
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Variable ordering heuristics for binary decision diagramsVariable ordering heuristics for binary decision diagrams

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Lisa Marie Bartlett

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Bartlett, L.M.. 2019. “Variable Ordering Heuristics for Binary Decision Diagrams”. figshare.
https://hdl.handle.net/2134/10362.

https://lboro.figshare.com/

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository

(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

J> ., •• .)...

•• LO';lghbprough
• Umverslty .

Pilkington Library

AuthorlFiling Title ~.M,1.r.:~:r.1
..

VD!. No. Class Mark !

Please note that fines are charged on ALL
overdue items.

0402292634

•. 11111' 11111'111 II "I II III 11111 III III I" IIIII

. .. \~

.~ ..

.: ~ ..

Variable Ordering Heuristics
For Binary Decision Diagrams

By

Lisa Marie Bartlett

A Doctoral Thesis
Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

March 2000

© by Lisa Marie Bartlett, 2000

F~~; ~"':::;:::':,.' ,~;:: '1 l(e~:~'~~ ~:,p.~:.~ ;",J V'f'.').~ . ~w._f:Jh, ~
~ ~~~>~: t;n-~":!': .. -~' ~ ,"'.. i
ij p, •. ry .~

~N" "_=\
CIl!J>S ~

,-"-"..,.....,..~~.

Ace H
No. (){C')...1-"I. 'L(,~ [1

___ ,_.~.,~_. ___ ' .., . . ~.--;-."'.,...--.;:.~.,.~u

M~()1) 1-S\ '6 L{l;

Variable Ordering Heuristics For Binary Decision Diagrams Abstract

Abstract

Fault tree analysis, FTA, is one of the most commonly used techniques for safety system

assessment. Over the past five years the Binary Decision Diagram (BDD) methodology

has been introduced which significantly aids the analysis of the fault tree diagram. The

approach has been shown to improve both the efficiency of determining the minimal cut

sets of the fault tree, and also the accuracy of the calculation procedure used to quantifY

the top event parameters. To utilise the BDD technique the fault tree structure needs to

be converted into the BDD format. Converting the fault tree is relatively straightforward

but requires the basic events of the tree to be placed in an ordering. The ordering of the

basic events is -critical to the resulting size of the BDD, and ultimately affects the

performance and benefits of this technique. There are a number of variable ordering

heuristics in the literature, however the performance of each depends on the tree structure

being analysed. These heuristic approaches do not always yield a minimal BDD structure

for all trees, some approaches generate orderings that are better for some trees but worse

for others. Within this thesis three pattern recognition approaches, that of machine

learning classifier systems, multi-layer perceptron networks and radial basis function

neural networks, have been investigated to try and select a variable ordering heuristic for

a given fault tree from a set of alternatives. In addition a completely new heuristic based

on component structural importance measures has been suggested with significant

improvement in producing the smallest BDD over those methods currently in the

literature.

Variable Ordering Heuristics for Binary Decision Diagrams Acknowledgements

Acknowledgements

I would like to give my sincere thanks to Dr John Andrews, my supervisor, for his

invaluable help, guidance and friendship during the course of my PhD work. Thanks to

my boyfriend, Tom, for his indelible support throughout and his patience in explaining a

number of computer issues. Thanks are given to my parents, sister, and friends, Annette

and Rosie for their continual encouragement and friendship. Special thanks go Linda and

Sandra for proof reading. Also thanks go to my colleagues in the mathematics

department for their friendship and good humour.

ii

Variable Ordering Heuristics For Binary Decision Diagrams Contents

Contents

1 Introduction ... 1

1.1 Introduction to Risk and Reliability ... 1

1.2 System Reliability Modelling Techniques ... 3
1.2.1 Introduction : .. 3
1.2.2 Fault Tree Analysis .. 3
1.2.3 Event Tree Analysis ... 5

1.3 Selecting an Analysis Method••......••..•.•......•....•.•.....••.•.•.•.•.••...••.••...••••...•.............••. 7
1.3.1 Reasons For Fault Tree Popularity•... 7
1.3.2 Qualitative and Quantitative Analysis in Brief .. 8

1.4 The Binary Decision Diagram Approach ••..•...••...•.•...•............•.............•..••..............• 10
1.4.1 Advantages .. 10
1.4.2 Advances to The Binary Decision Diagram Techoique .. 11

1.5 Summary •••.•••........••....••...•...•..••.••......••.•..••....••.•••......••••.•.••••••••...••••........•.••.....•...••.•• 11

1.6 Scope of Research .. 12

2 Fault Tree Analysis .. 13

2.1 Introduction ... 13

2.2 Background ... 14

2.3 Description of The Fault Tree Construction Procedure ... 15
2.3.1 Fault Tree Symbols ... : 15
2.3.2 Construction Methodology ... 17

2.4 Qualitative Analysis of The Fault Tree ... 19
2.4.1 Definition of The Two Types of Fault Tree ... 19
2.4.2 The Analysis Procedure .. 19
2.4.3 Obtaining Minimal Cut Sets For Coherent Trees ... 21
2.4.4 Obtaining Prime Irnplicants of Non-Coherent Trees .. 24

2.5 Quantitative Analysis .. 28
2.5.1 Background of The Analysis Procedure ..•. 28
2.5.2 Component and System Quantification Measures .. 28
2.5.3 Defining The Fault Tree Structure· Structure Functions•.................................... 30
2.5.4 Shannon's Theorem••........................•..•. 32
2.5.5 General Approach to Calculate The Top Event Probability ..•. 34
2.5.6 Approximation Methods ...•. 37
2.5.7 Unconditional Failure Intensity ... 38

2.6 Importance Measures ..•. 40
2.6.1 Introduction .. .40
2.6.2 Deterministic Measures•....................•...• .41

iii

Variable Ordering Heuristics For Binary Decision Diagrams Contents

2.6.3
2.6.4

2.7

2.8

Probabilistic Measmes For Assessing System Unavailability .. .42
Probabilistic Measmes For System Unreliability ... 45

Advantages and Disadvantages of The Fault Tree Methodology •..••........•......... 47

Summary .. 48

3 Binary Decision Diagrams ... 49

3.1 Introduction ... 49

3.2 Background .•...••••••...•••••••.•....•....••...•••...•.•.•.....•.••••••....••....•••••••••••••..•••.....•..••••.....•..•. 49

3.3 BDD Architecture .. 50

3.4 Constructing The BDD .. 51
3.4.1 Brieflntroduction ... 51
3.4.2 Constructing The BDD Using The Top Event Logic Function ... 52
3.4.3 Constructing The BDD Using The If· Then-Else Method ... 55
3.4.4 Reducing The Size of The BDD ... 60

3.5 Top Event Quantification••••..................•.•...•.•••..............•..........•..•.......•..•...•......••• 68
3.5.1 System Failme Probability .. 68
3.5.2 System Failme Intensity ... 69

3.6 Applications ofBDDs To Event Trees ..••..........•.....•...•.....•....•..•.....••......••...•...•.•••••.• 75
3.6.1 Overview of Event Trees .. 75
3.6.2 Traditional Solution to Dependencies Within The Event Tree .. 76
3.6.3 How The BDD Has Enhanced The Event Tree Technique ... 78

3.7 Variable Ordering ... 78
3.7.1 The Problem ... 78

3 .. 8 Summa!,), ... 80

4 Variable Ordering Heuristics ... 82

4.1 Introduction ... 82

4.2 The Most Commonly Used Henristic •..•.......•...••..•••••••••••.•...•.•.••....•...•••••••..••..•.••.••••• 82

4.3 Modifications to The Top-down, Left-right Approach •.•.••..•••••••...••.••••..•••••..........•.. 85
4.3.1 Using Repeated Events ..•.................. 85
4.3.2 Using Subtrees (Depth-First and Priority Depth-First Hemistics) 87
4.3.3 Variable Ordering Using Repeated Basic Events and Subtree Levels 92
4.3.4 Applying Weights to The Depth-First Approach ..•.................. 96
4.3.5 Using The Nmnber of Leaves in Conjunction With The Depth-first Approach 99
4.3.6 Depth-First With Nmnber ofFanouts Considered .. 101

4.4 Comparative Studies oCHeuristics .. 105

4.5 Alternative Heuristics .. 11 0
4.5.1 Modules of a BDD•.......................•..•................ 11 0

4.6 Dynamic Ordering Methods .. 115

4.7 Performance oCHeuristics ... 116

4.8 Summal1' •••••••••••••••••••••••••••• ~ •••••••••••••••••••.. 116

iv

Variable Ordering Heuristics For Binary Decision Diagrams Contents

5 Pattern Recognition Techniques - The Machine Learning Classifier System
Incorporating Genetic Algorithms .. 118

5.1 Introduction to Pattern Recognition Techniques ... 118
5.1.1 Summary of The General Approach .. 118
5.1.2 Types of Problems Modelled by Pattern Recognition Techniques 119
5.1.3 Considerations With All Pattern Recognition Techniques- The Curse ofDimensionality 120
5.1.4 What Are Genetic Algorithms (G.A's)? .. 120
5.1.5 Why Are They Used in The Classifier System Approach? ... 121

5.2 Genetic Algorithm Principles .. 121

5.3 A Simple Genetic Algorithm ••••••••••••••••••••••••.•• 122
5.3.1 The Principles .. 122
5.3.2 Reproduction Operator ... 123
5.3.3 Crossover Operator .. 124
5.3.4 Mutation Operator .. 125
5.3.5 The Operation ofa Simple Genetic ... 126

5.4 Implementation of a Genetic Algorithm Within The Classifier System •..•..•.•.•••••• 128

5.5 Background to Machine Learning Classifier Systems .. 128
5.5.1 Introduction ... 128

5.6 Machine Learning Systems - The Classifier Model .. 130
5.6.1 General Overview ofModeJ ... 130
5.6.2 The Rule and Message System .. 131
5.6.3 The Apportionment of Credit Algorithm (A.O.C) .. 134
5.6.4 Rule and Message Generation System - Genetic Algorithm ... 137

5.7 Application Of The Classifier Approach With a Genetic Algorithm to the Ordering
Problem .. 138

5.7.1 Introduction ... 138
5.7.2 Input Parameters Chosen To Represent The Problem .. 139
5.7.3 Output Parameters Chosen To Represent The Problem .. 141
5.7.4 Coding of The Fault Tree Parameters .. 142
5.7.5 Coding The Scheme Preferences ... 144
5.7.6 Data Sets .. 145
5.7.7 The Programmed Model ... I 46

5.8 Generating a Classifier ModeL .. 148
5.8.1 Using Initial Four Fault Tree Characteristics ... 148
5.8.2 Reviewing Relationship Between Characteristics and Scheme Choices 152
5.8.3 Changing The Characteristics ... 154
5.8.4 Changing The Proportion of Classifiers Acted Upon By G.A .. 160
5.8.5 Adding More Characteristics as Inputs .. 162
5.8.6 Training Models For Each Scheme Option .. 167

5.9 Results and Conclusions .. 168

5.10 Deficiencies of The Classifier Method ... 169

5.11 Summary .. 170

6 Additional Pattern Recognition Techniques -Application of Neural Networks .. 172

6.1 Neural Networks - General Overview ... 172
6.1.1 Introduction - What is a Neural Network Model? .. 172
6.1.2 Basis of Neural Network Principle - Polynomial Curve Fitting 172

v

Variable Ordering Heuristics For Binary Decision Diagrams Contents

6.1.3 General Learning Techniques ... 173
6.1.4 Types of Network ... 174

6.2 Single Layer Neural Networks .. 174
6.2.1 Introduction ... 174

6.3 Multi·Layer Perceptrous (MLPs) ... 176
6.3.1 Introduction ... 176

6.4 Application to The Ordering Problem .. 178

6.5 Inputs and Outputs For MLP Neural Network Model ... 179
6.5.1 Preferences For The Variable Ordering Schemes .. 179
6.5.2 Fault Tree Characteristics and Scheme Preference Coding .. 179

6.6 Trnining and Test Sets .. 180

6.7 Creating A Neural Network Program ... 181
6.7.1 General Description of Program ... 181
6.7.2 Details of The Multi·layer Perceptron Approach ... 182

6.8 Training Procedure 1-First Model ... 193
6.8.1 End Aim of Trained Model.. ... 193
6.8.2 Data Set Up .. 194
6.8.3 Setting Up The Network Architecture For The Problem .. 195
6.8.4 MLP Architecture For Best Results ... 196
6.8.5 Altering The Precision of The Inputs and Outputs ... 196

6.9 Optimisation Algorithm Changes - Enhanced Gradient Descent 197

6.10 Training Procedure 2 - Using The Enhanced Gradient Descent Technique 198
6.10.1 Using Eleven Input Characteristics With New Optimisation Algorithm 198
6.10.2 Best Network Architecture ... 198

6.11 Training Procedure 3 - Reviewing The Inputs and Outputs 200
6.11.1 Input Characteristics Altered , .. 200
6.11.2 Reviewing Outputs ... 202

6.12 Training Procedure 4 - New Data Set .. 202
6.12.1 New Data Set-Removal of Redundant Trees ... 202

6.13 Training Procedure 5 - Re-testing Five Characteristics .. 204

6.14 Establishing If Over -Training Is Occurring .. 205
6.14.1 Consideration in Training. Length of Training Period .. 205

6.15 Conclusions of Best Results ... 208
6.15.1 Performance Based Assumptions .. 208
6.15.2 Best Architecture .. 208
6.15.3 Future Considerations ... 210

6.16 Summary .. 210

7 Radial Basis Function Neural Networks .. 212

7.1 Introduction ... 212

7.2 Comparison With Multi-layer Perceptron Approach .. 213

7.3 Advantages and Disadvantages of Radial Basis Functions Compared to Multi-layer
Perceptrons ...•.............. 214

7.3.1 The Advantages of The RBF .. 214

vi

Variable Ordering Heuristics For Binary Decision Diagrams Contents

7.3.2 The Disavantages of The RBF .. 215

7.4 Dynamics of a Radial Basis Function Neural Network .. 215
7.4.1 RBF Theory ... 215
7.4.2 Types of Radial Basis Function .. 218
7.4.3 Two Phases of Training - Optimisation of Parameters ... 219

7.5 Programming A Radial Basis Function Network ... 223
7.5.1 The Main Program ... 223

7.6 The Programming Routines Required .. 224
7.6.1 Overview of Routines ... 224
7.6.2 Initialisation of The Network ...•...•................ 224
7.6.3 Programming Stage 1 of Training ... 225
7.6.4 Programming The Second Phase ofTraining .. 229
7.6.5 Programming The Predictive Phase .. 230

7.7 Generating the Desired Network Architecture ... 230

7.8 Results Using Four Characteristics As Inputs to Problem 232
7.8.\ Using Three Radial Basis Function Centres .. 232
7.8.2 Using Four Radial Basis Function Centres .. 232
7.8.3 Using Five Radial Basis Function Centres .. 233
7.8.4 Increasing Nmnber of Centres to Six .. 233
7.8.5 Using Seven Centres .. 234
7.8.6 Thirty Centres .. 235
7.8.7 Review of Four Characteristic Results .. 235

7.9 Results and Findings Using Eleven Characteristics As Inputs to Problem 236
7.9.1 Simple Architecture .. 236
7.9.2 Using Two and Three Radial Basis Function Centres in The Model... 236
7.9.3 Adding More Centres To The RBF Model •............•.. 237

7.10 Assessing The Accuracy of The Best Networks .. 238

7.11 Next Research Steps .. 241
7.11.1 Reducing Width Parameter•...........•... 241
7.11.2 Using Only Four Outputs to The ModeL ... 243
7.11.3 Importance of Characteristics•... 245

7.12 Summary .. 246

8 Using Structural Importance Measures For BDD Variable Ordering 248

8.1 Introduction ... 248

8.2 Problems With Re-writings of The Fault Tree Structure. 249

8.3 Definition ofImportance Measures .. 250
8.3.1 Understanding Importance Measures•... 250
8.3.2 Deterministic Measures of Importance•... 251

8.4 Calculation Method For Deterministic Structural Importance Measure 251

8.5 Alternative Methods Of Calculating The Structural Importance Measure 255
8.5.1 Problems With The Hand Calculated Approach ..•........... 255
8.5.2 Using Birnbamns's Structural Importance Measure ... 255

8.6 Application of Numerical Structural Importance to The Ordering Problem 257
8.6.1 Programming The Calculation Procedure .. 257
8.6.2 Results of Comparison ... 258

vii

Variable Ordering Heuristics For Binary Decision Diagrams Contents

8.6.3 Re-Ordering Components With Matched Structural Importance Measures 260

8.7 Using the Approach as it Stands ... 262

8.8 Alternative Methods For Calculating the Structural Importance Measure 264
8.8.1 Highlighting Problems in Coding The Mathematical Measure From The Fault Tree 264

8.9 Approximation Methods To Calculate the Structural Importance Measure 265
8.9.1 Introduction to Procedures .. 265

8.10 Approximation Method 1- Pattern Identification .. 265

8.11 Approximation Method 2 - Simpler Weighting Methods 270

8.12 Approximation Method 3 - Applying Birnbaum's Importance Measure To The
Tree .. 278

8.13 Summary of Structural Importance Measure Approach 282

9 Conclusions and Future Work .. 284

9.1 Summary of Work ... 284

9.2 Conclusions .. 287

9.3 Future Work .. 289
9.3.1 Examine The Input Characteristics of The Fault Tree .. 289
9.3.2 Applying Modularisation Techniques to The Fault Tree .. 289
9.3.3 Continue Research With Neural Network Pattern Recognition Approaches 289
9.3.4 Improve Approximated Structural Importance Measures ... 290

Appendices .. 291

Appendix I - Characteristics of 51 Benchmark Fault Trees Used in Sinnamon Study
[Sin96) .. 291

Appendix 11 - Characteristics of Benchmark Fault Trees Used in Thesis 293

Appendix ID - Number ofBDD Nodes For Each Ordering Heuristic For All Benchmark
Fault Trees Used in Thesis Studies .. 298

Appendix IV - Remainder of Eleven Characteristics Used to Describe Fault Trees 325

Appendix V - Network Architectures Predicting 14120 Correct Responses, With Eleven
Input Nodes and Six Output Nodes ... 330

Appendix VI - Results of Structural Importance Measure Variable Ordering Heuristic
.. 336

Appendix VII - Difference in BDDs Affected by The Structural Importance Measure
With Additional Subroutine of Ordering Matched Components by The Number of
Repetitions .. 341

Appendix YID - Comparison of Results for BDD Size Using The Best of Six Ordering
Heuristics and Simpler Weighting Methods For The Structural Importance Measures.345

References .. 350

viii

Variable Ordering Heuristics For Binary Decision Diagrams Publications

Publications

The research carried out as part of this thesis has led to the following publications and

conference presentations:

Journal Publications:

• L. M. Bartlett and J. D. Andrews. "Efficient Basic Event Ordering Schemes for Fault

Tree Analysis". Quality and Reliability Engineering International, vo!. 15, 1999,

p95-101.

• L. M. Bartlett and J. D. Andrews. "An Ordering Heuristic To Develop The Binary

Decision Diagram Based on Structural Importance". Submitted to Reliability

Engineering and System Safety, 2000.

• L. M. Bartlett and J. D. Andrews. "Selecting An Ordering Heuristic For The Fault

Tree to Binary Decision Diagram Conversion Process Using Neural Networks".

Submitted to IEEE Transactions on Reliability, 2000.

• L. M. Bartlett and J. D. Andrews. "Comparison of Two New Approaches to Variable

Ordering for Binary Decision Diagrams". Submitted to Quality and Reliability

Engineering International, 2000.

Conference Presentations:

• J. D. Andrews and L. M. Bartlett. "Efficient Basic Event Orderings For Binary

Decision Diagrams". Proceedings of the Annual Reliability and Maintainability

Symposium, Anaheim, Los Angeles, 1998, p61-68.

• L. M. Bartlett and J. D. Andrews . "Efficient Basic Event Ordering Schemes for

Fault Tree Analysis". Advances in Reliability Techniques Symposium (ARTS),

Manchester, 1998.

ix

Variable Ordering Heuristics For Binary Decision Diagrams Publications

• L. M. Bartlett and J. D. Andrews. "Comparison of Variable Ordering

Heuristics/Algorithms for Binary Decision Diagrams". Proceedings of the Sqfety and

Reliability Society Symposium '99, Advances in Safety and Reliability, 12, June 1999,

pi-IS.

• L. M. Bartlett & J. D. Andrews "Using Neural Networks To Establish an Efficient

Binary Decision Diagram Ordering". Invited Presentation at Young OR 11

Conference, Cambridge, March 2000.

• J. D. Andrews and L. M. Bartlett. "Binary Decision Diagram Ordering Heuristics

Based On Structural Importance". Invited Paper at MMR (International

Mathematical Models in Reliability) Conference, Bordeaux, July 2000.

• L. M. Bartlett and 1. D. Andrews. "Comparison of Two New Approaches to Variable

Ordering for Binary Decision Diagrams". Submitted to ARTS, Manchester,

November 2000.

x

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

1 Introduction

1.1 Introduction to Risk and Reliability

Everyday industrial processes can carry some form of risk, sometimes financial and

sometimes to our surroundings or us. Failure of some industrial systems can be

catastrophic, resulting in loss of life, for example, the local Kegworth aeroplane disaster

in January 1989. This resulted from an engine fIre on the 737-400 British Midlands plane

and caused 47 deaths. More well known industrial disasters include the explosion on the

Piper Alpha oil platform[CuI90), the explosion at the U.K Based Flixborough chemical

piant!Lee80), and the release of chemicals from a reactor at the Icmesa Chemical Company

in Seveso, ItalyILee80). Reliability and risk assessment methods are used in many

industrial applications to assess the safety of systems. Decisions resulting from the

application of these methods can prevent the occurrence of hazardous incidents or at least

reduce the probability below a suitable limit.

Risk and reliability assessment techniques have developed since the time of the Second

World War. Contributions from advances in nuclear, defence and aircraft safety have led

to the degree of sophistication seen in the reliability techniques used today. Reliability

and risk assessment methods are both used in safety studies to establish the various

combinations of faults that can lead to a potential hazard.

Reliability can be defined in a number of ways, a broad definition of reliability is:

"Reliability is the science aimed at predicting, analysing, preventing and

mitigating!ailures over time" [llea98).

More specifically, reliability can be defined as:

1

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

"The probability that a device will operate successfully for a specified period of

time and under specified conditions when used in the manner and for the purpose

intended" [Hea981.

Traditionally reliability was concerned with answering the question "How long will an

object continue to function before it fails?". Answering this question however, can only

be achieved in probabilistic terms and nowadays knowing how to reduce the associated

risk is also required.

In terms of analysing risks, no matter how much money is spent on trying to reduce the

risk of a hazardous or fatal incident occurring it is impossible to avoid risks entirely. In

the end society has to judge how much money it is worth spending to save each

additional life. Risk or "expected loss" (R) can be defined quantitatively as the product

of the consequence of a specific incident (C) and the probability or frequency of

occurrence (P):

R=C*P.

Hence, the reduction of any risk can be achieved by reducing the consequence of the

incident (C), or by reducing the probability of its occurrence (P). The societal judgement

or economic decision concerning a risk generates what is known as criteria of

acceptability. The H.S.E (Health and Safety Executive) set these acceptance criteria

based on what they have termed an 'ALARP' principle. Low risks are permissible, high

risks are not accepted and events with a reasonable risk have to satisfy the ALARP

principle. This means that risks must be As Low As Reasonably Practicable. Therefore,

if to reduce the current risk by only a small fraction would cost an excessive sum of

money then this may be regarded as not practicable, and hence the current risk would

satisfy the ALARP principle.

Quantitative risk assessment involves four basic stages:

2

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

I. The identification of the potential safety hazards.

2. The estimation of the consequences of each hazard.

3. The estimation of the probability of occurrence of each hazard.

4. A comparison of the results of the analysis against the acceptability criteria.

The main concern of this chapter is to describe some of the more commonly used

reliability assessment techniques. That is the methods that can be used to predict the

reliability performance of a system in terms of the reliability performance of the

components with which the system is constructed.

1.2 System Reliability Modelling Techniques

1.2.1 Introduction

There are several techniques that can be used in developing a system reliability model.

Some techniques use a qualitative approach and others a quantitative approach to

modelling the system's reliability. The most popular qualitative approach is Failure Mode

and Effects Analysis (FMEA)fAMo93). The information gathered during the execution of

this technique can often provide inputs to some of the quantitative methods. These

quantitative techniques include Reliability Block Diagrarns[AM093), Fault Tree

Analysis[AMo93), Event Tree Analysis[AMo93), Markov mode1s[HKu81), and Simulation

approaches[HKu81). Fault tree analysis plays a prominent role in many industrial

assessments and event tree analysis is becoming more widely used. These two methods

will be discussed in brief.

1.2.2 Fault Tree Analysis

H. A. Watson[Wa(61) first introduced the fault tree analysis technique in the 1960's. Since

this time fault tree analysis has been extensively used in safety and reliability studies to

3

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

identifY the combinations of events which could cause the failure of the system, and

ultimately result in a possible hazardous event.

Construction of the fault tree defines how the components within a system interact to

yield the system failure event. A fault tree diagram can graphically represent and

document the failure of a system in terms of the failure of its components. The tree is

developed from the start point of the undesired event or failure mode. Branches lead

down from the top event to other sub-events that show its possible causes. These sub

events are continually redefmed until the branches are terminated with component

failures, termed basic events. These are the events for which failure/repair data is

required. Each fault tree is constructed to form a series of gates and events, the gates link

the events together depending on their causal relationships. A number of fault trees may

need to be drawn to cover all the possible failure modes of a system. Each tree will

represent a distinct failure mode. A simple tree structure is shown in figure 1.1.

Failure of Pressure
Transmitter 1

B

Failure of Pressure
Transmitter 2

Figure 1. I: Simple Fault Tree Diagram

The fault tree shown in figure 1.1 develops the top event fuilure mode of "Total Failure

of Safety System". The immediate, necessary and sufficient causes of this are "Failure of

4

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

Sub System 1" OR "Failure of Sub System 2". The failure of subsystem 1 is caused by

the simultaneous occurrence of the "Failure of Pressure Transmitter 1" AND the "Failure

of Pressure Transmitter 2". As data (i.e. failure/repair probabilities) are available for

these events the fault tree can be terminated at this stage. If data were not available the

branching procedure would continue until events occurred where data was available. The

failure of the second subsystem again has available data and the branch is terminated by

the basic event, termed A.

Both qualitative and quantitative evaluations can be performed on the tree structure. The

qualitative analysis involves establishing the causal relationships between the

components of the system, hence outlining the groups of components which when they

fail together cause the system to filii. The quantitative analysis procedure involves

calculating the risk of failure of the system, i.e. the top-event or system fililure mode

probability. The quantitative analysis provides the top event reliability parameters

necessary to determine whether the risk of the undesired event is sufficiently small and

hence the safety of the system is acceptable. The method is well proven and computer

programs are available to calculate the top event probability for a constructed fault tree.

The fault tree approach is the main topic of this thesis and is described in more detail in

chapter 2.

1.2.3 Event Tree Analysis

Like the FMEA approach, event tree analysis is an inductive technique whereby the

process begins by identifying a particular hazardous trigger or initiating event. From this

event paths are traced to identify all the possible resulting consequences. The tree

structure comprises a number of branch points, which usually represent the success or

failure of different subsystems that can respond to the initiating event. Fault tree analysis

is used in conjunction with this technique to identify the causes of the subsystem failures

or branch events, and hence quantify the failure. If the subsystem responding to the

5

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

initiating event functions then a top branch represents this (labelled W). The lower

branch indicates subsystem failure (labelled F).

The analysis procedure looks at each subsystem in succession, represented by a path,

which leads to the final consequence to be determined. A simple example event tree is

shown in figure 1.2 for a nuclear reactor power loss. The first safety feature of the

nuclear reactor in the event of loss of an off-site electrical power supply is the shutdown

of the reactor. This shutdown of the reactor is shown as the second event in the

sequence. If this occurs, it has a defined probability Rrl, located on the working (W)

branch of the diagram, however, if the shutdown fails, the consequences would be

sufficiently severe that the later safety features would be irrelevant. The process of

evaluating the outcome of each successive subsystem is continued until all subsystems

have been considered. To calculate the probability of occurrence of each path is simply a

matter of multiplying the initiating event frequency by the probabilities of each of the

branches, assuming that the events are independent.

GEVENT
OFF-SITE

CITY

INITIATIN
LOSS OF

ELECTIU

EMERGENCY CORE
COOLING

EMERGENCYELECTIUCAL
SUPPLY

REACTOR I Outcomes
w

I SHUTDOWN I
W PI

I Rec
w Res

Rrt I F
P2

I P3

I F I
I I
I I
I I P4

I F I .

I

Figure 1.2: Event Tree Analysis of a Nuclear Reactor Power Loss

For example, in figure 1.2, the frequency of path Pi is:

6

\~

Variable Ordering Heuristics For Binary Decision Diagrams

FPI = Frequency of the Initiating Event

* Prob[reactor shutdown works)

* Prob[emergency electrical supply works)

* Prob[emergency core cooling works)

* Prob[primary containment integrity works)

F PI = F;ni' * Rrt * Res * Rec * Rpc

Introduction

Each of the outcomes in figure 1.2 can have different consequences, therefore to evaluate

the risk of each outcome the frequency of the outcome must be multiplied by the

consequence. To evaluate the risk caused by the initiating event (ie. in this example loss

of off-site electricity) the sum of the path frequency multiplied by the consequence for

each outcome needs to be calculated. The risk is expressed by equation 1.1, where i

refers to each outcome, F is the frequency of the outcome and C is the consequence of the

outcome.

1.1

1.3 Selecting an Analysis Method

1.3.1 Reasons For Fault Tree Popularity

Fault tree analysis is the most popular reliability technique that is used in industry to

assess the safety and reliability of a system. Although the technique has some drawbacks

(discussed in section 1.4.1) overall it has a methodology which is appropriate to apply for

an efficient analysis of a broad range of systems. The method provides a systematic

procedure for identifying failure causes, which is easy to follow and carry out. The

analysis can identify the system failure modes and indicate which are the most likely to

occur. This provides information to support system redesign to reduce the number of

7

\~

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

these failure modes. The method requires manual construction of the tree, which requires

the analyst to understand the system thoroughly.

1.3.2 Qualitative and Quantitative Analysis in Brief

Both a qualitative and quantitative analysis of the fault tree structure can be carried out.

The qualitative analysis of the fault tree involves identifying the causes of system failure.

Once a fault tree has been constructed for a specific system failure event a qualitative

assessment that produces the minimal cut sets can be performed. A minimal cut set can

be defined as:

"The smallest combination of component failures, which if they all occur will

cause the top event to occur".

A mathematical logic expression for the top event in terms of its minimal cut sets can be

written as:

1.2

where Cl' i = I, ... , n, are the minimal cut sets, and '+' represents the logical OR

operator. Each minimal cut set consists of a combination of basic events, which occur

simultaneously and can be expressed as:

1.3

where X" i = I, ... , m are basic event failures, and the symbol '.' represents the logical

AND operator. For example, if

TOP = A+B.C+D.E

8

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

there are three minimal cut sets (one single order, and two second order), A, B.C and

D. E. The order of the minimal cut set is the number of events it contains.

The methods to obtain the minimal cut sets of the fault tree are discussed in detail in

chapter 2.

Once the minimal cut sets of the fault tree have been generated then quantification can

begin. In the quantification process the following parameters can be calculated:

I. The probability of the top event occurrence.

2. The top event failure rate.

3. The expected number of occurrences of the top event in a specified time

period.

4. The importance measures indicating the component's contribution to the top

event.

The number of terms in the formula to calculate the exact top event probability is

dependent upon the number of minimal cut sets in the fault tree. For large trees, with

high numbers of minimal cut sets, it is not possible to fully evaluate these expressions

using conventional techniques and approximations are required.

The importance measures calculate the contribution of each basic event to the top event

occurrence. There are a number of importance measures that can be calculated, each

providing different information on the relative event contribution. Four possible

measures are:

I. The Structural Measure of Importance, which assesses the importance of a

component to the system operation considering only the components place within

the system structure.

9

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

2. Birnbaum's Measure of Importance, which can be defined as the probability that

the system is in a critical system state for component i i.e. it is the probability that

the system fails only if component i fails.

3. The criticality measure of importance, which is defined as the probability that the

system is in a critical state for component i and i has failed given that the system

has failed.

4. The Fussell- Vesely Measure of Importance, which is defmed as the probability of

the union of the minimal cut sets containing i given that the system has failed.

The mathematical derivations of all of these quantillcation measures are explained in

detail in chapter 2.

lA The Binary Decision Diagram Approach

1.4.1 Advantages

From an analysis perspective, if the fault tree is very complex then finding the minimal

cut sets can require extensive computer processing capability. Another limitation is that

when the tree is complex approximation methods need to be used to fmd the top event

probability. Research to further enhance the efficiency of the fault tree methodology has

proved difficult, as the current techniques that analyse the fault tree structure based on the

Kinetic Tree Theory of Vesely[Ves70) are already so well developed. In recent years

improvements have been made in the qualitative and quantitative analysis procedures by

using a completely new approach, that of Binary Decision Diagrams. The Binary

Decision Diagram approach has been shown to improve both the efficiency of

determining the minimal cut sets of the fault tree and also the accuracy of the calculation

procedure used to determine the top event parameters. The qualitative and quantitative

procedures employed in this technique are discussed in chapter 3.

10

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

1.4.2 Advances to The Binary Decision Diagram Technique

The fault tree diagram must be converted to an equivalent Binary Decision Diagram

(BDD). This conversion process involves selecting all of the basic events (terminal

events) of the fault tree and placing them in an order. From this ordering each basic

event is selected in turn to successively construct each branch of the BDD diagram.

Research in this area has found that the ordering of the basic events is crucial to the size

of the resulting diagram. Using an inefficient ordering scheme will produce a non

minimal BDD structure. Alternative ordering schemes will produce BDDs of different

sizes, the smaller the BDD the more optimal the diagram.

Therefore, a current problem in the BDD methodology is that of ordering the variables

when the fault tree is converted to the BDD. This is critical for the analysis procedure to

be efficient. The objective would be to produce an ordering scheme that achieves the

'best' BDD for all fault tree structures, hence providing the basis for an efficient analysis

of the tree structure and corresponding failure mode. It is this ordering problem that is

the focus of the research presented within this thesis.

1.5 Summary

• Fault tree analysis is the most commonly applied reliability modelling

technique that is used in industrial applications.

• The fault tree provides a clear diagrammatic representation 0 f the failure

modes of the system under analysis.

• The fault tree analysis technique encompasses both a qualitative and

quantitative procedure, which is well developed and computer packages are

available to carry out the procedures.

• The only limitations of the analysis are in efficiency and accuracy when

dealing with large fault tree structures, with hundreds and possibly thousands

of basic events.

11

Variable Ordering Heuristics For Binary Decision Diagrams Introduction

• These limitations with the fault tree method promote the use of Binary

Decision Diagrams.

• Binary Decision Diagrams are qualitatively more efficient and quantitatively

more exact than the predictions rnade by the fault tree methodology.

• BDDs could be very useful when combined with the event tree analysis

methodology.

• The BDD approach still requires some development in terms of efficient

strategies for the ordering ofthe components from the fault tree diagram.

1.6 Scope of Research

Using the advantages of the fault tree technique and replacing its inefficiency and

inaccuracy of the analysis procedure with one that is better can only lead to an overall

improvement in the modelling technique. Therefore, with the Binary Decision Diagram

currently appearing to be the best way forward to analysing the fault tree diagram in a

more efficient and accurate manner, this approach needs to be fully developed.

Understanding and producing an optimum means of ordering the fault tree variables to

produce an efficient BDD would further enhance the BDD methodology. It is this

variable ordering dilemma which is the topic of study in this thesis.

Despite the BDD methodology being a relatively recent development, a number of

research studies have focussed on the variable ordering dilemma. The current variable

ordering heuristics are discussed in this thesis (chapter 4) as well as new ideas to solve

the problem (chapters 5 - 8). The overall aim of this thesis is to produce a means of

identifying the best ordering permutation for any given fault tree structure, whether this

be by selecting from a set of current alternatives or generating a new and better ordering

heuristic. This would then promote the efficiency of the BDD technique and enable a

commercially available package to be produced. Can just one scheme be highlighted to

predict the optimal BDD for any fault tree? Or perhaps a technique produced that can

choose the best scheme from a set of alternatives.

12

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2 Fault Tree Analysis

2.1 Introduction

Many industrial processes carry the risk of an undesirable system failure. Reliability

studies are undertaken to quantify risks within a system and aid in the process of judging

their acceptability. Fault tree analysis, FT A, is one of the most commonly used

techniques for safety system analysis. This technique is a deductive, or backward

analysis procedure whereby a "what can cause this" approach is taken.

This analysis procedure yields a complete description of the various causes of system

failure. A system is made up of a number of smaller subsystems, which are in turn,

comprised of basic elements or components. These components are linked together in a

specific structure to facilitate the system function. A fault tree diagram can

diagrammatically represent the failure of a system due to contributions of failures of the

components. The system failure mode, or undesired event, is termed the 'top event' and

is the event at the top of the fault tree diagram. Branches lead down from the top event to

other intermediate events that show its possible causes. A system may have a number of

failure modes and therefore a system safety assessment may require many fault tree

diagrams.

Two main objectives ofthe analysis process are:

1. To determine the causal relationship between the components of a system.

2. To determine whether the risk of failure of the system is sufficiently small and

hence the safety of the system is acceptably high.

13

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

The evaluation of the fault tree can be qualitative, as in objective I, or quantitative, as in

objective 2. Both qualitative and quantitative evaluations can be performed on the tree

structure depending on the type of analysis being carried out.

This chapter explains the fault tree analysis technique in detail. Each stage of the process

is examined from the construction of the fault tree diagram to the qualitative and

quantitative analysis procedures involved. Finally, the advantages and disadvantages of

the method are discussed and possible means to improve upon the efficiency of the fault

tree methodology are highlighted.

2.2 Backgrourid

Numerous notorious accidents over the years have heightened awareness to the fact that

failure of industrial systems pose major risks to the public and workforce. To reduce

these risks certain safety standards for individual industrial processes have been put in

place. With the emergence of acceptability criteria for risks many industrial processes

require the possible hazards within the system to be assessed, and hence, the use of risk

assessment techniques, such as fault tree analysis, is now common place.

Reliability first became a concern of the aircraft industry after the First World War.

Initial efforts were merely based on a trial and error approach however, with the slow

development of failure data came the techniques used in reliability studies today.

H. A. Watson (196112) first introduced fault tree analysis during a study of the launch

control system of the Minuteman intercontinental ballistic missile(Wat611. Reliability

techniques have found applications in such fields as the process plant, automotive,

engineering, aeronautic and military establishments.

14

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.3 Description of The Fault Tree Construction Procedure

2.3.1 Fault Tree Symbols

A fault tree diagram contains two basic elements, 'gates' and 'events'. There are two

main types of event: an intermediate event; and a basic event (as shown in table 2.1).

The term event represents elements in a system that can change state. In terms of a basic

event this change of state is referring to the transference from a working to a ruled state,

or vice versa For intermediate events the possible changes are between occurrence and

non-occurrence of the event. Gates represent the causal relationship between these

events, which lead to the top event.

1

2 6

Intermediate Event

(further developed by a gate)

Basic Event

(Terminal Event)

Table 2.1: Main Event Symbols Contained in a Fault Tree

The rectangle is the symbol used to define an intermediate event. This type of event is

the output representing the relationship between the gate and the gates' inputs that lie

below it in the tree (as shown in figure 2.1). The event is termed 'intermediate' because

it can be further developed in terms of either other intermediate events or basic events.

The circle defines a basic event, the smallest resolution item in the system for which data

15

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

is available. Data is required for the basic events in the quantitative analysis of the fault

tree.

There are other event symbols, for example, house events, undeveloped events and

conditional events. These are all discussed in detail in Andrews and MOSS(AMo931, but are

not considered in this thesis.

INTERMEDIATE
EVENT

OUTPUT
REPRESENTING 11IE

RElATIONSHIP
BEtwEEN BASIC

EVENTS AS GOVERNED
BY GATE lYPE

INPUTS TO
INTERMEDIATE EVENT

BASIC EVENTS

Figure 2.1: Relationship Between Events and Gates

There are three main mathematical logic operators, each have their own gate symbol,

namely an AND, OR and NOT gate (shown in table 2.2). These combine events in the

same way as the Boolean operators of 'union', 'intersection', and 'complementation'.

There is therefore a one-to-one correspondence between Boolean algebraic expressions

and the fault tree structure.

Other gate symbols include, for example, vote gate, exclusive OR gate, and a priority

AND gate to name a few. Details are given in Andrews and MOSS(AMo931.

16

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

1 AND gate

2 OR gate

3 NOT gate

Output occurs if all input events occur

simultaneously

Output event occurs if at least one input

event occurs

Output event occurs if the input event

does not occur

Table 2.2: Three Main Types of Gate Used in The Fault Tree

2.3.2 Construction Methodology

The construction procedure requires expert knowledge of all the components of the

system and how they function. The structure of the whole fault tree is illustrated by a

simple example as shown in figure 2.2. The structure is represented by a combination of

events that are logically related to the 'top event' by OR gates. The combinations of

events that lead to the 'top event' are all shown below the 'top event'. The intermediate

events are represented by the rectangles, and the tree is terminated when component

failure events or basic events are encountered.

17

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

TOP EVENT

INTERMEDIATE EVENT

BASIC EVENT

Figure 2.2: An Example Fault Tree to Illustrate The Basic Events

of The Top Event: 'Failure of Water from Hose'

The fault tree (shown in figure 2.2) illustrates the causes of the failure mode "Failure of

Water from Hose". The two possible immediate causes of this event are either ''No

Water supply to Nozzle" or ''No Water From Nozzle". In the latter instance, the failure

corresponds to that of a nozzle and data is available for this event. Hence this is

represented by a circle, which is termed a basic event. The other event needs further

development. This can be caused by ''No Water to Hose" or ''Hose Blocked". If either

the ''Tap is Blocked" or there is ''No Water" this will cause the intermediate event of ''No

Water to Hose". This is the causal relationship between the basic events T and W, as

represented by the OR gate in the diagram.

18

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.4 Qualitative Analysis Of The Fault Tree

2.4.1 Definition o/The Two Types o/Fault Tree

Fault tree structures can be categorised in two ways: coherent fault trees; and non

coherent fault trees. The simple defmition of a coherent fault tree structure is:

1. The top event fails if all the components fail. .

2. The top event works if all the components work.

3. The structure function (or logic function representation of the fault tree

structure, discussed in section 2.5.3) must be monotonically increasing.

For example, the minimal cut set ABC can not come from a coherent structure, because

the functionality of C contributes to the system working. Coherent structures consist of

only AND and OR gates and do not contain NOT logic.

The combinations of events that cause the top event in a non-coherent fault tree leads to

the definition of an implicant set. An implicant set is a combination of basic events

(successes or failures) that produces the top event. Analogous to the coherent alternative,

the collection of basic events (successes or failures) which are both necessary and

sufficient to cause the top event are termed the Prime Implicant Set. Conventional

approaches to fault tree reduction do not deliver all prime implicants for every non

coherent tree hence methods to obtain the prime implicant sets are discussed in section

2.4.4.

2.4.2 The Analysis Procedure

The qualitative analysis of the fault tree involves identifying the possible causes of

system failure. To establish these causes, the specific failure modes (types of failure) of

the system must be identified. Once a fault tree has been constructed for a specific top

19

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

event a qualitative assessment that produces the minimal cut sets can be performed. The

failure modes of a fault tree can be dermed by the concept of a cut set.

A cut set is a collection of basic events such that if they all occur

the top event also occurs.

For large fault tree structures there may be hundreds or even thousands of cut sets

produced, however not all of these may be minimal. Minimal means that they are

necessary and sufficient to produce system failure. For example, given that AB is a cut

set such that if both A and B occur the top event will occur. Ifhowever, an additional cut

set A exists, then the failure of A alone will cause the top event to occur, then the state of

B is irrelevant and the top event will occur regardless of whether B has failed or not. This

introduces the concept of a minimal cut set.

A minimal cut set is the smallest combination of component

failures, which if they all occur will cause the top event to occur.

The size (or order) of a minimal cut set is the number of components within the set.

Lower order minimal cut sets, in general, contribute more to the failure of the top event.

One component minimal cut sets (or first-order minimal cut sets), if they occur, represent

single failures that cause the top event. Two component minimal cut sets (or second

order) represent double failures such that if both components fail this will cause the top

event.

The expression for the top event in terms of its minimal cut sets can be written as:

where C;, i = 1, ... , n, are the minimal cut sets, and '+' represents the logical OR

operator. Each cut set can consist of one or more basic events, where the '.' represents

the logical AND operator. For example, if the expression of the top event is:

20

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

TOP = A + B.C + D.E.F

then there are three minimal cut sets, one first order, A, one second order, B. C , and one

third order, D.E.F.

Quantification of the fault tree can occur once the minimal cut sets have been calculated.

2.4.3 Obtaining Minimal Cut Sets For Coherent Trees

2.4.3.1 Boolean Algebraic Laws

The conventional approach to calculate the minimal cut sets of the fault tree involves

taking the logic expression for the top event and transforming it into a disjunctive normal

form (minimal sum-of-products form). Either a 'top-down' approach or 'bottom-up'

approach can be used, with the difference residing in the starting location to begin the

expansion process, i.e. the top gate or the bottom gate of the tree (the top-down method is

discussed in section 2.4.3.2). Boolean algebra laws given below are used to remove

redundancies in the expressions.

1. Commutative laws:

2. Associative laws:

3. Distributive laws:

A+B=B+A,

A.B=B.A

(A+B)+C =A+(B+C),

(A.B).C = A.CB.C)

A +(B.C) = (A + B).CA +C),

A.CB + C) = A.B + A.C

21

Variable Ordering Heuristics For Binary Decision Diagrams

4. Identities:

5. Idempotent law:

6. Absorption Rule:

7. Complementation:

8. De Morgan's laws:

2.4.3.2 The 'Top Down' Approach

A+O= A,

A.O=O,

A+A= A,

A.A=A

A+A.B=A,

A.(A+B)=A

A+A =1,

A.A = 0,

(A)=A

(A+B)= A.B,

(A.B)=A +B

A+I = I
A.1 = A

Fault Tree Analysis

The common approach to obtain the minimal cut sets is to calculate a Boo lean logic

expression ofthe top event in a 'top-down' manner. Each gate is represented as a logic

expression of its inputs, where the dot or product is representative of the AND gate and

the srnn is used to represent the OR gate. The top-down approach starts with the top gate

and expands the gates with inputs that lie below it in the tree. Using the Boolean laws of

22

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

algebra the minimal cuts sets of the fault tree given in figure 2.3 can be calculated as

follows:

Starting from the TOP gate, this is an AND gate with two inputs Gl and G2, this can

be expressed as:

TOP = Gl.G2

Looking at Gl and G2, both are OR gates, these can be expressed as:

TOP now becomes:

Gl=B+G3

G2 =A +B+ C

TOP = (B + G3).(A + B + C) ..

Expanding and simplifying before the next substitution gives:

TOP = B.A + B.B + B.C + G3.A +G3.B + G3.C.

TOP = B + G3.A + G3.C (Since B.B = B andA.B + B = B)

Expanding G3: G3 = D.E. Substituting this into the TOP expression becomes:

TOP = B + (D.E).A + (D.E).C

Hence, the minimal disjunctive normal form (sum-of-products form) of the logic

expression of the top event is:

TOP = B + D.E.A + D.E.C

23

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

In this minimal form the minimal cut sets can be extracted. The minimal cut sets for this

example are: {B}- fIrst order, {D,E,A}- third order, and {D,E,C}- third order.

c

Figure 2.3: Example Fault Tree to Illustrate Calculation of The Minimal Cut Sets

Other methods to extract the minimal cut sets, for example the bottom-up approach and

various computer algorithms, are discussed in Andrews and Moss[AMo93J.

2.4.4 Obtaining Prime Implicants o/Non-Coherent Trees

Obtaining the prinJe inJplicants of a non-coherent fuult tree requires some additional work

than that of obtaining the cut sets of coherent trees. Consider the non-coherent fault tree

drawn in figure 2.4, which can be restructured to an equivalent fault tree using De

Morgans Laws (shown in figure 2.5). The NOT gate is gradually pushed down the fault

tree until the negation applies to the basic events, such that:

Complementing G3 = A + C :

Complementing G4 = D + E :

A+C=A.C

D+E=D.E

24

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

Figure 2.4: Example Non-Coherent Fault Tree

By applying the top down approach (as used with coherent fault trees) to generate the

logic expression of the top event ofthe fault tree shown in figure 2.5, we fmd:

TOP=GI+G2

TOP = G3.G4+A.B

TOP = (A.C).(D.E) + A.B

:. TOP=A.C.D.E+A.B

Figure 2.5: Equivalent Fault Tree to Figure 2.4

25

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

Unlike coherent fault trees this Boolean reduction may not yield a complete list of failure

modes and additional work is required to fmd all the prime implicants. Within the last

expression there may be hidden prime implicants until such revealing techniques as the

consensus theorem are appliedlMen701.

The consensus theorem can be explained as follows:

Given two fundamental conjunctions (products) ",1 and ",2. If there is precisely

one literal p which occurs negated in one of ",1 and '1'2 and un-negated in the

other, the fundamental conjunction obtained from '1'1.",2 by deletingp and p and

omitting repetitions of any literal is called the consensus of '1'1 and '1'2. For

example, the consensus ofA.B andB.C.E isA.C.E.

Applying this theorem to the last expression gives:

The consensus of A.C D 1f + A.B is C.D.E .B

Therefore the 'full' Boolean expression of the TOP event is:

TOP = A.C.DE +A.B+C.D.E.B

This generates the three prime implicants of the non-coherent fault tree in figure 2.5.

Another commonly used algorithm to find all the prime implicants is that of Nelson's

algorithm[NeI541. This method involves taking the 'dual' of the Boolean expression. The

'dual' is the complementation of the whole top event expression. Nelson's algorithm was

developed to manipulate logic functions to obtain all the prime implicants. This was then

applied to non-coherent fault trees by performing the operation d(d(F» where d(F)

corresponds to the dual of the Boolean expression F, for the top event of the fault tree.

The method can be explained in two steps:

26

----'

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

Step 1: Complement Fto give F, expand F into disjunctive normal form (sum

of-products), drop zero products (p.p = 0), repeated literals (p.p = p) and

subsumming products (p + p.q = p) and call the result ~.

Step 2: Complement rp to give rp, expand to disjunctive normal form, remove zero

products, repeated literals and subsumming products and call the result e.

Nelson proves that e is the sum of all, and only, the prime implicants of F. To illustrate

consider the logic expression of the fault tree shown in figure 2.5:

Step 1: Complement:

TOP=A.C.D.E+A.B

TOP = (A.C.D.E + A.B)

=(A+C+D+E).(A +B)

Expand: TOP = A.A +A.B +C.A +C.B +D.A +D.B +E.A +E.B

Removal:

Step 2: Complement: rp= (A.B +C.A +C.B + D.A + D.B +E.A +E.B)

= (A + B).(C + A).(C + B).(D + A).(D + B).(E + A).(E + B)

Expanding and removing: e = A.C .D.E + B.C .D.E + A.B

This is the same result as with applying the consensus theorem.

27

------------------------------- ------

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.5 Quantitative Analysis

2.5.1 Background of The Analysis Procedure

The basis of the fault tree methodology is developed from Kinetic Tree Theoryl''es701.

When initially developed Kinetic Tree Theory was a major advancement in the field of

reliability and safety system analysis. Basically, the methodology permits the time

dependent analysis of the reliability characteristics of a system, or more precisely, the

evaluation of the fault tree of the system. The methodology forms the fundamental part

of the majority of commercial fault tree packages. Implementation of the method does

have its limitations, whereby approximations need to be used when quantifYing the top

event failure characteristics.

2.5.2 Component and System Quantification Measures

In the quantification process there are a number of mathematical parameters that can be

predicted. To quantifY the top event performance the numerical quantification of all the

components effecting the top event need to be evaluated. The numerical parameters

relating to component performance are expressed in terms of the component's failure

probabilities.

Important parameters, which represent component performance for the repairable

component, are the unconditional failure and repair intensities, and the conditional failure

and repair intensities of a component.

1. The unconditional failure intensity, w(t), is defmed as the probability that a

component fails per unit time at t given that it was working a t = O.

Therefore, within a set of components which all function at t = 0, at time t = 4, say,

the unconditional failure intensity is calculated as the number of components which

28

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

within the unit of time from t = 4 to t = 5, change from a working state to a failed

state, divided by the total number of components in the set.

. 2. The unconditional repair intensity, v(t}, is defined as the probability that a failed

component is repaired per unit time at t given that it worked a t = o.

In a set of components that are working at time t = 0, the numerator of this

parameter is calculated as the number of components that change from a failed state

to a working state in the unit of time, specified by t. The denominator, like in the

unconditional failure intensity, is simply the total number of components in the set.

3. The conditional failure intensity, ..l(t}, is defined as the probability that a

component fails per unit time at t given that it was working at time t and at time

zero.

The difference with this and the unconditional intensity is that this parameter only

considers those components within the set that are actually working at time t. So

whereas in a set of 10 components, the denominator for the unconditional failure

intensity would be ten, if there were only 5 components working in the specified

time interval then the denominator for the conditional failure intensity would be 5.

4. The conditional repair intensity, j.J(t}, is defined as the probability that a

component is repaired per unit time at t given that it failed at time t and was

working at time zero.

This parameter only considers those components that are actna1ly failed at time t

and not all of the components within the set. All of these measures allow for

failures or repairs prior to time t.

Integral equations utilising the failure and repair density functions, can be so lved to yield

the unconditional failure intensity, w(t}, and the unconditional repair intensity, v(t}. The

derivation of these measures can be seen in Andrews and MOSS[AM093J, yielding the

intensity formulas:

29

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

I

w(t)= /(t) + f/(t-u)v(u) du 2.1
o

I

v(t) = fg(t-u)w(u)du 2.2
o

Once the unconditional failure and repair intensities have been established then the

component unavailability, Q(t), can be derived from the values of v(t) and w(t), to give:

I

Q(t) = f[w(u)-v(u)]du 2.3
o

For example, given a component with failure and repair intensities of /(t) = Ae-" and

g(t) = pe -PI, then the unavailability of the component can be calculated using Laplace

transforms and gives:

Q(t) = _A_ {l- exp[- (A + p) t]}
A+P

2.5.3 Defining The Fault Tree Structure - Structure Functions

2.4

A binary system must by defmition exist in either a working state or a failed state.

Similarly, every component that is part of the system must also exist in one of these two

states, so the state of the system will be a function of the state of its components. Once

the component states are determined this will fix. the system state. For a component i, let

Xi be the indicator variable so,

XI = 1 component fails

XI = 0 component works

30

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

As the system can be defmed in terms of the state of its components, the system state can

be expressed as a function jlSU:) such that:

jIS(~) = I, if the system is failed

jIS(~) = 0, if the system is working

where :! = (Xl, .•. , Xn) is the set of all n component indicator variables and jIS(,!) is

known as the structure function.

The structure function jIS(,!) for the top event of a fault tree can be defined in terms of an

indicator function Pj for the minimal cut sets Cj , where i = I, ... , n is given by the

formula:

" jIS(:!) = 1-I1 (I-F,) 2.5
;=1

The structure function for a tree with minimal cut sets AC, AD, BC, BD is:

The probability of the top event equals the expectation of the structure function and in the

case when each Cj is statistically independent then the expectation of the structure

function is the structure function of expectations:

P(TOP) = E [if(:!)] = jIS [E(:!)] 2.7

31

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

When there is not independence, E[~ (!)J '" ~ [E(!)J, and in this case the structure

function must fIrst be fully expanded and reduced using the rule shown below (Le. to

remove powers of the indicator variables) prior to taking the expectation:

To illustrate fInding the top event probability, then consider for example,

~(!) = 1-(1-x,x2)(1-x2x,)(1-x,x,)

~(!) = X,X2 + X2X, + X3X, - 2X,X2X3

If the probability of each component occurring is equal to 0.1, Le. E[x;J = 0.1 for i = 1, 2,

3, then by taking the expectation of the structure function, following its full expansion

and reduction, the top event probability of occurrence would be given as:

P(TOP) = E[~C!)J = E[X,X2J+ E[x2X3J+ E[X3X,J- E[2x,X2X3J

P(TOP) = E[x,J.E[x2J + E[x2J.E[X3J+ E[X3J·E[x,J- 2.E[x,J.E[x2J.E[x,J

P(TOP) = 0.01 + 0.01 + 0.01- 2(0.001) = 0.028

An alternative method that is more efficient is Shannon's theorem. It is a decomposition

technique that can be applied to the top event probability function.

2.5.4 Shannon's Theorem

Shannon's theoremlSch89] can be explained by considering a Boolean function ~(~) where

! = (Xl, Xl, ..• ,xn). This function can be written as:

2.8

where,

32

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

X, =l-x,

~(O,,!) = ~(X!""",XH,O,XI+!""""Xn)
~(l,,!) = ~(X! ' 'XH ,1,xi+! , ,xn)

~(1,,!) and ~(O "!) are called the residues of ~(!) with respect to X,.

Therefore taking the expectation of equation 2.7 and letting Pi = E(x;), the probability

function Q® can be rewritten in the form:

Q(E) = p,.E{~(I"E)} + (1- P,).E{~(Oi'P)} 2.9

The structure function must first be expanded or pivoted with respect to the most repeated

event using Shannon's expansion. This is continued until no powers of indicator

variables exist in the residues. The expectation can then be taken to give the top event

probability.

To illustrate consider again the structure function for the top event, TOP, given by

equation 2.6.

~ (!) = 1 - (1 - xA.xc)(l - XA.XD)(1 - Xn.xc)(l - Xn.XD)

The expectation can not be taken without first expanding because there are repeated

events. Therefore, pivoting about event XA gives:

~ (!) = xAI-(1-xc)(l-xD)(l-xn.xc)(l-xn.xD)] +(I-xA)[I-(I-xn.xD)(I-xn.xc)]

Again there is still one repeated event, Xn, so pivot now about Xn :

ifJ (!) = xn{xA[1-(1-xcX1-xD)(I-xc)(1-xD)] +(I-xA)[l-(I-xD)(I-xc)]}

+(l-xn) {xA l-(I-xc)(l-xD)]}

33

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

Note that the expression (l-xc)(l-xn)(l-xc)(l-xn) reduces to just (l-xc)(l-xn) using the

Boolean Laws of algebra, therefore, the fmal expression is:

There are now no repeated events so taking the expectation gives:

P(TOP) = E[9l(!)] = E[XB] {E[xA][I-(I-E[xc])(I-E[xn])] +

(l-E[xA])[I-(I-E[xn])(I-E[xc])]}

+ (I-E[xB]){E[xA][I-(I-E[xc])(I-E[xn])] }

:. P(TOP) = PB {PA [l-(l-Pc)(l-Pn)] + (l-PA)[l-(l-Pn)(l-Pc)]}

+ (l-PB){PA [l-(l-Pc)(l-Pn)] }

Finally, the process just remains for the probabilities to be substituted in for each event,

and the top event probability can be calculated.

2.5.5 General Approach to Calculate The Top Event Probability

The most commonly used method to calculate the top event probability is based on the

minimal cut sets previously determined in the qualitative analysis. Using the minimal cut

sets is a good general approach, which will yield the correct result for trees with repeated

events providing the assumption that the basic events are independent is appropriate.

If a fault tree has n minimal cut sets, Cj, i = I, ... , n then the top event exists if at least

one minimal cut set exist, i.e.

TOP=C +C +···+C 1 2 n

n

=Uc, 2.10
;=1

34

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

The probability of TOP is given by:

Expanding this gives:

n n ~l

P(TOP) = LP(C,)- LLP(C, nCj)+ .•. (_1)"-1 P(C1 nC2 n ... nC.) 2.12
;=1 ;=2 j=1

This expansion is known as the inclusion-exclusion expansion. Using this generates the

exact probability of the top event occurrence.

To illustrate the usage of this expansion method, consider the fault tree whose minimal

cut sets are:

So the top event can be expressed as:

{AC}

{AD}

{BC}

{BD}

TOP = A.C + A.D + B.C + B.D

The unavailability or probability of the top event, Qsrs{t), is:

Qsys (t) = P(TOP) = P(A.C + A.D + B.C + B.D)

Expanding this using the complete inclusion-exclusion expansion method gives:

35

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

Qsys (t) = [!,(AC) + P(AD) + P(BC) + P(BD~]
firs/term

-[!'(ACD) + P(BCA) + P(BDAC) + P(BCAD) + P(BDA) + P(BDq]
seco;dterm

+ [!,(ACDB) + P(ACBD) + P(ACBD) + P(ADBq]

-[P(ACBD)]
'---.r-----'

foUT1hJmn

thirdterm

If all basic events have probabilities of occurrence of 0.1 then the top event probability

would be:

Q(t) = [0.01 + O.oI + 0.01+0.01]

- [0.001 + 0.001 + 0.0001 + 0.0001 + 0.001 + 0.001]

+ [0.0001+ 0.0001 + 0.0001 + 0.0001]

- [0.0001]

= [0.04] - [0.0042] + [0.0004] - [0.0001]

= 0.0361

The full evaluation of each tenn in the inclusion-exclusion expansion can be extremely

calculation intensive for trees with a large number of minimal cut sets. This is frequently

beyond the capability of fast digital computers to fully evaluate. Therefore,

approximations that produce acceptably accurate results are required. Looking at the

fonnula, the inclusion-exclusion method adds successive odd numbered terms and

subtracts successive even numbered terms. Each tenn in the expansion is successively

less significant than the tenn preceding it. Truncating the expansion on an odd numbered

tenn will provide an upper bound for the top event probability and truncating the

expansion on an even numbered tenn will provide a lower bound.

36

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.5.6 Approximation Methods

There are three main approximation methods to calculate the top event probability, which

are: the rare event approximation (upper bound); the lower bound approximation and the

minimal cut set upper bound. Considering these three methods in turn, each are

discussed in the following sections.

2.5.6.1 Upper Bounds For System Unavailability - Rare Event Approximation

As an increasing number of terms in the inclusion-exclusion formula are evaluated the

probability produced gets closer and closer to the exact probability of the top event.

Therefore, by just considering the first term in the inclusion-exclusion expansion,

n

LP(c,), this is an upper bound for the top event probability, expressed as:
;=1

The upper bound is known as the Rare Event Approximation, since it is accurate if the

component failure events are rare (occur with small probability).

2.5.6.2 Lower Bounds For System Unavailability

A lower bound to the top event probability is the combination of the first two terms of the

inclusion-exclusion expansion, to give:

n n i-I

LP(C,) - LLP(C, nCj)::; QSl'S(t)
;=1 ;=2 j=l "-v---J , . exact

/(J'Wer bcnmd

37

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.5.6.3 Minimal Cut Set Upper Bound

A more accurate upper bound than the rare event approximation is the minimal cut set

upper bound, which is formulated as follows:

Since

P(system failure) = P(at least one minimal cut set occurs)

= 1 - P(no minimal cut set occurs)

n

P(no minimal cut set occurs) ;:: IT P(minimal cut set i does not occur)
j::l

(equality being when no event appears in more than one minimal cut set). Thus,

n

P(system failure) ~ 1 - IT P(minimal cut set i does not occur)
;=1

n

t:} Qsrs(t) ~ 1-IT[I- P(C,)]
;=1

It can be shown that:

n n

Qsdt):s; 1- IT[1- P(C,)] ~ Ip(C,)
i::l 1=1

t:} Exact ~ Minimal Cut Set Upper Bound :s; Rare Event Approximation

2.13

The problem of using any of these approximations occurs when the basic event failures

are not rare.

2.5.7 Unconditional Failure Intensity

One important, and often required, quantification measure is the unconditional fuilure

intensity. The system unconditional failure intensity, wsrs(t), is defined as the

probability that the top event occurs at t per unit time. This parameter is important for the

38

-- ----------------------

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

quantitative analysis of the fault tree as the 'expected number of top event occurrences'

can be determined by integrating WSys(t) with respect to t. Therefore wsrs(t)dt is the

probability that the top event occurs in the time interval [t, t+dt). For the top event to

occur between t and t+dt all the minimal cut sets must not exist at t, then one or more

occur during t to t+dt. More than one minimal cut set can occur in a small time element

dt since component failure events can be common to more than one minimal cut set.

Therefore:

n

wsys(t) = P[A UBil 2.14
j::l

where:

n

A is the event that all minimal cut sets do not exist at time t, A = n Ui
;::1

Ut denotes the jth minimal cut set does not exist at t.

n

U B, is the event that one or more minimal cut sets occur in time t to t+dt
;=1

SinceP(A) = 1- P(A) , then wsrs(t) can be written as:

n n n

P[A U B,J = P[UB,l-P[A UB,J 2.15
;::1 ;::1 ;:::1

where,

A means at least one minimal cut set exists at t.

Hence,

n n

wsrs(t)=P~B,]-P[A UB,] 2.16
;=1 ;:::1

39

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

The frrst tenn on the right hand side of the above expression is the contribution from the

occurrence of at least one minimal cut set, and the second tenn is the correction

contribution provided by minimal cut sets occurring while other minimal cut sets already

exist (i.e. the system has already failed). These two terms can be denoted by w1~ (t) and

w1i-1 (t) respectively, so:

WSys(t)dt = w1~(t)dt -w1i-1(t)dt 2.17

Each of these terms can be expanded to generate the mathematical fonnulas required to

calculate the desired unconditional failure intensities[AMo931.

To calculate the expected number of system failures in time t, W(O,t), means taking the

integral of the system unconditional failure intensity, over the specified time interval t.

t

W(O,t) = f wsys(t)dt 2.18
o

2.6 Importance Measures

2.6.1 Introduction

Components or basic events of a system have varying degrees of influence upon system

failure. This is represented by their differing positions within the fault tree structure. An

importance measure of each component dictates their contribution to system failure in

an importance analysis. An importance analysis is a sensitivity analysis that identifies

weak areas of the system For each component its importance signifies the role that it

plays in either causing or contributing to the occurrence of the top event. The numerical

40

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

value of the importance measure allows each basic event to be ranked according to the

extent ofits contribution to the occurrence of the top event.

There are two categories of importance measures:

1. Deterministic.

2. Probabilistic.

The second category (probabilistic measures) can be subdivided further into two classes,

namely:

1. Those which are concerned with the top event probability.

2. Those that are concerned with the expected number of top event

occurrences.

2.6.2 Deterministic Measures

Deterministic measures assess the importance of a component to the system operation

without considering the component's probability of failure. One such measure is the

Structural Measure ofImportance (SMI), which is defined for a component i, as:

SMI- = numberofcriticalstatesforcomponent, i
I totalnumberof states for the (n -1) remaining components

2.19

A critical state for component i, is a state for the remaining (n -1) components such that

a failure of component i causes the system to go from a working state to a failed state.

This deterministic measure is discussed in more detail in chapter 8.

41

L-___________________________________ _

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.6.3 Probabilistic Measures For Assessing System Unavailability

There are several probabilistic measures for assessing system unavailability or top event

probability, four of which are addressed in this section.

2.6.3.\ Birnbaum's Measure ofImportance

This measure of importance is also known as the criticality function. The criticality

function for a component i is denoted by G, (If). The criticality function can be defmed

as the probability that the system is in a critical system state for component i. Therefore,

it is the probability that the system fails only if component i fails.

There are two expressions for the criticality function as defined below:

1. G,(q) = Q(l"q)-Q(O"q) where: 2.20

Q(l,,1) = Q(q.''',q,_.,l,q'+.''',qn); the probability the system fails when q,=l, and

Q(O,,~) = Q(q., .. ,qi-l,O,q,+., .. ,qn); the probability the system fails when q,=O.

To illustrate this, if the probability that a system fails is represented by the formula:

The criticality of component A, would be:

Q(lA,1) = qB +qD -qBqD

Q(O A,1) = 0

~ GA(1) = qB +qD -qBqD

2.21

42

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

The numerical value for the criticality is calculated by substituting in the unavailability

data for each component.

2. G,(q) = 0 Q(q)
- oq, 2.22

This is calculating the criticaIity function as a partial derivative. Using the same example

as above given by equation 2.2 I:

2.6.3.2 Criticality Measure ofImportance

The criticality measure of importance, Cl, is defined as the probability that the system is

in a critical state for component i and i has failed given that the system has failed:

To illustrate, using the same Qsl'1J) given in equation 2.21:

CIA = (qB +qD -qBqD)qA

qAqB +qAqD -qAqBqD

2.23

43

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.6.3.3 Fussell-Vesely Measure ofImportance

The Fussell-Vesely Measure of Importance, FVJ, is defmed as the probability of the

union of the minimal cut sets containing i given that the system has failed:

p(UCk)

FVI = klie'

I Qsrs(t) 2.24

For example, using the equation 2.21 for the expression for the probability of top event

failure (i.e. minimal cut sets AB, AD), the Fussell-Vesely Measure of Importance for

component B is:

FVIB = (qAqB)
qAqB +qAqD -qAqBqD

2.6.3.4 Fussell-Vesely Measure of Minimal Cut Set Importance

This measure ranks the minimal cut sets in order of the contribution to the top event,

unlike those above which ranks each individual component. The importance measure,

FMC, is defined as the probability of occurrence of minimal cut set i given that the

system has failed:

FMe,
P(C,)
Q~(t)

2.25

44

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.6.4 Probabilistic Measures For System Unreliability

Three measures are highlighted in this section. These measures are used for systems

where the interval reliability is to be assessed and the sequence in which components fail

matters. Note, W(O,t) is the expected number of system failures.

2.6.4.1 Definition ofInitiator and Enabler Events

In some cases the order in which the events occur in any minimal cut set is important to

the occurrence of the fault tree top event. For example, when analysing a safety

protection system two possible outcomes could be, if the protection system fails and then

a hazardous event occurs this could result in a dangerous system failure. However, if the

failures occur in another sequence, i.e. the hazardous event occurs before the safety

protection system fails, this will cause a system shutdown. This type of situation is

modelled by considering the failures as either initiating or enabling events. Initiating and

enabling events can be defined as follows:

Initiating Events:

Perturb system variables and place a demand on controVprotection

systems to respond.

Enabling Events:

Are inactive controVprotection systems, which permit initiating events to

cause the top event.

Importance measures can be found for each of these types of events.

2.6.4.2 Barlow-Proschan Measure ofInitiator Importance

This Barlow-Proschan Measure, BPI, is the conditional probability that initiating event i

caused the failure, given that the system fails in the interval [O,t).

45

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

2.26

Hence, for the Barlow-Proschan Initiator Measure to be evaluated it requires the

evaluation of the criticaIity function, G'(lJP)), represented in equation 2.26 as the

difference between the two probability expressions, component unconditional failure

intensity, Wi(t), and the expected number of top event occurrences, W(O,t).

2.6.4.3 Sequential Contributory Measure of Enabler Importance

This measure, SQI, is the probability that an enabling event i permits an initiating event,

j, to cause system failure over the interval [O,t). The failure of enabler i is therefore only

a factor when enabler i and initiator j both occur in the same minimal cut set, C.

t

L flQ(I;,l j,~(t))-Q(I;,O j,~(t))] q; (t) wj(t) dt
j 0
/1:./

SQ~=~;J~'ec~ ____________________________ __
W(O,t)

2.6.4.4 Barlow-Proschan Measure of Minimal Cut Set Importance

2.27

This measure is the probability that a minimal cut set causes the system fuilure in the

interval [O,t) given that the system has failed:

46

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

t

L nl-Q(O i,l'-U} ,~(t))] n q.(t)w/t) dt
jet 0 bj

BPMI = kE'
i W(O,t)

2.28

(j is initiating each event in the minimal cut set {i}.)

2.7 Advantages and Disadvantages of The Fault Tree Methodology

This method to qualitatively and quantitatively analyse the fault tree has its advantages

and disadvantages. One benefit of the method is its systematic approach in taking the

specific failure mode and in turn highlighting each of the intermediate causes. The

resulting fault tree diagram yields a complete description of the system failure. Using the

technique enables system performance measures to be obtained, i.e. the probability of the

failure mode occurring and the frequency of failure in a specified time range. The

analysis procedure highlights the causes of failure and also the contribution of each

component to the system failure. The process of obtaining these system performance

measures facilitates the identification of ways to modifY the system if it does not meet the

necessary requirements, be it safety or otherwise.

The disadvantages of the technique however are found within the analysis procedure

itself. The technique can be inefficient in calculating the minimal cut sets of the fault

tree, especially for large fault tree structures with many repeated events. In these

circumstances culling methods may help resolve the problem. This culling method

means that only cut sets of a specified order or probability are examined. Hence a

complete list of the minimal cut sets may not be feasible for all trees. These problems are

also extended to the quantification phase whereby the minimal cut sets are required for

calculation purposes. Again, approximation methods are often employed to calculate the

system performance measures.

47

Variable Ordering Heuristics For Binary Decision Diagrams Fault Tree Analysis

To overcome these deficiencies one technique that has been established is the Binary

Decision Diagram approach. This has been found to be more efficient in terms of finding

the minimal cut sets of the fault tree and also permits the exact evaluation of the system

performance measures.

2.8 Summary

To summarise the fault tree technique the following can be stated:

• The fault tree yields a descriptive diagrammatic representation of the fuilure

modes of a system.

• A qualitative and quantitative analysis can be carried out.

• The qualitative analysis produces the combinations of components which

when fail cause the top event to occur (i.e. failure); these are known as the

minimal cut sets.

• The quantitative analysis procedure produces a number of system

performance measures, i.e. top event probability and frequency of occurrence,

as well as the importance measures of each component within the system.

• Finding the minimal cut sets of the fault tree using the techniques already

mentioned can be inefficient, especially for large fault tree structures with

hundreds and even thousands of components.

• The quantification procedure uses the minimal cut sets, and hence often

approximations must be used to establish the system performance measures.

• A more efficient and exact analysis technique needs to be established to utilise

the fault trees potential. One technique is the Binary Decision Diagram

approach.

48

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

3 Binary Decision Diagrams

3.1 Introduction

Fault tree analysis is a commonly used means of assessing the system reliability

performance in terms of its component's reliability characteristics. As indicated in the

summary of chapter 2, this analysis technique is not without its limitations especially

when dealing with large fault tree structures. Analysis of the top event probability

usually requires the use of approximations, as the exact method makes significant use of

computer resources. Many of the techniques used to analyse the structure, i.e. the top

down and bottom-up approaches have been well researched. Any substantial reduction in

computer utilisation is expected to be achieved only from a completely new method.

Potentially the most successful recent development in the fault tree methodology is the

Binary Decision Diagram (BDD) approach. The Binary Decision Diagram approach has

been shown to improve both the efficiency of determining the minimal cut sets of the

fault tree and also the accuracy of the calculation procedure used to determine the top

event parameters.

To utilise the Binary Decision Diagram approach the fault tree structure is first converted

to the BDD format. Implementing the conversion of the tree is relatively straightforward

and efficient but requires the basic events of the tree to be placed in an ordering. The

ordering scheme chosen is critical to the size of the BDD produced, and hence the

efficiency of this technique.

3.2 Background

Over the past decade an alternative technique to Kinetic Tree Theory[VeS70), known as the

Binary Decision Diagram method has been developed to analyse the fault tree.

49

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

Akers[Ake78J was the fIrst researcher to derive the basic methodology for the BDD

approach. This work, involving digital functions, found there was a "description-gap"

between the means of representing these functions. Previously a variety of languages

were at hand to provide a functional description of the system or components, however,

their conciseness led to difficulties in applying any type of analysis procedure. These

languages included Boolean equations and truth tables. Hence, Aker's alternative was to

represent the function in terms of a diagram, which defInes how to determine the output

value of a function by examining the values of the inputs. These diagrams were called

Binary Decision Diagrams.

Since the introduction of the BDD analysis technique numerous researchers have further

enhanced the method[Rau96, SA196, Bry86, SA296, SA396J, its efficiency and capabilities, to its

current status. This method has proved to be more accurate and efficient than the

conventional approaches. In calculating the system or top event parameters it does not

need to fIrst evaluate all the minimal cut sets, nor does it require the use of

approximations, the exact calculations can be performed.

3.3 BDD Architecture

A BDD is a directed acyclic graph, as shown in fIgure 3.1. This means that all paths

through the diagram go in one direction and there are no loops permitted, i.e. all the paths

are directed in one straight route from the top of the diagram to the bottom All paths

through the BDD start at the root vertex and terminate in one of two states, either a 1

state, which corresponds to a system failure (or top event occurrence), or a 0 state, which

corresponds to a system success (or top event non-occurrence). A BDD is composed of

terminal and non-terminal vertices, which are connected by branches. Non-terminal

vertices correspond to the basic events of the fault tree.

50

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

ROOT VERTEX

o

NON-l'ERMINAL
VERTEX)(2

TERMINAL 1 VERTEX TERMINAL 0 VERTEX

Figure 3.1: A Binary Decision Diagram

All the left branches leaving a vertex are the I branches (corresponding to the basic event

failure or vertex occurrence) and all the right branches the 0 branches (corresponding to

the basic event functioning or vertex non-occurrence). Only the vertices that lie on a 1

branch on the way to a terminal 1 vertex are included in the path. All the paths

terminating in a I state give the cut sets of the fault tree. For example, the cut sets, that is

the combinations of events that cause the top event failure, for the BDD shown in figure

3.1 are {XI, X2, X3} and {XI,X4}.

3.4 Constructing The BDD

3.4.1 Brief Introduction

To utilise the BDD approach the fault tree must first be converted to the appropriate

diagram. There are two main methods usedto convert the fault tree structure into a BDD,

one involves using the top event logic function (discussed in section 3.4.2), the other

using an If-Then-Else Method (discussed in section 3.4.3).

51

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

3.4.2 Constructing The BDD Using The Top Event Logic Function

The logic function representing the top event of the fault tree can be used to generate the

Binary Decision Diagram. The process involves substituting in the value of 1

(component fails) and then 0 (component working) for each vertex (or node) in the BDD.

To illustrate this, consider the fault tree in figure 3.2.

LEVEL!

LEVEL 2

A

Figure 3.2: Example Fault Tree

The top event logic function (which can be given in any form) is represented by:

T=A.B+B.C.D

The minimal cut sets of the fault tree are:

{A,B}, {B,C,D}

To start the conversion process the basic events need to be placed in an order. Using a

top-down, left-right approach i.e. starting from the top gate and working downwards, at

each level the tree is scanned from left to right, the ordering for the basic events would

be:

52

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

A<B<C<D

This ordering means that first variable A is considered in the conversion process, then

variable B and so on until all the variables in the list have been taken in turn. Now the

assignment of values, corresponding to the component state of the Boolean variables

selected from the list, can be made. The flfst variable is A and assigning the value of 1 to

this variable within the logic function produces the Boolean equation:

T(IA,!)=B+B.C.D

This forms the function at the end of the left-hand branch of the vertex. This function

will be further evaluated with the assignment of values for the next Boolean variable in

the ordered list. Assigning the value of 0 to the variable A in the logic function produces

the right-hand branch of the vertex, with the resulting Boolean equation:

T=AB+B.C.D

B+B.C.D

o o

c o

o

D

Figure 3.3: BDD For Structure Function T = A.B+B.C.D

53

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

Continuing this substitution technique for each of the Boolean variables in turn (as

detennined by the ordering permutation) will produce the BDD as shown in figure 3.3.

The Boolean equations involved in the conversion process are represented on the

diagram.

The calculations for each of the intermediate logic functions have been removed from

figure 3.3 to create the simplified version of the BDD shown in figure 3.4.

A

B

o

o
D

Figure 3.4: Simplified Version of The BDD Shown in Figure 3.3

The cut sets of this BDD can be obtained by tracing the paths from the root vertex along

the 1 branches to a tenninal I state, shown in figure 3.4 with arrows. Hence the cut sets

are:

{AB}, {BeD}.

54

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

In this instance, the diagram is in its minimal form and hence the cut sets are minimal.

Sometimes the BDD produced is not minimal and to produce the minimal cut sets a

minimisation procedure needs to be applied. This is described in section 3.4.4.

This conversion method requires a considerable amount of simplification by applying

Boolean reduction laws after each function evaluation at the end of a branch. This is

particularly evident when there are a number ofrepeated events within the logic function.

One method to alleviate these problems is to use the If-Then-Else approach.

3.4.3 Constructing The BDD Using The If-Then-Else Method

Rauzy(Rau93] first used the If-Then-Else (ite) structure method when converting the fault

tree to the BDD. One important feature of the BDD method is that the ite structure is

derived from Shannon's formula (chapter 2). To reiterate, if I~) is the Boolean

structure function for the top event of the fault tree then by pivoting about any variable,

Xi say, the Shannon formula may be written as:

1~=Xi.fl+X,./2 3.1

where f1 and 12 are Boolean functions with Xi = 1 and Xi = 0 respectively, and are of

order one less than f The corresponding ite structure is ite(Xi, f1, 12), where Xi is the

Boolean variable and fl and 12 are logic functions. This means if Xi fails then consider

function 11 else consider 12. Therefore,· in the BDD f1 represents the structure lying

below the 1 branch of Xi, and12 represents the structure lying below the 0 branch. This

ite structure is illustrated in diagrammatic form in figure 3.5.

55

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

Xi

fl f2

Figure 3.5: ite representation ofite(X;,fl,j2)

Following the ordering of the basic events the ite procedure can be applied to construct

the BDD. Note, that in the following procedures <op> corresponds to the Boolean

operation of the logic gates of the fault tree, so if the gate is an AND gate <op> will be

the dot or product symbol (.), and if the gate is an OR gate <op> will be the sum symbol

(+).

The procedure to apply the ite approach is outlined below:

1. Assign each basic event, X; in the fault tree the ite structure ite(X;, I, 0), (X; can

either fail - 1 branch, or work - 0 branch).

2. Convert the fault tree structure to one where each gate has only two inputs.

3. Consider each gate in the fault tree structure in a bottom-up approach.

4. If gate inputs are J and H, where:

J= ite(x, Fl, F2) and H= ite(y, Gl, G2)

then apply the following rules:

• Ifx<y: J <op> H = ite(x, Fl <op> H, F2 <op> H)

• Ifx=y: J <op> H= ite(x, Fl <op> Gl, F2 <op> G2)

• Consider Vote gates individually.

56

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

If F is a kin vote gate with inputs F., ... ,Fn, i.e. F = at

least(k,FI , •.• ,Fn), then F is written implicitly as (FIll at-least(k-

1,F}, ... ,Fn»u at-least(k,F}, ... ,Fn).

These are used in conjunction with the following identities to produce the simplest ite

structure for each gate:

I <op> H = 1, if <op> is an OR gate

o <op> H=H, if<op> is an OR gate

1 <op> H = H, if <op> is an AND gate

o <op> H = 0, if <op> is an AND gate

An illustration of the procedure employed for a vote gate is if k = 3 and n = 4, then F

would have inputs Fl, F2, F3 and F4. Thus, F can be expressed as:

Simplifying 1'; 11 (2, F2 , F3 ,F.) becomes:

Hence, the whole expression is:

Therefore, F can be written as: 1';F2.F3 +1';.F2F. +1';.F3.F. +F2F3F., and the ite

formulation can now be applied.

To illustrate the ite procedure to obtain the top event ite structure, consider the simple

fault tree in figure 3.6.

57

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

Figure 3.6: Simple Fault Tree Structure

Using an ordering of A < B < C for the fault tree shown in figure 3.6, the ite structure for

the top event is obtained as follows:

Each event is given an ite structure:

A = ite(A, 1, 0)

B = ite(B, 1, 0)

C = ite(C, 1,0)

Working from the bottom of the tree to the top and applying the procedure as explained

the result is:

Gate 1 =B.C

= ite(B, 1, O).ite(C, 1,0)

= ite(B, l.ite(C, 1,0), O.ite(C, 1,0))

= ite(B, ite(C, 1, 0), 0)

TOP = A + Gate!

58

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

= ite(A, 1,0) + ite(B, ite(C, 1,0),0)

= ite(A, 1 + ite(B, ite(C, 1,0),0),0 + ite(B, ite(C, 1,0),0»

= ite(A, 1, ite(B, ite(C, 1,0),0»

To construct the BDD the ite structure is successively broken down into its left and right

branches. The root vertex is the node A, and the 1 branch of A will terminate in a 1

terminal vertex, and the ite structure ite(B, ite(C, 1,0),0) will lie below the 0 branch of A

(shown in figure 3.7a).

It«A. 1, ite(B, it«c, 1,0),0»

A

o

Figure 3.7a: Creating The BDD by Expanding The ite Structure

Next node B is developed. The ite structure ite(C, 1, 0) will lie below the I branch of

node B, and the 0 branch will terminate in a 0 end vertex. The ite structure representative

for node B is drawn in figure 3.Th.

B

ite(C, 1,0)

Figure 3. Th: Ite Structure Representing Expansion For Node B

59

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

The resulting BDD is shown in figure 3.7c.

Figure 3.7c: Resulting BDD From The Fault Tree Shown in Figure 3.6

The paths are then obtained as before, these being {A}, {B,C}.

3.4.4 Reducing The Size o/The BDD

Converting the fault tree into a BDD produces a problem if the minimal cut sets are

required and the resulting BDD is not minimal. In such a situation a conversion process

is needed to produce a minimal form of the BDD that encodes only the minimal cut sets.

One simple approach that may help the situation where nodes are repeated is the method

of Friedman and SupowitlFSu901. It is stated that a tree representing a function of n

variables can have a maximum of rl-l nodes, however it was recognised that a BDD

can be reduced in size by two 'collapsing' operations. These operations are:

60

Variable Ordering Heuristics For Binary Decision Diagraros Binary Decision Diagraros

1. If the two sons of a node A are equivalent, then delete node A and direct all of

its incoming edges to its left son. (N.B. A 'son' of a node is simply the node

attached to either its 1 or 0 branch).

To illustrate this operation consider the BDD shown on the left in figure 3.8,

where node B has two equivalent sons (node C). Deleting node B and directing

all of its incoming edges (the 1 branch from node A) to its left son (node C),

produces the new BDD structure as shown by the BDD on the right in figure

3.8.

Figure 3.8: BDD to Illustrate Operation 1 of Friedman and Supowit's Approach

2. If nodes A and B are equivalent, then delete node B and direct all of its

incoming edges to A.

This reducing operation is shown in figure 3.9. The BDD on the left has two

nodes, node 1 and 2 represented by the vertex label C, which are equivalent.

To simplify the diagram node 2 can be removed and its incoming edge from

the node labelled vertex B can be directed to node 1, as shown in the diagram

on the right hand side of figure 3.9.

61

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

Figure 3.9: BOO to Illustrate Operation 2 of Friedman and Supowit's Approach

Sometimes the logic function is more complicated and despite applying the 'collapsing'

algorithms above the BOO can still produce non-minimal cut sets, hence, another

minimisation process is required. The fault tree in figure 3.10, with resulting

unminimised BOO (figure 3.11) will be used to illustrate this alternative minimisation

algorithm.

Figure 3.10: Fault Tree to Illustrate Minimisation Algorithm of BOO

62

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

Constructing the BDD using the ite method with an ordering Xl < X2 < X3 < X4 for the

variables, the results for the intermediate gates are:

G2 = X3X4

= ite(X3, I, 0).ite(X4, 1,0)

= ite(X3, l.ite(X4,1,0), 0.ite(X4, 1,0»

= ite(X3, ite(X4,1,0), 0)

GI = XIX2X3

= ite(XI, I, 0).ite(X2, I, 0).ite(X3, 1,0)

= ite(XI, l.ite(X2,1,0), 0.ite(X2, I, 0».ite(X3, 1,0)

= ite(XI, ite(X2,1,0), 0) .ite(X3, 1,0)

= ite(XI, ite(X2, 1,0).ite(X3,1,0), 0.ite(X3,1,0»

= ite(XI, ite(Xl,l. ite(X3,1,0),0. ite(X3,1,0», 0)

= ite(XI, ite(Xl, ite(X3,1,0),0), 0)

Now both intermediate gates have been expanded the top gate can be evaluated.

TOP =GI +G2

= ite(XI, ite(Xl, ite(X3,1,0),O), 0) + ite(X3, ite(X4,1,0), 0)

= ite(XI, ite(X2, ite(X3,1,0),O)+ ite(X3, ite(X4,1,0), 0),

0+ite(X3, ite(X4,1,0), 0»

= ite(XI, ite(X2, ite(X3,1,0) + ite(X3, ite(X4,1,0), 0),

0+ ite(X3, ite(X4,1,0), 0», ite(X3, ite(X4,1,0), 0»

= ite(XI, ite(X2, ite(X3,1+ite(X4,1,0),0+0) , ite(X3, ite(X4,1,0), 0»,

ite(X3, ite(X4,1,0), 0»

= ite(Xl, ite(X2, ite(X3,1,0), ite(X3, ite(X4,1,0), 0», ite(X3, ite(X4,1,0),

0»

This TOP event ite structure is representative of the BDD shown in figure 3.11. The

'collapsing' rules defmed above have been applied yet the cut sets that are produced are:

63

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

{XI,x2,x3}, {XI,x3,x4}, {X3,x4}

These are not minimal cut sets (the second set is non-minimal). Boolean Reduction Laws

could be applied to produce the minimal cut sets, however this process increases

computation time and memory requirements which destroys the aim of the BDD

technique.

F1

o

o
F3

Figure 3.11: BDD Resulting From Fault Tree in Figure 3.10

Rauzy[Rau93] has created an algorithm that generates a BD D defining exactly the minimal

cut sets of the fault tree. The algorithm uses the ite operation procedure directly. To

explain, consider a general node x in a BDD. The algorithm states that:

If the output of a node is represented by the function F where F = ite(x, G, H), let

o be a minimal solution of G which is not a minimal solution of H, then the

intersection of 0 and x will be a minimal solution ofF, given by F rrin ={ o} () x .

64

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

More clearly, tracing the paths to the tenninal 1 vertices from the BDD vertices

representing the functions G and H will give the sets of solutions that can cause these two

events. Removing redundant combinations from these sets will yield the minimal

solutions. The solutions of G augmented with x will cause F as will the solution of H.

To ensure that this combined set is a minimal solution of F any minimal solutions of H

are removed from the minimal solutions of G.

The algorithm is completed as follows:

The set of all minimal solutions ofF, solmin(F), will include the minimal solutions

ofH (solmtn(H)) so:

solmn F = [(o}nx] V [solm. (H)]

That is, the minimal solutions of F include both those minimal solutions of G which are

not contained within H, (b), and the minimal solutions of H.

To illustrate with an example, consider the BDD shown in figure 3.12. The solutions of G

are found to be {A}, {BC}, {D}. The solution of His {D}. To find 0 the solutions that

also occur in H must be removed i.e. D. If retained on the 1 branch it will yield a

solution of xD, which is not minimal. Hence, the minimal solutions of G which were not

minimal solutions of H, are A and B.C. Therefore, including the minimal solutions of H,

namely D, can complete the minimal solutions of F. Thus, the minimal solutions of F

are:

solmnF = [x.A, x.B.C, DJ

65

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

G : it«A,J ,lre(B,fte(C,J ,00,it«D,1 fJ») H - it«D,I,O)

Solutions of H:
D

Solutions: D

o

Figure 3.12: Illustrating Minimal Solution ofBDDs

Rauzy has defmed a 'without' operator, without(Gmin• H) which removes from Gmin all

the paths included in a path of H i.e. establishes t5. To demonstrate this algorithm it is

applied to the BDD shown in figure 3.11, Considering the nodes in a top-down order, for

the root vertex node Fl, the 0 branch leads to the node F4, which corresponds to H, The

solution of H is X3X4. The 1 branch of Fl leads to node F2 which corresponds to O.

The solutions of G are X2X3, X3X4. Hence solution X3X4 is also included in the path

from the 0 branch of Fl, To establish the minimal solutions of Fl we need to formulate

Gmin, i.e, the minimal solutions of F2. In this case, the solutions of F2 are minimal,

therefore we remove from F2 all the paths that include the solution X3X4, This is

performed by removing F4 (vertex labelled X3) from the 0 branch of F2 and replacing it

with a terminal 0 vertex. This application of minimising is carried out for all nodes within

the BDD. In this example, this results in no further alterations. The BDD shown in

figure 3.13 is therefore in its minimised fonn The minimal cut sets can now be read

directly from the BDD.

66

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

o

Figure 3.13: Minimised BDD of Figure 3.11

Sinnamon[Sin961 noticed that Rauzy failed to recognise two further results which would

increase the efficiency of the minimisation procedure, these being:

1. without(F,1') ={ }

This statement is saying to remove from F all the paths included in

a path of F. As these are the same, this results in no paths (the

empty set).

2. ite(x, F, 1') = F

The node with label x can be removed by the collapsing rule.

These two factors are included in the computer code, produced by Sinnamon[Sin96) to

generate the BDD from the fault tree diagram.

67

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

3.5 Top Event Quantification

3.5.1 System Failure Probability

The BDD can be used to calculate the Top Event Probability and numerous other

measures of quantification, including importance measures[Sin961. Since the BDD method

converts the fault tree diagram into a fonnat that encodes Shannon's decomposition it

allows the exact failure probability to be determined in a very efficient calculation

procedure.

Given a structure function F(i) for the top event, the probability is obtained by taking

the expectation:

E[F(,y] = LXi.P(F(!) = Xi) = 1.P(F~) = 1)+ O.P(F(i) = 0)

=P(F(~)=I)

=Qsys

Shannon's representation of the probability of the top event is given by:

Taking the expectation of this representation gives:

E[F~)] = Qsys(q)

E[F;(i)] = Qsys(q,,"',qH,I,qlt' ,"',q.)

E[F2(i)] = Qsys(q, ,;",qH ,O,qlt,,"',q)

E[F~)] = qi.E[F;(!)] + (1- qi).E[F2 (,y] 3.3

68

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

where q; = E[x;], the probability that event i occurred. Hence, the top event probability

can be found by evaluating equation 3.3. The BDD encodes a Shannon form of the

structure function.

Each path through the BDD to a terminal I vertex is mutually exclusive or disjoint,

therefore to obtain the probability of occurrence of the top event the sum of the

probabilities of the disjoint paths through the BDD is calculated[SAI961. The probability of

the disjoint paths is taken from the unminimised BDD structure because the minimised

BDD changes the logic function to encode only the minimal cut sets. The disjoint paths

are all the paths starting at the root vertex that terminate at a 1 vertex, including both the

nodes on the 1 and 0 branches. The disjoint paths of the BDD shown in figure 3.11 are:

{Xl,X2,X3}, {Xl,X3, X 4}, {Xl,X2,X3,X 4}

Before the calculation can begin, the basic events need to be assigned probabilities.

Calculation of the top event now involves summing the probabilities of these disjoint

contributions.

QSl'S = P(X1.X2.X3 + Xl. X3.X4 + Xl. X2.X3.X4)

= qx,·q X2·qX3 + (l-q X,)·qX3·q X4 + qx,·(l- qX2)·q X3·qX4

where qi is the unavailability of component i.

3.5.2 System Failure Intensity

One other key quantification measure is the top event unconditional failure intensity

wsrs(t), that is the probability per unit time that the system fails at time t. This can be

determined from:

69

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

n

Wsys(t) = LG,(CZ)·w,(t) 3.4
i=1

where G,(cz)is the criticality function (see section 2.6.3.1) and Wi is the failure intensity

for component i. To reiterate, the criticality function is defined as the probability that the

system is in a critical state with respect to component i and that the failure of component i

will then cause the system to go from the working to the failed state. Therefore,

G,(cz) = Q(1"CZ)-Q(O"CZ) 3.5

The two terms on the right hand side of equation 3.5 can be calculated using the BOO

approach, which only requires one pass of the BOO structure for each component, unlike

the fault tree approach which requires two passes. The process requires the evaluation of

the probability ofthe path arriving at each node of the BOO and also the probability of

the path going from this node to a terminal 1 vertex on each of its two output branches.

The formulae used when applying the BOO approach are:

where:

n

Q(1"q) = L(prx,(q)·po!,(q» + Z(q)
- 1:::1 - - -

3.6

n

Q(O"q) = L(prx,(q).po~,(q»+Z(q)
- i=l - - -

3.7

prx,(CZ) is the probability of the path section from the root node to node Xi.

po!, (CZ) is the probability of the path section from the 1 branch of node Xi to a

terminal 1 node (excluding probability of Xi).

70

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

PO~i ('1) is the probability of the path section from the 0 branch of node Xi to a

terminal 1 node (excluding probability of Xi) •

Z(q) is the probability of the paths from the root node to the terminal I node not

passing through the node for variable XI.

Therefore, in terms of these equations the criticality function can be rewritten:

n

G;(q) = ~>rXi(q).[pO!i(q)- PO~i(q)]
- j=1 - - -

3.8

Using this formula (equation 3.8) for the criticality function provides an efficient means

of calculating the unconditional failure intensity of the system. To illustrate, consider the

BDD shown in figure 3.14, the tables 3.1 - 3.4 demonstrate the mathematical calculation

procedure.

Ft

XI

o

F4

I o

I 0

Figure 3.14: Simple BDD For Calculating Quantification Measures

The first stage of the procedure requires knowledge of the connections between the

nodes, i.e. the ite table for the BDD, as shown in table 3.1.

71

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

···.····NodeLabel· •. · •. · I
.. • •.•.• ·.··.Van. ·.ab.le.·· .•... ••· ... · ..

"•........•.......... '.'. I. ••. ,',1···' " ..
o bnmchpoiriter..
, ' .. ". . ". ".'."

FI XI F2 o
F2 X2 F3 F4

F3 X3 I FS

F4 X3 I o
FS X4 I o

Table 3.1: Ite Table For BDD Shown iri Figure 3.11.

Next the calculation of each of the terms in equation 3.8 needs to be performed. The first

probability, the probability of the path from the root vertex to node Xi. pr" (9) is

evaluated by summirig the probabilities along the relevant path. The calculation steps can

be seen iri table 3.2 where the path taken is summarised iri the ''Explanation'' column.

;,path,prx,(~)r
;:);j':"" ",--".'

F I I Root Vertex itself

F2 ql Prob. of goirig along I branch of node FI

F3 ql42 Prob. of path - I branch ofFI, I branch ofF2

F4 q,(I-q2) Prob. of path-I branchofFI, 0 branchofF2

FS QI'Q2(l-Q3) Prob.ofpath-I branchFI, I branchF2,O

branchF3

Table 3.2: Calculation Procedure For pr" (9)'

Table 3.3 summarises the steps required to calculate' the probability of po!, (~), the path

from the selected node along the I branch to any termirial I vertex, excluding the

probability of the selected node. For example, from node FI offigure 3.14, the paths to a

termiriall vertex along the 1 branch of the selected node are:

72

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

• Path 1 - along the 1 branch ofFl to node F2, along the 1 branch ofF2 leading

to node F3 and then to the terminal 1 vertex.

• Path 2 - along the 1 branch ofFl to node F2, along the 0 branch ofF2 leading

to node F4 and then to the terminal vertex at the end of the 1 branch of node

F4.

• Path 3 - along the 1 branch ofFl to node F2, along the 1 branch ofF2 leading

to node F3, then along the 0 branch of F3 leading to node F5 and then to the

terminal vertex at the end ofthe 1 branch of node F5.

In table 3.3, the column referring to "INr' is the intermediate calculation of the path and

includes the probability of the selected component. The paths for each ofthe other nodes

are explained in brief in the final column of table 3.3.

Fl

F2

F3

F4

F5

qlq2q3 + qlq2{I-q3)q4

+ql(I-q2)q3

q2q3+q2(I-q3)q. 3routes-l branch of

+{I-q2)q3 Fl, 1 ofF2, 1 F3,orl

Fl, 1 F2, 0 F3, 1 F5, or

1 FI, 0 F2, I F4

I

1

I

I F2, I F3 or I F2, 0

F3, I F5

I branch to terminal I

node

1 branch

I branch

Table 3.3: Calculation of po!, (If)

73

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

The calculation of the probability of going along the 0 branch to a terminal I node is

explained in table 3.4. Again "!NT" refers to the whole path, including the probability of

the selected node. Taking node F2 as an example, the paths to the terminal I vertex

starting by going along the 0 branch of node F2 are:

;:,

• Path I - along the 0 branch ofF2 leading to node F4 and then the I branch of

F 4 leading to terminal I vertex.

1'-[odeLabel \':k.

•. ?,~),~,~·r·r·· l'iC'(po ~,(~!:·'.?ii· Explanation;'" C<:·

.;.
FI 0 0 o branch

F2 (1- q2)q3 q3 o F2, I F4

F3 (l-q3)q. q. o F3, I F5

F4 0 0 o branch

F5 0 0 o branch

Table 3.4: Calculation of po~,(q) For BDD Shown in Figure 3.11

Hence, ultimately G, (1) can be calculated for each variable, by adding together

contributions from any nodes of the same variable, thus:

Gx,(1) = q2q3 + q2(1- q3)q. + (1- q2)q3

GX2 (1) =q,(i-q3)q.

Gx3 (1) = q,q2(i-q.) +Q,(1-Q2)

GX4 (1) =Q,Q2(I-Q3)

Having obtained G,(1) this is substituted into equation 3.8 to give WSys(t).

74

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

Being able to calculate the system unconditional failure intensity efficiently means that

the calculation of the expected number of top event occurrences can also be efficiently

calculated if required. The calculation of the expected number offailures of the top event

means taking the integral of equation 3.8 (as detailed in section 2.5.7).

These quantification measures and others can be calculated using a computer program

which has been produced by Sinnamon[Sin961. The formulas for the remaining

quantification measures can be found in Sinnamon[Sin961.

3.6 Applications ofBDDs To Event Trees

3.6.1 Overview of Event Trees

The event tree analysis technique is used to identify the consequences following the

occurrence of a hazardous initiating event. Separate subsystems are examined in turn and

their responses, either functioning and responding to the initiating event or failing and not

responding, are identified, creating branch points of a tree structure. The end branch

points of the tree correspond to different consequences resulting from the starting

initiating event. Fault trees are developed to identifY causes of each of the subsystem

failures. One minus the failure probability (generated by evaluating the fault tree

structure) gives the likelihood of passing along the success (subsystem working) branch

of the event tree.

The problems of using the event tree approach occur when there are dependencies within

the tree, that is, when component failures appear in more than one of the fault trees

representing the causes of the branches. The underlying problem concerns the ability of

the fault tree quantification process in dealing with working and failed components, i.e.

quantification of non-coherent fault trees. These quantification problems are summarised

in the following section.

75

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

3.6.2 Traditional Solution to Dependencies Within The Event Tree

When dependencies arise within the system, the fault trees incorporating the

dependencies need to be considered as inputs to an AND gate, whose output now

detennines the causes of a higher level 'complex' event. For example, consider the event

tree drawn in figure 3.15 which has dependencies in system I and system 2. The fault

trees representing the causes of subsystem failure are given in figure 3.16. The

dependencies between the systems are the repetition of the basic events labelled A and D.

System I

Initiating Evert W

F

System 2

W

F

W

F

OUfCOMES

Sl S2

Sl S2

Sl S2

Sl S2

Figure 3.15: Event Tree With Dependencies Between System I and System 2

The fuult tree for system I fuilure is drawn in figure 3. I 6a and that for system 2 in figure

3.16b.

A B

Figure 3.16a: Fault Tree For System I

Failure

SYSTEM 2 FAILS

D F

A E

Figure 3.16b: Fault Tree For System 2

Failure

76

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

There are four outcomes of the event tree, and considering just one, the outcome of SI

works and S2 fails, the combined fault tree is represented in figure 3.I6c.

Figure 3.16c: Fault Tree Representing Outcome SI Works and S2 Fails

Boolean reduction laws that are applied to this new fault tree result in combinations of

successes and failures as the NOT logic is developed through the tree, hence the fault tree

is non-coherent. Analysis of non-coherent fault trees relies heavily on approximation

methods and is both inaccurate and inefficient. The quantification process invo Ives

evaluating the inclusion-exclusion expansion of the probability of the top event (equation

2.12). To enable this quantification, the prime implicants are reduced to their coherent

approximations by assuming working states for components in the expression are set to

TRUE, on the assumption that Prob(component works) '" 1. Hence, coherent

approximation methods can be applied. These approximation methods involve truncating

the expansion after only a few terms, and to be valid for non-coherent trees many terrns

may need to be evaluated to gain the required accuracy.

77

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

3.6.3 How The BDD Has Enhanced The Event Tree Technique

Andrews and Dunnett[ADu99] have shown that the application of the BDD technique in

quantifying the dependencies within the event tree is more efficient and accurate than

using the conventional fault tree approach. The BDD methodology encodes Shannons

formula therefore quantification can be evaluated from the diagram directly. The dual

BDD or BDD representing system functioning is easily constructed by changing all the

terminal 1 vertices to 0 and vice versa. To use the BDD technique for event tree analysis

purposes involves combining the BDDs for each system (for example using the ite

formulation) to produce the outcomes with dependencies. To quantify the BDD involves

calculating the sum of the disjoint paths (successes and failures) leading to a terminal 1

vertex. This is the same as applying the full inclusion-exclusion formula. Thus, this

method will produce exact quantification measures to use for the branches of the event

tree, and also is more efficient than the fault tree analysis technique currently in use. An

algorithm has been written to quantify a general event tree structure with dependencies

using this BDD method.

3.7 Variable Ordering

3.7.1 The Problem

In constructing the BDD the ordering of the basic events is crucial to the size of the

resulting diagram. Using an inefficient ordering scheme will produce a non-minimal

BDD structure. Different ordering schemes will produce BDDs of different sizes, the

smaller the BDD the more optimal the diagram. To illustrate this fact, consider the simple

fault tree shown in figure 3.17. The tree has four basic events, where X2 is repeated.

78

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

TOP

XI

X2 X3 X2 X4

Figure 3.17: A Simple Fault Tree

Ifthe basic event ordering permutation of Xl < X2 < X3 < X4 is taken, the resulting BDD

is shown in figure 3.18. This structure consists of only four nodes, it is a minimal

structure and hence produces only minimal cut sets.

Xl

X2

X4 o

o

Figure 3.18: Resulting BDD From Ordering Xl <X2 <X3 <X4.

However, if the alternative ordering permutation of X4 < X3 < X2 < Xl is taken the

resulting BDD consists of seven nodes, it is non-minimal and yields non-minimal cut sets

79

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

(shown in figure 3.19). From this result it can be shown that for larger fault tree

structures the resulting BDD would be much larger, and in the worst case of using a poor

ordering permutation, the diagram may be unsolvable.

X4

, ,

Figure 3.19: Resulting BDD From OrderingX4 <X3 <X2 <Xl.

The objective would be to produce an ordering scheme that achieves the 'best' BDD for

any fault tree. Numerous studies have investigated the effects of variable ordering

schemes on the BDD size and it has been sh9wn that there is no universal scheme that

will always guarantee the 'best' BDD formation, and the most appropriate scheme must

be selected depending on the characteristics of the fault tree. This area of work is

described in detail in chapter 4.

3.8 Summary

• The best development in analysing the fault tree is to use the Binary Decision

Diagram approach.

• The process requires the fault tree to be converted into an alternative structure

known as a Binary Decision Diagram.

• The method produces the minimal cut sets of the fault tree more efficiently and

can produce exact quantification measures.

80

Variable Ordering Heuristics For Binary Decision Diagrams Binary Decision Diagrams

• The advantages of the BDD technique can be applied to event tree analysis, as .

fault tree techniques are used in establishing the failure probabilities within the

event tree. The benefits gained in the fault tree analysis are even more

significant when applied to non-coherent systems. Incorporating the BDD

technique improves the accuracy and efficiency ofthe event tree analysis.

• A potential difficulty of the technique stems from the conversion process of the

fault tree to the BDD representation. In the conversion process the basic

events (or components) of the fault tree need to be ordered, and it is this

ordering that can cause complications.

81

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

4 Variable Ordering Heuristics

4.1 Introduction

It is possible that using an ordering heuristic for a given fault tree will cause the BDD

structure to explode exponentially. The problem with this is an inefficient analysis or in

the worst case it is not possible to develop the BDD. If a non-minimum BDD results

from the conversion process it must undergo a minimising procedure to obtain the

minimal cut sets, which can cause an undesirable increase in computer time. Also using

a larger than necessary BDD is inefficient when calculating the top event probability and

frequency of occurrence. Of course the degree of inefficiency depends on how much

larger than the minimum the BDD is. It is therefore beneficial and desirable to achieve

an ordering which is optimal in terms of the resulting size of the BDD, or in the extreme

an ordering which will produce a BDD. Finding a solution to the ordering dilemma will

enable the resulting BDD in the fault tree to BDD conversion process to be minimal or at

least near minimal, and ultimately promote an efficient analysis.

Although the Binary Decision Diagram approach is a relatively new technique

researchers have identified the variable ordering problem, and a number of ordering

heuristics have been suggested. The techniques available and applicable to fault tree

analysis are explained below and their characteristics and merits discussed.

4.2 The Most Commonly Used Heuristic

The most common heuristic for ordering is produced by listing the variables in a top

down, left-right basis from the original fault tree structure. To illustrate, consider the fault

tree shown in figure 4.1 represented as an alternating AND/OR gate sequence. The fault

82

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

tree structure has four distinct levels separated by gates. The process of ordering begins

at the top most level, and continues downwards until the . last level is reached. At each

level, the ordering commences in a left to right path and basic events that are encountered

(as shown by the circles) are added to the ordering list. If a basic event is encountered

which is already placed higher up the tree and has therefore been incorporated in the list,

then it is ignored.

TOP EVENT

LEVEL I A

LEVEL 2 B c

LEVEL 3

LEVEL 4 K

Figure 4.1: Fault Tree to Illustrate Ordering Heuristics

Applying this method, the ordering would progress in levels as shown:

• Level 1: Only one basic event encountered therefore first variable in ordering

list. {A}

• Level 2: Two basic events located, providing next two inputs to ordering list.

{B,C}

83

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

• Level 3: Going from left to right along this level, produces three new inputs.

Note variable A has already occurred higher up the tree, and is therefore

ignored. {H,E,D}

• Level 4: Finally the variables in the last level are ordered, producing the fmal

variable ordering for the fault tree shown in figure 4.1 as:

A<B<C<H<E<D<K<G<F

Therefore, when producing the BDD, first variable A would be considered in the

conversion process, then B and so on until all the variables had been used.

Despite being the most popular heuristic it's performance is variable depending on the

fault tree structure being converted. Often the BDDs produced using this simple ordering

are non-minimal. This is ever prevalent as the complexity and size of the fault tree

increases.

LEVEL.

LEVEL 2

LEVEL 3

LEVEL 4

Figure 4.2: Same Fault Tree as Shown in Figure 4.1 With Variable Inputs Altered

84

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

One flaw with the methodology of the top-down, left-right heuristic is that this ordering

alone does not produce a unique BDD structure for this example fault tree or any other

tree. The positioning or drawing of the inputs of each gate causes the problem. If the

events of the tree are drawn in another order as shown in figure 4.2, then the resulting

ordering list generated by applying the same heuristic to the same tree is different and

will ultimately yield a different BDD.

In figure 4.2 the inputs of Gate} are re-ordered as C first then event B then Gate 3, and

similarly the Top Event inputs are re-ordered producing the following alternative

ordering using the same technique for the same top event:

A<C<B<E<D<H<F<G<K

4.3 Modifications to The Top-down, Left-right Approach

4.3.1 Using Repeated Events

Sinnamon and Andrews(SAl%] present an alternative ordering to the common top-down

approach. The scheme focuses on those basic events that are repeated in the fault tree

structure. It is the repeated events that cause the problem of non-minimal cut sets and

ultimately non-minimal BDDs. By considering these events first their aim was to

simplify the resulting BDD structure and thus make it more optimal.

The alternative ordering scheme still uses the top-down algorithm, however, as each level

is scanned from left to right, if any basic event which is repeated in the tree is

encountered then it is placed ahead of any other variable along the same level. If there is

more than one repeated basic event in any level, then the ordering is determined by the

number of occurrences of each event (with most repeated being placed first). If there is a

tie, it is broken by just applying the left-right strategy to each as they are positioned in the

level.

85

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

Applying this heuristic to the tree in figure 4.1, the only alteration to the resulting

ordering concerns the repeated variable G. In level 4, G is a repeated variable whereas K

and F are not, hence, G is placed in the ordering before K and F. Therefore the ordering

list using this heuristic is:

A<B<C<H<E<D<G<K<F

'Number' No,of '~UJnbe~ofm,~tirn~tofCutS~S Number.of(,

~;J-\:; '~f&ai~~)'~lisl«h:.·.:.· .• , .. " ... ,.' .•.•• , ' .. ' .• ,.'•. , •.• , ..•.. R ·.' •...•.. ' .• ,e .• ·,pe .. • .•. ·, •. ·.'.,', .••.. ';:,a ..•.•. ' t.:., •. e .• , •. ,.'.: .. d•. · ...• ,,;·,'.', •.•.• , •.•. ~ ..• , •.. : •. : .• ,•......• :. i.{'.:,.,.,p ·.·,:.~.:.~.· ...•..•. 'g.'.'." •• ,B,;.· .. ,.0 .. ' .. ,'." •. :.tt.··, •.• ,'·,9,· ..•.•. m ...•. ·•.. '.u .•.•.•. · .. P,.·,· ... ',' •. ·.: .••.•. · .• ',MihjIh~rStif~i:i~(:
'2"ft" '" "," < "' .. ': .. ',.'.: . ::<., '.' '. ' ···.·,,1 .• ·.,.·'; .. ·.:.&'.·.· •. '.'.,·.'.·' ••. 0·".·'.',··:'.m··.·.',':.' .. '.'.'.',·.,.,'.··,·.'.·.B··,'.·.,' .. ··.' .. '.·".b·.'·,',··,:?·.·,·.·.".'.'.'.' .• ',·'.', ••. ',.' .. '.,.' •.. ', •... ', ,: .. " ..• ,',',., •. ' .•. , ..• ,'.,",.',.,'"

.. , .• ,.,.,.:,' .',.,.· ••.• ,', •. ',t .. :.,',',:,.,.;.: ..•• • •. '.'.' .•. ,t.:.:,',,"',.'.".:,' .• ,.".',' .•. ?~VJhtJi(/<,:Ey~nt!;{; , :; '; .. Approach, . "'. .,. .' '" ,"
:;',,~'::,\;.':'::;'--~':', ,', '- ",' :" "<-:':'~'.-~':J'_:;';';,;"";-'~:' /< ... :t:',_ -,t'";,~,:"y»:·<,--,,_;,:.,, \. .', ' "0 .(" /

1 6 8 1 5 2

2 3 7 1 3 1

3 3 7 2 5 3

4 4 8 2 4 2

5 3 4 1 2 2

6 5 6 1 4 3

7 4 8 2 4 3

8 6 10 2 14 6

9 5 9 1 19 15

10 4 5 1 4 2

11 3 4 1 4 2

12 6 9 2 6 3

13 3 4 1 2 1

14 4 7 1 3 3

15 9 17 3 17 8

Table 4.1: Example Fault Trees Used in Study[SAI96]

Within their study, the ordering heuristic was tested on fifteen example fault trees. A

summary of the trial fault tree characteristics is given in table 4.1. Relatively small trees

86

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

were chosen to emphasise that even for small tree structures improvements could be

made.

Only trees 14 and 15 of the examples used did not produce absolute minimal BDDs,

however, this new repeated event based ordering did produce the more minimal BDD

when compared to the common top-down approach of ordering. The overall results from

Sinnamon and Andrews research suggested that the new ordering giving priority to

repeated events appeared to produce more optimal BDDs compared to the top-down

ordering alone.

This heuristic, like the top down approach, still has the problem that the events of each

gate can be listed in any order and hence a unique BDD is not found with this technique.

Also this heuristic can only attempt to improve the size of the BDD when repeated events

are present within the tree structure. There can be no change if there are no repeated

events (however then the fault tree analysis is trivial) and the heuristic only has more

potential to change the ordering and resulting size of the BDD as the number of repeated

events increases.

4.3.2 Using Subtrees (Depth-First and Priority Depth-First Heuristics)

Two additional heuristics that still use the top-down principle as their basis involve

looking at subtrees of the whole tree. Branching from the top event are a number of

inputs and branching from each of these inputs are smaller tree structures called subtrees.

The depth-first and priority depth-first techniques involve looking at each subtree in turn

from left to right along level 1, and for each subtree applying the top-down, left-right

principle.

The first heuristic to be examined is the Depth-First approach, this involves breaking the

whole tree structure into smaller trees and looking at the optimal ordering of these

subtrees. From figure 4.1, there are three subtrees, headed by the names A, Gate 1 and

Gate 2. As A is a basic event there is no more variables to add, so the next subtree is

87

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

examined. Looking at the inputs of Gate 1, by applying the top-down, left-right principle

the order of variables would be {B,C,H,K,G}. The next step is to examine the final

subtree, Gate 2. Applying the same principle as for Gate 1, and ignoring any basic

events that may have already been ordered, the ordering would be: {E,D,F}. Therefore,

the final ordering to use in the conversion process would be:

A<B<C<H<K<G<E<D<F

A slight alternative to the ordering is to give priority to the repeated events. In this

example fault tree this only affects the variable G, to yield the different ordering of:

A<B<C<H<G<K<E<D<F

Research highlighting the benefits 0 f the depth-first subtree approach was produced by

Rauzy[Rau931• Considering the computation time necessary for constructing a BDD and

fmding the minimal cut sets Rauzy compared two different ordering heuristics. The first

ordering (which shall be referred to as ordering 1) was simply the variable ordering as

written in the formula governing the tree, for example, if the formula F was:

F= (avc)l\(bvc)

Then the ordering assumed would be a < c < b. The alternative ordering (ordering 2)

was the depth-first approach.

The results were compared on a set of thirteen industrial fault trees, nine were provided

by a French Aviation company (Dassault Aviation) and the remaining four from

Professor Y. Dutuit. Table 4.2 summaries some of the characteristics of the test set of

fault trees. The number of events in the tree, number of gates in the tree and the number

of cut sets of the tree are all given.

88

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

';Berichliuuk S()urce; I." Tree NUl1l00rOf'NUIriber of GateS Nulliber()f Cut Scls"

1'<' ('},;j,i,j«··,· ",i • i~berj"" EV~IliSc·;j:i(corIDecti"~s).Y)1;3;; j(~tzeri?'•...•
Dassault 1 103 145 248

Dassault 2 122 82 204

Dassault 3 51 30 81

Dassault 4 53 30 83

Dassault 5 52 20 71

Dassault 6 121 112 233

Dassault 7 276 324 600

Dassault 8 109 73 182

Dassault 9 49 36 85

Dutuit - Chinese 10 25 36 61

Dutuit - European 1 11 61 84 145

Dutuit - European 2 12 32 40 72

Dutuit - European 3 13 80 107 187

Table 4.2: Summary Characteristics of Benchmark Fault Trees Used in Study[Rau931

Using the BDD approach and ordering 1 the memory of the computer was reported as

insufficient to analyse three of the nine Dassault trees. However, the results with the

depth-first approach did not yield the same problem. Comparisons were made on

computer time (given in seconds) which included the time to choose an index for each

variable, the computation associated. with the tree and the computation of the tree

encoding the minimal cut sets. Their findings showed that for all thirteen trees the

computation times were markedly reduced using the alternative ordering (ordering 2).

The actual computation results were not given in the paper for ordering I, but the

computation times for ordering 2 were compared against results for calculating the BDD

using the classical De Morgans algorithm (using the top event logic function to generate

the BDD and applying Boolean laws of algebra where necessary). The algorithm was

only used on the Dassault trees and for two of these trees results could not be found in

89

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

reasonable time. The actual length of time this refers to is not given. It can be observed

from the results in table 4.3 that the depth-first ordering is considerably quicker.

Tr~eLabeh ,.,., .••...•. Time for Orde~g2.,'i ·.li?7~ime.using,·De110rgaIlSalgOrithrtr.>

.••.•. [,:.: .. '," .». . ····(in secondS)',,' .••• :.·· ...•..• I .. ,. '• : .•.. ·.: .. \.<in.· .. ' ... ,". se.·.· .. · .. c.·.'.OIl.d.·.s), ..•..•.•...•......• ' .. ·',.·,··:·:...i . ,<,:;/';.'.' ... ,'.' 1';< .. ·. ". . ' ... '.
1 3.13 10577

2 0.56 2470

3 0.03 147

4 0.03 130

5 om 74

6 0.65 43279

7 4.43 84383

8 0.05 Not time

9 0.05 Not time

10 0.5 Analysis not performed

11 4.36 Analysis not performed

12 0.31 Analysis not performed

13 6.81 Analysis not performed

Table 4.3: Computation Times For Two Variable Ordering Heuristics[Rau931

Extending the Depth-First approach, the Priority Depth-First heuristic has been

suggested. This approach still orders each subtree individually, but if there exists in a

level any basic events that are the only inputs to a gate these are ordered first. Using the

tree in figure 4.1 as an example, looking at Gate 2, at level 3 there are 3 basic event

inputs, E, A, and D. Using the Depth-First approach these are just ordered from left to

right, therefore as written. However, using the Priority Depth-First approach, as

variables A and D are the only basic events inputs to Gate 5, unlike Gate 4 which has

gates and basic events, then these are ordered first to produce the ordering A, D then E.

The resulting ordering using the Priority Depth-First approach would be:

90

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

A<B<C<H<K<G<D<E<F

Similarly, as with the Depth-First approach, prioritising the repeated events can be

applied, resulting in the ordering:

A<B<C<H<G<K<D<E<F

In each of these heuristics a slightly different ordering results, which can effect the size of

the BDD. Research by Sinnamon and Andrews[SA2%1 investigated the effects that

different ordering schemes produce on the resulting size of the BDD. The six heuristics

mentioned so far were the orderings that were investigated, namely, the top-down, left

right approach, the depth-first approach, the priority depth-fust approach, and repeated

event versions of each. The results showed that there were vast differences in the number

of computations required to construct the BDD when each of the different orderings were

used for the basic events. Hence, great savings can be made in terms of computation time

and memory requirements when an efficient ordering of the basic events can be

established. However, the research showed each tree has an individual variable ordering

that will optimise its size and there is not a general ordering scheme that will be 'best' for

all trees.

As with all the approaches discussed so fur, these four closely related subtree based

heuristics are also affected by the writing of the variables in the fault tree. This has the

most effect when the ordering of the top event inputs are altered, hence affecting which

subtree and associated variables are ordered fust. Again if there are no repeated events in

the tree, then the modified versions (or repeated event versions) of the depth-first and

priority depth-first approaches are useless. Also the priority depth-first approach only

leads to changes if gates exist with basic event inputs only. For more complicated trees

this is not often the case and it seems that such gates are usually found lower down the

tree and questions then need to be asked as to their relevance on the system occurrence.

91

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

4.3.3 Variable Ordering Using Repeated Basic Events and Subtree Levels

Sinnamon[Sin96) provides an ordering heuristic which combines using information about

the repeated events and number oflevels within a tree, with the depth-first approach. The

depth-fIrst approach is chosen as a basis for the heuristic as additional work has shown

that this ordering option is generally reasonably good (section 4.3.2). The reasoning

behind the inclusion of repeated events is that it is these events in the fuult tree that have

significant influence on the size of the BDD[SAI96). Therefore combining these attributes

should lend itself to a reasonable ordering heuristic. The heuristic is named REBESUL,

which considers REpeated Basic Events and SUbtree Levels. The algorithm for

REBESUL is based on six steps.

Step 1:

Step 2:

Step 3:

Step 4:

Create a list of the repeated events in the fault tree, those with the highest

number of occurrences are listed fIrst. Repeated events that have an equal

number of occurrences are placed in rows between the next highest and

lowest.

For each repeated event in step 1, create a list of the subtrees (first sons of

the top gate) that contain this repeated event. List the subtrees in order of

the highest number of different repeated event occurrences within each

subtree to the lowest.

• If two or more subtrees share the same number of repetitions

for an event, the subtree with the greatest number of levels

takes precedence over how many repetitions there are in a

subtree.

Create a list of the levels in each subtree at which the repeated events in

step 2 occur.

Order the gates (depth-first) starting with the gate that 'contains' the

lowest level occurrence (obtained in step 3) of a repeated event, followed

92

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

Step 5:

Step 6:

by the other gates which 'contain' the next level of occurrence of a

repeated event. Note that the term 'contains' does not necessarily mean

that a repeated event is a direct input to the gate, it may be an input a few

levels down. List the repeated events first when ordering the inputs of

each gate.

If all the repeated events have been dealt with in this subtree order any

remaining events to gates in the subtree depth-first and go to step 6.

Otherwise go to step 3 for the next repeated event obtained in step 1.

If all subtrees containing repeated events have been dealt with order any

remaining subtrees depth-first. Otherwise order the next subtree

containing repeated events, i.e. go to step 2.

To illustrate the heuristic, consider the fault tree in figure 4.3 (taken from research by

Sinnamon[Sin96). It contains eight basic events with four of these being repeated. The

steps of the algorithm will produce the following results:

Step 1:

Step 2:

Step 3:

Step 4:

List of repeated events - A occurs three times, B occurs twice, E occurs

twice and G occurs twice.

Finding subtrees in order of most different repeated events: Subtree 2 (G3)

has the highest number of repetitions (four different repeated events),

therefore is ordered fIrSt. Subtree 1 (G2) has three different repeated

events.

Find highest level of occurrence of a repeated event. Event A occurs at

level 3 and 5 ofG3.

G6 contains the lowest level occurrence of A and G5 contains the next

level of A (here A is an input to G 10 which in turn is an input to G8 which

93

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

Step 5:

Step 6:

in turn is an input to G5), therefore take the order of gates as G6, G5, G8,

G 10, G9 which provides the basic event ordering:

A<D<F<B<G<H<E

Go to step 6.

Order subtree I. This provides the last basic event C, so the final ordering

produced is:

A<D<F<B<G<H<E<C

Figure 4.3: Fault Tree Used to Demonstrate REBESUL Orderirig[Sin96)

94

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

Sinnamon compared the results of this ordering against that for the depth-first approach.

The depth-first approach was used as within her doctoral study this ordering produced the

most number of optimal BDDs when using a test set of fifty one trees. This analysis was

carried out on the same fifty one fault trees, whose characteristics are summarised in

Appendix I. The comparative results for the number of nodes in the BDD are shown in

table 4.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

REBES Tree ',DeptlJ,7: ,REBES

'~.'}).;\ l,r~~:Y ."H<"
Tree'

308 281 18 394 252 35 4 4

8 7 19 11 11 36 8762

4 4 20 12 10 37 6 6

26 26 21 104 122 38 413 501

20 20 22 59 52 39 4 4

41 38 23 162 179 40 4 4

63 63 24 42 42 41 8 8

61 61 25 475 550 42 5 5

60 60 26 7 7 43 2 2

40 40 27 7 7 44 4 4

5 4 28 21 21 45 14 16

61 62 29 19 19 46 390 382

20 20 30 21 21 47 6 4

22 22 31 366 491 48 8 7

33 33 32 39 60 49 6 6

335 201 33 38 46 50 7 7

647 506 34 7 6 51 12 13

Table 4.4: Comparing Number of Nodes in BDD For Depth-First Ordering and

REBESUL (Sin96]

95

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

The lowest number of nodes for each tree has been highlighted. For 26 trees there is a

match between the lowest number ofBDD nodes produced by each ordering heuristic. In

total the depth-first ordering produces the lowest number of nodes on 37 occasions,

whereas the REBESUL ordering generated the lowest for 41 out of the 51 fault trees.

Thus, this REBESUL ordering proves to be slightly more efficient than the depth-first

approach. The study also looked at the ite computations required to generate the BDD

before and after minimisation, and with the REBESUL technique 19 out of the 51 trees

produced a minimal BDD directly.

One point with this heuristic is that it is not so drastically affected by the re-writing of the

tree when repeated events are contained within it, as it is the repeated events which

govern which subtree is selected first. For non-repeated events however these can still be

affected but then the significance 0 f such events may be less than for repeated events.

4.3.4 Applying Weights to The Depth-First Approach

Minato et al.,(MIY91] generated an ordering heuristic based on the depth-first approach.

The study uses circuit diagrams although the approach can be applied to fault trees. The

method is termed 'dynamic weight assignment method'. The fundamental reasons given

for the development of the heuristic are the following properties (as related to circuit

diagrams):

1. . The inputs that greatly affect the output functions should be high in the order.

2. The inputs whose connections are topologically close to one another in the circuit

should be near in the order.

Applied to fault trees these properties imply that those inputs (basic events) which have

most affect on the top event should be ordered high in the list, and those basic event

inputs that lie close to each other in the tree should be ordered together.

96

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

The methodology begins by assigning the top event with the value of I. This weight is

propagated down through the tree such that at each gate the weight is equally distributed

between its inputs. Having executed this weighting mechanism the highest order is given

to the basic event with largest weighting. The theorem is that the weight reflects the

contribution to the top event in a topological sense and thus the basic event with the

highest weight should contribute most to the top event. Given the fault tree in figure 4.4,

the weights generated for the basic events are:

• B=C=D= 1/6

• A = 113 + 116 = 112

D

Figure 4.4: Fault Tree Used to Illustrate Minato Heuristic

Thus, the first basic event in the ordering list would be A. In order to choose the next

primary input, the part of the tree that leads to the chosen basic event is deleted, and

weights are reassigned from the beginning. Therefore, using the fault tree in figure 4.4,

the branches leading to A would be deleted resulting in the fault tree given in figure 4.5.

97

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

D

Figure 4.5: Fault Tree on Second Stage of Applying Weights

Although strictly not a viable fault tree structure it is used only to generate an ordering.

Again the weights are assigned from the top of the tree, and passed down through to the

basic events. The highest weighting is then added to the list, hence variable D will be

next in the ordering. Deleting part of the diagram means that the last assignment is

distributed to the neighbouring inputs so that their weights are increased. Thus, the

neighbouring inputs are given near positions in the ordering list. This process is

continued until all the basic events have been ordered.

Minato tested the ordering on 12 circuit diagrams. The dynamic weight allocation

ordering was compared to three others: the original circuit diagram ordering (as written),

the reverse original ordering and a random ordering. Both the number of nodes in the

resulting BDD and the time in seconds to obtain the result are included in table 4.5.

Column A refers to the dynamic weight allocation ordering results, column B the original

ordering results, column C the reverse original ordering results and co lumn D the random

ordering results. The number of nodes in the resulting BDD for half of the circuits are

less than when using any other ordering.

The method does consider the influence of repeated events, by adding their weighted

values, which has in previous studies proven to be beneficial in terms of the ordering

generated. Although the performance is good for circuit diagrams the ordering

methodology has not been applied to fault trees directly. Even without this, it is clear that

98

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

the ordering is not going to produce an optimal BDD for all circuits, and the same result

is hypothesised for fault trees.

Circuit A-'DWAO': ,

B.; Original ••..•. I C-Reverse . '. D - Random
I, '" "",. __ '_. ,',

."' . . .
'.',,', ",' "'.' ,', '" ., .•••..•. '. ,'" No.nod~sltiJne,

-,
',. No~nodes.rtirrie ',. ·.,.No.nodesltime· " No.nodes/time

-- ",,'.: ,',', '."" ' , ",' ' .. --,'> ' ,,','. ," .,

Dec8 40/0.3 411 0.3 390/0.4 57/0.4

Enc8 33/0.3 311 0.3 30/0.3 37/0.4

Add8 49/0.4 120/0.4 452/0.4 1183/0.6

Add16 97/0.7 248/0.5 1700/0.9 94814/24.1

Mult4 330/0.5 358/0.4 304/0.5 394/0.5

Mult8 46594118.3 38187/ 14.5 31026/14.0 77517/26.1

C432 89338/34.1 1134817.4 6205/5.6 479711 /278.6

C499 36862/21.5 68816/39.1 32577 / 21.0 112815/78.0

C880 30548/11.5 >500000 >500000 >500000

C1355 119201/51.4 246937/ 102.9 103301 /46.9 373974/179.0

CI908 39373/22.5 47990/22.7 65895/63.3 91082/47.4

C5315 40306/29.8 105200 / 32.5 >500000 >500000

Table 4.5: Results of Mina to's Study on BDDs Generated For Circuit DiagramsJMIY9IJ

4.3.5 Using The Number of Leaves in Conjunction With The Depth-jirst Approach

In the paper by Bouissou et al.,JBBR97J one ordering heuristic suggested was by Rauzy, but

was unpublished. The ordering works by considering the number of connectives or

leaves of each gate, whilst applying the depth-first approach to the fuult tree. Gates with

a lower number ofleaves not already processed or ordered are considered first.

The leaves or connectives of a gate can be considered as the number of inputs and outputs

to the gate. This is illustrated in figure 4.6, whereby it is shown that Gate 1 has 3 leaves

i.e. one to Gate 3, one to variable A and one to the Top event, and Gate 2 has 4 leaves

99

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

(one to each of the variables D and E and one to each of Gate 3 and Top). The same

principle can be applied to all gates in the tree.

Figure 4.6: Illustration of Leaves of a Gate

Applying the ordering heuristic to the tree in figure 4.6, if the depth-first approach was

being applied the gates would be considered in the order as shown, Gate} then Gate 2.

As Gate} has fewer leaves than Gate 2 (three opposed to four) then the Gate} subtree is

processed flfst. A has fewer leaves than Gate 3, so A becomes the flfst variable in the

ordering list. Then the variables B and C of Gate 3 are ordered. So the partial order of A

< B < C is gained. Considering Gate 2, as Gate 3 has already been processed, hence has

the minimum number of un processed leaves, it is processed next, generating ordering B <

C (as B and C are already in the ordering list no variables are added). The remaining

variables to order are then D and E, to produce the final ordering A < B < C < D < E.

The effectiveness of this ordering heuristic has been researched in a comparative study by

Bouissou et al., [BBR97) and it was found that this leaf method is good at producing a quick

lOO

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

BDD but not necessarily of smallest dimension. The inclusion of the output leaf is not

relevant and can be discarded as each gate and event has one output leaf. The reasoning

behind this method of ordering appears to be that in selecting those inputs which are

associated with the least number of variables the size of the cut set is smaller, thus in

theory having a larger influence on system failure. It can be seen from the example that

the ordering is not always influential and the ordering list produced is the same as using

the depth-first approach alone. This heuristic in the study did not seem to be affected by

the re-writings of the variable inputs of each gate, however it seems that for all trees the

results for generating an ordering which produces a good BDD are like most heuristics,

variable.

4.3.6 Depth-First With Number ofFanouts Considered

Fujita et aI., [FFK881 using circuit diagrams derived an algorithm which applied the depth

frrst approach and considered the number of fanouts of each gate. In a circuit diagram a

number of wires enter into each gate and a number of wires go out of each gate. The

formers are called fanins and the latter fimouts. The algorithm is applicable to a fault tree

diagram as the circuit diagram can be viewed as a fault tree rotated through 90 degrees

(i.e. both represent logic functions). In terms of fault trees the number of fanouts is

therefore the number of occurrences of a gate in the tree, for example, consider the fault

tree drawn in figure 4.6.

The number of timins and fanouts of each of the events (both gates and basic events) are

expressed in table 4.6. The fina1 column refers to the numb~ of fanouts of each event

and it can be seen to refer to the number of occurrences of the event. In this example, all

the events have one fimout apart from Gate 3, which has two.

101

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

·.·'Event'· . , .• ··· ... Fanins i/ Fanouts. ."i· Number ofFanouts,
.:' '--.'·CJ)< '- J __ <'{C'''':';,' _.:!, -';i:,": "">"-' ',"".-' ,"<·c·

Top O1,G2 None 1

01 A,G3 Top 1

G2 D, G3,E Top 1

G3 B,C 01, G2 2

A None 01 1

B None G3 1

C None G3 1

D None G2 1

E None G2 1

Table 4.6: Number ofFaninslFanouts For Each Event in Figure 4.6

The aim of the research was to find an algorithm to minimise the 'number of crosspoints

of nets', when drawing a circuit diagram. In relation to the fuult tree approach this can be

viewed as trying to minimise the mean number offanouts within the tree. This viewpoint

stems from the intuitive fact that in a fully modularised tree (which is easy to assess) each

gate has only one fanout. Therefore, minimising the mean number should help in the

assessment of the tree or BDD production. The research compared four variable

orderings. These being:

1. Original ordering, as the circuit is written within the data file.

2. Manual ordering, an expert draws the diagram from its description and the

ordering from the resulting diagram is taken.

3. Random ordering as generated by a computer.

4. New algorithm ordering (discussed below).

Two strategies are suggested in the research, which mean that the number of fanouts is

reduced. These are:

102

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

Strategy 1: If the number of fanouts of all the gates are 1 then the best procedure is to

traverse the diagram in a depth-first manner and order events as they are

encountered.

Strategy 2: When the diagram has only one gate with more than one fanout the best

procedure to order the events is to apply the depth-first procedure but to

tackle the gate with more than one fanout first.

Incorporating these two strategies, the algorithm suggested involves traversing the

diagram in a depth-first manner (according to strategy 1) and inputs which have more

than one fanout are ordered frrst (as strategy 2).

Name . Inputs ;~P~si liI:evels ,n~t,,~,

'H'," ~; 'i';-;.;,'.';,6:;(:':.,'

ILiB .• ,' .• ·0C ,.~"~.~ ".,,~ <·~·.-:'r '-".:'; .
,::. ::,:t~:;:~:i ~',_,:;

.,;;,':-,,,', " -L;,:L·,':·,?":';' ' •• "., •• ,:, :c,

,Max gatesfor<¥ax!.nPllts for',

;E~~~l~.S~i~~i,'" ,'. ~itlg~l ()lltPll1:"
1 14 8 9 34 55 14

2 36 7 7 203 145 36

3 41 32 11 275 102 41

4 60 26 24 469 130 45

5 41 32 24 619 322 41

6 33 25 40 938 557 33

7 233 140 32 1566 828 122

8 50 22 47 1741 1433 50

9 178 123 49 2608 937 67

10 32 32 124 2480 2327 32

11 207 108 43 3827 1096 194

Table 4.7: Characteristics of Circuits Used In Ordering StudyP'FK881

Using figure 4.6, Gate 3 is the only gate with more than one fanout therefore when

carrying out the depth-first approach the inputs of Gate 1 would be considered as Gate 3

frrst then variable A. Hence the ordering using this new algorithm would be B < C < A <

103

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

D < E, whereas using the depth-frrst approach alone would have generated the ordering

list of A <B < C<D <E.

The circuits used in the study have the characteristics given in table 4.7. The results from

Fujita's study comparing the four ordering schemes tested are summarised in table 4.8.

The new algorithm, incorporating the fanout notion, is proven to generate a BDD for 8

out of the 11 test circuits within the study in fewer computer-processing minutes than any

of the other heuristics (these results are highlighted in table 4.8). On some occasions the

algorithm produces a worse result (see circuit number 2 for example), thus even this

algorithm does not yield the best solution for all circuit diagrams.

Time

(sec)

1 8

2 109

3 928

Max

Nodes

339

1146

9020

4 >50000 >100000

5 675 9020

6 965 2912

7 >50000 >100000

8 >50000 >100000

9 2140 11807

10 >50000 > 1 00000

11 >50000 >100000

Time Max Time Max Time Max

(sec) Nodes (sec) Nodes (sec) Nodes

7 197 8 578 6 213

53 442 >50000 >100000 1423 6196

673 4661 >50000 >100000 673 4661

85 3421 >50000 >100000 55 3359

>50000 > 100000 1009 4661

1800 4505 778 3076

>50000 >100000 338 14763

>50000 > 1 00000 12620 53460

>50000 >100000 498 3441

>50000 >100000 >50000 >100000

>50000 > 100000 383 2096

NB. Blank cells refer to IUltested Cif CUlts

Table 4.8: Comparison of Four Ordering Schemes Used[FFK881

One of the problems of using this heuristic is shown in the Fujita study, in that the

heuristic does not produce a best solution for all circuit diagrams, and this point can

assumedly be extended to fuult trees. Using a fault tree example, if this heuristic is

104

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

applied to the fault tree drawn in figure 4.1, as there are no gates with more than 1 fanout

then the theorem applies the standard depth-first approach hence the ordering will be no

different to that of the depth-first approach. Also the algorithm does not explain what to

do if more than 1 gate has more than 1 fanout. Questions like 'do we apply the algorithm

per subtree', i.e. if the tree has two gates with more than one fanout but with one in each

subtree can the algorithm be carried out as usual? Or alternatively, should all gates with

more than 1 fanout be ordered first when applying the depth-first approach and should the

gates with the most fanouts be ordered first? These types of questions are not addressed

in the paper and the answers are thus not clear.

4.4 Comparative Studies of Heuristics

Bouissou et al., [BBR97) compared and evaluated six different variable ordering heuristics.

Some of these heuristics were already discussed in the literature and in addition the

authors proposed new ones. The heuristics discussed were:

1. The formula or fault tree is explored in a depth-first manner, and the variables

put in an ordering as soon as they are encountered.

2. The inputs are ordered depending on the number of fanouts of each gate in

conjunction with applying the depth-first traversal (this heuristic was

proposed by Fujita et al.,[FFK(8), section 4.3.6).

3. The variables ordered in a depth-first manner again, with inputs with fewer

leaves (or branches) being placed first in the ordering (section 4.3:5).

4. Weights with a value of 1 are assigned to each basic event of the fault tree.

The weight of each gate is obtained by adding the weights of its inputs. When

all the weights are known a depth-first traversing of the tree is made, choosing

at each level the variables of a gate by order of increasing weights.

5. This heuristic combined heuristics 2 and 4 above. Applying the weight

heuristic following the re-writing in terms of the heuristic using the number of

fanouts, generates method 5 of ordering.

105

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

6. This heuristic combined heuristics 2 and 3 above. A similar approach is taken

here as in method 5, the tree structure is altered using the heuristic in method

3 relating to the number of leaves, and then the weight heuristic is applied to

get the final ordering.

Before the research is discussed clarification is made regarding the orderings of 4, 5 and

6. The weighting ordering of method number 4 is similar to a heuristic proposed by

Minato[MIY9l1. The heuristic involves three steps and the fault tree shown in figure 4.7 is

used to illustrate its effects.

lOP EVENT

Figure 4.7: Fault Tree Used To Illustrate Weightings Ordering

Step 1: Each basic event is assigned a weight of value 1. Each intermediate event

is assigned the weight of the value of the sum of its inputs. For example in figure

4.7, the weights of all the gates and events are:

w(A) = w(B) = w(C) = w(D) = w(E) = w(F) = w(G) = w(H) = I

106

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

w(Gate 7) = l1-(E) + w(G)+ w(H) = 3

w(Gate 6) = w(A) + weB) = 2

w(Gate 5) = l1-(E) + w(F) + w(G) = 3

w(Gate 4) = wCF) + wCGate 7) = 4

w(Gate 3) = weB) + wCc) = 2

wCGate 2) = w(Gate 5) + wCGate 6) = 5

w(Gate 1) = wCD) + wCGate 4) = 5

wCTop) = w(Gate1) + wCGate 2) + wCGate 3) = 12

Step 2: The inputs of each intermediate event are arranged in ascending order of

weight values, hence the inputs of gate Top are ordered as Gate 3 < Gate 1 < Gate

2 with values ranging from 2 to 5. The inputs of Gate 3 remain as shown, i.e. B <

C, and Gate 1 also remains unchanged. Gate 2's inputs are reversed with Gate 6

now before Gate 5. Gate 4's inputs are altered to become F then Gate 7. Gate 5, 6

and 7 remain the same as these gates just contain basic event inputs.

Step 3: A depth-first traversal is made of the tree, and the resulting ordering

produced:

Hence, the ordering is generated as follows:

Gate 3 < Gate 1 < Gate2

{B < C} < {D< Gate 4} < {Gate6 < Gate5}

B< C<D<F<Gate7<A <B<E<F<G

Therefore, removing variables that have already occurred higher up the list, the ordering

is:

B<C<D<F<E<G<H<A

Ordering number 5 is a combination of the fanout heuristic with the weighting algorithm

applied to the result. Using ordering 6 to demonstrate the combinatorial technique will

107

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

illustrate the point, as fmding a case when the two heuristics of ordering 5 together make

a difference to the variable list is difficult, and the question needs to be asked of its

usefulness as a heuristic. It may be that its effect is greater on more complicated trees

and not the reasonably simple trees used to illustrate the principles of each technique.

Ordering number 6 takes a similar approach to 5, and combines the 'number of leaves'

heuristic with the weighting algorithm. Using the fault tree in figure 4.1 to demonstrate

the effects, initially the tree is scarmed and each gate is analysed for the number ofleaves

it has. The following results are:

Gate I - 4 leaves (B, C, Gate 3, TOP)

Gate 2 - 3 leaves (Gate 4, Gate 5, TOP)

Gate 3 - 3 leaves (H, Gate 6, Gate 3)

Gate 4 - 3 leaves (E, Gate 7, Gate 2)

Gate 5 - 3 leaves (A, D, Gate 2)

Gate 6 - 3 leaves (K, G, Gate 3)

Gate 7 - 3 leaves (F, G, Gate 4)

The ordering generated by applying the leave heuristic, alters the Gate 1 and Gate 2

inputs around and would be:

A<E<F<G<D<B<C<H<K

Applying the weightings now to the tree, the values for each gate will be:

• Gate 1 = 5; Gate 2 = 5; Gate 3 = 3; Gate 4 = 3; Gate 5 = 2; Gate 6 = 2; Gate 7 = 2.

The gates are then scarmed from lowest to highest weightings as applying the depth-first

approach, thus Gate 4 and Gate 5 exchange positions as Gate 5 has a lower weight value

than Gate 4. This change means that the variables A and D are ordered before E, F and

G, and the resultant ordering is:

108

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

A<D<E<F<G<B<C<H<K

The research was carried out on 13 real life coherent trees from a varied industrial

background. The characteristics of these benchmark trees are summarised in table 4.9.

1 61 81 46188 0 5750.7 2212.37 1817 30121

2 32 40 4805 o 145 1943 457.952 142.404

3 80 107 24386 o 3305 27349 9926.87 3229.01

4 53 30 16701 o 53 153 79.4012 15.9311

5 103 145 8060 o 2614 20614 4833.58 1332.81

6 458 434 7520142 27.08 551 289421 9437.65 22412.5

7 278 251 94016 o 7562 128847 53581.8 25209.2

8 196 142 497 o 255 4727 1094.16 774.067

9 548 484 5604253 12.85 8705 691766 185871 118286

10 120 178 529984 5.5 145 34557 1325.65 2517.62

II 116 122 5197617 o 708 2993 1629.68 334.158

12 91 95 3431 o 703 10950 4203.71 1783.94

13 71 65 150436 o 149 805 409.923 64.4269

Table 4.9: Benchmark Trees Used in Comparative StudyIBBR971

The first column indexes each of the thirteen trees. The next three columns identify some

characteristics of the trees, the number of variables within the structure (i.e. the number

of basic events), the number of gates, and the number of minimal cut sets respectively. To

evaluate the effects of changing the variable inputs of a gate, the research involved

random re-writings (changing the order of gate inputs) of each tree. In total these 6

heuristics were tested on 500 random re-writings of each tree. The fifth column labelled

109

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

'fail (%)' refers to the percentage of times within all the trials that the BDD could not be

produced for that tree with less than 106 nodes. The four remaining columns show the

variations in the size of the BDDs produced with the different re-writings. The minimum

number of nodes within any of the BDDs produced for re-writings, the maximum number

of nodes, the mean number of nodes for all the trials and the standard deviation are all

summarised.

The results indicated that there were two classes of heuristics. One class, containing

heuristics 3, 4, 5 and 6 gave low standard deviations on the size of the BDD produced for

all the trials, indicating that the heuristics are not very sensitive to the rewritings of the

fault tree variables. The other class, containing the remaining two heuristics (1 and 2 in

the list) showed high variations in the size of the BDDs produced. This indicates that

these ordering heuristics are very sensitive to the position that the variables are placed in

for each gate. The research showed that the heuristic using the number of fanouts

produced better results than when using the depth-frrst approach. However, the problem

with these heuristics was that both can lead to extremely large BDDs.

The research indicated that the first class of heuristics produced 'neither excellent' nor

'not bad' BDDs, but rarely the best BDD. The second class, on the other hand, had the

greatest exploration potential to yield smaller BDDs yet extremely large cases could

result.

4.5 Alternative Heuristics

4.5.1 Modules of a BDD

Bouissou[Bou961 reasoned that many heuristics have been proposed in order to fmd an

acceptable ordering with low computer requirements and highlighted that the possible

flaw in achieving this with all of the heuristics suggested is due to their lack of theoretical

110

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

foundation. The research points out that many heuristics are sensitive to the writings of

the fault tree, i.e. shown previously in this chapter. Most heuristics are based on

intuitions, i.e. variables with "bigger" influence should be placed higher up in the

ordering. However, their experiments have shown that the positioning of cut sets of order

one hardly has any effect.

The paper highlights a new theoretical relationship between BDD size and modules of a

fault tree. A module of a fault tree can be explained simply as an independent subtree of

the whole tree. In more complex terms, it can be defined as a subtree composed of at

least two events which have no inputs from the rest of the tree and no outputs to the rest

of the tree except from its output event. A pseudo-module is a subtree that has two

outputs to the rest of the tree.

A number of methods have been proposed to detect modules or independent subtrees in a

fault tree. The most efficient and simplest algorithm has been produced by Dutuit and

Rauzy[DRa961. The modular approach uses Rauzy's linear time algorithm to detect

independent subtrees. The basic principle of the algorithm can be stated as follows:

Let v be an internal event (gate) and tJ and t2 respectively the first and second

dates a/Visits a/v in a depth:first left most traversal o/the/ault tree. Then v is a module

if! none of its descendants is visited be/ore tJ and after t2 during the traversal. [DRa96]

By definition Top and each basic event are modules. Using this algorithm the tree is

traversed twice, both in a depth-fust manner. In the fust traversa~ counters are set to

record the number of visits to a node (gate/event). In the fust visit to a node the

fust _visit counter is set and in the second visit the second_visit counter is set. Further

visits to a node increments a counter last_visit. This last visit is identifying the same

node outside of the one already found, hence any repetitions. If the counter of a node is

set then the inputs to that node are not visited, and also for basic events the fust and

second visits are identical.

111

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

To illustrate the algorithm consider the fault tree shown in figure 4.8. The numbers

positioned by the side of each node indicate the counter, starting at 1 for the top event and

ending when the top event is visited for the second time. Table 4.10 indicates the

progression of visits made by the counter, which reflects the numbers shown on the fault

tree.

19

3

A

Figure 4.8: Fault Tree Used to Illustrate Module Finding Algorithm

Table 4.10: Progression ofTraversal Through Tree and Associated Counter Values

Using table 4.10, tabulation of the first, second and last visits to a node can be calculated.

The visits for each node are summarised in table 4.11.

112

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

,,,iSit TOP, ',Gate: Gate Gate 3 Gate 4 Gate 5 A D 'EH ;E
I,:F

G
'.' i"l •••• ' •• ,:." '.,·'i('u'; "',

",C, ,
«. 'c,'

" ,.',' ...

1';';';.':""-. . si.
""

1','2 , < <,\.t 2'.',; i}< , c" , ',c", ,,',,'" .','
1st 1 2 9 4 10 14 3 5 12 6 15 16

2"0 19 8 18 7 13 17 3 5 12 6 15 16

Last 19 8 18 7 13 17 3 11 12 6 15 16

Table 4.11: First, Second and Last Visit Counters

Having identified the counters for all the nodes in the fault tree the second traversal of the

tree can now occur. Again, adepth-first traversal is made but this time the minimum of

the first_visit counter and the maximum of the last_visit counter for each of the gates

inputs are established. The inputs to the node are examined, as it is possible that repeated

events lie lower down and are not the immediate inputs of the node. On generating this

information all the data is available to establish whether the gate is a module or not. To

establish this, the definition states that: the gate 'v' is a module iff the collected minimum

is greater than the first visit of v and the collected maximum is less than the second date

of v. The minimum of the first visit must be greater than the first_visit counter for the

gate otherwise it means that the inputs have occurred before this gate. If the maximum of

the last_visit counter is greater this indicates that the input has occurred outside of the

gate or node (after this gate has been visited), hence it is also positioned elsewhere in the

tree. In both of these instances one or more of the inputs of the gate are not independent

of the node. The minimum, maximum and Module identification information is

contained in table 4.12.

5

17 1

Module YES YES NO NO YES

Table 4.12: Second Traversal Results

113

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

From table 4.12 the linear time algorithm indicates that the modules of the fault tree are

gates TOP, Gate 1, Gate 2 and Gate 5. This result is what is expected as Gates 3 and 4

both contain the repeated variable D, rendering Gate 3 and 4 dependent.

I 196/142 497 766/ 0.65/2.01 1567/ 1.18/1.9

Op(l) 196/65 497

2 282/244 115042

Op(2) 282/129 115042

3 306/337 7520142

Op(3) 306/259 7520142

2882

287/

43060

0.03/0.33

8232/ 2.98/19.08

45135

7419/

40222

2.01l3.2

28447/ 18.8/363.8

156118

8093/

29132

6.0/40.6

4 3111289 105955422 75253/ 12.6/229.2

435903

Op(4) 3111193 105955422 55723/

5 548/484 5604253

OP(5) 548/l66 5604253

349780

5488/

260925

3668/

227953

10.7/

1197.7

0.7/66.5

0.3/22.9

2283

352/

627

27292/

32249

6540/

30873

240211

92549

15159/

28723

64793/

302489

66486/

346741

10822/

154452

2788/

158434

0.12/0.26

16.97/26.16

1.72/l0.3

32.6/158.6

19.0/33.8

16.0177.8

19.1170.9

4.0/l49.5

0.4/26.9

Table 4.13: Results of Module Optimisation on BDD Construction[Bou96]

114

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

The research produced a program to 'optimise' the tree, basically convert the tree to its

modularised form. The results presented from the research[Bou96] compared the results of

applying tools such as ARALIA and METAPRIME to the optimised and normal fault

trees. The ordering used in the ARALIA and METAPRIME tools was not stated,

however, the results given in the research were for a select few of a set of twenty trees.

Table 4.13 indicates that for all the optimised versions of the trees (Op) the minimum

number of nodes was less. The trees were tested on 100 re-writings of the variables, to

test the re-writing theory, hence producing a minimum and maximum number of nodes

for the BDD and minimum and maximum computation times.

The research showed that restructuring the fault tree, in order to create as many modules

and pseudo-modules as possible, is an efficient pre-processing method applied before

conventional ordering techniques to help alleviate some of the ordering problems. One

possible constraint for any ordering heuristic using this method is that it should group the

variables of a module. Using this modular property, the problem of determining a global

optimal ordering can be split into smaller problems: determining optimal orderings for

each module.

The technique is good in theory, but it does not state how much time is spent on pre

processing, or how exactly the modules can be extracted. The programming tool

produced with the research would need to be used to benefit from this approach.

4.6 Dynamic Ordering Methods

Reported within the literature is the topic of dynamic variable orderings[Nik99]. The

research focuses on circuit diagrams, which deal with multiple functions. These dynamic

ordering approaches involve the swapping of variables. Although the research is centred

around circuit diagrams the principle can be applied to the BDD approach whereby an

initial BDD is produced and then variables within the BDD are exchanged resulting in a

new BDD. This swapping or exchanging of variables continues until a smaller BDD

results. Once the BDD is constructed its analysis is a linear. function ofthe number of

115

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

nodes within it, therefore it is more efficient to carry out the quantitative analysis using

the non-minimal BDD than to continually swap variables until the minimalist BDD is

found and then to carry out the desired analysis. Thus the usefulness of these dynamic

variable orderings in improving the resulting size of the BDD seems non-existent and the

approaches will not be discussed further.

4.7 Performance of Heuristics

In summary, despite there being a considerable set of possible heuristics and a

considerable amount of research carried out to investigate their usefulness, it is not

possible to determine which would yield the best results for a given fault tree structure.

Due to the radically different nature between some fault trees it seems unlikely that a

single simple heuristic will be enough to cope with producing the best ordering for all

possible trees. The latter point has been observed with the varying performance of

heuristics on different fuult trees.

By reviewing this previous research it is apparent that no one rule based approach has

been identified for all fault trees. Similarly, no single heuristic has been identified which

out performs any other. To make the BDD approach an efficient analysis procedure for

all fault trees a 'super' ordering heuristic needs to be generated, one that will produce a

minimal BDD for all trees. Or alternatively, the best scheme option needs to be selected

from a set of alternatives to guarantee at least a near minimal BDD. The research in this

thesis focuses on generating a rule based approach using pattern recognition techniques

and in addition looks at a completely new heuristic to try and solve the ordering problem

4.8 Summary

• No one single heuristic has been identified as 'good' for all fault tree structures.

• Many alternative ordering heuristics have been proposed and investigated with

few strong conclusions.

116

Variable Ordering Heuristics For Binary Decision Diagrams Researched Ordering Heuristics

• Investigations into this ordering problem has been conducted by two research

communities, electronic circuits and fault trees. The diverse nature of the logic

functions used in these applications make the validity of conclusions drawn

from the circuits questionable in terms of appropriateness for fuult trees.

• The variable ordering approaches can be separated into two approaches i) an

ordered traversal of the fault tree giving a high priority to the neighbourhood so

variables are placed in the ordering close to their neighbours; ii) weighting

methods where adjacent variables in the ordering can be found from different

sections ofthe tree structure.

• The majority of research and investigation has been performed on the ordered

traversal approach.

• Relatively little research has been conducted on weighting methods.

• The performance of each heuristic is variable depending on the fuult tree

structure being analysed.

• The repeated event approach seems to perform well on a number of examples,

however is not the solution to all tree structures.

• Most methods are dependent on the ordering of the inputs to the gates - if the

fault tree is represented by changing the order of inputs the same ordering

heuristic can result in a very different sized BDD.

• To promote an efficient BDD analysis and to take full advantage of this

efficient and accurate fault tree analysis technique research needs to be carried

out to determine an approach to select a good ordering heuristic for all trees.

• . Rule based pattern recognition type approaches may be the way ahead in terms

offinding a reasonable solution to the problem.

117

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

5 Pattern Recognition Techniques - The Machine
Learning Classifier System Incorporating Genetic

Algorithms

5.1 Introduction to Pattern Recognition Techniques

5.1.1 Summary o/The General Approach

All "pattern recognition" approaches provide a means of identifying patterns or rules

within a population encompassing a number of data examples. The patterns may be

relatively simple i.e. classifying a population into separate girl and boy categories given a

few distinguishing characteristics, or more complex with a series of inputs and possible

outcomes. There are many different pattern recognition models that can be generated for

a given problem domain, these include machine learning classifier systems[GoI971, neural

networks[Bis951, expert systems[Vaz891, Bayesian methods and fuzzy logic[ESD961. The pattern

recognition potential of these approaches can be used to solve a wide range of

information processing problerns. Some example problems are: speech recognition; the

classification of hand written characters; and medical diagnosis.

The variable ordering problem can be specified in terms of finding a relationship between

the fault tree structure and the best ordering scheme option that will produce an optimal

BDD in the conversion process. Thus, finding the pattern between the input (the fault

tree structure) and the required output (the best ordering scheme option) is characteristic

of a pattern recognition problem. None of the approaches have rules indicating which

type of problems they are best suited to solve, hence, there is no way to determine which

of these would be the most effective to apply to the ordering scheme problem.

118

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

In this chapter the pattern recognition technique using the machine learning classifier

system which incorporates a genetic algorithm is discussed. Initially the genetic

algorithm concept is reviewed as it forms the corner stone of the functioning and ultimate

success of the classifier system. A classifier system has been formed to model the

ordering problem with limited success. Correct predictions of scheme choice for small

fault trees are more common than for larger tree structures. The research steps, results,

and problems encountered are all explained. Four papers were produced following this

research[BAn98, ABa98, BAn99, BAn9911.

5.1.2 Types of Problems Modelled by Pattern Recognition Techniques

Pattern recognition techniques encompass two main types of problem namely,

classification and regression problems. Classification problems involve outcomes that

can be grouped into distinct classes. For example, consider the problem of assigning a

group of individuals into two classes one representing girls (class Cl) and the other boys

(class Cl). The outcome can be viewed numerically as a I if the individual belongs to

class Cl and 0 if it belongs to Cl. Therefore, in general, the classification problem can be

viewed as a mapping from a set of input variables, XI, ,Xd, representing each individual,

to an output variable, y, representing the class label. For more complex tasks there may

be a number of output classes.

The regression category, on the other hand, refers to problems in which the outputs

represent values over a continuous range. For example, the prediction of the average

height of an individual in the year,2000, given a large data set of average heights for the

last 10 years.

The variable ordering problem can be modelled within the classification category. Each

of the six scheme alternatives used in the study would form a separate class, and take the

value of I if the input vector belonged to that class and 0 if not.

119

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

5.1.3 Considerations With All Pattern Recognition Techniques - The Curse of
Dimensionality

When applying a pattern recognition approach to a problem a model incorporating the

principles of the technique is generated to establish the pattern in the data. One

consideration to be made when using any pattern recognition approach is the

phenomenon known as 'the curse of dimensionality' [Boo82).

concerned with the amount of information that the model is given.

This phenomenon is

In theory, it would be

sensible to suggest that the more information the model is given (in terms of the inputs of

the problem not the number of examples within the data set) the easier its task of fmding

the pattern. However in reality, if the model is given too many parameters it becomes

overloaded and performance deteriorates. In practice, beyond a certain point, adding new

input features can actually lead to a reduction in performance of the pattern recognition

model generated. Unfortunately this 'certain point' is not known and will vary depending

on the problem.

5.1.4 What Are Genetic Algorithms (G.A 's)?

John Holland and colleagues at the University ofMichigan)\lol71) first introduced genetic

algorithms in the early 1970's. Genetic algorithms are stochastic search algorithms based

upon the mechanics of natural genetics. The genetic algorithm operates upon populations

of character strings in a similar manner to the genetic action on chromosomes in a

population of organisms. In simple terms, genetic algorithms enforce the Darwinian

survival of the fittest principle upon an artificial population of creatures (defined as

strings). Each generation of a new strings is created using selected material from the

fittest of the old generation. Genetic algorithms efficiently exploit past information to

explore new regions in what is referred to as 'the search space' with a high probability of

fmding improved performance. The search space contains all the possible inputs for the

problem.

120

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

5.1.5 Why Are They Used in The Classifier System Approach?

The classifier system approach to pattern recognition generates a model which contains a

set of rules. These rules map to the patterns in the problem domain to guide the search

using new inputs toward the correct response. These rules are learnt through a training

phase where the model generated is subjected to a set of training examples, which is a

large collection of inputs and outputs taken from the problem domain. To search for the

appropriate rules or generate new rules that may more accurately reflect the pattern in the

data, a rule generation system is required. This rule generation system often takes the

form of a genetic algorithm. As the rules of the classifier system are one of its

fundamental elements, this generation tool is discussed in detail to reflect its importance

to the functioning ofthis type of pattern recognition approach.

5.2 Genetic Algorithm Principles

Genetic algorithms apply slightly different techniques to those of calculus based or

enumerative search methods. One difference is that they work with a coding of the

parameter set, usually in terms of a binary alphabet, whereas alternative approaches work

directly with the parameter set.

To increase the diversity of possible areas to search G.A's utilise a database of points

simultaneously, in contrast to many optimisation methods that search from a single point.

This is like climbing peaks in parallel thereby reducing the likelihood of finding false

peaks in the solution. The G.A starts with a population of randomly generated strings

and thereafter generates successive populations of strings. The population's poor strings

are weeded out and replaced with successive populations generated by the genetic

algorithm, hence, the population should continually increase in strength.

The general operation of a G.A uses no auxiliary information just the values of the

objective function associated with individual strings. Conventional approaches however

require the use of auxiliary information, for instance, gradient based approaches require

___ 121

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

the knowledge of the gradient at a specific point and this may not always be possible if

the function is not continuous.

To perform an effective search G.A's use probabilistic transition rules. Unlike random

walk type approaches the random rules are used as a guideline for searching. They use

this random choice as a tool to guide a search toward regions of the search space with

likely improvement.

5.3 A Simple Genetic Algorithm

5.3.1 The Principles

The basic components of the genetic algorithm are called strings. These are usually

coded in binary and represent the input parameters of the objective function. For

example, given the objective functionj{x) = ~ for x in the range (0,31), then the string

representing x = 15, could be: 01111. If more than one variable is involved then these

are combined to make a continuous string. For example, if trying to find the optimal

number of pumps and valves in series, with a maximum of 3 pumps and 2 valves, the

binary representation of both would be two bits each. To model the problem these bits

would be combined to form a single string, i.e. if there are two pumps [10] and one valve

[01], the string would take the form: 1001.

The strings are grouped into sets called populations. The aim of the genetic algorithm is

to generate successive populations (known as generations) based on the information

contained in the previous population. To start the genetic algorithm the population is

generated randomly. From this initial population strings are selected in a probabilistic

manner to enter a mating pool for the next generation. Within this mating pool a series of

genetic operations occur to inject new bits, possibly better bits, into some strings.

Following this genetic operation the newly produced generation is decoded and the list of

possible results of the problem,assessed. The generation procedure is repeated until an

__ 122

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

adequate solution is found, i.e. if there are any constraints then if these are met then a

solution is obtained. The algorithm can be summarised as follows:

• Generate initial random population, P(O);

• Repeat next steps until solution found

• Generate P(t) using P(t-l) by applying genetic operators

• Evaluate P(t);

The main components for the successful execution of the genetic algorithm are the

genetic operators. These help to maintain the strong sections of already good strings to

produce new strings with possible improvement, and to maintain diversity. A simple G.A

is comprised of three main operators:

• Reproduction.

• Crossover.

• Mutation.

5.3.2 Reproduction Operator

The process ofreproduction in a genetic algorithm is a means to pass information from

the current population into the next generation. Just as in human biology where genes are

passed from the 'parent' to the 'child'. Within the genetic algorithm reproduction is a

process in which individual strings are copied. The probability of strings being

reproduced from the current population and passed into the mating pool for passage into

the next generation is based on the objective function values (or fitness values) of each

string. Copying strings according to their fitness means that strings with a higher value

have a higher probability of contributing one or more offspring in the next generation and

passing on important characteristics.

123

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

The implementation of the reproduction operator can occur in numerous ways, the

simplest being to create a biased roulette wheel. Roulette wheel selection can be viewed

as allocating pie-shaped slices of a circular shape to population members, with each slice

proportional to its fitness, shown diagrammatically in figure 5.1. The overall effect of this

selection process is to return a randomly selected parent. This parental selection

technique has the advantage that it directly promotes reproduction of the fittest

population members by biasing each member's chances of selection in accordance with

its fitness evaluation. Once a string has been selected for reproduction, the string is

copied. This string is then entered into what is termed a mating pool, the next successive

population, for further genetic operator action. The members of the mating pool selected

in this way should comprise of a set of strong members whose characteristics provide

them with high fitness. Due to the stochastic nature of the selection process some less fit

members may progress to the mating pool for the next generation. In this way the

population diversity is maintained.

Classifier E: 3%

Classifier D: 6%

Classifier F
15%

Classifier C: 38%

Classifer A: 13%

Classifer B: 25%

Figure 5.1: Roulette Wheel For Parent Selection.

(Classifier C has the highest fitness value occupying 38% ofthe wheel)

5.3.3 Crossover Operator

Following the execution of reproduction, the genetic operator of crossover is

implemented. Simple crossover may proceed in two steps. First, the newly reproduced

strings in the mating pool are mated at random. Second, each pair of strings exchange

information as follows: an integer position k along the string is selected at random

between 1 and the string length less one [1, n-l]. Two new strings are created by

124

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

swapping all characters between positions k+ I and n inclusively. For example, consider

strings Al and A2:

Al = I I 0 I I 0 I 1 0 1

A2=IIIIOololO

Suppose in choosing a random number between I and 8, k = 6 is obtained (as indicated

by the separator symbol I). The latter sections of each string are then crossed resulting in

two new strings, AI' and A2':

AI' = I 101 I 0010

A2' = I I I I 0 0 1 0 1

This process explores the possibility of exchanging good features of the two 'parent'

strings to create an even better 'child'.

5.3.4 Mutation Operator

Mutation is needed because the reproduction and crossover operators, despite searching

the space effectively and identifYing strong areas, occasionally may loose some

potentially useful genetic material. In the simple genetic algorithm mutation is

implemented with small probability, and creates a random alteration of the value of a bit

in a binary string. It randomly produces a new point in the search space and is one of the

mechanisms that helps explore the whole search space in an attempt to produce global

rather than local optima.

125

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

5.3.5 The Operation of a Simple Genetic Algorithm

To illustrate the workings of a genetic algorithm, a simple optimisation problem to

maximise the function f(x) = x 2
, if x varies over the range 0 to 31 is used as an example.

The first step in the procedure is to code the input parameter x into a finite binary string.

This would involve using a five bit binary code, whereby {OOOOO} represents the

minimum value of x over the range, and {11111} represents the maximum, 31.

To start the genetic algorithm process an initial population is needed. This is randomly

generated. Table 5.1 shows an assumed initial population of 4 strings with associated

objective function values.

;Bitiaiy~ded' i;.j Integ~ryahleof xi.
, - _, ", . "',':,'" - . - ,,-, -c'" '.,' - - ~---- "

·Ve~si<iri6fi'·• ;' "'. .Z:"
,;,,:C',' - <,,,.~' ,~ ,--, ;::<i::·,:2;;J ~ . -

01101 13

11000 24

01000 8

10011 19

Objective function sum

Objective function average

'Objective F1.IiictiottvAhie ·'.probabilitY6f.: ;"

,. j(;c»).::Xi,'i~!iJ~t~go4~~~4
169 (= 13)

576

64

361

1170

292

169/1170 = 0.144

576/1170 = 0.492

64/1170 = 0.055

361/1170 = 0.309

Table 5.1: Input Population For Genetic Algorithm

The fIrst stage of the genetic algorithm begins with reproduction. A mating pool of the

next generation can be selected by spinning a weighted roulette wheel, where the

segments are proportional to the objective function value. Therefore dividing the string

objective function value by the total objective function value for the whole population

generates the proportions. In this example, the objective function sum totals 1170.

Therefore, for this example population string number 2 will occupy the largest proportion

of the wheel and string number 3 the smallest. Spinning the wheel four times will

__ 126

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

generate the next successive four strings. Thus, for each string a random number x would

be produced between 0 and 1, such that if:

0.000 ::; x ~ 0.144 String 1 would be selected

0.144 < x ~ 0.636 String 2 would be selected

0.636 < x ~ 0.691 String 3 would be selected

0.691 < x ~ 1.000 String 4 would be selected

For this example it is assumed that the foIlowing strings are reproduced:

• String 1 is copied once (string 1 in mating pool).

• String 2 is copied twice (strings 2 and 3 in mating pool).

• String 3 is not selected.

• String 4 is copied once (string 4 in mating pool).

Simple crossover is the next genetic operator to alter the population. Strings are mated

and the crossing sites selected both randomly. Table 5.2 shows the effect of mating

strings 1 and 2, and 3 and 4 of the new population together with crossover points 4 and 2

respectively. The last operator mutation is performed on a bit by bit basis. If a mutation

rate of 0.001 is assumed then with 20 bit positions to possibly change, it is expected that

20 * 0.001 changes would result. That is, 0.02 changes. Therefore, there are no mutation

bit changes i.e. O's changed to 1 's and vice versa, in this example.

The new population is now ready to be tested. The population is decoded and the

associated objective function values calculated. These results are shown in table 5.2.

From the comparison of table 5.1 and 5.2 it is clear that the average objective function

value and the sum of the objective function values have increased. The process would be

repeated over many generations and the best (optimal) strings selected.

127

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

1 011011 2 4 01100 12 144

2 110010 1 4 11001 25 625

3 111000 4 2 11011 27 729

4 101011 3 2 10000 16 256

Objective Function Sum 1754

Objective Function Average 438

Table 5.2: Genetic Operator Applied to G.A Forming New Population

5.4 Implementation of The Genetic Algorithm Within The Classifier
System

The genetic algorithm used in the machine learning classifier system is like the simple

genetic algorithm explained in section 5.3. The algorithm uses the same tripartite

processes of reproduction, crossover and mutation. However, the action of this genetic

algorithm is to produce only a selected proportion of the next generation. Good

performers in the previous generation are allowed to survive without modification. New

randomly generated elements are also added to make up the finaI segment of the new

generation in an attempt to generate better classifiers.

5.5 Background to Machine Learning Classifier Systems

5.5.1 Introduction

Early work in machine learning focused on tasks like learning from examples and

language acquisition, employing methods that relied on significant amounts of data and

128

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

ultimately considerable search. Since the fIrst practical implementation of a genetics

based machine learning system a number of researchers have extended and applied the

work to a variety of fIelds. In biological and medicinal areas a number of systems have

been developed for medical diagnosis, for example for the detection of cancerous cells.

In engineering fIelds genetic systems have been applied to gas pipeline optimisation and

control tasks. There have also been applications to computer science, social science and

even military uses.

The overall principle of the classifIer system is to generate a model of the problem that

incorporates a learning mechanism, whereby through a training process the rules that

govern the problem are learned for later predictive purposes. Due to this learning

mechanism contained within a system framework the classifIer system is referred to as a

"machine learner". ClassifIer systems that use a genetic algorithm are often called

genetics based machine learning systems (GBML).

To generate the classifIer system to model the patterns of the problem a large amount of

training needs to be undertaken. This invo Ives starting with a classifIer system

containing random rules and by subjecting the model to lots of sample population data

(termed the training data set) rules are generated within the system that reflect the

patterns (or relationship between the inputs and the outputs) within the problem.

Following the training phase and having established that the classifIer system developed

adequately models the pattern contained within the problem the system can be used to

predict the outcome for new unseen inputs (using the test data set). The rules learnt in

training provide the mechanism to direct the search operation toward the desired output

response.

______________________________ ~------------------------- 129

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

5.6 Machine Learning Systems - The Classifier Model

5.6.1 General Overview of Model

Classifier systems are a rule-based machine learning system, with general mechanisms

for processing rules in parallel, for testing the effectiveness of existing rules and for

adaptive generation of new rules. These rules provide the predictive or pattern

recognition potential of the classifier system. The system can be described in simple

terms of taking a number of inputs of a problem and classifying them into specific

outputs depending on the learned rules that are contained within it. A classifier system,

depicted schematically in figure 5.2, consists of three main components:

1. Rule and message system.

2. Apportionment of credit system.

3. Rule and message generation system.

APPORTIONMENT OF
CREDIT SYSTEM:

LEARNING a..ASSIF1ER
SYSTEM:

GENETIC
ALOORrTHM

~ RULBANDMESSAGE
GENERATION SYSTEM

Figure 5.2: Schematic Representation ofa Classifier System.

The functioning of the three main components of the system summarise all of the

classifier systems actions. The rule and message' system provides the mechanism for

130

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

processing rules, for example, taking the inputs of the problem and matching the

appropriate rules. The Apportionment of Credit System tests for the effectiveness of the

existing rules as each rule is given a strength depending on its appropriateness in

modelling the pattern of the problem. For adaptive generation of new rules, a rule and

message generation system is used, whereby new rules are injected into the system.

The predictive operation of a classifier system begins with the receipt of an input

message that represents the characteristics of the problem to be solved. This input is sent

to the internal message list (a store for current messages). A check is made to see which

rules (initially randomly generated) are activated. The rules are defined as classifiers,

and match inputs to a generated output or action. Matching classifiers bid to place their

messages on the message list. In the case of more than one match, a bidding process in

the Apportionment of Credit System decides the winning classifier (the most successful

to meet the known output determined by the training data set). Once a winning classifier

has been found, this then posts its message to the message list, and the process is repeated

until an eventual winner is found. The winner is established when there are no more

matches within the classifier store or after a predetermined number of matches occur

(defined within the program). This winner then outputs its result, the solution to the input

problem.

In the training phase, the only difference is that after all the training data set has been

entered or passed through the classifier system new rules are injected into the system.

This requires a rule generation system, often in the form of a genetic algorithm.

Following this, training is repeated on the same data set, until the desired set of rules is

produced which model the problem pattern.

5.6.2 The Rule and Message System

The rule and message system forms the computational backbone of the machine learner.

This part of the system contains the pattern recognition potential. This potential is

unleashed via the rules and the messages that control the path selecting the appropriate

131

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

response for a given input. The fundamental elements of this system are called

'classifiers', that is the rules. Initially a random set of classifiers (usually in the form of

binary strings) are generated and the new classifiers are learnt and adapted during

training on a large random sample data set from the population.

Each classifier consists of two parts: a condition; and a message. The roles of the two

parts are to allow for complicated patterns to be modelled. It is impossible to have within

the finite rule set all the rules that could map any input to the correct output. If the

classifier has just one section the process would be: if the input message is matched by a

rule then this is the required response. This would generate a simple mapping, however,

in practical situations the pattern to map is usually far more complicated and also the

number of input variations is extensive. Therefore the pattern potential is increased by

each classifier having an identification part and a 'next step' part, i.e. the condition part

identifies the match and the message sends a new bit of information, searching for the

next step in the pattern. The training process establishes a link or relationship between

the condition and its message. It is like a jigsaw puzzle, whereby each piece is a part of

the pattern and each new message sent is a new bit of the puzzle. When all the messages

have been sent and there are no more matches then the jigsaw is complete and a solution

is found.

The condition is usually coded in the form of a binary alphabet, which models the input

characteristics of the problem. This condition part is a simple pattern recognition device

where a wild card character (#) is added to the underlying alphabet. The wild card

character is added to cater for a range of input possibilities. As stated above only a finite

number of rules can be modelled within the system and hence similar inputs can be

mapped on to the same rule. An example expression for the condition may be:

condition ~ {0,1,#}"

i.e. condition = 01#01##111, where n = 10. Thus, a condition matches a message ifat

every position a '0' in the condition matches a '0' in the message, a '1' matches a '1',

132

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

and a '#' matches either. Hence, a number of inputs may be matched by this rule for

example, all three of the classifiers listed below would be matched by the example

condition

• 0100111111

• 0110111111

• 0110100111

The message part within the classifier is a means of information exchange, and is simply

a finite length string over some finite alphabet. In terms of a binary alphabet, the

message can be defmed as:

message => {O,I}"

i.e. message => 0110100111, where n = 10. Thus, the message is defined as a

concatenation of O's and I's of length n. The message of each classifier is the search

mechanism for the next part of the pattern and is sent to look for the next rule that

matches it. For some patterns it is not always one rule that will lead to a prediction, a

number of rules mapping out the complicated pattern may be required and this is the

principle behind continually posting a new message.

Both the condition and the message parts of a classifier contain coded input

characteristics of the problem and coded outputs ofthe problem. An example condition or

message part of a classifier is:

0110110110111010011

~a~tPut
coded characterisitcs of the problem
which describe problem

133

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

5.6.3 The Apportionment o/Credit Algorithm (A.o.C)

The AO.C is the competition phase of the classifier system, implemented in terms of a

bidding process. This is where any matched classifiers bid to post the next message into

the system. This bidding process is referred to as the bucket brigade algorithm. In the

training phase of the learning classifier system a random rule set is generated with each

classifier (or rule) given an equal strength value, indicating that each rule is as good as

each other in terms of predicting the correct outcome. Each time a match occurs the

matched classifier, say classifier i, makes a bid, BI proportional to its strength value SI:

5.1

where Cbid is equal to the bid coefficient representing the proportion of the strength value

to be used in the bid, ego 0.01, of the strength of classifier i. The bid coefficient is

assumed to be the same for the whole of the bidding process.

Having matched and then bid, the strength of the classifier is reduced. The classifier is

rewarded if it wins the bidding process by gaining the bid of the next classifier that was

activated by its own message. Hence, if a classifier bids and is unsuccessful its strength

remains reduced. This process hopes to weed out those rules that are not very good in

predicting the required pattern, i.e. their strength becomes less and less.

More precisely, in the next step the matched and activated classifier (the one with the

highest bid) gives its bid to the classifiers responsible for posting the previous message

that matched the winning bidding classifier's condition. Then this increases the strength

of the winning classifier hence increasing the likelihood that if matched again its bid will

be higher. This process starts to identifY the strong rules in the system.

In this bidding process, some classifiers are not rrmtched by the inputs of the system, this

could be due to the finite size of the training data set or that the classifier is not applicable

to the problem. Either way the classifier works by biasing performance toward those

134

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

classifiers that are productive, hence classifiers that exist at each generation are taxed for

their existence. This is to prevent free loading. A tax, Tj , proportional to the classifier's

strength is deducted:

Tj =C'ax * SI 5.2

where C,,,,, is the tax coefficient, ego 0.001. Together these relationships, of bidding and

taxing define the apportionment of credit algorithm. Hence, to evaluate classifier i's

strength value at time 1+1 given the strength values at time I, the following difference

equation is given:

5.3

where R,{/) is the reward given to the classifier either from another classifier for its

message sending activity or from the environment for correctly predicting the right

outcome.

To illustrate with a simple example the workings of the A.O.C system consider five

classifiers, shown in table 5.3. Each classifier has a condition part and a message part,

each with string length of four binary bits. Assuming initial strength values of 500 for all

five classifiers, and providing an initial input (environmental) message ofOIOI,where the

flfst two digits {OIl represents the characteristics of the problem and the last two digits

{OIl represents the output of the problem, the workings of the algorithm can be

considered. A bid coefficient of 0.1 is assumed and the bid is taken as the product of this

bid coefficient and the classifier's strength. To simplifY this example, the tax coefficient

is omitted.

In the initial step (I = 0), classifiers I, 4 and 5 match the input and each bid 50 units.

Since they all have the same bids the tie is broken by random selection, and the winning

classifier sends it's message during the next time step. Classifier 4 is randomly selected

to win and pays it's bid to the party responsible for it's activation; in this case, the input

135

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

(environment) strength is increased by 50 units as the environmental message was

responsible for activating classifier 4. In subsequent time steps, activated classifiers

make their payment to previously active classifiers, as can be seen in the next time step (t

= I).

.. _.-- I 0 .. --- ---- I-I

I" C.fassifier· " 'r,"', slCengtb" .~essage ,:~, 'M" Bid,':' ,Str""sth" :_M~,~ge<. , . M Bid
I "C, , ,;,,",":',

I 01##: 0000 500 e 50 450 4 45

2 00#0: 0011 500 500

3 11##: 1001 500 500

4 0#01: 0111 500 e 50 450 0111·

5 #101: 1100 500 e 50 450

Environmmt(e) 0 0101 50

I 2 I 3

,,c, ,ClaSsifier,:;' ',Strength:' Message" ,M ;;Bid; ,Stren~:, Messago:,: Pay"£!, '; Stlen~>

I 0 I ## : 0000 405 0000 455 455

2 00#0: 0011 500 50 450 0011 o 450

3 11##: 1001 500 500 500

4 0#01:0111 495 495 495

5 #101: 1100 450 450 450

Environment 50 50 50

'when two bids are equal, tie broken by random selection.

Table 5.3: Apportionment of Credit System.

Classifier 4's message to be matched is {Oll1}. The only match is from the condition

part of classifier 1 and it makes a bid of 45 units. As it is the only match, this classifier

wins and posts its message into the next time step (t = 2). At the same time, a payment of

45 units is made to classifier 4, which was responsible for causing its activation. The

strength of classifier 4 is then increased to 495 units. The process is, again repeated with

the new message of {OOOO}. In time step 2, the match is from classifier 2. This bids 50

units and again is the only bidder, hence is the winner. It posts its message {0011} and

pays classifier 1 50 units for causing its activation. This then increases the strength of

classifier 1.

Finally, at time step 3 there are no further matches of the classifiers and hence classifier 2

is deemed the winner. As this is the final stage in the classifier systems prediction, this

136

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

winning classifier contains the predicted response. A reward is given to the winning

classifier if all the matching and bidding has resulted in the correct prediction, hence

indicating that this series of rules has detected an appropriate pattern. The process of

adding a reward biases the bidding process and also the generation of new rules for future

inputs towards stronger rules which have shown in the past to predict the required

patterns. In this example, no reward is given, as the output of classifier 2, {I I}, did not

match that of the input message, {O I}. This means that the rules depicted in classifier 4

then classifier I then classifier 2 did not find the required pattern between the inputs and

the output. Therefore this rule is not desired, which is reflected in the classifiers involved

now having a reduced strength value. Note here that the tax has been removed and the

strength of classifier 3 which has not been activated in the whole process would have

decreased and not remained with the highest strength value.

In general, the iterative process of matching and sending messages continues until there

are no more matches to be made with the classifiers contained in the classifier store.

However, an upper limit can be set on the number of iterations carried out. If this is done

caution must be taken in setting a limit which does not restrict the pattern finding

potential of the classifier system However, if an appropriate model can be achieved by

limiting the number of iterations then valuable computation time will have been saved.

5.6.4 Rule and Message Generation System - Genetic Algorithm

The ability of the model to predict the correct outcome is dependent on the rules within.

It is impossible to generate all the rules required to solve the problem for any input, and

hence initially a random population of rules is generated. To construct an appropriate

model a number of examples from the problem domain are put through the model in what

is called a training phase. By using a large training set of examples the model learns the

trends or patterns within the data which hopefully will generalise well to unseen data

when the model is used in a predictive capacity. Inputting all the training examples

through the model and carrying out the matching and bidding process which finally leads

to an output, constitutes what is known as a training cycle. Following one training cycle

137

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

some rules will increase in strength whereas others will decrease. Without inputting

more rules into the system and completing the training cycle for each training example in

the set will only lead to adaptation of those rules that are already in the rule set. As the

population is randomly generated to start with all possibilities for the rules are not

included and hence more rules need to be generated. To inject new, possibly better rules,

into the system requires the use of a rule and message generation system, one possible

system is to use a genetic algorithm. The genetic algorithm principle and mechanics have

already been discussed earlier in this chapter. Within the classifier system the genetic

algorithm generates part of the new set of rules which are created using bits and pieces of

the fittest of the old generation. They exploit the benefits of the information contained

within the previous generation of rules to seek new rules with above average

performance. The strong strings in the rule set remain the same and the genetic algorithm

alters the rest. The part of the population that is kept can be set to any percentage of the

total population. This percentage is one variable parameter that is determined by the

problem.

5.7 Application of The Classifier Approach With a Genetic Algorithm to
The Ordering Problem

5.7.1 Introduction

The basic principle of the machine learner is to take an input and depending on the

characteristic properties of the input, and applying the rules learnt during training

procedures, provide a response. Ultimately, the aim of the variable ordering problem is

to take some characteristics of the fault tree structure and then to find a relationship

between these characteristics and the scheme option that predicts the best ordering for

minimal BDD generation. Therefore, the classifier approach has been adopted as a

possible solution to the problem.

Discussed in the following sections are the necessary inputs and outputs of the genetics

based machine learning model and how they are coded. The steps to generating the

138

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

desired model and the training and test performances of the intermediate and final

genetics based machine learning classifier system that has been developed for the

ordering problem are explained. The computer code for the genetics based machine

learner (gbml.c), produced during the research, is written in the C programming language.

5.7.2 Input Parameters Chosen To Represent The Problem

The requirement of the basic event ordering problem is that given a fault tree structure

some methodology needs to be applied to generate an ordering of the variables to use in

the conversion process to a BDD. Ibis ordering needs to generate a minimal or at least

near minimal BDD for an efficient analysis. Therefore, the inputs to the problem are the

fault tree characteristics and the output is an ordering scheme selected from a list of

alternatives. Several characteristics can be used to represent the significant features of

the trees. It is not clear which features will be important in identifYing an appropriate

ordering heuristic.

Figure 5.3 indicates a simple fault tree structure with common distinguishing elements

labelled. By examining the combinations of these factors a fault tree structure can be

described. The list of possible characteristics is endless. Some possibilities include the

number of gates; number of events; number of repeated events; number of levels, etc. It is

clearly impractical to code all possible characteristics, hence a select few need to be

extracted which represent the most significant tree features with relevance to the BDD

construction. In view of overloading the genetics based classifier model with too much

information, the fear of the curse of dimensionality, the set of characteristics initially

chosen totalled four. These being:

• Percentage of AND gates:

As the number of AND gates increase the possible size of each cut set

increases, hence there is more chance of non-minimal cut sets being

formed.

• Percentage of different events repeated:

139

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

This characteristic gives an indication of the proportion of repeated events

and non-repeated events within the tree. The higher the proportion of

repeated events the higher the influence of some scheme choices.

• Percentage of total events repeated:

Considering all the events in the tree (all repetitions included), with a

higher percentage of repeated events there is an increased likelihood of cut

sets containing a repetition. As repeated events often lead to problems

with minimisation then this characteristic is thought possibly influential.

• Top gate type:

There are two possible gates that are considered in the research as the

starting gate ofthe alternating sequence of gates within the tree structure,

namely AND and OR. This start point may influence the scheme choice,

or at least link with the other three characteristics to affect the scheme

option best suited to the tree.

TOP EVENT

Figure 5.3: A Simple Fault Tree with Labelled Elements

140

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

Percentages of characteristics were chosen rather than the numerical values to try and

reduce the number of bits required for each string, thus simplifYing the classifier systems

task.

These characteristics have been selected because they are considered to be potentially

important and the result gained through training and testing the classifier system using

these characteristics will provide a benchmark from which future classifier designs can be

assessed.

5.7.3 Output Parameters Chosen To Represent The Problem

The object is to produce an optimal or at least near optimal BDD representation of the

fault tree. The ordering placed on the basic events of a fault tree will determine the size

of the resulting BDD, and hence the number of cut sets. The smaller the number of cut

sets the less processing involved to convert the BDD to one which encodes the minimal

cut sets alone. Also the smaller the original BDD the more efficient (less paths to a

terminal '1' vertex) the top event quantification process. It is beneficial to achieve an

ordering which is optimal in terms of the resulting size of the BDD.

It is clear that numerous methods of variable ordering are available. In previous

researchlSin961 6 different ordering schemes have been identified which have produced

reasonable orderings depending on the fault tree structure. These are:

• Top-down, left-right approach:

- is produced by listing the variables in a top-down, left-right manner from

the original fault tree structure.

• Modified top-down, left-right approach:

- as the top-<lown, left-right approach but repeated events along each level

are considered first.

• Depth-first approach:

141

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

- invo Ives breaking the who le tree structure into smaller trees (subtrees)

and looking at the optimal ordering of these subtrees. The depth-first

ordering scheme gives each subtree a top-down, left-right ordering,

working from the fust gate inputs of the top event.

• Modified depth-first approach:

- As unmodified version but with repeated events considered fust.

• Priority depth-first approach:

- takes the depth-fust approach one step further and considers subtrees

with only basic event inputs fust.

• Modified priority depth-first approach:

consider repeated events fust in the ordering.

For each of the modified versions, if the gate or level has more than one repeated event as

an input then the most repeated event is placed frrst, if they occur the same number of

times then the events are taken in gate list order to break the tie.

There are many other schemes that could have been included. However, this short list has

been adopted to investigate the potential of the classifier approach to select the best from

among them.

5.7.4 Coding o/The Fault Tree Parameters

The classifier system being generated has rules that are coded in terms of a binary

alphabet. Each classifier message and condition comprises 19 bits, which can be broken

down into two main sections, namely: the characteristics coding; and the scheme coding.

The characteristics coding comprises 13 bits and is broken down to:

• 4 bits representing the percentage of AND gates;

• 4 bits representing the percentage of different events repeated;

• 4 bits representing the percentage oftotai events repeated;

142

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

• 1 bit for top gate type.

The binary coding for each of the characteristics was generated as follows:

1) Characteristic 1: Percentage of AND gates - to reduce the length of the binary string

the possible percentages were grouped into subclasses, with each subclass representing

the binary number from 0 to 15 (binary string length of 4 bits) as indicated in table 5.4.

o - 6.25% 0000 0

6.25 - 12.5 % 0001 1

12.5% - 18.75 % 0010 2

18.75 - 25 % 0011 3

25 - 31.25 % 0100 4

31.25 - 37.5 % 0101 5

37.5 -43.75 % 0110 6

43.75-50% 0111 7

50 - 56.25 % 1000 8

56.25 - 62.5 % 1001 9

62.5 - 68.75 % 1010 10

68.75 - 75 % 1011 11

75 - 81.25 % 1100 12

81.25 - 87.5 % 1101 13

87.5-93.75% 1110 14

93.75 - 100 % 1111 15

Table 5.4: Coding For The Characteristic of "Percentage of AND gates"

__ 143

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

2) Characteristics 2 and 3: Percentage of Different and Total Events Repeated - these

two characteristics were coded in the same manner as the percentage of AND gates,

i.e. split into 16 categories hence requiring four bits each.

3) Characteristic 4. Top Gate Type - as only two types of gate were considered in this

problem the coding process only required the use of one binary bit, a 1 represented an

AND gate, and a 0 an OR gate.

The numerical characteristic values associated with each fault tree used in the classifier

system study are given in Appendix 11. The program used to generate these

characteristics was written in Fortran and named character.f

5.7.5 Coding The Scheme Preferences

The scheme coding comprises of 1 bit for each scheme option, being either a 0 or a 1. As

stated earlier, the number of nodes in the resulting BDD diagram after the conversion

process from the fault tree determined the best or optimal scheme option. This optimal

option (the one with fewest nodes) was labelled a 'good' scheme and hence its binary bit

coding will be a 1. To illustrate how the conversion to the binary coding is achieved, two

trees with resulting sized BDDs for each scheme option are highlighted in table 5.5, the

equivalent binary coding has also Peen illustrated alongside.

r/C;-:vZC;-::C:::-:;T'Sch!'l"etc'SchetJ)e 2, 'Scheme 3 " fSchefue4'.$cheme. 5, /Scheme6"
P'-:::"",,,,,,,,~-±'~LG+< ;;'~:<';,:':>i':','-< ,:.'"y:- ":::;!;:; "(.',~;,,\,..,, ':U ',,~./',;.-, ,:,~::-'A"~·; :fl<,\J< :, ,·;,~·i>,;:;: ~;~;;, "":{:~:':::"::{/':. ;,'~}h,:-",,;":-" /·,:,..-:«/x

Treel-nodes 37 36 31 57 32 31

Tree 1 - binary

Tree 2 - nodes

Tree 2 - binary

o 0 1 0 0 1

513 453 476 569 45141 38105

o 1 0 0 0 0

Table 5.5: Coding Conversion Method For The Scheme Preferences

144

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

The total length of the string required for the scheme coding is 6 bits, one for each

scheme option. Using a bit for each scheme option allows for two equal schemes to both

be expressed. Using only three binary bits, representing the numerical values of 1 to 6,

corresponding to each of the alternative schemes, would not allow for matched schemes

to be accounted for. Therefore, overall each classifier message and condition comprises

ofl9 bits.

5.7.6 Data Sets

Once the classifier system is designed the model needs to be trained and tested using

input data. Fault tree structures used in the training and test phases were obtained from

industry and also by random production using a computer program (randtree.c). Each

tree structure was analysed for the chosen characteristics, and these characteristics were

converted to the appropriate binary representation.

Each tree was analysed prior to training for the best ordering scheme for the most

efficient BDD representation. The best scheme was identified by the minimum number

of nodes in the BDD structure before minimisation (removal of redundant nodes). This

will measure the relative efficiency of the conversion process rather than the analysis i.e.

the optimum I minimum BDD. The resulting BDD properties for each fault tree when

analysed using each of the six variable ordering schemes is given in Appendix Ill. The

results were gained using code already available, schemes.J, which was programmed in

Fortran.

The typical BDD information produced fur a given fault tree for each scheme option is

shown in table 5.6. The first column refers to the six different scheme options. Columns

2 and 3 deal with the number of ite computations that are required to generate the BDD

before and after minimisation. Column 4 is the difference between the number of ite

computations before and after minimisation. The infurmation used for this research to

establish the best scheme is written in column 5, the minimum number of nodes out of

__ 145

Variable Ordering Heuristics For Binary Decision Diagraros Machine Learning Classifiers

the six scheme options prior to minimisation. Colunm 6 is concerned with the number of

non-repeated nodes in the BDD before the minimisation process occurs. The number of

nodes in the BDD after minimisation has occurred and the number of non-repeated nodes

in the diagram form column 7 and 8 respectively.

Top-Down 513 661 148 2471 94 447 90

ModTD 523 660 235 2341 93 436 88

Depth-First 587 755 168 4874 81 357 81

ModD-F 598 756 158 4374 80 354 79

Priority D-F 650 866 216 437189 151 1007 97

ModPD-F 616 794 178 286685 143 1001 93

Table 5.6: Information Provided on BDDs For Each Scheme Option

To evaluate the performance of the learning classifier system a test set of data was

produced with different tree structures and known best ordering schemes. The schemes

for prediction purposes are set to wildcard characters or unknowns to be determined by

the classifier system. The performance is evaluated by comparing the number of correct

scheme outputs predicted.

5. 7. 7 The Programmed Model

The genetics based machine learning program (gbml.c) developed during the research

was based on the simple framework of the classifier approach. The program has two

modes of execution, one to train the classifier system based on the input training data set

and one for prediction of the best scheme for a new tree structure. The outline of the

program is given in figure 5.4:

___ 146

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

IF TRAINING MODE {mainOl

Generate random initial population of classifiers
Assign strength values to each newly generated classifier
Select mnnber of iterations process to be trained for
Repeat next steps until number of iterations exceeded

For each environmental training pattern do the following
Calculate matches {matchclassifiersOl
If there is a match then begin the next stage of classifier system

Apply bidding process in apportionment of credit system {aocOI
Hold auction to determine wirming classifier {auctionOl
Repeat matching process with new winner {newaocOl

Get output ofwirming classifier (scheme choice) {effectorOl
Does the scheme choice match the environmental message?

Compare classifier outputs {criterionOl
If outputs match then rewards given {reinforcementO, payrewardOl

- At end of training patterns, cycle completed so use genetic algorithm {gaOl
When iterations exceeded print final results to gmbl. out

ELSE IF PREDICTIVE MODE

Identity number of test trees
Define all parameters i.e. bids and strengths
Read in each environmental test message in turn
Find any matches {matchclassifiersOl
Apply bidding process {aocOl
Find out if winner matches known scheme choice {winnoutOl
Results written to file predict. out

Figure 5.4: Program Functioning of Classifier System

In the training phase, firstly classifier 1 (this refers to the coded data for the first fault tree

structure) is passed to the classifier system. This string is compared with the rules within

the classifier store (the randomly generated rules). If there is a match, the matching

classifier posts its message back to the classifier store for possible further matches. This

matching process is set to continue for up to three iterations. This number can be altered

if desired, more complicated patterns may require further iterations of possible matches.

Setting it at three will provide a benchmark for future results. When there are no more

matches, the winning rule from the classifier store is output. If it matches the desired

outcome, i.e. predicts the correct scheme option as given by the input classifier then a

reward is given. Throughout the matching process a bidding process is also occurring to

separate the bids of more than one matched rule. Following a response by the classifier

147

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

system for the fIrst classifier in the training set, the second is then entered, and the same

process occurs. When all the classifiers have been entered into the classifIer store for

matching, the rules are then reviewed using the genetic algorithm. Changes resulting

from the genetic algorithm could provide better rules which more accurately relate to the

training data set, hence the cycle is repeated. This cycle repetition is set for 1000

iterations. More training may be required, there is no way to determine how many

iterations will be needed apart from evaluating the predictive scores produced.

5.8 Generating a Classifier Model

5.B.l Using Initial Four Fault Tree Characteristics

The first trial to construct a machine learning classifier system to model the ordering

problem had a training data set of 181 trees, and a test set of20 fault trees. All of the

trees had been scanned for the appropriate four characteristics (as discussed in section

5.7.2). Also, each tree has been run through the program schemesfto establish the BDD

for each of the six scheme alternatives (as discussed in section 5.7.3). Using this

characteristic and scheme choice information the input classifiers for the training phase of

the model and the classifiers for the prediction phase of the model can be formed.

To use the classifier approach an initial random set of rules (or classifiers) is required.

The classifier store (or rule set) was initially set to fIfty. These fifty classifiers were

randomly selected using a random number generator (rand) embedded within the

classifier program code. As each classifIer is comprised of a condition section and a

message section, each had to be randomised separately, hence the routine required three

seed inputs to function (i.e. 23/3/3), one for the rand function to perform, one to

randomise the selection of the conditions and the other for the messages.

The parameters of the first classifier system model created were set to:

148

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

• Number of iterations before training process terminated = 1000.

• Crossover operator set to 0.75

• Mutation operator set to 0.002

• Proportion of rule set selected to be operated on by genetic algorithm =

0.4

• Reward = 500 units

• Strength of initial classifiers = 500 units

• Results of the predictive phase are output to a file predict. out as a list

of six digit alternatives (I's and O's) i.e.

011011 = Schemes 2,3,5 or 6

100000 = Scheme I

101000 = Scheme I or 3

With each row corresponding to an output of each test tree.

The test set of fault trees used in the whole of the classifier system research is kept

constant to allow for comparisons to be made. The characteristics of the trees are

summarised in table 5.7, along with the known best scheme options. These are given in

the final column of table 5.7. The aim of the classifier system generated is to correctly

predict these scheme options given the input characteristics of each tree only.

Following the execution of the training phase of the model, a summary of input

parameters, i.e. the genetic algorithm operators and bidding coefficients are output to a

file gbml.out. In addition the rules within the classifier stores and the corresponding

strengths are output to a file to be used in the predictive phase. Execution of the training

model using twenty different sets of three input seeds, i.e. twenty attempts at randomly

choosing the initial population of rules, proved insufficient. This was apparent as the

number of matches made with the test trees and the rule set was negligible. As the

purpose of the model is to take any unseen fault tree and produce the best ordering

heuristic for the BDD conversion, this aspect of the model needs substantial

improvement. To try and increase the likelihood of a match between the test set and the

classifier store the random set of classifiers was increased to 100. Again the same

149

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

number generator was used to select the initial rule set. In the output file results for all

test trees were not produced, i.e. no suggestions were made for a number of the twenty

trees, indicating that there were no comparative trees within the rule set. Therefore, the

predictions were poor, as the number of matches was poor. It was clear at this stage that

the model was not set up to recognise the correct pattern contained within the problem

domain.

1:~7
L I % AND . · •• %.T<>talevents % DifferenL .. · 1 '. TOllgate.··. '. OutpUt i'

e~e~t~te~~ted ,.;,~;
....

..

<' I> g~te/ . repeated.: •• < I' Required .,.....' .. '. . . '' ,

1 60 29 50 o (OR) 111011

2 43 32 55 0 010000

3 33 9 2 0 111111

4 42 30 60 1 (AND) 001000

5 38 30 63 I 010000

6 65 25 16 I 110000

7 38 31 51 0 010000

8 45 3 I 1 000100

9 50 19 7 0 010100

10 39 32 60 0 010100

11 33 10 4 0 001000

12 41 9 8 1 001000

13 38 32 38 I 010000

14 50 13 5 1 001000

15 50 33 1 I 111111

16 44 28 17 0 111000

17 45 23 9 I 111111

18 60 21 14 I 010000

19 70 21 7 I 001000

20 31 28 48 I 001000

Table 5.7: Characteristics of Test Set of Trees With Known Required Outputs

150

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

There were two factors that became evident from this initial research. The first is the

problem of matching. The number of wild card characters within the condition part of the

classifier is set randomly. With fewer wild card characters the number of rules required

to map to all possible inputs needs to be increased. Currently the research has used a

maximum data store of 100, therefore, the current task is to try and map 20 new trees (of

19 bits) on to one hundred, when the number of possibilities is hugely more than that.

This indicates that in future tests the random rule set should be much larger to try and

encourage more matches.

A number of trials were then carried out with successive increases in the number of rules

in the classifier store. The rules were incremented in the following steps: 100; 125; 150;

200; 250; 300 and then 500. Ten trials were carried out for each rule set configuration.

On each of the ten trials, the number of test trees for which a rule within the classifier

store was found to match that of the input tree was noted. This match determines the

number of possible predictions that could have been made. The average number of

matches and the average predictive outcomes for each rule set configuration are

summarised in table 5.8.

~Qi)lllefiiiR,ur~A:verageNumbefQL.A :verage.PrediCtiv~

\D;c;{~~/.~~fi~;~i~r!f,. ~~'ijf;~~~~i~~$?/.il}:qif·t[~~~l;:i~~~~~!?/~.?JJ£ /.;
100 1.2 0.5 (0)

125 1.3 0.4 (0)

150 1.1 0.4 (0)

200 2 0.3 (0)

250 1.8 0.6 (1)

300 2.7 0.7 (1)

500 4.4 1.7 (2)

Table 5.8: Outcomes With Varying Rule Set Sizes

151

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

From table 5.8 it can be seen that as the number of random rules is increased the number

of matches tends to increase. This increase has direct effects on the potential of the

classifier system to make correct predictions. Even with more matches the predictive

performance of the system is very poor. This is partially due to the fact the system may

predict more than one scheme as the best. Included within this selection could be the

correct scheme, but as other schemes are also predicted which are not the best, this result

is incorrect. For example, the classifier system may make the prediction {01001l} and

the answer required may be {O 1 OOOO}, so despite the system predicting scheme 2 which

is correct, by predicting schemes 5 and 6 as well makes the solution incorrect. One

possibility for improvements is to increase the rule set further. Another factor to be

investigated is the four characteristics that describe the fault trees. The question needs to

be asked as to whether these four characteristics which have been chosen to represent the

fault tree structure provide adequate information from which the desired pattern can be

formulated. It is felt that the analysis of these characteristics is the next step forward.

5.B.2 Reviewing Relationship Between Characteristics and Scheme Choices

The variable ordering problem is quite complex and it is not obvious from just looking at

a fault tree what the best ordering scheme should be. If this were the case then the

variable ordering dilemma would not exist. By examining the characteristics themselves

and their influence individually on the scheme preference it was made apparent that a

number of inter-linked factors must contribute to the ordering problem. As can be seen

with all the scatter plots (shown in figures 5.5-5.7) there is not a clear set of numbers for

each characteristic which link it directly to the scheme option.

The scatter plot comparing the top gate type to the scheme option was trivial and

therefore was not drawn, such that a tree starting with either an AND or OR gate could

have the same best scheme option. Thus, it must be the interaction of a number of factors

that ultimately will affect which scheme is best. Therefore, to mimic the complexity of

the problem, more characteristics are added to the input list.

152

- ------ ---------------------------------

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

ii 80
1;j 70 • I I • 0 I • I • •
~

60 I • • • • • 50 •

I
• • • •

I I • • •
"""' 40 I 0

I
~30

I
I • • I • • • •

~ 20 • • • • • •
~ 10 ..

Po. 0
0 2 3 4 5 6

Scheme Options

Figure 5.5: Comparison of Percentage of AND gates and Scheme Option

I 120

100 • • • • • •
I

I
I •

~ 80 I : :

&i I I • • •
60 I I • • i I I • • •
40 I • •

~ • • •
20 J

• • ~ I I
"""' 0 0 •
~

0 1 2 3 4 5 6

Scheme Options

Figure 5.6: Comparison of Percentage of Different Events Repeated and Scheme Option

~ 50
\1 45 • • • • • • go 40 • • • • • •
Pi 35 I I

I • •
"' I • •
i 30

I
I I

25 I I P-1 20
ii I • •

15 • •
~ • • • •
"""'

10 • • • • 0 5 I • I
~ 0

0 1 2 3 4 5 6

Scheme Options

Figure 5.7: Comparison of Percentage of Total Events Repeated and Scheme Option

153

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

5.8.3 Changing The Characteristics

Both the points of the previous research are taken onboard and utilised in the future

stages of research. Firstly two additional characteristics are added to the list of four fault

tree characteristics previously being used. These are: the number of levels in the tree,

which helps to model the depth of the tree; and the number of inputs to the top gate,

which helps to model the breadth of the tree. Both of these characteristics show the size

and magnitude of the tree because as the number of levels and inputs from the top gate

increase the tree is ultimately growing in size, thus complexity. On review of the training

data the number of levels were grouped accordingly and the coding for the number of

levels in the tree involved 2 binary bits:

• 1-3Ievels=00

• 4-6 levels = 01

• 7-9 levels = 10

• > 9 levels = 11

For the number of inputs to the top gate, again only two bits were required. The number

of events from the top gate must be greater than two otherwise the tree has not been

constructed properly. On review most of the trees within the sample set had a number of

inputs that were reasonably low. Thus, only four subclasses were chosen. The fault trees

within the population as a whole may have a greater number of inputs to the top gate than

four, which is taken care of by the last category in the coding. Hence, the coding took the

following format:

• 2 events = 00

• 3 events = 01

• 4events=10

• > 4 events = 11

154

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

On further examination of the fault trees within the training and test data sets it was

apparent that the subgroups of coding for the 'percentage of different events that were

repeated' and for the 'percentage of total events repeated' was not an accurate

representation of the data Most of the percentages were below thirty percent so the

coding was split up differently. Those values below thirty were mapped directly on to

their binary equivalent, and those greater than thirty percent were mapped on to the

binary coding 11111. The reasoning behind this was to separate the clustered values

which may help to differentiate between the scheme choices. The new coding for the two

characteristics is summarised as:

• 0 -30 % = 00000 - 11110.

• > 30 % = 11111.

Now each classifier representing the fault tree characteristics comprises of 19 bits and six

bits for the scheme preferences, a total of25 bits.

Before increasing the number of random rules generated the new characteristics are tested

on the previous model set up. This should provide confirmation as to the importance of a

large initial population 0 f rules. Therefore, the genetic algorithm parameters remain the

same. Still the number of matches produced was poor, which is to be expected when now

the length of the string to be matched is longer than in the first trials. To reduce the

number of predictive matches attempting to be made the test data set was reduced to ten,

however this had no effect.

Having confirmed that the number of rules needs to be increased, the determining factor

is by how much. The minimum possible is desired to make the system as efficient as

possible. Thus, successive increments are made until a feasible set up is achieved. The

next trial using the new set of six characteristics, involved increasing the random rules

initially selected to 100, with again ten in the test set. Still the number of matches was

poor, thus it is concluded that the number of rules in the set to start with is influential in

the matching process.

155

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

Incrementing the rule set to 500, and again testing with ten fault trees, the results

predicted by the classifier system on five different trials can be seen in table 5.9.

Trial; Seed. Predictions 11 0< ... ") . . Matches 1 10
. -.. -.,

1 10/2/3 4 8

2 20/4/9 I 5

3 47615/3 1 7

4 341712 I 2

5 26/518 I 5

Table 5.9: Results of Five Trials of Classifier System, With 500 Initial Random Rules

The number of matches had increased, although the performance was poor. The number

of matches still needs to be increased. Without getting all twenty trees matched the

performance is useless for a new input. However, firstly the classifier system is tested on

the original twenty fault tree structures. Only three trials were carried out (shown in table

5.10) as it was clear that performance was the same. Currently the model is not trained

well enough to make predictions on previously unseen data.

I 204/515 2 8

2 251313 2 6

3 28/617 2 5

Table 5.10: Results From Testing Same Classifier System as Above on Twenty Test

Trees

To increase the pattern recognition potential the rule set needed to be increased further.

The random rule set was increased to 750. Initial results are shown in table 5.11.

156

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

i. }lredicti0tlSf?O"I·.· ·;(i1'latshes /20•...

1 267/4/3 5 8

2 33/3/3 3 7

Table 5.11: Classifier System Results Using 750 Initial Random Rules

The performance has increased slightly as indicated by the two trials carried out, although

different seeds were entered which may have been more suited to the random rule set, for

example, the results may have been similar for this seed combination when tested on 500

initial random rules. However, the predictions are not the primary concern at this stage,

but the number of matches. These matching figures have not increased significantly.

The program currently loops round for up to three matches, i.e. if a match occurs the

message can be posted and the matching process begin again for up to three times. At the

end of three rotations the process is terminated and the winning classifier at that stage is

termed the winner. To see the effect ofthe matching and bidding process the view was to

alter the number of loops performed to see the affect on performance. It is possible that

the number of loops currently set is limiting performance, i.e. the correct rules to be

found, alternatively the number of loops could be in excess of what is required, making

the process inefficient.

The first trial had the following characteristics:

• I loop of matching process before winning classifier found

• Reward of 850 units given to classifiers if correct classifier selected

• Life tax for existing classifiers in AO.C system set to 0

•. 1000 iterations before training stopped

• G.A parameters set as in first trial

• Predictions made on twenty trees.

• 200 random rules in initial rule set

157

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

The results obtained are summarised in table 5.12. The predictive perfonnance is poor,

and also the number of matches is poor. It is thought that having only one loop is

limiting the selection of the rules in training, and ultimately affecting the predictive

perfonnance.

·········(h··.·· .. ·XpaliY •.. ··•·•·
;':\,'i ,,"; . •...• S¥ed,?:;"' • • <'tredi~ti,6nsI20 .

• Matches {20 ; .• J;
. '.". '. >' . •.....

1 23/3/3 0 4

2 36/3/3 1 1

3 10113/3 1 3

4 265/3/3 1 7

5 492/3/4 0 2

Table 5.12: Results Using One Loop in Apportionment of Credit System

The next stage is to increase the number of matching loops and observe the effects.

Table 5.13 below compares the results (predictions and matches) for loop iterations of2,

3 and 5 respectively.

1 23/3/3 0 2 0 2 0 1

2 36/3/3 2 2 1 1 1 1

3 10113/3 o 1 o 1 o 1

4 265/3/3 1 6 1 3 1 4

5 492/3/4 1 1 o 4 o 3

Table 5.13: Comparative Results Using 2,3 or 5 Loops in Matching Process

From table 5.13 it is evident that perfonnance does not seem to be improving despite

increasing the number of loops. If within the classifier set there is no potential for

158

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

matching then increasing the number ofloops is not going to be of any benefit, hence the

number of random classifiers is increased again.

Using 500 random classifiers in the initial classifier store, and a reward of 850, a life tax .

of zero and five levels in the matching routine the system was retested. The results are

given in table 5.14.

1 23/3/3 2 7

2 36/3/3 3 11

3 10113/3 4 11

4 265/3/3 o 5

5 492/3/4 1 6

Table 5.14: Results When Random Classifiers Increased to 500

The number of matches has increased, and the performance has increased slightly, which

probably is a reflection on the number of matches. Before, the research continues

utilising five loops for matching it is important to determine if this many is necessary.

Hence, for the same seeds the number of iterations is reduced to 3. The results can be

observed in table 5.15.

1 23/3/3 2 7

2 36/3/3 2 10

3 1011313 5 10

4 265/3/3 1 2

5 492/3/4 1 6

Table 5.15: Results For Three Loops and 500 Classifiers

__ 159

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

The perfonnance between these two trials is very similar. Using three iterative loops for

the matching and bidding process as opposed to five seems as feasible. It is obvious that

perfonnance can only improve if the number of matches is improved. Currently the

genetics based machine learner is not fully trained before being used to predict the

population trends. The first place to start is to increase the number of classifiers within

the classifier store. This is increased to 1000. Using the same seeds as before to continue

the comparisons, the results are given in table 5.16.

1 23/3/3 5 16

2 36/3/3 3 10

3 10113/3 6 12

4 265/3/3 3 17

5 492/3/4 I 11

Table 5.16: Results Using 1000 Initial Random Rules

There is a great improvement in the number of matches. The perfonnance has improved

although by no means to a desirable level.

5.8.4 Changing The Proportion o/Classifiers Acted Upon By G.A

Currently the proportion of the random rules which are selected to be manipulated by the

genetic algorithm is set to 0.4. Therefore in the last example, 600 of the classifiers

remain unaltered and the genetic operators within the genetic algorithm act upon 400. If

however, the classifiers which remain unaltered do not reflect the rules required then

increasing the proportion selected may help to improve the rules and help with matches.

Thus, the next stage of research focussed on altering the proportion of the rule set

selected for genetic action. The selection process is carried out by a biased roulette wheel

approach, hence the likelihood of classifiers being selected is based on their strength

values.

160

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

For all the trials, the number of initial rules was set to 1000. The number ofloops for

matching was set to 3. The initial probability for the proportion of classifiers to be

selected to go into the genetic algorithm was 0.9, i.e. 900 selected for genetic algorithm

action and 100 kept. Results using the first seed, 23/3/3, produced only 1 correct

prediction, with only ten matches. This is worse than the result in table 5.16 hence it was

immediately suggested to reduce the proportion selected. Using 0.75 as the proportion to

be selected, the following results (given in table 5.17) were found:

1 23/3/3

36/3/3 4 15

Table 5.17: Predictive Results Using 0.9 as Proportion of Classifiers Selected

The results are no better for the initial trials, so the proportion is reduced again Using

the proportion selected with probability of 0.6 the results improved slightly, although

both the number of matches and the predictions are not up to the required standard to say

that a good model has been generated. The results are shown in table 5.18.

1 23/3/3 5 14

36/3/3 5 14

3 10113/3 15

4 265/3/3 5 13

5 49213/4 17

Table 5.18: Proportion Selected Set to 0.6

Using this proportion has achieved an overall correct number of predictions of 19 for the

five trials combined, whereas using the 0.4 probability produced 18 correct responses. In

161

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

both instances these figures are very poor. Still the number of matches needs to be

increased so increment initial population of rules to 10,000.

Using this gained 20 matches for the first two trials, with predictions of3 and 5 out of20

respectively, using a proportion to select of 0.9. Although the performance is poor, it is

better than when 0.9 was used in previous trials (using 1000 starting population). So now

the correct number of matches is being established but the selected classifiers are

incorrect.

It is clear that the rules govern the number of matches found with the predictive trees and

ultimately the possible number of correct predictions. The approach now taken in the

research is the alteration in how the random rule set is altered after each training cycle.

The new code is called gbm12.c, which has only minor modifications to that of the first

code. The philosophy here it to keep 1000 of the best classifiers, generate 1000 from

these using the genetic algorithm and randomly generate another 8000. It is hoped with

the additional random regeneration that a larger proportion of possible rules will be

tested.

Initial results using the 23/3/3 seed found 19 matches and 5 correct predictions. Using

the 36/3/3 seed again found 19 matches with the classifier store, but again a low

predictive performance of3. Still the accuracy of the predictions are poor. The selection

and regeneration method was altered to keep 500 of the best, generate 500 from these

using the genetic algorithm and to randomly regenerate the remaining 9000. However,

results still produced predictions of between 4 and 5 out of20 for five trials.

5.8.5 Adding More Characteristics As Inputs

As the number of matches associated with using 10000 initial random rules has increased

but the performance has not, questions need to be asked as to whether the pattern is too

complex to find. One aspect that will influence how clear the pattern is, is whether the

characteristics chosen to represent the fauh tree are important factors in distinguishing

162

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

between the best scheme for that tree and other schemes. If they are not fmding the

pattern is going to be an impossible mission. As it is not known which characteristics

may separate trees into scheme categories it is difficult to know which characteristics to

use. To increase the likelihood of including some of the distinguishing characteristics

within the input classifier, the number of characteristics used is increased to incorporate

five more. The coding for characteristic five, the number of levels in the tree has been

altered and now is represented as:

I) Characteristic 5: Number of Levels in The Tree - the coding was extended to

incorporate groupings for a larger number of levels. The groupings are shown in

table 5.19.

0- 4 levels 00

5 - 8 levels 01

9 - 12 levels 10

> 12 levels 11

Table 5.19: Number of Levels in Tree and Corresponding Binary Coding

The additional characteristics and their coding are:

2) Characteristic 7: Number of Basic Events - the number of basic events in the tree was

one of the most variable characteristics and possibly one of the most influential in the

ordering process. A larger number of groupings were incorporated involving the use

of3 binary bits as shown in table 5.20.

163

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

',Number of Basic
";'" "i~~~~i~"i ');

, Binary Coding,
','-',-'-'.','0', I;:· ",' ..

:':',->.,:,:- <>·A

2-5 000

6-10 001

11 - 15 010

16 - 20 011

21 - 25 100

26- 30 101

31- 35 110

>35 111

Table 5.20: Basic Event Binary Coding

3) Characteristic 8: Maximum Number of Gates in Any Level - the number of gates were

usually below seven and thus it was felt that these needed to be individually

identified. The number of gates increased the number of levels within the tree and

hence the possible effect on the ordering especially when subtrees were used. So

using three bits the coding was: 1 gate = 000; 2 gates = 001; 3 gates = 010; 4 gates =
011; 5 gates = 100; 6 gates = 101; 7 gates = 110; and > 7 gates were represented by

the coding 111.

4) Characteristics 9 and i 0: Number of Gates with Just Event or Gate Only inputs -

both of these characteristics were coded in the same manner. The coding is shown in

table 5.21.

164

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

o 000

1 001

2 010

3 011

4 100

5 101

6 110

>6 111

Table 5.21: Binary Coding For Number of Gates

5) Characteristic 11: Highest Number of Repeated Events - as the majority of the

repeated events were only repeated a few times the coding required just two binary

bits, whereby 0 repeats (hence not a repeated event) was represented by 00; 2 repeats

equalled 0 I; three repeats = 10; and an event that was repeated more than three times

was given the coding 11.

Therefore, the characteristic coding can be summarised as shown in figure 5.5:

% different Top Gate Events
events repeated ! No.oilevels Max. Gates Only
~ A A

000011111000001001100011100011100

V V i Ba~Events Y Rep!ted Tally
% ANDs % Total Outputs Gates Only

Events Rep.

Figure 5.5: Overall Characteristic Coding For Classifier

The breakdown of the additional characteristics for each fault tree is given in Appendix

IV. With the increase in characteristics as inputs, the size of each classifier string has

165

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

lengthened. With this increase also comes the added difficuhy of finding the necessary

matches within the classifier store.

To begin the search for an appropriate classifier system using the eleven characteristics

the initial random classifier store was set to 1000. Results using an initial strength value

for each rule of 500 units, 850 units as reward, selecting 0.4 as the proportion of the rules

to be acted upon by the genetic algorithm, a crossover probability of 1.0, and a mutation

probability of 0.0002, were poor. Again arose the problem of matching. For ten trials the

average number of matches was 2.4. With the extra difficulty in matching thirty nine bits

of information it was expected that a considerably larger initial rule set would be required

to attempt to match all possible population data. The same G.A parameters, reward values

and classifier strengths were used, but this time the classifier system had 10,000 random

rules. The training period was extended to 10,000 iterations. The results on ten random

starts are given in table 5.22.

·\;c ..• i;!c!~I"; ;. I<\:"i.;{f,~~~.;;·/'::C;.. . .. • •.••. !'redictic:>J1S/ .. ~?;. ,':/ ,: Matches 120:
<;;:':..:',< ;,' <, .. ":" ,'. ' " •. "" ';:/-':< ~! ' ,

1 23/3/3 5 14

2 36/3/3 7 19

3 101/3/3 3 15

4 265/3/3 8 20

5 492/3/4 6 17

6 52/217 6 14

7 101/5/2 5 15

8 35/4/6 9 17

9 61/8/4 8 19

10 120/30/5 6 17

Table 5.22: Results Using 10000 Random Rules and 10000 Iterations For Training

The increase in the random population of rules has lead to an increase in the number of

matches between the test data and the rule set. However, there is not sufficient

166

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

consistency in generating twenty matches, which without will limit the number of

possible correct predictions of best scheme choice. A prevalent fact is still the poor

predictive capacity, which remains at a best of9/20.

As the possibility of fmding a classifier system with the appropriate set up to model this

ordering problem with desired accuracy looks unlikely a slightly new approach was

considered, i.e. considering each scheme option separately.

5.8.6 Training Models For Each Scheme Option

The next progression to finding a classifier system to model the variable ordering

problem focussed on training a classifier model for each scheme option, rather than using

all six schemes as outputs to one model. Therefore, six individual models were

generated, one for each scheme option. Starting with scheme one, if the model didn't

predict scheme one as the chosen scheme preference then the fault tree input data was

tried against the scheme two model etc. On finding a correct solution the process would

stop. In this manner only one response (scheme choice) would be found, hopefully

alleviating the problems with the single model where often the correct option was

combined with incorrect ones. The classifier models were tested in ascending order of

complexity, thus the first correct choice made would involve the simplest method of

ordering. Scheme one was used as the default scheme option if no schemes were chosen.

Using this methodology meant that each classifier had a string length of thirty four bits.

For each model, the same data set was used, but with scheme outputs altered. The test

data set was the same as in previous tests. All models were initialised with 10,000

random rules, and the training was carried out for 10,000 iterations. The genetic

algorithm was used to change 0.4 of the rule set, with crossover probability of 1 and

mutation probability of 0.0002. The rules contained in each system were given a strength

value of 500 units, as in previous tests and a reward of 850 was used when a correct

prediction was made during the training phase.

__ 167

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

Still the problem of matching existed, and the predictions on all twenty trials carried out

ranged between 4 and 8. Unfortunately these results are no better than that obtained with

the classifier system modelling all six scheme models.

With the added complexity of generating six individual systems which hold the correct

pattern within each, and the poor predictive results that were found, it is thought more

beneficial for further tests to be carried out using the original single model than try to

generate six separate models.

5.9 Results and Conclusions

The results gained using the classifier model approach have been variable. The results

for the smaller fault tree structUres have been more convincing but this is believed to be

due to a number of scheme options producing equally good BDDs. Hence, the output

required is less specific than for larger structures. Complications arise with the larger

fault trees and predictive power lessens. However, it is expected that as the process can

be applied to small trees then a change in the characteristics chosen as inputs to take

better account of larger structures would promote the same pattern recognition potential

to be unleashed for these more complicated fault trees.

As the aim of the research is to produce a model that will take any given fault tree

structure and generate the desired or most optimal ordering heuristic the performance of

any of the classifier models generated does not produce the require accuracy. The best

classifier system produced has a predictive capability of9 out of20 correct predictions.

The classifier system had the following set parameters:

• Classifier of39 bits in length.

• Initial strength value for each rule of 500 units.

• 850 units given as reward.

168

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

• 0.4 proportion of the rules selected to be acted upon by the genetic

algorithm.

• Crossover probability of 1.0.

• Mutation probability of 0.0002.

• 10,000 random rules in initial population.

• 10,000 iterations for training.

• Random Seed 35/4/6.

Prediction results though not brilliant do illustrate that the classifier approach has the

potential to be trained to predict the best of alternative ordering schemes to yield an

efficient BDD representation as shown with srnaller fault trees. This also applies to the

model taking each scheme option in turn. However, finding the correct model structure is

the main concern. Further improvements are expected by continuing the trial and error

type approach to change the infmite number of variable parameters contained within the

system. This process would be very time consuming and the end result is expected to be

some what sub-optimal with a predictive capability which does not match that required to

use this approach in a commercial package. It is felt that the most influential parameter

to first change is the fault tree characteristics themselves. It is clear that the factors

chosen to represent the fault tree structure need to be scrutinised for their importance in

describing the tree.

5.10 Deficiencies ofthe Classifier Method

• Before using the method the best inputs to use to find the pattern between a fault tree

and its optimal ordering heuristic is not known, hence the pattern may not even be

evident in the data used for training.

• Also the preferred coding for the inputs and outputs is not known. Using numerical

values increases the length of each string required and complicates the task, however

coding in subgroups may be confusing the pattern if the subgroups are incorrect.

169

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

• In conjunction with the unknown inputs and best coding configuration is the large

number of variable parameters to chose within the classifier system itself, namely:

- Number of training iterations.

Number of matches in classifier store before winner found.

- Number of initial classifiers in store (rules).

How much of population to select to apply genetic algorithm too.

Optimal settings for genetic algorithm operators.

• As the predictions are made in terms of I ' s or O's, a number of schemes can be found

as the best. In some cases the answer is contained within a set of solutions and thus is

incorrect. However, this is a reflection of incorrect rules.

• The method by which the schemes are coded does not provide the system with a great

deal of information. A scheme is either classified as good or bad, when in reality the

difference between two schemes may be slight i.e. if one scheme produced 31 BDD

nodes and another 32, the first would receive a value of 1 the latter O. In reality, it

makes no difference if the second scheme is chosen rather than the first.

5.11 Summary

• The classifier system which incorporates a genetic algorithm does appear to have

some potential to select an ordering scheme option depending on the

characteristics of a given fault tree.

• The results for the best model architecture are variable, being more promising for

smaller fault tree structures.

• Best result = 9 out of20 correct predictions, using 39 bit model.

• Results using models for separate scheme choices yielded no better results and

were more time consuming to construct and use than the single model

incorporating all six scheme options.

• As the larger fault tree structures are more complex and with performance being

worse on these types of structures it is felt that the characteristics used to model

170

Variable Ordering Heuristics For Binary Decision Diagrams Machine Learning Classifiers

the fault tree do not adequately reflect those required for the relationship between

structure and scheme.

• Further investigation into the characteristics used to describe the fault tree

structure. and how they relate to the best ordering for that tree needs to be

undertaken.

• Adoption of another, perhaps, better suited patteru recognition approach to the

problem may produce significantly better results.

• Whilst showing some promise the results using the classifier method are not

totally convincing and so it was decided to investigate the capability of

alternative approaches to predict an ordering scheme.

171

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

6 Additional Pattern Recognition Techniques -
Application of Neural Networks

6.1 Neural Networks - General Overview

6.1.1 Introduction - What is a Neural Network Model?

The neural network is another method of identifying patterns. It can be regarded as a

particular choice for a set of functions that map a set of input variables to a set of output

variables. The importance of neural networks is that they offer a very powerful and very

general framework for representing non-linear mappings from several input variables to

several output variables, where the form of the mapping is governed by a number of

adjustable parameters. These adjustable parameters help to guide the mapping to

generate the correct pattern and ultimate response. The process of determining the values

for these parameters on the basis ofthe data set is caIJed learning or training, and for this

reason the data set of examples is generaIJy referred to as a training set. The neural

network model once trained on a set of examples can then be used to predict the output of

a set of novel inputs using the parameters generated in training.

6.1.2 Basis of Neural Network Principle - Polynomial Curve Fitting

Many of the important issues concerning the application of neural networks can be

introduced in the simpler context of polynomial curve fitting. This can be illustrated by

the problem of fitting a polynomial to a set of data points by the technique of minimising

an error function. For example, consider the Afh order polynomial given by:

__ 172

Variable Ordering Heuristics For Binary Decision Diagrams

2 M y=WO +W1·X+W2.x +···+WM.x
M

i.e. y = L w,.xi

i=O

Neural Networks

6.1

This can be regarded as a non-linear mapping which takes x as an input and produces y as

an output. The coefficients, :!f, applied to each input can be viewed as one of the

adjustable parameters of the network mapping.

In order to find suitable values for the coefficients in the polynomial, it is convenient to

consider the error for each data point i (where i = 1, ... , M) between the desired output I
for a particular input i, and the corresponding value predicted by the polynomial

function given by y(X'; :!f). Standard curve-fitting procedures involve minimising the

square of this error, smnmed over all the data points, given by

M

E =tL {Y(Xi;!V_ ti }2 6.2
i=l

E is regarded as being a function of the coefficient vector, :!f, so the polynomial can be

fitted to the data by choosing a value for :!f, denoted by :!f*, which minimises E.

6.1.3 General Learning Techniques

There are various learning techniques that can be used to train the neural network. The

minimisation of an error function (equation 6.2), which involves target values for the

network outputs is called supervised learning since for each input pattern the value of the

desired output is specified. Usually the target response is known, like in the variable

ordering problem where the ordering scheme choice for a particular tree is predetermined

and the training performance is based on this target. A second form of learning in neural

networks, called unsupervised learning, does not involve the use of target data. Instead

oflearning an input-output mapping the goal may be to model the probability distribution

173

Variable Ordering Heuristics For Binary Decision Diagrams 1'eural1'ehvorks

of the input data, or to discover clusters or other structures in the data. There is a third

form of learning, called reinforcement learning, where again actual desired values are not

given but information is supplied as to whether the network outputs are good or bad.

Within this research supervised learning techniques have been employed.

6.1.4 Types of Network

There are a number of different types of neural network, all with the same principle of

generating a mapping between a set of inputs and a set of outputs, but each have a

slightly different approach to tackling the problem. The simplest type of neural network

architecture is the single layer neural network. Networks with more complicated

architectures which are used to deal with more complex problems are the multi-layer

perceptron and radial basis function. The single layer and multi-layer perceptron neural

network models are discussed in this chapter, with the latter being applied to the ordering

problem.

6.2 Single Layer Neural Networks

6.2.1 Introduction

The simplest form of a neural network is one that has just a layer of inputs and a layer of

outputs. Considering the case where the input layer consists of a number of nodes all of

which are related to just one output node, then this can be modelled as shown in figure

6.1. The inputs Xl, , Xd are shown as circles, which are connected by weights, Wl, ,

Wd, to the output Yl. The weights govern the functional mapping of the network. A bias

node is added and is represented as a weight from an extra input Xo which is permanently

set to 1. This node acts like adding a constant to the equation.

174

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

OUTPUT

Wo

Xo o o o

Bias Node
INPUTS

Figure 6.1: A Single Layer Neural Network With One Output Unit Yl

Extending the theory to the more complicated task of problems with several categories of

classification, this can be expressed in terms of the neural network diagram shown in

figure 6.2.

OUTPUTS

INPUTS

Figure 6.2: Single Layer Network With Many Outputs.

Each output Yk is associated with a weight Wk;, connecting input node j to output node k,

and a bias WkO connecting to each output node. The network's outputs can be expressed

as a simple linear combination of the inputs (d in total), with the bias included forming

the single summation written as:

175

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

d

Yk = LWki.x, 6.3
;=0

Usually, a non-linear activation function is applied to the linear combination as the

pattern is more complex than being represented by a linear function.

Single layer networks correspond to a very narrow class of possible functional mappings,

and in many practical situations may not represent the optimal choice. Single layer

networks provide many useful insights into the properties of more complex multi-layer

networks.

6.3 Multi-Layer Perceptrons (MLPs)

6.3.1 Introduction

The more complicated extension of the single layer network is the multi-layer

feedforward network or multi-layer perceptron. The network is made up of a series of

layers with connections running from every unit in one layer to every unit in the next

layer. These connections are known as the weights (as in the single layer network) and

they control the influence each node has on propagating the intermediate outcome to the

output nodes. Typically the network consists of a set of input nodes that constitute the

input layer, one or more hidden layers of nodes, and an output layer of nodes (as shown

in figure 6.3).

The network has a larger number of connections than the single layer network allowing

more diversity in the non-linear mapping it can model. Thus, it can tackle a much wider

range of problems.

176

Variable Ordering Heuristics For Binary Decision Diagrams

NOUTPUTS

o

dINPUTS

o o

Neural Networks

M HIDDEN
NODES

Figure 6.3: Diagram Representing a Multi-layer Perceptron

The fundamental operation of the network is to take the inputs and by a training process

determine weight values for the connections between the nodes. In the prediction phase

these weight values then determine the path through the network and ultimately

determine the output response for the given input problem.

During the training phase multi-layer perceptrons commonly use an algorithm known as

the error back-propagation algorithm. The algorithmic process consists of two possible

passes through the different layers of the network: a forward pass and a backward pass.

In the forward pass, an input vector is applied to the input nodes of the network, and

subsequent outcomes are evaluated layer by layer. Finally, a set of outputs is produced

as the actual response of the network. During the forward pass the weights of the

network are fixed. During the backward pass, on the other hand, the weights are adjusted

in accordance with an error-correction rule or delta rule. Specifically, the actual response

of the network is subtracted from a desired (target) response to produce an error signal.

177

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

This error signal is then propagated backward through the network, against the direction

of weight connections, hence the name "error back-propagation". The weights are

adjusted so as to make the actual response of the network move closer to the desired

response.

During the training phase the weight values of the connections between the nodes are

established. The training phase involves a number of cycles whereby on each cycle the

search for better weights is directed to a new area as defined by a specified search

parameter. When the error has been reduced sufficiently it is these weights that are used

as fixed values in the predictive phase. How well the network has been trained and

models the problem will be reflected in the prediction of new input data. If the network

has been trained well it will generalise well to new data and a correct response should be

predicted.

6.4 Application to The Ordering Problem

In recent years neural computing has emerged as a practical technology[Bis95] with

successful applications in many fields. The majority of these applications are concerned

with pattern recognition problems and make use of feedforward network architectures.

The task of identifying a suitable basic event ordering scheme for a given fault tree

structure can be formulated as a pattern recognition problem. Whilst orderings derived by

the classifier approach produced limited success, it is felt that a neural network with a

more solid theoretical basis may have more to offer. This chapter investigates the

potential to obtain an efficient BDD ordering by using a multi-layer feedforward neural

network.

The work presented in this chapter uses the pattern recognition approach of neural

networks to select the 'optimal' ordering scheme from a set of alternatives. A multi-layer

feedforward network is used with an error back-propagation method to adjust the network

weights. A network has been trained on a specially constructed set of features

representing the fault tree structures and tested using different data to measure the

178

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

success of the approach. A set of six alternative ordering schemes has been identified (as

described in section 6.5). The objective, as when applying the previous machine learning

technique, is to predict the best of the six alternative ordering permutations which will

yield the most efficient BDD for the given fault tree structure. The research in this area

is published in two papers[BAnOol.BAn0021•

6.5 Inputs and Outputs For MLP Neural Network Model

6.5.1 Preferences For The Variable Ordering Schemes

The objective of the initial neural network model will be to establish the capability of the

network to select the best ordering heuristic from a restricted group of alternatives for a

given fault tree. In this study the 6 different potential structured ordering schemes known

as:

• Top-down, left-right approach;

• Modified top-down, left-right approach;

• Depth-first approach;

• Modified depth-fIrst approach;

• Priority depth-fIrst approach;

• Modified priority depth-first approach.

will again be used, as the information necessary for the training process is available from

the work performed using the machine learning approach.

6.5.2 Fault Tree Characteristics and Scheme Preference Coding

The difficulty in the neural network approach is in correctly modelling the problem.

Some fault tree attributes have been selected to characterise the structure as in previous

work. The input layer of the neural network represents the eleven characteristics which

179

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

were selected to represent the fault tree structure, and the output layer of nodes within the

network are used to model the six scheme preferences.

To summarise, the characteristics that have been chosen to represent the fault tree

structure are:

• Percentage of AND gates;

• Percentage of different events repeated;

• Percentage of total events repeated;

• Top gate type;

• Number of inputs to top gate;

• Number of/evels in tree;

• Number of basic events;

• Maximum number of gates in any level;

• Number of gates with gate inputs only;

• Number of gates with event inputs only;

• and highest multiple of a repeated event.

With the neural network approach the input and output variables do not need to be

categorised in binary, as in the machine learning approach, instead numerical values can

be applied. Using numerical values for the output values, rather than binary good or bad,

will give an indication of how good a scheme is in relation to the best. This should give

the neural network approach a better chance of locating the domain boundaries for each

output than the classifier approach.

6.6 Training and Test Sets

Fault tree structures utilised for the training and testing of the multi-layer perceptron were

the same as those used in the classifier approach. To promote an efficient functioning of

the network it is best to scale the outputs in accordance with the non-linear activation

function used. The format to specify the inputs and outputs is discussed in later sections.

180

Variable Ordering Heuristics For Binary Decision Diagrams }Ieural}lehVorks

To evaluate the performance of the neural network a test set of data was produced with

different tree structures and known best ordering schemes. The performance of the

network was evaluated by the number of correct scheme preferences predicted by the

network. The same test set of trees was used in the initial MLP studies so performance

could be compared with the classifier approach.

6.7 Creating a Neural Network Program

6.7.1 General Description of Program

During the research the neural network program net_mlp.c was created using the C

programming language. The breakdown of the program is shown in figure 6.4. The

following model characteristics are implemented:

1. Multi-layer perceptron approach.

2. Batch method of training.

3. Gradient descent optimisation technique.

3. Minimum error and maximum number of iterations for

stopping criterion.

S. Forward and Backward propagation techniques.

6. Mean sum-of-squared errors term.

7. Sigmoidal activation function.

The program has two phases of execution, one for training purposes and one for

predictive purposes. This is controlled within the main subroutine of the program.

181

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

I MAIN I Co-ordinates all subroutines for successful ex ecution of neural network program

INITIALISATION I Reads data from input data file - the file depends on mode of
tnrining I testing) operation (

EXTRACfDATA I Creates input and target data arrays .

CREATE NET I Creates network structure

~ tput and weight arrays INITVECTOR I Initialise> ou

'---+I WEIGHTRAND I Generates ran domweights

NET TRAIN

Lr

END

L-r V RAND I Generates random number in specified range

4 RND I Generates random number

I Orgarrises loop for calling procedures to train network

NET TRAINI I Call, fom" d and backward passes and changes weights

H NET FORWARD I F orward pass of network -calculating outputs

Applies sigmoid activation function to output 4 SIGMOID I

r---i NET BACKWARD I Backward pass - calculating errors and deltas

~ NET WEIGHT I Calculating changes in weights (if necessary)

I Program terminated when s topping criterion met

Figure 6.4: NeuralNetwork Program Outline

6.7.2 Details of The Multi-layer Perceptron Approach

The network constructed to model the problem is such that it has a number of layers, each

with a number of individual nodes. The input layer contains eleven nodes and the output

six. The layers and nodes in between are to be determined through a training procedure.

As known target schemes are used a form of supervised learning is carried out. The

program applies the principles of back propagation within the perceptron approach.

Each subroutine of the program is explained as follows:

182

------------------------------------.........
Variable Ordering Heuristics For Binary Decision Diagrams }/eural}/etvvorks

INITIALISATION:

This reads in the input data files. If the training mode is chosen then the training

data set of examples are read in consisting of 181 fault trees. Otherwise in the predictive

phase the test set of twenty trees is read in.

EXTRACTDATA:

This routine creates the input and target data arrays. In the training phase the

inputs are propagated through the network to gain the appropriate weights and the target

vector is used to establish the error-correction rule. In the predictive phase the input data

array contains the new information for previously unseen trees to be given a scheme

choice for ordering and the target array is used to compare the results generated by the

model.

CREATE_NET:

This creates the basic architecture of the network. Three parameters need to be

found, being the weights, the number of hidden layers, and associated nodes.

1. Weight Initialisation

Before any training of a network can begin the weights (adjustable

parameters) of the network need to be initialised. The customary practice is to set

all the weights of the network to random numbers that are uniformly distributed

inside a small range of values. The wrong choice of initial weights can lead to a

phenomenon known as premature saturation(L0K911. This phenomenon refers to a

situation where the sum of squared errors remains almost constant for some

period of time during the learning process, that is there is no change in the

predictions made by the network. Incorrectly chosen weights limit the pattern

recognition potential of the network and without changes the performance is very

poor. In this research the weights are set randomly between the values of +/- 0.5.

183

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

2. Hidden Layers and Associated Nodes

For each network used to solve a particular problem there is an optimal

structure. Often for multi-layer networks the number of hidden nodes within the

structure can mean the difference between success and failure. Finding the

optimum number of hidden nodes and layers is solely dependent on the problem

being modelled. In general, the smallest number of layers and nodes in each

layer is the best solution. When using more than one hidden layer training often

slows dramatically. This is due to the fact that the number of false minima

increases. Using too few nodes within the whole network will starve the network

of the resources it needs to solve the problem. Using too many will increase the

training time, perhaps so much that it becomes impossible to train it adequately in

a reasonable period of time. One rough guideline for choosing the number of

hidden nodes in many problems is the geometric pyramid rnleIMas931 in which for a

three layer network with n input nodes and m output nodes, the hidden layer

would have .jm.n nodes. Even so, this rule may over or under estimate the

number required depending on the network architecture. The best approach to

fmding the optimal number of hidden nodes is time-consuming and starts with

"too small" a guess, for example two nodes. The network is trained and tested,

and the performance recorded. The number of nodes is then increased and the

model retrained and tested. The training and test procedure is repeated until the

error is acceptably smal~ or no significant improvement is noted. This method is

adopted within the net_mlp.e program that has been constructed.

NETJRAIN:

This routine directs the training procedure. There are two common training

methods, namely: pattern and batch modes of training. In the pattern mode of training

weight updating is performed after the presentation of each training example. Consider a

training data set consisting of N training examples, the first example in the data set is

presented to the network, and the sequence of forward and backward computations is

performed, resulting in certain adjustments to the network weights. Then, the second

example in the data set is presented, and the sequence of forward and backward

__ 184

Variable Ordering Heuristics For Binary Decision Diagrams }/eural }/etvvorks

computations is repeated, resulting in further adjustments to the network weights. This

process is continued until the Nh example in the data set is accounted for.

Using the batch mode of back propagation means that weight updating is performed after

the presentation of all training examples within the data set. Hence the forward pass is

made for all training patterns and the sum of squared error function for the whole data set

is established. Following this the backward phase is executed and the weight adjustment

made. There is no way to know which method may be most appropriate so initially the

batch method oflearning is tried.

FORWARD AND BACKWARD PHASES (NET_TRAIN}):

As a batch method of training is used, the routine net _train 1 0 executes the

forward phase (routine netJorwardO) for each training pattern before the backward

phase (routine net_backward()) is carried out and any weight changes made

(net _ weight()).

1. NET FORWARD:

The first step in the learning process is a feed forward operation, which calculates

the value of the output nodes from the input layer through the hidden layers to the output

layer. If a model is used with d input nodes, one hidden layer of m nodes and an output

layer of k nodes then the following calculations would result for each training pattern n:

1. Hidden layer node values, vin):

The linear combination is established between the hidden node j and

weight connections Wji to each input x,(n). A non-linear activation

function, g(), is applied to the linear combination that is calculated.

d

vj(n) = g(Lwj,.x,(n)) 6.4
;=0

__ 185

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

2. Output layer node values, Yk(n):

2. SIGMOID:

The linear combination is calculated between output node k and weight

connection Wkj to each hidden node -v;(n). An activation function g*() is

then applied to the result, this may be the same function as used in the

hidden layer or different.

m

Yk (n) = g * (L wlj.v/n» 6.5
j=O

For most problems, the mapping between the inputs and the outputs is non-linear,

except in simple cases. To introduce non-linearities within the function mapping the

input variables to the output variables an activation function is applied. These activation

functions are implemented across all the nodes at each hidden and output layer within the

network. One activation function, represented by g(), is the sigmoidal function given by:

g(a) = 1/ (1 + exp (-a» 6.6

where a represents the output which is to be activated, usually the linear combination of

the weights and connecting nodes. The output of the activation function is in the range

{O,l} as shown in figure 6.5. Hence, it is convenient for the outputs of the problem to be

scaled in a similar range. This activation function is used within the program.

'.0

o

Figure 6.5: Sigmoidal Activation Function

186

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

3. NET BACKWARD:

A. Calculating The E"ors: The first step of the backward phase involves determining the

error at the output nodes. The training data examples are propagated through the network,

initially using the random weights to produce a result for each of the output nodes. Each

of these outputs is then compared with the target responses to produce an error.

The error ejn) is calculated for each output nodej for all n training patterns, by taking the

target response of each node tIn), and subtracting from it the response generated for that

node by the network.Y.J(n).

6.7

As a batch mode of training is used, the squared error term is calculated for each training

pattern, summed for all patterns, then divided by the total number of training patterns to

give the error, E, for that cycle. 'This then determines whether any changes in the weight

connections are required to move the response of the network toward the desired

outcome. The error function used in the program thus takes the form:

I N M

E=-LLe/(j) 6.8
2N j=l i=l

where M is the total number of output nodes, and N is the total number of training

patterns.

B. Propagating E"ors Back Through Network: If the error is greater than a certain

predetermined value then the weights would need to be altered using an optimisation

teclmique. Different optimisation algorithms will perform best on different problems and

it is therefore not possible to recommend a single universal optimisation algorithm. The

aim of all the algorithms though is to optimise the search direction to locate the best

187

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

weight values to govern the connections in the network and ultimately reduce the error of

the network to a minimum.

One of the simplest, most practical algorithms is that of gradient descent. To start the

algorithm, some initial guess for the weights is chosen. Then the weights are iteratively

updated such that the search is moved a short distance in the direction of the greatest rate

of decrease of the error, i.e. in the direction of the negative gradient. Thus, to use the

gradient descent algorithm the derivatives of the error function with respect· to the

weights need to be propagated back through the network.

Considering a general node j in a feedforward network, as shown in figure 6.6.

Zj(n)

aj(n)

j

Figure 6.6: General Node in Feedforward Network

The output ofnodej, for training pattern n, aln), is equivalent to the linear combination

of the weights wj.{n) and the inputs z,{n), represented by equation 6.9. The outcome zln)

of the activation of this linear combination, aln), is represented by equation 6.10.

aj(n) = Lwj,(n).z,(n) 6.9
I

6.10

188

Variable Ordering Heuristics For Binary Decision Diagrams }/eurall<etvvorks

If the error is calculated as the sum over all training patterns, E(n), then it can be

expressed as:

E= LE(n)
n

The goal is to evaluate the derivatives of the error function with respect to the weights

contained within the network. These derivatives can be expressed as sums of each

pattern derivative over the whole training set. Therefore, considering a single pattern, the

derivative of E(n) with respect to some weight wj,{n) depends only on that weight via the

summed input ain) to unitj. Thus, the chain rule' for partial derivatives can be applied to

give equation 6.11.

BE(n) BE(n) Ba/n)

Owj,(n) Ba/n)· Owj,(n)
6.11

Letting the first term on the right hand side of equation 6.11 be denoted by 8 j' where the

8' s are often referred to as errors, and using equation 6.9, we can write

z,(n) 6.12

Substituting this into equation 6.11 the derivative of the error can be expressed as:

6.13

Equation 6.13 states that the required derivative can be obtained by multiplying the value

of 8 for the unit at the output end of the weight by the value of z for the unit at the input

end of the weight. Thus, in order to evaluate the derivatives it is only necessary to

189

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

calculate the value of OJ for each hidden and output unit in the network and then apply

equation 6.13.

For output units, as shown in figure 6.7, equation 6.13 can be applied directly, where

equation 6.10 has been used with zin) replaced by Yk(n), such that:

Zl(n)

oE(n) 0Jk(n)

0Jk(n)· Oak(n)

Yk(n)

ak(n)

k

Zj(n)

Figure 6.7: Representation of General Output Node

6.14

In order to evaluate equation 6.14 appropriate expressions for each of the tenns on the

right hand side of the equation are substituted in For example, if the sum of squared

error function and the sigmoidal activation function (equation 6.6) were used, the

differential of the activation function can be expressed as:

g'(ak(n) = [1-g(ak (n)].g(ak (n))

=[1-Yk(n)].Yk(n)

Thus, 0k(n) can be calculated using:

190

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

For a hidden unit, as shown in figure 6.6, the chain rule is applied again (equation 6.15)

where the sum runs over all units k to which unit j sends connections.

° .(n) = oE(n)
J oa/n)

6.15

ak(n) = :L Wkj (n).g(aj (n»
k

:. oak(n) g'(a/n».:Lwkj(n)
Oaj(n) k

6.16

Applying the definition of ° to equation 6.15 and making use of equation 6.16, the

following back propagation formula is obtained:

o/n) = g'(a/n»:L Wkj (n)ok (n) 6.17
k

This states that the value of ° for a hidden unit can be obtained by propagating the o's

backwards from units higher up in the network. Using a sigmoidal activation function, OJ

for training pattern n, for a node in the hidden layer, the errors can be expressed as:

o/n) = y/n).[I- y/n)].{:L0k (n),wkj (n)}
k

Thus, the back-propagation procedure for evaluating the derivatives of the error E(n) with

respect to the weights can be summarised in four steps:

1. Apply an input vector ~ to the network and forward propagate through the network

using equation 6.9 and 6.10 to find the activations of all the hidden and output units.

2. Evaluate Ok for all output units using equation 6.14.

191

Variable Ordering Heuristics For Binary Decision Diagrams ~eural~etvvorks

3. Back-propagate the o's using equation 6.17 to obtain OJ for each hidden unit in the

network.

4. Use equation 6.13 to evaluate the required derivatives.

Repeating the above steps for each pattern in the training set, and then sununing over all

patterns obtains the derivative of the total error E:

6.18

C. Weight Change: As the batch mode of training is used the weight change if desired

occurs after all training patterns have been passed through the network. If a weight

change (dw j;) is to occur then the search moves a distance in the direction of the greatest

change in the error with respect to the weights (BE I Owji). The gradient descent

algorithm uses a parameter Tt called the learning rate parameter, which governs the step

size (distance moved) in the search space. In practice, a constant value of Tt is often used

as this generally leads to better results even though the guarantee of convergence is lost.

Thus, the weight change formula applied using the batch method of training can be

expressed as:

6.19

where N is the total number of training patterns.

If the learning rate parameter is too large the weight change will result in oscillatory

performance, however, if the learning rate parameter is too small then the change in

weights would be very small and the search for an optimum would be slow. One way to

overcome this is to use a momentum term, a. This new weight change parameter with

momentum included is used in the program net _ mlp. c, and takes the form:

192

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

<n (T-I) 17" () Llwj, =aLlwj, --£....OJ n Y,(n)
NN

6.20

Or similarly:

(TH) (T) (T-I)] 17" ° () Llwj' =a[Llwj, -wj, - N7t j n y,(n) 6.21

where Trefers to the cycle number.

PROGRAM TERMINATION:

To stop the training process of the network then some form of stopping criterion

needs to be enforced. Within the program two stopping criteria are used. If anyone of

them is reached then the training process ceases. The criteria used are: reaching a

acceptable error, which is set at a level of 0.001; and also in conjunction with this

termination when the maximum number of iterations, set at 10000 cycles, is exceeded.

6.8 Training Procedure 1 - First Model

6.8.1 End Aim of Trained Model

The overall aim of the network is to be able to select the best scheme option for a new

fault tree structure, following training of the network using a large data set. The initial

data set comprised 181 trees, with an additional twenty different test trees. The test set of

trees comprised a variety of structures, some very basic and others with a much larger

sized resulting BDD and hence more complexity. A range was chosen to see whether the

network could make correct predictions for all tree types. The target predictions required

by the trained network are given in table 6.1.

193

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

Tree, 10
·if .. -

2

Tree 'J2'(;13'14' '15;' 1920,
" -': '-."

'," '

Best Schemes 1,2,4 3 2 3 1-6 1-3 1-6 2 3 3

Table 6.1: Target Predictive Schemes For Test Data Set

6.8.2 Data Set Up

The frrst program used was net _ mlp. c, which incorporated the factors described in section

6.7.2. The scheme options were coded whereby the best scheme option (the lowest

number of nodes in the BDD) was given the value 0.999, and the worst scheme option

(highest number of nodes in the BDD) the value 0.001. Each remaining scheme option

was given a value in the range relative to its position between the highest and lowest

number of BDD nodes (see examples in table 6.2). The outputs were scaled in this

manner to match the outputs of the activation function, therefore making comparison

easy. This scaling promotes errors within a suitable range because comparing a value

between 0 and 1 for an activation output with a value between 0 and 400,000 as the target

output would produce ridiculously larger error values.

Ng ·',>.Op~}~s.".,{. ',S<;hemeJ k,Scheme2/ \~~~t~'i ,;Scheme40 .:Scheme,5~ Scheme 6
,\ \~";-;:,.,',, ,:;,:1',_'';: ,\,>::~;,.,: :"";>'> .. \; ',::;';\ . "it-.:) ':"";,.,;;."," \ ,,' '. ,;,.,:; --;\'" - ','- -", ", ," ""Co," ~<

1 Old (Nodes) 112937 112553 110987 110698 167835 166390

New Values 0.960 0.967 0.994 0.999 0.001 0.026

2 Old (Nodes) 4 3 4 3 4 3

New Values 0.001 0.999 0.001 0.999 0.001 0.999

Table 6.2: Coding For Scheme Options

Similar to the scheme outputs, the input characteristics were also scaled between the

values of 0 and 1. The reason behind this was due to the large range of possible input

values, for example the values for the top gate type could be either 1 or 0, whereas for the

number of basic events the value could be up to 364. To produce weights in the

194

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

initialisation to cater for differences in these values would not be possible unless either

separate weights were chosen for each column or all the inputs were scaled. Thus, for

each characteristic the largest value within the training data set was given the value of

0.950 and the smallest value 0.050 and the other inputs were scaled in this range relative

to the largest value. Values above the largest or below the smallest characteristic values,

which may be found in new trees, were allocated the values of 1 and 0 respectively. The

only exceptions to this were with the top gate type, whereby an OR gate was given the

value of 0 and an AND gate 1.

6.8.3 Setting Up The Network Architecture For The Problem

Having generated the training and test data sets, determined the number of characteristics

to represent the problem and the number of scheme preferences as outputs the initial

network architecture could be constructed. To review, the base network structure is given

by the network architecture described below:

Network Architecture: This comprised of eleven fault tree characteristics, each of

which was represented by one node in the input layer. The output layer

comprised of six nodes, one for each of the scheme preferences. The data set

comprised 181 training fault tree structures of varying sizes and complexity, with

20 test trees of different configurations. When using the network for prediction

purposes the best scheme preference was established as the node value that lies

nearest to the largest value (used as the most optimal scheme preference in

training).

Throughout the research the network model architecture centred around altering the

number of hidden layers and the number of nodes in each hidden layer. The alterations

occurred in a systematic fashion whereby flfst one hidden layer was tried and two hidden

nodes. Then three nodes, four, etc up to ten were all used to train the model. After this

two hidden layers were tried, starting with two nodes in each layer and successively

increasing both values. The maximum number of nodes used in either layer for the two

195

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

hidden layers was six, as it was felt that the amount of data available was not sufficient to

make use of more than this number of nodes. At the same time, the learning and

momentum parameters used in the optimisation algorithm were continually altered.

Altogether 186 trials were carried out and the predictive results are summarised in table

6.3. The majority of trial predictions fell below eight correct schemes chosen out of

twenty. However, the aim is to fmd a single network architecture, which produces the

most correct predictions, ideally twenty. Using the current set up the most correct

predictions totalled 12.

I.B~ore 0 1 2 3 4 5 6 7 8 9 10 11 12

<Nb:" 10 8 12 16 27 19 44 15 21 4 6 3 1
'~' . " • \,e

Table 6.3: Predictive Scores Obtained in Training

6.8.4 MLP Architecture For Best Results

The best network set up found using the net_mlp.c program was trained with 6 output

nodes, 11 input nodes, and 2 hidden layers each with 4 nodes in them. Looking at the

error every one hundred cycles over the 10000 cycles that occurred during training, there

was oscillation. To try to alleviate this the learning rate parameter within the program

was reduced, until the oscillation no longer existed. The learning rate parameter was

reduced from 0.09 to 0.02. At this value however the reduction in the error term from

cycle to cycle was very small. The momentum term was set to 0.005. At this stage the

best results obtained was an error of 0.036464, and from this it predicted 12/20 correct.

This result is already better than anything produced with the machine learning classifier

approach and shows significant promise with more study.

6.8.5 Altering The Precision o/The Inputs and Outputs

One alteration that was made and executed using the same net _ mlp.e program was the

precision of the inputs and outputs. With a value near to the sigmoid functions range the

___ 196

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

harder it is to achieve, so instead of having the outputs in four decimal places, this was

reduced to two. Using the same architecture as above there was an improvement in

performance (17/20 correctly predicted). However this improvement is due to the

reduction in precision, namely if two outputs previously were coded as 0.010, and 0.013,

when re-scaled, these would come out as 0.01 and 0.01, hence this time it could correctly

predict the coded scheme if previously it predicted the wrong one, although in terms of

the actual number of nodes the prediction would be incorrect. One point to consider here

is that if two schemes are so closely related, for example if there are only a few nodes

difference in the resulting diagram does it really matter which scheme is selected as the

optimal one?

6.9 Optimisation Algorithm Changes - Enhanced Gradient Descent

After the numerous trials that were executed using the standard gradient descent

optimisation procedure, further developments were only expected from a change in the

algorithm. One problem with simple gradient descent, with momentum term included, is

that it contains two parameters a and 77 whose values have to be selected by trial and

error. The optimum values for these parameters will depend on the particular problem,

and will typically vary during training. It would be more advantageous if a procedure was

introduced which would automatically set these parameters during the training process.

These automated processes of setting the variable parameters are introduced in the

enhanced gradient descent approach. One such approach is the bold driver

technique(VMR88) whereby depending on the change in the error the learning rate

parameter is altered to maximise the search.

This technique includes a multiplicative factor for 77 the learning rate parameter, and

alters it depending on whether the error has increased or decreased. If the error function

has decreased after one step of the gradient descent then the new values of the weight

change are accepted. However, the learning rate may have been too small so its value is

increased. Altematively, if the error has increased after a given step in the gradient

descent then the algorithm must have overshot the minimum, and so the learning rate

197

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

parameter must have been too large, hence, the weight change is undone and the learning

rate is decreased. Hence, updating the new learning rate parameter follows these rules:

l1new= 13 * 1]old if Llli < 0

<P * 1]old if Llli > 0

The parameter 13 to increase the learning rate parameter is chosen to be slightly greater

than I. The parameter <p to reduce the learning rate parameter value is chosen to be

significantly less than I, e.g. 0.5.

6.10 Training Procedure 2 - Using The Enhanced Gradient Descent
Technique

6.10.1 Using Eleven Input Characteristics With New Optimisation Algorithm

The training and test data set remain the same and the input and output layers of the

neural network both remain unaltered. The systematic alteration of the number of hidden

nodes and number of layers, with associated changes in the starting values for the

learning rate parameter, momentum term and now the increasing and decreasing factors

(13 and <p respectively) required by the enhanced gradient descent teclmique is undertaken.

The program used to generate the models with this new optimisation algorithm is

enhanced.c.

6.10.2 Best Network Architecture

Two hundred different trials were carried out, varying the network parameters. The

range of predictive values varied from 3 to 13. The distribution of these results can be

seen in figure 6.8. The best network architecture was found with the characteristics

shown in table 6.4, and the network parameters were set to those shown in table 6.5.

198

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

StructureConsiderirtions ':.: .. //, '. "': ; <i: . .. ,,... ,. . .,. .' .. "•.

Number of Input Nodes I1

Number of Output Nodes 6

Number of Hidden Layers I

Number of Nodes in Hidden layer(s) 5

Table 6.4: Best Network Architecture

Learning Rate Parameter, 11 0.01

Momentum parameter, et 0.005

Scaling Parameters for 11 - Increasing factor 1.04

Scaling Parameters for 11 - decreasing rnctor 0.6

Table 6.5: Parameter Values Associated With Best Network Architecture

40

il 35

"" 30 0
:::s 25 '+<
0 20 ...
" oD 15 e

10 :i
5

0
3 4 5 6 7 8 9 10 11 12 13 14

Predictive Scores

Figure 6.8: Distribution of Predictive Scores for 200 Models Trained and Tested

Using the enhanced gradient descent technique has lead to slight improvements in the

predictive potential of the neural network compared to the standard gradient descent

optimisation technique. The network predicted 13 out of the 20 test trees with correct

scheme preferences. The error at the end of training was 0.341937. Despite this value

199

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

being the best achieved so far, improvements can still be made, with currently six

incorrect schemes being chosen. The inputs and outputs are in turn examined.

6.11 Training Procedure 3 - Reviewing The Inputs and Outputs

6.11.1 Input Characteristics Altered

It appears that the choice of the input characteristics is the key to the success of the

network, as it is from these characteristics that an output is predicted. As it is not known

which characteristics are important, it is possible that contained within the eleven

currently in use are irrelevant characteristics. Having such a large amount of information

(eleven input nodes) with possible irrelevancies may cause the network difficulties in

learning. By looking at the scheme preferences themselves and observing the rules that

the heuristics use to construct the ordering for the tree, the network was modelled on five

key characteristics (determined by observation). These five input characteristics being:

1. Number of basic events.

2. Number ofleveIs in the tree.

3. Percentage of different events that are repeated.

4. Number of inputs to the top gate.

5. Number of gates withjust event inputs.

The reasoning behind this choice of characteristics is:

1. If the number of basic events in the tree is large then the possible

variations in the ordering list are larger as compared to an original list with

a smaller number of basic events.

2. The number of levels can influence the variation in the ordering

permutation, as a larger number of levels will affect the resultant ordering

when using the subtree type approaches compared to the top-down

approach.

__ 200

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

3. As some of the ordering schemes consider repeated events, the greater the

number of repeated events the greater the possible variation. If there are

no repeated events the ordering will be unaltered.

4. The number of inputs to the top gate influences the number of subtrees

within the main tree and these are used in some of the ordering

permutations hence possibly altering the ordering.

5. As the priority depth-first approach looks at gates with just basic event

inputs then the more of these that exist the greater the possible change in

ordering as compared to the other heuristics.

This reduced set of characteristics are all scaled in the range 0 to 1. The model is tested

using the enhanced gradient optimisation technique. One hundred and twenty trials were

carried out. The results have been similar to those already obtained using the eleven

characteristics, with variable predictive scores depending on the network architecture and

parameters. Unfortunately, no further improvements in the predictive score have been

found, with the best architecture being summarised in table 6.6. It seems evident from

the results that the characteristics of the trees need to be examined further, with these five

not providing the necessary information to separate the scheme choices sufficiently.

Input Nodes

Output Nodes 6

Hidden Layer(s) / Nodes 1/5

Learning Parameter / Momentum 0.04/0.001

Increasing / Decreasing Factor 1.05/0.6

Predictions 12/20

Table 6.6: Best Network Architecture Using 5 Inputs and 6 Outputs

___ 201

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

6.11.2 Reviewing Outputs

By changing the inputs there was no improvements in the predictions made. Another

possible problem could be the outputs themselves. In this attempt to find the optimal

network solution the number of scheme alternatives were reduced. In examining the best

scheme options for all the fault trees it was found that on very few instances schemes five

and six led to a best ordering. Therefore, it was decided to concentrate on the scheme

options that were more influential, resulting in only four output nodes. The training data

set of fault tree structures was altered to comprise only trees with greater than ten

minimal cut sets, hence eradicating the inclusion of very small trees where the ordering is

not important, and now totalled 146. The set also comprised equal groupings of the four

scheme preferences, as multi-layer feedforward networks can not adjust for unbalanced

training sets[Mas931. If a set is disportionate1y represented, the network will strive to

optimise its performance when presented with members of that subclass, at the expense

of members of the other subclasses. Eleven characteristics were again used as the inputs

following no improvements with five. The prediction process was the same as for all

previous training methods tried.

Eighty trials were carried out with all results less than or equal to ten correct predictions.

This is less than using the original six schemes. This result could be influenced by the

change in training data set, and it is expected that a greater number of training trees needs

to be included to provide the necessary information for these more complex tree

structures.

6.12 Training Procedure 4 - New Data Set

6.12.1 New Data Set - Removal of Redundant Trees

On reviewing the data set it was thought necessary to remove trees with redundant

information, i.e. those trees which resulted in a same sized BDD regardless of the scheme

option. Following the results of the four scheme output problem more training data was

____________________________ ~------------------------ 202

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

added, to help with possible lacking information. The training set was increased to 198

trees using a program to generate them randomly. The predictions required by the

network also changed as some of the trees within the test set were altered. The scheme

choices required by the network are shown in table 6.7, where the number of nodes for

the resulting BDDs for each scheme option is given, and the target response is

highlighed.

"T' Scheme! I, ScheIlle2', ',,' ScheIlle3 ;SC~eIn~1' SchtiineS" I, Scheme 6>'; ;'tee';'"
"",' ", ','" ".c, ' " >','.' ' ">'Y",' ,,,';-;, "'>'" ,- -'-;

1 34 478 1657 1117 6640 3477

2 54 44 39 113 771 771

3 79169 55680 137991 65900 507669 507544

4 253 253 284 284 1830 1706

5 6836 5197 10152 10018 999999 999999

6 526 499 330 303 330 39677

7 157 139 157 139 1393 916

8 3504 2548 119593 59599 396283 214895

9 40 40 35 40 4337 4337

10 8 8 8 8 47 40

11 8453 487 218284 15334 999999 999999

12 253 298 148 194 5326 5326

13 960 905 3901 2240 5802 4438

14 47 44 43 49 441 362

15 39 39 30 60 1921 141

16 12368 9959 58847 16818 999999 999999

17 4953 3052 7986 3868 842393 473405

18 31276 9172 11236 3716 147594 99047

19 26233 17901 42677 39592 241117 217713

20 386 366 264 202 701 649

Table 6.7: Test Tree Target Predictions (highlighted scheme options)

__ 203

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

Ninety five different models were created with varying degrees of success. The worst

predictions made were four out of twenty correct choices, however, the best equalled 14.

The network design that produced the best result is summarised below:

• Number ofInput Nodes: 11

• Number of Output Nodes: 6

• Number of Hidden Layers: 1

• Number of Nodes in Hidden Layer: 5

• Learning Rate Parameter: 0.01

• Momentum term: 0.001

• Increasing Factor (p): 1.04

• Decreasing Factor (q»: 0.5

• Training Error: 0.236714

• Test Error: 0.899318

The predictions made for the test set of trees were:

Scheme: 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2

Again still further improvements could be made to the predictive capacity of the model.

With the new data set the previous work carried out with the reduced number of

characteristic inputs is re-tested.

6.13 Training Procedure 5 - Re-testing Five Characteristics

Using the new data set of 198 trees, the enhanced gradient optimisation algorithm was

applied to the network with five input nodes and 6 output nodes. A number of network

architectures were tested, 120 in total, involving both single and double layers of hidden

nodes. The predictive scores produced ranged from 4 to 12. The results predicting 12

correct responses were generated with a network comprising two hidden layers. The

architecture and parameters used are summarised in table 6.8.

__ 2M

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

; ' ... " ·"NetW()rk Parameter!.···.· !:»VaIue, '.·C ..•.. " : ... ' •
Input Nodes 5

First Hidden Layer 2

Second Hidden Layer 3

Output Nodes 6

Learning Rate Parameter O.oI

Momentum 0.1

Increasing Factor 1.09

I>ecreasing Factor 0.7

Table 6.S: Best Results Using Five Characteristics

The predictions made were:

Scheme 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2

The results with this model are worse than the network that takes in eleven nodes. With

these five inputs the number of correct scheme choices can still be improved, with still

eight inaccuracies.

6.14 Establishing if Over-Training is Occurring

6.14.1 Considerations in Training - Length oJTraining Period

One point to consider is the theory of over training or over fitting. The theory states that

there is an optimal amount of training, and that continuing past this point will improve

performance of the training set, but degrade performance on the general population

(shown in figure 6.9).

___ 205

Variable Ordering Heuristics For Binary Decision Diagrams }/eural}/erworks

NUMBER OF CYCLES

Figure 6.9: Over Training Phenomenon

To observe this phenomenon involves taking the training and test error after varying

numbers of cycles. The training error should continually decrease, whereas there will

come a point (denoted by A in figure 6.9) where the test error increases despite the

decrease in training error. At this point, the model is said to be 'over fitted'.

To minimise the possibility of the occurrence of the phenomenon, the best solution is to

use as few hidden nodes as possible. Also great care must be taken to ensure the training

set adequately represents the population hence reducing the number of idiosyncrasies or

rogue data patterns. If the training set does not resemble the population, the phenomenon

of over fitting will almost always appear, regardless of the number of hidden nodes.

Accurately training the network will be a hopeless task.

Currently the number of iterations set for the training phase is 10,000. To establish if

performance of any network has been affected by over training the task is to find out

whether the phenomenon has occurred within these 10,000 iterations. To carry out this

investigation, initially an error term was required for the prediction phase. This followed

a similar format to that used in training. The averaged sum-o f-squared error term was

used. Re-running the best network architecture again (14 out of 20 correct using

enhanced gradient descent technique), the test data set error after 10,000 iterations was

calculated as 0.899318.

__ 206

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

To establish if the current termination point has incurred over training principles, the

network was trained in cycles of multiples of 1000 iterations, the weights generated at

each stage are used in the predictive network to calculate the error in the test data. The

point at which the test error increases despite the training error decreasing indicates the

point at which the network is beginning to be over trained.

'.~~'r:r .• ~~It.er~ti().ns •• •·• 1<.TrilinirigErrot- /.,;:, co' Test Error. /:<; c,.··'·Pred1ctions<.· •. ' ... ·• -. ';.c .. '.'~c;;: i/i.c,i. i •.. ·.·:,:·....·· ... ; •• ·:,·. , ,.•....
0 0.617862 0.637808 13

1000 0.352643 0.956745 13

2000 0.352638 0.956735 13

3000 0.352636 0.956728 14

4000 0.341189 0.899349 14

5000 0.341189 0.899345 14

6000 0.341189 0.899340 14

7000 0.341189 0.899334 14

10000 0.341187 0.899318 14

15000 0.341182 0.899300 14

20000 0.341178 0.899295 14

30000 0.341163 0.899289 14

40000 0.341152 0.899296 14

50000 0.341140 0.899307 14

80000 0.341119 0.899347 14

Table 6.9: Testing For Over Training

The network architecture which produced the fourteen out of twenty correct predictive

scores was used to test the over training principle (section 6.10.2). The training and test

errors and resultant predictive scores after varying number of iterations are summarised

in table 6.9. It is shown that even after 40,000 iterations both the training and test error

were decreasing, albeit slowly. It is felt that the current setting for the program

___ 207

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

tennination with regard to the number of iterations is not sufficient to have an over

training effect on the network.

6.15 Conclusions of Best Results

6.15.1 Performance Based Assumptions

The multi-layer neural network method for pattern recognition shows an improvement in

the number of correct scheme preferences selected compared to the results presented

using the classifier system application. The best result produced for predicting the

correct scheme heuristic is 14 out of 20 achieved using eleven input characteristics. With

this network the training data set consisted of only trees with greater than ten minimal cut

sets. This result reflects the possibility of using the MLP technique to select an

appropriate ordering heuristic, as this method provides a 70 percent chance of getting an

optimal or near optimal BDD which is considerably better than using any of the heuristics

individually mentioned in the literature.

6.15.2 Best Architecture

The best predictive performance for the ordering problem has been achieved using the

basic network architecture of eleven characteristic inputs, six outputs, and one hidden

layer comprising of five hidden nodes. The optimisation technique used to minimise the

error by altering the weights was the enhanced gradient descent technique. The learning

rate parameter was set to 0.01, the momentum term to help prevent oscillation was set to

0.001. The increasing and decreasing factors applied to the learning rate parameter to

alter it depending on the effect upon the error were set to 1.04 and 0.5 respectively.

Through the training process the weights of the network were detennined. The fIrst layer

weights from the input layer to the hidden layer are shown in table 6.10.

__ 208

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

'.' '

..... . Hidden·,,}>,.·. . Hidden 2 fIidden3 ." Hidden {•..••• HiddenS···· •• ······'
. '.' '," . -- .' .

Bias node 0.147330 0.243064 0.539561 0.673099 -0.331514

Input I 0.641682 0.183194 -0.924516 -0.665176 0.708712

Input 2 0.796946 0.886754 0.186239 -0.306955 0.086139

Input 3 0.842000 0.883227 0.623115 -1.054132 -0.037604

Input 4 0.382882 0.365247 -0.433369 -0.995933 0.156702

Input 5 0.506398 0.347366 -0.710282 -0.981350 -0.983196

Input 6 0.642397 0.202210 1.478797 1.438517 0.256880

Input 7 -0.382380 0.972270 0.371361 -0.064075 -0.772999

Input 8 -0.963998 0.648210 0.894712 0.339276 -0.428676

Input 9 0.329570 0.264644 0.067410 -0.007906 0.446248

Input 10 -1.004186 0.236299 0.296611 0.159278 0.035732

Input 11 0.603500 0.120445 -0.361202 -0.926677 0.304544

Table 6.10: First Layer Weights of Best Network

The second layer weights, from the hidden layer to the output layer are given in table

6.11.

... < .'
," .. ",.,• Output,.·f.

. ,'" ,."" ." .
.qutp~~. Output3 ...• Output4/

"'"'-'., .. ' '; ,""_c:>_
OUtputS.···.·.·
.'<,:<;.:_/<," /-:-~':-""-:-~--..

Output6 .. ·
1·.- ,'. '

Bias node 0.435191 1.562687 0.732578 1.316444 -0.566968 0.199515

Hidden I 0.034015 0.156753 0.507769 -0.003383 0.253515 0.194763

Hidden 2 0.902266 0.383328 -0.219266 -0.184228 0.102770 -0.108666

Hidden 3 0.184042 0.803264 0.543061 -0.025922 -1.121804 -0.156623

Hidden 4 0.291198 -0.271374 0.895298 0.851694 -1.121293 -0.405690

Hidden 5 -0.378771 0.430375 0.526418 0.116150 0.104950 -0.617658

Table 6.11: Second Layer Weights of Best Network

__ 209

Variable Ordering Heuristics For Binary Decision Diagrams Neural Networks

6.15.3 Future Considerations

Obviously to improve the method further a larger set of training data would be necessary.

This would accommodate for more fault tree structures and their relation to the 'optimal'

scheme. Also changing the parameter optimisation technique could alter the network

performance. From the results gained so far it does appear that this method could be used

to predict the most 'optimal' ordering permutation of the basic events in a fault tree from

a set of alternative schemes, to be used to generate an optimal or near optimal BDD. Of

most influence are the inputs themselves, and before more complex methods of

optimisation are tried it is these characteristics which need to be examined. If the input

characteristics of the data do not reflect those needed to determine the best scheme

permutation then no neural network architecture will produce the desired result. It does

appear that. some pattern recognition approaches are more suited to the ordering problem.

With the improvement seen in the multi-layer neural network approach, compared to the

genetics based machine learning system, possible improvements are expected by trying

an alternative network technique, i.e. radial basis function neural networks.

6.16 Summary

• The multi-layer perceptron approach has been adapted to model the variable

ordering problem.

• The best model was found using an enhanced gradient descent optimisation

algorithm.

• Numerous numbers of hidden layers and nodes were experimented with but the

best architecture involved a single layer with five hidden nodes in it.

• The best predictive results gained were 14 out of 20 correct, using eleven input

nodes.

• Additional points to test are to incorporate a more complicated optimisation

algorithm, and increase the training data set size, hopefully to model more of the

population domain.

___ 210

Variable Ordering Heuristics For Binary Decision Diagrams }leural}len.orks

• Analysis of the inputs of the network model needs to be undertaken to see

whether they relate to the best ordering scheme heuristic.

• The model has proven overall to be a reasonable predictor of the scheme

preference and could be used as a possible solution to this problem.

• The fmal pattern recognition approach of radial basis functions should be tested,

as it may be more suited to the task.

__ 211

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FWlctions

7 Radial Basis Function Neural Networks

7.1 Introduction

An alternative form of neural network to use in the ordering dilemma problem is that of a

Radial Basis Function (RBF). Like the multi-layer perceptron approach the aim of the

technique is to solve a non-linear mapping between a set of inputs and their desired

outputs. However, this approach has some fundamental differences compared to the

multi-layer perceptron approach, which may be of benefit to this problem. The radial

basis function method again involves a network with an input layer, output layer and

hidden units. In this method the hidden units are dependent upon the distance between the

input vector and a prototype vector.

Several radial basis function neural networks have been designed to try and model the

mapping between a fault trees characteristics' and the optimal ordering scheme to use in

the BDD conversion process. Three models were initially generated, the first using four

characteristics as the inputs and six scheme preferences as the outputs. The second

model used eleven characteristic inputs to try and distinguish more convincingly between

the scheme choices for each tree. The final model generated used just four scheme

preferences as outputs rather than six as under observation two of the schemes were on

very few occasions the best alternatives. The favoured results have been produced using

the latter two models, namely the eleven characteristics and six scheme output model and

the eleven characteristic and four output model, both with a correct predictive probability

of 70 percent. Also, results with the test set of twenty trees indicated that the incorrect

predictions were on the majority of occasions the second best alternative with very little

difference in the size of the BDD produced. Thus, the research has shown that the radial

basis function neural network approach is the best solution to date to fmding an optimal

or near optimal BDD for most fault tree structures. Further improvements in this method

___ 212

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

are expected by investigation of the relevance of the characteristic inputs in

differentiating between the scheme outputs. The research steps and conclusions reached

are reviewed in this chapter. One publication[Ban002] has been produced concerning the

use of the radial basis neural network approach to the BDD ordering problem

7.2 Comparison With Multi-layer Perceptron Approach

Both Multi-layer Perceptron and RBF network approaches provide the same role in

approximating arbitrary non-linear functional mappings. However, there are slight

differences between each of the approaches, these are summarised below.

1. The hidden units:

Within a multi-layer perceptron the hidden units are generated by

computing a linear sum of the data inputs and the weights, which are transformed

by a non-linear activation function. The hidden nodes in the radial basis function

are generated depending on the distance between the input and a prototype vector

and transformed using a localised function.

2. Contribution of hidden units to the output values:

In a multi-layer perceptron, for a given input vector many hidden units

may contribute to the determination of the output value. The contribution of the

hidden units to generate the correct outputs for a range of possible input values

leads to problems in training such as local minima. This problem can lead to slow

convergence of the network. In comparison the radial basis function network

deals with localised basis functions which form a representation in the space

which is local to the input values. This localisation means that typically only a

few hidden units will have significant activations that will influence the output

values.

___ 213

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FlD1ctions

3. Network Architecture:

The radial basis function architecture is very simple with just two layers of

weights, in which the first layer contains the parameters of the basis function and

the second forms the linear combinations of the activations of the basis functions

to generate the outputs. In contrast, the multi-layer perceptron has a very

complex architecture with lots of connectivity. There may be numerous layers of

weights and a number of different activation functions.

4. Training Phases:

In a multi-layer perceptron supervised training occurs whereby all the

parameters in the network are determined at the same time. However, in a radial

basis function network there are two stages of training. Initially the network

parameters are established using only the input data, in an unsupervised method

of training. The second stage involves calculating the weights in a fast linear

supervised training manner.

7.3 Advantages and Disadvantages of Radial Basis Functions Compared to
Multi-layer Perceptrons

7.3.1 The Advantages of The RBF

Considering the differences between the RBF neural network approach and the multi

layer perceptron approach, there are some potential benefits and some disadvantages of

the radial basis function network. The advantages of the radial basis function approach

are:

I. During training the radial basis function neural network does not get stuck in

any local minima, because there are none.

2. The time taken for training is much shorter.

__ 214

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

3. Examples that are far from decision boundaries have little influence on the

radial basis function (while in multi-layer perceptions they have more

influence) .

7.3.2 The Disadvantages o/The RBF

Despite the advantages, there are some factors that limit the radial basis function

performance as compared to that of the multi-layer perceptron. These are:

1. More computer memory is required due to the large number of hidden nodes

(radial basis function centres) that are used.

2. Some radial basis function networks require a second algorithm to be

programmed to perform clustering to find the centres of the hidden nodes.

3. The general speed of operation of a RBF neural network is slightly slower.

4. Due to the unsupervised method of learning the network parameters (centres

and width or spread of the RBF) are not optimal.

As the RBF model has only to deal with up to eleven input nodes and six output nodes,

the problems associated with memory and speed are not going to be critical for this size

of problem.

7.4 Dynamics ofa Radial Basis Function Neural Network

7.4.1 RBF Theory

The theoretical origins of radial basis functions are founded in the techniques for

performing exact interpolation of a set of data points in a multi-dimensional space[B~951.

The exact interpolation problem requires every input vector to be mapped onto the

corresponding target vector. The radial basis function approach uses a modified version

of the exact interpolation technique. The approach introduces a set of basis functions,

___ 215

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

whereby the number of these functions is determined by the complexity of the problem.

Each radial basis function takes the form:

7.1

where <Ill.) is some non-linear function (discussed in section 7.4.2). Thus the /' radial

basis function depends on the Euclidean distance 11 ~ - /Jj 11 between ~ (the set of input

vectors) and /Jj(thej'h radial basis function centre vector).

Like multi-layer perceptrons the network has a number of input nodes, representing each

feature component of the problem, and a number of output nodes, or targets. The radial

basis function network typically has only one layer of hidden nodes, where each node has

an activation function centred on a chosen radial basis function, denoted by <Ill).

Diagrarmnatically the radial basis function neural network (as shown in figure 7.1) looks

similar to the perceptron model.

INPUTS

o
o
o

HIDDEN LA)'ER OF
RADIAL BASIS

FUNCTIONS

BIAS

OUTPUTS

o
o
o

Figure 7.1: Radial Basis Function Neural Network Architecture

__ 216

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

The connections between the input layer and the hidden layer of radial basis functions

represent the vectors detennining the centres of the radial basis functions. For example,

if the vector J!I (with elements f.ll] connecting radial basis function I and input node j)

detennining the centre of radial basis function <Ill was {1.3,1.6,0.4,O.7} then the

connection between input node Xl and hidden node <Il /, represented by f.lll would be

equal to 1.3. The connection f.l12 would equal 1.6, f.l13 equalling 0.4 and the connection

f.l14 (with n = 4 in figure 7.1) would equal 0.7. The first stage of training identifies these

parameters, denoted by f.lxx in the diagram in figure 7.1.

The connections between the basis functions and the output layer represent the weights of

the network, and these are detennined during the training phase of the neural network.

The connection between radial basis function <Ill and output node I is WII, between <Il2

and output node 3 is W32 and so on.

The output of the k!h node, Y~), representing the mapping of the radial basis function

neural network is then taken to be a linear combination of the basis functions and the

weight vectors (the connections between the output layer nodes k and the basis functions

J) associated with all paths to the desired output node, written in the form:

m

Yk(~)= IWkj<Il/"~-f.lJ ID+WkO
}=1

7.2

The right most term in expression 7.2, WkO, is representative of the bias. This can be

absorbed into the summation by including an extra basis function <Ilo, whose activation is

set to I. The purpose of the bias is to add a constant to the equation.

In the ordering problem, the input and output layer of nodes are fixed. The input nodes,

as in the multi-layer perceptron represent the chosen characteristics of the fuult tree

structure. The output nodes similarly represent the six variable ordering options hence

__ 217

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

there are six for the first two models generated and four for the latter. The hidden layer

of nodes is variable, and is the key to fmding a network architecture that will model and

solve this problem sufficiently and accurately. The methodologies for selecting the radial

basis function centres and the techniques for establishing the weights of the network are

explained in detail in the following sections.

7.4.2 Types of Radial Basis Function

There are several non-linear basis functions that could be considered, the most common

is the Gaussian function of the form:

7.3

where ± is the d-dimensional input vector with elements Xj, and /li is the vector

determining the centre of the basis function Cl>j and has elements pji. The parameter cr, or

width parameter, controls the smoothness of the interpolating function. The Gaussian

function is a localised basis function with the property that Cl> ~ 0 as Ixl ~ rfJ.

Another choice of basis function with the same properties is the function

7.4

The radial basis function does not need to be a localised function, thus another choice is

the thin-plate spJine function

Cl>(X) = X2 In(x) 7.5

___ 218

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis F\IDctions

Other alternatives to the spline function are:

i. <l>(x) = (x2 + (T 2)p 0 < P < I, which for ~ = Y. is known as the multi-

quadratic function 7.6

ii.The cubic function: 7.7

iii. The linear function: <l>(x) = x 7.8

These functions all have the property that <l> ~ 00 as Ixl ~ 00.

7.4.3 Two Phases o/Training - Optimisation 0/ Parameters

7.4.3.1 Brief Description of Phases

Training of the radial basis function neural network can be considerably quicker than

training a multi-layer perceptron as only one cycle is performed. As mentioned before

there are two phases of training, and there is a clear distinction between the roles of the

frrst and second phases. In the first phase, the input data set alone is used to determine

the network parameters, namely the basis function centres and width or spread

parameters. In the second phase the network parameters remain fIXed while the second

layer weights are established.

7.4.3.2 Phase I of Training: Determining The Network Parameters

There are two parameters during this stage that are determined:

I. The Radial Basis Function Centres.

2. The Width Parameters.

__ 219

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FWlctions

There are a variety of techniques that could be used to select the radial basis function

centres, and the problem itself will determine the complexity of the selection technique

required. One of the simplest procedures for selecting the centres is to set them equal to a

random subset of the input vectors from the training data set. Although this may not be

an optimal approach in that it may require a large number of radial basis function centres

in order to achieve adequate performance on the training data set, it is often used as a

starting point upon which other techniques can be compared.

In an alternative approach all the training data points are selected as radial basis function

centres and then selectively centres are removed so as to minimise the disruption to the

performance of the network.

More principled approaches to selecting the centres of the network are related to the

techniques of orthogonal least squares and clustering algorithms. In addition Kohonen

topographic feature maps, Gaussian mixture models or non-linear optimisation

algorithms can be applied. All of these methods are discussed in Bishop[BiS951•

The procedures highlighted above select only the centres. A separate procedure is

required to determine the width parameters of the radial basis functions. In determining

the width parameters one consideration is whether each radial basis function has its own

specific width parameter or if all functions have the same parameter. A common

heuristic is to choose all the width parameters to be the same and equal to a multiple of

the average distance between the basis function centres. This ensures that the basis

functions overlap to some degree and hence give a relatively smooth representation of the

distribution of the data set.

All the approaches mentioned above to select the network parameters (centres and

widths) are very fast and allow a radial basis function network to be generated very

quickly, although the network may produce sub-optimal performance.

__ 220

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FWlctions

7.4.3.3 Phase 2 of Training: Optimising The Weights

The second phase of training involves a more complex mathematical procedure. In this

phase the aim is to establish the weight values of the connections between the RBF

centres and the output nodes. One consideration in this phase of training is that if there

are fewer basis functions than there are training data patterns (which is usually the case)

then in general, it will not be possible to find a set of weight values which will map the

inputs to the outputs exactly. Having fewer radial basis functions means that

generalisation to new data is much better. Hence, selecting the number of basis functions

to use in the network is a balance between network perfonnance on the training set

(producing a good model for problem) and generalisation of the trends and patterns.

Considering the formula representing the radial basis function mapping producing an

output given the inputs for training pattern p:

N

Yk (x P
) = L w!i<I> /x P

)
j:O

7.9

where N is the total number of radial basis function centres, k represents each output node

and there are S training patterns in total.

This can be written in matrix notation for all outputs (M in total), such that:

Yl(Xl) Yl(X2) ••• Yl(XS)

Y2(Xl) Y2(X2) ••• Y2(XS)
=

Wl1 Wl2 ••• WIN

W2l Wn ••• w2N

<I> 1 (Xl) <I>1(X2) ••• <I> 1 (xN)

<I> 2 (Xl) <I>2(X2) ••• <I> 2 (XN)

7.10

___ 221

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

where W represents the weights Wkj connecting each output node k to hidden node j thus

has dimension M x N, and <Il represents each activation <Ili!) by calculating the distance

between input vector for training pattern p and centre vector j, which has dimension S x

N.

The weights can be optimised by minimising a suitable error function. The most

commonly used function is the sum-of-squares error function, given by:

7.11

where S is the total number of training patterns, t/' is the target value for output unit k

when the network is presented with input vector!/'o Using equation 7.9, equation 7.11

can be rewritten in terms of the radial basis function mapping as:

7.12

Differentiating equation 7.12 with respect to the weights, wk}, and minimising (equating

the derivative to zero) the result is:

Therefore in matrix form:

where <Il is a Nx S matrix with element <Ill' in thejth column andp'h row.

W is aMx Nmatrix with element Wkj in the kth column andjth row.

T is a N x S matrix with elements tf in the!!' column and pth row.

7.13

7.14

222

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

Thus the fonnal solution for the weights is governed by equation 7.15.

7.15

The matrix multiplication can be simplified by calculating the psuedo-inverse of <11. If

<1IT<1I is non-singular (i.e. the determinant is not equal to zero) then let <11* = [<1IT<1Ir1 <1IT,

then <11* is anM x N matrix known as the psuedo-rnatrix of <11, so

7.16

Thus, the weights can be found using fast matrix inversion techniques.

7.5 Programming a Radial Basis Function Network

7.5.1 The Main Program

The main credentials of the radial basis function approach are the two stages of training.

The program (rb/c) constructed during the research of this technique is written in the C

programming language and the algorithm shown in figure 7.2 explains the main loop of

the program.

Incorporated within the algorithm are the following tasks:

1. The random selection of the centres from the training data set.

2. The width parameters of the radial basis functions are determined as

the largest distance between the centres.

3. The radial basis function used is the Gaussian function.

4. The weights are established in training by calculating the series of

matrix multiplications (equation 7.15).

___ 223

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FWlctions

.

MainO

• Initialisation of all the variables and read in training I test data.

• The program then takes two directions, either training purposes or testing purposes. If the

network is in training then:

• The number of radial basis functions required is entered

• Stage 1 of training commences

• Stage 2 of training commences

• Repeat until appropriate network architecture found

• Ifpredictive mode selected, then:

• Activations of radial basis function with new inputs are calculated

• Linear sums are calculated for each output node/scheme option

• Errors calculated

Figure 7.2: Fundamentals of Operation For Radial Basis Function Code

7.6 The Programming Routines Required

7.6.1 Overview of Routines

Each of the routines and techniques used within the radial basis function network

constructed are discussed in the following sections. The methodology adopted to initially

set up the basic network architecture and then to calculate the radial basis function

centres, width parameters, stages of training and predictive routines are explained in

detail.

7.6.2 Initialisation of The Network

The first function within the program is to initialise the network architecture

(initialisation routine). The number of input nodes and output nodes are fixed, however

the user needs to defme the desired number of radial basis function centres being tried.

224

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FWlctions

Within the initialisation subroutine during the training phase, the training data set of fault

tree structures and known best ordering schemes for the BDD are read into appropriate

arrays. The scheme outputs are scaled in the range 0.001 to 0.999, where 0.999

represents the number of nodes on the smallest BDD and 0.001 the maximum number of

BDD nodes, and the rest are scaled relative to the best and worst schemes. The

characteristic inputs are all scaled in the range zero to one in a manner depending on the

specific characteristic (this is summarised in section 5.7.7/5.8.5). Also the user is

instructed to enter a seed for the random number generator, for selection of the radial

basis function centres. In the predictive phase the test data set is read into the computer

program.

7.6.3 Programming Stage 1 a/Training

The Stage _1 subroutine applies the first stage of training techniques. The routine

determines the centres, the width parameters 0 f the radial basis function and the

activation's of the radial basis functions. The stage uses an unsupervised learning

technique whereby only the knowledge of the input data is used.

Within this program the radial basis function centres are initially selected by choosing a

random subset of the training data population. The user defines the number of radial

basis function centres to be used. A random number generator incorporated into the C

programming libraries was utilised and an additional routine was used to select this

random number for each centre between I and the total number of training patterns.

When selecting the training patterns to be used as the centres it was necessary to ensure

that distinct patterns were selected and not repeated patterns as this would cause

problems inverting the matrix in equation 7.15.

To illustrate how the centres may have been allocated, consider the training data set of

four patterns, each with 2 inputs:

__ 225

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

XI = {0.9,1.2}

X2 = {0.8,0.9}

X3 = {1.4,1.6}

X4 = {3.0,0.6}

If two radial basis function centres were to be used in the network and the two training

patterns randomly selected were pattern 1 and 4 then the two centres would be:

/11 = {0.9,1.2} where J.lH = 0.9 and J.l12 = 1.2

III = {3.0,0.6) where J.l21 = 3.0 and J.l22 = 0.6

Each centre vector /Ji, has elements f.lji which represent the connection between radial

basis function centre j and input node i. In general this relationship is represented by the

network connections shown in figure 7.3.

RADIAL BASIS FUNCTION
CENTRES

INPlIT VECTOR

Figure 7.3: The Radial Basis Function Connections Within The Network

Following the selection of the radial basis function centres comes the allocation of the

common width parameter. There are various techniques to select the width but the initial

method nsed was to take the largest distance between the centres. This meant that the

226

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FlDlctions

distance between each of the different pairings of the centres needed to be evaluated and

the largest one was used as the width parameter. Using the largest width ensured that

there were overlaps between the functions.

The distance calculated was that of the Euclidean squared distance. The Euclidean

distance between two vectors !l and ~ is given as:

Using the Gaussian basis function means that the squared width parameter is required.

Therefore, given two centres III and J!J the squared distance between them can be

calculated in the following manner:

!l = III = {0.9,1.2} and ~ = J!J = {3.0,0.6}

The Euclidean squared distance is:

11 !l_~1I2 = (ul _VI)2 +(u2 -V2)2

= (0.9 - 3.oi + (1.2 - 0.6i
= 4.77

This process is repeated for each pairing of the total number of centres and the largest

value assigned to be the squared width parameter of each radial basis function.

Following the selection of the network parameters the activation's of the radial basis

function centres at the hidden layer of the network need to be established (<ll /!)). This

was achieved using the subroutine activationO. As the network was constructed using

the Gaussian basis function <ll j(!) = exp (IIx-.u1l
2 J - 2 J the process of calculating the

2CTj

activation's has three main steps:

__ 227

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

1. Calculating the squared norm matrix (11 ;\; - IJJ 11 2)

2. Dividing each input by 2 times the width parameter (which is already

squared).

3. Exponentiating each negated value to get the activations.

The squared norm matrix refers to the calculation of the distance between the input

vector(s) and the centre vector(s). This distance is calculated by using the Euc1idean

distance formula (equation 7.17 squared), used for the width parameters. In the resulting

norm matrix the j'h l element is the squared distance between the j'h row of the input data

matrix and the /h row of the centre matrix.

For example, if the training data matrix, Tr, has 6 training patterns with 5 inputs each,

and the centre matrix, C, has 2 centres each with 5 inputs each. The element in the 4th

row, 2nd column of the resulting squared norm matrix, SN, would be the distance between

row 4 of Tr and row 2 of C. Calculated as:

If

Then,

Tr=

05 0.7 03 0.6 0.8

l.l 0.8 09 0.6 0.1

0.7 03 0.7 0.7 02

0.9 0.6 0.5 0.4 0.5

1.2 0.4 0.6 0.9 0.9

0.8 05 05 0.1 0.7

C = [0.4 0.3 0.7 0.8 0.8]
0.9 0.3 0.3 0.4 0.7

SN42 = (0.9- 0.9)2 + (0.6-0.3)2 + (0.5 - 0.3)2 + (0.4- 0.4)2 + (0.5 -0.7)2

=1.57

After establishing the norm matrix, each element needs to be divided by 2 times the

squared width parameter, and then the exponential of the negative of the resulting value

__ 228

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FlD1ctions

is taken to get a matrix of radial basis function activation's. If Tr (the matrix of training

data) has dimension M x k where k is the total number of inputs, and C (the matrix of

centres) has dimension N x k, then the resulting matrix of activation will have dimension

MxN.

7.6.4 Programming The Second Phase a/Training

The second phase of training is progrannned in subroutine Stage_2. The second stage

establishes the weight values between the hidden layer and the output layer. The

program performs a series of matrix multiplications to calculate equation 7.15. Several

separate functions are called to perform the multiplications. Each of the routines

gradually breaks down the weight formula (equation 7.15) and therefore stage 2 involves

taking the transpose of a matrix, the inverse of a matrix and three matrix multiplication

operations.

Diagrammatically the weights in the matrix correspond to the following connections

within the network architecture (figure 7.4):

OUll'lITS

4 RBF ACTIV ATIONS

Figure 7.4: Network Representation of The Weights

___ 229

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FlUlctions

The performance of the trained network on the predictive test set is used to determine the

adequacy of the network. If the network does not seem to perform well on the test set

then a new set of radial basis function centres are selected, or the number of radial basis

function centres is altered until an appropriate network architecture is found.

7.6.5 Programming The Predictive Phase

During this phase the initial steps are to read in the data relating to the test set of fault tree

structures. This data along with the radial basis function centres, determined in the

training phase, are used in conjunction to generate the activations at the hidden layer.

The value of the output nodes are then calculated by generating a linear sum of the

weight values (established in training) of the appropriate path from the activation at the

hidden node for all the path combinations to the selected output node.

7.7 Generating The Desired Network Architecture

There is no simple or quick means of determining what the desired network architecture

should be. The process is monotonous and involves a trial and error type approach. As

the training of a network is very short a large number of network architectures can be

tested in the equivalent time of only testing a few with the multi-layer perceptron

approach.

In the initial experiments a network was generated to model the problem using just four

characteristics to represent the fault tree structure, as used in the previous machine

learning pattern recognition approach. These characteristics are:

1. Percentage of AND gates.

2. Percentage of the total number of events that were repeated.

3. The percentage of the different basic events that were repeated.

___ 230

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

4. The type of top gate (AND/OR).

Further research also investigated trying to establish a model for the problem using

eleven characteristics to define the fault tree structure. The additional characteristics are:

5. Number ofLeveIs in the Tree.

6. Number of Events off Top Gate (Top Gate Inputs).

7. Number of Basic Events.

8. Maximum Number of Gates in Any Level.

9. Number of Gates with Just Event Inputs Only.

10. Number of Gates with Just Gate Inputs Only.

11. Highest number of repeated events.

As the number of inputs and number of outputs remain the same during the investigations

of each set up, the only parameter to change is the number of radial basis functions to use

and the random selection procedure used to allocate the function centres.

The steps to finding a model started from a simple network architecture of three radial

basis function centres. This number was increased on failure of the network to perform

over a large number of random selection procedures.

The training phase was carried out with the same data set as was used in the latter

experiments using the multi-layer perceptron approach, and again the same set oftwenty

test trees was used. The correct predictions required for the twenty test trees are:

Scheme: 1,3,2, 1&2,2,4,2&4,2,3,1-4,2,3,2,3,3,2,2,4,2,4

The performance of the network was evaluated in terms of the number of times the

correct response (scheme option) was selected by the network.

__ 231

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis FlDlctions

7.8 Results Using Four Characteristics as Inputs to Problem

7.8.1 Using Three Radial Basis Function Centres

The number of inputs for the first network was set to four, one representing each of the

four fault tree characteristics used in the genetics based machine learning approach. The

experiments using three centres totalled one hundred. The predictive results using the

one hundred different random seeds to initialise the centres varied depending on the

centres chosen. The worst performance was a prediction of five out of twenty correct,

and the best thirteen out of twenty. A summary of the predictive scores is given in table

7.1, which compares models with three to seven centres (section 7.8.5).

It can be seen from table 7.1 that performance is variable across the predictive scores.

The most correct predictions were made at eleven out of twenty, although a score of

seven closely followed this. As the aim of the research is to identify one radial basis

function network which is suitable for the problem the best result obtained is the key.

Here the best predictions were achieved at thirteen out of twenty. In comparison with the

genetic based machine learning approach this result is considerably better and is slightly

less than the results gained using the multi-layer perceptron. From these initial

predictions it is identified as a feasible method, however the level of improvement is yet

to be decided. Ideally, the model would be best if it could predict all test trees correctly,

hence the next goal is to pursue better performance.

7.B.2 Using Four Radial Basis Function Centres

To try and improve the performance of the radial basis function approach the number of

radial basis function centres was increased to four. Still the number of input and output

nodes are set to four and six respectively. One hundred different combinations of four

centres were tested. Although the results obtained for each random selection of centres

was variable, ranging from three to thirteen out of twenty correct, a larger proportion

___ 232

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

using four centres were found at between ten and thirteen correct predictions than when

using just three centres. The results are summarised in table 7.1.

Still the best performance of any network produced did not exceed the thirteen out of

twenty predicted with the three centres, however the result was equalled. It is thought

that by increasing the number of centres further the outputs may be distinguished

between with more ease. Five radial basis function centres will be tried next.

7.8.3 Using Five Radial Basis Function Centres

Again, one hundred trials were carried out using five radial basis function centres. The

overall performance is shown in table 7.1, where the predictive scores produced for each

model are reviewed.

The best predictions made with any network using five radial basis function centres are

thirteen correct schemes chosen. For 72 of the trials the performance was greater or

equal to 50 % of correct selections, however the number of lower predictions were spread

across a greater range than when using fewer than five centres. It appears that using five

radial basis functions has the potential to find a better solution and at the same time

increased likelihood of producing poor models (i.e. low predictive scores). If this is the

case then increasing the number of centres further should promote increased variation in

the results.

7.8.4 Increasing Number a/Centres to Six

Using six centres has produced the results shown in table 7.1. The best performance still

has not exceeded thirteen correct predictions and as expected the performance is variable,

with over a fifth of the results produced being less than five correct. At the same time a

large number of models have produced reasonable results (ten or more). Before

__ 233

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

considering any other possible changes to the architecture the number of radial basis

function centres randomly chosen is increased to seven.

7.8.5 Using Seven Centres

Using seven centres has indicated further undesirable poor results. The number of trials

was only 66 as up to this point it was felt that no further improvements looked likely.

The number of scores predicted at ten and above has also decreased.

o 1

1 1

2 2

3 2 4 11 3

4 3 1 3

5 2 4 10 10

6 1 4 5 3

7 21 14 5 2

8 8 12 4 2 4

9 11 6 5 5 3

10 16 12 14 7 1

11 32 39 32 24 23

12 8 12 20 25 10

13 2 1 6 8 2

Table 7.1: Predictive Results ofRBF Model With Three - Seven Centres

It appears that when using seven centres the performance covers both ends of the scale,

however, still the performance can not be improved beyond thirteen out of twenty correct

__ -- 234

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

predictions, or a 65 % chance of when subjecting the model to a new input it correctly

predicting the best scheme option from the set of six alternatives.

7.8.6 Thirty Centres

Before dismissing the performance potential of the radial basis function model in its

current set up, a large number of centres were used. The number is chosen as thirty,

which is felt should be able to distinguish between the outputs if the information given by

the inputs is sufficient. Fifty trials were carried out, after which it was reasoned that a

good architecture might not be possible or at least particularly hard to fmd. Of the fifty

trials the best result achieved was eleven out of twenty correct predictions. On twenty

nine trials the predictions made equalled zero and the remainder of trials had predictive

results between three and seven. These results confirm the fact that the performance with

higher numbers of centres covers both ends of the predictive spectrum, with the better

predictions being harder and harder to fmd and the poor predictions more common.

7.8.7 Review of Four Characteristic Results

With the experimental models generated so far in the research it is apparent that by

increasing the number of centres that are randomly chosen the performance has more

potential to find a better set up at the same time with increased likelihood of poor

performance. As the aim of the research is to identify a set up that models the problem of

ordering the variables of a fault tree it is only one model that is required. To date the best

results that have been obtained is a predictive potential of 13/20, that is a 65 % chance of

correctly predicting which scheme option of the six alternatives is the best for a new

input fault tree. This is far better than anything achieved with the genetics based machine

learner and slightly better than the multi-layer perceptron approach when using only five

characteristics. It is felt that by further increasing the number of centres of the model no

additional performance is to be gained as can be seen from the results using thirty centres.

There are alternative methods which could be adopted to chose the centres, however it is

___ 235

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

felt at this stage that despite the selection procedure, the centres are still chosen from the

data set, so the procedure is not going to improve the performance of the model if the

training data set does not accurately reflect the population. Before discarding the data

set as useless, it may also be a point that the information provided as inputs of the data set

do not accurately reflect the pattern to be modelled. Therefore, further research is carried

out using the eleven characteristic problem, which mayor may not help to distinguish the

differences between how to select the alternative scheme choices.

7.9 Results and Findings Using Eleven Characteristics as Inputs to Problem

7.9.1 Simple Architecture

With the number of inputs changing the simple set up of the model changes. Now there

are eleven input nodes, and six output nodes. There still exists one hidden layer of nodes,

which represents the radial basis function centres. The same procedure is adopted to

randomly generate the centres, and the research initially focuses on trying to identifY how

many centres are needed to find the optimal network architecture.

7.9.2 Using Two and Three Radial Basis Function Centres in The Model

Initial research using the eleven input nodes for the radial basis function model focused

on using two randomly chosen centres to provide a benchmark of results to compare

future models. Twenty two trials were run, and all the predictive results for the twenty

test trees were in the range of nine to twelve correct outcomes out of twenty. Many of

the results were predicting the same scheme, scheme 2 for all trees. This indicates that

there is insufficient means to differentiate between the schemes, i.e. that the two centres

chosen are not enough to deal with the complexity of the problem.

To overcome this and be able to direct routes to all schemes, an additional centre was

added. The results gained using three radial basis function centres are summarised in

______________________________ 236

'--- ---

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

table 7.2. The best result obtained is thirteen out of twenty correct predictions, which is

the same as predicted by the best models using four characteristics only. Using this

model with eleven characteristics has produced results which exceed eight correct

predictions with every set of random centres produced, which seems to indicate that the

model can make better predictions with these additional characteristics added.

These initial results indicate that using the eleven characteristics to dissociate the scheme

choices depending on the inputs has improved success. To increase the potential of the

model additional centres are added.

7.9.3 Adding More Centres to The RBF Model

Future research focussed on increasing the number of centres used in the model.

Successive increases were made from four to ten centres. The results are compared for

each different number of centres in table 7.2. Initial research involved one hundred trials

for each different centre model. However, using eight radial basis functions onwards the

results began to become more variable and rather than continue increasing the number of

centres further, tests were carried out on the lesser number of centres, hence the

difference in tallies of total trials for those models with eight or more centres (given in

table 7.2).

The best result to date is now fourteen out of twenty correct predictions, hence a 70 %

chance of selecting the correct scheme option for a previously unseen tree. This is

considerably better than using any single heuristic alone. The predictive potential has

been achieved with a varied number ofRBF centres. The performance is not perfect i.e.

gaining a correct prediction 99 or 100 percent of the time, but it seems unlikely in the

current set up that the performance is going to improve significantly. To understand the

full potential of the models the accuracy of the incorrectly predicted schemes needs to be

established, i.e. whether using the predictions given by the network would have drastic

effects on the resulting size of the BDD produced.

___ 237

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

. Predictive ····3 .. · 4 5' 1'6:'" ······T·· .
8 .' .:> 9' 1.:10··· .. ·

centies centres
;:-;,:<'; .';. '\-,.,,'.:' '.;'~" '" (. ' .• 0, Score. Centres centres centres' centres : centres. c'elltres ,.,

':~,;,"~>'::::'>:: ,- - "";".> ,,'-",",'\'':'';, ;,; >,,:,',,\/-"," '. ,:\0:,:::"',"'-'_/"-" -" .. ,,;,'.',>:-

1 1 1

3 2 1

4 2

5 4 5 4

6 2 1 1 1 2

7 1 3 1 1 3 4

8 1 2 1 3 1 1 5

9 2 2 4 6 8 8 2 7

10 4 21 21 25 24 6 15 21

11 32 73 51 61 72 25 31 28

12 55 204 206 167 151 42 35 22

13 6 77 49 71 67 16 7 3

14 5 2 1

Total trials 100 335 335 335 335 100 100 100

Table 7.2: Comparative Predictions For Models With 4 - 1 0 Centres

7.10 Assessing The Accuracy of The Best Networks

A number of network architectures were generated, trained and tested. The best

performance produced a score of fourteen out of the twenty test trees whose schemes

were selected correctly by the network. This level of performance was achieved on eight

different network architectures as shown in table 7.3. All the networks had eleven input

nodes and six output nodes, with the number of centres being the variable parameter.

The exact network details for all eight architectures are given in Appendix V.

In terms ofperforrnance anyone of the network architectures shown in table 7.3 could be

used to generate the 14/20 correct responses. In terms of efficiency the network with the

__ 238

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Ftmctions

smallest number of radial basis function centres should be used, as computer

requirements are reduced. Hence, anyone of the five networks using four radial basis

function centres would be the most efficient solution .

Number of •. l.WIdomSeed.

~~n~r -':--'

4 2082 22232422322323122222

4 638 22242222322322122422

4 14 22222432342323122222

4 2104 22222432242323222422

4 804 22222432322323222222

5 14 22222432342323122222

5 42 22222422442323122222

9 548 22222442242223222422

Table 7.3: Predictions Made by Best Network Architectures

As the networks do not have a 100 percent success rate at producing the best scheme, the

predictions for the incorrect schemes need to be examined.

4i;!t"a0 'l~;:t :;.·l. ..c'" ;'Yit;;}. .:):r~i;;:. i'""",,; 1 ••• \,'.'1:;(,:; I.'>S;,,; i;y.~/i.; '.illhi i .'it'"!'?' I···.;;'··:···;;;; r:·':::::··:"""!;.; i/.,
Best 1 3 2 112 2 4 2/4 2 3 1-4

2Da 2 2 4 3/4 1 3 113 1 112/4 516

3'" 4 1 1 6 3/4 2 6 4 516

z;J:~~~ !ilh.; :·:J.i~::·; l)gI.~;,,(:!i~,Mji; ·,;:;JS·.' 1}).1 1?:: 1;:.!Zj~i l'i;J~;·i I.,:; 19,,; :.2Q,:~
;::;>,'''':''-,-''';:':.",;,

Best 2 3 2 3 3 2 2 4 2 4

200 1 4 1 2 112 1 4 2 1 3

3'" 4 1 4 1 4 4 1 3 4 2

Table 7.4: First to Third Best Choices of Scheme Option For Test Trees

__ 239

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

The predictions for each of the networks on the same set of twenty fault tree structures

are given in table 7.3. The incorrect responses are highlighted. Table 7.4 shows the best,

second best and third best scheme options for each of the test trees. In the majority of

instances of the six schemes that are incorrectly predicted (using the best architecture that

predicts fourteen out of the twenty trees tested correctly) five out of the six ordering

heuristics that are selected using this network approach are the second best option.

For example, using the network architecture generated using the random number of 638

to select radial basis function centres, and having four chosen centres the predictions for

the twenty test trees are shown in figure 7.5. It is clear that five out of the six incorrect

predictions are near to best scheme coding, and testing on the other network architectures

(mentioned in section 7.10) the same result is evident. Looking at the values of the

second best option in comparison to the best, there is little difference in the coded values,

indicating that the second best option is not dramatically different, or the resulting BDD

structure is not considerably larger than the optimal structure. Table 7.5 shows the coded

comparative results for the second and third best scheme option. The first options have

values of 0.999

.Tree

2 0.001

3

·20;;/;
C"-; _~:»:{ ':~~; 0"

2n 0.962 0.990 0.988 0.996 0.994 0.997 0.998 0.961 0.962 0.875

3' 0.889 0.979 0.727 0.989 0.983 0.992 0.997 0.947 0.902 0.671

Table 7.5: Coded Comparison of First, Second and Third Best Scheme Options

Hence, it is clear that this neural network technique could be used to solve the ordering

problem, with optimal BDDs being produced approximately 70% of the time and for the

remainder 30% a near optimal BDD structure should be produced; hence facilitating an

efficient analysis.

__ 240

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

--I correct prediction

r------l=f-=/--=/--+-.:/-+1-.f-~_i-----~~--~--1
: 222224 2 2 3 22322122222: y ___ ____________________ -/__ ___ _ ____ ._-2

est Scheme Actually: 1 Best Scheme Actually: 3 Best Scheme Actually: 4
swer Given: 2nd Best Answer Given: 2nd Best Answer Given: 3rd Best

·ngfor Scheme 1 = 0.999 Coding for Scheme 3 = 0.999 Coding for Scheme 4 = 0.999
. g for Scheme 2 = 0.932 Coding for Scheme 2 = 0.996 Coding for Scheme 2 = 0.671

Best Scheme Actually: 3
Answer Given: 2nd Best

Coding for Scheme 3 = 0.999
Coding for Scheme 2 = 0.992

Best Scheme Actually: 3
Answer Given: 2nd Best

Coding for Scheme 3 = 0.999
Coding for Scheme 1 = 0.994

Best Scheme Actually: 4
Answer Given: 2nd Best

Coding for Scheme 4 = 0.999
Coding for Scheme 2 = 0.961

Figure 7.5: Findings of The Incorrect Predictions

7.11 Next Research Steps

7.11.1 Reducing Width Parameter

Further improvements in the predictive potential of the RBF model still need to be

sought. An avenue of possible change is the network parameters themselves. One

parameter to alter is the width or spread of the radial basis function. Currently this is set

to be the largest distance between all the centres. At this setting there will be a

considerable amount of overlapping of the search space between the radial basis

functions. Ideally, given a new input the output would be influenced by a single radial

basis function activation, however, when the RBFs have a large overlap this influence is

spread between a number of RBF activations. The whole search space needs to be

covered, but not with extreme over lapping and at the same time with sufficient spread to

cover most of the area (which is not possible with too small a spread parameter and too

few functions). There needs to be a balance between the number of activations and the

spread of each.

__ 241

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

Hence, the next research steps looked at the influence of reducing the width parameter.

The following trials were executed using a width parameter of half the largest distance

between the centres. The network architectures examined involved eleven inputs, six

outputs and between four and seven radial basis functions. The results are summarised in

table 7.6. For each specified number of centres one hundred trials were carried out. The

results are similar to those using the 'largest distance between centres' as the width

parameter. The best result of fourteen out of twenty correct predictions was again

achieved, using a network with five centres. No further improvements were made upon

this accuracy. A larger number of centres were tried to check that no further

improvements could be made. As shown in table 7.6 using twelve centres produced a

more varied response with no overall improvements .

. Predictive . J;~" 5c~tres'

li>r·~(ses.~
I·' ',·7 ·centres.' : ': 12 celltres '/, ::..

········L' I' .,.' ",t
.,

(l~~::--:/ 'L,;
I' Score .);'rl,': ,

.. . ' '. ,,-' . l;i' ..',::', ,
4 3

5 1

6 2

7 1

8 1 1 1 1 3

9 6 2 1 3 16

10 12 11 18 13 22

11 27 26 19 21 31

12 51 48 41 43 15

13 3 11 20 19 5

14 1

Total trials 100 100 100 100 100

Table 7.6: Comparative Predictions For Models With 4 - 7 Centres

The best network architecture using this reduced width parameter has the following

characteristics:

___ 242

Variable Ordering Heuristics For Binary Decision Diagrams

Random Number seed: 42

Number of Centres: 5

Centres were randomly selected as:

Using Radial Basis Flmctions

!ll = {0.604, 0.088, 0.667, 0.001, 0.154, 0.769, 0.220, 0.197, 0.103, 0.471, 0.263}
!!2 = {0.386, 0.088, 0.667, 0.999, 0.385, 0.462, 0.209, 0.197, 0.069,0.441, 0.211}
!l3 = {0.663, 0.088, 0.756, 0.999, 0.385, 0.385, 0.203, 0.213, 0.001,0.382, 0.263}
!l4 = {0.396, 0.882, 0.600, 0.999, 0.231, 0.308, 0.030, 0.033, 0.001,0.059, 0.158}
!ls = {0.297, 0.001, 0.001, 0.999, 0.385,0.308,0.660,0.660,0.834,0.147,0.001}

Width Parameter: 1.075507

Weightsfrom output node k to each centre (including bias centre node):

k= I: {0.005360, 0.641249, 0.884705, 0.319664, -1.008781, 0.1 56937}
k= 2: {0.230803, 0.595655, 0.866074, -0.630348,0.315994, -0.050278}
k= 3: {0.054871, 0.730951, -1.826630,1.288010,0.553288, 0.700058}
k= 4: {O.l61022, 0.615295, 0.431763, -0.848396,0.253029, 0.697006}
k= 5: {0.340192, -0.103946, -2.014668, 0.659339,1.806165, -0.183221}
k= 6: {-0.008962, -0.143475, -2.158768,1.738665,0.304477, 0.409559}

Predictions: 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 3, 2, 3, 1,2, 2, 2, 2, 2 = 14120

For this problem the reduction in the spread of the RBF did not lead to an increase in

predictive potential of the model. Either the complexity of the problem warrants a more

complicated centre selection procedure and width allocation method to find the pattern in

the data or the data needs to be examined itself.

7.11.2 Using Only Four Outputs to The Model

There are infmitely many network architectures still to try but whether the results are

important is debatable. There are two possible alternatives that can be seen as a way

forward, one is relating to the inputs of the problem, the other to the outputs. The

__ 243

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

predictive potential of the RBF network can only be gained if the training data set

accurately reflects the population. On reviewing the data it was observed that schemes

four and five, namely those using the priority depth-first and modified priority depth-first

approach yielded best BDDs on only a minority of occasions. Hence, for continuing

research these have been deleted, and the potential of the radial basis function model has

been tested using eleven inputs and four outputs.

Within the training and test data set there are fuult trees whose structure warrants the use

of a number of ordering heuristics with the same sized BDD resulting. As the network is

now trying to pick the best of four scheme preferences, any trees with equal BDDs for

each of these four schemes on conversion have been removed, as no information is

provided from this data. Thus, the training data set is reduced to 171 trees. One tree was

removed from the test set and an additional one from the training set included, hence still

twenty trees exist within the test set. Therefore the target predictions needed by the

network are:

1,3,2, 1/2,2,4,2/4,2,3,2,3,2,3,3,2,2,4,2,4,3.

The RBF model is generated as in the original set up with the width parameter set to the

largest distance between centres as using the alternative halflargest distance proved to be

no more effective. Four, five and six radial basis function centres were tried as the

optimal network architecture. Again one hundred trials were carried out for each

specified number of centres and the results are given in table 7.7.

The results are similar for all three network architectures, with the best prediction being

fourteen out of twenty of the test trees being correctly chosen. It is not felt likely that

future improvements would be made by increasing the number of centres further and

instead examination of the inputs may provide a better way forward to solving this

problem.

__ 244

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

Predictive • A centres', ,-Scentres .. ". 6 centres
..•.

... ~c()re· •. · •... ''''-i:\> ,'" " .
.. '<.' .> > ..•..•....•.

- c :. ' , '.' - - ~

7 2 2

8 1 2 2

9 7 6 4

10 11 13 8

11 37 27 27

12 27 37 31

13 11 13 23

14 4 2 3

Total trials 100 100 100

Table 7.7: Results For The Four Output Problem

7.11.3 Importance o/Characteristics

Rather than continuing to test the RBF models with different training procedures it is felt

that the most benefit could be found in scrutinising the population inputs. What needs to

be determined is whether the characteristics currently chosen to represent the fault tree

structure are relevant or not to the ordering dilemma. If the inputs do not represent those

factors which dissociate the fault tree from the different schemes then regardless of the

training procedure employed no pattern will be able to be found. To examine the

importance of the characteristics the radial basis function network approach (as well as

the multi-layer perceptron approach) can be used by reviewing the weight values and

activations connecting the input and output nodes. It is suggested that pursuing this

research should initially centre on the importance of the input characteristics.

__ 245

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

7.12 Summary

• Radial Basis Function Neural Networks have been shown to have the potential to

model the variable ordering problem.

• The model which used eleven fault tree characteristics to dissociate the six

scheme alternatives produced the best results.

• Eight network architectures have been generated which produce the best result so

far of 14 out of20 correct predictions.

• The most efficient and best RBF network is one with four RBF centres. Five

architectures have been found. One possible set up to use when trying to fmd the

best scheme for a new fault tree is:

Input nodes: 11

Output nodes: 6

Centres (4):

1\1 ={0.644, 0.235, 0.733, 0.001, 0.538, 0.462, 0.489, 0.459, 0.138, 0.971, 0.263}
l!2 ={0.624, 0.059, 0.644, 0.001, 0.308, 0.462, 0.154, 0.115, 0.034, 0.206, 0.158}
1\3 ={0.416, 0.059, 0.71 1,0.001,0.462,0.385,0.129,0.131,0.103,0.294, 0.263}
1\4 ={0.465, 0.029, 0.600, 0.001, 0.462, 0.385, 0.102, 0.066, 0.001, 0.206, 0.158}

Width Parameter: 1.023383

Weights from output node k to each centre (including extra bias node):

k= I: {0.627533, 0.040619, -0.944214,2.572754, -1.308350}
k = 2: {0.728906, -0.285797, -0.712158, 2.209473, -0.995605}
k= 3: {0.645231, -0.158051, 0.200012, -0.248779, 0.456787}
k= 4: {0.659595, 0.432404, -0.780762, -2.036621, 2.743286}
k= 5: {0.261979, -0.376621, 3.887093, -2.044250, -1.7805IS}
k= 6: {0.167886, -0.868729,1.308273, 1.30S136, -1.978363}

• Of the 6 incorrect predictions produced using the optimal network architecture,

in the majority of instances (five out of the six) the second best ordering option is

predicted, with the difference in the size of the resulting BDD being small.

__ 246

Variable Ordering Heuristics For Binary Decision Diagrams Using Radial Basis Functions

• The outputs of the model were scrutinised and a network produced using four

scheme outputs. Again, the chance of selecting the correct scheme choice for a

previously unseen tree was 70 percent.

• To further enhance the performance a more complicated method for selecting the

centres and width parameters of the radial basis function could be considered, or

alternatively a different type of radial basis function could be tested.

• Further improvements are thought more feasible by examining the characteristics

used to model the fault tree in terms of their influence in selecting an ordering

heuristic. This can be achieved using the radial basis function by examining the

weight connections between the inputs. This topic is the suggested for future

work in this area.

__ 247

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

8 Using Structural Importance Measures For BDD
Variable Ordering

8.1 Introduction

The procedures researched so far for selecting an ordering heuristic that produces an

optimal or good variable ordering for the conversion of a fault tree to a Binary Decision

Diagram concentrates on selecting from a set of alternatives. The pattern recognition

approaches of the machine learning classifier system and neural networks have been used

to identify the best of a set of six ordering alternatives for any given fault tree structure.

Characteristics of the fault tree have been used as inputs to predict the best scheme.

The problem of using these pattern recognition approaches is the considerable amount of

computation time required in initially fmding the best classifiers or neural network

structure. The selection of a specific ordering method is made from a specified list of

heuristics. Each of these heuristics or rules were taken from approaches suggested in the

literature and all provide a very structured approach to the ordering, i.e. components that

are inputs to the same gate are ordered next to each other in the ordering list. There is no

random selection of components, i.e. components are not selected from opposite sides of

the tree and ordered next to each other in the ordering list. There is no indication that

components need to be selected and grouped according to their neighbourhood. What

appears to be important is the contribution any event makes to the minimal form of the

fault tree logic expression. This contribution is represented by the structural importance

measure ordering heuristic, to be discussed.

The ordering that is required is not related to any physical properties of the system, i.e. an

ordering of A < B does not mean that if component A fails component B must fail. The

ordering is purely based on the position of the components within the tree structure and

__ 248

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

accounts for the Boo lean reduction process. An ordering is required to rank components

in terms of their significance within the system, that is their contribution to the top event

occurrence, and also their influence in relation to the other components also within the

system. One measure that incorporates these qualities is the structural importance

measure of a component.

In this chapter the use of the components structural importance within the tree structure

has been used to create an ordering of the components or basic events[BAn9911. This

ordering has then been used to produce the BDD. The number of nodes in the BDD

resulting from the conversion is used as a comparative measure. The best scheme option

from the set of six alternatives used in the pattern recognition approaches is compared to

the structural importance measure ordering. Results using the mathematical formula

(implemented using the BDD itself) have been very convincing, with a large proportion

of the trees producing a BDD with equal or less nodes. Applying the formula to the fault

tree is computationaIIy intensive and hence a simplified approximation has been

generated. This new approximated structural method produces similar importance

measures and related orderings and ultimately produces an optimal or near optimal BDD

for the majority offault tree structures[BAnO031•

8.2 Problems With Re-writings of The Fault Tree Structure

All of the heuristics mentioned so far suffer from the problem that if the fault tree

structure is re-written, drawn with the order of the gate inputs changed, then applying the

same heuristic will result in different orderings and hence different BDDs. Applying the

top-down, left-right approach to the two trees in figures 8.1 and 8.2, which represent the

same top event logic function, the difference in variable orderings can be seen.

Thus, using anyone of the heuristics mentioned so far will not produce a unique BDD for

a given fault tree, the result will depend upon how the engineer has represented the

function. Therefore, how the fault tree is drawn may influence the type of ordering

heuristic that results in the smallest BDD. As the pattern recognition approaches are

__ 249

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

using the best scheme option for a given fault tree as a guide to future predictions of the

best scheme for new trees this variation gives 'noise' in the data. Thus, the pattern

recognition approaches are then trying to establish trends from this noisy data. In terms

of the neural network approach, it is very important that the network does not become

over trained, thus learning these trends, hence reducing the generalisation performance of

the network.

Figure 8.1: Ordering A<D<E< F<G<H< I Figure 8.2: Ordering A<E<D<G<F< I<H

To irradicate these re-writing problems a heuristic needs to be used which is not affected

by how the tree is represented. Using the structural importance measure means that

regardless of how the tree is drawn, it is the logic function that is used to establish the

weighting values for each component.

8.3 Definition ofImportance Measures

8.3.1 Understanding Importance Measures

A very useful piece of information, which can be derived from a system reliability

assessment, is the importance measure for each component or minimal cut set. For each

___ 250

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

component its importance signifies the role that it plays in either causing or contributing

to the occurrence of the top event. This role is given a rank in terms of a numerical

value.

Importance measures can be categorised in two ways: (I) deterministic; and (2)

probabilistic. The probabilistic measures can themselves be categorised into those which

are appropriate for system availability assessment (top event probability) and those which

are concerned with system reliability assessment (expected number of top event

occurrences). These have all been discussed in chapter 2.

As the ordering does not depend on the probabilistic failure characteristics of the

components just it's position in the tree, the deterministic structural importance measure

is analysed and discussed as a potential ordering mechanism.

8.3.2 Deterministic Measures of Importance

Deterministic measures assess the importance of a component to the system operation

without considering the component's probability of failure. One such measure is the

structural measure of importance, SMI, which is defined for a component, i, as

SMI. = number of critical system statesfor component i
• total number of states for the (n -I) remaining components

A critical state for component i is a state for the remaining (n -I) components such that a

failure of component i causes the system to go from a working state to a failed state.

8.4 Calculation Method For Deterministic Structural Importance Measure

To illustrate this structural importance measure, consider the fault tree drawn in figure

8.3.

251

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

The logic expression for the top event is:

TOP=A+B.c

A

Figure 8.3: Simple Fault Tree Structure

Therefore, the top event will occur (or top event failure) if A occurs or both B and C

occur. To generate a variable ordering the structural importance measures of each

component need to be calculated. The procedure to carry out this process can be

simplified as follows:

For each component:

1. Find the possible states for the remaining components.

2. Test whether each of the remaining states are critical for the

chosen component.

Taking component A from figure 8.3 as an example, there are four states for the

remaining components these are:

1. B working and C working (BC)

2. B failed and C working (BC)

___ 252

Variable Ordering Heuristics For Binary Decision Diagrams StructuraI Importance Measures

3. B working and C failed (BC)

4. Band C failed (BC)

To explain the theory behind a critical state, each of the four states for the remaining

components needs to be examined. If component A is working and given the states of the

remaining components the system works (top event non-occurrence) then this reflects the

possibility of a critical state. The determining factor is whether failure of component A

causes the system to fail. If it does then this is referred to as a critical state for

component A.

Given one state for the remaining components, namely B working and C working (BC),

with component A working (A) the system would be working. If component A then

failed the system would fail and this can be defmed as a critical state (see column 2, row

2 of table 8.1).

Therefore, the structural importance measure for component A (SMIA) is calculated as

shown in table 8.1.

'~~~Sforo~ci" <lo,IIIpOllents IC~~i~~Sl~te f9tA
B,C Yes

B,C Yes

B C Yes ,

B,C No

(NB. the means component works)

Table 8.1: Calculation of The Structural Importance Measure For Component A

There are four states for the remaining components, of which three of these are critical

for component A, hence SMIA = 3/4.

__ 253

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

The same process is repeated for all ofthe other components, in this example variable B

and C. Hence, the structural importance measure of component B (SMIB) is calculated as

shown in table 8.2:

.·),St~~:~ •. f6rother,~mpone~!~·" ':,p}tical •. Statefor.lJ'

A,C No

A,C No

A,C Yes

A,C No

Table 8.2: Calculation of the Structural Importance Measure for Component B

Hence, SMIB = 114.

The structural importance measure of the final component C, (SMlc) is equal to !I.o, like

SMIB (as shown in table 8.3) .

. States fQr<lther~Pwnents.i • Critical Stati;; fur C.,
".'I'_\}"::< :".:',': ,',. :-.',::-:.' "',' ':,;;.'_>"':':,';":<:<"_.<>:;,S:",_",~<: .-'/,: '--~'"'' - " -"" ,--' '. ,,' - ." ---'' ,

A,B No

A,B Yes

A,B No

A,B No

Table 8.3: Calculation of the Structural Importance Measure For Component C

On gaining each of the importance measures, the remaining factor is to order the

components in descending order depending on the values calculated.

___ 254

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

8.5 Alternative Methods of Calculating The Structural Importance Measure

8.5.1 Problems With The Hand Calculated Approach

To calculate the structural importance measure for all the components within a fault tree

as illustrated previously even for small trees is relatively time consuming. This is ever

more prevalent with large fault tree structures where the number of possible combinations

of the working and failed states of the components is exponentially increasing with

respect to the number of components.

Programming the method utilised in section 8.4 would not be very efficient, as the

process would require the following:

I. The logic expression for top event.

2. For each component, the program would need to repeatedly substitute in values for

the remaining components in the system, for every state combination.

Whilst simple in concept it is computationally time consuming to perform the procedure

for each variable.

8.5.2 Using Birnbaums's Structural Importance Measure

The probabilistic importance measure of Birnbaum, namely Birnbaums Measure of

Criticality has been mentioned in chapter 2. Lambert[Lam75l stated that this probabilistic

measure could be used to evaluate the structural importance measure. However, this still

requires the system probability function Q(g) or an approximation of it.

Birnbaurns measure of criticality (G,{g» is defined as:

G,(g) = Q(It. g) - Q(O/, g) 8.1

___ 255

Variable Ordering Heuristics For Binary Decision Diagrams Structural importance Measures

where Q(g) is the probability that the system fails, and

Q(I;, g) = (q/, q2, ,q;./, 1, qi+/, qn) 8.2

and Q(O;, g) = (q/, q2, ,q;./, 0, qi+/, qn). 8.3

From Lamberts[Lam75) paper it states that if the probability of failure of component i, q;(t),

is set equal to Y:z for all i '* j, then the number of states in which component i is critical,

denoted by B;, is defmed as:

B/ = { Q(lt. 112) - Q(O;, 112) } 8.4

Implementing this numerically for the tree in figure 8.3, the top event probability

expression is given as:

Calculating the structural importance measure for A;

Q(hg) = 1

Q(OA,g) = qsqc

Therefore, BA(g) = 1 - qBqC, and BA(J12) = 1 - (112.112) = 314.

The same principle is applied to B and C, resulting inBB(J12) = Bc(J12) =114.

The Bimbaum measure of structural importance can also be found by calculating the

differential of the top event probability expression with respect to the component. The

importance value being calculated by equating all the remaining components with the

probability of Y:z.

i.e.

__ 256

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

This is the same as using equation 8.4.

8.6 Application of Numerical Structural Importance to The Ordering
Problem

8.6.1 Programming The Calculation Procedure

To test the potential of the component structural importance method to the problem of

generating a variable ordering heuristic to yield an optimal BDD the Bimbaum structural

importance measure was used. Fortran code was available to produce the Bimbaum

Measure of Criticality from the BDD. As initially it is the validity of the measure that is

being established and not the efficiency of the technique then a BDD, which has been

constructed using a different variable ordering, has been used to gain the importance

measures.

The program strimpgsqfwas created which reads in the fault tree structure from a data

file, and using Birnbaums structural importance measure yields the appropriate strengths

for each component. All the components were then ranked in descending order (highest

to lowest) in accordance with their structural importance value, hence producing an

ordering for the variables of the fault tree. For components with the same resulting

structural measure the tie was broken by ranking the component that lies higher up in the

tree structure (using the top-down, left-right approach) first.

To establish the influence of the new ordering permutation a comparison was made with

the best of the six previously identified alternative schemes (Andrews and Bartlett,

1998[ABa981). Each ordering permutation was output to a file *.bsi, which was read into a

__ 257

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

separate program which converts the fault tree structure into a BDD. The program

calculates the number of nodes within the BDD. It is the number of nodes before

minimisation of the BDD structure that are used in the comparison process. The reason

for this was that the smaller the initial BDD, from which the quantification process can be

carried out, the more efficient the quantification process, and also to determine the

minimal cut set less minimisation needs to occur if the BDD is initially smaller.

8.6.2 Results ojComparison

In table 8.4 three groupings relating to the number of nodes in the BDD have been

identified for the comparison. These are less than the previous best, equal to the previous

best, and greater than the previous best. For this method to be successful then the

majority or all of the trees when converted using this new ordering need to result in a

BDD of the same or smaller dimension than the previous best of the set of six

alternatives. The fault trees generated for use in the neural network study (both the

training and test trees) and some additions have been combined to produce a data set for

this ordering heuristic comparison. Thus, two hundred and twenty five trees were

compared and the results are shown in table 8.4. The results for each fault tree are shown

in Appendix VI.

=

< 96 42.7 76.9%

> 52 23.1

Table 8.4: Results of Comparison of Structural Importance Ordering and Previous Best

Ordering on BDD Size

__ 258

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

From these results, it is concluded that approximately 77 % of all the trees tested within

the data set, using the structural importance ordering yields a BDD of equal or smaller

dimension than the previous best scheme ordering.

From the set of six orderings the distribution of 'best schemes' is illustrated in table 8.5.

The total number of trees that each scheme predicts the best result for is greater than 225

in total as some schemes produce a BDD of equal size to another scheme. The best

scheme out of the six for overall performance is the modified top-down, left-right

approach, although the winning margin is very small. This new structural importance

ordering heuristic clearly outperforms all of these six schemes individually and more

research is needed to unravel it's full potential and try to establish an efficient method of

calculation.

.• NUmber ofIllsllilices .percentage<>f times '

Top-down, left-right 87 15.4

Modified Top-down, left-right 169 29.8

Depth-First 120 21.2

Modified Depth-First 117 20.6

Priority Depth-First 36 6.3

Modified Priority Depth-First 38 6.7

Table 8.5: Performance of Six Different Ordering Heuristics in Producing BDDs

There are two routes of progression with this new measure. One is to try and improve the

percentage of trees whose BDD size are an improvement or equal to the best of the six

alternatives and the second is to use the method to produce a defined ordering heuristic.

The following section looks at improvements that could be made to the measure by

altering the method used to order components with matched importance measures.

Section 8.8 onwards focuses on methods to generate the same ordering by a

computationally simpler procedure.

259

Variable Ordering Heuristics For Binary Decision Diagrams Structurallmportance Measures

8.6.3 Re-Ordering Components With Matched Structural Importance Measures

Of the trees whose structural importance measure for the components yielded an ordering

which resulted in a larger BDD structure than the previous best the number of nodes

difference between the two values varied considerably. Some of the values were only a

few nodes larger than the previous best whereas others where much larger (as can be seen

in Appendix VI).

If the structural importance of a component is the same as another then the component

which lies higher up the tree (nearer the top event) is ordered first. An alternative way

which may improve upon the performance of the structural importance measure ordering

heuristic is to look at the matching components and see if a better method can be found

for determining the order of these components with equal structural importance.

The method investigated was to order the matched components based on the most

repeated event being ordered first, and so on in descending order of repetition. If again

there were still matches the tie would be broken as before. A program strrepj was

created, based on strimpgsq.f, which has an extra routine to calculate the number oftimes

a component is repeated. Based on these values of repetition the matched components are

separated. If the components are repeated the same number of times then the program

switches to the previous routine of ordering the components in a top-down, left-right

manner from the tree structure. The ordering was output to a file *.bri.

Each ordered data file *.bri of components was run through the program (schemes./)

which converts the fault tree to the BDD and calculates the number of nodes. Comparing

the results to those of the original structural importance ordering, the fmdings are as

follows:

1. The total number offault tree structures and orderings tested was 225.

2. Previous results (Birnbaurns structural importance ordering) produced:

__ 260

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

a. 52 trees with nodes greater than the six scheme previous best

b. 77 trees with nodes equal to the six scheme previous best.

c. Therefore, 129 trees with possible improvement to be made.

3. 152 trees out of the 225 tested had orderings that were changed due to this new

repeated event routine.

4. Of the 52 trees that were greater than the previous best using original structural

importance heuristic the ordering of26 remained unchanged.

5. Of the 76 trees with equal BDD sizes, 46 ofthese had their ordering changed but

only 2 resulted in changes in BDD size, both being larger than when using

standard structural importance measure. The lack of change is possible due to

many of these trees already being minimal hence further reductions in size are not

possible.

6. Of the 152 trees whose ordering was changed, 15 trees resulted in differences in

the number of nodes for the BDD. These can be broken down as follows:

• For 2 trees the number of BDD nodes increased. Previously these were

greater than the best, hence there is no effect on the previous results.

• For 2 trees the number ofBDD nodes increased, and these were previously

equal to best. Therefore, this is a worse result for the performance of the

repeated event version of the structural importance heuristic.

• For 2 trees the number of nodes increased. These were less than previous

best using standard importance measure, and still less than previous best,

therefore no change in result.

• For 4 trees the number of nodes decreased, but already less than previous

best, so no alteration in result.

• For 2 trees the number of nodes decreased. Previously the result was

greater than the best of the six alternatives and this result is still greater so

again no change in performance.

• For 3 trees the number of nodes decreased. Previously the trees were

greater than the best and now less than previous best, an improvement in

performance.

___ 261

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

The differences made to the 152 trees affected by the new repeated aspect of the

structural importance measure are given in Appendix VII. The results gained using this

additional routine to separate matched components are summarised in table 8.6.

- Nodes in comparison' , 'i·%oftrees·'i

= 75 33.3

< 99 44.0 77.3 %

> 51 22.7

Table 8.6: Results of Comparison of Structural Importance Ordering and Previous Best

Ordering on BDD Size With Repeated Routine

For the trees that were altered by the new routine the amount of change in the number of

BDD nodes was very small. Despite the small improvement in overall performance of

the routine (77.3%), not all the orderings for the trees were altered by the repeated routine

and only a very small proportion of the trees with a change resulted in differences in the

size of the BDD produced. Therefore, although the process did have a slight

improvement in performance, another method rnay be more beneficial in reducing the

number of trees that currently have nodes greater than the best of the previous six

alternative scheme approaches i.e. finding another mechanism for matching components

or an alternative structural importance measure. Despite some of the BDDs being larger,

the overall performance of the measure is better than a single heuristic used in the

comparative research so far.

8.7 Using The Approach As it Stands

Having shown that the importance measure produces a good ordering heuristic,

investigations now focus on trying to establish an efficient way to calculate it. Whilst the

___ 262

Variable Ordering Heuristics For Binary Decision Diagrams Structural hnportance Measures

performance of the measure was being evaluated the structural importance heuristic was

found from the BDD. As the aim of the ordering heuristic is to find an ordering to

generate an optimal BDD then this technique is not ideal. However, the results using this

approach are better and more productive in the long run than current methodologies, as

will be explained.

A research group in France, ARALIA[GAr95J, has constructed a BDD package that

considers this ordering dilemma. Their response to the problem is to select an ordering

heuristic from a set of alternatives and draw the resulting BDD, then select a different

ordering heuristic and redraw the diagram. The process is carried out until the best

alternative is found since the fuult tree to BDD conversion process implemented within

the program package is very fast. Therefore, this new approach of using the structural

importance measure allows a good ordering to be generated which has been proven on a

large number of trees to be better or equal to the best of a set of six alternatives. A

reasonable solution is expected and the processing time to get this should on the majority

of occasions be shorter than randomly selecting ordering heuristics.

The best way to minimise the size of the first BDD from which to derive the structural

importance measures of the components in the tree is to use an ordering that is relatively

efficient at producing near minimal BDD structures. Overall the best heuristic that

produces the ordering to generate the smallest BDD is the modified top-down, left-right

ordering (table 8.5). Hence, a solution to the problem would be to use the modified top

down, left-right approach to generate the original BDD, to then find the structural

importance measures to produce the final BDD structure.

__ 263

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

8.8 Alternative Methods For Calculating The Structural Importance
Measure

8.8.1 Highlighting Problems in Coding The Mathematical Measure From The Fault
Tree

Alternative ways of deriving the importance rankings have been investigated in an

attempt to produce a more efficient process. The program used to establish the suitability

of the structural importance measure ordering theory needs a BDD to produce the

appropriate values. Following this an ordering is produced, which is used to redraw the

BDD. Hence, for this ordering heuristic to be a practical proposition a program needs to

be constructed to calculate the structural importance directly from the fault tree structure.

There are however a number of problems with the mathematical procedure required to

calculate the measures directly and these can be summarised as:

• An excessive amount of computer processing power would be required to search

for all the possible combinations of states for the remaining components and the

effect that failure of the selected component would then have on each of these

states. For example, the number of combinations is calculated by the formula 2"-1,

where n is the total number of components. If the number of components is 12

then the number of combinations for the remaining n-l components is 211 = 2048

or for 63 components the combinations of the n-l components is 263
=

9.22337EI8
• Pins, this is just the number of combinations for one component and

it needs to be done for each of the n components, therefore the resulting number

or combinations is n2 n-I. A large amount of memory allocation is required for

this method and is not a feasible solution.

• The system probability function can be used but requires a fault tree or BDD

analysis to get it.

Therefore, some other programmable method needs to be formulated to calculate the

structural importance measure. The only possibility seems to be an approximated

___ 2M

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

technique. This may be viable since the appropriate method is only required to produce a

relative ordering of the component values to be successful.

8.9 Approximation Methods to Calculate The Structural Importance
Measure

8.9.1 Introduction to Procedures

Instead of trying to program the structural importance measure exactly using the

mathematical equations it seems evident that the processing time and efficiency of using

this technique could be enhanced by using some approximation or simpler method to

calculate a near-exact measure or at least a similar ordering.

There are three methods that have been used to generate approximations to the structural

importance ordering:

1. To calculate the structural importance measures of the components in the tree

and then to look for patterns within the tree relating to these measures. If

established this would enable the ordering to be produced by inspection of the

tree structure.

2. Generate alternative weightings similar to the importance ranking measures

derived by a simpler method.

3. Apply the Birnbaum structural importance methodology directly to the tree.

8.10 Approximation Method 1 - Pattern Identification

One question to ask in trying to find a simple approach to establishing the structural

importance measures of the components in the tree is, "Is there any pattern in the location

of components with certain structural importance values?"

__ 265

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

If patterns exist which relate to importance values of events within small fault tree

modules, then it is possible that this modular approach can be repeatedly applied through

the tree structure and higher level importance values ascertained. It would then remain to

decide how to treat repeated events.

All fault trees used in this research incorporate an alternating gate sequence. The first

theory to investigate when searching for a pattern is whether the start gate of the

sequence affects the pattern. To begin the analysis, consider the fault tree in figure 8.4.

The logic expression for the top event is given by:

TOP=A+BD+BEF

The probability expression ofthe top event is given by the equation:

Hence, calculating the structural importance measures, using equation 8.4, the importance

measures are given in table 8.7.

mp

B D

Figure 8.4: Simple Tree to Illustrate Effects of Gate Sequence on

Structural Importance Values

___ 266

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

Now considering the same tree, but this time with the starting gate being an AND gate

rather than an OR, the reduced top event expression with the logic reversed is:

TOP=AB+ADE+ADF

The probability ofthe top event is then:

Qsys =P(TOP) =qAB +qAqDqE +qAqDqF-

(q Aq Bq Dq E + q Aq Bq Dq F + q Aq Dq Eq F) + q Aq Bq Dq Eq F

Calculating the structural importance values gives the figures shown in table 8.7:

As can be seen, the values are the same for both trees, which is true for trees of any

structure. This finding identifies that the type of the gate at the top of the tree, namely

whether the starting sequence is an AND gate or an OR gate, is not important when

trying to find the structural importance of the components within the tree. This indicates

that the importance relies on the structure of the tree and not it's logic.

A 11116 11116

B 5116 5/16

D 3/16 3/16

E 1116 1116

F 1116 1116

Table 8.7: Importance Values For Components in Figure 8.4 as Shown and With

Reversed Logic

Having established that the starting gate in the alternating gate sequence is irrelevant, the

next search is for patterns evident between the location of the component and it's

__ 267

Variable Ordering Heuristics For Binary Decision Diagrams Structural importance Measures

importance measure. To investigate the possibility of a pattern, trees with no repeated

events were initially considered. The theory behind this is that finding a pattern for a

simple tree should facilitate the emergence of a pattern for trees with repeated events.

Initial steps involved drawing a progression of simple fault trees (as shown in figures

8.5-8.1 0). The structural importance of each component was gained using the computer

code which incorporates Birnbaums measure, each is written on the fault tree for

reference.

7/32 7/32 7/32 7/32 7/32 7/32
1/16 1116

Figure 8.5: Example Tree 1 Figure 8.6: Example Tree 2

A

5J8

A

5/16 5116 9/16

118 1/8

3/16 3116

Figure 8.7: Example Tree 3 Figure 8.8: Example Tree 4

__ 268

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

151128

211128
31128 31128

Figure 8.9: Example Tree 5 Figure 8.10: Example Tree 6

The first step in the analysis involved looking at the importance values of components

that were inputs to the same gate. It was found that these basic events each had the same

importance values, as can be seen within all the trees in figures 8.5-8.10. For gates with

just basic event inputs the components of those gates with fewer inputs were found to

have higher structural importance values, as can be seen with figure 8.10, where

components A and B have higher structural values (35/128) than components D, E and F

(15/128).

The pattern becomes more complex as the number of levels in the tree increases. If the

tree has just one branching structure, as shown in figure 8.6, then the components higher

up the tree have a larger structural importance value. If the same single branching

structure occurs and the number of components on each branch is increased then the

components of each branch assume the same structural importance values (shown in

figure 8.7).

So far the patterns are clear, however, this fact no longer holds true when the complexity

increases further with a number of branching structures. Adding another branch to the

tree, as in figure 8.8 the ordering seems to suggest that the component connected to two

others (A) has a higher structural importance than the two components B and C which are

linked to each other only. This leaves the components on the bottom level of the tree to

__ 269

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

have the lowest structural importance. Hence, in this example there is a swapping

between branches to get the desired ordering. However, in example tree 5 (figure 8.9),

the order is generated by just taking a top-down, left-right approach and there is no

swapping between branches. There does not seem an apparent rule to decide which order

to take the components in, sometimes swapping between branches occurs and in other

instances it does not. By simple inspection of the tree it does not seem evident that a

pattem can be seen between the structural importance of the component and it's location

in the tree structure.

There are a number of factors that obviously affect the influence a component has on the

other components and ultimately the top event. Thus, finding all these factors by just

viewing the tree structure does not seem possible to solve the mystery of how each

component should be ranked in terms of it' s structural importance.

8.11 Approximation Method 2 - Simpler Weighting Methods

Having not been able to spot a visible pattern to locate the order of the variables as if

generated by the structural importance measure, the next idea is to look at whether an

approximation can be made to finding the same orderings or similar importance

measures.

The importance measures provide the basic events in the fuult tree with a relative

weighting. There are alternative approaches to produce relative weights for events, some

of which are examined below:

• Approach I - Calculating The Structural Importance Measures by Dividing

by the Number ofInputs

This method divides a gates' output value (weight) by the number of inputs since each

contributed equally. This is a top-down approach and a value is allocated for the top

event, which is then re-distributed to lower level events. In this case the values are

__ 270

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

normalised relative to unity and so the top event is assigned the value of I. The value of

lower level gates and events is then calculated by dividing by the number of inputs, so if

there are three inputs then the value of each event or gate will be a third. Again if one of

these components is a gate, the inputs to this gate are equal to a third divided by the

number of inputs. To illustrate this, examine the tree in figure 8.6. TOP would = I, A =

!/', B = C = 1/6, and D = E =1112. Although the numerical values are not the same, the

ordering produced is the same as that produced for the stroctural importance measure.

Testing on the tree in figure 8.8 gives the values shown below:

B=A=C='!.

D=E= 1/8

From this the ordering would be given as: C < B < A < D < E, applying a top-down

ordering for matched measures. This however, is different than the ordering produced

using the structural importance measure which would be A < C < B < D < E. This

ordering is only different because of the way the tie between matched measures was

broken, and breaking the tie in another way could have resulted in the same ordering.

Still the actual values are different for each component using this method as compared to

the structural importance measures. Just from using these two simple examples it is

apparent that the method is not going to match exactly the ordering produced using the

mathematical structural importance for every tree. However, despite the mismatch it is

possible that this method of ordering would produce as good or better results. Hence, this

possibility was investigated. The first problem however is to deal with repeated events

that are common in the fault trees within the data set.

There is a dilemma with how to approach repeated events. Just adding their values will

disproportionately increase their importance, because a component that occurs twice in

the tree does not necessarily have twice the importance. The second occurrence may be

redundant in the Boolean function. Any redundancy will mean that this type of approach

will never be exact, but the aim is to produce a heuristic that works most of the time.

__ 271

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

One solution could be to fmd the average of the values given at it's different appearances.

This however, would probably underestimate the components importance within the fault

tree because if an event has one repetition positioned high in the tree structure and

another nearer the bottom then the average value will be lower than that of the repetition

value at the top if on its own, which is likely to have more importance. Hence what is

required is some scaled version of the total combination. Exactly what kind of scale that

is required is unknown, but in this method the average value is multiplied by the square

root of the total number of inputs. In essence, the weight Wj for repeated event i, is

calculated by summing the values of each repetition and multiplying by the square root of

the total number of repeated components, as given in equation 8.5, where i refers to the

component, andj each of it's occurrences.

8.5

Using this scaling mechanism for repeated events, the values for the components shown

in the tree in figure 8.4 are given in table 8.8 with structural importance measures shown

for comparison.

A + = 0.3333 0.6875

B [t+Wv'2 =0.1964 0.3125

D t = 0.1667 0.1875

E t=O.l1l1 0.0625

F t = 0.1111 0.0625

Table 8.8: Approximated Structural Importance Measures Using Approach 1

The variable order generated from this would be A < B < D < E < F. The matched values

are decided upon my employing the usual top-down, left-right ordering. This is the same

__ 272

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

ordering that would be generated if the mathematical structural importance method was

applied to the tree.

This method is much simpler to calculate and yields the same result for this example fault

tree structure. Now the task is to compare to other fault tree structures. On further

testing the variable orderings produced did not produce the exact order as compared to

the mathematical structural importance method. This however, may not be a problem if

the resulting BDD produced is still as optimal as the one produced using the exact

structural measure or at least better than the best of the six alternatives.

A program sim_strjwas produced which takes a fault tree data file and produces the

ordering of the components based on the calculation of the simplified structural

importance measure. This output file (*.sim) was then read into a program to generate

the resulting BDD. The results ofthe simplified ordering scheme as compared to the best

of the six ordering alternatives previously used are shown in table 8.9. The same 225

trees used to establish the structural importance potential have been re-tested. The full

results for each tree are given in Appendix VIII.

<

=

>

Table 8.9: Comparison ofBDD Size of Simplified Structural Importance Ordering and

Best of Set of Six Alternatives

The proportion of trees whose ordering resulted in a BDD of equal or smaller dimension

than the best from the set of six alternatives is considerably less than the results obtained

when using the structural importance measure (76.9 %). Despite the fact that the

percentage is reduced, this approximated technique has an increased potential over any

single heuristic of the set of six at producing the smallest BDD size. The program runs

___ 273

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

very quickly and the results predict over half of the data set of trees having a BDD of

better or equal dimension than the chosen best from a set of six alternatives. As using the

pattern recognition approaches is not always guaranteed to predict the best scheme this

method is a feasible alternative. Also compared to the six heuristics individually, from

the 225 trees the most frequent scheme to produce the best result was the modified top

down, left-right approach, but only on 29.8%, so this is considerably better.

• Approach 2 - Dividing by Number of Critical States

From approximation approach 1, the input values of a gate are generated by just dividing

the gate value by the number of inputs to it. Ifhowever, the number of critical states for

components from a single gate are examined the output values are slightly different. For

example, consider the gate with three inputs A, B, and C, shown in figure 8.11.

GAlll

A B c

Figure 8.11: Gate With Three Inputs - A, B, and C

Results from section 8.10 have shown that the structural importance of the components is

the same regardless of whether the top gate is AND or OR, therefore the gate type need

not be considered. If the number of critical states for component A, for which there are

two remaining components, is calculated, the result is as previously found in table 8.1.

By examining the number of critical states the criticality of component A is Y...

Now considering a gate with four components A, B, C, and D. The criticality of

component A is 118 as shown in table 8.10.

__ 274

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

li Comp?J:\en~~~t(:~ ..••••... I }.<;ritical If And Gate . .
I···· .. ···.·c··

BeD Yes

BeD No

BeD No

BeD No

BeD No

BeD No

BeD No

BeD No

Criticality - 1/8

Table 8.10: Importance Values For a Gate With Four Inputs

If the number of components is increased the following pattern arises with regard to the

criticality of each component (shown in table 8.11):

.···<···;bNhlnher ofinimts)D.· •.
\".i--_,;:';-:'; :.<_

Importance Values - Approach 2 118 1120 •

Importance Values - Approach 1 113 lIn

Table 8.11: Pattern ofImportance Measures

Therefore, for n components the criticality is equal to 2=-1 . The differences in the values

between using approximation approach 1 and this new technique (approach 2) can be

seen in the bottom row of the table 8.11.

___ 275

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

Applying this numbering scheme the value of the components are evaluated by taking the

value of the gate and dividing by 2"-1. For the tree in figure 8.4, the new values of

importance are shown in table 8.12.

Componellt I> Importanceyalue.·S No:ofinputs) •..•...••..•... ··· •• I~utsof gates· ..• ii .. ···· •.. ·
I········

TOP I 3 from TOP A 12 AND gate's (say GI

andG2)

A-GJ- 1 1(2") = 1/4 2 fromGI, 3 GI-BI D

G2 fromG2 G2=BI El F

B=D (Y..) I (21) = 118

B=E=F (114) I (2") = 1116

Table 8.12: New Importance Values For Components in Figure 8.4

The values for each component using the repeated event rule (equation 8.5) equals:

A = 1/4 =0.25

B = [118 + 1116] 1"2 = 0.1326

D= 118 = 0.125

E = 1116 =0.0625

F= 1116 =0.0625

Again the use of this simplified version of calculating the components structural

importance and the top-down, left-right ordering for matched components produces the

correct ordering for this one tree.

The technique was programmed (sim_strl.j) and using the program schemesf the

resulting size of the BDD was compared with the best of the six orderings and the

percentage predictive results for the exact structural measure. The outcome given is

shown in table 8.13 for the same 225 trees.

__ 276

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

= 77 113 50.2%

> 112 112 49.8%

Table 8.13: Results of Resulting BDD Sizes Using Approach 2 Ordering

The result using this method produces worse results compared to the approximation

approach 1 and the exact structural importance measure. Obviously this technique is not

generating the correct ordering or values for the components. This may be due to the

factor of repeated events. As this approach is no better than approach 1 no further

research has been carried out. The BDD sizes resulting for each tree are given in

Appendix VIII.

• Approach 3 - Altering The Repeated Event Multiplication Factor

A problem area appears to be in calculating the weights of repeated events. A new

method is tried whereby the values of repeated events are added when they are

encountered, the value of the second repeated event is divided by the square root of2 and

added to the first value. If another repeated event is encountered then the value is divided

by square root of 3 and this added to the previous sum. For example, from figure 8.4 the

first encounter of B = 116. Then B is found further along the level with a value of 119.

The sum would then be B = 116 + (119)/'-/2. If there was a third repetition of event B with

a value of 1132, then the sum would be B = 116 + (119),--12 + (1132),--13.

After looking at the result of the ordering produced by this third approximation approach,

it was apparent that some tree orderings where affected and others not. The real outcome

to be observed is the effect on the BDD size. Prograrnsim_str2.fwas generated to create

the new order and schemes.fwas used to generate the BDD. For the same 225 trees as

__ 277

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

used to test approaches 1 and 2, the results for approach 3 are given in table 8.14, with

the number of nodes in each BDD for each tree given in Appendix VIII.

I·· •• ···:.·: .• " :' •.... ,:", .• No .. oftrees··. ',\SUIIlS> ·· •.. ·,.· ...• ·Percentages .. ' '.
I .. '. ". : ,......',.:. .., ... :. - '.",:"...•. ~.

< 65

= 75 (</=) 140 (</=) 62.2 %

> 85 85 37.8%

Table 8.14: Results of Approach 3 Ordering onBDD Size

These results are the best out of the three approximation approaches, although still

slightly worse than the exact structural importance measure. These results have shown

that the approximation teclmique is dependent on the way the repeated events within the

fault tree are tackled, with regard to combining the values of each repetition. As this is

the best result produced it is recommended that if an approximation technique is to be

used then approach 3 should be adopted.

8.12 Approximation Method 3 - Applying Birnbaum's Structural
Importance Method to The Tree

The principle of the Birnbaum structural importance measure can be applied directly to

the tree if the basic events are independent. Using this teclmique, the selected component

assumes the failure probability of 1 and 0 on two consecutive runs, the rest of the

components are given failure probabilities equal to Y. and the probability of occurrence of

the top event is evaluated by working up through the tree structure. The BDD variable

ordering is generated depending on the basic event that generates the largest probability

value contribution for the top event. The difference with this and the exact version of

Birnbaum's structural measure is the terms in the unavailability expression of the top

event. When this approximation method is applied to a tree the redundancies have not

been reduced by Boolean algebra and so the cut sets may not be minimal. For this reason

__ 278

Variable Ordering Heuristics For Binary Decision Diagrams Structural importance Measures

the structural importance values and resulting weights can not be expected to be exactly

the same but it may still offer a relatively good ordering heuristic.

Using this method of applying the principle directly to the tree, the component which is

selected and leads to the highest value contribution for the top event will be flfst in the

ordering of the variables. The selected component that produces the smallest value for

the probability of the top event occurrence will be positioned at the end of the variable

ordering list.

To illustrate the application of this proposed Birnbaum method, consider the tree in figure

8.6. The data file representing the fault tree structure would be written in the following

format, with the first gate in the tree given the name Gate 1 (AND gate) and the second

gate (OR gate) the name Gate 2 for reference purposes:

TOP

Gate 1

Gate2

OR 1

AND 1

OR 0

1

2

2

Gatel

Gate2

D

A

B

E

c

The code written to establish the structural importance value for each component within

the data file follows these steps:

1. Make a list of all the components within the tree structure, easiest method using a top

down, left-right approach.

2. Repeat step 2 twice, first setting the selected component failure probability to 1 and

the second time with the selected component failure probability set to O.

a. Start at the top of the data file.

h. Repeat the following steps:

• Work through the data file and fmd gates with only basic events,

substitute in value for selected component and Y, for the remaining

component failure probabilities.

__ 279

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

• Calculate intermediate values of importance - if the gate is an

AND gate multiply values of inputs, if an OR gate then use

n

I-n(l-q,)·
i=1

• Substitute in data file value for gate just calculated.

• Continue through the data file, if at bottom, start process again at

top searching for gates whose inputs all have a calculated value.

• Calculate new intermediate results.

• Continue until the Top Event gate has been given a value.

c. Record value.

3. Subtract the value gained from the second run from the first. The result is the

approximation for the structural importance value of the component.

Therefore, the structural measure for each component in figure 8.6 is:

• Measure for A = 1 - 3/16 = 13/16

• Measure for B = 11116 - 112 = 3/16

• Measure for C = 11116 - 1/2 = 3/16

• Measure for D = 5/8 - 9/16 = 1116

• Measurefor E = 5/8 - 9/16 = 1116

From these values and using the top-down, left-right method of ordering for matched

components, the ordering would be:

A<B<C<D<E

This is the same as that generated with the mathematical structural importance measure.

The approach was tested on a number of trees with non-repeated events, some produced

the same order others did not. As no approach so far has given exact results as compared

__ 280

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

to the mathematical structural importance measure, this approximated measure was

evaluated further.

Computer code sim_str3.fwas produced to generate the variable ordering list for two

hundred and twenty five fault trees (used for other approximation methods) using the

Birnbaum measure applied directly to the tree. The number of trees for which the BDD

produced was equal to, greater than, or less than the size of the BDD derived from the

best scheme of the six alternatives is given in table 8.15.

< 77

= 74 67.1

> 74 32.9

Table 8.15: Results Using Approximation Method 3

From table 8.15 it can be seen that for 67.1 % of the test set of trees the BDD produced

was of equal or smaller dimension than the BDD produced using the best scheme option

from a set of six. This result is the highest percentage of equal or smaller BDDs of the

three approximation methods tested. In comparison to the mathematical structural

importance measure, whose percentage for this category of BDDs was 76.9%, this

approximated figure is nearing the same accuracy.

It is felt that by altering the method for matched measures, other than the top-down, left

right approach, then further improvements may result.

The result produced using this approximated measure as a heuristic is approaching the

seventy percent chance of gaining a minimal or near minimal BDD achieved with the

neural network approaches. However, the simplicity of this heuristic compared to the

necessary effort required to generate an adequate network using a form of neural network

means that its potential is far greater. This approximated technique is recommended as

___ 281

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

an alternative variable ordering heuristic, which is believed to date to be one of the best at

gaining a minimal or near minimal BDD for any given fault tree structure.

8.13 Summary of Structural Importance Measure Approach

• Static variable orderings can be created in two ways:

A structured traversal of the tree (preserving neighbourhoods)

A method allocating weights to events (not necessarily preserving

neighbourhoods)

• The result of both methods are dependent on the way the tree has been drawn,

not the logic function it represents.

• A deterministic importance measure has been applied to generate an ordering of

the variables of a fuult tree, the structural measure, which is dependent upon the

logic function and not the drawing of the fault tree.

• To assess the effectiveness of the structural measure BDDs using this ordering

have been compared to BDDs generated by using other variable ordering

heuristics applying a structured traversal. The results proved to be consistently

good.

• The structural importance approach has proven to produce a BDD of equal or

smaller dimension than the previous best result from an ordering selected from

six structured traversa1 alternatives on 77 % of occasions.

• Using the two pass approach, such that the structural importance is generated

using the system probability function from the BDD generated using the best

ordering over a selection of trees - modified top-down, left-right traversal. A

second BDD is then produced using the importance ordering.

• To improve upon the efficiency of the two pass method, an approach to

approximate the weights obtained by the structural importance measure has been

researched with three alternatives.

• The first approximation method involved trying to locate patterns. Examining

the location of components with certain structural importance measures a pattern

___ 282

Variable Ordering Heuristics For Binary Decision Diagrams Structural Importance Measures

could not be established, and applying a simplified calculation procedure to the

tree itself was recommended as the next step.

• The second approximation technique considered three approaches to finding

simpler weighting methods. Using approach 1, of generating the ordering by

calculating the structural importance by dividing by the number of inputs,

produces 56% of equal or better dimension BDDs to the previous best. This is

better than using the single best heuristic of the modified top-down, left-right

approach that only predicts the best BDD structure on 29.8% of occasions.

• Approximation approach 2 of dividing by 2".1 produced equal or better results on

50.6% of occasions, although worse than approach 1, it is still better than a single

heuristic. Changing the approach to combining the repeated events (approach 3)

produced a 56% chance of getting an equal or better result than the best of six

alternatives.

• All of these simplified approaches, produce better results than using a single

heuristic, and despite not producing the same effect as the mathematical

structural importance measure are quick and efficient.

• The third method to find an alternative structural importance measure was to use

the Birnbaum measure applied directly to the fault tree. Results using this

technique produced equal or lesser sized BDDs on 67 % of occasions.

• Of all the approximation methods tried the latter, using Birnbaurns measure, is

preferred. The measure almost achieves the same percentage of gaining the

smallest BDD as using the neural network approaches, although this method is

much easier and less time consuming to implement.

• It is felt that this approximated structural importance ordering heuristic is the best

method to date in trying to achieve a minimal or near minimal BDD structure for

any given fault tree.

• Future work in this area needs to focus on improving the simplified versions of

the structural importance measure and finding an alternative method that

approaches the 77 percent performance ofthe mathematical measure.

__ 283

Variable Ordering Heuristics For Binary Decision Diagrams Conclusions and Future Work

9 Conclusions and Future Work

9.1 Summary of Work

Qualitative and quantitative assessment of a fault tree using the Binary Decision Diagram

approach has been found to be more efficient in terms of finding the minimal cuts and an

exact probability offailure can be found. The limitation with the technique however is in

the conversion process from a fault tree to the BDD 'where the variable ordering involved

can influence the resulting size of the BDD. There are already several ordering heuristics

in the literature but none of them will produce a minimal or near minimal BDD for all

fault tree structures. The research of this thesis has focussed on trying to find a solution to

the problem of variable ordering. To try and overcome this dilemma two main avenues of

research were sought. The flfst area looked at trying to select the best heuristic fur a

given fault tree from a set of alternatives, thus allowing different ordering schemes to be

selected for different trees, hence possibly over coming the limitations of a single

heuristic. The second methodology looked at a completely new heuristic approach using

the structural importance measure of the components within the tree to produce a ranked

list.

To try and select an appropriate heuristic from a set, it was necessary to choose the

alternatives. There are two types of ordering heuristic in the literature, namely

neighbourhood and weighting methods. Neighbourhood methods produce an ordering by

performing a systematic traversal ofthe tree adding the basic events to the ordered list as

they are encountered. Weighting methods usually make two passes of the tree. On the

flfst pass a weight is given to each basic event and gate within the tree, and the second

pass then orders the basic events depending on the weights allocated in the flfst pass. For

this research a set of six structured neighbourhood methods of ordering were used, as

these were shown in previous research to perform well. These schemes were:

___ 284

Variable Ordering Heuristics For Binary Decision Diagrams

Top-down, left-right.

Depth-First.

Priority Depth-First.

Conclusions aod Future Work

Modified versions of each of the three above.

To be able to choose between the alternatives a set of rules or a pattern needed to be

identified between the characteristics of a fault tree and the ordering heuristics. The

features of the fault tree which help to distinguish the appropriate scheme to yield the

smallest BDD structure were not known, and therefore a number of characteristics were

chosen which were hoped provided the correct information. The best results were gained

using eleven characteristics and these were:

1. Percentage of AND gates;

2. Percentage of the total number of events that were repeated;

3. The percentage of the different basic events that were repeated;

4. The type of top gate (AND/OR).

5. Number of Levels in the Tree;

6. Number of Events off The Top Gate (Top Gate Inputs);

7. Number of Basic Events;

8. Maximum Number of Gates in Any Level;

9. Number of Gates with Just Event Inputs Only;

10. Number of Gates with Just Gate Inputs Only;

11. Highest number of repeated events.

The first pattern recognition approach investigated was that of the machine learning

classifier system. This approach incorporated a genetic algorithm. The basic principle of

the classifier system was to generate a set of rules through a matching and bidding

process of information contained within a training data set. The classifier system has a

large number of variable parameters and although a considerable number of trials were

carried out with varying parameters a system with even adequate performance at

predicting the desired scheme choice could not be found.

__ 285

Variable Ordering Heuristics For Binary Decision Diagrams Conclusions and Future Work

Following on from this, two alternative pattern recognition approaches were tested. These

involved two types of neural network: a multi-layer network and a radial basis function

network. The basis of this method was to take the inputs of the problem and map them to

the output by using a series of weights and non-linear functions.

On reviewing the heuristics currently in the literature certain problem areas were evident.

One was that many of the heuristics were affected by how the fault tree was drawn,

therefore for the same logic expression a number of different BDDs could result

depending OI:1 how the fault tree was represented. Also many of the heuristics have a

structured pattern and even some of the weighting methods incorporate a structured

pattern. That is, the ordered list is generated by going from the top of the tree to the

bottom, and it does not allow for components to be selected from different branches of

the tree and lie next to each other in the ordering list. Another problem is how to deal

with matched components in the weighting methods, using one method to separate the

basic events with equal weights will result in a different ordering compared to when a

different separation procedure is used, again two separate BDDs for the same tree.

From this the properties required in a good ordering heuristic seem to be:

The contribution of an event to the system failure mode must be reflected in the

ordering produced.

The ordering must be robust i.e. the ordering must be dependent upon the logic

function represented by the fault tree and not influenced by the way the fault tree

has been drawn.

To uniquely map the fault tree onto a single event ordering.

Considering these points the structural importance measure was investigated. This

heuristic satisfies two out of the three points above. It does represent the contribution

each component makes to the occurrence of the top event, and it is also unaffected by the

way the tree is written or drawn. However, the ordering produced is not unique because

__ 286

Variable Ordering Heuristics For Binary Decision Diagrams Conclusions and Future Work

ties may result with some of the component measures and the means of breaking these

ties will affect the ordering. Comparing the BDD sizes resulting from the best scheme

option from the set of six used in the pattern recognition research and this new measure

the results were favourable.

As the structural measure is calculated via the BDD, hence requiring two BDD

formulations to produce the smallest end product, to improve upon this approximation

methods were adopted to find the structural importance measure or at least the same

ordering produced as with the structural importance measure. Three main areas were

addressed, fmding patterns in the tree, using simpler weighting methods and applying the

Birnbaum measure directly to the fault tree.

9.2 Conclusions

1. The three pattern recognition approaches tried produced varying degrees of success at

trying to predict from a set of six alternatives the best scheme option for a given fault

tree. The worst approach was the machine learning classifier system. The results

using this were inconsistent over a number of trials and no model could be found with

an adequate level ofperforrnance to be nsed as a predictive mechanism.

2. Two neural network approaches were used to identify the pattern between the fault

tree characteristics and the ordering heuristic preferred. The nmlti-layer perceptron

produced a correct prediction for fourteen out of the twenty test fault trees used.

Although not an exact prediction rate, this percentage for achieving a near minimal or

minimal BDD is higher than using any of the six ordering heuristics on their own.

3. The radial basis function neural network was also investigated. The results produced

were equal to those produced using the multi-layer perceptron. It was also found that

the incorrect predictions for most trees were the second best choice, with very little

difference in the desired coded values, hence reflecting that the size of the resulting

BDD was not that much bigger than the best. As the ease of generating this network

was much greater than using the MLP approach, this network technique is one

method suggested to aid in the solution of the variable problem.

__ 287

Variable Ordering Heuristics For Binary Decision Diagrams Conclusions and Future Work

4. To change the direction of the research from choosing from a selection of ordering

heuristics to finding a heuristic that singularly produced a minimal BOO the research

focussed on the structural importance of each component. Using this method of

ranking produced smaller or equal sized BOOs on 77 percent of test trials. The

problem with the technique is that the BOO needs to be constructed to establish the

structural values, which means generating the BOO twice. Despite this the technique

is feasible and it is suggested that the modified top-down, left-right approach be

adopted to generate the initial BOO from which the structural importance measures

can be generated and then the next BOO generated using the structural importance

measures, to hence obtain system parameters.

5. To make the process more efficient by irradiating the need to construct the BOO

twice simpler approximation methods were researched to yield the same ordering

permutations. The most successful of these involved applying the Birnbaums

structural measure directly to the fault tree, instead of the probability expression of

the top event. Doing this produced smaller or equal sized BOOs on 67 percent ofthe

trial data set. Although this is not as high a percent as using the mathematical

measure the result is significantly higher than using any of the other six ordering

heuristics, hence it is suggested as the best ordering heuristic to date at producing the

smallest BOO for any given fault tree.

6. Following the research, the alternative idea to solve the ordering problem is to use the

neural network approach to select the best ordering heuristic from the set of six and to

use this to generate the BOO. From this BOO the structural importance values of all

the components of the fault tree can be produced and a corresponding ranking used to

generate the smallest BOO, from which the qualitative and quantitative analysis can

occur.

___ 288

Variable Ordering Heuristics For Binary Decision Diagrams Conclusions and Future Work

9.3 Future Work

9.3.1 Examine The Input Characteristics of The Fault Tree

Following the research using the pattern recognition approaches, the predictive potential

of the best networks using the multi-layer perceptron and radial basis function still have

room for improvement. A large number of networks were investigated and it was felt

that further improvements were only possible by examination of the inputs and whether

they provide the necessary pattern information from which the outputs can be established.

As it was not known which characteristics of the fault tree were most important

examining these characteristics and adding new possibly better characteristics and

removing existing poor characteristics may help to yield better predictive results. It is

thought that examining the weights of the multi-layer perceptron may yield information

into the strengths of the connections and ultimate effect of the characteristic in deciding

the path through the network.

9.3.2 Applying Modularisation Techniques To The Fault Tree

Another method to alter the inputs of the network relates to the characteristics of the fauh

tree. The problem may be simplified if the starting fault tree is in its simplified form.

Applying a modularisation technique may help to identify key characteristics which when

applied to the neural network approach may help the predictive capabilities.

9.3.3 Continue Research With Neural Network Pattern Recognition Approaches

Following examination of the characteristics, either by reviewing the weights or by

modularisation techniques, the research can be continued with further testing of the

neural network pattern recognition approaches. The input data set could be enhanced to

accommodate more population fault trees with possibly a greater number of trees from

industrial applications. Also the parameters of the network could be altered, for example

by using more complex optimisation techniques.

__ 289

Variable Ordering Heuristics For Binary Decision Diagrams Conclusions and Future Work

9.3.4 Improve Approximated Structural Importance Measures

The research using the mathematical structural importance measure has shown positive

results. The mathematical method could be enhanced by considering different ways of

ordering matched measures. Following this the approximated techniques need to be

further researched to produce the same predictive potential and ideally a percentage high

in the nineties for the smallest BDD production for any given fault tree structure.

290

Variable Ordering Heuristics For Binary Decision Diagrams Appendix I

Appendix I

Characteristics of 51 Benchmark Fault Trees Used in Sinnamon Study
[Sin96]

i !),Fll\lltT~ee).·;.~utnbe()f: L<" "'N~bef()f} .. ·Nrinlbef6f:·;'Nritnbef()f ..•••.....
: .•....... Number. . .•.. G~t.e~ .•.••••• i.BaS1C EventsR~PeateaIJasic' .•.•.. MiDimal Cut··,,/.t·, '.' '.' 'j'.. . Events. •• ",,: ";'sets': ;.

1 79 103 39 3804
2 6 7 3 7
3 3 4 1 2
4 19 16 2 27
5 14 13 2 9
6 17 11 7 43
7 32 63 o 8716
8 29 61 o 7471
9 30 60 o 7056
10 21 40 o 416
11 3 4 1 3
12 21 40 4 84424
13 19 19 1 63
14 21 21 1 75
15 30 32 1 2100
16 42 41 21 11934
17 58 57 21 36990
18 60 57 41 11934
19 10 10 1 13
20 6 8 2 6
21 30 72 8 255
22 10 31 2 71
23 25 61 57 7777
24 12 30 4 61
25 81 199 68 8179
26 5 7 o 4
27 5 7 3 4
28 11 21 o 36
29 11 20 1 30
30 11 20 1 10
31 70 68 26 4892
32 30 34 28 35
33 26 16 11 20
34 5 7 1 3

__________________________ 291

Variable Ordering Heuristics For Binary Decision Diagrams Appendix I

35 4 5 1 2
36 122 61 60 46188
37 4 6 0 6
38 58 114 114 35300
39 4 5 1 3
40 5 6 1 3
41 8 8 1 6
~ 5 5 3 4
~ 7 632
« 7 6 3 4
45 10 10 2 8
46 153 74 46 340
~ 3 4 1 2
48 4 6 1 3
~ 3 424
50 4 5 3 5
51 10 8 4 10

__ 292

Variable Ordering Heuristics For Binary Decision Diagrams AppendixII

Appendix II

Characteristics of Benchmark Fault Trees Used in Thesis

Tree Number ' ""',0/0 ANDS,; ",('% OiffRep >,,: % Total Rep,> I <,;.,ToO Gate>' ':,.
Aaaaaaa 33.33 33.33 33.33 I
ArtquaJ 40.00 42.86 27.27 I
Arttree 66.67 25 20 0
Astolfo 36.84 12.5 9.09 0
Bddtest 66.67 15.38 13.33 0
Benjiarn 33.33 63.64 31.82 I
Bpfeg03 40 0 0 0
Bpfen05 41.18 0 0 0
Bpfig05 35.71 0 0 0
Bpfin05 66.67 25 25 0
Bp/pp02 33.33 10 9.09 I
Bpfsw02 60 42.86 25 I
Ch8tree 25 5.26 5 0
Drel019 25 4.76 4.55 0
Drel032 28.57 3.12 3.03 I
Drel057 23.08 51.22 32.81 I
Drel058 29.41 36.84 26.25 I
Drel059 26.32 71.93 28.47 I
Dresden 25 10 9.09 0
Emerh20 40 25 20 I
Fatram2 31.58 11.11 10 0
Hpisf02 28.57 6.45 6.06 0
Hpisf03 33.33 93.44 27.4 0
Hpis121 37.5 13.33 11.76 0
Hpisf36 36.73 34.17 18.73 0
Jdtreel 60 0 0 I
Jdtree2 60 0 0 I
Jdtree3 45.45 0 0 1
Jdtree4 45.45 5 4.76 I
Jdtree5 54.55 5 4.76 0
Khictre 52.38 lOO 18.64 I
Modtree 50 40 28.57 1
Nakashi 61.9 68.75 37.92 1
Newtre2 40 14.29 11.11 0
Newtre3 50 20 16.67 0
Newtree 50 16.67 14.29 0
Relcour 33.33 0 0 I
Rstreel 31.45 100 42.22 0
Rstree2 50 20 16.67 0
Rstree3 60 16.67 14.29 0
Rstree4 50 12.5 10 0
Rstree5 33.33 60 30 I
Rstree6 66.67 50 33.33 0
Rstree7 66.67 33.33 25 0

___ 293

Variable Ordering Heuristics For Binary Decision Diagrams Appendix n

"Tree Number' I' %ANDS'; ; ice, "'% DiffRep,'"," ,~ ,'JI. Total Rep,
,

Top Gate ;

Usatree 50 20 15.38 0
Worrell 33.33 25 20 I
Trialsl 55.56 50 30.77 I
Trials2 52.78 65 20 I
Trials3 54.55 46.67 21.88 0
Trials4 55 34.62 20.45 I

Random I 56.45 85.71 21.18 0
Random2 50 83.33 41.67 0
Random3 50 40 28.57 0
Random4 41.67 24.49 19.67 0
Random5 50 80 44.44 0
Random6 35.56 83.67 33.61 I
Random7 66.67 60 37.5 0
Random8 71.43 71.43 28.57 I
Random9 40 66.67 35.29 I
RandolO 50 33.33 25 0
Randol! 62.5 40.43 26.57 I
Randol2 62.5 32.35 22.45 I
Randol3 30.43 78.57 31.43 0
Randol4 66.67 28.57 22.22 I
Randol5 20 lOO 27.78 0
Randol6 38.71 54.35 29.76 0
Randol7 50 16.67 14.29 I
Randol8 64.52 68.24 32.58 0
Randol9 62.75 83.02 33.08 I
Rando20 42.31 87.23 28.67 0
Rando21 60 0 0 0
Rando22 34.78 60.94 30.47 I
Rando23 63.16 41.03 28.57 0
Rando24 50 14.29 12.5 0
Rando25 57.14 68.75 33.33 0
Rando26 66.67 75 40 0
Rando27 62.22 80.43 32.17 I
Rando28 47.06 40 28 0
Rando29 68 47.37 26.87 0
Rando30 64.71 9.76 8.89 I
Rando31 59.57 91.67 27.5 0
Rando32 50 lOO 40 0
Rando33 35.29 59.38 30.16 I
Rando34 41.67 47.22 27.87 0
Rando35 63.16 70.83 33.33 I
Rando36 46.67 24.14 18.92 0
Rando37 66.67 83.33 33.78 I
Rando38 45.45 23.81 19.23 0
Rando39 37.04 84.62 33.33 I
Rand040 62.5 29.41 22.73 0
Rand041 50 50 33.33 I
Rand042 44.44 41.18 29.17 I
Rand043 60 11.11 9.68 0
Rand044 55.56 15.25 13.24 0
Rand045 72.73 67.86 31.67 I
Rand046 36.36 43.9 26.09 0

___ 294

Variable Ordering Heuristics For Binary Decision Diagrams AppendixII

"'-, < . Tree. Number· . , '< 'Yo ANDS '" % OiffRep . 'Yo Total Rep , I."" 'Top Gate,
Rand047 70 40.28 27.42 0
Rand048 50 66.67 33.33 1
Rand049 60 37.5 25 1
Rando50 50 50 33.33 I
Rando51 33.33 60 33.33 0
Rando52 60.61 70.59 30 0
Rando53 61.54 52.38 31.43 1
Rando54 38.46 14.71 12.82 1
Rando55 33.33 60.87 34.15 1
Rando56 50 66.67 40 0
Rando57 40 62.5 29.41 1
Rando58 70 58,82 35.71 1
Rando59 69.57 28.57 20 0
Randn60 61.11 22.86 18.39 0
Randn61 57.89 75 29.41 1
Randn62 61.54 66,67 34.29 1
Randn63 33.33 60.87 34.15 1
Rand064 63.16 28.57 22.22 0
Randn65 54.55 40 24 0
Randn66 58.82 53.85 27.45 1
Randn67 50 50 33.33 1
Randn68 50 87.5 36.84 0
Randn69 50 50 33.33 0
Rando70 50 16.67 14.29 1
Rando71 50 50 30 1
Rando72 60 83.33 35.71 0
Rando73 63.64 64.71 33.85 1
Rando74 33.33 33.33 25 0
Rando75 50 47.06 28.57 1
Rando76 66.67 31.25 22.22 1
Rando77 58.06 64.86 30.38 0
Rando78 58.S2 23.33 18.42 1
Rando79 50 57.14 33.33 0
RandoSO 44.44 11.54 10.34 1
RandoSI 50 33.33 25 0
RandoS2 66.67 69.23 33.33 0
Rando83 64.29 3S.1 26.67 1
Rando84 42.11 20.51 17.02 0
RandoS5 61.54 42.31 27.5 0
RandoS6 66.67 28.57 22.22 I
RandoS7 36.36 22.73 17.24 0
Rando88 54.55 13.64 12 0
Rando89 41.67 36.59 24.59 0
Rando90 50 0 0 1
Rand091 62.5 50 29.59 1
Rando92 63.41 71.88 35.38 1
Rando93 42.11 30 21.S2 0
Rando94 66.67 2S.57 22.22 1
Rando95 36.36 36.36 25.SI 1
Rando96 66.67 12.5 Il.ll 1
Rando97 50 20 16.67 0
Rando98 36.36 23.08 17.39 0

___ 295

Variable Ordering Heuristics For Binary Decision Diagrams Appendix IT

, Tree Numoor·. ".'.,., % ANDS···.·,'. ::",; % DitfRep} '/:: %Total Rep ',·.',:·'TOI> Gate . i.'

Rando99 65.38 65 33.77 I
RandlOO 68.42 55.56 28.30 I
Rand\Ol 66.67 14.29 12.5 I
Randl02 66.67 28.57 22.22 I
Randl03 38.46 21.74 17.24 0
Randl04 62.5 59.09 31.71 0
Rand\05 46.67 12.12 10.81 0
Rand 106 38.71 62.16 30.26 I
Randl07 50 12.5 11.11 0
Randl08 37.5 74.29 34.21 I
Randl09 55.56 19.64 16.18 0
RandllO 41.67 60 29.51 0
Randlll 42.11 68.18 31.91 0
Randl12 50 40 28.57 I
Rand1l3 50 72.73 28.57 I
Randl14 50 33.33 25 I
Randl15 38.1 44.83 28.26 0
Rand1l6 58.33 69.7 33.82 I
Rand 117 50 29.41 21.74 0
Randl18 42.11 20.51 17.02 0
Rand1l9 57.14 20 16.22 I
Randl20 60 17.95 14.89 I
Randl21 38.89 35.14 26 I
Randl22 50 20 16.67 0
Randl23 55.56 23.53 17.39 I
Randl24 58.33 20.83 16.67 0
Randl25 50 35.71 26.32 0
Randl26 40 37.84 26.42 0
Randl27 41.67 10.71 9.68 I
Randl28 58.33 62.86 32.35 I
Randl29 62.5 30 23.08 I
Rand130 61.54 56.52 32.5 0
Rand131 50 28.57 20 I
Rand132 48.39 66.67 30.95 I
Rand133 61.76 48.21 27.55 0
Rand134 37.93 54.17 30.59 0
Randl35 37.5 69.7 35.94 I
Rand136 50 50 33.33 I
Rand137 50 23.81 19.23 I
Rand138 60 50 29.03 I
Randl39 42.86 55.17 32 I
Randl40 33.33 11.11 9.09 0
Randl41 41.67 60 29.51 0
Randl42 37.5 63.04 29.9 I
Rand 143 64.71 35.71 25 0
Randl44 37.93 54.17 30.59 0
Randl45 45.45 3.03 2.94 0
Randl46 50 23.81 19.23 I
Randl47 38.89 67.44 32.22 I
Randl48 33.33 11.11 9.68 0
Randl49 40.91 10.53 9.38 0
Randl50 37.93 54.55 32.43 0

__ 296

Variable Ordering Heuristics For Binary Decision Diagrams Appendix IT

,c Tree Nuinber .,%ANDS' .. .• >%DiffRep , %TotalRePi .-".'-'",': cTopGatec'

Randl51 50 14.29 12.5 0
Randl52 50 50 33.33 I
Randl53 43.75 61.9 27.66 I
Randl54 45.45 33.33 23.33 0
Randl55 60 30.30 21.28 I
Rand156 70 27.27 21.43 I
Randl58 30.61 47.89 27.64 I
Lisaba9 29.41 12.20 10.87 0
Lisab30 63.16 37.50 26.67 I
Lisab60 57.14 31.25 21.14 I
Lisab59 50 0 0 0
Lisab31 64.52 68.09 34.04 I
Lisaba4 57.69 34.09 23.81 I
Lisab57 38.89 57.14 34.78 0
Lisab28 33.33 0 0 0
LisablO 51.85 45.83 27.50 0
Lisab35 36.84 30 21.05 0
Lisab51 62.50 10.53 9.52 I
Lisab44 30 55 33.33 0
Lisab25 46.67 38.46 27.03 0
Lisab54 33.33 26.67 21.05 0
Lisab53 20 11.11 10 0
Lisab52 64.52 84.21 34.04 I
Lisab34 62.50 50 30.43 I
Lisab36 34.78 92.31 57.69 I
Lisab42 57.14 9.52 8.70 I

____________________________ 297

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Appendix III

Number of BDD Nodes For Each Ordering Heuristic For All Benchmark
Fault Trees Used in Thesis Studies

TTee

Key To Table:

Scheme 1 = Top-down, left-right
Scheme 2 = Modified top-down, left-right

Scheme 3 = Depth-first
Scheme 4 = Modified depth-first
Scheme 5 = Priority depth-first

Scheme 6 = Modified priority depth-first

Column 1 = Tree name and in brackets number of minimal cuts sets in tree
Column 2 = Scheme Option

Column 3 = Number of ite calculations required to generated BDD before minimisation
(If equals 999999 then the calculation exceeded computer capacity)
Column 4 = Number of ite calculations after minimisation

Column 5 = Difference Between ite calculations before and after minimisation
Column 6 = Number of nodes in BDD before minimisation

Column 7 = Number of Non-repeated nodes before minimisation
Column 8 = Number of nodes in BOO after minimisation

Column 9 = Number of non-repeated nodes after minimisation
Column 10 = Difference in number of nodes before and after minimisation

999999 = Calculation could not be performed (in excess of limits)

Scheme Ite after Diff. Nodeb4' 'Non-rep Node af ..NOn-1,~Iteb4 1··Dift ,.,. ",. I:·',' > I'" . . . , .

I·' "". .' "." .: ['T ~ •.. rep_ .. I ..' ',-.
aaaaaaa ' ..• 1.';· .6· . 7 1 ." 4· . .• 4/·. ·.A······ ' . 4. o '.

(2) ,·2. '·.7' ' .. 7 .·.··0 3 . •. <3> I' 3' 3 0'··
" ···3' ,6' I 7 I .. ' ·4···· 4 ;; 4.' . 4 . 0 .

.·'4 . 7 7 0 . 3 3 .' . 3 . 3 0 . '.'

., 5 ...•. .' 6 7 I 4 4 .. 4. 4, . 0
. .·.6 ., .• ,' 7· .' . 7. 0 •• 3 ,,3 3 3 0··
Artqual I 21 21 0 14 14 11 8 3

(7) 2 21 21 0 11 8 11 8 0
3 22 22 0 11 8 11 8 0
4 21 21 0 11 8 11 8 0
5 24 24 0 17 8 17 8 0
6 24 24 0 17 8 17 8 0

I Arttree "'.'1"', " .. ' 9i •.. ·12 3 i.,.: ·;.r'! ./ ·.,,5··.· . : •. 5 Y ",',2,
(2), ", : 2'''';: ':.,U· ,13 ',' I 2 ':.5"<).;., n,·:: ,,,,,, ·,A." ·,.·L.

- 'j 3,,; "'.:9"',,.·., "12" , I 3 i ',- ':,". "i", .. ;::'5i"i,:' ',5,: .,'",2 "'i"; ,:',::"4".' ",,11' , ,13' ". 2 ',' 1,;>,,5;.:., ':,T,:! .c. .,,>::4'. ". "4:' i,.,.I·,,'.--l,· ., .. ".' . " ':.','10., ",,'.\0 .' 1"'··0: . :41', ":_"'. 4~"'j'. ,';',,'4 ", '. : .·4:-·· .. ' ., 0\" . ,.
""(i:: ... ":'10", 10 ' I···· 0 " 1,'4.':",- ',,(,,'''.:4:. " 4 ."'; '0':,: 't: .. , ,

__ 298

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Astolfo 1 64 107 43 114 37 52 28 62
(27) 2 65 104 39 III 36 51 27 60

3 75 102 27 131 26 51 26 80
4 75 102 27 131 26 51 26 80
5 72 100 28 115 26 49 26 66
6 71 98 26 107 25 48 25 59

Bddtest. '" .. ' 1 .. 50 82 32: " . • 36 29 . .17.: ..:17 ' .. 19
I (9) . . 2· 53 85 .···32 ; .. 36 29 . '17 '17 . 19

.• 3···· 56 89 I·' 33 38 25 20 .20 '18··· .
.. 4' '" 59 92 33 . " 38 25 20: 20 18

5 61 115 54 . 50 35 . 19 19 . 31
..• ·6 61 115 54 ' 50 35 19 ." 19 31

benjiam 1 66 100 34 ll5 39 88 43 27
(43) 2 73 86 13 82 43 82 45 0

3 74 114 40 117 33 85 41 32
4 81 94 13 76 34 76 38 0
5 83 137 54 149 35 90 40 59
6 82 121 39 120 34 85 39 35

bpfeg03 1 237 345 108 290934 101 15360 101 275574
(8716) 2 458 566 108 290934 101 15360 101 275574

3 310 383 73 82007 63 10940 63 145464
4 531 604 73 82007 63 10940 63 145464
5 999999
6 999999

bpfen05 .' 1 213 308 95; .• ·151974· 90 13630 90 316462
(7471) , 2, . ' 472 567 95 •. , . . 151974 90 13630 · ·.90 316462

3 290 359 69 ·51497 61 9280. 61 46019
4 . 549·· 618 80 ·51497 61 9280 '61 . 46019 .

..... ',·····5. 233 310 ·77 ' 361687 61 .' 8865 · ····61 340122
. ., .'.6.' 233 310 1,;,77 361687, 61 .8865· , 61 "." ",340122 '

Bpfig05 1 202 295 93 144054 88 12890 88 277125
(7056) 2 450 543 93 144054 88 12890 88 277125

3 278 345 67 49067 60 8782 60 44024
4 526 593 67 49067 60 8782 60 44024
5 229 304 75 266437 60 8450 60 257987
6 229 304 75 266437 60 8450 60 257987

Bpfin05 1 'I ' 126 '. 172 46. . 5316 ", '. 45 759 ' 45 " 9440 '
(416) '2 . 268 ,314 46 " ,',5316 45 . 759' " 45 ' 9440

". 1'3 ' 193 ' 221 28" 2915 40 564 ,.40 " " 2407
'. .,4 335·· 363, 28 •• ". 2915 ··.··40 '. 564. ..:'40 2407,

1"·5.;, I' 129 : 179 ,.,,50. :.15744,; I. 40 564" ':40. ' ." 15180
, ,';'

1.'c 6 ,129. . .. '. 179 ' ,. 50>";. ,,+15744, .40 ··564 ' ,:40,\ ,15180 "
bpfpp02 1 10 10 0 4 4 4 4 0

(3) 2 10 10 0 4 4 4 4 0
3 10 10 0 4 4 4 4 0
4 10 10 0 4 4 4 4 0
5 10 12 2 5 5 5 5 0
6 10 12 2 5 5 5 5 0

Bpfswo2 ,I .. ., 221 249 .' 28' 112937' 153 .' 112557 · ",155', 380
(84424) 2 243 243 '·.·0 ll2553 151 ll2553 , '. 151 ' ·0

' .. ,,3.· . 151 152 ' I· ", 110987 ' 61 .,' 110987 ",62 " ,. , 0""· "
I ,.4. ..' , 175 '., ' 175 '0,,: ' 110698 61 '110698' ,:.61 0

___ 299

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

.5. •. 163 .. ' 189 26· 167835 .. 60 115611 , ·c·· 61 52224
6 . . 161 . 190 . I.··· 26 " ····166390 !. 61 ',' . 115322 62 1"'51068

Ch8tree 1 23 23 0 11 9 11 9 0
(5) 2 24 24 0 11 9 11 9 0

3 22 22 0 11 9 11 9 0
4 23 23 0 11 9 11 9 0
5 26 26 0 15 9 15 9 0
6 26 26 0 15 9 15 9 0

dre1019 . 1 48 49 ..•.. 1 72 '. 20 .·.··.72 ... 20 0
.' (63) . 2. 98 98 I o ...•. 69~ I' . 19." '.' 1.>69. -"~ .19 .

0 __

· 3 48 49 1 '.' 72 20 I 72 20 O·
4, 98 98 ". O· ." 69 .'. 19 69 19 0 .

5 48 49 . 1. ". 72 20 . • '.72 .20 ' . ··0.·
" .•.......

· 6 . 48 . 49 1·· 72 20 I' 72 20 0
dre1032 1 55 56 1 91 22 91 22 0

(75) 2 125 125 0 87 21 87 21 0
3 55 56 1 91 22 91 22 0
4 125 125 0 87 21 87 21 0
5 55 56 1 91 22 91 22 0
6 55 56 1 91 22 91 22 0

. dte1057 c.l . 92. . 93 .' 1 . ·.··2590· 44 •. 2590 '.144 O.
'. (2100) ',;;'2.' .• ·180' '.' 180" o ." 2478· •. ,43 . 1·.2478·' .,43 0'

. ",·.3" 104 .' 116 .. . 12 .' 2856·· 33 >2716 33 .'140
4' 191 191 0 2712 32 2712 1'·'32 105 .

.... /i '.
5 .. 101 .. •·. 113 12 . 2619 . 1· .. 33 ' . . ,2491 33 384
6' 'lOL 113· •. . 12 ,2619 . I' 33 2491 1 . .33 352

dre1058 1 265 464 199 84902 172 24938 183 265908
(11934) 2 380 446 66 24764 153 24764 162 265908

3 494 698 204 57222 181 21787 245 93585
4 530 602 72 27090 126 20948 160 93585
5 459 778 319 111374 233 25080 323 150350
6 462 781 319 111374 233 25080 390 150350

. dre1059 . 1. •. 326 '. 539' .' 213' ; 324532 223 61596 280 273668.'
;(36990 ,·.2. ' '476 '. 566." ... ,90". .,324532' ' '213 '; .. 61476 .; '. >258 • '273668

" !3 " .' 771 .' 1263 492/ .' 193068·· 1>381', .. 103650 "549 .' ·'.89418 .
14 .', 1095 . 1447, 352 .' '126718 I 361 102760 519 23958 .

I·.·.' " ,
.,·5. " 999999 ." ' :', . ,.' " '• , ;' ... ' . ' " .'. .." .
,,':6; , '999999 I·...; . , ,/,. ;":' .. ' "" .. I·.·· " :: >,' .. "- 1">':" I. c,:

dresden 1 999999
(11934) 2 999999

3 999999
4 999999
5 2582 3104 522 221217 310 27125 398 194092
6 2582 3105 522 221217 310 27125 398 194092

Emerh20 .T. 25· 25·'" .. O. 16 .' ' 10 .. 16, ' . . '.10 o ' .'

1(13) .. 2.,··.·· .' 28'" I·:'· 28 ,".' 0, :"," 16 ••• 1·::·,10.,.·· ... ;dI6· " ";,10 .. ' ·.··.',0.·.·:
I' . , .. ,3 . ····.25: ,., 25:, "'0."'" , ': 16•. I', 10' , . 16 . I" '·"10 . 'c' 0' .. ".
I. ',' 4 28 . 28 :,'. • 0 16 '. ,.10 16 10 0

· ·5 29 . 35 ' 6 25 . I. 10 .··16 . · .. ····10 . '. 9--,
I.·,,,, . .,6,· " ·.··.29·· •. , • 35 .. ,'; .. ·6 ':.: .:c,> 25 ;'.' ::: ;:'.;;:10," ' . •• ',,':16 ". 10"". ''.;;9> . "'~

Fatrarn2 1 25 27 2 12 12 12 12 0
(6) 2 26 26 0 10 10 10 10 0

___ 300

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 25 27 2 12 12 12 12 0
4 26 26 0 10 10 10 10 0
5 29 32 3 16 14 14 14 2
6 29 31 2 14 13 13 13 I

Hpisf02 . I 387 707· . 320 214237 .. 200 476 136 213761
(255) 2 494 814 . 320 214237 200 476 136 213761

3 336 456 120 '164539 .' 98 296 98 164243
4 444 564 .' 120 164539 98 296 98 164243
5 283 425 142. 290695 93 296 99 360681

I 6 283 . 425 . .142 290695 . 93··· 296 99 360681
Hpisf03 1 108 139 31 246 43 86 43 160

(71) 2 185 200 15 202 42 82 42 120
3 108 139 31 246 43 86 43 289
4 185 200 15 202 42 82 42 225
5 152 233 81 431 59 102 59 329
6 153 234 81 409 59 101 59 308

Hpisf21 L . 503 702···· "199/ 10.18535. 188 '·18772.' 1 188· 54766>
1 (7777) .. 2 . 1203 ···.·1398 :'\195',:, '·,:1.8.451.' <186.' " 8770 .. I' 186 ... , 42572··.·

3 507·: '··595·:. 1./ 88 : ',10635 '.' '.'182 • ·8619 . '. 162 11155
·······4 . 1207 . 1272 165.; ·····10593 180 ."·8617 160 9101.

5 . 524 612 . .88, 10635· ... 182 8619 "·162 2016 '"
." 6 508 596' ' .. ' 88: .10635 .'. 182 8619 162 2016

Jdtree1 1 17 17 0 12 10 12 10 0
(4) 2 17 17 0 12 10 12 10 0

3 16 16 0 10 7 10 7 0
4 16 16 0 10 7 10 7 0
5 15 15 0 11 7 11 7 0
6 15 15 0 11 7 11 7 0

. Jdtree2 1 20 20 . ·.0 12 . 10 '.' 12 10 . O.
(4) . 2 20 20 0 . 12 10 12 10 0

3 19 19 . 0 .' <10 . .' '. 7 10 7 0
4 19 . 19 0 10 7 10 7 0
5 18 18 0.:.' 11 7 . 11 . 7 0

. : 6 18 . .' 18 '. .0 11 .
." 7 .' 11 7 0 .

Jdtree3 1 67 67 0 79 37 79 37 0
(36) 2 67 67 0 79 37 79 37 0

3 59 59 0 71 21 71 21 0
4 59 59 0 71 21 71 21 0
5 58 58 0 76 21 76 21 0
6 58 58 0 76 21 76 21 0

:;J~~br< I·" 1 .72 . 1:,';72.:: t · .• 'Od,; "'.;.: •• (;7 :>. . :n·.·!', :67 ··31 ·.0 .">
.2 '.' .•.. ,72' ',,72:.:: ;, !. . ,·:; •. 3t· ... :;67> : . 31 . ·"···,0 .. ··

, '. >
. '·3 .:.' 1.·66 ; 166;:: ;·:' ... 0.' .,.;, ',Q; ';,; ·>.YI9,.' : 59' ; ' .. 19 . 0 ".:

4 .' 66 .' 66_~< '".0'" .. >':.59;',:'; d9:· '>:59· , 19 ,0······

" .
5 ." ·55 .. 55 ·,0 .•.• ; •.. /,63.· .. " ,'~, ,19'·< 63·" 19 I 0 '.'

"'. ;. 6 55 55._ ',·0<; ,./63,. I" 19. 63 19 , 0·.·
Jdtree5 1 66 113 47 76 35 21 21 55

(10) 2 66 113 47 76 35 21 21 55
3 58 76 18 70 20 20 20 50
4 61 80 19 92 22 22 22 70
5 57 77 20 72 21 21 21 51
6 57 77 20 72 21 21 21 51

___ 301

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Khictre 1 191 216 .. 25 1244· 28 32 ' 27 ". 1212·
(21) 2 201 226 25 .. ··1244 .. 28 .', I'· .. 32 27 1212 ".

3 202 243 41 1182. 36 ' 36 31 1146

I,' 4·' 196 221. '. 25 1134 28 32 27 1102 .

5 '.·158 . 190 ' . 32' ." 3377 28 32 27 3345

..... , 6 '. 159 191 32 '.' 3377 28 32 27 . 3345>

Modtree 1 13 13 0 4 4 4 4 0
(2) 2 13 13 0 4 4 4 4 0

3 13 13 0 4 4 4 4 0
4 13 13 0 4 4 4 4 0
5 12 12 0 9 5 5 5 4
6 12 12 0 9 5 5 5 4

. Nakashi 1 211 427 216 .. 715 '. 213· 73 58 642

" (20) 2 203 .' . 414 211 460 115 .. 72. 60 388
." . '. 3 156 281 I 125 . 1049 70 ···.·84 54 965

. 4 153 '., 270· 117 . 766. 65" . 83 53 .. ' 473 .• '

....•. 5 110 168 58 536. 43 ·.64. 38 487 '-,-
. ' ..•... '. 6 1·109 164 55 550 42 . . 63····.·. . 37·· 1450

Newtre2 1 17 22 5 11 7 7 7 4
(3) 2 19 23 4 9 6 6 6 3

3 17 22 5 11 7 7 7 4
4 19 23 4 9 6 6 6 3
5 17 22 5 11 7 7 7 4
6 18 23 5 10 7 7 7 3

I Newtre3 .. , .' 1 11 14· ...• ' 3 ' .. 6 . 4 4 4 2

I··.·· (2) . 2 .11· '. 14 3 .' 6 4 '. . 4 .4 2

I .
. ·· .• 3, . 11 .. 14 ·3 . 6 4 .. 4 4 2 ..•.

····4 '11 .' . 14 ·····3 I 6 '. 4 .'. 4 4 2
I 15 '. 11'. 14 3 6 .. 4 4 . 4 .. 2
" •.... . . '.' 6 . 11 ·.14 .• 3. 6 '" 4 4 ••• ·· 4 '. .' ··2 . "

Newtree 1 14 19 5 11 7 7 7 4
(3) 2 16 20 4 9 6 6 6 3

3 14 19 5 11 7 7 7 4
4 16 20 4 9 6 6 6 3
5 14 19 5 II 7 7 7 4
6 15 20 6 10 7 7 7 3

';Relcour. . ". 1·.· 13: ,: 13. 1·<01 1".9'·"\ ··6.··.' .' 9·· .. ". '. 6 ().'

. (6)
' .

.·2< ·.···14'·· .,14'0' I: 0'" ·.··,9 y
·· ·6.··· ·':.9

.
6 .. O~. "-": .,' ,:' 3'" I" 13 ". 13:. 1·"0 . 9 I "'6 .••. ,9 .. : 6 O.

.f> '~4"" 1·14" . ./ 14· .. o '.' 9._ I • 6. 9 •. 6 •• .0. '"
, 5. I 12.' . 12 0·.···· .. 10. .' I 6. .10 . I.' '.6 . '0 '.: •. 1

--'----•......... '6· 12' 12 .' . , 0 10 . I tt.·. .. 10·- 6. , .. 0 . ,
Rstree1 1 15 15 0 4 4 4 4 0

(3) 2 15 15 0 4 4 4 4 0
3 15 15 0 4 4 4 4 0
4 14 14 0 4 4 4 4 0
5 15 15 0 4 4 4 4 0
6 14 14 0 4 4 4 4 0

"Rstree2, .. ··.··L • ·17.'. ,·.17> . '0',', ',4> " "'."4' .. (,.' 4
, I" 4 .. ' 0

---I· (3}"" ,·,·2 1,·(17.' 17.·' .,.·0" .'1'4 .. ·•• 1"4'", i.··· '4 4' ..•.. 0."
I:.., ,.3,. 17 :.·,17" ','0 ' •. 4·: I? 4'._

••••• 4 .. . 4 .' .. 0··.-•
4' . I:' 17 17•.... O· .. ' .. '

4. ,·.·.· .. 4 ..• .' . 4. 4 0.:, ".

________________ ~_______________________________________ 302

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

5 17 17 ;. 0 4 . I·' 4 4 4' 0 ..
6 17 . r-:- 17 '. 0 .' <I 4 4 4 0

Rstree3 1 21 23 2 13 11 13 11 0
(6) 2 21 23 2 13 11 13 11 0

3 23 23 0 11 8 11 8 0
4 23 23 0 11 8 11 8 0
5 23 23 0 11 8 11 8 0
6 23 23 0 11 8 11 8 0

Rstree4 1 15 15 O· 5 5 .•. 5 5 0
(4) 2 15 .. 15. 0 5 ... 5 . 5 5 • ".0 .

3 15 • --cc 15 0 5 . ' ·5·' I 5 5 "0

.' 4 ··15 '. 15 • 0 '5 . 5 ··.5 .' 5·.·· 0'.'
5 15 ;15 . . 0 5 5 -:- -:C-5 5 0

·.··6 15 15 " 0 . 5 5 ··5 5 o ' .
Rstree5 1 10 10 0 2 2 2 2 0

(2) 2 9 9 0 2 2 2 2 0
3 10 10 0 2 2 2 2 0
4 10 10 0 2 2 2 2 0
5 10 10 0 2 2 2 2 0
6 10 10 0 2 2 2 2 0

I. Rstree6 L 16 . 16 ; . '. O' 4 :".A•. 4'·· 4 .'. .. 0

I, (4) .'. 2
.....

. .17 .' 17 '. 0 "4' . " 4 .' . 4 4 . ···0 . '.

. . 3 ~16 . .16 0 .·4 4 4 4. '.' ' .. O. .
I \ .. ' • '. 4 '14' • I~ 14 O· 4 '. 4. 4·' '. 4 o .'.

........ . 5 .. 14 ' .. ' 14 0 4 4 ': 4 4 ." . O'
'. : : ·6 14. .14 0 I· 4.· ":A· -.' 4 4 O ..

Rstree7 1 46 55 9 33 18 23 18 7
(8) 2 50 59 9 33 18 23 18 7

3 38 47 9 33 13 20 13 22
4 41 50 9 33 13 20 13 22
5 40 53 13 55 14 20 14 35
6 40 53 7 55 14 20 14 10

• Usatree I·' 1·9 .. 1.< 10 1 .. : .. 5·. c, I." 5.'.· 1 5· I 5 .' ':0'•
(2) re 2, -:--:-10 . 1.'10- F· 0 --cc r:::---:c 4 '. 4 .. .A. 1".4.· I •. 0·"

I
. .

'3 9 :.10 1.1 .• 5'. 5 '5 5· .•. . . 0: •.
'. .

-- 4-:: '. klO- . 10 I. 0 ·.A·.· .. ·· . '4' .:: 4. 1····4 .. ". 0': I:" . .. 5< ····10 ' .12 I. 2 . "'7·. " 1:'.6 .. .: 6 •...... 6 .. " ...•. J.
... ' '. ...•... .'

6 . ". 10 L. 10· .. o . ••. 5 . I·" 5': • .. '. 5," 5 . .•. O·
Worrell 1 36 38 2 19 16 18 16 1

(10) 2 35 37 2 19 15 18 15 1
3 34 37 ·3 17 13 16 13 1
4 34 37 3 17 13 16 13 1
5 34 37 3 17 12 15 12 2
6 34 37 3 17 12 15 12 2

• Hpisf36 I 1· . 134"C' 177 43 I 322 . . 42". F80 . I···· 42: '242, ..
I· . (61) 12 ... I 209 ·1····· 242' 33 178 040: 72'. '40 .. , "106': .

.':.'
f' 142 . . '.' 178 . 36 1'220'cc l-:-C 42.', = 80 .1.42. ·140"

i,
4 '.217 . .239 .. ,:22 . ··132 ·"40" "72:' " AO', ,.60 ,

.~.f' . ·118; F176. .• 58 . .• ·890F . ,:46· •. : I .. 84·,' 1'44 " . '·806":.
....... '., .'. : 6 ' 118 .• 176· /. ,~ 58'.: ;" 890 '46' :84.:,' 44. " 1,806 '

Trials1 1 297 479 182 1190 139 158 95 1032
(45) 2 298 471 173 913 138 157 94 756

__ 303

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 271 446 175 2264 106 200 85 2064
4 269 435 166 1842 105 197 83 1645
5 289 470 181 1678 104 169 84 1509
6 277 463 186 1246 100 169 84 1077

.. Trials2 • I 77 87 .. 10 37 .' I 17 15 .14 . 22·
(6) . 2 . 78 89 11 37 17 15 14 22

'3 78 88 10' 29 17 ! 16 • 15 13
4 78 89 I 11 37 17 15 14 22

• 5' 89 . 101 •. 12 .' 53 .. ' 18 14 ." 14 39
6 93 105. .12 43 .' .' 18 15 '. 15 28

Trials3 1 142 142 0 2 2 2 2 0
(1) 2 150 150 0 2 2 2 2 0

3 160 160 0 2 2 2 2 0
4 168 168 0 2 2 2 2 0
5 174 174 0 2 2 2 2 0
6 174 174 0 2 2 2 2 0

Trials4 I . 414 554 '140 . 312 115 162 102 . 150 ..
(49) • 2 . 415 555 '140 . 302 115 .163··. 103· 139

'3 ...• 506 679. · '173. .688 ' 138 .167 .' 116 '. 521 •. '

I 4 •. 515 675 • ·"160" . 637" . 133 . I •. 164 .. ' 113 .' 473 ...

I
5 .'. 651 946· '. . 295 1940 183 199 . 133 1741

... .• 6. . 651 ' 946 295 1940 183 199 133 1741

Random 1 23 23 0 7 7 7 7 0
1 2 26 26 0 6 6 6 6 0

(5) 3 23 23 0 7 7 7 7 0
4 27 30 3 8 6 8 8 0
5 21 27 6 11 9 9 9 2
6 21 23 6 11 9 9 9 2

Random '1 . 14 14 0 2 ... 2 2 • 2' . 0

12 '.' .2·" . 16/· 16 /0. • 2·.·· 2 <2 •.... 2 .. ····· '" O' '.'
1 (2) 3 14 14 c.... O· .. ,·2.·.· 2 .. 2 ... ' 2 .' '. o .

. ' ·4 16 . "16 0 2 '. 2 ,2 2 0
5·· 14 I 14 ·0 2 2 . '. 2 .. 2 0

. " .. .• . 6· 15 I. 15 .. ' .. ··.· •. 0 • '1.· ·2.' 2 2·.····· I . 2.···. o
Random 1 513 661 148 2471 94 447 90. 2024

3 2 523 660 235 2341 93 436 88 1905
(235) 3 587 755 168 4874 81 357 81 4517

4 598 756 158 4374 80. 354 79 4020
5 650 866 216 437189 151 1007 97 436182
6 616 794 178 286685 143 1001 93 285684

. Random '.1. . .16· I·" 16 c •. 0. .• 1,··5 ••.•• ! •• ' 5· ••• .•• ·5 'c' 5'· . . o A.,'
4 . 2·'· . 20.' 20 .. O. I 5 . 5 ····5 5·,. o· .

'c (5) 3. 16 .• 16 . 0···· ·5 5 .' '5 5 0
...... .4 20· 20 . 0' .) . 5, 5 . •. 5 .

• 5 . 0

>
.5< . . ····.·18 • . ····18. ' '.· .• ·0 . . 5·· .. I·, 5 ... • ... 5. .' 5..' " ,c' 0.· •..•

, ••. 'p .. : . 18.·. ..18 • .:.0.:':'. !. ···.5/·· • • ·.5" • :.:" 5.' . .5;.· ... I': . 0'.:
Random 1 1521 3313 1792 71851 917 321 190 71530

6 2 1539 3314 1775 40210 924 319 187 39891
(93) 3 999999

4 999999
5 999999
6 999999

___ 304

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Random . 1 14 14 0 .. 4 4 4 4 0
7 2 .. 16 16 ·0 4' 4 '4 4 0

(1) 3 14 14 0 4 4 4 4 . 0
•

-4 > 14 I. 14 0 8 5 '4. 4' :4
5 .. 16 16 0 4 4 . ". 4 4 0

. 6 15 15 o . --c 4 . 4 . 4 4
.....

0
Random 1 66 80 14 37 19 16 16 21

8 2 73 86 13 36 18 15 15 21
(4) 3 66 77 11 31 15 15 15 16

4 78 94 16 57 18 23 18 34
5 65 77 12 32 16 16 16 32
6 69 80 11 31 15 15 15 16

I Random 1-:- 36 36 0 6 6 6. 6 0

I" 9
I. .. 2' .' 37 '. 37 ... 0' 6 ... 6 .6 6 0

•. (2) -:- 3 36 . 36 O· . 6 .' 6 .~ -ec 6 · . 6 O ...
4 36 .. ' 36 0 10 10 .. 10 10 0

-ec 5 34 34 0 10 6 ' .. 10 6 0 .. .
6·". 34 34 0 10· •. 6 10 6 0

RandolO 1 15 15 0 4 4 4 4 0
(4) 2 17 17 0 4 4 4 4 0

3 15 15 0 4 4 4 4 0
4 15 15 0 4 4 4 4 0
5 17 17 0 4 4 4 4 0
6 16 16 0 4 4 4 4 0

~andol2 .~ .. 674, 1239 '. 565 : •. I. 10259 1333. '. ';252' 155' 110007
(68) '2'.: 696·· "1252 .··556. 9545 I 328 253 156 . 9292.

3 698 1264 566 I . 14922 I. 323 341 156 14581
.. .G' 719 1283 564 12812- 324 342 157 12470

. ' .. . 5: . 999999 I·' " .. . '.': .. " I·.·• '

li:.· •..... ·6:· ... 999999· [:0' .•....; .. 1..-:- '. --:: ~. '~"'" •••• I ;

• ••• Rando13 1 887 1066 179 1834 125 180 72 1654
(73) 2 884 1045 161 1394 117 174 67 1220

3 1063 1226 163 2524 101 166 64 2358
4 966 1127 161 2265 103 160 58 2105
5 1200 1480 280 340247 173 395 67 339852
6 1141 1412 271 2270727 165 395 67 2270332

Rando14 . . " 1:' 16 '" 16 0 .. 1 2 +. 2· :2" 2 I····· 0 I>. (1) 27 22--' r-c 22 "·0-:- . 2 2 2 .• : 2 o '. " .. '.

··3, 16 ' .. . '. 16 0' .. 2 ...•. : .'2. 2. .··2, .' 0·' I:' .
L' .• [:0'4.;7 IC' 22" [:;:-22 --. Fo--:: --:: 2.~ '.'2: 1".2.: .. >< .···.··2.···. : 0/ :
li~..· ... ·>'S·;:(16.;.;' 1.:: .. 16 : ..Q;!;';; ··.·2·, 2;·.·· .. h···h·, 1 •• " .. ··2::· , ···0 .•...

.' . 6'> 16~ 1C'716 '·0' 2· •. Ir2 .. 1"'2.' 2 0
Rando15 1 29 29 0 5 5 5 5 0

(5) 2 32 32 0 5 5 5 5 0
3 29 29 0 5 5 5 5 0
4 31 31 0 5 5 5 5 0
5 30 30 0 5 5 5 5 0
6 31 31 0 5 5 5 5 0

1 Rando16 1 1396 . 1541 . '. 145 513 -117 "'164~ 102 . 1····349.
I.· (76), 2." ... 1266' ••. cl39b·. I··· 125 .. ,; 453. 1,'.111 1.".159., •. ·.97. ',' . '. 294.·
~ 1406.;:.:;:',.1492·.' I,·' 8.6. . . 476 :>,~' ,:+66,,' • '::""1039 •. ,I {:57; .• ; 1,,'.·337.:':'.

A:. • 1353'>;:,':1475 .'. .• 122 • .' 569;'; 1:::117· .• ·· . ':224' .. , . 106 .. : .. ,}45 .' '.'

__ 305

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

:.·5 851 1010 159 45141 118 ·828" .. '95 . 44313
6 833 994 161 38105 . 114 822 96 37283

Randol7 I 12 12 0 5 5 5 5 0
(I) 2 17 17 0 5 5 5 5 0

3 12 12 0 5 5 5 5 0
4 17 17 0 5 5 5 5 0
5 14 14 0 5 5 5 5 0
6 14 14 0 5 5 5 5 0

Randol8 I 11503 12125 . 622 6923 339 133 ." 127 6790 .
(24) . 2 11328 11887 559 2364 334 .. · 130 124 2234

3 34062 35049 987 7404 488 143 . 140 7261"
4 . '. 25605 26870 1265 8564 610 164 . 161 8400 '.
5 999999 '" .. ' . '

' . ' .
r ."

'.' 6 999999 '
" . . · cYc·, . '. . '.

Rando19 I 1658 3342 1684 25822 929 2894 754 22928
(764) 2 1683 3207 1524 13692 946 2903 770 10789

3 999999
4 999999
5 999999
6 999999

Rando20 ' .. '. 1 ····c·· ' ... 2018 3221 1203 14207 .. ' 575 1203 ,,487 c 13004 .
(122) •.. ·.2·cc 2030 3196;', ,·1166 . 12097 586 .• ' c 1166c, 490 110931.

1 '. ·.3'c '·2567 5046 . 2479. 80744 . 1135 2479 727 . 78265
4 ··c 2430 4647 12217 40331 i· 981 2217. .. ' 689 38114

·5 .•.. 3094 5766 2672 140520 1298 2672 '·767 137848
. '6 3108 5800 I" 2692 139942 1307 2692' 769 . 137250 .

Rando21 I 28 42 14 36 16 12 12 24
(5) 2 35 49 14 36 16 12 12 24

3 28 38 10 21 11 11 11 10
4 35 45 10 21 11 11 11 10
5 27 40 13 24 11 11 11 13
6 27 40 13 24 11 11 11 13

. Rando22 1 2598 4432 . 1834 25220 . 95 1366 521 23854 .
(423) . 2 . 2648 4517 1869 32335.'. 968 1343. 531 .. 30992 .

cy:
....... ,.3 •• , . . 3548 5049 ·.c.1051.·.· 295U3 c c·.· .. 1078. .1505" 397 1 293608

i .. c4':·.,. c·' 2104' 3186 ... : .1082 '. 89013< .596· ·.· ... ·1287.c ', ..• 367: 1·.·.··.···87726··

····S:.c.· 999999 . .:." c .'. .:, I· .. ···• ,., .. ; > ·.·C .• .. ·.,c.,· .. ; .. ,." .' 6 ••. 999999 .' .' .'•. • .' .•. ·.c.' "C ··..c

Rando23 I 300 334 34 159 31 23 23 136
(9) 2 320 354 34 150 31 23 23 127

3 298 317 19 17l 23 22 22 149
4 319 338 19 159 23 22 20 137
5 483 514 31 14615 39 52 25 14563
6 478 499 21 14615 36 50 23 14561

. Rando24 .1' . 14 . 14. 0 4 • 4 ... 4··.c· I 4 . ···.c 0 . .'

(4)
. . 2 .. 18 18 ' .. 0 4. 4 4 4 .0 '. '.

........... 3 .. 14 14 0 4 4 4 4 . '0

. " .. 4. 18 .. I 18. .0 . 4 •. · ,.4 . 4·" 4 a

:.~i,: ... :.c .•
cc' 5,,"c Ic' 16· . " 16'.·c ;:' .. 0' .·4:,.: .' • ;· .. 4·', .,'A·:c'.· ,::.,4· 0:.. c','

','16' ··C 16',' .·;· •. ····0·,··.·. '.:. "' ,c.4 .. ' /'4: 1····::0::·.,
Rando25 1 88 99 11 32 15 11 11 21

(6) 2 84 95 11 20 13 11 II 9

__ 306

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 79 87 8 16 13 11 11 5
4 87 103 16 29 17 14 14 15
5 89 110 21 142 23 14 14 128
6 84 105 21 63 20 14 14 49

Rando26 .·1 27 27 0 4 4 4 4 . o .
(3) I. 2 26 26 0 4 4 .' 4 '4 0

3 27 27 0 4 4 4 4 0
4 . 33 37 4 16 9 6 6 10 .

·5 28 28 0 4 4 4 4 0
'.

.' 6 27 27 0 ·4 .' .' 4>,· 4 4 0
Rando27 I 1196 1297 101 1638 81 343 74 1295

(100) 2 1203 1324 121 1150 79 343 74 807
3 1nl 1780 59 11161 105 158 51 11003
4 1396 1502 106 24369 140 178 70 24191
5 2218 2497 279 276320 463 627 118 27003
6 2285 2646 361 282667 494 635 127 282032

Rando28 I 229 229 '0 I I I I O'
(I) "2' 236 236 '0 I•.. 1. '1 . I .. 0

'·3' 240 240 O .. I 1 • I I 0
:. 4 . .. 248 '. 248." 0 3 2' 2 .•... 2 ". . I .

.. ' '>:5 .. ·362 . 362> '': 0 I·· c .• !' :.,'; '1.:· . I' .:' ·0·.· ...•.
' • .. ·,6· . 346 346· :'.' :0· I I I.' .:.:1 .•.. 1 . ': .. ' 0 ..
Rando29 I 393 561 168 1122 127 95 70 1027

(22) 2 416 560 144 630 119 95 70 535
3 417 627 210 1610 142 105 79 1505
4 444 631 187 793 145 110 85 683
5 617 916 299 190495 168 195 88 190300
6 613 908 295 190699 162 193 86 190506

Rando30 1 324 .• 716 '. 392 18648 .·:238:785 '190 . 17863.
(195) . 2 347 693 I. 346 12567 .' .235· ... ·.:.762 188 ; 11805

' .. ';,,'3. '. "190 ... ··.318 128. 5028 /84 .. ' .. 689" 112:. ,. 4339 .'
. ". 4.' . '.,: 216 343 • "0127'" 4266 . '. 84,' .:. 666' '111' 3600'

. '.
5 208 349.: '141 100231 I· 74.': ·570 89 . 99661
6 212 359 147 93811 76 570 91 . • ,.:·93241

Rando31 I 1112 1112 0 11 11 11 11 0
(5) 2 1112 1112 0 11 11 11 11 0

3 1029 1029 0 11 11 11 11 0
4 1040 1041 0 28 17 28 17 0
5 1431 1442 0 92 29 33 20 59
6 1441 1451 0 90 25 32 18 58

Rando32 I". I : •. " • 32·' 32'. 0 7' : .. ·"6:;.: ·5 .···5 • '. I.··.: 2'.
(5) •. ' .. 2 31 . 31.···. 0 5 . 5: .. :. 5 .•... 5 O.e

I
,3 32 . 32 0 7 .. ". ,·6 '5 5 2

'. 4 31 31· I 0 . 5 ··5 5.··· 5 0

I, "
5 1 27 27 • 0 9 6 5 .. 5 4 ...

I·'; 6. .'. '. 26 26 ., 0·· . .. 9 6 .', . 5 5 ,.' .. 4·' .
Rando33 1 167 172 5 35 16 22 14 13

(11) 2 178 179 I 18 12 18 12 0
3 177 187 10 144 23 22 14 122
4 179 184 5 35 16 19 13 16
5 267 319 52 18681 101 35 25 18646
6 273 325 52 16417 107 35 25 16382

__ 307

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Rando34 1 236 '. 324 88 345 . 73 128 74 217·
(49) 2 236 . 292 56 212 . 71 125 72 87

I 3 239 . 300 . 61' 583 >68 150 '·51 433::: .. 4 . 234 304 70 555 74 157 55 398
5 302 . 387 85 2183 76 133 52 . ·2050

...... .'. 6 . 303 389 86 '. 1825 77 133 53 1692
Rando35 1 418 455 37 184 41 31 31 153

(8) 2 380 427 33 180 38 33 33 147
3 459 493 34 310 41 28 28 282
4 336 419 83 198 57 43 43 155
5 331 398 67 1439 47 44 37 1395
6 323 386 63 1583 48 43 36 1540

. Rando36' 1 159,' 193 34 ·62 .'28 19 · 19 ,1'. 43<
(10) 2 165. 199 34 62· 28 . 19 · 19 . 43.'·

3 ... 150 .. '168 18 66 ,19 . 18 '. 18 48

,: .' '. · 4·. . 157;.' 175< ' 18 .' .. 66 :19 ""18 " 18 '. ." 48' ;,
5 151 '. 185 34 4910 38 .';43· 23 4867

.
. 6., 151 ". 185 34 4910 38 43 23 ' 4867

Rando37 1 314 409 95 238 68 75 58 163
(29) 2 326 382 56 136 67 71 55 65

3 433 673 240 702 142 III 79 591
4 377 550 173 910 125 119 86 791
5 728 1024 296 7040 266 171 112 6869
6 698 998 300 6109 249 169 112 5940

.Rando38 1 .. , 96. '.',. 113 .. 17 66 .17 >.15 ·15 . c 51. •. ",.
>(9) 2, 100. .'.117 " I··' 17" 66 . '.17· •. 15 ' .. 15 ' . 51.'

•••••••

3 99 '. 114 15 50 14 •.... 14 . 14 36
4 104 119 15 . , .•. 197 ,17 14 14 183

,
."

.. 5' 99." 121 22. .' 154: .·24 , 1>15 .' 15 139_
'. · 6 .. 93, 114 21 114 23 15 · 15 99

Rando39 1 343 476 133 658 115 157 99 501
(51) 2 364 500 136 626 118 154 99 472

3 302 387 85 1644 III 167 82 1477
4 354 520 166 877 136 187 106 690
5 366 438 72 2084 101 219 76 1865
6 368 440 72 2106 101 220 76 1886

Rand040 1 59 .; ,,78' 19.,. 52. " ... ·22 ·1······ 25 19 • 27".'.
I~ .(9) . . ,2· ... ;. . , 68.' '': :.,85": . 17;·. ·.44,.,. ",.:22: 1.:,22 . :"". 18: ,;,:0<:' :22,·<;);·',

I. 3 :'. 56. . 70 14,' '·.44" .20 .. " ;; 23 . '." 19· .. ' • ·21'.:.'

k.· ."
4 68· '.85 17 44 .• 22 ·22 .' '.'. 18 22.,'·· '.

I>.·· ..•.•.• :' · 5<. ·'79,', . 101, 1 22 •. : 155 ;:'21·',·25.' . :19 " . ; .. 130:.; .
.' 6,..' '·79.:" .' ..• 101;. 22; , , 155, ;::21" ,;':25 '.' ;; 19 ·130'

Rand041 1 22 22 0 5 5 5 5 0
(1) 2 28 28 0 5 5 5 5 0

3 22 22 0 5 5 5 5 0
4 28 28 0 5 5 5 5 0
5 26 26 0 5 5 5 5 0
6 25 25 0 5 5 5 5 0

I Rando42 1 . 60 . 60 . 0 . '5······ ·';5 :; 5 , 5 .···0 .

I (2) .. ' . 2 .' '··65 65 .0.'. .' 5 5' : I" 5 5 . .' . 0" .".
·.3.,.;" .. ;:60,,;· .••. 60.·:'; kO:> 1',::5"" ';.,<::5:". 1:.",;:5.", .'.,:. 5 ' .:'; 0.,;·
,4 67 .•.. 67 . . 0 5 " .

, >."5, .. , .. '}5 :.,5 .. ' . " O. '.".; .

__ 308

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

5 90 '. '·90 8 ." 611,," 30 ." 9 7 602'
. 6 ,.' 90 90 . 8 . '611'. '30 9 . 7 ." 602, .

Rand043 1 122 155 33 94 31 31 23 63
(22) 2 137 170 33 94 31 31 23 63

3 127 155 28 106 28 36 28 70
4 142 170 28 106 28 36 28 70
5 105 152 47 814 35 44 28 770
6 104 151 47 580 34 44 28 536

Rando44 1 742 '1754 1012. 182628 ' :542, . 1548 290 181080'
1 (436) 2 . 762 1774 1012. 182628> .,542, 1548· '290 .. , 181080

3 . 441" 845 404 81851, : .. ··239· 1032 .1.197 80819 ..
I. . 4 460 863 403 81850 239·' . 1031 196 80819

. 5 ". 999999 ."
. . ". • .c . ' ' I . .' '.'

. ,.:' , . 6 999999 ,
.' ." ,• , , ... ' >

Rando45 I 265 333 68 248 51 37 33 201
(16) 2 269 332 63 138 50 36 32 102

3 256 330 74 215 52 38 34 177
4 270 334 64 253 52 39 35 214
5 327 440 113 1466 67 52 43 1414
6 333 446 113 1471 77 59 50 1412

Rando46 . 1 ".430, ·430 I 0 16: : .. «',16 ' 16 16. '.,0: .. ,'
. (10) 2 . 455 455 '.' o ." '(,16" ,. ;;'J6, ' 16 16'. :. 0··· .. "

'. 3 573 573 I' 0 ' .. , :'16",· '. :,16:' .. 16 . I., \.6 .. . '>' 0 ..
.. ' 4 '.542. , 542 ··0.···,· . 16..> 1·< 16' '.: 16 ····.16 '/ .. :0 .",

5. 772· 800 28 ; 5873 .. '\ .. 64: ' 46 . ; 21' .,··.··5827.······ .
.... 6' 780 808 28 .. ".' . 7073<' 1<·,'.68: 47 ...• 22,. '.7026""

Rando47 I 258 443 185 1113 443 53 53 1060
(15) 2 270 457 187 1120 457 54 54 1066

3 307 558 251 1586 558 81 69 1505
4 329 606 277 1860 606 84 74 1776
5 999999
6 999999

Rando48 1. . 140 . 154 .. 14 • '.52':;:' . ': 154·:' .'. 45, , .32. ,7 ..
, (16) 2, '. .·.'142.'. 155 '.13 ,56 ' ',155." . " 49.· .32 '., .,7.:

I:' ... ' .•..
···.3 . '136 :. 143, .. 7 .. '. ',.·'34·' "143 . ,34 : .,. 29 .'::.0 cc'»~
, 4• . ;145·" '184'.: . .':.39'"'' :.:',,::. ",,',184:, :'A5·' 37:" ,.'./.53' ',')
:<5, ·.:165 •. ' :195:·.······ ... 30·" ;(:167:",: ":'.,195>: '64' .', .,i .46·,':, ,:,.':103";:,, I:., .•.. ;, 6 ,.:. ':164,' ,''',194·. .30: ,: :;178" :, ,::.,194 .. ,::64_,,: .. "46, ',' ... ·."::114:.: ~;;

Rando49 1 69 71 2 18 13 16 13 2
(4) 2 80 82 2 18 13 16 13 2

3 69 71 2 18 13 16 13 2
4 73 73 0 24 22 24 22 0
5 67 74 7 49 17 31 16 18
6 67 74 7 49 17 31 16 18

Rando50 1 .. 22. ,.,22 0 '.' ': 5' '." .'.5', 5 ..' ..•.. 5 'J' 0""
I: (I) .' . ,2,· . 28·; 128 .. 0 ,.:5 ';'/~' .,>,·S· 1··'·5 <,;, '$, ': .:: 0.,·,
I ". 3 :,', "22:>. 1:22 . . :>0 ,1:'5::' . >;<cS,::; I" 5.:. ~, ,,' 5 'I:":O"'Y"'.
I"; . , 4·' ,28:. . :28 . Oi' 1'::>5' :': :}',5,:':' 1: .. 5 . c,' :::5". . .. :.,cO,' ,':y:

5 ,'. '.26:.,' 1,,26'" : 0 ..•. ';;",5 •. ,,'>, 2;,:5·,' .. ··.··· 1"':·:·5:.:,· ,.,5· 1'::<,; 0 : ";;:','
i ,< :. I' . :6: }" 25':,' '.25, ., 0;,: I,:;:' 5.(":: ',):.:: 5 .,,:, 1<,:5";" : .. 5:: 1::':'0:,':
Rando51 1 19 19 0 3 3 3 3 0

(3) 2 19 19 0 3 3 3 3 0

___ 3~

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 19 19 0 3 3 3 3 0
4 19 19 0 3 3 3 3 0
5 16 16 0 3 3 3 3 0
6 16 16 0 3 3 3 3 0

Rando52 1 908 1021' 113 1225 103 145.', '. 70 1080 .
.'. (41) 2- . 904· 1017 . 113 '. 1--613--C- • 103 145·' '72 468

••••

. 3 847 891 44; • 635 . 1'53 99 .' 49 536
4 701 743 . 42-::- . 492 69 134 66 .' 358
5 611 . 686 75 ' 9860 86 '. 158 59 I 9702

,'.' -- 6 587 662 75 . . 6722 . 81 154 ' .. 58 6568
Rando53 1 103 103 0 5 5 5 5 0

(2) 2 106 106 0 5 5 5 5 0
3 100 100 0 5 5 5 5 0
4 109 109 0 31 8 6 6 25
5 127 136 9 1846 41 8 7 1838
6 126 133 7 1434 40 8 7 1426

Rando54 1 135 174 39 . I, 2454 'C 51 . 918 , 53 1536
r (269) '.2 . 148 169 21 11579 . '. 49 '·907 . 51 672 .'.

3· r- 169- 212 ' 43 >. '1307 ' 48 415 ' 50 892 .

li, ." 4 180 . 209 29 I" .• 756 ...• " 45, 394 147. 362' '.'
1=5 198 . ---:::-300 . 102 r096510. ". ,,;60, ;c1753 ' 61. ; 94757· '.<' ;'" " 1".,6"; . I·· 199 ,302 ,',103" .. 191202. 61 ' 1753, " 62 ' 89449 '

Rando55 1 160 167 7 30 25 25 24 5
(9) 2 166 166 0 24 24 24 25 0

3 161 171 10 33 26 27 26 6
4 156 165 9 37 37 37 37 0
5 167 231 64 430 42 58 40 372
6 171 215 64 282 41 57 39 225

Rando56 1 34 34 ," 0 ' "'7·" ',' 7 7' 7 '0 .

(3) 2-- 35 35 ' .. ' 0 ,." 1 7 ' ... 7 . 7 7 0 ',.'

j , 3 ' 34 34··' 1','0 1 7 .,' 7.,· ." 7 . .. ',,' 7·· 0
, ..

4' .', 37 37, .', O~ 1;-10-- '10 10 '., 10
.. '

0
i' ", ... ". '. ;' 5, '.'", 35'. 1.35 .. ' :",0.<" .', 15 9 ' 1'IL •. ';11" ,', " 4' ;' . ,;

-- 6. -- --42. S49S DFlk' ,,',.23,',')13- ;,9,'" 1>,,'7,"" 14
Rando57 1 32 32 0 6 6 6 6 ° (2) 2 33 33 0 6 6 6 6 0

3 32 32 0 6 6 6 6 0
4 32 32 0 9 6 9 6 0
5 33 33 0 10 6 10 6 0
6 33 33 0 10 6 10 6 0

Rando58 . ' •. 1 ' 94 ' 94 .•. 0' , ", 9 '·1 . 9 ·9; <9' .' 0 " .

(3) ... 2 96 -::-96 -::-0 9 9' 9 I 9 . 0

.. .' 3 94 ' ,.'. 94., L .. o,'.,. ,',·,9 9 ' ',9 •. ' 9 , 0
., ', ...•. r-,4' " ·91 .'. 97-----. I>/. 6. 27." ' .. 13 . ,,'15" '.:11. ' : 12 '

I;;. '.5.' 109 I 116,i ',,7,,: I •. ' 103: 20 . ' ,",' 19:' -:14 ',' 84
r-,.6 ' --101 ; 108" 1:",.-..',1,,', ,:, 1:::.,65.: ' ',2O " i", 19.'}'. ,:i;,14., ,c' ' ".46, ••

Rando59 1 509 1063 554 22773 289 407 125 22366
(99) 2 514 1060 546 19289 286 406 124 18883

3 530 980 450 63399 220 501 183 62898
4 531 1229 698 59831 305 522 204 59309
5 694 1374 680 490714 332 479 175 490235
6 664 1315 651 353027 314 477 173 352550

___ 310

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Rando60 1 356 432 .' 76·" 807 356 63 52 744
(22) . 2 383 459. 76 . · 639 . 383 63 52 576

3 403 .544 141 '. 1985 403 103 76 1882
4 410 541 1 131 · 1691'· 410 100 73 1791
5 999999
6 999999

Rando61 1 153 183 30 79 34 34 32 45
(15) 2 153 184 31 79 32 33 31 46

3 156 182 26 82 30 32 27 50
4 149 165 16 65 32 35 29 30
5 205 256 51 269 60 48 37 221
6 202 259 57 269 60 49 38 220

Rando62 1 . . I· 110 111 ". 1 .•. ". 21. ' . 13 21 13 0

I . (7) 2 118 .. 119.··· '. 1 21 . 13 21 .. 13 . 0
3 111 112 I> 1 •. 22 . 12 22 12 0
4 96 100' 4····· •· .• ··.28 15 28 ." 15 0

I

.... '.
5· '. 102 1·106 .>4· •.. .. 70' '.' 15 33 . 14 37
6 100 104 1·,.·4' . .. ' 70 . .'. 15 . 33 . I 14 37·'·

Rando63 1 160 167 7 30 25 25 25 5
(9) 2 166 166 0 24 24 24 24 0

3 161 171 10 33 26 27 26 6
4 156 165 9 37 37 37 37 0
5 167 231 64 430 42 58 40 372
6 171 215 44 282 41 57 39 225

Rando64 1 497 761 264' · 4059 151 150 "·80 3909 .
(31)

.

. 2· ,·497 .'. 755 '·258' .< 2568 .'. 148 149 79 2419
3, 450 633 183. · 4294 90 148 79 4146 .
4 , 1 499 • 690 191 3145 . 103 141 92 .3004

1 5 . 387 1 611 . 224 . '. 36196 . 101 120 79 36076
6 386 600 .. 241 23238 ' . . 100 119 78 23119 .

Rando65 1 64 98 34 105 26 27 22 78
(13) 2 66 99 33 95 26 26 22 69

3 65 92 27 113 23 28 20 85
4 67 86 19 92 22 27 19 65
5 88 150 62 238 37 42 30 196
6 93 160 67 282 40 45 33 237

. Rando66 1 213 . . 255 42·.·· 169· 33 26 . 26 143 .'
(5) .. 2 .' 222" ··262. " 40 '.131., 33 . 26 . 26 105

3 .252 29 .·.·47·., 265 ····43 29·' 29 -'- 236 .
,4' 258" ,343. ,'. ··.·.85> ' 448 •. ' .60 41 I 41 .'. 407 "' ..

. •• • 5.·.· , 199·.' 1'.;247.;· :.48, ·'1205 ' ' 46 45 .. ' 33 '.' 1160· ... ··. ... 6. 193 . ' ,240., . ,;,47.,: ~:,~, 733 ,41 ·.··45 . . 33 688
Rando67 1 9 9 0 4 4 4 4 0

(1) 2 11 11 0 4 4 4 4 0
3 9 9 0 4 4 4 4 0
4 11 11 0 4 4 4 4 0
5 10 10 0 4 4 4 4 0
6 11 11 0 4 4 4 4 0

Rando68 ". L." ... 36 ,))",', 36'" ' •• 0'", " '6. ";p' . " ',6.' , · 0·· •.

"'.'.'
(5) , 2 ,'.' .' '''37.' "';'<3.7(,' ' .• 'Q: •.• ':'0;',", ".,:,6". 1 '':·6' •• , "6,: ".' 0',-,

"',3'-_ ' .• 36' ••• '36:' ,,"0.'" ,,".;;6',':, <'''.6:., ' 6 6 ' , '.,. 0.":,.
..... 4 ""37" ,.t 37 '<, ,',0:_'. ,: .•••. 6',_::;" ',6". '.:,6, ", 6 . ' 0'.".;

311

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

5 36 38 2 . 7 6 6 6 I
6 37 39 . 2 7 6 6 6· I

Rando69 I 25 25 0 8 8 8 8 0
(6) 2 27 27 0 8 8 8 8 0

3 25 25 0 8 8 8 8 0
4 28 32 4 12 12 12 12 0
5 27 34 7 21 9 8 8 13
6 27 34 7 16 8 8 8 8

Rando70 . '. I . III 144 ..33 117 39· 68 46 .. ·· 49
(27) 2 117. 136 19 87' '. 37 66 45 . 21

. 3 . 110 . 142 32 102 37· '. 63······ '·45 39
4 117 136 '. 19 '. 80 36 63 45 17
5 124 157 I 33 . 491 39 247,· 41 , 244

. ' 6 , · 123 . 145. 22 ,• 360· ... ··. 38 . 246 .. ,. I, 40 .•• 114
Rando71 I 23 24 I 7 7 7 7 0

(2) 2 23 24 I 7 7 7 7 0
3 23 24 I 7 7 7 7 0
4 25 29 4 9 7 7 7 2
5 24 26 I 8 8 8 8 0
6 24 26 I 8 8 8 8 0

Rando72 . . 1.> .. ·20 .. ' 20", . ··0. . ··.··.2 2 . "2· ...•. 2 '. , .. " 0." .'
(2) .. !" 2'· · 21 21 .' 0 2 2 2 ·2< o .

. .. 3 '. 20 20 0 ." 2 2 2 2 . 0

I' .. '. 4 •. 22·. . .. 22 . I 0 .. 2 2 .. 2 .' .. 2;. ",0
. 5·.··'·. '23" p. 23' .··0 n····'· ' . 4 .. ' .. '. 3 .' .. . 3'· .. 8 ... • .
6. 22 ... 22 o· 11 .. 4. .' 3, ' ·3 , 8

Rando73 I 257 286 29 614 81 212 61 402
(80) 2 263 292 29 763 79 218 61 545

3 235 287 52 2837 56 237 38 2600
4 248 293 45 1407 52 244 42 1163
5 277 324 47 19901 75 322 55 19579
6 283 330 47 23339 76 324 55 23015

Rando74 I . · . 15 . 15 0 .. 2 ' .. 2 . 2 2' . O .. '

(2) '., 2 17 17 .. . 0 . 2.. 2 . 2·,·, 2 ,'" 0 ... t ... , '. 3 .. • ···15.··., I.: 15 0.' .. · ···2 2 ; I .2·, •• ; .. ··."2,,:,, .. ,., 0;0;::;:,> :

.. ' 4 .. ' , 17. . 17. • 0 '. '. 2.";' . ' . 2'" " .'. 2 '" 2 .• ,,, . 0 ,-,,: '"

5 ., I 17 17 0' . '. 2 " 2 .. 2 '2/i 0 ,. : ' > .. 6·· l .. d8, , •. . ' 18;,· .i 0 • .c .. 2·., I." 2 '.', 2 ;;.; ..•. · .. 2 D· •• ·· ...
Rando75 I 68 74 6 16 13 12 12 4

(4) 2 71 77 6 16 13 12 12 4
3 68 74 6 16 13 12 12 4
4 83 97 14 32 22 16 16 16
5 74 83 9 37 13 21 12 16
6 75 84 9 37 13 21 12 16

,Rando76 I I ;' . . 154" . 196.'" 42 363 .•. ' .' .";49. :. .• ···.97 ; .40", ,266<,' ,
/(24)/ , 2';" '. 165." " 212' .' 41'

····.··.299· .• ;,1 48' .. ',9.':< ;'·40."., .. 290.
i , ...•..• ' 3·.·. ; 147' . ' 171 24. . 307 ' 31 .. ' I ' 83 27: . 224
'. '"

·::·/t " 4'. I, 166. I 191 25 , , ... ·272.:: i .. i 36 .. "< ... 88.;: . ' ,33 ... 184: .
;;:_:r: ;-;;', - .;.1.5 .• ,,: 1.165:;.1 1199' '.' ·34.,; ... '277Z·.;:;' ;,3Z"'" ;;;.;170: ... ·; .. ,.28 .. ':: " ... 2602;·

'" " ,. ", . 6 .•.. , ·.162 . ' . 197 35 . ·····"·2260'· . .• ,., 32·;;.: I' 170 •. .. 29 .. ., 2090'
Rando77 I 371 408 37 244 51 92 48 152

(27) 2 373 404 31 230 49 90 47 140

__ 312

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 407 448 41 373 56 95 46 278
4 385 435 50 1506 58 96 47 1410
5 547 660 113 20795 184 100 7 20695
6 530 637 107 18379 175 98 46 18281

Rando78 1 133 . 133 . 0 5 .' 5 1 5 5 0
(2) 2 138 . 138 o I 5 5 5 .. 5 o .

3 132 132 0 . 5 5 . 5 : 5 0 .

4 133 133 0 5 5 5 ." 5 O' ,
5 150 150. 0 7 5 7 5 . 0 .

.6 144 I 144 . , o .. . 7 5 7 5 . . 0
Rando79 1 21 21 0 4 4 4 4 0

(4) 2 23 23 0 4 4 4 4 0
3 21 21 0 4 4 4 4 0
4 23 23 0 4 4 4 4 0
5 24 24 0 9 5 5 5 4
6 24 24 0 4 4 4 4 0

Rando80 1 ." 77 99. 22 131 27 . . '. 49 27 82
:(22) .. • . ·2" I' 92 .• ·112 ' 20 ' ., 119 . 26 .' .. 45. 26 74

3 " '89 1'128 ,. 39 '··146 32. c 144 . 32 . 102-,,_
4 ." 96 119 .. 23 131 24 . 4324 . 88 .'

. 5. . 83 . 106·.' . 23 770 23 226 '. 23 , 544
. '. ' 6 ·.·.83 .,106 .'. 23. 770 23 226' ·····23 '. ". 544·",

Rando81 1 15 15 0 4 4 4 4 0
(4) 2 17 17 0 4 4 4 4 0

3 15 15 0 4 4 4 4 0
4 17 17 0 4 4 4 4 0
5 16 16 0 4 4 4 4 0
6 16 16 0 4 4 4 4 0

Rando82 . '.1.-" 75 ·75 0 k 6 6 6 6·· '" 0 ' .•..

'. (5) . '·2'.. . 70 70 0 ·6. 6 6. '6 0
' .. " . ' 3 "'75 75 .. o 6 6 ·.6.·.· . 6. •. 0

I' 4 ' .. , 75 ' .• 1"75 0 10. 7 "'. 6 .. ,. 6 •. 4 ..•
"', 5 63 I 68 ,'5' 1'22' • 8 ',6: ' ". 6 ... 16, :

.' •... , ... ' .. " 6 . ,. .. 63 .68 5 :," 22: 8 6,' .c: 6 '.' "·,16" , .
Rando83 1 105 163 58 396 57 153 57 243

(39) 2 108 132 24 219 52 138 52 81
3 121 192 71 372 53 152 53 220
4 120 178 58 301 47 141 48 160
5 149 286 137 1160 73 154 73 1006
6 148 283 135 953 71 149 72 804

Rando84 , .• 1. 272 503 231 , ... 12627> .150 '1'149 . ".98", :,' / 2478:
.... (52) ·'·2 271,. .. .494 . 217' . '1547'. .146 .145 . ' ..• ···95', . 1402 '

., 3 209' : 366. . . 157 ·.I..J755. ". "103 .• '. 137.· . 91' ' . . 1618.
.. ' 4 , . . . 223' .358 • .135 ••. '.703: • • 103 ·.1:,. 147. .. , ': .. .92. " .." 556'

.",' ... < . 5::: :310 .• 503·' :193·': '76818 . :.:.98: .' 1·'.:··153 '.:. .·,9k .• 76665.·.·
" . 6 . 301 486 • 185 133010 94 :' 153 ".:·.90 .• · .··.·.32857· •••

Rando85 1 215 215 0 27 18 18 16 9
(7) 2 206 206 0 18 16 18 16 0

3 197 197 0 26 16 18 15 8
4 185 185 0 36 16 18 15 18
5 178 217 39 591 39 37 22 554
6 174 207 33 427 35 37 23 390

313

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Rando86 1 16 16 . '. 0 2 2 ' . 2. 2 .' 0
(1) 2.·' . 22 22 0 '. 2 2 ' . 2 2': "',0 .

3 16 16 o " 2 2 '. 2 '·2 ., ,0 .

4 22 22 . 0 2 2 2 2 0
5 16 16 0 . 2 2 2 2 0
6 16 16 1··.·.0 2 2 . 2· 2 .' 0

Rando87 1 75 75 0 22 19 22 19 0
(15) 2 81 81 0 22 19 22 19 0

3 75 75 0 21 15 21 15 0
4 80 80 0 21 15 21 15 0
5 105 128 23 193 23 31 22 162
6 103 126 23 98 22 31 22 67

Rando88 1 '. 103 190 87 812 56 '. 68 34 . 744
(29) 2 105 190 ',',85 812 56 68 34 , .. 744

, . 3, 87 1,·.122 '. '.35 ':. 504 . 29 62 ' 29 442 ..
. ""·4. ' 89 .', '124< ,','<35: 504 ,', 29':," . 62' !::,29 ' ':::.442 c'

. , 5,,, 91 . 154 : 63 i' 3896 ' .. . 36 " 130 " ": .. " 36 , .. ' 3766'
"':" ... ,' '. 6 . 91 I 154 .. 63 3896 36 ',C 130 36 3766

Rando89 1 975 1007 32 238 30 39 29 199
(21) 2 1012 1044 32 238 30 39 29 199

3 776 832 56 282 39 45 32 237
4 1049 1130 81 680 53 54 41 626
5 569 666 97 4992 69 51 45 4941
6 554 651 97 3882 67 51 45 3831

Rando90 1" ,< , .' 5 5 ','0' 1,3 • 3' ' 3: I>' 3 ;, 0' .',.'
(2) '. .:.:.: 2"" 5 ' " 5 '.·,0, .. ' 3 ' .. , 3 " 3 , ' 3 , 0

3.·· 5 5 0 3 3," 3 I 3 : 0 ,

,,4 5 5 " ,,0,,'_ 3 3 3 I ' 3
,

0
I ,5r", .5 '. 5 .' , ,<.0 3. ' 3,.< I,' 3"r 1< 3 ,:,0 ,<

,:.",'. 6 "': 5 . 5 ,',0, 3 , 3 3, I 3 I· ". ··,0 '.'
Rando91 1 819 1611 792 65067 424 340 163 64727

(106) 2 813 1564 751 32108 419 331 161 31777
3 728 1225 497 644641 379 468 178 644173
4 761 1258 497 302151 398 468 182 301683
5 999999
6 999999

RanclQ92, . ' '.'1< 7540 ' 8176 ,,636' 25773, . ' 332 228 :.,,156 " ,,::25545,>
,,""(58):" " ',,'2"',,'; 7562:.,- } 8152" "':'590 11'9526: I" 341:::., 1:'<226:":: H> 157., ',,' ,:,,:9300: ·".r,/'.:"

,'3 ,,'" .:: 9404 10242 ",: 838 .. , 93103 I 430:':, ,,' 304'" " ',185 " I: 92799' .' :. '/>: .. -,
. 4" 7885 ' 8489 I 604 , 37067 353 ,,". 283 1176 .: 36784'

.' 5. 999999, ",,' ". ,'.'
. , I:' . --",i" ' ,r

".' : 6,:., 999999 :.c .',. :" .',. , ',' ", "", .:'." ... ,::' ,

Rando93 1 403 432 29 104 42 34 31 70
(16) 2 403 433 30 61 40 36 32 25

3 365 406 41 122 44 55 37 67
4 433 522 89 205 74 73 54 132
5 25 323 68 5383 60 99 43 5284
6 257 332 75 3099 63 100 44 2999

Rando94 "]:'., ' 16 , " : 16 " ° 2 2:: : 2 ' 2 , .. , " 0,.,
(1) " "'2', '" :,22 ' 22 : ' 0 2," I 2 " 2, , 2' i,D' ,

c ~}3 -;(-;~-~i; '" ',16\', 1,:'16, '. 1";,,,0, "2,;/. ·,,2,"'" " 2.,':,.:' b:2 ,.""', 1».,,0, " ,
4 22 122 1'0 .,.' I ' 2.:' 2;;: ' 2, r: 2,' I,,;,' 0·' .'

314

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

5 16 16 '. 0 2 '. 2 2 2 0 .

6 16 16 0 2 '. '2 . 2 2 0
Rando95 I 122 149 27 138 41 82 42 56

(31) 2 125 141 16 86 38 75 37 11
3 105 liD 5 57 3D 56 32 I
4 112 116 4 63 35 61 36 2
5 143 20.6 63 856 42 107 42 749
6 144 210 66 840 43 106 43 734

Rando96 I 17 17 0. 7 7 '. .. 7 7 0.
i (5)' 2 21 21 . '0. . 7···.·.·· _>.7' 7 7 0.•.

3 17 17' , 0 7 7 7 7 a' .. '.
.

'.' 4 21 21" a 7 I 7 7 7 ,0.
, '. 5 18 . 18, ' a 7 .,. . 7 ' ,7 7' ' 0

6 18 18 a . 7 7 7 7 a
Rando97 I 14 14 a 3 3 3 3 a

(2) 2 14 14 a 3 3 3 3 a
3 14 14 0 3 3 3 3 a
4 16 16 a 3 3 3 3 a
5 14 14 0 3 3 3 3 0
6 16 16 0. 3 3 3 3 0

Rando98 I 679· 1064, 385 4880.8 237, 632 178 48176
I (283) ," 2 10.38 ',350.' 240.88 :,.688 ' 1< 622 ' ·,170 23466'
I, , .< ·'3 .'.', 677 • Ja99 422 350.38 ' 214 ' 1:<,799' :- ,." 177 34239.> '

4 640. 1006 366 30348 '194 783 161 29565-
,-;, "1 : 5 999999 '.' .. ' I

'.', ' :'.> ," ': .. ' I I 6 ,'. 999999 . , 1 . " ',",'

Rando99 I 438 568 130. 737 112 76 53 661
(28) 2 442 577 135 776 113 76 53 700

3 661 875 214 3426 252 109 73 3317
4 687 100.0.7 320. 5535 358 123 88 5412
5 1045 1498 453 13902 359 188 95 13714
6 1053 150.4 451 13998 365 188 95 13810.

• RandlOa , I, ,182 I, .189': .7 ", '27 " :12:, ' ''.·11 ·11 16 .. >
, (8), 2 186 193 ' 7 21 ',' 11 n· , 11 la
:. . .• ,:; "3:" ,186',.'; '193". ;'7,:,. '<27::: .. '12'., 1<.11 ,I 11, . 16.:-'.'"

.. : ,. '4. ' ". 190. . .197 7 .- 21 11" I" I! ' 11 10
5 :. " 198 '217" 19 . 592 '.' ," 26 I, ' 13 ",13 " • ',579:-'

x:: i',. '.,6 •.• d94.:: ·, •• '212.":' .18 ," .' .460., .,. ,25':' _,13, 1.13,', ,447:,),
RandlOl I 19 19 0 7 7 7 7 a

(2) 2 24 24 a 7 7 7 7 a
3 19 19 0 7 7 7 7 0
4 24 24 a 7 7 7 7 0
5 18 18 a 12 8 12 8 a
6 18 18 a 12 8 12 8 a

Rand 102 ··'1 "16'" ',,'16, '0.' '.' 2'" -- '.: 2., 1}'2', ':2, "a :"
: .. 9) ..•.. '2 22 - . " _ 22. ' 0. 2 " '. 2' ' 1"2,' ,2 .', a .

'. 3 ' 16 '; , '16 ,:. ,,', a "'·2 2' .'2 , 12 ". 0.::
,.T,. ' •.. 4> ':: '22::- ,::22',. -.: 0. ,:' ,,·· 2·, _,; 2,' 1,_.2 :2.;. I··.·" a, •.

'."., .'.·,(L'-
,5 16 ., " .• 16, 0. 2 ' ,2< ,,2 . 2 '.' _ a."

'6 ' ',16' ',16·: ""',.,0.','. ',."'2,,:;::"· ",':2-; ',. [,,,,·'2.''::' I';;,' ,:2 ,.", 1:'<;'0.,:' "

Rand 103 I 144 208 64 185 50. 40. 37 145
(13) 2 150 20.6 56 124 48 39 36 85

__ 315

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 121 160 39 129 31 32 29 99
4 128 167 39 94 33 32 29 62
5 134 200 66 1239 50 89 43 1150
6 132 186 54 778 49 88 42 690

RandlO4 1 .. 226 244 . 18 171 24 16 16 155
. (9) --,-

2 231 248 17 113 22 15 15 98
3 189 . 204 15 . !l0 17 1 14 14 96

......... 4 181 --,- . 203 22 136 22 I: 16 . 16 . 120
5' ·.234 .252 18 307 .. 29· ,,' 16 16 291 I: •••. 'i 6 234 :-:-252 18 307 29 --: .;--:-16 16 I-C' 291

RandlO5 1 167 268 101 1005 81 163 65 842
(96) 2 179 278 99 1001 80 162 64 839

3 176 266 90 953 60 146 54 807
4 210 319 109 1144 71 181 69 963
5 183 301 !l8 15642 71 423 63 15219
6 182 299 117 15642 71 423 63 15219

: Rand106 1--.- Ic-·453. '. 1;--:-459 . '. 6 ,'45: . '.IS··,:, ::.'.20 . 1 16. · •. 25· .••.
"tsyV 2. ".460·. I:·. 465 . ". 5. 1 .. ·.41·.···. '·17< 1::.18 . 15 • . 23

3 432.' 486·· 54 3019 77 1:-33 . 27 . . '.2985
4 469 516 47 3492 78 .. 34 28 3458·
5 577 608 31 . ,10129 ' 76 36 21 100093

. 6 577.· 608 31 ·10129. 76 36 21 100093
Rand 107 1 17 17 0 5 5 5 5 0

(5) 2 23 23 0 5 5 5 5 0
3 17 17 0 5 5 5 5 0
4 23 23 0 5 5 5 5 0
5 18 18 0 11 6 6 6 5
6 18 18 0 11 6 6 6 5

RandlO8 1 346 ' ,385 39 . "162 81 ." . 124 79 38
(35) 2 348 387 39 . I· 162 81 124 79 38 .

I. 3 457 . 588 131 . 1907 138 '.172 106 1735 _

I.·.· ••. ··,

4 423·· 530 107 . 1214 118, 163 99 •. 1051
5 .540' " 788·' 248;--:- r:;;- 8467' .. . 204 •. ,,:212 •. 135·· '8255.
6 ." 543' ·····791 248 ·1· •. ·8605·. 1.···.206··, .• ··/.212·. 133 .'8393'

RandlO9 1 538 899 361 20884 215 486 145 20398
(203) 2 554 886 332 9197 209 473 140 8724

3 404 629 225 27508 140 439 108 27069
4 403 596 193 14208 123 437 106 13771
5 999999
6 999999

• Rand!lQ 1 428.::,' :·.440 ·1·.·.12 :.::54, '. . 18 .. ·• >'~ :14' '. 14. ·.40"
. ,(8).' I. 2--; '444": :.:.456: 12 . 1':.44;--:- --'---;1 Y." ,'," .14' I:·· ···.14 ···30·········

1 " 3 .•. ·441< . 1.458 1 .. 17··· .. · . .'39 18' "'14.' .• 14 25'
I .'. ': , • --'-4 re- 324 re- 340 16 I:: 113 --:20 rc.· 22' . 16 91' .

.5 538 568 30 .. ' 771 50 ,/.13, 13 .' .. 758
. 6 .. 536' 566 30 cc 683 --: 48 '. •• 13 .. 13 I ·670

Rand!l1 1 309 385 76 261 62 74 59 187
(22) 2 283 345 62 217 60 71 56 146

3 321 395 74 327 68 73 61 254
4 274 335 61 204 63 82 58 122
5 410 566 156 2011 104 84 71 1927
6 402 537 135 1139 91 80 69 1059

__ 316

. Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Rand 112 1 11 11 . 0 . ·5 5 5 5 0
(2) . 2 16 16 0 5 5 5 5 0 .

3 11· 11 0 5. 5· 5 5 0
4· 16 16 O. 5.' 5 5 5 0
5 15 15 0 5 '. '.' 5 . 5 5 0
6 14 14 0 5 : .'. 5 5 5 O·

Randl13 1 74 74 0 6 6 6 6 0
(2) 2 70 70 0 6 6 6 6 0

3 74 74 0 6 6 6 6 0
4 64 64 0 6 6 6 6 0
5 73 73 0 21 8 6 6 0
6 73 73 0 21 8 6 6 0

Rand 115 1 331 558 227 851 159 135 93 716
~ 2 333 "8 W 100 1@ l~ ~ 91

3 250 330 80 1131 73 101 53 1030
4 343 569 226 4144 174 195 94 3949
5 254 393 139 3834 87 170 59 3664
6 258 109 151 4200 89 175 62 4025

Rand1l6 1 457 586 .' . 129 11,1\4 89 '.. 76 65 12288
(15)' 2 427 529' 102 1181 84 74 61 1107

3 . 394 515 121 937 . .'. 80 73 61 864
.' . 4 621 997' 376 1628· .' 229 I· 120 75 1508

. ' ". 5 464 615 151 7654' .' '125 85 83 7569 '.'
6 673· 1041 368. 8199 252 119 75 8080

Rand1l7 1 70 86 16 40 24 29 24 11
(11) 2 77 93 16 40 24 29 24 11

3 74 80 6 32 29 30 29 2
4 81 87 6 32 29 30 29 2
5 78 89 11 153 3 43 26 110
6 78 89 11 167 31 42 25 125

.:.: •. ' .. h •. ·.~ ~.'n.111 ·8 .•..• :1: ... ,,272.···503"::.:.:23.1-:.:' ~ . " .. '. 1 •. :.149 .. 98:...
i:'(~2):)'2 I' Z77" 494,'017". I,Xl.: 1145 :.:". 95 .'. "1402·' 1'.>;-' .·.·:.3·· :209:'366:' :'1571::.::.1'7""", .,'10.:137 .'91" :.1618.·.

I." ..•.... '. ~ •. " ··;i~;~~:~~:.i:7~~i~;,;::/:~0;'.:.:~~ . ~i . 7~~~5
I':,' " : 6301 :"486 .. 185: 1.33010:::·.94·.·.: .. 153 .' 90 ·:32857.

Rand 119 1 141 169 28 309 43 169 43 140
~ 2 1~ 1~ a D C 1@ C 1~

3 154 178 ~ 381 30 161 30 220
4 165 208 43 418 55 180 55 238
5 161 216 55 7375 42 518 36 6857
6 156 209 53 6102 39 488 34 5614

R',ldI20 . 1 463 1102 639 4496 349201 146 4295
. (58) '12464· . 1103 :. 639 1'3392/.343:201 146 '. 3191

.. 3321 . 618 297 1.12152'.152. '.292 .'. ; 101 11860
. 4 I. 323 580. 257. I. 98'~::: 148.. 286 '.' 97 ". . . 9570

__ 317

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

5 ' 212 319 107 15449 67 326 76 15123
6 212 319 107 14809 • ' 67 325 76 14484

Rand121 1 240 269 29 340 54 212 54 128
(80) 2 263 269 6 208 53 208 53 0

3 232 236 4 156 43 156 47 0
4 263 263 0 168 42 168 42 0
5 261 261 55 9632 67 391 55 9241
6 263 263 63 8798 68 392 56 8406

Randl22 I 10 10 0 .,4 4 4,_ 4 0
(4) 2 11 11 0,', '.4' .' 4 4 4 " , •• ' 0,'·,

' 3 10 I 10 0 4 4 4 4 0 . ,
" ' ". 4 11 '" ' "11 ' ",' 0- ,', 4. 4 4,' .,' 4,'" 0

5 10 10 o " 9 ',.', '5 5 5 4
", , ,6 10 10 O· ,. J4:".; 4 " 4 4 ,',' ,.0

Rand123 1 53 53 0 20 18 20 18 0
(12) 2 62 62 0 20 18 20 18 0

3 62 62 0 22 17 22 17 0
4 68 68 0 22 17 22 17 0
5 68 82 14 73 19 30 19 43
6 67 74 17 66 18 29 18 37

,Randl24 1 110 132 22 206 ' 25 , ' 56 ", 25 ' 150 ,

(27) , 2. J12 ' .' 134, ,22. .,,206 •• ; ,25 " , 56 25" ' ,', .150 -"
3 ' 107 125 ; '. 18 ' ,', 178 • 21 49 .21 129 ,

I

4 121 '" " 147 ',' 26. ,181 27 •
52 ' I''' 24. 129 ."

'I" 5,,',' 103 128 ,. 25· ' 916 21 52 21 ", 864,

I'" 6 ,,'. ",103', I 128 _. 25" 916' 21 52 21 ,864 _'-
Rand 125 1 58 70 12 30 17 20 16 10

(13) 2 65 71 6 24 16 20 16 4
3 65 84 19 30 20 20 20 10
4 68 77 9 24 19 19 19 5
5 66 104 38 191 27 45 27 146
6 67 95 28 123 28 44 28 79

. Randl26 I ' "'1' ',305,,' 432 1'127 .. ' 1"'1962:5 ;92 ,.,' '. 185, I;: 72'. :1777,
1(59) 2 322 451 129 2146;' 95 185 72. 1961,

I.>" .·3; ';, '-308. 420 1·';112.- ' ;1744·.; -79; :. 148. -, ri, 67; ,;1596~ 'f<, ,.;'_"

I~
"', 4 .',' 314 423 1109 ," 1744 ,79 ' '; 148,· -;. 67, ' 1596 '

5' "287 ', •• ,'; <. 484 .--197:.- --.I9606.") "",95· __ -;,295 ,;,.82;;:- ,d9311.;;c
L ", I 6 ,289 480 191 17074 93 293 ' 80 ',',' , ,'1678L '

Rand 127 1 113 168 55 363 56 84 41 279
(43) 2 126 181 55 279 54 84 41 195

3 91 104 13 326 29 98 28 228
4 105 118 13 218 28 98 28 120
5 102 115 13 2864 30 332 29 2532
6 102 115 13 2504 30 332 29 2172

Rand128 ,,' 1 "" , . 518 ' 667 I. 149" :'1424 '1110 153 ,,' 66 ',1271"
(52) .' 2 " ,516 • 649 - 133 ' '886'- '109 ' 148 .. 65 . 738

;::
.. '.

,.,3. :466> I .570 ,:104', '1025 ",.1,86. 0 " '113. .63" :.912,', '
, , 4," 597' , 794 197 ' ,,1755" 1·132 ',148 " " 79 '.'1607

d , 5.' !647,'.' 912 ' 265,. " 30674 •. 0,224 216.·,·, '. 84,:-' ' . .30458
• 6; , " ;. 624 , . 848 ' .;, 224,' ',18675. ' ;'214 ',';' 213 ' '-,:78-., '18462

Rand129 1 67 67 0 4 4 4 4 0
(1) 2 79 79 0 4 4 4 4 0

___ 318

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 64 64 0 4 4 4 4 0
4 79 79 0 4 4 4 4 0
5 81 81 0 9 5 5 5 4
6 77 77 0 4 4 4 4 0

. Rand 130 1 189 189 O. '5 5 5 . 5 0
(5) . 2 . 196 196 .·····0 .. ·· 5 .' 5 5 •. , 5 0

. 3 '. 161 161 '. '.' 0.· i '. 5 5 '. 5 . 5 .' 0 . .

.. ' ', .. 4 169· I 169 ", ';.0 ·.··.20 8 ··5·· " '5 15

I
'.

'. 5 . 142 156 "'14' ····305 . 130 7 7· .. ' ... ' 298

•

,
6 143 157 14 '., 385 29 ... 7 7 '. 278

Rand131 1 21 22 1 8 8 8 8 0
(2) 2 22 23 1 8 8 8 8 0

3 21 22 1 8 8 8 8 0
4 22 23 1 8 8 8 8 0
5 23 25 2 9 9 9 9 0
6 23 25 2 9 9 9 9 0

Rand 132 . 1 '.' 539 1097 ·1"·,558 • 6953 ' .. 325 . .251 , •. . 154, 6702 ..

. (67),., . ". 2 . 551 1120 •••• 569·'· .5128 1·'·321 . ;251. ..]56 . ·····4877

1 .3 .•. ' 735 1766. ·1031 ;17069 .1 473 . 326 '.219 ····16743
.' ,,4., ." 739 .' 1698 C 959 •. '13922: 462 .. ···'324 '217 .····13598

5" .;.853 '.' 2151.: FU98. 188000 578 :437 . ,240 87563.

" " 6" 863 ·2144 1281 " 191309 ' 584 .,439 242 . 90870
Rand 133 1 16 16 0 5 5 5 5 0

(4) 2 19 19 0 5 5 5 5 0
3 16 16 0 5 5 5 5 0
4 21 21 0 6 6 6 6 0
5 20 20 0 12 6 8 5 4
6 20 20 0 12 6 8 5 4

Rarid134 1 502 642 ' 140 . 682 104 . 151 72 . 531
. (6?) 2" 520 649 1129, " 620 102 151·· 72. 469

.. . ,.3,' '620 872 . 1,252' ••.. , 6188 . 229 185 \ .. 79 6003 '.
'4 630 . ,849 '219 .. 4358 :' 205 179' ;77 4179
.. : 5. 999999 " ". :,'., , , . . " •• '.' .: '.

• C ":" ',6 ". 999999 ": '.:::.',:,'. ' •. , ··i: . ., :' •.••.. c . ',.. . ,. .:' .'

Rand 135 1 258 314 56 450 52 94 47 356
(24) 2 264 319 55 382 52 94 47 288

3 348 502 154 1539 112 136 63 1403
4 333 476 143 3078 111 139 61 2939
5 757 1120 363 15347 303 177 96 15170
6 757 1120 363 15347 303 177 96 15170

Rand 136 1 9' 9 . 0 ':' . 4 .. 4 4/,. .4 0
. (1) .'., •. 2 11 11 .' .. O. 4 4 ' 4...::.' .:.4 '.' 0

·3 9 1·9.·. O· .. 4 .C· 4 •... '.4, 4 .: 0
."

I .. ·.•· ..• ·, .••• ·, ••...• · ·,.·

4 . . . 11/ . .. 11. . <'0'·,' .···4······ 4 ': ··· .. 4.: 1'.4, ' ,.0
I· 5 10 1····10 .. ,. .:.·.0·. .:·4": ':. "4 ..•.... . ··4· •• ::.;4: >'0 .
.... 6' ":11 .. :, . " ,11:: .lO'. ..• ·.;;4' '.': • ,., .4' : 1"'4L',' 1·.· .. 4< . ., 0 " .

Rand 137 1 97 131 34 157 34 85 36 72
(15) 2 104 136 32 139 32 85 36 54

3 97 131 34 157 34 85 36 72
4 104 136 32 139 32 85 36 54
5 109 152 43 1393 35 154 30 1239
6 105 148 43 916 33 154 30 762

___ 319

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

Rand138 1 81 81 0 2 ···.2 2 '2 0·' .'.
(2) 2 . ' 90· 90 .0 . 2 2 2 2 0 . ;

3 82 82 ·0 2 ,'·2 2 .' . 2 .0
4 85 . 85 0 5 . ··3 3 .•. 3 2
5 .. ' 91 91 ·0 2 ' . 2 2 2 0

• 6 I···· 91 ... 91 . '., .·.0 2 ·.····.·2. 2 '. . '.2" . 0 ...
Rand 139 1 229 318 89 734 88 142 82 592

(49) 2 229 305 76 478 83 138 78 340
3 239 293 54 1657 52 163 47 1494
4 242 293 51 1117 52 158 45 959
5 274 394 120 6640 75 158 66 6482
6 272 392 120 3477 73 153 65 3324

Rand 140 .. 1 ".20 20 '0 5 ' ". 5 5 5 • 0.;·.
(5) '. 2" . .24 24 . I.' ·0;·· 5 . .' 5 .5 .··.5 . • • O·

3 . ..•. 20.' 20 .0 ' '. 5 . .' 5 5 5 O·
4· ··24 24 o· 5 5 5 . '. 5 0 . '.

5 .21 21 1 .. 0 '.' 5 ." 5 5 .' '5 O·

. 6 .'. '2L 21 '0 5 .' .. 5 5 .. 5 . 0
Rand141 1 428 440 12 54 18 14 14 40

(8) 2 444 456 12 44 17 14 14 30
3 441 458 17 39 18 14 14 25
4 324 340 16 113 20 22 16 91
5 538 568 30 771 50 13 13 758
6 538 568 30 771 50 13 13 758

Rand142 1 .. , ·2394 6247 . 3853 . 79169 1744 · 1220 524 77949 ".
(410)·.2 ;2226 5639·· . 3413 '·55680 .. 1572 1151 ·487 .. · 54529.

3." • ;2116 6307 .4191 137991 1·····1601 1574 . . ·.·····642·· 136417 .
4 .;1978. ·5798 3820 65900. 1·1464 1487 .. ., 639 64413 ..
5. 2383 6798 .' 4415· 507669· 1636 1673 ..•. 625 505996 .. .6 2380 6783 4403 507544 1630 1673 . 625 •• 505871

Rand 143 1 178 215 37 253 27 22 22 231
(8) 2 181 218 37 253 27 22 22 231

3 185 268 83 284 52 30 30 254
4 185 268 83 284 52 30 30 254
5 149 227 78 1830 51 26 26 1804
6 149 227 78 1706 50 26 26 1680

I Randl44 1 456 . 723 267 6836 .. ··146 113 78 6723· ..
I '2 456 . 731 __ • . 275·' '. 5197·" '149 . ··113 178 . . 5084; •

·'.3, • ';700 . ,'.869 . . ;:169. 10152 1;'163 . ;'.93,.,. I. 75·'· • 10059; .,
';

;". 4;·'; ;;';766. 1478; ,,712 I'; 10018>,; · ... ,M}.. . • .185,''','' •. ;·113 [. .. 9833 •

I.· ••.. i);
,';~,

1,'5· '.' 999999 ... ' .. , I···· .. ;. lie'·'·;··.· · "r.""· h·."•.. I'.·' .. < ;
'. 6' 999999 '. ". ".;; '. ;, ;'." '. ., ; I. '. ' ; .. ,.;

Rand 145 1 111 149 38 526 47 98 43 428
(47) 2 128 153 25 499 46 95 42 404

3 117 150 33 330 38 72 38 258
4 134 154 20 303 37 69 37 234
5 117 150 33 330 38 72 38 258
6 138 196 58 39677 36 103 36 39574

Rand 146 . ;. 1. . 97:.' ". 131 >34 . 157 . , '·34 85 .; .. 36 72
.•.. (15) 2 "104' 136 32 139 ··;<32 85 c. I •• 36·· ·54 ,'i.

3 '97.' 131; .':34 157 . ' .. 34,
·

85 , '.36 ··72>. •.
; 4 d04;; . 136 . 32 139>;:32, . 85.; ; .. ,,36 . i 54:;". .. ,

__ 320

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

5. . 109 . .152 43 ·1393 35 .. 15 ' • .30 . 1378 .

6 105 148 43 916 33 154 30 762· .

Rand147 I 535 878 343 3504 198 104 85 3400
(30) 2 548 890 342 2548 198 104 85 2444

3 1896 3272 1376 195933 997 192 165 195741
4 1091 2020 929 59599 470 166 140 59433
5 2123 3327 1204 396283 1046 183 154 396100
6 2121 3399 1278 214895 1046 187 158 214708

Rand148 I . 103 '128 25 40·· 21 . 15 .' · 15 25 ..
(8) 2 112 137 . .25 40 21 15 .' 15 25

". 1. 3 . '. 87 105 • 18 35 . 20 . 15 15 20
.' 4 97 122 '. 25 • 40 21 . y 15 '. 15 . 25

5 120 166 46 4337 37 ... 32' 20 · .4302
.' 6 120 166' 46 4337 37 32 ". . 20····· 4302

Rand 149 I 251 277 26 144 24 28 22 116
(18) 2 278 304 26 144 24 28 22 116

3 293 317 24 87 21 27 21 60
4 313 337 24 175 22 27 22 148
5 999999
6 999999

Rand 150 '1 '. 1096 2615 '.1519 84053 667 .457 .223 . •. 83596··
(114) 2 '" 110r· • 2541 ·1440 .. 48700 669 ····.460 '220 " .···48240· '.'

.: 3 •.. 1655 ..• 4142 ·2487 21.8284 1165 • 693. I'" 310 217591
.. .' . 4 . 1495 3563 2068 153304 . 1015 '611' · 277,' 152687> .

, .'
••••••••

5 999999 ..•... '.' ';. . . .' " .' I .' .. · " ..
'. 6· 999999 'y' .•..•.... •••• •

.' '. . . I . ' .. .

.' Rand151 I 108 135 27 253 29 59 25 194
(36) 2 121 148 27 298 30 59 25 239

3 115 133 18 148 24 58 24 90
4 133 157 24 194 32 65 31 129
5 106 142 36 5326 29 157 27 5169
6 106 142 36 5326 29 157 27 5169

Rand152 . I ',.' 4 . 4 ··.·.0 I I .' I · . I O·
1'(1)•. ;, 2 . ·4 i.. 4,'.: . . ·>,0 ." •. ,".: .• <1' .• ' y 1 .. : .••.•.]>;. • I .. ·.;·· 1·' .' 1.0· •• •

3 • .·4 ... '. 4' , 0 L I.. L ' .. I, O ..
';' ······4·.·; 4·; •• >.':4:. 1>·;·0' ""1 ,'.,' .•... 1',' ["1 .•. I:S<; I ; ". 1'..< O.i':;'·

I i., ,.5 . ' ·4 .. ." 4.' : 0 '. '1 . I I. '.' .. I 0:.'
• 'C • . 26 .,. <:. 4:" 1,(0 •.• I. '''''·1'· .• j" •...• n· I···; I,,' 1·:··,;<0,.·.·.

Rand153 1 159 159 0 8 8 8 8 0
(3) 2 163 163 0 8 8 8 8 0

3 159 169 0 8 8 8 8 0
4 165 171 6 16 11 11 11 5
5 188 194 6 47 16 17 11 30
6 189 189 0 40 14 16 10 24

Rand 154 1 119 .119. o ' . . I . 1 1 . ..•.. .1 ... : 0·'

I:". (I) .. : .2.':: .116 •.•• ")"116·.· .' I,: .. ·· 0.·' c ' 1' •.••. ".1' ..• I .•.. ·•· .• n .• 1,·.>'·\,·: .. · ... ,.0 ••. • ... ••
·3 .100 .. 100 . 10 1 .• . ·1 I 1 I : ..

" 0'
I', '. ' .. ' ;>.4 •• , 1,,';101', ;'IOW' :''':0', : 1'." .1, '1;,', U· 1.,·.;'1,' · .•.. :: 0." •

,'. . 5· . 121·.' .' 121· .. 0 1 I L· . I 0
····;;>i. ·' ... :6.· I .124: .. ; 124 "·0"·' '.; I : ';1' .. : 1:·:1.:" I;; .. ', 1·",'; 1;;; .• ··0 ..•. " .
Randl55 I 291 597 306 960 182 17l 93 789

(52) 2 291 574 283 905 179 168 90 737

__ 321

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

3 305 583 278 3901 146 275 111 3626
4 297 515 218 2240 136 263 103 1977
5 303 521 218 5802 137 347 96 5455
6 312 512 200 4438 146 344 93 4094

Rand156 1 188 188 o . 47 29. '. 47 ." 29 . .. O.
(20) 2 197 197 0 44 28 44 28 . 0

3 '. 149 149 O' 43 23 43 23 0
..

4 124 '. 129 .• 5 49 .'. 31 .• 49.··. 31 0
.... 5 111 . '. 126 15 441 29 .. 147 29 294

.' 6 .' 109 124 . .·15 . .. 362 27. . 143 27 219 ."

Rand158 1 8170 8192 22 39 27 21 21 18
(9) 2 7474 7496 22 39 27 21 21 18

3 6399 6407 8 30 18 18 18 12
4 6611 6619 8 60 19 18 18 42
5 2639 2662 23 1921 36 53 23 1868
6 2611 2633 22 1410 34 52 22 1358

Lisaba9. 1 . I 269 ." 479 '210 .' 4067 136 .204 ·.·.58 3863
I. (85) 2 283 493 . 210 4067 . '136 '204 . 58 ··.·3863···
I· . '. 3·' "196 283 . . 87 3571 56 .. 187 61 . 3384
I .. 4 211 . 298 .• 87 3515 56 ". .. : 185 ' 61 . 3330 .

I ..
. '5 248,-,- . " . .357 .. ·· 109 227961 63 "199 '49 ·227762 .
. ' ·.···6 . ··248 .• '357 109. 1227961 . 63. 199 49 227762.'

Lisab30 1 254 305 51 293 48 59 39 234
(17) 2 256 291 35 137 40 53 35 84

3 242 268 26 249 34 51 33 198
4 248 270 22 129 33 45 29 84
5 289 381 92 12822 56 52 43 12770
6 290 383 93 12978 56 53 43 12925

Lisab60 _, 1 60 . 79. I···. 19 '123 . I 26 . 51 21 72

'. (19) . 2 60 '. ' .. 76 I 16 ... 66 '. I 24 . •.. 48' 20 .'. 18 .
,3; • ·62·. .,.85 .•. :. 23 .. ', ,.' .134 26 60 ... 23 . 74

' .. ·4.··· . 69' .. '82 1;13 .. ' . 73 25:· . 53. .21 ' . 20.
;

.. 5 .. 77; 101' .
'. 24

. 188 ····26 .. ;65;· 23 . 123 '. '.

".. ,. 6 ····79·· . ;103 I. 24.· •. . 148. ". 26 64:, '.'23 84 ..
Lisab59 1 231 378 147 77222 133 4670 117 72552
(3096) 2 264 411 147 77222 133 4670 117 72552

3 174 220 46 43242 49 5381 49 37861
4 207 253 46 43242 49 5381 49 37861
5 999999
6 999999

Lisab3l ;1,; 1613' 899 ,'.286" 5871:.. '. 213,. >.600 .. 176 .5271.
i (1154); .; 2 .. ' 621" . . 914 "293;' 4534 " 217";' "····607·· . ,·,·178 . ·'1:3927.;; .
,: '. , .3.:· I 1035 1495··.· .460. 41809 .. 274 ;. ..';767: .. ; '·163 .• .. 41042"

.. : .• 4:
"

I·,· 977.'" ·1651· 674 44935, ... 392 .'. 747 183 :.44188 ,
•. 5.' '. . 1246 1837 '; ." 591',' . 837509' '.' 494; . 1062 .. ·· .. 230 ':.··836447

'.
••••••••• 6 120L .1770 567 607491 .477 ";' . 1035 '.' '.' 226 1·606456

Lisaba4 1 645 1091 446 12368 346 2302 333 10066
(827) 2 643 1009 366 9959 335 2283 315 7676

3 799 1326 527 58847 257 2645 303 56202
4 542 1012 470 16818 258 2639 300 14179
5 999999
6 999999

322

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

I, Lisab57 1 179 280 101 1291 100 417 , 81 874
(170) 2 185 284 99 1245 100 404 81 " 841

3 251 515 " 264 '2869 ' '" 164' 511 ' 134 2358 ' ,
4 259 491 " 232 " 2125 160 443 121 1682 '
5 228 475 ' 247 3475 126 '473 ' 93 ' 3002 '

" '
" 6 226 473 247 ,2921 125 " 451 ,94 2470

Lisab28 1 64 76 12 201 30 116 28 85
(66) 2 79 91 12 201 30 116 28 85

3 69 84 15 156 22 90 22 66
4 84 99 15 156 22 90 22 66
5 64 84 20 646 22 350 22 296
6 64 84 20 646 22 350 22 296

LisablO 1 743 1306 ' 563 22074 414 1921' 335 20153
(940) ,: 12 ' 740" 1192 452 9593 ' " 399 ",,' I'" 1983 1,·334 " 7610 ",

,.':i\. " 3 702" 1049 .347 30126 224 ','. ·'.2912 . I' 231 .. ,',', 27214 '
.. 4 809 '. 1268 , 459 34660 282 . 2994' '287 ' 31666

" ' 5 796 . I·· 1305 509 I·.' 103892'· ;, 339,. ,.2625. 280 -' I·,. 101267.
,.',', " 6 797 " 1303 506 86036 ··333 2622 279 83414
Lisab35 1 513 1176 663 26233 386 435 192 25798

(136) 2 507 1149 642 17901 372 419 183 17482
3 604 1534 930 42677 474 557 175 42120
4 606 1533 927 39592 468 548 174 39044
5 589 1562 973 241117 460 810 200 240307
6 579 1534 955 217713 450 808 198 216905

Lisab51 I',' ,I 70, 115 ", 45 .. I. 163., ',31' ' ·29,. 1 .. 29 , 134 '.
I' (11) .• 2 77 119 42 103 30 28 '.' 28 75 ., ..

I' ." , I . 3' 77 125 48 .···182 , 29 • 27 ····.·27 155. ".

I' '4 . 85 126, 41-, 119 .," .28, . 26 ' I 26> 93
I ' 5 62 101 " ,39 . 279 ,26 .' '26 . 26 253.

". , , . 6 : 62 " 102' ,40 249 ' ',,26 ',' ·,,26 26 , 223'
Lisab44 1 115 138 23 176 29 30 28 146

(12) 2 124 145 21 164 29 29 27 135
3 107 128 21 158 24 33 23 125
4 111 142 31 248 35 47 29 201
5 112 166 54 524 35 41 34 483
6 113 171 58 440 36 40 35 400

,ysab25 ',.', 1 202 . 287' 85 ;,254 61 ,.1'·"" 84'. 51 170
(35)' '2' '218.' :"29f,; "'73' I':c 168 ' ,,63:,',' ,;86,,< ··,'·····53 "",82 .'

!, ,., •. 3" , ' :204.,. ,302. ' 98!, ' ". 199 ,.,64 ,'69" ,54, , . .130(, ")" >,
, '

.' 4 '220, 316 , .. , 96 165 "69 " ,.', 68 ' '", 56 ' .".' , 97,,:
5 ,', ,.,. ' 264:,. ··,455.,'; . 191y 1,,·3487',', f';, '94, .,,171,;" 1'.>75' '3316:.,

.;"'." , .. , .. ' 6 , 268 ',' 456 188! ,·3487. ,98 .. 168 ' I" 75· ',", 3319
Lisab54 1 65 92 27 99 23 28 21 71

(14) 2 72 93 21 57 22 27 21 30
3 74 97 23 50 22 26 22 24
4 77 92 15 40 20 24 20 16
5 68 121 53 177 31 37 30 140
6 69 116 47 124 32 39 31 85

iLisab53; ,'I·',' .)23, ,,~26'2 IL3: 1,_31,> c'" '12 cc,.' :,'27,;, , ,<,,12 ' ",,',' ",4, "!'
, ' (15)' ,,2 ,', ,,26 " ···.26. ,', 0 25 . 11 ,,' 1.,25 "., . 11 0'

, ·,3 yc >23' . 26,. . ·3>' , 31 ' "'.' ''10 .; ·;27·, '10 ,,'4,

,'"4'.;,,,' 1,;,26 '·'26:,. I, 0, "I',' 25",; "'".9.;';,, c;,;;25'; ";;,.9, 0>"

__ 323

Variable Ordering Heuristics For Binary Decision Diagrams Appendix III

5 23 26 . 3 31.··· .. .12 .. 27 12 4

6 . 23 26 3 31 '.' 12 ·27 12 4
Lisab52 1 815 1907 1092 6370 531 492 307 5878

(139) 2 800 1848 1048 4981 505 489 301 4492
3 997 2280 1283 30114 629 775 358 29339
4 842 1817 975 23475 513 765 354 22710
5 1103 2790 1687 121612 650 1020 344 120592
6 1049 2612 1563 105773 603 996 335 104777

Lisab34 1 ·70 .' 81 11 .'. 35····· 22 1·····30 23 '., '··5
(14) 2 75 82 7 33·.' ·23 . 29 '.' 23 4·

3 .' 69 .' 76 7 36 22 '.' 28 22 8 .

I. .. 4 73 .• 84 . 11 • 45', 25. 1.32 . 24 .. .,13. .',

5 77 94 .. 17 I 83 •... 20 ." 38 21 .. ' .45
6 78 ". . 95 17 . 83 20 .. 38 21 ·.45

Lisab36 1 1083 1271 188 1641 135 202 91 1439
(52) 2 1064 1267 203 2820 144 204 93 2616

3 1063 1196 133 480 101 161 79 319
4 1019 1204 185 3413 125 177 87 3236
5 1515 2007 492 27753 362 240 127 27513
6 1518 2051 533 27513 366 238 124 27275

I. Lisab42 1 ' . I· 64··.·. ".64 0 I 23 > . • It} '.23 . 19 . 0
. (10) 2 . 76 76 o . . ,23 • 19 123 . 19 . ·0

••
I' 3•. 61 . <.61 . ··0 '. '. 17,>" '17 1 • .i17 I· 17. . '0' '
I' 4 • 73 73 0 17 ' 17 .. 17 . 17 ·0

•.... 5 '.' 65 87 "·22 22317 . .33 17 . '. 190
> ,', 6 65 I 87 22 I', 223 •. '. .' 'IT' • 33 " . .. ' 17 I 190

__ 324

Variable Ordering Heuristics FOT Binary Decision Diagrams Appendix IV

Appendix IV

Remainder of Eleven Characteristics Used to Describe Fault Trees
Program Used To Produce Results - prodchar.f

li:.,';.TT7·
Number of Nwitbero(. .Totalno~ .

i·.··.·.····. Max··· Gates With ; QatesV/ith ;Most·· .. ;
•.•.. OUtput!i.. ;' "Lev,\IS .ofE"efi!s ;. Gates i1t .. ; .• Gattibhi)l' Eventorily .)~~j!i? I; ..• <. FtOmTop . "\,/.,;_,,>;<,(,-;;,', c';'" < ..• ; .••• <.... AnYG'iei .;[IllPut$'i(; ;·'InpUfs. ;-'" ," '.

Aaaaaaa 2 2 4 2 1 2 2
Artqual 3 4 \I 2 0 2 3
Arttree 2 2 5 2 I 2 2
Astolfo 2 7 22 5 5 7 5
Bddtest 2 4 15 4 I 4 2
Benjiam 2 4 22 8 5 8 4
Bpfeg03 2 5 63 8 4 14 0
Bpfen05 2 5 61 6 3 12 0
Bpfig05 2 5 60 6 3 12 0
Bpfin05 2 5 40 6 3 10 0
Bpfpp02 3 2 5 2 0 2 2
Bpfsw02 2 6 44 8 7 8 2
Ch8tree 3 3 12 2 0 2 3

Drel019 3 3 20 2 I 2 2
Dre1032 3 3 22 2 I 2 2
Drel057 3 4 33 3 2 4 2
Drel058 6 4 64 6 3 8 4
Drel059 2 6 80 6 5 8 4
Dresden 8 6 144 10 3 0 8
Emerh20 4 3 \I 2 I 2 2
Fatram2 3 4 10 2 0 2 2
Hpisf02 \I 5 80 10 6 11 2
Hpisf03 13 3 33 4 2 4 2
Hpisf21 4 5 208 9 6 3 4
Hpisf36 15 3 34 4 2 5 2
Jdtreel 3 3 7 2 0 2 0
Jdtree2 3 3 7 2 0 2 0
Jdtree3 3 6 21 2 0 2 0
Jdtree4 3 6 21 2 0 2 2
Jdtree5 3 6 21 2 0 2 2
Khictre 2 4 118 34 I I 16
Modtree 4 3 7 2 0 2 2
Nakashi 2 6 29 8 4 9 3
Newtre2 2 3 9 2 I 3 3
Newtre3 2 3 6 2 I 2 2
Newtree 2 3 7 2 I 2 2
Relcour 3 2 6 2 0 2 0
Rstreel 2 4 6 I 0 I 2
Rstree2 2 5 7 I 0 I 2
Rstree3 2 5 10 2 I 2 3
Rstree4 4 3 10 3 I 2 4
Rstree5 4 2 6 2 0 2 2
Rstree6 6 2 8 2 0 2 2

325

Variable Ordering Heuristics For Binary Decision Diagrams Appendix IV

... Tree· OutPuts i Levels .:, .. Events . Max.Clates Gate Only Eventooly . Rep Event
Restree7 2 4 13 3 I 3 3
Usatree 3 2 5 2 0 2 2
Worrell 2 4 13 4 1 4 3
Trials1 2 9 65 8 8 9 8
Trials2 5 7 32 4 4 8 7
Trials3 4 9 44 4 3 7 5
Trials4 2 12 85 13 13 7 9

Raodom1 5 3 12 3 0 3 3
Raodom2 3 2 7 1 0 1 2
Raodom3 5 7 61 8 0 12 2
Raodom4 6 2 9 1 0 1 2
Raodom5 3 8 134 18 5 23 5
Raodom6 4 5 122 21 3 24 5
Raodom7 5 3 8 1 0 1 2
Raodom8 3 5 21 2 1 3 2
Raodom9 5 4 17 2 0 2 3
RaodolO 5 2 8 1 0 1 2
Raodo11 7 5 143 23 0 27 3
Raodo12 2 5 98 13 3 17 4
Raodo13 4 5 140 24 0 26 6
Raodo14 3 3 9 1 0 1 2
Raodo15 6 3 18 3 0 3 4
Raodol6 2 7 84 12 1 17 6
Raodo17 6 2 7 1 0 1 2
Raodo18 7 6 178 28 4 33 5
Raodo19 3 5 133 22 3 27 6
Raodo20 4 7 143 17 4 24 6
Raodo21 2 4 11 2 1 2 0
Raodo22 4 6 128 22 1 23 5
Raodo23 4 6 56 7 1 7 3
Raodo24 5 2 8 1 0 1 2
Raodo25 5 4 33 6 1 8 5
Raodo26 3 4 15 3 0 3 3
Raodo27 5 7 115 19 2 22 5
Raodo28 2 8 50 3 1 7 3
Raodo29 4 6 67 11 3 12 4
Raodo30 3 5 45 6 2 7 2
Raodo31 2 8 120 16 2 25 7
Raodo32 6 3 15 2 0 2 3
Raodo33 2 4 63 9 1 10 5
Raodo34 5 7 61 8 0 12 5
Raodo35 4 5 51 8 I 10 5
Raodo36 6 5 37 4 0 7 3
Raodo37 5 5 74 13 0 13 5
Raodo38 5 5 26 3 0 6 2
Raodo39 3 6 66 10 3 12 4
Raod040 4 4 22 4 I 4 2
Raod041 6 4 12 1 0 I 2
Raod042 5 4 24 3 0 4 2
Raod043 7 4 31 4 0 5 3
Raod044 4 6 68 8 2 12 2
Raod045 2 5 60 12 I 12 5

__ 326

Variable Ordering Heuristics For Binary Decision Diagrams Appendix IV

.. ;Tree ~: ;; Outputs ; Levels"' 'Eveni;;, ; Max.Gates I Gate Only' Event only: R.,pEvent
Rand046 6 5 69 10 0 II 4
Rand047 4 4 62 II 0 II 3
Rand048 6 4 42 7 I 9 4
Rand049 7 5 24 3 1 4 4
Rando50 6 4 12 1 0 1 2
Rando51 4 3 9 1 0 1 3
Rando52 2 IO 80 \2 3 16 5
Rando53 5 5 35 4 0 6 3
Rando54 5 8 39 3 I 6 2
Rando55 2 6 41 6 0 6 4
Rando56 2 4 15 2 0 3 2
Rando57 5 4 17 2 0 2 4
Rando58 5 5 28 5 0 5 3
Rando59 5 4 60 4 3 15 4
Rando60 7 6 87 14 3 18 3
Rand061 3 6 51 6 0 8 5
Rand062 5 5 35 4 0 6 4
Rand063 2 6 41 6 0 6 4
Rand064 4 6 45 8 2 10 2
Rand065 4 4 25 4 0 6 4
Rand066 6 7 51 4 2 6 4
Rand067 5 2 6 1 0 1 2
Rand068 6 4 19 2 0 3 5
Rand069 6 3 12 2 0 2 2
Rando70 7 6 28 3 1 4 2
Rando71 4 3 IO 2 0 2 3
Rando72 5 3 14 3 0 3 3
Rando73 6 5 65 7 1 II 4
Rando74 3 3 8 I 0 I 2
Rando75 7 6 28 3 . I 4 3
Rando76 8 5 45 5 I 9 4
Rando77 5 6 79 10 1 15 4
Rando78 5 5 38 7 1 9 3
Rando79 6 3 12 2 0 2 3
Rando80 7 4 29 3 1 6 2
Rando81 5 2 8 I 0 1 2
Rando82 5 6 27 3 1 4 5
Rando83 3 5 30 4 2 7 3
Rando84 6 5 47 8 3 10 2
Rando85 6 6 40 6 I 6 4
Rando86 3 3 9 I 0 1 2
Rando87 4 5 29 5 0 6 4
Rando88 4 4 25 4 0 6 2
Rando89 5 7 61 8 0 12 3
Rando90 2 2 3 I 0 1 0
Rando91 2 5 98 \3 3 17 4
Rando92 5 7 130 16 1 20 5
Rando93 5 6 55 6 0 9 4
Rando94 3 3 9 I 0 1 2
Rando95 5 6 31 3 1 6 3
Rando96 3 3 9 I 0 1 2
Rando97 2 4 6 1 0 1 2

___ 327

Variable Ordering Heuristics For Binary Decision Diagrams Appendix IV

Tree·· . Outputs. . Levels.,···· '. Events"," Max.Gates Gate Only Event only Rep Event
Rando98 6 5 69 10 0 11 4
Rando99 5 5 77 12 I 14 4
RandlOO 5 6 53 9 0 \0 4
RandlOI 6 3 8 I 0 I 2
Randl02 3 3 9 I 0 I 2
Randl03 2 5 29 5 2 7 3
Randl04 5 6 41 5 0 9 4
Rand\05 6 5 37 4 0 7 2
Randl06 5 6 76 12 2 15 4
Randl07 6 2 9 I 0 I 2
Randl08 4 6 76 12 I 16 5
Randl09 4 6 68 8 2 12 3
Randl \0 5 7 61 8 0 12 5
Rand111 6 5 47 8 3 10 5
Randl12 6 2 7 1 0 I 2
Randl13 7 6 28 3 I 4 4
Rand114 6 4 12 1 0 I 2
Rand115 5 5 46 7 I 10 3
Rand116 7 5 68 9 3 12 4
Rand 117 2 4 23 4 2 6 3
Rand118 6 5 47 8 3 \0 2
Rand119 7 5 37 4 0 8 3
Randl20 4 5 47 7 I \0 3
Randl21 5 6 50 5 I 6 2
Rand122 5 2 6 1 0 1 2
Randl23 2 5 23 2 I 3 3
Randl24 4 6 30 4 I 6 3
Randl25 6 4 19 2 0 3 2
Randl26 7 5 53 8 4 14 3
Randl27 2 6 31 4 I 4 2
Randl28 7 5 68 9 3 12 4
Randl29 5 5 26 3 0 3 2
Randl30 6 6 40 6 I 6 3
Rand\3l 4 3 10 2 0 2 3
Randl32 2 6 84 9 3 14 5
Rand\33 3 2 9 2 0 2 3
Randl34 5 6 98 14 I 15 4
Randl35 3 6 64 10 I \3 4
Rand136 5 2 6 1 0 I 2
Rand\37 5 6 26 3 I 4 2
Randl38 3 6 31 3 0 5 3
Rand\39 3 6 50 7 3 10 3
Randl40 6 3 11 I 0 I 3
Randl41 5 7 61 8 0 12 5
Randl42 2 6 97 12 4 15 6
Randl43 4 6 40 5 0 9 3
Randl44 7 5 85 13 2 16 5
Randl45 6 5 34 4 0 4 2
Rand146 5 6 26 3 1 4 2
Randl47 3 6 90 16 4 19 5
Randl48 3 5 31 4 0 6 3
Rand149 4 5 64 9 I 12 3

__ 328

Variable Ordering Heuristics For Binary Decision Diagrams Appendix IV

I' Tree·" . . Outputs ' .. '. LeVels Events Max.Gates Gate Only Event only Rep Event
Randl50 3 5 74 11 3 17 4
Randl51 7 5 32 3 I 6 2
Randl52 2 2 3 I 0 I 2
Randl53 5 6 47 6 I 8 5
Randl54 2 6 30 3 0 5 3
Randl55 4 5 47 7 I 10 4
Randl56 5 5 28 5 0 5 2
Randl58 5 6 123 28 6 29 5
Lisaba9 4 5 46 9 I 10 2
Lisab30 4 6 45 8 2 10 3
Lisab60 4 3 23 3 0 4 3
Lisab59 6 4 49 7 I 9 0
Lisab31 4 5 94 14 2 16 6
Lisaba4 2 3 63 7 3 14 4
Lisab57 3 4 46 8 I 10 3
Lisab28 2 5 22 3 0 4 0
LisablO 6 6 80 7 I II 4
Lisab35 2 4 57 10 2 II 4
Lisab51 5 4 21 3 0 4 2
Lisab44 7 3 33 6 0 7 3
Lisab25 6 5 37 4 0 7 3
Lisab54 4 3 19 3 0 4 2
Lisab53 2 3 10 3 I 3 2
Lisab52 4 5 94 14 2 16 8
Lisab34 4 3 23 4 0 4 4
Lisab36 7 5 130 21 I 26 8
Lisab42 6 4 23 3 0 3 2

__ 329

Variable Ordering Heuristics For Binary Decision Diagrams Appendix V

Appendix V

Network Architectures Predicting 14120 Correct Responses,
With Eleven Input Nodes and Six Output Nodes

Network 1:

Random Number Seed = 2082
Number of Centres = 4

Centres were randomly chosen as:

!!I ={0.644, 0.235, 0.733, 0.001, 0.538, 0.462, 0.489, 0.459, 0.138, 0.971, 0.263}
ID ={0.624, 0.059, 0.644, 0.001, 0.308, 0.462, 0.154, 0.115, 0.034, 0.206, 0.158}
!!3 ={Q.416, 0.059, 0.711, 0.001, 0.462, 0.385, 0.129, 0.131, 0.103, 0.294, 0.263}
!!4 ={0.465, 0.029, 0.600, 0.001, 0.462, 0.385, 0.102, 0.066, 0.001, 0.206, 0.158}

Width Parameter: 1.023383

Weights from output node k to each centre (including extra bias node):

k= 1: {0.627533, 0.040619, -0.944214,2.572754, -1.308350}
k= 2: {0.728906, -0.285797, -0.712158,2.209473, -0.995605}
k= 3: {0.645231, -0.158051, 0.200012, -0.248779, 0.456787}
k= 4: {0.659595, 0.432404, -0.780762, -2.036621, 2.743286}
k= 5: {0.261979, -0.376621,3.887093, -2.044250, -1.780518}
k= 6: {0.167886, -0.868729,1.308273,1.308136, -1.978363}

Predictions: 2, 2, 2, 3, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 2.

Network 2:

Random Number Seed = 638
Number of Centres = 4

Centres were randomly chosen as:

!!I ={0.347, 0.147, 0.622, 0.001, 0.538, 0.385, 0.357, 0.344, 0.064, 0.765, 0.421}
ID ={0.545, 0.029, 0.489, 0.001, 0.385, 0.538, 0.088, 0.066, 0.138, 0.235, 0.368}
!!3 ={0.465, 0.029, 0.600, 0.001, 0.462, 0.385, 0.102,0.066,0.001,0.206, 0.158}
!!4 ={0.624, 0.088, 0.489, 0.999, 0.154, 0.385, 0.269,0.213,0.103,0.500, 0.211}

Width Parameter: 1.389346

___ 330

Variable Ordering Heuristics For Binary Decision Diagrams

Weights from output node k to each centre (including extra bias node):

k= 1: {-0.400345, 0.879898, -1.373670, 1.440329,0.788738}
k= 2: {0.044533, 0.357495, -1.194422,1.515049, 0.503082}
k = 3: {0.160515, -0.350220, -0.277689, 1.152544, 0.335304}
k= 4: {0.261047, -0.212697,0.719505, -0.013809, 0.249889}
k = 5: {0.723707, -0.996623,2.494805, -2.038268, -0.336407}
k= 6: {0.038984, -0.743388, 0.171157, 0.542048, 0.112501 }

Predictions: 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2

Network 3:

Random Number Seed = 14
Number of Centres = 4

Centres were randomly chosen as:

Appendix V

l!1 ={0.614, 0.059, 0.756, 0.999, 0.385, 0.385, 0.096,0.066, 0.001,0.176, 0.211}
l!2 ={0.574, 0.088, 0.756, 0.999, 0.538,0.385,0.187,0.148,0.103,0.353, 0.211}
l!3 ={0.703, 0.001, 0.289, 0.999, 0.308, 0.231,0.044,0.066,0.001,0.118, 0.105}
!!4 ={0.644, 0.235, 0.733, 0.001, 0.538,0.462,0.489,0.459,0.138,0.971, 0.263}

Width Parameter: 2.486194

Weights from output node k to each centre (including extra bias node):

k= 1: {-0.539177, 0.410477,0.621460, -0.250919, 0.989006}
k = 2: {-0.023300, 2.511902, -1.787384, -0.315865, 0.807106}
k= 3: {-0.093994, 3.335388, -3.664124, 0.702023, 0.865509}
k = 4: {-O.l1501, -1.884018, -0.157532, 2.505596, 0.815941}
k = 5: {0.705609, 4.511517, -4.432554, -0.518198, -0.315331}
k= 6: {0.l3l954, 5.745249, -4.993504, -0.800303, 0.079931}

Predictions: 2,2, 2, 2, 2, 4, 3, 2, 3, 4, 2, 3,2, 3, 1, 2, 2, 2, 2, 2

Network 4:

Random Number Seed = 2104
Number of Centres = 4

___ 331

Variable Ordering Heuristics For Binary Decision Diagrams Appendix V

Centres were randomly chosen as:

!!I ={0.693, 0.059, 0.600,0.001,0.308,0.308,0.170,0.180,0.001,0.324, O.l58}
ID ={0.495, 0.059, 0.733, 0.999, 0.462, 0.308,0.115,0.115,0.034,0.265, 0.211}
!!3 ={0.663, 0.001,0.844,0.999,0.385,0.231,0.022,0.016,0.001, 0.029, O.l05} .
!!4 ={0.376, 0.029, 0.289, 0.999, 0.385, 0.615, 0.107, 0.049, 0.034, 0.176, O.l05}

Width Parameter: 1.345287

Weights from output node k to each centre (including extra bias node):

k= 1: {-0.368835, 0.813622, 2.567841, -1.570488, -0.327698}
k= 2: {0.097225, 0.615604,1.304199, -0.663660, -0.218613}
k= 3: {0.071648, 0.625912, -1.078751, 0.925899, 0.637878}
k= 4: {0.092682, 0.585405, -0.161758, -0.713787, 1.265244}
k= 5: {0.819168, -0.440451, -2.518150,2.101263, 0.090710}
k= 6: {0.076971, 0.070652, -2.066561, 2.049984, 0.217453}

Predictions: 2, 2, 2, 2, 2, 4, 3, 2, 4, 4, 2, 3, 2, 3, 2, 2, 2, 4, 2, 2

NetworkS:

Random Number Seed = 804
Number of Centres = 4

Centres were randomly chosen as:

!!I ={0.495, 0.029, 0.889, 0.001, 0.462, 0.231, 0.041, 0.033, 0.001, 0.059, 0.158}
ID ={0.574, 0.088, 0.711, 0.999, 0.538, 0.385, 0.187,0.148,0.103,0.353,0.211}
!!J ={0.703, 0.029, 0.644, 0.999, 0.231, 0.385,0.058,0.033,0.034,0.088, 0.105}
!!4 ={0.287, 0.001, 0.133, 0.001, 0.999, 0.231, 0.091,0.066,0.069,0.118, 0.105}

Width Parameter: 2.054398

Weights from output node k to each centre (including extra bias node):

k= 1: {-0.496120, 0.659004,2.716137, -1.931986, 0.219772}
k= 2: {-0.044708, 0.647316,1.163872, -0.694355, 0.085007}
k= 3: {-0.138527, 0.283928, -0.291748, 0.760921, 0.540497}
k= 4: {0.042103, -0.400177, -0.033504, 0.405100, 1.129868}
k= 5: {1.015712, 0.229465, -3.061208, 2.533210, -0.855728}
k= 6: {0.008986, 0.480789, -1.694976,1.783416, -0.380005}

_________________________ 332

Variable Ordering Heuristics For Binary Decision Diagrams

Predictions: 2,2, 2, 2, 2, 4, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2

Network 6:

Random Number Seed = 14
Number of Centres = 5

Centres were randomly chosen as:

Appendix V

!!1 ={0.614, 0.059, 0.756, 0.999, 0.385, 0.385, 0.096, 0.066, 0.001,0.176, 0.211}
!!2 ={0.574, 0.088, 0.756, 0.999, 0.538, 0.385, 0.187, 0.148, 0.103, 0.353, 0.211}
!!3 ={0.703, 0.001, 0.289, 0.999, 0.308, 0.231, 0.044,0.066,0.001,0.118, 0.105}
!!4 ={0.644, 0.235, 0.733, 0.001, 0.538, 0.462,0.489,0.459,0.138,0.971, 0.263}
!!s ={0.663, 0.029, 0.733, 0.001, 0.385, 0.462, 0.074, 0.049, 0.034,0.118, 0.263}

Width Parameter: 2.486194

Weights from output node k to each centre (including extra bias node):

k= 1: {-0.621368, -3.372803, 4.485840, -0.273254, -0.087952, 0.982971}
k= 2: {-0.085686, -0.361816,1.148682, -0.332859, -0.010559, 0.746399}
k= 3: {-0.157692, 0.403076, -0.669434, 0.684608, 0.031006, 0.761414}
k= 4: {-0.153404, -3.631836, 1.626709,2.495237,0.318787, 0.453918}
k= 5: {0.880739, 12.572174, -12.667389, -0.470413,1.978851, -2.094276}
k= 6: {0.121167, 5.248474, -4.486267, -0.803239, -0.061462, 0.129044}

Predictions: 2, 2, 2, 2, 2, 4, 3, 2, 3, 4, 2, 3, 2, 3, 1, 2, 2, 2, 2, 2

Network 7:

Random Number Seed = 42
Number of Centres = 5

Centres were randomly chosen as:

!!1 ={0.604, 0.088, 0.667, 0.001,0.154,0.769,0.220,0.197,0.103,0.471, 0.263}
!!2 ={0.386, 0.088, 0.667, 0.999, 0.385, 0.462, 0.209, 0.197, 0.069, 0.441, 0.211}
!!3 ={0.663, 0.088, 0.756, 0.999, 0.385, 0.385, 0.203, 0.213, 0.001, 0.382, 0.263}
!!4 ={0.396, 0.882, 0.600, 0.999, 0.231, 0.308,0.030,0.033,0.001,0.059, 0.158}
Us ={0.297, 0.001, 0.001, 0.999, 0.385, 0.308, 0.066, 0.066, 0.034, 0.147, 0.001}

_________________________ 333

Variable Ordering Heuristics For Binary Decision Diagrams Appendix V

Width Parameter: 2.151013

Weights from output node k to each centre (including extra bias node):

k= 1: {-0.211445, 0.638014,1.540771,0.717499, -1.959526, 0.091232}
k = 2: {-0.049915, 0.715805, 1.545959, -1.160339, 0.354324, -0.226288}
k = 3: {-0.116955, 0.787764, -2.905426, 2.052307, 0.574234, 0.852631}
k= 4: {-0.071869, 0.722025,0.772614, -1.447540,0.212128, 0.946533}
k = 5: {0.273493, 0.027996, -3.161896, 0.588211, 3.102493, -0.295128}
k= 6: {-0.042212, 0.139519, -3.720276,2.944519,0.489536, 0.552151}

Predictions: 2, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 3, 2, 3, 1,2, 2, 2, 2, 2

NetworkS:

Random Number Seed = 548
Number of Centres = 9

Centres were randomly chosen as:

l!l ={0.248, 0.001, 0.111, 0.001, 0.231, 0.231,0.060,0.033,0.034,0.059, 0.105}
l!2 ={0.624, 0.118,0.667,0.999,0.154,0.385,0.269,0.213,0.103, 0.500, 0.211}
l!3 ={0.347, 0.147, 0.667, 0.999, 0.308, 0.462, 0.352, 0.361, 0.034, 0.676, 0.263}
l!4 ={0.663, 0.088, 0.756, 0.999, 0.385, 0.385, 0.203, 0.213, 0.001, 0.382, 0.263}
l!s ={0.356, 0.059, 0.556, 0.001, 0.538, 0.385, 0.157, 0.148, 0.034, 0.324, 0.158}
!l6 ={0.406, 0.001, 0.001, 0.001, 0.154, 0.385, 0.168, 0.098, 0.103, 0.353, 0.001}
l!7 ={0.495, 0.001, 0.222, 0.999, 0.154, 0.385, 0.027, 0.033, 0.034, 0.059, 0.158}
l!s ={0.495, 0.029, 0.489,0.001,0.154,0.308,0.063,0.066,0.069,0.176, 0.15S}
l!9 ={0.376, 0.059, 0.378, 0.999, 0.308, 0.462, 0.209, 0.197, 0.034, 0.471, 0.158}

Width Parameter: 1.998337

Weights from output node k to each centre (including extra bias node):

k = 1: {-0.335327, -3.125977, -4.697266, -2.996094, 2.554199, 0.072266,
0.031250, -3.246094, 3.546875, 8.796875}

k= 2: {-0.021729, 2.694336, 2.117188, -4.269531, -0.873535, -0.825159,-
3.271484, -5.097656, 2.001953, 8.281250}

k= 3: {-0.081177, -5.726562, -6.889648,3.976562, 3.184082, 2.348633,
3.644531,6.007812,0.359375, -5.593750}

k = 4: {-0.113037, 0.887695, 5.859375, -2.972656, -4.781250, 3.453125, -
1.185547,0.140625, -2.488281, 2.109375}

_________________________ 334

Variable Ordering Heuristics For Binary Decision Diagrams Appendix V

k = 5: {0.555267, 0.138916, 4.523926, 7.046387, -0.801270, 0.328491,
3.963135,7.817383, -4.350586, -18.260742}

k= 6: {-0.101654, -2.108398, -1.536621, 6.797852, -0.288818, 2.426025,
1.474854,8.219727, -1.593750, -12.535156}

Predictions: 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2

___ 335

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VI

Appendix VI

Results of Structural Importance Measure Variable Ordering Heuristic

Program used to generate ordering - strimpgsq!
Program used to generate BDD and related nodes for each scheme - schemes!

•• ·.··· ... ··.:T7;'}L ,.. ·Of·
•. ',2'2:~\ l.:ut ~ets.

I·; . ' ,for. 1..-. "",2.: . ·.Best.·~·· .N()(jes, ••.. ..,~.;.
i afidtally

2 3 = .)

7 1 \1 =1 ~)

Arttree 2 4 = i)
2' 107 123 >1
S 36 62 >2
4 76 78 >3

6 8: 107 >4
'1 51 197 15156: >5

Rnlipfi :6 4~ 167 14262: >6
4.6 2915 5287 >7

4 4 = (4)
84124 110698 112258 >8

12 >
Dre 9 ,3 6 69 =(: 5)

ure ,"- '5 81 <
DrelVJI 2\00 2478 2300 <2

11934 24764 23132 <3
nr.l0~Q 36990 61476 61036 <4

11934 221217 23132 <5
13 16 = (6)

\0 > 10
255 164539 >11

202 12 <6
7777 10593 31 156 ~12

61 132 12 =(7)

Jdtree1 4 \0 12 > 13
. Jdtree2 4 \0 12 > 14
Jdtree3 36 71 79 > 15
Jdtree4 30 59 > 16
Jdtree5 10 70 ~ > 17

21 1134 S t2 <7
4 4 = (8)

460 3~ <8
9 \0 > 18

2 6 = (9)
3 \0 > 19
6 9 = (10)

R<iT •• 3 4 4 = (t I)
RdT_? 3 4 4 = 0: Z)

6 11 10 <
R,d 4 5 5 =(3)

""m"" 2 2 2 =(4)

___ 336

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VI

. : Tree;· .' Minimal Cut SetS Nodes f<lT Previous Best . Structural NodeS I : Comparison
Rstree6 4 4 4 ~ (15)
Rstree7 8 33 16 <10
Usatree 2 4 4 ' (16)
Worrell 10 17 17 ~ (17)
Trialsl 45 913 416 <11
Trials2 6 29 12 < 12
Trials3 2 2 2 ~ (18)
Trials4 49 302 288 < 13

Random I 5 6 6 ~ (19)

Random2 2 2 2 ~ (20)
Random3 235 2341 2647 >20
Random4 5 5 5 ~ (21)
Random6 93 40210 116218 >21
Random7 2 4 4 ~ (22)
Random8 4 31 30 < 14
Random9 2 6 6 ~ (23)
RandolO 4 4 4 ~ (24)
Randoll >500000 >500000 ~(25)

Randol2 68 9545 6241 < IS
Rando13 73 394 417 >22
Randol4 2 2 2 ~ (26)
Randol5 5 5 5 ~ (27)
Randol6 76 453 420 < 16
Randol7 2 5 5 ' (28)
Randol8 24 2364 1015 < 17
Randol9 764 13692 8749 < 18
Rando20 122 12097 8216 < 19
Rando21 5 21 24 >23
Rando22 423 89013 18865 <20
Rando23 9 ISO 141 <21
Rando24 4 4 4 ~(29)

Rando25 6 16 19 >24
Rando26 3 4 4 ~(30)

Rando27 100 1150 601 <22
Rando28 2 2 2 ~ (31)
Rando29 22 630 489 <23
Rando30 195 4266 9866 >25
Rando31 5 11 11 ~(32)

Rando32 5 5 5 ~ (33)
Rando33 11 18 27 >26
Rando34 35 212 199 <24
Rando35 8 180 47 <25
Rando36 10 62 44 <26
Rando37 29 136 72 <27
Rando38 9 50 57 >27
Rando39 51 626 581 <28
Rand040 9 44 33 <29
Rand041 2 5 5 ~(34)

Rand042 2 5 5 ~(35)

Rand043 22 94 94 ~ (36)
Rand044 436 81850 230239 >28
Rand045 16 138 85 <30

337

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VI

.i Tree· .• Minimal Cut sets . Nodes for Previous Best· •.. Structural Nodes Comparison
Rand046 10 16 16 ~ (37)
Rand047 15 1113 1148 >29
Rand048 16 34 34 ~ (38)
Rand049 4 18 20 >30
Rando50 2 5 5 ~ (39)
Rando51 3 3 3 ~ (40)
Rando52 41 492 115 < 31
Rando53 2 5 5 ~ (41)

Rando54 269 756 1151 >31
Rando55 9 24 25 >32
Rando56 3 7 7 ~ (42)
Rando57 2 6 6 ~ (43)
Rando58 3 9 9 ~ (44)
Rando59 99 19289 15319 <32
Rand060 22 639 391 <33
Rand061 15 79 40 <34
Rand062 7 21 11 <35
Rando63 9 24 25 >33
Rando64 31 2568 782 <36
Rand065 13 92 93 > 34
Rand066 5 131 84 <37
Rand067 1 4 4 - 45
Rand068 5 6 6 - 46
Rand069 6 8 8 - 47
Rando70 27 80 74 <38
Rando71 2 7 6 <39
Rando72 2 2 2 ~ (48)
Rando73 80 614 199 <40
Rando74 2 2 2 ~ (49)
Rando75 4 16 16 ~ (50)
Rando76 24 299 223 <41
Rando77 27 230 84 <42
Rando78 2 5 5 ~ (51)

Rando79 4 4 4 ~ (52)
Rando80 22 119 118 <43
Rando81 4 4 4 ~ (53)
Rando82 5 6 6 ~ (54)
Rando83 39 219 204 <44
Rando84 52 703 366 <45
Rando85 7 18 15 <46
Rando86 2 2 2 ~ (55)
Rando87 15 21 19 <47
Rando88 29 504 662 >35
Rando89 21 238 180 <48
Rando90 2 3 3 ~ (56)
Rando91 106 32108 12263 <49
Rando92 58 9526 3278 <50
Rando93 16 61 46 < 51
Rando94 1 2 2 ~ (57)
Rando95 31 57 79 >36
Rando96 5 7 7 ~ (58)
Rando97 2 3 3 ~(59)

__ 338

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VI

'.' •.... Tree C" '.: . Minimal Cut sets Nodes for Previous Best . Structural Nodes. Comparison
Rando98 283 24088 16086 <52
Rando99 28 737 732 <53
RandlOO 8 21 27 >37
Randl0l 2 7 7 ~(60)

Randl02 2 2 2 ~ (61)
Rand103 13 94 118 >38
Randl04 9 110 118 >39
Randl05 96 953 936 <54
Randl06 8 41 17 <55
Rand107 5 5 5 ~(62)

Rand108 35 162 132 <56
Randl09 203 9197 3260 <57
RandllO 8 39 33 <58
Randl11 22 217 76 <59
Randll2 2 5 5 - 63
Randl13 2 6 6 - 64
Randll4 2 7 7 - 65
Rand115 46 851 438 <60
Randll6 15 937 265 <61
Randl17 11 32 32 ~ (66)
Rand118 52 703 366 <62
Rand119 84 309 133 <63
Rand120 48 3392 3287 <64
Rand121 80 156 132 <65
Randl22 4 4 4 ~ (67)
Rand123 12 20 17 <66
Rand124 27 178 144 <67
Rand125 13 24 21 <68
Randl26 59 1744 2956 >40
Randl27 43 218 292 >41
Rand128 52 886 882 <69
Rand129 2 4 4 ~(68t

Rand130 5 5 5 ~(69)

Rand 13 I 2 8 7 <70
Randl32 67 5128 3685 <71
Rand133 4 5 5 ~ (70)
Rand134 60 620 566 <72
Rand135 24 382 386 >42
Rand136 I 4 4 ~ (71)
Rand137 15 139 99 <73
Rand138 2 2 2 ~ (72)

Rand139 49 478 469 <74
Randl40 5 5 5 ~ (73)
Rand141 8 39 33 <75
Randl42 4\0 55680 53665 <76
Randl43 8 253 146 <77
Randl44 41 5197 1707 <78
Randl45 47 303 444 >43
Randl46 15 139 99 <79
Randl47 30 2548 5884 >44
Randl48 8 35 42 >45
Randl49 18 87 135 >46

___ 339

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VI

.' "r Tree» I Cut SetS . Nodes for Best· Nodes
Randl50 1I4 48700 36036 <80
Randl51 36 148 218 > 4'1
Rand! ~: I I = (74
tand)3 8 = (75
tandl)4 I =(76
tandl)5 2 905 7'10 <81

Rand\:)6 20 43 40 < 12
Rand\:)8 9 30 24 < 13
l.i""h. 85 3515 3211 < 14
Lisab30 17 129 87 <
I ;o.h(iO 19 66 47 <
1.i""h'iQ 3096 43242 1I4954 >,
I; •• hll 164 4534 4896 >4'
I ;,.h.d. 827 9959 5523 <8
Lisab57 170 1245 1I51 <8
1.;'.h7R 66 156 162 >50
LisablO 940 9593 6438 < 89

136 17901 12170 <90
Lisab51 11 103 91 <91
I ,.1"', I <92

I 5 8 <93
T •• 1 il~, >51
T;o.hn 2 <94
I 19 49 n 26 '4 <95
'-i •• h 14 3 3

~ T .; .. hln 52 480 316

~ I ;,.hd.? IO 17 17

___ 340

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VII

Appendix VII

Difference in BDDs Affected by The Structural Importance Measure With
Additional Subroutine of Ordering Matched Components by The Number of

Repetitions

Program used to generate ordering - strrep!
Program used to generate BDD and mnnber of nodes - schemes!

i::,·Tree Nodes of Best '. Nooes ()fSlt1Jctuflil Nodes with addition· Effecton results' .. " .'
i .'

· ••. ••···• .. ·of6{i .. • ~~~~~~e 'c)rr~tOd event.
....... ··..ii .. ". ···i.~ I>·.,····.· •··· ••. ·A1ternativeS.··;·· : ::'seParatioii: '."

ArtQual 11 11 11 No change
Benjiarn 76 78 84 >, but No change to result
Ch8tree 11 12 12 No change
Drel019 69 69 69 No change
Drel032 87 81 81 No change
Drel057 2478 2300 2300 No change
Emerh20 16 16 16 No change
Khictre 1134 982 982 No change
Newtre3 6 6 7 Worse (»
Worrell 17 17 18 Worse(»
Trials I 913 416 395 < but No change to result
Trials2 29 12 12 No change
Trials3 2 2 2 No change

Random3 2341 2647 2647 No change
Random4 5 5 5 No change
Random6 40210 116218 116218 No change
RandolO 4 4 4 No change
Randol2 9545 6241 6576 >, but No change to result
Rando13 394 417 417 No change
Randol5 5 5 5 No change
Randol6 453 420 420 No change
Randol7 5 5 5 No change
Randol8 2364 1015 1015 No change
Rando19 13692 8749 8749 No change
Rand020 12097 8216 8216 No change
Rand022 89013 18865 18865 No change
Rand023 150 141 135 <, but No change to result
Rand024 4 4 4 No change
Rand025 16 19 19 No change
Rand026 4 4 4 No change
Rand027 1150 601 601 No change
Rand028 2 2 2 No change
Rand029 630 489 489 No change
Rand031 11 11 11 No change
Rand032 5 5 5 No change
Rand033 18 27 23 <, but No change to result
Rand034 212 199 199 No change
Rand035 180 47 47 No change

___ 341

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VII

Tree' , Nodes ofBest " Structural MeasUre Repeated Separation ' ' , ' Effect on results
Rand036 62 44 44 No change
Rand037 136 72 72 No change
Rand038 50 57 57 No change
Rando39 626 581 581 No change
Rand041 5 5 5 Nochan~e
Rand042 5 5 5 No change
Rand043 94 94 94 No change
Rand044 81850 230239 230239 No change
Rand045 138 85 85 No change
Rand046 16 16 16 No change
Rand047 1113 1148 1148 No change
Rand048 34 34 34 No change
Rand049 18 20 20 No change
Rando50 5 5 5 No change
Rand051 3 3 3 No change
Rando52 492 115 115 No change
Rando53 5 5 5 No change
Rando55 24 25 25 No change
Rando56 7 7 7 No change
Rando59 19289 15319 15319 No change
Rand060 639 391 391 No change
Rand061 79 40 40 No change
Rand062 21 11 11 No change
Rand063 24 25 25 No change
Rand064 2568 782 782 No change
Rand065 92 93 93 No change
Rand066 131 84 84 No change
Rand067 4 4 4 No change
Rand068 6 6 6 No change
Rand069 8 8 8 No change
Rando72 2 2 2 No change
Rando73 614 299 299 No change
Rando75 16 16 16 No change
Rand076 299 223 223 No change
Rando77 230 84 84 No change
Rand078 5 5 5 No change
Rando79 4 4 4 No change
Rando80 119 118 118 No change
Rando81 4 4 4 No change
Rando82 6 6 6 No change
Rand083 219 204 204 No change
Rand084 703 366 366 No change
Rando85 18 15 15 No change
Rando87 21 19 19 No change
Rand089 238 180 180 No change
Rando91 32108 12263 12263 No change
Rando92 9526 3278 3278 No change
Rand093 61 46 46 No change
Rando96 7 7 7 No change
Rando98 24088 16086 16086 No change
Rand099 737 732 693 <, but No change to result
Rand100 21 27 22 <, but No change to result

__ 342

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VII

««Tree .««< Nodes of Best c Structural Measure Repeated Separation « < Effect on results < <
RandlOI 7 7 7 No change
Randl03 94 118 118 No change
Randl04 1I0 118 88 <, Result <
Randl06 41 17 17 No change
RandI07 5 5 5 No chanlle
Randl08 162 132 132 No change
Randl09 9197 3260 3260 No change
Randl IO 39 33 33 No change
Rand I 11 217 76 76 No change
RandlI2 5 5 5 No change
Randl \3 6 6 6 No change
Rand 114 7 7 7 No change
Randll5 851 438 438 No change
Randll6 937 265 265 No change
Randll8 703 366 366 No change
Randll9 309 133 269 >, but No change to result
Randl21 156 132 132 No change
Randl23 20 17 17 No change
Randl24 178 144 144 No change
Randl25 24 21 21 No change
Randl26 1744 2956 2956 No change
Randl27 218 292 292 No change
Randl28 886 882 882 No change
Randl29 4 4 4 No change
Rand130 5 5 5 No change
Randl31 8 7 7 No change
Rand\32 5128 3685 3685 No change
Randl33 5 5 5 No change
Rand134 620 566 566 No change
Rand135 382 386 386 No change
Rand136 4 4 4 No change
Rand138 2 2 2 No change
Rand139 478 469 469 No change
Randl40 5 5 5 No change
Randl41 39 33 33 No change
Randl42 55680 53665 53665 No change
Randl43 253 146 146 No change
Randl44 5197 1707 1707 No change
Randl47 2548 5884 5884 No change
Randl48 35 45 32 <,Result <
Randl49 87 135 159 >, but No change in result
Randl50 48700 36036 36036 No change
Randl51 148 218 218 No change
Randl53 8 8 8 No change
Randl54 I I 1 No change
Randl55 905 790 790 No change
Randl56 43 40 40 No change
Randl58 30 24 24 No change
Lisaba9 3515 3211 3211 No change
Lisab30 129 87 87 No change
Lisab60 66 47 47 No change
Lisab31 4534 4896 4160 <, Result <

343

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VII

··Tree • NodeS of Best I Structural Measure . Repeated Separation. .•... Effect on results"

Lisaba4 9959 5523 5523 No change
Lisab57 1245 1151 1151 No change
Lisab10 9593 6438 6438 No change
Lisab35 17901 12170 12170 No change
Lisab44 158 53 53 No change
Lisab25 165 158 158 No change
Lisab54 40 60 60 No change
Lisab52 4981 2674 2674 No change
Lisab36 480 316 316 No change
Lisab42 17 17 17 No change

344

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VIII

Appendix VIII

Comparison of Results for BDD Size Using The Best of Six Ordering
Heuristics and Simpler Weighting Methods For The Structural Importance

, ><.Tree "..ii
" .• ·'i'·;>." ;';. ..'>

Aaaaaaa
Artqual
Arttree
Astolfo
Bddtest
Benjiarn
Bpfeg03
Bpfen05
Bpfig05
Bpfin05
Bpfpp02
Bpfsw02
Ch8tree
Dre1019
DrelO32
Drel057
Drel058
DrelO59
Dresden
Emerh20
Fatrarn2
Hpisf02
Hpisf03
Hpist21
Hpisf32
Jdtree1
Jdtree2
Jdtree3
Jdtree4
Jdtree5
Khictre
Modtree
Nakashi
Newtre2
Newtre3
Newtree
Relcour
Rstree1
Rstree2

Measures.
Approach 1 program - sim _str 1 f
Approach 2 program -sim_str2f
Approach 3 program - sim_str3f

. '.' Best ResUlt. ~.<,e.... .. e. SimpJer. WeightingMeihods • .,~., .c' e •. ··, , ..•.• ::··
.', .. '.:; .• '; ;".: . •.. "Approach J 'c' e > .. ". Approach 2 /Approach3 '.-,,-.

3 3 3 3
11 11 11 11
4 4 4 4

107 121 121 119
36 62 90 62
76 87 86 87

82007 321123 316983 316983
51497 151563 150543 150543
49067 143643 142623 142623
2915 5282 5282 5282

4 4 4 4
110698 112553 112553 112553

11 11 11 12
69 69 75 69
87 81 87 81

2478 2310 2478 2310
24764 22652 27620 23732
61476 57004 63764 59876
221217 >500000 >500000 >500000

16 16 16 16
10 13 13 10

164539 415085 276295 270005
202 202 202 202

10593 18299 32359 32353
132 210 390 210
10 12 12 . 12
10 12 12 12
71 79 79 79
59 67 67 67
70 76 76 76

1134 1369 1369 1364
4 4 4 4

460 532 560 574
9 9 9 9
6 6 6 6
9 9 9 9
9 9 9 9
4 4 4 4
4 4 4 4

__ 345

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VIII

:,.Tree '.:·c'.., . Best'.. . , . AJlproach I Approach2 Ajmroach 3·
Rstree3 11 14 14 14
Rstree4 5 5 5 5
Rstree5 2 2 2 2
Rstree6 4 4 4 4
Rstree7 33 20 16 16
Usatree 4 4 4 4
Worrell 17 17 18 18
Trialsl 913 1084 1125 754
Trials2 29 13 11 12
Tria1s3 2 2 2 2
Tria1s4 302 235 222 199

Random 1 6 6 6 6
Random2 2 2 2 2
Random3 2341 4048 .4665 2584
Random4 5 5 5 5
Random6 40210 44132 101282 49164
Random7 4 4 4 4
Random8 31 36 37 36
Random9 6 6 6 6
RandolO 4 4 4 4
Rando11 >500000 >500000 >500000 >500000
Rando12 9545 6420 6474 6419
Rando13 394 1028 1167 762
Rando14 2 2 2 2
Rando15 5 5 5 5
Rando16 453 601 665 665
Rando17 5 5 5 5
Randol8 2364 4939 5355 2685
Rando19 13692 17769 25258 19066
Rando20 12097 20682 26999 18718
Rando21 21 36 36 36
Rando22 89013 24855 20620 16073
Rando23 150 144 144 138
Rando24 4 4 4 4
Rando25 16 29 17 17
Rando26 4 4 4 4
Rando27 1150 1264 1318 586
Rando28 2 2 2 2
Rando29 630 1756 1928 1471
Rando30 4266 16758 15930 11945
Rando31 11 29 53 53
Rando32 5 5 5 5
Rando33 18 23 30 21
Rando34 212 1235 1233 208
Rando35 180 73 67 63
Rando36 62 48 44 44
Rando37 136 148 242 227
Rando38 50 99 87 57
Rando39 626 572 703 591
Rand040 44 39 30 35
Rand041 5 5 5 4
Rand042 5 5 5 5

__ 346

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VIII

\"\',:" Tree . "'.: .. , BesV .. ' ...• '." . .'. Approach 1, Approach 2 .. ', Approach 3'
Rand043 94 94 94 106
Rand044 81850 341858 416366 221886
Rand045 138 201 253 99
Rand046 16 20 26 26
Rand047 1113 1258 2302 1772
Rand048 34 50 47 45
Rand049 18 34 34 26
Rando50 5 5 5 5
Rando51 3 3 3 3
Rando52 492 1033 1021 533
Rando53 5 5 5 5
Rando54 756 5010 5066 1619
Rando55 24 30 30 30
Rando56 7 7 7 7
Rando57 6 6 6 6
Rando58 9 9 9 9
Rando59 19289 24521 42956 24305
Rand060 639 473 453 453
Rand061 79 77 85 79
Rand062 21 12 12 11
Rand063 24 30 30 30
Rand064 2568 1715 1535 1262
Rand065 92 136 187 110
Rand066 131 130 120 125
Rand067 4 4 4 4
Rand068 6 6 6 6
Rand069 8 8 8 8
Rando70 80 138 134 84
Rando71 7 6 6 7
Rando72 2 2 2 2
Rando73 614 751 828 611
Rando74 2 2 2 2
Rando75 16 15 15 15
Rando76 299 271 303 303
Rando77 230 223 330 282
Rando78 5 5 8 5
Rando79 4 4 4 4
Rando80 119 176 176 118
Rando81 4 4 4 4
Rando82 6 6 6 6
Rando83 219 266 328 219
Rando84 703 777 671 671
Rando85 18 18 26 26
Rando86 2 2 2 2
Rando87 21 19 19 19
Rando88 504 629 630 654
Rando89 238 213 197 229
Rand090 3 3 3 3
Rando91 32108 39648 42277 32861
Rando92 9526 27981 29498 7960
Rand093 61 47 47 46
Rando94 2 2 2 2

___ 347

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VIII

,;.;', ,:,',' Tree" ",:' <>',Best ",< " '"Approach 1 ,', '", ," ApproaCh 2 ," " Approach 3: :
Rando95 57 175 175 79
Rando96 7 7 7 7
Rando97 3 3 3 3
Rando98 24088 39820 40302 27415
Rando99 737 1531 1280 725
RandlOO 21 32 32 22
RandlOI 7 7 7 7
Randl02 2 2 2 2
Rand 103 94 266 240 102
Randl04 110 156 148 88
Rand 105 953 768 888 967
Randl06 41 17 20 16
Randl07 5 5 5 5
Randl08 162 209 211 131
Randl09 9197 13145 18360 7043
Rand I 10 39 60 61 45
Randlll 217 235 211 187
Rand 112 5 5 5 5
Randll3 6 6 6 6
Rand 114 7 7 7 7
Randll5 851 853 782 678
Randl16 937 768 896 1618
Randll7 32 31 31 31
Randll8 703 777 671 671
Randll9 309 265 263 263
Randl20 3392 3397 3838 3709
Randl21 156 175 132 148
Randl22 4 4 4 4
Randl23 20 17 17 17
Randl24 178 246 249 168
Randl25 24 30 30 21
Randl26 1744 2084 2132 2228
Randl27 218 285 276 276
Randl28 886 1835 2016 2202
Randl29 4 4 4 4
Rand130 5 5 5 5
Randl31 8 8 7 7
Randl32 5128 4172 5518 4836
Randl33 5 5 5 5
Rand134 620 827 908 654
Rand135 382 764 786 407
Randl36 4 4 4 4
Randl37 139 157 173 149
Randl38 2 2 2 2
Rand139 478 813 1374 779
Randl40 5 5 5 5
Randl41 39 60 61 45
Randl42 55680 55952 67465 56834
Randl43 253 181 181 181
Randl44 5197 2795 10265 4953
Randl45 303 522 504 504
Randl46 139 157 173 149

___ 348

Variable Ordering Heuristics For Binary Decision Diagrams Appendix VIII

"

Tree, ' ,c' Best<", ' , 'I ,",' ",<",~ ',' '< 3c
Rand147 2548 9087 1886
R.n, IJ.~ 35 48 42 32

'" 87 189 190 213
Ran, 150 48700 ,)041,7 147500 34496
Rand151 148 31:3 383 258
Rand 152 1 1 1
Rand ,53 8 8 8
Rand 54 1 1 1
Rand 55 905 7~ ,8 793 794
Rand1:i6 43 4 43 40
Rand i8 30 24 26 24
l.i<a .1: Ui 4861 4659 4893
I,ka ,,0 29 143 137 93
k.hM 66 66 66 60

~ 60994 114958 114958
l.kaMI 4534 5054 16896 10726
[;<ahaJ. 9959 0221 10332 6029
Lisab57 1245 1469 2386 1081

156 171 172 172
L; .. hlO 9593 14431 14294 6528
T ;« 17901 10276 17048 11627
Lisab51 103 124 112 91
T;<aM, 158 162 184 176
1;« 165 2 256 154
Li<aM, 40 117 55
L;<aM1 25 21 21
U<a.h'i2 ~ 4518 4163 2835
1.i""M4 33 34 35 38
n<aMIi 480 2084 1770 1368
T;<.h 17 17 17 17

,",""""< • ",,','X"" , >,240 17.8~ :', ,,;,',,36 16 ~O ' 1';·,65 7RQ% ,;.0

I' :,' '",",'1 ".:1'; "'~"" " , '", ,',I ','i,.; """ "~,I:, ,:,,<:.:79 ,I, "".'; (:c;,;,07 ;)i;\ 1',,75 333,% "i" . '

: ',. "'"."i,·\ ' Best,iC)'"",,,<"?""; :;', 106' (47;1 ,V,,; ,:',1,:'112 49.5,' VG)," 1'.:/85 37:8% , ,i'i'

_________________________ 349

Variable Ordering Heuristics For Binary Decision Diagrams References

[ABa98]:

[ABaOO]:

[ADu99]:

[Ake78]:

[AM093]:

[BAn98]:

[BAn99]:

[BAn991]:

References

1. D. Andrews and 1. M. Bartlett. "Efficient Basic Event Orderings For

Binary Decision Diagrams". Proceedings of the Annual Reliability and

Maintainability Symposium, Anaheim, Los Angeles, 1998, p61-68.

J. D. Andrews and 1. M. Bartlett. "Binary Decision Diagram Ordering

Heuristics Based On Structural Importance". MMR (International

Mathematical Models in Reliability) Conference, Bordeaux, July 2000.

1. D. Andrews and S. J. Dunnett. "Event Tree Analysis Using Binary

Decision Diagrams". Submitted to IEEE Transactions on Reliability,

1999.

S. B. Akers. "Binary Decision Diagrams". IEEE Transactions on

Computers, vot. C-27, 1978, pS09-S16.

1. D. Andrews and T. R. Moss. Reliability and Risk Assessment.

Longman Group, UK, 1993.

1. M. Bartlett and 1. D. Andrews . "Efficient Basic Event Ordering

Schemes for Fault Tree Analysis". Advances in Reliability Techniques

Symposium (ARTS), Manchester, 1998.

1. M. Bartlett and 1. D. Andrews. "Efficient Basic Event Ordering

Schemes for Fault Tree Analysis". Quality and Reliability Engineering

International, vot. IS, 1999, p9S-1O 1.

1. M. Bartlett and 1. D. Andrews. "Comparison of Variable Ordering

Heuristics! Algorithms for Binary Decision Diagrams". Proceedings of the

Safety and Reliability Society Symposium '99, Advances in Safety and

Reliability, 12, June 1999, pI-IS.

[BAnOOl]: 1. M. Bartlett and J. D. Andrews. "Comparison of Two New Approaches

to Variable Ordering for Binary Decision Diagrams". Submitted to

Quality and Reliability Engineering International, 2000.

__ 350

Variable Ordering Heuristics For Binary Decision Diagrams References

[BAn002]: 1. M. Bartlett and J. D. Andrews. "Selecting An Ordering Heuristic For

The Fault Tree to Binary Decision Diagram Conversion Process Using

Neural Networks". Submitted to IEEE Transactions on Reliability, 2000.

[BAn003]:

[BBR97]:

[Bis95]:

[B0082]:

[Bou96]:

[Bry86]:

[CuI90]:

[DRa96]:

[ESD96]:

[FFK88]:

1. M. Bartlett and J. D. Andrews. "An Ordering Heuristic To Develop

The Binary Decision Diagram Based on Structural Importance".

Submitted to Reliability Engineering and System Safety, 2000.

M. Bouissou, F. Bruyere and A. Rauzy. "BDD Based Fault-Tree

Processing: A Comparison of Variable Ordering Heuristics". Proceedings

ofESREL '97 Conference, August 1997.

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,

Oxford, 1995

1. B. Booker. "Intelligent Behaviour as an Adaptation of the Task

Enviromnent". Dissertation Abstracts International, 1982,43(2), 469B.

M. Bouissou. "An Ordering Heuristic for Building Binary Decision

Diagrams from Fault Trees". Proceedings of Reliability and

Maintainability Symposium, Las Vegas, 1996, p208-214.

R. E. Bryant. "Graph-Based Algorithms for Boolean Function

Manipulation". IEEE Transactions on Computers, vo\. C-35, No. 8, 1986.

Lord Cullen. The Public Enquiry into the Piper Alpha Disaster. Vo\. 1 &

2, Department of Energy, HMSO, 1990.

Y. Dutuit and A. Rauzy. "A linear-time algorithm to find modules of fault

trees". IEEE Transactions on Reliability, vo\. 45, No. 3, September 1996,

p 422-425.

R. Eberhart, P. Simpson, and R. Dobbins. Computational Intelligence and

PC Tools. AP, 1996.

M. Fujita, H. Fujisawa, N. Kawato. "Evaluation and Improvements of

Boolean Comparison Method Based on Binary Decision Diagrams".

IEEE Transactions on Computer Aided Design (Conference), Nov 1988,

p2-5.

___ 351

Variable Ordering Heuristics For Binary Decision Diagrams References

[FSu90):

[GAr95):

[GoI97):

[Hea98):

[HKu81):

[HoI7\]:

[Lam75):

[Lee80):

[L0K91):

[Mas93):

[Men70):

[MlY91):

S. J. Friedman and K. J. Supowit. "Finding the optimal variable ordering

for binary decision diagrams". IEEE Transactions On Computers, vol. 39,

No.5, May 1990, p710-713.

Group Aralia, "Computation of Prime Implicants of a Fault Tree Within

Aralia". Proceedings of the European Safety and Reliability Association

Conference, ESREL '95, 1995, pI90-202.

D. F. Goldberg. Genetic Algorithms in Optimisation and Machine

Learning. Addison Wesely, 1997.

J. D. Healy. "Basic Reliability Techniques". Annual Reliability and

Maintainability Symposium Tutorial Notes, Jan. 1998.

E. J. Henley and H. Kumarnato. Reliability Engineering and Risk

Assessment. Prentice-Hall, NY, 1981.

J. H. Holland. "Genetic Algorithms and the Optimal Allocation of Trials".

SIAM Journal of Computers, 1971, 2(2), p88-105.

H. E. Lambert. "Measures ofImportance of Events and Cut Sets in Fault

Trees". Reliability and Fault Tree Analysis: Theoretical and Applied

Aspects of System Reliability and Safety Assessment, SIAM, Philadelphia,

1975, p77-100.

F. P. Lees. Loss Prevention in the Process Industries: Hazard

Identification, Assessment and Control. Vol. 2, Butterworth and Co.

(publishers) Ltd, 1980.

Y. Lee, S. Oh, and M. Kim. "The effect of initial weights on premature

saturation in back-propagation learning". International Joint Conference

on Neural Networks, Vol. 1,1991, p765-770.

T. Masters. Practical Neural Network Recipes in C++. Academic Press,

1993.

E. Mendelson. Boolean algebra and switching circuits. Mc Graw-Hill,

1970.

S. Minato, N. Ishiura and S. Yajima. "On variable ordering of binary

decision diagrams for the application of the multi-level logic synthesis".

__ 352

Variable Ordering Heuristics For Binary Decision Diagrams References

[NeI54]:

[Nik99]:

[Rau93]:

[Rau96]:

[SAI96]:

[SA296]:

[SA396]:

[Sch89]:

[Sin96]:

[Ves70]:

[VMR88]:

[Wat61]:

Proceedings of the European Conference on Design Automation, 1991,

p50-54.

R. 1. Nelson. "Simplest Nonnal Truth Functions". J. Symbol. Logic, vo!.

20, June 1954, pi 05-1 08.

M. Nikolskaia. "Binary Decision Diagrams and Applications to

Reliability Analysis". Doctoral Thesis, 1999, University of Bordeaux.

A. Rauzy. "New algorithms for fault tree analysis", Reliability

Engineering and System Safety, vo!. 40, 1993, p203-211.

A. Rauzy. "A BriefIntroduction to Binary Decision Diagrams". European

Journal of Automation, vo!. 30, No. 8, 1996.

R. M. Sinnarnon and J. D. Andrews. "Quantitative Fault Tree Analysis

Using Binary Decision Diagrams". European Journal of Automation, vo!.

30, No. 8, 1996.

R. M. Sinnarnon and J. D. Andrews. "Improved Efficiency in Qualitative

Fault Tree Analysis". Advances in Reliability Technology Symposium,

Manchester, 1996.

R. M. Sinnarnon and J. D. Andrews. "Fault Tree Analysis and Binary

Decision Diagrams". Proceedings of the Reliability and Maintainability

Symposium, Las Vegas, January 1996.

W. G. Schneeweiss. Boolean Functions with Engineering Applications

and Computer Programs. Springer-Verlag, Berlin, 1989.

R. M. Sinnamon. "Binary Decision Diagrams for Fault Tree Analysis".

Doctoral Thesis, 1996, Loughborough University.

W. E. Vesely. "A Time Dependent Methodology for Fault Tree

Evaluation". Nuclear Design and Engineering, vo!. 13, 1970, p337-360.

T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. 1. Alkon.

"Accelerating the convergence of the Back-propagation method".

Biological Cybernetics, 1988,59, p257-263.

H. A. Watson. Launch Control Safety Study, Vo!. 1, Section VII, Bell

Labs, Murray Hill, NJ, 1961.

___ 353

Variable Ordering Heuristics For Binary Decision Diagrams References

[Yaz89]: M. Yazdani. "Building an expert system". In Expert Systems: Principles

and Case Studies, Ed. 2, R. Forsyth, London: Chapman and Hall, 1989.

354

~ ----------

