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Abstract.

Over the last decade infinite poles and zeros have been recognised as having fundamental
relevance to the analysis of the dynamical behaviour of a system. Indeed even the classical
theory of characteristic root loci alludes to the existence of infinite zeros without defining
- them as such whilst the significance of the infinite poles has more recently emerged in the
study of non-proper systems. _

In the first part of the work a method for examining the infinite pole and zero structure
of a rational matrix based on the Laurent expansion of that matrix about the point at
infinity is described. The method consequently leads to a test for the absence of infinite
zeros in a rational matrix and certain relationships for polynomial matrices.

The poles, both finite and infinite, of a linear time invariant system are determined
from the zeros of the invariant polynomials of certain matrices. The pole positions may be
changed using constant gain feedback from a set of generalised states or from the system
outputs. The conditions under which arbitrary pole placement can be achieved in this way
are well understood particularly in regard to the finite poles. A more general problem is
that of assigning the pole structure as determined by the invariant polynomials rather than
simply the set of zeros of these polynomials.

The general problem is first considered for the case of constant output feedback. The
properties of a minimal factorisation of a rational matrix are exploited to give necessary con-
ditions on the simultaneous placement of both the finite and infinite pole structures. These
conditions are subsequently interpreted for the case of systems representéd in generalised
state space form under constant gain feedback from a set of generalised states. Further
conditions are obtained by considering the infinite frequency structure of such systems. In
particular necessary and sufficient conditions for the placement of the infinite pole struc-

ture are presented which are seen to have a direct relationship with the various notions of

controllability associated with generalised state space systems.
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Chapter 1. Introduction.

Polynomial systems matrix theory has increasingly developed into an important tool
in the investigation of physical control systems. The theory developed and described by
people such as Rosenbrock [1970], Wolovich [1974] and Kailath [1980] adapts the theory
of linear algebra and matrix theory to study the behaviour of physical systems. This

theory is applicable to systems described by a linear model. The model, given as a set

of differential equations, can be transformed using a suitable transformation into a set of

algebraic equations. The transformation usually employed is the Laplace transformation
and the resulting domain is referred to as the frequency domain. All the information

describing the system’s behaviour may be encoded into a single partitioned matrix, then, by
using the theory of linear algebra and the relevant algebraic interpretation of the physical,
important properties of the system can be deduced.

Early interest has been focused on systems described in state space form, i.e. systems

of the form,

&(t) = Az(t) + Bu(t) } (1.1.1)

y(t) = Ca(t) + D (%) u(®) |
where z(t) is an n-vector of internal states, u(t) is an [-vector of inputs and y(¢) is an m-
vector of outputs and where A, B, C, D are matrices of the appropriate dimensions whose
elements are taken from a general field, F', which is usually taken to be the field of real
numbers, R. The prdperties of these systems have been widely investigated and their be-
haviour is well understood. However, such a description can not adequately describe what
is termed as the impulsive behaviour of a system (i.e. significant behaviour attributable
to the point at infinity in the frequency (transformed) domain). Tl_liS has led to the inves-

tigation of systems of the form

Ei(t) = Ax(t) + Bu(t) } - (1.1.2)

y(t) = Cz(t)

with z(t), u(t), y(¢), A, B, C as above and where E is a constant matrix. Systems of this
form are called generalised state space systems. When E is non-singular, (1.1.2) reduces to
the familiar state space description. Otherwise the system consists of a combination of first
order differential equations and algebraic equations whose infinite frequency behaviour is
displayed in a convenient manner. Properties of such systems have only recently begun to
" be investigated, although they arise quite conimonly for example in the study of composite
systems, switched capacitor networks and in certain cases of component failure. |

The poles of a system essentially determine the dynamical properties of the response
of the system. By employing suitable feedback it is possible to relocate these poles (and
so tailor the system’s response to some desired requirement) and group them together in a
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certain manner. Investigation of the conditions under which the pole structure (locations
and groupings) can be assigned is referred to as the general pole assignment problem.
This problem has been solved (see Rosenbrock and Rowe, 1970) for the case of state space
systems and the case of constant state feedback of the form

u(t) = Kz(t) + v(t) (1.1.3)

where K is a constant matrix of the appropriate dimensions. It is only in recent years
that the general pole assignment problem has been approached for generalised state space
systems using constant generalised state feedback (Cobb 1981, Armentano 1984, Kucera
and Zagalak, 1988).

This is the main problem considered in this thesis where, unlike previous work, both
the finite and infinite pole structures are taken into account.

A detailed discussion of the pole placement problem is presented in chapter 2 together
with a critical analysis of the work previously undertaken which includes identification of
the problems that remain unsolved and the areas which have not been investigated. The
problems considered in this thesis are placed in this context.

The underlying feature of this thesis is the investigation of the assignment of the
infinite pole structure. For this reason chapter 3 considers the infinite frequency structure
associated with the rational matrix. The first part of the chapter discusses the various
equivalent definitions of the infinite frequency structure of a rational matrix and highlights
a particular systematic method of obtaining this structure form a Laurent expansion of
the given matrix. New results eminating from this discussion are displayed in the second
part of the chapter. The results include new conditions for the absence of infinite zeros in
a rational matrix and certain relationships which reveal further properties concerning the
structure of polynomial matrices. _

Chapter 4 explores the general pole placement problem when constant gain output
feedback is applied around a system and where the resulting system may possess both
finite and infinite poles. The problem is approached by adoptihg a minimal factorisation
description of the open Ioop transfer function matrix. The properties of such a factorisation
enable both the finite and infinite pole structures of the resulting closed loop transfer
function matrix to be displayed in a convenient manner. This gives rise to new separate
necessary conditions for the finite pole structure and the infinite pole structure of the
closed loop system. Further analysis produces necessary conditions for the simultaneous
placement of the two structures which are stronger than any yet obtained. These results
are displayed in a neat, graphical manner by the introduction of a suitable step function.

Chapters 5 and 6 consider systems described in generalised state space form. For such
systems the assignment of the poles by suitable feedback is closely associated with the

controllability properties of the representation. The various definitions of controllability
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for generalised state space systems are discussed in chapter 5 from which it is concluded
that two main notions of controllability exist. The algebraic conditions associated with
each notion are presented so providing an analogy with the algebraic conditions given
by Rosenbrock [1970] for the conventional notion of controllability in regular state space
systems. The algebraic conditions include a combination of existing results and some
new results. The polynomial matrix approach adopted provides a means of treating the
results in a unified manner and yields simpler proofs of the existing results. The differences
between the two notions of controllability are reflected in the role of the so called non-
dynamic variables and this is illustrated by introducing a new time domain definition. A
comparison of the two notions of controllability is presented together with some further
new conditions for a system to be controllable in each case.

Chapter 6 investigates the general pole placement problem in generalised state space
systems. An initial result is obtained by interpreting the work presented in chapter 4 for
systems described in generalised form. This gives rise to new necessary conditions for the
simultaneous placement of both the finite and infinite pole structures in the generalised
state space case. The specific assignment of the infinite pole structure is then considered
by exploiting the detailed structure of a canonical form associated with the system. This
approach produces new necessary conditions for the multiplicity of the closed loop infinite
poles. Supplementing this result with the result derived earlier in the chapter leads to new
necessary and sufficient conditions for the closed loop infinite pole structure. This result
provides a complete characterisation for such achievable structures. Finally, this result is
used to update the initial result concerning the simultaneous assignment of both the finite
and infinite pole structures.

Chapter 7 discusses three other approaches to the pole placement problems. A two
stage method for generalised state space systems is first described where the infinite pole
structure is first assigned followed at the second stage by the finite pole structure. The
result obtained provides a partial solution to the general pole placement problem for such
systems. The closed loop infinite pole structure is also investigated by considering the
Laurent expansion about the point at infinity of the closed loop transfer function matrix.
This method is of more relevance to individual systems and gives rise to a simple condition
for testing if the closed loop system is proper. The third approach involves employing a
bilinear transformation so that the infinite pole structure can be investigated in the same
way as the finite pole structure. This method generally enables results concerning proper
closed loop systems to be generalised to the non-proper case but for generalised state space
systems this does not follow. The reasons for this are subsequently explained.

Finally, chapter 8 contains some concluding remarks and highlights areas for further
research.



Chapter 2. Pole Placement Problems.

§1. Introduction.

The pole placement problem is concerned with investigating the conditions under
which the poles of a system can be relocated by means of a suitable feedback. The poles
of a system are determined by the zeros of a certain matrix so that relocating the poles is
equivalent to altering the zeros of that particular matrix. If the groupings of these poles are
also considered then the problem is concerned with assigning the invariant polynomials of
the matrix which determines the poles of the system. This form of the problem is referred
to as the general pole placement problem. A detailed description of these problems is given
in section 2 together with a discussion of the difficulties that arise when infinite poles are

considered.

A critical appraisal of previous work undertaken on the pole placement problems is
W

presented in sections 3 and 4. The polé placement problems using output feedback are first
EWMS divided into three sections; namely the pole placement prob-
lem under dynamic output feedback, the pole placement problem under constant output
feedback and the general pole placement problem. In section 4 the case of state feedback,
which can be employed when the system is described in state space or generalised state
space form, is considered. Finally, section 5 places in context the problems investigated in

this dissertation.

§2. Description of pole placement problems.

Consider a system with (r + m) X (r + £) system matrix (see Rosenbrock, 1970)

T(s) | UGs)
P(s) = :

(2.2.1)
V() | Ws)

and corresponding transfer function matrix
G(s) = V(s)T7(s) U(s) + W (s).
A pictorial description 6f this system is given as follows

u(t) y()
—»—| G(s) —p——

and this is referred to as the open loop system. Let a feedback of the form

u(t) = v(t) — K(s) y(t) (2.2.2)

4



where K(s) is a proper compensator be applied to the system. Let the resulting closed
loop system have system matrix

(2.2.3)

[ To(s) | UG(S) :|
Pe(s) = : .

Vo(s) | Wols)
When G(s) is a proper matrix the open loop poles are all located at finite locations. The

system poles are given by the zeros of | T'(s) |= 0. If the system has least order, i.e. hasno
finite input or output decoupling zeros, then the system poles will correspond to the poles

of the transfer function matrix which in turn are given by the zeros of the denominator .

polynomials of the McMillan form of G(s) (see chapter 3 for further details).

The poles of the closed loop system are, in general, different from those of the open
loop system. In fact the closed loop poles will possess an additional set of poles equal in
number to the order.of the compensator K(s). When K(s) is constant the closed loop
system has the same number of poles as the open loop system. Employing feedback of the
form (2.2.2) thus enables the poles to be relocated in more desirable locations. The pole
placement problem can be defined in the following manner.

Given the open loop system (2.2.1) and a monic polynomial ¢(s), find
suitable conditions under which the matrix Te(s) in (2.2.3) has deter-

0,
Iy
mlna‘nt a¢(5), a;ﬁU q dU!S l\f# [/‘/ﬂ ['\ ',;.ﬁ' fP t!"ﬂ EJ‘” ” CLI\ ¢ T

A more general form of the pole placement problem is concerned with assxgm%g the
invariant polynomials of T¢(s) and defined as follows.

Let the open loop system be given by (2.2.1) and ¢1(s), ¢2(s),...,d4(s)
be g non-zero monic polynomials with ¢;(s) | ¢i+1(s), 1=1,2,...,¢—1.
Then, find suitable conditions under which the Smith form of the matrix
Tc(s) in (2.2.3) is equal to diag[¢1(s), $2(s),. .., Bq(s))-

This is referred to as the general pole assignment problem.

If G(s) is non-proper the open loop system will possess infinite poles. The infinite pole
structure cannot be investigated in the same way as the finite structure. For system poles
the infinite pole structure is defined (see Verghese, 1978) using the normalised polynomial
system matrix, Pn(s), associated with the system. Specifically,

C T(s) U(s) 0 0 7 .
ol ~V(s) W(s) In o | Tn(s) | Un
Sl R =[ vw | o ]
L0 0 I, | 0 |

5

T

-y
|
-




and the infinite system poles are subsequently defined as the infinite zeros of Tn(s) (for
further discussion of infinite zeros see chapter 3). In a similar way the infinite poles of the
transfer function matrix are obtained by considering a different matrix than that used to
investigate the finite poles. A detailed analysis of the infinite poles and zeros of a rational
matrix is presented in chapter 3. As in the finite case the system poles at infinity become
equivalent to the transfer function matrix poles at infinity if the system does not possess
infinite input or output decoupling zeros.

For the case where the open loop system is proper or non-proper the pole placement
problem therefore consists of two problems; the first concerns the assignment of the finite
poles and the second the assignment of the infinite poles. For the general pole placement
problem the problem thus involves assigning the invariant polynomials of two different
matrices. The problem is further complicated by the fact that the matrices that give rise
to the pole structures are interrelated so that applying a certain feedback may produce the
required finite pole structure but will not give rise to the required infinite pole structure.
Previous work on the pole placement problem has in general concentrated on strictly proper
systems though recently more attention has been given to proper and non-proper systems

especially with the emergence of the generalised state space description. It is this area

that will be the main consideration of this thesis.




§3. Pole placement using output feedback.

The survey of previous work on pole placement problems using output feedback is
presented in three parts. The first part deals with the pole placement problem using
dynamic feedback whilst the special case of constant feedback is considered in the second
part. Finally, the general pole placement problem is discussed.

First recall that any system with a strictly proper transfer function matrix can be
represented in state space form (see Rosenbrock, 1970). As a consequence of this fact many
of the results concerning pole placement using output feedback are given with reference
to this state space form. The results presented in the following discussion will be given in-

terms of the state space description
2(t) = Az(t) + Bu(t)

y(t) = Ca(?)

(2.3.1)

where z(t) is an n-vector of internal states, u(t) an £-vector of control inputs, y(t) an

m-vector of outputs and A, B, C are matrices of the appropriate dimensions.

(i) Dynamic output feedback.

The early work on the pole placement problem using output feedback concentrated on
finding a proper compensator with the smallest order that will assign to arbitrary locations
in the complex plane all the poles of the closed loop system.

The first results were developed for strictly proper systems. Pearson [1969] considered
a controllable and observable single input, multi-output system with observability index
Bm. It was shown that arbitrary pole placement (subject to the usual condition that
complex poles occur in conjugate pairs) can be achieved for such a system with a proper
compensator of order y,, — 1. |

Pearson and Ding [1969] generalised this result to a least order multi-input, multi-

output system with strictly proper transfer function matrix
G(s)=C[sI — A]"'B (2.3.2)

and observability index g,. If g is the smallest number of inputs which control A then a
proper compensator K(s) of order ¢(u,, — 1) can be found such that n + g(y,n, — 1) closed
loop poles can be arbitrarily assigned. '

Brasch and Pearson [1970] improved this result by showing that a proper compensator
of order min(pim—1, A¢—1) can be chosen to achieve arbitrary pole placement for the system
described above where y., is the observability index and A, the controllability index of the

system.



This result was generalised to proper systems by Wolovich [1971] who used a combi-
nation of feedforward and feedback control. Chen and Hsu [1971] subsequently gave the
same result using feedback only.

Kimura [1975] produced a result for strictly proper systems which is mutually inde-
pendent of the results given by Brasch and Pearson [1970]. Kimura [1975] showed that for
a controllable and observable system a dynamic compensator of order p=n—m —£+1
can assign almost arbitrary poles for the overall closed loop system provided the poles to
be assigned are all distinct. When m,£ are both large the result due to Kimura [4bid.]
tends to be a superior result to the one given by Brasch and Pearson [1970] in most cases.
Consider the following example.

(2.3.3) Example. For a system of dimension four with two inputs and two outputs the
result due to Kimura [1975] indicates that a compensator of order 1 is sufficient for arbitrary
pole placement. Consider the specific system (A4, B, C) given by

1 1 1 07 "1 07

1 010 10 1 1 ¢ 0O
A= B = C=

0111 0 0 0 100

[0 0 1 1. [0 0

which is both controllable and observable. To find the order of the compensator required
under the result given by Brasch and Pearson [1970] the controllability index of the system
must be first obtained. Now

10 1 1 2 27
01101 2
000111
(0 0 0 0 0 1

so that B has rank 2, [B, AB] has rank 3 and [B, AB, A?B] has rank 4. Thus, by definition,
the controllability index, A, of the system is equal to 3. Similarly,

(B,AB,A?B] =

1 0 07

01 00
C

1 110
CA | =

1010
CA?

2 2 3 1]

1 2 2 1.

so that C has rank 2, [CT,ATCT|T has rank 3 and [CT,ATCT,(A%)TCT|T has rank 4.
Hence the observability index, um, of the system is also equal to 3. Therefore, the result

8
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due to Brasch and Pearson [1970] requires a compensator of order 2 for arbitrary pole
assignment in this particular system. Hence, the result due to Kimura [1975] is superior
in this case.

A more general approach to the problem of pole assignment by dynamic compensators
is to determine the maximum number of poles of the closed loop system that can be
arbitrarily assigned by a proper compensator of fixed order, p say. Then, it is possible to
determine the least order proper compensator which will assign all the closed loop poles.
This approach was adopted by Ahmari and Vacroux [1973] who gave the following result.

(2.3.4) Theorem (Ahmari and Vacroux, 1973). Given a system (A, B, C’) which is
both controllable and observable and where A is cyclic and the matrices

[B,AB,...,APB], [CT,ATCT,...,(An\TCT|T
- have ranks u,, v, respectively. Then, there exists a compensator of order p such that
mas(up, vp) + P

poles of the closed loop system can be placed arbitrarily close to max(u,, v, }+p preassigned
values. '

It follows that the least order proper compensator that will arbitrarily assign all the
closed loop poles has order
p=min(A¢ — 1, 4m — 1)
which is in agreement with the result derived by Brasch and Pearson [1970].
Kimura [1978] showed that the result given by Ahmari and Vacroux [1973] could be

improved if additional conditions are met. If G(s) = C[sI, —A]™* B is the transfer function
matrix of the system then let G(s1,$2), vi,u; be defined as follows

G(s1) — G(s2)
81 — 32

G(31,82) é

v; 21ank[B, AB,..., A B]
u; & rank[CT, ATCT, . (AHTCT)T.

The main result due to Kimura [ibid.] now follows.

(2.3.5) Theorem (Kimura, 1978). Let the strictly proper system given by (2.3.1) satisfy
the following conditions

(i) the system is both controllable and observable, _

(i) G(s1,52) # 0 except for a finite number of pairs (s1,s2), 51,52 €C,

(@iiym > £€-1.



Then, there exists a dynamic compensator of order p such that
min(n, £ — 14 u,} +p

closed loop poles can be placed arbitrarily close to any preécribed symmetric set which

~ contains a symmetric subset of £ — 1 numbers.

K £ > m — 1 then the above theorem is valid if m,£,u, are replaced by £,m,v,
respectively. Therefore, if | £ —m < 1 and conditions (i), (ii) of theorem (2.3.5) hold, then
the number of poles assignable by a dynamic compensator of order p is

min{max[{ — 1 + up,m —1+v,],n} +p

(the restriction that the symmetric set of poles to be assigned must contain a symmetric
subset of £ — 1 numbers no longer applies).

It is of interest to know what type of transfer function matrix satisfies condition (ii) of
theorem (2.3.5). Kimura [1978] notes that if £ or m is greater than 1 only a very exceptional
system fails to satisfy condition (ii}. If n £ m+£—1 then condition (ii) is always satisfied.

Under the additional conditions (ii) and (iii) theorem (2.3.5) improves the result of
Ahmari and Vacroux [1973]. These conditions make it possible to assign £ — 1 additional
poles. The theorem also improves on the result of Brasch and Pearson [1970].

Under the result given by Kimura [1978] for all n poles to be arbitrarily assigned it is
necessary that

' L—1+u,>n or m—-1+v,2n

i.e. the order p of the dynamic compensator K(s) that will assign all n 4+ p closed loop
poles is ' '

p={minp:u, >2n~£+1 or v,2n-m+1}
The result due to Brasch and Pearson [1970] indicates that the order p is given by
p=min{p:u, >2n or wuv,>n}.

Hence, if conditions (ii) and (iii) of theorem (2.3.5) are satisfied a lower order compensator
can be found which arbitrarily assigns all the closed loop poles.

Williams and Hesselink {1978] produce a further necessary condition for a compensator
of order p to generically assign all the poles of the closed loop system, i.e. assign the closed
loop poles arbitrarily close to the preassigned values. This necessary condition is

pm+L—-1)+ml>n

but since it does not refer to the controllability or the observability indices it is not possible
to make a direct comparison with the previous results.

10



Djaferis [1983] also considered the problem of finding the number of poles that can be
arbitrarily assigned using a proper compensator of order p. It was shown that

min(n + p,(p + 1)¢ + p) m<{

min(n +p,(p+)m+p) L<m

closed loop poles can be assigned arbitrarily close to the preassigned values using an output
feedback compensator of order p, and where n in this case is the McMillan degree of G(s).

A further result was given by Djaferis and Narayana [1985]. For a generic system with
m > £ and McMillan degree n and with controllability indices

AG1Z2Ag2 2 ... 2 Age >0

then
min((p + 1)m +p + b(¢ - 1),n +p)

closed loop poles can be assigned arbitrarily close to the preassigned values using a proper

o in{[7] 1)

and [%] = largest integer smaller than or equal to I,

compensator of order p, where

A dual result holds when £ > m with £ replacing m and pgm, the smallest observ-
ability index, replacing Age. In many cases this leads to a lower bound on the dynamic

compensator required to assign all the closed loop poles.

(2.3.6) Example. Let n = 10,m = ¢ = 3. For all n poles to be arbitrarily assigned the
result due to Djaferis and Narayana [1985] requires

P+l)m+p+bf-1)>n+p

which in this case implies
3p = 5.

Therefore, a compensator of order 2 will suffice. The result given by Djaferis {1983] requires
(p+1)+p2n+p

which in this case implies
Jp =T

and the compensator must have order 3 at least. Thus, for systems of the above dimension
the result due to Djaferis and Narayana [1985] is superior to the one given by Djaferis
[1983].

11



(ii) Constant output feedback.

The use of dynamic feedback may possibly be impractical from an engineering or
economic viewpoint, and it would be hard to justify such an approach if the use of the
available outputs with constant feedback gains would meet the design requirements in a
much simpler manner. Results concerning the case when the feedback matrix is constant
can of course be deduced from the work on dynamic feedback, but in general, this case has
been treated separately. ‘

For the case where the open loop transfer function matrix is strictly proper the closed
loop poles can be immediately identified. Adopting the state space description (2.3.1) and
output feedback of the form

u(t) = v(t) = Ky(t)

results in the following closed loop state equation
z(t) = [A— BKC|]z(t) + Bv(t).
Therefore, the closed loop system poles are given by the zeros of
| sIn — A+ BKC|.

An early result was given by Davison [1970] and independently by Jameson [1970],
which states that if rank C = m, (A, B) is controllable with A cyclic then a linear feedback
of the output can always be found so that m poles of the system can be placed arbitrarily
close to m preassigned values (chosen in complex conjugate pairs).

Davison and Chatteridge [1971] extended this result to non-cyclic matrices by using
the results of Brasch and Pearson {1970]. An improved result was also given which may
be expressed as follows.

(2.3.7) Theorem (Davison and Chatteridge, 1971). If the system given by (2.3.1) is
" both controllable and observable with rank C = m{< n), rank B = (< n) then a linear
feedback of the output variables u(t) = Ky(t) can always be found such that max{m,£)
poles of the system can be placed arbitrarily close to max(m, £) preassigned values (chosen
in comple:& conjugate pairs).

Sridhar and Lindorff [1973] gave an alternative proof of this result and showed that
in certain cases more than max(m,£) poles can be arbitrarily placed. Davison and Wang
[1975] subsequently improved the earlier result of Davison and Chatteridge [1971] with the
following result.

(2.3.8) Theorem (Davison and Wang, 1975). Given a controllable and observable
system with rank B = £, rank C = m then for almost all (B, C) pairs there exists an
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output gain matrix X such that min(n,m + £ — 1) poles of the closed loop system can
be assigned arbitrarily close to min(n,m + £ — 1) specified values (subject to the usual
complex conjugate condition).

This theorem contains two notions of genericity. The first is seen in the fact that
the result is true for almost all (B, C) pairs, i.e. for generic (B, C) pairs. Thus, given a
specific plant matrix A the result could break down for some particular choice of (B, C)
but perturbing this choice should give the result. This is illustrated in the example below.
The second notion of genericity is contained in the fact that the closed loop system poles

can be assigned arbitrarily close to the specific values, i.e. generic pole placement.

(2.3.9) Example. Let 4, B, C be given as

—1 0 0 07 0 17
0 -2 0 O 10 0 01G0C
0 1 -1 0 0 0 0 0 01
.-1 0 0 =2 10 0.

where B, C have full rank and the system is both controllable and observable. The closed
‘loop poles are given by the solution of

|sI— A+ BKC |=0.

ki ke
Let K = then, in this example,
ks ka
[s+1 0 k3 kg T
0 S -]- 2 k1 ) k‘g
s —A+BK(C =
0 -1 s+1 0
[ 1 0 0 s+2.
and

| sI — A4 BEKC |= (s + 1)%(s + 2)* + (s + 2)(s + 1)(k1 — ka) + kakz — k1ke.  (2.3.10)

The coefficients of s* and s in (2.3.10) are not affected by the choice of K whilst the
coefficients of s and s are inter dependent by choice of k) — k4. Hence it is apparent that
there are only two degrees of freedom in the specification of the four closed loop poles so
that qnly two poles can be arbitrarily assigned.

13



Since n = 4 and m + £ — 1 = 3 in this example the result of theorem (2.3.8) suggests
that it should be possible to assign at least three poles arbitrarily. This is not the case,
as noted above, which implies that the choice of (B, ) must be non-generic for the given
plant matrix A.

Consider a slight perturbation of the pair (B, C). Let

-0 1—
1 0 0 010
B = C =
e 0 0 001
10 0l
where ¢ is some parameter. Now
rs+1 0 ks ks 1
0 8 +2 k‘l kg
sI-A+BKC = . (2.3.11)
0 -1 S+1+€k1 Ekz
| 1 0 0 s+ 2

The determinant of (2.3.11) is given by
(422 (s+1)* +ek1(s+1)(s+2)° +(s+1)(s+2)(ky — ko) +e(s+2)(kaky — k1 kg )+ k3 ko — k1 kg

which on inspection reveals that the coefficient of s* can be determined by an appropriaté
choice of ki, the coefficient of s* by appropriate choice of k4 and the coefficient of s by
appropriate choice of k3k;. The coefficient of s? is determined by the choice of the higher
degree coefficients. Thus there are three degrees of freedom in the specification of the four
poles. Hence, when € # 0 it is possible to arbitrarily assign three poles to the closed loop

system so demonstrating the genericity of (B, C) in theorem (2.3.8).

A specific description of the possible (B, C) pairs that satisfy theorem (2.3.8) can be
obtained from the work of Kimura [1978} on dynamic feedback. When constant feedback is
employed the result due to Kimura {ibid.], described in theorem (2.3.5), becomes equivalent
to that of theorem (2.3.8) but instead of stating the result for generic (B, C) Kimura [1bid.]
places certain conditions on the open loop system. These conditions are seen to be satisfied
by systems in general so confirming that the statement of genericity for (B, C) pairs is
justified in theorem (2.3.8). Consider example (2.3.9) once again.

(2.3.12) Example. Let A, B, C be given as in example (2.3.9) with B in its unperturbed
form. It was seen that it is not possible to arbitrarily assign the number of closed loop

poles predicted by theorem (2.2.8). This is explained by Kimura’s result stated in theorem
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(2.3.5). This equivalent result requires the open loop system to satisfy certain conditions.

In particular, G(s;, s2) 7 0 except for a finite number of pairs (s1,52). In this example

B 1 0 1
G(S)‘[O _1] GIDGETY)

and

—31-82—3 0 1

0, 81+ 82 +3} (s1+ 1)(s1 +2)(s2 + 1)(s2 +2)°

G(s1,82) = [

Now G(s1,82) = 0 when s; + s1 + 3 = 0. Thus, G(s1,2) = 0 for an infinite number of
pairs (s, s2) which implies that the result due to Kimura [ibid.] does not hold for this
particular system.

Further when B is of the form

-0 1 -
1 0
B=
e 0
L0 0
then G(s) and G(s1, s2) are given by
14(s+2)e O 1

Gls) = [ 0 -1 *GEDGL2)

—381 — 32 — 3 — €(32 + 2)(s1 +2) 0
0 _ s1+s2+3

1
it D +2)(sz + 1) (s2 +2)

Now G(s1,32) may equal 0 only when (s1,$2) is equal to (—1,—2) and (~2,—1) so that

G(s1,82) = [

the perturbed system satisfles condition (ii) of theorem (2.3.5). It also satisfies the other
conditions which means that the predicted number of closed loop poles can be assigned.

This was shown to be the case in example (2.3.9).

From theorem (2.3.8) it is seen that for a generic systemif m+£—1 > n then alln
closed loop poles can be generically assigned. Kimura [1975] in fact showed that all systems
satisfying this condition and which are both observable and controllable can be generically

assigned n arbitrary poles as long as the poles are distinct. Kimura [1977] subsequently
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improved these results to show that almost arbitrary pole placement is possible for almost

all systems if :
(1) n<l+4+m+Ag

(i) £> pe

(i) m > Ao

where Agi, g1 are the controllability index and observability index respectively of the
open loop transfer function matrix G(s).

Using techniques from modern algebraic geometry Hermann and Martin [1977] showed.
that mf > n is a necessary and sufficient condition for generic pole placement by complex
. constant output feedback applied to a strictly proper system. For real constant output
feedback the condition mf > n is only a necessary condition. This necessary condition
was established by Williams and Hesselink [1978]. They also proved that the condition is
not sufficient. Brockett and Byrnes [1981] also noted this result and produced a sufficient

condition for generic pole placement when mf = n. They showed that if d(m,£) defined as

121, ..(¢ = 2L, (m — 1)l(ml)!

s
d(m, ) £ 120, (m+£— 1)

(2.3.13)

is odd, then generic polé placement is guaranteed.

More recently Giannakopoulos and Karcanias [1985] considered the problem of pole
placement using non-dynamic output feedback by using tools from exterior algebra and
classical algebraic geometry. Their work includes alternative proofs of previous results,
extensions of these results to the proper case and subsequently some new results. These
results include new sufficient conditions such as the following which generalises, in partic-
- ular, the result given by Brockett and Byrnes [1981].

(2.3.14) Theorem (Giannakopoulos and Karcanias, 1985). Let G(s) € R™*¢(s) be
a generic strictly proper transfer function matrix with rank {G(s)} = min(m,£) # 1 and
mé > n. If the number

n!

Fay . — o
g(ao,a1,-..,ae_1) - ao!all...ag_ll ;.l;[j(a‘ aJ)
is odd for some set (ao,ay,...,ae—1) where
-1 )
n= ;0 ai — f-1) (2.3.15)
and
0<agg<a1<...< g1 <m+£-1 (2.3.16)
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then G(s) is generically pble assignable by real output feedback.
To illustrate this result consider the following example.

(2.3.17) Example. Let .
52
1 2

s 82

G(s) =

| B o [

where G(s) is strictly proper, rank G(s) = 2 and m = 2,{ = 2,n = 2. Choose
ap = 1, ay = 2

to satisfy (2.3.13) and (2.8.16). Then

nl

9(00, al) = . (01 - ao)

00!(11!
=1

which is odd. Hence, by theorem (2.3.14), G(s) is generically pole assignable by real output

feedback. _ .

To confirm this consider a state space realisation of G(s) of the form

G(s)=[0 1] [3 0]_ [1 0] A ClsI— A B.
1 2 l s 6 1

k1 ke
Then, if K = — ] is the constant output feedback matrix, the closed loop poles are
3 Ky
given by the zeros of the determinant of the matrix

-3 0 k‘1 kz 0 1
sI—A4+ BK(C = +
_1 § k3 k4 1 2

-8+k2 k1 4 2k,
_1+k4 s+ k3 + 2ky

ie.
| ST — A+ BEKC | = 2 + s (ko + k3 + 2ka) + kaks — kaky ~ k1 — 2ks. (2.3.18)

The coefficients of s* and s° in (2.3.18) are mutually independent by the choice of k.

Hence, it is possible to assign the closed loop poles at arbitrary locations as predicted.
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When mf = n in theorem (2.3.14) the number g{ay,a,...,as-1) becomes equal to
d(m,£) in (2.3.13) so that the result due to Brockett and Byrnes [1981] is a special case of
theorem (2.3.14). Other results presented by Giannakopoulos and Karcanias [1985] involve

the recently introduced invariant, the Plicker matrix P,, which is constructed from the
Te(s

exterior product of the columns of [V E ;] where G(s) = V5(s) T;(s). For brevity these
(s

results are not described here but, in general, involve conditions on the rank of P, which

reinforce existing conditions.

(iii) The general pole placement problem.

The general pole placement problem using output feedback was first considered by
Rosenbrock and Hayton [1978], who assumed that the open loop system has a strictly
proper transfer function matrix. The results obtained are superior and contain many of
the earlier results, notably that of Brasch and Pearson [1970] and results concerning state
feedback. The main results obtained by Rosenbrock and Hayton [1978] are presented below.

Recall that the general problem is concerned with assigning the invariant polynomials of

Teo(s) in (2.3.3). It was shown that T¢(s) can have at most £ non-unit invariant polynomials

so that its Smith form can be expressed as

diag(I, ¢e(s), de-1(8),. .., qSl(.s)] _ (2.3.19)

where ¢;(8) | ¢i-1(s), 1 = 2,...,£. Necessary conditions on the degrees of the ¢;(s) are
given by the following.

(2.3.20) Theorem (Rosenbrock and Hayton, 1978). Let G(s) be an m X £ strictly
proper transfer function matrix with controllability indices Ag1 2 Ag2 = ... 2 Age and let
K (s) be proper with observability indices px1 = pre > ... 2 pre. Let the Smith form
of the resulting matrix Tc(s) be of the form (2.3.19). Then, the degrees, §(4i(s)), of the
$i(3), 1 =1,2,...,£, must satisfy the necessary conditions

k k S
; 6(i(s)) 2 max{;(/\ai +prceri-i)h O _(AG,eri—i + pKi)} (2.3.21)

i=1

k=1,2...,4
with equality when t = £.

Rosenbrock and Hayton [1978] also produced a sufficient condition for the assignment

of the invariant polynomials of T(s) and this is expressed in the following theorem.

(2.3.22) Theorem (Rosenbrock and Hayton, 1978). Let G(s) be a strictly proper mXx
£ matrix with £ £ m and controllability indices Agy > Ag2 2 ... 2 Ag¢ and observability
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indices pg1 = pe2 = ..- 2 pigm. Let $i(s), i = 1,2,...,¢, be as described above. Then,
sufficient conditions for the existence of a proper £ x m rational matrix K(s) such that the
Smith form of T¢(s) is (2.3.19), are

25(¢,(s)) > Z(Ag, +uci—-1)  k=1,2...,0 (2.3.23)

i=1

with equality holding when & = £.

Note that in both (2.3.20) and (2.3.22) there corresponds a “dual” result in which the
roles of £ and m, Agi and ugi, Aki and pk; are reversed. Taking this into account it is
seen that the proper compensator K(s) described in theorem (2.3.22) will have order

min[l(pgg — 1), m{Ag1 — 1))

Rosenbrock and Hayton [1978] note that the sufficient conditions of theorem (2.3.22) could
be improved. It is conjectured that the sufficiency conditions might be replaced by sharper
and more symmetric conditions

k k
25(¢,) > Z(’\G’i'{‘ﬁ(h’"l) kE=1,2,...,min(¢,m)

i=1 i=1
with equality holding when k = min(¢, m). No proof or counter example of this condition
was given in the paper, but it was proved (without equality when k& = min(¢, m)) by Kous-
siouris [1979]. The result obtained by Koussiouris [$bid.] imposed additional conditions on
the invariant polynomials but leads to a much lower order for the compensator K(s) than
that needed under the sufficient conditions presented by Rosenbrock and Hayton [1978].

Hammer {1983] also produced improved sufficient conditions. The new conditions are
dependent on certain invariants which are basically determined by the unstable poles and
zeros and the zeros at infinity of the open loop transfer function matrix. These invariants
can be directly compared with the controllability and observability indices and as a result
lead to improved sufficient conditions. Details of the background to this work can be found
in Hammer [1981, 1983gq].

Alternative proofs to the sufficient conditions presented by Rosenbrock and Hayton
[1978] are given by Emre [1980] and Zagalak and Kucera [1985]. Zagalak and Kucera [1bid.]
also obtain necessary conditions which are an improvement on the necessary conditions
of theorem (2.3.20). These improved necessary conditions are presented in the following
theorem.

(2.3.24) Theorem (Zagalak and Kucera, 1985). Consider the strictly proper system
and proper feedback as described in theorem (2.3.20). Let the Smith form of the matrix
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Tc(s) formed when this feedback is applied around this system be described by (2.3.19).
Then, the degrees, §(¢i(s)), of the ¢;(s)’s must satisfy the necessary conditions

k
D 6(¢i(s)) 2 max S k=1,2,...,4 (2.3.25)
i=1 1<5<(})

with equality holding when k = £ and where

k
SF = (AGju + BKt-jat1) 1 FJ2F - F ke

- a=]1

To illustrate these stronger necessary conditions considef the folloﬁving example.
(2.3.26) Example. Consider a system with controllability indices |
Ac1=2, Ag2=2, Aga=1
and a proper compensator with observability indices

pr1 =3, pre =3, pKs = 2.

The degrees of the invariant polynomials of T¢(s) must satisfy the necessary conditions
(2.3.21) under the result given by Rosenbrock and Hayton {1978] which in this case result
in the following conditions

S(61(N 24, 6(61() +862() 29, 8(a(s) +8(B2(s)) + 6(¢a(s)) = 13.

The result due to Zagalak and Kucera [1985] requires the degrees of the invariant polyno-

mials to satisfy the following necessary conditions in this case.

§(¢1(s)) 25, 6(¢1(s)) +6(¢2(s)) 29,  6(¢1(s)) + 8(42(s)) + 6($a(s)) = 13.

Thus, in this case, the result due to Zagalak and Kucera [1985] provides stronger necesary
conditions than the result due to Rosenbrock and Hayton [1978].

The review presented above reflects the fact that the pole placement problem for the
case of output feedback has been extensively considered. The diversity and complexity of
some of the results indicate the level of difficulty encountered in the problem. In some
instances it is not possible to directly compare the results because they are given in terms of
different characteristics of the system but the variety of results provide suitable indications
of the restrictions on the pole placement for a particular system.
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For the general pole placement problem necessary and sufficient conditions have not
been obtained. The problem therefore has not been completely solved and provides a
suitable area for further research. The general pole placement problem has also been
restricted to the strictly proper case. Indeed, the pole placement problem has largely been
concerned with such systems and the assignment of poles at infinite locations using output
feedback has not been considered. In chapter 4 this aspect of the problem is investigated
by extending the general pole placement problem to include systems which may possess
proper or non-proper transfer function matrices. The problem will be restricted to constant
output feedback but the placement of both the finite and infinite pole structures will be

taken into account. This aspect of the problem has not been previously investigated.

§4. Pole placement using state feedback.

By definition the output of a system is always accessible and hence output feedback can
always be employed around a system. On the other hand the output does not necessarily
reflect the behaviour of the internal states of the system. This can be illustrated if one
considers an n-state system which has just one output so that detailed information about
the internal states may be difficult to obtain from the output or maybe even lost.

It is therefore of greater benefit to be able to feedback the internal states of the system
directly thus resulting in greater flexibility in assigning the poles of the system.

This type of feedback can be undertaken for systems described in state space form and
in generalised state space form and a brief historical review of this work is now presented.

Consider first, state space systems represented in the form
z(t) = Az(t) + Bu(t) (2.4.1)

where again z(t) is an n-vector of internal states, u(¢) is an £-vector of control inputs and
A, B are real matrices of the appropriate dimensions. If state feedback of the form

ult) = —Kz(t) + v(t) (2.4.2)

where K is a constant real £ X n matrix is applied to the system then the closed loop
system poles are given by solutions to the equation

det{s] — A+ BK] = 0.

An early result on pole placement was given by Rissanen [1960] who considered systems
having one input. He showed that if such a system is controllable then all the poles of
the closed loop system may be assigned arbitrarily. Kalman [1963] gave an alternative
proof of this result and he later pointed out that this result had been given by Bertram
in 1959 and by Bass in 1961 in unpublished lecture notes. Popov [1964] generalised this
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result to multi-input, multi-output systems. He showed that given an arbitrary monic
polynomial ¢(s) of degree n there exists an £ X n matrix K, possibly complex, such that
the characteristic polynomial of A—BK is ¢(s) if and only if the pair (A, B) is controllable
and where A, B have real entries. Wonham [1967] showed that it is possible to choose K
with all its entries real. This result was also proved by Luenberger and Anderson [1967]
and alternative proofs were given by Davison [1968] and Heymann [1968]. Thus, it has
been shown that in the case of state feedback all the poles of the closed loop system may
be assigned arbitrarily (subject to complex poles occurring in complex pairs) if and only
if the system is controllable.

The general pole placement problem in state space systems was considered by Rosen-
brock and Rowe [1970] who produced necessary and sufficient conditions for the invariant
polynomials of sI — A+ BK to satisfy. These conditions are given in terms of the control-
lability indices of the system which is the natural expression of such conditions in view of
the direct relationship between the controllability of the system and pole placement. The
result given by Rosenbrock and Rowe [1970] is presented below.

(2.4.3) Theorem (Rosenbrock and Rowe, 1970). Let the state space system described
by (2.4.1) be a controllable system with controllability indices, A;, ordered Ay < Ay £... £
A¢. Then, there exists a suitable constant feedback matrix, K, such that the Smith form
of sI, — A+ BK is diag {Jn—¢, $1(8),d2(3),..., $2(s)} provided the monic polynomials
{$:(s)} satisfy the following necessary and sufficient conditions '

(1) éi(s) | dig1(s) | 1=1,2,...,0~-1

(i) i () S Ti N k=128

with equality when k = £.

Rosenbrock and Rowe [1970] adopt a state space approach to prove this theorem.
Other authors have produced alternative proofs.  Dickenson [1974] obtained the same
result also using a state space approach, whilst Flamm [1980] produced a geometric proof
for the necessity part. Flamm [:bid.] proved the sufficiency part by means of an explicit
algorithm for the construction of a feedback control which performs the required task.
This was done in three stages:

(i) transform the system into a suitable canonical form,

(ii) construct a K such that the degrees of the invariant polynomials of A — BK are as
desired, '

(iii) construct a K to change the invariant polynomials as desired without changing their
degrees. :

This leads to a complex algorithm requiring a change of basis at each step which means

having to find suitable transformation matrices. Munzer and Pratzel-Wolters [1979] gave a
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module theoretic description of the problem and a subsequent. proof of the theorem whilst
Kailath [1980] presented a simpler proof using transfer function methods directly.

The pole placement problems as described in section 2 have therefore been satisfac-
torily solved for state space systems using constant state feedback. The results obtained
reflect the powerful nature of such a feedback in state space systems which means that
the investigation of the effect of dynamic state feedback on pole placement has not proved
necessary.

For generalised state space systems the pole placement problem is also related to the
controllability properties of the system. The notions of controllability for such systems
are fully discussed in chapter 5 and as a consequence a description of the pole placement
problems in generalised state space systems will be given in chapter 6 rather than in this

chapter.

§5. Conclusions.

The pole placement problems are important problems in polynomial systems matrix
theory due to the dynamic properties associated with the poles of the system. This is re-
flected in the number of authors who have considered such problems. The review presented
in the previous sections discusses the various results and highlights aspects of the problems
which remain unsolved. It was noted that a major area that has not been considered in
detail is that concerning the assignment of the infinite poles. This is due to the fact that
an adequate understanding of the infinite frequency structure of a system and means of
investigating such structure have only recently been developed.

This thesis will investigate in detail the assignment of the infinite pole structure,
concentrating in particular on systems represented in generalised state space form. The
aim of the work is to generalise existing results to include the assignment of the infinite

poles and thus provide complete solutions to the problems under consideration.
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| Chapter. 3. Infinite Frequency Structure of a Rational Matrix.

~ §1. Introduction.

In this chapter the inﬁnife frequency structure of a rational matrix is investigated.
The definition of infinite poles and zeros eminates from the corresponding definitions of
" finite poles and zeros of a rational matrix. This development is discussed in section 2 with
particular reference to the role of a minimal factorisation of a rational matrix (see Pugh
* and Ratcliffe, 1980) and its Smith McMillan form at infinity (see Vardulakis et al., -1982).

In section 3 the relationship between the Smith McMillan form at infinity of a rational
- matrix and the Laurent expansion about the point at infinity of that matrix is described
(see Demianczuk, 1990). This relationship provides a means of inves'tigating the infinite
- poles and zeros of a rational matrix. This is undertaken in sections 3 and 4 to produce
some original results concerning the absence of infinite zeros and the particular case of

polynomial matrices.

§2. Definition of infinite poles and zeros.

The Smith. McMillan form of a rational matrix provides an appropriate means of
defining the finite poles and zeros of that particular matrix. This definition of the finite
pqles- and zeros provides a satisfactory extension of the definition from a single rational
function to the matrix case from the point of view of the dynamic interpretation of the
finite poles and zeros. Formally this definition is given below.

Let the Smith McMillan form of an m X £ rational matrix , G(s), be represented by
ei(s)

f diag (m Om,g_m) £>m

S(6(s) = | ding ($52) ¢

g (/9  tem

Om—tt

il
3

where e;(s),t,b;(s), i =1,2,...,h = min(4,m), are monic polynomials and if €g+1(8) =
€g+2(s) = ... = en(s) = 0 for some ¢ then Pg41(s) = Pg42(s) = ... = Pa(s) = 1. Also
. ils) | ¢;_1.(5), t=2,3;...,k, and €(s) | €i41(s), 1 =1,2,...,¢~1. Then, the finite zeros
and poles are defined as follows.

(3.2.1) Definition. The FINITE ZEROS of G(s) are defined as the roots of the (non-zero)
numerator polynomials {€;(s)} of S(G(s)) and the FINITE POLES of G(s) are defined as
the roots of the denominator polynomials {1;(s)} of S{G(s)).
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An'equivalent definition can be given in terms of a coprime fac}orisation of G(s). First

introduce the following definition. /

(3.2.2) Definition. Let D(s) be an m x £ polym;mia.l matrix. Then, sy € C is said to be
a ZERO OF DEGREE k of D(s) in case (s — s0)* is an elementary divisor of D(s). The
set of zeros of D(s) is the set of all such numbers s¢, a zero of degree k being included k
times. Further, the MULTIPLICITY OF A ZERO at sy € C is said to be equal to the
total number of elementary divisors of the form (s — s)*,k > 0.

. Recall that if G(s) is an m X ¢ rational matrix then it may be decomposed into
relatively prime factors,

G(s) = Ni(s) D7Y(s) = D;1(s) Na(s) (3.2.3)

where D, (8), N1(s) are relatively (right) prime and D(s), N2(s) are relatively (left) prime.
Any m x £ polynomial matrix N1(s), Na(s) satisfying (3.2.3) is referred to as a numerator -
of G(s) whilst any £ x £ polynomial matrix D;(s) or m x m polynomial matrix D,(s)
satisfying (3.2.3) is referred to as a denominator of G(s). Pugh and Ratcliffe [1979] showed
that all numerators of G(3) are unimodular equivalent and all denominators are extended
uni_mbdular equivalent (Pugh and Shelton, 1976). These observations subsequently gave
rise to the following definition.

" (3.2.4) Definition. s¢ € Cisa ZERO (POLE) OF DEGREE k of the rational matrix G(s)

" ifitis a zero of degree k of any numerator (denominator). Also the MULTIPLICITY OF

A ZERO (POLE) at so € C is equal to the multiplicity of the zero at s¢ of the numerator
(denominator). ' ‘

The equivalence of this definition of finite poles and zeros of a rational matrix to that
given by definition (3.2.1) is seen by noting that the poles and zeros of the rational matrix

are not affected by transforming the matrix to Smith McMillan form. Thus, for the case
£=m, B Mg geat )

. e
N gy S(G(9)) = [diag {e(s))] [ding IO .
e, e (3‘,\,4 petss -
2 5(N1(s)) (S(Dr(s) T
‘where S(D1(s)), S(N1(s)) correspond to the respective Stith forms of any denominator
and any numerator of G(s). Since the matrices S(Di(s)), S(N1(s)) are relatively (right)
prime due to the properties of the €;(s), %i(s) it follows that the two definitions, (3.2.1)
and (3.2.4), coincide. | :
) The above definitions do not provide an immediate extension to the case of infinite

- poles and zeros. This is due to the fact that the unimodular transformations inherent in

both definitions lead, in general, to the destruction of the infinite frequency structure.
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The infinite frequency structure of the rational transfer function matrix associated
- with a system has an important bearing on the behaviour of that system. For instance, the
properties of the infinite poles determine the high gain and high frequency behaviour whilst
the infinite zeros are directly related to the decouplability properties of the system. Thus,
a suitable means of investigating the infinite frequency structure is seen to be necessary.
The development of such methods was based on the standard technique of employing
a transformation which takes the point at infinity to a finite point so that the infinite
frequency structure can be analysed using techniques associated with investigation of the
finite frequency. The simplest such transformation takes the point at infinity to zero giving
rise to the following definition.

(3.2.5) Definition (Pugh and Ratcliffe 1979, Verghese 1978). An m x £ rational
matrix G(s) is said to have an INFINITE ZERO (POLE) OF DEGREE % in case w == O is a
finite zero (pole) of degree k for the rational matrix G (1). Further, the MULTIPLICITY
OF AN INFINITE ZERO (POLE) is equal to the multiplicity of the zero (pole) at w =0
of the rational matrix G (ﬁ)

It then follows that the investigation of the pole and zero structures at w = 0 of
G (%) can proceed by employing a suitable coprime factorisation. The disadvantage of
“"this approach is that a coprime factorisation of G(s) has no direct relation to a coprime
factorisation of G (;}J—) , so that if both the finite and infinite frequency structure is to
be investigated two seperate factorisations must be employed. This disadvantage can be
overcome if a minimal factorisation (Forney, 1975) is adopted for G(s). This particular
factorisation enables both the finite and infinite pole and zero structures to be deduced
. from the same factorisation. In particular, the following lemma holds.

_ r<id..

(3.2.6) Lemma (Pugh and Ratcliffe, 1980). Let G(s) be an m x £ rational matrix
factorised as g
| G(s) = Ny(s) D;Y(s) (3.2.7)
where the columns of []1\)718% ] constitute a minimal basis with column degrees
¢i,i=1,2,...,L Let Ay(s) = diag[s°*,5%,...,5%]. Then,
~ (i) the finite pole structure of G(s) is the finite zero structure of D;(s) and the infinite
pole structure of G(s) is the zero structure at w = 0 of the polynomial matrix -

D, (%) Al(l?)a

(ii) the finite zero structure of G(s) is the finite zero structure of N;(s) and the infinite
" zero structure of G(s) is the zero structure at w = 0 of the polynomial matrix

M (35) Ma(w).
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DI(S)
NI(S)

constitute a minimal basis will be referred to as a right minimal factorisation of G(s).

A factorisation of the form (3.2.7) where the columns of [

A dual result of lemma (3.2.6) holds when a left minimal factorisation of G(s) is employed,
i.e.

G(s) = D3 (s)No(s) (3.2.8)

where the rows of [D2(s) Nz(s)] constitute a minimal basis. Again the matrices giving rise
to the finite and infinite pole and zero structure from different minimal factorisations are
appropriately related by unimodular or extended unimodular equivalence transformations
so that the pole and zero structures can be investigated by adopting any left or right
minimal factorisation. The relationships are formally characterised below where the above

notation has been adopted.

(3.2.9) Theorem (Pugh and Ratcliffe, 1979). Matrices of the form Nj(s), N2(s) are
unimodular equivalent whilst matrices of the form D;(s), D2(s) are extended unimodular
equivalent.

(3.2.10) Theorem. Matrices of the form N1 () A1(w) and Ax(w) Nz (3) are unimodu-

w

lar equivalent whilst matrices of the form Dy (-1-) Ai(w) and Az(w) D (-11;) are extended

w
unimodular equivalent.

Proof. Consider first the case of two minimal right factorisations, i.e.
Ni(s) (Da(s))™ = N3 (s)(D}(s)) ™.
Then,
Ny (3) Mi(w) A(w)™ (D (2)) 7 =Ny (3) Aj(w) AT (w) (D5 (3))7
or, altérnaf.ively, |
[Ny (2) Ma(w)] D1 (3) M)l ™ = [N (£) ()] D7 (3) M) (3:211)

Dy (%) M(w)
Ni(3) Aa(w)

(right) prime. When w = 0

o

The matrix [ ] has full rank when w # 0 since Dy(s), Ni(s) are relatively

) Al(W)] _ [Dx]
) Al(w) w=0 Ny he
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D,
where [ ] is the high order coefficient matrix with respect to the columns of [
1lke

DI(S)]
Ni(s) |

Dy(s)

D,
Since [ :| is a minimal basis the matrix [ ] has full rank. Hence, it follows that
1 lhe

Ni(s)
Dy (L) Ar(w), N1 (1) Ai(w) are relatively (right) prime. Similarly for D} (1) Al(w),
Ny (L) Aj(w). Thus, it follows, from (3.2.11) (see Rosenbrock 1970, pl139), that
Dy (1) Ay(w) and D} (3) Af(w), M (L) Ai(w) and N7 (L) Aj(w) are unimodular
equivalent. A similar argument holds for the case of two left factorisations.

. Finally consider the case where
Dy () Na(s) = Na(s) D7 (s).

Then,
ha(w) N (3) (D1 () Ma(w)] = [A2(0) D2 (2)] B (2) As(w)

where, employing a similar argument to that adopted above, it is seen that Az(w) N; (%)
and Ay(w) D3 (£),D1 (1) Ai(w) and Ny (L) As(w) are relatively (left) prime. Hence, it
follows by definition that N; (%) Ay(w) and Az(w)Np(3%),D1 (%) Ay(w) and
Ag(w) Dy (ﬁ) are extended unimodular equivalent. Since N, (-—115) Ar(w) and Ay(w) Ny (%)
are both m x £ the relationship reduces to one of unimodular equivalence , so completing
the proof. D

The above proof demonstrates quite clearly the important role of the minimal factori-
sations in establishing the unimodular and extended unimodular equivalence relationships
and thus making the result of lemma (3.2.6) meaningful. '

In a similar way the infinite frequency structure of a rational matrix can be investigated
by performing a bilinear transformation and then obtaining the Smith McMillan form of

the subsequent rational matrix. Adopting a general bilinear transformation of the form

_ow+f _
:3"" ‘Tw‘l'(s 7'-]&0: ab 167#0$ a:ﬁavaaaem

results in the point s = % being transformed to the point w=o0 and s=co being transfered
to the point s = _75. The real numbers «,~ may be chosen in such a way that the point

s = -j-‘; does not correspond to a pole or zero of the matrix G(s) thus ensuring that all

the poles and zeros of G (aw + 5
yw 4+ &

MecMillan form of the rational matrix G (

) are located at finite locations. As a result the Smith

aw 4 8

po— 6) reveals both the finite and infinite

pole and zero structure of the original matrix, G(s). This approach becomes difficult to
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use if the dimensions of G(s) are greater than 3 x 3 or if the individual entries in G(s)
contain high powers of s (Vardulakis et al., 1982). The method also seems cumbersome if
it is only the infinite frequency structure that is of interest. For this case the emergence
of the Smith McMillan form at infinity (Vardulakis et al., 1982) is of relevance. This form
is obtained by pre and post multiplying the rational matrix G(3) by a series of rational
matrices, known as biproper matrices, which have no poles or zeros at infinity. Employing
such transformations ensures that the infinite poles and zeros of the original matrix G(s)
remain unchanged. If £,,(s) is the ring of proper rational functions then a biproper matrix
is defined as follows.

(3.2.12) Definition. The m x m rational matrix W(s) € %I’,":."m(s) is sald to be
BIPROPER. if and only if
(i) lm W(s)=W,eRm*™

8§ — OO

(i) det W, 0.

The definition of a biproper matrix leads to an equivalence relationship referred to as
equivalence at infinity.

(3.2.13) Definition. The m x £ rational matrices Gy(s) and Gy(s) are said to be
EQUIVALENT AT INFINITY if there exist biproper rational matrices W(s) € §R’“""‘(s),
V(s) € REXY(s) such that

W(s)G1(s) V(s) = Ga(s).

A canonical form under equivalence at infinity is the Smith McMillan form at infinity
described by the following lemma.

(3.2.14) Lemma (Vardulakis et al., 1982). Let G(s) € R™*!(s) with rank G(s) = r.
Then, there exist biproper rational matrices, W(s) € R7,*™(s) and V(s) € éRf,’,f‘(.s), such
that '

W(s)G(s) V(s) = S=(G(s))

" where
( [R(S) O e—m] £>m
sy ={ ¢ b=m
a v
m —¢m
and .
Q(s) = diag{s™,s",...,s",0,0,...,0} (3.2.15)
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withm 2172 2 ...2 0% 202 n41 2 ... 2 9. S(G(8)) is called the SMITH
McMILLAN FORM AT INFINITY of G(s).

The Smith McMillan form at infinity of G(s) provides an alternative means of defining
the infinite poles and zeros of G(s).

(3.2.16) Definition. If p,, is the number of %;’s in (3.2.15) with #; > 0 then G(s) has
Poo POLES AT INFINITY, each having degree ;. Similarly, if 2, is the number of 7;’s in
(3.2.15) with n; < 0 then G(s) has z,, ZEROS AT INFINITY, each having degree | ; |.

The definition of infinite poles and zeros is equivalent to the earlier definition (3.2.5)
and provides a straightforward characterisation of the infinite frequency structure. A neat
and convenient way of representing the infinite frequency structure is by means of a step
function, which is of particular relevance to the contents of section 3. The adoption of a
step function is also seen to be an appropriate way of illustrating results in subsequent
chapters. In this instance make the following definition.

(3.2,17) Definition.
7 ¢ = integer

S} £ { , :
Ni+ 1§ F# integer

where i+ denotes the upwards rounded version of i.

Since the 7;’s are ordered in a decreasing manner it follows that S*°(¢} is a decreasing
staircase as shown by figure (3.2.18).

S @)
A
nl —
n, —
| T = 1 >
Mo = 12 3 —-,\ -1 T
» 1
“'_ :
1
1
]
1
M, —L'

fig. (3.2.18)
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5°°(2) has been defined in such a way that it contains all the infinite frequency infor-
mation concerning G(s) in a completely irredundant way.

The Smith McMillan form at infinity can obviously be obtained for a particular ratio-
nal matrix by applying a sequence of appropriate biproper transformations. This, though,
is a rather cumbersome method since the sequence of transformations is not unique. An
alternative and more systematic method is obtained by exploiting the Laurent expansion
about the point at infinity of the original rational matrix. Van Dooren et al. [1979] develop
this theory for finite frequencies to obtain the Smith McMillan form about a certain point,
and suggest that it could be employed for the infinite case. The subsequent definition of
the Smith McMillan form at infinity makes the extension of this theory to the infinite case
more relevant. A description of the way this theory has been extended to the infinite case
is given in the next section. This then leads to an alternative method of obtaining the
Smith McMillan form at infinity and hence of investigating the infinite poles and zeros of
a rational matrix.

§3. The Laurent expansion and Toeplitz matrices of a rational matrix.

Van Dooren ef al. [1979] use the Laurent expansion of G(s) about a finite point,
80, and the corresponding Toeplitz matrices to determine the Smith MeMillan form at
so of G(s). In an analogous way the Smith McMillan form at infinity of G(s) can be
determined by considering the Laurent expansion about the point at infinity of G(s) and
the corresponding Toeplitz matrices as described by Demianczuk [1990].

Suppose the Laurent expansion about the point at infinity of G(s) is of the following

form
¢

Gsy= Y. Gis

= —00
=Gg S£+G[_1 S£_1+...+ G0+G_13—-1+...

Let G(s) have rank r. Then, the Toeplitz matrices at infinity are defined as follows.

(3.3.1) Definition. The TOEPLITZ MATRICES AT INFINITY, T?°(G), associated
with G(s) are defined as

(G Geer ... G
T(G) = o , 1> =L
0 £-1
I Ge |

The information concerning the ranks of the T7°(G) will determine the rank indices
at infinity of G(s) which are defined in the following manner.
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(3.3.2) Definition. The RANK INDICIES AT INFINITY of G(s) are defined as
pi° =rank (T7°(G)) —rank (T72,(G)) i=—{,—L+1,...
where it is assuxﬁed that rank (T%_,(G)) = 0.

It is now shown that these rank indices at infinity are invariant under the transfor-

mation of equivalence at infinity given by definition (3.2.13).

(3.3.3) Theorem. Let G(s), H(s) be two m x £ rational matrices. If G(s), H(s) are
equivalent at infinity then they have the same rank indices at infinity.

Proof. Since G(s), H(s) are equivalent at infinity there exist biproper rational matrices -

M(s), N(s) of dimensions m x m and £ x £ respectively, such that
M(s)G(s)N(s) = H(s). (3.3.4)

Since M(s), N(s) are biproper they have no infinite poles or zeros and so their Laurent

expansions about the point at infinity take the form
M(s) =Mo+M_, 1 + M_o 724, .,

N(S)ENQ-I-N_;[ 3"1 +N_2 8-2-]-...

where My = M(s = 00), Ng = N(s = c0) are non-singular. Let the Laurent expansion
about the point at infinity of G(s), H(s) be given by

g

G(s)= > Gis'

f=—o00

k
H(s) = Z H;s'.

_i=—co

Substituting these expressions into {3.3.4), and comparing coeflicients of s gives rise to the

following relationship.

"My ... ... M_g_.," rGe voe oo G T Ne o oon Nl
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(3.3.5)

where £ = min (g, h).

Since My, Np are non-singular it follows that the Toeplitz matrices built on M(s),
N(s) are also non-singular. Therefore, from (3.3.5), it follows that

rank T7°(G) = rank T°(H)
as required. ' ' ‘ ' - O

As a consequence of the above result it follows that a rational matrix, G(s), has the
same rank indices at infinity as its Smith McMillan form at infinity, $°°(G(s)). Therefore,
the properties of the rank indices at infinity, p{°, of G(s) can be deduced from the Toeplitz
matrices at infinity of §°°(G(s)), i.e. T°(S*°(G)), where the variable s has been dropped
from the notation for convenience. These Toeplitz matrices have a particularly simple
structure because of the special form of $°°(G(s)). Specifically, note that
(i) all the rows of TP°(S°°(G)) are either zero or ha_vé one non-zero entry (a “one”),

(ii}) the non-zero rows of Tf°(S*°(G)) are linearly independent.

From the second property it follows that

pi° = 1ank I (5%(G)) — rank TZ, (§%(G))

= rank [S¢(G), Se-1(G), -.., S-i(G)]. (3.36)

where S;(G) is the j* coefficient in the Laurent expansion at infinity of S*(G(s)).

Further, it can be seen, using the above properties, that
rank [S¢(G), Se-1(G), ..., S-i(G))

is equal to the number of 1’s in {S¢(G), St-1(G),...,S-i(G)], which in turn equals the
number of powers, 7;, greater than or equal to 7 in S*°(G). It should also be noted due to

the properties of the s;’s, that
rank [S¢(G), Se—1(G), ..., 5-i(G))

will at some stage equal r, the normal rank of G(s), but that rank [S¢(G), Se-1(G), .. -,
S_i(G)] can not exceed r.
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Thus, a direct relationship between the rank indices at infinity of G(s) and its Smith
McMillan form at infinity has been established which makes it possible to deduce the
Smith McMillan form at infinity of G(s) from the rank differences of its Toeplitz matrices
at infinity. To derive this relationship define the rank index function at infinity, R*(7),

associated with the rank indices at infinity, p{°, as follows.

(3.3.7) Definition.

pi° 1 = integer. -
B(i) = { o o
PS¢ = non-integer

where i— is the downward rounded version of i.

Again, using (3.3.6), it is seen that R*(7) is an increasing staircase as illustrated by
figure (3.3.8).

-4 ~8+1

fig. (3.3.8)

The R*°(1) staircase is in fact a 90° rotation of the 5°°(%) staircase defined in (3.2.17) and
so the Smith McMillan form at infinity of G(s) can be deduced directly from the R*(%)

staircase as follows.

(3.3.9) Theorem. I, in the notation of lemma (3.2.14), 5°°(G(s)) denotes the Smith
McMillan form at infinity of the rational matrix G(s), and p§° denote the rank indices of

G(s) constructed on the basis of its Laurent expansion about the point at infinity, then

S(G(s)) 2 block diag {Q:i(s)} _ (3.3.10)
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where Q;(s) is the (pf° — p§2;) X (p{° — pf2,) matrix given by

s 0 ... 0
' st ... 0
Qi(s) £
0 0 ... st
fori=—¢, —£+1, ..., and if p{® — pf2, = 0 then the corresponding matrix Q:(s) is not
present in (3.3.10). ' |

Proof. If pf® — p$°, # 0 then from (3.3.6) and the diagonal structure of S°(G(s)) it -
follows that S S '
rank S_.i(G) = p{° — p2; |
' where S_i(G) is the coefficient of s~* in the Laurent expansion at infinity of §°°(G(s)).
This, in turn, implies that S°°(G(s)) possesses pf® — p$2, diagonal elements of the form
s~ I p° — pe2, = 0 then

rank S_;(G) =0

and $°°(G(s)) does not possess any diagonal elements of the form s~i. Hence S®(G(s))
is as described by (3.3.10), as required. 7 C

In particular the pole/zero structure at infinity may then be deduced as follows.

(3.3.11) Corollary. If, in theorem (3.3.9) p©° — p?él # 0, then
(1) G(s) will have pf° — pf2, poles at infinity of degree |i|, if ¢ <0,
(i1) G(s) will have p{® — p{2, zeros at infinity of degree ¢, if > 0.

Proof. Follows directly from theorem (3.3.9) and definition (3.2.16). 0

To illustrate the way the infinite pole and zero structure of a rational matrix can
be obtained from its Laurent expansion about the point at infinity consider the following
example.

(3.3.12) Example. Let (

PN
[ 3 1 T (’(\_?")
s 0 > ¢ ,
5_2 1 -
1 IS
0 2s g:l’
-1
ol e
0 0 = 0 AR
- 1 \\I%El
0 s-1 0 = Y
B 5 J



The Laurent expansion of G(s) about the point at infinity is given by

0 0 07
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-1 0 0

L 0

0 0 0 07s

0 200

0 1 0 0l

10 0 0 O

1 0 0 073

0 0 0 O

L0 0. 0 O

0 001

0 010
L0 0 0 0.

Since a particular Toeplitz matrix is formed by adding a block column to the previous

| Toeplitz matrix, the Toeplitz matrices associated with this expansion can be expressed in

the composite form
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The ranks of the Toeplitz matrices are
rank T93(G) =1

s
=
iR

rank T25(G) =2
rank T°3(G) =4
rank T5°(G)=6
rank Tf°(G) =8
rank T5°(G) =712

and the corresponding rank indices at infinity of G(s) are given by

PS5 =1
P =1
P =2
pe =2
pr =2
Py =4

Note that when p°(G) = rank G(s) for some k the search can be terminated since
p;-”(G) - p(G)=0forj =k+1,k+2,.. .. It therefore follows from corollary (3.3.11)
that G(s) possesses two infinite poles, one of degree three and one of degree one, and two
infinite zeros both of degree two. This is confirmed by investigating the infinite frequency

structure via a minimal factorisation of G(s). A suitable minimal factorisation of G(s) is

given as S DY
st 0 F 0 10 0 0 rl
0 2 0 s? 0 1 0 0
=10 o (2-9)-1) o0 00 (s2-2)s* 0
L0 s—1 0 (s=1). 00 . 0 (s ~1).
Sg'lsl‘

= Ni(s) Dy (s)

D1(8)
N](S)

where the column degrees of [ are c1 = 3,c2 = 1,¢c3 = 5,¢c4 = 4.

Let Ai(s) = dia;,g [s%, 5,85, 5%] then the infinite pole structure of G(s) is given by the zero
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structure at w =0 of

10 0 0 wt 0 0 07
- 0 1 0 0 0 w 0 O
Di(5) M(w)= |4 (L -2)% 0 0 0 wb
00 0 L (L -1) 0 0 0 w
fw? 0 0 0 7 ovwereT?
0 w 0 o | ¥
T10 0 1-20* 0
0 O 0 1-w

Now Dj (%) Ai(w) has Smith form
diag {1,1,w,w?(1 = 2w?)(1 — w)}

which confirms that G(s) has the stipulated infinite pole structure. Similarly, the infinite

zero structure of G(s) is given by the zero structure at w = 0 of

L0 2 0 7 rwd 0 0 O0F7
2 1 C
N1(%)A1(w)= X o ° v . 0w -0 0
0 0 L-L-Z+2 0 0 0 w
L0 1-1 0 1-1J Lo 0 0 wt]
10 w? 0 1
0 2 0 w?
10 0 w?-wt-2uwt42w5 0
0 1—-w 0 wd — wt

The Smith form of Ny (1) Ay(w) is
diag {1, 1, w*(w — 1), w?(w — 1)(2w? — 1)(1 - 2w)}

which indicates that G(s) possesses two infinite zeros of degree two as predicted.
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§4. A test for the absence of infinite zeros in a rational matrix.

The investigation of the changes in the rank indices at infinity of the Toeplitz matrices
at infinity associated with a rational matrix provides a method of determining the McMillan
structure of the infinite poles and zeros of that matrix. When all the infinite poles and
zeros have been found the subsequent differences between successive rank indicies will be
zero. Interpreting this for the case of a rational matrix which does not possess any infinite

zeros leads to the following result.

(3.4.1) Theorem. The m x £ rational matrix G(s) of normal rank r will possess no infinite

zeros if and only if

rank (T5°(G)) = rank (T%(G)) +r. (3.4.2)

Proof. The rank difference of two successive Toeplitz matrices of G(s) can not exceed
r, so that if

rank (T§2(G)) — rank (T52,(@)) £ p° =r for some k > —£

then
pifi_i =r 3. = 1, 2, - (3.4.3)

and
PRdi = PTHi-1 =0 1=1,2,... (3.4.4)

Now G(s) will possess no infinite zeros if and only if
p =~ p2y =0 1=1,2,...

which by (3.4.3), (3.4.4) holds if and only if

By definition
: pe° = rank T5°(G) — rank T5(G)

to give result. 0

(3.4.5) Corollary. The m x £ polynomial matrix P(s) of normal rank r will possess no
infinite zeros if and only if

rank (T5° (P))=é+r (3.4.6)
where 6 is the McMillan degree of P(s).
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Proof. Let the highest power of s in P(s) ben, i.e.
P(s) = P,s" + Poys" ' +...+Pis+ P

where Py, Py, ..., P, are constant matrices and P, # 0. Then,

P, Po.oy ... P, P ]

| ) P,

3 (P) = SER
0 . Pala
i P, |

Now the rank of T%3(P) is equal to §, the McMillan degree of P(s) (Pugh, 1976). Thus,
from the result of theorem (3.4.1), the polynomial matrix P{s) will possess no infinite zeros
if and only if

rank (Tg°(P)) =6 +r

as required. ' a

To illustrate the result of theorem (3.4.1) and corollary (3.4.5) consider the following

example.

(3.4.7) Example. Let

2 2 0
P(S)z[s 0 1]

and, since P(s) is a polynomial matrix, its Laurent expansion about the point at infinity

is immediate. The resulting Toeplitz matrices can be obtained from the single structure

TS (P) T7(m TP T (P)
0101100000100 0
0 00+0 001 00300 1
ecaeeae- Nmmmmm - R

1 0:1 004000
000'000"*'1 00

0O 1011 00
000'!'000

010

0 00
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and the corresponding ranks are
rank T%3(P)=1
rank TS5 (P) =2
rank Tf‘l’(P) =4
rank Tg°(P)=6.

It follows that
rank T§°(P) =rank T°9(P)+r

where r = rank P(s). Hence, by theorem (3.4.1), P(s) does not possess any infinite
zeros. This can be confirmed by considering a minimal factorisation of P(s). A suitable
factorisation of P(s) is in fact immediate, i.e.

Ple) = 1 0] [s* s* 0
(S)_[o 1] [3 0 1}

= D;'(s) No(s).
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If A2(s) = [ 0 8?1 then the infinite zero structure of P(s) is given by the finite zero

structure at w = 0 of

(w3 0 -1;}; -;ul—g 0
Ar(w) Ny (L) = . w]- [; o 1
- w
(w 1 0
H_l 0 w

which has Smith form equal to [I; 0]. Hence, P(s) has no infinite zeros.

Note that the McMillan degree, §, of a polynomial matrix, P(s), is equal to the highest
degree amongst all minors of P(s). In this example § = 4 so that P(s) satisfies the test
for the absence of infinite zeros given in corollary (3.4.5), as expected.

The necessary and sufficient condition (3.4.6) of corollary (3.4.5) is equivalent to a
condition concerning the minors of P(s) which is expressed by the following.

(3.4.8) Theorem. Let P(s) be an m x £ polynomial matrix of normal rank r and whose
highest power of s is n. Let Tg°(P) and § be as defined previously. Then, rank (T5°(P)) =
§ + r if and only if P(s) has an r x r minor of degree 6.
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Proof. Let
P(s)=Pps™+ Ppys™ ' +...+ Pis+ Py

where Py, Py,..., P, are constant matrices and P, # 0.

Assume that

rank (T5°(P))=6é+r

i.e.
'P, P, ... Pi Py’
P
rank .o T | =684+ (3.4.9)
P,

Define P'(s) as
P($)=Pas® + P, 15" + ...+ Pis® + Pos

then the McMillan degree of P'(s) indicated by &' is equal to 6§ + r by (3.4.9).

Now P'(s) = diag {s,s,...,5}P(s) and since §' = § 4 r there exists a minor of order
g say of P'(s) with degree § + r. Let this minor be denoted by

i (1)
1,725.--5]g
which, by the Binet-Cauchy theorem, can be expressed as
P'(s) (2:1’122""’1-,‘-’) -
113724--+3]q

B * 11,12,...,!,

1<k <k2<...<ky <min(m,£) J1rJ25-042]q

Z P(s) (kl,kz,...,{cq).

L d Ry ko kg
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Now the highest degree of any minor of P(s) is, by definition, equal to §. Thus, for P'(s)
to have a minor of degree § + r, it follows that

- 0

0
I o

has to have a minor of order r in the above summation. This is only possible by taking
g = r which implies that P(s) has a minor of order r with degree é.
Conversely, assume that P(s) has an r x » minor of degree §. Let this minor be

pe (1),
71,7250 49 )r

Consider the following r X r minor of P'(s)

Pi(s) (z’l,ig,...,z’r) _
jl’jZ,"'ajr

v i1y, 0
8

pro (k).

1<ky <kz <. <kp <min(m, L) J153250 400

L 4 kyykegeg ke
(3.4.10)
When the set (ki, kg, . .., k) becomes equal to the set (¢1,%2,...,,) then the series contains

a term of degree § +r. All the other terms in the series have degree less than é + r so that
P'(s) has an r x r minor of degree § + r. By definition of the McMillan degree § and by
(3.4.10) it follows that P’(s) does not have a minor of degree greater than § + r. Thus,
the McMillan degree of P'(s) is equal to § +r, and so

'Pﬂ P"_l e P1 PO |
", ., . B
rank ' =6+r
0 .'° Pn—l
! P, |
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- which implies rank T§°(P) = § + r, as required. 0

The result of theorem (3.4.8) provides confirmation of the test given by Hayton et al.
[1988] for the absence of infinite zeros in a polynomial matrix. The new test presented in
corollary (3.4.5) is a simpler test than that produced by Hayton et al. [ibid.] since it is
generally easier to calculate the rank (T5°(F)) than all the r X r minors. Note that in both
tests the McMillan degree of P(s) must be calculated although this again merely involves

the computation of the rank of a constant matrix, i.e. T5°(P).

§5. Infinite poles and zeros of a polynomial matrix.

For the particular case of a polynomial matrix, P(s), the previous definitions and
discussions concerning the infinite poles and zeros obviously apply. In addition there exist
other definitions of infinite poles and zeros specifically defined for the polynomial case.
Such a definition was introduced by Hayton et al. [1988] who extended the notion of
homogenising a matrix pencil to a general polynomial matrix and subsequently defined
the associated infinite elementary divisors. It was seen that the degrees of the infinite
divisors have a direct relationship to the infinite poles and zeros as defined by (3.2.4), so
extending in a neat way the theory of infinite elementary divisors from the matrix pencil
to the general matrix case.

Tan and Vandewalle [1988, 19884} also adopt a homogenising technique to define the

infinite poles and zeros. In contrast to Hayton et al. [1988] who homogenise the whole
matrix Tan and Vandewalle [1988, 1988¢,] homogenise each element on an individual basis,
and also generalise the notion of the degree of a polynomial so that a polynomial of the

form
P8 +Pu18™ 1t .+ p1s+ Py pa #O

can have degree greater than or equal to n.

This leads to confusion in defining the silbsequent zeros. For instance, consider the

matrices

s 0] 6: 1 <> 1AM.L»~/(I fo/{(

0 1 = . (3.5.1)
. " e

e o

0 1 (3.5.2)

If these matrices are regarded as column based polynomial matrices, i.e. the entries
in each column being of equal degrees, then under the definition adopted by Tan and Van-

dewalle [1bi¢d.] (3.5.1) has no infinite zeros whereas (3.5.2) has one infinite zero. This is
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not satisfactory since (3.5.2) is obtained from (3.5.1) by a constant transformation which
should have no effect on the dynamic properties of the original matrix. Another disad-
vantage of the approach adopted by Tan and Vandewalle [ibid.] is that the degrees of the
infinite zeros and poles are not defined.

A further definition of infinite poles and zeros of a polynomial matrix, P(s) , is
provided by Bosgra and Van der Weiden [1981] in terms of the degrees of the minors of
the polynomial matrix. This definition has been shown to be equivalent to the definition
of infinite poles and zeros given in terms of the structure at w = 0 of P (1) and in terms
of the infinite elementary divisors (see Hayton et al., 1988). Formally the characterisation
of the infinite poles and zeros as presented by Bosgra and Van der Weiden [1981] is defined

below.

(3.5.3) Definition. Let P(s) be an m x £ polynomial matrix of normal rank r, and let
6; be the highest degree occurring among the ¢ X ¢ minors of P(s). Let § (the McMillan
degree of P(s)) denote the largest of the é;, 1 = 1,2,...,r, and let k; (respectively k)
denote the smallest (respectively largest) order of minors for which §; = §. Then, P(s)
is said to have k; INFINITE POLES with degrees 6,6z — 61,...,86 — 8g,—1 and r — ko
INFINITE ZEROS with degrees 6 — 65,41, 8ka41 — Skyd2, - -« 6r—1 — br.s

By definition, the §; satisfy the relationships

126 —-612...2 80, —br,—1
and (3.5.4)
| 61*—1 - 51' 2 6r—2 - 6r—1 2 e 2 6&; - 6k3+1

so that if S°°(P(s)) is the Smith McMillan form at infinity of P(s) described b)lr lermnma
(3.2.14) then the corresponding matrix Q(s) is given by

Q(s) = diag {s%,s0270 | $f b 10, 1,.5"(5"2'5"'-“"‘),3_(5*2“'5*2“),
verys™Or=8) 00 L 0}

where the number of 1’s equals k; — k3. :

It was seen in section 3 that the Smith Mcmillan form at infinity and hence the pole and
zero structure at infinity of a rational matrix can be obtained from its Laurent expansion
about the point at infinity. It therefore follows, for a polynomial matrix P(s), that there
exists a relationship between the rank indices at infinity of P(s), as defined by (3.3.2), and

the highest degree of minors of P(s). This relationship is formally characterised by the
following theorems.
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(3.5.5) Theorem. Let P(s) be an m x £ polynomial matrix with the highest power of s
equal to n. Assume that the rank indices at infinity of P(s), pf°, defined as in (3.3.2) are

known and let §;’s be defined as in (3.5.3). Also, let

v=pP - pRy  i=—montl
and define
dg=0
i—-1 :
d‘-:Z'U_,.H.J' . ?:31,2,...,?1
j=0 |
dy=0
d::ZUJ 2=1,2,
i=1
Then,

and, fort: =0,1,...,n -1
6dg+.f=j'|_n+i|+6d.' j=031,'°-$di+1—di-
Similarly

kg:?*-fzv,-
i=1

Siy = b4,
and, fori =1,2,...

Skardi_yobi = Okpai_, =34 §=0,1 . di—diy.

Proof. From corollary (3.3.11) the multiplicity of the infinite poles is equal to

n—1

Z Venti
=0

whilst, from definition (3.5.3), the multiplicity is given by %k;. Hence

to give (3.5.6).
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From corollary (3.3.11) if v_n44, 1 = 0,1,...,7 — 1, is non-zero then P(s) has v_n4;
infinite poles each of degree | —n + ¢ |. Thus, with the d;’s defined as above and é¢ £ 0, if
V_pti # 0 for some : =0,1,...,n — 1 then

bai41 —ba =| —n+i])
bait2 —baip1 = —n+1i]
9 (3.5.11)
a0 —Stipa~1 = —n+1i]| )

Now &4, is known from previous relationships so that (3.5.11) can be rewritten as
baitr =| —n+1i| +64 )

Sg;,42 =2 I ~n+1 | +04,
b . (3.5.12)

6d§+1 = (d1+l - dl) I —-n +i | +§d, /

If v_,4: =0 then diy1 = d; and (3.5.12) gives rise to the identity

Saipn = bu;

which provides no further information concerning the 4;’s. Hence, summarising the rela-
tionships (3.5.12) into one expression yields (3.5.7).
Similarly, by corollary (3.3.11), the multiplicity of the infinite zeros is given by

o<

=1

whilst, by definition (3.5.3), the multiplicity is also equal to r — k;. Hence

to give (3.5.8).
Also, by definition (3.5.3), the McMillan degree, §, of P(s) is equal to both §k, and
6k, From (3.5.6),

n—1
ky = Z Ven+ti

i=0

=d,.
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Hence,

§ = 6, = b,

é.nd, since § = 0y,, it follows that

Op, = 84,

to give (3.5.9).
Finally, by corollary (3.3.11) and the definition of the d}’s, iff v; £ 0, ¢ =1,2,..., then

. Y
Okptdi_, ~ Okptrdt_ 41 =1

Okytd_,+1 = Okptai_ 42 =1 o
, | (3.5.13)

Skptdio1 — Skptay =1 |

Now 8g,+4;_, is known from previous relationships so that (3.5.13) can be rewritten

as

— - \
Okogd;_ 41 = Oppay | — 1

Skord;_ 42 = Opyay_ — 2

> (3.5.14)

Bkyrd = Okgrar_, — (di = di_q).4 |

which, for similar reasons given for the case of infinite poles gives rise to (3.5.10), as
required. o

Note that it is not possible to deduce
éi, =k +1L,k+2,...,k—-1 (3.5.15)

from the rank indices at infinity of P(s). This is due to the fact that the é;’s listed in
(3.5.15) do not contribute any information concerning the infinite poles and zeros of P(s)
and hence can not be related to the rank indices at infinity by considering the equivalent
definitions of infinite poles and zeros. |

(3.5.16) Theorem. Let P(s) be an m X £ polynomial matrix with the highest power of s
equal to n and normal rank r. Assume that the é;’s defined in (3.5.3) are known and let the
rank indices at infinity of P(s) be defined as in (3.3.2). Also define, fori =0,1,...,n—1,

dn+i 2 number of times | —n + ¢ | occurs in the set
81,69 — 6y,.0 00 — b1y 1

and, for1 =1,2,...,
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¢: 2 number of times ¢ occurs in the set

6 — 6k2+11 6k2+l - 6k2+2, ‘o ,5,—_1 - 6,.,

Then,
P i = Pontic1 F Genti i=0,1,...,n—1 (3.5.17)
where |
P =0
and
Py =k (3.5.18)
pP=pta i=12,... (3.5.19)

Proof. By definition ¢—n+; is the number of infinite poles of P(s) with degree | —n+1 |.
Hence,

pion+i - Picn-i-i—l = G—n+ti t= 0,1,...,n-1

where p%,_; = 0 since the highest power of s in P(s) is equal to n, to give (3.5.17).

From (3.5.4) and the definition of p{° it follows that

'qéof‘_‘sr—ll =r.
Also,
Iﬁr—5r-1l
> (R = pR) = AR sy — T =T = Fa
i=1

Hence, p§° = k2 to give (3.5.18). Now ¢! is the number of infinite zeros of P(s) of degree
1. Thus,

P —pRi=q  i=12,...

to give (3.5.19), as required. | o

The relationships between the rank indices at infinity of a polynomial matrix and the
degrees of its minors described by theorems (3.5.5) and (3.5.16) are not straightforward.
Simpler but more general relationships can be deduced by exploiting the fact that the total
number of infinite poles and zeros must be the same under each definition. This gives rise

to the following,

(3.5.20) Theorem. Let P(s) be an m X £ polynomial matrix of normal rank » and let

n denote the highest power of s occurring in elements of P(s). Suppose the rank indices
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pP, i=—-n,—n+1, ..., =1,0,1,..., h, of P(s) are known, where h is the smallest integer
for which
PR =P FO pT—p21=0 Vi>h

If § denotes the McMillan degree of P(s) and &, the highest degree amongst all r X r minors
of P(s), then

6: i P (3.5.21)

i=—n
h=1

Sp= Y pf°—hpR. (3.5.22)
i=—n

Proof. Let §; be the highest degree for ¢ X ¢ minors of P(s) and let k3, k2 be as defined
previously. Let poo (respectively z.,) denote the total number of poles (respectively zeros)

at infinity counted according to multiplicity and degree. Now, if po, is computed from the
§; then, from definition (3.5.3),

ky -
Doo = Z (6i — 8i-1) (60 £0)

ie.,
Poo =6k, =6 | (3.5.23)

by definition of k;. On the other hand, if py is computed from the p¢’s then, from
corollary (3.3.11),

-1
Poo = Z (P = p21)- ] (pZ5-1 2 0)

i=—n
= (0% = pZac)n + (0Z0 11 — pZ0) (=) + ...+ (pTy — pT)

i.e.,

. -1 :
Poo= ) P (3.5.24)

i=—n

Equations (3.5.23) and (3.5.24) together then yield (3.5.21).

Proceeding similarly with the computation of 2, gives, from the §;s,

r—1

Zoo == Z (8: — bi41) = b, — 5. (3.5.25)

i=ka
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Alternatively, from the p®’s,

h
Zoo = Z (p7° = p21)4
=1

= (o7~ P8 )+ 2P — pT) + ..+ (R =1) (phZ1 = PiZ2) + R(p7” — PiZ1)

h-1
b =3 o7
=0

Equating (3.5.25) and (3.5.26) gives

h—1 .
b= = 3 4 = hofe.

=0

However, by the definition of ks,
Op, =6

and, in view of (3.5.21), the relationship (83.5.27) reduces to (3.5.22), as required.

To illustrate the result of theorem (3.5.20) consider the following example.
(3.5.28) Example. Let
1 1 0
P(s)=|s 1+ s
0 s 14+

Then, the associated Toeplitz matrices are obtained from
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1 '
1 ]
o O -~ ©O —— 1 o000 1 OOO
1 1
— —_ ¥ 1 —
O O — © o © Fo 0o | o o
1 1
— O O C OO0 15 C0O 1 © — O
1 1
lllllllllllllllllllllllllllllllll m—m—m————
1
o O — 1 O — — o © O 10 o o
1
O —_—_0 o O — OOO"O.IO
!
— O 0O o O O o ©0O 1O - O
'

L L e R e

[ e R F RN W I e ]

. I T k. e I N

and

rank TS3(P) =1

T5(P)=2

rank

rank T%(P) =4

rank T7°(P) =06

rank T7°(P)=38

rank T3°(P)=11.
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The corresponding rank indices at infinity are given by

PSS =1
p5 =1
P =
Py =2
=2
Py =3
with
=3 i>3

Hence h = 2. Now, from theorem (3.5.20), § and §, are given by

-1

§=Y pP=1+1+2=4

=—3

1
= pP°—2p7
i=-3
=14+14+2+2+2-23
=2

which is confirmed on inspection.

Notice that this example demonstrates that the difference between successive rank
indices can be non-zero long after the last term in the Laurent expansion has been in-
troduced into the corresponding Toeplitz matrix. The search will only terminate when
p$° = rank P(s) for some .

The result of theorem (3.5.20) leads to the following corollary.

(3.5.29) Corollary. P(s) will possess no infinite zeros if and only if there exists an r x r

minor of P(s) with degree 4.

53




Proof. From (3.5.21) and (3.5.22)

h=1
5,-=6+Z P?o“hpio-

feu{)

=8+ + o 4+ py — B

=6—(p3° — p3°) = 2(p3° — p1°) —--- = h(p¥’ = PFL41)
\ |

=8— ipP® ~ p21) (3.5.30)
i=1

Now, P(s) will have no infinite zeros if and only if
Pt —p2y =0 i=1,2,...
Hence it follows, from (3.5.30), that P(s) has no infinite zeros if and only if
b =6

as required. ‘ O

This test for the absence of infinite zeros in a polynomial matrix is the test given by
Hayton et al. [1988] and discussed previously in section 4.

The relationships in theorem (3.5.20) can be refined further if instead of the rank
indices, p$°, the actual ranks of the Toeplitz matrices formed from P(s) are used which
consequently give rise to the following corollaries.

(3.5.31) Corollary. Let T°(P), 1 = —n, —n + 1, ... denote the successive Toeplitz
matrices formed from P(s) viewed as a matrix polynomial.

Then, .
6 = rank T°(P) (3.5.32)

and

§, = (h +1). rank T2, (P) — h.rank T5°(P). (3.5.33)

Proof. This follows directly from (3.5.21) and (3.5.22) on noting that
p{ = rank T{°(P) — rank T;2,(P). 0

The result (3.5.32) is of course well-known (Pugh, 1976) and provides a simple com-
putational scheme for evaluating the McMillan degree of a polynomial matrix. The result
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(3.5.33) is new and could be used computationally to evaluate the highest degree of r X r
minors of P(s). There is however one difficulty surrounding the formula (3.5.33) and that
~ lies in the requirement that kA be known a priori. There is thus in (3.5.33) more than just
a requirement that the ranks of two successive Toeplitz matrices be known.

(3.5.34) Corollary. If P(s)isa square non-singular matrix then

deg (det P(s)) = Z Y

i=—n

= (h+ 1).rank T52,(P) — h.rank T5°(P).

Proof. If P(s) is square then m = £ and since it is non-singular then r = m. Thus,
8, = deg(det P(s)) and the result follows. O

The above result suggests a method by which the degree of a determinant may be
computed without recourse to evaluation of the determinant itself. The need for such a
method can be illustrated by considering the insertion of output feedback as represented
by the constant matrix K around the open loop transfer function matrix G(s). If D(s)
denotes the non strictly proper part of G(s) (i.e. the polynomial part of G(s}) then a
necessary and sufficient condition for the closed loop system to be proper is (Pugh, 1984)

deg. det(I + KD(s)) = §(D(3)). (3.5.35)
A result of the form of cdrolla.ry (8.5.34) is clearly required to evaluate the left hand side
of this relationship. Note that on the right hand side of (3.5.35), 6(D(s)) denotes the

McMillan degree of D(s) and this may be evaluated quite readily from (3.5.32) of corollary
(3.5.31).

§6. Conclusions.

In this chapter the infinite frequency structure of a rational matrix has been consid-
ered. A discussion of the various definitions of infinite poles and zeros was presented in
section 2 with particular reference to the definition based on a minimal factorisation and
to the definition via the Smith McMillan form at infinity. A method of obtaining the Smith
McMillan form at infinity of a rational matrix was described in section 3 and this method
was subsequently exploited to produce new results concerning the absence of infinite zeros
and the infinite structure of polynomial matrices. Specifically a new test for the absence
of infinite zeros in a rational matrix was presented in section 4 which, when adopted to
the case of polynomial matrices, provides a simpler test than that provided by Hayton
et al. [1988]. Section 5 further considers the particular case of polynomial matrices by
considering two equivalent definitions of infinite poles and zeros. This leads to the char-
acterisation of certain relationships between the rank indices at infinity of a matrix and
the highest degrees of some of its minors and provides an alternative means of evaluating
certain features associated with a polynomial matrix. '
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Chapter 4. The General Pole Placement Problem using Constant
Output Feedback.

§1. Introduction.

In this chapter the general pole placement problem using constant output feedback is
investigated. The system under consideration may possess a proper or non-proper transfer
function matrix so that both the finite and infinite pole structures must be taken into
‘account. The problem is approached by exploiting the properties of a certain factorisation
of the open loop transfer function matrix, and this theory is discussed in section 2. Using
this approach some new necessary conditions are obtained for the closed loop finite pole
structure and infinite pole structure, and these are presented in section 3. The conditions
presented in section 3 relate separately to the finite pole and infinite pole structures. The
subsequent refinement of these conditions into an overall condition on the total structure is
developed in section 4. Finally the connection of these new results with the previous results
obtained in the special case of systems with strictly proper transfer function matrices is
investigated.

§2. Preliminaries.

It was seen in chapter 3 that a minimal factorisation of a rational matrix, G(s),
provides a straightforward characterisation of both the finite and infinite pole and zero
structure of G(s). A further property of a minimal factorisation can be exploited when
constant output feedback is applied to the system.

Consider a system with an m X £ rational transfer function matrix G(s). Let G(s)

have a right minimal factorisation
G(s) = Na(s) D72 (s).

Further, let G g(s) denote the transfer function matrix of the system formed when constant
output feedback is applied to the original system as described by figure (4.2.1).

> G(s) >

fig. (4.2.1)
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Then, Gk (s) is given by
Gr(s) = G(s)[I + KG(s)]™!

where it is assumed that | I + KG(s) |# 0. A right minimal factorisation of Gk(s) can
be immediately obtained from the corresponding right minimal factorisation of G(s), as
described by the following lemma. '

(4.2.2) Lemma (Pugh and Ratcliffe, 1980). Let
G(s) = N1(s) D71(s) (4.2.3)

D1(8)

Ny(s)
ci,t =1,2,...,8. If Gk(s) is the resulting closed loop transfer function matrix obtained

be a right minimal factorisation of G(s) where has column degrees,

by applying constant output feedback K around G(s), then

Gx(s) = Ny(s)[D1(s) + K Ny(s))~ (4.2.4)

is a right minimal factorisation of G (s). Further the column degrees of [

D, (s)]

are identical to the column degrees of [ :

Ni(s)|

D;(s) + I{Nl(s)]
N1 (s)

A straightforward right minimal factorisation of Gy (s) therefore exists and, using the
result of lemma (3.2.6), the finite and infinite pole structure of the closed loop system under
constant output feedback can be investigated. This is undertaken in the next section. A
dual result to lemma (4.2.2) exists when a left minimal factorisation of G(s) is employed

of the form

G(s) = D;Y(s) Na(s) (4.2.5)

where the rows of [Dj(s) Na(s)] constitute a minimal basis with row degrees
ri,i = 1,2,...,m, and where As(s) is defined as As(s) = diag [s™,s",...,8™]. It then
follows that the closed loop pole structure can also be investigated by considering a left

minimal factorisation of G(s).
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§3. Necessary conditions for the separate placement of a finite and infinite
pole structure by output feedback.

Consider the-m X £ transfer function matrix G(s) factorised as in (4.2.3). From the
results described in the previous section and in chapter 3 the finite and infinite pole struc-
tures of the closed loop system, factorised as in (4.2.4), are given by the zero structure of
D1(s) + KNy(s) and the zero structure at w = 0 of [D1(Z) + K N1(2)]A(w) respec-
tively. The zero structures of Dy(s) + K Ny(s) and [Dq(2) + K N1(2)]A;(w) in turn are
given bg their respective sets of invariant polynomials. Let the invariant polynomials of
Di(s) + K Ny(s) be a1(s), az(s),...,as) where

ai(s) |aica(s)  i=2,3,....6  (431)

deg a;(s) = ai t=12,...,% (4.3.2)

Let the invariant polynomials of [Di(1) + K Ni(L)]A1(w) be Bi(w), Ba(w), ..., Be(w)
where

Biw) | ficr(w)  i=12,3,...,L (4.3.3)

The zero structure at w = 0 of [D1(3) + K N1(1)]A1(w) is given by factors of the

form w® of Bi(w) (b; =0), i =1,2,...,¢ Hence, ozU on Paches 4

1(54J"' wL'

as 1244 o \"JSI/V - po N
bi < deg(Bi(w)). 4 @ ﬁ‘"", e ,~< 2 (4.3.4)
\,;\6-"‘"" N b ¢

It therefore follows that the finite and infinite pole structures of the cIosed loop transfer
function matrix can be described in terms of the a;’s and b;’s.
Necessary conditions for the closed loop finite pole structure to satisfy are now pre-

sented in terms of the ¢;’s defined in the previous section.

(4.3.5) Theorem. Let G(s) be an m x £ rational transfer function matrix factorised as

G(s) = Ni(s) D7 (s)

Di(s)
where Nl forms a minimal basis with column degrees, ¢;, ordered ¢; > ¢; > ... > ¢q.
118

Let a3(s), a2(8),. .., ae(s) be monic polynomials with real coefficients which satisfy (4.3.1),
(4.3.2). Then, for there to exist a constant matrix K such that D;(s) + K Ny(s) has

invariant polynomials a;(s), aa(s),...,as(s) it is necessary that
¢ ¢
Z < Yy &  k=01,...,0-1 ' (4.3.6)
i=k+1 f=k+1
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Proof. By definition ap41(s) art2(s)... ae(s) is the greatest common divisor of all
(£ — k) x (£ — k) minors in Dy(s)+ K Ny(s) for k=0,1,...,£~1. Let e;, i = 1,2,...,¢,
be the column degrees of D;(s) + K Ny(s) taken to correspond with the ¢;. Thus,

e; < ¢, 1=1,2,...,4

It then follows that

¢ 4
deg [og+1(8)arga(s) ... au(s)] < Z e; < Z ¢ k=0,1,...,¢
: ‘ i=k+1 i=k+1 '

ie.,
¢ ¢
Y oa< Y & k=01,...,0-1
i=k+1 i=k+1 \

as _required. O
A similar necessary condition for the degrees of the infinite poles can also be given.

(4.3.7) Theorem. Let G(s) be an m X £ rational transfer function matrix and D;(s),
Ni(s),c1,...,ce be as described in theorem (4.3.5). Let g (w), B2(w),..., Be(w) be monic
polynomials with real coefficients which satisfy (4.3.3) and let '

Bi(w) = whgl(w) i=1,2,...,4 (4.3.8)

where f84(0) # 0 and take A;{w) to be diaglw®,w®?,...,w"]. Then, for there to ex-
ist a constant matrix K such that [Dy(2) + K Ni(2)]A1(w) has invariant polynomials
Bi(w), B2(w), ..., Be(w) it is necessary that

£ L4
b > e kE=01,...,0-1
i=k+1 i=k+1

Proof. By definition Bry1(w)Biyz...Be(w) is the greatest common divisor of all
(¢ - k) x (€ — k) minors in [D1(L) + K Mi(2)]A1(w) for k = 0,1,...,£ — 1. Let f;
i =1,2,...,4, be the column degrees of [D;(%) + K N1(2)]A1(w) taken to correspond
with the ¢;, so that

fi L, 1=1,...,¢

It then follows that

(4 4
deg [Bria(w)Bria(w) .. Be(w) € D fi$ D  i=0,1,...,4-1

i=k+1 i=k+1
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ie.,

¢ e
" deg(Bi(w) < Y, & k=0,1,...,8-1
i=k+1 i=k+1
and, from (4.3.4) and (4.3.8),
¢ t

k< Y e k=01,..,0-1

i=k+1 i=k+1
as required. : a

The results of theorems (4.3.5), (4.3.7) can be most conveniently illustrated by means
of a step function, defined as follows. '

(4.3.9) Definition.

(¢t
o k=0,1,...,4—1
=k+1
2’
! .
Z ¢; k = non-integer
[ j=k+1

where k- is the downward rounded version of k.

Pictorially it can be seen that Cy is a decreasing staircase as illustrated by figure
(4.3.10).

Cy
A
Crtc bt €,
C otk Cp — _l
c£ s c‘e_1 — LI
<yl )
o
[ ] [
2 £-2 2-1 8

fig. (4.3.10)

_ It therefore follows, from theorems (4.3.5) and (4.3.7), that the a;, b; must be chosen such
that the staircases corresponding to Zf=k+1 ai, Zf=k+1 bi, k=0,1,...,£—1lie below the
staircase given by figure (4.3.10). Note that if the ¢;’s had been ordered in any other way
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the corresponding staircase would either lie on or above the staircase pictured above. Thus,
the ordering ¢; > ¢z 2 ... 2> ¢¢ can be regarded as a minimal ordering in the sense that the
associated staircase provides the lowest, of this type, of upper bound for the Z a;, Z b;.

As was noted in section 2 the pole structure of G{s) could as easily be investigated by
considering a left minimal factorisation of G(s) as represented by (4.2.5), thus leading to
analogous necessary conditions to those of theorems (4.3.5) and (4.3.7) in terms of the left
factorisation. Combining the necessary conditions from each factorisation leads to stronger
necessary conditions for the separate assignments of the finite and infinite pole structures.

Let G(s) be an m X £ rational matrix with right and left minimal factorisations

Ni(s) D7*(s) and Dj'(s)Nafs)

. Dl(s) .
respectively, and where the column degrees, ¢;, of Mi(s) areordered ¢; 2> ¢ 2 ... > ¢¢
118

and the row degrees, r;, of [D2(s) Nz(s)] are ordered r; 2 73 2> ... 2 rp,. Let §) =
min(m, £), t2 = max(m,£) and let a;(s), a2(s),...,a:, (s) be monic polynomials such that

ai(s) [ai-1(s)  1=2,3,...,%h

and deg ai(s) = ai, 1 = 1,2,...,1;. Also, let B1(w), B2(w),..., B, (w) be monic polynomi-
als such that
Bi(w) | Bima(w) 1=2,3,...,h
and where
B(w)=w" Biw) i=1,2,...,4
in which 81(0) # 0. Let A(s) = diag[s®,s,...,s%] and Ag(s) = diag[s™,s™,...,s™].

Combining the necessary conditions obtained by using a right minimal factorisation
with the necessary conditions obtained by using a left factorisation results in the following

tighter necessary conditions on the closed loop finite pole structure.

(4.3.11) Theorem. Consider an m x £ transfer function matrix, G(s), described above and
let D1(s), N1(s), D2(s), Na(s), ¢i, ri, @i, ¢, ti, also be defined as above. Then, for there to
exist a constant matrix K such that the non-unit invariant polynomials of Dy (s)+ K Ny(s)

and Dy(s) + Na(s) I are ay(s), a2(8),..., o, (8) it is necessary that

)

ty
Y a< Y & k=0,1,...,t -1 o (4.3.12)
t=k+1 i=k+1

where



Proof. By construction the non-zero invariant polynomials of D;(s) + K Ni(s) and
Dy(s) + N2(s) K are equivalent, so that there can be at most t; = min(¢,m) non-zero
invariant polynomials. By theorem (4.3.5) the degrees, a;, of these non-zero invariant

polynomials must satisfy the necessary conditions

t1 I 4
Y @< ) & k=01t -1 (4.3.13)
i=k+1 i=k+1 ‘
Similarly, by considering a left minimal factorisation of G(s) the a;, 1 =1,2,...,%, must

also satisfy the necessary conditions
Y w< > n k=01t -1 (4.3.14)

Combining (4.3.13) with (4.3.14) gives rise to the necessary conditions (4.3.12),

as required. o

In a similar way stricter necessary conditions are obtained for the closed loop infinite

pole structure.

(4.3.15) Theorem. Consider an m X £ transfer function matrix, G(s), described above
and let Dy(s), N1(s), D2(s), N2(s), ci, ri, b, Bi, ti, Ai(s) also be defined as above. Then,
for there to exist a constant matrix K such that the non-unit invariant polynomials of
[D1(5) + K Ni(35)] Aa(w) and Ag(w)[D2(55) + Na(3;) K] are Bi(w), Ba(w), ..., By (w) it is

necessary that

1 t2
Yoobk< Y di k=01...,t1-1 (4.3.16)
i=k+1 i=k+41 .

- where

i di:min[ii i, i r,].

t=k+1

Proof. By construction the non-zero invariant polynomials of [D1(Z) + K N1(1)]A;(w)
and Ay(w)[D2(L) + No( L) K] are equivalent, so that there can be at most ¢; = min(£, m)
non-zero invariant polynomials. By theorem (4.3.7) the non-zero polynomials must satisfy

the following necessary conditions expressed in terms of the b;, i =1,2,...,%;,

11 I 4
Yook > e i=01,...,4~1 (4.3.17)

i=k+1 i=k+1
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Similarly, by considering a left minimal factorisation of G(3) the b;, 7 = 1,2,...,%;, must
also satisfy the necessary conditions

1 m
o< Y. i=01,..,t -1 (4.3.18)
i=k+1 i=k+1
Combining (4.3.17) with (4.3.18) gives rise to the necessary conditions (4.3.16),
as required. 0

The necessary conditions of theorems (4.3.11) and (4.3.13) can be described in a more
straightforward fashion by employing the staircase description. Without loss of generality
let m > £ and let the staircase function corresponding to each minimal factorisation be
constructed in a similar way to that shown previously. Combining both staircases on the
same diagram results in figure (4.3.19).

-

staircase associated with right factorisation

————— staircase associated with left factorisation

fig. (4.3.19)

Note that the two staircases might not intersect at all or might intersect at more than
one point. The necessary conditions of theorem (4.3.11) then state that the closed loop
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. N
finite pole structure must be such that the staircase corresponding to Z ai,

i=k+1
k=0,1,...,t; — 1 lies in the shaded area of figure (4.3.19). A similar interpretation can

be made for theorem (4.3.15). Theorems (4.3.11) and (4.3.15) obviously provide stronger
necessary conditions than those contained in theorems (4.3.5) and (4.3.7) respectively.

The necessary conditions of theorem (4.3.11) and (4.3.15) are not sufficient conditions
as is demonstrated by the following example.

(4.3.20) Example. Let

ol = L st —g®
(S)—m L(l-—-s) 33—1].

Right and left minimal factorisations of G(s) are respectively given by

- s 0 2 1177
Ni(s) Dy'(s) = ] [ } ,

D5 (s) Na(s) =

It therefore follows that
aa=3, =1

rN=2, r9o=2

so that the closed loop finite pole structure, as described by a; and a;, must satisfy the

agﬁl
a1 +ax L4

Similarly, the closed loop infinite pole structure, as described by b1 and b2, must satisfy
the necessary conditions

necessary conditions

by <1

by + b2 < 4

The closed loop finite pole structure a; = 0,a2 = 0 satisfies the necessary conditions of

theorem (4.3.11). For the closed loop system to have this pole structure it is necessary
that '

| Di(s) + K Ni(s) |= a (4.3.21)

where « is a.- non-zero constant. If
ki ke
K =
ks k4
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then

(3

|D1(S) + KN1(3)|= [kl(l + k4) — ks k3] 34 + [1 + ky — k3] 33 — ks 32 + [kg - 1]3 — k.
For (4.3.21) to hold, it follows that
kz =0 and kg—-l:o.

This is clearly not possible indicating that the pole structure @¢; = 0,a2 = 0 can not be
assigned by constant output feedback and so demonstrating that the necessary conditions
of theorem (4.3.11) are not sufficient. '

By implication it follows that it is not possible to assign all the poles at infinite
location. In particular the infinite pole structure b, = 4,5, = 0 can not be assigned so

demonstrating that the necessary conditions of theorem (4.3.15) are not sufficient.

§4. Necessary conditions for the simultaneous placement of a finite pole

structure and an infinite pole structure by output feedback.

When designing the closed loop system it is of greater interest to know whether a
finite and infinite pole structure can be assigned simultaneously rather than separately.
This has therefore lead to the investigation of necessary conditions for such an assignment.

Initial necessary conditions can be deduced from theorems (4.3.5) and (4.3.7), namely
that the a;’s and b;’s as defined in those aforementioned theorems must satisfy the condi-

tions that
¢

4 L4
Yo ait D k<2 Y o Ck=0,1,...,0-1 (4.4.1)

1=k+1 i=k+1 i=k+1

This is a very crude bound on Z a; + Z b,- since it is known, for example, that

G+ bi=) c (4.4.2)

=1 1=1 i=1

Stricter necessary conditions are now presented which include the condition (4.4.2)
and which generalise the results of theorems (4.3.11) and (4.3.15) to the case when the
finite and infinite pole structures are assigned simultaneously. The result is first given in

terms of a right minimal factorisation of the associated transfer function matrix.

(4.4.3) Theorem. Let G(s) be an m x £ transfer function matrix factorised as in theorems
(4.3.5) and (4.3.7). Let a(s),a; be given as in theorem (4.3.5) and f;(w), b;, A1(w) as in
theorem (4.3.7). Then, for there to exist a constant matrix K such that D;(s)+KNi(s) has
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invariant polynomials a;(s), @2(s), ..., ae(s) and [D1(L) + KNy(L)] A1(w) has invariant
polynomials 81 (w), B2(w),. .., Be(w) it is necessary that

4 £ £ :
Y oait+ Y < Y & k=01,...,6-1 - (444)
i=k+1 i=k+1  dekl ,
with equality holding when &k = 0.
Proof. Bj‘ definition ae(s) ae—1(s) ... ar—ix41(8) is the greatest common divisor of all
k x k minors in Dy(s) + K N1(s). Let
¢ ¢
v 2 z a; and up 2 E ¢ k=12,...,¢
i=t—k+1 i=t=k+1

then
ae(s) ap—1(8) ... ae—r41(8) =1, 8" +...+t1s+ 1o

where vy S pr and t,, #0.

Now each k& % k minor of D, (-lu;) + KN, (-:;) will be of the form

ot (3) a1 (5) e () £(3) (4.4.5)

for some polynomial f(s). Further, among all k& x k minors of D;(s) + K Ni(s) the cor-
responding polynomials f(s) are coprime for finite s. Thus, all k£ X k minors of [Dy(1) +
K Ni($)] A1(w) will be of the form

ae (L) arca (1) .o aeopsn (5) F(E) 0" | (4.4.6)

where 1 > up.
The greatest common divisor of all ¥ x k minors in [Dl(-f;) + K Nl(-tlg)]Al(w) will
therefore be

o (5) @t (5) - aepnn (5) wh
where
i < p (4.4.7)
i.<?., . '
[t ()™ -+t () + 2] w0

r - ¥ ’
=t,, wFETUR Lty whETT 4wt

= wFET [ty 4. BT 4
k
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where p} > vi since o (-11;) T (%) e Q41 (-tl—v-) whk must be a polynomial. It there-
fore follows by definition that

be+bomy ..+ bp—ky1 = pr — vk
i.e.
4 Y]
Z bi + E a; = u;‘.
f=f—k+1 i=8—k41
Hence, from (4.4.7)

¢ t ¢ o
DIE: Z a; < Z ¢ k=0,1,...,2%

i=k+1 t=k+1 i=k+1

When k = £, f(1) =1in (44.5) and n = p; in (4.4.6). This means that the greatest
common divisor of all £ x £ minors in [D; (L) + KNz ()] Ai(w) is of the form

w#t_vt . ¢(w)

where ¢(w) has no factors of the form w®,a > 0.

Hence,
4 4 y 4
MWD I
i=1 =1 i=1
as required. O

Again similar necessary conditions can be obtained by using a left minimal factori-
sation. Combining the necessary conditions from each factorisation leads to the following

theorem. The notation for this theorem is as described in the previous section.

(4.4.8) Theorem. Consider an m x { rational transfer function matrix, G(s), described
above and let N;(s), Di(s), Na(s), D2(8), ¢iy i, Bi(8), ai(s), ai, bi, ti, A1(8), Az(s) also be de-
fined as above. Then, for there to exist a constant matrix K such that the non-unit in-
variant polynomials of D;(s) + K Ny(s) and Dz(s) + Na(s)K are ay(s), az(s),...,as(s)
and the non-unit invariant polynomials of [Dy( -3;) + K Nl(%)] A1{w) and Az (w) [Dg(-t-lv) 4+
Ng(%)K] are fy(w), f2(w),..., By, (w) it is necessary that

1 1 t2
Soai+ Y, < > di k=01, -1 (4.4.9)
i=k+1 i=k+1 t=k+1

where

RTINS

i=k41 i=k+1 i=k+1
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and with equality holding when k = 0 in (4.4.9).

Proof. The result follows by combining the separate necessary conditions obtained by
considering a left and a right minimal factorisation of G(s) in the same way that the results
of theorems (4.3.11) and (4.3.15) were derived. 0

Theorem (4.4.8) obviously provides stronger necessary condifions than the ones ob-
tained by considering each factorisation separately. This is demonstrated by the following

example.

(4.4.10) Example. Let

-l 0 0—
s
G(s)={s ;15 52
1
00 )
r—s® 0 17 -6 0 s77°
=0 1 s? 0 s 0 2 Ny(s) D7(s)
L1 0 ol $ 0 0
00 77 ro 0 1
=(0 s* 0 st 1§ 2 D7Y(s) No(s)
s 0 O 1 0 0O

where Ni(s) D7?(s) is a right minimal factorisation and D;?(s) Na(s) is a left minimal
factorisation. It therefore can be seen that

c1 =6, ca=3, c3 =2,

7‘1=5, T‘2=5, T3 = 1.
The necessary conditions obtained by considering the right factorisation requires a;, b; to

satisfy b <o
as + by <

azt+ap+by+b <5
az+az+ay+bz+by+8; =11

whilst the necessary conditions obtained by considering the left factorisation requires a;, b;

to satisfy .
a3 +b <1

az+az+bz+by <6
a3+a2+a1+ba+b2+bl =11.
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Let

ki k2 k3
K= 1|k ks ke
kr ks ko

and A1(w) = diag [w?,w?, w?], Az(w) = diag [w®, w?, w].
First, consider the right factorisation whose necessary conditions require a3, bs to
satisfy '
as +b3 < 2.

The closed loop infinite pole structure is given by the zero structure at w =0 of

—1—=kyw + ksw® kow® w4+ kyw? + ks
(D1 () + KN(D)] M(w) = | —kaw+kew® 1T+ksw®  kaw®+ ks

w - k-:w + k9w6 k3w3 k7w2 + ka
(4.4.11)

It follows from element (2,2) of (4.4.11), that w cannot be a common factor of all 1x1
minors of (4.4.11), i.e. b3 = 0. Now the finite pole structure of the closed loop system is

given by the invariant polynomials of

—s5 —k135+k3 ks k232+8+k1
Dl(s) + I&’N1(S) = —k455 4 kg ss 4 ks k5.52 + ky . (4412)
SA5 - 35k7 + ko ks k332 + ke '

If the greatest common divisor of all 1 x 1 minors is to have degree greater than zero then
the element in position (1,2) of (4.4.12) indicates that k; = 0. In this event it follows
from the (1,3) element of (4.4.12) that the highest possible degree for this divisor is 1.
Hence a3 < 1. Thus, by investigating the closed loop pole structure via the right minimal

factorisation it is seen that as, b3 must satisfy the necessary condition
a3+ b3 <1

which confirms the necessary condition obtained by considering the left factorisation.’
Similarly consider the pole structure obtained by using the left minimal factorisation

which requires a3, az, b3, b2 to satisfy the necessary condition
az +az + b3 + b2 < 6.

The infinite pole structure of the closed loop system is given by the zero structure at w =0

of
Az(w) [D: (3) + N2 (5) K] =
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k7w5 k3w5 k9w5 + 1
k4w5 + kiw + k7 ksw® + wr+kow+ ks ksw+kaw+kg|. (4.4.13)
kiw+1 kaw kaw

The 2 X 2 minor formed by deleting the second row and second column of (4.4.13) is given

by
krw®  kow® +1
! ? =-14+ we(k'[kg, - kgkl) - kiw — kgw5

hw+1 ksw
which is not divisible by w regardless of the choice of ky, k7, kg, k3. Hence b3 + b2 = 0. The

finite pole structure of the closed loop system is given by the invariant polynomials of

) kn ks s° + ko
Dg(s) -+ Ng(s)I{ = k134 -4 k7$5 + k4 k234 + k835 + s° + ks kgss + k334 + k¢
s+ & ks k3

(4.4.14)
Suppose that there exists a K such that a3 + a2 > 5. Then, all 2x2 minors of (4.4.14)
must have at least degree 6. Consider the minor formed by deleting the third column and
second row of (4.4.14), i.e. '

ket ks
s+ki ko

= kzk'r - kskl - kss.

For the above assumption to hold it follows that kg =0=+ks or ks =0=k7. If kg =0=k7

consider the minor formed by deleting the first column and second row of (4.4.14), i.e.

0 35+kg

= —kz k‘g - kgss
ko k3

which implies k2 = 0 for the above assumption to hold. Thus, it is necessary that ky =0
and ks = 0. Now the minor formed by deleting the third column and first row of (4.4.14)
is given by

k154 + k735 + k4 $° + ks

= —g — kys® — kgs — ki ks
3+k1 0 '

which shows that it is not possible to find a K such that all 2 x 2 minors of (4.4.14) have at
least degree 6. Hence, the original assumption is false and it is deduced that az + a2 < 5.
It then follows that

astax+bs+b2<5

which confirms the necessary condition obtained from the left factorisation.

Using the staircase description of figure (4.4.15)
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ek nm

left factorisation
_____ right factorisation
fig. (4.4.15)

it is seen that the desired closed loop system pole structure must give rise to a staircase
function which must lie within the shaded area.

The above example also demonstrates that the necessary conditions of theorem (4.4.8)
are not sufficient conditions. In particular, the pole structure b3 = 1, b2 = 1, b = 1,
a3 = 0, az = 3, a1 = 5 satisfies the conditions (4.4.9) of theorem (4.4.8) but it was seen
that by must satisfy b3 = 0 in the above example.
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§5. Relationship with previous results in the case of strictly proper transfer

function matrices.

For the case when the system has a strictly proper transfer function matrix, G(s),
all the open loop poles will be situated at finite locations. Further, when constant output
feedback of the form described in figure (4.2.1) is applied around this system the resulting
closed loop system also has all its poles at finite locations (Rosenbrock and Pugh, 1974).
The results of theorem (4.3.5) and (4.3.11) can be interpreted for this situation with the
necessary conditions (4.3.6) and (4.3.12) modified to include equality when k& = 0. The
necessary conditions (4.3.6) are in agreement with the necessary conditions obtained by
Rosenbrock and Hayton [1978] for this particular case. Rosenbrock and Hayton [ibid.]
considered the general pole placement problem for systems with strictly proper transfer
function miatrices using dynamic output feedback but their result can be interpreted for
constant output feedback. _

The result given by Rosenbrock and Hayton [ibid.] corresponding to theorem (4.3.5)
is presented below with a slight alteration of notation so that the result can be directly
compared with that of theorem (4.3.5).

(4.5.1) Theorem (Rosenbrock and Hayton, 1978). Let G(s) = T5'(s) Ug(s) be m x£
and strictly proper with Te(s), Ug(s) relatively (left) prime. Let Agy = Ag2 2 ..., Age
be the controllability indices of G(s). Let K(s) = Ti'(s)Ux(s) be the proper dynamic
feedback with observability indices px1 2 pr2 = ... = pure. Then, the closed loop pole

structure as defined by a;, i1 =1,2,...,{, must satisfy the necessary conditions

ko k k
Z o; 2max [ Y (Agi+prer-i), Y (Age-i+pki)| kE=12,...,0 (45.2)
i=1 i=1 i=1

with equality holding when & = £ if and only if T(s), Ur(s) are relatively (left) prime.

Now if K'(s) is taken to be a constant matrix the associated observability indices, ux:,
are all equal to zero. Hence, the necessary conditions of theorem (4.5.1) become

E k
Nazd dai k=122 (4.5.3)

1=1 f=1
with equality holding when &k = £. It also follows, since G(s) is strictly proper, that the
controllability indices are equivalent to the ¢;’s defined earlier (see Forney, 1975). Thus,

replacing Ag; by ¢; in (4.5.3) and reordering gives (4.3.6).

Hence, the necessary conditions given by Rosenbrock and Hayton [1978] and the nec-
essary conditions of theorem (4.3.5) are equivalent for the case when constant output

feedback is applied around a system with a strictly proper transfer function matrix. The
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necessary conditions of theorem (4.3.11), obtained by considering both a left and right min-
imal factorisation of G(s), are stronger conditions than those of theorem (4.3.5) and hence
are stronger than the necessary conditions obtained by Rosenbrock and Hayton [ibid.] for
this particular case. This suggests that the general result presented by Rosenbrock and
Hayton [ibid.] could be improved. Indeed Kucera and Zagalak [1985] subsequently derived
stricter necessary conditions than those obtained by Rosenbrock and Hayton [1978] for
dynamic feedback. |

For the special case of constant output feedback these new necessary conditions pre-
sented by Kucera and Zagalak [1985] are equivalent to those obtained by Rosenbrock and
Hayton {1bid.] and hence are in agreement with the necessary conditions of theorem (4.3.5)
as applied to systems with strictly proper transfer function matrices.

For the strictly proper case Rosenbrock and Hayton [1978] also present sufficient
conditions for the placement of a pole structure using dynamic compensators. The proof of

this sufficient condition given by Rosenbrock and Hayton [ibid.] requires the compensator
¢

to have order equal to Z (Ag1 — 1). Thus, for the compensator to be constant, i.e. have
=1
order zero, the largest controllability index of G(s) must be 1. In this instance the sufficient

conditions are equivalent to the necessary conditions, so that it is possible to find a constant
feedback matrix such that the closed loop pole structure satisfies conditions (4.5.3). The
requirement that Ag; = 1 is a very restrictive one so that the result for constant feedback
applies only to certain systems.

§6. Conclusions.

The general pole placement problem using constant output feedback has been considered
in this chapter. The treatment is novel since it allows for the possibility that the open
loop system and the closed loop system possess a proper or a non-proper transfer function
matrix. As a result the assignment of both the finite and infinite pole structures have been
investigated .

The problem was approached by exploiting the properties of a minimal factorisation
of the open loop transfer function matrix. In section 3 separate necessary conditions were
presented for the finite and infinite closed loop structure to satisfy. These new conditions
were given naturally in terms of the column and row indices of certain minimal factori-
sations associated with the open loop transfer function matrix. The results were neatly
illustrated by means of suitable step functions. Further original necessary conditions were
presented in section 4 which generalise, in an appropriate manner, the results presented in
section 3 to the case where the finite and infinite pole structures are considered simulta-
neously. Finally, in section 5 the relationship with previous work concerning systems with
strictly proper transfer function matrices was investigatéd. For the specific case of constant
output feedback the necessary conditions presented in this chapter were seen to be stricter
than those obtained previously by both Rosenbrock and Hayton [1978] and Zagalak and
Kucera {1985].
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Chapter 5. Notions of Controllability in Generalised State Space Systems.

§1. Introduction.

Consider linear time invariant systems of the form

Ez(t) = Az(t) + Bu(t) (5.1.1)
y(t) = Ca(t) |  (519)

where z(t) is an n-vector of internal states, u(t) is an £-vector of control inputs and y(t) is a
m-vector of outputs. E, A, B, C are real constant matrices of the appropriate dimensions.

The properties of such systems can be divided into two cases depending on the non-
singularity or singularity of the matrix E. When E is non-singular the equations are said
to be in regular state space form and the properties of such systems have been widely
investigated.

If E is singular the behaviour of the system with defining equations (5.1.1), (5.1.2)
differs considerably. The system now consists of algebraic as well as first order differential
equations which can lead to what is termed impulsive motion occurring in the system.
In the frequency domain this corresponds to the presence of infinite frequency behaviour.
The system is then said to be in generalised state space form. The terms general (or
generalised) and regular will be adopted to distinguish between the two cases.

The difference between the regular and generalised cases is clearly reflected by the
transfer function matrix, G(s), associated with (5.1.1), (5.1.2), i.e.

G(s) = C[sE — A]™ B.

When E is non-singular, G(s) will be a strictly proper matrix whilst when E is singuiar
G(3) could additionally be either proper or non-proper. It should be noted that early inves-
tigations of systems with proper or non-proper transfer function matrices were undertaken
(see Rosenbrock, 1970) by adapting the regular system to incorporate a term D (%) u(t)
on the right hand side of (5.1.2). The D (£) term gives rise to the polynomial part of
the transfer function matrix. It was usually assumed that the system had also existed
for t < 0. This implies that the initial state of the system, z{0—), satisfies the equations
(5.1.1) so that the system can not display an impulsive response and its behaviour mirrors
that of a regular system. This approach proved satisfactory under these assumptions.
When it became apparent that the presence of impulsive motions was inevitable and
even desirable in some systems, e.g. component failure at £ = 0 or in switching, it was
found that the existing approach of adapting the regular case was inadequate. This was
mainly due to the fact that the infinite frequency behaviour of the system was inadequately
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displayed and that the transformation theory associated with the regular case only pre-
served the infinite frequency behaviour of D(s). It became apparent that a more complete
theory was needed to further encompass the generalised case. Naturally the development of
such theory has been closely associated with the regular theory with the specific properties
of the generalised case taken into account.

In this chapter the concepts of controllability in generalised state space systems are
considered. These concepts emanate from the concepts of controllability in regular state
space systems which are described in section 3. Associated with these notions of control-
lability are a set of algebraic conditions which are derived and described by Rosenbrock
[1970]). The extension of the concepts of controllability to genera.liséd state space syétems
has been developed in both the frequency and time domain and a discussion of this de-
velopment is presented in section 4. Two main definitions of controllability have emerged.
In the frequency domain the difference between the two definitions is reflected in the role
of what are termed non-dynamic variables. A new definition is presented which subse-
quently illustrates, in a novel manner, the important role of the non-dynamic variables in
the time-domain.

In section 5 analogous algebraic conditions to those associated with controllability in
regular state space systems are preéented for the two main concepts of controllability in
generalised state space systems. Certain of these conditions have been previously estab-
lished (see Lewis, 1986) but others have not. A polynomial system approach is adopted
to provide a unified treatment and also simpler proofs to the existing results. New results
are presented which together with the existing results provide a complete analogy to the
conditions presented by Rosenbrock [1970] for the regular case. In section 6 the roles
of the non-dynamic and dynamic variables in generalised state space systems are further
discussed.

Before considering the notions of controllability a description of a canonical form
known as the Kronecker form associated with the generalised state space system is first

presented in section 2. This form will be required for subsequent chapters as well as this

present one.




§2. The Kronecker form.
The polynomial system matrix, P(s), associated with the system (5.1.1), (5.1.2) is
given by

P(s) =

(5.2.1)

sE—A | B
-c | o
where it is assumed that | sE — A |# 0.
The matrix sE — A is therefore a regular pencil and thus can be transformed by

means of pre and post multiplication by constant non-singular matrices, M and N, into

the following form

(5.2.2)

SIm - A]_ 0
M[sE — AN =

0 s —1I,,

where n; = deg | sE— A |, ng = n —mn; and J is nilpotent. In addition J may be chosen
to be in Jordan canonical form with say p Jordan blocks each of order ¢; and without loss
of generality ordered

Q29222 Gp—t > Gp—t+l = Qp-t+2=...=¢gp = 1. (5.2.3)

The nilpotency index of J is therefore equal to ¢;. This canonical form was first described
by Wierestrass [1867] but is a special case of the canonical form derived by Kronecker
[1890] for more general matrix pencils {see Gantmacher, 1959, for full description]. For
this reason the canonical form (5.2.2) with J in Jordan form (5.2.3) will be referred to as
the Kronecker form of the matrix pencil sE — A despite the fact that A; might not be in
the strict form required by Kronecker [1890).

Adapting the transformation (5.2.2) to the system matrix P(s) gives rise to the fol-

lowing,.
M| o sE—A | B N |o by =41 0 it
0o | I ¢ | o 0 | 1 |~ 0 s/=In | B
~Ch —-Cy | 0
(5.2.4)

The transformation represented by (5.2.4) is a restricted system equivalence transformation
(Rosenbrock, 1974) and thus preserves the fundamental characteristics of the system at all
frequencies s. The system (5.1.1), (5.1.2) is then said to be in Kronecker form when its

system matrix is represented as

SI,H - Al 0 Bl
0 sJ—1,, B, (5.2.5)
-y —Cs | 0




where J is in Jordan canonical form (5.2.3). Similarly the pencil [3E — A B]is said to
be in Kronecker form when sE — A is given by (5.2.2) and J is again in Jordan normal
form (5.2.3). Further, with reference to the system described in Kronecker form, let

T

{, 1=1,2,...,n, represent the rows of B and let the term last position rows of B refer

to the rows of B which correspond to the last position rows of the Jordan blocks of J, i.e.
rows ny1 + 41,71 +¢1 +¢2,...,n1+ @ + ...+ gp.
The transfer function matrix, G(s), associated with {5.2.1) can now be written as

G(s) = Ci[sIn, — A1 By + Ci[sJ — I,,] ' B, (5.2.6)

where Cy [s[,, — A1]7} B is strictly proper and C3[sJ — I,)7! B, is polynomial, Similarly

the defining equations for the system can be partitioned as

i:l(t) = A1:B1(t) + Blu(t) (5.2.7)
J:I',‘z(t) = wg(t) + Bgu(t) (5.2.8)
y(t) = C;[:C](t) + Cgfl‘z(t). (5.2.9)

The state variables z1(%) are governed by regular state space equations and can be regarded
as determining the finite frequency behaviour of the system. The state variables z2(t) con-
tribute the polynomiai part of the transfer function matrix and therefore can be regarded
as determining the infinite frequency behaviour of the system. Cobb [1981] describes the
respective subsystems as slow and fast to reflect the enforced motion associated with each
subsystem, the first set of equations producing exponential responses whilst the second set -
producing impulsive responses. This can be seen from the solution of (5.2.7) and (5.2.8)

which are readily given as

t
:Cl(t) = eAlt.'I:I(O—) -I-/ CAl(t—r)Blu(T) dr (5210)
1]
91—1 . . 91—1 . .
za(t) =~ Y 60D Jizy(0-) = ) JBul(2). (5.2.11)
=1 =0
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§3. Regular state space systems.

The regular state space system associated with (5.1.1), (5.1.2) when FE is non-singular

can equivalently be written as

#(t) = Az(t) + Bu(t) (5.3.1)
y(t) = Cz(t) (5.3.2)

where z(t) is an n-vector of internal states, u(t) an £-vector of control inputs, y(t) is an
m-vector of outputs and A, B, C are constant real matrices of the appropriate dimensions.

" The fundamental notion of controllability of a system considers how the internal states
of a system can be affected by applying a suitable control. It then follows that the control-
lability characteristics of a regular state space system as described above are completely
determined by considering (5.3.1). The definitions of controllability most commonly asso-

ciated with such systems are now presented.

(5.3.3) Definition. The system given by (5.3.1) is said to be CONTROLLABLE TO
THE. ORIGIN if, given any state z{0) = £, there exists a time 7 > 0 and control u(t)
defined on [0, 7] such that z(7) = 0.

(5.3.4) Definition The system given by (5.3.1) is said to be CONTROLLABLE FROM
THE ORIGIN (OR REACHABLE) if, given any state £, there exists a time 7 > 0, and a
control u(t) defined on [0, 7] such that if £(0) = 0 then z(1) = ¢.

(5.3.5) Definition. The system given by (5.3.1) is said to be CONTROLLABLE if, given
any two states {1,{2, there exists a 7 > 0 and a control u(t) defined on [0, 7] such that
z(0) = & and z(7) = 2. '

The particular attraction of the above definitions lies in the algebraic properties as-
sociated with a system satisfying such definitions. As a result of the time invariance of
the matrix coefficients in (5.3.1) the three notions of controllability defined are equiva-
lent. It is therefore generally accepted that a system satisfying such definitions be called
a controllable system.

The algebraic properties associated with a controllable system were investigated by
Rosenbrock [1970] who showed that the system represented by (5.3.1) is controllable if
and only if the matrices sl — A, B are relatively (left) prime. Thus, the advantage of
adopting such a definition is obvious because of the direct association with the absence of
decoupling zeros and the connection with a minimal realisation of a system. A summary of

the characteristics associated with a controllable system is given by the following theorem.
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(5.3.6) Theorem (Rosenbrock, 1970), For a system described by (5.3.1) the following
conditions are equivalent
(a) the system is controllable,
(b) the polynomial matrices sI, — A, B are relatively (left) prime,
(c) the n x ¢ matrix
(B,AB,...,A71B]

has rank n, where ¢ is any integer not less than the degree of the minimal polynomial
of A,
(d) the gn x (¢ — 1)n + ¢f] matrix

[ In 1
A T, 0 o
R= A ; - ,
0 B
0 " 0
-A B

with ¢ as in (c¢), has rank ¢n,

(e) given any polynomial n-vector &(s) with elements of degree ¢ — 1 or less and g as in
(c), there exist a polynomial n-vector Z(s) with elements of degree ¢ — 2 or less and a
polynomial £-vector §(s) with elements of degree ¢ — 1 or less such that

(sIn — A)Z(s) + Bi(s) = &(s),

(f) there exists an n X n polynomial matrix X(s) with elements of degree ¢ — 2 or less
with ¢ as in (¢) and an £ x £ polynomial matrix ¥ (s) with elements of degree ¢ — 1 or
less, such that

(sI, — A)X(s) + BY(s) = I,

(g) let A be in Jordan normal form and let A1, Az,..., A, be the distinct eigenvalues of 4
with A; having multiplicity ¢:, i = 1,2,...,p. Let b7, i = 1,2,...,n, be the rows of

B. Then, the rows T, 6T, ..., .bg:+92+-°--+9» are linearly independent,

(h) the matrix pencil [sI, — A B] does not possess any finite zeros.

The notion of controllability can alternatively be viewed in terms of the natural modes
of a system which in the case of state space systems are exponential modes. A state space
system of the form (5.3.1), (5.3.2) would then be controllable if all the exponential modes
could be individually excited from zero initial conditions by means of an input that contains
no component at the modal frequency. Natural modes that cannot be excited in this way
are termed uncontrollable modes and are associated with the zeros of the matrix pencil
[sI.—A B]. Rosenbrock [1970] termed such zeros input-decoupling zeros and the absence
of these zeros indicate that the system is controllable. The connection with theorem (5.3.6)
is therefore immediate.

79




§4. Generalised state space systems.

The notions of controllability for generalised state space systems have been derived
as natural extensions of the notions of controllability described in the previous section for
regular state spéce systems. In particular the frequency domain notion of controllability
has ben concerned with extending the concept of input decoupling zeros to include infinite
zeros as well as finite zeros, whilst the time domain approach has been concerned with
incorporating the impulsive motion associated with such systems. Each approach has
revealed important characteristics of generalised state space systems and together have
yielded notions of controllability which best reflect the properties of such systems. In the
light of the results from regular state space systems it is not surprising that the notions
of controllability defined in the frequency domain are related to the notions defined in the
time domain,

Rosenbrock [1974] was the first to seriously consider the properties of generalised state
space systems using the frequency domain approach. His definition of infinite input decou-
pling zeros was based on Kronecker’s work on infinite elementary divisors. Despite yielding
some neat results the definition was regarded by Rosenbrock [1974] as being unsatisfactory.
Verghese et al. [1981] pointed out that the deficiency was due to the fact that Rosenbrock
[1974] had not taken into sufficient account the dynamical properties of the system. The
definition of infinite input decoupling zeros adopted by Verghese et al. [1981] overcame the
deficiencies associated with the corresponding definition of Rosenbrock [1974]. The supe-
riority of the new definition subsequently lead to the natural reconciliation of McMillan
degree theory with the generalised case, an extension Rosenbrock [ibid.] failed to achieve
under his definition. |

A time domain notion of controllability was given by Yip and Sincovec [1981] in
terms of the reachable states that could be attained from a particular set of initial states.
These initial states were constrained to satisfy the defining equations (5.1.1) of the system
thus ruling out any impulsive motion. This definition of controllability therefore failed to
incorporate a characteristic of generalised state space systems which distinguishes it from
the regular case. The definition is seen to be equivalent to the absence of finite decoupling
zeros and infinite decoupling zeros as defined by Rosenbrock [1974].

Cobb [1984] accounted for the possible impulsive motion and basing his ideas on the
frequency domain work by Verghese et al. [1981] produced an explicit mathematically
precise time domain formulation of controllability which proves to be equivalent to the
absence of infinite input decoupling zeros as defined by Verghese et al. [ibid.]. This defini-
tion is given in terms of the system’s ability to generate a maximal class of impulses using
non-impulsive controls and is not directly related to the ability of the system to reach
~ certain states. Lewis and Ozcaldiran [1984] later introduced definitions of controllability
and reachability in terms of the states of the system which proved to be equivalent to the
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absence of infinite input decoupling zeros as defined by Rosenbrock [1974] and by Verghese
et al. [1981] respectively.
A more detailed description of this development is now presented.

(i) The frequency domain.

Rosenbrock [1974] was the first to formulate a new theory for generalised state space
systems. This was based on extending the theory associated with the regular case to
‘cover the infinite frequency behaviour associated with the generalised system. To this end
Rosenbrock [ibid.] introduced the transformation of restricted system equivalence which
preserves the infinite frequency behaviour of the system (as well as the finite frequency
behaviour) and defined the decoupling zeros at infinity. In partlcular the infinite input
- decoupling zeros are defined as follows.

(5.4.1) Deflnition. The INFINITE INPUT DECOUPLING ZEROS of (5.1.1), (5.1.2)
are given by the finite zeros at s =0 of [E —~3s4 B].

Note that when the system is represented in Kronecker form (5.2.5) the infinite input
decoupling zeros are given by the finite zeros at s = 0 of [J — sI,, By]. Using these
definitions Rosenbrock [ibid.] was able to extend previous results for the regular case to
the generalised case; notably results concerning the Kalman decomposition and equivalence
theorems. '

Verghese et al. [1981] identified the weaknesses in Rosenbrock’s definition and pro-
posed new definitions based on the dynamic properties of the system which provided a
greater extension of results from the regular case to the generalised system. Verghese et
al. [ibid.] distinguished between what are termed dynamic and non-dynamic variables.
The non-dynamic variables are referred to as the generalised state variables associated
with the trivial Jordan blocks of J in (5.2.8) and are regarded as non-dynamic in the
sense that the initial conditions on these variables have no affect on the future response
of the system and the behaviour of these variables are instantly determined by the input
alone. The only significant contribution of these non-dynamic variables is apparently their
contribution to a constant feedthrough term in the associated transfer function matrix.
The approach adopted by Rosenbrock [1974] makes no distinction between the dynamic
and non—dimamic variables and so is thus seen to be too restrictive. This is illustrated by
considering a trivial augmentation of (5.1.1) with equations of the form

z;(t)=0 j=n+l,n+2,...,n
resulting in a system matrix given by

sE—A 0 B
0 Tt o |. (5.4.2)
-C 0 | 0
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The new system matrix is not restricted system equivalent to the original matrix despite the
fact that it possesses the same dynamical properties and is considered under the definition
given by Rosenbrock [1974] to have, in particular, n' — n more infinite input decoupling
zeros than the original system.

By taking these dynamical observations into consideration Verghese et al. [1981] mod-
ified the theory presented by Rosenbrock [1974]. A new equivalence relationship, strong
equivalence, was defined which, in general terms, permits transformations in addition to
those of restricted system equivalence which eliminate or add non-dynamic variables to
the system (provided of course that these operations do not modify the constant term in

the system transfer function). A closed form expression of strong equivalence directly in
" terms of the systemn matrices involved was subsequently presented by Pugh et al. [1987).
The transformation implies that the systems (5.4.3), (5.4.4) are equivalent and overcomes
one of the inherent deficiencies of the restricted system equivalence definition.

sE— A 0 B 1
0 I B! (5.4.3)
-¢ ¢ |0
sE-A| B
(5.4.4
=ara 649

The notion of controllability for generalised state space was approached by Verghese et al.
[1981] by considering the interpretation of controllability in terms of the excitation of the
natural modes of the system. In contrast to the regular state space system the generalised
state space system possesses impulsive natural modes, and is defined to be controllable
at infinity by Verghese et al. [tbid.] if all these impulsive modes can be individually ex-
cited from zero initial conditions by means of a non-impulsive input. The uncontrollable
impulsive modes are associated with the infinite zeros as defined by (3.2.5) of the matrix
pencil '
[sE—A B]

(or of [sJ —I B, if the system is represented in Kronecker form) and are termed infinite
input decoupling zeros.

This definition of infinite input decoupling zeros differs from the definition of infinite
input decoupling zeros presented by Rosenbrock [1974] in the sense that it ignores the
non-dynamic variables of the system. Thus, the system represented by (5.4.2) would have
the same number of infinite input decoupling zeros as the original system (5.1.1).

The term strongly controllable system is used by Verghese et al. [1981] to describe
a system which is both controllable at infinity and controllable in the finite sense, i.e. a
_system which does not possess either finite input decoupling or infinite input decoupling
zeros as defined by Verghese et ol. [1bid.].
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(i1) Time Domain.

Lewis and Ozcaldiran [1984] adopted for generalised state space systems the definitions
of controllability and reachability associated with the regular case.

(5.4.5) Definition. The system (5.1.1} is said to be REACHABLE if for all £ € ®"

there exists a control such that the solution z(2) is continuously differentiable and satisfies
z{0-) =0, z(7) = £ for some 7 > 0.

(5.4.6) Definition. The system (5.1.1) is said to be CONTROLLABLE if for all { € R"
there exists a control u(t) such that the solution z(t) is continuously differentiable and
satisfies 2(0-) = £, z(7) = 0 for some 7 > 0.

The above definitions lead to appropriate physical interpretation of the absence of
input decoupling zeros. In particular, reachability as defined by (5.4.5) is equivalent to the
absence of both finite input decoupling zeros and infinite input decoupling zeros as defined
by Rosenbrock [1974], whilst controllability as defined by (5.4.6) is equivalent to the ab-
sence of both finite input decoupling zeros and infinite input decoupling zeros as defined
by Verghese et al. [1981]. The terms REACHABILITY AT INFINITY and CONTROL-
LABILITY AT INFINITY refer to the reachability and controllability (as defined above)
respectively for the subsystem (5.2.8) when (5.1.1) is represented in Kronecker form. It
then follows that the system is reachable at infinity if it has no infinite input decoupling
zeros as defined bj' Rosenbrock [1974] and is controllable at infinity if it has no infinite
input decoupling zeros as defined by Verghese et al. [1981].

Other notions of reachability and controllability for systems in generalised state space
form are, in general, equivalent to the notions defined by (5.4.5) and (5.4.6). For instance
the definition of R-controllability introduced by Yip and Sincovec [1981] is equivalent to
the notion of reachability as defined by (5.4.5). In their discussion Yip and Sincovec [ibid.]
assumed that the initial conditions on the internal states satisfied the defining equations
(5.1.1), and called the set of such initial conditions the set of admissible conditions. The
notion of R-controllability is then associated with the ability of the system to transfer
from any admissible initial condition to any final state in a set of states (this set is in
fact equivalent to the set of admissible initial conditions). The requirement that the initial
conditions satisfy the defining equations imply that the solution to (5.1.1) does not contain
any impulses. Thus, a distinguishing characteristic of generalised state space systems,
namely that the system can give rise to impulsive motion, has in a sense been ignored in
the definition of R-controllability. '

Cobb [1984], on the other hand, takes into account the impulsive behaviour of the
system. His definition is not based on the ability of the system to reach certain states

but on the ability of the system to generate a maximal class of impulses using piecewise
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smooth non-impulsive controls. Systems which satisfy this condition are said to be impulse
~controllable. The definition of impulse controllability emanates from the idea of modal
controllability introduced by Verghese et al. [1981] in the frequency domain. Cobb [1984]
gives the time domain definition of these ideas so that impulse controllability is seen to be
equivalent to the absence of infinite input decoupling zeros as defined by Verghese et al.
{1981] and hence to the notion of controllability at infinity.

The notions of controllability and reachability discussed have been seen to fall into two
categories which have a direct relationship with the absence of infinite input decoupling
zeros as defined by Rosenbrock [1974] and by Verghese et al. [1981]. The previous discus-
sion of the frequency domain approach highlighted the differences betwet_eh the dynamic
and non-dynamic variables. This distinction is not reflected in the respective time domain
definitions of controllability and reachability associated with the absence of infinite input
decoupling zeros. To illustrate the difference between the dynamic and non-dynamic vari-
ables in the time domain the following alternative definition of reachability is introduced.
This definition is given in terms of the subsystem (5.2.8) when the system is represented
in Kronecker form.

(5.4.7) Definition. The system represented in Kronecker form (5.2.5), is said to be SYS-
TEM STATE REACHABLE AT INFINITY if given any £ € ®"*~! there exists a suitable
control such that z,(0~) = 0, z3(7) = (£7,497)7 for some T > 0 and where n € R is
completely arbitrary. '

The definition of system state reachability at infinity will be seen in the following
section to be equivalent to the definition of controllability at infinity. Comparison of
this definition of system state reachability at infinity with the definition of reachability
at infinity illustrates clearly the role of the dynamic and non-dynamic variables. This is
further discussed in section 6.
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§5. Algebraic results associated with the controllability notions in
generalised state space systems.

In this section a generalisation of the algebraic conditions contained in theorem (5.3.6)
for the regular case is presented for the notions of reachability at infinity and system state
reachability at infinity. Certain of these conditions have been previously obtained and are
summarised by Lewis [1986]. A polynomial system approach is adopted to provide new
proofs to these existing results. This is followed, for both notions, by new results which
together with the existing results provide a complete analogy to the algebraic results
associated with the regular case. '

In the light of the discussion in section 2 it will be sufficient to consider the system
Jz2(t) = 22(t) + Bau(t) (5.5.1)

with n, X ny matrix J in'Jordan normal form (5.2.3). First consider the notion of reacha-
bility at infinity. '

(8.5.2) Theorem (Lew1s, 1986). For the system represented by (5.5.1) the following
. conditions are equivalent -

(2) the system is reachable at infinity,

(b) rank [Ba, JBa,...,J""1By] = ng,

(¢) vT[sJ — I]"1B; = 0 for constant v implies v = 0,

(d) the last position rows of B; are all linearly independent,

(e) the system has no infinite input decouplmg zeros as defined by Rosenbrock [1974],
(f) rank [J Bg]= ng

Proof. The proof of this theorem will follow the indicated scheme which best 1llustrates
the relationships between the various conditions.

@) ()

Y 7\
® = O
¥ ®

(©)
(a) < (b). The solution to equations (5.5.1} is given by
91""1 . o 7 -1 N N
zp(t) =— Y 64V I2(0-) =~ Y T Buld(2).
i=1 i=0 :
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Thus, the system will be reachable at infinity if and only if given a € ™2 and 7 > 0 there

exists a suitable control such that

q—1
a=- Y JBul(r)
=0 -
ie. ‘

~ ‘U.'(T) -

‘ uX(1)

a=—[BQ,JBz,...,Jq1_1.BQ] .

| u(e=1)(7) ]

The system will therefore be reachable at infinity if and only if

ra.nk[Bz, JBg, ey Jg1—1B2] = Ng

as required.

(b) < (c).
I‘ank[Bg,JBz,. . .,Jql—lBgl =12

> vIBy=vTJBy=...=vTJ8 1B, =0 implies v =0
<f:=> vIBy + svTJBy + ... +0Tsn " Jn-1lp, = implies v = 0
= vT[sJ — I]"'B; = 0 implies v = 0, as required.

(b) <= (d). Consider in detail the structure of lJ.Bz, where n; = Ej‘=1 g, t=1,2,...,p,
and b7, i =1,2,...,n3, are the rows of B.

- - -. T
0 1 8 %
1 . 'y
T U
0 O by, 9
\\ ’ : I
“ 1 I
_ R 7 T
JB, = 0 1 | opus v = | by,
1 . bT
Np.
np.:
0 - X 0
Np-t+1
T
X 0] ba, L0 |
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Similarly

JiB, =

and for J*B;, i = 3,4,...,q1 — 1, so that

[B,. JBy..... J7'B,)=

i+l

- -— — Oy

T
by

p-t-1+l

- bg" pu
T
b”h.
0
0
|
|
!
T
R,
=
bﬂp -t
0
0
0
| 0 |
T T T T
by bs baj-1 by,
. T
T bm
b m
T
27 0
0
T T
bny+2 bny +3
T
b,, 5
T
b,, 5 0
0 0
1 I
T ! T :
by prr 42 by ptl +3
: Npt
5 0
0 0 0
0 0
0 0 N " 0
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with the number of non-zero rows of J91~! B, being equal to the number of Jordan blocks
of J of size g;. Reorder the rows of (5.5.3) such that the first ¢; say rows are the rows of .
(5.5.3) which have non-zero entries in block J n1=1B, the next t; + ¢, rows are the rows
of (5.5.3) which have non-zero entries in block J7:=2B; and so on down to the last p rows
which are the rows of (5.5.3) with non-zero entries in block B; only, i.e.

- T T T 7]
bI R bm-l an
B T
ntl-I bn
T L
bm 0
g,
I
bT
n£1+1
B .
o Myt - . (5.5.4)
- < 0
-~ -~
-~ -~ :
P .
e 0 0
T 0 .
b’“ .
T
b,72
T
bﬂp.r
T
qu-t+]
_bflp 0. . « .« . .0 0 |

Now assume (b) holds then, since [B;,JBs,...,J%"*By] is an ny x £q; matrix of
rank ng, it follows that all its rows must be linearly independent. In particular the last p
rows of (5.5.4) must be linearly independent, which gives (d). Conversely, assume (d) holds
then, since the vectors bfl , bg;, vy b?;? are linearly independent, it follows from (5.5.4) that
[Bz,JB2,...,J% "1 By} has rank nq , to give (b) as required.
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(d) = (e). The infinite input decouphng zeros of the system as defined by Rosenbrock
[1974] are given by the zeros at s = 0 of [J — sI Bs), where :

[J —sl Bg]s=0 = . " : o (5-5-5)

i
and 7; = qu', :=1,2,...,p.

Now since the last position rows of B; corresponding to all the Jordan blocks of J are
assumed to be linearly independent, i.e. rows bgl,bm, b%;, it follows by inspection of
(5.5.5) that [J—sI Bjl,=¢ hasfull rank. Thus, the system has no infinite input decoupling

zeros as defined by Rosenbrock [1974], as required.

(e) = (f). Since the system has no infinite input decoupling zeros as defined by Rosenbrock
[tbid.] it follows that [J — sI Bs] has full rank when s = 0, i.e. rank [J B3] = no, as

required.

(f) = (d). Consider the matrix [J Bj] as represented by (5.5.5). Since [J B;] has rank
nag all the rows of (5.5.5) are linearly independent. In particular rows ¢1,¢1 + g2,-+.,¢1 +
g2 + ...+ g, are linearly independent which are the last position rows of B, corresponding
to all the Jordan blocks of J, as required to complete the proof. O

The adoption of a polynomial matrix approach is therefore seen to provide a unified
treatment of the algebraic conditions summarised by Lewis [1986]). New algebraic con-
ditions associated with a system that is reachable at infinity are now presented. These

conditions are analogous to conditions (d) and (e) of theorem (5.3.6).
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(5.5.6) Theorem. If ¢; is the index of nilpotency of the matrix J, then the condition
that _
rank|[By, J By, ..., J971B;] = ny

where g > ¢ is equivalent to
(a) the qna X [(¢ — 1)nz + ¢f] matrix R has rank gn, where

J. . By
d 0
R < Lo : 6.5.7)
0 J 0
i 1 B, ]

(b) given any polynomial ny-vector d(s) with elements of degree ¢ — 1 or less there exists
a polynomial ny-vector z(s) with elements of degree ¢ — 2 or less and a polynomial

{-vector y(s) with elements of degree ¢ — 1 or less such that

[sJ — Iz(8) + Bay(s) = d(s). (5.5.8)

[Note that for the case when ¢; = 1 and g is taken to be such that ¢ = ¢ then the
degree of z(s) in (b) is equal to 0.]

Proof. (a) In the matrix R, add J times the first (block) column to the second, then J
times the second (block) column to the third and so on to give

-J 72 Jq'I .Bz
1,

(5.5.9)

L 2

Next, add J times the second row of (5.5.9) to the first row, then J? times the third

row of (559) to the first row and so on to give

q-1
o. . .0 J¥B,. . JB, B,

1o . By
0 . : (5.5.10)
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The above operations preserve the rank of R so that from (5.5.10) R will have rank gng if
and only if [J9~1By,...,J Bz, B;] has rank n,, as required.
(b) Let |

z(s)=zo + 215 +...+ 2428772

y(8)=vo+v1s+. ..+yq—1sq'1

d(s) = do + d]_S +... _[_dq_lsq-—l
and substitute into (5.5.8) to give -

(s —D(zo+z15+ ...+ 7g-2572) + Ba(yo + 18 + ... + yg-18777)
=dp+dys+...+dg1s""

Multiplying out the products, and equating powers of s results in the following set of

equations.
Jxq2 | _ + B Yg1 = dg.q
-Xq_z + qu_3 + BZ.)’ g2 = dq-2
xg+ By, . g

Rewriting the above set of equations in matrix form

2
dy1
I
R{ = : | (5.5.11)
Yo )
do
'-yq—l-

where R is of the form (5.5.7). The equations {5.5.11) will have a solution for all
d;eER, +1=0,1,...,q -1, if and only if R has rank gn,, as required. o

In the regular state space case the analogous conditions to those in theorem (5.5.6)
lead to a third necessary and sufficient condition (Rosenbrock, 1968). However, in the
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generalised case the corresponding condition is only sufficient. This condition is presented

below followed by an example to illustrate that the condition is not necessary.

(5.5.12) Theorem. If rank [B2,JBs,...,J9" 1 By] = ny where ¢ > g1 then there exists
an ny X ng polynomial matrix X(s) with elements of degree ¢ — 2 or less and an £ x n2
polynomial matrix Y'(s) with elements of degree ¢ — 1 or less such that

(sJ —I)X(s) + B2Y () = In,. (5.5.13)

Proof. If e; is the i** column of I,,, put d(s) = e; in (5.5.8). Let the corresponding
solution be z((s) and yP(s). If X(s),Y(s) are the matrices having z{9(s) and y(s) as
their respective columns then X(s), Y(s) satisfy (5.5.13) as required. ]

(5.5.14) Example. Take

then

which has rank 1.
Let

xw=| "] ¥e=0 4

8) = ) 5) = s

| 0 -1

where both X(s), Y(s) satisfy the degree condition of theorem (5.5.12). Then,

1
0

-1 s ] 0 0
[sJ = I|X(3) + B2Y(s) = [ 0 [ + 1 3]

-1} {0 -1

1 0]
"o 1]

Thus, there exist suitable X(s),Y(s) satlsfymg (5.5.13) despite rank [Ba,JBs,..

J971B,] being less then n2 in this case.

The results of theorems (5.5.6) and (5.5.12) together with theorem (5.5.2) provide
an analogy of the algebraic conditions of theorem (5.3. 6) for the notion of reachability at
infinity in generalised state space systems. .

A similar generalisation is now undertaken for the notion of system state reachability

at infinity. Lewis [1986] summarised the existing algebraic conditions associated with
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systems that are controllable at infinity. These algebraic conditions are now shown to be

equivalent to the notion of system state reachability at infinity.

(5.5.15) Theorem. For the system represented by (5.5.1) the following conditions are

equivalent ‘
(a) the system is system state reachable at infinity,

b) the system has no input decoupling zeros at inﬁnity as defined by Verghese et al.
g
[1981], '

(c) the last position rows of Bz corresponding to the non-trivial Jordan blocks of J are
linearly independent,

(d) rank [JB2,J?Ba,...,J171B;] = ny — p,

(¢) dim {span v € R"2; vTJ{sJ —I}"1B; =0} =ny —p.

Proof. The proof of this theorem will follow the indicated scheme.

(a)

© & @ &5 6

va

(b)

(a) <> (c). The states of the system at time 7 with zero initial conditions are given by
22(7) = —[Bau(r) + T BauV(r) + ... + JO ! Bpule=D(7)]

or, in matrix form,

G

u(l)(‘r)
$2(T) = —[Bz, JBQ, ey Jq‘—lel

| ula—1)(7) ]

The detailed structure of Bz, J Bz, ..., J9~1B;] was seen in (5.5.3) to be given by
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by b, ba,-1 by,
. T
' ba,
T .
by,
T
T T
by +1 by, +2
; .
by,
T
by, 0
' : - (5.5.16)
1
} 1
T . T .
"p-l’-l +1 Tl'p-t-] +2
T
bﬂp-t
-
Myt 0
np-H-I 0 0
T
_bﬂp 0 - « -« « « « « o 0]

where 7];':2;‘:1 ED i=172:"'1p' Ny
The system will then be system state reachable at infinity if and only if there exists a
suitable control input such that for all « € R™2~*

- U(‘T) -
um(‘r)

Lu(n=1)(7) ]
where

04




- T T T ]
b by by,1 by
T
, by,
T *
b’?l
T
by, 0
T T
ba,+1 by 1 +2
3 T
F= bﬂz
T
bn, 0
1 1
1 I
1 1
T . bT '
Nps1+] Mp-t.1 +2
T
b’?p-l
T
b
Tp-t 0 i

This will be the case if and only if rank F' = ny — t. Reordering the rows of F' to form a
matrix F' where the first ¢; say rows of F’ are the rows of F' which have a non-zero entry
in any of the last £ positions, the next t; +12 rows of F' are the rows of F' which have zero
entries in the last £ positions but a non-zero entry in any of the preceding £ positions, and
so on down to the last p — ¢ rows which correspond to the rows of F' which only have a

non-zero entry in one of the first £ positions, i.e.
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[ b -1 by,
T T
bﬂ,I-I bn‘]
T
by 0
T
b"tl
T

F'.'—‘ ' bnt1+1
T
b
’7:I+t2
. 0
, .
-
// 0

T -

by, o - - - . +« .0 0

T

_bnp_, 0 0 0 i

Now if rank F' = ny —t then since F' is an (np — t) X £g; matrix it follows that all its
rows must be linearly independent. In particula.r the last p — ¢ rows of F’ must be linearly
independent which implies that the last position rows of B; corresponding to the non-
trivial Jordan blocks of J are linearly independent. If on the other hand the last position
rows of By corresponding to the non-trivial Jordan blocks of J are linearly independent
then, from the structure of F”, it follows that rank F' = no —¢. Since F” has the same rank
as I it is therefore concluded that the system will be system state reachable at infinity if
and only if the last position rows of B corresponding to the non-trivial Jordan blocks of

J are linearly independent, as required.

(b) <= (c¢). The infinite input decoupling zeros of a system are defined as the infinite zeros
of the pencil [sJ —I B,] which in turn are given by the zerosat w =0 of [ J — I B,]
[see definition (3.2.5)]. Now
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which can be factorised as

[ﬁJ —I Bp]= D' (w)N(w)




Thel factorisation is a minimal one and so, by lemma (3.2.6), the finite zero structure of

[LJ—~I B,]is given by the finite zero structure of N(w). Now, since rank N{w) = na, it

follows that N(w) does not possess a zero at w = 0 if and only if rank N(0) = ny, where

N (0)=

-1 bT

-
L I =R

o—-

0

T
bn pt
Np-1+1

.-1 bT
ﬂp-_

(5.5.17)

Addingrow g1+ q2+...+gj—1ltorow 1 + g2 +... + ¢ for j = 1,2,...,p—1t in (5.5.17)

results in

]
o .
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Therefore, rank N(0) = n3 if and only if the rows b7 ,bT ,..., bg;_ are linearly indepen-

SR PR
dent, i.e. the last position rows of B corresponding to the non-trivial Jordan blocks of J

t
are linearly independent , as required.

(¢) <= (d). From (5.5.16)
[JBa,J?B,,...,J1 1B, =

T T T T ]
: T
: ¥,
g
By, 0
0 0
T T
b +2 b, +3
T
T Py
by, 0
0 0 - | (5.5.18)
) 1
t 1

' T
brpervz  Bnpages

. b’{;H
bT
N pt 0
0 0
0 0 - 0
0 0 - . . . . . . . 0-

First assume (c) holds. Then, from the structure of (5.5.18) it follows that the rank of
[JB2,J%B;,...,J% "1 B;] is equal to n; less the number of zero rows. On inspection the

number of zero rows equals the number of Jordan blocks in J, i.e. p. Hence
rank [JBz, Jsz, ey Jql_lBQ] =Tg —P.

Conversely assume (d) holds. Now since {JBa, J2Bs,...,J% 1By} is an ng x £(qy — 1)
matrix of rank ny — p it must posses ny — p linearly independent rows. Again it is seen
on inspection of (5.5.18) that [JB3,J?Ba,...,J% ! By] has p zero rows which implies that
the remaining n2 — p rows must be linearly independent. In particular rows g1 — 1,41 +
@2—1,...,q1+g2+ ...+ gp—t — 1 are linearly independent to give (c). Hence I(c), (d) are
equivalent as required.
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(d) <= (e).
rank [JBy, J?By, ..., J0 1By =ny ~p
<= dim {span v € 8"2;vT[J By, J?By,...,J" 1Bl =0} =ny —p
4= dim {span v € R"%;vTJB, = vT /2By = ... =vTJ 1B, =0} =ny —p
< dim {span v € ®"2; L
0=oT{J[[+sJ+...+su2Jn"2 pgn-ljn-1p}l =n, —p
<= dim {span v € ®"*;0 = vTJ[sJ ~ I|"!B;} =ny ~p.

Hence (d), (e) are equivalent as required to complete the proof. O

As a result of theorem (5.5.15) it clearly follows that the notion of system state
reachability at infinity is equivalent to the notion of controllability at infinity.
New algebraic conditions associated with a system that is system state reachable at

infinity are now presented. These are analogous to conditions (d) and (e) of theorem

(5.3.6).

(5.5.19) Theorem. Let ¢, the index of nilpotency of the matrix J, be taken such that
g1 > 2 and let ¢ > q;. Then, the condition that

rank [JB;,J?Bs,...,J9 Byl =ny —p

is equivalent to :
(a) the (g — 1)ny x [(¢ ~ 2)ny + (¢ — 1)¢] matrix R having rank (g — 1)ny — p where

J. . JB,]
. .

.o . (5.5.20)
0 " J JB, 0
-1 JB,

(b) given any polynomial np-vector d(s) with elements of degree ¢ — 3 or less there exists
a polynomial n,-vector z(s) with elements of degree ¢ — 3 or less and a polynomial

£-vector y(s) with elements of degree q — 2 or less such that
[sJ = INz(s) + JByy(s) = d(s). (5.5.21)

[Note that when g1 = 2 then ¢ is taken such that ¢ > ¢; + 1 in (b).]
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Proof. (a) In the matrix R, add J times the first {block) column to the second, then J

times the second to the third and so on to give

A & JB,)

0 o : (5.5.22)

iy J‘Bé

Next, add J times the second (block) row of (5.5.22) to the first row, then J? times the
third row of (5.5.22) to the first row and so on to give

0. . ... .0 J¥p 1B JB]]

0 A | (5.5.23)
JB.

"1 JB,

The matrix (5.5.23) has the same rank as R which implies that R has rank (¢ —1)nz —p
if and only if rank [J971B,,..., J?B,, JB;] = nz — p, as required.
(b) Let |

z(s) =120+ 15+ ...+ 2g387°
y(s) =vo +y18s+... +yg_2s??
d(s) =do+dis+...+ dg._.asq-s

and substitute into (5.5.21) to give
(sJ —I)(zo +z18+ ...+ 2g—38"2) + JB(yo + 15 + ... + yg—257"2)
= do + dls + ‘e + dq_3sq"'3.

Multiplying out the products, and equating powers of s gives rise to the following set of

equations.
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J x4.3 + JB Yg-2 = 0
Fg3 + Txgq + JByygsy = dgs
'-xJ + JJ.’0+ JBZJ"] = dI
'xO + ‘ JBZ yo = do .
Rewriting the above set of equations in matrix form results in
23]
- 0 -
To dq-—3
R = 5.5.24
Yo : ( )
L dy ]
L yq—z -

where R is given by (5.5.20). _
The equations (5.5.24) will have a solution for any set d;, ¢ = 0,1,...,¢ — 3, if and

only if
¢ - 0 LR
rank R =rank ¢ R ) ;
\ L dg Jd
where
, - 0 -y -J J.Bz 0 ;
dy—3 -I. J. 0 . dg3 '
R . b = . " ) : i (5.5.25)
J
L 1L g ) 0 0 0
I | JB, dy |
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As in (a), a series of column operations will transform (5.5.25) into

v 2. .. %% 0...00B, 0]
-1 . dq__q
0 . (5.5.26)
0 : 0
A -1 JB, . dp |

Next, add J times the second row of (5.5.26) to the first, then J? times the third row of
(5.5.26) to the first and so on to give

0 .. 0 JTIB, . TRy UBy Tdpsa Rt ..+ 2]
1, o | dys
. - . . (5.5.27)
» * d.
1 JB, 0 |

It is seen from (5.5.27) that the augmented matrix (5.5.25) has the same rank as R for any
setdi, 1 =0,1,...,¢—3, if and only if rank [J972B,,...,J2B;, JB;] = ny —p, as required
to complete the proof. 0

A comparison of the necessary and sufficient conditions of the previous theorem with
the corresponding conditions associated with the notion of reachability at infinity reveals
that the major difference between the two sets of conditions is that the matrix B; is
premultiplied by J in the conditions presented in theorem (5.5.19). The effect of this is to
remove the influence of the last position rows of B, corresponding to the trivial blocks of
J, which reflects the role of the non-dynamic variables in the definitions of the two notions
of reachability. This aspect will be further discussed in section 6.

In an-analogous way to the case of reachability at infinity a sufficient condition can
be obtained as a direct consequence of condition (b) of theorem (5.5.19). This condition
is presented below and is followed by an example which demonstrates that it is not a

necessary condition.

(5.5.28) Theorem. If rank [JB,, J?Bs,...,J9" B3] = ny — p where ¢ > ¢, then there
exists an ns X n2 polynomial matrix X(s) with elements of degree ¢ — 3 or less and an
£ X ny polynomial matrix Y'(s) with elements of degree ¢ — 2 or less such that

[sJ = I|X(s) + JB.Y (s) = I,,. (5.5.29)
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Proof. If e; is the i*® column of I,,, put d(s) = €; in (5.5.21). Let the corresponding
solution be z()(s) and y(s). If X(s),Y(s) are the matrices having z("(s) and y()(s) as
their respective columns then X(s),Y(s) satisfy (5.5.29) as required. O

(5.5.30) Example. Take

0 1 0 07 0 0
0 0610 10
J = Bz —
0 0 01 0 1
0 0 0 Ol L0 0
then
100100
6010000
[JBy J®B; J*Bs} =
0 0 0 000
0 00 000
which has rank 2 (< 3 = nz — p in this case).
Let
r—1 —s 0 07
0 -1 —s 0 0 0 s2 0
X(s) = y o Y(s)=
0 0 -1 -—s 0 0 0 s2
L0 0 0 -1l

where both X(s) and Y(s) satisfy the degree conditions of theorem (5.5.28). Then,

[sJ —I1X(s)+ JBY(s) =

—1 s 0 07 =1 —-s 0 07 r1 07
0 -1 s 0 0 ~1 —s O 0 1 0 0 s2 0
+ =1y
0 0 -1 s 0 0 -1 -—s 0 0 0 0 0 o2
| 0 0 0 -1 | O 0 o -1l [0 0l

Thus there exist suitable X(s),Y(s) satisfying (5.5.29) despite rank [JB2,J?B,...,

J?~1B,] being less than n, — p in this case.

The result of theorems (5.5.19) and (5.5.28) together with (5.5.15) provide an analogy
of theorem (5.3.6) for the notion of system state reachability at infinity. Hence, the gener-
alisation of theorem (5.3.6) has been obtained in the cases of both reachability at infinity
and system state reachability at infinity (or equivalently controllability at infinity).
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§6. Further discussion of the notions of controllability in generalised state

space systems.

The two definitions of reachability, namely reachability at infinity and system state
reachability at -inﬁnity, demonstrate in a straightforward manner the role of the non-
dynamic variables in determining the controllability properties of a generalised state space
system. To illustrate the concepts behind these definitions of reachability consider the

following example.

(5.6.1) Example. Consider the system represented by

where
0 1 0 by
J=10 0 0}, By =1by b eR, 1=1,2,3.
0 00 ba

The solution to (5.6.2) with zero initial conditions is given by

le(t) bl . bz .
Zoo(t) | == 1 ba | w(t)— | 0 | u®(2).
z23(t) bs 0

It is clear that it is not possible to control all three states from the origin to any arbitrary

point at ¢ = 7 since the state 245(7) is directly related to z43(7). Thus, the system is not

reachable at infinity; a fact confirmed by the rank of [B, JBj]. It is though possible to -

control two of the three states to arbitrary positions at t = 7 if and only if b # 0. In
particular it is possible to control the states z;(t) and z3,(%), i.e. the system is system
state reachable at infinity. Again, this is confirmed by the fact that the last position row of
B, corresponding to the non-trivial block of J is linearly independent if and only if b3 # 0.

Now consider a system consisting only of dynamic variables. Let J and B; in (5.6.2)

be given by
0 10 b
J=10 0 1 By=|b
c 00 bs

where b; € R, 1 = 1,2, 3. The solution of (5.6.2) under zero initial conditions is now given

by

z21(t) by b2 bs
zoa() | == [ b2 | w(®)— |bs| uPt)~| 0| vP).
.'1.'23(t) b3 0 0
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In this case it is possible to find a suitable control that will transfer all three states to any
arbitrary position at { = 7 if and only if b3 # 0. Thus, the system is both reachable at
infinity and system state reachable at infinity if and only if b3 5 0.

In this case

rank [B;,JB;,J B} =3

and

rank [JBz,Jng] =2

if and only if b3 # 0 to confirm the previous observations.

It has been shown that if a generalised state space system possesses no infinite in-
put decoupling zeros as defined by Rosenbrock [1974] it also possesses no infinite input
decoupling zeros as defined by Verghese et al. [zbid.]. This implies that the set of infi-
nite input decoupling zeros as defined by Verghese et al. [1981] is a subset of the set of
infinite decoupling zeros as defined by Rosenbrock [1974]. Hence, the requirement that
the system has no infinite input decoupling zeros as defined by Rosenbrock [1bid.] is a
stronger requirement than the one requiring that the system has no infinite input decou-
pling zeros as defined by Verghese et el [1981]. This is clearly reflected in the notions
of reachability associated with the respective definitions of the infinite input decoupling
zeros. In particular it is seen that system state reachability at infinity is only concerned
with obtaining knowledge concerning the dynamic variables whilst reachability at infinity
requires in addition knowledge concerning the non-dynamic variables. This distinction is
not immediate from comparisons of other time domain definitions. For instance it follows
that the notion of controllability as defined by Lewis and Ozcaldiran [1984] imposes less
stringent conditions on the system than the notion of R-controllability as defined by Yip
and Sincovec [1981] but this is not immediate from first inspection. This confusion is due
to the fact that Lewis and Ozcaldiran [1984] allow for impulsive motion in the system while
Yip and Sincovec {1981] do not. The inclusion of impulsive motion is therefore seen in a
sense to increase the capability of the system to achieve the required objective.

In general the non-dynamic variables have no significant bearing on the system be-
haviour although in chapter 6 they are seen to provide additional characteristics to the
system. Since the notion of reachability is concerned with the dyramic properties of a
system it seems that requiring knowledge of the non-dynamic variables serves no purpose.
It is therefore concluded that the definition of system state reachability at infinity is a
more suitable definition than that of reachability at infinity.

This observation reinforces the discussion presented by Verghese et al. [1981] which
points out that the deficiency of the definition of infinite input decoupling zeros as given by
Rosenbrock [1974] lies in the way it treats both the dynamic and non-dynamic variables in
the same manner. The definition of infinite input decoupling zeros presented by Verghese
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et al. [1bid.] takes into account the differences between the two types of variables and is
regarded as the most appropriate definition. In a similar way the time domain definitions
of controllability associated with the absence of infinite input decéupling zeros as defined
by Verghese et al. [1981] seem to be the most appropriate. These definitions take into
account the possible impulsive motion associated with generalised state space systems
thus reflecting the dynamic properties of such systems whereas the definitions associated
with the absence of infinite input decoupling zeros as defined by Rosenbrock [1974] ignore
the impulsive motion.

To avoid confusion when discussing the various controllability concepts for generalised

state space systems in subsequent chapters the following definition is made.

(5.6.3) Definition. Let the generalised state space system be represented as in (5.1.1).
Then, the system is said to be CONTROLLABLE if it has no finite input decoupling zeros
and CONTROLLABLE AT INFINITY if it has no infinite input decoupling zeros as defined
by Verghese et al [1981]. Further, if the system is both controllable and controllable at
infinity then it is said to be STRONGLY CONTROLLABLE. Also, the system will be
termed REACHABLE AT INFINITY if it does not possess any infinite input decoupling
zeros as defined by Rosenbrock [1974] and STRONGLY REACHABLE if, in addition, it

does not possess any finite input decoupling zeros.

Finally some new necessary conditions are presented for a system to be strongly con-

trollable and strongly reachable.

(5.6.4) Theorem. The generalised state space system represented in Kronecker form

(5.2.5) is strongly controllable only if
(1 =1 2ny—p (5.6.5)

and is strongly reachable only if

q1€ 2 o, (566)

Proof. The system is strongly controllable only if it is controllable at infinity. If
the system is controllable at infinity then it is necessary that the n, X (g3 — 1)¢ matrix
[JB;,J%Bs,,...,J% 1 By} has rank na — p which implies the necessary condition (5.6.5).
Similarly the system is strongly reachable only if it is reachable at infinity. If the system is
reachable at infinity then it is necessary that the ny x ¢;€ matrix [By, JBs,..., %" B;]

has rank n, which implies the necessary condition (5.6.6), as required. a
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(5.6.7) Theorem. The generalised state space system represented in Kronecker from -
(5.2.5) 1s strongly controllable only if

L>p—t | (5.6.8)

and is strongly reachable only if
£2p. (5.6.9)

Proof. Again the system is strongly controllable only if it is controllable at infinity. For
the system to be controllable at infinity it is necessary that the last position rows of the
n, X £ matrix By corresponding to the non-trivial blocks of J are linearly independent.
Now the system has p — ¢ non trivial blocks which implies B; must have rank at least
equal to p — ¢ which implies £ > p — % to give (5.6.8). Similarly the system is completely
reachable only if it is reachable at infinity. For the system to be reachable at infinity it is
necessary that the p last position rows of B, are linearly independent. Since B; is ny x £
this implies £ > p to give (5.6.9), as required. 0

A comparison of the respective necessary conditions presented in theorems (5.6.4) and
(5.6.7) can be made as a result of the following theorem. '

(5.6.10) Theorem. If a generalised state space system is represented in Kronecker form
(5.2.5) then

nzg—p '
—t> 5.6.11
P q—1 ( )
and _
n2
p2—. (5.6.12)
q
Proof. Theg;, i =1,2,...,p, are defined such that
Nn=¢2... _>..QP—t P p_t41 = @p-t42 = ... =y =1
and
ntaet... ot tp-t41+.. g =12 (5.6.13)

If each ¢;, 1 =1,2,...,p, is replaced by ¢; in (5.6.13) it follows that

Pq1 = na.

Hence,
ng

')
to give (5.6.12).
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Similarly if each ¢;, ¢ =1,2,...,p — t is replaced by ¢ in (5.6.13) it follows that
(=t +p-ts1+...+ ¢ 212
and, since gp—y41 = @p_t42 = ... = ¢p = 1, it follows that
(Pt +t2 e
Subtracting p from each side gives

(p—tin+t—p2ny—p

or
plar —1) =@ — 1) Z n2 —p.
Hence,
ny—p
-t 2
Pri=g -1
to give (5.6.11), as required. O

The result of theorem (5.6.10) indicates that the necessary conditions of theorem
(5.6.7) are stricter than the corresponding necessary conditions of theorem (5.6.4). The
necessary conditions in turn indicate the minimum number of control inputs required for a
system to be strongly controllable or strongly reachable. As expected the minimum number
of control inputs for a system to be strongly reachable is always greater than or equal to
the minimum number required for a system to be strongly controllable, so reflecting the

previous discussion.

§7. Conclusions.

In this chapter the concepts of controllability associated with a generalised state space
system have been considered. The historical background was discussed in section 4 from
which is was concluded that there exist two main notions of controllability in generalised
state space systems. In section 5 algebraic conditions associated with these two notions
of controllability were presented which provide an analogy of the algebraic conditions
associated with a controllable regular state space system given by Rosenbrock [1970] and
described in section 3. These algebraic conditions consist of both existing and original
results. The polynomial matrix approach adopted in this work provides a way of treating
these results in a unified manner as well as introducing simpler proofs of the existing
conditions.

The role of the non-dynamic variables in the controllability properties of a system is
clearly reflected in the frequency domain. The introduction of a new definition enables
this connection to be established in the time domain. The importance of the non-dynamic
variables were further discussed in section 6 where new necessary conditions were presented
for a system to be controllable under the two main definitions of controllability.
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Chapter 6. The General Pole Placement Problem in Generalised State Space

Systems.

81. Introduction.

The main distinguishing feature between state space and generalised state space sys-
tems as far as pole placement problems are concerned lies in the fact that infinite poles
might arise in the generalised case. The infinite poles possess different characteristics to
finite poles. This is reflected in the way that infinite poles give rise to impulsive responses
in the system which is in sharp contrast to the exponential responses produced by finite
poles. Also, as was seen in chapter 3, the infinite poles are defined in a different man-
ner to finite poles. This therefore means that the presence of infinite poles contributes
an additional dimension to the problems of pole assignment. Previous work has mainly
concentrated on the case where the closed loop poles are all located at finite locations.
A summary of existing results is presented in section 2. The remaining sections of this
chapter will consider in detail the case where the closed loop system may possess infinite
poles.

In section 3 the main result from chapter 4 is interpreted for systems in generalised
state space form to produce new necessary conditions for the stmultaneous placement of
~ both the finite and infinite pole structures in such systems. The closed loop infinite pole
structure is specifically considered in section 4. The detailed structure oi' the Kronecker
form of the system is exploited to produce a necessary condition for the multiplicity of the
closed loop infinite poles. In section 5 necessary and sufficient conditions are presented
for the closed loop infinite pole structure. This provides a complete description of the
infinite pole structure that can be assigned using constant feedback around a generalised
state space system. The simultaneous placement of both finite and infinite pole structures
is reconsidered in section 6 where the necessary conditions presented in section 3 are
. updated by results from subsequent sections. Finally in section 7 the relationship between
the results of section 5 and the recent work of Fahmy and O'Reilly [1989)] is investigated.
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§2. Pole placement problems in generalised state space systems.

Recall that the finite and infinite frequency behaviour of a generalised state space

system can be separated by transforming the system into Kronecker form. The separation

of the system into two subsystems makes it possible to feedback only the finite states of

the system or only the infinite states of the system. Cobb [1981] calls such feedback slow
and fast feedback respectively. It was shown by Cobb [ibid.] that slow feedback can be
employed to arbitrarily assign a finite pole if and only if that pole is controllable (in the
finite sense). Not surprisingly therefore the finite poles of the system can be arbitrarily
assigned using slow feedback with reference to the results on pole placement in state space
systems. The use of such feedback does not affect the positioning of the infinite poles.

Cobb [ibid.] showed that the infinite poles could be relocated at finite locations by
employing fast feedback if and only if the system is controllable at infinity. The finite poles
subsequently formed are seen to be controllable (in the finite sense)} and can therefore be
arbitrarily relocated by employing slow feedback. Armentano [1984] proved in fact that
controllability at infinity is equivalent to the existence of a constant state feedback (i.e. a
feedback which incorporates both the finite and infinite states) which assigns the infinite
poles to prespecified finite locations. Thus, the two stage method employed by Cobb [1981]
is equivalent to employing a single feedback matrix so making the distinction between
fast feedback and state feedback redundant. For this reason it will only be necessary to
distinguish between the case where only the finite states are fed back and the case where
the finite and infinite states are simultaneously fed back. These two types of feedback will
be referred to as pure state feedback and generalised state feedback respectively from now
on.

The results presented by Cobb [1981] and Armentano [1984] have therefore shown
that all the poles (both finite and infinite) can be relocated at arbitrary finite locations
if and only if the system is strongly controllable. This further emphasises the desirability
of this notion of controllability in comparison with that of strong reachability. This result
leads to a neat generalisation, from the regular to the general case, of the result due to

Wonham [1967]. . ,
' The general pole placement problem was considered by Kucera and Zagalak {1988
for the case when all the closed loop poles are placed at finite locations, i.e. the resulting

system is proper. The system under consideration is of the form
Ei(t) = Az(t) + Bu(1) (6.2.1)

where z(t) is an n-vector of internal states, u(t) an ¢-vector of control inputs and E, A, B

are constant real matrices of the appropriate dimensions. Let the feedback be given by

u(t) = —Kz(t) 4 v(t) (6.2.2)
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where K is a constant real matrix. The main result presented by Kucera and Zagalak
[ibid.] is given in terms of the minimal column indices of a right minimal matrix fraction
description of the open loop transfer function, G(s) = [sE — A]~' B, defined as follows.

(6.2.3) Definition. Let G(s) = N(s)D~!(s) be a right minimal factorisation of G(s) then
the right minimal indices of G(s) are defined as the column degrees of

o
N(s)

Kucera and Zagalak [tbid.] adopt the term complete controllability indices to describe

and denoted by ¢;, 1 = 1,2,...,%.

the ¢;’s. This terminology seems appropriate for the problem under consideration but
in the wider context it is inappropriate since a right factorisation is usually associated
with the observability properties of a system. The term right minimal indices seems more

suitable and will be used in this work.

(6.2.4) Theorem (Kucera and Zagalak, 1988). Let the generalised state space system
(6.2.1) be strongly controllable with right minimal indices, c;, ordered ¢; > c; > ... 2 ¢p.

Further, let a;(s), a2(s),...,a¢(s) be arbitrary monic polynomials subject to
(1) a’i+1(3) | a;(S), i= 1,2,... ,f -1,

4
(i) Z deg(ai(s)) =r where r = rank E.
=1
Then, there exists a constant feedback matrix K such that sF - A+ BK has non-unit

invariant polynomials ay(s),az(s),...,a¢(s) if and only if

k k ’
Zdega,—(s)ZZc;_ k=1,2,...,¢

=1 =1

The proof of the sufficiency part of the above theorem given by Kucera and Zagalak
[1988] is incomplete since a particular step is quoted without a full proof or reference to a
proof. This step is formally justified by a result presented in section 5 where a complete
proof is offered.

Kucera and Zagalak [1988] adopt a minimal factorisation to prove the above result but
do not make the explicit connection with the properties of a minimal factorisation. Further
Kucera and Zagalak [ibid.] do not recognise that a minimal factorisation carries the infinite
structure in a particularly simple way. This property will be exploited in this chapter to
investigate the infinite pole structure that can be assigned using constant generalised state

feedback in generalised state space systems. This aspect of pole placement has not been
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generally investigated although some authors such as Lewis and Ozcaldiran [1984] and
Fahmy and O’Reilly [1989] have considered the infinite eigenstructure assignment problem.
Most of the previous work has concentrated on the case where the closed loop system is
proper but the desirability of assigning both finite and infinite poles has been noted by
Chu [1987)] and the need to consider such problems has been illustrated by Dai [1988] in his
work on the design of observers for discrete time descriptor systems. The investigation of
the general infinite pole placement problem is therefore seen to be of physical significance
as well as being important in extending the result due to Kucera and Zagalak [1988] to

the case where the closed loop system might possess infinite poles.

§3. Necessary conditions for the simultaneous placement of both the finite
and infinite pole structures. |
Consider the generalised state space system represented by

Ei(t) = Az(t) + Bu(t) - (6.3.)

where z(t) € R is the generalised state of the system and u(t) € R is the input vector
with n > £. E, A, B are matrices of the appropriate dimensions with E assumed singular
of rank r, and | sE — A |# 0. It is assumed that the system is strongly controllable and
that the output equation is given by

y(t) = z(2). ' (6.3.2)
Thus, when constant generalised state feedback of the form
u(t) = —K z(t) + v(t) . (6.3.3)
is applied to (6.3.1) this is equivalent to output feedback of the form
u(t) = —Ky(t) + v(t). |

Therefore the new results concerning constant output feedback which were developed in
chapter 4 can be interpreted for the general pole placement problem using generalised state
feedback in a generalised state space system of the form (6.3.1), (6.3.2). Note that it is the
transfer function poles that are investigated by using a minimal factorisation but, since
the system is assumed to be strongly controllable, this is equivalent to investigating the
system poles given via the invariant polynomials of certain matrices.

Recall that the strongest necessary conditions on the closed loop pole structure using
constant output feedback were obtained by considering both the left and right minimal
factorisation of the associated transfer function matrix. For generalised state space systems
the strongest necessary conditions are always obtained by considering a right minimal

factorisation associated with the transfer function matrix since the staircase associated
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with the right minimal factorisation always lies on or below the staircase associated with

the left factorisation. This is a direct consequence of the following results.

(6.3.4) Lemma. Let the strongly controllable system described by (6.3.1), (6.3.2) be given
in Kronecker form (5.2.5). Then,

G(s) = [sE~ A]"* B (6.3.5)
is a left minimal factorisation of the transfer function matrix G(s).

Proof. [sE — A]™! B is a left minimal factorisation of G(s) if and only if
(i) rank [sE—A B]=nforallse€C
(ii) rank [sE— A Blar=n

where [sE — A Bla, is the high order coefficient matrix of [sE — A B] with respect to
the rows.
Condition (i) is equivalent to the system having no finite decoupling zeros which is an

immediate consequence of the fact that the system is strongly controllable. For condition

(i)
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[sE—A Bl

1 -

L5}

0 1 0

0 1 b

Up_g

' T
-1 bv,-u,l

-1 T

Vp—t42

-1 T

(6.3.6)

i
where vj =n; + Z a7 =1,2,...,p, and b7 is the i row of B.
k=1

Addingrowi—1ltorowifori=ny+q,m1+g +¢2,..., n1+¢q +...4+ gp—¢ in (6.3.6)
gives rise o
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v

vp._.

- T
1 Vp=t4il

-1 bf,f;

_ (6.3.7)
It then follows from (6.3.7) that (6.3.6) has full rank if b7, i = ny+q1, na+¢1+4¢2,--., 1+
g1+ ...+ gp—t, are linearly independent. This is guaranteed by the fact that the system is
strongly controllable, so completing the proof. m]

(6.3.8) Lemma. Let G(s) be the transfer function matrix associated with the strongly
controllable system described by (6.3.1), (6.3.2). Then, the row degrees r;, 1 = 1,2,...,n,
associated with a left minimal factorisation of G(s) are |

vrl -— 1,1"2 = 1,'__,7‘"._1, = l,rn_p_l_l = 0,...,1"n = 0
where p is the rank deficiency of E.

Proof. Without loss of generality take the system to be in Kronecker form. Then,
since the system is assumed to be strongly controllable, it follows from lemma (6.3.4) that
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[sE—A]™! B is a left minimal factorisation. The row degrees of [sE—~A  B] are either 0 or
1 with the number of rows with zero degrees equal to the rank deficiency of E. Reordering
these row degrees therefore gives the result. 0

The results of lemmas (6.3.4) and (6.3.8) provide a means of proving the hypothesis
stated earlier concerning the properties of the staircases associated with the respective

minimal factorisations of the open loop transfer function matrix.

(6.3.9) Lemma. Let G(s) be the transfer function matrix associated with a strongly
controllable system described by (6.3.1), (6.3.2). Let ¢; > ¢ 2 ... > ¢¢ be the right
minimal indices associated with G(s) and ry > r; > ... 2 r, be the corresponding left
minimal indices. Then, the staircase function, defined as in (4.3.9), constructed from the
right minimal indices lies on or below the corresponding staircase formed from the left

minimal indices.

Proof. From lemma (6.3.8) it follows that the staircase associated with the left minimal

factorisation is as described in figure (6.3.10).

A
n-p -
2_ n\..-..-
I —
T I > k
1 2 np-l n-p n
fig. (6.3.10)

For a .right minimal factorisation, G(s) = N1(s) D7'(s), the column degrees c;, i =
D1 (8 A

1,2,...,4, of [ )] must satisfy

Nl(.s)

Then, if the staircase associated with the right factorisation intersects the staircase associ-

ated with the left factorisation at some point then ¢; = 0 for some 7. But, since the ¢;’s are
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ordered in decreasing fashion, this means that the two staircases can only intersect when
k = n — p indicating that the staircase associated with the right minimal factorisation lies
on or below the staircase associated with the left factorisation, as requried. a

Recall that a;(s), ¢ = 1,2,...,¢, are monic polynomials such that
ai(s) |ai-1(s) :=2,3,...,¢

and
deg ai(s) = a; 1=12,...,L

~ Also, Bi(w), i1 =1,2,...,£, are monic polynomials with

Bi(w) | Bici(w)  i=2,3,...,¢

and b;, 1 =1,2,...,£, are defined by

Bi(w) = w® Blw) i=1,2...,6  Bi(0)#£0.

Then, interpreting the result of theorem (4.5.8) for a system in generalised state space
form gives rise to the following.

(6.3.11) Theorem. Let G(s) be the transfer function matrix associated with the strongly
controllable system represented by (6.3.1), (6.3.2), i.e. G(s) = [sE — A]"! B. Let G(s)
have a right minimal factorisation

G(s) = Ni(s) D(s)

Dy(s)
Ni(s) |
A1(s) = diag [s1,s%,...,5%]. Then, for there to exist a constant matrix K such that
the invariant polynomials of D1(s) + K N1(s) are ay(s), az(s),...,a¢(s) and the invariant
polynomials of [D; (1—1;) + KN, (%)]Al(w) are B1(w), Ba(w),. .., Be(w) it is necessary that

where the column degrees of [ ] are ordered ¢y 2 ¢2 2 ... 2 ¢¢. Finally, let

{ £ I
o ai+ > b< DY e k=01,..,-1 (6.3.12)
t=k+1 i=k+1 i=k+1

with equality holding when k = 0.

Proof. From theorem (4.4.8), the ai, b, 1 = 1,2,...,¢, must satisfy the necessary con-
ditions that

4 £ n '
Yo e+ Y k< Y & k=01,...,£-1 (6.3.13)

i=k+1 i=k+1 f=k+1
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with equality when k = 0, and where

zn: d,-=min[i iy zn: r;]

i=k+1 i=k+1 i=k+1

and r;,2 = 1,2,...,n, are the left minimal indices of G(s). From lemma (6.3.9) it follows
that

n

£
Yo odi= Y e k=0,1,...,£-1

i=k+1 i=k+1

. which on substitution into (6.3.13) gives rise to (6.3.12) as required. 0

The result of theorem (6.3.11) provides necessary conditions for the simultaneous
placement of both the finite and infinite pole structures using constant generalised state
feedback around a generalised state space system of the form (6.3.1), (6.3.2). The following

example demonstrates that the necessary conditions are not sufficient ones.

(6.3.14) Example. Let

.
G(s)=]s—-1 -1
U

whose right and left minimal factorisations are respectively

Ni(s) Di'(s)= ~sil j} [[1] 2]_1

0 1
s =1 01" [1 0
D7(s) Ne(s)=|0 0 s 0 1
1 0 1 10

and where the left minimal factorisation is of the form [sE — A]~!B. It therefore follows
that the necessary conditions are obtained from the column degrees of the right minimal

factorisation, i.e. ¢1 = 1,¢c; = 1. Hence a;, b; must satisfy the necessary conditions

az +b; <1
: (6.3.15)

as+ar+b2+bi=2
ky ke ks : . :
Let K = ke ks ke and Ay(w) = diag [w,w]. Consider a pole structure with two poles
at infinity both of order one and no finite poles, i.e.

bz - 1, bl = 1, ag = 0, a) = 0 (6316)
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This pole structure satisfies the conditions (6.3.12). Now, the closed loop pole structure

at infinity is given by the zero structure at w = 0 of

ko +w(ldk —k) —ke+wlks — k)

(D2 (@) + BN G M) = | T ik — k) (1= ks + (s = ko)

(6.3.17)
For the above pole structure (6.3.16) to be assigned it is necessary that all 1 x 1 minors
of (6.3.17) possess a common factor w which in the case of the (2,1) and (2,2) elements

implies that

k5=0 and 1-—k5=0'

so indicating a clear contradiction. Thus, it is not possible to assign the pole structure
(6.3.16) to the closed loop system which illustrates that condition (6.3.12) of theorem
(6.3.11) is not a sufficient one.

The result of theorem (6.3.11) generalises the necessary conditions obtained by Kucera
and Zagalak [1988] to the case where the closed loop system possesses both finite and infi-
nite poles. For the case where the closed loop system is proper, ie. & = 0,
1=1,2,...,¢, the necessary conditions are equivalent to those obtained by Kucera and Za-
galak [1bid.] (see i:heorem (6.2.4)). Unfortunately the sufficient conditions do not generé.lise

in the same way.
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§4. Necessary conditions for the placement of the infinite pole structure.

The Kronecker form of a generalised state space system plays a crucial role in the
investigation of the closed loop infinite pole structure. The special structure of this form
makes it possible to deduce properties concerning certain minors of particular matrices
which can then be translated into properties of the invariant polynomials of that matrix
and hence the pole structure. The most significant result as far as investigating the closed

loop infinite pole structure is concerned is presented in the following theorem.

(6.4.1) Theorem. Given [sE — A B} in Kronecker form (i.e. sE — A as in (5.2.2)) with
the last position rows of B corresponding to the non-trivial blocks linearly independent
and A(w) defined by
A{w) = diag {wil,wi’, cee ,w""‘}
ij=0 fj=m+qamta+ta.. . m+tat+tet...+g . (6.4.2)

tj =1 otherwise

Then, the matrix
A(w) [ZE — A+ BK]

possesses a non-zero (n — §) x (n — &) minor which is not divisible by w, where K is a

constant £ x n matrix and § is the number of linearly independent last position rows of B.

Proof. Let
'bT'
1
b
K=[kh k .. kn],B=

LT

and Ay = (a;;), 7, = 1,2,...,n1. Then, the matrix A(w) [1E — A + BK] will be of the

form

T An Arz ]
Avll Bvl"l e Bvivp

szl E szvz 3 (6.4-3)

L Avpl Bv,m ven Bv,v,J




i
where v; = m +Z g, 1=1,2,...,p, vo =ny and
j=1
1l —anw+ T kw ... —aimw 4 b ks w
Ay =
-—an11w+b'£1k1w «aw l—anlnlw—[‘bg‘lknlw
a b'{'knl.;,.l'w . b}"kva
Az =
_bg‘lknl.}-lw P b?;lkupw
-bg:._l+1k1‘w e bg,.:._lknlwh
Av.'l =
b?;._lklw e bg:._lknlw
ke ... bLkn,

which reduces to the last row when ¢; = 1,

_w(_l + bg‘:'...l"l'lkvt'—l'i'l) 1 + b£_1+1kvi—l+2w L b?}:_g_"i'l k”l'w T
b“l].!:_.1+2kvl'—l+1 w(_]' + bg:_1+2kvl'—l+2)
B‘v.'v.'z
bg:-—lk‘"i—rl—lw P w(—l + bg:..lkv.-—l) 1+ bg:-;lkv.'w
L b?,:kvl-__1+1 P s —1+bg:.k'ul- .

which reduces to Byy; = [-1+ b;j.r:. ky;] when ¢; =1, and

-1 T A T 7

bvi-l+1 ij_l.f-]w e bvi...1+1 k,,j'w

Bv.-v- =
I : .

bg:._l kvj_1+1w " e b?’:‘-l kvjw

T T 1.
L bv.- kvj-1+1 ‘e bv.- "kvj

which reduces to the last row when q; = 1.

Alternatively replacing the —a;; +b7 k; and 7 k; by * for all 4, § the general structure
of (6.4.3) can be seen in the following simpler form.




14w

W

W

*W

*1

*w

*Ww

W s *W
14w
*1)
*w 14w
*1
. *W
N *

LW

*t

w(~1+%) 14 *w *:w

1

sw ... o*w  w(=1+3% 14w

* * —-14+

*w

*W

1
*W
*
w(—1+4%) 14w *W
W )
¥w .., *w w143 142w
¥ e . * -1+
*
. *

*W

*W

—14=%

—-14=*

*

¥

W

W

*w

*Ww

*W

-1+ %

(6.4.4)




First, take § = p and consider the n — p minor formed by deleting rows n; -+ q1,71 +
g1+42,---,m1+ @ +q2+...+¢ and columns ny + 1,y + @ +1,...,m+a+.. g +1
in (6.4.3). Using the notation of (6.4.4) this minor is of the form

14 *xw *w *W
*1W
1+ *w
*Ww 14 *w
w(—=14+%) . C kw
W L. .w(—1+*). 1+ *w

and equals 1+ g(w) where g(0) = 0. Thus, the theorem is proved for the case when § = p.

To complete the proof it is sufficient to show that if n of the last position rows corre-
sponding to the trivial blocks are linearly dependent on the other last positions rows then
there exists a n — p -+ 1 non-zero minor not divisible by w. Without loss of generality let
the last n last position rows corresponding to the trivial blocks be linearly dependent on

previous last position rows, i.e.

P—n
BT bgrtbtgyngs = D Eibhhy  i=12...,m, §ER
. j=1

Take the n1 + g1 + ... + gp—n41 row of (6.4.3) and subtract suitable multiples of rows
m+4gj, J=12,...,p—1n,so that row n; + q1 +...+ gp—y+1 consists of a “-1” in position
ny+ g1+ ... + gp-n+1 with all other entries zero except possibly the entries in position
n+q,m+q+g,...,n1+q+...+qg—y. The “1” can be used to remove the other non-
zero elements in this row by suitable column operations so that row ny +¢1 +... 4+ ¢p—yt1

is now of the form

[0 ... 0 =1 0 ... 0]

where the “-1” is at position n1 + q1 + ... + gp—p41. Similarly for rows n3 +¢1 + ... +

dp—n+iy ¢ =2,3,...,n, where all the elements of the i*" row are zero except for a “1” in
position n1 4+ ¢1 + ...+ ¢p—pti. These row and column operations do not destroy the zero ‘
|

structure at w = 0 of (6.4.3).
Then, the n — p + n minor formed by deleting rows n1 +g1,71+¢1 +g2,...,m1+q +
...+ @p—y and columns ny + 1,1+ @1+ 1,...,n1+q + ...+ ¢gp—y—1 + 1 of the resulting
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matrix is of the form

14w Fw _ *

*W
1+ *w

*Ww 14 *w

(~1+ )
*w (14 xw 14w *w *w
0 0 -1 0 ... D
| 0
0 0 -1

where some of the * differ from those given in (6.4.4). This minor is equal to £1 + f(w)
where f(0) = 0. Thus, there exists an n — p 4+ 1 non-zero minor of (6.4.3) which is not
divisible by w, so completing the proof. _ a

To illustrate the result of theorem (6.4.1) consider the following example.

(6.4.5) Example. Let

[sE-A B|=

1

1
0 0 -1-0 01

b

which is in Kronecker form with & € R. In this case p = 2,q1 = 2,42 = 1 so that if

k] kz k3 k4
K= and A{w) = diag[w,w,1,1] then

ks ke kv ks
t 1+ wky wks wkj wky i
1 wky w4 wky 14 wks wky
AMw) [LE-A+BK] = (6.4.6)
ks kg =1+ & ks
| kb4 ks kobd ks Eab+hy =14+ ksb4 ks
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If b# 0 then § = 2 and theorem (6.4.1) states that (6.4.6) possesses a 2 X 2 minor- which
is not divisible by w. This is confirmed by considering the 2 X 2 minor formed by deleting
the third and fourth rows and second and fourth columns of (6.4.6), i.e.

1+wh wks
=1+ w(k + ks)

wkl 14 wks

This minor is clearly not divisible by w.
If b =0 then § == 1 and theorem (6.4.1) states that (6.4. 6) possesses a 3 X 3 non-zero
minor which is not divisible by w. Assume the contrary, then the particular minor
1+ wkl wk3 wk4
wkr 14 wks wki| =k +g1(w), 6:1(0)=
ks ~1+ k7 ks
formed by deleting the fourth row and second column of (6.4.6) must be divisible by w.
This implies ks = 0. Next, consider the minor
14wk wks wky
wky 1+ wks wky |=-1+ks+g2(w), ¢2(0) =
ky ke —14 ks
formed by deleting the second column and the third row of (6.4.6). If this minor is divisible

by w then ks = 1 which leads to a contradiction. Hence, there exists a non-zero 3 x 3
minor of (6.4.6) which is not divisible by w as predicted by theorem (6.4.1).

The result of theorem (6.4.1) provides detailed information concerning the minors of
certain matrices associated with the generalised state space system (6.3.1), (6.3.2). This
information can subsequently be interpreted in terms of the infinite pole structure of the
system formed by applying constant generalised state feedback around (6.3.1), (6.3.2)
which gives rise to the following corollary.

(6.4.7) Corollary. Let G(s) = [sE — A]™'B be a strongly controllable system. Then
the multiplicity of the closed loop infinite poles under constant generalised state feedback
of the form (6.3.3) can not exceed § where § is the number of linearly independent last

position rows of B associated with the Kronecker form of the system, i.e.
bsy1 =bsy2 = ... = b= 0.

Proof. Since the open loop system is assumed to be strongly controllable it follows from
lemma (6.3.4) that for the system represented in Kronecker form

G(s)=[sE— A]'B
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is a left minimal factorisation of G(s). If Gk(s) is the closed loop transfer function matrix
then, by the dual of lemma (4.2.2),

Gk(s) =[sE — A+ BK|™'B

is also a left minimal factorisation and [sE — A + BK B] has the same row degrees as
[sE — A _ B]. Therefore, by lemma (3.2.6), the infinite pole structure is given by the zero
structure at w = 0 of

A(w) [LE - A + BK] (6.4.8)

where A(w) is given by (6.4.2). Let fi(w), ¢ = 1,2,...,n be the invariant polynomials
of (6.4.8) such that g8;(w) | Bi—1(w), i = 2,3,...,n and Dj(w), 1 < j < n, be the monic
polynomials which are the greatest common divisors of all j X j minors of (6.4.8). Then

Dn+1—i(w)

i =1,2,...,n, Dy & 1.
Dn_i(‘w) 2 n 0

Bi(w) =

It then follows from theorem (6.4.1) that 8;(0) #0, i =6+ 1,0 +2,...,n. Hence

A

bi =0 i=6+1,6+2,...,n
as required. _ 0

Note that since the open loop system is assumed to be strongly controllable, the last
position rows of B corresponding to the non-trivial blocks of J form a linearly independent
set so that § will always be greater than or equal to p — .

The result of corollary (6.4.7) indicates that the possible multiplicities of the infinite
poles of the closed loop system are dependent on how “controllable” the system is. It
follows that in general the possible multiplicities will be greater if the system is assumed
to be strongly reachable than if it is assumed to be strongly controllable. Therefore, as far
as assigning the infinite pole structure is concerned it is more advantageous for the system
to be strongly reachable.

Recall that the difference between the strong reachability and strong controllability
definitions lies in the way they deal with the infinite frequency behaviour of the system. It

should also be recalled that if a system is strongly reachable then it is also strongly con-
trollable. In the light of these facts it is therefore not surprising that requiring the system

to be strongly reachable will result, in general, in a greater flexibility in the placement of
the infinite poles.

Note that in the regular case the multiplicity of the closed loop finite poles can obtain
a maximum value equal to rank B. In the generalised case it has now been shown that the
multiplicity of closed loop infinite poles can obtain a maximum value equal to rank of the

last position rows of B when the system is represented in Kronecker form.
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Consider again example (6.4.5) to illustrate the result of corollary (6.4.7).

(6.4.9) Example. Let

G(s)=[sE - A]"'B

s 0 0 0777 1 07
0 -1 s 0 1 0
“lo 0 -1 o 0 1
0 0 0 -—1. b 1.

where sE — A is in Kronecker form and b is an arbitrary constant. A right minimal

factorisation of G(s) is given by

G(s) = N(s) D7(s)

1 o
—s s| [s 077"

o 1 {0 —1] '
[ —sb 1]

It then follows that ¢; = 1,¢; = 1 and A(w) = diag[w,w]. Let

ki ko ks ks
K=
ks ke ki kg

be the constant feedback matrix so that the closed loop infinite pole structure is given by
the zero structure at w = 0 of

kiw+41—ky — kb ko + kaw 4 kyw

D(LY+ KN (D] Alw) =
[D(3) ()] Aw) i: ksw—ke — ksd ke —w + krw + kaw

] . (6.4.10)
Now the closed loop infinite pole structure will have multiplicity 2 if and only if each
element of (6.4.10) is divisible by w. An investigation of elements in position (1, 1) and
(1, 2) indicate that this will be so if and only if

1—ky—ksb=0 and ko =0.

This in turn implies that the closed loop infinite pole structure has multiplicity 2 if and
only if the last position rows of B have rank 2. Thus, it is seen in this example how the
linear independence properties of the last position rows of B influence the multiplicity of
the closed loop infinite poles.
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§5. Necessary and sufficient conditions for the placement of the infinite

pole structure.

In this section the placement of the infinite pole structure for a generalised state space
system is further considered. Stronger necessary conditions are obtained by combining the
necessary conditions of corollary (6.4.7) together with the results of theorem (6.3.11) for
the case when only the infinite poles are of concern. The resulting conditions are shown
to be also sufficient conditions. Before presenting this new result, two important theorems
are considered which are crucial in establishing the new necessary and sufficient conditions.

The first theorem is concerned with the properties of a right minimal factorisation of
the transfer function matrix G(s) = [sE — A]™1B. The theorem also provides a formal
justification of a crucial result assumed without proof by Kucera and Zagalak {1988).

The result is given for the system (6.3.1), (6.3.2) when it is represented in Kronecker

form, so that '

By sIy -4 0

[-B sE—A]=
—B, 0 sJ = In,

(6.5.1)

3In1 - Al 0
where is as described by (5.2.2) and (5.2.3). Also, B, is taken to
0 sJ—1,,

be in column echelon form so that Bs consists of, from left to right, é columns of the form

0]

0

where the “1” is at position ¢; + g2 +...+ ¢, i = 1,2,...,6, and § is the number of linearly
independent last position rows of B, then p — § zero columns and finally £ — p columns
whose elements are irrelevant. With the system represented in this canomical form the

following result can now be stated.

(6.5.2) Theorem. Consider a strongly controllable generalised state space system (6.3.1),
(6.3.2) represented in Kronecker form (6.5.1) with B; in column echelon form. Let G(s) =

N(s)D™(s) be a right minimal factorisation of the associated transfer function matrix
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D
and let [N] denote the high order coefficient matrix with respect to the columns of
he

D(s) '

. Then, when p —t < £, rows

N(s)
p—t+1,p=—t+2,...,¢ L4+m+Ll+tnmy+qa+l,.. . l+m+a+...+gp_ta+l

and when p — ¢ = £ rows

b+ + 1,04+ +q+1,.. . l+ni+a+.. o+ gpt-1+1

of [D] and of [D(s)
N e N(s)

Proof. By theorem (5.6.7) and the fact that the system is strongly controllable it follows
that '

are linearly independent where g5 £ 0.

p—t<4L.

Since G(s) = [sE— A]71B = N(s) D~!(s) it also follows, with [-B sE — A] in Kronecker
form and N(s) suitably partitioned, that

D(s)
_-BI SInl — A]_

Ny(s)| =0 (6.5.3)
—.Bz 0 SJ - In2

Ny(s)

Let —B = (4;;), 1 = 1,2,...,n, j = 1,2,...,¢, and 4; = (aij), 4,7 = 1,2,...,m, then
(6.5.3) can be written as .
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" By .

bﬂ11

-1
-1
-1
-1
0 0
0

[ D(s)
N;(s) =0
..Nz(s)

51,p+1

bn,,p+1

bryblpbr

bny+m,p+1
|
|

b“l +np—t,p 1

bﬂl +0p—t41,p+1

bm +n¢.p+1

.
+

by 4n,,p1

i
where 1; = qu +g+...+q,, i=L2,...p

k=1

bi'g §— 311 e+ —01in,
bu;,t ={n,1 ver §=0nn,
bﬂ;+1,t "'1
bﬂ1+m,t
b"l+’7p—ht

bﬂ1+11;—¢+1 o

bm+m,£

b"l +ﬂ’,t .

-1




T

Let U € R™*" represent suitable column operations on [-B  sE — A] such that

[-B sE—AU=

[ b11

bn;l

0

where

and let

f
b+t

(]
ny,p+1
bnl +1,p+1

bﬂl +m-1,p+1

0

bay+np-toaLpHl

bnynp-i=t.p+1
0

’
1,2

bl

ny,d

bm +1,t

bﬂl+m-1.¢
0

bn:+n,-|-|+1,t

b"l'l'np—i_l:t
0

8 — a1t

—aﬂjl

U—-l

D(s)
N1 (8)
N. 2 (3)

—ain,

§ - anxﬂl

ni, J=P+ 1,P+2.---:f; ﬂf.'fG?R-

D'(s)
= | Ni(s)
Ni(s)




L e

so that from (6.5.3)

D(s)
[-B sE-AUU [ M{s)| =0.
N3(s)
()
L P/ TR - S, ST +Tna]7 be a colimn of N1(8) | then it must satisfy the following set of equations.
Ni(s)
f)ndq : -I-buda-l- ......... +b'1!.d;. +(s - ﬂ1|)}?1 —mgflz ves -—()'1,,“!?,." =0
h,,”d'l +hﬂ12d'2+ ......... +b:|,£di -(l,.,l‘ﬂ; —O‘nlgﬁg— ven . +(s - a.,,,,,),r’:',,, =0
by, p+10pp1F . Hhuy 1,6 =71+ 728 =
buyt2,p41 fpprt bajr2edy =2+ 7a8 =0
baytgs—1,041 Bpprt oo +haybgi-1,69; ~Yg-1 +Tm 8 =0
_d!l —Tm =0
| . :

|

[
bnydnmpmto sttt d;'+|+ o +b“|+'!p—c-:+1.-‘< d+ Lo S RS I ) TS =0
bﬂi+’]p-l"‘»?+1 (':?+1+ e +b“l+"l-l_1v£ d; . —7’1,-1-1 +'¢7’!!-! = 0
'_d;l—t —'Y’Ip—l = 0
it LR =0

T = 0

(8.5.4)




Now consider in which positions the highest degree can occur in [d},...,d}, f1,...,
BrysY1s--+1Yna] T+ From the first ny equations of (6.5.4) it follows that the highest degree
element does not occur in positions 81, B2,. .., Br,. Also, from the last ¢t equations of (6.5.4)
Vipmtsr = '7%‘»;2 =... =1, = 0. Next, consider the equations associated with the first
Jordan block where it is seen that the highest degree can only oceurindyy,dprs, ..., dg, M-
Similarly for the equations associated with the other non-trivial blocks. Also, it is possible

for the highest degree to occur in elements
RN ARPTPSSN 4
so that the set of elements where the highest degree can occur is

! 4 4 i
p—t+130 e dp1 dp-l-l? see 1d£1 Y Y+ s Tt gpat-1+1

with suitable interpretation when p —¢t = ¢,p > £ and ¢t = 0. This set consists of £

D'
elements so that | Ny , the high order coeffeicient matrix with respect to the columns
N3 e
D'(s)
of | N1(s) |, will only have non-zero elements in rows
N;(s)

p—t+1,.. . Ll+n+1L+nm+a+1,.. it a+.. F g1+l (6.5.5)

D'(s) D'
Since | N1(s) | is also a minimal basis its follows that the rows given by (6.5.5) of { IV
Ny(s) N3 he
D'(s) D'(s)
and also of | N1(s) | are linearly independent. Transforming the minimal basis | N;(s)
N3(s) N3 (s)
D(s)
back to the form | N;(s) { does not affect the rows given by (6.5.5). Hence the result. O
Na(s)
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D(s
By definition, if the (n + £) x £ matrix [NE ;] forms a minimal basis then both
s

[D(s)
N(s)

(6.5.2) identifies such a set of rows for the case when G(s) = N(s) D~!(s) = [sE— A]"'B.
To illustrate the result consider the following example.

D
] and [ ] possess £ rows which are linearly independent. The result of theorem
he

(6.5.6) Example. Let

0 -1 s 0 0 0 07

0 0 0 -1 s 0 0

[-B sE—Al={-1 0 0 0 -1 0 0
0 0 0 0 0 -1 s

L0 -1 0 0 0 0 -1

which is in Kronecker form with Bz in column echelon form. In this example
p=2,t=0,1=2, ¢2=2,=2, n1 =1

If G(s) = N(s)D~1(s) is 2 right minimal factorisation of the transfer function matrix
associated with this system then theorem (6.5.2) states that the fourth and sixth rows of

D D(s .
[ jl and [ (¢) ] are linearly independent. A right minimal factorisation is given by
he ‘

N N(s)
—1 0-
0 s
Gs)=|0 1 [0 _1] 1
2 0 -s 0
L s 0l
which on inspection of

r 0 -1 r0 07
-s 0 0 ¢
D(s) -1 D 0 0
[ =0 s and |: ] =10 1
) 0 1 Ml 1o 0
2 0 1 0
L s 04 L0 0.
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confirms the result of theorem (6.5.2) in this case.

Next consider the following theorem which provides a means of constructing a suitable

polynomial matrix required in a subsequent proof.

(6.5.7) Theorem. Let A(w) = diag [w®, w,...,w"] where the ¢;’s are ordered
c1 > ¢ =2 ...> cp. Let Dy, be an £ x £ non-singular matrix and let b;, 1 = 1,2,...,¢,
satisfy the conditions

bh2b2...20,

. . - | (6.5.8)
and > H< Y - k=0,1,..,0-1

i=k+1 i=k+1

Then, there exists a polynomial matrix C(s) such that
(i) C (1) A(w) has Smith form |

diag [wb‘,wb’,...,wb‘,l,l,...,1] 1648

(ii) the last £ — & columns of C' (1)} A(w) Dyl are linearly independent.
w=0 '

Proof. Let H(w) = diag [w’,w??,...,w% 1,1,...,1] and define k; to be the column
degree of the i*" column of H(w). .

Ith;<e,i=1,2,...,4 then a polynomial C(s) exists to satisfy (i). Otherwise there
exists a k such that hr > c; and, by (6.5.8), it follows that there exists a (> k) such that
h; < ¢j. Then, take w times row j and add to row k. Let & = hx — h; —1 (> 0) and
subtract w® times column j from column k. Finally, interchange rows k and j to give the -
matrix H'(w) with column degrees k}, t =1,2,...,¢, where

hi = h; 1# k)
hi,:hk—l
h;=hj+1

and where the element in position z of column z is of higher degree than any other element
in the same column. Employing similar transformations gives rise to a matrix H'(w) in
which

hy 2 hy > ... >k

and
hi < i=1,2,...,4
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Also, the Smith form of H'(w) is equivalent to the Smith form of H(w). Since the trans-
formations only involve adding fw®,a > 0,8 € R times a row (column) to another row
(-column) and row interchanges it follows that the number of 1’s present in H'(w) is the
same as the number in H(w) and that they occur in the same columns. Therefore it is

possible to employ further row interchanges to give the matrix H''(w) where
H'"(0) = H(0).

These additional row operations do not affect the column degrees so that H''(w) has the

same column degrees as H'(w), and is also column proper.

If H''(w) is such that the last £—§ columns of H''(0) Dj," are linearly independent then
an appropriate C(s) to satisfy condition (i), (i) can be deduced from H"'(w). Otherwise

partition Dj, as

Dy | "Dhq
Dyl = (6.5.9)
Dy | D2
where Dys is a § x (£ — &) matrix and Daz a (£ — §) x (£ — §) matrix. Now since D} is
non-singular the matrix Dw will have £ — § linearly independent rows and if Dy, has
22

rank 7 there exists £ — § — 1 rows of D;, which are linearly independent of the % linearly
independent rows of Dg;. Let @ be the matrix

]
Q=
_‘I’ifc—a

1 if row j of Dy, is linearly independent and row i of Dj2
()i =

where

is linearly dependent on the ¢ linearly independent rows of Dy,
0 otherwise.

Then, if

QD =

Dy | D;2 }

| D

the matrix D), is non-singular and therefore the last £ — § columns of H’ '(O)QD‘,TC1 will be
linearly independent. Further, the effect of @ on H''(w) is to add certain of the last £ —§
columns to the first § columns. In view of the fact that the column degrees, hi, of H'(w)
are ordered R} > R4 > ... > R} and that H'/(w) is column proper the column degrees of
the resulting matrix H'"'(w) are equivalent to those of H''(w). Hence, a suitable C(s) to
satisly conditions (i) and (ii) can be deduced from H'''(w) to complete the proof. 0
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To illustrate the constructive nature of the proof of theorem (6.5.7) consider the

following example.

(6.5.10) Example., Let ¢; =1, c2 =1, c3 =1 and

0
Dil=10
1

o o

0
1
0
Suppose that C (1) A(w) has Smith form

diag [w®,1,1].

Then, to construct a suitable C(s) such that conditions (i) and (ii) of theorem (6.5.7) are
satisfled first define '

w®: 0 0
Hw)y=10 10
0 0 1

Following the procedure described by Rosenbrock [1970] construct the matrix H'(w) in

the following manner.

fw® w0
row 1l = row 1 4+ w row 2 6 1 0o
. | 0 0 1
[0 w 0]
col. 1= col. 1~ w?- col. 2 —-w? 1 0
| 0 0 1]
E [—w? 1 0]
row 1 & row 2 0 w O
0 0 1
[—w? 1 w
row 1 = row 1 4+ w- row 3 0 w 0
| 0 0 1
. [0 1 w]
col. 1 = col. 1 + w-col. 3 0 w 0
: | w 0 1]
o 1]
row 1 < row 3




Further row interchanges result in the matrix
0 » O
H'(w)=10 1 w
w 0 1

which is of the form described in theorem (6.5.7).

Now
0 0 0

H'"0O)DFl=1]0 0 1
1 00

where the last £ — § = 2 columns are not linearly independent.
Next, partition D;} as in (6.5.9)

0 [ 1 0
Dit=| 0|0 1
1 0 0
Let
1 | 0 0
Q=] 0|1 o
0 1
then
0 | 1 0
QDi;=| o | 0 1
1 1 0
where
D 01
22 — 1 0
is non-singular. Also | N
0 00
H'0)QD;} =10 0 1
1 10

where the last £ — § = 2 columns of H''(0)Q D} are linearly independent, as required.
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Finally
0

w 0
H'(w)2H'"(w) Q=] w 1 w
w+l 0 1

where the column degrees of H'''(w) are equal to the corresponding c;’s. Hence, an ap-

propriate C(s) can be deduced by noting that

H'"(w)=C (ﬁ) A(w)

to give
0 10
Cs)= 1 s 1

1+s 0 s

Return now to the problem of assigning the infinite pole structure in a generalised
state space system using constant generalised state feedback. The results of theorems
(6.5.2) and (6.5.7) enable the following theorem to be proved.

(6.5.11) Theorem. Let G(s) be the transfer function matrix associated with the strongly
controllable generalised state space system (6.3.1), (6.3.2) and let

G(s) = N(s) D~1(s)

' D(s

be a right minimal factorisation of G(s) where the column degrees, c;, of N(( ;] are
s

ordered ¢; 2 ¢ 2 ... 2 ¢p. Then, the infinite pole structure of the closed loop system

under generalised state feedback of the form (6.3.3) and represented in terms of the b;, ¢t =
1: 2,...,£, must satisfy the necessary and sufficient conditions that
(1) bs+1=bsgtz2=...=be=0
where § is the number of linearly independent last position rows of B when the system
is represented in Xronecker form,

I £
G) Y u< D> o k=01,..,£-1 (6.5.12)

i=k+1 i=k-+1

Proof. The necessity part of the result follows as a direct consequence of corollary (6.4.7)
and by taking a; =0, 1 =1,2,...,£ in theorem (6.3.11).
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For the sufficiency part, let the matrix polynomial C(s) be chosen such that
C (%) A(w) , where A(w) = diag[w®,w,...,w*] has Smith form

diag [w® fi(w),w® fa(w), ..., 0" fo(w), for(w),..., fe(w)] (6.5.13)

where the b;’s satisfy condition (i) of the theorem and where fiy1(w) | fi(w), ¢ =
=1, with fi(0) # 0, ¢ = 1,2,...,¢. Without loss of generality the fi(w)’s
can be taken to be
fiw)=1  i=1,2,...,¢

since only the structure of (6.5.13) at w = 0 will be of relevance.
Then, the sufficiency part is proved if there exists a constant matrix K such that

[D(2) + KN (3)] Aw) = € (£) Aw) (6:5:14)
or equivalently -
D(s)+ K N(s) = C(s). (6.5.15)

- Now since D(s), N(s) are relatively (right) prime it follows (see Rosenbrock, 1970) that
there exist polynomial matrices X(s),Y(s) such that

X(s)D(s)+ Y(s)N(s) =C(s). (6.5.16)

Thus, the sufficiency part of the theorem will be proved if there exist X (s), Y(s) satisfying
(6.5.16) where X (s),Y(s) are constant matrices with X(s) non-singular.

Without loss of generality assume that the system is represented in Kronecker form
with B, in column echelon form.

Then, the fundamental relationships can be written as

X(s) Yi(s) | Yals) D(s) C(s)
—B1 SIm - Al 0 N1 (S) = 0 . (6517)
—B, 0 sJ = In, Ny(s) 0

Let T be the transformation which interchanges column ¢1 +¢g2+...+gi-1 +1 of sJ — I,,,
with column ¢ of —B; for 7 =1,2,...,p~t and where go 2 0. Then,

X(s} Ti(s) Ya(s) X(s) Tfs) (s
-By, sl —4A 0 T=|-B sl,,—A H (6.5.18)
—B, 0 sJ—1I,, -B, 0 J(s)

where H is a constant matrix and Jy(s) is a column reduced polynomial matrix with
column degrees

{0 i=1,q1+1$91+Q2+1;-“a‘h+Q2+---+gp—l+1

1 otherwise.
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D(s)

The inverse transformation T~! acts on | Ni(s) | by interchanging row £+n1+q1+...+
Na(s)

¢i-1+ Ll withrow i for i =1,2,...,p —t. Thus, if

D(s) D(s)
T™1 | Ny(s) | = | Na(s) (6.5.19)
Na(s) Ny(s)

it follows from theorem (6.5.2) that D(s) is column reduced with column degrees ¢y, cs,

..,ce. Also, as a consequence of the proof of theorem (6.5.2) the i*P column degree of
Ni(s) is less than ¢, 1 =1,2,...,4.

Finally, consider the structure of Ny(s). Combining (6.5.18) and (6.5.19) with (6.5.17)

results, in particular, in

D(s)
[-—Bz 0 j(S)] Nl(s) =10
Na(s)
ie. b
A e 8
B J(s)], [ % )] =0.
N2(3)
B, ] | - s i
Let = (b;;), 1=1,2,...,m, 7 =1,2,...,8 I {dy,da,...,de, 71,52, .-, ¥n,]" IS 2
—B, | _
[ Da(s) : ,
column of | . then it must satisfy
| Na(s)
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-1 bnz +1,p+1
]
0 bul = 1.?+1
0 0 b”h?"'l
I
!
|
-1 by, 1-141,p41
0
0 b“’-t,?‘l'l
-1 bv;-—c+1,p+l
-1

0 bu,,p+1

where y; =my +E;=1 g, i=1,2,...,p.

bm+1,g 0 §

bu,—l,t 0
by, -1 0

I
I
I

b",-1—1+1,¢

bu,_.l.’.

bu!"""!az

bv,,t

-1




Adopting a similar argument to that employed in the proof of theorem (6.5.2) it
follows from the first block corresponding to the non-trivial Jordan blocks that the degrees
of 42,43, -« - y ¥4, are all less than the highest degree amongst ds, cfp.g.l, ..., ds. Similarly for
the other non-trivial blocks. Thus,

Rz (3) Aw)|

w=0

can only have non-zero elements in rows

lag+lagt+te+l,...,aatet...+q6pa+1.

Applying the transformations T, T~ to (6.5.17) results in

X(s)  nls)  Yals) D(s) C(s)
-B, sI, -4 H M) | = 0 §. (6.5.20)
—Bz 0 _ f(s) Nz(s) 0

Now there exist polynomial matrices @1(s), @2(s) such that
Yi(s) = Qu(s) (sIn, - 41) + Ta

and

T3(s)— Qu(s) H = @u(s) J(s) + T

where ¥; [81n, — A1]™! and Y, J! (s) are strictly proper and Y3, Y; are constant matrices.

Further since J~!(s) is of the form

diag [$1(5), B2(8), - - ¥p—t(s), —Li]

where

$i(s) = 8i(s) 8i(s) € REX@=D(g)  §=12,....p—t

and since 3 J ~1(s) is strictly proper it follows that columns 1,q3 + 1,¢1 + g2 +1,...,
QA+ttt La+at . g, 0+ @+ ..+ gy of Y2 are zero.

The premultiplication of (6.5.20) by the unimodular matrix
I —Qi(s) —Q2(s)
0 In, 0
0 0 I,
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gives rise to

X(s) 1z Y, D(s) C(s)
-By shy,—-A H Ni(s)f=] o0 (6.5.21)
-B, 0 J(s) Na(s) 0

where X (s) = X(s) + Q1(s) B1 + Qz(s) Ba.
Make the transformation s = L in (6.5.21) and post multiply by A(w) resulting, in
b () |
[X(3) N T [ N(y)| Aw)=C(3) Alw). (6.5.22)
1

Nz (3)

is a constant matrix and has rank deficiency é by (6.5.13). Also

particular, in

Now C (;lu-) A(w)

w=0

=0

w=0

Yi Ny (3) Adw)

since the i** column degree of N;j(s) is less than ¢;, i = 1,2,...,£. From the structure of

N; (£) A(w)

and the arrangement of the zero columns of Y5 it is concluded that

w=A0

w={(

w=0

which is non-singular by construction. Thus, (6.5.22) gives rise to

X(E)| =@ M) Dit

w={

which implies X(s) is a constant matrix with rank deficiency 6.

Applying the inverse transformation results in

X % Yy D(s) C(s)
—Bl .SIn1 - Al 0 Nl(s) = 0 (6.5.23)
B, 0  sJI—1I, Na(s) 0
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where X', Y] are constant matrices. The inverse transformation replaces column 2 of X by
the zero column ¢; + ¢z + ... +¢i—1 +1 of Y2 for i = 1,2,...,p — t. The matrix C(s) was
originally chosen such that C (1) A(w) has Smith form

diag [w,w®,...,0%,1,1,...,1]
By theorem (6.5.7), C(s) can be chosen such that the further condition that the last £—¢
columns of C (%) A(w) D;! are linearly independent is also satisfied. Thus, the rank

deficiency of X' can be ;,r-:—sgored by adding suitable multiples of rows ¢; + ¢2 + ... + ¢i,
i=12,...,6,0f [-B; 0 sJ—1I,,]to thefirst £ rows of (6.5.23). This operation does not E
destroy the constancy of ¥; or YJ so demonstrating the existence of constant X (s),Y(s)
with X (s) non-singular such that (6.5.16) holds. Hence, the sufficiency part of the theorem
is proved as required. | 0

The result of theorem (6.5.11) provides a complete characterisation of the infinite pole
structure that can be assigned by employing constant generalised state feedback around a
generalised state space system (6.3.1), (6.3.2). If all the closed loop poles are located at
infinity then equality holds when % = 0 in condition (ii). The resulting theorem provides
an analogy to the result of Kucera and Zagalak [1988] for the case where all the poles are
assigned at infinite locations.

Note also that the result of theorem (6.5.11) indicates that it is not possible to assign
poles at infinite locations in the closed loop system if and only if § = 0. This condition
is equivalent to the condition that the system is in regular state space form and confirms
the result that when constant output feedback is applied to such systems the closed loop

_system poles are all still located at finite locations (see Rosenbrock and Rowe, 1974). For
proper systems the result of theorem (6.5.11) indicates that it is always possible to place
poles at infinite locations using constant output feedback.

§6. Further necessary conditions for the simultaneous placement of both the
finite and infinite pole structures.

In section 3 necessary conditions were obtained for the simultaneous placement of
both the finite and infinite pole structures using constant generalised state feedback in
generalised state space systems. Stronger necessary conditions are produced by combining
the conditions described in section 3 with the subsequent results concerning the assignment
of the infinite pole structure, giving rise to the following.

(6.6.1) Theorem. Let a;(s), Bi(w), ai, bi, ¢ =1,2,...,¢, be given as in theorem (6.3.11).
Let G(s) be the transfer function matrix associated with the strongly controllable system
represented by (6.3.1), (6.3.2), i.e.

G(s)=[sE—A]"'B
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and let G(s) have a right minimal factorisation
G(s) = N1(s) Di*(s)

D1 (S)

] are ordered ¢; > ¢3 > ... = ¢ Let
Ni(s)

where the column degrees, c;, of [

Ai(s) = diag [s®,5°%,...,5%]. Then, for there to exist a constant matrix K such that
the invariant polynomials of D1(s)+ K N;i(s) are a1(8), a2(3),...,a¢(s) and the invariant
polynomials of [Dy () + K N1 (£)] A1(w) are fa(w), B2(w), - - ., Be(w) it is necessary that
(1) bsgr =bspz=...=bg=0

where § is the number of linearly independent last position rows of B when the system

is represented in Kronecker form,

¥4 ¢ £
Gi) > a+ Y, b< > e k=01...,0~1

i=k+1 i=k+1 i=k-1

with equality when k = 0.

Proof. Conditions (i) follow from the necessary conditions of corollary (6.4.7) whilst con-
ditions (ii) follow from the necessary conditions presented in theorem (6.3.11), as required.

O

In example (6.3.14) it was demonstrated that the necessary conditions of theorem
(6.3.11) are not sufficient. The additional conditions included in theorem (6.6.1) explain
clearly why the pole structure b; = 1, b = 1 cannot be assigned by constant generalised
state feedback for that particular system since, under condition (i) of theorem (6.6.1), b;
must equal zero in this case.

Efforts to find an example to demonstrate that the necessary conditions of (6.6.1)
are not sufficient have been unsuccessful. Equally it has not been possible to prove the
sufficiency .of the conditions. Thus, the question of whether or not the necessary conditions

of theorem (6.6.1) are sufficient still remains unanswered,
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§7. Discussion of infinite pole assignment problem.

In a recent paper Fahmy and O’Reilly [1989] consider the pole placement problem
in generalised state space systems for the case where all the poles are placed at infinite
locations. A procedure to find a suitable matrix K that will achieve this goal is presented.

Fahmy and O'Reilly {ibid.] assume that the system is strongly reachable. This implies
that when the system is represented in Kronecker form all the last position rows of B are
linearly independent. In this case theorem (6.5.11) states that the multiplicity of the closed
loop infinite poles can achieve its maximum, i.e. é§ = p, the number of Jordan blocks of
J. This is in agreement with the possible multiplicities assumed by Fahmy and O’Reilly
[ibid.]. | '

Fahmy and O’Reilly [ib:d.] do not examine the closed loop infinite pole structure in
detail but note that the degrees of the closed loop infinite poles are related to the lengths
of the generalised eigenvector chains associated with the p infinite eigenvalues of E. The

infinite eigenvectors and generalised eigenvectors are defined as follows.

{6.7.1) Definition (Fahmy and O’Reilly, 1989). Let v{y € ", ¢ = 1,2,...,p, be
defined by .
Evy =0 i=12,...,p.

Then vy, 2 =1,2,...,p, are called the p INFINITE EIGENVECTORS of E. Further, if K
is the feedback matrix that places all the finite eigenvalues at infinite locations (i.e. assigns
all the poles at infinite locations) then the GENERALISED INFINITE EIGENVECTOR
CHAINS associated with the infinite eigenvectors are defined by

EU?;=[A+BK]U$—1 j=1)21'°'gai_1, i=1,2,...,p.

The lengths, a;, of the eigenvector chains satisfy

and are non-unique due to the freedom in choosing K. The degrees of the closed loop
poles are equal to a@; — 1, 7 = 1,2,...,p, and the relationship between the a;’s and the

previously defined b;’s is given by
bi=a;—1 1=1,2,...,p. (6.7.2)

The result of theorem (6.5.11) therefore gives an immediate characterisation of the possible

chain lengths associated with a particular system and this is described by the following.
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(6.7.3) Theorem. Consider the generalised state space system (6.3.1), (6.3.2) which is
assumed to be strongly reachable. Let the transfer function matrix, G(s), associated with
this system have a right minimal factorisation of the form

G(s) = N(s)D7(s)

D(s)

where the column degrees, ¢;, of [ ] are ordered ¢; > ¢y = ... 2> ¢;. Let constant

N{(s)
generalised state feedback, K, be applied to this system in such a way that all the poles
are placed at infinite locations. Also, let the infinite eigenvectors and generalised infinite
eigenvectors be defined by (6.7.1) andlet «;, 2 =1,2,...,p, be the associated chain lengths.
Then, if the a;’s are ordered a; > a3 2 ... > a, then the a;’s satisfy the necessary and
sufficient conditions that

P £
Y (ewi-1< Y o k=0,1,...,p-1 (6.7.4)
i=k+1 i=k41

with equality when £ = 0.
Proof. Since the system is strongly reachable then
§=p

where § is the number of linearly independent last position rows of B when the system
is represented in Kronecker form. Then, by theorem (6.5.11), the closed loop infinite
pole structure represented by b;, ¢ = 1,2,...,£, must satisfy the necessary and sufficient
conditions

(1) bpyr=bpra=...=be=0

and .
¢ ¢
@ Y u< Y e k=01,...,6-1
. i=kt1 i=k+1
or equivalently
P ¢
Yo o< > e k=01,..,p-1 (6.7.5)
i=k+1 i=k+1

with equality when & = 0 since all the closed loop poles are located at infinite locations.
From (6.7.2)

b,‘:&,‘-l i=1,2,...,p
which on substituting into (6.7.5) gives rise to (6.7.4) as required. o
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The above characterisation of the infinite chain lengths is illustrated by the following

example.

(6.7.6) Example. Let

G=[sE—A]"'B
s 0 0 0717' 11 07
0 -1 s 0 0 0
10 0 -1 0 10
0 0 0 -1l 1 1]

which is in Kronecker form and which is also strongly reachable. A right minimal factori-

sation of G(s) is givén by

G(s) = N(s)D7'(s)

[ 1 0 7 .
-5 0 s 0]77
- -s 0 [0 1]
[ —s —1.

so that ¢; = 2, ¢2 = 0. Hence, the orders of the infinite poles of the closed loop system
must satisfly

by + b <2 : (6.77)
by <0 (6.7.8)

with equality in (6.7.7) if all the poles are placed at infinity. Theorem (6.7.3) indicates
that the chain lengths of the infinite eigenvectors and generalised eigenvectors as defined
by (6.7.1) are

(1’1=3, 052=1

and that it is not possible for the chain lengths to be a; = 2, az = 2. This can be seen
by the following investigation.

The infinite eigenvectors are

01 01
vip = ' v5g = ’
0 0
L0 [ 1]
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ky kz ks k4
Let K = be the feedback so that
ks kg ki ks
3 kl ka ki ks 7
0 1 0 0
A+ BK =
k1 ka2 14 ks k4
Lky+ ks kot ks katkr 14+Fks+ ksl

Now 059 is defined by
Evy} = [A+ BK]vayg

100 01 [l [ k ks ks ks 1107
. 001 0| |v 0 1 0 0 0 ‘
oo o of ul | m k2 14k ks 0
0 0 0 0 luvad Lkidthks Rodhs Rsdky 14kitks | L1l
w0 k]
v3 0
ol | ks
0] 14 ket ksl

which implies v§$ = 0, and a2 = 1 as predicted.

The results presented in this chapter on the placement of the infinite pole structure
compliments the results given by Fahmy and O’Reilly [1989] by describing concisely the
precise structure that can be assigned. More importantly the result of theorem (6.5.11) is
concerned with the more general case when the system is assumed to be strongly control-
lable which, in the light of the discussion in chapter 5, is of more relevance to the design

of closed loop systems. : ‘
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§8. Conclusions.

The general pole placement problem in generalised state space systems has been in-
vestigated in this chapter. The treatment of the problem is novel since it considers the
assignment of the infinite pole structure as well as the finite pole structure. The problem
was first approached by adopting a minimal factorisation of the open loop transfer function
matrix. It was seen in chapters 2 and 3 that both the finite and infinite pole structures of a
closed loop system, formed as a result of constant output feedback, can both be displayed
in a particularly simple way in terms of a minimal factorisation of the open loop transfer
function matrix. In section 3 the original results presented in chapter 4 were interpreted
for systems in generalised form. This gave rise to a set of new necessary conditions for the.
simultaneous placement of both the finite and infinite pole structures in generalised state
feedback.

In sections 4 and 5 the assignment of the infinite pole structure was specifically inves-
tigated by exploiting the detailed structure of the Kronecker canonical form of a system.
New necessary conditions on the multiplicity of the closed loop infinite pole structure were
presented in section 4. These conditions were given in terms of the last position rows of
B which indicates the existence of a close relationship between the placement of infinite
poles and the notions of controllability in generalised state space systems.

Results from sections 3 and 4 were combined in section 5 to produce stronger necessary
conditions on the closed loop infinite pole structure. These new necessary conditions were
shown to be sufficient so providing a complete characterisation of the closed loop infinite
pole structure and a generalisation of the result due to Kucera and Zagalak [1988] for
the case when all the poles are placed at infinite locations. A stronger set of necessary
conditions for the simultaneous placement of the finite and infinite pole structures was
presented in section 6 by supplementing the conditions given in sections 3 with subsequent
results. Section 7 discussed the relationship between the results presented in this chapter
and the paper recently published by Fahmy and O’Reilly {1989].
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Chapter 7. Further Discussion of the General Pole Placement Problem.

§1. Introduction.

The general pole placement problem is further discussed in this chapter.

In section 2 generalised state space systems are specifically considered and the problem
is approached by assigning the finite and infinite pole structures in two separate stages.
This gives rise to necessary and sufficient conditions for both the finite and infinite closed
loop pole structures but the result is incomplete since the conditions on the respective pole
structures are not directly related.

In section 3 a description of how a Laurent expansion about the point at infinity
of a rational matrix can be used to investigate the pole structure under constant output
feedback is presented. For certain systems this method provides a straightforward means
of investigating the closed loop infinite pole structure and gives rise to a new condition for
testing whether the closed loop system is proper.

Section 4 considers a bilinear transformation approach to the problem. It was seen
that employing a bilinear transformation enables both the finite and infinite pole structures
of a rational matrix to be simultaneously considered. Taking this as a basis, a possible
minimal factorisation of a transformed matrix is investigated and the subsequent effect of
constant output feedback on a transformed matrix is considered. The results provide a
means of simultaneously investigating the finite and infinite closed loop pole structures.

The theory is subsequently applied to the case of systems with transfer function matrices
of the form {sE — A}~ B.

§2. Two stage approach.

The general pole placement problem for both finite and infinite pole structures in
generalised state space systems may be approached by first assigning the infinite pole
structure followed, using a second feedback, by the finite pole structure. This approach is
made possible by the previously stated result that pure state feedback does not alter the
infinite pole structure (Pugh et al., 1988). A simpler proof of this result, more in spirit

with the current work, is first presented.

(7.2.1) Theorem. Consider the strongly controllable generalised state space system
(6.3.1), (6.3.2) represented in Kronecker form. Then, if constant pure state feedback is

applied around this system the infinite poles of the system remain unchanged.

153




Proof. Let
G(s)=[sE ~ A}"l B (7.2.2)

be the open loop transfer function matrix where sE — A is in Kronecker form. Then, by
lemma (6.3.4), it follows that (7.2.2) is a left minimal factorisation of G(s) and so the open

loop infinite pole structure is given by the zero structure at w = 0 of

Il ~A 0

7.2.3
0 171, (7.23)

-

A(w) = diag [wit,w2,. .., w]

. | {0 j=mta,mtate...mtat.. o+
i =
1 otherwise.

(7.2.3) can be written as

Inl' - Alw 0
0 AN(w) (5T = In,)
where
A'(w) = diag [w™,w®,...,wi]
and

. {0 I=a it gt et o
ij =
‘ 1 otherwise.
Since I, — Ajw has full rank at w = 0 it follows that the infinite pole structure of the
system is given by the zero structure at w = 0 of A(w)[ 2T — L,].
Let pure state feedback of the form

u(t) = —Kyz:(t) + v(t)

be applied to the system. If the closed loop transfer function matrix is given by G x(8)

then
B,
B,

sl — A + B K, o 177
. (7.2.4)

Gr(s)=
(o) [ B.K, sJ = In,

Since (7.2.2) is a minimal factorisation of G(s) it follows that (7.2.4) is a minimal factori-

sation of Gx(s) and the closed loop infinite pole structure is given by the zero structure
at w =10 of

A(w) ‘t%}-[nl — A4+ B K 0 ]

By K, 171,
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or

Inl —A1w+BlK1w 0
. (7.2.5)

A'(w) Bz Ky Aw) (2T - 1,.,)
At w =0 (7.2.5) reduces to

In, 0
[A'(O)Bzfﬁ {8'(0) [7 — Ins] }w=o]

which indicates that the zero structure of (7.2.5) at w = 0 is given by
Nw) [tT-1,,].

Thus, the closed loop infinite pole structure is identical to the open loop infinite pole

structure as required. o

The result of theorem (7.2.1) thus enables the pole placement to be approached in
two steps. First, the infinite pole structure can be assigned with reference to the necessary
and sufficient conditions of theorem (6.5.11) then, secondly, pure state feedback can be
employed to assign the finite pole structure. The necessary and sufficient conditions for
the finite pole placement are supplied by theorem (2.4.3) (due to Rosenbrock and Rowe,
1970). Thus, if Gk (s) is the closed loop transfer function matrix obtained from the first
stage, then
' Gk(s) = [sE—A+BIf]—1B
If the closed loop system in Kronecker form is represented by

: s8Iy, — A, 0 B,
[sE-—A+BK B|= . .
0 sJ — Iﬁ,z Bg

Then, applying pure state feedback around this system is equivalent to considering the
regular state space system

.'L;'l(t) = /11 iﬁ] (t) + B]_ U(t) (7.2.6)
with state feedback of the form
u(t) = =Ly 21(t) + v(2). (7.2.7)

The general pole placement problem for such systems was considered by Rosenbrock and
Rowe [1970] and their result is given in theorem (2.4.3). The theorem is recalled here with
special reference to the system (7.2.6) and feedback (7.2.7).

(7.2.8) Theorem (Rosenbrock and Rowe, 1970). Consider the state space system
given by (7.2.6) and where sIz, — A; and B are relatively (left) prime. Let the minimal

155




indices of [sI;, — Ay I§1] be given by A1 = A2 > ... 2 As. Let constant state feedback
of the form (7.2.7) be applied to the system and let the non-unit invariant polynomials of
sl — A, + B, L, be given by a;(s), i = 1,2,...,0 = min(f1,£), where a;(s) | ai~1(s),
i =2,3,...,0, and dega;(s) = a;, i = 1,2,...,0. Then, the a;, ¢ = 1,2,...,0, must
satisfy the necessary and sufficient conditions that

a

£
Y @< > A k=01,..,0-1

i=k+1 i=k+1

with equality when k = 0.

A partial solution to the general pole placement problem has therefore been found
with the necessary and sufficient conditions given in terms of the A;’s and ¢;’s but this
result is incomplete since the A;’s and ¢;’s are not directly related. A satisfactory solution
to the problem would be achieved if the relationship between the ¢;’s and A;’s could be
fully characterised. '

The above discussion lead to the following example which gives a further insight into
this two stage approach to the problem.

(7.2.9) Example. Consider a strongly controllable generalised state space system with
[SE — A - B]in Kronecker form

[ s 0 0 0 0 -1 0 1
1 s 0 0 0 0 0
shy=4 | 0 | B
0 | SJ—In2 By : .
0 0 0 -1 s 0 0
0 0 0 0 -1 0 1

Let a right minimal factorisation of the open loop transfer function be

- §2 0

0 -1

P -5 0

[D(s)]_ N()
= i(s) | = 1 0
N(s)

N2(S) 0 32

0 S
L 0 1




D(s

so that ¢ = 2,¢c; = 2. Note that [ ] is a right minimal factorisation of the strictly

Nl(s

proper subsystem [sI,, — A;]7! B; which therefore has controllability indices A; = 2,
A2 =0,

Assume that this system has been formed as a result of employing generalised state
feedback to assign the infinite pole structure & = 2, b, = 0. If pure state feedback is applied

around this system then theorem (7.2.8) requires the closed loop finite pole structure to

a1+a2=2
GQSO

which obviously implies that the pole structure @y = 1,a2 = 1 cannot be assigned by

satisfy the necessary conditions that

employing constant pure state feedback.

It is important to interpret these observations correctly. On the surface the exam-
ple seems to illustrate that the necessary conditions of theorem (6.6.1) are not sufficient
conditions since the pole structure b; = 2,62 = 0,a1 = 1,a; = 1 satisfies the necessary
conditions but cannot be assigned by adopting the above approach. However, this pole
structure can be assigned to the closed loop system if constant generalised state feedback is

kl kg k‘3 k‘4 kS
ke kr ks ko ko

then the closed loop finite and infinite pole structures are given respectively by

applied directly. If K = [ ] is the generalised state feedback matrix

s2 —kys + ke k3s? + kys + ks

D(s)+ K N(s) =
() () [ ~kes 4+ k7 k3$2+k93+k10—1

and _
kng - kw1 k5102 + k4w + ks
[D (%) + KN (3)] AMw) =
k7w2 — kgw (f{.'lo — 1)w2 + kow + ks
where A(w) = diag [w?,w?]. |
Choosing ky = 0, k2 = —a?, k3 =0,ks =1, ks = a, ke = ~1, kv = a, ks = 0,

kg =0, k1o =1 where a € R gives rise to
s2—a® s+a

s+ o 0

s+ o 0
0 s+«
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D(s)+ K N(s) = [

which has Smith form




and
Ca?w? 41 2 4
[D($)+KN(%)]A(w)=[ Swrl v "’]
' aw” 4w 0

which has Smith form
w?(1 4 aw) 0
0 (1+aw)|

Hence the closed loop system has a finite pole structure where a; = 1, az = 1 and an

infinite pole structure where b =2, by = 0.

The explanation as to why generalised state feedback is able to assign the desired
pole structure in the above example is that under this feedback one of the finite poles is
relocated at infinity whilst one of the infinite poles is placed at the desired finite location.
Employing pure state feedback cannot achieve this since this feedback cannot influence
the infinite poles. This therefore implies that when adopting the two stage approach there
exists a possible degree of freedom in the first stage which can be exploited to broaden the
choice of pole placement in the second stage. In other words the controllability indices of
the strictly proper part of the system are dependent on the feedback matrix adopted in
the first stage. The necessary and sufficient conditions obtained via the two stage method
are still valid but care must be taken in practice in obtaining the controllability indices,
i |

The above observations reinforce the earlier remark that the necessary and sufficient
conditions obtained via the two stage method are unsatisfactory and also leaves open the

question of whether or not the necessary conditions of theorem (6.6.1) are also sufficient.
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§3. Toeplitz matrix approach.

In chapter 3 a method for obtaining the infinite pole and zero structure of a rational
matrix was described in terms of the Laurent expansion about the point at infinity of the
rational matrix. This method can be exploited to investigate the pole placement problems
associated with applying constant output feedback around a system. Let G(s) be the open
loop rational transfer function matrix and if G k(8) is the closed loop transfer function

matrix formed as a result of applying constant output feedback, K, around G(s) then
Gx(s) = G(S)[I + K G(s)]~*.

Expanding Gk (s) as a Laurent expansion about the point at infinity means that the infinite
pole structure of G(s) can be investigated as described in chapter 3.

It is difficult to make a general statement about the infinite pole structure that can
be assigned by using the Toeplitz matrix method but this approach could be effectively
employed in individual cases to determine the effect of a certain feedback matrix or in
determining the freedom in designing the infinite pole structure. For instance, it is known
that almost all constant output feedback matrices give rise to a closed loop system having
a proper transfer function matrix (Anderson and Scott, 1976). This method can therefore
be used to characterise the set of feedbacks that do in fact give rise to a closed loop system
with a non-proper transfer function matrix. |

The main difficulty with this approach lies in obtaining the Laurent expansion at
infinity of the relevant transfer function matrix. This problem can be overcome to some
extent in some special cases. Consider the case of a square n X n transfer function matrix
which is of full rank. It follows (see Verghese, 1978) that the pole structure of such a
matrix is isomorphic to the zero structure of its inverse. Thus, the pole structure of G x(s)

can be investigated by considering the zero structure of
Gxl(s) = G7Y(s) + K.

The separation of K from G(s) means that K appears as a whole in just one term in
the corresponding Laurent expansion about the point at infinity so making it easier to
investigate the effect of K on the closed loop infinite pole structure.

The investigation is further simplified if the n X n matrix G(s) is of the form |
G(s)=[sE—-A]"'B (7.3.1)
where sE — A, B are relatively (left) prime and B is of full rank. Then
G} = B4
=sB 'E— B4
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and

G Ys)+K=sB'E-B'A+K

which is the Laurent expansion about the point at infinity of G=?(s) + K. A simple test
to determine whether or not the resulting closed loop system is proper can now be stated

as a result of this immediate characterisation of the Laurent expansion about the point at
infinity.

(7.3.2) Theorem. Let G(s) be as described by (7.3.1). Then, if constant generalised state
feedback K is applied to this system the resulting closed loop system will be proper if and

only if
B-'E —B A4+ K
rank =2n—p
0 B7E

or, alternatively, .

E —-A+BK

rank =2n—-p
0 E

where p is the rank deficiency of E.

Proof. The closed loop pole structure at infinity is isomorphic to the zero structure at
infinity of Gx*(s). Employing the test for the absence of infinite zeros stated in theorem
(3.4.1) leads to the following condition for the closed loop system to be proper, namely
that

=2n —p,

BlE —-B 1A+ K
rank
0 BE

Since

B-E —-B-'A+K] B-'[E —-A+BK
0 B-lE B 0 E

and B is of full rank, this condition is equivalent to

E —-A+BK

=2n-p
0 E

rank [

as required. : O

When E = I and hence p = 0 (i.e. system is in regular state space form) the rank
conditions of theorem (7.3.2) are always satisfied. Thus, the closed loop system cannot
possess any infinite poles. This 15 in agreement with the result given by Rosenbrock and
Pugh [1974] which states that when constant output feedback is applied around a system
with a strictly proper transfer function matrix then the transfer function matrix of the
closed loop system will also be strictly proper.
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For the case where the closed loop system does possess infinite poles the closed loop
infinite pole structure can be investigated by considering the Toeplitz matrices associated
with such systems which, for the system described in theorem (7.3.2), are given by the

following.

T, Iy Iy I, Ty
--—I—u-ll--l--—u—-'n ------ 7 ------ ' ——————— l -----
B'E '!B'A+k! O } 0 | o0 |
t 1 ] ] . ]
------- L e e i bl
B‘E--B"A+Ki 0 i 0 i
| A, Lo - e - —--- |,
[} i 1
B'E |pla+kl O |
fas S I
_1 I-l 1
B'E '-B A+K!
oo _____.
[}
]
]
1
|
[
|

The effect of the feedback matrix K on the closed loop infinite pole structure can be
easily investigated since K is displayed in its complete form in the above structure. The
approach can therefore be adopted to examine, for instance, the effect of a particular
feedback matrix or to investigate, in a straightforward manner, the possible closed loop

infinite pole structures that can be assigned for a particular system of this form.
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§4. Bilinear transformation methods.

It was seen in chapter 3 that it is possible to investigate the infinite frequency structure
of a rational matrix by employing a bilinear transformation such that the infinite poles and
zeros are relocated at finite locations in the resultant matrix and can then be investigated
in the same way as the original finite poles and zeros. This approach can also be adopted in
the study of the pole placement problems and a discussion of such an approach is presented
in this section.

Consider the n x £ transfer function matrix G(s) with a right minimal factorisation
of the form

G(s) = N(s) D" (s) (7.4.1)

D(s) .
where N has column degrees ¢i, t = 1,2,...,4
s

Let
A(s) = diag [s,5%,...,5%]. (7.4.2)

Applying a bilinear transformation of the form

s=E a#0 (7.4.3)

p—o

transforms the point s = co to p = «. The transformed transfer function matrix G (B{_a)
is a rational matrix and a right minimal factorisation for G (#) can be immediately
deduced from a right minimal factorisation of G(s) as described by the following theorem.

(7.4.4) Theorem. Consider the rational transfer function matrix G(s) factorised as in
(7.4.1) and let A(s) be defined as in (7.4.2). Then, the transformed rational matrix
G (5% ) bas a right minimal factorisation of the form

o) = () a0-)] [p(:2) 20"

D{s
Proof. Apply the transformation (7.4.3) to the minimal basis !N( ;] so that
s

D(;;’—a) %-b(P)- A(-—’—)
N(;f—a) | N(p)] M7
D)) _,
“lim) P

where ij(;g:v),ji:ir (p) are polynomial matrices in p.
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Then,
B(r) =D (3%) AMp- )

Fp)=N (32) Ap - a)

so that N(p) ﬁ”l(p) N (;f;) Alp — a) A_l(p— a)D"'l (;%&,)

=¥ (52) 7 (%)

i
=6 (%) |
. D(p . .. [D@)] .
It now remains to show that | . forms a minimal basis, i.e. | . satisfies |
N(p) N(p) !
o D(p
(i) rank[,,( )]=£fora11p€C, ' ‘
N(p)
B .
(i1) rank i = £ where [ . } denotes the high order coefficient matrix with respect
he he

D
to the columns of [ .,(p)] .
N(p)

Take p = 8 where 8 # a then
[f’(ﬁ)] D (5%)

~ = AB—a) (7.4.5)
NOL | v (%)
D(s) |
and since N(s) is a minimal basis and A(S — a) has full rank it follows that (7.4.5) has
$ _ .

full rank for éll B#a Whenp=a
D(a) D
[ﬁ(a)] ) [N
which will have full rank since a # 0. Hence, condition (1) is satisfied.

For condition (ii), it follows that

D [

Ala)
he
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D(s) D(1) ' D
and since forms a minimal basis then has full rank and, hence, | .

N(s) N(1) N Jae
has full rank. Condition (ii) is thus satisfied to complete the proof. o

The result of theorem (7.4.4) leads to the following result concerning output feedback
around G(s).

(7.4.6) Theorem. Let a constant output feedback matrix X be applied to the trans-
fer function matrix factorised as in (7.4.1), followed by a bilinear transformation of the
form (7.4.3). Then, the resulting transfer function matrix is equivalent to the transfer

function matrix obtained by first employing the identical bilinear transformation and then

implementing the constant output feedback K.

Proof. Applying constant output feedback K around (7.4.1) results in the closed loop
system having transfer function matrix

Gr(s)= N(s)[D(s)+ K N(s)]‘1

) [D(s) + K N(s)
N{s)

] forms a minimal basis. Next, employ the bilinear transformation

s = 2. Then, by theorem (7.4.4) the matrix Gy (;—E;) may be factorised as

Gr (;E;;) = Ni(p) Dy (p)

where

Dy(p) = [D (525) + KN (%) ] Al - o),
Ni(p) = N (52) Alp - ).

Conversely, first apply the bilinear transformation s = ;f—a to G(s) so that, again by

theorem (7.4.4), G ( =2= )} may be factorised as
p—o

G (%) = Na(p) D (p)

where
Da(p) = D (525 ) Alp = ), (7.47)
Nao(p) =N (F—P-'a) Alp — ). (7.4.8)




—_———ﬁ

Dz(P)

Also, [
Na(p)

] forms a mmunal basis with column degrees ¢;, ¢ = 1,2,...,¢, so that |

when constant output feedback K is employed around G ( ) the closed loop tra.nsfer

function matrix G (;—f—;) is of the form

G’y ( ) Na(p)[D2(p) + K Nz(P)] —

Substituting the expressions for D,(p) and Na(p) from (7.4.7) and (7.4.8) results in
e (5)= () 10— o () -0 s M) 0 0)”
- 2) -1 {[o ) + 55 () -}

Hence, Gk (p_a) Gy ( ) asrequlrecl | | | 0O

The result of theorem (7.4.6) is of interest in determining the effect of output feedback
on the poles of a system. The result enables the system to be first transformed to one
where the poles are situated in more favourable locations before the effect of constant
output feedback is investigated. In particular for a system with a non-proper transfer
function matrix, i.e. a system that possesses infinite poles, a suitable transformation can
be employed so that the resulting system is proper, i.e. all the poles are located at finite
locations. The pole placement problem is therefore reduced to considering the influence of
output feedback on finite poles only.

This idea seemed appropriate for the general pole placement problem for generalised:
state space systems as described in chapter 6. Transforming the system into one with a
proper transfer function matrix would mean that the result given by Kucera and Zagalak
[1988] could then be applied and the general pole placement problem for both finite and
infinite poles would be solved. Unfortunately this argument breaks down in this case since
it might not be possible to realise the transformed system in the form [sE — A]7'B as
demonstrated by the following example.

(7.4.9) Example. Let

w107 R

Applying the bilinear transformation (7.4.3) results in

G(;_r_a)':[; “‘1’*]




G (-—2—-) can be realised in the form [pE — A]~!B then

p—o

[PE — A]G (;z—a) =B (7.4.10)

and if pE — A = [al(p) aZ(p)] :

B [b‘ bz] here ai(p) € R[p], the ring of
= where q; , the ring o
as(p) au(p) g ’

bs b

polynomials in the real field, : =1,2,3,4, and b; € ®, i = 1,2, 3,4, then (7.4.10) becomes

[al(P) —ai(p)%s + ﬂz(P)] [51 bz] A
= . (7.4.11)
as(p) —as(p)zE5 + as(p) bs by
From (7.4.11) ‘ _
ai(p)=5b  and —a1{p);E5 + ax(p) = ba.
which gives |

az(p) = by 4- 51.—2—"

p—a’
Now az(p) is a polynomial in p which implies by = 0, and hence a;(p) = 0. Similarly it
follows that b3 = 0 and a3(p) = 0. Thus, pE — A is singular so that G (;—E—;) can not be
realised in the form {pE — A]™'B. :

The result due to Kucera and Zagalak [ibid.] only holds for systems with transfer
function matrix of the form r[sE — A]™B so that if the transfer function matrix of the
transformed system cannot be realised in this manner it is not possible to solve the general
pole placement probiem in generalised state space systems using the above argument. De-
spite this the above approach has highlighted certain properties which might be exploited
in future investigations. For example, the reasoning could certainly be employed for the
case of a general open loop transfer function matrix and where the general pole placement
problem has been solved for the case where the closed loop transfer function matrix is
proper. |

The previous discussion raises the interesting problem of finding the set of rational
matrices, G(s), that can be realised in the form [sE — A]7'B. The properties of such a

realisation provide a partial solution to this problem, as described in the following theorem.

(7.4.12) Theorem. Consider the strongly controllable system with n x £ transfer function

matrix

G(s)=[sE - A]"'B (7.4.13)
where B has full rank. Then G(s) has no finite zeros.
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Proof. Without loss of generality assume that the system is represented in Kronecker
form. Then, since the system is strongly controllable, the factorisation (7.4.13) is a minimal
factorisation. Hence, the finite zeros of G(s) are given by the finite zeros of B. Now B is
a constant matrix which implies that it does not possess any finite zeros. Hence G(s) has

no finite zeros to complete the proof. 0

The result of theorem (7.4.12) provides an explanation as to why it is not possible
to realise certain transformed systems in the form [sE — A]"!B. If the original system
possesses an infinite zero then this zero will be relocated at a finite position under the
transformation. Thus, it follows from the result of theorem (7.4.12) that the transformed
system can not be realised as [sE— A]~! B in such cases. This explains why the transformed
system in example (7.4.9) could not be realised in the form [sE — A]~!B.

(7.4.14) Example. Consider again the matrix G(s) of example (7.4.9), i.e.
G(s) 1 —s
8) =
01

with a left minimal factorisation of the form

o e 1 s17'[1 0
(3)"[0 1} [0 1]

which indicates that G(s) possesses an infinite zero of degree 1. Under the transformation

(7.4.3), G(s) becomes
1 =z
O
0 1

A right minimal factorisation of & (—2—-) is given by

-

G(#)z[; Pipa] Lll pffx]_l

which indicates that G (;-E—;) has a zero at p = @, i.e. the infinite zero of G(s) has been
relocated at p = ¢ in the transformed matrix. Hence, by theorem (7.4.12), it is not possible
to realise G (;{—;) in the form [pE — A]~!B which confirms the earlier observation.

-]
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§5. Conclusions.

Three further approaches to the general pole placement problem have been discussed
in this chapter.

For generalised state space systems a two stage approach in which the infinite and finite
pole structures are assigned by two separate feedbacks was described in section 2. This
approach provided necessary and sufficient conditions for both the finite and infinite closed
loop pole structures by suitable interpretation of the result given by Rosenbrock and Rowe
[1970] for the general pole placement problem in the regular case and a result concerning
the assignment of the infinite pole structure presented in chapter 6. The conditions on the
finite and infinite pole structures are not directly related so the result does not provide
a complete solution to the problem. The deficiencies of this approach were highlighted
by means of a suitable example which demonstrated the importance of choosing the right
combination of feedbacks.

It was seen in chapter 3 how the infinite pole structure of a rational matrix can be
investigated by using the Laurent expansion about the point at infinity of that matrix. For
the problem of investigating the infinite pole structure of a closed loop system this method
was seen in section 3 to be of more relevance for individual systems rather than providing
a general solution. The approach provides a straightforward means of investigating the
effect of a certain feedback on the infinite pole structure in certain systems. In the case
of generalised state space systems with a non-singular transfer function matrix a new
- condition for testing whether the closed loop system is proper was presented.

The infinite pole structure of a rational matrix can also be investigated by employing
a bilinear transformation which relocates the infinite poles at finite locations. In section
4 it was shown how a minimal factorisation of a transformed rational matrix can be ob-
tained from a minimal factorisation of the original matrix. Further, the effect of constant
output feedback around a transformed transfer function matrix was seen to be equivalent
to first applying the constant feedback and then transforming the resulting transfer func-
tion matrix. These results enable the finite and infinite pole structures to be investigated
simultaneously. For systems with transfer function matrix G(s) = [sE — A]™'B it was
shown that the transformed system cannot always be realised in this form and hence the
general pole placement for both finite and infinite poles cannot be solved by interpreting
the result due to Kucera and Zagalak [1988].




Chapter 8. Conclusions.

The poles of a system essentially determine the dynamic response of the system with
the finite poles giving rise to exponential responses and the infinite poles giving rise to
impulsive responses.

The dynamic response of the system can be altered by relocating the poles using suit-
able feedback. The pole placement problem is concerned with investigating the conditions
under which these poles can be relocated. If in addition to the location the pole groupings
are also considered then the problem is referred to as the general pole placement problem.
Previous work on both the pole placement and general pole placement problem has mainly
concentrated on open loop systems that only possess finite poles or where all the poles of
the closed loop system are located at finite locations. The work presented in this thesis has
been concerned with considering the cases where either or both of the open loop and closed
loop systems may possess infinite poles as well as finite ones. In particular the specific case
of the general pole placement problem using constant gain feedback in generalised state
space systems has been investigated in this context.

The problem was first approached by considering the general pole placement problem
for the system formed by applying constant output feedback around an arbitrary transfer
function matrix. Exploiting the properties associated with a minimal factorisation of a
rational matrix enables both the finite and infinite pole structures to be investigated in a
straightforWard manner. This investigation gave rise to the results presented in chapter
4 which provide new necessary conditions for the placement of the finite pole structure
and the placement of the infinite pole structure but more importantly for the simultaneous
placement of the two structures. The conditions were given in terms of the right minimal
indices of the open loop transfer function matrix which are equivalent to the controllability
indices of the system if the transfer function matrix is proper or strictly proper. The results
therefore extend the work of Rosenbrock and Hayton [1978] who considered the general
pole placement problem for strictly proper systems using dynamic feedback to include the
case of non-proper systems under constant output feedback.

The results presented in chapter 4 were subsequently interpreted for the general pole
placement problem using constant generalised state feedback in generalised state space sys-
tems. The resulting necessary conditions for the simultaneous placement of both the finite
and infinite pole structures provide a generalisation of the necessary conditions presented
by Kucera and Zagalak [1988] who considered the case where all the closed loop poles are
placed at finite locations. The infinite pole structure was then further investigated to first
of all produce necessary conditions on the multiplicity of the closed loop poles. It was
shown that the possible multiplicity is related to the number of linearly independent last
position rows of B when the system is represented in Kronecker form. The result provides
an analogy to the condition that the possible multiplicity of the finite poles is related to
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the rank of B. The necessary conditions on the closed loop infinite pole‘ structure were
further strengthened by combining them with the earlier conditions on the simultaneous
assignment of both the finite and infinite pole structures. The resulting conditions were
shown to be also sufficient providing a complete characterisation of the achievable infinite
pole structures for the closed loop system. The results neatly complement the recent work
of Fahmy and Q’Reilly [1989] who considered the assignment of all the closed loop poles
at infinite locations. Indeed, when all the poles are placed at infinite locations the result
presented in chapter 6 provides a direct analogy to the result due to Kucera and Zagalak
{1988} for the case where all the poles are located at finite positions. The new necessary
conditions on the infinite pole structure were also seen to give rise to stronger necessary
conditions on the simultaneous placement of both finite and infinite pole structures. Ef-
forts to prove that these condition are also sufficient have been unsuccessful but equally it
has not been possible to find a suitable counter example. This indicates that these condi-
tions could well be sufficient or close to being sufficient. This provides an obvious area for
further research so that a necessary and sufficient condition for both the finite and infinite
pole structures can be obtained.

Certain necessary and sufficient conditions were in fact obtained for the above problem
by considering a two stage approach. The approach involved employing two separate
feedbacks in which the first feedback assigns the infinite structure followed at the second
stage by the finite structure. The subsequent necessary and sufficient conditions are given
in terms of the right minimal indices of the original system and the controllability indices
of the system formed as a result of applying the feedback. The controllability indices are in
fact dependent on the first choice of feedback so that the result is not satisfactory and the
solution cannot be regarded as being complete. The example accompanying this approach
though does throw light on the mechanism that lies behind the assignment of the poles
using constant generalised state feedback.

The other approaches to the general pole placement problem discussed here, although
not providing complete solutions, do provide further insights into the problem and possible
avenues for future work. The Toeplitz matrix approach is of value in considering the effect
of certain feedbacks on individual systems. In this respect the method gave rise to a simple
condition for a closed loop system to be proper. The bilinear transformation approach also
provides an alternative means of investigating the problem. The results presented in this
thesis can be used to extend existing results from the proper to the non-proper case. For
generalised state space systems with transfer function matrices of the form [sE — A]™!B
this does not follow and the reason for this failure was seen to highlight certain properties
of such systems.

Two areas which are crucial to the problems considered in this thesis namely the

infinite frequency structure of a rational matrix and the notions of controllability assoctated
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with generalised state space systems were also investigated. In chapter 3 the infinite
frequency structure of a rational matrix was considered. The results presented in this
chapter include a new condition to test for the absence of infinite zeros in a rational
matrix. For the case of polynomial matrices this test was seen to be a simpler test than
that presented by Hayton et ol [1988]. The infinite frequency structure of a polynomial
matrix was studied in detail and the relationships between the degrees of the minors and
the rank indices characterised. The accompanying results give rise to alternative means of
calculating certain characteristics of the system.

Chapter 5 discussed the notions of controllability associated with systems in gener-
alised state space form and concluded that there exists two main notions. New algebraic
conditions were presented for the two notions which together with previous results provide
an analogy to the algebraic conditions associated with the notion of controllability in reg-
ular state space systems presented by Rosenbrock [1970]. The polynomial system matrix
approach was seen to provide a means of treating these results in a unified manner. The
role of the non-dynamic variables was discussed and illustrated by introducing a new time
domain definition. Finally new necessary conditions were presented for a system to be

controllable under each notion.
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Infinite-frequency structure and a certain matrix Laurent expansion

A. C. PUGH{, E. R. L. JONESt, ©. DEMIANCZUK? and G. E.
HAYTON} '

A method for determining the Smith-McMillan form at infinity of a rational matrix
is derived by considering the Laurent expansion at infinity of the matrix. This
method is used to provide a new test for the absence of infinite zeros in a rational
matrix and a new formula for caleulating the highest degree among the largest
minors of a polynomial matrix.

1. Introduction

Van Dooren et al. (1979) presented a method for determining the
Smith—-McMillan form of a rational matrix from its Laurent expansion about a
particular finite point s, e C. Alternatively the technique may be employed to
determine the finite pole and zero structure of that matrix. Van Dooren et al. indicated
how the theory might be modified to produce the infinite pole and zero structure of a
rational matrix. However, this was not carried through completely since the concept
of Smith—McMillan form at infinity was not available.

In this paper this simple modification is undertaken and a methed is thereby
developed that determines the infinite frequency structure of any rational matrix. The
method is based on constructing the Smith-McMillan form at infinity (Vardulakis
et al. 1982) of the given matrix from its Laurent expansion about the point at infinity.
This technique proves to be fundamental to the study of the infinite-frequency
structure of a rational matrix. In §§4, 5 and 6 three illustrations of this claim are
presented. The first illustrates how the relationship between the decoupling invariants
and the infinite zero structure of a decouplable system ( Vardulakis 1980, Descusse and
Dion 1982} can be established in a particularly simple fashion. The second illustration
provides a new and computationally attractive test for the absence of infinite zeros,
while the third illustration provides a new formula for calculating the highest degree
occurring among the largest minors of a polynomial matrix.

2. The Smith~-McMillan form at infinity

Vardulakis et al. (1982) introduced the concept of the Smith—McMillan form at
infinity of a rational matrix. The main definitions are briefly presented here. In the
following R{s] denotes the ring of polynomials in the indeterminate s with coefficients
in R, while R(s) denotes the associated field of rational functions. Let G(s) e R{s)™*".
Then we make the following definitions.
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1794 A. C. Pugh et al.

Definition 1
G(s) will be called proper if
lim G(s)

- amd-]

exists. If the limit is zero then G(s) will be called strictly proper, while if this limit is
non-zero G(s) will be called exactly proper.

Let R, (s) denote the ring of proper rational functions.

Definition 2
The m x m rational matrix W(s) € R%*™(s) is said to be biproper if and only if
(1 lim W(s) = W,eR"*"
=0
(ii) det W, 50

where det { - ) denotes the determinant of the indicated matrix.

Definition 3
The m x I rational matrices G,(s) and G,(s) are said to be equivalent at infinity if

there exist biproper matrices W(s) € R%*™(s), V(s) € Ry '(s) such that

W(s)G1(s)V(s) = Gal(s)

Since W(s) and V(s) are biproper, it can be seen from Definition 2 that W(s) and
¥(s) possess neither poles nor zeros at infinity. It therefore follows from this that G, (s)
and G,(s) have an identical pole-zero structure at infinity. A canonical form for a
rational matrix under the equivalence relation of Definition 3 is its Smith-McMillan
form at infinity, S (G).

Lemma 1

Let G(s) € R(s)™** with rank G(s) = r. Then there exist biproper rational matrices
Wi(s} and V(s) such that '

W(s)G(s)V(s) = $°(G) (1)
where
(Q(S) Om.l—m] U > m)
5=(G) = Q(S)( (1=m)
Q(s)
l:om_l.m] (I<m)
‘and
Q(s) = diag {s*, s7,..., 5", 0,0, ..., 0} (2)

with ;202 . 2602024, = ... 2¢,. S¥(G) is called the Smith—McMillan
form at infinity of G(s).

Using the Smith-McMillan form at infinity of G(s), the infinite poles and zeros of
G(s) may be defined as follows.
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Definition 4
If p, is the number of g, in (2) with g; > 0 then G(s) has p,, poles at infinity, each

having degree g;. Similarly, if z_, is the number of g; in (2) with ¢, < 0 then G(s) has z_,
zeros at infinity, each having degree |g;].

This definition is equivalent to the earlier definitions of infinite poles and zeros and
their degrees given by Verghese (1978) and Pugh and Ratcliffe (1979).

With reference to the Smith—-McMillan form at infinity of G(s), we make the
following definition.

" Definition 5

-

i =integer
S”(i)é a ger)
q;+ (i#integer)

where i+ denotes the upwards-rounded version of i

Since the g; are ordered in a decreasing manner, it follows that S*(i) is a
decreasing staircase, as shown in Fig. 1. $°(i) has been defined in such a way that it
contains all the infinite-frequency information concerning G(s) in a non-redundant
way. - ‘

5%°()
A
q, —
ql‘_
LL -l r
T 1] =3 l ! -V- l
12 LL :
. :
‘!. [
L‘
b |
9. !

Figure 1,

3. The Laurent expansion and Toeplitz matrices of a rational matrix

Van Dooren et al. {1979) used the Laurent expansion of G(s) about a finite point
and the corresponding Toeplitz matrices to determine the Smith~McMillan form at
5o of G(s). In an analogous way the Smith—McMillan form at infinity of G(s) can be
determined by considering the Laurent expansion at infinity of G{s) and the
corresponding Toeplitz matrices.
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Suppose that the Laurent expansion at infinity of G(s) is of the form
1
Gis)= Y, G
i="w

=G;S!+ Gl_]_s!-l + ... + G°+ G_ls‘l + ...
The Toeplitz matrices at infinity, T, (G), associated with G(s) are defined as
G G, ... G

T°(G) = R RS 3)

The information concerning the rank of the T,*(G) will determine the rank indices
at infinity of G(s), which are defined in the following manner.

Definition 6
The rank indices at infinity of G(s) are defined as
p2(6) = rank [°(G)] — rank [T12,(G)), i= =l ~I+1,... (4)
where it is assumed that rank [T%_,(G}]=0.

It is now shown that these rank indices at infinity are invariant under the
transformation of equivalence at infinity given by Definition 3.

Theorem 1

Let G(s) and H(s) be two m x [ rational matrices. If G(s) and H(s) are equivalent at
infinity then they have the same rank indices at infinity. '

Proof

Since G(s) and H(s) are equivalent at infinity, there exist biproper rational matrices
M(s) and N(s) of dimensions m x m and [ x [ respectively such that

M(35)G(s)N(s) = H{(s) (5)

Since M(s) and N(s) are biproper at infinity, they have no infinite poles or zeros, and
so their Laurent expansions about the point at infinity take the forms

M) =Mo+M_ ;s '+ M_,57%+ ..
N(S)=N0+N..1_s_l+N_2$_2+ var

where M, = M(s = o0) and Ny = N(s = o0) are non-singular. Expand G(s) and H(s) in
terms of their Laurent series at infinity:

Gs)= 3 G
I=—w

H(s)= i H;¢

f= o0
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Infinite-frequency structure and matrix Laurent expansion 1797

On substituting these expressions into (5) and comparing coefficients of s, the
following relationship is obtained:

Mo LY *sw M—,_‘ GI ra e G-.i No sy LEY) N—I—I

(6)
H,
where | =min (g, h). Since M, and N, are non-singular, it follows from (6) that the

Toeplitz matrices built on M(s) and N(s) are also non-singular. Therefore it follows
from (5) that

rank [T;7(G)] = rank [T;*(H}]

as required. O

As a consequence of the above result, it follows that a rational matrix G(s) has the
same rank indices at infinity as its Smith—McMillan form at infinity, §°(G). Therefore
the properties of the rank indices at infinity, p, of G(s} can be deduced from the
Toeplitz matrices at infinity of $*(G), i.e. 7°(8¥(G)). These Toeplitz matrices have a
particularly simple structure because of the special form of $*(G}. Specifically, note
that

(i) all the rows of ;™ (S (G)) are either zero or have one non-zero entry (a ‘one’);
(ii) the non-zero rows of T;*(5®(G)) are linearly independent.

From the second property it follows that
pi° = rank [T;°(5%(G))] —rank [T;2,(S*(G))]
=rank [S(G) Si-1(G) ... 5_(G)] ©)

" where S;(G) is the jth coefficient in the Laurent expansion at infinity of
S$®(G). Further, it can be seen, wusing the above properties,
that rank [$,(G} S,-.(G) ... S_i(G)] is equal to the number of ones in
[S{(G) 5,-4(G) ... S§.i(G)], which in turn equals the number of powers g; greater
than or equal to { in $°(G). It should also be noted that, owing to the properties of the
s, rank [S,(G)  §,-,(G) ... S_,{G)] will at some stage equal r, the normal rank of
G(s), but rank [S,(G) §,-4{G) ... S.,(G)] cannot exceed r.

Thus a direct relationship between the rank indices at infinity of G(s) and its
Smith—McMillan form at infinity has been established, which makes it possible to
deduce the Smith-McMillan form at infinity of G(s) from the rank differences of its
Toeplitz matrices at infinity. To derive this relationship, define the rank index function
at infinity R™(i), associated with the rank indices at infinity p{®, as follows.
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Definition 7

p® (i=integer)

Re(i)=4"" ,

p2  (i=non-integer)

where i— is the downward-rounded version of i.
Again, using (7), it is seen that R®(i) is an increasing staircase, as shown in Fig, 2.

The R*(i) staircase is in fact a 90° rotation of the $(i) staircase defined earlier, and

so the Smith—McMillan form at infinity of G(s) can be deduced directly from the
R=({i) staircase as follows.

Figure 2,

Theorem 2

If, in the notation of Lemma 1, S*(G) denotes the Smith-McMillan form of the
rational matrix G(s), and p® denote the rank indices of G(s) constructed on the basis
of its Laurent expansion about the point at infinity, then

$*(G) & block diag {Q/(s)} (8)
where Q;(s) is the (p° — p2 {) % (p{® — p{=,) matrix given by
s 0 .00
0 s ... 0
IO ()
0 o0 .. s

fori=—I —l+1,...,andif p{* — p2 ; = 0 then the corresponding matrix Q,(s) is not
present in (8).

In particular the pole/zero structure at infinity may then be deduced as follows.
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Corollary 1
If, in Theorem 2, p{® — p, #0 then

(i) G(s) will have p{® — p2, poles at infinity of degree }i| if i < 0;
(ii) G(s) will have p{® — pi2 | zeros at infinity of degree i if i > (.

4. Decoupling

A system is said to be decoupled when each output is controlled by a unique single
input. A system can be decoupled by employing state feedback around the system. An
algebraic condition for a system to be decoupled in this way was given by Falb and
Wolovich (1967). Consider the system

x(t) = Ax(t) + Bu(t)
o) =Cx(1)

where x(f) is an n-vector of internal states, u(f) an m-vector of control inputs and y(r)
an m-vector of outputs, and 4, B and C are constant matrices of appropriate
dimensions. Let the state feedback around (10) be given as

u(t) = Fx{(t) + Gw(1) (1 lj

where F is a constant m X n matrix and G is a non-singular constant m x m matrix.

(10)

Definition 8
Let d,,d,,...,d, be given by

dy=min {j:C,A’B#£0,j=0,1,...,n~1}
or
di=n—1 ifC;A/B=0 forallj

where C' is the ith row of C. Then the powers d;, i=1,...,m, are known as the
decoupling invariants of the system.

Definition 9
Define B* as
C,A"B
. C2 AdzB '
B*= . (12)
C,AB

Then B* is known as the decouplability marrix of the system.

The Falb and Wolovich (1967) result can be expressed as follows.

Lemma 2
If B* is the decouplability matrix of the system {10) then there exists a pair of
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matrices F and G for (11) that decouple the system by state feedback if and only if
det B* 0.

For decouplable systems the decoupling invariants have been shown to be closely
related to the orders.of the infinite zeros of the system. Using the Toeplitz-matrix
approach these results can be derived in a direct manner, as follows.

Theorem 3 (Vardulakis 1980, Descusse and Dion 1982)
The system represented by (10) is decouplable if and only if the associated transfer-

function matrix G(s) has m infinite zeros each of order w,=d;+ 1,i=1, 2, ..., m, where -

the d; are the decoupling invariants of the system,

Proof

First assume that the system is decouplable. Then the decouplability matrix B* is
non-singular, The transfer-function matrix G(s) is given by

G(s)=C[sI—A]"'B
which can be expanded as
' _CB CAB CA*B

Gl ==+ =g+~ + . (13)

Let the first non-zero matrix, CA/~! B say, in the series expansion of G(s) have k non-
zero rows. Hence there are k decoupling invariants of value j— 1. The first non-zero
Toeplitz matrix

T =[{CA'"'B]

will therefore have rank k, which indicates the presence of k infinite zeros of order j.
Now C;4%B gives the first non-zero row coefficient of row i in the series expansion
(13). Thus the rank index at infinity of the Toeplitz matrices can only increase once a
new row of the decouplability matrix B* appears in the Toeplitz matrix, Now, since
the rows of B* are linearly independent and because of the special structure of the
Toeplitz matrix, it follows that for every non-zero row of B* that corresponds to a
decoupling invariant of value, say, I —1 there is an increase in the rank index at
infinity of the Toeplitz matrix indicating an infinite zero of order /.

Now, for the converse, assume that G(s) has m infinite zeros each of order w;=
d+1,i=1,2,...,m Then the change in the rank indices at infinity associated with a
particular infinite zero will be caused by the introduction into the Toeplitz matrix T,
of the first non-zero row coefficient C,4%*! B for some row ! from the expansion (13).
From the structure of the Toeplitz matrices it follows that for T, to have the
appropriate rank, C;A%*! B must be linearly independent of the other first non-zero

_row coefficient already present in T;®. These rows constitute the decouplability
matrix, which is therefore non-singular, indicating the system is decouplable as
required. - (]

The above theorem was originally presented in two separate parts. The necessity
was established by Vardulakis (1980) using algebraic methods, while the sufficiency
was proven by Descusse and Dion (1982) using geometric ideas.

It can be seen that the Toeplitz-matrix approach provides an alternative proof that
unifies the two separate results in a much clearer and simpler way.
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5, A test for the absence of infinite zeros in a rational matrix

The investigation of the changes in the rank indices of the Toeplitz matrices of a
rational matrix provides a method of determining the McMillan structure of the
infinite poles and zeros of the matrix. The process will terminate, i.e. all the infinite
poles and zeros will have been found, when

o2 =r=rank [G(s}] {14)

for some k. This is because, as noted earlier, the rank difference of two successive
Toeplitz matrices cannot exceed r, which means that if (14) holds then

p=r =120, (15)
Thu_s in this case
Pri~Piri-1=0, i=1,2,..

indicating that the search is complete.

This observation leads to the following test for the absence of infinite zeros in a
rational matrix.

Theorem 4

The m x I rational matrix G(s) of normal rank r will possess no infinite zeros if and
only if

rank [T;°(G)] =rank [T&(G)] +r (16)
If G{s) is taken as a matrix polynomial P(s) whose highest power of s is n, ie.

P(S)=PHSN+P,,..ISH_1+...+P18+P0 (17)
where P, Py, ..., P, are constant matrices and P, # 0, then

P, P,y .. P_y P_y]
. Py
T5(P) = PR (18)
0 ., Paoy
- P" -

Now the rank of T=,(P) is equal to é( P(s)), the McMillan degree of P(s) (Pugh 1976).
This leads to the following corollary to Theorem 4.

Corollary 1

The m x I polynomial matrix P(s) of normal rank r will possess no infinite zeros if
and only if

rank [T°(P)} =6 +r (19)
where & is the McMillan degree of P(s).

Hayton et al. (1988) present a necessary and sufficient condition for the absence of
infinite zeros in a polynomial matrix that involves investigating the degree of all the
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r x r minors of P(s). The above condition therefore provides a simpler test for the
absence of infinite zeros in a polynomial matrix, since it is generally easier to calculate
the rank of T5°(P) than all the r x r minors. In both tests the McMillan degree of P(s)
must be calculated, although this again merely involves the computation of the rank
of a constant matrix, ie. T5°(P).

6. Toeplitz structure and the minors of a polynomial matrix

For polynomial matrices Bosgra and Van der Weiden (1981) defined the infinite
poles and zeros in terms of the highest degrees of minors of a certain order,
Specifically, let P(s) be an m x I polynomial matrix of normal rank r, and let d; be the
highest degree occurring among the { x i minors of P(s). Let & denote the largest of the
;,i=1,2,...,r; then § is of course the McMillan degree of P(s). Let k, {respectively
k,) denote the smallest (respectively largest) order of minors for which 8;,=9.

Definition 10
With the above notation, P(s) is said to have k, infinite poles with degrees
01,82—901,...,6—0,_,, and r—k, infinite zeros with degrees 6—8,41»

6,‘2.'.1 - 61‘1.‘.2, arry 5’_1 - 6'..

This definition has been shown by Bosgra and Van der Weiden (1981) and Hayton
et al. (1988) to be entirely consistent with the definition of infinite poles and zeros and
their degrees given by Pugh and Ratcliffe (1979), and hence with that obtained in
Definition 4 via the Smith—McMillan form at infinity. It therefore follows that there
exists a relationship between the §; as defined above and the rank indices pr° as defined
in § 3. Although this relationship is difficult to characterize in general, in two cases the
characterization may be written down simply and exploited quite usefully.

Theorem 5 :

Let P(s) be an m x[ polynomial matrix of normal rank r and let n denote
the highest power of s occurring in elements of P(s). Suppose that the rank indices o
(f=—n,—n+1,..,=10,1,..., h) of P(s) are known, where h is the smallest integer
for which )

Py —Pr-1#0, pP—p2,=0 VYi>h

If § denotes the McMillan degree of P(s) and 5, the highest degree amongst all r x r
minors of P(s) then

-1

5= hz_ o (20)
h—1

S, = i=Z_”;o.f“’—hp;.“’ (21)

Proof

Let 3; be the highest degree for i x i minors of P(s) and let k, and k, be a; defined
previously. Let p,, (respectively z,) denote the total number of poles (respectively
zeros) at infinity counted according to muitiplicity and degree. Now, if P is computed
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from the &; then from Definition 10

ky
Po = i)=:1 (51—51-:) (50&0)

ie. (22)
pcﬁ = 61‘1 = 6

by definition of k,. On the other hand, if p, is computed from the p® then from
Corollary 1 of Theorem 2

o= T (pP—p )l (0% 20)

=(p%, = pa- I (PZney — P2 )= 1) + .. +(p2, — pZ3) {23)
ie.
-1
Po= i_Z‘ 2

Equations (22) and (23) together then yield (20} as required.
Proceeding similarly with the computation of z,, gives from the §; that

r=1
2= Z (5£—5i+1)=5h—5r (24)

i=kz
Alternatively, from the p{°,

h
Zp= EZI (p? —pi2 )i
=(p? —p?) + ApF — p¥) + . +(h=1){pi s — pi-2) + hpi — pi 1)
k=1
=hp? — 2, P° , (25

i=0

Equating (24) and (25) gives

h~=1
&= Oy = :Z'o pi® — hoy - (26)
However, by the definition of k,,
5'(2 = 5
and, in view of (20), the relationship (26) reduces to {21), as required. B

The relationships in the above theorem can be refined further if instead of the rank
indices p® the actual ranks of the Toeplitz matrices formed from P(s) are used.

Corollary 1

Let T2(P), i= —n, —n+ 1,..., denote the successive Toeplitz matrices formed
from P(s) viewed as a matrix polynomial. Then

é =rank [T2(P)] 2N
and
8, =(h+ 1) rank [T,2(P)] — hrank [T,*(P)] (28)
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Proof
This follows directly from (20} and (21) on noting that

pi° =rank [T;*(P)] — rank [T;2,(P)]
a

The result (27) is of course well known (Pugh 1976) and provides a simple
computational scheme for evaluating the McMillan degree of a polynomial matrix.
The result (28) is new and could be used computationally to evaluate the highest
degree of r x r minors of P(s). There is, however, one difficulty surrounding the
formula (28), and that lies in the requirement that k be known a priori, There is thus in
(28) more than just a requirement that the ranks of two successive Toeplitz matrices
be known.

Corollary 2 _
If P(s) is a square non-singular matrix then
k=1
deg [det P(s)] = ;—Z- pi° ~ hp? (29)
= (h + 1) rank [ 7,2 ((P)] — h rank [T;(P)] (30
Proof
If P(s) is square then m=1I, and since it is non-singular then r=m. Thus

d, = deg [det P(s)] and the result follows. : |

The above result suggests a method by which the degree of a determinant may be
computed without recourse to evaluation of the determinant itself. The need for such a
method can be illustrated by considering the insertion of output feedback as
represented by the constant matrix F around the open-loop transfer-function matrix
G(s). If D(s) denotes the non-strictly-proper part of G(s) {i.e. the polynomial part of
G(s)) then a necessary and sufficient condition for the closed loop system to be proper
is (Pugh 1984)

deg {det [J + FD(s)]} = §(D(s)) (3D

A result of the form of Corollary 2 is clearly required in order to evaluate the left-hand
side of this relationship. Note that on the right-hand side of (31), d(D(s)) denotes the
McMillan degree of D(s), and this may be evaluated quite readily from (27) of
Corollary 1,

7. Conclusions

In this paper the theory described by Van Dooren et al. (1979) has been modified
and extended to produce a method of determining the infinite pole and zero structure
of a rational matrix from its Laurent expansion about the point at infinity. In fact, taken
together with the numerical refinements suggested by Van Dooren et al. {1979), a neat
and numerically efficient algorithm is obtained (Demianczuk et al. 1986).

This particular method of identifying the infinite pole/zero structure is neat and
quite powerful, as is evidenced in § 4, where the relationship between the degrees of the
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infinite zeros and the decoupling invariants of a decouplable system has been obtained
in a most straightforward and much simpler way { Vardulakis 1980, Descusse and Dion
1982). In § 5 the theory has been utilized to produce a new and computationally
attractive test for the absence of infinite zeros in a rational matrix. For polynomial
matrices this results in a test that is more easily implementable than that given
previously (Pugh and Ratcliffe 1979, Hayton et al. 1988).

Finally, in § 6 2 new method for computing the highest degree of r x r minors of a
polynomial matrix of normal rank r has been suggested by the Toeplitz-matrix
approach.
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Necessary conditions for the general pole placement problem via
constant output feedback

E. R. L. JONESt, A. C. PUGHY and G. E. HAYTON}

A necessary condition is obtained for the simultaneous placement of 2 finite pole
structure and an infinite pole structure of a linear system using constant output
feedback. The result can be applied to the general pole placement problem in
singular systems using constant generalized state feedback.

1. Introduction .

The poles of a system play a fundamental role in determining the dynamical
response of that system. How these poles can be relocated, by using suitable feedback,
so that the dynamics of the system may be altered to ensure that the system responds
in a particular desired manner has therefore long been of interest. The feedback under
consideration in this paper is constant output feedback,

The conventional pele-assignment problem is concerned with the allocation of
each pole on an individual basis. A more general version of this, referred to as the
general pole-assignment problem, seeks to assign the pole structure in a more com-
plete way by assigning the invariant polynomial structure to the particular matrix
that determines the pole structure of the system.

In this paper the systems under consideration are assumed to be linear time-
invariant with a transfer function that may be non-proper, i.. they possess infinite
poles. Thus the infinite pole structure must be assigned in addition to the finite pole
structure, thus adding a further dimension to the problem. A necessary condition is
obtained which provides an explanation as to why certain pole structures cannot be
assigned to certain systems. ,

The above necessary condition can be extended to the general pole-assignment
problem in singular systems using constant generalized state variable feedback, where
it is assumed that the output is equal to the state of the system. A particular case of
this problem was considered by Kucera and Zagalak (1988), who obtained necessary
and sufficient conditions when the resulting closed-loop system is proper, i.e. possesses
no infinite poles. The necessary conditions presented in this paper reduce to the
necessary conditions obtained by Kucera and Zagalak in the case where the closed-
loop system is proper.

2. Preliminaries
Consider a system with an m x | rational transfer function matrix G(s). Let G(s)
be factorised as

G(s) = Ny(s)D1 '(s) (1)
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Dy(s} : @
Ny(s)
constitutes a minimal basis (Forney 1975). Let (1) be referred to as a right minimal
factorization of G(s). This minimal factorization provides a straightforward simulta-

neous characterization of the finite and infinite pole and zero structure of G(s). In
particular, the finite and infinite pole structure of G(s) is given by the following lemma.

where

Le;nma 1 , . :
Let the degree of the ith column of (2) be denoted by ¢; (i =1, 2, ..., 1) and define
A R diag [ 52 ... &1 3

Then the finite pole structure of G(s) corresponds to the finite zero structure of Dy(s)
and the infinjte pole structure of G(s) corresponds to the zero structure at w =0 of
the polynomial matrix

D,(1/w)A(w)

Proof -
For the proof see Pugh and Ratcliffe (1930}

Let G(s) denote the transfer function matrix of the system formed when constant
output feedback is applied to the original system as shown in Fig, I, Then G(s) is
given by

Gufs) = G(s)[I + LG(s)]?

where it is assumed that |I + LG(s)| # 0. The right minimal factorization of Gy(s) is
closely related to the right minimal factorization of G(s), as is shown by the following
lemma.

- -— G(s) ——n

Figure 1.

Lemma 2

If G,(s) is the resulting closed-loop transfer function matrix obtained by applying
a constant output feedback L around G{s), then

Gi(s) = Ny(s)Dy(s) + LN, (s)] 7! (4)
is a right minimal factorization of G,(s). Further, the column degrees of
Di(s)+ LN,(s)
[ Ny(s) ]
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are identical to the column degrees of
[D r.(s)]
Nifs)
Proof
For the proof see Pugh and Ratcliffe (1980)

A straightforward right minimal factorization of G,(s) therefore exists and, using
the result of Lemma 1, the finite and infinite pole structure of the closed- loop system
under constant output feedback can be investigated sxmultaneously This is under-
taken in the next section.

In a similar way, for a left minimal factorization of G(s)

G(s)= D3 (s)N,(s) (5)
where [Dz(s) N,(s)] forms a minimal basis with row degrees'r,.(i =1,2,..,m). Let
Aj(s)2 diag[s™ s™ ... s™]. Analogousresults of Lemmas 1 and 2, with appropri-

ate modifictions then follow for this factorization. The matrices D,(s) and D,(s) are
extended unimodular equivalent {(Pugh and Shelton 1978) so that their non-unit
invariant polynomials are identical. Similarly D,(1/w)A (w) and A,(w)D,(1/w) are also
extended unimodular equivalent. It therefore follows that the pole structure of G(s)
can be deduced by considering either factorization,

3. Necessary conditions for genera! pole-assignment problem by output feedback

Consider the m x I transfer function matrix G(s) factorized as in (1). From the
results in the previous section, the finite and infinite pole structure of the closed-loop
system, factorized as in (4), is given by the zero structure of D,(s) + LN, (s} and the zero
structure at w= 0 of [D,{1/w) + LN {1/w)]JA(w), respectively. The zero structures of
Dy(s) + LN (5) and [D(1/w)+ LN (1/w)]A,(w) in turn are given by their respective
sets of invariant polynomials. Let the invariant polynomials of D,(s) + LN ,(s) be a,(s),
ot5(8), ..., oy(s), where

(x,-(s)lo:i_l(s), i=2, 3, ...,I (6)
and

degeay(s)=a;,, i=12,...,1 )]

Let the invariant polynomials of [D;(1/w) + LN, (1/w)]A (W) be B,(w), B2(W),, ..., Bi(w)
where

BiwBi— (w), i=23,..,1 | (8)

The zero structure at w=0 of [Dl(llw) + LN (1/w)]A(w) is gwen by factors of the
form w” of B,(w)(b;>0),i=1,2,..., 1. Hence

by <deg (Bi(w)), i=1,2,...,1 9

It therefore follows from Lemma 1 that the finite and infinite pole structure of the
closed-loop transfer function matrix can be described in terms of the g;s and b;s.
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Theorem 1
For there to exist a constant matrix L such that D,(s)+ LN,(s) has invariant
polynomials &,(s), &5 (s), ..., a{s) it is necessary that

Proof

By definition oy q(s)otgsz(s) ... a(s) is the greatest common divisor of all
(I-k) x (I-k) minors in D,(s) + LN, (s)for k=0,1,...,1—=1. Letg;,i=1,2,...,1 be the
column degrees of D,(s)+ LN,(s) taken to correspond with the ¢;. Thus ¢ <¢,
i=1,..,1L ‘ :

It follows that

! 1

deg [+ 1 (ks 2(8) ... wfsi] < Z &< Z ¢, k=0,1,...,1

{=k+1 i=k+1

ie.

I i

Y &< Y ¢, k=0,1,...,1-1

i=k+1 i=k+1
as required. O
A similar necessary condition for the degrees of the infinite zeros can be given.

Theorem 2

Let §,(w), B2(W), ...., B,(w) be monic polynomials with real coefficients that satisfy
(7) and let

Bw) = whBi(w), i=1,2,...,1 (10)
where 8;(0) 0, and take A,(w) to be diag [w™* w™ ... w"]. Then, for there to exist
a constant matrix L such that [D,(1/w)+ LN(1/w)]JA,(w) has invariant polynomials

Bi(w), B2(w), ..., Bi(w), it is necessary that
! 1

Y b Y e, k=0,1,..,01-1
i +

Proof

By definition B, ;(wW)Bx+2(W) ... Bi(w) is the greatest common divisor of all
(I-k) x (I-k) minors in [D,(1/w)+ LN (1/w)]A,(w) for k=0,1,...,I1—1 Let f;, i=
1,2,...,! be the column degrees of [D,(1/w) + LN (1/w)]A,(w) taken to correspond
with the ¢;, so that fi< ¢, i=1, ..., L

Then it follows that

t

1
deg [Be+ iW)Bi s 2(W) ... Bi(w)] < Z fig Z ¢, i=0,1,...,1-1

frek+1 I=k+1

Y, deg (Bi(w) < i e, k=0,1,...,1-1

!
i=k+1 fmk+1
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and from (9) and (10)

! )

Y b< Y e k=0,1,..1-1

E=k+] {=k+1

as required. O

The results of Theorems 1 and 2 can be most conveniently illustrated by means
of a step function. Define

]
Y ¢ k=0,1,..,1—1

¢; k=non-integer
J=k-+1

where k_ is the downward rounded verston of j. '

Pictorially it can be seen that C, is a decreasing staircase, as illustrated by Fig. 2.
It therefore follows, from Theorems 1 and 2, that the a;, b; must be chosen such that
the staircases corresponding t0 Y {ex+1:, 2 imp+1bp k=0,1,...,1~1 lie below the
staircase given by Fig. 2. Note that if the ¢; had been ordered in any other way the
corresponding staircase would either lie on or above the staircase pictured above.
Thus, the ordering ¢, > ¢5 = ... 2 ¢, can be regarded as a minimal ordering in the
sense that the associated staircase provides the lowest, of this type, of upper bound
for the ¥.a;, 2 b;. .

The theorems given above present a necessary condition for the placement of 2
finite pole structure and a separate necessary condition for the placement of an
infinite pole structure. The main theorem of this paper presents a necessary condition
for the simultaneous placement of a given finite pole structure and a given infinite
pole structure. This will enable an explanation to be given as to-why certain pole
structures cannot be assigned to certain systems.

1 2 2-2 212

Figure 2.

Theorem 3
For there to exist a constant matrix L such that D,(s)+ LN,(s) has invariant
polynomials a,(s), a5(s), ..., o(s) and [D,{1/w)+ LN (1/w)JA,(w) to have invariant
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polynomials 8,(w), B, (w), ..., B;(w) it is necessary that

! {

i . .
a+ Y b< Y o k=0,1,..,1-1 (11

i=k+1 i=k+1 i=k+1

with equality holding when

Proof

By definition a;(s)at;— 1 (5) ... % —y+4(5) is the greatest common divisor of all k x k
minors in Dy(s) + LN,(s). Let

i !
nf Y a and pm& Y ¢, k=12..,1
[=l-k+} I=]=-k+1

Then
a,(S)(xl_l(S) .es 0(,_,,+1(S)= t”kspk'l‘ e HHS+ to

where v, <y, and ¢t,, #0.
Now each k x k minor of D,(1/w) + LN (1/w) will be of the form

(1wt (W) .. oy (1)1 ) | (12)

for some polynomial f(s). Further, among ail k x k minors the corresponding polyno-
mials f(s) are coprime for finite s, Thus, all k£ x k minors of [D (1/w) + LN (1/w)]JA (W)
will be of the form

(1 /wag- 1 (/W) oo o i 1 (1w)f(1 /w)w" (13)

where 1 2 ;.
The greatest common divisor of all k x k minors in [D,{1/w) + LN (1/w)]A (w)
will therefore be

a(Hwhey -1 (1/w) ... “1-k+1(1/W)Wu;‘
where
< (14)
ie. '
Lo L) e 8y(1/) o+ Lo lowhh == £, whh™% o | g k1 g i
= whTOR L, W W]

where 1, 2 v, since o (1/whey - 1 (1/w) ... 04— e 1(1/wW)w** must be a polynomial. It there-
fore follows by definition that

bi+biy+ o b =~

ie.
]

bi+ Z a = i,

i={-k+1 imf=k+}
Hence, from (14)
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When k=1,f(1/w)=1in(12) and =y, in (13). This means that the greatest common
divisor of all I x [ minors in [D,(1/w)+ LN (1/w)] is of the form

W ()
where ¢(w) has no factors of the form w¥, a > 0. Hence
Z b,-i-!;a = E ¢

as required. a

As was noted in § 2, the pole structure of G(s) could as easily be investigated by
considering a left minimal factorization of G(s) as represented by (5). Thus, combining
the necessary condition from each factorization leads to a stronger necessary condi-
tion. Let t; = min (m, I), t; = max (m, I} and let «,(s), «(s), ..., &, (s) be monic polyno-
mials such that

o($)|e-1(5), i=2,3,...,14
dega(s)=a;, i=12, ..t
Alﬁo, let B,(w), B2(w), ..., B, (w} be monic polynomials such that
BiwliBilw), i=2,3,...,¢,

and where
ﬁi’(w) = wb'ﬁi{(w): [= 19 29 ey tl.
with Bj(0)#0. Let A {s)=diag [s" s .. 7] and A,fs)=diag[s" s
s™].
Combining the necessary condition obtained by using a right minimal factoriza-

tion with the necessary condition obtained by using the left mmlmal factorization
results in a much tighter necessary condition.

Theorem 4

Consider an m x I rational transfer function described above and let N,(s), D,(s),
Na(s), Dy(s), ¢, ry, Bi(s), &i(s), ay, by, tr, Ay(5), As(s) also be defined as above. Then, for
there to exist a constant matrix L such that the non-unit invariant polynomials of
Dy(s)+ LN (s) and D, (s} + N, (s)L are a,(s), &3 (s), ..., &,,(s) and the non-unit invariant
polynomials of [D,(1/w) + LN, (1/w)]JA;(w) and A, (w)[D,(1/wW)[D,(1/w) + N,(1/w)L]
are f,(w), B2(w), ..., B, (w), it is necessary that

Y oa+ ¥ b Y dy, k=01t —1 (15)
i=k+1 i=k+1 i=k+1

where

and with equality holding when k=0 in (15).

The necessary condition of Theorem 4 can be described in a more straightforward
fashion using the staircase description. Without loss of generality let m= ! and let
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the staircase function corresponding to each minimal factorization be constructed a
similar way to that shown previously. Combining both staircases on the same diagram
results in Fig. 3. Note that the two staircases might not intersect at all or might
intersect at more than one point. The necessary condition of Theorem 4 then states
that the closed-loop pole structure must be such that the staircase corresponding to
Ytk (@+b) k=0,1,..., 1, — 1, lies in the shaded area. Theorem 4 obviously pro-
vides a stronger necessary condition than that obtained by considering each factoriza-
tion separately. This is demonstrated by the following example.

. [
s, e T
Example 1 o 3 o
Let ¢¥
" o \e
s 0 0 L7
. e
Gls)=| s 1/ s g
o o st o
(10 - | [s 0 —s57] |
= s 1 0 0 s 0 AN(s)DTs) (| omea ple
L oo t J oo s T e
s 0 o] 0 0
= 0 s 0 st 1 s 2 D5 Y{(s)N,(s)
L 0 0 s 0 0 1

where N ,(s)D; !(s) is a right minimal factorization and D3 !(s)N,(s) is a left minimal
factorization. It can therefore be seen that S

¢3=2, ¢c3=3, ¢;,=6
ra=1, ry=5 r=5

The necessary condition obtained by considering the right factorization requires a,
and b; to satisfy :

a3+b3-<..2
.a3+az+b3+b2€5 (16)
d3+a2+ﬂ1+b3+bz+b1=ll

staircase from right factorization
'''''' staircase from left factorization
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while the necessary condition obtained by considering the left factorization requires
a; and b; to satisfy

ay+b; <1
ay+a;+by+by<6 (17)
ay+a;+a, +bs+by+by =11
Let
I, 1, 1
L=|1l, Is I
IT IB I9

and A,(w) =diag [w? w® w®], Ay(w)=diag[w w*® w°]
First, consider the right factorization whose necessary condition requires a, and
b, to satisfy -

a3+b3'~<-..2

The closed-loop infinite pole structure is given by the zero structure at w =0 of

11W2+W+IZ IzWB I3Ws—!lw—.1
[D,(1/w)+ LN(UWIA W =|  Lw? 415 IwP 41 IgwS—low (18)
I1W2 + Ig lgwa IgWG + (1 4 I-’}W

It follows from element (2, 2) of (18), that w cannot be a common factor of all 1 x 1
minors of (18), i.e. by =0. Now the finite pole structure of the closed-loop system is
given by the invariant polynomials of

IZSZ+S+II 12 “'Sﬁ_llss + 13
D1(5)+LN1(S)= Issz +l4 33 +15 —1435 +IG (19)
Issz -+ l-,r ’a (1 el ’7)Ss‘+ ’9

If the greatest common divisor of 1 x 1 minors is to have degree greater than zero,
then in particular I, =0. In that event it follows from the (1, 1) element that the
highest possible degree for this divisor is 1. Hence a3 < 1. Thus, by investigating the

closed-loop pole structure via the right minimal factorization it is seen that a; and -

b, must satisfy the necessary condition
a,+by<l

which confirms the necessary condition obtained by considering the left factorization,

Similarly, consider the pole structure obtained by using the left minimal factoriza-

tion, which requires aj, ay, by, b, to satisfy the necessary condition
ay+a;+by+b,<6 (20)

The infinite pole structure of the closed-loop system is given by the zero structure at
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w=0 of
A5 (wW)[D(1/w) + Na(1/w)L]
Lw+1 Lw _ Iw
=| Wil 4w+l IswP+withwtly Igw’+hw+lg (21)

5 5

I-;W Isw Igw + 1

The 2 x 2 minor formed by deleting the second row and second column is given by
T+liw  Lw

Lw 1+lwt =1+Ilw+l9ws+(_l3l7.+ Lilg)w® |
7 9

which is not divisible by w regardless of the choice of Iy, 14, I, or ;. Hence by + b,
=0, The finite pole structure of the closed-loop system is given by the invariant
polynomials of

1234 + 54 11 ’2 l3
Dz(s) + Nz(S)L = l-,Ss + 1134 + 14 Iass + 1254 + 53 + Is. lgss + 1334 + Iﬁ (22)
' 17 13 35 + lg

Suppose that there exists an L such that a, + a, > 5, then all non-zero 2 x 2 minors
of (22) must have at least degree 6. Consider the minor found by deieting the third
column and second row of (22}, i.e.

I254+S+i1 Iz

== 121354 + Iss+ !]lg bl Iqlz
b 8

For the above assumpfion to hold it follows that either I, =l =0 or Iy =l =0. If
I, = lg =0, consider the minor formed by deleting the first column and second row,
ie.

l Iy

=055+ 1,1
0 s*+1 ? i

which implies I, =0 for the above assumption to hold. Thus it is necessary that
1, =0 and I3 = 0. Now the minor found by deleting the third column and third row
of (2) is given by

| S+Il 0

Ilas® + 5% S+

=st+ 1P+ s+ L1

.which shows that it is not possible to find an L such that all 2 x 2 minors of (22)
have at least degree 6. Hence the original assumption is false and it is deduced that
a; +a; < 5. It then follows that

03+az+b3+bz$5

which confirms the necessary condition obtained from the left factorization.

Using the staircase description of Fig. 4, it is seen that the desired closed-loop
system pole structure must give rise to a staircase function which must lie within the
shaded area.

201 .




Pole placement problem with constant feedback 781

9 - right factorization
L B YN IR left factorization
7
6
5
4
3
z- NNl e s
1

1 2 k]

Figure 4.

The above example also demonstrates that the necessary conditions of Theorem 4
are not sufficient conditions. In particular, the pole structure by =1, by =1, b, =1,
a; =0, a, =3, a, = 5 satisfies the conditions (14) of Theorem 4, but it was seen that
b, must satisfy by =0 in the above example.

4. General pole assignment in singular systems using generalized state feedback
Consider the singular system represented by

E3(t) = Ax(2) + Bu(t) ' (23)

where x{t) € R" is the generalized state of the system, u(t) ¢ R' is the input vector and
nzl E, A, B are constant matrices of the appropriate dimensions with E assumed
singular of rank r, and |sE — A| #0. It is assumed that the system is strongly control-
lable, as defined by Verghese et al. (1981) and that the output equation is given by

_ Y1) = x(r) (24)
Thus, when constant generalized state feedback of the form
() = — Lx(t) + v(z) -
is applied to (23) this is equivalent to output feedback of the form
u(t) = — Ly(t) + vft)

Therefore the results of the previous section hold for the general pole-assignment
problem using generalized state feedback in singular systems ‘of the form (23) and
(24).

" For singular systems the strongest necessary conditions are always obtained by
considering the right minimal factorization associated with the transfer function mat-
rix because the staircase associated with the right minimal factorization always lies
on or below the staircase associated with the left factorization. This is a direct con-
sequence of the following lemma.

Lemma 3
Let G(s) be the transfer function matrix of the system described by (23). Then the
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row degrees r;, i=1,2, ..., n associated with a left minimal factorization of G(s) are
n= l, ry = 1, ...,r,,_q,= 1, I',,..q.,., =0, ey r,'=0

where g is the rank deficiency of E.

Proof

Without loss of generality the pencil sE — 4 can be taken to be in Kronecker
form, i.e. '

SIﬂl_AI 0
SE— A= ‘
0 Typ,—sJ

where n; = deg|sE — A} and J is in Jordan canonical form with all entries zero except
perhaps for entries of 1 in certain positions in the first superdiagonal, Since the
system is assumed to be controllable it follows that [sE — A]™ !B forms a left minimal
factorization. From the special form of [sE — A] it follows that the row degrees of
[sE—A B] are either 0 or 1 with the number of rows with zero degrees equal to
the rank deficiency of E. Therefore reordering these row degrees gives the resuls.

a

From Lemma 3 it follows that the staircase associated with this left factorization
is as in Fig. 5.
For the right factorization the ¢;’s must satisfy

1
Y. &=n—g
i=1

If the staircase associated with the right factorization intersects the staircase associ-
ated with the left factorization at some point, then ¢; = 0 for some i. But since the ¢;s
are in decreasing order this means that the two staircases can only intersect when
k=n— g, confirming the claim that the staircase associated with the right minimal
factorization lies on or below the staircase associated with the left factorization. For
singular systems Theorem 4 therefore reduces to the following corollary.

R-q—

n-q-1—

Figure 5.

Corollary 1

Let G(s) be the transfer function matrix associated with the strongly controllable
system represented by (23), i.e. G(s} = [sE — A] ™' B, and let G(s) have a right minimal
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factorization. _
G(s) =N (D7 Y(s)

D(s)
N(s)

are ordered ¢; 2 ¢, = ... 2 ¢. Let a;, Bi, a;, by and A (5) be as defined previously.
Then, for there to exist a constant matrix L such that the invariant polynomials of
D,(s)+ LN,(s) are a,(s), ax(s), ..., x(s) and the invariant polynomials of [D,(1/w)
+ LN (1/w)y]A(w) are B;(w), B2(w), ..., Bi(w), it is necessary that

where the column degrees of

i

t I
Y g+ Y < Y e, k=0,1,..,1-1 (23)

i=k+1 i=k+1 i=k+1

with equality holding when k=0.

The necessary condition (25) in Corollary 1 is, also, not a sufficient condition, as
is demonstrated by the following example.

Example 2
Let
1 1/s
Gls)=|s—1 -1
0 1/s

whose right and left minimal factorizations are, respectively
1 =1

1 ot
Ns)D{Hs)=| 5—1 —s [ ]
0 s

s —1 0"t 0
DIYsIN,(s)=| 0 0 s 01
1 0 1] |to

and where the left minimal factorization is of the form [sE — A]7!B. It therefore
follows that the necessary conditions are obtained from the column degrees of the
right minimal factorization, i.e. ¢; =1, ¢; = 1. Hence g, and b; must satisfy the neces-
sary conditions

(26)

a,+b,<1
ﬂ2+a1 +bz+b1=2

Let

L L
L= and A (w)=diag[w w]

o Is s
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Consider a pole structure with two poles at infinity, both of order one, and no
finite poles, i.c.

b,=1, by=1, a;=0, a,=0 ' eY))

This pole structure satisfies the conditions (25). Now the closed-loop pole structure
at infinity is given by the zero structure at w=10 of

b+ w(l 41— 1) 45+m&4o] -

[D;(1/w)+ LN (1/w)JA,(w) =

‘ R s+ wla—1ls)  (L—lg)+wlls— L)
For the above pole structure (27) to be assigned it is necessary that all 1 x 1 minors
of (28) possess a common factor w, which in the case of the (1,2) and (2,2) elements
implies that

15=0 and l_ls =0

indicating a clear contradiction. Thus it is not possible to assign the pole structure
(27) to the closed-loop system, which shows that condition (25) of Corollary 1 is not
a sufficient one. -

5. Conclusions

The properties of a minimal factorization of a transfer function matrix are ex-
ploited to obtain necesary conditions for the placement of the finite pole structure
and the infinite pole structure simultaneously using constant output feedback. A neat
way of presenting this result is given by the staircase idea. This method indicates
clearly the restriction imposed on the closed-loop pole structure but gives no indica-
tion as to the least upper bound.

The result also holds for the general pole-placement problem in singular systems
using constant generalized state feedback. This problem has been considered by
Kucera and Zagalak (1988). They produced necessary and sufficient conditions for
the case where the resulting closed-loop system is proper, i.e. all the closed-loop poles
are located at finite positions. Corollary 1 generalizes Kucera and Zagalak’s necessary
condition to the case where the resulting closed-loop system may also be non-proper.
Note that when b; = 0 for all i in (25), i.e. the closed-loop system is proper, the result
reduces to the necessary conditions given by Kucera and Zagalak.
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