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Abstract. 

Over the last decade infinite poles and zeros have been recognised as having fundamental 

relevance to the analysis of the dynamical behaviour of a system. Indeed even the classical 

theory of characteristic root loci alludes to the existence of infinite zeros without defining 

them as such whilst the significance of the infinite poles has more recently emerged in the 

study of non-proper systems. 

In the first part of the work a method for examining the infinite pole and zero structure 

of a rational matrix based on the Laurent expansion of that matrix about the point at 

infinity is described. The method consequently leads to a test for the absence of infinite 

zeros in a rational matrix and certain relationships for polynomial matrices. 

The poles, both finite and infinite, of a linear time invariant system are determined 

from the zeros of the invariant polynomials of certain matrices. The pole positions may be 

changed using constant gain feedback from a set of generalised states or from the system 

outputs. The conditions under which arbitrary pole placement can be achieved in this way 

are well understood particularly in regard to the finite poles. A more general problem is 

that of assigning the pole structure as determined by the invariant polynomials rather than 

simply the set of zeros of these polynomials. 

The general problem is first considered for the case of constant output feedback. The 

properties of a minimal factorisation of a rational matrix are exploited to give necessary con

ditions on the simultaneous placement of both the finite and infinite pole structures. These 

conditions are subsequently interpreted for the case of systems represented in generalised 

state space form under constant gain feedback from a set of generalised states. Further 

conditions are obtained by considering the infinite frequency structure of such systems. In 

particular necessary and sufficient conditions for the placement of the infinite pole struc

ture are presented which are seen to have a direct relationship with the various notions of 

controllability associated with generalised state space systems. 

1 



--------------

Acknowledgements. 

The author would like to express his sincere gratitude to the following:-

His supervisors, Dr. A.C. Pugh and Dr. G.E. Taylor, for their invaluable guidance and 

assistance throughout. 

Miss. Helen Sherwood for her patience and perseverence whilst typing this thesis. 

To the Science and Engineering Research Council for their financial support. 

His farillly and friends for their support during the period while this work was in progess. 

Ill 



Contents. 

Chapter 1. Introduction. 1 

Chapter 2. Pole Placemep.t Problems. 

§ 1. Introduction. 4 

4 

7 

1 

§2. Description of pole placement problems. 

§3. Pole placement using output feedback. 

§4. Pole placement using state feedback. 

§5. Conclusions. 

21 

23 

Chapter 3. Infinite Frequency Structure of a Rational Matrix. 24 

24 §1. Introduction. 

§2. Definition of infinite poles and zeros. 24 

§3. The Laurent expansion and Toeplitz matrices of a rational matrix. 31 

§4. A test for the absence of infinite zeros in a rational matrix. 

§5. Infinite poles and zeros of a polynomial matrix. 

§6. Conclusions. 

39 

44 

55 

Chapter 4. The General Pole Placement Problem Using Constant Output 
Feedback. 56 

§1. Introduction. 

§2. Preliminaries. 

§3. Necessary conditions for the separate placement of a finite and infinite 

56 

56 

pole structure by output feedback. 58 

§4. Necessary conditions for the simultaneous placement of a finite pole 
structure and an infinite pole structure by output feedback. 65 

§5. Relationship with previous results in the case of strictly proper transfer 
function matrices. 72 

§6. Conclusions. 73 

Chapter 5. Notions of Controllability in Generalised State Space Systems. 74 

_§!-_ Introduction. 74 
~---

§2. The Kronecker form. 76 

§3. Regular state space systems. 78 

§4. Generalised state space systems. 80 

§5. Algebraic results associated with the controllability notions in 
generalised state space systems. 85 

§6. Further disc~ssion of the notions of controllability in generalised state 
space systems. 105 

§7. Conclusions. 109 

IV 

I 



Chapter 6. The General Pole Placement Problem in Generalised State 
Space Systems. 110 

§1. Introduction. 

§2. Pole placement problems in generalised state space systems. 

§3. Necessary conditions for the simultaneous placement of both the finite 

110 

111 

and infinite pole structures. 113 

§4. Necessary conditions for the placement of the infinite pole structure. 121 

§5. Necessary and sufficient conditions for the placement of the infinite 
pole structure. 129 

§6. Further necessary conditions for the simultaneous placement of both 
the finite and infinite pole structures. 146 

§7. Discussion of the infinite pole assignment problem. 148 

§8. Conclusions. 155 

Chapter 7. Further Discussion of the General Pole Placement Problem. 153 

§1. Introduction. 

§2. Two stage approach. 

§3. Toeplitz matrix approach. 

§4. Bilinear transformation methods. 

§5. Conclusions. 

Chapter 8. Conclusions. 

References. 

Appendices. 

V 

153 

153 

159 

162 

168 

169 



-----------------------

• 

Chapter 1. Introduction. 

Polynomial systems matrix theory has increasingly developed into an important tool 

in the investigation of physical control systems. The theory developed and described by 

people such as Rosenbrock [1970], Wolovich [1974] and Kailath [1980] adapts 'the theory 

of linear algebra and matrix theory to study the behaviour of physical systems. This 

theory is applicable to systems described by a linear modeL The model, given as a set 

of differential equations, can be transformed using a suitable transformation into a set of 

algebraic equations. The transformation usually employed is the Lap lace transformation. 

and the resulting domain is referred to as the frequency domain. All the information 

describing the system's behaviour may be encoded into a single partitioned matrix, then, by 

using the theory of linear algebra and the relevant algebraic interpretation of the physical, 

important properties of the system can be deduced. 

Early interest has been focused on systems described in state space form, i.e. systems 

of the form, 

x(t) = Ax(t)+ Bu(t) 

y(t) = Cx(t) +D (ft) u(t) 
} (1.1.1) 

where x(t) is ann-vector of internal states, u(t) is an 1-vector of inputs and y(t) is an m

vector of outputs and where A, B, C, D are matrices of the appropriate dimensions whose 

elements are taken from a general field, F, which is usually taken to be the field of real 

numbers, lR. The properties of these systems have been widely investigated and their be

haviour is well understood. However, such a description can not adequately describe what 

is termed as the impulsive behaviour of a system (i.e. significant behavioUr attributable 

to the point at infinity in the frequency (transformed) domain). This has led to the inves

tigation of systems of the form 

Ex(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 
} (1.1.2) 

with x(t),u(t),y(t),A,B,C as above and where Eisa constant matrix. Systems of this 

form are called generalised state space systems. When E is non-singular, (1.1.2) reduces to 

the familiar state space description. Otherwise the system consists of a combination of first 

order differential equations and algebraic equations whose infinite frequency behaviour is 

displayed in a convenient manner. Properties of such systems have only recently begun to 

be investigated, although they arise quite commonly for example in the study of composite 

systems, switched capacitor networks and in certain cases of component failure. 

The poles of a system essentially determine the dynamical properties of the response 

of the system. By employing suitable feedback it is possible to relocate these poles (and 

so tailor the system's response to some desired requirement) and group them together in a 
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certain manner. Investigation of the conditions under which the pole structure (locations 

and groupings) can be assigned is referred to as the general pole assignment problem. 

This problem has been solved (see Rosenbrock and Rowe, 1970) for the case of state space 

systems and the case of constant state feedback of the form 

u(t) = Kx(t) + v(t) (1.1.3) 

where I< is a constant matrix of the appropriate dimensions. It is only in recent years 

that the general pole assignment problem has been approached for generalised state space 

systems using constant generalised state feedback (Cobb 1981, Armentano 1984, Kucera 

and Zagalak, 1988). 

This is the main problem considered in this thesis where, unlike previous work, both 

the finite and infinite pole structures are taken into account. 

A detailed discussion of the pole placement problem is presented in chapter 2 together 

with a critical analysis of the work previously undertaken which includes identification of 

the problems that remain unsolved and the areas which have not been investigated. The 

problems considered in this thesis are placed in this context. 

The underlying feature of this thesis is the investigation of the assignment of the 

infinite pole structure. For this reason chapter 3 considers the infinite frequency structure 

associated with the rational matrix. The first part of the chapter discusses the various 

equivalent definitions of the infinite frequency structure of a rational matrix and highlights 

a particular systematic method of obtaining this structure form a Laurent expansion of 

the given matrix. New results eminating from this discussion are displayed in the second 

part of the chapter. The results include new conditions for the absence of infinite zeros in 

a rational matrix and certain relationships which reveal further properties concerning the 

structure of polynomial matrices. 

Chapter 4 explores the general pole placement problem when constant gain output 

feedback is applied around a system and where the resulting system may possess both 

finite and infinite poles. The problem is approached by adopting a minimal factorisation 

description of the open loop transfer function matrix. The properties of such a factorisation 

enable both the finite and infinite pole structures of the resulting closed loop transfer 

function matrix to be displayed in a convenient manner. This gives rise to new separate 

necessary conditions for the finite pole structure and the infinite pole structure of the 

closed loop system. Further analysis produces necessary conditions for the simultaneous 

placement of the two structures which are stronger than any yet obtained. These results 

are displayed in a neat, graphical manner by the introduction of a suitable step function. 

Chapters 5 and 6 consider systems described in generalised state space form. For such 

systems the assignment of the poles by suitable feedback is closely associated with the 

controllability properties of the representation. The various definitions of controllability 
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for generalised state space systems are discussed in chapter 5 from which it is concluded 

that two main notions of controllability exist. The algebraic conditions associated with 

each notion are presented so providing an analogy with the algebraic conditions given 

by Rosenbrock [1970] for the conventional notion of controllability in regular state space 

systems. The algebraic conditions include a combination of existing results and some 

new results. The polynomial matrix approach adopted provides a means of treating the 

results in a unified manner and yields simpler proofs of the existing results. The differences 

between the two notions of controllability are reflected in the role of the so called non

dynamic variables and this is illustrated by introducing a new time domain definition. A 

comparison of the two notions of controllability is presented together with some further 

new conditions for a system to be controllable in each case. 

Chapter 6 investigates the general pole placement problem in generalised state space 

systems. An initial result is obtained by interpreting the work presented in chapter 4 for 

systems described in generalised form. This gives rise to new necessary conditions for the 

simultaneous placement of both the finite and infinite pole structures in the generalised 

state space case. The specific assignment of the infinite pole structure is then considered 

by exploiting the detailed structure of a canonical form associated with the system. This 

approach produces new necessary conditions for the multiplicity of the closed loop infinite 

poles. Supplementing this result with the result derived earlier in the chapter leads to new 

necessary and sufficient conditions for the closed loop infinite pole structure. This result 

provides a complete characterisation for such achievable structures. Finally, this result is 

used to update the initial result concerning the simultaneous assignment of both the finite 

and infinite pole structures. 

Chapter 7 discusses three other approaches to the pole placement problems. A two 

stage method for generalised state space systems is first described where the infinite pole 

structure is first assigned followed at the second stage by the finite pole structure. The 

result obtained provides a partial solution to the general pole placement problem for such 

systems. The closed loop infinite pole structure is also investigated by considering the 

Laurent expansion about the point at infinity of the closed loop transfer function matrix. 

This method is of more relevance to individual systems and gives rise to a simple condition 

for testing if the closed loop system is proper. The third approach involves employing a 

bilinear transformation so that the infinite pole structure can be investigated in the same 

way as the finite pole structure. This method generally enables results concerning proper 

closed loop systems to be generalised to the non-proper case but for generalised state space 

systems this does not follow. The reasons for this are subsequently explained. 

Finally, chapter 8 contains some concluding remarks and highlights areas for further 

research. 
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Chapter 2. Pole Placement Problems. 

§1. Introduction. 

The pole placement problem is concerned with investigating the conditions under 

which the poles of a system can be relocated by means of a suitable feedback. The poles 

of a system are determined by the zeros of a certain matrix so that relocating the poles is 

equivalent to altering the zeros of that particular matrix. If the groupings of these poles are 

also considered then the problem is concerned with assigning the invariant polynomials of 

the matrix which determines the poles of the system. This form of the problem is referred 

to as the general pole placement problem. A detailed description of these problems is given 

in section 2 together with a discussion of the difficulties that arise when infinite poles are 

considered. 

A critical appraisal of previous work undertaken o_g_the 12ole_placement problems is 
' 

presented in sections 3 and 4. The pole placement problems using output feedback are first 

considered where the review is divided into three sections; namely the pole placement prob

lem under dynamic output feedback, the pole placement problem under constant output 

feedback and the general pole placement problem. In se~tion 4 the case of state feedback, 

which can be employed when the system is described in state space or generalised state 

space form, is considered. Finally, section 5 places in context the problems investigated in 

this dissertation. 

§2. Description of pole placement problems. 

Consider a system with (r +m) X (r +e) system matrix (see Rosenbrock, 1970) 

[ 

T(s) 
P(s) = 

-V(s) 

and corresponding transfer function matrix 

U(s) ] 

W(s) 

G(s) = V(s) T-1(s) U(s) + W(s). 

A pictorial description of this system is given as follows 

u(t) y(t) 
G(s) ~ 

and this is referred to as the open loop system. Let a feedback of the form 

u(t) = v(t)- K(s)y(t) 

4 

(2.2.1) 

(2.2.2) 



where K(s) is a proper compensator be applied to the system. Let the resulting closed 

loop system have system matrix 

Pc(s) = [ 
Tc(s) 

-Vc(s) 

Uc(s) ] 

Wc(s) . 
(2.2.3) 

When G(s) is a proper matrix the open loop poles are all located at finite locations. The 

system poles are given by the zeros of I T(s) I= 0. If the system has least order, i.e. has no 

finite input or output decoupling zeros, then the system poles will correspond to the poles 

of the transfer function matrix which in turn are given by the zeros of the denominator . 

polynomials of the McMillan form of G(s) (see chapter 3 for further details). 

The poles of the closed loop system are, in general, different from those of the open 

loop system. In fact the closed loop poles will possess an addi.tional set of poles equal in 

number to the order. of the compensator K(s). When K(s) is constant the closed loop 

system has the same number of poles as the open loop system. Employing feedback of the 

form (2.2.2) thus enables the poles to be relocated in more desirable locations. The pole 

placement problem can be defined in the following manner. 

Given the open loop system (2.2.1) and a monic polynomial ,P(s), find 

suitable conditions under which the' matrix Tc(s) in (2.2.3) has d. eter- ~O 

minant a,P(s), a =f 0. 1 (~ A 1 ' G 1 1 b .I.J.; 1~, 1-A ·'[
1 

'0, 
fi) L{UiS 1\{-" rl1 '' ()2 r! 1°' ·I'·! (:"-... · 
V ;;··"- " ~I 1 

\ 

A more general form of the pole placement problem is concerned with assignihg the 

invariant polynomials of Tc( s) and defined as follows. 

Let the open loop system be given by (2.2.1) and 1>1(s), .P2(s), . •. ,,Pq(s) 
be q non-zero monic polynomials with ,P;(s) 14>H1(s), i = 1, 2, ... , q-1. 

Then, find suitable conditions under which the Smith form of the matrix 

Tc(s) in (2.2.3) is equal to diag[,Pl(s),4>2(s), ... ,q,q(s)J. 

This is referred to as the general pole assignment problem. 

If G( s) is non-proper the open loop system will possess infinite poles. The infinite pole 

structure cannot be investigated in the same way as the finite structure. For system poles 

the infinite pole structure is defined (see Verghese, 1978) using the normalised polynomial 

system matrix, PN( s ), associated with the system. Specifically, 

T(s) U(s) 0 0 

-V(s) W(s) I m 0 [ TN(s) UN 

] PN(s) = " 0 -Il 0 It -VN 0 

0 0 -Im 0 

5 
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and the infinite system poles are subsequently defined as the infinite zeros of TN( s) (for 

further discussion of infinite zeros' see chapter 3). In a similar way the infinite poles of the 

transfer function matrix are obtained by considering a different matrix than that used to 

investigate the finite poles. A detailed analysis of the infinite poles and zeros of a rational 

matrix is presented in chapter 3. As in the finite case the system poles at infinity become 

equivalent to the transfer function matrix poles at infinity if the system does not possess 

infinite input or output decoupling zeros. 

For the case where the open loop system is proper or non-proper the pole placement 

problem therefore consists of two problems; the first concerns the assignment of the finite 

poles and the second the assignment of the infinite poles. For the general pole placement 

problem the problem thus involves assigning the invariant polynomials of two different 

matrices. The problem is further complicated by the fact that the matrices that give rise 

to the pole structures are interrelated so that applying a certain feedback may produce the 

required finite pole structure but will not give rise to the required infinite pole structure. 

Previous work on the pole placement problem has in general concentrated on strictly proper 

systems though recently more attention has been given to proper and non-proper systems 

especially with the emergence of the generalised state space description. It is this area 

that will be the main consideration of this thesis . 

• 
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§3. Pole placement using output feedback. 

The survey of previous work on pole placement problems using output feedback is 

presented in three parts. The first part deals with the pole placement problem using 

dynamic feedback whilst the special case of constant feedback is considered in the second 

part. Finally, the general pole placement problem is discussed. 

First recall that any system with a strictly proper transfer function matrix can be 

represented in state space form (see Rosenbrock, 1970). As a consequence of this fact many 

of the results concerning pole placement using output feedback are given with reference 

to this state space form. The results presented in the following discussion will be given in 

terms of the state space description 

x(t) = Ax(t) + Bu(t)} 

y(t) = Cx(t) 
(2.3.1) 

where x(t) is an n-vector of internal states, u(t) an £-vector of control inputs, y(t) an 

m-vector of outputs and A, B, C are matrices of the appropriate dimensions. 

(i) Dynamic output feedback. 

The early work on the pole placement problem using output feedback concentrated on 

finding a proper compensator with the smallest order that will assign to arbitrary locations 

in the complex plane all the poles of the closed loop system. 

The first results were developed for strictly proper systems. Pearson [1969] considered 

a controllable and observable single input, multi-output system with observability index 

Pm· It was shown that arbitrary pole placement (subject to the usual condition that 

complex poles occur in conjugate pairs) can be achieved for such a system with a proper 

compensator of order Pm - 1. 

Pearson and Ding [1969] generalised this result to a least order multi-input, multi

output system with strictly proper transfer function matrix 

G(s) = C[si- Ar1 B (2.3.2) 

and observability index Pm· If q is the smallest number of inputs which control A then a 

proper compensator K( s) of order q(pm - 1) can be found such that n + q(pm - 1) closed 

loop poles can be arbitrarily assigned. 

Brasch and Pearson [1970] improved this result by showing that a proper compensator 

of ordeJ;" min(pm -1, At-1) can be chosen to achieve arbitrary pole placement for the system 

described above where J.tm is the observability index and At the controllability index of the 

system. 
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This result was generalised to proper systems by Wolovich (1971] who used a combi

nation of feedforward and feedback control. Chen and Hsu (1971] subsequently gave the 

same result using feedback only. 

Kimura (1975] produced a result for strictly proper systems which is mutually inde

pendent of the results given by Brasch and Pearson (1970]. Kimura (1975] showed that for 

a controllable and observable system a dynamic compensator of order p = n - m - £ + 1 

can assign almost arbitrary poles for the overall closed loop system provided the poles to 

be assigned are all distinct. When m,£ are both large the result due to Kimura (ibid.] 

tends to be a superior result to the one given by Brasch and Pearson (1970] in most cases. 

Consider the following example. 

(2.3.3) Example. For a system of dimension four with two inputs and two outputs the 

result due to Kimura (1975] indicates that a compensator of order 1 is sufficient for arbitrary 

pole placement. Consider the specific system (A, B, C) given by 

A= 

1 1 1 0 

1 0 1 0 

0 1 1 1 

0 0 1 1 

B= 

1 0 

0 1 

0 0 

0 0 

which is both controllable and observable. To find the order of the compensator required 

under the result given by Brasch and Pearson (1970] the controllability index of the system 

must be first obtained. Now 

1 0 1 1 2 2 

0 1 1 0 1 2 
(B,AB,A 2BJ = 

0 0 0 1 1 1 

0 0 0 0 0 1 

so that B has rank 2, [B, AB] has rank 3 and (B; AB, A2 B] has rank 4. Thus, by definition, 

the controllability index, At, of the system is equal to 3. Similarly, 

so that C has rank 2, (CT,ATCTJT has rank 3 and (CT,ATCT,(A2 )TCTjT has rank 4. 

Hence the observability index, Jlm, of the system is also equal to 3. Therefore, the result 
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due to Brasch and Pearson [1970] requires a compensator of order 2 for arbitrary pole 

assignment in this particular system. Hence, the result due to Kimura [1975] is superior 

in this case. 

A more general approach to the problem of pole assignment by dynamic compensators 

is to determine the maximum number of poles of the closed loop system that can be 

arbitrarily assigned by a proper compensator of fixed order, p say. Then, it is possible to 

determine the least order proper compensator which will assign all the closed loop poles. 

This approach was adopted by Ahmari and Vacroux [1973] who gave the following result. 

(2.3.4) Theorem {Ahmari and Vacroux, 1973). Given a system (A, B, C) which is 

both controllable and observable and where A is cyclic and the matrices 

have ranks uP, Vp respectively. Then, there exists a compensator of order p such that 

poles of the closed loop system can be placed arbitrarily close to max( up, Vp )+p preassigned 

values. 

It follows that the least order proper compensator that will arbitrarily assign all the 

closed loop poles has order 

p = min(.At -1, Jlm- 1) 

which is in agreement with the result derived by Brasch and Pearson [1970]. 
Kimura [1978] showed that the result given by Ahmari and Vacroux [1973] could be 

improved if additional conditions are met. If G(s) = C[sln -At IBis the transfer function 

matrix of the system then let G( si, s2), v;, u; be defined as follows 

G(si,s2)"' G(si)- G(s2) 
SI- 82 

v; "'rank[B,AB, ... ,A;B] 

u; "'rank[CT,ATCT, ... ,(A;fCT]T. 

The main result due to Kimura [ibid.] now follows. 

(2.3.5) Theorem (Kimura, 1978). Let the strictly proper system given by (2.3.1) satisfy 

the following conditions 

(i) the system is both controllable and observable, 

(ii) G(si,s2) 'f: 0 except for a finite number of pairs (st,s2), SI,s2 E C, 

(iii)m > e -1. 
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Then, there exists a dynamic compensator of order p such that 

min[n,£- 1 +up]+ p 

closed loop poles can be placed arbitrarily close to any prescribed symmetric set which 

contains a symmetric subset of£ - 1 numbers. 

H e > m - 1 then the above theorem is valid if m, e, Up are replaced by e, m, Vp 

respectively. Therefore, if I e-m I< 1 and conditions (i), (ii) of theorem (2.3.5) hold, then 

the number of poles assignable by a dynamic compensator of order p is 

(the restriction that the symmetric set of poles to be assigned must contain a symmetric 

subset of e- 1 numbers no longer applies). 

It is of interest to know what type of transfer function matrix satisfies condition (ii) of . 

theorem (2.3.5). Kimura [1978] notes that if£ or m is greater than 1 only a very exceptional 

system fails to satisfy condition (ii). If n :S m+£ -1 then condition (ii) is always satisfied. 

Under the additional conditions (ii) and (iii) theorem (2.3.5) improves the result of 

Ahmari and Vacroux [1973]. These conditions make it possible to assign£- 1 additional 

poles. The theorem also improves on the result of Brasch and Pearson [1970]. 

Under the result given by Kimura [1978] for all n poles to be arbitrarily assigned it is 

necessary that 

f - 1 + Up ~ n or m - 1 + Vp ~ n 

i.e. the order p of the dynamic compensator K( s) that will assign all n + p closed loop 

poles is 

p={minp:up~n-£+1 or Vp~n-m+1} 

The result due to Brasch and Pearson [1970] indicates that the order p is given by 

p=min{p:up~n or vP~n}. 

Hence, if conditions (ii) and (iii) of theorem (2.3.5) are satisfied a lower order compensator 

can be found which arbitrarily assigns all the closed loop poles. 

Williams and Hesselink [1978] produce a further necessary condition for a compensator 

of order p to generically assign all the poles of the closed loop system, i.e. assign the closed 

loop poles arbitrarily close to the preassigned values. This necessary condition is 

p(m +C- 1) +me~ n 

but since it does not refer to the controllability or the observability indices it is not possible 

to make a direct comparison with the previous results. 
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Djaferis [1983] also considered the problem of finding the number of poles that can be 

arbitrarily assigned using a proper compensator of order p. It was shown that 

min(n + p,(p + 1)f + p) 

min(n + p,(p + 1)m + p) 

closed loop poles can be assigned arbitrarily close to the preassigned values using an output 

feedback compensator of order p, and where n in this case is the McMillan degree of G(s). 

A further result was given by Djaferis and N arayana [1985]. For a generic system with 

m 2:: e and McMillan degree n and with controllability indices 

then 

min((p + 1)m + p + b(e- 1), n + p) 

closed loop poles can be assigned arbitrarily close to the preassigned values using a proper 

compensator of order p, where 

b = min { [;] , >-at} 

and [ 7] = largest integer smaller than or equal to 7. 
A dual result holds when e 2:: m with e replacing m and P.Gm, the smallest observ

ability index, replacing >-at· In many cases this leads to a lower bound on the dynamic 

compensator required to assign all the closed loop poles. 

(2.3.6) Example. Let n = 10, m = e = 3. For all n poles to be arbitrarily assigned the 

result due to Djaferis and Narayana [1985] requires 

(p + 1)m + p + b(e- 1);:::: n + p 

which in this case implies 

3p 2:: 5. 

Therefore, ·a compensator of order 2 will suffice. The result given by Djaferis [1983] requires 

which in this case implies 

and the compensator must have order 3 at least. Thus, for systems of the above dimension 

the result due to Djaferis and N arayana [1985] is superior to the one given by Djaferis 

[1983]. 
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(ii) Constant output feedback. 

The use of dynamic feedback may possibly be impractical from an engineering or 

economic viewpoint, and it would be hard to justify such an approach if the use of the 

available outputs with constant feedback gains would meet the design requirements in a 

much simpler manner. Results concerning the case when the feedback matrix is constant 

can of course be deduced from the work on dynamic feedback, but in general, this case has 

been treated separately. 

For the case where the open loop transfer function matrix is strictly proper the closed 

loop poles can be immediately identified. Adopting the state space description (2.3.1) and 

output feedback of the form 

u(t) = v(t)- Ky(t) 

results in the following closed loop state equation 

x(t) =(A- BKC]x(t) + Bv(t). 

Therefore, the closed loop system poles are given by the zeros of 

I sin -A+ BKC I . 

An early result was given by Davison (1970] and independently by Jameson [1970], 
which states that if rank C = m, (A, B) is controllable with A cyclic then a linear feedback 

of the output can always be found so that m poles of the system can be placed arbitrarily 

close to m preassigned values (chosen in complex conjugate pairs). 

Davison and Chatteridge [1971] extended this result to non-cyclic matrices by using 

the results of Brasch and Pearson [1970]. An improved result was also given which may 

be expressed as follows. 

(2.3.7) Theorem (Davison and Chatteridge, 1971). If the system given by (2.3.1) is 

both controllable and observable with rank C = m(:S n), rank B = f(S n) then a linear 

feedback of the output variables u(t) = Ky(t) can always be found such that max(m,£) 

poles of the system can be placed arbitrarily close to max( m, f) preassigned values (chosen 

in complex conjugate pairs). 

Sridhar and Lindorlf [1973] gave an alternative proof of this result and showed that 

in certain cases more than max(m,£) poles can be arbitrarily placed. Davison and Wang 

[1975] subsequently improved the earlier result of Davison and Chatteridge [1971 J with the 

following result. 

(2.3.8) Theorem (Davison and Wang, 1975). Given a controllable and observable 

system with rank B = e, rank C = m then for almost all (B, C) pairs there exists an 
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output gain matrix J( such that min( n, m + .e - 1) poles of the closed loop system can 

be assigned arbitrarily close to min( n, m + .e - 1) specified values (subject to the usual 

complex conjugate condition). 

This theorem contains two notions of genericity. The first is seen in the fact that 

the result is true for almost all ( B, C) pairs, i.e. for generic ( B, C) pairs. Thus, given a 

specific plant matrix A the result could break down for some particular choice of (B, C) 

but perturbing this choice should give the result. This is illustrated in the example below. 

The second notion of genericity is contained in the fact that the closed loop system poles 

can be assigned arbitrarily close to the specific values, i.e. generic pole placement. 

(2.3.9) Example. Let A, B, C be given as 

-1 0 0 0 0 1 

0 -2 0 0 1 0 
c = [~ 0 1 

~] A= B= 
0 1 -1 0 0 0 0 0 

-1 0 0 -2 0 0 

where B, C have full rank and the system is both controllable and observable. The closed 

loop poles are given by the solution of 

I si- A+ BIW I= 0. 

k2] 
k4 

then, in this example, 

The coefficients of s4 and s3 in (2.3.10) are not alfected by the choice of [{ whilst the 

coefficients of s2 and s are inter dependent by choice of k1 - k4. Hence it is apparent that 

there are only two degrees of freedom in the specification of the four closed loop poles so 

that only two poles can be arbitrarily assigned. 
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Since n = 4 and m + e - 1 = 3 in this example the result of theorem (2.3.8) suggests 

that it should be possible to assign at least three poles arbitrarily. This is not the case, 

as noted above, which implies that the choice of ( B, C) must be non-generic for the given 

plant matrix A. 

Consider a slight perturbation of the pair (B, C). Let 

0 1 

1 0 
C= [~ 0 1 

~] B= 
€ 0 0 0 

0 0 

where e is some parameter. Now 

s+1 0 k3 k4 

0 s+2 kl k2 
si -A+BKC= (2.3.11) 

0 -1 s + 1 + ek1 ek2 

1 0 0 s+2 

The determinant of (2.3.11) is given by 

which on inspection reveals that the coefficient of s3 can be determined by an appropriate 

choice of k1 , the coefficient of s2 by appropriate choice of k4 and the coefficient of s by 

appropriate choice of k3 k2 • The coefficient of s0 is determined by the choice of the higher 

degree coefficients. Thus there are three degrees of freedom in the specification of the four 

poles. Hence, when e f 0 it is possible to arbitrarily assign three poles to the closed loop 

system so demonstrating the genericity of (B,C) in theorem (2.3.8). 

A specific description of the possible (B, C) pairs that satisfy theorem (2.3.8) can be 

obtained from the work of Kimura [1978] on dynamic feedback. When constant feedback is 

employed the result due to Kimura [ibid.], described in theorem (2.3.5), becomes equivalent 

to that of theorem (2.3.8) but instead of stating the result for generic (B, C) Kimura [ibid.] 
places certain conditions on the open loop system. These conditions are seen to be satisfied 

by systems in general so confirming that the statement of generici ty for ( B, C) pairs is 

justified in theorem (2.3.8). Consider example (2.3.9) once again. 

(2.3.12) Example. Let A, B, C be given as in example (2.3.9) with Bin its unperturbed 

form. It was seen that it is not possible to arbitrarily assign the number of closed loop 

poles predicted by theorem (2.2.8). This is explained by Kimura's result stated in theorem 
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(2.3.5). This equivalent result requires the open loop system to satisfy certain conditions. 

In particular, G(s11 s2) =/= 0 except for a finite number of pairs (s1, s2). In this example 

and 

G(s)=[1 0] 
0 -1 

1 
(s + 1)(s + 2) 

1 
(s1 + 1)(sl + 2)(s2 + 1)(s2 + 2) · 

Now G(s1,s2) = 0 when s2 + SJ + 3 = 0. Thus, G(s1,s2) = 0 for an infinite number of 

pairs (sl> s2 ) which implies that the result due to Kimura [ibid.] does not hold for this 

particular system. 

Further when B is of the form 

B= 

then G(s) and G(s1,s2) are given by 

0 1 

1 0 

€ 0 

0 0 

G(s)=[1+(s0+2)e 0] 1 
-1 x (s + 1)(s + 2) 

1 

X (s1 + 1)(sJ + 2)(s2 + 1)(s2 + 2)" 

Now G(s1 1 s2) may equal 0 only when (s1,s2) is equal to (-1,-2) and (-2,-1) so that 

the perturbed system satisfies condition (ii) of theorem (2.3.5). It also satisfies the other 

conditions which means that the predicted number of closed loop poles can be assigned. 

This was shown to be the case in example (2.3.9). 

From theorem (2.3.8) it is seen that for a generic system if m + f. - 1 2: n then all n 

closed loop poles can be generically assigned. Kimura [1975] in fact showed that all systems 

satisfying this condition and which are both observable and controllable can be generically 

assigned n arbitrary poles as long as the poles are distinct. I<imura [1977] subsequently 
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improved these results to show that almost arbitrary pole placement is possible for almost 

all systems if 
(i) n < e +m+ .XG! 

(ii) e > 1-la1 

(iii) m > AGJ 

where AGl, pa1 are the controllability index and observability index respectively of the 

open loop transfer function matrix G(s). 
Using techniques from modern algebraic geometry Hermann and Martin [1977] showed 

that me :2: n is a necessary and sufficient condition for generic pole placement by complex 

constant output feedback applied to a strictly proper system. For real constant output 

feedback the condition me :2: n is only a necessary condition. This necessary condition 

was established by Williams and Hesselink [1978]. They also proved that the condition is 

not sufficient. Brockett and Byrnes [1981] also noted this result and produced a sufficient 

condition for generic pole placement when me= n. They showed that if d(m,e) defined as 

d( e)"' 1!2! ... (e-1)!1!2! ... (m-1)!(me)! 
m, - 1!2! ... (m+e-1)! (2.3.13) 

is odd, then generic pole placement is guaranteed. 

More recently Giannakopoulos and Karcanias [1985] considered the problem of pole 

placement using non-dynamic output feedback by using tools from exterior algebra and 

classical algebraic geometry. Their work includes alternative proofs of previous results, 

extensions of these results to the proper case and subsequently some new results. These 

results include new sufficient conditions such as the following whicll generalises, in partic

ular, the result given by Brockett and Byrnes [1981]. 

(2.3.14) Theorem (Giannakopoulos and Karcanias, 1985). Let G(s) E ~mxt(s) be 

a generic strictly proper transfer function matrix with rank {G(s)} = min(m,l) =F 1 and 

me :2: n. If the number 

is odd for some set ( ao, a1, ... , at-1) where 

t-1 1 
n = 2: a; - -e(e- 1) 

i=O 
2 

(2.3.15) 

and 

0 5: ao < a1 < ... < at-1 5: m + e - 1 (2.3.16) 
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then G( s) is generically pole assignable by real output feedback. 

To illustrate this result consider the following example. 

(2.3.17) Example. Let 

[ 
s; ;] 

~-.3.. ~ 
s s 2 s 

G(s) = 

where G( s) is strictly proper, rank G( s) = 2 and m = 2,£ = 2, n = 2. Choose 

ao = 1,a1 = 2 

to satisfy (2.3.15) and (2.3.16). Then 

=1 

which is odd. Hence, by theorem (2.3.14), G(s) is generically pole assignable by real output 

feedback. 

To confirm this consider a state space realisation of G( s) of the form 

[0 1] [s 0]-I [1 0] 
G(s)= 12 1 s 01 ""C[si-AtlB. 

[ kl k2] Then, if I< = is the constant output feedback matrix, the closed loop poles are 
k3 k4 

given by the zeros of the determinant of the matrix 

[
s 0] [k1 k2] si-A+BKC= + 
1 s ka k4 

I.e. 

(2.3.18) 

The coefficients of s1 and s0 in (2.3.18) are mutually independent by the choice of k1• 

Hence, it is possible to assign the closed loop poles at arbitrary locations as predicted. 
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When me= n in theorem (2.3.14) the number g(ao,a~, ... ,at-1) becomes equal to 

d(m,e) in (2.3.13) so that the result due to Brockett and Bymes [1981) is a special case of 

theorem (2.3.14). Other results presented by Giannakopoulos and Karcanias [1985) involve 

the recently introduced invariant, the Plucker matrix Pn, which is constructed from the 

exterior product of the columns of [Ta(s)] where G(s) = Va(s) T01(s). For brevity these 
Va(s) 

results are not described here but, in general, involve conditions on the rank of Pn which 

reinforce existing conditions. 

(iii) The general pole placement problem. 

The general pole placement problem using output feedback was first considered by 

Rosenbrock and Hayton [1978], who assumed that the open loop system has a strictly 

proper transfer function matrix. The results obtained are superior and contain many of 

the earlier results, notably that of Brasch and Pearson [1970) and results concerning state 

feedback. The main results obtained by Rosenbrock and Hayton [1978) are presented below. 

Recall that the general problem is concerned with assigning the invariant polynomials of 

Tc(s) in (2.3.3). It was shown that Tc(s) can have at most e non-unit invariant polynomials 

so that its Smith form can be expressed as 

diag[I, <Ms ), <Pt-1 (s ), ... , </!1 (s )) (2.3.19) 

where </J;(s) I </J;_1(s), i = 2, ... ,e. Necessary conditions on the degrees of the </J;(s) are 

given by the following. 

(2.3.20) Theorem (Rosenbrock and Hayton, 1978). Let G(s) be an m x e strictly 

proper transfer function matrix with controllability indices AGl ~ .Aa2 ~ ... ~ .A at and let 

I<(s) be proper with observability indices /LK1 ~ /LK2 ~ ... ~ JLKl· Let the Smith form 

of the resulting matrix Tc(s) be of the form (2.3.19). Then, the degrees, 8(</J;(s)), of the 

</J;( s ), i = 1, 2, ... , e, must satisfy the necessary conditions 

k k k 

:E 8( </J;(s )) ~ max{:E(.Aa; + PJ<,l+1-i), :EPa,t+1-i + /LKi)} 
i=l i=l i=l 

(2.3.21) 

k= 1,2, ... ,e 
with equality when k =e. 

Rosenbrock and Hayton [1978) also produced a sufficient condition for the assignment 

of the invariant polynomials of Tc( s) and this is expressed in the following theorem. 

(2.3.22) Theorem (Rosenbrock and Hayton, 1978). Let G( s) be a strictly proper mx 

e matrix with e ::; m and controllability indices AGl ~ AG2 ~ ... ~ .A at and observability 
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indices J.!GI ~ J.!G2 ~ ... > J.LGm· Let </>;(s), i = 1,2, ... ,e, be as described above. Then, 

sufficient conditions for the existence of a proper e x m rational matrix K( s) such that the 

Smith form of Tc(s) is (2.3.19), are 

k k 

:E 8(</>;(s)) ~ :ECAa; + J.!GI -1) k = 1, 2, ... ,l (2.3.23) 
i=l 

with equality holding when k = e. 

Note that in both (2.3.20) and (2.3.22) there corresponds a "dual" result in which the 

roles of l and m, .Xa; and J.LGi, AKi and J.LI<i are reversed. Taking this into account it is 

seen that the proper compensator I<(s) described in theorem (2.3.22) will have order 

min[f(J.LGI - 1), m(.XGI - 1)]. 

Rosenbrock and Hayton [1978] note that the sufficient conditions of theorem (2.3.22) could 

be improved. It is conjectured that the sufficiency conditions might be replaced by sharper 

and more symmetric conditions 

k k 

:E 8(</>;) ~ :EC.Xa; + J.La; -1) k = 1,2, ... ,min(e, m) 
i=l i=:l 

with equality holding when k = min(£, m). No proof or counter example of this condition 

was given in the paper, but it was proved (without equality when k = min(e, m)) by Kous

siouris [1979]. The result obtained by Koussiouris [ibid.] imposed additional conditions on 

the invariant polynomials but leads to a much lower order for the compensator K(s) than 

that needed under the sufficient conditions presented by Rosenbrock and Hayton [1978]. 

Hammer [1983] also produced improved sufficient conditions. The new conditions are 

dependent on certain invariants which are basically determined by the unstable poles and 

zeros and the zeros at infinity of the open loop transfer function matrix. These invariants 

can be directly compared with the controllability and observability indices and as a result 

lead to improved sufficient conditions. Details of the background to this work can be found 

in Hammer [1981, 1983a]. 

Alternative proofs to the sufficient conditions presented by Rosenbrock. and Hayton 

[1978] are given by Emre [1980] and Zagalak and Kucera [1985]. Zagalak and Kucera [ibid.] 
also obtain necessary conditions which are an improvement on the necessary conditions 

of theorem (2.3.20). These improved necessary conditions are presented in the following 

theorem. 

(2.3.24) Theorem (Zagalak and Kucera, 1985). Consider the strictly proper system 

and proper feedback as described in theorem (2.3.20). Let the Smith form of the matrix 
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Tc(s) formed when this feedback is applied around this system be described by (2.3.19). 

Then, the degrees, 8(1/>;(s)), of the 1/>;(s)'s must satisfy the necessary conditions 

k 

:E 8( !/>;( s )) ;::: max sj 
i=l ~~j~m 

with equality holding when k = £ and where 

k 

s; = :E (>.oi. + JLK,t-i.+I) 
a=l 

k = 1,2, . .. ,i (2.3.25) 

To illustrate these stronger necessary conditions consider the following example. 

(2.3.26) Example. Consider a system with controllability indices 

and a proper compensator with observability indices 

/LKI = 3, /LK2 = 3, /LK3 = 2. 

The degrees of the invariant polynomials of Tc(s) must satisfy the necessary conditions 

(2.3.21) under the result given by Rosenbrock and Hayton [1978] which in this case result 

in the following conditions 

The result due to Zagalak and Kucera [1985] requires the degrees of the invariant polyno

mials to satisfy the following necessary conditions in this case. 

8(1/>I(s));::: 5, 8(1/>I(s)) + 8(if>2(s));::: 9, 8(1/>I(s)) + 8(if>2(s)) + S(l/>3(s)) = 13. 

Thus, in this case, the result due to Zagalak and Kucera [1985] provides stronger necesary 

conditions than the result due to Rosenbrock and Hayton [1978]. 

The review presented above reflects the fact that the pole placement problem for the 

case of output feedback has been extensively considered. The diversity and complexity of 

some of the results indicate the level of difficulty encountered in the problem. In some 

instances it is not possible to directly compare the results because they are given in terms of 

different characteristics of the system but the variety of results provide suitable indications 

of the restrictions on the pole placement for a particular system. 

20 



-------------c---------------------

For the general pole placement problem necessary and sufficient conditions have not 

been obtained. The problem therefore has not been completely solved and provides a 

suitable area for further research. The general pole placement problem has also been 

restricted to the strictly proper case. Indeed, the pole placement problem has largely been 

concerned with such systems and the assignment of poles at infinite locations using output 

feedback has not been considered. In chapter 4 this aspect of the problem is investigated 

by extending the general pole placement problem to include systems which may possess 

proper or non-proper transfer function matrices. The problem will be restricted to constant 

output feedback but the placement of both the finite and infinite pole structures will be 

taken into account. This aspect of the problem has not been previously investigated. 

§4. Pole placement using state feedback. 

By definition the output of a system is always accessible and hence output feedback can 

always be employed around a system. On the other hand the output does not necessarily 

reflect the behaviour of the internal states of the system. This can be illustrated if one 

considers an n-state system which has just one output so that detailed information about 

the internal states may be difficult to obtain from the output or maybe even lost. 

It is therefore of greater benefit to be able to feedback the internal states of the system 

directly thus resulting in greater fl.exibili ty in assigning the poles of the system. 

This type of feedback can be undertaken for systems described in state space form and 

in generalised state space form and a brief historical review of this work is now presented. 

Consider first, state space systems represented in the form 

±(t) = Ax(t) + Bu(t) (2.4.1) 

where again x(t) is ann-vector of internal states, u(t) is an €-vector of control inputs and 

A, B are real matrices of the appropriate dimensions. If state feedback of the form 

u(t) = -J{x(t) + v(t) (2.4.2) 

where K is a constant real e x n matrix is applied to the system then the closed loop 

system poles are given by solutions to the equation 

det[sl- A+ BK] = 0. 

An early. result on pole placement was given by Rissanen [1960] who considered systems 

having one input. He showed that if such a system is controllable then all the poles of 

the closed loop system may be assigned arbitrarily. Kalman [1963] gave an alternative 

proof of this result and he later pointed out that this result had been given by Bertram 

in 1959 and by Bass in 1961 in unpublished lecture notes. Popov [1964] generalised this 
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result to multi-input, multi-output systems. He showed that given an arbitrary manic 

polynomial <f>(s) of degree n there exists an£ x n matrix K, possibly complex, such that 

the characteristic polynomial of A-B K is </>( s) if and only if the pair (A, B) is controllable 

and where A,B have real entries. Wonham [1967] showed that it is possible to choose K 

with all its entries real. This result was also proved by Luenberger and Anderson (1967] 

and alternative proofs were given by Davison (1968] and Heymann (1968]. Thus, it has 

been shown that in the case of state feedback all the poles of the closed loop system may 

be assigned arbitrarily (subject to complex poles occurring in complex pairs) if and only 

if the system is controllable. 

The general pole placement problem in state space systems was considered by Rosen

brock and Rowe [1970] who produced necessary and sufficient conditions for the invariant 

polynomials of si- A+ BK to satisfy. These conditions are given in terms of the control

lability indices of the system which is the natural expression of such conditions in view of 

the direct relationship between the controllability of the system and pole placement. The 

result given by Rosenbrock and Rowe [1970] is presented below. 

(2.4.3) Theorem (Rosenbrock and Rowe, 1970). Let the state space system described 

by (2.4.1) be a controllable system with controllability indices,>.;, ordered >.1 ::; >.2 ::; ••• ::; 

At. Then, there exists a suitable constant feedback matrix, K, such that the Smith form 

of sin -A+BK is diag {In-t,</>!(s),<Pz(s), ... ,</>t(s)} provided the monic polynomials 

{ </>;( s)} satisfy the following necessary and sufficient conditions 

(i) </>;(s) 1 <f>;+J(s) i = 1, 2, ... ,e -1 

(ii) 2:::=! o( </>;)::; 2:::=1 >.; k = 1, 2, ... ,e 
with equality when k =e. 

Rosenbrock and Rowe (1970] adopt a state space approach to prove this theorem. 

Other authors have produced alternative proofs. Dickenson (1974] obtained the same 

result also using a state space approach, whilst Flamm (1980] produced a geometric proof 

for the necessity part. Flamm [ibid.] proved the sufficiency part by means of an explicit 

algorithm .for the construction of a feedback control which performs the required task. 

This was done in three stages: 

(i) transform the system into a suitable canonical form, 

(ii) construct a K such that the degrees of the invariant polynomials of A- BK are as 

desired, 

(iii) construct a K to change the invariant polynomials as desired without changing their 

degrees. 

This leads to a complex algorithm requiring a change of basis at each step which means 

having to find suitable transformation matrices. Munzer and Pratzel-Waiters (1979] gave a 
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module theoretic description of the problem and a subsequent. proof of the theorem whilst 

Kailath [1980] presented a simpler proof using transfer function methods directly. 

The pole placement problems as described in section 2 have therefore been satisfac

torily solved for state space systems using constant state feedback. The results obtained 

reflect the powerful nature of such a feedback in state space systems which means that 

the investigation of the effect of dynamic state feedback on pole placement has not proved 

necessary. 

For generalised state space systems the pole placement problem is also related to the 

controllability properties of the system. The notions of controllability for such systems 

are fully discussed in chapter 5 and as a consequence a description of the pole placement 

problems in generalised state space systems will be given in chapter 6 rather than in this 

chapter. 

§5. Conclusions. 

The pole placement problems are important problems in polynomial systems matrix 

theory due to the dynamic properties associated with the poles of the system. This is re- . 

f!ected in the number of authors who have considered such problems. The review presented 

in the previous sections discusses the various results and highlights aspects of the problems 

which remain unsolved. It was noted that a major area that has not been considered in 

detail is that concerning the assignment of the infinite poles. This is due to the fact that 

an adequate understanding of the infinite frequency structure of a system and means of 

investigating such structure have only recently been developed. 

This thesis will investigate in detail the assignment of the infinite pole structure, 

concentrating in particular on systems represented in generalised state space form. The 

aim of the work is to generalise existing results to include the assignment of the infinite 

poles and thus provide complete solutions to the problems under consideration. 
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Chapter. 3. Infinite Frequency Structure of a Rational Matrix. 

§1. Introduction. 

In this chapter the infinite frequency structure of a rational matrix is investigated. 

The definition of infinite poles and zeros eminates from the corresponding definitions of 

finite poles and zeros of a rational matrix. This development is discussed in section 2 with 

particular reference to the role of a minimal factorisation of a rational matrix (see Pugh 

and Ratcliffe, 1980) and its Smith McMi!lan form at infinity (see Vardulakis et al., 1982). 

In section 3 the relationship between the Smith McMi!lan form at infinity of a rational 

matrix and the Laurent expansion about the point at infinity of that matrix is described 

(see Demianczuk, 1990). This relationship provides a means of investigating the infinite 

. poles and zeros of a rational matrix. This is undertaken in sections 3 and 4 to produce 

some original results concerning the absence of infinite zeros and the particular case of 

polynomial matrices. 

§2. Definition of infinite poles and zeros. 

The Smith. McMi!lan form of a rational matrix provides an appropriate means of 

defining the finite poles and zeros of that particular matrix. This definition of the finite 

poles and zeros provides a satisfactory extension of the definition from a single rational 

function to the matrix case from the point of view of the dynamic interpretation of the 

finite poles and zeros. Formally this definition is given below. 

Let the Smith McMi!lan form of an m x f rational matrix, G(s), be represented by 

diag ( e;( s) 
1/J;(s) Om,l-m) £>m 

S(G(s)) = diag (~) "if;;( s) 
£=m 

diag c;(s)/1/J;(s)) 
Om-t,l 

£<m 

where e;(s),I/J;(s), z = 1,2, ... ,h = min(£,m), are monic polynomials and if €q+1 (s) = 

Eq+z(s) = :··--.:- Eh(s) = 0 for some q then 1/Jq+I(s) = "ifJ9+z(s) = ... = t/Jh(s) = 1. Also 

1/J;( s) 11/Ji-I ( s ), i = 2, 3; ... , h, and e;( s) I fi+I ( s ), i = 1, 2., ... , q -1. Then, the finite zeros 

• and poles are defined as follows. 

(3.2.1) Definition. The FINITE ZEROS of G(s) are defined as the roots of the (non-zero) 

numerator polynomials { e;( s)} of S( G( s)) and the FINITE POLES of G( s) are defined as 

the roots of the denominator polynomials { ,P;( s)} of S( G( s) ). 
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An equivalent definition can be given in terms of a coprime facJ!risation of G( s ). First 

introduce the following definition. ' 
I . 

(3.2.2) Definition. Let D(s) be an m x £polynomial matrix. Then, so E C is said to be 

a.ZERO OF DEGREE k of D(s) in case (s- sol is an elemen~ary divisor of D(s). The 

set of zeros of D(s) is the set of all such numbers so, a zero of degree k being included k 

times._ Further, the MULTIPLICITY OF A ZERO at s0 E C is said to be equal to the 

total number of elementary divisors of the form ( s - so )k, k > 0. 

Recall that if G(s) is an m x e rational matrix then it may be decomposed into 

relatively prime factors, 

(3.2.3) 

where D1(s), N1(s) are relatively (right) prime and D2(s),N2(s) are relatively (left) prime. 

Any m x £ polynomial matrix N1 ( s ), N2( s) satisfying (3.2.3) is referred to as a numerator · 

of G(s) whilst any e X e polynomial matrix D1(s) or m X m polynomial matrix D2(s) 

satisfying (3.2.3) is referred to as a denominator of G(s). Pugh and Ratcliffe [1979] showed 

that all numerators of G( s) are unimodular equivalent and all denominators are extended 

unimodular equivalent (Pugh and Shelton, 1976). These observations subsequently gave 

rise to the following definition. 

(3.2.4) Definition. so E C is a ZERO (POLE) OF DEGREE k of the rational matrix G(s) 

if it-is a zero of degree k of any numerator (denominator). Also the MULTIPLICITY OF 

A ZERO (POLE) at so E C is equal to the multiplicity of the zero at so of the numerator 

(denominator). 

The equivalence of this definition of finite poles and zeros of a rational matrix to that 

given by definition (3.2.1) is seen by noting that the poles and zeros of the rational matrix 

are not affected by transforming the matrix to Smith McMillan form. Thus, for the case 
r -----p ~\'vi? -:;~ .. vt' ) 

__ .. -- .. \> S(G(s)) = [diag{E;(s)}] [diag{..p;(s)}]-1 
" 

y ""- ~~ ~o-l9-' . 

~ S(N1(s)) (S(D1(s)}-:-1 

e =m, 

where S(D1(s)), S(N1(s)) correspond to the respective Smith forms of any denominator 

and any numerator of G(s). Since the matrices S(D1(s)), S(N1(s)) are relatively (right) 

prime due to the properties of the E;(s),,P;(s) it follows that the two definitions, (3.2.1) 

and (3.2.4 ), coincide. 

The above definitions do not provide an immediate extension to the case of infinite 

: poles and zeros. This is due to the fact that the unimodular transformations inherent in 

both definitions lead, in general, to the destruction of the infinite frequency structure. 
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The infinite frequency structure of the rational transfer function matrix associated 

with a system has an important bearing on the behaviour of that system. For instance, the 

properties of the infinite poles determine the high gain and high frequency behaviour whilst 

the infinite zeros are directly related to the decouplability properties of the system. Thus, 

a suitable means of investigating the infinite frequency structure is seen to be necessary. 

The development of such methods was based on the standard technique of employing 

a transformation which takes the point at infinity to a finite point so that the infinite 

frequency structure can be analysed using techniques associated with investigation of the 

finite frequency. The simplest such transformation takes the point at infinity to zero giving 

rise to the following definition. 

(3.2.5) Definition (Pugh and Ratcliffe 1979, Verghese 1978). An m x e rational 

matrix G(s) is said to have an INFINITE ZERO (POLE) OF DEGREE kin case w = 0 is a 

finite zero (pole) of degree k for the rational matrix G ( ~). Further, the MULTIPLICITY 

OF AN INFINITE ZERO (POLE) is equal to the multiplicity of the zero (pole) at w = 0 

of the rational matrix G ( ;\;). 

It then follows that the investigation of the pole and zero structures at w = 0 of 

0 (;\;) can proceed by employing a sUitable coprime factorisation. The disadvantage of 

'this approach is that a cop rime factorisation of G( s) has no direct relation to a coprime 

factorisation of G ( ;\;) , so that if both the finite and infinite frequency structure is to 

be investigated two seperate factorisations must be employed. This disadvantage can be 

overcome if a minimal factorisation (Forney, 1975) is adopted for G(s ). This particular 

factorisation enables both the finite and infinite pole and zero structures to be deduced 

from the same factorisation. In particular, the following lemma holds. 

r~t. 
(3.2.6) Lemma (Pugh and Ratcliffe, 1980). Let G(s) be an m x e rational matrix 

factorised as 

G(s) = N1(s)Dj1(s) 

where the columns of [ ~~ ~: ~] constitute a minimal basis with column degrees 

c;, i = 1, 2,' ... 'e. Let AI ( s) = diag [se• 'sc2 ' ••• 's«]. Then, 

(3.2.7) 

(i) · the finite pole structure of G( s) is the finite zero structure of D1 ( s) and the infinite 

pole structure of G( s) is the zero structure at w = 0 of the polynomial matrix 

(ii) the finite zero structure of G(s) is the finite zero structure of N1(s) and the infinite 

zero structure of G(s) is the zero structure at w = 0 of the polynomial matrix 



A factorisation of the form (3.2.7) where the columns of 

constitute a minimal basis will be referred to as a right minimal factorisation of G(s). 

A dual result of lemma (3.2.6) holds when a left minimal factorisation of G(s) is ~mployed, 

i.e. 

(3.2.8) 

where the rows of[D2(s) N2(s)] constitute a minimal basis. Again the matrices giving rise 

to the finite and infinite pole and zero structure from different minimal factorisations are 

appropriately related by unimodular or extended unimodular equivalence transformations 

so that the pole and zero structures can be investigated by adopting any left or right 

minimal factorisation. The relationships are formally characterised below where the above 

notation has been adopted. 

(3.2.9) Theorem (Pugh and Ratcliffe, 1979). Matrices of the form N1(s),N2(s) are 

unimodular equivalent whilst matrices of the form D1(s),D2(s) are extended unimodular 

equivalent. 

(3.2.10) Theorem. Matrices of the form N1 ( -t;) A1(w) and A2(w) N2 (~) are unimodu

larequivalent whilst matrices of the form D1 (-t;) A1(w) and A2(w)D2 (~)are extended 

unimodular equivalent. 

Proof. Consider first the case of two minimal right fa.ctorisations, i.e. 

Then, 

or, alternatively, 

[N1 (-t;) A1(w)] [D1 (-t;) A1(w)]-1 = [N; (-t;) Ai(w)] [Di (~) Ai(w)]-1. (3.2.11) 

The matrix [D1 (~) A1(w)] 
N1 (~) A1(w) 

has full rank when w =f. 0 since D1 ( s ), N1 ( s) are relatively 

(right) prime. When w = 0 

27 



where [ Dl ] is the high order coefficient matrix with respect to the columns of [ Dl ( 
8
)] • 

N1 he N1(s) 

Since [ D
1 

( 
8
)] is a minimal basis the matrix [ D

1
] has full rank. Hence, it follows that 

N1(s) N1 he 

D1 (~) A1(w), N1 (~) A1(w) are relatively (right) prime. Similarly for Dt (~) At(w), 
Ni (~) Ai(w). Thus, it follows, from (3.2.11) (see Rosenbrock 1970, pl39), that 

D1 (~) A1(w) and Di (~) Ai(w), N1 (~) A1(w) and Ni (~) Ai(w) are unimodular 

equivalent. A similar argument holds for the case of two left factorisations. 

Finally consider the case where 

Then, 

where, employing a similar argument to that adopted above, it is seen that A2(w)N2 (~) 

and A2(w) D2 (~), D1 (~) A1(w) and N1 (~) A1(w) are relatively (left) prime. Hence, it 

follows by definition that N1 (~) A1(w) and A2(w)N2 (~) ,D1 (~) A1(w) and 

A2(w) D2 (~) are extended unimodular equivalent. Since N1 ( ~) A1(w) and A2(w) N2 (~). 
are both m x R. the relationship reduces to one of unimodular equivalence , so completing 

the proof. 0 

The above proof demonstrates quite clearly the important role of the minimal factori

sations in establishing the unimodular and extended unimodular equivalence relationships 

and thus making the result of lemma (3.2.6) meaningful. 

In a similar way the infinite frequency structure of a rational matrix can be investigated 

by performing a bilinear transformation and then obtaining the Smith McMillan form of 

the subsequent rational matrix. Adopting a general bilinear transformation of the form 

aw + (3 
s = --'-''::-
. ')'W +8 

1 f 0, a8- /3')' f 0, a,/3,')', 8, E lR 

results in the point s = ~ being transformed to the point w = oo and s = oo being transfered 

to the points= ~s. The real numbers a,')' may be chosen in such a way that the point 

s = ~ does not correspond to a pole or zero of the matrix G( s) thus ensuring that all 

the poles and zeros of G ( ~:: :) are located at finite locations. As a result the Smith 

McMillan form of the rational matrix G (aw + :) reveals both the finite and infinite 
')'W + 

pole and zero structure of the original matrix, G( s ). This approach becomes difficult to 
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use if the dimensions of G( s) are greater than 3 X 3 or if the individual entries in G( s) 
contain high powers of s (Vardulakis et al., 1982). The method also seems cumbersome if 

it is only the infinite frequency structure that is of interest. For this case the emergence 

of the Smith McMillan form at infinity (Vardulakis et al., 1982) is of relevance. This form 

is obtained by pre and post multiplying the rational matrix G(s) by a series of rational 

matrices, known as biproper matrices, which have no poles or zeros at infinity. Employing 

such· transformations ensures that the infinite poles and zeros of the original matrix G( s) 

remain unchanged. If ~pr( s) is the ring of proper rational functions then a biproper matrix 

is defined as follows. 

(3.2.12) Definition. The m X m rational matrix W(s) E ~;;:.xm(s) is said to be 

BIPROPER if and only if 

(i) !im W(s) = W00 E ~mxm 
s--+ 00 

(ii) det Woo =f 0. 

The definition of a biproper matrix leads to an equivalence relationship referred to as· 

equivalence at infinity. 

(3.2.13) Definition. The m x £ rational matrices G1(s) and G2(s) are said to be 

EQUIVALENT AT INFINITY if there exist biproper rational matrices W(s) E ~;;:.xm(s), 

V(s) E ~;~l(s) such that 

A canonical form under equivalence at infinity is the Smith McMillan form at infinity 

described by the following lemma. 

(3.2.14) Lemma (Vardulakis et al., 1982). Let G(s) E ~mxl(s) with rank G(s) = r. 

Then, there exist biproper rational matrices, W(s) E ~;;:.xm(s) and V(s) E ~;~l(s), such 

that 

· · where 

and 

W(s)G(s)V(s) = S00(G(s)) 

S 00 (G(s)) = 

[Q(s) Om,l-m] 

Q(s) 

[ o~~:~J 

l>m 

l=m 

Q( s) = diag{ s11', s112 , ••• , s11•, 0, 0, ... , 0} 
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with 1)1 ~ 1)2 ~ • • • ~ l)k ~ 0 ~ l)k+l ~ 

McMILLAN FORM AT INFINITY of G(s). 
> '7r· S00(G(s)) is called the SMITH 

The Smith McMillan form at infinity of G( s) provides an alternative means of defining 

the infinite poles and zeros of G(s). 

(3.2.16) Definition. If p00 is the number of l);'s in (3.2.15) with l)i > 0 then G(s) has 

p 00 POLES AT INFINITY, each having degree '7i· Similarly, if Z00 is the number of l);'s in 

(3.2.15) with I);< 0 then G(s) has Z00 ZEROS AT INFINITY, each having degree l'7i I· 

The definition of infinite poles and zeros is equivalent to the earlier definition (3.2.5) 
and provides a straightforward characterisation of the infinite frequency structure. A neat 

and convenient way of representing the infinite frequency structure is by means of a step 
function, which is of particular relevance to the contents of section 3. The adoption of a 
step function is also seen to be an appropriate way of illustrating results in subsequent 
chapters. In this instance make the following definition. 

(3.2.17) Definition. 
i =integer 

if. integer 

where i+ denotes the upwards rounded version of i. 

Since the l);'s are ordered in a decreasing manner it follows that S00 (i) is a decreasing 
staircase as shown by figure (3.2.18). 

s 00 (i) 

. 1] k+l 1 2 3 

1'1, 

• • •• 
t-1 1 r 

I ··.'-L 
fig. (3.2.18) 
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S""( i) has been defined in such a way that it contains all the infinite frequency infor

mation concerning G( s) in a completely irredundant way. 

The Smith McMillan form at infinity can obviously be obtained for a particular ratio

nal matrix by applying a sequence of appropriate biproper transformations. This, though, 

is a rather cumbersome method since the sequence of transformations is not unique. An 

alternative and more systematic method is obtained by exploiting the Laurent expansion 

about the point at infinity of the original rational matrix. Van Dooren et al. [1979] develop 

this theory for finite frequencies to obtain the Smith McMillan form about a certain point, 

and suggest that it could be employed for the infinite case. The subsequent definition of 

the Smith McMillan form at infinity makes the extension of this theory to the infinite case 

more relevant. A description of the way this theory has been extended to the infinite case 

is given in the· next section. This then leads to an alternative method of obtaining the 

Smith McMillan form at infinity and hence of investigating the infinite poles and zeros of 

a rational matrix. 

§3. The Laurent expansion and Toeplitz matrices of a rational matrix. 

Van Dooren et al. [1979] use the Laurent expansion of G(s) about a finite point, 

so, and the corresponding Toeplitz matrices to determine the Smith McMillan form at 

s0 of G( s ). In an analogous way the Smith McMillan form at infinity of G( s) can be 

determined by considering the Laurent expansion about the point at infinity of G( s) and 

the corresponding Toeplitz matrices as described by Demianczuk [1990]. 

Suppose the Laurent expansion about the point at infinity of G( s) is of the following 

form 
i 

G(s) = 2: G;si 
i = -oo 

= Gt si+ Gt-1 si-I+ ... + Go+ G_ls-1 + ... 
Let G( s) have rank r. Then, the Toeplitz matrices at infinity are defined as follows. 

(3.3.1) Definition. The TOEPLITZ MATRICES AT INFINITY, T;""(G), associated 

with G(s) are defined as 

Gt Gt-1 

i ::::: -f.. 

0 
Gt-1 

The information concerning the ranks of the T;""(G) will determine the rank indices 

at infinity of G( s) which are defined in the following manner. 
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(3.3.2) Definition. The RANK INDICIES AT INFINITY of G(s) axe defined as 

pf' =rank (T;00(G))- rank (T;':~\(G)) i = -£,-£ + 1, ... 

where it is assumed that rank (T~_1 (G)) = 0. 

It is now shown that these rank indices at infinity are invariant under the transfor

mation of equivalence at infinity given by definition (3.2.13). 

(3.3.3) Theorem. Let G(s), H(s) be two m x £rational matrices. If G(s), H(s) axe 

equivalent at infinity then they have the same rank indices at infinity. 

Proof. Since G(s), H(s) axe equivalent at infinity there exist biproper rational matrices 

M(s), N(s) of dimensions m X m and eX e respectively, such that 

M(s)G(s)N(s) = H(s). (3.3.4) 

Since M( s ), N( s) axe biproper they have no infinite poles or zeros and so their Laurent 

expansions about the point at infinity take the form 

M(s) = Mo + M-1 s-1 + M-2 s-2 + ... 

where M0 = M(s = oo), No = N(s = oo) axe non-singular. Let the Laurent expansion 

about the point at infinity of G(s),H(s) be given by 

g 

G(s) = L G;si 
i=-oo 

h 

H(s) = L H;si. 
i=-oo 

Substituting these expressions into (3.3.4), and comparing coefficients of s gives rise to the 

following relationship. 

Mo Gt No 

0 0 0 
Mo 

32 



(3.3.5) 

0 

where e = min (g, h). 
Since M0 , No are non-singular it follows that the Toeplitz matrices built on M(s ), 

N(s) are also non-singular. Therefore, from (3.3.5), it follows that 

rankT;00(G) = rankT;"'"(H) 

as required. 0 

As a consequence of the above result it follows that a ratio.nal matrix, G( s ), has the 

same rank indices at infinity as its Smith McMillan form at infinity, S 00 (G(s)). Therefore, 

the properties of the rank indices at infinity, pf', of G( s) can be deduced from the Toeplitz 

matrices at infinity of S00
( G( s) ), i.e. T;00

( S00
( G)), where the variable s has been dropped 

from the notation for convenience. These Toeplitz matrices have a particularly simple 

structure because of the special form of soo( G( s) ). Specifically, note that 

(i) all the rows of T;00(S00(G)) are either zero or hav~ one non-zero entry (a "one"), 

(ii) the non-zero rows of T;00(S00(G)) are linearly independent. 

From the second property it follows that 

- rank (St( G), St-1 (G), ... , S-;( G)]. (3.3.6) 

where Sj(G) is the ph coefficient in the Laurent expansion at infinity of s=(G(s)). 

Further, it can be seen, using the above properties, that 

rank (St( G), St-1( G), ... , S-;( G)] 

is equal to the number of l's in (St(G),St-1 (G), ... ,S-;(G)], which in turn equals the 

number of powers, T/j, greater than or equal to i in S 00
( G). It should also be noted due to 

the properties of the s; 's, that 

rank (St( G), St-1 (G), ... , S-;( G)] 

will at some stage equal r, the normal rank of G(s), but that rank(St(G),St-1 (G), ... , 

S-;(G)] can not exceed r. 
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Thus, a direct relationship between the rank indices at infinity of G( s) and its Smith 

McMillan form at infinity has been established which makes it possible to deduce the 

Smith McMillan form at infinity of G( s) from the rank differences of its Toeplitz matrices 

at infinity. To derive this relationship define the rank index function at infinity, R""( i), 
associated with the rank indices at infinity, p'[>, as follows. 

(3.3.7) Definition. 
i =integer 

i = non-integer 

where i- is the downward rounded version of i. 

Again, using (3.3.6), it is seen that R""( i) is an increasing staircase as illustrated by 

figure (3.3.8). 

• 
•• • 

r 

I 

.s' 

fig. (3.3.8) 

• • • 

_j 

The R""(i) staircase is in fact a 90° rotation of the S""(i) staircase defined in (3.2.17) and 

so the Smith McMillan form at infinity of G(s) can be deduced directly from the R""(i) 

staircase as follows. 

(3.3.9) Theorem. If, in the notation of lemma (3.2.14), S""(G(s)) denotes the Smith 

McMillan form at infinity of the rational matrix G(s), and p'[> denote the rank indices of 

G( s) constructed on the basis of its Laurent expansion about the point at infinity, then 

S""(G(s)) A block diag {Q;(s)} (3.3.10) 
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where Qi(s) is the (p'f'- p~1 ) X (p'f'- p~1 ) matrix given by 

s-i 0 0 

0 s-i 0 
Qi(s) .o. 

0 0 s-i 

fori = -£, -£ + 1, ... , and if p'f' - p~1 = 0 then the corresponding matrix Qi( s) is not 

present in (3.3.10). 

Proof. If p'f' - p~1 -f 0 then from (3.3.6) and the diagonal structure of S 00
( G( s)) it 

follows that 

rank S-i( G) = p'f' - p'(:..l 

where S-i(G) is the coefficient of s-i in the Laurent expansion at infinity of S""(G(.s)). 

This, in turn, implies that S""(G(s)) possesses p'f'- p~1 diagonal elements of the form 

s-i. If p'f' - p~1 = 0 then 

rank S-i( G)= 0 

and S""(G(.s)) does not possess any diagonal elements of the form s-i. Hence S""(G(s)) 

is as described by (3.3.10), as required. 0 

In particular the polefzero structure at infinity may then be deduced as follows. 

(3.3.11) Corollary. If, in theorem (3.3.9) p'f'- p~1 -f 0, then 

(i) G( s) will have p'f' - p~1 poles at infinity of degree lil, if i < 0, 

(ii) G( s) will have p'f' - p'(:..1 zeros at infinity of degree i, if i > 0. 

Proof. Follows directly from theorem (3.3.9) and definition (3.2.16). 0 

To illustrate the way the infinite pole and zero structure of a rational matrix can 

be obtained from its Laurent expansion about the point at infinity consider the following 

example. 

(3.3.12) Example. Let 
'1. "'-) 

s3 0 
1 

0 
S( \- ~ 

s2 -2 - I 

1 ~\- ~,) 
0 2s 0 

s(s- 1) 
s"-

G(s) = y 
s-1 ~h 0 0 s3 0 \ 

' ' 

0 s-1 0 
1 '\~' 

" s3 
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The Laurent expansion of G( s) about the point at infinity is given by 

1 0 0 0 s3 0 0 0 0 s 0 0 0 0 

0 0 0 0 0 2 0 0 0 0 0 0 
G(s) = + + 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0. 0 0 0 1 0 0 0 -1 0 0 

0 0 1 0 s-2 + O(s-3) 

0 0 0 1 
+ 

0 0 1 0 

0 0 0 0 

Since a particular Toeplitz matrix is formed by adding a block column to the previous 

Toeplitz matrix, the Toeplitz matrices associated with this expansion can be expressed in 

the composite form 

r_; (G) T_;(G) T~ (G) T
0
- (G) T~ (G) T- (G) 

2 
-===---=--::-=--~----1 ----' I I I 

r~ o o o I o o o o I o o o o I o o o o I o o o o I o o 1 o 
1 oooo:oooo:o200

1
0ooo:oooo:ooo 1 

I OOOO,:oooo:oooo oooo:oooo:oo I 0 
~ \ o _o _ o __ o 1 o o o o : o 1 o o o-1 o o : o o o o : o o o o 
(P'.Jt_ ----~------- ... -- ... -- ... - -- ..... -- -.------- -.--------

1000110000 00001000010000 
l-} 0 0 0 0 :; 0 0 0 0 0 2 0 0 : 0 0 0 0 : 0 0 0 0 

Q 0 Q Q :\ Q Q Q Q I 0 Q Q Q : 0 Q Q Q : Q Q Q Q 

0 0 0 0 I 0 0 0 0 1 0 I 0 0 I 0-1 0 0 I 0 0 0 0 
~------~L .............. ~-------~-------

.J ~
:1 

. -----~ 

-1 000 1 0ooo:oooo:oooo 
Q Q Q Q Q Q Q Q I Q 2 Q Q I a· Q Q Q 

I I 
0000 00001000010000 
0 0 0 0 

l) 

I I 

I 0 0 0 Ql 0 I 0 0 I 0-1 0 0 
~-------~-------~-------100010000:oooo 
0000 0000 1 0200 
0 0 0 0 
0 0 0 0 

36 
(\ 
\: i 

I 

0 0 0 Ql 0 0 0 0 
I 0 0 0 o: 0 I 0 0 
L ................ L ............. .. 

I 0 0 0 : 0 0 0 0 
0 0 0 0 : 0 0 0 0 
Q Q Q Q I Q Q Q Q 

0 0 0 0 : 0 0 0 0 

\ 

) 
G2 

, _______ _ 
0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

&, el 
J 
0 

(]0 G 
- I 

-1 
('. 
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The ranks of the Toeplitz matrices are 

rank T~(G) = 1 

rank T~(G) = 2 

rank T~(G) = 4 

f D -

and the corresponding rank indices at infinity of G(s) are given by 

p':::a = 1 

00 -2 P-1-

P't' = 2 

00-2 P1 -

p'f = 4. 

I 

Note that when pf(G) =rank G(s) for some k the search can be terminated since 

pj( G) - pf.-1 (G) = 0 for j = k + 1, k + 2, .... It therefore follows from corollary (3.3.11) 

that G(s) possesses two infinite poles, one of degree three and one of degree one, and two 
infinite zeros both of degree two. This is confirmed by investigating the infinite frequency 

structure via a lninimal factorisation of G( s ). A suitable lninimal factorisation of G( s) is 
. r•L···· ()!I g1ven as J , •. 

sa 0 sa 0 1 0 0 0 
-1 

0 2s 0 s2 0 1 0 0 
G(s) = · 

0 0 (s2
- 2)(s -1) 0 0 0 (s2 - 2)s3 0 

0 s-1 0 (s -1) 0 0 0 s3(s- 1) 

= N1(s)D!1(s) 
;,~ - 2. s' 

where the column degrees of [ ~: ~: ~] a!e Cl = 3, c2 = 1, ea = 5, C4 = 4. 

Let A1(s) = di~g [s3 ,s,s5 ,s4) then the infinite pole structure of G(s) is given by the zero 
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structure at w = 0 of 

1 0 0 0 wa 0 0 0 

0 1 0 0 0 w 0 0 
D1 (~) A1(w) = 0 0 (~ -2)~ 0 0 0 ws 0 

0 0 0 ~ (~ -1) 0 0 0 w4 

wa o-"'"' 0 0 ~ 

0 w 0 0 J 
- 0 0 1-2w2 0 

0 0 0 1-w 

Now D1 (;\;) A1 (w) has Smith form 

which confirms that G(s) has the stipulated infinite pole structure. Similarly, the infinite 

zero structure of G(s) is given by the zero structure at w = 0 of 

1 0 1 0 wa 0 0 0 ~ ~ 

0 1.. 0 1 0 w 0 0 
N1 (;\;) A1(w) = 

w w' 

0 0 ~-~-1..+2 0 0 0 w5 0 w w w 

0 l. -1 w 0 l. -1 w 0 0 0 w4 

1 0 w2 0 

0 2 0 w2 
-

0 0 w2 - w 3 - 2w4 + 2w5 0 

0 1-w 0 wa -w4 

The Smith form of N1 (~) A1(w) is 

diag {1, 1, w2(w- 1), w2(w- 1)(2w2
- 1)(1- 2w)} 

which indicates that G( s) possesses two infinite zeros of degree two as predicted. 
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§4. A test for the absence of infinite zeros in a rational matrix. 

The investigation of the changes in the rank indices at infinity of the Toeplitz matrices 

at infinity associated with a rational matrix provides a method of determining the McMillan 

structure of the infinite poles and zeros of that matrix. When all the infinite poles and 

zeros have been found the subsequent differences between successive rank indicies will be 

zero. Interpreting this for the case of a rational matrix which does not possess any infinite 

zeros leads to the following result. 

(3.4.1) Theorem. The m xl rational matrix G(s) of normal rank r will possess no infinite 

zeros if and only if 

rank (Tci"'(G)) =rank (T::';(G)) + r. (3.4.2) 

Proof. The rank difference of two successive Toeplitz matrices of G(s) can not exceed 

r, so that if 

rank (Tf'(G)) -rank (T~1 (G)) "'p'f' = r for some k 2:: -R 

then 

Pf-t.; = r i=1,2, ... (3.4.3) 

and 

i=1,2, ... (3.4.4) 

Now G( s) will possess no infinite zeros if and only if 

i = 1,2, ... 

which by (3.4.3), (3.4.4) holds if and only if 

p<[' = r. 

By definition 

p<[' =rank T0
00(G)- rank T::';(G) 

to give result. 0 

(3.4.5) Corollary. The m X e polynomial matrix P(s) of normal rank r will possess no 

infinite zeros if and only if 

rank (T0
00 (P)) = 8 + r (3.4.6) 

where 8 is the McMillan degree of P(s). 

39 



Proof. Let the highest power of sin P(s) ben, i.e. 

where P0 , Pt, ... , Pn are constant matrices and Pn # 0. Then, 

Pn Pn-1 p2 p1 

F'2 
T~ (P) = 

0 Pn-1 

Pn 

Now the rank of T~(P) is equal to 8, the McMillan degree of P(s) (Pugh, 1976). Thus, 

from the result of theorem (3.4.1 ), the polynomial matrix P( s) will possess no infinite zeros 

if and only if 

rank(TQ'(P)) = 8 + r 

as required. 0 

To illustrate the result of theorem (3.4.1) and corollary (3.4.5) consider the following 

example. 

(3.4.7) Example. Let 

P(s) = 
[

5 2 5 3 0] 
s 0 1 

~ 

and, since P( s) is a polynomial matrix, its Laurent expansion about the point at infinity 

is immediate. The resulting Toeplitz matrices can be obtained from the single structure 

r; (PJ 

0 0 

0 0 0 
I 

T _; (P) T _;(P) T ;(P) 

0 0 0 0 0 I 0 0 0 I . 

0 0 0 0 0 
I 

0 0 I 
I I --------,--------,--------

0 0 
I 

1 0 0 
I 

0 0 0 I I 
I I 

ooo:ooo: 00 
·--------~--------
·olo:too 
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and the corresponding ranks are 

rank T~(P) = 1 

rank T~(P) = 2 

rank T~(P) =4 

rank T0 (P) = 6. 

It follows that 

rank T0 (P) =rank T~(P) + r 

where r = rank P(s). Hence, by theorem (3.4.1), P(s) does not possess any infinite 

zeros. This can be confirmed by considering a minimal factorisation of P(s ). A suitable 

factorisation of P( s) is in fact immediate, i.e. 

[ 
1 0] -I 

P(s)= 0 1 

[

83 0] 
If A2(s) = 

0 8 
then the infinite zero structure of P(s) is given by the finite zero 

structure at w = 0 of 

[ w3 :] [t 
I 

~] A2(w)N2 (~) = O 
-;;;a 

0 

=[: 

1 :] 0 

which has Smith form equal to [I2 0]. Hence, P(s) has no infinite zeros. 

Note that the McMillan degree, o, of a polynomial matrix, P(s), is equal to the highest 

degree amongst all minors of P( s ). In this example o = 4 so that P( s) satisfies the test 

for the absence of infinite zeros given in corollary (3.4.5), as expected. 

The necessary and sufficient condition (3.4.6) of corollary (3.4.5) is equivalent to a 

condition concerning the minors of P( s) which is expressed by the following. 

(3.4.8) Theorem. Let P(s) be an m x e polynomial matrix of normal rank r and whose 

highest power of s is n. Let T0
00(P) and o be as defined previously. Then, rank (T0 (P)) = 

o + r if and only if P(s) has an r x r minor of degree o. 
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Proof. Let 

where P0 , Pb ... , Pn are constant matrices and Pn of. 0. 

Assume that 

rank (T0""(P)) = c + r 

I.e. 

rank 

0 

Define P' ( s) as 

=c+r. 

then the McMillan degree of P'(s) indicated by c' is equal to c + r by (3.4.9). 

(3.4.9) 

Now P'(s) = diag {s,s, ... , s }P(s) and since c' = c + r there exists a minor of order 

q say of P'(s) with degree c + r. Let this minor be denoted by 

which, by the Binet-Cauchy theorem, can be expressed as 

P'(s) 

s 

s 0 

0 
s 
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Now the highest degree of any minor of P(s) is, by definition, equal to 8. Thus, for P'(s) 
to have a minor of degree 8 + r, it follows that 

s 

s 0 

0 
s 

has to have a minor of order r in the above summation. This is only possible by taking 

q = r which implies that P(s) has a minor of order r with degree 8. 

Conversely, assume that P(s) has an r x r minor of degree 8. Let this minor be 

P() (iloi2,···•ir) s 0 0 0 0 

)!,)2, ••• ,Jr 

Consider the following r X r minor of P' ( s) 

P'(s) (~lo~2·····i·r) = 
)!,)2, •.• ,)r 

s h,i2, ... ,i,. 

s 0 

I: 
t::;k, <k,< ... <k.=:;min(m,l) 

P(s) (~1 '~2 ·····~r). 
)!,)2, ... ,Jr 

0 
s 

(3.4.10) 
When the set ( k1, k2, . .. , kr) becomes equal to the set (it, i2, ... , ir) then the series contains 

a term of degree 8 + r. All the other terms in the series have degree less than 8 + r so that 
P'(s) has an r x r minor of degree 8 + r. By definition of the McMillan degree 8 and by 

(3.4.10) it follows that P'(s) does not have a minor of degree greater than 8 + r. Thus, 

the McMillan degree of P' ( s) is equal to 8 + r, ~d so 

Pn Pn-1 PI Po 

PI 
rank =8+r 

0 Pn-1 
Pn 
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which implies rank T0
00(P) = 8 + r, as required. 0 

The result of theorem (3.4.8) provides confirmation of the test given by Hayton et al. 

[1988] for the absence of infinite zeros in a polynomial matrix. The new test presented in 

corollary (3.4.5) is a simpler test than that produced by Hayton et al. [ibid.] since it is 

generally easier to calculate the rank (T6"'(P)) than all the r x r minors. Note that in both 

tests the McMillan degree of P( s) must be calculated although this again merely involves 

the computation of the rank of a constant matrix, i.e. T0
00(P). 

§5. Infinite poles and zeros of a polynomial matrix. 

For the particular case of a polynomial matrix, P(s), the previous definitions and 

discussions concerning the infinite poles and zeros obviously apply. In addition there exist 

other definitions of infinite poles and zeros specifically defined for the polynomial case. 

Such a definition was introduced by Hayton et al. [1988] who extended the notion of 

homogenising a matrix pencil to a general polynomial matrix and subsequently defined 

the associated infinite elementary divisors. It was seen that the degrees of the infinite 

divisors have a direct relationship to the infinite poles and zeros as defined by (3.2.4), so 

extending in a neat way the theory of infinite elementary divisors from the matrix pencil 

to the general matrix case. 

Tan and Vandewalle [1988, 1988a] also adopt a homogenising technique to define the 

infinite poles and zeros. In contrast to Hayton et al. [1988] who homogenise the whole 

matrix Tan and Vandewalle [1988, 1988a,] homogenise each element on an individual basis, 

and also generalise the notion of the degree of a polynomial so that a polynomial of the 

form 

can have degree greater than or equal to n. 

This leads to confusion in defining the subsequent zeros. For instance, consider the 

matrices 

s:: 1 "-) 1 ~ ~~ 
(3.5.1) 

and ------
(3.5.2) 

If these matrices are regarded as column based polynomial matrices, i.e. the entries 

in each column being of equal degrees, then under the definition adopted by Tan and Van

dewalle [ibid.] (3.5.1) has no infinite zeros whereas (3.5.2) has one infinite zero. This is 
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not satisfactory since (3.5.2) is obtained from (3.5.1) by a constant transformation which 

should have no effect on the dynamic properties of the original matrix. Another disad

vantage of the approach adopted by Tan and Vandewalle [ibid.] is that the degrees of the 

infinite zeros and poles are not defined. 

A further definition of infinite poles and zeros of a polynomial matrix, P( s) , is 

provided by Bosgra and Van der Weiden [1981] in terms of the degrees of the minors of 

the polynomial matrix. This definition has been shown to be equivalent to the definition 

of infinite poles and zeros given in terms of the structure at w = 0 of P (;) and in terms 

of the infinite elementary divisors (see Hayton et al., 1988). Formally the characterisation 

of the infinite poles and zeros as presented by Bosgra and Van der Weiden [1981] is defined 

below. 

(3.5.3) Definition. Let P(s) be an m x .e polynomial matrix of normal rank r, and let 

li; be the highest degree occurring among the i Xi minors of P(s). Let /j (the McMillan 

degree of P(s)) denote the largest of the S;, i = 1,2, ... ,r, and let k1 (respectively k2) 

denote the smallest (respectively largest) order of minors for which S; = S. Then, P(s) 

is said to have k1 INFINITE POLES with degrees S~, li2 - S~, ... , S- Sk,-1 and r - k2 

INFINITE ZEROS with degrees S- Sk,+1, Sk,+1 - Sk,+2, ... , lir-1 -Sr. 

By definition, the li; satisfy the relationships 

and (3.5.4) 

so that if S""(P(s)) is the Smith McMillan form at infinity of P(s) described by lemma 

(3.2.14) then the corresponding matrix Q(s) is given by 

-<6
·-·-

6·> 0 0 0} ... ,s ,,, ... , 

where the number of 1's equals k2 - k1 . 

It was seen in section 3 that the Smith Mcmillan form at infinity and hence the pole and 

zero structure at infinity of a rational matrix can be obtained from its Laurent expansion 

about the point at infinity. It therefore follows, for a polynomial matrix P(s), that there 

exists a relationship between the rank indices at infinity of P( s ), as defined by (3.3.2), and 

the highest degree of minors of P(s). This relationship is formally characterised by the 

following theorems. 

45 



(3.5.5) Theorem. Let P(s) be an m x e polynomial matrix with the highest power of s 
equal ton. Assume that the rank indices at infinity of P(s),p'f", defined as in (3.3.2) are 

known and let o;'s be defined as in (3.5.3). Also, let 

00 00 
Vj =Pi - Pi-1 i = -n, -n + 1, .. . 

and define 

Then, 

and, for i = 0, 1, ... , n - 1 

Silnilarly 

and, for i = 1, 2, ... 

do= 0 

i-1 

d; = L V-n+j 

i=O 

d~ = 0 

i 

i=1,2, ... ,n 

di = L Vj i = 1, 2, ... 
j=1 

n-1 

k1 = L V-n+i 
i=O 

j = 0, 1, ... ,d;+l- d;. 

00 

k2 = r- L v; 
i=l 

j = 0, 1, ... 'di - di-1· 

Proof. From corollary (3.3.11) the multiplicity of the infinite poles is equal to 

whilst, from definition (3.5.3), the multiplicity is given by k1. Hence 

to give (3.5.6). 

n-1 

k1 = L V:-n+i 
i=O 
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From corollary (3.3.11) if V-n+i, i = 0, 1, ... , n- 1, is non-zero then P(s) has V-n+i 

infinite poles each of degree I -n + i I· Thus, with the d;'s defined as above and 8o .o. 0, if 

V-n+i =/= 0 for some i = 0, 1, ... , n - 1 then 

. od;+! - sd; = 1 -n + i 1 

sd;+2 - sd;+! = 1 -n + i I 

Now Od; is known from previous relationships so that (3.5.11) can be rewritten as 

If V-n+i = 0 then di+l = d; and (3.5.12) gives rise to the identity 

(3.5.11) 

(3.5.12) 

which provides no further information concerning the 8;'s. Hence, summarising the rela

tionships (3.5.12) into one expression yields (3.5.7). 

Similarly, by corollary (3.3.11), the multiplicity of the infinite zeros is given by 

whilst, by definition (3.5.3), the multiplicity is also equal to r- k2. Hence 

to give (3.5.8). 

00 

k2 =r- L v; 
i=l 

Also, by definition (3.5.3), the McMillan degree, 8, of P(s) is equal to both Ok, and 

8k,· From (3.5.6), 
n-1 

k1 = L V-n+i 
i=O 
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Hence, 

and, since li = lik, it follows that 

to give (3.5.9). 

Finally, by corollary (3.3.11) and the definition of the d\'s, if v; =/= 0, i = 1, 2, ... , then 

(3.5.13) 

Now lik2+d~ is known from previous relationships so that (3.5.13) can be rewritten ,_, 
as 

(3.5.14) 

8k2+d: = lik2+d:_,- (di- di-1).i 

which, for similar reasons given for the case of infinite poles gives rise to (3.5.10), as 

required. 0 

Note that it is not possible to deduce 

8;' i = k1 + 1, k1 + 2, ... 'k2- 1 (3.5.15) 

from the rank indices at infinity of P(s). This is due to the fact that the 8;'s listed in 

(3.5.15) do not contribute any information concerning the infinite poles and zeros of P(s) 
and hence can not be related to the rank indices at infinity by considering the equivalent 

definitions' of infinite poles and zeros. 

(3.5.16) Theorem. Let P(s) be an m x e polynomial matrix with the highest power of s 

equal ton and normal rank r. Assume that the 8;'s defined in (3.5.3) are known and let the 

rank indices at infinity of P(s) be defined as in (3.3.2). Also define, fori= 0, 1, ... , n -1, 

q . .,. 
n+1 = 

and, for i = 1, 2, ... , 

number of times I -n + i I occurs in the set 

8r, 82 - 81' ... '8- lik,-1 
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Then, 

where 

and 

q: "" number of times i occurs in the set 

8-bk2+I,bk2+1-bk2+2••••,br-l-br• 

00 -0 P-n-1-

00 00+' Pi =Pi-! qi 

i = 0, 1, ... , n -1 

i = 1, 2, 0 0 0 

(3.5.17) 

(3.5.18) 

(3.5.19) 

Proof. By definition q-n+i is the number of infinite poles of P( s) with degree I -n + i I· 
Hence, 

Poo poo -q. -n+i- -n+i-1 - -n+• i = 0,1, ... ,n -1 

where P~n-l = 0 since the highest power of sin P(s) is equal ton, to give (3.5.17). 

From (3.5.4) and the definition of P'r it follows that 

Also, 
16.-6.-~ 

~ (00 00)- 00 00 k 
~ Pi -Pi-! = Pl6.-6.-~- Po = r- 2· 

i=l 

Hence, p'Q" = k2 to give (3.5.18). Now ql is the number of infinite zeros of P(s) of degree 

i. Thus, 
00 00 I 

Pi -Pi-! = qi i=1,2, ... 

to give (3.5.19), as required. 0 

The relationships between the rank indices at infinity of a polynomial matrix: and the 

degrees of its minors described by theorems (3.5.5) and (3.5.16) are not straightforward. 

Simpler but more general relationships can be deduced by exploiting the fact that the total 

number of infinite poles and zeros must be the same under each definition. This gives rise 

to the following. 

(3.5.20) Theorem. Let P(s) be an m x e polynomial matrix: of normal rank r and let 

n denote the highest power of s occurring in elements of P( s ). Suppose the rank indices 
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p'(', i = -n, -n + 1, ... , -1, 0, 1, ... , h, of P( s) are known, where h is the smallest integer 

for which 

pf- Pf-1 i' 0, p'f" - P~1 = 0 Vi > h. 

If li denotes the McMillan degree of P( s) and lir the highest degree amongst all r X r minors 

of P(s), then 
-1 

li= 2::: Pi' (3.5.21) 
i=-n 

h-1 

lir = 2::: Pi'- hpf. (3.5.22) 
i=-n 

Proof. Let li; be the highest degree for i x i minors of P( s) and let k1, k2 be as defined 

previously. Let Poo (respectively z00 ) denote the total number of poles (respectively zeros) 

at infinity counted according to multiplicity and degree. Now, if Poo is computed from the 

li; then, from definition (3.5.3), 

k, 

Poo = 2::: ( li; -lii-1) ( lio "" 0) 
i=l 

I.e., 

(3.5.23) 

by definition of k1. On the other hand, if p00 is computed from the p'f"'s then, from 

corollary (3.3.11), 

-1 

Poo = 2::: (p'f" - P~d· lil (P~n-1 "" 0) 
i=-n 

1.e., 
-1 

Poo = 2::: 00 
Pi · 

i=-n 

Equations (3.5.23) and (3.5.24) together then yield (3.5.21). 

Proceeding similarly with the computation of Z00 gives, from the li;'s, 

r-1 

Zoo= 2::: (/i; -/ii+1) = lik, -lir• 
i=k2 
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--------

Alternatively, from the p'f's, 

h 

Zco = L (p'f - P~1).i 
i=l 

= (pf- p't:) + 2(pf- pf) + · · · + (h -1) (Pf-1- Pf-2) + h(pf- Pf-1) 

h-1 

=hpf- 2::: p'f. (3.5.26) 
i=O 

Equating (3.5.25) and (3.5.26) gives 

h-1 

Sr-Sk, = L p'f-hp);". (3.5.27) 
i=O 

However, by the definition of k2 , 

sk, = s 

and, in view of (3.5.21), the relationship (3.5.27) reduces to (3.5.22), as required. 0 

To illustrate the result of theorem (3.5.20) consider the following example. 

{3.5.28) Example. Let 

s 

Then, the associated Toeplitz matriCes are obtained from 
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and 

T~ (G) 
-3 

0 0 0 

0 

0 0 0 

~ 

T~(G) T~(G) T~ (G) 
~ r; (GJ T I (G) -2 -I 

0 0 0 I 0 0 0 0 I 

0 0 . I 

0 0 0 0 0 0 0 
I 0 0 0 0 0 0 
I I I 

·--------~--------~--------~--------~---------1 I I I 

ooo:ooo~ooo~ o 
0 0 : 0 0 0 0 0 1 

1 
0 0 

0 0 0 0 0 0 0 
I I 

0 0 
·--------~--------~--------~---------ooo:ooo:ooo: 0 

I I I 

o:ooo:oo1:o 0 
ooo:ooo:o11:oo 

I I I 

·--------~--------~---------1 I 
00010001000 

I I 

11 o:ooo:oo 
ooo:ooo:o1 

I I 

·--------~---------
0 0 0 

I 
I 0 0 0 
I 

1 1 0 I 0 0 0 I 

0 0 0 
I 

0 0 0 I 
I ·---------

0 0 0 
1 0 

0 0 0 

rank T~(P) = 1 

rank T~(P) =2 

rank T~(P) = 4 

rank T0""(P) = 6 

rank T1""(P) = 8 

rank T2""(P) = 11. 
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The corresponding rank indices at infinity are given by 

p'::3 = 1 

p0::2 = 1 

pC::! = 2 

p'Q" = 2 

p'{' = 2 

pf =3 

with 

pf' = 3, i > 3. 

Hence h = 2. Now, from theorem (3.5.20), 8 and Or are given by 

-I 

8 = :L pf' = 1 + 1 + 2 = 4 
i=-3 

I 

< '""' 00 2 00 Ur = L.., Pi - P2 
i=-3 

= 1 + 1 + 2 + 2 + 2 - 2.3 

=2 

which is confirmed on inspection. 

Notice that this example demonstrates that the difference between successive rank 

indices can be non-zero long after the last term in the Laurent expansion has been in

troduced into the corresponding Toeplitz matrix. The search will only terminate when 

pf' = rankP(s) for some i. 

The result of theorem (3.5.20) leads to the following corollary. 

(3.5.29) Corollary. P(s) will possess no infinite zeros if and only if there exists an r X r 

minor of P(s) with degree 8. 
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Proof. From (3.5.21) and (3.5.22) 

h-1 

8r = 8 + L p'f' - hp/:'· 
i=O 

= 8- (pf- pg")- 2(p~- pf)- · · ·- h(p/:'- Ph-1) 

h 

= 8- L i.(p'f'- P~1) (3.5.30) 
i=l 

Now, P(s) will have no infinite zeros if and only if 

00 00 0 Pi - Pi-1 = i = 1,2, ... 

Hence it follows, from (3.5.30), that P(s) has no infinite zeros if and only if 

as required. 0 

This test for the absence of infinite zeros in a polynomial matrix is the test given by 

Hayton et al. [1988] and discussed previously in section 4. 

The relationships in theorem (3.5.20) can be refined further if instead of the rank 

indices, p'f', the actual ranks of the Toeplitz matrices formed from P(s) are used which 

consequently give rise to the following corollaries. 

(3.5.31) Corollary. Let T;00(P), i = -n, -n + 1, ... denote the successive Toeplitz 

matrices formed from P( s) viewed as a matrix polynomial. 

Then, 

8 =rank T~(P) (3.5.32) 

and 

8r = (h + 1). rank T~1 (P)- h.rank Th'(P). (3.5.33) 

Proof. This follows directly from (3.5.21) and (3.5.22) on noting that 

0 

The result (3.5.32) is of course well-known (Pugh, 1976) and provides a simple com

putational scheme for evaluating the McMillan degree of a polynomial matrix. The result 
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(3.5.33) is new and could be used computationally to evaluate the highest degree of r X r 

minors of P(s). There is however one difficulty surrounding the formula (3.5.33) and that 
lies in the requirement that h be known a priori. There is thus in (3.5.33) more than just 

a requirement that the ranks of two successive Toeplitz matrices be known. 

(3.5.34) Corollary. If P(s) is a square non-singular matrix then 
h-1 

deg (det P(s)) = 2::= Pi- hp'f:' 
i=-n 

= (h+ l).rank T~1 (P)- h.rank Tf"(P). 

Proof. If P(s) is square then m = e and since it is non-singular then r =m. 

8r = deg( det P( s)) and the result follows. 

Thus, 

0 

The above result suggests a method by which the degree of a determinant may be 

computed without recourse to evaluation of the determinant itself. The need for such a 
method can be illustrated by considering the insertion of output feedback as represented 

by the constant matrix K around the open loop transfer function matrix G(s). If D(s) 
denotes the non strictly proper part of G(s) (i.e. the polynomial part of G(s)) then a 
necessary and sufficient condition for the closed loop system to be proper is (Pugh, 1984) 

deg. det(I + IW(s)) = 8(D(s)). (3.5.35) 

A result of the form of corollary (3.5.34) is clearly required to evaluate the left hand side 
of this relationship. Note that on the right hand side of (3.5.35), 8(D(s)) denotes the 
McMillan degree of D(s) and this may be evaluated quite readily from (3.5.32) of corollary 

(3.5.31). 

§6. Conclusions. 

In this chapter the infinite frequency structure of a rational matrix has been consid

ered. A discussion of the various definitions of infinite poles and zeros was presented in 
section 2 with particular reference to the definition based on a minimal factorisation and 
to the definition via the Smith McMillan form at infinity. A method of obtaining the Smith 

McMillan form at infinity of a rational matrix was described in section 3 and this method 
was subsequently exploited to produce new results concerning the absence of infinite zeros 
and the infinite structure of polynomial matrices. Specifically a new test for the absence 
of infinite zeros in a rational matrix was presented in section 4 which, when adopted to 

the case of polynomial matrices, provides a simpler test than that provided by Hayton 

et al. (1988]. Section 5 further considers the particular case of polynomial matrices by 

considering two equivalent definitions of infinite poles and zeros. This leads to the char
acterisation of certain relationships between the rank indices at infinity of a matrix and 
the highest degrees of some of its minors and provides an alternative means of evaluating 

certain features associated with a polynomial matrix. 
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Chapter 4. The General Pole Placement Problem using Constant 

Output Feedback. 

§1. Introduction. 

In this chapter the general pole placement problem using constant output feedback is 

investigated. The system under consideration may possess a proper or non-proper transfer 

function matrix so that both the finite and infinite pole structures must be taken into 

account. The problem is approached by exploiting the properties of a certain factorisation 

of the open loop transfer function matrix, and this theory is discussed in section 2. Using 

this approach some new necessary conditions are obtained for the closed loop finite pole 

structure and infinite pole structure, and these are presented in section 3. The conditions 

presented in section 3 relate separately to the finite pole and infinite pole structures. The 

subsequent refinement of these conditions into an overall condition on the total structure is 

developed in section 4. Finally the connection of these new results with the previous results 

obtained in the special case of systems with strictly proper transfer function matrices is 

investigated. 

§2. Preliminaries. 

It was seen in chapter 3 that a minimal factorisation of a rational matrix, G( s ), 

provides a straightforward characterisation of both the finite and infinite pole and zero 

structure of G( s ). A further property of a minimal factorisation can be exploited when 

constant output feedback is applied to the system. 

Consider a system with an m x e rational transfer function matrix G(s). Let G(s) 
have a right minimal factorisation 

Further, let G K( s) denote the transfer function matrix of the system formed wh~n constant 

output feedback is applied to the original system as described by figure ( 4.2.1 ). 

G(s) 

I -K I 
L I 

fig. ( 4.2.1) 
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Then, GK(s) is given by 

GK(s) = G(s)[I + KG(s)]-1 

where it is assumed that I I+ KG(s) li' 0. A right minimal factorisation of GK(s) can 

be immediately obtained from the corresponding right minimal factorisation of G(s), as 

described by the following lemma. 

(4.2.2) Lemma (Pugh and Ratcliffe, 1980). Let 

(4.2.3) 

be a right minimal factorisation of G( s) where [ Dt ( 
8
)] has column degrees, 

Nt(s) 
c;,i = 1,2, ... ,£. If GK(s) is the resulting closed loop transfer function matrix obtained 

by applying constant output feedback [( around G( s ), then 

(4.2.4) 

[
Dt(s) + KNt(s)] 

is a right minimal factorisation of G K( s ). Further the column degrees of 
N1(s) 

. [D1(s)J are identical to the column degrees of · . 
Nt(s) 

A straightforward right minimal factorisation of G K( s) therefore exists and, using the 

result of lemma (3.2.6), the finite and infinite pole structure of the closed loop system under 

constant output feedback can be investigated. This is undertaken in the next section. A 

dual result to lemma (4.2.2) exists when a left minimal factorisation of G(s) is employed 

of the form 

(4.2.5) 

where the rows of [Dz(s) Nz(s)] constitute a minimal basis with row degrees 

r;,i = 1,2, ... ,m, and where A2 (s) is defined as Az(s) = diag [sr1 ,sr2 , ••• ,srm]. It then 

follows that the closed loop pole structure can also be investigated by considering a left 

minimal factorisation of G(s). 
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§3. Necessary conditions for the separate placement of a finite and infinite 

pole structure by output feedback. 

Consider the m x R. transfer function matrix G(s) factorised as in (4.2.3). From the 

results described in the previous section and in chapter 3 the finite and infinite pole struc

tures of the closed loop system, factorised as in ( 4.2.4), are given by the zero structure of 

D1(s) + KN1(s) and the zero structure at w = 0 of [DI(;\;) + K NI(~)]AI(w) respec

tively. The ,'zero structures of DI ( s) + K N1 ( s) and [D1 ( ;\;) + K N1 (;\;)]AI ( w) in turn are 

given b9 their respective sets of invariant polynomials. Let the invariant polynomials of 

DI ( s) + K NI ( s) be a I ( s ), a2( s ), ... , at( s) where 

a;(s) I a;-I(s) i = 2,3, ... ,£ (4.3.1) 

and 

dega;(s)=a; i=1,2, ... ,R.. (4.3.2) 

Let the invariant polynomials of [DI(~) + K NI(;\;)]At(w) be f3I(w),{h(w), ... ,/3t(w) 
where 

i = 2,3, ... ,R.. (4.3.3) 

The zero structure at w = 0 of [DI(;\;) + K NI(~)]AI(w) is given by factors of the , 

form wb' of (3;( w) (b; ~ 0), i = 1, 2, ... , R.. Hence, +··-" .,i>.w \'cv<:'j,'"' 
'f?· (_(•A1 (C;-Jif . .,-.~'- + 

(<'-, I ' w · 2)' '-"'w~,, ' f" 1 

"- <->·\ ( / --~·· •• ·'(4 ·3" '4) !)~ w \ );.~<~~ ,}:1' ~ J • • 

1/\{/Vt'-''.t ~t 
\ "' 

b; ::; deg(f3;( w )). 

It therefore follows that the finite and infinite pole structures of the closed loop transfer 

function matrix can be described in terms of the a; 's and b; 's. 

Necessary conditions for the closed loop finite pole structure to satisfy are now pre-

sented in terms of the c; 's defined in the previous section. 

( 4.3.5) Theorem. Let G(s) be an m x R. rational transfer function matrix factorised as 

where [Di(s)] forms a minimal basiswithcolumndegrees, c;, orderedci > c2 > ... ~ Ct. 
Nt(s) 

Let at( s ), a2(s ), ... , at(s) be monic polynomials with real coefficients which satisfy (4.3.1), 

( 4.3.2). Then, for there to exist a constant matrix K such that D1 ( s) + K NI ( s) has 

invariant polynomials a1 ( s ), a2 ( s ), ... , at( s) it is necessary that 

t l 

'E a; ::; 'E c; k = 0, 1, ... ,£-1. (4.3.6) 
i=k+l i=k+l 
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Proof. By definition ak+1(s)ak+2(s) ... at(s) is the greatest common divisor of all 

(l-k)x(l-k)minorsinD1(s)+KN1(s)fork=0,1, ... ,l-1. Lete;, i=1,2, ... ,e, 
be the column degrees of D 1(s) + K N1(s) taken to correspond with the c;. Thus, 

e; :::; c;, 

It then follows that 

I.e., 
t t 

L a·< I- L Cj 

as required. 

i = 1,2, ... ,e. 

t 

L e· < I-

t 

L c; 

k = 0, 1, ... ,e - 1 

k=0,1, ... ,e 

0 

A similar necessary condition for the degrees of the infinite poles can also be given. 

(4.3.7) Theorem. Let G(s) be an m X e rational transfer function matrix and DI(s), 
N1(s),cb ... ,ct be as described in theorem (4.3.5). Let f31(w),f32(w), ... ,f3t(w) be manic 

polynmnials with real coefficients which satisfy ( 4.3.3) and let 

i=1,2, ... ,e ( 4.3.8) 

where .Bi(O) =J 0 and take A1 ( w) to be diag[w<', w<>, ... , w«]. Then, for there to ex

ist a constant matrix K such that [D1(~) + K N1(!)]AI(w) has invariant polynomials 

.81 ( w ), /32( w ), ... , .Bt( w) it is necessary that 

l l 

"' b· < "' c· L.-i ,_ 6 ' k=0,1, ... ,l-1. 

Proof. .By definition f3k+ 1 ( w )f3k+2 ... .Bt( w) is the greatest common divisor of all 

(l- k) x (£- k) minors in [D1(~) + 1( NI(!)]AI(w) for k = 0, 1, ... ,e- 1. Let j;, 
i = 1,2, ... ,£, be the column degrees of [D1(!) + K N1 (~)]A 1 (w) taken to correspond 

with the c;, so that 

f; :::; c;' i = 1, ... ,e. 

It then follows that 

t l 

deg [f3k+I ( w ).Bk+2( w) ... .Bt( to)] :5 L f; :5 L c; i = o, 1, ... , e - 1 
i=k+l i=k+l 
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t.e., 
l t 

,2: deg(,B;(w)):::; ,2: c; k = o, 1, ... , e - 1 

and, from (4.3.4) and (4.3.8), 

l 

2: b· < . - k = o, 1, ... , e- 1 

as required. D 

The results of theorems (4.3.5), (4.3.7) can be most conveniently illustrated by means 

of a step function, defined as follows. 

( 4.3.9) Definition. 
l 

2: Cj k=0,1, ... ,£-1 
i=k+! 

l 

,2: Cj k = non-integer 
j=k-+! 

where k_ is the downward rounded version of k. 

Pictorially it can be seen that Ck is a decreasing staircase as illustrated by figure 

( 4.3.10). 

cl+ c2 + ... + r~-

c2+ ... + ce 

c.e~ c.g_1 _ 

C_g 

2 .e-2 .e-1 .e 

fig. (4.3.10) 

It therefore follows, from theorems ( 4.3.5) and ( 4.3. 7), that the a;, b; must be chosen such 

that the staircases corresponding to L:1=k+I a;, L:1=k+I b;, k = 0, 1, ... ,e -1lie below the 
staircase given by figure (4.3.10). Note that if the c;'s had been ordered in any other way 
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the corresponding staircase would either lie on or above the staircase pictured above. Thus, 

the ordering c1 :2: c2 :2: ..• :2: cl can be regarded as a minimal ordering in the sense that the 

associated staircase provides the lowest, of this type, of upper bound for the La;, L b;. 

As was noted in section 2 the pole structure of G( s) could as easily be investigated by 

considering a left minimal factorisation of G(s) as represented by (4.2.5), thus leading to 

analogous necessary conditions to those of theorems ( 4.3.5) and ( 4.3. 7) in terms of the left 

factorisation. Combining the necessary conditions from each factorisation leads to stronger 

necessary conditions for the separate assignments of the finite and infinite pole structures. 

Let G(s) be an m X£ rational matrix with right and left minimal factorisations 

[
Dt(s)] 

respectively, and where the column degrees, c;, of Nt ( 
8

) are ordered C! :2: c2 :2: ... :2: Cl 

and the row degrees, r;, of [D2(s) N2(s)] are ordered r1 :2: r2 :2: ... :2: rm. Let t1 = 
min(m,£), t2 = max(m, £) and let a 1 (s ), a2( s ), ... , a 1, (s) be monic polynomials such that 

a;(s) I O<i-t(s) i = 2, 3, ... 't! 

and deg a;( s) = a;, i = 1, 2, ... , t1. Also, let /31 ( w ), /32( w ), ... , /311 ( w) be monic polynomi

als such that 

/3;(w) I /3;-t(w) i = 2, 3, ... 't! 

and where 

(3;(w) = w6
; f3Hw) i = 1, 2, ... 't! 

in which /3l(O) =f. 0. Let At ( s) = diag[sc1 , sc2 , ••• , se'] and A2( s) = diag[sr1 , sr2 , ••• , srm ]. 

Combining the necessary conditions obtained by using a right minimal factorisation 

with the necessary conditions obtained by using a left factorisation results in the following 

tighter necessary conditions on the closed loop finite pole structure. 

( 4.3.11) Theorem. Consider an mx£ transfer function matrix, G(s), described above and 

let D1(s),Nt(s),D2(s),N2(s),c;,r;,a;,a;,t;, also be defined as above. Then, for there to 

exist a constant matrix J( such that the non-unit invariant polynomials of D1(s)+I< N1(s) 

and D2(s) +N2(s)K are a 1(s),a2(s), ... ,a11 (s) it is necessary that 

k = 0, 1, ... 't! - 1 ( 4.3.12) 

where 
t, 

[2~1 
m 

rl I: d; = min Ci, I: 
i=k+l i=k+l 
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Proof. By construction the non-zero invariant polynomials of D1 ( 8) + K N1 ( 8) and 

D 2(s) + N2(8)K are equivalent, so that there can be at most tr = min(£,m) non-zero 

invariant polynomials. By theorem ( 4.3.5) the degrees, a;, of these non-zero invariant 

polynomials must satisfy the necessary conditions 

k = 0, 1, ... 'tl - 1. (4.3.13) 

Similarly, by considering a left minimal factorisation of G(8) the a;, i = 1, 2, ... , tl> must 

also satisfy the necessary conditions 

t, m 

L a;$ L r; k = 0, 1, ... 'tl - 1. (4.3.14) 
i=k+l i=k+l 

Combining ( 4.3.13) with ( 4.3.14) gives rise to the necessary conditions ( 4.3.12), 

as required. 0 

In a shnilar way stricter necessary conditions are obtained for the closed loop infinite 

pole structure. 

(4.3.15) Theorem. Consider an m X e transfer function matrix, G(8), described above 

and let D1(8),Nl(s),D2(8),N2(8),c;,r;,b;,{3;,t;,A;(8) also be defined as above. Then, 

for there to exist a constant matrix K such that the non-unit invariant polynomials of 

[Dl(;\;)+K N1(~)]A1(w) and A2(w)[D2(~)+N2(~)K) are f31(w),{32(w), ... ,{3~,(w) it is 
necessary that 

k = 0, 1, ... 'tl - 1 ( 4.3.16) 

where 

Proof. By construction the non-zero invariant polynomials of (D1 (-;\;) + K N1 ( ~ ))A1 ( w) 

and A2 (w)(D2 (~) + N2(;\;)K) are equivalent, so that there can be at most t1 = min(£,m) 

non-zero invariant polynomials. By theorem (4.3.7) the non-zero polynomials must satisfy 

the following necessary conditions expressed in terms of the b;, i = 1, 2, ... , tr, 

i = 0, 1, ... 'tr - 1. ( 4.3.17) 
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Similarly, by considering a left minimal factorisation of G(s) the b;, i = 1, 2, ... , h, must 

also satisfy the necessary conditions 

!t m 

I: b; ~ I: n i = 0, 1, ... 'tl - 1. ( 4.3.18) 
i=k+l i=k+l 

Combining ( 4.3.17) with ( 4.3.18) gives rise to the necessary conditions ( 4.3.16), 

as required. D 

The necessary conditions oftheorems (4.3.11) and ( 4.3.15) can be described in a more 

straightforward fashion by employing the staircase description. Without loss of generality 

let m :;::: £ and let the staircase function corresponding to each minimal factorisation be 

constructed in a similar way to that shown previously. Combining both staircases on the 

same diagram results in figure (4.3.19). 

..., 

1 2 m 

staircase associated with right factorisation 

staircase associated with left factorisation 

fig. ( 4.3.19) 

Note that the two staircases might not intersect at all or might intersect at more than 
one point. The necessary conditions of theorem (4.3.11) then state that the closed loop 
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lt 

finite pole structure must be such that the staircase corresponding to L a;, 
i=k+l 

k = 0, 1, ... , t 1 - 1 lies in the shaded area of figure ( 4.3.19). A similar interpretation can 

be made for theorem (4.3.15). Theorems (4.3.11) and (4.3.15) obviously provide stronger 

necessary conditions than those contained in theorems ( 4.3.5) and ( 4.3. 7) respectively. 

The necessary conditions of theorem ( 4.3.11) and ( 4.3.15) are not sufficient conditions 

as is demonstrated by the following example. 

( 4.3.20) Example. Let 

1 
G(s) = s(s2 -1) [ 

8 4 

s(1- s) 

Right and left minimal factorisations of G( s) are respectively given by 

N1(s)D}1(s) = [ 813 o
8

] [ 882 
8
1]-l, 

D2l(s)N2(s)=[s-1 s ]-1 [s2-s 1 ] 
0 s2 + s -s s2 + s + 1 · 

It therefore follows that 
Cl= 3, C2 = 1 

r1 = 2, r2 = 2 

so that the closed loop finite pole structure, as described by a1 and a 2 , must satisfy the 

necessary conditions 

}· 
Similarly, the closed loop infinite pole structure, as described by b1 and b2, must satisfy 

the necessary conditions 

}· 
The closed loop finite pole structure a1 = 0, a2 = 0 satisfies the necessary conditions of 

theorem (4.3.11). For the closed loop system to have this pole structure it is necessary 

that 

I D1(s) + K N1(s) I= a (4.3.21) 

where a is a non-zero constant. If 
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then 

For ( 4.3.21) to hold, it follows that 

k2 = 0 and k2 - 1 = 0. 

This is clearly not possible indicating that the pole structure a 1 = 0, a2 = 0 can not be 

assigned by constant output feedback and so demonstrating that the necessary conditions 

of theorem ( 4.3.11) are not sufficient. 

By implication it follows that it is not possible to assign all the poles at infinite 

location. In particular the infinite pole structure b1 = 4, ~ = 0 can not be assigned so 

demonstrating that the necessary conditions of theorem (4.3.15) are not sufficient. 

§4. Necessary conditions for the simultaneous placement of a finite pole 

structure and an infinite pole structure by output feedback. 

When designing the closed loop system it is of greater interest to know whether a 

finite and infinite pole structure can be assigned simultaneously rather than separately. 

This has therefore lead to the investigation of necessary conditions for such an assignment. 

Initial necessary conditions can be deduced from theorems ( 4.3.5) and ( 4.3. 7), namely 

that the a;'s and b;'s as defined in those aforementioned theorems must satisfy the condi

tions that 
l l t 

L a;+ L b; ::::; 2 L c; k = o, 1, ... , e- 1. (4.4.1) 
i=k+l i=k+l i=k+l 

This is a very crude bound on L a; + L b; since it is known, for example, that 

l l t 

L a;+ L b; = L c;. (4.4.2) 
i=l i=l i=l 

Stricter necessary conditions are now presented which include the condition ( 4.4.2) 

and which generalise the results of theorems (4.3.11) and (4.3.15) to the case when the 

finite and infinite pole structures are assigned simultaneously. The result is first given in 

terms of a right Ininimal factorisation of the associated transfer function matrix. 

( 4.4.3) Theorem. Let G(s) be an m xe transfer function matrix factorised as in theorems 

(4.3.5) and (4.3.7). Let a;(s),a; be given as in theorem (4.3.5) and ,B;(w),b;,A!(w) as in 

theorem ( 4.3.7). Then, for there to exist a constant matrix]{ such that D1(s)+KN1(s) has 
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invariant polynomials a1 ( s ), a2( s ), ... , at( s) and [D1 ( ~) + K N1 ( ~ )] A1 ( w) has invariant 

polynomials fh ( w ), /32( w ), ... , f3t( w) it is necessary that 

t t t 

2: a;+ 2: b; $ 2: c; k = o, 1, ... , e - 1 ( 4.4.4) 

with equality holding when k = 0. 

Proof. By definition at( s) at-1 ( s) 

k X k minors in D1(8) + K N1(8). Let 

at-k+1 ( 8) is the greatest common divisor of all 

t t 

Vk .o. 2: a; and P,k .o. 2: c; k = 1, 2, ... ,e 
i=t-k+l 

then 

where Vk $ P,k and tv• =f 0. 

Now each k X k minor of D1 (~) + KN1 (~)will be of the form 

(4.4.5) 

for some polynomial f(s). Further, among all k x k minors of D1(8) + K N1(s) the cor

responding polynomials f( 8) are coprime for finite s. Thus, all k X k minors of [D1 ( ~) + 
K N1(~)] A1(w) will be of the form 

(4.4.6) 

where T7 ~Ilk· 

The greatest common divisor of all k x k minors in [D1(~) + K N1 (~)]A 1 (w) will 

therefore be 

at(~) at-1 (~) .. . at-k+1 (~) 

where 

(4.4.7) 

t.e., 
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where JL~ 2:: Vk since at(~) at-1 (~) ... at-k+l (~) w"~ must be a polynomial. It there

fore follows by definition that 

i.e., 

Hence, from ( 4.4. 7) 

bt + bt-1 + · · · + bt-k+l = JL~ - Vk 

l l 

2::::: b; + 2::::: a; = JL~· 
i=l-k+l i=l-k+l 

l l 

2::::: b;+ 2::::: 
i=k+l i=k+l 

a·< . - t 

L C; 
i=k+l 

k = 0, 1, ... ,£. 

When k = f., f(-!;;) = 1 in ( 4.4.5) and 'fJ = JLt in ( 4.4.6). This means that the greatest 

common divisor of all f. X f. minors in [D1 (-!;;) + I<N1 (~)] A1(w) is of the form 

where ,P( w) has no factors of the form w", a > 0. 

Hence, 
t l l 

2::::: b; + 2::::: a; = 2::::: Cj 

i=l i=l i=l 

as required. 0 

Again similar necessary conditions can be obtained by using a left minimal factori

sation. Combining the necessary conditions from each factorisation leads to the following 

theorem. The notation for this theorem is as described in the previous section. 

( 4.4.8) Theorem. Consider an m X e rational transfer function matrix, G( 8 ), described 

above and let N1( 8 ), D1 (8 ), N2( 8 ), D2( 8 ), c;, r;, ,8;(8 ), a;( 8 ), a;, b;, t;, A1( 8 ), A2(8) also be de

fined as above. Then, for there to exist a constant matrix J{ such that the non-unit in

variant po~ynomials of D1(8) +K N1(8) and D2(8) +N2(8)I< are a1(8),a2(8), . .. ,at,(8) 
and the non-unit invariant polynomials of [D1 ( -!;;) + J( N1( ~)] A1(w) and A2(w) [D2( -!;;) + 
N2(~)K] are .8I(w),,82(w), ... ,,81,(w) it is necessary that 

k = 0, 1, ... tl - 1 ( 4.4.9) 

where 
t, [ t L d; = min L c; 

i=k+l i=k+l 
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and with equality holding when k = 0 in (4.4.9). 

Proof. The result follows by combining the separate necessary conditions obtained by 

considering a left and a right minimal factorisation of G( s) in the same way that the results 

of theorems (4.3.11) and (4.3.15) were derived. 0 

Theorem ( 4.4.8) obviously provides stronger necessary conditions than the ones ob

tained by· considering each factorisation separately. This is demonstrated by the following 

example. 

(4.4.10) Example. Let 

1 
0 0 

s 

G(s) = 
1 s2 s 

s3 

0 0 
1 
sS 

0 

where N 1(s) D!1(s) is a right minimal factorisation and D21(s) N 2(s) is a left minimal 

factorisation. It therefore can be seen that 

C1 = 6, C2 = 3, C3 = 2, 

r1 = 5, r2 = 5, r3 = 1. 

The necessary conditions obtained by considering the right factorisation requires a;, b; to 

satisfy 
a3 + b3 :S 2 

a3 + a2 + ba + b2 :S 5 

aa + az + a1 + ba + b2 + b1 = 11 

whilst the necessary conditions obtained by considering the left factorisation requires a;, b; 

to satisfy 
aa + ba :S 1 

a3 + a2 + ba + b2 :S 6 

aa + a2 + a1 + ba + b2 + b1 = 11. 
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Let 

J( = [:: :: ::] 
k7 ks kg 

and A1(w) = diag [w6,w3,w2],A2(w) = diag [w5 ,w5 ,w]. 

First, consider the right factorisation whose necessary conditions require a3, b3 to 

satisfy 

The closed loop infinite pole structure is given by the zero structure at w = 0 of 

[

-1- k1w + k3w6 

[D1 (~) + K N1(~)] A1(w) = -k4w + k5w6 

w- k1w+ kgw6 

w + k1w
2 + k2] 

k4w2 + ks 

k1w2 + ks 
(4.4.11) 

It follows from element (2,2) of ( 4.4.11), that w cannot be a common factor of all 1 X 1 

minors of ( 4.4.11), i.e. b3 = 0. Now the finite pole structure of the closed loop system is 

given by the invariant polynomials of 

[

-s6
- k1s5 + k3 

D1(s) + KN1(s) = . -k4s5 + k6 

s5
- s5 k1 +kg 

k2s
2 + s + k1] 

kss2 + k4 • 

kss2 + k1 

( 4.4.12) 

If the greatest common divisor of all 1 X 1 minors is to have degree greater than zero then 

the element in position (1,2) of (4.4.12) indicates that k2 = 0. In this event it follows 

from the (1,3) element of ( 4.4.12) that the highest possible degree for this divisor is 1. 

Hence a3 ~ 1. Thus, by investigating the closed loop pole structure via the right minimal 

factorisation it is seen that a3, b3 must satisfy the necessary condition 

which confirms the necessary condition obtained by considering the left factorisation. 

Similarly consider the pole stmcture obtained by using the left minimal factorisation 

which requires a3 , a 2 , b3 , b2 to satisfy the necessary condition 

The infinite pole structure of the closed loop system is given by the zero structure at w = 0 

of 

A2(w) [D2 (~) + N2 (~) K] = 
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k
9
w

5 

+ 1 l 
ksw5 + kaw +kg . 

kaw 

( 4.4.13) 

The 2 x 2 minor formed by deleting the second row and second column of ( 4.4.13) is given 

by 

which is not divisible by w regardless of the choice of k1, k1, kg, ka. Hence ba + b2 = 0. The 

finite pole structure of the closed loop system is given by the invariant polynomials of 

8

5 

+kg l 
k985 + ka84 + ks . 

ka 

D2(8) + N2(~)K = [k1s4 + ::85 + k4 k284 + ks:: + 83 + k5 
s + k! k2 

(4.4.14) 

Suppose that there exists a [( such that aa + a2 > 5. Then, all 2 X 2 minors of (4.4.14) 

must have at least degree 6. Consider the minor formed by deleting the third column and 

second row of ( 4.4.14), i.e. 

For the above assumption to hold it follows that ks = 0 = k2 or ks = 0 = k1. If ks = 0 = k1 

consider the minor formed by deleting the first column and second row of (4.4.14), i.e. 

which implies k2 = 0 for the above assumption to hold. Thus, it is necessary that k2 = 0 

and k8 = 0. Now the minor formed by deleting the third column and first row of (4.4.14) 

is given by 
k184 + k1s5 + k4 

s + k! 

which shows that it is not possible to find a [(such that all2 x 2 minors of (4.4.14) have at 

least degree 6. Hence, the original assumption is false and it is deduced that aa + a2 ~ 5. 

It then follows that 

which confirms the necessary condition obtained fror{,_ the left factorisation. 

Using the staircase description of figure ( 4.4.15) 
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1 2 3 

left factorisation 

right factorisation 

fig. ( 4.4.15) 

it is seen that the desired closed loop system pole structure must give rise to a staircase 

function which must lie within the shaded area. 

The above example also demonstrates that the necessary conditions of theorem ( 4.4.8) 

are not sufficient conditions. In particular, the pole structure b3 = 1, b2 = 1, b1 = 1, 

a3 = 0, a2 = 3, a1 = 5 satisfies the conditions ( 4.4.9) of theorem ( 4.4.8) but it was seen 

that b3 must satisfy b3 = 0 in the above example. 

71 



§5. Relationship with previous results in the case of strictly proper transfer 

function matrices. 

For the case when the system has a strictly proper transfer function matrix, G( s ), 

all the open loop poles will be situated at finite locations. Further, when constant output 

feedback of the form described in figure (4.2.1) is applied around this system the resulting 

closed loop system also has all its poles at finite locations (Rosenbrock and Pugh, 1974). 

The results of theorem (4.3.5) and (4.3.11) can be interpreted for this situation with the 

necessary conditions (4.3.6) and (4.3.12) modified to include equality when k = 0. The 

necessary conditions ( 4.3.6) are in agreement with the necessary conditions obtained by 

Rosenbrock and Hayton [1978] for this particular case. Rosenbrock and Hayton [ibid.] 

considered the general pole placement problem for systems with strictly proper transfer · 

function matrices using dynamic output feedback but their result can be interpreted for 

constant output feedback. 

The result given by Rosenbrock and Hayton [ibid.] corresponding to theorem (4.3.5) 

is presented below with a slight alteration of notation so that the result can be directly 

compared with that of theorem (4.3.5). 

(4.5.1) Theorem (Rosenbrock and Hayton, 1978). Let G(s) = T0 1(s) Ua(s) be m x€ 
and strictly proper with Ta( s ), U a( s) relatively (left) prime. Let >.Gl 2:: >.a2 2:: .•• , 2:: >.at 
be the controllability indices of G(s). Let K(s) = Ti( 1(s)Ug(s) be the proper dynarrlic 

feedback with observability indices J.I.I<I 2:: J.1.K2 2:: ... 2:: J.I.Kl· Then, the closed loop pole 

structure as defined by a;, i = 1, 2, ... , e, must satisfy the necessary conditions 

k . [ k tt a; 2:: max tt (>.a;+ J.I.K;l+I-i), k = 1, 2, ... , e (4.5.2) 

with equality holding when k = € if and only if Tk(s), Uk(s) are relatively (left) prime. 

Now if K(s) is taken to be a constant matrix the associated observability indices, J.I.Ki, 

are all equal to zero. Hence, the necessary conditions of theorem (4.5.1) become 

k k 

La; 2:: L >.a; k = 1, 2, ... ,e (4.5.3) 
i=I i=l 

with equality holding when k = €. It also follows, since G(s) is strictly proper, that the 

controllability indices are equivalent to the c;'s defined earlier (see Forney, 1975). Thus, 

replacing >.a; by c; in ( 4.5.3) and reordering gives ( 4.3.6). 

Hence, the necessary conditions given by Rosenbrock and Hayton [1978] and the nee· 

essary conditions of theorem ( 4.3.5) are equivalent for the case when constant output 

feedback is applied around a system with a strictly proper transfer function matrix. The 
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necessary conditions of theorem ( 4.3.11 ), obtained by considering both a left and right min
imal factorisation of G(s), are stronger conditions than those of theorem (4.3.5) and hence 
are stronger than the necessary conditions obtained by Rosenbrock and Hayton [ibid.] for 

this particular case. This suggests that the general result presented by Rosenbrock and 

Hayton [ibid.] could be improved. Indeed Kucera and Zagalak [1985] subsequently derived 

stricter necessary conditions than those obtained by Rosenbrock and Hayton [1978] for 

dynamic feedback. 
For the special case of constant output feedback these new necessary conditions pre

sented by Kucera and Zagalak [1985] are equivalent to those obtained by Rosenbrock and 
Hayton [ibid.] and hence are in agreement with the necessary conditions of theorem (4.3.5) 

as applied to systems with strictly proper transfer function matrices. 
For the strictly proper case Rosenbrock and Hayton [1978] also present sufficient 

conditions for the placement of a pole structure using dynamic compensators. The proof of 
this sufficient condition given by Rosenbrock and Hayton (ibid.] requires the compensator 

t 
to have order equal to 2: (>.Gl -1). Thus, for the compensator to be constant, i.e. have 

i=l 
order zero, the largest controllability index of G( s) must be 1. In this instance the sufficient 
conditions are equivalent to the necessary conditions, so that it is possible to find a constant 

feedback matrix such that the closed loop pole structure satisfies conditions ( 4.5.3). The 
requirement that AGl = 1 is a very restrictive one so that the result for constant feedback 

applies only to certain systems. 

§6. Conclusions. 

The general pole placement problem using constant output feedback has been considered 
in this chapter. The treatment is novel since it allows for the possibility that the open 
loop system and the closed loop system possess a proper or a non-proper transfer function 
matrix. As a result the assignment of both the finite and infinite pole structures have been 

investigated . 
The problem was approached by exploiting the properties of a minimal factorisation 

of the open loop transfer function matrix. In section 3 separate necessary conditions were 
presented for the finite and infinite closed loop structure to satisfy. These new conditions 
were given naturally in terms of the column and row indices of certain minimal factori
sations asoociated with the open loop transfer function matrix. The results were neatly 

illustrated by means of suitable step functions. Further original necessary conditions were 
presented in section 4 which generalise, in an appropriate manner, the results presented in 
section 3 to the case where the finite and infinite pole structures are considered simulta
neously. Finally, in section 5 the relationship with previous work concerning systems with 

strictly proper transfer function matrices was investigated. For the specific case of constant 
output feedback the necessary conditions presented in this chapter were seen to be stricter 

than those obtained previously by both Rosenbrock and Hayton [1978] and Zagalak and 

Kucera [1985]. 
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Chapter 5. Notions of Controllability in Generalised State Space Systems. 

§1. Introduction. 

Consider linear time invariant systems of the form 

E:i:(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

(5.1.1) 

(5.1.2) 

where x(t) is ann-vector of internal states, u(t) is an £-vector of control inputs and y(t) is a 

m-vector of outputs. E, A, B, C are real constant matrices of the appropriate dimensions. 

The properties of such systems can be divided into two cases depending on the non

singularity or singularity of the matrix E. When E is non-singular the equations are said 

to be in regular state space form and the properties of such systems have been widely 

investigated. 

If E is singular the behaviour of the system with defining equations (5.1.1), (5.1.2) 

differs considerably. The system now consists of algebraic as well as first order differential 

equations which can lead to what is termed impulsive motion occurring in the system. 

In the frequency domain this corresponds to the presence of infinite frequency behaviour. 

The system is then said to be. in generalised state space form. The terms general (or 

generalised) and regular will be adopted to distinguish between the two cases. 

The difference between the regular and generalised cases is clearly reflected by the 

transfer function matrix, G(s), associated with (5.1.1), (5.1.2), i.e. 

G(s) = C[sE- A]-1 B. 

When E is non-singular, G(s) will be a strictly proper matrix whilst when E is singular 

G( .s) could additionally be either proper or non-proper. It should be noted that early iiives

tigations of systems with proper or non-proper transfer function matrices were undertaken 

(see Rosenbrock, 1970) by adapting the regular system to incorporate a term D Ut) u(t) 
on the right hand side of (5.1.2). The D Ut) term gives rise to the polynomial part of 

the transfer function matrix. It was usually assumed that the system had also existed 

for t < 0. This implies that the initial state of the system, x(O-), satisfies the equations 

(5.1.1) so that the system can not display an impulsive response and its behaviour mirrors 

that of a regular system. This approach proved satisfactory under these assumptions. 

When it became apparent that the presence of impulsive motions was inevitable and 

even desirable in some systems, e.g. component failure at t = 0 or in switching, it was 

found that the existing approach of adapting the regular case was inadequate. This was 

mainly due to the fact that the infinite frequency behaviour of the system was inadequately 
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displayed and that the transformation theory associated with the regular case only pre

served the infinite frequency behaviour of D( s ). It became apparent that a more complete 

theory was needed to further encompass the generalised case. Naturally the development of 

such theory has been closely associated with the regular theory with the specific properties 

of the generalised case taken into account. 

In this chapter the concepts of controllability in generalised state space systems are 

considered. These concepts emanate from the concepts of controllability in regular state 

space systems which are described in section 3. Associated with these notions of control

lability are a set of algebraic conditions which are derived and described by Rosenbrock 

(1970]. The extension of the concepts of controllability to generalised state space systems 

has been developed in both the frequency and time domain and a discussion of this de

velopment is presented in section 4. Two main definitions of controllability have emerged. ,, 
In the frequency domain the difference between the two definitions is reflected in the role 

of what are termed non-dynamic variables. A new definition is presented which subse

quently illustrates, in a novel manner, the important role of the non-dynamic variables in 

the time-domain. 

In section 5 analogous algebraic conditions to those associated with controllability in 

regular state space systems are presented for the two main concepts of controllability in 

generalised state space systems. Certain of these conditions have been previously estab

lished (see Lewis, 1986) but others have not. A polynomial system approach is adopted 

to provide a unified treatment and also simpler proofs to the existing results. New results 

are presented which together with the existing results provide a complete analogy to the 

conditions presented by Rosenbrock (1970] for the regular case. In section 6 the roles 

of the non-dynamic and dynamic variables in generalised state space systems are further 

discussed. 

Before considering the notions of controllability a description of a canonical form 

known as the Kronecker form associated with the generalised state space system is first 

presented in section 2. This form will be required for subsequent chapters as well as this 

present one. 
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§2. The Kronecker form. 

The polynomial system matrix, P(s), associated with the system (5.1.1), (5.1.2) is 

given by 

[ 
sE-A B ] 

P(s) = --_-c-+--0- (5.2.1) 

where it is assumed that I sE- A li' 0. 

The matrix sE - A is therefore a regular pencil and thus can be transformed by 

means of pre and post multiplication by constant non-singular matrices, M and N, into 

the following form 

[
sin,- A1 

M[sE-A]N = O (5.2.2) 

where n1 = deg I sE- A 1, n2 = n- n1 and J is nilpotent. In addition J may be chosen 

to be in Jordan canonical form with say p Jordan blocks each of order q; and without loss 

of generality ordered 

(5.2.3) 

The nilpotency index of J is therefore equal to q1 . This canonical form was first described 

by Wierestrass [1867] but is a special case of the canonical form derived by Kronecker 

[1890] for more general matrix p~ncils [see Gantmacher, 1959, for full description]. For 

this reason the canonical form ( 5.2.2) with J in Jordan form ( 5.2.3) will be referred to as 

the Kronecker form of the matrix pencil sE - A despite the fact that A1 might not be in 

the strict form required by Kronecker [1890]. 

Adapting the transformation (5.2.2) to the system matrix P( s) ·gives rise to the fol

lowing. 

[%] [-s~--::-~ A-+-1-! l [-ft-t-J=[_sin--::-~~1-Al s_J_~:---~n, -+--!-,: l 
(5.2.4) 

The transformation represented by (5.2.4) is a restricted system equivalence transformation 

(Rosenbrock, 197 4) and thus preserves the fundamental characteristics of the system at all 

frequencies s. The system (5.1.1), (5.1.2) is then said to be in Kronecker form when its 

system matrix is represented as 

0 

(5.2.5) 
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where J is in Jordan canonical form (5.2.3). Similarly the pencil [sE- A B] is said to 

be in Kronecker form when sE- A is given by (5.2.2) and J is again in Jordan normal 

form (5.2.3). Further, with reference to the system described in Kronecker form, let 

bT, i = 1, 2, ... , n, represent the rows of B and let the term last position rows of B refer 

to the rows of B which correspond to the last position rows of the Jordan blocks of J, i.e. 

rows n1 + q1, n1 + q1 + q2, ... , n1 + q1 + ... + qp. 

The transfer function matrix, G(s), associated with (5.2.1) can now be written as 

(5.2.6) 

where C1 [sin,- A1]-1 B1 is strictly proper and C2[sJ- ln2]-
1 B2 is polynomial. Similarly 

the defining equations for the system can be partitioned as 

x1(t) = Atxt(t) + Btu(t) 

Jx2(t) = x2(t) + B2u(t) 

y(t) = Ctxt(t) + C2x2(t). 

(5.2.7) 

(5.2.8) 

(5.2.9) 

The state variables Xt ( t) are governed by regular state space equations and can be regarded 

as determining the finite frequency behaviour of the system. The state variables x2(t) con

tribute the polynomial part of the transfer function matrix and therefore can be regarded 

as determining the infinite frequency behaviour of the system. Cobb [1981] describes the 

respective subsystems as slow and fast to reflect the enforced motion associated with each 

subsystem, the first set of equations producing exponential responses whilst the second set 

producing impulsive responses. This can be seen from the solution of (5.2.7) and (5.2.8) 

which are readily given as 

Xt(t) = eA' 1xt(O-) +it eA,(t-r)Btu(r)dr (5.2.10) 

ql-1 qt-1 

x2(t) =- L O(i-l)Jix2(0-)- L JiB2u(i)(t). (5.2.11) 
i=l 
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§3. Regular state space systems. 

The regular state space system associated with (5.1.1), (5.1.2) when E is non-singular 

can equivalently be written as 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

(5.3.1) 

(5.3.2) 

where x(t) is an n-vector of internal states, u(t) an £-vector of control inputs, y(t) is an 

m-vector of outputs and A, B, C are constant real matrices of the appropriate dimensions. 

The fundamental notion of controllability of a system considers how the internal states 

of a system can be affected by applying a suitable control. It then follows that the control-
( 

labilij;y characteristics of a regular state space system as described above are completely 

determined by considering (5.3.1). The definitions of controllability most commonly asso

ciated with such systems are now presented. 

(5.3.3) Definition. The system given by (5.3.1) is said to be CONTROLLABLE TO 

THE ORIGIN if, given any state x(O) = e, there exists a time r > 0 and control u(t) 

defined on [0, r] such that x( r) = 0. 

(5.3.4) Definition The system given by (5.3.1) is said to be CONTROLLABLE FROM 

THE ORIGIN (OR REACHABLE) if, given any state e, there exists a time r > 0, and a 

control u(t) defined on [O,r] such that if x(O) = 0 then x(r) =e. 

(5.3.5) Definition. The system given by (5.3.1) is said to be CONTROLLABLE if, given 

any two states e1, 6, there exists a T > 0 and a control u( t) defined on [0, rj such that 

x(O) = 6 and x(r) = 6. 

The particular attraction of the above definitions lies in the algebraic properties as

sociated with a system satisfying such definitions. As a result of the time invariance of 

the matrix; coefficients in (5.3.1) the three notions of controllability defined are equiva

lent. It is therefore generally accepted that a system satisfying such definitions be called 

a controllable system. 

The algebraic properties associated with a controllable system were investigated by 

Rosenbrock [1970] who showed that the system represented by (5.3.1) is controllable if 

and only if the matrices si - A, B are relatively (left) prime. Thus, the advantage of 

adopting such a definition is obvious because of the direct association with the absence of 

decoupling zeros and the connection with a minimal realisation of a system. A summary of 

the characteristics associated with a controllable system is given by the following theorem. 
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(5.3.6) Theorem (Rosenbrock, 1970). For a system described by (5.3.1) the following 

conditions are equivalent 

(a) the system is controllable, 

(b) the polynomial matrices sin - A, B are relatively (left) prime, 

(c) then X q£ matrix 
[B,AB, ... ,Aq-lB] 

has rank n, where q is any integer not less than the degree of the minimal polynmnial 

of A, 

(d) the qn X [(q- 1)n + q£] matrix 

In B 

-A In 0 
R= 

-A 

0 In 0 B 0 
-A B 

with q as in (c), has rank qn, 
(e) given any polynomial n-vector c(s) with elements of degree q- 1 or less and q as in 

(c), there exist a polynomial n-vector x(s) with elements of degree q- 2 or less and a 

polynomial £-vector y(s) with elements of degree q -1 or less such that 

(sin- A)x(s) + By(s) = c(s), 

(f) there exists ann X n polynomial matrix X(s) with elements of degree q- 2 or less 

with q as in (c) and an£ x £polynomial matrix Y(s) with elements of degree q -1 or 

less, such that 

(sin- A)X(s) + BY(s) =In, 

(g) let A be in Jordan normal form and let .-\1, .-\2, ... , Ap be the distinct eigenvalues of A 
with ..\; having multiplicity q;, i = 1, 2, ... ,p. Let bf, i = 1, 2, ... , n, be the rows of 

B. Then, the rows bf,, bf.+q,, ... , bf.+q,+: .. +q, are linearly independent, 
(h) the matrix pencil [sin -A B] does not possess any finite zeros. 

The notion of controllability can alternatively be viewed in terms of the natural modes 

of a system which in the case of state space systems are exponential modes. A state space 

system of the form (5.3.1), (5.3.2) would then be controllable if all the exponential modes 

could be individually excited from zero initial conditions by means of an input that contains 

no component at the modal frequency. Natural modes that cannot be excited in this way 

are termed uncontrollable modes and are associated with the zeros of the matrix pencil 

[sin- A B]. Rosenbrock [1970] termed such zeros input-decoupling zeros and the absence 

of these zeros indicate that the system is controllable. The connection with theorem (5.3.6) 

is therefore immediate. 
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§4. Generalised state space systems. 

The notions of controllability for generalised state space systems have been derived 

as natural extensions of the notions of controllability described in the previous section for 

regular state space systems. In particular the frequency domain notion of controllability 

has ben concerned with extending the concept of input decoupling zeros to include infinite 

zeros as well as finite zeros, whilst the time domain approach has been concerned with 

incorporating the impulsive motion associated with such systems. Each approach has 

revealed important characteristics of generalised state space systems and together have 

yielded notions of controllability which best reflect the properties of such systems. In the 

light of the results from regular state space systems it is not surprising that the notions 

of controllability defined in the frequency domain are related to the notions defined in the 

time domain. 

Rosenbrock [197 4] was the first to seriously consider the properties of generalised state 

space systems using the frequency domain approach. His definition of infinite input decou

pling zeros was based on Kronecker's work on infinite elementary divisors. Despite yielding 

some neat results the definition was regarded by Rosenbrock [1974] as being unsatisfactory. 

Verghese et al. [1981] pointed out that the deficiency was due to the fact that Rosenbrock 

[1974] had not taken into sufficient account the dynamical properties of the system. The 

definition of infinite input decoupling zeros adopted by Verghese et al. [1981] overcame the 

deficiencies associated with the corresponding definition of Rosenbrock [1974]. The supe

riority of the new definition subsequently lead to the natural reconciliation of McMillan 

degree theory with the generalised case, an extension Rosenbrock [ibid.] failed to achieve 

under his definition. 

A time domain notion of controllability was given by Yip and Sincovec [1981] in 

terms of the reachable states that could be attained from a particular set of initial states. 

These initial states were constrained to satisfy the defining equations (5.1.1) of the system 

thus ruling out any impulsive motion. This definition of controllability therefore failed to 

incorporate a characteristic of generalised state space systems which distinguishes it from 

the regular case. The definition is seen to be equivalent to the absence of finite decoupling 

zeros and infinite decoupling zeros as defined by Rosenbrock [1974]. 

Cobb [1984] accounted for the possible impulsive motion and basing his ideas on the 

frequency domain work by Verghese et al. [1981] produced an explicit mathematically 

precise time domain formulation of controllability which proves to be equivalent to the 

absence of infinite input decoupling zeros as defined by Verghese et al. [ibid.]. This defini

tion is given in terms of the system's ability to generate a maximal class of impulses using 

non-impulsive controls and is not directly related to the ability of the system to reach 

certain states. Lewis and Ozcaldiran [1984]later introduced definitions of controllability 

and reachability in terms of the states of the system which proved to be equivalent to the 
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absence of infinite input decoupling zeros as defined by Rosenbrock [1974) and by Verghese 

et al. [1981) respectively. 

A more detailed description of this development is now presented. 

(i) The frequency domain. 

Rosenbrock [1974) was the first to formulate a new theory for generalised state space 

systems. This was based on extending the theory associated with the regular case to 

cover the infinite frequency behaviour associated with the generalised system. To this end 

Rosenbrock [ibid.) introduced the transformation of restricted system equivalence which 

preserves the infinite frequency behaviour of the system (as well as the finite frequency 

behaviour) and defined the decoupling zeros at infinity. In particular the infinite input 

. decoupling zeros are defined as follows. 

(5.4.1} Definition. The INFINITE INPUT DECOUPLING ZEROS of (5.1.1), (5.1.2) 

are given by the finite zeros at s = 0 of [E- sA B). 

Note that when the system is represented in Kronecker form (5.2.5} the infinite input 

decoupling zeros are given by the finite zeros at s = 0 of [J - sin, B 2 ). Using these 

definitions Rosenbrock [ibid.) was able to extend previous results for the regular case to 

the generalised case; notably results concerning the Kalman decomposition and equivalence 

theorems. 

Verghese et al. [1981) identified the weaknesses in Rosenbrock's definition and pro

posed new definitions based on the dynamic properties of the system which provided a 

greater extension of results from the regular case to the generalised system. Verghese et 

al. [ibid.) distinguished between what are termed dynamic and non-dynamic variables. 

The non-dynamic variables are referred to as the generalised state variables associated 

with the trivial Jordan blocks of J in (5.2.8} and are regarded as non-dynamic in the 

sense that the initial conditions on these variables have no affect on the future response 

of the system and the behaviour of these variables are instantly determined by the input 

alone. The only significant contribution of these non-dynamic variables is apparently their 

contribution to a constant feedthrough term in the associated transfer function matrix. 

The approach adopted by Rosenbrock [1974) mal,es no distinction between the dynamic 

and non-dynamic variables and so is thus seen to be too restrictive. This is illustrated by 

considering a trivial augmentation of (5.1.1} with equations of the form 

Xj(t) = 0 

resulting in a system matrix given by 

• + 1 ? I J = n , n + -, ... , n 

0 : ] ln'-n 

0 
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The new system matrix is not restricted system equivalent to the original matrix despite the 

fact that it possesses the same dynamical properties and is considered under the definition 

given by Rosenbrock (1974] to have, in particular, n' - n more infinite input decoupling 

zeros than the original system. 

By taking these dynamical observations into consideration Verghese et al. (1981] mod

ified the theory presented by Rosenbrock (1974]. A new equivalence relationship, strong 

equivalence, was defined which, in general terms, permits transformations in addition to 

those of restricted system equivalence which eliminate or add non-dynamic variables to 

the system (provided of course that these operations do not modify the constant term in 

the system transfer function). A closed form expression of strong equivalence directly in 

terms of the system matrices involved was subsequently presented by Pugh et al. (1987]. 

The transformation implies that the systems (5.4.3), (5.4.4) are equivalent and overcomes 

one of the inherent deficiencies of the restricted system equivalence definition. 

0 

I 

-C' 

[ 
sE-A I B ] 

-C C'B' 

(5.4.3) 

(5.4.4) 

The notion of controllability for generalised state space was approached by Verghese et al. 

(1981] by considering the interpretation of controllability in terms of the excitation of the 

natural modes of the system. In contrast to the regular state space system the generalised 

state space system possesses impulsive natural modes, and is defined to be controllable 

at infinity by Verghese et al. (ibid.] if all these impulsive modes can be individually ex

cited from zero initial conditions by means of a non-impulsive input. The uncontrollable 

impulsive modes are associated with the infinite zeros as defined by (3.2.5) of the matrix 

pencil 

(sE- A B] 

(or of (sJ- I B2] if the system is represented in Kronecker form) and are termed infinite 

input decoupling zeros. 

This definition of infinite input decoupling zeros differs from the definition of infinite 

input decoupling zeros presented by Rosenbrock (1974] in the sense that it ignores the 

non-dynami<; variables of the system. Thus, the system represented by (5.4.2) would have 

the same number of infinite input decoupling zeros as the original system (5.1.1). 

The term strongly controllable system is used by Verghese et al. (1981] to describe 

a system which is both controllable at infinity and controllable in the finite sense, i.e. a 

. system which does not possess either finite input decoupling or infinite input decoupling 

zeros as defined by Verghese et al. [ibid.]. 
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(ii) Time Domain. 

Lewis and Ozcaldiran [1984] adopted for generalised state space systems the definitions 

of controllability and reachability associated with the regular case. 

(5.4.5) Definition. The system (5.1.1) is said to be REACHABLE if for all e E !Rn 
there exists a control such that the solution x( t) is continuously differentiable and satisfies 

x(O-) = 0, x(r) = e for some r > 0. 

(5.4.6) Definition. The system (5.1.1) is said to be CONTROLLABLE if for all e E !Rn 
there exists a control u(t) such that the solution x(t) is continuously differentiable and 

satisfies x(O-) = e, x(r) = 0 for some r > 0. 

The above definitions lead to appropriate physical interpretation of the absence of 

input decoupling zeros. In particular, reachability as defined by (5.4.5) is equivalent to the 

absence of both finite input decoupling zeros and infinite input decoupling zeros as defined 

by Rosenbrock [1974], whilst controllability as defined by (5.4.6) is equivalent to the ab

sence of both finite input decoupling zeros and infinite input decoupling zeros as defined 

by Verghese et al. [1981]. The terms REACHABILITY AT INFINITY and CONTROL

LABILITY AT INFINITY refer to the reachability and controllability (as defined above) 

respectively for the subsystem (5.2.8) when (5.1.1) is represented in Kronecker form. It 

then follows that the system is reachable at infinity if it has no infinite input decoupling 

zeros as defined by Rosenbrock [1974] and is controllable at infinity if it has no infinite 

input decoupling zeros as defined by Verghese et al. [1981]. 

Other notions of reachability and controllability for systems in generalised state space 

form are, in general, equivalent to the notions defined by (5.4.5) and (5.4.6). For instance 

the definition of R-controllability introduced by Yip and Sincovec [1981] is equivalent to 

the notion of reachability as defined by (5.4.5). In their discussion Yip and Sincovec [ibid.] 

assumed that the initial conditions on the internal states satisfied the defining equations 

(5.1.1), and called the set of such initial conditions the set of admissible conditions. The 

notion of R-controllability is then associated with the ability of the system to transfer 

from any admissible initial condition to any final state in a set of states (this set is in 

fact equivalent to the set of admissible initial conditions). The requirement that the initial 

conditions satisfy the defining equations imply that the solution to (5.1.1) does not contain 

any impulses. Thus, a distinguishing characteristic of generalised state space systems, 

namely that the system can give rise to impulsive motion, has in a sense been ignored in 

the definition of R-controllability. 

Cobb [1984], on the other hand, takes into account the impulsive behaviour of the 

system. His definition is not based on the ability of the system to reach certain states 

but on the ability of the system to generate a maximal class of impulses using piecewise 
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smooth non-impulsive controls. Systems which satisfy this condition are said to be impulse 

. controllable. The definition of impulse controllability emanates from the idea of modal 

controllability introduced by Verghese et al. (1981] in the frequency domain. Cobb (1984] 

gives the time domain definition of these ideas so that impulse controllability is seen to be 

equivalent to the absence of infinite input decoupling zeros as defined by Verghese et al. 

(1981] and hence to the notion of controllability at infinity. 

The notions of controllability and reachability discussed have been seen to fall into two 

categories which have a direct relationship with the absence of infinite input decoupling 

zeros as defined by Rosenbrock (1974] and by Verghese et al. (1981]. The previous discus

sion of the frequency domain approach highlighted the differences between the dynamic 

·and non-dynamic variables. This distinction is not reflected in the respective time domain 

definitions of controllability and reachability associated with the absence of infinite input 

decoupling zeros. To illustrate the difference between the dynamic and non-dynamic vari

ables in the time domain the following alternative definition of reachability is introduced. 

This definition is given in terms of the subsystem (5.2.8) when the system is represented 

in Kronecker form. 

(5.4.7) Definition. The system represented in Kronecker form (5.2.5), is said to be SYS

TEM STATE REACHABLE AT INFINITY if given any e E )Rn,-t there exists a suitable 

control such that x2 (0-) = 0, x2(r) = (er,r?)T for some r > 0 and where 7J E )R1 is 

completely arbitrary. 

The definition of system state reachability at infinity will be seen in the following 

section to be equivalent to the definition of controllability at infinity. Comparison of 

this definition of system state reachability at infinity with the definition of reachability 

at infinity illustrates clearly the role of the dynamic and non-dynamic variables. This is 

further discussed in section 6. 
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§5. Algebraic results associated with the controllability notions in 

generalised state space systems. 

In this section a generalisation of the algebraic conditions contained in theorem (5.3.6) 

for the regular case is presented for the notions of reachability at infinity and system state 

reachability at infinity. Certain of these conditions have been previously obtained and are 

summarised by Lewis [1986]. A polynomial system approach is adopted to provide new 

proofs to these existing results. This is followed, for both notions, by new results which 

together with the existing results provide a complete analogy to the algebraic results 

associated with the regular case. 

In the light of the discussion in section 2 it will be sufficient to consider the system 

Jx 2 (t) = xz(t) + Bzu(t) (5.5.1) 

with n 2 x n 2 matrix J in.Jordan normal form (5.2.3). First consider the notion of reacha

bility at infinity. 

(5.5.2) Theorem (Lewis, 1986). For the system represented by (5.5.1) the following 

conditions are equivalent 

(a) the system is reachable at infinity, 

(b) rank [Bz, JBz, ... , Jqt-l Bz] = nz, 
(c) vT[sJ- I]-1 B2 = 0 for constant v implies v = 0, 

(d) the last position rows of B2 are all linearly independent, 

(e) the system has no infinite input decoupling zeros as defined by Rosenbrock [1974], 

(f) rank [J Bz] = nz. 

Proof. The proof of this theorem will follow the indicated scheme which best illustrates 

the relationships between the various conditions. 

(a) (e) 

(b) H (d) 

-./' 
(c) 

(a){=} (b). The solution to equations (5.5.1) is given by 

g,-1 g,-1 

xz(t) =- L s<i-1) fxz(O-)- L J; Bzu(i)(t). 
i=l 
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Thus, the system will be reachable at infinity if and only if given a E lRn 2 and r > 0 there 

exists a suitable control such that 

q,-1 

a=- L JiB2u(i)(r) 
i=O 

i.e. 

u(q,-l)(r) 

The system will therefore be reachable at infinity if and only if 

as required. 

(b) <==? (c). 

rank[B2,JB2,•••,Jq'-1B2] = n2 

<==? vTB2 = VT JB2 = ... = VT Jq,-l B2 = 0 implies V= 0 

<==? vT[sJ- I]-1 B2 = 0 implies v = 0, as required. 

(b)<==? (d). Consider in detail the structure of JB2, where l]i = L:;~=I qj, i = 1,2, ... ,p, 

and bT, i = 1, 2, ... , n2, are the rows of B2. 

0 1 

J~= 

1 

0 0 
' 

0 

' ' ' ' 0 1 
. . 

1 

0 \ 
0 
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b~ 

~ 
01 
I 
I 
I 
I 

bT 
'1p-t-1 +1 = bT 

'1 p-t-1 +2 

bT 
'1 p-1 

0 
0 

0 0 



Similarly 

and for Ji B 2 , i = 3, 4, 0 0 0, q1 - 1, so that 

b~ if 2 

T T 
b~J-1 b~J 
T 

0 ~/ T b~J+l b~J+2 

bT 

[ qrl ]- T 
q2 

B2 o JB2 o 000 o J B2 - bq2 0 
I I 

I 

If· T 
11p-t-l +1 b11 ;.,.] +2 

tl. 11 p·l 

l 0 7} p·t 
T 

bqp-1+1 0 

~p 0 
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b~, 
0 

0 

I 
I 
I 

0 

T 
b3 

f 
b~/ 
0 

0 
T 
b~1 +3 

T 
b~2 

0 

0 
I 

I 
bT, 

1J p:t·l +3 

ll,; p·l 0 
0 

0 0 

0 

0 • 

T 
b~J .J 

T 
b~J 

bT 
~1 

(505.3) 

0 

0 



with the number of non-zero rows of Jq,-l B2 being equal to the number of Jordan blocks 

of J of size q1• Reorder the rows of (5.5.3) such that the first t1 say rows are the rows of 

(5.5.3) which have non-zero entries in block Jq•- 1B2, the next t1 +t2 rows are the rows 
of (5.5.3) which have non-zero entries in block Jq•-2 B2 and so on down to the last prows 

which are the rows of (5.5.3) with non-zero entries in block B2 only, i.e. 

l7 
/ 'ltl +t2 (5.5.4) 

/ 
/ .-' 0 

/ / 
/ / 

/ / 
... / 

0 0 0 

bT 
1j p·t 

;J 
1j p·t+l 

0 .o 0 

Now assume (b) holds then, since [B2,JB2,···,Jq•-1B2] is an n 2 X £q1 matrix of 

rank n 2 , it follows that all its rows must be linearly independent. In particular the last p 

rows of (5.5.4) must be linearly independent, which gives (d). Conversely, assume (d) holds 

then, since the vectors b;f,, b~,, . .. , b~, are linearly independent, it follows from ( 5.5.4) that 
[B2,JB2, ... ,Jq•-1B2] has rank n2, to give (b) as required. 
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(d) =} (e). The infinite input decoupling zeros of the system as defined by Rosenbrock 

[1974] are given by the zeros at s = 0 of [J- si B2], where 

0 1 b~ 

T 
1 b11 1 -1 

0 0 
' 

T 
b111 

I 

' I 

'o 1 fJ,I 
11 P;t-1+1 

1 JJ." 11p-t-l 

0 0 if. 11 p·l 
0 bT 

11 p-1+1 . 

0 l 11p 

i 

and 77i = 2::: qi> i = 1, 2, ... ,p. 
j=l 

Now since the last position rows of B2 corresponding to all the Jordan blocks of J are 

assumed to be linearly independent, i.e. rows b~, b~, . .. , b~,, it follows by inspection of 

(5.5.5) that [ J -si B2],:0 has full rank. Thus, the system has no infinite input decoupling 

zeros as defined by Rosenbrock [1974], as required. 

(e)=?- {f). Since the system has no infinite input decoupling zeros as defined by Rosenbrock 

[ibid.] it follows that [J- si B2] has full rank when s = 0, i.e. rank [J B2] = n2, as 

required. 

(f) =?- (d): Consider the matrix [J B2] as represented by (5.5.5). Since [J B2] has rank 

n2 all the rows of (5.5.5) are linearly independent. In particular rows q1,q1 + q2 , ••• ,q1 + 
q2 + ... + qp are linearly independent which are the last position rows of B2 corresponding 

to all the Jordan blocks of J, as required to complete the proof. D 

The adoption of a polynomial matrix approach is therefore seen to provide a unified 

treatment of the algebraic conditions summarised by Lewis [1986]. New algebraic con

ditions associated with a system that is reachable at infinity are now presented. These 

conditions are analogous to conditions (d) and (e) of theorem (5.3.6). 
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(5.5.6) Theorem. If q1 is the index of nilpotency of the matrix J, then the condition 

that 

where q ;:::: q1 is equivalent to 

(a) the qn2 x [(q- 1)n2 + qe] matrix R has rank qn2 where 

J • B2 

-I 0 
R= (5.5.7) 

0 J B2 0 
. -1 B2 

(b) given any polynomial n2-vector d(s) with elements of degree q -1 or less there exists 

a polynomial n2-vector x( s) with elements of degree q - 2 or less and a polynomial 

e-vector y( s) with elements of degree q - 1 or less such that 

[sJ- I]x(s) + B2y(s) = d(s). (5.5.8) 

[Note that for the case when q1 = 1 and q is taken to be such that q = q1 then the 

degree of x( s) in (b) is equal to 0.] 

Proof. (a) In the matrix R, add J times the first (block) column to the second, then J 

times the second (block) column to the third and so on to give 

J J~ . . Jq-1 

-I 

0 

0 -I 

B2 

(5.5.9) 

0 

Next, add J times the second row of (5.5.9) to the first row, then J2 times the third 

row of (5.5.9) to the first row and so on to give 

0 0 Jq-1 B
2 

• 

-I 

0 (5.5.10) 

0 0 
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-------------------------------------------

The above operations preserve the rank of R so that from (5.5.10) R will have rank qn2 if 

and only if [J9-1B2, .. . ,JB2 ,B2 ] has rank n2, as required. 

(b) Let 
x(s) = Xo + X1S + ... + Xq-2Sq-2 

y(s) = Yo + YtS + ... + Yq-1s9- 1 

d(s) =do+ d1s + ... + d9-1s9-
1 

and substitute into (5.5.8) to give 

Multiplying out the products, and equating powers of s results in the following set of 

equations. 

lxq.2 + Bz y q-1 = dq·1 

·Xq-2 + J Xq-3 + Bz Y q-2 = 

-x 1 + J x o + Bz Y 1 = 

-x o + Bz Y o = 

Rewriting the above set of equations in matrix form 

Xq-2 

R 
xo 

(5.5.11) 
Yo 

Yq-1 

where R is of the form (5.5.7). The equations (5.5.11) will have a solution for all 

d; E ~' i = 0, 1, ... , q- 1, if and only if R has rank qn2 , as required. 0 

In the regular state space case the analogous conditions to those in theorem (5.5.6) 

lead to a third necessary and sufficient condition (Rosenbrock, 1968). However, in the 
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generalised case the corresponding condition is only sufficient. This condition is presented 

below followed by an example to illustrate that the condition is not necessary. 

(5.5.12) Theorem. If rank [Bz, JBz, ... , Jq-1 Bz] = nz where q 2:: q1 then there exists 

an n 2 x n 2 polynomial matrix X(s) with elements of degree q- 2 or less and an f. x nz 
polynomial matrix Y(s) with elements of degree q -1 or less such that 

(5.5.13) 

Proof. If e; is the ith column of In., put d(s) = e; in (5.5.8). Let the corresponding 

solution be x<i)(s) and y(i)(s). If X(s),Y(s) are the matrices having x(i)(s) and y(i>(s) as 

their respective columns then X(s), Y(s) satisfy (5.5.13) as required. 0 

(5.5.14) Example. Take 

then 

which has rank 1. 

Let 

X(s)=[o o]. 
0 -1 

Y(s) = [1 s] 

where both X(s), Y(s) satisfy the degree condition of theorem (5.5.12). Then, 

[

-1 
[sJ- I]X(s) + BzY(s) = 

0 ~1] [~ ~J + [~] 

= [~ ~]. 

[1 s] 

Thus, there exist suitable X(s),Y(s) satisfying (5.5.13) despite rank [Bz,JBz, ... , 
Jq- 1 Bz] being less then nz in this case. 

The results of theorems (5.5.6) and (5.5.12) together with theorem (5.5.2) provide 

an analogy of the algebraic conditions of theorem (5.3.6) for the notion of reachability at 

infinity in generalised state space systems. 

A similar generalisation is now undertaken for the notion of system state reachability 

at infinity. Lewis [1986] summarised the existing algebraic conditions associated with 
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systems that are controllable at infinity. These algebraic conditions are now shown to be 

equivalent to the notion of system state reachability at infinity. 

(5.5.15) Theorem. For the system represented by (5.5.1) the following conditions are 

equivalent 

(a) the system is system state reachable at infinity, 

(b) the system has no input decoupling zeros at infinity as defined by Verghese et al. 

[1981], 

(c) the last position rows of B2 corresponding to the non-trivial Jordan blocks of J are 

linearly independent, 

(d) rank [JB2, J 2 B2, ... , Jq,-l B2] = n2- p, 

(e) dim {span v E lRn2 j vT J[sJ- I]-1 B2 = 0} = n2- p. 

Proof. The proof of this theorem will follow the indicated scheme. 

(a) 

(c) M (d) M (e) 

"' (b) 

(a) <==> (c). The states of the system at timeT with zero initial conditions are given by 

or, in matrix form, 

The detailed structure of [B2, J B2, . .. , Jq,-l B2] was seen in (5.5.3) to be given by 
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T T T T 
bl b2 b11] -1 b111 

T 
b111 

T 
b111 

T 
b111 0 

T 
b111 +] 

T 
b11I +2 

l 112 
T 

0112 0 

(5.5.16) 

I I 

T • l· 
11p-t-J+l 11p-t-1 +2 

o1 71p-t 

ll. 
11 p-I 0 

t!. 11p-t+l 0 0 

0 0 

where IJi = L:~=l qj, i = 1, 2, ... ,p. 

The system will then be system state reachable at infinity if and only if there exists a 

suitable control input such that for all a E lRn2 -t 

where 
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T T T T 
bl b2 b11]-1 b11] 

T 
b11J 

T 
b111 

T 
b11J 0 

T 
b11J+l 

T 
b11] +2 

F= l 112 
T 

b112 0 

I I 

l· 
11p-t-J+l 

l· 11p-t-l +2 

0 

This will be the case if and only if rank F = n2 - t. Reordering the rows of F to form a 

matrix F' where the first h say rows of F' are the rows of F which have a non-zero entry 

in any of the last e positions, the next t1 + t2 rows ofF' are the rows of F which have zero 

entries in the last e positions but a non-zero entry in any of the preceding e positions, and 

so on down to the last p - t rows which correspond to the rows of F which only have a 

non-zero entry in one of the first e positions, i.e. 
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l 
T/ 11 

l 
F'= T/ 11 +1 

T' 
bT/ 11 + 12 

.... 0 ... ... ... ... 0 
T ... 

bTII 0 0 0 

0 0 0 

Now if rank F' = n2 - t then since F' is an ( n2 - t) x £q1 matrix it follows that all its 

rows must be linearly independent. In particular the last p- t rows of F' must be linearly 

independent which implies that the last position rows of B2 corresponding to the non

trivial Jordan blocks of J are linearly independent. If on the other hand the last position 

rows of B2 corresponding to the non-trivial Jordan blocks of J are linearly independent 

then, from 'the structure ofF', it follows that rank F' = n2- t. Since F' has the ~ame rank 

as F it is therefore concluded that the system will be system state reachable at infinity if 

and only if the last position rows of B2 corresponding to the non-trivial Jordan blocks of 

J are linearly independent, as required. 

(b) ~ (c). The infinite input decoupling zeros of a system are defined as the infinite zeros 

of the pencil [sJ- I B2] which in turn are given by the zeros at w = 0 of [~J- I B2] 

[see definition (3.2.5)]. Now 
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-1 1 
~ w 

• 1 

w 

-1 0 lh; 
\ I 1 

\ 

\ 

[ ~ J -1 Bz] • 1 I 

= -1 bT • w Tl p·t-1 +1 

0 1 
w 

-1 bT 
Tlp-1 

-1 bT 
Tlp-t+l 

-1 z;,;p 

which can be factorised as 

-1 -w 1 
w 

-w 1 
w 

-1 0 0 1 ' ' ' ' ' ' • 
w -w 1 

= 

-w 1 
w 

0 -1 0 1 
1 -1 

1 
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The factorisation is a minimal one and so, by lemma (3.2.6), the finite zero structure of 

[~J -I B2] is given by the finite zero structure of N(w). Now, since rank N(w) = n2, it 

follows that N(w) does not possess a zero at w = 0 if and only if rank N(O) = n2, where 

0 1 0 

0 1 0 

-1 0 b~l 
' I 

' I 

' I 
0 1 0 

N (0)= (5.5.17) 

1 0 

0 ·1 bT 
Tlp·l 

-1 6f.. Tlp-1+1 

-1 bT 
'lp 

Adding row q1 +q2 + ... +qi -1 to row q1 +q2 + ... +qi for j = 1,2, ... ,p-t in (5.5.17) 

results in 

0 1 

1 

0 

' 

0 

' ' 

0 

' 0 1 

1 

0 
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0 

0 

bT 

-1 
11. '1 p·l 

11p-t+l 

-1 bT 
'lp 



Therefore, rank N(O) = n2 if and only if the rows b~,, b~2 , ••• , b~_, are linearly indepen

dent, i.e. the last position rows of B2 corresponding to the non-trivial Jordan blocks of J 

are linearly independent , as required. 

(c) {=:?- (d). From (5.5.16) 

[JB2,J2B2, ... ,Jq•-1B2] = 

I . 

if "i>-t-1 +2 

0 

l 
'lz 

0 
0 
I 

rl 
~p-t-1 +3 

il' 
'lp-t 

0 
0 
0 

0 

(5.5.18) 

0 

0 

First assume (c) holds. Then, from the structure of (5.5.18) it follows that the rank of 

[JB2, J2 B2, ... , Jq•-1 B2] is equal to n2 less the number of zero rows. On inspection the 

number of zero rows equals the number of Jordan blocks in J, i.e. p. Hence 

Conversely assume (d) holds. Now since [JB2,J2B2, ... ,Jq•-1B2] is an n2 X C(q1 -1) 
matrix of rank n2 - p it must posses n2 - p linearly independent rows. Again it is seen 

on inspection of (5.5.18) that [JB2, J 2 B2, ... , Jq•-1 B2] hasp zero rows which implies that 

the remaining n2 - p rows must be linearly independent. In particular rows q1 - 1, q1 + 
q2 -l, ... ,q1 +q2 + ... +qp-t-1 are linearly independent to give (c). Hence (c), (d) are 

equivalent as required. 
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,----------------------------------· --- ---- -

(d) <==? (e). 

<==? dim {span v E lRn2 ; vT[JB2, J2 B2, ... , Jq•-1 B2] = 0} = n2- p 

<==?dim {span v E lRn2 ;vT JB2 = vT J 2 B2 = ... = vT Jq•-1 B2 = 0} = n2 - p 

<==? dim {span v E )Rn2; 

0 = vT { J[J + sJ + ... + sq,-2 Jq,-2 + sq,-1 Jq•-1]B2} = n2 - p 

{:=:? dim {span V E lRn2 ; 0 = VT J[sJ- I]-1 B2} = n2- p. 

Hence (d), (e) are equivalent as required to complete the proof. D 

As a result of theorem (5.5.15) it clearly follows that the notion of system state 

reachability at infinity is equivalent to the notion of controllability at infinity. 

New algebraic conditions associated with a system that is system state reachable at 

infinity are now presented. These are analogous to conditions (d) and (e) of theorem 

(5.3.6). 

(5.5.19) Theorem. Let q17 the index of nilpotency of the matrix J, be taken such that 

q1 ~ 2 and let q > q1 • Then, the condition that 

is equivalent to 

(a) the (q -1)n2 x [(q- 2)n2 + (q -1)f] matrix R having rank (q -1)n2 - p where 

J. 

-1 

R= 0 
(5.5.20) 

0 "J JB2 0 
-1 JB2 

(b) given any polynomial n2-vector d( s) with elements of degree q - 3 or less there exists 

a polynomial n 2-vector x( s) with elements of degree q - 3 or less and a polynomial 

£-vector y(s) with elements of degree q- 2 or less such that 

[sJ- I]x(s) + JB2y(s) = d(s). (5.5.21) 

[Note that when q1 = 2 then q is taken such that q ~ q1 + 1 in (b).] 
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Proof. (a) In the matrix R, add J times the first (block) column to the second, then J 

times the second to the third and so on to give 

J J2 ... fi•2 

-I 
0 (5.5.22) 

0 -1 JB2 0 
-I JB2 

Next, add J times the second (block) row of (5.5.22) to the first row, then J 2 times the 

third row of (5.5.22) to the first row and so on to give 

0 . . . 0 Jq-IB 
2 . . J2B2 _JB2 

-I 

0 (5.5.23) 

J B. 
0 2 0 -I J B2 

The matrix (5.5.23) has the same rank as R which implies that R has rank (q -1)n2- p 

if and only if rank [Jq-l B2, ... , J2 B2, J B2] = n2 - p, as required. 

(b) Let 

x(s) = Xo + X}S + ... + Xq-JSq-J 

y(s) = Yo + Y1S + ... + Yq-2Sq-2 

and substitute into (5.5.21) to give 

(sJ- I)(xo + x1s + ... + Xq-asq-a) + JB(yo + y1s + ... + Yq-2Sq-2) 

=do+ d1s + ... + dg_3sq-a. 

Multiplying out the products, and equating powers of s gives rise to the following set of 

equations. 
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J Xq-3 

·Xq-3 + J Xq-4 

+ JB2 Yq-2 = 0 

+ JB2 Yq-3 = dq-3 

-xl + lxo+ JB2Y1 

·Xo + JB2 Yo 

= 

= 

Rewriting the above set of equations in matrix form results in 

Xq-3 

0 

xo dq-3 
R -

Yo 

do 

Yq-2 

where R is given by (5.5.20). 

(5.5.24) 

The equations (5.5.24) will have a solution for any set d;, i = 0, 1, ... , q- 3, if and 

only if 
0 

dq-3 
rank R = rank R 

do 

where 

0 J JB2 0 

dq-3 -1 J 0 dq-3 
R - (5.5.25) 

0 J 0 0 do 
-I JB2 do 
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I~ 

As in (a), a series of column operations will transform (5.5.25) into 

J ]2 . . Jq·2 o. 0 ~82 0 

-1 d1.j 

0 (5.5.26) 

0 0 
-1 182 do 

Next, add J times the second row of (5.5.26) to the first, then J2 times the third row of 

(5.5.26) to the first and so on to give 

0 0 Jq·l 8 
2 

1
2
8 2 182 J dq.3 + ]2 dq4 + + q-2d . . . J 0 

-1 dq-3 

(5.5.27) 

-1 182 
do 

It is seen from (5.5.27) that the augmented matrix (5.5.25) has the same rank as R for any 

set d;, i = 0, 1, ... , q- 3, if and only ifrank [Jq-1 B2, ... , J2 B2, JB2] = n2-p, as required 

to complete the proof. 0 

A comparison of the necessary and sufficient conditions of the previous theorem with 

the corresponding conditions associated with the notion of reachability at infinity reveals 

that the major difference between the two sets of conditions is that the matrix B2 is 

premultiplied by J in the conditions presented in theorem (5.5.19). The effect of this is to 

remove the influence of the last position rows of B 2 corresponding to the trivial blocks of 

J, which reflects the role of the non-dynamic variables in the definitions of the two notions 

of reachability. This aspect will be further discussed in section 6. 

In an ·analogous way to the case of reachability at infinity a sufficient condition can 

be obtained as a direct consequence of condition (b) of theorem (5.5.19). This condition 

is presented below and is followed by an example which demonstrates that it is not a 

necessary condition. 

{5.5.28) Theorem. If rank [J B2, J2 B2, ... , Jq-1 B2] = n2 - p where q 2:: ql> then there 

exists an n2 x n2 polynomial matrix X(s) with elements of degree q- 3 or less and an 

£ x n2 polynomial matrix Y(s) with elements of degree q- 2 or less such that 

[sJ- I]X(s) + JB2Y(s) =In,· (5.5.29) 
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Proof. If e; is the ith column of In, put d(s) = e; in (5.5.21). Let the corresponding 
solution be x(il(s) and y(il(s). If X(s),Y(s) are the matrices having x(il(s) and y(il(s) as 

their respective columns then X(s), Y(s) satisfy (5.5.29) as required. 0 

(5.5.30) Example. Take 

0 1 0 0 0 0 

0 0 1 0 1 0 
J= B2 = 

0 0 0 1 0 1 

0 0 0 0 0 0 

then 
1 0 0 1 0 0 

0 1 0 0 0 0 
[JB2 J2B2 J3 B2) = 

0 0 0 0 0 0 

0 0 0 0 0 0 

which has rank 2 ( < 3 = n2 - pin this case). 

Let 
-1 -s 0 0 

0 -1 -s 0 
X(s) = 

0 0 -1 -s [

0 0 s2 

Y(s) = 
0 0 0 s~] 

0 0 0 -1 

where both X(s) and Y(s) satisfy the degree conditions of theorem (5.5.28). Then, 

[sJ- I)X(s) + JB2 Y(s) = 

-1 s 0 0 -1 -s 0 0 1 0 

0 -1 s 0 0 -1 -s 0 0 1 

[~ 
0 82 0

] = 14 + 
0 0 -1 s 0 0 -1 -s 0 0 0 0 82 

0 0 0 -1 0 0 0 -1 0 0 

Thus there exist suitable X(s), Y(s) satisfying (5.5.29) despite rank [JB2, J2 B2, ... , 

Jq-! B 2) being less than n2 - p in this case. 

The result of theorems (5.5.19) and (5.5.28) together with (5.5.15) provide an analogy 

of theorem (5.3.6) for the notion of system state reachabi!ity at infinity. Hence, the gener

alisation of theorem (5.3.6) has been obtained in the cases of both reachability at infinity 

and system state reachabi!ity at infinity (or equivalently controllability at infinity). 
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§6. Further discussion of the notions of controllability in generalised state 

space systems. 

The two definitions of reachability, namely reachability at infinity and system state 

reachability at infinity, demonstrate in a straightforward manner the role of the non

dynamic variables in determining the controllability properties of a generalised state space 

system. To illustrate the concepts behind these definitions of reachability consider the 

following example. 

(5.6.1) Example. Consider the system represented by 

(5.6.2) 

where 

b; E lR, i = 1, 2, 3. [
0 1 0] 

J= 0 0 0 , 

0 0 0 

The solution to (5.6.2) with zero initial conditions is given by 

It is clear that it is not possible to control all three states from the origin to any arbitrary 

point at t = T since the state x22(r) is directly related to x23(r). Thus, the system is not 

reachable at infinity; a fact confirmed by the rank of [B2 J B 2]. It is though possible to · 

control two of the three states to arbitrary positions at t = r if and only if b2 i' 0. In 

particular it is possible to control the states x21 (t) and ·x22(t), i.e. the system is system 

state reachable at infinity. Again, this is confirmed by the fact that the last position row of 

B 2 corresponding to the non-trivial block of J is linearly independent if and only if b2 i' 0. 

Now consider a system consisting only of dynamic variables. Let J and B2 in (5.6.2) 

be given by 

where b; E lR, i = 1, 2, 3. The solution of (5.6.2) under zero initial conditions is now given 

by 

[ :::~:~] =- [::] u(t)- [::1 u< 1
l(t)- [~] 

X23(t) b3 0 0 
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In thls case it is possible to find a suitable control that will transfer all three states to any 

arbitrary position at t = r if and only if ba f. 0. Thus, the system is both reachable at 

infinity and system state reachable at infinity if and only if ba f. 0. 

In this case 

and 

if and only if b3 f. 0 to confirm the previous observations. 

It has been shown that if a generalised state space system possesses no infinite in

put decoupling zeros as defined by Rosenbrock [1974] it also possesses no infinite input 

decoupling zeros as defined by Verghese et al. [ibid.]. Thls implies that the set of infi

nite input decoupling zeros as defined by Verghese et al. [1981] is a subset of the set of 

infinite decoupling zeros as defined by Rosenbrock [1974]. Hence, the requirement that 

the system has no infinite input decoupling zeros as defined by Rosenbrock [ibid.] is a 

stronger requirement than the one requiring that the system has no infinite input decou

pling zeros as defined by Verghese et al. [1981]. This is clearly reflected in the notions 

of reachability associated with the respective definitions of the infinite input decoupling 

zeros. In particular it is seen that system state reachability at infinity is only concerned 

with obtaining knowledge concerning the dynamic variables whilst reachability at infinity 

requires in addition knowledge concerning the non-dynamic variables. Thls distinction is 

not immediate from comparisons of other time domain definitions. For instance it follows 

that the notion of controllability as defined by Lewis and Ozcaldiran [1984] imposes less 

stringent conditions on the system than the notion of R-controllability as defined by Yip 

and Sincovec [1981] but this is not immediate from first inspection. Thls confusion is due 

to the fact that Lewis and Ozcaldiran [1984] allow for impulsive motion in the system whlle 

Yip and Sincovec [1981] do not. The inclusion of impulsive motion is therefore seen in a 

sense to increase the capability of the system to achieve the required objective. 

In general the non-dynamic variables have no significant bearing on the system be

haviour although in chapter 6 they are seen to provide additional characteristics to the 

system. Since the notion of reachability is concerned with the dynamic properties of a 

system it seems that requiring knowledge of the non-dynamic variables serves no purpose. 

It is therefore concluded that the definition of system state reachability at infinity is a 

more suitable definition than that of reachability at infinity. 

This observation reinforces the discussion presented by Verghese et al. [1981) which 

points out that the deficiency of the definition of infinite input decoupling zeros as given by 

Rosenbrock [1974)1ies in the way it treats both the dynamic and non-dynamic variables in 

the same manner. The definition of infinite input decoupling zeros presented by Verghese 
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et al. [ibid.] takes into account the differences between the two types of variables and is 

regarded as the most appropriate definition. In a similar way the time domain definitions 

of controllability associated with the absence of infinite input decoupling zeros as defined 

by Verghese et al. (1981] seem to be the most appropriate. These definitions take into 

account the possible impulsive motion associated with generalised state space systems 

thus reflecting the dynamic properties of such systems whereas the definitions associated 

with the absence of infinite input decoupling zeros as defined by Rosenbrock [1974] ignore 

the impulsive motion. 

To avoid confusion when discussing the various controllability concepts for generalised 

state space systems in subsequent chapters the following definition is made. 

(5.6.3) Definition. Let the generalised state space system be represented as in (5.1.1). 

Then, the system is said to be CONTROLLABLE if it has no finite input decoupling zeros 

and CONTROLLABLE AT INFINITY if it has no infinite input decoupling zeros as defined 

by Verghese et al. [1981]. Further, if the system is both controllable and controllable at 

infinity then it is said to be STRONGLY CONTROLLABLE. Also, the system will be 

termed REACHABLE AT INFINITY if it does not possess any infinite input decoupling 

zeros as defined by Rosenbrock (1974] and STRONGLY REACHABLE if, in addition, it 

does not possess any finite input decoupling zeros. 

Finally some new necessary conditions are presented for a system to be strongly con

trollable and strongly reachable. 

(5.6.4) Theorem. The generalised state space system represented in Kronecker form 

(5.2.5) is strongly controllable only if 

(5.6.5) 

and is strongly reachable only if 

(5.6.6) 

Proof. The system is strongly controllable only if it is controllable at infinity. If 

the system is controllable at infinity then it is necessary that the n2 x ( q1 - 1 )£ matrix 

[JB2 , J2 B2 , ••• , Jq1 -
1 B2] has rank n2- p which implies the necessary condition (5.6.5). 

Similarly the system is strongly reachable only if it is reachable at infinity. If the system is 

reachable at infinity then it is necessary that the n2 x q1£ matrix [B2 , JB2 , ••• , Jq1 -
1 B2] 

has rank n 2 which implies the necessary condition (5.6.6), as required. 0 
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(5.6.7) Theorem. The generalised state space system represented in Kronecker from 

(5.2.5) is strongly controllable only if 

l>p-t (5.6.8) 

and is strongly reachable only if 

£?. p. (5.6.9) 

Proof. Again the system is strongly controllable only if it is controllable at infinity. For 

the system to be controllable at infinity it is necessary that the last position rows of the 

n 2 x £ matrix B 2 corresponding to the non-trivial blocks of J are linearly independent. 

Now the system hasp- t non trivial blocks which implies B 2 must have rank at least 

equal to p - t which implies £ ?. p - t to give (5.6.8). Similarly the system is completely 

reachable only if it is reachable at infinity. For the system to be reachabl~ at infinity it is 

necessary that the p last position rows of B2 are linearly independent. Since B 2 is n 2 X £ 
this implies £ ?. p to give (5.6.9), as required. 0 

A comparison of the respective necessary conditions presented in theorems (5.6.4) and 

(5.6.7) can be made as a result of the following theorem. 

(5.6.10) Theorem. If a generalised state space system is represented in Kronecker form 

(5.2.5) then 

(5.6.11) 

and 

(5.6.12) 

Proof. The q;, i = 1, 2, ... ,p, are defined such that 

and 

q1 + q2 + ... + qp-t + qp-t+l + ... + qP = n2. (5.6.13) 

If each q;, i = 1, 2, ... ,p, is replaced by q1 in (5.6.13) it follows that 

Hence, 

to give (5.6.12). 
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Similarly if each q;, i = 1, 2, ... ,p- t is replaced by q1 in (5.6.13) it follows that 

and, since qp-t.i-1 = qp-t+2 = ... = qp = 1, it follows that 

Subtracting p from each side gives 

(p- t)q1 + t- p ~ n2 - p 

or 

Hence, 

to give (5.6.11), as required. 0 

The result of theorem (5.6.10) indicates that the necessary conditions of theorem 

(5.6.7) are stricter than the corresponding necessary conditions of theorem (5.6.4). The 

necessary conditions in turn indicate the minimum number of control inputs required for a 

system to be strongly controllable or strongly reachable. As expected the minimum number 

of control inputs for a system to be strongly reachable is always greater than or equal to 

the minimum number required for a system to be strongly controllable, so reflecting the 

previous discussion. 

§7. Conclusions. 

In this chapter the concepts of controllability associated with a generalised state space 

system have been considered. The historical background was discussed in section 4 from 

which is was concluded that there exist two main notions of controllability in generalised 

state space systems. In section 5 algebraic conditions associated with these two notions 

of controllability were presented which provide an analogy of the algebraic conditions 

associated with a controllable regular state space system given by Rosenbrock [1970] and 

described in section 3. These algebraic conditions consist of both existing and original 

results. The polynomial matrix approach adopted in this work provides a way of treating 

these results in a unified manner as well as introducing simpler proofs of the existing 

conditions. 

The role of the non-dynamic variables in the controllability properties of a system is 

clearly reflected in the frequency domain. The introduction of a new definition enables 

this connection to be established in the time domain. The importance of the non-dynamic 

variables were further discussed in section 6 where new necessary conditions were presented 

for a system to be controllable under the two main definitions of controllability. 
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Chapter 6. The General Pole Placement Problem in Generalised State Space 

Systems. 

§1. Introduction. 

The main distinguishing feature between state space and generalised state space sys

tems as far as pole placement problems are concerned lies in the fact that infinite poles 

might arise in the generalised case. The infinite poles possess different characteristics to 

finite poles. This is reflected in the way that infinite poles give rise to impulsive responses 

in the system which is in sharp contrast to the exponential responses produced by finite 

poles. Also, as was seen in chapter 3, the infinite poles are defined in a different man

ner to finite poles. This therefore means that the presence of infinite poles contributes 

an additional dimension to the problems of pole assignment. Previous work has mainly 

concentrated on the case where the closed loop poles are all located at finite locations. 

A summary of existing results is presented in section 2. The remaining sections of this 

chapter will consider in detail the case where the closed loop system may possess infinite 

poles. 

In section 3 the main result from chapter 4 is interpreted for systems in generalised 

state space form to produce new necessary conditions for the simultaneous placement of 

both the finite and infinite pole structures in such systems. The closed loop infinite pole 

structure is specifically considered in section 4. The detailed structure of the Kronecker 

form of the system is exploited to produce a necessary condition for the multiplicity of the 

closed loop infinite poles. In section 5 necessary and sufficient conditions are presented 

for the closed loop infinite pole structure. This provides a complete description of the 

infinite pole structure that can be assigned using constant feedback around a generalised 

state space system. The simultaneous placement of both finite and infinite pole structures 

is reconsidered in section 6 where the necessary conditions presented in section 3 are 

updated by results from subsequent sections. Finally in section 7 the relationship between 

the results. of section 5 and the recent work of Fahmy and O'Reilly [1989] is investigated. 
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§2. Pole placement problems in generalised state space systems. 

Recall that the finite and infinite frequency behaviour of a generalised state space 

system can be separated by transforming the system into Kronecker form. The separation 

of the system into two subsystems makes it possible to feedback only the finite states of 

the system or only the infinite states of the system. Cobb [1981] calls such feedback slow 

and fast feedback respectively. It was shown by Cobb [ibid.] that slow feedback can be 

employed to arbitrarily assign a finite pole if and only if that pole is controllable (in the 

finite sense). Not surprisingly therefore the finite poles of the system can be arbitrarily 

assigned using slow feedback with reference to the results on pole placement in state space 

systems. The use of such feedback does not affect the positioning of the infinite poles. 

Cobb [ibid.] showed that the infinite poles could be relocated at finite locations by 

employing fast feedback if and only if the system is controllable at infinity. The finite poles 

subsequently formed are seen to be controllable (in the finite sense) and can therefore be 

arbitrarily relocated by employing slow feedback. Armentano [1984] proved in fact that 

controllability at infinity is equivalent to the existence of a constant state feedback (i.e. a 

feedback which incorporates both the finite and infinite states) which assigns the infinite 

poles to prespecified finite locations. Thus, the two stage method employed by Cobb [1981] 

is equivalent to employing a single feedback matrix so making the distinction between 
' fast feedback and state feedback redundant. For this reason it will only be necessary to 

distinguish between the case where only the finite states are fed back and the case where 

the finite and infinite states are simultaneously fed back. These two types of feedback will 

be referred to as pure state feedback and generalised state feedback respectively from now 

on. 

The results presented by Cobb [1981] and Armentano [1984] have therefore shown 

that all the poles (both finite and infinite) can be relocated at arbitrary finite locations 

if aild only if the system is strongly controllable. This further emphasises the desirability 

of this notion of controllability in comparison with that of strong reachability. This result 

leads to a neat generalisation, from the regular to the general case, of the result due to 

Wonham [1967]. 

The general pole placement problem was considered by Kucera and Zagalak [1988] 

for the case when all the closed loop poles are placed at finite locations, i.e. the resulting 

system is proper. The system under consideration is of the form 

Ex(t) = Ax(t) + Bu(t) (6.2.1) 

where x(t) is ann-vector of internal states, u(t) an £-vector of control inputs and E, A, B 

are constant real matrices of the appropriate dimensions. Let the feedback be given by 

u(t) = -Kx(t) + v(t) (6.2.2) 
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---------------------------------------------------------------

where K is a constant real matrix. The main result presented by Kucera and Zagalak 

[ibid.] is given in terms of the minimal column indices of a right minimal matrix fraction 

description of the open loop transfer function, G(s) =[sE- AJ- 1 B, defined as follows. 

(6.2.3) Definition. Let G(s) == N(s)D- 1(s) be a right minimal factorisation of G(s) then 

the right minimal indices of G(s) are defined as the column degrees of 

[ 
D(s)] 
N(s) 

and denoted by c;, i == 1, 2, ... ,f. 

Kucera and Zagalak [ibid.] adopt the term complete controllability indices to describe 

the c;'s. This terminology seems appropriate for the problem under consideration but 

in the wider context it is inappropriate since a right factorisation is usually associated 

with the observability properties of a system. The term right minimal indices seems more 

suitable and will be used in this work. 

(6.2.4) Theorem (Kucera and Zagalak, 1988). Let the generalised state space system 

(6.2.1) be strongly controllable with right minimal indices, c;, ordered c1 ?: c2 ?: ... ?: ce. 
Further, let a1(s),a2(s), ... ,ae(s) be arbitrary monic polynomials subject to 

(i) ai+1(s) I a;(s), i == 1,2, ... ,e -1, 

l 

(ii) L deg(a;(s)) == r where r ~rank E. 
i=l 
Then, there exists a constant feedback matrix !( such that sE- A+ B K has non-unit 

invariant polynomials a1 ( s ), a2 ( s ), ... , ae( s) if and only if 

k k 

Ldega;(s)?: Le; k=1,2, ... ,e. 
i=l i=l 

The proof of the sufficiency part of the above theorem given by Kucera and Zagalak 

[1988] is incomplete since a particular step is quoted without a full proof or reference to a 

proof. This step is formally justified by a result presented in section 5 where a complete 

proof is offered. 

Kucera and Zagalak [1988] adopt a minimal factorisation to prove the above result but 

do not make the explicit connection with the properties of a minimal factorisation. Further 

Kucera and Zagalak [ibid.] do not recognise that a minimal factorisation carries the infinite 

structure in a particularly simple way. This property will be exploited in this chapter to 

investigate the infinite pole structure that can be assigned using constant generalised state 

feedback in generalised state space systems. This aspect of pole placement has not been 
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generally investigated although some authors such as Lewis and Ozcaldiran [1984] and 

Fahmy and O'Reilly [1989] have considered the infinite eigenstructure assignment problem. 

Most of the previous work has concentrated on the case where the closed loop system is 

proper but the desirability of assigning both finite and infinite poles has been noted by 

Chu [1987] and the need to consider such problems has been illustrated by Dai [1988] in his 

work on the design of observers for discrete time descriptor systems. The investigation of 

the general infinite pole placement problem is therefore seen to be of physical significance 

as well as being important in extending the result due to Kucera and Zagalak [1988] to 

the case where the closed loop system might possess infinite poles. 

§3. Necessary conditions for the simultaneous placement of both the finite 

and infinite pole structures. 

Consider the generalised state space system represented by 

E x(t) = Ax(t) + B u(t) (6.3.1) 

where x(t) E iRn is the generalised state of the system and u(t) E iRl is the input vector 

with n ~ C. E, A, B are matrices of the appropriate dimensions with E assumed singular 

of rank r, and I sE- A l;f 0. It is assumed that the system is strongly controllable and 

that the output equation is given by 

y(t) = x(t). (6.3.2) 

Thus, when constant generalised state feedback of the form 

u(t) = -K x(t) + v(t) (6.3.3) 

is applied to (6.3.1) this is equivalent to output feedback of the form 

u(t) = -Ky(t) + v(t). 

Therefore the new results concerning constant output feedback which were developed in 

chapter 4 can be interpreted for the general pole placement problem using generalised state 

feedback in a generalised state space system of the form (6.3.1), (6.3.2). Note that it is the 

transfer function poles that are investigated by using a minimal factorisation but, since 

the system is assumed to be strongly controllable, this is equivalent to investigating the 

system poles given via the invariant polynomials of certain matrices. 

Recall that the strongest necessary conditions on the closed loop pole structure using 

constant output feedback were obtained by considering both the left and right minimal 

factorisation of the associated transfer function matrix. For generalised state space systems 

the strongest necessary conditions are always obtained by considering a right minimal 

factorisation associated with the transfer function matrix since the staircase associated 
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with the right minimal factorisation always lies on or below the staircase associated with 

the left factorisation. This is a direct consequence of the following results. 

(6.3.4) Lemma. Let the strongly controllable system described by (6.3.1), (6.3.2) be given 

in Kronecker form (5.2.5). Then, 

G(s) =[sE- A]-1 B (6.3.5) 

is a left minimal factorisation of the transfer function matrix G( s ). 

Proof. [sE- A]-1 B is a left minimal factorisation of G(s) if and only if 

(i) rank [sE- A B] = n for all s E C 

(ii) rank [sE- A B]hr = n 

where [sE- A B]hr is the high order coefficient matrix of [sE- A B] with respect to 

the rows. 

Condition (i) is equivalent to the system having no finite decoupling zeros which is an 

immediate consequence of the fact that the system is strongly controllable. For condition 

(ii) 
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[sE- A B]hr 

1 

1 

1 

0 1 

0 

0 

j 

1 

-1 

0 

0 1 

0 1 

-1 

-1 

-1 

where Vj =: n1 + L qk, j = 1,2, ... ,p, and bf is the ith row of B. 
k=l 

-1 

0 

0 

0 

0 

0 

0 

0 

bT v,_, 

bT 
Vp-t+1 

bT 
Vp-t+2 

(6.3.6) 

Adding row i- 1 to row i fori= n1 + q1, n1 + q1 + q2, ... , n1 + q1 + ... + qp-t in (6.3.6) 

gives rise to 
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1 

1 

1 

0 1 

1 

0 

0 

0 

0 1 

1 

0 

-1 

-1 

0 

0 

0 

0 

0 

0 

(6.3.7) 

It then follows from ( 6.3. 7) that ( 6.3.6) has full rank if bT, i = n1 + q~, n1 +q1 +q2, . .. , n1 + 
q1 + ... + qp-t, are linearly independent. This is guaranteed by the fact that the system is 

strongly controllable, so completing the proof. 0 

(6.3.8) Lemma. Let G(s) be the transfer function matrix associated with the strongly 

controllable system described by (6.3.1), (6.3.2). Then, the row degrees r;, i = 1,2, ... ,n, 

associated with a left minimal factorisation of G( s) ,are 

rl = 1,r2 = 1, ... ,rn.-p = 1,rn-p+l = o, ... ,rn = 0 

where p is the rank deficiency of E. 

Proof. Without loss of generality take the system to be in Kronecker form. Then, 

since the system is assumed to be strongly controllable, it follows from lemma (6.3.4) that 
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[sE-A]- 1 B is a left minimal factorisation. The row degrees of [sE-A B] are either 0 or 

1 with the number of rows with zero degrees equal to the rank deficiency of E. Reordering 

these row degrees therefore gives the result. 0 

The results of lemmas (6.3.4) and (6.3.8) provide a means of proving the hypothesis 

stated earlier concerning the properties of the staircases associated with the respective 

minimal factorisations of the open loop transfer function matrix . 

. (6.3.9) Lemma. Let G(s) be the transfer function matrix associated with a strongly 

controllable system described by (6.3.1), (6.3.2). Let Ct :2: c2 :2: •.• :2: Ct be the right 

minimal indices associated with G(s) and r1 :2: r2 :2: ... :2: r, be the corresponding left 

minimal indices. Then, the staircase function, defined as in ( 4.3.9), constructed from the 

right minimal indices lies on or below the corresponding staircase formed from the left 

minimal indices. 

Proof. From lemma (6.3.8) it follows that the staircase associated with the left minimal 

factorisation is as described in figure (6.3.10). 

n-p 

n-p-1 

2 

1 

1 2 

• • • • • • • • 

n-p-1 n-p 

fig. (6.3.10) 

k 
n 

For a .right minimal factorisation, G(s) = Nt(s)Dj' 1(s), the column degrees c;, 1 = 

1,2, ... ,l, of [Dt(s)] must satisfy 
Nt(s) 

e 
L c; =n-p. 
i=l 

Then, if the staircase associated with the right factorisation intersects ·the staircase associ

ated with the left factorisation at some point then c; = 0 for some i. But, since the c;'s are 
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ordered in decreasing fashion, this means that the two staircases can only intersect when 

k = n- p indicating that the staircase associated with the right minimal factorisation lies 

on or below the staircase associated with the left factorisation, as requried. 0 

Recall that et;( s ), i = 1, 2, ... 'e, are monic polynomials such that 

a;(s) I ai-l(s) i = 2, 3, ... /. 

and 
dega;(s) =a; i=1,2, ... ,e. 

Also, {3;(w), i = 1,2, ... ,e, are monic polynomials with 

/3;( w) I f3i-l C w) i = 2, 3, ... ,e 

and b;, i = 1, 2, ... ,e, are defined by 

f3;(w) = w6
; f3l(w) i = 1,2, ... ,e {3;(0) =f. 0. 

Then, interpreting the result of theorem ( 4.5.8) for a system in generalised state space 

form gives rise to the following. 

(6.3.11) Theorem. Let G(s) be the transferfunction matrix associated with the strongly 

controllable system represented by (6.3.1), (6.3.2), i.e. G(s) = (sE- A]-1 B. Let G(s) 

have a right minimal factorisation 

where the column degrees of [ D
1 

( 
8
)] are ordered c1 2: c2 2: . . . 2: ce. Finally, let 

N1(s) 
A1(s) = diag [s<•,s<', ... ,s<']. Then, for there to exist a constant matrix J{ such that 

the invariant polynomials of D 1(s) + KN1(s) are a1(s),a2(s), ... ,ae(s) and the invariant 

polynomials of (D1 (-t;) + I<N1 (~)]A1(w) are f31(w),f32(w), . .. ,f3e(w) it is necessary that 

l l t 

2.: a;+ 2.: b; ~ 2.: c; k = o, 1, ... , e- 1 (6.3.12) 

with equality holding when k = 0. 

Proof. From theorem ( 4.4.8), the a;, b;, i = 1, 2, ... ,e, must satisfy the necessary con-

ditions that 
l l n 

2.: a;+ 2.: b; ~ 2.: d; k = 0,1, .. . ,e -1 (6.3.13) 
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with equality when k = 0, and where 

t d; = min [ t c;, ,. __ Lk~+I r;] 
i=k+l i=k+l 

and r;, i = 1, 2, ... , n, are the left minimal indices of G(s). From lemma (6.3.9) it follows 

that 
n l. 

I: d; = I: Ci k = 0, 1, ... , f. - 1 
i=k+l i=k+l 

which on substitution into (6.3.13) gives rise to (6.3.12) as required. 0 

The result of theorem (6.3.11) provides necessary conditions for the simultaneous 

placement of both the finite and infinite pole structures using constant generalised state 

feedback around a generalised state space system of the form (6.3.1), (6.3.2). The following 

example demonstrates that the necessary conditions are not sufficient ones. 

(6.3.14) Example. Let 

[ 

1 _1.] 
G(s)= s~1 ~~ 

s 

whose right and left minimal factorisations are respectively 

N1(s) D}
1(s) = [ s ~ 1 -1] -s 

1 

[ l-1 [ l s -1 ·o 1 o 
D21(s) N2(s) = 0 0 s 0 1 

1 0 1 1 0 

and where the left minimal factorisation is of the· form [sE- A]-1 B. It therefore follows 

that the necessary conditions are obtained from the column degrees of the right minimal 

factorisation, i.e. CJ = 1, c2 = 1. Hence a;, b; must satisfy the necessary conditions 

(6.3.15) 

Let !( = [ ~: ~~ ~:] and A1( w) = diag [w, w]. Consider a pole structure with two poles 

at infinity both of order one and no finite poles, i.e. 

(6.3.16) 
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This pole structure satisfies the conditions (6.3.12). Now, the closed loop pole structure 

at infinity is given by the zero structure at w = 0 of 

-k2 + w(ka - k!) ] 
(1- ks) + w(k6- k4) 

(6.3.17) 

For the above pole structure (6.3.16) to be assigned it is necessary that all 1 x 1 minors 

of (6.3.17) possess a common factor w which in the case of the (2, 1) and (2, 2) elements 

implies that 

k5 = 0 and 1 - ks = 0 · 

so indicating a clear contradiction. Thus, it is not possible to assign the pole structure 

(6.3.16) to the closed loop system which illustrates that condition (6.3.12) of theorem 

(6.3.11) is not a sufficient one. 

The result of theorem (6.3.11) generalises the necessary conditions obtained by Kucera 

and Zagalak [1988] to the case where the closed loop system possesses both finite and infi

nite poles. For the case where the closed loop system is proper, i.e. b; = 0, 

i = 1, 2, ... ,£,the necessary conditions are equivalent to those obtained by Kucera and Za

galak [ibid.] (see theorem (6.2.4)). Unfortunately the sufficient conditions do not generalise 

in the same way. 
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§4. Necessary conditions for the placement of the infinite pole structure. 

The Kronecker form of a generalised state space system plays a crucial role in the 

investigation of the closed loop infinite pole structure. The special structure of this form 

makes it possible to deduce properties concerning certain minors of particular matrices 

which can then be translated into properties of the invariant polynomials of that matrix 

and hence the pole structure. The most significant result as far as investigating the closed 

loop infinite pole structure is concerned is presented in the following theorem. 

(6.4.1) Theorem. Given [sE- A B] in Kronecker form (i.e. sE- A as in (5.2.2)) with 

the last position rows of B corresponding to the non-trivial blocks linearly independent 

and A(w) defined by 

'( ) - d' { ;, i2 i. } nW- mg w ,w , ... ,w 

(6.4.2) 

i j = 1 otherwise 

Then, the matrix 

A(w) [-t;E- A+ BK] 

possesses a non-zero (n- 8) x (n- 8) minor which is not divisible by w, where ]{is a 

constant£ x n matrix and 8 is the number of linearly independent last position rows of B. 

Proof. Let 

and At= (a;;), i,j = 1,2, ... ,n1. Then, the matrix A(w) [~E-A+ BK] will be of the 

form 

Au 
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i 

where v; = ni + L q;, i = 1, 2, ... ,p, vo = ni and 
j=I 

[

1- auw.:+ bT[kiw 

An= 

-an1IW + bn1 kiW 

Av;I = 
b~-Ikiw 

b~ki 

which reduces to the last row when q; = 1, 

b~-Ikv,_ 1+IW 

b~ kv,_ 1 +I 

-ain1 W + b[kn1 W l 
1- an1n1 w + b'{;1 kn1 w 

b~-Ikn1 W 
b~kn1 

w( -1 + b~-Ikv;-I) 1 + b~_ 1 kv,w 

T -1 + bv,kv; 

which reduces to B.,.,= [-1 +b~k.,] when q; = 1, and 

b~-I kv;_ 1 +I W 

b~ kv;- 1+I 

which reduces to the last row when q; = 1. 

b~-l kv;W 

b~ kv; 

Alternatively replacing the -a;;+ bfk; and bfk; by* for all i,j the general structure 

of (6.4.3) can be seen in the following simpler form. 
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1+•w •w •w •w •w 

•w 1+•w 

•w 
•w •w 1+•w •w •w 

•w •w w(-1 + •) 1+•w •w •w •w 

•w 

•w •w •w •w w(-1+•) 1+•w •w •w 

• • • • -1+• • • 

•w •w w(-1+•) 1+•w •w •w •w 

•w 

•w •w •w •w w(-1+ •) 1+•w •w •w 

• • * • -1+• • • 

* * -1+• • • 
* -1+• 

* 
* • * * -1+• 

(6.4.4} 



First, take 8 = p and consider the n- p minor formed by deleting rows n1 + q1, n1 + 
q1 +qz, .•. , n1 +q1 +qz+ ..• +qp and columns n1 + 1, n1 +q1 + 1, ... , n1 +q1 + ... +qp-1 + 1 

in (6.4.3). Using the notation of (6.4.4) this minor is of the form 

1 + *W *W 

1+*w 

*W 1 + *W 

w(-1 + *) 

w(-1+*) 1+*w 

and equals 1 + g( w) where g(O) = 0. Thus, the theorem is proved for the case when 8 = p. 

To complete the proof it is sufficient to show that if TJ of the last position rows corre

sponding to the trivial blocks are linearly dependent on the other last positions rows then 

there exists an- p + TJ non-zero minor not divisible by w. Without loss of generality let 

the last fJ last position rows corresponding to the trivial blocks be linearly dependent on 

previous last position rows, i.e. 

p-q 

b~, +g, + ... +g•-•+' = 2.:::: ej b~, +g; 
j=l 

i=1,2, ... ,T], ej E )R. 

Take the n1 + q1 + ... + qp-q+I row of (6.4.3) and subtract suitable multiples of rows 

n 1 + qj, j = 1, 2, ... ,p- TJ, so that row n1 + q1 + ... + qp-q+l consists of a "-1" in position 

n 1 + q1 + ... + qp-q+l with all other entries zero except possibly the entries in position 

n1 +q1, n1 +q1 +qz, ... , n1 +q1 + .. . +qp-q· The "-1" can be used to remove the other non

zero elements in this row by suitable column operations so that row n1 + q1 + ... + qp-q+l 

is now of the form 

[0 ... 0 -1 0 ... 0] 

where the "-1" is at position n1 + q1 + ... + qp-q+l· Similarly for rows n1 + q1 + ... + 
qp-q+i, i = 2, 3, ... , TJ, where all the elements of the ith row are zero except for a "-1" in 

position n 1 + q1 + ... + qp-q+i· These row and column operations do not destroy the zero 

structure at w = 0 of ( 6.4.3). 

Then, then- p + TJ minor formed by deleting rows n1 + q1, n1 + q1 + qz, .•. , n1 + q1 + 

... + qp-q and columns n1 + 1, n1 + q1 + 1, ... , n1 + q1 + ... + qp-q-1 + 1 of the resulting 
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matrix is of the form 

1+*w *W 

1+*w 

*W 1 +*W 

( -1 + *)W · • 

0 

0 

0 -1 0 

*W 

0 

0 

0 -1 

where some of the* differ from those given in (6.4.4). This minor is equal to ±1 + f(w) 

where f(O) = 0. Thus, there exists ann- p + T] non-zero minor of (6.4.3) which is not 

divisible by w, so completing the proof. 0 

To illustrate the result of theorem (6.4.1) consider the following example. 

(6.4.5) Example. Let 

s 0 0 0 1 0 

0 -1 s 0 1 0 
[sE-A B]= 

0 0 -1 0 0 1 

0 0 0 -1 b 1 

which is in Kronecker form with b E ~. In this case p = 2, q1 = 2, q2 - 1 so that if 

]{ = and A(w) = diag [w, w, 1, 1] then 
[ 

kl k2 k3 k4] 

ks k6 k1 ks 

1 +wk1 wk2 wk3 wk4 

A(w) [~E-A+ BI<] = 
wk1 -w +wk2 1 +wk3 wk4 

ks kG -1 + k1 ks 
(6.4.6) 

k1b + ks k2b + k6 k3b + k1 -1+k4b+ks 
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If b f. 0 then 8 = 2 and theorem (6.4.1) states that (6.4.6) possesses a 2 x 2 minor~ which 

is not divisible by w. This is confirmed by considering the 2 x 2 minor formed by deleting 

the third and fourth rows and second and fourth columns of (6.4.6), i.e. 

wka 
= 1 + w( k1 + ka) 

1 +wka 

This minor is clearly not divisible by w. 

If b = 0 then 8 = 1 and theorem (6.4.1) states that (6.4.6) possesses a 3 x 3 non-zero 

minor which is not divisible by w. Assume the contrary, then the particular minor 

wka 

wk1 1+wka wk4 =ks+g1(w), g1(0)=0 

ks -1 + k1 ka 

formed by deleting the fourth row and second column of (6.4.6) must be divisible by w. 

This implies ka = 0. Next, consider the minor 

wka 

1 +wka 

k1 

= -1 + ka + gz(w), gz(O) = 0 

formed by deleting the second column and the third row of (6.4.6). If this minor is divisible 

by w then ks = 1 which leads to a contradiction. Hence, there exists a non-zero 3 x 3 

minor of (6.4.6) which is not divisible by w as predicted by theorem (6.4.1). 

The result of theorem (6.4.1) provides detailed information concerning the minors of 

certain matrices associated with the generalised state space system (6.3.1), (6.3.2). This 

information can subsequently be interpreted in terms of the infinite pole structure of the 

system formed by applying constant generalised state feedback around (6.3.1), (6.3.2) 

which gives rise to the following corollary. 

(6.4.7) Corollary. Let G(s) = [sE- A]-1 B be a strongly controllable system. Then 

the multiplicity of the closed loop infinite poles under constant generalised state feedback 

of the form (6.3.3) can not exceed 8 where 8 is the number of linearly independent last 

position rows of B associated with the Kronecker form of the system, i.e. 

Proof. Since the open loop system is assumed to be strongly controllable it follows from 

lemma (6.3.4) that for the system represented in Kronecker form 

G(s) =[sE- AJ- 1 B 
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is a left minimal factorisation of G( s ). H G K( s) is the closed loop transfer function matrix 

then, by the dual of lemma ( 4.2.2), 

is also a left minimal factorisation and [sE- A+ BK B] has the same row degrees as 

[sE- A B]. Therefore, by lemma (3.2.6), the infinite pole structure is given by the zero 

structure at w = 0 of 

A(w) [~E-A+ BK] (6.4.8) 

where A( w) is given by (6.4.2). Let {3;(w ), i = 1, 2, ... , n be the invariant polynomials 

of (6.4.8) such that ,B;(w) I ,8;_1 (w ), i = 2, 3, ... , n and Dj( w ), 1 ~ j ~ n, be the monic 

polynmnials which are the greatest common divisors of all j X j minors of (6.4.8). Then 

,B;(w) = Dn+!-i(w) 
Dn-i(w) 

i = 1,2, ... ,n, D0 "'1. 

It then follows from theorem (6.4.1) that ,8;(0) f 0, i = 8 + 1, 8 + 2, ... , n. Hence 

b; = 0 i = 8 + 1,8 +2, ... ,n 

as required. 0 

Note that since the open loop system is assumed to be strongly controllable, the last 

position rows of B corresponding to the non-trivial blocks of J form a linearly independent 

set so that 8 will always be greater than or equal top- t. 
The result of corollary (6.4.7) indicates that the possible multiplicities of the infinite 

poles of the closed loop system are dependent on how "controllable" the system is. It 

follows that in general the possible multiplicities will be greater if the system is assumed 

to be strongly reachable than if it is assumed to be strongly controllable. Therefore, as far 

as assigning the infinite pole structure is concerned it is more advantageous for the system 

to be strongly reachable. 

Recall that the difference between the strong reachability and strong controllability 

definitions· lies in the way they deal with the infinite frequency behaviour of the system. It 

should also be recalled that if a system is strongly reachable then it is also strongly con

trollable. In the light of these facts it is therefore not surprising that requiring the system 

to be strongly reachable will result, in general, in a greater flexibility in the placement of 

the infinite poles. 

Note that in the regular case the multiplicity of the closed loop finite poles can obtain 

a maximum value equal to rank B. In the generalised case it has now been shown that the 

multiplicity of closed loop infinite poles can obtain a maximum value equal to rank of the 

last position rows of B when the system is represented in Kronecker form. 
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,....-----------------------------

Consider again example (6.4.5) to illustrate the result of corollary (6.4.7). 

(6.4.9) Example. Let 

G(s) =[sE- A]-1 B 

0 0 0 -1 1 0 s 

0 -1 s 0 1 0 
-

0 0 -1 0 0 1 

0 0 0 -1 b 1 

where sE - A is in Kronecker form and b is an arbitrary constant. A right minimal 

factorisation of G( s) is given by 

G(s) = N(s)D-1 (s) 

1 0 

-s s 

[~ 0 r1 

-
0 1 -1 

-sb 1 

It then follows that c1 = 1, Cz = 1 and A( w) = diag[ w, w ]. Let 

be the constant feedback matrix so that the closed loop infinite pole structure is given by 

the zero structure at w = 0 of 

kz + kaw + k4w ] 

kG - w + k1w + ksw 
(6.4.10) 

Now the closed loop infinite pole structure will have multiplicity 2 if and only if each 

element of (6.4.10) is divisible by w. An investigation of elements in position (1, 1) and 

(1, 2) indicate that this will be so if and only if 

This in turn implies that the closed loop infinite pole structure has multiplicity 2 if and 

only if the last position rows of B have rank 2. Thus, it is seen in this example how the 

linear independence properties of the last position rows of B influence the multiplicity of 

the closed loop infinite poles. 
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§5. Necessary and sufficient conditions for the placement of the infinite 

pole structure. 

In this section the placement of the infinite pole structure for a generalised state space 

system is further considered. Stronger necessary conditions are obtained by combining the 

necessary conditions of corollary (6.4.7) together with the results of theorem (6.3.11) for 

the case when only the infinite poles are of concern. The resulting conditions are shown 

to be also sufficient conditions. Before presenting this new result, two important theorems 

are considered which are crucial in establishing the new necessary and sufficient conditions. 

The first theorem is concerned with the properties of a right minimal factorisation of 

the transfer function matrix G(s) = [sE- At1 B. The theorem also provides a formal 

justification of a crucial result assumed without proof by Kucera and Zagalak [1988]. 

The result is given for the system (6.3.1), (6.3.2) when it is represented in Kronecker 

form, so that 

[-B sE-A]= 
0 

(6.5.1) 

where is as described by (5.2.2) and (5.2.3). Also, B 2 is taken to 
[
sin,- A1 0 ] 

0 sJ- In 2 

be in column echelon form so that Bz consists of, from left to right, 8 columns of the form 

0 

0 

1 

0 

0 

where the ·"1" is at position q1 + q2 + ... + q;, i = 1, 2, ... , 8, and 8 is the number of linearly 

independent last position rows of B, then p- 8 zero columns and finally .e- p columns 

whose elements are irrelevant. With the system represented in this canonical form the 

following result can now be stated. 

(6.5.2) Theorem. Consider a strongly controllable generalised state space system (6.3.1 ), 

(6.3.2) represented in Kronecker form (6.5.1) with Bz in column echelon form. Let G(s) = 
N(s)D-1(s) be a right minimal factorisation of the associated transfer function matrix 
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and let. [ ~] he denote the high order coefficient matrix with respect to the columns of 

[
D(s)] · 

. Then, when p - t < e, rows 
N(s) 

and when p - t = e rows 

of and of are linearly independent where qo ~ 0. [
D] [D(s)] 
N he N(s) 

Proof. By theorem (5.6.7) and the fact that the system is strongly controllable it follows 

that 

p-tse. 
Since G(s) = [sE-AJ- 1B = N(s)D- 1(s) it also follows, with [-B sE-A] in Kronecker 

form and N(s) suitably partitioned, that 

(6.5.3) 

Let -B = (b;j), i = 1,2, ... ,n, j = 1,2, ... ,e, and A1 = (a;j), i,j = 1,2, ... ,n1 , then 

(6.5.3) can be written as · 
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bu 

0 

0 

-1 

0 

-1 bnt +'1.-t.P+l 

-1 bnl+'lp-t+toP+l 

-1 bn 1 +fJ.s,p+l 

0 0 

0 

j 

where ry; = L:q1 + q, + ... + qk, j = 1, 2, ... p. 
k=l 

s- au 

-1 s 0 

s 

-1 

bnt+'1.-t,l -1 

bnt+'7p-f+t,l -1 

0 -1 

bnt+'1.s,l 

-1 



Let U E fRnxn represent suitable column operations on [-B sE- A] such that 

[-B sE-A]U= 

where 

bu 

0 

0 

-1 

0 

b~loP+l 

bn,+!,p+l 

0 

0 bn,+q,_1-1,p+l 

-1 0 

0 0 

0 0 

5 

bLt 

0 

0 

0 

0 

s- au 

-1 s 

s 

-1 

b:,j = I: Cl'i( b;,( + b;,j 
(=1 

i = 1,2, ... n1, j = p+ 1,p+ 2, ... ,£, Cl'i( E fR. 

and let 

[ 
D(s)] [D'(s)] 

u-1 N1(s) = N1(s) 

N2(s) NHs) 

-1 s 

s 

-1 

-1 

-1 



RO that from (6 . .>.3) 

blld~ +b,tf,+ ......... +h~ld~. 

h111 t d~ +h.,,tf,+ ......... +h:ltl.dj 

hntfl,ptld~+t+ 

b,l,t2,pt1 d~tt+ 

bn1+91-1,pt1 d~tt+ 

-d\ 

bn,t'1p-t-1+1,pt1 t'rtt + 

_,_, 

[ 
D(.<)] 

[-R sF:- A] uu-' N,(.<) = 0. 

Nl(s) 

t.hP.n it. m11st. t:>atifify the following Ret of eqnnUonR. 

+(s-a, )[11 -nt2!f2 -fltn1 )1,a 1 

-fln1 t/1t -an,2/f2- +(,'f- fliiJRJ )f/nl 

+hu1t1,1.r/j -r, +r2• 

hnt+2,l rl~. --y, +-y,.< 

+bi1Jf9t-l,ld/. -'Yq~-t +r111 8 

-")',, 

=0 

=0 

=0 

=0 

=0 

=0 

=0 

=0 

=0 

=0 

-r., = o 

(6.5.4) 



Now consider in which positions the highest degree can occur in (d~, ... , di, ,81, ... , 

.Bn,, /I, ... , 'Yn,]T. From the first n1 equations of (6.5.4) it follows that the highest degree 

element does not occur in positions .81, ,82, ... , .Bn,· Also, from the last t equations of (6.5.4) 

~~•-•+• = ~~•-•+' = ... = 'Yp = 0. Next, consider the equations associated with the first 

Jordan block where it is seen that the highest degree can only occur in d~+l, d~+2 , ••• , di, /1· 

Similarly for the equations associated with the other non-trivial blocks. Also, it is possible 

for the highest degree to occur in elements 

d~-t+l' d~-H2> ... 'd~ 

so that the set of elements where the highest degree can occur is 

with suitable interpretation when p - t = f.,p > f. and t = 0. This set consists of f. 

elements so that [ ~; ] , the high order coeffeicient matrix with respect to the columns 

N2 he 

[ 

D'(s) l 
of N1(s) , will only have non-zero elements in rows 

NHs) . 

p- t + 1, ... ,f., f.+ n1 + 1,£ + n1 + q1 + 1, ... ,f.+ n1 + q1 + ... + qp-t-1 + 1. (6.5.5) 

[ 

D' ( s) l [ D' l 
Since N 1(s) is also a minimal basis its follows that the rows given by (6.5.5) of N1 

N~(s) N~ he 

and also of [ ~: ~ :~] are linearly independent. Transforming the minimal basis 

N~(s) 
[ 

D'(s) l 
N1(s) 

N~(s) 

[ 

D(s) l 
back to the form N1(s) does not affect the rows given by (6.5.5). Hence the result. 0 

N2(s) 
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By definition, if the ( n + £) X £ matrix [ D( 
8
)] forms a minimal basis then both 

JV(s) . 

[ 
D( 

8
)] and [D] possess£ rows which are linearly independent. The result of theorem 

N(s) N he 

(6.5.2) identifies such a set of rows for the case when G(s) = JV(s) n-1(s) = [sE- A]- 1 B. 
To illustrate the result consider the following example. 

(6.5.6) Example. Let 

0 -1 s 0 0 0 0 

0 0 0 -1 s 0 0 

[-B sE-A]= -1 0 0 0 -1 0 0 

0 0 0 0 0 -1 s 

0 -1 0 0 0 0 -1 

which is in Kronecker form with B2 in column echelon form. In this example 

p = 2, t = 0, q1 = 2, q2 = 2, £ = 2, n1 = 1. 

If G(s) = JV(s) n-1(s) is a right minimal factorisation of the transfer function matrix 

associated with this system then theorem (6.5.2) states that the fourth and sixth rows of 

[;] he and [ ;~: ~] are linearly independent. A right minimal factorisation is given by 

-1 0 

0 s 

[ ~s rl -1 
G(s) = 0 1 

0 
s2 0 

s 0 

which on inspection of 

0 -1 0 0 

-s 0 0 0 

-1 0 

[;Le 
0 0 

[ D(s)] = 0 s and - 0 1 
N(s) 

0 1 0 0 

82 0 1 0 

s 0 0 0 
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confirms the result of theorem (6.5.2) in this case. 

Next consider the following theorem which provides a means of constructing a suitable 

polynomial matrix required in a subsequent proof. 

(6.5.7) Theorem. Let A(w) = diag [w<•, w<2 , ••• ,w<'] where the c;'s are ordered 

c1 ~ c2 ~ ••• ~ Ct. Let Dhc be an £ X £ non-singular matrix and let b;, i = 1, 2, ... , £, 

satisfy the conditions 

and b· < . - k = o, 1, ... , e- 1 

Then, there exists a polynomial matrix C(s) such that 

(i) C (!) A(w) has Smith form 

d. [ b, b, 6• 1 1 1) 1ag w , w , ... , w , , , ... , 

(ii) the last£- S columns of C (-t;) A(w) n-;;; are linearly independent. 
w=O 

(6.5.8) 

Proof. Let H(w) = diag [w6•,w62 , ••• ,w6•,1,1, ... ,1) and define h; to be the column 

degree of the ith column of H(w). 
If h;:;; c;, i = 1,2, ... ,£,then a polynomial C(s) exists to satisfy (i). Otherwise there 

exists a k such that hk > Ck and, by (6.5.8), it follows that there exists a j(> k) such that 

hj < Cj. Then, take w times row j and add to row k. Let a = hk - hj - 1 (> 0) and 

subtract wa times column j from column k. Finally, interchange rows k and j to give the · 

matrix H'(w) with column degrees h\, i = 1,2, ... ,£,where 

hi= h; i f= k,j 

and where the element in position i of column i is of higher degree than any other element 

in the same column. Employing similar transformations gives rise to a matrix H'(w) in 

which 

and 

hi :;; c; i=1,2, ... ,e. 
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Also, the Smith form of H'(w) is equivalent to the Smith form of H(w). Since the trans

formations only involve adding f3wa, a > 0, f3 E lR times a row (column) to another row 

(column) and row interchanges it follows that the number of l's present in H'(w) is the 

same as the number in H(w) and that they occur in the same columns. Therefore it is 

possible to employ further row interchanges to give the matrix H" ( w) where 

H"(O) = H(O). 

These additional row operations do not affect the column degrees so that H"(w) has the 

same column degrees as H'(w), and is also column proper. 

If H"(w) is such that the last e-6 columns of H"(O) Di:c1 are linearly independent then 

an appropriate C(s) to satisfy condition (i), (ii) can be deduced from H"(w). Otherwise 

partition Di:c1 as 

D;;; = [ Du I D12 l 
D21 D22 

(6.5.9) 

where D12 is a 6 x (e- 6) matrix and D22 a (e- 6) x (e- 6) matrix. Now since D;;; is 

non-singular the matrix [ D
12 

] will have e - 6 linearly independent rows and if D22 has 
D22 

rank 17 there exists e- 6 -17 rows of D12 which are linearly independent of the 17 linearly 

independent rows of D22 • Let Q be the matrix 

Q=[~] 
where 

if row j of D12 is linearly independent and row i of D22 
is linearly dependent on the 6 linearly independent rows of D22 

otherwise. 

Then, if 

Dl2 l 

the matrix Db is non-singular and therefore the last e- 6 columns of H"(O)QD;;; will be 

linearly independent. Further, the effect of Q on H"( w) is to add certain of the last e- 6 

columns to the first 6 columns. In view of the fact that the column degrees, h\, of H"(w) 
are ordered h~ :2: h~ :2: •.. :2: h~ and that H"( w) is column proper the column degrees of 

the resulting matrix H"'(w) are equivalent to those of H"(w). Hence, a suitable C(s) to 

satisfy conditions (i) and (ii) can be deduced from H"'(w) to complete the proof. D 
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To illustrate the constructive nature of the proof of theorem (6.5.7) consider the 

following example. 

(6.5.10) Example. Let c1 = 1, c2 = 1, ea = 1 and 

Suppose that C (~) A(w) has Smith form 

diag [w 3
, 1, 1]. 

Then, to construct a suitable C(s) such that conditions (i) and (ii) of theorem (6.5.7) are 

satisfied first define 

[

w
3 0 0] 

H(w) = 0 1 0 . 

0 0 1 

Following the procedure described by Rosenbrock [1970] construct the matrix H'(w) in 

the following manner. 

row 1 =? row 1 + w· row 2 
[

w
3 

w 0] 
0 1 0 
0 0 1 

col. 1 =?col. 1- w2
• col. 2 [ -~2 

w 

~] 1 
0 

row1~row2 [-r 1 

~] w 
0 

row 1 =? row 1 + w· row 3 [-r 1 

~] w 
0 

col. 1 =? col. 1 + w· col. 3 [~ 
1 

~] w 
0 

row1~row3 [~ 
0 ~] ~ H'(w). w 
1 
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,---------------------------------------------------

Further row interchanges result in the matrix 

which is of the form described in theorem (6.5.7). 

Now 

where the last e - 6 = 2 columns are not linearly independent. 

Next, partition Di:~ as in (6.5.9) 

0 1 0 
n-1_ 

he - 0 0 1 

1 0 0 

Let ! 

1 0 0 

Q= 0 1 0 

1 0 1 

then 

0 1 0 

QDi:~ = 0 0 1 

1 1 0 

where 

n;2 ;= [~ ~] 
is non-singular. Also 

H"(O)QDi:~ = [ 0~ 0~ 0~] 
where the last£- 6 = 2 columns of H"(O)Q Di:c1 are linearly independent, as required. 
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Finally 

H'"(w) A H"(w)Q = [ O : O l 
w:1 0 : 

where the column degrees of H"'(w) are equal to the corresponding c;'s. Hence, an ap

propriate C( s) can be deduced by noting that 

H"'(w) = C (~) A(w) 

to give 

C(s) = [ ~ ~ ~]· 
1 +s 0 s 

Return now to the problem of assigning the infinite pole structure in a generalised 

state space system using constant generalised state feedback. The results of theorems 

(6.5.2) and (6.5.7) enable the following theorem to be proved. 

(6.5.11) Theorem. Let G(s) be the transferfunction matrix associated with the strongly 

controllable generalised state space system (6.3.1), (6.3.2) and let 

G(s) = N(s)D- 1(s) 

be a right minimal factorisation of G(s) where the column degrees, c;, of [D(s)] are 
N(s) 

ordered c1 2: c2 2: ... 2: et. Then, the infinite pole structure of the closed loop system 

under generalised state feedback of the form (6.3.3) and represented in terms of the b;, i = 

1, 2, ... ,l, must satisfy the necessary and sufficient conditions that 

(i) bs+I = b5+2 = ... = bt = 0 

where S is the number of linearly independent last position rows of B when the system 

is represented in Kronecker form, 
l l 

(ii) .2: b; ~ .2: c; k = o, 1, ... ,e -1. (6.5.12) 

Proof. The necessity part of the result follows as a direct consequence of corollary (6.4. 7) 

and by taking a;= 0, i = 1,2, ... ,l in theorem (6.3.11). 
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For the sufficiency part, let the matrix polynomial C(s) be chosen such that 

C (~)A( w) , where A( w) = diag[w<•, w<•, ... , w<•] has Smith form 

diag [wh h ( w ), wb' h( w ), ... , wb' !6( w ), fHI ( w ), ... , fe( w )] (6.5.13) 

where the b;'s satisfy condition (ii) of the theorem and where fi+I(w) f;(w), i = 

1,2, ... ,£ -1, with f;(O) f. 0, i = 1,2, ... ,£. Without loss of generality the f;(w)'s 

can be taken to be 

f;(w) = 1 i = 1,2, ... ,£ 

since only the structure of (6.5.13) at w = 0 will be of relevance. 

Then, the sufficiency part is proved if there exists a constant matrix J{ such that 

[D (~) + K N (~)] A(w) = C (~) A(w) (6.5.14) 

or equivalently 
D(s) + J( N(s) = C(s). (6.5.15) 

Now since D(s),N(s) are relatively (right) prime it follows (see Rosenbrock, 1970) that 

there exist polynomial matrices X(s), Y(s) such that 

X(s)D(s) + Y(s)N(s) = C(s). (6.5.16) 

Thus, the sufficiency part of the theorem will be proved if there exist X ( s ), Y( s) satisfying 

(6.5.16) where X(s),Y(s) are constant matrices with X(s) non-singular. 

Without loss of generality assume that the system is represented in Kronecker form 

with B2 in column echelon form. 

Then, the fundamental relationships can be written as 

[

X(s) Y1(s) Y2(s) l 
-Bl sin, - A1 0 

-B2 0 sJ-In, 
[ 

D(s) l [C(s)l 
N1(s) = 0 . 

N2(s) 0 

(6.5.17) 

Let T be the transformation which interchanges column q1 + q2 + ... + q;-1 + 1 of sJ- In, 
with column i of -B2 fori= 1, 2, ... ,p- t and where qo ~ 0. Then, 

[

X(s) Y1(s) Y2(s) l [X(s) Y1(s) 

-Bl sin, - A1 0 T = -~~ sin, - A1 

-B2 0 sJ- In, -B2 0 

y~,)l 

J(s) 

(6.5.18) 

where fi is a constant matrix and J2(s) is a column reduced polynomial matrix with 

column degrees 

{~ 
i = 1, ql + 1, ql + q2 + 1, ... 'ql + q2 + ... + qp-l + 1 

otherwise. 
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[ 

D(s) l 
The inverse transformation T-1 acts on N1(s) by interchanging row e +n1 + q1 + ... + 

. N2(s) 

q;-1 + 1 with row i fori= 1,2, ... ,p- t. Thus, if 

(6.5.19) 

it follows from theorem (6.5.2) that D(s) is column reduced with column degrees c1 ,c2 , 

... , cl. Also, as a consequence of the proof of theorem ( 6.5.2) the ith column degree of 

N1(s) is less than c;, i = 1,2, ... ,£. 
Finally, consider the structure of N2 ( s ). Combining (6.5.18) and (6.5.19) with (6.5.17) 

results, in particular, in 

[-.82 0 J(s)] 
[ b(,) l 
~1(s) 
N2(s) 

=0 

t.e. 

[ D(s) ] [-.82 J(s)]- N2(s) = O. 

column of , then it must satisfy 
[
D2(s)] 
N2(s) 
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-1 0 s 

0 -1 

0 hv 1-l,p+l bvt-1 1l 0 -1 s 

0 0 bv,p+l bv 1 ,t -1 0 ... ... 0 -1 0 

ell 

-1 bv,-t-t+l,p+l bv1-t-t+l,t 0 s 
dt 

=0 
0 -1 

'h 

0 s .Yn~ 

0 btl,-e,P+l bv,_ 1,t -1 0 0 -1 

-1 bvp-t+t,P+l bv 11-tH,t -1 

-1 

0 0 0 

0 -1 

where Vi = n1 + L:~=t q;, i = 1, 2, ... , p. 



Adopting a similar argument to that employed in the proof of theorem (6.5.2) it 

follows from the first block corresponding to the non-trivial Jordan blocks that the degrees 

of ;y2 , ;y3 , ••• , .Yq, are all less than the highest degree amongst d1 , dp+l, ... , dt. Similarly for 

the other non-trivial blocks. Thus, 

can only have non-zero elements in rows 

Applying the transformations T, T-1 to (6.5.17) results in 

[
X~) Yi(s) 

-B1 sin,- A1 

-Bz 0 
[ 

D(s) l [C(s)l 
N1(s) = 0 . 

j{2(s) 0 

(6.5.20) 

Now there exist polynomial matrices Q1(s), Q2(s) such that 

and 

where Yj [sin, - A1]-1 and Y2 J-I ( s) are strictly proper and Yi, Yz are constant matrices. 

Further since J-I ( s) is of the form 

where 

,P;(s) = B;(s) 

-1 

0 

0 

B;(s) E ~q;x(q;-I)(s), i = 1,2, .. . ,p- t 

and since Y2 J-1(s) is strictly proper it follows that columns 1,q1 + 1,q1 + q2 + 1, ... , 

q1 + q2 + ... , qp-t-1 + 1, ql + qz + ... + qp-t+I, ... , q1 + qz + ... + qP of Y2 are zero. 

The premultiplication of (6.5.20) by the unimodular matrix 

0 
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gives rise to 

[
X~) Yi 
-B1 sln1 - A1 

-fh 0 
[ 

D(s) l [C(s)l 
N1(s) = 0 

N2(s) 0 

(6.5.21) 

where X(s) = X(s) + Q1(s)B1 + Q2(s)fh 
Make the transformations= -t; in (6.5.21) and post multiply by A(w) resulting, in 

particular, in 
iJ ( ~) 

(X(-t;) fi Yi] [N1(~)] A(w)=C(-t;)A(w). 

N2(~) 

(6.5.22) 

Now C (~) A(w) is a constant matrix and has rank deficiency o by (6.5.13). Also 
w=D 

Yi N1 (~) A(w) = 0 
w=O 

since the i 1h column degree of N1 (s) is less than c;, i = 1, 2, ... ,£. From the structure of 

and the arrangement of the zero columns of Y; it is concluded that 
w=O 

w=O 

Let Dhc be the high order coefficient matrix with respect to the columns of D( s ). Then, 

D (-t;) A(w) 
w=O 

which is non-singular by construction. Thus, (6.5.22) gives rise to 

X(~) 
w=O 

which implies X(s) is a constant matrix with rank deficiency o. 
Applying the inverse transformation results in 

0 l (6.5.23) 



where X', Y~ are constant matrices. The inverse transformation replaces column i of X by 

the zero column q1 + q2 + ... + q;_1 + 1 of Y2 for i = 1, 2, ... ,p- t. The matrix C( s) was 

originally chosen such that C (-t;) A(w) has Smith form 

d. [ h b2 b, 1 1 1] 1ag w ,w , ... ,w , , , ... , 

By theorem (6.5.7), C(s) can be chosen such that the further condition that the last e- 6 

columns of C (~) A(w) Di:c1 are linearly independent is also satisfied. Thus, the rank 
w=O 

deficiency of X' can be restored by adding suitable multiples of rows q1 + q2 + ... + q;, 

i = 1, 2, ... , 6, of[-B2 0 sJ -ln
2

] to the first£ rows of (6.5.23). This operation does not 

destroy the constancy of Y1 or Y~ so demonstrating the existence of constant X(s),Y(s) 
with X( s) non-singular such that (6.5.16) holds. Hence, the sufficiency part of the theorem 

is proved as required. D 

The result of theorem ( 6.5.11) provides a complete characterisation of the infinite pole 

structure that can be assigned by employing constant generalised state feedback around a 

generalised state space system (6.3.1), (6.3.2). If all the closed loop poles are located at 

infinity then equality holds when k = 0 in condition (ii). The resulting theorem provides 

an analogy to the result of Kucera and Zagalak (1988] for the case where all the poles are 

assigned at infinite locations. 

Note also that the result of theorem (6.5.11) indicates that it is not possible to assign 

poles at infinite locations in the closed loop system if and only if {j = 0. This condition 

is equivalent to the condition that the system is in regular state space form and confirms 

the result that when constant output feedback is applied to such systems the closed loop 

. system poles are all still located at finite locations (see Rosenbrock and Rowe, 1974). For 

proper systems the result of theorem (6.5.11) indicates that it is always possible to place 

poles at infinite locations using constant output feedback. 

§6. Further necessary conditions for the simultaneous placement of both the 

finite and infinite pole structures. 

In section 3 necessary conditions were obtained for the simultaneous placement of 

both the finite and infinite pole structures using constant generalised state feedback in 

generalised state space systems. Stronger necessary conditions are produced by combining 

the conditions described in section 3 with the subsequent results concerning the assignment 

of the infinite pole structure, giving rise to the following. 

(6.6.1) Theorem. Let a;(s),,B;(w),a;,b;, i = 1,2, ... ,£,be given as in theorem (6.3.11). 

Let G( s) be the transfer function matrix associated with the strongly controllable system 

represented by (6.3.1), (6.3.2), i.e. 

G(s) =[sE- A]-1 B 
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and let G(s) have a right minimal factorisation 

where the column degrees, c;, [ 
D1 (s)] 

of are ordered 
N1(s) 

Let 

A1(s) = diag [s01 ,s02
, ••• ,s"']. Then, for there to exist a constant matrix K such that 

the invariant polynomials of D1(s) + K N1 ( s) are a 1 (s ), a2(s ), ... , at( s) and the invariant 

polynomials of [D1 (~) +K N1 (;\;)JA1(w) are f3I(w),f32(w), ... ,f3t(w) it is necessary that 

(i) b6+1 = b6+2 = ... = bt = 0 

where 8 is the number of linearly independent last position rows of B when the system 

is represented in Kronecker form, 

l l l 

(ii) L a; + L b; < L c; k = o, 1, ... , e- 1 
i=k+l i=k+l 

with equality when k = 0. 

Proof. Conditions (i) follow from the necessary conditions of corollary (6.4.7) whilst con

ditions (ii) follow from the necessary conditions presented in theorem (6.3.11 ), as required. 

0 

In example (6.3.14) it was demonstrated that the necessary conditions of theorem 

(6.3.11) are not sufficient. The additional conditions included in theorem (6.6.1) explain 

clearly why the pole structure b1 = 1, b2 = 1 cannot be assigned by constant generalised 

state feedback for that particular system since, under condition (i) of theorem (6.6.1), b2 

must equal zero in this case. 

Efforts to find an example to demonstrate that the necessary conditions of (6.6.1) 

are not sufficient have been unsuccessful. Equally it has not been possible to prove the 

sufficiency.of the conditions. Thus, the question of whether or not the necessary conditions 

of theorem (6.6.1) are sufficient still remains unanswered. 
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§7. Discussion of infinite pole assignment problem. 

In a recent paper Fahmy and O'Reilly [1989] consider the pole placement problem 

in generalised state space systems for the case where all the poles are placed at infinite 

locations. A procedure to find a suitable matrix I< that will achieve this goal is presented. 

Fahmy and O'Reilly [ibid.] assume that the system is strongly reachable. This implies 

that when the system is represented in Kronecker form all the last position rows of B are 

linearly independent. In this case theorem ( 6.5.11) states that the multiplicity of the closed 

loop infinite poles can achieve its maximum, i.e. 8 = p, the number of Jordan blocks of 

J. This is in agreement with the possible multiplicities assumed by Fahmy and O'Reilly 

[ibid.]. 

Fahmy and O'Reilly [ibid.] do not examine the closed loop infinite pole structure in 

detail but note that the degrees of the closed loop infinite poles are related to the lengths 

of the generalised eigenvector chains associated with the p infinite eigenvalues of E. The 

infinite eigenvectors and generalised eigenvectors are defined as follows. 

(6.7.1) Definition (Fahmy and O'Reilly, 1989). Let v~ E lRn, z = 1, 2, ... ,p, be 

defined by 

Ev~=O i = 1, 2, ... ,p. 

Then v~, i = 1, 2, ... ,p, are called the p INFINITE EIGENVECTORS of E. Further, if!( 

is the feedback matrix that places all the finite eigenvalues at infinite locations (i.e. assigns 

all the poles at infinite locations) then the GENERALISED INFINITE EIGENVECTOR 

CHAINS associated with the infinite eigenvectors are defined by 

Evij = [A+ BI<]viJ-1 j = 1, 2, ... , a; - 1, i = 1, 2, ... ,p. 

The lengths, a;, of the eigenvector chains satisfy 

p 

l:=a; = n 
i=l 

and are non-unique due to the freedom in choosing I<. The degrees of the closed loop 

poles are equal to a; - 1, i = 1, 2, ... ,p, and the relationship between the a;'s and the 

previously defined b; 's is given by 

b; =a; -1 i = 1, 2, ... ,p. (6.7.2) 

The result of theorem (6.5.11) therefore gives an immediate characterisation of the possible 

chain lengths associated with a particular system and this is described by the following. 
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(6.7.3) Theorem. Consider the generalised state space system (6.3.1), (6.3.2) which is 

assumed to be strongly reachable. Let the transfer function matrix, G(s), associated with 

this system have a right minimal factorisation of the form 

G(s) = N(s)D- 1(s) 

where the column degrees,.c;, of [ 
D(.s)] are ordered c1 2: c2 2: ... > Ct· Let constant 
N(s) 

generalised state feedback, J(, be applied to this system in such a way that all the poles 

are placed at infinite locations. Also, let the infinite eigenvectors and generalised infinite 

eigenvectors be defined by (6.7.1) and let a;, i = 1, 2, ... ,p, be the associated chain lengths. 

Then, if the a; 's are ordered a 1 2: a2 2: ... 2: ap then the a; 's satisfy the necessary and 

sufficient conditions that 

p l 

L (a; -1)::; L c; k = 0, 1, ... ,p- 1 (6.7.4) 
i=k+l 

with equality when k = 0. 

Proof. Since the system is strongly reachable then 

f5=p 

where f5 is the number of linearly independent last position rows of B when the system 

is represented in Kronecker form. Then, by theorem (6.5.11), the closed loop infinite 

pole structure represented by b;, i = 1, 2, ... ,e, must satisfy the necessary and sufficient 

conditions 

(i) bp+I = bp+2 = ... = be = 0 

and 
l l 

(ii) :L b· < . - :L c; k = o, 1, ... , e - 1 
i=k+l i=k+l 

or equivalently 
p l 

:L b· < . - :L C; k = 0, 1, ... ,p -1 (6.7.5) 
i=k+l i=k+l 

with equality when k = 0 since all the closed loop poles are located at infinite locations. 

From (6.7.2) 
b; =a; -1 i = 1,2, ... ,p 

which on substituting into (6.7.5) gives rise to (6.7.4) as required. 0 
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The above characterisation of the infinite chain lengths is illustrated by the following 

example. 

(6~ 7.6) Example. Let 

G= [sE-Ar 1B 

0 0 0 -1 1 0 s 

0 -1 s 0 0 0 
-

0 0 -1 0 1 0 

0 0 0 -1 1 1 

which is in Kronecker form and which is also strongly reachable. A right minimal factori

sation of G( s) is given by 

G(s) = N(s)D- 1(s) 

1 0 

-s2 0 

[~ ~r~ -
-s 0 

-s -1 

so that c1 = 2, cz = 0. Hence, the orders of the infinite poles of the closed loop system 

must satisfy 

(6.7.7) 

(6.7.8) 

with equality in (6.7.7) if all the poles are placed at infinity. Theorem (6.7.3) indicates 

that the chain lengths of the infinite eigenvectors and generalised eigenvectors as defined 

by (6.7.1) are 

a1 = 3, az = 1 

and that it is not possible for the chain lengths to be a 1 = 2, az = 2. This can be seen 

by the following investigation. 

The infinite eigenvectors are 

0 

1 

0 

0 
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[
kl 

Let K= 
ks 

1 0 0 

0 0 1 
i.e. 

0 0 0 

0 0 0 

ka 
k

4 
] be the feedback so that 

k1 ks 

Ev2f = [A+BK]v~ 

0 V! kt k2 ka 

0 V2 0 1 0 
-

0 va kt k2 1 +ka 

0 V4 k1 + ks k2 + k6 ka + k1 

Vt k4 

va 0 
-

0 k4 

0 1 + k4 + ks 

which implies v2f = 0, and a 2 = 1 as predicted. 

k4 

0 

k4 

1 + k4 + ks 

0 

0 

0 

1 

The results presented in this chapter on the placement of the infinite pole structure 

compliments the results given by Fahmy and O'Reilly [1989] by describing concisely the 

precise structure that can be assigned. More importantly the result of theorem (6.5.11) is 

concerned with the more general case when the system is assumed to be strongly control

lable which, in the light of the discussion in chapter 5, is of more relevance to the design 

of closed loop systems. 
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§8. Conclusions. 

The general pole placement problem in generalised state space systems has been in

vestigated in this chapter. The treatment of the problem is novel since it considers the 

assignment of the infinite pole structure as well as the finite pole structure. The problem 

was first approached by adopting a minimal factorisation of the open loop transfer function 

matrix. It was seen in chapters 2 and 3 that both the finite and infinite pole structures of a 

closed loop system, formed as a result of constant output feedback, can both be displayed 

in a particularly simple way in terms of a minimal factorisation of the open loop transfer 

function matrix. In section 3 the original results presented in chapter 4 were interpreted 

for systems in generalised form. This gave rise to a set of new necessary conditions for the. 

simultaneous placement of both the finite and infinite pole structures in generalised state 

feedback. 

In sections 4 and 5 the assignment of the infinite pole structure was specifically inves

tigated by exploiting the detailed structure of the Kronecker canonical form of a system. 

New necessary conditions on the multiplicity of the closed loop infinite pole structure were 

presented in section 4. These conditions were given in terms of the last position rows of 

B which indicates the existence of a close relationship between the placement of infinite 

poles and the notions of controllability in generalised state space systems. 

Results from sections 3 and 4 were combined in section 5 to produce stronger necessary 

conditions on the closed loop infinite pole structure. These new necessary conditions were 

shown to be sufficient so providing a complete characterisation of the closed loop infinite 

pole structure and a generalisation of the result due to Kucera and Zagalak (1988] for 

the case when all the poles are placed at infinite locations. A stronger set of necessary 

conditions for the simultaneous placement of the finite and infinite pole structures was 

presented in section 6 by supplementing the conditions given in sections 3 with subsequent 

results. Section 7 discussed the relationship between the results presented in this chapter 

and the paper recently published by Fahmy and O'Reilly (1989]. 

152 



Chapter 7. Further Discussion of the General Pole Placement Problem. 

§1. Introduction. 

The general pole placement problem is further discussed in this chapter. 

In section 2 generalised state space systems are specifically considered and the problem 

is approached by assigning the finite and infinite pole structures in two separate stages. 

This gives rise to necessary and sufficient conditions for both the finite and infinite closed 

loop pole structures but the result is incomplete since the conditions on the respective pole 

structures are not directly related. 

In section 3 a description of how a Laurent expansion about the point at infinity 

of a rational matrix can be used to investigate the pole structure under constant output 

feedback is presented. For certain systems this method provides a straightforward means 

of investigating the closed loop infinite pole structure and gives rise to a new condition for 

testing whether the closed loop system is proper. 

Section 4 considers a bilinear transformation approach to the problem. It was seen 

that employing a bilinear transformation enables both the finite and infinite pole structures 

of a rational matrix to be simultaneously considered. Taking this as a· basis, a possible 

minimal factorisation of a transformed matrix is investigated and the subsequent effect of 

constant output feedback on a transformed matrix is considered. The results provide a 

means of simultaneously investigating the finite and infinite closed loop pole structures. 

The theory is subsequently applied to the case of systems with transfer function matrices 

of the form [sE- A]-1 B. 

§2. Two stage approach. 

The general pole placement problem for both finite and infinite pole structures in 

generalised state space systems may be approached by first assigning the infinite pole 

structure followed, using a second feedback, by the finite pole structure. This approach is 

made possible by the previously stated result that pure state feedback does not alter the 

infinite pole structure (Pugh et al., 1988). A simpler proof of this result, more in spirit 

with the current work, is first presented. 

(7.2.1) Theorem. Consider the strongly controllable generalised state space system 

(6.3.1 ), (6.3.2) represented in Kronecker form. Then, if constant pure state feedback is 

applied around this system the infinite poles of the system remain unchanged. 
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Proof. Let 

G(s) =[sE- AJ-1 B (7.2.2) 

be the open loop transfer function matrix where sE - A is in Kronecker form. Then, by 

lemma (6.3.4), it follows that (7.2.2) is a left minimal factorisation of G( s) and so the open 

loop infinite pole structure is given by the zero structure at w = 0 of 

where 

and 

A( ) d• ( it i2 in] w = 1ag w ,w , ... ,w 

j = n1 + q~, n1 + q1 + qz, ..• , n1 + q1 + ... + qp 

otherwise. 

(7.2.3) can be written as 

where 

and 
i i = { 0 j = q1, q1 + qz, .•. , q1 + qz + ... + qp 

1 otherwise. 

(7.2.3) 

Since In, - A1 w has full rank at w = 0 it follows that the infinite pole structure of the 

system is given by the zero structure at w = 0 of A'(w)[!J- In 2 ]. 

Let pure state feedback of the form 

u(t) = -I<1x1(t) + v(t) 

be applied to the system. If the closed loop transfer function matrix is given by G x( s) 

then 

(7.2.4) 

Since (7.2.2) is a minimal factorisation of G(s) it follows that (7.2.4) is a minimal factori

sation of G g( s) and the closed loop infinite pole structure is given by the zero structure 

at w = 0 of 
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or 

[
In, -A1w+B1I<1w 0 ] 

A'(w)B2K1 A'(w) (~J- In,) . 
(7.2.5) 

At w = 0 (7.2.5) reduces to 

which indicates that the zero structure of (7.2.5) at w = 0 is given by 

Thus, the closed loop infinite pole structure is identical to the open loop infinite pole 

structure as required. 0 

The result of theorem (7.2.1) thus enables the pole placement to be approached in 

two steps. First, the infinite pole structure can be assigned with reference to the necessary 

and sufficient conditions of theorem (6.5.11) then, secondly, pure state feedback can be 

employed to assign the finite pole structure. The necessary and sufficient conditions for 

the finite pole placement are supplied by theorem (2.4.3) (due to Rosenbrock and Rowe, 

1970). Thus, if G K( s) is the closed loop transfer function matrix obtained from the first 

stage, then 

If the closed loop system in Kronecker form is represented by 

· [sir. -A1 0 
[sE- A+ BI< B] = ' , 

0 sJ -I· n, 

Then, applying pure state feedback around this system is equivalent to considering the 

regular state space system 

(7.2.6) 

with state feedback of the form 

u(t) = -L1 £1(t) + v(t). (7.2.7) 

The general pole placement problem for such systems was considered by Rosenbrock and 

Rowe [1970] and their result is given in theorem (2.4.3). The theorem is recalled here with 

special reference to the system (7.2.6) and feedback (7.2. 7). 

(7.2.8) Theorem (Rosenbrock and Rowe, 1970). Consider the state space system 

given by (7.2.6) and where sir.,- A1 and fh are relatively (left) prime. Let the minimal 
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indices of [si;, 1 - A1 B1] be given by A1 > ,\2 ~ ... ~ At. Let constant state feedback 

of the form (7 .2. 7) be applied to the system and let the non-unit invariant polynomials of 

si;,,- A1 + B1L1 be given by a;(s), i = 1,2, ... ,a= min(fh,£), where a;(s) I D<i-l(s), 
i = 2,3, ... ,a, and dega;(s) =a;, i = 1,2, ... ,a. Then, the a;, i = 1,2, ... ,a, must 

satisfy the necessary and sufficient conditions that 

" l 
'""'a·<'""',\· L.J •- L...J J 

with equality when k = 0. 

k = 0, 1, .. . , a - 1 

A partial solution to the general pole placement problem has therefore been found 

with the necessary and sufficient conditions given in terms of the ,\; 's and c; 's but this 

result is incomplete since the ,\;'s and c; 's are not directly related. A satisfactory solution 

to the problem would be achieved if the relationship between the c;'s and ,\;'s could be 

fully characterised. 
The above discussion lead to the following example which gives a further insight into 

this two stage approach to the problem. 

(7.2.9) Example. Consider a strongly controllable generalised state space system with 

[sE-A - B] in Kronecker form 

s 0 0 0 0 -1 0 

1 s 0 0 0 0 0 

[ sin,- A1 0 B1 l - 0 0 -1 s 0 0 0 
0 sJ- In, B2 

0 0 0 -1 s 0 0 

0 0 0 0 -1 0 1 

Let a right minimal factorisation of the open loop transfer function be 

82 0 

0 -1 

[ D( ) l [ D(•) l -s 0 

lV: :: JV1(s) - 1 0 

( ) JV2(s) 
0 82 

0 s 

0 1 -
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so that c1 = 2,c2 = 2. Note that [ D(s)] is a right minimal factorisation of the strictly 
N1(s) 

proper subsystem [sin, - Al]-1 B1 which therefore has controllability indices >.1 = 2, 

>-z = 0. 
Assume that this system has been formed as a result of employing generalised state 

feedback to assign the infinite pole structure b1 = 2, b2 = 0. If pure state feedback is applied 

around this system then theorem (7.2.8) requires the closed loop finite pole structure to 

satisfy the necessary conditions that 

which obviously implies that the pole structure a1 = 1, a2 = 1 cannot be assigned by 

employing constant pure state feedback. 

It is important to interpret these observations correctly. On the surface the exam

ple seems to illustrate that the necessary conditions of theorem (6.6.1) are not sufficient 

conditions since the pole structure b1 = 2, b2 = 0, a1 = 1, a2 = 1 satisfies the necessary 

conditions but cannot be assigned by adopting the above approach. However, this pole 

structure can be assigned to the closed loop system if constant generalised state feedback is 

applied directly. If [{ = [ k
1 

k
2 

ka k
4 

ks ] is the generalised state feedback matrix 
k6 k1 ks kg k10 

then the closed loop finite and infinite pole structures are given respectively by 

and 

where A(w) = diag [w2 ,w2]. 

kas
2
+k4s+ks] 

kss2 + kgs + k1o - 1 

ksw
2

+k4w+ka ] 

(l'lO -1)w2 + kgw + ka 

Choosing k1 = 0, k2 = -a2
, ka = 0, k4 - 1, ks - a, k6 - -1, k1 - a, ks - 0, 

kg = 0, k1o = 1 where a E ~ gives rise to 

D(s) + J( N(s) = 

which has Smith form 

[
s+a 0 ] 

0 s+a 
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and 

[

-a2w2 + 1 
[D(~)+KN(~)]A(w)= 2 aw +w 

which has Smith form 

Hence the closed loop system has a finite pole structure where a1 = 1, a2 = 1 and an 

infinite pole structure where b1 = 2, b2 = 0. 

The explanation as to why generalised state feedback is able to assign the desired 

pole structure in the above example is that under this feedback one of the finite poles is 

relocated at infinity whilst one of the infinite poles is placed at the desired finite location. 

Employing pure state feedback cannot achieve this since this feedback cannot influence 

the infinite poles. This therefore implies that when adopting the two stage approach there 

exists a possible degree of freedom in the first stage which can be exploited to broaden the 

choice of pole placement in the second stage. In other words the controllability indices of 

the strictly proper part of the system are dependent on the feedback matrix adopted in 

the first stage. The necessary and sufficient conditions obtained via the two stage method 

are still valid but care must be taken in practice in obtaining the controllability indices, 

.X;. 

The above observations reinforce the earlier remark that the necessary and sufficient 

conditions obtained via the two stage method are unsatisfactory and also leaves open the 

question of whether or not the necessary conditions of theorem (6.6.1) are also sufficient. 
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§3. Toeplitz matrix approach. 

In chapter 3 a method for obtaining the infinite pole and zero structure of a rational 

matrix was described in terms of the Laurent expansion about the point at infinity of the 

rational matrix. This method can be exploited to investigate the pole placement problems 

associated with applying constant output feedback around a system. Let G( s) be the open 

loop rational transfer function matrix and if G I<( s) is the closed loop transfer function 

matrix formed as a result of applying constant output feedback, K, around G(s) then 

Gg(s) = G(s)[I + K G(s)r1
• 

Expanding G I<( s) as a Laurent expansion about the point a.t infinity means that the infinite 

pole structure of G( s) can be investigated as described in chapter 3. 

It is difficult to make a general statement about the infinite pole structure that can 
' 

be assigned by using the Toeplitz matrix method but this approach could be effectively 

employed in individual cases to determine the effect of a certain feedback matrix or in 

determining the freedom in designing the infinite pole structure. For instance, it is known 

that almost all constant output feedback matrices give rise to a closed loop system having 

a proper transfer function matrix (Anderson and Scott, Hl76). This method can therefore 

be used to characterise the set of feed backs that do in fact give rise to a closed loop system 

with a non-proper transfer function matrix. 

The main difficulty with this approach lies in obtaining the Laurent expansion at 

infinity of the relevant transfer function matrix. This problem can be overcome to some 

extent in some special cases. Consider the case of a square n x n transfer function matrix 

which is of full rank. It follows (see Verghese, 1978) that the pole structure of such a 

matrix is isomorphic to the zero structure of its inverse. Thus, the pole structure of G I<( s) 
can be investigated by considering the zero structure of 

The separation of [(from G(s) means that K appears as a whole in just one term in 

the corresponding Laurent expansion about the point at infinity so making it easier to 

investigat~ the effect of K on the closed loop infinite pole structure. 

The investigation is further simplified if the n X n matrix G( s) is of the form 

G(s) =[sE- A]-1 B (7.3.1) 

where sE- A, B are relatively (left) prime and B is of full rank. Then 
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and 

which is the Laurent expansion about the point at infinity of a-1(s) +I<. A simple test 

to determine whether or not the resulting closed loop system is proper can now be stated 

as a result of this immediate characterisation of the Laurent expansion about the point at 

infinity. 

(7.3.2) Theorem. Let G(s) be as described by (7.3.1). Then, if constant generalised state 

feedback I< is applied to this system the resulting closed loop system will be proper if and 

only if 

rank [
B-1 E -B-1 A+]{] 

=2n-p 
0 B-1E 

or, alternatively, 

rank [: 
-A+BK] 

=2n-p 
E 

where p is the rank deficiency of E. 

Proof. The closed loop pole structure at infinity is isomorphic to the zero structure at 

infinity of G// ( s ). Employing the test for the absence of infinite zeros stated in theorem 

(3.4.1) leads to the following condition for the closed loop system to be proper, namely 

that 

[
B-1E -B-1A+l(] 

rank = 2n -p. 
0 B-1E 

Since 

and B is of full rank, this condition is equivalent to 

[
E -A+BK] 

rank 
0 

E = 2n - p 

as required. 0 

When E = I and hence p = 0 (i.e. system is in regular state space form) the rank 

conditions of theorem (7.3.2) are always satisfied. Thus, the closed loop system cannot 

possess any infinite poles. This is in agreement with the result given by Rosenbrock and 

Pugh [1974] which states that when constant output feedback is applied around a system 

with a strictly proper transfer function matrix then the transfer function matrix of the 

closed loop system will also be strictly proper. 
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For the case where the closed loop system does possess infinite poles the closed loop 

infinite pole structure can be investigated by considering the Toeplitz matrices associated 

with such systems which, for the system described in theorem (7.3.2), are given by the 

following. 

r~ 
0 

r~ 
I 

T~ 
2 

T~ 
3 

--------------------·------------------1 I I I I 

B -I E : -B-1 A+K: 0 0 I 0 : 
I I I 
•------T------T-----~-------~----• 

I I I I I 
B- E I -B- A+K I 0 0 I 

I I I I 

l------1-----J-------·------1 I I 

B -I E :.B-I A+K: 0 I 

·------·-------~----· 
I I -1 I 

B" E I -B A+K I 
I I 
I I .- -- -- --.- -- --. 
I B -I E 

The effect of the feedback matrix J( on the closed loop infinite pole structure can be 

easily investigated since J( is displayed in its complete form in the above structure. The 

approach can therefore be adopted to examine, for instance, the effect of a particular 

feedback matrix or to investigate, in a straightforward manner, the possible closed loop 

infinite pole structures that can be assigned for a particular system of this form. 
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§4. Bilinear transformation methods. 

It was seen in chapter 3 that it is possible to investigate the infinite frequency structure 

of a rational matrix by employing a bilinear transformation such that the infinite poles and 

zeros are relocated at finite locations in the resultant matrix and can then be investigated 

in the same way as the original finite poles and zeros. This approach can also be adopted in 

the study of the pole placement problems and a discussion of such an approach is presented 

in this section. 

Consider then X£ transfer function matrix G(s) with a right minimal factorisation 

of the form 

G(s) = N(s)D-1(s) 

[ 
D(s)] where 
N(s) 

has column degrees c;, i = 1, 2, ... , £. 

Let 
·c ) d. [ c, c, c, J " s = 1ag s , s , ... , s . 

Applying a bilinear transformation of the form 

s = ....£..._ 
p-et 

(7.4.1) 

(7.4.2) 

(7.4.3) 

transforms the points= oo top= a. The transformed transfer function matrix G (....£..._) p-et 

is a rational matrix and a right minimal factorisation for G (~) can be immediately 

deduced from a right minimal factorisation of G(s) as described by the following theorem. 

(7.4.4) Theorem. Consider the rational transfer function matrix G(s) factorised as in 

(7.4.1) and let A.(s) be defined as in (7.4.2). Then, the transformed rational matrix 

G (~) has a right minimal factorisation of the form 

Proof. Apply the transformation (7.4.3) to the minimal basis 

[ 
D (~) l = [ ~(p)] A (-1 ) 
N (~) N(p) p-et 

= [~(p)] A.-l(p-a) 
N(p) 

where D(p ), N(p) are polynomial matrices in p. 
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Then, 

so that 

D(p) = D (~) A(p- a) 

N(p) = N (~) A(p- a) 

= N (_!!_) n-1 (_!!_) 
p-a p-cx 

= G (_!!_). p-Ot 

I · h h [ D(p)] r · · 1 b · · t now remams to s ow t at _ 10rms a mm1ma asts, 1.e. 
N(p) 

. [D(p)] (i) rank _ = C for all p E C, 
N(p) 

[
D(p)] _ satisfies 
N(p) 

(ii) rank [~]he = C where [~]he denotes the high order coefficient matrix with respect 

[ 
D(p)] to the columns of _ . 
N(p) 

Take p = {3 where {3 =J a then 

[ ~(f3)] = [D (:6) l A(f3- a) 
N({J) N (li~"') 

(7.4.5) 

and since [ D(s)] is a minimal basis and A({J- a) has full rank it follows that (7.4.5) has 
N(s) . · 

full rank for all {3 =J a. When p =a 

[
D(a)] [D] 
N(a) = N he A(a) 

which will have full rank since a =J 0. Hence, condition (i) is satisfied. 

For condition (ii), it follows that 

[~Le-[~~~~] 
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and since forms a minimal basis then has full rank and, hence, _ 
[

D(s)] [D(1)] [[)] 
N(s) N(1) N he 

has full rank. Condition (ii) is thus satisfied to complete the proof. 0 

The result of theorem (7.4.4) leads to the following result concerning output feedback 

around G(s). 

(7.4.6) Theorem. Let a constant output feedback matrix K be applied to the trans

fer function matrix factorised as in (7.4.1), followed by a bilinear transformation of the 

form (7.4.3). Then, the resulting transfer function matrix is equivalent to the transfer 

function matrix obtained by first employing the identical bilinear transformation and then_ 

implementing the constant output feedback K. 

Proof. Applying constant output feedback J( around (7.4.1) results in the closed loop 

system having transfer function matrix 

GK(s) = N(s) [D(s) +I< N(s)]-1 

[
D(s)+I<N(s)] 

where 
N(s) 

forms a minimal basis. Next, employ the bilinear transformation 

s = ~· Then, by theorem (7.4.4) the matrix Gg (~)may be factorised as 

where 
D!(P) = [n (~) + K N (~)] A(p- a), 

Nl(P) = N (~) A(p- a). 

Conversely, first apply the bilinear transformation s - ~ to G(s) so that, again by 

theorem cl.4.4), G (~) may be factorised as 

where 

D2(p) = D (~) A(p- a), 

N2(p) = N (~) A(p- a). 
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Also, [D
2(p)] forms a minimal basis with column degrees c;, i = 1,2, ... ,£, so that 

N2(p) 

when constant output feedback ]( is employed around G (p!:-c;), the closed loop transfer 

function matrix Gf< (p!:-c;) is of the form 

Gf< (p!:-c;) = N2(p)[D2(p)+ !{ N2(p)]-1
• 

Substituting the expressions for D2(p) and N2(p) from (7.4.7) and (7.4.8) results in 

Gf< (p!:-c;) = N(p!:-c;) A(p - a~ D (p!:-c;) A(p - a) + ]( N(p!:-a) A(p - a)} -
1 

= N (p!:-c;) A(p - a) { [ D (p!:-c;) + ]( N (p!:-c;)] A(p - a)} -1 

Hence, G K (p!:-c;) = Gf< (p!:-c;), as required. 0 

The result of theorem (7.4.6) is of interest in determining the effect of output feedback 

on the poles of a system. The result enables the system to be first transformed to one 

where the poles are situated in more favourable locations before the effect of constant 

output feedback is investigated. In particular for a system with a non-proper transfer 

function matrix, i.e. a system that possesses infinite poles, a suitable transformation can 

be employed so that the resulting system is proper, i.e. all the poles are located at finite 

locations. The pole placement problem is therefore reduced to considering the influence of 

output feedback on finite poles only. 

This idea seemed appropriate for the general pole placement problem for generalised 

state space systems as described in chapter 6. Transforming the system into one with a 

proper transfer function matrix would mean that the result given by Kucera and Zagalak 

[1988] could then be applied and the general pole placement problem for both finite and 

infinite poles would be solved. Unfortunately this argument breaks down in this case since 

it might not be possible to realise the transformed system in the form [sE- A]-1 B as 

demonstrated by the following example. 

(7.4.9) Example. Let 

Applying the bilinear transformation (7.4.3) results in 

G (...L..) ;, [ 1 - p!:-c; ] . 
p-a 0 1 
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H G (~) can be realised in the form [pE- A)-1 B then 

[ 

a1 (p) 
and if pE-A = 

a3(p) 

[pE -A)G (~) = B 

[
b1 ~] B = where a;(p) 
b3 b4 

(7.4.10) 

E lR(p), the ring of 

polynomials in the real field, i = 1,2,3,4, and b; E lR, i = 1,2,3,4, then (7.4.10) becomes 

(7.4.11) 

From (7.4.11) 

and 

which gives 

a2(p) = b2 + b1·~· 

Now a2 (p) is a polynomial in p which implies b1 = 0, and hence a1(p) = 0. Similarly it 

follows that b3 = 0 and a3(p) = 0. Thus, pE-A is singular so that G (~) can not be 

realised in the form [pE- A)-1 B. 

The result due to Kucera and Zagalak [ibid.) only holds for systems with transfer 

function matrix of the form [sE- A)-1 B so that if the transfer function matrix of the 

transformed system cannot be realised in this manner it is not possible to solve the general 

pole placement problem in generalised state space systems using the above argument. De

spite this the above approach has highlighted certain properties which might be exploited 

in future investigations. For example, the reasoning could certainly be employed for the 

case of a general open loop transfer function matrix and where the general pole placement 

problem has been solved for the case where the closed loop transfer function matrix is 

proper. 

The previous discussion raises the interesting problem of finding the set of rational 

matrices, G(s), that can be realised in the form [sE- A)-1 B. The properties of such a 

realisation provide a partial solution to this problem, as described in the following theorem. 

(7.4.12) Theorem. Consider the strongly controllable system with n xe transfer function 

matrix 

G(s) =[sE- Ar1 B (7.4.13) 

where B has full rank. Then G(s) has no finite zeros. 
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Proof. Without loss of generality assume that the system is represented in Kronecker 

form. Then, since the system is strongly controllable, the factorisation (7.4.13) is a minimal 

factorisation. Hence, the finite zeros of G(s) are given by the finite zeros of B. Now B is 

a constant matrix which implies that it does not possess any finite zeros. Hence G(s) has 

no finite zeros to complete the proof. D 

The result of theorem (7.4.12) provides an explanation as to why it is not possible 

to realise certain transformed systems in the form [sE - A]-l B. If the original system 

possesses an infinite zero then this zero will be relocated at a finite position under the 

transformation. Thus, it follows from the result of theorem (7.4.12) that the transformed 

system can not be realised as [sE-A]-1 Bin such cases. This explains why the transformed 

system in example (7.4.9) could not be realised in the form [sE- A]-1 B. 

(7.4.14) Example. Consider again the matrix G(s) of example (7.4.9), i.e. 

[
1 -s] 

G(s) = 0 1 

with a left minimal factorisation of the form 

[1 s]-1 [1 0] 
G(s) = 0 1 0 1 

which indicates that G(s) possesses an infinite zero of degree 1. Under the transformation 

(7.4.3), G(s) becomes 

A right tninimal factorisation of G (~) is given by 

which indicates that G (~) has a zero at p =a, i.e. the infinite zero of G(s) has been 

relocated at p = a in the transformed matrix. Hence, by theorem (7.4.12), it is not possible 

to realise G (~) in the form [pE - At1 B which confirms the earlier observation. 
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§5. Conclusions. 

Three further approaches to the general pole placement problem have been discussed 

in this chapter. 

For generalised state space systems a two stage approach in which the infinite and finite 

pole structures are assigned by two separate feedbacks was described in section 2. This 

approach provided necessary and sufficient conditions for both the finite and infinite closed 

loop pole structures by suitable interpretation of the result given by Rosenbrock and Rowe 

(1970] for the general pole placement problem in the regular case and a result concerning 

the assignment of the infinite pole structure presented in chapter 6. The conditions on the 

finite and infinite pole structures are not directly related so the result does not provide 

a complete solution to the problem. The deficiencies of this approach were highlighted 

by means of a suitable example which demonstrated the importance of choosing the right 

combination of feedbacks. 

It was seen in chapter 3 how the infinite pole structure of a rational matrix can be 

investigated by using the Laurent expansion about the point at infinity of that matrix. For 

the problem of investigating the infinite pole structure of a closed loop system this method 

was seen in section 3 to be of more relevance for individual systems rather than providing 

a general solution. The approach provides a straightforward means of investigating the 

effect of a certain feedback on the infinite pole structure in certain systems. In the case 

of generalised state space systems with a non-singular transfer function matrix a new 

condition for testing whether the closed loop system is proper was presented. 

The infinite pole structure of a rational matrix can also be investigated by employing 

a bilinear transformation which relocates the infinite poles at finite locations. In section 

4 it was shown how a minimal factorisation of a transformed rational matrix can be ob

tained from a minimal factorisation of the original matrix. Further, the effect of constant 

output feedback around a transformed transfer function matrix was seen to be equivalent 

to first applying the constant feedback and then transforming the resulting transfer func

tion matrix. These results enable the finite and infinite pole structures to be investigated 

simultaneously. For systems with transfer function matrix G(s) = (sE- A]-1 B it was 

shown that the transformed system cannot always be realised in this form and hence the 

general pole placement for both finite and infinite poles cannot be solved by interpreting 

the result due to Kucera and Zagalal' (1988]. 
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Chapter 8. Conclusions. 

The poles of a system essentially determine the dynamic response of the system with 

the finite poles giving rise to exponential responses and the infinite poles giving rise to 

impulsive responses. 

The dynamic response of the system can be altered by relocating the poles using suit

able feedback. The pole placement problem is concerned with investigating the conditions 

under which these poles can be relocated. If in addition to the location the pole groupings 

are also considered then the problem is referred to as the general pole placement problem. 

Previous work on both the pole placement and general pole placement problem has mainly 

concentrated on open loop systems that only possess finite poles or where all the poles of 

the closed loop system are located at finite locations. The work presented in this thesis has 

been concerned with considering the cases where either or both of the open loop and closed 

loop systems may possess infinite poles as well as finite ones. In particular the specific case 

of the general pole placement problem using constant gain feedback in generalised state 

space systems has been investigated in this context. 

The problem was first approached by considering the general pole placement problem 

for the system formed by applying constant output feedback around an arbitrary transfer 

function matrix. Exploiting the properties associated with a minimal factorisation of a 

rational matrix enables both the finite and infinite pole structures to be investigated in a 

straightforward manner. This investigation gave rise to the results presented in chapter 

4 which provide new necessary conditions for the placement of the finite pole structure 

and the placement of the infinite pole structure but more importantly for the simultaneous 

placement of the two structures. The conditions were given in terms of the right minimal 

indices of the open loop transfer function matrix which are equivalent to the controllability 

indices of the system if the transfer function matrix is proper or strictly proper. The results 

therefore extend the work of Rosenbrock and Hayton [1978] who considered the general 

pole placement problem for strictly proper systems using dynamic feedback to include the 

case of non-proper systems under constant output feedback. 

The results presented in chapter 4 were subsequently interpreted for the general pole 

placement .problem using constant generalised state feedback in generalised state space sys

tems. The resulting necessary conditions for the simultaneous placement of both the finite 

and infinite pole structures provide a generalisation of the necessary conditions presented 

by Kucera and Zagalak [1988] who considered the case where all the closed loop poles are 

placed at finite locations. The infinite pole structure was then further investigated to first 

of all produce necessary conditions on the multiplicity of the closed loop poles. It was 

shown that the possible multiplicity is related to the number of linearly independent last 

position rows of B when the system is represented in Kronecker form. The result provides 

an analogy to the condition that the possible multiplicity of the finite poles is related to 
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the rank of B. The necessary conditions on the closed loop infinite pole structure were 

further strengthened by combining them with the earlier conditions on the simultaneous 

assignment of both the finite and infinite pole structures. The resulting conditions were 

shown to be also sufficient providing a complete characterisation of the achievable infinite 

pole structures for the closed loop system. The results neatly complement the recent work 

of Fahmy and O'Reilly [1989] who considered the assignment of all the closed loop poles 

at infinite locations. Indeed, when all the poles are placed at infinite locations the result 

presented in chapter 6 provides a direct analogy to the result due to Kucera and Zagalak 

[1988] for the case where all the poles are located at finite positions. The new necessary 

conditions on the infinite pole structure were also seen to give rise to stronger necessary 

conditions on the simultaneous placement of both finite and infinite pole structures. Ef

forts to prove that these condition are also sufficient have been unsuccessful but equally it 

has not been possible to find a suitable counter example. This indicates that these condi

tions could well be sufficient or close to being sufficient. This provides an obvious area for 

further research so that a necessary and sufficient condition for both the finite and infinite 

pole structures can be obtained. 

Certain necessary and sufficient conditions were in fact obtained for the above problem 

by considering a two stage approach. The approach involved employing two separate 

feedbacks in which the first feedback assigns the infinite structure followed at the second 

stage by the finite structure. The subsequent necessary and sufficient conditions are given 

in terms of the right minimal indices of the original system and the controllability indices 

of the system formed as a result of applying the feedback. The controllability indices are in 

fact dependent on the first choice of feedback so that the result is not satisfactory and the 

solution cannot be regarded as being complete. The example accompanying this approach 

though does throw light on the mechanism that lies behind the assignment of the poles 

using constant generalised state feedback. 

The other approaches to the general pole placement problem discussed here, although 

not providing complete solutions, do provide further insights into the problem and possible 

avenues for future work. The Toeplitz matrix approach is of value in considering the effect 

of certain feedbacks on individual systems. In this respect the method gave rise to a simple 

condition for a closed loop system to be proper. The bilinear transformation approach also 

provides an alternative means of investigating the problem. The results presented in this 

thesis can be used to extend existing results from the proper to the non-proper case. For 

generalised state space systems with transfer function matrices of the form [sE- AJ-1 B 

this does not follow and the reason for this failure was seen to highlight certain properties 

of such systems. 

Two areas which are crucial to the problems considered in this thesis namely the 

infinite frequency structure of a rational matrix and the notions of controllability associated 

170 



with generalised state space systems were also investigated. In chapter 3 the infinite 

frequency structure of a rational matrix was considered. The results presented in this 

chapter include a new condition to test for the absence of infinite zeros in a rational 

matrix. For the case of polynomial matrices this test was seen to be a simpler test than 

that presented by Hayton et al. [1988]. The infinite frequency structure of a polynomial 

matrix was studied in detail and the relationships between the degrees of the minors and 

the rank indices characterised. The accompanying results give rise to alternative means of 

calculating certain characteristics of the system. 

Chapter 5 discussed the notions of controllability associated with systems in gener

alised state space form and concluded that there exists two main notions. New algebraic 

conditions were presented for the two notions which together with previous results provide 

an analogy to the algebraic conditions associated with the notion of controllability in reg

ular state space systems presented by Rosenbrock [1970]. The polynomial system matrix 

approach was seen to provide a means of treating these results in a unified manner. The 

role of the non-dynamic variables was discussed and illustrated by introducing a new time 

domain definition. Finally new necessary conditions were presented for a system to be 

controllable under each notion. 
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Infinite-frequency structure and a certain matrix Laurent expansion 

A. C. PUGHt, E. R. L. JONESt, 0. DEMIANCZUKt and G. E. 
HAYTON~ 

A method for determining the Smith-McMillan form at infinity of a rational matrix 
is derived by considering the Laurent expansion at infinity of the matrix. This 
method is used to provide a new test for the absence of infinite zeros in a rational 
matrix and a new formula for calculating the highest degree among the largest 
minors of a polynomial matrix. 

1. Introduction 
Van Dooren et al. ( 1979) presented a method for determining the 

Smith-McMiltan form of a rational matrix from its Laurent expansion about a 
particular finite point s0 e C. Alternatively the technique may be employed to 
determine the finite pole and zero structure of that matrix. Van Dooren et al. indicated 
how the theory might be modified to produce the infinite pole and zero structure of a 
rational matrix. However, this was not carried through completely since the concept 
of Smith-McMillan form at infinity was not available. 

In this paper this simple modification is undertaken and a method is thereby 
developed that determines the infinite frequency structure of any rational matrix. The 
method is based on constructing the Smith-McMillan form at infinity (Vardulakis 
et al. 1982) of the given matrix from its Laurent expansion about the point at infinity. 
This technique proves to be fundamental to the study of the infinite-frequency 
structure of a rational matrix. In§§ 4, 5 and 6 three illustrations of this claim are 
presented. The first illustrates how the relationship between the decoupling invariants 
and the infinite zero structure of a decouplable system (Vardulakis 1980, Descusse and 
Dion 1982) can be established in a particularly simple fashion. The second illustration 
provides a new and computationally attractive test for the absence of infinite zeros, 
while the third illustration provides a new formula for calculating the highest degree 
occurring among the largest minors of a polynomial matrix. 

2. The Smith-McMillan form at infinity 
Vardulakis et al. (1982) introduced the concept of the Smith-McMillan form at 

infinity of a rational matrix. The main definitions are briefly presented here. In the 
following IR[s] denotes the ring of polynomials in the indeterminate s with coefficients 
in IR, while IR(s) denotes the associated field of rational functions. Let G(s) e IR(s)m " 1• 

Then we make the following definitions. 
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Definition 1 
G(s) will be called proper if 

lim G(s) 

exists. If the limit is zero then G(s) will be called strictly proper, while if this limit is 
non-zero G(s) will be called exactly proper. 

Let R.,(s) denote the ring of proper rational functions. 

Definition 2 
The m x m rational matrix W(s) e R~;m(s) is said to be biproper if and only if 
(i) lim W(s) = W., E Rmxm 

(ii) det w~ ;<oO 

where det ( ·) denotes the determinant of the indicated matrix. 

Definition 3 
The m xI rational matrices G1(s) and G2(s) are said to be equivalent at infinity if 

there exist biproper matrices W(s) e R~,'m(s), V(s) e R~~ 1 (s) such that 

W(s)G 1 (s) V(s) = G2 (s) 

Since W(s) and V(s) are biproper, it can be seen from Definition 2 that W(s) and 
V(s) possess neither poles nor zeros at infinity.lt therefore follows from this that G1 (s) 
and G

2 
(s) have an identical pole-zero structure at infinity. A canonical form for a 

rational matrix under the equivalence relation of Definition 3 is its Smith-McMillan 
form at infinity, S"'(G). 

Lemma 1 
Let G(s) e R(s)m ' 1 with rank G(s) = r. Then there exist biproper rational matrices 

W(s) and V(s) such that 

where 

·and 

W(s)G(s)V(s) = S"'(G) 

(I> m) 

(/=m) 

(I< m) 

Q(s) = diag (s", s", ... , s•', 0, 0, ... , 0} 

( 1) 

(2) 

with q1 ~ q2 ~ ••• ~ q, ~ 0 ~ q>+ 1 ~ ••• ~ q,. S"'(G) is called the Smith-McMillan 
form at infinity of G(s). 

Using the Smith-McMillan form at infinity of G(s), the infinite poles and zeros of 
G(s) may be defined as follows. 
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Definition 4 

If p., is the number of q1 in (2) with q1 > 0 then G(s) hasp., poles at infinity, each 
having degree q1• Similarly, if z., is the number of q1 in (2) with q, < 0 then G(s) has z., 
zeros at infinity, each having degree iq.J. 

This definition is equivalent to the earlier definitions of infinite poles and zeros and 
their degrees given by Verghese (1978) and Pugh and Ratcliffe (1979). 

With reference to the Smith-McMillan form at infinity of G(s), we make the 
following definition. 

Definition 5 

S"'(i) 0), {q' 
qi+ 

(i =integer) 

(i #integer) 

where i + denotes the upwards-rounded version of i. 
Since the q1 are ordered in a decreasing manner, it follows that S"'(i) is a 

decreasing staircase, as shown in Fig. I. S"'(i) has been defined in such a way that it 
contains all the infinite-frequency information concerning G(s) in a non-redundant 
way.-

···~--- r-1 r 

I 2 

·. . 
'LJ 

Figure I. 

3. The Laurent expansion and Toeplitz matrices of a rational matrix 
Van Dooren et al. (1979) used the Laurent expansion of G(s) about a finite point 

and the corresponding Toeplitz matrices to determine the Smith-McMillan form at 
s0 of G(s). In an analogous way the Smith-McMillan form at infinity of G(s) can be 
determined by considering the Laurent expansion at infinity of G(s) and the 
corresponding Toeplitz matrices. 
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Suppose that the Laurent expansion at infinity of G(s) is of the form 
I 

G(s)= L G,t 
'""-CO 

= G1s
1 + G,_,s~-• + .•. + G0 + G_,s-• + ... 

The Toeplitz matrices at infinity, T,"'( G), associated with G(s) are defined as 

G, G,_, G_, 

T,"'(G) = , i;;. -I (3) 

0 
G,_, 

G, 

The information concerning the rank of the T,"'(G) will determine the rank indices 
at infinity of G(s), which are defined in the following manner. 

Definition 6 
The rank indices at infinity of G(s) are defined as 

pi"(G)=rank[T,"'(G)]-rank[T,~ 1 (G)], i=-1,-1+1,... (4) 

where it is assumed that rank [T~_ 1 (G)] = 0. 

It is now shown that these rank indices at infinity are invariant under the 
transformation of equivalence at infinity given by Definition 3. 

Theorem 1 
Let G(s) and H(s) be two m x I rational matrices. If G(s) and H(s) are equivalent at 

infinity then they have the same rank indices at infinity. 

Proof 
Since G(s) and H(s) are equivalent at infinity, there exist biproper rational matrices 

M(s) and N(s) of dimensions m x m and I x I respectively such that 

M(s)G(s)N(s) = H(s) (5) 

Since M(s) and N(s) are biproper at infinity, they have no infinite poles or zeros, and 
so their Laurent expansions about the point at infinity take the forms 

M(s) =M0 +M _,s- 1 +M _2 s- 2 + .. . 
N(s)=N 0 +N_,s- 1 +N_ 2 s- 2 + .. . 

where M 0 = M(s =eo) and N0 = N(s =eo) are non-singular. Expand G(s) and H(s) in 
terms of their Laurent series at infinity: 

G(s) = I G1s
1 

,,.. -CO 

• 
H(s)= L H,s' 

J•-c:o 

182 . 



Infinite-frequency structure and matrix Laurent expansion 1797 

On substituting these expressions into (5) and comparing coefficients of s, the 
following relationship is obtained: 

... M_,_, G1 No ... N_,_, 

·. ·. 
·. 

No 

H, H_, 

= (6) 

H, 

where I= m in (g, h). Since M 0 and N 0 are non-singular, it follows from ( 6) that the 
Toeplitz matrices built on M(s) and N(s) are also non-singular. Therefore it follows 
from (5) that 

rank [1j"'(G)] =rank [1j"'(H)] 

as required. 0 

As a consequence of the above result, it follows that a rational matrix G(s) has the 
same rank indices at infinity as its Smith-McMillan form at infinity, S"'(G). Therefore 
the properties of the rank indices at infinity, Pi, of G(s) can be deduced from the 
Toeplitz matrices at infinity of S"'(G), i.e. 1j"'(S"'(G)). These Toeplitz matrices have a 
particularly simple structure because of the special form of S"'(G). Specifically, note 
that 

(i) all the rows of 1j"'(S"'(G)) are either zero or have one non-zero entry (a 'one'); 

(ii) the non-zero rows of 1j"'(S"'(G)) are linearly independent. 

From the second property it follows that 

Pi= rank [1j"'(S"'(G))]- rank [1j~~\ (S"'( G))] 

=rank [S,(G) S1_ 1(G) ... S_1(G)] (7) 

where S1( G) is the jth coefficient in the Laurent expansion at infinity of 
S"'(G). Further, it can be seen, using the above properties, 
that rank [S1( G) S1_ 1 (G) ... S _,(G)] is equal to the number of ones in 
[S1(G) S1_ 1(G) ... s_;(G)], which in turn equals the number of powers q1 greater 
tlian or equal to i inS"' (G). It should also be noted that, owing to the properties of the 
s1, rank [S1(G) s,_, (G) ... S _,(G)] will at some stage equal r, the normal rank of 
G(s), but rank [S1(G) S1_ 1(G) ... s_,(G)] cannot exceed r. 

Thus a direct relationship between the rank indices at infinity of G(s) and its 
Smith-McMillan form at infinity has been established, which makes it possible to 
deduce the Smith-McMillan form at infinity of G(s) from the rank differences of its 
Toeplitz matrices at infinity. To derive this relationship, define the rank index function 
at infinity R"'(i), associated with the rank indices at infinity p'{', as follows. 
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{

p'{' 
R"'(i) = ., 

Pi-

(i =integer) 

(i =non-integer) 

where i- is the downward-rounded version of i. 

Again, using (7), it is seen that R"'(i) is an increasing staircase, as shown in Fig. 2. 
The R"'(i) staircase is in fact a 90° rotation of the S"'(i) staircase defined earlier, and 
so the Smith-McMillan form at infinity of G(s) can be deduced directly from the 
R"'(i) staircase as follows. 

R ~(i) 
r _j _.. 

-1 -1•1 

Figure 2. 

Theorem 2 

If, in the notation of Lemma I, S"'(G) denotes the Smith-McMillan form of the 
rational matrix G(s), and pf denote the rank indices of G(s) constructed on the basis 
of its Laurent expansion about the point at infinity, then 

S"'(G) f; block diag {Q1(sl} (8) 

where Q,(s) is the (Pi"- P:'?-,) x (p'{'- p:'?- 1 ) matrix given by 

s-• 0 0 

0 s-• 0 
Q,(s) .. (9) 

0 0 s-i 

fori= -1, -1 + 1, ... ,and if pj"- P:'?- 1 = 0 then the corresponding matrix Q1(s) is not 
present in (8). 

In particular the pole/zero structure at infinity may then be deduced as follows. 
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Corollary I 
If, in Theorem 2, p'{' - p'(:_ 1 "# 0 then 

(i) G(s) will have p'{'- p'(:_ 1 poles at infinity of degree lil if i < 0; 

(ii) G(s) will have p'{'- p'(:_ 1 zeros at infinity of degree i ifi > 0. 

4. Decoupling 
A system is said to be decoupled when each output is controlled by a unique single 

input. A system can be decoupled by employing state feedback around the system. An 
algebraic condition for a system to be decoupled in this way was given by Falb ~nd 
Wolovich (1967). Consider the system 

x(t) = Ax(t) + Bu(t)} 
(10) 

y(t) = Cx(t) 

where x(t) is ann-vector of internal states, u(t) an m-vector of control inputs and y(t) 
an m-vector of outputs, and A, B and C are constant matrices of appropriate 
dimensions. Let the state feedback around (10) be given as 

u(t) = Fx(t) + Gw(t) (11) 

where F is a constant m x n matrix and G is a non-singular constant m x m matrix. 

Definition 8 

Let d., d2 , ••• , dm be given by 

d1=min {j:C1A'B#O,j=O, l, ... ,n-1} 

or 

d,=n -I if C,A'B= 0 for allj 

where C' is the ith row of C. Then the powers d1, i = I, ... , m, are known as the 
decoupling invariants of the system. 

Definition 9 
Define B* as 

B*= 

CmA'mB 

Then B* is known as the decoup/ability matrix of the system. 

The Falb and Wolovich (1967) result can be expressed as follows. 

Lemma 2 

(12) 

If B* is the decouplability matrix of the system (I 0) then there exists a pair of 
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matrices F and G for (11) that decouple the system by state feedback if and only if 
det B* ,PO. 

For decouplable systems the decoupling invariants have been shown to be closely 
related to the orders .of the infinite zeros of the system. Using the Toeplitz-matrix 
approach these results can be derived in a direct manner, as follows. 

Theorem 3 (Vardulakis 1980, Descusse and Dion 1982) 

The system represented by (10) is decouplable if and only if the associated transfer
function matrix G(s) has m infinite zeros each of order w, = d1 + 1, i = 1, 2, •.. ,m, where 
the d1 are the decoupling invariants of the system. 

Proof 

First assume that the system is decouplable. Then the decouplability matrix B* is 
non-singular. The transfer-function matrix G(s) is given by 

G(s) = C[sl- Ar' B 
which can be expanded as 

CB CAB CA 2 B 
G(s) =-+ - 2- + - 3- + ... 

s s s 
(13) 

Let the first non-zero matrix, CA1- 1 B say, in the series expansion of G(s) have k non
zero rows. Hence there are k decoupling invariants of value j- !. The first non-zero 
Toeplitz matrix 

1)"' = [CA1- 1 B] 

will therefore have rank k, which indicates the presence of k infinite zeros of order j. 
Now C1A

4' B gives the first non-zero row coefficient of row i in the series expansion 
(13). Thus the rank index at infinity of the Toeplitz matrices can only increase once a 
new row of the decouplability matrix B* appears in the Toeplitz matrix. Now, since 
the rows of B* are linearly independent and because of the special structure of the 
Toeplitz matrix, it follows that for every non-zero row of B* that corresponds to a 
decoupling invariant of value, say, 1- 1 there is an increase in the rank index at 
infinity of the Toeplitz matrix indicating an infinite zero of order I. 

Now, for the converse, assume that G(s) has m infinite zeros each of order w1 = 
d1 + 1, i = 1, 2, ... ,m. Then the change in the rank indices at infinity associated with a 
particular infinite zero will be caused by the introduction into the Toeplitz matrix T,"' 
of the first non-zero row coefficient C1A

4
' + 1 B for some row I from the expansion ( 13). 

From the structure of the Toeplitz matrices it follows that for T,"' to have the 
appropriate rank, C1A

4'+ 1 B must be linearly independent of the other first non-zero 
. row coefficient already present in T,"'. These rows constitute the decouplability 
matrix, which is therefore non-singular, indicating the system is decouplable as 
~~ 0 

The above theorem was originally presented in two separate parts. The necessity 
was established by Vardulakis (1980) using algebraic methods, while the sufficiency 
was proven by Descusse and Dion ( 1982) using geometric ideas. 

It can be seen that the Toeplitz-matrix approach provides an alternative proof that 
unifies the two separate results in a much clearer and simpler way._ 
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5. A test for the absence of infinite zeros in a rational matrix 
The investigation of the changes in the rank indices of the Toeplitz matrices of a 

rational matrix provides a method of determining the McMillan structure of the 
infinite poles and zeros of the matrix. The process will terminate, i.e. all the infinite 
poles and zeros will have been found, when 

Pk' =r= rank [G(s)] ( 14) 

for some k. This is because, as noted earlier, the rank difference of two successive 
Toeplitz matrices cannot exceed r, which means that if(14) holds then 

Pf+i= r, i= I, 2, ... ( 15) 

Thus in this case 

P:'+i-P~+l-t =0, i= 1,2, .. -. 

indicating that the search is complete. 
This observation leads to the following test for the absence of infinite zeros in a 

rational matrix. 

Theorem 4 
The m x I rational matrix G(s) of normal rank r will possess no infinite zeros if and 

only if 

rank [T0~(G)] =rank [T~1 (G)] + r (16) 

If G(s) is taken as a matrix polynomial P(s) whose highest power of s is n, i.e. 

P(s)=P.s"+P,_,s"- 1 + ... +P1s+P0 (17) 

where P0 ,P1 , ••• ,P. are constant matrices and P,7'0, then 

P. Pn-1 p_, p_, 

p_, 

T~1 (P) = ( 18) 

0 P,-t 

P. 

Now the rank of T:'1 (P) is equal to o(P(s)), the McMillan degree of P(s) (Pugh 1976). 
This leads to the following corollary to Theorem 4. 

Corollary I 
· The m x I polynomial matrix P(s) of normal rank r will possess no infinite zeros if 

and only if 

rank [T0~(P)] = o + r 

where {J is the McMillan degree of P(s). 

(19) 

Hayton et al. (1988) present a necessary and sufficient condition for the absence of 
infinite zeros in a polynomial matrix that involves investigating the degree of all the 
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r x r minors of P(s). The above condition therefore provides a simpler test for the 
absence of infinite zeros in a polynomial matrix, since it is generally easier to calculate 
the rank of T0"'(P) than all the r x r minors. In both tests the McMillan degree of P(s) 
must be calculated, although this again merely involves the computation of the rank 
of a constant matrix, i.e. T0"'(P). 

6. Toeplitz structure and the minors of a polynomial matrix 
For polynomial matrices Bosgra and Van der Weiden (1981) defined the infinite 

poles and zeros in terms of the highest degrees of minors of a certain order. 
Specifically, let P(s) be an m xI polynomial matrix of normal rank r, and let o, be the 
highest degree occurring among the i x i minors of P(s). Let {j denote the largest of the 
o., i = I, 2, ... , r; then (j is of course the McMillan degree of P(s). Let k

1 
(respectively 

k2 ) denote the smallest (respectively largest) order of minors for which 8
1 
= o. 

Definition I 0 

With the above notation, P(s) is said to have k 1 infinit~ poles with degrees 
01, Oz- 01, ... , 0- Ot,- h and r- k2 infinite zeros With degrees 0- Ok, + 1, 

8k1+1-0k1+2,···,0r-1-0r• 

This definition has been shown by Bosgra and Van derWeiden (1981) and Hayton 
et al. (1988) to be entirely consistent with the definition of infinite poles and zeros and 
their degrees given by Pugh and Ratcliffe (1979), and hence with that obtained in 
Definition 4 via the Smith-McMillan form at infinity. It therefore follows that there 
exists a relationship between the c5, as defined above and the rank indices Pi as defined 
in§ 3. Although this relationship is difficult to characterize in general, in two cases the 
characterization may be written down simply and exploited quite usefully. 

Theorem 5 

Let P(s) be an m x I polynomial matrix of normal rank r and let n denote 
the highest power of s occurring in elements of P(s). Suppose that the rank indices Pi 
(i = -n, -n +I, ... , -I, 0, I, ... , h) of P(s) are known, where his the smallest integer 
for which 

p;;'- P:'-d 0, Pi- P~1 = 0 Vi>h 

If {j denotes the McMillan degree of P(s) and c5, the highest degree amongst all r x r 
minors of P(s) then 

-I 

c5 = L Pi , ... _, (20) 

·-1 o,= L pf-hp:' 
l= -n 

(21) 

Proof 

Let 81 be the highest degree fori xi minors of P(s) and let k1 and k
2 

be as defined 
previously. Let p., (respectively z.,) denote the total number of poles (respectively 
zeros) at infinity counted according to multiplicity and degree. Now, if p., is computed 
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from the o1 then from Definition 10 

i.e. (22) 

p., = ;;,, =;; 

by definition of k1 • On the other hand, if p., is computed from the p'{' then from 
Corollary I of Theorem 2 

-1 

p.,= I fp'f'-pO:.,)Iil <P~.-.~o> 
i= -11 

= (p~.- p~.- 1 )n + (p~.+ 1 - P~.)(n- I)+ ... + (p~,- P~ 2 ) (23) 

i.e. 

Equations (22) and (23) together then yield (20) as required. 
Proceeding similarly with the computation of z., gives from the o, that 

Alternatively, from the p'{', 

• 
z(O = L (pi- Pi- di 

1•1 

= <P't:- PI:'>+ 2(p2- P't:> + ... + (h- IHPZ'-· - Ph'-2> + h(p:'- Ph'-·> 

Equating (24) and (25) gives ·-· ;;, - ;;,, = I P'f' -hp:' 
1•0 

However, by the definition of k 2 , 

ii,, = ;; 

and, in view of (20), the relationship (26) reduces to (21), as required. 

(24) 

(25) 

(26) 

0 

The relationships in the above theorem can be refined further if instead of the rank 
indices p'{' the actual ranks of the Toeplitz matrices formed from P(s) are used. 

Corollary I 
Let T,"'(P), i = - n, -n + I, ... , denote the successive Toeplitz matrices formed 

from P(s) viewed as a matrix polynomial. Then 

o =rank [T.:'1 (P)] (27) 

and 

o, = (h + l) rank [T,~ 1 (P)]- h rank [T,"'(P)] (28) 
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Proof 

This follows directly from (20) and (21) on noting that 

p;" =rank [T,"'(P)]- rank [T,:~ 1 (P)] 

0 

The result (27) is of course well known (Pugh 1976) and provides a simple 
computational scheme for evaluating the McMillan degree of a polynomial matrix. 
The result (28) is new and could be used computationally to evaluate the highest 
degree of r x r minors of P(s). There is, however, one difficulty surrounding the 
formula (28), and that lies in the requirement that h be known a priori. There is thus in 
(28) more than just a requirement that the ranks of two successive Toeplitz matrices 
be known. 

Corollary 2 

If P(s) is a square non-singular matrix then 

h-1 

deg [det P(s)] = L p;"- hpr (29) 
I= -n 

= (h + 1) rank [T,~ 1 (P)]- h rank [T,"'(P)] (30) 

Proof 

If P(s) is square then m= I, and since 
o, = deg [det P(s)] and the result follows. 

it is non-singular then r =m. Thus 
0 

The above result suggests a method by which the degree of a determinant may be 
computed without recourse to evaluation of the determinant itself. The need for such a 
method can be illustrated by considering the insertion of output feedback as 
represented by the constant matrix F around the open-loop transfer-function matrix 
G(s). If D(s) denotes the non-strictly-proper part of G(s) (i.e. the polynomial part of 
G(s)) then a necessary and sufficient condition for the closed loop system to be proper 
is (Pugh 1984) 

deg {det [I+ FD(s)]) = o(D(s)) (31) 

A result of the form of Corollary 2 is clearly required in order to evaluate the left-hand 
side of this relationship. Note that on the right-hand side of (31), o(D(s)) denotes the 
McMillan degree of D(s), and this may be evaluated quite readily from (27) of 
Corollary 1. 

7. Conclusions 
In this paper the theory described by Van Dooren et al. (1979) has been modified 

and extended to produce a method of determining the infinite pole and zero structure 
of a rational matrix from its Laurent expansion about the point at infinity. In fact, taken 
together with the numerical refinements suggested by Van Dooren et al. (1979), a neat 
and numerically efficient algorithm is obtained (Demianczuk et al. 1986). 

This particular method of identifying the infinite pole/zero structure is neat and 
quite powerful, as is evidenced in§ 4, where the relationship between the degrees of the 
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infinite zeros and the decoupling invariants of a decouplable system has been obtained 
in a most straightforward and much simpler way (Vardulakis 1980, Descusse and Dion 
1982). In § 5 the theory has been utilized to produce a new and computationally 
attractive test for the absence of infinite zeros in a rational matrix. For polynomial 
matrices this results in a test that is more easily implementable than that given 
previously (Pugh and Ratcliffe 1979, Hayton et al. 1988). 

Finally, in § 6 a new method for computing the highest degree of r x r minors of a 
polynomial matrix of normal rank r has been suggested by the Toeplitz-matrix 
approach. 
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INT. J. CONTROL, 1990, VOL. 51, NO. 4, 771-784 

Necessary conditions for the general pole placement problem via 
constant output feedback 

E. R. L. JONESt, A. C. PUGHt and G. E. HAYTONt 

A necessary condition is obtained for the simultaneous placement of a finite pole 
structure and an infinite pole structure of a linear system using constant output 
feedback. The result can be applied to the general pole placement problem in 
singular systems using constant generalized state feedback. 

1. Introduction 
The poles of a system play a fundamental role in determining the dynamical 

response of that system. How these poles can be relocated, by using suitable feedback, 
so that the dynamics of the system may be altered to ensure that the system responds 
in a particular desired manner has therefore long been of interest. The feedback under 
consideration in this paper is constant output feedback. 

The conventional pole-assignment problem is concerned with the allocation of 
each pole on an individual basis. A more general version of this, referred to as the 
general pole-assignment problem, seeks to assign the pole structure in a more com
plete way by assigning the invariant polynomial structure to the particular matrix 
that determines the pole structure of the system. 

In this paper the systems under consideration are assumed to be linear time
invariant with a transfer function that may be non-proper, i.e. they possess infinite 
poles. Thus the infinite pole structure must be assigned in addition to the finite pole 
·structure, thus adding a further dimension to the problem. A necessary condition is 
obtained which provides an explanation as to why certain pole structures cannot be 
assigned to certain systems. 

The above necessary condition can be extended to the general pole-assignment 
problem in singular systems using constant generalized state variable feedback, where 
it is assumed that the output is equal to the state of the system. A particular case of 
this problem was considered by Kucera and Zagalak (1988), who obtained necessary 
and sufficient conditions when the resulting closed-loop system is proper, i.e. possesses 
no infinite poles. The necessary conditions presented in this paper reduce to the 
necessary conditions obtained by Kucera and Zagalak in the case where the closed
loop system is proper. 

2. Preliminaries 
· Consider a system with an m x I rational transfer function matrix G(s). Let G(s) 

be factorised as 

G(s) = N 1(s)D1 1(s) (I) 

Received 2 August 1989. 
t Department of Mathematical Sciences, University of Technology, Loughborough, 

Leicestershire, LEl I 3UB, U.K. 
~Department of Electronic Engineering, Hull University, Hull HU6 7RX, U.K. 

0020-7179i90 $3.00 @ 1990 Taylor & Francis Ltd. 
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where 

(2) 

cnnstitutes a minimal basis (Fomey 1975). Let (I) be referred to as a right minimal 
factorization of G(s). This minimal factorization provides a straightforward simulta
neous characterization of the finite and infinite pole and zero structure of G(s). In 
particular, the finite and infinite pole structure of G(s) is given by the following lemma. 

Lemma 1 

Let the degree of the ith column of (2) be denoted by c1 (i =I, 2, ... , I) and define 

A1(s),; diag [s'' s'' ... s'•] (3) 

Then the finite pole structure of G(s) corresponds to the finite zero structure of D
1
(s) 

and the infinite pole structure of G(s) corresponds to the zero structure at w = 0 of 
the polyiwmial matrix 

Proof 
For the proof see Pugh and Ratcliffe (1980) 

Let G<fs) denote the transfer function matrix of the system formed when constant 
output feedback is applied to the original system as shown in Fig. I. Then GL(s) is 
given by 

GL(s) = G(s)[/ + LG(sJr 1 

where it is assumed that I/+ LG(s)l # 0. The right minimal factorization of GL(s) is 
closely related to the right minimal factorization of G(s), as is shown by the following 
lemma. 

• c: : , . 
Figure I. 

Lemma 2 

If GL(s) is the resulting closed-loop transfer function matrix obtained by applying 
a constant output feedback L around G(s), then 

GLfs)=N1(s)[D 1(s)+LN 1(sJr 1 (4) 

is a right minimal factorization of GL(s). Further, the column degrees of 

[
D1(s)+LN1(s)J 

N,(s) 
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are identical to the column degrees of 

[
D,(s)J 

N,(s) 

Proof 
For the proof see Pugh and Ratcliffe (1980) 

A straightforward right minimal factorization of GL(s) therefore exists and, using 
the result of Lemma I, the finite and infinite pole structure of the closed-loop system 
under constant output feedback can be investigated simultaneously. This is under
taken in the next section. 

In a similar way, for a left minimal factorization of G(s) 

G(s) = Di'(s)N 2(s) (5) 

where [D2(s) N 2(s)] forms a minimal basis with row degrees r1(i = I, 2, ... , m). Let 
A2(s) £!. diag [s'• s'' ... s'm]. Analogous results of Lemmas I and 2, with appropri
ate modifictions then follow for this factorization. The matrices D1(s) and D2(s) are 
extended unimodular equivalent (Pugh and Shelton 1978) so that their non-unit 
invariant polynomials are identical. Similarly D1(1/w)A 1(w) and A2(w)D2(1/w) are also 
extended unimodular equivalent. It therefore follows that the pole structure of G(s) 
can be deduced by considering either factorization. 

3. Necessary conditions for general pole-assignment problem by output feedback 
Consider the m xI transfer function matrix G(s) factorized as in (1). From the 

results in the previous section, the finite and infinite pole structure of the closed-loop 
system, factorized as in (4), is given by the zero structure of D 1(s) + LN 1 (s) and the zero 
structure at w = 0 of [D,(I/w) + LN1(1/w)]A1(w), respectively. The zero structures of 

. D1(s) + LN 1(s) and [D1(1/w) + LN1(1/w)]A 1(w) in turn are given by their respective 
sets of invariant polynomials. Let the invariant polynomials of D1(s) + LN 1(s) be a 1(s), 
az(s), •.. , a1(s), where 

a1(s)Ja,_ 1(s), i=2,3, ... ,1 (6) 

and 

deg a1(s) =a,, i =I, 2, ... ,1 (7) 

Let the invariant polynomials of [D,(I/w) + LN 1(1/w)]A 1(w) be p,(w), fi 2(w)., •.• , p,(w) 
where 

p,(w)Jfi1_ 1 (w), i = 2, 3, ... ,I (8) 

The zero structure at w=O of [D 1(1/w)+LN1(1/w)]A1(w) is given by factors of the 
form w•• of p,(w)(b1 > 0), i =I, 2, ... ,I. Hence 

b,,;; deg (p,(w)), i =I, 2, ... ,1 (9) 

It therefore follows from Lemma I that the finite and infinite pole structure of the 
closed-loop transfer function matrix can be described in terms of the a,s and b,s. 
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Theorem 1 
For there to exist a constant matrix L such that D1(s)+LN1(s) has invariant 

polynomials e< 1(s), e<2 (s), •.• , e<1(s) it is necessary that 
J I 

L a,.;; L c,, k=O, 1, ... ,1-1 
f=k+l i=k+l 

Proof 
By definition e<k+.(s)a .. 2 (s) ... a1(s) is the greatest common divisor of all 

(1-k) x (1-k) minors in D1(s) + LN1(s) fork= 0, 1, ... , 1-1. Let e., i = 1, 2, ... ,I be the 
column degrees of D 1(s) + LN 1(s) taken to correspond with the c,. Thus e1 .:; c1, 

i=l, ... ,l. 
It follows that 

I I 

deg [a .. 1(s)e< .. 1 (s) ••. e<1(s)] <:; L e, <:; L c,, k = 0, 1, ... ,I 
i=k+l f=k+l 

i.e. 
I I 

L a,.;; L c., 
f:::k+l i=k+l 

k=O,l, ... ,l-1 

as required. 0 

A similar necessary condition for the degrees of the infinite zeros can be given. 

Theorem 2 
Let p,(w), P2 (w), ..•. , p,(w) be monic polynomials with real coefficients that satisfy 

(7) and let 

p,(w) = w••pi(w), i = 1, 2, ... ,I (10) 

where Pi(O) ;00, and take A1(w) to be diag [w'' w'' ... w'']. Then, for there to exist 
a constant matrix L such that [D 1(1/w) + LN 1(1/w)]A 1(w) has invariant polynomials 
p,(w), P2(w), ... , p,(w), it is necessary that 

I I 

L b,.;; L c., k=O, 1, ... ,1-1 
i=k+l i=k+.l 

Proof 
By definition p .. ,(w)P .. 1 (w) ... p,(w) is the greatest common divisor of all 

(1-k) x (1-k) minors in [D 1(1/w) + LN 1(1/w)]A 1(w) for k = 0, I, ... , 1- 1. Let fi, i = 
I, 2, ... ,I be the column degrees of [D 1(1/w) + LN1(1/w)]A 1(w) taken to correspond 
with the c,, so thatfi <:;c., i = 1, ... ,I. 

Then it follows that 
I I 

deg[p •• ,(w)P •• 1 (w) ... p,(w)]<;; L fi<;; L c,, i=O,I, ... ,I-1 
l=k+l l=k+l 

i.e. 
I I 

L deg (P1(w)).;; L c., k = 0, 1, ... , 1- 1 
i=k.+l f•kTl 
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and from (9) and (10) 

k=O, I, ... , 1-1 

as required. 0 

The results of Theorems I and 2 can be most conveniently illustrated by means 
of a step function. Define · 

where k_ is the downward rounded version of j. 
Pictorially it can be seen that C, is a decreasing staircase, as illustrated by Fig. 2. 

It therefore follows, from Theorems I and 2, that the a, b, must be chosen such that 
the staircases corresponding to D-k+ 1 a., Il·•• 1 b., k = 0, I, ... , 1- I lie below the 
staircase given by Fig. 2. Note that if the c, had been ordered in any other way the 
corresponding staircase would either lie on or above the staircase pictured above. 
Thus, the ordering c1 ;;> c2 ;;> ••• ;;> c1 can be regarded as a minimal ordering in the 
sense that the associated staircase provides the lowest, of this type, of upper bound 
for the I a,, Ib,. 

The theorems given above present a necessary condition for the placement of a 
finite pole structure and a separate necessary condition for the placement of an 
infinite pole structure. The main theorem of this paper presents a necessary condition 
for the simultaneous placement of a given finite pole structure and a given infinite 
pole structure. This will enable an explanation to be given as to why certain pole 
structures cannot be assigned to certain systems. 

Theorem 3 

c + c + .•. + c 
I 2 t 

c
2

+ ... + Cl 

(': + c 
~ ~-1 

c 
~ 

··•······•· .... 

1 2 .t-2 .t-1 .t 

Figure 2. 

For there to exist a constant matrix L such that D1(s) + LN 1 (s) has invariant 
polynomials a 1 (s), a 2(s), ... , a1(s) and [D1(1/w) + LN 1(1/w)]A 1(w) to have invariant 
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polynomials p,(w), P2 (w), •.. , p,(w) it is necessary that 

I I I 

L a,+ L b,;;; L c., k=O,I, ... ,/-1 
l•k+1 i=k+1 l=k+1 

(11) 

with equality holding when k = 0. 

Proof 

By definition e<1(s)e<1_ 1 (s) ... "'•->+• (s) is the greatest common divisor of all k x k 
minors in D1(s)+LN 1(s). Let 

Then 

I 

and p,A L c, k=1,2, ... ,1 
l=l-k+l 

e<1(s)e<1_ 1 (s) ... e<1_, .. (s) = t,.s•• + •.. + t 1s + t0 

where v, .; p, and t,. "# 0. 
Now each k x k minor of D 1(1/w) + LN 1(1/w) will be of the form 

e<;(1/w)e<,_,(1/w) ... "'•->+ 1(1/w)/(1/w) (12) 

for some po1ynomia1f(s). Further, among all k x k minors the corresponding polyno
mia1sf(s) are coprime for finite s. Thus, all k x k minors of [D 1(1/w) + LN 1(1/w)]A 1(w) 
will be of the form 

e<1(1/w)a1_ 1 (1/w) .•. C<;->+ 1(1/w)f(l/w)w" (13) 

where~~ p,. 
The greatest common divisor of all k x k minors in [D1(1/w) + LN 1(1/w)]A,(w) 

will therefore be 

where 

(14) 

i.e. 

[t,.(l/w)'•+ ... +t1(1/w)+t0]w••=r,.w'•-·•+ ... +t,w••-• +t0w•• 

= wPi.-"k[t11 .. + ... + t1 wu .. -l +tow" .. ] 

where Jlt ~ v, since e<1(1/w)a1_ 1(1/w) ... "'•->+ 1(1/w)w'; must be a polynomial. It there
fore follows by definition that 

b1+b1_ 1 + ... +b,_ .. , =p•-v• 
i.e. 

I I 

I b,+ I a,=p• 
, .. 1-k+l l•l-k+1 

Hence, from (14) 

I I I 

L b;+ L a,;;; L c1, k=0,1, ... ,1 
l:o~k+l l=k+l fz.\+1 
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When k,;, 1,/(1/w) =I in (12) and~= Jl1 in (13). This means that the greatest common 
divisor of all/ x I minors in [D1(1/w) + LN 1(1/w)] is of the form 

w••-••ct>(w) 

where ci>(w) has no factors of the form w", cc> 0. Hence 
I I I 

L: b1 + L: a,= L: c1 
l=l (:at i=l 

as required. 0 

As was noted in § 2, the pole structure of G(s) could as easily be investigated by 
considering a left minimal factorization of G(s) as represented by (5). Thus, combining 
the necessary condition from each factorization leads to a stronger necessary condi
tion. Let t 1 = min (m,/), t2 = max (m, I) and let cc1(s), cc(s), ... , a,,(s) be monic polyno
mials such that 

a1(s)la1• 1(s), i = 2, 3, ... , t 1 

deg a1(s) =a, i = I, 2, ... , t 

Also, let f3 1(w), f32(w), •.. , fJ,,(w) be monic polynomials such that 

/31(w)l/31(w), i = 2, 3, ... , t 1 

and where 

f31(w) = w'•fJi(w), i =I, 2, ... , t 1 

with p;(O) # 0. Let A1 (s) = diag [s'' s'' ... s''] and A2(s) = diag [s'' s'' ... 
s'~]. 

Combining the necessary condition obtained by using a right minimal factoriza
tion with the necessary condition obtained by using the left minimal factorization 
results in a much tighter necessary condition. 

Theorem 4 
Consider an m x I rational transfer function described above and let N 1 (s), D 1 (s), 

N 2 (s), D2 (s), c, r, /31(s), a1(s), a,. b1, t" A 1(s), A2 (s) also be defined as above. Then, for 
there to exist a constant matrix L such that the non-unit invariant polynomials of 
D1(s) + LN 1 (s) and D2 (s) + N 2 (s)L are 0< 1 (s), a2 (s), •.. , a,,(s) and the non-unit invariant 
polynomials of [D1(1/w) + LN 1(1/w)]A 1(w) and A2(w)[D2 (1/w)[D2 (1/w) + N 2 (1/w)L] 
are f3 1(w), f32 (w), ... , fJ,,(w), it is necessary that 

(15) 

where 

L d1=min L c, L r1 
11 [ I m J 

l=k+l l=k.+1 l•k+l 

and with equality holding when k = 0 in (15). 

The necessary condition of Theorem 4 can be described in a more straightforward 
fashion using the staircase description. Without loss of generality let m ;;.I and let 
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the staircase function corresponding to each minimal factorization be constructed a 
similar way to that shown previously. Combining both staircases on the same diagram 
results in Fig. 3. Note that the two staircases might not intersect at all or might 
intersect at more than one point. The necessary condition of Theorem 4 then states 
that the closed-loop pole structure must be such that the staircase corresponding to 
Ll'->+ 1 (a,+ b1), k = 0, I, ... , t 1 - I, lies in the shaded area. Theorem 4 obviously pro
vides a stronger necessary condition than that obtained by considering each factoriza
tion separately. This is demonstrated by the following example. 

Example 1 
Let 

5 I o -,; 
I -; 

o I > 0 

" 

0 
s' 

0 \.:::> -
~ss 

[

Ifs 

G(s) = ~ lfs3 

0 

' \V -
s' 1 

l 

0 ' 0 

ol! Di 1(s)N 2(s) 

where N 1(s)D1 1(s) is a right minimal factorization and Di 1(s)N2(s) is a left minimal 
factorization. It can therefore be seen that 

c3 = 2, c2 = 3, c1 = 6 

r3 = 1, r 2 = 5, r 1 = 5 

The necessary condition obtained by considering the right factorization requires a, 
and b1 to satisfy 

a3 + a2 + b3 + b2 ,;;; 5 
a3 + b3 ,;;;2l 

a3 + a2 + a 1 + b3 + b2 + b1 = 11 

' 

-- staircase from right factorization 
·- - --·staircase from left factorization 

... --- 'l 
0 
0 
0 

1----· 
0 
0 
0 

Figure 3. 
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while the necessary condition obtained by considering the left factorization requires 
a1 and b, to satisfy 

a 3 + b3 .;;1 l 
a 3 + a2 + b3 + b2 .;;; 6 

a 3 + a2 +a, + b3 + b2 + b1 = 11 

(17) 

Let 

L=[:: :: ::] 
l1 18 19 

and A1(w) = diag [w2 w3 w6
), A2(w) = diag [w w5 w5

). 

First, consider the right factorization whose necessary condition requires a3 and 
b3 to satisfy 

The closed-loop infinite pole structure is given by the zero structure at w = 0 of 

[

11w2+w+l2 

[D1(1/w) + LN1(1/w)]A 1(w) = l4 w2 + 15 

17w2 + 18 

12w
3 

l,w
6
-l,w-1] 

l,w3 + 1 r.w• -l.w 

lsw3 
/9w6 + (1 + 17)w 

(18) 

It follows from element (2, 2) of (18), that w cannot be a common factor of all I x I 
minors of (18), i.e. b3 =0. Now the finite pole structure of the closed-loop system is 
given by the invariant polynomials of 

[ 

l.s2+s+l, 12 

D1(s) + LN 1(s) = l5s2 + 14 s3 + 15 

18s2 + /7 18 

-s• -11s
5 + 13 ] 

-l.s' +I. 

(I -17)s5+ 19 

(19) 

If the greatest common divisor of I x I minors is to have degree greater than zero, 
then in particular 12 = 0. In that event it follows from the (I, I) element that the 
highest possible degree for this divisor is I. Hence a 3 .;;; I. Thus, by investigating the 
closed-loop pole structure via the right minimal factorization it is seen that a3 and 
b, must satisfy the necessary condition 

a3 + b3 .;;I 

which confirms the necessary condition obtained by considering the left factorization. 
Similarly, consider the pole structure obtained by using the left minimal factoriza

tion, which requires a3 , a2 , b3 , b2 to satisfy the necessary condition 

(20) 

The infinite pole structure of the closed-loop system is given by the zero structure at 
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w=O of 

A2(w)[D,{I/w) + N 2(1/w)L] 

[ 

11w+ I 

= w514 +wl1 +17 

11w' 

12w 

15w'+w2+12w+ls 

lsw' 

1
3

w l l.w' + 13w +I. 

19 w+ I 

(21) 

The 2 x 2 minor formed by deleting the second row and second column is given by 

1

1 +1 1w 13w I 

l7w5 I+ l9w5 
=I+ 11w + 19w5 + ( -1317 + 1119)w6 

which is not divisible by w regardless of the choice of 1,. 11 , 11 or 19 • Hence b3 + b2 
= 0. The finite pole structure of the closed-loop system is given by the invariant 
polynomials of 

[ 

l2s
4 

+ s +I, l2 13 l 
D2(s) + N 2(s)L = 11s' + 11s4 + 14 I ss'+ 12s4 + s3 +I, 19s' + l3s4 + 16 (22) 

11 Is s' + 19 

Suppose that there exists an L such that a3 + a2 > 5, then all non-zero 2 x 2 minors 
of (22) must have at least degree 6. Consider the minor found by deleting the third 
column and second row of (22), i.e. 

1

12s
4 

+ s + 11 121 

17 Is 
= 12 1ss4 + 18s + 111s -17 12 

For the above assumption to hold it follows that either 12 =Is= 0 or 11 =Is= 0. If 
/1 = Is = 0, consider the minor formed by deleting the first column and second row, 
i.e. 

1

12 13 I 

0 s' + 19 

= l2s' + l2l• 

which implies /2 = 0 for the above assumption to hold. Thus it is necessary that 
12 = 0 and 18 = 0. Now the minor found by deleting the third column and third row 
of (2) is given by 

I s +I, 0 I 
14 17s' + 11s4 s3 +I, 

= s4 + 11s3 + 15s + 1115 

. which shows that it is not possible to find an L such that all 2 x 2 minors of (22) 
have at least degree 6. Hence the original assumption is false and it is deduced that 
a3 + a2 .;; 5. It then follows tl)at 

a3 + a2 + b3 + b2.;; 5 

which confirms the necessary condition obtained from the left factorization. 
Using the staircase description of Fig. 4, it is seen that the desired closed-loop 

system pole structure must give rise to a staircase function which must lie within the 
shaded area. 

201. 



Pole placement problem with constant feedback 781 

-- right factorization 
· · · · · · left factorization 

Figure 4. 

The above example also demonstrates that the necessary conditions of Theorem 4 
are not sufficient conditions. In particular, the pole structure b3 =I, b2 = I, b1 = I, 
a3 = 0, a2 = 3, a1 = 5 satisfies the conditions (14) of Theorem 4, but it was seen that 
b3 must satisfy b3 = 0 in the above example. 

4. General pole assignment in singular systems using generalized state feedback 
Consider the singular system represented by 

Ex(t) = Ax(t) + Bu(t) (23) 

where x(t) ER" is the generalized state of the system, u(t) E R1 is the input vector and 
n;;. I. E, A, B are constant matrices of the appropriate dimensions with E assumed 
singular of rank r, and I sE- A I "- 0. It is assumed that the system is strongly control
lable, as defined by Verghese et al. (1981) and that the output equation is given by 

y(t) = x(t) (24) 

Thus, when constant generalized state feedback of the form 

u(t) = - Lx(t) + v(t) 

is applied to (23) this is equivalent to output feedback of the form 

u(t) = - Ly(t) + v(t) 

Therefore the results of the previous section hold for the general pole-assignment 
problem using generalized state feedback in singular systems 'of the form (23) and 
(24). 

· For singular systems the strongest necessary conditions are always obtained by 
considering the right minimal factorization associated with the transfer function mat
rix because the staircase associated with the right minimal factorization always lies 
on or below the staircase associated with the left factorization. This is a direct con
sequence of the following lemma. 

Lemma 3 
Let G(s) be the transfer function matrix of the system described by (23). Then the 
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row degrees r., i = I, 2, ... , n associated with a left minimal factorization of G(s) are 

T1 = J, Tz = 1, ... ,T11 -q= 1, t 11 -q+1 =0, '"t T11 = 0 

where q is the rank deficiency of E. 

Proof 

Without loss of generality the pencil sE- A can be taken to be in Kronecker 
form, i.e. 

[
si,, -A1 0 J sE-A= . 

0 1,-.,-sJ 

where n1 = deglsE- A I and J is in Jordan canonical form with all entries zero except 
perhaps for entries of I in certain positions in the first superdiagonal. Since the 
system is assumed to be controllable it follows that [sE- A] -I B forms a left minimal 
factorization. From the special form of [sE- A] it follows that the row degrees of 
[sE- A B] are either 0 or I with the number of rows with zero degrees equal to 
the rank deficiency of E. Therefore reordering these row degrees gives the resuls. 

0 

From Lemma 3 it follows that the staircase associated with this left factorization 
is as in Fig. 5. 

For the right factorization the c,'s must satisfy 
I 

I c,=n-.q 
i=l 

If the staircase associated with the right factorization intersects the staircase associ
ated with the left factorization at some point, then c1 = 0 for some i. But since the c,s 
are in decreasing order this means that the two staircases can only intersect when 
k = n- q, confirming the claim that the staircase associated with the right minimal 
factorization lies on or below the staircase associated with the left factorization. For 
singular systems Theorem 4 therefore reduces to the following corollary. 

2 n~-1 n.q 

Figure 5. 

Corollary I 

Let G(s) be the transfer function matrix associated with the strongly controllable 
system represented by (23), i.e. G(s) =[sE- A] -I B, and let G(s) have a right minimal 
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factorization. 

G(s) = N 1(s)Dj 1(s) 

where the column degrees of 

[
D(s)J 
N(s) 

are ordered c1 ;;. c2 ;;. ... ;;. c1• Let a., p., a, b1 and A1(s) be as defined previously. 
Then, for there to exist a constant matrix L such that the invariant polynomials of 
D1(s) + LN 1(s) are a1(s), a2(s), ... ,a1(s) and the invariant polynomials of [D1(1/w) 
+ LN 1(1/w)]A 1(w) are p,(w), P2(w), ... , p.(w), it is necessary that 

I I I 

I a,+ I b,:s;; I c., k=O,I, ... ,l-1 
isk+l i=k+l i=.k+l 

(25) 

with equality holding when k = 0. 

The necessary condition (25) in Corollary I is, also, not a sufficient condition, as 
is demonstrated by the following example. 

Example 2 

Let 

1/sl 
-I 

1/s 

whose right and left minimal factorizations are, respectively 

N,(•)DC'I•)• [•~ > ~: l [: :r 
D;'(>)N,(•)•[: :· :n: :J 

and where the left minimal factorization is of the form [sE-Ar 1 B. It therefore 
follows that the necessary conditions are obtained from the column degrees of the 
right minimal factorization, i.e. c1 = I, c2 = I. Hence a1 and b1 must satisfy the neces
sary conditions 

Let 

[
1, 

L= 
l. 

a2 + b2 ,;; I} 
a2 + a1 + b2 + b1 = 2 

12 13
] and A1(w) = diag [w w] 

l, l. 
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Consider a pole structure with two poles at infinity, both of order one, and no 
finite poles, i.e. 

b2 = 1, b, = 1, a2 = 0, a1 = 0 (27) 

This pole structure satisfies the conditions (25). Now the closed-loop pole structure 
at infinity is given by the zero structure at w = 0 of · 

[
12 + w(l +I, -12 ) -l2 + w(/3 -11) J 

[01(1/w) + LN1(1/w)]A 1(w) = Is+ w(/
4 
-I,) (l-Is)+ w(/

6 
-I.) (28) 

For the above pole structure (27) to be assigned it is necessary that all I x I minors 
of (28) possess a common factor w, which in the case of the (1,2) and (2,2) elements 
implies that 

15 =0 and 1-/5 =0 

indicating a clear contradiction. Thus it is not possible to assign the pole structure 
(27) to the closed-loop system, which shows that condition (25) of Corollary I is not 
a sufficient one. · · 

5. Conclusions 
The properties of a minimal factorization of a transfer function matrix are ex

ploited to obtain necesary conditions for the placement of the finite pole structure 
and the infinite pole structure simultaneously using constant output feedback. A neat 
way of presenting this result is given by the staircase idea. This method indicates 
clearly the restriction imposed on the closed-loop pole structure but gives no indica
tion as to the least upper bound. 

The result also holds for the general pole-placement problem in singular systems 
using constant generalized state feedback. This problem has been considered by 
Kucera and Zagalak (1988). They produced necessary and sufficient conditions for 
the case where the resulting closed-loop system is proper, i.e. all the closed-loop poles 
are located at finite positions. Corollary I generalizes Kucera and Zagalak's necessary 
condition to the case where the resulting closed-loop system may also be non-proper. 
Note that when b, = 0 for all i in (25), i.e. the closed-loop system is proper, the result 
reduces to the necessary conditions given by Kucera and Zagalak. 
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