1, hence, kxc + kH > kmAx the one branch of

equation (8.8) is terminated by a terminal zero vertex. The zero branch is also
terminated by a terminal zero vertex since if the calculation is performed exactly the
culling order will be exceeded. The final result obtained for the one branch for
equation (8.7) is given below:
ite(c, 0,0)=O

Evaluating the zero branch of equation (8.7) k Xb -1 =0 and kH= 1:

ite(e, 1,0) - ite(d, 1,0) = ite(d, [l - ite(e, 1,0)1 [0 - ite(e, 1,0)b (8.9)

193

In equation (8.9) k
Xd =1 and kH = 1, thus since kmAx is not exceeded H, i. e. ite(e, 1,0)

in this case is taken as the solution to the one branch of equation (8.9). The zero
branch of this equation is of the form 0-H, which simply reduces to 0.

The final ite structure for gate GI is given below:
GI = ite(b, O, ite(d, ite(e, 1,0), O))

Finally computing the ite structure of the top gate, Top:
Top =GI+ ite(a, 1,0)
Top = ite(b, O, ite(d, ite(e, 1,0), O)) + ite(a, 1,0) (8.10)
Top = ite(a, [1 + ite(b, Ojte(djte(e, 1,0), O))j [0 + ite(b, Ojte(djte(e, 1,0), O))b

Evaluating the one branch of equation (8.10) kxa =1 and kH = 2:

1 +ite(d, ite(e, 1,0), 0) =1

Evaluating the zero branch of equation (8.10) kx,, -1=0 and kH = 2:

O+ite(b, O, ite(d, ite(e, 1,0), O))= ite(b, O, ite(d, ite(e, 1,0), O)) I kxa -1 +I(H: 5 kmAx O+H=ý

The Ito structure for the top gate, Top is given in equation (8.11):
Top= ite(a, I, ite(b, O, ite(d, ite(e, 1,0), O))) (8.11)

The culled BDD obtained for the fault tree in figure 8.5 is given in figure 8.6:

Figure 8.6: The Order Culled BDD Obtained for the Fault Tree in Figure 8.5. kmAx=2

194

8.3.2 Rauzy's Technique for Computing a Probability Culled Binary Decision
Diagram

It is first necessary to set the culling limit, PMIN- If PMIN is set to Ix 10-5, then cut sets

with a probability below this value are culled. Any paths through the BDD encoding
cut sets with a probability below pm, N are terminated with a terminal 0 vertex.

Once IDMIN has been set, the culled BDD can be computed. The procedure for

computing the SFBDD that is outlined in chapter three is again modified, as shown
below. The first three steps outlined in the previous section remain the same. The
fourth step, computing the ite structure of a gate with inputs J and H has to be

modified such that the BDD computed is culled according topMIN. The procedure for

computing J<op>H is outlined below:

If the two gate inputs are J and H such that:

J= ite(x, F1 F2) H= ite(y, Gj G2)

To compute J<op>H rules outlined in chapter three are applied. However, an
additional check is required before the relevant rule is applied to ensure that the

minimal cut sets below the probabilistic culling limit are not encoded in the BDD. The

variable px, tracks the probability of basic events encoded in the path from the root

vertex to the current node);.

I Jqj P)q

et'w on LI
branch

If PX,: VM1N9 then a calculation can be performed on the one branch, if however

PXI :5 PMIN, then the culling limit has been reached, thus the one branch of node Y4

must be terminated by a terminal 0 vertex. Similarly if,
PXI

: ý'PMIN, then a new
qj

calculation can be performed on the zero branch, but if,
Pxj

-9 PMIN, the zero branch
q,

of node A. is terminated. The algorithm for computing J<op>H is outlined in figure 8.7.

195

Computing J<op> H
if(x<y)

if(pxi ýTMIN)

J<op>H=ite(x, Fl <op>H, FO<op>H)

else if(px, :! ý PMIN and
LI

: ý'PMIN) x
qi

J<op>H=ite(x, O, FO<op>H)

else if(N< PMIN)
qj

J<op>H=O

else if(x--y)
if(pyl : TMIN)

J<op>H=Re(x, Fl <op>GI, FO<op>GO)

PX.
else if(p ! 5IDMIN and ^' ý"PMIN) Xi qi

J<op>H=ite(x, O, FO<op>GO)

else if(
Px,

:9 PMIN)
qj

J<op>H=O
Figure 8.7: The Algorithm for Computing J<op>H for a Probability Culled BDU

These rules are again applied in conjunction with the four identities outlined in

Chapter three. The identities 1. H=H and O+H=H cannot be applied directly,
Instead H must be checked and modified where necessary to ensure any minimal cut

sets with a probability below PMIN are eliminated.

For this culling technique if the one branch of a node)4 is of the form 1-H or I +H,

PXI *PH is calculated, where pli represents the minimum probability of all the paths

through H. If this probability is below PM1Nv then H must be checked and modified

such that any paths through H that when combined with the path preceding node A

encode cut sets with a probability below the culling limit are eliminated from H.

196

Similarly if the zero branch is of the form I-H or 1 +H,
P)q

.. calculated and if it is
qj

PH 'S

below PMIN, H must be checked and modified accordingly.

Employing the four identities for the

one branch of a node

if(<Op>=AND)

if(j=I)

'f(P
xj * PH ýý PMIN

J-H=H

else if(p., -PH < PMIN

check and modify H

else ifa=O)

J. H=O

else if(<Op>=OR)

jfG=j)

J+H=l

else ifa=O)

'f(Px, *PH ý-PMIN)

J+H=H

else if(p
xj * PH < PMIN

check and

modify H

Employing the four identities for the

zero branch of a node

if(<op>=AND)
if(i=l)

Pxl
*PH ý: PMIN

qj

J-H --OH

else if(
Pxi

* PH '4 PMIN)
q,

check and modify H

else ifa=O)
J-H=O

else if(<op>=OR)
ifa=l)

J+H=l

else ifa=O)

L xi)t
'PH ý-PMIN)

q,

J+H=H

else ift
PX4

'PH `-PMIN)
qj

check and modify H

Figure 8.8: The Algorithm for Implementing the Four Identities for Computing a
Probability Culled BDD

To illustrate this technique consider again the fault tree given In figure 8.5. The

culling limit, PMIN will be set to Ix 10-8. Hence, any paths through the BDD that would

encode cut sets with a probability below Ix 10-8 will be terminated by a terminal 0

197

vertex. The failure probabilities and failure frequencies for each of the components in
the fault tree are summarised in table 8.2:

Component Failure Probability Failure Frequency

a 1XIO-5 6X 10-3

b 2x 10-3 7x 10-4

c 1x 10-2 2x10-3

d 2.1 x 10-4 3.1 x 10-5

e 2x 10-7 2xlO-'6

Table 8.2: Summary of Component Failure Probabilities and Frequencies

Beginning vvith gate GI:

Gl = ite(b, 10) - ite(c, 10) - ite(cLIO)
GI = ite(b, [I - ite(c, 1,0)], [0 - ite(c, 10)1) - ite(cLJO)

(8.13)

Evaluating the one branch of equation (8.13), PXb =2xlO-3 and PH= IX10 -2 :

I- ite(c, 1,0) = ite(c, 1,0)
IpXb +PHý"PMIN I-H=HI

Evaluating the zero branch of equation (8.13),
PXb

=land PH= 1XIO -2
q Xb

0- ite(c, 1,0) =0 FO -. H-=--Ol

Gate GI needs further development:
GI = ite(b, ite(c, 10), O) - ite(d, 10)
G1 = ite(b, [ite(c, 10) - ite(d, jo), [0 - ite(d, 10ý)

Evaluating the one branch of equation (8.14):

ite(C, 1,0) - ite(clI, O) = ite(c, [I - ite(d, 1,0)], [0 - ite(cl, ýO)J) (8.15)

In equation (8.15), Pxc =2x 10-6 and PH = 2.1 x 10-3, thus Px, - PH ý"PMIN9 I-H=H, so

the one branch of (8.15) has solution H, i. e., ite(d, 1,0) . The zero branch of equation
(8.15) is of the form 0-H, which reduces to 0.

198

Evaluating the zero branch of equation (8.14),
P X' =1 and PH= 2.1 x 10-3:
qx,

0- ite(d, 1, O) =0

The final ite structure for gate GI is given below:

G1 =ite(b, ite(c, ite(d, 1,0), O), O)

Now evaluating gate G2:

G2 = ite(cLJO) - ite(e, tO) (8.16)
G2 = ite(cl, [1 - ite(e, 10)], [0 - ite(e, 10)])

Evaluating the one branch of equation (8.16), PXd ý' 2.1 x 10-3 and pli =2x 10-7:

1- ite(e, 1,0) =0
IpXd

* PH -"5 PMIN I-H= 01

Evaluating the zero branch of equation (8.16),
!! 1- =I and pH =2x 10-7:
q Xd

0- ke(e, 1,0) =0 FO- --H 7-01

The final fto structure for gate G2 is given below:
G2=ite(d, 0,0)
G2=0

Finally computing the ite structure of the top gate, Top:
Top = GI + G2 + ite(a, 10) ,
Top = fte(b, ite(c, ite(d, 1,0), O), O) +0+ ke(a, 10)
Top = ite(b, ite(c, ite(cl, 10), O), O) + ite(a, 10)
Top = ite(aJI + ite(bjte(cjte(cljO), O), O)]jO + ite(bjte(cjte(d, 1,0), O), O)])

(8.17)

Evaluating the one branch of equation (8.17), p),. =Ix 10-5 and PH = 4.2 x 10-8 :

I +ite(b, ite(c, ite(d, 1,0), 0), 0) =I Fl +-H-='---R

199

Evaluating the zero branch of equation (8.17),
Px'

=I and PH = 4.2 x 10-8:
qx,

p
O+ite(bjte(c, ite(d, 1,0), O), O)= ite(b, ite(c, ite(d, 1,0), O), O) "s

. PH ý-PMIN O+H=H
qx.

The ilto structure for the top gate, Top is given in equation (8.18):

Top= ite(a, l, ite(b, ite(c, ite(d, 1.0), O), O)) (8.18)

The culled BDD obtained for the fault tree in figure 8.5 is given in figure 8.9.

Figure 8.9: Probability Culled BDD Obtained for the Fault Tree in Figure 8.5,

PMIN "2 'X 1 C)-8

8.3.3 Beeson and Andrews Technique for Computing a Frequency Culled
Binary Decision Diagram

An alternative technique has been developed as part of this research project, which
can be used to produce a frequency culled BDD. To cull the SFBDD according to the
frequency of the minimal cut sets it is necessary to calculate the frequency of each

path through the SFBDD as it is computed. The culling limit fMIN is set, and then if the
frequency of the path being computed is below this limit no further development is

carried out, instead the path is terminated with a terminal zero vertex. To calculate
the frequency of a given path the failure probability and frequency of each system

200

component must be known. The frequency of a cut set is calculated using equation
(8.19).

nn
wc = 2: wlrlqj (8.19)

The equation for calculating the failure frequency of a cut set is more complex that

the equation for calculating the failure probability of a cut set; hence two variables

must be used during the BDD construction. The first variable denoted by px, tracks

the probability of the path from the root vertex down to and including the node xj. The

second denoted by f.,, tracks the frequency of the path from the root vertex down to

and including the node A-. Since the probability and frequency of the cut sets
encoded is being calculated, only components represented by those vertices that lie

on the 1 branch through the current path are included in the calculation.

For example if the path from the root vertex to node x4 is of the form:

Figure 8.10: Path through a General BDD

Then the following results are obtained for p., and f,,,:

p, 4 = q.. q. 0 q.,

f., =qxq.,. w., +qx. qxlwx. +qxeqx, wx,

At each stage pxI and fY4 are recorded for each node, hence the probability and

frequency of the path up to Y, in figure 8.10 can be calculated as follows:

201

P-li = P-h qx,

fXi = PXh WN + fXh qx,

To implement this technique it is first necessary to set the culling limit, 6N. If fMIN is

set to 1X 10-5, then cut sets with a frequency below this value are culled. Any paths
through the BDD encoding cut sets with a probability belowfMINare terminated with a
terminal 0 vertex

Once fMIN has been set the culled BDD can be computed. The procedure for

computing the frequency culled BDD is very similar to that for computing the

probability culled BDD, except that it is the frequency of the cut sets encoded that is

of interest. The algorithm for computing J<op>H is outlined below in figure 8.11:

Computing J<op> H
if(x<y)

if(fxl "4MIN)

J<op>H=ite(x, Fl <op>H, FO<op>H)

else ify R y4 :5 fMIN and fp xi
"IMIN)

J<op>H=ite(x, O, FO<op>H)
else if(fpRx, : 0MIN)

J<op>H=O

else if(x=y)
if(fX, >fMIN)

J<op>H=fte(x, Fl <op>GI, FO<op>GO)

else if(f. :5 fMINand fPR,
X, ý'IMIN)

J<op>H=ite(x, O, FO<op>GO)

else if(fPR,
xi : 5fMIN)

J<op>H=O

Figure 8.11: The Algorithm for Computing J<op>H for a Frequency Culled BDD

Where, fPR,,,, denotes the frequency of the path from the root vertex to the node

preceding Y,.

202

These rules are again applied in conjunction with the four identities outlined in

chapter 3. As before it is not possible to apply the identities I-H=H and 0+H=H

directly, instead H must be checked and modified where necessary to ensure any

minimal cut sets with a frequency below fMIN are eliminated.

The algorithms for applying these two identities are similar to those outlined for

computing the probability culled BDD and are outlined below in figure 8.12.

Employing the four identities for the

one branch of a node

if(<op>=AND)

if(J=l)

if (ýXj
* flH + fxi +PH) ý: NIN)

J-H=H

else if
(ýx,

* fIH + fxj + PH)-' fMIN)

check and modify H

else ifO=O)
J-H=O

else if(<op>=OR)
ifa=l)

J+H=I

else ifo=O)
if (ki

' fH + fyi +PH); -*
fM IN)

J+H=H

else if 4H +fxi +PH)< 6.)

check and modify H

Figure 8.12a: The Algorithm for Implementing the Four Identities on the one Branch

of a Node for Computing a Frequency Culled BDD

203

Employing the four identities for the

zero branch of a node

if(<op>=AND)
if(i=l)

.
if

(ýpRyj
* fH + fPR +PH) 2ý fMIN

J. H=H

else if
(ýPRx4

* fH + fPR + PH) "ý fMIN)

check and modify H

else ifo=O)
J. H=O

else if(<op>=OR)
ifa=l)

J+H=l

else ifa=O)
if

(ýpRxj
JH +fPR +PH) ý: fMIN)

J+H=H

else if
(ýPR,

xj 'fH + fPR +PH)< 6.
)

check and modify H

Figure 8.12b: The Algorithm for Implementing the Four Identities on the Zero Branch

of a Node for Computing a Frequency Culled BDD

To illustrate this technique consider again the fault tree in figure 8.5. A frequency

culled BDD will be computed for this fault tree and fMIN will be set to Ix 10-8.

Beginning by developing an ite structure for gate GI

G3 = ite(b. 1,0) - ite(c, 1,0)

G3 = ite(b, [I - ite(c, I O)j [0
- ite(c, 1, O)D (8.20)

204

EvaluaUng the one branch of equabon (8.20), Pb = qb t
fb = Wb, H= ite(c, 10),

PH = qc, fH = w.:

The one branch of equation (8.20) is of the form I-H thus in order to obtain a

solution, the frequency of all the combinations that would be encoded if H is taken as

the solution to the one branch must be checked to ensure they are not below the

culling limit

Pb IH =4 x 10-'6* PH 'fb = 1.4 x 10-6,

Since, Pb * fH +PH * fb ý-' fMIN the one branch of equation (8.20) takes the solution H.

Evaluating the zero branch of equation (8.20):

0- ite(c, 1,0) =0

The 11to structure computed for gate G3 is given below:

G3 = ite(b, ite(c, 1,0), O)

Now dealing with gate G2:

G2 = G3 + ite(e, 1,0)
G2 = ite(b, ite(c, 1,0), O) + ite(e, 1,0)

G2 = ite(b, [jte(c, 1,0) +ite(e, 1,0)1[0 +ite(e, I, O)D (8.21)

Evaluabng the one branch of equabon (8.21):

ite(c, 1,0)+ ite(e, 1,0) = ite(c, [l + ke(e, 1,0)1[0 +ite(e, I, O)D (8.22)

Evaluating the one branch of equation (8.22):

1+fte(e, 1,0)=l Fl -+H--71ý

Evaluating the zero branch of equation (8.22), PPR, C = qb s fPR, c ý Wb, H= ite(e, 10),

PH = qe, flH =We:

The zero branch of equation (8.22) is of the form 0+H thus in order to obtain a

solution the frequency of all the combinations that would be encoded if H is taken as
the solution to the one branch must be checked to ensure they are not below the

culling limit.

c =4xlO ppF; ý, - fH =4x 10-9 PH - fPR -10

205

Since, PPKC * flH + PH * fPKc "ý fMIN the zero branch of equation (8.22) is terminated by

a terminal zero vertex.

Evaluating the zero branch of equation (8.21) PPR, b "= 11 fPR, b = 1, H= ite(e, 10),

pH = qe, fH = w.:

The zero branch of equation (8.21) is of the form 0+H thus in order to obtain a

solution the frequency of all the combinations that would be encoded if H is taken as

the solution to the one branch must be checked to ensure they are not below the

culling limit.

ppRb *fH =2x10-'6 PH * fPPb =2x 10-7,

Since, PPP.. b * fH +PH* fPRb > fMIN the zero branch of equation (8.21) takes the

solution H.

The ite structure computed for gate G2 is given below

G2 = ite(b, ite(c, 1,0), ite(e, 1,0))

Dealing with gate G I:

GI= G2 - ite(d, 1,0)
GI = ite(b, ite(c, 1,0)jte(e, 1,0)) - ite(d, 1,0)

G1 = ite(b, [ite(c, 1,0). Re(d, 1,0)1[ite(e, 1,0). ite(d, I. O)D (8.23)

Evaluating the one branch of equation (8.23):
ite(c, 1,0)-ite(d, 1,0) = ite(c, [I -ite(d, 1,0)1 [0 - ite(d, I, O)D (8.24)

Evaluating the one branch of equation (8.24), pc=qbqc, fc=qbWc+qcWbo

H= ite(cLIO), PH = qd 1 fH ý Wd:

The one branch of equation (8.24) is of the form I-H thus in order to obtain a
solution, the frequency of all the combinations that would be encoded if H is taken as
the solution to the one branch must be checked to ensure they are not below the
culling limit

pc -fH =6.2xlO-lo PH * fc = 2.4 x 10-9,

206

Since, PPRb 'fH + PH 'fPRb "ý fMIN the one branch of equation (8.24) is terminated

with a terminal zero vertex.

Evaluating the zero branch of equation (8.24):

0- ite(cl, 10) =0 FO-. iH-=-O-ll

Evaluating the zero branch of equation (8.23):

ite(e, 1,0)-ite(d. 1, O) = ite(d, [l - ite(e, 1,0)1[0 - ite(e, I, O)D (8.25)

Evaluating the one branch of equation (8.25), Pd = qd t
fd ý Wd, H= ite(e, 10),

pH = qe, fH =We:

The one branch of equation (8.25) is of the form I-H thus in order to obtain a
solution, the frequency of all the combinations that would be encoded if H is taken as
the solution to the one branch must be checked to ensure they are not below the

culling limit.

Pd * fH = 4.2x 10-11 PH * fd = 6.2 x 10-12,

Since, Pd 'fH + PH * fd `ý fMIN the one branch of equation (8.25) is terminated with a

terminal zero vertex.

Evaluating the zero branch of equation (8.25):

0- ite(e, 10) =0

The its structure computed for gate GI is given below:

GI = ite(b, ite(c, 0,0), ite(d, 0,0)) =0

Finally dealing with the top gate, Top:
Top =0+ ite(a, 1,0)
Top = ite(a, 1,0)

FO 7 H- 7 -01

Since, f. =6x104 and is thus higher than the culling liMit &N, the ito structure

obtained for the top gate does not need culling. The Ito structure obtained for the
frequency culled BDD is given in equation (8.26) and the BDD itself is shown in figure
8.13.

Top = ite(a, 1,0) (8.26)

207

Figure 8.13: Frequency Culled BDD Obtained for the Fault Tree in Figure 8.5 where,
fMIN =1X 10-8

8.4 Analysing the Culled Binary Decision Diagram

Once the culled BDD has been computed it can be used to identify a partial list of

minimal cut sets and also quantifý the fault tree approximately. The culled BDD can
be used directly for quantification; the techniques outlined in chapter three are
applied to calculate the system unavailability, unrellability and the various measures
of component importance.

In order to identify the minimal cut sets a minimisation procedure must be applied to

the culled BDD to remove any redundancies. The minimal cut sets are then identified

by tracing all the terminal I paths through the minimised BDD. Each path begins at
the root vertex and proceeds through the BDD until a terminal vertex is reached. Only

those vertices that lie on the one branch on the way to a tenninal I vertex are
included in the minimal cut set.

Thus consider the culled BDD obtained using the probabilistic culling technique,

shown in figure 8.9. This BDD is already minimal so it is possible to obtain a partial
list of minimal cut sets exactly. By tracing all the terminal one paths through the

culled BDD two minimal cut sets are identified: {a), {bcd). It is also possible to

quantify the system approximately using the techniques outlined in chapter three.

8.5 Summary

For many larger fault trees with repeated events, full and exact qualitative and
quantitative analysis cannot always be performed. This Is especially true when
employing conventional FTA techniques, which are exhaustive and thus

208

computationally intensive. Whilst the BDD technique significantly improves the

efficiency of analysis it may still not be possible to compute the SFBDD for some very
large fault trees.

Culling techniques that can be used in conjunction with conventional FrA techniques

have been developed to enable approximate analysis of such fault trees. These

techniques are concerned with producing a partial list of minimal cut sets from which

approximations can be obtained for the system unavailability and unreliability and the

various measures of component and cut set importance. These techniques cull the

minimal cut sets according to either.

-A pre-set order
A pre-set probabilistic value
A pre-set frequency

Whilst these techniques can be useful, they are still quite inefficient and have the

same disadvantages as the conventional FTA techniques. Until recently there were
no culling techniques available for the BDD technique, however, in 1998 Rauzy
developed two techniques for computing a culled BDD. These techniques again cull
the minimal cut sets of a fault tree either according to a pre-set order or probabilistic
value. A culled BDD is computed from which a partial list of minimal cut sets can be
identified and approximations for the system performance measures can be

calculated. An alternative technique was developed by Beeson and Andrews which
can be used to compute a frequency culled BDD.

The techniques developed for computing a culled SFBDD are significantly more
efficient than the conventional FTA culling techniques, enabling extremely efficient
qualitative and quantitative analysis [4]. Furthermore, quantification can be performed
using the culled BDD without knowledge of the minimal cut sets.

209

Chapter 9: Reduction and Culling Techniques for Non-coherent Fault

Tree Analysis

9.1 Introduction

The analysis of non-coherent fault tree structures is more complex than the analysis
of coherent fault tree structures; this is due to the inclusion of NOT logic. The
techniques for analysing such structures are also more computationally intensive,

and consequently the application of either reduction or culling techniques to non-
coherent fault tree structures may provide the only means of analysing large
diagrams with many repeated events.

Reduction techniques are concerned with approAmating the structure function of
non-coherent fault trees by eliminating all negated literals encountered, thus

producing a coherent structure function for the fault tree. Culling techniques on the

other hand are concerned With reducing the work required to analyse a fault tree

structure by only considering wthe most significant" minimal cut sets or prime
implicant sets of the system.

Whilst knowledge of the prime implicant sets can be useful, it may be the case that

the analyst is concerned only with quantifying the system. Under such

circumstances, the inclusion of working states may merely complicate analysis

without providing any additional information. This is because the reliability or

availability of components tends to be quite high and thus close to 1, hence provided
this assumption holds the exclusion of negated literals has little impact during

quantification. In such cases a reduction technique that computes a coherent

approximation for the system can provide a useful means of partial analysis.

Conventional FTA techniques can be employed in conjunction with a reduction
technique to identify a full list of minimal p-cuts. The combinations identified can then
be used to quantify the system approximately. The BDD method is significantly more
efficient than conventional FTA methods and lends itself to reduction techniques. If
knowledge of the prime implicant sets is not vital then it is possible to obtain a full list
of minimal p-cuts from the minimised SFBDD, it is also possible to use the

210

unminimised BDD to quantify the system exactly using the techniques outlined in

chapters five and seven.

If however a partial list of the prime implicant sets is required additional work must
be carried out. Culling techniques can be employed in conjunction with conventional
FTA methods to cull the prime implicant sets according to order, probability, or
frequency. Culling techniques can also be applied in conjunction with the BDD

method. It is not possible to cull the SFBDD according to order or probability and
then compute the meta-products BDD to produce a partial list of prime implicant sets.
Instead the SFBDD must be calculated as normal and then a culling operation can be

applied to compute a culled meta-products BDD. Rauzy and Dutuit developed an

order culling technique, to produce a meta-products BDD, which encodes a partial list

of prime implicant sets according to a pre-set order [6]. An alternative technique has

been developed as part of this research project, which can be employed to produce a

culled meta-products BDD encoding all prime implicant sets with a probability or
frequency greater than a pre-set value.

This chapter will consider each of the reduction and culling techniques outlined

above in detail, and a worked example will be used to illustrate how they are
implemented.

9.2 Reduction Techniques for Conventional Fault Tree Analysis Methods

If knowledge of the prime implicant sets is not required then obtaining a coherent
approximation during qualitative analysis can significantly reduce the work required
to analyse the system. This involves eliminating all negated literals from the Boolean

expression obtained for the top event. A full list of minimal p-cuts can be identified

from this expression and subsequently used to quantify the system approximately.
Since, the reliability and availability of components tends to be close to 1 the results

obtained during quantification are generally accurate. This technique will not be
illustrated here, since it was considered in detail in chapter four, section 4.3.3.

211

9.3 Reduction Technique for the Binary Decision Diagram Method

Chapter five outlined how the minimised SFBDD computed for a non-coherent fault

tree can be used to compute a full list of minimal p-cuts. This technique is

significantly more efficient than the equivalent FTA technique outlined above in

section 9.2. Furthermore, since the computed SFBDD encodes the structure function

of the system, it is still possible to use it to perform full and exact quantification, using
the techniques outlined in chapters five and seven. This culling technique is

particularly useful if knowledge of the prime implicant sets is not required. This

technique will not be illustrated again here.

9.4 Culling Techniques for Conventional Fault Tree Analysis Methods

The culling techniques introduced in chapter eight for application with conventional
FTA methods can be employed in the same way for analysing non-coherent fault tree

structures, to produce a partial list of prime implicant sets according to:

-A pre-set order

-A pre-set probability

-A pre-set frequency

Each of the three culling techniques will be considered in detail in sections 9.4.1-

9.4.3 and illustrated by means of a worked example.

9.4.1 Culling Prime Implicant Sets Above a Given Order

This technique produces a partial list of prime implicant sets according to a pre-set

order, kmAx. The Boolean expression for the top gate is developed using a traditional

top-down or bottom up approach, however, at each stage in the development any

combination whose order exceeds kmAx is culled from the expression. Once the

culled Boolean expression for the top gate has been obtained, the consensus
theorem can be applied to obtain a more complete list of prime implicant sets.
However, hidden prime implicant sets are not a requirement for exact quantification.

To illustrate this technique consider the fault tree in figure 9.1, prime implicant sets of

order three and below will be identified.

212

A Boolean expression for the top event will be obtained using the bottom-up

approach outlined in chapter two. From this a partial list of prime implicant set of
order three and below can be identified.

Beginning by developing an expression for gate GI, by dealing With gates, G5 and
G4:
G5 =f -g-h
G4=G5+d=f -g. h+d

From this the following expression is obtained for gate Gl:
Gl=G4. a

= (f -g. h+d)- a The combination a-f-g-h is eliminated from

=a-d the Boolean expression for gate GI because it

exceeds the culling order.

Now obtaining an expression for gate G2:

G2 =a-b-c

213

Figure 9.11: Non-coherent Fault Tree Structure

Next an expression for gate G3 is obtained by developing gates, G7 and G6:

G7 =f -g-h
G6 =G7+b=f -g-h+b

The following expression is obtained for gate GI

G3 = G6 -ý -e

=(f -g-h+b)-ý-e The combination ý-e-f-g-h is eliminated from

=b-d-e the Boolean expression for gate G3 since it

exceeds the culling order.

Finally the following Boolean expression is obtained for the top gate, Top:

Top=Gl+G2+G3

=a-d+a-b-c+b-ý-e
(9.1)

Three prime implicant sets are identified from equation (9.1):

(ad), (a bc}, (b a e}

Culling techniques aim to identify those combinations that are most likely to

contribute to system failure. In general for coherent fault trees the lower the order of

a minimal cut set the more likely it is to contribute to system failure. However, this is

not the case for prime implicant sets. For example, suppose that a system has two

prime implicant sets, {abc), (acýe), assigning the following component failure

probabilities,
q. =lxlO'3, qb=2.5xlO-4, qc=3xlV, qd=2xlO-5, q. =1.5xlO-3

The probability of existence of each prime implicant set is given below.

P(abc)=q. qbqý=7.5x1 0-10

P(a Ca e)=p. pcpdq. =1.49xlCr3

The probability of existence of the higher order prime implicant set is significantly
greater than that of the lower order set this is due to the inclusion of working states,

whose probabilities are generally close to 1. Hence if the prime implicant sets are
culled according to their order, it is highly likely that some significant combinations
will be ignored. When dealing with non-coherent structures, techniques that cull the

214

prime implicant sets according to their probability or frequency tend to identify the

most significant causes of system failure more successfully than order culling
techniques.

9.4.2 Culling Prime Implicant Sets Below a Given probability

The prime implicant sets can only be culled according to their probability if the

component failure probabilities are known. The first stage of this culling technique is
to set the probabilistic value, PMIN, according to which the prime implicant sets will be

culled. Then the top-down or bottom-up approach is used to identify a partial list of
prime implicant sets. As the Boolean expression for the top event is developed, any
combinaUons that have a probabilistic value below the pre-set value are eliminated
from the expression. The final expression obtained for the top event only contains the

prime implicant sets with a probabilistic value above PMIN.

To illustrate this technique consider the fault tree given in figure 9.1. The probabilistic
culling limit will be set to 1xIO'1O, thus any prime implicant sets with a probabilistic
value below this culling limit will be eliminated from the Boolean expression for the
top event. The component failure probabilities for each component in this example
are given in table 9.1.

Component Failure Probability Failure Frequency Repair Frequency

a IX10-7 1xiall 1XIO,

b 1 X1 0-4 2xI V 2x1 0'

c 2x1 0-3 5xI 0`5 3x1 0'
d 2.5xlO-6 3xI 0-8 2A 0'0

e jX10-2 2xI 0-3 IX10-2

f 2xI Cr2 1 X1 0-4 2A

9 3A 0-3 JXJO-2 3A 0'
h 2.5x1V 2xI 67- 3xI 0'

i able 9.1: Component Failure Probabilities and Failure and Repair Frequencies

Beginning by developing an expression for GI by evaluating, G5, G4:
G5 =f -g-h

P(f -g-h) =
(2xlo-2 X3xlo-3X2.5xlo-3) The probability of this combination is

= 1.5 X 10-7 higher than the culling limit of 1 x1 0"0.

215

G4=G5+d=f -g-h+d

P(f -g- h) = 1.5 x 10-7 The probabilities of both of these combi-

P(d) = 2.5 x 10 -6 nations are higher than the culling limit

Now an expression can be obtained for gate G I:

Gl=G4 -a= (f -g-h+d)a= a -f -g-h +a -d

P(a-f -g. h)= (I
xlO-7XI. 5xIO-7)

= 1.5 X 10-14

P(a - d) =
(I

x 10-7 X2.5
x 10-6)

= 2.5 X 10-13

The probability of both of these combinations are below the probabilistic culling limit,
1xIO-'O hence they are eliminated from the expression for gate G1, the culled
expression for this gate is given below:

Gl=O

Now developing an expression for gate G2:

G2=a-b-c

PCa. b. c)=(I- Ix 10-7
XlxlO-4X2

X 10-3
)

=2x 10-7

The probability of this combination is

higher than the culling limit.

By evaluating gates, G7 and G6 it is possible to obtain an expression for gate GI
G7=f -g-h

P(f -g-h)=I. SxIO-7 The probability of this combination is

higher than the culling limit.

G6 =G7+b =f -g-h+b

P(f -9- h) = 1.5 x 10-7

P(b) =Ix 10-4 nations are higher than the culling limit.

From these results the following expression is obtained for gate GI

G3 = G6 -ý-e= (f -g-h+ b). ý-e=ý-e-f-g-h+b-ý-e

The probabilities of both of these combi-

216

P(d-e-f -g-h)=(1-2.5 x 10-6X1 x 10-2X1.5 x 10-7)

= 1.5 x 10-9

P(b. 9-e)=(l X 10-4 Xl-2.5x10-6X1
x 10-2

=ix 10-11

The probability of both of these combinations is above the culling limit; hence the

expression for gate G3 is unchanged.

Finally an expression for the top event is obtained:

Top= GI+G2+G3= a -b-c+le-f -g-h+b-ý-e

The probabilities of all of the combinations in the Boolean expression for the top

event are higher than the culling limit of IAO-40. Hence no further culling is required
the final Boolean expression for the top event is given below:

Top= a b. c+d-e-f g. h+b-d-e (9.2)

Three prime implicant sets are identified from equation (9.2):

(a bc), (d efgh), {b d e)

The prime implicant sets identified can be used to-quantify the system approximately.
The conventional quantification techniques in chapter four and seven are

employed in exactly the same way.

9.4.3 Culling Prime Implicant Sets Below a Given Frequency

This culling technique is very similar to the probabilistic culling procedure outlined in

section 9.4.2; the only difference is that the prime implicant sets are culled according
to a pre-set frequency rather than probability. Once again the frequency value must
be set according to which the prime implicant sets will be culled. Then the top-down

or bottom-up approach is used to identify a partial list of prime implicant sets. As the
Boolean expression for the top event is developed, any combinations that have a
frequency below the pre-set value are eliminated from the expression. The final

expression obtained for the top event only contains the prime implicant sets with a"
frequency above the pre-set frequency value. Component failure probabilities and
frequencies are essential to employ this technique.

217

To illustrate this technique consider again the fault tree given in figure 9.1. The

frequency culling limit will be set to U10-8, thus any prime implicant sets with a
frequency below this culling limit will be eliminated from the Boolean expression for
the top event. The component failure probabilities and frequencies for each
component in this example are given in table 9.1.

Beginning by developing an expression for G1 by evaluating, G5, G4:

G5=f -g-h

qf qgWh + qf qhWg + qgqhWf = 1.53 x 10-7

The frequency of this combination is higher than the culling limit of Ix 10-8

G4=G5+d=f -g-h+d

qf qgWh + qf qhWg + qgqhWf = 1.53 x 10-7

Wd =3xIO-8
The frequencies of these combinations are higher than the culling limit.

Now an expression can be obtained for gate Gl:

GI = G4 -a= (f -g-h+ d). a=a-f-g-h+a-d

qaqf q9Wh + qaqf qhWg + qaqgqhWf + qf qgqhwa ,: 6.4 X 10-14

qaWd + qdWa = 2.8 X 10-14

The frequency of both of these combinations are below the culling limit, UIO-8
hence they are eliminated from the expression for gate GI, the culled expression for
this gate is given below:

GI=O

Now developing an expression for gate G2:

G2=a. b. c

PaqbWC + PaqWb + qbqcva = 4.5 x 10-8

The frequency of this combination higher than the culling limit.

218

By evaluating gates, G7 and G6 it is possible to obtain an expression for gate GI
G7=f -g-h

qfqgWh +qfqhWg +qgqhWt =1.53xIO-7

The frequency of this combination is higher than the culling limit.

G6 =G7+b =f -g. h+b

qf q9Wh + qf qhW9 + qgqhWf = 1.53 x 10-7

Wb =2x 10-5

The frequencies of these combinations are higher than the culling limit.

From these results the following expression is obtained for gate G3:

G3 = G6 -ý-e= (f -g-h+ b). ý-e=ý-e-f-g-h+b-ý-e

PdqeqfqgWh +PdqeqfqhWg +PdqeqgqhWf +PdqfqgqhWe +qeqfqgqhVd ý1-22"0-8

qbPdWe + qbqeVd + PdqeWb = 2.2 x 10-7

The frequencies of these combinations are higher than the culling limit.

Finally an expression for the top event is obtained:
Top =GI+G2+G3 =a -b-c+ý-e-f -g-h+b-ý-e

The frequency of all of the combinations in the Boolean expression for the top event

are higher than the culling limit of 1x 10-8. Hence no further culling is required, the

final Boolean expression for the top event is given below:

Top= a b. c+d. e-f g. h+b-d-e (9.3)

Three prime implicant sets are identified from equation (9.3):

(a bc), (d efg h), {b d e)

The prime implicant sets identified can be used to quantify the system approximately.
The conventional quantification techniques outlined in chapter four and seven are
employed in exactly the same way.

219

Although these culling techniques can significantly reduce the work required during

quantification, they still provide an inefficient means of analysis. Consequently the

prime implicant sets may need to be culled with greater severity than required, which

can diminish the accuracy of the results obtained during quantification.

9.5 Culling Techniques for The Binary Decision Diagram Method

The BDD technique is significantly more efficient than conventional FTA methods;
hence, it would be beneficial to employ the BDD technique to produce a partial list of

prime implicant sets.

Under certain circumstances knovAedge of the prime implicant sets may not be

required, if this is the case it is possible to obtain a full list of minimal p-cuts from the

minimised SFBDD. It is also possible to use this BDD to quantify the system exactly
and efficiently, using the techniques outlined in chapters five and seven.

However, knowledge of the prime implicant sets can be helpful when trying to design

safety systems in order to reduce the risk of system failure. Rauzy and Dutuit

developed a culling technique, which can be employed in conjunction with the meta-

products algorithm to produce an order culled meta-products BDD. An alternative
technique, which is again employed in conjunction with the meta-products algorithm,
has been developed. This technique produces a culled meta-products BDD

according to a pre-set probability or frequency. This BDD encodes all those prime
implicant sets with a probability or frequency equal to or above the pre-set value.

9.5.1 Rauzy and Dutult's Order Culling Technique for the Meta-products
Binary Decision Diagram

Rauzy and Dutuit developed an algorithm to compute a culled meta-products BDD,

which encodes all the prime implicant sets below a given pre-set order [6]. To identify

a partial list of prime implicant sets according to a pre-set culling order, it is

necessary to compute the SFBDD of the non-coherent fault tree exactly and then

compute a culled meta-products BIDD. If the SFBDD is culled some hidden prime
implicant sets within the culling order may be missed.

220

The algorithm for encoding the culled meta-products BDD is similar to that employed
to compute the exact meta-products BDD, however, it is modified slightly to ensure
that prime implicant sets exceeding the culling order are not encoded in the resulting
BDD. The pre-set culling order is denoted by kmAx, if kmAx is set to three, only prime
implicant sets of order three and below are encoded. The algorithm for computing the

order culled meta-products BDD is outlined below.

The variable k is used to track the remaining number of basic events that can be

encoded in each path through the meta-products BDD before the culling order is

exceeded. Initially k is set to kmAx, then given a node with the ite structure:
ite(x,, f IJO)

The meta-products structure of this node is denoted as follows:

PI[ite(xj, flfO), L, k]

Where:
L denotes the list of all ordered basic events except for those that appear on the

current path from the root node to the node under consideration.
And k denotes the number of basic events that can be encoded on the current path
before the culling order is exceeded.

PI[ite(xi, fj fO), L, k] is evaluated according to the following rules:

- If xi is the first basic event in L:

PI[ite(xj, fjfO), L, k]=ite(Px,, ite(Sx,, PIPO)P2)

Where:

P2 = PI[fl - fO, C, k]

PI=P(fl k-1]

PO=Pl[fO, k-1]

Note: k is reduced by I for both PI and PO this is because the basic event xi
is already encoded in these paths through the meta-products BDD. However,
k remains the same for P2 since)q is not encoded in this path through the

I meta-products BDD. And L =Y,.,, A.. 2

If xj is not the first basic event in L, i. e. such that I>j:

221

PI[ite(xi, fl, fO), L, k]=iteýP,,,, O, Pl[ite(xj.,,, fl, fO) L, kj)

Note: k is not reduced since the basic event)q is not actually encoded in the

current path.

These rules are applied in conjunction with the following identities:

Pl[O, L, k] =0

Pl[J x-L, k]=ite(PxO, Pl[l, L, kD

Pl[f, L, 0] =0

Nofice the additional identity, Pl[f, L, 0] =0, in this case, k is equal to 0 signifying
that the culling limit has been reached, hence if any more basic events are encoded
on the current path, prime implicant sets exceeding the culling order will be encoded
in the meta-products BDD.

To illustrate how this algorithm is applied in practise consider the non-coherent fault

tree given in figure 9.2, only those prime implicants of order two or below will be

identified.

Figure 9.2: Non-coherent Fault Tree Structure

222

If the order b<a<d<e<f is adopted for the basic events of this fault tree-the

following its structure is obtained for the top gate:
Top = ite(b, ite(a, ite(dj ite(e, ite(f, 10)0))1)0)

To encode the order two culled meta-products BDD the following meta-products
structure must be computed:

PI[ite(b, ite(a, ite(cLlite(e, ite(f, 10), O)), l), O) badef, 2j=ite(Pb, ite(Sb, PjPO)P2)

Where:

P2 = PI[O, adef, 21 =0 . -.
P-2 =I

Pl=Pl[ite(a, ite(ctlite(e, ite(f, 10)0))I) adef, l]-P72

PO = P(O, adef, 2]. P-2 =0

Evaluating PI

Pl=Pl[ite(a, ite(cLlite(e, ite(f, 10)0)ý1) adef, 1]. -P2

= ite(Pa, ite(Sa, PI. jPO. 1)P2.1)

= ite(Pe, ite(Sa, O, ite(Pd, O, ite(PeO, ite(Pf, 0,1))))ite(Pd, ite(Sd, ite(Pe, O, ite(Pf, 0,1))O)O))

Where:

P2.1 = Pl[ite(cLj fte(e, ite(f, tO)O)) def, 1]

PI. I=Pl[de(ctlite(e, ite(f, ý0)0)) def, 0]4i2-. -l=O This is terminated because

further development would result
in combinations that would
exceed the culling limit.

PO. 1=P l[1 def, 0] - P2-. l

Evaluating P2.1

P2.1=PI[ite(ctlite(e, ite(f, 1,0)0)) def, 1]

= ite(pd Jte(S d, P1. Z PO. 2) P2.2)

= ite(pd Jte(S d. ite(p. A ite(pf 0,1)10)0)

223

Where:

P2.2 = PI[ite(e, fte(f, j0)0) ef, 1]

P1.2 = PI[I ef, 0] -
P72-. 2

PO. 2=Pl[ite(e, ite(f, j0)0ý ef, 0]-F2-. 2=0

Evaluating P2.2

P2.2 = Pl[de(e, fte(f, 10)0ý ef, 1]

= ite(Pe, ite(Ss, P1.3, PO. 3) P2.3)

= ite(P., ite(S,,, 0,0)0)

=a

Where:

P2.3 = P(O, f, 0] =0:. P2.3 =I

PI. 3 =P I[ite(f, 10ý f, 0] - P2.3 =0

PO. 3 = PI[0, f, 0] -
i52-. 3 =0

Evaluating 131.2

PI. 2 = PI[j ef, 0] - 072-. 2
= ite(P., O. ite(Pf, 0,1)) -1
= ite(PeOjte(Pf, 0,1))

This is terminated because

further development would result
in combinations that would

exceed the culling limit.

This is terminated because

further development would result
in combinations that would

exceed the culling limit.

Evaluating POA

PO. 1=PI[I def, O]. i52-. -l

= ite(Pd, O, ite(Pe, O, ite(Pf, 0,1)))- ite(Pd, ite(Sdvite(peoý'te(pf, to)ý1)1)

= ite(Pd, O, ite(P, 9,0, ite(Pf, 0,1)))

224

The final meta-products structure obtained is given below in equation (9.4) and the

meta-products BDD is shown in figure 9.3:
Top = ite(Pb, ite(Sb, (Pa, ite(SaO, ite(Pd, O, Re(PeO, ite(Pf, 0,1))))

(9.4)

,
ite(Pd, ite(Sd, Re(Pe, O, ite(Pf, 0,1))O)O)), O), O)

Figure 9.3: Order Culled Meta-products BDD

From the meta-products BDD shown in figure 9.3 it is possible to obtain the meta-

products, by tracing the terminal one paths through this BDD, the prime implicant

sets are subsequently identified from the meta-products as shown below.
Pb ASb APa Aýýa Ai3d APe APf ýl

Pb A8b Aýs APd ASd Aýe Aýf =bd

9.5.2 Probability or Frequency Culling Techniques for the Meta-products

Binary Decision Diagram

In section 9.4.1 It was shown that culling the prime implicant sets according can
order can result in some significant combinations being ignored. When dealing with
non-coherent fault tree structures it is better to cull the prime implicant sets according

225

to probability or frequency, since higher order prime implicant sets containing

negated literals can be significantly more likely to contribute to system failure than

other lower order prime implicant sets.

An alternative culling technique has been developed as part of this research project,
which encodes a probability or frequency, culled BDD. From which a partial list of
prime implicant sets can be identified.

The algorithm for encoding a probability or frequency culled meta-products BDD is

similar to the algorithm outlined above for computing an order-culled meta-products
BDD. The order algorithm is modified such that prime implicant sets are culled

according to a pre-set probability, PMIN or frequency, &N. The algorithms for

probability and frequency are identical except when computing a probability

(frequency) culled BDD p denotes the current probability (frequency) of the

combinations of variables included in the current path from the root vertex to the

current node. The algorithm is outlined below:

Initially p is set to 1, then given a node with ite structure:

ite(xi, fi, fO)

The meta-products structure of this node is denoted as follows:

Pl[ite(xj, fjfO), L, p]

Where:
L denotes the list of all ordered basic events except for those that appear on the

current path from the root node to the node under consideration.
And p denotes the probability or frequency of the combinations of variables encoded
in the path from the root vertex to the current node.

PI[ite(xi, fj fO), L, p] is evaluated according to the following rules:
If A. is the first basic event in L:

PI[ite(xi, fl, fO), L, p] = ite(Px,, ite(S.,,, Pj PO) P2)

Where:

P2 = PI[fl -f0, ý,

PI=Pl[fj C, p. q,,, orp. w,,, +q, wp] I

226

PO =Pl[fO, C, p.
(I-q.

1) orp. vxl +px, wp]

Note: The probability or frequency value for PI becomes p. qx, or

p-w)q +qx, wp since Y, belongs to the prime implicant set encoded in the

current path through the meta-products BDD. Similarly the probability or
frequency value for PO becomes p. (I-qx,)or p. vx, +px, -wp since -xi

belongs to the prime implicant set encoded in the current path through the

meta-products BDD.

If Y4is not the first basic event in L, i. e. L=xj,)q+j A such that I>j:

Pl[Jte(xj, fl, fO), L, pj=ite(P, 9,0, Pl[ite(xj,,, fl, fO) L, p])

Note: p is not changed because the basic event)q is not actually encoded in

the current path.

These rules are applied in conjunction with the following identities:

Pl[O, L, p] =0

Pl[J x-L, p] = ite(PxO, Pl[J L, pD

Pl[f, L, p] =0 if P "- PMIN or P ̀ ý fMIN

Notice the additional identity, Pl[f, L, p] =0 if P 'ý: PMIN or P "ý: NIN , in this case, the

probability or frequency of the prime implicant set encoded in the current path
through the meta-products BDD is below the pre-set probability or frequency. Hence,
if any more basic events are encoded on the current path, prime implicant sets with a
probability or frequency below the pre-set limit will be encoded in the meta-products
BDD.

To illustrate how this algorithm is applied in practise consider the non-coherent fault

tree given in figure 9.4, only those prime implicant sets vAth a probability above

5x 10-8 will be identified. Table 9.2 records the failure probability of each basic event
in the fault tree.

227

Basic Event Failure Probability

a IX 10-3

b 2x1O-4

c 2x 10-7

d 2x10-5

e Ix 10-2

Table 9.2: Failure Probabilities for Each Basic Event in Figure 9.4

If the order b<d<a<c<e is adopted for the basic events of this fault tree the

follomfing Ito structure is obtained:
Top = ite(b, ite(ckj ite(a, 10)) ite(ck ite(c, O, ite(e, 1,0))O))

To encode the probability culled meta-products BDD the follovAng meta-products

structure must be computed:
PI[ite(b. fte(CLI, ite(a, tO))ite(ctite(c, O, ite(e, ý0))O)ý bdace, I]=ite(Pb, ite(Sb, PjPO)P2)

228

Figure 9A Non-coherent Fault Tree Structure

Where:

P2=Pl[de(cLite(c, O, ite(e, 1,0)ý0) dace, 1]

PI=Pl[ite(cUfte(a, 1,0)) dace, 2xlO-4]. P72

PO=Pl[ite(ctite(c, O, ite(e, 10)ýOý dace, 0.9998]. F2

Evaluating P2

P2=Pl[ite(ckite(c, O, ite(e, 1,0))O) dace, 1]

= ite(pd Jte(S d, P1. I PO. 1ý P2.1)

= ite(Pd, 'te(Sd, ite(Pc, ite(Sc, O, ite(Pe, ite(S,,, 1,0)0))Oý0)0)

Where:

P2.1 = P(O, ace, 1] =0-. P2.1 =I

Pl. l=Pl(ite(c, Ojte(e, j0)) ace, 2xlO'5]. f52--. l

PO. I=PI[O, ace, 0.99998]. f52-. 1=0

Evaluating PIA

Pl. l=P(ite(c, Ojte(e, j0)) ace, 2xlO'5]. F2-1

= ite(Pa. 0, P2.2)

= ite(Pa, O. fte(Pc, ite(S c, O, ite(Pe, ite(S 0,000))

Where:

P2.2 = Pjfte(c, O, ite(e, 10)1 ce, 2x 10'5]

Evaluating P2.2

P2.2 = PI[ite(c, O, ite(e, 10)) ce, 2xI O's

= ite(Pc, ite(Sc, PI. 3, PO. 3) P2.2)

= ite(Pc, ite(Sc, O, ite(Pe, ite(SO, 1,0)0))O)

Where:

P2.3 = P% e, 2x 10-'5]=0.,. P2.3 =I

PI. 3 = PI[O, e, 4x 10,12] -P2.3 =0

229

PO. 3=Pl[ite(e, j0) e, 2xlO-5]. P2-. 3=ite(Pe, ite(Se, 1,0)0)

Evaluating PI

P1 = Pl[ite(d, l, ite(a, 1,0)) dace, 2x 1041 -
F2

= 1te(Pd, ite(Sd, P1.4, POA) P2.4). ite(Pd, ite(sd, ite(Pa, O, ite(Pc, ite(Scj ite(Pe, ite(S,, 0,1)1))I)I))l)

= fte(pd, ite(sd, 0,0) ite(Pa, ite(S a, ite(Pc, O, fte(P,, O, I))O)O))

Where:

P2.4=Pl[ite(a, 1,0) ace, 2xlO-4]

P1.4 = PI[I ace, 2x 10'9]- P2.4 =0 This combination is terminated because

the probability of the basic events
encoded in the current path have a
probability below the culling limit.

PO. 4=Pl[ite(a, 1,0) ace, 2xlO"4]-P2.4

Evaluating P2.4

P2.4 = P@te(a, 10) ace, 2x 10"41

= ite(Pa, ite(Sa, P1.5, PO. 5) P2.5)

,,
O, ite(P,, O, I))Oý0) - ite(Pa, ite(S a, ite(Pc

Where:

P2.5 = PI[O, ce, 2x 10-4] =0 . -. P2.5 =1

PI. 5=Pl[l ce, 2xlO-7]. P72-. 5=ite(Pc
.,
O, ite(Pe, 0,1))

PO. 5=PI[O, ce, 2xlO-4]. P2.5=0

Evaluating POA

PO. 4=PI[ite(a, t0) ace, 2x10-4]. F2-. 4
= ite(Pa. ite(Sa, P1.6, PO. 6ý P2.6). ite(P., ite(S., ite(P,

= ite(Pa, ite(Sa, ite(Pc
..

0, ite(P, 9.0,1»0)0). ite(Pa. ite(Sa. ite(Pc �l, ite(P�, 1,0»1)1)

=o

230

Where:

P2.6=PIO, ce, 2xlO*4]=O P2.6=1

PI. 6 =P 11 ce, 2x 10"71 -
F2--. 6 ite(Pc, O, ite(PO, 0,1))

P2.6 = PI[O, ce, 2x 10'4]=0 P2.6 =1

Evaluating PO

PO = Pl[ite(ct fte(c, Q fte(e, 10))O) dace, 0.9998]. 072

= ite(pd, ite(sd, P1.7, PO. 7)P2.7)- fte(Pd, ite(Sdlite(Pa, O, ite(Pc, ke(ScO, ite(P,, ite(S,, 10ýO)ý0))O)O)

=0

Where:

P2.7 = P(O, ace, 0.9998] =0:. P2.7 =1

Pl. 7=Pqite(c, 0, ite(e, ý0» ace, 2x10-, 5]. P2.7

PO. 7 = PI[O, ace, 0.9998] - P2.7 =0

Evaluating 131.7

PI. 7=P(fte(c, O, ite(e, j0)) ace, 2xlO-5]. P2.7

= ite(P,, O, P2.8)-l

= ite(Pa, O, ite(Pc, ite(Sc
.,
Ojte(P, ejte(SeA0)0))O))

Where:

P2.8 = Ptite(c, O, ite(e, 10)) ce, 2x1 O's]

Evaluating P2.8

P2.8 = PI[ite(c, O, fte(e, 10)) ce, 2x 10-5]

= ite(Pc
,,

ite(Sc, P1.9, PO. 9)P2.9)

= fte(Pc, ite(Sc, O, ite(Pe. fte(Se, 1,0, ýO)ý0)

Where:

P2.9 = P(O, e, 2x 10-5] =0-. P2.9 =1

P1.9 = P(O, e, 4x 10-12) P2.9=0

231

PO. 9=PCite(e, 10) e, 2xlO-5]-P72. -9=ite(Pe, ite(Se, 1,0)0)

The final meta-products structure obtained is given below in equation (9.5) and the

meta-products BDD is shown in figure 9.5:

Top ='te(Pb, ite(Sb, 'te(pd, o, 'te(p. "te(S- 'te(PC
lo"te(P., 011»0)0)0)0)

�0, ite(P,., ite(S �1,0)0)ý0)0)0» ite(pd
,
ite(S d9 ite(Pc, ite(Sc

(9.5)

Figure 9.5: Probability Culled Meta-products BDD

Two prime implicant sets can be identified from the probability culled meta-products

BDD in figure 9.5: (ab), (d c e).

232

9.6 Summary

The analysis of non-coherent fault trees can be computationally intensive; hence, it

may not be possible to perform full and exact analysis, even for moderate sized
trees. If this is the case, it is critical to be able to perform partial analysis in order to

assess the reliability of the system and its components, and thus identify most
significant causes of system failure.

Reduction and culling techniques provide a means of performing partial analysis.
Reduction techniques are concerned with approximating the structure function of a

non-coherent fault tree, whereas culling techniques can be used to identify the most

significant prime implicant sets of the fault tree.

Reduction techniques can be employed in conjunction with either conventional FTA

methods or the BDD method. Although both techniques reduce the work required to

analyse a fault tree, the BDD technique is significantly more efficient than the

equivalent FTA technique. It also has the advantage of enabling exact quantification.

If knowledge of the most significant prime implicant sets is required, culling
techniques should be employed. Conventional FTA culling techniques can be

employed to cull the prime implicant sets according to order, probability or frequency.
Again, whilst these techniques reduce the work required to analyse the fault tree,
they still provide an inefficient means of analysis.

To overcome the shortfalls of the FTA culling techniques, Rauzy and Dutuit
developed a technique to produce an order culled meta-products BDD. Although this
technique more efficient than conventional FTA culling techniques, culling the prime
implicant sets according to order can result in some significant combinations being
ignored. An alternative technique was developed as part of this research project,
which produces a probability, or frequency culled meta-products BDD. The BDD

culling techniques are more efficient than those employed during conventional FTA.
Furthermore, since the SFBDD is computed as part of these techniques, full and
exact quantitative analysis can be perfonned efficiently.

233

Chapter 10: Conclusions and Future Work

10.1 Summary of Work

Extensive reviews of the current techniques available for the analysis of non-

coherent fault trees structures has highlighted that various aspects of these

techniques require further investigation. The three main areas identified, were; the

application of the BDD technique for both qualitative and quantitative analysis of non-

coherent structures, the importance analysis of such structures, and the development

of suitable culling techniques for the partial analysis of and non-coherent fault tree

structures. The research carried out into each of these areas will be considered

below in detail.

10.1.1 Qualitative and Quantitative Analysis of Non-coherent Systems

Conventional techniques for analysing non-coherent structures are inefficient and

often inaccurate because approximations prove unavoidable even for moderate sized
fault trees. The BDD method was initially introduced for the purposes of fault tree

analysis by Rauzy in 1993, who developed a technique for performing qualitative

analysis of coherent fault trees [3]. Sinnamon and Andrews subsequently developed

procedures for quantifying the system, which employ the BIDD method [13]. The BDD

method overcomes some of the shortfalls of conventional FTA techniques, enabling

efficient qualitative analysis and accurate quantitative analysis.

In 1998, Rauzy and Dutuit developed a technique for computing the prime implicant

sets of a non-coherent fault tree using the BDD method [4,6]. This technique involves

computing the meta-products BDD, which encodes the prime implicant sets of the

system exactly, eliminating the need to perform a minimisation operation. However,
the meta-products BDD is encoded from the SFBDD, hence it is necessary to

compute two BDD's to perform this analysis.

An alternative technique was developed as part of the research reported in this
thesis, which involves computing only one BDD, known as the consensus BDD. This
BDD is then minimised to encode the prime implicant sets of the system exactly.

234

Procedures for quantifying the system using the consensus BDD and the SFBDD

were developed. These procedures are extremely efficient in comparison to

conventional FTA techniques, eliminating the need for approximations.

The procedures for quantification of the system using the consensus structure are

significantly less complex than those developed for the SFBDD. However, the meta-

products technique enables significantly more efficient qualitative analysis than the

consensus technique. This is because a minimisation procedure must be applied to
the consensus BDD before a full list of prime implicant sets can be identified, which

can be an intensive process for large BDD with many redundancies.

10.1.2 Importance'Analysis of Non-coherent Systems

Initial investigations into the application of current measures of importance for the

analysis of non-coherent systems demonstrated that these measures were not

suitable, producing inaccurate and misleading results. Furthermore Jackson's

proposed extension of Birnbaum's measure of component reliability importance was
shown to be inconsistent.

An aftemative. extension of Bimbaum's. measure was-developed, by considering- the.

failure and repair criticality of -each system component [22]. This -extension was

subsequently- employed to extend other commonly used measures- of importance

including the measure of component criticality and Barlow and Proschan's measure

of component initiator importance.

A detailed examination of the most commonly used measures of component and

minimal cut set importance revealed that both Lambert's measure of component

enabler importance, [19], and Barlow and Proschan's measure of cut set. importance,

[20], did not produce -the required results. Modifications- were made to both of'these

measures ensuring that. the results obtained were consistent with each of their
definitions.

These modified m6eisures, along with Fus6el-Vd6ely's measures of c5omporfent'and

cut set importance were then extended for use with non-coherent systems. The

extensions- developed for the seven measures of importance outlined above enable

235

both the reliability and availability importance of components and prime implicant sets

of'a non-coherent system to be assessed.

Having developed these extensions it was necessary to- develop calculation-

procedures for, each- of, the extended measures'. Initially techniques, employing'

conventional, Fault- Tree Analysis methods were developed, however, these

techniques require full' and exact. * qualitative analysis. toL be. performed. '. before..

quantification can be undertaken.

Conventional FrA techniques for qualitative analysis are inefficient; since they rely

on Booleary reduction- methods. Consequently approximations'are ofterr unavoidable,
furthermore, because the quantification techniques involve series expansions' whose
lengths are dependent on the number of prime implicant. sets, for large fault. trees

with repeated events it is not always possible to obtain exa6t results during.

quantification.

Sinnamon and Andrews developed procedures for quantifying a coherent system

using the SFBDD [13]. These procedures, wereF compared" to-the Kinetic TreeTheory

approach developed by Vesely [81 and shown to be superior in terms of both

accuracy and efficiency,

Procedures were developed for calculating the system unavailability, unreliability and

the seven extended measures of importance from the consensus - BDD. These-

procedures- are applied to the non-minimal consensus- BDD providing an efficient and

accurate means of quantification. Proceduresý for calculating all of these' system'

parameters except'the measure of component failure and repair enabler importance

from the SFBDD have also been developed.. The procedures developed for

quantification using the SF8DD are more complex than those developed for the

consensus BDD. However, they still provide an efficient and accurate means of

analysing a non-coherent fault tree, eliminating the need for approximations that are-

often unavoidable when employing conventional FTA techniques.

236

10.1.3 Reduction and Gulling Techniques for the Partial Analysis of'Non-
coherent Systems

For large fault trees with many repeated events it is not always possible to analyse
the system exactly, in such circumstances approximate analysis must be performed.
There are two main methods that can be employed in such circumstances, reduction
techniques and culling techniques. Reduction techniques are used to approximate
the structure function of a non-coherent fault tree, and culling techniques are used to

produce a partial list of minimal cut sets or prime implicant sets thus reducing the

work required to analyse the fault tree.

A reduction technique can be employed in conjunction with conventional FTA

methods to produce a full list of minimal p-cuts, which can then be used to quantify
the system approximately. Although this technique can significantly reduce the work
required to analyse the system, it is still an inefficient means of analysis. The i1to

structure of the BDD lends itself well to reduction techniques, enabling the minimal p-
cuts to be identified efficiently. In addition full and exact quantification can be

performed using the computed SFBDD.

Although reduction techniques provide a useful means of partial analysis, in certain
circumstances knowledge of the prime implicant sets can be advantageous. Culling
techniques can be used to produce a partial list of prime implicant sets according to

order, probability or frequency.

The culling techniques for analysing non-coherent systems are considerably more
involved than those for analysing coherent systems. The conventional FTA culling
technique is concerned with computing a partial list of prime implicant sets during

qualitative analysis. The prime implicant sets identified can then be used to quantify
the system approximately. Although this technique can considerably reduce the work
required to quantify the system, it is still inefficient. Hence, for large fault trees With

many prime implicant sets, it may not be possible to perform even approximate
analysis.

To overcome the shortfalls of conventional FTA culling techniques, Rauzy and Dutuit
developed a culling technique that is employed with the meta-products algorithm to
produce an order culled meta-products BDD, from which a partial list of prime
implicant sets can be obtained [6,7].

237

For non-coherent systems the order of prime implicant sets bares no relation to its

probability of existence, this is due to the inclusion of working states, which tend to
have a probability close to 1. Hence an alternative culling technique was developed
to compute a probability or frequency culled meta-products BDD, from which a partial
list of prime implicant sets can be identified. In order to compute a culled meta-
products BDD it is necessary to encode the SFBDD exactly, hence full and exact
quantification can be performed using the BDD.

10.2 Conclusions

Rauzy developed the meta-products algorithm, which can be used to

compute the meta-products BDD; this BDD encodes a full list of prime
implicant sets exactly. An alternative technique was developed for

analysing non-coherent systems, which involves computing the

consensus BDD. Whilst. this BDD lends itself to quantification, a
minimisation procedure must be applied to the BDD before the prime
implicant sets can be identified.

2. The BDD method can be used to quantify a non-coherent fault tree

structure accurately. This technique is sijnificantly more efficient that the

conventional FTA techniques reducing the need to employ

approximations.

3. The extensions developed for the seven most commonly used measures
of component and cut set importance provide a solid foundation for

assessing the component and prime implicant set importance of a non-
coherent system.

4. A number of reduction and culling techniques can be employed to partially
analyse both coherent and non-coherent systems, for which full and exact
analysis proves too intensive. Those techniques applied in conjunction
with the BDD method provide the most efficient means of analysis.

238

10.3 Future Work

10.3.1 Calculating the Enabler Measure of Failure and Repair Importance from
the SFBDD

The procedure for calculating the measure of component enabler failure and repair
importance from the SFBDD is extremely time consuming and inefficient. Hence at
present it must either be approximated by the coherent measure, or conventional
FTA techniques must be used to calculate it exactly. Whilst the coherent measure
can give an indication of the significance of each component in contributing to system
failure it does not ranking both the failure and repair importance of each component.
Furthermore, the conventional FTA techniques for calculating this measure are
inefficient and for large fault trees with many repeated events approximations are
unavoidable. The BDD technique lends itself to quantification, and eliminates the

need for lengthy series expansions and approximations. The development of an
efficient procedure for calculating this measure would increase the accuracy of
analysis.

10.3.2 Extending Other measures of Importance

Importance analysis is a key part of the quantification process, although seven of the

most commonly used measures of importance have been extended for use with non-
coherent fault trees. There are many other measures of importance that have not yet
been extended for the purpose of non-coherent FTA, for example, Xie and Shen's

measures for parallel redundancies importance and standby redundancy importance
[24]. The extension of such measures for non-coherent analysis would enable a
more detailed sensitivity analysis of such structures.

10.3.3 Reduction of Non-coherent Fault Trees

The consensus and meta-products methods for analysing non-coherent fault trees
are significantly more efficient than the conventional FTA techniques. However, for
large fault trees with many repeated events computing the BDD's required for

239

analysis can be time consuming. Furthermore if the BDD's obtained are complex, the

subsequent analysis can be intensive making approximations unavoidable.

JQ Reay and Andrews demonstrated that the application of the extended reduction
technique to coherent fault trees prior to employing the BDD technique can
significantly reduce the complexity of the BDD computed, [25,26]. The smaller (more

minimal) the BDD obtained, the more efficient the conversion process and the more
efficient the subsequent analysis.

This technique could be applied to non-coherent fault trees before either the

consensus method or the meta-products method is employed. If a more minimal

consensus BDD is obtained, the minimisation process could be significantly less

intensive, making the consensus method a serious option for non-coherent fault tree

analysis. Similarly, the application of this technique should reduce the size and

complexity of the SFBDD obtained. This would in turn reduce the work required to

compute the meta-products BDD, thus increasing the efficiency of this method and

reducing the need to employ culling techniques.

240

References

Z. W. Birnbaum. 'On the importance of Different Components in a Multi-

component System" Multivariate Analysis 11, PR Krishnalah, ed., Academic
Press, 1969.

[2] A. Bendall and J. Ansell. "The incoherency of Multistate Coherent Systems".

Reliability Engineering, VOL. 8,1984, PPI 65-178

[3] A. Rauzy. "New Algorithms for Fault Tree Analysis'. Reliability Engineering

and System Safety, vol. 40,1993, p203-21 1.

[4] A. Rauzy. mMathematical Foundations of Minimal Cut Sets', in press

[5] Groupe Aralia (LaBRI-LADS), Universite Bordeaux, "Computation of Prime

Implicants of a Fault Tree Within Aralia", Proceedings of ESREL'95

Conference, Bournemouth, June, p190-202.

(6] A. Rauzy and Y. Dutuit. 'Exact and Truncated Computations of Prime

Implicants of Coherent and Non-coherent Fault Trees within Aralia". Reliability

Engineering and System Safety, vol. 58,1997, pI 27-144

[7] Y. Dutuit and A. Rauzy. 'Polynomial Approximations of Boolean Functions by

means of Positive Binary Decision Diagrams', Safety and Reliability,

Lydersen, Hansen and Sandtorv (eds), 1998.

[8] W. E. Vesely. "A Time Dependent Methodology for Fault Tree Evaluation",
Nuclear Design and Engineering, vol. 13,1970, p337-360.

J. D. Andrews and T. R. Moss. "Reliability and Risk Assessment", Longman
Scientific and Technical, UK 1993.

[10] W. G. Schneewelss. "Boolean Functions with Engineering Applications and
Computer Programs", Springer-Verlag, Berlin, 1989.

241

L. M. Bartlett. "Variable Ordering Heuristics for Binary Decision Diagrams".

Doctoral Thesis, Loughborough University, Mar 2000.

[12] Freidman and Supowit "Finding the Optimal Variable Ordering for Binary

Decision Diagramsm, IEEE Transactions on Computers, Vol. 39, No. 5, May

1990, pp710-713.

[13] R. M. Sinnamon and J. D. Andrews. "Quantitative Fault Tree Analysis Using

Binary Decision Diagrame. European Journal of Automation, Vol. 30, No. 8,

1996.

(14] J. D. Andrews. "To Not or Not to Not*. Proceedings of the International

System Safety Conference, Forte Worth, Sept 2000, pp267-275.

S. Dunnett and J. D. Andrews. Improving Accuracy in Event Tree Analysis.

Fore sight and Precaution. Cottam, Harvey, Pape and Tate (eds).

Proceedings of ESREL 2000, SARS ad SRA-EUROPE annual Conference,

15-17 May 2000.

[16] Inagaki & E. J. Henley. "Probabilistic Evaluation of Prime Implicants and Top

Events for Non-Coherent Systemso. IEEE Transactions on Reliability, vol. R-

29 No. 5, Dec 1980.

[171 G. Becker & L. Camarinopoulos. 'Failure Frequencies of Non-Coherent

Structures". Reliability Engineering and System Safety, Vol. 41,1993, pp209-
215.

[18] R. E. Barlow and F. Proschan. ' Importance of System Components and
Fault Tree Events', Stochastic Processes and their Applications vol. 3,1975

ppl 53-173.

[19] H. E. LamberL "Fault Trees for Decision Making in Systems Analysis',

Doctoral Thesis, University of California, Livermore, 1975.

[20) J. Fussell. OHow to Hand Calculate System Reliability Characteristics', IEEE
Transactions on Reliability, Vol. R-24, Aug 1975, pp 169-174.

242

[21] P. S. Jackson. "On the S-Importance of Elements and Implicants of Non-

Coherent Systems% IEEE Transactions on Reliability, vol. R-32, No. 1, APR

1983.

[22] S. Beeson and J. D. Andrews. "Birnbaum's Measure of Component

Importance for Non-coherent Systems", IEEE Transactions on Reliability, in

press.

[23] S. Beeson and J. D. Andrews. Importance Measures for Non-coherent

System Analysis, IEEE Transactions on Reliability, 2002.

[24] M. Xie, and K. Shen, aSome New Aspects on Component Importance

Measures", I 1th Advances in Relibaility Technology Symposium, Apr, 1990

[25] K. A. Reay. *Efficient Fault Tree Analysis Using Binary Decision Diagrams",

Doctoral Thesis, Loughborough University, 2002.

[261 K A. Reay and J. D. Andrews. "A Fault Tree Analysis Strategy Using Binary

Decision Diagrams% Journal of Reliability Engineering and System Safety,

2002.

243

Appendik (1): Min[misatiort Procedure

Computing. minsol(F).

P Teffninal. I or 0 nodes are already minimat *1
if(F'--COL or (Fý- 1).

minsol(F)=F
P Non-terminal- nodesof the form- F=ite(? c-, G, H) Ifcalculabon

has, already been performed, -simply copy the-result across, *1
else. if '(Computabon. table- bas- entry. (minsof. F. R))

minsolflý=R-
/* lfcalculation- has not been- performed, a new calculation-

required to calculate-, minsol(Gy without(Gmin, H) &- minsol(H)- I

else
Carnputamkmo)(G)
Compute without(Gmirr, _

H)
Compute minso](H)
minsol(F)=ite(x, without(Grnin, H), Hmlln)

Computing without(GmIrt, HI

rTerminat tiodes, are simple to deat with *I,
N(Gmin--O) or-(H----I)

without(Gmin, H)=O

-else if(H=O) or (Gmin=t)

vftout(GMin,. H)--Gtnin

r Non-terminat nodes: Gmin--ite(x,, GI, G2) and H=ite(y, HI, H2). Additional Work
required to compute, without(Gmin-, 14) depending on- positions of x& y- in ordedng I

else- if(x<y)-
Compute without(GI, H)
Compute without(G2, H)

vAthout(Gmirt, H)--ite(? c, vAthouqGI, Hymdthout(GZH))

else if(x>y)
Compute without(G, H2)-
without(Gmin, H)--without(G,. H2_1

e6m.
Compute without(GI, Hl)
Compute mfithout(G2,142)
without(Gmin, H)--ft(XvAthout(Gt,, tit), without(G7, H2))

244

Appendix(ill. - Fault Tree Structures-

Below. is a list of the non-wherent fault trees used to compare the mate-products and
consensus technique irv chapter five. The fault tree data is as follows:

Gate number, gate type (I --OR, 2=AND, 3=NOT), number of gate inputs-, numberof
event inputs, -gate inputs (listedy, event inputs (listedy.

Usa, tOZ
100GIZ
1001 1
1002 1
1003- 1
1004 2
1005 2
1006 2
1007 2
1008 2
1009 2
1010 1
toll I
I-oiz I
1013 1
1044 4
1015- 1
1016.1
1017 1
-1018 2
1019- 2
-1020 2
1021 2
1022 2
'1023 2
1024 2
1025 2
1026 2
102T 2
102a -2 1 029 2
1030 2
1031 2
103-2 1
1033 1
-1034 1
1035 1
1036 1
'1037 1
1038 1
1039 1
ING 1
1041 1
1042 1
104a I

Q 4001 -1054 1003
2 1004 1 2

1 4- 1005 1055- 1007 3- 4- 5 6-
2 2 1008 1009 78
4 3 lola 101-1 1012 1056 111 11 12
1. 1 1013 13
0 4 14 15 16 17
0 3 18 19 16
3 2 1014 1015 1016 20 21
1 2 1017 22- 23
1 1 lole 24
1 4 1019 25 26- 27 Gr
3 5 1020 102-1 -1022- 2a 29 aG 19 31
Z iCi 1023 1024
11 1-025 32
3 1057 33 34 36-
3- 5- 1026 1027 -1028-
3 4- 1029 1030- 1031
1 -1 1032 45-
1 l- 1033 46-
a5 47- 48 49 50 51
30 1034 1035 1036
11 1037 52
33 1058 1039 1040
20 1041 1042
2 0' 1043 1044
34 1045 '1046 -1047
't 3 -1048 6(1 '13 6-1
2G '1049 1050
0 4- 36- 62 63.64-
22 1051 1059 65- 67
2 0- 1052 1053-
02 68- 69-
03 25 70- 71
04 72 73 74 7
0- 5 75 76 77 2 71
11 1060 78
03 76 79r 75
1 2' 106t 80 81-
0Z 82 83
03 84 85 86
02 87 29
02 88- 89-
02 11 8-1

37 31 38 39 40-
4-1- 42 4a 44-

53 54 55

56 57 Sa Sa

245

1044 1 Cl 2 90 91
1045 1 0 5 92 93 94 66- 95
1046- 1 0 2 95 96
1047 1 G 4- 563 97 58 98
104,9 1 0- 3- 9-4 21 25
1049 1 1- 1 1062 99
1050- 1 G 3 101 3 102
1051 1 G 3 103 104 105
1052 1 0 2- 4 106
1053 1- 0- 5 107 18 108- 109- tlg
Iffl 3 1 0 1002
1055 3 t 0 low-
1056 3 0 't 14
IOST 3ý0 't 35
1058 3 1 CE 1038. '
1059 3 0- 1 69-
1060- 3 a 1 28-
1 or>t 3- 0 1 24-
1062 3- G 1- 100

LisaIO6
1000 2 2- 4 1001- 1002 1234
IOG1 t 1 1 1003 5
1002 1 2 4 1004 1005 67& 9-
1003 Z Z 3 tl2a 1007' 1 to tt
ION Z 3 a '100a 1009 fata
1,005 2 3 (1 1011 1012 1013
1006 1 1 1 10: 14 9-
1007 1 G S. 1-2 13- 14- 15- 16-
1008- 1 2 4- 10-15- 1016 17 18- 19 20
1009 1 2 4- 1017 1129 21 22 23- 24-
IGIO- 1 0 2 25 26
1011 1 2 3 1 GI 9 1020- 2-7 28 29
1012 1 3 4 1021 1022 1023 30- 31 32 33
1013 1 3 0- 1024 1025 1026
1014 2 2 5 1027 1028 34 35 36 37 2
1015 2- t 5 1029 38 3 39 17 40
lGla 2 0 5 4t 42 43 44 45
1017 7- a 2: 46 47

-tota 2 1 1 1430 4a
40-49 2 3 2 1031: 1032 1-033 49 2
102G 2 1 3. 1034 50.54 52
1021 2 2 4- 1035 1131 53- 22 56 55
1022 2 3 3 1133- 1037 1132 7 25- 26-
1023 2 2 3- 1039 1134 57 58 64
1024 2 3 3 1040 1041 1042 61 62 63
1025- 2 2 2 1135 1136 25 69
1026 2 3 4 1043 1044 1045 67 68 69 70
1027 1 3 4 1046 1047 1048 71 72 73 50-
1028 1 1 5 1049 74 26 75 76 77
1029 t 1 1 1050 31
103G 1 2 1: lost 105Z 79
1031 1 1 3 1053 79 So at
103Z 't 2 Cl 1054 'toss

4

w

246

1033 1 1 4 1056 56
1034 1 1 3 105T 82 83.84
1035 1 2 0 1058- 1059
1036- 1 2 2 1060- 1061 85 86
1037 1 2 4 1137 11-38 83 88 82 90
1038 1 . 3, 5 1063- 1064 1139 91 92 93- 94 95
1039 1 1 4 1066 23 96 58 97
104G 1 3 0- 1067 1068 1069-
1041 1 0 4 98 99 100- 101
1042 1 0 2- 47 102-
1043 f t 1 107G 103-
1044 1 0 4 6t IG4 1-0 5M
1045 1 3 3 1071 107Z 1073 107' 9 10a
1046 Z Z S IGM 4075 46 109 110 111 9
1047 2 3 1 1076 107T 1078 9.
1048 2 3. a IG79 1080 1081. M 42 4
1049 2 3- 5- 1082 1083- 1084- 56 112 113- 69- 1-14-
1050 2 1 1 1085- 115-
1051 2 3 2 1086 1087 1088- 42 5
1052 2 0- 5- 99 116 11 3 117 118-
1053 2 1 4 1089 34 52 119- 120
1054 2 1 1 1090 121
1055 2 2 5 1091 1092 122 123 66 124 125
1056 2- 3 5 1093 1094 1095 87 106 t26 14 127-
1057 2' 0' 2 34 8a
1058 Z 3 3 1096 1097 1099 t28 129 13G
'1059 Z Z 't '1099 1100 104
1060- 2 3 3 'tl(l-t 1102 1103 a 145 131
1-061 2 3 a. 1104 1140 1106.
1062 2 2 2 1142 1108- 136 87
106a 2 3- D 1-109 1143- 1111-
1064- 2 1 2 1112 114- 1-33-
1065. 2 1 1 1113 94
1066 2 3 3 1114 11-15 1-144 ll9k 134 135-
1067 2 1 2 1145 137 53
1068 2 0 2 83 138
1069 2 3 0 1117 1118 1119-
1070 Z 2- 4 1120 1121 1-39- 124 90- 14(Y
1071 2' 2- 4 1122 1146 ID 14t 52- 142-
107Z Z Z a 1123 112-4
1073 7- 3 5 1125 112-6 1-12-T 143 144 77- 145 146
IGT4 I a 3 14T 14a 149
1075 1 0 2 123 150
1076- 1 0 4- 151 152 121 30-
1077 1 D 5 12D 72 85- 153- 154-
1078 1 G 2 128- 99
107-9- 1 0 2 155- 156.
1080 1 0 5- 157 158 159- 160- * 161
1081 1 G 2 72 79
1082 1 0 2 21 162
1083 1 0 2- 141 163
1084 1 0 5 164 165 43 96 166
1085 t 0 Z 167 13
Me I a z 19 16a
1087 1 a 3 4Z 69 169

247

1088 1 1 3 114T 17C1 ITI 76
1089 1 a 5 172 173 116- 1-74 13T
1090 1 a 2 18.92
1091 1 a 2 175 153-
1092 1 G 2 33 7G
1093 1 1 3 1148 101 49- 176
1094 1 G 2 148 177-
1095 1 a 2 178 31
1096 1 0 2 41 103
1097 1 (Y 2 102 56
1098 1 0 2 91 116
IM I (Y 2 179 Igr
110a I a z 180 157
Ilort I Q Z 84 115
1102 1 1 3 1149 11& 165 135
1103- 1 G 5. W 182 91 183.103.
1104- 1 a 2 104- 184-
1105 1 0 3 185- 61 54-
1106- 1 G 2 186 1W
II G7- I G 2 100 181-
1108 1 G S 188 184 1 18R 19G
1109 1 a 2 191 11%
Illa 1 0 2- 28 160-
tilt 1 0- 2 la 192
1112 1 0 2 167 76
1113 1 a 2 6z t. 86
1114 1 1 1 115CI 193
1115 1 a 2 194 69
1116 1 0 3 '136 6a 195.
1117 1 0 1 81 117 196.
1118 1 a 2 79- 18-
1119 1 1 1- 1151 198-
112G 1 0- 2 199 20G
4121 1 0 4 169 201 W2 203
1122 1 0- 2 165 53
1123 1 0 2 204 205
1124 1 0 2 121 191
1125 1 a 4 201 156 162- 117
1126 1 0 2 154 192
1127 1 1 l: 1152 206
112a 3 1 a -1006
4129 3 '1 U -101a
113G 3 0- 1 49
1131 3- a 1 54
1132 3 1 a 103a
1133 3 0 1 1
1134 3 G 1 60
1135 3 G 1 64
1136 3 0 1 66
1137 3 G 1 87
1138 3 a 1 89
1139 3 1 0 1065
1: 1.40 3 1 0 1105
1: 141 3 1 a 1107
144Z 3 a 1 132

248

1143 3 1 0 1110
1144 3 1 0. 1116.
1145 3ý 0 1 1363
114. r> 3 D 1 48
1147 1 0- 1 123
t 148 3 0 1 107
1149 3 0 1 181
IIM 3 0 1 166
1151 3 0 1 197
1152- 3 0 1- 2(Y7

DM4058
1000 2 a 0 100.4 1002 1003 4004 1005.1006
1002 1 1 3 1013 2 3,4
1003- 1 a 7 567a9 IG I
IODI 1 1 2 1007 12 13
1007 2 2 G 1006 1009
1008 1 G 7 14 15 16 17 IS 19 2G
1009 1 1 10 1014 21 22 23 24 W 25 26 28 29- 30-
1005 1 0 4 12 31 32
1006 1 0 7 7891G 11 33 34
1004 1 1 2 1010 35 36
1010 2 2 G 101.1 1012
lott I a 13 37 2Z 23 24 17 25 26 27' 2a 29 3Q 3a 39
lolz I Q 7 16 17 la 491 20 40 41
4013 3 a I I
IG14 :1 G I 2T

BpfSW02
1000- 2 2 0- 1001 1002
I OG1 I 1 1 1003 1
1002 1 1 1 1004 7
1003 2 2 0 1005 1006
1004 2 2 G 1007 1008
toog 1 0 4 23 45
1010 1 0 4 67 a9
lott 1 0 4 IG I t 12 t3
lolz I a 4 14 1 5 16 IT
4043 1 a 4 la 1 9 20 21
IG14 I a 4 22 23 24 25
1015 1 G 4 26 27 28- 29
1016 1 1 3 1021 30 31 32
1005 1 1 2 IG17 34 35
1 OG7 1 1 3 1018 34 36 37
1006 1 1 2 1019 38 39
1008 1 1 3 1 G2G 38 40 37
1019, 2 2 0 1009 1GIG
1017 2 2 0 1013 1014
1020 2 2 0 1011 1012
tota 2 Z 0 1015 tale
102-1 a a t 3

249

Bpfegcr4
1000 1 5 IS 102D 1002 1003- 1-021 1022 123 4- 5.6- 79 11- 12
13- 14- 15 16- 17
1001 2 6 a 1004 1005 10066,100-7 100& 1009L
lGlG 1 2 0- I(M lG12
1G13 I 1 1 1023 18
1014 1 0 .5 20 21 22 23 24
1002 2 0 2 25 26
IOG3 2 0 2 27 28
1015 2 0 2- 29 30
1016' 2- 0 2- 3f 32
1004 1 0 2 33 34
1005 1 0 Z 35 36
4009 -1 0 2 3T 38
IOG7 1 0 2 39- 4G
1008 1 a 2 4-1 42
1009- 1 OL 2 43,44
1044 2 3 G 1000 IG14 1017
1012 2 G -3 45- 46 47
1017 1 3 13 1018 1015 1016- 48 49 W 5-1 52 53 54 55 56r 57 58-
59 60
1018 2 2 a 1013 1019
1019 1 0- 3 61 62- 63
1020 3 1 -0 loot
1021 3 a 1 19
-1027- 3 0 1 -ta
-1023 3 a -1 19

Nakashl
1000- 2 2 0 1001 1002
1001 1 4 0 1003 1004 1005 1006
1002 1 4 0 1007 1008 1009- 1010
1003 2 1 1 1011 1-
1004 2 1 1 1G12 2
1011 1 0 2- 34
1012 1 1 1 1013 5
1013 2 1 1 1014 3
1014 1 1 1 1021 7
1005 71 1 1 Ials 6
1006 2 Cl 3 a9 10
1015 1 1 1 IG16 11
IM 2 G 2 4 12
1007 2 1 1 101-7 3-
1008 2 1 1 1018 13
1017 1 0 2 12
1018 1 2 0- 1019 1020
1019 2 0 2 8 10
1020 2 0 2 14 15
1009 2 0 2 16 14
10l(1 2 0 4 27 15 5
1021 3 0 1 6

250

LisabI3
1000 1 3 2 loaf 1002 1003- 12
1001 2 0 4- 34 5 6-
1002 2 1 1 1004 7
1003 2 1 1 1005 8-
1004 1 G 2 -4 3
1005 1 2 4 1006 1007 10 11 2 12
1006 2 3 2 1008 1009 1010 3 12
1007 2 0 2 11 13
1008 1 2 2 101t 1012 14 15
1009 1 0 5 16 9- 11 17 18
1010 1 3 2 1013 1014 1015 Igr 20
lot I Z 1 3 1016 10 Ta
lolz Z I I IGIT 18
4013 2 4 3. Iola 1019 102G 1024 21 22 IG
1014 2 1 1 1021 23,
10-15 2 2 a 1022 102Z IS 24- It
1016 1 D 2 2a 7
1017 1 G 3 25 2G 26
1 GIB 1 G 2 18 a
1019 1 0 2 27 28
1020 1 0 2 1 19
1021 1 0- 5 13 30- 8 26 14
1022 1 0 2 31 3
1023 1 0 4 5 21 23 10-
102-4 3 0 t 10

Eisalla
1000 1 1 1
1001 2 3 0- 1002 1003 1004-
1002 1 2 1 1005 1006 2
1003 1 3 2 1007 1 00a 1009 34
1004 1 2 4 1010 1011 5678
1006 2 1 1 1037 13
1007 2 2 4 1G14 1015 14 15 16 17
1008 2 0 5 18 19 20 21 22
to09 2 0 3 9 23 24
1010 2 3 2 1016 1038 1018 25 26
1011 7- 0 Z 13 27
1017- 't 0 4 2B 29 3a 9
1013 1 2 0 1019 1020
IG14 1 0 2 31 32
1015 1 2 0 1021 1022
101a 1 0 4- 33 34 35- 8-
1 U17 1 0 5 3& 37 38 39- 40-
1018 1 3 3 1023 1024 1025 41 42 43
1019 2 2 2 1026 1027 44 45
1020 2 0 2 46 29-
1021 2 2 0- 1028 1029-
1022 2 2 0 1030 103t
1023 2 2- 1 1032 1033 47
107-4 2 3 3 1039 1035 1036 47 49 5(1
IM 2 0 4 51 57- 53 54
1026 1 0 2 55 56

251

1027 1 0 4 34 57 5a 3
1028 1 1 1 1040 59
1029 1 0 4 6-1 62 12 63
1030- 1 0 5 64 38 28 44 65
1031 1. G 2 66 56-
1032 1 0 4 67 68 69 70-
1033 1 G 5 71 57 72 24 42
1034 1 0 2 14 73
1035 1 0- 2 74 75
1036 1 1 5 1041- 4 76 57 15 77
1037 3 0 1 15
1038 3 0 1 29
1039 3 0 1 48
104C1 3 0 1 60
1041 3 0 1 E>4

Usa117
1000 2 3 2 1001 1002 1003- 12
1001 1 2 0 1004 1005
1002 1 2 1 1006 1007 3
1003 1 2 4 1008 1GO9 4567
1004 2 3 1 1010 1011 1012 a
1005 2 2 3 1013 1014 9 10 1
loce 2 1 5 1015 IZ t3 3U 15
J. OGT 2 Z a late 1017

-tooa 2 2 Cl IM. IM
1009 2 2 a 1020 102f
Iola 1 3- 0 1022 1023- 1080
1()Il 1 1 3- 1025 16 17 18-
IG12 1 3 4 1026- 1027- 1081 19 20 22 23--
1013, 1 3 G 102a 1029- 103G
1014 1 3 G 1031 1032 1033
1015 1 3 .5 1034 1082 1036 24 1 25 26 27
1016 1 1 1 1037 28
1017 1 1 1 1038 29-
1018 1 2 1 1039 1040 30
1019 1 0 4 31 1 32 33
1020 1 Z a 1041 1042
1021 1 1 5 1043 34 35 36 3T 26
-1022 2 3 3 1083 1045 1046 39 319 4(1
1023- 2 2 5 1047 104a 41 42 43 44 45
1024- 2 0 2 46- 6.
1025 2 1 3 1084 46- 47 48-
1026 2 2 3 1049 1085 5G St 52
1027 2 2 2 105G 1051 53 54
1028 2 G 5 51 55 56 57 5G
1029 2 2 2 1052 1053 58 59-
1030 2 G 2 46 6G
1031 2 2 0 1054 1055
1032 2 3 0 1056 1057 1058
1033 2 2 5 1059 1060 61 6Z 63 64 65
1034 Z 1 4 1061 66 67 6a 69
1035 Z 2 1 1067- '1063 70

252

1036 2 2 2 IOE>'4 1065 71 36
103T 2 1 1 1066 36
1038 2 (1 3- 3 72 17
1039 2 3 G 1067 1068 1069-
104U 2 2 0- 1070- 10-71
1041 . 2 3 4 10-72 1086 1074 7 75- 74 72
1042 2 3 3 1087 1076 1 ü77 77 41 76-
1043 2 2 2 1078 1079 77 78
1044 1 G 4 79 19 80- 81
1045 1 0 2 81 5
1046 1 0 4 62 83 84 85
1047 1 0 5 73 86 87 88 89
IM 1 0 4 34. So -91 7'
-1049 -t 0 5 92 90 3 93 94

0 5 95 96 ST sa ral
105.1 1 0 4 5a 7& 99 IOG
1052 1 0- 4 7 10-1 102 103-

1 0 4 104 105- 13 106-
1 0 5 107 108 109- 11 G 1.1- 1

1055 1 0 3 41 112 113
1056 1 0 3 114 1-15 77
1057 1 0 2 110 67
1058 1 0 5 116 38 117 118 119-
1059 1 , 3 1088 120 122- 108
1060 1 0 3 59 26 123
1061 1 0 7- 17-4.125
-1062 1 0 Z -126 -127
1063 't 0 3 -102 12a -129
1064 1 0 2 108 76
1065 1 D 2 130.65
1066 1 0 2 94 22
1067 1 0 4 131 132 126 127
1068 1 0 2 127-, 133
1069 1 0 2 134 20
1070- 'l 0 2 1W 28
1071 1 0 2 21 57
1072 1 0 2 135 136
1073 I -0- 2 137 92
1074 ý 1 0 2 73 3
1075 1 0 4 75 59 106 1311
IM 1 0 71 20 139
-107T 1 -- 't 4. '1089 27 140 141 142
1078 1 0 5 143 144 137 145 146
1079 1 0 2 147 81
1080 3 1 G 1024
loal -3 0 1 24
1082 3 1 0 1035
1083 3 1 0 1044
1084 3 0 1 49-
1085 3 0 1 53
1086 3 0 1 73
1087 3 0 1 75
1088 3 0 1 121
1089 3 0 1 103

253

Lisab45
IOOG 22 1. 1001 1002 1
1001 ., l 2 3 1003 1004 234
1002 .12 2 1005 1006 56
1003

1'2
a 5- 7- 8 9 10- 5

1004 22 1 1007 1008 11
1005 .20 2 12 4
1006-2 1 3 1009 13 14 15
1007 11 1 1010 16
1008 VA 4 1011 17 18 19- 20

.
l3 1009.. 1 1012- 1013 1014 21

ý I 1010,2 "3 3 ID15 1016 1017 22 23 24
1011 i, -l 3 Iota 252 ra 2-7
1012 z. 'Z 0 1019 1020
1013,, 2 2 3 1021 1049 28.29 30
1014 2 `2 2 1022 1023 31 32
1015ý 11 5- 1024- 33 34 35 36 37
1016 11 1 102.5 38
1017 12 1 1026 1027 39
1018 1 a- 5 1028- 102G 1030 24 40 41 42 43
1019 1 1 3 1031 44 10 24
1020 ,1 -1 S A032 45 46 47 48 49
1021 1 2 4 1033 1034 19 35 50 51
1022 1 ý0 2 52 53
1023 1 1 1 1035 54
102-4 2 1 1 " 1036 55
1025 Z. .. l 4 1037 23 56 57 58
1026 2 0 2 59 60
1027 2 1 4 .1 05G 61 62 63. 64
1028 2 3. 0 1038 1039- 1040
1029 2 0 2 66 29
1030 2- 0 3 67 68 69
1031 2- 1 1 1041 70
1032 2 2 5 1042 1043 71 2 72 73 41
1033 2 2 0 1044 1045
1034 2 3 1 1()46 1047 1051 74
1035 2' 0 3 75 70 76
1036 1 0 2 77 78
1037 1 0 4 79 80 81 82
1038 1 0 Z 83 84
-1039 1 0 4 85 43 86 8T
1040 1 0 2 60 8a
1041 1 1 1 1052 23
1042 1 0 2 90 91
1043 1 0 2 22 92
1044 1 G 4 26 21 93 47
1045 1 0 2 94 39
1046 1- 0 3 68 95 96
1047 1 0 2 50 97
1048 1 0 2 43 98
1049 3 0 1 29
1050 3 0 1 65
1051 3 1 0 1048
1052 3 0 1 89

r?

254

jdhv"
1000 1 1 2 1001 12
1002 1 2 1 1003 1011 4
1004 1 2 1 1005 1006 3
1005 2 1 2 1002 56
1006 2 1 2 1000 78
1003 2 1 2 1007 9 IG
1001 2 1 2 1008 11 12
1008 1 1 2 1009 13 14
1007 1 1 2 1010 15 16
1009 2 0 2 17 18
1010 2 0 2 19 20
1011 3 a 1 4

jdtroe3
1000 2 1 2 1001 12
1002 2 1 2 1003 34
1004 2 2 1 1005 1006 5
1005 1 1 2 1002 67
1006 1 1 2 1000 89
1003 1 2 1 1007 1011 11
1001 1 1 2 1008 12 13
1008 2 1 2 1009 14 15
1007 2 1 7- 1010 16 17
1009 1 0 2 18 19
1010 1 0 2 20 21
1011 3 0 1 11

Usab56
1000 1 1 3 IG11 12
1001 2 1 1 1002 1
1002 1 3 5 1003 1004
1003 2 0 2 89
1004 2 2 3 1006 1007
1005 2 3 1 1012 1009
1006 1 0 4 12 13 14
1007 1 0 2 10 9
iooa 1 0 4 36 10 5
1009 1 0 2 16 17
1010 1 0 2 15 1
loll 3 0 1 1
1012 3 1 0 1 G08

3

1005 34567

2 10 11
1010 6
15

Sidtree
1000 2 3 0 1001 1002 1003
1001 1 2 0 1004 1005
1002 1 1 1 1006 1
1003 1 1 1 1007 2
1004 2 1 1 1015 3

255

1005 2 1 1 1009 3
1006 2 2 0 1010 1011
1007 2 2 0 1012 1013
1009 1 1 3 1017 459
1010 1 0 2 10 1
loll 1 0 2 11 12
lG12 1 0 2 13 2
1013 1 0 2 14 15
1015 3 0 1 3
1017 3 0 1 8

Usal03
1000 1 1 1 1001 1
1001 2 3 0 1002 1003 1004
1002 1 0 4 23 46
1003 1 0 2 67
1004 1 1 2 1005 49
1005 3 0 1 a

Fatram2
1000 2 2 1 1001 1002 1
1002 1 1 2 1003 23
1001 1 1 2 1005 45
1003 2 1 1 1004 6
1004 1 0 3 74 8
1005 3 0 1 9

RandolS
1000 1 1 5 1005 12345
1001 2 3 5 1002 1003 1004 789 10 11
1002 1 1 2 1006 79
1003 1 0 2 89
1004 1 0 3 10 97
1005 3 1 0 1001
1006 3 0 1 6

Rando83
1000 2 3 0 1001 1002 1003
1001 1 3 3 1004 1005 1006 123
1002 1 1 1 1007 4
1003 1 0 2 56
1004 2 0 3 78 9
1005 2 0 3 2 10 11
1006 2 1 2 1014 12 13
1007 2 1 1 1019 10
1008 1 3 0 1010 1011 1012
1009 1 1 2 1013 14 8
1010 2 1 3 1015 15 16 17
1011 2 0 2 3 13
1012 2 0 3 13 19 18

256

1013 2 1 3 1016 7 20 6
1014 3 1 0 1008
1015 3 0 1 18
1016 3 0 1 21

RandUS
1000 2 2 3 1001 1002 123
1001 1 2 3 1003 1010 467
1002 1 2 0 1004 1005
1003 2 0 2 89
1004 2 0 5 10 4 11 7 12
1005 2- 1 5 1006 13 14 15 16 17
1006 1 1 -1 1007 18
100T 2 2 1 1008 1009 19
1008 1 0 2 20 13
1009 1 0 3 5 21 12
1010 3 0 1 6

RandI17
1000 1 2 0 1001 1002
1001 2 2 0 1003 1010
1002 2 2 5 1011 1006 12345
1003 1 0 2 61
1004 1 0 3 789
1005 1 3 1 1007 1008 1009 -10
1006 1 0 2 11 6
1007 2 0 5 12 13 14 10 15
1008 2 0 2 16 17
1009 2 0 3 15 6 14
1010 3 1 0 1004
loll 3 1 0 1005

257

