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Abstract

The process of nanoindentation causes physical phenomena not only at the
nano-scale, but at multiple length scales up to the macroscopic. This the-
sis investigates multiscale modelling of nanoindentation that links atomistic
scale molecular dynamics (MD) to a finite element (FE) model in order to
extend the length scales that can be modelled. Existing multiscale models
are investigated and the relevant advantages and disadvantages of each are
discussed. New coupling techniques are developed in both 2D and 3D, which
are applied to nanoindentation test simulations to verify the models.

A new force attribution 3D multiscale model is applied to some studies of
nanoindentation of Au and Fe. The results are compared to those obtained
through experiment and to atomistic only models to investigate the effect of
the embedding continuum region. These studies show that by extending the
length scales, long range effects of nanocindentation can be modelled in the
far field by continuum mechanics giving results that are in closer agreement
with the experiment. The new coupling method has wide application and
a study of laser ablation of Au has been carried out to show that the mul-
tiscale modelling technique can be used to improve the description of this

phenomenon also.
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Chapter 1

Introduction

Nanoindentation is an experimental process used to investigate dynamically
the mechanical properties of materials and their behaviour on the nanoscale.
Examples of applications of nanoindentation include the characterisation of
thin film coatings and composite nano-materials [1], where the features of
the material change on the nano-scale. Molecular dynamics simulations of
these experiments have been carried out on a variety of materials including
Fe [2, 3], Ag [2], C [4] and Si [5]. The atomistic approach used in these
simulations allows detailed description of the change from elastic to plastic
deformation and the way in which defects are created when undergoing in-
dentation. Experiments such as nanoindentation generate phenomena not
only on the nanometre scale due to dislocation emission, but also on a much
larger length scale due to stress fields. However, the limitations imposed by
current computational power make the volume of material simulated by the
atomistic approach too small to model phenomena in the far field.

When modelling the deformation of a solid material, it is important to
use a method which accurately describes the resulting effects. Traditionally,

molecular dynamics has been used to model dislocations, cracks and grain
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boundaries on the atomistic scale, whereas effects on larger length scales
have been modelled by the finite element method. However, either of these
methods alone would be insufficient to model the effects on the different
scales, and hence, in recent years, an effort has been made to bridge the
length scales via coupled multiscale models. These hybrid models take two or
more existing modelling techniques that describe a system on different scales,
for example the nanometre and micron length scales, and combine them to
produce a model which applies the different techniques to the appropriate
part of the system.

Molecular dynamics is a numerical technique which can be used to model
solid materials on the atomistic scale. The technique models each atom indi-
vidually and by numerically solving Newton’s equations of motion (a coupled
system of ordinary differential equations) the system is evolved through time.
Interatomic potential functions are used to calculate applied forces on atoms.
The forces are then used with a numerical integration technique to move a
step forward in time. Due to high frequency vibrations of molecules, the
accurate description of motion requires a very short time step of the order
of femtoseconds. Consequently, due to time restrictions, simulations are cur-
rently restricted to system sizes of the order of millions of molecules and the
simulation time to the order of nanoseconds.

The finite element method is a widely used numerical technique for solving
a variety of engineering problems. A continuous complex region is discretised
into simple shapes called elements that represent a small part of the overall
system. Appropriate physical laws are then applied to the elements such that
a solution may be obtained at the vertices of the elements. The arbitrary
size and shape of the elements makes the method suitable for a wide range of

applications including the deformation and stress analysis of solid materials.
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This work considers multiscale modelling of nanoindentation, coupling a
non-local atomistic description of the material under investigation to a local
continuum description of the material in the far field. All of the existing
and new methods discussed model the plastic deformation in the atomistic
region by molecular dynamics, and in the continuum region the finite element
method is implemented to model the long range effects of the experiment.

The different modelling techniques applied to regions coupled together
in the multiscale models in this thesis are described in detail in chapter
2. The methodology of the molecular dynamics model is given along with
the interatomic potential functions used to calculate atomic forces for the
materials studied in this work. The chapter gives the derivation of the matrix
method for 2D and 3D constant strain finite element methods which may be
used to model linear elasticity in solid materials.

Chapter 3 gives an overview of experimental nanoindentation and goes
on to discuss the atomistic modelling approach to simulating the experiment.
The spring methoed used in existing atomistic only models of nanoindentation
is described and two examples of these simulations are given for diamond
and silicon. The results of these experiments are compared to experimental
results to verify the requirement of a multiscale model.

The existing 3D multiscale models in the literature which couple atom-
istics to continuum mechanics are discussed in chapter 4. The advantages
and disadvantages of each of the methods are outlined and conclusions drawn
in order to pave the way for the development of new 2D and 3D multiscale
coupling techniques in chapters 5 and 6 respectively. Initially the develop-
ment work is undertaken in 2D as the methodology is generally more simple
to implement than in the 3D models, and fewer particles need to be modelled,

both of which ease the debugging process. The ideas are then extended into



Chapter 1: Introduction 4

a fully 3D model where further developments are made to the technique so
‘that the multiscale model can be applied to simulations of real experiments.

The simulation results of nanoindentation into Au and Fe using the new
multiscale model are discussed in chapter 7. The results of these simulations
are compared to atomistic only simulations and to the experimental results
to investigate the effect of the embedding continuum region. Also, a laser
ablation of Au simulation is carried out to investigate the model’s application
to another type of experiment.

Finally, chapter 8 draws conclusions from the work in this thesis. The
new coupling techniques developed in this work and the results from the
simulations using the models are analysed and discussed, and future work in

the field of multiscale modelling is suggested.



Chapter 2

Molecular Dynamics and Finite

Elements Methodology

2.1 Molecular Dynamics

Molecular dynamics is a numerical technique used to model solids, liquids
and gases at the atomic level. Each atom in the system is considered individ-
ually as a point mass and by solving Newton’s equations of motion (a coupled
system of ordinary differential equations), the forces, positions and trajec-
tories of the particles are repeatedly updated, evolving the system through
time. The positions of all of the atoms are used to calculate applied forces
on atoms via interatomic potential functions. The forces are then used with
numerical integration to move a step forward in time. Due to high frequency
vibrations of molecules, the accurate description of motion requires a very
short time step of the order of femtoseconds. Consequently, due to time re-
strictions, simulations are restricted to system sizes of the order of millions
of molecules and the simulation time to the order of nanoseconds.

It is important that the numerical integration algorithm employed to solve
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Newton’s equations of motion is symplectic, i.e. preserves the Hamiltonian
invariants to the same order of accuracy as the method. This also ensures that
no energy drift in the system occurs. One such method is the velocity Verlet
algorithm [6] derived from Taylor series expansions of an atom’s position r,
its velocity v and the atom’s acceleration a. The update functions to move

from time ¢ to time ¢ + 6t are
r(t+68t) = r(t)+ 6tv(e) + 36t%a(t) (2.1)
v(t+8t) = v(t)+ 16t[a(t) + a(t + &t)) (2.2)
where the acceleration is defined as the ratio of the force on the atom to the
mass of the atom, a(t) = F;(T? The velocity update equation 2.2 requires the
atoms updated acceleration vector from time ¢ 4 6t. This is available before
the velocity update as it is only dependent on the atom positions that are

obtained from information from the previous step. The order of computation

is as follows:

¢ Time step t is complete and r(¢), v(¢) and a(t) are known for all atoms.
e All atom positions are updated by equation 2.1.

o Half of the velocity update is calculated using the known accelerations,

v(t +15t) = v(t) + 15ta(t). (2.3)

The updated forces and hence accelerations are calculated from the

updated positions r(t + dt).

The fully updated velocities are calculated for all molecules,

v(t+ 8t) = v(t + 20t) + 38ta(t + 6t). (2.4)

o Time step ¢ + 6t is complete and r(t + 8t), v(t + §t) and a(t + &t) are

known for all atoms.
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2.1.1 Neighbour Lists

In a molecular dynamics simulation, the most computationally expensive
operation is calculating the interatomic forces. Theoretically, at every step
of the simulation all atoms should be considered to calculate the force field,
which for a system of N atoms makes this an O(N?) operation. For large
systems, this method to calculate the forces is unsuitable as each time step
would take too long. In reality, for most uncharged systems, there is a
separation between atoms beyond which the resulting force is small enough
that it may be neglected. Interatomic potentials which describe the forces for
these sorts of materials make use of this by having a cut-off radius. As the
separation distance approaches this cut-off radius, both the energy and force
also approach zero. For separation distances greater than or equal to the
cut-off radius the energy and force are zero, i.e. the atom is only interacting
with other atoms within its cut-off radius.

To increase computational efficiency, a neighbour list is constructed for
each atom. This is a list of atoms that lie within a distance of the cut-
off radius r,, plus an outer skin of r,, illustrated in figure 2.1. Without
this outer skin the neighbour lists would need to be updated at every time
step as an atom may have moved within the cut-off radius of another atom.
However, also including atoms within the outer skin allows a certain amount
of movement of atoms before the neighbour list should be re-evaluated. Now
to calculate the force for an atom, only atoms in its neighbour list need
to be considered, making the process an O(N) operation. To choose the
thickness of the skin it should be noted that for smaller r, the neighbour list
needs to be updated more frequently, but for larger r, more interactions are
considered in the force calculation. Relative to the cut-off radius r., typical

skin thicknesses are =~ 5%.
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Figure 2.1: A two dimensional representation of a neighbour list [7] for atom
ay. Atoms as, asz and a4 are within r. of atom a; and therefore are included
in the neighbour list and interact with this atom. Atoms as and ag have a
separation distance between r, and r. 4+ r, from atom a; and therefore are
included in the neighbour list but do not interact with this atom. Atom a;
has a separation distance greater than r, + r, from atom a; and therefore is

not included in the neighbour list and does not interact with this atom.

Cell Index Method

Although having a neighbour list considerably optimises the force calculation
at each time step, the actual construction of neighbour lists is still very
computationally expensive. Again each pair of atoms must be considered to
decide whether they should be in each others list, and hence is an O(N?)
operation. In order to speed up the construction of neighbour lists the cell
index method [8] can be used. A lattice of atoms with sides of length L,, L,
and L, is broken down into an M, x M, x M, array of sub-boxes whose sides

must be greater than the potential cut-off distance plus the skin thickness. A
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separate list of atoms is stored for each sub-box, and as illustrated in figure
2.2, when constructing the neighbour list for a particular atom, only atoms
in the same sub-box and surrounding sub-boxes need to be checked, making

the process an O(N) operation.

Figure 2.2: An illustration of the cell index method [8]. The entire system
is divided into small sub-boxes. To construct the neighbour list for an atom,
only atoms in that same sub-box and surrounding sub-boxes need to be

considered.

2.1.2 Boundary Conditions

Molecular dynamics simulations involve a finite number of atoms and hence
take place within a finite space. For simulations of bulk material it is unde-

sirable to leave the atoms at the boundaries or surfaces to interact and move
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freely in the normal way as they may drift apart during the simulation, so
boundary conditions may be put in place to prevent this from occurring. A
simple technique is to use fixed boundary conditions (FBC) where a layer of
atoms at the boundary still interact with their neighbours, but are held fixed
in space as illustrated in figure 2.3. The thickness of the fixed layer should
be made large enough so that all atoms allowed to move freely have a full

complement of neighbours up to the potential cut-off distance.

Figure 2.3: A schematic of a square 2D space in which a molecular dynamics
simulation is taking place. Atoms in the lighter central area are free to move
under conventional molecular dynamics. Atoms contained in the darker layer

at the boundary have fixed positions in space.

For simulations where fixing the boundary atoms is undesirable and work-
ing with a much larger space would be preferred, periodic boundary condi-
tions (PBC) may be implemented. In doing so, an infinite space is assumed to
be repeatedly tiled with identical copies of the box of atoms in the simulation
in any or all of the three dimensions.

Using PBC changes the way in which atoms interact with other atoms
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and also the way in which atoms positions are updated. For example, an
atom near the boundary in a certain direction that is employing PBC is
considered to be next to atoms at the opposite boundary in that direction,
as illustrated in figure 2.4 and must include interactions with those atoms
in the force calculation. Also, an atom that moves across the boundary in
a direction employing PBC will reappear at the opposite boundary in that

direction.

Figure 2.4: Periodic boundary conditions have been applied in the horizontal
direction. Although atoms i and j are on opposite sides of the box of atoms,

they are considered to be next to each other.

2.1.3 Parallel Processing

Although the molecular dynamics method is an extremely accurate way to
model a material, it is also a computationally intensive process. This is due to
the small time steps necessary to model the high frequency atomic vibrations
and the large number of atoms involved. The latter of these reasons may be
addressed by distributing the atoms between multiple processors which work
on different calculations in parallel.

An efficient method to divide the system across processors is spatial de-

composition (SD). The space in which the atoms exist is split into P smaller
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cuboidal spaces where P is the number of processors. Atoms are assigned
to processors depending on which of the spaces they lie within, then that
processor is responsible for performing the force calculation for each of its
atoms. Atoms at the edge of each of the spaces may be neighbours of atoms
on another processor and so information about these atoms must be passed
between processors to complete the force calculations. However, with spacial
decomposition, message passing is kept to local communication as informa-
tion must only be passed to neighbouring spaces.

During a simulation, atoms may move from one SD region to another.
In accordance, processors to which atoms are assigned must also change.
This reassignment should be done in conjunction with the updating of the
neighbour lists (see section 2.1.1) which will exist for the lists of atoms on

each processor.

2.2 Interatomic Potentials

The numerical integration algorithms used to evolve molecular dynamics sys-
tems forward in time are functions of the interatomic forces of the atoms in
the system. In classical molecular dynamics, these forces are evaluated via
approximate empirical interatomic potential functions. To develop an em-
pirical potential, a functional form is assumed, then the parameters of the
function are fitted to either experimental data or results obtained from a more
accurate (but also more computationally expensive) method, for example ab
inttio or tight binding.

The total potential energy of the system, V, is a function of the position

vectors of each of the N atoms in the system. Hence,

V= V(I‘I, rs,rs,..., I'N) (25)
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where r; is the position vector of atom 7. Now the force vector, F;, acting on
atom ¢ can be written in terms of the first partial derivative of the potential

function with respect to its position vector as,

oV

Fz' == —‘B—ri.

(26)

2.2.1 Lennard-Jones 6-12 Potential

The Lennard-Jones 6-12 potential (9] is a simple pairwise function which was
initially developed to represent noble gases. Atoms in a noble gas in its solid
state are only slightly distorted from the stable closed-shell configuration
they have in the free-state, and hence a dipole type interaction can be used
to represent the small distortions with an attractive potential proportional
to ™% where r is the interatomic spacing. The repulsive part of the potential
must be stronger than the attractive part at short distances, and is there-
fore assumed (for no particular physical reason) proportional to r~'%2. The

potential function is given as

=420

where € and o are parameters of the potential function which can be adjusted
to fit a certain material. They are related to the well depth of the curve and
the interatomic equilibrium separation respectively.

Extending the Lennard-Jones 6-12 potential to fit bulk crystal properties,
the potential is assumed pairwise additive where the energy of the crystal is

given as

N N
U=3 Y Viry) (2.8)

i=1 j=i+1
where N is the number of atoms in the crystal and r;; is the separation

distance between atom ¢ and atom j.
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In this work, the Lennard-Jones 6-12 potential has been used as a first
approximation during model development to describe the interatomic inter-
actions between particles in molecular dynamics simulations in sections 5.4,
5.5, 6.4 and 6.5. A cubic function with continuous position and first deriva-
tive hés been used to take the potential and force values smoothly to zero
between first and second nearest neighbours so that near equilibrium in the
face centered cubic (fce) lattice structure, only first nearest neighbours need

to be considered in the neighbour list and force calculation.

2.2.2 Ackland Potential

The Ackland potential is a many-body potential based on the embedded atom
method (EAM) [10]. The empirical data used for the parameterisation are;
the lattice parameter, the cohesive energy, the elastic constants, the vacancy
formation energy and the stacking fault energy. The method has generally
been used for pure metals, for example Cu, Ag, Au and Ni [11], and Fe
[12]. The potential energy function, U, for a system of atoms is made up of
two parts. The pairwise function, V (r;;), describes the repulsive interactions
between the nuclei and the embedding function, F(p;), can be thought of as
the attractive electron density around each atom. The total potential energy
is given by

N[ N
U=y, [ > V(r)+ F(o:) (2.9)

i=1 | j=i+1

where 7;; is the separation distance of two atoms ¢ and j and

0; = é:cgﬁ(rij). (2.10)

The functional forms assumed in the Ackland potential take the form

Virg) = Xk:ak(rk —ri; P H(re — 1i5) (2.11)
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F(p:) = —pitep; +ap; (2.12)
¢(rij) = X Ap(Ri —riy) H(Ry — 73) (2.13)
k

where H is the Heaviside unit-step function and c; and ¢4 are fitted constants
of the embedding function. The cut-off distance, r, for the Ackland potential
can be taken to be the greatest of the Ry and ry, values as V(ry;) = ¢(ry;) = 0
for all rj; > r.. The force calculation may then be optimised by employing

the neighbour list scheme described in section 2.1.1.

2.2.3 Tersoff Potential

The Tersoff potential [13, 14] was first used to model covalent elements such
as Si and C, but can also be adapted to other systems. The energy function,

V', is written as a sum of interactions between pairs of atoms

V= % > iy (2.14)
i
where
¢ = frig) VR(rss) — bigValrig)], (2.15)

Vk is a repulsive pair term, V4 is an attractive pair term, r;; is the separation
distance between atoms ¢ and j, and the many-body function b;; is effectively

a bond order term. The attractive and repulsive components are given as
VR('I‘i ) = A,‘je-hﬂij (2 16)
VA(rij) = Bz'je_'u'ijrij . (2.17)

The repulsive term is pairwise, however, the attractive term is multiplied by
the many-body term in order to account for the local environment of atom

i. The many-body term is given as

oy — e
by = xi(1 + BT ) % (2.18)



Chapter 2: Molecular Dynamics and Finite Elements Methodology 16

where the competition between bonds is described by

& 5
Gi= D flrajwi (1 YT ET oo Gz‘jk)z) (2.19)

k#i)j

where §;;; is the bond angle at atom ¢ between bonds ¢j and k.
The function f(r;;}, is a cut-off function which takes the potential smoothly

to zero between the first and second neighbours and is defined by

1 ri; < Ry
— w{ri;—Rij
f(rij) = % + %COS [-(S—Z"#] R,ij <7riy; < S@j (220)
0 Tij 2 S'#J

The values for A;; and p;; are calculated by the arithmetic means, Ay; = %()\H‘

Aj) and pi; = 2 (ps + p;). The values for A;;, By, Ri; and S;; are calculated

by the geometric means, Aij = \/Az'Aj, B@j = 1/B;;Bj, Rij = MR,;RJ', and
Sis = /SiS;.

The parameters A;, B;, Ai, ti, Xis» @ijy Biy T Ciy iy By and S; are dependant
on the atom i, or the pair of atoms 7 and § that are being modelled. A
modification to these parameters of the potential [15] allows C-Si-H systems
to be modelled by a combined Tersoff-Brenner empirical potential, where

C-Si and Si-Si interactions are modelled by the Tersoff potential.

2.2.4 Brenner Potential

The Brenner potential [16, 17} has been developed to model carbon systems
and fits the graphite and diamond lattice structures quite well. The combined
C-Si-H model [15] used in the simulations in chapter 3 uses the Brenner
potential to describe the inferatomic forces for C-C, C-H and H-H pairs.
The potential function V is taken to be the sum of all pairwise covalent

interactions, where the surrounding environment is described by a many-
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body bond-order function, B;;, and can be written as
V(ry) =23 [Valry) — BiVa(ry)] (2.21)
i i
where the repulsive and attractive parts of the pairwise interactions are given

by the functions

Vr(rij) = fij(rij) S ‘V”vﬁw(“f (2.22)
ij

and

Va(ri) = fi (sz \/_ﬁ” = (2.23)

The potential function well depth the equilibrium separation distance

zJ!
R;; and the parameters S;; and ;; are dependent on the pair of atoms inter-
acting. The cut-off function f;(r;;) smoothly reduces the energy and forces

to zero between first and second nearest neighbour distances by the piecewise

function
1 rij < R(l.)
1,1 m(riy—R) (1) @)
Fii(rig) = { 3+ 3008 [Zm—pty | Riy <ry <Ry (2.24)
£ 4] i
0 Tij > R(z).

The bond-order function, Bj; in equation 2.21 is given by the average of

the terms for each of the atoms in the bond ¢ and j, plus a correction term:

_ By + By con
By = «"*2“ B4 By(NO, NO, Nty (2.25)
where
(e) (e) —5
i3 t""R 4 Re
By = |14 Y Gi(Bisn) fr(rax)e eliramR- o) + Hy (N, NS
k#i,j
(2:26)

The total number of neighbours of atom 1, Ni(t) is the sum of the number of C

neighbours and H neighbours, Nz-(c) and N,-(H) respectively, made into smooth
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functions through the use of cut-off functions. N,v‘jfmj depends on whether a
bond between ¢ and j is part of a conjugated system. G;(6;;¢) is a function of
the bond angle between bonds ij and ik, and the functions H;; and Fj; are
two and three dimensional cubic spline functions respectively, to interpolate

between values at discrete numbers of neighbours.

2.2.5 Ziegler-Biersack-Littmark Potential

A potential developed by Ziegler, Biersack and Littmark (ZBL) [18] is de-
signed to model interactions at small interatomic separation distances. When
a pair of atoms are very close together the strong repulsive force between the
two nuclei dominate any other interaction and may be described by a Coulom-
bic potential. As the nuclei come further apart, the surrounding electron field
begins to have a screening effect on the repulsive force and hence the ZBL
potential defines a screening function, ¢(r;;) to adjust the Coulombic force.
The potential function for two atoms i and j is given by

1 2124,

V(nj) - 471'(:'0 Tij

¢(riz) (2.27)

where Z; and Z, are the atomic numbers of the atoms, r;; is the interatomic
separation distance of the atoms in A, and ¢, is the electrical permittivity of
free space.

For the ZBL potential, the screening function is defined as

¢(r) = 0.18175¢™31%97/au 1. 0 509860 947297/ou 1. 0.28022¢040%r/ou
+ 0.028171¢~0-20162r/an (2.28)

where
0.468377

o = Zom g g (2.29)
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Connecting Splines

The ZBI: potential should only be used to describe the repulsive forces at
short separation distances of less than around 1-2A. Beyond this, a more
suitable potential should be chosen to model accurately the material un-
der investigation, and hence some method to link the potential functions is
required.

The simulations in chapter 3 use connecting spline functions to connect
smoothly the ZBL potential to the Tersoff and Brenner potentials at longer

ranges. The piecewise potential function is defined as

L ST <71y (2.30)

where the ZBL potential is used for Vz(r) and the Tersoff or Brenner potential
is used for Vi;(r) depending on what material is being investigated.
The spline function has an exponential form to give a constantly decreas-

ing value over the required range and is given by

Vs (7.) _ eBo+B1r+Bzr2+Bar3+B4r“+Bsr5 (2‘31)

where the coefficients are determined by solving the simultaneous equations
of continuity for position, direction and curvature at both ends of the spline

to give continuous position and direction of energy and force, i.e.

Vs(rz) = Vi(re) (2.32)
Vs(re) = Vi(re) (2.33)
Vs(re) = V{(r1) (2.34)
Vs(rv) = Wu(ru) (2.35)
Vs(ry) = Vi(ro) (2.36)
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Vira) = Vi(ro). (2.3

2.3 The Finite Element Method

The finite element method has become a widely used numerical technique
for solving a variety of engineering problems. A continuous complex region
is discretised into simple shapes called elements that represent a small part
of the overall system. Appropriate physical laws are then applied to the
elements such that a solution may be obtained at the vertices of the elements.
The arbitrary size and shape of the elements makes the method suitable for
applications of deformation and stress analysis of solid materials for example
in aircraft or bridge design, or for field analysis of fluid flow, magnetic flux or
heat flux. Like any numerical method, the solution is only an approximation
of the true solution, however the finite element method allows more accurate
solutions to be obtained simply by increasing the number of elements in the

same space.

2.3.1 Two Dimensional Finite Elements for Stress Anal-
ysis

A two-dimensional region, shown in figure 2.5, is discretised into triangles
which almost entirely tessellate the region. The area around the outside
which is not filled by the triangles can be reduced by using smaller triangles
and is part of the approximate nature of the method. The points where the
vertices of the triangles meet are called nodes, and each triangle formed by
three nodes and three sides is called an element. It is possible to use other
shapes than triangles for the elements, however using the two dimensional

simplex gives a method that does not require numerical integration and hence
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results in a considerable saving in computation time.

Figure 2.5: Triangular finite element discretisation of an arbitrary shape.

Each of the nodes at the vertices of the triangular elements has a unique
global node number in the scheme of the entire mesh. Each element also has
a local numbering system, from 1 to 3, and by relating the local number to
the global number of the three nodes for each element, the connectivity for
the entire system can easily be stored. Figure 2.6 shows a typical element
with local numbers circled within the element and global numbers in squares
outside of the element. Local node 3 of this element is global node 10, which
may be a vertex of one or many other elements.

With displacements allowed in the z and y directions, there are two de-
grees of freedom for each node and therefore 6 for each element. The element
displacement vector, q = [q1, G2, . . -, gs]T, contains the displacements of each
of its nodes in both the z and y directions. They are ordered such that local
node j has its displacement in the z direction in ¢;_; and its displacement

in the y direction in ¢o;. The global displacement vector stores the displace-

ments of all nodes and is arranged in a similar way to the local displacement



Chapter 2: Molecular Dynamics and Finite Elements Methodology 22

Figure 2.6: A typical element with local and global node number shown in

circles and squares respectively.

vector such that global node j has its displacement in the x direction in Qg;_;
and its displacement in the y direction in Qy;.

The stresses, o, and strains, €, are related by & = De. When considering
plane stress, the (3 x 3) D matrix is given in terms of the material’s Young’s

modulus and Poisson’s ratio, £ and v.

1 0

v
1 0 (2.38)
0

1-v

2

T1-2| Y
0

Displacements of a point within an element need to be described due to
the displacements of the nodes of the element, this is achieved by the concept
of shape functions and interpolation. For the constant strain triangle, linear
shape functions are applied to the element, Ny, N> and N3 corresponding

to nodes 1, 2 and 3. Shape function Ny should be 1 at node 1 and linearly
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reduce to zero at nodes 2 and 3. Similarly, shape functions N, and Nj are 1
at nodes 2 and 3 respectively and drop to zero at the nodes on the opposite
edges. Mapping a typical element to the standard element in figure 2.7 gives

rise to simple shape functions in terms of the natural coordinates £ and #,

The isoparametric representation for describing the z and y coordinates

in terms of the nodal coordinates and the shape functions is given by

x = Nizi+ Noxy + Nazy

y = Ny + Noya + Nays (2.40)

where z; is the z coordinate of local node ¢ and similarly for y;, then defining
%;; = ; — =; (the same definition is given for y;;, but using y coordinates),

this can be written in terms of the natural coordinates as

x = 2136+ Lozn + 23

Yy = s +tyasnt+ys (2.41)

and similarly for the displacement vector (u = [u, v]7)

u = w3l + uan +uz

v = v13€ + vo3n + vs. (2.42)

In each element the strain is related to the displacements by € = Bq. In

the 2D case, the matrix B is calculated as

yz 0 yn 0 gy O

1
0 Zao 0 13 0 zn (243)

B =
detJ

T32 Y23 T13 Y1 Ta1 Y1z

where det J = 213903 — Z23y13-
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Figure 2.7: Each element is mapped to this standard element for simplicity

of the shape functions in terms of the natural coordinates £ and 7.

Using the potential energy approach, the element strain energy, U,, is
found to be

U, = %qT te A.BTDBq (2.44)

where A.(= 1|detJ|) is the element area and t. is the constant element

thickness, or
1
U, = §queq (2.45)
where k® is the element stiffness matrix given by

k® =¢,A.B'DB. (2.46)

A global stiffness matrix, K, may be constructed from all of the element

stiffness matrices such that the total system energy is given by
1 1
Ut == Z §queq = §QTKQ (247)
e
This global stiffness matrix is square symmetric and usually sparse or

banded due to the fact that the stiffness value Kj; is zero when the degrees

of freedom ¢ and j are not connected through an element.
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The nodal forces, F, are found from the first derivative of the total energy
in equation 2.47 with respect to nodal displacements, giving the relationship

between displacements and forces,
KQ=F (2.48)

where F stores the nodal forces such that the force on node j in the z direction

is in F;j_l and in the y direction, F;.

2.3.2 Three Dimensional Finite Elements for Stress
Analysis

For most realistic engineering stress problems a three dimensional (3D) so-
lution is required. A 3D volume can be tessellated using tetrahedra. Each
tetrahedron is called an element and the 4 vertices of the tetrahedron are
called nodes. Each node of an element has a local node number within the
element, 1-4, and a global node number in the scheme of the entire mesh.
Figure 2.8 shows a typical tetrahedral element with nodes labelled locally.
Any of the nodes in this element may also be vertices of one or more other
elements.

The displacement vector is given by,
u = [u,v,w]" (2.49)

where u, v, and w are displacements in the z, %, and 2 directions respectively.

Stresses and strains are related by
o = De (2.50)
where
o = log,040,, Tyz,Tmz,Tmy]T (2.51)

€ = [fx: €ys €2y Yyzs V2o 7wy]T (2'52)
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Figure 2.8: A typical tetrahedral element with local node numbers. Each
node has three degrees of freedom as they can move in the z, ¥ and 2z direc-

tions.

are the stresses and strains, and for isotropic materials, D is given by

1—v v v 0 0 0
v 1l-v v 0 0 0
E v v 1—-v 0 0 0
TEENI-2 0 0 0 05-» 0 0
0 0 0 0 0.5—-v 0

| 0 0 0 0 0 05—-v |

(2.53)

The strain-displacement relationships for linear elasticity are given by

e [2u 20 0wy Owou dw du Ou]t
|z’ oy’ 82’02 T dy’Bz Oz’ Oy Ox

In figure 2.8, each local node i is labelled with three degrees of freedom

(2.54)
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G3i—2, g3i—1 and gs; as it is free to move in three dimensional space. The corre-
sponding global node 7 is assigned the three degrees of freedom @372, Q371

and Qsy, so that the element and global displacement vectors are given by

9= (1,92, 93 Q12]T (2.55)

Q=[Q1,Q2Qs,....,Qn]" (2.56)

where N is three times the number of nodes in the system. Four linear
shape functions are defined, Ny, Ny, N3 and Ny, where NN; is 1 at local node
i and zero at the other 3 nodes of the element. For example N; has a value
of 1 at node 1 and linearly decreases to a value of 0 at nodes 2, 3 and 4.
Considering the standard element in figure 2.9, the four shape functions for

the tetrahedron can be defined in terms of the natural coordinates £, n and

¢ as
Ni=¢& Ny=n Ny3=( Ny=1-§—-n-¢. (2.57)
[
3(0,0.1)
4(0.00)
2(0,1.0)
1(1,00)
E

Figure 2.9: Each element is mapped to this standard element for simplicity

of the shape functions in terms of the natural coordinates &,  and (.
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Defining u;, v; and w; to be the displacements of node i and u;; = u; —uy,
the displacements of an arbitrary point (z,y,z) within the element can then

be written in terms of the natural coordinates and nodal displacements as

% = ug+ U14§ + U2qn + U34C
v = U4+ v14€ + voan + v
w = wy+wis€ + wan + wsC. (2.58)

The coordinates of this point may be found similarly from the isoparametric

transformation

T = T4+ x4+ T+ T34

Yy = Ya+y1a€ + y2an + ysal
zZ = z4+ 214§ + 2341} + 234(. ) (259)

The Jacobian of this transformation is given by

3z dy 2
a_§ 5? é T4 Y14 214
= | 8z 8y 8 | —
J=15 % % |=| 2 vaa 2 (2.60)
8r Oy @
B_z 5% f T3s Y34 234

and performing a triple integral over the element, the volume of the element,
V. is given by
V. = 1|det J| (2.61)

where

|det J| = z14{yoa231 — Y34224) + Y14 (20434 — 23a%24) + 214(T24Y34 — T34Y04)-

(2.62)

Partial derivatives of u with respect to z,y and z are related to £, # and ¢
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derivatives by the following relationship,

ou oy
dz a¢
du — Ou
oAl 2 (2.63)
u du
8z a¢

similarly for v and w. This is the inverse relation to the transformation with

Jacobian J, hence

Yoa4234 — Y3424 UY34214 — Y14234  Y14224 — Y24214
1

_ 71 _
A=J"= det J Zo4T34 = Z34T24  234T14 — 214T34 214%24 — 224714

L24Y34 — T34¥24 T34Y14 — T14Ys4 L1424 — L2414
(2.64)

By considering the strain displacement relationships in equation 2.54, the
assumed displacement field in equation 2.58 and the relation between deriva-
tives in equation 2.63, a relationship between strain and nodal displacements
in obtained,

€ =Bq (2.65)

where B is the following matrix made up of the elements of matrix A.

(A 0 0 Ay O 0 A 0 0 —-A 0 0
0 A 0 0 Ap 0 0 Ay 0 0 =4 0
0 0 Az 0 0 Ayp 0 0 Ay 0 0 —As
0 Ay An 0 A Ap 0 Ay Ayn 0 —4; -4
Ag 0 Ay Ap 0 A Az 0 Ay —4A; 0 -4

| Ay An 0 A Ap 0 Ay Az 0 —A -4 0 |
(2.66)

Note that Ai = Aﬂ + Aig + Az’3-
Using the potential energy approach, the element strain energy, U, is
found to be

U = %qTVeBTDBq (2.67)
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or

U, = % Tkeq (2.68)

where k¢ is the element stiffness matrix given by
k¢ = V.BTDB. (2.69)

As in the 2D case in section 2.3.1, a global stiffness matrix, K, may be
constructed from all of the element stiffness matrices such that the total

system energy is given by
1 1
Ut = Z: §queq = '-Q“QTKQ (270)
€

The nodal forces, F, are found from the first derivative of the total energy
in equation 2.70 with respect to nodal displacements, giving the relationship

between displacements and forces,
KQ=F (2.71)

where F stores the nodal forces such that the force on node 7 in the z direction

is in F'3;_2, in the y direction, F3;_; and in the z direction, Fs;.

2.3.3 Boeing-Harwell Packed Matrix Format

The 2D and 3D finite element schemes described in sections 2.3.1 and 2.3.2
produce a set of linear simultaneous equations and once the global stiffness
matrix and nodal forces have been constructed, these equations can be solved
using a linear algebra routine to find the nodal displacements. However, with
most real world problems, there are usually many elements and nodes, and
because the stiffness matrix is square the system becomes large to store and

to solve, due to limitations of memory and computation time.
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A method for packing sparse matrices known as the Boeing-Harwell for-
mat [19], allows sparse matrices to be stored without the many zero elements.
The advantage of this method is not only that it saves large amounts of mem-
ory by ignoring the zeros, but also routines have been developed to work on
matrices in this format, including the solution of simultaneous equations as
an order N process rather than order N2, hence considerably reducing the
time taken to perform the calculation.

The packing method works by replacing the matrix with three vectors.
The first vector (VALUES in the example below) stores the nonzero matrix
entries, with entries from the same column grouped together in the vector.
The second vector (ROWIND in the example) contains the row index in the
original matrix of the corresponding element in the VALUES vector. The
number of elements in the ROWIND and VALUES vectors is equal to the
number of nonzero entries in the original matrix. The final vector (COLPTR)
stores pointers to the first element in the ROWIND and VALUES vectors of
each column. For an n x n matrix, the COLPTR vector has n + 1 entries,
the last of which should point to one entry after the end of the ROWIND
and VALUES vectors. The scheme is illustrated with the following simple

example.

(1. -3. 0 -L

0
0 0 -2 0 3.
2.0 0 0 0 (2.72)
0 4 0 —4. 0

\5 0 -5 0 6.
The 5 x 5 matrix, 2.72, is packed and stored in the three vectors displayed

in table 2.1. The values from column n are stored in the VALUES vector

from elements COLPTR{n) to COLPTR(n + 1) — 1.
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Subseripts | 1 2 3 4 5 6 7 8 9 10 11
COLPTR |1 4 6 8 10 12

ROWIND (1 3 5 1 4 2 5 1 4 2 5
VALUES |1. 2. 5 -3. 4. -2. -5 -1. -4 3. 6.

Table 2.1: Boeing-Harwell Packed Format

To retrieve the value of matrix element (4, j), ROWIND values are checked
from index COLPTR(j) to COLPTR(j + 1) — 1. If none of these values are
equal to i, then element (i, 7) is 0. If the ROWIND value is equal to %, then

the value of element (3, j) is the value in the corresponding VALUES vector.



Chapter 3

Nanoindentation and Modelling

Nanoindentation

3.1 Experimental Indentation

Nanoindentation is a widely used technique for investigating mechanical
properties of materials on the nano scale. In an indentation test, a hard
indenter is forced into a test sample or substrate material. The increasing
force applied to the tip during the experiment and the resulting depth of in-
dentation are recorded and used to measure properties such as the hardness
and elastic modulus of the material. A typical force-depth curve is shown in
figure 3.1.

The force applied to the indenter is increased with time up to a prede-
termined maximum, P,,,, where the maximum indentation depth is defined
a8 hmaz. Oliver and Pharr [20] suggested that the contact depth, A, at the
maximum depth is not equal to the maximum indentation depth due to the
elastic deflection of the substrate surface. The amount of deflection is not the

same for different shape tips and also depends on material properties of the

33
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depth, h Prax

Figure 3.1: A typical force-depth curve from a nanoindentation experiment.
The force on the indenter increases with depth to a maximum force of Pq.

The indenter is then held fixed for a holding period before being retracted.

substrate such as stiffness. From the analytical solution for the shape of the
substrate outside the contact area [21], the contact depth for a paraboloidal

indenter is determined by

?’_Pma:c
4 S

he = huaz — (3.1)

where S is the contact stiffness, defined as the slope of the unloading curve

at the maximum depth, § = ‘é—’;. Then the corresponding cross-sectional
area, A,, of the indent may be obtained by the geometry of the indenter and
the contact depth, i.e. A. = A (h,). With this cross-sectional contact area
known, the nanohardness, or contact pressure of the sample, defined as the

ratio of the normal load to the contact area, can be calculated by

Pmax
Hy = (b (3.2)
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Oliver and Pharr also describe how the reduced Young’s modulus E, of the

indenter-sample system is calculated from the force-depth curve according to

1/ n dP

The Young’s modulus of the sample can then be obtained according to the

the formula

equation
1 1-v? 1—2
—_= 3.4
E B | E (3:4)

where E; and v, are the Young’s modulus and Poisson’s ratio of the substrate,

and similarly for the indenter. For soft materials, the substrate’s Young’s
modulus will hardly differ from E, as the indenter hardness is far higher
than that of the substrate. When considering superhard materials and a
diamond indenter, £, ~ E; and Poisson’s ratio is very small, thus F, is
approximately double F,.

For indentations experiencing only elastic deformation, the unloading
curve follows the loading curve. Based on this principle, Dub [22] reported a
new approach to determine contact pressure and Young’s modulus through
Hertzian elasticity theory. However, the method will not be used to calculate
mechanical properties from the results in section 3.3 below as it assumes a

spherical indenter and in this work a pyramidal indenter is used.

3.1.1 AFM Cantilever Indentation

The atomic force microscope (AFM) was originally designed to give visual
representation of materials at the micron length scale. A sharp tip at the end
of an elastically deformable cantilever is brought close enough to the material
that atomic forces between the tip and the surface are experienced. A laser

directed at the end of the cantilever measures its deflection, indicating the
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local sample height. A schematic representation of this is shown in figure

3.2.

Two segment
photodetector o
@%
* Indenter

Figure 3.2: A schematic of the AFM cantilever system. The laser and pho-

todetector are used to measure the deflection of the end of the cantilever.

Using a hard (generally diamond or SiN) indenter as the tip on the can-
tilever, the applied load is increased so that the indenter is forced into the
substrate. The vertical cantilever deflection data obtained during the in-
dentation along with the applied load data, is used to calculate mechanical
properties of the substrate as described in section 3.1 above. Figure 3.3 shows
a picture taken of a cantilever used in an AFM. Images at three different res-
olutions are displayed to give an accurate description of the cantilever-tip
system.

The model of nanoindentation described in this work is based on the AFM
cantilever method, but it should be noted that this is not the only method
for nanoindentation. Transducer based systems such as the vertical force

transducer are also common in experimental work.
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Figure 3.3: A pyramidal cantilever used in an AFM, picture courtesy of
Professor A. Richter, University of Applied Sciences, Wildau. (a) shows a
bottom-up view of the cantilever with the tip at the vertex. (b) shows the
cantilever attached to the movable support in the AFM. (¢) shows a further

magnification of the cube corner tip.
3.2 Atomistic Modelling of Nanoindentation

Results from atomistic scale simulations which model nanoindentation can
be used to compare to experimental results. These comparisons help to give
a better understanding of the phenomena seen in experiments on the nano
scale, and help to explain or interpret the experimental results.

The model used in the simulations in section 3.3 is called the ‘spring
model’. This model is designed to represent a system resembling indentations
with the AFM cantilever described in section 3.1.1. Supports and springs are
used to control the motion of the indenter, which is forced into the material

under investigation. These springs model the elastic bending of the cantilever

in the AFM which produces the force on the indenter in the experiment.
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3.2.1 The Spring Model for Indentation

The spring model used to simulate nanoindentation gets its name from the
springs used to control the indentation process. A schematic representation
of the system is shown in figure 3.4 where a diamond indenter is positioned
above a substrate of the material under investigation and is attached to three

supports by connecting springs. Displacement of the supports will result in

Suppon C

Figure 3.4: A schematic representation of the spring model for indentation.
The indenter is attached to three supports via springs in the z, y and z di-

rections. The displacement of the supports cause the motion of the indenter.

the compression or extension of the springs, resulting in an applied force to
the indenter. In an indentation simulation, the supports labelled A and B
are fixed in the horizontal z and y directions, allowing the indenter to move
laterally during the indentation. The vertical support labelled C is displaced
as a function of time, we(t). A typical displacement function for indentation

is shown in figure 3.5, where the slope during indentation and extraction is
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the velocity applied to the support.

Muax Extraction
Depth

-
»

Time

Indentation Holding

Figure 3.5: Typical vertical motion of the indenter during the simulation.
The displacement does not always need to return to zero due to plastic de-
formation. The simulation may be terminated when there is no resultant

force on the indenter.

The atoms on the top layer of the indenter are treated as a combined mass
of material that move together. Defining the displacements of this mass of
atoms to be wu,, v, and w,. and the forces due to the other indenter atoms
to be F,, I, and F. in the 2, y and z directions respectively, the equations

Z

of motion for the top of the indenter are given by

ma,(t) = Fi(t)+ koua(t) (3.5)
may(t) = F,(t) + kyva(t) (3.6)
ma;(t) = F(t) + k(wa(t) — we(t)) (3.7)

where m is the mass of the combined atoms, a,, a, and a. are the accelera-

tions of the mass of atoms, and k,, k, and k. are the spring constants.
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3.2.2 Cube Corner Indenter Specification

The indenter is modelled as a triangular based pyramid with a 90° opening
angle from a cubic diamond lattice with {100} surfaces, which is cut along

the diagonal (111) plane as shown in figure 3.6.

Figure 3.6: A schematic of the crystal structure of the indenter. A corner is
cut along the (111) plane from a cubic diamond lattice with {100} surfaces,

resulting in an indenter with a 90° opening angle.

The indenter is orientated such that the (111) planes are parallel to the
substrate surface with the vertex formed by three intersecting {100} faces
pointing towards the surface. These {100} surfaces are dimer reconstructed
to give a more stable structure than the truncated crystal. Experimentally
the tip is never atomically sharp, and so to model the experiment more closely
a rounding of the tip is introduced by truncating a number of atoms from
the vertex resulting in an appropriate curvature, this can be seen in figure

8.%.
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Figure 3.7: A plan view of an indenter with a truncated tip and dimer

reconstructed {100} surfaces.

3.2.3 Finite Temperature Control

The atoms in the substrate lattice and in the indenter begin in their equilib-
rium positions with zero velocity, that is to say the system is in its minimum
energy configuration. When the simulation begins, forces on all atoms are
balanced and hence, due to Newton’s first law, the particles remain at rest.
As temperature is proportional to the square of the velocities of the atoms,
when all atoms are at rest the system is at absolute zero, or 0 K.

In reality these experiments are generally carried out at room tempera-
ture (approximately 300 K), where different results may be obtained than at
absolute zero. Hence to model the experiment more closely a technique is
implemented to thermalise the system before the indentation begins.

During indentation, the process generates local heating in the substrate
which in reality would be dispersed into the far field. However, with only a

relatively small number of atoms modelled (O(10%)), the lattice experiences
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artificially high temperatures. To control this heating, a low indentation
speed is used (= 10m/s) and a thermostat is applied to the substrate which
controls the temperature of the substrate during the simulation. Two com-
monly used thermostats are the Berendsen thermostat [23] and the Nose-
Hoover thermostat [24, 25|. The Nose-Hoover thermostat is more accurate
but more complex than the Berendsen thermostat which is computationally
much faster. The Nose-Hoover thermostat produces large oscillations in tem-
perature before reaching the required target. This can cause problems when
applying hydrogen termination to a substrate as the high temperatures can

result in the hydrogen atoms leaving the surface.

The Berendsen Thermostat

One method of controlling the temperature of the system, both for thermal-
ising at the start of the simulation and preventing artificial heating during
indentation, is to apply the Berendsen thermostat. The method works by
applying a velocity scaling to all or some of the atoms at each time step.
The correction term, x. is calculated by comparing the average temperature
of the lattice with the target temperature of the heat bath and the velocities

of the atoms are then multiplied by y. given by

- [1 2 (T 1)]' (38)

where 7 is the user defined time constant which controls the rate at which

-

energy is added to or removed from the system, T, i1s the target tempera-
ture, ot is the time step of the simulation and 7" is the average temperature
of the lattice. A relationship between the kinetic energy of the particles, Ug g
and their average temperature is given by

N 2UkE
BkB'n. ,

(4 (3.9)
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where the Boltzman constant kg = 8.617 x 107 eV K™, and n is the num-
ber of particles. The kinetic energy of the n particles is given by Uxp =
s myv?, where m; and v; are the mass and velocity of particle i respec-
2 i=1 1 | !

tively.

Boundary Conditions for Thermalised Systems

For atomistic simulations of nanoindentation in this work, fixed boundary
conditions (described in section 2.1.2) are applied to all boundaries in the
lateral directions, and also on one boundary in the vertical direction at the
bottom of the substrate. The atoms at top surface of the substrate are left
to move freely as this is where the indentation takes place. The simulations
in section 3.3 use the Berendsen thermostat to thermalise the atoms and to
control temperature during the simulation. A layer of atoms within the fixed
atoms are connected to a heat bath as shown in figure 3.8.

The indenter has a fixed layer of atoms at the top, and a layer of ther-
mostat atoms directly below. Before the indentation process, the system is
heated to the required temperature, first by considering that all thermostat
atoms and free atoms are connected to the heat bath for an initial period
to increase the temperature. Subsequently only thermostat atoms are con-
nected to the heat bath until the target temperature is reached. The thermo-
stat atoms remain connected to the heat bath during the indentation process

to maintain a constant temperature.
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Figure 3.8: A schematic diagram of atom types for a thermalised system.
Black atoms are fixed in position during the simulation. The grey atoms are
connected to a heat bath which controls the system temperature during the
simulation. The white atoms are free unconstrained atoms under the MD

methodology.

3.3 Simulation Results

3.3.1 Diamond Indentation Results

A molecular dynamics simulation of nanoindentation of a diamond substrate
was performed using a diamond cube corner indenter. The indenter was
placed with its vertex 5 A above the centre of the unconstrained top surface of
the lattice which was hydrogen terminated to reduce adhesion of the indenter
and the substrate. The Brenner potential, described in section 2.2.4, was used
to describe the interatomic interactions.

The indenter is modelled by 8,432 carbon atoms, the top 4 (111) planes of

which were held fixed and connected to a spring with spring constant 352.4
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N/m, similar to that of a cantilever in an AFM. Other atoms within 22 A
of the top plane were connected to a heat bath to control the temperature
of the indenter during the indentation. The hydrogen terminated diamond
substrate contained 291,232 atoms and had dimensions 145 x 145 x 85 A”.
With the exception of the free top surface, atoms within 5 A of the edge
of the substrate were held fixed, then other atoms within 25 A of the edge
were connected to a heat bath to control the temperature of the substrate
during the indentation. Before the indentation, the substrate and the inden-
ter were both heated to 300 K by the methodology outlined in section 3.2.3.
A prescribed velocity was given to the vertical support, applying a force to
the top indenter atoms connected to the support via the vertical spring. The
velocity applied in this work was 10 m/s because of constraints on simulation
time. This is faster than in the experiments, but is slow enough that local
heating is controlled. The velocity of the support remains constant until it
has moved a vertical distance of 68.4 A towards the substrate. The support is
then held fixed for a holding period of 10 ps at the maximum depth to allow
relaxation before the support is retracted at the same rate as indentation
until the indenter is completely removed from the substrate.

Although the vertical support moves a distance of 68.4 A, the hardness
of the substrate causes a considerable compression of the connecting spring
and the top fixed layers of the indenter only move a distance of 27.6 A
towards the surface. Moreover, there is a further compression of the indenter
by about one third of its height, and hence the apex moves only 18.5 A,
an indentation depth of 13.5 A due to the initial gap between indenter and
substrate. The extent of the indenter compression is shown in figure 3.9. The
distortion of the indenter means that the contact area can not be calculated

from its original geometry, and must be obtained by graphical means from
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the simulation results.

b)
(c) (d) (e)

Figure 3.9: MD simulation of successive images of the cube-corner diamond

indenter as it penetrates the diamond (100) surface showing the indenter
compression. The horizontal line is the position of the surface. The images

are given after every 100 ps of the indentation process.

The force-depth curve for the simulation is shown in figure 3.10. This
curve shows that only elastic deformation occurs until the indenter is ex-
tracted from the substrate at the end of the simulation. From the images of
the simulation in figure 3.12, it can be seen that substrate atoms return to
their original position, however there is some damage to the indenter where
atoms have been left attached to the substrate surface. Although there is a
layer of H atoms on the top surface of the substrate, the indenter consists
purely of C atoms, and these experience strong attractive interactions with
the H atoms of the substrate, hence causing indenter debris to be left on the
surface.

Mechanical properties from the simulation are compared to experimental
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Figure 3.10: Force depth curve for the indentation of the cube corner inden-
ter into H-terminated diamond (100). The curve profile shows only elastic

deformation until the indenter is removed {rom the substrate.

values from the literature [26]. The contact area at the maximum depth is
graphically determined to be 11.24x107'® m?, and the applied load at this
depth is 1423 nN. Using equation 3.2 the contact pressure is calculated as
127 GPa, compared with the experimental value of 95 GPa. Equations 3.3
and 3.4 are used to calculate the Young's modulus of the diamond substrate
as I4; = 940 GPa, also comparable with the experimental value of 912 GPa.

The curve in the force-depth graph follows the power law, I’ oc ™, with
m = 1.6 for this simulation. The curve is comparable to the experimental
result for the indentation into diamond (100), even though the experimental
indentation depth is far greater than in the simulation, see figure 3.11. In
the experiment m = 1.6 which is close to the theoretical value of 1.5 for a
spherical indenter under elastic deformation [20].

The shallow indentation depth and purely elastic deformation of the sub-
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Figure 3.11: The experimental force-depth curve for indentation into dia-

mond (100) [26].

strate gives results for contact pressure and Young's modulus in close agree-
ment with experimental results. The hydrogen termination of the substrate
did not completely remove indenter-substrate adhesion. A solution to this
may be to hydrogen terminate the indenter surfaces as well as the substrate
surface, although this has proved difficult as thermalisation has caused the
hydrogen to leave the indenter at the edges. Another solution may be to
neglect the attractive part of the potential between the indenter and the

substrate, giving purely repulsive forces.

3.3.2 Silicon Indentation Results

A molecular dynamics simulation, modelling nanoindentation of a silicon sub-
strate was performed. A diamond cube corner was used for the indenter and
was initially positioned with its vertex 5 A above the hydrogen terminated

(100) silicon surface, and the (111) planes parallel to the substrate surface.
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Figure 3.12: Images from various stages of the diamond (100) indentation.

The maximum depth is reached after 0.7 ns.

The Tersoff potential (see section 2.2.3) was used to describe interatomic
interactions for the Si atoms in the substrate, and the Brenner potential
(see section 2.2.4) was used to describe interactions between C atoms in the
indenter.

The same indenter and spring were used as for the diamond indenta-
tion described in section 3.3.1, with 8,432 carbon atoms, the top 4 (111)
planes held fixed and connected to a spring with spring constant 352.4 N/m,

and non-fixed atoms within 22 A of the top of the indenter connected to
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a heat bath in order to control the temperature of the indenter during the
simulation. The silicon substrate was hydrogen terminated at the top un-
constrained surface to reduce adhesion with the indenter. The other surfaces
have fixed atoms up to 5 A from the boundaries, and atoms connected to
a heat bath for a further 20 A to control the temperature of the substrate
during the simulation. The substrate contained 205,351 atoms and had di-
mensions 200 x 200 x 102 As. Before the indentation, the substrate and the
indenter were both heated to 300 K by the methodology outlined in section
3.2.3. A velocity of 10m/s was given to the vertical support, applying a force
to the top indenter atoms connected to the support via the vertical spring.
The velocity of the support remained constant until it had moved a vertical
distance of 41.8 A towards the substrate. The support was then held fixed for
a holding period of 10 ps at the maximum depth to allow relaxation before
the support is retracted at the same rate as indentation until the indenter
is completely removed from the substrate. Due to the difference in hardness
of the indenter and the substrate, the indenter compression was negligible.
There was, however, a compression of the spring between the indenter and
the support. Hence, of the 41.8 A displacement of the support, the inden-
ter is displaced 30 A, and due to the initial 5 A gap between indenter and
substrate, the indentation depth h.. = 25 A.

A top-down view of the silicon surface is shown in figure 3.13. The image
of the imprint at the maximum depth shows that the atoms at the tip apex
have been displaced 25 A, and also that there is very little elastic bending of
the surface at the point of indentation. The image of the imprint after the
indenter has been removed shows that the hole depth is around 15 A, hence

there is an elastic recovery of 10 A, 40% of the maximum indentation depth.
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Figure 3.13: A top-down view of the indentation into Si (100): (a) at the
maximum indentation depth of 25 A. (b) after the indenter has been removed.
This illustrates the elastic recovery of the substrate when the indenter is

extracted.

Figure 3.14 shows the force-depth curve from the simulation. The large
hysteresis in this curve shows that there is considerable plastic deformation
of the substrate due to the indentation. The large negative force on the tip
during extraction suggests that even with the hydrogen termination of the
substrate, there is still strong adhesion between indenter and sample.

Mechanical properties from the simulation are compared to experimental
values from the literature [27]. The contact area at the maximum depth is
graphically determined to be 16.68x10'® m? and the applied load at this
depth is 400 nN. Using equation 3.2 the contact pressure is calculated as 24.1
GPa, compared with the experimental value of 12 GPa, this is approximately
double. Equation 3.3 is used to calculate the Young’s modulus of the silicon
substrate as I, = 76 GPa. There is disagreement again with the experimen-
tal result of 140 GPa. These differences may be due to the indentation depth

dependancy of contact pressure, or that fixed boundary conditions were ap-
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Figure 3.14: Force depth curve for the indentation of the cube corner indenter
into H-terminated silicon (100). The curve profile shows extensive plastic
deformation during indentation. A strong adhesion between indenter and

sample is indicated by the negative force during unloading.

plied to the atomistic substrate, which produces an artificially high material
hardness. The experimental indentation depth was about 300 times deeper

than in the simulation.

3.4 Conclusions

At larger indentation depths, the fixed boundary conditions applied at the
edge of the substrate have an effect on the material properties of hardness
and Young's modulus, causing a disagreement with experimental results. A
possible solution to the limitation of system size for nanoindentation simu-
lations, is to introduce a hybrid multiscale model. These models are used to
span the length scales and allow considerably larger volumes of material to be
modelled, without the expense of an atomistic representation in the far field

where continuum mechanics may be used to describe the material. By apply-
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ing continuum boundary conditions to a molecular dynamics simulation, the
artificial fixed boundaries are removed from the edge of the atomistic region.
It is hoped that this will provide a more physically accurate model, giving

results in closer agreement with the experiment.



Chapter 4

Existing Multiscale Models

This chapter will introduce multiscale modelling and give a review of some
of the existing coupling techniques. A published topical review [28] analyses
some of the existing multiscale models, outlining their methodology within
a common framework in order to highlight the differences and advantages
of the models. A detailed description of a selection of these models will be
given in this chapter.

Linking atomistics to continuum models originated in the 1970’s when
work was done creating continuum elasticity boundary conditions for atom-
istic regions in an attempt to extend length scales [29, 30, 31]. Due to
computational constraints, these system were limited to around only 1000
atoms. Sinclair’'s model [31] treated the continuum region analytically, us-
ing equilibrium solutions to modify the atomistic boundary during energy
minimisation.

The modern methods which will be discussed here, implement an embed-
ding continuum region modelled explicitly by the finite element method. The
advantage of the finite element method for this application is the freedom

that the user has in positioning the element nodes at any point in space,

54
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allowing coincidence of nodes and atoms at the interface if necessary.

The three multiscale models to be discussed in this chapter are the mixed
finite element-atomistic (FEAt) method [32], the concurrent coupling of length
scales (CLS) method [33, 34] and the quasicontinuum (QC) method {35, 36].
Each of these methods has a region modelled on the atomistic scale by molec-
ular dynamics, and a continuum region modelled by finite element methods.
The CLS method also has a tight binding region, however, this will not be
discussed here. The way in which these models differ is their respective
treatment of interactions at the interface. Molecular dynamics modelling is
a non-local atomistic description of particles in a material, whereas finite
elements is a local continuum description of a material. When moving from
a region with non-local interactions to a region with local interactions, some
approximation is needed to overcome the incompatibility. Each of the models
introduces a region in which this transition occurs, as shown in figure 4.1.

For all of the models discussed here, there is a direct correspondence
between the black atoms and nodes at the interface. Beyond this interface,
the atoms within the transition region exist so as to make up for the non-
local/local mismatch. Depending on the method, some or all of these atoms
may be required to coincide with the nodes of the finite elements. Moving
away from the interface, elements become increasingly large and accordingly,
the node density reduces.

In the following description of the multiscale models, atoms to the left of
the interface in figure 4.1 which are in the atomistic region will be called free
atoms and labelled with the subscript F'. The black atoms on the interface
which coincide with FE nodes will be called node-atoms and labelled with
the subscript N. The atoms in the transition region which make up for the

non-local/local mismatch will be called imaginary atoms and labelled with



Chapter 4: Existing Multiscale Models 56

>0 0 00000 & o _~—_ 1> "1 -
)Ogocammlsucf © transmon jcontinnum | ...
ool‘eglon pol‘BIOH .l‘_l}”l(m ’
(]
ONp o
D000 0OO0 o
OO0 00 GO0 0 )
I OO0 OO OO0 O
0O00C0ODG O
h o 0O OO0 OOD O.
0O0O0COODO0O0 ]
50000000 o
DO0O00CO0O0O0
0000 COO0 OO o
Q0000000 R
PO DOOO0OOD g o
OCDOCODO0O g
PO O0DOG 00D o
OO0 0 C o0 Q¢ O
o OOOO0oOOo ¢ 'S) s o
00 000D O0O0 .
L OO OO0 OO0 4 O
OO0 C GCC 00O (¥ :
O O OO0 O QO [ &) B .
COO0GCCO OO <
L O0O0O QOO0 { o} ]

Figure 4.1: A 2D example of a typical coupling setup [28]. The atomistic
region on the left is modelled by non-local MD. The continuum region on
the right is modelled by local FE. The transition region in the middle uses
some approximation to overcome the incompatibility of the two methods.
Depending on the method, some or all of the atoms in the transition region

may coincide with element nodes.

the subscript I.

4.1 The Mixed Finite Element-Atomistic Method

The mixed finite element- atomistic method [32] addresses the non-local/local
mismatch by introducing a non-local treatment of the continuum in the tran-
sition region. A close-up of the transition region and the surrounding area

is shown in figure 4.2. Imaginary atoms in the transition region correspond
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directly with the positions of finite element nodes which come down to atom-
istic spacing at the boundary. Because the imaginary atoms make up the
neighbours of free atoms and node-atoms, the size of the transition region is

dependent on the potential function used in the atomistic region.
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Figure 4.2: A 2D schematic of the FEAt transition region [28]. The white
triangular elements in the continuum region use a nonlinear elastic law. The
grey elements in the transition region are treated with a non-local modifica-

tion.

There is no combined total energy function for the FEAt method. Instead,
each region is considered separately and provides the boundary condition for
the other. The energy sum for the atomistic region in the FEAt method
is no different to the total energy calculation for molecular dynamics only

simulations. The energy sum, F* includes the position vectors for all free
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atoms, rp, node-atoms, ry, and imaginary atoms, ry,

B = Z E(rr,ry,TI). (4.1)
iE€RN,I
In the continuum region, elements which make up the bulk of the region
are modelled by non-linear elasticity. Elastic moduli are chosen by first
principles or by experiment to match to second order the elastic behaviour
of the material in the atomistic region under deformation. Elements which
are in the transition region have their energetics described by a non-linear
continuum formulation. Instead of the usual local strain energy density, it is
defined as an integral over the whole body (although in practice a finite cut-
off distance is introduced). The total energy for the continuum region, E°, is
the sum of the energies of the elements in the transition region described by
non-local continuum mechanics, and the sum of the energies of all the other
elements not in the transition region described by nonlinear elasticity theory.
B¢ = uze; E’(Lnonloc) (tx, 1) + F%; E‘&nonlin) (4.2)
where Eﬂ“"““"’) is the non-local energy for element g in the transition region
and Eﬁnmﬁn) is the local, nenlinear energy for element p, not in the transition
region.

During a FEAt simulation, the order of computation which leads to the

interaction between the models is as follows:

e The node-atoms of the atomistic region provide the fixed nodal posi-

tions of the continuum boundary.

o With these fixed boundary positions, a static solution is obtained for

the elements in the continuum and transition regions.

¢ The resulting nodal positions in the transition region give fixed bound-

ary atoms for the next MD time step.



Chapter 4: Existing Multiscale Models 59

The correct choice of elastic moduli in the FEAt method results in agree-
ment of elastic properties of the material under investigation in the atomistic
and continuum regions. Furthermore, the second order term in the finite
element nonlinear elasticity model gives accurate nodal positions in the con-
tinuum region for greater distortions than if a linear elasticity model were
implemented. However, the static solution obtained at each continuum so-
lution is inconsistent with the dynamic solution of the molecular dynamics
model. The boundary atoms for the atomistic region will be fixed at each
time step are resolved to their static position, where in reality they would
be in motion. Moreover, the coupling method in the FEAt model does not
obey Newton’s third law of motion of equal and opposite forces. Free atoms
just outside of the transition region interact with imaginary atoms within
the transition region, however the equal and opposite of this interaction is
not applied to the imaginary atom. The positions of nodes in the transition
region will differ from those that would be obtained by molecular dynamics

and energy will not be conserved.

4.2 The Concurrent Coupling of Length Scales
Method

The concurrent coupling of length scales (CLS) method [33, 34] couples a
continuum region to an atomistic region and is modelled as a unified system
with a combined energy function. A schematic of the transition region for
the CLS method is shown in figure 4.3. The continuum region is described
by a linear elastic finite element model with a dynamic solution to match
the atomistic solution. The elastic constants for the continuum region are

chosen to match those of the atomistic region to minimise the mismatch in
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the models. In the CLS method, the nodal spacing in the transition region
must reduce to the atomistic spacing. The atomistic region is modelled by
molecular dynamics applied to Si via the Stillinger-Weber potential [37] with

two-body and three-body interactions.
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Figure 4.3: A 2D schematic of the CLS transition region [28]. Dashed atom-
istic bonds contribute half of their energy to the systems total energy, as do

the grey elements in contact with the continuum boundary.

In an effort to minimise the non-local/local mismatch, the CLS method
used a weighting scheme for interactions that cross the atomistic/continuum
boundary. For a two-body interaction between atoms ¢ and j, the types of
those atoms determine what contribution will be given to the total energy
of the system. If both atoms are free atoms, or both atoms are node-atoms,
or if one atom is a free atom and one is a node-atom, then the full potential

energy, Vi;, will be counted in the system energy, indicated by the solid lines
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between pairs of atoms in figure 4.3. If one of the atoms is an imaginary atom,
but is connected to a free atom or a node-atom, then half of the potential
energy will be contributed to the system energy, indicated by dashed lines
between pairs of atoms in figure 4.3. If both atoms are imaginary atoms,
then no contribution is made to the total system energy.

The three-body interaction contributions are similar to those of the two-
body interactions. For a three-body interaction between atoms ¢, j, and
k, if all three atoms are imaginary atoms then no contribution is made to
the system energy. If one or two of the three atoms are imaginary atoms,
then half of the potential energy is contributed to the system energy. If all
three atoms are either free or node-atoms then all of the potential energy is
contributed to the total system energy.

The weighting system is also applied to the energies of the finite elements
in the transition region. Most of the elements in this region have nodes
which all coincide with imaginary atoms. These elements contribute their
whole energy to the total system energy. The elements at the boundary have
either one or two nodes which coincide with node-atoms. These elements
have only half of their energy given to the total system energy.

The CLS method applies equal and opposite forces to the nodes of the
finite elements and to the atoms in the atomistic region and the transition
region according to Newton’s third law. This ensures that energy is passed
correctly through the transition region and energy conservation is achieved
for the coupled system. Furthermore, the dynamical solution applied to
the continuum region gives a consistent solution to that of the molecular
dynamics model. The nodes in the transition region, which provide the
boundary condition for the atomistic region, will be in motion during the

simulation, as they would if the whole system were modelled by molecular
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dynamics.

The CLS methods coupling technique does introduce some unnatural phe-
nomena. The weighting scheme that is applied at the boundary of the atom-
istic region and transition region leads to an imbalance of forces on some of
the free atoms. The square atoms in the atomistic region of figure 4.3 only
experience half of the force that should be felt from three-body interactions
from the right. This results in an imbalance in forces at equilibrium, lead-
ing to unnatural vibrations. Furthermore, weighted continuum contributions
lead to a mismatch of elastic properties in the first layer of elements. Between
two nodes, both coinciding with imaginary atoms, no atomistic contribution
is applied, however the continuum contribution is still halved.

Another disadvantage of the CLS method is the limitation of the poten-
tial functions that can be applied in the atomistic region. The weighting
scheme applied to the first layer of elements in the transition region means
that atomistic interactions should only be considered up to imaginary atoms
within this first layer. Because the nodal spacing must come down to the
atomistic spacing, potentials which depend on second neighbour interactions
such as the Ackland potential [11] can not be implemented due to the long

range embedding function.

4.3 The Quasicontinuum Method

The quasicontinuum (QC) method [35, 36] was originally developed for two
dimensional static equilibrium problems. The method has subsequently been
extended to model three dimensional dynamical problems such as nanoinden-
tation [38, 39, 40].

The multiscale approach defines two types of atom, local representative
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atoms and non-local representative atoms. The non-local description of the
material is used in what can be thought of as an atomistic region which
is modelled by molecular dynamics. The local description is modelled as a
continuum region by finite elements. Figure 4.4 shows the transition region

linking the two regions.
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Figure 4.4: A 2D schematic of the QC transition region [28]. Particles A and
P experience ‘ghost forces’ which the QC method balances with a correction
term. The grey elements at the interface contribute only part of their energy

to the total system energy.

The atomic energies of the free atoms and node-atoms are included in the
system energy sum. However, the atomic energies of imaginary atoms are not
included in the system energy as these are included in the continuum energy
calculation. Hence, interatomic forces due to the energy of an imaginary

atom are ignored, but interatomic forces between imaginary atoms and other
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types of atom are included if they come from the energy of a free atom or a
node-atom.

To position the imaginary atoms that lie within elements of the transi-
tion region, the QC method employs the Cauchy-Born procedure [41, 42, 43].
For each element containing imaginary atoms, the nodal displacements are
used to obtain a deformation gradient which is then applied to the inter-
nal imaginary atoms across the whole element. The new positions of the
imaginary atoms in the transition region provide the boundary condition for
the molecular dynamics model of thé atomistic region at each time step.
The Cauchy-Born procedure is also used by the QC method to calculate the
energy E, of each element g [28].

The QC method attempts to correct for the over counting of energies at
the interface by applying a weighting scheme to some of the element energies
in the transition region. A weighting factor is defined, w,, for each element
4, the value of which depends on the number of nodes of the element which
are coincident with node-atoms. In the 2D case with triangular elements,
an element with no boundary nodes has weighting factor w, = 1. One
boundary node in an element gives a weighting factor of w, = -g— and an
element with two boundary nodes has a weighting factor w, = -:1): Similarly
for 3D tetrahedral elements, the weighting factors are w, = 1 when there are
no boundary nodes, decreasing by a quarter for each additional boundary
node to a maximum of 3, where the weighting factor is w, = i.

Defining the atomistic energy of an atom 4 as a function of the atomic
positions of all free atoms, rg, node-atoms, ry, and imaginary atoms, ry, the
total system energy for the QC method is given as

Eoc= > Efrr,rn,rr)+ > wuE,. (4.3)
ie(F,N) B

The approximation made by the QC method in moving from a non-local
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description to a local description of energies and forces is to ignore the atomic
energies of imaginary atoms. The result of this approximation is the imbal-
ance of forces, and hence unphysical motion of particles at equilibrium posi-
tions. The unphysical forces experienced in equilibrium positions are called
‘ghost forces’. Atoms near the interface (such as atom A in figure 4.4) are
not treated correctly as real atoms. This is because the forces on these atoms
due to the motion of imaginary atoms (such as P in figure 4.4) are ignored,
and hence ghost forces are generated. Similarly, forces due to atoms near
the interface, such as atom A, must exert an equal and opposite force on
imaginary atoms such as atom P in order to obey Newton’s third law of mo-
tion and hence to give energy conservation. This results in unphysical nodal
ghost forces in the transition region when the nodes are at their equilibrium
positions.

The QC method correction of ghost forces [44] deals with the unphysical

force imbalance by the following procedure:

e All atoms and nodes are placed at their initial equilibrium positions

{(where forces should be zero).

e The ghost forces are resolved for all free atoms and nodes of elements

in the transition region.

e The negatives of the ghost forces are stored to be applied to their

respective atom/node as correction forces at each step of the simulation.

e The energy function for the QC method is adjusted for the work done

by the correction forces, given as

Eé}C‘ = EQC — ZQrguk (4.4)
k
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where g9 is the ghost force on atom/node k, and uy, is the node/atom’s

displacement.

One of the main advantages of the QC method is its transferability. The
interpolation of imaginary atom positions to make up neighbours of free
atoms allows any potential function with a finite cut-off distance to be im-
plemented. The method applies equal and opposite forces to all particles
according to Newton’s third law and hence energy conservation is achieved.
Furthermore, the correction of ghost forces in the QC method removes the
unphysical imbalance of forces at equilibrium positions. These corrective
forces are applied to nodes of the finite elements and to atoms in the atom-
istic region. If linear elasticity theory is applied to the continuum region
then the constant force applied to the nodes is correct as the force is propor-
tional to the displacement. The atoms, on the other hand, have a nonlinear
description of force with respect to displacement and the correction force
is therefore only correct at equilibrium. Another disadvantage of the QC
method is the weighting applied to element energies at the interface. Inter-
actions between pairs of imaginary atoms are ignored in the QC method,
so when the weighting factor is applied to the element, there is a resulting
mismatch in the material properties between the atomistic region and the

first layer of elements in the transition region.

4.4 Conclusions

Although all three of the methods described here provides a coupling scheme
to bridge the length scales in materials modelling, each has its disadvantages.
Both the FEAt method and the CLS method require that the nodal spacing

reduces to the atomistic spacing in the transition region. For simple crystal
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structures this is not a problem, however, when modelling a more complex
structure, such as an amorphous material or a spinel [45], the tessellation of
the cell becomes considerably more complicated. The FEAt method has a
static solution at each step of the simulation in the continuum region, in dis-
agreement with the dynamical MD solution in the atomistic region. Newton's
third law of equal and opposite forces is not obeyed at the interface between
the models, and hence the FEAt method can not achieve energy conserva-
tion when the system is disturbed. The CLS method and the QC method
both have coupling techniques which produce ghost forces in the transition
from non-local to local descriptions of the material. In the CLS method,
these forces are not corrected and result in unnatural vibrations. The QC
method’s ghost force correction scheme removes these forces at equilibrium,
but the linear correction is inappropriate to apply to the nonlinear atom-
istic region. Furthermore, the weighting schemes that both the CLS and QC
methods apply to the first layer of elements in the transition region generate
a mismatch in elastic constants between these elements and the atomistic
region.

In the following two chapters of this work a multiscale model is developed,
first in 2D and subsequently in 3D, which addresses the disadvantages of
previous methods described above. The objectives in developing this new
model are to create a coupling technique which is simple to implement and
gives a physically accurate description of the material across the interface of

the method.



Chapter 5

Two Dimensional Multiscale

Modelling

The coupling of atomistics to continuum mechanics in 2D is studied in this
chapter. Two multiscale coupling techniques are described and tested, both
of which link a molecular dynamics model to a 2D linear elastic finite ele-
ment model. As well as the coupling techniques themselves, a 2D meshing
algorithm is described, specifically for the purpose of embedding atomistics
within a finite element continuum.

In materials modelling simulations of experiments such as nanoinden-
tation or laser ablation, 2D models cannot properly describe the material
behaviour and 3D models are generally required to describe correctly the re-
sulting physical phenomena. Although 2D models are insufficient to describe
these 3D experiments, they can be useful during the development of a new
technique as the methodology is generally simpler to implement than in the
3D models. Furthermore fewer particles need to be modelled, both of which

ease the debugging process.

63
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5.1 Meshing Technique for Embedding Atom-
istics in 2D

Generating a suitable mesh over any irregular shape is never a trivial ex-
ercise. Multiscale models which couple an atomistic region to a continuum
region may impose an additional constraint that the finite element nodes
are-required to coincide with some or all of the atomistic positions in the
transition region. This is largely dependent on the coupling method that is
used.

When performing simulations such as nanoindentation, the strain field
produced in the atomistic region which propagates into the continuum region
becomes smaller the further the node is from the atomistic region. This makes
it possible to increase the size of elements in the far field and therefore reduce
the density of nodes with distance from the interface. Reducing the number
of nodes in this manner reduces the computational expense at each time step.

Generating a mesh which surrounds a square atomistic region could be
achieved in a number of ways. The method used here is to generate a mesh
over an eighth of the continuum region (shown in figure 5.1 (a)). This section
is then reflected and transformed to cover the entire region, as shown in figure
5.1 (b).

The section of the continuum region in figure 5.1 (a) is meshed based
on a modification to the simple automatic meshing algorithm described by
Cheung [46]. Nodes are positioned on the trapezium such that there are N,
nodes on the short inside edge and N, on the long outside edge. The number
of layers from the inside edge to the outside edge is set to be N, so the

number of nodes on any given layer, NY; is given by

(N:r = Ne)(j B 1)|
N, -1

NY;= N, — (5.1)
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(b)

Figure 5.1: Mesh Generation and Node Density. (a) The node placement
and connectivity is completed for an eighth of the continuum region, (b) it

is then repeated to embed the square atomistic region.

The entire continuum region (figure 5.1 (b)) is initially created with sides
of length 1, and the inner hole for the atomistic region with user defined
length d. The region is subsequently scaled up to match atom positions on

the inside edges. The y values for the N, layers of nodes are calculated by

Y, = i1-d (5.2)

2
Yis; .
Y = Y- (G=2...N)
st

where the s; values vary the rate of change in spacing between layers and are
defined by the geometric progression

51 = 0,5,=1

8; = CSj_1 (] =3... Nx) (53)

Ng
ST = 283' (54)
j=1
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where C' is a magnification factor. If C = 1, the spacing between layers re-
mains constant. Choosing a value larger than 1 gives a spacing that becomes
progressively longer, and hence reduces the node density towards the outside

edge.

Figure 5.2: Node positioning in the trapezium. The number of nodes is
reduced at each layer from the inside edge to the outside edge and are spaced

equally along each layer.

Figure 5.2 shows the node spacing for a particular layer. The y coordi-
nates of the start and end of the line, Y F; and Y'L;, are both given by Y},
which is also the same as the z coordinate at the start of the line, X F}, due
to the 45°angle. The z value at the end of the line XL; = 0.5 due to the
vertical edge half way along the unit square of the continuum region. Equal
spacing between nodes along the line are calculated by

XL;— XF

DX;= =

(5.5)
then the nodal position (25, ;) of a node (¢, 7) is given by

Vg = Y;
t; = XFj+(i—1)DX; (j=1...Nx,i=1...NY;) (5.6)
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Nodes in neighbouring layers are used to make up triangular elements to
tessellate the space between layers. When the number of nodes in the two
layers are equal (NYj;1 = NYj), the meshing is applied as shown in figure
5.3 (a), where opposite corners A and C are connected to give more regular
shaped elements as the distance AC is shorter than distance BD. However, if
the number of nodes is reduced between layers (NY;; = NY; — 1), the final
3 nodes in layer j are connected to the final 2 nodes in layer 7 + 1 according

to figure 5.3 (b).

(a) (b)

Figure 5.3: 2D tessellation between layers of nodes. (a) The number of nodes
in neighbouring layers is equal. (b} The number of nodes is reduced between

layers.

The variable shading in figure 5.1 indicates the node density. The density
of nodes increases as the shading becomes darker around the square atomistic
region in the middle. A typical mesh will have 100 nodes on each inside edge
to coincide with a 100 x 100 square of atoms, with elements expanding to
the outside boundary where each side is 10 times longer than on the inside

and has just 10 nodes. The increase in length and reduction of nodes on the
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outside edges leads to the spacing between nodes increasing 100 fold.

5.2 Matching Elastic Constants in 2D

In a multiscale model which couples finite elements to molecular dynamics,
the description of the elastic behaviour of the material under investigation
is governed by the different parameters in the finite element model and the
potential function implemented in the molecular dynamics model. In order
to model correctly the material across the interface, it is important to match
the elastic properties in the finite element model with the molecular dynamics
model to prevent reflection and diffraction when strain fields or elastic waves
pass from one region to another. This is possible by calculating the Young’s
modulus and Poisson’s ratio in terms of the parameters of the potential
function used in the molecular dynamics model. Figure 5.4 shows a n x m
grid of atoms in a simple square lattice which, for the 2D development work
in this chapter will have interatomic forces calculated via the Lennard-Jones
potential described in section 2.2.1 and will be distorted to determine the
elastic properties.

The Young’s modulus of a material may be calculated by dividing the

stress applied to the material by the strain induced by that stress.

stress

E (5.7)

&[]l

~ strain

The cross-sectional area of the ‘beam’ in figure 5.4 is given by A = mrqt,
the natural length of the ‘beam’ is [y = nry where ry is the atom’s equilibrium
separation, and Al is the beam’s elongation due to the total force on the

beam, F == m F}, shown in figure 5.5, where F, is the applied external force.
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Figure 5.4: n x m grid of atoms
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Figure 5.5: Elongation of an n x m grid of atoms due to an applied force at

the ends.

The force on each of the end atoms is the only remaining unknown and
should be calculated in terms of whichever potential function has been used.

By taking the Taylor series expansion of the potential function V(r),
/ Ar? .,
V(?‘o + AT) = V(To) + ArV (7'0) + T Y (?‘0) + ... (58)

ignoring higher order terms and noting V'(ry) = 0, the force between two

atoms separated by Ar (= Al/n) is
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dy
d(Ar)

Making these substitutions into equation 5.7 leaves an expression for the

F, = = ArV'(r). (5.9)

Young’s modulus in terms of the potential function and the thickness of

the material, £. The value chosen for this thickness is not important as it is

eliminated when constructing the stiffness matrix in the finite element model.
_ mV"(ro) % nro _ V'(ro)

E = = 5.10
mrot Al t ( )

For the Lennard-Jones 6-12 potential, the equilibrium separation is ro =

v/2 o and the second derivative of the potential function is given by

156012 4208
ng(r)=4e( mran )

- (5.11)

Substituting ro into the second derivative of the potential function, then
the solution into equation 5.10, the Young’s modulus in terms of the Lennard-
Jones potential parameters is

_36\?/416

2

E (5.12)

t o

When considering the Lennard-Jones 6-12 potential on a 2D simple square
lattice, the uniform elongation of the atoms in one direction will result in no

change in the other giving a Poisson’s ratio v = 0.

5.3 Finite Element Time Integration

The finite element model for linear elasticity described in section 2.3 is con-
ventionally solved to find displacements caused by some applied force. This
static solution represents the total relaxation of the system and is inconsistent

with the dynamic solution of the molecular dynamics model.
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In order to obtain a dynamic solution in the continuum region a mod-
ification to the FE model is required. By considering that any node may
already be displaced at a particular time step of a simulation, a resulting
restoration force on the node is required to apply the velocity Verlet algo-
rithm (see section 2.1) and move the FE system forward in time. In standard
FE packages, equation 2.48 is usually solved for displacements Q. However,
it is possible to calculate the resultant force on each node due to the fact

that it is displaced from its equilibrium position by equation 5.13.

F=-KQ (5.13)

Applying the same numerical integrator to advance the continuum region
as is used in the atomistic region makes the dynamical solution in the two
regions consistent with each other. The acceleration of the node is calculated
in the usual way, a = -M{; For 2D triangular elements, the mass of the node,
M4, is based upon a third of the area of its surrounding elements, splitting

the mass of the element between each of its three nodes. Say a particular

node is surrounded by n elements, ¢; . .. e,, with areas A,, ... A,,, its mass is

Areaof element k= A,

Figure 5.6: Calculating the mass of a node. For 2D triangular elements, a

third of the mass of the elements is attributed to each of the three nodes.

calculated by equation 5.14, where p is the mass per unit area. This density

can be calculated by considering the mass of an atom and how many atoms
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there are in a unit square.

7n Aek
Muge =p Y 3 (5.14)
k=1

5.4 Imitial Coupling Method for up to Second
Nearest Neighbours

In this section, a method is described for coupling first and second nearest
neighbour atomistics to a continuum model in the far field. Newton's third
law of motion states that for every action, there is an equal and opposite reac-
tion. Independently, both the finite element method and molecular dynamics
model obey this law, however, when coupling the two models to create a mul-
tiscale model this is not guaranteed and some existing methods fail in this
regard. Care must be taken to ensure that forces at the interface are dealt
with in agreement with Newton’s third law. This is a main consideration in

developing the method that follows.

5.4.1 Methodology

When calculating the forces on each finite element node or molecular dy-
namics atom in the coupled system, if the force on atom/node i, due to
atom/node j is defined as F;, then for pair potentials, Newton’s third law
is obeyed iff Fj; = —Fj};. One way to make certain of this is to ensure that
the same model (FE or MD) is used to caleulate the force between each pair
of particles. A technique to do this is described in this section for the cases
where a pairwise potential function cut-off includes first nearest neighbours

in the normal crystal structure. A method where second neighbours are
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included is also developed.

Figure 5.7 shows the positions of nodes and atoms at the coupled interface.
Finite elements are represented as white triangles with crosses indicating
the FE nodes, and atoms are represented by grey circles in this model. At
the interface, there is a direct positional correspondence between atoms and
nodes, hence the nodal spacing must reduce to the atomic spacing. This
may be achieved by applying the correct scaling of the continuum region
described in section 5.1. The FE interactions in the continuum region are
entirely included in the coupled model where the connectivity of the system
defines which nodes interact with each other. A modification is made to the
MD model interaction along the interface to account for the FE interactions.
If a pair of atoms that would normally interact via MD, both coincide with

a pair of connected nodes, the MD interaction is omitted from the model.

1 2 3 4 5
.
..... 5 O O
6 7 8 9 10

Figure 5.7: Schematic of the coupled interface in 2D. FE nodes (X) coincide

with MD atoms at the interface.

Table 5.1 indicates which model is used to calculate the particle forces
present for first nearest neighbour atomistic and continuum interactions of
the particles in figure 5.7. The method used to calculate the force on atom/node
i due to atom/node j is placed in table cell ij, described as ‘FE’ if the force
is calculated by the finite element method, or ‘MD’ if the force is calculated
by the molecular dynamics model. The symmetry of table 5.1 verifies that
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Newton’s third law has been obeyed in the first nearest neighbour case.

12| 3] 4afls|6|7] 8] 910
1l -{FE|l - -1 - |FE|FE] - | - | -
2 |FE| - {FE| - | - | - |FE|FE| - | -
s -|FE| - |MD| - | - | -|FE]| - | -
4 -1]-|MD| - |MD| -]|-| - (MD]| -
50 -|-|-|Mp|] - |-|-]-1|-|MD
6 |FE| - | - | -1 - | -|FE| - | - | -
7 |FE|FE| - | - | - |FE| - |FE| - | -
s8| -|FE|FE| - | - | - |FE| - |MD]| -
9| -|-1|-|MD| - |-1]-|MD| - |MD
wo|-t-|-1]-|mMp|-]|-]-|MD]| -

Table 5.1: First nearest neighbour atomistic and continuum interactions for
particles in figure 5.7. The symmetry indicates that Newton’s third law is

obeyed.

Table 5.2 indicates the model used to calculate particle forces present for
second nearest neighbour atomistic interactions and first nearest neighbour
continuum interactions of the particles in figure 5.7. Consider, for example,
interface point 8, the first nearest neighbours are points 3, 7 and 9, and
the second nearest neighbours are points 2 and 4. The forces between point
8 and points 2, 3 and 7 can be calculated using the finite element model
because there are elements which connect these points. There are no such
connections between point 8 and points 4 and 9, so the atomistic potential
must be used to calculate the forces between these points. Table 5.2 is again

symmetric and hence the coupled model obeys Newton’s third law.
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Nl 1 2 3 4 5 6 | 7 8 9 10
1 - |FE| - - - (FE|FE| - - -
2 |FE| - [ FE | - - - |FE| FE | - -
3 - |FE| - |MD| - - - | FE [MD| -
4 - - |{MD| - |MD]| - - |MD | MD | MD
5 - - - | MD| - - - - | MD | MD
6 (FE| - - - - - {FE| - - -
7T | FE|FE| - - - |FE} - [ FE | - -
8 - |FE| FE | MD| - - |FE| - [MD] -
9 - - {MD|MD |MD| - - |MD| - |MD
10 f - - - |MD|MD| - - - |MD| -

Table 5.2: Second nearest neighbour atomistic interactions and first nearest
neighbour continuum interactions for particles in figure 5.7. The symmetry

indicates that Newton’s third law is obeyed.

5.4.2 Testing and Results

To test the 2D coupling technique, a suitable procedure is required. One
objective of creating a coupled model is to span the length scales when mod-
elling nanoindentation, hence a 2D version of this experiment is used to test
the model here. A single layer of atoms surrounded by a 2-dimensional con-
tinuum surface loosely represents a ‘thin film’. Slowly forcing an indenter into
the atomistic region of the film produces a strain field which moves across
the interface of the coupled model into the continuum region. The dynamic
visualisation of the simulation allows analysis of the coupling technique as
the field crosses the models interface.

For this 2-dimensional case the depth of the indenter into the atomistic
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region is described by the simple quadratic function 5.15 where % is the

distance from the z and y-axes to the paraboloid’s central axis, as depicted

I(z,,¢) = % [(w - %)2+ ( - %)2 - a(t)] (5.15)

The parameter «(t) changes linearly with time from zero at the start of the

in figure 5.8.

simulation, to a maximum value of q,,,, after some specified time into the

simulation, causing the tip of the indenter to lower to a depth of d,.... By

- )2 —p

Figure 5.8: Thin film indentation used to test the 2D model.

considering the required indenter depths at the central axis and the required

diameter, D4, it is easy to find expressions for e, and B.

Cmaz = (%ﬂ’-)z (5.16)
g = Zme (5.17)

dmm:
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At each time step of the simulation a(t) is updated and a new value
of I(x,y,t) is calculated for each atom using the atom’s original z and ¥
coordinates. If this value is negative, the atom’s z coordinate is set to this new
value, causing an indentation into the atomistic region. The 2-dimensional
finite element model only models displacements propagated in the z and y
directions, hence the displacement in the z direction should be small.

The parameters in table 5.3, have been used to produced the results shown
in this section, giving 10,000 atoms and 10,952 nodes. To model this size of
plane using molecular dynamics alone would require approximately 1,000,000

atoms.

Parameter Value

Atoms 10,000
Inside edge nodes 100
Outside edge nodes 10
Total nodes 10,952
Elements 21,488
Time step ifs
Indenting time 50ps
Total time 400ps
Indent depth, 2z | 0.25 A
Indent diameter 25 A

Table 5.3: Parameters used for the 2D thin film indentation test simulation.

Snapshots have been taken at various points during the simulation and
are displayed below in figure 5.9. The atomistic region, displayed to the left,
comes from the blank square of the corresponding continuum region to the

right. After 150ps, the atomistic region shows little change and therefore
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figures 5.10 and 5.11 only display the continuum region. The colour ranges
from blue, for no displacement, to red for displacement of 1 x 102 A,

The image in figure 5.9(a) taken at 40ps shows the indentation in the
centre of the atomistic region. Besides the central depressed area, atoms
displacements propagate out along directions parallel to the crystal lattice
directions, this is due to the square lattice and the first nearest neighbour
interactions in the molecular dynamics model. At 40ps these displacements
have just crossed the interface into the continuum region, shown in figure
5.9(a) at the centre of each inside edge. The two figures 5.9(b) and 5.9(c)
at 70ps and 110ps respectively, show an increase in the displacement and
further propagation across the interface, without reflection or disturbance.

Figure 5.9(d) depicts the simulation 100ps after the indenter stopped
moving into the film and the displacement field around the indentation shows
no significant change as the simulation progresses. In the continuum region,
waves have formed from the displacement field and are moving away from
the atomistic region.

Interference patterns due to the reflected wave interactions are visible in
both figures 5.10 and 5.11. First, waves cross on their way to the outside
boundary as in figure 5.10 at 225ps, the waves then reflect off the outside
boundary and more interference occurs, as is the case at the end of the

simulation in figure 5.11.

5.4.3 Conclusions

The results from the simple test of the 2D model show that the coupling
technique allows interaction between the atomistic and continuum regions.
The strain field created by the indentation in the atomistic region is trans-

mitted to the continuum region across the interface, then the elastic waves
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(a) 40ps (b) TOps

(¢) 110ps () 150ps

Figure 5.9: Images from the test simulation at various time steps. (a) The
strain field can clearly be seen in the MD region, but is yet to cross into
the continuum region. (b) The strain field has begun to cross the interface
into the continuum region. (c¢) Larger displacements are visible further into
the continuum region. (d) The motion of material due to the indentation
generates elastic waves in the continuum region. These are fed back into the

atomistic region via the coupled interface.

generated in the continuum region are fed back into the atomistic region.
However, this method is imited to first and second nearest neighbour inter-
actions of a simple square 2D lattice. Beyond this, when considering third
nearest neighbours or different 2D lattice structures such as 2D close packed,

the method fails. This is due to the interactions which are required for MD
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Figure 5.10: Snapshot at 225ps. Interference patterns are visible where elas-

tic waves have crossed one another.

atoms with particles within the continuum, which under this scheme would
already be accounted for by the FE model.

In order to progress to multiscale modelling in 3D, which for realistic
potential functions will need to include interactions that cross the interface,
a more generic model is required that is able to incorporate any crystal

structure or potential function.

5.5 Position Matching Generic Coupling Tech-
nique in 2D

Most interatomic potential functions, some of which are described in section

2.2, have a finite cut-off distance beyond which the interatomic forces are
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Figure 5.11: Snapshot at 400ps. The waves bounce off the outside boundary

of the continuum region creating further interference patterns.

neglected. In this section, a coupling method linking a non-local molecular
dynamics description of an atomistic region to a local finite element contin-
uum region is described which has been developed to take advantage of this
cut-off distance. The interface of the two regions is not as straightforward as
in the previous method, however, this is necessary in order to allow realistic
potentials with long range interactions to be applied. The method is generic
in that any potential function with a finite cut-off distance may be applied

in the atomistic region.

5.5.1 Methodology

The main objective of this method is to address the issue of moving from

a non-local description of the atomistic region, to a local description of the
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continuum region. The coupling method introduces an overlap of the MD
atoms and the continuum elements where this transition will occur. This
overlap of the two models will be referred to as the transition region. A
schematic representation at the interface of the coupled model is shown in
figure 5.12. In this model, there are two main types of atom. Atoms which
have a full complement of neighbours, as they would in a fully atomistic model
will be referred to as free atoms. Atoms which do not have a full complement
of neighbours are coloured green in figure 5.12 and will be referred to as
imaginary atoms. These imaginary atoms exist to provide the neighbours of
free atoms near the interface, and therefore, the size of the transition region
and number of layers of imaginary atoms depends on the cut-off distance of

the potential function.

Figure 5.12: Schematic of the 2D generic coupled interface. The green imag-
inary atoms are contained within the first layer of elements and provide

neighbours of the atoms modelled by MD.

The meshing of the continuum region near the interface is made coarse
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enough that all imaginary atoms are contained within the first layer of ele-
ments. The nodes on the inside layer must coincide with free atoms as these
will be used to pass information from the atomistic region to the continuum
region. The atoms which coincide with these nodes will be called node-atoms
and are coloured dark blue in figure 5.12. There are free atoms which have a
full complement of neighbours that lie on the boundary of the continuum re-
gion (coloured light blue in figure 5.12). Although these atoms are modelled
in the same way as all other free atoms, they will be labelled separately as
face atoms and will be used to analyse the method later.

The node-atoms are a subset of the free atoms of the system and hence
have their positions calculated as a particle of a molecular dynamics simula-
tion, via an atomistic potential function. The procedure to pass information
to the continuum region about distortions in the atomistic region is then
as follows. The node-atoms are in their correct positions according to the
non-local atomistic description. The positions of the corresponding nodes
are moved to match the positions of the atoms, giving a distortion to the FE
model and hence a resulting force on other nodes. The dynamical solution
in the continuum region is then advanced via the velocity Verlet algorithm.

To complete the coupling of the models, a feedback mechanism is required
to inform the atomistic region of the distortion in the continuum region. For
the method described here, this is achieved by a linear interpolation proce-
dure based on the displacements of nodes of the finite elements. The imagi-
nary atoms each have a fractional coordinate (£,7) within an element at the
edge of the continuum region. After the element has been distorted due to
the position matching of node-atoms and subsequent dynamical FE response,
the internal imaginary atoms are repositioned such that the fractional coor-

dinates are kept constant within the deformed element.
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The set of equations 2.41 can be used to describe the x and y coordinates
of a point (z,.y,) within an element in terms of the point’s fractional coor-
dinates (&,.7,) and the element’s nodal positions. Rearranging this for the
fractional coordinates for an imaginary atom within an element in terms of
its cartesian coordinates gives

gy + PBeyp + Ve

& = A
i Gtp Z,,yp + M (5.18)

where the coefficients are given in terms of the elements nodal positions as

Qe = Tag, P = —Y23

Ye = Y23T3 — T23Y3

Oy = —I13, ﬁp, = W3
Tn = Y3T13 — Y13%3 (5.19)
and
A = —yo313 + T23ln3. (5.20)

Because the fractional coordinates of imaginary atoms are kept fixed during
a simulation, they are calculated once at the beginning of the simulation
and stored so that they do not need to be recalculated at each step. The
displacement (u,,v,) of an imaginary atom is calculated using the set of
equations 2.42, its fractional coordinates and the nodal displacements of the

containing element.
U, = ‘umfp i U3ty + Uug
vp = v13&p + vagnp + Us. (5.21)

These displacements are applied to the imaginary atoms after each FE time
step so that the atom positions are correct before the next MD force calcu-

lation.
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Assigning Imaginary Atoms to Elements

The above method for positioning imaginary atoms according to element
distortions assumes that it is known which element an atom lies within.
Therefore, a technique is required for determining this for each imaginary
atom in the transition region. The meshing algorithm described in section
5.1 tessellates the continuum region entirely with triangular elements, i.e.
the 2D simplex.

The 2D simplex [47], o5, with 3 vertices Py (xy, 1), Pa(22. y2) and Ps(z3. y3),
is defined as the set of points given by Ef:, A P;. where the A; are real num-
bers such that A\; > 0and 3=7_; \; = 1. Hence to determine if a point p(z,, y,)

lies within the triangle with these vertices, the set of simultaneous equations

/\1171 + /\2.’172 + )\3.’173 = Ip
Myt + X + Asys = Y
M dirids = 1 (5.22)

are solved for the A;. The point lies in the triangle if A\; > 0 for all i, and since
the fractional coordinates remain constant, the imaginary atom stays in that
triangle regardless of distortion. Hence the procedure for assigning imaginary
atoms to elements needs to be performed only once at the beginning of the

simulation.

5.5.2 Testing and Results

The position matching coupling method described above is designed to allow
the interaction between an atomistic region and a continuum region, such
that the phenomena due to a disturbance initiated in the atomistic region

may pass into the continuum region or vice versa. To test this coupling
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method two test cases have been considered, quasi-static strain field prop-
agation and elastic wave propagation. For both cases the Lennard-Jones
potential (see section 2.2.1) was used to describe the interatomic forces in
the atomistic region, and due to the stability of this potential under the high
deformation in these test cases, the atoms were allowed only to move in the
plane of the 2D continuum region (the 2 and y directions), and were arranged
in the 2D close-packed lattice structure. The initial system setup and system

parameters were the same for both simulations and can be seen in table 5.4.

Parameter Value
Atoms 10,151 (250 x 217 A%
Inside edge nodes 25
Outside edge nodes 8
Total nodes 3,080 (2500 x 2165 A”)
Elements 5,944
Time step Ifs

Table 5.4: Parameters used for the 2D strain field and elastic wave propaga-

tion simulations.

In quasi-static materials experiments such as nanoindentation, the mate-
rial experiences a long range strain field. To recreate this phenomenon in the
2D coupled model, atoms initially within 64 A of the centre of the atomistic
region were moved outwards to a maximum of 5% of their original distance
from the centre at a rate of 10 m/s. These atoms were then held fixed in
position to continue to analyse the response in the surrounding material and
the transition of the strain field from the atomistic region to the continuum

region. Images of the 2D simulation at various time steps are shown in figure
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5.13. These images show the strain field crossing the interface smoothly and
without reflection. The same hexagonal shape of the strain field (due to the

2D close-packed structure of the lattice) is seen to be transfered into the

continuum region.

(a) 8ps (b) 16ps
(c) 24ps (d) 32ps

(e) 40ps (f) 48ps

Figure 5.13: Images from the strain test simulation taken at 8ps intervals.
Both the atomistic and continuum regions are shown on the left and right
of each figure respectively and are coloured according to displacement from
zero (blue) to 0.2 A (red). The left hand image is the expanded version from

the square in the centre of the right hand image.
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The induced distortion of the atomistic region stops after 40ps and the
strain field in that region remains much the same after around 48ps, hence
figure 5.14 shows images of only the continuum region after this time. These
images show the long range strain field generated in the atomistic region
continue to spread into the far field of the continuum region.

The identical distortion of the atomistic region was applied to an atom-
istic region with fixed boundary conditions to investigate the effect of the
embedding continuum region. Images of the atomistic simulation are shown
in figure 5.15 taken at the same times as those in figure 5.13 to give a compar-
ison of the two simulations. Obviously the fixed boundary conditions prevent
the strain field from passing the edge of the atomistic region, an unnatural
restriction on the simulation as shown by the results from the coupled model.
Although difficult to visualise from the static images, the fixed boundary con-
ditions also generate reflected waves which continue to disturb the atomistic
region for the remainder of the simulation, unlike the static atomistic region
in the coupled model after the initial 48ps.

Figure 5.16 shows the energy in the atomistic and continuum regions
along with the total system energy for the coupled model. During the first
40ps the energy increases in the atomistic region as the material in this
region is expanded. Due to the coupling method, the strain field is passed
into the continuum region and the energy also increases in this region as
expected. The expansion of the atomistic region stops after 40ps and the
total system energy is conserved for the remaining time of the simulation.
There is. however a short period of about 8ps where the strain field continues
to spread from the atomistic region into the continuum region, which is
illustrated by the drop in energy in the atomistic region and a continued

increase in energy in the continuum region.
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(a) GOps (b) RB0ps
-
(¢) 100ps (d) 120ps

Figure 5.14: Images of the continuum region from the strain test simulation

taken at 20ps intervals.

The comparison of the total system energy in the coupled model and
the atomistic model with fixed boundary conditions is shown in figure 5.17.
A considerably larger energy is needed to produce the same distortion of

the atomistic region in the atomistic only simulation. This is due to the



Chapter 5: Two Dimensional Multiscale Modelling 95

(a) 8ps ) 16ps 1) 24ps
(d) 32ps (e) 40ps (f) 48ps

Figure 5.15: Images from the strain test simulation with fixed boundary
conditions taken at 8ps intervals. The fixed boundaries prevent the strain

field from spreading into the far field.

fixed boundary conditions producing an artificially high resistance to the
distortion.

The face atoms defined in section 5.5.1 are a subset of the free atoms in the
system. As such, these atoms have a full complement of neighbours and are
modelled entirely by the MD model. However, these face atoms lie on the
face of an element of the continuum region and the position interpolation
procedure used to reposition the imaginary atoms can be used to give a

repositioning of the face atoms. The displacement of one particular face
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Figure 5.16: The energy in the atomistic region (blue), the continuum re-
gion (green) and the total system energy (red) for the coupled strain field

propagation simulation.
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Figure 5.17: A comparison of the total system energies for the coupled model

(red) and the atomistics only model (blue).

atom is shown in figure 5.18 along with the displacement of the same atom
calculated by the interpolation procedure. This gives an indication of the
accuracy of the interpolation approximation at each step, which is shown by

figure 5.18 to be perfect for the 2D strain test case as there is no difference
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between the displacements calculated by the two models.
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Figure 5.18: The displacement of a face atom during the 2D strain propaga-
tion test simulation, calculated by atomistics (blue) and continuum mechan-

ics (red).

In order to test the ability of the coupled model to transmit elastic waves
generated in an atomistic region into a continuum region, a second test case
has been examined. The same initial system was used as in the strain field
simulation, however, instead of slowly moving atoms apart to induce a strain
field, the atoms within 25 A of the centre of the atomistic region were drawn
towards the centre during the initial 10ps and were subsequently released
to generate elastic waves that propagate into the continuum region over the
next 90ps. Images of the simulation are shown in figures 5.19 and 5.20, of
the atomistic and continuum regions respectively.  After 16ps the elastic
waves begin to move from the atomistic region into the continuum region,
resulting in a small reflection of the waves back into the atomistic region.
One of the main objectives of adding the embedding continuum region is to
remove reflection of waves which interfere with the simulated experiment.

To see how effective the coupling method is at removing the reflection, a
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21.7 nm

) 10ps ) 20ps (¢) 30ps

(d) 40ps (e) 50ps (f) 60ps

Figure 5.19: Images of the atomistic region from the elastic wave test simula-
tion taken at 10ps intervals. There is very little disturbance after the waves

have entered the continuum region.

comparative simulation has been performed with the same wave generation,
but with fixed boundary conditions around the atomistic region. Images of
this simulation are shown in figure 5.21.

Without the continuum region to transmit disturbances into the far field,
the elastic waves are totally reflected back into the atomistic region. When
compared to the images in figure 5.19 of the atomistic region from the coupled

model, it can be clearly seen that the reflection is significantly reduced by
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) 10ps (b) 20ps
(¢) 30ps (d) 40ps
(e) 50ps (f) 60ps

Figure 5.20: Images of the continuum region from the elastic wave test sim-
ulation taken at 10ps intervals. The elastic wave generated in the atomistic

region moves smoothly into the continuum region.
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(a) 10ps (b) 20ps (¢) 30ps
I

(d) 40ps (e) H0ps (f) 60ps

Figure 5.21: Images of the atomistic region from the elastic wave test simu-
lation with fixed boundary conditions. The elastic waves are reflected back

into the atomistic region and result in interference waves.

the addition of the embedding continuum region.

5.5.3 Conclusions

The results from the two test simulations have shown that the 2D position
matching coupling technique can be used to model long range phenomena
such as strain fields and elastic wave propagation in the far field. In both

cases, the unnatural reflection observed when fixed boundaries are applied
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to atomistic simulations is almost entirely removed. The removal of these
reflected waves from 3D simulations of material deformation would prevent
unrealistic interference with nanoscale phenomenon. Furthermore, in the
strain field simulation the energy required to distort the material was sig-
nificantly lower than in the atomistic only simulation due to the artificial
hardening by the fixed boundaries. This could make a significant difference
to material properties calculated from simulation results. Unlike the initial
model described in section 5.4, the position matching coupling technique
could work with many-body potentials where the concept of an interatomic
force F}; does not exist. Therefore, in the next chapter, this method will
be extended to 3D so that it may be applied to real experiments such as

nanoindentation.



Chapter 6

Three Dimensional Multiscale

Modelling

The work in this chapter follows from the development work of chapter 5.
The position matching coupling technique in 2D (described in section 5.5)
allows long range effects of nanoscale distortions to be modelled in the far field
by continuum mechanics. However, modelling realistic scientific experiments
requires a 3D model to replicate accurately the experiment and hence, the
position matching technique has been extended to 3D. As well as describing
the extension of the position matching technique to 3D, this chapter also
describes another coupling technique with an improved method for dealing
with interface interactions.

When implementing a 3D multiscale model, the coupling technique is
not the only problem to be addressed. The tessellation of the embedding
continuum region in a manner suitable for coupling to an atomistic region is
by no means a trivial exercise, and like in the 2D case, the elastic properties
of the non-local atomistic interactions must match the elastic properties of

the local continuum interactions. Both of these issues are addressed in this

102



Chapter 6: Three Dimensional Multiscale Modelling 103

chapter.

6.1 Meshing Technique for Embedding Atom-
istics in 3D

The multiscale models described in this section couple an atomistic model
to a continuum region modelled by a 3D linear elastic FE method. There-
fore, a method is described here to tessellate a continuum region suitable for
embedding an atomistic region to model nanoindentation experiments.

The process begins by generating five cuboidal pillars poesitioned around
an empty cube (which will be filled by the atomistic region) as shown in
figure 6.1. All of the pillars have the same dimensions and are made up of
smaller cubes which in turn are tessellated into 6 tetrahedra as this gives
elements of equal volume [48|. The cubiods are to be deformed to fill the
space between them (the blue box in figure 6.1) and hence to avoid creating
highly irregular tetrahedra, the orientation of the cube’s tessellation depends
on which quarter of the square cross-section of the cuboid it lies within. The
pillars labelled a-d are stretched so that the outside square faces match the
corresponding blue rectangle on the boundary of the continuum region, as
illustrated for pillar a in figure 6.2(a). Pillar e is stretched so that the square
on its bottom surface matches the corresponding blue square on the bottom
surface of the continuum region as illustrated in figure 6.2(b). The nodes of
the tetrahedral elements are repositioned linearly within the pillar such that
their fractional positions remain constant.

Once the space has been filled, repeated nodes where the deformed pillars
meet are removed and the layers of nodes in the outer regions for the mesh

may be stretched even further to reduce the node density in the far field and
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Figure 6.1: A schematic diagram of the initial pillars used to tessellate the

continuum region.

model larger volumes of material with the same computational expense.

(a)

Figure 6.2: The cuboidal pillars are stretched to fill the space between them.

(a) shows the final shape of pillar a which is also used for pillars b-d. (b)

shows the final shape of pillar e.

(b)
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6.2 Matching Elastic Constants in 3D

Molecular dynamics simulations calculate interatomic forces via empirical
potential functions such as those described in section 2.2. The potential
functions used to describe real solid materials are fitted to empirical data
including the elastic constants C'};. (15 and the shear modulus C'y;. The 3D
finite element model for stress analysis described in section 2.3.2 requires the
Young’s modulus and the Poisson’s ratio to describe the elastic response of
the material under investigation. By considering the relationships between
the Young's modulus, £, bulk modulus, B, and shear modulus for isotropic
materials in equations 6.1 and 6.2, and noting that the bulk modulus is re-
lated to the elastic constants by B = (C); +2C,)/3, the parameters required
for the FE model can be obtained from the empirical data used to fit the
potential function.
E

a 3(1 — 2v)

, F
Cu = 2(1—}—1/) (6.2)

B (6.1)

Eliminating B and rearranging for E and v gives the following expressions
g €X]

for the FE parameters.

E— 3(’11044 + 6(-712(:'44
Ch + 2C12 + Caq

(6.3)

_ Ci1 + 2C12 — 2Cy

6.4
2C, +4C5 + 2Cyy 64

v/

The Ackland potential for Au [11] and Fe [12] are fitted to the elastic
constants in table 6.1. The above expressions have been used to calculate
the Young’s modulus and Poisson’s ratio, also shown in table 6.1, which have

been used in the multiscale simulations in chapter 7.
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" Cn Cia Cyy E v
(GPa) (GPa) (GPa) | (GPa)

Au || 186.0 157.0 420 | 116.2 0.384
Fe | 243.0 137.9 114.7 | 282.0 0.228

Table 6.1: The elastic constants C;, Ci2 and the shear modulus C'yy are used
to fit the potential function and to calculate the Young’s modulus. E, and
Poisson’s ratio, v for the FE model. This ensures that the elastic properties in

both the atomistic and continuum regions of a multiscale model are matched.

6.3 Assigning Imaginary Atoms to Elements

For the 3D multiscale models described in this chapter, the methodologies
require a technique to determine which element each imaginary atom in the
transition region lies within. The meshing algorithm described in section
6.1 tessellates the continuum region entirely with tetrahedral elements, i.e.
the 3D simplex. Hence, the method for assigning atoms to 2D triangular
elements (the 2D simplex) in section 5.5.1 is extended here to 3D.
The 3D simplex [47|, o3, with 4 vertices at the points Pj(z,, ¥, 21),
Po(z2, 42, 22), P3(3.ys3, 23) and Py(x4, 4, 24), is defined as the set of points
! \iP;, where the \; are real numbers such that \; > 0 and Y3} | \; = 1.
Hence to determine if a point p(z,,yp, 2,) lies within the tetrahedron with

these verticies, the set of simultaneous equations

/\11‘] -+ )\-)_:E-z -+ )\3.21?3 + AZs

Ay + Ay + Azys + Ay

.
5

A2+ Aozo + Azzs + Mgz = Zp
M+t 4+N = 1 (6.5)
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are solved for the A;. The point lies within the tetrahedron if A; > 0 for all
i, and since the fractional coordinates remain constant, the imaginary atom
stays on that tetrahedron regardless of distortion. Hence the procedure for
assigning imaginary atoms to elements needs to be performed only once at

the beginning of the simulation.

6.4 Position Matching Generic Coupling Tech-
nique in 3D

The position matching technique described in section 5.5 is extended to a
fully 3D model. The system is modelled by embedding an atomistic region in
the centre of a continuum region with coupling along the boundaries. Figure
6.3 illustrates schematically the geometry involved. The atomistic region is
positioned at the top of the continuum region so that it has a free surface.
The dynamical processes due to experiments (such as nanoindentation or
laser ablation) are assumed to be initiated at the free surface with their

effect transmitted to the continuum region as the disturbance spreads.

6.4.1 Methodology

As in the 2D position matching method, a transition region is defined where
the atomistic and continuum regions overlap, and it is this transition region
that allows the non-local atomistic description to local continuum description
transformation to occur. Imaginary atoms exist at regular lattice positions
within the transition region, acting as neighbours of the free atoms in the
atomistic region. Hence, the thickness of the transition region is governed

by the cut-off distance of the potential function used in the MD model, as
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Figure 6.3: Embedding an atomistic region within a continuum region for
simulating nanoindentation. Typical length scales are shown for the two

regions.

there must be sufficient imaginary atoms to provide all free atoms with a
full complement of neighbours. Figure 6.4(b) shows the atoms which exist in
a typical transition region. The inside surfaces of the transition region are
filled with dark blue node-atoms and light blue face atoms. Both of these
types of atom are subsets of the free atoms of the coupled system, i.e. atoms
which have a full complement of neighbours and are modelled entirely by
MD. The node-atoms are placed on a regular grid and coincide with the FE
nodes on the boundary of the mesh. As in the 2D model, the face atoms
are used to test the coupling technique by comparing their actual positions
due to the MD model to their interpolated position due to the FE model.
The continuum and transition regions are tessellated with tetrahedra by the
meshing algorithm described in section 6.1. On the inside boundary with the
atomistic region, the first layer of elements is made large enough so that it
contains all of the imaginary atoms of the transition region. This is to ensure
that the reaction of an imaginary atom due to the motion of a node atom

occurs within the same time step.
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(a) (b)

Figure 6.4: Atom types of the coupled model. In the atomistic region atoms
are coloured yellow, imaginary atoms are coloured green, node-atoms are
dark blue and face atoms are light blue. (a) shows all atoms of the coupled

model. (b) shows only atoms within the transition region.

The node-atoms are used to pass information to the continuum region
about distortions in the atomistic region. The node-atoms are in their correct
positions according to the non-local atomistic description. The positions of
the corresponding nodes are moved to match the positions of the atoms,
giving a distortion to the FE model and hence a resulting force on other
nodes. The dynamical solution in the continuum region is then advanced via
the velocity Verlet algorithm.

A linear interpolation procedure based on the displacements of nodes of
the finite elements is used to provide a feedback mechanism informing the
atomistic region of the distortion in the continuum region. The imaginary
atoms each have a fractional coordinate (£,7,() within an element at the

edge of the continuum region. After the element has been distorted due to
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the position matching of node-atoms and subsequent dynamical FE response,
the internal imaginary atoms are repositioned such that the fractional coor-
dinates are kept constant within the deformed tetrahedral element.

The set of equations 2.59 can be used to describe the z, y, and z co-
ordinates of a point P(z,,y,,2,) within an element in terms of the points
fractional coordinates (&,.7),.¢,) and the elements nodal positions. Rear-
ranging this for the fractional coordinates for an imaginary atom within an

element in terms of its cartesian coordinates gives

@eZp + Peyp + Vezp + O

6}0 = A
_ Oyp+ Bntlp + W2 + Oy
; )
Cp = QCTP + ﬁCyPA+ ’)’CZP T ¢ (66)

where the coefficients are given in terms of the elements nodal positions as

¢ = —23qY21 + Y34224, B¢ = —T3a2o4 + 234T24. Ve = —Y34T24 + T3aY2u
0 = —Y21T3424 — Y34224T4 + YaT34204 — Ya234T24 + Y3424T24 + Y2423474
Oy = —214Y34 + V14234, Oy = Tau214 — 234T14, Ty = —Y14T34 + T14Y34

Op = Y14%3424 + 234T14Ys — Y14234T4 — T14Y3424 — T34214Y4 + 214Y3474

Q¢ = —224Y14 + Y24214, ﬁg = T14224 — 214%24, V¢ = —T14Y24 T Y14T24
0¢ = —214Y24Tq + Y14224 Ty — 224T14Ys — Y14T2424 + T14Y2424 + 214T24Yyy (6.7)
and
A = Tuzuuyu — 234T14Y21 — Y14T34%24 — 214Y34T24
+ T14Y31224 + V142342 24. (6.8)

Because the fractional coordinates of imaginary atoms are kept fixed during

a simulation, they are calculated once at the beginning of the simulation
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and stored so that they do not need to be recalculated at each step. The
displacement (u,, v,, w,) of an imaginary atom is calculated using the set of
equations 2.58, its fractional coordinates and the nodal displacements of the

containing element.

up, = udp + upanlp + uza(p + uy
Vp = Viadp + Vaalp + V34(p + Vg
wy, = wibp + waump + waslp + wy. (6.9)

These displacements are applied to the imaginary atoms after each FE time
step so that the atom positions are correct before the next MD force calcu-

lation.

6.4.2 Testing and Results

A nanoindentation simulation into a lattice with first nearest neighbour
Lennard-Jones interactions has been performed to test the 3D position match-
ing method. This simulation is used to investigate the passing of the strain
field produced by the indentation, from the atomistic region into the contin-
uum region. A similar technique to that described in section 5.4.2 is used to
produce the indent. A paraboliod was moved at a velocity of 5 m/s, 10 A
into the top surface of the atomistic region over a period of 200 ps. At each
time step, any atom within the paraboloid was moved directly downwards
to the paraboloid’s surface, thus creating an indentation. After 200 ps the
indenter is held fixed for a further 50 ps to check that the total system energy
is conserved.

The dimensions of the atomistic and continuum regions and the number
of atoms and nodes in the respective regions are given in table 6.2. The

equivalent total number of atoms in this table gives an approximate value of
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the number of atoms represented by the combined atomistic and continuum
regions. Therefore, by assuming that moving a node forward in time is as
equally computationally costly as moving an atom forward in time (which is
extremely conservative for any realistic potential), the coupled model is in
the region of 20 times faster than if this many atoms had been modelled by

molecular dynamics alone.

Parameter Value

MD dimensions (A*) | 106 x 106 x 113
FE dimensions (A%) | 382 x 382 x 230

MD atoms 117,212
FE nodes 29,464
Equivalent total atoms | a2 3.1 x 10°

Table 6.2: The system size for the 3D position matching method test sim-
ulation. ‘Total atoms’ is the approximate number of atoms represented by

the combined atomistic and continuum regions.

Images of the simulation in figure 6.5 show the strain field caused by the
indentation spreading throughout the material in 50 ps intervals. In each
diagram the atomistic region is displayed to the left and has been taken
from the gap in the continuum region to its right. The colouring is based
on displacement, from zero (dark blue) to 5 A (red). The first three images
of the simulation from 100 ps to 200 ps show that the strain field moves
smoothly across the interface into the continuum region which models the
long range effects of the indentation. However, between 200 ps and 250 ps,
the indenter is held fixed, but figure 6.5(d) shows far greater displacements
than in figure 6.5(c). The reason for this is apparent from the energy graph in

figure 6.6. The total energy rises during the indentation period as expected
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Figure 6.5: Images from the 3D position matching model test simulation.
The strain field spreads throughout the material in both the atomistic and

continuum regions.

during the first 200 ps. The energy should then remain constant for the rest
of the simulation as the indenter is fixed and no more work is done on the
substrate, however the position matching method does not apply equal and
opposite forces at the interface and as a result the total system energy is not
conserved during this period and instead rapidly increases.

Further analysis of the interface in figure 6.7 shows that the face atoms on
the boundary of the transition region experience increasing large vibrations
as the energy is artificially added to the system.

To attempt to control the energy increase in the coupled model, energy
needs to be removed from system to balance that being added. The Berend-
sen thermostat (see section 3.2.3) was applied to free atoms near the transi-
tion region to damp out kinetic energy. Figure 6.8(a) shows the total energy

of the undamped system compared to the damped system during the 400 ps
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Figure 6.6: Energy in the atomistic and continuum regions and the total

energy of the 3D position matching method during the simulation.
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Figure 6.7: The comparison of the displacement of a face atom in the tran-
sition region. Its actual position computed by MD is shown in blue and the

interpolated position due to the FE model is shown in red.

simulation. Although the damping controls the increase in energy and delays
the initial rapid increase from 40 ps in the undamped case to 60 ps in the
damped case, figure 6.8(b) shows that the increase in energy in the damped

simulation is still over 300 eV in 400 ps.
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Figure 6.8: The effect of damping the atoms near the interface to remove the

energy increase. (a) shows the energy in the damped and undamped cases.

(b) shows only the dam

ped case.

6.4.3 Conclusions

The results from the indentation simulation show that the position match-

ing coupling technique allows interaction between an atomistic region and

an embedding continuum region. This is achieved through the transition

region which resolves the non-local to local mismatch of description of parti-



Chapter 6: Three Dimensional Multiscale Modelling 116

cle interactions. The long range strain field due to the nanoindentation was
successfully transmitted from the atomistic region into the far field modelled
by the FE model. However, the position matching method does not apply
equal and opposite forces in and around the transition region between the
atomistic and continuum regions, and therefore does not conserve energy.
The nature of a coupled model is that there is constant feedback between
the various descriptions of the material. This feedback amplifies the energy
error at each time step leading to an exponential growth, and although the
application of the Berendsen thermostat to remove energy near the transition
region did reduce the energy increase, it was not sufficient to allow the method

to model accurately any real nanoindentation experiment.

6.5 Force Attribution Coupled Model

The development of the method described here was driven by the constraint
that Newton’s third law of motion must be strictly obeyed. In doing so,
the energy conservation of the coupled system is guaranteed to allow the
method to be applied to simulations taking place over many thousands of time
steps. Unlike the position matching technique, where particles have their
forces described exclusively by atomistic or continuum mechanics, the force
attribution method allows particles of the continuum region to be described
by a combination of atomistic and continuum interactions. This allows the
transformation from a non-local description of the atomistic region to a local

description of the continuum region while still obeying Newton’s third law.
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6.5.1 Methodology

The atomistic and continuum regions are linked together through an overlap
region at the interface. It is this overlap that allows the two models to
interact with each other. Figure 6.9 shows a cross-section of the atomistic
region with a slice through the mesh of the continuum region in the same
plane as that from which the cross section is taken. To describe the atomistics
at the interface region three types of atom are defined; free atoms, imaginary
atoms and node-atoms. The main atomistic region is made up of free atoms
which are modelled in the usual way by MD. Around this bulk of free atoms
is a regular grid of node-atoms (corresponding to the nodes of the FE mesh),
and a skin of imaginary atoms which will be used to pass information from
the atomistic region to the continuum region and vice-versa. In this case
the node-atoms match the positions of the boundary nodes of the FE mesh,
however, this is not a strict requirement of the force attribution method. This
is a major advantage of this method over the existing methods, as matching
atom positions to node positions is not a trivial exercise for more complicated
crystal structures.

Imaginary atoms around the outside of the atomistic region make up the
neighbours of free atoms near the interface. Therefore, the number of layers
of imaginary atoms in the overlap of the two regions is dependent on the
potential function being used, such that all free atoms have neighbours up to
the potential’s full cut-off distance. The size of the elements on the boundary
is made large enough so that all of the imaginary atoms are within the first
layer of elements, and the positions of the nodes of these elements that lie on
the boundary of the continuum region are made to coincide with node-atom
positions. The node density then decreases with distance from the atomistic

region, where larger elements represent larger numbers of atoms.
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Figure 6.9: (a) Cross-section of the 3D coupling interface: The dark blue
atoms near the edge of the atomistic region are node-atoms and coincide with
FE nodes. The lighter layer of green atoms on the outside of the atomistic
region are imaginary atoms. These lie within the first layer of elements in

the continuum region. (b) Close-up of the arrangement at the interface.

The force calculation for all free atoms in the coupled model must be
consistent. Free atoms near to the atomistic boundary include the forces due
to imaginary atoms and node-atoms within the interface region to complete
their force calculation. A one-dimensional representation of this is shown in
figure 6.10. The second nearest neighbour interactions for free atoms that
interact with imaginary atoms or node-atoms are shown. and due to Newton’s
third law, the equal and opposites of those forces are applied to the imaginary
atoms.

To illustrate the procedure, consider node-atom 5 and imaginary atom 6
at the boundary as shown in figure 6.10. Atom 5 has a first nearest neighbour

force from atom 4 and a second nearest neighbour force from atom 3, and
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imaginary atom 6 has a second nearest neighbour force from atom 4. It
is these forces that drive the interaction from the atomistic region to the
continuum region, by apportioning the force to the nodes of the element in
which that atom lies. The node-atom, labelled 5 in figure 6.10, applies its
whole force to the node with which it corresponds. The imaginary atoms use
the linear shape functions of the element, N; to apportion their force. Thus

atom 6 applies two thirds of its force to node 5 and a third to node 8.

H
Atomistic Region Continuum Region
:

FE Nodes

@ e/{jof}/ .oo.\s

Atoms

Figure 6.10: A 1-D representation of MD interactions at the interface: Atoms
1-4 are free atoms, modelled by MD. Node-atom 5 coincides with the first
node of the FE region and atoms 6 and 7 are imaginary atoms within the first
element in the FE region. First and second nearest neighbour interactions

near the interface are shown.

For a three-dimensional tetrahedral element at the interface, containing

n, atoms, the forces on its nodes are calculated by

a
Frde = Z Nyde Ii F; (6'10)

i=1
where I}, ;. is the force on node nde, N, 4. |; is the value of the shape function
of node nde at the position of atom 7, and F; is the force on atom i. These
forces are added to the usual nodal forces due to nodal displacements from

the FE model and the positions are updated.
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According to the method described, the motion of the free atoms in the
atomistic region causes the distortion of material in the continuum region.
To complete the coupling of the two models, once the continuum region has
undergone a distortion, interaction must also take place from the continuum
region to the atomistic region. The same linear interpolation procedure as
described for the position matching method in section 6.4 is used to update

the position of the imaginary atoms in this method.

6.5.2 Testing and Results

A nanoindentation simulation into a lattice with first nearest neighbour
Lennard-Jones interactions has been performed to test the force attribu-
tion method. This simulation is to investigate the passing of the strain field
produced by the indentation, from the atomistic region into the continuum
region, and also to check that the combined energy in the system is con-
served after the indentation has occurred with the indenter held fixed for a
lengthy period. The dimensions of the atomistic and continuum regions and
the number of atoms and nodes in the respective regions are given in table
6.3. The total atoms in this table gives an approximate value of the number
of atoms represented by the combined atomistic and continuum regions. The
coupled model is in the region of 60 times faster than if this many atoms had
been modelled by molecular dynamics alone.

A hard spherical indenter of radius 30 A has been used to indent into the
fee lattice modelled by the Lennard-Jones potential. As a first approximation
to describe the interaction between the tip and the atoms in the substrate,
the repulsive part of a Lennard-Jones potential has been used, as given in
equation 6.11, where 7 is the distance from the spherical tip surface to the

atom, € = 7.8 x 1071 eV and ¢ = 1.08 A. This gives a large repulsive force



Chapter 6: Three Dimensional Multiscale Modelling 121

Parameter Value

MD dimensions (A%) | 139 x 139 x 143
FE dimensions (A%) | 748 x 748 x 397

MD atoms 169,016
FE nodes 32.860
Total atoms ~ 13.1 x 108

Table 6.3: The system size for the force attribution method test simulation.
Total atoms is the approximate number of atoms represented by the combined

atomistic and continuum regions.

as the tip gets close to the substrate, but drops off quickly as it gets further

away.

o.l?

FL,](?') = 486m (611)

The lowest point of the indenter starts 2 A above the surface and is moved
vertically downwards a distance of 3 A over a period of 60 ps where it is held
for a further 40 ps. The resulting strain field spreads from the point of
indentation towards the interface of the two models. The initial temperature
is assumed to be O K, with no heat bath to control temperature fluctuations.
As a result there is a small rise in temperature of the system during the
indentation phase.

Images of the strain field crossing the interface are shown in figure 6.11,
where snapshots from the simulation are taken at 20ps intervals from 40ps to
100ps. The atomistic region, magnified and displayed on the left hand side,
is taken from the void in the continuum region on the right hand side. To

be able to visualise what is happening in the continuum region, orthogonal
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plates are drawn at the centre of the material in the z and y directions, and

at the bottom of the atomistic region in the z direction.

MD region Continuum region

t=40ps
t=60ps
Displacement (A )
0.00 0.0760 0.150 0.225 0.300
|
t = 80ps .
t=100ps .

Figure 6.11: Images of how the strain field due to indentation spreads through

the coupled interface. Snap shots are taken at 40ps, 60ps, 80ps and 100ps.

At 40ps the strain field is still localised around the point of indentation,
there are relatively large displacements where the tip is interacting with
the substrate, but the displacements are so small at the interface that they

do not show up on the scale given in figure 6.11. By 60ps the strain field
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has spread into the continuum region. The displacements are even larger
at the indentation as the tip is still being moved into the material and the
displacements at the interface can clearly be seen with values of around
0.07 A. At 80ps displacements at the point of indentation have not changed
much due to the holding of the tip, however the strain field has carried on
moving much further into the continuum region where displacements can be
seen up to as much as 0.2 A. Finally at 100ps the tip is still held in position
and again there is little change around this point, but now the strain field
has propagated far into the continuum region.

The total energy of the system is calculated by adding the potential and
kinetic energies of the particles updated due to the MD model, and the
potential and kinetic energies of the nodes in the continuum region. Figure
6.12 shows the energy for the two regions and the total energy of the coupled

system during the simulation.
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Figure 6.12: Energy in the atomistic and continuum regions and the to-
tal energy of the coupled system during the simulation. The energy in the

continuum region is shown relative to the total energy.

The total energy increases during the indentation period as expected since

work is done on the system. For the last 40ps of the simulation the indenter
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is held fixed. The continued propagation of the strain field causes an increase
in the energy in the continuum region, however this is mirrored by a decrease
in energy in the atomistic region giving energy conservation for the coupled
system. This implies that the coupling strategy at the interface is correct.
During indentation there is an increase in kinetic energy due to the motion
of particles which causes an increase in temperature of the substrate. In
reality, this kinetic energy would propagate into the far field and only a little
heating would occur at the point of indentation. However if a simulation
is performed with fixed boundary conditions, this energy is reflected back

into the system. Figure 6.13 compares the energy change between the two

methods.
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Figure 6.13: Kinetic energy in the atomistic and continuum regions. The
energy is able to pass from the atomistic region into the continuum region

to prevent artificial heating of the atoms.

This illustrates the necessity of coupling edge atoms to a heat bath to
extract excess energy when running purely atomistic simulations on small

systems.
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6.5.3 Conclusions

The energy conservation results and the smooth passage of waves between
regions from the force attribution coupling technique test simulation are a
good indication that the method is correct. The strain field due to the
small indent passes smoothly from the atomistic region into the continuum
region as required. The method strictly obeys Newton’s third law of motion,
and as a result the total system energy is conserved during the 40 ps holding
period after the indentation has occurred. The local heating seen in atomistic
simulations of nanoindentation is removed by the coupled model. The kinetic
energy is able to pass into the far field and is not reflected back into the
atomistic region. This provides a more realistic method of energy diffusion
than to damp the boundaries of the atomistic region in order to control the
lattice temperature.

The non-local/local mismatch at the interface gives rise to an imbalance
of forces at regular lattice sites, the same as the ghost forces seen in the QC
method (see section 4.3). However, in this method all atoms in the atomistic
region are treated correctly as atoms in an MD only simulation. Hence, no
correction needs to be done in the atomistic region. The imbalance can also
be resolved by applying the ghost force correction scheme of the QC method
at each time step, but in this case only to the linear elastic finite element
region, or by simply relaxing the continuum region at the beginning of the
simulation.

The force attribution coupling method will now be used in more realis-
tic simulations in chapter 7, where the Ackland potential is applied in the

atomistic region to model nanoindentation and laser ablation experiments.



Chapter 7

Applications of Multiscale
Modelling

The force attribution method is applied to simulate nanoindentation of Au
and Fe and laser ablation of Au. The Ackland potential, described in section
2.2.2, is used to describe the interatomic interactions in the atomistic region,
with the corresponding matched elastic constants calculated in section 6.2

applied to the FE model in the continuum region.

7.1 Nanoindentation

7.1.1 Au 15 A Indentation

A 15 A indentation into Au has been simulated using both the coupled model
and an atomistic only simulation with fixed boundary conditions to investi-
gate the effects of modelling linear elastic deformation in the far field. Table
7.1 gives the dimensions of the lattice used in the simulation. The same in-

dentation model as used in section 6.5.2 is used here, describing the indenter-
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substrate interactions by the repulsive part of the Lennard-Jones potential
function. A 15 A tip displacement at constant velocity takes place over the
first 300 ps of the simulation. The indenter is then removed over the next 100
ps so that it has been totally removed from the material. Comparisons will
be made between the two simulations, first for the contact pressure at the
maximum load, secondly for the differences in deformation of the material,

and finally for the temperature of the atomistic region.

Parameter Value

MD dimensions (A%) | 147 x 147 x 147
FE dimensions (A3) | 748 x 748 x 397

MD atoms 194,509
FE nodes 32.860
Total atoms ~ 13.1 x 108

Table 7.1: The coupled system size used for the Au indentation simulation.

Figure 7.1(a) shows a comparison of the normal force on the indenter
as a function of indentation depth. The atomistic only model with fixed
boundary conditions shows the first pop-in (which occur due to dislocation
emission [3]) at about 6 A contact depth, and a maximum load of 280 nN
at 15 A. In comparison, the coupled model of a much larger system takes
longer to produce any plastic deformation, with the first pop-in at around 9
A contact depth but with the same applied force. The peak load at 15 A is
155nN, far lower than in the atomistic only simulation. The graph of total
system energy is shown in figure 7.1(b). It is clear that more work has been
done in the atomistic only simulation to achieve the same displacement of
the indenter.

The contact pressure is defined as the ratio of the normal load to the
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Figure 7.1: (a) The normal force on the indenter versus indentation depth
for both the coupled method and the atomistic only simulations. Note that
the first pop-in occurs at the same normal force of ~ 125 nN. (b) The change

in total system energy during the simulations.

contact area during indentation and will be used to compare the hardness of
the material in the two simulations. These have been calculated from figure
7.1(a) and from a measure of the cross-sectional area of the hole created at
maximum indentation depth from the computer image of the surface. The
results for Au are displayed in table 7.2 along with results for other metals
calculated using MD alone in [49]. The elastic compression of the substrate

in the continuum region affects the total displacement of the atomistic region.
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The entire atomistic region moves down 10 A at the maximum indentation
depth. This compression results in a far smaller hole depth for the same
indenter displacement, and due to the depth dependency at this scale, the
contact pressure for this simulation should be compared to smaller indenta-
tion depths using atomistics only for a fair comparison. To obtain a similar
hole depth to that in the atomistic only simulation an indenter displacement
of more than double the size is required. The result from this simulation
shows that embedding the atomistic region in a continuum region almost
halves the contact pressure at the maximum depth. Clearly these depths
are much smaller than those in experimental work, but the indentation size

effect [50, 51| for these metals is clearly demonstrated.

Substrate Maximum  Contact
Hole Pressure
Depth (A) (GPa)
Indenter displacement of 15 A
Atomistics only

Fe 8.8 50.3
Ag 10.7 24.1
Au 13.8 19.6

Indenter displacement of 31 A
Coupled model
Au 14.5 10.4
Indenter displacement of 15 A
Coupled model
Au 4.8 17.6
Indenter displacement of 5 A
Atomistics only
Fe 1.0 144.5
Ag 2.4 41.9

Table 7.2: Effective indentation depths and contact pressures for different
metals. Results for Fe and Ag are given for indenter displacements of 15 and
5 A to give comparative hole depths for the Au results.



Chapter 7: Applications of Multiscale Modelling 130

Previously for atomistic only simulations [49], it had been observed that
for even larger indentation depths the values of the determined contact pres-
sure were always very high. The results from the coupled model imply that
this may be due to the neglect of the embedding elastic region in addition to
the indentation size effect.

The elastic and plastic deformation of material can be seen for the two
simulations at the maximum indentation depth and after the tip has been
extracted in figure 7.2. The pile-up of atoms on the surface is clearly much
higher in the simulation using atomistics only. Table 7.3 shows there are 10
times as many atoms piled-up than in the simulation with the coupled model,
and also the elastic recovery of the hole with respect to the maximum hole

depth is far greater with the coupled model.

Coupled model  Atomistics only

Atoms pile-up (end) 63 635
Elastic recovery (A | %) 2.4 |50 35 |25.4
First dislocation emission (ps) 104 88
Slip atoms (max. depth) 1693 4294
Slip atoms (end) 769 4027

Table 7.3: Parameters to investigate elastic and plastic deformation due
to the indentation. Elastic recovery is given as both a distance and as a
percentage of the maximum hole depth.

Dislocations in the material are caused by pressure created under the tip.
Table 7.3 shows that it takes a longer time, and hence larger displacement of
the indenter, to cause the first dislocation using the coupled model than with
the atomistic only simulation. This occurs because of the slower increase in
normal load. In figure 7.1(a), there is a small drop in the normal force at a
depth of 4.4 A (which corresponds to 88 ps) in the curve for the atomistic

only simulation. At a depth of 5.2 A (corresponding to 104 ps), there is a
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Figure 7.2: Images of damage due to indentation. (a) and (c¢) are from the

coupled model at maximum indentation depth and after extraction respec-
tively. (b) and (d) are from the atomistic only simulation, also at maximum
indentation depth and after extraction respectively. Atoms are coloured ac-

cording to how much they have been displaced from their original position.

drop in normal force due to the dislocation emission in the coupled model.
These both occur at the same normal force. Then again at a depth of 6.3 A
in the atomistic only simulation and 9 A in the coupled model there are large
drops in the normal force, which is again the same value in both simulations.

The difference in the amount of dislocation emission in the two simula-
tions is shown in figure 7.3, in the atomistic only simulation there are far
more activated slip planes at the maximum indentation depth than in the

coupled model. Plastic damage under the tip after extraction is also more
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pronounced in the atomistic only simulation, table 7.3 shows that there are

more permanently displaced atoms.

(@ (b)
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Figure 7.3: Images of slip underneath the indenter. (a) and (c¢) are from the
coupled model at maximum indentation depth and after extraction respec-
tively. (b) and (d) are from the atomistic only simulation, also at maximum

indentation depth and after extraction respectively.

The presence of the FE surround also allows the energy induced during
indentation to be more efficiently dispersed. This is shown in figure 7.4. The
kinetic energy in the atomistic region at the end of the simulation is used to

calculate the average temperature. For the simulation with fixed boundary
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Figure 7.4: Graph showing the kinetic energy in the atomistic region dur-
ing the simulation. Results are shown for both the coupled model and the

atomistic only simulation.

conditions around the atomistic region. the final kinetic energy is 534 eV,
giving a lattice temperature of 31 K. The coupled model allows this energy
to be passed into the continuum region, hence reducing the final kinetic

energy in the atomistic region to 76 eV, a lattice temperature of 4.3 K.

7.1.2 Fe 15 A Indentation

The indentation simulation carried out on the Au lattice in the previous
section has been performed on a Fe substrate with the coupled model with
the same 15 A indenter displacement and the same indentation speed. The
dimensions of the substrate used in the simulation are given in table 7.4.
Again, the same indentation model is used as described in section 6.5.2,
where the indenter-substrate interactions are described by the repulsive part
of the Lennard-Jones potential.

The force-depth curve in figure 7.5 shows that the substrate experiences
elastic deformation up to a depth of around 10 A. The continued indentation

then produces plastic deformation of the substrate for a further 5 A to the
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Parameter Value

MD dimensions (A%) | 126 x 126 x 126
FE dimensions (A%) | 738 x 738 x 377

MD atoms 176,309
FE nodes 71.141
Total atoms ~ 18.1 x 10°

Table 7.4: The coupled system size used for the Fe indentation simulation.

maximum indentation depth. The motion of the indenter is then reversed
and is removed from the substrate after a further 150 ps when the indenter

is still 6 A below its initial position, leaving a hole 5 A deep.
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Figure 7.5: Force-depth curve for the 15 A indentation of Fe with the coupled

model.

Images taken from the simulation during the elastic deformation period,
at the maximum indentation depth and after the indenter has been removed,
are shown in figure 7.6. After 150 ps, the indenter has created a hole depth
of 6.5 A and the resulting strain field has started to propagate into the

continuum region. At the maximum indentation depth, pile-up can be seen
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around the indentation and the strain field has increased in the continuum
region. Displacements at the interface have reached around 1 A. After the
indenter has been removed, the pile-up around the hole remains. The hole
depth elastically recovers by 9 A, which is around 65% of the maximum hole
depth. The indenter no longer applies stress to the material and hence the
strain is removed from the continuum region, which elastically returns to its
original shape.

The load at the maximum depth is shown in figure 7.5 to be 400 nN, and
the hole diameter of 50.25 A at the maximum depth, gives a cross-sectional
contact area of A, = 1983.2 A®. The contact pressure is then calculated
as 20.17 GPa which is less than half of the value given in table 7.2 for the
atomistic only simulation to the same depth. The result is still higher than
the experimental value for Fe of 1.9 GPa [2], however, this may be accounted

for by the indentation size effect for this material.

7.1.3 Conclusions

The coupled model allows larger systems to be simulated while keeping the
computation time reasonably low. Future work will enlarge system sizes even
further to allow more realistic systems to be simulated. By embedding an
atomistic region within a continuum region, the coupled model allows the
long range strain field caused by indentation to cross the interface and be
simulated in the far field. The compression of the continuum region causes
a smaller hole to be created for the same indenter displacement and consid-
erably less pile-up after extraction compared to atomistic only models with
fixed boundary conditions. However, the dislocation features that occur are
qualitatively the same in both models. The coupled model causes disloca-

tion emission to take longer to occur and considerably reduces the plastic
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(a) 150 ps

(b) 300 ps

(¢) 450 ps

Figure 7.6: Images from the 15 A Fe indentation: (a) during the elastic
deformation period, (b) at the maximum indentation depth, and (c) after
the indenter has been removed. The material is coloured on displacement

from zero (dark blue) to 1.8 A and above (red).

damage under the tip after extraction. Using the coupled model, less work
is done on the lattice to move the indenter the same distance than mod-

elling atomistics only with fixed boundary conditions. This is due to the
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higher elastic distortion of the lattice in the FE region, and hence less plastic
distortion in the MD region. The contact pressure value from the coupled
model indicates that neglecting to model elastic compression in the far field
may cause artificially high values for contact pressure in atomistic only sim-
ulations with fixed boundary conditions. The dislocation emission seen in
nanoindentation experiments and atomistic only simulations travel quickly
over large distances. In the coupled model, dislocations cannot pass through
the transition region into the continuum region and plastic deformation is
restricted to the atomistic region. A possible solution to this is discussed in

chapter 8.

7.2 Laser Ablation

Laser ablation is a process used to remove material from a solid by the
application of light. in the form of a laser beam. Applications of laser ablation
include, etching [52], drilling [53] and thin-film coatings [54, 55]. Energy from
the laser beam is transfered to the atoms of the material causing some of them
to be ejected from the substrate. The short femtosecond or nanosecond laser
pulse of the beam applies the majority of the energy locally to atoms near
where the laser hits the surface and hence heating of the surrounding material
is minimal. However, heat waves are produced which travel at high speed
into the far field away from the point where the laser beam is applied. making

the experiment suitable for multiscale modelling.

7.2.1 Au Laser Ablation

The multiscale model has been applied to simulate laser ablation of Au with

the same initial system setup as used in the indentation simulation in section



Chapter 7: Applications of Multiscale Modelling 138

7.1.1. As a first approximation to the experiment, the effect of the laser on the
atoms in the substrate was modelled by applying initial velocities in random
directions to 1065 atoms within 20 A radius hemisphere, the centre of which
was at the centre of the atomistic region’s free surface. The velocities were
distributed normally within the hemisphere such that the maximum velocity
of 0.018 A/fs was at the centre and reduced to 0.3% of the maximum at the
outer edge, giving an average temperature of 7000 K and energy of around
1keV added to the system. The simulation then ran freely for 60 ps for the
heat wave to propagate into the far field. The identical initial conditions
were applied to an atomistic only model to compare the results with those
obtained from the coupled model in order to investigate the effects of the

embedding continuum region.
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Figure 7.7: Graph showing the energy in the regions of the coupled model

and the total system energy during the laser ablation simulation.

The energy in the atomistic and continuum regions and the combined
system energy of the coupled model is shown in figure 7.7. This shows that
the coupled model allows the majority of the energy due to the laser ablation

to pass away from the atomistic region into the continuum region in the first
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18 ps of the simulation. Images of the simulation during this period are
shown in figures 7.10 and 7.11 from the atomistic and continuum regions
respectively. These images show the elastic and thermal waves generated in
the atomistic region pass into the continuum region, while in the atomistic
region, 10 atoms from the centre of the free surface are sputtered leaving a
small hole.

Images of the atomistic only simulation are shown in figure 7.12 from
the same times as the images from the coupled model. The elastic waves
reach the edge of the lattice in the first 3 ps of the simulation, but due
to the fixed boundary conditions they are reflected back into the atomistic
region. Hence, in figure 7.12 large distortions are still seen in the atomistic
region compared to figure 7.10 from the same time in the coupled model.
This continues throughout the simulation as the fixed boundary conditions
restrict the energy from the laser ablation to the atomistic lattice. This is
illustrated by figure 7.8 which shows the kinetic energy in the atomistic region
is higher than in the coupled model where it is transfered into the continuum
region. In this case there is no difference in the number of sputtered particles
in the atomistic only and coupled simulations as the reflected waves do not
cause any more atoms to be ejected, however this may not be the case in
higher energy laser ablation simulations.

It is difficult to see the heat wave travelling through the continuum region
from the images of the simulation due to the high velocities and displace-
ments around the atomistic region. However, plotting the average particle
temperature against distance from the laser application at regular time in-
tervals illustrates the dissipation of the heat wave quite clearly in figure 7.9.
This shows that the heat wave is moving away from the atomistic region at

a speed of 1000 m/s, around half the speed of sound in Au.
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Figure 7.8: Graph showing the kinetic energy in the atomistic region for both

the coupled and atomistic only models during the laser ablation simulation.
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Figure 7.9: Graph showing the average particle temperature against distance
from the laser application at various times during the laser ablation simu-
lation. The heat wave is seen to travel through the continuum region away

from the atomistic region.
7.2.2 Conclusions

The coupling of MD to FE enables the computing power in the coupled model

to be concentrated on the region where plastic deformation occurs while in
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(a) 0.5 ps ) 3.0 ps c) 5.5 ps
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(g) 15.5 ps (h) 18.0 ps

Figure 7.10: Images of the atomistic region of the coupled model during the

laser ablation simulation.



Chapter 7: Applications of Multiscale Modelling 142

() 8.0 ps (e) 10.5 ps ) 13.0 ps

St

(g) 15.5 ps (h) 18.0 ps

Figure 7.11: Images of the continuum region of the coupled model during

the laser ablation simulation.
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Figure 7.12: Images of the atomistic only simulation during the laser ablation

simulation.
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the far field a less computationally expensive solution is sufficient, allowing
much larger systems to be modelled than by atomistic only models.

The heat wave generated by the laser ablation is able to pass from the
atomistic region to be modelled in the far field by continuum mechanics while
still modelling the material where the laser is applied by atomistics. This
enables the kinetic energy from the laser ablation to be dissipated into the

far field instead of being artificially constrained to the atomistic region.



Chapter 8

Conclusions and Future Work

The results from atomistic simulations of nanoindentation, such as those in
chapter 3 vary in their agreement with experimental results. For super hard
substrates, such as diamond, the contact pressure and Young’s modulus are
very close to those obtained experimentally, whereas for softer materials, re-
sults for contact pressure and Young’s modulus there is disagreement with
experimental results, as seen in the silicon simulation. This may be due to
inaccuracy in the interatomic potential function, for example, it has been
observed that the Tersoff potential (section 2.2.3) does not match the elastic
constants calculated from the experiment. Furthermore, the substrate lat-
tices used in simulations have a perfect crystal lattice because the system
sizes used are too small to model correctly the defect density seen in reality.
The indentation depths in the simulations are much smaller than those in the
experiment and it is known that the indentation size effect does cause a larger
contact pressure value at these shallow depths. However, previous atomistic
nancindentation simulations have never been close to the experimental con-
tact pressure value, even at much larger depths. It is suggested that the fixed

boundary conditions applied in these models causes an over approximation

145
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to the substrates hardness due to the neglect of elastic compression in the
far field.

In this work, multiscale modelling has been used to link an atomistic
model to an embedding continuum model in order to remove the fixed bound-
ary conditions from the atomistic model in nancindentation simulations and
provide the capability to model much larger systems than atomistic only
models. The previous multiscale models discussed in chapter 4 provide a
range of coupling schemes to link molecular dynamics to finite elements in
order to bridge the length scales in materials modelling. However, each of
the models discussed has disadvantages when considering its application to
nanoindentation and hence a new method has been developed for this pur-
pose.

The initial 2D model described in section 5.4 has a simple but accurate
coupling of first and second nearest neighbour interactions. No interactions
cross the boundary between the atomistic and continuum regions, therefore,
so long as the elastic constants are matched correctly and only linear elastic
deformation reaches the continuum region, the 2D model is able to couple
seamlessly the MD and FE models. However, the simplicity of the model
is also its downfall. No interactions may cross the boundary between the
regions, and hence the model is restricted to specific cases. If extended to
3D, only first nearest neighbour interactions could be considered in the body
centred cubic and face centred cubic lattice structures, and hence the method
has not been developed any further.

The position matching technique, initially developed in 2D and then ex-
tended into 3D is a generic model in the sense that any potential function
with a finite cut-off distance may be applied in the atomistic region. The

method allows interaction between an atomistic region and an embedding
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continuum region through a transition region which resolves the non-local
to local mismatch of description of particle interactions. The testing of the
method in 2D and 3D showed that long range strain fields due to nanoinden-
tation are successfully transmitted from the atomistic region into the far field
modelled by the FE model. However, the position matching method does not
apply equal and opposite forces on atoms in and around the transition region,
and therefore does not conserve energy.

The constant feedback between the various descriptions of the material
amplifies the energy error at each time step leading to an exponential growth,
and although the application of the Berendsen thermostat to remove energy
near the transition region did reduce the energy increase, it was not suf-
ficient to allow the method to model accurately any real nanoindentation
experiment.

The force attribution method described in section 6.5 was developed to
resolve the energy increase in the position matching method. The method
strictly obeys Newton’s third law of motion such that equal and opposite
forces are applied between all particles in the atomistic, transition, and con-
tinuum region, guaranteeing conservation of energy. The results from the
indentation test simulation for this model showed this to be the case, and
that the induced strain field due to the indentation passed smoothly across
the transition region into the continuum region. Hence, in chapter 7, the
force attribution coupling method was used to model nanoindentation and
laser ablation simulations to investigate the effects of adding the embedding
continuum region.

The results from the simulations in chapter 7 show that the addition of the
embedding continuum region in the coupled model allows long range strain

fields and heat waves to be modelled in the far field by continuum mechanics.
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Kinetic energy, due to nanoindentation or laser ablation, is transferred from
the atomistic region to the continuum region to give a more realistic descrip-
tion of the experiment than atomistic only simulations, where the energy is
artificially constrained to the atomistic region. This may remove the need
for temperature control in nanoindentation simulations, which in the past
has been required to control excess heating of the substrate.

The contact pressure value from the coupled model for both the Au and
Fe indentation simulations indicates that neglecting to model elastic com-
pression in the far field may cause artificially high values for contact pressure

in atomistic only simulations with fixed boundary conditions.

8.1 Future work

Although the simulations using the multiscale model already represent larger
systems than would normally be modelled in atomistic only simulations, these
initial results are only an example of the capability of the coupled model. The
new method has the potential to investigate even larger and more realistic
simulations and work is currently underway in this direction where the force
attribution coupled model will be combined with an existing parallel MD
code and applied to nanocrystalline materials and thin film structures to
compare to experimental work.

The method has so far only been applied to fec and bee crystal structures.
However, there are plans to use the coupled model to link to a wider variety
of crystal and amorphous structures. As mentioned previously, the force
attribution method has an advantage over other methods, that there does
not need to be a direct match between nodes and atoms, making the linking

far easier when considering complicated atomic arrangements.
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The coupled model currently describes the far field effects in the con-
tinuum region by linear elastic finite elements. Although this has proved a
reasonable approximation to the solution for the small indentation depths
that have been simulated so far, it may be necessary in the future to im-
plement a more accurate finite element description of the continuum region,
such as a nonlinear elasticity model, to simulate deeper indentation depths.

A natural progression from the nanoindentation experiment which has
been investigated in this work, is to study multiscale modelling of nanotri-
bology experiments [56, 49]. The multiscale model will allow the long range
effects of scratching to be modelled in the continuum region, and as in the
nanoidentation simulations, the modelling of kinetic energy dissipation into
the far field more realistically describes the experiment.

Ceramic materials with charged particles, such as MgO or spinel, have in-
teratomic forces evaluated over the whole body of material. With such mate-
rials, it is not straightforward to incorporate the required potential function,
which describes the interactions, into the coupled model because of the long
ranged nature of the Coulomb field and this is an area for future research.
For interatomic potential functions which have long range force fields over
the whole body of material, it may be possible to apply some finite cut-off
distance at the edge of the atomistic region as part of the approximate na-
ture of the method. A more accurate solution in these cases may be to use
a new technique involving a potential function derived via a neural network
[57] which does have a finite cut-off distance, and could therefore be applied
to the coupled model.

The simulations studied in this thesis have modelled applications where
the distortion generated in the atomistic region has propagated into the con-

tinuum region. However, the method is not restricted to these types of
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application and could be applied to experiments where external forces cause
motion in the continuum region such as yield strength testing of wires and
shear problems. In these experiments, the distortion in the continuum region
causes a breakdown in the atomic structure in the atomistic region because
of weaknesses in the material due to dislocation motion and defects such as
grain boundaries.

All of the multiscale modelling techniques discussed in this work have
restricted plastic deformation to the atomistic region. In these models the
continuum region has been used to model only elastic deformation in the far
field, thus removing the fixed boundaries of the problem much further from
the region of plastic deformation. However, some plastic phenomena which
travel quickly over large distances, such as dislocation emission in nanoin-
dentation experiments due to pressure under the tip, cannot be modelled
by the linear elastic finite element method in the continuum region. To de-
scribe realistically material behaviour, a technique is required to model such
plastic deformation in the far field. The two possible ways to do this are,
to continue to model the plastic deformation by atomistics, where redefini-
tion of the atomistic-continuum boundary and mesh adjustment are required
to follow the plastic deformation into the far field, or to allow plasticity in
the continuum via a technique such as the coupled atomistic and discrete
dislocation plasticity (CADD) method [58].

Like the other methods described in this work, the CADD method is a
multiscale model, treating particle interactions by atomistic and continuum
mechanics depending on which region they are in, however, unlike the previ-
ous methods, it models dislocations not only in the atomistic region but also
describes dislocation defects in the continuum region which move in response

to stress. The CADD method is currently a 2D model due to the difficulty



Chapter 8: Conclusions and Future Work 151

in transferring the dislocations across the coupled interface in 3D, however
further development of this model may be necessary in the future to model

deeper indentation depths and hence larger regions of plastic deformation.
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