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STRACT

Recent surveys have revealed that the majority' of numerical
methods for. the solution of integral equations use one of two
main techniques for. generat_:ing a set of simultanecus
equations for their solution. Either the unknown function is
expanded as a combination of basis set functions and the
resulting coefficier.lts' found_, or the integral is discretized
using quadrature formulae. The latter results in simultaneous

equations for the solution at the quadrature abscissae.

The thesis proposes techniques based on various direct iterative
methods, including refinements of residual correction which
hold no restrictions for nonlinear integral equations. New
implementations of successive approximations and Newton's
methéd appear. The latter compares particularly well with other
versions as the evaluation of the Jacobian can be made
equivalent to the solution of matrix equations of relatively
small dimensions. The method can be adapted to the solution of
first-kind equations and has been applied to systems of integral
equations. The schemes are designgd to be adaptive with the aid
of the progressive quadrature rules of Patterson or Clenshaw and
Curtis and interpolation formulae. The Clenshaw-Curtis rule is

particularly favoured as it delivers error estimates.

A very powerful routine for the solution of a wide range of




integral equations has resulted with the inclusion of a new

efficient method for calculating singular integrals.

Some work is devoted to the conversion of differential to
integral or integro-differential equations and comparing the

merits of solving a problem in its original and converted forms.

Many equations are solved as test examples throughout the thesis

of which several are of physical significance. They include

integral eguations for the slowing down of neutrons, the

Lane-Emden equation, an equation arising from a chemical reactor

problem, Chandrasekhar's isotropic scattering of radiation

equation and the Blasius equation in boundary layer theory.




CHAPTER 1

INTRODUCTION AND BACKGROUND
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1.1 INTRCDUCTION

The research contained in this thesis was originally promptéd
by work on the one-electron equations of the Hartree-Fock
self consistent field model for the energies of atomic
systems [133]}. These equations were converted to integral
equations and recursive integration schemes applied to obtain
variational solutions to the eigenvalue problem. The
numerical integration scheme used was based on the well-known
procedure of Clenshaw and Curtis [4] which has several useful
advantages in the present context over many alternative
methods. As well as delivering high accuracy results in many
cases - (Caussian gquadrature accuracy regularly being
approached - the configuration of abscissae makes it possible
to double the quadrature order without wasting previously
computed integrand values. Since local error estimates may
be cheaply obtained, continuous monitoring of the guadrature
makes it possible to create very accurate automatic numerical

schemes .

The success of the technique for eigenvalue problems
suggested that it might be applicable to the direct solution
of integral equations by the classical Neumann series. This
method possesses a very important advantage over many other
methods in that it may be applied directly to nonlinear
problems. This is a highly desirable feature of an integral
equation solver since so many physical problems give rise to
nonlinear equations. In contrast, many existing methods rely

on converting the integral equation to a system of equations
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which can become very difficult to solve if nonlinearities

arise.

Initial investigations (Evans, Hyslop, Morgan [90]) confirmed
that the Neumann series or successive approximations approach
when implemented with the Clenshaw-Curtis based quadrature
scheme was capable of delivering very accurate results with
relatively few function evaluations and arithmetic
manipulations. In that original paper the points at which
solution values were found were made to correspond to
quadrature abscissae as in the original work of NystrSm [7].
Since then schemes have been developed which treat the
solution collocation points'and guadrature abscissae as being
independent of one another. This allows a much more flexible
approach and aids in the construction of automatic, adaptive
and progregssive numerical schemes. Such schemes are
currently being developed, but the results in this thesis
will be derived using hand s8set parameters. Within the
theoretical 1limitas of a particular method, computational
cheapness is often sacrificed to allow the solution of as
wide a range of problems as possible. These would include its
ability to solve nonlinear problems and those possessing
singularities.

Convergence problems associated with the use of the Neumann
series, particularly in connection with Fredholm equations do
occur and have been overcome in several ways. The creation
of equivalence classes of integral equations has achieved

limited success. A formulation of the shooting method for
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integral equations has also proved useful for those equations
which arise froﬁ bdundary value problems. Scope for further
development of this technique, not necessarily in conjunction
with successive approximations does exist. The application of
an accelerator {[{76] has also proved to be beneficial in many
cases, For those situations in which the successive
approximation methods break down , new direct iterative schemes
have been devised. New implementations of Newton's method have
proved to be very successful in this respect. The underlying
numer ical schemes are the séme as before, but the basic method
is changed from Neumann series to Newton's method. At the cost
. of some extra computational expense it has been possible to
produce a method (Evans, Hyslop, Morgan [65]) which is again
capable of solving both nonlinear and linear 1ntégral equations

very accurately.

Since many physical situations yield singular integral
equations, the quadrature schemes have been extended (Evans,
Hyslop, Morgan [1l2]) to cater for this occurrence. Again
generality is given priority over the need to keep a scheme
computationally inexpensive but the use of powerful
integrators such as the Clenshaw-Curtis [4] or Patterson {5])
rules does help in keeping work to a minimum. The result
has been the creation of a very powerful singular integral
evaluator which is useful in solving many singular integral

equations.

it is well known that many problems are expressible in both

differential and integral equation form. Some research has
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also been devoted to the conversion of differential to
integral equations and some comparisons made of the solutions

to both types of equation.

F‘inally, the numerical schemes which have been devised have been

extended in order to treat systems of egquations.

Computations were carried out in Algol68 using an ICL 19048*
and Honeywell 'computers. Generally actual programs are not
included in the thesis although some comment is made in the
conciusions as to a possible automatic integral equation

package.

"The method of successive approximations is considered to be

an obvious starting point for nonlinear equation problems,
and will therefore form the basis of the next chapter in
thch numerical schemes for the solution of such problems
will be created. Schemes will initially be created using
linear examples and the work will then be extended to the

solution of nonlinear equations.

Before going on to the details of a numerical method in
Chapter 2, integral equations will be classified in the next

sectibn.
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1.2 CLASSIPICATION OF INTEGRAI, EQUATIONS

Many of the integral equations which will be treated by the
achemes described in chapters 2 to 7 are of the second kind.

A general form for such an equation is the

Urysohn _inteqgral equation
f(x)-g(x)+f:r<(x,y:f(x>,fcy))dy, xe[a,b], (1)

where f 137 the unknown function and g and K are given
functions. The function g is known as the drivigg or
free term, and K as the kernel of the integral equation. The
range of definition is [a,b]. Equation (1) is a nonlinear
integral equation since K may involve nonlinear functions of
f. More commonly K will only depend on £(y) although kernels
depending on f(x) do occur (see Chandrasekhar's integral
equation from radiative transfer theory (A0.4-1)). If g(x)
is identically equal to zero then the integral equation is
said to be homogeneous. If the kernel K can be expressed in

the form
K(x,y;£(x),£(y))=L(x,y)E(y) (2)

the equation (1) is known as a linear integral eguation. The

integral in (1) is a definite integral and all equations
containing fixed limits of integration are known as Fredholm
integral equations. If one of the limits of integration is
variable (it usually takes the value x) then the equation is

a Volterra integral equation. Circumstances do also arise in
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which both limits of integration are variable (as for example
in equation (2.3.4-3) relating to the integral equations for
the slowing down of neutrons) and these too are Volterra

integral equationa.

If one or both limits of integration are infinite or if the

free term or kernel become infinite for any values of x,y, or

f then the -equation is a singular integral eguation.

Examples are:

f)=g)+f e " eyray (3)
[15] and

f(x)-1+_|'; ln]x-ylfJ(y)dy. (4)
[97}. Equations possessing kernels of the form

| R(x,y) = H{x.¥), 0¢a{1l, H bounded (5)
I x-y| ¥
are called weakly singular.If a=l then the eguation involves
a Cauchy principal value integral which must be evaluated in

the form

fbliums)dy - lim(f' H(X y)dy+] H(x.y)dy), (6)
Sx-yi €~ * jx-y| X€ | x-yl
It is possible to reduce a weakly singular equation to one
which is nonsingular by producing an iterated kernel K (x.y)

of the original kernel K(x,y) (see {15]). Morse and Feshbach
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{133] define equations which cannot be made nonsingular as

being intrinsically singular.
Equations which take the form
¥(x,b) ‘ :
glx)=f " R(x,yif(y))dy, x,yela,b] (7

aré called integral equations of the first kind. If #(x,b)=x

then the equation is of Volterra type, otherwise if ¥(x,b)=b

then it is a Fredholm equation.




CHAPTER 2

SUCCESSIVE APPROXIMATIONS
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2.1 INTRODUCTION

This chapter will deal with numerical implementations of
successive approximations. The schemes will be introduced to
solve nonsingular second kind equations of Volterra and
Fredholm type. Applications to equations possessing
singularities appear in'chapter 6. In generél the method may
only be applied to second kind eguations.  There are
exceptions however. Linear first-kind Volterra equations for
example, may be converted to second kind equations if the
- driving term and kernel are continuously differentiable and
K(x,x)*0. Additionally first kind Fredholm equations
possessing positive definite symmetric kernels can also be

treated successfully by this approach .

As mentioned in the introduction to the thesis, many methods
for the numerical solution of second kind eqguations are
descendants of the NYstrSm theory ([7]. Consequently, they
involve the solution of sets of equations and may therefore
require prohibitive amounts of storage space if high accuracy
quadratures are needed. Iterative methods seek to overcome
this difficulty as the equivalent matrix elements do not
require storage, but are calculated as required. Brakhage
[8] was the firat to use such a scheme and since then authors
such as Atkinson [38] and Marsh and Wadsworth [10] have
produced more scphisticated modifications. Systems of
equations still occur and this fact causes problems in the
solution of nonlinear egquations. Linearization of  the

nonlinear integral operators has been used to alleviate this
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complication, but the discussion of an improved
implementation of such ideas will be delayed to Chapter 5.
Picard's method of integrating successive approximations,
which is of great importance for the existence theory of
ordinary differential equations [26] can be readily employed
in solving integral equations and it should be streased that

the method is as easy to apply to nonlinear asa to linear.
equations. Surprisingly very 1little appears on numerical
algorithmas for its implementation in the literature. This
may be partly due to the fact that the iteration does not
always converge. Nevertheless the method has been used. See
for example lLock [27] or Siekman [28]). The major criticism of
their prescriptions is the lack of powerful quadrature rules
in evéluating integrals. Siekman for example uses Simpson's
rule. To illustrate the techniques, some practical examples
are jincluded and comparisons made with previous work. In
particular the problem of neutron slowing down givés a good

environment in which to teast the method, [90]}.

Baker [11] p.422 expresses the feeling "that any sustained
application of an analytical -iterative technigue can be
cumbersome and 1ill suited to a numerical method®. The
following sections describe sﬁperior implementations of the
method and reveal that in these forms, successive
approximations provides an excellent means of sblving many
-integral equations in a fast and efficient manner. Following
a brief outline of the numerical details, the chapter is laid
out in four main parts which deal with the application of

successive approximations to both 1linear and nonlinear
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Volterra equations and similar sections relating to Fredholm

equations.

2.2 A NUMERICAL SCHEME

The following paragraphs clarify the way in which the method of
successive approximations is implemented and also indicate the
way in which other methods will be adopted. Investigations will
begin with Volterra equations since the method of successive
approximations copes most successfully with this type of
equation. Linear equations will be dealt with first.In
suggesting numerical schemes for the solution of the Volterra

integral equation

f(x)-g(xnj:x(x,y)f(y)dy (1)

authors frequently mention the possibility of treating the
equation as being of Fredholm type in which the kernel K{x,y)
equals zero for y greater than x. They advise against the use of
this device since it introduces a jump discontinuity into the
integrand unless K(x,x) equals zero. See for example [1l] or
[11]. If the kernel K(x,y) is defined for y greater than x, it is
possible to derive a numerical scheme which overcomeas these
difficulties associated with Volterra equations. This is made
possible by employing the discretization

{r+1] N {rl

£, () =g (XN W ()R(x, X)) E (%)), i=0(1)N, (2)

r=0(1)R,

to be used subsequently in solving Fredholm equations. The
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indefinite integration formulae of Clenshaw and Curtis (4],
(A2-2)~(A2-9) can be implemented in the standard quadrature
manner of El-gendi {63] to obtain the corxrect values for the
indefinite integrals. The notorious problems inherent in
classical step-by-step methods - namely the calculation of
accurate solution values near to the initial point - are thus
conveniently eliminated. Naturally this device will not be
appropriate for kernels such as K(x,y)=ln(z~y) since this
kernel becomes undefined for y»x. Alternative measures will
subsequently be taken to secure the solution of these
equations. A 1linear transformation maps the interval of
integration [a,b] on to [-1,1] and the grid-points X, are

allocated according to the formula

x=((b-a)s+atb)/2, i=0(1)N, (3)

where

s=-cos(ir/N), : i=0(1)N. (4)

The error estimates (A2-10,11) or other appropriate estimates
([4),[49],[50)) indicate how large a value of N should be
used. N is chosen to ensure that the local truncation errors
generated by the quadrature are less than e=10"1¢* where €
is the error tolerance imposed on the iteration cycle. Thisas
condition is included in an attempt to prevent errors which
are of the same magnitude as €¢* being submitted to the next
step of the iteration and hence once more to the quadrature
rule only to be magnified in the course of the arithmetic

manipulations. A similar bound is used in halting the
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iteration cycle which terminates when r egquals R for some R
satisfying the inequality

{R] {R-1] {R])
'fN (X|)"fN (X‘) | <E’fN (x;) | . i=0(1)N. (5)

Condition (5) may be implemented in two ways. Either the
iteration continues at all points until (5) is satisfied for
- each of them, or it continues only for those poihts at which
convergence has not yet occured. The latter option proves to be
computationally less expensive than the former, but the device
of using e=10"'e* as an error bound should be strengthened to
e=10""¢*, nd>1, for convergence to be satisfied. Experience has
shown that n=2 is usually sufficient, but unless this condition
is used the accuracy. attained at points which have converged
early in the iteration process impairs the attainable accuracy
at points which have yet to converge. Inequality (5) involves
relative errors and will be the most commonly used criterion
although compar ison of some methods will be carried out in terms
of absolute errors for which the solution values must satisfy

IR] [R-1]
1Ey(x,)-£,(x,) | <e. : (6)

whenever |£Lf1(x,)1<(107" for any r, condition (6) will always be
used. Note that the values of the (R-1)" iteration will already
be of the desired accuracy but the value of Rwill always be given
in reaults since this iteration must be performed in order to
check convergence. Note also that although two iterations may
have converged to a certain accuracy, they nsed not have

converged to the true solution .
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2.3 APPLICATION TO LINEAR VOLTERRA EQUATIONS OF THE SECOND
KIND

The theory of successive approximations as applied to linear
Volterra equations is well documented ([16, 15, 17, 18}). It
is known that the method converges for all values of A when g
and K are continuous functions at least square integrable. If
g and K are taken to be continuous on the interval of.

definition and therefore bounded and satisfy
lg(x)|<m as<x<hb, (7)
IK(x,y) <M a<x,y<b (8)
.then the Neumann series for £(x) is bounded in the following way

Ig(x)+§11' £, (x)1€ mEr;on I M (b-a)f /r1

(9)
=m exp[i\|M(b-a)]
where
t (x)=f K(x,y)E_(y)dy (10)
and
£5 (0t mg (). - (11)

The Neumann series is absolutely and uniformly convergent. The
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error which results by terminating the Neumann series at the RY
iteration satisfies

}:'.'R (x) = f(x)-fm](x)

-rguﬂ” £, (x). (12)
it is readily seen that

IE_(x)1<m o= exp(p) (13)
R (R+1)!
where p=|\M(b-a)|. Similar expressions may be obtained when the
functions are taken to be aquare integrable. If the integrals
are taken in the Lebesgue sense one can only say that the Neumann
series is absolutely and uniformly convergent almost
everywhére. Tricomi [15] wuses the term almost uni'formly
convergent. Note thaﬁ although convergence of the method is
guaranteed for all values of A it may be slow since the rate of

convergence is governed by the size of the operator norm
2 2
KM, =[[I1R(x, ) [ axay - (14)
The rate of convergence can however often be increased by the

use of an accelerator (see chapter 4) or even by using a

Causs-Seidel type updating procedure.
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2.3.1 THE ACC ION _OF QUADRA RRO N SOLVIN

v TIONS

Excluding roundoff errors and the error incurred by terminating
the iteration, the only errors which may manifest themselves
will be those due to the quadrature rule. For the sake of
generality assume that a quadrature rule Q of‘ order N is used
which approximates the integral f:I(x,y)dy. This information is

displayed by

X
QN,a,x, I)=f I(x,y)dy (1)
where
N
.Q(Nrarxli)ajg w‘ (x)I(x,xj) (2)

Denoting the error by E5(N,a,x,1) one obtains
X
f.r(x,y)dy-om,a.x.r)+Eq(N.a.x.r). (3)
Let
=10 e 0 1, r=1,2,...  (4)

and begin the iteration with

£ (x Jug(x )£ (x), 1=0(1)N. (5)
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Then

E[o] {(x)=0, {6)

E[“ (xJ-lf:K(x,y)g(y)dy-Q(N.arx:Kg)l
(7)
-EQ (N, a,x;Kg) ’

e o=1f ke (pray-ov,a,x, kel i, . (8)

e =1 ke (yray-oava,xke§ ™ 0, (9)

The error between true and approximate r" iteration can be
recast in a slightly different. fashion to give
r (r-1] {r-1}
e o= ke e (pray-on,a,x, ke ) 4
(10)

-1 -
Q(Nrarerf[r ])-Q(Nrarerf:{: H .

Using (2) the following incqualil.y may be produced.

ir-

1 -
E[r](x)ﬂEo(N,a,x,Kf ])]+=o|wj(x)r((x,xj)lE“ IJ(xj). (11)

By substituting for all previous errors EU(x),3<r in (11) and

noling Lhat El%(x)-0, the error of the ' iLeration can be seen

to satisfy
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-1
e ) <iEg N, a, x ke 4

-2
Biw 0R(xx) 11BN, %, %€ ™) 14 (12)

Biw R e 1) 1B 1w (xR (x, 20 11BN, 2, %, KE ™y 1+....

A crude error bound may be formed using the following

assumptl.ions. Suppose that

i) Eq(N,a,x,KE) ¢R, for all r,x, (13)

ii) IK(x,y)I < W, (14)

111)  E Iw(x)| <W < (b-a). - ' (15)
=0

Then if WK=»1l

(-1

Em(x)< m’lf:igww?] 1 - (16)
and

VN x)<(z-2)E (17)
if WK = 1.

Unless the coefficienls of E in (16) or (17) are very much

grealer than an order of magnilude Lhen the error E[X1(x) will
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be less than €. For example if
e’ n
E < 10 e

then so long as the coefficient in (16) or (17) is less than

100, Blfl(x) will be less than €".

2.3.2 GAUSS-SEIDEL UPDATING OF LINEAR VOLTERRA EQUATIONS

|

|

|

|

|

|

\

\

\

\

This method of calcplating solution values which is explained in
section 3.3.3 (D1G) is seen ag a means of accelerating the rate

of convergence of the successive approximations. Details of the

first two iterations for the simple case N=2 clearly show why the

method achieves its success. For simplicity let equation

i

(2.2-2) be written in the form

2 T {r-11 :
£ =g hw Kyt i=1(1)N,r=1,2,3,... (1)
where
[n} [r]
£ =07 (x) 0 wymwi (%) ¢ KymR(X0 %) 0 gp=g(X,) . (2)

Then successive approximations using Gauss-sé idel updating

take the following form for N=2:-

0
f,[-][g‘l: i=0(¢1)2, (3)

1]
£ldrg01,
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1]

f1"Ig-;+;:“K1jg‘]t (4)
£l %g,+ Ko, 1 Kzgfw‘x g

20921 W2/99) 1 51 Ka 1041 %49,

[2]

fo=[g°]r

R R SR ST R BN, S €
1 =[Gy LW Ky gy Wy Ko g 30 Ky Gy ] #W15K 1 Wo1 Ko Wy Ky G

{2]

fp= [92““25’21"2191*&21K21&mx1u9u] ""’213(2]21“' ”K”g K Gkt

sz“gz“"z#zé’u&ﬁﬁ"m"z1“"12K12W21K2yf=:.§”11x1391' .-

The terms 1in square brackets are those which would be
obtained in ordinary iteration. The effect of Gauss-Seidel
updating is to introduce terms into the series at earlier
stages of the iteration than they would appear in the
srdinary case. In practice it has been observed that points
clogse to the initial point x, benefit less from the use of
Gauss-Seidel updating (in fact the solution takes longer to
converge in some examples) than those at the top of the
range. It will be seen in section 2.5.1 that this does not
apply to Fredholm equations. Tﬁe reason for this situation
is that although the solution value at x; of a Volterra
equation is already exact at the ot ‘iteration taking the
value g, it does not contribute a quadrature term to
successive points. Hence for example f,[' is exactly the
same in Gauss-Seidel and ordinary iteration. It therefore
takes longer for the extra terms to appear. Gauss-Seidel
iteration can be most succinctly expressed in matrix

notation. Let W be the matrix of quadrature weights combined
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with kernel values. Thus

g_l - [wlixlj]' | | i,3=0(1)N. (6)

Note that W,=0, (jJ=0(1)N). Let L be the lower triangular

matrix of W excluding the diagonal. That is

L~ [w”x”] i=1(1)N, 3=0(1)i-~1, (7)

all other elements being zero. Gauss-Seidel iteration can then
be written as

£ g+(.y§+§)k_’- £ r=1,2,3,... (8),

The error analysis of the previous section applies equally to
. Gauss-Seidel updating as it does to ordinary successive.
aproximations, provided that inequality (2.3.1-14) holds for
integrands comprising the most recent solution values as well as

those for the previous iteration.
2.3.3 RESULTS FOR SOME SIMPLE EXAMPLES

Baker{ll] provides a set of simple linear test examples (p.748)
for which the present scheme is appropriate. The equations are
listed in appendix AO0.1, nos.(1)-(7). Comparison is made with a
step-by-step method involving combinations of the trapezium,
Simpson's and the 3/8th rules ({11), p.775 Table 6+5), the TS38
rule for brevity. Baker (p.759) gives a detailed account of
these particular methods which basically involve subdividing

the range [a,b] into N intervals of width h and then employing
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simple gquadratures to approximate the integral over {a,b].
Setting x=kh, k=1,2,...,N and applying the earlier scheme

produces a numer ical approximation of the form

f(kh)-g(kh)ﬂ?%qu(kh,jh;f(jh)), k=1(1)N (1)

to the exact equation

f(x)-'g(x)ﬂ_r:xtx.y)f(y)dy. (2)

The w,, are the weights associated with each particular
quadrature rule. Small values of k incur severe limitations
on the obtainable accuracy at the corresponding points since
only single or perhaps two-fold applications of the
'appropriate rules (k=1 necessitates the trapezium rule, k=2
requires an application of Simpson's rule or other three
point formulae such as that provided by two applications of
the Trapezium rule) can be used. These points will be called
the starting wvalueas for the step-by-step method and should

not be confused with starting values for iterative methods.

Results for N=64 (h=1/32) employing the TS38 rule appear in
table 1. The table reveals that in general only the solution at a
distance h from the initial point suffers from any marked lack of
accuracy, exactly as would be predicted by analysis of the
errors. The most accurate values occur in the middle of the
range, becoming slightly less accurate towards the top of the
interval. In contrast, the errors incurred by successive
approximations remain more or less cbnstant throughout the range.

A glance at Table 2 also demonstrates that far fewer function
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Tablel,
Some linear VYoiterra equations solved by the TS38 scheme

E:m h 2h 0-25 1-00 175 2900

i 2.-6(-6) {1-1(-7) {1-3(-7) |3-0(-7) {6-5(~7) 18-5(-7)

2 4.-0(-8) {3-6(~11)|2-2(~-10)|6-4(-9) |3-6(—8) |4-8(-8)
3 15.0(-6) |6-6(-9) |4-6¢(~8) |2-1(-7) {3:-7(~7) |4-2¢-7)

4 S+1(-6) |6+6(-9) }4-7(-8) |2-4(-7) [|5-9(~7) |7-7(-7)
: 5 3-3(-5) (2-8(-6) |3:-9(-6) |1+3(-5) |3+-5(-5) |4-8(~5)

6 3-8(-10)}j3-6(-10)}1-8(-9) }1-4(-8) [4:-6(-8) 16-4(~-8)

7 2:-5(-6) }1-0(=7) |7-8(-8) |4-2(-8) |4-2(-8) |4-6(-8)
evaluations are required in this approach. The new scheme

requires N(N+1) evaluations of the kernel and (N+1) of the
driving term making a total of (N+1)2. The step-by-step method
involves the calculation of k+1 values for each f£(kh), k=1(1)N.
Including the N driving term avaluations this amounts to
N(N+5)/2 function evaluations. For the same N the step-by-step
approach clearly requires fewer function evaluations than
successive approximations. However the successive
approximations scheme only requires N=16 or equivalently 289
function evaluations to obtain full figure accuracy. In
contrast the step-by-step approach produces results which are
inferior to those of the new scheme by at least a factor of 102
rising to 10% in the starting values even when N=64. 2,208
function evaluations need to be carried out for this value of N,
thus demonstrating that successive approximations combined with

El-gendi's form of Clenshaw-Curtis quadrature is far more
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Table 2.
Application of successive approximations to the linear VYolterra equations
x=0-2928932 x=1-0 x=1-7071067 x=2-0
TR E R E R E R E
GRID=4,€=1-0(-4

1] 8 | 3-6¢-4) {10 | 1.3¢(-3) | 8| 8.7¢(-4) | 8 | 1.6(-4)
2] 4} 3.6(~3) | 4| 1-0¢-3) | 4| 1-9¢(-3) | 4 | 2-6(-3)
3} 4 | 5-6(-4) a 2.4(-3) | 4] 3.4¢-5) | 4 | 9:0(-4)
4| 4 | 4-0¢-4) | 4| 1-5¢(-3) | 4 | 3-4(-5) | 4 | 6-6(-4)
s5{15 | 9-5¢-2) {15 | 4-7(-1) |17 | 9-6(-1) |17 | 1-6

6/ 8 | 2.0¢-4) |10 | 6-0¢(-4) | 9 | 4-3(-4) | 8 | 8-6(-4)
17]18 | 8-6(-4) |20 | 3-4(-3) |20 | 2-4(-3) | 7 | 4-4(-4)

NGRID=4,e=1-0(~7
1{10 | 1-4¢-8) | 9 | 4-6(-8) |11 | 2.5(-8) {10 | 1-3(~7)
2] 4| 8-1(-6) | 4 | 3.5(-6) | 5| 5:6(-6) | 4 | 4-6(-8)
3] 4] 9.1¢-8) | 5] 9-2(-8) | 4 { 1-2¢(-8) | 4 | 6-6(-9)
4] 4 | 1.2¢(~8) | 5 ) 2.5(-8) | 4 | 1-5(-8) | 4 | 3-8(-9)
5016 § 1-2¢(-5) |15 | 2-2(-5) {16 | 1-8(-5) |16 | 2.0(-5)
6/10 | 1-0¢(-8) | 9 { 2.6(-8) {11 | 2-6(-8) {11 | 1-7(-8)
7|12 | 2.8¢(-7) |12 { 9-8(-7) |11 | 8-0¢-7) | 8 | 6-2(-8)
NGRID=16,€=1-0(~9)

1} 9 | s-a¢(-11){10 | 5-8¢-11){11 | 1.2¢-18){10 | &-4¢-10)
2| 4| 7-3¢~12)| 5 | 9-1(-12)| 5 | 7-3(-12)} 4 | 1-5(-11)
3 4| 0.0 5| 0.0 4| 60 4 | 2.9(-11)
4] 4 | 0.0 5| 0-0 4 | 1.5¢(-11)| 4 | 2-9¢(-11)
513 | 5-8¢(-10){13 | 9.3¢-10)f15 | 4-2(~-9) |15 | 3:-7(-9)
6] 9 | 4-4¢-11){10 | 5-8¢-21)[11 | 2-9¢-11)}11 | 2.9(-11)
7|10 | 1-1¢-10)| 9 | 3-2¢(-10)| 9 | 7-9¢-10)| 7 | 1-6(-9)

€ = absolute error requested,

E =
[R]

iterations required to satisty lfN {x) "fN

absolute error attained,
[R-1]

R =

(x)t< €.

minimum number of
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efficient than the step-by-step method, at least from this
peint of view. Multiplications and divisions can constitute a
significant factor in the expense of a computation. Several
may be necessary to perform just one of the above mentioned
funétion evaluations, but for purposes of simplicity in the
analysis a "function evaluation  will denoté a general
measure of the arithmetic work expended in finding the value
of any function. 1In the preseht context it is additionally
poasible to make a straight comparison of the number of
multiplicationg/divisions invelved in calculations of the two
schemes. For the sake of brevity they will simply be

referred to as multiplications. The step-by-step algorithm

N

needs 2F (k+1) = N(N+3) multiplications. For N = 64 this
k=1

amount.s to 4,288 multiplications. The  number of

multiplications involved in evaluating the direct iterative
acheme is (N+1)(ER]+N) where Rj is the number of iterations
required to ac;?eve convergence at each point x,. This
figure follows from the fact that N(N+1) multiplications must
initially be carried out in order to combine the terms
xﬁ(xﬂx(xpxﬂ, (i=1(1)N, 3j=0(1)N) and then a further N+l
multiplications must be performed in order to complete the
calculation of the quadrature at each point for each of the
iterations. Taking N=16 and the computationally most
expensive example (5) it can be seen that a total of
17{(10+12+3%x13+5%x14+6%x15)+16}=4029 multiplications were
necessary. Even this example was more economically solved by
the successive approximations scheme than by the step-by-step

method. Using the same calculations, equation (4) which was

characteristic of several other examples required a mere 1445
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multiplications which is approximately a third of the work

required in the step-by-step approach.

It should be noted that the above analysis applies equally
well to Gauss-Seidel iteraticn as it doceas to ordinary
iteration. The values given in Table 2 were produced by
means of the former iteration. The effects of Gauss-Seidel
iteration predicted in section 2.3.2 can clearly be seen upon
comparison of both types of iteration. Eguation (5) will
again be used as an example. The numbers of iterations
required at each point of the 16 point scheme beginning with
x,=l-cos(w/16) were 5,7,9,10,12,13,15,16,17,18,19,20,21,22,
22, and 10,12,13,13,14,14,14,13,14,14,15,15,15,15,15,15 for
normal and Gauss-Seidel iteration respectively: It was not
until the seventh point that Gauss-Seidel iteration performed
better than the ordinary variety, but the total numbers of
iterations 247 and 221 emphasise that Gauss-Seidel iteration
was the more economical one to use. The same trend was
observed in all the examples and Gauss-Seidel iteration has

therefore been adopted as the preferred method of solution.

It must be pointed out that the equations considered contain
only well behaved functions and therefore do not provide as
stringent a test as might be reguired in order to prove the
worth of the proposed new scheme. Also the step-~by-step
method could be improved upon by using a block-by-block
method, 8o avoiding the use of a low order quadrature for the
first few steps. However the step-by-step method acts as a

familiar yardstick for comparisons. Many other equations
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have been succesafully solved by the method, including
numerous interesting examples of physical significance.
Among these are the integral equations for the slowing down
of neutrona, [90] which provide a more rigorous test of the

new scheme and are considered in detail in the next section

2.3.4 INTEGRAI, EQUATIONS FOR THE SLOWING DOWN OF NEUTRONS

The example considered deals with the slowing down of
neutrons.by elastic scattering in an infinite non-absorbing
moderating medium. For details see Weinberg and Wigner {51].
of particﬁlar intergst ism the fact that the solution
possesses a finite discontinuity thus providing a very
‘stringent test of any qdadrature scheme. Basically, Q, source
neutrons per unit volume at energy E, are slowed down to
energy E as a result of successive collisions with moderating
nuclei of mass A. Defining the lethargy variable u by means

of
u=in(E,/E) ,. (L)

the collision density F(u) is given by the integral equation

F(u)-onexp(-U)+7j:exp(v-u)F(v)dv, 0<u<e (2)

and by the equation

F(u) -‘vjtﬂgxp(v-u)ﬁ(v)dv, ude (3)

In these egquations
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v = (-a)” (4)
where

= (A-1)%(ar1)’ | (5)
and

€= —ln(a). (6)

represents the maximum lethargy gain per collision. The

discontinuity occurs at u=e and is of magnitude 8Q, where
A=a/(l-a). ; (7)

This occurs because the source neutrons may contribute
directly to the collision density in the lethargy range
O<ude, but not to the range ude. The solution to equation

(2) is readily seen to be

P (u)=yQuexp(8u), O<u<e (8)
upon differentiation. Equation (3) is more difficult to
treat, but can be found in analytical form throughout the

range of definition by splitting the integral at the points

€,2¢,3¢,... Thus if F, is the solution in {(r-1)e,re] then

Fﬂq(u)-7[J:iixp(v~u)Pr(v)dv+jfgxp(v—u)Fr(v)dv]. (9)

Beginning with equation (8), known values for F, may be
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substituted into the first integral in (9). The equation may
then be transformed to a differential equation and the
solution of F,,(u) found. This process is somewhat
cumbersome and is noﬁ to be recommended. The classical
solution was obtained by Placzek [52] using a recurrence

relation approach involving the so called Placzek functions.

An alternative solution was obtained by Teichmann [53] and by

Eidelmann [54] wusing the Laplace Transform Convolution

Theorem, the result being in the form

. oo k k k-1
F(u)=yQgexp(8u) +7QaL(-8) exp(ﬂz)Fz*:_JL_“ H(z), (10)
k=1 k! (k-1)!
where
z=u-ke
and H is the Heaviside function defined by
H(z)=1, =230, (11)

=0, z<0.

Alternative forms of equations (2) and (3) exist and provide
useful comparisons from the point of view of computational
ease and efficiency. By introducing the slowing down density
q(E), representing the number of neutrons slowing down past
energy E, [52] or [55], and on noting that, in the absence of
absorbtion or leakage q(E) must equal the source density g,

it is possible to recast equations (2) and (3) in the simpler

forms
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F(u)-ygowj':p(v)dv, 0<u<e, (12)
F(u)-Qo+3j:ge(v)dv, ue. (13)

The asymptotic collision density F may readily be obtained from

(13) and is found to be
F-0y/(1-8¢) U, (14)

In practice the limiting value is rapidly attained for all
values of A and after about three collisions the collision
density is constant to within 1% even for the largest values of
A. The maximum lethargy considered is 6¢ where the collision
dengsity has sensibly reached its constant asymptétic form. Due
to the non-standard form of equations (3) and (13) it is logical
to spbdividé the range of integration into successive collision
density lethargy intervals [0,€], [€,2€¢], ....[5€,6€]. This
involves a particular example of the discretization D6 to be
described in Chapter 3. In this case the positioning of the
subintervals is made to coincide with these points and the
integrals are also evaluated in.a specialised way. Denoting

each of the subinterval boundaries by u,; so that
u=le, 1«0(1)6, (15)
and assuming that ue[ukﬂ, u.j, k=2(1)6, it is convenient to

consider the integrals required in (3) and (13) as sums of two

integrals as follows:-
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_ (Y%-1 v
J'"u_r_re(v)dv fu_e?(v)dv+ft:_(1v)dv. (16)

This form bears a strong resemblance to that used on Fredholm
equations possessing "split Kernels® in section 2.5.3. Using
equations (3.4.1-7,8) one can employ the same sets of weights
for both integrals appearing on the right hand side of (16).
The grid points however will ber different for each
subinterval and on assigning a quadrature order N, to
interval 1, they may be calculated via the usual linear

transformation(2.2-3). Thus

u, jng_(cos(jﬂ)-l-Zl—l), 1=1(1)6, Jj=0(1)N, (17)
2 N,

Note that whenever u=u, the simpler definite integration weights

(3.4,1-4,5) may be used.

2,3.4,1 RESULTS AND COMPARISON WITH OTHER SCHEMES

The slowing down densities were computed from the classical
forms (2) and (3) or (12) and (13) for various moderator masses
ranging from A=2 (deuterium) to A=238 (uranium). The relative
accuracy of the results were tested with respect to Teichmann's
analytical values. Table 3 gives the maximum minimum number of
iterations required in any of the six lethargy intervals to
attain the relative accuracy demanded. Note this is the number,
R required to satisfy the inequality (2.2-5) and does not
guarantee the accuracy of the final results to the true
solution. Only relative errors at the last lethargy point u=6e¢

are quoted since the errors achieved throughout the total range
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[0,6€]} are of comparable magnitude. The values at this point are
considered to be representative of the acc‘uracy attained since
they depend on all the previously computed F(u) values for u{ébe.
In spite of the finite discontinuity at u=e, rapid convergence
is seen to be obtained over the complete lethargy range,
particularly in the case of the alternative forms (12) and (13)
of the intergral equation. It is clear that this increasaed rate
of convergence corresponds closely with the usual measure of

convergence for the Neumann series provided by the norm {16]

HK1IZ=[ [1K(u,v)1%u dv. (18)
Table 3.
The neutron slowing down problem solved by succeasive approximations
Moderator mass Ciassical form (2)=(3) Alternative form (12)-13)
A R E R E
2 14 2-9(-3) 5 3:2(~-7
4 9 4.:1(-5) 6 4.3(-7)
N=4 12 8 1-4(-5) 7 3-1(-6)
16 8 3.5(-6) 8 7-2(-6)
238 8 2-1(-6) 10 1-6(-6)
2 15 1:1(-9) 8 9+5(~11)
4 12 4-7(-9) 9 6-4(-10)
N=8 12 il 2:-9(-10) 10 1-2(-8)
16 11 2+5(-10) 11 1-4(-9)
238 10 2-8(-10) 14 6-5(~-8)

R = Maximum number of iterations required in any lethargy intervai.

£ = Relative accuracy in collision density {c¢f, (3.2-5)).

N = Order of quadrature in each lethargy interval,

The relative accuracy asked for was | =107% for N=4 and | =10"2 for N=8.
The lethargy intervais considered are [0, €1,[ €,2€],...,[5€,6€].
Note that the results were obtained by using Gauss-Seidel type iteration,




~-34- 82.3.4.1

Performing the regquired integrations over any of the

subintervals reveals that the norm for equations (2) and (3) is
N,=rsh(e) (19)

and the corresponding norm for equations (12) and (13) is easily

seen to be

N,=Se. (20)
Tablie 4.
Norms of the kernels

A € N, N,
2 2-197 5-000 _ 0-2747
4 1-022 1-889 | 0-5747
12 0-344 1-198 0-8422
16 0-250 1-142 0-8801
238 0-017 ' 1-008 0-5916

Ny = Norm for kernels in equations (2) and (3).
N, = Norm for kernels in equations (12) and (13).
€ = Lethargy interva) width.

These norms are included in Table 4 and it is apparent that
the varijiation is consistent with the number of iterations
taken. This confirms that the IIK|Jl , norm is a reliable
measure of the rate of convergence of the method. Again, thel
power of the Clenshaw-Curtis rules is demonstrated by the
fact that accurate results are obtained according to
apecification (2.2-5) with errors of order 10 for N as low

as N=4 in each 1lethargy interval except for the lowest
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moderator masses. The accuracy attained for the smoother
alternative forms (12) and (13) is correspondingly higher and is
acceptable over the complete moderator range with this minimal
number of quadrature points. A slight increase in the number'of
iterations required, accompanies the request for higher
accuracy and N=8 points per interval produce acceptable
accuracy even for the classical forms (2) and (3) even at low

values of A where the lethargy interval e=-lna is largest.

As an alternative comparison, since the equations are linear,
Lhe traditional algebraic approach was used as a méans of
" solution [1]. The presence of the discontinuity suggests that
an equally spaceci quadrature rule such as the trapezium rule
would be most convenient. Investigations showed that using
as many as N=512 points in each of the six lethargy intervals
was still only capable of attaining errors 0(10"‘). This
compared most unfavourably with the results of the new
method. Remembering that the trapezium rule can only be
expected to achieve errors O(h%) more powerful quadrature
rules such as the Clenshaw-Curtis prescriptiﬁn were used.
Equivalent accuracy to succeasive approximations was then
obtained. This would be expected as the direct iterative
method is clearly related to the Nystrom method in which the
linear equations are solved by Jacobi's method. However the

advantage would lie in solving nonlinear equations.
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2.4 PL1 ON TO N INEAR VOIL, EQUATIONS OF THE SECO

KIND

In contrast to linear integral equations which have a simple
structure, nonlinear egquations can pose formidable problemsa
both theoretically and computationally. However, a fairly
complete theory does exist for certain types of equaticns.
The most commonly quoted variety which also have many useful
applications are the Hammerstein eguations. See [84,18,
15,56,81) for example. More general nonlinear equations have
been studied by Golomb [85]) amongst others. There are three
problems associated with the solution of a nonlinear integral
equation in general. They are the existence and uniqueness
of a solution and the determination of a sdiution if it
exists. It is quite possible for such eqqgtions to possess
more than one solution. It is then feasible that approximate
methods might converge to a value which is not a solution by
oscillating between tﬁo genuine solutions. In certain
circumstances an approximate method might even converge when
in fact no solution exists. Convergence analysis is usually
difficult for these problems and the approach in solving them

will be largely empirical.

Baker {11] (p.686) maintains that the obvious numerical
methods for solving nonlinear equations are adaptations of
methods used 1in solving 1linear equations. Consequently,
nonlinear systems of egquations arise. Finding the solution
of such systems is well known to be a difficult task. See

for example Ortega and Rheinboldt [82], Collatz [73], Rall
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(14]. Such problems are not encountered in the use of

successive approximations.

Various conditions may be used which ensure convergence of the
method@ of successive approximations and also provide
theoretical bounds to the error incurred by terminating the
iteration at the R af.age. The following simple existence
theorem suffices to provide a majorant to the Neumann series of

the nonlinear integral equation ([56],
f(x)-g(x)+f:K(x,y:fty))dy, a<x<b:- (1)

(a) g(x) and K(x,y) are integrable, continuous and therefore

bounded in the range of definition, satisfying
tg(x)l <G, as<x<b, (2)
IR(x,y;z)| < M, a<x,y<b, (3)

and

{b) The kernel satisfies the Lipschitz condition
IR(x,y:;2,)-K(%,y;2,) I€ Llz,~z,]. (4)

Condition (3) additionally ensures that the solution is unique.

The successive approximations are defined by

f"’(x)-g(x)+J:K(x,y;f"'”)dy, (5)
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Beginning with
03
£ (x)=g(x) .

The solution is given by

€00 Lin £ (). o ®

This limit may be recast in the form

£ (x)=£'° "eo+Ere -t 1. (7)

Using inequality (4) yields

-1 -1 -2 ;
£ ey -2 (x) 1 Lf e on-e" )14y, (8)
whence
£ ) -t (x) 1< Lix-al" r=1,2,3,... (9)
oy -

may be obtained. If |x-a{<h then the series

F= G+ T (Mn)" (10)
r=1r!

bounds the solution. A bound on the error created by terminat ing

the series (6) at the R stage is given by

Eq(x) =1 £ (x)-£"" (x)l-r);.;f x)-£"" )

;E (Mh) - ()" exp(Mh). (11)
R+1
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2.4.1 SUCCESSIVE APPROXIMATIONS APPLIED TQ SOME
N VOL.TERRA INTEG EQUATIONS

This section compares the use of successive approximations with

a method to be found in Baker [11] on the two equations

£(x)=exp (X )-X+x exm%z)—d:y[f(y) 1"%ay (1)
2 o
=axp(x ), O<x<4,
(A0.2-1) and
' 2
£(x)=2-exp(x) +[ exp(x-y) [£(y)] dy (2)
=1 0<x<1.

(A0.2-2). Both appear in Baker [11]. See also Garey [57].

Baker [1ll] describes several variants of step-by-step methods
for solving nonlinear Volterra equations. They are similar in
detail to those described in section 2.3, with the difference
that now two quadrature schemes are necessaﬁy and will be
applied in an analogous manner to predictor-corrector methods
for the solution of ordinary differential equations. The
particular scheme given in [11] p.831, example (6-21) which was
devised by GCarey [57] will be used in comparisons with
successive approximations. Briefly, the interval [a,b] of
definition is subdivided into N subintervals of width h=(b-a)/N.
An initial value for the solution, f£{%1 at the points xh

(k=1(1)N) is found via the discretization
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£ Uxch) = (g (k) +Ew KR kh, 30 £ (3n) 1+E W kDxn an £(30)) (3)
j=0 Fae

k=1 .
=7, *C Wy K(kh, 3h:£(3h)), s,< k-1

j:gki-‘l

Iteration is then carried out at the point x,=kh until

convergence occurs using the egquation

£ (i) =, AR O, 3 £ (30)) sy (kh, e B 7 en) ), (4)

=8, +1 .
e r=1,2,...

The inclusion of 'r:k in (2) is made possible by arranging that
P
wk' -*W”, j=0,1,...,3k<k-l. (5)

w"“, (k=1(1)N,j=0(1l)k) are the weights for the "predictor"
formula and Wije (k=1(1)N,3=0(1)k) the weights of the
"corrector" quadrature. The actual weights for GCarey's

scheme are given by

a) k_even,
p p p p
W= AWy =Wy ™ Wi g™ Wi =Wy = 2, = 2w, m'%h '
4=1,3,5,...,k~1 and

(6)

5wm+1=w““=2h, W =0, whilst 2wkk,2-wkk_1-

4wkk=_g_h if k is sufficiently large.
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b) k odd,

p P p
AW 0™ AW ™ Wy kWi ™ Wi W™ Wi 1™ 2V, jﬂ-%h '

j=1,3,5,...,k-6 together with
(7)

p p p p
Wik-3 "‘%' Wick-2 "Wiie-1 "%h' W0 and "uk—s’%—%h '

wkk-z""kk-i":;wkk'% for ka3.
Again, rough estimates of the work involved in using either a
predictor-corrector method or successive approximations can
be made by comparing function evaluations or multiplications/
divisions. The number of function evaluations necessary for
the predictor-corrector methods is 3_N(N+l)+ERk compared with
N(l+£,§j)+1 for successive appxoximatz'.ions. ';:is assumes that

once a particular sdlution value has converged then all

kernel evaluations using that value are stored. The
multiplications .involved in each scheme are E{Zk—sh+Rk}-N
for the predictor-corrector scheme and (N+1)}N:Rk f‘:::: the direct
iterative approach. Carey's scheme in p':;ticular requires
16+%(N—4) (N+15)+?: R, multiplications.

k=1 -

In practice the modified step-by-step methods will be prone
to the same shortcomings as those described in section 2.3.
Solution values at points close to the initial point will be
difficult to calculate accurately as only low order
quadratures may be used. As noted before, the repeated rules
are also less accurate than those of Clenshaw-Curtis for
comparable numbers of quadrature points. This becomes even

more evident in the use of open predictor formulae since they




-42- 82.4.2

are in general less accurate than their counterparts of
closed type. The process of iterating to convergence in
"predictor-corrector® methods and restrictions arising from
stability limitations tend to dictate the need for a small
step size h. Consequently this implies that N must be large
and the methods therefore require many function evaluations

(see section 2.3).

2.4.2 RESULTS OF SUCCESSIVE APPROXIMATIONS APPLIED TO SOME
NONL INEAR VOLTERRA INTEGRAI, FQUATIONS

Results for the solution of the two eQuations (1) and (2) of
the previous section by successive approximations using
Clenshaw-Curtis quadrature appear in Table 5. Values of
N=4,8,16 were used and the solution initiélly computed over
the range [0,1). For comparison see Table 6 which contains
the results obtained using Carey's scheme ([57] with
N=4,8,16,32 and 64. It 1is apparent that even the
Clenshaw-Curtis 4-point formula produces respectable errors
and the 8-point formula achieves roughly the same order of
accuracy as the 32 or 64 point’formulae of Garey's method.
The solution for (1) over the extended range [0,4] was found
by means of direct iteration using the Clenshaw-Curtis
32-point formula. Relative errors were all 0(10™°) at worst
thoughout the range and the calculated solution was exact at
many points as it was at x=4. Considering that the solution
increases rapidly from 1 at x=0 to 0(10%°) at x=4 the
agreement is excellent. Carey's acheme still produced

inferior results using as many as 256 points.
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Table 5.

Results for direct iteration

x=0-1464466 x=0-+5 x=0-8535534 x=1-0

ﬁﬁ, R E R E R E R B

NG =4,€=1:-0(—-4
1l 2 | 8-0(-6) 3 | 6-2(-5) 4 | 3-1(-5) 31 7-1(-6)
2} 51 3-9(-6) 8 §| 4-1(-5) 10 3-9(-6) 9} 1-6(-6)
N D=8, ,e=1-0(=7)
1| 4 5-5(-10)]| 4 3:9(-9) 5 2:.0(-9) 4 5-9(-10)
2 8 2.-9(-8) |10 4-8(-10) |11 1-8(~8) (11 1-4(-8)
NGRID=16,€=1-0(~9)
1} 4 | 1-4(-11)| 5 | 1-1(-11)] 5 | O-0 ‘51 0-0

2] 7 3-8(-10)}10 7:-3(~-11)}1l1 1-5¢(~-10)]11 2-0(-10)

NGRID = Number of grid and quadrature points,

€ = Relative error requested. :

E = Relative error attsined. [R} [R"‘} [n]

R = Minimum number of iterations required to satisfy iy (x) ~fy %X} < €ty x|

Once again these results demonstrate the power of the successive
approximations approach. Further evidence of its suitability in
solving Volterra integral equations was obtained in the study of
the Lane-Emden equation [60,61). The original equation appeared

in the differential form

£ (x)+2£(x) +£Y (x) =0, £(0)=1, £(0)=0, (8)
X

where v takes real values. It describes the thermal behaviour of

spherical gas clouds in gravitational equilibrium [61]. The

equation ('6) was transformed into the integral equation
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Tabhle 6.

Results for Carey's Method

82.4.2

h 0-25 0-50 0-75 1-00
R E R E R E R E R E
. N=4,¢=1-0(-4)

1 5 1-2(~4) 6 1-5(-5) 7 1-1(-4) 7 9-1(-5)
2 16 2.-0(~3) 13 2-0(-3) 14 4-1(-3) 11 9-:0(-3)
N=8,¢=1-0{-6}

1 4 3-8(-6) 4 1-4(-7) 5 1-1(-6) 5 3-2(-6) 6 6-0{-4)
2 11 2-0(-4) 10 8-2(-5) 8 1-7(-7) 8 3-6(-4) 8 7-7(-4)
N=16,€e=1-0(-9)

1 4 1-2(-7) 4 9:6(-9) 4 7-0(-8) 5 2.0(-7) 5 3.9(-7)
2 9 2-2(~5) 6 6-0(-6) 6 1-3(-5) 6 2:-7(-5) 6 5-7(-5)
N=32,e=1-0(-9)

1 3 3:7(-9) 3 6-2(-10) 4 4-4(-9) 4 1-3(-8) 4 2-4(-8)
2 7 2-6(-6) 5 4?1(-7) 5 8-7(-7) 5 1-8(-6) 5 3:-9(-6)
N=64,€=1-0(-9)

1 3 1-2(-10) 3 4-1(-11) 3 2-7(-10) 4 7-8(~10) 4 1:5(~9)
2 6 3-3(-7) 4 2-7(-8) 4 5-7(-8) 4 1-2(-7) 4 2:-6(-7)

N = Number of quadrature points,

h = 1/N,

€ = Relative error requested.

E = Relative error attained, [R] [R-1] R

R = Minimum number of iterations required to satisfy lfN (x)-fN {(x)]< eifN
This includes tha predictor stage,

Ix)l.
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f(x)~1+j:x(y-x)f?(y)dy, 0<x<10 (9)
X

by means of Fubini's variation of parameters technique [62]
as described in Chapter 3. Simple analytical solutions are
available in the cases v=0,1 and 5. Numerical solutions for
other values of v may be found in [&0]. Of particular
interest here is the fact that comparison may be made not
only with standard methods for the solution of Volterra
integral equations but also with standard techniques for the
solution of initial value differential equations. The use of
direct iteration was again compared. with Garey's scheme in
solving integral equation (9). Additionally, comparison of
results was also macie with those obtained by solving
differential equation (8) by the powerfui Runge-Kutta

procedure.

In the linear case v=1, as many as N=512 (h=0-.0195) points
were used over the complete range [0,10] in the step-by-step
routine of section 3.3.3, producing relative errors of order
1077. The same order of accuracy was attained using Garey's
predictor-—corrector scheme on the nonlinear case v=5 with as
many points. The Runge-Kutta implementation required N=200,
(h=0-05) points to achieve relative errors of order 107 in
the linear case and N=400, (h=0:025) to obtain comparabie

accuracy when errors of 10 were realised.

In comparison, successive approximations required only very

few points. Using N=32 was sufficient to obtain errors of
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order 107" in the linear case and of order 10~® decreasing to
107 at x=10 in the nonlinear form. Convergance was
achieved after at most only 4 iterations in the linear case-
and 6 iterations for the nonlinear exampies. The number of

iterations in Garey's scheme was 3 at each point.

So even here where both a Volterra inte.gr:al equation solver
and powerful initial value differantial equation solver are
available, the present method comes into contention as a
pozsible alternative. It appears that this iterative scheme
can provide rapid and accurate approximations to the
solutions of Volterra equat ions whilst: requiring

comparatively very few function evaluations.

2.5 APPLICATION OF THE METHOD TO LINEAR FREDHOLM EQUATIONS
OF THE SECOND-KIND

The numerical scheme originally proposed in section 2.2 1is
directly aplicable to second kind Fredholm equations. The
scheme may be implemented with the additional simplification
that only the definite integration weights of El-Gendi [63]
need be used. Therefore only a comparatively small amount of
storage space is necessary. The rules associated with these
weights belong to the class J* for which the weights and
abscissae are symetrical about the mid-point of the range and
also belong to the class J* which denotes the set of rules
possessing only positive weights. Several useful results are

connected with this type of rule. The fact that
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B w1 B, =(b-a) '. (1)
=0 j=0
is ugeful in proving that guadrature approximations converge to
the correct values and providing error bounds. ( See [1ll1l]).
However the likelihood of success when coupled with the method
of direct iteration is restricted by the well known limitations
assocliated with the Neumann series of Fredholm egquations. In

general the equation

f(x)~g<x)+xjfxtx,y)fcy)dy | (2)

only possesses a convergent Neumann series for values of A

satiafying the condition

p =INUKI, <1 (3)

This condition imposes quite a severe restriction on the number
of Fredholm equations which can be solved by direct iteration.
Despite this disadvantage, condition (2) does benefit the method
in acting as a guarantee. If the condition is satisfied then the
method will always work. In contrast theory indicates that all
Volterra equations satisfying éonditions (2.3-7,8) may be
solved by successive approximationa. In practice some Volterra
equations exist which also cannot be solved by the method. For

example the equation

£(x)=13e -12-12 J:f (y)dy, 0<y<x<2 (4)
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1

with solution
f (x)=e*

satisfiea the condition and yet successive approximations
fluctuate so wildly that numerical calculations become

impossible. Starting with f{%(x)=1 for simplicity
£1 (x)=136"-12-12x, (5)
2
£1 (x)=13e"-12-12{13[e ~1]-12x-6x1,. .. (6)

Over the range [0,2] they take the highly oscillatory values
£L11(1/2)=3.4, £l21(1/2)=-1.76, £L')(1)=11.3, £l2]1(1)=-28-.7,
£011(2)=60-1, £f[21(2)=-336-6 and ensuing iterations increase
in magnitude until numerical overflow occurs before the true
solution emergea. Obviously, either successive terms in the
series must be bounded and tend to zero or they must cancel
out to give the correct soltuion. For equation (3) p=12v2
and the successive terms will be unbounded. The situation is
very similar to the calculation of e™ via its series

expansion for large values of x.

When condition (3) ias satisfied it will be seen that the
direct iterative scheme when coupled with Clenshaw-Curtis
quadrature as described in section 2.2 produces results in a
fast and efficient manner. The theoretical error incurred by

terminating the iterative process at the Rt" iteration may be
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bounded by
R+t -
IBq(x) I< Allgll, P, (6)
where A satisfies
2 2
J 1R, y) 1 ay<a, | a<x<b. (7)

2.5.1 GAUSS-SEIDEL, UPDATING FCR FREDHOIM EQUATIONS

From the practical aspect, implementation of Gauss-Seidel type
successive approximations for Fredholm eguations is exactly the
same as that described for Volterra equations in section 2.3.
However, due to the presence of definite as opposed to

indefinite integrals, certain subtle differences appear in the

analysis. The basic matrix equation (2.3.2-8)

£mgr(r +L+Lywet™, r=1,2,3,... (1)
still holds, but now
H = [wNjKlj] = [ijI]] ' i,3=0(1)N, {2)

]
=
[

where K is the matrix of kernel values and D is the diagonal

matrix of definite integration quadrature weights (3.4.1-4,5).

(1-p)
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I, takes the same form as before with the obvious modification to
the weights. The iterates of Fredholm equations are different
from those of Volﬁerta equations, not only because the weights
are fewer in number but also because the value for f(x,) involves
a quadratuie in the Fredholm case. This has the effect of
introducing successive terms into the gseries even earlier than
in the Volterra case. The second iteration already contains
several terms occurring in the third and fourth iterations as
well as some of the fifth iteration for the usual Neumann

series.

2.5.2 RESULTS AND COMPARISONS FOR SOME SIMPLE LINEAR TEST

EXAMPLES

The method of successive approximations has the distinct
advantage of being directly applicable to nonlinear equations.
One of the main aims of this thesis is to develop schemes
capable of solving such egquations. However in order to make fair
judgement of the method's merits many linear equations were also
solved. The results for a selection of Fredholm equations
solved by successive approximations may be found in Table 7.
Equations (1), (2}, (3). (5), (6), (7) of appendix A0.3 are dealt
with. The table includes relative errors achieved, the number
of iterations required and other relevant information. A was set
equal to 0+5 in those equations in which it occurred. This
ensured that it was within the norm bounds for each example. The
results were obtained by updating the solution in the

Gauss-Seidel manner described in the previous section.
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The Gauss-Seidel updating was also carried out by reversing the
order in which function values were updated. Similar results
were obtained. As predicted by the analyses of sections 2.2 and
2.5.1, Causs-Seidel updating has a more beneficial effect on
Fredhoim equations. However in certain examples a reduction of
as few as 4 iterations was observed whereas in others a far
greater saving could be achieved. Gauss-Seidel updating reduced
the number of iterations in example (7) which is Love's equation
from electrostatic theory [11] by 17 iterations from 25 to 12
iterations. There does not appear to be any way of predicting
which equations will be most amenable to this modification
‘although it appears from example 2 that when the series is alowly
convergent hecauge A is close to the spectral radius then it will
have least effect. Alternative modifications which overcome
this problem will be explained in Chapter 4. All the results do
however il_a'dicate that Gauss~Seidel updating should always bé
used. The figures appearing in Table 7 show that direct
iteration can produce the results to linear Fredholm equations
using a minimal nuﬁber of quadrature points and very few
iterations. The low number of quadrature points compares very
favourably with those required by many schemes used in the past.
Results in Baker [l1l] concerning Love's equation reinforce this
poiht. By using the trapezium rule only 3-figure agreement with
the true result could be achieved using 64 points. A scheme
based on the classical Romberg rule required 33 points to
deliver 4-figure accuracy and 65 to achieve only 5 figure
accuracy. These results were typical of the findings derived by
testing these schemes with the equations used in Table 7 and many

othera. Apart from the relatively poor results concerning
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Table 7

Results for Gauas—Seidel direct iteration

82.5.2

Xp X *2 X3 Xy
R E R E R E R E R E
nan. N=4,¢e=1-0(~4)
1 100 8 7-0(-9) 8 6-9(-9) 8 4-1(~9) 7 8-2(-9)
26 1:2(-4) 26 1:3(-4) 26 1-4(-4) 25 1-3(-8) 25 1-2(~4)
5 5:5(-10) 5 3-1(-10) 5 7-0(-11) 5 3-9(-11) 5 4.9(-11)
1 0-0 12 5-6(~9) 11 6-2(-9) 12 3-0(-9) 11 5-5(-9)
100 14 1-3(-3) 13 1-3(-3) 13 1.3(-3) 13 1.3(-3)
12 0-0 12 7-0(¢~9) 12 6-9(-9) 11 4-1(~3) 11 8-2(~10)
N=8,e=1-0(-7)
1 100 10 6:0 9 7-3(-11) 9 2-8(-11) 9 0-0
2 30 1-1(-10) 30 4-3(-11) 30 1-1(-10) 29 1-2(-10) 29 1-2(-11)
3 6§ 1-2(-11) 6 0-0 6 0-0 6 1-3(-11) 6 0-0
5 10-0 13 4-3(-11) 12 1-2(-10) 12 3-5(-11) 12 3-3(-11)
6 10-0 14 1-3(-4) 14 1:3(-4) 14 1.3(~4) 13 1-3(-3)
7 12 0-0 13 7-0(-9) 12 6-9(-9) 11 4.1(-9) 1l 8-2(-10)
N=16,€=1-0(~-9)
1 10-0 9 2.1(~-11) 9 1-1(-11) 9 Q-0 8 2-4(-11)
2 28 6-1(-10) 28 5-5(~10) 28 4-3(-10) 27 6-2(~10) 27 4-9(-10)
3 61-2(-11) 6 0-0 6 0-0 6 0-0 6 0-0
5 1 0.0 11 2-7(-10) 12 1-5(-11) 11 2-4(-11) 11 2-7(-10)
6 10-0 13 1-6(-5) 13 1-6(-5) 13 1-6(-5) 12 1+6(=5)
7 12 0-0 12 7-0(-9) 11 6-9(-9) 11 4.1(-9) 11 8-2(-10)
N = Number of quadrature points.
€ = Relative srror requested.
E = Relative error attained. [R] [R-1]

R = Minimum number of iterations required to satisfy ij {x)-fN

- (2]
{(x}] < t:'li"[q ng.

X = {{a-b)cos{iT+a+b)/2, i=0(1)4 where [a,b]=[0, 1]forall equationsexcept number (2) for which
{a,bE[0.7/2]7 Nota that !o(x)=9(x).
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equation (2) the only other equation to cause concern was
equation (6). It is not surprising however that as many as 64
points were required to achieve full figure accuracy since the

kernel contains a square root term which possesses a singular

derivative.

2.5.3 SPLIT KERNEL INTEGRAL EQUATIONS
Many Fredholm integral equations take the form

£x)=g () +] Ry (x,y1£ (y))ay+[ Ky (x,y: £ (¥))dy, (1)
where. K, and K, give the forms of the integral for asy<x and x<y<b

"respectively. Equation (1) has close connections with boundary

value problems. For example

£ =xsin(L)+(1-x) [ y£(y)aysxf (1-y)2(y)dy (2)

is the counterpart of the differential equation
£ (x)+£(x)=0, £(0)=0, £(1)=sin(l) (3)
and the kernel

K(x,y)=(1-x)y, 0<y<{x

=x(1-y), x<y<1l
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is the Green's function [16] of the parent differential equation

(3).
2.5.3.1 A MODIFIED NUMER]CAL SCHEME

Whenever the kernels K,(x,y) and K,(x,y) are defined for all
x,y in [a,b] it is possible to evaluate the integrals
occuring in (2.5.3-1) in a manner very similar to that
described in section 2.3.4 on the solution of integral
equations for the slowing down of neutrons. In this
instanced both integrals are calculated over the same
interval as x ranges through all the values between a and b.
Assuming that the usual linear transformations will be carried
out in order to map the ihterval [(-1,1] onto [a,b]: it is readily

seen that the associated general split integral

1-f ¥ (s)ds+[ e(s)as (1)
may be approximated by the sums

1 () g -E) (e (2)

where the wj(t) and t], 3=0(1)N are the weights and abscissae

(3.4.1-2,3), (see El-gendi {63]).

2.5.3.2 RESULTS FOR A SELECTION OF EQUATIONS

The equations which were solved are to be found in Appendix

0.3. They are (A0.3-14,15,16,20). N=8 was sufficient to
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ensure accuracy of all the quadratures to an accuracy of
order 107 or better in all the equations. The maximum
number of iterations required were R=23, 10 and 12 for
equations (14), (15) and (16) respectively to attain relative
errors O(107'9) whereas the successive approximations were
terminated after R=30 iterations in the case of equation
(20). An order of accuracy 107¢ had been achieved up to this
point. The rates of convergence are governed by the
magnitude. of the kernel norms but increased rates can be
achieved by the application of an accelerator to the Neumann
series (see Chapter 4). It will be seen that full figure
accuracy can then be obtained even in the case of equat.ipn

(20) after comparatively few iterations.

2.6 APPLICATION TO NONLINEAR FREDHOIM EQUATIONS

Many of the examples which have been tested are of the

Hammersatein type

£¢x) = K(x,Y)FIy: () 1y (1)
Tricomi [15] gives the following conditions which ensure that.
successive approximations converge to a solution of equation
(1). They are:-

-{i) the function

Azfo=J’:x2<x,dey (2)
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exists almost everywhere in [a,b] and is summable there;

(ii) the function F[y,u] uniformly satisfies the Lipschitz

condition
IF[yiu,)-Fiy:;u) i<C(y) lu;~u,|; . (3)
(iii) the function F[y,0] belongs to the class Ly.

Under these assumptions, the sequence of successive

approximat ions

f",(X)-I:K(er)F[Y:f,(y)]dy. r=1,2,3,... (4)

converges almost everywhere to a solution of (1) provided

that
j:A?(x)c?(x)dx-M?<1. (5)

By making use of the Lipschitz condition (4) and Schwarz
ineguality (2.1-1) it is easay to obtain an estimate of the

error involved in terminating the sequence at the r'" term. It

is

|£(x)~£,(x) | SCA(xX)EM*
k=r+1
(6)

=cA{x) M
(1-M)




cz-ngz[y;Ode. (7)

2.6.1 RESULTS FOR A SELECTION OF NONLINEAR FREDHOLM EQUATIONS

Numerous ‘nonlinear equations have been solved by means of
successiva approximations. Many of these equations arise from
physical problems for which solutions are not available in a
simple functional form. For these equations actual solution
values will be presented for various fitting degrees NGRID.
Whereever possible results from previous work will be
included so that a comparison of the number of figures in

agreement can be made.
Example

As a simple introductory example, equation (A0.4-7) was solved.
Using the free term as initial guess convergence to the solution
f(x)=x occurred in 17 iterations using a value of NGRID as low
as 4. The greatest relative error was 0(107'9). Gauss-Seidel
iteration had the effect of reducing the number of iterations by
1i.

Example 2

Equation (A0.4-8) is of the Hammerstein form (2.6—~1) and it can
be seen that condition (2.6-3) is not satisfied. Successive
approximations should therefore not converge and this is indeed

found to be the case. Nevertheless the use of Gauss-Seidel
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iteration did induce convergence albeit to the null solution.

Example 3

Similar considerations apply to equations (A0.4-9a,9b) which
are deriveable from the differential eguation for a chemical
reactor (equation (3.3.2-9)), [75,91]}. As pointed out by Lapidus
[75] serious numerical instabilities arise in its conventional
solution by "shooting™ methods, Fox [92]. As a result, the
equation has recieved considerable attention with a view to
overcoming these difficulties. For example, Pakes and Storey
{91] proposed a variational method of solution and presented
results in representative cases which are of interest for
compar ison purposes. In the more interesting case the integral
equations are nonlinear and in fact several forms are available
depending on how the original differential operator is
decomposed in its conversion to integral form. The method of
section 3.3.2 can be used and for example values of a=-3 and
b=1/2 did produce a convergent Neumann series. However Fubini's
variation of parameters technigue (Tricomi [15]) described in

section 3.3.4 is preferable.

Conventionally the original differential eqﬁation is solved by
the "“shooting" method [92], incorporating an initial wvalue
procedure such as Runge-Kutta. However, stability analysis, as
described by Lambert [86), demonatrates the presence of serious
numerical instability for large values of p. It is necessary to
integrate the equation backwards from x=1 to x=0 to obtain an

accurate solution. Even then, the step size has to be reduced to
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h=0:00625 in combination with about 8 "shota" to obtain nine
figure accuracy in f(x). The results of this conventional

solution of the differenial equation are presented in Table 9

for reference purposes.

Table 9
Runge—-Kutta solution of Eq. (3,3,2-9) starting at x=1

£(x)

X p=1 p=10 p=50 p=100
0-0 0-636784102 0-877469378 0-965175227 0-981426978
0-5 0-503903768 0-507475307 0-503092675 0:501721671
1-0 0-457588686 0-370512001 0-342481909 (-338054037

Step size h = 0-00625,

Number of shots (n)toachleve 9tigure accuracy ls n=8tor p=10, 50, 100and n=3 for p=1.
By way of comparison, calculations were carried out based on the
alte_rnative forms (A0.4-9a,9b) for the p values specified in
Table 9. As anticipated, serious convergence difficulties
arise. For example, the form (A0.4-9b), due to the presence of
the factor p 1in the kernel the sequence of successive
approximations diverges for all values of p. However the use of
Causs-Seidel -iteration does induce convergence at least in the

case p=1.

Some improvement is realised by selecting form (A0.4-%a) with
its more natural kernel. A measure of the convergence is

provided by the normwhich equals

k2 -'_2]= + _;._p_’- [1 - exp(—Zp)](tlpz)-1 (1)
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so that k varies between 1 as p~0 and 1/vy2 as p-~. There is
therefore the possibility of convergence for larger values of
p here, especially since some assistance is provided by the
presence of the term 2f%(y) with |f|<l. This prediction is
born out by the results depicted in Table 10 which
demonstrates the number of iterations required to achieve an
accutacylof 10" in the f(i) values for various values of p.
The starting point in each case was fl%=1, As predicted by
equation (1), there is a slight decrease in the number of
iterations reguired as p increases. However, the
compensating disadvantage.is that, because of the presence of
the term exp(—py) in the kernel of (A0.4-%a), the number of
quadrature points required has to be increased. Thus, at p=1,
8 Clenshaw-Curtis points are adequate for accurate numerical
integration, but, at p=100, the number has to be incrsased to

32. The automatic scheme D8 of Chapter 3 was used.

Table 10
Number of iterations (M) required
to achieve relative error €=10 Sin
the f{x) values,

p 1 10 50 100
M - 48 16 15

For smaller values of p the iterative sequence diverges and,
even at p=10, M=48 iterations were necssary to achieve the
specifiéd accuracy. Gauss-Seidel iteration did improve this

situation slightly.
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Example 4

This next example deals with a variant of the the H-equation
(A0.4-1), (see Chandrasekhar [71], Rall [14], Stibbs and Weir
[70]) and Baker {11]). The H-equation occurs in the .atudy of
radiative transfer in planetary and stellar atmospheres and has
as its solution the H-functions which were originally introduced
by Ambartsumian and later developed by Chandrasekhar. The

general form for this equation is

1
£(x) =1+ x£(x) [ #(y)If(y)dy ()
0 xty
where ¥(x) is usually a polynomial of even order in x satisfying

the condition

1 .
J,roax < 1 - (3)

The particular form solved refers to isotropic scattering in a
semi-infinite plane-parallel atmosphere where ¥(x) = A/2 and )
is the particle albedo. In their paper Stibbs and Weir [70] give
values of f(x) for A=0(0-05)1. Values for A=0-5will be given in
this section and results for higher values of A\ may be fﬁund in

Chapter 5.

Values of the solution (or re-lative errors) will be given for
the two endpoints and@ the mid-poiht of the ra.rige in each case
since these points which occur in the Clenshaw-Curtis scheme
are usualy the only ones to correspond to points in other

works.
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Results for equation (A0.4-1) are presented in Table 11 for
N=4,8,16,32. Results obtained from Stibbs and Weir's paper
[70] are also included.

Table 11 :
Results for the H-equation (AD.4~1) by successiveé approximations.

N: ¥ R X, R X, R X, R

‘4 1-09296377 6 1-18763202 7 1-23673213 7 1-25117995 8
.8 1-09325016 10 1-18773189 10 1-23683921 10 1-25125563 10
16 1-09325656 13 1-18773493 13 1-23684280 314 1-25125933 1i3

321-09325670 13 1-18773511 13 1-23684300 13 1-25125955 14
* —_— 1-187735 — 1-251259

-

N is the number of grid and quadrature points,

R is the number of iterations to attain convergence,
x,=cos(iT7/4), I=1(1)4 '

* Results in bottom line are from [70].

It is clear that even a quadrature of order 8 is sufficient
to produce an accuracy of six figures which represents a very
inexpensive means of the obtaining the solution. S8imilar
results were also obtained for the related equations
(A0.4-2,3,4). The numbers for .equation (A0.4-4) are the
inverses of the actual numbers obtained. All values were
obtained by using Gauss-Seidel iteration although this only
had a small beneficial effect, producing a saving of at most
three iterations. (See section 4.5.2 for quicker iterations

on equation (A0.4-1)).
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The final two examples demonstrate the use of successive
approximationas applied to integro-integral equations as

obtained in Chapter 3.

Example 5

In this example equat.ion (A0.4-11) is treated and results may

be compared with those obtained upon using the related form

Table 12
Results for the solution of equation (A0.4-11)
Xg X, Xq Xy
R E R E R E R E R E

1 0.0 13 6-7(-8) 7 1-5(-8) 2 1-8(-8) 8 00

N = Number of quadrature points=32

€ = Relative error requested=1{(~7),

E = Relstive error attained. [R] [R-1] (R

R = Minimum number of iterations required to satisfy "N (x)-fyy (x)[< €[ty Jx)l.
X = ((n-b)m;iryubuz, i=0(1)4 where [a,b]=[0, 12].

(AQ.2-8) which achieved equivalent accuracy with the same

number of points but at the expense of a maximum of 25

iterations

Example &
Results for the famous Blasius equation [25])

2£0(x) + £(X}£ (X) =0, £(O)=f '(0)=f '(0)-1=0 (4)
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are presented in Table 13. They were obtained from the use

of successive approximations applied to the integro-integral

Table 13
The Blasius equation solved a3 an Integro—-integral equation

N R X, R Xq R X, R

16 0-226884125 13 2-30575782 13 5-10770541 12 6-27924001 12
32 0-226884117 13 2-30575779 12 5-10770541 12 6-27924019 14
* e 2:-30576 — 6-27923

N is the number of grid and quadrature points.

R is the number of iteraticns to altain convergance.
xi=eos(|1rl4). i=1(1)4

* Results in bottom line are from Howarth [150].

equation (A0.4-12). It was found to be adeguate to let infinity

be x=8.

The results of the previous secktions reveal that successaive
approximations, when implemented in the vaxioué forms described
here is a very useful tool for the solution of many integral
equations. However the convergence difficulties associated with
some equations, especially those of Fredholm type has made the
search for alternative ways of using the ﬁlethod neccessary. The
findings of the subsequent research are contained in Chapter
4..Prior to this, brief information relating to basic theory
and numerical details of successive approximations and

subsequent methods will be given in the next chapter.
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CHAPTER 3

OME BASIC THEORY
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3.1 INTRODUCTION

In this chapter two main topics are considered. The first is
the link between ordinary differential equations and integral
equations which provides the source of many physical examples
for later chapters. Secondly the way in which quadrature and
interpolation formulae will be incorporated into numerical
schemes will be expiained more fully, since they form the
basis from which sachemes will be developed. Many of the
equations which have been solvéd involve L,-functions for
which an extensive theory wexists. This avoids the more
restrictive condition that functions be continuous (and hence
bounded), although at 1least piecewise continuity is
neccessary if automatic routines wich employ interpolation
are used. It also enables .one to employ the very useful

Schwarz inequality.

[_f:f(x)g(x)dx]2< f:fz(x)dx f:gz(x)dx. (1)

If the function f(x) is square integrable then its norm

W£H, must satisfy
2 2
itiy= £ (x)ax < F < = (2)

and similarly if the kernel K{(x,y) is to be such a function then

its norm {IK|l 2 must satisfy

IIKM: - f:f lK(x,y}lzdxdy €M o, (3)
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Because of the close connections of differential and integral
equations it will be of interest to attempt the solution of
problems in both differential and integral forms and to compare

the relative merits of either means of solution.

The next section gives ways of transforming differential to

integral equations.
3.2 ¢ ON OF DIFF T TO_INTEG EQUATION.

1t is well known that differential equations may be expressed as
integral or integro-differential equations [15,16,18,25}.
Problems which are expressible as differential equations can
therefore equally well be ?xpressed in integz.:-al equation or
integro-differential equation form. In the past, preference has
frequently been given to the differential equation option since
such a wealth of theory and methods of solving these equations
exists. However the integral equation formulation often gives
better insight into the nature of solutions and may also admit a
wider class of solutions to the prcblem. For example, the
differential equation for the position y of a particle at time €
after leaving the origin of coordinates and travelling at a

velocity V(t) may be written as

y(t) = v(t), y(0)=0. (1)
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The equivalent integral equation is

y(t) = I:V(sms. (2)

If Vwere the discontinuous function

V(t) = 1 0<t<ty,
(3)
=0 , t<t<T,

then the solution to equation (2) would be

y(t) =t 0<t<t,
(4)

= t, tict < T.

This 1is a perfectly acceptable solution to the original
problem but not to equation (1) since y(t) is not
differentiable at t=t,. Additionally, the process of
integration produces a beneficial smoothing effect which can
be particularly important when badly behaved functions are
involved. A further advantage is derived from the fact that
boundary or initial conditions are built into the integral

equation.

These points suggest that it could be advantageous to pose
problems in integral equation form. Some of the work in the
thesis will be devoted to discovering whether this form
provides a competitive alternative to solving problems via

the differential equation approach. Since many problems that
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one encounters in the literature already appear as
differential equations, it will be useful to possess
techniques for converting differential to integral or
integro-differential equations. Preferably one would like to
'obtain.integral equations in order to avoid the restrictive
properties of derivatives. Many methods exist for carrying
out this process, but a brief word of caution is necesﬁary.
. Careful analysis of the converted equaﬁion should always be

made. The simple differential equation

£'(x) = £2(x)+1, £(0)=0 (5)
gives rise to the integral equation

£(x) = x+J:f2(y)dy. (6)
The solution to these two equations is

f(x) = tan(x) (7)

which becomes undefined at x=m/2. If the range of definition
includes x=r/2 and the method used involves sampling the

integrand over the whole range then it will break down.

Differential equations may frequently be transformed to various
different forms of integral equation. This can depend on the
method used or the way in which the original differential
equation is decomposed. In certain circumstances the

decomposition may be arbitrary but in others, boundary
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conditions may dictate which decompositions are appropriate,
(see equations (14)-(24) and (31)-(34) in section 3.2.4 and
the accompanying text). Some methods fbr transforming
differential equations to integral equations together with

examples will be outlined next.

3.2.1 FIRST ORDER EQUATIONS

Equations of this type can be immediately converted by

‘integration of both sides of the equation. The equation

af (x) = K(x;£(x)) f(a)=A (1)
dx '

is equivalent to the Volterra integral equation
£(x) = a+[R(x:£(y))dy- (2)

3.2.2 EQUATIONS OF ORDER N WITH CONSTANT COEFFICIENTS

The notation F(D)f will be used to define the equivalence

F(D)f = (agD'+a,D" ++--+a _D+a )f (1)
n n-1
= aot_i_%+a,d__nt_‘+- -++a,_4f +a,. (2)
dx dx dx

The general n'® order equation will be written as
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F(D)E = Q(x;E,£,60.. ., £)
(3)
= Q(x:£")

where Q is a function, possibly nonlinear of x,f and its n
derivatives. Without loss of generality a, may be assumed to
be non-zero.The terms contained in equation (3) may be
transferred from one side to the other in order to facilitate
the transformation. The following two standard methods are

applicable {22].
i) Denoting the inverse operator by 1/F(D) so that

1l ‘P(D)£(x) = £(x) o (4)
F(D) .-

and factorising the operator F(D), yields

£(x) = _ 1 ._ 1 __.-..._1 _ Q(x:if"). (5)
(D-a,) (D-a,) (D~a,)

The operators 1/(D-a,), r=n,n-1, ...,1 are then applied in

turn to yield

£(x) = & [N, | ro 1 e o (xig yax?  (6)

It is possible to add the constants of integration to (6) but
it proves to be far simpler to find the complementary

function by inspection and so obtain the primitive.

ii) Alternatively 1/F(D) may be expressed as the sum of n partial




fractions

1 - N +_ N 4oy N (7)
F(D) (D_“1 ) (D_dz) (D—dn)

Hence

n -
Qy:£')ay + Eo;_x"" (8)
1 (n=3j)1!

n a, (x-y)
£(x) = [‘,ij:e !
=1

and the constants c, are obtainable from the boundary
conditions. Alternatively one can find the complementary

function and then calculate the relevant constants.

As an illustration of the use of methods i) and ii) consider the

equation,[65,91],

1df - af - R[£] = O (9)
pt? dx

with boundary conditions

£(0) - 14f =1, (10)
pdx x=0
ag = 0 (11)
dxi
and
Rif] = 2 £(x) (12)
or

R[f] = 2 £(x). (13)
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Equation (9) describes the material balance equatjion for the
fraction of reactant, £(x), remaining in a tubular reactor with
axial diffusion. p is known as the Peclet number and its size
greatly influences the ease with which solutions may be obtained
[(65). This equation will be studied in detail later in Chapter
5.

The ihtegral equations are derived as follows. Rewriting (9)

in the standard form'

dT + adf + bf = (atp) df + pR[f] + bf
d dx dx
(14)

= Q(x,£,£')

where a,b are constants to be chosen. Letting the roots of the
auxilliary eqﬁation be a and 8 the complementary function may be

written as

£(x) = Ae ™+ B - (15)

where A and B will be determined later. Method (i) produces

the primitive in the form
X - -
£(x) = Ae +Beﬁ"+e°°‘_|':e‘ﬁ “”’J':e B (z:£.2" Ydzdy. (16)

By changing the order of integration equation (16) becomes

£(x) = AeT 4B e 4 f;[e‘s“'”-e“"‘"’]g(y;f,f')dy . an

(B-a)
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which is exactly the equation that method (ii) would
produce. Noting that Q contains the derivative of f one may

integrate by parts to obtain
ax _ Ax ‘
f(x) = Ae +Be +_f;[K(fo){pR[f]+b}+W(x;Y)f(Y)]dY. (18)

where

Bix-y) alx-y)
) -8

X{x,y) = [ 1/(8-a) _ (19)

and

Bix~y) _ a(x-y)

W(x,y) = [Be ae 1/(8-a). (20)

Imposing the boundary conditions (10) and (11) one finds that

A and B satisfy the equations

A = g(§+p+a)eﬁ - (§+aHC+(g+a)D% ' (21)

(atpta) (B+a)e%¥-(8+p+a) (at+a)e

B = :p(a+ptg)ea— {a+a)[C+(p+alD] , (22)
(atpta) (B+a)e®-(B+pta) (a+a)e£

where

C = (sl )j; W(1,y)+{pRi{f1+b}+L(1,y){a+p}If(y)dy, (23)
-

D -2 )f;[xcx,y>+{pR[f1+b}+W(Ly){a+p11f(y)dy (24)
-

and
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2 Bix~y)} 2 a(x-y)
- @

L(x,y) =~ [B e 1. | (25)

The roots a and 8 satisfy the equations

@ = (-aty(a~-4b))/2, (26)

8 = (-a-v(a'-4b))/2 (27)
and

a+ 8 = ~-a, af = b. (28)

Far simpler forms may be derived from equation (9), but the
point of transforming (9) to equation (18) and Its associated
equations is that this exhibits a general decomposition and
subsequent transformation of the equation. The constants a
and b may.be chosen to aid in the convergence properties of
the method. (see section 2.6.1). Note that equation (18) is

nonlinear in f(x) even when R[f]=2f(x).

3.2.3 EQUATIONS OF ORDER N WITH VARIABIE COEFF ICIENTS

The differential equation takes the form

F(D)E = ag (x)D'£(x)+a,(x)D '£(x)+-+-+a_(x)E(x)
(1)
= R(x)
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where R and a, (i=0(1)n) are functions of x alone. Lovitt

[(17) uSes the substitution

g'tn-.-p(x) (2)
b4

and successively integrates to obtain the solution from the

integral equation

a(x)e(x)+[K(x,y)e(y)dy = o(x) (3)
where
n-1 :
R(x,y) =-jgu_na,.,<y) | (4)
and
n n=1 j-i

®(x) = R(x)-La(x)Lc,_

(5)
j=1 i=} (j 1)! '

The conatants c, are the constants of integration to be obtained

from the boundary conditions.

The solution follows from the equation

n-1
J ‘
tx) = _1_ [x-" e(Nay+L £ ¢ (6)
(n-l)! =0 j!
which is the result of integrating (2) n times. As an
example consider the Lane-Emden equation ({60,25,90] which

describes the thermal behaviour of spherical gas clouds in

gravitational equilibrium.
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g_":f; 28L + £ (x) = 0 o
d x dx
where
£0) = 1, df| - o (8)
dx k=0

and the choice v=]1 is made for illustrative purposes.

Substituting 42f/dx?=p(x) produces the equations

dat = [o(y)dy + ¢, , (9)
dx o
£0x) = [ (x-y)o(y)dy + cox + o, (10)

By using the boundary conditions and substituting terms into

the original differential equation one obtains the equation
2
e(x) = ~1-1 [ (x -xy+2)e(y)dy. (11)
x

Limitations in this approach are at once apparent. Equation
(11) still needs to be evaluated once equation (10) has been
solved and if v>1, then a non-standard form of nonlinear
intégrai equation will result involving unnecessary extra
computation. A far better technique is that attributed by
Tricomi [15] to Fubini (see also [22] and Bellman[107]). This
method creates integral equations using Lagrange's technique

of variation of parameters.
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3.2.4 A METHOD BASED ON VARIATION OF PARAMETERS
Given the differential equation
n n-r
F(D)f(x) = La(x)d £(x) = R(x) (1)
=0 dx"

where R and {ar(x')}, (r=0(l)n) are functions of x, the first
step is to rearrange the equation so that the complementary

function for part of the equation can be found analytically.
Suppose that the form

n n
ra(x)d £(x) = LB (x)d T(x) + R(x)
=0 dx"f =0 ax™™

(2)
- Q(x:£'), Ag(x), Bgx)#0.

has been obtained for which the general solution to the

homogeneous equation

n -r
LA (x)d £0x) =0
r=0 I 4

(3)
dx"

may be found explicitly in a simple manner. Let {e; (x)1.

(J=1(1)n) be n linearly independent solutions of (3). In

order to find the solution of equation (2) one then assumes a

salution of the form

n
£(x) = Ec,(x}v,(x) (4)
=1

where the functions cl(x), (j=1(1)n) will be chosen in
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accordance with certain conditions. On differentiating (4) n

times and imposing the conditions
"oy, 'r )
Lc(x)w(x) =0, r=0(1)n-1, (5)
=1

substitution of the resulting - expressions for f£"(x),

(r=0(1)n) into (2) produces the additional equation

n L} - 1
Lc, (x) e, (x) =Q(xif')/Ag(x). (6)
=

Equat.ions (5) and (6) may conveniently be sxpressed in matrix

form as

e(x) e’ (x) =g(x;£") . (7)
where

| (1) |
¢”(X) =¥ {x), i=0(1)n-1, (8)
3=1(1)n,

e (%) = [c)(x),6,'(x) .. cp (x)17, (9)
and

a(x;£') = [0,0,...,0,0(x:£")/Ay(x)]7. (10)

Since the functions \o](x), (j=1(1)n) are linearly independent,
their Wronskian is nonvanishing. The system (7) may therefore

be solved uniquely for g' . Thus

g (x) =& () a(x:t’). (11)
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Iftﬁ(&)'dr j=1(1l)n, then the system of differential equations
(11) may be converted to the system of integro-differential

equations -

etx) =g+ [ ¢ (v)atyit"ray (12)

If ¢(x) is the vector of linearly independent éolution values
[p,(x),@b(x),...,wﬁ(x)]r, then the solution to egquation (2) is
obtained by taking the inner product with c(x) given by (12).
The differential equation (1) is therefore equivalent to the

integro~differential equation

£(x) = c(x)-wv(x)
(13)

= [g+ J:g“(r) g(y:£')dyl e(x)

In practice, it is frequently possible to transform (13) into a
pure integral equatiqn either via integration by parts or by
solving a set of simultaneous integral equations for the
functions ch(x),(jaﬂ(l)n). The following simple example

illustrates these points. Consider the equation
£"(x) + 2£(x)f (%) = 0O, £(0)=0, £(12)=1. (14)

If equation (14) is decomposed in the form

£7(x) = -2£(x) £ (x) (15)

then two linearly independent solutions of the homogeneous

equation
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£"(x) =0 (16)
are f,(x)=x and £,(x)=1. Upon trying a solution of the form
| £(x) = c,(x)x + c,(x), (17)
o
\
‘ differentiating twice and imposing a condition equivalent to
\ conditions (5) one obtains
£'(x) = c,(x) (18)
together with
L} [ ]
Cy (x)x+ca(x) a (19)
and
L} ] -
£ (x) =c,(x), (20)
or equivalently
c, (x) = ~2£(x) £'(x). (21)

Integration of egquations (19) and (21) and the appropriate

substitutions in (17) produces the integro-differential

equation

£(x) =5+ 21;2xtx,y)r;cy)f'(y)dy. (22)
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where

K(x,y) = (1-x/12)y 0<y<x,
(23)
= (l-xy/12) x<y<12.

For this particular problem a pure  integral equation may be
obtained using integration by parts. This may be done either
directly to equation (22) or to equations (19) and (21) and

repeating the above process. The resulting equation is
2 12 2
£(x) = x+[ 1x-11£ (y)dy+x [ £ (y)dy (24)
127912 12X

Certain differential equations do not yield
integro-differential equations which are “amenable to

integration by parts. The equation
£7(x) +E(X)E" (%) =0,  £(0)=f'(0)=f (®)~2=0 (25)

which is a version of the Blasius equation [25,147] occurring in
boi.mdary layer theory provides such an example. A means of
overcoming this difficulty is to solve the set of
integro-differential equations corresponding to the equations
(11) by substituting for f and its derivatives in terms of the
functions cl(x), (j=0(1l)n). Referring to the previous example,
equations (17) and (18) can be substituted into equations (19)

and (I21) to produce the system
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c,(x) al__LZ-;fK(y;chz)dy + Zf‘:W(y;c,,cz)dy,

6 o]
(26)
Cp(X) = Zf:K(Y;c1,c2)dy.
where
K(YFC1:C2) - Yc1(Y) [Yc1(Y)+cg(Y)] (27)
and
Wyieyep) = (1] e () [ye,(y)re(n)]. (28)

Once values for c,(x) and c,(x) have been found they may be

substituted into (17) to obtain the solution.

Yet another alternative in solving integro-differential
equations involves the creation of a system of integral |
equations for the derivatives of the solution [119]. Take an

m? order integro-differential equation in the form

£(x) = g(x>+ﬁx(x,y:f(y),f'(y),....f‘""cyndy. (29)

Then upon making the assumption that both g and K possess
sufficient derivatives with respect to x in the region of
definition, one may form the following set of m+l integral

equations
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£%hx) = g X it £ T eney. 30)

This system may then be solved for the unknowns f£{/)(x),
j=0(1)m, thus yielding the solution to the original problem
£(0)(x)=f(x). Methods for the solution of systems of integral
equations occur 1in Chapter 7 where comparisons are made

between various means of solving problems.

The preceeding paragraphs illustrate various options which
may be employed in effecting the transformation of a
differential eguation. The particular form which is finally
obtained may be dictated by the equation itself. The

equation (14) is an approximate form of the equation

£ (x) + 2£(x)£'(x) = O, £(0)=0, f(w)=1 (31)

whose solution is f(x)=tanh(x). Clearly the form of solution
chosen in eguation (17) would not fit the boundary condition
f(=)=1. A different decomposition of the original equation

therefore becomes necessary. The form
£ (x) + £'(x) = £'(x)(1 - 2£(x)) (32)

provides a suitable starting point, since the complementary
function to the left-hand side of (27) suggests a trial function

given by

£(x) = A(x)e  + B(x). (33)
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The integral equation resulting from this approximation is,

X y-x 2
£(x) = 1-e + [ & [£(y)-f (y)]dy (34)
which fortuitousaly turns out to be a Volterra equation.

Many other differential equations are defined over an infinite
range. If the boupdary conditions at infinity prove difficult
to build into an integral equation, then an alternative might be
to assume that the limiting values are attained at some finite
point x = X. An integral equation can then be created which
contains the wvariable X. Solutions teo the equation with
increasing values of X are then found until successive values of
X produce the same solutions. This approach will of course only
work if the contribution to the integral over [X,=) which has

been neglected is indeed negligible.
Take for example the simple equation
£ (x) ~ £(x) = O, f(O)-i, £ (=)=0. (35)

On replacing the condition at infinity by a condition at some

distant point b so that f(b)=B the integral equation

X b
£(x) = [1+(B-1)x]+[x-1] J‘oy f(y)dy+x[ [y-11f(y)dy  (386)
b b X p

may be obtained. If one then assumes that £(x)=»B=0 for all b > X

one obtains the equation
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£(x) = 1-x+(x-11 [y £(n)dy+] [x-11£(y)ady (37)
X X * X
which can be solved for increasing values of X.

In concluding tha sections on the conversion of differentia.l to
integral equations, one further process will be mentioned.

Reference is made to Ames [25] p.118.

3.2.5 THE CONSTRUCTION OFP INTEGRO-INTEGRAL EQUATIONS

In t_:he previous section reference was made to the Blasius
equation where it was mentioned that unless one resorts to the
solution of a 'system of integral equations, then only an
integro-differential equation is obtainable from the original
differential form. The beneficial smoothing effect of
integration has already been alluded tc and Ames presents a
method which introduces extra integrals into the converted
egquation, rather than derivatives in order to maintain these
advantages . The resulting equations may be regarded as
integro-integral equationsa. This technique can be employed if a
pair of d-ependent {rariables involving the solution and its

derivatives satiafy a relationship of the form

& £(x) = Fra’f(x), x] 0<g<p. (1)
dxP dx9 |

Both the Blasius equation and equation (3.2.4-31) satisfy
(1). In order to achieve the desired results one integrates

equation (l) p-q times. This yields
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q o B o S B
af) = f [ -J e

dx?
' (2)
. PG -
T A -1
=R IS TY
= _ 1 )T Vrid e, ylay+
(p-q-1)1"° dyd
(3)
Pq -
EA] x‘ !
=1 (3-1)¢

The boundary conditions may be used to find the constants Al'
Once eguation (3) has been solved for d9f/dx? , the solution
f(x) may be found by a g-times repeated integration. Consider

egquation (3.2.4-31) for example. This can be written as

ae'/e'= -2f. 1)
dx

Whence
£'(x) = Aexpc—zj';f(y)dy). (5)

The constant A cannot be obtained until the next step.

Integrating once more from O to x gives
f(x)-AJ:exp(-Zsz(g)dz)dy+B O (8)

and imposing the boundary conditions yields

£(x) -fgexp(-z_[:f(z}dz)dy . (7

[oexp(-2f2£(z)az)ay
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The solution to equation (7) is most efficiently obtained if
the infinite integral is evaluated in two parts over [0,x]
and [x,) since the first integral comprises the

numerator.

The solution to the more interesting Blasius equation is

derived in a similar way and can be shown to take the form

f(x) = 2Jatx-y) expl-[g £(z)dz]dy (8)
Joexpl-[h£(z)dzldy

These integral equations can be conveniently solved by the

method of successive approximations. (See section 2.7.3).

These techniques for generating integral equatiof;s were used in
the thesis for finding convenient examples with alternative
methods of solution for comparison. Because of the advanced
development of ordinary differential equation methods, it would
not be envisaged to make such a conversion of an initial value
problem. However, boundary value problems may well be more

easily solved as integral equations than as differential

equations.

Before concluding this chapter some of the underlying
quadrature and interpolation for the numerical schemes is
outlined. This work is used repeatedly in later chapters and

results in the construction of suitable discretizations.
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3.3 QUADRATURE AND INTERPOLATION STRATEGIES

The basic numerical devices required in solving integral
equations will be quadrature rules, interpolation formulae and
methods for solving sets of linear equations. The need for
quadrature rules is obvious and methods which reduce integral
equationa to sets of linear equations, such as expansion
techniques and the basis set approach clearly need a means of
solving them. It is hoped to develope automatic schemes for the
solution of integral equations in the sense that the method will
take account of the behaviour of the various functions involved
in the equations. It will be seen that interpolation is a useful

tool in this connection.

All numerical schemes for the solution of integral equations
involve discretization of the equation in some form and are
therefore related to the original schemes proposed by Nystrsm |

{7]. The general Urysohn equation of Fredholm or Volterra type

£(x) = g(x) + [ R(x,yi£(y))dy (1)

where the upper limit of integration takes the appropriate value
may be approximated by

N .
£a(%) = GO +TwW () K(x,X;i fy(x)), 1=0(1)N.  (2)
=0

in its simplest form. The integral in equation (1) has been
replaced by a quadrature rule of order N and possessing

weights wi(x)). The general quadrature depicted in (2)
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depends on N}l‘weights and abscissae since the subscripts run
from 0 to N. The Clenshaw-Curtis rule is of this type but
other rules such as the Patterson rules depend only on N
weights and abscissae. In order to avoid complicated
explanation both types of rule will either be said to be of
order N or be N-point rules, it being assumed that the reader
is aware of the differences. If equation (1) is of Fredholm
type then only the weights wﬁxN), (3=0(1)N) will be used.
I£ it is of Volterra type then the subscript i need only run
from 1 to N. The approximate value of the solution is denoted
by the addition of the subscript N and the value of the true
solution at any point x;, (i=0(1)N) is given by

-

f(xi) - fN(x|) + EQ(NrarerN) - . (3)

Here K, signifies that the kernel K contains approximate
values of the solution and E, denotes the quadrature error
which depends on the quadrature order N, limits of
integration a and X (which might be the fixed limit b or the
variable limit x, depending on the type of equation) and of

course KN .

3.3.1 CHOICE OF QUADRATURE RULE

Choice of quadrature rule depends on numerous factors. On
the one hand simplicity might be a desirable property. Rall
[3] for example uses the simple technique of Riemann sums in
solving certain integral equationa. Alternatively, the need

for high accuracy might lead one to use Gaussian guadratures
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[2], whereas the .desire for a progressive routine might
suggest the use of the Clenshaw-Curtis integrator [4]) or the
pseudo—-Caussian quadratures of Patterson [5]. Special
properties of the integral equation will also govern the
choice. The problems caused by singular kernels may be
‘alleviated in some instances by the use of suitable weight
functions. If a Volterra equation possesses a kernel which
is riot defined for y » x as in the case K(x,y) = 1ln{(x-y) then
it is necessary to employ a rule which samples the integrand
only in the range [a,x]. This is easily done of course by
performing definite ‘integrals over this range, but then
quadrature abscissae required in any two intervals [a,x,] and
[a,x,] in the evaluation of the solution at the points x, and
X, will not generally correspond to points at which the

solution has already been upcdated.

Step-by-step methods (see [11l] and also comparisons in the
next chapter) employ repeated rules to overcome this problem
but the order of such rules is usually low, thus requiring

large numbers of points to obtain reasonable accuracy.

The development of automatic routines which are adaptive in the
sense that they will adjust to the behaviour of the functions
involved makes the use of progressive rules such as those of
Clenshaw and Curtis or Patterson advisable. Ideally such schemes
would be able to evaluate int;.egral equations more accurately and
efficiently by being able to concentrate update points in areas
where functions are badly behaved and use less points in areas

where the functions are smooth. It certainly seems possible
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that greater accuracy can be obtained, but due to the overheads
involved in deciding whether and where complications exist, it
seems unlikely that greatér efficiency can easily be achieved.
For the sake of high accuracy it is considered to be acceptable
that efficiency should be sacrificed to a certain degree.
Fortunately the two progressive rules which have been used
extensively throughout the research possess a high order of

accuracy {6].

This quantity is measured in terms of a quadrature rules'’
ability to integrate polynominalas of a certain degree. The
highest degree for which the gquadrature error can be made
zero is the order of accuracy. The Patterson rules [5] have an
order of accuracy (3N+1l)/2 which is comparable to the order
attainable with true Gaussian formulae for which.the order is
2N-1 for an N-point rule. This is especially so for low values of
N (N=3,7,15) which frequently prove to be adequate in evaluating
accurate integrals. This fact certainly aids in producing

efficient schemes.

The Clenshaw-Curtis rules [4] prove to be more accurate than
their order would suggest and O'Hara and Smith [49] have shown
through extensive tests that these rules are nearly as accurate

as Gaussian quadratures.

The progressive property of these two sets of rules is also a
very valuable asset since this minimises the number of new
integrand evaluations necessary whenever the quadrature order

needs to be increased. The points which have already been
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used simply interlace with the points for subsequent values
of N. Tests have indicated that Patterson's rules are usually
marginally more accurate than the Clenshaw-Curtis quadratures
for compérable numbers of points. They do however not possess
good error estimaﬁes like the Clenshaw-Curtis schemes ([4],
(49]) and more computation is often necessary to check accuracy

than in the latter rules.

Equations (A2-1)-(A2-9) involve considerable computational
expense. Fortunately the series involved in these equations
may be summed in an alternative manner to produce a
~quadrature formula in the standard form,

N
Lixi£) = [* £(y)ay = Dw(x) £(x)) - (1)
j=0

where x; =-cos(j7/N)., j=0(1)N,(see El-gendi [63]). Note that
the Clenshaw-Curtis rules can be used to evaluate indefinite
integrals in the sense that sample points are used which lie
outside the range of integration {a,x] but withiﬁ the total
range of definition of the equation [a,b]. This proves to be
a very useful device in many schemes. Pétterson'a rules do

not possess this facility.

The general form of the weights wj(x), 3=0(1)N of the
Clenshaw-Curtis rules is
N-2

D)
wi(x) = LEELIT (x)-(~1) J[T,(%)-Tp . (%)]+
j 5 k k-10%) ~ 3 (X

J
1 [Ty ,(x)+1])[T, ,(x)-(-1) ]+ (2)
(N-T) N-1 n-2(% >




-94- 83.3.1

|
AT (x)-1)T 4 (x)+__1 [T, ,(x)+1](-1)}
N N N-1 f Z(NFL) N+1
and

Wo(X) = wy(x) =

(3)

1 {fTN-‘! (x)+l]+[TNﬂ(X)+l]+[TN(X)—1] }.
2N {N~1) (N+1) N

The weights for definite integration take the much simpler form.

N/
w; (1) = i[‘.?. l__cos2ikw , 3=1(1)N-1 (4)
Nk=01-4 N
with
W,(l) = wy(l) = . (5)
) N ﬁ%—l

In the solution of Fredholm equations possessing Green's
functions it becomes necessary to evaluate integrals of the

form

Lexit) = f£(y)ay. (6)

By noting that the simple substitution u=-y, produces the

equivalence

L(xif) = [Ce(udu = [TF(y)dy = I,(-x:f) (7)

where F(y) =f(-y)., it can easily be verified that the weights

w;'!) associated with the integral I, and the weights w,/?) used
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in evaluating I, saﬁiafy the following useful relationship

w2 (x) = W (%), §=0(1)N. (8)

It is therefore not necessary to calculate a new set of
weights. Since x will usgally correspond to the gquadrature
points xj=-cosinm/N, (i=0(1)N) it is economical to store the
(N+1)xN arrays of weights corresponding to these points thus
eliminating much df the computational labour required in the
original scheme {4]. The coefficients used in the error
estimates do still need to be evaluated but this requires

only a relatively small amount of work.

3.3.2 CHOICE OF INTERPOLATION FORMULAE

The Lagrange interpolation formulae (A3-2)-(A3-4) and the
"Fourier-Chebyshev series (A3-6)-(A3-9) will be used in
programs. The Lagrange scheme is particularly useful if the
data points are irregularly distributed within the range of
definition, but it should be noted that the Lagrange and
Chebyshev expansions are identical for the same set of data
pointa. According to Elliott [32] the formula (A3-6) has a
small theoretical advantage over (A3-8) when the Chebyshev
series converges slowly, and sometimes if the interpoland is
even or odd. It also has the practical advantage that the
matching pointas for degree N are alternate points for the set
using degree 2N. Since the intermediate points corresponding
to degree 2N are known it proves economical to adopt

El-gendis’ philosophy [63] of storing appropriate
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By combining (A3-6) and (A3-7) and neoting that the points at
which new function values must be found are the points

x‘=c03(25+l)v/N, 8=0(1) (N~-1) it ims easily shown that

N N
f(x) = g}:'f(yj)}:'cosj_kg cos (2s+1)kr, s=0(1)N-1 (1)
N =0 k=0 N 2N

where yj=cosjn‘, (3=0(1)N). Equation (1) can be concisely

written in the form
N'
f(x) =L ¢;;£(y)- 8=0(1)N-1 (2)
=0

where the coefficients Cq,jr (j=0(1)N) take the appropriate form

from (1). Use can be made of the identity

N
E'coajA = 1lsinNA cot A (3)
=0 2 2

in order to evaluate the coeff icients. Thus

N .
G, = 2L cos jkm cos(2s+l)km ,  s=0(1)N-1,
' N =0 N 2N
J=0(L)N, (4)

= (=1)"Tcot (2(3+8)+1} 7 —0ot {2(§-8)-1}7].
2N N AN

The coefficients ¢, ; may be stored in order to make evaluation of
(2) more economical. Identity (3) may alsoc be used to reduce the

computation involved in interpolating for f at a general point

x. If é=cos™'x then the formula (A3-6) is equivalent to
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£(x) -.aMnH_E:( 1) f(xk)[cotl(k_+9) cotl(kn-0)}. (5)
2N ko0 2 N

interpolation becomes necessary when insufficient values of
- the inte.grand have been evaluated in order to produce an
accurate integral. Supose for illustrative purposes that up
until the ¥ iteration N quadrature points have been
sufficient to calculate accurate integrals, but at this stage
the iterates become too complicated and a quadrature order 2N
is deemed to be necessary. Four possibilities present
themselves. i) Either one uses the integral equation with
guadrature order N to find the intermediate values of the r'"
iterate, or ii) one can evaluate the ™ iteration with
quadrature order N and then interpolate the resulting values,
iii) Alternétively cne can interpolate the integrand
containing the (r-1)" iterate and then reevaluate the
‘integral or iv) one can interpolate the (r-1)¥ iterate and
then calculate the corresponding intermediate integrand
values prior to integration. The first two choices cannot
bring about any increase in accuracy at the " iteration.
This only occurs at the (r+1)¥ iteration. However they do
not waste any of the integrals which have already been
evaluated, as must be the <case for the second two
alternatives. As long as the values so produced remain
within the region of accessibility of the solution,
subsequent iterations will converge more accurately to the
correct values". Of the two, the second choice 1is to be
preferred since it is meore economical. The third choice

should never be used since it involves more work even than

the firast alternative and it also cannot produce increased
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accuracy of the r"™ iteration. To see this consider for
example the Clenshaw-Curtis formulae (A2-2)-(A2-9) applied to

the integral

1= f ey : (6)

Suppose that the set of integrand values f(cosim/N),i=0(1)N
has been augmented by the set of values f(cos(2s+1)w/2N),
s=0(1l)N-1 using equations (2)-(4) of this section. Let the
coefficients relating to orders N and 2N be afMl, (i=0(1)N)
and a[f?l, (s=0(1)2N), respectively. Similarly 1let the
integrand values be £INl and £I2NI. 1t is clear that

o .
N} _ pE2NT i=0(1)N, s=2i. (7)

fl s
The remaining values of £[2N] are found from the interpolator.
Thus

N
2N " N
f.[ 1. r aa[ ]cosksm, I=1,3,...,N~-1. (8)

k=0 2N

The coefficients al?M] required in the quadrature of order 2N

are calculated from the usual formula

2N 2N, [2N
al™ . 1p"e ™M eossan s=0(1)2N. (9)
N J=0 2N

Their actual form may be expressed in terms of the alNl,
(i=0(1)N) as the following succession of equations shows.

Equation (6) is egquivalent to
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2L 2N
al ,;[zwf[ Meossan +5 "™ cos san) (10)
N J=0 2N =1 2N
[N] Rty N
= l(E £ cosain+ ) {E a; ‘cosiJm}cossinm ] (11)
N j=0 N Js1 =0 2N 2N
- l[z f COBSjﬂ+
N j=0 N
(12)
N { ]2N N
L a (L cosgdnm cosidm- E cosijmcossin}].
i=0 J=0 2N 2N =0 N N
Let
2
S,n{i,8) = L cossdrw cosidy {(13)
J=0 2N 2N '
and
N, :
8y(i,s8) = Lcosiir cossir . (14)
j=c N N

The orthogonality relationships for sums of cosines [4]

indicate that
S,_N(i,a) = 0 ' i#l, (15)
= N i=g=0 (or 2N), {16)

- N i=s#0 (or 2N), (17)
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8y(i,s) = 0 ing, (18)
= N i=s=0 or N, (19)
=N i=s#0 or N. (20)

2

If 0<s<N, then substitution of equations (12)~(17) into (9)

shows that

N
al?™M o QM 0<asN, (21)
2N N
all - %‘N’. (22)

If 8>N then one may write s=2N-k where 0¢(k<N, so that equation

(9) becomes

N N
a, ) = 115"t M conikz ~ £"a s (1,%) ]
N j=0 N I=0
(23)
= 0 .

The resulting quadratures of orders N and 2N Qill therefore be
identical. The choice therefore‘lies between options ii) and
iv). Option ii) only has the effect of delaying the calculation
of more accurate values until the next iteration and so its seems
sensible to take choice iv) provided that less than half of the
quadratures have been evaluated before an increase in order is

deemed necessary. Otherwise a great deal of computation will

have been wasted.
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The policy to be adopted in automatic routines will be to attempt
the initial calculations with a minimum number of grid points at
which the solution will be updated. If necessary this value will
be increased until all points can be evaluated to the desired
accuracy. Any calculations which require fewer quadrature

points can be carried out by selecting only intermediate points.

3.3.3 DISCRETIZATION STRATEGIES

This section describes the various configurations of points at
which the functions involved in an integral equation will be
evaluated within. its domain of definition. Various schemes
will be shown explicitly and their titles will be denoted by a D
followed by a number. Some designs correspond to standard
arrangements of points. The discretization D1 for example is
of the saxné pattern as that used for the clasgical Nystrc;m
method [7,8], in which the solution is evaluated at the
abscissae used in calculating the integral. The exact Qlacing
of the points depends on the quadrature rule but the Qene'ral
form is the same for all schemes. In many examples treated by
succeasive approximations it will be seen that the use of
Gauss-Seidel updating proves beneficial. The Causs-Seidel
immplementétioh of D1 is given as an illustration. See scheme
D1G. This modification of more complex schemes is cumbersome
to display in algebraic terms and will therefore not be included
in subsequent schemes. However, the computational
implementation is just as easily carried out as in DIG.
Wherever possible the configurations of points will be

described in algebraic terms but later designs are intended for
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automatic routines which become complicated to illustrate in

this way. They will be given in the formof flowdiagrams.

Since most methods of solution 'will be iterative} an
iteration counter r will be placed on the approximations to
the solution. £[") denotes the r'" iterate of the solution £.
In order to signify that wvalues of the solution are
approximations obtained from the use of a quadrature rule or
"introduction of an interpolator, subscripts will be used. In
either case a summation of say N+l terms will be iﬁvolved. N
will either signify the quadrature order or be eguivalent to
the degree of the interpolating polynomial. If the
particular value of the solution is being or has been derived
from a quadrature then N will be further subséiipted by the
letter Q and if from an interpolator then the subscript 1
will be used. A glance at schemes D1 and D3 makes the use of
these subcripts clear. Thus in D1, N, signifies that a
quadrature of order N is being used to calculate t}pdated
values of the solution f. 1In scheme D3 a gquadrature of order
2N is used so that the subscript of the r+1"M iterate is 2N,.
The integrand involves function wvalues from the r'® iteration
which are calculated using a quadrature of order N, hence the
terms carrying the subacript N,. The intermediate values are
obtained by interpolation on this set and therefore carry the
subscript N, If the interval of definition is subdivided in
order to find values of f then the notation fy, will be used
and ié meant to convey that a sum of quadratures is necessary

to obtain the approximate value of f. 2Abscissae will be
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denoted by x, (i=0(1)N). Points will be ordered from left to
right so that for a closed guadrature rule used over the
interval [a,b], x,=a and xy=b. Any remaining details will be

elaborated as they occur.
Dl

This is the most basic configuration that will be used in which
the solution is evaluated at points corresponding to the
abscissae of the quadrature rule. The approximate egquation
takes the form

fr+1] N -
fN (x;) = g(x|)+gwj(x;)x(xirx‘r (xj) )r 1=0(1)N. (1)
Q =0 Q

where {wj(x)}, (j=0(1)N) are the weights of the quadrature rule.
DlCG

The Gauss-Seidel version of any iterated scheme involves
substituting current approximations to the solution directly
into the integrand as soon as they have been found and
resembles the Gauss-Seidel method for the iterative solution
of sets of algebraic equations [6]. The appropriate
modification of the above scheme is

[r+1} i-1 [r+1]

fNQ (x) = g(x|)+ij(xg)K(xpxj?fNQ (XJ))"'

i=0
(2)

N {r]
ij(x,)K(x,,xj;fNQ(x,)), ‘ i=0(1)N.
i=
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The following two schemes employ the progressive property of
" either the Clenshaw-Curtis or Patterson rules. They are used if

the quadrature order needs to be increased.

D2
[r+1] N, [rl
£ (%) = GO AL W (X )R(x,, %8y (X)), 8=2i,
i=0(1)N, (3)
[r+1] N [r+1]
fN (Xt) -Eck(xt) fN (Xk), t=2i+1l, i=0(1)N.
D3
[r+1] 2N {r]
fZNQ(xB) = g(x.)"'['.'v wl(x.)K(xa,x];fNQ(x,)H
o
(4)
2Ny, i) |
'5 wj(x')K(xs,xk;fN l(xk)), s=0(1)2N.
where
[l N
fﬂl(xk) -hEQCh(x") fNQ(xh) . (5)

Schemes D2 and D3 correspond to’ the choices ii) and iv) of
section 3.3.2 respectively. In the above schemes the number
of solution collocation points N+1 equals the number of

quadrature points and the points are in fact the same. The

schemes have been displayed in this way for notational

convenience. The number of update grid points N; can be made
independent of the quadrature order. Wherever possible it is
advisable to employ solution values from updated points in

the guadratures, since they will be more accurate than




~105- 83.3.3

interpolated wvalues. However, this can require the
manipulation of prohibitively large numbers of points if many
quadrature abscissae become neccessary and schemes such as D3
do then have their use (see the discussion in Example 2
section 2.7.1 on the reactor problem for large Peclet

numbers) .

Several schemea will zequire the use of interpolation in
order to find function values at points which do not
correspond to points of the update grid. The evaluation of
particular singular integral equations using the schemes of
Chapter 6 for example make thias a necessity. Volterra
equatioha for which the kernel XK(x,y:f(y)) is undefined when
y>x, or split kernel Fredholm equations involving similar
properties can be treated by means of sﬁch schemes. A
typical scheme for a Volterra equation is given in D4. The
appropriate modifications may be made for singular and split

kernel equations.

[r+1} N -. {r]
fNQ(xi) - g(x,)'*EW,(X,)K(X.rx,:fNI(x,)) (6)
=0

where x, (i=0(1)N) 1lie in [a,b] and xr(j=0(l)N) lie in
{a,x;] and

[l N [rl
fN|(xl) 'ki:ock(xl)fNQ(xg)t 3=0(1)N. (7)
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In the step-by-step sclution of Volterra equations most schemes
seem to be based on the construction of combinations of various
repeated rules such as the trapezoidal or Simpson's rules which
are not of very high order. As an.alternative it is proposed to
construct a scheme which uses the definite integration form of
Clenshaw-Curtis quadrature from order 1 up to some value N. The
rules of ordei 1 and 2 are the trapezium and Simpsons rules
respectively, but subsequently rules represent increasingly
more powerful quadrature approximations. It is to be hoped that
the solution values obtained at each step will provide a better
interpolating polynomial with which to find values required at
the next step since the mini-max properties of the Chebyshev
polynomials may bé used to advantage. In order to clarify ideas
consider the interval [a,b] and impose a maximum Chebyshev fit
of (N+l) points upon it. The abscissae are given by the usual

linear tranaformation

= ((b-a)cosizm +a+b)/2, i=0(1)N. (8)

A
N

For the grid of order N-1 take the range [a,x[:‘]]. The

abscissae in this range are then given by

N N
0 = ((xM-aycosin +a+xt") 2, i=0(1)N-1. (9)

(N-1)
1
This process is carried on until the point xg] has been obtained,

the general form being given by
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xf"'” = ((xsn]-a)cosin_ +a+x5n])/2r n=N(-1)2, (10)

(n-1)
i=0(1)n-1.

Figure 1 illustrates the process for N=4. Once the points

Fig.1l -
£4] [4] (4] [4] 41
amx, X5 Xy X, b==:t.'.0
. X —3¢ X *
X X —
31 (4
Xg =Xy
X X
2] 3]
Xo =X,
X r.
(1_ 2]
Xg =X,
given by equation (10) have been found, evaluation of the |

solution at the points x,", ne=1(1)N is carried out,
beginning with n=1. Por n)2 interpolat_.ion must be used to
find the function values appropriate to that particular value
of n. Since the values for order (n-1) are situated at the
Chebyshev points x,{"V=cosin/(n-1), i=0(1)(n-1), better
approximations should normally be obtainable than if say an
equidistant fit had been used. The scheme may be used
equally well for iterative processes as for straightforward

step-by-step methods.

As an introduction to the construction of adaptive schemes,

the details for a method which reiies on the summation of
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integrals over preassigned subintervals will be given next.
This scheme can be of use if it is known that either the
solution or kernel are badly behaved in certain regions of
the interval ([a,b]l. The equations for the slowing down of
~neutrons (3.3.4-2)-(3.3.4-14) (see Chapter 3) possess a
discontinuous kernel for which thid type of scheme is ideal.

The scheme takes the following form.

Db
[r+t] NIN [l '
£rp (X,) -g(x,.):_E:gvﬂ(x..)x(xa.,x,k,f,;,, (X)) (11)
s=1(1)NI,
i=0 (l)N' '

where NI is the number of subintervals. The first of the
subscripts refers to the subinterval to which the weights or
abscissae belong and the second subscript signifies which ocne it
is. In an automatic routine, adaptivity ‘is provided by
manipulating the data points in an attempt. to match the local
behaviour of the integrand. In this type of sacheme the
relevant functions are evaluated proportionately more in
regions where they fluctuate most. If the regions of
greatest fluctuation remain stationary then it is possible to
subdivide the interval around these regions once and for all
and update the solution at suitable points within them. If
these regions do not refnain fixed as in the displacement
kernel K(x-y} then a different set of subintervals may be
necessary for each point. Naturally this requirement will

prove more expensive, but so long as the solution is updated




-109- 83.3.3

at sufficient points then accurate valuesa will be obtainable.
Flow diagrams for a many-interval update grid (one in which
subintervals are kept once they are created) and single update
grid {(the update grid is kept conatant but increase of
quadrature points and subdivisicn can occur) are given in
schemes D7 and D8 respectively. These schemes in effect use
preceding schemea such as D3 and D6 but implement them
automatically. The decision to invoke doubling up of points or
subdivision can be triggered either by error teats within the
integrator such as those used by Clenshaw and Curtis [4] or
O'Hara and Smith [49] or by testling the derivatives of the
iterates as they emerge ([134]j. Many embellishments to the
schemes are possible, but they become increasingly more.
difficult to depict in concise form. In scheme D8 ’f“or example it
can be advantageous to be able to increase the oi'der of the
update grid as the iteration éroceeds.’ This modification is
far more easily made to a computer preram than the flow

diagram. Purther schemes will therefore not be given.

In summary, care has to be taken in order to keep the relative
accuracies of guadrature and interpolation rules on a par, as
obviously a low order interpolation formula would make a high
order quadrature rule acceptable only when the unknown function

f(y) is simple, but the kernel K(x,y) is poorly behaved.
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D7 Pig.2
START
supply Npo ox= begin rMitern.
max, quad, order, set boot CAD to true-—
lm'=mlx. no, this bool becomes false | r .
of subintervals, [t convergence fails to plus1 N NG
set itern, counter occyr at any point,
r=1, set interval counter k=1
set no.of subints,
N,=t.
is
CGD |-YES-
true?
1 updtlr}e solution
i interval, i
sat point counter < plus1 ¢ YES
]=0.
attempt to update ke Ns ‘_—NO
solution at the §
> P point. reset |- plugt [~ YES
interval counter |
to k=1, 1 1
4 j‘ Nj | N
<
) I set
calculate K CaGo
integral in plus 1 YES faise
Increase N, L interval k. I
1 NO

] Yis

subdivide
N,plus 1
rearrange points
using Nmin points
in each of the 2
new subintervals

YES—

N_<l

Nk‘"mu | —NO-—| Vo8 the
integration
successful?

o]
print "limited
max —~NO>-|  accuracy
attainable”

7

—YESl-)‘ k<N, l—NO)-

has convergence
occured at the

it? point ?

h

STOP
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D8 Pig.3

START

supply Nmu= begin rthitom.
max, quad, order, set bool CGD to true-—

Im=mu. no, this bool becomaes faize r
of subintervals, L) it convergence fails to plusi

£ NG
set itern, counter occur at any point.
=1, set interval counter k=1
set no,of subints,
Ns=1'
is
CGD | YES- STOP|
true? ‘

attempt to update NO

solution at the i

it point. reset plus1 < YES

interval countar |

to k=1 reset Nf‘ 1

I<NG 5
——ee
— sat
> calculate k CGD
integral in plus 1 YES false
increasoN y {5 interval k. I
I NO

occured at the
integration }YESY>| keN_ [-NO>|ith point ?

YES ] 1
——L has convergence
Nk‘“max | {—NO—| Was the

successful?
subdivide
Nspluc 1
rearrange points
using Nmin points .
in each of the 2 1
new subintervals
hlo
print "limited
YES—{ Ny<lay [FNO>|  accuracy . S
attainable’

The details contained in this chapter will now be put to use in

creating some numerical schemes for the solution of integral

equations.




CHAPTER 4

ALTERNATIVE WAYS OF IMPLEMENTING SUCCESSIVE APPROXIMATIONS
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4.1 INTRODUCTION

The results of chapter 3 reveal that the method of successive
approximations can be é very useful means of solving integral
equations. The well known convergence conditions for both
linear Volterra and Fredholm equations (see chapter 3) reveal
that in theory at least, the method will provide the solution
of Volterra equations for all values of the parameter ),
whereas this is not the case for Fredholm equations. This
fact suggests the search for ways of regarding Fredholm as
Volterra equations. Various Volterra and Fredholm integral

equations may have the same solution. For example the

equations

£(x) = x+[min(x,y)£(y)dy (1)
and

£(x) = x/cosvx-)][ (x-y)£(y)dy (2)

both have the solution
f(x) = sin(xvA)/[VAcosvyr], (3)

Successive approximations applied to equation (2) will
theoretically produce the solution to (2) and hence (1) for
all wvalues of A, whereas application of the method to
equation (1) will only succeed if IAJCIKII'  where

K(x,y)=min(x,y). It is also conceivable that a Fredholm
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equation whose radius of convergence for successive
approximations is R,;, may be equivalent to another Fredholm
equation whose radius of convergence is R,>R,. Whether it is
possible to associate different classes or types of equation
with a particular solution is in general not clear. Any means
of converting one to the other is also far from obvious. Some
insight can be gleaned from the solution of boundary value
problems by the shooting method {86,98}. This method can be
regarded as an application of the methods for initial value
problems. When converted to integral form, initial value
problems become Volterra equations and boundary value
problems generate Fredholm integral equations. It will be
seen that translation of the shooting method to integrél
equations reduces the problem of solving Fredholm equations

to that of solving egquations of Volterra type.

4.2 THE SHOOTING METHOD FOR INTEGRAL, EQUATIONS ARISINC FROM
BOUNDARY V. ROBLEMS

The advantages of converting differential to integral
equations have already been stressed in chapter 2 and
numerical evidence has been supplied in chapter 3. Solution
of the resulting integral equations by successive
approximations has proved to be successful except in the
cases when the kernel norm was too large to allow convergence
to occur. Since boundary value problems reduce to Fredholm
equations this can present difficulties to the method. The

following scheme avoids these short comings since it produces
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Volterra instead of Fredholm equations from the original

boundary value problem. As an illustration take the general

equation
(%) = K(x;£,£)), f(a)=A, £(b)=B, (1)
£ =d/dx, £, =d%/dx2.
When converted to( integral form it is the condition £(b)=B which

forces the equation to be of Fredholm type. The corresponding

integral equation is

£(x) = A%;a%mf:ux.y)x(y:f(y).f,(yndy (2)
-
where
L{x,y) = x-y-(b-y)(x-a), acy<x,
(b-a)

(3)

= =(b-y)(x-a), x<y<b.

(b-a)

In order to prevent this happening the condition at b is
discarded and a guessed condition at a is introduced. The
introduction of an initial guess f;(a)ua and integration of

(1) then produces
£,(x) = a+[ K(y;£(y) £,(y))dy, (4)

£(x) = Ata(x-a)+f (X-y)R(yi£(y) £,(y))dy. (5)
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The solution of (3) and (4) will thus coincide with the original

equation (1) if

Rla] = A-Bra(b-a)+[ (b-y)K(yif(y,@),f,(y,a))dy  (6)

Note that in egquation (6) it is tecognised_ that the solution
f is a function of a, namely f(y,a). Assume that the
particular value of a which forces R{a] to be identically
equal to zero is a'=a+ba. Inserting ao" into (5) and
expanding the integrand in (6) as a Taylor series in powers of

8a one obtains -
R[a"] = O
« R[a]+da(b-a)+ (7)
INES? [K(yi£,2,) 4+, (vif,£,)E, )00 dy,
terms involving higher powers of 8a than the first having
been neglected. Since a does not depend on x, a Newton
iteration for a may be set up in the usual way giving

@, = “r“R[“r]/Ra[“r}r r=0,1,... {8)

where

Rglal = b-asf (R (Vi€ £,)Eq¥K, (¥i€,£,),q]dy. (9)
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In order to proceed through the iteration (8), wvalues of
f(x,a), £ (x,a), f,(x,a) and f ,(x,a) must be known. These
may be found on differentiating equations (3) and (4) with

respect to a. Thus

£o(x,a) =x—a+f3x-y) [Ry (3£, £,)E 44Ky (731,£,)8,01dy (10)
and
£ (x,a@)=1+f [Ry(YiE £,)E0+K, (ViL,£,)E q)dy (11)

respectively. These equations may be regarded as a system of
four Volterra equations which may be solved by successive
approximations. The various ways of implementing the methods to
be described in chapter 7 are applicable here. Alternatively,
since values of f and f, will be known over the complete range
[a,b] it is possible to iterate using only equations (5) and (10)
and obtain the values for f, and f,, by means of a differentiator

provided that £ ,=f, in order to make this possible.

It is often possible to reduce the integro-differential
egquations (4),(5),(10) and (llj to pure integral equétions by
the methods described in Chapter 2 in which case only
equations (5) and (10) in suitably modified form need be

solved.

it should be emphasised that the method described above has
strong connections with imbedding techniques (see

{99,100,101,102,103,107,108,109)). The basis of such methods
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centres on the notion that the solution to a functicnal

equation be regarded as a function of some parameter.

These ideas ﬁaVe received‘ considerable attention over the
last twenty years and are now well known in many areas such
as variational problems, boundary-value problems,
differential-difference equations and integral equations. In
particular, they feature extensively in optimal filtering,
radiative transfer and neutron transport. These methods
character:isticaly_ lead to the formulation of systems of
initial wvalue problems which are generally easier to solve
than the original preoblems. In contrast, the present method
ig used to create a system of Volterra integral equations
which may be solved directly by means of successive

approximations.
4.2.1 AN EXAMPLE SOLVED BY THE SHOOTING METHOD

Consider the split kernel equation (A0.3-14) possessing the

equivalent differential form
L (x)+rf(x) =0, £(0)=0,£,(1)=1. (1)

The procedure outlined in section 4.2 gives rise to the
iteration
[r+1]
a -

o-riatMy /Ry a1, r=0,1,2,... (2)

where
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R[a[r]] - af

r 1 r
1l (v Mray, (3)

(r] 1 r}
R]a ]-erj;fa(y,a[ ydy, (4)

and the iterations for f and £, are given by

£ x4y - a"’x-’x,f:(x-y)f“’ (y.at™yay (5)
and
g+ ]
ff, Cx,a') -1—xf:(x—y)ff:’<y,a")dy, (6)

for sach value of r.

The purpose of this section is both to illustrate the method and
also emphasise that it can be used for values of )\ greater than
the spectral radius of the Fredholm kernel. Table 1 gives
relevant information to the case A=10 which is well ocutside the
norm bounds. Results in Table 1 were obtained using a
Clenshaw-Curtis indefinite integrator with N=8 and beginning
‘the iteration with al®l=1. Ssince successive approximations are
used to iterate for f and its derivatives, nonlinear equations
can also easily be solved. The nonlinear form of the reactor

problem (A0.4~9a) was treated in the same manner.




-120- 84.2.1

Table 1.
r 8, S, Ey E,
o 3 4 2-0(-11) 7-0(—-11)
1 4 4 1-5(-10) 8+1(-11)
2 5 4 3-2(-‘10) 1-4(-10)
3 4 5 2-4(-11) 3-5(-10)
4 5 5 3-6(-11) 2-8(-10)

r=iteration counter for «&.

$,.S,=maximum number of Iterations required to find tix, al'])
and f,(x, al™y respectively,

Eqe Eg=maximum relative errors In alfand t(x,al’l} respectively.
Note that the exact values are:—

a=1/cosvi, tix,d)=sinixyX)/[Vhcos V],

In that example with p=l1 the iterates for a converged in 5
steps with the maximum number of iterations corresponding to
S, and S, in table 1 being 12. The final relative error Eg
was 5-3(-10) showing that once again the method can be used
as a viable means of solving integral equations. The
relevant equations corresponding to equations (3,4,5,6) in

this instance are

Ry - a"’+2j;e""'f2(y,am)dy, (7)
| R‘Ea[r}] - 1+4J';e-wf(y,a[r])f&y,a[r])dy (8)

together with

]

pix-y)_ . 2
ey, dtyay (9)

1
f(x,am) - 1+a[r]ew+2_f°[—l+e
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r]

pl )
H]f(yrafr])fa(tyra ydy. (10)

[rl px. el
r - + -1+
%;x a ) e {&[ l+e

4.3 USES OF THE SHOOTING METHOD IN IO G

FREDHOIM EQUATIONS

Section 4.2 described the use of the shooting method in
solving'boundary value problems by first converting them to
Volterra rather than Fredholm equationa. It would be very
useful if this technique could be applied to general Fredholm
equations. Unfortunately the present means of obtaining the
Volterra from the Fredholm equation can only be applied to
certain specific examples..Since the Fredholm equation has to
be differentiated first it often proves impossible to remove
all terms containing definite integrals. No -attempt will
therefore be made to extend the method beyond that which has

been presented in the previous section.

4.4 EQUIVALENCE CLASSES OF INTEGRAI, EQUATIONS

It has been pointed out in the introduction to.Ehis chapter
that no obvious means appears to. exist of converting Fredholm
to Volterra equations with the same solution, or of
associating different equations with different norms with the

same solution.

Both operations would be desirable, especially in connection
with the method of successive approximations. On the one
hand successive approximations always converge for Volterra

equations, theoretically at least. On the other hand it is
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evident that the norm and solution of an integral equation
are independent of each other in as much as equations
possessing the same solution but different kernels and hence
also norms do exist. It would be desirable that, given an
integral equation for which the Neumann series does not
converge, one could obtain a related equation with the same
solution but a larger radius of convergence. A means of
accomplishing this latter objective for 1linear Fredholm
equations does exist and will be developed in the next

section.

4.4.1 A METHOD FOR CREATING EQUIVALENCE CLASSES OF LINEAR

FREDHOIM INTEGRAI, EQUATIONS

The device to be described will produce equivalence classes

in the sense that given the equation

£0x) = 9O KX YIE(y)dy (1)
another equation

£0x) = GO H Y (v)dy (2)
possessing the same unique solution may be derived from it. Let

g (x) - facat, (3)

K () = [K(t,yae (4)
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@R, Y) = [ (x,2)K (2,y)dz (5)
quation (1) may be written as
£(x) = g(x)+1f:K(x,YZ§’[I‘yf(a)ds]dy (6)

On integrating by parts in equation (6) one finds after some

manipulation that

£(x) = [9(x)-A[ g (£)K(x,t)at]+

(7)
A IR(x,D)=A )R (x,7) ) (y)dy -
Putting
1 4
¢'x) = gy [ g (£IK(x,t)at (8)
and
[
H" "(%,¥) = K(x,y)-) (1)K(er) (%)
equation (7) can be more convenienil‘.ly written in the form
1 1
£0x) = 6 a1 (x )£ (n)ay. (10)

It is easily seen that repeated use of the method leads to the set

of equaticns

£(x) = Gm(x)+AI:H[I](x,y)f(y)dy, i=1,2,3,... (11)
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where
c(x) = G“‘”(x)—ajfcnq%s)'}fkq¥x,s)ds (12)
and

-1 i-1
"k, m) 2 gy (0 y) (13)

H[u(x.y) = H
Note that it is convenient to set
[o
¢ (x) = g(x) (14)

and

H(x,y) = K(x,7) (15)

in order to conform with the above notation. The convergence
criteria for equations (11) with respect to A may or may not
differ from the conditions applying to the original equation.

Equations {(11) must satisfy
[kl
INFUH Tl € 1 k=0,1,2,... (16)

For simplicity take the functions H[¥! to be real valued but

allow \ to be complex, A=\,+i},. Inequality (16) is equivalent

to

2 2.1 2 2
[A54351Z |L =23 Lot {(As+Ag}Lgl < 1 (17)
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where
Ly = (b-a)[H™" (x,b)"ax, (18)
Ly = [P0 x,0) (1™ (x,y)ax ay 9
and
Ly = .f:mH(x:y)zdxdy- (20)

Inequality (17) defines a new \A-region within which
successive approximations may be used. It may be modified td

take the form

AT 1Lyl | (0 =Ly) A3~ (Ly) #Ly | < 1. (21)
R S |

Condition (21) shows that convergence of the Neumann series
depends on the two interelated circles centred on (0,0) and
(L, /Ly,0). Condition (21) is difficult to analyse, but an
example will show that it is possible to increase the radius

of convergence. Consider the equation
£x) = gx)nnfe” e (y)ay. (22)

Successive approximations will converge if

101 2¢{ )
IIRIG = e axayiz ¢ 1. (23)
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That is if

Ixf < 1/sinh(1) = 0-851. (24)

Applying the method one cbtains

K (x,y) = [e-1]e (25)
(X y) = - e (26)

and hence
H Y (x,y) = e '[142e]. (27)

The norm condition (23) becomes

DINS) e C11142x,(1~e ) +(Aiho) (1-e )1 < 1. (28)
2 2

Taking A to be real for simplicity, (28) can be written as
2
A (A+0+527)(2+2-091) < 1. (29)

Inspection of (29) reveals that it is approximately satisfied

by values of A within the range
-2-2 < x € 0-9 (30)

which is a considerable increase on the ocriginal bounds.
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4.4.2 THE KD TRANSFORMED KERNEL AS A SERIES IN )\

For completeness sake, the ktP member of the sequence of

equations (4.4.1-11) is expressed explicitly as a series in

A. Let

WK 7Y = oK (x,2) WK (2,¥)az, k=1,2,... (1)
where

oK (x,y) = K(x,y) (2)
and

Jlgﬁéb) = _l.:(|1,icz(x,z)(IZ,K*(z,b)dz, i,=1(1)k-1, (3)

i,=0(1)1,-1,

Ty = J‘:(,i)KZ(x,z)Jizsjza,b)dz, i,=2(1)k-1, (4)

i,=1(1)1, -1,

1,20(1)1,-1,

J(x,b) = 00 K (%,2)T (z,b)dz., i,~s-1(1)k-1, (5)
YRR a'l loy .oyl

i,=s-2(1)1,-1,

1> 0(1)1, -1 .

Then the k" transformed kernel takes the form

k k=1 [k-1]
H[ ](x,y) = H[ ](x,b)—A(”H (x,v)
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-1 0,
= K(x,b)-E\" ,,K(x,b)+
'f°

k-?l
L ‘)‘:=g—n s o) (6)

oha

k-1h-10m1  Hh 02,08
> EE 0" Taape s

[ T
:!k_1 ZH 2~1 2" 1
+ *,, .42~ -
A J(x -\ K(x .
l£-1.'k-2....,0 X (X:Y)

Abbreviating this complicated expression to

2k-2 2Ky
H(x,y) = I )3, (x,b)-x" K (X,y) (7)

where the"Ji(x,b) take the relevant forms from (3),the kif
transformed equation can be written as '

PLE)
£(x) = G (x)m:( M) 9,0x,b) [ (y) dy-

(8)

k
z° f:(k)K(x.y)f(y)dy.

It can be seen that the norm condition for this equation will
involve a polynomial in A of degree 2k+2. This allows a
maximum of K new X\ regions in which successive approximations
will work. There is no gﬁarantee, however that this maximum
number will be attained since the polynomial may have
repeated roots and some regions may coincide with each other.

In the special case when

ok
1im A" [ X(x,y)E(p)dy = 0 (9)
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then a solution can be found in closed form. For all n)N where N

is such that

2N b
N[ Ky E(y)ay) < e (10)

and € is some positive value of sufficientiy small magnitude,

this solution is given by

tn]
£(x) = 6" x)+ J-_:G (x)dx i (11)

202 i pb
[1—x-')=:0 (-x)faJi(x,b)dx]

4.5 THE SOLUTION OF INTEGRAL EQUATIONS BY MEANS OF ACCELERATED
NEUMANN SERIES '

The Neumann series for the linear second kind Fredholm equation

£(x) = g(x)[R(x,Y)E(y)dy ()

can, at least formally be written down no matter what the
comparative size of the kernel norm and the parameter A. It
is well known, however (see Chapﬁers 2 and 3 that this series
is divergent if |x{ > |l K|;'. The peculiar nature of the
problem is highlighted if one assumesa that f£(x) in (1) is the
exact solution to the equation and then substitutes r times

for f{(y) using the right hand side of (l1). One obtains

ro. . )
£0x) = g BN K (Vg Iayn [ K, (x, ) £ (v)dy. (2)

Equation (2) defines a particular equivalence class of equations
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for egquation (1) with kernel

Ko (X, Y) : (3)

and free function

r
g (x) I LK, (x,7)g(y)dy. (4)

The series in (2) is precisely that which diverges in the use
of successive approximations using fo(x);g(x) if IJ\I)IIKEIE1
and yet, since the exact solution has been substituted at
each step to produce (2), the last term on the right hand
side must be large enough to cancel out the excess.
Obviously, in practical terms it is not possible to compute r
terms of the series and then remove the spurious information
by cancellation with the last term in equation (2) since £(y)
is the unknown. However it will be seen that the Neumann
series, even when divergent does contain the necessary
information about the true solutien and that this can often
be extracted by means of an accelerator before numerical

overflow occurs.

The procedure to be proposed will be based on the e-algorithm
([96,76,95}). Both Shanks [94) ahd Wynne [76] suggest the
use of accelerators on integral equations. They only present
one example each however. A study of the use of the
€-algorithm/successive approximations approach on a selection
of Volterra as well as Fredholm equations, including both the

nonlinear and linear variety will be made in section 4.5.2.




4.5.1 IMPLEMENTATION OF THE METHOD

Combining the e-algorithm with successive approximations can
be achieved in numerous ways. Only one version will be
tested here. Since it is of interest to see how the
successive approximations progress in comparison to the
accelerated values, the following scheme will be used. The
successive approximations will be evaluated at the N+l
guadrature points as in Chapter 3 and values of successive

iterates
[r] .
(xg, r=0,1,2,..., i=0(1)N (1)

will all be stored. For each r>3 the e—-algorithm will be
applied to all r+l iterates at the "points X, 1=0(1)N, and
upon using the initial conditions

{rl r [rl
=0, (x=1,2,..0), g™ x), r=0,1,... (2

£
further quantities fg']may be constructed by means of the

relationship [76]

ir} [f*1]+

ir+1] fr}. -t
1 = Loy - £

£ : o}

{f r.s=0,%,... (3)
In certain cases the sequences f{[] (s=0,1,...) for fixed r,
converge far more rapidly than the original sequence f£I(f],

(r=0,1,...),(77,94]. Wynne [76] maintains that the sequences

£§9 and ff!),(s=0,1,...) converge most rapidly and iteration

therefore ceases if either
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0] f2) (9]
£, - g (4)

1f, - £.51 < €| f

if m is even, or

(11 3 n

Ifm-t - fm—3| < elfrn-‘lI . (5) -

if m is odd where € is the accuracy.

4.5.2 RESULTS OF AN e¢-ALGORITHM/NEUMANN SERIES SCHEME
APPLIED TO SOME INTEGRAL EQUATIONS

Tables 1-4 contain comparisona of the maximum number of
iterations required to attain seven-figure accuracy using
ordinary successive approximations, Gauss-Seidel iteration and

the e-algorithm modification to both of these schemes.

Table 1
Results for linear Yolterra equations

Egquation Successive Gauss- €~ € -Algerithm
Number Approxns, Seidel itern,  Algorithm +Gauss-Seidal
A0.1-1 10 7 8 6
AG.1-2 6 3 5 3
A0.1-3 5 3 5 3
AO0.1-4 5 3 5 3
AD.1-5 12 9 i1 7
AD.1-6 10 | 7 8 6
AQ.1-7 g 6 8 5

The table gives the maximum numbar of iterations to achieve 7 figure
accuracy.
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Inspection of Tables 1 and 2 reveals that the e¢-algorithm
invariably produces a considerable saving in the number of
iterations for Volterra equations especially when coupled with

the Gauss-Seidel scheme. These results contrast interestingly

Table 2
Resuits for nonlinear Voiterta equations

Equation Successive Gauss~ €~ €-Algorithm
Number Approxns. Seidel itern,  Algorithm +Gauss-Seidel
AD.2-1 5 . 4 5 4
A0.2-2 14 10 12 8
AQ.2-3 15 11 13 8
AQ.2-4 9 7 a 5
AD.2-6 6 4 6 4

The table gives the maximum number of iterations to achieve 7 figure

accuracy. ‘
with those in Table 3. Both Gauss-Seidel iteration and the
e-algorithm had a beneficial effect, but the combination of e-
and Gauss-Seidel iteration proves to be inferior in nearly all
the cases considered. The final table on nonlinear Fredholm
equations contains results which resemblé those in Tables 1 and

2 more closely.

The reader should be aware that the implementation of the
e-algorithm does not guarantee convergence in all cases. For
example, the method works for the linear Fredholm equation
(A0.3-2) even when X is well outside the norm bounds on the
spectral radius. However the same equation with free term

(-2/m)cos(x) cannot be solved by this method if A=2/7, since the
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denominator in equation (4.5.1-3) becomes zero for x=w/2.

Table 3.
Results for linear Fredholm equations
Equation _y | successive | Gauss-Seidel €- €-Aigorithm
Number HKli, Approxns. lteration Algorithm Gauss-Seidel
A0.3-1 3.000 8 7 4 6
. * * 12 ® *
A0.3-2 0+765 7 S 5 5
) * —* 6" 25"
A0.3-13 V6 15 11 6 7
A0.3-15 9-487 7 6 5 5
& & Py &
8 5 B 5
AQ-3-17 2/N3n 10 8 9
A0.3-18 | 2°7(=2) —_ —_ 15 —
A0.3-20 1-225 — 20 8 7

The table gives the maximum number of iterations to achieve 7 figure accuracy .

Note that A=1/2 in all examples, except those marked * for which A=10 and & where A=0+1,
-—~— denotes that convergence did not occur,

~extensions of

various successive

Having developed
approximations in this chapter, an alternative method which does

not suffer from the same convergence difficulties will be

presented in the next chapter.
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Table 4
Resuits for nonlinear Fredholm equations

Equation Succassive Gauss— €- €-Algorithm
Number Approxns, Seidel itern.  Algorithm +Gauss-Seidel
AD.4-1 i1 10 7 6
A0.4-2 19 18 8 8
A0.4~3 11 10 8 8
AD.4-4 8 6. 5 5

The table gives
accuracy.

the maximum number of (terations to achieve 7 figure

84.5.2
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CHAPTER 5

SOME_IMPL.EMENTATIONS OF NEWTON'S METHOD
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5.1 INTRODUCTION

The results of Chapter 3 reveal that the direct solution of
second kind equations, especially Volterra integral equations
by means of successive approximations and its variants is to
be highly recommended. However, Fredholm equations are not
always amenable to these devices due to the well-known
convergence difficulties associated with that type of
equation. The modification using the e-algorithm works well
for many equations, but, as was pointed out in the previous

chapter it does not work in every case.

In the present chapter an attempt will be made to extend the
iterative approach invelving direct numerical integration to

the solution of both ?redholm and Volterra equations. It will
be seen that the method does not suffer from the same kind of
convergence difficulties as the Neumann series and is also

equally applicable to nonlinear as to linear equations

5.2 DEVELOPMENT OF THE METHOD

The method will be developed in terms of the general Urysohn

integral equation of the type (1.2-1).

£(x) = g(x)+J‘cx(x,y;fcx).f(yndy. (1)

The rlange of integration is depicted as a general contour C. This

may be a complex contour a definite range of real integration
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[a,b]) or even the indefinite form [a,x]. Although the method
will initially be consatructed in order to solve Fredholm
integral equations there is no reason why it should not be

applied to Volterra equations.

Equation (1) may be regarded as a nonlinear operator equation

applied to the function £(x) in the form

R[x;f] = f(x)—g(x)-fcrc(x,y:f(x),f(yndy. (2)

Solving egquation (1) is then equivalent to finding that

particular function f*(x) which satisfies
x*
R{x;f" ] = O. . (3)

R represents the residual. The well known method of
linearization (Rall [14], Saaty ([66)) may be applied to
equation (2) in the following way. If £ (x) is perturbed to

£f(x)+08£f(x) then

R[:ﬁ:f+of] = f(x)+0f(x)-g(x)-
(4)
j;K(x,y;f(x)+of(x),f(y)+0f(y))dy.

On expanding the Kkernel and neglecting second order terms in

8f{x) one obtains a form of Newton's method

R{x;£f] = -Of(x)+j;[K“”Of(x)+K"”6f(y)]dy (5)
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Kﬂz,==ciK(x,y.f(x) £(y)), £(z)=f(x) or £(y). (é)
df(z)
If K does not depend on f(x) the obvious omission is made.
Equation (5) forms the basis for an iterative scheme
(4] aetf { |
R[x;E ] = +f 1K o£ kg0t tyylay, (1)
r-0¢l;..-'
which may be regarded as an integral équation for the
pertubation B8f{'}x).This perturbation may then be used to
update the solution via the equation

e (xy = £y roe M. | (8)

in the linear case, equation (5) is of course 'a;xact, whereas
in the nonlinear case, the result is an approximate
1iﬁearised equation for 8f(x). This suggests .an attempt to
solve (7) by algebraic means. A basis set approach has been
.adopted and the perturbation approximated by |

M
(X) = La; ¢(x), r=0,1,2,... (9)

=0

where v,(x),1=0(1)M are a set of linearly independent

functions. This leads to the set of linear algebraic equations
1, ¥ (]
R{x;£ '] = La; [-o(x)+¥) ] r=0,1,2,...  (10)
Fo

where
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vi? - 1K) 0(x) +Kigy 0 (¥) 14y (11)

Once the a, J=0(1)M have been found, the perturbation
oflfl(x) may be calculated via (9) and hence £ 1(x) from
equation (8). Equations (8,10,111 are familiar as standard
equations arising from the application of Newton's method to
an integral equation, ({1ll], p.689). Convergence criteria
for Newton's method may be found in numerous works among them
being Kantorovich and Krylov [67], Todd [68] p.513, Anselone
[69] (in particular the article by Moore), Rall {14] and
Baker [1l]. In contrast, equation (8) provides the means of
evaluating the iterates in an entirely new way. The point
which is often stressed about the standard Newton iteration
is the computational expense iﬁvolved in evaluating the
Jacobian of the system. For linear equations this may not be
lsignificant since it can be evaluated once and for all. It
is possible to save work on nonlinear integral equations by
using only the initial value of the Jacobian or at least only
updating it when convergence of several steps to some set of
function values occurs and then continuing this process until
a fixed point of the iteration'is found. If one resorts to
this device however, the usual quadratic convergehce of

Newton's method is lost.

Equation (9) gives rise to a Jacobian which is of dimension
(M+1l). Since M is independent of both the quadrature order N
.and the number of solution grid points NGRID, it will be seen
that the dimension of the Jacobian can be significantly

reduced, especially in the early stages of the iteration.
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5.3 NUMERICAL, IMPILEMENTATION OF THE METHOD

A choice of basis functions r.ol(x), j=0(1)M has yet to be
made. Experiments have been carried out with the simple

polynomial fit

oE(x) = Ealx'. (D)
j=0
Results were favourable when only a low degree polynomial was
required (M<4), but higher wvaluses of M produced large
alternating coefficients with the associated loss in accuracy
of the. iterates. See [B5] for example. Baker [11], p.704
also encounters this problein in his formulation of Newtocn's
method for the H-equation (A0.4-1) which has appeared in the
"previous chapter. See [70,69,71,14] for further information

on this equation and its solution.

In order to remedy this defect the polynomial fit will be
replaced by the Chebyshev series
M
of (x) = La, T;(x). ) (2)
=0
By letting M and NGRID (the number of points less one at which the
solution is actually updated) be multiples of 2 with M less
than or equal to NGRID, approximation (2) fits naturally into
the numerical integration scheme employed in the previous
chapter. The residual may conveniently be evaluated at the
points x;=cosi[NGRID/M)}n/NGRID which coincide with the points

at which the iterates f(x) are already known where [z]
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denotes the greatest integer less than or equal to 2. The
decision to let M be less than or equal to NGRID does not
appear unreasonable, since if Newton's method converges then
the residual will tend to zero and one would not expect its
behaviour to be any more complicated than that of the
solution itself. This hypothesis has been substantiated by
the examples studied. The resulting numerical scheme

involves integrals of the form

00) = [ K%,y £02)  £(¥))Ty(¥) Ay, 3=0(L)H, (3)

Z=XOr y.

Elliott [30] and Elliott and Warne [72] suggest a scheme for
linear equations in which the kernel K is also expanded as a

Chebyshev series and the resulting integrals

o = I T (NT Iy | (4)

evaluated analytically. This form is computationally
expensive [63] and also restrictive in the sense that the
kernel must be defined over the‘whole square. (See section
5.6). It is considered to be more economical and to be of
more general application to treat the integral in (3) in
exactly thé same way“ as in Chapter 3 using El-gendi type
gquadrature, or alternatively of course the Patterson form.
As a consequence of making M and NGRID independent of one
another only a miminal number of the eguations (5.2-%,10,11)
need tg be evaluated at each iteration and the labour
involved in calculating values of the Jacobian is greatly

reduced.
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Indeed, it has been observed in practice that very low d&gree
fits for 0f(x) - linear or quadratic - are adequate in the
early stages of the iteration when the initial values of £(x)
are far from the frue solution and only rough estimates of
the purterbation are required. As convergence is approéched
M can be increased in order to approximaﬁe 8f (x) to the full
desired accuracy. Once the coefficients al",1=0(1)M have
been found equation (5.2—11) may be used as an interpolation
formula to obtain

+ M-
£ x) = 0+ aMryex) (5)
-

for any wvalve of x at which f(x), 1is previously known.
Alternatively f(x) may be obtain_ed at the pointé x=cos{in/M),
i=0(1)M using (5) and the remaining values at points
x=cos (Iwm/NGRID), (I=0{1)NGRID, I#i[{NGRID/M],i=0(1)M) be

obtained by means of an interpolation formula such as (3.4.2-2).
5.4 SOME LINEAR EXAMPLES

A pJ:.lOt study will be carried out on a selection of the
linear equations which have already been solved by successive
approximations and its modifications. Volterra, ordinary and
split-kernel Fredholm equations will be treated. The main
pufpose in exhibiting this preliminary set of results will be
to give an iIndication of the order of accuracy which can be
obtained using a range of values for the degree of the

fitting polynomial on the residual 8f(x). In all examples
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given the grid order will be N=l6 since this number was
sﬁfficient to calculate accurate quadratures in all examples

except for the equations containing square root terms.

The maximum relative error over the complete range for
fitting degrees M=2,4,8,16 will be given together with the
maximum number of iterations. Theoretically only one
iteration should be necessary to obtain the solution to the
highest attainable accuracy for any particular value of M.
However at least two iterations are neccessary in order to

check convergence. of the results,.
5.4.1 RESULTS FOR THE L. INEAR EXAMPLES

It is evident from the table that a fit of M=4 provides
reasonably good accuracy in most cases. Increasing this
value to M=8 has the effect of producing full figure accuracy
in several examples and in the remaining examples fuli
accuracy can be obtained by pushing M up to 16 except for
those equations containing badly behaved functions. In
gsolving nonlinear equations, for which the iteration will
usually take more than 2 steps the use of M=2 during the
initial iterations and increasing the value (up to the
maximum M=NGRID if_ necessary) will <certainly enable

considerable computational expense to be saved.




~145- 85.5
Table 1.
Resuits for Newton's Method on linear second kind equations
M 2 4 8 16
Eqn. No. E R E R E R E R
AO.1-1 1-3(-2) 2 3:9(-5) 2 3-2(-8) 2 2-8(-11) 2
AQ0.1-2 1.-9(-1)r 2 9-1(-4) 2 2-7(-6) 2 1-7(-10) 2
A0.1-3 9-4(-4) 2 2-4(-6) 2 4-4(-11]) 2 1-0(-11) 2
A0.1-4 6-1(-2) 3 9-8(-4) 3 2-8(-6) 3 2-3(-9) 3
A0.1-5 8-2(-3) 3 2-1(-5) 3 1-5¢(-10) 3 1-2(-11) 3
A0.1-6 2-6(-2) 3 1-5(f2) 3 1-5(~2) 2 1-8(-2) 2
A0.1-7 5-4(-3) 2 6-8(-6) 2 9.0(-11) 2 1-1(-11) 2
A0.2-1 3-4(-1) 3 3-6(-1) 3 3-6(-1) 3 1-3(-11) 2
A0.2-2 3-4(-1) 3 3+6(-1) 3 3-6(-1) 3 1-5(-5) 2
A0.2-3 6-9(~3) 2 5-6(-5) 2 3-1(-10) 2 Jl-2(-ll) 2
AD.3-1 7-2(-2)) 2 4-2(-4) 2 9-9(-10) 2 1-6(-10) 2
A0.3~2 4-4(-1l) 2 7-5(-4) 2 5+4(-9) 2 l-b(-ll) 2
A0.3-3 2-9(-2) 2 5-5(-6) 2 3-5(-8) 2 3-1(-11) 2

M=Degree of fit for df(x).

E=Relative error achioved.

R =Number of iterations required,

Note that the quadrature order N=16 for all examples.

5.5 NONLINEAR EQUATIONS

The numerical implementation of Newton's method described in

the previous sections was originally created in order to

solve a particular nonlinear problem. The method was

developed in the context of the material balance equations

reactors with axial diffusion [75,91]

for tubular in an
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attempt to overcome convergence difficulties of successive
approximations when applied to the integral formulations
(AQ.4~9a,9b), (see chapters 2 and 4). These equations were
obtained from the parent differential equation (3.3.2-9)) by
use of the methods in chaptér 2. The use of successive
approximations is limited by conditions (2.6-2)-(2.6-6) (and
(2.5-3) in the linear case) and should theoretically not work
in some instances although Gauss-Seidel and accelerated forms
of iteration deo achieve a moderate amount of success. In
contrast, the Newton method is effective in solving both
forms of eguation (A0.4-%a,9b) over a wide range of p values
[65]. Initial}.ir experiments were carried out with a

polynomial fit to the perturbation 8f(x) for the case p=1l.

Table 2
Solution of equation (AD.4-9&) using a polynomial fit of order m=4,

r £(0) £(0-5) £(1+0)
0 1.0 1-0 1-0

1 0-6983 0-5069 0-5663

2 0:6397 0-5086 0-4633

3 0-636792 0-503917 0-457588
4 0-6367843 0-5039042 0-4575891

* 0-636784102 0-503903768 0-+457588686

Order of quadrature formula is 8.
p=1,
* denotes values from Table 11 of section 3.7.1.
The convergence towards the true solution is shown in Table 2 at

the representative points x=0, 0-5 and 1+0, the initial function

being £{9(x)=1. It may be observed that the sequence {f{f)(x)} is

converging rapidly towards the correct values for this size of




-147- , 85.5

the parameter p where it is possible to fit 8f(x) with a low
degree polynomial. Similar results were obtained for equation
(A0.4-9b). For large values of p (p>10), convergence is still
. rapid but the instability observed in the original differential
equation approach manifests itself in the need for higher degree
polynomials with which to fit Of(x). Inevitably, large
alternating coefficients appear with an associated loss of
accuracy in the solution values f(x). The introduction of the
form (5.3-2) remedies this defect since the Chebyshev
coefficients ay decrease in size rapidly as j increases. Since
the perturbation fit M, solution fit NGRID and quadrature order
N are all independent of one another it is possible to obtain
high accuracy results using relatively low values of M or
equivalently a Jacobian of amall dimensions. Table 3 shows the
accuracy obtainable for the most difficult case tested, p=100C,
using a range of values for M=2,4,8,16 and NGRID=16. The numbpr

of iterations required are also included

Table 3 :
Relative errors in tL71(x) values using a Chebyshev fit to the 817 (x) valves.
£q. (A0.4-5b) £q. (A0.4-9a)
M R € ‘ R €
2 3 v 1-0(-2) 3 1.0(-3)
4 3 1-0(-3) 3 1-0(-4)
8 3 1.-0(-7) 3 1-0(-9)
16 4 1-0(~-10) 3 1.0(-11)

M=degres of Chebyshev fit to OfL73(x).
R=Number of Iterations for a given M.
€=Relative error achievd in fl7)(x) values.
Maximum order of quadrature formula is 64.
p=100,
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It will be observed that, as the order of the fitting polynomial
is increased resulting in accurate perturbations to the solution
being obtainable,rapid convergence is achieved even in the
extreme case p=100. Here, where the numerical instabilities
associated with the conventional differential approach are at
their greaﬁest, it is necessary to ‘increase the order of the
quadrature procedure to 64 in the case of the exponential kernel
associated with equation (A0.4-9a). Nonetheless, when the
numerical integrations associated with the iterative process
are performed accurately,the convergence rate is extremely
rapid. It appears therefore, that the numerical difficulties
associated with the parent differential equation may be
transferred to the numerical integration involved in the
iterative solution of the resulting integral equations. The
powerful automatic gquadrature techniques which are currently
available are then capable of rescolving this difficulty and

rapidly converging solutions are obtained.

The main advantage of the present iterative solution is its
ability to tackle nonlinear integral equations where the
conventional algebraic approaches are difficult. An
illustration of these difficulties is provided by the results
obtained in attempting to soive equation (5.1-1) by the standafd
discretization

N
£(x;) = g(x)+LWR(x,, %1 £(x))), 1=0(1)N. (1)
-0

The solution of these N+1 nonlinear equations for f(x, ) by say, a
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conventional form of Newton's method is a considerable task,
especially if‘a high order quadrature rule is necessary to
perform the integration accurately. For low values of the
parameter p, accurate results are obtainable for N values as low
as 8, but, even at p=10,it is necessary to use values up to N=32
as evidenced by the following Table.-

Table 4
Relative errors obtained In f(x) values from equation (1)

N p=1 p=10

4 1.0(-4) S

8 1-0(-8) 1-0(=2)
16 1-0(-10) 1-0(-7)
32 1-0(-10) 1-0(-10)

The cases p=50 and p=100 proved to be quite intractable by
this algebraic method, since the number of gquadrature grid

points required for an accurate solution was prohibitive.

Before going on to the next section, brief details of the
solution to Chandrasekhar's equation (A0.4-1), [70,71] by the
present method will be given. Comparison may be made with the
results in section 2.6.1 Table 11. Table 5 of this section
contains the results for A=1l/2. The number of iterations are
now much fewer than in the use of successive approximations,
a fact which becomes more and more important as X is
increased. The case A=1 for example could not be solved by

the Neumann series whereas 15 jiterations were sufficient to

obtain the solution using the Newton scheme.
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Table 5
Reasults for the H-equaticn (A0.4-1) by Newton's Method

85.6

M x, R X R Xy R R
4 1-09318919 4 1-18767610 4 1-23678739 4 1-25120439 4
8 1-09325a82 4 1-18773375 4 1-23684157 4 1-25125809 4
16 1-09325667 4 1-18773510 5 1-23684298 5 1-25125949 5
32 1-09325670 5 1-18773511 6 1-23684300 5 1-25125952 7
* — 1.187735 S 1.251259

M is the number of fitting points for the perturbation Of(x).
NGRID=32 and the quadrature order NQ is allowed to increase automatically up to this value,
R is the number of (terations to attain convergence.

xi=coc(i1rl4l, i=1{1)4

* Resuits in bottom line are from [70].

5.6 A MODIFIED SCHEME FOR VOI,TERRA EQUATIONS

The scheme which has be.en described in the previous sections of

this chapter may be used for both Volterra and Fredholm

equations provided that the kernel K(x,y;u) is defined over the

whole square a<x,y<b (and all ueC{a,b] or L,[a,b] say). Many

Volterra equations such as (A0.1-13,15), contain kernels which

are defined only over [a,x].

desirable for such equations.

A modified scheme is therefore

- Assume as before that the range [a,b] has been normalized to

[-1,1] and that the Chebyshev fit {(5.3~2) is used to approximate

the perturbation 8f(x).

for the coefficients a, for such a Volterra egquation is

The resulting set of linear equations
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M
RIx£] = Layl=T,0x)+ Ky (x,¥1£ (7)) Ty(y)dy, 1=1(1)M. (1)
=0

Note that the fit of 8f corresponds to a fit over the whole range
[a,b]. The integral in (1) can nonetheless be evaluated by the
usual definite integration form (3.4.1-4,5) over the range

[-1,%] if it is written in the form

1(x) = (x+1) f K(x,y:£(y))Ty(y)ds (2)
2
where
Yy = ({(x;+1)s8-1+x,)/2, i=1(1)M. (3)

If the equation is singular then the methods in the next chapter
for the calculation of singular integrals may easily be applied
to equation 2. Values of £(y) required in the quadratures can be
stored for each i=1{1)M and then updated via equation (5.3-—5).'
Alternatively they need not be stored at all and can be obtained
whenever necessary by interpolation formula (3.4.2-5) on the set

of grid values f(x;,), i=0(1l) NGRID.
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CHAPTER 6

THE SOLUTION OF SOME SINGULAR INTEGRAIL, EQUATIONS
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6.1 INTRODUCTION

The importance and wide range of applications of singular
integral egquations is well known. Singular equations often
arise from potential problems, for example in electrostatics,
hydrodynamics and elasticity theory, (sée [40,126] for some
basic references). Currently much work is being carried out

in this field and numerous methods now exist for the solution
of particular types of singular equat ions ’
[135,137,138,139,142]. The methods do have their limitations
however. Most are only applicable to linear eguations and in
some cases such as Delves [137] special knowledge of the
nature of the singularities is neccessary. The schemes to be
developed in this chapter will not suffef from these
shortcomings. By building a singular integrator [l1l2] into
the numerical schemeg which-have already béen discussed in
the previous chapters it is possible to create a more general
direct meﬁhod which is capable of treating both linear and
nonlinear equations without the need to analyse the

singularities in advance.

Singular integral equations have been defined in Chapter 2. In
this chapter only finite range singular equations will be
treated. Equations which are defined over infinite ranges may
be converted to a finite range by means of transformations such

as

X = t/(1l+t) (1)




—154- ' 86.2

X = exp(-t) (2)
which map te{0,=) onto xe[0,1] or
x = tanh(t) (3)

which maps te(-«,«) onto x €[~1,1]. The methods to be proposed
can be used not only to solve singular equations but those
possessing badly behaved kernels (or driving terms). This
includes kernels with peaks and those with singular

der ivatives.

6.2 DESCRIPTION OF AN ACCELERATOR TECHNIQUE

The method to be described is in the spirit of the work
carried out by Chisholm et al.[1l3] in which sequences of
quadtature approximations are generated and then subjected to
acceleration routines. In that work the seguences were
created by a systematic increase. in the number of quadrature
points. In contrast, the present technique utilises the
process described by Rabinowitz as "“creeping up on the
singularity". It involves integration over increasingly
small subintervals as the singularity is approached. The
resulting sequence of approximations is then accelerated by
means of the e€-algorithm [76,77,94,95],(See alaso brief
details on itz use in section 4.5.1). Motivation for the

method may be found in ([12]).
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For convenience assume that [0,1] is the range of integration

and that the integral

S(x) = f;r(x,y)dy (1)

involves an integrand I(x,y) which is singular at y=0. If
the integrand is singular at y=1 suitable modifications to
the method which follows can be made, or alternatively the

integral can be submitted to the program in the form

S(x) = -j‘:x(x,y)dy. | (2)

If the singularity occurs at y=x (a common form is k|x-yi
which arises in potential theory) then the integral must be
treated as one containing a splif. kernel and will therefore
involve two integrals. They may both be treated as lower

limit singular integrals by writing

S(x) = ,r:r(x.y)dy - ffrcx.y)dy. (3)

Doubly singular integrals may be conveniently evaluated as one

integral with singular lower end point from the egquation

s(x) = 1 [ [1(x,¥) + I(x,1-y)1dy (4)
270 2 2

although experience has shown that it is betté.r to treat each
of the integrals separately. All the other forms of singular
integral such as those singular at x and one end point or
singular at other points within the range may be dealt with

by combinations of equations (1), (2) and (3). Returning now
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to equation (1), this will be evaluated by constructing the

sequence of integrals

Sp(x) = f 1(x,y)dy (5)

n

whexre x,=1 and x ~0 as n~+«. The successive terms of the sequencé

{8,1 will be generated by the suma

n
8,(x) = LJ(x) (6)
k=0
where
th_i .
J(x) = [ 1(x,y)dy, 3>1. (7)
J
Clearly
lim 8 (x) = S(x) (8)
n-—+on

In the present method, the sequence {S,} will be subjected to
the e-algorithm, (see Chapter 4 or [12,76]) in order to
obtain its 1limit and hence the integral S(x). Var ious
possibilities for the monotonic decreasing sequence {xn1

exist. It was found {12] that the choice

x. =6, 0<e<1 (9)

was most effective in pract‘ice. Large values of 6 sometimes

resulted in large numbers of terms (n-20) being necessary for

the e€-algorithm to produce convergence to a specified
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accuracy. Small values of 6 occassionally induced x, to approach
the singularity too closely before convergence had occurred
although rapid convergence of the accelerated sequences did
occur in many cases. The value of 8=0-2 was found to be a
suitable compromise and will be used in solving integral
equations. The numerical scheme is similér to discretization D8
in which the update grid is fixed but the points at which the
integrand is evaluated are allowed to vary automatically.
Subdivision occurs and the relevant points correspond to those
in (9). A Clenshaw-Curtis or Patterson fit is then imposed upon
each of the subintervals in order to calculate the integrals.
This form of s'ingular integral equation solver will be denoted
by 81. The interpolation formulae (3.4.2-2) and {(3.4.2-5) are
used in obtaining the solution values required in the integrand

from the basic update grid.

6.3 RESULTS FOR SOME EQUATIONS

The results which are presented in the following tables were
obtained using a Chebyshev based update grid and Patterson
quadrature. At the time of writing most results were only
available from the Honeywell computer, working to 8 figures of
accuracy. A realistic comparison with other work is therefore
not possible, but the results do serve to indicate how the scheme
functions. Equations (A0.1-13,15) are solved by the above
scheme S1 and details are contained in Table 1. Due to the simple
nature of the solutions to these equations it is possible to use

an update grid of only three points. A maximum allowable
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guadrature order, N, for each integral over the subintervals
{x,.;-%] i3 given together with the maximum number of guadrature
points, N, used in evaluating the complete singular integral.
The number of accelerator terms T is also supplied. The
: underlying method used in obtaining these results was the

e~algorithm + Gauss-Seidel form of successive approximations.

-

Tablel
Reasvits obtained by the use of € + Gauss~Seidel iteration and the scheme 51

Equation
Number NQ NP T R E

3 15 5 5 2-4(-4)
(AG.1-13) .

42 6 6 8-9(~8)

3 18 b 7 4-4(-4)
(AO0.1-15)

7 63 9 7 3-7(-8)

NQ = max. no. of points allowed in any subinterval,

Np = max. no. of points used over the whoie range of integration fe.x.
T =max, ho, of terms vsed in the acceloration process.

R =min, no. of iterations raquired to achieve convergence.

E = ralative etror attained.

NGRID=2 for a Chebyshev based update grid.

Table 2 contains similar information conc.erning the two
equations (A0-1~-16,17) which may bé found in [135] in which the
fast Galerkin Algorithm of Delves et al. [137] is used.
Comparison is not straight forward since the configuration and
numbers of grid points are not the same. Nevertheless the table
does show that reasonably few points are adequate to obtain
accurate values to within the limits of the computer used. Due
to the more complicated nature of the solutions it is found to

be neccessary to set NGRID equal to 8.
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Table 2
Resvlits obtained by the use of € + Gauss-Seidel iteration and the scheme S1
Equation
Number NQ NP T R E
3 1s 5 7 9.5(-4)
(AQ0.1-~16) 7 42 6 9 2-2(~8)
15 105 7 10 1-1(-8)
3 24 8 11 1-2(-1)

(AD.1-17) 7 77 11 15 2-9(-5)
15 187 13 16 7.8(-6)

NQ= max. no. of points allowed in any subinterval,
NP =max, no, of points vsed over the whole range of integration [a, "I] .
T =max, no. of terms used in the acceieration process.
=min, no. of iterations required to achieve convergence,
E =relative error attained,
NGRID=8 for a Chebyshev based update grid.

By way of variation, results for equation (A0.3-9) given in
Table 3 were cbtained by the use of Newton's method. Successive
approximations did not converge although the Gauss-Seidel
iteration and e-algorithm enhancement thereof did produce the
solution. Again accurate results are obtained for a low
expenditure in work since the update grid only requires three
points, although a comparativel); large nuntl;er of quadrature

points is necessary to attain full figure accuracy.

The main advantage of the Sl scheme over other methods is seen as
its adaptability. It can as easily be implemented in a
successive approximations setting as in the Newton method and

can consequently be applied to nonlinear as well as linear
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singular integral equations. The need to interpolate the

solution can pose problems if the solution is in some sense

singular.
Table 3
Rasyits obtained by Newton's method and the scheme S1
Equation :
Number NQ NP T R E
3 21 7 2 4-4(-5)
(A0.3-9) 7 70 J0 2 1-4(-7)
15 150 10 2 6:0(-8)

NQ = max. no. of points allowed in any subinterval.

NP = max. no. of points used over the whole range of integration [ a,x;].
T =max. no. of terms used in the acceleration process.

R =min. no, of iterations required to achieve convergence,

E = relative error attained,

NGRID=2 for a Chebyshev basedq update grid,

M =2 tor the fitting degree of the purturbation 5¢f.

As an alternative it is possible to employ a scheme which is
similar to D7 in that the subdivisions are kept and the solution
updated at all guadrature points within each subdivision.
Naturally, this implementation relies on the guadratures being
of relatively low order. Use of the progressive Patterson or
Clenshaw-Curtis rules greatly aids in this respect. In some
instances a smoothing transformation can help in reducing the
severity of a singularity (Morrow [134]). Equation (A0.3-6) foﬁ
example which possesses a singular derivative of both the

solution and the kernel can be transformed to
2 1 2
£(t) = t - 2tj;sf(s )ds (10)

by means of the transformation x=t2. (More generally one may set
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x=t", n)>2). Investigations are currently being carried out on

both of these alternatives
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CHAPTER 7

APPLICATION TO SYSTEMS OF EQUATIONS ‘
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7.1 INTRODUCTION

In practice, one is often faced with systems of integral
equations. Frequently they will have arisen from the conversion
of systems of differential equations. Such systems occur in a
wide field of applications. These include electric circuit
theory, chemical engineering, controi theory, population growth
[56] and potential theoﬁy [18]. Systems of integral equations
can also occur in the conversion of a single differential
equation to integral form (see equations (3.2.4-12,13) for
example).. The shooting method developed in chapter 4 also
results in systems of integral equations as can the conversion

of the m” order initial value problem.
£ ™) = ket eyt Tayay )
r=0(1)m-1 .
By defining the variables %f(x), s=1(1l)m as
1 (0)
E(x) = £ (x) = £(x), (2)
' 1 1)
r0) =a (TEe) = £ (), s=2(1)m, (3)
dx .
the following system of integral equations may be created

3f(x)==nrq+J:‘Hf(y)dy, s=1(1)m-1, (4)

m_. X 1. 2 m
fu)=mﬂﬂLKW:f,ﬁ““,fmy. (5)

The Van der Pol equation [144,56]
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£ (x) = —af(x)+e(1-£2(x))E" (%), £(0)=2, (6)
£(0)=0

for example i3 equivalent to the system of integral equations
1 2 ‘
£(x) = 2+ [ £(y)dy, (7
2 1 2 2 1
£0x) = [ [e(1-{ £(¥)}) £(y)-a £(y)lay. (8)

It is of course posible to carry out the reverse process and
produce a single integral equation from a system [15,19], but

use of this approach will not be considered.

In concluding this work it will be of interest to investigate the
extension of the methods described so far to'.their use in
connection with sistems of equations. In initiating a
description of the schemes to be used it will be assumed that the
system._of m integr}al :étjuations

I

"E(x) = 'g(x)+_[='x($c,y; %, ..., enay, r=1(1)m. (9)

have already been obtained. Equation (9) may more concisely be

written in vector form as
£(x) =g(x) + J‘cg(x.y:;)dy (10)

which is exactly the notation for a single integral equation

with the ocbvicus modificationa for vectors.




-165- 87.2
7.2 SUCCESSIVE PROXIMATION

Successive approximations for a system of equations forms a
natural extension of the single equation case. Existence,
uniqueness and convergence theory (in particular that for
successive approximations) generally only reguires trivial
modificationas to the details relating to single equations and
involves the use of ﬁorm conditions for vectors and matrices
rather than the scalar norms employed on single equations
[56,119]. The methéd of successive approximations has
frequently been used in solving systems of integral equations

f112, 113, 115, 116, 117, 118}.

Successive approximations can be implemented in'several ways.
Firstly, normal iteration may be carried out in the sense
that evaluation of *I™(x), (i=0(1)N,s=1(1)m,r=0,1,2,...)
only uses values from the r' iteration. Secondly,
Causs—-Seidel iteration hay be employed in a number of ways.
They are:— (i) G.S.l, all the most recent updates are used in
evaluating the integrals, (ii) G.S.2, a complete set of
solution values for *f(x), (i=0(1)N,s and r held constant) is
found and then substituted into the integrals for evaluation
of *f(x/). Alternatively oné can update each solution at
the same point before moving to the next. Then either, (iii)
G.5.3, most recent values are used to evaluate the integrals
or, (iv) G.S.4, the values °f(x) [*1], (i held constant,
8=1(1l)m, r held constant) are all found before being used to
find similar values at x,,. Finally, the Neumann series may

be accelerated in the manner described in Chapter 4 with the
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aid of the e-algorithm [76). Alternatively the Gauss-Seidel

schemes may be accelerated.

7.2.1 COMPARISON OF FOUR 1TERATIVE SCHEMES

In this section only the choices of -ordinary direct iteration,
Gauss-_Seidel iteration G.S.1, the e-algorithm modification and
a combination of G.S.1 and the e-algorithm will be studied.These
choices outlined above are compared in the solution of the
systems contained in appendices (AD.6)-(AD.S). A guadrature
order N=8 is used in all cases.

Table 1

The number of iterations required to obtain convergence
in various implementations of successive approximations.

Problem Ordinary €~ I G.S.1 ¢+
Number iteration G.58.1 Algorithm €-Algorithm
AD.6-P1 14 8 14 8
A0.6-P2 — | — 16 15
AD.6-P3 -8 7 .8 * 7
AC.6-P4 12 14 10 9
A0.7-P1 8 7 5 4
AO.7-P2 28 15 12 11

G.S.1 stands for Gavss—-Seidel modification of successive approximations.
implies that convergence has not occurred.

The table displays the same characteristics for systems as were
found for single equations and it is apparent that Gauss-Seidel

+ €-algorithm iteration once again should form the preferred

scheme.
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7.2.2 SOLUTION OF (A0.9-P1)

This system is related to the differential equation
£ (x) + 2£(x) £ (x) =0, £(0)=0, £(12)=1. (1)

and hence also to the single integral equations (A0.2-8),
(A0.3-21)and (AO0.4-11). Table 2 demonstrates the effectiveness
of using successive approximations on the system of equations
and the worth of possessing different methods of decomposing
differential equations also becomes apparent. The ability to
avoid the need to evaluate derivatives explicitly in

calculations is one of the major advantages of the systems

approach.
Table2
Equation (1) solved as u system of integral equations
Xq X, ]
Problem
Number R E R E R E

£, 2 1.2(-11) 4 4-5(-10) 6 7-4(-10)
(A0.S-P1) .
£, 2 3-9(-11) 4 6:-5(-11) 7 8-8(-10)

NGRID =8;- this is the update grid,
NQ = 8: ~ this is the quadrature order used.
X = 0,6,12, i=0, 1,2 respectively.

A final brief investigation will now be made into the viability
of the Newton method schemes in connection with systems of

equations.
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7.3 NEWTON'S METHOD FOR SYSTEMS OF EQUATIONS

Newton's method as described in chapter 5 can be extended to the
solution of systems of equations. It involves construction of

the m residual equations
RIx:£] = £(0)-g(0)-f Kx,yi£(y))ay, z=L(Lm. (1)

On introducing the m perturbations "8f£(x), r=1(1)m so that the
exact solutions 'f£*(x), take the forms 'f*(x)="f(x)+"0f(x),
r=1l(1l)m, similar arguments to those used in chapter 5 produce

the equations

"Rix;£] = ~of(x)+f K, (x,yi£(y)) 0f(yray +

| (2)
m.r s

- zfcx.'(x,y::(y)) of (y)dy, r=1(1l)m.

81
s¥#r

Use will again be made of low degree Chebyshev fits to the
functions '8f(x) so that

M
"8f (x) = z'a,[']tr,(x) , _ r=1(1)m. (3)

i=0
In order to accommodate this form, the usual 1linear
transformation (2.1-3) will be used to tranasform the range of
integration to [-1,1]}. The M, r=1(1)m will be set equal to

multiplea of 2 and satisfy M (N where N+1 is the number of update

points. Substitution of equations (3) into (2) gives rise to
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r Mr'[r] 1r
R[x;L) =La; (-Tj(x)+[ 'K (x,y:£(Y))T(y)dy}+
=0

(4)
s¥r _ r=1(1l}m.

m
The PM+m unknowns aj['],j*O(l)Mr,r-l(l)m may be found by
evaluating (4) at the Chebyshev points x=cos(in/M,),i=0(1)M,.
r=1(1)m. The successive iterates to the solution are then

updated in a manner analagous to that described in chapter 5.
7.3.1 RESULTS FOR SOME EXAMPIES

Table 3 contains results for a selection of the examples to be
found in appendices. AD.IG to AD.9. Absolute errors attained us ing
the values M,=M=4,8,16, r=1{1)m, are depicted and show how few
points are neccessary to attain very accurate results, M=8
giving full accuracy in most cases. The selection of examples is
limited, and further work is needed to establish the full merits

of the scheme.

7.4 APPLICATION OF THE SCHEMES TO STIFP SYSTEMS

Many systems of differential equations display the property
of stiffness (Lambert [86]). The example (AD.6~P5) which was
derived from equations (A0.6-28,29) occurs in Lambert and
will be studied here. When translated to a system of
integral equations it is c¢lear that the problem of stiffness

in the original differential equation is equivalent to the
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Table 3

87.3.1

Newton's method applled to some systems of integral equations

%o X4 Xa

Nombor R E E E

M=4, e=1-0(-4)
(AD.6-P1) 2 2-9(-11) 4-2(-4) 2-1(-4)
(A0.6~P2) 3 2-4(-13) 7-7(-5) 2:7(-4)
(A0.6-P3) 4  5.6(~3) 1-0(~2) 5-6(-3)
(A0.6-P4) 2 7-3(-12) 2+6(-5) 1-6(~5)
(A0.9-P1) 3 3.9(-11) 6+-5(-4) 8-8(~3)

M=8, e=1-0(~7)
(A0.6-P1) 4  1.5(-11) 3-8(-9) 2-0(-10)
(A0.6-P2) 3 4.9(-13) 1-1(-5) 7-3(-7)
(A0.6-P3) 3 7-5(-11) 1-3(-7) 6-9(-7)
(A0.6-P4) 2 7-3(-12) 1-6(-10) 1-1(-11)
(AD.9-P1) 4  2-9(-11) 5-5(-4) 3-8(-5)

M=16, e=1-0(-9)
(A0.6-P1) 3 0-0 0-0 7.3(-12)
(AD.6-P2) 3  5-9(-13) . 1-1(-11) 6+8(-13)
(AC.6-P3) 3 8.3(-11) 1-5(-11) 7-3(-12)
(A0.6-P4) 2 1-1(-11) 1-8(~12) 3.6(~12)
(A0.9-P1) 4 2-1(-11) 3-7(-10) 9-8(-10)

A = max. number of iterations required to achieve convergence,
~ E=greatest absolute arror attained in any of the solution values,

X i=0(1)2 arethe end and mid points of the respective ranges.
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requiremént that rapidly fluctuating functions in part of the

region of definition need to be integrated. Because of this

- problem Lambert calculates that if a Runge-Kutta method were

to be used on the differential system then a step-size of
h=0.00125 would be neccessary. In contrast it was found that
by subdividing the range of integration using h=0-1 and
employing quadratures of order N=8 it was possible to obtain
full figure accuracy over the complete range. Even though the
integration difficulties arising from the solutions are
confined to the range [0,0:-1] this represents a large saving
in the number of update points from 80 to 5 in this first
interval. It was in fact possible to achieve full accuracy
over the rest of the range [0:1,1] using N=8 also. However,
better comparative results would be obtained by a method such
as Gear's [151] which is directly applicable to stiff systems

of ordinary differential equations.

Possibilities exist for both successive approximations and
Newton'as method which can be implemented using several of the
discretizations appearing in chapter 2. Either the automatic
version of D7 or the hand tuned option which was used in the
above example seem to be favourable alternatives. It is hoped
that future work will involve the incorporation of a singular

integrator into the acheme and it is envisaged that this might

well provide the ideal tool to solve this type of problem.
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CHAPTER 8

CONCL.US IONS
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CONCLUSIONS

The work in this thesis must now come to an end. It is to be hoped
that thé numer ical schemes which have been created so far for the
solution of integral equations will serve a useful purpose not
only because they are successful in solving many such eguations
as the}r stand, but also because they can form the basis of much
more sophisticated schemes in the future. The discretizations
which have been presented in Chapter 2 pave the way for much more
complex numerical schemes which will be able to solve egquations
more efficiently and accurately. The schemes are largely
indepéndent of the particular numerical devices used in them and
although they have mainly been based on integrators and
interpolators using Chebyshev polynomials any other forms can

easily be employed.

The use of successive approximations as described in Chapters 3
and 4 has proved to be very powerful, especially in connection
with nonlinear equations. It is well known that convergence
diff.iculties do arise, more so for Fredholm equations than for
equations of the Volterra type but the contents of Chapter 4
reveal that there are ways of modifying the method to overcome
these difficultieas. The creation of equivalence classes of
integral equations by means of integration by parts and the
application of accelerators have achieved moderate success. The
adaptation of the shooting method from a differential to
integral equation setting allows certain Fredholm equations to
be treated as Volterra equations thus overcoming some of the

inherant convergence difficulties. Other methods
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applicable to the solution of Volterra equations could also be

easily substituted.

In si;tuations where successive approximations fails, new
routines based on Newton's method have been shown to be capable
of delivering solutions in a more efficient manner than
‘conventional implementations of that method. ‘I‘heée schemes have
also been used to treat nonlinear equations very successfully.
First-kind equations can be solved by this method although very

little research has been carried out on this possibility so far.

Many integral equations are singular and there has long been a
need for methods for solving such equations. A new singular
integral package has been created which performs very well. The
great advantage of this tool is that it is independent of the
method used to solve the integral equation. It can therefore
easily be inserted into schemes based on successive
approximations, Newton's method or any other routine for that

matter.

The numerical implementations of successive approximations

‘and Newton's method have also been extended to deal with aystems

of integral equations and this completes the armoury of devices
for the solution of problems which can be reduced to integral

eguation form.

Since so many physical problems can be reduced to integral

equations of one form or another, the value of the techniques
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described in this thesis is at once obvious. One often finds a
physical problem described in differential equation form.
Chapter 2 contains many useful methods of transforming
differéntial equations to their integral counterparts. The
techniqu.es, eépecially those derived from variation of
parameters can be used to obtain numerocus different but related
integral equations from just one differential equation. This can
be valuable in checking accuracy of results especially for
nonlinear equations for which analytic solutions are rarely
available. Sometimes an integro—differentialAequation will
arise from the differential eguation in which case it is often
preferable to produce a system of integral equations. The value
of extending the methods to cope with systems of equations is

therefore aasured.

As well as seeing the developement of more sophisticated
schemes in the future it is hoped to be able to produce
rigorous error bounds on the solution values obtained from
any particular method. At present error analysis has been
confined to the study of values obtained from the
integrators.This aspect clearly needs to be extended and
studied much more deeply if the schemes are to be of use in
solving physical problems for which error bounds are often

necessary.
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PENDIX O

EXAMPLES SOLVED

0.1 LINEAR VOLTERRA EQUATIONS OF THE SECOND KIND

£(x) =1 + 1] £(y)dy, 0<x%2, (1)
i}
.
=e " ([1] p.155, [144],[16] pp.22,25).
The following six equations are contained in Baker [11] p.785.

f(x) = cosx + j:(y-x)cos(x-y)f(y)dy, 0<x2, (2)

= (2cosy3x+1)/3.

£(x) =x + J‘;sin(x—y)f(y)dy, 0<x<2, (3)
3
= X+X.
6

£(x) = sinx +J’:(x-y)f(y)dy, 0<x<2, (4)

= (ginx + sinhx) /2,
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f(x) = ex + Zf;cos(x—y)f(y)dy,

-e (1 +%)°

f(x) = cosx +Jr: f(y)dy,

= (e + cosx + sinx)/2.

£(x) = sinhx -f:coah(x—y)f(y)dy,

/
= 2ainh(y5x) e-x 2.

Vv5 2

f(x) =& + J";(x—y) £ (y)dy,

£(x) =& +2f (x-y)£(y)dy,

VA VA

=[yre’ "+ (A=yA)e

£(x) =1+ f; y(y-x)£(y)dy,
p 4

=8inx/x.

*+e1/(n

0<x<2,

0<x<2,

0€x<2,

0<x<l1,

0<x<1,

1).

0<x<10,

AQ.

(5)

(6)

(7)

(8)

(%)

(10)
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£(x) = 13e"‘-1z+1zj‘:f(y)ay (11)
\
! -e”, [11], p.xxx.
\
1
‘ £(x) = 13e"-12—1zj:f(y)dy ' (12)
| x
=e, [11], p.xxx.
£(x) = _1_5_>x—x""2+j’;(x—y)"2f(y)dy, 0<x<1:5,  (13)
4
=15 x, {11}, p.876.
L ,,
£(x) = 1 £(y) dy. (14)
2°°% y

Equation (14) is a Volterra form of (A0.3-5).

£(x) = x+x (3/4-1n(x)/2) +j‘;1n(x—y)f(y)dy (15)
= X.
£0x) = o'+ o) e xoy-3/2) (o e ray (28)

e, -1<x<1, [135].




-180- AD.2
fi{x) = e-28(x+1)1In(x+1) +
2" In(x-y) (x-2y+2xy -2y )£ (¥)dy (17)

- e"z, -1<x<1, [135].

£(x) = ((x+1)"'% 1 + (x+1) In(x+1))/e+

S xmy-1)1n0x-y)+ (x-y-0- 5)x-1) () Jay (28)

= 8 “l(!(l, [135] -

0.2 NONLINEAR VOLTERRA EQUATIONS OF THE SECOND KIND

The following five equations are taken from Baker (1l1].

2 2
£(x) = o -xrxe” [ xyv (y)dy (1)
- exa, 0<x<4, (p.832).
£(x) = z-e"+J';e"“'{f(yn"’dy (2)
= 1 , 0<x<1, (p-832).
£(x) = L-x+f (xexp(y[x-2y])+exp(-2y ) HE(Y) Yy  (3)
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- exp(x?), 0<x<1l, (p.848).
£00) = 16 "(ve D+f e (£ ()} dy (4)
2
-8, - 0<x<16, (p.882).
£(x) = 1+x+§2+;;(1+x_y){f(y)fdy (5)
= 1, 0<x<16, (p.882).
| ) |
£(x) = l+J:x(y—x){f(y)} dy »>1, 0<x<1. (8)
X

Equation (6) is a nonlinear form for the Lane-Emden equation

of index v.

£(x) =~ [ KL£(y)lay : ([18), p.223), (7)
(m(x-y)]'2

where X may be chosen to be any suitable function.

£(x) = 1-e +[" e £ (y)-£2(y) 1dy. (8)

i
This is a Volterra equation of the boundary value problem

£h(x)+2£(x) £ (x) = O, £(0)=0, f(w)=1.
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0.3 LINEAR FREDHOLM EQUATIONS OF THE SECQO KIND
1
£(x) = x+xf yf(y)ay (1)

= 3x .,

3-:

r -
£,(x) = xE (\/3), 1KY, 3.
=0 .

w2
f{(x) = 1+xj; cos(x~y)f (y)dy (2)

= 14 4 (cosx+sinx),
[4-\(w+2)]

r
-1
£,(x) = (cosx+sinx) }:x'[gm]’, KN, =0:765.

et 2
f(x) = 2+xj'0(x-y) £(y)dy (3)
2 -1
= agta,xta,x , iKi§, =3-873,
where
a, = 60(6+l)/(180-30k~k2),
a, = 3sox/(x2+3ox-180),

a, = "d.'.

- r
£x) = ¢ x g%

=0




with
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a +Qj+c]r

3 2

—(éj"'_z. b +cj)r

2 3 j

at+bh+c
j 41 3*

ag = b0 =0, cg = 2.

£(x) = 1-(e=1)+ J’;e""fcy)dy
X

= S S
HKHQ - E 2

£f(x)

f(x)

= 1,

-1/2
= (-768.

11‘.!!]

wfx-_f;wl(XY)f(Y)dY

({11}, p.370),

=1
WKl =2 .

-1
KN, =V2.

A0.3

(4)

(5)

(6)



where

£(x)

f(x)

£f(x)

g{x)

f(x)

f(x)
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172 3 wi2 3/2
x (1—zz4x)+_fo (xy)  f(y)dy

x"? [136].

(1<) -mvz(2-<") /4 +2f Lyt e ey

(1-x5)%*, ([135], [11] p.541).

g(x)+f Inix-yl£(y)ay

X, ({11]) p.536),

2 2
x-0+5{x Inx+ {1-x )In{l-x)-x-0-5}

l+f;lnlx-ylf(y)dy, [97].

g+ [ __d
k14 dZ+(x_y)2

£(y)dy, KN, =0-672.

A0.3

(7)

(8)

(9)

(10)

(11)

Equation (1l1) is Love's equation — see [11l] pp. 358,365,372,

376,381,404, [63] p.391l. g({x)=1 and d=1 in the text,
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£(x) = 2tan '{ X 'sinx 1+
[1-cos(x) ] [kycos (x)-k2]

xk,j;'{ £(y) - _f(m=y) }dy
7 [1-k,cos(x+y)] [l+k,cos(x+y)]

where
2. - 2 -2
k1 = (1l+k ) , kz - k,(k -1), k3 = 1~k .

This is the Lichtenstein-Gershgorin equation [76].

£(x) = 1+xe-f;x(x,y)f(y)dy, ([11] p.382),

-1
K(er) - min(er)r "Klg =y6.

£0x) = x+A[ R(x,Y)E(y)dy [46],
= gin(xv¥x)/[VYAcoa V¥i],

-1
K{x,y) = min(x,y), . IKil, =v6.

£(x) = xsin(1)+f;K(x,y)f(y)dy

= ginx, ({11} pp.357,402,415),

K(x,y) = y(1-x) y<x,

AD.3

(12)

(13)

(14)

(15)
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= x{1-y) x<y.

£(x) = x° - j';K(x,y)f(y)dy, KN, =90, (16)

= [(3e-2)e +e(2e-3)e "1/[e -1]-2

K(x,y) = y(1-x) y<ix,
= x(1-y) x<y, [xxx].
x 7 -1
£(x) = e +1f K(x,y)f(y)dy, IKN, = 2_. (17)
° J3m
= [kcosx(x+1)"2+
A____ (e +AsinmA}sinxA+2e ]/ (2+1)

A cosmA

where

1/2
A= (A+1) .

K(x,y) = cosxsiny y<{x,

= ginxcosy x<y.

3
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f(x) = sinx+2coax-4(x+r)-2+ (18)
2 2

£
J:(1+x+y)f(y>dy+1f (x+y) £ (y)dy

= Sin_x__r [ll].
-2

£(x) = 56 ~lxe -1 +xj’;ye'f(y)dy+ xj':xe’f (yyay  (19)

4 2 a4
=e, ([11], p.385).
% 1
JORKRS f’_‘q(x-Y)f(Y)dYﬂZ. J y-mty)dy (20)
= 1lxe +Ae +Be ., ([11], p.394),
2 .

where

2 -1 2
A =1 (e +5)(e+3e ), B = 1(e +7)-A.
8 (8"6-1) 4

Equation (20) is an integral eguation of the differential

equation £"(x)~f(x)=e .

£(x) = x +J 0 x_-11E(ynay+x [ € (y)dy (21)
12 "9 12 12 °x

Equation (21} is related to the parent differential equation
f'(x)+2f(x)f' (x)=0, £(0)=0,£f(12)=1. See (AD.2-8) and(AD.2-10).
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0.4 NONLINEAR FREDHOILM EQUATIONS

£(x) = 1+Lf(x)f _x  f(y)dy (1)
X+y -

Equation (1) is the Chandrasekhar equation studied by Stibbs and

Wier [70]. Alternative forms are:~

(1-1) "%£ (x) -Hf(x)_f ¥ f£(y)dy. (2)
2 0 x+y
£(x) = l+xf(x)_f x f(y) dy . (3)
x2 +y?
¥(x) ='l-L ' x ey (4)

O (x+y)¥(y)

Note that y(x) in (4) is the inverse of £(x) in equations (1)-(3) .
The solution to the above equations (1)-(3) and the inverse of

{(4) is given by

£(x) = exp{—xj' In(l-itcott) at}. (5)
cos?t +x?sin%t
When \=1,
£(x) -{;I YE(y) dy} (6)

x+y
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£(x) = X #2x +%-j'; (x+£(y)} dy (7)
=x and 5x-4, ([11], p.692).

£ (x) -_r;ﬁx+y}f2(y>dy. (1113, [731). (8)

£(x) = 1-2f PIE(y) 1y - 2 expp(x-y)FI£(y)]ay.  (9a)

£(x) = p(v—x)+2f;p(x--nr[f(y>de+
(9b)

p.f: {2(y-7)PL£(y) 1L (Y)}dy,
where
FIf(y)) = £(y) linear case,
= fz(y) nonlinear case.

and v=1+1/p, p being the Peclet number, [91]. The solution in the

linear case is

-x)

£(x) = {2+ ) /(a1 . (10)

Equation (11) is related to the equation £ (x)+2f(x)f (x)=0,

£(0)=0, £(»=)=l, (3ee (AC.2-8)).
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£ 0x) _j‘;exp{-zj;f(z)dz}dy (11)

j':exp{-zj’:f(z)dz}dy

Zf;(x*Y)exp{—I;f(z)dz}dy . . (12)

_foexp{-f:f(z)dz} |

f(x) =

Equation (12) is a form of the Blasius equation [25].

y 2
,gexp{—,[g(y-z) £(z)dz}ay

£(x) =1 - ) (13)
[expt-[l(y-2)"t (z)az}ay
The differential form of equation (13) is
£7 (x)+2£ (x)£" (2)+{1-£ '2(x)1 = O, (14)

£(0)=f (0)=0, £ (e)=1

which occurs in the analysis of the flow near the stagnation

point of a body of revolution (Weyl [149], Siekmann [28]).

£(x) = DR YIFIYiE(y) 1y, ([16], p.23), (15)
K(x,y) = (w sinwb)_1sinwsinw(b—y) x<y,
= (W sinwb)-isinw(b—x)sinwy y<x,

is equivalent to



-191-

EE(x) +w £(x) ~F[x;i£(x)], £(0)=f (b)=0.
dx?

A0.6 SYSTEMS OF LINEAR VOLTERRA EQUAT I1ONS3

Problem 1

£,(x) = 1+2f £,(y)dy

£,(x) = 1—2j:f1(y)dy, 0<x<1.
Solution:-

£,(x) = cos2x +ain2x

£,(x) = coézx-sian.
Differential form:-

£4(x)=2£,(x)=0

£,(x)+2£,(x)=0 with £,(x)=f,(x)=1.

Problem 2

£,(x) *%’I:[SEd-SOfa(y)-ZSOf,(y) 1dy

AQ.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

6
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£,(x) nzgyj:[-n-70f2(y)+sof,(y) 1y, 0<x<1.
Solution:-

£,(x) = E[441-105e " -336e . 1/22050

=100% =-10%
3 _e 131 /105.

£,(x) = Efle
Differential form:-
7€, (X)+4f, (X) +50f,(x) =E

2f (x) +5€, (x)+20f,(x) =0,  £,(0)=£,(0)=0.

.Problem 3

£,(x) = %(1-cos4x)+J':(y—x)[8f1(y)+2f2(y)]dy

£,(x) =-j:(y—x)[?f,(y)+5fafy)jdy, 0<x<1.
Scolution:-

£.(x) = -22 cosdx +2cos2x+ 96 cos 3x

7 5 35

f,(x) = -4cosdx-4cos2x48cos3x.
7 5 35

A0.b

(8)

(3)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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Differential form:-

f',(x)+8f,(x)+2fz(x) = 24cos 4x

£, (%) +2L,(X)+5E(x) = O £ =t =f =f,=0, x=0.

Problem 4
X

£, (x) -% exp(-o-Z)-2f°_1f, (y)ay i=1,2 .

£4(x) =0, [86], 0<x<1 .
Bolution:-

-2 -2 T
f(x) =[le ,le ,0].
2 2

Problem 5

£,(x) = 1+f;[—21f1(y)+19f2(y)-20f3(y)]dy

£5(x) = [ [19€,(y)~21£,(y) +20£,5(y) 1dy

£4(x) = -1+] [40F,(y) -40£,(y) -40€,(y) 1y,

0<x<1,

[86].

AC.

(17)

(18)

(18)

(20)

(21)

(22)

(23)

(24)
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Seolution:-
£,(x) = Lo "+le " (cos40x +sin40x) " (25)
2 2
- —~40%
£,(x) = Le -le  (cos40x +sin4a0x) (26)
2 2 |
f,(x) = --e-‘m(cos 40x-sin40x) . (27)

Differential form: -

£ix) = A £(x), £¢0)=[1,0,-1]" (28)
where
A = [-21 19 -20]. (29)
19 -21 20
40 -40 -40
Probhlem 6

The same as problem 5 except that the range of integration is now

0-1<x<1 and the free terms in equations (25)-(26) are given by
£,(0-1) = 3-96448765x10 (30)

-1
£,(0-1) = 4-22281987x10 (31)

£(0-1) = ~1-88942069%10 - (32)
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AQ.7 SYSTEMS OF NONLINEAR VOLTERRA EQUATIONS

Problem 1
£,(x) = 75cos<g_g)—cf;f,(y)[ff(y)+f§(y)1"”dy (1)
£,(x) = 7551n(;_g)-gx-cf:fz()f) L£5 () +£a(y) 1 Pay (2)

_ -3
where g=32ft/s and c=2-291x10 .
Equations (1,2) give the horizontal and vertical components of
velocity of a spherical non-spinning ball from which it is
possible to compute its trajectory by straightforward
integration.
Differential form:-
2 2 172
£,(%) = —cf () [£(X)+£,(%) ] (3)

£1(%) = —cE () [£2(x) +Ea(x) 1" 2~g (4)

with

£,(0) = 75cos(2xm), £,(0) = 75sin(7x;).
30 30
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Problem 2

£,(x) = 2+f £,(y)dy (5)

These equations are equivalent to Van der Pol's differential
2 ' -
£"(x) = —af(x)+e[1-f (x)If (x), (7)

£(0) = 2, £'(0) =0.

£,(x) = J':[eil—ff(y) JE,(y) -afy(y) ldy (6)
AD.S SYSTEMS OF NONLINEAR FREDHOIM EQUATIONS

Problem 1
't (x) -1+ J‘ff R(x,y: £(y) ., £(y))dy | (1)
| 1I((x,y;u,v.r) =~1 ya[yu+v} . Oy<x,
6
= 2[1-y Ju[yu+v) x<y<12,
12
e - 2fly ey ey 1ay (2)

This system is derived from the parent differential equation

(AD.3-16).
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APENDIX 1

Summation abbreviations -

The following notation is used to abbreviate summations:-

N

i) HEJE DI IET ATTEREE IS A
=0 2
Nl'
0 2 2
Nq“

1i1)  DEy = E by rfgt et Ey iy,
=1

. Ny
=0 2 2
g

v) DE = fptfytfotecntfy +6 .

=2

Al
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APPENDIX 2
CLENSHAW—CURTIS IN‘I‘EGRATION
These integration rules are defined over the range [-1,1],
[4,36]. Both definite and indefinite integrals may be

approximated. Upon using the notation Q(a,b,N,f) to denote the

gquadrature approximation

o(a,b,N,£) «th(y)dy ' (1)

these forms may be expressed in the following way:-

Definite Integration

Nﬂ"
Q(-1,1,N,f) =« bi . _ (2)
=

Indefinite Integration

N+l

Q(-1,x,N,£f) =« Eb[T(x) - (-1)'1, (3)
=1
N+t
Q(x,1.N.f) =« Ebil-T(x)] (4)
i=1
where
b, = (a_,-a,,) /21, i=1,2,...,n-2, (5)

By = (8y.p=2n/2)/2(N-1) (6)
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by = ay_,/2N (7)
Doy = 2/ (N+1) | (8)
and

=2 [‘, f(cosj_)’rl(cosj__)
N j=0 '
(9)
=2 }: f(cosj__)cosj,j
N j=0
Clenshaw and Curtis give the following error estimates if the

Chebyshev series for the integrand f(x) converges slowly:-

By =max( 2] , 12ayp-ayl iaygay,l (10)
D A(N+1} 32(N-1) 128(N-3)

for definite integrals, and

By = max{_{an !, lana!, 23y 2yl y (11)
! 4(N+1) 16N  256(N-1)

in the indefinite case. If the series is slowly converging then

{2)
EN “max[ 'aN|’2!aN-2|'2|aN-4]} (12)

and

) ‘
By ~max[iayl,2lay_ 1,212y 1] (13)

are more likely to be bounds on the actual error but in the

majority of cases not such close bounds. For further error

estimates see O'Hara and Smith [29] and Elliott {30,32].
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PENDIX 3
INTERPOLATION FORMULAE

If £(x) is a functioh whose value is known at the points X s
i=0(1)N on an interval {a,b] of - the real 1line, then an
approximation, Py(x) to the function at any point x within [a,b]
may be defined by

f(x) = Py(x) + Ey(x). (1)

Here, N is the degree of the approximation and EN(x) is the

error incurred by using the approximation.
LACRANGE INTERPOLATION

The terms Py (x) and Ey(x) for the general Lagrange interpolation

formula using unequally spaced abscissae take the form
N _
Py (x) = Em(x)£(x,) (2)
k=0
where, using the notation
[M(x) = (x-xg) (X=X} ... (x~Xy), (3)
m (x) =11 (x)/11 (x,). (4)

The primes indicate that the terms (x-x ) and (x, -x,) in the

numerator and denominator respectively are omitted. The error is
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given by

Ey(x) =)L (£)/(N+1) - (5)

where ¢ is an unknown point in [a,b} and it is assumed that

the N+1tP derivative of f exists at this point.
CHEBYSHEV INTERPOLATICN

Two forms of Chebyshev interpolator may be used {36]). They are:-

N'
P (x) =L aT,(x), (6)
r=0
where
Nn
arsg_): £{x )T, (x,), X, = cosknm (7
: Nk=0 N
or
Nl
Py(x) =L a.T.(x), (8)
=0 .
with
N
ar-_Z_Ef(xk)Tr(xk), X, = cos(2k+l.am). (9)
N+1k=0 N+1 2

X, k=0(l)N in (7) represent the maxima of the Chebyshev
polynomial T,(x), whereas x,, k=0(1)N are the zeros of the

polynomial T,,,(x). The errors induced by the two expansions (&)




-202- A3

and (8) satisfy discrete least-squares criteria. For equation

(6), Ey(x) satisfies

Nn 2 .
E=} EN(x,‘) = minimum
k=0

with
E,n =L [£2(x,)-L a,T (x,)]. | (10)
k=0 r=0
Equation (8) has a similar error satisfying

N N
E_, = LI (x)-F aT(x)] - (11)
k=0 =0
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